
Evaluation of Queries on Linked Distributed
XML Data

Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten

der Georg-August-Universität zu Göttingen

vorgelegt von

Erik Behrends

aus Itzehoe

Göttingen, 2006

D7
Referent: Prof. Dr. Wolfgang May
Korreferent: Prof. Dr. Jens Grabowski
Tag der mündlichen Prüfung: 18. Dezember 2006

To Gabi

Abstract

XML (eXtensible Markup Language) is the de-facto standard for exchanging information
and for representing data in the World Wide Web. In contrast to the document-centric
perspective given by the well-known language HTML which defines the human-readable
content and the layout of web pages, XML offers more flexibility and expressiveness.

XML documents are not required to be self-contained but may rather have links to
other XML resources. For expressing such links between XML documents, the W3C
(World Wide Web Consortium) proposed XLink – but mainly for browsing purposes.
If the linked documents are considered from the data-centric viewpoint, it shows that
XLink does not specify how the referenced instances should be handled. Especially, it is
not possible to query along links though the W3C XML Query (XQuery) Requirements
explicitly state that this has to be guaranteed.

In order to cope with these issues, an XLink extension “dbxlink” has been proposed.
It allows for modeling interlinked XML instances as integrated views where XLinks are
resolved in a transparent way. In particular, it is possible to query these instances with
XPath and XQuery.

In this work, the dbxlink model is described and it is investigated how to query dis-
tributed XML instances interlinked with a simple kind of XLinks according to this
approach. Different strategies are analyzed and emerging problems like the handling
of cyclic instances are treated. It is shown how to extend XPath-based query systems
in order to be able to handle queries wrt. dbxlink. Furthermore, optimizing techniques
like special caching strategies are proposed. The results of these investigations have
been used to conduct a proof-of-concept implementation of the dbxlink approach as an
extension to the open source XML database system eXist.

i

Zusammenfassung

XML (eXtensible Markup Language) ist der de-facto Standard, um im World Wide
Web Informationen auszutauschen und Daten zu repräsentieren. Im Gegensatz zu der
dokumentenzentrierten Sichtweise der bekannten Sprache HTML, welche den visuell les-
baren Inhalt und das Layout von Webseiten definiert, bietet XML mehr Flexibilität und
Ausdruckskraft.

XML-Instanzen müssen nicht notwendigerweise in sich abgeschlossen sein, sondern
können Verknüpfungen (Links) zu anderen XML-Quellen enthalten. Um solche Links
zwischen XML-Dokumenten beschreiben zu können, hat das W3C (World Wide Web
Consortium) XLink spezifiziert – jedoch hauptsächlich zur Anwendung im Browser.
Werden die miteinander verbundenen Dokumente vom datenzentrierten Gesichtspunkt
betrachtet, so zeigt sich, dass XLink nicht festlegt, wie die verknüpften Dokumente be-
handelt werden sollen. Insbesondere ist es nicht möglich, die Links bei Anfragen zu
berücksichtigen obwohl dies explizit von den W3C XML Query (XQuery) Requirements
gefordert wird.

Die XLink-Erweiterung “dbxlink” wurde vorgestellt, um diese Probleme zu bewältigen.
Sie ermöglicht es, durch Links verbundene XML-Instanzen als integrierte Sichten zu mod-
ellieren, in der die XLinks auf transparente Art und Weise verarbeitet werden. Dadurch
ist insbesondere das Beantworten von XPath- und XQuery-Anfragen auf den miteinander
verbundenen Dokumenten möglich.

In dieser Arbeit wird zunächst das dbxlink-Modell beschrieben und es wird erläutert,
wie Anfragen an XML-Instanzen (die durch eine einfachen Sorte von XLinks miteinander
verbunden sind) mit diesem Ansatz beantwortet werden können. Verschiedene Strategien
werden untersucht und dabei entstehende Probleme wie z.B. der Umgang mit zyklischen
Instanzen werden behandelt. Es wird gezeigt, wie XPath-basierte Systeme erweitert
werden können, um Anfragen gemäß dbxlink beantworten zu können. Weiterhin werden
Methoden zur Optimierung wie z.B. spezielle Caching-Strategien vorgestellt. Die Ergeb-
nisse dieser Untersuchungen wurden dazu genutzt, einen Konzeptnachweis in Form einer
Implementierung des dbxlink Ansatzes als Erweiterung des Open-Source XML Daten-
banksystems eXist durchzuführen.

iii

Acknowledgements

First of all, I would like to thank Prof. Dr. Wolfgang May for giving me the possibility
to be part of his research group and to conduct a dissertation in the LinXIS project
under his supervision. Having always time for discussions and for the questions that
came up during the compilation of this thesis, he provided the necessary background in
both technical and practical issues related to this work. Also, I thank all colleagues at
the Institute for Informatics of the Göttingen University for the interesting time and for
the fruitful discussions. Finally, I would like to thank my parents, my wife Gabi and all
friends in Göttingen.

v

Table of Contents

Title 1

Abstract i

Zusammenfassung iii

Acknowledgements v

Table of Contents vii

List of Figures xi

1 Introduction 1

2 XML Preliminaries 9

2.1 XML . 9

2.1.1 Semistructured Data . 10

2.1.2 Components of XML Documents 10

2.1.3 DTD . 13

2.1.4 Namespaces . 18

2.1.5 XML Data Models . 19

2.2 XML Querying . 21

2.2.1 XPath . 21

2.2.2 XQuery . 26

2.3 XML Linking . 29

2.3.1 XPointer . 29

2.3.2 XInclude . 32

2.3.3 XLink . 33

2.3.4 XLinks for Distributed XML Documents 35

2.3.5 XLink Usage . 37

2.4 Summary . 39

3 The dbxlink Model for Mapping XLinked XML Sources 41

3.1 Motivation . 41

3.2 Mapping Distributed XML Instances . 43

3.2.1 Directives for Simple XLinks . 44

vii

Table of Contents

3.2.2 Relative XLinks . 53

3.3 Relationships with W3C Concepts . 54

3.3.1 XML Infoset . 54

3.3.2 XLink for Browsing . 55

3.3.3 XInclude . 55

4 Querying XML Sources along XLinks with dbxlink 57

4.1 Querying Linked XML Instances . 57

4.1.1 XQuery and XLinks . 57

4.1.2 Querying Distributed XML the dbxlink Way 60

4.1.3 Additional Directives . 62

4.2 Focus on XPath without Reverse Axes . 64

4.3 Naive Querying Approach . 64

4.4 Dynamic Query Evaluation . 67

4.4.1 Stepwise Result Set Evaluation . 67

4.4.2 Extension of the Stepwise Evaluation 68

4.5 Cyclic Instances and Non-Terminating Queries 69

4.5.1 Ordinary Cycles . 69

4.5.2 Vicious Cycles . 70

4.5.3 Detection of Cycles . 71

4.5.4 Non-Terminating Queries . 73

4.6 Summary . 73

5 Detailed Querying and Implementation Issues 75

5.1 Partial Instance . 75

5.2 Extending the Stepwise Path Evaluation 76

5.2.1 How to Obtain Relevant Link Elements for a Given Axis 78

5.2.2 Special Case: Links that Turn their Parent into an XLink 80

5.3 Resolving of XLinks . 82

5.3.1 Data and Hybrid Shipping . 82

5.3.2 Query Shipping . 84

5.3.3 Fallback Strategies . 84

5.4 Handling ID/IDREF Attributes . 85

5.4.1 IDREF(S) in Referenced Documents 85

5.5 Result Set Normalization . 86

5.6 Implementation . 87

5.6.1 Extensions to eXist . 88

5.6.2 Example Evaluation . 89

5.6.3 Book-Keeping for Cycle Detection 91

5.6.4 Results . 92

viii

Table of Contents

6 Discussion of Query Shipping 93
6.1 Restrictions on Query Shipping . 93

6.1.1 Local Data of Links . 94
6.1.2 Remaining Queries that Contain the following Axis 98
6.1.3 Considering following-siblings and Position Checks 100
6.1.4 Summary . 102

6.2 Rewritings and Result Integration . 103
6.2.1 Absolute Document References . 103
6.2.2 Local and Remote Result Nodes of Links 103

6.3 Building the Query to be Shipped . 104

7 Optimizing Query Processing for Interlinked XML Documents 111
7.1 Caching in dbxlink . 111

7.1.1 Caching for XLinks using dbxlink:cache Attributes 111
7.1.2 Implicit Caching during Query Evaluation 115

7.2 Projection of XML Documents and Fragments 116

8 Related and Further Work 119
8.1 Related Work . 119
8.2 Further Work . 120

8.2.1 Integrating Web Service Calls . 120
8.2.2 XPath Query Containment for XPointers 122
8.2.3 XML Indexing . 124

9 Conclusion 127

Bibliography 129

Curriculum Vitae 133

ix

List of Figures

1.1 Browsing the Web . 2
1.2 XML Documents with XLinks . 3
1.3 Different Mapping Options for a Referenced Fragment 4
1.4 Querying the Logical View in a Transparent Way 5
1.5 Distribution of the Mondial Database over Several Hosts 6
1.6 Integrating Heterogeneous Data Sources 8

2.1 Excerpt of the Mondial XML Database 14
2.2 XML Document as Tree . 20
2.3 XPath Forward Axes . 23
2.4 XPath Reverse Axes . 24
2.5 A Distributed Version of Mondial . 36
2.6 Excerpt of the Distributed Mondial XML Database 38

3.1 Three-Level Database Architecture . 41
3.2 Extended XML Data Model with XLink Elements 43
3.3 Distributed Version of Mondial with Additional dbxlink Directives 52
3.4 Original Document Trees with XLink References 52
3.5 Resulting Logical Model in XML ASCII Representation 53
3.6 Resulting Logical Model with ID/IDREF References in Tree Representation 53

4.1 Querying over XLink Elements . 61
4.2 Querying the Materialized Virtual Instance 65
4.3 Relevant XLink References . 66
4.4 Cyclic XLink References between two Elements 66
4.5 Infinite Expansion Process for Cyclic Instances 67

5.1 A Partial Instance is Materialized . 76
5.2 IDREF Step in the Referenced Fragment 86
5.3 Querying the Distributed Mondial Database 90
5.4 Communication: Answer Shipping . 91

7.1 Possible Combinations of Evaluation and Caching Directives 114

xi

1 Introduction

Today, more than fifteen years after its invention, the World Wide Web (WWW, or
simply “Web”) can be considered as one of the most influencing innovations of the
last century whose significant impacts can not be measured. It is omnipresent and has
become indispensable as communication platform and for exchanging information in
private, economic, social, political and research areas.

Most users perceive the Web from the document-centric perspective: usually, they are
interested in the content of a web page (or, more generally, a resource) which is displayed
to them in human-readable form in a browser. Until today, most web pages have been
specified with HTML (Hypertext Markup Language) [HTM99]. For instance, consider
the following HTML document:

<html>
<head>

<title>Example</title>

</head>

<body>

<h1>Just an example for browsing</h1>

Please click here

</body>

</html>

This simple document defines both the layout and the content of a web page and
is almost self-describing by its hierarchical structure consisting of nested tags (e.g.
<html>. . . </html>). Here, it specifies that it should be displayed with a certain title
(given as “<title>” element) and its main part (“<body>”) consists of some text. The
text contains a heading which is given between the “<h1>” tags and some ordinary text
(“Please click here”) which embeds a hyperlink represented by an element “<a>”. This
anchor element will be rendered by browsers as a “clickable” character string (“here”).
While browsing the Web, users navigate from one web page to another by clicking on
such hyperlinks. If the link in the example document is activated (i.e. “clicked”) by
a user, the currently displayed document is replaced in the browser with the resource
located at the URI (Uniform Resource Identifier) “http://www.example.org/index.html”
as specified in the anchor’s “href” reference attribute. Figure 1.1 shows the example
document displayed in a browser with the emphasized link that points to the referenced
resource which replaces the current document if the link is activated by the user. Any
user of the Web is familiar with these “explicit” hyperlinks while there exist also “im-
plicit” links which are activated automatically by browsers, e.g. for embedding images
to be displayed as part of a web page.

1

1 Introduction

In contrast to this document-centric viewpoint of the Web, it can be considered in a
data-centric way where it is a network of interconnected resources providing arbitrary
information or data. Besides web pages defined in HTML, various kinds of resources can
be found in the Web, e.g. multimedia files (movies, games, MP3 songs, etc.), printable
documents (for instance given as plain text or in PDF) or arbitrary binary files (exe-
cutable programs, CD images for Linux distributions, etc.). Especially, in some cases
data has to be exchanged between resources without human interaction. For instance, a
retailer might use electronic data interchange (EDI) for sending orders to a manufacturer
who could return an electronic bill. In order to be able to exchange data electronically,
it has to be represented in an agreed format. The restricted constructs of HTML are not
sufficient to achieve this and this is one reason why XML (eXtensible Markup Language)
[XML06] has been defined by the World Wide Web Consortium (W3C) [W3C].

Figure 1.1: Browsing the Web

Since it has been proposed in 1996, XML is increasingly used as a data format for storing
or representing information and it is the de-facto standard language for exchanging
information in the Web. For instance, XML can be applied in the area of news feeds
and Web Services. In fact, being a meta language, many special purpose languages
are defined with XML. To illustrate this, consider XHTML [XHT00], the successor of
HTML which is an application of XML. Thus, any document based on XHTML is an
XML document. Still, if represented in ASCII format, XML documents are human-
readable but the main purpose of XML is to define formats to be used for exchanging
information in the Web. From this data-centric viewpoint, the Web can be considered
as a huge database containing big amounts of (XML) data resources.

Similar to HTML documents, these XML resources might not be necessarily self-
contained but rather may have links to remote XML data possibly residing on other
servers. In order to express links between XML documents, the W3C proposed the
XML Linking Language (XLink) [XLi01]. Figure 1.2 depicts an excerpt of the distributed
version of the Mondial XML database [Mon01]. One document contains information

2

about all countries where each country defines e.g. a link to its capital which can be found
in another XML document, namely in the one that contains all cities for a country.

The XLink specification is more flexible than the hyperlink concept of HTML. For
instance, any element can be defined as a link (which in the XML context are sometimes
also called XLinks): in Figure 1.2, the capital element has an xlink:href attribute and is
thus given as a link. In this case, it is a simple kind of XLink defining a reference to a
fragment of an XML resource. This is achieved by the xlink:href attribute which contains
a URI that precisely defines a server location, a path to a specific XML resource on that
server and a fragment identifier that contains an XPointer [XPt03b] for addressing the
desired document parts. Consider again the capital element:

<capital xlink:href=”http://linxis03/cities-D.xml#xpointer(/cities/city[name=’Berlin’])”/>

It defines a reference to the document “cities-D.xml” which contains information about
German cities and which can be found on the server “linxis03” in the local network.
Then, the XPointer “/cities/city[name=’Berlin’]” defines that inside the XML document
cities-D.xml the city element representing Berlin should be selected as referenced target.

Figure 1.2: XML Documents with XLinks

In Figure 1.2, the XML documents are displayed in browsers in order to show their
content in ASCII representation. However, it is obvious that there is no rendering of
the content apart from a hierarchical structure and appropriate indentation. Here, in
case of the Mondial documents, abstract information about countries is given without
a specification how it should be displayed to users. Instead, this data could be processed
by arbitrary applications. Especially, XML data can be queried like a database.

Considering links in HTML, they are used to navigate from one document to another.
In contrast to this, for XML the situation is different. In case of the example given in
Figure 1.2, if country data is interlinked with city data by XLinks, applications could
use the link e.g. for building integrated views on the distributed data. Unfortunately, if
a set of XML resources connected by XLinks is seen from a data-centric viewpoint, the
XLink specification does not state how links should be handled.

3

1 Introduction

Mapping of Interlinked XML Instances

When resolving such an XLink, there are several possibilities how the referenced XML
fragment should be mapped into the referencing document. Besides others, the target
fragment (in the example given above, the city element representing Berlin) could replace
the XLink (the referencing capital element) or it could be appended to it as a child.

Consider Figure 1.3 for illustration. In the upper half, the document on the left
(outer triangle) contains a link (inner triangle) that references a specific part of another
document depicted as separate triangle on the upper right. Below, two possible mappings
are sketched: on the lower left, the referenced part is embedded into the link element
and on the lower right the whole link has been replaced.

embedding into the link link is replaced

a link references a part of another document

Figure 1.3: Different Mapping Options for a Referenced Fragment

In order to describe various useful mapping possibilities systematically, a logical model
has been proposed in [May02, MM03, BFM06a]. It specifies how XML fragments refer-
enced by XLinks can be embedded into the referencing resource and has been defined
as an extension to XLink called “dbxlink”.

Querying Interlinked XML Instances

With the dbxlink model, interlinked XML sources induce a virtual instance (cf. Chap-
ter 3) or a view on the data. When considering XML data, the question arises, how this
view can be queried. The XML Query (XQuery) Requirements [XMQ04] stated by the
W3C include the handling of links (cf. [XMQ04], Sections 3.3.4 and 3.4.12):

4

“The XML Query Data Model MUST include support for references, including both ref-
erences within an XML document and references from one XML document to another.”

“Queries MUST be able to traverse intra- and inter-document references.”

Each requirement has a corresponding status. While this thesis has been written, the
status for both of the above mentioned requirements was described as follows: “this
requirement has been partially met”. Detailed investigations, as exposed in Section 4.1.1,
showed that with the W3C language XQuery [XQu06], which is most likely to become the
standard XML query language, it is not possible to query along link references even with
an explicit link dereferencing operator which could be given as user-defined function. To
overcome this limitation was another motivation to introduce the logical model.

While querying instances that are mapped according to this model, XLinks are re-
solved transparently. The XLink elements are seen as view definitions that integrate the
referenced XML data within the referencing instance (where the XLink element specifies
the referenced nodes, and how they are mapped into the surrounding instance). This
virtual instance can then be processed by standard XML query and processing languages
like XPath, XQuery and XSLT as depicted in Figure 1.4. Additionally, it follows that
no explicit dereferencing operator or function is required.

links are transparently
resolved into a logical view

Query

Figure 1.4: Querying the Logical View in a Transparent Way

Proof-of-Concept Implementation

The dbxlink functionality described in this thesis has been implemented as an extension
to the Java-based XML database system eXist [exi]. It is an open source project with
an active development team and it has received the 2006 Technology of the Year Awards
of the San Francisco based magazine InfoWorld1 in the category “Best XML Database”.

1http://www.infoworld.com/

5

http://www.infoworld.com/

1 Introduction

The following characteristics were significant for choosing eXist as a basis for a proof-
of-concept implementation.

• Open source: eXist is an open source project and thus, all modifications and
extensions can be integrated based on the methods described in this thesis.

• Conformance of standards: besides XML, eXist supports the standard query lan-
guages XPath and XQuery.

• Web access: eXist offers different networking interfaces allowing for accessing whole
documents or for stating queries (in XPath and XQuery) including HTTP [HTT99]
and SOAP. Thus, eXist servers extended with dbxlink functionality will be able to
communicate which each other and with any server on the Web allowing for setting
up an appropriate testbed.

Testbed and Demonstrator

For testing the functionality and experimenting with different strategies, a network of
dbxlink-enabled eXist servers on different hosts is used. The main demonstrator is based
on a distributed version of the Mondial database [Mon01] as illustrated in Figure 1.5.
The distributed scenario can be queried via a public interface which is reachable via
http://www.dbis.informatik.uni-goettingen.de/linxis/.

• mondial-root.xml (serves as a root
that contains only a mondial ele-
ment with links to countries, or-
ganizations, and geographical ob-
jects). As an entry point, its ex-
ternal schema coincides with the
one of the non-distributed Mon-
dial database.

• countries.xml (all countries) and
continents.xml (all continents)

• cities-XX.xml (cities for each coun-
try, where XX is the car code of
the respective country)

• organizations.xml (organizations)

• geo.xml (mountains, waters etc.)

mondial-root

linxis01

orgs countries
continents

linxis04 linxis02

cities-B cities-D waters
mountains

linxis03 linxis05

countries
continents

neighbor

organizations

←member-of

is-member→

headq capital
cities

located in

located at

Figure 1.5: Distribution of the Mondial Database over Several Hosts

6

http://www.dbis.informatik.uni-goettingen.de/linxis/

Applications for dbxlink

The dbxlink approach can be used both for building a distributed database by splitting an
XML document, and for building (virtual) XML documents by combining autonomous
sources which can then be queried by XPath/XQuery:

(i) distribution of existing data over several instances, and

(ii) integration of autonomous sources according to the virtual approach (i.e., not
materializing them, but defining a global view).

(i) When XML documents grow, it is sometimes preferable or necessary to split them
over several documents or even servers. For instance, the distributed Mondial instance
used in the testbed has been created from the non-distributed one [Mon01].

Often, in case of a distribution of data, the original schema should be kept as external
schema which is a virtual schema that provides the user with a view over the actual
data. Here, in the data splitting scenario, all queries against this view still yield the
same answers as before. From the data integration point of view, the logical model can
be seen as a Global as View (GAV) [Len02] view over the –now distributed– data.

(ii) An integrated view over distributed, autonomous data can be defined according to a
given target schema. In this case, the integration approach is also realized by the GAV
approach, i.e., queries are answered by view unfolding which in this case amounts to
integrating the data referenced by an XLink into the surrounding structure.

Also, calls to Web Services, data requests via the XML interfaces of database systems
and XHTML sources can be integrated via XLink, as depicted in Figure 1.6. Thus, for a
local XML database with dbxlink functionality, XLinks can be used to reference arbitrary
remote XML data which is then included during the evaluation of queries.

Summary of Contributions

• A refinement of the proposal in [May02] for mapping linked XML sources to an
integrated view based on an extension to XLink (cf. Chapter 3 and [BFM06a]).

• A transparent and flexible mechanism to query interlinked XML instances accord-
ing to the proposed model is described in an abstract way. It allows for integrating
dbxlink functionality in XML query systems which rely on the standard stepwise
evaluation strategy for XPath, including

– the handling of cyclic instances during query evaluation (cf. Chapters 4),

– the analysis of several query shipping strategies (cf. Chapters 5 and 6), and

– optimization and caching strategies for query processing over distributed in-
terlinked XML sources (cf. Chapter 7).

• A proof-of-concept implementation of the functionality necessary for querying over
XLinks according to the W3C XML Query (XQuery) Requirements using the
dbxlink approach as an extension to eXist (cf. Chapter 5).

7

1 Introduction

XHTML XML WebService

dbxlink

eXist Tamino Oracle

Figure 1.6: Integrating Heterogeneous Data Sources

Outline of this Thesis

This thesis is structured as follows. In order to equip the reader with the notions and
concepts that build the basis to understand this work, some preliminaries about XML
and relevant accompanying standards are given in Chapter 2. Then, the logical model
on which the investigations contained in this thesis are based is discussed in Chapter 3.
The following chapters contain the main contributions of this dissertation. Chapter 4
describes how to query XLink-ed XML sources. Emerging problems like querying cyclic
instances are examined and according strategies how to cope with them are proposed.
Then, Chapter 5 discusses the proposed querying facilities in detail and the proof-of-
concept implementation is outlined. Many special issues arise when investigating query
shipping, as shown in Chapter 6. Optimization techniques like caching are discussed in
Chapter 7. In Chapter 8 related work is discussed and an outlook on further work is
given. The final chapter concludes this dissertation.

8

2 XML Preliminaries

Since its advent in 1996, XML has become ubiquitous in the Web. For instance,
XML is used as a data format for electronic data interchange (EDI) in business-to-
business applications, as communication protocol for web services (namely in terms of
the SOAP [SOA03] specification), for representing news feeds (cf. RSS 0.91 [RSS99] or
Atom [Ato05]) and for defining the markup language XHTML [XHT00], the successor
of the well-known Hypertext Markup Language (HTML) [HTM99].

This thesis investigates the evaluation of queries on linked distributed XML data.
Thus, in this chapter, an informal introduction to XML is given in Section 2.1. Addi-
tionally, as linked XML data shall be queried, we then consider the standard XML query
languages XPath and XQuery in Section 2.2, and in Section 2.3 we discuss the linking
mechanisms of the XML Linking Language (XLink) which in turn is based on XPointer.

2.1 XML

XML is an acronym for eXtensible Markup Language [XML06] and has been first pro-
posed as a working draft by the World Wide Web Consortium (W3C) [W3C] in Novem-
ber 1996. In 2006, the XML recommendation has reached its fourth edition. As indicated
by its name, XML could be considered as a markup language, i.e. a language for specify-
ing the layout of documents like HTML (by using optical markup) or to define its logical
structure (cf. LATEX). This viewpoint is, however, not suitable for XML because XML is
a meta markup language that can be used to define special purpose markup languages
that can then serve for various applications.

The original goal for designing XML was “to meet the challenges of large-scale elec-
tronic publishing”1. These requirements could have already been achieved by SGML
(Standardized Markup Language) [SGM86], a meta language that evolved out of IBM’s
Generalized Markup Language (GML) and then became an ISO standard in 1986 (ISO
8879). Before XML has been proposed, SGML has been widely used for information
processing and electronic data interchange, mainly in printing and publishing industries.
It is a very generic and powerful language but has been considered as being too complex
for the daily use in the Web.

On the other hand, the Hypertext Markup Language (HTML) [HTM99] has been
extensively used in the Web in several versions since the early 1990s for publishing
hypertext documents (i.e. documents containing hyperlinks enabling users to navigate
to other documents). HTML has been specified as an SGML application with a fixed

1http://www.w3.org/XML/

9

http://www.w3.org/XML/

2 XML Preliminaries

set of markup elements. It is easy to use but its limited vocabulary restricts it to being
only suitable for defining the optical layout of web pages.

Considering SGML and HTML, it is obvious that a language bridging between these
two well-established technologies would have been very useful for the Web. As a conse-
quence, XML has been derived from SGML in order to keep its flexibility and expres-
siveness while being simplified for achieving a similar straightforwardness as offered by
HTML. In fact, XML is a subset of SGML while HTML’s successor XHTML has been
defined using XML, i.e. XHTML is an XML application. Thus, XML can be considered
as a language situated “between” HTML and SGML.

Today, XML is the de-facto standard for exchanging data on the Web. Increasingly,
it has also been used as a semistructured data model for representing “mixed” data.

2.1.1 Semistructured Data

Until today, in 2006, in both research and industry areas the most common way to
store, manipulate and query data is still given by relational databases with the well-
known SQL language. They are based on the relational model [Cod70], a well-founded
data model for storing structured data2. This rigid model requires that a schema has to
be given a priori and that this schema has to be satisfied by the data to be stored. Many
database systems implement the relational model, among them commercial products
like the databases offered by IBM, Microsoft and Oracle, and open source projects like
MySQL and PostgreSQL.

In contrast to that structured kind of data, data on the Web often has an irregular
structure. Consider for example a web site offering world news. Its content (and also the
structure of the data) might change several times per hour and besides headlines and
text sections it might also contain images in different parts. Sometimes, data on the Web
is also self-describing, e.g. for a news page there might be special labels (tags) indicating
headlines and images. Thus, for data on the Web, meta data is often contained in the
data itself.

In general, these characteristics also apply to semi-structured data [QRS+95], a no-
tion that intuitively covers the range between structured data (e.g. data in relational
databases) and unstructured data (like raw text) while it is self-describing. Though
XML has originally not been defined as a language for representing semistructured data,
it can be considered as such and research on semistructured data has influenced the
further development of XML and its related standards in the late 1990s.

2.1.2 Components of XML Documents

In order to give a first understanding of XML, it is useful to recall the syntax of HTML,
because the ASCII representations of both XML and HTML documents are based on
elements enclosed by start and end tags, possibly containing attributes and text content.
The nesting of elements induces a hierarchical structure.

2There also exist other data models for storing structured data that have never reached the same
acceptance as the relational model, e.g. the network model and the object oriented data model.

10

2.1 XML

Example 2.1 (HTML Document)
The nested, hierarchical structure of HTML documents illustrated by a simple example:

<html>
<head>

<title>Example HTML page</title>

</head>

<body>

<h1>This is a headline</h1>

A list follows:
<ul type=”square”>

First item,
last item.

</body>

</html>

The outermost element (here: html) is called the root element of this document. Like
all other elements, it is enclosed by its start tag (<html>) and its end tag (</html>).
Elements can be nested inside each other. If an element e is directly embedded between
the start and end tag of another element p, then e is called a child of p which in turn
is the parent of e (note that all elements except for the root element have exactly one
parent). For instance, the title element is a child of the head element. The root element
(html) is the parent of both head and body. The element ul is equipped with an attribute
(type) indicating that the list items should be dashed with a square. Thus, it shows that
HTML is an optical markup language for defining the layout of web pages.

In order to give an introduction to XML, we will first start to discuss the ASCII repre-
sentation of XML documents. Please note that this is just one possible representation
format for XML data (cf. Section 2.1.5). However, XML’s ASCII format is the most
widely used representation, especially for electronic data exchange. In the remainder of
this work, most examples will be based on this format.

Well-formed XML Documents. An XML document has to be well-formed. This means
that it must have a document prolog and at least one element, and it must meet several
constraints like the fact that start and end tags of different element must not be inter-
leaved. In addition to this required property of being well-formed, an XML document
may be valid (this notion will be discussed in Section 2.1.3). We now continue with
discussing the structural parts of XML documents.

Document Prolog. The XML document prolog usually consists of the XML declaration
and an optional document type declaration (DTD, cf. Section 2.1.3). Omitting the DTD
by now, we just consider the XML declaration:

<?xml version=”1.0” encoding=”utf-8”?>

11

2 XML Preliminaries

The XML declaration shown above specifies the XML version being used3 and the en-
coding of the document (here, “utf-8”, the 8-bit Unicode Transformation Format4).

Elements. The main components of XML documents are elements. A well-formed
XML document has to contain at least one element, namely the root element which
is always unique in the whole document. Elements are labelled by a tag name (often
referred to as the element name). It is part of its start and end tag which enclose the
element content :

<elem name>

︸ ︷︷ ︸
content</elem name>

︸ ︷︷ ︸

start tag end tag

The content of an element may consist of other elements which are called children. As
these may also have children, we refer to all elements found in the content of an element
as its subelements. As a consequence, all elements are naturally subelements of the root
element. The content of an element may also contain text which may be mixed with the
elements. An element may have attributes (they are discussed below) which are given
inside the element’s start tag. Elements that don’t have any children or text content are
called empty elements and are denoted without end tag while the start tag closes with
a slash (/). An empty element with n attributes could look like this:

<elem name attr1=”value1” . . . attrn=”valuen”/>

Attributes. All elements may have attributes which are defined inside the element’s
start tag. Attributes are key-value pairs having an attribute name (key) and an attribute
value. If an element has more than one attribute, the attributes must have different
attribute names. An attribute is specified as follows: attr name=”attr value”. The
attribute value is thus enclosed in (single or double) quotes.

Comments. Sometimes, it is useful to add comments to an XML document. Comments
may appear anywhere in an XML document, except for element tags or other markup.
They may contain arbitrary text, but for compatibility reasons, ”--” is not allowed. Like
in HTML, an XML comment is always encapsulated by “<!--” and “-->”:

<!-- Here, we can enter arbitrary text as comment . . . -->

Remark. XML also consists of several further components like processing instructions,
entities, and CDATA sections. These are not considered in this work. Please refer to
the W3C XML recommendation [XML06] for further information.

3Besides XML 1.0 there also exists a newer version (1.1) that is not considered in this work because it
adds only technical details to its more widely used predecessor.

4 http://www.unicode.org

12

http://www.unicode.org

2.1 XML

Example 2.2 (XML Document)
The Mondial database [Mon01] contains geographical data including information about
countries, their provinces and cities, organizations and geographical entities like moun-
tains, seas, rivers and lakes. In Figure 2.1, an excerpt of its XML version is depicted.
It starts with the usual XML declaration followed by a doctype declaration which ref-
erences a DTD (cf. the next section). Then, the root element mondial follows. It has
children that represent two countries, Belgium and Germany. For each country, there is
a corresponding element having attributes for its car code, area and capital. Countries
have subelements for the name, population, borders with other countries (including the
border length) and provinces, that may also have city children. Mondial will serve as
an example throughout this work.

In order to give an intermediate summary, we can state that XML documents in the
ASCII representation have to be well-formed, i.e. they have to start with a document
prolog followed by the mandatory root element that contains all other elements. Ele-
ments may have content consisting of text and properly nested subelements, and they
also may have attributes.

2.1.3 DTD

A document type definition (DTD) specifies further constraints on XML documents. In
this section, we briefly explain the syntax of DTDs.

Valid XML Documents. As stated in the preceding section, all XML documents have
to be well-formed. Additionally, they may be valid. For that, an XML document has
to be associated with a DTD which defines constraints that have to be satisfied by the
document. For a specific XML document, a DTD is always supplied as a document
type declaration that has to be given in the document prolog, directly after the XML
declaration:

<!DOCTYPE name dtd spec>

The doctype declaration used for the Mondial excerpt depicted in Figure 2.1 references
a DTD that is stored as “mondial.dtd” in the local file system. A DTD describes the
logical structure of XML documents and is defined in terms of a grammar. It may contain
four types of declarations: element type, attribute-list, entity and notation declarations.
For this work, only element type and attribute-list declarations are relevant and will
thus be discussed briefly.

Element type declarations. For all elements that occur in an XML document of a
certain document type, the corresponding DTD must define element types:

<!ELEMENT element-type-name element-content>

13

2 XML Preliminaries

<?xml version=”1.0” encoding=”utf-8”?>

<!DOCTYPE mondial SYSTEM ”mondial.dtd”>

<mondial>
<country car code=”B” area=”30510” capital=”cty-Belgium-Brussels”>

<name>Belgium</name>

<population>10170241</population>

<border country=”D” length=”167”/>

<province id=”prov-Belgium-Antwerp” capital=”cty-Belgium-Antwerp”>

<name>Antwerp</name>

<population>1610695</population>

<city id=”cty-Belgium-Antwerp”>

<name>Antwerp</name>

<population year=”95”>459072</population>

</city>

</province>

<province id=”prov-Belgium-Brabant” capital=”cty-Belgium-Brussels”>

<name>Brabant</name>

<population>2253794</population>

<city id=”cty-Belgium-Brussels”>

<name>Brussels</name>

<population year=”95”>951580</population>

</city>

</province>

</country>

<country car code=”D” area=”356910” capital=”cty-Germany-Berlin”>

<name>Germany</name>

<population>83536115</population>

<border country=”B” length=”167”/>

<province id=”prov-Germany-Berlin” capital=”cty-Germany-Berlin”>

<name>Berlin</name>

<population>3472009</population>

<city id=”cty-Germany-Berlin”>

<name>Berlin</name>

<population year=”95”>3472009</population>

</city>

</province>

<province id=”prov-Germany-Hamburg” capital=”cty-Germany-Hamburg”>

<name>Hamburg</name>

<population>1705872</population>

<city id=”cty-Germany-Hamburg”>

<name>Hamburg</name>

<population year=”95”>1705872</population>

</city>

</province>

</country>

...
</mondial>

Figure 2.1: Excerpt of the Mondial XML Database

14

2.1 XML

An element type has a name which is also the name of the element instances of that
type in an XML document satisfying the DTD. The content of an element type can be
defined using one of the following options:

• EMPTY
This keyword denotes that the element is empty, i.e. it may have attributes but no
children or text content.

• (contentmodel)
The contentmodel can consist of sequences and choices of children which can be
combined by using a syntax similar to regular expressions with the well-known
operators “*”, “+” and “?”. Children listed in sequences are delimited with “,”
while choices use the “|” character. Example 2.3 illustrates the usage of these
constructs. All element types contained in sequences or choices must be declared
somewhere in the DTD as appropriate element types.

• Mixed element types
The keyword “#PCDATA” is used in order to indicate that arbitrary text content
is allowed. For mixed-content declarations, character data may be combined with
any number of subelements using the choice operator (“|”) and hence, in case that
subelements are given, the outer asterisk (“*”) is mandatory:

<!ELEMENT mixed elem (#PCDATA|subelem|next)*>.

If for an element only text content should be allowed, the following syntax has to
be used:

<!ELEMENT text elem (#PCDATA)>.

• ANY
Any element content is allowed:

<!ELEMENT any elem ANY>.

Example 2.3 (DTD with Intertwined Sequences and Choices)
A more complex example for an element having content composed of a sequence and a
choice of children is given by this DTD fragment:

<!ELEMENT complex (a,(b|c)*,d?)+>

<!ELEMENT a EMPTY>

<!ELEMENT b EMPTY>

<!ELEMENT c EMPTY>

<!ELEMENT d EMPTY>

15

2 XML Preliminaries

An element of type complex must have at least one sequence of child elements which is
indicated by “+”. Each such sequence must consist of exactly one child element “ a”,
arbitrary (“ *”) many choices of “ b” or “ c” elements and an optional element “ d”
(indicated by “ ?”). Below, we show an appropriate element that has children consisting
of three sequences:

<complex>

<!-- first sequence (each element occurs once): -->

<a/><c/><d/>

<!-- second sequence with several b and c elements, no d element: -->

<a/><c/><c/><c/>

<!-- third sequence (only the mandatory a): -->

<a/>

</complex>

All kinds of element types, including empty elements, may have attributes. These are
declared as corresponding attribute-lists.

Attribute-list declarations. In order to declare the attribute-list for an element type
in a DTD, the following syntax is used:

<!ATTLIST element-type-name attribute-name1 attribute-type1 attribute-qualifier1
...

attribute-namen attribute-typen attribute-qualifiern>

For a specific element type (given by element-type-name), a list of arbitrary many at-
tributes may be specified. Each attribute has a name, a type and a qualifier. Possible
attribute types are5:

• CDATA (character data, i.e. text content),

• NMTOKEN (name token, i.e. restricted characters without whitespaces),

• NMTOKENS (one or more NMTOKEN values separated by whitespaces),

• ID (identifying value, unique for the document (at most one ID per element)),

• IDREF (a value referencing an ID attribute given somewhere in the same document),

• IDREFS (one ore more IDREFs separated by whitespaces).

It is also possible to use enumerations for attribute types. In that case, instead of using
one of the attribute types given above, the type is explicitly defined as a choice of possible
values. For instance, if an attribute type is given as

5The attribute types ENTITY, ENTITIES and NOTATION are not relevant for this work.

16

2.1 XML

(value1|value2|value3),

it follows that for attributes of this type only these three values are allowed.

The qualifier corresponding to an attribute type declaration can be given using the
following options:

• #REQUIRED (the attribute is mandatory for all element instances of this type),

• #IMPLIED (indicates an optional attribute),

• #FIXED ”value” (here, a fixed attribute value that must fit to the attribute type
is supplied; if the #FIXED directive is omitted, ”value” is considered as default
value6).

Example 2.4 (DTD)
For the excerpt of Mondial shown in Figure 2.1, the DTD could have the following
form. Please note that Mondial’s original DTD (cf. [Mon01]) is more complex.

<!ELEMENT mondial (country*)>

<!ELEMENT country (name, population?, border*, province*)>

<!ELEMENT province (name, population?, city*)>

<!ELEMENT city (name, population?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT population (#PCDATA)>

<!ELEMENT border EMPTY>

<!ATTLIST country car code ID #REQUIRED
area CDATA #IMPLIED
capital IDREF #IMPLIED>

<!ATTLIST province id ID #REQUIRED
capital IDREF #REQUIRED>

<!ATTLIST city id ID #REQUIRED>

<!ATTLIST border country IDREF #REQUIRED
length CDATA #REQUIRED>

The root element mondial can have arbitrary many country children. These must have
an ID attribute car code while the area and capital attributes are optional. Countries
again must have exactly one name child, which is defined as PCDATA. Note that one
limitation of DTDs is that element types are defined globally and thus, only one name
element type for countries, provinces and cities can be specified. Countries, provinces
and cities have an optional population child which is also given as PCDATA. DTDs don’t
distinguish numerical types which would be useful here. Countries have arbitrarily many
provinces which in turn can have arbitrarily many cities. The elements of type border

6Note that for enumerations the default value must be contained in the defining choice.

17

2 XML Preliminaries

can occur as children of country elements and are given as empty elements with manda-
tory attributes for indicating the neighboring country (IDREF) and the border length.
Unfortunately, IDREF can not be restricted to refer to specific element types. Here, it
would be appropriate to indicate that only IDs of countries are allowed in border ele-
ments. Finally, also provinces and cities have required ID attributes while city elements
have to be nested inside province elements.

Remark. Besides DTDs, which are rather limited in expressiveness, there are other
technologies for specifying the schema of an XML document, e.g. XML Schema [XML04b]
and Relax NG [REL01] (which are, however, not relevant for this work).

2.1.4 Namespaces

In case that several XML documents have to be processed in the same application area,
it is possible that naming conflicts arise. This may happen if the same name is used
for different element types. For instance, the element type name can occur as the name
of persons, having subelements first and last, and also as the name of countries which
is defined as #PCDATA. In order to be able to distinguish these different concepts, the
W3C defined namespaces [Nam06].

A namespace is specified by a URI and, as a consequence, it is globally unique. Thus,
when using namespaces for specific elements, they can be distinguished from all other
elements having a different namespace. A namespace is declared in the start tag of an
element by assigning a namespace prefix to it. Also, syntactically, the directive “xmlns”
has to be given, as illustrated in the following example for the Mondial database where
a namespace with prefix “mon” is defined:

<mondial xmlns:mon=”http://dbis.informatik.uni-goettingen.de/Mondial”>

...
</mondial>

Then, in order to use this namespace for a specific element, the namespace prefix (in
this case “mon”) is prepended to the element’s name in both its start and end tag:

<mon:country car code=”D” area=”356910” capital=”cty-Germany-Berlin”>

<name>Germany</name>

<population>83536115</population>

...
</mon:country>

The namespace context is valid for the whole subtree defined by the element that is
associated with a namespace. Thus, all descending children inherit the namespace, i.e.,
in the above example, the name, population and all other subelements of Germany are
labeled with the namespace “mon” implicitly.

18

2.1 XML

2.1.5 XML Data Models

In the preceding sections, XML has been introduced using its ASCII representation in
order to show how XML documents can be defined. The syntactic structure of XML
documents and their corresponding DTDs has been explained. When considering XML
documents from the data-centric viewpoint, usually the term XML instance is used. As
we will mainly investigate XML data, the notions of XML documents and instances
will be used synonymously in the remainder of this work. While XML data can be
represented and serialized in the above mentioned ASCII format, the general XML data
model, however, is tree-based using the same notions of elements, attributes, etc. In the
following paragraphs, several XML data models are discussed.

XML as Tree-Based, Ordered Data Model. Because of their nested element structure,
XML instances can be considered as trees. From that viewpoint, an XML instance is
given as a document node which is a virtual parent node of the root node. The tree’s root
node represents the root element of an XML instance. Non-empty XML elements are the
inner nodes of the tree, while empty elements and text content (in this context considered
as text nodes) correspond to the leaves. The nesting of the elements corresponds to the
tree structure. The attributes are loosely coupled with their corresponding elements.
We sometimes will refer to arbitrary parts of XML trees as (XML) fragments.

In Figure 2.2, a part of the Mondial excerpt shown in Figure 2.1 is illustrated as
a tree. Because of limited space, the element representing Germany is just sketched
but Belgium is shown as a whole. The root node of the tree corresponds to the mondial
element while the leaves are in most cases text nodes except for the empty border element.
Obviously, inner nodes correspond to the non-empty elements and elements are equipped
with their attributes. In this work, we will sometimes use similar tree structures for
illustration.

Document Order. Considering this tree-based model, the order of the element and text
nodes in a tree is relevant. The document order describes in which order all nodes are
found in an XML document. According to the XQuery 1.0 and XPath 2.0 Data Model
(XDM) [XMQ06a], in an XML tree the document order is defined in terms of a depth-
first search. This means that the root node is the first node and that for every node
it holds that it occurs before its children and subelements which in turn occur before
following siblings. In document order, attributes follow immediately their corresponding
element but all attributes of an element are considered as unordered.

XML Data Considered as Graph. When ID and IDREF attributes are taken into ac-
count, the references between elements having an IDREF attribute pointing to elements
with a corresponding ID attribute value can be represented as additional edges between
nodes. As these references and thus their representing edges can be found between ar-
bitrary elements, the plain XML tree turns into a directed, possibly cyclic graph. The
same holds for XML instances containing XLinks (cf. Section 2.3).

19

2 XML Preliminaries

mondial

country
@car code=”B”
@area=”30510”

@capital=”cty-Belgium-Brussels”

name

Belgium

pop.

10170241

border
@country=”D”
@length=”167”

prov. @id=”prov-Belgium-Antwerp”
@capital=”cty-Belgium-Antwerp”

name

Antwerp

area

2867

pop.

1610695

city

@id=”cty-Belgium-
Antwerp”

name

Antwerp

pop. @year=”95”

459072

prov.
@id=”prov-Belgium-Brabant”

@capital=”cty-Belgium-

Brussels”

name

Brabant

area

3358

pop.

2253794

city
@id=”cty-

Belgium-

Brussels”

name

Brussels

pop.
@year=

”95”

951580

country
@car code=”D”.

.

.

name Germany

pop. 83536115

. . .

Figure 2.2: XML Document as Tree

XML Information Set. Besides describing the structure of XML data by a tree-based
model, it is sometimes useful to directly refer to the information contained in XML
documents in a straightforward way. For this purpose, the W3C proposed the XML
Information Set (Infoset) [XML04a]. Given an XML instance, its Infoset defines its
information in terms of information items having specific properties. Thus, all structural
parts of a document like elements and attributes are represented by corresponding items
while their properties yield the actual data (e.g. in order to refer to the children of an
element item, its children property is accessed).

Other XML Data Models. The document object model (DOM) [DOM98] proposed
by the W3C is a platform- and language-independent application programming inter-
face (API) for managing documents. It was mainly designed for XML and (X)HTML
documents but its specification avoids to refer directly to the technical details of XML.

DOM documents can be considered as hierarchies of nodes. For XML nodes (e.g. ele-
ments, attributes and text nodes), specialized subtypes are supplied. There are methods
for accessing parts of a document, for navigating through the hierarchical structure, for
creating or deleting nodes and for manipulating node properties (e.g. element names) or
node contents.

The W3C proposed the XQuery 1.0 and XPath 2.0 Data Model (XDM) [XMQ06a] as
a standard data model for querying XML data. With this model, the input values for
queries and the output of XPath and XQuery expressions can be defined.

20

2.2 XML Querying

Instances of the XDM have to be sequences. A sequence is an ordered collection
consisting of arbitrary many items. As the XDM relies on the XML Infoset, it also
defines a straightforward mapping from the Infoset to the XDM and vice versa.

2.2 XML Querying

For querying XML data, the W3C proposed the XML Query Language (XQuery) [XQu06]
which has reached the status of a candidate recommendation in late 2005. Due to its
wide support by various leading IT companies (among them IBM, Microsoft, Oracle and
AT&T), XQuery is most likely to become the standard XML query language. Regarding
our investigations on querying distributed interlinked XML data, we focus on XQuery’s
subset for addressing nodes in an XML tree, called XPath.

Remark. As mentioned already in previous sections, we do not consider namespace
nodes, processing instructions, comments and CDATA sections in this thesis. Thus,
when querying XML data, we only take document, element, attribute and text nodes
into account and querying concepts that are not relevant for these kinds of nodes are
not mentioned in the following.

2.2.1 XPath

The XML Path Language (XPath) [XPa06] offers mechanisms for addressing nodes in an
XML tree conforming to the XQuery and XPath Data Model (XDM) (cf. the preceding
section). Note that there are two versions of XPath (1.0 and 2.0). In this work, we
will only consider XPath 2.0 which totally covers its predecessor. Though XPath has
been specified in its own W3C recommendation, it is a subset of XQuery. The XPath
2.0 recommendation states ([XPa06], Section 1 (Introduction)): “XQuery Version 1.0
is an extension of XPath Version 2.0. Any expression that is syntactically valid and
executes successfully in both XPath 2.0 and XQuery 1.0 will return the same result in
both languages.” Besides XQuery, XPath is also used as a basis for other languages in
the XML world, e.g. for XPointer (cf. Section 2.3).

XPath, being a language for addressing and selecting parts of XML trees, is mainly
based on path expressions. However, the XPath specification also defines arithmetic, log-
ical and comparison expressions similar to other programming languages, and primary
expressions like literals, variable references and function calls. Thus, arithmetic expres-
sions (e.g. “8 + 21”) or function calls like “doc(uri)” (for retrieving an XML document at
uri) are valid XPath expressions. Additionally, there exist other kinds of expressions like
conditional or quantified expressions which will be discussed in connection with XQuery.

For the remainder of this work, with XPath expressions we implicitly mean path ex-
pressions. These consist of arbitrary many steps that traverse an XML tree for selecting
specific nodes. The syntax is similar to the cd (“change directory”) command of the
Linux and Unix operating systems for navigating through the file system. Considering
for example the excerpt of the Mondial XML database depicted in Figure 2.1, the
XPath expression

21

2 XML Preliminaries

//country[@car code= ”B”]/population

traverses the whole tree and selects all population children of country elements in arbitrary
depth with a car code attribute having the value “B”. As there is only one corresponding
country element (Belgium), it yields its <population>10170241</population> child.

In general, an XPath expression consists of n steps and has the following form:

step1/step2/. . . /stepn

If an XPath expression starts with a leading slash, the evaluation will start with the
document node of the document to which the expression is applied. In case that it
starts with “//”, all descendant nodes from the document node serve as initial input
nodes. If a relative expression is given (i.e. the expression does not start with a slash),
the expression is applied to the currently processed nodes. This makes sense only if the
expression occurs as part of an XPath predicate (see below) or if it is used in a dynamic
context in XQuery. During an evaluation of an XPath expression, for each step, the
currently processed nodes are called context nodes. The nodes selected in that step are
then the context nodes for the next step.

Each step specifies an axis for the navigation direction relative to the current position
in the tree and specifies the nodes to be selected by a node test and arbitrary many
predicates. Basically, an XPath step is of the following form:

axis::nodetest[predicate]

Alternatively, in simple Extended Backus-Naur Form, an XPath step looks as follows:

step ::= axis ”::” nodetest (”[” predicate ”]”)*

In the following paragraphs, the usage of the different kinds of axes in combination with
node tests and predicates will be explained.

XPath Axes. Depending on the current nodes’ position in the XML tree, the axis
specifies which nodes should be selected. There are two kinds of axes that are distin-
guished wrt. the direction in which they navigate in the current context nodeset. From
the viewpoint of an XML tree, forward axes select nodes that occur after the context
node in document order while reverse axes select nodes that can be found before the
context node in document order. The different axes types and their semantics are given
in Figures 2.3 and 2.4.
Note that in XPath 1.0, a step given as “.” is an abbreviation for the step “self::node()”.
In XPath 2.0, however, the expression “.” is considered as primary expression and
evaluates to the context item. Thus, it can also be applied to atomic values and not just
for nodes.

For some constructs, there exists an abbreviated syntax. For instance, “//” is short
for “/descendant-or-self::node()/”7 . If no axis is given, the child axis is applied as default,

7To be more precise, only non-initial occurrences of “//” should be replaced in this manner (cf. [XPa06]).

22

2.2 XML Querying

Forward Axis Description

child the children (element and text nodes) of the context node;
non-empty only for document and element nodes

descendant transitive closure of the child axis, i.e. all element and text
nodes contained in the subtree

attribute the attributes of the context node (only for elements)
self the context node
descendant-or-self combination of descendant and self
following-sibling the text and element siblings of the context node that oc-

cur after the context node in document order (empty for
attributes and document node)

following all text and element nodes that are not descendants of the
context node and occur after it in document order (empty
for document node)

namespace this axis is deprecated in XPath 2.0; before, it could be used
to select the associated namespaces of nodes

Figure 2.3: XPath Forward Axes

i.e. “country/city”=“country/child:city”8 . The attribute axis can be given as “@”, and “..”
is an abbreviation for “parent::node()”.

Node Tests. To all nodes that have been selected by the corresponding axis directive,
a node test is applied. This can either be a kind test or a name test. For a kind test,
there are several options which include the following that are relevant for this work:

• node() (selects all nodes of the current set),

• text() (all text nodes),

• element() (all element nodes),

• element(name) (all element nodes of type name),

• document-node() (matches the document node),

• document-node(element(name)) (matches the document node that has a single el-
ement of type name as content),

• attribute() (all attribute nodes),

• attribute(name) (all attributes nodes of type name).

8An exception to this is given if the step contains an attribute node test (attribute(), cf. next paragraph).
If so, then the attribute axis will be used as default for obvious reasons.

23

2 XML Preliminaries

Reverse Axis Description

parent the parent document or element node of the context node
(empty for document node)

ancestor transitive closure of the parent axis (empty for document
node)

preceding-sibling the text and element siblings of the context node that oc-
cur before the context node in document order (empty for
attributes and document node)

preceding all text and element nodes that are not ancestors of the
context node and occur before it in document order (empty
for document node)

ancestor-or-self combination of ancestor and self

Figure 2.4: XPath Reverse Axes

Alternatively, instead of a kind test, a node test can be given as a name test which
also requires that the context nodes match the principal node kind for the step axis.
The W3C XPath recommendation lists the principal node kinds of the different axes as
follows [XPa06, Sec. 3.2.1.1 (Axes)] (here, we ignore the deprecated namespace axis):

• For the attribute axis, the principal node kind is attribute.

• For all other axes, the principal node kind is element.

Then, the name test restricts the selected nodes by their name. Here, also namespace
prefixes can be taken into account and wildcards are allowed:

• name (selects all nodes without namespace prefix and with a name matching name),

• namespace:name (all nodes of type name that are qualified with prefix namespace),

• *:name (all nodes with name matching name, no matter if they are qualified with
a namespace prefix or not),

• namespace:* (all nodes qualified with prefix namespace),

• * (all nodes).

Example 2.5 (XPath Node Tests)
The examples given below rely on the aforementioned Mondial XML database. The
following XPath expression consists only of steps child::somenodename. It selects the
name of all cities, i.e. the text content of the name elements:

/child::mondial/child::country/child::province/child::city/child::name/text()

24

2.2 XML Querying

The child axis can be abbreviated simply by omitting it. Thus, the preceding expression
can be expressed as follows:

/mondial/country/province/city/name/text()

For the child axis, the principal node kind is element. As a consequence, the following
expression containing a name test with a wildcard yields only element children of city
elements:

/mondial/country/province/city/child::*

while the similar query

/mondial/country/province/city/child::node()

that uses a kind test would produce a result set consisting of both element and text node
children (in Mondial, however, city elements do not have text content).

In order to select all name elements located in arbitrary depth as subelements of countries,
the descendant axis, abbreviated by “ //” can be used:

/mondial/country//name

The abbreviated syntax for the attribute axis(“ @”) is applied in the following expression.
It selects all year attributes of the cities’ population children:

//city/population/@year

Predicates. Finally, after applying the node test, predicates can be defined for further
filtering of the sequence computed by an XPath step. A predicate is always enclosed in
square brackets and it is allowed to supply arbitrary many predicates which are then
evaluated subsequently. These are again supplied as XPath expressions. Relative expres-
sions (without “/”) are applied to the current context nodes selected by axis::nodetest
and absolute expressions (starting with “/” or “//”) are evaluated to the document
node. The corresponding inner result is then converted to a boolean value. Only those
items that evaluate to “true” are selected.

Example 2.6 (XPath Expressions with Predicates)
The following example selects all cities with more then 10 million inhabitants:

//country//city[population>10000000]

25

2 XML Preliminaries

XPath and XQuery Functions and Operators. The accompanying W3C recommen-
dation XQuery 1.0 and XPath 2.0 Functions and Operators [XPQ06] defines many ad-
ditional functions and operators for the use in XPath and XQuery. It specifies many
utility functions like common arithmetic operators, functions on sequences and various
string functions. Some of these functions are worth mentioning:

• position() results in the context position of the current context node,

• last() returns the size of the context,

• doc(uri) retrieves the document node for the XML document found at uri ,

• id(id-value) yields the element that has an ID attribute matching id-value. Here,
also a sequence of ID values may be supplied as argument. In that case, a sequence
of elements matching the IDs is returned.

If a numeric value n is given as predicate, it is interpreted as the expression “position()=n”.
Thus, only the item that has a context position n evaluates to “true”. For instance, when
querying Mondial, we might only be interested in the first city of each country:

//country/descendant::city[1]

The doc() function can especially be used for defining an “entry point” for XPath expres-
sions. Also, if a remote document shall be queried with XPath, this function allows for
the desired addressing. For instance, the following query selects the element representing
Germany in the document “mondial.xml” hosted at a remote server:

doc(”http://dbis.informatik.uni-goettingen.de/Mondial/mondial.xml”)
/mondial/country[@car code=”D”]

Example 2.7 (Dereferencing with id())
In Mondial, the capital attribute of country elements is modeled as IDREF attribute.
For each country, it contains the id of the city element that represents its capital. Here,
we query the population of Germany’s capital:

/mondial/country[name=”Germany”]/id(@capital)/population

XPath is the addressing mechanism used in several XML technologies. Besides others,
it is part of XQuery which allows for stating more complex queries on XML data.

2.2.2 XQuery

The XML Query Language (XQuery) [XQu06] is an extension of XPath. In fact, any
XPath expression is also a valid XQuery expression. Similar to SQL [SQL03], its syn-
tax is clause-based and it is “relationally complete” wrt. XML data (e.g., joins can be
expressed). Instead of operating directly on XML documents, XQuery is based on the

26

2.2 XML Querying

XPath/XQuery Data Model (XDM) and thus relies on the concept of sequences (cf. Sec-
tion 2.1.5). It has reached the status of a W3C candidate recommendation in November
2005.

The main syntax construct of XQuery is the FLWOR expression (pronounced “flower”).
FLWOR is a combination of the main keywords used for this kind of expressions: for, let,
where, order by and return. In general, an XQuery FLWOR expression has the following
structure:

for $var1 in expr1, $var2 in expr2, . . . , $varn in exprn
let $var’1 := expr’1, $var’2 := expr’2, . . . , $var’m := expr’m
where conditions
order by order by expr
return result

The for and let clauses produce tuple streams consisting of variable bindings. Each
variable in the for clause iterates over the sequence produced by the expression it is
associated with. In practice, these expressions are usually XPath expressions. Thus,
in case that the for clause consists of several variables, each variable iterates over its
binding sequence and the resulting tuple stream then contains combinations of all vari-
able bindings. In contrast to that iterative evaluation, the let clause is not processed
iteratively. It binds its variables to the whole resulting sequences of their corresponding
expressions. The tuples generated by the for and let clauses are then filtered by the
where expression. Similar to SQL, for each tuple, the where expression is evaluated and
a tuple is kept only if the where expression evaluates to “true”. Finally, the resulting
tuples can be ordered (order by) and are then used in the return clause for generating the
result. FLWOR expressions must at least have a for or let clause and a return expression.
The where and order by parts are optional.

Example 2.8 (XQuery)
The following example is a simple XQuery expression that shows the usage of all FLWOR
keywords. For all countries, it dereferences the capital IDREF attribute, filters all capitals
with more than one million inhabitants, orders the result by ascending country names
and returns an XML fragment consisting of the resulting country names.

for $country in doc(”http://. . . /mondial.xml”)//country
let $capital := id($country/@capital)
where $capital/population > 1000000
order by $country/name
return <result>{$country/name}</result>

We could obtain the same result with the equivalent, more concise expression depicted
below. Thus, depending on the use case, it shows that XQuery offers various ways where
to restrict the resulting sequence (for vs. let vs. where).

27

2 XML Preliminaries

for $country in
doc(”http://. . . /mondial.xml”)//country[id(@capital)/population > 1000000]

order by $country/name
return <result>{$country/name}</result>

Besides XPath expressions, also arithmetic, logical, comparison and conditional expres-
sions (if . . . then . . . else . . .) can be used in a way similar to imperative programming
languages. Additionally, XQuery defines quantified expressions that allow for testing
sequences (produced by XPath expressions) wrt. quantification. For instance, if applied
to Mondial, the quantified expression

every $country in //country satisfies $country/@area

evaluates to “true” if, and only if, all countries found in Mondial are equipped with
an “area” attribute. Analogously, the quantifier “some” tests if there exists at least one
item which satisfies the test.

As shown in the examples above, the return clause produces XML fragments. It uses
direct constructors for generating XML in a straightforward way by mixing XML syntax
(the <result> wrapper element) with variable contents (surrounded by curly brackets).
An alternative is given by computed constructors for creating XML nodes in a more
dynamic way (e.g. attribute id {81 + 27} would create an attribute node “id” with value
“108”).

User-defined Functions. In XQuery, it is possible to declare user-defined functions
(example taken from [XQu06]):

declare function local:depth($e as node()) as xs:integer
{

(: A node with no children has depth 1 :)
(: Otherwise, add 1 to max depth of children :)
if (empty($e/*)) then 1
else max(for $c in $e/* return local:depth($c)) + 1

};

This recursive function can be declared in advance of the actual query to be processed
(i.e. in the prolog). It takes a node as argument and recursively computes the depth
of the XML subtree that has node as root node. Note that in XQuery, comments are
encapsulated in “(:” and “:)”. The following function call (which is a valid XPath ex-
pression that can be used stand-alone or in combination with more complex expressions)
applies this function to the whole Mondial document:

local:depth(doc(”mondial.xml”))

If combined with recursive user-defined functions, XQuery is a computationally complete
programming language. It is a very powerful, versatile and flexible XML query language.

28

2.3 XML Linking

Discussing all the facets of XQuery would go beyond the scope of this thesis, for more
information please refer to the XQuery specification at [XQu06] or to a dedicated book
(e.g. [KCD+03], [Bru04] or [LS04]).

2.3 XML Linking

Most of the documents that can be found in the Web of today are given as HTML doc-
uments. In HTML, hyperlinks are simple directed connections between two documents,
where one document references another. Though it is possible to specify anchors for
pointing to a certain element inside a referenced document, the linking mechanisms of
HTML are rather limited. These have been extended in XHTML 2.0, where any element
may be equipped with an href attribute in order to be specified as a link source. Thus,
it is possible to define arbitrary elements as link sources referencing arbitrary elements
of remote documents.

Obviously, these linking techniques are designed for browsing aspects where users
navigate via hyperlinks “by clicking” from one resource to another. Concerning the
XML world from the database viewpoint, more sophisticated features for creating links
between XML resources would be useful. For instance, besides linking from one resource
to another (this can also be considered as 1:1 relation between resources on the Web), it
could be useful to connect arbitrary many resources with each other (e.g. for modeling
n:m relations). Additionally, it might be required to address arbitrary parts of an XML
resource like specific subtrees or attributes. Concepts to achieve these sophisticated
addressing and linking mechanisms are offered by XPointer and XLink (both proposed
by the W3C). We also discuss XInclude which provides basic means for merging XML
data into an XML document during the parsing process.

2.3.1 XPointer

In Section 2.2.1, the XML query language XPath has been discussed and it has been
shown how an XML tree can be traversed in order to select specific nodes. In addition to
the basic addressing mechanisms defined in XPath, some XML applications like XLink
[XLi01] (cf. Section 2.3.3) and XInclude [XIn04] (cf. Section 2.3.2) need more sophis-
ticated techniques for special addressing purposes. For instance, with XPath, it is not
possible to address ranges of XML trees with arbitrary start and end points. These and
further addressing mechanisms are specified in the W3C XPointer Framework [XPt03b]
and its accompanying scheme specifications.

The XPointer Framework introduces the basic constructs for addressing parts of XML
documents. XPointers are usually part of URIs in form of fragment identifiers in order
to address parts of specific documents:

http://www.example.org/file.xml#xpointer–expression
︸ ︷︷ ︸

fragment identifier

29

2 XML Preliminaries

The XPointer specification distinguishes between shorthand pointers and schema-based
pointers.

Shorthand Pointers

Using DTDs or XML Schema, elements can be associated with an ID. With shorthand
pointers, it is possible to address at most one element having a specific ID. On the other
hand, it results in an error if no element is found corresponding to a shorthand pointer.
In order to define a shorthand pointer, the user simply has to supply the identifying
value. This concept is similar to anchors in HTML and the following URI shows how
to reference the element representing Germany in the Mondial database using the
shorthand pointer “D”:

http://dbis.informatik.uni-goettingen.de/Mondial/mondial.xml#D

Note that in HTML, anchors have to be explicitly defined in a remote document in order
to be referenced by external URIs while in XML it suffices to supply a schema (DTD or
XML Schema) that specifies the IDs. Also, IDs are stable wrt. any restructuring of the
XML document, i.e. IDs can be kept unchanged while the document and its structure
evolves.

Schema-based Pointers

In addition to the straightforward addressing properties of shorthand pointers, the
XPointer Framework also offers more flexible pointers. These schema-based pointers
can be given as follows:

schema-name(schema-expr)

The schema-name indicates the name of the XPointer schema to be used while the
schema-expr inside the parentheses has to conform to the given schema. The W3C
proposes three schemas: element(), xmlns() and xpointer() which will be discussed in the
following paragraphs. Additionally, users may define their own schemas and thus achieve
even more flexibility for their applications. In this thesis, however, we will focus on the
predefined schemas.

XPointer element() Scheme. For addressing one specific XML element, the XPointer
element() Scheme [XPt03a] offers basic mechanisms. Similar to shorthand pointers as
described above, a single ID value can be given in combination with element() expressions.
Thus, the element with the given ID is located, e.g. the expression

element(D)

addresses the “Germany” element of the Mondial database. Note that in contrast to
shorthand pointers, it is allowed to specify element() expressions with ID values that do
not locate any element.

30

2.3 XML Linking

These simple expressions based on ID values can be extended with so-called child
sequences, i.e. sequences of integers separated by slashes (/)9. Given in combination with
an ID value, the first integer n addresses the nth child of the element corresponding to the
ID and each following integer locates the appropriate child of the previously addressed
element. For instance, if applied to the Mondial database, the expression

element(D/8/1)

addresses the first child of the 8th child of the element identified by “D”.

Without ID value, and applied to an XML document, a child sequence always has to
start with /1 in order to address the root element. Then, the remaining integers will
recursively locate the corresponding children in document order.

XPointer xpointer() Scheme. The most sophisticated scheme-based pointers can be
specified using the XPointer xpointer() Scheme [XPt02]. It is based on XPath. Expres-
sions conforming to the xpointer() scheme have the following form:

xpointer(xpointer-expr).

For example, the XPointer

http://. . . /Mondial/mondial.xml#xpointer(//country[@car code=”D”])

addresses the node that represents Germany in http://. . . /Mondial/mondial.xml. Thus,
the concepts of XPath can be applied in a straightforward way in xpointer() expressions
for selecting parts of XML documents. In this thesis, we consider only XPath expressions
in place of xpointer-expr. Expressions given in the other schemes can be easily mapped
to the xpointer() scheme using appropriate XPath constructs, e.g. the id() function for
selecting a specific element via its id.

On the other hand, the specification defines additional constructs for addressing
strings, points and ranges. For instance with range-to(xpath-expr), the range from the
context location to the point defined by xpath-expr is returned. Note that with these
constructs, the addressed parts of XML documents do not necessarily conform to well-
formed XML. We do not discuss these concepts here because they have been defined
mainly for browsing purposes or for the document-centric viewpoint of XML instances.

Evaluation of XPointers. Given the different XPointer schemes, an XPointer expres-
sion has the following structure:

xptr-expr1xptr-expr2. . . xptr-exprn

The evaluation takes place from left to right and the first expression that evaluates to
a non-empty node sequence supplies the result of the XPointer expression. Consider for
example the following expression:

9Note that in XML, ID values are not allowed to start with a digit.

31

2 XML Preliminaries

xpointer(//country[name=’Deutschland’])xpointer(//country[@car code=’D’])

When applying the above XPointer expression to the Mondial database, the first
pointer part results in the empty sequence because all countries are given with En-
glish names. Thus, the second part is applied and will return the element representing
Germany. For simplicity reasons, in the remainder of this work, we base our investi-
gations on the evaluation of XPointers that contain only one expression of the xpointer
scheme. Our results can be iteratively applied for several successive expressions in a
straightforward way.

XPointer xmlns() Scheme. The XPointer xmlns() Scheme [XPt03c] declares name-
space prefixes for XPointer expressions:

xmlns(mon=http://. . . /Mondial/)xpointer(//mon:country)

Here, the namespace prefix “mon” is bound to the Mondial namespace given by the
URI “http://.../Mondial/”. This URI is used to identify the namespace in a unique way.
It is not considered as a target to be selected. Then, the declared namespace prefix is
used directly in the XPointer expression to the right of the xmlns() directive for selecting
all country elements.

2.3.2 XInclude

With XInclude [XIn04], simple inclusion options can be defined for XML documents
(similar to “\input{}” statements in LATEX). Thus, it is possible to split up big XML in-
stances into smaller parts which are then merged into the main document. This straight-
forward yet restricted approach is based on XML-friendly directives of the form

<xi:include href=”uri” xpointer=”xpointer”/>

where the xi namespace is given by the URI “http://www.w3.org/2001/XInclude”. They
define a fixed XML-to-XML transformation where the xi:include elements are replaced by
the referenced XML fragments. The href attribute specifies the XML document located
at uri of which the parts to be included are given by an XPointer (xpointer) in the
corresponding attribute.

Example 2.9 (Splitting Mondial with XInclude)
With XInclude, a straightforward way to split the monolithic Mondial XML instance
into several smaller files can be achieved. Here, in this example, all main elements (e.g.
countries and organizations) are contained in a corresponding file. An XInclude-aware
XML parser would thus materialize the original Mondial XML document.

32

2.3 XML Linking

<mondial xmlns:xi=”http://www.w3.org/2001/XInclude”>

<xi:include href=”http://. . . /countries.xml” xpointer=”//country”/>

<xi:include href=”http://. . . /continents.xml” xpointer=”//continent”/>

<xi:include href=”http://. . . /organizations.xml” xpointer=”//organization”/>

<xi:include href=”http://. . . /rivers.xml” xpointer=”//river”/>

<xi:include href=”http://. . . /seas.xml” xpointer=”//sea”/>

<xi:include href=”http://. . . /lakes.xml” xpointer=”//lake”/>

<xi:include href=”http://. . . /mountains.xml” xpointer=”//mountain”/>

<xi:include href=”http://. . . /islands.xml” xpointer=”//island”/>

<xi:include href=”http://. . . /rivers.xml” xpointer=”//desert”/>

</mondial>

2.3.3 XLink

In order to define links between XML resources, the W3C introduced the XML Linking
Language (XLink) [XLi01]. It offers ways for defining different types of links. In order
to specify a link with the XLink mechanism, a link element has to be created. In the
remainder of this work, we will also refer to link elements as XLink elements or simply
XLinks. They are represented by XML elements with additional attributes of the xlink
namespace (http://www.w3.org/1999/xlink/). Among these attributes, the xlink:type at-
tribute is mandatory and indicates the type of the XLink10. Basically, one distinguishes
between simple and extended XLinks.

Remark. We consider XLinks for connecting distributed XML data sources and thus
we do not investigate the mechanisms designed for browsing or hypertext processing.

Simple XLinks. HTML’s Hyperlinks are similar to simple XLinks in XML. A simple
XLink connects two resources, one resource referencing the other. It is defined by an
xlink:type=”simple” attribute and the referenced remote resource is given by its URI in
an attribute xlink:href=”uri”. Those URIs may be equipped with a fragment identifier
containing an XPointer for addressing parts of remote resources.

Example 2.10 (Simple XLinks)
The distributed Mondial database (which is also illustrated in Figure 1.5) consists of
several XML documents connected by appropriate XLinks (cf. the next section). All coun-
tries are stored in the resource countries.xml. Each country has a neighbor XLink child
for each neighboring country. An XPointer is used in the simple XLink for referencing
the neighboring country by its car code attribute.

10Note that in the new XLink 1.1 candidate recommendation published in early 2006 [XLi06] it is
stated that if no xlink:type attribute is supplied for an XLink, it is assumed to have an attribute
xlink:type=”simple” as default.

33

2 XML Preliminaries

<country car code=”D” area=”30510”>

<name>Germany</name>

...
<neighbor xlink:type=”simple” borderlength=”167”

xlink:href=”http://. . . /countries.xml#xpointer(//country[@car code=’B’])”/>

<neighbor xlink:type=”simple” borderlength=”451”
xlink:href=”http://. . . /countries.xml#xpointer(//country[@car code=’F’])”/>

...
</country>

Simple XLinks can be considered as 1:1 or 1:n relations between resources on the Web,
where a source document references arbitrary parts of another resource. For expressing
more flexible links, extended XLinks have to be used. Note that simple XLinks are just a
shorthand for an often used specific kind of extended links. Thus, the semantics induced
by the simple XLink syntax could also be achieved by appropriate extended XLinks.

Extended XLinks. With simple XLinks, resources can be connected in a straightfor-
ward way. In addition to that, extended XLinks allow for expressing more sophisticated
link relationships between arbitrary many XML resources. From the modeling perspec-
tive, they offer an option to specify n:m or many-to-many relationships.

An extended XLink must have an attribute xlink:type=”extended” and may have sev-
eral children for specifying local and remote resources, and traversal rules (arcs) for
connecting these:

• Local resources are defined locally as elements in the content of the XLink.

• Remote resources are given similar to simple XLinks.

• Between local or remote resources, traversal rules, or arcs, are specified.

As we focus on simple XLinks in this thesis, we will only sketch briefly the anatomy of
extended XLinks. Example 2.11 illustrates the structure of extended XLinks.

Example 2.11 (Extended XLink for Sister Cities)
The following extended link defines locators for several European cities contained in the
Mondial database. As the city of Padua is not contained in Mondial, it is defined as
local resource while Freiburg, Innsbruck, Sarajevo, Barcelona and Boston are referenced
by locators pointing to Mondial. Some of these cities are sister cities. For specifying
these relations, appropriate arcs in both directions are given.

<sisterCities xmlns:xlink=”http://www.w3.org/1999/xlink” xlink:type=”extended”>

<city xlink:label=”padua” xlink:type=”resource”>

<name>Padua</name>

<population year=”2004”>211985</population>

</city>

34

2.3 XML Linking

...
<cityLocator xlink:type=”locator” xlink:label=”freiburg” xlink:href=

”mondial.xml#xpointer(//country[@car code=’D’]//city[name=’Freiburg’])”/>

<cityLocator xlink:type=”locator” xlink:label=”innsbruck” xlink:href=
”mondial.xml#xpointer(//country[@car code=’I’]//city[name=’Innsbruck’])”/>

<cityLocator xlink:type=”locator” xlink:label=”sarajevo” xlink:href=
”mondial.xml#xpointer(//country[@car code=’BIH’]//city[name=’Sarajevo’])”/>

<cityLocator xlink:type=”locator” xlink:label=”barcelona” xlink:href=
”mondial.xml#xpointer(//country[@car code=’E’]//city[name=’Barcelona’])”/>

<cityLocator xlink:type=”locator” xlink:label=”boston” xlink:href=
”mondial.xml#xpointer(//country[@car code=’USA’]//city[name=’Boston’])”/>

...
<sisterCityProgram xlink:type=”arc” xlink:from=”freiburg” xlink:to=”innsbruck”/>

<sisterCityProgram xlink:type=”arc” xlink:from=”innsbruck” xlink:to=”freiburg”/>

<sisterCityProgram xlink:type=”arc” xlink:from=”innsbruck” xlink:to=”sarajevo”/>

<sisterCityProgram xlink:type=”arc” xlink:from=”sarajevo” xlink:to=”innsbruck”/>

<sisterCityProgram xlink:type=”arc” xlink:from=”sarajevo” xlink:to=”barcelona”/>

<sisterCityProgram xlink:type=”arc” xlink:from=”barcelona” xlink:to=”sarajevo”/>

<sisterCityProgram xlink:type=”arc” xlink:from=”barcelona” xlink:to=”boston”/>

<sisterCityProgram xlink:type=”arc” xlink:from=”boston” xlink:to=”barcelona”/>

<sisterCityProgram xlink:type=”arc” xlink:from=”boston” xlink:to=”padua”/>

<sisterCityProgram xlink:type=”arc” xlink:from=”padua” xlink:to=”boston”/>

<sisterCityProgram xlink:type=”arc” xlink:from=”padua” xlink:to=”freiburg”/>

<sisterCityProgram xlink:type=”arc” xlink:from=”freiburg” xlink:to=”padua”/>

</sisterCities>

Remark. The XLink recommendation defines several concepts by specific attributes
that don’t need to be considered in this work. For instance, the attribute “xlink:show”
specifies how the target of XLinks has to be presented in browsing applications: with
xlink:show=”embed” the application has to embed the referenced resource into the doc-
ument on link traversal, similar to images in HTML documents.

Additionally, semantic attributes are defined in the XLink namespace for providing op-
tional extra information about links. Using “xlink:title”, a link element can be equipped
with a human-readable text for describing the meaning of the link. Furthermore, links
can be associated with a role by the “xlink:role” and “xlink:arcrole” attributes. Roles are
given as URIs and denote certain properties. No specific semantics is given for these
concepts and thus we do not consider them in the following.

2.3.4 XLinks for Distributed XML Documents

XLink provides a technology to interlink arbitrary XML instances. This can be useful
for splitting big XML instances into several smaller parts which are then connected
by XLinks. Basically, one way to achieve this is given by XInclude as illustrated in

35

2 XML Preliminaries

Example 2.9. On the other hand, for defining more sophisticated dependencies between
XML sources, XInclude is not suitable. For instance, with XInclude, it is not possible
to express bidirectional relationships like the “neighbor” relation in Mondial where
two countries are neighbors of each other. Here, XLink provides more flexibility and
expressiveness as illustrated by the following examples.

Example 2.12 (Mondial Distributed)
In its stand-alone version, the Mondial XML database consists of one big file. Using
XLinks, we can split this monolithic instance into a distributed version as already illus-
trated in Figure 1.5. Figure 2.5 shows the structure of the split version of Mondial

in more detail. It consists of a top-level document (“ mondial”) that contains only the
links to the files where the actual data is situated: a file (“ geo”) for all rivers, lakes,
seas, deserts, islands and mountains, and documents that contain data about all coun-
tries (“ countries”), continents (“ continents”) and organizations (“ orgas”). There
are several links between these documents, e.g. all countries reference their cities, cap-
itals and provinces in appropriate files. The distributed version of Mondial can be
downloaded via [Mon01].

mondial

geo countries continents orgas

. . . provs-B . . . provs-D cities-B . . . cities-D . . .

citiesprovinces

encompassed
member

capital

capital

neighbor

flowsinto

capital capital

headq

headq

Figure 2.5: A Distributed Version of Mondial

External Schema. The classical three-level database architecture [TK78] consists of
a physical level (or storage view) which concerns the storage of the data, a logical (or
conceptual) level that in relational databases is given by the relational schema and an

36

2.3 XML Linking

external level where users are provided with specific views on the data. As different
classes of users usually work with different views, for each view an external schema is
given which describes the structure of the data.

The preceding example illustrates how the Mondial XML database can be distributed
over several XML documents. Thus, both the stand-alone and the distributed versions
of Mondial are possible representations of the same data. Concerning the external
level, after splitting Mondial, the original schema (given by its DTD) should be kept
as external schema which means that the interlinked XML instances should induce a
view that conforms to the original DTD. Chapter 3 will explain in detail how this can
be achieved.

Example 2.13 (Mondial Distributed: Countries)
In order to illustrate some of the links of the distributed Mondial database, consider
again the excerpt of the Mondial XML database depicted in Figure 2.1. It consists
of two countries and some of their subelements. In Figure 2.6, the distributed version
of this excerpt is shown11. The links are graphically emphasized. For instance, the
country element that represents Belgium has a cities XLink child. It contains a pointer
“ http://. . . /Cities/cities-B.xml#xpointer(/cities/city)” which references all elements that
represent Belgian cities. Belgium’s capital child links only to Brussels. Then, there is
a neighbor child pointing to Germany. It has an additional attribute to express that the
border between Germany and Belgium is 167 km long.

2.3.5 XLink Usage

In the application area, XLink has not been widely adopted. Though being a W3C
recommendation, to the best of our knowledge, it has never been implemented to its full
extent in browsing applications. Also in the context of data-centric XML applications
it is used only rarely. Here, we try to sketch some possible reasons for XLink’s failed
acceptance.

Browsing. In the context of the document-centric view on the Web, links are mainly
used to connect web pages with other web pages in order to enable users to navigate from
one resource to another by clicking on hyperlinks. In addition to that, links are also used
for embedding images into web pages. The linking functionality of HTML is rather simple
and straightforward, and resembles simple XLinks. Syntactically, only href attributes
are needed to express linking semantics in HTML’s <a> links or elements. In
XHTML 2.0 this feature is extended in a way that any element may be equipped with
an href attribute in order to be considered as a link by user agents and browsers. Here,
the XLink technique has not been used and the W3C HTML and XHTML Frequently
Asked Questions state that “XLink and XHTML had different requirements for linking
that turned out not to be reconcilable.”12

11For the sake of simplicity, the provinces have been omitted.
12http://www.w3.org/MarkUp/2004/xhtml-faq#xlink

37

2 XML Preliminaries

<!--
dbis.informatik.uni-goettingen.de/Mondial/Mondial-Distributed/
countries.xml
-->

<countries>

<country car code=”B” area=”30510”>

<name>Belgium</name>

<population>10170241</population>

<capital xlink:type=”simple” xlink:href=

”http:///dbis.informatik.uni-goettingen.de/
Mondial/Mondial-Distributed/Cities/cities-B.xml

#xpointer(/cities/city[name=’Brussels’])” />

<neighbor xlink:type=”simple”
borderlength= ”167” xlink:href=

”http:///dbis.informatik.uni-goettingen.de/
Mondial/Mondial-Distributed/countries.xml

#xpointer(/countries/country[@car code=’D’])” />

<cities xlink:type=”simple” xlink:href=

”http:///dbis.informatik.uni-goettingen.de/
Mondial/Mondial-Distributed/Cities/cities-B.xml

#xpointer(/cities/city)” />

...
</country>

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

<capital xlink:type=”simple” xlink:href=

”http:///dbis.informatik.uni-goettingen.de/
Mondial/Mondial-Distributed/Cities/cities-D.xml

#xpointer(/cities/city[name=’Berlin’])” />

<neighbor xlink:type=”simple”
borderlength= ”167” xlink:href=

”http:///dbis.informatik.uni-goettingen.de/
Mondial/Mondial-Distributed/countries.xml

#xpointer(/countries/country[@car code=’B’])” />

<cities xlink:type=”simple” xlink:href=

”http:///dbis.informatik.uni-goettingen.de/
Mondial/Mondial-Distributed/Cities/cities-D.xml

#xpointer(/cities/city)” />

...
</country>

...
</countries>

<!--
dbis.informatik.uni-goettingen.de/
Mondial/Mondial-Distributed/Cities/
cities-B.xml
-->

<cities>

<city>

<name>Brussels</name>

<pop.>951580</pop.>
...

</city>

<city>

<name>Antwerp</name>

<pop.>459072</pop.>
...

</city>

...
</cities>

<!--
dbis.informatik.uni-goettingen.de/
Mondial/Mondial-Distributed/Cities/
cities-D.xml
-->

<cities>

<city>

<name>Berlin</name>

<pop.>3472009</pop.>
...

</city>

<city>

<name>Hamburg</name>

<pop.>1705872</pop.>
...

</city>

...
</cities>

Figure 2.6: Excerpt of the Distributed Mondial XML Database

38

2.4 Summary

Another reason for XLink’s lack of adoption might be its cumbersome syntax that
imposes much overhead (cf. the XML syntax of extended XLinks). However, for most
users that browse the web, it might be sufficient to be able to navigate between web sites
via hyperlinks. For this purpose, the common linking functionality is fairly adequate and
there is no need to extend or replace it with XLink’s powerful concepts.

Data. Considered from the data-centric viewpoint on XML, it is more remarkable that
XLink has not found its way into the application area. One reason for this might be
that XLink has been mainly designed for hypermedia applications as implied by the
xlink:show attribute that aims solely for browsing purposes. On the other hand, it is still
common to process distributed XML data “by hand”. Usually, applications in the Web
are realized with server side programming methods (e.g. Java/J2EE or .NET based). If
XML data has to be processed, then all sources are accessed explicitly and the desired
computations are executed inside the runtime engine.

In contrast to that, XLink has to be used directly on the data level where connec-
tions between XML sources can be specified. Unfortunately, XLink does not supply a
semantics for embedding XML instances into a resource from the data-centric viewpoint.

2.4 Summary

In this chapter, we discussed the technologies involved in this thesis. Here, XML, the
de-facto standard for representing and exchanging data in the web, was considered from
the data-centric perspective. We also showed the basic concepts of XPath and XQuery,
the most widely used XML query languages. Finally, the XInclude and XLink/XPointer
specifications for connecting distributed XML instances have been explained.

In the next chapter, we investigate how distributed XML instances interlinked with
XLinks can be mapped to an integrated view. XInclude offers one possible mapping
which is not flexible enough for general data integration tasks: it lacks the required
flexibility to combine data according to a given external schema.

Having defined the mapping, how can the resulting view be queried with XPath? We
propose and discuss appropriate techniques concerning the evaluation of queries on this
view in Chapter 4.

To our best knowledge, these issues have not been examined yet.

39

3 The dbxlink Model for Mapping XLinked
XML Sources

In this chapter, we describe a model for mapping interlinked XML instances to a logical
view. This model is specified by a flexible and expressive extension “dbxlink” for XLink
and provides a basis for the investigations conducted in the remainder of this work.

3.1 Motivation

XML documents are not required to be self-contained but may rather have links to
remote XML sources. As shown in Section 2.3.3, such references to autonomous resources
can be defined with the W3C XLink specification [XLi01] in terms of a syntactical
representation as XML elements. In contrast to the context of browsing and navigating
to remote documents via links, from the data-centric viewpoint, a set of distributed
interlinked XML documents induces a logical view that can be considered as a virtual
XML instance. Figure 3.1 illustrates how this scenario is related to the classical three-
level database architecture [TK78].

external level
users

View 1 View 2 . . . View n

logical level dbxlink: logical view (virtual instance)

physical level
XML DB XML DB

XML File XML File

XLinks

Figure 3.1: Three-Level Database Architecture

41

3 The dbxlink Model for Mapping XLinked XML Sources

On the physical level, interlinked XML sources (e.g. provided by database systems or
stored as plain files) are given. These are then mapped to an integrated view (the logical
level) which in turn serves as a basis for defining further views on the external level from
where it is also accessed by users.

Unfortunately, XLink does not specify how the referenced fragments should be mapped
into the virtual instance. Thus, the XLink mechanism has to be extended with semantics
that defines how to actually handle instances with references. The primary goal is that
XLink references are mapped to a logical model that is (or at least provides the look-
and-feel of) a plain XML instance that can be subject to the application of standard
languages from the XML area. Especially, XPath as the basic addressing mechanism
underlying XQuery must be applicable. Thus, a transparent modeling as an XML-to-
XML transformation where the XLink elements are present only on the syntactical level,
but queries navigate in the virtual instance along semantic notions is desirable.

Given an XML instance with XLink references, the actual specification of the logical
model must be flexible enough to cope with data integration issues. For instance, if for
a distributed XML scenario a target schema is given that has to be met by the virtual
instance, the model should allow versatile mapping options. Considering simple XLinks,
the naive mapping approach would be to replace an XLink element with the target of
its “xlink:href” attribute as done by XInclude (cf. Section 2.3.2). However, it might
be useful or even necessary wrt. data integration to have alternative mapping options
like the merging of the XLink’s local data (i.e. non-XLink-attributes and subelements)
with the referenced nodes. In addition to that deficiency, the XLink specification solely
specifies linking semantics for the context of hypermedia systems while the data-centric
viewpoint is not considered. Thus, two questions arise:

1. What kind of modeling options are useful for (simple) XLinks?

2. How can interlinked XML data instances be queried while navigating across links?

In order to propose a solution to these issues, we introduced additional modeling and
querying directives as an extension to the XLink technology by the dbxlink namespace in
[May02, MM03, BFM06a]. Similar to the xlink namespace, the dbxlink namespace offers
several attributes that specify the database-specific semantics of XLink elements. Also,
XLink’s attribute xlink:actuate is interpreted for the data-centric viewpoint on XML. To
give a first intuition, we shortly mention the relevant attributes used for simple XLinks:

• dbxlink:transparent is used to specify how the referenced data is mapped into the
referencing instance,

• xlink:actuate supplies the time-point for evaluating the reference (during parsing
or query answering),

• for querying, dbxlink:eval specifies how the evaluation of the XPointer expression
contained in the xlink:href attribute is distributed between the local and remote
server, and

42

3.2 Mapping Distributed XML Instances

• with dbxlink:cache, it can be specified which intermediate results (of both the
XPointer and query results) are cached for reuse.

The dbxlink:transparent directives are the main issue in this chapter while the other
directives will be explained in Section 4.1.3. In order to get an intuition of the logical
model which is specified by the dbxlink:transparent attributes of XLinks compared to
the real data model, see Figure 3.2. We thus have specified a model that transparently
resolves and embeds XLinks into a virtual instance.

•

xpath-expr1

url#xpath-exprx

•
url

xpath-exprx

(real DM)

•

xpath-expr1

(transparent DM)

Figure 3.2: Extended XML Data Model with XLink Elements

Remark. In this thesis, all investigations related to querying interlinked XML instances
are restricted to simple XLinks. For extended XLinks, the modeling issues are more
complex. However, the results presented in this work can serve as a basis for dealing
with extended links.

Therefore, in the following, we assume any XLink to be a simple XLink. According
to XLink 1.1 [XLi06], simple XLinks are an application default. Thus, we will omit the
attribute xlink:type=”simple” occasionally and assume that it is given implicitly.

3.2 Mapping Distributed XML Instances

The dbxlink namespace is an extension to the xlink namespace. It introduces an attribute
“dbxlink:transparent” that specifies the mapping of the data referenced by an XLink. For
illustration, consider the following XML fragment that contains a simple XLink element:

43

3 The dbxlink Model for Mapping XLinked XML Sources

<linkelement xlink:type=”simple” xlink:href=”uri#xpointer”
dbxlink:transparent=”to be described” non-(db)xlink-attributes>

content
</linkelement>

Basically, the linkelement consists of a start and an end tag that embed some attributes
and content (here, we focus on subelements and text content). The tags can also be
seen as element “hull” while the attributes and the contents can be denoted as element
“body”. Analogously, each of the nodes referenced by uri#xpointer found in the xlink:href
attribute also consists of a “hull” and a “body”. In order to describe the linking semantics
of the linkelement, i.e. the structure of the XML fragment after evaluating the XLink,
we have to take both the link element and its referenced nodes into account. Thus,
the virtual model of this fragment can be seen as a combination of both its “local” and
“remote” parts. In order to specify (i) the mapping of the result set of uri#xpointer
(remote parts), and (ii) the mapping of the simple XLink element itself (local parts),
the value of the dbxlink:transparent policy attribute consists of appropriate keywords. In
the following, we describe the directives for simple XLinks. Also, several examples are
given for illustration.

Remark. Note that the logical model possibly induces an infinite tree (e.g. due to the
neighbor relation in our example), but as long as only a finite set of Web sources is
involved, it has a finite representation as a graph. Thus, the actual query evaluation
wrt. this (abstract) model must then care that it does not run into cycles. These issues
will be discussed in Section 4.5.

3.2.1 Directives for Simple XLinks

For simple XLinks, the dbxlink:transparent attribute consists of two keywords, namely
the left-hand- (link-) and right-hand-directive (result-directive):

dbxlink:transparent=”left-hand-directive right-hand-directive”

The left-hand-directive describes how the XLink element should be treated while the
right-hand-directive specifies what parts of the referenced nodes should be mapped into
the logical model (e.g. the complete nodes or just their bodies).

Right-hand-directives (“R”-directives):

• insert-nodes (the nodes contained in the result set of the XPointer shall be inserted
“as a whole”, i.e. without changing their structure), and

• insert-bodies (for element nodes, their subelements, text children and attributes
are taken; for text and attribute nodes, the “body” is considered empty).

If no “R”-directive is given, then “insert-nodes” is used as default because it is the
intuitive, straightforward option which keeps the structure of the referenced nodes. The

44

3.2 Mapping Distributed XML Instances

“R”-directive “insert-bodies” selects the body of the nodes addressed by the XPointer,
namely their subelements, text children and attributes.

Left-hand-directives (“L”-directives):

• drop-element: the XLink element is dropped and replaced with the result set,

• keep-body: the hull of the XLink element is dropped and only the information
of its body (i.e. its subelements, text children and (non-xlink- and non-dbxlink-)
attributes) is used for enriching the referenced nodes,

• group-in-element: all referenced nodes are embedded in the link element,

• duplicate-element: each referenced node is placed in a duplicate of the link element,

• make-attribute: the link element is dropped and an attribute (with the same name
as the link element) is added to the link’s parent. If text and attribute nodes
are contained in the result set of the XPointer after applying the “R”-directive,
they are used as attribute value. In case of element nodes, an IDREF(S) attribute
is added to the link’s parent which references auxiliary elements representing the
referenced elements. The latter are enriched with the link element’s body.

The evaluation of the right-hand-directive results in a sequence of element nodes, text
nodes and attributes. For each left-hand-directive, we now describe how this result set
is processed wrt. the link element.

The examples are based on an excerpt of countries.xml, the document of the distributed
Mondial database that contains information about all countries1. Each country is
represented by an XML element “country” that has children for the name, population,
etc. It also has simple XLink children for referencing the country’s capital and its cities:
both point to cities located in the given country which can be found in the remote XML
document cities-XX.xml where “XX” stands for the country’s car code.

drop-element. This directive is the simplest and most straightforward choice. It is
thus also used as a default if no left-hand-directive is given for a link. It forces the
link element to be dropped completely and be replaced by the nodes of the result set
obtained after applying the right-hand-directive. If the result set contains attributes,
they are added to the link’s parent element (which is the canonic behaviour as induced
by element constructors in common XML manipulation languages).

For instance, in the distributed version of Mondial, each country has a cities link
element which references the appropriate cities:

1For simplicity reasons, we don’t include other elements like province or neighbor here. The neighbor
elements will be used for illustrating cyclic structures in Chapter 4.

45

3 The dbxlink Model for Mapping XLinked XML Sources

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

...

<cities dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”http://. . . /cities-D.xml#xpointer(/cities/city)”/>

...
</country>

In the logical model, the link element is dropped and replaced with the referenced nodes
which are not modified because insert-nodes is given as “R”-directive:

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

...

<city>

<name>Berlin</name>

<population>3472009</population>

</city>

<city>

<name>Hamburg</name>

<population>1705872</population>

</city>

...

...
</country>

In order to illustrate the special case that occurs if attributes are contained in the result
set which replaces the link, consider the following example:

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

...

<climate dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”http://. . .#xpointer(//country[@id=’GER’]/@climatic zone)”/>

...
</country>

46

3.2 Mapping Distributed XML Instances

Assume that we have access to a server hosting XML files with meteorologic data. Here,
the XPointer of the climate link addresses the climatic zone attribute of an element
containing the meteorological data for Germany. In the resulting structure, the link
element is dropped and the resulting attribute is added to the link’s parent, namely
country:

<country car code=”D” area=”356910” climatic zone=”temperate” >

<name>Germany</name>

<population>83536115</population>

...
</country>

keep-body. This “L”-directive can be considered as an extension of drop-element. In-
stead of dropping the link element, its body is kept and the element nodes contained in
the XPointer result set are enriched (attributes and text are kept unchanged): to each
of these element nodes, add all non-xlink- and non-dbxlink-attributes, element and text
children of the XLink element. Finally, replace the XLink element with the enriched
result elements. Note that keep-body is equivalent to drop-element if the link has no
additional data.

Assume that to the cities link from above a country attribute has been added:

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

...

<cities country=”D” dbxlink:transparent=”keep-body insert-nodes”

xlink:href=”http://. . . /cities-D.xml#xpointer(/cities/city)”/>

...
</country>

With keep-body, this additional attribute will be kept and added to all referenced ele-
ments. Thus, in the induced view, each city element obtains an attribute that indicates
the country it is located in2:

2Usually, this information is derived from the fact that cities are subelements of the appropriate coun-
tries.

47

3 The dbxlink Model for Mapping XLinked XML Sources

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

...

<city country=”D” >

<name>Berlin</name>

<population>3472009</population>

</city>

<city country=”D” >

<name>Hamburg</name>

<population>1705872</population>

</city>

...

...
</country>

group-in-element. The link element is basically kept and it is modified in the following
way. All attributes belonging to the dbxlink and xlink namespaces are dropped. Any
element or text node contained in the result set obtained by resolving the XPointer and
applying the “R”-directive is inserted into the logical view as child of the link element.
Attributes are added to the kept link element and if an existing attribute and a result set
attribute coincide wrt. their names, their values are concatenated. This “L”-directive is
useful for embedding the referenced data into the link element as will be illustrated with
a modified cities link:

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

...

<cities dbxlink:transparent=”group-in-element insert-nodes”
xlink:href=”http://. . . /cities-D.xml#xpointer(/cities/city)”/>

...
</country>

In the fragment induced by the example given above, the cities element contains all
referenced city elements:

48

3.2 Mapping Distributed XML Instances

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

...

<cities>

<city>

<name>Berlin</name>

<population>3472009</population>

</city>

<city>

<name>Hamburg</name>

<population>1705872</population>

</city>

...
</cities>

...
</country>

duplicate-element. For each node of the referenced result set the link element is dupli-
cated. Thus, each result node is embedded in its own local element which stems from the
link that is treated like in the group-in-element case (drop dbxlink- and xlink-attributes,
then insert attributes, text nodes and elements).

This directive is useful if the included result elements shall not be grouped together (as
in the case of group-in-element) but rather be inserted separately. For instance, additional
data about cities could be included from a server that provides a file germantowns.xml
which consists of town elements:

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

...

<city source=”not approved”
dbxlink:transparent=”duplicate-element insert-bodies”
xlink:href=”http://. . . /germantowns.xml#xpointer(//town)”/>

...
</country>

With this modeling, the body of each referenced town element is embedded into a sep-
arate city element having a source attribute indicating that the included data has to be
checked for correctness:

49

3 The dbxlink Model for Mapping XLinked XML Sources

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

...

<city source=”not approved”>

<name>Göttingen</name>

<population>129051</population>

</city>

<city source=”not approved”>

<name>Braunschweig</name>

<population>245273</population>

</city>

...

...
</country>

make-attribute. This directive is different from the aforementioned ones in a sense
that the result elements are enriched with the link element’s body and the link element
itself is “transformed” into a reference attribute. The link’s parent element gets a new
attribute with the name of the link element. If text and attribute nodes are among the
result nodes, their values are added to the new attribute’s value. For element nodes,
the new attribute is of type IDREF(S). If the result set contains several element nodes,
then an IDREFS attribute is added with a value for each element and IDREF otherwise.
This reference attribute points to new auxiliary elements, one per result element. The
new elements have to be equipped with ID attributes corresponding to the values of the
IDREF attribute of the link element. These elements can be inserted somewhere in the
virtual instance and they can be directly addressed via the id() function that dereferences
the corresponding IDREF attribute.

In Mondial’s distributed version, the capital of countries is modeled with make-
attribute as shown below.

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

...

<capital dbxlink:transparent=”make-attribute insert-nodes”
xlink:href=”http://. . . /cities-D.xml#xpointer(/cities/city[name=’Berlin’])”/>

...
</country>

Thus, the link element is dropped and a capital IDREF attribute is added to the country
which references an auxiliary element representing the referenced data. Here, only one

50

3.2 Mapping Distributed XML Instances

element is referenced (“Berlin”) which has been added somewhere to the local virtual
instance.

<country car code=”D” area=”356910” capital=”dbxlinkID1” >

<name>Germany</name>

<population>83536115</population>

...
</country>

...

<city id=”dbxlinkID1”>

<name>Berlin</name>

<population>3472009</population>

</city>

It is worth mentioning that the modeling of make-attribute is “orthogonal” to the other
“L”-directives because the included data is only accessible via the attribute axis or via the
dereferencing function id(). Thus, if XPath queries should traverse the data referenced
by an XLink with make-attribute they have to contain an appropriate step involving the
id() function.

Summarizing Example. In Figure 3.3, parts of the elements representing Belgium and
Germany are given (the population elements are omitted). They contain the links for
their respective cities and capital. Figure 3.4 gives an intuition of the corresponding
node references. The resulting XML tree and fragment for the induced logical model
can be seen in Figures 3.6 and 3.5.

Remark. Note that in the logical model, there is a redundancy concerning the element
representing a country’s capital. It can be found as auxiliary element referenced by the
capital attribute and as a city child of the country. With respect to the data model,
this is not a problem, because the model is considered as virtual instance. On the other
hand, while querying, it might be useful to avoid such redundancies in order to reduce
both computational and network resources.

To put it all together, mapping an XLink element according to the dbxlink:transparent
directive consists of two steps:

1. processing the XPointer’s result set according to the right-hand- or “R”-directive
(yielding a set of nodes (“insert-nodes”), or a set of bodies (“insert-bodies”)),

2. mapping the XLink element itself, as specified by the left-hand- or “L”-directive.

The resulting nodeset is then added to the parent element as new children and/or at-
tributes.

51

3 The dbxlink Model for Mapping XLinked XML Sources

<countries>

<country car code=”B” area=”30510”>

<name>Belgium</name>

<capital xlink:type=”simple” dbxlink:transparent=”make-attribute insert-nodes”

xlink:href=”http://. . . /Cities/cities-B.xml#xpointer(/cities/city[name=’Brussels’])” />

<cities xlink:type=”simple” dbxlink:transparent=”drop-element insert-nodes”

xlink:href=”http://. . . /Cities/cities-B.xml#xpointer(/cities/city)” />

</country>

<country car code=”D” area=”356910”>

<name>Germany</name>

<capital xlink:type=”simple” dbxlink:transparent=”make-attribute insert-nodes”

xlink:href=”http://. . . /Cities/cities-D.xml#xpointer(/cities/city[name=’Berlin’])” />

<cities xlink:type=”simple” dbxlink:transparent=”drop-element insert-nodes”

xlink:href=”http://. . . /Cities/cities-D.xml#xpointer(/cities/city)” />

</country>

...
</countries>

Figure 3.3: Distributed Version of Mondial with Additional dbxlink Directives

countries

country @car code=”B”

name

Belgium

capital cities

country @car code=”D”

name

Germany

capital cities

http://. . . /Cities/cities-B.xml http://. . . /Cities/cities-D.xml

cities

city

name

Brussels

city

name

Antwerp

cities

city

name

Berlin

city

name

Hamburg

Figure 3.4: Original Document Trees with XLink References

52

3.2 Mapping Distributed XML Instances

<countries>

<country car code=”B” area=”30510” capital=”cty-brus”>

<name>Belgium</name>

<city><name>Brussels</name></city>

<city><name>Antwerp</name></city>

</country>

<country car code=”D” area=”356910” capital=”cty-berlin”>

<name>Germany</name>

<city><name>Berlin</name></city>

<city><name>Hamburg</name></city>

</country>

...
<city id=”cty-brus”>

<name>Brussels</name>

</city>

<city id=”cty-berlin”>

<name>Berlin</name>

</city>

</countries>

Figure 3.5: Resulting Logical Model in XML ASCII Representation

countries

country @car code=”B”
@capital=”cty-brus”

name

Belgium

city

name

Brussels

city

name

Antwerp

country @car code=”D”
@capital=”cty-berlin”

name

Germany

city

name

Berlin

city

name

Hamburg

city @id=
”cty-brus”

name

Brussels

city
@id=”cty-

berlin”

name

Berlin

Figure 3.6: Resulting Logical Model with ID/IDREF References in Tree Representation

3.2.2 Relative XLinks

The XPath expressions contained in the XPointer part of an link element’s xlink:href
attribute do not necessarily have to address element nodes. Instead, they may select
atomic values which can be used for enriching the link element’s parent with additional
data. Especially, in combination with relative references this is an option for deriving
properties. Consider the following example:

53

3 The dbxlink Model for Mapping XLinked XML Sources

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

<density dbxlink:transparent=”make-attribute insert-nodes”
xlink:href=”population div @area”/>

...
</country>

When the density link element is resolved, it adds a density attribute to the country
element:

<country car code=”D” area=”356910” density=”234” >

<name>Germany</name>

<population>83536115</population>

...
</country>

Thus, in contrast to fully specified URIs given in the XLink’s xlink:href attribute, also
local, relative XPointer expressions are allowed. We define the completion of the relative
expressions given in the xlink:href attribute as follows:

• a complete URI is considered as it is;

• an absolute XPath p is appended to the URI of the current document as fragment
identifier (embedded in an XPointer expression “xpointer(p)”);

• a relative path expression is evaluated wrt. the XLink element’s parent node. This
strategy is consistent with the modeling because the XLink can be considered as
“virtual” in a sense that it is replaced by referenced data items which are then
children or attributes of the parent element.

3.3 Relationships with W3C Concepts

The dbxlink proposal extends the functionality of XLink with several modeling options
and evaluation strategies. The approach is based on and related to various technologies
introduced by the W3C as will be discussed in this section.

3.3.1 XML Infoset

Usually, XML documents induce an XML Information Set (XML Infoset). As a doc-
ument might come along with an XML Schema, there also exists an augmented XML
Infoset for this document, e.g. consisting additionally of all default values supplied in
the schema. In [XML04c], this augmented infoset is called the post-schema-validation
infoset (PSVI).

54

3.3 Relationships with W3C Concepts

From this perspective, the mapping of interlinked XML sources to the model defined
by the dbxlink approach happens after the schema has been evaluated. Intuitively, given
an XML document, we first have to process any given schema and obtain thus a new
instance conforming to the PSVI. Then, we can continue with the link evaluation for
getting the virtual instance. This instance conforms to a post-dbxlink-validation infoset
(PDBXI). If in a data integration application a target schema is given, this PDBXI has
to conform to the target schema.

3.3.2 XLink for Browsing

Up to now, the XLink approach is primarily used in the context of hypermedia sys-
tems, i.e. for browsing. Therefore, the W3C XLink Recommendation [XLi01] defines
several attributes for link elements which specify the behavior of the link element dur-
ing browsing. For instance, the xlink:show=”embed” directive requires the referenced
XML fragment to replace the local link element upon traversing the link. This specific
behavior of XLink can be seen as one special case of the dbxlink approach, specified by
dbxlink:transparent=”drop-element insert-nodes” which is thus considered as the default
option if no dbxlink:transparent directive is given.

3.3.3 XInclude

As described in Section 2.3.2, with XInclude [XIn04], big XML documents can be split
into smaller ones by straightforward inclusion mechanisms. Similar to simple XLinks,
xi:include elements contain a uri and an xpointer . The semantics of these inclusion rules
corresponds to dbxlink:transparent=”drop-element insert-nodes”, i.e., the referenced target
is included when the document is loaded/parsed, materializing the model completely.

In contrast to the XLink and XInclude models, the dbxlink approach allows for fine-
tuning the logical model. It is more flexible wrt. the model because various combinations
of mapping directives are allowed. Additionally, we have directives for query evaluation
and caching strategies (dbxlink:eval and dbxlink:cache, cf. next chapter) which are not
given in XLink or XInclude.

The XInclude handling of references is also not suitable for database environments
possibly containing huge amounts of data. In general, the XInclude parse-time evaluation
materializes all referenced contents especially when storing documents. In contrast to
that, dbxlink allows to keep the links in the database, only evaluating them on-demand,
always using the latest contents of the referenced sources.

55

4 Querying XML Sources along XLinks
with dbxlink

Considering XLink from the data-centric viewpoint of XML, its specification does not
offer constructs for describing the modeling semantics of referenced XML fragments.
Thus, as described in Chapter 3, we proposed an extension to the XLink technique
called “dbxlink”. It provides necessary modeling directives in terms of dbxlink:transparent
attributes to be added to link elements in order to flexibly integrate interlinked XML
sources into one virtual logical view. This view then serves as a basis for querying
distributed XML sources connected by XLinks as will be described in this chapter.

First, we analyze how distributed XML sources containing XLinks can be queried and
show the benefits of our approach. We will then explain why we focus our investigations
on a fragment of the XML query language XPath using only forward axes. Then, we de-
scribe two methods for evaluating queries on interlinked XML sources: a straightforward
but naive approach that is not suitable in practice, and a preferable dynamic evaluation
method handling XLinks on demand during query evaluation. Afterwards, we show how
we can detect and handle cyclic instances during query processing and how to deal with
non-terminating queries.

4.1 Querying Linked XML Instances

In this section, we describe the situation regarding XQuery’s capabilities to handle
XLinks. We also illustrate the benefits of our approach and discuss additional querying
directives of the dbxlink approach for specifying evaluation and caching strategies. Parts
of this section have been published in [BFM06b].

4.1.1 XQuery and XLinks

Although the W3C XML Query (XQuery) Requirements [XMQ04, Sec. 3.3.4/3.4.12
(“References”)] explicitly state that

“the XML Query Data Model MUST include support for references, including both ref-
erences within an XML document and references from one XML document to another”

and that

“queries MUST be able to traverse intra- and inter-document references”,

neither XPath nor XQuery can handle XLinks to their full extent. This is mentioned in
the XML Query Requirements (for each of the quoted requirements, it states that “this

57

4 Querying XML Sources along XLinks with dbxlink

requirement has been partially met”) and will be analyzed in a general way below.
Considering intra-document references, i.e. IDREF attributes referencing ID attributes

in the same document, the id() function allows for dereferencing them in order to access
the referenced elements. On the other hand, for accessing remote documents, the doc()
function can be used but in XPath or XQuery there is not yet complete support for
evaluating XPointers remotely. For a simple XLink element, users can select the XPointer
found in the xlink:href attribute with

for $pointer in
doc(”http://. . . /countries.xml”)//country[@car code=”B”]/capital/@xlink:href

but XQuery cannot be told to resolve it because a data item (i.e., the value of the
xlink:href attribute) can not be considered as an XPath query. This is currently not
possible in the base language, nor can it be achieved by the functions and operators
given in the XQuery 1.0 and XPath 2.0 Functions and Operators specification [XPQ06].
The following paragraphs show that a solution for handling shorthand pointers based
on XQuery exists while xpointer() expressions consisting of XPath queries can not be
resolved by XQuery in general.

Simple XPointers for ID-Dereferencing. Simple XPointers actually consisting of an
id() function application of the form url#xpointer(id(string)) for dereferencing elements
by their ID can be resolved by combining the doc() and id() functions. These pointers are
equivalent to “shorthand pointers” like http://. . . /country.xml#D (pointing to Germany)
in [XPt03b] (cf. Section 2.3.1). In [LS04, Section 7.4.2], a solution by an XQuery user-
defined function is given which is restricted to such simple XPointers:

declare namespace func=”http://www.example.org/functions”;
declare function func:follow-xlink($href as xs:string) as item()*
{

let $docValue := substring-before($href,”#”)
let $x := substring-after($href,”#xpointer(id(’”)
let $idValue := substring-before($x,”’)”)
return

doc($docValue)/id($idValue)
};

The URI supplied as $href argument is split into its host part containing the path to
the referenced document and its fragment identifier which is separated from the host
part by “#”. The solution in [LS04] assumes the fragment identifier to contain an
XPointer that consists of an id() function call for dereferencing an element by its id.
Thus, general XPointers based on arbitrary XPath expressions can not be handled. In
order to return the referenced element, an XPath expression is dynamically constructed
and evaluated. It consists of two steps: the first resolves the remote document with
the doc() function and the second consists of the id() function for dereferencing the
appropriate element. Note that here, the relevant computed variables are passed to
XPath functions as arguments.

58

4.1 Querying Linked XML Instances

XPath Expressions in XPointers. In the general case, instead of id($idValue), the
xpointer() scheme allows for the use of arbitrary XPath expressions. Similar to the
solution proposed above, a naive approach might look as follows:

declare namespace func=”http://www.example.org/functions”;
declare function func:follow-xlink($href as xs:string) as item()*
{

let $docValue := substring-before($href,”#”)
let $x := substring-after($href,”#xpointer(”)
let $path := substring-before($x,”)”)
return

doc($docValue)/ $path

};

The remote document is resolved in the same way like above. However, instead of
extracting a simple id value, we have to access the XPath expression contained in the
xpointer() directive using the auxiliary variable $x. Intuitively, we then concatenate the
doc() function call and the obtained path expression but this will result in an error. This
dynamically constructed XPath expression is not accepted by XQuery because it is not
allowed to use a variable as location step. This can also not be programmed using the
current XQuery 1.0 and XPath 2.0 Functions and Operators [XPQ06]. Note that in case
that the XPointer is not based on an id() function call, the proposed solution given in
[LS04, Section 7.4.2] explicitly returns a message “XPointer Syntax nicht unterstützt”
(XPointer syntax not supported). However, there exist XPath implementations and
other proposals that allow for this dynamic evaluation.

Dynamically Evaluating Data Items as Queries. For the dynamic evaluation of an
XPath expression supplied as a string variable, the XPath/XQuery implementation
Saxon [SAX] offers an extension function saxon:evaluate(string). This function also works
on remote documents. The above function can be expressed as

declare namespace func=”http://www.example.org/functions”;
declare function func:follow-xlink($href as xs:string) as item()*
{

let $docValue := substring-before($href,”#”)
let $path := replace($href, ”^.*#xpointer.(.*).$”,”$1”)
let $expr := concat(”doc(’”, $docValue, ”’)”, $path)
return

saxon:evaluate($expr)
};

Thus, the data item $path containing the XPath expression used in the XPointer is
dynamically evaluated on the remote document.

59

4 Querying XML Sources along XLinks with dbxlink

The XQuery extension proposed in [RBHS04] introduces a mechanism for evaluating
XPath/XQuery expressions on remote servers that offer an appropriate interface. The
syntax reads as “execute at uri xquery { xquery }”. Using this technique, the above query
could be stated as follows:

declare namespace func=”http://www.example.org/functions”;
declare function func:follow-xlink($href as xs:string) as item()*
{

let $docValue := substring-before($href,”#”)
let $path := replace($href, ”^.*#xpointer.(.*).$”,”$1”)
return

execute at $docValue xquery { $path }
};

Then, queries use –similar to the id() function– an explicit dereferencing. For instance, in
order to query the population of Belgium’s capital in the distributed Mondial database
that models the capital relationship for countries by an XLink to the appropriate city:

doc(”http://. . . /countries.xml”)//country[@car code=”B”]/

capital/ func:follow-xlink(@xlink:href) /population

In contrast to that explicit approach,we argue that, if XLink references are used, implicit
dereferencing is preferable. Seeing interlinked XML instances as one integrated view
(that e.g. has to conform to a target schema), we want to provide a way to use original
XPath/XQuery without any syntactical extensions thus enabling users to transparently
query the data while XLinks are dereferenced implicitly like

doc(”http://. . . /countries.xml”)//country[@car code=”B”]/capital/population.

In this section, we showed that it is not (yet) possible to query XML instances containing
simple XLinks with XPath/XQuery. As simple XLinks are just a syntactic variant of
specific extended XLinks, it also follows that XQuery can not handle extended XLinks.

4.1.2 Querying Distributed XML the dbxlink Way

As our model defines the semantics of XLinks in terms of an XML-to-XML mapping,
linked XML sources can be seen as a virtual XML instance. In the following, we illustrate
how this virtual instance can be queried.

As described in the preceding section, when querying the real data model, we explicitly
have to “jump” from the local document to the referenced instance. In contrast to that,
with the dbxlink approach, interlinked XML instances are considered as transparent. For
all link elements, the result set defined by their xlink:href attributes is silently mapped
into the referencing XML structure according to the dbxlink directives.

Figure 4.1 shows how a given XPath query is processed wrt. the real and the trans-
parent model. Consider an XPath query xpath-expr1/xpath-expr2 which for simplicity

60

4.1 Querying Linked XML Instances

reasons should consist only of steps along the child axis. The first part of the query
(xpath-expr1) yields a node sequence on which the remaining query (xpath-expr2) has to
be evaluated. As only the child axis is involved in this example scenario, xpath-expr2
would continue on the children of all elements found in the intermediate node sequence
generated by xpath-expr1. If the sequence contains an element with an XLink child,
assume that this link element has an xlink:href attribute that includes an XPath-based
XPointer expression xpath-exprx referencing some XML fragment of a remote document.
The left hand side of Figure 4.1 shows how in the real data model a “jump” to the remote
document is required. Using the dbxlink approach, the referenced fragment is silently
mapped into the logical view which can then be queried as indicated on the right hand
side of Figure 4.1. This simplified illustration serves for giving a first intuition while
Chapter 5 describes the querying process in detail and for arbitrary XPath expressions.

•

xpath-expr1

url#xpath-exprx

•
url

xpath-exprx

xpath-expr2

(real DM)

•

xpath-expr1

xpath-expr2

(transparent DM)

Figure 4.1: Querying over XLink Elements

Consider again the distributed Mondial XML database, i.e. its excerpt shown in Fig-
ure 3.3 that contains countries and cities. As depicted in Figure 3.6, the resulting model
allows for the following queries:

• the capital is modeled as an IDREF attribute:
doc(”. . . ”)//country[@car code=”B”]/id(@capital)/population

• each referenced city is modeled as a subelement, dropping the “auxiliary” cities
link element:
doc(”. . . ”)//country[@car code=”B”]/city/name

61

4 Querying XML Sources along XLinks with dbxlink

4.1.3 Additional Directives

In the dbxlink context, the XLink directive xlink:actuate specifies the time-point for eval-
uating links. Besides the modeling directives given by the dbxlink:transparent attribute,
the dbxlink namespace defines additional directives:

• dbxlink:eval indicates the preferred evaluation strategy, and

• dbxlink:cache can be used for supplying caching modes.

Evaluation Time-Point. The W3C XLink recommendation [XLi01] specifies an at-
tribute xlink:actuate that can be used for indicating the desired time-point of a link
traversal. Like the whole recommendation, this attribute is tailored for the browsing
context of hypermedia systems. Thus, the directive xlink:actuate=”onRequest” is equiv-
alent to the requirement that a user has to click on a hyperlink in order to navigate to
the referenced resource. Analogously, xlink:actuate=”onLoad” requires that the link is
traversed while loading the document.

As the dbxlink extension has been developed for the data-centric viewpoint of XML,
xlink:actuate is used for indicating the desired time-point for evaluating an XLink wrt.
the mapping directives given in the dbxlink:transparent attribute. For xlink:actuate, in
the dbxlink context, the same options can be distinguished:

• xlink:actuate=”onLoad” forces an XLink to be evaluated (i.e. resolved and materi-
alized) during the parsing of the document,

• xlink:actuate=”onRequest” denotes that a link has to be evaluated when it is used
by a query.

If all XLinks are equipped with xlink:actuate=”onLoad”, the whole virtual instance will
be materialized when added to a database. In contrast to that, “onRequest” guarantees
that always the current state of the referenced resources is queried. If no xlink:actuate
attribute is given, then “onRequest” is the default.

Evaluation Strategies. For the evaluation of a link, there are three different strategies
that can be supplied with the dbxlink:eval directive:

• dbxlink:eval=”local” accesses the complete remote document and processes both the
XPointer and the remaining query (xpath-expr2) locally in two successive steps,

• dbxlink:eval=”distributed” evaluates the pointer remotely and the remaining query
locally (note that this is the default option if dbxlink:eval is omitted), and

• dbxlink:eval=”remote” combines the pointer and xpath-expr2 to a new query to be
processed remotely.

62

4.1 Querying Linked XML Instances

The option “local” should be used if the remote server is not able to answer XPath queries
(including XLink resolving). Then, the whole document is requested and stored locally,
and query processing takes place on the local copy. According to the classification
proposed in [FJK96], the “local” strategy resembles data shipping because the whole
referenced document is transferred to the local host.

When using the evaluation mode “distributed”, it is assumed that the remote server can
handle XPath queries. The XPointer expression (xpath-exprx according to Figure 4.1) is
submitted to the target host which then returns the XML fragment referenced by the
pointer. This fragment is then temporarily added to the virtual instance according to the
dbxlink:transparent directives. Afterwards, the remaining query xpath-expr2 is evaluated
against the temporarily extended virtual instance. This evaluation mode relates to
hybrid shipping as described in [FJK96] because the evaluation of the XPointer takes
place remotely and the remaining XPath query is processed locally.

Finally, the option “remote” delegates both the XML fragment computation and the
remaining XPath query to the remote host. To achieve this, the expressions xpath-exprx
and xpath-expr2 are rewritten and combined to a new XPath query in a suitable way. As
this is a complex task with many special cases and restrictions, it is discussed in detail
in Chapter 6. Considering the classifications of [FJK96], this strategy resembles query
shipping.

Note that for both the “distributed” and “remote” methods, the remote host must be
able to process XPath queries, and it also has to cope with the dbxlink approach in order
to handle further XLinks contained in the referenced XML document. Chapters 5 and 6
describe how these evaluation modes affect the query process.

Caching Modes. During the evaluation of queries, in order to resolve an XLink, it is
usually necessary to access a remote server. Then, the obtained data may be cached
for reuse in subsequent queries. For individual XLink elements, caching modes can be
specified by the dbxlink:cache attribute. There are several options:

• dbxlink:cache=”complete” indicates to store the whole referenced document in the
local XML database,

• dbxlink:cache=”pointer” denotes to keep the referenced XML fragment (the result
of the XPointer) in a local cache,

• dbxlink:cache=”answer” caches the query result obtained by applying the user’s
XPath query to the referenced fragment,

• dbxlink:cache=”on” combines several caching strategies and includes fallbacks de-
pending on dbxlink:eval, and

• dbxlink:cache=”none” can be used for turning caching off.

Disabled caching (“none”) is the default option if no dbxlink:cache attribute is sup-
plied for a link. Thus, it is guaranteed that always the latest data is queried. While

63

4 Querying XML Sources along XLinks with dbxlink

“complete” forces the whole remote document referenced by the XLink to be cached
locally, the “pointer” option can be used to cache the XML fragment that is defined
by the XPointer expression. After the remaining user query has been processed on the
fragment, “answer” denotes to cache the final query result for the subtree defined by
the fragment. Evaluation and caching options can not be combined arbitrarily, e.g. it
makes no sense to require a caching of the whole document if we have shipped a query
for reducing network traffic. Thus, designers of linked documents must be aware that
based on a specific evaluation strategy, appropriate explicit caching options (“complete”,
“pointer” and “answer”) are chosen. In order to offer a caching option that works with
any evaluation mode, we provide dbxlink:cache=”on”. With this option, the appropriate
caching mode is used automatically. dbxlink:cache=”on” is defined to work incremen-
tally, e.g. if a whole document has been cached, also the computed fragment and the
query result will be kept for later use. All details and further investigations concerning
caching issues can be found later in Section 7.1.

4.2 Focus on XPath without Reverse Axes

XLinks are defined as XML elements (cf. Section 2.3.3) and thus correspond to nodes of
the XML tree. Because in XQuery, the addressing of specific nodes is only possible via
XPath expressions, it is sufficient to consider XPath queries in order to treat XQuery
expressions correctly on XML instances interlinked with the dbxlink approach. Thus, in
the remainder of this work, we will focus our investigations on XPath.

It should be noted, that as a consequence, any XML query language which bases its
node location facility exclusively on XPath (e.g. XSLT [XSL06] and XPathLog [May04])
can be enabled for handling XLinks according to the dbxlink approach. This can be
achieved by integrating the techniques proposed in this thesis into the query engine of
systems that implement this kind of XML query languages.

The work in [OMFB02] shows that any XPath expression can be rewritten into an
equivalent query without reverse axes and it proposes several algorithms to achieve this.
Thus, without loss of generality, we assume here that a given XPath query to be pro-
cessed does not contain any reverse axis (parent, ancestor, ancestor-or-self, preceding and
preceding-sibling). This can also be assumed for all XLinks, i.e. any XPointer expression
consists solely of forward axes: while parsing a document any XPath-based XPointer
will be rewritten accordingly.

4.3 Naive Querying Approach

In [BFM06a] we proposed a formal specification for our dbxlink approach based on a
function φ. It recursively maps an XML document doc including all XML fragments
which are reachable via XLinks from doc to the single virtual XML instance obtained
by resolving all XLinks according to the contained dbxlink:transparent directives. Thus,
a query that enters a linked network of XML documents at a uri should yield the same
answer as it would if applied against φ(doc(uri)). In other words, an intuitive, naive

64

4.3 Naive Querying Approach

approach to query an interlinked set of XML instances would consist of two steps (cf.
Figure 4.2 for an intuition):

1. Materialize the whole virtual instance induced by all interlinked XML instances
wrt. the contained XLinks and their dbxlink directives.

2. Evaluate the given XPath expression on this new instance.

materialized instance

XPath query

Figure 4.2: Querying the Materialized Virtual Instance

However, this solution is not suitable in practice for several reasons. If many links and
thus many distributed documents are involved, it might be time-consuming to fetch
all partaking XML documents and to compute the virtual instance. Also, the virtual
instance can be of huge size. This overhead can be avoided because usually not the
whole instance is needed to answer the given query.

For illustration, consider the following scenario based on the distributed Mondial

database (cf. Section 2.3.4). One server contains information about all countries stored
in a file “countries.xml” and another one hosts all files containing the cities of a specific
country (e.g. “cities-D.xml” for all German cities). We want to query the names of all
German cities using the following XPath expression which is stated on the server hosting
the data about countries:

doc(’http://. . . /countries.xml’)/countries/country[name=’Germany’]/city/name.

In order to build the virtual instance for Mondial, the city files of all 260 countries
have to be accessed and processed resulting in 260 network requests to the remote
server1. Then, after fetching the “cities-XX.xml” documents to the local server host-

1Many more XML instances are interlinked in the distributed Mondial database and have to be
requested to materialize the whole view. For the sake of clarity we don’t consider them here.

65

4 Querying XML Sources along XLinks with dbxlink

ing “countries.xml”, the virtual instance has to be built resulting in an XML instance
consisting of all country elements each having subelements for all its cities.

Obviously, for evaluating the above query, instead of resolving all links to cities-XX.xml
documents in advance, it would be sufficient to resolve only the link referencing German
cities. This link element is the only context node computed by the intermediate step
country[name=’Germany’]. This partial instance of the logical view, corresponding to the
parts that are emphasized by the ellipse in Figure 4.3, is much smaller and only a few
network accesses are needed for its computation. Therefore, it is not necessary to build
up the whole virtual instance before query evaluation.

countries

country
@car code=”B”

cities

country
@car code=”F”

cities

country
@car code=”D”

. . .

cities

country
@car code=”CH”

cities

Figure 4.3: Relevant XLink References

Even worse, it is possible that the interlinked instances contain cycles and thus the
straightforward materialization process might not terminate. For example, in the dis-
tributed version of Mondial, the neighbor children of the country elements are link
elements pointing to neighboring countries. As this is a symmetric relation, the neighbor
children of a country point to the corresponding neighboring countries and vice versa as
depicted in Figure 4.4 for Germany and France.

countries

country
@car code=”B”

neighbor

country
@car code=”F”

neighbor

country
@car code=”D”

. . .
neighbor

country
@car code=”CH”

neighbor

Figure 4.4: Cyclic XLink References between two Elements

A naive materialization process would replace a neighbor link with the appropriate
country which again has the “inverse” neighbor link that has to be expanded. This
results in an infinite expansion process which is sketched in Figure 4.5.

Hence, in order to evaluate a query, it is in general neither necessary nor possible to
create the whole virtual instance in advance. It is sufficient to expand relevant links
on demand during query evaluation. Using this approach, also cyclic instances can be
handled without the need of materializing the whole virtual instance. This is achieved by

66

4.4 Dynamic Query Evaluation

detecting cycles during query evaluation as described later in Section 4.5. We describe
this dynamic evaluation process in the following section.

countries

country
@car code=”B”

neighbor

country
@car code=”F”

country
@car code=”D”

country
@car code=”F”

country
@car code=”D”

. . .
country
@car code=”F”

country
@car code=”D”

country
@car code=”CH”

neighbor

Figure 4.5: Infinite Expansion Process for Cyclic Instances

Remark. The directive xlink:actuate specifies the desired time-point for evaluating an
XLink. In simple scenarios with only a few links, it can be appropriate to specify
xlink:actuate=”onLoad” for all links. Thus, the whole virtual instance would be materi-
alized once, assuming it is not too big and does not contain cycles. On the other hand, we
consider general, non-trivial cases where we could have cyclic and possibly huge virtual
instances. Also, if caching is disabled, fresh data shall be accessed on remote servers,
which is not possible for a static materialized instance. Hence, in the remainder of this
thesis, we assume that for all links the directive xlink:actuate=”onRequest” is specified,
which is the default XLink evaluation time-point option in the dbxlink approach anyway.

4.4 Dynamic Query Evaluation

As shown in the preceding section, the generation of a complete virtual instance is
often inefficient or even not possible due to cycles. Instead, for processing queries, we
dynamically compute the relevant parts of the virtual instance during query evaluation.
In order to describe which parts are the relevant ones, we first have to analyze the XPath
evaluation process. Usually, XPath query processors evaluate each step successively.

4.4.1 Stepwise Result Set Evaluation

Given an XPath expression, we assume that it has the following form consisting of n

location steps:

step1/step2/. . . /stepn

The most common and intuitive method for evaluating XPath queries is to subsequently
apply all location steps. This method is also induced by the semantics definition given

67

4 Querying XML Sources along XLinks with dbxlink

by the W3C in [XPa06] and [XMQ06b]. In each step, the set of nodes selected by
the previous step is called the current context. In the first step, if an absolute path
expression is given, the document node is the initial context. In case that a relative path
is given, the initial context is for instance given by an XQuery variable containing a node
sequence. Then, for each node n of the current context the current step is evaluated,
selecting a sequence of matching items relative to n. This results in attribute or element
nodes, or atomic values that form the context for recursively applying the next step, and
so forth. Note that not complete intermediate results are materialized, but only local
contexts on the way to the next step. Most XPath engines like Saxon [SAX], Xalan
[Xal], and eXist [exi], the native XML database system we chose for a proof-of-concept
implementation (cf. Chapter 5), use this strategy. Thus, by showing how this strategy
has to be extended in order to be able to handle XLinks during query evaluation, any
such XPath query engine can be turned XLink aware by integrating these changes.

4.4.2 Extension of the Stepwise Evaluation

The stepwise evaluation process of an XPath query consists of isolated steps, where each
step produces a new intermediate result set for a given context. As XLinks are not
expanded in advance, it has to be checked if any XLink induces nodes that contribute
to the next step to be applied. Hence, in order to implicitly replace all link elements
relevant for a context node, a kind of look-ahead approach is required.

Consider again the excerpt of Mondial’s distributed version depicted in Figure 3.3.
It is used in the following example which illustrates the stepwise evaluation. Assume
that we have a current context consisting of all country elements and have to apply a next
step “@capital” (which is the abbreviation of “attribute::capital”). This step produces a
new context that contains the countries’ capital attributes. Now, consider the country
element which represents Germany:

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

<capital dbxlink:transparent=”make-attribute insert-nodes”
xlink:href=”http://. . . /cities-D.xml#xpointer(/cities/city[name=’Berlin’])”/>

...
</country>

According to the dbxlink model, in the virtual instance, the capital link element is dropped
and an IDREF attribute capital is added to the country parent element because “make-
attribute insert nodes” is specified as dbxlink:transparent attribute. This new reference
attribute then points to a local, auxiliary city element:

68

4.5 Cyclic Instances and Non-Terminating Queries

<country car code=”D” area=”356910” capital=”dbxlinkID1”>

<name>Germany</name>

<population>83536115</population>

...
</country>

...
<city id=”dbxlinkID1”>

<name>Berlin</name>

...
</city>

As we do not materialize the whole instance in advance, we have to be sure that the link
is resolved and the resulting element is matched by the next step “attribute::capital”.
As a consequence, we need to resolve all relevant links before applying the next step.
Afterwards, the navigation could continue with an id() function call for selecting the
local element representing Berlin.

The basic idea for extending the stepwise evaluation of XPath expressions in order to
respect links is as follows. To each node contained in a current context the next step
has to be applied. The set of nodes selected by the next step’s axis might contribute
to the next context (the nodetest and predicates have to be applied afterwards). Thus,
any relevant link element among these nodes selected by the axis has to be resolved.
Which link is relevant depends on its dbxlink:transparent attribute, and on the axis and
nodetest to be applied. The entire process of determining the relevant links wrt. the
different modeling directives is described in Section 5.2.

4.5 Cyclic Instances and Non-Terminating Queries

As described in Section 4.3, we have to cope with cyclic instances while querying in-
terlinked XML sources. In this section, this issue is discussed. First, we describe two
different types of cycles. Then, we discuss how cycles can be detected during query
evaluation. Finally, we describe the issue of non-terminating queries in a scenario of
interlinked XML instances.

4.5.1 Ordinary Cycles

We consider cyclic structures induced by links with non-XLink-elements in-between as
ordinary cycles. The cycles produced by the neighbor elements illustrated in Figures 4.4
and 4.5 can be used as an example for this kind of cycles. These cycles are dangerous only
if we transitively navigate through a subtree, i.e. if any of the descendant, descendant-
or-self or following axis is involved. They imply the need for a recursive traversing of
the XML tree in arbitrary depth. All other axes are harmless because they describe
a traversing that is finite and they don’t select nodes of arbitrary depth, i.e. even in a
scenario which contains such ordinary cycles, the query evaluation process will terminate.

69

4 Querying XML Sources along XLinks with dbxlink

Example 4.1
Consider again the Example illustrated in Figures 4.4 and 4.5. The modeling is in some
issues problematic, since e.g. the query

/countries/country[@car code=’B’]//city

does not only return cities in Belgium, but, as e.g. France is a (neighbor) subelement
of Belgium, also the cities in France (and all other countries that are reachable by land
from Belgium). The borders relation is symmetric and hence France again has Belgium as
subelement. Thus, the straightforward evaluation process for this query won’t terminate.

On the other hand, if we consider the slightly modified query

/countries/country[@car code=’B’]/neighbor/neighbor/neighbor/name

that returns the names of all countries that can be reached from Belgium by passing three
times some border, e.g., Belgium itself (via France and Germany) or France (via going
to France, going back to Belgium, and again to France). Any such query that uses non-
recursive steps can use a cycle in the logical model, but only for different situations of
the evaluation.

In contrast,

/countries/country[@car code=’B’]//neighbor/name,

which is the union of the above answers, would run into a lot of cycles, and run infinitely
with the naive strategy.

Hence, ordinary cycles are harmful only for specific queries. However, modelings can be
constructed that produce situations where also queries without recursive axes might not
terminate. This issue will be discussed in the following section.

4.5.2 Vicious Cycles

We now discuss a special “vicious” scenario. Consider a document of the following form:

<elem>

<link dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”file:this.xml#xpointer(/elem/link)/>”

</elem>

Here, the link element is pointing at itself. Intuitively, if the link is resolved, it is replaced
with itself. For generating the virtual instance, this process would not terminate because
it would infinitely try to resolve the referenced link element which is always replaced by
itself.

Considering the dynamic query evaluation method described in the preceding sections,
executing the XPath query /elem/link on this document would result in an infinite loop,

70

4.5 Cyclic Instances and Non-Terminating Queries

because the directive “drop-element insert-nodes” would always require to replace the link
element with a copy of itself.

While the scenario above might be detected during parsing the document, the following
example shows a more complex scenario. Here, we have two elements in two different
files (that could also be hosted on different servers), referencing each other:

<elem>

<link dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”file:that.xml#xpointer(/other elem/link)”/>

</elem>

<other elem>

<link dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”file:this.xml#xpointer(/elem/link)”/>

</other elem>

We just need to state the same query (/elem/link) on the first document in order to
get caught in a loop again: because the link child of the node elem points to the link
subelement of other elem and vice versa, we will infinitely jump from one link element
to the other during the evaluation of the considered query.

Note that we don’t have to state queries involving the descendant(-or-self) axis to end
up in infinite computations. An XPath expression consisting of two steps each using
the child axis does the job. Such vicious cycles can only occur if we have a chain of n
link elements `1, `2, . . . , `n such that `i references `i+1 and `1=`n. This scenario can
only occur if drop-element or keep-body2 is used for all n link elements, as described
in the example above. For links with group-in-element and duplicate-element this can
not happen because the link element is kept (and thus an explicit next step selecting
this element is necessary) and xlink and dbxlink attributes are removed from both the
local link element and from the result nodes. Thus, for these two “L”-directives, it
is not possible that a link element is replaced by a new link. This is similar for make-
attribute because the referenced fragment is integrated as auxiliary element which is then
referenced locally by an IDREF attribute.

Any evaluation directive can be involved in a scenario where vicious cycles occur: in
the local and distributed modes, a link element is replaced locally with the referenced
node which is again a link element. In case of remote evaluation, a query would be
shipped from one document to the other without termination.

4.5.3 Detection of Cycles

According to the two kinds of cycles described above, two situations can occur where we
have to detect cycles:

2Note that the semantics of keep-body is equivalent to that of drop-element if the link element has no
children and no non-XLink-attributes.

71

4 Querying XML Sources along XLinks with dbxlink

1. The next step to be evaluated is recursive, i.e. the descendant, descendant-or-self
or following axis is involved. We thus have to be aware of ordinary cycles.

2. The link to be handled is equipped with drop-element or keep-body and hence,
vicious cycles have to be detected no matter what query is given.

Considering the first case (ordinary cycles), whenever the same link is visited twice
during the recursive evaluation, there is a cycle. Secondly, a vicious cycles occurs if a
chain of links with drop-element or keep-body is given and – similar to ordinary cycles –
the same link has to be handled more than once.

Thus, in both cases, a cycle can be detected by appropriate book-keeping using the
element ids: here, in this abstract analysis, we assume that every XML element can be
globally identified in a unique way by the URI pointing to the document it is contained
in combined with an internal id (e.g. built according to the document order). The book-
keeping functions as follows. If we have to detect cycles, i.e. any of the two situations
described above occurs, then for each link to be handled, we keep its element id in
a dedicated list. Depending on the chosen shipping strategies, appropriate auxiliary
information must be generated or provided for controlling the evaluation process.

In case of local or distributed evaluation modes (data shipping or hybrid shipping),
the book-keeping can be done locally. Thus, we generate a local list that contains the
element ids of the currently visited links. For each new link to be resolved, we check
if its id has already been stored in the list. If so, a cycle has been detected and the
query evaluation process on this subtree terminates. The process also terminates if no
more link has to be resolved or, in case of vicious cycles, if only link elements with “L”-
directive different from drop-element and keep-body are integrated locally. This means
that no cycle has been found. For ordinary cycles, the evaluation can then be pruned
and a “partial result” is returned for the link structure that has been expanded during
this process. In case of vicious cycles, the detected link element is simply dropped and
an empty answer will be returned because it is not feasible to determine any node that
replaces the link element in a reasonable way.

If query shipping (remote evaluation) is applied, in case of a cycle, the same query
is shipped around this cycle. If we have to start a cycle detection according to the two
kinds of cycles, we assume that the currently processed query is assigned with a globally
unique id. This could e.g. be achieved by an appropriate timestamp. The book-keeping
list is now also mapped to this query id. Thus, we will know to which query evaluation
process a cycle detection has been started. Then, if a query has to be shipped3, it is
attached with the appropriate query id. For any link that will be visited, we can thus
check if it has already been stored in the book-keeping query on a specific server during
the evaluation of a given query.

In this section, we described the detection of cycles in an abstract way. Later, in Sec-
tion 5.6.3 it is explained how this detection strategies are realized in the proof-of-concept
implementation.

3Recall that this will be a combination of an XPointer with the remaining query part.

72

4.6 Summary

4.5.4 Non-Terminating Queries

For evaluating queries that use the descendant(-or-self) or the following axis, in general
all XLink elements (except those with “make-attribute” where the navigation continues
along the attribute axis) must (recursively) be resolved. This can lead to searching huge
parts of the Web. Since this is necessarily the case for guaranteeing completeness, this
problem is not special to our approach, but applies to any approach that allows for
including views on distributed XML resources. Since we cannot forbid to use the axes
that traverse subtrees in arbitrary depth in queries, we propose the following handling:
make the model as robust as possible, support pruning the search space by metadata
knowledge, and let the evaluation detect cycles:

• Design: use a modeling with “make-attribute” in all cases where the resulting
structure is not inherently nested – here, the considered axes end.

• Metadata about the element and attribute names and paths contained in a doc-
ument (including recursive views) can help not only for detecting cycles, but also
for pruning the search space.

4.6 Summary

In this section, we discussed on an abstract level how queries on distributed interlinked
XML instances can be processed according to the dbxlink approach. First we argued
that it suffices to focus on XPath queries without reverse axes. As the straightforward
approach for querying, namely materializing the whole virtual instance in advance, is
not suitable, we proposed a dynamic evaluation method. Also, we described how to cope
with cyclic instances.

Although the basic idea for extending XPath query engines in order to respect XLinks
is quite intuitive, there are numerous restrictions and special cases that have to be dealt
with and show that this is not a trivial task. The following chapter discusses these issues
and describes the proof-of-concept implementation based on the native XML database
system eXist.

73

5 Detailed Querying and Implementation
Issues

In the preceding chapter, the process of querying along interlinked XML sources has
been described in an abstract way. Here, in this chapter, we discuss the details that
have to be respected during this task.

First, we describe how a partial instance of the logical view evolves during query
processing. We continue with a detailed discussion of the computation of relevant links
for a given context as this is the fundamental part for extending the standard iterative
XPath evaluation process. This also includes different fallback strategies. Then, we
briefly describe how to handle ID and IDREF attributes for which it has to be guaranteed
that IDs remain unique in the logical view and IDREFs still point to the referenced
elements. Afterwards, it is explained how to ensure that equivalent queries deliver the
same result wrt. XLink expansion. We conclude this chapter with a sketch of the proof-
of-concept implementation based on our investigations.

5.1 Partial Instance

As described in the preceding chapter, for a given XPath query, only the relevant links
that are needed to answer the query appropriately are resolved. This happens on demand
if we have to handle a link during query evaluation. Hence, only a partial instance of
the logical view induced by the interlinked resources has to be materialized. This is
sufficient to answer the user’s XPath query.

Consider Figure 5.1 for illustration. On the left, a distributed scenario of interlinked
XML instances is shown. The small inner triangles symbolize link elements that reference
parts of remote documents. Also, a query is shown which navigates through documents
that are depicted on the lower right of the top document. Then, in the middle of the
figure, only the parts of the distributed scenario that are relevant for the query are shown
and the query has to resolve two links (assume that hybrid shipping is applied to all
links). Now, we describe what happens while the query is processed:

1. We start to evaluate the query in the document on the top and during this process
we have to traverse a link. Initially, the partial instance equals to the top document
as indicated on the right side of Figure 5.1.

2. Then, we have to handle the first link and fetch the fragment it references. It is
integrated into the partial instance. Now, as can been seen on the right, the partial
instance has grown.

75

5 Detailed Querying and Implementation Issues

1

3

distributed interlinked scenario
with query

query the relevant parts partial instance evolves

2

4

5

1

2,3

4,5

Figure 5.1: A Partial Instance is Materialized

3. The navigation continues in this integrated fragment until another link element
has to be resolved.

4. The corresponding fragment is requested and again integrated accordingly.

5. Finally, inside this fragment, the query result is found.

Thus, the partial instance evolves during the query evaluation process. After a relevant
link requiring hybrid shipping or data shipping has been resolved, the partial instance
grows because XML fragments are integrated locally. If query shipping has been applied
for a link, then we don’t have to integrate fragments into the partial instance because
the remote server will return nodes that contribute to the final query result. This will
be discussed later in Chapter 6.

5.2 Extending the Stepwise Path Evaluation

As described in the previous chapter, an XPath expression consisting of n location steps
is usually evaluated iteratively (step by step). Each step consists of an axis, a nodetest
and an optional predicate (please refer to Section 2.2.1 for a short introduction to XPath):

axis::nodetest[predicate]

Given a current context, the axis, nodetest and predicate are evaluated successively: first,
for each context node, the axis determines the “navigation direction”, i.e. which nodes
have to be selected next. For instance, the child axis selects the children of all context

76

5.2 Extending the Stepwise Path Evaluation

nodes and following-sibling returns all sibling nodes that occur after a context node in
document order. To these nodes, the nodetest (kind or name test) is applied and only
matching nodes are kept which are then further filtered by the predicate. A predicate is
basically considered as an expression yielding a boolean value for each node to be filtered
determining if the node contributes to the next context. It can contain path expressions
itself and in that case, the XPath query processor will evaluate the predicate’s path
expressions separately on the current context in the same stepwise manner as for an
absolute path expression (this is also termed branching).

Given an XPath query xpath-expr , we assume that it has the following form:

xpath-expr=xpath-expr1/stepx/xpath-expr2

where xpath-expr1 produces a current context to which a next step stepx shall be applied,
i.e. the steps contained in xpath-expr1 have already been processed. Then, stepx/xpath-
expr2 is the XPath query that remains to be evaluated.

The adaption to XLink processing for XPath query engines that evaluate XPath ex-
pressions stepwise (e.g. eXist, which is used for the proof-of-concept implementation) is
achieved as follows. During query evaluation, we call processRelevantLinks() before the
next location step (stepx) is applied to the current context. This procedure is crucial as
it enables the query processor to handle relevant XLinks. Any query engine that imple-
ments the stepwise XPath evaluation approach can thus be enabled for handling XLinks
according to the dbxlink specification if its implementation is extended with code equiv-
alent to processRelevantLinks() and the corresponding helper procedures and functions
which will be explained in the following.

Procedure 5.1: processRelevantLinks

Input: A current context (set of nodes) C, stepx, xpath-expr2.
Result: Relevant links resolved in advance for the next step.
begin1

foreach element e ∈ C do2

L←– getRelevantLinks(e, stepx)3

while L 6= ∅ do4

for ` ∈ L do5

resolveXLink(`, stepx, xpath-expr2)6

end7

L←– getRelevantLinks(e, stepx)8

end9

end10

end11

The procedure processRelevantLinks() processes all relevant links for a given context (a
set of nodes) depending on the next step to be applied. It takes the current context
and the XPath expression parts stepx and xpath-expr2 as arguments. Iterating over
all context nodes (line 2), for each context node the relevant links are computed by

77

5 Detailed Querying and Implementation Issues

getRelevantLinks() which is explained in the following section. These links are then each
resolved by resolveXLink().

In case that the local or distributed evaluation mode is given for a link (i.e. data
shipping or hybrid shipping shall be applied), the processing of links according to the
dbxlink:transparent directives changes the partial instance as described in the preceding
section: XML fragments are embedded into the local view and with these fragments,
new relevant link elements have possibly been integrated. Hence, we have to repeat this
loop until no more new link elements are found (lines 4-8). For instance, if the next
axis to be applied (i.e. the axis contained in stepx) equals to the descendant axis, there
might be link elements in some integrated XML fragment. These links will be detected
by the call to getRelevantLinks() in line 8 as will be described in the following section.
Thus, there are still some links to be resolved in this step (as checked in line 4) for
which resolveXLink() will be called due to the inner loop. When processRelevantLinks()
has finished its task, the partial instance has been extended with the relevant parts and
the next step can be applied to the current context.

If remote evaluation has to be applied for a link, we combine the XPointer and the
remaining XPath to a new query that is shipped to the referenced server as will be
explained later in Section 6.2.2.

5.2.1 How to Obtain Relevant Link Elements for a Given Axis

We now show, for an arbitrary context element, which link elements have to be taken in
account wrt. each axis, i.e. we explain getRelevantLinks(). This function takes a current
context element and the next location step to be applied as arguments, and it returns
the list of relevant links for that element wrt. the axis used in the next step. We assume
that for element nodes there exists a method getLDirective() which returns the link’s
“L”-directive if the element is an XLink and an empty string otherwise. Note that we
can assume that the XPath user query has been normalized according to the methods
proposed in [OMFB02] (cf. Section 4.2) and thus does not contain any reverse axes. The
only axes we need to consider are self, child, descendant, descendant-or-self, following-
sibling, following and attribute.

self
The self axis can be considered as trivial because this axis selects all current context
nodes. No new nodes are selected during such a navigation. Thus, the set of relevant
links is empty and we do not handle this axis in getRelevantLinks().

child, descendant, descendant-or-self, following-sibling, following
These axes all select elements or text nodes. As shown in getRelevantLinks(), we assume
that all nodes addressed by the given axis are stored in the variable “tmpList” of type
node list. Which links contained in this node list have to be resolved? Generally, we can
make the following basic observations:

• Any link element having “make-attribute” as “L”-directive can be ignored because
such a link produces attributes in the virtual instance which are never selected by
the considered axes.

78

5.2 Extending the Stepwise Path Evaluation

Function 5.2: getRelevantLinks

Input: An element e, stepx.
Output: The links relevant for e wrt. stepx.
begin1

links, tmpList←– emptyList2

axisx ←– the axis of stepx; nodetestx ←– the nodetest of stepx3

switch axisx do4

case child5

tmpList←– e.getChildren()6

case descendant7

tmpList←– e.getDescendants()8

case descendant-or-self9

tmpList←– e.getDescendants()10

case following-siblings11

tmpList←– e.getFollowingSiblings()12

case following13

tmpList←– e.getFollowing()14

case attribute15

foreach link ∈ e.getChildren() do16

if link.getLDirective() = ”make-attribute” and link matches nodetestx then17

links.add(link)18

else if link.getLDirective() ∈ {”drop-element”, ”keep-body”} then19

links.add(link)20

end21

end22

foreach link ∈ tmpList do23

if link.getLDirective() ∈ {”drop-element”, ”keep-body”} then24

links.add(link)25

else if link.getLDirective() ∈ {”group-in-element”, ”duplicate-element”} then26

if axisx ∈ {”child”, ”following-sibling”} and link matches nodetestx then27

links.add(link)28

else if axisx ∈ {”descendant”, ”descendant-or-self”, ”following”} then29

links.add(link)30

end31

return links32

end33

• For those link elements that are equipped with the directives “group-in-element”
or “duplicate-element” we have to distinguish the considered axes.

In case that child or following-sibling are given, such links are only relevant if they
match the nodetest (name or kind test as described in Section 2.2.1) of the next
step to be applied. The reason for this is that the modeling semantics of “group-in-
element” and “duplicate-element” requires that the link element itself is kept and
has to match the nodetest of the next step.

The descendant(-or-self) or following axes can be considered as “recursive”, i.e. they
traverse complete subtrees. Thus, for these axes, links with “duplicate-element” and

79

5 Detailed Querying and Implementation Issues

“group-in-element” have to be taken in account in any case because their subtrees
might contain matching nodes.

• Links having the directives “drop-element” or “keep-body” are replaced by the
nodes referenced by the XPointer which are further processed according to the
right-hand-directive. We do not know in advance if they qualify for the next step.
Thus, no matter which of the considered axes is given, all links having any of these
two kinds of directives are potentially relevant.

This means that for the axes that select element or text nodes, we can ignore any link
having “make-attribute” as “L”-directive. Considering the other left-hand-directives, we
first select the nodes wrt. the semantics of the next axis to be applied (lines 5-14) and
handle any link element according to the observations given above (lines 23-31).

attribute
The attribute axis selects all attributes of context elements. Hence, we have to check if
any link element produces new attributes. This is the case if a link child element contains
a dbxlink:transparent attribute with an “L”-directive “make-attribute”. Also, if a child is a
link having “drop-element” or “keep-body”, it can produce a new attribute for its parent
(which is the context node) in case that attributes are selected by the XPointer. Link
children with “group-in-element” or “duplicate-element” can be ignored because these
elements are kept and hence never produce new attributes for their parents. Thus, the
relevant links for this axis are found among the child elements that are equipped with
“drop-element” or “keep-body”. Obviously, also links with “make-attribute” are relevant.
These links have to match the nodetest of the next step to be applied because for “make-
attribute”, the created attribute obtains the name of the link element (lines 15-21).

5.2.2 Special Case: Links that Turn their Parent into an XLink

The formal specification proposed in [BFM06a] allows attributes of the xlink or dbxlink
namespaces to be contained in the result set of the XPointer. This can lead to scenarios
as described with the following example:

<elem1>

<elem2>

<elem3>

<dbxlink attr dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”http://. . .#xpointer(//trans[@id=’42’]/@dbxlink:transparent)”/>

<xlink attr dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”http://. . .#xpointer(//link[@id=’23’]/@xlink:href)”/>

</elem3>

</elem2>

</elem1>

Two link elements (dbxlink attr and xlink attr) are children of the element elem3. If the
result set of their XPointers each contains appropriate dbxlink:transparent and xlink:href

80

5.2 Extending the Stepwise Path Evaluation

attributes, we will obtain an “intermediate” virtual instance in which the element elem3
has become a link element (recall that drop-element causes attributes to be added to the
link’s parent element):

<elem1>

<elem2>

<elem3 dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”http://. . .#xpointer(//target[@id=’108’]/@attr”)/>

</elem2>

</elem1>

This instance can be considered “intermediate” because it still contains a link element
that has to be processed according to the formal dbxlink specification. After resolving
the remaining link, the resulting virtual instance might look as follows:

<elem1>

<elem2 attr=”some value”/>

</elem1>

Using the dynamic evaluation method based on the stepwise XPath evaluation proposed
in this section, the query /elem1/elem2/@attr would not be processed correctly. Con-
sidering the context produced by /elem1/elem2, the next step to be applied is @attr
(attribute::attr). According to the specifications described in the preceding paragraph,
only link children of elem2 elements would be processed and thus the result would be
empty.

Another related scenario that is even worse can be constructed as follows. Consider an
XML instance located at the URI “http://www.example.org/linkbomb.xml” that consists
of a single element:

<bomb dbxlink:transparent=”drop-element insert-bodies”
xlink:href=”http://www.example.org/linkbomb.xml#xpointer(/bomb)”/>

The bomb is “fired” in another instance by simply referring to it in some element – it
will “explode” all its ancestors, and finally the root node as explained below:

<a>

<detonator dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”http://www.example.org/linkbomb.xml#xpointer(/bomb)”/>

The detonator link element is replaced by the bomb element, which is again an XLink
element. After resolving the bomb element, i.e. after applying the “R”-directive “insert-
bodies” we obtain a nodeset that contains the attributes of the bomb, and because of
the “L”-directive “drop-element” they are added to the b parent (as the link itself is
dropped):

81

5 Detailed Querying and Implementation Issues

<a>

<b dbxlink:transparent=”drop-element insert-bodies”
xlink:href=”http://www.example.org/linkbomb.xml#xpointer(/bomb)”/>

Now, the b element is an XLink element, and the evaluation of the element’s pointer
does the same with the a element:

<a dbxlink:transparent=”drop-element insert-bodies”
xlink:href=”http://www.example.org/linkbomb.xml#xpointer(/bomb)”/>

that “blows up” the root node: the “process” ends when the root element is turned into
an XLink element that adds attributes to its “parent”, which is the document element.

At latest here, the formal semantics would “end”, since a document node cannot be
turned into an XLink; instead, the document would consist only of a nodelist containing
element and attribute nodes. Therefore, we argue that such scenarios should be avoided
because they are hard to be handled in the general case. Also, the declarative nature of
the dbxlink approach suffers from these effects. Thus, we require that all xlink or dbxlink
attributes found in the result set produced by the right-hand-directive are dropped.

5.3 Resolving of XLinks

Here, continuing the previous sections of this chapter, we assume that an XPath query
xpath-expr=xpath-expr1/stepx/xpath-expr2 is given where both xpath-expr1 and xpath-
expr2 consist of arbitrary many location steps. Assume again that this query is currently
being evaluated and the steps in xpath-expr1 produced a current context. For that, a
set of relevant links wrt. the axis found in stepx can be determined as described before.
We now show how such a relevant link is processed conforming to the dynamic query
evaluation introduced in the previous section and how to continue with the evaluation
of the remaining query stepx/xpath-expr2 as shown in resolveXLink().

5.3.1 Data and Hybrid Shipping

As already described in Section 4.1.3, the local evaluation strategy resembles data ship-
ping according to the classification proposed in [FJK96], and analogously, the directive
dbxlink:eval=”distributed” can be considered as hybrid shipping. For these evaluation
modes, the procedure resolveXLink() implements the following steps.

(i) Getting the Referenced Fragment

Firstly, we get the XML fragment referenced by the XLink/XPointer by evaluating
the pointer’s XPath expression contained in the xlink:href attribute locally or remotely
according to dbxlink:eval. In case of local evaluation, the whole referenced instance is
accessed and stored locally. We then obtain the desired XML fragment by stating the
XPath query contained in the XPointer expression against the local copy of the referenced

82

5.3 Resolving of XLinks

Procedure 5.3: resolveXLink
Input: A link element `, stepx, xpath-expr2
Result: ` has been resolved.
begin1

switch `.getAttribute(”dbxlink:eval”) do2

case ”local”3

href ←– `.getAttribute(”xlink:href”)4

doc←– getReferencedDocument(href)5

frag ←– getLocalXMLFragment(doc, href.getSubstringAfter(”#”))6

addXMLFragment(frag, `.getAttribute(”dbxlink:transparent”))7

case ”distributed”8

frag ←– getXMLFragment(`.getAttribute(”xlink:href”))9

addXMLFragment(frag, `.getAttribute(”dbxlink:transparent”))10

case ”remote”11

if canShipQuery(`, stepx, xpath-expr2) then12

q ←– buildQueryToShip(`, stepx, xpath-expr2)13

shipQuery(q)14

removeElementFromPartialInstance(`)15

else16

`←– `.setAttribute(”dbxlink:eval”, ”distributed”)17

resolveXLink(`, stepx, xpath-expr2)18

end19

end20

instance. If the “distributed” strategy is desired we request the remote server to evaluate
the XPointer’s XPath expression.

(ii) Mapping and Adding the Fragment

As described in Section 3.2, the result of the XPointer is preprocessed according to the
right-hand-directive which is specified by the dbxlink:transparent attribute. For instance,
if “insert-bodies” is specified, we have to extract the attributes, text and element children
of the received result elements. These intermediate fragments are then processed together
with the link element according to the dbxlink:transparent attribute’s left-hand-directive.
Afterwards, in the partial instance, the result is integrated accordingly (cf. Section 5.1
and Figure 5.1 for an illustration of the partial instance).

(iii) Continuing the Local Query Evaluation

For both the local and distributed evaluation modes, the partial instance has been ex-
tended locally with the result set of the XPointers according to the modeling directives.
Thus, in this cases, the XPath query processor can continue its local evaluation process
seamlessly.

If dbxlink:eval=”local” (lines 3-7), the auxiliary function getReferencedDocument() is used
to request the whole referenced document from the remote server using the URI found

83

5 Detailed Querying and Implementation Issues

in the XLink’s xlink:href attribute. It is stored locally and getLocalXMLFragment() is
executed for evaluating the XPointer expression on it. Finally, the procedure addXML-
Fragment() maps the referenced fragment into the partial instance as specified by the
right-hand-directive.

The directive dbxlink:eval=”distributed” (lines 8-10) is handled similarly with the sole
distinction that the referenced fragment is requested directly from the remote server.

5.3.2 Query Shipping

For query shipping (dbxlink:eval=”remote”, lines 11-18), we first check if this strategy
is possible (line 12). If so, an adapted XPath query based on a combination of the
XPointer expression (xpath-exprx) and the remaining query parts (stepx/xpath-expr2) is
built and sent to the remote server (lines 13 and 14). Additionally, as the link has been
handled, it is removed from the partial instance with an auxiliary procedure removeEle-
mentFromPartialInstance() (line 15). If query shipping is not possible, we fall back to the
distributed mode (line 16-18). The remote evaluation strategy has several restrictions
and special cases that have to be considered. Here, in this chapter, we describe the
basic algorithms that are needed for implementing a dbxlink framework. As the query
shipping task is rather complex, it deserves to be discussed separately in Chapter 6.

5.3.3 Fallback Strategies

Designers of distributed XML instances using the dbxlink approach should be aware
that the evaluation strategies given in dbxlink:eval attributes of XLink elements have
to be chosen carefully. Thus, the desired evaluation mode for a specific link should fit
the capabilities of the remote server which hosts the referenced document. For query
shipping, where we expect that any returned result contributes to the final result set
of the user query, the remote server has to be able to process XPath queries along
XLinks. Also during hybrid shipping, where the XPointer is evaluated remotely, it can
be necessary to resolve XLinks in order to compute the referenced fragment that should
be returned to the local server. Typically, in both these cases, the remote server should
implement the dbxlink approach described in this thesis. Thus, designers of distributed
XML instances should prefer data shipping for links that point to servers that can not
handle XLinks. The only requirement for data shipping is that the whole referenced
resource is accessible via HTTP GET requests.

Considering data shipping, the requesting of the whole document might be refused
or it could result in a network connection timeout. In that case, we try to perform
hybrid shipping, i.e. we try to get the referenced XML fragment by sending the XPointer
expression xpath-exprx.

A hybrid or remote shipping request could possibly result in an error if the remote
server is not able to answer XPath queries. In that case we switch to data shipping and
try to request the referenced instance as a whole. A special scenario that we do not
handle explicitly could be observed if a remote host is under heavy computation load
and thus XPath queries could take too long to be processed. Here, data shipping might

84

5.4 Handling ID/IDREF Attributes

be preferable because requesting a resource could be quicker.

For the sake of simplicity, we have not included these fallback strategies in the procedure
resolveXLink(). However, their implementation is straightforward.

5.4 Handling ID/IDREF Attributes

Consider the case where the user query contains an application of the id() function.
Given a string v as argument, the application of id(v) selects the element that has an ID
attribute with a value v . As queries have to be evaluated on the logical view induced by
the XLinks, the appropriate element can be located in any referenced XML source. In
order to find this element, in the worst case the whole logical view has to be traversed.
Thus, we state the following IDREF locality or explicitness condition on the modeling:

1. Consider an attribute attr that is declared as an IDREF attribute in the DTD of an
XML document. If a value for attr is given explicitly, the referred value must be
contained as an ID value in the same document (validity of the source documents).

2. If the external schema of a document (cf. Section 2.3.4) declares an attribute as
an IDREF attribute, then all its instances in the logical model must be contributed
by either

• an instance of an IDREF attribute in the schema of the local document or of
a referenced document (note that by (1) this guarantees the existence of a
matching ID in the same source document), or

• the attribute value is induced by an XLink element.

According to this requirement, an id() application to an IDREF attribute is processed
inside the document where the attribute is located. Anticipating the discussion about
actual evaluation strategies, the evaluation of an id() call in the context of its original
document is always safe: either (i) the matching ID can be found in the same docu-
ment, or (ii) an explicit XLink addresses the target node. Nevertheless, for case (ii), as
illustrated in Figure 5.2, an id() application may lead outside the explicitly referenced
subtree in the referenced document.

5.4.1 IDREF(S) in Referenced Documents

For data shipping (where the referenced document is fetched together with its DTD
information) and query shipping (the evaluation is pushed to the referenced document)
each dereferencing takes place in its local context and is thus executed correctly. For
hybrid shipping, if the id() application is in the XPointer, it refers to the logical model
of the referenced document, and the same holds.

Only during the evaluation of XLinks where hybrid shipping is applied, the result nodes
are transferred from the evaluation of an XPointer to the evaluation of the surrounding
XPath expression. If the remaining query part contains an id() function call to be applied

85

5 Detailed Querying and Implementation Issues

•

xpath-expr1

url#xpath-exprx

•
url

xpath-exprx

(real DM)

•

xpath-expr1

(transparent DM)

Figure 5.2: IDREF Step in the Referenced Fragment

to the result of the XPointer, the latter is already pulled out of its original context, and
the IDREF-ID connection can be lost (cf. Figure 5.2). In such cases, either query shipping
or data shipping must be applied.

A similar problem occurs with XPath expressions embedded in XQuery when selecting
a reference attribute by an XPath query (e.g. in the for clause), and dereferencing it
later. This can be circumvented by analyzing the query, and reformulating it equivalently
by putting the dereferencing already in the XPath expression.

5.5 Result Set Normalization

The last step of XPath queries stated by users determines the nodes that are contained
in the result set. For instance, the query

/countries/country/city[population>10000000]/name

generates a result set consisting of the name elements of all megacities contained in
Mondial (i.e. cities with a population exceeding 10 million people). Usually, XLinks
contained in the subtree of resulting nodes are not expanded. However, if the last step
of a query includes predicates, it is possible that some links have been resolved in order
to check the conditions of the predicates. Thus, depending on the user query, identical
nodes could have a different structure. For instance, the two queries

/countries/country[id(@capital)/name=’Berlin’]
/countries/country[city/name=’Berlin’]

86

5.6 Implementation

both select the country element representing Germany. Considering the queries, the
result nodes differ such that for the first query, the capital link child has been mapped
to an IDREF attribute of the same name:

<country car code=”D” area=”356910” capital=”dbxlinkID1”>

<name>Germany</name>

<population>83536115</population>

<cities dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”http://. . . /cities-D.xml#xpointer(/cities/city)”/>

...
</country>

The same element returned by the second query would still contain the capital link child
but the cities link would have been expanded to numerous city elements:

<country car code=”D” area=”356910” >

<name>Germany</name>

<population>83536115</population>

<capital dbxlink:transparent=”make-attribute insert-nodes”
xlink:href=”http://. . . /cities-D.xml#xpointer(/cities/city[name=’Berlin’])”/>

<city>

<name>Berlin</name>

<population year=”95”>3472009</population>

</city>

<city>

<name>Hamburg</name>

</city>

...
</country>

In order to avoid these differences for queries returning an equivalent result, we propose
the following strategy. If the last step contains predicates, we evaluate these on a copy
of the actual context node and check the boolean result value. Thus, the links are not
expanded in the current context.

5.6 Implementation

In this section, we describe the proof-of-concept implementation of the dbxlink proposal
which has been carried out while conducting this thesis. We sketch the extensions
that have been integrated into the Java-based eXist [exi] system and show an example
evaluation.

87

5 Detailed Querying and Implementation Issues

5.6.1 Extensions to eXist

We implemented a class org.exist.xquery.dbxlink.DBXLinkProcessor that contains all pro-
cedures and functions we discussed in this thesis. It provides a method process() which
is the implementation of processRelevantLinks(). Thus, DBXLinkProcessor is the crucial
extension that enables eXist for handling XLinks according to the dbxlink approach.

For extending the query engine according to the dynamic evaluation method, dur-
ing the stepwise XPath processing the dbxlink behavior has to be added. eXist’s class
org.exist.xquery.PathExpr has a method eval() which iteratively processes the location
steps of an XPath query. This method is applied to each step, starting with the document
node. As described in Section 5.2, for a given context, before the next step is applied,
processRelevantLinks() has to be called in order to integrate the dynamic evaluation of
XPath queries. Thus, considering eXist, in the method org.exist.xquery.PathExpr.eval()
an instance of class DBXLinkProcessor is created and its method process() which im-
plements processRelevantLinks() is called. All necessary tasks including the resolving of
relevant links and the appropriate materialization of the partial instance as described in
Section 5.1 are then handled internally by private methods of DBXLinkProcessor.

Several further changes of specific classes have been undertaken in eXist:

• org.exist.dom.ElementImpl: The class representing an XML element has been ex-
tended with some auxiliary methods for accessing the values of dbxlink and xlink
attributes. For instance, the method getXLinkHRef() returns the value of the
xlink:href attribute.

• org.exist.dom.NodeSetHelper: For this class, two useful methods for manipulating
attributes have been added.

• org.exist.xquery.XQuery: The algorithms proposed in [OMFB02] for eliminating
reverse axes out of XPath expressions have been integrated into this class (cf. to
Section 4.2). Thus, any XPath query stated by users is rewritten appropriately
before it is processed.

• org.exist.xquery.util.DocUtils: Users usually state queries that start on a specific
document which is initially copied to a temporary instance. This happens in
this class. As explained in Section 5.1, a partial instance is materialized during
the XPath query evaluation process. In the beginning, the copy of the starting
document thus represents the partial instance which will be manipulated during
query evaluation. The temporary document is deleted when the query evaluation
is finished.

• org.exist.http.RESTServer: This class implements the HTTP interface of eXist
servers. Special functionality for query shipping and cycle detection has been
added to the HTTP GET interface.

• org.exist.xupdate: In this package, the classes Append, Insert, and Remove have
been extended with special constructors that are needed for being able to use

88

5.6 Implementation

these XUpdate [XML00] methods stand-alone for manipulating XML instances
that represent the evolving partial instance. Section 5.1 showed that we have
to integrate XML fragments into the partial instance and therefore we must be
able to append fragments to existing nodes, insert them appropriately and remove
obsolete link elements that have been resolved. This can be achieved by using the
corresponding classes of the xupdate package.

5.6.2 Example Evaluation

We show an example evaluation in order to illustrate how we have implemented our
results in the eXist system. For the most “intuitive” case, assume that the remote server
is capable of answering XPath queries. Given an XLink with dbxlink:eval=”distribute”,
the query xpath-exprx (representing the link’s XPointer) is thus submitted to the remote
server that transfers the result (not expanding XLink elements contained inside the
result trees) which is then mapped according to the “L”-directive. Then, the local query
evaluation continues with stepx and xpath-expr2. Consider the following example query
whose evaluation is illustrated in Figure 5.3:

doc(”/db/LinXIS/countries.xml”)
/countries/country[@car code=”B”]/id(@capital)/population

This query returns the population of Belgium’s capital, namely Brussels. Recall that
we chose the modeling dbxlink:transparent=“make-attribute insert-nodes” which turns the
capital into a reference attribute to adhere to a “given” target DTD.

If stated on the server “linxis02”, doc(”/db/LinXIS/countries.xml”) accesses the XML
document that contains all countries. eXist offers collections (similar to directories in
a file system) for storing XML files and in our setting, we store the files of Mondial’s
distributed version in distinguished collections “/db/LinXIS”. Now, in order to prepare
the dynamic evaluation process which will generate the partial instance, a copy of coun-
tries.xml is created. This temporary document will evolve into the partial instance needed
for answering the stated query and thus we preserve the original file. All changes that
are performed during this process are executed on the persistent file.

The next step countries then selects the root element of countries.xml (i.e. of its tempo-
rary copy). The subsequent step, country[@car code=”B”], actually consists of (i) an axis
step country and (ii) the evaluation of the predicate for selecting Belgium. For (i), all
subelements of the countries element have to be considered. These are only the country
elements, which are non-XLink-elements.

Thus, the axis step results in all country elements. For evaluation of the predicate
@car code=”B”, all attributes of these elements in the virtual model have to be checked,
searching for an attribute with name car code and value “B”. The country elements have
already a car code attribute.

Let’s have a short look on the XLink subelements of the countries: cities has drop-
element as “L”-directive, thus it could contribute an attribute. But its XPointer shows
that it adds only city subelements. capital is equipped with make-attribute, thus it

89

5 Detailed Querying and Implementation Issues

Figure 5.3: Querying the Distributed Mondial Database

contributes an attribute, with the name capital. For neighbor the “L”-directive duplicate-
element is given, hence it stays as a subelement.

Thus, evaluating the predicate, only the country element for Belgium qualifies. The
next step, @capital, again has to take into account the attributes of Belgium, and all its
XLink subelements that contribute attributes. The capital XLink subelement is specified
as make-attribute and thus has to be expanded: as illustrated in Figure 5.3, its XPointer

http://linxis03/cities-B.xml#xpointer(/cities/city[name=’Brussels’])

is sent to the remote server which returns the city node for Brussels. The screenshot in
Figure 5.4 illustrates the communication between the two servers, traced by the Apache
Axis TCPMonitor [axi]. On the left hand side of the figure, the corresponding GET re-
quest for http://linxis03/cities-B.xml/cities/city[name=“Brussels”] from the country server
(linxis02) to the city server (linxis03) can be seen, whose result, i.e., the XML fragment
representing Brussels, is shown on the right hand side.

Once the country server (linxis02) server has received the XML data for Brussels, it pro-
cesses it according to dbxlink:transparent:=“make-attribute insert-nodes”: for the Belgium

90

5.6 Implementation

Figure 5.4: Communication: Answer Shipping

element, a capital reference attribute is created which points to the new, local Brussels
node. These nodes are added to the document that represents the partial instance by
appropriate XUpdate statements. The rest of the query is then id(@capital)/population,
which dereferences the attribute and returns the population element of Brussels. No
more link expansions are required.

5.6.3 Book-Keeping for Cycle Detection

In Section 4.5, an abstract description of the cycle detection strategies during query
evaluation has been given. There, we assumed that any XML element can be globally
identified by an id. However, there are cases where the ids of elements are not available.
For instance, if XML fragments are requested for links where hybrid shipping has been
applied, we only get a serialized ASCII stream of XML data. Thus, it is not possible
to reconstruct the element ids. In this section, we will describe how we implemented an
appropriate book-keeping that allows for detecting cycles in eXist.

Assume that during a given XPath query stated by the user a cycle detection process
needs to be started for a specific link which has to be resolved (cf. Section 4.5 for a
description of cycles). A new book-keeping list object is initialized and mapped to an
actual timestamp which will represent the id of the current user query. Instead of the
link element’s internal id, the value of its xlink:href attribute is stored in the book-keeping
list. Then the link is resolved according to its dbxlink:eval attribute.

In case of the local and distributed modes, the referenced XML fragments are inte-
grated into the partial instance. Then, for each link contained in this new fragment to be
resolved, we check if the book-keeping list contains the value of its xlink:href attribute.
If not, then the value is added to the list and the link will be handled. If it is already

91

5 Detailed Querying and Implementation Issues

contained in the list, then we know that the same referenced fragment has already been
integrated in this subtree. As the current link is part of this subtree, we can reason
that we will have to handle the link again and thus a cycle has been detected. If there
are no more links to be checked in the last fragment which has been added, then the
corresponding value of the xlink:href attribute of the link which referenced this fragment
can be removed from the book-keeping list, i.e. this subtree has been expanded appro-
priately. Thus, we always have an “implicit” list of the current processed “chain” of
links in terms of the xlink:href attributes.

For query shipping, we have to attach the id of the user query to the query we have
to ship. As we use the HTTP interface of eXist servers for delegating queries, the query
id can be given as URI parameter in the HTTP GET request. For instance, in

http://linxis03/cities-B.xml? query=/cities/city/name
︸ ︷︷ ︸

& queryID=4210884000
︸ ︷︷ ︸

shipped query user query id

two parameters are given as key-value pairs. In this example, the first parameter repre-
sents the query which is shipped to the remote server (“/cities/city/name”). The second
parameter (queryID) contains the query id. Then, the remote server knows that the
query contained in the parameter query shall be stated on cities-D.xml during the eval-
uation process of a user query with id “4210884000”. Now, the server can check if it has
a book-keeping list mapped to the given id and for each link that has to be handled, the
same detection strategy as for the local and distributed modes is applied.

5.6.4 Results

For a proof-of-concept implementation, we extended the open source XML database sys-
tem eXist. During the practical implementation process, many details and critical issues
have been discovered and solved. As a result, we obtained a system which allows for
querying along distributed XML instances connected by (simple) XLinks. At http://

www.dbis.informatik.uni-goettingen.de/linxis/, a query interface for the Mon-

dial testbed can be found. There, also some example queries are listed which allow for
some straightforward tests.

The abstract strategies described in this work can be used to extend XML query
engines that are based on the stepwise evaluation process of XPath queries. Thus, it
is possible to enable them for handling XLinks during XPath queries according to the
dbxlink approach.

92

http://www.dbis.informatik.uni-goettingen.de/linxis/
http://www.dbis.informatik.uni-goettingen.de/linxis/

6 Discussion of Query Shipping

This chapter is dedicated to the query shipping strategy used in the proof-of-concept
implementation of dbxlink. Data and hybrid shipping have already been described in the
two preceding chapters and it showed that they function in a way that a referenced XML
fragment of an XLink (relevant wrt. a given user XPath query) is integrated into the local
XML instance. Thus, according to its dbxlink:transparent attribute, the link is replaced
by the referenced XML fragment leading to the materialization of a partial instance.
However, the query shipping strategy for XLinks equipped with a dbxlink:eval=”remote”
attribute requires a different approach.

There are several cases where this strategy can not be applied or where it is not suitable
to do so. These cases will be pointed out successively using examples for illustration.
Then, we discuss some rewritings of query parts that are necessary for the query to be
shipped. Also, we show how the final result set is obtained wrt. to query shipping results.
The anatomy of a shipped query depends on the user query, the XPointer expression
and the XLink’s “L”-directive and we thus show how to construct an appropriate query
to be shipped.

The results of the investigations outlined in this chapter are used in methods that
have already been used in the procedure resolveXLink() (cf. Section 5.3). The function
canShipQuery() contains the checks corresponding to the restrictions on query shipping
and buildQueryToShip() then constructs the query to be shipped.

Here, in this chapter, we use the same terminology for XPath queries stated by users
as in Chapter 5, i.e. xpath-expr1, stepx and xpath-expr2 are given. Also, stepx will be of
particular interest and thus we assume that it is constructed as follows:

axisx::nodetestx[predicatex].

6.1 Restrictions on Query Shipping

Basically, a shipped query consists of two parts, namely the XPointer expression and
the remaining XPath query stated by the user. For query shipping, several restrictions
exist and we first give a concise overview of the cases when not to ship a query.

• If local data is contained in the link and the “L”-directive is different from drop-
element, then shipping is prohibited.

• We do not ship a query if the remaining query contains the following axis.

• The following-sibling axis and position checks must not be used in the first step of
the remaining query.

93

6 Discussion of Query Shipping

The first restriction depends on the considered link element while the next two depend
on the query stated by the user. These constraints are now described in detail and they
are checked in the already mentioned function canShipQuery() which is given at the end
of this section. If query shipping can not be applied, then the fallback strategy is given
by hybrid shipping as implemented in the procedure resolveXLink() (cf. Section 5.3).

6.1.1 Local Data of Links

Consider a link which contains local data, i.e. non-xlink- and non-dbxlink-attributes, text
children or subelements. If query shipping should be applied for this link element,
intuitively, both the link’s local data and the remote parts have to be respected. Due
to this, several problems arise. For instance, both the local and remote data might
contribute to the result set of the given user query. Also, if the query is shipped, the
local data is not “reachable” anymore and sometimes it is necessary to have the data
“in one place”.

Only links with drop-element as “L”-directive do not have to be considered here.
According to the modeling semantics of this directive, the local link element is dropped
completely and thus its local data is not relevant for the query. However, for a link
which has any of the other “L”-directives and if it also has local data, we argue that
query shipping should not be applied and therefore give some illustrating examples.

Remark. One possibility to overcome this problem would be to ship the query and any
local data contained in the link’s subtree. Then, we would have all relevant data in
one place, namely on the remote server. On the other hand, the idea of query shipping
intends to reduce network traffic and not to ship any data which might not be accepted
by remote servers anyway.

group-in-element. Any expression contained in predicatex has to be evaluated locally
because if the link contains a body, then its local attributes or subelements might satisfy
the predicate. However, there might be cases where it also has to be checked remotely.
An example will clarify this issue.

The city elements could be modeled with an additional temperature link for integrating
the actual temperature into the local data. For instance, consider Berlin:

<city>

<name>Berlin</name>

<population year=”95”>3472009</population>

<temperature time=”now” dbxlink:eval=”remote”
dbxlink:transparent=”group-in-element insert-bodies”
xlink:href=”http://. . . /temp.xml#xpointer(//city[name=’Berlin’]/temp)”/>

...
</city>

94

6.1 Restrictions on Query Shipping

With this modeling, in the virtual instance, the city element’s child temperature would
be enriched with the actual temperature in degree Celsius obtained from a remote file
“temp.xml”. Assume that this file is structured as follows:

<temp measurements>

<city>

<name>Berlin</name>

<temp>18</temp>

</city>

...
</temp measurements>

Thus, the virtual instance contains the referenced temperature:

<city>

<name>Berlin</name>

<population year=”95”>3472009</population>

<temperature time=”now”>18</temperature>

...
</city>

Now, consider the following example query which selects the name of all cities where the
actual temperature is below 20 degrees:

//city[temperature/@time=”now” and temperature/text()<20]/name

As Berlin qualifies wrt. the predicate, we expect its name to be contained in the result
set. If evaluated via data or hybrid shipping, where a partial instance is materialized
locally, the computation delivers the correct result in a straightforward way because all
relevant nodes are found in one place. But in case of query shipping, we have to be
aware that in general, the predicate has to be checked both locally and remotely. In
the example above, a predicate containing a conjunction of predicates like “[cond1 and
cond2]” is given where cond1 is satisfied locally by the time attribute and cond2 qualifies
remotely by the referenced actual temperature.

This example shows why it is appropriate to fall back to hybrid shipping if links having
local data and equipped with group-in-element as “L”-directive are given. The main
reason for this is due to the necessity that relevant data should be accessible in one
place, be it remotely or locally. The following paragraph shows similar examples for the
other “L”-directives.

duplicate-element, keep-body and make-attribute. Recall the example already used
in Section 3.2.1 for illustrating the modeling of duplicate-element where extra cities ref-
erenced as town elements in a file germantowns.xml are included for Germany:

95

6 Discussion of Query Shipping

<country>

<name>Germany</name>

...
<city source=”not approved” dbxlink:eval=”remote”

dbxlink:transparent=”duplicate-element insert-bodies”
xlink:href=”http://. . . /germantowns.xml#xpointer(//town)”/>

...
</country>

The city element is duplicated according to the number of referenced elements repre-
senting these German towns. Thus, in the virtual instance induced by this fragment, all
city elements are enriched with an source attribute which stems from the original link
element:

<country>

<name>Germany</name>

...

<city source=”not approved” >

<name>Göttingen</name>

<population>129051</population>

</city>

<city source=”not approved” >

<name>Braunschweig</name>

<population>245273</population>

</city>

...
</country>

If the city link would have an attribute dbxlink:transparent=”keep-body insert-nodes”,
the induced virtual instance would have a similar structure consisting of town elements
because keep-body forces the link element to be replaced by the referenced town elements
to which the source attributes are added. Thus, a similar example can also be constructed
for keep-body.

Now, assume that the following query is stated, querying for all source attributes:

//country[@car code=’D’]/city/@source

We have not yet discussed how the query to be shipped is built but the idea is to delegate
a combination of the XPointer and the rest of the query to the remote server. For the
example query given above, the final result set consists of source attributes which amount
to the number of referenced towns. Obviously, these attributes would not be selected
by a shipped query because remotely, no such attributes reside. In this example, we
would have to request the remote server how many element nodes are returned by the

96

6.1 Restrictions on Query Shipping

XPointer in order to add the appropriate amount of source attributes to the final query
result set. This would be equivalent to a hybrid shipping which requests the fragment
referenced by the link’s XPointer. Thus, it shows already in this simple example that a
query shipping is not feasible. We argue that in this case we should fall back to hybrid
shipping in order to build the partial instance locally.

Links having local data and the “L”-directive make-attribute can create a similar sit-
uation. Consider an alternative modeling of the cities link for referencing towns with
make-attribute:

<cities source=”not approved” dbxlink:eval=”remote”
dbxlink:transparent=”make-attribute insert-nodes”
xlink:href=”http://. . . /germantowns.xml#xpointer(//town)”/>

All referenced city elements are enriched with the local data items. However, in the
virtual instance, an appropriate IDREFS attribute references the town elements:

<country cities=” dbxlinkID1 dbxlinkID2 . . . ”>

<name>Germany</name>

...
</country>

...

<town id=”dbxlinkID1” source=”not approved”>

<name>Göttingen</name>

<population>129051</population>

</town>

<town id=”dbxlinkID2” source=”not approved”>

<name>Braunschweig</name>

<population>245273</population>

</town>

...

If for this fragment the query

//country[@car code=’D’]/id(@cities)/@source

has to be evaluated, then it is obvious that the source attributes are not found remotely.
Thus, also for links with make-attribute which have local data it is not feasible to apply
query shipping.

97

6 Discussion of Query Shipping

In this section, several examples showed why not to ship a query for links having local
data and an “L”-directive different from drop-element. Also from the modeling perspec-
tive it is inappropriate to ship a query in such situations because if a query has to be
shipped for a link, we do not want to evaluate the link locally but expect the remote
server to take care of this task.

6.1.2 Remaining Queries that Contain the following Axis

Given a context node c , the following axis selects all nodes that are not descendants of c
and occur after it in document order. Thus, if shipped to a remote server and evaluated
in a different document, this axis could select false result nodes that are not part of the
virtual instance. On the other hand, matching nodes of the local view would not be
selected if evaluated remotely. Consider the following XPath expression for illustration:

//country[@car code=’D’]/city[name=’Berlin’]/population/following::name

As before, this query has to be executed on the distributed version of Mondial:

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

<cities dbxlink:eval=”remote” dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”http://. . . /cities-D.xml#xpointer(/cities/city)”/>

...
</country>

Thus, in the logical view, the referenced city elements replace the cities link element. In
the virtual instance, the above XML fragment would look as follows:

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

<city>

<name>Berlin</name>

<population year=”95”>3472009</population>

</city>

<city>

<name>Hamburg</name>

<population year=”95”>1705872</population>

</city>

...
</country>

It is this virtual instance on which the query given above has to be evaluated. Considering
data shipping and hybrid shipping, a partial instance is built locally and the data is

98

6.1 Restrictions on Query Shipping

queried in one place yielding all name elements that follow the population element of
Berlin. However, with query shipping, the situation is different.

While querying, we step on the cities link element and would ship a specific query. The
remaining query (xpath-expr2) ends with “population/following::name” and if involved into
a combined query to be shipped, this part would be evaluated remotely on cities-D.xml.
Thus, in the remote document, we would navigate to Berlin’s population and from there,
according to the following axis, we would select all following name elements as indicated
by the dotted arrows below:

<cities>

<city>

<name>Berlin</name>

<population year=”95”>3472009</population>

</city>

<city>

<name>Hamburg</name>

<population year=”95”>1705872</population>

</city>

<city>

<name>Frankfurt am Main</name>

<population year=”95”>652412</population>

</city>

...
</cities>

Here, the name elements of Hamburg, Frankfurt and all other cities would be selected
because they are not contained in the subtree of Berlin’s population element and occur
after it in document. Now, assume that cities-D.xml is extended in the following way:

<cities>

<city>

<name>Berlin</name>

<population year=”95”>3472009</population>

</city>

...
<author>

<name>Donald Duck</name>

</author>

</cities>

The author “Donald Duck” has added its name as a child of an author element to the
document. This element is not part of the virtual instance induced by the country and
city data because the cities link element’s XPointer addresses only city elements. If the

99

6 Discussion of Query Shipping

query part following::name is processed on this modified document remotely, it would also
select the author’s name element because it is addressed by the following axis. Thus, a
usage of the following axis in shipped queries can lead to false results.

On the other hand, any name element found in the local document or in any other
included data would not be selected because the query has been delegated to a specific
remote server. Here, any name element occurring in the virtual instance after Berlin’s
population element, like the names of several countries, should be contained in the result
set. However, they could not be selected on the remote server because the local data is
not “reachable” anymore after shipping the query. Some name elements that should have
been selected in the logical view as result nodes are marked in the following fragment:

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

<city>

<name>Berlin</name>

<population year=”95”>3472009</population>

</city>

...
</country>

<country car code=”B” area=”30510”>

<name>Belgium</name>

<population>10170241</population>

<capital>

<name>Brussels</name>

<population year=”95”>951580</population>

</capital>
...

</country>

In order to summarize, we can state that we prohibit a shipping of a query if we have to
combine the XPointer with a remaining query that contains the following axis because
false nodes could be selected on the remote server and matching nodes in the local
instance are mistakenly omitted.

6.1.3 Considering following-siblings and Position Checks

As we have seen in the previous section, a query that is shipped to the remote server
can not “return” to the local instance for selecting matching nodes. This means that a
query shipping usually delegates the remaining query computation on an XML subtree
to another host. In case that the remaining query which will be part of the query to be
shipped starts with a step consisting of the following-sibling axis, the local siblings of the
XML tree which replaces or enriches the link element have to be tested if they match
the next step. Again, we use the cities link element as an example:

100

6.1 Restrictions on Query Shipping

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

<cities dbxlink:eval=”remote” dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”http://. . . /cities-D.xml#xpointer(/cities/city)”/>

...
</country>

Now, assume we have stated the following query for selecting the name of the cities that
have a neighbor element among their following siblings:

//country[@car code=’D’]/city[following-sibling::neighbor]/name

If a remaining query starting with city[following-sibling::neighbor] would be shipped to
the remote server that hosts the cities file for Germany, it would be executed after the
XPointer has been evaluated – here, this would be an XML instance that does not
contain any neighbor elements (cf. cities-D.xml in the distributed version of Mondial).
Thus, the returned query result would be empty because the predicate that contains the
following-sibling axis would not be satisfied. On the other hand, we omitted matching
elements locally. There are neighbor elements in the logical view that follow the German
city elements and thus the predicate is satisfied by these (ignore by now that neighbor is
an XLink itself):

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

<city>

<name>Berlin</name>

<population year=”95”>3472009</population>

</city>

...
<city>

<name>Jena</name>

<population year=”95”>102204</population>

</city>

<neighbor dbxlink:transparent=”. . . ” xlink:href=”. . . ” borderlength=”167”/>

...
</country>

Hence, we can not ship a query that starts with following-sibling because, similar to the
case concerning the following axis, false nodes might be selected and relevant nodes could
be omitted. Also, we prohibit shipping if the remaining query starts with a step that

101

6 Discussion of Query Shipping

contains a position expression. We then have to evaluate the remaining query locally
because the position has to be evaluated wrt. the document order in the local view. The
same holds for the context functions position() and last().

Note that the following-sibling axis and position checks are not harmful if they are not
part of the next step to be executed. In that case, the tests take place in the context
of the link’s subtree which has no local data and which can thus be located entirely on
the remote server. All other axes (child, descendant(-or-self), attribute) are harmless if
executed as part of the next step wrt. a considered link element. The reason for this is
that, from the viewpoint of the XML tree, these axes either navigate to a deeper level
in the referenced subtree (child and descendant(-or-self)) or are directly related to the
current link element (attribute).

Remark. Consider the following query:

/countries/country[@car code=’D’]/descendant-or-self::node()/. . .
. . . /descendant-or-self::node()/following-sibling::country.

It consists of several steps “descendant-or-self::node()” applied to the country element rep-
resenting Germany. Due to the repeated implicit “self” step, the following-sibling::country
location step at the end of this query selects the country that follows Germany in docu-
ment order. We also forbid such a usage of following-sibling for queries to be shipped but
for the sake of clarity, we don’t test these in the function canShipQuery(). However, it
is just a technical issue to implement these kind of tests that have to analyze the given
query syntactically.

Function 6.1: canShipQuery

Input: The link ` and the remaining query parts (stepx and xpath-expr2).
Output: false, if the query can not be shipped, true otherwise.
begin1

if xpath-expr2 is empty then2

return false3

else if ` has local data and `.getLDirective() 6= ”drop-element” then4

return false5

else if stepx.predicate or xpath-expr2 contain following then6

return false7

else if stepx.predicate or xpath-expr2 start with following-sibling or position checks then8

return false9

else10

return true11

end12

6.1.4 Summary

In this section, we have shown several restrictions on query shipping. These are checked
in the function canShipQuery() wrt. a given user query and a current link to be resolved.

102

6.2 Rewritings and Result Integration

Remark. We assume that the remaining query xpath-expr2 is not empty. Thus, only if
the navigation continues on the referenced subtree, the query is shipped. Otherwise, it
is preferable to apply any of the other shipping methods.

There are no other cases where query shipping has to be avoided but in some situations
we have to rewrite the query. The related cases are discussed in the following section.

6.2 Rewritings and Result Integration

Here, we describe several cases where a query to be shipped has to be adapted slightly
and we discuss how result nodes obtained by query shipping have to be integrated wrt.
the final result. These issues are only briefly sketched because they are rather obvious.

6.2.1 Absolute Document References

In XPath, semi-joins can be expressed by using absolute paths in a predicate expression.
For example, the following query selects the names of all cities that have more inhabitants
than Germany:

//city[population>//country[name=’Germany’]/population
︸ ︷︷ ︸

]/name

absolute path expression

From the modeling perspective, we assume that any absolute path expression contained
in predicates has to be applied to the same document where the query starts. Any
relevant subtree should be reachable from that document. Thus, before the query is
evaluated, any absolute path expression found as part of a predicate is extended with a
doc() function call containing the URI of the document in which the query evaluation
starts.

In our testbed (cf. Chapter 1 for a description how Mondial is distributed in our test
scenario), we would state the example query against the file mondial-root.xml. Thus, we
would extend the absolute path in the predicate with the URI of the server that hosts
this file (linxis01) including the path to the file itself:

//city[population>doc(’http://linxis01/. . . /mondial-root.xml’)
//country[name=’Germany’]/population]/name

If a query containing the predicate has to be shipped, it will then be sent to linxis01 to be
executed on mondial-root.xml from where the countries are reachable via an appropriate
XLink that points to linxis02 (the server hosting countries.xml).

6.2.2 Local and Remote Result Nodes of Links

Generally, query shipping results must respect document order. Thus, if for a link query
shipping has been applied and a non-empty result set is obtained, these items must occur
in the final result wrt. the document order. In order to achieve this, for each link that has

103

6 Discussion of Query Shipping

been treated with query shipping, the shipping result is marked with the link’s position
in document order. At the end of the query evaluation, any partial result obtained by
query shipping can thus be integrated appropriately.

6.3 Building the Query to be Shipped

In this section, we discuss how the query to be shipped has to be built. The results of
these investigations can be found in the function buildQueryToShip() at the end of this
section.

First, we can draw some some consequences out of the restrictions described in the
preceding sections. For a query to be shipped, the following constraints hold:

• If the “L”-directive is different from drop-element, we can assume that the link has
no local data (non-xlink- and non-dbxlink-attributes, or subelements). Thus, for
query shipping we do not have to take local data of links into account.

• In the remaining query to be combined with the XPointer, the first step does not
contain the following-sibling axis and position checks.

• The remaining query does not include the following axis.

• xpath-expr2 is not empty.

Now, we assume that an XLink with dbxlink:eval=”remote” is given and all conditions
that allow for query shipping are satisfied. In order to show how the adapted query that
will be shipped for this link is obtained, we discuss all dbxlink:transparent directives in
separate paragraphs. Recall that stepx= axisx::nodetestx[predicatex].

(i) drop-element

The modeling semantics of this directive requires the link element to be dropped com-
pletely and to be replaced by the nodes obtained after applying the “R”-directive (insert-
nodes or insert-bodies) to the referenced data.

For this “L”-directive, as the link element is dropped, we can assume that stepx con-
tinues on the nodes obtained after applying the “R”-directive to the referenced fragment
because these replace the link.

In order to combine the XPointer and the remaining XPath query stated by the user to
a new XPath query that can be shipped, we have to distinguish between the two possible
“R”-directives and show how the next axis to be applied (axisx) affects the structure of
the shipped query.

insert-nodes:
The nodes referenced by the XPointer expression xpath-exprx are not manipulated and
hence replace the link element in a straightforward way. Thus, in case that axisx equals
to child or attribute, we first have to get the appropriate nodes among the referenced

104

6.3 Building the Query to be Shipped

nodes according to axisx. In order to achieve this, if axisx=child (or axisx=attribute), a
step self::element() (or self::attribute()) is appended to xpath-exprx for getting the relevant
nodes wrt. the kind of nodes that is required by axisx. Afterwards, the node test and the
predicate of stepx is checked for these nodes and then we continue with xpath-expr2

1:

axisx=child:
xpath-exprx/self::element()/self::nodetestx[predicatex]/xpath-expr2

axisx=attribute:
xpath-exprx/self::attribute()/self::nodetestx[predicatex]/xpath-expr2

If axisx is given by the descendant axis, which recursively traverses the whole referenced
subtree, we have to ensure that both the nodes addressed by the pointer are tested and
the navigation continues (which can be achieved by using descendant-or-self). Here, an
explicit step selecting only the elements is not needed because implicitly, descendant-or-
self does this task:

axisx=descendant:
xpath-exprx/descendant-or-self::nodetestx[predicatex]/xpath-expr2

In case that axisx=descendant-or-self, a different approach is needed. Consider a query
that addresses all German cities with more than 500000 inhabitants for selecting their
names:

/countries/country[name=’Germany’]//city[population>500000]/name,

which is equivalent to the rewritten query

/countries/country[name=’Germany’]/descendant-or-self::node()
/city[population>500000]/name.

The cities link has an XPointer /cities/city (ignoring the host and file parts of the URI)
and thus, if we would apply the same strategy like for axisx=descendant given above,
then the following query would be shipped:

/cities/city/descendant-or-self::node()/city[population>500000]/name.

Remotely, evaluated on the referenced file cities-D.xml, this query addresses any city
element that occurs as subelement of the city elements that are nested in the cities
root element (though, however, there are no such elements). Unfortunately, due to the
part . . . city/descendant-or-self::node()/city. . . , the “real” city elements are not selected
because in the query assumed to be shipped, city elements are required to have other
city descendants. Thus, in order to apply stepx and xpath-expr2 directly to the nodes
selected by xpath-exprx, an document element constructor is used:

1In XPath, if the self axis is combined with a name test, only element nodes are selected. Thus, we
assume that in dbxlink systems the query shipping strategy allows for using self in combination with
name tests also for attributes.

105

6 Discussion of Query Shipping

axisx=descendant-or-self:
document {xpath-exprx/self::element()}/stepx/xpath-expr2

With this approach, the remote server (which we assume to be able to handle such
XQuery expressions) first computes the nodes selected by the pointer (xpath-exprx),
among which the elements are selected because only for them the navigation can con-
tinue with descendant-or-self. A new document node is constructed (to which no vali-
dation is applied, cf. [XQu06]) that serves as “input” for the remaining query (which is
stepx/xpath-expr2). Note that for this approach, two evaluations (one for the pointer and
one for xpath-exprx) are needed. Thus, for the other axes, we preferred a concatenation
of xpath-exprx and xpath-expr2 without document constructor in order to require just a
single straightforward XPath computation.

For the example query selecting German cities with more than 500000 inhabitants, the
following query would be shipped when Germany’s cities link has to be resolved:

document {/cities/city/self::element()}//city[population>500000]/name

Thus, remotely, first the following XML fragment containing all German cities is created
by the document constructor:

<city>

<name>Berlin</name>

<population year=”95”>3472009</population>

</city>

<city>

<name>Hamburg</name>

<population year=”95”>1705872</population>

</city>

...

Note that no root element is created. However, the XQuery specification [XQu06] al-
lows for such constructs and the remaining query //city[population>500000]/name can
be applied to this fragment yielding the desired nodes.

insert-bodies:
Using this “R”-directive, only the bodies (i.e. the text and element children, and the
non-XLink attributes) of all element nodes contained in the result set of the XPointer
are kept. These are then used for replacing the link element. This means that the child
and attribute axes have been applied implicitly to each referenced element, yielding their
children and attributes. In case that axisx is among child, attribute or descendant, we
therefore can apply stepx and xpath-expr2 directly to xpath-exprx because stepx can be
considered as the implicit step for selecting the body:

axisx ∈ {child, attribute, descendant}:
xpath-exprx/stepx/xpath-expr2

106

6.3 Building the Query to be Shipped

Assuming that the cities link has insert-bodies as “R”-directive and an XPointer /cities
instead of /cities/city, we give some examples how the shipped query is constructed:

user query: /countries/country[@car code=’D’]/city/name
shipped query: /cities/city/name

user query: /countries/country[@car code=’D’]/descendant::city/name
shipped query: /cities/descendant::city/name

For descendant-or-self we have to be aware that only the element children of the referenced
nodes are used as “input” for the remaining query and thus we again use an appropriate
document constructor:

axisx=descendant-or-self:
document {xpath-exprx/child::element()}/stepx/xpath-expr2

Below, examples similar to those from above (using the modified cities link) are given.

user query: /countries/country[@car code=’D’]//city/name
= /countries/country[@car code=’D’]/descendant-or-self::node()/city/name

shipped query: document {/cities/child::element()}//city/name

user query: /countries/country[@car code=’D’]/descendant-or-self::city/name
shipped query: document {/cities/child::element()}/descendant-or-self::city/name

(ii) keep-body

This directive is similar to drop-element but instead of dropping the whole link element,
its body is kept, i.e. its subelements, text nodes and attributes have to be added to the
nodes that are going to replace the link element. As stated in Section 6.1.1, links with
local data which are equipped with this “L”-directive forbid query shipping. If query
shipping can be applied, i.e. the link element has no local data, we ship in the same way
as described for drop-element because in this case, the modeling semantics is the same.

(iii) group-in-element

In the logical model, the “L”-directive group-in-element embeds all referenced nodes in
the link element hull. The link element has no local data and thus, we let the remote
server “reconstruct” this element in order to have the embedded nodes in one place.
Therefore, we assume that the remote server is able to map the referenced nodes into
the surrounding element appropriately wrt. the result mappings given in the dbxlink
approach, e.g. it should concatenate values of attributes having the same name.

insert-nodes:
If executed remotely, the following usage of a document constructor creates an ele-
ment with name link that “reconstructs” the link element. The nodes referenced by
the XPointer are embedded into it and thus the remaining query can be applied in a
straightforward way:

107

6 Discussion of Query Shipping

document {element link {xpath-exprx}}/stepx/xpath-expr2

For illustration, consider some example queries involving the cities link which is assumed
to be given with dbxlink:transparent=”group-in-element insert-nodes”:

user query: /countries/country[name=’Germany’]//city/name
shipped query: document {element cities {/cities/city}}//city/name

user query: /countries/country[name=’Germany’]/cities/city/name
shipped query: document {element cities {/cities/city}}/cities/city/name

On the remote server, the expression document {element cities {/cities/city}} creates
the following XML fragment to which the remaining query can be applied yielding the
desired result:

<cities>

<city>

<name>Berlin</name>

<population year=”95”>3472009</population>

</city>

<city>

<name>Hamburg</name>

<population year=”95”>1705872</population>

</city>

...
</cities>

insert-bodies:
We ship the same query as for insert-nodes and assume that the remote server selects the
referenced nodes’ bodies and embeds them in the surrounding element appropriately.
This can e.g. be achieved by a special flag given in the HTTP GET request used to ship
the query.

(iv) duplicate-element

As explained in Section 6.1.1, we only ship a query for links that are equipped with
this “L”-directive if there is no local data (i.e. elements or non-dbxlink- and non-dbxlink-
attributes) contained in the link. With duplicate-element, any referenced node will be
embedded into its “own” element which is derived from the link. If the remote server
constructs the desired element structure, i.e. each referenced nodes is embedded in a
separate element, we can thus apply the same strategies for shipping a query as shown
above for group-in-element.

108

6.3 Building the Query to be Shipped

(v) make-attribute

Links equipped with this modeling directive are dropped and the link’s parent element
gets a new IDREF attribute with the same name as the link element. In the virtual
instance, this attribute references auxiliary elements containing the nodes referenced by
the link’s XPointer which are enriched with the link element’s body that is empty if
query shipping shall be applied.

Function 5.2 (getRelevantLinks()) shows that links having the “L”-directive make-
attribute are only relevant if stepx uses the attribute axis, i.e. the navigation continues
along an attribute.

A remaining query xpath-expr2 which is not empty is given and it won’t contain the fol-
lowing or following-sibling axis and thus, the only possible way to continue the navigation
is given by the id() function because an attribute does not have children or descendants.
Additionally, it follows that predicatex has to be empty. Thus, we can assume that stepx

has the following form:

id(attribute::nodetestx)[predicateid]

which is equivalent to

attribute::nodetestx/id(.)[predicateid].

Because we want to ship the remaining query, we do not create temporary local elements
addressed by the IDREF attribute as described in Section 3.2. Instead, we assume that
we implicitly “jump” to the referenced elements and thus we can combine the XPointer
expression and the remaining query directly:

insert-nodes:

xpath-exprx/self::element()[predicateid]/xpath-expr2

insert-bodies:

xpath-exprx/child::element()[predicateid]/xpath-expr2

The following example shows a query for selecting the population of Germany’s capital
which is required to have an attribute is state cap with value “yes”:

/countries/country[@car code=’D’]/id(@capital)[@is state cap=’yes’]/population
=/countries/country[@car code=’D’]/@capital/id(.)[@is state cap=’yes’]/population

In combination with the capital XPointer (/cities/city[name=’Berlin’]), the query given
below is shipped to the remote server:

/cities/city[name=’Berlin’]/self::element()[@is state cap=’yes’]/population

109

6 Discussion of Query Shipping

Function 6.2: buildQueryToShip

Input: A link element `, stepx, xpath-expr2.
Output: The query to ship for the given link.
begin1

axisx ←– the axis of stepx; nodetestx ←– the nodetest of stepx2

if `.getLeftHandDirective() ∈ {”drop-element”,”keep-body”} then3

if `.getRightHandDirective()=”insert-nodes” then4

if axisx=”child” then5

return6

”xpath-exprx/self::element()/self::nodetestx [predicatex]/xpath-expr2”
else if axisx=”attribute” then7

return8

”xpath-exprx/self::attribute()/self::nodetestx [predicatex]/xpath-expr2”
else if axisx=”descendant” then9

return ”xpath-exprx/descendant-or-self::nodetestx[predicatex]/xpath-expr2”10

else if axisx=”descendant-or-self” then11

return ”document {xpath-exprx/self::element()}/stepx/xpath-expr2”12

else if `.getRightHandDirective()=”insert-bodies” then13

if axisx ∈ {”child”, ”attribute”, ”descendant”} then14

return ”xpath-exprx/stepx/xpath-expr2”;15

else if axisx=”descendant-or-self” then16

return ”document {xpath-exprx/child::element()}/stepx/xpath-expr2”17

else if `.getLeftHandDirective() ∈ {”group-in-element”, ”duplicate-element”} then18

dbx ←– `.getTransparent()19

link ←– `.getName()20

return dbx . ”%document {element ” . link . ” {xpath-exprx}}/stepx/xpath-expr2”21

else if `.getLeftHandDirective()=”make-attribute” then22

if `.getRightHandDirective()=”insert-nodes” then23

return ”xpath-exprx/self::element()[predicateid]/xpath-expr2”24

else if `.getRightHandDirective()=”insert-bodies” then25

return ”xpath-exprx/child::element()[predicateid]/xpath-expr2”26

end27

The function buildQueryToShip() contains the construction of the query to be shipped
as described above. For the cases that handle the “L”-directives group-in-element and
duplicate-element, the string value of the link’s dbxlink:transparent attribute is concate-
nated with the returned query. Thus, the remote server can decide how the referenced
data should be mapped into the surrounding elements as described in the preceding
paragraphs. Note that comments on caching follow in the next chapter.

110

7 Optimizing Query Processing for
Interlinked XML Documents

The preceding chapters of this thesis described (XPath) query processing for XML in-
stances connected by XLinks in an XML database system according to the dbxlink ap-
proach. Here, in this chapter, we discuss methods for optimizing this task.

Several issues related to caching in the dbxlink scenario are discussed. We then describe
the projection of XML documents wrt. an XPath query (stated by the user or given as
an XPointer) for reducing the size of the transmitted data.

7.1 Caching in dbxlink

Any XLink can be equipped with caching options by specifying the dbxlink:cache at-
tribute as already described in Section 4.1.3. Firstly, we now describe how these options
are interpreted during querying wrt. the evaluation modes. Then, in order to improve
these basic caching mechanisms, we discuss methods that could be used additionally.

7.1.1 Caching for XLinks using dbxlink:cache Attributes

Recall the caching options that can be supplied by the dbxlink:cache attribute for XLinks:

• dbxlink:cache=”complete” caches the whole referenced document,

• dbxlink:cache=”pointer” caches only the referenced XML fragment,

• dbxlink:cache=”answer” caches the query result,

• dbxlink:cache=”on” combines the options above, and

• dbxlink:cache=”none” caches nothing.

We call “complete”, “pointer” and “answer”, explicit caching modes because they explic-
itly define the desired caching behavior. The mode “on” can be considered as combined
mode that includes all explicit options and applies the appropriate one depending on
the evaluation strategy that is actually used for a concrete link resolving process. It is
also interpreted in a way that any valuable data is cached. In the following, we describe
the different options in detail.

111

7 Optimizing Query Processing for Interlinked XML Documents

Caching the Document (dbxlink:cache=”complete”). If a link is equipped with this
caching option, it indicates that for this link the whole referenced document shall be
cached. In case of data shipping, we thus cache the whole document that is received
from the remote server.

Concerning links for which hybrid or query shipping has been applied, this caching
option is not suitable and will thus be ignored because we consider the evaluation strategy
to be more important than the caching mode. It would be inadequate to additionally
request the whole referenced document if only a fragment (in case of hybrid shipping)
or a set of resulting nodes (for query shipping) is transmitted to the local server after
resolving the link. On the other hand, if we have to fall back to data shipping as described
in Section 5.3, this caching option will be applied. In other words, this means that if we
receive a whole XML document after a link has been resolved, the document shall be
cached.

In systems implementing the dbxlink proposal, there should be a dedicated cache for
preserving local copies of referenced documents. In our proof-of-concept implementation,
local copies of remote documents are stored in the database backend of eXist. As any
referenced document can be uniquely identified by its URI, the URI is a part of the local
copy’s file name in order to be able to access the file for later use. Using this approach,
we are able to query this instance for obtaining fragments referenced by other links in a
straightforward way by using eXist’s XPath interface.

Caching XML Fragments (dbxlink:cache=”pointer”). Using this caching mode, we
request the XML fragments specified by the link’s XPointer to be cached for later reuse.
This mode can be applied for links where data or hybrid shipping is desired. For query
shipping, we don’t want a fragment to be transmitted to the local host if we only expect
parts of the final query result and hence this option has no effect on this evaluation
strategy. In case of hybrid shipping, we receive the referenced fragment by the remote
host which is then stored locally. If data shipping has been applied and we have obtained
the whole referenced document, we have to evaluate the XPointer on it anyway (cf.
Section 5.3) and thus the computed fragment can be cached afterwards. The document
itself is not kept for subsequent queries. This is, for instance, useful if the whole document
is considered too big for caching.

In order to cache these fragments, we use an associative array (a data structure also
known as “(hash) map” or “dictionary”). The key to find a fragment in the array is given
by the xlink:href attribute which is a URI consisting of the host part and an XPointer
expression. For links that are processed locally (data and hybrid shipping) we can thus
use the fragments found in the cache. If a fragment has a certain size (e.g. several
megabytes) it will be stored in the backend.

Caching the Results of Query Answers (dbxlink:cache=”answer”). This is the only
explicit caching option that can be used in combination with all evaluation strategies.
Here, for a given link that has to be resolved during an XPath query is processed,
the result of the remaining XPath query is cached. Recall that in the dynamic query

112

7.1 Caching in dbxlink

evaluation proposed in Section 4.4, for any link that has to be resolved, there exists
a query part that has already been processed while a query rest remains. Thus, the
caching strategy “answer” designates that we should cache the result of the remaining
query evaluated on the fragment that is specified by the link. In query shipping, this
will be the returned answer. For hybrid and data shipping we process the XPath query
locally and thus have to cache the nodes that are obtained by applying the query rest
to the integrated XML fragment.

Like for dbxlink:cache=”pointer”, we cache the computed partial result sets in a dedi-
cated associative array. Here, the combination of the xlink:href attribute and the applied
query rest serves as cache key. This means that we can only use a cached answer if it
has been applied for a specific query rest on the actual document fragment. Thus, we
have three caches in total, one for each explicit caching mode.

Automatic Caching (dbxlink:cache=”on”). The explicit caching modes are rather
strict, i.e. they are only applied if this is possible according to the corresponding link’s
evaluation strategy. Thus, if we have to apply fallback strategies as described in Sec-
tion 5.3, it might happen that no data is cached. For instance, if a link is equipped
with dbxlink:cache=”pointer” and dbxlink:eval=”distributed” (hybrid shipping), the re-
mote server might refuse to answer XPath queries. In that case, we fall back to data
shipping and request the whole document which won’t be cached. Only the XML frag-
ment specified by the XPointer will be kept in memory. Also, if query shipping is not
possible for a specific link and a given user XPath query, and hybrid shipping is applied,
the received fragment will not be cached. Thus, in order to always cache any data that
has been received on the local host, we also offer a caching mode that combines all
explicit modes and automatically chooses the appropriate caching procedure.

This means that for each evaluation mode automatically all possible caching strategies
are applied:

• for data shipping, we cache the document, the fragment and the answer,

• in case of hybrid shipping, caching is applied for the pointer and the result of the
query rest, and

• for query shipping, the partial result is kept in memory.

For a given link, in the dbxlink:eval attribute the desired evaluation strategy is specified
for which the directive dbxlink:cache=”on” determines to chose the appropriate caching
option. However, also if due to a fallback another strategy is chosen by the system,
we still can be sure that caching is applied in the way described above. Using this
caching mode, designers of interlinked XML instances are thus relieved from the task of
specifying an appropriate explicit caching strategy.

No Caching (dbxlink:cache=”none”). For links equipped with this attribute or with-
out a dbxlink:cache attribute, we do not cache anything at all. Thus, it is guaranteed
that always the latest data from the remote server is used.

113

7 Optimizing Query Processing for Interlinked XML Documents

Combinations of dbxlink:eval and dbxlink:cache. As we have seen above, it is not
possible or reasonable to combine dbxlink:eval and dbxlink:cache in an arbitrary way. In
order to summarize the appropriate combinations, Figure 7.1 gives an overview.

P
P

P
P

P
P

P
PP

cache
eval

local distributed remote on none

complete X – – X X

pointer X X – X X

answer X X X X X

Figure 7.1: Possible Combinations of Evaluation and Caching Directives

Cache Lookup and Replacement. For the explicit caching modes, the lookup proce-
dure is straightforward, i.e. before the link is resolved (and if the caching mode fits the
evaluation strategy as described above), we first check if we can find any useful data in
the appropriate local cache:

• dbxlink:cache=”complete”: check if the answer of the XPath query stated by the
user wrt. the given link has been cached previously. If this has not been found,
then try to get the fragment referenced by the link’s XPointer from the appropriate
cache and use it for the current query. In case that also the fragment has not been
cached, we try to find the whole remote document locally.

• dbxlink:cache=”pointer”: first look for the answer of the query. If it has not been
cached, then check if the referenced fragment can be found.

• dbxlink:cache=”answer” tries to get the answer for the query locally.

For dbxlink:cache=”on” the lookup is more sophisticated. Given an XLink to be handled
having such an attribute, we first check if the answer can be found in the cache and
we would use it to answer the query rest. If it is not found, then we look for the XML
fragment specified by the XPointer. In case that the fragment is found, we compute the
answer, cache it and return it to the query evaluator. Analogously, if the fragment is not
in the cache, we look for the whole document and request it if a cache miss occurs. But
if it is found, then we compute and cache both the fragment and the answer. Hence, we
always try to get the most specific data portion first and cache any freshly computed
data. For illustration, this process is implemented in the function combinedCaching().

The appropriate cache replacement strategy is not an issue in this thesis; thus, in
an implementation, any cache algorithm can be used. In our proof-of-concept imple-
mentation, we apply the well-known and straightforward LFU (least frequently used)
algorithm, i.e. if a cache is full and a new item should be inserted, we discard the least
frequently used entry.

114

7.1 Caching in dbxlink

Function 7.1: combinedCaching

Input: A link ` with dbxlink:cache=”on” to be resolved.
Output: The best fitting data item from the cache or, if a cache miss occurs, the remote data.
begin1

if answer found then2

return answer3

else if pointer found then4

compute answer5

cache answer6

return answer7

else if localDocument found then8

compute pointer9

cache pointer10

compute answer11

cache answer12

return answer13

else14

if eval=”remote” then15

answer ←– shipQuery(buildQueryToShip(. . .))16

cache answer17

return answer18

else if eval=”local” then19

doc←– getReferencedDocument(`.getAttribute(”xlink:href”))20

cache doc21

compute pointer22

cache pointer23

compute answer24

cache answer25

return answer26

else27

pointer←– getXMLFragment(`.getAttribute(”xlink:href”))28

cache pointer29

compute answer30

cache answer31

return answer32

end33

7.1.2 Implicit Caching during Query Evaluation

In contrast to the dbxlink:cache options given by designers of linked instances, an implicit
caching strategy is applied during query evaluation in an opaque way.

Consider the following situation. An XML document containing several XLinks is
queried. Assume that there are two different links `1 and `2 that reference the same
remote document. For instance, cities-D.xml is referenced by both the capital and the
cities link children of the element representing Germany. During querying the considered
document, at time-point t1, `1 is resolved, later at time-point t2, we have to handle `2.

115

7 Optimizing Query Processing for Interlinked XML Documents

Now, assume that in the meantime the remote document has changed. Thus, during a
single query evaluation, we could get different results for the same document. Though
in Mondial this should happen very rarely, this is still an issue in the general case.

However, this problem is not only relevant for our approach. It occurs in any scenario
where distributed XML documents are involved and it requires a distributed transaction
concept for XML. An investigation of this topic would lead us beyond the focus and scope
of this thesis but we mention some points that could be useful for the proof-of-concept
implementation.

In case of query shipping, we can not guarantee that remotely, the same data is
supplied for different shipped queries. The remote server gets the queries and handles
them autonomously. We have no possibility to check if the document changes between
different queries and also, there is no general mechanism to “lock” a certain remote
document during the evaluation of a specific user query.

For hybrid shipping, where we request the XML fragment addressed by an XPointer,
we can store any such fragment during the evaluation of a query in a special cache.
In case that an XPointer occurs in different links, the same (implicitly stored) data is
used. However, if two different XPointers reference “overlapping” fragments (e.g. one
fragment containing all German cities and another one consisting only of Berlin) which
are requested at different time-points, it might happen that the same data items have
changed in the meantime (e.g. Berlin’s population gets updated).

Considering data shipping, copies of remote documents can be kept locally. Thus,
during we process a query, we can favor any locally stored fragment or document over
requesting the corresponding remote data. By this approach, for a specific query, we as-
sure that any referenced fragment or document of links requiring hybrid or data shipping
is at most requested once remotely. Also, using this approach, we save some network
traffic and parsing of redundant data.

Note that any data cached for a link having an appropriate dbxlink:cache attribute is
used for any future query that traverses this link while the implicit or automatic caching
proposed in this paragraph is only relevant for a single query. After its evaluation, the
data that has been cached for links with disabled caching options is removed.

7.2 Projection of XML Documents and Fragments

Main memory XQuery processors like Saxon [SAX], Xalan [Xal] or Galax [Gal] are not
able to process queries on XML documents of arbitrary size because the documents
have to be loaded completely before evaluating the query. Hence, for overcoming this
limitation, the work in [MS03] proposes a method for reducing XML documents to
relevant parts wrt. a query, called projection. For a given XPath query, a set of relevant
projection paths is computed at compile time. These paths describe the parts of an XML
document that are needed to answer the query. Then, before loading a document, it can
thus be reduced in size according to these paths. Experiments in [MS03] have shown
that, using this method, the memory requirements can be reduced to 5% on average.

If we want to apply this approach in our implementation, we have to discuss the

116

7.2 Projection of XML Documents and Fragments

relationship to the different query evaluation modes, i.e. query shipping, data shipping
and hybrid shipping.

Query Shipping (dbxlink:eval=”remote”). We delegate the evaluation of the XLink
and the ongoing query evaluation to the remote server. The final result for this part
is then sent back to the originating server. Projection methods are not required here
because the result set can not be reduced. However, the remote server might exploit
these methods autonomously for its internal XPath evaluation processes.

Data Shipping (dbxlink:eval=”local”). In case of dbxlink:eval=”local”, the referenced
document is requested for a local evaluation, i.e. the XPointer and the remaining query
are processed subsequently on a local copy. If we want to avoid big documents to be
stored in the local database backend, we can apply projection (based on the XPointer of
the currently processed link) to the received document before it is stored. This means
that the requested document is projected wrt. the XPath expression contained in the
pointer. However, note that this is only useful if projection and the query evaluation
on the smaller fragment is faster than storing the whole document and evaluating the
query on the big fragment.

Hybrid Shipping (dbxlink:eval=”distributed”). If this shipping strategy is applied,
the XPointer expression is evaluated remotely returning the referenced XML fragment
to which the remaining query is applied locally. Thus, the remote server could apply
projection to the returned fragment according to the remaining query. Consider the
following informal example which illustrates how this approach could be used in our
implementation for hybrid shipping.

Example 7.1
Assume that the following query has to be evaluated on a variant of Mondial’s dis-
tributed version where for all links dbxlink:eval=”distributed” (i.e. hybrid shipping) is
set:

//organization[@abbrev=”EU”]/member/id(@capital)/population

The XPointers of the member elements (which are children of elements representing
organizations) reference the countries that are members of the actual organization. When
these pointers are resolved, not the whole country elements are transmitted, but only the
element “hull” with the capital XLink element (that due to the “L”-directive as “make-
attribute” will contribute the required capital attribute of the next step). Then, resolving
the capital link, not the whole corresponding city elements are transmitted, but only the
element hulls with the population subelements that are needed to answer the last step of
the query.

As sketched in the example above, given an XLink and an XPath user query, the idea
is to project the referenced XML fragment according to the XPath query rest. This
would be an “extended” hybrid shipping leading to less data traffic over the network

117

7 Optimizing Query Processing for Interlinked XML Documents

but it requires the remote server to support this operation. Here, the question comes
into mind if it is better to let the remote server process the whole query, i.e. to switch
to query shipping. However, there are some cases where hybrid shipping is preferable
compared to query shipping, e.g. there might be servers that do not support query
shipping according to the dbxlink approach but, besides XPath processing facilities, they
could offer projection methods.

118

8 Related and Further Work

In this section, some related work is discussed and we also sketch some open issues that
might lead to further work.

8.1 Related Work

Active XML. A general approach for integrating remote access functionality into XML
documents is proposed by Active XML [ABM+02]: <axml:sc> elements allow for embed-
ding service calls into XML documents. Active XML and dbxlink differ significantly wrt.
generality (Active XML) and specialization (dbxlink) and in the degree of integration
with the database functionality. While the dbxlink approach is an incremental extension
to the existing concepts of XLink and XPointer, targeting to provide a transparent data
model and support XPath/XQuery for them from the database point of view, Active
XML is a generic extension of functionality towards Web Services. Nevertheless, as
described below, dbxlink and Active XML can be used to implement each other.

Active XML has no processing directives (the left-hand- or “L”-directives in our ap-
proach) specifying how the results of Web Services should be integrated. Especially,
in Active XML, it is not possible to create attributes or duplicate elements. Addition-
ally, the dbxlink proposal provides explicit processing strategies (cf. the dbxlink:eval and
dbxlink:cache directives). Because there are some similarities between our approach and
Active XML we show how these techniques are related to each other wrt. Web Services.

In Active XML, axml:sc elements represent Web Service calls which are then replaced
by the result of the service call. It follows an example Active XML document1:

<directory>

<dep name=”Toy”>

<axml:sc>toy.xyz.com/GetToyPersonnel()</axml:sc>

</dep>

<dep name=”DVD”>

<axml:sc>dvd2000.com/GetDVDPersonnel()</axml:sc>

</dep>

</directory>

Note that there are many extra parameters that have to be supplied in order to fully
specify a Web Service call but they are generally omitted by the Active XML authors
for clarity reasons.

1Taken from http://www.activexml.net.

119

http://www.activexml.net

8 Related and Further Work

On one hand, an Active XML service that implements the dbxlink modeling and takes
a dbxlink-extended XLink element could return the appropriate XML fragment which is
then integrated into the Active XML document conforming to dbxlink:transparent=”drop-
element insert-nodes”. Other mappings are not possible with Active XML. On the other
hand, in order to embed Active XML into our proposal, evaluating XLink elements that
refer to Web Services by a dbxlink-extended XPath/XQuery engine covers the basic Ac-
tive XML functionality. Depending on the given Web Service, we can build appropriate
calls as described later in Section 8.2.1.

Decomposing Queries on Distributed XML Data. Several approaches dealing with
strategies for decomposing queries on distributed XML data have been investigated
whose results can also be used for the implementation of the dbxlink specification. In
[Suc02], distributed query evaluation for general semistructured data graphs is investi-
gated. The approach assumes that a fixed community of sites agrees on sharing their
data and answering queries. They split the query into a decomposed query, evaluate its
parts independently at each site, and assemble the result fragments. In contrast to this,
the scenario of our approach considers XLink references between arbitrary sources, and
the specification for mapping the linked fragments to a virtual instance and querying it.
The logical modeling of [Suc02] is similar to XInclude. In [BG03], the distribution of
XML repositories is investigated, focusing on index structures. Both these approaches
are orthogonal to ours (where the focus is on the modeling and handling of the interplay
of links seen as views) and could probably be applied for a more efficient implementation.

SXLink. The XLink processor SXLink [LL05] implemented in Scheme aims for offering
methods in order to be able to obtain all information about XLinks contained in a set
of XML documents. In this system, queries are supported by an XPath extension called
“XPathLink” implemented as “SXPathLink” in Scheme. This language introduces an
additional XPath axis traverse for traversing XLinks explicitly in XPath queries. As
already discussed in Section 4.1.1, we showed that our approach which handles queries
over linked XML instances transparently is preferable in the general case.

8.2 Further Work

The approach for querying interlinked XML instances proposed in this thesis can be
used for many different scenarios like data integration and distributed XML data man-
agement. In addition to these applications, with some further extensions, dbxlink would
even become more versatile. Thus, in this section, we sketch some ideas that could result
in useful extensions, e.g. for integrating Web Service calls and additional optimization
strategies.

8.2.1 Integrating Web Service Calls

The Web of today consists of a huge amount of web sites. Users usually request in-
formation via a web browser by navigating to desired web pages while computers also

120

8.2 Further Work

exchange data between each others in an autonomous way. In order to facilitate the
machine-to-machine interaction for this task, Web Services [WSW02] supply versatile
concepts. Many popular web sites offer Web Services for various purposes, e.g. the
Google SOAP Search API [GOO] can be used to access the popular web search engine
for submitting search requests. Thus, web searches can be integrated into arbitrary
programs.

In this section, we discuss how Web Service Calls can be integrated into the dbxlink
approach. As Web Services are an abstract concept and can be implemented using
different approaches like SOAP and plain HTTP, we consider both these approaches.

HTTP/REST. REST (Representational State Transfer) [Fie00] is a concept based on
HTTP (Hypertext Transfer Protocol) [HTT99] that defines several principles for mod-
eling distributed hypermedia systems in a straightforward way. In the context of Web
Services, it can be used for defining RESTful Web Services that are accessed by simple
HTTP GET requests. In order to supply parameters for a Web Service call, key-value
pairs can be given in the URI of the Web Service:

http://www.example.org/RESTwebservice?key1=value1&key2=value2

Here, the reference to the remote resource is described without XPointer. Thus, RESTful
Web Services are accessed by standard URIs and assuming that only Web Services that
return XML data to the client are considered, it is straightforward to embed these calls
into dbxlink. In fact, such a Web Service can be considered as any other static web
resource providing XML data. We just have to access the data and process an XPointer
to extract the relevant information locally. The following example illustrates how a
fictitious weather forecast service can be used to enrich the data about cities:

<city>

<name>New York</name>

<longitude>-74</longitude>

<latitude>40.4</latitude>

<population year=”96”>7380906</population>

<weather dbxlink:eval=”local”
dbxlink:transparent=”group-in-element insert-bodies”
xlink:href=”http://. . . /forecast?long=-74&lat=40.4#xpointer(//data)”/>

</city>

SOAP. Many Web Services can be accessed with the SOAP protocol [SOA03]. SOAP
messages are usually sent in XML via HTTP POST requests and consist of a SOAP
Envelope that contains a SOAP Body which is the most important part. It provides the
desired method to call plus its necessary parameters. Because of this overhead, SOAP
calls can not be embedded into dbxlink as straightforward as calls to RESTful services.

We could use the dbxlink:eval=”soap” directive to indicate that a SOAP call has to
be built. The xlink:href attribute should supply the URI of the Web Service. Addi-
tional attributes in a dbxlinksoap namespace could then be used to specify the desired

121

8 Related and Further Work

SOAP method (dbxlinksoap:method), any necessary parameter (dbxlinksoap:param) and
an XPointer expression (dbxlinksoap:xpointer) for extracting the desired information. The
basic structure of an embedded SOAP call looks as follows:

<link xlink:href=”soap-service-uri”
dbxlink:transparent=”transparent directive” dbxlink:eval=”soap”
dbxlinksoap:method=”soap-method” dbxlinksoap:xpointer=”xpath-expr”

<dbxlinksoap:param name=”key1” value=”value1”/>

...
<dbxlinksoap:param name=”keyn”>

<!-- data for this parameter -->

</dbxlinksoap:param>

</link>

The obtained XML result is then stored locally in a temporary document on which the
XPointer-like expression is processed in order to extract desired information. Finally, the
result is mapped into the partial instance according to the dbxlink:transparent directive.
Below, an example similar to the one given above is shown. It illustrates how to embed
a weather forecast into the city element via SOAP:

<city id=”cty-cid-cia-United-States-2”>

<name>New York</name>

<longitude>-74</longitude>

<latitude>40.4</latitude>

<population year=”96”>7380906</population>

<weather xlink:href=”http://www.weather.gov/forecasts/xml/
SOAP server/ndfdXMLserver.php”

dbxlink:transparent=”group-in-element insert-bodies”
dbxlink:eval=”soap”
dbxlinksoap:method=”NDFDgenByDay”
dbxlinksoap:xpointer=”//weather-conditions”>

<dbxlinksoap:param name=”longitude” value=”-74”/>

<dbxlinksoap:param name=”latitude” value=”40.4”/>

<dbxlinksoap:param name=”startDate” value=”TODAY”/>

<dbxlinksoap:param name=”numDays” value=”3”/>

<dbxlinksoap:param name=”format” value=”24 hourly”/>

</weather>

</city>

8.2.2 XPath Query Containment for XPointers

During the evaluation of an XPath user query on a scenario consisting of interlinked
XML documents, a set of relevant links has to be resolved. To achieve this, the links’
XPointers have to be processed. Basically, these XPointers are again XPath expressions
(cf. Section 2.3.1).

122

8.2 Further Work

For some pointers, it is possible that they have been computed for a previous user
query and hence can be found in a local cache. Thus, the corresponding XML fragments
can be used without the need of accessing the remote server. By contrast, for XPointers
that might not have been or should not be cached, we might want to check if they
are included in some other XPointer that has been evaluated before. For instance, the
element representing the city of Berlin which is addressed in the XML document cities-
D.xml by the expression /cities/city[name=’Berlin’] is already contained in the fragment
consisting of all German cities (/cities/city). Thus, if we have computed the latter
fragment and have cached it locally, then we could save the remote request by extracting
Berlin from this fragment. Note that this is only possible if we have accessed a fragment
during the evaluation of a query, i.e. if we have received actual data.

The task to check if the result of an XPath expression can be found in the result
set of another XPath expression is called XPath query containment problem [MS04].
There exist several investigations and proposals related to this problem. Unfortunately,
it has been shown that even for an XPath fragment that is restricted to the child and
descendant axes, wildcards (*) and predicates, the XPath query containment problem
is co-NP complete [MS04]. However, [BOB+04] proposes a polynomial time algorithm
also for comparison predicates and disjunctions that is sound and complete for most
useful cases. Also, in absence of one of the three operators, i.e. any combination of two
operators, there exist polynomial algorithms for the containment problem. Containment
detection and evaluation can be useful for the following cases:

• check if two pointers are contained in each other,

• containment of an XPath query rest in a previously computed rest.

After storing and parsing a new XML document, we have computed a set of XLinks
contained in that document. We know (i) where an XLink is contained in the XML tree
and (ii) the structure of the XPointer. Next, as XPointers are basically XPath expres-
sions, we can use the exponential but complete query containment algorithm proposed
in [MS04] in order to detect containment between the XLinks. This might be expensive
but is done only once for static XML documents. Thus, we will know which links are
contained in others and use this information for a more efficient link evaluation strategy
during query processing. For any link that has to be resolved during query evaluation
it is then checked if there is a fragment that contains its pointer.

Given a set of relevant links that have to be handled we propose the following treat-
ment:

• each pointer is checked if it is contained in some other pointer,

• big fragments are requested before the smaller ones (e.g. cities before capital).

On the other hand, if a user states a query, the question arises if it is possible to decide
in advance which links need to be evaluated. If we know which links have to be handled
and if we can detect if their results have already been cached (using a hash map), then

123

8 Related and Further Work

we can materialize the view and run the query directly on it instead of iterating over
all element nodes. The hash map used for mapping link elements to referenced XML
fragments could also be equipped with a path index leading to that link. Here, this
structure also has to respect the dbxlink:transparent directive.

8.2.3 XML Indexing

XML index structures are intended to expedite the processing of queries, especially of
path queries. Thus, in this section, we briefly describe how XML indexing techniques
could improve our implementation of an XLink-aware querying system.

General Requirements for Indexing. In our dbxlink approach, an important aspect
is that queries “traverse” autonomous documents, coming in via an XLink/XPointer,
and probably leaving it via another XPointer. Especially, the referenced documents are
usually not aware which references use them. Furthermore, it is preferable that the
knowledge about a referenced document can optionally be combined with the knowledge
of the referencing document (e.g., the index of countries.xml could be enhanced with
the knowledge about the structure of the linked cities-XX.xml documents). For that, the
combination of local indexes with a more lightweight structure for handling structural
information of the referenced sources as proposed in [BMCJ04] seems appropriate.

For the adaptation of indexing to the requirements of the dbxlink scenario the following
issues have to be considered: (i) autonomous documents (or “closely related” sets of
documents) maintain their own indexes, that must be “open” to adapt to the linked
sources, (ii) maintenance of combined index structures along references, preferably using
operators on such structures, and (iii) the possibility to extend the covered area on
demand.

Another use case is to build such indexes for all incoming XML fragments that are
received when links are processed with the local and distributed evaluation strategies. As
these fragments have to be parsed, we can generate appropriate indexes on-the-fly. Here,
if we do not take caching into account, the index can directly be tailored to the remaining
query xpath-expr2 which is not possible for stored XML instances which are parsed once.
Thus, for all documents the local instance points to, additional information is obtained
incrementally, e.g. for the corresponding links we know which progressing paths we can
expect. As a consequence, for query rests of XPath expressions that navigate along links,
we can decide if the link has to be resolved, i.e. if the query would yield a non-empty
result.

Data Guides. Data guides [GW97] have been developed for providing some benefits
of schema information in schema-free semistructured data environments. A data guide
can thus be adopted to a concise and accurate structural summary of an XML instance.
Such a structure can be generated in linear time. Considered from our point of view,
data guides can be used a priori for deciding if a given path (query) exists in an instance,
i.e., if the answer set of an XPath query against an XML document must be empty or

124

8.2 Further Work

not. Strong data guides [MAG+97] even allow not only to check if a path exists, but
also to return its answers.

Data guides can not only be applied for answering user queries, but especially for
deciding if an XLink provides a relevant answer. Consider hybrid shipping or query
shipping. A server that provides XML documents that are frequently queried (for eval-
uating XPointers or user queries) can maintain a data guide, and match each query first
against the data guide before actually evaluating it. Still, communication of the query,
including establishing of the connection is necessary. As an alternative, the referencing
document can keep (either by polling, or by publish-subscribe mechanisms) the data
guide of the referenced documents, and check the emptiness of the answer even before
doing any communication. Using data shipping, the data guide can be generated during
the parsing process of the referenced document.

Note that in case of references, the data guides either must include the referenced
documents (which leads to a fixpoint process for generating all of them in case of a
cyclic network), or end with an “ANY” where XLinks are present.

125

9 Conclusion

The dbxlink proposal specifies how interlinked XML instances are mapped to a virtual
instance. Links are considered as transparent, i.e. they define a view on referenced XML
data which is silently mapped into a virtual instance in a flexible way. In this thesis, it
has been analyzed how this virtual instance can be queried with XPath and it has been
described in an abstract way how to achieve this. In order to evaluate queries on an
interlinked scenario, it showed that it is not feasible to materialize the complete virtual
instance in advance. Instead, during query evaluation, only relevant links are resolved
on demand leading to the materialization of a partial instance that covers the parts of
the view which are necessary to answer the query appropriately.

Three different strategies can be applied for the evaluation of XLinks, namely data
shipping, hybrid shipping and query shipping. It has been discussed in detail how
these strategies are integrated into the query evaluation process. Also, how to cope
with cyclic instances has been investigated and some useful caching and optimization
strategies have been given. A proof-of-concept implementation of the dbxlink approach
has been undertaken as part of the open source XML database system eXist [exi].

This thesis provides results that fill the gap in the W3C XML Query (XQuery) Require-
ments and that can be applied to different XML query languages.

W3C XML Query (XQuery) Requirements. Recall the aforementioned W3C XML
Query (XQuery) Requirements [XMQ04, Sec. 3.3.4/3.4.12 (“References”)] which explic-
itly state that

“the XML Query Data Model MUST include support for references, including

both references within an XML document and references from one XML

document to another”

and that

“queries MUST be able to traverse intra- and inter-document references”,

but which have only been partially met by standard XQuery. Additionally, in Sec-
tion 4.1.1, it has been shown that it not possible to query along XLinks in a general
way. A description has been given how the dbxlink approach allows even for XQuery’s
subset XPath to query interlinked scenarios. Especially, the above mentioned W3C re-
quirements have been met for simple XLinks in both an abstract and practical way in
terms of a proof-of-concept implementation.

127

9 Conclusion

Transferability and Applicability. The query strategies proposed in this thesis are de-
scribed in an abstract way and it has been shown how to implement dbxlink functionality
as an extension to XML query systems that rely on the stepwise evaluation strategy for
XPath: the link expansion has to be integrated into the axis evaluation. Thus, these
descriptions allow for enabling any XML query language based on XPath like XQuery,
XPathLog [May04] or XSLT [XSL06] for handling simple XLinks. Additionally, for
querying interlinked XML instances which contain the more complex extended XLinks,
the investigations conducted in this work can serve as a basic foundation.

Online Demonstration. The results of the investigations outlined in this thesis have
been used for conducting a proof-of-concept implementation of the dbxlink approach
as an extension to the open source XML database system eXist [exi]. The Mondial

testbed (cf. Chapter 1) has been used to set up an online demonstration that is reachable
via http://www.dbis.informatik.uni-goettingen.de/linxis/ where some example
queries are provided.

128

http://www.dbis.informatik.uni-goettingen.de/linxis/

Bibliography

[ABM+02] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active
XML: Peer-to-Peer Data and Web Services Integration. In VLDB, pp. 1087–
1090, 2002.

[Ato05] The Atom Syndication Format. http://www.ietf.org/rfc/rfc4287.txt,
2005.

[axi] Apache Axis: an Implementation of the SOAP Protocol. http://ws.

apache.org/axis/.

[BFM06a] E. Behrends, O. Fritzen, and W. May. Handling Interlinked XML Instances
on the Web. In EDBT, pp. 792–810, 2006.

[BFM06b] E. Behrends, O. Fritzen, and W. May. Querying along XLinks in
XPath/XQuery: Situation, Applications, Perspectives. In 11th FMLDO
Workshop: QLQP, pp. 662–674, 2006.

[BG03] J.-M. Bremer and M. Gertz. On Distributing XML Repositories. In WebDB,
pp. 73–78, 2003.

[BMCJ04] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain. XPath lookup
queries in P2P networks. In WIDM, pp. 48–55, 2004.

[BOB+04] A. Balmin, F. Ozcan, K. S. Beyer, R. Cochrane, and H. Pirahesh. A Frame-
work for Using Materialized XPath Views in XML Query Processing. In
VLDB, pp. 60–71, 2004.

[Bru04] M. Brundage. XQuery: The XML Query Language. Addison-Wesley, 2004.

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6):377–387, 1970.

[DOM98] Document Object Model (DOM). http://www.w3.org/DOM/, 1998.

[exi] eXist: Open Source Native XML Database. http://exist-db.org/.

[Fie00] R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. Dissertation, University of California, Irvine, 2000.

129

http://www.ietf.org/rfc/rfc4287.txt
http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://www.w3.org/DOM/
http://exist-db.org/

Bibliography

[FJK96] M. J. Franklin, B. T. Jónsson, and D. Kossmann. Performance Tradeoffs
for Client-Server Query Processing. In SIGMOD Conference, pp. 149–160,
1996.

[Gal] Galax: An Implementation of XQuery. http://www.galaxquery.org/.

[GOO] Google SOAP Search API. http://www.google.com/apis/.

[GW97] R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases. In VLDB, pp. 436–445, 1997.

[HTM99] HTML 4.01 Specification. http://www.w3.org/TR/html401/, 1999.

[HTT99] Hypertext Transfer Protocol – HTTP/1.1, Requests for Comments: 2616.
http://www.ietf.org/rfc/rfc2616.txt, 1999.

[KCD+03] H. Katz, D. Chamberlin, D. Draper, M. Fernandez, M. Kay, J. Robie,
M. Rys, J. Simeon, J. Tivy, and P. Wadler. XQuery from the Experts: A
Guide to the W3C XML Query Language. Addison-Wesley, 2003.

[Len02] M. Lenzerini. Data Integration: A Theoretical Perspective. In PODS, pp.
233–246, 2002.

[LL05] D. A. Lizorkin and K. Y. Lisovsky. Implementation of the XML Linking Lan-
guage XLink by Functional Methods. Programming and Computer Software,
31(1):34–46, 2005.

[LS04] W. Lehner and H. Schöning. XQuery. dpunkt.verlag GmbH, 2004.

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A
Database Management System for Semistructured Data. SIGMOD Record,
26(3):54–66, 1997.

[May02] W. May. Querying Linked XML Document Networks in the Web. In
11th. WWW Conference, 2002. Available at http://www2002.org/CDROM/

alternate/166/.

[May04] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML
Data Manipulation Language. TPLP, 4(3):239–287, 2004.

[MM03] W. May and D. Malheiro. A Logical, Transparent Model for Querying Linked
XML Documents. In BTW, pp. 147–156, 2003.

[Mon01] The Mondial Database. http://www.dbis.informatik.

uni-goettingen.de/Mondial/, 2001.

[MS03] A. Marian and J. Siméon. Projecting XML Documents. In VLDB, pp.
213–224, 2003.

130

http://www.galaxquery.org/
http://www.google.com/apis/
http://www.w3.org/TR/html401/
http://www.ietf.org/rfc/rfc2616.txt
http://www2002.org/CDROM/alternate/166/
http://www2002.org/CDROM/alternate/166/
http://www.dbis.informatik.uni-goettingen.de/Mondial/
http://www.dbis.informatik.uni-goettingen.de/Mondial/

Bibliography

[MS04] G. Miklau and D. Suciu. Containment and Equivalence for a Fragment of
XPath. Journal of the ACM, 51(1):2–45, 2004.

[Nam06] Namespaces in XML 1.0 (Second Edition). http://www.w3.org/TR/

REC-xml-names/, 2006.

[OMFB02] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking Forward. In
EDBT Workshops, pp. 109–127, 2002.

[QRS+95] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. Querying
Semistructured Heterogeneous Information. In DOOD, pp. 319–344, 1995.

[RBHS04] C. Re, J. Brinkley, K. P. Hinshaw, and D. Suciu. Distributed XQuery. In
IIWeb, pp. 116–121, 2004.

[REL01] RELAX NG. http://www.relaxng.org/spec-20011203.html, 2001.

[RSS99] Rich Site Summary (RSS) 0.91 Spec, revision 3. http://my.netscape.com/
publish/formats/rss-spec-0.91.html, 1999.

[SAX] SAXON: The XSLT and XQuery Processor. http://saxon.sourceforge.

net/.

[SGM86] Standard Generalized Markup Language (SGML). ISO (International Orga-
nization for Standardization), ISO 8879:1986, 1986.

[SOA03] SOAP Version 1.2 Part 0: Primer. http://www.w3.org/TR/soap12-part0/,
2003.

[SQL03] Information Technology–Database Language–SQL. ISO (International Or-
ganization for Standardization), ISO 9075:2003, 2003.

[Suc02] D. Suciu. Distributed Query Evaluation on Semistructured Data. TODS,
27(1):1–62, 2002.

[TK78] D. Tsichritzis and A. C. Klug. The ANSI/X3/SPARC DBMS Framework
Report of the Study Group on Dabatase Management Systems. Inf. Syst.,
3(3):173–191, 1978.

[W3C] W3C – The World Wide Web Consortium. http://www.w3.org/.

[WSW02] W3C Web Services Activity. http://www.w3.org/2002/ws/, 2002.

[Xal] The Apache Xalan Project. http://xalan.apache.org/.

[XHT00] XHTML 1.0 The Extensible HyperText Markup Language (Second Edition).
http://www.w3.org/TR/xhtml1/, 2000.

[XIn04] XML Inclusions (XInclude). http://www.w3.org/TR/xinclude/, 2004.

131

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.relaxng.org/spec-20011203.html
http://my.netscape.com/publish/formats/rss-spec-0.91.html
http://my.netscape.com/publish/formats/rss-spec-0.91.html
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/
http://www.w3.org/2002/ws/
http://xalan.apache.org/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xinclude/

Bibliography

[XLi01] XML Linking Language (XLink) Version 1.0. http://www.w3.org/TR/

xlink/, 2001.

[XLi06] XML Linking Language (XLink) Version 1.1. http://www.w3.org/TR/

xlink11/, 2006.

[XML00] XML:DB. XUpdate - XML Update Language. http://xmldb-org.

sourceforge.net/xupdate/, 2000.

[XML04a] XML Information Set (Second Edition). http://www.w3.org/TR/

xml-infoset/, 2004.

[XML04b] XML Schema Part 0: Primer Second Edition. http://www.w3.org/TR/

xmlschema-0/, 2004.

[XML04c] XML Schema Part 1: Structures Second Edition. http://www.w3.org/TR/

xmlschema-1/, 2004.

[XML06] Extensible Markup Language (XML) 1.0 (Fourth Edition). http://www.w3.
org/TR/REC-xml/, 2006.

[XMQ04] XML Query (XQuery) Requirements. http://www.w3.org/TR/

xquery-requirements/, 2004.

[XMQ06a] XQuery 1.0 and XPath 2.0 Data Model (XDM). http://www.w3.org/TR/

query-datamodel/, 2006.

[XMQ06b] XQuery 1.0 and XPath 2.0 Formal Semantics. http://www.w3.org/TR/

xquery-semantics/, 2006.

[XPa06] XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/, 2006.

[XPQ06] XQuery 1.0 and XPath 2.0 Functions and Operators. http://www.w3.org/
TR/xquery-operators/, 2006.

[XPt02] XPointer xpointer() Scheme. http://www.w3.org/TR/xptr-xpointer/,
2002.

[XPt03a] XPointer element() Scheme. http://www.w3.org/TR/xptr-element/, 2003.

[XPt03b] XPointer Framework. http://www.w3.org/TR/xptr-framework/, 2003.

[XPt03c] XPointer xmlns() Scheme. http://www.w3.org/TR/xptr-xmlns/, 2003.

[XQu06] XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/,
2006.

[XSL06] XSL Transformations (XSLT) Version 2.0. http://www.w3.org/TR/

xslt20/, 2006.

132

http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink11/
http://www.w3.org/TR/xlink11/
http://xmldb-org.sourceforge.net/xupdate/
http://xmldb-org.sourceforge.net/xupdate/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xquery-requirements/
http://www.w3.org/TR/xquery-requirements/
http://www.w3.org/TR/query-datamodel/
http://www.w3.org/TR/query-datamodel/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xptr-xpointer/
http://www.w3.org/TR/xptr-element/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-xmlns/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/

Curriculum Vitae

Erik Behrends

Persönliche Daten

Geburtsdatum 8. März 1974
Geburtsort Itzehoe
Staatsangehörigkeit deutsch
Familienstand verheiratet

Wissenschaftlicher Werdegang

1980-1984 Breitenaugrundschule Plön

1984-1993 Gymnasium Schloss Plön; Abschluss: Abitur

1995-1997 Studium der Informatik und Mathematik an der
Christian-Albrechts-Universität zu Kiel

1997-2001 Studium der Informatik mit Nebenfach Mathematik an
der Albert-Ludwigs-Universität Freiburg
Abschluss: Diplom-Informatiker

1998-2001 Studentische wissenschaftliche Hilfskraft am Institut für
Informatik der Albert-Ludwigs-Universität Freiburg

2001-2003 Software-Entwickler bei der Inxmail GmbH in Freiburg

seit 2003 Wissenschaftlicher Mitarbeiter am Institut für Informatik
der Georg-August-Universität Göttingen

	Title
	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	List of Figures
	1 Introduction
	2 XML Preliminaries
	2.1 XML
	2.1.1 Semistructured Data
	2.1.2 Components of XML Documents
	2.1.3 DTD
	2.1.4 Namespaces
	2.1.5 XML Data Models

	2.2 XML Querying
	2.2.1 XPath
	2.2.2 XQuery

	2.3 XML Linking
	2.3.1 XPointer
	2.3.2 XInclude
	2.3.3 XLink
	2.3.4 XLinks for Distributed XML Documents
	2.3.5 XLink Usage

	2.4 Summary

	3 The dbxlink Model for Mapping XLinked XML Sources
	3.1 Motivation
	3.2 Mapping Distributed XML Instances
	3.2.1 Directives for Simple XLinks
	3.2.2 Relative XLinks

	3.3 Relationships with W3C Concepts
	3.3.1 XML Infoset
	3.3.2 XLink for Browsing
	3.3.3 XInclude

	4 Querying XML Sources along XLinks with dbxlink
	4.1 Querying Linked XML Instances
	4.1.1 XQuery and XLinks
	4.1.2 Querying Distributed XML the dbxlink Way
	4.1.3 Additional Directives

	4.2 Focus on XPath without Reverse Axes
	4.3 Naive Querying Approach
	4.4 Dynamic Query Evaluation
	4.4.1 Stepwise Result Set Evaluation
	4.4.2 Extension of the Stepwise Evaluation

	4.5 Cyclic Instances and Non-Terminating Queries
	4.5.1 Ordinary Cycles
	4.5.2 Vicious Cycles
	4.5.3 Detection of Cycles
	4.5.4 Non-Terminating Queries

	4.6 Summary

	5 Detailed Querying and Implementation Issues
	5.1 Partial Instance
	5.2 Extending the Stepwise Path Evaluation
	5.2.1 How to Obtain Relevant Link Elements for a Given Axis
	5.2.2 Special Case: Links that Turn their Parent into an XLink

	5.3 Resolving of XLinks
	5.3.1 Data and Hybrid Shipping
	5.3.2 Query Shipping
	5.3.3 Fallback Strategies

	5.4 Handling ID/IDREF Attributes
	5.4.1 IDREF(S) in Referenced Documents

	5.5 Result Set Normalization
	5.6 Implementation
	5.6.1 Extensions to eXist
	5.6.2 Example Evaluation
	5.6.3 Book-Keeping for Cycle Detection
	5.6.4 Results

	6 Discussion of Query Shipping
	6.1 Restrictions on Query Shipping
	6.1.1 Local Data of Links
	6.1.2 Remaining Queries that Contain the following Axis
	6.1.3 Considering following-siblings and Position Checks
	6.1.4 Summary

	6.2 Rewritings and Result Integration
	6.2.1 Absolute Document References
	6.2.2 Local and Remote Result Nodes of Links

	6.3 Building the Query to be Shipped

	7 Optimizing Query Processing for Interlinked XML Documents
	7.1 Caching in dbxlink
	7.1.1 Caching for XLinks using dbxlink:cache Attributes
	7.1.2 Implicit Caching during Query Evaluation

	7.2 Projection of XML Documents and Fragments

	8 Related and Further Work
	8.1 Related Work
	8.2 Further Work
	8.2.1 Integrating Web Service Calls
	8.2.2 XPath Query Containment for XPointers
	8.2.3 XML Indexing

	9 Conclusion
	Bibliography
	Curriculum Vitae

