
INAUGURAL - DISSERTATION

zur Erlangung des Doktorgrades

der Medizinischen Fakultät
der Georg-August-Universität zu Göttingen

vorgelegt
von Lars Dietrich Köthe
aus Marburg an der Lahn
Göttingen 2011

**Dekan:** Prof. Dr. med. C. Frömmel

**I. Berichterstatter** : Prof. Dr. med. M. Nauck  
**II. Berichterstatter / in** : Prof. Dr. rer. nat. H. Jarry  
**III. Berichterstatter / in:** Prof. Dr. med. M. Oppermann

Tag der mündlichen Prüfung: 11.10.2011
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>INHALTSVERZEICHNIS</td>
<td>3</td>
</tr>
<tr>
<td>ABKÜRZUNGEN</td>
<td>6</td>
</tr>
<tr>
<td>ABBILDUNGSVERZEICHNIS</td>
<td>8</td>
</tr>
<tr>
<td>1. EINLEITUNG</td>
<td>13</td>
</tr>
<tr>
<td>1.1 DER INCRETIN-EFFEKT</td>
<td>14</td>
</tr>
<tr>
<td>1.2 GLP-1</td>
<td>17</td>
</tr>
<tr>
<td>1.3 EXENDIN [9-39]</td>
<td>25</td>
</tr>
<tr>
<td>1.4 ADSORPTION VON PROTEINEN AN OBERFLÄCHEN</td>
<td>27</td>
</tr>
<tr>
<td>1.5 HUMANES SERUM-ALBUMIN</td>
<td>30</td>
</tr>
<tr>
<td>1.6 ZIEL DER ARBEIT</td>
<td>35</td>
</tr>
<tr>
<td>2. MATERIAL UND METHODEN</td>
<td>38</td>
</tr>
<tr>
<td>2.1 EINSCHLUSS- UND Ausschlusskriterien</td>
<td>38</td>
</tr>
<tr>
<td>2.2 PROBANDEN-CHARAKTERISTIKA</td>
<td>40</td>
</tr>
<tr>
<td>2.3 VERSUCHSPROTOKOLL</td>
<td>41</td>
</tr>
<tr>
<td>2.3.1 Beschreibung der Experimente</td>
<td>44</td>
</tr>
<tr>
<td>2.3.1.1 Voruntersuchung der Probanden</td>
<td>44</td>
</tr>
<tr>
<td>2.3.1.2 Beschreibung der Versuchstage</td>
<td>45</td>
</tr>
<tr>
<td>2.4 INFUSIONSLOSUNGEN</td>
<td>48</td>
</tr>
<tr>
<td>2.5 BLUTENTNAHMEN</td>
<td>53</td>
</tr>
<tr>
<td>2.6 LABORPARAMETER</td>
<td>55</td>
</tr>
<tr>
<td>2.6.1 Immunoassays</td>
<td>55</td>
</tr>
<tr>
<td>2.6.2 Plasmaglukose</td>
<td>57</td>
</tr>
<tr>
<td>2.6.3 Insulin</td>
<td>57</td>
</tr>
<tr>
<td>2.6.4 C-Peptid</td>
<td>58</td>
</tr>
<tr>
<td>2.6.5 Glucagon-like Peptide-1</td>
<td>58</td>
</tr>
<tr>
<td>2.6.6 Glukagon</td>
<td>59</td>
</tr>
<tr>
<td>2.6.7 Exendin [9-39]</td>
<td>59</td>
</tr>
<tr>
<td>2.7 NEBENWIRKUNGEN</td>
<td>59</td>
</tr>
<tr>
<td>2.8 STATISTISCHE AUSWERTUNG / Berechnungen</td>
<td>61</td>
</tr>
<tr>
<td>2.8.1 Berechnete Parameter</td>
<td>61</td>
</tr>
<tr>
<td>2.8.1.1 Insulin-Sekretionsrate</td>
<td>61</td>
</tr>
<tr>
<td>2.8.1.2 Integrierte Anstiege über Basalwerte (“Area under the Curve”)–Berechnung</td>
<td>61</td>
</tr>
<tr>
<td>2.8.2 Statistische Parameter</td>
<td>62</td>
</tr>
<tr>
<td>3. ERGEBNISSE</td>
<td>65</td>
</tr>
<tr>
<td>3.1 PROJEKT A</td>
<td>65</td>
</tr>
</tbody>
</table>
# Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>3.1.1 GLP-1 Total</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2 GLP-1 Intakt</td>
<td>67</td>
</tr>
<tr>
<td>3.1.3 Exendin [9-39]</td>
<td>68</td>
</tr>
<tr>
<td>3.1.4 Kapillare Plasmaglukose</td>
<td>69</td>
</tr>
<tr>
<td>3.1.5 Insulin</td>
<td>71</td>
</tr>
<tr>
<td>3.1.5.1 Insulin-Konzentrationen</td>
<td>71</td>
</tr>
<tr>
<td>3.1.5.2 Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Konzentration</td>
<td>73</td>
</tr>
<tr>
<td>3.1.6 C-Peptid</td>
<td>74</td>
</tr>
<tr>
<td>3.1.7 Insulin-Sekretionsraten</td>
<td>76</td>
</tr>
<tr>
<td>3.1.7.1 Insulin-Sekretionsraten</td>
<td>76</td>
</tr>
<tr>
<td>3.1.7.2 Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Sekretionsrate</td>
<td>78</td>
</tr>
<tr>
<td>3.1.8 Glukagon</td>
<td>79</td>
</tr>
<tr>
<td>3.2 PROJEKT B</td>
<td>81</td>
</tr>
<tr>
<td>3.2.1 GLP-1 Total</td>
<td>81</td>
</tr>
<tr>
<td>3.2.2 GLP-1 Intakt</td>
<td>83</td>
</tr>
<tr>
<td>3.2.3 Exendin [9-39]</td>
<td>85</td>
</tr>
<tr>
<td>3.2.4 Kapillare Plasmaglukose</td>
<td>87</td>
</tr>
<tr>
<td>3.2.5 Insulin</td>
<td>89</td>
</tr>
<tr>
<td>3.2.5.1 Insulin-Konzentrationen</td>
<td>89</td>
</tr>
<tr>
<td>3.2.5.2 Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Konzentrationen</td>
<td>91</td>
</tr>
<tr>
<td>3.2.6 C-Peptid</td>
<td>92</td>
</tr>
<tr>
<td>3.2.7 Insulin-Sekretionsraten</td>
<td>94</td>
</tr>
<tr>
<td>3.2.7.1 Insulin-Sekretionsraten</td>
<td>94</td>
</tr>
<tr>
<td>3.2.7.2 Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Sekretionsrate</td>
<td>97</td>
</tr>
<tr>
<td>3.2.8 Glukagon</td>
<td>98</td>
</tr>
<tr>
<td>3.3 VERGLEICH PROJEKT A UND PROJEKT B</td>
<td>101</td>
</tr>
<tr>
<td>3.3.1 GLP-1 Total-Konzentrationen in Projekt A und Projekt B</td>
<td>101</td>
</tr>
<tr>
<td>3.3.1.1 GLP-1 Total-Konzentrationen unter isolierter GLP-1-Infusion</td>
<td>101</td>
</tr>
<tr>
<td>3.3.1.2 GLP-1 Total-Konzentrationen unter kombinierter GLP-1- und Exendin [9-39]-Infusion</td>
<td>103</td>
</tr>
<tr>
<td>3.3.2 Vergleich der integrierten Anstiege über Basalwerte der Insulin-Sekretionsraten bei den einzelnen Probanden in Projekt A und Projekt B</td>
<td>105</td>
</tr>
<tr>
<td>3.3.2.1 Integrierte Anstiege über Basalwerte der Insulin-Sekretionsraten bei den einzelnen Probanden in Projekt A</td>
<td>105</td>
</tr>
<tr>
<td>3.3.2.2 Integrierte Anstiege über Basalwerte der Insulin-Sekretionsraten bei den einzelnen Probanden in Projekt B</td>
<td>106</td>
</tr>
<tr>
<td>3.3.3 Vergleich der individuellen prozentualen Hemmung der GLP-1-vermittelten Steigerung der insulinsekretorischen Antwort durch Exendin [9-39]</td>
<td>108</td>
</tr>
<tr>
<td>3.3.3.1 Individuelle prozentuale Stimulation der ersten Phase der Insulin-Sekretion unter isolierter GLP-1-Infusion und individuelle prozentuale Hemmung der GLP-1-vermittelten Steigerung der insulinsekretorischen Antwort durch Exendin [9-39] in Projekt A</td>
<td>108</td>
</tr>
</tbody>
</table>
3.3.3.2 Individuelle prozentuale Stimulation der ersten Phase der Insulin-Sekretion unter isolierter GLP-1-Infusion und individuelle prozentuale Hemmung der GLP-1-vermittelten Steigerung der insulinsekretorischen Antwort durch Exendin [9-39] in Projekt B .......................................................... 110

4. DISKUSSION ............................................................................................................................................ 112
  4.1 DISKUSSION DES VERGLEICHES PROJEKT A UND PROJEKT B......................................................... 112
  4.2 DISKUSSION DER GLP-1-VERMITTELTEN INSULINOTROPEN EFFEkte UND DER WIRKUNG DES EXENDIN [9-39] (PROJEKT B) ................................................................................................................................ 116

5. ZUSAMMENFASSUNG ............................................................................................................................ 129

6. ANHANG: TABELLEN 1A–3A, GLEICHUNGEN 1A–5A, ABBILDUNGEN 1A–5A ..................................... 132

7. LITERATURVERZEICHNIS ...................................................................................................................... 142
<table>
<thead>
<tr>
<th>Abkürzungen</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanin-Aminotransferase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartat-Aminotransferase</td>
</tr>
<tr>
<td>AUC</td>
<td>“Area under the curve”</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>Kalzium</td>
</tr>
<tr>
<td>cAMP</td>
<td>Zyklisches Adenosinmonophosphat</td>
</tr>
<tr>
<td>CCK</td>
<td>Cholezystokinin</td>
</tr>
<tr>
<td>CRF</td>
<td>Case Report Form</td>
</tr>
<tr>
<td>dl</td>
<td>Deziliter</td>
</tr>
<tr>
<td>DPP - 4</td>
<td>Dipeptidyl-Peptidase - 4</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii (lateinisch, m, “andere”)</td>
</tr>
<tr>
<td>fl</td>
<td>Femtoliter</td>
</tr>
<tr>
<td>FSH</td>
<td>Follikelstimulierendes Hormon</td>
</tr>
<tr>
<td>GCP</td>
<td>Good Clinical Practice</td>
</tr>
<tr>
<td>Ggf.</td>
<td>Gegebenenfalls</td>
</tr>
<tr>
<td>GIP</td>
<td>Glucose - Dependent Insulinotropic Polypeptide</td>
</tr>
<tr>
<td>GLP-1</td>
<td>Glucagon - Like Peptide-1</td>
</tr>
<tr>
<td>GRPP</td>
<td>Glicentin - Related Pancreatic Peptide</td>
</tr>
<tr>
<td>hCG</td>
<td>Humanes Choriongonadotropin</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>Mittlere inhibitorische Konzentration</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactatdehydrogenase</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>m²</td>
<td>Quadratmeter</td>
</tr>
<tr>
<td>MCH</td>
<td>Mean Corpuscular Haemoglobin</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
</tbody>
</table>
min  Minute
mIU  Milli-IU ; Milli International Unit
µl  Mikroliter
ml  Milliliter
mmHg  Millimeter Quecksilbersäule
mmol  Millimol
MPFG  Major Proglucagon Fragment
mRNA  Messenger-Ribonukleinsäure
mU  Milliunits
NaCl  Natrium-Chlorid
ng  Nanogramm
nM  Nanomolar
No.  Numero (spanisch, Nummer)
n.s.  not significant
pl  Picoliter
pmol  Picomol
PP  Polypropylen
PS  Polystyrol
RM-ANOVA  "Repeated Measurement Analysis of Variance"
U/l  Units pro Liter
U/min  Umdrehung pro Minute
vs.  versus (lateinisch, gegenüber gestellt)
WHO  World Health Organization
γ-GT  Gamma-Glutamyl-Transferase
z.B.  zum Beispiel
Abbildungsverzeichnis

Abbildungen:

Abbildung 1   : Enteroinsuläre Achse  S. 16
Abbildung 2   : Gewebespezifische, posttranslationale  Prozessierung des Proglukagons  S. 21
Abbildung 3   : Sekretion und Wirkung von GLP-1  S. 25
Abbildung 4  : Humanes Serum-Albumin (Tertiärstruktur)  S. 35
Abbildung 5  : Infusionsplan für Versuchstage in Projekt A und Projekt B  S. 43
Abbildung 6 : GLP-1 Total-Konzentrationen  
vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt A)  S. 67
Abbildung 7  : Exendin [9-39]-Konzentrationen vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt A)  S. 69
Abbildung 8  : Kapillare Plasmaglukose-Konzentrationen vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt A)  S. 71
Abbildung 9  : Plasmainsulin-Konzentrationen vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt A)  S. 73
Abbildung 10 : Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Konzentration 0 - 10 Minuten nach intravenöser Glukosegabe (erste Phase)(Projekt A)  S. 74
Abbildung 11 : Plasma-C-Peptid-Konzentrationen vor und nach Intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt A)  S. 76
Abbildung 12 : Insulin-Sekretionsrate vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt A)  S. 78
Abbildung 13: Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Sekretionsrate 0 - 10 Minuten nach intravenöser Glukosegabe (erste Phase) (Projekt A) S. 79

Abbildung 14: Glukagon-Konzentrationen vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt A) S. 81

Abbildung 15: GLP-1 Total-Konzentrationen vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt B) S. 83

Abbildung 16: GLP-1 Intakt-Konzentrationen vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt B) S. 85

Abbildung 17: Exendin [9-39]-Konzentrationen vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt B) S. 87

Abbildung 18: Kapillare Plasmaglukose-Konzentrationen vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt B) S. 89

Abbildung 19: Plasmainsulin-Konzentrationen vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt B) S. 91

Abbildung 20: Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Konzentration 0 - 10 Minuten nach intravenöser Glukosegabe (erste Phase) (Projekt B) S. 92

Abbildung 21: Plasma-C-Peptid-Konzentrationen vor und nach Intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt B) S. 94

Abbildung 22: Insulin-Sekretionsrate vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt B) S. 97

Abbildung 23: Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Sekretionsrate 0 - 10 Minuten nach intravenöser Glukosegabe (erste Phase) (Projekt B) S. 98
Abbildung 24 : Glukagon-Konzentrationen vor und nach intravenöser Glukosegabe an den einzelnen Versuchstagen (Projekt B) S. 100

Abbildung 25 : GLP-1 Total-Konzentrationen unter isolierter GLP-1 [7-36-Amid]-Infusion in Projekt A und Projekt B S. 102

Abbildung 26 : GLP-1 Total-Konzentrationen unter kombinierter GLP-1 [7-36-Amid]- und Exendin [9-39]-Infusion in Projekt A und Projekt B S. 104

Abbildung 27 : Individuelle integrierte Anstiege über Basalwerte („AUC“) der Insulin-Sekretionsrate an den einzelnen Versuchstagen in Projekt A S. 106

Abbildung 28 : Individuelle integrierte Anstiege über Basalwerte („AUC“) der Insulin-Sekretionsrate an den einzelnen Versuchstagen in Projekt B S. 107

Abbildung 29 : Individuelle prozentuale Stimulation der ersten Phase der Insulin-Sekretion unter isolierter GLP-1[7-36-Amid]-Infusion (A) und die Individuelle prozentuale Hemmung der GLP-1-vermittelten Steigerung der insulinsekretorischen Antwort durch Exendin [9-39] (B) nach intravenöser Glukosestimulation bei den einzelnen Probanden in Projekt A S. 109

Abbildung 30 : Individuelle prozentuale Stimulation der ersten Phase der Insulin-Sekretion unter isolierter GLP-1[7-36-Amid]-Infusion (A) und die individuelle prozentuale Hemmung der GLP-1-vermittelten Steigerung der insulinsekretorischen Antwort durch Exendin [9-39] (B) nach intravenöser Glukosestimulation bei den einzelnen Probanden in Projekt B S. 111
Tabellen:

Tabelle 1 : Ein- und Ausschlusskriterien (Projekt A und Projekt B) S. 39

Tabelle 2 : Zeitpunkte der Blutentnahmen für die einzelnen Laborparameter nach Versuchsprotokoll (Projekt A und Projekt B) S. 44

Gleichungen:

Gleichung 1 : Berechnung der prozentualen Stimulation der ersten Phase der Insulin-Sekretion unter isolierter GLP-1 [7-36-Amid]-Infusion S.62


Anhang:

Tabelle 1A : Probanden-Charakteristika S. 132

Tabelle 2A : Mögliche Infusionsabfolgen in Abhängigkeit zur Randomisierung (Projekt A) S. 134

Tabelle 3A : Mögliche Infusionsabfolgen in Abhängigkeit zur Randomisierung (Projekt B) S. 135

Gleichung 1A : Formel zur Berechnung des Bedarfs an Basis GLP-1 [7-36-Amid] für die Infusionen mit GLP-1 an den Versuchstagen C und D (Projekt A) S. 135


Gleichung 3A : Berechnung der Flussrate (Y) für 500 pmol · kg⁻¹ · min⁻¹ Exendin [9-39] am Versuchstag D und D’ (Projekt A und Projekt B) S. 135

Gleichung 4A : Berechnung der Flussrate (Y) für 350 pmol · kg⁻¹ · min⁻¹ Exendin [9-39] am Versuchstag D und D’ (Projekt A und Projekt B) S. 136
Gleichung 5A : Formel zur Berechnung des Bedarfs an Basis
GLP-1 [7-36-Amid] für die Infusionen mit GLP-1
an den Versuchstagen C’ und D’ (Projekt B)  S. 136

Abbildung 1A : Vergleichende Übersichtsdarstellung der
Diagramme aus Projekt A und Projekt B für
Blutglukose-, Insulin-, C-Peptid-
Konzentrationen und Insulin-Sekretionsraten  S. 137

Abbildung 2A : Vergleichende Übersichtsdarstellung der
Diagramme aus Projekt A und Projekt B für
Glukagon-, GLP-1 Total-, Exendin [9-39]-
Konzentrationen und GLP-1 Intakt (Projekt B)  S. 138

Abbildung 3A : Vergleichende Übersichtsdarstellung der
Diagramme aus Projekt A und Projekt B
für integrierte Anstiege über Basalwerte
für Insulin-Konzentrationen und
Insulin-Sekretionsraten  S. 139

Abbildung 4A : Vergleichende Übersichtsdarstellung der
Diagramme aus Projekt A und Projekt B für
die individuelle, prozentuale Stimulation der ersten
Phase der Insulin-Sekretion unter isolierter GLP-1
[7-36-Amid]-Infusion, die individuelle Hemmung der
GLP-1-vermittelten insulinotropen Effekte durch
Exendin [9-39] und die individuellen
Insulin-Sekretionsraten der einzelnen
Probanden an den einzelnen Versuchstagen  S. 140

Abbildung 5A : Vergleichende Darstellung der GLP-1 Total-
Konzentrationen unter isolierter GLP-1 [7-36-Amid]-
Infusion und kombinierter GLP-1 [7-36-Amid]- und
Exendin [9-39]-Infusion in Projekt A und Projekt B  S.141
1. Einleitung


Da die Behandlung des Diabetes mellitus und dessen Folgeerkrankungen inzwischen 5 bis 10% aller Ausgaben der Gesundheitssysteme der industrialisierten Nationen ausmacht, ist eine umfassende Grundlagenforschung und Weiterentwicklung der medikamentösen Therapiemöglichkeiten von größter Bedeutung (Rubin et al. 1994).


Dieses Peptid wurde eher zufällig in der Speicheldrüse der Echse Heloderma suspectum entdeckt und zeigte eine hohe Homologie zum nativen humanen GLP-1. Das Peptid wird Exendin-4 genannt. Aus ihm ging das Exenatide hervor, welches aktuell auf dem Markt zur Verfügung steht.


1.1 Der Inkretin-Effekt

Der Inkretin-Effekt beschreibt das Phänomen, dass bei oraler Glukosegabe die Insulin-Sekretionsantwort deutlich höher ausfällt als bei intravenöser Gabe derselben Glukosemenge [Elrick et al. (1964), McIntyre et al. (1965), Perley und Kipnis (1967)].

Dass der Gastrointestinaltrakt einen wesentlichen Einfluss und eine wichtige Funktion für die endokrine und exokrine Rolle des Pankreas hat, wurde schon länger vermutet. Es konnte schon 1902 gezeigt werden, dass intestinale Mukosa eine Substanz enthalten musste, welche in der Lage war, die exokrine Pankreasfunktion über die Blutbahn zu beeinflussen. Die Autoren nannten die Substanz Sekretin und installierten den Begriff des Hormones in der medizinischen Fachwelt (Bayliss und Starling 1902). Die Arbeitsgruppe um Moore begann 1906 mit Versuchen, bei denen ein Duodenal-Mukosa-Extrakt per os in der Annahme gegeben wurde, es gäbe eine Substanz im Gastrointestinaltrakt, welche die Insulin-Sekretion steigere. Hier wurde bereits eine Substanz vermutet, die die endokrine Pankreasfunktion beeinflussen kann (Moore 1906). In der Folgezeit gab es viele Forschungsprojekte zu diesem Thema mit variablen Ergebnissen und Ansätzen. Ein Durchbruch waren die Arbeiten von La Barre und Still 1930. Es gelang ihnen, das bisherige Sekretin in zwei Fraktionen aufzuspalten, von denen die eine in der Lage war, die exokrine Pankreasfunktion zu stimulieren und die andere, den Blutzucker zu senken (La Barre und Still 1930). La Barre war es auch, der 1932 den Begriff “Incrétine” prägte, mit welchem er eine Substanz bezeichnete, die er aus der Mukosa des oberen Darmabschnittes gewann und welche den Blutzucker in
Tierversuchen bei intravenöser oder subkutaner Gabe senkte, ohne dabei die exokrine Pankreasfunktion zu stimulieren (La Barre 1932).


Später gelang es, ein weiteres Peptid zu generieren, das einen insulinotropen Effekt im Tierversuch hatte und ebenfalls die Kriterien für ein Inkretin erfüllte. Es handelte sich um Glucagon-Like peptide-1 (1-36) [GLP-1(1-36)]. Anschließend konnte
Eine weitere insulinotrop wirkende Form, das Glucagon-Like Petide-1 [7-36-Amid] (GLP-1 [7-36-Amid]), generiert werden (Schmidt et al. 1985).

In einer Vielzahl von nachfolgenden Untersuchungen wurde der Nachweis erbracht, dass der Inkretin-Effekt sowohl durch GIP als GLP-1 getragen wurde. Beide Inkretine waren im gesunden Organismus in der Lage, die Insulin-Sekretionsantwort nach oraler Glukose-Belastung im Vergleich zur intravenösen Glukose-Belastung deutlich zu steigern (Nauck et al. 1986).


1.2 GLP-1

intestinalen Lumen beeinflusst. Man konnte nachweisen, dass die orale Zufuhr von Fetten und Kohlenhydraten eine rasche GLP-1-Spiegel-Erhöhung im Plasma auslösen können. Auch Proteine und gemischte Aminosäuren können die GLP-1-Sekretion steigern [Elliott et al. (1993); Herrmann et al. (1995)].


Eine andere Erklärung für die rasche GLP-1-Antwort nach Nahrungsaufnahme war die Annahme, dass gastrointestinale Hormone endokrinologisch im duodeno-ilealen Kreislauf auf die L-Zellen einwirken könnten. Das GIP wird auch aus K-Zellen im


Insgesamt scheinen multiple Einflüsse durch direkte als auch indirekte Mechanismen die frühe GLP-1-Antwort zu steuern. Den Haupeinfluss hat aber trotz gegenläufiger Verteilung der L-Zellen im Gastrointestinaltrakt scheinbar der direkte Kontakt zwischen Nahrungsbestandteilen und L-Zellen im proximalen Verdauungsstrakt. Grundlage für diese Annahme sind zum einen nachgewiesene duodenale L-Zellen (Theodorakis et al. 2006) und zum anderen die Sekretion einer GLP-1-Menge nach


**Abb. 2:** Gewebespezifische, posttranslationalen Prozessierung des Proglukagon in Pankreas und Darm/Gehirn (aus Kieffer und Habener 1999, S. 885).


abhängig von der Plasmaglukose-Konzentration [Göke R. et al. (1993a), Nauck et al. (2002)].


Zur Verbesserung der Insulinantwort induziert GLP-1 eine verstärkte Transkription des Insulin Gens, eine Stabilisierung der mRNA und somit eine insgesamt erhöhte Insulin-Biosynthese [Drucker et al. (1987), Fehmann und Habener (1992)].

Regulierenden Einfluss auf die Plasmaglukose-Konzentrationen nimmt das GLP-1 auch, indem es die Glukagon-Sekretion inhibiert. Dieses geschieht einerseits durch direkte Einwirkung auf die α-Zellen über die dortigen GLP-1-Rezeptoren und andererseits durch eine GLP-1-induzierte Somatostatin-Freisetzung aus den δ-Zellen [D’Alessio et al. (1989), Komatsu et al. (1989)]. Unter GLP-1-Einfluss vermehrt freigesetztes Insulin wirkt auch hemmend auf die Glukagon-Sekretion (Samols et al. 1986).

Einen weiteren wichtigen Beitrag zur normalen Glukohomöostase übt GLP-1 im Magen-Darm-Trakt aus. Es verlangsamt die gastroduodenale Motilität, verzögert die Magenentleerung und verhindert so starke postprandiale Plasmaglukose-Anstiege, ohne dabei die Magenentleerung ganz zu verhindern oder gar Gastroparesen.
auszulösen [Wettergren et al. (1993), Nauck et al. (1997b), Schirra et al. (1997), Schirra et al. (1998a)].


Damit erweisen sich drei GLP-1-Wirkungen zur Vermeidung starker postprandialer Plasmaglukose-Anstiege als bedeutungsvoll: Verstärkung der Insulin-Sekretion, Hemmung der Glukagon-Sekretion und die Verlangsamung der Magenentleerung. Alle weiteren Effekte sind abschließend in Abbildung 3 zusammengefasst.
1.3 Exendin [9-39]

Aus dem Toxin der Unterkieferdrüsen der Gila-Krustenechse (Heloderma suspectum) konnte ein Protein namens Exendin-4 isoliert werden, und es zeigte sich, dass dieses Protein ein potenter Agonist an GLP-1-Rezeptoren sowohl der Ratte als auch des Menschen ist [Thorens (1992), Dillon et al. (1993), Thorens et al. (1993)]. Exendin-4 zeigt eine 53%ige Sequenzhomologie zu GLP-1 [7-36-Amid] (Raufmann et


Auch die hemmende Wirkung von GLP-1 auf die Magenmotilität wird durch Gabe von Exendin [9-39] reduziert und es verkürzt die postprandiale antrale Inhibitionsphase [Schirra et al. (2001)].

1.4 Adsorption von Proteinen an Oberflächen


Auf allen Bindungs- und Strukturebenen kann es bei einem Protein zu Instabilitäten und Veränderungen im Kontakt mit anderen Substanzen oder bei Änderung der Verhältnisse kommen. Insbesondere in Lösungen zeigen Proteine einen Wechsel des Stabilitätszustandes. Die möglichen Instabilitätsreaktionen unterscheidet man in chemische (z.B. Deamidierung, Razematbildung, Hydrolyse, Oxidation, $\beta$-
Eliminierung, Umlagerung von Disulfidbrücken) und physikalisch (Adsorption, Denaturierung, Aggregation, Fällung) Reaktionen (Manning et al. [1989], Violand und Siegel [2000], Wang W. [2005]). Im Folgenden wird speziell die physikalische Instabilitätsreaktion der Adsorption betrachtet.

Proteine neigen wegen der beschriebenen Größe, Flexibilität und ihres häufig amphoteren Charakters zu starker Oberflächenaktivität an verschiedenen Oberflächen. Mit dem Prozess der Adsorption ist der Versuch eines Moleküls gemeint, die freie Oberflächenenergie des Feststoffes, an den es adsorbiert, zu reduzieren [Nakanashi et al. (2001), Martin AN (2002)].


Bei der Adsorption handelt es sich um einen dynamischen Prozess, bei dem aufgrund der unterschiedlichen Diffusionsgeschwindigkeiten der sich in Lösung befindlichen Moleküle eine Konkurrenzsituation für die Adsorption an der Oberfläche besteht. Der Prozess gliedert sich in einzelne Phasen, die chronologisch gegliedert sind. Initial erfolgt der Transport bzw. die Diffusion der Proteine in Richtung der Oberfläche bzw. Grenzfläche (z.B. Verpackungsmaterial, Infusionssystem), gefolgt von dem Prozess der Bindung an die Oberfläche. Dadurch kommt es zu strukturellen

1.5 Humanes Serum-Albumin


Die wichtigsten physiologischen Funktionen des Albumins bestehen in der Aufrechterhaltung des intravasalen Volumens, in einer Pufferfunktion als Bestandteil des Proteinpuffersystems und einer Transportfunktion.


Das Albumin kann als Bestandteil des Proteinpuffers des menschlichen Körpers, insbesondere durch reversible H⁺ - Bindung oder Abgabe an der Carboxyl- bzw. Aminogruppe einen Anteil leisten, um das Säure-Basen Gleichgewicht aufrecht zu erhalten (Scheid 1996).

Abb. 4). Die dreidimensionale, herzförmige Struktur zeigt zu 67% eine \( \alpha \)-helikale Struktur [Carter und Ho (1994), Peters (1996), Curry et. al. (1998)].


Die ganze Komplexität der Bindungsmöglichkeiten und des vielschichtigen Bindungsverhaltens des Albumin findet sich auch darin begründet, dass manche Liganden Affinitäten zu mehreren Bindungsstellen haben können und dass Strukturen innerhalb des Albuminmoleküls, die von den eigentlichen Bindungsstellen weit entfernt liegen, Einfluss auf das Bindungsverhalten haben können [Yamasaki et al. (1999), Bhattacharya et al. (2000), Dockal et al. (2000)]. Es ist also auch möglich, dass mehrere Liganden an einem Albuminmolekül gebunden sind, ohne sich dabei zu beeinflussen.


Um das Risiko der Übertragung von Infektionserkrankungen zu vermeiden, werden strenge Richtlinien an die Gewinnung des humanen Serum-Albumins gestellt. Die Verkettung von Einzelschritten der Qualitätssicherung soll maximale Sicherheit gewährleisten. Im ersten Schritt soll durch gezielte Auswahl der in Frage kommenden Plasmaspender das Risiko minimiert werden. Aus dem humanen Poolplasma wird humanes Serum-Albumin mittels alkoholischer Fällungsverfahren gewonnen (Cohn et al. 1944). Jede Spende wird serologisch untersucht (auf HbsAG, anti HIV 1+2, anti-HCV) und zusätzlich kommen PCR-Testungen auf HCV, HBV, HIV 1, HAV und Parvovirus 19 zum Einsatz. Im Anschluss folgen weitere Virusinaktivierungsverfahren,
bei welchem aber die Pasteurisierung bei 60° über 10 Stunden den wichtigsten
Inaktivierungsschritt darstellt. Darüber hinaus müssen Albuminchargen mit einem
Barcode markiert sein, um eine Charge zurückverfolgen zu können. Die intravenöse
Gabe von Albumin unterliegt dem Transfusionsgesetz, wenn es als Wirkstoff appliziert
wird.

Bis heute ist keine direkte Übertragung einer Infektionserkrankung durch die
intravenöse Gabe von humanem Serum-Albumin dokumentiert. Ein Problem stellte
allerdings das Auftreten der neuen Variante der Creutzfeld-Jakob-Krankheit dar. Von
der klassischen Creutzfeld-Jakob-Krankheit wusste man, dass diese durch Blutprodukte
nur sehr unwahrscheinlich zu übertragen sei, dies aber von der neuen Variante nicht
definitiv sagen konnte. Problem dabei war, dass die veränderten Prion Proteine bei der
klassischen Form ausschließlich im Gehirn nachzuweisen waren, bei der neuen
Variante die Prion Proteine aber auch außerhalb des Gehirns bei Erkrankten
nachzuweisen waren und somit theoretisch in Blutprodukten auftreten konnten. Bei der
neuen Variante fanden sich Prion Proteine auch in Gaumenmandeln und Milz
(Arbeitskreis Blut 1998).

Untersuchungen konnten aber zeigen, dass zumindest die konventionellen
Aufreinigungsschritte (Alkohol-Fraktionierungsschritte) von Plasmaderivaten zu einer
sukzessiven Entfernung der Erreger aus den Albumin und Immunoglobulin Fraktionen
führten [Foster et al. (2000), Lee et al. (2000), Gregori et al. (2004)]. Dennoch wurden
Sicherheitsmaßnahmen ergriffen, um Infektionen auf diesem Weg zu vermeiden.

Da trotz aller Sicherheitsmaßnahmen eine Infektion insbesondere mit neuartigen,
bisher unbekannten Erregern nicht vollends ausgeschlossen werden kann, ist die
Indikationsstellung zur intravenösen Applikation von humanem Serum-Albumin stets
streng zu stellen und jeweils eine gewissenhafte Risiko-Nutzen-Abwägung
durchzuführen. Dies gilt insbesondere bei Gaben von humanem Serum-Albumin als
Nichttherapeutikum, da in diesem Falle keine echte medizinische Indikation besteht. Als
Beispiel für einen derartigen Einsatz wäre der Zusatz von humanem Serum-Albumin zu
Infusionslösungen mit proteinhaltigen Substanzen zu sehen. Der Zusatz dient dazu, die
Kunststoffoberflächen abzusättigen und so einen Verlust der Substanz durch Bindung
an der Kunststoffoberfläche zu vermeiden. In diesem Fall stellt der Einsatz von
humanem Serum-Albumin keine medizinische Indikation dar, sondern vielmehr eine
technische Notwendigkeit, wie auch im Rahmen dieser Studie. Diese Tatsache wird
auch von Ethik-Kommissionen kritisch gesehen und daher muss der Einsatz von
humanem Serum-Albumin insbesondere im Rahmen von klinischen Studien sorgfältig abgewogen werden und nur bei sonst unmöglicher technischer Umsetzung der Zielsetzung der Studie in Erwägung gezogen werden.


1.6 Ziel der Arbeit

In dieser Arbeit soll gezeigt werden, dass die exogene Gabe von GLP-1 als intravenöse Infusion eine besondere Behandlung und Vorbereitung braucht, um zuverlässige, kalkulierbare und ausreichende GLP-1-Konzentration im Probanden zu erreichen. Es werden zwei Zubereitungsarten von GLP-1-Infusionen, unter der Berücksichtigung der durch die Infusionen zu erreichenden GLP-1-Konzentrationen, miteinander verglichen. In Hinblick auf die Planung von zukünftigen Studien mit exogener Gabe von GLP-1 ist eine zuverlässige Vorhersage der zu erreichenden GLP-1-Konzentrationen bedeutsam.

Es werden die GLP-1-Konzentrationen unter intravenösen GLP-1-Infusionen verglichen, die in einer Gruppe ohne den Zusatz von humanen Serum-Albumin erzielt
werden (Projekt A) und die in einer anderen Gruppe mit dem Zusatz von humanem Serum-Albumin erzielt werden (Projekt B). Es soll gezeigt werden, dass ohne den Zusatz von humanem Serum-Albumin in das Infusionssystem der GLP-1-Konzentrationsaufbau nicht sicher vorhergesagt werden kann, da es vermutlich zu Bindungsverlusten im Infusionssystem kommt. In einem weiteren Schritt soll der Nachweis erbracht werden, dass unter Zusatz von humanem Serum-Albumin zu der GLP-1-Infusion (Projekt B) eine rasche, supraphysiologische GLP-1-Konzentration erreicht werden kann, die sufizient die Insulin-Sekretionsantwort auf intravenöse Glukose-Belastung augmentiert und so die Wirksamkeit eines GLP-1-Antagonisten geprüft werden kann.


Ziel war es ein Regime zu etablieren, mit welchem der insulinotrope GLP-1-Effekt sicher gehemmt werden kann und somit ein Regime definiert werden kann, welches sehr wahrscheinlich auch weitere endogen sezernierte GLP-1-vermittelte physiologische Wirkungen hemmt. Gleichzeitig sollte die Notwendigkeit des Zusatzes von Albumin zu GLP-1-Infusionen dokumentiert werden, um einen berechenbaren und kalkulierbaren Versuchsaufbau mit ausreichenden GLP-1-Konzentrationen zu konzipieren.
2. Material und Methoden


Alle Patienten erhielten vor der Teilnahme eine ausführliche Erklärung und Einweisung in den Studienablauf und unterschrieben vor Beginn der Studie eine Einwilligungserklärung zur Teilnahme an der Studie.

2.1 Einschluss- und Ausschlusskriterien


Eine Übersicht der definierten Kriterien findet sich in Tabelle 1.
### Tab. 1: Ein- und Ausschlusskriterien (Projekt A und Projekt B)

<table>
<thead>
<tr>
<th>Einschlusskriterien</th>
<th>Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 – 70 Jahre</td>
<td>&lt; 30 Jahre oder &gt; 70 Jahre</td>
</tr>
<tr>
<td>gesunde Probanden (Beurteilung abhängig von Anamnese, klinischer Untersuchung, EKG- Befund, Laborwerte)</td>
<td>Auftreten eines Typ-2 - Diabetes mellitus in Verwandtschaft 1. Grades</td>
</tr>
<tr>
<td>Frauen: Postmenopausal (FSH &gt; 23 mlU/ml) oder chirurgisch sterilisiert</td>
<td>anamnestisch aufgetretener Gestationsdiabetes</td>
</tr>
<tr>
<td>Nichtraucher</td>
<td>Nikotinkonsum</td>
</tr>
<tr>
<td>Nüchternglukose (kapillar) &lt; 100 mg/dl</td>
<td>Schilddrüsen - Dysfunktion</td>
</tr>
<tr>
<td>normaler oraler Glukose-Toleranz-Test (120 min Blutzucker Wert &lt; 140 mg/dl)</td>
<td>Schwangerschaft oder Stillzeit</td>
</tr>
<tr>
<td>Blutdruck maximal 140 / 90 mmHg, minimal 90 / 60 mmHg</td>
<td>Einnahme von Medikamenten (Ausnahme: Paracetamol und ASS)</td>
</tr>
<tr>
<td>Puls 50 – 90 / min</td>
<td>Blutverlust von 450 ml in den letzten 8 Wochen (einschließlich Blutspende)</td>
</tr>
<tr>
<td>Mindestkörpergewicht &gt; 50 kg</td>
<td>signifikante Erkrankung in letzten 2 Wochen</td>
</tr>
<tr>
<td>BMI zwischen 20 – 35 kg/m²</td>
<td>EKG – Anomalien, familienanamnestisch: Long-QT Syndrom</td>
</tr>
<tr>
<td>Männer: keine Fortpflanzung während und bis 3 Monate nach Studiendende</td>
<td>anamnestisch bekannte Allergien</td>
</tr>
<tr>
<td>normale Nierenfunktion (Kreatinin im Normbereich und kein Nachweis einer Albuminurie)</td>
<td>arterieller Hypertonus</td>
</tr>
<tr>
<td>normale Leberfunktion (Transaminasen im Normbereich)</td>
<td>gastrointestinale, pulmonale, kardiale, neurologische, dermatologische, vaskuläre, psychiatrische Erkrankung</td>
</tr>
<tr>
<td>keine signifikante Anämie</td>
<td>Thrombozyten &lt; 100.000/µl</td>
</tr>
<tr>
<td></td>
<td>positive Hepatitis-B- oder -C-Serologie</td>
</tr>
<tr>
<td></td>
<td>Alkohol- und Drogenabusus</td>
</tr>
</tbody>
</table>
2.2 Probanden-Charakteristika


Bei den weiblichen Probanden war zum Ausschluss einer möglichen Schwangerschaft während der Versuchsreihe im Protokoll gefordert, dass diese sich entweder in der Postmenopause befinden oder chirurgisch sterilisiert sein müssen. Die postmenopausale Situation wurde durch Bestimmung des follikelstimulierenden Hormons (FSH) im Rahmen der Voruntersuchung bestätigt. Bei den weiblichen Probanden fanden sich FSH-Werte, die einen postmenopausalen Hormonstatus anzeigten (Normbereich für postmenopausal > 23 mIU/L). Zur weiteren Absicherung wurden im Rahmen der Voruntersuchung und während der Versuchsreihe mehrere Schwangerschaftstests im Urin durchgeführt (QuickVue, One-Step hCG Urin Test, Nachweissgrenze ab 25 mIU/ml hCG, Quidel Corporation, San Diego, USA). Eine Schwangerschaft trat während der Versuchsreihe nicht auf.


Die genauen Probandencharakteristika werden tabellarisch im Anhang, in Tabelle 1A, aufgeführt.

2.3 Versuchsprotokoll


In beiden Projekten wurde an allen drei Versuchstagen eine intravenöse Glukosebolus - Injektion (0,3 g/kg Körpergewicht Glukose) zu einem definierten Zeitpunkt (0) durchgeführt. Der Infusionsplan zu den einzelnen Versuchstagen findet sich in Abbildung 5. Für Projekt A wurde lediglich der Zeitraum bis 120 Minuten nach intravenöser Glukosegabe graphisch dargestellt, da nur dieser Zeitraum zur vergleichenden Auswertung hinzugezogen wurde. Die Zeitpunkte für die Blutentnahmen der Parameter kapillare Glukose, Insulin, C-Peptid, GLP-1 Intakt,GLP-1 Total, Glukagon und Exendin [9-39] sind in Tabelle 2 aufgeführt.
Abb.5: Infusionsplan für Versuchstage in Projekt A und Projekt B.

**Projekt A**

<table>
<thead>
<tr>
<th>Tag</th>
<th>Infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag A</td>
<td>Glukose 0,3g·kg⁻¹ KG</td>
</tr>
<tr>
<td>NaCl 0,9%</td>
<td>NaCl 0,9% 30ml·h⁻¹</td>
</tr>
<tr>
<td>Tag C</td>
<td>0,5 pmol·kg⁻¹·min⁻¹</td>
</tr>
<tr>
<td>GLP-1 [7-36-Amid]</td>
<td></td>
</tr>
<tr>
<td>Tag D</td>
<td>0,5 pmol·kg⁻¹·min⁻¹</td>
</tr>
<tr>
<td>GLP-1 [7-36-Amid] +</td>
<td>500 pmol·kg⁻¹·min⁻¹ 350 pmol·kg⁻¹·min⁻¹</td>
</tr>
<tr>
<td>Exendin (9-39)</td>
<td></td>
</tr>
</tbody>
</table>

**Projekt B**

<table>
<thead>
<tr>
<th>Tag</th>
<th>Infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag A’</td>
<td>Glukose 0,3g·kg⁻¹ KG</td>
</tr>
<tr>
<td>NaCl 0,9%</td>
<td>NaCl 0,9% 30ml·h⁻¹</td>
</tr>
<tr>
<td>Tag C’</td>
<td>1,0 0,5 pmol·kg⁻¹·min⁻¹</td>
</tr>
<tr>
<td>GLP-1 [7-36-Amid]</td>
<td></td>
</tr>
<tr>
<td>Tag D’</td>
<td>1,0 0,5 pmol·kg⁻¹·min⁻¹</td>
</tr>
<tr>
<td>GLP-1 [7-36-Amid] +</td>
<td>500 pmol·kg⁻¹·min⁻¹ 350 pmol·kg⁻¹·min⁻¹</td>
</tr>
<tr>
<td>Exendin (9-39)</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 2: Zeitpunkte der Blutentnahmen für die einzelnen Laborparameter nach Versuchsprotokoll (für Projekt A und B identisch).

X = Abnahme

<table>
<thead>
<tr>
<th>Zeitpunkt (min)</th>
<th>Kapillare Glukose</th>
<th>Insulin</th>
<th>C-Peptid</th>
<th>GLP-1 Total</th>
<th>GLP-1 Intakt</th>
<th>Glukagon</th>
<th>Exendin [9-39] (Tag A’ und C’)</th>
<th>Exendin [9-39] (Tag D’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-80</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-70</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-60</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-30</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>90</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>120</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

2.3.1 Beschreibung der Experimente

2.3.1.1 Voruntersuchung der Probanden


Aus dem Ohrläppchen wurde nach Anstich mit einer Lanzette (Blood Lancets SUPRA, megro GmbH&CoKg, Wesel, Deutschland) 100 µl Kapillarblut gewonnen und zur Bestimmung der Nüchternplasmaglukose-Konzentrationen in einer Microvette gesammelt (Microvette CB 300, Sarstedt, Nümbrecht, Deutschland). Die Zentrifugation der Probe erfolgte unmittelbar (Eppendorf mini Spin, Eppendorf AG, Hamburg, Deutschland), um im Anschluss mit Hilfe eines Beckmann Glucose Analyzer 2 die Blutzuckerbestimmung durchzuführen. Bei normwertigen Plasmaglukose-Konzentrationen (< 100 mg/dl) wurde ein oraler Glukose-Toleranz-Test (ACCU-CHEK Dextro O.G-T., Roche Pharma AG, Grenzach-Wyhlen) angeschlossen. Dazu tranken die Probanden 300 ml eines Mono/Oligosaccharid-Gemisches, welches nach enzymatischer Spaltung einer Menge von 75 g wasserfreier Glukose entspricht (WHO-Empfehlung). Ein normwertiges Ergebnis lag vor, wenn der Blutzucker nach 120 Minuten Werte < 140 mg/dl zeigte.

2.3.1.2 Beschreibung der Versuchstage

Die Patienten nahmen an 4 (Projekt A) bzw. 3 (Projekt B) Versuchstagen in randomisierter Reihenfolge teil. Nachdem die Probanden ab 22:00 Uhr des Vorabends eine Nahrungskarenz eingehalten hatten, wurden die Versuche gegen 07:30 Uhr ± 30 Minuten begonnen.

Zu Beginn des Versuches wurden die Vitalparameter (Blutdruck systolisch/diastolisch, Pulsfrequenz, Atemfrequenz) bestimmt. Das aktuelle Gewicht ist mit einer Waage (WB-100A Class III, Tanita, Tokyo, Japan) in Kilogramm ermittelt worden, um die Infusionsdosierung gewichtsbezogen individuell errechnen zu können. Anschließend wurden den Probanden jeweils zwei Venenverweilkanülen (Vasofix 20G oder 18G, Braun Melsungen AG, Melsungen, Deutschland) intravenös plaziert. Die Fixierung der Kanülen erfolgte mit Kanülenfixierpflaster (Curapor 8,8 x 6,5 cm, Lohmann Rauscher, Rengsdorf, Deutschland). Eine der Venenverweilkanüle wurde distal an der oberen Extremität zur Entnahme der Blutproben platziert, die andere am kontralateralen Arm im Bereich der Ellenbeuge. Über Letztere erfolgten sowohl die
Infusionen als auch die intravenöse Glukosegabe. Der sichere Transfer der infundierten Lösungen und der Glukose wurde durch den Einsatz eines Dreiwegehahns (Discofix, Braun Melsungen AG, Melsungen, Deutschland) ermöglicht.


80 Minuten vor der intravenösen Glukosegabe wurden die ersten “baseline” Blutproben abgenommen und der Versuchstag damit offiziell begonnen.

Bei Projekt A (ohne Zusatz von humanem Serum-Albumin) wurde am Versuchstag A 60 Minuten vor der intravenösen Glukosegabe eine Infusion mit NaCl 0,9 % mit einer Flussrate von 30 ml/h begonnen. Diese Infusion lief mit dieser Flussrate durchgehend über einen Gesamtzeitraum von 360 Minuten und endete zum Zeitpunkt 300 Minuten nach intravenöser Glukosegabe.

Die GLP-1 [7-36-Amid]-Infusion am Versuchstag C wurde 30 Minuten vor der intravenösen Glukosegabe mit einer Dosis von 0,5 pmol · kg⁻¹ · min⁻¹ gestartet und lief mit dieser Dosierung über weitere 270 Minuten bis zum Zeitpunkt 240 Minuten nach intravenöser Glukosegabe. Der Versuchstag endete offiziell am Zeitpunkt 300 Minuten nach intravenöser Glukosegabe.

Nach dem gleichen Schema wurde das GLP-1 [7-36-Amid] am Versuchstag D infundiert. Der Beginn der Infusion lag 30 Minuten vor der intravenösen Glukosegabe mit einer Dosis von 0,5 pmol · kg⁻¹ · min⁻¹ und wurde über 270 Minuten fortgesetzt. Zusätzlich zum GLP-1 [7-36-Amid] wurde am Versuchstag D bereits 60 Minuten vor der intravenösen Glukosegabe eine Infusion mit Exendin [9-39] in einer Dosierung von 500 pmol · kg⁻¹ · min⁻¹ begonnen. Nach 60 Minuten ist die Dosierung der Exendin [9-39]-Infusion auf 350 pmol · kg⁻¹ · min⁻¹ reduziert worden und lief mit dieser Dosierung über weitere 300 Minuten bis zum Versuchsende. Zur vergleichenden Auswertung zwischen Projekt A und Projekt B wurden die Daten aus Projekt A berücksichtigt, die bis zum Zeitpunkt 120 Minuten nach intravenöser Glukosegabe erhoben worden sind.

Im Rahmen des Projektes B (mit Zusatz von humanem Serum-Albumin) wurde am Versuchstag A’ 45 Minuten vor der intravenösen Glukosegabe eine Infusion mit NaCl 0,9 % mit einer Flussrate von 30 ml/h begonnen. Diese Infusion lief mit dieser...
Flussrate durchgehend über einen Gesamtzeitraum von 165 Minuten und endete zum Zeitpunkt 120 Minuten nach intravenöser Glukosegabe.

Die GLP-1 [7-36-Amid]-Infusion am Versuchstag C' wurde ebenfalls 45 Minuten vor der intravenösen Glukosegabe gestartet mit einer Dosis von 1,0 pmol · kg⁻¹ · min⁻¹. Nach 15 Minuten wurde die Dosis der GLP-1 [7-36-Amid]-Infusion auf 0,5 pmol · kg⁻¹ · min⁻¹ reduziert und lief mit dieser Dosierung bis zum Versuchsende über weitere 150 Minuten bis zum Ende des Versuchstages zum Zeitpunkt 120 Minuten nach intravenöser Glukosegabe.

Nach dem gleichen Schema wurde das GLP-1 [7-36-Amid] am Versuchstag D' infundiert. Der Beginn der Infusion lag 45 Minuten vor der intravenösen Glukosegabe mit einer Dosis von 1,0 pmol · kg⁻¹ · min⁻¹ und wurde nach 15 Minuten für weitere 150 Minuten mit einer Dosierung von 0,5 pmol · kg⁻¹ · min⁻¹ fortgesetzt. Zusätzlich zum GLP-1 [7-36-Amid] wurde am Versuchstag D' bereits 60 Minuten vor der intravenösen Glukosegabe eine Infusion mit Exendin [9-39] in einer Dosierung von 500 pmol · kg⁻¹ · min⁻¹ begonnen. Nach 60 Minuten ist die Dosierung der Exendin [9-39]-Infusion auf 350 pmol · kg⁻¹ · min⁻¹ reduziert worden und lief mit dieser Dosierung über weitere 120 Minuten bis zum Versuchsende.

Die Infusionen wurden mit Perfusoren (Perfusor Compact, Braun Melsungen AG, Melsungen, Deutschland) gesteuert.

Zum Zeitpunkt 0 ist an allen Versuchstagen in beiden Projekten eine intravenöse Glukosegabe durchgeführt worden. Dazu wurden 0,3 g/kg Körpergewicht Glukose (G-50/100ml, Braun Melsungen AG, Melsungen, Deutschland) innerhalb von 20 Sekunden intravenös verabreicht.

Zu den festgelegten Zeitpunkten erfolgten die einzelnen Blutabnahmen und die Bestimmung der kapillaren Blutglukose. Die Bestimmung der Blutzuckerwerte erfolgte umgehend, um gegebenenfalls einer drohenden Hypoglykämie entgegenwirken zu können.

Nach Versuchsende wurden die Venenverweilkanülen entfernt, die Patienten erhielten umgehend eine Mahlzeit und wurden über weitere 4 Stunden nachbeobachtet. Im Anschluss erfolgte die Entlassung nach Hause.
2.4 Infusionslösungen

Projekt A:

Die Infusionslösung am Versuchstag A wurde als physiologische NaCl 0,9 %-Lösung (isotone Natriumchloridlösung 0,9 % Braun, 50 ml, B. Braun Melsungen AG, Melsungen, Deutschland) vorbereitet. Das NaCl 0,9 % wurde in eine Perfusorspritze (Original Perfusor Spritze OPS 50 Luer Lock, 50 ml, B. Braun Melsungen AG, Melsungen, Deutschland) überführt. Während des Versuches erfolgte die Zuleitung der Infusionslösung vom Perfusor zum Dreiwegehahn über eine Perfusorleitung (Original Perfusor Leitung Luer Lock, 200 cm, B. Braun Melsungen AG, Melsungen, Deutschland). Die Infusionsdauer am Versuchstag A betrug 360 Minuten (-60 bis 300) und die Flussrate konstant 30 ml/h. Daraus ergab sich ein Infusionsvolumen an diesem Tag von 180 ml. Für den Zeitpunkt 120 Minuten nach intravenöser Glukosegabe bei dem Vergleich beider Projekte ergibt sich für den Versuchstag A eine Infusionsdauer von 180 Minuten (-60 bis 120) und somit ein Gesamtvolumen von 90 ml.

Die GLP-1 [7-36-Amid]-Infusionslösungen für die Versuchstage C und D wurden nach identischer Vorgehensweise hergestellt. Da diese Infusionen mit konstanter Flussraten von 6 ml/h während der Versuche liefen, musste die gewichtsadaptierte Dosierung durch variable Konzentrationen in den Perfusorsystemen erreicht werden. Das benutzte GLP-1 [7-36-Amid] (Clinalfa, Bachem Distribution Service GmbH, Weil am Rhein, Deutschland) lag als tiefgefrorene Trockensubstanz vor, welche bei < -18°C gelagert wurde. Bei der letzten chemischen Analyse zeigte sich ein verbliebener Wirkstoffgehalt von 78 µg pro Glasgefäß. Dieser Wert wurde bei den Kalkulationen zur Herstellung der GLP-1 [7-36-Amid]-Lösungen zur Infusion berücksichtigt. Die Trockensubstanz wurde am Morgen des jeweiligen Versuchstages aufgetaut und durch ein definiertes Volumen (3,12 ml) NaCl 0,9 %-Lösung in Lösung gebracht. Die so produzierte Basis GLP-1 [7-36-Amid]-Lösung hatte eine konstante Konzentration von 25 µg/ml GLP-1 [7-36-Amid] und wurde zur weiteren Zubereitung der Infusionslösung verwendet. Am Morgen des jeweiligen Versuchstages wurde das aktuelle Körpergewicht (kg) des Patienten gemessen, um die gewichtsadaptierte Dosierung (pmol · kg⁻¹ · min⁻¹) ermitteln und die erforderliche Konzentration herstellen zu können. Berechnungsgrundlagen waren dazu ein gewünschtes Gesamtvolumen von 50 ml Infusionslösung, eine konstante Flussrate von 6 ml/h, eine vorhandene Basis GLP-1 [7-36-Amid]-Lösung mit einer Konzentration von 25 µg/ml GLP-1 [7-36-Amid], eine geforderte Dosierung von 0,5 pmol · kg⁻¹ · min⁻¹, das Molekulargewicht des GLP-1 [7-36-
Amid] und ein Variable (B), welche das Körpergewicht der Probanden in Kilogramm wiedergibt (siehe auch Gleichung 1A im Anhang). Durch diese Kalkulation wurde eine Konstante berechnet, die durch Multiplikation mit dem aktuellen Körpergewicht (B) eine Berechnung des erforderlichen Volumen Y (in ml) von Basis GLP-1 [7-36-Amid]-Lösung ermöglichte. Dieses Volumen musste in das Gesamtvolumen von 50 ml NaCl 0,9 % transferiert werden, um die zuvor genannten Bedingungen zu erfüllen. Diese Konstante lag bei 0,032977 ml/kg.

Das kalkulierte Volumen Y (ml) wurde einer 50 ml NaCl 0,9 %-Lösung entnommen und danach durch das identische Volumen Y (ml) der Basis GLP-1 [7-36-Amid]-Lösung ersetzt, so dass am Ende ein Gesamtvolumen von 50 ml vorlag und dieses in eine Perfusorspritze gegeben werden konnte. Die GLP-1 [7-36-Amid]-Infusion lief mit einer Flussrate von 6 ml/h über 270 Minuten (-30 bis 240) und somit in einer Dosierung von 0,5 pmol · kg⁻¹ · min⁻¹. Nach diesem Infusions-Regime wurde sowohl an Versuchstag C als auch D verfahren. Das Gesamtvolumen der infundierten GLP-1 [7-36-Amid]-Infusion belief sich an Versuchstag C und D auf jeweils 27 ml. Bis zum Zeitpunkt 120 Minuten nach intravenöser Glukosegabe zum Vergleich mit Projekt B wurden somit an Versuchstag C und D 15 ml GLP-1 [7-36-Amid] infundiert (-30 bis 120).


Im Gegensatz zur Applikation der GLP-1 [7-36-Amid]-Infusion wurde bei der Exendin [9-39]-Infusion die gewichtsabhängige Dosierung (pmol · kg⁻¹ · min⁻¹) durch individuelle Flussraten über das Perfusorsystem erreicht. Die hergestellten Infusionen mussten also eine identische Konzentration aufweisen. Diese Zielkonzentration im Infusionssystem des Exendin [9-39] lag bei 1,18 mg/ml. Die erforderliche Menge an Basis-Exendin [9-39]-Lösung (5 mg/ml) in ml, welche in ein Gesamtvolumen von 50ml NaCl 0,9 %-Lösung transferiert werden musste, wurde durch eine Berechnung definiert (siehe auch Gleichung 2A im Anhang).
Demnach wurde aus der zuvor vorbereiteten 50 ml NaCl 0,9 %-Lösung 12,0 ml mit Hilfe einer Spritze (B.Braun Injekt 10 ml, B.Braun Melsungen AG, Melsungen) (Anmerkung 10 ml Spritze ist bis 12 ml skaliert) entfernt und im Anschluss 12,0 ml der Basis-Exendin [9-39]-Lösung hinzugefügt, um am Ende ein Gesamtvolumen von 50 ml mit einer Exendin [9-39]-Konzentration von 1,18 mg/ml zu erhalten. Diese wurde in eine 50 ml Perfusorspritze transferiert.

Um die gewichtsabhängige Dosierung von initial 500 pmol · kg⁻¹ · min⁻¹ und später 350 pmol · kg⁻¹ · min⁻¹ zu erreichen, wurde am Morgen des Versuchstages eine Kalkulation unter Berücksichtigung des Körpergewiches des Probanden durchgeführt und die entsprechenden Flussraten definiert. Grundlage der Kalkulation ist ein Musterpatient mit einem Körpergewicht von 70 kg, einer Flussrate von 0,1 ml/min, einer Konzentration von 1,18 mg/ml und dem Exendin [9-39] Molekulargewicht von 3368,8 g/mol. Die Formeln, die an den Versuchstagen zum Einsatz kamen geben diese Berechnung in vereinfachter Form wieder und dienten der raschen Berechnung der Flussraten an den Versuchstagen (siehe auch Gleichung 3A und 4A im Anhang).

Die Probanden erhielten am Versuchstag D 60 Minuten vor der intravenösen Glukosegabe eine Exendin [9-39]-Infusion mit einer Dosierung von 500 pmol · kg⁻¹ · min⁻¹. Dazu wurde die Exendin [9-39]-Infusion mit einer Flussrate von Y (ml/min) appliziert (siehe auch Gleichung 3A im Anhang). Nach 60 Minuten wurde die Exendin [9-39]-Dosierung reduziert und mit einer Flussrate von Z (ml/min) (siehe auch Gleichung 4A im Anhang) und somit mit 350 pmol · kg⁻¹ · min⁻¹ fortgefahren. Insgesamt erhielten die Probanden die Exendin [9-39]-Infusion über einen Zeitraum von 360 Minuten (-60 bis 300). Das infundierte Gesamtvolumen differierte dabei körpergewichtsabhängig zwischen 24,3 ml und 37,1 ml. Bis zum Zeitpunkt 120 Minuten nach intravenöser Glukosegabe zum Vergleich mit Projekt B erhielten die Probanden zwischen 13,0 ml und 19,9 ml (-60 bis 120).

An allen Versuchstagen erhielten die Probanden eine intravenöse Glukosegabe zum Zeitpunkt 0. Dabei wurde über die proximal gelegene Venenverweilkanüle 0,3 g Glukose pro Kilogramm Körpergewicht mit 20ml Spritzen (B.Braun inject 20 ml, B.Braun Melsungen AG, Melsungen, Deutschland) injiziert. Dabei wurden gewichtsabhängige Volumina zwischen 37,3 ml bis 58,2 ml Glukose 50 % (G-50/100 ml, Braun Melsungen, Melsungen AG, Deutschland) notwendig.
Projekt B:

Die Infusionslösung am Versuchstag A‘ wurde als physiologische NaCl 0,9 %-Lösung (isotone Natriumchloridlösung 0,9 % Braun, 50 ml, B. Braun Melsungen AG, Melsungen, Deutschland) mit 1% humanem Serum-Albumin (Human Serum-Albumin 20% Behring, CSL Behring, salzarm, CSL Behring GmbH, Marburg, Deutschland) vorbereitet. Zu diesem Zweck wurden nach alkoholischer Desinfektion der Oberflächen der Gefäße aus dem 50 ml NaCl 0,9 % Gefäß 2,5 ml mit einer 2,0 ml Spritze (B.Braun Injekt 2 ml, B.Braun Melsungen AG, Melsungen, Deutschland) (Anmerkung: 2,0 ml Spritze ist bis 3,0 ml skaliert) mit Hilfe einer Kanüle (Neolus 20G, BSN medical GmbH&Co KG, Hamburg, Deutschland) entfernt und verworfen. Im Anschluss wurden 2,5 ml humanes Albumin 20 % in das NaCl 0,9 % - Gefäß gegeben und somit das Gesamtvolumen auf erneut 50 ml ergänzt. So wurde eine Albumin-Konzentration von 1% erreicht. Diese Lösung wurde in eine Perfusorspritze (Original Perfusor Spritze OPS 50 Luer Lock, 50ml, B. Braun Melsungen AG, Melsungen, Deutschland) überführt. Dieser Vorgang wurde zweimal durchgeführt, um letztlich über 100 ml Infusionslösung zu verfügen. Während des Versuches erfolgte die Zuleitung der Infusionslösung vom Perfusor zum Dreiegehahn über eine Perfusorleitung (Original Perfusor Leitung Luer Lock, 200 cm, B.Braun Melsungen AG, Melsungen, Deutschland). Die Infusionsdauer am Versuchstag A‘ betrug 165 Minuten (- 45 bis 120) und die Flussrate konstant 30 ml/h. Daraus ergab sich an diesem Tag ein Infusionsvolumen von 82,5 ml.

Die GLP-1 [7-36-Amid]-Infusionslösungen für die Versuchstage C‘ und D‘ wurden ebenfalls als 1%-ige Humanalbumin-Lösung hergestellt. Da diese Infusionen mit konstanten Flussraten von 10 ml/h bzw. 20 ml/h während der Versuche liefen, musste die gewichtsadaptierte Dosierung durch variable Konzentrationen in den Perfusorsystemen erreicht werden. Die Trockensubstanz, welche identisch war mit der aus Projekt A, wurde am Morgen des jeweiligen Versuchstages aufgetaut und durch ein definiertes Volumen (3,12 ml) der beschriebenen 1%-igen Humanalbumin-NaCl 0,9 %-Lösung in Lösung gebracht. Die so produzierte Basis GLP-1 [7-36-Amid]-Lösung hatte eine konstante Konzentration von 25 µg/ml GLP-1 [7-36-Amid] und wurde zur weiteren Zubereitung der Infusionslösung verwendet. Am Morgen des jeweiligen Versuchstages wurde das aktuelle Körpergewicht (kg) des Patienten gemessen, um die gewichtsadaptierte Dosierung (pmol·kg⁻¹·min⁻¹) ermitteln und die erforderliche Konzentration herzustellen zu können. Berechnungsgrundlagen waren dazu ein gewünschtes Gesamtvolumen von 50 ml Infusionslösung, eine konstante Flussrate von...
10 ml/h, eine vorhandene Basis GLP-1 [7-36-Amid]-Lösung mit einer Konzentration von 25 µg/ml GLP-1 [7-36-Amid], eine geforderte Dosierung von 0,5 pmol · kg⁻¹ · min⁻¹, das Molekulargewicht des GLP-1 [7-36-Amid] und ein Variable (B), welche das Körpergewicht der Probanden in Kilogramm wiedergibt (siehe auch Gleichung 5A im Anhang). Durch diese Kalkulation wurde eine Konstante berechnet, die durch Multiplikation mit dem aktuellen Körpergewicht (B) eine Berechnung des Volumen Y (in ml) von Basis GLP-1 [7-36-Amid]-Lösung ermöglichte. Dieses Volumen musste in das Gesamtvolumen von 50 ml NaCl 0,9 % (1% humanes Serum-Albumin) transferiert werden, um die zuvor genannten Bedingungen zu erfüllen.

Diese Konstante lag bei 0,0197862 ml/kg.

Das kalkulierte Volumen Y (ml) wurde den vorbereiteten 50 ml 1%-igen Humanalbumin-NaCl 0,9 %-Lösung entnommen und danach durch das identische Volumen Y (ml) der Basis GLP-1 [7-36-Amid]-Lösung ersetzt, so dass am Ende ein Gesamtvolumen von 50 ml vorlag und dieses in eine Perfusorspritze gegeben werden konnte. Die GLP-1 [7-36-Amid]-Infusion lief initial mit einer Flussrate von 20 ml/h über 15 Minuten (-45 bis -30) in einer Dosierung von 1,0 pmol · kg⁻¹ · min⁻¹. Nach 15 Minuten wurde die Flussrate auf 10 ml/h reduziert und damit eine Dosis von 0,5 pmol · kg⁻¹ · min⁻¹ appliziert. In dieser Dosierung lief die Infusion über weitere 150 Minuten (-30 bis 120).

Nach diesem Infusions-Regime wurde sowohl an Versuchstag C’ als auch D’ verfahren. Das Gesamtvolumen der infundierten GLP-1 [7-36-Amid]-Infusion belief sich an Versuchstag C’ und D’ auf jeweils 30 ml.


Das weitere Vorgehen entsprach im wesentlichen dem Vorgehen in Projekt A. Insbesondere kamen dieselben Formeln zur Anwendung (siehe auch Gleichung 2A, 3A und 4A im Anhang). Ein wesentlicher Unterschied bestand darin, dass die 50 ml NaCl
0,9 % in der Perfusorspritze auch als 1%-ges Humanalbumin-NaCl 0,9 % vorbereitet worden waren.

Die Probanden erhielten am Versuchstag D’ 60 Minuten vor der intravenösen Glukosegabe eine Exendin [9-39]-Infusion mit einer Dosierung von 500 pmol \( \cdot \) kg\(^{-1} \cdot \) min\(^{-1} \). Dazu wurde die Exendin [9-39]-Infusion mit einer Flussrate von Y (ml/min) appliziert (siehe auch Gleichung 3A im Anhang). Nach 60 Minuten wurde die Exendin [9-39]-Dosierung reduziert und mit einer Flussrate von Z (ml/min) (siehe auch Gleichung 4A im Anhang) und somit mit 350 pmol \( \cdot \) kg\(^{-1} \cdot \) min\(^{-1} \) fortgefahren. Insgesamt erhielten die Probanden die Exendin [9-39]-Infusion über einen Zeitraum von 180 Minuten. Das infundierte Gesamtvolumen differierte dabei körpergewichtsabhängig zwischen 11,5 ml und 20,5 ml.

An allen Versuchstagen erhielten die Probanden eine intravenöse Glukosegabe zum Zeitpunkt 0. Dabei wurde über die proximal gelegene Venenverweilkanüle 0,3 g Glukose pro Kilogramm Körpergewicht mit 20 ml Spritzen (B. Braun inject 20 ml, B. Braun Melsungen AG, Melsungen, Deutschland) injiziert. Dabei wurden gewichtsabhängige Volumina zwischen 36,7 ml bis 59,5 ml (Projekt B) Glukose 50 % (G-50/100 ml, B. Braun Melsungen AG, Melsungen, Deutschland) notwendig.

2.5 Blutentnahmen


Die Monovetten zur Abnahme der GLP-1 Total-, GLP-1 Intakt- und Glukagon-Proben wurden am Morgen des jeweiligen Versuchstages mit Diprotin A (Diprotin A, Bachem AG, Bubendorf, Schweiz) versetzt, um in einer Gesamtkonzentration von 0,1 mmol/l eine ausreichende DPP – 4-Inhibition zur Vermeidung der Degradation der Peptide sicherzustellen [Deacon et al. (1995a), Deacon et al. (1995b)]. Im Anschluss wurden die Monovetten bis zur Blutentnahme im Kühlshrank gelagert.

Nach der jeweiligen Blutentnahme wurden die Proben umgehend auf Eis gelagert, bis sie in einer Kühlzentrifuge (Rotina 35R, Hettich Zentrifugen, Lauenau,
Deutschland) zentrifugiert wurden. Die Proben für die Bestimmungen der Insulin und C-Peptid-Konzentrationen sind über 15 Minuten bei 17° Celsius mit einer Geschwindigkeit von 3000 U/min zentrifugiert worden. Im Anschluss sind je 200 µl Plasma in ein PS-Röhrchen überführt und bei < -27°C gelagert worden.


Die zur Bestimmung von Insulin und C-Peptid geplanten Proben wurden in 3,5 ml Polystyrol-Röhrchen (PS-Röhrchen 3,5 ml, transparent, Sarstedt, Nümbrecht, Deutschland) und die Proben zur Bestimmung von GLP-1 Total, GLP-1 Intakt, Glukagon und Exendin [9-39] in Polypropylen-Röhrchen (PP-Röhrchen 3,5 ml, Sarstedt, Nümbrecht, Deutschland) abgefüllt. Bis zur Verschickung zur weiteren Analyse (GLP-1 Total, GLP-1 Intakt, Glukagon, Exendin [9-39]) oder Bestimmungen im hauseigenen Labor (Insulin, C-Peptid) wurden die Proben bei < -27°C eingefroren.


2.6 Laborparameter

Die Analysen der Laborparameter für die klinische Chemie und die Hämatologie wurden im klinischen Laboratorium des Diabeteszentrums Bad Lauterberg durchgeführt. In diesem Labor erfolgte ebenfalls die Bestimmung der Insulin und der C-Peptid-Konzentrationen.

Die für das Screening erforderlichen Hepatitis B-, Hepatitis C- und HIV-Serologien wurden durch das Labor Bioscientia GmbH in Jena durchgeführt. Dort wurde auch die Bestimmung der alpha-Amylase und des Albumin durchgeführt.


2.6.1 Immunoassays


Allen Immunoassay gemeinsam ist das Grundprinzip der Erkennung und somit der Nachweis eines Analyten in einer flüssigen Phase durch die Bindung eines Antigens an einen Antikörper. Sowohl Antigen als auch Antikörper können je nach Konfiguration des Assays nachzuweisender Analyt sein.


sich bei Antigenen für die es nur einen Antikörper gibt oder für Haptene, da diese nicht ausreichend Bindungsstellen zur Bindung von zwei Antikörpern haben.


Reaktion katalysiert werden, bei der durch Chemilumineszenz Licht abgegeben wird, welches gemessen und in Relation zur Konzentration des zu bestimmenden Antigens gesetzt werden kann.

Die Hormonbestimmung durch immunologische Bestimmungsverfahren zeichnet sich durch eine hohe Empfindlichkeit und eine leichte Durchführbarkeit aus. Zu beachten sind aber Kreuzreaktivitäten, die Folge einer Bindung der eingesetzten Antikörper an Bindungsstellen von Hormonvorstufen, Abbauprodukten oder strukturell ähnlichen Proteinen sind und so bei Nichtbeachtung zu falschen Konzentrationsbestimmungen führen können (Wild 2005).

2.6.2 Plasmaglukose


Vor den Bestimmungen der Plasmaglukose erfolgte die Eichung der Messgeräte mit Hilfe einer Eichlösung auf 150 ± 1 mg/dl (Beckmann Instruments, München, Deutschland). Es folgten im Verlauf weitere Eichungen und Vergleichsmessungen mit einer Standardlösung 150 ± 5 mg/dl (Beckmann Instruments, München, Deutschland).

2.6.3 Insulin

die Chemilumineszenzemission induziert und mit dem Photomultiplier gemessen. Die Bestimmung erfolgte mit dem COBAS “ECLI A” auf einem Roche Elecsys 2010 (Roche Diagnostics GmbH, Mannheim, Deutschland). Die kleinste nachweisbare Insulin-Konzentration lag bei diesem Verfahren bei 0,2 mU/l (1,4 pmol/l). Kreuzreaktivitäten bestehen zu Rinderinsulin (25%), Schweineinsulin (19,2%), humanem Proinsulin (0,05%) und Insulin-like growth factor I (0,04%). Es fanden sich keine Kreuzreaktivitäten zu C-Peptid, Glukagon und Somatostatin. Der inter-assay-Variationskoeffizient lag bei < 3%.

2.6.4 C-Peptid


2.6.5 Glucagon-like Peptide-1

Die GLP-1 Total-Konzentrationen sind mit einem Radio-Immunoassay Verfahren bestimmt worden. Das hierbei verwendete Antiserum (No. 89390) bindet spezifisch an den amidierten C-Terminus des GLP-1 [7-36-Amid]. Eine Kreuzreaktivität des
Antiserums mit anderen Hormonen ergibt sich bei denen, die die Sequenz Proglukagon 78-107-Amid besitzen. So wird GLP-1(9-36) durch das Antiserum gebunden. Die untere Nachweisgrenze liegt bei 1 pM. Der Inter-assay Variationskoeffizient lag bei < 6% (Ørskov et al., 1994).


2.6.6 Glukagon


2.6.7 Exendin [9-39]


2.7 Nebenwirkungen

Die Probanden wurden vor, während und nach den Versuchstagen nach möglichen Nebenwirkungen befragt. Im Falle von Nebenwirkungen wurden diese
schriftlich fixiert und als “Adverse Events” nach GCP-Richtlinien in den CRF dokumentiert. Im Allgemeinen wurden die einzelnen Infusionen von den Probanden gut vertragen und es kam zu keinen signifikant gehäuferten Nebenwirkungen, die sich einer der infundierten Substanzen zuordnen ließe.


Schwerwiegende Nebenwirkungen traten nicht auf und keine der beklagten Beschwerden war nach Beendigung der Studie weiterhin nachzuweisen.

2.8 Statistische Auswertung / Berechnungen

2.8.1 Berechnete Parameter

2.8.1.1 Insulin-Sekretionsrate

Die Insulin-Sekretionsrate wurde über die Dekonvulotion aus Plasma-C-Peptid-Konzentrationen und unter Verwendung populationsbasierter Übergangskonstanten berechnet [Eaton et al. (1980); Polonsky et al. (1986), Van Couter et al. (1992)]. Diese Kalkulationen wurden mit Hilfe der Software ISEC Version 3.4a durchgeführt (Hovorka und Jones 1994). Die berechneten Werte werden in pmol · kg\(^{-1}\) · min\(^{-1}\) ausgedrückt. Es ist die Insulin-Sekretionsrate für die erste Phase der Insulin-Sekretion berechnet worden. Die erste Phase ist definiert als Zeitraum zwischen der intravenösen Glukosegabe (Zeitpunkt 0) und 10 Minuten nach der intravenösen Glukosegabe (Zeitpunkt 10).

2.8.1.2 Integrierte Anstiege über Basalwerte ("Area under the Curve")–Berechnung

Die Fläche unterhalb der Graphen der Insulin-Konzentration und der Insulin-Sekretionsrate wurde mit einem dafür installierten Makro (Excel 4.0-Makro AUC1_21) unter dem Rechen- und Tabellenkalkulationsprogramm (Excel 2003, Microsoft Cooperation, USA) berechnet. Es berechnet ein positives Integral (Anstiege über Basalwerte), ein negatives Integral (Abfälle unter Basalwerte), ein Netto – Integral (Anstiege über Basalwerte minus Abfälle unter Basalwerte) und das Gesamtintegral (oberhalb des Wertes 0 pmol · kg\(^{-1}\) · min\(^{-1}\)). Das Netto-Integral ist für die weitere Bearbeitung berücksichtigt worden. Die Kalkulationen beziehen sich auf die erste Phase (0 – 10 Minuten nach der intravenösen Glukosegabe) der Insulinantwort auf den Glukosebolus. Die erste Phase ist definiert als Zeitraum zwischen der intravenösen Glukosegabe (Zeitpunkt 0) und 10 Minuten nach der intravenösen Glukosegabe (Zeitpunkt 10).

Zuvor definiertes Ziel war eine Hemmung der GLP-1-vermittelten Steigerung der insulinsekretorischen Antwort auf Glukosegabe durch Exendin [9-39] um 75%. Berechnet wurden die Stimulation und der prozentuale Wert der Hemmung durch folgende Formeln, wobei AUC\(_x\) dem jeweils integrierten Anstieg über Basalwerten der Insulin-Sekretionrate in der ersten Phase an dem jeweiligen Versuchstag entspricht.

**Gleichung 1:** Berechnung der prozentualen Stimulation der ersten Phase der Insulin-Sekretion unter isolierter GLP-1 [7-36-Amid] (Projekt A \(A/C\) und Projekt B \(A'/C'\)):

\[
\frac{(AUC_{c/c'} - AUC_{A/A'})}{AUC_{A/A'}} \cdot 100 = \text{Stimulation durch isolierte GLP-1 [7-36-Amid] Infusion in %}
\]

**Gleichung 2:** Berechnung der prozentualen Hemmung der GLP-1-vermittelten insulinotropen Effekte durch Exendin [9-39] (Projekt A \(A/C/D\) und Projekt B \(A'/C'/D'\)):

\[
\frac{(AUC_{c/c'} - AUC_{D/D'})}{(AUC_{c/c'} - AUC_{A/A'})} \cdot 100 = \text{Hemmung durch Exendin [9-39] in %}
\]

**2.8.2 Statistische Parameter**

(a) Zwischen den experimentellen Bedingungen (z.B. Infusion NaCl vs. Infusion GLP-1) (p-Wert A).

(b) zum Zeitverlauf (p-Werte B).

(c) für die Interaktion zwischen experimentellen Bedingungen und Zeitverlauf (p-Werte AB).

Im Falle von signifikanten Unterschieden bei A, B bzw. AB kann im Anschluss eine einfache Varianzanalyse darüber Aufschluss geben, ob signifikante Unterschiede zwischen den experimentellen Bedingungen nachweisbar sind bei mehr als zwei experimentellen Bedingungen, gefolgt von einem post-hoc-Test (Duncan's Test) zur genauen Zuordnung der signifikanten Unterschiede. Das Signifikanzniveau lag bei p < 0,05.

Die statistische Analyse ist mit Hilfe des Programms Statistica, Version 5.1 (Statsoft Inc., Tulsa, Oklahoma, USA) durchgeführt worden.

Werten ("worst case") durchgeführt. In unserem Fall handelt es sich um einen Probanden am Versuchstag C zum Zeitpunkt – 30 und einen weiteren Probanden am Versuchstag D zum Zeitpunkt 60.
3. Ergebnisse

3.1 Projekt A

3.1.1 GLP-1 Total

Die basalen GLP-1-Konzentrationen unterschieden sich am Beginn der Versuchstage nicht signifikant. Am Versuchstag A wurden Konzentrationen von 8,7 ± 1,2 pmol/l, am Versuchstag C 6,3 ± 1,7 pmol/l und am Versuchstag D 5,0 ± 1,1 pmol/l gemessen. Trotz der Tatsache, dass 30 Minuten vor der intravenösen Glukosegabe die isolierte GLP-1 [7-36-Amid]-Infusion gestartet wurde, fanden sich zum Zeitpunkt 0 keine höheren GLP-1 Total-Konzentrationen als unter der NaCl 0,9 %-Infusion. Lediglich unter der kombinierten Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] zeigte sich ein signifikanter GLP-1 Total-Anstieg im Vergleich zur NaCl 0,9 %-Infusion. Im direkten Vergleich zur isolierten GLP-1 [7-36-Amid]-Infusion zeigte sich zu diesem Zeitpunkt keine signifikante Differenz. Zum Zeitpunkt 0 konnten am Versuchstag A 4,5 ± 1,2 pmol/l, am Versuchstag C 6,2 ± 0,7 pmol/l und am Versuchstag D 8,6 ± 1,4 pmol/l (p = 0,01 vs NaCl 0,9 %) gemessen werden. Unter der isolierten GLP-1 [7-36-Amid]-Infusion fand sich über 60 Minuten kein Anstieg der GLP-1 Total-Konzentrationen und die gemessenen Konzentrationen lagen auf dem Niveau der gemessenen Konzentrationen unter der NaCl 0,9 %-Infusion. Das bedeutet, dass trotz der Tatsache, dass die GLP-1 [7-36-Amid]-Infusion seit 60 Minuten intravenös appliziert wurde, kein suffizienter GLP-1 Total-Spiegel aufgebaut werden konnte und somit auch zum Zeitpunkt der Glukosegabe keine zusätzliche GLP-1-vermittelte Stimulation der Insulin-Sekretion erfolgen konnte. Erst zum Zeitpunkt 60 Minuten nach Glukosegabe fand sich ein nennenswerter GLP-1 Total-Anstieg unter isolierter GLP-1 [7-36-Amid]-Infusion, welcher aber noch immer nicht statistisch signifikant im Vergleich zur NaCl 0,9 %-Infusion war. Erst zum Zeitpunkt 90 Minuten nach Glukosegabe ließen sich unter GLP-1 [7-36-Amid]-Infusion signifikant höhere GLP-1 Total-Konzentrationen messen als unter NaCl 0,9 %-Infusion. Das heißt, dass erst nach 120 Minuten intravenöser GLP-1 [7-36-Amid]-Infusion ein höherer GLP-1 Total-Spiegel erreicht werden konnte als unter Placebo. Zu diesem Zeitpunkt fanden sich unter NaCl 0,9 %-Infusion Konzentrationen von 7,3 ± 1,3 pmol/l, unter GLP-1 [7-36-
Amid]-Infusion von 33,7 ± 8,2 pmol/l (p = 0,02 vs. NaCl 0,9 %) und unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] von 44,0 ± 9,2 pmol/l (p = 0,003 vs. NaCl 0,9 %). Die Konzentrationen an Versuchstag C und D unterschieden sich zu diesem Zeitpunkt nicht signifikant.

Im Gegensatz zu der isolierten GLP-1 [7-36-Amid]-Infusion fanden sich unter der kombinierten Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] deutlich früherer Anstiege der GLP-1 Total-Konzentrationen. Bereits zum Zeitpunkt 0 fand sich wie bereits erwähnt im Vergleich zur Infusion mit NaCl 0,9 % ein signifikanter Anstieg. Dieser wurde im Verlauf der kombinierten Infusion fortgesetzt, stabilisierte sich auf hohem Niveau und war zum Zeitpunkt 60 Minuten nach Glukosegabe dauerhaft signifikant höher als unter NaCl 0,9 %-Infusion. Da bei der kombinierten Infusion schon 60 Minuten vor der intravenösen Glukosegabe die Exendin [9-39]-Infusion begonnen und erst im Anschluss 30 Minuten vor Glukosegabe die GLP-1 [7-36-Amid]-Infusion begonnen wurde, kann eine vor der GLP-1-Infusion stattgefundenen „Absättigung“ an den Kunststoffoberflächen des Infusionssystems einen schnelleren Konzentrationsaufbau ermöglicht haben.

Am Ende der Versuchstage lagen die GLP-1 Total-Konzentrationen unter isolierter GLP-1 [7-36-Amid]-Infusion und unter kombinierter Infusion signifikant höher als unter NaCl 0,9 %-Infusion. Am Versuchstag A wurde jetzt eine GLP-1 Total-Konzentration von 4,5 ± 1,5 pmol/l, am Versuchstag C von 38,0 ± 5,4 pmol/l (p = 0,005 vs. NaCl 0,9 %) und am Versuchstag D von 48,5 ± 11,3 pmol/l (p = 0,0009 vs. NaCl 0,9 %) gemessen.
Abbildung 6: GLP-1 Total-Konzentrationen vor und nach intravenöser Glukosegabe (↓) unter NaCl 0,9 %-Infusion (graue Kreise), isolierter GLP-1 [7-36-Amid]-Infusion (rote Kreise) und kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39]-Infusion (blaue Kreise). 
†: p < 0,05 NaCl 0,9 %-Infusion vs. isolierte GLP-1 [7-36-Amid]-Infusion. 
‡: p < 0,05 isolierte GLP-1 [7-36-Amid]-Infusion vs. kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39]. 
* : p < 0,05 NaCl 0,9 %-Infusion vs. kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39].
3.1.3 Exendin [9-39]


Unter der kombinierten Infusion mit GLP-1 [7-36-Amid] und Exendin [9-39] konnte ein rascher Konzentrationsanstieg beobachtet werden. Nachdem die Exendin [9-39]-Infusion zum Zeitpunkt 60 Minuten vor intravenöser Glukosegabe mit einer Dosierung von 500 pmol · kg⁻¹ · min⁻¹ gestartet wurde, konnte nach 30 Minuten eine Konzentration von 57,8 ± 13,6 nmol/l gemessen werden. Bis zum Zeitpunkt 0 kommt es zu einer weiteren Steigerung auf eine maximale Konzentration von 173,8 ± 48,3 nmol/l. Im Anschluss wurde die Dosierung nach Infusionsprotokoll auf 350 pmol · kg⁻¹ · min⁻¹ abgesenkt. Folgerichtig sank die Exendin [9-39]-Konzentration auf 111,4 ± 15,3 nmol/l und stabilisierte sich dann im weiteren Verlauf auf ein steady state. Am Ende des Versuchstages konnten Konzentrationen von 147,3 ± 25,9 nmol/l bestimmt werden.
3.1.4 Kapillare Plasmaglukose

An allen Versuchstagen fanden sich keine signifikanten Unterschiede bezüglich der initialen Nüchternglukose-Werte. Am Versuchstag A konnten Konzentration von 95 ± 2 mg/dl, am Versuchstag C 96 ± 3 mg/dl und am Versuchstag D 94 ± 3 mg/dl gemessen werden. Der Beginn der Infusionen zeigte vorerst keine signifikanten Veränderungen der Plasmaglukose-Konzentrationen. Insbesondere hatten die 30 Minuten vor der intravenösen Glukosegabe begonnenen isolierten GLP-1 [7-36-Amid]-Infusionen keinen Einfluss auf den Plasmaglukose-Wert.
Nach der intravenösen Glukosegabe fanden sich keine signifikanten Unterschiede bezüglich der maximalen Konzentrationen und des Plasmaglukose-Verlaufs über die ersten 60 Minuten danach. 2 Minuten nach Glukosegabe lag die Plasmaglukose-Konzentration unter NaCl 0,9 %-Infusion bei 267 ± 38 mg/dl, unter isolierter GLP-1 [7-36-Amid]-Infusion bei 295 ± 35 mg/dl und unter kombinierter GLP-1 [7-36-Amid]- und Exendin [9-39]-Infusion bei 279 ± 40 mg/dl. Insgesamt schien der Abbau der künstlich aufgebauten hyperglykämischen Plasmaglukose-Konzentrationen unter der kombinierten Infusion etwas verzögert, wobei sich aber während der ersten sechzig Minuten nach Glukosegabe keine signifikanten Unterschiede nachweisen ließen.

90 Minuten nach intravenöser Glukosegabe lag die Glukose-Konzentration unter der isolierten GLP-1 [7-36-Amid]-Infusion mit 81 ± 8 mg/dl signifikant niedriger als unter kombinierter GLP-1 [7-36-Amid]- und Exendin [9-39]-Infusion mit 106 ± 4 mg/dl (p = 0,02 vs. kombinierter GLP-1 [7-36-Amid] und Exendin [9-39]). Zu diesem Zeitpunkt fand sich kein signifikanter Konzentrationsunterschied zwischen Versuchstag A und Versuchstag C.

Am Versuchsende zum Zeitpunkt 120 Minuten nach intravenöser Glukosegabe zeigten sich dann signifikant niedrigere Plasmaglukose-Konzentrationen unter der isolierten GLP-1 [7-36-Amid]-Infusion mit 72 ± 3 mg/dl. Im Vergleich dazu konnten unter NaCl 0,9 %-Infusion 88 ± 4 mg/dl (p = 0,02 vs. GLP-1 [7-36-Amid]) und unter kombinierter GLP-1 [7-36-Amid]- und Exendin [9-39]-Infusion 90 ± 5 mg/dl gemessen werden.
3.1.5 Insulin

3.1.5.1 Insulin-Konzentrationen

An allen Versuchstagen lagen die basalen Insulin-Konzentrationen auf einem vergleichbaren Niveau ohne signifikante Unterschiede. Vor Versuchstag A wurden 5,5 ± 1,2 mU/l, vor Versuchstag C 6,2 ± 0,9 mU/l und vor Versuchstag D 4,8 ± 0,9 mU/l gemessen.
Im gesamten weiteren Versuchsverlauf zeigten sich unter den zu vergleichenden Infusionen keine signifikanten Unterschiede bezüglich der Insulin-Konzentrationen. Dabei sind unter der isolierten GLP-1 [7-36-Amid]-Infusion höhere Insulin-Konzentrationen zu finden, ohne sich dabei aber in Regionen einer statistischen Signifikanz zu befinden. Als Reaktion auf die Glukose-Belastung fand sich ein steiler Anstieg der Insulin-Konzentrationen. Zu keinem Zeitpunkt der ersten Phase der Insulin-Sekretion lagen signifikante Unterschiede vor. Die maximalen Insulin-Konzentrationen fanden sich 4 Minuten nach Glukosegabe unter der NaCl 0,9 %-Infusion mit 51,6 ± 11,9 mU/l und unter der kombinierten Infusion mit 41,9 ± 10,5 mU/l.

Unter der isolierten GLP-1 [7-36-Amid]-Infusion lagen die maximalen Insulin-Konzentrationen mit 65,2 ± 15,9 mU/l 6 Minuten nach Glukosegabe. Zum Zeitpunkt 60 Minuten nach intravenöser Glukosegabe ist die Insulin-Konzentration unter der isolierten GLP-1 [7-36-Amid]-Infusion nach anfänglichem Abfall im Vergleich zu den anderen Versuchstage wieder auf einen Wert von 30,2 ± 11,8 mU/l angestiegen. Unter der NaCl 0,9 %-Infusion fanden sich zu diesem Zeitpunkt Konzentrationen von 12,5 ± 3,9 mU/l und unter kombinierter GLP-1 [7-36-Amid]- und Exendin [9-39]-Infusion Konzentrationen von 19,7 ± 6,1 mU/l. Statistisch lagen diese Differenzen aber außerhalb der Signifikanz (p = 0,08). Der Anstieg der Insulin-Konzentration ist vermutlich Ausdruck der unter der isolierten GLP-1 [7-36-Amid]-Infusion zu diesem Zeitpunkt stark angestiegenen GLP-1-Konzentration. Nachdem bis zu diesem Zeitpunkt keine relevanten GLP-1-Konzentrationen aufgebaut werden konnten. Dieser erneute Anstieg der Insulin-Konzentration ist auch Erklärung für die signifikant niedrigeren Plasmaglukose-Konzentrationen unter der isolierten GLP-1 [7-36-Amid]-Infusion. Am Ende der Versuchstage lagen die Insulin-Konzentrationen auf dem Ausgangsniveau ohne sich untereinander signifikant zu unterscheiden. Am Versuchstag A lag die Konzentration zum Zeitpunkt 120 Minuten nach intravenöser Glukosegabe bei 4,9 ± 0,9 mU/l, am Versuchstag C bei 6,2 ± 1,4 mU/l und am Versuchstag D bei 6,1 ± 1,6 mU/l.
**Abb. 9:** Plasmainsulin-Konzentrationen vor und nach intravenöser Glukosegabe (↓) unter NaCl 0,9 %-Infusion (graue Kreise), isolierter GLP-1 [7-36-Amid]-Infusion (rote Kreise) und kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39]-Infusion (blaue Kreise). ‡: p < 0,05 NaCl 0,9 %-Infusion vs. isolierte GLP-1 [7-36-Amid]-Infusion. *: p < 0,05 isolierte GLP-1 [7-36-Amid]-Infusion vs. kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39]. †: p < 0,05 NaCl 0,9 %-Infusion vs. kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39].

3.1.5.2 Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Konzentration

Die Flächen unter den Konzentrationskurven für die erste Phase (Zeitpunkt 0 bis 10 Minuten nach intravenöser Glukosegabe) zeigten keine signifikanten Unterschiede an den einzelnen Versuchstagen. Ein Maximum präsentierte sich unter der isolierten GLP-1 [7-36-Amid]- Infusion mit 431,1 ± 119,8 mU · l⁻¹ · min⁻¹.

Im Vergleich dazu fanden sich unter der NaCl 0,9 %-Infusion Werte von 302,6 ± 72,5 mU · l⁻¹ · min⁻¹ und unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] Werte von 253,1 ± 68,3 mU · l⁻¹ · min⁻¹. 

**ERGEBNISSE**
ERGEBNISSE

[9-39]-Werte von 291,8 ± 74,5 mU·l⁻¹·min⁻¹ (p = 0,27 vs. NaCl 0,9 % und p = 0,93 vs. kombinierter GLP-1 [7-36-Amid] und Exendin [9-39]). Insgesamt lässt sich hier keine suffiziente Stimulation der Insulin-Sekretion durch die isolierte GLP-1 [7-36-Amid]-Infusion erkennen. Dies lässt sich bei Betrachtung der GLP-1-Konzentrationen zum Zeitpunkt der intravenösen Glukosegabe durch einen unzureichenden Aufbau einer effektiven GLP-1-Konzentration erklären.

\[
p = 0,405
\]

\[\text{n.s.} \quad \text{n.s.} \quad \text{n.s.}\]

**Abb. 10:** Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Konzentration 0 - 10 Minuten nach intravenöser Glukosegabe (erste Phase) unter NaCl 0,9 %-, isolierter GLP-1 [7-36-Amid]- oder kombinierter GLP-1 [7-36-Amid]- + Exendin [9-39]-Infusion. n.s: nicht signifikant.

3.1.6 C-Peptid

Die basalen C-Peptid-Konzentrationen lagen an allen Versuchstagen auf einem vergleichbaren Niveau. Am Versuchstag A fanden sich Konzentrationen von 0,6 ± 0,1
nmol/l, am Versuchstag C 0,7 ± 0,1 nmol/l und am Versuchstag D 0,6 ± 0,1 nmol/l. Während des gesamten Versuchsverlaufes fanden sich keine signifikanten Konzentrationsunterschiede. Es ließen sich insgesamt höhere C-Peptid-Konzentrationen unter der isolierten GLP-1 [7-36-Amid]-Infusion finden, ohne Signifikanzniveau zu erreichen. Konform mit den Insulin-Konzentrationen findet sich ein starker Anstieg der C-Peptid-Konzentrationen nach der intravenösen Glukosegabe zum Zeitpunkt 0 an allen Versuchstagen. Die maximalen Konzentrationen in der ersten Phase der Insulin-Sekretion fanden sich 6 Minuten nach der intravenösen Glukosegabe. Unter der NaCl 0,9 %-Infusion lag die Konzentration zu diesem Zeitpunkt bei 1,6 ± 0,1 nmol/l, unter der isolierten GLP-1 [7-36-Amid]-Infusion bei 1,9 ± 0,3 nmol/l und unter der kombinierten Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] bei 1,5 ± 0,2 nmol/l.

Danach sanken die Konzentrationen, um dann unter kombinierter Infusion und unter isolierter GLP-1 [7-36-Amid]-Infusion nach einer Plateauphase 30 Minuten nach Glukosegabe wieder leicht anzusteigen bzw. unter NaCl 0,9 %-Infusion das Niveau zu halten. 60 Minuten nach Glukosegabe fand sich unter der GLP-1 [7-36-Amid]-Infusion ein zweites Maximum mit einer Konzentration von 2,0 ± 0,4 nmol/l. Unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] fanden sich Konzentrationen von 1,6 ± 0,3 nmol/l und unter der NaCl 0,9 %-Infusion Werte von 1,3 ± 0,2 nmol/l. Ein Signifikanzniveau fand sich statistisch nicht. Am Ende der Versuchstage lagen die Konzentrationen auf einem vergleichbaren niedrigen Niveau. Am Versuchstag A wurden 0,8 ± 0,1 nmol/l, am Versuchstag C 1,1 ± 0,2 nmol/l und am Versuchstag D 0,9 ± 0,2 nmol/l gemessen.
3.1.7 Insulin-Sekretionsraten

3.1.7.1 Insulin-Sekretionsraten

Zu Beginn der Versuchstage unterschieden sich die basalen Insulin-Sekretionsraten nicht. Am Versuchstag A konnten Werte von 1,9 ± 0,2 pmol \cdot kg^{-1} \cdot min^{-1}, am Versuchstag C 2,0 ± 0,1 pmol \cdot kg^{-1} \cdot min^{-1} und am Versuchstag D 1,9 ± 0,1 pmol \cdot kg^{-1} \cdot min^{-1} bestimmt werden. Auch nach Beginn der Infusionen zeigten sich keine nennenswerten Veränderungen der Insulin-Sekretionsraten. Insbesondere hatte der
Beginn der GLP-1 [7-36-Amid]-Infusion 30 Minuten vor intravenöser Glukosegabe keinen Einfluss auf die Insulin-Sekretionsrate. Zum Zeitpunkt 0 vor Glukosegabe wurden unter NaCl 0,9 %-Infusion 2,0 ± 0,3 pmol · kg⁻¹ · min⁻¹, unter GLP-1 [7-36-Amid]-Infusion 1,9 ± 0,3 pmol · kg⁻¹ · min⁻¹ und unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] 2,0 ± 0,2 pmol · kg⁻¹ · min⁻¹ berechnet.

Nach intravenöser Glukosegabe kommt es zu einem raschen Anstieg der Insulin-Sekretionsrate. Unter GLP-1 [7-36-Amid]-Infusion und unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] finden sich die maximalen Insulin-Sekretionsraten bereits 2 Minuten nach intravenöser Glukosegabe. Unter GLP-1 [7-36-Amid]-Infusion konnte die Insulin-Sekretionsrate mit 21,3 ± 16,9 pmol · kg⁻¹ · min⁻¹ und unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] mit 14,1 ± 4,1 pmol · kg⁻¹ · min⁻¹ berechnet werden. Unter NaCl 0,9 %-Infusion zeigte sich zu diesem Zeitpunkt eine Rate von 11,2 ± 3,6 pmol · kg⁻¹ · min⁻¹. Statistisch signifikante Unterschiede fanden sich somit nicht.

Innerhalb der ersten 10 Minuten nach intravenöser Glukosegabe kam es zu einem raschen absinken der Insulin-Sekretionsraten. Nach 10 Minuten lagen die Sekretionsraten am Versuchstag A bei 5,1 ± 1,1 pmol · kg⁻¹ · min⁻¹, am Versuchstag C 3,9 ± 0,8 pmol · kg⁻¹ · min⁻¹ und am Versuchstag D bei 5,7 ± 1,3 pmol · kg⁻¹ · min⁻¹. Unter NaCl 0,9 %-Infusion und unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] lagen die Sekretionsraten im weiteren Verlauf auf vergleichbarem Niveau bis 50 Minuten nach intravenöser Glukosegabe, um dann weiter abzufallen und am Ende der Versuchstage auf den Ausgangswerten zu enden. Am Ende des Versuchstages A lagen Sekretionsraten von 1,8 ± 0,2 pmol · kg⁻¹ · min⁻¹ und am Ende des Versuchstages D von 2,1 ± 0,4 pmol · kg⁻¹ · min⁻¹ vor. Ebenso verliefen die Insulin-Sekretionsraten unter der GLP-1 [7-36-Amid]-Infusion, wobei sich hier noch zwei kleinere pulsatile Sekretionserhöhungen zum Zeitpunkt 40 und 60 Minuten nach intravenöser Glukosegabe fanden. Beide erreichten aber kein Signifikanzniveau. Am Ende des Versuchstage C lag eine Sekretionsrate von 2,4 ± 0,6 pmol · kg⁻¹ · min⁻¹ vor. Insgesamt fanden sich zu keinen Zeitpunkt signifikante Differenzen zwischen den einzelnen Infusionen.
**3.1.7.2 Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Sekretionsrate**

In der ersten Phase der Insulin-Sekretion (0 – 10 Minuten) nach der intravenösen Glukosegabe zeigte sich unter der Kurve des Verlaufsgraphen am Tag der GLP-1 [7-36-Amid]-Infusion kein signifikant höherer Wert als an den anderen beiden Versuchstagen. Der Wert am Versuchstag C wurde auf 96,9 ± 27,9 pmol \( \cdot \) kg\(^{-1} \cdot \) min\(^{-1} \) berechnet, am Versuchstag A auf 75,9 ± 16,2 pmol \( \cdot \) kg\(^{-1} \cdot \) min\(^{-1} \) und am Versuchstag D auf 71,8 ± 20,9 pmol \( \cdot \) kg\(^{-1} \cdot \) min\(^{-1} \). Eine Signifikanz zwischen...

\[ p = 0,291 \]

\[ \begin{array}{c}
\text{n.s.} \\
\text{n.s.} \\
\text{n.s.}
\end{array} \]

**Abb. 13:** Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Sekretionsrate 0 - 10 Minuten nach intravenöser Glukosegabe (erste Phase) unter NaCl 0,9 %-, isolierter GLP-1 [7-36-Amid]- oder kombinierter GLP-1 [7-36-Amid]- + Exendin [9-39]-Infusion. n.s: nicht signifikant.

### 3.1.8 Glukagon

Die basalen Glukagon-Konzentrationen wiesen vor Versuchsbeginn keine signifikanten Differenzen auf. Am Versuchstag A sind Konzentrationen von 11,8 ± 3,5 pmol/l, am Versuchstag C von 9,5 ± 3,5 pmol/l und am Versuchstag D von 9,7 ± 3,2 pmol/l.

Nach intravenöser Glukosegabe sanken die Glukagon-Spiegel am Versuchstag A und C als Reaktion auf die erhöhten Insulin-Konzentrationen und Plasmaglukose-Konzentrationen deutlich ab und 15 Minuten nach Glukosegabe fanden sich Glukagon-Konzentrationen unter NaCl 0,9 %-Infusion von 5,0 ± 1,7 pmol/l und unter GLP-1 [7-36-Amid]-Infusion von 4,0 ± 1,8 pmol/l. Die Glukagon-Konzentrationen blieben fortan unter diesen beiden Infusionsregimen vergleichsweise stabil, wobei sich am Ende des Versuchstages C noch ein nichtsignifikanter Anstieg verzeichnen ließ, welcher ggf. als beginnende Gegenregulation zu deuten ist, da zu diesem Zeitpunkt am Versuchstag C auch die niedrigsten Plasmaglukose-Konzentrationen gemessen wurden.


Am Ende der Versuchstage sind am Versuchstag A Glukagon-Konzentrationen von 5,5 ± 2,4 pmol/l (p = 0,01 vs. kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39]), am Versuchstag C von 8,2 ± 12,6 pmol/l (p = 0,02 vs. kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39]) und am Versuchstag D von 22,5 ± 4,1 pmol/l gemessen worden.
3.2 Projekt B

3.2.1 GLP-1 Total

Die Basalwertmessungen der GLP-1 Total-Konzentrationen wiesen an den einzelnen Versuchstagen keine Unterschiede auf. Vor der NaCl 0,9 %-Infusion fanden sich Werte von 9,8 ± 1,5 pmol/l, vor der GLP-1 [7-36-Amid]-Infusion Werte von 10,0 ± 0,7 pmol/l und vor der kombinierten Infusion von GLP-1 [7-36-Amid] und Exendin [9-39]-
Werte von 9,3 ± 1,8 pmol/l. Am Versuchstag A' zeigten sich, wie zu erwarten war, im gesamten Versuchsverlauf keine signifikanten Veränderungen der GLP-1 Total-Spiegel.

An den Versuchstagen C' und D' zeigte sich dagegen kurz nach Beginn der GLP-1 [7-36-Amid]-Infusion mit 1 pmol · kg⁻¹ · min⁻¹ ein rascher Anstieg der GLP-1 Total-Konzentrationen. Die ersten weiteren Messungen erfolgten 15 Minuten nach GLP-1 [7-36-Amid]-Infusionsbeginn und somit 30 Minuten vor der intravenösen Glukosegabe. Unter der isolierten GLP-1 [7-36-Amid]-Infusion fanden sich Konzentrationen von 83,0 ± 29,4 pmol/l (p = 0,02 vs. NaCl 0,9 %) und unter der kombinierten Infusion 137,5 ± 25,2 pmol/l (p = 0,01 vs. NaCl 0,9 %). Diese Konzentrationen lagen signifikant höher als unter der NaCl 0,9 %-Infusion, bei der sich zu diesem Zeitpunkt ein Wert von 8,0 ± 1,3 pmol/l nachweisen ließ. Interessanterweise zeigte sich auch eine deutliche Differenz bezüglich der GLP-1 Total-Konzentration an Versuchstag D' gegenüber C' zu diesem Zeitpunkt. Am Versuchstag D' war die Konzentration mit 137,5 ± 25,2 pmol/l deutlich, aber nicht signifikant höher als an Tag C' (p = 0,7 vs. GLP-1 [7-36-Amid]-Infusion).

Nach Reduktion der infundierten GLP-1 [7-36-Amid]-Dosen auf 0,5 pmol · kg⁻¹ · min⁻¹ sanken die GLP-1 Total-Spiegel zum Zeitpunkt 0 (intravenöse Glukosegabe) an Versuchstag C' auf 52,7 ± 13,7 pmol/l und an Versuchstag D' auf 60,7 ± 4,9 pmol/l. Signifikante Differenzen zwischen Tag C' und D' fanden sich im weiteren Verlauf des Versuches nicht mehr. Unter der Dosierung von 0,5 pmol · kg⁻¹ · min⁻¹ blieben die GLP-1 Total-Konzentrationen auf einem stabilen Niveau. Tendenziell zeigten sich unter der kombinierten Infusion mit GLP-1 [7-36-Amid] und Exendin [9-39] höhere GLP-1 Total-Konzentrationen, welche aber kein Signifikanzniveau erreichten. Über den gesamten Verlauf lagen die GLP-1 Total-Spiegel ab dem Zeitpunkt 30 Minuten vor intravenöser Glukosegabe an Versuchstagen C' und D' signifikant höher als an Versuchstag A'.

Am Ende der Versuchstage wurden GLP-1 Total-Konzentrationen unter NaCl 0,9 %-Infusion von 7,5 ± 1,6 pmol/l, unter isolierter GLP-1 [7-36-Amid]-Infusion von 54,3 ± 12,7 pmol/l und unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] von 67,2 ± 13,1 pmol/l nachgewiesen. Somit waren am Ende des Versuches die Spiegel an Tag C' (p = 0,007 vs. NaCl 0,9 %) und D' (p = 0,002 vs. NaCl 0,9 %) weiterhin signifikant höher als an Versuchstag A'.
### 3.2.2 GLP-1 Intakt

Zu Beginn des Versuchstages A' lagen die gemessenen Werte im Mittel bei 0,0 ± 0,0 pmol/l, an Tag C' bei 0,5 ± 0,5 pmol/l und an Tag D' bei 1,3 ± 1,2 pmol/l. Statistisch fanden sich keine signifikanten Unterschiede bei den "baseline"-Messungen. Zum Zeitpunkt 30 Minuten vor intravenöser Glukosegabe und somit 15 Minuten nach dem Beginn der GLP-1 [7-36-Amid]-Infusion mit einer Dosierung von 1,0 pmol · kg⁻¹ · min⁻¹ ließen sich im Vergleich zum Versuchstag A' an den Versuchstagen C' und D'
signifikant höhere GLP-1 Intakt-Konzentrationen nachweisen. Unter isolierter GLP-1 [7-36-Amid]-Infusion wurden 12,4 ± 2,7 pmol/l (p = 0,0005 vs. NaCl 0,9 %) und unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] 14,1 ± 1,9 pmol/l (p = 0,0002 vs. NaCl 0,9 %) gemessen. Zeitgleich lag die Konzentration von GLP-1 Intakt unter der NaCl 0,9 %-Infusion weiter bei 0,0 ± 0,0 pmol/l. Nach Reduzierung der GLP-1 [7-36-Amid]-Infusion zum Zeitpunkt 30 Minuten vor intravenöser Glukosegabe auf 0,5 pmol · kg⁻¹ · min⁻¹ an den Versuchstagen C’ und D’ sanken die GLP-1 Intakt-Spiegel. Zum Zeitpunkt 0 (intravenöse Glukosegabe) fanden sich unter isolierter GLP-1 [7-36-Amid]-Infusion Werte von 5,8 ± 0,9 pmol/l und unter kombinierter Infusion von GLP-1 [7-36-Amid]- und Exendin [9-39]-Werte von 6,9 ± 1,3 pmol/l. Unter der NaCl 0,9 %-Infusion konnten zu diesem Zeitpunkt Konzentrationen von 0,0 ± 0,0 pmol/l nachgewiesen werden. Somit lagen die Werte an Versuchstag C’ (p = 0,0006 vs. NaCl 0,9 %) und Versuchstag D’ (p = 0,0002 vs. NaCl 0,9 %) weiterhin signifikant höher. Über den gesamten weiteren Versuchsverlauf blieben die GLP-1 Intakt-Spiegel an den Versuchstagen C’ und D’ signifikant höher als an Versuchstag A’ bis zum Zeitpunkt 60 Minuten nach intravenöser Glukosegabe. Ab diesem Zeitpunkt waren lediglich die Spiegel an Versuchstag C’ signifikant höher als am Versuchstag A’. Die GLP-1 Intakt-Konzentrationen unter der kombinierten GLP-1 [7-36-Amid] und Exendin [9-39] lagen zwar auch deutlich höher als am Versuchstag A’, jedoch ließen sich statistisch keine Signifikanzen nachweisen. Am Ende des Versuchstages wurden unter der NaCl 0,9 %-Infusion Werte von 0,0 ± 0,0 pmol/l, unter isolierter GLP-1 [7-36-Amid]-Infusion Werte von 8,1 ± 2,7 pmol/l und unter kombinierter GLP-1 [7-36-Amid]- und Exendin [9-39]-Infusion Werte von 4,5 ± 1,4 pmol/l gemessen.

Zwischen den Versuchstagen C’ und D’ fanden sich zu keinem Zeitpunkt signifikante Differenzen in Hinsicht auf die GLP-1 Intakt-Konzentrationen.
3.2.3 Exendin [9-39]

**3.2.4 Kapillare Plasmaglukose**

Die initialen Nüchternglukose-Werte zeigten bei allen Probanden an allen drei Versuchstagen keine signifikanten Unterschiede. Am Versuchstag A’ fanden sich Werte von 100 ± 2 mg/dl, am Versuchstag C’ 97 ± 2 mg/dl und am Versuchstag D’ 95 ± 2 mg/dl. Im nüchternen Zustand zeigte die 45 Minuten vor der intravenösen Glukosegabe beginnenden isolierten Infusion mit GLP-1 [7-36-Amid] bereits eine signifikante Reduzierung der Glukose-Konzentration. Nach 15 Minuten Infusionsdauer mit einer Dosierung von 1,0 pmol · kg⁻¹ · min⁻¹ senkte sich der Glukose-Spiegel auf 89 ± 2 mg/dl ab (p = 0,005 vs. NaCl 0,9 %). Im weiteren Verlauf sank der Blutzucker unter der GLP-1 [7-36-Amid]-Infusion auch nach Reduktion der Dosis auf 0,5 pmol · kg⁻¹ · min⁻¹ weiter ab und erreichte zum Zeitpunkt 0 vor der intravenösen Glukosegabe einen Wert von 80 ± 3
mg/dl und war damit signifikant niedriger als an den anderen beiden Versuchstagen ($p = 0,0001$ vs. NaCl 0,9 % und $p = 0,0003$ vs. GLP-1 [7-36-Amid] + Exendin [9-39]). Zum Zeitpunkt 0 wurden unter der NaCl 0,9 %-Infusion 100 ± 2 mg/dl und unter der kombinierten Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] 98 ± 2 mg/dl gemessen.

unterschiedlichen Versuchstagen und bei Beendigung der Versuche lagen keine signifikanten Unterschiede mehr vor.

![Graph](image-url)

**Abb. 18:** Kapillare Plasmaglukose-Konzentrationen vor und nach intravenöser Glukosegabe (●) unter NaCl 0,9 %-Infusion (graue Kreise), isolierter GLP-1 [7-36-Amid]-Infusion (rote Kreise) und kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39]-Infusion (blaue Kreise). ‡: p < 0,05 NaCl 0,9 %-Infusion vs. isolierte GLP-1 [7-36-Amid]-Infusion. ‡: p < 0,05 isolierte GLP-1 [7-36-Amid]-Infusion vs. kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39]. †: p < 0,05 NaCl 0,9 %-Infusion vs. kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39].

### 3.2.5 Insulin

#### 3.2.5.1 Insulin-Konzentrationen

Die Plasmainsulin-Spiegel wiesen an allen Versuchstagen vor Infusionsbeginn keine signifikanten Unterschiede auf. Am Versuchstag A’ wurden Insulin-Spiegel von $8,0 \pm 1,6 \, \text{mU/l}$, am Versuchstag C’ $7,1 \pm 2,0 \, \text{mU/l}$ und am Versuchstag D’ $6,0 \pm 1,3 \, \text{mU/l}$ als “baseline-Werte” gemessen. Einen ersten stimulierenden Effekt zeigt die isolierte
GLP-1 [7-36-Amid]-Infusion zum Zeitpunkt 30 Minuten vor der intravenösen Glukosegabe. Es kam zu einem signifikanten Anstieg der Insulin-Konzentration 15 Minuten nach Beginn der GLP-1 [7-36-Amid]-Infusion mit einer Dosierung von 1 pmol · kg⁻¹ · min⁻¹. Zu diesem Zeitpunkt lag die Insulin-Konzentration unter der isolierten GLP-1 [7-36-Amid]-Infusion bei 15,7 ± 2,1 mU/l. Sie lag somit höher als unter NaCl 0,9 %-Infusion, bei welcher sich zu diesem Zeitpunkt ein Insulin-Spiegel von 5,8 ± 1,3 mU/l nachweisen ließ und höher als unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] mit 7,9 ± 1,1 mU/l (p = 0,0006 vs. NaCl 0,9 % und p = 0,03 vs. kombinierter GLP-1 [7-36-Amid] und Exendin [9-39]). Dieser Effekt war passager und zum Zeitpunkt 15 Minuten vor intravenöser Glukosegabe und zum Zeitpunkt 0 nicht mehr nachweisbar.

Nach der intravenösen Glukosegabe zeigte sich eine deutliche Steigerung der Insulin-Konzentrationen unter der isolierten GLP-1 [7-36-Amid]-Infusion. Es konnten signifikant höhere Insulin-Spiegel über einen Zeitraum von 20 Minuten nach der intravenösen Glukosegabe nachgewiesen werden. Das Maximum fand sich 4 Minuten nach der intravenösen Glukosegabe. Hier lag unter isolierter GLP-1 [7-36-Amid]-Infusion ein Wert von 132,6 ± 21,5 mU/l. Zum selben Zeitpunkt wurden unter NaCl 0,9 % 66,1 ± 13,0 mU/l und unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] 64,2 ± 12,6 mU/l gemessen (p = 0,01 vs. NaCl 0,9 % und p = 0,01 vs. kombinierter Infusion GLP-1 [7-36-Amid] und Exendin [9-39]). Nach 30 Minuten wurde das Signifikanzniveau unter der isolierten GLP-1 [7-36-Amid]-Infusion verlassen und die Insulin-Konzentrationen näherten sich einander an. 40 Minuten nach der intravenösen Glukosegabe sank die Insulin-Konzentration bei der isolierten GLP-1 [7-36-Amid]-Infusion unter die mittleren Konzentrationen der anderen Versuchstage, ohne dass sich dabei eine Signifikanz nachweisen ließ. 60 Minuten nach der intravenösen Glukosegabe lag der Insulin-Spiegel unter isolierter GLP-1 [7-36-Amid]-Infusion bei 5,4 ± 0,9 mU/l, unter NaCl 0,9 % bei 13,2 ± 2,3 mU/l und unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] bei 15,2 ± 5,7 mU/l.

Am Versuchsende lagen die Insulin-Konzentrationen an allen Versuchstagen auf einem vergleichbaren Niveau ohne signifikante Differenzen.
3.2.5.2 Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Konzentrationen

Die Flächen unter den Konzentrationskurven für die erste Phase (Zeitpunkt 0 bis 10 Minuten nach intravenöser Glukosegabe) zeigten signifikante Unterschiede an den einzelnen Versuchstagen. Ein Maximum präsentierte sich unter der isolierten GLP-1 [7-36-Amid]-Infusion mit 952,8 ± 132,7 mU · l⁻¹ · min⁻¹. Im Vergleich dazu fanden sich unter der NaCl 0,9 %-Infusion Werte von 408,4 ± 68,6 mU · l⁻¹ · min⁻¹ und unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39]-Werte von 419,9 ± 82,3 mU · l⁻¹ · min⁻¹ (p = 0,02 vs. NaCl 0,9 % und p = 0,02 vs. kombinierter GLP-1 [7-36-Amid] und Exendin [9-39]). Zwischen den berechneten Werten für die Insulin-Konzentrationen an

\[ p = 0,002 \]


3.2.6 C-Peptid

Die Ausgangskonzentrationen an den einzelnen Versuchstagen wiesen keine signifikanten Unterschiede auf. Vor Beginn der NaCl 0,9 %-Infusion lagen die Konzentrationen bei 0,7 ± 0,1 nmol/l, vor Beginn der GLP-1 [7-36-Amid]-Infusion bei 0,7 ± 0,1 nmol/l und vor der kombinierten Infusion bei 0,6 ± 0,1 nmol/l. Ein erster Effekt konnte 15 Minuten nach Beginn der GLP-1 [7-36-Amid]-Infusion am Versuchstag C' nachgewiesen werden. Hier wurde in Anlehnung an die Befunde bei der Insulin-
Konzentration ein signifikanter Anstieg des C-Peptides unter der isolierten GLP-1 [7-36-Amid]-Infusion nachgewiesen. Die C-Peptid-Konzentrationen lagen zu diesem Zeitpunkt unter GLP-1 [7-36-Amid]-Infusion bei 1,0 ± 0,1 nmol/l, unter NaCl 0,9 %-Infusion bei 0,6 ± 0,1 nmol/l und unter kombinierter Infusion bei 0,7 ± 0,1 nmol/l (p = 0,007 vs. NaCl 0,9 % und p = 0,019 vs. kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39]). Auch hierbei handelt es sich um einen passageren Effekt, welcher zum Zeitpunkt 0 nicht mehr nachweisbar war. Vor der intravenösen Glukosegabe lagen die C-Peptid-Konzentrationen wieder auf vergleichbarem Niveau mit 0,6 ± 0,1 nmol/l unter NaCl 0,9 %-Infusion und mit 0,6 ± 0,1 nmol/l unter isolierter GLP-1 [7-36-Amid]-Infusion und mit 0,6 ± 0,1 nmol/l unter kombinierter Infusion.

Nach der intravenösen Glukosegabe fanden sich signifikant erhöhte C-Peptid-Konzentrationen am Versuchstag mit der isolierten GLP-1 [7-36-Amid]-Infusion. Dieses Phänomen ließ sich bis 25 Minuten nach der intravenösen Glukosegabe nachweisen. Den Maximalwert erreichte die C-Peptid-Konzentration am Tag C' 6 Minuten nach der intravenösen Glukosegabe. Hier fanden sich Konzentrationen von 3,0 ± 0,4 nmol/l. Wohingegen an Versuchstag A' mit 1,7 ± 0,2 nmol/l und an Versuchstag D' mit 1,7 ± 0,1 nmol/l niedrigere Werte gemessen wurden (p = 0,004 vs. NaCl 0,9 % und p = 0,003 vs. kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39]). Zwischen den C-Peptid-Konzentrationen an den Versuchstagen mit NaCl 0,9 %-Infusion und mit kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] fanden sich über den gesamten Zeitraum keine signifikanten Differenzen.

Zum Zeitpunkt 40 Minuten nach intravenöser Glukosegabe hatten sich die C-Peptid-Konzentrationen an allen Versuchstagen wieder angenähert und lagen mit 1,4 ± 0,1 nmol/l unter NaCl 0,9 %, 1,6 ± 0,3 nmol/l unter GLP-1 [7-36-Amid] und 1,6 ± 0,2 nmol/l unter Infusion mit kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] auf einem vergleichbaren Niveau.

Im Anschluss fiel die C-Peptid-Konzentration unter der isolierten GLP-1 [7-36-Amid]-Infusion unter die mittlere Konzentration der entsprechenden Zeitpunkte an den anderen Versuchstagen, ohne dabei ein statistisches Signifikanzniveau zu erreichen.
3.2.7 Insulin-Sekretionsraten

3.2.7.1 Insulin-Sekretionsraten

Zu Beginn der Versuche wiesen die Insulin-Sekretionsraten an allen Versuchstagen keine signifikanten Unterschiede auf. Am Versuchstag A' zeigten sich Werte von $2,2 \pm 0,2 \text{ pmol} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$, an Versuchstag C' $2,1 \pm 0,3 \text{ pmol} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$ und an Versuchstag D' $2,0 \pm 0,2 \text{ pmol} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$ bei den Basalwertmessungen vor Infusionsbeginn. Nach 15-minütiger Infusion des GLP-1 [7-36-Amid] am Versuchstag C'
konnte eine signifikante Steigerung der Insulin-Sekretionsrate nachgewiesen werden. Zum Zeitpunkt 30 Minuten vor der intravenösen Glukosegabe fand sich unter GLP-1 [7-36-Amid]-Infusion eine Insulin-Sekretionsrate von 4,1 ± 0,4 pmol · kg⁻¹ · min⁻¹ und somit eine signifikant höhere Rate als unter NaCl 0,9 %-Infusion mit 1,9 ± 0,2 und unter kombinierter GLP-1 [7-36-Amid] und Exendin [9-39]-Infusion mit 2,4 ± 0,2 pmol · kg⁻¹ · min⁻¹ (p = 0,0001 vs. NaCl 0,9 % und p = 0,0005 vs. kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39]). Auch hier zeigte sich ein nur passagerer Effekt auf die Insulin-Sekretionsrate nach Beginn der GLP-1 [7-36-Amid]-Infusion, welcher sich nach Reduktion der Dosierung auf 0,5 pmol · kg⁻¹ · min⁻¹ nicht mehr nachweisen ließ. Zum Zeitpunkt der intravenösen Glukosegabe (Zeitpunkt 0) fanden sich keine signifikanten Unterschiede zwischen den einzelnen Versuchstagen. Nach der intravenösen Glukosegabe zeigte sich besonders am Anfang der ersten Phase der Insulin-Sekretion über 4 Minuten eine deutlich höhere Rate unter der GLP-1 [7-36-Amid]-Infusion als an den anderen beiden Versuchstagen. Am Versuchstag C' lag das Maximum bei 51,1 ± 6,1 pmol · kg⁻¹ · min⁻¹ 2 Minuten nach der intravenösen Glukosegabe. Zu diesem Zeitpunkt lag die Insulin-Sekretionsrate an Tag A' bei 25,1 ± 3,2 pmol · kg⁻¹ · min⁻¹ und an Tag D' bei 21,9 ± 3,6 pmol · kg⁻¹ · min⁻¹ (p = 0,001 vs. NaCl 0,9 % und p = 0,0005 vs. kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39]). Auch über die verbleibenden 8 Minuten der ersten Phase der Insulin-Sekretion lagen die Messungen unter der GLP-1 [7-36-Amid]-Infusion deutlich über denen der anderen beiden Versuchstagen. Es ließ sich hier aber bis auf den Zeitpunkt 4 Minuten nach Glukosegabe, keine statistische Signifikanz nachweisen.

In der Anfangsphase des weiteren Verlaufes der Insulin-Sekretion zeigte sich eine Annäherung der Werte an Versuchstag C' und D', wohingegen die Sekretionsrate an Versuchstag A' 10 Minuten nach intravenöser Glukosegabe eine signifikante Reduzierung aufwies. Unter NaCl 0,9 %-Infusion lag die Sekretionsrate bei 4,7 ± 0,6 unter GLP-1 [7-36-Amid]-Infusion bei 10,3 ± 1,5 pmol · kg⁻¹ · min⁻¹ und unter kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] bei 7,7 ± 0,6 pmol · kg⁻¹ · min⁻¹ (p = 0,016 vs. GLP-1 [7-36-Amid] und p = 0,049 vs. kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39]). 15 Minuten nach der Glukosegabe ließ sich eine erneute kurze pulsatile Erhöhung der Sekretionsrate unter der GLP-1 [7-36-Amid]-Infusion nachweisen, welche das Signifikanzniveau überschritt. Der Wert lag bei 11,3 ± 2,2 pmol · kg⁻¹ · min⁻¹, wohingegen unter NaCl 0,9 % 4,7 ± 0,2 pmol · kg⁻¹ · min⁻¹ und kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] 6,8 ± 0,6 pmol · kg⁻¹.
Ergebnisse

min⁻¹ gemessen wurden (p = 0,004 vs. NaCl 0,9 % und p = 0,03 vs. kombinierter Infusion von GLP-1 [7-36-Amid] und Exendin [9-39]).

Im Anschluss näherten sich die Insulin-Sekretionsraten wieder an und wiesen bis zum Zeitpunkt 40 Minuten nach intravenöser Glukosegabe keine weiteren Signifikanzen auf. Erst ab dem Zeitpunkt 40 Minuten nach intravenöser Glukosegabe sank die Insulin-Sekretionsrate unter der GLP-1 [7-36-Amid]-Infusion signifikant unter die der anderen beiden Versuchstage. Diese Tatsache ist konform zu dem kapillaren Blutzuckerverlauf, welcher um diesen Zeitpunkt und in den folgenden 30 Minuten ein Minimalwert unter der GLP-1 [7-36-Amid]-Infusion zeigte. Die verminderte Insulin-Sekretionsrate scheint somit eine Reaktion auf den erniedrigten kapillaren Plasmaglukose-Spiegel zu sein. Die Rate lag zum Zeitpunkt 40 Minuten nach intravenöser Glukosegabe am Versuchstag C' bei 1,9 ± 0,5 pmol · kg⁻¹ · min⁻¹, am Versuchstag A' bei 5,0 ± 0,4 pmol · kg⁻¹ · min⁻¹ und am Versuchstag D' bei 5,4 ± 1,1 pmol · kg⁻¹ · min⁻¹ (p = 0,009 vs. NaCl 0,9 %-Infusion und p = 0,005 vs. kombinierter GLP-1 [7-36-Amid] und Exendin [9-39]). Dieses Phänomen ließ sich über weitere 50 Minuten bis zum Zeitpunkt 90 Minuten nach intravenöser Glukosegabe auf Signifikanzniveau nachweisen. 120 Minuten nach Glukosegabe hatte sich die Sekretionsraten an allen Versuchstagen auf niedrigem Niveau eingependelt. Sie wiesen jedoch eine statistische Signifikanz zwischen Versuchstag A' und Versuchstag C' auf. Am Ende des Versuches lag die Rate am Versuchstag A' bei 1,8 ± 0,3 pmol · kg⁻¹ · min⁻¹ und am Versuchstag C' bei 0,9 ± 0,2 (p = 0,03 vs. GLP-1 [7-36-Amid]).
**ERGEBNISSE**

Abb. 22: Insulin-Sekretionsrate vor und nach intravenöser Glukosegabe (↓) unter NaCl 0,9 %-Infusion (graue Kreise), isolierter GLP-1 [7-36-Amid]-Infusion (rote Kreise) und kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39]-Infusion (blaue Kreise). †: p < 0,05 NaCl 0,9 %-Infusion vs. isolierte GLP-1 [7-36-Amid]-Infusion. *: p < 0,05 isolierte GLP-1 [7-36-Amid]-Infusion vs. kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39]. ‡: p < 0,05 NaCl 0,9 %-Infusion vs. kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39].

3.2.7.2 Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Sekretionsrate

In der ersten Phase der Insulin-Sekretion (0 – 10 Minuten) nach der intravenösen Glukosegabe zeigte sich unter der Kurve des Verlaufsgraphen am Tag der GLP-1 [7-36-Amid]-Infusion ein signifikant höherer Wert als an den anderen beiden Versuchstagen. Der Wert am Versuchstag C’ wurde auf 234,2 ± 40,6 pmol · kg⁻¹ · min⁻¹ berechnet, am Versuchstag A’ auf 103,2 ± 13,1 pmol · kg⁻¹ · min⁻¹ und am Versuchstag D’ auf 111,4 ± 14,0 pmol · kg⁻¹ · min⁻¹ (p = 0,001 vs. NaCl 0,9 % und p = 0,001 vs. kombinierter Infusion GLP-1 [7-36-Amid] und Exendin [9-39]). Eine Signifikanz zwischen

\[ p = 0.001 \]

\[ p = 0.01 \]

\[ p = 0.01 \]

\[ n.s. \]

Übersicht über die integrierten Anstiege der Insulin-Sekretionsrate (pmol/kg)

**Abb. 23:** Integrierte Anstiege über Basalwerte („AUC“) der Insulin-Sekretionsrate 0 - 10 Minuten nach intravenöser Glukosegabe (erste Phase) unter NaCl 0,9 %-, isolierter GLP-1 [7-36-Amid]- oder kombinierter GLP-1 [7-36-Amid]- + Exendin [9-39]-Infusion. n.s: nicht signifikant.

### 3.2.8 Glukagon

Die Ausgangssituation bezüglich der Glukagon-Konzentrationen zeigte zu Beginn der Versuche keine signifikanten Differenzen an den einzelnen Versuchstagen. Die Glukagon-Spiegel lagen vor der NaCl 0,9 %-Infusion bei 8,3 ± 2,8 pmol/l, vor der isolierten GLP-1 [7-36-Amid]-Infusion bei 8,4 ± 2,4 pmol/l und vor der kombinierten Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] bei 7,5 ± 2,0 pmol/l.

Nach der intravenösen Glukosegabe zeigte sich an den Versuchstagen A’ und C’ eine Absenkung der Glukagon-Konzentrationen am ehesten als Reaktion auf die hohen Plasmaglukose-Spiegel. 15 Minuten nach der intravenösen Glukosegabe sanken die Werte unter der NaCl 0,9 %-Infusion auf 2,8 ± 0,9 pmol/l und unter der isolierten GLP-1 [7-36-Amid]-Infusion auf 3,0 ± 1,0 pmol/l. Die Konzentrationen unter der kombinierten GLP-1 [7-36-Amid]- und Exendin [9-39]-Infusion blieben signifikant höher (p = 0,0001 vs. GLP-1 [7-36-Amid] und 0,00008 vs. NaCl 0,9 %) mit Werten von 16,7 ± 1,3 pmol/l.

60 Minuten nach der intravenösen Glukosegabe fand sich eine einmalig signifikante Erhöhung der Glukagon-Konzentration unter der isolierten GLP-1 [7-36-Amid]-Infusion gegenüber der NaCl 0,9 %-Infusion. 60 Minuten nach der intravenösen Glukosegabe wurden am Versuchstag C’ Glukagon-Konzentrationen von 6,0 ± 1,4 pmol/l gemessen (p = 0,04 vs. NaCl 0,9 %), wohingegen zu diesem Zeitpunkt die Glukagon-Konzentration am Versuchstag A’ bei 1,8 ± 0,5 pmol/l lag. Am ehesten ist diese Glukagon-Erhöhung unter der isolierten GLP-1 [7-36-Amid]-Infusion mit einer Gegenregulation des Organismus gegen eine drohende Hypoglykämie zu werten. Denn zwischen den Zeitpunkten 40 bis 60 Minuten nach intravenöser Glukosegabe fanden sich bei den Messungen der kapillaren Plasmaglukose unter der isolierten GLP-1 [7-36-Amid]-Infusion die niedrigsten Werte.
Vor Beendigung des Versuches zum Zeitpunkt 120 Minuten nach intravenöser Glukosegabe konnten an Versuchstag A’ Glukagon-Konzentrationen von $4,3 \pm 1,0$ pmol/l, an Versuchstag C’ von $6,4 \pm 2,3$ pmol/l und an Versuchstag D’ von $19,3 \pm 1,8$ pmol/l gemessen werden. Einen signifikanten Unterschied zwischen Tag A’ und Tag C’ fand sich nicht mehr. Die Konzentration am Ende des Versuchstages D’ blieb aber signifikant erhöht ($p = 0,0002$ vs. GLP-1 [7-36-Amid] und $p = 0,0001$ vs. NaCl 0,9 %).

**Abb. 24:** Glukagon-Konzentrationen vor und nach intravenöser Glukosegabe ($\downarrow$) unter NaCl 0,9 %-Infusion (graue Kreise), isolierter GLP-1 [7-36-Amid]-Infusion (rote Kreise) und kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39]-Infusion (blaue Kreise). $\dagger$ : $p < 0,05$ NaCl 0,9 %-Infusion vs. isolierte GLP-1 [7-36-Amid]-Infusion. $\dagger$ : $p < 0,05$ isolierte GLP-1 [7-36-Amid]-Infusion vs. kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39]. $\dagger$ : $p < 0,05$ NaCl 0,9 %-Infusion vs. kombinierter GLP-1 [7-36-Amid]-Infusion + Exendin [9-39].
3.3 Vergleich Projekt A und Projekt B

Ein Vergleich zwischen den GLP-1 Intakt Konzentrationen erfolgt nicht, da dieser Parameter ausschließlich in Projekt B gemessen wurde.

3.3.1 GLP-1 Total-Konzentrationen in Projekt A und Projekt B

3.3.1.1 GLP-1 Total-Konzentrationen unter isolierter GLP-1-Infusion

An den Versuchstagen, an denen die GLP-1 [7-36-Amid]-Infusion isoliert gegeben wurde, zeigen sich deutliche Unterschiede bezüglich des zeitlichen Verlaufs im Aufbau von ausreichenden GLP-1-Plasmakonzentrationen. Im Projekt A zeigte sich zum Zeitpunkt 0 (Zeitpunkt der intravenösen Glukosegabe) eine geringere GLP-1-Konzentration als im Vergleich zu den basalen Konzentrationen vor Beginn der GLP-1 [7-36-Amid]-Infusion, obwohl die GLP-1 [7-36-Amid]-Infusion bereits seit 30 Minuten intravenös verabreicht wurde. Fanden sich zu Beginn dieses Versuchstages (Versuchstag C) noch GLP-1-Konzentrationen von 6,3 ± 1,7 pmol/l lagen die Konzentrationen zum Zeitpunkt 0 bei 6,2 ± 0,7 pmol/l. Auch nach 60 minütiger GLP-1 [7-36-Amid]-Infusion zeigte sich kein Konzentrationsanstieg. Es befanden sich die GLP-1-Konzentrationen auf dem Niveau des Versuchstages an dem NaCl 0,9 % infundiert wurde. Aufgrund des nicht existierenden supraphysiologischen GLP-1-Spiegels, lässt sich auch die fehlende Stimulation der Insulin-Sekretionsantwort auf die intravenöse Glukosegabe erklären. Als einzig plausible Erklärung für den fehlenden Anstieg erscheint ein Verlust des Peptids durch Bindungsprozesse an den Kunststoffoberflächen der Infusionssysteme.

Im Gegensatz dazu ließen sich im Projekt B unter Zugabe von Albumin zu der GLP-1 [7-36-Amid]-Infusion bereits nach 15 Minuten Infusionsdauer starke GLP-1-Konzentrationsanstiege bestimmen. An den Versuchstagen C’ wurde 45 Minuten vor intravenöser Glukosegabe die GLP-1 [7-36-Amid]-Infusion begonnen. Schon nach 15 Minuten lag die GLP-1 Total-Konzentration bei 83,0 ± 29,3 pmol/l. Auch wenn die GLP-1 [7-36-Amid]-Infusion im Projekt B mit höherer Dosierung (1,0 pmol · kg⁻¹ · min⁻¹) begonnen wurde, scheint das nicht ausreichend als plausible Erklärung für den eklatanten Unterschied zwischen den GLP-1 Total-Konzentrationen unter den isolierten GLP-1 [7-36-Amid]-Infusionen. Vielmehr scheinen durch die Zugabe von Albumin zur Infusionslösung im Projekt B die Kunststoffoberflächen des Infusionssystems...
abgesättigt zu sein, so dass weniger GLP-1 im Infusionssystem verloren geht. Daher können durch GLP-1 [7-36-Amid]-Infusionen mit Zugabe von Albumin schneller, zuverlässiger und berechenbarer GLP-1-Konzentrationsanstiege erzielt werden.

Nach 15 Minuten wurde im Projekt B die Dosierung der GLP-1 [7-36-Amid]-Infusion auf des Niveau von Projekt A (0,5 pmol·kg⁻¹·min⁻¹) reduziert. Daraus resultierend sank die GLP-1 Total-Konzentration zu Zeitpunkt 0 auf 52,7 ± 13,7 pmol/l und hielt sich in diesem Bereich stabil bis zum Ende des Versuchstages. Somit lag im Projekt B eine ausreichende supraphysiologische GLP-1 Total-Konzentration zum Zeitpunkt der intravenösen Glukosegabe vor und es konnte so eine suffiziente Stimulation der Insulin-Sekretion provoziert werde.

Im Projekt A zeigten sich erst nach 90-minütiger GLP-1 [7-36-Amid]-Infusion langsam beginnende GLP-1 Total-Konzentrationsanstiege, welche dann auch im Versuchsablauf konsequent weiter anstiegen.

3.3.1.2 GLP-1 Total-Konzentrationen unter kombinierter GLP-1- und Exendin [9-39]-Infusion


Im Projekt B hingegen fanden sich unter Zugabe von Albumin sowohl zu der GLP-1 [7-36-Amid]-Infusion als auch zu der Exendin [9-39]-Infusion und unter etwas höherer GLP-1 [7-36-Amid]-Dosierung über 15 Minuten schon nach 15-minütiger GLP-1 [7-36-Amid]-Infusion deutlich supraphysiologische GLP-1 Total-Konzentrationen mit 137,5 ± 25,2 pmol/l. Nach Dosisreduktion fanden sich zum Zeitpunkt der intravenösen Glukosegabe suffiziente Konzentrationen von 60,7 ± 4,9 pmol/l. Somit fanden sich im Projekt B Konzentrationen, die die erste Phase der Insulin-Sekretionsantwort nach
Glukosegabe stimuliert haben, sodass ein Nachweis der Wirksamkeit des GLP-1-Antagonisten möglich war. Unter der kombinierten Infusion fanden sich in Projekt B tendentiell höhere GLP-1 Total-Konzentrationen, was ggf. Ausdruck einer zusätzlich stabilisierenden Funktion des zweiten Peptids im Infusionssystem sein könnte.

3.3.2 Vergleich der integrierten Anstiege über Basalwerte der Insulin-Sekretionsraten bei den einzelnen Probanden in Projekt A und Projekt B

3.3.2.1 Integrierte Anstiege über Basalwerte der Insulin-Sekretionsraten bei den einzelnen Probanden in Projekt A

ERGEBNISSE

NaCl 0,9%  GLP-1  GLP-1+Exendin [9-39]
0  50  100  150  200  250  300
1  2  3  4  5  6
450

Integrierte Anstiege der Insulin-Sekretionsrate [pmol/kg]

Abb. 27: Individuelle integrierte Anstiege über Basalwerte („AUC“) der Insulin-Sekretionsraten der einzelnen Probanden (1 bis 6) in Projekt A (ohne Zusatz von Albumin) an den einzelnen Versuchstagen.

3.3.2.2 Integrierte Anstiege über Basalwerte der Insulin-Sekretionsraten bei den einzelnen Probanden in Projekt B


3.3.3 Vergleich der individuellen prozentualen Hemmung der GLP-1-vermittelten Steigerung der insulinsekretorischen Antwort durch Exendin [9-39]

3.3.3.1 Individuelle prozentuale Stimulation der ersten Phase der Insulin-Sekretion unter isolierter GLP-1-Infusion und individuelle prozentuale Hemmung der GLP-1-vermittelten Steigerung der insulinsekretorischen Antwort durch Exendin [9-39] in Projekt A

ERGEBNISSE

Abb 29: Individuelle, prozentuale Stimulation der ersten Phase der Insulin-Sekretion unter isolierter GLP-1[7-36-Amid]-Infusion (A) und die individuelle, prozentuale Hemmung der GLP-1-vermittelten Steigerung der insulinsekretorischen Antwort durch Exendin [9-39] (B) nach intravenöser Glukosestimulation bei den einzelnen Probanden (1 bis 6) in Projekt A. Die geforderte minimale Hemmung von 75% ist gestrichelt dargestellt.
3.3.3.2 Individuelle prozentuale Stimulation der ersten Phase der Insulin-Sekretion unter isolierter GLP-1-Infusion und individuelle prozentuale Hemmung der GLP-1-vermittelten Steigerung der insulinsekretorischen Antwort durch Exendin [9-39] in Projekt B

In Projekt B konnte bei guter Steigerung der Insulin-Sekretionsraten unter isolierter GLP-1 [7-36-Amid]-Infusion nach intravenöser Glukosegabe im Vergleich zu NaCl 0,9 %-Infusion im weiteren Verlauf auch eine suffiziente Wirkung des GLP-1-Antagonisten Exendin [9-39] nachgewiesen werden. Dabei wurde die zuvor als Zielmarke definierte 75%-ige Hemmung der GLP-1-vermittelten insulinotropen Wirkung bei 5 der 6 Probanden auch zuverlässig erreicht. Wie bereits erwähnt, gelang das bei einem der Probanden (Proband 10) nicht. Hier fand sich rechnerisch lediglich eine Hemmung von 39%. Eine offensichtliche und plausible Erklärung fand sich auf der Basis der weiteren zur Verfügung stehenden Parameter nicht. Es scheint aber insgesamt eine hohe interindividuelle Bandbreite sowohl der Stimulationsfähigkeit der insulinotropen Effekte durch GLP-1 als auch bezüglich der Antagonisierbarkeit der GLP-1-vermittelten Effekte zu geben. Insgesamt lassen die gewonnen Daten aber die Aussage zu, dass Exendin [9-39] in diesem Fall zuverlässig die GLP-1-vermittelten insulinotropen Effekte antagonisiert, wenn auch in teils variabler Quantität.

Die berechneten Stimulationseffekte durch die isolierte GLP-1 [7-36-Amid]-Infusion lagen zwischen 63% bis 275% und der Mittelwert betrug 130%. Die berechneten Inhibitorischen Effekte durch Exendin [9-39] betrugen 39% bis 183% und der Mittelwert lag bei 98%.
**ERGEBNISSE**

![Graph A](image1.png)

![Graph B](image2.png)

**Abb 30:** Individuelle, prozentuale Stimulation der ersten Phase der Insulin-Sekretion unter isolierter GLP-1[7-36-Amid]-Infusion (A) und die individuelle, prozentuale Hemmung der GLP-1-vermittelten Steigerung der insulinsekretorischen Antwort durch Exendin [9-39] (B) nach intravenöser Glukosestimulation bei den einzelnen Probanden (7 bis 12) in Projekt B. Die geforderte minimale Hemmung von 75% ist gestrichelt dargestellt.
4. Diskussion

In der vorliegenden Arbeit konnte nachgewiesen werden, dass exogen zugeführtes GLP-1 in suprahypophysärer Dosierung einen ausgeprägten insulinotropen Effekt während einer iatrogen provozierten Hyperglykämie hat (Projekt B), dass Exendin [9-39] ein potenter GLP-1-Antagonist ist, der die insulinotropen Wirkungen des GLP-1 aufheben kann (Projekt B) und dass eine Zugabe von Albumin zu intravenösen GLP-1-Infusionen erforderlich ist, um einen vorhersagbaren und ausreichenden GLP-1-Spiegel im Blut aufbauen zu können (Vergleich Projekt A und Projekt B).

4.1 Diskussion des Vergleiches Projekt A und Projekt B


112
Infusion. Erst nach 90 Minuten Infusionsdauer lagen die GLP-1 Total-Konzentrationen signifikant über den Werten der Placebo-Infusion.


In Projekt B sind die GLP-1 [7-36-Amid]-Infusionen während der Zubereitung und der Gabe als 1%-ige Albuminlösung appliziert worden. Im Gegensatz zu Projekt A wurde darüber hinaus die GLP-1 [7-36-Amid]-Infusion mit einer initialen Dosierung von 1 pmol · kg⁻¹ · min⁻¹ gegeben und 15 Minuten früher begonnen, um zum Zeitpunkt der Glukosegabe mit an Sicherheit grenzender Wahrscheinlichkeit einen wirksamen GLP-1 Total-Spiegel zu haben. 30 Minuten vor der intravenösen Glukosegabe wurde dann wieder auf 0,5 pmol · kg⁻¹ · min⁻¹ reduziert. Unter diesem Versuchsaufbau konnten nach 15-minütiger Infusion mit 1 pmol · kg⁻¹ · min⁻¹ supraphysiologische GLP-1 Total-Konzentrationen gemessen werden und auch nach Reduktion der Dosierung auf 0,5
pmol \cdot kg^{-1} \cdot min^{-1} \) stellte sich ein Steady State auf supraphysiologischen Niveau ein. Somit entsprachen die GLP-1 Total-Konzentrationen den zu erwartenden Konzentrationen, welche unter ähnlichen Versuchsaufbauten erreicht werden konnten [Nauck et al. (1993c), Wettergren et al. (1997), Gutzwiller et al. (1999a), Little et al. (2006)]. Diese offensichtlichen Unterschiede bezüglich des Konzentrationsaufbaus der GLP-1 Total-Spiegel in Projekt A und Projekt B lassen die Vermutung zu, dass es ohne den Zusatz von humanen Serum-Albumin zu ausgeprägten Bindungsverlusten von GLP-1 [7-36-Amid] an den Kunststoffoberflächen des Infusionssystems kommt.


In Projekt B wurde die GLP-1 [7-36-Amid]-Infusion 15 Minuten früher begonnen als in Projekt A. Doch in Anbetracht der Tatsache, dass es über einen Zeitraum von 90 Minuten in Projekt A unter isolierter GLP-1 [7-36-Amid]-Infusion zu keinem nennenswerten GLP-1 Total-Konzentrationsanstieg kam, kann die zeitliche Komponente vernachlässigt werden. Als Erklärungsmöglichkeit für die Unterschiede bezüglich der erreichten GLP-1 Total-Konzentrationen ist die Dauer der Infusion daher nicht heranzuziehen.

Die GLP-1 [7-36-Amid]-Infusion ist in Projekt B mit einer initialen Dosierung von 1 pmol \cdot kg^{-1} \cdot min^{-1} appliziert worden und somit in einer doppelt so hohen Konzentration als in Projekt A. Damit erklärt sich aber lediglich ein höher zu erwartender GLP-1 Total-Spiegel und nicht ein überhaupt nachweisbarer GLP-1 Total-Konzentrationsanstieg. Bei intravenöser GLP-1 [7-36-Amid]-Gabe mit konstanter Rate stellt sich ein Steady State nach 10-15 Minuten ein. Bei Dosierung von 1,2 pmol \cdot kg^{-1} \cdot min^{-1} würde man Konzentrationen zwischen 70 – 120 pmol/l erwarten [Nauck et al. (1993a), Nauck et al. (1993c), Nauck et al. (2002)]. Auch bei niedrigeren Dosierungen konnten unter GLP-1 [7-36-Amid]-Infusionen rasche Steady State - Konzentrationen zwischen 20 - 50 pmol/l erreicht werden und in aller Regel 30 Minuten nach Infusionsbeginn suffiziente GLP-1 Total-Konzentrationen nachgewiesen werden [Edwards et al. (1999), Quddusi et al. (2003), Little et al. (2006)]. Somit ist das eigentliche Auftreten eines
Konzentrationsanstieges unter GLP-1 [7-36-Amid]-Infusion vorrangig nicht dosis-abhängig, die Höhe des Anstieges aber wohl.


Diskussion

GLP-1 Total-Konzentrationen aufgebaut werden können. Daher sollten bei intravenösen GLP-1 [7-36-Amid]-Infusionen Vorkehrungen getroffen werden, um derartige Bindungsverluste zu vermeiden. Dieses Phänomen lässt sich durch die Zugabe von Albumin in das Infusionssystem sicher vermeiden.


4.2 Diskussion der GLP-1-vermittelten insulinotropen Effekte und der Wirkung des Exendin [9-39] (Projekt B)


Es konnte eindrücklich gezeigt werden, dass die insulinsekretorische Antwort der ersten Phase der Insulin-Sekretion nach intravenöser Glukosegabe durch exogene GLP-1 [7-36-Amid]-Zufuhr deutlich gesteigert werden konnte. Die Insulin-Konzentrationen lagen ebenso wie die integrierten Anstiege über den Basalwerten für Insulin während der ersten Phase der Insulin-Sekretion deutlich über den Insulin-Konzentrationen unter den Placebo Infusionen. Die Insulin-Sekretion ließ sich im Vergleich zu Placebo im Mittel um 130% steigern. Diese Ergebnisse bestätigen vorhergehende Arbeiten [Nauck et al. (1993a), Nauck et al. (1993b), Quddusi et al. (2003), Schirra et al. (1998b)]. Interessanterweise fand sich 15 Minuten nach Beginn
der isolierten GLP-1 [7-36-Amid]-Infusion unter der höheren Dosierung von 1 pmol \cdot kg^{-1} \cdot min^{-1} trotz normoglykämischer Blutglukose-Werte ein signifikanter Anstieg der Insulin-Konzentration und der Insulin-Sekretionsrate, die in Ihrer Wirkung eine Absenkung der Blutglukose provozierten und die zu signifikanten Unterschieden im Vergleich der Blutglukose-Konzentrationen an Versuchstagen mit Placebo- und kombinierter Infusion führten. Der Effekt der gesteigerten Insulin-Sekretion durch die isolierte GLP-1 [7-36-Amid]-Infusion war vorübergehend und zum Zeitpunkt der Glukosegabe fanden sich keine Unterschiede mehr an den einzelnen Versuchstagen. Eine ähnliche Erfahrung machte auch eine Arbeitsgruppe, welche mit einer exogenen GLP-1-Infusion bei gesunden Probanden mit einer Konzentration von 0,45 pmol \cdot kg^{-1} \cdot min^{-1} arbeitete und dabei feststellte, dass es ebenfalls bei Normoglykämie zu einer Steigerung der Insulin-Konzentration von 118 pmol/l auf 210 pmol/l innerhalb von 40 Minuten kam und reaktiv die Blutglukose-Konzentrationen sanken. Im Anschluss normalisierten sich sowohl Insulin-Konzentrationen als auch Blutglukose-Konzentrationen wieder (Quddusi et al. 2003). Es ist bekannt, dass bei einer hyperglykämischen Stoffwechselstörung wie z.B. bei schlecht kontrolliertem Typ-2 Diabetes mellitus die kontinuierliche exogene GLP-1-Zufuhr zu einer Steigerung der Insulin-Konzentrationen führt, bis eine Normalisierung der Blutglukose-Konzentrationen erreicht ist (Nauck et al. 1993c). In diesem Fall lag die mittlere Blutglukose-Konzentration jedoch bei 97 ± 2 mg/dl und somit im normoglykämischen Bereich. Da das GLP-1 die Insulin-Sekretion bis zu einem Blutglukose-Spiegel von 80 mg/dl steigern kann und erst ab dieser Schwelle den insulinsekretionstimulierenden Einfluss verliert, handelt es sich bei dieser Beobachtung am ehesten um einen Effekt, der durch den raschen GLP-1-Konzentrationsanstieg in Kombination mit einem Blutglukose-Wert > 80 mg/dl zu erklären ist (Nauck et al. 2002). Nachdem die Blutglukose-Konzentration zum Zeitpunkt der Glukosegabe unter der isolierten GLP-1 [7-36-Amid]-Infusion 80 mg/dl erreicht hatte, ließ sich auch keine erhöhte Insulin-Konzentration mehr nachweisen. Unter der kombinierten Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] fand sich dieser passagere Effekt der Erhöhung der Insulin-Konzentration und Insulin-Sekretionsrate nach Beginn der GLP-1 [7-36-Amid]-Infusion nicht, obwohl die gemessenen GLP-1-Konzentrationen zu diesem Zeitpunkt deutlich höher lagen, als am Tag der isolierten GLP-1 [7-36-Amid]-Infusion. Dieses ist als Ausdruck einer potenter Antagonisierung dieses GLP-1-vermittelten Effektes durch die gleichzeitige Exendin [9-39]-Infusion zu werten.

Die Insulin- und die C-Peptid-Konzentrationen nach intravenöser Glukosegabe lagen unter der kombinierten GLP-1 [7-36-Amid]- und Exendin [9-39]-Infusion auf dem Niveau der Konzentrationen unter ausschließlich der Placebo Infusion. Während die integrierten Anstiege über Basalwerte für Insulin- und Insulin-Sekretionsrate unter der isolierter GLP-1 [7-36-Amid]-Infusion mit $952 \pm 132 \text{ mU} \cdot \text{l}^{-1} \cdot \text{min}^{-1}$ und $234 \pm 40 \text{ pmol} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$ signifikant höher lagen als unter Placebo Infusion mit $408 \pm 68 \text{ mU} \cdot \text{l}^{-1} \cdot \text{min}^{-1}$ und $103 \pm 13 \text{ pmol} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$, fand sich unter der kombinierten Infusion von GLP-1 [7-36-Amid] und Exendin [9-39] kein signifikanter Unterschied im Vergleich zu der Placebo Infusion mit Werte von $419 \pm 82 \text{ mU} \cdot \text{l}^{-1} \cdot \text{min}^{-1}$ und $111 \pm 14 \text{ pmol} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$. Insgesamt gelang es, durch die Koinfusion des Exendin [9-39] im Mittel die GLP-1-vermittelten insulnotropen Effekte um 98% zu inhibieren.

Die vor Studienbeginn definierte erforderliche Hemmung von 75% der insulnotropen GLP-1-vermittelten Effekte konnte nicht bei allen Probanden erreicht werden. Insgesamt zeichnete sich eine weite Streuungsbreite des Ausmaßes der Inhibition durch Exendin [9-39] ab. So lag die prozentuale Hemmung zwischen 39% und 183%. Von besonderem Interesse ist hierbei der Proband, bei welchem lediglich eine Hemmung von 39% der GLP-1-vermittelten insulnotropen Effekte gelang. Bei diesem Probanden fand sich eine unterhalb des Mittelwertes liegende GLP-1 Total-Konzentration von $36 \text{ pmol/l}$ zum Zeitpunkt der Glukosegabe bei einer GLP-1 Total-Mittelwert-Konzentration zu diesem Zeitpunkt von $83 \pm 29 \text{ pmol/l}$. Dennoch konnte eine GLP-1-vermittelte Stimulation der Insulin-Sekretion nach intravenöser Glukosegabe von 135% im Vergleich zur Insulin-Sekretion unter Placebo Infusion bei diesem Probanden nachgewiesen werden. Das kann als Ausdruck einer sufficienten insulnotropen Wirkung der bestehenden GLP-1-Konzentrationen gewertet werden. Im Mittel konnte bei allen Probanden eine GLP-1-vermittelte Steigerung der Insulin-Sekretion von $129 \pm 31\%$ nachgewiesen werden. Als Ursache für die unzureichende Hemmung der insulinksekretionssteigernden Wirkung des GLP-1 durch das Exendin [9-39] bei diesem Probanden hätte auch eine unzureichende Exendin [9-39]-Konzentration in Frage kommen können. Es zeigte sich aber, dass zum Zeitpunkt der intravenösen Glukosegabe eine Exendin [9-39]-Konzentrationen von $204 \text{ nmol/l}$ bestimmt wurden, wobei die mittlere Konzentration bei allen Probanden zu diesem Zeitpunkt bei $148 \pm 19$


Im Rahmen der Untersuchungen zur Wirkung von GLP-1 und dessen Metabolite am kardiovaskulären System wurde häufig die Vermutung geäußert, dass noch weitere Rezeptoren zur Vermittlung der GLP-1-Effekte existieren müssten. Es ist bekannt, dass GLP-1-Rezeptoren sowohl im menschlichen Herz als auch in zentralnervösen Regionen vorkommen, die die autonome kardiale Kontrolle beeinflussen. [Bullock et al. (1996), Yamamoto et al. (2002), Nakagawa et al. (2004), Nikolaidis et al. (2004a)]. Auch wenn in der vorliegenden Arbeit weder unter der isolierten GLP-1 [7-36-Amid]-Infusion noch unter der kombinierten Infusion mit GLP-1 [7-36-Amid] und Exendin [9-39] Veränderungen an den Kreislaufparametern zu erkennen war so weisen doch Ergebnisse aus Voruntersuchungen darauf hin, dass GLP-1 einen Wirkeffekt im
Diskussion

5. Zusammenfassung


Des weiteren konnte gezeigt werden, dass unter der Berücksichtigung der Zugabe von Albumin zu der Infusionslösung unter einer Dosierung von 1 pmol · kg⁻¹ · min⁻¹ schon nach 15 Minuten hohe, wirksame GLP-1-Konzentrationen aufgebaut werden können. Sie lagen unter isolierter GLP-1 [7-36-Amid]-Infusion bei 83 ± 29,4
Zusammenfassung


### 6. Anhang: Tabellen 1A–3A, Gleichungen 1A–5A, Abbildungen 1A–5A

**Tabelle 1A: Probanden-Charakteristika; MW = Mittelwert, SD = Standardabweichung**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>MW ± SD Projekt A</th>
<th>MW ± SD Projekt B</th>
<th>Spanne aller Werte: “Range”</th>
<th>Normalbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>m/w</td>
<td>5 m / 1 w</td>
<td>4 m / 2 w</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alter</td>
<td>Jahre</td>
<td>47 ± 8</td>
<td>45 ± 12</td>
<td>40 - 61</td>
<td>31 - 58</td>
</tr>
<tr>
<td>Gewicht</td>
<td>kg</td>
<td>80,9 ± 13,6</td>
<td>73,1 ± 12,3</td>
<td>62,7 – 95,5</td>
<td>62,8 – 96,5</td>
</tr>
<tr>
<td>Größe</td>
<td>cm</td>
<td>176,7 ± 4,8</td>
<td>175,8 ± 13,8</td>
<td>172 - 183</td>
<td>155 – 196</td>
</tr>
<tr>
<td>Body-Mass Index</td>
<td>kg/m²</td>
<td>25,9 ± 4,2</td>
<td>23,5 ± 1,9</td>
<td>20 - 32</td>
<td>21 - 26</td>
</tr>
<tr>
<td>Blutdruck systolisch</td>
<td>mmHg</td>
<td>119 ± 9</td>
<td>121 ± 11</td>
<td>135 - 110</td>
<td>135 - 110</td>
</tr>
<tr>
<td>Blutdruck diastolisch</td>
<td>mmHg</td>
<td>76 ± 7</td>
<td>81 ± 90</td>
<td>90 - 70</td>
<td>95 - 70</td>
</tr>
<tr>
<td>Puls</td>
<td>/min</td>
<td>63 ± 2</td>
<td>62 ± 10</td>
<td>60 - 64</td>
<td>52 - 80</td>
</tr>
<tr>
<td>Blutzucker nüchtern</td>
<td>mg/dl</td>
<td>87 ± 9</td>
<td>85 ± 10</td>
<td>78 - 99</td>
<td>67 - 97</td>
</tr>
<tr>
<td>HbA₁c</td>
<td>%</td>
<td>5,2 ± 0,3</td>
<td>5,3 ± 0,1</td>
<td>4,7 – 5,5</td>
<td>5,1 – 5,5</td>
</tr>
<tr>
<td>Hämoglobin</td>
<td>g/dl</td>
<td>14,9 ± 0,8</td>
<td>14,5 ± 1,3</td>
<td>13,8 – 16,1</td>
<td>12,9 – 16,3</td>
</tr>
<tr>
<td>Erythrozyten</td>
<td>/pl</td>
<td>5,1 ± 0,3</td>
<td>5,3 ± 0,7</td>
<td>4,7 – 5,6</td>
<td>4,4 – 6,1</td>
</tr>
<tr>
<td>MCV</td>
<td>fl</td>
<td>94,1 ± 3,4</td>
<td>90,3 ± 6,4</td>
<td>88,5 – 97,9</td>
<td>77,9 – 94,8</td>
</tr>
<tr>
<td>MCH</td>
<td>pg</td>
<td>29,3 ± 1,0</td>
<td>27,8 ± 2,3</td>
<td>27,9 – 30,7</td>
<td>23,4 – 29,3</td>
</tr>
</tbody>
</table>

---

**Tabelle 1B: Gleichungen 1A–5A**

**Tabelle 1C: Abbildungen 1A–5A**
Fortsetzung Tabelle 1A: Probanden-Charakteristika; MW = Mittelwert, SD = Standardabweichung

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>MW ± SD</th>
<th>Spanne aller Werte: “Range”</th>
<th>Normalbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Projekt A</td>
<td>Projekt B</td>
<td>Projekt A</td>
</tr>
<tr>
<td>Thrombozyten</td>
<td>x10³/µl</td>
<td>225 ± 41</td>
<td>287 ± 46</td>
<td>165 - 267</td>
</tr>
<tr>
<td>Leukozyten</td>
<td>/nl</td>
<td>5,9 ± 1,1</td>
<td>6,4 ± 1,1</td>
<td>4,9 – 7,3</td>
</tr>
<tr>
<td>Kalium</td>
<td>mmol/l</td>
<td>4,6 ± 0,2</td>
<td>4,5 ± 0,3</td>
<td>4,4 – 5,0</td>
</tr>
<tr>
<td>Natrium</td>
<td>mmol/l</td>
<td>142 ± 1</td>
<td>144 ± 2</td>
<td>140 - 143</td>
</tr>
<tr>
<td>Chlorid</td>
<td>mmol/l</td>
<td>104 ± 1</td>
<td>103 ± 3</td>
<td>102 - 105</td>
</tr>
<tr>
<td>HDL-Cholesterin</td>
<td>mg/dl</td>
<td>46 ± 11</td>
<td>60 ± 20</td>
<td>36 - 61</td>
</tr>
<tr>
<td>LDL-Cholesterin</td>
<td>mg/dl</td>
<td>122 ± 20</td>
<td>119 ± 44</td>
<td>87 - 146</td>
</tr>
<tr>
<td>Bilirubin gesamt</td>
<td>mg/dl</td>
<td>0,5 ± 0,2</td>
<td>0,6 ± 0,3</td>
<td>0,3 – 0,9</td>
</tr>
<tr>
<td>Protein gesamt</td>
<td>g/dl</td>
<td>7,6 ± 0,2</td>
<td>7,4 ± 0,4</td>
<td>7,3 – 7,9</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>mg/dl</td>
<td>118 ± 53</td>
<td>124 ± 70</td>
<td>65 - 217</td>
</tr>
<tr>
<td>Cholesterin gesamt</td>
<td>mg/dl</td>
<td>193 ± 30</td>
<td>204 ± 53</td>
<td>140 - 210</td>
</tr>
<tr>
<td>LDH</td>
<td>U/l</td>
<td>154 ± 14</td>
<td>152 ± 28</td>
<td>138 - 172</td>
</tr>
<tr>
<td>γ-GT</td>
<td>U/l</td>
<td>26 ± 8</td>
<td>24 ± 2</td>
<td>17 – 40</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/dl</td>
<td>9,2 ± 0,2</td>
<td>9,1 ± 0,2</td>
<td>8,8 – 9,3</td>
</tr>
<tr>
<td>Kreatinin</td>
<td>mg/dl</td>
<td>0,9 ± 0,1</td>
<td>0,9 ± 0,2</td>
<td>0,8 – 1,2</td>
</tr>
<tr>
<td>Alpha-Amylase</td>
<td>U/l</td>
<td>75 ± 50</td>
<td>85 ± 33</td>
<td>28 - 139</td>
</tr>
</tbody>
</table>
**Fortsetzung Tabelle 1A:** Probanden-Charakteristika; MW = Mittelwert, SD = Standardabweichung

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einheit</th>
<th>MW ± SD Projekt A</th>
<th>MW ± SD Projekt B</th>
<th>Spanne aller Werte “Range” Projekt A</th>
<th>Spanne aller Werte “Range” Projekt B</th>
<th>Normalbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>g/l</td>
<td>46,5 ± 2,1</td>
<td>46 ± 3</td>
<td>45 - 51</td>
<td>42 – 51</td>
<td>35 – 52</td>
</tr>
<tr>
<td>Alkalische Phosphatase</td>
<td>U/l</td>
<td>78 ± 11</td>
<td>87 ± 24</td>
<td>63 - 93</td>
<td>61 – 129</td>
<td>50 – 136</td>
</tr>
<tr>
<td>Organisches Phosphat</td>
<td>mg/dl</td>
<td>2,9 ± 0,5</td>
<td>3,5 ± 0,5</td>
<td>2,3 – 3,5</td>
<td>2,8 – 4,1</td>
<td>2,5 – 4,9</td>
</tr>
<tr>
<td>ALT</td>
<td>U/l</td>
<td>29 ± 5</td>
<td>26 ± 10</td>
<td>21 - 34</td>
<td>20 – 46</td>
<td>30 – 65</td>
</tr>
<tr>
<td>AST</td>
<td>U/l</td>
<td>21 ± 3</td>
<td>17 ± 3</td>
<td>17 - 25</td>
<td>12 – 21</td>
<td>15 – 37</td>
</tr>
<tr>
<td>Harnsäure</td>
<td>mg/dl</td>
<td>5,2 ± 1,2</td>
<td>5,2 ± 0,5</td>
<td>3,4 – 6,7</td>
<td>4,3 – 5,6</td>
<td>2,6 – 6,0</td>
</tr>
<tr>
<td>Kreatinkinase</td>
<td>U/l</td>
<td>122 ± 55</td>
<td>122 ± 40</td>
<td>75 - 194</td>
<td>68 – 192</td>
<td>21 – 232</td>
</tr>
<tr>
<td>Lipase</td>
<td>U/l</td>
<td>260 ± 53</td>
<td>243 ± 23</td>
<td>205 - 359</td>
<td>221 – 278</td>
<td>114 – 286</td>
</tr>
<tr>
<td>Harnstoff</td>
<td>mg/dl</td>
<td>26 ± 10</td>
<td>30± 4</td>
<td>16 - 44</td>
<td>27 – 37</td>
<td>15 – 38</td>
</tr>
</tbody>
</table>

**Tabelle 2A:** Mögliche Infusionsabfolgen in Abhängigkeit zur Randomisierung (Projekt A)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GLP-1</td>
<td>Placebo</td>
<td>GLP-1 +</td>
<td>Exendin[9-39]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exendin[9-39]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Exendin[9-39]</td>
<td>GLP-1</td>
<td>Placebo</td>
<td>GLP-1 +</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exendin[9-39]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GLP-1 +</td>
<td>Exendin[9-39]</td>
<td>GLP-1</td>
<td>Placebo</td>
</tr>
</tbody>
</table>
**Tabelle 3A:** Mögliche Infusionsabfolgen in Abhängigkeit zur Randomisierung (Projekt B)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GLP-1</td>
<td>Placebo</td>
<td>GLP-1 + Exendin[9-39]</td>
</tr>
<tr>
<td>2</td>
<td>Placebo</td>
<td>GLP-1 + Exendin[9-39]</td>
<td>GLP-1</td>
</tr>
<tr>
<td>3</td>
<td>GLP-1 + Exendin[9-39]</td>
<td>GLP-1</td>
<td>Placebo</td>
</tr>
</tbody>
</table>

**Gleichung 1A:**
Formel zur Berechnung des Bedarfs an Basis GLP-1 [7-36-Amid] für die Infusionen mit GLP-1 an den Versuchstagen C und D (Projekt A):

\[
Y (\text{ml}) = \frac{0,5 \text{ pmol} \times B (\text{kg}) \times 60 \text{ min} \times 3297,7 \text{ g} \times 50 \text{ ml}}{kg \times min \times 6 \text{ ml} \times \text{mol} \times 25 \mu g / \text{ ml}}
\]

\[
Y (\text{ml}) = B (\text{kg}) \times 0,032977 \text{ ml/kg}
\]

**Gleichung 2A:**

\[
C(\text{ml}) = \frac{1,18 (\text{mg} / \text{ ml}) \times 1,02 \times 50 (\text{ ml})}{5 (\text{ mg} / \text{ ml})}
\]

\[
C(\text{ml}) = 12,0 \text{ ml}
\]

**Gleichung 3A:**
Gleichung zur Berechnung der Flussrate (Y) für 500 pmol · kg⁻¹ · min⁻¹ Exendin [9-39] an Versuchstag D und D’ (Projekt A und Projekt B):

\[
Y (\text{ml/min}) = \frac{0,1 (\text{ ml} / \text{ min}) \times B (\text{ kg})}{70 \text{ kg}}
\]
Gleichung 4A:
Gleichung zur Berechnung der Flussrate (Z) für 350 pmol · kg⁻¹ · min⁻¹ Exendin [9-39] an Versuchstag D und D' (Projekt A und Projekt B):

\[ Z \text{ (ml/min)} = \frac{Y(\text{ml/ min}) \times 350(\text{pmol})}{500(\text{pmol})} \]

Gleichung 5A:
Formel zur Berechnung des Bedarfs an Basis GLP-1 [7-36-Amid] für die Infusionen mit GLP-1 an den Versuchstagen C' und D' (Projekt B):

\[ Y \text{ (ml)} = \frac{0,5 \text{ pmol x B (kg) x 60 min x 3297,7 g x 50 ml}}{\text{kg x min x 10 ml x mol x 25 µg/ml}} \]

\[ Y \text{ (ml)} = B \text{ (kg)} \times 0,0197862 \text{ ml/kg} \]
Abbildung 1A: Vergleichende Übersichtsdarstellung der Diagramme aus Projekt A und Projekt B für Blutglukose-, Insulin-, C-Peptid- Konzentrationen und Insulin-Sekretionsraten.

**Projekt A**

- Integrierte Anstiege der Insulin-Konzentration [mU . l⁻¹ . min⁻¹]
  - NaCl 0,9%
  - GLP-1
  - GLP-1 + Exendin[9-39]
  - p = 0,405
  - n.s.
  - n.s.

- Integrierte Anstiege der Insulin-Sekretionsrate [pmol/kg]
  - NaCl 0,9%
  - GLP-1
  - GLP-1 + Exendin[9-39]
  - p = 0,291
  - n.s.

**Projekt B**

- Integrierte Anstiege der Insulin-Konzentration [mU . l⁻¹ . min⁻¹]
  - NaCl 0,9%
  - GLP-1
  - GLP-1 + Exendin[9-39]
  - p = 0,002
  - n.s.
  - p = 0,02

- Integrierte Anstiege der Insulin-Sekretionsrate [pmol/kg]
  - NaCl 0,9%
  - GLP-1
  - GLP-1 + Exendin[9-39]
  - p = 0,001
  - n.s.
  - p = 0,01

**Projekt A**

![Diagramm A Projekt A](image1)

**Projekt B**

![Diagramm A Projekt B](image2)
Abbildung 5A: Vergleichende Darstellung der GLP-1 Total-Konzentrationen unter isolierter GLP-1 [7-36-Amid]-Infusion und kombinierter GLP-1 [7-36-Amid]- und Exendin [9-39]-Infusion in Projekt A und Projekt B.
7. Literaturverzeichnis


Ahrén B, Holst JJ (2001): The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanism and is important for postprandial glycemia. Diabetes 50:1030-1038


Bose AK, Mocanu MM, Carr RD, Yellon DM (2005): Glucagon like peptide-1 is protective against myocardial ischemia/reperfusion injury when given either as a preconditioning mimetic or at reperfusion in an isolated rat heart model. Cardiovasc Drugs Ther 19:9-11


Creutzfeldt W (1979): The incretin concept today. Diabetologia 16:75-85


Dugaiczyk A, Law SW, Dennison OE (1982): Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. Proc Natl Acad Sci USA 79:71-75


Holst JJ (1982): Evidence that enteroglucagon (II) is identical with the C-terminal sequence (33-69) of glicentin. Biochem J 207:381 – 388


Ørskov C, Holst JJ, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV (1986): Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119:1467-1475


Patzelt C, Schiltz E (1984): Conversion of proglucagon in pancreatic alpha cells: the major endproducts are glucagon and a single peptide, the major proglucagon fragment, that contains two glucagon-like sequences. Proc Natl Acad Sci USA 81:5007-5011


Pauling L, Corey RB, Branson HR (1951): The structure of proteins; Two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37:205-211


Stryer L: Biochemie, 3.Auflage, Spektrum der Wissenschaft Verlagsgesellschaft Heidelberg 1990


Vahl TP, Paty BW, Fuller BD, Prigeon RL, D’Allesio DA (2003): Effects of GLP-1-(7-36)NH2, GLP-1-(7-37), and GLP-1-(9-36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. J Clin Endocrinol Metab 88:1772-1779


Wild D: The immunoassay handbook. 3.Auflage. Elsevier Science publishing company, Amsterdam,Boston,Oxford 2005


Danksagung


Darüber hinaus möchte ich Frau Dr. med. Andrea El-Ouaghli namentlich erwähnen, die insbesondere während der technischen Vorbereitungszeit der Untersuchungen eine große Hilfe war.


Für die hervorragende Zusammenarbeit danke ich auch dem gesamten Team des Zentrallabors des Diabeteszentrums Bad Lauterberg, wobei ich hier stellvertretend für alle die Leiterin Frau Sabine Schminkel nennen möchte.

Hilfe und vielfältige Anregungen erhielt ich auch von der Leiterin des Projektes der Firma Novartis Frau Lise Kjems (M.D., Ph.D., Senior Director, Translational Medicine, Novartis), die mir in vielen Telefonkonferenzen und E-mails mit Rat und Tat zur Seite stand.

Unterstützung erhielt ich auch aus Berlin durch Matthias Broschag, der bei der Firma Parexel dieses Projekt im Rahmen der Vorbereitung auf eine nachfolgende Studie begleitete.

Ebensolcher Dank gilt den Mitarbeitern des Labors von Prof. Dr. med. Jens J. Holst und Dr. rer. nat. Carolyn Deacon am Institut für Medizinische Physiologie der Universität Kopenhagen einschließlich all ihrer Mitarbeiter.

Bedanken möchte ich mich bei allen Mitarbeitern des Diabeteszentrums Bad Lauterberg, die mir immer hilfreich zur Seite standen und mich tatkräftig unterstützten.

Mein besonderer Dank gilt letztendlich den Probanden, die sich für die Untersuchungen zur Verfügung gestellt haben und so diese Arbeit ermöglichten.

Dank auch allen „Korrekturlesern“, insbesondere meiner Frau Vanessa Köthe.
Lebenslauf


Von 1990 bis 1994 studierte ich an der Universität Hannover Lehramt für Realschule (Sport/Geographie), an der Universität Göttingen (Dipl. Geographie) und an der Fachhochschule Oldenburg (Geodäsie), ohne einen Abschluss zu erreichen.

1994 begann ich eine Ausbildung zum Physiotherapeuten an der Fachschule für Physiotherapie Dr. Muschinsky in Bad Lauterberg und schloss diese 1997 mit dem Staatsexamen ab.

Im Herbst 1997 nahm ich mein Medizinstudium an der Georg-August-Universität in Göttingen auf.


Das praktische Jahr verbrachte ich im St. Martini Krankenhaus in Duderstadt und mein Wahlfach Psychiatrie absolvierte ich in der Psychiatrie des Universitätsklinikums Göttingen

Den III. Abschnitt der Ärztlichen Prüfung habe ich am 25.05.2004 am Universitätsklinikum Göttingen abgelegt.