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Chapter 1

Introduction

1.1 Statement of Main Results

Recall that a classical theorem of Lévy on the modulus of continuity of Brow-
nian sample paths ([38], see e.g. [33, 40]) asserts that if {B(x), x ≥ 0} is the
standard Brownian motion then, almost surely,

lim sup
n→∞

1√
2 log n

sup
x1,x2∈[0,1]
x2−x1=1/n

B(x2)−B(x1)√
x2 − x1

= 1.

It is not difficult to deduce from this that

lim
n→∞

1√
2 log n

sup
x1,x2∈[0,1]
x2−x1≥1/n

B(x2)−B(x1)√
x2 − x1

= 1.

Our main result is the following theorem which can be considered as a dis-
tributional convergence version of Lévy’s modulus of continuity.

Theorem 1.1.1. Let {B(x), x ≥ 0} be the standard Brownian motion. For
n > 1 set

Ln = sup
x1,x2∈[0,1]
x2−x1≥1/n

B(x2)−B(x1)√
x2 − x1

.

Then, for every τ ∈ R,

lim
n→∞

P [Ln ≤ an + bnτ ] = exp(−e−τ ),
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where the constants an and bn are given by

an =
√

2 log n+
3/2 log2 n− log 2

√
π√

2 log n
, (1.1)

bn =
1√

2 log n
. (1.2)

Thus, the distribution of Ln, appropriately normalized, converges as n→∞
to the Gumbel distribution. We prove Theorem 1.1.1 in Chapter 2.
In Chapter 3 we prove an analogue of Theorem 1.1.1 for totally skewed stable
Lévy processes.
In Chapter 4 we prove a result on the almost sure limiting behavior of the
multidimensional self-normalized increments. The methods of Chapter 4 are
different from that of Chapters 2 and 3.
We use the notation log2 n = log log n, log3 n = log log log n, etc.

1.2 Related Results

The classical global law of the iterated logarithm for the Brownian motion
says that if {B(x), x ≥ 0} is the standard Brownian motion then, almost
surely,

lim sup
n→∞

B(n)√
2n log2 n

= 1,

It is not difficult (see e.g. Theorem 14.15 in [50]) to deduce that

lim
n→∞

1√
2 log2 n

sup
x∈[1,n]

B(x)√
x

= 1.

In 1956, Darling and Erdös [19] proved the following theorem which can be
thought of as a distributional convergence version of the law of the iterated
logarithm.

Theorem 1.2.1. Let {B(x), x > 0} be the standard Brownian motion. For
n > 1 define

Mn = sup
x∈[1,n]

B(x)√
x
.

Then, for every τ ∈ R,

P [Mn ≤ an + bnτ ] → exp(−e−τ ),
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where the constants an and bn are given by

an =
√

2 log2 n+
1/2 log3 n− log 2

√
π√

2 log2 n
,

bn =
1√

2 log2 n
.

Of course, the same theorem holds also for

Mn = sup
x∈[1/n,1]

B(x)√
x
,

which gives a distributional convergence version of the local law of the iter-
ated logarithm.
The classical Hartman-Wintner law of the iterated logarithm says that if
{Xi, i ∈ N} is an i.i.d. sequence of random variables satisfying E[Xi] = 0,
E[X2

i ] = 1 then

lim sup
n→∞

Sn√
2n log2 n

= 1,

where Sn = X1 + . . . +Xn. Using this, it is not difficult to show (see Theo-
rem 14.15 in [50]) that

lim
n→∞

1√
2 log2 n

sup
k∈{1,...,n}

Sk√
k

= 1.

Using Theorem 1.2.1 and a strong approximation argument, Darling and
Erdös deduced the following distributional convergence version of the law of
the iterated logarithm for i.i.d. sequences.

Theorem 1.2.2 (Darling-Erdös). Let {Xi, i ∈ N} be i.i.d. random vari-
ables subject to E[Xi] = 0, E[X2

i ] = 1 and E[|Xi|3] < ∞. Define Sn =
X1 + . . .+Xn and

Mn = max
k∈{1,...,n}

Sk√
k
.

Then, for every τ ∈ R,

P [Mn ≤ an + bnτ ] → exp(−e−τ ),
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where the constants an and bn are given by

an =
√

2 log2 n+
1/2 log3 n− log 2

√
π√

2 log2 n
,

bn =
1√

2 log2 n
.

The moment condition in the above theorem can be relaxed. Indeed, Ein-
mahl [22] has found the following necessary and sufficient condition for the
Darling-Erdös theorem to hold.

Theorem 1.2.3. Let {Xi, i ∈ N} be i.i.d. random variables with E[Xi] = 0,
E[X2

i ] = 1. Define Mn like in Theorem 1.2.2. Then the following statements
are equivalent:

1. P [Mn ≤ an + bnτ ] → exp(−e−τ ).

2. E[X2
i 1|Xi>t|] = o(1/ log log t) as t→∞.

Both the law of the iterated logarithm and its distributional convergence
version were generalized in different directions. See [23] for a generalization
of the Darling-Erdös theorem to martingale differences and [30] for a version
for long-range dependent variables. For an almost-sure version of the Darling-
Erdös theorem see [7, 9, 10].
Let us also mention an alternative, different from the Darling-Erdös theorem,
distributional version of the law of the iterated logarithm, proved in [34].

Theorem 1.2.4. Let {B(x), x ≥ 0} be the standard Brownian motion. De-
fine

Mn = sup
x≥n

B(x)√
2x log2 x

.

Then, for every τ ∈ R,

lim
n→∞

P [Mn ≤ an + bnτ ] = exp(−e−τ ),

where the constants an and bn are given by

an = 1 +
3/2 log3 n− log4 n− log(3/

√
2)

2 log2 n
,

bn =
1

2 log2 n
.
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Another classical theorem concerning the almost sure sample path behavior
of the Brownian motion is Lévy’s modulus of continuity. It says that if
{B(x), x ≥ 0} is the standard Brownian motion then, almost surely,

lim sup
n→∞

1√
2 log n

sup
x1,x2∈[0,1]
x2−x1=1/n

B(x2)−B(x1)√
x2 − x1

= 1. (1.3)

Note that although Lévy’s modulus of continuity is usually stated in the form
given above (see e.g. [33, 40]), it is not difficult to show that (1.3) remains
true with lim instead of lim sup.
If we set, for n > 1,

Ln = sup
x1,x2∈[0,1]
x2−x1≥1/n

B(x2)−B(x1)√
x2 − x1

then

lim
n→∞

1√
2 log n

Ln = 1.

Our main result, Theorem 1.1.1, asserts that, appropriately normalized, the
distribution of Ln converges weakly to the Gumbel distribution. We shall
prove Theorem 1.1.1 in Chapter 2. While the proofs of both Theorem 1.2.1
and Theorem 1.2.4 rely on explicit calculations with the Ornstein-Uhlenbeck
process, our proof of Theorem 1.1.1 uses Pickands’ method of double sums.
A quantity similar to Ln was considered in [20] where the following result
was proved

Theorem 1.2.1. Let {B(x), x ≥ 0} be the standard Brownian motion. Then

sup
x1,x2∈[0,1]

x2>x1

B(x2)−B(x1)√
x2 − x1

−
√

2 log
1

x2 − x1

is finite almost surely.

Note, however, that this result follows from the Erdös-Chung-Sirao integral
test (see [17] or [33, §1.9]).
The following theorem proved in [20, 21] is a discrete version of Theo-
rem 1.2.1.
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Theorem 1.2.5. Let {Xi, i ∈ N} be an i.i.d. sequence of standard normal
variables. Define Sn = X1 + . . .+Xn and

Ln = max
1≤i<j≤n

(
Sj − Si√
j − i

−
√

2 log
n

j − i

)
.

Then the distribution of Ln converges weakly as n→∞.

Unfortunately, we are unable to prove the following discrete counterpart of
Theorem 1.1.1 even in the case of normally distributed variables.

Statement 1.2.6. Let {Xi, i ∈ N} be an i.i.d. sequence of random variables
subject to E[Xi] = 0, E[X2

i ] = 1 and some additional moment condition.
Define Sn = X1 + . . .+Xn and

Ln = max
1≤i<j≤n

Sj − Si√
j − i

.

Then the distribution of Ln, appropriately normalized, converges to the Gum-
bel distribution.

The almost sure limiting behavior of Ln from the above statement was stud-
ied in [50, §14.3] and [52, 53]. In particular, Shao [52] proves the following
result.

Theorem 1.2.7. Let {Xi : i ∈ N} be i.i.d. random variables. Suppose that
E[Xi] = 0, E[X2

i ] = 1 and that ϕ(t) = E[etX1 ] exists finitely in some interval
containing 0. Set Sn = X1 + . . .+Xn and

Ln = max
1≤i<j≤n

Sj − Si√
j − i

.

Then, almost surely,

lim
n→∞

1√
2 log n

Ln = α∗,

where α∗ ∈ [1,∞] is a constant depending on the distribution of Xi.

It follows from the above theorem that the normalizing constants in State-
ment 1.2.6 have to depend on the distribution of Xi. In particular, it is
impossible to deduce Statement 1.2.6 from Theorem 1.1.1 by any straight-
forward strong approximation argument.
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Both the law of the iterated logarithm and Lévy’s modulus of continuity
were generalized to α-stable Lévy processes. We consider here only the more
difficult case of totally skewed processes.
The following theorem [26, 41] is the law of the iterated logarithm for totally
skewed α-stable processes, see [41] for more information.

Theorem 1.2.8. Let {ξ(x), x ≥ 0} be an α-stable Lévy process with α ∈ (1, 2]
and skewness parameter β = −1. Then

lim sup
n→∞

ξ(n)

n1/α(log2 n)(α−1)/α
= B−(α−1)/α

α ,

where
Bα = (α− 1)α−α/(α−1)| cos(πα/2)|1/(α−1).

There are also analogous results for α ∈ (0, 1) and α = 1 (see [41]).
The following distributional convergence version of the law of the iterated
logarithm for totally skewed α-stable processes was proved by Bertoin in [12].

Theorem 1.2.9. Let {ξ(x), x ≥ 0} be an α-stable Lévy process with α ∈ (1, 2]
and skewness parameter β = −1. For n > 1 set

Mn = sup
x∈[1,n]

ξ(x)

x1/α
.

Then, for every τ ∈ R,

lim
n→∞

P [Mn ≤ an + bnτ ] = exp(−e−τ ),

where the constants an and bn are given by

an =
1

B
(α−1)/α
α

(
(log2 n)(α−1)/α +

α− 1

α

1/2 log3 n− log
√

2απ

(log2 n)1/α

)
, (1.4)

bn =
1

B
(α−1)/α
α

α− 1

α

1

(log2 n)1/α
. (1.5)

Here, Bα is the same constant as in the previous theorem.

There is also a version for α ∈ (0, 1), see [12].
The next theorem [29, 41] ist the analogue of Lévy’s modulus of continuity
for totally-skewed α-stable processes.
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Theorem 1.2.10. Let {ξ(x), x ≥ 0} be an α-stable Lévy process with α ∈
(1, 2] and skewness parameter β = −1. For n > 1 set

Ln = sup
x1,x2∈[0,1]
x2−x1≥1/n

ξ(x2)− ξ(x1)

(x2 − x1)1/α
.

Then

lim
n→∞

Ln

(log n)(α−1)/α
= B−(α−1)/α

α ,

where Bα is the same as in Theorem 1.2.8.

The main result of Chapter 3, Theorem 3.1.1, says that, appropriately nor-
malized, the distribution of Ln converges to the Gumbel distribution.

1.3 Method of the proof

A natural method to use for the proof of Theorem 1.1.1 is the double sum
method. The double sum method was introduced by Pickands in [43, 44],
where the following theorem was proved

Theorem 1.3.1 (Pickands). Let {X(t), t ∈ R} be a stationary centered
and normed gaussian process with continuous sample paths. Suppose that the
covariance function r(t) = E[X(0)X(t)] satisfies the following conditions:

1. r(t) = 1− C| t|α + o(| t|α) as t→ 0 for some α ∈ (0, 2].

2. r(t) log t→ 0 as t→∞.

For n > 0 define
Mn = sup

t∈[0,n]

X(t).

Then, for every τ ∈ R,

lim
n→∞

P[Mn ≤ an + bnτ ] = exp(−e−τ ),

where the constants an and bn are given by

an =
√

2 log n+
2−α
2α

log2 n+ log(HαC(2π)−1/22(2−α)/2α)
√

2 log n
,

bn =
1√

2 log n
.

Here, Hα ∈ (0,∞) is some constant.
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We refer to [36, Chapter 12] and [46] for two descriptions of Pickands’ method
as well as for simplifications in the original proof of Theorem 1.3.1. See also
[48, 49, 14, 3] for generalizations of Theorem 1.3.1.
Here, we recall only the basic idea of Pickands’ method. It consists of three
stages. Let {X(t), t ∈ Rd} be centered and normed gaussian field. Let
{Gn, n > 0}, Gn ⊂ Rd be a growing family of sets. The goal is to prove
that the distribution of Mn = supt∈Gn

X(t) converges, after rescaling, to the
Gumbel distribution.
At the first stage (infinitesimal maxima), one obtains an estimate of the form

P

[
sup

t∈Q(t0,u)

X(t) > u

]
∼ CP[X(t0) > u], u→∞.

Here, t0 ∈ Rd and Q(t0, u) 3 t0 is a small set depending on u and converging
to t0 as u → ∞. C is a constant depending on the precise structure of the
set Q(t0, u).
At the second stage (local maxima), one investigates the asymptotic behavior
of P[supx∈K X(t) > u] for a compact set K of finite positive measure. To
this end, one divides the set K into small sets of the form Q(ti, u) , i ∈ I,
considered at the first stage and proves that the events supt∈Q(ti,u)X(t) > u
are getting independent as u → ∞. Using the Bonferroni inequality one
obtains

P

[
sup
x∈K

X(t) > u

]
≈
∑

i

P

[
sup

t∈Q(ti,u)

X(t) > u

]
≈ CuDP [X(0) > u]

for some constant D depending on the structure of the field X.
At the third stage (global maxima), one considers P[supt∈Gn

X(t) > un] for a
growing family Gn of sets and a sequence un converging to∞ as n→∞. One
divides Gn into ≈ n approximately equal peaces Ki, of the form considered
at the second stage, and proves that the events supt∈Ki

X(t) > un are getting
independent as n → ∞. The peaces Ki and the sequence un are chosen in
such a way that P[supt∈Ki

X(t) > un] ∼ e−τ/n, n → ∞. Since the maxima
over the different Ki are approximately independent, one obtains by the
Poisson limit theorem the desired result

P

[
sup
t∈Gn

X(t) > un

]
→ exp(−e−τ ), n→∞.
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Originally, Pickands’ method was used for stationary processes defined on R.
Later, it was extended to stationary processes on Rd [14], to stationary non-
gaussian processes [1], etc. A general class of gaussian fields, called locally
stationary fields, to which the first two stages of Pickands’ method can be
applied was introduced in [42]. However, both the definition of this class and
the statement of the main result in [42] seem to contain errors. A correct
version is given in [16], see also [31] for the one-dimensional case. We recall
the definition of locally stationary gaussian fields in Section 2.2 and show
that the field of self-normalized Brownian motion increments defined by

X(x, y) =
B(x+ y)−B(x)

y1/2
, y > 0,

belongs to this class. Here, {B(t), t > 0} is the standard Brownian motion.
The third stage of Pickands’ method is done in Section 2.3.
Let us say a few words about the extension of Theorem 1.1.1 to the totally
skewed α-stable case. This is done in Chapter 3, see Theorem 3.1.1 for the
statement of the main result. First note that we consider only totally skewed
to the left processes. For, otherwise, the process has positive jumps, and it is
not difficult to prove that the functional Ln from Theorem 3.1.1 converges,
after normalization, to the length of the largest jump of the process. Since
it is known that the largest jump has Frechet distribution, the analogue of
Theorem 3.1.1 in the non-totally-skewed case becomes rather trivial. Thus,
the only interesting cases are α ∈ (1, 2], β = −1; α = 1, β = −1 and α ∈
(0, 1), β = −1. In Theorem 3.1.1, only the first case is considered. The other
cases can be treated by the same methods.
The main technical difficulty of Pickands’ method is proving the approximate
independence of events of the form supt∈Q(ti,u)X(t) > u (second stage) and
supt∈Ki

> un (third stage). If the process is gaussian, such tools as Fernique
Inequality, Borell Inequality, Slepian’s Lemma, Berman’s Inequality, etc. are
usually used. Since all these tools are not available in the α-stable setting,
we make use instead of the concrete structure of the process X. Our methods
are similar to that of Albin [2, 3, 4, 5], who studied the extreme-value behav-
ior of α-stable (and, more generally, infinitely divisible) Ornstein-Uhlenbeck
processes. Some results of Albin, in particular that from [2] and, partially, [4]
can be obtained by doing explicit calculations with Ornstein-Uhlenbeck pro-
cesses like in [12] without using Pickands’ method. However, in the case of
self-normalized increments, explicit calculations seem impossible.
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Chapter 2

Extreme-Value Analysis of
Self-Normalized Brownian
Motion Increments

2.1 Introduction

In this chapter we prove Theorem 1.1.1 from Chapter 1. Let us describe
briefly the method of the proof and fix some notation.
Let

H = {t = (x, y) ∈ R2 | y > 0}
denote the open upper half-plane. A point t = (x, y) ∈ H will be often
identified with the interval [x, x + y] ⊂ R. There is a natural action of the
group of affine transformations of the real line on H defined as follows. If
g : x 7→ ax+ b, where a > 0, b ∈ R, is an affine transformation of R, then the
action of g on H is given by

g(t) = (ax+ b, ay), t = (x, y) ∈ H.

Let {B(x), x ≥ 0} be the standard Brownian motion. Define the random
field {X(t), t = (x, y) ∈ H} of self-normalized Brownian increments by

X(t) =
B(x+ y)−B(x)

y1/2
. (2.1)

Note that the field X is gaussian. Note also that for each t ∈ H the distri-
bution of X(t) is standard normal.
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The following invariance property of the field X will be useful

Proposition 2.1.1. Let g be an affine transformation of R. Then, for each
t1, . . . , tn ∈ H, the joint distribution of X(g(t1)), . . . , X(g(tn)) coincides with
the joint distribution of X(t1), . . . , X(tn).

Proof. Suppose first that g(x) = x+ b. Then the statement of the proposi-
tion follows from the stationarity of the increments of the Brownian motion.
Suppose now that g(x) = ax. Then the proposition follows from the scaling
property of the Brownian motion. Since any affine transformation of R is a
composition of x 7→ ax and x 7→ x+ b, the proposition follows.

The above proposition allows us to state Theorem 1.1.1 in the following,
equivalent form.

Theorem 2.1.2. For n > 1 let H(n) be the triangle {(x, y) ∈ H | x ∈
[0, n], y ∈ [1, n − x]}. Define the random field X by (2.1). Then, for each
τ ∈ R,

lim
n→∞

P

[
sup

t∈H(n)

X(t) ≤ an + bnτ

]
= exp(−e−τ ),

where an, bn are constants defined by (1.1) and (1.2).

The rest of the chapter is devoted to the proof of Theorem 2.1.2.
In Section 2.2, we recall the notion of locally stationary gaussian field in-
troduced in [6, 31, 42, 16], give some examples and show that the field X
belongs to this class. The main result of this section is Corollary 2.2.12.
The proof of Theorem 2.1.2 is given in Section 2.3.

2.2 Locally Stationary Gaussian Fields

Given a centered normed gaussian field {X(t), t ∈ Rn} we would like to
obtain an exact asymptotics of the high excursion probability of X over a
given compact set K, i.e. a result of the form

P

[
sup
t∈K

X(t) > u

]
∼ CKu

De−u2/2, u→∞

for a number D depending on the structure of the field and a constant CK

depending on the set K ⊂ Rn and the structure of the field.
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In this section, we define a class of gaussian fields for which this is possible.
These so-called locally stationary fields were introduced in [6, 31, 42, 16].
First we recall the following

Definition 2.2.1. A function f : Rd → R is called homogeneous of order
α > 0 if for each s ∈ Rd and λ ∈ R

f(λs) = |λ|αf(s).

In particular, homogeneous functions are symmetric, i.e. they satisfy f(s) =
f(−s). Let H(α) be the set of all continuous homogeneous functions of order
α. For f ∈ H(α) define ‖f‖ = sup‖t‖2=1 f(t). With this norm, H(α) is a

Banach space which can be identified with the space C(Sd−1) of continuous
functions on the unit sphere in Rd.
Let H+(α) be the cone of all strictly positive functions in H(α).
Now we are ready to define the notion of locally stationary gaussian field.

Definition 2.2.2 (see [16]). Let {X(t), t ∈ D} be a centered and normed
gaussian field defined on some domain D ⊂ Rd. Let r(t1, t2) = E[X(t1)X(t2)]
be the correlation function of X. The field X is called locally stationary if a
number α ∈ (0, 2] and a continuous map C• : D → H+(α) exist such that

lim
‖ s‖2→0

1− r(t, t+ s)

Ct(s)
= 1

uniformly on compacts in t ∈ D. The number α and the function C• :
D → H(α) are referred to as the index and the local structure of the field X
respectively.

The next proposition gives a representation for the local structure of a locally
stationary field. Note that the corresponding representation in [42] seems to
be false.

Proposition 2.2.3. Let {X(t), t ∈ D} be a locally stationary gaussian field
of index α with local structure Ct(s). Then, for each fixed t ∈ D, the function
Ct(·) is negative definite. Moreover, there is a finite measure Γt on Sd−1 such
that the following representation holds

Ct(s) =

∫
Sd−1

|(s, x)|αdΓt(x).

The support of Γt is not contained in any proper linear subspace of Rd.
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Proof. Recall (see e.g. [8]) that a continuous function f : Rd → R satisfying
f(s) = f(−s) and f(0) = 0 is called negative definite if for each s1, . . . , sn ∈
Rd the matrix

(f(si) + f(sj)− f(si − sj))i,j=1,...,n

is positive definite. For u > 0 set q = q(u) = u−2/α. Define Yi = Yi(u) by

Yi = u(X(t+ qsi)− u).

Consider the joint distribution of {Yi, i = 1, . . . , n} conditioned on X(t) = u.
It is (non-centered) gaussian and the well-known formulas show that the
covariance matrix is(

u2r(t+ qsi, t+ qsj)− u2r(t, t+ qsi)r(t, t+ qsj)
)

i,j=1,...,n
.

It follows from the definition of local stationarity that, as u → ∞, this
converges to

(Ct(si) + Ct(sj)− Ct(si − sj))i,j=1,...,n .

Since the limit of positive definite matrices is positive definite, it follows that
Ct(·) is a negative definite function.
By Schoenbergs theorem (see e.g. [8, Theorem 2.2]) the function exp(−Ct(·))
is positive definite and thus is the characteristic function of some symmetric
probability measure µ on Rn. Since Ct(·) is homogeneous of order α, the
measure µ is stable of order α. The remaining part of the proposition follows
from the classification of symmetric stable measures on Rn (see e.g. [51]).

Now we give some examples of locally stationary fields.

Example 2.2.4 (see [43]). Let {X(t), t ∈ R} be centered and normed
stationary gaussian process with correlation function r(t) = E[X(0)X(t)].
Suppose that

r(t) = 1− C| t|α + o(| tα|)

for some C > 0 and α ∈ (0, 2]. Then X is locally stationary of index α.
The local structure is given by Ct(s) = C. Examples include, to mention
only a few, r(t) = exp(−| t|α) (the generalized Ornstein-Uhlenbeck process),
r(t) = (1 + | t|α)−β for α ∈ (0, 2] and β > 0 (the generalized Cauchy model,
see [27]).
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Example 2.2.5 (see [6]). Let {B(t), t ≥ 0} be the standard Brownian
motion. The self-normalized Brownian motion is the process {X(t), t > 0}
defined by

X(t) = B(t)/
√
t.

The self-normalized Brownian motion is locally stationary with index α = 1.
The local structure is given by Ct(s) = |s|

2t
.

Proof. Using that Cov(B(t1), B(t2)) = min(t1, t2) we obtain, for s > 0,

r(t, t+ s) = Cov(X(t), X(t+ s)) =
t√

t(t+ s)
= 1− s

2t
+O(s2).

For s < 0 we obtain

r(t, t+ s) = Cov(X(t), X(t+ s)) =
t+ s√
t(t+ s)

= 1 +
s

2t
+O(s2).

Example 2.2.6 (see [6, 16]). Let {B(x), x > 0} be the standard Brownian
motion. Then the process {X(t), t = (x, y) ∈ H} of self-normalized Brownian
increments defined in Section 2.1 by

X(t) =
B(x+ y)−B(x)

√
y

is locally stationary with index α = 1. The local structure is given by

Ct(s) = (| sx|+ | sx + sy|) /(2y),

where t = (x, y) ∈ H and s = (sx, sy) ∈ R2.

Proof. Let t = (x, y) ∈ H and s = (sx, sy) ∈ R2. Suppose that sx > 0,
sx + sy > 0. Then

r(t, s) =Cov(X(t), X(t+ s)) =

1√
y(y + sy)

Cov(B(x+ y)−B(x), B(x+ y + sx + sy)−B(x+ sx)) =

y − sx√
y(y + sy)

= 1− sx

y
− sy

2y
+ o(sx, sy) =

1− (| sx|+ | sx + sy|)/(2y) + o(sx, sy).
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Suppose that sx > 0, sx + sy < 0. Then

r(t, s) =Cov(X(t), X(t+ s)) =

1√
y(y + sy)

Cov(B(x+ y)−B(x), B(x+ y + sx + sy)−B(x+ sx)) =

y + sy√
y(y + sy)

= 1 +
sy

2y
+ o(sx, sy) =

1− (| sx|+ | sx + sy|)/(2y) + o(sx, sy).

Other cases can be treated analogously.

Example 2.2.7. Let {B(t), t ∈ [0, 1]} be the Brownian bridge. Then the
self-normalized Brownian bridge {X(t), t ∈ (0, 1)} defined by

X(t) = B(t)/
√
t(1− t)

is locally stationary with index α = 1 and local structure Ct(s) = | s|
2t

+ | s|
2(1−t)

.

The next example is a multidimensional generalization of Example 2.2.6.

Example 2.2.8. Let {ξ(A), A ∈ B} be the white noise on ([0, 1]d,B,Leb).
This means that we are given a centered gaussian process ξ indexed by the
collection B of all Borel subsets of the unit cube [0, 1]d such that

Cov(ξ(A1), ξ(A2)) = Leb(A1 ∩ A2) for each A1, A2 ∈ B,

where Leb denotes the Lebesgue measure. A set of the form

[x1, y1]× . . .× [xd, yd], 0 ≤ xi < yi ≤ 1

is called rectangle. Let

R = {(x1, y1, . . . , xd, yd) ∈ R2d | 0 ≤ xi < yi ≤ 1}

be the collection of all rectangles. Define a process {X(R), R ∈ R} indexed
by rectangles by

X(R) = ξ(R)/
√

Leb(R).

Then X is locally stationary on R of index α = 1. The local structure is
given by

Ct(s) =
d∑

i=1

(| six|+ | six + siy|) /(2tiy),

where

t = (t1x, t1y, . . . , tdx, tdy) ∈ R, s = (s1x, s1y, . . . , sdx, sdy) ∈ R2d.
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Example 2.2.9. The Brownian motion with multidimensional time, intro-
duced by Lévy, is a centered gaussian process {B(t), t ∈ Rd} with the covari-
ance function

Cov(B(t), B(s)) =
1

2
(‖ t‖2 + ‖ s‖2 − ‖ t− s‖2) ,

where ‖ t‖2 denotes the euclidian norm of t. Then the process {X(t), t ∈
Rd\{0}} defined by

X(t) = B(t)/
√
‖ t‖2

is locally stationary of index α = 1. The local structure is given by

Ct(s) =
‖ s‖2

2‖ t‖2

, t ∈ Rd\{0}, s ∈ Rd.

Further examples of locally stationary gaussian fields include e.g. the self-
normalized Brownian sheet, the self-normalized Brownian pillow, the self-
normalized fractional Brownian motion etc.
The next proposition (see [42, 16]) corresponds to the first stage of Pickands’
method.

Proposition 2.2.10. Let {X(t), t ∈ D} be centered and normed gaussian
field defined on some domain D ⊂ Rd. Suppose that X is locally stationary
of index α ∈ (0, 2] with local structure Ct(s). For u > 0 set q = q(u) = u−2/α.
For t = (t1, . . . , td) ∈ D set

Q(t, u) = {(s1, . . . , sd) | si ∈ [ti, ti + q(u)], i = 1, . . . , d}.

Then, as u→∞,

P

[
sup

t∈Q(t,u)

X(t) > u

]
∼ H(t)

1√
2π

1

u
e−u2/2.

where H(t) ∈ (0,∞) is defined by

H(t) = lim
T→∞

1

T d

∫ ∞

0

P

[
sup

s∈[0,T ]d
Yt(s) > w

]
ewdw.

Here, {Yt(s), s ∈ Rd} is the gaussian process defined by

E [Yt(s)] = −Ct(s) (2.2)

and
Cov(Yt(s1), Yt(s2)) = Ct(s1) + Ct(s2)− Ct(s1 − s2). (2.3)
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The process Yt(·) is called the tangent process of X at point t conditioned on
X(t) = ∞. Note that the existence of the process Yt follows from Proposi-
tion 2.2.3.
The function H(t) is called the high excursion intensity of the field X. Al-
ternatively, H(t) can be defined by

H(t) = lim
T→∞

1

T d
E

[
exp

(
sup

s∈[0,T ]d
Yt(s)

)]
. (2.4)

The next theorem describes the asymptotic behavior of the probability of
high excursion of a locally stationary gaussian field. It corresponds to the
second stage of Pickands’ method.

Theorem 2.2.11 (see [42, 16]). Let {X(t), t ∈ D} be a centered normed
gaussian field defined on some domain D ⊂ Rd. Suppose that its correlation
function r(·, ·) satisfies r(t1, t2) = 1 ⇔ t1 = t2. Suppose that X is locally
stationary of order α with local structure Ct(s). Let K ⊂ D be a compact set
with positive Jordan measure. Then, as u→∞,

P

[
sup
t∈K

X(t) > u

]
∼ 1√

2π

(∫
K

H(t)dt

)
u

2d
α
−1e−u2/2,

where the function H(t) : D → (0,∞) is the high excursion intensity of X
defined in Proposition 2.2.10.

We are interested in the following special case of the above theorem.

Corollary 2.2.12 (see [6, 16]). Let {X(t), t ∈ H} be the field of self-
normalized Brownian increments defined in Section 2.1. Let K ⊂ H be a
compact set with positive Jordan measure. Then, as u→∞,

P

[
sup
t∈K

X(t) > u

]
∼ 1

4
√

2π

∫
K

dxdy

y2
u3e−u2/2.

2.3 Proof of the Main Theorem

In this section we prove Theorem 2.1.2. First, we introduce some notation.
Let τ ∈ R be fixed. Let u = u(n) = an+bnτ with an, bn defined by (3.1),(3.2).
Note that u→∞ as n→∞.
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Remark 2.3.1. We have, as u, n→∞,

1

4
√

2π
u3e−u2/2 ∼ e−τ/n.

Divide H into rectangles

Rk,l =
[
2l+1k, 2l+1(k + 1)

]
×
[
2l, 2l+1

]
, k, l ∈ Z.

Remark 2.3.2. ∫
Rk,l

dxdy

y2
= 1.

Remark 2.3.3. Let k, l ∈ Z. Then, as u, n→∞,

P

[
sup

t∈Rk,l

X(t) > u

]
∼ e−τ

n
.

Proof. Follows directly from Corollary 2.2.12 and the previous remarks.

Let H(n) be the triangle {(x, y) ∈ H |x ∈ [0, n], y ∈ [1, n− x]}.
Let H∗(n) be the union of all rectangles of the form Rk,l which are inside
H(n) and H∗(n) be the union of all rectangles which intersect the interior of
H(n). It is clear that H∗(n) ⊂ H(n) ⊂ H∗(n). Note also that all three sets
H(n),H∗(n),H∗(n) consist of n+ o(n) rectangles.

Lemma 2.3.4. We have, as u, n→∞,

P

[
sup

t∈H∗(n)

X(t) ≤ u

]
−P

[
sup

t∈H(n)

X(t) ≤ u

]
→ 0.

Proof. It follows from H∗(n) ⊂ H(n) that

P

[
sup

t∈H∗(n)

X(t) ≤ u

]
−P

[
sup

t∈H(n)

X(t) ≤ u

]
≥ 0.

The next inequality follows from H∗(n) ⊂ H(n) ⊂ H∗(n)

P

[
sup

t∈H∗(n)

X(t) ≤ u

]
−P

[
sup

t∈H(n)

X(t) ≤ u

]
≤ P

[
sup

t∈H∗(n)\H∗(n)

X(t) > u

]
.
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The last probability is smaller than∑
Rk,l⊂H∗(n)\H∗(n)

P

[
sup

t∈Rk,l

X(t) > u

]
.

Now the sum has at most o(n) (equal) terms and each term is O(1/n) by
Remark 2.3.3. This finishes the proof.

From now on we write H(n) instead of H∗(n). Let ε > 0. For each rectangle
Rk,l consider a smaller rectangle Rk,l(ε) centered at the same point as Rk,l

and satisfying ∫
Rk,l(ε)

dxdy

y2
= 1− ε.

Set
H(n, ε) =

⋃
Rk,l⊂H(n)

Rk,l(ε).

Lemma 2.3.5. We have, for some constant c1 > 0 and every ε ∈ (0, 1)

0 ≤ lim sup
u→∞

(
P

[
sup

t∈H(n,ε)

X(t) ≤ u

]
−P

[
sup

t∈H(n)

X(t) ≤ u

])
≤ c1ε.

Proof. It follows from H(n, ε) ⊂ H(n) that

P

[
sup

t∈H(n,ε)

X(t) ≤ u

]
−P

[
sup

t∈H(n)

X(t) ≤ u

]
≥ 0,

which proves the first part of the inequality. In order to prove the other part
note that

P

[
sup

t∈H(n,ε)

X(t) ≤ u

]
−P

[
sup

t∈H(n)

X(t) ≤ u

]
≤ P

[
sup

t∈H(n)\H(n,ε)

X(t) > u

]
.

The last probability is smaller than∑
Rk,l⊂H(n)

P

[
sup

t∈Rk,l\Rk,l(ε)

X(t) > u

]
.

Now the number of terms in the sum is ∼ n. Actually, all terms are equal
by the affine invariance. Each term is ∼ εe−τ/n by Corollary 2.2.12. This
proves the lemma.
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Let a > 0. Define the following sets

Rk,l(ε, a) = Rk,l(ε) ∩ 2l a

u2
Z2.

Note that all these sets are finite and can be obtained from R0,1(ε, a) by di-
lation and translation. The next lemma is implicit in [16], the corresponding
one-dimensional statement is proved in [36, Chapter 12].

Lemma 2.3.6. Let X(t) be centered and normed gaussian field defined on
some domain D ⊂ Rd. Suppose X is locally stationary of index α. Let
K ⊂ D be a compact set with positive Jordan measure. Then

0 ≤ lim sup
u→∞

1

u
2d
α
−1e−u2/2

(
P

[
sup

t∈K∩au−2/αZd

X(t) > u

]
−P

[
sup
t∈K

X(t) > u

])
≤ ρa.

for some sequence of constants {ρa, a > 0} with the property lima↓0 ρa = 0.

Lemma 2.3.7. There are constants {ρa, a > 0} such that ρa → 0 as a ↓ 0
and

lim sup
u→∞

n

(
P

[
sup

t∈Rk,l(ε,a)

X(t) ≤ u

]
−P

[
sup

t∈Rk,l(ε)

X(t) ≤ u

])
≤ ρa.

Proof. This is a consequence of Lemma 2.3.6 and Remark 2.3.1.

Define
H(n, ε, a) = ∪Rk,l⊂H(n)Rk,l(ε, a).

Lemma 2.3.8.

0 ≤ lim sup
u→∞

(
P

[
sup

t∈H(n,ε,a)

X(t) ≤ u

]
−P

[
sup

t∈H(n,ε)

X(t) ≤ u

])
≤ ρa.

Proof. The lower estimate is evident, the upper estimate follows from the
preceeding lemma.

Lemma 2.3.9.

0 ≤ lim sup
u→∞

(
P

[
sup

t∈H(n,ε,a)

X(t) ≤ u

]
−P

[
sup

t∈H(n)

X(t) ≤ u

])
≤ ρa + c1ε.
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Proof. Follows from Lemma 2.3.8 and Lemma 2.3.5.

The next lemma is known as Berman Inequality, see e.g. [36, Theorem 4.2.1].

Lemma 2.3.10 (Berman Inequality). Suppose ξ1, . . . , ξN are standard
normal variables with covariance matrix Λ1 = (Λ1

ij), and η1, . . . , ηN sim-
ilarly with covariance matrix Λ2 = (Λ2

ij), and let ρij = max(|Λ1
ij|, |Λ2

ij|),
δ = maxi6=j ρij < 1. Then, for some constant K depending only on δ,

P

[
max

1≤i≤N
ξi ≤ u

]
−P

[
max

1≤i≤N
ηi ≤ u

]
≤ K

∑
1≤i<j≤N

|Λ1
ij−Λ2

ij| exp

(
− u2

2(1 + δ)

)
.

Let {Y (t), t ∈ H(n, ε, a)} be standard normal variables with the following
covariance matrix:

E[Y (t1)Y (t2)] = E[X(t1)X(t2)] if ∃k, l : t1, t2 ∈ Rk,l(ε, a),

E[Y (t1)Y (t2)] = 0 otherwise.

Thus, we remove the dependence between X(t1) and X(t2) if t1 and t2 are
in different Rk,l’s.

Lemma 2.3.11.

lim
u→∞

(
P

[
max

t∈H(n,ε,a)
X(t) ≤ u

]
−P

[
max

t∈H(n,ε,a)
Y (t) ≤ u

])
= 0.

Proof. We use Berman Inequality for the variables {X(t), t ∈ H(n, ε, a)}
and {Y (t), t ∈ H(n, ε, a)}. It is easy to see that the correlations ΛX

t1,t2
=

E[X(t1)X(t2)] and ΛY
t1,t2

= E[Y (t1)Y (t2)] (t1 6= t2) are bounded away from
1 by some constant δ depending on ε and a, but not on n (this is due to the
affine invariance). We write t1 � t2 if t1 and t2 are contained in different sets
Rk,l(ε, a). ∑

t1,t2∈H(n,ε,a)
t1 6=t2

|ΛX
t1,t2

− ΛY
t1,t2

| =
∑

t1,t2∈H(n,ε,a)
t1�t2

ΛX
t1,t2

≤ δ
∑

t1,t2∈H(n,ε,a)
t1�t2

1.

The number of elements of Rk,l(ε, a) is less than c2u
4, where the constant

c2 depends only on a. If t1 ∈ Rk,l(ε, a) then an easy calculation shows that
the number of t2 with the property t1 � t2 is less than c3u

4(2l + log n). It
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follows that the number of pairs (t1, t2) with the property t1 � t2 is less than
c4n log3 n. It follows from the Berman Inequality that

P

[
max

t∈H(n,ε,a)
X(t) ≤ u

]
−P

[
max

t∈H(n,ε,a)
Y (t) ≤ u

]
≤ c5n(log4 n)e−u2/(1+δ).

where c5 depends on ε and a, but not on n. Recall that u ∼
√

2 log n. The
statement of the lemma follows.

Lemma 2.3.12.

lim sup
a→0

lim sup
ε→0

lim sup
u→∞

∣∣∣∣P [ max
t∈H(n,ε,a)

Y (t) ≤ u

]
− e−e−τ

∣∣∣∣ = 0.

Proof. First let ε, a be fixed and let u, n→∞. By Lemma 2.3.7∣∣∣∣P [ max
t∈R0,1(ε,a)

X(t) > u

]
−P

[
max

t∈R0,1(ε)
X(t) > u

]∣∣∣∣ ≤ ρa
1

n
(1 + o(1)).

and by Corollary 2.2.12

P

[
max

t∈R0,1(ε)
X(t) > u

]
= (1− ε)e−τ 1

n
(1 + o(1)).

It follows that

lim inf
u→∞

nP

[
max

t∈R0,1(ε,a)
X(t) > u

]
≥ e−τ − c1(ε, a)

and

lim sup
u→∞

nP

[
max

t∈R0,1(ε,a)
X(t) > u

]
≤ e−τ + c2(ε, a),

where c1(ε, a) → 0 and c2(ε, a) → 0 as ε, a → 0. Since Y (t1) and Y (t2) are
independent if t1 and t2 are in different Rk,l’s, we have

P

[
max

t∈H(n,ε,a)
Y (t) ≤ u

]
=

(
1−P

[
max

t∈R0,1(ε,a)
Y (t) > u

])n+o(n)

=(
1−P

[
max

t∈R0,1(ε,a)
X(t) > u

])n+o(n)

.
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By letting u, n→∞ we see that

lim sup
u→∞

P

[
max

t∈H(n,ε,a)
Y (t) ≤ u

]
≤ exp(−e−τ + c1(ε, a))

and

lim inf
u→∞

P

[
max

t∈H(n,ε,a)
Y (t) ≤ u

]
≥ exp(−e−τ − c2(ε, a)).

Now let a, ε→ 0. The lemma follows.

Proof of Theorem 2.1.2. Follows from Lemmas 2.3.9, 2.3.11, 2.3.12.
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Chapter 3

Extreme-Value Analysis of
Self-Normalized Totally Skewed
α-stable Increments

3.1 Introduction

In this chapter we prove the following

Theorem 3.1.1. Let {ξ(x), x ≥ 0} be a stable Lévy process of index α ∈ (1, 2]
with skewness parameter β = −1. For n > 1 set

Ln = sup
x1,x2∈[0,1]
x2−x1≥1/n

ξ(x2)− ξ(x1)

(x2 − x1)1/α
.

Then, for every τ ∈ R,

lim
n→∞

P [Ln ≤ an + bnτ ] = exp(−e−τ ),

where the constants an and bn are given by

an =
1

B
(α−1)/α
α

(
(log n)(α−1)/α +

α− 1

α

3/2 log2 n− log
√

2απ

(log n)1/α

)
, (3.1)

bn =
1

B
(α−1)/α
α

α− 1

α

1

(log n)1/α
. (3.2)

Here,
Bα = (α− 1)α−α/(α−1)| cos(πα/2)|1/(α−1).
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We fix some notation which will be used throughout this chapter. Let

H = {t = (x, y) ∈ R2 | y > 0}

denote the open upper half-plane.
Let {ξ(x), x ≥ 0} be a stable Lévy process of index α ∈ (1, 2) with skewness
parameter β = −1. Some neccesary facts about stable distributions and
stable Lévy processes will be recalled in Section 3.2.
Define a random field {X(t), t = (x, y) ∈ H} by

X(t) =
ξ(x+ y)− ξ(x)

y1/α
. (3.3)

Note that for each t ∈ H the distribution of X(t) is standard α-stable with
skewness β = −1 (i.e. it coincides with the distribution of ξ(1)).
As in Section 2.1, one defines the natural action of the one-dimensional affine
group on H and obtains, using the scaling property of stable Lévy processes
(see Proposition 3.2.12 below) the following invariance property of the field
X, which will be often used in the sequel.

Proposition 3.1.2. Let g be an affine transformation of R. Then, for each
t1, . . . , tn ∈ H, the joint distribution of X(g(t1)), . . . , X(g(tn)) coincides with
the joint distribution of X(t1), . . . , X(tn).

Thus, we may state Theorem 3.1.1 in the following, equivalent form.

Theorem 3.1.3. For n > 1 let H(n) be the triangle {(x, y) ∈ H | x ∈
[0, n], y ∈ [1, n− x]}. Define X by (3.3). Then, for every τ ∈ R,

lim
n→∞

P

[
sup
t∈Gn

X(t) ≤ an + bnτ

]
= exp(−e−τ ),

where an, bn are defined by (3.1) and (3.2).

The rest of the chapter is devoted to the proof of Theorem 3.1.3.
In Section 3.2, we recall some well-known facts about stable distributions
and processes.
In Section 3.3, we investigate the probability of the presence of a high excur-
sion of X over an infinitesimally small domain (the first stage of Pickands’
method).
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In Section 3.4, we prove a result about the distribution of the maximum of
an α-stable totally skewed process with negative drift. The main result of
this section, Theorem 3.4.3, will be needed in the next section.
In Section 3.5, we investigate the high excursion probability over a compact
set of finite positive Jordan measure. The main result of this section cor-
responds to Corollary 2.2.12 of Chapter 2 (the second stage of Pickands’
method).
In Section 3.6, we finish the proof (the third stage of Pickands’ method).

3.2 Stable Lévy Processes

We recall here some facts about stable distributions and processes needed in
the sequel. See [51], [32] or [55] for more information.

Definition 3.2.1. A random variable ξ is said to have a stable distribution
Sα(σ, β, µ) with parameters α ∈ (0, 2], σ ≥ 0, β ∈ [−1, 1] and µ ∈ R if its
characteristic function has the following form:

E exp(iqξ) = exp (−σα|q|α(1− iβsign(q) tan(πα/2) + iµq)) if α 6= 1,

E exp(iqξ) = exp

(
−σ|q|(1 + iβ

2

π
sign(q) log |q|) + iµq

)
if α = 1.

Definition 3.2.2. A variable ξ ∼ Sα(σ, β, µ) is said to be standard α-stable
with skewness β if σ = 1 and µ = 0.

Definition 3.2.3. A variable ξ ∼ Sα(σ, β, µ) is called totally skewed to the
left if β = −1 and totally skewed to the right if β = 1.

Proposition 3.2.4. The support of the standard α-stable distribution with
skewness β is

[0,+∞] if α ∈ (0, 1) and β = +1,

[−∞, 0] if α ∈ (0, 1) and β = −1,

R otherwise.

Although the support of the standard stable distribution with α ∈ (1, 2),
β = ±1 is the whole R, one can still define its Laplace transform.
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Proposition 3.2.5. Let ξ be a standard α-stable random variable with skew-
ness parameter β = −1. The Laplace transform E[exp(qξ)] exists for q ≥ 0
and is given by

E[exp(qξ)] = exp

(
qα

| cos(πα/2)|

)
if α ∈ (0, 1) ∪ (1, 2),

E[exp(qξ)] = exp

(
2

π
q log q

)
if α = 1.

Proposition 3.2.6. If ξ1 ∼ Sα(σ1, β, 0) and ξ2 ∼ Sα(σ2, β, 0) are indepen-
dent then

ξ1 + ξ2 ∼ Sα(σ, β, 0),

where σ = (σα
1 + σα

2 )1/α.

Proposition 3.2.7. Let ξ ∼ Sα(σ, β, µ) and a > 0. Then

aξ ∼ Sα(aσ, β, aµ) if α 6= 1,

aξ ∼ S1

(
aσ, β, aµ− 2

π
a log(a)σβ

)
if α = 1.

Now we recall the definition of stable Lévy processes.

Definition 3.2.8. Let α ∈ (0, 2] and β ∈ [−1, 1]. A stochastic process
{ξ(t), t ≥ 0} is called (standard) α-stable Lévy process with skewness param-
eter β if

1) ξ(0) = 0.

2) ξ has independent increments.

3) ξ(t)− ξ(s) ∼ Sα((t− s)1/α, β, 0) for any 0 ≤ s < t <∞.

If α = 2, we obtain
√

2B(t) where {B(t), t ≥ 0} is the standard Brownian
motion.

Proposition 3.2.9. Any stable Lévy process admits a càdlàg modification.

In the sequel, we always assume that the process under consideration has
càdlàg sample paths.
If β = +1 (resp. β = −1) the process is called totally skewed to the right
(resp. to the left).
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Proposition 3.2.10. Let {ξ(x), x ≥ 0} be an α-stable Lévy process totally
skewed to the right, where α ∈ (0, 1). Then ξ has increasing sample paths
and is called the α-stable subordinator.

In the sequel, we shall consider only stable Lévy processes with α ∈ (1, 2)
and β = −1. These processes have the following property.

Proposition 3.2.11. Let ξ be an α-stable process with α ∈ [1, 2], β = −1.
Then the sample paths of ξ have no positive jumps meaning that

P[∃t > 0 | ξ+(t)− ξ−(t) > 0] = 0,

where
ξ+(t) = lim

s→t+0
ξ(s), ξ−(t) = lim

s→t−0
ξ(s).

Recall also the scaling property of stable Lévy processes.

Proposition 3.2.12. Let {ξ(t), t ≥ 0} be an α-stable Lévy process with skew-
ness parameter β and let a > 0. If α 6= 1, the rescaled process ξ(at) has the
same finite-dimensional distributions as a1/αξ(t). If α = 1, the rescaled pro-
cess ξ(at) has the same finite-dimensional distributions as aξ(t) + 2

π
βt log a.

3.3 Proof of Theorem 3.1.1: Infinitesimal Max-

ima

In this section we prove an asymptotic relation for the probability of high
excursion of the random field X over an infinitesimally small set. More
precisely, we study the asymptotic behavior as u→∞ of the probability

P

[
sup

Q
X(t) > u

]
,

where Q = Q(u) is a small parallelogram whose area tends to 0 as u→∞.
We start by recalling the following well-known fact about the tail behavior
of totally-skewed stable distributions (see e.g. [32],[55] or [2]).

Lemma 3.3.1. Let ξ be a standard stable variable of index α ∈ (1, 2) with
skewness parameter β = −1. Write Φ(u) and f(u) for the distribution func-
tion and density of ξ respectively. Then, as u→∞,

1− Φ(u) ∼ (α− 1)Aαu
−α/(2(α−1)) exp(−Bαu

α/(α−1)),

f(u) ∼ αAαBαu
(2−α)/(2(α−1)) exp(−Bαu

α/(α−1))
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where
Aα =

(
2π(α− 1)3

)−1/2
α1/(2α−2)| cos(πα/2)|−1/(2α−2)

and
Bα = (α− 1)α−α/(α−1)| cos (πα/2) |1/(α−1).

Corollary 3.3.2. For some constants C1, C2 > 0

1− Φ(u) < C1 exp(−C2u
α/(α−1)), u > 0.

It is known (see [15]) that the supremum of a totally skewed α-stable Lévy
process over the interval [0, 1] has Mittag-Leffler distribution with parameter
1/α. We shall need only the following consequence of this fact.

Proposition 3.3.3. Let {ξ(x), x ≥ 0} be a stable Lévy process of index
α ∈ (1, 2) with skewness parameter β = −1. Then, for some constant Cα,

P

[
sup

x∈[0,1]

ξ(x) > u

]
∼ CαP[ξ(1) > u].

Note that Proposition 3.3.3 was also proved in [2] using the method of double
sums.
Define w = w(u) and q = q(u) by

w =
α− 1

αBα

u−1/(α−1) (3.4)

and
q = wα. (3.5)

Note that q(u), w(u) → 0 as u→∞.
The next two lemmas are standard in the extreme-value theory and can be
proved by an elementary calculation.

Lemma 3.3.4. Let z ∈ R be fixed. Then

lim
u→∞

1− Φ(u− wz)

1− Φ(u)
= ez.

Lemma 3.3.5. Let z ∈ R be fixed. Then

lim
u→∞

wf(u− wz)

1− Φ(u)
= ez.
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The next lemma will be needed later in order to justify the use of the domi-
nated convergence theorem.

Lemma 3.3.6. For every ε > 0 there is a constant C1, such that for every
u > 1 and every z > 0

wf(u− wz)

1− Φ(u)
< C1 exp (z1+ε).

Proof. Let δ > 0. Suppose first that

z > u(1−δ) α
α−1 .

It follows from Corollary 3.3.2 that

1− Φ(u) > C2 exp(−C3u
α/(α−1)).

Since the density f is bounded, we have

wf(u− wz)

1− Φ(u)
< C4 exp (C3u

α/(α−1)) < C4 exp (C3z
1/(1−δ)).

Now let δ be so small that 1/(1− δ) < 1 + ε. It follows that

wf(u− wz)

1− Φ(u)
< C5 exp(z1+ε).

Suppose now that
z ≤ u(1−δ) α

α−1 .

Recall that w = const · u−1/(α−1). Note that
wz

u
< const · u−1/(α−1)u(1−δ) α

α−1u−1 < C6u
−ε.

if δ is sufficiently small. It follows from Lemma 3.3.1 that

wf(u− wz) <C7u
−α/(2(α−1)) exp(−Bα(u− wz)α/(α−1)) =

C7u
−α/(2(α−1)) exp(−Bαu

α/(α−1)(1− wz/u)α/(α−1)).

By the Bernoulli inequality this is smaller than

C7u
−α/(2(α−1)) exp

(
−Bαu

α/(α−1)

(
1− α

α− 1
wz/u

))
=

C7u
−α/(2(α−1)) exp

(
−Bαu

α/(α−1)
)
exp

(
C8u

α/(α−1)u−1/(α−1)zu−1
)

=

C7u
−α/(2(α−1)) exp

(
−Bαu

α/(α−1)
)
exp (C8z) .
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Using this and Lemma 3.3.1 we obtain

wf(u− wz)

1− Φ(u)
<
C7u

−α/(2(α−1)) exp
(
−Bαu

α/(α−1)
)
exp (C8z)

C8u−α/(2(α−1)) exp (−Bαuα/(α−1))
= C9e

C8z,

which is smaller than C exp(z1+ε).
This finishes the proof of the lemma.

Take n ∈ N. Let t0 = (x0, y0) ∈ H be fixed. Define

Q(t0, u, n) = {(x0 − sx, y0 + sx + sy) ∈ H | 0 ≤ sx ≤ nq(u), 0 ≤ sy ≤ nq(u)}.

Note that Q(t0, u, n) is a paralellogram of area n2q2.
Let {ξ1(a), a ≥ 0} and {ξ2(b), b ≥ 0} be two independent stable Lévy
processes of index α with skewness parameter β = −1. Define a process
{Y (sx, sy), sx ≥ 0, sy ≥ 0} by

Y (sx, sy) = ξ1(sx) + ξ2(sy)− | cos (πα/2) |−1(sx + sy).

Lemma 3.3.7. Let z > 0. Then

lim
u→∞

P

[
sup

t∈Q(t0,u,n)

X(t) > u | X(t0) = u− wz

]
= P

[
max

sx,sy∈[0,n/y0]
Y (sx, sy) > z

]
.

Proof. Define

P (u) = P

[
sup

t∈Q(t0,u,n)

X(t) > u | X(t0) = u− wz

]
.

Under the condition X(t0) = u−wz we have for t = (x0− sx, y0 + sx + sy) ∈
Q(t0, u, n)

X(t) =
(u− wz)y

1/α
0 + (ξ(x0)− ξ(x0 − sx)) + (ξ(x0 + y0 + sy)− ξ(x0 + y0))

(y0 + sx + sy)1/α

Note that the joint distribution of ξ(x0) − ξ(x0 − sx) and ξ(x0 + y0 + sy) −
ξ(x0 + y0) coincides with the joint distribution of ξ1(sx) and ξ2(sy). Using
this fact we obtain

P (u) = P

[
sup

0≤sx,sy≤nq

(u− wz)y
1/α
0 + ξ1(sx) + ξ2(sy)

(y0 + sx + sy)1/α
> u

]
=
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or

P (u) = P

 sup
0≤sx,sy≤nq

(u− wz) + y
−1/α
0 ξ1(sx) + y

−1/α
0 ξ2(sy)(

1 + sx+sy

y0

)1/α
> u

 .
Or, by introducing the new variables px = sx/(qy0), py = sy/(qy0),

P (u) = P

[
sup

0≤px,py≤n/y0

(u− wz) + y
−1/α
0 ξ1(pxqy0) + y

−1/α
0 ξ2(pyqy0)

(1 + pxq + pyq)
1/α

> u

]
Using the scaling property of stable processes (see Proposition 3.2.12) and
elementary transformations, we obtain

P (u) = P

[
sup

0≤px,py≤n/y0

ξ1(px) + ξ2(py) > q−1/α
(
u (1 + q(px + py))

1/α − (u− wz)
)]

.

But a simple calculation shows that

lim
u→∞

q−1/α
(
u (1 + q(px + py))

1/α − (u− wz)
)

= | cos(πα/2)|−1(px + py) + z.

Thus

lim
u→∞

P (u) = P

[
sup

0≤px,py≤n/y0

ξ1(px) + ξ2(py)− | cos(πα/2)|−1(px + py) > z

]
.

Recalling the definition of Y (sx, sy) we obtain

lim
u→∞

P (u) = P

[
sup

0≤sx,sy≤n/y0

Y (sx, sy) > z

]
.

This finishes the proof.

The next lemma will be needed for the justification of the use of the domi-
nated convergence theorem.

Lemma 3.3.8. There are constants C1 and C2 such that the following in-
equality holds for all z > 0, u > 1

P

[
sup

t∈Q(t0,u,n)

X(t) > u | X(t0) = u− wz

]
< C1 exp

(
−C2z

α/(α−1)
)
.
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Proof. Define

P (u) = P

[
sup

t∈Q(t0,u,n)

X(t) > u | X(t0) = u− wz

]
Then, as in the previous lemma,

P (u) = P

[
sup

0≤sx,sy≤n/y0

ξ1(sx) + ξ2(sy) > q−1/α
(
u (1 + q(sx + sy))

1/α − (u− wz)
)]

.

Note that

q−1/α
(
u (1 + q(sx + sy))

1/α − (u− wz)
)
≥ q−1/αwz = z.

It follows that

P (u) ≤ P

[
sup

0≤sx,sy≤n/y0

ξ1(sx) + ξ2(sy) > z

]
≤ 2P

[
sup

0≤sx≤n/y0

ξ1(sx) > z/2

]
.

By the scaling property (see Proposition 3.2.12) this is equal to

2P

[
sup

0≤sx≤1
ξ1(sx) > (n/y0)

−1/αz/2

]
It follows from Proposition 3.3.3 that this is smaller than

C1 exp(−C2z
α/(α−1)).

This finishes the proof.

The following proposition is the main result of this section.

Proposition 3.3.9. The following relation holds for the probability of high
excursion over the square Q(t0, u, n)

lim
u→∞

1

1− Φ(u)
P

[
max

t∈Q(t0,u,n)
X(t) > u

]
= G(n/y0),

where

G(n) = E

[
exp

(
sup

0≤sx,sy≤n
Y (sx, sy)

)]
.
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Proof. It is easy to see that

P

[
max

t∈Q(t0,u,n)
X(t) > u

]
= P[X(t0) > u]+∫ ∞

0

P

[
sup

t∈Q(t0,u,n)

X(t) > u | X(t0) = u− wz

]
f(u− wz)wdz.

Recall that P[X(t0) > u] = 1− Φ(u). It follows that

1

1− Φ(u)
P

[
max

t∈Q(t0,u,n)
X(t) > u

]
=

1 +

∫ ∞

0

P

[
max

t∈Q(t0,u,n)
X(t) > u | X(t0) = u− wz

]
f(u− wz)w

1− Φ(u)
dz.

Since we have by Lemmas 3.3.7 and 3.3.5

lim
u→∞

P

[
max

t∈Q(t0,u,n)
X(t) > u | X(t0) = u− wz

]
= P

[
sup

0≤sx,sy≤n
Y (sx, sy) > z

]
and

lim
u→∞

f(u− wz)w

1− Φ(u)
= ez,

we obtain, at least formally,

lim
u→∞

1

1− Φ(u)
P

[
max

t∈Q(t0,u,n)
X(t) > u

]
= 1+

∫ ∞

0

P

[
sup

0≤sx,sy≤n
Y (sx, sy) > z

]
ezdz.

In order to justify the use of the dominated convergence theorem note that
by Lemmas 3.3.6 and 3.3.8

wf(u− wz)

1− Φ(u)
< C(ε) exp (z1+ε), ∀ε > 0

and

P

[
sup

t∈R(t0,u,n)

X(t) > u |X(t0) = u− wz

]
< C1 exp

(
−C2z

α/(α−1)
)
.

It remains to note that α/(α− 1) > 1 (recall that 1 < α < 2).
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3.4 The Maximum of a Drifted Totally Skewed

Stable Process

We recall some facts from the theory of spectrally negative Lévy processes
(see [13, Chapter VII ] for more information).
A Lévy process is called spectrally negative if its Lévy measure is concen-
trated on [−∞, 0]. For our purposes, the following example suffices: if
{ξ(x), x ≥ 0} is a stable Lévy process with α ∈ (1, 2) and β = −1, then
the drifted process η(x) = ξ(x) − µx is spectrally negative for µ ≥ 0. It is
known that for a spectrally negative Lévy process {η(x), x ≥ 0} the Laplace
transform E[exp(λη(x))] exists for λ ≥ 0 and can be represented in the form
exp(xψ(λ)) for some function ψ : [0,∞) → R. In the case η(x) = ξ(x)− µx
we have

ψ(λ) = | cos(πα/2)|−1λα − µλ.

Let ψ−1(0) be the largest solution of the equation ψ(λ) = 0. Note that
ψ−1(0) ≥ 0. Let ψ−1 : [0,∞) → [ψ−1(0),∞) denote the inverse function of
ψ. We need the following proposition from [13]

Theorem 3.4.1. Let {η(x), x > 0} be a spectrally negative Lévy process.
Define ψ, ψ−1 as above. Let τ(q) be an exponential random variable with
parameter q > 0 independent of η. Then supx∈[0,τ(q)] η(x) is exponentially
distributed with parameter ψ−1(q). Furthermore, if the derivative ψ′(0+)
is negative then the process drifts to −∞ and supx≥0 η(x) is exponentially
distributed with parameter ψ−1(0). Otherwise, supx≥0 η(x) is infinite a.s.

We obtain the following corollary, proved also in [47].

Corollary 3.4.2. Let {ξ(x), x ≥ 0} be a stable Lévy process of index α ∈
(1, 2] with skewness parameter β = −1. Let µ > 0. Then

sup
x≥0

(ξ(x)− µx)

is exponentially distributed with parameter (µ| cos(πα/2)|)1/(α−1).

The above corollary shows that for µ = | cos(πα/2)|−1

E exp

(
sup
x≥0

(ξ(x)− µx)

)
= +∞.

This motivates partially the following theorem, which we shall need in the
next section.
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Theorem 3.4.3. Let {ξ(x), x ≥ 0} be a stable Lévy process of index α ∈ (1, 2]
with skewness parameter β = −1. Set

µ = | cos(πα/2)|−1.

Then

lim
n→∞

1

n
E

[
exp

(
sup

x∈[0,n]

(ξ(x)− µx)

)]
= (α− 1)| cos(πα/2)|−1.

Proof. We have ψ(λ) = µ(λα − λ). It follows that ψ−1(0) = 1. Moreover, a
simple calculation shows that

ψ−1(ε) = 1 +
ε

µ(α− 1)
+ o(ε), ε→ 0 + . (3.6)

We have, by the previous theorem,

P

[
sup

x∈[0,τ(q)]

(ξ(x)− µx) > p

]
= exp(ψ−1(q)p),

where τ(q) is an exponential stopping time with parameter q, independent
of ξ. With the notation

Fl(p) = P

[
sup

x∈[0,l]

(ξ(x)− µx) ≤ p

]
we obtain ∫ ∞

0

q exp(−ql)(1− Fl(p))dl = exp(ψ−1(q)p). (3.7)

We need to compute liml→∞ f(l)/l where

f(l) = E

[
exp

(
sup

x∈[0,l]

(ξ(x)− µx)

)]
− 1 =

∫ ∞

0

ep(1− Fl(p))dp. (3.8)

To this end, we compute the Laplace transform of f and use Karamata’s
Tauberian theorem (see e.g. [54, p.192]). First use the integration by parts
formula to obtain

f̂(q) =

∫ ∞

0

e−qldf(l) = q

∫ ∞

0

f(l)e−qldl.
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Using (3.8) we get

f̂(q) = q

∫ ∞

0

∫ ∞

0

e−qlep(1− Fl(p))dpdl.

By (3.7) we obtain

f̂(q) =

∫ ∞

0

exp(ψ−1(q)p)epdp =
1

ψ−1(q)− 1
.

It follows from (3.6) that

f̂(q) ∼ µ(α− 1)q−1, q → 0 + .

Now use Karamata’s Tauberian theorem to obtain

f(l) ∼ µ(α− 1)l, l→∞.

This finishes the proof.

Corollary 3.4.4. Let {ξi(x), x > 0}, i = 1, . . . , d be independent stable Lévy
processes of index α ∈ (1, 2) with skewness parameter β = −1. Set

µ = | cos(πα/2)|−1.

Define a new process {Y (s1, . . . , sd), s1 ≥ 0, . . . , sd ≥ 0} by

Y (s1, . . . , sd) = ξ1(s1) + . . .+ ξd(sd)− µ(s1 + . . .+ sd).

For n ≥ 0 set

G(n) = E

[
exp

(
sup

0≤s1,...,sd≤n
Y (s1, . . . , sd)

)]
.

Then
1

nd
lim

n→∞
G(n) = (α− 1)d| cos(πα/2)|−d.

Proof. For i = 1, . . . , d define

Gi(n) = E

[
exp

(
sup

0≤s≤n
(ξi(s)− µs)

)]
.

Then G(n) = G1(n) . . . Gd(n) and it remains to use Theorem 3.4.3.
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3.5 Proof of Theorem 3.1.1: Local Maxima

This section is devoted to the proof of the following theorem, describing the
asymptotic behavior of the high excursion probability of the random field X
over a fixed compact set.

Theorem 3.5.1. Let K ⊂ H be compact set of finite positive Jordan measure.
Then, as u→∞,

P

[
sup
t∈K

X(t) > u

]
∼ Cα

∫
K

dxdy

y2
u2α/(α−1)(1− Φ(u)).

where
Cα = (α− 1)2| cos(πα/2)|2/(α−1)α−2α/(α−1).

Proof. Recall that q = q(u) and w = w(u) were defined in Section 3.3 as

w = w(u) =
α− 1

αBα

u−1/(α−1)

and
q = q(u) = wα.

With this notation, Theorem 3.5.1 is equivalent to

lim
u→∞

q2

1− Φ(u)
P

[
sup
t∈K

X(t) > u

]
= Dα

∫
K

dxdy

y2
, (3.9)

where
Dα = (α− 1)2| cos(πα/2)|−2.

We approximate the set K by finite grids. Let n ∈ N. Recall that for
t = (x, y) ∈ H we have defined

Q(t, u, n) = {(x− sx, y + sx + sy) ∈ H | 0 ≤ sx ≤ nq(u), 0 ≤ sy ≤ nq(u)}.

Let nqZ2 denote the set of points in R2 whose coordinates are integer multi-
ples of nq. Define

K∗(u, n) = {t ∈ nqZ2 | Q(t, u, n) ∩K 6= ∅},
K∗(u, n) = {t ∈ nqZ2 | Q(t, u, n) ⊂ K}.
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Each a point p = (x, y) ∈ H belongs to some square of the form Q(p̃, u, n)
for some p̃ = (x̃, ỹ) ∈ nqZ2. Define

fu,n(p) = P

[
sup

t∈Q(p̃,u,n)

X(t) > u

]
.

Using an obvious inequality

P

[
sup
t∈K

X(t) > u

]
≤

∑
s∈K∗(u,n)

P

[
sup

t∈Q(s,u,n)

X(t) > u

]
,

we obtain

P

[
sup
t∈K

X(t) > u

]
≤ 1

(qn)2

∫
K∗(u,n)

fu,n(x, y)dxdy

It follows from Proposition 3.3.9 that

lim
u→∞

1

1− Φ(u)
fu,n(p) = G(n/y).

It follows

lim sup
u→∞

q2

1− Φ(u)
P

[
sup
t∈K

X(t) > u

]
≤ 1

n2

∫
K∗(u,n)

G(n/y)dxdy

Since the last inequality holds for every n ∈ N, we obtain, by letting n→∞,

lim sup
u→∞

q2

1− Φ(u)
P

[
sup
t∈K

X(t) > u

]
≤ lim inf

n→∞

∫
K

G(n/y)

(n/y)2

1

y2
dxdy.

By Corollary 3.4.4 we have

lim
n→∞

G(n)

n2
= Dα.

It follows that

lim sup
u→∞

q2

1− Φ(u)
P

[
sup
t∈K

X(t) > u

]
≤ Dα

∫
K

dxdy

y2
,

which proves the upper bound in (3.9). In order the theorem we need to
obtain a lower estimate for P [supt∈K X(t) > u].
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By Bonferroni-Inequality

P

[
sup
t∈K

X(t) > u

]
≥

∑
s∈K∗(u,n)

P

[
sup

t∈Q(s,u,n)

X(t) > u

]
−

∑
s1,s2∈K∗(u,n)

s1 6=s2

P (s1, s2),

where

P (s1, s2) = P (s1, s2, u, n) = P

[
sup

t∈Q(s1,u,n)

X(t) > u ∧ sup
t∈Q(s2,u,n)

X(t) > u

]
.

Since, as we have already shown,

lim
u→∞

q2

1− Φ(u)

∑
s∈K∗(u,n)

P

[
sup

t∈Q(s,u,n)

X(t) > u

]
= Dα

∫
K

dxdy

y2
,

it follows that

lim inf
u→∞

q2

1− Φ(u)
P

[
sup
t∈K

X(t) > u

]
can be estimated from below by

Dα

∫
K

dxdy

y2
− lim sup

u→∞

q2

1− Φ(u)

∑
s1,s2∈K∗(u,n)

s1 6=s2

P (s1, s2).

Note that this holds for every n. Thus, it sufficies to show that

lim sup
n→∞

lim sup
u→∞

q2

1− Φ(u)

∑
s1,s2∈K∗(u,n)

s1 6=s2

P (s1, s2) = 0 (3.10)

The rest of this section is devoted to the proof of (3.10).
Take sufficiently small ε > 0. Then (3.10) would follow from

lim sup
u→∞

q2

1− Φ(u)

∑
s1,s2∈K∗(u,n)

d(s1,s2)>ε

P (s1, s2) = 0 (3.11)

and

lim sup
n→∞

lim sup
u→∞

q2

1− Φ(u)

∑
s1,s2∈K∗(u,n)
0<d(s1,s2)≤ε

P (s1, s2) = 0, (3.12)
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where d(·, ·) denotes the euclidian distance in R2.
Before we proceed to the proof of (3.11) and (3.12) we make some remarks.
Take s1 = (x1, x1 + y1) in K∗(u, n). If, say, s = (x, y) ∈ Q(s1, u, n) then we
may write x = x1 − δx, x + y = x1 + y1 + δy for some δx, δy ∈ [0, nq]. The
following inequality is evident

X(s) = X(x, y) =
ξ(x+ y)− ξ(x)

y1/α
≤ ξ(x+ y)− ξ(x)

y
1/α
1

.

It follows that

X(s) ≤ ξ(x1 + y1)− ξ(x1)

y
1/α
1

+
ξ(x1)− ξ(x1 − δx)

y
1/α
1

+
ξ(x1 + y1 + δy)− ξ(x1 + y1)

y
1/α
1

.

Now take s1 = (x1, x1 + y1) and s2 = (x2, x2 + y2). Then P (s1, s2) is smaller
than the probability that both

sup
δx,δy∈[0,nq]

ξ(x1 + y1 + δy)− ξ(x1 − δx)

y
1/α
1

> u

and

sup
δx,δy∈[0,nq]

ξ(x2 + y2 + δy)− ξ(x2 − δx)

y
1/α
2

> u.

This probability can be estimated from above by

P

[
sup

δx,δy∈[0,nq]

ξ(x1 + y1 + δy)− ξ(x1 − δx)

y
1/α
1

+
ξ(x2 + y2 + δy)− ξ(x2 − δx)

y
1/α
2

> 2u

]
.

(3.13)
Thus, we obtain

P (s1, s2) ≤ P1(s1, s2) + . . .+ P5(s1, s2) (3.14)

where

P1 = P

[
ξ(x1 + y1)− ξ(x1)

y
1/α
1

+
ξ(x2 + y2)− ξ(x2)

y
1/α
2

> (2− η)u

]
, (3.15)
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P2 = P

[
sup

δx∈[0,nq]

ξ(x1)− ξ(x1 − δx)

y
1/α
1

> ηu/4

]
, (3.16)

P3 = P

[
sup

δx∈[0,nq]

ξ(x2)− ξ(x2 − δx)

y
1/α
2

> ηu/4

]
, (3.17)

P4 = P

[
sup

δy∈[0,nq]

ξ(x1 + y1 + δy)− ξ(x1 + y1)

y
1/α
1

> ηu/4

]
, (3.18)

P5 = P

[
sup

δy∈[0,nq]

ξ(x2 + y2 + δy)− ξ(x2 + y2)

y
1/α
1

> ηu/4

]
(3.19)

and η > 0 is to be chosen later.
In order to estimate P1 the following remark will be useful. Denote by y the
length of the (possibly empty) interval [x1, x1 + y1] ∩ [x2, x2 + y2]. Then the
random variable

X(s1) +X(s2) =
ξ(x1 + y1)− ξ(x1)

y
1/α
1

+
ξ(x2 + y2)− ξ(x2)

y
1/α
2

has the same distribution as

f(s1, s2)ξ(1),

where where ξ(1) is a standard stable variable of index α with skewness
parameter β = −1 and

f(s1, s2) =

(
2 +

(
y1/α

y
1/α
1

+
y1/α

y
1/α
2

)α

−
(
y

y1

+
y

y2

))1/α

. (3.20)

If s1 = s2 then f(s1, s2) = 2, it is not difficult to show that otherwise
f(s1, s2) < 2. Note also that f is continuous on H×H.

Proof of (3.11). It sufficies to prove that

lim sup
u→∞

q2

1− Φ(u)

∑
s1,s2∈K∗(u,n)

d(s1,s2)>ε

P1(s1, s2) = 0, ∀n ∈ N (3.21)
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and

lim sup
u→∞

q2

1− Φ(u)

∑
s1,s2∈K∗(u,n)

d(s1,s2)>ε

Pi(s1, s2) = 0, ∀n ∈ N, i = 2, 3, 4, 5. (3.22)

We prove (3.21).
From the continuity of f it follows that f is bounded away from 2 for
d(s1, s2) > ε, i.e. we can find δ > 0 such that, say,

f(s1, s2) < 2− 3δ, d(s1, s2) > ε.

We now set η = δ in (3.14) and (3.15)-(3.19).

P1(s1, s2) =P [ξ(1) > (2− δ)u/f(s1, s2)] ≤
P [ξ(1) > (1 + δ)u] ≤
exp(−(Bα + δ1)u

α/(α−1))

for some δ1 > 0. Since the sum in (3.21) contains at most C/(qn)4 terms,
which grows polynomially as u→∞, we have

q2

1− Φ(u)

∑
s1,s2∈K∗(u,n)

d(s1s2)>ε

P1(s1, s2) ≤ Pol(u)
1

1− Φ(u)
exp(−(Bα + δ1)u

α/(α−1)),

which converges to 0 as u→∞ by. Here, Pol(u) stands for uN for some large
N . This proves (3.21).
We prove (3.22). It sufficies to consider P2, since P3, P4 and P5 can be treated

analogously. Since y
1/α
1 is bounded away from zero as long as s1 ∈ K, we

have

P2(s1, s2) ≤P

[
sup

δx∈[0,nq]

ξ(x1)− ξ(x1 − δx) > Cηu

]
=

P

[
sup

z∈[0,nq]

ξ(z) > Cηu

]
= P

[
sup

z∈[0,1]

ξ(z) > C(nq)−1/αηu

]
.

Since C, n and η are constant and q−1/α →∞ as u→∞, we have C(nq)−1/αηu >
2u for all sufficiently large u. Using this and Proposition 3.3.3, we obtain,
for some δ1 > 0 and sufficiently large u,

P2(s1, s2) ≤ P

[
sup

z∈[0,1]

ξ(z) > 2u

]
≤ exp(−(Bα + δ1)u

α/(1−α)).

44



Now the number of terms in (3.22) grows polynomially in u and we obtain

q2

1− Φ(u)

∑
s1,s2∈K∗(u,n)

d(s1,s2)>ε

P2(s1, s2) ≤ Pol(u)
1

1− Φ(u)
exp(−(Bα + δ1)u

α/(α−1)),

which converges to 0 as u→∞. This proves (3.22).
Proof of (3.12). We have to prove that

lim sup
n→∞

lim sup
u→∞

q2

1− Φ(u)

∑
s1,s2∈K∗(u,n)
0<d(s1,s2)≤ε

P (s1, s2) = 0,

Fix s1 = (x1, y1) and s2 = (x2, y2) in K∗(u, n) such that d(s1, s2) ≤ ε. We
may write x2 = x1− anq, x2 + y2 = x1 + y1 + bnq for some a, b ∈ Z. Suppose
for simplicity that a, b ≥ 0, other cases can be treated analogously. Recall
that

P (s1, s2) = P (s1, s2, u, n) = P

[
sup

t∈Q(s1,u,n)

X(t) > u ∧ sup
t∈Q(s2,u,n)

X(t) > u

]
.

Recall also (see (3.13)) that this probability is smaller than

P

[
sup

δx,δy∈[0,nq]

ξ(x1 + y1 + δy)− ξ(x1 − δx)

y
1/α
1

+
ξ(x2 + y2 + δy)− ξ(x2 − δx)

y
1/α
2

> 2u

]
.

This is not greater than

P

[
T + sup

δx,δy∈[0,nq]

T̃ (δx, δy) > 2u

]
,

where T = T (s1, s2, n, u) and T̃ = T̃ (s1, s2, n, u, δx, δy) are defined by

T =
ξ(x1 + y1)− ξ(x1)

y
1/α
1

+
ξ(x1 + y1)− ξ(x1)

y
1/α
2

+
ξ(x1 − nq)− ξ(x2)

y
1/α
2

+

ξ(x2 + y2)− ξ(x1 + y1 + nq)

y
1/α
2

and
T̃ = T1 + T2 + T3 + T ′1 + T ′2 + T ′3,
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where

T1 =
ξ(x2)− ξ(x2 − δ2x)

y
1/α
2

, T ′1 =
ξ(x2 + y2 + δ2x)− ξ(x2 + y2)

y
1/α
2

,

T2 =
ξ(x1 − δ1x)− ξ(x1 − nq)

y
1/α
2

, T ′2 =
ξ(x1 + y1 + nq)− ξ(x1 + y1 + δ1y)

y
1/α
2

,

T3 =
ξ(x1)− ξ(x1 − δ1x)

y
1/α
1

, T ′3 =
ξ(x1 + y1 + δ1y)− ξ(x1 + y1)

y
1/α
1

.

Note that T, T1, T2, T3, T
′
1, T

′
2, T

′
3 are independent. Consequently, T and T̃ are

independent. Note also that T has the same distribution as

g(s1, s2, n, u)ξ(1),

where ξ(1) is standard α-stable random variable with skewness parameter
β = −1 and

g(s1, s2, n, u) =

((
1 +

(
y1

y2

)1/α
)α

+ 1− y1

y2

− 2nq

y2

)1/α

.

It is not difficult to see that g(s1, s2, n, u) ≤ 2. Recall that x2 = x1 − anq
and x2 + y2 = x1 + y1 + bnq. Recall also that d(s1, s2) ≤ ε with ε sufficiently
small. It is easy to deduce that

g(s1, s2, n, u) > 2− c1(a+ b)nq (3.23)

for some constant c1 > 0.
In order to estimate T̃ the following lemma is useful

Lemma 3.5.2. Let ξ1, . . . , ξd, η1, . . . , ηd be independent random variables sat-
isfying

P[ηi > u] < CiP[ξi > u], i = 1, . . . , d

for each u ∈ R and some constants Ci > 0. Then

P[η1 + . . .+ ηd > u] < C1 . . . CdP[ξ1 + . . .+ ξd > u]

for each u ∈ R.
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Proof of Lemma 3.5.2. It sufficies to prove the lemma for d = 2 (then
we can use induction). So let F1(resp. F2) be the distribution function of
ξ1(resp. ξ2). Let G1(resp. G2) be the distribution function of η1(resp. η2).
We have

1−G1(u) < C1(1− F1(u)) and 1−G2(u) < C2(1− F2(u)).

It follows

P[η1 + η2 > u] =

∫ +∞

−∞
(1−G1(u− v))dG2(v) <

∫
C1(1− F1(u))dG2(v).

Since this integral is equal to C1P[ξ1 + η2 > u], we obtain

P[η1 + η2 > u] < C1P[ξ1 + η2 > u]. (3.24)

Now repeat the procedure:

P[ξ1 + η2 > u] <

∫
(1−G2(u− v))dF1(v) ≤ C2

∫
(1− F2(u− v))dF1(v).

Since the last integral is equal to P[ξ1 + ξ2 > u], we obtain

P[ξ1 + η2 > u] < C2P[ξ1 + ξ2 > u]. (3.25)

The lemma follows from (3.24) and (3.25).

Let ζ1, . . . , ζ7 be independent standard α-stable with β = −1. Set

η1 = supT1, η2 = supT2, η3 = supT3, η4 = supT ′1, η5 = supT ′2, η6 = supT ′3,

where the sup are taken over δx, δy ∈ [0, nq]. Define η7 = T .
Set furthermore

ξi = C(nq)1/αζi, i = 1, . . . , 6

and ξ7 = g(s1, s2, n, u)ζ7 for some big constant C. Then it follows from
Proposition 3.3.3 that the conditions of Lemma 3.5.2 are satisfied. It follows
from the lemma that

P

[
T + sup

δx,δy∈[0,nq]

T̃ (δx, δy) > 2u

]
< C ′P[ξ1 + . . .+ ξ7 > 2u].
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Now, ξ1 + . . .+ ξ7 has the same distribution as g̃(s1, s2, n, u)ξ(1) where ξ(1)
is standard α-stable with β = −1 and

g̃(s1, s2, n, u) = (g(s1, s2, n, u) + 6Cαnq)1/α .

We obtain

P (s1, s2) ≤ P

[
T + sup

δx,δy∈[0,nq]

T̃ (δx, δy) > 2u

]
< C ′P[ξ(1) > (2/g̃)u]

It is easy to deduce from (3.23) and the definition of g̃ that for d(s1, s2) ≤ ε
and ε sufficiently small

g̃(s1, s2, n, u) > 2− c2(a+ b)nq

for some constant c2 > 0. It follows that

2/g̃(s1, s2, n, u) < 1 + c3(a+ b)nq

for some c3. We obtain

P (s1, s2) < C ′P[ξ(1) > (1 + c3(a+ b)nq)u] = C ′P[ξ(1) > u+ c4(a+ b)nw].

From Proposition 3.3.3 we conclude that

P (s1, s2) < (1− Φ(u)) exp(−c4(a+ b)n).

Let s1 ∈ K∗(u, n) be fixed. Then∑
s2∈K∗(u,n)

0<d(s1,s2)≤ε

P1(s1, s2) ≤ C(1− Φ(u))
∑
a,b∈Z

e−c4(|a|+|b|)n ≤ C ′(1− Φ(u)).

Now we sum over s1 ∈ K∗(u, n)∑
s1,s2∈K∗(u,n)
0<d(s1,s2)≤ε

P1(s1, s2) ≤ C ′′(qn)−2(1− Φ(u)).

It follows that

lim sup
u→∞

q2

1− Φ(u)

∑
s1,s2∈K∗(u,n)
0<d(s1,s2)≤ε

P1(s1, s2) ≤ C ′′n−2.

This finishes the proof of (3.12) and of Theorem 3.5.1.
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3.6 Proof of Theorem 3.1.1: Global Maxima

In this section we finish the proof of Theorem 3.1.3 (recall that it is a rescaled
version of Theorem 3.1.1).
Let τ ∈ R be fixed. Let u = u(n) = an + bnτ with an, bn defined by (3.1)
and (3.2). Note that u→∞⇔ n→∞.

Remark 3.6.1. We have, as u, n→∞,

Cαu
2α/(α−1)(1− Φ(u)) ∼ e−τ/n,

where Cα = (α− 1)2| cos(πα/2)|2/(α−1)α−2α/(α−1) as in Theorem 3.5.1.

Divide H into rectangles

Rk,l =
[
2l+1k, 2l+1(k + 1)

]
×
[
2l, 2l+1

]
, k, l ∈ Z.

Remark 3.6.2. ∫
Rk,l

dxdy

y2
= 1.

The next remark follows from Theorem 3.5.1.

Remark 3.6.3.

P

[
sup

t∈Rk,l

X(t) > u

]
∼ e−τ

n
.

Recall that H(n) is the triangle {(x, y) ∈ H |x ∈ [0, n], y ∈ [1, n − x]}. We
need to show that

lim
n→∞

P

[
sup

t∈H(n)

X(t) > u

]
= exp(−e−τ ). (3.26)

As in Section 2.3, it is easy to show that we can replace H(n) by the union of
n+o(n) rectangles of the form Rk,l which are contained inH(n). Moreover, in
order to simplify the notation, we shall assume that the number of rectangles
is exactly n. So, we replace H(n) by a union of n rectangles of the form Rk,l.
Let ε > 0. For each rectangle Rk,l consider a smaller rectangle Rk,l(ε) cen-
tered at the same point as Rk,l and satisfying∫

Rk,l(ε)

dxdy

y2
= 1− ε.
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Set
H(n, ε) =

⋃
Rk,l⊂H(n)

Rk,l(ε).

The next lemma is analogous to Lemma 2.3.5.

Lemma 3.6.4. For some constant c1 > 0

0 ≤ P

[
sup

t∈H(n,ε)

X(t) ≤ u

]
−P

[
sup

t∈H(n)

X(t) ≤ u

]
≤ c1ε

We are going to prove the following

Lemma 3.6.5.

lim
n→∞

P

[
sup

t∈H(n,ε)

X(t) ≤ u

]
= e−(1−ε)e−τ

.

It is easy to see, that Lemma 3.6.5 and Lemma 3.6.4 together imply (3.26)
and, consequently, Theorem 3.1.3.
The rest of the setion is devoted to the proof of Lemma 3.6.5. First, we
introduce some notational simplifications. Take some big but fixed n. In
order to simplify the notation denote the rectangles of the form Rk,l(ε) which
are contained in H(n, ε) by R1, . . . , Rn. We write R for H(n, ε). Note that
P
[
supt∈Ri

X(t) > u
]
∼ (1− ε)e−τ/n.

If the events {′′supt∈Ri
X(t) > u′′, i = 1, . . . , n} were independent, we would

obtain (3.26) immediately by the Poisson Limit Theorem. However, the
events are dependent and we need an additional argument which shows that
the Poisson Limit Theorem can still be applied. In Section 2.3, we have
used Berman’s inequality in order to show the approximate independence of
events. Unfortunately, Berman’s Inequality is not available in the α-stable
setting, so wee need to use another method.
Let A be the event ”supt∈RX(t) > u”. For i = 1, . . . , n let Ai be the the
event ”supt∈Ri

X(t) > u”. Then A = A1∪ . . .∪An. We are going to estimate
P[A] using the Bonferroni Inequality. To this end, we define, for k = 1, . . . , n,

Sk =
∑

1≤i1<...<ik≤n

P[Ai1 ∩ . . . ∩ Aik ].
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Lemma 3.6.6. For each fixed k

lim
n→∞

Sk =
((1− ε)e−τ )k

k!
.

Proof of Lemma 3.6.6. Let

Sindep
k =

∑
P[Ai1 ∩ . . . ∩ Aik ],

where the sum is taken over all independent tuples 1 ≤ i1 < . . . < id ≤ n,
i.e. tuples for which Ai1 , . . . , Aid are independent. Then it is evident that

Sk ≥ Sindep
k .

Now, for each independent tuple we have

P[Ai1 ∩ . . . ∩ Aik ] = P[A1]
k ∼ ((1− ε)e−τ/n)k.

It is not difficult to show that the number of independent tuple is ∼ nk/k!.
We obtain

lim inf
n→∞

Sk(n) ≥ ((1− ε)e−τ )k

k!
.

Now we need to prove the converse inequality. It sufficies to show that

Sdep
k =

∑
P[Ai1 ∩ . . . ∩ Aik ] = o(1), n→∞,

where the sum is taken over all tuples for which (at least two of) the events
Ai1 , . . . , Aik are dependent.
It is not difficult to show that the number of dependent tuples is O(nk−1) as
n→∞. We were done, if we could prove that P[Ai1 ∩ . . .∩Aik ] = o(1/nk−1)
with uniform o for each dependent tuple. Unfortunately, this is not true since,
as we shall see, the probability P[Ai1 ∩ . . . ∩ Aik ] depends strongly on how
the corresponding rectangles Ri1 , . . . , Rik are clustered together. Roughly
speaking, if the rectangles do not cluster then we have P[Ai1 ∩ . . . ∩ Aik ] =
O(1/nk−δ). Here, δ > 0 is some small number depending on the precise
notion of clustering. If the rectangles form 1 ≤ c < k clusters, we have
P[Ai1∩. . .∩Aik ] = O(1/n(1+γ)(c−δ)). Here, γ > 0 is a small number depending
on ε. Now, as we shall see, the number of dependent tuples which do not
cluster is O(nk−1), and the number of tuples which form exactly c clusters,
1 ≤ c < k, is O(nc). It follows from the above that Sdep

k = o(1) as n→∞.
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We make the above argument more precise. Recall that each Ri has the form[
2l+1k, 2l+1(k + 1)

]
×
[
2l, 2l+1

]
for some k, l ∈ Z. Set Ji = [2l+1k, 2l+1(k+2)].

We say that two rectangles Ri1 and Ri2 are almost disjoint if the correspond-
ing intervals satisfy one of the inequalities

len(Ji1) > Clen(Ji1 ∩ Ji2) or len(Ji2) > Clen(Ji1 ∩ Ji2),

where C is some large constant. Now take some dependent tuple Ri1 , . . . , Rik .
We say that to rectangles from the tuple, say Ri1 and Ri2 , belong to the same
cluster if one can find a finite sequence of rectangles which belong to the tuple
starting with Ri1 , ending Ri2 and such that each two neighboring rectangles
from the sequence are not almost disjoint. Now the collection Ri1 , . . . , Rik

can be represented as a disjoint union of a finite number, say c ≤ k clusters.
Let

Sdep
k,c =

∑
P[Ai1 ∩ . . . ∩ Aik ],

where the sum is taken over all dependent tuples which consist of exactly c
clusters. Then

Sdep
k = Sdep

k,k + (Sdep
k,k−1 + . . .+ Sdep

k,1 ).

We prove that Sdep
k,k = o(1), n → ∞. Recall that there are at most O(nk−1)

dependent tuples. Thus it sufficies to prove that P[Ai1∩. . .∩Aik ] = o(1/nk−1)
for each dependent tuple i1, . . . , ik consisting of k clusters. A rather technical
but standard argument, similar to that used in Section 3.3, shows that P[Ai1∩
. . . ∩ Aik ] = o(1/nk−δ) where δ = δ(C) goes to 0 as C → ∞. It remains to
choose C large enough to ensure that δ < 1.
We prove that Sdep

k,c = o(1), n → ∞, where c = 1, . . . , k − 1. The number
of tuples which form exactly c clusters is O(nc). It sufficies to show that
P[Ai1 ∩ . . . ∩ Aik ] = o(1/nc) for each tuple consisting of c ≤ k − 1 clusters.
Using methods similar to that of Section 3.3 it is possible to show that
P[Ai1 ∩ . . . ∩ Aik ] = O((1/n1+γ)c−δ) for each tuple consisiting of c ≤ k − 1
clusters. Here, δ = δ(C) → 0, C →∞ and γ = γ(ε) → 0, ε→ 0. For a fixed
ε choose C so large that (1 + γ)(c− δ) > c. We obtain P[Ai1 ∩ . . . ∩ Aik ] =
o(1/nc) and , consequently, Sdep

k,c = o(1).
This finishes the proof of Lemma 3.6.6.

Proof of Lemma 3.6.5. The Bonferroni inequalities say that, for each l ∈
N,

P[A] ≥ S1 − S2 + S3 − . . .− S2l
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and
P[A] ≤ S1 − S2 + S3 − . . .+ S2l+1.

By the previous lemma, we obtain for each fixed l ∈ N

lim inf
n→∞

P (A) ≥
2l∑

k=1

(−1)k−1 ((1− ε)e−τ )k

k!

and

lim sup
n→∞

P (A) ≤
2l+1∑
k=1

(−1)k−1 ((1− ε)e−τ )k

k!

Now let l→∞. Lemma 3.6.5 is proved.

Proof of Theorem 3.1.3. Use Lemmas 3.6.5 and 3.6.4 and let ε go to
0.
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Chapter 4

Almost sure limiting behavior
of self-normalized increments

4.1 Introduction

In [52], Shao proved the following conjecture of Révész [50, §14.3]:

Theorem 4.1.1. Let {Xi : i ∈ N} be independent identically distributed
random variables with P[Xi = 1] = P[Xi = −1] = 1/2. Set Sn = X1 + . . .+
Xn. Then, almost surely,

lim
n→∞

1√
2 log n

max
j,j+k∈{1,...,n}

Sj+k − Sj√
k

= 1.

Shao considers also more general distributions. He has proved the following

Theorem 4.1.2. Let {Xi : i ∈ N} be i.i.d. random variables. Suppose that
E[Xi] = 0, E[X2

i ] = 1 and that ϕ(t) = E[etX1 ] exists finitely in some interval
containing 0. Set Sn = X1 + . . . + Xn. Define ρ(t) = infx≥0 ϕ(t) exp(−tx)
and α(c) = sup{x ≥ 0 : ρ(x) ≥ exp(−1/c)}. Then, almost surely,

lim
n→∞

1√
2 log n

max
j,j+k∈{1,...,n}

Sj+k − Sj√
k

= α∗ ∈ [1,∞],

where

α∗ = sup
c>0

α(c)√
2/c

.
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Shao’s proof was simplified by Steinebach [53]. He deduces Shao’s Theorem
from the Erdös-Renyi Law of large numbers (see [24] or [18]) and the following
result

Theorem 4.1.3. Let {Xi : i ∈ N} be i.i.d. random variables. Suppose that
E[Xi] = 0, E[X2

i ] = 1 and that ϕ(t) = E[etX1 ] exists finitely in some interval
containing 0. Set Sn = X1 + . . . + Xn. Define ρ(t) = infx≥0 ϕ(t) exp(−tx)
and α(c) = sup{x ≥ 0 : ρ(x) ≥ exp(−1/c)}. Then, almost surely,

lim
n→∞

max
j,j+k∈{1,...,n}

Sj+k − Sj

kα(k/ log n)
= 1.

The latter result was extended in [37] to variables with subexponential tails.
Our goal is to extend Theorems 4.1.2 and 4.1.3 to multidimensional arrays
of i.i.d. random variables. Note that both Shao and Steinebach use in their
proofs results of Hanson and Russo [28], which are based on Komlos-Major-
Tusnady strong approximation [35]. Since these results are not available
for arrays, we have to use another (and actually more elementary) method.
We need only the following classical large deviations theorem, see e.g. [25,
Chapter XVI, §7].

Theorem 4.1.4. Let {Xi, i ∈ N} be i.i.d. random variables satisfying E[Xi] =
0, E[X2

i ] = 1. Suppose that the moment generating function ϕ(t) = E[etX1 ]
exists in some interval containing 0. Let {x(n), n ∈ N} be a sequence satis-
fying x(n) = o(n1/6), n→∞. Then, as n→∞,

P

[
X1 +X2 + . . .+Xn√

n
> x(n)

]
∼ P[N > x(n)],

where N ∼ N(0, 1) is a standard normal variable.

Throughout the rest of this chapter let {Xn,n = (n1, . . . , nd) ∈ Nd} be a
d-dimensional array of i.i.d. random variables. We denote the typical indices
by n = (n1, . . . , nd),m = (m1, . . . ,md) etc. If mi ≤ ni, i = 1, . . . , d, we write
m ≤ n. Define |n| = n1 . . . nd.
A set of the form

R(m,n) = {m1, . . . , n1} × . . .× {md, . . . , nd}, m ≤ n,

is called discrete rectangle. Let R be the collection of all discrete rectangles.
In order to simplify the notation we write R(n) for

R((1, . . . , 1),n) = {1, . . . , n1} × . . .× {1, . . . , nd}.
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Let R(n) be the collection of all discrete rectangles contained in R(n). For
a discrete rectangle R define

SR =
∑
n∈R

Xn.

For a finite set A let |A| denote the number of its elements. Let σR =
√
|R|.

Set

M(n) = max
R∈R(n)

SR

σR

Finally, we make some assumptions concerning the distribution of Xn. We
suppose that E[Xn] = 0, E[X2

n] = 1 and that the cumulative moment gen-
erating function ϕ(t) = E[etXn ] exists finitely in some interval containing 0.
Define as in [53]

ρ(t) = inf
x≥0

ϕ(t) exp(−tx); α(c) = sup{x ≥ 0 : ρ(x) ≥ exp(−1/c)}.

Set

α∗ = sup
c>0

α(c)√
2/c

.

It is easy to prove that α(c) ∼
√

2/c as c → +∞ and thus α ≥ 1. As is
shown in [52], α∗ is finite if and only if E [exp(tX2

n)] exists for some t > 0. If
Xn is normal, Poisson or Bernoulli distributed then α∗ = 1.
Our goal is to prove the following theorem which is a higher-dimensional
generalization of Theorem 4.1.2.

Theorem 4.1.5. Let {Xn,n ∈ Nd} be a d−dimensional array of i.i.d. ran-
dom variables. Then, with the above notation and under the above assump-
tions,

lim
n→∞

1√
2 log |n|

M(n) = α∗

almost surely.

In order to prove the above theorem we need the following analogue of The-
orem 4.1.3.

Theorem 4.1.6. Under the assumptions of the previous theorem

lim
n→∞

max
R∈R(n)

SR

|R|α
(

|R|
log |n|

) = 1

almost surely.
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The lower bound in this theorem follows from the following generalization of
the Erdös-Renyi Law of large numbers

Theorem 4.1.7 (Multidimensional Erdös-Renyi Law). Let c > 0.
Then, almost surely,

lim
n→∞

max
R∈R(n)

|R|≤c log |n|

SR

c log |n|
= α(c).

The maximum is taken over all rectangles in R(n) containing less then
[c log |n|] points.

4.2 Proof of Theorem 4.1.5

Proof of Theorem 4.1.7. The original proof of Erdös-Renyi applies with
minor changes, see [24].

Proof of Theorem 4.1.6. First note that in order to prove the lower bound
it is sufficient to take |R| = [c log |n|] for c > 0 and use Theorem 4.1.7, see
[53] for details.
We prove the upper bound:

lim sup
n→∞

max
R∈R(n)

SR

|R|α
(

|R|
log |n|

) ≤ 1.

We split the set R(n) into ”small” and ”big” rectangles. A rectangle is small
if it contains not more then kn points for some multidimensional sequence
{kn,n ∈ Nd} to be specified later. We need the following lemma from [39]

Lemma 4.2.1. Let R be a discrete rectangle. Let ε > 0, m > 0. Then

P

 SR

|R|α
(
|R|
m

) > (1 + ε)

 ≤ exp(−(1 + ε)m).

The next lemma (see [53]) estimates the maximum over small rectangles.

Lemma 4.2.2. Let {kn,n ∈ Nd} be an increasing multidimensional integer-
valued sequence satisfying kn = O(|n|δ) for each δ > 0. Then

lim sup
n→∞

max
R∈R(n)
|R|≤kn

SR

|R|α
(

|R|
log |n|

) ≤ 1.
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Proof. Use Lemma 4.2.1, see [53] for details.

Now we are going to treat the maximum over big rectangles.

Lemma 4.2.3. Let {kn,n ∈ Nd} be an increasing multidimensional integer-
valued sequence such that kn/(log |n|)3d →∞ as n →∞. Then

lim sup
n→∞

max
R∈R(n)
|R|>kn

SR

|R|α
(

|R|
log |n|

) ≤ 1.

Proof. In the one-dimensional case, Steinebach [53] deduces this lemma
from the results of Hanson-Russo [28]. Since the Komlos-Major-Tusnady
strong approximation theorem [35], which is crucial for [28], is not available
for arrays, we have to use another method.
First recall from [53] that α(c) ∼

√
2/c, c→∞. It follows that

|R|α
(

|R|
log |n|

)
∼
√
|R|
√

2 log |n|.

So we have to prove that

lim sup
n→∞

1√
2 log n

max
R∈R(n)
|R|>kn

SR√
|R|

≤ 1.

This follows via the Borel-Cantelli lemma from the following

Proposition 4.2.4. Write R∗(n) for the collection of all rectangles of the
form R(m,n),m ≤ n. Then, for each ε > 0, there exists δ = δ(ε) > 0 such
that for all sufficiently large n ∈ Nd

P

 1√
2 log |n|

max
R∈R∗(n)
|R|>kn

SR√
|R|

> 1 + ε

 < 1

|n|1+δ
.

Proof of the proposition. Take σ > 1 so close to 1 that (σ−1)−d/2 ε
2
> 2.

We may suppose that σk /∈ N, k ∈ N. Let

K(n) = K(n, σ) = {k = (k1, . . . , kd) | ki ∈ N, σki < ni, i = 1, . . . , d}.

For k ∈ K(n) define Q(k) = Q(k1, . . . , kd) and S(k) = S(k1, . . . , kd) by

Q(k) = {[n1 − σk1 ], . . . , n1} × . . .× {[nd − σkd ], . . . , nd}
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and

S(k) = {[n1 − σk1+1], . . . , [n1 − σk1 ]} × . . .× {[nd − σkd+1], . . . , [nd − σkd ]}.

For each m = (m1, . . . ,md) ≤ n one can find k = k(m) = (k1, . . . , kd) with
m ∈ S(k1, . . . , kd). Recall that

R(m,n) = {m1, . . . , n1} × . . .× {md, . . . , nd}, m ≤ n.

Define
P (m) = P (m,n, σ) = R(m,n)\Q(k(m)).

Then R(m,n) is a disjoint union of Q(k(m)) and P (m) and it follows that

SR(m,n)√
|R(m,n)|

≤
SQ(k(m))√
|Q(k(m))|

+
SP (m)√
|Q(k(m))|

.

Thus

max
m≤n

|R(m,n)|>kn

SR(m,n)√
|R(m,n)|

≤ max
k∈K(n)
|Q(k)|>kn

SQ(k)√
|Q(k)|

+ max
m≤n

|R(m,n)|>kn

SP (m)√
|Q(k(m))|

.

It sufficies to prove that, for some δ > 0,

P

 1√
2 log |n|

max
k∈K(n)
|Q(k)|>kn

SQ(k)√
|Q(k)|

> 1 +
ε

2

 < 1

|n|1+δ
(4.1)

and

P

 1√
2 log |n|

max
m≤n

|R(m,n)|>kn

SP (m)√
|Q(k(m))|

>
ε

2

 < 1

|n|1+δ
. (4.2)

In order to prove (4.1) note that

P

 1√
2 log |n|

max
k∈K(n)
|Q(k)|>kn

SQ(k)√
|Q(k)|

> 1 +
ε

2


is not greater than∑

k∈K(n)
|Q(k)|>kn

P

[
SQ(k)√
|Q(k)|

>
(
1 +

ε

2

)√
2 log |n|

]
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and use Theorem 4.1.4.
To prove (4.2) note that

SP (m)√
|Q(k(m))|

=
SP (m)√
|P (m)|

√
|P (m)|√

|Q(k(m))|
≤ (σ − 1)d/2 SP (m)√

|P (m)|
.

It is evident that

P

 1√
2 log |n|

max
m≤n

|R(m,n)|>kn

SP (m)√
|Q(k(m))|

>
ε

2


is not greater than∑

m≤n
|R(m,n)|>kn

P

[
SP (m)√
|Q(k(m))|

>
ε

2

√
2 log |n|

]
.

Each summand in the last sum is not greater than

P

[
SP (m)√
|SP (m)|

> (σ − 1)−d/2 ε

2

√
2 log |n|

]
< P

[
SP (m)√
|SP (m)|

> 2
√

2 log |n|

]
,

which is ∼ 1
|n|4 by Theorem 4.1.4. Note that the use of Theorem 4.1.4 is

justified by the following

Lemma 4.2.5. Suppose that d ≥ 2. Let m ≤ n be such that |R(m,n)| > kn.
Then √

log |n| = o(|P (m)|1/6|), n →∞.

Proof of Lemma 4.2.5. We have to prove that

lim
|n|→∞

|P (m)|
(log |n|)3

= ∞.

Recall that σk /∈ N, k ∈ N. It follows

|P (m)| ≥
d∏

i=1

(σki(m) + 1)−
d∏

i=1

σki(m) ≥
d∑

i=1

σki(m) ≥ σ−1

d∑
i=1

(ni −mi) ≥

σ−1d

(
d∏

i=1

(ni −mi)

)1/d

= σ−1d|R(m,n)|1/d ≥ σ−1d(kn)1/d.

Recall that kn/ log |n|3d →∞. Lemma 4.2.5 is proved.
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It follows

P

 1√
2 log |n|

max
m≤n

|R(m,n)|>kn

SP (m)√
|Q(k(m))|

>
ε

2

 < 1

|n|3
<

1

|n|1+δ
.

This finishes the proof of (4.2) and Proposition 4.2.4.

In order to prove Lemma 4.2.3, use Proposition 4.2.4 and the Borel-Cantelli
lemma.

The upper bound in Theorem 4.1.6 follows now from Lemmas 4.2.2 and 4.2.3
by choosing kn = [log |n|]r for sufficiently large r.
This finishes the proof of Theorem 4.1.6.

Proof of Theorem 4.1.5. The method of [53] can be used.

lim inf
n→∞

1√
2 log |n|

max
R∈R(n)

SR√
|R|

≥ lim inf
n→∞

√
c

2
max

R∈R(n)
|R|=[c log |n|]

SR

|R|
,

which is equal to
√

c
2
α(c) ≤ α∗ by the Erdös-Renyi Law (see Theorem 4.1.7).

We prove the upper bound. Note that, by the definition of α∗,

|R|α
(

|R|
log |n|

)
≤ |R|α∗

√
2 log |n|
|R|

= α∗
√

2 log |n|
√
|R|.

Thus

1

α∗
lim sup

n→∞

1√
2 log |n|

max
R∈R(n)

SR√
|R|

= lim sup
n→∞

max
R∈R(n)

1

α∗
1√

2 log |n|
SR√
|R|

≤

lim sup
n→∞

max
R∈R(n)

SR

|R|α
(

|R|
log |n|

) ,
which is equal to 1 by Theorem 4.1.6.
This finishes the proof of Theorem 4.1.5.
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haviour of Lévy processes. Part I: Subexponential and Exponen-
tial Processes. Part II: Superexponential Processes. Available at
http://www.math.chalmers.se/∼ palbin/manuscripts.html

[6] Aldous, D.(1989): Probability approximations via the Poisson clump-
ing heuristic. Applied Mathematical Sciences, 77 Springer-Verlag.

[7] Antonini, R. and Weber, M. (2004). The intersective ASCLT.
Stochastic Anal. Appl. 22 1009-1025.

[8] Berg, Chr., Christensen, J.P.R. and Ressel, P. (1984). Har-
monic analysis on semigroups. Theory of positive definite and re-
lated functions. Graduate Texts in Mathematics, 100 New York etc.:
Springer-Verlag.
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