Rolle der biologischen N$_2$-Fixierung von Baumleguminosen im östlichen Amazonasgebiet, Brasilien

- Anwendung der 15N natural abundance Methode -

Dissertation
zur Erlangung des Doktorgrades
des Fachbereichs Agrarwissenschaften
(Landwirtschaftliche Fakultät)
der Georg-August-Universität Göttingen

vorgelegt von

Antje Thielen-Klinge
geboren in Gütersloh

Göttingen, im März 1997
D7

1. Referent: Prof. Dr. P.L.G. Vlek
2. Korreferent: Prof. Dr. G. Wolf

Tag der mündlichen Prüfung: 29. 05. 1997
Meinen Eltern
Inhaltsverzeichnis

I Einleitung ... 1

II Literaturüberblick .. 4
1 Der Stickstoffkreislauf ... 4
2 Stickstoff in den Tropen ... 8
3 Die Leguminosen ... 11
4 Die 15N_natural abundance - Methode (15NNAM) 16
 4.1 Idee der 15NNAM-Methodik 16
 4.2 Vorkommen von 15N .. 19
 4.2.1 Fraktionierungsprozesse 19
 4.2.2 δ^{15}N im Boden 21
 4.2.3 δ^{15}N in der organischen Auflage des Bodens ... 25
 4.2.4 δ^{15}N in den Pflanzen 25

III Zielsetzung ... 36

IV Untersuchungsgebiet .. 37
1 Geographische Lage .. 37
2 Das Klima ... 38
3 Die Böden ... 40
4 Die Wald-Feld-Wechselwirtschaft 41

V Material und Methoden ... 44
1 Feld .. 44
 1.1 Untersuchte Flächen ... 44
 1.2 Beprobung des Bodens ... 45
 1.3 Physikalische und chemische Bodenanalysen der Probeflächen 46
 1.4 Beprobung der Pflanzen 52
 1.4.1 Beprobung von Pflanzenarten 52
 1.4.2 Saisonale Beprobungen 54
 1.5 Probenaufbereitung ... 55
<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Gewächshausversuche</td>
<td>56</td>
</tr>
<tr>
<td>2.1</td>
<td>Nodulation nativer Arten</td>
<td>56</td>
</tr>
<tr>
<td>2.2</td>
<td>Infektionspotential des Bodens</td>
<td>57</td>
</tr>
<tr>
<td>2.3</td>
<td>15N-Verteilung innerhalb der Pflanzen</td>
<td>58</td>
</tr>
<tr>
<td>2.4</td>
<td>Nährlösungen</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>Laborarbeiten</td>
<td>62</td>
</tr>
<tr>
<td>3.1</td>
<td>Bakterienkultivierung</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>15N-Analyse</td>
<td>64</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Prinzip der Messung</td>
<td>64</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Meßgenauigkeit</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>Berechnungen und statistische Auswertung</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>δ^{15}N, $%$Ndfa und β-Faktor</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Berechnung der Stickstoffakkumulation über die BNF der Leguminosen</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Statistik</td>
<td>68</td>
</tr>
<tr>
<td>VI</td>
<td>Ergebnisse</td>
<td>70</td>
</tr>
<tr>
<td>1</td>
<td>δ^{15}N in der Sekundärvegetation der Bragantina-Region</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>δ^{15}N im Mineralboden</td>
<td>72</td>
</tr>
<tr>
<td>2.1</td>
<td>Räumliche Variabilität</td>
<td>72</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Vertikale Variabilität von δ^{15}N</td>
<td>73</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Zusammenhang des δ^{15}N mit bodenchemischen und -physikalischen Eigenschaften</td>
<td>75</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Horizontale Variabilität</td>
<td>76</td>
</tr>
<tr>
<td>2.1.3.1</td>
<td>Kleinräumige Variabilität</td>
<td>76</td>
</tr>
<tr>
<td>2.1.3.2</td>
<td>Großräumige Variabilität</td>
<td>78</td>
</tr>
<tr>
<td>2.2</td>
<td>δ^{15}N in der Asche</td>
<td>80</td>
</tr>
<tr>
<td>2.3</td>
<td>Temporäre Variabilität</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>δ^{15}N in der organischen Auflage der Sekundär- und Primärvegetation</td>
<td>81</td>
</tr>
<tr>
<td>3.1</td>
<td>Räumliche Variabilität</td>
<td>82</td>
</tr>
<tr>
<td>3.2</td>
<td>Temporäre Variabilität im δ^{15}N der organischen Auflage</td>
<td>84</td>
</tr>
<tr>
<td>3.3</td>
<td>Beziehung von δ^{15}N der organischen Auflage zum δ^{15}N des Mineralbodens und der Vegetation</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>δ^{15}N in den Pflanzen</td>
<td>86</td>
</tr>
<tr>
<td>4.1</td>
<td>Blattposition</td>
<td>86</td>
</tr>
<tr>
<td>4.2</td>
<td>Räumliche Variabilität</td>
<td>90</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis - iii -

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Igarapé Açu</td>
<td>90</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Peixe Boi</td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>Temporäre Variabilität</td>
<td>95</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Generelle Tendenzen</td>
<td>95</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Unterschiede im zeitlichen δ^{15}N-Muster der Arten</td>
<td>97</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Pflanzengruppierung anhand zeitlicher Strukturen</td>
<td>100</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Clusteranalyse</td>
<td>100</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Differenzen zwischen Referenzpflanzen und Leguminosen</td>
<td>101</td>
</tr>
<tr>
<td>4.3.4</td>
<td>$%$N- und δ^{15}N-Unterschiede zwischen den Arten</td>
<td>103</td>
</tr>
<tr>
<td>5</td>
<td>Verteilung von 15N in den Pflanzen</td>
<td>104</td>
</tr>
<tr>
<td>5.1</td>
<td>A-Pflanzen</td>
<td>105</td>
</tr>
<tr>
<td>5.2</td>
<td>15N-Muster in den Pflanzenorganen</td>
<td>106</td>
</tr>
<tr>
<td>5.3</td>
<td>δ^{15}N des pflanzenverfügbaren Stickstoffs</td>
<td>107</td>
</tr>
<tr>
<td>6</td>
<td>$%$Ndπ der Leguminosen und die Präzision der Berechnung</td>
<td>108</td>
</tr>
<tr>
<td>7</td>
<td>Rolle der biologischen N_{2}-Fixierung in der Bragantina-Region</td>
<td>113</td>
</tr>
<tr>
<td>7.1</td>
<td>Infektionspotential eines Capoeirabodens</td>
<td>113</td>
</tr>
<tr>
<td>7.2</td>
<td>BNF in den verschiedenen Sukzessionsstadien der Entwicklung eines Tropenwaldes</td>
<td>119</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Beziehung von Baumgröße und Fixierungsleistung</td>
<td>119</td>
</tr>
<tr>
<td>7.2.2</td>
<td>N-Akkumulation über BNF in verschieden alten Sekundärvegetationen und Primärwäldern</td>
<td>122</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Vergleich der δ^{15}N-Werte von Primärwald und Sekundärwald</td>
<td>124</td>
</tr>
</tbody>
</table>

VII Diskussion

1. Die biologische N_{2}-Fixierung in der Bragantina-Region | 127
2. δ^{15}N in den Böden der Bragantina-Region | 133
3. δ^{15}N in der Vegetation der Bragantina-Region | 136
4. Schlußfolgerungen | 143

VIII Zusammenfassung

IX Summary | 149
X Resumo | 152
XI Literatur | 155
XII Anhang | 175

(X) Literaturverzeichnis - xlix -
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
<th>Englischer Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Ndfa</td>
<td>% Nitrogen derived from atmosphere</td>
<td></td>
</tr>
<tr>
<td>15NNAM</td>
<td>15N natural abundance Methode</td>
<td></td>
</tr>
<tr>
<td>BMBF</td>
<td>Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie</td>
<td></td>
</tr>
<tr>
<td>BNF</td>
<td>Biologische N_2-Fixierung</td>
<td></td>
</tr>
<tr>
<td>CNPq</td>
<td>Conselho Nacional de Desenvolvimento Científico e Tecnológico</td>
<td></td>
</tr>
<tr>
<td>CPATU</td>
<td>Centro de Pesquisa Agroflorestal da Amazonia Oriental</td>
<td></td>
</tr>
<tr>
<td>FG</td>
<td>Freiheitsgrad</td>
<td></td>
</tr>
<tr>
<td>EMBRAPA</td>
<td>Empresa Brasileira de Pesquisa Agropecuária</td>
<td></td>
</tr>
<tr>
<td>FCAP</td>
<td>Faculdade das Ciências Agrárias do Pará</td>
<td></td>
</tr>
<tr>
<td>IBAMA</td>
<td>Instituto Brasileiro do Meio Ambiente e dos Recursos Renováveis</td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>least significant difference</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
<td></td>
</tr>
<tr>
<td>MQS</td>
<td>mittlere Quadratsumme</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>Anzahl Wiederholungen</td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>Nährlösung</td>
<td></td>
</tr>
<tr>
<td>$N_{\text{min.}}$</td>
<td>mineralisierter Stickstoff</td>
<td></td>
</tr>
<tr>
<td>$N_{\text{tot.}}$</td>
<td>Gesamtstickstoff</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Standardabweichung</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>Standardfehler</td>
<td></td>
</tr>
<tr>
<td>SHIFT</td>
<td>Studies on Human Impact on Forests and Floodplains in the Tropics</td>
<td></td>
</tr>
</tbody>
</table>
I Einleitung

Nutzung der Böden nicht mehr gewährleistet und weitere Regenwaldflächen müssen angegriffen werden.

Informationen über den Stickstoffkreislauf in natürlichen Systemen können mit Hilfe der 15N natural abundance Methode (15NNAM) gewonnen werden. Grundlage der Methode sind die unterschiedlichen Konzentrationen des schwereren Stickstoffisotopen 15N in der Luft, dem Boden und anderen N-Quellen, die in den Pflanzen ihrer jeweiligen N-Quelle entsprechend wiederzufinden sind. Über den Vergleich der 15N-Konzentrationen in nicht N_2 fixierenden Referenzpflanzen mit denen in zu untersuchenden Leguminosen kann auf den Prozentsatz fixierten Stickstoffs im Gesamt-N der Leguminose geschlossen werden. Die 15NNAM wurde für Gewächshausbedingungen oder aber Feldexperimente auf kultivierten, homogenen Böden entwickelt (Shearer und Kohl, 1986). Sie ist nicht destruktiv, bedarf keiner besonderen Behandlungen der Versuchspflanzen, ermöglicht spontane Feldbeprobungen und kann sowohl qualitative als auch quantitative Informationen über die bestehende N_2-Fixierung in einer Pflanze liefern. Die 15N-Konzentrationsunterschiede bewegen sich in sehr kleinen Dimensionen. Daher wurde der δ^{15}N-Wert geschaffen, der die 15N-Konzentration einer Probe
mit dem $\delta^{15}\text{N}_{\text{Luft}}$ standardisiert. Positive $\delta^{15}\text{N}$-Werte signalisieren höhere und negative $\delta^{15}\text{N}$-Werte niedrigere ^{15}N-Konzentrationen als in der Luft.

Grundlegende Prozesse wie Nitrifikation, Denitrifikation und Immobilisierung von mineralischem Stickstoff haben Auswirkungen auf die Verteilung von ^{15}N im System und lassen Schlüsse auf die Rolle und das Zusammenspiel dieser Prozesse zu.

Sogenannte Fraktionierungsprozesse während der Bodenevolution und des Stickstoffkreislaufes in Boden und Vegetation, eine ungleiche Beteiligung der beiden N-Isotopen ^{15}N und ^{14}N an den Reaktionen im Stoffwechsel und anderen Umsetzungen, führten zu teilweise noch ungeklärten Isotopenverhältnissen (Handley und Raven 1992). Diese Prozesse nehmen in den unterschiedlichsten Regionen und Ökosystemen eine unterschiedliche Bedeutung ein. Für eine Feldumlagentätigkeit mit Brandrodung existieren bislang jedoch keine Erfahrungen dazu, was zum Beispiel die Auswahl von adäquaten Referenzpflanzen erschwert.

Aufgabe dieser Arbeit sollte die Abschätzung der Rolle der biologischen N_2-Fixierung von Baumleguminosken der Brachevegetation sein. Hauptaugenmerk mußte jedoch zunächst auf die Überprüfung der Eignung der ^{15}N natural abundance Methode für diese Aufgabe gelegt werden. Dazu sollte die Verteilung des ^{15}N im slash and burn System der Bragantina-Region (Boden und Vegetation), die Aufnahme dieses Isotopes von einigen Pflanzenarten und mögliche Fraktionierungen während der Stickstoffumsetzung in Leguminosen und potentiellen Referenzpflanzen untersucht werden.

II Literaturüberblick

Im folgenden wird ein Einblick in den N-Kreislauf, die BNF der Leguminosen und die Verteilung von ¹⁵N und ihre Mechanismen gegeben.

1 Der Stickstoffkreislauf

Um die verfügbaren Stickstoffressourcen des Bodens und der Luft aufzuschließen, sind in der Natur verschiedenste chemische und biologische Prozesse entstanden (Abb. 1).

Die stickstoffhaltige organische Substanz des Bodens wird durch extrazelluläre Enzyme der mikrobiellen Destruenten in Oligopeptide und Aminosäuren zersetzt. Diese Moleküle werden in die körpereigenen Substanzen der Mikroorganismen eingebaut (Immobilisierung) oder aber desaminiert zu NH_4^+, welches als erstes Produkt der Mineralisation gilt.

Als Nitrifikation betrachtet man die nun folgende Oxidation von NH_4^+ zu NO_3^-. Sie gliedert sich in zwei Schritte, die im Boden von einer Parabiose chemoautotropher, aerober Bakterien durchgeführt werden: Der erste Schritt der Oxidation des NH_4^+ zu NO_2^- wird von Ammonium-oxidierenden Bakterien der Gattung *Nitrosomonas*, der zweite Schritt vom NO_2^- zum NO_3^-, von nitritoxidierenden Bakterien der Gattung *Nitrobacter* vollzogen. Nitrifikation wird reguliert über die NH_4^+- und O_2- Konzentration im Boden, das pH-Optimum der Bakterien liegt bei etwa 7-9, die aktive Temperatur umfaßt 2-40°C (Schlegel, 1992; Mosier und Schimel, 1993).

Neben dieser autotrophen Nitrifikation gibt es auch die heterotrophe Nitrifikation, die in sehr sauren Böden angetroffen wird. Ihre Bedeutung ist jedoch als gering einzuschätzen (Schlegel, 1992).

Sowohl NO₃⁻ als auch NH₄⁺ können von den Pflanzen durch die Wurzeln aufgenommen werden. In der Regel wird das NO₃⁻ über die assimilatorische Nitratreduktase in NH₄⁺ umgewandelt. NH₄⁺ wird über das GS/GOGAT - System (Glutaminsynthetase/Glutamin-2-Oxoglutarat-Amino-Transferase) an Glutamat oder Aspartat gebunden und so mit dem Xylem-Flux in die einzelnen Kompartimente der Pflanzen transportiert, in denen es in andere organische Verbindungen eingebaut wird.

Die Nitrogenase besteht aus 3 Untereinheiten, dem zweifach vorkommenden Azoferrodoxin und dem Molybdoferredoxin (Schlegel, 1992). Unter Aufwendung von 16 ATP (Adenosin-triphosphat) katalysiert der Enzymkomplex die Reduktion von N_2 zu $2\, NH_3$ und H_2. Die Summenformel dieser Reaktion ist:

$$N_2 + 8H^+ + 8e^- + 16\, ATP \rightarrow 2\, NH_3 + H_2 + 16\, ADP + 16\, P_i$$

Rein rechnerisch werden für diesen Vorgang 16 ATP als Energiequelle benötigt, erfahrungsgemäß sind es aber wohl eher 20-30 ATP (Stacey et al., 1992). Die Enzyme enthalten, wie schon ihr Name sagt, neben schwefelhaltigen Proteinen auch Eisen und Molybdän, so daß Mikroorganismen nur dann N_2 binden können, wenn Phosphor, Eisen und Molybdän vorhanden sind. Andere wichtige Mikronährstoffe sind Kobalt, Bor, Zink, Nickel, Selen und Kupfer (Giller und Wilson, 1991). Von Fixierungsaktivitäten bei arktischen Temperaturen (Nosko et al., 1994) oder aber in heißen Quellen (Wahlund und Madigan, 1993) wurde zwar berichtet, das Temperaturoptimum liegt jedoch bei 30°C. Die BNF bringt den ausführenden Organismen immer dann Vorteile, wenn der Boden N-arm, jedoch mit Phosphor und den o.g. Mikronährstoffen ausreichend versorgt ist.

2 Stickstoff in den Tropen

II. Literaturüberblick

und unterdrücken damit die Denitrifikation. Robertson und Tiedje (1988, zitiert in Groffman, 1995) schätzten die Denitrifikationsraten für Primärwald auf 13.2 kg N ha\(^{-1}\) Jahr\(^{-1}\) und für Sekundärvegetationen mittleren Alters auf nur 3.6 kg N ha\(^{-1}\) Jahr\(^{-1}\).

Die Rolle der BNF in den verschiedenen Sukzessionsstadien einer Vegetation wird sehr gegensätzlich eingeschätzt (Tab. 1). Nach den Zahlen von Kauffman et al. (1995) und Hölscher (1995) herrscht im Anfangsstadium der Sekundärvegetation N-Mangel, aber noch ein relativ gutes P-Angebot vor, also gute Voraussetzungen für die BNF. Mit zunehmendem Alter und Erreichen des stabilen Klimaxstadiums wird Stickstoff akkumuliert und Phosphor
tritt als limitierender Faktor und somit die BNF reprimierend auf (Gorham et al., 1979; Stevens und Walker, 1970). Hierzu existieren jedoch nur sehr wenige Berechnungen.

Die nicht-symbiontische BNF über Flechten und freielebende Bakterien auf Rinden, in Humus und Boden eines Caatinga Primärwaldes (Rio Negro, Venezuela) wird auf etwa 35 bis 200 kg N ha⁻¹ Jahr⁻¹ geschätzt (Herrera und Jordan, 1981) (Tab.1) Die Berechnungen reichen von 0.1 bis 600 kg N ha⁻¹ Jahr⁻¹. In welcher Form dieser N-Input reguliert wird, ist unbekannt. Todd et al. (1978) gehen für ihren Standort (North Carolina, USA) davon aus, daß dieser nicht symbiontisch fixierte N-Eintrag zusammen mit der N-Deposition die Verluste durch Auswaschung und Denitrifikation ausgleicht.

Welche Bedeutung den Baumleguminosen in der N-Bilanz eines Primärwaldes zukommt, liegt vollkommen im Unklaren.

Tab. 1: Fixierungsraten einiger Primär- und Sekundärvegetationen der Amazonasregion

<table>
<thead>
<tr>
<th>Ökosystem</th>
<th>Fixierungsrate (kg N ha⁻¹ Jahr⁻¹)</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>symbiontische BNF</td>
<td>BNF via Flechten und freilebenden N₂-Fixierern in Boden und Phyllophäre</td>
</tr>
<tr>
<td>Primärvegetationen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lehmiger Oxisol, Brasilien</td>
<td>1.5</td>
<td>0 - 5</td>
</tr>
<tr>
<td>Várzea, alluvialer Boden, Brasilien</td>
<td></td>
<td>243</td>
</tr>
<tr>
<td>Campinas, sandiger Ultisol, Brasilien</td>
<td></td>
<td>5 - 20</td>
</tr>
<tr>
<td>Terra firme, sandiger Oxisol, Rio Negro, Venezuela, Puerto Rico</td>
<td></td>
<td>16.2</td>
</tr>
<tr>
<td>Costa Rica</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>La Selva, Costa Rica</td>
<td></td>
<td>1 - 8</td>
</tr>
<tr>
<td>„Primärwald“</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Sekundärvegetationen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxisol, Brasilien</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td>sandiger Latosol, Brasilien</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

II. Literaturüberblick

Durch Rodung und Brennen einer alten Sekundärvegetation oder eines Primärwaldes geht das Potential der nicht-symbiontischen N₂-Fixierer zunächst einmal verloren (Jordan, 1989). Die im Boden freilebenden N₂ fixierenden Bakterien regenerieren sich im Laufe eines Jahres (Vasquez et al., 1993), die in der Phyllosphäre, der Rinde und auf verrottender Substanz lebenden Bakterienpopulationen und Flechten etc. jedoch nur mit der sich über Jahre wieder aufbauenden Vegetation.

Welchen Beitrag die symbiontische BNF zur Regeneration der Vegetation beiträgt, wurde bisher nicht untersucht. Für die Anwendung tropischer Leguminosen als Acker - bzw. Mischkulturen hingegen gibt es viele Berichte, die die Bedeutung für die Landwirtschaft unterstreichen (siehe Tab. 2).

3 Die Leguminosen

„Die Leguminosae stellen das spektakulärste Beispiel für evolutionäre und ökonomische Entwicklung aller Angiosperm-Familien dar“ (McKey, 1994).

Zu dieser Aussage kam McKey (1994) aufgrund der hohen Diversität bezüglich Wuchsform, Lebenszyklus, Habitate, geographischen Ausbreitung, Tierassoziationen und Samenverbreitung der Leguminosen. Beispielsweise umspannt die Wuchsform krautige, kurzlebige Pflanzen bis hin zu großen Bäumen mit Blättern über 2m Länge, es gibt Samen mit 0.1mm (Pycnospora lutescens) bis hin zu 18cm Durchmesser (Mora oleifera).
II. Literaturüberblick

Abb. 2: Leguminosen können die Sekundärvegetation weit überragen. *Inga macrophylla* in einer etwa einjährigen Sekundärvegetation.

von O$_2$-Schutzmechanismen wie z.B. der Symbiose mit höheren Pflanzen führte (Raven und Sprent, 1989).

In der Sekundärvegetation der Untersuchungsregion wurden Leguminosen in unterschiedlicher Häufigkeit gefunden. Für eine 5jährige Sekundärvegetation der Bragantina-Region bestimmte Denich (1989) 11% der Individuen als Leguminosen, die mit 27% an der oberirdischen Biomasse beteiligt waren. Das entsprach 19% der holzigen Arten. Vieira (1996) fand für eine gleich alte Vegetation sogar einen Anteil der Leguminosen an den häufigsten Arten von 45% und 21% der Individuen. Der Leguminosen-Bestand änderte sich jedoch drastisch mit der der Sekundärvegetation vorangehenden Nutzung (Nunez, 1996). In auf Pfefferanbau folgenden Sekundärvegetationen war der Leguminosenanteil an der oberirdischen Biomasse in einer einjährigen Vegetation 6-10% und in einer zehnjährigen Vegetation nur 0.2-0.8%.

Tab. 2: Tropische Leguminosen, ihre N\textsubscript{2}-Fixierungsleistung und Anwendung (zusammengestellt aus Blair et al., 1990 <1>; Brewbaker et al., 1981 <2>; Depinto et al., 1995 <3>; Garrity und Mercado, 1994 <4>; Giller und Wilson, 1991 <5>; Gutteridge und Shelton, 1993 <6>; Herridge und Danso, 1995 <7>; Högborg und Kvarnström, 1982 <8>; Kadiata und Mulongoy, 1995 <9>; Kessel et al., 1994 <10>; Lehmann et al., 1995 <11>; National Academy of Science, 1979 <12>; Ovalle et al., 1996 <13>; Peoples et al., 1995 <14>; Rosecrance et al., 1992 <15>; Sanford et al., 1993 <16>; Sanginga et al., 1990 <17>)

<table>
<thead>
<tr>
<th>Genera</th>
<th>Fixierungsrate (kg N ha-1 Jahr-1)</th>
<th>Funktion</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bäume:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia</td>
<td>34 - 95% vom Gesamt-N</td>
<td>Brennholz, lebender Zaun, Holzkohle, Erosionsschutz, Futter</td>
<td>2, 1, 8, 14</td>
</tr>
<tr>
<td>Albizia</td>
<td>34 - 80% vom Gesamt-N</td>
<td>Brennholz, Holzkohle</td>
<td>2, 9, 14</td>
</tr>
<tr>
<td>Calliandra</td>
<td>11</td>
<td>Brennholz, Gründüngung, Alley-cropping, Holzkohle</td>
<td>2, 6, 16, 14</td>
</tr>
<tr>
<td>Chamaecrista</td>
<td>8 - 82</td>
<td>Futter</td>
<td>13</td>
</tr>
<tr>
<td>Gliricida</td>
<td>99</td>
<td>Brennholz, Futter, Holzkohle, Hecke, Gründüngung, Erosionsschutz, lebender Zaun</td>
<td>2, 6, 4, 11, 15, 1, 14</td>
</tr>
<tr>
<td>Inga</td>
<td>?</td>
<td>Brennholz, Gründüngung</td>
<td>2, 8</td>
</tr>
<tr>
<td>Leucaena</td>
<td>70 - 240</td>
<td>Brennholz, Alley-cropping, lebender Zaun, Holzkohle, Erosionsschutz</td>
<td>2, 6, 15, 8, 10, 17, 14</td>
</tr>
<tr>
<td>Pithecellobium</td>
<td>?</td>
<td>Brennholz, lebender Zaun, Futter, Harz</td>
<td>2, 6, 1, 3</td>
</tr>
<tr>
<td>Prosopis</td>
<td>1.9 (50% vom Gesamt-N)</td>
<td>Brennholz, Futter, Holzkohle, Erosionsschutz</td>
<td>2, 1, 12, 13</td>
</tr>
<tr>
<td>Sesbania</td>
<td>14 - 281</td>
<td>Brennholz, Alley-cropping, lebender Zaun, Reisanbau</td>
<td>2, 6, 15, 16</td>
</tr>
<tr>
<td>Kräuter:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cajanus</td>
<td>68 - 88</td>
<td>Körnerleguminosen</td>
<td>5</td>
</tr>
<tr>
<td>Calopogonium</td>
<td>136 - 182</td>
<td>Weideleguminose, Gründüngung, Bodendecker</td>
<td>5, 14</td>
</tr>
<tr>
<td>Desmodium</td>
<td>60 - 380</td>
<td>Gründüngung</td>
<td>5</td>
</tr>
<tr>
<td>Glycine max</td>
<td>26 - 450</td>
<td>Körnerleguminosen, Soja</td>
<td>5, 7</td>
</tr>
<tr>
<td>Macroptilium</td>
<td>46 - 167</td>
<td>Gründüngung, Weideleguminose</td>
<td>5</td>
</tr>
<tr>
<td>Phaseolus</td>
<td>3 - 91</td>
<td>Körnerleguminose</td>
<td>5</td>
</tr>
<tr>
<td>Pueraria</td>
<td>9 - 115</td>
<td>Weideleguminose, Bodendecker</td>
<td>5, 14</td>
</tr>
<tr>
<td>Stylosanthes</td>
<td>1 - 263</td>
<td>Gründüngung, Weideleguminose</td>
<td>5</td>
</tr>
<tr>
<td>Trifolium</td>
<td>2 - 206</td>
<td>Futter, Weide</td>
<td>14, 16</td>
</tr>
<tr>
<td>Vicia</td>
<td>47 - 201</td>
<td>Körnerleguminose</td>
<td>5</td>
</tr>
<tr>
<td>Vigna</td>
<td>9 - 201</td>
<td>Futter, Körnerleguminose</td>
<td>14</td>
</tr>
</tbody>
</table>
4 Die 15N natural abundance - Methode

4.1 Idee der 15NNAM-Methodik

Für die Fragestellung dieser Arbeit, ob Baumleguminosen in der natürlichen Sekundärvegetation N$_2$ fixieren, war daher die 15NNAM am besten geeignet.

Bisher wurde die 15NNAM hauptsächlich unter definierten Versuchsbedingungen wie dem Gewächshaus oder Feldversuchen durchgeführt. Neuerdings wird die Methode auch verstärkt zur Erforschung des N-Kreislaufes in natürlichen Ökosystemen eingesetzt (Altabet et al., 1995; Dauchez et al., 1995; France, 1995; Liu et al., 1996; Sanford et al., 1993).

In natürlichen Vegetationen, speziell in feucht tropischen Klimaregionen mit Brandrodungspraxis jedoch liegen wenige Erfahrungen vor (Högberg und Alexander, 1995; Sanginga et al., 1992 und 1995; Sprent et al., 1995 und 1996; Yoneyama et al., 1993b).

Um die sehr geringen Unterschiede in den ^{15}N-Konzentrationen (Beispiel: $^{15}\text{N}_{\text{Luft}}=0,3663\text{Atom}\%$ und $^{15}\text{N}_{\text{Boden}}=0,3675\text{Atom}\%$) in übersichtlicher Form zu erfassen, greift man auf eine sogenannte Deltanotation ($\delta^{15}\text{N}$) zurück. Hierbei signalisieren positive $\delta^{15}\text{N}$-Werte höhere und negative $\delta^{15}\text{N}$-Werte niedrigere ^{15}N-Konzentrationen als in der Luft.

Die unterschiedlichen $\delta^{15}\text{N}$-Werte von Pflanzen je nach ihrer N-Quelle (Luft, Boden, sonstige Substrate) macht man sich zur Bestimmung der N_2-Fixierungsleistungen von Leguminosen zunutze.

Shearer und Kohl (1986) erklären die Ermittlung der N_2-Fixierungsleistung mit der $^{15}\text{NNAM}$ mit folgendem Schaubild zweier Pole (Abb. 3):

![Abb. 3: Modell der Verteilung von ^{15}N in Leguminosen, Referenzpflanzen und den N-Quellen (nach Shearer und Kohl, 1986).](image)

Dabei nehmen sie zwei Stickstoff-Quellen für die Pflanzen an. Zum einen wird N über die Wurzeln aufgenommen, zum anderen über die Wurzelknöllchen mittels biologischer N_2-Fixierung. Eine Pflanze, die ihren N-Bedarf nur aus dem Boden über die Wurzeln deckt, muß demnach den $\delta^{15}\text{N}$-Wert der Boden-N-Quelle widerspiegeln. Eine Pflanze, die 100% ihres N aus der Luft bezieht, muß den $\delta^{15}\text{N}$-Wert des Luft-N widerspiegeln (als A-Wert bzw. A-Pflanze bezeichnet). Der $\delta^{15}\text{N}$-Wert einer Leguminose, die teils fixiert, aber auch einen Teil ihres N aus dem Boden aufnimmt, muß sich entsprechend dem Anteil fixierten N zwischen

Von entscheidender Bedeutung für die Anwendung der Methode ist die Wahl der nicht N\textsubscript{2} fixierenden Referenzpflanzen, die gerade in natürlichen Systemen sehr erschwert ist. Von ihrem δ15N-Wert hängt es letztlich ab, wie genau eine %Ndfa-Berechnung ist. Sie gibt die δ15N-Spanne vor, in die sich das oben beschriebene Schema Abb. 3 einpaßt (Unkovich et al., 1994). Je konstanter und größer die Differenz zwischen Referenzen und Leguminosen ist, desto genauer wird die Berechnung.

Die im Feld untersuchten Leguminosen müssen im Gewächshaus in N-freier Kultur angezogen werden, um den δ15N-Wert der oben beschriebenen A-Pflanze zu erlangen.

In den letzten Jahren wurde immer deutlicher, daß reaktionskinetisch bedingte Fraktionierungsprozesse zwischen dem leichten (14N) und schweren Stickstoff-Isotop (15N) zur Verwischung der Differenzen zwischen den δ15N-Werten einzelner Arten, oder aber zu Unterschieden in den einzelnen Pflanzenorganen und den einzelnen N-Fraktionen im Boden führen. Auf Grund dieser Schwankungen der δ15N-Werte im biotischen und abiotischen System können einerseits die Wege des Stickstoffs verfolgt werden, müssen aber andererseits besondere Maßnahmen zur Bestimmung der N\textsubscript{2}-Fixierungsleistung unternommen werden. Dazu schlagen einige Wissenschaftler vor, mehrere Methoden parallel zu verwenden (Chalk et al., 1996; Herridge et al., 1990; Hoghjensen und Kristensen, 1995; Hoghjensen und Schjoerring, 1994; Hessain et al., 1995; Peoples et al., 1996; Sanginga et al., 1989) oder Alternativen zur Wahl einer Referenzpflanze auszuprobieren (Chalk et al., 1996). In den meisten Fällen wurde die 15NNAM und die „15N-dilution“-Methode parallel eingesetzt. Chalk et al. (1996) verbesserten die Methode zur Bestimmung des pflanzenverfügbaren N\textsubscript{min} im Boden. Stock et al. (1995) begaste die Wurzeln von Feldleguminosen mit O\textsubscript{2}, um so die N\textsubscript{2}-Fixierung zu unterdrücken und eine Referenzpflanze zu erlangen, die der fixierenden Pflanze physiologisch sehr ähnelte.

4.2 Vorkommen von 15N

In Abb. 1 des Kap. II.1 sind die einzelnen Prozesse des N-Kreislaufes dargestellt. Mit roten Zahlen sind die bisher gefundenen δ^{15}N-Werte der betreffenden Substanzen und Kompartimente dargestellt. Abb. 4 faßt die bisher vorgefundenen δ^{15}N-Werte in Boden und Vegetation zusammen.

Abb. 4: Weltweites 15N-Vorkommen in Pflanzen und Boden ($n =$ Anzahl Referenzen - siehe Anhang Tab.51); NH_4^+ bzw. NO_3^- = pflanzenverfügbares NH_4^+ bzw. NO_3^- im Boden; Box-Whisker-Plots geben den Median, 25% und 75% Quartil und Spannweite an).

Generell reicht die Spanne an vorgefundenen δ^{15}N-Werten in etwa von -10 bis +17. Der N$_2$ der Luft wird - wie schon zuvor erwähnt - auf der ganzen Welt mit 0.3663 Atom% 15N als Standard verwendet und hat demzufolge einen δ^{15}N-Wert von 0.

4.2.1 Fraktionierungsprozesse

Die unterschiedlichen δ^{15}N-Werte in biotischen und abiotischen Substanzen sind Folge einer Fraktionierung der Stickstoffisotope 15N und 14N während der einzelnen Phasen der biochemischen Umsetzung und Reaktionen im N-Kreislauf. Wellmann et al. (1968) weisen als eine der Ersten darauf hin, daß Moleküle mit dem leichteren Isotop 14N aufgrund reaktionskinetischer Gesetzmäßigkeiten meistens gegenüber denen mit dem schwereren Isotop 15N etwas bevorzugt werden. So sind als Ergebnis dieser Fraktionierung bei
unvollständigen Prozessen unterschiedliche Anteile 15N (Atom%) in Substrat und Produkt zu finden. Das Maß dieser Fraktionierung wird mit dem β-Faktor, dem Verhältniswert des 15N-Gehaltes des Substrates zu dem des Produktes, quantifiziert (Tab. 3, Formel des β-Faktors siehe Kap. V.4.3). Ein β-Faktor > 1 bedeutet eine Anreicherung im Substrat, < 1 eine Anreicherung im Produkt der jeweiligen Reaktion.

Diese Fraktionierungen finden hauptsächlich im Boden bei der im weiteren erläuterten Transformation des Stickstoffs der organischen Substanz in mineralisches N, bzw. dem erneuten Einbau in mikrobielle oder pflanzliche Substanzen statt. In den Pflanzen kommt es an verschiedenen Stellen zu einer möglichen Fraktionierung, wie z.B. der Diffusion durch Zellmembrane, katalytische oder enzymatische Reaktionen. Wie der Tab. 3 zu entnehmen ist, wird dabei unterschiedlich stark fraktioniert, so daß z.B. eine klare Bestimmung des δ^{15}N-Wertes des pflanzenverfügbaren N des Bodens erschwert ist. Durch viele Faktoren, die im Folgenden erläutert werden, können diese Prozesse beeinflußt und damit undurchschaubar gemacht werden. Das Wissen über die δ^{15}N-Werte der N-Quelle der Pflanzen im Feld ist jedoch sehr wichtig. Daher ist es unerläßlich, Hinweise auf die Prozesse im zu untersuchenden Boden und ihre Bedeutung für die Fraktionierung der Isotopen zu erlangen.

<table>
<thead>
<tr>
<th>Biochemische Reaktion</th>
<th>β-Faktor</th>
<th>δ^{15}N des Produktes</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbauprozesse von N_{org}</td>
<td>1.003</td>
<td>0 bis -2.3</td>
<td>15N-verdünnt</td>
</tr>
<tr>
<td>Desamminierung</td>
<td>1.003 bis 1.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assimilation von NH_4^+</td>
<td>0.9808 bis 1.0125</td>
<td>stark 15N-verdünnt</td>
<td>2</td>
</tr>
<tr>
<td>Assimilation von NH_3</td>
<td>1.0083 bis 1.0017</td>
<td>eher 15N-angereichert</td>
<td>2</td>
</tr>
<tr>
<td>Transaminierung</td>
<td>1.000</td>
<td>schwach 15N-verdünnt</td>
<td>2</td>
</tr>
<tr>
<td>marine NH_3 zu NO_2^-</td>
<td>1.021</td>
<td>-5.4 bis -21.1</td>
<td>1</td>
</tr>
<tr>
<td>marine Denitrifikation</td>
<td>1.000</td>
<td>unverändert</td>
<td>3</td>
</tr>
<tr>
<td>Diffusion</td>
<td>1.018</td>
<td>-1.9 bis -30</td>
<td>1</td>
</tr>
<tr>
<td>NH_3-Diffusion in die Gasphase</td>
<td>1.028 bis 1.033</td>
<td>schwach 15N-verdünnt</td>
<td>2</td>
</tr>
<tr>
<td>Symbiontische N_2-Fixierung</td>
<td>0.9992 bis 1.0034</td>
<td>stark 15N-verdünnt</td>
<td>2</td>
</tr>
<tr>
<td>N_2-Fixierung durch freilebende Bakterien</td>
<td>0.9963 bis 1.0035</td>
<td>meistens schwach verdünnend</td>
<td>4</td>
</tr>
</tbody>
</table>

4.2.2 $\delta^{15}N$ im Boden

Boden ist das Kompartiment, in dem eine intensive Umsetzung des Stickstoffs durch mannigfaltige Prozesse stattfindet, wodurch er zum Drehpunkt des N-Kreislaufes wird. Hier finden auch die Prozesse statt, die zu einer Fraktionierung von ^{15}N und ^{14}N führen.

Stickstoffeintrag in den Boden

Als N-Input in den Boden kommen zunächst die Deposition von NH_4^+ und NO_3^- aus der Luft sowie die BNF in Frage. In den Südappalachen wurden $\delta^{15}N$-Werte für NH_4^+ von -3.4 und für NO_3^- $+2.3$ gemessen (Garten, 1993).

Im Boden zeigt NH_4^+ überwiegend negative $\delta^{15}N$-Werte (Abb. 4), während für NO_3^- auch häufiger positive Werte gefunden wurden.

Die $\delta^{15}N$-Werte des biologisch fixierten Stickstoffs bewegen sich zwischen 0 und -2.

Industriell produzierter Dünger liegt in Bereichen von 0 bis +3.

Stickstoffverlust aus dem Boden

Unterschied zwischen Gesamt-N und pflanzenverfügbarem N des Bodens

Sowohl die Ammonifikation als auch die Nitrifikation sind einer 15N-Fraktionierung mit einem $\beta>1$ unterworfen (Mariotti et al., 1980a und 1982). Das resultierende NH_4^+ und NO_3^- (als Produkt) ist 15N-verarmt und das verbliebene N (als Substrat) angereichert. So kommt es zu 15N-verdünnntem mineralisiertem N (N_{min}), während der Gesamt-N (N_{tot}) höhere Werte annimmt. So erklären sich die schon von Cheng et al. (1964), aber auch von Binkley et al. (1985), Ledgard et al. (1984), Nadelhoffer und Fry (1988) und Vitousek et al. (1989) gemessenen 2 bis 4 Einheiten niedrigere δ^{15}N-Werte des mineralischen N gegenüber dem N_{tot} des Bodens.

15N-Analysen des N_{min} im Boden der Untersuchungsregion gaben ebenfalls Hinweise auf von N_{tot} verschiedene negative δ^{15}N-Werte des pflanzenverfügbaren Stickstoffs. Paparcikova (1996) fand mit der Bodentiefe abnehmende δ^{15}N-Werte, die zu δ^{15}N-negativem NH_4^+ ab einer Bodentiefe von 40cm führten. In den obersten 40cm jedoch war das mineralische N sogar mehr als das N_{tot} mit 15N angereichert.

\(\delta^{15}N \) im Bodenprofil

Chromatografische Prozesse können diesem Effekt entgegen wirken, indem \(^{15}NH_4^+ \) eher an Ton und andere Kationenaustauscheroberflächen gebunden wird als \(^{14}NH_4^+ \) und dadurch eher \(^{14}N \) in tiefere Bodenschichten gelangt (Delwiche und Steyn, 1970; Karamanos und Rennie, 1978). Daher kann es unterhalb von 50cm Bodentiefe wieder zu einer Verminderung der \(\delta^{15}N \)-Werte kommen. Delwiche und Steyn (1970) und Karamanos und Rennie (1978) führen den Einfluß alluvialen Stickstoffs in tiefen Schichten mit geringen N-Konzentrationen als eine weitere Erklärung an, vermuten aber auch eine wenn auch schwache Immobilisierung ausgewaschenen \(^{15}N \) verdünnten Nitrates.

Negative \(\delta^{15}N \)-Werte werden in den obersten Bodenschichten selten gemessen (Bremner und Tabatabai, 1973; Michelsen et al., 1996; Nadelhoffner et al., 1996; Riga et al., 1971). Sie treten da auf, wo \(\delta^{15}N \)-negative Streu dominiert (Mariotti et al., 1980b), auf geologisch jungen Böden (Vitousek et al., 1989), einigen Waldböden (Broadbent et al., 1980; Gebauer et al., 1991 und 1994; Garten, 1993; Riga et al., 1971), wo Stickstoff hauptsächlich aus dem \(\delta^{15}N \)-negativen Niederschlag stammt (Wada et al., 1975) oder auf Böden mit Brandvorgeschichte (Herman und Rundel, 1989). Boden unter langjährigem Leguminosenbewuchs wies dem \(\delta^{15}N_{\text{Luft}} \) nähere Werte auf als Boden, der nicht mit \(\text{N}_2 \)-Fixierern bewachsen war (Kessel et al., 1994; Peoples et al., 1991; Piccolo et al., 1994a).

Auswirkung der Bodenbearbeitung auf den \(\delta^{15}N \)-Wert

Die Art und Dauer der Bodenbearbeitung kann sich auf die \(\delta^{15}N \)-Werte im System auswirken. Boden unter natürlichen Systemen wie Wald oder auch Strauchvegetationen
haben häufig niedrigere δ^{15}N-Werte als Böden, die bearbeitet wurden (Bremner und Tabatabai, 1973; Peoples et al., 1991; Höberg und Alexander, 1995; Turner et al., 1987).

Wenn durch Kultivierungsmaßnahmen wie z.B. Ernten, Hacken oder Pflügen eine Vegetation zerstört wird, erhöht sich die mikrobielle Aktivität im Boden. Fraktionierungen während der Mineralisation führen zur Anreicherung der im Boden verbleibenden, stabilen organischen Substanz, während der mineralische Stickstoff von der Vegetation aufgenommen und mit der Ernte aus dem System entfernt wird (Turner et al., 1983; Mariotti et al., 1980b; Karamanos et al., 1981; Riga et al., 1971). Mit der Dauer dieser Art der Kultivierung reichert sich 15N immer mehr im Boden an (Nadelhoffer und Fry, 1988).

Im Amazonasgebiet fanden Piccolo et al. (1994 und 1996) niedrigere δ^{15}N-Werte unter Weiden als in benachbarten Böden mit Sekundärvegetation oder Primärvegetation, wo durch den Eintrag von N aus der Luft über die BNF eine Absenkung der δ^{15}N-Werte in der Vegetation und später über den Streufall im Boden folgte.

Schulze et al. (1991) stellten einen Zusammenhang zwischen der Brandvorgeschichte einiger Standorte in Namibia und den erhöhten δ^{15}N-Werten der untersuchten Böden her. In Australien fanden Pate et al. (1993) nach einem Vegetationsbrand in den NO$_3^-$ aufnehmenden Pionierpflanzen ebenfalls höhere δ^{15}N-Werte als in den anderen Arten und sehen dies als Hinweis für eine Anreicherung des N$_{\text{min}}$-Pools mit 15N nach einem Brand.

Im Widerspruch dazu stehen Ergebnisse von Herman und Rundel (1989). Sie verfolgten die Entwicklung der δ^{15}N-Werte im N$_{\text{min}}$-Pool nach einem Brand in einem Inkubationsversuch. Nach der 1. Regenerationsphase entwickelten sich als erstes die Ammonifikanten und der Abbau der freigesetzten labilen organischen Substanz begann. Mit dem Einsatz der
Nitrifikation erreichte NO$_3^-$ immer negativere δ^{15}N-Werte (bis -11), und NH$_4^+$ immer positivere Werte (bis +15).

4.2.3 δ^{15}N in der organischen Auflage des Bodens

Der δ^{15}N-Wert der organischen Auflage gilt als Bindeglied zwischen dem N in der Vegetation und dem N des Bodens.

Vor dem Streufall finden Umlagerungsprozesse in den alten Blättern an der Pflanze statt (Buchmann et al., 1995; Domenach et al, 1992), trotzdem spiegelt sich in der frischen organischen Auflage der in der Vegetation vorherrschende δ^{15}N-Wert wider.

Die auf den Blattfall folgenden biologischen und chemischen Prozesse beginnen mit unterschiedlicher Rate (Clinton et al., 1995; Kessel et al., 1994; Palm und Sanchez, 1990). In der älteren organischen Auflage finden sich die δ^{15}N-Werte, die durch diese Vorgänge verändert wurden (Andreux et al., 1988). So fanden Turner et al. (1983) durch die Abbauprozesse Verschiebungen im organischen Material um durchschnittlich 12 Einheiten.

Die Art des organischen Materials beeinflußt die Entwicklung des δ^{15}N-Wertes. So kommt es im Holz zu einer langsamen, in Fichtennadeln zu einer schnellen 15N-Anreicherung, während sich z.B. das Laub von Birke und Buche nur sehr langsam und nur wenig mit 15N anreichert (Downs et al., 1996).

4.2.4 δ^{15}N in den Pflanzen

Die Referenzpflanzen

Für die Bestimmung des %Ndfa werden nicht fixierende Referenzpflanzen benötigt, die den zu untersuchenden Leguminosen in Physiologie und Stoffwechsel ähneln und die gleiche Boden-N-Quelle nutzen. Von den δ^{15}N-Werten dieser Referenzpflanzen hängt die Präzision der %Ndfa-Bestimmung entscheidend ab (Domenach und Corman, 1984; Unkovitch et al., 1994).
In der Vegetation spiegeln sich die δ^{15}N-Werte des pflanzenverfügbaren N des Bodens wider. Als N-Quelle dient der mineralische N (NO_3^- und NH_4^+) sowie der biologisch fixierte N und der Stickstoff aus biologischer Fixierung, der über Transferwege im Boden in nicht fixierende Pflanzen gelangt. Unterschiedliche Aufnahmemechanismen, Durchwurzelungsstrategien und die Verteilung in der Pflanze tragen zu variierenden δ^{15}N-Werten bei.

In natürlichen Systemen kann die Variabilität der δ^{15}N-Werte in der Vegetation sehr groß sein und zu Fehlern in der %Ndfa-Berechnung führen. So kann es durch die Anwendung verschiedener Referenzpflanzen zu unterschiedlichsten Abschätzungen des %Ndfa kommen (Bremer et al., 1993; Danso et al., 1991; Ledgard et al., 1985; Pate et al., 1994; Sanginga et al., 1990a und 1996; Schöneberger et al., 1989;). Bei einer Wertedifferenz von beispielsweise nur 2 δ^{15}N-Einheiten zwischen der Leguminose und der Referenzpflanze für die Bestimmung des %Ndfa müssen die Schwankungen unter 0.2 δ^{15}N-Einheiten liegen, um eine 10 % sichere Aussage machen zu können (Unkovich et al., 1994). Sanginga et al. (1996) fanden Unterschiede in der %Ndfa-Berechnung von mehr als 20% in Abhängigkeit von der Referenzpflanze. Domenach et al. (1989) konnten keine exakten Fixierungsraten aufgrund der großen Streuung innerhalb der Vegetationen bestimmen. Högberg (1986) fand in Tanzania zwar stabile Differenzen zwischen Leguminosen und potentiellen Referenzpflanzen, konnte aber auf Grund der unterschiedlichen Wurzelsysteme keine quantitative Abschätzung geben.

Für holzige Leguminosen gibt es die Möglichkeit, dieselbe Leguminose nicht-noduliert als Referenz einzusetzen, jedoch nur sehr eingeschränkt. Auf Feldern, die für das Fehlen von *Frackia*- bzw. bestimmten *Rhizobium*-Stämmen bekannt waren, konnten nicht-nodulierte Bäume der zu untersuchenden Leguminosen etabliert werden. *Casuarina, Acacia* und...
Leucaena-Arten wurden mit nicht-fixierenden Isolinien von Franckia und Rhizobium als Referenzen eingesetzt. Bei beiden Möglichkeiten ist jedoch eine nachträgliche Kontamination mit fixierenden Isolinien nicht auszuschließen, die zu Verfälschungen der Ergebnisse führen (Überblick in Sanginga et al., 1992). In Plantagen und agroforstlichen Systemen werden daher hauptsächlich Cassia (Senna)- oder Eucalyptus-Arten eingesetzt (Jonsson et al., 1996; Ladha et al., 1993; Parrotta et al., 1994; Peoples et al., 1996; Sanginga et al., 1990 und 1996;). Aber auch diese Arten können z.B. aufgrund von Wurzelexudaten inhibitorisch auf die BNF wirken, oder aber den Boden-δ\(^{15}\)N-Wert verändern. In diesen Plantagen und Feldversuchen wurde meistens mit \(^{15}\)N-Anreicherungen gearbeitet.

Abiotische Faktoren, die den δ\(^{15}\)N-Wert in den Pflanzen beeinflussen

Weltweit bewegen sich die δ\(^{15}\)N-Werte der Blätter der Leguminosen zwischen -5 und +10, für Nicht-Leguminosen zwischen -10 und +15.

Ein räumliches Muster, daß sich auf Kontinente oder gar Regionen bezieht, gibt es nicht. Unterschiede der räumlichen Struktur finden sich in Abhängigkeit vom Ökosystem, Nährstoff- und Wasserverfügbarkeit, Bodenbearbeitung und Topographie.

Einen deutlichen Trend zu positiven δ\(^{15}\)N-Werten fanden Wada et al. (1975) und Heaton (1987) entlang von Küsten, wo das über die marine Denitrifikation angereicherte Sprühwasser einen Einfluß auf die pflanzlichen δ\(^{15}\)N-Werte nimmt. Die gleiche Wirkung üben Trockenheit und Salinität aus.

In Abhängigkeit vom geologischen Alter der Böden verändert sich die Isotopenzusammensetzung der Vegetation. Auf Hawaii können aufgrund der Vulkanaktivitäten verschiedene, im geologischen Alter unterschiedliche Böden untersucht werden (Vitousek et al., 1989). Vitousek fand auf geologisch jungen Böden negative δ\(^{15}\)N-Werte in der Vegetation, die sich mit zunehmendem Alter mit \(^{15}\)N anreicherten. Die
\(\delta^{15}N \)-Werte der Vegetation waren auf Hawaii im Durchschnitt immer 4 \(\delta^{15}N \)-Einheiten niedriger als der Bodenwert. In geologisch jungen Böden gibt es einen nur sehr kleinen N-Pool, der über den \(\delta^{15}N \)-negativen Regen und die BNF langsam aufgefüllt wird. Erst mit der Entwicklung der Böden wird Stickstoff akkumuliert und Prozesse wie die Nitrifikation oder Denitrifikation setzen ein und führen über die Fraktionierung der N-Isotopen zu einer Anreicherung des Bodens mit \(^{15}N \).

Vegetationen, die häufigen Bränden unterliegen, zeigen ebenfalls auffällige \(\delta^{15}N \)-Werte. Virginia et al. (1989) fanden in dem mediterranen Chaparral System Kaliforniens ebenfalls negative \(\delta^{15}N \)-Werte, sowohl in der Vegetation als auch im Boden-N. Die Vegetation paßt sich an die für das Chaparral üblichen Brände an, indem sie tiefreichende Wurzelsysteme entwickelte. In tiefen Bodenschichten vermuten sie durch Auswaschung und Fraktionierungen negativere \(\delta^{15}N \)-Werte als im oberen Boden. Sprent et al. (1996) fanden im brasilianischen Cerrado ebenfalls negative \(\delta^{15}N \)-Werte wie auch Mordelet et al. (1996) in der Kapalga-Savanne Australiens.

Eine hohe räumliche Variabilität der \(\delta^{15}N \)-Werte auf einzelnen Standorten ist immer wieder ein Problem in natürlichen Vegetationen sowie landwirtschaftlich genutzten Flächen. Innerhalb von 2m können Unterschiede von 2 \(\delta^{15}N \)-Einheiten in Weizenkörnern auftreten, die sich aber auf größere Distanzen wieder ausgleichen (Sutherland et al., 1991). Bei ihrer Suche nach den Ursachen stießen Sutherland et al. (1991) auf Zusammenhänge mit der Topographie und dem Landschaftsmuster, die sie auf die biologische Aktivität im Boden, die NO\(_3^-\)-Verfügbarkeit, die Denitrifikation und die damit einhergehende \(^{15}N \)-Fraktionierung zurückführten. In gleicher Weise erklärten sich Bremer und Kessel (1990) die Differenzen von 6 \(\delta^{15}N \)-Einheiten über 40 bis 60m in verschiedenen Kulturpflanzen. Garten (1993) führte die im Vergleich zur Bergkuppe erhöhten pflanzlichen \(\delta^{15}N \)-Werte in einer Talsohle der Süd-Appalachen auf eine erhöhte NH\(_4^+\)-Aufnahme der Pflanzen vom N\(_{\text{min.}}\)-reicheren Talboden zurück. Im Talboden fand eine intensivere Nitrifikation statt, wodurch sich im Boden vergleichsweise mehr \(^{15}N \)-angereichertes NH\(_4^+\) ansammlte.

Ein weiterer Faktor für die räumliche Variabilität ist die Bodenfeuchte, die die mikrobiellen Prozesse das Bodens und die Verfügbarkeit von Nährstoffen beeinflußt. Handley et al. (1994) konnten auf 4 kenianischen Standorten nur dann Unterschiede in der Vegetation finden,
wenn auch unterschiedliche Bodenfeuchten vorlagen. Dann aber fanden sie herabgesetzte $\delta^{15}\text{N}$-Werte für Arten, die auf Boden mit einem Acacia-Bestand wuchsen.

Jahreszeiten

In sommergrünen Baumarten fallen die N-Gehalte gegen Ende der Wachstumsperiode signifikant ab. Diese Tendenz war auch für die $\delta^{15}\text{N}$-Werte festzustellen, jedoch nur in sehr abgeschwächter, nicht signifikanter Form (Garten, 1993).
Domenach et al. (1989, 1992) beobachtete keine deutliche saisonale Tendenz, dafür aber eine stärkere Streuung in Referenzpflanzen im Vergleich zu den N\textsubscript{2}-Fixierern. Trotz der geringen Saisonalität wurden die %Nd\textsubscript{fa} von *Alnus incana* im Frühjahr überschätzt, da die δ15N-Werte am Anfang eines Jahres den Reservestoffen des Vorjahres glichen.

Um den Fehler durch die große Streuung zu umgehen, empfehlen Pate et al. (1994) Vergleichsbeprobungen zum Zeitpunkt der höchsten Biomasse- bzw. N-Aufnahme durchzuführen. Zu diesem Zeitpunkt ist die Differenz zwischen Leguminosen und Referenzpflanzen am größten.

Unterschiede zwischen und innerhalb von Pflanzen

Durch die unterschiedliche Zusammensetzung der einzelnen Organe mit ihren jeweiligen N-Verbindungen entstehen unterschiedliche δ15N-Werte innerhalb der Pflanze (Yoneyama und Kaneko, 1989). Die Diskriminierung von 15N setzt sich bis in die feinsten Zellkompartmente fort. Bidigare et al. (1991) fanden z.B. höhere δ15N-Werte in den Lipid-im Gegensatz zu den Chlorophyllmolekülen einer Pflanzenzelle.

Die Blätter werden als das repräsentative Organ eines Baumes für das Anzeigen des δ15N-Wertes der jeweiligen N-Quelle angesehen. Die 15N-Gehalte in den einzelnen Organen einer Pflanze können aber sehr unterschiedlich sein. Innerhalb der Pflanze kann es Umlagerungsprozesse geben, die zu unterschiedlichen δ15N-Werten in z.B. neuen und alten

Schließlich sei an dieser Stelle noch das Wurzelsystem der Pflanzen an sich erwähnt, das je nach der Tiefe ihrer Wurzeln unterschiedliche N-Quellen ausschöpfen und somit den δ¹⁵N-Wert der oberirdischen Pflanzenteile mit beeinflussen kann (Mordelet et al., 1996; Virginia et al., 1989; Nadelhoffer et al., 1996)
A-Pflanze

Für die Berechnung des \(\% \text{NdfA} \) einer Leguminose muß man den \(\delta^{15}\text{N} \)-Wert derselben Leguminose kennen, wenn sie ihren N-Bedarf ausschließlich aus der Luft decken muß. Die Leguminosen werden zu diesem Zwecke im Gewächshaus ohne N-Quelle angezogen. Diese Pflanzen werden als A-Pflanzen bezeichnet.

Im Laufe der Nutzung der \(^{15}\text{NNAM} \) zur Bestimmung des \(\% \text{Ndfa} \) stellte sich heraus, daß die Knöllchen, in denen N\(_2\) fixiert wird, stark mit \(^{15}\text{N} \) angereichert waren und sich demzufolge in den Blättern der Leguminosen leicht negative \(\delta^{15}\text{N} \)-Werte entwickelten (Domenach et al., 1988; Doughton et al., 1992; Högberg et al., 1994; Ledgard, 1989; Turner und Bergersen, 1983; Yoneyama, 1991b und 1986). Mit Hilfe der A-Pflanzen will man den Fehler in der \(\% \text{Ndfa} \)-Berechnung vermeiden, der durch diese ungleiche \(^{15}\text{N} \)-Verteilung auftritt. Das Spektrum an bisher gemessenen \(\delta^{15}\text{N} \)-Werten in den Blättern von A-Pflanzen reicht von +2,6 in krautigen 100% fixierenden Sojabohnen (Turner und Bergersen, 1983) bis zu -1,8 in Blättern einer 100% fixierenden Erle (Domenach et al., 1988).

Generell sind die \(\delta^{15}\text{N} \)-Werte dieser A-Pflanzen unabhängig von der Wuchsform (Tab. 4a und b). Sie werden aber beeinflußt durch den die Knöllchen bildenden Bakterienstamm und das Stickstofftransportsystem der Pflanze.

Yoneyama et al. (1986) stellte einen Einfluß des Rhizobiumstammes auf die Fraktionierung in den Knöllchen von \textit{Phaseolus}-Pflanzen fest, die zu Unterschieden von 1 \(\delta^{15}\text{N} \)-Einheit führen kann. In \textit{Leucaena}-Pflanzen waren Unterschiede aufgrund des Bakterienstammes jedoch nicht signifikant nachzuweisen (Sanginga et al., 1990).

| Tab. 4a: \(\delta^{15}\text{N} \) in den Blättern einiger A-Pflanzen von Baum und Straucharten |
|-----------------|-----------------|----------|----------|
| Art | Wuchsform | \(\delta^{15}\text{N} \) | SE | Autor |
| Alnus cordata | Baum | -1.9 | 0.2 | Kurdali et al., 1993 |
| Alnus glutinosa | Baum | -2.0 | 0.2 | Kurdali et al., 1993 |
| Alnus glutinosa | Baum | -1.9 | 0.4 | Domenach et al., 1988 |
| Alnus incana | Baum | -1.8 | 0.2 | Domenach et al., 1988 |
| Alnus rubra | Baum | -1.5 | 0.3 | Kurdali et al., 1993; Binkley et al., 1985 |
| Prosopis glandulosa* | | -2.4 | 0.5 | Virginia et al., 1989 |
| Prosopis spp. | | -1.3 | 0.5 | Shearer et al., 1983 |
| Aeschynomene indica | Strauch | -0.7 | 0.02 | Yoneyama et al., 1991 |
| Senna (Cassia nomane) | Strauch | -0.95 | | Yoneyama et al., 1986 |
| Gliricidia sepium | | -1.45 | | Ladha et al., 1993 |
| Seshania rostrata | | -1.0 | | Yoneyama et al., 1991 |

*ganze Pflanze

Tab. 4b: 15N in den Blättern einiger A-Pflanzen von krautigen Arten

<table>
<thead>
<tr>
<th>Art</th>
<th>Wuchsstreifen</th>
<th>15N</th>
<th>SE</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arachis hypogea</td>
<td>Kraut</td>
<td>-0.7</td>
<td>0.3</td>
<td>Yoneyama, 1987</td>
</tr>
<tr>
<td>Astragalus sinicus</td>
<td></td>
<td>-0.89</td>
<td>0.22</td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Centrosema pubescens</td>
<td></td>
<td>-2.48</td>
<td></td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Desmodium intortum</td>
<td></td>
<td>-1.84</td>
<td></td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Glycine max</td>
<td></td>
<td>-1.45</td>
<td></td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Glycine max</td>
<td></td>
<td>+1.55</td>
<td>0.44</td>
<td>Turner und Bergersen, 1983</td>
</tr>
<tr>
<td>Glycine max</td>
<td></td>
<td>-1.5</td>
<td>0.4</td>
<td>Amarger et al., 1979, Shearer et al., 1980</td>
</tr>
<tr>
<td>Lotus pedunculatus</td>
<td></td>
<td>-0.1</td>
<td>0.3</td>
<td>Steele et al., 1983</td>
</tr>
<tr>
<td>Lupinus luteus</td>
<td></td>
<td>-0.9</td>
<td>0.1</td>
<td>Amarger et al., 1979</td>
</tr>
<tr>
<td>Lupinus luteus</td>
<td></td>
<td>+4.20</td>
<td>0.62</td>
<td>Turner und Bergersen, 1983</td>
</tr>
<tr>
<td>Lupinus angustifolium</td>
<td></td>
<td>-0.2</td>
<td></td>
<td>Unkovitch et al., 1994</td>
</tr>
<tr>
<td>Macroptilium atropurpureum</td>
<td></td>
<td>-2.56</td>
<td></td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td></td>
<td>+3.69</td>
<td>0.65</td>
<td>Turner und Bergersen, 1983</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td></td>
<td>-0.92</td>
<td></td>
<td>Mariotti et al., 1980</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td></td>
<td>+0.97</td>
<td>0.13</td>
<td>Ledgard, 1989</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td></td>
<td>+3.56</td>
<td>0.65</td>
<td>Turner und Bergersen, 1983</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td></td>
<td>-0.82</td>
<td>0.26</td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Pisum sativum</td>
<td></td>
<td>-0.3</td>
<td></td>
<td>Unkovitch et al., 1994</td>
</tr>
<tr>
<td>Prophocarpus tetragonolobus</td>
<td></td>
<td>-1.54</td>
<td>0.36</td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Stylosanthes humilis</td>
<td></td>
<td>-0.28</td>
<td></td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Trifolium hybridum</td>
<td></td>
<td>-0.7</td>
<td>0.03</td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Trifolium medicago</td>
<td></td>
<td>+2.83</td>
<td>1.06</td>
<td>Turner und Bergersen, 1983</td>
</tr>
<tr>
<td>Trifolium pratense,</td>
<td></td>
<td>-0.36</td>
<td>0.32</td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Trifolium pratense,</td>
<td></td>
<td>-0.88</td>
<td></td>
<td>Mariotti et al., 1980</td>
</tr>
<tr>
<td>Trifolium pratense,</td>
<td></td>
<td>-1.07</td>
<td></td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td></td>
<td>+0.58</td>
<td>0.12</td>
<td>Ledgard, 1984</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td></td>
<td>-1.9</td>
<td>0.2</td>
<td>Steele et al., 1983</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td></td>
<td>-0.98</td>
<td></td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td></td>
<td>-1.18</td>
<td>0.08</td>
<td>Ledgard, 1989</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td></td>
<td>-0.38</td>
<td>0.53</td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Trifolium subterraneum</td>
<td></td>
<td>+2.58</td>
<td></td>
<td>Turner und Bergersen, 1983</td>
</tr>
<tr>
<td>Trifolium subterraneum</td>
<td></td>
<td>-1.14</td>
<td>+0.06</td>
<td>Turner und Bergersen, 1983</td>
</tr>
<tr>
<td>Trifolium subterraneum</td>
<td></td>
<td>-0.57</td>
<td></td>
<td>Unkovitch et al., 1994</td>
</tr>
<tr>
<td>Trifolium subterraneum</td>
<td></td>
<td>+0.59</td>
<td>0.11</td>
<td>Ledgard, 1989</td>
</tr>
<tr>
<td>Trifolium spp. (mehrere Arten)</td>
<td></td>
<td>-0.3 bis</td>
<td>0.9</td>
<td>Ledgard, 1989</td>
</tr>
<tr>
<td>Vicia sativa</td>
<td></td>
<td>-0.79</td>
<td></td>
<td>Yoneyama et al., 1986</td>
</tr>
<tr>
<td>Vicia villosa</td>
<td></td>
<td>-0.20</td>
<td>0.21</td>
<td>Yoneyama et al., 1986</td>
</tr>
</tbody>
</table>
Wie wichtig es ist, für jede Art unter den entsprechenden Versuchsbedingungen A-Pflanzen als Referenz heranzuziehen, veranschaulicht der Vergleich der δ^{15}N-Werte der gleichen Art, von verschiedenen Arbeitsgruppen kultiviert (Tab. 4 b). Hier haben Nährösung, Temperatur und Wasserhaushalt ihren Einfluß und können eine Differenz von bis zu 2 δ^{15}N-Einheiten verursachen. Mangelversorgung mit z.B. Molybdän, Phosphor oder Wasser führen zu negativeren δ^{15}N-Werten in den Pflanzen als unter optimalen Bedingungen (Ledgard, 1989).
III Zielsetzung

Die Abschätzung von N_2-Fixierungsrationen mit Hilfe der ^{15}N natural abundance Methode baut auf minimale Differenzen in den Atom% ^{15}N auf. Räumliche und jahreszeitlich bedingte Schwankungen, die Umsetzungs- und Auswaschungsprozesse im Boden, pflanzeninterne Stoffwechsel- und Transportprozesse, unterschiedliche Wurzelsysteme und Wuchsformen nehmen Einfluß auf die Isotopenzusammensetzung der Pflanzen.

Die Vielzahl der in Kap. II erläuterten Möglichkeiten der Beeinflussung des $\delta^{15}\text{N}$-Wertes macht deutlich, daß es entscheidend ist, welche Referenzpflanze, welches Kompartiment, welche Standorte und Jahreszeiten für die Bestimmung der N_2-Fixierungsrate ($\%\text{Ndfa}$) gewählt werden. Für das natürliche System der Sekundärvegetation der Bragantina-Region lagen bisher keine Erfahrungen bezüglich dieser Faktoren vor. Daher war Ziel der vorliegenden Arbeit, im Vorfeld der Anwendung dieser Methode Informationen über die Isotopenverteilung in Boden und Vegetation und ihre möglichen Ursachen (Bodenbearbeitung, Fraktionierungsprozesse, pflanzenverfügbare N, Pflanzenhabitus), die Variationsbreite der $\delta^{15}\text{N}$-Werte zwischen und innerhalb der zu untersuchenden Pflanzen und die für die Berechnung der $\%\text{Ndfa}$ notwendigen A-Pflanzen zu sammeln.

Unter Berücksichtigung der gewonnenen Informationen sollte abschließend eine Abschätzung der N_2-Fixierungsrationen einiger Leguminosen in der Sekundär- und Primärvegetation der Bragantina-Region gegeben werden.
IV Untersuchungsgebiet

1 Geographische Lage

Der Großteil der beprobten Standorte befand sich in der Nähe der Kleinstadt Igarapé Açu, circa 100 km ostnordöstlich von Belém, ein weiterer Teil in der Nähe der Kleinstädte Peixe Boi, 150 km östlich von Belém, und Iracema, 70 km ONO von Belém. Igarapé Açu wurde 1897 das erste Mal als Siedlungsschwerpunkt erwähnt.

Abb. 5: Lage des Untersuchungsgebietes Bragantina im Nordosten von Pará, Brasilien (nach Denich, 1989)

Eine hohe Geburtenrate und die Dürrekatastrophen in anderen Teilen Brasiliens führten im Laufe der letzten 20 Jahre zu einer Verdoppelung der Bevölkerungsdichte auf 40.8 Einwohner pro km² (IDESP, 1990).
IV. Untersuchungsgebiet

2 Das Klima

Abb. 6: Klimadiagramme nach Walter von Belém (A), Castanhal (B), Igarapé Açú (C) und Tracuateua (D) (Denich, 1989)

Nach Diniz (1986) beträgt die mittlere Jahrestemperatur 25-26°C, die mittlere jährliche Niederschlagsmenge 2000-3000 mm und die mittlere jährliche Sonnenscheindauer 2200-2400 Stunden. Im langjährigen Mittel (1977-1987) wurde an einer Station in der Nähe von Castanhal, zwischen Belém und Igarapé Açú, an 16.1% aller Tage Südost und an 76.1% aller Tage Nordost als Hauptwindrichtung ermittelt (Boletim Agrometeorológico, 1977-

Mittlere Jahrestemperatur: 26.6 °C
Mittleres tägliches Minimum: 20.9°C
Mittleres tägliches Maximum: 31.8°C
Mittlerer Jahresniederschlag: 2298 mm
Regenärmste Monate: September bis Dezember 1992, unter 50mm
Regenreichster Monat: April 1993, 455mm
Mittlere jährliche Sonnenscheindauer: 2213.6

Abb. 7: Monatlicher Niederschlags- und Temperaturverlauf für den Untersuchungszeitraum auf einer Meßstation in unmittelbarer Nähe der Beprobungsflächen in der Umgebung von Igarapé Açú (Daten von Hölscher, 1995)

Die monatlichen Niederschläge des Untersuchungszeitraumes lagen generell unter dem langjährigen Mittel, bis auf April 1993, der mit seinen extremen Regenfällen sogar das langjährige Mittel übertraf (Abb. 7).
3 Die Böden

4 Die Wald-Feld-Wechselwirtschaft

Abb. 8: Luftaufnahme der Umgebung von Igarapé Açu. Zu erkennen sind verschiedene Stadien des Sekundärwaldes, Maniokfelder, Maracujá-Plantage und Igapó (Flußwald)

Nur noch 5.3% der Fläche entlang der Flußläufe sind mit ursprünglichem Primärwald bedeckt, der jedoch auch stark exploitiert wurde (Watrin, 1994) (Abb. 9). Es handelt sich dabei meistens um sog. Igapó Wälder, die auf überflutetem Boden stehen und somit für die landwirtschaftliche Nutzung ausscheiden. 21.5% der Gesamtfläche wird ackerbaulich genutzt. Dabei wird diese Fläche zur Zeit von der Weidewirtschaft dominiert (74.5%). Ein kleinerer Teil (6.4%) wird mit annuellen (Maniok - Manihot esculentes, Trockenreis - Oryza sativa, Mais - Zea mays) und Bohnen - Vigna unguiculata) und semi-perennen Kulturen wie Pfeffer (Piper nigrum), Obstbau (Cupuacu - Theobroma grandiflorum, Papaya - Carica papaya, Citrusfrüchten - Citrus spp., Maracujá - Passiflora edulis, Murucí - Byrsonima
IV. Untersuchungsgebiet - 42 -

crassiflora, Cashew - Anacardium occidentale) und 3.8% mit der permanenten Kultur Ölpalme (Elaeis guianensis) bebaut.

Abb. 10: Beispiel eines Nutzungszyklus der kleinbäuerlichen Wald-Feld-Umlagewirtschaft. Die Kulturphase beträgt 2 Jahre, die Brachephase mit Sekundärvegetation beträgt 3-7 Jahre.
V. Material und Methoden

1 Feld

1.1 Untersuchte Flächen

Tab. 5: Nutzungsvorgeschichte und Bezeichnung der Probeflächen (M = Flächen, auf denen monatlich beprobt wurde, S = Flächen, auf den zur Erfassung der räumlichen Variabilität beprobt wurde)

<table>
<thead>
<tr>
<th>Fläche</th>
<th>letzte Brandrodung</th>
<th>Alter der Cap.</th>
<th>Düngung</th>
<th>Vorkulturen</th>
<th>Alter der vorherigen Capoeira</th>
<th>Abkürzung der Flächen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramal do Prata, km 10 A</td>
<td>1986</td>
<td>5</td>
<td>nein</td>
<td>Mais, Maniok</td>
<td>>30 Jahre</td>
<td>M1 S1</td>
</tr>
<tr>
<td>Ramal do Prata, km 10 B</td>
<td>1984</td>
<td>7</td>
<td>nein</td>
<td>?</td>
<td>>28 Jahre</td>
<td>M2 S1</td>
</tr>
<tr>
<td>Igarapé Açu, Travessa 10</td>
<td>1986</td>
<td>5</td>
<td>nein</td>
<td>Baumwolle, Maniok</td>
<td>>30 Jahre</td>
<td>M3 S3</td>
</tr>
<tr>
<td>Igarapé Açu, Travessa 12</td>
<td>1986</td>
<td>5</td>
<td>nein</td>
<td>Baumwolle, Maniok</td>
<td></td>
<td>M4</td>
</tr>
<tr>
<td>Curi, Travessa 14</td>
<td>1985</td>
<td>6</td>
<td>nein</td>
<td>Maniok</td>
<td>>25 Jahre</td>
<td>M5 S5</td>
</tr>
<tr>
<td>Jambu Açu, nahe des Sítios Santo Antonio</td>
<td>1984</td>
<td>circa 7</td>
<td>ja</td>
<td>Maniok</td>
<td>>30 Jahre</td>
<td>S2</td>
</tr>
<tr>
<td>Igarapé Açu, Travessa Cumaru</td>
<td>1986</td>
<td>5</td>
<td>ja</td>
<td>Mais, Maniok, Bohnen</td>
<td>8 Jahre</td>
<td>S4</td>
</tr>
<tr>
<td>Iracema, Raimundo und Ayrton Marcello</td>
<td>1986</td>
<td>5</td>
<td>nein</td>
<td>Mais, Maniok</td>
<td></td>
<td>S6</td>
</tr>
<tr>
<td>Peixe Boi, Fazenda Monte Verde, Primärwald</td>
<td>noch nie</td>
<td>nein</td>
<td>?</td>
<td>-</td>
<td>PB_{SW}</td>
<td></td>
</tr>
<tr>
<td>Peixe Boi, Fazenda Monte Verde, Sekundärwald</td>
<td>zwischen 1968 und 1978</td>
<td>15-25</td>
<td>nein</td>
<td>?</td>
<td>PB_{SW}</td>
<td></td>
</tr>
</tbody>
</table>
Abb. 11: Lage der Beprobungsflächen in der näheren Umgebung von Igarapé Açu (Abstand zwischen 2 Linien = 3.6 km)

1.2 Beprobung des Bodens

Die Bodenproben wurden bis zu 1m Tiefe mit einem Pürkhauer -Bohrstock, Proben bis 6m Tiefe mit einem verlängerbaren Bohrstock (Eigenbau) entnommen. Nach Trocknung an der Luft wurden sie für die massenspektrometrischen 15N-Analysen in einer Kugelschlagmühle homogenisiert bzw. für die physikalischen und chemischen Analysen durch ein 2mm-Sieb passiert.

Für alle standortlichen und zeitlichen Beprobungen wurde aus folgenden Bodentiefen Proben gezogen: 0 - 5 cm, 5 - 10 cm, 10 - 20 cm, 20 - 40 cm, 40 - 60 cm, 60 - 100 cm.
Auf der Fläche M2S1 wurde eine einmalige Beprobung des Bodens bis in 6m Tiefe vorgenommen. Dabei wurden folgende Tiefen zusammengefaßt:

- 0 - 50 cm, 50 - 100 cm
- 100 - 150 cm, 150 - 200 cm
- 200 - 250 cm, 250 - 300 cm
- 300 - 350 cm, 350 - 400 cm
- 400 - 450 cm, 450 - 500 cm
- 500 - 550 cm, 550 - 600 cm

Beprobung verschiedener Standorte
1. Die Flächen, die innerhalb von 5 bis 50 km um Igarapé Açu herum lagen - M1 bis M5 und die Standorte Iracema (S6) und Peixe Boi (PB) - wurden beprobt. Dabei wurden pro Fläche 3 bis 6 Wiederholungen, bestehend aus jeweils einer Mischprobe aus 6 bis 10 Einstichen, erstellt.

2. Auf den Flächen M1 bis M5 wurden Proben 50 cm von dem Stamm einer Leguminose und in 5m Abstand von ihr genommen. Dabei wurden 5 Wiederholungen je Leguminose (Abarema jupunba, Inga heterophylla, Inga thibaudiana) durchgeführt.

Beprobung zu verschiedenen Zeitpunkten

Beprobung der organischen Auflage
Die Beprobung der organischen Auflage erfolgte parallel zu der Bodenbeprobung, so daß Daten zu kleinräumiger, großräumiger sowie temporärer Variabilität vorliegen.

1.3 Physikalische und chemische Bodenanalysen der Probeflächen
Tab. 6: Physikalische und chemische Bodenanalysemethoden

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Analysemethode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korngrößenbestimmung</td>
<td>Dispergierung mit 1N NaOH, Pipettanalyse, Trockensiebung</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>in Wasser und 1N KCl, elektrometrisch</td>
</tr>
<tr>
<td>organisch gebundenes C</td>
<td>nasse Veraschung mit Kaliumdichromat, titrimetrisch, nach Walkley/Black und Autoanalyzer</td>
</tr>
<tr>
<td>N tot.</td>
<td>Kjeldahl-Aufschluß, titrimetrisch</td>
</tr>
<tr>
<td>P</td>
<td>saure Extraktionslösung Mehlich I (North Carolina)</td>
</tr>
<tr>
<td>K, Na</td>
<td>Mehlich-Extraktsionslösung, flammenphotometrisch</td>
</tr>
<tr>
<td>Ca, Mg</td>
<td>1N KCl-Extraktsionslösung, atomabsorptionsspektrometrisch</td>
</tr>
<tr>
<td>Al, H</td>
<td>1N KCL- bzw. 1N Ca-Acetat-Extraktsionslösung, pH 7, titrimetrisch</td>
</tr>
<tr>
<td>Mn, Zn, Cu</td>
<td>nach Singh und Möller (1984), Mehlich-Extraktsion, atomabsorptionsspektrometrisch</td>
</tr>
<tr>
<td>AK(pH 7)</td>
<td>Summe der austauschbaren Kationen Na, K, Mg, Ca, Al und H</td>
</tr>
<tr>
<td>AKe</td>
<td>Summe der austauschbaren Kationen Na, K, Mg, Ca und Al</td>
</tr>
</tbody>
</table>

Die Böden der Untersuchungsflächen (Tab. 7 bis Tab. 10) können als typische Oxisole sandig-lehmiger Struktur bezeichnet werden. Im Vergleich mit Daten, die von Denich (1989) sowohl selbst erhoben als auch zitiert wurden, sind die Böden in fast allen chemischen Kenngrößen im unteren Bereich der in der Bragantina-Region vorkommenden Parameter anzusiedeln. Das heißt, daß sowohl an Makro- als auch an Mikronährstoffen Mangel herrscht. Die schon im Oberboden niedrige effektive Austauschkapazität (Ake) erreicht in 1.50m Tiefe ihren Minimalwert von 0.1mval/100g Boden, der sich in den tieferen Schichten des B-Horizontes nicht mehr verändert. Aluminium nimmt Konzentrationen bis zur Pflanzentoxizität an. Lateritkonkretionen wurden vereinzelt auf der Primärwald-Fläche in Peixe Boi angetroffen. Die Bodenverhältnisse können als typisch für die Bragantina-Region angesehen werden.
Tab. 7: Überblick über die physikalischen und chemischen Eckdaten der Böden von 0 bis 100 cm Tiefe der Flächen M1 bis M5 und S1 bis S5 (angegeben sind jeweils der Minimal- und Maximalwert der Mittelwerte aus 6 Mischproben je Bodentiefe und Fläche). Die Einzelwerte befinden sich in Tab. 53 bis 59 im Anhang.

<table>
<thead>
<tr>
<th>Bodentiefe</th>
<th>0 - 5 cm</th>
<th>5 - 10 cm</th>
<th>10 - 20 cm</th>
<th>20 - 40 cm</th>
<th>40 - 60 cm</th>
<th>60 - 100 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grobsand [%]</td>
<td>45.1-84.0</td>
<td>38.3-79.0</td>
<td>42.0-81.5</td>
<td>33.5-74.5</td>
<td>32-69.5</td>
<td>33-67</td>
</tr>
<tr>
<td>Feinsand [%]</td>
<td>12.0-38.0</td>
<td>16.0-41.6</td>
<td>12.5-39.0</td>
<td>17.5-37.5</td>
<td>19.5-36</td>
<td>19-35.5</td>
</tr>
<tr>
<td>Schluff [%]</td>
<td>1.0-8.5</td>
<td>2.0-7.6</td>
<td>1-10</td>
<td>2.5-9</td>
<td>4.0-7.5</td>
<td>3-9</td>
</tr>
<tr>
<td>Ton [%]</td>
<td>0.0-10.3</td>
<td>3.0-14.6</td>
<td>5.0-15.0</td>
<td>5.5-23.5</td>
<td>7.0-27.3</td>
<td>11-31</td>
</tr>
<tr>
<td>pH (H₂O)</td>
<td>5.4-5.8</td>
<td>5.2-5.6</td>
<td>5.0-5.6</td>
<td>4.9-5.4</td>
<td>4.8-5.2</td>
<td>4.8-5.3</td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>4.3-4.6</td>
<td>4.0-4.5</td>
<td>4.0-4.5</td>
<td>4.0-4.4</td>
<td>4.0-4.2</td>
<td>4.05-4.3</td>
</tr>
<tr>
<td>C [%]</td>
<td>0.60-1.60</td>
<td>0.56-1.00</td>
<td>0.57-0.78</td>
<td>0.37-0.52</td>
<td>0.25-0.41</td>
<td>0.20-0.56</td>
</tr>
<tr>
<td>N [%]</td>
<td>0.07-0.12</td>
<td>0.06-0.10</td>
<td>0.05-0.10</td>
<td>0.04-0.08</td>
<td>0.04-0.08</td>
<td>0.03-0.08</td>
</tr>
<tr>
<td>C/N</td>
<td>6.0-16.5</td>
<td>3.0-16</td>
<td>2.0-16.5</td>
<td>1.0-13.0</td>
<td>1.0-10.5</td>
<td>1.0-9.0</td>
</tr>
<tr>
<td>P [ppm]</td>
<td>2.5-5.0</td>
<td>2.0-3.0</td>
<td>1.5-3.0</td>
<td>1.0-4.0</td>
<td>0.2-2.5</td>
<td>1.0-2.0</td>
</tr>
<tr>
<td>Ca⁺⁺ [mval/100g]</td>
<td>0.8-2.8</td>
<td>0.4-1.2</td>
<td>0.3-0.7</td>
<td>0.1-0.7</td>
<td>0.1-0.4</td>
<td>0.1-0.2</td>
</tr>
<tr>
<td>Mg⁺⁺ [mval/100g]</td>
<td>0.40-1.60</td>
<td>0.30-1.00</td>
<td>0.15-0.85</td>
<td>0.10-0.80</td>
<td>0.1-0.35</td>
<td>0.10-0.25</td>
</tr>
<tr>
<td>K⁺ [mval/100g]</td>
<td>0.03-0.08</td>
<td>0.02-0.04</td>
<td>0.02-0.03</td>
<td>0.01-0.04</td>
<td>0.01-0.02</td>
<td>0.01-0.02</td>
</tr>
<tr>
<td>Na⁺ [mval/100g]</td>
<td>0.01-0.05</td>
<td>0.02-0.04</td>
<td>0.01-0.04</td>
<td>0.02-0.03</td>
<td>0.01-0.03</td>
<td>0.01-0.03</td>
</tr>
<tr>
<td>Al⁺⁺⁺ [mval/100g]</td>
<td>0.03</td>
<td>0.70</td>
<td>0.03-0.70</td>
<td>0.10-1.00</td>
<td>0.40-1.20</td>
<td>0.40-1.00</td>
</tr>
<tr>
<td>H⁺ [mval/100g]</td>
<td>1.60-3.50</td>
<td>1.20-3.00</td>
<td>2.20-3.00</td>
<td>1.30-2.50</td>
<td>1.25-2.20</td>
<td>1.20-1.95</td>
</tr>
<tr>
<td>Ak [mval/100g]</td>
<td>3.2-7.4</td>
<td>2.6-5.2</td>
<td>2.2-4.4</td>
<td>2.2-4.0</td>
<td>2.0-4.1</td>
<td>2.1-6.6</td>
</tr>
<tr>
<td>Ake[mval/100g]</td>
<td>1.6-4.1</td>
<td>0.4-2.1</td>
<td>0.4-1.35</td>
<td>0.6-4.0</td>
<td>0.2-0.9</td>
<td>0.2-0.5</td>
</tr>
<tr>
<td>Basensättigung [%]</td>
<td>34-55</td>
<td>11.4-54</td>
<td>11-46</td>
<td>6-36</td>
<td>2.5-27</td>
<td>6-24</td>
</tr>
<tr>
<td>Zn [ppm]</td>
<td>0.10-0.45</td>
<td>0.06-0.59</td>
<td>0.04-0.41</td>
<td>0.15-0.74</td>
<td>0.14-0.55</td>
<td>0.08-0.52</td>
</tr>
<tr>
<td>Cu [ppm]</td>
<td>0.001-0.01</td>
<td>0.00-0.02</td>
<td>0.00-0.10</td>
<td>0.00-0.40</td>
<td>0.01-0.04</td>
<td>0.00-0.05</td>
</tr>
<tr>
<td>Mn [ppm]</td>
<td>1.60-5.70</td>
<td>1.10-2.40</td>
<td>0.19-1.24</td>
<td>0.18-1.07</td>
<td>0.12-0.64</td>
<td>0.17-0.48</td>
</tr>
</tbody>
</table>
Tab. 8: Physikalische und chemische Eckdaten des Bodens von 0 bis 100 cm Tiefe der Fläche S6 in Iracema (Daten zum Teil von Ulrich Diekmann)

<table>
<thead>
<tr>
<th>Bodentiefe [%]</th>
<th>0-5</th>
<th>0-10</th>
<th>10-20</th>
<th>20-40</th>
<th>40-60</th>
<th>60-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grobsand [%]</td>
<td>45.1</td>
<td>38.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feinsand [%]</td>
<td>39.0</td>
<td>41.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schluff [%]</td>
<td>5.6</td>
<td>7.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ton [%]</td>
<td>10.3</td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH (H₂O)</td>
<td>5.5</td>
<td>5.2</td>
<td>5.0</td>
<td>5.0</td>
<td>5.1</td>
<td>5.0</td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>4.3</td>
<td>4.1</td>
<td>4.1</td>
<td>4.2</td>
<td>4.3</td>
<td>4.2</td>
</tr>
<tr>
<td>C [%]</td>
<td>1.12</td>
<td>0.7</td>
<td>0.72</td>
<td>0.46</td>
<td>0.33</td>
<td>0.22</td>
</tr>
<tr>
<td>N [%]</td>
<td>0.11</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>C/N</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>P [ppm]</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ca++ [mval/100g]</td>
<td>1.21</td>
<td>0.40</td>
<td>0.30</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Mg++ [mval/100g]</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K⁺ [mval/100g]</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Na⁺ [mval/100g]</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Al³⁺ [mval/100g]</td>
<td>0.40</td>
<td>0.40</td>
<td>0.70</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>H⁺ [mval/100g]</td>
<td>3.20</td>
<td>2.9</td>
<td>2.60</td>
<td>2.20</td>
<td>1.50</td>
<td>1.20</td>
</tr>
<tr>
<td>Ak [mval/100g]</td>
<td>4.90</td>
<td>3.75</td>
<td>3.700</td>
<td>3.20</td>
<td>2.50</td>
<td>2.20</td>
</tr>
<tr>
<td>Ake [mval/g]</td>
<td>1.70</td>
<td>0.43</td>
<td>0.40</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Basensättigung [%]</td>
<td>33.7</td>
<td>11.4</td>
<td>11</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Zn [ppm]</td>
<td>0.43</td>
<td>0.59</td>
<td>0.27</td>
<td>0.54</td>
<td>0.55</td>
<td>0.22</td>
</tr>
<tr>
<td>Cu [ppm]</td>
<td>0.001</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>Mn [ppm]</td>
<td>1.65</td>
<td>0.55</td>
<td>0.19</td>
<td>0.19</td>
<td>0.20</td>
<td>0.28</td>
</tr>
</tbody>
</table>

* leere Zellen = Ca++ und Mg++ wurden zusammen bestimmt
V. Material und Methoden

Tab. 9: Physikalische und chemische Eckdaten des Bodens von 0 bis 100 cm Tiefe der Flächen in Peixe Boi (PW = Primärwaldfläche, SW = Sekundärwaldfläche)

<table>
<thead>
<tr>
<th>Bodentiefe [cm]</th>
<th>0 -10</th>
<th>10 - 20</th>
<th>20 - 40</th>
<th>40 - 60</th>
<th>60 - 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standort</td>
<td>PW</td>
<td>SW</td>
<td>PW</td>
<td>SW</td>
<td>PW**</td>
</tr>
<tr>
<td>Grobsand [%]</td>
<td>33 51</td>
<td>31 51</td>
<td>26 39</td>
<td>24 30</td>
<td>25 33</td>
</tr>
<tr>
<td>Feinsand [%]</td>
<td>38 32</td>
<td>34 32</td>
<td>37 35</td>
<td>37 33</td>
<td>37 30</td>
</tr>
<tr>
<td>Schluff [%]</td>
<td>9 7</td>
<td>13 7</td>
<td>9 6</td>
<td>9 9</td>
<td>8 5</td>
</tr>
<tr>
<td>Ton [%]</td>
<td>20 10</td>
<td>22 10</td>
<td>28 20</td>
<td>30 28</td>
<td>30 32</td>
</tr>
<tr>
<td>pH (H₂O)</td>
<td>4.4 5.0</td>
<td>4.4 5</td>
<td>4.5 4.8</td>
<td>4.5 4.8</td>
<td>4.5 4.8</td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>3.5 3.9</td>
<td>3.6 3.9</td>
<td>3.8 3.9</td>
<td>3.9 4.0</td>
<td>4.0 4.0</td>
</tr>
<tr>
<td>C [%]</td>
<td>1.66 1.14</td>
<td>1.35 0.88</td>
<td>1.13 0.85</td>
<td>0.74 0.62</td>
<td>0.58 0.41</td>
</tr>
<tr>
<td>N [%]</td>
<td>0.16 0.11</td>
<td>0.15 0.10</td>
<td>0.11 0.09</td>
<td>0.09 0.08</td>
<td>0.08 0.06</td>
</tr>
<tr>
<td>C/N</td>
<td>10 10</td>
<td>9 9</td>
<td>10 9</td>
<td>8 8</td>
<td>7 7</td>
</tr>
<tr>
<td>P [ppm]</td>
<td>7 2</td>
<td>4 2</td>
<td>2 2</td>
<td>2 1</td>
<td>1 1</td>
</tr>
<tr>
<td>Ca++ [mval/100g]</td>
<td>0.70 0.80</td>
<td>0.40 0.60</td>
<td>0.20 0.30</td>
<td>0.20 0.30</td>
<td>0.20 0.30</td>
</tr>
<tr>
<td>Mg++ [mval/100g]*</td>
<td>0.30 0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K⁺ [mval/100g]</td>
<td>0.07 0.04</td>
<td>0.05 0.03</td>
<td>0.04 0.02</td>
<td>0.03 0.02</td>
<td>0.01 0.01</td>
</tr>
<tr>
<td>Na⁺ [mval/100g]</td>
<td>0.06 0.05</td>
<td>0.07 0.05</td>
<td>0.03 0.05</td>
<td>0.04 0.03</td>
<td>0.02 0.03</td>
</tr>
<tr>
<td>Al+++ [mval/100g]</td>
<td>2.20 0.80</td>
<td>2.70 0.80</td>
<td>2.70 1.40</td>
<td>2.40 1.20</td>
<td>2.20 1.20</td>
</tr>
<tr>
<td>H⁺ [mval/100g]</td>
<td>6.20 3.20</td>
<td>4.50 3.20</td>
<td>2.90 3.20</td>
<td>2.80 2.80</td>
<td>1.40 1.70</td>
</tr>
<tr>
<td>Ak [mval/100g]</td>
<td>9.20 5.20</td>
<td>7.70 5.00</td>
<td>5.90 5.00</td>
<td>5.50 4.30</td>
<td>3.80 3.20</td>
</tr>
<tr>
<td>Ake [mval/g]</td>
<td>0.80 1.20</td>
<td>0.50 1.00</td>
<td>0.30 0.40</td>
<td>0.30 0.30</td>
<td>0.20 0.30</td>
</tr>
<tr>
<td>Basensättigung [%]</td>
<td>9 23</td>
<td>6 20</td>
<td>5 8</td>
<td>5 7</td>
<td>5 9</td>
</tr>
<tr>
<td>Zn [ppm]</td>
<td>0.30 0.14</td>
<td>0.28 0.27</td>
<td>0.70 0.39</td>
<td>0.63 0.42</td>
<td>0.87 0.23</td>
</tr>
<tr>
<td>Cu [ppm]</td>
<td>0.02 0.02</td>
<td>0.02 0.02</td>
<td>0.09 0.04</td>
<td>0.08 0.05</td>
<td>0.14 0.02</td>
</tr>
<tr>
<td>Mn [ppm]</td>
<td>0.22 0.55</td>
<td>0.21 0.43</td>
<td>0.17 0.16</td>
<td>0.10 0.09</td>
<td>0.07 0.08</td>
</tr>
</tbody>
</table>

* leere Zellen = Ca++ und Mg++ wurden zusammen bestimmt
** ab 40 cm Bodentiefe wurden auf dieser Fläche Lateritkonkretionen angetroffen
Tab. 10: Physikalische und chemische Eckdaten des Bodens der Untersuchungsfläche M2S1 für die Bodentiefen von 0 bis 600 cm (es sind die Mittelwerte aus 6 Einzelproben je Bodentiefe mit dem Standardfehler in Klammern angegeben, nur jede 2. Bodentiefe wurde analysiert)

<table>
<thead>
<tr>
<th>Bodentiefe [cm]</th>
<th>0-50</th>
<th>50-100</th>
<th>150-200</th>
<th>250-300</th>
<th>350-400</th>
<th>450-500</th>
<th>550-600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grobsand [%]</td>
<td>44.5 (2.5)</td>
<td>36.0 (1.1)</td>
<td>41.0 (1.0)</td>
<td>42.5 (0.5)</td>
<td>36.0 (0.0)</td>
<td>41.0 (2.1)</td>
<td>45.0 (7.0)</td>
</tr>
<tr>
<td>Feinsand [%]</td>
<td>30.0 (1.0)</td>
<td>26.5 (1.0)</td>
<td>22.5 (0.5)</td>
<td>22.5 (1.5)</td>
<td>28.0 (0.0)</td>
<td>28.5 (0.6)</td>
<td>24.7 (4.1)</td>
</tr>
<tr>
<td>Schluff [%]</td>
<td>4.5 (1.5)</td>
<td>6.5 (0.6)</td>
<td>3.5 (2.5)</td>
<td>2.5 (0.5)</td>
<td>4.0 (0.0)</td>
<td>3.5 (0.6)</td>
<td>3.7 (0.7)</td>
</tr>
<tr>
<td>Ton [%]</td>
<td>21.0 (3.0)</td>
<td>31.0 (1.2)</td>
<td>33.5 (1.5)</td>
<td>32.5 (1.5)</td>
<td>32.0 (0.0)</td>
<td>27.0 (1.9)</td>
<td>26.7 (4.1)</td>
</tr>
<tr>
<td>pH (H₂O)</td>
<td>4.9 (0.09)</td>
<td>5.0 (0.04)</td>
<td>4.8 (0.1)</td>
<td>4.8 (0.05)</td>
<td>4.8 (0.1)</td>
<td>4.8 (0.12)</td>
<td>5.21 (0.27)</td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>4.0 (0.05)</td>
<td>4.1 (0.02)</td>
<td>4.1 (0.0)</td>
<td>4.20 (0.03)</td>
<td>4.2 (0.04)</td>
<td>4.2 (0.04)</td>
<td>4.53 (0.33)</td>
</tr>
<tr>
<td>C [%]</td>
<td>0.64 (0.04)</td>
<td>0.36 (0.05)</td>
<td>0.58 (0.15)</td>
<td>0.14*</td>
<td>0.1*</td>
<td>0.1*</td>
<td>0.1*</td>
</tr>
<tr>
<td>N [%]</td>
<td>0.09 (0.02)</td>
<td>0.06 (0.01)</td>
<td>0.06 (0.02)</td>
<td>0.01*</td>
<td>0.01*</td>
<td>nd*</td>
<td>nd*</td>
</tr>
<tr>
<td>C/N</td>
<td>7.5 (1.2)</td>
<td>6.7 (0.7)</td>
<td>10.0 (1.8)</td>
<td>8.5 (1.2)</td>
<td>7.6 (0.8)</td>
<td>7.7 (0.8)</td>
<td>7.7 (1.1)</td>
</tr>
<tr>
<td>P [mg/100g]</td>
<td>1.0 (0.0)</td>
<td>1.4 (0.1)</td>
<td>1.0 (0.0)</td>
<td>1.0 (0.0)</td>
<td>1.0 (0.0)</td>
<td>1.0 (0.0)</td>
<td>36.0 (0.0)</td>
</tr>
<tr>
<td>Ca++ [mval/100g]</td>
<td>0.35 (0.11)</td>
<td>0.29 (0.04)</td>
<td>0.10 (0.00)</td>
<td>0.10 (0.00)</td>
<td>0.10 (0.00)</td>
<td>0.12 (0.01)</td>
<td>0.10 (0.00)</td>
</tr>
<tr>
<td>Mg++ [mval/100g]</td>
<td>0.40 (0.00)</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>K+ [mval/100g]</td>
<td>0.02 (0.001)</td>
<td>0.01</td>
<td>0.009</td>
<td>0.01 (0.00)</td>
<td>0.01</td>
<td>0.01 (0.003)</td>
<td>0.003</td>
</tr>
<tr>
<td>Na+ [mval/100g]</td>
<td>0.04 (0.01)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02 (0.002)</td>
<td>0.02 (0.01)</td>
</tr>
<tr>
<td>Al³⁺⁺ [mval/100g]</td>
<td>0.83 (0.09)</td>
<td>0.84 (0.06)</td>
<td>0.77 (0.03)</td>
<td>0.62 (0.02)</td>
<td>0.44 (0.07)</td>
<td>0.37 (0.05)</td>
<td>0.32 (0.08)</td>
</tr>
<tr>
<td>H⁺ [mval/100g]</td>
<td>2.51 (0.8)</td>
<td>1.67 (0.09)</td>
<td>1.00 (0.06)</td>
<td>0.80 (0.07)</td>
<td>0.70 (0.04)</td>
<td>0.68 (0.08)</td>
<td>0.48 (0.06)</td>
</tr>
<tr>
<td>Ak [mval/100g]</td>
<td>3.80 (0.09)</td>
<td>3.15 (0.38)</td>
<td>1.86 (0.07)</td>
<td>1.52 (0.05)</td>
<td>1.25 (0.06)</td>
<td>1.12 (0.11)</td>
<td>0.92 (0.13)</td>
</tr>
<tr>
<td>Ake [mval/g]</td>
<td>0.45 (0.16)</td>
<td>0.29 (0.04)</td>
<td>0.10 (0.00)</td>
<td>0.10 (0.00)</td>
<td>0.10 (0.00)</td>
<td>0.12 (0.02)</td>
<td>0.12 (0.02)</td>
</tr>
<tr>
<td>Basensättigung [%]</td>
<td>11.7 (4.1)</td>
<td>9.8 (1.4)</td>
<td>5.0 (0.0)</td>
<td>6.5 (0.3)</td>
<td>8.0 (0.4)</td>
<td>10.4 (0.9)</td>
<td>15.2 (4.0)</td>
</tr>
<tr>
<td>Zn [ppm]</td>
<td>0.57 (0.10)</td>
<td>0.32 (0.09)</td>
<td>0.52 (0.19)</td>
<td>0.48 (0.12)</td>
<td>0.29 (0.05)</td>
<td>0.30 (0.07)</td>
<td>0.38 (0.08)</td>
</tr>
<tr>
<td>Cu [ppm]</td>
<td>0.03 (0.003)</td>
<td>0.04 (0.01)</td>
<td>0.04 (0.02)</td>
<td>0.05 (0.02)</td>
<td>0.04 (0.01)</td>
<td>0.02 (0.01)</td>
<td>0.03 (0.01)</td>
</tr>
<tr>
<td>Mn [ppm]</td>
<td>0.24 (0.04)</td>
<td>0.32 (0.03)</td>
<td>0.01 (0.03)</td>
<td>0.05 (0.04)</td>
<td>0.03 (0.01)</td>
<td>0.08 (0.04)</td>
<td>4.55 (4.47)</td>
</tr>
</tbody>
</table>

Analyse-Ergebnisse der EMBRAPA durch Analysen des Elementaranalyzer ersetzt, da offensichtlich kontaminiert.
1.4 **Beprobung der Pflanzen**

Im Anhang Tab. 60 befindet sich eine vollständige Liste der untersuchten Arten, ihre Familienzugehörigkeit, Wuchsform und Zuordnung zu Abkürzungen.

Es wurden 2 Blattpositionen, im Folgenden als alte und neue Blätter bezeichnet, beprobt. jeweils die letzten drei Blätter eines Zweiges wurden als neue Blätter, die ersten drei Blätter vom Stamm aus als alte Blätter angesehen. Eine Probe bestand aus der Mischung von Blättern der gesamten Baumkrone. Eine Pflanze wurde als ein Individuum betrachtet, wenn sie einzeln stand oder die Triebe aus einem gemeinsamen Stubben hervorkamen oder sich eindeutig aus dem gleichen Wurzelstock entwickelten.

Holz und Rinde wurden getrennt nach folgenden Durchmesserklassen der Zweige und Baumstäbe gesammelt: 0.0-0.5cm, 0.5-1.0cm, 1.0-2.0cm, 2.0-3.0cm, 3.0-4.0cm, 4.0-5.0cm, 5.0-6.0cm, 6.0-7.0 cm.

Von *Abarema jupunba* wurden 10 verschieden große Individuen auf dem Feld mit Ausnahme der Wurzeln komplett geerntet, in neue und alte Blätter sowie Holz und Rinde verschiedener Durchmesserklassen zerlegt und die jeweilige Biomasse (Trockenmasse) bestimmt. Standort dieser Erhebung war Fläche M1S1.

1.4.1 **Beprobung von Pflanzenarten**

Die Sekundärvegetationen der Flächen S1 bis S6 in Igarapé Açu, sowie in Peixe Boi die Flächen PB_{PW} und PB_{SW} wurden beprobt. Die Entfernung der Flächen betrug 5-35 km.

Im Juli 1993 wurde Blattmaterial folgender Arten auf den Flächen S1 bis S6 gesammelt:

- *Abarema jupunba* (Mimosoideae)
- *Inga heterophylla* (Mimosoideae)
- *Inga thibaudiana* (Mimosoideae)
- *Vismia guianensis* (Guttiferae)
- *Lacistema pubescens* (Lacistemataceae)
- *Tapirira guianensis* (Anacardiaceae)
- *Banara guanensis* (Flacourtiaceae)

Dabei wurde darauf geachtet, daß die Bäume annähernd gleich groß waren. Angestrebt waren 5 Wiederholungen je Art und Fläche, was aber nicht immer eingehalten werden konnte. Abb. 12 gibt einen Eindruck von der Streuung der vorgefundenen Baumdurchmesser und der
Wiederholungen. Die Spanne an Durchmessern lag zwischen $\varnothing=2.8$ bis 4.4 cm. Extreme Ausreißer wurden aus dem Datenmaterial eliminiert. Eine Korrelation zwischen den Stubendurchmessern der Pflanzen und ihren δ^{15}N-Werten ($r_{\text{neue Blätter}} = -0.15$, $r_{\text{alte Blätter}} = -0.08$) bzw. den N-Gehalten ($r_{\text{neue Blätter}} = 0.09$, $r_{\text{alte Blätter}} = -0.03$) bestand nicht.

Die Beprobung der Primär- und Sekundärvegetation in Peixe Boi wurde durch die freundliche Erlaubnis des Besitzers der Fazenda Monte Verde, Dr. Danilo Mendonça, ermöglicht. Hier wurde jedoch nicht auf Größenunterschiede der Probepflanzen geachtet, da es sich um eine einmalige Aktion ohne Wiederholungen handelte. In Tab. 11 sind die beprobten Arten aufgelistet.

Tab. 11: Liste der in Peixe Boi beprobten Arten

<table>
<thead>
<tr>
<th>Art</th>
<th>Familie</th>
<th>Primärwald</th>
<th>Sekundärwald</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagassa guianensis</td>
<td>Melastomataceae</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Banara guianensis</td>
<td>Moraceae</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cordia exaltata</td>
<td>Flacourtiaceae</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Dipteryx odorata</td>
<td>Papilioideae</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Inga rubiginosa</td>
<td>Mimosoideae</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Inga thibaudiana</td>
<td>Mimosoideae</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lacistema pubescens</td>
<td>Lacistemataceae</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lecythis lurida</td>
<td>Lecythidaceae</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Memora allamandiflora</td>
<td>Bignoniaceae</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Myrcia sylvatica</td>
<td>Myrtaceae</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Neea oppositifolia</td>
<td>Nyctaginaceae</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rollinia esucca</td>
<td>Annonaceae</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Selaginella stellaris</td>
<td>Selaginellaceae</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sterculia pruriens</td>
<td>Sterculiaceae</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tapirira guianensis</td>
<td>Anacardiaceae</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vismia guianensis</td>
<td>Guttiferae</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
1.4.2 Saisonale Beprobungen

Von September 1992 bis Oktober 1993 wurden monatlich die jungen und alten Blätter von 3 Bäumen der Spezies *Abarema jupunba*, 5 *Inga heterophylla* und 5 *Inga thibaudiana* gesammelt. In unmittelbarer Umgebung jeder Leguminose (etwa ein 5m-Radius) wurden Nichtleguminosen in gleicher Weise beprobt. Tab. 12 gibt einen Überblick über Standort der Pflanzen, Höhe sowie Basalfläche als Maß für die Größe/Alter der Bäume. Zur Berechnung der Basalfläche ($\pi \times r^2$) wurde der Radius aus der Summe der einzelnen Stockausschläge oder des Stammes der jeweiligen Pflanze in 30cm Bodenhöhe genommen.

Tab. 12: Übersicht über die monatlich erfaßten Arten und ihre Größenverhältnisse (Basalfläche = πr^2)

<table>
<thead>
<tr>
<th>Leguminose</th>
<th>Basalfläche (cm2)</th>
<th>Höhe(cm)</th>
<th>nicht N$_2$-fixierende Arten</th>
<th>Standort</th>
<th>Familie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abarema jupunba</td>
<td>18.8</td>
<td>520</td>
<td>Lacistema pubescens</td>
<td>M1S1</td>
<td>Mimosoideae</td>
</tr>
<tr>
<td></td>
<td>8.4</td>
<td>300</td>
<td>Mabea angustifolia</td>
<td></td>
<td>Euphorbiaceae</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>300</td>
<td>Vismia guianensis</td>
<td></td>
<td>Guttiferae</td>
</tr>
<tr>
<td></td>
<td>12.6</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abarema jupunba</td>
<td>15.9</td>
<td>400</td>
<td>Lacistema pubescens</td>
<td>M1S1</td>
<td>Mimosoideae</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>250</td>
<td>Mabea angustifolia</td>
<td></td>
<td>Euphorbiaceae</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>255</td>
<td>Myrcia sylvatica</td>
<td></td>
<td>Myrtaceae</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>280</td>
<td>Myrcia sylvatica</td>
<td></td>
<td>Myrtaceae</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>280</td>
<td>Myrcia sylvatica</td>
<td></td>
<td>Myrtaceae</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>350</td>
<td>Vismia guianensis</td>
<td></td>
<td>Guttiferae</td>
</tr>
<tr>
<td>Abarema jupunba</td>
<td>11.9</td>
<td>350</td>
<td>Nectandra cuspidata</td>
<td>M1S1</td>
<td>Mimosoideae</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>270</td>
<td>Tapiiria guianensis</td>
<td></td>
<td>Anacardiaceae</td>
</tr>
<tr>
<td></td>
<td>19.4</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>300</td>
<td>Vismia guianensis</td>
<td></td>
<td>Guttiferae</td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td>2.3</td>
<td>400</td>
<td>Casearia arborea</td>
<td>M5S5</td>
<td>Mimosoideae</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>220</td>
<td>Casearia arborea</td>
<td></td>
<td>Flacouriaceae</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>240</td>
<td>Casearia arborea</td>
<td></td>
<td>Flacouriaceae</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>410</td>
<td>Myrcia sylvatica</td>
<td></td>
<td>Myrtaceae</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>190</td>
<td>Myrcia sylvatica</td>
<td></td>
<td>Myrtaceae</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>420</td>
<td>Myrcia sylvatica</td>
<td></td>
<td>Myrtaceae</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>400</td>
<td>Vismia guianensis</td>
<td></td>
<td>Guttiferae</td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td>13.2</td>
<td>300</td>
<td>Guatteria poeppigiana</td>
<td>M5S5</td>
<td>Mimosoideae</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>320</td>
<td>Mabea angustifolia</td>
<td></td>
<td>Anonaceae</td>
</tr>
<tr>
<td></td>
<td>13.2</td>
<td>450</td>
<td>Sloanea guianensis</td>
<td></td>
<td>Euphorbiaceae</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>300</td>
<td></td>
<td></td>
<td>Elaeocarpaceae</td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td>10.0</td>
<td>310</td>
<td>Lecythis lurida</td>
<td>M5S5</td>
<td>Mimosoideae</td>
</tr>
<tr>
<td></td>
<td>13.1</td>
<td>260</td>
<td>Myrcia sylvatica</td>
<td></td>
<td>Lecythidaceae</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>350</td>
<td>Myrcia sylvatica</td>
<td></td>
<td>Myrtaceae</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>240</td>
<td>Vismia guianensis</td>
<td></td>
<td>Guttiferae</td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td>6.2</td>
<td>400</td>
<td>Lacistema pubescens</td>
<td>M2S1</td>
<td>Mimosoideae</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>210</td>
<td>Nectandra cuspidata</td>
<td></td>
<td>Lecistematraceae</td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>290</td>
<td>Vismia guianensis</td>
<td></td>
<td>Guttiferae</td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td>3.3</td>
<td>250</td>
<td>Myrcia sylvatica</td>
<td>M2S1</td>
<td>Mimosoideae</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>220</td>
<td></td>
<td></td>
<td>Myrtaceae</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 12: Übersicht über die monatlich erfassten Arten und ihre Größenverhältnisse (Basalfläche = \(\pi r^2 \))

<table>
<thead>
<tr>
<th>Leguminose</th>
<th>Basalfläche (cm(^2))</th>
<th>Höhe(cm)</th>
<th>nicht N(_2)-fixierende Arten</th>
<th>Standort</th>
<th>Familie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inga thibaudiana</td>
<td>14.5</td>
<td>430</td>
<td>M3S3</td>
<td></td>
<td>Mimosoideae</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>300</td>
<td>Cordia exaltata</td>
<td></td>
<td>Boraginaceae</td>
</tr>
<tr>
<td></td>
<td>5.9</td>
<td>395</td>
<td>Lacistema pubescens</td>
<td></td>
<td>Lacistemataceae</td>
</tr>
<tr>
<td></td>
<td>24.6</td>
<td>600</td>
<td>Trena micrantha</td>
<td></td>
<td>Ulmaceae</td>
</tr>
<tr>
<td></td>
<td>24.1</td>
<td>410</td>
<td>Thysodium paraense</td>
<td></td>
<td>Anacardiaceae</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>340</td>
<td>Thysodium paraense</td>
<td></td>
<td>Anacardiaceae</td>
</tr>
<tr>
<td></td>
<td>5.7</td>
<td>355</td>
<td>Vismia guianensis</td>
<td></td>
<td>Guttiferae</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>385</td>
<td>Vismia guianensis</td>
<td></td>
<td>Guttiferae</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>385</td>
<td>Vismia guianensis</td>
<td></td>
<td>Guttiferae</td>
</tr>
<tr>
<td></td>
<td>18.4</td>
<td>270</td>
<td>Vismia guianensis</td>
<td></td>
<td>Guttiferae</td>
</tr>
<tr>
<td></td>
<td>32.2</td>
<td>560</td>
<td>M3S3</td>
<td></td>
<td>Mimosoideae</td>
</tr>
<tr>
<td></td>
<td>7.7</td>
<td>395</td>
<td>Banara guianensis</td>
<td></td>
<td>Flacourtiaceae</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>225</td>
<td>Lacistema pubescens</td>
<td></td>
<td>Lacistemataceae</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>360</td>
<td>Myrcia sylvatica</td>
<td></td>
<td>Myrtaceae</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>310</td>
<td>Myrcia sylvatica</td>
<td></td>
<td>Myrtaceae</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>400</td>
<td>Myrcia sylvatica</td>
<td></td>
<td>Myrtaceae</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>330</td>
<td>Vismia guianensis</td>
<td></td>
<td>Guttiferae</td>
</tr>
<tr>
<td></td>
<td>24.6</td>
<td>390</td>
<td>Ocotea guianensis</td>
<td></td>
<td>Lauraceae</td>
</tr>
<tr>
<td></td>
<td>23.7</td>
<td>295</td>
<td>Tapirira guianensis</td>
<td></td>
<td>Anacardiaceae</td>
</tr>
<tr>
<td></td>
<td>25.3</td>
<td>460</td>
<td>Tapirira guianensis</td>
<td></td>
<td>Anacardiaceae</td>
</tr>
<tr>
<td></td>
<td>15.6</td>
<td>415</td>
<td>M3S3</td>
<td></td>
<td>Mimosoideae</td>
</tr>
<tr>
<td></td>
<td>10.4</td>
<td>390</td>
<td>Cordia exaltata</td>
<td></td>
<td>Boraginaceae</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>320</td>
<td>Lacistema pubescens</td>
<td></td>
<td>Lacistemataceae</td>
</tr>
<tr>
<td></td>
<td>14.5</td>
<td>312</td>
<td>Ocotea guianensis</td>
<td></td>
<td>Lauraceae</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>340</td>
<td>Tapirira guianensis</td>
<td></td>
<td>Anacardiaceae</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>375</td>
<td>Tapirira guianensis</td>
<td></td>
<td>Anacardiaceae</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>305</td>
<td>Vismia guianensis</td>
<td></td>
<td>Guttiferae</td>
</tr>
</tbody>
</table>

1.5 Probenaufbereitung

Alle Pflanzenproben wurden 3 Tage bei 60°C im Trockenschrank, die Bodenproben an der Luft getrocknet.

Tab. 13: Korngrößenverteilung (in %) in den homogenisierten Pflanzen- und Bodenproben (Feinmühle = Mikro-Feinmühle Culatti MFC (IKA). Zentrifugalmühle Rotor Speed Mill Pulverisette 14 (FRITSCH). Kugelschlagmühle (Eigenbau)

<table>
<thead>
<tr>
<th>HOLZ</th>
<th>Korngröße [mm]</th>
<th>Feinmühle</th>
<th>Zentrifugalmühle</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.090</td>
<td>11.5</td>
<td>49.1</td>
<td></td>
</tr>
<tr>
<td>0.090-0.125</td>
<td>4.9</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>0.125-0.250</td>
<td>35.6</td>
<td>33.9</td>
<td></td>
</tr>
<tr>
<td>0.250-0.500</td>
<td>40.9</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>>0.500</td>
<td>6.9</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BLATT</th>
<th>Korngröße [mm]</th>
<th>Feinmühle</th>
<th>Zentrifugalmühle</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.090</td>
<td>3.9</td>
<td>75.0</td>
<td></td>
</tr>
<tr>
<td>0.090-0.125</td>
<td>4.3</td>
<td>18.6</td>
<td></td>
</tr>
<tr>
<td>0.125-0.250</td>
<td>18.1</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>0.250-0.500</td>
<td>64.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>>0.500</td>
<td>9.5</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BODEN</th>
<th>Korngröße [mm]</th>
<th>Kugelschlagmühle</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.090</td>
<td>58.4</td>
<td></td>
</tr>
<tr>
<td>0.090-0.125</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>0.125-0.250</td>
<td>41.6</td>
<td></td>
</tr>
<tr>
<td>0.250-0.500</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>>0.500</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

2 Gewächshausversuche

2.1 Nodulation nativer Arten

Es wurden Ausgrabungen von Wurzelsystemen an 9 Leguminosen in 6-8jähriger und 4 in 1jähriger Sekundärvegetation (Tab. 14) unternommen. Dazu wurde die Hälfte des Wurzelsystems halbkreisförmig in 3 Abschnitten bis 1.5m Abstand vom Stamm und bis auf 40cm Bodentiefe freigelegt (Abb. 13).

Tab. 14: Auf ihre Nodulation im Feld hin untersuchte Arten, von deren Knöllchen auch Rhizobien isoliert wurden

<table>
<thead>
<tr>
<th>Art</th>
<th>Alter der Capoeira</th>
<th>Fläche (cm)</th>
<th>Höhe (cm)</th>
<th>Basalfläche (cm²)</th>
<th>Stubben Φ (cm)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inga alba</td>
<td>10 Curi, nahe M5S5</td>
<td>550</td>
<td>7.8</td>
<td>471.2</td>
<td></td>
</tr>
<tr>
<td>Inga edulis</td>
<td>4 Curi, Feldrand</td>
<td>200</td>
<td>2.5</td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td>1 neben M2S1</td>
<td>150</td>
<td>0.8</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td>6 M5S5</td>
<td>350</td>
<td>3.3</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td>7 M2</td>
<td>350</td>
<td>4.2</td>
<td>13,8</td>
<td></td>
</tr>
<tr>
<td>Inga macrophylla</td>
<td>7 M2</td>
<td>400</td>
<td>2.9</td>
<td>463,5</td>
<td></td>
</tr>
<tr>
<td>Inga nitida</td>
<td>6 M5S5</td>
<td>250</td>
<td>1.4</td>
<td>1748,9</td>
<td></td>
</tr>
<tr>
<td>Inga thibaudiana</td>
<td>1 neben M2</td>
<td>150</td>
<td>1.1</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Inga thibaudiana</td>
<td>6 M5S5</td>
<td>400</td>
<td>2.1</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>Abarema jupunba</td>
<td>1 neben M5</td>
<td>180</td>
<td>2.1</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>Abarema jupunba</td>
<td>7 M2S2</td>
<td>420</td>
<td>4.8</td>
<td>2272,1</td>
<td></td>
</tr>
<tr>
<td>Desmodium bracteata</td>
<td>1 neben M2S2</td>
<td>Kraut</td>
<td>Kraut</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Durchschnittswert der jeweiligen Austriebe, wenn mehrere vorhanden waren.

2.2 Infektionspotential des Bodens

An 6 Stellen der Fläche M2S1 wurden Bodenproben in 50 cm Abschnitten bis zu einer Bodentiefe von 6m genommen. Von Stelle Nr.6 wurden ca. 6 kg Boden pro Tiefenstufe (0 - 50cm, 50 - 100cm, 100 - 150cm, 150 - 200cm, 200 - 250cm, 250 - 300cm, 300 - 350cm, 350 - 400cm, 400 - 450cm, 450 - 500cm, 500 - 550cm, 550 - 600cm) extra entnommen.
Beschreibung der Stellen:

Nr.1: Bewuchs mit *Abarema jupunba*
Nr.2: Bewuchs mit *Inga heterophylla*
Nr.3: Bewuchs mit *Tapirira guianensis*, keine Leguminosen in 50m Umkreis
Nr.4: Bewuchs mit *Tapirira guianensis*, keine Leguminosen in 50m Umkreis
Nr.5: Bewuchs mit *Inga thibaudiana*
Nr.6: Bewuchs mit *Inga thibaudiana*

Die Proben wurden gekühlt ins Labor gebracht und wie folgt verarbeitet:

- 100 g luftgetrocknet für 15N-Analysen und Nährstoffanalysen.
- 50 g zur Wassergehaltsbestimmung verwendet.
- Der Boden der 6. Stelle wurde luftgetrocknet.

Nach 6 Wochen erfolgte die Auswertung durch Gewinnung von oberirdischer Blattmasse, Wurzeln und Knöllchen, und durch die Bestimmung von Frisch- und Trockengewicht.

2.3 15N-Verteilung innerhalb der Pflanzen

Zur Erfassung der 15N-Verteilung in Pflanzen von *Abarema jupunba, Abarema cochleatum* und *Tapirira guianensis* während der Aufnahme, N$_2$-Fixierung und des Wachstums wurden mehrere Gewächshausversuche angelegt. Die *Abarema jupunba-* und *Tapirira guianensis-Pflänzchen* wurden aus Keimlingen gewonnen, die entlang eines Flußlaufes in Curi, Travessa 14, wuchsen. Die Leguminose wies schon 1-6 Knöllchen auf. *Abarema cochleatum*-Samen
wurden von einem Baum auf der Fläche M1S1 geerntet. Nach 8wöchiger Vorkeim-und Angleichphase (in 11-Töpfen mit Sand plus Nährösung mit 15mg N/Woche bzw. ohne N, oder in Boden ohne Düngung) wurden die Pflänzchen in 10kg-Töpfe entsprechend ihrer Bestimmung überführt (Tab. 15).

Tab. 15: Übersicht über die Varianten zur Untersuchung der 15N-Verteilung in Pflanzen

<table>
<thead>
<tr>
<th>Varianten</th>
<th>Abarema cochleatum</th>
<th>Abarema jupunba</th>
<th>Tapirira guianensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, Nährösung, ohne N</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sand, Nährösung, komplett</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Boden, ohne Nährösung</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Die Töpfe waren je nach Variante wie folgt befüllt:

Mit Verunreinigung des destillierten Wassers von 0.04 mval N/l mußte zu Beginn der Versuche gerechnet werden. In der zweiten Hälfte des Versuches ab ’2.93 wurde eine neue Destillieranlage montiert, so daß von N-freiem Wasser ausgegangen werden konnte. Bei der N-Analyse des gesäuberten Sandes blieb der N-Gehalt immer unter der Nachweissgrenze.

Der Boden stammte von der Fläche M5S5 und entsprach somit einem typischen Boden der Bragantina-Region. Sowohl Sand als auch Boden wurden auf 30% ihrer Wk$_{max}$ (vor Versuchsbeginn einmal ermittelt) angefeuchtet und durch zweimaliges Gießen pro Woche ungefähr auf diesem Stand gehalten.

In jeden Topf wurde ein Pflänzchen gegeben. In das Pflanzloch für Abarema cochleatum wurden 10ml eines Inokulums mit den Rhizobium-Stämmen Nr. 50 und 3, in das Pflanzloch für Abarema jupunba Inokulum der Stämme Nr. 62 und 56 gegeben (Tab. 24). Die Inokulation wurde nach 3 Wochen wiederholt.

Die äußeren Bedingungen des Gewächshauses entsprachen denen des jeweiligen Tagesklimas, da es ein offenes Gewächshaus war. Um den Schädlingsbefall einzuschränken, wurden Kästen über die Tische gestellt, die mit feinmaschigem Fliegennetz bezogen waren. Dadurch wurde die Lichtintensität jedoch um circa 25% vermindert.

Gegen Pilz- und Insektenbefall wurde regelmäßig gespritzt. Hierbei wurden folgende Chemikalien verwendet:

- **KUMULUS S.** Schwefel. (500g/100l H₂O) Akarizid
- **Mancozeb, DITHANE PM, ROHM HAAS Brazil** Dithiocarbamat (1g/l H₂O) Akarizid und Fungizid
- **Diazinon 400PM CIBA Geigy** Organophosphat (125g/100l H₂O) Akarizid und Insektizid
- **K-Othrin** Methyl-1-(buthylcarbamoyl)2-benzimidazol-carbamat (1g/l H₂O) Fungizid
- **Benlate (Benomyl)** Methyl-1-(buthylcarbamoyl)2-benzimidazol-carbamat systemisches Fungizid

Folgender Befall mit Insekten, Pilzen und Milben mußte protokolliert werden:

- Befall der Blätter von *Abarema japunba* mit:................... *Capimodium spp.*, *Curvularia spp*, *Migraspora spp*. weiße Fliege *Pseudococcus comstocki*, Hemiptera, Pseudococcidae ("Cochinilhas")
- Befall der Sandtöpfe mit:.. Schlupfwespe, die ihre Eier zusammen mit einer betäubten Larve in Gänge legte. Sie fraßen Knöllchen

Die Akarizide mußten als Prevention eingesetzt werden, da im gleichen Gewächshaus an anderen Pflanzen ein Befall mit Milben zu verzeichnen war.

Die Auswertung fand nach 6, 10, 12 und 14 Monaten statt. Es wurden jeweils 3 Töpfe geerntet, die Biomasse (Trockengewicht) jedes einzelnen Pflanzenorgans sowie Höhe und Durchmesser wurden bestimmt. Eine Bodenprobe je Topf wurde genommen. Sowohl Pflanzen- als auch Bodenproben wurden wie in Kap. V.1.5 behandelt und auf ihre N-Konzentration und \(^{15}\)N-Gehalt untersucht.
2.4 Nährösungen

Tab. 16: Zusammensetzung der Komplett-Nährösung, modifiziert nach Hoagland

<table>
<thead>
<tr>
<th>Chemikalie</th>
<th>Menge der Stammlösung</th>
<th>Stammlösung</th>
<th>Konzentration in der NL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O dest.</td>
<td>auf 1000ml auffüllen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>1,1 ml</td>
<td>1M</td>
<td>0.15g/l</td>
</tr>
<tr>
<td>KNO₃</td>
<td>4,1 ml</td>
<td>1M</td>
<td>0.41g/l</td>
</tr>
<tr>
<td>Ca(NO₃)₂</td>
<td>4,2 ml</td>
<td>1M</td>
<td>0.69g/l</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>2 ml</td>
<td>1M</td>
<td>0.24g/l</td>
</tr>
<tr>
<td>Mikroelemente</td>
<td>1 ml</td>
<td>siehe Tab. 18</td>
<td></td>
</tr>
<tr>
<td>FeEDTA</td>
<td>1 ml</td>
<td>siehe unten</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 17: Zusammensetzung der Nährösung ohne N, modifiziert nach Hoagland

<table>
<thead>
<tr>
<th>Chemikalie</th>
<th>Menge der Stammlösung</th>
<th>Stammlösung</th>
<th>Konzentration in der Nährösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O dest.</td>
<td>auf 1000ml auffüllen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>1,1ml</td>
<td>1M</td>
<td>0.15g/l</td>
</tr>
<tr>
<td>KCl</td>
<td>5,0ml</td>
<td>1M</td>
<td>0.37g/l</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>5,0ml</td>
<td>1M</td>
<td>0.55g/l</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>2,0ml</td>
<td>1M</td>
<td>0.24g/l</td>
</tr>
<tr>
<td>Mikroelemente</td>
<td>1,0ml</td>
<td>siehe Tab. 18</td>
<td></td>
</tr>
<tr>
<td>FeEDTA</td>
<td>1,0ml</td>
<td>siehe unten</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 18: Mikroelemente-Nährösung

<table>
<thead>
<tr>
<th>Chemikalie</th>
<th>Konzentration [g/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O dest.</td>
<td>auf 1000ml auffüllen</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>2.86g</td>
</tr>
<tr>
<td>MnCl₂ x 4H₂O</td>
<td>1.81g</td>
</tr>
<tr>
<td>ZnSO₄ x 7H₂O</td>
<td>0.22g</td>
</tr>
<tr>
<td>CuSO₄ x 5H₂O</td>
<td>0.08g</td>
</tr>
<tr>
<td>Na₂MoO₄ x 4H₂O</td>
<td>0.02g</td>
</tr>
</tbody>
</table>

FeEDTA

Die FeEDTA-Lösung wurde für die gesamte Bodenkunde-Abteilung der FCAP nach folgendem Rezept hergestellt:

24.9g FeSO₄ x 7H₂O mit 286 ml KOH mischen, 5 Minuten unter leichter Hitzezufuhr rühren lassen. 26.1g EDTA zur Lösung geben, ebenfalls etwas rühren lassen. Diese Suspension mindestens 8 Stunden belüften, dann das Volumen auf 1L auffüllen.
3 Laborarbeiten

3.1 Bakterienkultivierung

Tab. 19: Agarmedien zur Isolation und Kultur von Rhizobium spp.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K$_2$HPO$_4$ (Merck)... 0,5g</td>
</tr>
<tr>
<td>MgSO$_4$ x 7H$_2$O (Reagen, Quimbras I.Q.S/A)....................... 0,2g</td>
</tr>
<tr>
<td>NaCl (Merck)... 0,1g</td>
</tr>
<tr>
<td>Mannitol (Reagen, Quimbras Industrias Químicas S/A)............. 10g</td>
</tr>
<tr>
<td>Hefeeextrakt (Biobras, Bioquímica do Brasil)..................... 0,4g</td>
</tr>
<tr>
<td>H$_2$Odest... 1000ml</td>
</tr>
<tr>
<td>Bromthymolblau-Lösung... circa 5ml für „grünen“ YMA</td>
</tr>
<tr>
<td>Kongorot-Lösung.. circa 5ml für „roten“ YMA</td>
</tr>
<tr>
<td>Agar, zur Analyse, (Merck)... 15g für festes Medium, Agarpflatten etc.</td>
</tr>
<tr>
<td>Agar... 1,5g für Flüssigmedium, Inokulumproduktion</td>
</tr>
</tbody>
</table>

Der pH des Agarmediums wird mit 10%iger KOH auf 6,8-7,0 eingestellt. Wurde Bromthymolblau (Tab. 20 oder Tab. 21) zugegeben, zeigte der Agar eine dunkelgrüne Färbung, bei Zugabe von Kongorot (Tab. 22) wurde auch der Agar dem Indikator gemäß rot.

Für kurzfristige Kulturen wurde der Agar in Petrischalen gegossen, für Dauerkulturen wurden mit demselben Agar Agarschrägrohrchen (sterilisierte Reagenzgläser mit 8ml Agar, zum Abkühlen schräg gelagert) hergestellt.
V. Material und Methoden

Tab. 20: Bromthymol-Lösung in 20%-igem Ethanol (0,5%)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromthymolblau</td>
<td>0,1g</td>
</tr>
<tr>
<td>Ethanol, reinst, heiß.</td>
<td>20ml</td>
</tr>
<tr>
<td>(\text{H}2\text{O}{dest}), heiß.</td>
<td>80ml</td>
</tr>
<tr>
<td>nach Lösung des Farbstoffes in Ethanol zugeben</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 21: Bromthymol-Lösung in 0,2N KOH (0,5%)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOH (Merck)</td>
<td>5,61g</td>
</tr>
<tr>
<td>Bromthymolblau (Merck)</td>
<td>2,5g</td>
</tr>
<tr>
<td>(\text{H}2\text{O}{dest})</td>
<td>500ml</td>
</tr>
</tbody>
</table>

Tab. 22: Kongorot-Lösung (0,25%)

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kongorot</td>
<td>125mg</td>
</tr>
<tr>
<td>(\text{H}2\text{O}{dest})</td>
<td>50ml</td>
</tr>
</tbody>
</table>

Tab. 23: Auf grünem YMA zeigen typische Rhizobien nach Somasegaran und Hoben (1985) folgende Charakteristika:

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Typ A</th>
<th>Typ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säurereaktion</td>
<td>alkalisch (Blaufärbung des Agars)</td>
<td>sauer (Gelbfärbung des Agars)</td>
</tr>
<tr>
<td>Wachstum</td>
<td>langsam (maximaler (\phi) nach 7-12 Tagen 1-3mm)</td>
<td>schnell (maximaler (\phi) nach 3-5 Tagen 4-5mm)</td>
</tr>
<tr>
<td>Farbe</td>
<td>weiß-opak oder milchig-transparent</td>
<td>weiß-opak oder milchig-transparent</td>
</tr>
<tr>
<td>Kolonienform</td>
<td>diskret, rund, erhaben, glatter Rand</td>
<td>diskret, rund, erhaben, glatter Rand</td>
</tr>
<tr>
<td>Schleimproduktion</td>
<td>ja</td>
<td>viel</td>
</tr>
<tr>
<td>Indikatorabsorption</td>
<td>nein</td>
<td>nein</td>
</tr>
</tbody>
</table>

Von 112 Isolaten zeigten 25 die typischen Charakteristika von Rhizobium (Typ B) und Bradyrhizobium (Typ A) (Tab. 23). In einem Gewächshausversuch mit *Vigna unguiculata* wurde deren Infektionspotential überprüft und ihre Zugehörigkeit zur Gattung Rhizobium verifiziert. Sowohl die Form der im Feld gesammelten Knöllchen als auch die Farbe ihrer
Bakterienkolonien stimmten mit denen von Souza et al. (1994) gefundenen Charakteristika für die Arten *Abarema jupunba* und *Inga thibaudiana* überein.

<table>
<thead>
<tr>
<th>Bakterienstamm</th>
<th>Art</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>50(3)</td>
<td>Abarema cochleatum</td>
<td>B</td>
</tr>
<tr>
<td>62</td>
<td>Abarema jupunba</td>
<td>B</td>
</tr>
<tr>
<td>64</td>
<td>Abarema jupunba</td>
<td>B</td>
</tr>
<tr>
<td>56</td>
<td>Abarema cochleatum</td>
<td>A</td>
</tr>
</tbody>
</table>

3.2 **15N-Analyse**

Die bei 60°C getrockneten, gemahlenen Proben wurden in einem Exsikkator abgekühlt. 97-104 mg Boden, 6 ±1mg von Blatt, Wurzel oder Rinde, 10 ±1mg Holz, 15 ±1mg Streu oder 3-4 mg Knöllchen wurden in Zinnkapseln (Firma Lüdi AG) eingewogen (Sartorius Feinwaage M5P) und dem Isotopenlaboratorium für biologische und medizinische Forschung in Göttingen zur massenspektrometrischen Analyse übergeben.

3.2.1 **Prinzip der Messung**

Das Isotopenlaboratorium verwendete ein Massenspektrometer des Typs Finnigan MAT 251. Die Überführung der N-Verbindungen in die Gasphase geschieht durch Verbrennung. Das Gas wird zuerst chemisch mit Mg(ClO₄)₂ und NaOH, dann physikalisch gereinigt, so daß pures N₂ mit 2x10⁻⁶ mbar über die Ionisierungsfilamente geleitet wird. Diese Filamente produzieren Elektronen, die eine kleine definierte Menge des Gases bombardieren und so die Moleküle in (N₂)³⁰⁺, (N₂)²⁹⁺ und (N₂)²⁸⁺ -Kationen konvertieren. Diese Kationen werden in einem Magnetfeld (4000V mit 10⁻⁵ torr) beschleunigt und ihrer Masse entsprechend dispergiert, mit einem Prisma polychromatischen Lichtes vergleichbar. Dieser Ionenstrom trifft nun je nach Masse des Ions zeitlich verschoben auf den Analysator (der Anode), der die unterschiedlichen Mengen mißt. Die Meßergebnisse werden in m/e²⁹ und m/e²⁸ ausgedrückt. (N₂)³⁰ wird bei der Berechnung vernachlässigt. Vor und nach jeder Messung wird ein Standardgas (hier N₂) durch das System geleitet. Kalibriert wird das System mit Acetanilid, das nach je 10 Proben analysiert wird. Das ¹⁵N im Luftstickstoff wird als 0-Wert mit in die Berechnung einbezogen. Dem Massenspektrometer am hiesigen Isotopenlabor war ein automatischer N-Analysator (Carlo Erba, NA 1500) vorgeschaltet.
3.2.2 Meßgenauigkeit

Minimalmenge des eingewogenen Stickstoffes ist 10 µg, wobei die Standardabweichung bei den eingewogenen N\textsubscript{tot} - Mengen unter 200 µg 0.2 ‰, bei N\textsubscript{tot} - Mengen über 200µg 0.1‰ beträgt (Reineking et al., 1993).

![Diagramm](Abb. 14: Abhängigkeit der massenspektrometrischen 15N-Meßgenauigkeit von der N-Einwaage (Symbol 0 gibt Einzelmeßwerte des Standards Acetanilid an, Symbol + steht für den Meßwert einer Pflanzenprobe; Zahlen geben den Mittelwert der jeweiligen Messungen für die Einwaage von 0 - 50µg, 50 - 100µg, 100 - 150µg, 150 - 200µg und 200 - 250µg N an, Standardabweichung in Klammern))

V. Material und Methoden

Abb. 15: Abweichungen vom Tagesmittel der 15N-Messungen einer Blattprobe im Tageslauf ($n \geq 4$)

4 Berechnungen und statistische Auswertung

4.1 δ^{15}N, %Ndfa und β-Faktor

Die Ratio des Ionenstromes (14N$_2$/1415N) = R wird wie folgt ausgedrückt:

$\text{Atom}^{15}N = \frac{100}{(2R+1)}$

Die Anreicherung der Probe wird gegenüber dem Standard Luft in Promilleeinheiten angegeben und δ^{15}N genannt:

δ^{15}N = \left(\frac{\%^{15}N_{\text{Probe}} - \%^{15}N_{\text{Standard}}}{\%^{15}N_{\text{Standard}}} \right) \times 1000$

Zur Berechnung des Anteils fixierten N in einer Pflanze (%Ndfa) oder einem Substrat wurde folgende Formel verwendet:

$\%Ndfa = \left(\frac{\delta^{15}N_{\text{Ref}} - \delta^{15}N_{\text{Log}}}{\delta^{15}N_{\text{Ref}} - \delta^{15}N_{A}}\right) \times 100$

Zur Beschreibung des Grades der Fraktionierung einer Reaktion bedient man sich des sog. β-Faktors, der vereinfacht als Quotient aus Substrat und Produkt beschrieben werden kann (Lajtha und Marshall, 1994; Shearer und Kohl, 1993) und nach folgender Formel errechnet wird:
4.2 Berechnung der Stickstoffakkumulation über die BNF der Leguminosen

Die Analyse verschieden großer Individuen von *Abarema jupunba* und nicht N\(^2\) fixierender Referenzarten ermöglicht Berechnungen, wieviel % des Gesamt-N eines Individuums einer bestimmten Größe durch biologische N\(^2\)-Fixierung erlangt wurde (die Maße der beprobten Individuen und ihre Referenzpflanzen sind in Tab. 25 zusammengefaßt). Mit den für *Abarema jupunba* gewonnenen Daten wurden Regressionen der Parameter kg Trockenmasse/Baum zu Basalfläche (\(\pi r^2\)), gN/Baum zu kg TM/Baum und %Ndfa zu Basalfläche mit dem Programm Xact der Firma SciLab gerechnet. Darüber kann die Stickstoffmenge, die pro Flächeneinheit von dieser Art biologisch gebunden wurde, kalkuliert werden und so eine Aussage über die Fixierungseffektivität dieser Art in der Sekundärvegetation gemacht werden.

Tab. 25: Größenzusammensetzung der einzelnen Individuen von *Abarema jupunba* und die in unmittelbarer Nähe dazu beprobten Referenzpflanzen

<table>
<thead>
<tr>
<th>Basalfläche (cm(^2))</th>
<th>Höhe (cm)</th>
<th>Referenzpflanzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>48</td>
<td>Banara guianensis, Myrcia cuprea, Myrcia deflexa, Solanum carvarunanum</td>
</tr>
<tr>
<td>0.8</td>
<td>61</td>
<td>Banara guianensis, Myrcia cuprea, Myrcia deflexa, Solanum caavurana</td>
</tr>
<tr>
<td>5.4</td>
<td>160</td>
<td>Casearia arborea, Mabea angustifolia, Ocotea spec.</td>
</tr>
<tr>
<td>10.2</td>
<td>280</td>
<td>Aegiphila racemosa, Myrcia sylvatica, 2 x Vismia guianensis</td>
</tr>
<tr>
<td>13.8</td>
<td>340</td>
<td>Aegiphila racemosa, Myrcia sylvatica, 2 x Vismia guianensis</td>
</tr>
<tr>
<td>19.2</td>
<td>590</td>
<td>Myrcia sylvatica, Myrcia bracteata, Tapirira guianensis, Vismia guianensis</td>
</tr>
<tr>
<td>27.2</td>
<td>460</td>
<td>Mabea angustifolia, Myrcia cuprea, 2 x Vismia guianensis, Tapirira guianensis</td>
</tr>
<tr>
<td>33.3</td>
<td>520</td>
<td>Myrcia sylvatica, Myrcia bracteata, Tapirira guianensis, Vismia guianensis</td>
</tr>
<tr>
<td>36.4</td>
<td>640</td>
<td>Myrcia sylvatica, Myrcia bracteata, Tapirira guianensis, Vismia guianensis</td>
</tr>
<tr>
<td>44.3</td>
<td>750</td>
<td>Myrcia sylvatica, Myrcia bracteata, Tapirira guianensis, Vismia guianensis</td>
</tr>
</tbody>
</table>
4.3 Statistik

Der Verteilungsmodus der Daten wurde mit dem Chiquadrat-Vergleichstest und dem Kolmogorow-Smirnov-Test auf Anpassungsgüte ermittelt.

Wegen der geringen Anzahl an Wiederholungen der chemischen Bodenanalysen wurde hier nur der Mittelwert und der Standardfehler der jeweiligen Variante angegeben.

Bei nicht normalverteilten Daten wurde transformiert, indem im Falle der N-Analysen logarithmiert, im Falle der Deltawerte 10 Deltaeinheiten dazu addiert und dann logarithmiert wurde. Erreichte man so keine Normalverteilung, wurde auf nicht-parametrische Tests zurückgegriffen.

Die Signifikanzgrenze wurde bei einer Irrtumswahrscheinlichkeit von \(p \leq 0.05 \) festgelegt. Das Signifikanzniveau \(p \leq 0.05 \), \(p \leq 0.01 \) und \(p \leq 0.001 \) wird im Folgenden mit *, **, *** gekennzeichnet.

In Tab. 26 ist ein Überblick über die angewendeten statistischen Verfahren gegeben.

Vorgeschichte. Bis auf wenige Ausnahmen wurde daher bei fast allen Statistikprozeduren auf eine Ausreißereliminierung verzichtet und zum Teil statistisch schlecht abgesicherte Ergebnisse toleriert.

Tab. 26: Übersicht über die statistischen Verrechnungen, die zu den jeweiligen Themen durchgeführt wurden.

<table>
<thead>
<tr>
<th>Datensatz</th>
<th>Verteilung</th>
<th>Statistik</th>
<th>Fragestellung/Wirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodenchemie - und physik</td>
<td>nicht normal</td>
<td>Standardfehler</td>
<td>Charakterisierung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>multiple Regression</td>
<td>Zusammenhänge zwischen Bodenchemie und δ^{15}N</td>
</tr>
<tr>
<td>Boden - δ^{15}N, %N</td>
<td>normal</td>
<td>ANOVA</td>
<td>generell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regressionen</td>
<td>Verlauf im Boden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t-Test, Scheffé-Test</td>
<td>Asche, Distanz, Jahreszeit</td>
</tr>
<tr>
<td>Boden mit Peixe Boi</td>
<td>extreme Ausreißer</td>
<td>multiplier t-Test, Kruskal-Wallis-„ANOVA“</td>
<td>Absicherung der δ^{15}N-Wert- Unterschiede, nicht möglich</td>
</tr>
<tr>
<td>organische Auflage</td>
<td>normal</td>
<td>ANOVA, t-Test, Scheffé-Test</td>
<td>Distanzen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t-Test</td>
<td>Jahreszeit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pearson-Korrelation</td>
<td>Bez. Blatt-Boden</td>
</tr>
<tr>
<td>Knöllchen</td>
<td>nicht normal</td>
<td>Wilcoxon-Rang-Test</td>
<td>Infektionspotential</td>
</tr>
<tr>
<td>δ^{15}N - Vegetation</td>
<td>normal</td>
<td>ANOVA, LSD-Test, Scheffé</td>
<td>Zeitliche und räumliche Variabilität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Varianz</td>
<td>Blattauswahl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Korrelationsanalyse nach Pearson, Regressionen</td>
<td>Relation δ^{15}N und N-Gehalt der Blätter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LSD-Test</td>
<td>Standortunterschiede</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cluster-Analyse, Ward’scher Algorithmus, Euclid’sche Distanz</td>
<td>räumliche und zeitliche Artenunterschiede</td>
</tr>
<tr>
<td>%NdFA</td>
<td></td>
<td>Standardfehler für Summen und Quotienten nach Shearer und Kohl, 1978</td>
<td>N_2-Fixierungsrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regressionsanalysen</td>
<td>Quantifizierung biologisch fixierten N in einem Bestand</td>
</tr>
</tbody>
</table>
VI Ergebnisse

1 $\delta^{15}N$ in der Sekundärvegetation der Bragantina-Region

Für einen ersten Eindruck der ^{15}N-Verteilung in der Vegetation wurden die $\delta^{15}N$-Werte in den Blättern von 31 Nicht-Fixierern und 9 Fixierern von den verschiedenen Beprobungen in Abb. 16 zusammengefasst. Die $\delta^{15}N$-Werte der Sekundärvegetation in der Bragantina-Region zeigten auf den ersten Blick ein typisches Bild (im Anhang Tab. 59 sind die Werte mit s aufgelistet). Die N_2-Fixierer stammen aus der Familie der Leguminosae, Unterfamilie Mimosoideae, und wiesen eine geringere Streuung als die Nicht-Fixierer auf und ihre $\delta^{15}N$-Werte bewegten sich mit einer Streuung von $\pm 2 \delta^{15}N$-Einheiten um den Nullpunkt herum. Für die hier vorgefundenen Arten der beiden anderen Unterfamilien, den Caesalpinoideae und Papilionoideae, ist keine Nodulation bekannt (Faria et al., 1989), sodaß sie in die Gruppe der Nicht-Fixierer eingeordnet wurden. Die $\delta^{15}N$-Werte der Nicht-Fixierer umfaßten ein Spanne von 10 $\delta^{15}N$-Einheiten, die als sehr hoch angesehen werden kann. Innerhalb einer Pflanzenfamilie kommen Arten mit hohen oder niedrigen $\delta^{15}N$-Werten vor. Die Streuung der $\delta^{15}N$-Werte der einzelnen Arten wird daher für die Anwendung der $^{15}NNAM$ als problematisch angesehen und bedarf einer ausführlichen Untersuchung. Interessant ist auch der Schwerpunkt dieser $\delta^{15}N$-Werte. Sind weltweit hauptsächlich positive $\delta^{15}N$-Werte für Nicht-Fixierer anzutreffen, so zeigten sich hier mehr negative bis wenig von Null abweichende $\delta^{15}N$-Werte. Nur 7 Arten wurden mit deutlich positiven Werten angetroffen, während 10 Arten deutlich negativ waren. Der $\delta^{15}N$-Wert der restlichen 13 Arten bewegte sich im Bereich um 0 bis negativ. Ein Zusammenhang der $\delta^{15}N$-Werte mit den N-Gehalten der Blätter war nicht zu erkennen.
Abb. 16: Überblick über die δ^{15}N-Werte (Punktmarker mit s) und N-Gehalte (Balken repräsentieren den Mittelwert für die jeweilige Art) in den Blättern der Sekundärvegetation in der Bragantina-Region.
2 \(\delta^{15}N \) im Mineralboden

Zwischen den \(\delta^{15}N \)-Werten des Bodens und der Vegetation besteht ein Zusammenhang, denn die nicht fixierenden Pflanzen decken ihren N-Bedarf aus dem pflanzenverfügbar N des Bodens. Zur Beurteilung der \(\delta^{15}N \)-Werte in der Vegetation als eine Erklärung für die Variabilität des \(\delta^{15}N \) und ihre Eignung für die \(^{15}NNAM \) ist es daher von Bedeutung, folgende Parameter zu kennen:

- \(\delta^{15}N \) des Boden-N generell und die Differenz zwischen dem \(\delta^{15}N \) der Luft und der Boden-N-Quelle
- Veränderung des \(\delta^{15}N \)-Wertes mit der Bodentiefe
- Variabilität auf einzelnen Standorten
- Variabilität zwischen verschiedenen Standorten
- Zusammenhang von \(\delta^{15}N \) mit den physikalischen und chemischen Bodencharakteristika
- Unterschiede in Regen- und Trockenzeit

2.1 Räumliche Variabilität

Eine driefaktorielle Varianzanalyse der \(\delta^{15}N \)-Werte auf den Flächen M1 bis M5 zeigte bezüglich des Standortes und der Bodentiefe signifikante Unterschiede auf (Tab. 61 im Anhang). Kleinräumige Unterschiede hatten keine signifikante Bedeutung. Ob Boden unter einer Leguminose oder außerhalb ihrer Kronentraufe genommen wurde, spielte keine deutliche Rolle für den \(\delta^{15}N \)-Wert des N\(_{tot}\). des Bodens. Diese Unterschiede waren jedoch auf einzelnen Flächen unterschiedlich stark ausgeprägt.

Die auf größere Entfernung liegenden 5 Flächen unterschieden sich in ihren \(\delta^{15}N \)-Werten jedoch signifikant voneinander. Dieser Unterschied blieb auch über die Bodentiefe erhalten. Der \(\delta^{15}N \)-Wert veränderte sich auch mit der Bodentiefe signifikant, mit wenigen Ausnahmen auf allen 5 Flächen in gleicher Weise.

Die Signifikanzen in den Unterschieden der N-Gehalte der Böden wurden im Wesentlichen in gleicher Weise wie die der \(\delta^{15}N \)-Werte ausgewiesen. Die kleinräumigen Unterschiede im Oberboden veränderten sich naturgemäß auch hier mit der Bodentiefe. Es bestanden aber auch Wechselwirkungen zwischen allen getesteten Faktoren, was auf eine große Streuung der N-Gehalte schließen läßt.
2.1.1 Vertikale Variabilität von δ^{15}N

Bis 1m Bodentiefe

In Abb. 17 ist die Entwicklung des δ^{15}N-Wertes im oberen Boden anhand der Einzelwerte der Flächen dargestellt. Die Zunahme der δ^{15}N-Werte folgte einem asymptotischen Verlauf, der für 0 bis 100cm Bodentiefe mit folgender Formel beschrieben werden kann: $y=(7.05^\times x)/(x-2.83); s_y,x=0.75; r^2=0.74; df=28; p<0.001\%$. In den oberen 5cm des Mineralbodens lagen die δ^{15}N-Werte bei +2.5 bis +5, in 30 cm Tiefe erreichten sie +7.5. Von da an blieb der δ^{15}N-Wert konstant. Die N-Gehalte sanken von durchschnittlich 0.15% in den oberen 5cm auf 0.04% von 40cm Bodentiefe und stehen damit im umgekehrt proportionalen Verhältnis zum δ^{15}N-Wert.

Ungefähr bei 40cm Bodentiefe beginnt der B-Horizont der Untersuchungsflächen mit circa 20% Tonanteil. Mit der Bodentextur ändert sich auch die Wasserhaltekapazität. In solchen Bereichen des Bodens, in denen Texturänderungen auftreten, können besondere Anreicherungen mit 15N auftreten (Delwiche und Steyn, 1970). In den Untersuchungsflächen waren in dieser Tiefe die höchsten δ^{15}N-Werte anzutreffen.

Abb. 17: δ^{15}N und N-Gehalte im A-Horizont unter junger Sekundärvegetation von Flächen M1 - M5

Bis 6m Bodentiefe

In den Bodentiefen unter 1m folgte der δ^{15}N-Verlauf einer Regression 1. Grades (Abb. 18). Die Werte fielen von +7.5 in 1m-1.50m Tiefe bis +2.5 in 6m Tiefe ab. Vereinzelt traten ab
5m Bodentiefe negative δ\(^{15}\)N-Werte auf. Dabei ist die hohe Streuung in tieferen Bodenschichten zu beachten, die durch meßtechnische Schwierigkeiten geringer N-Einwaagen bei der Analyse zustande kamen. Die Bodenproben der unteren Schichten hatten in der Regel weniger als 0.01% N\(_{tot}\) aufzuweisen. Damit kam die massenspektrometrische Analyse an ihre Nachweigrenzen. Der Trend kann aber als Indiz für die Verlagerung von löslichen δ\(^{15}\)N-negativen Stickstoff-Verbindungen in tiefere Bodenschichten gelten.

Abb. 18: δ\(^{15}\)N im N\(_{tot}\) des Bodenprofils bis 6m der Fläche M2S2, die Punkte geben die Einzelwerte der Proben an.

Die Ultisole der Untersuchungsregion besitzen eine geringe Wasserhaltekapazität und eine hohe Infiltrationsrate, die zu starken Auswaschungsprozessen führen kann. Während der Brandrodung und anschließenden Bewirtschaftung gibt es mehrfach Phasen, in denen NO\(_3^-\) im Sickerwasser vorgefunden wurde (Hölscher, 1995). Erste \(^{15}\)N-Analysen des pflanzenverfügbaren mineralischen N des Bodens von Fläche M1S1 bestätigen einen mit der Bodentiefe

Wie in Kap. VI.2.1.2 erläutert, lassen sich positive δ¹⁵N-Werte z.T. auf die δ¹⁵N-angereicherte organische Substanz zurückführen. Da ab einer Bodentiefe von 3.50m nur noch ein Kohlenstoffgehalt von höchstens 0.1% nachzuweisen war (vergl. Tab. 10 und Sommer, 1996), kann eine Auswirkung des δ¹⁵N-Wertes der organischen Substanz auf den δ¹⁵N-Wert des N₄ₑ₅ in Bodentiefen unterhalb von 3.50m ausgeschlossen werden. Somit gelangt man in tieferen Bodenschichten an N, dessen Isotopenverhältnisse durch weniger intensive Umsetzungsprozesse und seine Anreicherungsmechanismen nicht so stark verändert wurden.

2.1.2 Zusammenhang von δ¹⁵N mit bodenchemischen und -physikalischen Eigenschaften

Eine multiple Regression mit den Bodenparametern Mn, Mg, K, Al, Basensättigung, C- und N-Gehalt sowie Tonanteil ergab ein maximales Bestimmtheitsmaß von r=0.69 (r²=0.83, F(9.67)=16.72, p<0.000, σ=0.75). Der Anteil der Tonfraktion an der Korngrößenverteilung korrelierte dabei positiv mit dem δ¹⁵N-Wert, Mg sowie Basensättigung negativ (Tab. 28).

Bei dieser stufenweisen Regression betrug, mit %Ton beginnend, das Bestimmtheitsmaß von δ¹⁵N zu Ton r²=0.40, + %N=0.61, + BS=0.64, + Mg=0.67, während Al, K, Mn, %C und das C/N-Verhältnis nur noch zu einer geringen Verbesserung (0.69) der Vorhersage führten. Über diese Faktoren können also 69% der Varianz erklärt werden.

\[\delta^{15}N\]-Werte von +4.7 bis +9.1 ergaben. Sie zeigten auch, daß das organische Bodenmaterial hauptsächlich mit der Tonfraktion verlagert wird, so daß die \(\delta^{15}N\)-Werte mit dem Tonanteil steigen, wie es auch mit dieser Untersuchung gezeigt werden konnte. Dieses Ergebnis wurde sowohl für einzelne Bodenschichten als auch für die gesamten Werte aller Bodentiefen gefunden.

Tab. 28: Zusammenfassung der multiplen Regression von \(\delta^{15}N\) mit Mn, Mg, K, Al, Basensättigung (BS), C - und N - Gehalt und C/N-Verhältnis

<table>
<thead>
<tr>
<th>Element</th>
<th>Korr. Koeff.</th>
<th>(\sigma)</th>
<th>Steigung</th>
<th>(\sigma)</th>
<th>(t(67))</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>8.89</td>
<td>1.29</td>
<td></td>
<td></td>
<td>6.86</td>
<td>0.000***</td>
</tr>
<tr>
<td>Mn</td>
<td>0.04</td>
<td>0.17</td>
<td>0.04</td>
<td>0.15</td>
<td>0.27</td>
<td>0.78</td>
</tr>
<tr>
<td>Mg</td>
<td>-0.25</td>
<td>0.11</td>
<td>-1.31</td>
<td>0.57</td>
<td>-2.30</td>
<td>0.02*</td>
</tr>
<tr>
<td>K</td>
<td>0.02</td>
<td>0.18</td>
<td>1.29</td>
<td>11.50</td>
<td>0.11</td>
<td>0.91</td>
</tr>
<tr>
<td>Al</td>
<td>-0.08</td>
<td>0.17</td>
<td>-0.26</td>
<td>0.60</td>
<td>-0.44</td>
<td>0.66</td>
</tr>
<tr>
<td>BS</td>
<td>-0.37</td>
<td>0.17</td>
<td>-0.03</td>
<td>0.01</td>
<td>-2.18</td>
<td>0.03*</td>
</tr>
<tr>
<td>%C</td>
<td>0.08</td>
<td>0.09</td>
<td>0.42</td>
<td>0.52</td>
<td>0.81</td>
<td>0.42</td>
</tr>
<tr>
<td>%Ton</td>
<td>0.33</td>
<td>0.11</td>
<td>0.05</td>
<td>0.02</td>
<td>2.78</td>
<td>0.007**</td>
</tr>
<tr>
<td>%N</td>
<td>-0.35</td>
<td>0.19</td>
<td>-16.07</td>
<td>8.70</td>
<td>-1.85</td>
<td>0.069</td>
</tr>
<tr>
<td>C/N</td>
<td>-0.13</td>
<td>0.08</td>
<td>-0.08</td>
<td>0.05</td>
<td>-1.55</td>
<td>0.13</td>
</tr>
</tbody>
</table>

2.1.3 Horizontale Variabilität

2.1.3.1 Kleinräumige Variabilität

Eine Voraussetzung der NdfA-Bestimmung mit der \(^{15}NNAM\) ist der Zugriff sowohl der Leguminose als auch der Referenzpflanze auf den gleichen N-Pool. Daher wurden die \(\delta^{15}N\)-Werte im Profil des Bodens unter Leguminosen und einem 5m Radius, also außerhalb der Kronenraupe, der Leguminose verglichen (‘kleine Distanz”), aus dem auch die monatlich beprobten Referenzpflanzen zur NdfA-Bestimmung stammten.

Unabhängig von den Standorten streuten die \(\delta^{15}N\)-Werte um ±1 Einheit. Signifikante Unterschiede konnten kleinräumig nur vereinzelt nachgewiesen werden (Tab. 29). Unterschiede in den \(\delta^{15}N\)-Werten wurden nur in den oberen 40cm auf den Flächen M1 bis M3 gefunden, in den N-Gehalten war nur auf Fläche M2 in den obersten 5cm ein Einfluß des Pflanzenbewuchses nachzuweisen. Da die Unterschiede auf kleinräumiger Distanz nur selten signifikant waren, bleiben sie ohne besondere Aussagekraft. Die Differenzen änderten sich mit der Bodentiefe auf den einzelnen Standorten nicht signifikant, während sich die \%N-Differenzen kleinräumig mehr und mehr anglichen.
Tab. 29: Paarweiser t - Test nach Student auf kleinräumige Unterschiede zwischen den Bodenproben der 5 M-Flächen unter Leguminosen und denen im 5m - Radius (n.b.=nicht bestimmt, n.s.=nicht signifikant)

<table>
<thead>
<tr>
<th>Bodentiefe</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ^{15}N</td>
<td>%N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0 - 5 cm</td>
<td>n.s.</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>5 - 10 cm</td>
<td>n.s.</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>10 - 20 cm</td>
<td>n.s.</td>
<td>n.s.</td>
<td>*</td>
<td>n.b.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.b.</td>
<td>n.s.</td>
</tr>
<tr>
<td>20 - 40 cm</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>40 - 60 cm</td>
<td>n.s.</td>
</tr>
<tr>
<td>60 - 100 cm</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Stellvertretend für alle Flächen sind in Abb. 19 die δ^{15}N-Werte im Bodenprofil der Flächen M3 und M2 dargestellt (Tab. 61 im Anhang gibt die Werte im einzelnen wieder). Obwohl nur selten statistisch signifikant war ein Trend des δ^{15}N von höheren Werten unter den nicht N$_2$-fixierenden Referenzpflanzen zu 1 Einheit niedrigeren Werten unter der Leguminose zu erkennen. Die Unterschiede nehmen mit der Bodentiefe ab. Unterhalb von 20 cm waren sie überhaupt nicht mehr zu erkennen.

Abb. 19: Kleinräumige Unterschiede des δ^{15}N-Wertes zwischen Boden unter Leguminosen (Leg.) und im 5m-Radius (Ref.) um sie herum in Abhängigkeit von der Bodentiefe auf Fläche M3 (n=6) und Fläche M2 (n=2) (Balken geben s an)
2.1.3.2 Großräumige Variabilität

Igarapé Açu

Die Unterschiede zwischen den Standorten M1 bis M5 in der Nähe von Igarapé Açu waren nicht sehr stark ausgeprägt, obwohl die Varianzanalyse (vergl. Tab. 60 im Anhang) Signifikanzen andeutete. Zwischen Fläche M1, M3 und M4 ergaben sich über die Bodentiefen keine signifikanten Unterschiede (Tab. 30). Lediglich Fläche M5 war in 5-10 cm und 40-60 cm Bodentiefe von den anderen signifikant verschieden. Diese Fläche wies auch die geringsten N-Gehalte auf. Mit zunehmender Bodentiefe verringern sich die bestehenden Unterschiede, blieben aber doch konstant. Auffällig ist die starke Zunahme des δ^{15}N-Wertes auf Fläche M2 von durchschnittlich +3.6 in den ersten 5 cm bis auf +5.14 in 10 cm Bodentiefe. Im Mineralboden blieb diese Fläche aber diejenige mit den höchsten δ^{15}N-Anreicherungen, während Fläche M5 die niedrigsten δ^{15}N-Werte hatte.

<table>
<thead>
<tr>
<th>Fläche</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ^{15}N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 bis 5 cm</td>
<td>3.63 (±0.13)<sup>a</sup></td>
<td>3.60 (±0.14)<sup>a</sup></td>
<td>3.42 (±0.34)<sup>a</sup></td>
<td>4.06 (±0.37)<sup>a</sup></td>
<td>3.34 (±0.45)<sup>b</sup></td>
</tr>
<tr>
<td>5 bis 10 cm</td>
<td>4.49 (±0.24)<sup>ab</sup></td>
<td>5.14 (±0.83)<sup>ab</sup></td>
<td>4.62 (±0.48)<sup>ab</sup></td>
<td>4.98 (±0.22)<sup>a</sup></td>
<td>3.67 (±0.78)<sup>b</sup></td>
</tr>
<tr>
<td>10 bis 20 cm</td>
<td>6.24 (±0.13)<sup>a</sup></td>
<td>6.38 (±0.41)<sup>a</sup></td>
<td>6.10 (±0.36)<sup>a</sup></td>
<td>6.41 (±1.76)<sup>a</sup></td>
<td>5.27 (±0.62)<sup>a</sup></td>
</tr>
<tr>
<td>20 bis 40 cm</td>
<td>6.73 (±0.19)<sup>a</sup></td>
<td>7.17 (±0.32)<sup>a</sup></td>
<td>6.40 (±0.84)<sup>a</sup></td>
<td>6.32 (±0.25)<sup>a</sup></td>
<td>6.25 (±0.41)<sup>b</sup></td>
</tr>
<tr>
<td>40 bis 60 cm</td>
<td>6.90 (±0.30)<sup>ab</sup></td>
<td>7.56 (±0.31)<sup>a</sup></td>
<td>6.93 (±0.77)<sup>a</sup></td>
<td>6.60 (±0.37)<sup>ab</sup></td>
<td>5.89 (±0.49)<sup>b</sup></td>
</tr>
<tr>
<td>60 bis 100 cm</td>
<td>6.63 (±0.24)<sup>a</sup></td>
<td>7.11 (±0.39)<sup>a</sup></td>
<td>6.80 (±0.86)<sup>a</sup></td>
<td>6.70 (±0.08)<sup>a</sup></td>
<td>6.40 (±0.58)<sup>b</sup></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%N</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 bis 5 cm</td>
<td>0.11 (0.02)<sup>a</sup></td>
<td>0.09 (0.01)<sup>a</sup></td>
<td>0.16 (0.10)<sup>a</sup></td>
<td>0.10 (0.001)<sup>a</sup></td>
<td>0.06 (0.01)<sup>a</sup></td>
</tr>
<tr>
<td>5 bis 10 cm</td>
<td>0.09 (0.02)<sup>a</sup></td>
<td>0.06 (0.001)<sup>a</sup></td>
<td>0.09 (0.02)<sup>a</sup></td>
<td>0.08 (0.001)<sup>a</sup></td>
<td>0.07 (0.01)<sup>a</sup></td>
</tr>
<tr>
<td>10 bis 20 cm</td>
<td>0.06 (0.001)<sup>a</sup></td>
<td>0.07 (0.001)<sup>a</sup></td>
<td>0.06 (0.01)<sup>a</sup></td>
<td>0.55 (0.001)<sup>b</sup></td>
<td>0.05 (0.001)<sup>a</sup></td>
</tr>
<tr>
<td>20 bis 40 cm</td>
<td>0.05 (0.001)<sup>ab</sup></td>
<td>0.06 (0.01)<sup>b</sup></td>
<td>0.05 (0.01)<sup>ab</sup></td>
<td>0.05 (0.01)<sup>ab</sup></td>
<td>0.04 (0.001)<sup>b</sup></td>
</tr>
<tr>
<td>40 bis 60 cm</td>
<td>0.05 (0.01)<sup>a</sup></td>
<td>0.04 (0.001)<sup>ab</sup></td>
<td>0.04 (0.001)<sup>ab</sup></td>
<td>0.04 (0.001)<sup>ab</sup></td>
<td>0.03 (0.001)<sup>b</sup></td>
</tr>
<tr>
<td>60 bis 100 cm</td>
<td>0.04 (0.001)<sup>ab</sup></td>
<td>0.04 (0.001)<sup>ab</sup></td>
<td>0.04 (0.001)<sup>ab</sup></td>
<td>0.05 (0.01)<sup>b</sup></td>
<td>0.02 (0.001)<sup>a</sup></td>
</tr>
</tbody>
</table>

Peixe Boi

deren Böden daher in ihrer Nährstoffsituation weniger gestörter sind. Eine einmalige Beprobung mit 6 Einstichen für 1 Mischprobe (n=3 bzw. 4) wurde an diesen Stellen durchgeführt.

Ein signifikanter Unterschied im durchschnittlichen Boden-δ¹⁵N zwischen der alten Sekundärvegetation und dem Primärwald konnte nach dem H-Test von Kruskal und Wallis aufgrund der geringen Wiederholungszahl und der hohen Streuung nicht verzeichnet werden (Tab. 31).
VI. Ergebnisse

Tab. 31: Mittelwerte (von drei Mischproben aus jeweils 6 Einstichen) des Bodens in Peixe Boi (in Klammern stehen die Mittelwerte unter Einbezug der Extremwert)

<table>
<thead>
<tr>
<th>Bodentiefe (cm)</th>
<th>junge Sekundärvegetation M1-M5, gemittelt</th>
<th>alte Sekundärvegetation PBsw</th>
<th>Primärvegetation PBpw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\delta^{15}N$</td>
<td>%N</td>
<td>$\delta^{15}N$</td>
</tr>
<tr>
<td>0 - 10 cm</td>
<td>4.26 (0.83)</td>
<td>0.11 (0.06)</td>
<td>6.25</td>
</tr>
<tr>
<td>10 - 20 cm</td>
<td>5.72 (1.12)</td>
<td>0.16 (0.31)</td>
<td>6.94</td>
</tr>
<tr>
<td>20 - 60 cm</td>
<td>6.57 (0.53)</td>
<td>0.05 (0.01)</td>
<td>8.10 (17.13)</td>
</tr>
<tr>
<td>40 - 60 cm</td>
<td>6.78 (0.61)</td>
<td>0.04 (0.01)</td>
<td>9.66 (15.65)</td>
</tr>
<tr>
<td>60 - 100 cm</td>
<td>6.73 (0.27)</td>
<td>0.04 (0.01)</td>
<td>9.51</td>
</tr>
</tbody>
</table>

Die $\delta^{15}N$-Werte des Bodens unter junger, alter und Primärvegetation wurden ebenfalls mit dem Kruskal-Wallis-H-Test verglichen, führten aber ebenfalls zu keinen signifikanten Unterschieden.

2.2 $\delta^{15}N$ in der Asche

Eine mögliche Ursache für die negativen $\delta^{15}N$-Werte der Vegetation kann im pflanzenverfügbaren N, das durch jahrzehntelang praktizierte Brandrodungen via ^{15}N-Fraktionierung der Volatilisation verändert wurde, im N$_{tot}$ des Bodens jedoch noch nicht klar zu erkennen ist, liegen. Analysen von Asche und der gerodeten Biomasse vor dem Brand zeigten aber keine signifikanten Änderungen des $\delta^{15}N$-Wertes des Pflanzenmaterials durch den Brand (Tab. 32).

Der $\delta^{15}N$-Wert des Holzes betrug +1.67 (\pm2.40) und des Blattmaterials +0.19 (\pm0.73). Der $\delta^{15}N$-Wert in der Asche verschob sich leicht Richtung Nullpunkt (+0.02 \pm0.96).

Tab. 32: $\delta^{15}N$ in Pflanzenmaterial und ihrer Asche (Werte in Klammern geben s für n=10 an; Buchstaben geben signifikante Unterschiede für p<0.05 nach Scheffé an)

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Asche</th>
<th>Holz</th>
<th>Blatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta^{15}N$</td>
<td>0.02 (\pm0.96)a</td>
<td>1.67 (\pm2.40)a</td>
<td>0.19 (\pm0.73)a</td>
</tr>
<tr>
<td>% N</td>
<td>1.02 (\pm0.28)a</td>
<td>0.46 (\pm0.10)b</td>
<td>1.63 (\pm0.11)c</td>
</tr>
</tbody>
</table>

Vorgänge der Volatilisation und der Stofftransfer durch Brand werden als Mechanismen der ^{15}N-Anreicherungen beschrieben (Schulze et al., 1991; Handley und Raven, 1992; Turner et al., 1983). Bei einem Brand gehen 96 % des Stickstoffs durch den Stofftransfer in die Atmo-
sphäre über (Hölscher, 1995; Mackensen et al., 1996). In den verbliebenen 4% in der Asche wurde hier keine Anreicherung festgestellt, so daß der \(^{15}\text{N}\) Fraktionierung via Volatilisation kein Einfluß auf die \(\delta^{15}\text{N}\)-Werte des Bragantina-Bodens zugeschrieben werden kann.

2.3 Temporäre Variabilität

Die Bodenbeprobung wurde in einem regenreichen Monat (Februar 1993) auf den Flächen M1 bis M5 unternommen und in einem regenarmen Monat (Juli 1993) auf dem Standort M2 wiederholt. Weder im Stickstoffgehalt noch in den \(\delta^{15}\text{N}\)-Werten konnten Unterschiede gefunden werden, die dem \(t\)-Test nach Student standhielten (Tab. 33). Die größere Streuung der feuchteren Proben der Regenzeit könnten durch den Trocknungsvorgang hervorgerufen worden sein.

Tab. 33: \(\delta^{15}\text{N}\) und \%N im Boden der Fläche M2 zu unterschiedlichen Jahreszeiten (in Klammern)

<table>
<thead>
<tr>
<th>Bodentiefe (cm)</th>
<th>n</th>
<th>Regenzeit</th>
<th>Trockenzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 bis 5 cm</td>
<td>5</td>
<td>(\delta^{15}\text{N})</td>
<td>%N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.70 (±0.32)</td>
<td>0.09 (±0.02)</td>
</tr>
<tr>
<td>5 bis 10 cm</td>
<td>5</td>
<td>4.72 (±1.32)</td>
<td>0.08 (±0.008)</td>
</tr>
<tr>
<td>10 bis 20 cm</td>
<td>5</td>
<td>6.15 (±0.85)</td>
<td>0.06 (±0.01)</td>
</tr>
<tr>
<td>20 bis 40 cm</td>
<td>5</td>
<td>6.69 (±0.85)</td>
<td>0.05 (±0.01)</td>
</tr>
<tr>
<td>40 bis 60 cm</td>
<td>5</td>
<td>6.97 (±0.87)</td>
<td>0.04 (±0.007)</td>
</tr>
<tr>
<td>60 bis 100 cm</td>
<td>5</td>
<td>6.81 (±0.65)</td>
<td>0.03 (±0.008)</td>
</tr>
</tbody>
</table>

3 \(\delta^{15}\text{N}\) in der organischen Auflage der Sekundär- und Primärvegetation

Der \(\delta^{15}\text{N}\)-Wert der organischen Auflage repräsentiert das \(^{15}\text{N}/^{14}\text{N}\)-Verhältnis des teilweise abgebauten Stickstoffs. Trotz Umlagerungsprozesse während der Seneszenz spiegelt sich das vorhandene \(^{15}\text{N}/^{14}\text{N}\)-Verhältnis der Vegetation in ihr wider. Umsetzungsprozesse zu mineralischem Stickstoff bzw. organischen Substanzen haben begonnen und somit finden sich in der älteren organischen Auflage \(\delta^{15}\text{N}\)-Werte, die durch diese Vorgänge verändert wurden (Andreux et al, 1988). In diesem Kapitel soll nun beschrieben werden, welche \(\delta^{15}\text{N}\)-Werte in der Streu der Vegetation der Bragantina, junge, ältere und Primärvegetation, aufzufinden waren und ob ein Einfluß auf den \(\delta^{15}\text{N}\)-Wert des Bodens vorhanden war.
3.1 Räumliche Variabilität

Igarapé Açu

Mit Ausnahme von Fläche M1 wurde die frische Streu unter Leguminosen durchgehend mit niedrigeren δ^{15}N-Werten als unter Nichtfixierern gemessen (Tab. 34). Die Stickstoffkonzentrationen hingegen waren außer auf der Fläche M2 signifikant höher in der Leguminosenstreu. In der älteren Streu zeichnete sich auf allen Flächen unter Leguminosen sowie Nichtfixierern ein Trend - wiederum mit Ausnahme der Fläche M2 - zu höheren δ^{15}N-Werten ab.

Tab. 34: δ^{15}N und N-Gehalte im N tot. der organischen Auflage in junger Sekundärvegetation (in Klammern s. * geben signifikante Unterschiede zwischen der Streu unter Leguminosen - Leg.- und dem 5m-Radius -Ref.- nach Student an)

<table>
<thead>
<tr>
<th>δ^{15}N</th>
<th>Fläche M1</th>
<th>Fläche M2</th>
<th>Fläche M3</th>
<th>Fläche M4</th>
<th>Fläche M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>frische Streu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leg.</td>
<td>-0.67*</td>
<td>-2.36</td>
<td>-0.84</td>
<td>-0.69</td>
<td>-1.47</td>
</tr>
<tr>
<td>(0.27)</td>
<td>(0.94)</td>
<td>(0.49)</td>
<td>(0.67)</td>
<td>(0.31)</td>
<td>(0.35)</td>
</tr>
<tr>
<td>Ref.</td>
<td>-0.47</td>
<td>-0.64</td>
<td>-0.47</td>
<td>-1.02*</td>
<td>1.08</td>
</tr>
<tr>
<td>(0.47)</td>
<td>(0.64)</td>
<td>(0.35)</td>
<td>(0.21)</td>
<td>(1.63)</td>
<td></td>
</tr>
<tr>
<td>alte Streu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leg.</td>
<td>-0.10</td>
<td>-0.37</td>
<td>-1.64</td>
<td>-0.38</td>
<td>0.20</td>
</tr>
<tr>
<td>(0.22)</td>
<td>(0.56)</td>
<td>(0.95)</td>
<td>(0.56)</td>
<td>(0.27)</td>
<td>(0.39)</td>
</tr>
<tr>
<td>Ref.</td>
<td>-0.58</td>
<td>-0.38</td>
<td>-0.38</td>
<td>0.20</td>
<td>0.54</td>
</tr>
<tr>
<td>(0.22)</td>
<td>(0.56)</td>
<td>(0.38)</td>
<td>(0.56)</td>
<td>(0.20)</td>
<td>(0.88)</td>
</tr>
<tr>
<td>%N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frische Streu</td>
<td>1.34*</td>
<td>0.80</td>
<td>1.46</td>
<td>1.56**</td>
<td>1.33*</td>
</tr>
<tr>
<td>(0.08)</td>
<td>(0.17)</td>
<td>(0.23)</td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>alte Streu</td>
<td>0.87</td>
<td>1.18</td>
<td>0.98**</td>
<td>1.25</td>
<td>1.11*</td>
</tr>
<tr>
<td>(0.06)</td>
<td>(0.57)</td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.38)</td>
<td>(0.09)</td>
</tr>
</tbody>
</table>

Die Stickstoffkonzentrationen sind in der alten Streu niedriger und nur noch auf Fläche M3 und M5 war sie unter Leguminosener und Nichtfixierern signifikant verschieden. Auf Fläche M5 wurde die größte Differenz in den N-Konzentrationen zwischen frischer und älterer Streu gefunden, hier wurde auch die stärkste Anreicherung der älteren Streu mit 15N angetroffen.
Diese kleinräumigen Unterschiede sind mit dem größeren Einfluß der Abbauprodukte der verrottenden, für den Mikrostandort spezifischen, organischen Substanz erklärbar, der sich mit zunehmender Bodentiefe verliert. Die hohe Variabilität der δ^{15}N in der organischen Auflage kann zum einen über die Entnahme unterschiedlich stark abgebauter organischer Substanz oder zum anderen über die unterschiedliche Artenzusammensetzung der jeweiligen Fläche erklärt werden. Die Biomasse der verschiedenen Arten wird je nach ihrer Größen- und Artenzusammensetzung in unterschiedlicher Geschwindigkeit und Art und Weise abgebaut (Downs et al., 1996). Jedoch spielen auch hier Fraktionierungsprozesse der Stickstoffisotopen eine Rolle. Durch den Abbau der organischen Substanz und die damit einhergehende 15N-Diskriminierung wird das verbliebene organische Material sukzessive mit 15N angereichert, während das Produkt der Zersetzung und Mineralisation - NH_4^+ und NO_3^- - weniger 15N mit sich führt (Andreux, 1988; Handley und Raven, 1992; Mordelet et al., 1996; Turner et al., 1983; Wada et al., 1975;).

Peixe Boi

Die organische Auflage der jungen Sekundärvegetation der Bragantina-Region wurde mit der einer 20-25jährigen Sekundärvegetation und eines Primärwaldes verglichen. Da keine signifikanten Unterschiede in den δ^{15}N-Werten zwischen Leguminosen- und Nichtfixiererstreusowie frischer und älterer Streu vorlagen, gingen diese Proben als Wiederholung für die jeweilige Fläche in den Hypothesen-Rang-Test der Flächen nach Scheffé mit ein (Tab. 35).

Tab. 35: δ^{15}N und N-Gehalte der Streuauflage auf den M-Flächen, einer alten Sekundärvegetation und eines Primärwaldes der Zona Bragantina (± in Klammern)

<table>
<thead>
<tr>
<th>Fläche</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>12</td>
<td>8</td>
<td>24</td>
<td>8</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ^{15}N</td>
<td>-0.89<sup>a</sup> (1.08)</td>
<td>-0.88<sup>a</sup> (1.08)</td>
<td>-0.48<sup>a</sup> (0.46)</td>
<td>-0.59<sup>a</sup> (2.47)</td>
<td>0.19<sup>b</sup> (1.16)</td>
<td>2.55<sup>b</sup> (2.34)</td>
<td>5.03<sup>c</sup> (0.49)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%N</td>
<td>1.02<sup>a</sup> (0.35)</td>
<td>1.14<sup>ab</sup> (0.26)</td>
<td>1.31<sup>ab</sup> (0.28)</td>
<td>1.07<sup>ab</sup> (0.20)</td>
<td>1.20<sup>ab</sup> (0.42)</td>
<td>1.54<sup>ab</sup> (0.08)</td>
<td>1.58<sup>b</sup> (0.23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unter Primärwald zeigte die Streu ein wesentlich höheres 15N/14N-Verhältnis als unter der Sekundärvegetation, wobei die alte Sekundärvegetation in Peixe Boi in ihrem δ^{15}N zwischen den jungen Vegetationen aus Igarapé Açu und dem Primärwald lagen. Die Sonderstellung

VI. Ergebnisse - 83 -
Peixe Bois spiegelte sich auch in den höheren N-Gehalten wieder, die sich aber aufgrund der hohen Streuung nicht signifikant von den anderen Standorten abgrenzen ließ (Tab. 35).

In Abb. 21 sind die einzelnen δ^{15}N-Werte der in Tab. 35 gegebenen Mittelwerte in Abhängigkeit vom Standort dargestellt. Hier wird ganz deutlich, daß die organische Auflage mit zunehmendem Alter der Vegetation immer höhere δ^{15}N-Werte aufwies.

![Graph](image)

Abb. 21: δ^{15}N in der organischen Auflage verschiedener Vegetationssysteme (Balken geben s an).

3.2 Temporäre Variabilität im δ^{15}N der organischen Auflage

Für Fläche M2 wurden die Proben der organischen Auflage sowohl in der Trocken- als auch Regenzeit analysiert. Bei einem t-Test wurden keine signifikanten Unterschiede in den einzelnen Bodenschichten festgestellt - die Streuung war zu hoch. Die Regenzeit läßt eine höhere Mineralisationsrate (Marrs et al., 1991) und damit einen höheren δ^{15}N-Wert in der verbliebenen organischen Substanz und eine höhere Abbaurate vermuten. Dies konnte hier jedoch nicht bestätigt werden.

<table>
<thead>
<tr>
<th></th>
<th>δ^{15}N</th>
<th>%N</th>
</tr>
</thead>
<tbody>
<tr>
<td>n Regenzeit</td>
<td>n Trockenzeit</td>
<td></td>
</tr>
<tr>
<td>5 -0.62 (0.89)</td>
<td>-0.16 (0.93)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 36: δ^{15}N und %N der Streuauflage in Trocken- bzw. Regenzeit
3.3 Beziehung von $\delta^{15}N$ der organischen Auflage zum $\delta^{15}N$ des Mineralbodens und der Vegetation

Die Streu ist das Substrat, aus dem sich das mineralische N entwickelt. Bekannt ist seit langem, daß es zu Fraktionierungsprozessen während des Abbaus des organischen Materials kommt, die zu einer ^{15}N-Abreicherung des Produktes, also NO$_3^-$ und in geringerem Maße NH$_4^+$, führt.

Die Differenz zwischen den $\delta^{15}N$-Werten, zu sehen an der Regressionskonstanten (Tab. 37), nahm mit der Bodentiefe von 3.7 auf maximal 6.7 zu. Während frische Streu in keinem Zusammenhang mit dem Mineralboden stand, konnte ein negativer Zusammenhang zwischen der alten organischen Substanz und dem Mineralboden gezeigt werden. Die Regressionsgleichungen der organischen Auflage mit dem Mineralboden sind für die beiden unterschiedlichen Zersetzungsgrade der Streu nahezu gleich, die Ausprägung des Zusammenhanges ist jedoch in der älteren Streuaufklage deutlicher und daher häufiger signifikant.

<table>
<thead>
<tr>
<th>Bodentiefe</th>
<th>frische organische Auflage</th>
<th>ältere organische Auflage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modell</td>
<td>$r(x,y)$</td>
</tr>
<tr>
<td>0 - 5cm</td>
<td>$\delta^{15}N_{tot.} = \text{3.7 }+ 0.1 \times \delta^{15}N_{streu}$</td>
<td>0.19</td>
</tr>
<tr>
<td>5 - 10cm</td>
<td>$\delta^{15}N_{tot.} = \text{4.9 }- 0.03 \times \delta^{15}N_{streu}$</td>
<td>-0.23</td>
</tr>
<tr>
<td>10 - 20cm</td>
<td>$\delta^{15}N_{tot.} = \text{5.6 }- 0.2 \times \delta^{15}N_{streu}$</td>
<td>-0.18</td>
</tr>
<tr>
<td>20 - 40cm</td>
<td>$\delta^{15}N_{tot.} = \text{6.5 }- 0.2 \times \delta^{15}N_{streu}$</td>
<td>-0.29</td>
</tr>
<tr>
<td>40 - 60cm</td>
<td>$\delta^{15}N_{tot.} = \text{6.7 }- 0.2 \times \delta^{15}N_{streu}$</td>
<td>-0.25</td>
</tr>
<tr>
<td>60 - 100cm</td>
<td>$\delta^{15}N_{tot.} = \text{6.7 }- 0.01 \times \delta^{15}N_{streu}$</td>
<td>-0.06</td>
</tr>
</tbody>
</table>

Ob ein Zusammenhang zwischen den Boden-$\delta^{15}N$-Werten und dem $\delta^{15}N$ der Vegetation stand, zeigen die Pearson-Korrelationen der beiden Parameter (Tab. 38). Es wurde mit den Mittelwerten der Arten, soweit auf allen Flächen vorhanden, für jeden Standort (S1 bis S6 und PB$_{sw}$ sowie PB$_{pw}$) eine Pearson-Korrelation mit dem Boden-$\delta^{15}N$ der Flächen aus Igara-pe´Açu und Peixe Boi durchgeführt (Tab. 38).

Eine deutlich positive Korrelation zwischen den $\delta^{15}N$-Werten der Pflanzen mit dem $\delta^{15}N$ des Bodens von 0 bis 20cm, der Streu und der Bodenschicht von 60 bis 100cm Tiefe bestand für
Inga thibaudiana, Tapirira guianensis und Vismia guianensis. Offensichtlich dominieren die jeweiligen Arten mit ihrem Laub das δ^{15}N der oberen Bodenschichten, deren mineralisches N dann wieder in die Pflanzen aufgenommen wird. Die Vegetation und der Mineralboden beeinflussen ihre δ^{15}N-Werte gegenseitig durch das im System zirkulierende N.

Dieser Zusammenhang wird jedoch durch die negative Korrelation der Streuauflage mit dem Mineralboden durchbrochen. An dieser Stelle des Abbaus finden offensichtlich Prozesse statt, die zu einer Aufspaltung von 15N und 14N zwischen Substraten und Produkten führen und so eine gegenläufige δ^{15}N-Wert-Entwicklung verursachen.

<table>
<thead>
<tr>
<th>Bodentiefe</th>
<th>Inga thibaudiana</th>
<th>Banara guianensis</th>
<th>Lacistema pubescens</th>
<th>Tapirira guianensis</th>
<th>Vismia guianensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streu</td>
<td>0.96***</td>
<td>0.37</td>
<td>0.56</td>
<td>0.83*</td>
<td>0.64</td>
</tr>
<tr>
<td>0-10cm</td>
<td>0.94***</td>
<td>0.44</td>
<td>0.66</td>
<td>0.91**</td>
<td>0.81**</td>
</tr>
<tr>
<td>10-20cm</td>
<td>0.78*</td>
<td>0.19</td>
<td>0.30</td>
<td>0.77*</td>
<td>0.66</td>
</tr>
<tr>
<td>20-40cm</td>
<td>0.41</td>
<td>-0.09</td>
<td>0.09</td>
<td>0.18</td>
<td>0.33</td>
</tr>
<tr>
<td>40-60cm</td>
<td>0.36</td>
<td>-0.11</td>
<td>0.09</td>
<td>0.10</td>
<td>0.29</td>
</tr>
<tr>
<td>60-100cm</td>
<td>0.93***</td>
<td>0.35</td>
<td>0.66</td>
<td>0.84**</td>
<td>0.69</td>
</tr>
</tbody>
</table>

4 δ^{15}N in den Pflanzen

4.1 Blattposition

Blätter liefern von den Pflanzenorganen das geeignetste Material zur Ermittlung des δ^{15}N-Wertes des von den Pflanzen aufgenommenen Stickstoffs, da sie nur eine relativ kurze Lebensdauer haben und somit nicht über Jahre Stickstoff akkumulieren. Durch die Blattprobung werden Bäume zudem am wenigsten in ihrem Wachstum beeinträchtigt.

Es stellte sich nun die Frage, ob es Unterschiede zwischen den neuen und alten Blättern einer Pflanze gibt und welches Blattalter am ehesten den δ^{15}N-Wert der N-Quelle wiedergibt und daher für die Bestimmung des %Ndfa am günstigsten ist. Für die Genauigkeit der %Ndfa-Bestimmung war es weiterhin von Bedeutung, das Referenzorgan zu finden, dessen δ^{15}N-Werte eine möglichst geringe Eigenstreuung mit sich brachte.
Als Kriterien für die Wahl des geeigneten Blattalters können deshalb gelten und mußten untersucht werden:

1. Bestehen signifikante Unterschiede in den δ¹⁵N-Werten zwischen alten und neuen Blättern?

2. Wie hoch ist das Ausmaß der δ¹⁵N-Streuung der verschiedenen Blattalter?

3. Welches Blattalter liefert die größere Differenz im δ¹⁵N-Wert zwischen einer Referenzpflanze und der Leguminose.

Zu 1.

Ein t-Test nach Student für abhängige Proben verdeutlichte, daß alte und junge Blätter meistens signifikant unterschiedliche δ¹⁵N-Werte hatten. Die Blätter von *Tapirira guianensis* und *Banara guianensis* waren nicht signifikant verschieden (Tab. 39).

Tab. 39: Unterschiede in den δ¹⁵N-Werten von neuen und alten Blättern von Leguminosen und Nichtleguminosen (t-Test für abhängige Stichproben, * = p<0.001)**

<table>
<thead>
<tr>
<th>Leguminosen</th>
<th>Nichtleguminosen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abarema jupunba</td>
<td>***</td>
</tr>
<tr>
<td>Inga thibaudiana</td>
<td>***</td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td>***</td>
</tr>
<tr>
<td>Banara guianensis</td>
<td>n.s.</td>
</tr>
<tr>
<td>Lacistema pubescens</td>
<td>***</td>
</tr>
<tr>
<td>Tapirira guianensis</td>
<td>n.s.</td>
</tr>
<tr>
<td>Vismia guianensis</td>
<td>***</td>
</tr>
</tbody>
</table>

Den Zusammenhang zwischen den alten und neuen Blättern kann man mit folgenden Gleichungen einer linearen Regression beschreiben:

Tab. 40: Regressionen zwischen den δ¹⁵N-Werten von alten und neuen Blättern von 7 Sekundärwaldarten

<table>
<thead>
<tr>
<th>Spezies</th>
<th>Modell</th>
<th>r(x,y)</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abarema jupunba</td>
<td>δ¹⁵Nₐlt = -0.63 + 0.83 x δ¹⁵Nₙₑᵤ</td>
<td>0.71</td>
<td>0.50**</td>
</tr>
<tr>
<td>Banara guianensis</td>
<td>δ¹⁵Nₐlt = -1.56 - 0.15 x δ¹⁵Nₙₑᵤ</td>
<td>-0.18</td>
<td>0.03ns</td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td>δ¹⁵Nₐlt = -0.61 + 0.79 x δ¹⁵Nₙₑᵤ</td>
<td>0.88</td>
<td>0.78***</td>
</tr>
<tr>
<td>Inga thibaudiana</td>
<td>δ¹⁵Nₐlt = -0.53 + 0.55 x δ¹⁵Nₙₑᵤ</td>
<td>0.63</td>
<td>0.40*</td>
</tr>
<tr>
<td>Lacistema pubescens</td>
<td>δ¹⁵Nₐlt = -1.14 + 1.00 x δ¹⁵Nₙₑᵤ</td>
<td>0.91</td>
<td>0.84***</td>
</tr>
<tr>
<td>Tapirira guianensis</td>
<td>δ¹⁵Nₐlt = +0.28 + 1.01 x δ¹⁵Nₙₑᵤ</td>
<td>0.95</td>
<td>0.89***</td>
</tr>
<tr>
<td>Vismia guianensis</td>
<td>δ¹⁵Nₐlt = -0.62 + 0.98 x δ¹⁵Nₙₑᵤ</td>
<td>0.97</td>
<td>0.94***</td>
</tr>
</tbody>
</table>
Die δ^{15}N-Werte der alten Blätter lagen mindestens eine $\frac{1}{2}$ δ^{15}N-Einheit niedriger als die der neuen Blätter, wie aus den negativen Werten für den y-Achsenabschnitt hervorgeht (vergl. auch Abb. 42 im Anhang). Daneben bestand für fast alle Arten eine positive, signifikante Korrelation zwischen den beiden Blattaltern. Es ist also zu erwarten, daß in den neuen Blättern stets höhere δ^{15}N-Werte gemessen werden. Eine Ausnahme bildete jedoch *Banara guianensis*, für die kein Zusammenhang in den Blatt-δ^{15}N-Werten gefunden wurde.

Das Gefälle im δ^{15}N-Wert von den neuen zu den alten Blättern kann durch Fraktionierungsprozesse während der Blattalterung, bzw. dem Abtransport von N-Verbindungen aus den alten Blättern in die anderen Gewebe der Pflanzen erklärt werden. In den neuen Blättern finden hauptsächlich anabolische Reaktionen mit einem β-Faktor von 1.0091 bis 1.0184 statt, in den alten Blättern die katabolischen Reaktionen mit einem β-Faktor von 1.0017 bis 1.0170 (Yoneyama, 1991a und b). Gestresste Pflanzen verwenden aber häufig die durch o.g. Prozesse 15N-verdünten N-Verbindungen der alten Blättern für den Aufbau der neuen mit (Li, 1992).

Zu 2.

Das Ausmaß der Streuung der δ^{15}N-Werte war für die alten und neuen Blätter aller untersuchten Arten sehr gering (Tab. 41). Sowohl in der Gruppe der Leguminosen als auch der Referenzpflanzen war die über die jeweiligen Arten gemittelte Varianz der alten Blätter um 0.1 höher als in den neuen Blättern. Ein Ausblick auf artenspezifische Unterschiede gibt der Vergleich der Varianzen bezüglich der Arten: Nichtleguminosen wiesen eine wesentlich höhere Varianz als Leguminosen auf.

Tab. 41: Vergleich der Varianzen neuer und alter Blätter in der jungen Sekundärvegetation

<table>
<thead>
<tr>
<th>Art</th>
<th>alte Blätter</th>
<th>neue Blätter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mw</td>
<td>Varianz</td>
</tr>
<tr>
<td>Abarema jupunba (Leg.)</td>
<td>-0.40</td>
<td>0.52</td>
</tr>
<tr>
<td>Inga heterophylla (Leg.)</td>
<td>-0.57</td>
<td>0.65</td>
</tr>
<tr>
<td>Inga thibaudiana (Leg.)</td>
<td>-0.47</td>
<td>0.60</td>
</tr>
<tr>
<td>Banara guianensis (Nichtleg.)</td>
<td>-0.54</td>
<td>1.46</td>
</tr>
<tr>
<td>Lacistema pubescens (Nichtleg.)</td>
<td>0.49</td>
<td>1.28</td>
</tr>
<tr>
<td>Tapirira guianensis (Nichtleg.)</td>
<td>0.49</td>
<td>2.42</td>
</tr>
<tr>
<td>Vismia guianensis (Nichtleg.)</td>
<td>-0.72</td>
<td>3.65</td>
</tr>
</tbody>
</table>

Über die Arten gemittelte Varianz
Leg.: 0.59, Ref.: 2.20
Leg.: 0.50, Ref.: 2.14
Zu 3.

Als drittes Entscheidungskriterium sollte die Differenz der alten bzw. neuen Blätter zwischen Referenzpflanzen und Leguminosen dienen. Diese Differenzen waren je nach Referenzart und Blattalter unterschiedlich stark ausgeprägt (Tab. 42). *Banara guianensis* wies mit 0.9 δ¹⁵N-Einheiten in den neuen Blättern (bzw. 0.7 in den alten Blättern) hierbei die geringsten, *Tapirira guianensis* mit zwei δ¹⁵N-Einheiten (bzw. 1.1 in den alten Blättern) die größten Differenzen auf. *Lacistema pubescens* mit 1.7 (1.1) und *Vismia guianensis* mit 1.6 (1.6) waren als intermediär anzusehen. Für drei der vier untersuchten Referenzarten war die größte Differenz in den δ¹⁵N-Werten der neuen Blättern zu finden. Eine Ausnahme bildete *Vismia guianensis*, die in neuen und alten Blättern die gleiche Differenz aufwies.

<table>
<thead>
<tr>
<th>Leguminosen</th>
<th>Referenzpflanzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Banara guianensis</td>
</tr>
<tr>
<td>neue Blätter</td>
<td></td>
</tr>
<tr>
<td>Abarema jupunba</td>
<td>1.0</td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td>0.7</td>
</tr>
<tr>
<td>Inga thibaudiana</td>
<td>0.9</td>
</tr>
<tr>
<td>Mittelwert, auf die Referenzarten bezogen</td>
<td>0.9</td>
</tr>
<tr>
<td>alte Blätter</td>
<td></td>
</tr>
<tr>
<td>Abarema jupunba</td>
<td>0.7</td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td>0.7</td>
</tr>
<tr>
<td>Inga thibaudiana</td>
<td>0.7</td>
</tr>
<tr>
<td>Mittelwert, auf die Referenzarten bezogen</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Die einzelnen Kriterien zur Auswahl der die Boden-N-Quelle repräsentierenden Blattposition haben also folgendes ergeben: Die alten und neuen Blätter unterschieden sich in allen Arten außer auf einigen Standorten in *Tapirira guianensis* und *Banara guianensis* signifikant von einander und standen in einem positiven Zusammenhang. Die alten Blätter wiesen mindestens eine ½ δ¹⁵N-Einheit niedrigere Werte auf. Die Varianz als Maß für die Streuung ist in den neuen Blättern geringfügig niedriger. Ebenso fanden sich in den neuen Blättern die größeren Differenzen zwischen Leguminosen und Referenzen. Somit kann man davon ausgehen,
daß die neuen Blätter zuverlässigere bzw. sensiblere Ergebnisse für die Bestimmung des %Ndfa liefern als die alten Blätter.

4.2 Räumliche Variabilität

Es stellte sich daher die Frage, ob diese Leguminosen überhaupt N₂ fixieren, da sie doch innerhalb der δ¹⁵N-Spanne aller anderen untersuchten Arten lagen. Eine für die ¹⁵NNAM geeignete Referenzpflanze sollte eine möglichst große Wertedifferenz zu den δ¹⁵N-Werten der Leguminose zeigen und gleichzeitig aus der gleichen Boden-N-Quelle schöpfen (Kohl et al., 1980). Da diese Wertedifferenz in der Vegetation der Bragantina-Region offensichtlich nicht sehr groß ausfallen würde, mußten Referenzpflanzen gesucht werden, die eine möglichst kleine innerartliche Streuung zeigten.

Mit einer vergleichenden Beprobung einer Primärvegetation (Peixe Boi), die noch nicht gebrannt wurde, sollte überprüft werden, ob die vorgefundenen δ¹⁵N-Werte der Sekundärvegetation eventuell mit der Brandrodung in Zusammenhang standen.

4.2.1 Igarapé Açu

Zur näheren Untersuchung der Streuung der δ¹⁵N-Werte in der Vegetation wurden 3 Leguminosen (Abarema jupunba, Inga thibaudiana, Inga heterophylla) und 4 Nichtleguminosen (Banara guianensis, Lacistema pubescens, Tapirira guianensis, Vismia guianensis), die sehr häufig in der Brachevegetation vorkamen, ausgewählt. Es wurde die innerartliche Variabilität auf einzelnen Flächen und zwischen verschiedenen Flächen sowie die Unterschiede zwischen den einzelnen Arten betrachtet (für die δ¹⁵N-Werte und N-Gehalte der einzelnen Arten auf den unterschiedlichen Flächen siehe im Anhang Abb. 42, Tab. 63 und 64 sowie die ANOVA-Ergebnisse in Tab. 65).
Standortabhängigkeit

Die δ¹⁵N-Werte der neuen Blätter aller untersuchten Arten lagen in einem Bereich von -4 bis +4 (Abb. 22). Damit lagen sie im Wesentlichen niedriger als der δ¹⁵N-Wert des N₉tot. Bodens (Abb. 17). Die δ¹⁵N-Werte der Leguminosen *Abarema jupunba* und *Inga thibaudiana* zeigten keine hohe standortabhängige Streuung und variierten auch innerhalb der einzelnen Flächen kaum. Die δ¹⁵N-Werte der neuen Blätter lagen für *Abarema jupunba* insgesamt zwischen -0.67 und -0.16, für *Inga thibaudiana* zwischen -0.40 und +0.11. Die dritte Leguminose *Inga heterophylla* hatte auf den Flächen S2 und S3 mehr als 1 δ¹⁵N-Einheit höhere Werte als auf den anderen Flächen (circa -0.5 gegenüber +1.05) und wies auch insgesamt eine höhere Standardabweichung als die beiden anderen Leguminosen auf.

Die δ¹⁵N-Werte aller 4 Nichtleguminosen streuten sowohl innerhalb als auch zwischen den Flächen stärker als die Leguminosen. Auf Fläche S2 wurden bei allen Arten die höchsten, auf Fläche S1 die niedrigsten δ¹⁵N-Werte mit Ausnahme von *Tapirira guianensis* gefunden. Die standortabhängigen Unterschiede waren in *Vismia guianensis* am deutlichsten und in *Lacistema pubescens* am wenigsten ausgeprägt. Die δ¹⁵N-Werte der Fläche S2 unterschieden sich

Abb. 22: δ¹⁵N in den neuen Blättern von 7 Arten in Sekundärvegetationen gleichen Alters (aj = *Abarema jupunba*, it = *Inga thibaudiana*, ih = *Inga heterophylla*, bg = *Banara guianensis*, lp = *Lacistema pubescens*, tg = *Tapirira guianensis*, vg = *Vismia guianensis*, Balken geben ± an.)
in *Vismia guianensis* sogar um fast 4 δ¹⁵N-Einheiten (circa -2.0 gegenüber +1.6). Aus dieser Beprobung geht *Tapirira guianensis* als eine Art mit durchgehend negativen δ¹⁵N-Werten (Gesamtmittel=-2.11 ±1.12), *Lacistema pubescens* mit weitgehend positiven Werten (+1.70 ±0.97) hervor. *Vismia guianensis* (-0.26 ±1.88) hatte auf den Flächen S6, S1 und S5 ebenfalls stark negative Werte, auf der Fläche S4 jedoch positive, wodurch sie die größte Wertespanne umfaßte. Die Werte von *Banara guianensis* streuten zum Teil innerhalb einzelner Flächen am stärksten. Ihre δ¹⁵N-Werte lagen zwischen +2 und -2 mit einem Durchschnittswert von -0.8 (±1.19).

Gruppierung der Arten aufgrund ihrer räumlichen δ¹⁵N-Schwankungen

Um die Arten nach ihrem δ¹⁵N-Muster einzuordnen und voneinander abzugrenzen wurde eine Clusteranalyse nach dem Ward’schen Algorithmus mit der Euklid’schen Distanz als Distanzmaß durchgeführt (Abb. 23).

Inga heterophylla nahm sowohl in der standortabhängigen Streuung als auch in der Clusteranalyse eine Mittelposition ein. Möglicherweise ist auch diese Art N₂-fixierend, jedoch nicht in dem Ausmaß wie die beiden anderen Leguminosen.
Abb. 23: Dendrogramm der Clusteranalyse nach Ward (Euclid’sche Distanz) anhand der δ^{15}N-Werte junger und alter Blätter von 7 Arten auf 6 verschiedenen Flächen.

Vismia guianensis und Tapirira guianensis kommen als einzige als Referenzpflanzen in Frage. Sie wurden von der Clusteranalyse als erstes und damit am deutlichsten von den Leguminosen getrennt. Tapirira guianensis hatte konstant negative δ^{15}N-Werte und damit die größte Differenz zu den Leguminosen, Vismia guianensis auf drei der Flächen ebenso.

Folgende Gruppenaufteilung erschien daher sinnvoll:

<table>
<thead>
<tr>
<th>A</th>
<th>Abarema jupunba Inga thibaudiana</th>
<th>Stärker fixierende Leguminosen</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Vismia guianensis Tapirira guianensis</td>
<td>Nicht-fixierende Arten mit deutlich von den Leguminosen abgegrenzten δ^{15}N-Werten, potentielle Referenzpflanzen</td>
</tr>
<tr>
<td>C</td>
<td>Inga heterophylla Lacistema pubescens Banara guianensis</td>
<td>Arten mit δ^{15}N-Werten im Bereich der Leguminosen oder konstant positivem δ^{15}N</td>
</tr>
</tbody>
</table>

4.2.2 Peixe Boi

Um einen Eindruck vom Einfluß der Brandrodung auf das 15N-Vorkommen der Bragantina-Region zu gewinnen, wurden ein noch nie anthropogen gebrannter Primärwald und zum Vergleich dazu in direkter Nachbarschaft eine alte Brachevegetation (15-25 Jahre), in üblicher Weise durch Brandrodung bewirtschaftet, untersucht (Abb. 24).
Die Artenzusammensetzung in der Vegetation der Flächen in Peixe Boi war von der in Igarapé Açú sehr verschieden, so daß nur wenige übereinstimmende Spezies zur Verfügung standen. Deutlich wurde dennoch, daß Arten aus verschiedensten Familien inklusive der Leguminosen im Primärwald deutlich höhere Blatt-δ^{15}N-Werte aufwiesen als in der benachbarten Sekundärvegetation oder der jungen Sekundärvegetation in Igarapé Açú (Abb. 24, Tab. 66 im Anhang, vergl. Abb. 22). Sämtliche Blatt-δ^{15}N-Wert von Primärwald-Arten bewegten sich im Bereich über δ^{15}N = +4, während die Sekundärwald-Arten über eine Spanne von -2 bis +7 zu finden waren. In der alten Sekundärvegetation hatte *Tapirira guianensis* Werte zwischen +2 und -2, im Primärwald jedoch zwischen +4 und +6. Das gleiche wurde für *Cordia exaltata* und *Inga thibaudiana* beobachtet. Während die Nichtleguminose *Tapirira guianensis* in der alten Sekundärvegetation gleiche δ^{15}N-Werte wie in der jungen Sekundärvegetation aus Igarapé Açú hatte, lag die Leguminose *Inga thibaudiana* im Primärwald mit durchschnittlich +5 extrem hoch. Möglicherweise fixiert diese Leguminose im Primärwald keinen Stickstoff. In der alten Sekundärvegetation waren für diese Leguminose sowohl positive als auch negative δ^{15}N-Werte zu verzeichnen (+6 bzw. -1). Für *Lacistema pubescens* wurde in der alten Sekundärvegetation ein δ^{15}N-Wert von +2.5 gefunden, der den in der jungen Sekundärvegetation gefundenen Werten entsprach. Gleiches gilt für *Banara guianensis*. Interessant ist der δ^{15}N-Wert der in der Grafik nicht eingetragenen *Lacistema pubescens*- Keimlinge von +0.91 (Tab. 66). Der Keimling spiegelt den δ^{15}N-Wert des real verfügbaren N$_{min}$ der
obersten Bodenschicht und Streuauflage entsprechend seiner Durchwurzelungstiefe wider, denn diese Pflänzchen wurden inklusive Wurzeln homogenisiert. Somit verlieren durch Diskriminierung entstandene Verschiebungen der $^{15}\text{N}/^{14}\text{N}$-Zusammensetzung innerhalb der Pflanze ihre Bedeutung. Die im Vergleich zu Bäumen geringere Durchwurzelungstiefe der Kräuter Bagassa guianensis, Memora allamandiflora, Selaginella stellaria, Sterculia pruriens und der Melastomataceae scheint sich auch in deren $\delta^{15}\text{N}$-Werten widerzuspiegeln, denn für diese Pflanzengruppe waren die $\delta^{15}\text{N}$-Werte wie für die Keimlinge durchgehend positiv.

Die N-Gehalte der Blätter waren im Durchschnitt in der Vegetation von Peixe Boi höher als in der Sekundärvegetation der Umgebung von Igarapé Açu.

4.3 Temporäre Variabilität

Im untersuchten Vegetationstyp der Bragantina-Region waren saisonale Schwankungen der $\delta^{15}\text{N}$-Werte mit der regenreichen bzw. trockeneren Jahreszeit zu erwarten (Luizão et al., 1992; Marrs et al., 1991). Vergleiche der saisonalen $\delta^{15}\text{N}$-Muster der einzelnen Arten können daher eine weitere Entscheidungshilfe für die Eignung der Arten als Referenzen an die Hand geben, da sie auf den Zugriff der gleichen N-Quelle hinweisen.

Über ein Jahr wurden daher sowohl Leguminosen als auch im 5m-Umfeld von ihnen Nichtleguminosen beprobt, wobei neue und alte Blätter (auch als Blattposition bezeichnet) immer wieder von denselben Individuen geerntet wurden.

Mit dieser Beprobung sollten Informationen über den Zeitpunkt des höchsten N-Gehaltes in den Blättern, $\delta^{15}\text{N}$-Unterschiede und parallele ^{15}N-Muster mit der Jahreszeit von Leguminosen und Nichtleguminosen als ein Kriterium zur Auswahl weiterer Referenzpflanzen, und dem Zeitpunkt der größten $\delta^{15}\text{N}$-Differenz zwischen Leguminosen und Referenzen gewonnen werden.

4.3.1 Generelle Tendenzen

Um den besten Beprobungsmonat auszuwählen, wurde nach einer generellen Tendenz der $\delta^{15}\text{N}$-Werte und N-Gehalte im Jahresverlauf gesucht. In Abb. 25 sind die $\delta^{15}\text{N}$-Werte, gemittelt über alle Arten, zu den 7 ausgewerteten Beprobungszeitpunkten für die neuen und alten Blätter dargestellt.
Generell unterschieden sich die Blattpositionen nur in ihren N-Gehalten deutlich, nicht aber in ihren δ¹⁵N-Werten (ANOVA siehe Tab. 67 im Anhang). Der LSD je Probezeitpunkt ist so groß, daß bestehende Unterschiede zwischen neuen und alten Blättern nicht als signifikant nachgewiesen werden konnten. Die neuen Blätter lagen in ihren Werten wiederum konstant über denen der alten Blätter (vgl. Kap. VI.4.1).

Es kann also festgehalten werden, daß mit Einsetzen der Regenzeit generell eine höhere N-Konzentration in den Blättern der Vegetation vorlag, die zu der leichten, nicht signifikanten Absenkung der δ¹⁵N-Werte geführt haben könnte.

Abb. 25: δ¹⁵N-Werte und N-Gehalte der Blattpositionen zu den unterschiedlichen Probezeitpunkten (● neue Blätter, ○ alte Blätter)
4.3.2 Unterschiede im zeitlichen δ^{15}N-Muster der Arten

Der Vergleich der δ^{15}N-Werte der einzelnen Arten im Jahresgang ergab aufgrund der geringen δ^{15}N-Distanzen zueinander und der sehr hohen Streuung nur einen schwachen Anhaltspunkt (Abb. 26). Es lassen sich daher allenfalls Tendenzen erkennen.

Die zeitliche Amplitude der Schwankungen war für die Leguminosen geringer als für die Nicht-N$_2$-Fixierer.

Da für die $\%$Ndfa-Berechnung die neuen Blätter herangezogen werden, wurde das Hauptaugenmerk auf die Entwicklung der Isotopenverhältnisse dieser Blätter gelegt. Der Januar'93 hob sich bei allen Leguminosen und einigen Referenzen durch eine markante Erhöhung des δ^{15}N-Wertes in den neuen Blättern hervor. In den Monaten April und Juli fanden sich in 6 von 10 Arten die höchsten δ^{15}N-Werte, die niedrigsten δ^{15}N-Werte in Januar und Februar. Bedeutende Schwankungen in allen Arten traten in den Monaten Dezember bis April ein, also mit Einsetzen der regenreichen Zeit und ihrem Fortschreiten.

Ledgard et al. (1985) wiesen einen Fehler in der $\%$Ndfa-Berechnung nach, der aufgrund zeitlich versetzter Assimilationsoptima von *Trifolium subterraneum* und seinen Referenzgräsern entstand. Sie gingen davon aus, daß eine ähnliche Entwicklung des δ^{15}N im Jahresgang gleiche Assimilationsraten und die gleiche N-Quelle signalisieren. *Banara guianensis* ist eine Art,
Abb. 26: δ^{15}N in den Blättern von Leguminosen (Abarema jupunba, Inga thibaudiana, Inga heterophylla) und Nichtleguminosen im Jahresverlauf. Die eingezeichneten Balken geben den LSD für $p \leq 0.05$ an, RZ = Beginn der Regenzeit, TZ = Beginn der Trockenzeit (● = neue Blätter, o = alte Blätter)
die während der trockenen Zeit ihre Blätter fast vollständig abwirft. Der mit der beginnenden Regenzeit neue Aufbau der Blattmasse wirkt sich so über die Mobilisierung von Speichermstoffen auf die Entwicklung ihres δ^{15}N-Wertes in den Monaten Januar und Februar aus. Daher wurde *Banara guianensis* als Referenz für die %Ndfa-Bestimmung ausgeschlossen.

Nichtleguminosen, die die gleiche, aber extremere Reaktion auf das Einsetzen der Regenzeit (Januar) zeigten wie die N$_2$-Fixierer, lassen die Ausschöpfung der gleichen Boden-N-Quelle wie die Leguminosen vermuten. Daher wurde für *Tapiirira guianensis*, *Mabea angustifolia*, und *Myrcia sylvatica* die gleiche N-Quelle wie für N$_2$-Fixierer angenommen. Aufgrund des sehr inhomogenen Datensatzes können an dieser Stelle aber nur wenig fundierte Aussagen getroffen werden. Zum einen fehlen die Datenanalysen der Monate März, Mai, Juni, August und September, die Tendenzen wie die Erhöhung der δ^{15}N-Werte in der regenreichen Zeit bestätigen könnten, zum anderen müßte der sprunghafte Anstieg der Werte zu Beginn der Regenzeit durch weitere Untersuchungen belegt werden.

In Abb. 27 sind als „Negativbeispiel“ zwei Arten dargestellt, die als Referenzpflanzen aufgrund ihrer enormen Streuung ungeeignet wären. Die Berechnung des %Ndfa mit diesen δ^{15}N-Werten ist problematisch, denn ihre δ^{15}N-Werte würden mal oberhalb und mal unterhalb des δ^{15}N der Leguminosen liegen (vgl. Kap. VI.6). Da die Referenzpflanze jedoch den δ^{15}N-Wert einer Leguminose repräsentieren soll, wenn diese nicht fixiert, wären %Ndfa-Zahlen über 100% bzw. unter 0% zu erwarten.

![Diagramm](image)

Abb. 27: δ^{15}N im Jahresverlauf der neuen Blätter von Nectandra cuspidata und Lecythis lurida
4.3.3 Pflanzengruppierung anhand zeitlicher Strukturen

4.3.3.1 Clusteranalyse

Abb. 28: a) Cluster Analyse der monatlichen δ¹⁵N-Werte nach Ward mit dem Minimal-Varianz-Algorithmus und der Euclid’schen Distanz als Ähnlichkeitsmaß und b) δ¹⁵N in Abhängigkeit vom N-Gehalt der in der Clusteranalyse ausgewiesenen Gruppen (Balken gibt die LSD für p≤0.05 an) (Aj = Abarema jupunba, Ih = Inga heterophylla, It = Inga thibaudiana, Bg = Banara guianensis, Lp = Lacistema pubescens, Ca = Casearia arborea, Ll = Lecythis lurida, Vg = Vismia guianensis, Tg = Tapirira guianensis, Ma = Mabea angustifolia, Ms = Myrcia sylvatica, Nc = Nectandra cuspidata).
4.3.3.2 Differenzen zwischen Referenzpflanzen und Leguminosen

Die Auswahl einer Referenzpflanze erfolgte auch anhand ihrer δ¹⁵N-Differenz zu der untersuchten Leguminose. Je größer die Streuung der einzelnen Arten ist, desto größer müssen die δ¹⁵N-Differenzen zwischen den Leguminosen und Referenzpflanzen sein. Bei einer s von ±0.4 muß eine Differenz von δ¹⁵N = 4 vorliegen, um nur einen 10%igen Fehler zu erreichen. Da in der Bragantina-Region mit einer durchschnittlichen Wertedifferenz von 1.5 und einer maximalen Differenz von 2.1 δ¹⁵N-Einheiten gerechnet werden muß (vergl. Tab. 42 und Abb. 22), sollte also die Streuung und die größtmögliche Differenz zwischen Leguminosen und potentiellen Referenzpflanzen die entscheidenden Auswahlkriterien für die Bestimmung des Probenahmetermins sein. In Abb. 29 sind die saisonalen Veränderungen des δ¹⁵N-Wertes und ihr Standardfehler (σ) dargestellt (siehe auch im Anhang Abb. 43, in der zusätzlich als Maß der Streuung die Varianz der δ¹⁵N-Werte und N-Gehalte für die einzelnen Arten in Abhängigkeit von der Jahreszeit dargestellt sind).

Allgemein traten die höchsten Schwankungen der δ¹⁵N-Werte der trockenen Jahreszeit im November und Juli, die geringsten im Oktober und Dezember auf. Die Monate der Regenzeit unterschieden sich nicht eindeutig. Im Januar war aufgrund der einsetzenden Regenzeit eine etwas höhere Variabilität zu verzeichnen als in den Monaten Februar und April. Monate, in denen die Streuung der N-Gehalte ebenfalls geringer ausfiel, deuten auf eine gleichmäßige N-Verfügbarkeit auf den verschiedenen Flächen hin (Abb. 42 im Anhang). In der Regenzeit wäre dies der Monat April, in der Trockenzeit der Monat Oktober.

Die größten δ¹⁵N-Differenzen zwischen Leguminosen und Nichtleguminosen für die trocknere Zeit waren im Oktober zu lokalisieren. Für die Regenzeit war die Differenz zu den drei untersuchten Leguminosen unterschiedlich. Anhand von Durchschnittswerten für die Leguminosen konnte hier keine Unterscheidung gemacht werden. Der April war jedoch der regenreichste Monat, so daß davon ausgegangen werden kann, hier auch den Zeitpunkt der höchsten Biomasseproduktion zu finden - dem Argument von Pate et al. (1994) für die Auswahl des Beprobungszeitpunktes.

Anhand der Analyse der Meßzeitpunkte und der Clusteranalyse aufgrund zeitlicher Strukturen stellten sich die Arten Tapirira guianensis, Vismia guianensis sowie Mabea angustifolia und mit Einschränkungen Myrcia sylvatica als geeignete Referenzpflanzen dar. Sie wiesen eine ausreichende Differenz in ihren δ¹⁵N-Werten zu den Leguminosen auf und schienen ih-

Abb. 29: Saisonale Veränderungen des δ^{15}N-Wertes in den Blättern der Leguminosen im Vergleich zum δ^{15}N-Mittelwert der δ^{15}N-negativen Referenzpflanzen (Balken geben σ wieder)
4.3.4 %N- und δ¹⁵N- Unterschiede zwischen den Arten

Abb. 30: δ¹⁵N und N-Gehalte der untersuchten Arten (30<n<220), Buchstaben geben gleiche Ränge nach Scheffé an.
5 Verteilung von 15N in den Pflanzen

Die nicht fixierenden Referenzpflanzen sollen den δ15N-Wert der N-Quelle des Bodens widerspiegeln. Kennt man den β-Faktor, der die Veränderung der 15N/14N-Zusammensetzung während des Weges des Stickstoffs aus dem Substrat in die Pflanzenorgane mit Hilfe eines definierten Gewächshausversuches beschreibt, so kann mit dieser Art über ihr Blatt-δ15N im Feld auf das pflanzenverfügbare N ihrer N-Quelle geschlossen werden.

Mit Hilfe eines solchen Gewächshausversuches kann auch überprüft werden, ob die neuen Blätter tatsächlich den δ15N-Wert des Stickstoffs der Gesamtpflanze reflektieren. Im Feld ist die Bestimmung des δ15N-Wertes eines Gesamtpflanzen nicht möglich, da die Wurzeln nicht in die Analysen einbezogen werden können. Sanginga et al. (1995) schätzten 50% oder mehr des fixierten Stickstoffs von Baumleguminosen in der unterirdischen Biomasse. Dies könnte sich auch auf den δ15N-Wert der Blätter auswirken.

Zur Bestimmung des δ15N-Wertes von A-Pflanzen, dem Vergleich der δ15N-Muster in einer Referenzpflanze und einer Leguminose, und dem β-Faktor des Weges des Stickstoffs von der Aufnahme bis zum Blatt einer Referenzpflanze wurde daher folgender Versuch angelegt:

Im Gewächshaus wurden Pflanzen von *Abarema cochleatum* und *Abarema jupunba* auf N-freiem Medium (hier: Sand) über einen Zeitraum von 15 bzw. 20 Monate kultiviert. Parallel dazu wurden *Tapirira guianensis* und *Abarema jupunba* in einer Nährlösung mit NO$_3^-$ des δ15N-Wertes -1.8 und auf Feldboden (die obersten 20cm einer Brachefläche) kultiviert. Alle 2 bis 3 Monate wurden 3 Pflanzen geerntet, in die Kompartimente neue Blätter, alte Blätter, Holz, Rinde, Wurzeln und Knöllchen zerlegt und die Biomasse, den N-Gehalt und δ15N bestimmt.

5.1 A-Pflanzen

Nach einer Wachstumsperiode von 12 bzw. 10 Monaten hatte sich eine klare Aufteilung von \(^{15}\)N zwischen den Pflanzenorganen der A-Pflanzen *Abarema jupunba* und *Abarema cochleatum* entwickelt (Abb. 31). Die beiden Arten zeigten in allen Organen ähnliche \(\delta^{15}\)N-Werte. Die niedrigsten \(\delta^{15}\)N-Werte wurden im Holz (-1.94 für *Abarema jupunba*) und in der Rinde (-1.25 für *Abarema jupunba*), die höchsten in den Knöllchen gefunden (+5.09 für *Abarema jupunba*).

Unter Berücksichtigung der tatsächlich akkumulierten Stickstoffmenge der jeweiligen Kompartimente wurde der \(\delta^{15}\)N-Wert der Gesamtpflanze ermittelt. Er betrug für *Abarema jupunba* -0.2, für *Abarema cochleatum* -0.04, entsprechend dem \(\delta^{15}\)N-Wert des Luftstickstoffs. Dem \(\delta^{15}\)N-Wert der Gesamtpflanze kamen die Werte der Wurzeln sowie der alten und neuen Blätter am nächsten. Die Knöllchen unterschieden sich um circa 5 \(\delta^{15}\)N-Einheiten vom Gesamtwert der Pflanzen.
VI. Ergebnisse - 106 -

4.0
-4.0
-2.0
0.0
2.0
4.0
6.0

\[\delta^{15}N \]

neue Blätter
alte Blätter
Streu
Holz
Rinde
Wurzel
Knöllchen
Gesamt

Abarema jupunba
Abarema cochleatum

Abb. 31: \(\delta^{15}N \) in den einzelnen Pflanzenorganen und der Gesamtpflanze von Abarema jupunba und Abarema cochleatum nach 10- bzw. 12-monatigem Wachstum in einer Sandkultur ohne N-Düngung (n<=3)

Für die Berechnung des \%Ndfa von Feldleguminosen wurde der Mittelwert des \(\delta^{15}N \)-Wertes der neuen Blättern von Abarema jupunba und Abarema cochleatum herangezogen: +0.42

5.2 \(^{15}N \)-Muster in den Pflanzenorganen

Mit den \(\delta^{15}N \)-Werten der neuen Blätter und dem \(\delta^{15}N \)-Wert für die A-Pflanzen +0.42 wurde die Fixierungsrate für Abarema jupunba bestimmt. Sie betrug in der Sandkultur 45% (mit NO\(_3\), \(\delta^{15}N=-1.8 \)), im Feldboden nur 19% (oberste 20cm eines Bodens aus dem Projektgebiet, \(\delta^{15}N=+3.8 \pm 1.3 \)). Die Hälfte des Stickstoffes nahm Abarema jupunba also aus der Nährösung, was sich in den negativen \(\delta^{15}N \)-Werten von Wurzeln und Blättern manifestierte (Abb. 32). Allerdings ergab die Berechnung des \(\delta^{15}N \)-Wertes der Gesamtpflanze keinen Unterschied zum \(\delta^{15}N \)-Wert der A-Pflanze, womit die Unsicherheiten dieser Ergebnisse dokumentiert werden.

In den auf dem Feldboden gewachsenen Pflanzen wurden nur positive \(\delta^{15}N \)-Werte gefunden. In beiden Substraten wies Tapirira guianensis in den einzelnen Organen die gleiche Tendenz auf wie Abarema jupunba, in der Nährösung um 0.5 bis 1.5 \(\delta^{15}N \)-Einheiten zum negativen, auf dem Feldboden jedoch um 0.5 bis 2 \(\delta^{15}N \)-Einheiten zum positiven hin verschoben. Durch die N\(_2\)-Fixierung der Leguminose paßten sich also in beiden Fällen die \(\delta^{15}N \)-Werte in Rich-
Ergebnisse - 107 -

tung δ^{15}N = 0 an. Wie von Shearer et al. (1983) für Prosopis glandulosa wurde auch für diese beiden Arten eine geringere 15N-Anreicherung in Holz und Rinde als in den Blättern gefunden. Ursache dafür sind die pflanzeninternen Stoffwechselprozesse, die den Stickstoff nach der Aufnahme und dem Transport in die jungen Blätter nur z.T. in stabile Strukturen in Holz und Rinde einbauen. Bei solchen Prozessen wird gegen 15N diskriminiert und auf diese Weise weniger 15N-beladene Moleküle in Holz und Rinde eingearbeitet.

![Diagram](image.png)

Abb. 32: δ^{15}N in den einzelnen Pflanzenorganen und der Gesamtpflanze von Abarema jupunba und Tapirira guianensis nach 10monatigem Wachstum auf Sand mit NO_3^--Düngung (δ^{15}N = -1.8) bzw. Feldboden (δ^{15}N = +4) ($n<=3$)

5.3 δ^{15}N des pflanzenverfügbaren Stickstoffs

Zur Beschreibung des Grades der Fraktionierung einer Reaktion bedient man sich des sog. β-Faktors, der vereinfacht als Quotient aus Substrat und Produkt beschrieben werden kann. Er wird nach einer Formel berechnet, die in Kap. V.4.1 angegeben ist.
Mit Hilfe der Kultivierung von *Tapirira guianensis* in einer Nährlösung mit einem definierten δ¹⁵N-Wert von -1.82 und der Analyse der δ¹⁵N-Werte der Gesamtpflanze war sowohl der δ¹⁵N-Wert der Gesamtpflanze (δ¹⁵N_{Produkt}) als auch der Nährlösung (δ¹⁵N_{Substrat}) mit den entsprechenden Atom%¹⁵N bekannt.

<table>
<thead>
<tr>
<th>Fläche</th>
<th>δ¹⁵N<sub>Blatt</sub></th>
<th>δ¹⁵N<sub>min</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>-3.11</td>
<td>-3.63</td>
</tr>
<tr>
<td>S2</td>
<td>-0.53</td>
<td>-1.05</td>
</tr>
<tr>
<td>S3</td>
<td>-1.43</td>
<td>-1.95</td>
</tr>
<tr>
<td>S4</td>
<td>-1.81</td>
<td>-2.33</td>
</tr>
<tr>
<td>S5</td>
<td>-1.59</td>
<td>-2.11</td>
</tr>
<tr>
<td>S6</td>
<td>-3.72</td>
<td>-4.24</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>-2.03</td>
<td>-2.55</td>
</tr>
</tbody>
</table>

6 %Ndaf der Leguminosen und die Präzision der Berechnung

Der Anteil fixierten Stickstoffs am Gesamt-N einer N₂-fixierenden Pflanze wird mit Hilfe des Vergleiches des δ¹⁵N-Wertes der Blätter von der zu untersuchenden Leguminose und einer
oder mehrerer nicht fixierender Referenzpflanzen bestimmt (Formel siehe Kap. V.4.1). In diesem Kapitel soll nun mit den bisher gewonnenen Erkenntnissen und Referenzpflanzen ausgerechnet werden, wieviel %N von den Leguminosen fixiert wurde (%Ndfa). Die Zuverlässigkeit dieser Berechnungen soll exemplarisch mit Hilfe der Daten des Monats Oktober überprüft werden (Tab. 44).

Tab. 44: δ^{15}N-Werte der neuen Blätter der Leguminosen und ihrer jeweiligen Referenzpflanzen im Oktober 1992, und dem Mittelwert aller für eine Leguminose zuständigen Referenzpflanzen (Gesamtreferenz) (Leg = Leguminose, Tg = Tapirira guianensis, Vg = Vismia guianensis, Ms = Myrcia sylvatica, Ma = Mabea angustifolia, Aj = Abarema jupunba, Ih = Inga heterophylla, It = Inga thibaudiana)

<table>
<thead>
<tr>
<th>δ^{15}N-Wert</th>
<th>Leg</th>
<th>Tg</th>
<th>Vg</th>
<th>Ms</th>
<th>Ma</th>
<th>Gesamt-Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aj1</td>
<td>-0.51</td>
<td>-</td>
<td>-4.40</td>
<td>-</td>
<td>-3.15</td>
<td>-3.78</td>
</tr>
<tr>
<td>Aj2</td>
<td>-0.44</td>
<td>-</td>
<td>-3.71</td>
<td>-2.15</td>
<td>-1.74</td>
<td>-2.53</td>
</tr>
<tr>
<td>Aj3</td>
<td>-0.36</td>
<td>-2.22</td>
<td>-2.74</td>
<td>-</td>
<td>-</td>
<td>-2.48</td>
</tr>
<tr>
<td>Ih 1</td>
<td>-1.62</td>
<td>-</td>
<td>-2.49</td>
<td>-1.20</td>
<td>-</td>
<td>-1.85</td>
</tr>
<tr>
<td>Ih 2</td>
<td>-1.10</td>
<td>-</td>
<td>-</td>
<td>-2.54</td>
<td>-</td>
<td>-2.54</td>
</tr>
<tr>
<td>Ih 3</td>
<td>-0.64</td>
<td>-2.64</td>
<td>-0.21</td>
<td>-</td>
<td>-</td>
<td>-1.43</td>
</tr>
<tr>
<td>Ih 4</td>
<td>-1.41</td>
<td>-4.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-4.84</td>
</tr>
<tr>
<td>Ih 5</td>
<td>-0.49</td>
<td>-</td>
<td>-</td>
<td>-1.84</td>
<td>-</td>
<td>-1.84</td>
</tr>
<tr>
<td>It 3</td>
<td>-0.95</td>
<td>-0.91</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.91</td>
</tr>
<tr>
<td>It 4</td>
<td>-0.53</td>
<td>-2.49</td>
<td>-1.04</td>
<td>-</td>
<td>-</td>
<td>-1.77</td>
</tr>
<tr>
<td>It 5</td>
<td>-0.74</td>
<td>-3.24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-3.24</td>
</tr>
<tr>
<td>It 6</td>
<td>-0.62</td>
<td>-2.72</td>
<td>-2.87</td>
<td>-</td>
<td>-</td>
<td>-2.80</td>
</tr>
</tbody>
</table>

Deutlich wird zunächst das Problem der Abundanz der Referenzpflanzen. Es war nicht möglich, auf allen Standorten die gleichen Arten zu finden. So mußte auf die Arten zurückgegriffen werden, die sich vor Ort befanden.

Die mit den einzelnen Arten berechneten %Ndfa-Werte wichen zum Teil stark von dem %Ndfa ab, der mit dem Mittelwert der vorgefundenen Referenzarten bestimmt wurde (Tab. 45) (die Umrandungen einzelner Felder in den Tab. 44 und Tab. 45 markieren die problematischen Daten). Dies traf hauptsächlich dann zu, wenn der δ^{15}N-Wert der Referenzpflanze über dem der Leguminose lag oder die Differenz zwischen Leguminose und Referenzpflanze nicht groß genug war (siehe z.B. Ih 1 oder 3 und It 3).
Tab. 45: %Ndfa der einzelnen Leguminosen in Abhängigkeit von der in die Berechnung mit einge-
gangenen Referenzpflanzen und die Abweichungen dieser Berechnungen vom Gesamtmittel (+0.42
wurde als Wert für die A-Pflanze eingesetzt)

<table>
<thead>
<tr>
<th></th>
<th>Leg</th>
<th>Tg</th>
<th>Vg</th>
<th>Ms</th>
<th>Ma</th>
<th>Gesamt- Referenz</th>
<th>Abweichungen vom %Ndfa, berechnet mit Gesamt-Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aj1</td>
<td>81</td>
<td>74</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>+3</td>
<td>-4</td>
</tr>
<tr>
<td>Aj2</td>
<td>80</td>
<td>67</td>
<td>61</td>
<td>71</td>
<td>71</td>
<td>+9</td>
<td>-4 -10</td>
</tr>
<tr>
<td>Aj3</td>
<td>71</td>
<td>76</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>-3</td>
<td>+2</td>
</tr>
<tr>
<td>Ih 1</td>
<td>30</td>
<td>-26</td>
<td>10</td>
<td>+20</td>
<td>-36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ih 2</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>+23</td>
<td>-113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ih 3</td>
<td>66</td>
<td>-70</td>
<td>43</td>
<td>+23</td>
<td>-113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ih 4</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>+11</td>
<td>-22</td>
</tr>
<tr>
<td>Ih 5</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>It 3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>It 4</td>
<td>68</td>
<td>35</td>
<td>57</td>
<td>69</td>
<td>69</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>It 5</td>
<td>69</td>
<td>69</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

In einigen Fällen, wie z.B. *Inga heterophylla* 1 und *Inga heterophylla* 3, kam es zu Abwei-
chungen vom %Ndfa (mit den gesamten Referenzpflanzen berechnet) bis zu 113%Ndfa. Die
Ursache dafür lag hier in der Art *Myrcia sylvatica*, deren δ¹⁵N-Werte an dieser Stelle zum Teil
über denen der Leguminose waren und so zu groben Unterschätzungen führten. Wurde der
%Ndfa mit *Vismia guianensis* als Referenzpflanze berechnet, lag der ermittelte Prozentsatz
circa 10% über dem %Ndfa, der unter Zuhilfenahme mehrerer Referenzpflanzen ermittelt
war. %Ndfa, unter Einbezug von *Mabea angustifolia* oder *Myrcia sylvatica* hingegen lagen
stets unter dem Durchschnittswert, mit *Tapirira guianensis* errechnete %Ndfa entsprachen
weitgehend dem %Ndfa der Gesamtreferenzen.

Eine Referenzpflanze soll den δ¹⁵N-Wert angeben, den die Leguminose hätte, wenn sie nicht
fixieren würde (Abb. 33). Je mehr sie fixiert, desto mehr nähert diese Leguminose sich dem
δ¹⁵N-Wert der A-Pflanze, um schließlich bei einer100%-igen Fixierungsleistung den δ¹⁵N der
A-Pflanze anzunehmen. Je größer die Differenz zwischen Leguminose und Referenzpflanze
ist, desto genauer ist die Berechnung. Ein Vergleich der berechneten Fixierungsleistungen mit
Hilfe von *Tapirira guianensis* oder *Myrcia sylvatica* verdeutlicht die Problematik: Schwan-
kungen z.B. um 0.2 δ¹⁵N-Einheiten führen im Falle von *Tapirira guianensis* zu einer Ände-
 rung von 7 %Ndfa, im Falle von *Myrcia sylvatica* jedoch zu 16 %Ndfa. Je höher die
N₂-Fixierungsleistung ist, desto ungenauer wird die Berechnung, denn die Differenz zwischen
Leguminose und Referenzpflanze wird geringer. Bei einer für diese Region ungefähren Standardabweichung von δ^{15}N = ±0.7 für Nicht-Fixierer und ±0.4 für N$_2$-Fixierer (siehe Tab. 63) und einer maximalen Wertedifferenz von 2.5 δ^{15}N-Einheiten kann man jedoch nicht weniger als 20% Fehlerquote erwarten.

Abb. 33: Zusammenhang der %Ndfa-Berechnung mit den δ^{15}N-Werten der in der Sekundärvegetation vorhandenen Referenzpflanzen (nach Unkovich et al., 1994; δ^{15}N$_A = \delta^{15}$N der A-Pflanze). Schraffuren stellen Hilfslinien zum Ablesen der Werte dar, Erläuterungen siehe Text.

Mit Hilfe der δ^{15}N-Werte von *Vismia guianensis*, *Tapirira guianensis*, *Myrcia sylvatica* und *Mabea angustifolia* wurden die monatlichen Fixierungsleistungen der Leguminosen *Abarema jupunba*, *Inga thibaudiana* und *Inga heterophylla* berechnet. Der Fehler der %Ndfa-Berechnung wurde mit Hilfe der von Shearer und Kohl (1988a) zitierten Formel für die Ermittlung von Fehlerfortsetzungen in Summen und Quotienten von Mittelwerten für die 7 Meßzeitpunkte und 3 Leguminosen jeweils mit und ohne Einbeziehung von *Myrcia sylvatica* ermittelt (Tab. 46).
Der bei Verwendung von *Myrcia sylvatica* erhöhte Fehler der %Ndfa-Berechnung schlägt sich in der Fehlerberechnung der Fixierungsleistung von *Inga heterophylla* und *Inga thibaudiana* deutlich nieder. Daher werden im Folgenden die Berechnungen ohne *Myrcia sylvatica* zitiert.

Tab. 46: N_2-Fixierungsleistung von 3 Leguminosen im Jahresverlauf. Die %Ndfa-Berechnung und ihr Fehler wurden nach Shearer und Kohl (1988) berechnet. Für die A-Pflanze wurde $\delta^{15} N = +0.42$ eingesetzt. n in Klammern gibt die Wiederholungszahl für die Referenzen ohne *Myrcia sylvatica* an.

<table>
<thead>
<tr>
<th>Monat</th>
<th>n*</th>
<th>$\delta^{15}N_{Leg}$</th>
<th>$\delta^{15}N_{Ref}$</th>
<th>%Ndfa</th>
<th>σ</th>
<th>$\delta^{15}N_{Ref}$</th>
<th>%Ndfa</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abarema jupunba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktober '92</td>
<td>3</td>
<td>-0.44</td>
<td>-2.93</td>
<td>74</td>
<td>±12</td>
<td>-2.99</td>
<td>75</td>
<td>±11</td>
</tr>
<tr>
<td>November '92</td>
<td>3</td>
<td>-0.42</td>
<td>-2.47</td>
<td>73</td>
<td>±17</td>
<td>-2.56</td>
<td>74</td>
<td>±16</td>
</tr>
<tr>
<td>Dezember '92</td>
<td>3</td>
<td>-0.62</td>
<td>-2.29</td>
<td>62</td>
<td>±14</td>
<td>-2.41</td>
<td>64</td>
<td>±13</td>
</tr>
<tr>
<td>Januar '93</td>
<td>3</td>
<td>-0.31</td>
<td>-2.15</td>
<td>71</td>
<td>±22</td>
<td>-2.12</td>
<td>71</td>
<td>±22</td>
</tr>
<tr>
<td>Februar '93</td>
<td>3</td>
<td>-1.35</td>
<td>-2.29</td>
<td>31</td>
<td>±18</td>
<td>-2.36</td>
<td>32</td>
<td>±17</td>
</tr>
<tr>
<td>April '93</td>
<td>3</td>
<td>-0.06</td>
<td>-1.68</td>
<td>74</td>
<td>±20</td>
<td>-1.66</td>
<td>74</td>
<td>±20</td>
</tr>
<tr>
<td>Juli '93</td>
<td>3</td>
<td>-0.27</td>
<td>-1.55</td>
<td>67</td>
<td>±21</td>
<td>-1.55</td>
<td>67</td>
<td>±21</td>
</tr>
<tr>
<td>Inga thibaudiana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktober '92</td>
<td>4</td>
<td>-0.71</td>
<td>-2.18</td>
<td>48</td>
<td>±20</td>
<td>-2.36</td>
<td>50</td>
<td>±18</td>
</tr>
<tr>
<td>November '92</td>
<td>4(3)</td>
<td>-0.55</td>
<td>-1.62</td>
<td>49</td>
<td>±22</td>
<td>-1.73</td>
<td>54</td>
<td>±22</td>
</tr>
<tr>
<td>Dezember '92</td>
<td>4(3)</td>
<td>-0.88</td>
<td>-1.97</td>
<td>26</td>
<td>±32</td>
<td>-2.40</td>
<td>42</td>
<td>±23</td>
</tr>
<tr>
<td>Januar '93</td>
<td>4(3)</td>
<td>-0.51</td>
<td>-0.83</td>
<td>27</td>
<td>±40</td>
<td>-0.88</td>
<td>41</td>
<td>±39</td>
</tr>
<tr>
<td>Februar '93</td>
<td>4(3)</td>
<td>-0.99</td>
<td>-1.81</td>
<td>26</td>
<td>±26</td>
<td>-2.08</td>
<td>39</td>
<td>±22</td>
</tr>
<tr>
<td>April '93</td>
<td>2(1)</td>
<td>-0.40</td>
<td>-0.75</td>
<td>25</td>
<td>±31</td>
<td>-1.28</td>
<td>68</td>
<td>-</td>
</tr>
<tr>
<td>Juli '93</td>
<td>2(1)</td>
<td>-0.46</td>
<td>-0.22</td>
<td>93</td>
<td>±268</td>
<td>-2.17</td>
<td>66</td>
<td>-</td>
</tr>
<tr>
<td>Inga heterophylla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktober '92</td>
<td>5(4)</td>
<td>-1.05</td>
<td>-2.50</td>
<td>46</td>
<td>±29</td>
<td>-3.13</td>
<td>53</td>
<td>±20</td>
</tr>
<tr>
<td>November '92</td>
<td>4(3)</td>
<td>-0.68</td>
<td>-2.15</td>
<td>42</td>
<td>±31</td>
<td>-2.61</td>
<td>48</td>
<td>±25</td>
</tr>
<tr>
<td>Dezember '92</td>
<td>4(3)</td>
<td>-1.05</td>
<td>-2.22</td>
<td>20</td>
<td>±33</td>
<td>-2.14</td>
<td>28</td>
<td>±26</td>
</tr>
<tr>
<td>Januar '93</td>
<td>4(3)</td>
<td>-0.16</td>
<td>-1.29</td>
<td>103</td>
<td>±43</td>
<td>-2.04</td>
<td>61</td>
<td>±23</td>
</tr>
<tr>
<td>Februar '93</td>
<td>5(4)</td>
<td>-1.09</td>
<td>-2.42</td>
<td>37</td>
<td>±27</td>
<td>-2.52</td>
<td>48</td>
<td>±15</td>
</tr>
<tr>
<td>April '93</td>
<td>4(4)</td>
<td>-0.66</td>
<td>-1.21</td>
<td>31</td>
<td>±45</td>
<td>-1.36</td>
<td>15</td>
<td>±38</td>
</tr>
<tr>
<td>Juli '93</td>
<td>5(4)</td>
<td>-0.81</td>
<td>-2.23</td>
<td>47</td>
<td>±23</td>
<td>-2.00</td>
<td>44</td>
<td>±25</td>
</tr>
</tbody>
</table>

* Anzahl beprobter Leguminosen, in Klammern Anzahl beprobter Leguminosen nach Ausschluß von *Myrcia sylvatica*

Alle Leguminosen fixierten einen erheblichen Teil des von ihnen aufgenommenen Stickstoffs. Die höchsten Raten waren für *Abarema jupunba* mit 32 bis 74% zu verzeichnen, *Inga heterophylla* bezogen zwischen 15% und 61%, *Inga thibaudiana* 39% bis 68% ihres Gesamt-N aus der Luft. Der Standardfehler für *Abarema jupunba* liegt bei ±11% bis ±22%, für *Inga thibaudiana* zwischen ±18% und 39% und für *Inga heterophylla* zwischen ±15% und ±38%.

Eine Abhängigkeit in der Fixierungsrate von der Jahreszeit war nicht zu erkennen.

7 Rolle der Biologischen N₂-Fixierung in der Bragantina-Region

7.1 Infektionspotential eines Capoeirabodens

In 4-8jährigen Sekundärvegetationen wurde die Anzahl Knöllchen an den Wurzeln von Baumleguminosen ermittelt, indem um den Stamm herum die Erde ausgehoben und gesiebt wurde. Im Umkreis von 150 cm um den Hauptstamm wurde die Erde bis auf teilweise 1m Tiefe auf Knöllchen abgesucht (Abb. 34).

Dabei wurde für die einzelnen Leguminosen unterschiedliche Knöllchenmengen gefunden. Allen gemeinsam war aber, daß in der organischen Auflage und den ersten 5cm des Bodens die meisten Knöllchen zu finden waren. In 20-40cm Bodentiefe entwickelten sich kaum noch Knöllchen. In dieser Vegetation mit der höchsten Wurzeldichte in den obersten 20cm war naturgemäß auch das höchste Rhizobium-Aufkommen im Oberboden zu finden.

![Diagramm](image-url)
wesentlich höhere Knöllchenzahl gegenüber den Baumleguminosen aus (eine organische Auflage war im Falle dieser Leguminose nicht vorhanden, da sie in einer sechsmonatigen Sekundärvegetation mit niedrigem Deckungsgrad wuchs).

Abb. 35: Wurzelsystem und Knöllchenaufkommen (als Punkte eingezeichnet) von *Abarema jupunba* in ½ jähriger Sekundärvegetation bis 40cm Bodentiefe (Aufsicht auf den Boden im Halbkreis um den Stamm der Leguminose herum, Kantenlänge der Flächenunteneinheiten = 50cm)
VI. Ergebnisse

Abb. 36: Wurzelsystem und Knöllchenvorkommen von *Abarema jupunba* (als Punkte eingezeichnet) in 6jähriger Sekundärvegetation bis 40cm Bodentiefe (Aufsicht auf den Boden im Halbkreis um den Stamm der Leguminose herum, Kantenlänge der Flächenuntereinheiten = 50cm)
Das Infektionspotential war in den ersten 50cm des Bodens mit 8.2 Knöllchen pro 100g Boden am stärksten (Abb. 37, Ergebnisse des Wilcoxon-Rang-Testes im Anhang in Tab. 69). Schon in Boden aus 1m Tiefe war das Rhizobium-Aufkommen signifikant halbiert. In Boden aus 3m Tiefe war es auf unter 1 Knöllchen/100g Boden reduziert. Ein sehr kleines Infektionspotential blieb jedoch auch in 6m Bodentiefe mit 0,9 Knöllchen/100g Boden bestehen. Trotz sorgfältiger Beprobung kann eine Kontamination während der Bodenbeprobung jedoch nicht ausgeschlossen werden, so daß zunächst nur von einem bemerkbaren *Rhizobium*-Vorkommen bis maximal 3m Bodentiefe ausgegangen werden kann.

Abb. 37: Infektionspotential (Knöllchen an *Vigna unguiculata* in 100g Boden) im Bodenprofil von Fläche M1S2

In diesem Feldboden waren also Rhizobien bis in circa 3m Bodentiefe vorhanden, die fähig waren, mit einer Fangpflanze (*Vigna unguiculata*) eine Symbiose zu bilden. Sowohl die Anzahl Knöllchen an den Bäumen im Feld als auch an *Vigna unguiculata* war jedoch nicht sehr hoch. Ob diese Symbiosen effektiv bzw. aktiv waren, kann an dieser Stelle nicht nachgewiesen werden. Wenn man die δ¹⁵N-Werte der Leguminosen, die häufig nahe δ¹⁵N = 0 waren, als
Maß für eine aktive BNF ansieht, so können das ‘Infektionspotential’ und die Anzahl Knöllchen an den Baumwurzeln als Bestätigung dieses Prozesses gelten.

7.2 BNF in den verschiedenen Sukzessionsstadien der Entwicklung eines Tropenwaldes

7.2.1 Beziehung von Baumgröße und Fixierungsleistung

Um eine Abschätzung der BNF einiger N$_2$-fixierender Baumleguminosen durchzuführen, wurde die Idee entwickelt, mit Hilfe von Regressionsanalysen der Biomasse, der akkumulierten N-Menge in den oberirdischen Pflanzenteilen, des %Ndfa und einem Maß für die Baumgröße dieser Art (hier πr^2, die Basalfläche) eine Berechnung des N-Inputs der Leguminosen pro Flächeneinheit zu versuchen. Dafür wurden verschiedene große Individuen einer Art auf ihre Biomasse, akkumulierter N-Menge, Größenverhältnisse und Fixierungsrationen (%Ndfa) untersucht. Für die Berechnung des %Ndfa wurde der mit dem Gesamt-N des jeweiligen Kompartiments gewichtete Mittelwert des δ^{15}N der jeweiligen Gesamtpflanze (oberirdische Pflanze) herangezogen. Mit diesen Daten wurden Funktionen erstellt, über die dann von der Basalfläche auf die Menge akkumulierten Stickstoffs in den oberirdischen Pflanzenteilen und die Fixierungsrate der Pflanze geschlossen werden konnte. Mit den Angaben zur Basalfläche und der Anzahl an Leguminosen eines Bestandes sollte dann auf die Menge fixierten Stickstoffs pro Flächeneinheit hochgerechnet werden.

Abarema jupunba ist eine häufig auftretende Art in der Sekundärvegetation, die für Untersuchungen der räumlichen und zeitlichen δ^{15}N-Strukturen, sowie Fraktionierungen innerhalb einer Pflanze und als A-Pflanze untersucht wurde. Daher wurden auch diese Daten für *Abarema jupunba* erhoben und stellvertretend für fixierende Baumleguminosen der Sekundärvegetation zu den folgenden Berechnungen herangezogen (Abb. 38).

Begrenzender Faktor dieser Methode lag in der 3. Funktion (Abb. 38, 3A, 3B). Für diese Funktion war der Datensatz nicht groß genug. Es fehlten vor allem Werte für die Bäume mit einer Basalfläche von 10-14cm2 und >50 cm2 (siehe auch Tab. 70 im Anhang). Hier bleibt offen, ob die BNF mit zunehmendem Alter der Bäume konstant bleibt (sigmoide Kurve, 3A) oder ab einer noch fraglichen Größe wieder abnehmende Tendenzen annimmt (polynomische Funktion, Abb. 38 3B).

nen herangezogen. Ihre Biomasseerhebungen geben die genaue Größenverteilung der Leguminosen in verschieden alten Brachen an (siehe Tab. 71). Je nach Anwendung der sigmoiden oder polynomialen Funktion für die Berechnung des %Ndfa steigerte sich der N-Input von 0 auf 21.2 bzw. 40.5 kg N ha\(^{-1}\) in den ersten 10 Jahren der Brache (Tab. 47). Bis zu einer Basalfläche von 10cm\(^2\) werden über die Funktion 3b wesentlich höhere N-Mengen als über Funktion 3a berechnet.

\[
\text{kg TM} = 0.012 + 0.0196 \times \text{Basalfläche} \\
\text{s(y,x)} = 0.143 \\
r = 0.9141 \\
df = 7 \\
p = 0.089\%
\]

\[
g N = \frac{(5.6336 \times \text{kg TM})}{(\text{kg TM} + 0.347)} \\
\text{s(y,x)} = 0.3947 \\
r = 0.96 \\
df = 7 \\
p = 0.016\%
\]

\[
%\text{Ndfa} = 96.6688/(1 + (14.0086/\text{Basalfläche})^{11.1445}) \\
\text{s(y,x)} = 6.2023 \\
r = 0.99 \\
df = 6 \\
p = 0.005\%
\]

\[
%\text{Ndfa} = -6.8903 + 5.3385 \times \text{Basalfläche} - 0.0341 \times (\text{Basalfläche})^2 - 0.0009 \times (\text{Basalfläche})^3 \\
\text{s(y,x)} = 11.9684 \\
r = 0.97 \\
df = 5 \\
p = 0.084\%
\]

Abb. 38: Kurvenanpassung an die Biomassedaten von 9 verschiedenen großen Individuen der *Abarema jupunba* und der jeweiligen Fixierungsleistung in Abhängigkeit von der Basalfläche
Für diese durch die kleinen Basalflächen repräsentierte anfängliche Wachstumsphase der Pflanzen ist es fraglich, ob die BNF erst ab einer bestimmten Pflanzengröße zugelassen wird oder aber sukzessive mit dem Wachstum zunimmt. Die hier beprobten Pflanzen wuchsen auf Böden, die durch P- und N-Mangel gekennzeichnet sind, die sich mit zunehmendem Alter des Bewuchses noch verstärken. In einem Düngerversuch einer neu wachsenden Sekundärvegetation zeigte Gehring (1997), daß das Wachstum von *Inga macrophylla* und *Abarema jupunba* lediglich durch Phosphor limitiert war. So erscheint eine BNF der hier untersuchten Jungpflanzen eher durch den permant vorhandenen P-Mangel als durch pflanzeninterne Regulationsmechanismen beeinflußt zu sein, die einen abrupten Anstieg der BNF verursachen könnten. Berechnungen der N$_2$-Fixierungsleistung mit Hilfe der polynomialen Funktion 3b sind daher für kleine Basalflächen wahrscheinlicher.

Die ermittelten Stickstoffmengen beziehen sich auf den bis zum Zeitpunkt der Messung akkumulierten Stickstoff. In Jahresraten ausgedrückt bedeutet der maximale Wert von 40.5 kg N ha$^{-1}$ jedoch nur einen N-Input von 4.05 kg N ha$^{-1}$ Jahr$^{-1}$, bei 24.1 kg N ha$^{-1}$ Jahr$^{-1}$ sogar nur 2.4 kg N ha$^{-1}$ Jahr$^{-1}$ (arithmet. Mittel).

Tab. 47: N-Akkumulation (kg N ha$^{-1}$) der Baumleguminosen (Subfamilie Mimosoideae und Papilionoideae) über ihre BNF in verschiedenen alten Sekundärvegetationen der Bragantina-Region. Zugrunde gelegt wurden Biomasseerhebungen und δ^{15}N-Analysen von *Abarema jupunba*, stellvertretend für die Baumleguminosen, und Biomassedaten von Jorge (1993) und Nunez (1995) für drei verschieden alte Flächen.

<table>
<thead>
<tr>
<th>Alter der Sekundärvegetation (Jahre)</th>
<th>1+2+3a</th>
<th>1+2+3b</th>
<th>Streuauflage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Jorge)</td>
<td>0.0</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>7 (Nunez)</td>
<td>8.5</td>
<td>23.2</td>
<td>1.0</td>
</tr>
<tr>
<td>10 (Nunez)</td>
<td>24.1</td>
<td>40.5</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Zu dieser N-Akkumulation muß der fixierte Stickstoff in der Streuauflage der Vegetationen addiert werden. Mit den Stickstoffreserven in der Streuauflage, dem prozentualen Anteil der Leguminosen an der oberirdischen Biomasse und der Voraussetzung der gleichen Größenverteilung in den von Nunez (1995) untersuchten Vegetationen beträgt der Anteil fixierten Stickstoff in der Streu 0.01 kg N ha$^{-1}$ der 1jährigen, 1 kg N ha$^{-1}$ der 7jährigen und 6.6 kg N ha$^{-1}$ der 10jährigen Sekundärvegetation.

Über Funktion 3b wurde für Pflanzen mit einer Basalfläche $>59 cm^2$ (sie kommt ab einem Vegetationsalter von 3-4 Jahren vor) keine N$_2$-Fixierung mehr berechnet. Wäre diese Funktion die maßgebende, so würden Vegetationen mit Bäumen hauptsächlich größeren Durchmessers
den Unterwuchs nicht mitrechnend - keinen oder nur einen sehr geringen N-Input über BNF erbringen, denn die Anzahl fixierender kleinerer Bäume nähme mit der Anzahl größerer nicht fixierender Bäume ab. Dies zögte als logische Konsequenz nach sich, daß die Sekundärvegetation mit zunehmendem Alter aufgrund der Zusammensetzung mit den verschiedenen Baumgrößen, also dem Alter der Bäume, nicht mehr N\textsubscript{2} fixierten.

Geht man jedoch davon aus, daß dies nicht der Fall ist, und die N\textsubscript{2}-Fixierung nicht über den Alterungsprozeß der Bäume sondern über systeminterne Regulationsmechanismen wie Konkurrenzkfaktoren, Beschattung, Allelopathie etc. gesteuert wird, muß mit der sigmoiden Funktion zur Ermittlung des Stickstoff-Inputs weitergearbeitet werden.

7.2.2 N-Akkumulation über BNF in verschieden alten Sekundärvegetationen und Primärwäldern

Die Daten der Vegetationen in der Umgebung von Igarapé Açú und Peixe Boi und der Rio Negro Region zeigten eine N-Akkumulation über die BNF, die mit den verschiedenen Sukzessionsstadien variierte (Abb. 39).

In der Bragantina-Region akkumulierten der biologisch fixierte Stickstoff bis zu einem Vegetationsalter von 10 Jahren auf 24 bis 40kg N ha-1, während eine gleich alte Vegetation in der Rio Negro-Region nur knapp 8kg N ha-1 fixierte. In Vegetationen mit einem Alter über 20
Jahren nahm die fixierte Stickstoffmenge sukzessive mit dem Alter ab. Mit Erreichen des Vegetationsaltes von 40 Jahren wurden nur noch 5 kg N ha\(^{-1}\) aus der BNF berechnet.

7.2.3 Vergleich der δ^{15}N-Werte von Primärwald und Sekundärwald

Ein Luft-N-Eintrag von mehr als 2000 kg N ha$^{-1}$, wie er für die Streu einer Primärvegetation geschätzt wurde, muß aber Konsequenzen für die Verteilung von 15N im System nach sich ziehen. Muß man hingegen davon ausgehen, daß systeminterne Regulationsmechanismen die BNF der Bäume steuern und nach circa 20 Jahren aufgrund genügenden N-Angebotes, P-Mangel oder Lichtmangel etc. zum Erliegen kommt, würde der N-Input via BNF über den Streufall lediglich 30 bis 50 kg N ha$^{-1}$ ausgemacht und keinen Einfluß auf den δ^{15}N-Wert in Vegetation und Boden haben.

Eine vergleichende Betrachtung der δ^{15}N-Werte der untersuchten Vegetationen zeigt den Zusammenhang der 15N-Verteilung mit ihrer Vorgeschichte durch anthropogener Eingriffe und ihre Quantität (Abb. 40). Sowohl in den Böden, der organischen Auflage, den Blättern der Leguminosen und Nichtleguminosen zeigte sich eine abnehmende Tendenz in den
\(\delta^{15}N\)-Werten von der Primärvegetation zur jungen Sekundärvegetation, wobei die ältere Sekundärvegetation eine Zwischenposition einnahm.

\[\begin{array}{ccc}
\text{Mineralboden (0-10cm)} & n=14 & n=2 & n=4 \\
\text{alte Sek. veg.} & \text{neue Blätter - Leguminose} & + \\
\text{alte Sek. veg.} & \text{neue Blätter - Nichtfixierer} & \text{Gruppe 3}
\end{array}\]

\[\begin{array}{ccc}
\text{junger Sek. veg.} & n=19 & n=10 & n=10 \\
\text{junge Sek. veg.} & \text{Gruppe 1} & \text{Gruppe 2} & \text{Gruppe 3}
\end{array}\]

\[\begin{array}{ccc}
\text{alte Sek. veg.} & n=19 & n=10 & n=10 \\
\text{alte Sek. veg.} & \text{Gruppe 1} & \text{Gruppe 2} & \text{Gruppe 3}
\end{array}\]

\[\begin{array}{ccc}
\text{Primärwald} & n=20 & n=3 & n=3 \\
\text{junger Sek. veg.} & \text{Gruppe 1} & \text{Gruppe 2} & \text{Gruppe 3}
\end{array}\]

\[\begin{array}{ccc}
\text{alte Sek. veg.} & n=19 & n=10 & n=10 \\
\text{alte Sek. veg.} & \text{Gruppe 1} & \text{Gruppe 2} & \text{Gruppe 3}
\end{array}\]

\[\begin{array}{ccc}
\text{Primärwald} & n=20 & n=3 & n=3 \\
\text{junger Sek. veg.} & \text{Gruppe 1} & \text{Gruppe 2} & \text{Gruppe 3}
\end{array}\]

Abb. 40: \(\delta^{15}N\) des Mineralbodens, der organischen Auflage, neue Blätter von Leguminosen und nicht fixierenden Bäumen in junger und alter Sekundärvegetation und Primärwald (die Box-Whisker-Plots geben Minimum, Maximum, oberes und unteres Quartil, Median und Mittelwert=* an)

Die \(\delta^{15}N\)-Werte zeigten in den Blättern eine klare Abnahme von +4 bis +8 im Primärwald auf -4 bis +2 in der jungen Sekundärvegetation. Im Mineralboden bildete sich dieser Trend am wenigsten deutlich aus (\(\delta^{15}N = +7.5\) auf durchschnittlich +5). Die \(\delta^{15}N\)-Werte der organischen Auflage lagen zwischen denen der Vegetation und des Bodens.

Schlüsselposition in der Weitergabe der \(\delta^{15}N\)-Werte nimmt die organische Auflage ein. Ihre Isotopenzusammensetzung verändert sich mit dem Grad ihres Abbaus immer mehr von der ursprünglichen im Blatt zu der in der stabilen organischen Substanz vorhandenen. Diese Tendenz konnte in 4 der 5 untersuchten jungen Sekundärvegetationen am deutlichsten verfolgt werden (vergl. Tab. 34). Der dabei freigesetzte Stickstoff hat \(\delta^{15}N\)-Werte unter dem Niveau der Blattwerte, die in der jungen Sekundärvegetation negativ und in der Primärvegetation positiv waren. Die verbliebene organische Substanz kann so den \(\delta^{15}N\)-Wert des N\textsubscript{tot} des Bodens über ihre \(^{15}N\)-Anreicherung dominieren. So scheinen die Isotopenverhältnisse, die über die
BNF sowie die Fraktionierungsprozesse bei der Nitrifikation und Immobilisierung geschaffen wurden, in den Stickstoffpool weitergegeben zu werden und so über lange Jahre auch den $\delta^{15}N$-Wert des N$_{tot}$ des Oberbodens zu beeinflussen.

Die Leguminosen zeigten im Primärwald ebenso hohe $\delta^{15}N$-Werte wie die Nichtfixierer, aber schon in der benachbarten alten Sekundärvegetation waren die gleichen Arten auch mit $\delta^{15}N$ um 0 nachzuweisen. Die $\delta^{15}N$-Werte implizieren, daß die Baumleguminosen in dem untersuchten terra firme-Primärwald nicht fixierten, aber in der Sekundärvegetation wohl. Der hohe $\delta^{15}N$-Wert legt die Vermutung nahe, daß die BNF der Baumleguminosen und die Akkumulation fixierten Stickstoffs über den Streufall in älteren Vegetationen vernachlässigbar ist, denn die oben vorgeschlagene N-Menge von mehr als 2000 kg N pro ha war nicht in entsprechend niedrigeren $\delta^{15}N$-Werten wiederzufinden.
VII Diskussion

1 Die biologische N₂-Fixierung in der Bragantina-Region

Salati et al. (1982) verglichen verschiedene Primärvegetationen im Amazonasgebiet miteinander. Sie fanden auf mit Nährstoffen besser versorgten Böden gleichbleibend positive δ^{15}N-Werte in der gesamten Vegetation, während die Leguminosen auf sandigen, nährstoffarmen Böden Werte nahe 0 annahmen. Dies impliziert eine BNF auch in alten Vegetationen unabhängig von der Größe der Bäume und weist darauf hin, daß systeminterne Regulationsmechanismen die BNF der Baumleguminosen steuern könnten.

Wälder akkumulieren Nährstoffe mit ihrem Wachstum, was sich auf Dauer in der Vegetation widerspiegelt (Sanchez und Palm, 1996). Sowohl im Boden als auch in der Vegetation der Primärwaldfläche, die noch nie gebrannt worden ist, sind höhere N-Gehalte angetroffen worden als auf den Sekundärwaldflächen. So erscheint der Primärwald mit genügend N versorgt und die BNF der Bäume wird unterdrückt.
Faktoren, wie die Beschattung durch das Kronendach, ungünstige Bodenverhältnisse wie P-Mangel, fehlende Mikronährstoffe, hohe Al-Konzentrationen oder niedriger pH-Wert und allelopathische Effekte können sich ungünstig auf die Nodulation und Fixierungsaktivitäten einer Leguminose auswirken. Diese Faktoren sind im Rahmen des Projektes nicht eingehend untersucht worden. Sie sollten aber bei der weiteren Verfolgung der δ^{15}N-Werte als Indikator für BNF in Primärvegetationen auf einen Zusammenhang mit den Isotopenverhältnissen und der N_2-Fixierung hin untersucht werden. Sie könnten auch z.T. Ursache für die doch insgesamt recht geringen Fixierungsleistungen der Leguminosen in der Sekundärvegetation sein.

Welche Rolle die freilebenden N_2-Fixierer in der Sekundärvegetation der Bragantina-Region einnehmen, kann an dieser Stelle nicht beantwortet werden. Wie schon zuvor erläutert, wird ein großes Potential an N_2-fixierenden Bakterien der Phyllosphäre zerstört, andererseits wird die BNF der bodenbürtigen Bakterien hoch eingeschätzt. In 5 von 8 untersuchten Waldböden der Amazonasregion konnten Piccolo et al. (1996) deutlich höhere δ^{15}N-Werte finden als in benachbarten Weideböden. Ihre Erklärung dafür suchten sie in der BNF freilebender Bakterien, die mit Weidegräsern assoziiert sind (Miranda und Boddey, 1987; Boddey und Döbereiner, 1988) und durch die Anhebung des pH-Wertes und bessere Phosphor-Verfügbarkeit nach...

Die BNF auf Rinden, Blättern und im Boden der Primärvegetation kann also eine große Bedeutung haben, die durch den Vegetationsbrand stark herabgesetzt wird. Die neu wachsende Sekundärvegetation wird aber erst nach vielen Jahren wieder genügend Oberfläche (Phyllosphäre, Borken, abgestorbenes Holz etc.) bieten, auf der die nicht bodenbürtigen freilebenden N$_2$-Fixierer bemerkbare Mengen Luftstickstoff binden können.

Hier kann die symbiontische N$_2$-Fixierung der Baumleguminosen einen Beitrag zum N-Kreislauf leisten, denn die Symbiose in den Wurzeln der Pflanzen wird durch den Brand kaum beeinträchtigt. Das Wurzelsystem der Leguminosen ermöglicht einen schnellen Wiederaustrieb der Bäume und sorgt damit für die Nachlieferung von Nährstoffen für die Symbiose, die sich so schnell regenerieren kann. Pflanzen, die N$_2$ fixieren, benötigen viel Energie, also Phosphor und eine hohe Lichtintensität (Izaguirre-Mayoral et al., 1995). In der Primärvegetation könnte die BNF durch diese Faktoren behindert werden. Der Brand liefert ihnen jedoch genau das, was sie brauchen, um aktiv zu werden - eine hohe Lichtintensität und Start-Nährstoffe. So könnte die symbiontische N$_2$-Fixierung eine mögliche BNF der Phyllosphäre eines Primärwaldes in den frühen Jahren der Sukzession ersetzen, bis im System wieder Stickstoff akkumuliert ist und/oder die Nachfrage nach Stickstoff abnimmt.

Mit der 15N natural abundance Methode (15NNAM) wurde mit den zuvor erarbeiteten Kriterien und Referenzpflanzen der %Ndfa für Abarema jupunba, Inga thibaudiana und Inga heterophylla in 4-6jährigen Sekundärvegetationen in der Umgebung von Igarapé Açu berechnet. Der Gesamtstickstoff von Abarema jupunba wurde zu 75% (±11%) aus der Luft genommen, von Inga thibaudiana zu 50% (±18%) und von Inga heterophylla zu 53% (±20%).
Unkovich (1994) bestimmte mit der 15N-NAM etwa 70%Ndfa für verschiedene Futter- und Weideleguminosen. Sprent et al. (1996) ermittelten 40-70%Ndfa für Baumleguminosen im brasilianischen Cerrado. In Plantagenpflanzungen wurde für Leucaena leucocephala ebenfalls zwischen 50 und 70%Ndfa bestimmt (δ^{15}N 'dilution method') (Sanginga et al., 1996). Der %Ndfa für die drei Leguminosen liegt also auf dem gleichen Niveau, das häufig für Baumleguminosen gefunden wird.

Der Stickstoffgewinn über die BNF der Baumleguminosen von etwa 40kg N ha$^{-1}$ in 10 Jahren entspricht nur etwa 6% des oberirdischen Gesamt-N einer Sekundärvegetation. Dies läßt sich auf die Artenzusammensetzung der Vegetation zurückführen. Denich (1989) ermittelte für Leguminosen zwar eine hohe Individualphytomasse, aber niedrige Abundanz, d.h. sie kamen auf den untersuchten Sekundärwald-Flächen in nur geringer Individuenzahl vor. Durch gezielte Managementpraktiken, die eine höhere Individuenanzahl fixierender Pflanzen zur Folge hätte, könnte diese Stickstoffbilanz beträchtlich verbessert werden. Das von Sanginga et al. (1996) und anderen durchgeführte regelmäßige Schneiteln der Baumkronen regt die BNF an und führt über diese Art der mehrfachen Gründüngung ebenfalls zu einer Vervielfachung des Stickstoffeintrages. Durchschnittlich erreichten sie so einen zusätzlichen Gewinn von 100 kg

N ha$^{-1}$ Jahr$^{-1}$. Denich (1989) schätzte die innerhalb eines Jahres durch Wiederaustrieb akkumulierte N-Menge von Abarema cochleatum, einer mit Abarema jupunba eng verwandten und physiologisch sehr ähnlichen Art, auf 5.3 kg ha$^{-1}$ bei circa 2100 Individuen ha$^{-1}$. Das entspricht 2.5g N pro Pflanze, bzw. 1.9g fixierter Stickstoff (bei 75%Ndfa). Dieser Input kann mit dem von Faidherbia albida oder Sesbania-Arten verglichen werden. Sanginga et al. (1996) erreichten 4-7g über BNF akkumulierten Stickstoff pro Jahr in einer Leucaena leucocephala-Pflanze. Im Vergleich zu den fixierten N-Mengen, die für gedüngte Gliricidia sepium bekannt sind (26g N - 64g N pro Baum, Liyanage et al., 1994), ist dies jedoch nur sehr wenig. Ob dieser N-Input über die N$_2$-Fixierung durch z.B. Abarema jupunba mit Hilfe von Praktiken wie wiederholtem Schneiden oder durch Düngung von Phosphor oder eventuell fehlenden Mikronährstoffen gesteigert werden könnte, bleibt weitergehenden Forschungen vorbehalten.

Eine zusätzliche Information über die BNF der Baumleguminosen liefert die Nodulation und die Rhizobienpopulation im Boden. Sowohl an den Wurzeln von Leguminosen wie Inga thibaudiana, Abarema jupunba und anderen wurde eine Nodulation bis in 40cm Tiefe nachgewiesen. Bis in 3.5m Bodentiefe wurden auch infektiöse Rhizobien im Boden gefunden. Im Vergleich zu dem Nodulationspotential eines Bodens unter Prosopis glandulosa jedoch ist
dieses Infektionspotential als gering einzustufen (Virginia et al., 1986). Virginia et al. (1986) fanden ein sehr hohes Nodulationspotential in 5m Bodentiefe direkt über dem Grundwasserspiegel und begründeten dies mit den Überlebensstrategien der Bakterien bei Wasserstreß und Nährstoffarmut. Zum einen lag der Grundwasserspiegel auf der hier untersuchten Fläche bei 8m, es wurde aber nur Boden bis 6m Tiefe untersucht. Ob und wieviel Rhizobium in den Bodentiefen nahe des Grundwasserpegsels leben, konnte daher nicht gezeigt werden. Zum anderen kann das Grundwasser in der Regenzeit bis auf die Bodentiefe von 4m ansteigen, so daß die hier gefundene Grenze für das Vorkommen von Rhizobien bei 3.5m als realistisch angesehen werden kann.

Bei den hier berechneten Fixierungsleistungen dürfen die methodischen Probleme der $^{15}\text{NNAM}$ nicht außer Acht gelassen werden. Zum ersten Mal sollte mit dieser Arbeit in der Sekundärvegetation der Bragantina-Region die N$_2$-Fixierungsleistung von Baumleguminosen überprüft werden. Dabei wurden Isotopenverhältnisse angetroffen, mit denen die Anwendung der Methode sehr erschwert war. Das auffälligste Ergebnis dieser Untersuchung war, daß im Boden durchgehend positive $\delta^{15}\text{N}$-Werte gefunden wurden, während die pflanzlichen $\delta^{15}\text{N}$-Werte zwischen -4 und (seltener) +4 lagen. Potentiell N$_2$ fixierende Arten der Familie Leguminosae zeigten aber eine engere Spannweite (± 2 um den $\delta^{15}\text{N}_{\text{Luft}} = 0$). Die Leguminosen
VII. Diskussion - 133 -

2 δ¹⁵N in den Böden der Bragantina-Region

Insgesamt besteht noch ein sehr geringes Wissen über die Vorgänge der Nitrifikation in Sekundär- und Primärvegetationen, so daß der Mechanismus der 15N-Verarmung über Nitrifikation als Ursache für die negativen δ^{15}N-Werte in der Sekundärvegetation weder ausgeschlossen noch angenommen werden kann.

Die neutralen δ^15N-Werte der Asche, die sich nicht signifikant von der Vegetation unterschieden, sprechen für den Ausschluß der ^15N-Anreicherung durch den Stofftransfer in die Luft. Die N-Mengen der Asche betragen nur noch 3% der ursprünglich in der oberirdischen Biomasse vorhandenen und sind vergleichsweise.

Für die Anwendung der 15NNAM ist es also wichtig, die starke kleinräumige Inhomogenität der 15N-Werte der organischen Auflage und den nachgewiesenen Einfluß einzelner Arten auf den 15N-Streu zu berücksichtigen. Indem vergleichende Beprobungen von Pflanzen für die Berechnung des %Ndfa nur in unmittelbarer Umgebung zueinander vollzogen werden, könnte der Fehler aufgrund der Streuung der Boden-15N-Werte vermindert werden. Wenn man von negativen 15N-Werten im pflanzenverfügbaren N des Bodens ausgeht, müssen Referenzpflanzen mit ebenfalls negativen Blattwerten gesucht werden.

3 15N in der Vegetation der Bragantina-Region

Wurzelsystem der Pflanzen

Von Clausing (1994) wurden sowohl Banara guianensis als auch Vismia guianensis als Flachwurzler, Lacistema pubescens als Flach-Tiefwurzler und Tapirira guianensis als Tiefwurzler ausgewiesen. Virginia et al. (1989) machten sich den mit der Bodentiefe verändernden 15N-Wert zu nutzen, um die Bodentiefe zu ermitteln, aus der Prosopis glandulosa ihren N bezieht. Indem sie die Wurzeln nahe der Oberfläche kappten, fanden sie - den Untersuchungen dieser Arbeit entsprechend - einen niedrigeren 15N-Wert, der nur aus den tieferen Bo-

Garten (1993) fand für verschiedene Pflanzenarten standortabhängige 15N-Schwankungen und führt dies unter anderem auf eine unterschiedliche Ausprägung des Wurzelsystems zurück.

Auch Gebauer et al. (1994) erklärten die unterschiedlichen δ15N-Werte in einer Tundra-Vegetation Alaskas mit der Entnahme der Nährstoffe aus unterschiedlichen Bodentiefen, aber auch die Nutzung unterschiedlicher N-Quellen. Nadelhoffer et al. (1996) hielten solche, auch in der Bragantina-Region vorkommende Wurzelsysteme für eine Anpassung an die nährstoffarmen Böden der Tundra: Die Arten vermeiden so die Konkurrenz um den wenigen
Stickstoff, indem sie die verschiedensten N-Quellen ausschöpfen. Eine solche optimale Ausschöpfung der N-Quellen ist im Boden der Bragantina-Region ebenso wahrscheinlich. Jedoch sind Informationen zu einzelnen Arten sehr spärlich vorhanden. Eine Vorstellung von der möglichen 15N-Verteilung in den Pflanzen und dem Boden, den δ^{15}N-Werten des N_{min}, wird in Abb. 41 gegeben.

Abb. 41: Vertikale 15N-Verteilung in der Sekundärvegetation der Bragantina-Region. (Der gelbe Balken gibt die Spannbreite der δ^{15}N-Werte der organischen Auflage wieder, NH_4^+ und NO_3^--Werte sind der Arbeit von Paparcikova, 1996, entnommen) Mit „Hohlräume“ sind die Löcher und Gänge gemeint, die durch Blattschneiderameisen und Wurzeln geschaffen wurden. Pfeile links von der N_{tot}-Kurve geben die möglichen 15N-Verschiebungen im N_{min} wieder, abwärts gerichtete Pfeile symbolisieren die Verlagerung von N_{min} in tiefere Bodenschichten.
VII. Diskussion - 139 -

δ¹⁵N in den Pflanzen als Indikator für das pflanzenverfügbare N

stoff-Verbindungen führen zu einer größeren Aufsplittung des ^{15}N zwischen immobilisierten und pflanzenverfügbarem N. Garten und Miegrot (1994) entwickelten daraus einen sogenannten Anreicherungsfaktor ($\delta^{15}\text{N}_{\text{Blättern}} - \delta^{15}\text{N}_{\text{Boden}}$), der mit der Netto-Nitrifikation der von ihnen untersuchten Böden positiv korrelierte (je nach Art, von der die Blätter stammten, lag r^2 zwischen 0.83 und 0.96).

Für die Bragantina-Böden wurde dieser Anreicherungsfaktor folgendermaßen berechnet:

<table>
<thead>
<tr>
<th>Fläche</th>
<th>Anreicherungsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>-5.45</td>
</tr>
<tr>
<td>M2</td>
<td>-4.77</td>
</tr>
<tr>
<td>M5</td>
<td>-4.75</td>
</tr>
<tr>
<td>M3</td>
<td>-4.29</td>
</tr>
<tr>
<td>PB$_{SW}$</td>
<td>-3.97</td>
</tr>
<tr>
<td>PB$_{PW}$</td>
<td>-2.41</td>
</tr>
</tbody>
</table>

Der Fraktionierungsfaktor β des ^{15}N zwischen der Nährösung als Substrat und den $\delta^{15}\text{N}$-Werten des Blattes von *Tapirira guianensis* betrug 1.0026. Dieser β-Faktor entspricht dem bisher beschriebenen Fraktionierungsfaktor bei den pflanzeninternen Vorgängen der Stickstoffassimilation bis hin zum Einbau in organische Substanzen (Handley und Raven, 1992; siehe auch Tab. 3). Die Fraktionierung schlug sich in einer Differenz von 0.52
\[\delta^{15}N \]-Einheiten zwischen dem zugegebenen \(NO_3^- \) und den Blättern nieder. Damit kommt ihr innerhalb der Pflanzen der Sekundärvegetation eine Bedeutung zu, da die Wertedifferenzen zwischen Leguminosen und Referenzen ohnehin nur maximal 2.5 \(\delta^{15}N \)-Einheiten betrugen. Pate et al. (1994) testeten mehrere potentielle Referenzpflanzen für Weideleguminosen Australiens auf diese Fraktionierung, fanden jedoch nur in einer Grasart (\(Lolium rigidum \)) einen Unterschied von 1 \(\delta^{15}N \)-Einheit zwischen der Nährösung und dem Gras. Mariotti et al. (1980) konnten keine große Differenz zwischen dem \(\delta^{15}N \)-Wert des aufgenommenen Stickstoffs und den Blatt-\(\delta^{15}N \)-Werten finden. Daher maßen Pate et al. (1994) der Fraktionierung durch die Aufnahme und den Transport von Stickstoff keine signifikante Bedeutung bei. Die Problematik der Referenzpflanzen sahen sie darin, daß sich auf dem Feld ein N-Transfer zwischen bestimmten Referenzpflanzen (hier Gräser) und den Leguminosen abspielen kann, der zu einer ungenauen \%Ndfa-Berechnung führt.

Für die \%Ndfa-Berechnungen wurde der \(\delta^{15}N \)-Wert der Blätter der A-Pflanzen von \(Abarema jupunba \) und \(Abarema cochleatum \) ermittelt. Mit +0.42 lag er weit über den bisher in der Literatur beschriebenen Werte für Baumleguminosen (vgl. Tab. 4). Nur sehr vereinzelt wurden positive \(\delta^{15}N \)-Werte in den Blättern von krautigen Leguminosen gefunden (Turner und Begersen, 1983). Die \(\delta^{15}N \)-Werte der Gesamtpflanzen der beiden getesteten Leguminosen hingenegen betrugen -0.16 bzw. -0.04, welche dem \(\delta^{15}N \)-Wert der Luft entsprechen und damit bestätigen, daß 100\% des Stickstoffs dieser Pflanzen aus der \(N_2 \)-Fixierung stammten. Die Pflanzen waren zu Versuchsende 10-12 Monate alt. Eventuell hätte eine längere Kultivierung eine noch stärkere Aufteilung des \(^{15}N \) in den Pflanzenorganen und Knöllchen bewirkt und die Blatt-\(\delta^{15}N \)-Werte auch dieser Pflanzen wären negativ geworden. Die in der Literatur beschriebenen Pflanzen waren jedoch selten älter als die in dieser Untersuchung.

Aufgrund der Vielfältigkeit des Wurzelsystems einerseits und der Ungewißheit über die \(\delta^{15}N \)-Werte des pflanzenverfügbaren Stickstoffs andererseits, wurden in der vorliegenden Arbeit als Kriterium für die Auswahl der Referenzpflanzen nicht die Ähnlichkeit mit dem \(\delta^{15}N \)-Wert des \(N_{tot} \) des Bodens herangezogen, sondern äußerlich sichtbare und überprüfbare Faktoren wie räumliche und zeitliche Muster des \(\delta^{15}N \), ihre Variabilität und \(\delta^{15}N \)-Differenz zwischen Leguminosen und potentiellen Referenzpflanzen, welche im folgenden diskutiert werden.
Räumliche Variabilität von $\delta^{15}N$

Die Gründe für die hohe innerartliche Variabilität der $\delta^{15}N$-Werte einiger Arten der jungen Sekundärvegetation der Bragantina-Region können in den kleinräumigen Unterschieden in der Beschaffenheit des Bodens gesucht werden. Die Bodentextur beeinflusst den Wasserhaushalt, das Durchwurzelungsvermögen und auch die mikrobielle Aktivität des Bodens. Kleinräumige Veränderungen im Nährstoffangebot, z.B. die schon zuvor erwähnten durch Blattschneiderameisen entstandenen Hohlräume, können Verschiebungen im $\delta^{15}N$-Wert der Pflanzen verursachen. Ist genug Stickstoff im Boden vorhanden, wird bei der Aufnahme durch die Pflanzen stärker gegen ^{15}N diskriminiert als bei N-Mangel (Mariotti et al., 1982). In solchen Bodenbereichen verändert sich auch das schon oben beschriebene Verhältnis Nitrifikation zu Immobilisation, das von Garten und Miegrot (1994) für Änderungen in der Isotopenzusammensetzung des pflanzenverfügbaren Stickstoffs verantwortlich gemacht wird. Androsoff et al. (1995) fanden kleinräumig unterschiedliche Konzentrationen von N_{min}, im Boden und machten sie für die Schwankungen in der N_2-Fixierung von *Pisum sativum* verantwortlich, da höhere Gehalte an N_{min} hemmend auf die BNF wirken können.

Bremer und Kessel (1990) empfehlen eine Wertedifferenz von 5 $\delta^{15}N$-Einheiten zwischen dem atmosphärischen Stickstoff und dem pflanzenverfügbaren mineralischen Stickstoffs des Bodens. Sie fanden innerhalb von 60m Schwankungen im $\delta^{15}N$-Wert der Vegetation von 6 Einheiten. Sutherland et al. (1991) maßen in Abhängigkeit vom Standort einmal eine Variation der $\delta^{15}N$-Werte, die innerhalb ($\delta^{15}N=+0.3$ bis -0.3) und einmal die außerhalb des 95%igen Vertrauensbereiches (+0.4 bis -0.6) lagen. Sutherland et al. (1991) ermittelten mit den gleichen Daten eine Wiederholungszahl von 11-25 für den homogenen und 170 für den heterogenen Standort, um auf einen nur 5%igen Fehler zu kommen. Domenach und Corman (1984) ermittelten für Sojabohnen auf dem Feld eine durchschnittliche Wiederholungszahl von 10 bis 30 Einzelproben oder 3 Mischproben aus je 5 Pflanzen, um unter einen Fehler von 1 $\delta^{15}N$-Einheit zu kommen.

Auf den Flächen S1 bis S6 wurden in Abhängigkeit von den Referenzarten Standardabweichungen von ±0.1 bis ±1.15 berechnet, die einem durchschnittlichen Vertrauensbereich von ±0.5, wie bei Sutherland et al. (1991), bedingten. Mit bis zu 5 Wiederholungen und einer maximalen Wertedifferenz von $\delta^{15}N=2.1$ lagen die in diesen Untersuchungen durchgeführten Wiederholungen daher weit unter den Ansprüchen von Sutherland et al. (1991). Unkovitch et
al. (1994) veranschaulichten die Problematik der Wertedifferenz und dem damit verbundenen Fehler in der Berechnung des %Ndfa durch eine Grafik, die in Abb. 33 für die hier untersuchten Arten nachgestellt wurde. Die Fehlerberechnung nach Shearer und Kohl (1988) für die durchgeführten Kalkulationen lagen - der hohen Streuung und geringen Wertedifferenz Rechnung tragend - auch bei durchschnittlich 20% (vgl. Tab. 46).

Eine Verringerung des hohen Fehlerwertes könnte mit einer gezielteren Auswahl der Probebäume erzielt werden. Der %Ndfa für *Abarema jupunba* war bis zu einer Basalfläche von 20cm² baumgrößenabhängig. Bei den Beprobungen zur %Ndfa-Berechnung wurden Bäume von *Abarema jupunba* mit Basalflächen von 12cm² bis etwa 20cm² erfaßt. Das entspricht dem Größenbereich, in dem sich der Anteil Stickstoff aus der BNF am Gesamt-N der Pflanze von 40% auf fast 100% Ndfa steigerte (vgl. Abb. 38). Mit der Auswahl von Bäumen mit gleich großen Basalflächen könnten die Kalkulationen verbessert werden.

Auf australischen Weiden gelang es erstmals, unter natürlichen Bedingungen %Ndfa über die ¹⁵NNAM zu bestimmen (Sanford et al., 1993 und 1995). In einem langjährigen screening wurden Referenzpflanzen auf zeitliche und räumliche Variabilität, auf Fraktionierungsverhalten während der Aufnahme, N-Quellen und genetische Variabilität untersucht. Aufgrund einer für Weideleguminosen (*Trifolium subterraneum, Medicago spp., Lotus spp.*.) gut geeigneten Referenzpflanze (*Arctotheca calendula*) und einer sehr hohen Wiederholungszahl (über 100 Proben) konnte in diesem Fall der Fehler der Berechnung auf etwa 7% reduziert werden. Hier muß in Betracht gezogen werden, daß es sich um annuelle Pflanzen handelt, die einerseits leicht zu beproben sind und andererseits aus einer sehr gleichförmigen Vegetation stammen, die nicht den zwischenartlichen und räumlichen Schwankungen einer Sekundärvegetation der Bragantina-Region unterworfen ist.

4 Schlußfolgerungen

Die Baumleguminosen der Bragantina-Region und ihre Streu können in Sekundärvegetationen bis zu 47 kg N ha\(^{-1}\) über die biologische N\(_2\)-Fixierung im System akkumulieren. Bei diesen Berechnungen konnte eine genaue Abschätzung des Eintrages von fixiertem Stickstoff einerseits über die Auswaschung und den Blattfall und der damit verbundenen periodischen Erneuerung der Blätter und andererseits der Umsetzung der Feinwurzelmasse nicht geleistet werden. Die Fixierungsrate einzelner Baumleguminosen schwankte zwischen etwa 30 und 75 % Ndfa und erreichte somit eine hohe Effektivität. Es sollte daher überprüft werden, ob die insgesamt gering erscheinende BNF der Baumleguminosen nicht über Management-Praktiken verbessert werden und so einen Beitrag zum N-Haushalt der Sekundärvegetation leisten könnte. Eingriffe wie P-Düngung oder auch Mikronährstoff-Gaben, Erhöhung der Individuenanzahl fixierender Bäume, Baumkronenschnitt, Schaffung optimaler Lichtverhältnisse oder die Einführung einer allelopathisch verträglichen Artenzusammensetzung könnten dabei zu einer Steigerung der Biomasseproduktion und der BNF angewendet werden.

Für eine Primärvegetation der gleichen Region wurde keine bzw. nur eine sehr geringe Menge an fixiertem Stickstoff errechnet. Die These, daß in einer Primärvegetation eine ausgeglichene Nährstoffbilanz vorherrscht, die zu einem Ausbleiben der BNF der Bäume geführt hat, kann somit bestätigt werden. Allerdings bildete auch hier der mehrfach zirkulierende Stickstoff über den Blattfall und die unterirdische Biomasse nicht abschätzbare Faktoren, die aber einen großen Anteil an den N-Reserven dieses System einnehmen.

Inwieweit biologisch fixierter Stickstoff über freilebende Bakterien, Flechten und Algen im Boden und auf Pflanzen bedeutende Mengen zum Stickstoffhaushalt der Sekundärvegetation beitragen, kann über die \(^{15}\)N-NAM nicht erfaßt werden. Versuche mit \(^{15}\)N-Anreicherungen könnten hier detaillierte Informationen liefern.

Die in der vorliegenden Arbeit vorgenommenen Berechnungen basierten auf Ergebnissen der \(^{15}\)N-NAM. Diese Methode wurde für die natürliche Vegetation eines immergrünen Regenwaldes zum ersten Mal angewendet. Dabei wurden Probleme wie die hohe Variabilität der \(\delta^{15}\)N-Werte in der Vegetation, der Heterogenität des Bodens und des \(\delta^{15}\)N-Wertes des pflanzenverfügbaren N aufgeworfen.

In Vorarbeiten der vorliegenden Arbeit wurden Indizien gesammelt, die für mit der Bodentiefe zunehmend negative \(\delta^{15}\)N-Werte im pflanzenverfügbaren N des Bodens sprechen. Die Re-

Mit der vorliegenden Arbeit konnten semiquantitative Abschätzungen der BNF der Sekundärvegetation durchgeführt werden. Ungeklärt bleibt der Boden-interne N-Kreislauf und der Mechanismus der 15N-Fraktionierung während der Umsetzung der Streu zu organischer Substanz, für den lediglich Hinweise erarbeitet werden konnten. Beide Prozesse könnten wichtige Indizien für die Umsetzung des Stickstoffs in der Sekundärvegetation der Bragantina-Region liefern.
VIII Zusammenfassung

Kernfrage der Arbeit war, ob die 15N natural abundance Methode (15NNAM) für die Abschätzung der N$_2$-Fixierungsleistung von Baumleguminosen und ihrer N-Akkumulation in jungen Sekundärvegetationen über die biologische N$_2$-Fixierung in tropischen Brachesystemen mit Brandrodung angewendet werden kann.

Dazu wurde das 15N-Vorkommen in Brachevegetationen der Bragantina-Region, östliches Amazonasgebiet, hinsichtlich der Variabilität der δ^{15}N-Werte in Boden und Pflanze, δ^{15}N der pflanzenverfügbaren N-Quelle und Fraktionierungsprozesse in der Pflanze untersucht.

δ^{15}N der Böden: Der Boden umfaßte δ^{15}N-Werte von +2.9 in den obersten 5cm bis zu +7.7 in 1m Bodentiefe. Von 1m bis 6m Tiefe nimmt der δ^{15}N-Wert wieder bis auf +2.5 ab. Die δ^{15}N-Werte korrelierten mit dem Tongehalt, der Basensättigung und den Magnesiumkonzentrationen des Bodens. Ein Hinweis auf die Entstehung negativer δ^{15}N-Werte des mineralisierten N im Boden lieferte der mit Hilfe des δ^{15}N Blatt von Tapirira guianensis über den β-Faktor errechnete δ^{15}N-Werte für das pflanzenverfügbare N von durchschnittlich -2.55. Bis in 40cm Bodentiefe konnte ein Einfluß der Leguminosen auf die δ^{15}N-Werte des Bodens festgestellt werden, der jedoch nur in 10% der Fälle signifikant war.

Generell war ein „Infektionspotential“ von Rhizobium in den Böden der jungen Sekundärvegetation bis in tiefere Bodenschichten (3m) vorhanden. Knöllchen an Wurzeln von Baumleguminosen wurden bis in 40cm Tiefe gefunden.

δ^{15}N-Unterschiede zwischen verschiedenen Standorten der Untersuchungsregion konnten nur vereinzelt signifikant nachgewiesen werden. Im Boden eines Primärwaldes lagen die δ^{15}N-Werte durchschnittlich 2 Einheiten höher als im Boden der Sekundärvegetation.

In der organischen Auflage des Bodens der Sekundärvegetation fanden sich die gleichen Tendenzen in ausgeprägterem Maße wie im Mineralboden wieder, also negative δ^{15}N-Werte, die unter N$_2$-fixierenden Leguminosen ½ bis 1 Einheit niedriger waren als unter der nicht N$_2$-fixierenden Vegetation. Die N-Gehalte der Auflage sind jedoch unter den Leguminosen höher.

δ^{15}N in der Vegetation: In der Sekundärvegetation waren in den Blättern δ^{15}N-Werte zwischen -4 und +6 zu finden, wobei der durchschnittliche δ^{15}N-Wert bei -0.83 lag.
Neue Blätter zeigten ½ Einheit negativere δ^{15}N-Werte als die alten Blätter. Die δ^{15}N-Werte der alten Blätter streuten im Durchschnitt stärker als die der neuen. Die Differenz zwischen Blättern der Leguminosen und nicht N$_2$-fixierenden Referenzpflanzen war in den neuen Blättern größer. Bei allen weiteren Fragestellungen wurden daher nur noch die neuen Blätter berücksichtigt.

Die Arten *Abarema jupunba*, *Inga heterophylla*, *Inga thibaudiana*, *Banara guianensis*, *Lacistema pubescens*, *Tapirira guianensis* und *Vismia guianensis* wurden auf die räumliche Variabilität ihrer δ^{15}N-Werte untersucht. Die Streuung der Blattwerte innerhalb eines Standortes war artenabhängig. Die Leguminosen zeigten grundsätzlich eine geringere Streuung als die nicht N$_2$-fixierenden Arten. Ihre δ^{15}N-Werte reichten von +1.10 bis -0.94. Die Nicht-Leguminosen zeigten Werte von -4 bis +3.5.

Die %N- und 15N-Muster der einzelnen Arten über die verschiedenen Standorte und Jahreszeiten ermöglichte die Unterteilung der Arten in drei Gruppen: Die Leguminosen, die eine geringe inner- und zwischenstandörtliche sowie zeitliche Streuung und hohe N-Gehalte aufwiesen; die nicht N$_2$-fixierenden Arten wie *Tapirira guianensis*, *Mabea angustifolia*, *Vismia guianensis* und *Myrcia sylvatica*, die stärker streuten, aber doch konstant negative δ^{15}N-Werte auf allen Standorten und den meisten Probezeitpunkten zeigten; die nicht N$_2$-fixierenden Arten, deren δ^{15}N-Werte nahe 0 oder positiv waren und stark streuten.

Der Zeitpunkt der größten Differenz und geringsten innerartlichen Streuung der δ^{15}N-Werte zwischen nicht-fixierenden und fixierenden Arten war der Monat Oktober. Dieser Monat ist daher als Probezeitpunkt für die Anwendung der 15NNAM zu wählen.

Neben den Ähnlichkeiten in räumlichen und zeitlichen %N/15N-Muster der Leguminosen und Referenzpflanzen wurden Ähnlichkeiten der pflanzeninternen δ^{15}N-Muster für die Auswahl geeigneter Referenzpflanzen herangezogen. Das δ^{15}N-Muster beispielsweise der Nichtleguminose *Tapirira guianensis* entsprach im Wesentlichen dem von *Abarema jupunba*.

Als nicht N$_2$-fixierende Referenzpflanzen für die Berechnung der N$_2$-Fixierungsleistung wurden daher insbesondere *Tapirira guianensis*, *Mabea angustifolia*, *Vismia guianensis* und eingeschränkt *Myrcia sylvatica* herangezogen. Sie wiesen eine durchschnittliche negative Differenz von 2 δ^{15}N-Einheiten zu den Leguminosen, gleiche zeitliche Veränderungen der Blatt-15N-Muster, und eine gleiche Fraktionierung von 15N innerhalb einer Pflanze (nur für *Tapirira guianensis* ermittelt) auf.
Im Primärwald waren die durchschnittlichen δ^{15}N-Werte bis zu 8 Einheiten höher als in der Sekundärvégation der BragNTina-Region. Im Gegensatz zu der jungen Sekundärvégation konnten im Primärwald keine Unterschiede zwischen Leguminosen und Referenzpflanzen gefunden werden, was auf das Fehlen der BNF der Bäume dieser Vegetation schließen läßt.

Insgesamt erscheinen die δ^{15}N-Werte in der hier untersuchten Vegetation dergestalt zu sein, daß Berechnungen der N_2-Fixierungseffektivität sinnvoll durchzuführen sind.

Quantifizierung der BNF durch Baumleguminosen des östlichen Amazonasgebietes

Zur Bestimmung des $\% Ndfa$ ($\%$ Nitrogen derived from atmosphere) mußte der Blatt-δ^{15}N-Wert einer Leguminose bekannt sein, die ihren gesamten Stickstoff ausschließlich aus der Luft bezog haben. Es wurden δ^{15}N-Werte von $+0.42$ für die 10monatige, in N-freier Nährösung angezogene A-Pflanze Abarema jupunba und $+0.71$ für die 12monatige Abarema cochleatum bestimmt.

Für die drei untersuchten Leguminosen wurden Fixierungsraten von 15 bis 75 % bestimmt. Es zeichnete sich keine Saisonität ab. Abarema jupunba bezog in allen Monaten mit Ausnahme des Februars (32%) zwischen 64 und 75% (durchschnittlich 65%) ihres Stickstoffs aus der Luft, Inga thibaudiana zwischen 39 und 66% (durchschnittlich 51%), Inga heterophylla zwischen 15 und 61% (durchschnittlich 40%). Bei diesen Berechnungen lag der Standardfehler immer über $\pm 11 \%$ Ndfa, der durchschnittliche Standardfehler betrug $\pm 22 \%$ Ndfa. Aufgrund der geringen Wertedifferenzen und der hohen Streuung der δ^{15}N-Werte ist mit den bisher genutzten Referenzpflanzen also nur eine semi-quantitative Bestimmung der N_2-Fixierungsleistung gelungen.

Über den Zusammenhang zwischen der Basalfläche (cm^2) als Merkmal für die Größe eines Baumes, dem Gesamt-N (ohne Wurzeln) einer Baumleguminose und ihren $\% Ndfa$ wurde die über BNF fixierte N-Menge des Baumes geschätzt. Mit Daten aus Biomasseerhebungen von Sekundärvégationen der BragNTina-Region wurde die N-Akkumulation auf alle Baumleguminosen eines Bestandes hochgerechnet, wobei der Streufall nur sehr ungenau und die Auswaschung der Nährstoffe aus den Blättern nicht mit in die Kalkulationen einbezogen wurden. Die N-Akkumulation über BNF betrug 0.1 kg N ha$^{-1}$ für eine 1jährige Sekundärvégation, für eine 7jährige Brache wurden 24 kg N ha$^{-1}$, für eine 10jährige Brache 47 kg N ha$^{-1}$ errechnet.
IX Summary

Principal objective of this thesis was the question, whether the 15N natural abundance method (15N-NAM) can be applied to estimate the N$_2$ fixing efficiency and associated N accumulation via BNF of leguminous trees in the young natural secondary vegetation of a tropical slash and burn system. To this end the variability of the natural abundance of 15N in soil and plant material of the fallow vegetation of the Bragantina region, North-East-Pará, as well as the δ^{15}N of the plant available N source and the fractionation process in the plants were investigated.

δ^{15}N in the soil: The δ^{15}N of the N$_{tot}$ (% total N in the soil) ranged from +2.9 in the surface soil up to +7.7 at 1m depth. Below this point down to 6m depth the δ^{15}N value decreased continuously to +2.5. The δ^{15}N values were positively correlated with the % clay, base saturation and % Mg$^{2+}$. An estimate of the plant available 15N of the soil was gained by calculating the β-factor for the uptake of Nitrogen by Tapirira guianensis, indicating that the δ^{15}N values of plant available N could be -2.6. Down to 40cm soil depth an influence of leguminous litter could be seen, which was significant only in 10% of the cases.

A certain potential of infection by Rhizobium in the soils of the young secondary vegetation until a depth of 3m was detected. Nodulation on the roots of tree legumes was found up to 40cm depth.

δ^{15}N differences between soils of different stands existed, but were rarely significant. In the soil of a primary vegetation the δ^{15}N values were 2 units lower than in the soils of the young secondary vegetation. The litter of the secondary vegetation showed the same tendency as the mineral soil - under legumes lower δ^{15}N values than under non-N$_2$-fixing species (1/2 to 1 unit). The nitrogen content in the litter was higher under legumes than under non-legumes.

δ^{15}N in the vegetation: the leaves of 40 species showed δ^{15}N values between -4 and +6 with an average of -0.83. Young leaves were slightly more negative (½ unit) than old leaves. The variability in 15N was greater in the old than in the young leaves, whereas the difference between legumes and reference plants was greater in young than old leaves. As a result, only the δ^{15}N values of young leaves were considered in the evaluation and calculations of the experimental results.
The spatial variability of the species *Abarema jupunba, Inga heterophylla, Inga thibaudiana, Banara guianensis, Lacistema pubescens, Tapirira guianensis* and *Vismia guianensis* was investigated. The variability of δ^{15}N in the leaves within a stand depended on the species under investigation. In general, legumes showed less variation than non-legumes. The former had δ^{15}N values between +1.1 and -0.94, the non-legumes between -4 to +3.5.

The %N and δ^{15}N pattern of the species in different stands and seasons led to a cluster model with three subdivisions: the legumes, without relevant seasonal or spatial variations and a high N content; the nonfixing species like *Tapirira guianensis, Mabea angustifolia, Vismia guianensis* and *Myrcia sylvatica*, that showed considerable variation and constantly negative δ^{15}N values in all stands and in most sampling seasons; the non-fixing species, that had δ^{15}N-values around 0 or positive and a very high variation.

The sampling period with the highest difference between fixing legumes and non-fixing reference plants and the smallest species-internal variation of δ^{15}N was October. Therefore this month is to be considered the best sampling period for the application of the 15N natural abundance method.

To evaluate the best reference plants we also examined the plant internal 15N pattern. The 15N pattern of *Abarema jupunba* and *Tapirira guianensis* were very similar. So we conclude a possibly similar uptake pattern and transport dynamic of these species and used it as argument to use *Tapirira guianensis* as reference plant.

For the calculation of the %Ndfa the non N$_2$ fixing species *Tapirira guianensis, Myrcia sylvatica, Mabea angustifolia* and *Vismia guianensis* were used. They showed an overall difference of 2 units to the legumes, the same seasonal 15N pattern, and - in the case of *Tapirira guianensis* - the same 15N fractionation within the plant.

In the primary vegetation the average δ^{15}N of leguminous trees was 8 units higher than in the secondary vegetation. Contrary to the young secondary vegetation there were no δ^{15}N differences between legumes and non legumes in the primary vegetation, indicating the failure of BNF in trees.
Quantification of BNF of tree legumes in the eastern Amazon region

The N fixing species under investigation cultivated on N-free medium, the so called A-plant, is very important for calculating the % Ndfa of the legume in the field. The δ^{15}N values of this plants serves as a reference for a 100% N$_2$ fixing plant. In this case the δ^{15}N values of 10 month old Abarema jupunba was +0.43 and 12 month old Abarema cochleatum +0.71.

The %Ndfa of the 3 legumes investigated in the secondary vegetation was between 15% and 75%. Seasonal patterns did not exist. Abarema jupunba derived 64% to 75% (average 65%) of its nitrogen (except February with only 32%), Inga thibaudiana 39% to 66% (average 51%) and Inga heterophylla 15% to 61% (average 40%) from the air.

The standard error never fell below 11% Ndfa, the average standard error was ±22% Ndfa. The small differences of δ^{15}N values and the high variation of the reference plants investigated up to now, allowed only a semi quantitative estimation of %Ndfa possible.

With the relationship of the basal area (cm2) as an indicator of tree size, the total N of the tree legume (without roots) and its %Ndfa the accumulated nitrogen via BNF of these trees was calculated to be around 2g. Based on biomass data of various secondary vegetation the N accumulation of all tree legumes in different stands were estimated. The inexact evaluation of the leaf litter and the leaching of nutrients from the canopy we ignored. The N accumulation via BNF of a 1 year old vegetation was 0.1 kg N ha$^{-1}$, of a 7 year old vegetation it was 24 kg N ha$^{-1}$ and of a 10 year old stand 47 kg N ha$^{-1}$.
X Resumo

O objetivo principal desta tese foi avaliar a aplicabilidade do método de abundância natural de 15N para estimar a capacidade da fixação de nitrogênio das leguminosas arbóreas nas vegetações secundárias novas e a acumulação de Nitrogênio via FBN (Fixação biológica de Nitrogênio) no sistema tropical de pousio com derruba e queima.

Para isso foi investigado a abundância natural de 15N no pousio da Zona Bragantina, região este da Amazônia, a variabilidade de δ^{15}N no solo e nas plantas, o δ^{15}N na fonte de Nitrogênio no solo acessível para a planta e os processos de fracionamento de 15N na planta.

δ^{15}N no solo: O δ^{15}N nos solos apresentou valores de +2.9 na superfície à +7.7 em 1m de profundidade. De 1 a 6m o valor reduziu à +2.5. O valor de δ^{15}N estava correlacionado ao contéudo de argila, a saturação de bases e a concentração de Magnésio. O δ^{15}N do solo acessível as plantas foi conseguido pela determinação do β-factor da absorção, transporte e metabolismo de Nitrogênio através do δ^{15}N_folha da espécie Tapirira guianensis, com que o δ^{15}N do Nitrogênio acessível se calculou a -2.55. Até uma profundidade de 40cm o δ^{15}N do solo pareceu influenciado pela lитеira das leguminosas, no entanto só 10% dos casos foram significante.

Um certo potencial de infecção do Rhizobium nos solos da vegetação secundária nova foi encontrado até uma profundidade de 3m. Nodulação nas raízes das leguminosas arbóreas foi encontrado até 40cm.

Diferenças entre diversas localidades da região raramente eram significantes. No solo da floresta primária os valores de δ^{15}N foram 2 unidades mais alto que na vegetação secundária.

Na matéria orgânica da vegetação secundária foram observadas as mesmas tendências em uma forma mais clara, valores de δ^{15}N negativos em geral, em baixo das leguminosas ½ á 1 unidade mais negativo que em baixo da vegetação não fixadora. O contéudo de Nitrogênio na matéria orgânica porém era mais alto em baixo das leguminosas.

δ^{15}N na vegetação: Nas folhas da vegetação secundária se encontraram valores de δ^{15}N entre -4 a +6 e a media aritmética de -0.83. Folhas novas eram uma meia unidade mais negativo que velhas. Os valores de δ^{15}N variaram mais nas folhas velhas que nas novas. A diferença
entre plantas não fixadoras (referências) e as leguminosas era maior nas folhas novas que em velhas e assim decidiu-se usar só os dados ganhas com as folhas novas.

A variabilidade espacial de δ^{15}N nas espécies Abarema jupunba, Inga heterophylla, Inga thibaudiana, Banara guianensis, Lacistema pubescens, Tapirira guianensis e Vismia guianensis foi investigada. A variação nas folhas dentro de um local dependeu da espécie. As leguminosas com valores de δ^{15}N entre -0.94 e +1.10 geralmente variaram menos que espécies não fixadoras. As não fixadoras mostraram valores de -4 até +3.5.

O padrão de %N e 15N de cada uma das espécies sobre os diversos locais e períodos do ano conduziu à uma divisão em três grupos: As leguminosas com uma variação dentro e entre os locais e períodos muito baixo e um conteúdo alto de N; As espécies não fixadoras como Tapirira guianensis, Mabea angustifolia, Vismia guianensis e Myrcia sylvatica, que mostraram valores de δ^{15}N constantemente negativos em relação aos locais e períodos e com grande variação; As espécies não fixadoras com valores em torno de 0 ou positivos e uma alta variação.

O mês, onde houve a maior diferença entre plantas referências e leguminosas e a menor variação dentro das espécies foi outubro. Este mês então foi considerado para a aplicação de 15NNAM.

Para a eleição de uma referência adequada, os padrões dentro de uma planta ao lado do semelhantes padrões de %N/15N nas leguminosas e não fixadoras foram incluído. Tapirira guianensis por exemplo correspondeu ao da Abarema jupunba.

Como plantas referências para os cálculos da capacidade da fixação de nitrogênio então foram escolhidas especialmente Tapirira guianensis, também Mabea angustifolia e Vismia guianensis, em limite Myrcia sylvatica. Elas mostraram uma diferença negativa de pelo menos 2 unidades de δ^{15}N, alterações dos padrões de 15N nas folhas similares e um fracionamento parecido de 15N dentro da planta (estimado apenas para Tapirira guianensis).

Em geral na mata primária os valores de δ^{15}N foram 8 unidades mais alto do que na vegetação secundária da Zona Bragantina. Ao contrario para a vegetação nova não se encontraram nemhuma diferença entre leguminosas e não fixadoras, indicando a ausência da fixação biológica de Nitrogênio.
Quantificação de FBN pelos leguminosas arbóreas na Amazônia oriental

Para a avaliação de %Ndfa (%Nitrogênio derivado da atmosfera) há necessidade de se conhecer o valor de δ¹⁵N nas folhas da leguminosa, quando 100% do Nitrogênio dela foi tirado da atmosfera. Foram estimado valores de δ¹⁵N de +0.43 para Abarema jupunba, que foi cultivado 10 meses em uma solução de nutrientes sem Nitrogênio e +0.71 para Abarema cochleatum, cultivado por 12 meses da mesma maneira.

Para as 3 leguminosas examinadas foram avaliado taxas da fixação de Nitrogênio de 15% a 75%. Não houve sazonalidade. Abarema jupunba tirou em todos os meses, com uma exceção em fevereiro (32%) entre 64% e 75% (a média foi 65%) Nitrogênio do ar, Inga thibaudiana entre 39% e 66% (média=51%), Inga heterophylla entre 15% e 61% (média=40%). Nessas cálculos o padrão de error (standard error) ficou sempre em cima de 11%Ndfa, a média foi 22%Ndfa. Isto significa, que com as referências usadas aqui apenas uma estimativa semi quantitativa em consequência da pequena diferença dos valores de δ¹⁵N e a alta variação foi conseguido.

A quantidade do Nitrogênio fixado por uma leguminosa arbórea foi estimado pela relação entre a área basal (cm²) como uma característica do tamanho da arvore, o conteúdo total (sem raízes) de Nitrogênio e o %Ndfa deste arvore. Com dados do levantamento da biomassa da vegetação secundária da Zona Bragantina a acumulação de Nitrogênio por todas as leguminosas de um local foi calculado, no qual a caída da lítéria foi investigado apenas superficial e a lixiviação de nutrientes das folhas não foi incluído. A acumulação de Nitrogênio pela FBN foi 0.1kg N ha⁻¹ em uma vegetação de um ano, 24kg em um pousio de 7 anos e 47kg N ha⁻¹ em um pousio de 10 anos.
XI Literatur

XII Anhang
Anhang Tab. 49: δ¹⁵N in Vegetation, Boden, organischer Substanz (SOM) und N\textsubscript{min} in den verschiedenen Regionen der Welt

<table>
<thead>
<tr>
<th>Ort, Klimazone</th>
<th>Beschreibung</th>
<th>Vegetation</th>
<th>Boden</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordküste Alaskas</td>
<td>Tundra-Ökosystem, Tussok</td>
<td>R: -7 L: -1,5</td>
<td>0 - 30</td>
<td>NO\textsubscript{3}⁺</td>
</tr>
<tr>
<td>Nordalaska</td>
<td>Nadelwald</td>
<td>-10</td>
<td>0 - 30</td>
<td>-3</td>
</tr>
<tr>
<td>Lappland, Schweden</td>
<td>Tundra, montan, subarktisch</td>
<td>R: -9 L: -2</td>
<td>0 - 10</td>
<td>-1</td>
</tr>
<tr>
<td>Süd Saskatchewan, Canada</td>
<td>glazial-lakustrine Sedimente, Eichenwald</td>
<td>+4</td>
<td>0 - 10</td>
<td>+8,2</td>
</tr>
<tr>
<td>Süd Saskatchewan, Canada</td>
<td>Chernozem, Getreide</td>
<td>+3,2</td>
<td>0 - 10</td>
<td>+7,7</td>
</tr>
<tr>
<td>Saskatchewan, Canada</td>
<td>Haploboroll</td>
<td>+3,2</td>
<td>0 - 20</td>
<td>+8,4</td>
</tr>
<tr>
<td>Saskatchewan, Canada</td>
<td>Luvisol, Chernozem, Gleysol, Solonetz, Alfisol</td>
<td>Schwarzer Chernozem</td>
<td>0 - 20</td>
<td>+3,5</td>
</tr>
<tr>
<td>Saskatchewan, Canada</td>
<td>Agriborol, lehmiger Boden</td>
<td>0 - 20</td>
<td>+7,7</td>
<td>+2,7</td>
</tr>
<tr>
<td>Canada</td>
<td>Grasland-Boden (schwarzer Chernozem)</td>
<td>L: +0,7</td>
<td>0 - 20</td>
<td>+6,1</td>
</tr>
<tr>
<td>Vancouver Island</td>
<td>Mischwald, unfruchtbarer Lehmtong</td>
<td>R: -5 L: -4</td>
<td>0 - 60</td>
<td>+1</td>
</tr>
<tr>
<td>Vancouver Island</td>
<td>Mischwald, fruchtbarer Lehmtong</td>
<td>R: -3 L: -1</td>
<td>0 - 60</td>
<td>+1</td>
</tr>
<tr>
<td>USA, Maine</td>
<td>Caribou, Waldboden</td>
<td>0 - 15</td>
<td>+3</td>
<td>-3</td>
</tr>
<tr>
<td>Wisconsin, Madison</td>
<td>Lehmtong</td>
<td>-1,8 (Wurzel)</td>
<td>0 - 10</td>
<td>+2,6 (±0,33)</td>
</tr>
<tr>
<td>USA, Iowa</td>
<td>Edina schlufliger Lehmtong</td>
<td>0 - 15</td>
<td>+1</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td>tiefgründiger schluffiger toniger Lehmtong</td>
<td>0 - 15</td>
<td>+1</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td>schluffiger Lehmtong, N-gedüngter Boden</td>
<td>0 - 45</td>
<td>+1</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td>Fargo schluffiger Lehmtong</td>
<td>0 - 15</td>
<td>+1</td>
<td>+3</td>
</tr>
</tbody>
</table>
Fortsetzung Anhang **Tab. 49**: δ¹⁵N in Vegetation, Boden, organischer Substanz (SOM) und Nₘᵃᵢᵣ in den verschiedenen Regionen der Welt

<table>
<thead>
<tr>
<th>Ort, Klimzone</th>
<th>Beschreibung</th>
<th>Vegetation</th>
<th>Boden</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA Iowa</td>
<td>unbehandelt</td>
<td>0 - 15</td>
<td>-4.4≡-1.1</td>
<td>Bremner und Tabatai, 1973</td>
</tr>
<tr>
<td></td>
<td>kultiviert</td>
<td>0 - 15</td>
<td>0≡+3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 - 15</td>
<td>-4.1≡+1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 - 30</td>
<td>-0.8≡+1.9</td>
<td></td>
</tr>
<tr>
<td>Salt Lake City, USA</td>
<td>Wachholder-Wald</td>
<td>0 - 120</td>
<td>+4.0≡+9.0</td>
<td>Evans und Ehleringer, 1993</td>
</tr>
<tr>
<td>USA, Utah</td>
<td>Coral Pink Sand Dunes state Park</td>
<td>0 - 15</td>
<td>0≡+3</td>
<td>Evans und Ehleringer, 1994</td>
</tr>
<tr>
<td>USA, Utah</td>
<td>schluffig-toniger Lehmboden unter Kräutern</td>
<td>0 - 15</td>
<td>7.8≡+12.7</td>
<td>Shearer et al., 1978</td>
</tr>
<tr>
<td>Deutschland</td>
<td>Fichtelgebirge, Nadelwald</td>
<td>-1≡-5</td>
<td>-3≡+4</td>
<td>Gebauer et al., 1994 und Gebauer und Schulze, 1991</td>
</tr>
<tr>
<td></td>
<td>Ardennes, Braunerde Waldboden</td>
<td>0-22</td>
<td>-6.6≡+0.7</td>
<td>Riga et al., 1971</td>
</tr>
<tr>
<td></td>
<td>Braunerde, Mikrogeley Waldboden</td>
<td>22 - 100</td>
<td>+0.9≡+2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waldboden</td>
<td>0 - 25</td>
<td>-7.0≡-0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ackerboden</td>
<td>25 - 110</td>
<td>+1.0≡+3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 - 60</td>
<td>+1.2≡+4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Französische Alpen</td>
<td>eutrophe Braunerde - hohe Humifizierung</td>
<td>-1.9</td>
<td>0 - 50</td>
<td>+1.4≡+5.9</td>
</tr>
<tr>
<td></td>
<td>mesotrophe Braunerde - hohe Humifizierung</td>
<td>-1.8</td>
<td>0 - 100</td>
<td>+1.1≡+5.8</td>
</tr>
<tr>
<td></td>
<td>gelbrüne Braunerde - niedrige Humifizierung</td>
<td>-5.0</td>
<td>0 - 90</td>
<td>-2.3≡+5.1</td>
</tr>
<tr>
<td></td>
<td>gelbrüne Podsol - niedrige Humifizierung</td>
<td>-3.5≡-1.8</td>
<td>0 - 80</td>
<td>-4.0≡+5.1</td>
</tr>
<tr>
<td>Französische Alpen</td>
<td>Mischwald mit Acacia und Alnus etc.</td>
<td>R: -7≡-2.5</td>
<td>+10.5</td>
<td>Domenach et al., 1989; Kurdali et al., 1993</td>
</tr>
<tr>
<td>Südt-Appalachien, USA</td>
<td>Ultsol, saurer Waldboden</td>
<td>-4≡+1</td>
<td>-4≡+4.4</td>
<td>Garten, 1993</td>
</tr>
<tr>
<td></td>
<td>Or-Horizont</td>
<td>0 - 20</td>
<td>3.8≡+4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-40</td>
<td>-4≡0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Südt-Appalachien, USA</td>
<td>Regen</td>
<td>-3≡+7</td>
<td>-3≡+7</td>
<td>Garten, 1992</td>
</tr>
</tbody>
</table>
Fortsetzung Anhang Tab. 49: δ¹⁵N in Vegetation, Boden, organischer Substanz (SOM) und N\textsubscript{min} in den verschiedenen Regionen der Welt

<table>
<thead>
<tr>
<th>Ort, Klimzone</th>
<th>Beschreibung</th>
<th>Vegetation</th>
<th>Boden</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Joaquim Valley</td>
<td>Entisol</td>
<td>0 - 30</td>
<td>+0.5 (±2.3)</td>
<td>Broadbent, 1980</td>
</tr>
<tr>
<td>Georgetown, Sierra foothill, 730m,</td>
<td>Mariposa Ultisol, steinig</td>
<td>0 - 15</td>
<td>+3.8 (±4.5)</td>
<td>Virginia et al., 1989</td>
</tr>
<tr>
<td>San Joaquim Valley</td>
<td>Inceptisol</td>
<td>0 - 15</td>
<td>-0.4 ⇔ +2.5</td>
<td>Garten und Miegrot, 1994</td>
</tr>
<tr>
<td>Kalifornien</td>
<td>Sequoia National Park</td>
<td>Boden nach Brand</td>
<td>0 - 20</td>
<td>-0.94</td>
</tr>
<tr>
<td>Kalifornien, Mexico</td>
<td>Wüsten-Ökosystem</td>
<td>Boden vor Brand</td>
<td>0 - 20</td>
<td>-1.28</td>
</tr>
<tr>
<td>Kalifornien, Sequoia National Park</td>
<td>Boden nach Brand</td>
<td>0 - 20</td>
<td>-0.94</td>
<td>-8 ⇔ +18</td>
</tr>
<tr>
<td>Kalifornien, Davis</td>
<td>Entisol</td>
<td>0 - 15</td>
<td>-6.0 (±3.3)</td>
<td>Broadbent, 1980</td>
</tr>
<tr>
<td>Kalifornien Sierra,</td>
<td>Koniiferen-Erne-Weide-Wald, Entisol, 2080m Höhe</td>
<td>0 - 15</td>
<td>+2.8 (±3.4)</td>
<td>Broadbent, 1980</td>
</tr>
<tr>
<td>Great Smoky Mountains National Park, USA</td>
<td>Boden unter Fichte, Buche, Hartholz, Pappel, Pinie, Eiche</td>
<td>0 - 10</td>
<td>+3.4 ⇔ +5.7</td>
<td>Garten und Miegrot, 1994</td>
</tr>
<tr>
<td>Hawaii</td>
<td>Boden vulkanischen Ursprungs, 28 Jahre alt</td>
<td>0 - 20</td>
<td>-3.4 ⇔ -1.1</td>
<td>Vitousek et al., 1989</td>
</tr>
<tr>
<td>Panama</td>
<td>Barro Colorado, Primärwald</td>
<td>0 - 20</td>
<td>+3.1 ⇔ +4.2</td>
<td>Virginia et al., 1989</td>
</tr>
<tr>
<td>Thailand</td>
<td>R: +1.7 ⇔ +8.0</td>
<td>0 - 20</td>
<td>+3.4 ⇔ +8.4</td>
<td>Peoples et al., 1991</td>
</tr>
<tr>
<td>Thailand</td>
<td>L: -0.5 ⇔ +3.0</td>
<td>0 - 20</td>
<td>+3.6 ⇔ +8.4</td>
<td>Yoneyama et al., 1990</td>
</tr>
</tbody>
</table>
Fortsetzung Anhang Tab. 49: \(^{\delta^{15}}N \) in Vegetation, Boden, organischer Substanz (SOM) und \(N_{\text{min}} \) in den verschiedenen Regionen der Welt

<table>
<thead>
<tr>
<th>Ort, Klimazone</th>
<th>Beschreibung</th>
<th>Vegetation</th>
<th>Boden</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillippinen</td>
<td>unter Leguminosen</td>
<td>0 - 20</td>
<td>+6.6±14.9</td>
<td>Peoples et al., 1991</td>
</tr>
<tr>
<td></td>
<td>Ultic Haplotroch</td>
<td>0 - 100</td>
<td>+5.5±7.3</td>
<td>Ladha et al., 1993</td>
</tr>
<tr>
<td>Malaysia</td>
<td>natürlicher Waldboden</td>
<td>0 - 20</td>
<td>+16.6</td>
<td>Peoples et al., 1991</td>
</tr>
<tr>
<td></td>
<td>unter Plantagen</td>
<td>0 - 20</td>
<td>+3.5</td>
<td></td>
</tr>
<tr>
<td>Indonesien</td>
<td>natürlicher Waldboden</td>
<td>0 - 20</td>
<td>+4.5±7.1</td>
<td></td>
</tr>
<tr>
<td>Amazonas-Varzea, Brasilien</td>
<td>Andensedimente, Überschwemmungsebene</td>
<td>R: +1.3±10.4 L:+0.1±4.4</td>
<td>+3.8±4.4</td>
<td>Martinelli et al., 1992</td>
</tr>
<tr>
<td>West-Rondonia, Brasilien, Amazonasgebiet</td>
<td>Tropipult, Weide</td>
<td>0 - 20</td>
<td>+9.8±13.6</td>
<td>+9.2 Piccolo, 1994</td>
</tr>
<tr>
<td>Brasilien, Cerrado, Waldvegetation, natürliche Wald</td>
<td>R: +8.0 L:+5.1</td>
<td>0 - 20</td>
<td>+7.8±15</td>
<td>+3.3</td>
</tr>
<tr>
<td>Amazonia, Manaus</td>
<td>Waldboden</td>
<td>0 - 160</td>
<td>+7±22</td>
<td>Salati et al., 1982</td>
</tr>
<tr>
<td>Pará, Rondonia</td>
<td>Waldboden</td>
<td>0 - 160</td>
<td>+8±13</td>
<td></td>
</tr>
<tr>
<td>Manaus, Amazonia, Cerrado</td>
<td>Campina-Vegetation, sandy soil, Ultisol</td>
<td>R: -0.61±1.82 L: -1.85±0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasilien, Manaus</td>
<td>Reserva Ducke, clayey soil, Oxisol</td>
<td>R:+5.8±7 L: +3.9±10</td>
<td>+6.25±0.9</td>
<td>+3.5±1.2 Brandes et al., 1996</td>
</tr>
<tr>
<td>Barro branco, Amazonas, Brasilien</td>
<td>Grundwasser im Hochland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grundwasser unter dem Fluß</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flußwasser</td>
<td></td>
<td>9.17±1</td>
<td>+4.52±0.8</td>
</tr>
<tr>
<td>Brasilien, Pará</td>
<td>Sekundärvegetationen</td>
<td>R:+1.7±9 L: -2±7</td>
<td>+5.1±10.9</td>
<td>Yoneyama et al. 1993</td>
</tr>
<tr>
<td>Brasilien, Pará, Ultisol, mit Brandvorgeschichte, Sekundärwald</td>
<td>R:+4.5±3.5 L: +2.5±1</td>
<td>0 - 10</td>
<td>+4.3±5.0</td>
<td>+4.1 -2.4±2.8 vorliegende Arbeit und</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60 - 100</td>
<td>+6.4±7.1</td>
<td>-7.8 -4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350 - 600</td>
<td>+0.5±4.0</td>
<td>Paparcikova, 1995</td>
</tr>
</tbody>
</table>
Fortsetzung Anhang Tab. 49: δ^{15}N in Vegetation, Boden, organischer Substanz (SOM) und N_{min} in den verschiedenen Regionen der Welt

<table>
<thead>
<tr>
<th>Ort, Klimzone</th>
<th>Beschreibung</th>
<th>Vegetation</th>
<th>Boden</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pará, Brasilien</td>
<td>Ultisol, ohne Brandvorgeschichte, Primärwald</td>
<td>R: $+3\equiv +5$ L: $+5\equiv +8$</td>
<td>0 - 10</td>
<td>$+7.3\equiv +9.1$</td>
</tr>
<tr>
<td>Afrika, Kamerun</td>
<td>Tiefland Regenwald, Korup</td>
<td>R: $+4.4\equiv +5$ L: $+3.3$</td>
<td>60 - 100</td>
<td>$+9.4\equiv +12.6$</td>
</tr>
<tr>
<td>Afrika Tanzania</td>
<td>Miombo Wald</td>
<td>R: $-0.60\equiv +1.73$ L: $-0.81\equiv +0.62$</td>
<td>Högberg und Alexander, 1995</td>
<td></td>
</tr>
<tr>
<td>Afrika Tanzania</td>
<td>Savanna Wald</td>
<td>R: $-1.64\equiv +3.5$ L: $+1.4\equiv -1.09$</td>
<td>Yoneyama et al., 1990</td>
<td></td>
</tr>
<tr>
<td>Afrika, Zambia</td>
<td>Miombo Wald</td>
<td>R: $+2\equiv +3$ L: $+0.2$</td>
<td>Högberg, 1986</td>
<td></td>
</tr>
<tr>
<td>Südafrika, Namibia</td>
<td>saliner Standort</td>
<td>R: $+4.8\equiv +14.6$ L: $+5.1$</td>
<td>Heaton, 1987</td>
<td></td>
</tr>
<tr>
<td>Afrika, Cape</td>
<td>nährstoffarmer saurer Sandboden</td>
<td>R: $-2\equiv +5$ L: $-1.5\equiv 0$</td>
<td>Stock et al., 1995</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>Atacama Wüste</td>
<td>R: $+3.8\equiv +11.9$ L: $+12$</td>
<td>Evans und Ehleringer, 1994</td>
<td></td>
</tr>
<tr>
<td>Australien</td>
<td>Weide</td>
<td>L: $-0.36\equiv +0.45$ R: $+2.8\equiv +4.0$</td>
<td>Unkovich et al., 1994</td>
<td></td>
</tr>
<tr>
<td>Australien</td>
<td>Weide</td>
<td>L: $-1\equiv +2$ R: $+1\equiv +8$</td>
<td>Pate et al., 1994</td>
<td></td>
</tr>
<tr>
<td>Australien</td>
<td>unter Weide</td>
<td>R: $+5.3\equiv +11.9$ L: $-3.1\equiv -0.2$</td>
<td>Peoples et al., 1991</td>
<td></td>
</tr>
<tr>
<td>Australien</td>
<td>unter Leguminosen</td>
<td>R: $+2.1\equiv +9.0$ L: $+4\equiv +10.5$</td>
<td>Pate et al., 1993</td>
<td></td>
</tr>
<tr>
<td>Südwest Australien,</td>
<td>Banksia Waldland</td>
<td>R: $-1\equiv +3$ L: $-1\equiv +0.4$</td>
<td>Pate et al., 1993</td>
<td></td>
</tr>
<tr>
<td>Australien, Kapalga</td>
<td>Savanna Waldland, Eucalyptus-dominiert</td>
<td>R: $-1\equiv 0$ L: $-2\equiv -0.5$</td>
<td>Mordelet et al., 1996</td>
<td></td>
</tr>
<tr>
<td>Neuseeland</td>
<td>toniger Lehm, Grasland</td>
<td>0 - 7.5</td>
<td>Steele et al., 1981</td>
<td></td>
</tr>
</tbody>
</table>
Fortsetzung Anhang Tab. 49: δ^{15}N in Vegetation, Boden, organischer Substanz (SOM) und N$_{min}$ in den verschiedenen Regionen der Welt

<table>
<thead>
<tr>
<th>Ort, Klimazone</th>
<th>Beschreibung</th>
<th>Vegetation</th>
<th>Tief (cm)</th>
<th>$N_{nit.}$</th>
<th>NO_3^-</th>
<th>NH$_4^+$</th>
<th>SOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australien, Canberra, Pejar Dam</td>
<td>gelber Duplex - Granit, - Sediment, toter Duplex - Basalt, gelber Podsol</td>
<td>Granit, Basalt, Sediment</td>
<td>0 - 15</td>
<td>+5.3</td>
<td>+5.6</td>
<td>+0.5</td>
<td>+4.1</td>
</tr>
<tr>
<td>Australien, Canberra kultivierter Boden</td>
<td>+5.3±0.2</td>
<td>0 - 10</td>
<td>+5.3±+8.4</td>
<td>+10.6±+11.3</td>
<td>Turner et al, 1987</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontinuierliche Brache, Yanco</td>
<td>+7.9±+11.9</td>
<td>+4.1±+9.1</td>
<td>+4.1±+9.1</td>
<td>+9.1</td>
<td>Ledgard et al., 1984</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tab. 50: Physikalische und chemische Eckdaten des Bodens der Untersuchungsfläche M1S1 für Bodentiefen von 0 bis 100 cm (es sind die Mittelwerte aus 6 Mischproben je Bodentiefe mit dem Standardfehler angegeben)

<table>
<thead>
<tr>
<th>Bodentiefe [cm]</th>
<th>0 - 5</th>
<th>5 - 10</th>
<th>10 - 20</th>
<th>20 - 40</th>
<th>40 - 60</th>
<th>60 - 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grobsand [%]</td>
<td>58.5 (0.5)</td>
<td>52.5 (1.5)</td>
<td>47.5 (2.5)</td>
<td>40.5 (1.5)</td>
<td>37.0 (0.0)</td>
<td>34.5 (1.5)</td>
</tr>
<tr>
<td>Feinsand [%]</td>
<td>29.5 (1.5)</td>
<td>33.5 (0.5)</td>
<td>32.5 (1.5)</td>
<td>31.0 (2.0)</td>
<td>29.0 (0.0)</td>
<td>26.5 (0.5)</td>
</tr>
<tr>
<td>Schluff [%]</td>
<td>7.0 (3.0)</td>
<td>3.5 (2.5)</td>
<td>7.0 (1.0)</td>
<td>9.0 (2.0)</td>
<td>7.0 (0.0)</td>
<td>9.0 (2.0)</td>
</tr>
<tr>
<td>Ton [%]</td>
<td>5.0 (1.0)</td>
<td>10.5 (3.5)</td>
<td>13.0 (0.0)</td>
<td>19.5 (1.5)</td>
<td>27.0 (0.0)</td>
<td>30 (1.0)</td>
</tr>
<tr>
<td>pH (H₂O)</td>
<td>5.6</td>
<td>5.5</td>
<td>5.2 (0.05)</td>
<td>5.05 (0.05)</td>
<td>4.9 (0.2)</td>
<td>4.8 (0.1)</td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>4.6</td>
<td>4.5</td>
<td>4.2 (0.0)</td>
<td>4.1 (0.0)</td>
<td>4.05 (0.05)</td>
<td>4.05 (0.05)</td>
</tr>
<tr>
<td>C [%]</td>
<td>0.65 (0.40)</td>
<td>0.86 (0.04)</td>
<td>0.78 (0.10)</td>
<td>0.48 (0.04)</td>
<td>0.36 (0.04)</td>
<td>0.26 (0.005)</td>
</tr>
<tr>
<td>N [%]</td>
<td>0.07 (0.00)</td>
<td>0.06 (0.005)</td>
<td>0.05 (0.01)</td>
<td>0.04 (0.01)</td>
<td>0.04 (0.005)</td>
<td>0.03 (0.01)</td>
</tr>
<tr>
<td>C/N</td>
<td>16.5 (1.5)</td>
<td>16.0 (2.0)</td>
<td>16.5 (5.5)</td>
<td>13.0 (4.0)</td>
<td>10.5 (2.5)</td>
<td>9.0 (3.0)</td>
</tr>
<tr>
<td>P [ppm]</td>
<td>2.50 (0.50)</td>
<td>2.50 (0.50)</td>
<td>2.00 (0.00)</td>
<td>2.00 (1.00)</td>
<td>1.50 (0.50)</td>
<td>2.00 (1.00)</td>
</tr>
<tr>
<td>Ca** [mval/100g]*</td>
<td>1.50 (0.30)</td>
<td>1.05 (0.15)</td>
<td>0.65 (0.05)</td>
<td>0.65 (0.05)</td>
<td>0.40 (0.00)</td>
<td>0.45 (0.25)</td>
</tr>
<tr>
<td>Mg** [mval/100g]</td>
<td>1.10</td>
<td>0.75 (0.05)</td>
<td>0.55 (0.05)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K⁺ [mval/100g]</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03 (0.00)</td>
<td>0.02 (0.00)</td>
<td>0.02 (0.005)</td>
<td>0.02 (0.005)</td>
</tr>
<tr>
<td>Na⁺ [mval/100g]</td>
<td>0.04 (0.005)</td>
<td>0.04</td>
<td>0.02 (0.005)</td>
<td>0.03 (0.00)</td>
<td>0.02 (0.00)</td>
<td>0.02 (0.005)</td>
</tr>
<tr>
<td>Al+++ [mval/100g]</td>
<td>0.10 (0.10)</td>
<td>0.00</td>
<td>0.03 (0.10)</td>
<td>0.75 (0.05)</td>
<td>0.85 (0.15)</td>
<td>1.00 (0.00)</td>
</tr>
<tr>
<td>H⁺ [mval/100g]</td>
<td>2.60 (0.40)</td>
<td>2.80</td>
<td>2.60 (0.20)</td>
<td>2.15 (0.25)</td>
<td>2.20 (0.00)</td>
<td>1.95 (0.55)</td>
</tr>
<tr>
<td>Ak [mval/100g]</td>
<td>5.30 (0.70)</td>
<td>4.70 (0.10)</td>
<td>3.65 (0.35)</td>
<td>3.55 (0.25)</td>
<td>3.60 (0.00)</td>
<td>6.55 (2.85)</td>
</tr>
<tr>
<td>Ake [mval/g]</td>
<td>2.70 (0.30)</td>
<td>1.90 (0.10)</td>
<td>1.25 (0.05)</td>
<td>0.65 (0.05)</td>
<td>0.40 (0.00)</td>
<td>0.45 (0.25)</td>
</tr>
<tr>
<td>Basensättigung [%]</td>
<td>51.0 (1.0)</td>
<td>40.5 (1.5)</td>
<td>34.5 (4.5)</td>
<td>18.5 (2.5)</td>
<td>11.0 (0.0)</td>
<td>6.0 (1.0)</td>
</tr>
<tr>
<td>Zn [ppm]</td>
<td>0.17 (0.03)</td>
<td>0.20 (0.08)</td>
<td>0.07 (0.01)</td>
<td>0.74 (0.11)</td>
<td>0.21 (0.05)</td>
<td>0.17 (0.08)</td>
</tr>
<tr>
<td>Cu [ppm]</td>
<td>0.01</td>
<td>0.01</td>
<td>1.00 (1.00)</td>
<td>0.04 (0.03)</td>
<td>0.02 (0.005)</td>
<td>0.02 (0.00)</td>
</tr>
<tr>
<td>Mn [ppm]</td>
<td>3.32 (0.44)</td>
<td>1.61 (0.25)</td>
<td>0.64 (0.10)</td>
<td>0.18 (0.02)</td>
<td>0.20 (0.06)</td>
<td>0.20 (0.005)</td>
</tr>
</tbody>
</table>

* leere Zellen = Ca** und Mg** wurden zusammen bestimmt
Tab. 51: Physikalische und chemische Eckdaten des Bodens der Untersuchungsfläche M2S1 für Bodentiefen von 0 bis 100 cm (es sind die Mittelwerte aus 6 Mischproben je Bodentiefe mit dem Standardfehler angegeben)

<table>
<thead>
<tr>
<th>Bodentiefe [%]</th>
<th>0-5</th>
<th>5-10</th>
<th>10-20</th>
<th>20-40</th>
<th>40-60</th>
<th>60-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grobsand [%]</td>
<td>49.5 (1.5)</td>
<td>50.5 (0.5)</td>
<td>47.5 (0.5)</td>
<td>44.0 (5.0)</td>
<td>36.0 (1.0)</td>
<td>36.0 (1.1)</td>
</tr>
<tr>
<td>Feinsand [%]</td>
<td>35.5 (0.5)</td>
<td>35.5 (0.5)</td>
<td>32.0 (0.0)</td>
<td>30.5 (1.5)</td>
<td>30.5 (0.5)</td>
<td>26.5 (1.0)</td>
</tr>
<tr>
<td>Schluff [%]</td>
<td>8.5 (2.5)</td>
<td>5.0 (0.0)</td>
<td>10.0 (1.0)</td>
<td>6.0 (3.0)</td>
<td>7.5 (0.5)</td>
<td>6.5 (0.6)</td>
</tr>
<tr>
<td>Ton [%]</td>
<td>6.5 (0.5)</td>
<td>9.0 (0.0)</td>
<td>10.5 (0.5)</td>
<td>19.5 (0.5)</td>
<td>26.0 (1.0)</td>
<td>31.0 (1.29)</td>
</tr>
<tr>
<td>pH (H2O)</td>
<td>5.6 (0.0)</td>
<td>5.4 (0.1)</td>
<td>5.2 (0.1)</td>
<td>4.8 (0.5)</td>
<td>4.9 (0.1)</td>
<td></td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>4.5 (0)</td>
<td>4.2 (0.1)</td>
<td>4.1 (0.0)</td>
<td>4.0 (0.1)</td>
<td>4.1 (0.0)</td>
<td></td>
</tr>
<tr>
<td>C [%]</td>
<td>1.60 (0.20)</td>
<td>0.90 (0.03)</td>
<td>0.70 (0.05)</td>
<td>0.52 (0.00)</td>
<td>0.41 (0.04)</td>
<td>0.56 (0.09)</td>
</tr>
<tr>
<td>N [%]</td>
<td>0.12 (0.00)</td>
<td>0.10 (0.01)</td>
<td>0.09 (0.00)</td>
<td>0.07 (0.00)</td>
<td>0.06 (0.00)</td>
<td>0.07 (0.01)</td>
</tr>
<tr>
<td>C/N</td>
<td>12.5 (1.5)</td>
<td>10.0 (0.0)</td>
<td>7.5 (0.5)</td>
<td>7.0 (0.0)</td>
<td>6.5 (0.5)</td>
<td>7.4 (0.8)</td>
</tr>
<tr>
<td>P [ppm]</td>
<td>4 (0)</td>
<td>3 (0)</td>
<td>2 (0)</td>
<td>2 (0)</td>
<td>1 (0)</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Ca** [mval/100g]*</td>
<td>1.65 (0.05)</td>
<td>0.90 (0.10)</td>
<td>0.50 (0.10)</td>
<td>0.60 (0.10)</td>
<td>0.70 (0.00)</td>
<td>0.23 (0.07)</td>
</tr>
<tr>
<td>Mg** [mval/100g]</td>
<td>1.6 (0.1)</td>
<td>0.7 (0.0)</td>
<td>0.6 (0.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K⁺ [mval/100g]</td>
<td>0.07 (0.00)</td>
<td>0.04 (0.01)</td>
<td>0.03 (0.00)</td>
<td>0.02 (0.00)</td>
<td>0.01 (0.00)</td>
<td>0.01 (0.00)</td>
</tr>
<tr>
<td>Na⁺ [mval/100g]</td>
<td>0.01 (0.00)</td>
<td>0.04 (0.00)</td>
<td>0.04 (0.005)</td>
<td>0.03 (0.00)</td>
<td>0.02 (0.005)</td>
<td>0.03 (0.003)</td>
</tr>
<tr>
<td>Al⁺⁺⁺ [mval/100g]</td>
<td>0.00 (0.00)</td>
<td>0.30 (0.10)</td>
<td>0.40 (0.00)</td>
<td>0.50 (0.10)</td>
<td>0.70 (0.10)</td>
<td>0.97 (0.08)</td>
</tr>
<tr>
<td>H⁺ [mval/100g]</td>
<td>3.50 (0.10)</td>
<td>2.60 (0.20)</td>
<td>2.20 (0.00)</td>
<td>2.20 (0.00)</td>
<td>2.00 (0.00)</td>
<td>1.77 (0.18)</td>
</tr>
<tr>
<td>Ak [mval/100g]</td>
<td>6.85 (0.05)</td>
<td>4.60 (0.20)</td>
<td>3.80 (0.20)</td>
<td>3.30 (0.20)</td>
<td>3.40 (0.10)</td>
<td>2.97 (0.20)</td>
</tr>
<tr>
<td>Ake [mval/g]</td>
<td>3.35 (0.05)</td>
<td>1.70 (0.10)</td>
<td>1.20 (0.20)</td>
<td>0.60 (0.10)</td>
<td>0.70 (0.00)</td>
<td>0.23 (0.07)</td>
</tr>
<tr>
<td>Basensättigung [%]</td>
<td>49.0 (1.0)</td>
<td>36.5 (0.5)</td>
<td>31.5 (3.5)</td>
<td>18.0 (2.0)</td>
<td>2.5 (0.5)</td>
<td>7.7 (2.5)</td>
</tr>
<tr>
<td>Zn [ppm]</td>
<td>0.36 (0.06)</td>
<td>0.20 (0.01)</td>
<td>0.12 (0.01)</td>
<td>0.15 (0.04)</td>
<td>0.28 (0.14)</td>
<td>0.52 (0.18)</td>
</tr>
<tr>
<td>Cu [ppm]</td>
<td>0.01 (0.00)</td>
<td></td>
<td></td>
<td>0.04 (0.00)</td>
<td>0.04 (0.01)</td>
<td></td>
</tr>
<tr>
<td>Mn [ppm]</td>
<td>5.74 (1.32)</td>
<td>2.39 (0.28)</td>
<td>0.88 (0.23)</td>
<td>0.40 (0.06)</td>
<td>0.33 (0.04)</td>
<td>0.30 (0.03)</td>
</tr>
</tbody>
</table>

* leere Zellen = Ca++ und Mg++ wurden zusammen bestimmt
Tab. 52: Physikalische und chemische Eckdaten des Bodens der Untersuchungsfläche M3S3 für Bodentiefen von 0 bis 100 cm (es sind die Mittelwerte aus 6 Mischproben je Bodentiefe mit dem Standardfehler angegeben)

<table>
<thead>
<tr>
<th>Bodentiefe [%]</th>
<th>0-5</th>
<th>5-10</th>
<th>10-20</th>
<th>20-40</th>
<th>40-60</th>
<th>60-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grobsand [%]</td>
<td>48.3 (1.8)</td>
<td>44.8 (1.0)</td>
<td>42.0 (1.7)</td>
<td>33.3 (1.2)</td>
<td>32.7 (0.3)</td>
<td>33.0 (0.3)</td>
</tr>
<tr>
<td>Feinsand [%]</td>
<td>38.0 (1.2)</td>
<td>40.8 (1.1)</td>
<td>38.0 (0.6)</td>
<td>36.0 (0.6)</td>
<td>35.0 (0.0)</td>
<td>33.6 (0.4)</td>
</tr>
<tr>
<td>Schluff [%]</td>
<td>5.7 (0.7)</td>
<td>5.5 (0.5)</td>
<td>5.0 (1.0)</td>
<td>7.3 (1.2)</td>
<td>5.0 (0.6)</td>
<td>4.6 (0.5)</td>
</tr>
<tr>
<td>Ton [%]</td>
<td>8.0 (1.2)</td>
<td>9.0 (0.6)</td>
<td>15.0 (0.6)</td>
<td>23.3 (0.7)</td>
<td>27.3 (0.7)</td>
<td>28.8 (0.5)</td>
</tr>
<tr>
<td>pH (H₂O)</td>
<td>5.8 (0.4)</td>
<td>5.5 (0.15)</td>
<td>5.3 (0.07)</td>
<td>5.1 (0.08)</td>
<td>5.02 (0.08)</td>
<td>5.06 (0.04)</td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>4.7 (0.3)</td>
<td>4.43 (0.12)</td>
<td>4.22 (0.47)</td>
<td>4.2 (0.05)</td>
<td>4.12 (0.02)</td>
<td>4.2 (0.02)</td>
</tr>
<tr>
<td>C [%]</td>
<td>1.6 (0.16)</td>
<td>1.0 (0.15)</td>
<td>0.71 (0.09)</td>
<td>0.47 (0.03)</td>
<td>0.37 (0.06)</td>
<td>0.22 (0.01)</td>
</tr>
<tr>
<td>N [%]</td>
<td>0.12 (0.03)</td>
<td>0.10 (0.03)</td>
<td>0.09 (0.03)</td>
<td>0.08 (0.03)</td>
<td>0.08 (0.03)</td>
<td>0.06 (0.02)</td>
</tr>
<tr>
<td>C/N</td>
<td>14.8 (3.8)</td>
<td>13 (4.8)</td>
<td>10.8 (3.4)</td>
<td>8.5 (3.1)</td>
<td>7.25 (2.56)</td>
<td>5.4 (1.32)</td>
</tr>
<tr>
<td>P [ppm]</td>
<td>5 (0.4)</td>
<td>2.5 (0.3)</td>
<td>1.5 (0.29)</td>
<td>1.25 (0.25)</td>
<td>1.25 (0.25)</td>
<td>1.2 (0.2)</td>
</tr>
<tr>
<td>Ca++ [mval/100g]*</td>
<td>2.78 (0.51)</td>
<td>1.22 (0.41)</td>
<td>0.52 (0.09)</td>
<td>0.45 (0.1)</td>
<td>0.38 (0.08)</td>
<td>0.34 (0.08)</td>
</tr>
<tr>
<td>Mg++ [mval/100g]</td>
<td>1.225 (0.232)</td>
<td>0.82 (0.02)</td>
<td>0.63 (0.03)</td>
<td>0.8 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K+ [mval/100g]</td>
<td>0.078 (0.011)</td>
<td>0.04 (0.01)</td>
<td>0.02 (0.003)</td>
<td>0.04 (0.03)</td>
<td>0.02 (0.01)</td>
<td>0.01 (0.00)</td>
</tr>
<tr>
<td>Na+ [mval/100g]</td>
<td>0.04 (0.01)</td>
<td>0.03 (0.00)</td>
<td>0.01 (0.00)</td>
<td>0.02 (0.00)</td>
<td>0.02 (0.00)</td>
<td>0.02 (0.00)</td>
</tr>
<tr>
<td>Al+++ [mval/100g]</td>
<td>0.05 (0.05)</td>
<td>0.10 (0.10)</td>
<td>0.48 (0.12)</td>
<td>0.82 (0.06)</td>
<td>1.00 (0.10)</td>
<td>0.84 (0.07)</td>
</tr>
<tr>
<td>H+ [mval/100g]</td>
<td>3.22 (0.25)</td>
<td>3.00 (0.40)</td>
<td>2.70 (0.37)</td>
<td>2.48 (0.29)</td>
<td>2.05 (0.19)</td>
<td>1.46 (0.11)</td>
</tr>
<tr>
<td>Ak [mval/100g]</td>
<td>7.40 (0.80)</td>
<td>5.20 (0.80)</td>
<td>4.20 (0.50)</td>
<td>4.00 (0.40)</td>
<td>3.45 (0.22)</td>
<td>2.64 (0.09)</td>
</tr>
<tr>
<td>Ake [mval/g]</td>
<td>4.10 (0.64)</td>
<td>2.12 (0.44)</td>
<td>1.00 (0.19)</td>
<td>0.70 (0.20)</td>
<td>0.40 (0.06)</td>
<td>0.34 (0.07)</td>
</tr>
<tr>
<td>Basensättigung [%]</td>
<td>54.8 (3.6)</td>
<td>40.0 (4.1)</td>
<td>24.0 (4.1)</td>
<td>16.2 (3.3)</td>
<td>11.8 (2.2)</td>
<td>13.2 (3.0)</td>
</tr>
<tr>
<td>Zn [ppm]</td>
<td>0.28 (0.06)</td>
<td>0.21 (0.07)</td>
<td>0.15 (0.01)</td>
<td>0.30 (0.10)</td>
<td>0.34 (0.17)</td>
<td>0.28 (0.14)</td>
</tr>
<tr>
<td>Cu [ppm]</td>
<td>0.02 (0.00)</td>
<td>0.01 (0.00)</td>
<td>0.04 (0.02)</td>
<td>0.02 (0.00)</td>
<td>0.04 (0.03)</td>
<td></td>
</tr>
<tr>
<td>Mn [ppm]</td>
<td>4.79 (0.78)</td>
<td>1.86 (0.49)</td>
<td>0.44 (0.08)</td>
<td>0.21 (0.06)</td>
<td>0.31 (0.03)</td>
<td>0.43 (0.06)</td>
</tr>
</tbody>
</table>

* leere Zellen = Ca++ und Mg++ wurden zusammen bestimmt
Tab. 53: Physikalische und chemische Eckdaten des Bodens der Untersuchungsfläche M4 für Bodentiefen von 0 bis 100 cm (es sind die Mittelwerte aus 6 Mischproben je Bodentiefe mit dem Standardfehler angegeben)

<table>
<thead>
<tr>
<th>Bodentiefe [%]</th>
<th>0-5</th>
<th>5-10</th>
<th>10-20</th>
<th>20-40</th>
<th>40-60</th>
<th>60-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grobsand [%]</td>
<td>48.0 (0.0)</td>
<td>44.0 (1.0)</td>
<td>37.3 (1.8)</td>
<td>38.0 (0.0)</td>
<td>36.0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Feinsand [%]</td>
<td>36.0 (0.0)</td>
<td>39.0 (0.0)</td>
<td>37.3 (0.3)</td>
<td>36.0 (0.0)</td>
<td>35.5 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Schluff [%]</td>
<td>6.0 (0.0)</td>
<td>7.0 (0.0)</td>
<td>6.3 (1.4)</td>
<td>7.0 (0.0)</td>
<td>5.0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Ton [%]</td>
<td>10.0 (0.0)</td>
<td>10.0 (1.0)</td>
<td>19.0 (2.5)</td>
<td>19.0 (0.0)</td>
<td>23.5 (0.5)</td>
<td></td>
</tr>
<tr>
<td>pH (H2O)</td>
<td>5.5 (0.0)</td>
<td>5.5 (0.2)</td>
<td>4.97 (0.12)</td>
<td>4.95 (0.15)</td>
<td>4.95 (0.15)</td>
<td></td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>4.5 (0.0)</td>
<td>4.4 (0.1)</td>
<td>4.13 (0.03)</td>
<td>4.15 (0.05)</td>
<td>4.2 (0.1)</td>
<td></td>
</tr>
<tr>
<td>C [%]</td>
<td>1.30 (0.08)</td>
<td>0.84 (0.08)</td>
<td>0.60 (0.02)</td>
<td>0.42 (0.06)</td>
<td>0.34 (0.02)</td>
<td>0.29 (0.01)</td>
</tr>
<tr>
<td>N [%]</td>
<td>0.08 (0.01)</td>
<td>0.06 (0.01)</td>
<td>0.05 (0.00)</td>
<td>0.04 (0.00)</td>
<td>0.04 (0.01)</td>
<td>0.04 (0.01)</td>
</tr>
<tr>
<td>C/N</td>
<td>15.0 (0.0)</td>
<td>15.0 (4.0)</td>
<td>12.0 (0.0)</td>
<td>11.3 (0.9)</td>
<td>9.5 (0.5)</td>
<td>8.0 (1.0)</td>
</tr>
<tr>
<td>P [mg/100g]</td>
<td>4.0 (0.0)</td>
<td>2.0 (0.0)</td>
<td>2.0 (0.0)</td>
<td>2.3 (0.3)</td>
<td>2.0 (0.0)</td>
<td>2.0 (0.0)</td>
</tr>
<tr>
<td>Ca** [mval/100g]*</td>
<td>2.00 (0.40)</td>
<td>1.00 (0.20)</td>
<td>0.45 (0.15)</td>
<td>0.43 (0.18)</td>
<td>0.35 (0.15)</td>
<td>0.35 (0.15)</td>
</tr>
<tr>
<td>Mg** [mval/100g]</td>
<td>1.10 (0.00)</td>
<td>0.60 (0.00)</td>
<td>0.85 (0.05)</td>
<td>0.60 (0.00)</td>
<td>0.85 (0.05)</td>
<td></td>
</tr>
<tr>
<td>K+ [mval/100g]</td>
<td>0.06 (0.01)</td>
<td>0.04 (0.01)</td>
<td>0.02 (0.01)</td>
<td>0.01 (0.00)</td>
<td>0.01 (0.00)</td>
<td>0.01 (0.00)</td>
</tr>
<tr>
<td>Na+ [mval/100g]</td>
<td>0.05 (0.00)</td>
<td>0.03 (0.00)</td>
<td>0.04 (0.01)</td>
<td>0.03 (0.00)</td>
<td>0.02 (0.01)</td>
<td>0.02 (0.01)</td>
</tr>
<tr>
<td>Al+++ [mval/100g]</td>
<td>0.10 (0.10)</td>
<td>0.10 (0.10)</td>
<td>0.10 (0.10)</td>
<td>0.60 (0.11)</td>
<td>0.60 (0.20)</td>
<td>0.60 (0.20)</td>
</tr>
<tr>
<td>H+ [mval/100g]</td>
<td>3.40 (0.20)</td>
<td>2.45 (0.05)</td>
<td>2.10 (0.10)</td>
<td>2.00 (0.11)</td>
<td>2.20 (0.00)</td>
<td>1.80 (0.00)</td>
</tr>
<tr>
<td>Ak [mval/100g]</td>
<td>6.70 (0.50)</td>
<td>4.25 (0.15)</td>
<td>3.55 (0.05)</td>
<td>3.03 (0.17)</td>
<td>3.15 (0.05)</td>
<td>2.75 (0.05)</td>
</tr>
<tr>
<td>Ake [mval/100g]</td>
<td>3.20 (0.40)</td>
<td>1.70 (0.20)</td>
<td>1.35 (0.15)</td>
<td>0.43 (0.18)</td>
<td>0.35 (0.15)</td>
<td>0.35 (0.15)</td>
</tr>
<tr>
<td>Basensättigung [%]</td>
<td>47.5 (2.5)</td>
<td>39.5 (3.5)</td>
<td>37.5 (4.5)</td>
<td>13.7 (5.2)</td>
<td>11.0 (5.0)</td>
<td>12.5 (5.5)</td>
</tr>
<tr>
<td>Zn [ppm]</td>
<td>0.21 (0.03)</td>
<td>0.10 (0.01)</td>
<td>0.18 (0.09)</td>
<td>0.15 (0.07)</td>
<td>0.14 (0.06)</td>
<td>0.11 (0.01)</td>
</tr>
<tr>
<td>Cu [ppm]</td>
<td>0.01 (0.00)</td>
<td>0.02 (0.01)</td>
<td>0.01 (0.00)</td>
<td>0.01 (0.00)</td>
<td>0.01 (0.00)</td>
<td>0.01 (0.00)</td>
</tr>
<tr>
<td>Mn [ppm]</td>
<td>2.45 (0.21)</td>
<td>1.14 (0.22)</td>
<td>0.39 (0.24)</td>
<td>0.18 (0.06)</td>
<td>0.12 (0.02)</td>
<td>0.17 (0.00)</td>
</tr>
</tbody>
</table>

* leere Zellen = Ca** und Mg** wurden zusammen bestimmt
Tab. 54: Physikalische und chemische Eckdaten des Bodens der Untersuchungsfläche M5 für die Bodentiefen von 0 bis 100 cm (es sind die Mittelwerte aus 6 Mischproben je Bodentiefe mit σ angegeben)

<table>
<thead>
<tr>
<th>Bodentiefe [%]</th>
<th>0-5</th>
<th>5-10</th>
<th>10-20</th>
<th>20-40</th>
<th>40-60</th>
<th>60-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grobsand [%]</td>
<td>84.0 (0)</td>
<td>79.0 (0)</td>
<td>81.5 (0.5)</td>
<td>74.5 (0.5)</td>
<td>69.5 (1.5)</td>
<td>67.0 (0)</td>
</tr>
<tr>
<td>Feinsand [%]</td>
<td>12.0 (0)</td>
<td>16.0 (0)</td>
<td>12.5 (1.5)</td>
<td>17.5 (0.5)</td>
<td>19.5 (1.5)</td>
<td>19.0 (1.0)</td>
</tr>
<tr>
<td>Schluff [%]</td>
<td>1.0 (0)</td>
<td>2.0 (0)</td>
<td>1.0 (0.0)</td>
<td>2.5 (0.5)</td>
<td>4.0 (0.0)</td>
<td>3.0 (1.0)</td>
</tr>
<tr>
<td>Ton [%]</td>
<td>0.0 (0)</td>
<td>3.0 (0)</td>
<td>5.0 (1.0)</td>
<td>5.5 (0.5)</td>
<td>7.0 (0.0)</td>
<td>11.0 (0)</td>
</tr>
<tr>
<td>pH (H2O)</td>
<td>5.4 (0)</td>
<td>5.6 (0)</td>
<td>5.6 (0.3)</td>
<td>5.4 (0.2)</td>
<td>5.2 (0.1)</td>
<td>5.0 (0.1)</td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>4.6 (0)</td>
<td>4.5 (0)</td>
<td>4.5 (0.3)</td>
<td>4.4 (0.2)</td>
<td>4.2 (0.1)</td>
<td>4.3 (0.0)</td>
</tr>
<tr>
<td>C [%]</td>
<td>0.60 (0.02)</td>
<td>0.56 (0.02)</td>
<td>0.57 (0.07)</td>
<td>0.44 (0.04)</td>
<td>0.28 (0.01)</td>
<td>0.22 (0.00)</td>
</tr>
<tr>
<td>N [%]</td>
<td>0.10 (0.01)</td>
<td>0.09 (0.00)</td>
<td>0.10 (0.00)</td>
<td>0.08 (0.01)</td>
<td>0.08 (0.01)</td>
<td>0.08 (0.02)</td>
</tr>
<tr>
<td>C/N</td>
<td>6.0 (0)</td>
<td>6.0 (0)</td>
<td>5.5 (0.5)</td>
<td>5.0 (0.0)</td>
<td>3.5 (0.5)</td>
<td>3.5 (0.5)</td>
</tr>
<tr>
<td>P [ppm]</td>
<td>2.5 (0.5)</td>
<td>2.5 (0.5)</td>
<td>3.0 (0.0)</td>
<td>4.0 (0.0)</td>
<td>2.5 (0.5)</td>
<td>2.0 (0.0)</td>
</tr>
<tr>
<td>Ca** [mval/100g]*</td>
<td>0.75 (0.15)</td>
<td>0.4 (0)</td>
<td>0.3 (0.1)</td>
<td>0.45 (0.05)</td>
<td>0.3 (0.1)</td>
<td>0.2 (0.00)</td>
</tr>
<tr>
<td>Mg** [mval/100g]</td>
<td>0.85 (0.25)</td>
<td>1.00 (0.30)</td>
<td>0.70 (0.00)</td>
<td>0.70 (0.00)</td>
<td>0.70 (0.00)</td>
<td>0.70 (0.00)</td>
</tr>
<tr>
<td>K⁺ [mval/100g]</td>
<td>0.03 (0.00)</td>
<td>0.02 (0.00)</td>
<td>0.02 (0.00)</td>
<td>0.02 (0.00)</td>
<td>0.01 (0.00)</td>
<td>0.01 (0.00)</td>
</tr>
<tr>
<td>Na⁺ [mval/100g]</td>
<td>0.04 (0.02)</td>
<td>0.02 (0.01)</td>
<td>0.01 (0.00)</td>
<td>0.02 (0.00)</td>
<td>0.02 (0.01)</td>
<td>0.02 (0.01)</td>
</tr>
<tr>
<td>Al³⁺ [mval/100g]</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
<td>0.10 (0.10)</td>
<td>0.10 (0.10)</td>
<td>0.45 (0.05)</td>
<td>0.45 (0.05)</td>
</tr>
<tr>
<td>H⁺ [mval/100g]</td>
<td>1.60 (0.20)</td>
<td>1.20 (0.20)</td>
<td>1.10 (0.10)</td>
<td>1.30 (0.10)</td>
<td>1.25 (0.25)</td>
<td>1.40 (0.10)</td>
</tr>
<tr>
<td>Ak [mval/100g]</td>
<td>3.25 (0.35)</td>
<td>2.60 (0.10)</td>
<td>2.20 (0.10)</td>
<td>2.20 (0.10)</td>
<td>2.00 (0.20)</td>
<td>2.05 (0.15)</td>
</tr>
<tr>
<td>Ake [mval/g]</td>
<td>1.65 (0.15)</td>
<td>1.40 (0.30)</td>
<td>1.00 (0.10)</td>
<td>0.80 (0.30)</td>
<td>0.30 (0.10)</td>
<td>0.2 (0.00)</td>
</tr>
<tr>
<td>Basensättigung [%]</td>
<td>51.0 (1.0)</td>
<td>53.5 (9.5)</td>
<td>45.5 (6.5)</td>
<td>36.0 (12.0)</td>
<td>15.5 (6.5)</td>
<td>9.5 (0.5)</td>
</tr>
<tr>
<td>Zn [ppm]</td>
<td>0.10 (0.01)</td>
<td>0.06 (0.02)</td>
<td>0.04 (0.02)</td>
<td>0.15 (0.07)</td>
<td>0.08 (0.03)</td>
<td>0.08 (0.02)</td>
</tr>
<tr>
<td>Cu [ppm]</td>
<td>0.01 (0.00)</td>
<td>0.01 (0.00)</td>
<td>0.01 (0.00)</td>
<td>0.01 (0.00)</td>
<td>0.01 (0.00)</td>
<td>0.01 (0.00)</td>
</tr>
<tr>
<td>Mn [ppm]</td>
<td>1.55 (0.06)</td>
<td>1.25 (0.41)</td>
<td>0.80 (0.12)</td>
<td>0.78 (0.10)</td>
<td>0.64 (0.19)</td>
<td>0.48 (0.08)</td>
</tr>
</tbody>
</table>

* leere Zellen = Ca** und Mg** wurden zusammen bestimmt
Tab. 55: Physikalische und chemische Eckdaten des Bodens der Untersuchungsfläche S2 für die Bodentiefen von 0 bis 100 cm (es sind die Mittelwerte aus 6 Mischproben je Bodentiefe mit dem Standardfehler angegeben)

<table>
<thead>
<tr>
<th>Bodentiefe [%]</th>
<th>0-10</th>
<th>10-20</th>
<th>20-40</th>
<th>40-60</th>
<th>60-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grobsand [%]</td>
<td>5.1</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
<td>5.3</td>
</tr>
<tr>
<td>Feinsand [%]</td>
<td>4.0</td>
<td>4.1</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Schluff [%]</td>
<td>0.87</td>
<td>0.58</td>
<td>0.37</td>
<td>0.25</td>
<td>0.20</td>
</tr>
<tr>
<td>Ton [%]</td>
<td>0.12</td>
<td>0.08</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>pH (H$_2$O)</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C [%]</td>
<td>0.87</td>
<td>0.58</td>
<td>0.37</td>
<td>0.25</td>
<td>0.20</td>
</tr>
<tr>
<td>N [%]</td>
<td>0.12</td>
<td>0.08</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>C/N</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>P [ppm]</td>
<td>0.60</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.50</td>
</tr>
<tr>
<td>Ca$^{++}$ [mval/100g]</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.50</td>
</tr>
<tr>
<td>Mg$^{++}$ [mval/100g]</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>K$^+$ [mval/100g]</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Na$^+$ [mval/100g]</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Al$^{+++}$ [mval/100g]</td>
<td>0.60</td>
<td>0.70</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>H$^+$ [mval/100g]</td>
<td>3.20</td>
<td>3.00</td>
<td>1.70</td>
<td>1.50</td>
<td>1.20</td>
</tr>
<tr>
<td>Ak [mval/100g]</td>
<td>4.90</td>
<td>4.40</td>
<td>2.80</td>
<td>2.60</td>
<td>2.10</td>
</tr>
<tr>
<td>Ake [mval/g]</td>
<td>1.10</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.50</td>
</tr>
<tr>
<td>Basensättigung [%]</td>
<td>22</td>
<td>16</td>
<td>25</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>Zn [ppm]</td>
<td>0.45</td>
<td>0.40</td>
<td>0.40</td>
<td>0.45</td>
<td>0.26</td>
</tr>
<tr>
<td>Cu [ppm]</td>
<td>0.001</td>
<td>0.001</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>Mn [ppm]</td>
<td>2.09</td>
<td>1.24</td>
<td>1.07</td>
<td>0.62</td>
<td>0.20</td>
</tr>
</tbody>
</table>

* leere Zellen = Ca$^{++}$ und Mg$^{++}$ wurden zusammen bestimmt
Tab. 56: Physikalische und chemische Eckdaten des Bodens der Untersuchungsfläche S4 für die Bodentiefen von 0 bis 100 cm (es sind die Mittelwerte aus 6 Mischproben je Bodentiefe mit dem Standardfehler angegeben, durch Werte von U. Diekmann ergänzt)

<table>
<thead>
<tr>
<th>Bodentiefe [%]</th>
<th>0-10</th>
<th>10-20</th>
<th>20-40</th>
<th>40-60</th>
<th>60-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grobsand [%]</td>
<td>66.1</td>
<td>56.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feinsand [%]</td>
<td>20.1</td>
<td>23.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schluff [%]</td>
<td>3.6</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ton [%]</td>
<td>10.1</td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH (H₂O)</td>
<td>5.8</td>
<td>5.2</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>4.6</td>
<td>4.02</td>
<td>4.0</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>C [%]</td>
<td>1.02</td>
<td>0.64</td>
<td>0.43</td>
<td>0.34</td>
<td>0.29</td>
</tr>
<tr>
<td>N [%]</td>
<td>0.09</td>
<td>0.08</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>C/N</td>
<td>11</td>
<td>8.03</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>P [ppm]</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ca++ [mval/100g]</td>
<td>1.5</td>
<td>0.53</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Mg++ [mval/100g]</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K⁺ [mval/100g]</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Na⁺ [mval/100g]</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Al+++ [mval/100g]</td>
<td>0.00</td>
<td>0.23</td>
<td>1.00</td>
<td>1.20</td>
<td>1.00</td>
</tr>
<tr>
<td>H⁺ [mval/100g]</td>
<td>2.7</td>
<td>2.87</td>
<td>2.20</td>
<td>2.00</td>
<td>1.70</td>
</tr>
<tr>
<td>Ak [mval/100g]</td>
<td>4.60</td>
<td>3.70</td>
<td>3.60</td>
<td>4.10</td>
<td>3.10</td>
</tr>
<tr>
<td>Ake [mval/100g]</td>
<td>1.91</td>
<td>0.69</td>
<td>0.40</td>
<td>0.90</td>
<td>0.40</td>
</tr>
<tr>
<td>Basensättigung [%]</td>
<td>41.7</td>
<td>16.2</td>
<td>11</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>Zn [ppm]</td>
<td>0.37</td>
<td>0.41</td>
<td>0.37</td>
<td>0.38</td>
<td>0.40</td>
</tr>
<tr>
<td>Cu [ppm]</td>
<td>0.001</td>
<td>0.001</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Mn [ppm]</td>
<td>2.25</td>
<td>0.50</td>
<td>0.28</td>
<td>0.25</td>
<td>0.33</td>
</tr>
</tbody>
</table>

* leere Zellen = Ca++ und Mg++ wurden zusammen bestimmt
Tab. 57: Physikalische und chemische Eckdaten des Bodens der Untersuchungsfläche S6 für die Bodentiefen von 0 bis 100 cm (es sind die Mittelwerte aus 6 Mischproben je Bodentiefe mit dem Standardfehler angegeben. durch Werte von U. Diekmann ergänzt)

<table>
<thead>
<tr>
<th>Bodentiefe [%]</th>
<th>0-5</th>
<th>0-10</th>
<th>10-20</th>
<th>20-40</th>
<th>40-60</th>
<th>60-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grobsand [%]</td>
<td>45.1</td>
<td>28.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feinsand [%]</td>
<td>39</td>
<td>41.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schluff [%]</td>
<td>5.6</td>
<td>7.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ton [%]</td>
<td>10.3</td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH (H2O)</td>
<td>5.2</td>
<td>5.5</td>
<td>5.2</td>
<td>5.0</td>
<td>5.1</td>
<td>5.0</td>
</tr>
<tr>
<td>pH (KCl)</td>
<td>4.1</td>
<td>4.3</td>
<td>4.1</td>
<td>4.2</td>
<td>4.3</td>
<td>4.2</td>
</tr>
<tr>
<td>C [%]</td>
<td>1.11</td>
<td>1.12</td>
<td>0.72</td>
<td>0.46</td>
<td>0.33</td>
<td>0.22</td>
</tr>
<tr>
<td>N [%]</td>
<td>0.08</td>
<td>0.11</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>C/N</td>
<td>14</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>P [ppm]</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ca++ [mval/100g]*</td>
<td>0.80</td>
<td>1.21</td>
<td>0.40</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Mg++ [mval/100g]</td>
<td>0.40</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K+ [mval/100g]</td>
<td>0.04</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Na+ [mval/100g]</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Al+++ [mval/100g]</td>
<td>0.40</td>
<td>0.70</td>
<td>0.40</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>H+ [mval/100g]</td>
<td>3.30</td>
<td>3.2</td>
<td>2.90</td>
<td>2.20</td>
<td>1.50</td>
<td>1.20</td>
</tr>
<tr>
<td>Ak [mval/100g]</td>
<td>5.00</td>
<td>4.90</td>
<td>3.75</td>
<td>3.20</td>
<td>2.50</td>
<td>2.20</td>
</tr>
<tr>
<td>Ake [mval/g]</td>
<td>1.30</td>
<td>1.70</td>
<td>0.43</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Basensättigung [%]</td>
<td>26</td>
<td>34</td>
<td>11</td>
<td>4</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Zn [ppm]</td>
<td>0.43</td>
<td>0.59</td>
<td>0.27</td>
<td>0.54</td>
<td>0.55</td>
<td>0.22</td>
</tr>
<tr>
<td>Cu [ppm]</td>
<td>0.001</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>Mn [ppm]</td>
<td>1.65</td>
<td>0.55</td>
<td>0.19</td>
<td>0.19</td>
<td>0.20</td>
<td>0.28</td>
</tr>
</tbody>
</table>

* leere Zellen = Ca++ und Mg++ wurden zusammen bestimmt
Tab. 58: Liste aller beprobten Arten, ihre Familienzugehörigkeit, Wuchsform und Zuordnung zu den Abkürzungen

<table>
<thead>
<tr>
<th>wissenschaftlicher Name</th>
<th>Familie</th>
<th>Abk.</th>
<th>Trivialname</th>
<th>Wuchsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abarema jupunba (WILLD.) BRITTON and KILLIP</td>
<td>Mimosaceae</td>
<td>Aj</td>
<td>Saboueira</td>
<td>Baum, bis 35m</td>
</tr>
<tr>
<td>Aegiphila racemosa (VELL)</td>
<td>Verbenaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagassa guianensis</td>
<td>Moraceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banara guianensis AUBL.</td>
<td>Flacourtiaceae</td>
<td>Ban</td>
<td>Quebra faca</td>
<td>Baum, bis 12m</td>
</tr>
<tr>
<td>Bauhinia spp.</td>
<td>Caesalpiniaceae</td>
<td>Bau</td>
<td>Unha da vaca</td>
<td>Kletterpflanze</td>
</tr>
<tr>
<td>Bombax longipedicellatum (ROBYS) DUCKE</td>
<td>Bombacaceae</td>
<td>Bl</td>
<td></td>
<td>Baum, bis 35m</td>
</tr>
<tr>
<td>Casearia arborea</td>
<td>Flacourtiaceae</td>
<td>Ca</td>
<td></td>
<td>Baum, bis 10m</td>
</tr>
<tr>
<td>Cassia apoucoulta AUBL.</td>
<td>Caesalpiniaceae</td>
<td>Cap</td>
<td>Coração de negro</td>
<td>Baum, bis 30m</td>
</tr>
<tr>
<td>Cassia chrysoacarpa DESV.</td>
<td>Caesalpiniaceae</td>
<td>Cc</td>
<td>holzige Kletterpflanze</td>
<td></td>
</tr>
<tr>
<td>Cordia exaltata (KTZE) LAM.</td>
<td>Boraginaceae</td>
<td>Ce</td>
<td>Chapeau de sol</td>
<td>Baum</td>
</tr>
<tr>
<td>Croton matourensis (AUBL.)</td>
<td>Euphorbiaceae</td>
<td>Cm</td>
<td>Maravuva</td>
<td>Baum, bis 25m</td>
</tr>
<tr>
<td>Cordia nodosa (KTZE) LAM.</td>
<td>Boraginaceae</td>
<td>Cn</td>
<td>Pau de formiga</td>
<td>Baum, bis 10m</td>
</tr>
<tr>
<td>Connaraceae (D.C.) PLANCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desmodium bracteata</td>
<td>Fabaceae</td>
<td></td>
<td></td>
<td>Kraut</td>
</tr>
<tr>
<td>Diperyx odorata</td>
<td>Fabaceae</td>
<td></td>
<td></td>
<td>Baum,</td>
</tr>
<tr>
<td>Guatteria poepiggiana MART.</td>
<td>Annonaceae</td>
<td>Gp</td>
<td></td>
<td>Baum</td>
</tr>
<tr>
<td>Homalium guianensis AUBL. OKEN</td>
<td>Flacourtiaceae</td>
<td>Hg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inga gracidolia</td>
<td>Mimosaceae</td>
<td>Ig</td>
<td></td>
<td>Baum</td>
</tr>
<tr>
<td>Inga alba (SW) WILLD.</td>
<td>Mimosaceae</td>
<td>Ina</td>
<td>Ingá vermelha</td>
<td>Baum, bis 15m</td>
</tr>
<tr>
<td>Inga edulis MART.</td>
<td>Mimosaceae</td>
<td>Ine</td>
<td>Ingá cipó</td>
<td>Baum, bis 30m</td>
</tr>
<tr>
<td>Inga heterophylla WILLD.</td>
<td>Mimosaceae</td>
<td>Inh</td>
<td>Inga xixica</td>
<td>Baum, bis 12m</td>
</tr>
<tr>
<td>Inga macrophylla H.B.K.</td>
<td>Mimosaceae</td>
<td>Inm</td>
<td></td>
<td>Baum, bis 15m</td>
</tr>
<tr>
<td>Inga nitida WILLD.</td>
<td>Mimosaceae</td>
<td>Inn</td>
<td></td>
<td>Baum</td>
</tr>
<tr>
<td>Inga rubiginosa</td>
<td>Mimosaceae</td>
<td>Inr</td>
<td>Ingá peludá</td>
<td>Baum, bis 25m</td>
</tr>
<tr>
<td>Inga thibaudi ana DC</td>
<td>Mimosaceae</td>
<td>Int</td>
<td>Ingá xixi</td>
<td>Baum, bis 25m</td>
</tr>
<tr>
<td>Lacistema pubescens</td>
<td>Lacistemataceae</td>
<td>Lac</td>
<td>Caferana</td>
<td>Baum, bis 10m</td>
</tr>
<tr>
<td>Lecythis lurida (MIERS.) MORI</td>
<td>Lecythidaceae</td>
<td>LJ</td>
<td>Jarana</td>
<td>Baum, bis 10m</td>
</tr>
<tr>
<td>Mabea angustifolia</td>
<td>Euphorbiaceae</td>
<td>Ma</td>
<td></td>
<td>Bäumchen</td>
</tr>
<tr>
<td>Memora allamandiflora (BENTH.) BUR. + K. SCHUM.</td>
<td>Bignoniaceae</td>
<td>Mal</td>
<td></td>
<td>Kraut</td>
</tr>
<tr>
<td>Myrcia bracteata (L.C.RICH) DC.</td>
<td>Myrtaceae</td>
<td>Mb</td>
<td>Murta-cabeluda</td>
<td>Baum</td>
</tr>
<tr>
<td>Myrcia caprea (BERG) KIAERS</td>
<td>Myrtaceae</td>
<td></td>
<td></td>
<td>Baum</td>
</tr>
<tr>
<td>Myrcia sylvatica (MEY) DC.</td>
<td>Myrtaceae</td>
<td>Ms</td>
<td>Murta</td>
<td>Baum, bis 6m</td>
</tr>
<tr>
<td>Myrcia deflexa (POIR) DC.</td>
<td>Myrtaceae</td>
<td>Myd</td>
<td>Murta</td>
<td>Baum, bis 20m</td>
</tr>
<tr>
<td>Macaerium quinata (AUBL.) SANDW.</td>
<td>Fabaceae</td>
<td>Mq</td>
<td></td>
<td>Strauch</td>
</tr>
<tr>
<td>Nectandra cuspitata (MART.ex NEES) MEZ</td>
<td>Lauraceae</td>
<td>Nc</td>
<td>Louro preto</td>
<td>Baum, bis 30m</td>
</tr>
<tr>
<td>Ocotea guianensis AUBL.</td>
<td>Lauraceae</td>
<td>Oc</td>
<td>Louro prata</td>
<td>Baum, bis 25m</td>
</tr>
<tr>
<td>Rollinia exsulca</td>
<td>Annonaceae</td>
<td></td>
<td>Envira preta</td>
<td>Baum, bis 15m</td>
</tr>
<tr>
<td>Rourea sp.</td>
<td>Connaraceae</td>
<td>Rs</td>
<td>holzige Kletterpflanze</td>
<td></td>
</tr>
<tr>
<td>Selaginella stellaria</td>
<td>Selaginellaceae</td>
<td></td>
<td></td>
<td>Kraut</td>
</tr>
<tr>
<td>Solanum caurvana VELL</td>
<td>Solanaceae</td>
<td></td>
<td></td>
<td>Strauch</td>
</tr>
<tr>
<td>Solanum crinitum LAM.</td>
<td>Solanaceae</td>
<td>Sc</td>
<td>Baumstrauch, bis 5m</td>
<td></td>
</tr>
<tr>
<td>Sloanea guianensis (AUBL.) BENTH.</td>
<td>Elaeocarpaceae</td>
<td>Sg</td>
<td></td>
<td>Baum</td>
</tr>
<tr>
<td>Simaba cedron PLANCK</td>
<td>Simaroubaceae</td>
<td>Sic</td>
<td>Jurubebá</td>
<td>Bäumchen</td>
</tr>
<tr>
<td>Sterculia pruriens</td>
<td>Sterculiaceae</td>
<td></td>
<td></td>
<td>Kraut</td>
</tr>
<tr>
<td>Tapirira guianensis AUBL.</td>
<td>Anacardiaceae</td>
<td>Tap</td>
<td>Tapiririca</td>
<td>Baum, bis 45m</td>
</tr>
<tr>
<td>Trema microthentha (L.) BLUME</td>
<td>Ulmaceae</td>
<td>Tm</td>
<td>Corindiba</td>
<td>Baum, bis 8m</td>
</tr>
<tr>
<td>Thysodium paraeuse HUBER</td>
<td>Anacardiaceae</td>
<td>Tp</td>
<td>Amaparana</td>
<td>Baum, bis 10m</td>
</tr>
<tr>
<td>Vismia guianensis (AUBL.) CHOISY</td>
<td>Gutiferae</td>
<td>Vis</td>
<td>Lacre</td>
<td>Baum, bis 9m</td>
</tr>
</tbody>
</table>
Tab. 59: δ^{15}N-Werte und N-Gehalte in den Blättern der Sekundärvegetation der Bragantina-Region

<table>
<thead>
<tr>
<th>Art</th>
<th>Familie</th>
<th>Trivialname</th>
<th>%N</th>
<th>δ^{15}N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abarea jupunba (WILLD.) BRITTON and KILLIP</td>
<td>Mimosaceae</td>
<td>Saboueira</td>
<td>2.11±0.50</td>
<td>-0.60±0.96</td>
</tr>
<tr>
<td>Banara guianensis AUBL.</td>
<td>Flacourtiaeae</td>
<td>Quebra faca</td>
<td>1.88±0.59</td>
<td>-0.96±1.22</td>
</tr>
<tr>
<td>Bauhinia spp.</td>
<td>Caesalpiniaeae</td>
<td>Unha da vaca</td>
<td>2.62±0.08</td>
<td>5.42±1.45</td>
</tr>
<tr>
<td>Bombax longipedicellatum (ROBYNS) DUCKE</td>
<td>Bombacaea</td>
<td>1.22±0.32</td>
<td>-1.43±0.91</td>
<td></td>
</tr>
<tr>
<td>Casearia arborea</td>
<td>Flacourtiaeae</td>
<td>1.45±0.93</td>
<td>0.42±1.33</td>
<td></td>
</tr>
<tr>
<td>Cassia apuacuaita AUBL.</td>
<td>Caesalpiniaeae</td>
<td>Coração de negro</td>
<td>1.29±0.35</td>
<td>-1.13±1.07</td>
</tr>
<tr>
<td>Cassia chrysocarpa DESV.</td>
<td>Caesalpiniaeae</td>
<td>1.45±0.93</td>
<td>0.42±1.33</td>
<td></td>
</tr>
<tr>
<td>Cordia exaltata (KTZE) LAM.</td>
<td>Boraginiaeae</td>
<td>Chapeau de sol</td>
<td>1.82±0.69</td>
<td>0.1±1.46</td>
</tr>
<tr>
<td>Croton matourensis (AUBL.)</td>
<td>Euphorbiacae</td>
<td>Maravuvuia</td>
<td>2.14±0.60</td>
<td>0.17±0.80</td>
</tr>
<tr>
<td>Guatteria poeppigiana MART.</td>
<td>Annonaceae</td>
<td>1.79±0.70</td>
<td>-1.22±1.80</td>
<td></td>
</tr>
<tr>
<td>Homalium guianensis AUBL.OKEN</td>
<td>Flacourtiaeae</td>
<td>1.77±0.86</td>
<td>-0.17±1.34</td>
<td></td>
</tr>
<tr>
<td>Hymenaea parviflora HABER</td>
<td>Fabacaeae</td>
<td>Jutaí-mirim</td>
<td>2.36±0.06</td>
<td>2.30±1.48</td>
</tr>
<tr>
<td>Inga gracidifolia</td>
<td>Mimosacaeae</td>
<td>2.12±0.08</td>
<td>1.42±1.26</td>
<td></td>
</tr>
<tr>
<td>Inga alba (SW) WILLD.</td>
<td>Mimosacaeae</td>
<td>Ingá vermelha</td>
<td>2.28±0.11</td>
<td>1.54±1.16</td>
</tr>
<tr>
<td>Inga edulis MART.</td>
<td>Mimosacaeae</td>
<td>Ingá cipó</td>
<td>1.52±0.37</td>
<td>-0.51±1.07</td>
</tr>
<tr>
<td>Inga heterophylla WILLD.</td>
<td>Mimosacaeae</td>
<td>Ingá xixica</td>
<td>2.33±0.61</td>
<td>-0.94±0.71</td>
</tr>
<tr>
<td>Inga macrophylla H.B.K.</td>
<td>Mimosacaeae</td>
<td>1.51±0.10</td>
<td>-0.86±0.02</td>
<td></td>
</tr>
<tr>
<td>Inga nitida WILLD.</td>
<td>Mimosacaeae</td>
<td>2.34±0.35</td>
<td>0.66±0.71</td>
<td></td>
</tr>
<tr>
<td>Inga rubiginosa</td>
<td>Mimosacaeae</td>
<td>Ingá peludá</td>
<td>1.91±0.15</td>
<td>0.52±0.19</td>
</tr>
<tr>
<td>Inga thibaudiana DC</td>
<td>Mimosacaeae</td>
<td>Ingá xixí</td>
<td>1.89±0.56</td>
<td>-0.72±0.62</td>
</tr>
<tr>
<td>Lacistema pubescens</td>
<td>Lacistematiaeae</td>
<td>Caferana</td>
<td>1.64±0.50</td>
<td>0.32±1.19</td>
</tr>
<tr>
<td>Lecythis lurida (MIERS.) MORI</td>
<td>Lecythidiaeae</td>
<td>Jarana</td>
<td>1.75±0.56</td>
<td>0.51±1.86</td>
</tr>
<tr>
<td>Mabea angustifolia BENTH.</td>
<td>Euphorbiacaeae</td>
<td>1.96±0.54</td>
<td>-1.16±1.24</td>
<td></td>
</tr>
<tr>
<td>Memora allamandiflora (BENTH.)</td>
<td>Bignoniaceae</td>
<td>1.90±0.43</td>
<td>1.53±1.80</td>
<td></td>
</tr>
<tr>
<td>Memora allamandiflora (BENTH.)</td>
<td>Bignoniaceae</td>
<td>1.90±0.43</td>
<td>1.53±1.80</td>
<td></td>
</tr>
<tr>
<td>Myrcia bracteata (L.C.RICH) DC</td>
<td>Myrtaceae</td>
<td>2.62±0.40</td>
<td>4.69±1.48</td>
<td></td>
</tr>
<tr>
<td>Myrmecia quinata (AUBL.) SANDW.</td>
<td>Fabacaeae</td>
<td>2.43±0.48</td>
<td>0.39±0.48</td>
<td></td>
</tr>
<tr>
<td>Myrcia sylvatica (MEY) DC.</td>
<td>Myrtaceae</td>
<td>Murta</td>
<td>1.25±0.32</td>
<td>-1.03±1.15</td>
</tr>
<tr>
<td>Myrcia deflexa (POIR) DC.</td>
<td>Myrtaceae</td>
<td>Murta</td>
<td>1.55±0.13</td>
<td>0.03±0.94</td>
</tr>
<tr>
<td>Nectandra caupiata (MART.ex NEES) MEZ</td>
<td>Lauraceae</td>
<td>Louro preto</td>
<td>1.37±0.41</td>
<td>-2.93±1.10</td>
</tr>
<tr>
<td>Ocotea guianensis AUBL.</td>
<td>Lauraceae</td>
<td>Louro prata</td>
<td>1.70±0.49</td>
<td>-2.33±1.55</td>
</tr>
<tr>
<td>Rourea sp.</td>
<td>Connaraceae</td>
<td>2.05±0.15</td>
<td>1.20±0.38</td>
<td></td>
</tr>
<tr>
<td>Solanum crinitum LAM.</td>
<td>Solanaceae</td>
<td>2.07±0.47</td>
<td>1.65±1.81</td>
<td></td>
</tr>
<tr>
<td>Sloanea guianensis (AUBL.) BENTH.</td>
<td>Elaeocarpaceaeae</td>
<td>1.34±0.21</td>
<td>-0.40±0.93</td>
<td></td>
</tr>
<tr>
<td>Simaba cedron PLANCK</td>
<td>Simarubaceaeae</td>
<td>Jurubebão</td>
<td>1.18±0.26</td>
<td>-3.00±1.06</td>
</tr>
<tr>
<td>Tapirira guianensis AUBL.</td>
<td>Anacardiaceaeae</td>
<td>Tapiririca</td>
<td>1.14±0.39</td>
<td>-2.13±0.69</td>
</tr>
<tr>
<td>Trema micrantha (L.) BLUME</td>
<td>Ulmaceaeae</td>
<td>Corindiba</td>
<td>2.04±0.65</td>
<td>-0.35±1.10</td>
</tr>
<tr>
<td>Thyrsodium paraense HUBER</td>
<td>Anacardiaceaeae</td>
<td>Amaparana</td>
<td>1.77±0.39</td>
<td>-1.29±0.69</td>
</tr>
<tr>
<td>Vismia guianensis (AUBL.) CHOISY</td>
<td>Guttiferaea</td>
<td>Lacra</td>
<td>1.29±0.38</td>
<td>-1.61±1.49</td>
</tr>
</tbody>
</table>
Tab. 60: Einfluß von kleinräumigem und großräumigem Standortunterschieden und der Bodentiefe auf den Prozentsatz N und δ^{15}N des N$_{tot.}$ des Bodens

<table>
<thead>
<tr>
<th></th>
<th>FG</th>
<th>QS</th>
<th>MQS</th>
<th>F-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptwirkungen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kleine Distanzen</td>
<td>1</td>
<td>1.12</td>
<td>1.12</td>
<td>1.98 n.s.</td>
</tr>
<tr>
<td>Fläche</td>
<td>4</td>
<td>15.42</td>
<td>3.85</td>
<td>6.79***</td>
</tr>
<tr>
<td>Bodentiefe</td>
<td>5</td>
<td>279.74</td>
<td>55.95</td>
<td>98.48***</td>
</tr>
<tr>
<td>Wechselwirkungen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kleine Distanz x Fläche</td>
<td>4</td>
<td>10.04</td>
<td>2.51</td>
<td>4.42**</td>
</tr>
<tr>
<td>kleine Distanz x Bodentiefe</td>
<td>5</td>
<td>1.77</td>
<td>0.35</td>
<td>0.62 n.s.</td>
</tr>
<tr>
<td>Fläche x Bodentiefe</td>
<td>20</td>
<td>15.59</td>
<td>0.78</td>
<td>1.37 n.s.</td>
</tr>
<tr>
<td>kl.Distanz x Fläche x Bodentiefe</td>
<td>20</td>
<td>12.69</td>
<td>0.63</td>
<td>1.12 n.s.</td>
</tr>
<tr>
<td>Residuen</td>
<td>126</td>
<td>71.58</td>
<td>0.56</td>
<td>0.56 0.009</td>
</tr>
<tr>
<td>Total</td>
<td>185</td>
<td>407.96</td>
<td>10.51</td>
<td>0.56 0.009</td>
</tr>
</tbody>
</table>
Tab. 61: Kleinräumige Unterschiede in den δ^{15}N-Werten und N-Gehalten der Böden von Fläche M1 bis M5 (Leg. = Boden unter einer Leguminose, Ref. = Boden unter Referenzpflanzen im 5m Radius um die Leguminose herum, es ist das arithmetische Mittel und in Klammern die Standardabweichung angegeben)

<table>
<thead>
<tr>
<th>Bodentiefe[cm]</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ^{15}N-Wert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>3.66 (0.08)</td>
<td>3.61 (0.18)</td>
<td>2.98 (0.10)</td>
<td>4.22 (0.19)</td>
<td>3.42 (0.52)</td>
</tr>
<tr>
<td>5-10</td>
<td>4.50 (0.34)</td>
<td>4.48 (0.14)</td>
<td>7.66 (0.09)</td>
<td>5.83 (0.31)</td>
<td>4.39 (0.75)</td>
</tr>
<tr>
<td>10-20</td>
<td>6.10 (0.06)</td>
<td>6.39 (0.21)</td>
<td>5.98 (0.35)</td>
<td>6.78 (0.48)</td>
<td>5.78 (0.43)</td>
</tr>
<tr>
<td>20-40</td>
<td>6.42 (0.21)</td>
<td>7.03 (0.17)</td>
<td>7.00 (0.29)</td>
<td>7.33 (0.36)</td>
<td>6.09 (1.37)</td>
</tr>
<tr>
<td>40-60</td>
<td>6.78 (0.32)</td>
<td>7.03 (0.28)</td>
<td>7.46 (0.47)</td>
<td>7.66 (0.15)</td>
<td>7.06 (0.81)</td>
</tr>
<tr>
<td>60-100</td>
<td>6.52 (0.00)</td>
<td>6.75 (0.49)</td>
<td>7.23 (0.43)</td>
<td>6.99 (0.34)</td>
<td>6.86 (0.86)</td>
</tr>
</tbody>
</table>

N-Gehalte

<table>
<thead>
<tr>
<th>Bodentiefe[cm]</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>0.12 (0.02)</td>
<td>0.10 (0.01)</td>
<td>0.13 (0.00)</td>
<td>0.35 (0.00)</td>
<td>0.21 (0.17)</td>
</tr>
<tr>
<td>5-10</td>
<td>0.10 (0.02)</td>
<td>0.08 (0.01)</td>
<td>0.04 (0.00)</td>
<td>0.07 (0.00)</td>
<td>0.09 (0.02)</td>
</tr>
<tr>
<td>10-20</td>
<td>0.06 (0.00)</td>
<td>0.06 (0.01)</td>
<td>0.07 (0.00)</td>
<td>0.06 (0.00)</td>
<td>0.06 (0.01)</td>
</tr>
<tr>
<td>20-40</td>
<td>0.06 (0.00)</td>
<td>0.05 (0.00)</td>
<td>0.06 (0.00)</td>
<td>0.05 (0.01)</td>
<td>0.05 (0.01)</td>
</tr>
<tr>
<td>40-60</td>
<td>0.04 (0.00)</td>
<td>0.05 (0.01)</td>
<td>0.04 (0.00)</td>
<td>0.04 (0.00)</td>
<td>0.04 (0.00)</td>
</tr>
<tr>
<td>60-100</td>
<td>0.04 (0.00)</td>
<td>0.04 (0.01)</td>
<td>0.04 (0.00)</td>
<td>0.04 (0.00)</td>
<td>0.04 (0.00)</td>
</tr>
</tbody>
</table>
Tab. 62: Einfluß von kleinräumigen und großräumigen Standortunterschieden und des Alters der organischen Auflage auf den N-Gehalt und δ^{15}N des N$_{tot}$ der Streauflage (Flächen M1 - M5)

<table>
<thead>
<tr>
<th>FG</th>
<th>QS</th>
<th>MQS</th>
<th>F-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG</td>
<td>δ^{15}N</td>
<td>%N</td>
<td>δ^{15}N</td>
</tr>
<tr>
<td>1</td>
<td>4.19</td>
<td>0.59</td>
<td>4.19</td>
</tr>
<tr>
<td>4</td>
<td>12.27</td>
<td>0.77</td>
<td>3.07</td>
</tr>
<tr>
<td>Alter organ. Auflage</td>
<td>0.45</td>
<td>0.37</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Hauptwirkungen:
kleine Distanzen 1 4.19 0.59 4.19 0.59 3.59 | 9.85* |
Fläche 4 12.27 0.77 3.07 0.19 3.42* 3.23* |
Alter organ. Auflage 1 0.45 0.37 0.45 0.37 0.50 | 6.05* |

Wechselwirkungen:
kleine Distanz x Fläche 4 17.82 0.04 4.46 0.01 4.07** 0.11ns |
kleine Distanz x Alter organ. Auflage 1 1.41 1.40 1.41 1.40 1.57ns 23.54*** |
Fläche x Alter organ. Auflage 4 8.55 0.52 2.14 0.13 2.38ns 2.18ns |
kl.Distanz x Fläche x Alter organ. Auflage 4 8.32 0.26 2.08 0.06 2.32ns 1.09ns |
Residuen 43 38.62 2.57 0.90 0.06 |
Total 62 91.24 6.53 |
Tab. 63: δ¹⁵N-Werte der Blätter von 7 Arten auf verschiedenen Flächen mit junger Sekundärvegetation (Mittelwerte mit s in Klammern, n = 5)

<table>
<thead>
<tr>
<th>Fläche</th>
<th>Abarema jupunba</th>
<th>Inga thibaudiana</th>
<th>Inga heterophylla</th>
<th>Banara guianensis</th>
<th>Lacistema pubescens</th>
<th>Tapirira guianensis</th>
<th>Vismia guianensis</th>
<th>LSD (p<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>neue Blätter</td>
<td>alte Blätter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>-0.04 (±0.41)</td>
<td>-0.67 (±0.55)</td>
<td>-1.10 (±0.41)</td>
<td>-0.93 (±0.43)</td>
<td>-0.47 (±0.84)</td>
<td>-3.08 (±0.66)</td>
<td>-3.08 (±0.71)</td>
<td>0.44</td>
</tr>
<tr>
<td>S2</td>
<td>-</td>
<td>-1.79 (±0.66)</td>
<td>-1.19 (±0.50)</td>
<td>-1.19 (±0.50)</td>
<td>-1.19 (±0.50)</td>
<td>-2.04 (±0.57)</td>
<td>-2.04 (±0.57)</td>
<td>1.07</td>
</tr>
<tr>
<td>S3</td>
<td>0.10 (±0.40)</td>
<td>0.11 (±0.15)</td>
<td>0.48 (±0.77)</td>
<td>-1.22 (±0.59)</td>
<td>1.18 (±0.40)</td>
<td>-1.10 (±0.90)</td>
<td>-0.16 (±0.26)</td>
<td>0.53</td>
</tr>
<tr>
<td>S4</td>
<td>0.16 (±0.23)</td>
<td>0.11 (±0.15)</td>
<td>0.48 (±0.77)</td>
<td>-1.22 (±0.59)</td>
<td>1.18 (±0.40)</td>
<td>-1.10 (±0.90)</td>
<td>-0.16 (±0.26)</td>
<td>0.53</td>
</tr>
<tr>
<td>S5</td>
<td>-0.12 (±0.71)</td>
<td>-0.33 (±0.46)</td>
<td>-1.08 (±0.66)</td>
<td>-0.69 (±0.31)</td>
<td>-1.59 (±0.43)</td>
<td>-1.51 (±0.41)</td>
<td>0.51 (±0.26)</td>
<td>0.29</td>
</tr>
<tr>
<td>S6</td>
<td>0.13 (±0.26)</td>
<td>0.19 (±0.56)</td>
<td>0.54 (±0.54)</td>
<td>2.06 (±0.81)</td>
<td>-3.72 (±0.56)</td>
<td>-1.93 (±1.15)</td>
<td>0.73 (±0.90)</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>0.44</td>
<td>0.35</td>
<td>0.48</td>
<td>0.73</td>
<td>0.60</td>
<td>0.54</td>
<td>0.59</td>
<td></td>
</tr>
</tbody>
</table>

LSD (p<0.05)
Tab. 64: N-Gehalte der Blätter von 7 Arten auf verschiedenen Flächen mit junger Sekundärvegetation (Mittelwerte mit Standardabweichungen in Klammern, n = 5)

<table>
<thead>
<tr>
<th>Fläche</th>
<th>Abarema jupunba</th>
<th>Inga thibaudiana</th>
<th>Inga heterophylla</th>
<th>Banara guianensis</th>
<th>Lacistema pubescens</th>
<th>Tapirira guianensis</th>
<th>Vismia guianensis</th>
<th>LSD (p<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>2.15 (±0.36)</td>
<td>2.45 (±0.31)</td>
<td>2.23 (±0.17)</td>
<td>1.89 (±0.15)</td>
<td>1.93 (±0.20)</td>
<td>0.96 (±0.07)</td>
<td>1.47 (±0.14)</td>
<td>0.20</td>
</tr>
<tr>
<td>S2</td>
<td>-</td>
<td>-</td>
<td>3.89 (±1.07)</td>
<td>2.06 (±0.29)</td>
<td>2.34 (±0.19)</td>
<td>1.97 (±0.41)</td>
<td>1.46 (±0.15)</td>
<td>0.31</td>
</tr>
<tr>
<td>S3</td>
<td>2.41 (±0.08)</td>
<td>2.58 (±0.20)</td>
<td>2.62 (±0.49)</td>
<td>1.89 (±0.31)</td>
<td>2.31 (±0.16)</td>
<td>1.70 (±0.46)</td>
<td>1.79 (±0.17)</td>
<td>0.20</td>
</tr>
<tr>
<td>S4</td>
<td>1.96 (±0.23)</td>
<td>2.07 (±0.09)</td>
<td>1.87 (±0.13)</td>
<td>2.21 (±0.21)</td>
<td>2.05 (±0.41)</td>
<td>1.35 (±0.11)</td>
<td>1.55 (±0.09)</td>
<td>0.51</td>
</tr>
<tr>
<td>S5</td>
<td>2.12 (±0.22)</td>
<td>2.51 (±0.13)</td>
<td>3.26 (±0.98)</td>
<td>1.98 (±0.40)</td>
<td>2.18 (±0.25)</td>
<td>1.43 (±0.29)</td>
<td>1.42 (±0.19)</td>
<td>0.28</td>
</tr>
<tr>
<td>S6</td>
<td>2.60 (±0.67)</td>
<td>2.33 (±0.23)</td>
<td>2.73 (±0.45)</td>
<td>2.57 (±0.18)</td>
<td>2.56 (±0.43)</td>
<td>1.31 (±0.25)</td>
<td>1.41 (±0.25)</td>
<td>0.42</td>
</tr>
<tr>
<td>LSD</td>
<td>0.36</td>
<td>0.22</td>
<td>0.28</td>
<td>0.91</td>
<td>0.24</td>
<td>0.30</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

Fläche								
--------	------------------	------------------	-------------------	-------------------				
S1	1.96 (±0.29)	1.85 (±0.14)	2.09 (±0.18)	1.65 (±0.22)	1.37 (±0.15)	0.86 (±0.07)	1.10 (±0.16)	0.19
S2	-	-	2.12 (±0.04)	1.81 (±0.16)	1.57 (±0.14)	1.11 (±0.11)	1.12 (±0.11)	0.25
S3	1.78 (±0.26)	2.29 (±0.23)	2.04 (±0.28)	1.51 (±0.27)	1.75 (±0.21)	1.13 (±0.22)	1.55 (±0.10)	0.18
S4	1.97 (±0.17)	1.83 (±0.16)	2.01 (±0.21)	1.82 (±0.12)	1.67 (±0.19)	1.24 (±0.12)	1.27 (±0.16)	0.38
S5	2.11 (±0.18)	2.16 (±0.11)	2.06 (±0.13)	1.65 (±0.35)	1.34 (±0.10)	0.90 (±0.24)	1.04 (±0.13)	0.24
S6	1.90 (±0.06)	1.98 (±0.08)	2.16 (±0.19)	1.66 (±0.29)	1.60 (±0.12)	1.11 (±0.06)	1.14 (±0.19)	0.39
LSD	0.33	0.17	0.21	0.93	0.21	0.20	0.16	
Abb. 42: $\delta^{15}N$ - Einzelwerte der alten und neuen Blätter von 7 Pflanzenarten auf den Flächen S1 bis S6. (S1= R.d.Prata, S2= Jambu Açu, S3= Trav.12, S4= Cumárú, S5= Curí, S6= Iracema)
Tab. 65: Zweifaktorielle Varianzanalyse der δ^{15}N-Werte und N-Gehalte in neuen Blättern von 7 Sekundärwaldarten auf 6 Flächen

<table>
<thead>
<tr>
<th>FG</th>
<th>QS</th>
<th>MQS</th>
<th>F-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>%N</td>
<td>δ^{15}N</td>
<td>%N</td>
<td>δ^{15}N</td>
</tr>
<tr>
<td>Hauptwirkungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fläche</td>
<td>5</td>
<td>5</td>
<td>6.06</td>
</tr>
<tr>
<td>Art</td>
<td>6</td>
<td>6</td>
<td>36.3</td>
</tr>
<tr>
<td>Wechselwirkungen:</td>
<td>28</td>
<td>28</td>
<td>14.2</td>
</tr>
<tr>
<td>Fehler</td>
<td>188</td>
<td>42.4</td>
<td>17.9</td>
</tr>
<tr>
<td>Korr.Total</td>
<td>177</td>
<td>392.4</td>
<td>74.5</td>
</tr>
</tbody>
</table>

Tab. 66: δ^{15}N-Werte und N-Gehalte der Pflanzen in der näheren Umgebung von Peixe Boi (*wo Wiederholungen vorhanden, wurde der Mittelwert eingesetzt)

<table>
<thead>
<tr>
<th>Art</th>
<th>Familie</th>
<th>Abk.</th>
<th>Primärwald</th>
<th>Sekundärwald</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>%N</td>
<td>δ^{15}N</td>
</tr>
<tr>
<td>?</td>
<td>Melastomataceae</td>
<td>Mo</td>
<td>2.40</td>
<td>5.39</td>
</tr>
<tr>
<td>Bagassa guianensis</td>
<td>Moraceae</td>
<td>Bag</td>
<td>3.64</td>
<td>6.53</td>
</tr>
<tr>
<td>Banara guianensis</td>
<td>Flacourtiaceae</td>
<td>Bg</td>
<td>3.46</td>
<td>-0.48</td>
</tr>
<tr>
<td>Cordia exaltata</td>
<td>Boraginaceae</td>
<td>Ce</td>
<td>3.51</td>
<td>5.08</td>
</tr>
<tr>
<td>Dipteryx odorata</td>
<td>Papilionoideae</td>
<td>Do</td>
<td>1.91</td>
<td>4.15</td>
</tr>
<tr>
<td>Inga rubiginosa</td>
<td>Mimosoideae</td>
<td>Ir</td>
<td>2.73</td>
<td>7.61</td>
</tr>
<tr>
<td>Inga thibaudiana</td>
<td>Mimosoideae</td>
<td>It</td>
<td>3.21</td>
<td>5.35*</td>
</tr>
<tr>
<td>Lacistema pubescens</td>
<td>Lacistemataceae</td>
<td>Lp</td>
<td>2.59</td>
<td>2.60</td>
</tr>
<tr>
<td>Lac. pubescens - Keimling</td>
<td>Lacistemataceae</td>
<td>Lp</td>
<td>2.18</td>
<td>0.93</td>
</tr>
<tr>
<td>Lecythis lurida</td>
<td>Lecythidaceae</td>
<td>L1</td>
<td>1.81</td>
<td>3.54</td>
</tr>
<tr>
<td>Memora allamandiflora</td>
<td>Bignoniaceae</td>
<td>Ma</td>
<td>4.35</td>
<td>2.58</td>
</tr>
<tr>
<td>Myrcia sylvatica</td>
<td>Myrtaceae</td>
<td>Ms</td>
<td>1.49</td>
<td>4.61*</td>
</tr>
<tr>
<td>Neea oppositifolia</td>
<td>Nyctaginaceae</td>
<td>No</td>
<td>1.70</td>
<td>5.01</td>
</tr>
<tr>
<td>Selaginella stellaria</td>
<td>Selaginellaceae</td>
<td>Ss</td>
<td>2.82</td>
<td>5.06</td>
</tr>
<tr>
<td>Sterculia prariens</td>
<td>Sterculiaceae</td>
<td>Sp</td>
<td>1.62</td>
<td>4.42</td>
</tr>
<tr>
<td>Tapirira guianensis</td>
<td>Anacardiaceae</td>
<td>Tg</td>
<td>1.69</td>
<td>5.02*</td>
</tr>
<tr>
<td>Vismia guianensis</td>
<td>Guttiferae</td>
<td>Vg</td>
<td>3.06</td>
<td>2.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FG</th>
<th>SS</th>
<th>MS</th>
<th>F-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ^{15}N</td>
<td>%N</td>
<td>δ^{15}N</td>
</tr>
<tr>
<td>Hauptwirkungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art</td>
<td>7</td>
<td>159.26</td>
<td>53.62</td>
</tr>
<tr>
<td>Blattposition</td>
<td>1</td>
<td>4.05</td>
<td>4.32</td>
</tr>
<tr>
<td>Wechselwirkungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blattpos. x Art</td>
<td>7</td>
<td>10.91</td>
<td>1.79</td>
</tr>
<tr>
<td>Fehler</td>
<td>34</td>
<td>153.15</td>
<td>4.61</td>
</tr>
<tr>
<td>Einfluß der wiederholten Messungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZP</td>
<td>6</td>
<td>12.18</td>
<td>6.90</td>
</tr>
<tr>
<td>PZP x Art</td>
<td>42</td>
<td>22.42</td>
<td>5.10</td>
</tr>
<tr>
<td>PZP x Blattpos.</td>
<td>6</td>
<td>12.69</td>
<td>11.94</td>
</tr>
<tr>
<td>PZP x Blattpos x Art</td>
<td>42</td>
<td>37.14</td>
<td>5.64</td>
</tr>
<tr>
<td>Fehler</td>
<td>204</td>
<td>108.36</td>
<td>17.17</td>
</tr>
</tbody>
</table>

Abb. 43: Varianz der δ^{15}N-Werte und N-Gehalte in Abhängigkeit von den einzelnen Arten und Probezeitpunkten (Aj = Abarema jupunba, Ih = Inga heterophylla, It = Inga thibaudiana, Ma = Mabea angustifolia, Ms = Myrcia sylvatica, Tg = Tapirira guianensis, Vg = Vismia guianensis)
Tab. 68: δ¹⁵N-Werte und mg akkumulierter Stickstoff von *Abarema cochleatum*, *Abarema jupunba* und *Tapirira guianensis* nach 10- bzw. 12-monatigem Wachstum auf Sand mit und ohne NO₃ sowie auf Feldboden (n≤3; für den δ¹⁵N-Wert der Gesamtpflanzen ist die Standardabweichung angegeben)

<table>
<thead>
<tr>
<th>Art</th>
<th>Abarema jupunba</th>
<th>Abarema cochleatum</th>
<th>Abarema jupunba</th>
<th>Tapirira guianensis</th>
<th>Abarema jupunba</th>
<th>Tapirira guianensis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ¹⁵N</td>
<td></td>
<td>δ¹⁵N</td>
<td></td>
<td>δ¹⁵N</td>
<td></td>
</tr>
<tr>
<td>neue Blätter</td>
<td>+0.36</td>
<td>+0.47</td>
<td>-0.53</td>
<td>-1.30</td>
<td>+8.51</td>
<td>+10.36</td>
</tr>
<tr>
<td>alte Blätter</td>
<td>+0.24</td>
<td>-0.09</td>
<td>+0.77</td>
<td>-2.27</td>
<td>+7.89</td>
<td>+8.81</td>
</tr>
<tr>
<td>Streu</td>
<td>+0.13</td>
<td>-</td>
<td>+0.49</td>
<td>-0.27</td>
<td>+7.39</td>
<td>+7.35</td>
</tr>
<tr>
<td>Holz</td>
<td>-1.94</td>
<td>-1.49</td>
<td>-2.79</td>
<td>-3.45</td>
<td>+6.79</td>
<td>+6.81</td>
</tr>
<tr>
<td>Rinde</td>
<td>-1.25</td>
<td>-1.04</td>
<td>-2.18</td>
<td>-3.07</td>
<td>+6.99</td>
<td>+8.71</td>
</tr>
<tr>
<td>Wurzel</td>
<td>-0.19</td>
<td>+0.19</td>
<td>-1.74</td>
<td>-0.59</td>
<td>+3.66</td>
<td>+6.34</td>
</tr>
<tr>
<td>Knöllchen</td>
<td>+5.09</td>
<td>+4.62</td>
<td>+3.45</td>
<td>-</td>
<td>+4.27</td>
<td>-</td>
</tr>
<tr>
<td>Gesamt-δ¹⁵N</td>
<td>-0.16±0.18</td>
<td>-0.04±0.07</td>
<td>+0.18±0.07</td>
<td>-1.37±0.58</td>
<td>+5.71±1.17</td>
<td>+8.24±0.47</td>
</tr>
</tbody>
</table>

mg akkumulierter Stickstoff

<table>
<thead>
<tr>
<th>Art</th>
<th>bis 50cm</th>
<th>bis 100m</th>
<th>bis 150cm</th>
<th>bis 200cm</th>
<th>bis 250cm</th>
<th>bis 300cm</th>
<th>bis 350cm</th>
<th>bis 400cm</th>
<th>bis 450cm</th>
<th>bis 500cm</th>
<th>bis 550cm</th>
<th>bis 600cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>neue Blätter</td>
<td></td>
<td>*</td>
<td>ns</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>alte Blätter</td>
<td></td>
<td>ns</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Streu</td>
<td></td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>ns</td>
<td>*</td>
</tr>
<tr>
<td>Holz</td>
<td></td>
<td></td>
<td>ns</td>
<td>ns</td>
<td>**</td>
<td>**</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Rinde</td>
<td></td>
</tr>
<tr>
<td>Wurzel</td>
<td></td>
</tr>
<tr>
<td>Knöllchen</td>
<td></td>
</tr>
<tr>
<td>Gesamt-N</td>
<td></td>
<td>549.7±113</td>
<td>586.7±50</td>
<td>1007.1±556</td>
<td>330.1±19</td>
<td>524.0±44</td>
<td>314.8±1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 69: Infektionspotential der nativen Rhizobiumpopulation eines Capoeirabodens - Ergebnisse des paarweisen Wilcoxon-Rang-Tests (n = 10):

<table>
<thead>
<tr>
<th>bis 50cm</th>
<th>bis 100m</th>
<th>bis 150cm</th>
<th>bis 200cm</th>
<th>bis 250cm</th>
<th>bis 300cm</th>
<th>bis 350cm</th>
<th>bis 400cm</th>
<th>bis 450cm</th>
<th>bis 500cm</th>
<th>bis 550cm</th>
<th>bis 600cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>ns</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ns</td>
<td>ns</td>
<td>*</td>
<td>***</td>
<td>ns</td>
<td>ns</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Tab. 70: Basalflächen (πr^2), Gesamt-Biomasse, -N-Reserven, δ^{15}N-Werte und N_2-Fixierungsleistung der 9 Pflanzen von *Abarema jupunba*, die für die Regressionsanalysen verwendet wurden.

<table>
<thead>
<tr>
<th>Wdh.</th>
<th>g N</th>
<th>k_{Biom}</th>
<th>πr^2 (cm2)</th>
<th>δ^{15}N_Leg</th>
<th>δ^{15}N_Ref</th>
<th>%NdfaA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.31</td>
<td>0.016</td>
<td>0.24</td>
<td>2.30</td>
<td>1.24</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1.67</td>
<td>0.072</td>
<td>0.80</td>
<td>2.97</td>
<td>1.69</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2.09</td>
<td>0.146</td>
<td>2.66</td>
<td>4.50</td>
<td>2.31</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2.16</td>
<td>0.301</td>
<td>13.58</td>
<td>-0.58</td>
<td>-0.93</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>1.75</td>
<td>0.223</td>
<td>19.31</td>
<td>-0.15</td>
<td>-1.36</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>3.63</td>
<td>0.630</td>
<td>27.33</td>
<td>0.05</td>
<td>-1.33</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>3.32</td>
<td>0.453</td>
<td>32.91</td>
<td>-0.11</td>
<td>-1.39</td>
<td>97</td>
</tr>
<tr>
<td>8</td>
<td>3.33</td>
<td>0.605</td>
<td>36.03</td>
<td>-0.28</td>
<td>-1.47</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>4.59</td>
<td>1.132</td>
<td>44.16</td>
<td>-0.13</td>
<td>-1.32</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alter (Jahre)</th>
<th>Stämme/0.03ha in den Größenklassen:</th>
<th>artifizielle Aufteilung in Anzahl Leguminosen pro 1 ha</th>
<th>r < 5cm nach Nunez (1995)</th>
<th>r > 5cm nach Vieira (1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r < 5cm</td>
<td>r >5cm</td>
<td>r < 1</td>
<td>r = 2</td>
</tr>
<tr>
<td>9</td>
<td>621</td>
<td>21</td>
<td>1508</td>
<td>3350</td>
</tr>
<tr>
<td>11</td>
<td>458</td>
<td>17</td>
<td>1112</td>
<td>2471</td>
</tr>
<tr>
<td>12</td>
<td>485</td>
<td>58</td>
<td>1177</td>
<td>2616</td>
</tr>
<tr>
<td>14</td>
<td>472</td>
<td>27</td>
<td>1146</td>
<td>2546</td>
</tr>
<tr>
<td>20</td>
<td>649</td>
<td>54</td>
<td>1575</td>
<td>3501</td>
</tr>
<tr>
<td>20</td>
<td>953</td>
<td>25</td>
<td>2313</td>
<td>5141</td>
</tr>
<tr>
<td>20</td>
<td>498</td>
<td>38</td>
<td>1209</td>
<td>2687</td>
</tr>
<tr>
<td>20</td>
<td>458</td>
<td>49</td>
<td>1112</td>
<td>2471</td>
</tr>
<tr>
<td>30</td>
<td>629</td>
<td>29</td>
<td>1146</td>
<td>2546</td>
</tr>
<tr>
<td>35</td>
<td>389</td>
<td>49</td>
<td>944</td>
<td>2098</td>
</tr>
<tr>
<td>35</td>
<td>450</td>
<td>53</td>
<td>1092</td>
<td>2428</td>
</tr>
<tr>
<td>40</td>
<td>487</td>
<td>63</td>
<td>1182</td>
<td>2627</td>
</tr>
<tr>
<td>60</td>
<td>285</td>
<td>43</td>
<td>692</td>
<td>1537</td>
</tr>
<tr>
<td>60</td>
<td>354</td>
<td>64</td>
<td>648</td>
<td>1440</td>
</tr>
<tr>
<td>80</td>
<td>323</td>
<td>54</td>
<td>784</td>
<td>1742</td>
</tr>
<tr>
<td>80</td>
<td>471</td>
<td>74</td>
<td>1143</td>
<td>2541</td>
</tr>
<tr>
<td>80</td>
<td>287</td>
<td>58</td>
<td>697</td>
<td>1548</td>
</tr>
<tr>
<td>80</td>
<td>354</td>
<td>50</td>
<td>859</td>
<td>1910</td>
</tr>
<tr>
<td>Prim.w.</td>
<td>272</td>
<td>51</td>
<td>660</td>
<td>1467</td>
</tr>
<tr>
<td>Prim.w.</td>
<td>394</td>
<td>55</td>
<td>956</td>
<td>2125</td>
</tr>
<tr>
<td>Prim.w.</td>
<td>478</td>
<td>51</td>
<td>1160</td>
<td>2579</td>
</tr>
<tr>
<td>Prim.w.</td>
<td>264</td>
<td>48</td>
<td>641</td>
<td>1424</td>
</tr>
</tbody>
</table>
Danksagung

Diese Arbeit wurde durch das Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie im Rahmen des Projektes „Sekundärwald und Brachevegetation in der Kulturlandschaft des östlichen Amazonasgebietes - Funktion und Manipulierbarkeit“ (Fördernr. 39389A) gefördert.

Herrn Prof. Dr. P.L.G. Vlek danke ich für die freundliche Überlassung des Themas, seine Hilfestellung und Beratung bei den verschiedensten Fragestellungen und sein Verständnis auch für die finanziellen und zeitlichen Engpässe einer Doktorandin.

Mein besonderer Dank gilt Dr. Manfred Denich für die geduldige Betreuung dieser Arbeit, die durch seine Diskussionsbereitschaft, sein fachliches know how und - zu guter letzt - dem leidigen Korrekturlesen viel gewonnen hat. Für wertvolle Hinweise bei der statistischen Auswertung bedanke ich mich bei Dr. Ronald Kühne.

Die 15N-Analysen wurden vom Isotopenlaboratorium für Biologische und Medizinische Forschung in Göttingen durchgeführt. Für die tolle Zusammenarbeit und Beratung in den Isotopenfragen möchte ich mich daher ganz herzlich bei Rainer Langel und Dr. August Reineking bedanken.

Professorin M.M. de Lourdes Silva Santos danke ich für die Überlassung ihres mikrobiologischen Labors und des Gewächshausplatzes für meine Studien.

Herzlichen Dank gilt meinen Freunden, die mir Rückhalt gaben und zu guter Letzt das Korrekturlesen übernahmen.

Mein besonderer Dank gilt meinem Mann, der mir immer vorbehaltlos zur Seite stand, Korrektur gelesen hat, mir mit Rat und Tat die Computer-technischen Details erleichtert und mich bei unserem Sohn vertreten hat.

Für seine liebevolle Anteilnahme und die Geduld, die er mit einer oft übelgelaunten Mutter haben mußte, möchte ich mich bei meinem Sohn bedanken. Für wen sonst als für unsere Kinder lohnt sich der Aufwand so einer Arbeit?
Lebenslauf

Persönliche Daten

Name: Antje Thielen-Klinge

Geburtsdatum: 23.01.1962

Geburtsort: Gütersloh

Familienstand: verheiratet, ein Kind

Staatsangehörigkeit: deutsch

Schulausbildung

1968 - 1972 Besuch der Grundschule Eichendorff in Gütersloh

1972 - 1981 Besuch des städtischen Gymnasiums in Gütersloh

16.06.1981 Abitur

Studium

1982 - 1984 Gundstudium der Biologie an der WWU Münster

17.10.1984 Diplom-Biologen-Vorprüfung

1984 - 1988 Diplomstudium der Biologie an der Universität Göttingen

28.07.1987 Geburt des Sohnes Jakob

18.12.1987 Abgabe der Diplomarbeit

10.11.1988 Diplomprüfung

WS 88/89 - WS 89/90 Belegung von Seminaren des Aufbaustudiums „Ökologische Umweltsicherung“ in Witzenhausen (GH Kassel)
Beruflicher Werdegang

Febr. 1989 - Sept. 1991

Wissenschaftliche Mitarbeiterin am Institut für Pflanzenpathologie und Pflanzenschutz, Abt. Physiologie von Professor Dr. G. Wolf, Göttingen.

* Entwicklung eines Screeningverfahrens zur Erfassung keimungsfördernder Substanzen (Suppline) von Bakterien an Zuckerrübe, Getreide und Phaseolus-Bohne, in Zusammenarbeit mit der Kleinwanzlebener Saatzucht AG)

* Biologische Kontrolle von Pflanzenkrankheiten: Untersuchung zu Pathotypen von *Pseudocercosporella herpotrichoides*

Januar 1992 - März 1994

Aufenthalt in Belém, Pará, Brasilien, zur Datenerhebung für die Promotion zum Thema „Role of leguminous trees for the fallow vegetation of Amazônia, Brazil - application of the 15N natural abundance method“

April 1994 - Mai 1997

Auswertung und Fertigstellung der Promotion