
A Mathematical Approach to Self-Organized Criticality in

Neural Networks

Dissertation
zur Erlangung des Doktorgrades

der Mathematisch–Naturwissenschaftlichen Fakultäten
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Chapter 1

Introduction

Power-law distributions are frequently found in the sciences that study “complex”
systems. They are observed, for instance, in the population sizes of cities, in the
sizes of earthquakes, the frequencies of words in a text, in neurological data, in
the severity of violent conflicts, and in the migration of albatrosses. The multi-
tude of examples includes in particular problems such as the function of the brain,
ecosystems, and society, which are of vital interest to all of us.

It is natural to think that the prevalence of spatio-temporal power-law statistics
is not accidental. On the contrary, it is most likely that there exists an underly-
ing pattern. The pursuit of such a pattern attracted many scientists; as a result,
there exist dozens of model algorithms to generate power-law distributions [109].
However, most algorithms lack a unifying concept, which would not only provide
power-law distributions, but also explain their role and highlight the similarity of
the systems where they appear. A concept which filled this gap was proposed by
Bak, Tang and Wiesenfeld [8] and is called self-organized criticality (SOC). The
idea of SOC is indeed very simple: it proposes that the system has a critical state
as an attractor. It is well known in statistical physics that near a phase transition
observable of the system has a power-law distribution. However, in equilibrium
systems, the critical point is reached only by tuning a control parameter precisely,
which makes it rather rare to be found stable in freely developing systems. Thus,
SOC proposes to have a look at non-equilibrium systems instead.

Starting with the first article in 1987, more than 8000 articles have been published
on SOC, and more than 1000 over the last two years (data from Google scholar).
Regardless of the number of publications, there are still many questions to be an-
swered; some have not even been asked. Here we are giving answers to some of
these questions. We shall also be posing further ones.

We are mainly interested in the adequate modeling and understanding of the recent
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evidence of self-organized criticality in neuronal data [14]. In the slices of cortical
tissue experimentalists observed epochs of neuronal activity, called avalanches, sep-
arated by periods of rest. The empirical distribution of the avalanche sizes falls off
as a power-law and is stable over many hours of recording. The old and well-known
models of SOC (sandpile [8], stick-slip [54] or Zhang [154] models) are not well-
suited to describe the neuronal realm: they allow only for local interactions and
have very simple units, which can substitute neurons only in a rather vague sense.
There have only been a attempts to model neuronal avalanches with neuron-like
elements. One of the first models [53] appeared before experimental data became
available, and was able to predict the critical exponent as well as some extracritical
phenomena. However, the critical distribution is only obtained after fine-tuning
the connectivity parameters, which makes it unsuitable to explain the neuronal ob-
servations. Another study obtained the critical distribution by defining a specific
network connectivity [130]. While this is an interesting possibility, there have not
been sufficiently many observations so far to accept or reject the hypothesis of the
presence of such structures in cortical networks. This thesis focuses on the question
of obtaining a neural network model, which will be self-organized critical only by
the synaptic dynamics and not relying on specific network connectivity.

Combining the mathematical background and physical environment, we elaborate
the problem from different perspectives. We planned to start with studying mathe-
matical models of SOC, but were surprised to find that mathematical treatment of
SOC is still in its infancy. Thus, the most basic questions needed to be answered
first.

We decided to investigate the simplest model, which still captures important neural
characteristics. Namely, we consider a fully connected network of simple integrators,
which for specific values of the connectivity parameters is shown to reach the critical
state [53]. We start by formulating the mathematical model of the network in the
language of dynamical systems, which seems to be the most natural thing, when
trying to access the macroscopic behavior (such as the avalanches dynamics) of
large systems from the microscopic dynamical evolution. We consider questions of
existence and properties of the invariant measure. In the only study of SOC from
the dynamical systems perspective [20] existence, uniqueness, and ergodicity of an
invariant measure are only conjectured.

Having the invariant measure at hand, we obtain the tool to study avalanches
in the neural network more closely. We use this tool to investigate the relation
between avalanche dynamics and the branching process. In the physical studies
of SOC, it is taken for granted that the branching process captures all important
traits of the models, providing an accurate mean-field approximation. By rigorous
mathematical reasoning, we study the validity of such approximation, and the speed
of convergence for the large networks limit. Among other results, it allows us to
analytically obtain the power-law exponent of the critical distribution.
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Benefiting from our mathematical considerations, we will propose a new plasticity
rule, which allows the initial network to self-organize to a critical state from any
initial conditions. Such a plasticity rule is assigned to account for the experimentally
observed effect of slow adaptation towards criticality in a cortical network, after it
is shifted away from the critical state by chemical alteration.

An important alternative approach to achieve SOC in a neural network is to make
use of short-term changes in the connection strength. We study, how biologically
more detailed modeling of the interactions, so called dynamical synapses [101],
influences the avalanche size distribution in a spiking neural network. The concept
of dynamical synapses takes into account the finite availability of the neuronal
resources. It assumes that with each transmission, a certain fraction of resources is
utilized and then slowly restored when the cell is at rest. Our intuition about the
network with such synaptic dynamics is as follows:� If the network was only sparsly active and avalanches are small, synaptic

resources are almost fully restored, which leads to a large avalanche.� If large avalanches occurred recently, synaptic resources are drastically de-
creased and only small avalanches are possible.

Thus, we hypothesize that the critical state is a stable attractor in such a network.
We check this hypothesis in chapter 5. We also consider the analytical treatment
of the network by means of statistical mechanics.

Our aim is to obtain criticality by neuronal dynamics regardless of the network
structure. However, it is not possible to study the network without selecting a spe-
cific connectivity. To show that our results do not depend on the particular choice
of connections, we also consider structural modifications of the initial network. We
study small-world networks, random networks and networks with nearest-neighbor
connectivity.

Regarding our criticism of already existing models for being not suitable to model
neuronal processes, biological plausibility is an important issue. Unfortunately,
the more detailed a model is, the less one is able describe it analytically. As a
compromise, we first study properties of the very simple model analytically, and
then study how realistic details change its behavior. We concentrate in particular on
the influence of the neuronal leakage and presence of a subpopulation of inhibitory
neurons.

Another topic of special interest is the modification of the classical dynamical
synapses, so-called facilitatory synapses [103]. We study the effect of this modi-
fication on the network dynamics.

This thesis is structured into two parts: chapters 2–5 focus more on the physical
aspects of our work that are of relevance to computational neuroscience. They can
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be read separately from the chapters 6 and 7, in which the mathematically rigorous
results are presented.

In chapter 1, we present selected topics of the neurophysiological structure of
the cortical networks, as well as the main ideas and most prominent models of self-
organized criticality. In chapter 2, we discuss the simple model of the neuronal
network that exhibits criticality. For this classical model, we present some known
results [53] and our new findings. Chapter 3 is devoted to the long-term plasticity
rule and the approximation of the network dynamics by the branching processes.
In this chapter, we mainly discuss the applications of the mathematical treatment,
which is presented in detail in chapter 7. In chapters 4 and 5, we elaborate
on the short-term synaptic plasticity, depressive and facilitatory synapses. We
show how such plasticity is sufficient to obtain SOC neural network. Chapter 6
contains the mathematical description of the network from chapter 2 and finally, we
derive in chapter 7 the mathematical connection between avalanches and branching
processes. The last chapter contains a summary of the main results of this thesis
and an outlook.



Chapter 2

Fundamentals

This chapter summarizes basic concepts from neuroscience and the theory of self-
organized criticality (SOC) used throughout this thesis. We start with the physio-
logical description of neurons and their connections [79, 119, 11]. The second part
of this chapter is devoted to the description of self-organized criticality [74, 7, 51].
We describe the most prominent model of SOC and selected results. We introduce
the experimental findings [14] which gave evidence that cortical networks are self-
organized critical. These findings motivated a large part of the research presented
here.

2.1 Neurophysiological basics

2.1.1 Single neuron

There are two types of cells in the central nervous system: nerve cells or neurons,
and glia cells. The latter are more numerous (about 90% of all cells) and serve
mainly to form a support system for neurons. Although glia cells have recently
been found to contribute also in learning and neuromodulation [55, 146] we will
only concentrate on the nerve cells.

Neurons are cells that are specialized in information transmission and computa-
tion. They communicate by sending and receiving electrical pulses, so-called action
potentials. Neurons maintain a potential inside the cell membrane of about -65
mV relative to the extracellular medium. The membrane of a neural cell is a lipid
bilayer, selectively permeable for ions. Potential outside the cell is conventionally
defined to be 0 mV. At rest, the voltage drop across the membrane is non-zero. The
membrane potential is the electrical potential difference across a cell’s membrane.
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The non-zero membrane potential and the ion-concentration gradient is kept by
numerous channels and ion pumps build into the membrane. Passive channels
allow for the influx of Na+ and the outflux of K+ along the concentration gradient.
Pumps balance this flows by moving K+ ions in, and Na+ ions out, of the cell.

Voltage-dependent ion channels play an important role in the dynamics of the mem-
brane potential. They are responsible for the generation of action potentials. When
a neuron is depolarized sufficiently, voltage-gated Na+ channels open and the re-
sulting influx of Na+ compel even more channels to open by a positive feedback.
Large influx of cations lead to a strong depolarization. At the same time, slower
voltage gated K+ channels open and K+ ions rush out of the cell. This leads to
repolarization, which in turn closes Na+ channels. The entire cycle lasts only a few
milliseconds and the peak amplitude of a spike typically reaches about 100 mV.
After every spike, the voltage is reset to approximately the same value, which is
typically below the resting potential. This effect is called afterhyperpolarization. A
few milliseconds after every spike, it is impossible to evoke another action potential
even by a very strong stimulation. This period is called the absolute refractory
time.

The variability in the initial depolarization, required for spike generation, is not
very large. Thus, models usually assume, that a specific threshold can be set, such
that crossing the threshold level indicates a spike. Nevertheless, variability in the
threshold and speed of the action potential onset have a large influence on the
response properties of the neuron [107].

Depending on their location within the brain and their function in information
processing, neurons have a different histology. However, in most of the neurons
one can distinguish the following parts: the dendrites, the soma and the axon.
Dendrites constitute a wide branching tree of links between neurons, which allow a
neuron to receive signals from other cells. The soma, or the cell body, is the central
part of a neuron, where signals arrive from dendrites are collected and processed.
It is the metabolic center of the neuron and it contains nuclei. The axon is a long
projection of a neuron, that conducts electrical signals away from the soma. The
axon is connected by synapses to dendrites of other neurons.

2.1.2 Synaptic interaction

Synapses allow for the interaction between different neurons. The signal transfer is
generally unidirectional: from the axon of one neuron to the dendrites of another
neuron. Synapses can be either chemical or electrical. Chemical synapses release a
specific chemical messenger – the neurotransmitter. Electrical synapses allow direct
ion flux between cells and are very fast; therefore, they are particularly important
for the neuronal synchronization [40], but they are rare between the principal cells
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of the mammalian brain.

We will concentrate on chemical synapses here. Usual chemical synapses can be
found at dendritic spines and are formed by membrane swellings on both sides of
the contact. Following the direction of the signal transfer, the axon side of the
synapse is called the presynaptic terminal, whereas the dendritic side is referred to
as the postsynaptic terminal. Neurotransmitters are stored in the presynaptic side
in spherical vesicles.

As an action potential arrives at the presynaptic terminal, depolarization triggers
the opening of Ca2+ channels. The influx of Ca2+ into the presynaptic side leads to
the fusion of vesicles and to the release of neurotransmitters into the synaptic cleft.
Neurotransmitters cause the opening of ion channels of the postsynaptic neuron by
binding to postsynaptic receptors. The resulting postsynaptic currents change the
ionic concentration. They either raise (depolarize) the potential of the postsynaptic
neuron, bringing it closer to threshold (excitatory postsynaptic potentials, EPSP), or
lower it, bringing the neuron further away from the threshold and therefore delaying
the firing (inhibitory postsynaptic potential, IPSP) [79].

The mechanism of synaptic transmission, as sketched above, has many consequent
steps, which lead to delays in the information transmission. Experimentally ob-
served delays vary from 0.3 ms to several milliseconds.

Neuronal networks are sparsly connected. The probability of two neurons on the
distance less than the connection range to be connected is between 1% and 25%. At
the same time, the number of synapses per neuron ranges from several thousands
to several dozens of thousands.

2.1.3 Plasticity

The absolute value of the postsynaptic potential, which is also called synaptic
strength, varies between different synapses of one neuron. Moreover, the strength
of the individual synapse is not constant, but changes depending on the previous
activity of that synapse, the activity of the neuron and the activity of the postsy-
naptic neuron. Synaptic changes are divided into two classes according to the time
scale on which they occur: the long-term plasticity and the short-term plasticity.

The long-term potentiation (LTP, increase of the synaptic strength) and the long-
term depression (LTD, decrease of the synaptic strength) are changes which persist
up to hours or more. Such effects can be induced by changes in the state of neu-
rotransmitter receptors [21, 127], changes in the distribution of ion channels [144]
and morphological changes of neurons [125], however most importantly by neuronal
activity.
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LTP was first phenomenologically described in 1945 by Donald Hebb [67], who
proposed the concept that “cells that fire together, wire together”. This means,
that nearly simultaneous activity of pre- and postsynaptic neurons increases the
synaptic weight (Hebb rule):

∆Wij = k(ri · rj),

where Wij is the synaptic weight between neuron i and j, and rj and rj are instan-
taneous firing rates of the neurons i and j.

The refined version of Hebbian learning was found in an experimental setup where
two cells were forced to fire in a different temporal order [18]. It was discovered that,
if a presynaptic cell fires before a postsynaptic cell (in agreement with a possible
causal relation), then their synaptic strength is increased, and vice versa.

The short-term synaptic plasticity induces changes of synaptic strength which last
for milliseconds. It is often defined by the metabolic properties of the neuron such
as depletion of the synaptic resources [101], residual Ca2+ in the cell [155], or could
be also induced by neuromodulators [32]. In the first case, depression or facilitation
of the synaptic connection depends on the frequency of stimulation of the synapse.
Therefore, synapses which are the subjects of such a dynamics are referred to as
frequency-dependant or dynamic synapses. An overview of the synaptic plasticity
can be found in many text books; for example, it is given in [61].

2.1.4 Neuronal models

The mathematical treatment of the neuronal dynamics presupposes the construc-
tion of appropriate neuron models. The spectrum of existing models varies from
highly detailed models [100] to the very simple and abstract models with two dis-
crete states [70]. Detailed models are good to obtain a realistic picture of the neu-
ronal dynamics in a simulation, whereas simple models highlight general principles
and allows one to perform analytical computations and predictions. Nevertheless,
oversimplification may lead to wrong results.

If the morphology of the neuron is neglected, then the model describes a single volt-
age variable V. The dynamics of the voltage can be expressed in terms of currents
and ion fluxes. The integrate-and-fire (IF) model provides the simplest phenomeno-
logical description of the voltage dynamics. It was proposed at the beginning of
the 20th century [84] and has been well studied and often used in the neural models
since then.

The IF model describes the neuron as an electrical circuit, which consist of a ca-
pacitor with the capacitance Cm in parallel with a resistor with leak conductivity
gl representing the passive open ion channels, driven by a current I(t). Thus, the
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voltage dynamics is described by

Cm
dV (t)

dt
= gl (Vrest − V (t)) + I(t), (2.1)

where Vrest represents the resting potential of approximately −65mV. When the
potential difference at the capacitor exceeds a certain threshold θ, the generation
of an action potential is started and the capacitor is reset to the resting potential
Vr.

Despite its simplicity, the model reproduces many aspects of the response properties
of a real neuron if the input current does not vary too fast [44, 120]. Further
development leads to improved models that include quadratic integrate-and-fire
models [25, 85], refractory periods, dynamic thresholds or time constants [23, 75, 95].
In this thesis, the most simple integrate-and-fire model without leak (i.e. gl = 0)
will be used.

2.2 Self-organized criticality

There has been a long history of attempts to propose physical theories to explain
a seemingly heterogeneous variety of phenomena by a few general principles. Self-
organized criticality (SOC) is certainly a prominent example of a theory with such
a unifying purpose. It was proposed to explain the emergence of complexity.

The term “self-organized criticality” emphasizes two aspects of the system behavior.
Self-organization is used to describe the ability of certain nonequilibrium systems
in the absence of control or manipulation by an external agent to develop specific
structures and patterns. The word criticality is used in order to emphasize the
similarity with phase transitions: a system stays at the border of stability and
chaos. The concept was coined by Bak et al. [8] who proposed the first SOC model
and discovered the connection between SOC and the appearance of the power-law
distributions.

Self-organized criticality has been used to model phenomena as diverse as the piling
of granular media [57], plate tectonics [64], forest fires [97], stick–slip motion [54],
and electric power system blackouts [30]. It has also recently become appealing to
biologists [3, 14, 28] .

Critical behavior has been shown to bring about optimal computational capabil-
ities [88], optimal information transmission [14], storage of information [65], and
sensitivity to sensory stimuli [37, 46, 81].

In many of the above-mentioned instances, the applicability self-organized criti-
cality is largely disputed. Among them is, for example, one of the earliest exam-
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ples of a natural phenomenon described by SOC: the magnitude of earthquakes.
Most authors accept the SOC model. However, if the SOC claims are true, then
earthquakes are unpredictable, which makes some authors skeptical about the con-
cept [41, 150, 151].

There are also some scientists who criticize the generality claim of the self-organized
criticality theory [58, 137]. Their scepsis is based on the observation, that
nowadays, all models and natural phenomena that have a power-law statistics of
any observable are immediately interpreted as SOC. Although, sometimes there
exists much more simple and natural explanation of power-law statistics [12].

Nevertheless, it is without doubt that SOC is an important tool to understand more
about appearance of power-laws and the phenomena of self-organization. Even if it
should not be considered as a complete description of every phenomenon, it is still
an important first step in comprehending complexity.

One example of a system which may be a good candidate for SOC was found in the
cortical slices [14, 15] and later in other neural systems [104]. This new discovery
revived the interest in self-organized criticality and also motivated this work.

In the following parts, we will first briefly introduce the most important SOC models
and some of their implications. Then we will remark on mathematical contributions
to the studies of self-organized criticality. Finally we will describe the experiments
of Beggs and Plenz.

2.2.1 Sandpile model

In this section, we describe the sandpile model which was proposed by Bak in
collaboration with Tang and Wiesenfeld [8, 9]. It attracted great interest as the
first and clearest example of self-organized criticality.

The model is inspired by a real pile of sand. Grains of the model “sand” are
dropped into the system and are lost at the boundaries, allowing the system to
reach a stationary state that balances input and output. In the limit of infinitely
slow input, the system displays a highly fluctuating, scale-invariant avalanche-like
pattern of activity.

Formally, the sandpile model is defined on the d-dimensional lattice of size Ld. The
variable z(r) describes the “energy” of the site r ∈ Rd, and ej , j = 1, . . . , d are basis
vectors on the lattice. The dynamics of z obeys the following rules:
1) If for all sites of the latice r , z(rk) < zc, then one site ri is selected randomly
and one grain of sand is dropped there

z(ri) → z(ri) + 1. (2.2)
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2) If z(ri) ≥ zc, then site ri relaxes by the following rule:

z(ri) → z(ri) − 2d

z(ri ± ej) → z(ri ± ej) + 1 for j = 1, . . . , d.

On the boundary, energy dissipates from the system and there is no other form of
dissipation in the system. At each moment of time, only one of the rules is used.
This creates an infinite separation of timescales of the internal relaxation (rule 2)
and the external input (rule 1).

An avalanche is then a sequence of relaxations that directly follows the addition
of one grain. The system reaches a stationary state that is characterized by a
power-law distribution of avalanches sizes [8, 77, 99]

P (s) ∼ s−γ .

Dhar [48] has shown that the sandpile model described above is Abelian, i.e. the
final state of the system is independent of the order in which rules are applied to
different sites. One consequence of this is that the order of the redistributions during
an avalanche does not affect the final structure of the avalanche [4, 10, 49, 50, 118].

Many techniques have been applied to the analysis of sandpile models. Examples
include mean-field studies [59, 139, 140, 141], renormalization group methods [115,
142], branching processes [118], invasion percolation [123] and damage analysis [17].

One of the natural questions is whether a real sandpile exhibits SOC. There were a
number of experimental studies with different types of sand and different mechanism
of sand addition [73, 106, 122] but they all did not show any SOC. Instead, self-
organized criticality was found in ricepiles for a specific type of rice [57].

2.2.2 Mathematical approach to SOC

Despite the great interest in self-organized criticality among physicists, only a very
limited number of mathematicians have studied the phenomenon of SOC by rigorous
methods. One of the rare examples is a group spread between Bielefeld and Nice
of B. Cessac, Ph. Blanchard, and T. Krueger. They studied the Zhang model [154]
of cellular automata on the d-dimensional lattice.

In a series of articles [20, 33, 34, 35, 36, 145] they proposed a mathematical model of
the self-organized critical system using methods and tools from dynamical systems
theory, ergodic theory and statistical physics. They have shown that the Zhang
model of SOC is a hyperbolic dynamical system with singularities. They also have
analyzed the transport dynamics and related it to the Lyapunov spectrum. This
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establishes an unexpected relation between the structure of the (fractal) attrac-
tor [33] on which the dynamics resides and the transport properties. They have
also shown that one can construct Gibbs measures (in the sense of Sinai-Ruelle-
Bowen [22, 124, 126]) which are directly related to avalanches distributions.

After the Sinai-Ruelle-Bowen measure is found, it is possible to use techniques from
statistical physics of critical phenomena (Lee Yang zeros [87, 149]) to analyze the
behavior of avalanche distributions when the system size tends to infinity. The au-
thors have shown that this method allows detection of a bias in the numerics which
leads to spurious critical exponents [36]. Finally, using methods from quantum field
theory they have studied a stochastic partial differential equation modeling trans-
port in SOC models [34]. They have shown that a perturbative method requires
one to handle all terms in the series and they have been able to extract two free pa-
rameters in the theory, that can be related to the transport and the scale behavior
of Lyapunov exponents.

Throughout their work, Cessac et al. [34, 36] assumed the existence of the unique
Sinai-Ruelle-Bowen measure on the extended state space; based on this conjecture,
they build their thermodynamical formalism. In our study, some results concerning
such a measure is provided (for a different system). In this sense, our work is
complementary to the approach of Cessac et al.

2.2.3 Neuronal avalanches

In this section one example of a self-organized critical system, namely neuronal
avalanches, is described. The discovery of the critical avalanches in the brain mo-
tivated this work on SOC and renewed general interest in the field.

First experiments were done in cultured and acute cortical slices by John Beggs and
Dietmar Plenz [14, 15, 116, 129]. Cultures were planted on a multielectrode array
and local field potential signals were recorded from the 64 electrodes of the array
during a long period of time (on a time scale of hours).

A local field potential (LFP) is a signal which reflects the sum of all synaptic activity
within a volume of tissue [26]. The precise origin of the signal is not yet clear, and
it was found that phenomena that are unrelated to synaptic events also contribute
to the LFP [27]. Nevertheless, LFP characterizes the cumulative activity in the
slice better than spikes. It also often gives a larger, than spikes recorded from a
small number of electrodes, correlation with the behavior in in vivo experiments.

In Fig. 2.1, the extraction of the filtered LFP signal from the cortical slice is shown.
The first filtering stage extracts the LFPs from the recorded signal, which are then
thresholded to obtain the binary signal on each electrode. The data is then orga-
nized in 4 ms bins. After such processing, the data consists of short intervals of
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Figure 2.1: Extraction of LFPs from a multielectrode array.

activity, when one or more electrodes detected LFPs above the threshold, separated
by longer periods of silence. When the activity periods are studied in fine temporal
resolution, it is possible to see the spread of activity in the slice. A set of consec-
utively active frames is called an avalanche. The size of an avalanche is defined as
the number of electrodes which were active during the avalanche. Avalanche sizes
turn out to follow the power-law distribution with the exponential cutoff at the
size of the multielectrode array. The distribution is stable over many hours. The
exponent of −3/2 characterizes both acute cortical slices and cultures.

The application of the inhibition antagonist picrotoxin makes the network more
exitable and changes the distribution of the avalanche sizes to bimodal. After a
few days, the network returns to the critical state despite pharmacological influence
(Fig. 2.2). This implies that there are some long-term regulatory mechanisms which
tune the network to criticality.

Propagation pathways similar to the ones described in Ref. [143] form significant
similarity clusters [15]. It has also been observed that activity at one electrode
can be followed by activity at any other electrode, which allows to rule out the
hypothesis of a synfire chain [52] nature of the avalanches.

In the cortex, the emergence of power-law distribution of avalanche sizes with slope
−3/2 depends on an optimal concentration of dopamine [129] and on the balance of
excitation and inhibition [14, 129], which suggests that particular parameters must
be appropriately “tuned” [13]. This provides additional evidences in favor of the
hypothesis that there are mechanisms in the cortex which lead to robust and local
self-organization towards the critical state.

Despite the complex relationship between LFP waveform and underlying neuronal
processes, neuronal avalanches have also been recently identified in vivo in the
normalized LFPs extracted from ongoing activity in awake macaque monkeys [114].
This proves that critical avalanches are not an artifact of the neuronal cultures and
slices and also present in the brain of the behaving animals.
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Figure 2.2: Avalanche sizes and durations distribution. (left) Black: avalanche size
distribution in unperturbed system, red: avalanche size distribution after applica-
tion of picrotoxin, gray: relaxation of distribution after washing out of the reagent,
dashed line: power-law with exponent -3/2. (right) Distribution of avalanche du-
rations, dashed line: power-law with exponent -2. Pictures are taken from [14]

Until recently, avalanches were observed only in LFP recordings, however two pub-
lications appeared last year, in which critical avalanches were measured in spikes.
In the dissociated cultures of rat hippocampal neurons and intact leech ganglia,
avalanche sizes have a power-law distribution with slope −3/2 [104]. In cortical
culture with an array of 500 electrodes, a power law with an exponent of approxi-
mately −2.1 was observed [13].

2.2.4 Models of neuronal avalanche

There were some attempts to model self-organized criticality in neural networks
and other neural systems. In this section we briefly describe the most prominent of
them.

Among the earlier models, the study of Herz and Hopfield [68, 71] deserves special
mention. They tried to connect the reverberations in a neural network to the
power law distribution of earthquake sizes. They considered leaky integrate-and-
fire neurons with a constant input current on a lattice and were mainly interested
in synchronization of such a network in the non-leaky case.

The first example of a globally coupled system that shows criticality was presented
by Eurich, Herrmann and Ernst [53]. In this study, a simple model of a fully con-
nected neural network of non-leaky integrate-and-fire neurons was investigated. The
results predicted the critical exponent as well as different dynamical phenomena,
which were later observed experimentally [14, 15]. The model and its implications
will be discussed in chapter 3.



2.2. Self-organized criticality 15

After the experiments by Beggs and Plenz, further models have been proposed.
Among them is, for example, the model by Teramae and Fukai [130]. The authors
studied a network of Izhikevich neurons [72] organized into synfire chains [52]. The
specific wiring leads to the stable avalanche propagation and a power-law statistics
of the avalanche sizes.

Another approach was used by Rohrkemper and Abbot [1] who concentrate on the
development of the connectivity structure and do not consider the synaptic plas-
ticity. They used the activity-dependent neurite outgrowth model [111] to obtain
a network structure from the initially disconnected neurons on a two-dimensional
layer. The authors claim that the resulting network produces a stable power-law
behavior, although the plots presented in the article do not show a clear power-law
distribution.

SOC was also obtained from a different perspective in the works of de Arcangelis
et.al [45, 113]. The authors considered the network on a grid with an anti-hebbian
learning rule. Their model is intended to explain the power-law distribution of the
EEG spectrum.

Some authors claim that the power-law statistics or 1/f scaling in the neural data
may be explained independently of critical states. An alternative explanation of
the 1/f frequency scaling arises from the filtering properties of extracellular media
[12].

In summary, we demonstrated examples, illustrating that ideas of SOC have found
large interest in the scientific community. However, neither the mathematical under-
standing, nor the explanation of SOC in neurobiological experiments, is sufficiently
studied.
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Chapter 3

Static synapses

In this chapter we discuss the model of the neural network proposed in 2002 by
Eurich et al. [53]. That study presented the first example of a globally coupled
system that exhibits critically. It also predicted the critical exponent as well as some
extra-critical dynamical phenomena, which were later observed in the experimental
research [14].

The simplicity of the model allows to derive a formula for the distribution of
avalanche sizes analytically. However, its dynamics still poses a large repertoire
which is accessed by changing the only parameter of the model. One of the unique
features of this study is that the distribution of avalanche sizes is also found for
a finite-size system, in contrast to most other researches, where analytical results
are obtained only in the thermodynamical limit. In chapter 7 the mathematical
treatment of this model is presented.

3.1 Description of the model

Consider a set of N identical threshold elements characterized by a state variable
h ≥ 0 which corresponds to the neuronal membrane potential. The system is
initialized by arbitrary values hi ∈ [0, θ) (i = 1, . . . , N), where θ is the threshold
above which elements become unstable and relax.

In the model, time is measured in discrete steps, t = 0, 1, 2, . . .. Depending on
the state of the system at time t, the ith element receives external input Iext

i (t) or
internal input I int

i (t) from other elements. If hi(t + 1) is larger than θ, periodic
boundary conditions are applied. Hence, the membrane potential of the ith element
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at time t + 1 is computed by

hi(t + 1) =

{
hi(t) + Iext

i (t) + I int
i (t) if hi(t) + Iext

i (t) + I int
i (t) < 1,

hi(t) + Iext
i (t) + I int

i (t) − 1 otherwise.

where without loss of generality θ is set to be equal one. For the external input
Iext
i (t), one element is randomly chosen from a uniform distribution on 1, . . . , N ,

and a constant amount of energy ∆h ∈ (0, 1] is added to the element’s membrane
potential. The external input is considered to be delivered slowly compared to the
internal relaxation dynamics, i. e. it occurs only if no element has exceeded the
threshold in the previous time step. This corresponds to an infinite separation of
the time scales of external driving and avalanche dynamics that have been suggested
as a necessary condition for SOC [128, 141, 140].

The external input can formally be written as

Iext
i (t) = δri(t) δξ(t−1),0 ∆h, (3.1)

where r ∈ {1, 2, . . . , N} indicate the element chosen to get external input, ξ(t − 1)
is the number of suprathreshold elements in the previous time step, and δ.. is the
Kronecker delta.

The internal input I int
i (t) is given by I int

i (t) = ξ(t − 1)α/N , where α/N is the
coupling strength between the elements. We assume connections to be excitatory,
that is, α > 0.

At some time t0 the element receiving external input exceeds threshold and an
avalanche starts, ξ(t0) = 1. The system is globally coupled, such that during
an avalanche all elements receive internal input, including the unstable elements
themselves. An example of the avalanche is shown in Fig 3.1.

The avalanche duration D ≥ 0 is defined to be the smallest integer for which the
stopping condition ξ(t0 + D) = 0 is satisfied. The avalanche size, L, is given by
L =

∑D−1
k=0 ξ(t0 + k). The model [53] allows to calculate the probability P (L, N, α)

of an avalanche of size L ≥ 0 in the regime 0 ≤ L ≤ N in a system consisting of N
elements with coupling parameter α. Avalanche size distributions can alternatively
be described by a conditional probability P0(L, N, α) = P (L, N, α|L > 0), which is
related to P (L, N, α) via

P0(L, N, α) =
P (L, N, α)

1 − P (0, N, α)
. (3.2)

Due to the global coupling of the elements, there are no spatial boundary conditions
to be specified in the model.
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Figure 3.1: Example of an avalanche. A network of 10 neurons is depicted, each
square denote one neuron, each raw is a state of the network at the fixed moment of
time. Green color marks the neurons which receive the external input. As long as
there are no super-threshold neurons in the network the time scale of the external
input is taken for the time discretization. Red sparks mark supra-threshold neurons.
Light red color denotes internal input. The firing happens on the fast time-scale
and during the avalanche discretization step is taken to be equal to the synaptic
delay.
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3.2 Simulations and analysis

Depending on the connection strength α, the network can produce a rich repertoire
of behaviors. If α ≥ 1, then the network accumulates energy with each avalanche
and once there is an avalanche of a size of at least N the activity will never terminate.
If 1 > α > 1−∆h then it is possible for a neuron to fire more than once during the
avalanche and multi-peaked distribution is observed.

In Fig. 3.2 examples of avalanche size distributions are shown for various values of
α < 1. For small values of α, subcritical avalanche-size distributions are observed.
This regime is characterized by a negligible number of avalanches that extend to
system size. If α = αcr the system has an approximate power-law avalanche dis-
tribution with the slope close to −3/2 for avalanche sizes almost up to the size of
the system where an exponential cut-off takes place. Avalanche size distributions
become non-monotonous when α is above the critical value αcr.

If the “distance” d(P (α, N), Ppl) from the observed distribution P (α, N) to a “ideal”
power-law distribution Ppl with the slope −3/2 is defined, numerical analysis allows
to find the parameter αcr which minimizes this distance. There is some arbitrariness
in the selection of the metrics, authors of [53] selected rather conventionally the
symmetric version of the Kullback-Leibler divergence, which is defined as

d(α) =
∑

L

(P (L, α, N) − Ppl(L))(log(P (L, α, N)) − log(Ppl(L))). (3.3)

In general, Kullback-Leibler divergence is not a metric, because it does not satisfy
triangular inequality, but it is non-negative, symmetric and equals to zero if and
only if distributions coincide. The argument α at the minimum of the divergence
is found to depend on N as,

αc(N) ≈ 1 − N−µ with µ = 0.5 ± 0.01 . (3.4)

One of the important advantages of this model is the possibility to perform the
analytical calculation of the avalanche size distribution. Namely,

P0(L, α, N) = LL−2

(
N − 1

L − 1

)( α

N

)L−1 (
1 − L

α

N

)N−L−1 N(1 − α)

N − (N − 1)α
. (3.5)

The conditions required for such calculations are discussed and checked in chapter 7.
The exact formula allows to find critical connectivity strength in the thermodynam-
ical limit, which appears to be αc = 1. Thus it is also possible to find a limiting
power-law exponent. We take first the limit of the large system size N → ∞ and
then limit α → 1, because in the opposite case the limit does not exist.
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Figure 3.2: Probability distributions of avalanche sizes, P0(x, N, α), and avalanche
durations, pd(x, N, α) , in the subcritical (a; α = 0.8), critical (b; α = 0.99), supra-
critical (c; α = 0.999), and multi-peaked (d; α = 0.99997) regime. (a-c) Solid
lines and symbols denote the analytical and the numerical results for the avalanche
size distributions, respectively. In (d), the solid line shows the numerically calcu-
lated avalanche size distribution. The dashed lines in (a-d) show the numerically
evaluated avalanche duration distributions. In all cases, the presented curves are
temporal averages over 107 avalanches with N = 10000, and ∆h = 0.022. Figure
and caption taken from [53].
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We obtain

γ(L) = lim
α→1

lim
N→∞

log
p(L, N, α)

p(L + 1, N, α)

/
log

L

L + 1
. (3.6)

γ(L) becomes constant for the large L:

lim
L→∞

γ(L) = −3/2.

In the case α = 1, system is conservative and then a power-law behavior with an
exponent of −3/2 is reached in the regime of large avalanche sizes. Therefore, in the
thermodynamical limit the critical state is obtained in the conservative system. This
appears natural in the context of the discussion about SOC and conservation laws.
In a sequence of articles numerous authors found arguments against existing non-
conservative SOC models [42, 63, 82, 24] and proposed variants that were claimed
to be critical in non-conservative cases [110, 93]. For Abelian sandpile (i.e. system
where dynamics does not depend on the order of nodes update) it is proven, that
conservation is necessary for SOC [136], but so far there is no final point in this
discussion, though all observed SOC systems are conservative.

This model would suit perfectly to model neuronal avalanches [14], if it would be
really self-organized in a sense compatible with biological neurons. But actually, to
obtain the critical regime one has to tune the connectivity parameter very precisely.
Another drawback is, that the parameter tuning must become more precise with in-
creasing system size to sustain the same quality of fit to the power-law distribution.
It is hard to expect such a precision of connectivity tuning from neuronal systems.
Thus there is a necessity to extend the model, in order to achieve self-organized
criticality in a way that is compatible with biological observations. In the next
chapter we are going to introduce one of such models.

3.3 Abelian distribution

In this and the following section several topics which were not considered in the
paper of Eurich et al. [53] are discussed. We prove that the distribution, introduced
in the paper is indeed probability distribution. We also derive its mean value, which
will be used later in chapters 5 and 6.

Definition 3.3.1. Let N ∈ N, α < 1. Then Abelian distribution is defined for each
0 ≤ L ≤ N by

Pα,N(L) = Cα,NLL−2

(
N − 1

L − 1

)( α

N

)L−1 (
1 − L

α

N

)N−L−1

, (3.7)

where Cα,N is a normalizing constant.
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We call this distribution Abelian, because of the Abelian sums which are present in
its description. It was found in [53], that avalanche size in the fully connected neural
network of size N with connectivity parameter α has an Abelian distribution.

Lemma 3.3.1.

Cα,N =
N(1 − α)

N − (N − 1)α
. (3.8)

Proof.
N∑

L=1

Cα,NLL−2

(
N − 1

L − 1

)( α

N

)L−1 (
1 − L

α

N

)N−L−1

= 1. (3.9)

We introduce a new variable x = α/N and get

N∑

L=1

L−1

(
N − 1

L − 1

)
(Lx)L−1 (1 − Lx)N−L−1 =

1

Cα,N
, (3.10)

which is equivalent to

N−1∑

L=1

L−1

(
N − 1

L − 1

)
(Lx)L−1 (1 − Lx)N−L−1 =

1

Cα,N
− (Nx)N−1

N(1 − Nx)
. (3.11)

We can compute the sum on the left side of (3.11)

∑N−1
L=1 L−1

(
N − 1

L − 1

)
(Lx)L−1 (1 − Lx)N−L−1 = (3.12)

∑N−1
L=1 L−1

(
N − 1

L − 1

)
(Lx)L−1

N−L−1∑

m=0

(−1)m

(
N − L − 1

m

)
(Lx)m

Introducing k = L − 1 we can rewrite the sum in the left side of (3.13) as a
polynomial in x

N−2∑

i=0

xi

i∑

k=0

(−1)i−k

(
N − 1

k

)(
N − k − 2

i − k

)
(k + 1)i−1 =

N−2∑

i=0

Pi(N)xi, (3.13)

where Pi(N) is a polynomial of the degree i. If i = 0 then P0(N) = 1. Consider
i > 0 to identify uniquely the polynomial Pi(N) it is sufficient to find its values in
i + 1 different points N = 1, . . . , i + 1. If k > N − 1 then

(
N−1

k

)
= 0. For N < i + 2

we realize that if k < N − 1 then
(

N−k−2
i−k

)
= 0, hence

Pi(N) = (−1)i−k

(
N − 1

N − 1

)( −1

i − k

)
N i−1 = N i−1 for N = 1, . . . , i + 1 and i > 0
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which means that Pi(N) = N i−1 for any N and i > 0. Then the left side of (3.13)
is

1 +
N−2∑

i=1

xiN i−1 = 1 + x
1 − (Nx)N−2

1 − Nx
. (3.14)

Inserting (3.14) into (3.11) we get a final equation to determine Cα,N

1 + x
1 − (Nx)N−2

1 − Nx
=

1

Cα,N
− (Nx)N−1

N(1 − Nx)
.

Hence,

1

Cα,N
= 1 + x

1 − (Nx)N−2

1 − Nx
+

(Nx)N−1

N(1 − Nx)
=

(1 − Nx)N + Nx

N(1 − Nx)
=

N − (N − 1)α

N(1 − α)
.

Theorem 3.3.2. If ξ has a Abelian distribution with parameters α, N , then

Eξ =
N

N − (N − 1)α
. (3.15)

Proof. From (3.7) and Lemma 3.3.1 we have

Eξ =

N∑

L=1

LL−1

(
N − 1

L − 1

)( α

N

)L−1 (
1 − L

α

N

)N−L−1 N(1 − α)

N − (N − 1)α
.

We have to prove that

N∑

L=1

LL−1

(
N − 1

L − 1

)( α

N

)L−1 (
1 − L

α

N

)N−L−1

=
1

1 − α
. (3.16)

Introducing the new variable x = α/N we can rewrite this equation as

N∑

L=1

(
N − 1

L − 1

)
(Lx)L−1 (1 − Lx)N−L−1 =

1

1 − Nx
. (3.17)

Transforming sum in (3.17) we obtain

N−1∑

L=1

(
N − 1

L − 1

)
(Lx)L−1 (1 − Lx)N−L−1 + (Nx)N−1(1 − Nx)−1 =

1

1 − Nx
. (3.18)
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which is equivalent to

N−1∑

L=1

(
N − 1

L − 1

)
(Lx)L−1 (1 − Lx)N−L−1 =

N−2∑

i=0

(Nx)i. (3.19)

Both left and right sides of the equation (3.19) are polynomials in x of the degree
N − 2. Hence to prove that equation (3.19) is identity it is sufficient to prove that
coefficients of xi are equal on the both sides for every i. In other words we have to
show that

i∑

k=1

(−1)i−k

(
N − 1

k

)(
N − k − 2

i − k

)
(k + 1)i = N i. (3.20)

Again, both sides of (3.20) are polynomials of N of the degree i. It is sufficient to
prove that both sides of (3.20) are equal for i + 1 different points. We can select
these points to be N = 1, . . . , i + 1.

If k > N − 1 then
(

N−1
k

)
= 0. Due to N < i + 2 if k < N − 1 then

(
N−k−2

i−k

)
= 0,

hence the only non-zero item of the sum is the one corresponding to k = N −1, but

(−1)i−k

(
N − 1

N − 1

)( −1

i − k

)
N i = N i.

3.4 Finite-size scaling

In order to study the critical distribution in a finite system it is beneficial to find
the explicit dependence of the observables on the system size. The equation that
summarizes such dependence is referred to as finite-size scaling. In this section we
develop scaling relations for the avalanche size distribution of the network 3.1 in
the critical state. We use classical procedures described in Refs. [78, 38, 39, 29].

In Fig. 3.3 (left) distributions of the avalanche sizes are plotted for several values
of N . The large-L cutoff scales with N , which is necessary condition to obtain a
truly critical distribution in the limit. Assume, that

Pc(L, N) = constNL−γ . (3.21)

Denote the critical distribution of the avalanche sizes in the network of N neu-
rons by Pc(L, N). Criticality is defined as before by the distance to the power-law
distribution. In the critical state the connectivity parameter α scales with N as

α = 1 − Nµ, (3.22)
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Figure 3.3: Critical distribution of the avalanche size for different network sizes.
(left) avalanche size distribution without final-size scaling; (right) axes scaled by
1/N and N1.5 . N=100, 300, 500, 700, and 1000

where µ ≈ −0.5 [53]. Thus, for the critical distribution the average avalanche size
is given by

〈L〉 =
N

N − (N − 1)α
∼ N

N − (N − 1)(1 − N−0.5)
∼

√
N. (3.23)

This results differs from the sandpile models, where 〈L〉 ∼ N2 for undirected models,
and 〈L〉 ∼ N for directed models [48, 78].

The finite-size scaling ansatz reads

Pc(L, N) = N−βg

(
L

Nν

)
, (3.24)

where g is a universal scaling function and β > 0 and ν > 0 are critical indices.
The constant ν describes how the cutoff size scales with system size. We assume
that g ∈ C(R+) and g(0) ∈ R. Let us rewrite Eq. 3.24 in the form of Eq. 3.21

Pc(L, N) = N−β

(
L

Nν

)−β

ν

f

(
L

Nν

)
≈ L−β

ν f

(
L

Nν

)
. (3.25)

Therefore
β

ν
= γ =

3

2
. (3.26)

To find a second equation, relating ν and β we can use the average avalanche size
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scaling (3.23). We can express 〈L〉 by Eq. 3.24

〈L〉 =
∞∑

L=1

LP (L, N)/
∞∑

L=1

P (L, N) =

∫ ∞

1

LN−βg

(
L

Nν

)
dL (3.27)

= N2ν−β

∫ ∞

1/Nν

L̃g(L̃)dL̃ ∼ N2ν−β for N → ∞. (3.28)

Thus we have a system of the simple equations

β

ν
= 3/2 (3.29)

2ν − β = 1/2, (3.30)

which is solved by ν = 1, β = 1.5.

To check whether the scaling ansatz 3.24 is correct for the avalanche size distribution
we “descale” distributions for different values of N and plot them on the same graph.
In Fig. 3.3 we see that after descaling all distributions fall onto one curve. This
shows that the obtained finite-size scaling is a good approximation for the influence
of the finiteness of the system on the avalanche size distribution. It also justifies
conditions on smoothness of scaling function g.

The obtained finite-size scaling relation

Pc(L, N) = N− 3
2 g

(
L

N

)
, (3.31)

allows to justify the numerical prediction of the power-law exponent for the finite
systems. It also shows that with an increasing system size the power-law cut-off is
increasing, leaving in the limit of N → ∞ the perfect power-law distribution.
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Chapter 4

Long term plasticity

In this chapter we present an extension of the model from the previous chapter,
which enables the connection strength to adapt. By this means the network be-
comes self-organized critical. The adaptation of the synaptic strength follows a
homeostatic learning rule, which is appropriate to achieve a robust criticalization
and which is present in biological neurons [138]. Some of the results from this
chapter are published in [89].

The ability of cortical networks to self-regulate is implied by experiments of Beggs
and Plenz [14]. They observed that by application of the inhibition blocking agent
picrotoxin the dynamics of the network is moved away from the critical state. Dur-
ing the following hours the critical state is gradually recovered. Such slow adjust-
ment is not compatible with the short time synaptic dynamics in [90, 91], which
we will discuss in chapters 5 and 6, but suggests a slow adaptation process that we
will study in this chapter.

Commonly it is assumed that criticality is intimately connected to the occurrence of
power laws [8, 92, 99]. This fact is usually referred to as the empirical identification
of SOC [108, 14, 3]. While the detection of a power law involves temporal and
spatial sampling on a global scale, self-organization in a complex system should
rely on local mechanisms. The main difficulty lies in the description of the critical
state. We propose a local way to describe criticality and based on this we derive a
learning rule which genuinely introduces SOC into the neuronal model. The learning
rule is based on the trade-off between the reliability of the signal transmission and
minimization of the resources spent on it. It turns out that for each neuron the
best local strategy is to cause by each emitted spike on average one other neuron
to fire.

For any initial condition the system self-tunes to a critical state, where avalanche
sizes have a power-law distribution with a critical exponent close to the biologically
observed value of about −3/2.
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4.1 Branching processes

In many studies [14, 86, 93] of self-organized criticality branching processes were
used as a mean-field approximation to the model dynamics of the system activity
during avalanches. In some cases [5] this approach is justified by the specific system
topology. For instance, in the case of the sandpile model only immediate neighbors
can be activated. Then the branching process approximation is derived from the
statistical evidence that in most cases each site in a recurrent network can be
active only once during an avalanche. Consequently, recurrent activations could be
neglected. However, neural networks that resemble cortical slices are much more
complicated than networks where the branching process approximation is exact.
Thus it is questionable whether the branching processes are a valid approximation.
To answer this question, we studied analytically the deviation of the neural network
model from a branching process. In the present chapter we present a sketch of the
proof. Chapter 8 deals with the exact formulation of the problem and the complete
proof.

The Galton-Watson branching process was first introduced in 1874 to explain the
disappearance of British family names [147]. Since then, they are extensively stud-
ied in mathematics [6, 66] and applied in biology and physics [80]. It was ob-
served [15], that branching processes approximation fits the data obtained from
multielectrode recordings, but the question of adaption was not addressed as well
as mechanisms underlying applicability of such approximation were not discussed.

Branching processes describe a hierarchical structure, where units produce offspring
with a certain probability that does not depend on the unit or on the offspring of
earlier generations. Here is, roughly speaking, a difference to the present neu-
ral model, where the effectiveness of a spike in activating other units depends on
whether these have been firing recently. The intuitive idea in the following is to
show that in the limit of a large network this distinction becomes irrelevant.

Recall that an avalanche is an interval of network activity which is framed by two
intervals without activity. Between avalanches the network is driven by noise. Let
us reduce the model, excluding the dynamics between the avalanches. In order to do
so we assume, that the external input is mixing and provides a uniform distribution
of the membrane potentials before each avalanche.

To describe the evolution of an avalanche we consider the random variables ξt that
represents the number of neurons which are active at time t = 1, 2, . . . An avalanche
starts always with one neuron firing, thus ξ1 = 1. Stochasticity in the process is
brought by the randomness of the initial conditions. After the initial conditions are
determined the ξt are defined deterministically for all t.

Let us give a strict definition of the branching processes.
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Definition 4.1.1. Let M0, M1, M2, . . . be a Markov process, Mi takes values in N0,
M0 = 1. Let P be the distribution of M1 (P (M1 = i) = pi). Let P (Mi+1 = 0|Mi =
0) = 1 and (Mi+1|Mi = k) distributed as a sum of k independent random variables
distributed as M1. Then M0, M1, M2, . . . is a Galton-Watson branching process.

The branching parameter αbr is an average number of the offsprings of one species.

αbr = E (ξ2 |ξ1 = 1) = Eξ2. (4.1)

The process {ξt}∞t=1 is obviously not a branching process. It is even not a Markov
chain, because ξt ≤ N −∑t−1

s=1 ξs and therefore ξt depends not only on the preceding
value ξt−1. However, in the limit of large network size we can prove the following
theorem.

Theorem 4.1.1. Assume that before an avalanche, the vector of all membrane
potentials (except for the neuron which gets external input) is uniformly distributed
in [0, 1)N , let α be the connectivity parameter of the network and ξt the number of
neurons that fire in the tth time step of the avalanche. Then the distribution of the
random sequence {ξt}∞t=1 converges in distribution to a Galton-Watson branching
process with the branching parameter α, as N goes to infinity.

To apply the theorem to neural networks we should check that the membrane po-
tentials prior to an avalanche are distributed uniformly in [0, 1). In Fig. 4.1, we
visualize the results of the mixing process which is induced by external input in
between avalanches. The corresponding network was initiated with hi = 0.5 for
all i, and after some time the numerically computed distribution of the membrane
potentials before avalanches turns out to be indeed uniform.

The theorem (proof is given in chapter 8) allows us to use results from the theory
of branching processes. We formulate one of them here in a form suitable for the
particular case of the branching processes which are limits of the neural avalanche
processes.

Theorem 4.1.2. [112]: Let {ξt}∞t=1 be a branching process, and α is a branching
parameter, then

P

(
∞∑

i=1

ξi = L

)
= d

(
a

2παf ′′(a)

) 1
2

α−LL− 3
2 + O(α−LL− 5

2 ), L → ∞. (4.2)

In the critical case, when α = 1, the avalanche size ξ =
∑∞

t=1 ξt = r has the
probability distribution:

P (ξ = r) = Cr−
3
2 + O(r−

5
2 ), r → ∞.
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Figure 4.1: The probability density of the membrane potentials immediately before
an avalanche is triggered. Initially all potentials are set to hi = 0.5. The snapshots
after 100 (dashed-dotted), 1000 (dashed), and 105 (solid) avalanches illustrate the
ergodicity of the state space.

Therefore, the neural network can be critical only if the branching ratio is equal to
1, and in this case the power-law exponent is uniquely given by −3/2.

4.2 Self-organization in a network with long term

plasticity

We derive a synaptic plasticity rule, which is intuitively governed by a conserva-
tion principle. While correlational learning rules in excitatory networks tend to
increase the average network activity here instead the objective is chosen to achieve
a constant activity, which is realized by minimizing the functional

E(t) =
1

2

(
∑

i

Si(t) −
∑

i

Si(t − 1)

)2

, (4.3)

where Si(t) = 1 if neuron i fires at time t and Si(t) = 0 otherwise. The averages
are taken over all neurons in the system. In a continuous time system appropriate
temporal averages have to be used instead of the reference to the previous time
step. In order to arrive at a learning rule for a single neuron we condition Eq. (4.3)
on the activity of the firing of the neuron and adjust the synapses so that the firing
event causes on average one firing in the postsynaptic neuron j. Let us consider
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Figure 4.2: Avalanche width as a function of the time after avalanche onset. The
values are obtained in a network of N = 100 neurons with constant synaptic ef-
ficacies and are averaged over 105 avalanches without a conditioning on the total
avalanche size. Insets depict the corresponding avalanche size distribution. The
results for the subcritical case (α = 0.7) are given on the left, in the center figure
the critical case is presented (α = 0.9), and on the right the supercritical regime
(α = 0.98) is displayed.

the situation at the beginning of an avalanche, then (4.3) becomes

Ei(t) =

{
1
2
(
∑

j Sj(t) − 1)2 if Si(t − 1) = 1

0 otherwise .
(4.4)

In a globally coupled network the total activity
∑

i Si(t) can be calculated locally
from the internal input at the next time step, but also in a massively but not fully
connected network a reasonable estimate of

∑
i Si(t) is available. In a continuous-

time system the aspect of causation is usually expressed by a windowed temporally
asymmetric learning rule [18].

To characterize the activity of the network from a different perspective, we simulated
the neuronal network from chapter 3 and plotted the histogram of the avalanche
shapes for different connectivity parameters in Fig. 4.2. Each bar of the histogram
represents the average number of neurons that fired at a certain step of the avalanche
starting with the second one. Since an avalanche always starts with the activation
of a single neuron, the first bar is the average number of neurons activated by
a single neuronal discharge. In a branching process it can be considered as the
branching ratio. One can clearly see, that for the critical case the branching ratio
is approximately equal to one. For the sub- and supracritical cases the branching
ratio is respectively smaller or larger than one.

In section 4.1, we showed that the avalanche dynamics can be described by a branch-
ing process with the branching parameter α. A critical state in the network cor-
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responds to a critical branching process, i.e. in the case that each firing neuron
on average entails the firing of one other neuron. This suggests proposing a learn-
ing rule which drives the network towards its critical state: Assume the neuron
starts the avalanche by first crossing the threshold due to external input trigger
l =

∑
i Si(t) neurons to fire. Then the synaptic weights in the network should

increase if l < 1, and decrease if l > 1. This consideration leads to the learning rule

αt+1 = αt + ε(1 − l), (4.5)

where ε ≪ 1 is a learning rate. The simulated networks are naturally finite. In
Ref. [53] finite size-effects have been shown to be relevant also for relatively large
networks and the considerations in section 4.1 also suggest the presence of finite size
effects. In the simulations the maximal number of neurons responding to a single
spike is bounded. This leads to an underestimation of the branching parameter.
To compensate for this effect we use a 1/N correction. In the limit N → ∞
this correction is vanishing and the branching parameter is approaching one. As a
result of this learning scheme, the synaptic weights converge to a value αc which
was identified as the critical value for finite system sizes in chapter 3, [53]. Fig. 4.3
(left) shows a typical example of the adaptation dynamics.

To improve the performance and to make the model more realistic we consider also
independent synapses, i.e. each neuron has its own parameter of synaptic strength.
In this case independent learning for different synapses is applicable, i.e.

αt+1
i = εαt

i + (1 − l) − 1/N. (4.6)

In Fig. 4.3 (left) one can see, that during learning all weights are slowly converging
to the critical value, computed for a case of the single connectivity parameter. The
dynamics of the avalanche size distribution in the course of learning is shown in
Fig. 4.3 (right).

To further investigate the learning dynamics we estimate the best matching power-
law exponent and the mean-squared deviation from the best matching power-law
at different stages of learning. A network was initiated with random connectivity
parameters which are uniformly distributed on [0, 1]. Every 105 steps the learning
process was interrupted and the network continued to operate with fixed connectiv-
ity to collect statistics of the avalanche size distribution. Results of this procedure
are plotted in Fig. 4.4. The left part of the figure shows, that the exponent ap-
proaches the critical value of −3/2. The right side shows the deviation from the
estimated power law. After 4 ·105 learning steps the optimal performance is reached
and the distribution of the best matched power-law exponents and mean-squared
deviations is stationary with mean value 0.006 and standard deviation 0.001. To
check the stationarity we used the augmented Dickey-Fuller test, and the obtained
statistics enable us to reject the hypothesis of nonstationarity at the 95% confidence
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Figure 4.3: (Left) Learning dynamics of individual synapses. The lines represent
the trajectories of the synaptic strengths of a single neuron for up to 8 · 105 steps
in order to demonstrate the initial learning phase. The weights are initialized by a
uniform distribution. A network of size N = 100 has been trained for 2 · 106 steps
with learning rate ε = 10−4. (Right) Evolution of the avalanche size distribution
before learning (dashed), after 105 avalanches (dotted), and after 2 · 106 avalanches
(solid).
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Figure 4.4: (Left) Exponent of the power-law fit to the avalanche size distribution
in the course of the learning. (Right) Time evolution of the fitting error. The fit is
performed for avalanche sizes L/N ≤ 2/3. Other parameters are same as in Fig. 4.3.
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level.

The neuronal network equipped with such a learning rule is indeed self-organized
critical. There is no need to tune synaptic parameters externally, and the avalanche
dynamics together with the slow learning drives the system to a critical state inde-
pendent of the initial conditions.

We have further considered the question whether networks with partial connectivity
show the same behavior as reported above. We conduct a simulation, where each
neuron was connected randomly to one tenth of the other neurons. For compensa-
tion the synapses were scaled by a factor of ten. The thus rescaled network with
static synapses exhibits critical behavior for synapses strengths which are indistin-
guishable from the results for the fully connected case as can be expected from
simple statistical considerations. If the synapses are allowed to adapt, the behavior
is as well in perfect agreement with the fully connected case.

In the biological context the question of the physiological realizability of the learning
rule is relevant. It is known that homeostatic regulation is present e.g. in mecha-
nisms for regulating the firing rate by synaptic scaling in the rat hippocampus [138].
These mechanisms couple correlational and normalizing effects and are considered
to bring about homeostatic regulation [81]. In a biologically plausible combina-
tion of homeostatic learning and coincidence detection the criticalizing mechanisms
could turn out to be realizable. However, recording techniques are not yet developed
enough to provide experimental evidences for or against realization of our leaning
rule.



Chapter 5

Depressing synapses

As we showed in chapter 3 a network with static synapses reaches a critical state
for the precisely tuned connectivity parameter. One can say that self-organization
in this model extends only to the distribution of the membrane potentials and not
to the connection strength.

When power-law statistic of event sizes, indicating the critical state, were found
in the recordings from cortical slices [14, 15], the necessity to find new models
emerged. Connections between cortical neurons are subject to numerous changes
due to short and long-term synaptic plasticity. Thus the model, which is employed
to mimic neuronal self-organization, should also include self-organization of the
synaptic strength.

In chapter 4 we studied a possible long-term plasticity rule which drives the system
to the critical state. In this chapter we concentrate on the influence of short term
plasticity in the connections between pyramidal neurons [101] on the network dy-
namics. We show that, due to such plasticity mechanism, the system is guided to
the SOC state.

We derive an analytical expression for the average coupling strength among neurons
and average inter-spike intervals, and prove that average synaptic strength allows
to predict the parameters of the avalanche size distribution. We show that theoret-
ically found values are in a good agreement with the values obtained from network
simulation.

An analytical form of the self-consistency equation will be used later in this chap-
ter to study the thermodynamical limit, and to discover that in the large network
self-organization leads to the critical state for all parameter values above a cer-
tain threshold. We also study the influence of different types of connectivity, the
neuronal leakage, and the introduction of an inhibitory population.
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Figure 5.1: Functional synaptic model.(left) Postsynaptic potential generated by
a regular spike train (bottom), at a frequency of 23 Hz measured experimentally
(top; average more than 50 sweeps), and computed with the model (middle). (right)
Same as on the left for irregular spike train. Picture is taken from [102].

5.1 Model of the synapse

In this section we briefly describe the biological background and the model for the
special type of the short-term synaptic plasticity, the so called dynamic synapses.
First observations of it were done by Thomson Deuchars[131], who found that
synaptic transmissions in the neocortex depend on the frequency of presynaptic
activity. By dual whole-cell patch clamp recording a more detailed picture of such
frequency dependence was obtained [101, 102, 135].

For the phenomenological model of the synaptic dynamics the following simplified
representation of the synapse was proposed. The synaptic connection in the model
is characterized by its absolute amount of “resources”, which can be partitioned into
three states: effective, inactive, and recovered. Each presynaptic action potential
activates a certain fraction of resources available in the recovered state, which then
quickly inactivates with a time constant of a few milliseconds and recovers with a
time constant of about 1 sec. This model could reflect various possible biophysical
mechanisms of synaptic depression, such as receptor desensitization [47] or depletion
of synaptic vesicles [105].

Repeating the study [102] the dynamics of the synaptic resources in different states
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can be written as

dR

dt
=

I

τrec

dE

dt
= − E

τinact
+ USERδ(t − tAP ) (5.1)

I = 1 − R − E,

where E (effective), I (inactive), and R (recovered) are the fraction of resources
in the corresponding state. Time scales of inactivation and recovery are given by
τrec and τinact respectively. The action potential arrives at time tAP and leads
to the instantaneous shift to the effective state of a fraction, USE (utilization of
synaptic efficacy parameter), of synaptic resources available in the recovered state.
The postsynaptic response to the action potential is proportional to the amount of
synaptic resources in the effective state.

We are attributing such synapses as depressing, because higher frequency of firing
leads to the smaller effect of each spike. The steady state response to a periodic
firing depends on the frequency of spikes. Thus, depressing synapses are one of the
mechanisms connecting the rate code and the precise timing code.

By tuning the parameters of the model USE, τinact, and τrec the authors found
very close resemblance to the recordings of paired neurons [102]. In Fig. 5.1 traces
obtained from simulation are compared to the averaged over many trial postsynaptic
potential.

It is easy to see that in the system of equations (5.1) variables are redundant and
their number can be reduced to just two. We will go further and take into account
that by the fit of the model to the experimental measurements the inactivation
constant was found to be of an order of 3 ms. As we are going to model events, which
are typically separated by much longer time intervals, we took that inactivation
happens instantaneous. Thus we are left with only one variable, the amount of
synaptic resources in the recovered state.

5.2 Network with depressing synapses

Similar to the static model 3.1, we consider a fully connected network of N simple
integrate-and-fire neurons. Each neuron is characterized by a membrane potential
0 < hi(t) ≤ θ, i = 1, . . . , N , where θ is a threshold. The neurons receive external
inputs by a random process ζ ∈ {1, . . . , N} which with the rate τs selects a neuron
ζ (t) = i whose membrane potential hi is advanced by an amount Iext. Thus τs

determines the frequency of the external input. On average one neuron receives
external input every Nτs milliseconds.
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Each neuron integrates inputs until it reaches the threshold. A soon as hi(t) > θ
the neuron emits a spike which is delivered to all postsynaptic neurons at a fixed
delay τd ≪ τs. The membrane potential is then reset by hi(t

+
sp) = hi(tsp) − θ.

Suprathreshold activity is communicated to other neurons along neural connections
of strength uJij(t). Where Jij(t) denotes the amount of synaptic resources available
at time t in a synapse between neurons j and i. And u is a fraction of the resources
which are used for synaptic transmission. As the first neuron reaches the threshold
by receiving external input an avalanche of neural activity is triggered. An avalanche
is defined same as in chapter 3.

The dynamics of the membrane potential is thus described by the following equation

ḣi = δi,ζ(t)I
ext +

1

N

N∑

j=1

uJijδ
(
t − tjsp − τd

)
. (5.2)

In Eq. (5.2) τs presents implicitly as a rate of the external input. Later, for the
discrete version of the model we take τs as a discretization time step.

The variables Jij are subject to the following dynamics

J̇ij =
1

τJ

(α

u
− Jij

)
− uJijδ

(
t − tjsp

)
, (5.3)

which describes the amount of available neurotransmitter in the corresponding
synapse [101]. The dynamics of Jij is composed of two parts. First, a synapse
decreases its strength when activated because it depletes of the resources of synap-
tic transmitters. Second, it slowly recovers while the neuron is silent. Namely, if a
spike arrives at the synapse, the available transmitter is diminished by a fraction u,
while in the absence of spikes the synapse recovers and the amount of the resources
approaches its a maximal value α

u
at a slow time scale τJ , which depends on τs as

τJ = νN · τs. (5.4)

Thus if a neuron spikes rarely the synaptic strength uJij approaches α.

Without loss of generality and for the simplicity of notation we use θ = 1. If θ 6= 1
then to preserve the meaning of parameters we scale correspondingly the maximal
synaptic strength αθ = αθ. After such scaling all computations hold same as in the
case θ = 1.

To illustrate how the synaptic dynamics depend on the frequency of firing we plotted
in Fig. 5.2 the dynamics of synaptic resources. We generate the spike train with
different frequencies of spikes. When the firing frequency is small enough (not more
then one spikes in 50 time-steps) then the synapse has enough time to recover to
the maximal value. If the frequency is larger, then the synaptic strength at firing
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Figure 5.2: Amount of synaptic resources. On the top panel the spike train of the
neuron is plotted, on the bottom the amount of the synaptic resources Jij. Dashed
vertical lines separate different firing frequencies of the neuron j. From left to
right: one spike in 100, 50, 20, 10 time steps. The last interval correspond to a
Poisson spike-train with a rate of one spike per 30 time steps. N = 100, α = 0.8,
u = 0.2, ν = 10.

is smaller then maximally possible [101]. In the last block of Fig. 5.2 a neuron fires
a Poisson spike-train and then the synaptic dynamics is rather irregular.

The simple intuition about how the described synaptic dynamics (5.3) can lead to
the critical state is as follows: when a network is overly active and avalanches are
large, synaptic connections are weakened by the exhaustion of synaptic resources.
On the other hand when avalanches are small, synapses have time to recover and
gain enough strength to trigger a large avalanche.

5.3 Simulation results

In this section we present some results obtained by the network simulation. We
study distributions of avalanche sizes and durations as well as the behavior of synap-
tic parameters.

In Fig. 5.3, we show examples of avalanche size distributions for various values of
α. For small values of α, subcritical avalanche-size distributions are observed. This
regime is characterized by a negligible number of avalanches that extend to the
system size. Near αcr the system has an approximate power-law distribution for
avalanche sizes almost up to the size of the system where an exponential cut-off
is observed. Avalanche size distributions become non-monotonous when α is well
above the critical value αcr.
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Figure 5.3: Distribution of avalanche sizes for different values of α. (left) At α < 1.3
the distribution is subcritical (plotted green). It becomes critical in an interval
around α = 1.4 (plotted red). For α > 1.6 the distribution is supercritical (plotted
blue). (right) Characteristic examples of all three kinds of distributions with the
same color-code. Results are obtained for N = 300, ν = 10, u = 0.2, Iext = 0.025.
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Figure 5.4: The range of connectivity parameters where critical events extend to
the system size. The mean-squared deviation ∆γ from the best-matching power-
law is plotted in dependence of α0 for static synapses and in dependence of α for
depressing synapses: Empty circles, squares and triangles stand for networks with
dynamic synapses and system sizes N = 1000, 700, and 500, respectively. Filled
symbols represent the static model. The inset shows the lengths of the parameter
intervals where the deviation from the best-matching power-law is smaller than
0.005. Symbols are the same as in the main figure.[91]
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To compare the obtained results with the static model from the chapter 3 we plotted
in Fig. 5.4 the deviations from the best-matching power-law for different connectiv-
ity parameters and system sizes for the static and the depressing model. We took
the same number of avalanches for both models and scaled it with the square of the
system size. To qualify the difference between the models we defined a threshold
describing a ‘very good fit’ and compared the parameter regions which deliver a
critical distribution with at least this quality. The difference is one order of magni-
tude, see inset in Fig. 5.4. The result does not depend on a particular choice of the
threshold as long as it is not too large. In a contrast to the static case, the critical
region with dynamic synapses apparently increases with the system size. This is
a reason to believe that in the thermodynamical limit the network is critical for a
substantial fraction of the connectivity parameters.

As in experimental papers [14], we also considered the duration of avalanches. In
Fig. 5.5 distribution of avalanche durations are plotted for different maximal synap-
tic strength α. Similar to the experiments of Beggs and Plenzs [14] the distributions
deviate strongly from a power-law for avalanche durations larger than ten and con-
sist mainly of the exponential cut-off, cf. Fig. 5.5 (left). To qualify the distribution
we measured the slope of the power-law by fitting the region of the short avalanche
durations, where power-law is still an applicable hypothesis. We have done this to
check for similarity to the experimental finding, where the measured exponent is
found to be equal to −2. We plotted the deviation of avalanche size distribution
from the nearest power-law ∆γl versus the slope of the duration distribution γd

Fig. 5.5 (right). Thereby we can see which duration distribution is observed in
which regime. At criticality, i.e. when the deviation of the avalanche size distribu-
tion from a power-law is minimal, this exponent is approximately equal to −2 in
perfect agreement with the experiments.

To summarize, one of the important things that we have seen is that the maximal
synaptic strength α determines the behavior of the network. Also there is a large
interval of parameters α such that avalanche size distribution follows a power law.

5.4 Statistics of synaptic parameters

In the previous section we described the general statistics of the dynamical regimes
produced by the model network. Here we discuss more specific statistics, which
allow later to access properties of the model analytically.

A first prominent choice of study is the synaptic strength. In Fig. 5.6 (left) we
plotted the typical behavior of the single synapse strength over time in different
regimes: subcritical, critical and super-critical. In the right part of Fig. 5.6 the
resulting distribution of the synaptic resources in the moment right before a spike
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Figure 5.5: Avalanche duration distribution for different values of the connectivity
parameter α (left) and power-law exponent (right) fitted in the beginning of the
duration distribution as a function of the goodness of the power-law fit to the
avalanche size distribution N = 100, ν = 10, u = 0.2. The color code in the left
graph are taken from the Fig. 5.3 (green – subcritical distribution of avalanche sizes,
red – critical, and blue – supercritical)

is plotted. If one were to multiply the values of Jij in this plot by the parameter u
it will give the distribution of the synaptic strength.

Another characteristic of neuronal activity, which is often used both in biolog-
ical and theoretical studies is the inter-spike interval (ISI). It is defined as the
time between two successive spikes of one neuron. Separation of time-scales makes
avalanche durations to be much shorter than inter-avalanche intervals. As it was
mentioned before, for the simulation and description of inter-avalanche periods we
used discretization with the time-step equal to a rate of the external input, i.e. each
moment of time one neuron in the network is receiving external input. Therefore,
ISI cannot be negative and it is approximately equal to zero if the neuron spikes
twice during an avalanche.

The distribution of the inter-spike intervals reveals the regularity of the spike train
of a neuron. For example, if inter-spike intervals are independent and exponen-
tially distributed, then the spike train is Poisson, and all previous history of a
spike-train contains no information about a following inter-spike interval. In the
depressing synapses model the situation is different, as one can see in Fig. 5.7 (left)
the inter-spike interval distributions are of a Gaussian-like shape for all connectivity
parameters. ISI can not be negative and it is approximately equal to zero if the
neuron spikes twice during an avalanche.

Already from the ISI distributions one can determine a supercritical regime, which
is distinguished by a non-zero probability of the zero interspike interval. This is
different in the static model, where a neuron can spike twice during an avalanche
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Figure 5.6: Dynamics and distribution of synaptic resources. (left) Dynamics of
Jij for different values of the connectivity parameter α: green α = 0.8 subcritical,
red α = 1.4 critical, blue α = 2.0 supracritical. (right) Distribution of the synaptic
resources at spike-time for different parameters α = 0.8, 1.0, 1.4, 1.6, 1.8, 2.0, with
the same color-code. N = 300, ν = 10, u = 0.2.

only in the very supracritical multi-piked regime. Basis for this difference is the
variance of the synaptic strength in the dynamic synapses model, which is especially
large for the supracritical regime (Fig. 5.6). Thus, dynamic synapses may allow
for avalanches of sizes larger than the system size without having a multi-piked
distribution. Moreover, due to the inhomogeneity of the synaptic weights, it is
possible that a neuron spikes twice in the course of an avalanche of size smaller
than N . The typical inter-spike interval is more sensitive to changes of the maximal
synaptic strength α when α < αcrit, c.f. Fig. 5.7 (left),.

To get an insight in the behavior of the inter-spike interval, we considered also
inter-avalanche interval (IAI), i.e. the time between two successive avalanches. In
Fig. 5.7 (right) we plotted this distribution for different connectivity parameters.
The graph reveals no difference in distributions of IAIs between the three different
regimes (Fig. 5.7 (right)). The linear shape of the graphs in the log-lin scale reveals
the exponential nature of the distributions. Namely, as it will be shown later
IAIs follow a geometric distribution, which is a discrete version of the exponential
distribution. Therefore, if one considers the avalanche as one synchronous event
(like in the concept of population spikes [96, 134]) the behavior of the network on
the slow time scale is similar to the behavior of a Poisson neuron. However the
similarity disappears when one examines the temporal structure of an avalanche
more closely. Later in this chapter inter-avalanche and inter-spike intervals will be
discussed in more detail.
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for different parameters α. N = 100, ν = 10, u = 0.2. Color-code on the graph:
green – subcritical, red – critical, and blue – supercritical. For simplicity of notation
IAI and ISI are measured by discrete steps of size τ .

5.5 Mean-field approximation

The aim of this section is to relate the parameter α to the distribution of avalanche
sizes. Intuitively, it is clear that the synaptic strength is the most important factor
for the avalanche size. We would connect α to the synaptic strength and show that
the latter allows to describe the avalanche size distribution.

We simplify our task, by considering not the distribution of synaptic strengths, but
only its mean u〈Jij〉. Numerical simulations suggest that the distribution of Jij is
rather narrow bell-shaped (Fig. 5.6), thus first moment exists for any α.

We employ mean-field theory, which is a common approach for studying the dynam-
ics of large globally coupled system. The main idea of this method is to consider
a single element of the system as being subject to a local field produced by the
combined effect of interactions with the rest of the system, instead of taking into
account the full complexity of mutual interactions.

How does the average synaptic strength relate to the avalanche size distribution?
To address this question we studied the dependence of the power-law fit to the
avalanche size distribution on the average synaptic strength. We simulated the
network for different parameters α and plotted slope of the best matched power-
law as a function of u〈Jij〉 (Fig. 5.8).

Imagine the simplification of the dynamic synapses network, where synaptic strength
is fixed to be equal to α0 := u〈Jij〉. Such a simplified network is exactly the static
network studied in chapter 3. To understand the connection between the models we
simulate the dynamic model and extract u〈Jij〉. Then we simulate the static model
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Figure 5.8: Deviation from the closest power-law distribution against the mean
synaptic strength for static and dynamic synapses. Circles stand for the static
model and triangles for depressing synapses. The inset shows the estimated power-
law exponents in both cases. N = 100, ν = 10, u = 0.2

with synaptic strength α0 and compare the parameters of the closest power-law for
both networks. As shown in Fig. 5.8 there is almost no difference in the parameters
of the power-law fit. Thus, to estimate the avalanche-size distribution we can use
the distribution obtained for the static model (Eq. 3.5).

Thus the main question is: how to determine the average synaptic strength u〈Jij〉
from the maximal synaptic strength α. In order to calculate the average synaptic
strength analytically, we consider in addition the neural inter-spike intervals ∆ISI.
It also has a bell-shaped distribution (Fig. 5.7) with a finite first moment. On the
one hand, if the inter-spike intervals are short then the synapses have a short time
to recover and the average synaptic strength resides at a low level. On the other
hand, large synaptic strengths lead to long avalanches and to large inputs to neurons
during the avalanches, which tends to shorten inter-spike intervals. This trade-off
determines the effective synaptic strengths and the inter-spike intervals which are
realized by the dynamics of the network. In order to express this reasoning more
formally, we solve the dynamical equations (5.2) and (5.3). By this we assume that
there is no trend in the changes of the synaptic strength and ISI, i.e. that mean
values are stationary.

The idea of the following computation is as follows: first we derive a couple of
independent equations connecting 〈∆ISI〉 and 〈Jij〉:
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〈Jij〉 = G
(
〈∆isi〉

)
, (5.5)

〈∆isi〉 = F (〈Jij〉) . (5.6)

Then we compose a self-consistency equation and solve it numerically and graphi-
cally, which is equivalent to solving the system of equations (5.5,5.6).

From (5.3) we have for the dynamics of the synaptic resources

J̇ij =
1

τJ

(α

u
− Jij

)
− uJijδ

(
t − tjsp

)
. (5.7)

Let the average inter-spike interval 〈∆isi〉 be known. Solving Eq. 5.7 between two
consecutive spikes of neuron j yields

J b,2
ij =

α

u

(
1 −

(
1 − u

α
Ja,1

ij

)
e−(tj2−tj1)/τJ

)
, (5.8)

where Ja,1
ij and J b,2

ij are, respectively, the synaptic strengths after a spike of neuron

j at time tj1 and before the subsequent spike at time tj2. By the definition of the
time-constant τJ (5.4)

tj2 − tj1
τJ

=
∆isi

νN
.

Within a short interval containing the spike, Jij decreases by a fraction u such that
Ja1

ij = (1 − u)J b1
ij . The Eq. 5.8 then can be rewritten as

J b,2
ij =

α

u

(
1 −

(
1 − u

α
(1 − u)J b,1

ij

)
e−

∆isi

νN

)
. (5.9)

The average amount of the synaptic resources 〈Jij〉 is equal to the mean synaptic

strength Es

(
J b,s

ij

)
before a spike from neuron j. Here Es is a spike triggered

averaging, taken just before the spike is emitted, i.e. Es

(
J b,s

ij

)
is the average

synaptic resources of the neuron before a spike, averaged over all spikes of the
synapse connecting neurons i and j.

Stochasticity in the synaptic strength is brought by stochasticity in the inter-spike
intervals, which are in turn defined by the external input. Thus, we can consider
all averages with respect to the distribution of the initial membrane potentials and
the external input.

All synapses and neurons in the network are governed by the same set of equations
and connectivity structure is symmetric. Lets assume that external input is mixing
(for the static network it is checked in chapter 7). This assumption allows us
to make temporal averaging instead of averaging among the neurons. Thus the
average amount of the synaptic resources is the same for all neurons. At stationarity
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〈
J b,1

ij

〉
=
〈
J b,2

ij

〉
therefore one can find the average synaptic strength by solving the

equation

〈Jij〉 =
α

u
−
(α

u
− (1 − u) 〈Jij〉

)
e−

〈∆isi〉
νN . (5.10)

This allows to write the Eq. 5.5 expressing 〈Jij〉 as a function of
〈
∆isi
〉
,

〈Jij〉 =
α

u

1 − e−
1

νN
〈∆isi〉

1 − e−
1

νN
〈∆isi〉 + ue−

1
νN

〈∆isi〉
. (5.11)

In order to obtain the Eq. 5.6, we are now going to establish a relation between
P
(
∆isi
)

and the inter-avalanche interval distribution Q
(
∆iai

)
. As it is shown rigor-

ously for the static synapses in chapter 8, the neuronal membrane potentials before
an avalanche are uniformly distributed on the interval [ǫN , θ], where ǫN is a lower
bound of hi(tsp)− θ with ǫN → 0 for N → ∞. Under these conditions, Q(∆iai) has
a geometric distribution (derivation in the Appendix A.3)

Q
(
∆iai

)
=

Iext

θ − ǫN

(
1 − Iext

θ − ǫN

)∆iai

. (5.12)

Let κj be the number of avalanches between two spikes of the neuron j. A mean-
field approximation relates the averages of the distributions of inter-spike and inter-
avalanche intervals 〈

∆isi
〉

= 〈κ〉〈∆iai〉. (5.13)

The average inter-avalanche interval is given by

〈∆iai〉 =
θ − ǫN

Iext
. (5.14)

In order to determine the average number of avalanches between two spikes of
each neuron, we compute the time to reach the threshold by accumulating external
inputs and synaptic input from other neurons. Let neuron j fire during the current
avalanche, therefore its membrane potential is reset by the value of the threshold
θ. Then during the inter-avalanche interval ∆iai, each moment of time the neuron
can get the external input Iext with the probability 1/N . Therefore, during one
inter-avalanche interval the neuron accumulates the on average external input of

size Iext 〈∆
iai〉

N
. During an avalanche the neuron on average gets the internal input of

a size u 〈Jji〉 〈L〉, where 〈L〉 is the mean avalanche size. The neuron accumulated
on average half of the internal input from both avalanches during those it fired,
therefore one can compute the number of avalanches between two spikes of the
neuron by computing the number of pairs “inter-avalanche interval and following
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Figure 5.9: Average synaptic strength and inter-spike interval for different initial
conditions. The dashed line is the graph of (5.20) and the solid lines are obtained
from (5.11) for α = 1.3, . . . , 2.0 in steps of 0.1 (from right to left). Circles show
u〈Jij〉 and 〈∆isi〉 obtained from simulations of the network with matching α. Further
parameters are N = 500, ν = 10, u = 0.2.

avalanche”, which is required to accumulate input equal to θ. Namely

〈κ〉 =
θ

u〈Jji〉

N
〈L〉 + Iext 〈∆

iai〉
N

. (5.15)

The distribution of avalanche sizes can be computed analytically for a network with
static synapses of strength α0 [53]:

P (L, α0, N) = LL−2

(
N − 1

L − 1

)(α0

N

)L−1 (
1 − L

α0

N

)N−L−1 N(1 − α0)

N − (N − 1)α0
. (5.16)

In the case of dynamic synapses we use a mean-field approximation and set
α0 = u 〈Jji〉N in (5.16). This allows us to compute 〈L〉 as a function of u 〈Jji〉.
Combining (5.13), (5.14), and (5.16) we obtain a relation between the inter-spike
interval and the average synaptic strength:

〈
∆isi
〉

=
θ − ǫN

Iext

θ
u〈Jji〉

N
〈L〉 (u 〈Jji〉) + θ−ǫN

N

. (5.17)

Another way to compute 〈κ〉 is to imagine neurons as points on a circle of perimeter
θ, the distance from zero counted clockwise representing the membrane potential.
Then all synaptic interactions are just rotations of the circle by a certain angle.
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A spike emitted at crossing of point θ and external input is then a rotation of one
selected point. In such a setting an avalanche does not change the order of neurons
on the circle. External input can change the sequence of the neurons, but on average
it preserves the order. Thus, a neuron can fire a second time only after all other
neurons have fired; hence on average it fires every N/〈L〉 avalanches, i.e.

〈κ〉 =
N

〈L〉 . (5.18)

In the Appendix A.1 we show that both approaches give the same results as
N → ∞. Given the distribution of L one can compute the mean of L, and as
shown in secton 3.3

〈L(α0)〉 =
N

N − (N − 1)α0

. (5.19)

Thus 〈
∆isi
〉

=
θ − ǫN

Iext
(N − 〈uJij〉(N − 1)). (5.20)

Summarizing the preceding computations, we obtained two equations connecting
the average inter-spike interval and the average synaptic strength. The combination
of them gives a self-consistency equation

〈Jij〉 = G[F (〈Jij〉)], (5.21)

which can be solved numerically.

We plot in Fig. 5.9 the mean synaptic strength as a function of the average inter-
spike interval, which is given by the Eq. (5.11) 〈Jij〉 (〈∆isi〉) = G

(
〈∆isi〉

)
and an

inverse of function relating the average inter-spike interval to the mean synaptic
value Eq. (5.20) 〈∆isi〉−1 [〈Jij〉] = F−1 (〈Jij〉). The intersections of these curves give
the solution of the Eq. (5.21) and therefore determine the state of the system for
any given α. This solution is unique because F and G are increasing functions. For
comparison, the results of network simulations for corresponding values of α are also
displayed in Fig. 5.9. Simulated quantities are in good agreement with theoretical
averages, which further justifies approximations used to obtain the self-consistency
equation. The stationary distribution is less sensitive to changes of the parameter
α near the critical value of the synaptic strength than further away from it. This
brings about the large critical region for the depressing synapses model.

5.5.1 Thermodynamical limit

As it was already indicated in Fig. 5.4, the “critical parameters interval” apparently
grows with the system size. In this section we give a solid basis for such growth
and discuss the behavior of the system as N goes to infinity.
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First let us recall both parts of the self-consistency equation (5.5)

〈
∆isi
〉

=
θ − ǫN

Iext
(N − 〈uJij〉(N − 1)) ,

u〈Jij〉 = α
1 − e−

1
νN

〈∆isi〉

1 − e−
1

νN
〈∆isi〉 + ue−

1
νN

〈∆isi〉
.

Explicitly, we can write

α
(
1 − e−

1
νN

〈∆isi〉
)

1 − (1 − u)e−
1

νN
〈∆isi〉

=
N

N − 1
− Iext〈∆isi〉

N − 1
. (5.22)

In the limit N → ∞ one should scale the external input by Iext ∼ N−w with
w > 0. We will not explicitly solve the self-consistency equation, but consider the
approximation of the solution. As the system size growth, the average inter-spike
interval scales with Nλ. Let us now distinguish the following cases:

1. If 〈∆isi〉 ∼ N1+ǫ and ǫ > w then the right hand side (r.h.s.) of (5.22) ap-
proaches −∞, while the l.h.s. is larger than 0.

2. If 〈∆isi〉 ∼ N1+ǫ and 0 < ǫ ≤ w then the r.h.s. of (5.22) tends to 1, while the
l.h.s. approaches α, hence a solution is only possible if α = 1 and in this case
u〈Jij〉 → 1.

3. If 〈∆isi〉 ∼ N1−ǫ and ǫ > 0 then the r.h.s. of (5.22) tends to 1, while the
l.h.s. approaches 0.

4. If 〈∆isi〉 ∼ N, we can assume that 〈∆isi〉 = cN + o(N). From (5.22) we find
that in the limit the self-consistency equation takes the form

α − αe−
c
ν

1 − (1 − u)e−
c
ν

= 1. (5.23)

This equation has a unique solution for any α > 1

c = −ν (ln(α − 1) − ln(α − 1 + u)) . (5.24)

In all cases where a solution exists (2 and 4) we find u〈Jij〉 → 1, which is the critical
connectivity for the network with static synapses in the limit N → ∞. Therefore,
in the thermodynamic limit the network with dynamic synapses becomes critical
for any α ≥ 1.
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Figure 5.10: Reaction of synaptic strength on perturbation. At time t = 0 pertur-
bation of a size -0.03 (left) or 0.01 (right) is applied to all synapses. Red traces
- relaxation after the perturbation, green - unperturbed network. All traces are
averages over all synapses in the network. Standard deviation bounds are plotted
in blue. N = 100, ν = 10, u = 0.2, α = 1.0

5.5.2 Stability of the solutions

Here we discuss the stability of the solution of the self-consistency equation (5.5).
We apply a perturbation ∆J to all synapses at time tp such that for each i, j:

J̃ij = Jij + ∆J . If ∆J > 0 a perturbation results in the temporary increase of
the avalanche size. Then the average size 〈L̃〉 of a few avalanches following tp will
be larger than 〈L〉. At the same time the inter-avalanche intervals depend only on
the external input and the distribution of membrane potentials, therefore such a
perturbation would not change subsequent inter-avalanche intervals compared to
the unperturbed network. Let us examine how the average number of avalanches
between two subsequent spikes of the neuron changes after the perturbation

κ̃ =
N

〈L̃〉
< κ.

Thus the inter-spike intervals decrease on average.

∆̃isi = κ̃∆̃iai = κ̃∆iai < κ∆iai = ∆isi.

The change of the inter-spike interval influences the average synaptic activity. The
average synaptic strength at the time of the second spike after perturbation can be
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found from (5.3),

〈J̃2
ij〉 =

α

u
−
(α

u
− (1 − u) (〈Jij〉 + ∆J)

)
e−

g
∆isi

νN

=
α

u
−
(α

u
− (1 − u)〈Jij〉

)
e−

g
∆isi

νN + (1 − u)∆Je−
g
∆isi

νN

<
α

u
−
(α

u
− (1 − u)〈Jij〉

)
e−

fisi
νN + (1 − u)∆J < 〈Jij〉 + ∆J.

Therefore, positively perturbed synapses decrease their strength to return to the
equilibrium state. The same arguments show that negatively perturbed synapses
increase their strength after perturbation to counteract it.

We also verified the above arguments by numerical simulation of the network per-
turbation. In Fig. 5.10 the reaction to the external perturbation is plotted. The
graph shows how the average synaptic strength in the simulated system is driven
back to the fixed point by a few spikes. Thus the solution of (5.5) is indeed stable
for any α.

5.6 Diverse connectivities

For the analytical considerations and simulations presented in previous sections
we considered fully connected networks. This was not only for the reason of ana-
lytical simplification, but also to separate effects coming from the internal neural
adaptation from those determined by specific connectivity. In the literature there
are examples showing how the networks of simple neurons equipped with specific
connectivity can achieve critical behavior. For example, in the article of Lin and
Chen [92] the neurons are represented by the simple random number generator and
only the connectivity influences the avalanche size. The authors found that the
small-world connectivity is then the condition of criticality in the network.

The topic of this section is to describe, how the combination of specific connec-
tivity and depressive synapses shapes the statistics of the network dynamics. We
first introduce some different connectivity patterns and then compare them. To
start with, let us consider a simple random connectivity scheme. Each neuron is
connected to p1N randomly selected neurons, where p1 < 1 is connection fraction,
which is the same for all neurons. In the brain it is assumed that the average
connectivity is around 10% [79]. We take p1 ∼ 0.2 to decrease a simulation size,
but results do not depend on a particular choice of p1 if it is large enough. Such
a random network is statistically homogeneous and connected if p is large enough.
Therefore, the mean-field approximation is still valid and the critical regime is spec-
ified by rescaling α. Namely, the critical α is approximately equal to αcr

N/p1, where
αcr

N is obtained from the critical parameter region of the fully connected network of
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Figure 5.11: (left) The distribution of avalanche sizes in the network with nearest-
neighbor connections. To determine the “most critical” distribution the threshold
for the least-squares deviation was set at 0.01. (right) The distribution of avalanche
sizes in the network with the small-world connections. To determine the “most
critical” distribution the threshold for the least-squares deviation was set at 0.005.
N = 500, ν = 10, u = 0.2, average connectivity is 20%.

size p1 × N . A slightly different connection scheme is a random network without
restriction on the degree of each node. For every pair of neurons the probability to
form a connection is fixed and equal to p2. One have to take p2 to be not too small,
namely p2 ≫ 1/N , which guarantees that the network is still connected. As above
we take p2 ∼ 0.2. There is room for a significant difference from the previous model
and therefore response of the network to spikes from different neurons may differ.

To study more biologically realistic network models we constructed small-world
networks. A procedure for creating small-world connectivity structure has been
proposed by Watts and Strogatz [148]:
1) Start with a one-dimensional ring-lattice with N sites. Each lattice site is con-
nected to its 2k nearest neighbors by a bond so that for N interacting sites, or
neurons, we have 2Nk bonds.
2) Randomly choose two sites of the lattice and place a bond between them. Self-
connections and duplicate links are excluded. Then one of the bonds going to a
neighbor site of one of the end points of new bond is removed.
3) Repeat step 2 until the number of “re-wired” bonds is the fraction ω of all bonds
of the original lattice, i.e. ωkN .

If ω = 0 then the network is a regular nearest-neighbor network and if ω = 1 then
network is purely random. In a standard small-world network ω ∼ 1%.

We compare now these four types of connectivity (nearest neighbors, two random
networks and small-world connectivity, with respect to the avalanche size distribu-
tions they provide). For comparison we selected parameters such that the average
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Figure 5.12: Comparison of different connectivity schemes. (left) Exponent of the
best matching power-law for different α, (middle) deviation from the best-matched
power-law for different α, (right) deviation from the best-matched power-law in
dependence of the exponent of the best-matched power-law. Different symbols and
colors stay for different connectivity: black circles - nearest neighbors, red triangular
- small-world, blue squares - random connectivity with fixed number of connection
per neuron, green diamonds - random connectivity. N = 500, ν = 10, u = 0.2,
average connectivity 20%.

connectivity is the same in all networks, i.e. we took p = p1 = p2 = 2k/N which on
average lead to pN connections per neuron. In Fig. 5.11 we plotted the distribution
of avalanche sizes for nearest neighbors connectivity and small-world connectivity.
In case of the nearest neighbor connectivity there exists no parameter which brings
about critical distributions i.e. when the small avalanches are distributed according
to a power-law, the distribution is already not monotonous. This is also clear from
the Fig. 5.11 (left).

To understand the mechanism that leads to such a difference let us imagine the
avalanche to start at some neuron n and each neuron is connected to 2k neighboring
neurons. At the next time step only some of its neighbors, i.e. neurons with index
n − k, . . . , n + k can fire and communicate internal input to all of their neighbors.
Thus each avalanche creates a set of neurons with a large common input, similar
to the fully-connected network. On the other hand the synaptic strength should
be scaled with N/k and therefore common input by absolute value is much larger
then in the fully connected network, which provides larger synchronization and
non-monotonicity of distribution in the parameter interval, where one would expect
to find a critical distribution. In contrast to the nearest neighbors connection,
the small-world network produces a critical region that is even larger than a fully
connected network.

In Fig. 5.12 we compared all four networks with respect to the parameters of the
distributions they generate. On the left side the best-matching power-law exponent
is plotted as a function of the maximal synaptic strength α. All the obtained curves
have a very similar shape, but the nearest neighbors curve is the steepest. In the
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middle the deviation from the best matched power-law is plotted. The distribution
is critical if the deviation from the nearest power-law is small enough, i.e. ∆γ < θpl.
Independent of the particular choice of small θpl the critical region corresponding
to the random network with a fixed number of connections per neuron is smaller
than the critical region corresponding to the unrestricted random network which is
turn smaller than the critical region corresponding to the small-world network.

In the right side of Fig. 5.12 the deviation from the best-matching power-law expo-
nent versus the best matched power-law exponent is plotted. This graph allows to
determine which exponent the avalanche-size distribution has when a power-law is
indeed the good approximation for it.

Summarizing the comparison above we conclude: If the network is sparse enough
(k ≪ N/2) the nearest-neighbor connectivity does not generate critical behavior.
Distributions produced by two types of a random network are very similar. The
best matching power-law in the critical regime also has the same exponent, as it
is shown in Fig. 5.12 (right). But the unrestricted random network has a critical
parameters interval which is slightly larger (Fig. 5.12 (middle)). The small-world
network generates a power law with a smaller critical exponent and has the largest
critical parameters region.

5.7 Leakage

In the real neuron there is always flux of the ions through the passive channels in the
membrane (section 2.1). This results in the homeostatic regulation of the membrane
potential. Such regulation is referred to as leakage because it leads to forgetting of
the previously occurred synaptic inputs. And if the neuron is depolarized and close
to firing, then leakage can delay a spike.

There are examples where the introduction of an arbitrarily small leakage to the
model neurons destroys the results obtained for a leak-free system, cf. e.g. [60, 132].
Thus, robustness of the model with respect to leakage is clearly an important issue.
We have performed numerical simulations that unambiguously show the structural
stability of our model w.r.t. non-zero leak. It is sufficient for leak-stability that
the loss currents are compensated by an active process which we include in the
model by a simple adaptive threshold. Let us introduce leakage with time scale τ
and a slightly subthreshold current in addition to the dynamics of the membrane
potential:

ḣ(t) = −1

τ
h(t) + C + Iext + I int.

C is the synaptic current summarizing a regulatory mechanism. It allows the neuron
to stay close to the threshold, Iext is a previously described external input and I int
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Figure 5.13: Distribution of avalanche sizes for different values of the connectivity
parameter α (left) and for the critical case (α = 0.125, right). Further parameters
are N = 100, C = 0.98, τ = 40ms.

is the synaptic input. Throughout this thesis time was measured in the units of
synaptic delays, which for neurons was found to be about 1 ms [94].

Fig. 5.13 shows the distribution of avalanche sizes for different maximal synaptic
strengths. The critical region is determined by the condition that the mean square
deviation from the best-matching power-law is not larger than 0.05. The input
current keeps all neurons near the threshold; therefore the critical regime is achieved
already at smaller maximal synaptic resources. The qualitative behavior of the
model, however, does not change when a moderate leakage is introduced. The
power-law exponent becomes larger in magnitude reaching approximately 1.9. This
is in agreement with experimental data on avalanches found in spike measurements,
where the exponent is observed to be around two [13]. Strong leakage suppresses
power-laws in our model, but this happens only at leakages exceeding those studied
in Ref. [45], which was so far the only model with leaky neurons. Should stronger
leaks be observed experimentally in neural systems showing SOC, then our model
would need to be extended by additional biological mechanisms.

5.8 Inhibition

So far we were considering networks constructed purely of excitatory neurons, but
in the cortical networks there are approximately 10-20% inhibitory neurons [2]. It
is known that inhibition often leads to synchronization in neuronal networks, which
may destroy a critical state. In this section, we show how the introduction of an
inhibitory population changes the behavior of the network.

There are two different ways to include inhibition. The first one follows the so-
called Dale’s principle [43, 79], which is believed to hold true for many neurons
in the brain. It states that each neuron releases only one synaptic transmitter.
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Figure 5.14: Network with 20% inhibitory connection with (left) and without (right)
Dale’s principle. The avalanche size distribution is plotted for different α. Green
lines - subcritical distributions, red lines - critical, and blue lines - supercritical
distributions. To determine the critical distribution the threshold for the least-
squares deviation was set at 0.005. For “Dale’s principle network” avalanches
smaller then six are not considered in the estimation of the power-law exponent.
N = 500, ν = 10, u = 0.2.

This means that each neuron is either inhibitory or excitatory. To generate such a
network we selected randomly 20% of the neurons and all their synapses were then
acting inhibitory, i.e. if inhibitory neuron j is firing, then all post-synaptic neurons
i are getting input of −uJij . In the model a membrane potential is always larger
then 0. Therefore if hi(t) + I int < 0 i take h(t + 1) = 0.

There are evidences [121] that Dale’s principle fails to describe some neurons in the
cortex. Thus we consider also another way to add inhibition, which allows some
synapses of one neuron to contain inhibitory neurotransmitter and others excitatory.
To generate such a network we selected randomly 20% of all synapses which were
then acting inhibitory.

In Fig. 5.14 distributions of avalanche size plotted for the networks with and without
Dale’s principle for different parameters α. In “Dale’s network” there is a probability
of 0.2 that neuron activated by the external input is inhibitory and then obviously
the avalanche will not continue. Hence, as clearly seen in Fig. 5.14, for small
avalanche sizes “Dale’s network” statistics do not follow a power-law distribution.
However, if we concentrate only on avalanches larger than five the effect of Dale’s
principle is not present any more. Both networks have a power-law exponent of
approximately 1.5 in the critical regime and possess a large critical interval. The
exponent for Dale’s network is a slightly smaller ≈ 1.47, whereas for a simple
random inhibitory network exponent is ≈ 1.52. Thus, we conclude that inhibitory
population does not change the results obtained for the excitatory network.
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Chapter 6

Facilitatory synapses

In the previous chapter we have already seen, how depressing synapses turn the
simple network model into self-organized critical. But for some synapses in the
brain, presynaptic activity has not only a depressing influence, but also can enhance
the synaptic transmission. A model of such activity dependent facilitation and
justifying experiments are discussed in the first section.

In this chapter we discuss the influence of facilitation on the network dynamics.
We show, that criticality is achieved in the network with facilitatory synapses in a
self-organized way. We present a mean-field analysis of the network activity. First
results about the network with facilitatory synapses were already published [90].

The heuristic basis of the influence of facilitatory synapses is the following: On the
one hand, when avalanches are large and neurons often fire, synaptic depression is
strong and leads to the reduced activity and therefore, smaller avalanches. On the
other hand, rare firing leads to full recovering of the synapses and that is when
the facilitatory part of synaptic activity plays an important role. This brings the
network to a certain balanced state, which is characterized by the presence of rare
large avalanches in the background activity of the small avalanches.

The introduction of facilitation into the synaptic dynamics changes the transition
to criticality. For depressing synapses this transition is continuous, which corre-
sponds to a second order phase transition, whereas the facilitatory dynamics makes
the transition by a “discontinuous jump”, thus a first order phase transition is
observed. Furthermore, the dependence of the mean synaptic strength and the net-
work dynamics in general on the maximal synaptic strength α is not as simple as
it is in the case of depressing synapses.
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6.1 Model of facilitatory synapses

The model with depressing synapses described in section 5.1 can well account for
the synaptic responses between pyramidal neurons in mammalian cortex, which
have according to experimental findings no facilitatory component in the dynamics.
However it is prominent in the connection between pyramidal neurons and inhibitory
inter-neurons [131]. Usually short term facilitation is modeled by introducing a
“facilitation factor” which is increased at each spike by a certain amount and decays
between spikes [98, 153].

To add facilitation in the model introduced in the section 5.1 one can assume,
that the value of USE is increased by a certain amount due to each presynaptic
spike [103, 133]. The dynamics of USE can be interpreted as calcium accumulation
in the presynaptic terminal. Calcium entering a cell through ion channels at spike
arrival is responsible for the release of neurotransmitter [16]. The simplified scheme
assumes that an action potential causes a fraction of all U calcium channels to
open. After the spike channels are closing with a time constant τfacil. Thus the
corresponding kinetic equation reads

dUSE

dt
= − USE

τfacil
+ U(1 − USE)δ(t − tsp). (6.1)

In Fig. 6.1 one example of the response to a periodic spike-train is shown. A response
to presynaptic spikes grows at the beginning of the experiment and then reaches a
stationary state. The excitatory postsynaptic potential (EPSP) in the stationary
regime depends on the frequency of spikes, in the bottom panel the dependence of
stationary response on the frequency of presynaptic firing is plotted. The theoretical
prediction (solid line) describes the experimental observations (circles) rather well.

6.2 Network model

The network with facilitatory synapses is described by the Eq. 5.2 and Eq. 5.3
together with the additional equation describing the dynamics of the fraction of
synaptic resources used for spike. The third equation is analog to Eq. 6.1 and
summarizes the facilitatory mechanisms in the synaptic connections.

Consider a set of N integrate-and-fire neurons characterized by a membrane po-
tential hi ≥ 0, and two parameters for each synapse: Jij ≥ 0, uij ∈ [0, 1]. The
parameter Jij characterizes the number of available resources on the presynaptic
side of the connection from neuron j to neuron i. Each spike leads to the usage of
a portion of the resources of the presynaptic neuron. Hence, at the next synaptic
event less neurotransmitter will be available i.e. activity will be depressed. Between



6.2. Network model 63

Figure 6.1: Facilitatory synapses. (top left) Average excitatory postsynaptic po-
tential (EPSPs) (4 sweeps) recorded in interneuron (30 Hz), (top right) Simulated
synaptic response (30 Hz). The postsynaptic potential is computed by using a
passive membrane mechanism. On the bottom: Stationary level of EPSPs as a
function of the presynaptic frequency for facilitatory synapses. Open circles – ex-
perimental results for one of the recorded synaptic connections between pyramidal
neuron and inhibitory interneuron. Solid line - model results. Pictures are taken
from [103, 133].

spikes resources are slowly recovering on a timescale τJ .

The parameter uij denotes the actual fraction of resources on the presynaptic side
of the connection from neuron j to neuron i, which will be used in a synaptic
transmission. When a spike coming from neuron i arrives at the postsynaptic side
j, it causes an increase of uij. Between spikes, uij slowly decreases towards the
minimal value u0 on a timescale τu.

The combined effect of Jij and uij results in the facilitation and depression of the
synapses. The interplay of the time scales τu and τJ defines the stationary synaptic
strength.

The dynamics of a membrane potential hi consists of the integration of excitatory
postsynaptic currents over all synapses of the neuron and the slowly delivered ran-
dom input. The timescale of the external input τs is much larger then the synaptic
delay τd, which is the time between emission of a spike by the presynaptic neuron
and the arrival of the EPSP at the postsynaptic neuron.

When the membrane potential exceeds the threshold θ, the neuron emits a spike
and hi resets by extracting the threshold value, i.e. hi(t

+
sp) = hi(tsp) − θ. Super-

threshold activity is communicated to other neurons along neural connections of
strength uij(t)Jij(t). The dynamics of the membrane potential can be described by
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following equation

ḣi = δi,ζ(t)I
ext +

1

N

N∑

j=1

uij(tsp)Jij(tsp)δ
(
t − tjsp − τd

)
(6.2)

The variables Jij is governed by the same equation as in the depressing model

J̇ij =
1

τJ

(
α

u0

− Jij

)
− uijJijδ

(
t − tjsp

)
. (6.3)

The variables uij are subject to the dynamics

u̇ij =
1

τu

(u0 − uij) + (1 − uij)u0δ
(
t − tjsp

)
. (6.4)

Here u0 denotes the minimal fraction of the synaptic resources used for a spike and
α/u0 is the maximal amount of the synaptic resources. Synaptic recovery happens
on a slow time scale of the external input. The relation between the time constants
is the following

τJ = νJNτs, (6.5)

τu = νuNτs, (6.6)

and 1 < νJ , νu ≪ N . We will take νJ = νu = ν, for any other relation between the
time-constants there are appropriate values u0 and α such that the network is in
the critical state.

If the interval between avalanches is large and synapses have enough time to re-
cover to the limit value, then Jij = α/u0, uij = u0 and therefore synaptic efficacy
is equal to α. Short inter-spikes intervals (ISI) change both synaptic parameters:
Jij is getting smaller and uij larger. Without additional consideration it is not pos-
sible to predict the cumulative effect of short ISIs. The maximal possible synaptic
strength is equal to α/u0, but this maximum is not realizable, because fully re-
covered synaptic resources require a long inter-spike interval, which in turn would
reduce the fraction of resources used for a spike.

To visualize the dynamics of the synaptic resources we plotted in Fig 6.2 the amount
of neurotransmitter in the synapse Jij, the fraction of it which will be used for a
spike uij and synaptic efficacy Jijuij for different firing frequencies. Note, that
“jumps” in the graph of Jij , uij , and uijJij are happening after the spike.
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Figure 6.2: Amount of synaptic resources. On the top panel the spike train of the
neuron is shown (black), on the next panel the amount of the synaptic resources Jij

is plotted in blue, on the third panel the fraction of the synaptic resources which will
be used for a spike uij is plotted in green, on the bottom panel the synaptic efficacy
is plotted in red. Dashed vertical lines separate different firing frequencies. From
left to right: one spike in 100, 50, 20, 10 time-steps. The last interval corresponds
to a Poisson spike-train with the intensity of 1 spike in 30 time-steps. N = 300,
α = 0.6, ν = 10, u0 = 0.1.
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6.3 Simulation results

First, let us have a look on the distribution of the avalanche size for different values
of the parameter α. As it is seen in Fig. 6.3 a sharp transition in the distribution
happens at the value α ≈ 0.54 from the clearly subcritical state into the vicinity of
the critical region. To characterize the obtained distributions in more details the
parameters of the fitted power law are displayed, Fig. 6.4. Note that for a network
of 500 units, the absolute critical exponent is smaller than in the large system limit
where γ = −1.5 and that the step size has been drastically reduced in the vicinity of
the phase transition to exclude possibility of the numerical artifact. Clearly, an error
level above 0.1 indicates that the fitted curve is far from the original distribution,
which is therefore not the critical distribution.

To characterize the width of the critical region in Fig. 6.5 the mean square deviation
of the avalanche sizes distribution from the power law for different α and N is
plotted. For comparison the results obtained from the simulation of the static
network are also plotted. The value of the threshold is rather arbitrary, but as
it is shown in Appendix A.2 the distributions which have a deviation from the
power law of less than 0.005 are statistically a power-law. The length of the critical
interval for the parameter α is plotted in the inset. It is three times smaller than
in the depressing case, but still 10 times larger then for static synapses. It is also
important to remark, that the critical interval is increasing with the system size,
therefore in the limit the system might get critical for a substantial part of the
parameters space.

Additionally, the distributions of the synaptic parameters uij and Jij are shown in
Fig. 6.6. Both have bell-shaped distributions with a variance much smaller than a
mean values. This is important for the next section where we describe the mean-
field approximation. Large values of α lead to a more often firing of each neuron in
the network. When neuron fires more often the value of uij increases, whereas the
value of Jij decreases. This explains why the mean of uij is smaller and the mean
of Jij is larger for large values of α and vice versa.

6.4 Mean-field analysis

In this section we present the mean-field analysis of the network model with facilita-
tory synapses. Following the lines of analysis in section 5.5 we start by deriving a set
of equations describing the dependency between the average synaptic strength and
the inter-spike interval. After solving the self-consistency equation we will study
the bifurcation arising from the introduction of the facilitation in the model.
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Figure 6.3: Distribution of avalanche sizes for different values of α. At α < 0.54 the
distribution is subcritical (plotted green) . It becomes critical in an interval around
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Figure 6.4: The best matching power-law exponent (left) and the mean squared
deviation from the best matching power-law (right). The red line represents the
present model, while the blue line stands for the model with static synapses. Aver-
age synaptic efficacy α ranges from 0.3 to 1.0 with a step size of 0.001. For the fit,
avalanches of a size larger than 1 and smaller than N/2 have been used. Presented
curves are temporal averages over 107 avalanches with N = 200, u0 = 0.1, ν = 10.
Figures are taken from [90].
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α 〈uij〉〈Jij〉 〈uijJij〉 | 〈uij〉〈Jij〉 - 〈uijJij〉 |
0.4 0.431 0.436 0.005
0.55 0.9045 0.911 0.006
0.8 0.957 0.960 0.003

Table 6.1: Difference between the true averaged synaptic strength and the synaptic
strength obtained from the independence hypothesis. N = 300, u0 = 0.1, ν = 10.

We consider again the averages of the following dynamical quantities: the amount
of synaptic resources Jij , the fraction of resources used for a spike uij, and the
inter-spike interval ∆isi. The average synaptic strength is equal to 〈uijJij〉 which is
in general not the same as 〈uij〉〈Jij〉. As it is shown in the Table 6.1 the differences
between the true value of the average synaptic efficacy 〈uijJij〉 and the approximate
value 〈uij〉〈Jij〉 is comparably small, though it is obvious that uij and Jij are not
independent because they both depend on the size of the preceding inter-spike
interval. We use approximation instead of the exact expression for the the average
synaptic strength because it allows us to do the analytical computations.

We continue according to the following plan: First we derive a couple of equations
connecting 〈∆isi〉 and 〈uij〉〈Jij〉:

〈uijJij〉 ≈ 〈uij〉〈Jij〉 = G
(
〈∆isi〉

)
, (6.7)

〈∆isi〉 = F (〈uijJij〉) . (6.8)

Given the system of the equations (6.7,6.8) it is easy to construct a self-consistency
equation. Which we later solve numerically, obtaining the stationary values of
〈uijJij〉 and

〈
∆isi
〉
.

To start with, let us recall the equations governing the synaptic dynamics of the
network

u̇ij =
1

τu

(u0 − uij) + (1 − uij)u0δ
(
t − tjsp

)
, (6.9)

J̇ij =
1

τJ

(
α

u0
− Jij

)
− uijJijδ

(
t − tjsp

)
. (6.10)

The behavior of the variable uij does not depend on the value of Jij, therefore first
we derive the equation for the dependency of uij on ∆isi and then use it to derive
the equation for Jij analogously.

Between two spikes of the neuron j only the relaxation dynamics affects the variable
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uij, thus it is easy to solve the equation (6.9):

ub,2
ij = u0 +

(
ua,1

ij − u0

)
e−(tj2−tj1)/τJ (6.11)

where ua,1
ij and ub,2

ij are the synaptic strengths after a spike of neuron j at time

tj1 and before the subsequent spike at tj2 respectively. By the definition of time-
constants (6.5,6.6)

tj2 − tj1
τu

=
∆isi

νN
. (6.12)

Within a short interval containing the spike, uij increases by (1− ub,2
ij )u0 such that

ua1
ij = ub,1

ij + u0

(
1 − ub,1

ij

)
. The Eq. 6.12 can be rewritten as

ub,2
ij = u0 +

(
ub,1

ij − u0u
b,1
ij

)
e−

∆isi

νN . (6.13)

At stationarity
〈
ub,1

ij

〉
=
〈
ub,2

ij

〉
therefore by substituting the inter-spike interval in

the Eq. 6.13 by the average 〈∆isi〉 one can find the average synaptic strength by
solving the equation

〈uij〉 = u0 + 〈uij〉(1 − u0)e
− 〈∆isi〉

νN . (6.14)

This allows to express 〈uij〉 in terms of
〈
∆isi
〉
,

〈uij〉 =
u0

1 − (1 − u0)e
− 〈∆isi〉

νN

= G1

(
〈∆isi〉

)
. (6.15)

Now we can analogously write the expression for 〈Jij〉 as

〈Jij〉 =
α

u0

1 − e−
1

νN
〈∆isi〉

1 − e−
1

νN
〈∆isi〉 + 〈uij〉e−

1
νN

〈∆isi〉
= G2

(
〈∆isi〉

)
. (6.16)

Combining Eq. 6.16 and Eq. 6.15 we obtain the first part of the self-consistency
equation

〈uijJij〉 ≈ 〈uij〉〈Jij〉 = G1

(
〈∆isi〉

)
G2

(
〈∆isi〉

)
= G

(
〈∆isi〉

)
(6.17)

The dependence of the inter-spike interval on the average synaptic strength is not
affected by the more complicated synaptic dynamics. Therefore, the second part of
the self-consistency equation is the same as in the depressing model (section 5.5)

〈
∆isi
〉

=
θ − ǫN

Iext
(N − 〈uijJij〉(N − 1)) = F (〈uijJij〉) . (6.18)
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Figure 6.7: Average synaptic strength and inter-spike interval for different initial
conditions. The dashed line corresponds to Eq. 6.18 and the solid lines are obtained
from Eq. 6.17 for α = 0.5, 0.535, 0.55, 0.7. Circles show 〈uijJij〉 and 〈∆isi〉 obtained
from simulations of the network with matching α. Further parameters are N = 300,
ν = 10, u0 = 0.1.

The combination of the Eq. 6.17 and the inverse of the Eq. 6.18 gives rise to the
self-consistency equation

N

N − 1
− Iext〈∆isi〉

(θ − ǫN)(N − 1)
= G

(
〈∆isi〉

)
. (6.19)

The numerical solution of Eq. 6.19 allows to find the steady state of the system for
any given parameter α. In Fig. 6.7 the graphical solution of the self-consistency
equation is depicted together with the simulation results. Predicted by the mean-
field approximation values of the inter-spike intervals and the synaptic strength are
the intersections between the curves for the correspondent α and the line, repre-
senting the inverse of the Eq. 6.18 which does not depend on α. The circles are
simulation results for the correspondent α. Simulated quantities are in the good
agreement with theoretical averages, which allows to justify approximations used
to obtain self-consistency equation.

The curves with more than one intersection points with the line are of the particular
interest, they are studied in the next section.
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Figure 6.8: Bifurcation diagram. Solution of the self-consistency equation
〈uNJJNJ〉 plotted versus parameter α. In the inset red lines are the graphs of
Eq. 6.18 and the blue lines are obtained from Eq. 6.17 for a value of α from the
correspondent parameter interval. N = 300, ν = 10, u0 = 0.1.

6.4.1 Bifurcation of the steady state parameters

In this section we describe the mechanism, that brings about the discontinuity in
the distributions of avalanche sizes. As we have seen in Fig. 6.7, for some values of α
there are three intersection points of the graph of function F (6.17) and inverse of G
(6.18). For such values of α there are two possible states of the network. The third
state is unstable and therefore not realizable in the network where the stochastic
dynamics plays a role of a strong noise which takes the system immediately away
from the unstable fixed point.

Depending on the parameter α there are different regimes in the network dynamics:

1. If α < αc there is only one solution of the self-consistency equation.

2. If α = αc then there is the saddle-node bifurcation point, which is charac-
terized by the appearance of one stable and one unstable branches. The new
stable branch is not a continues prolongation of the previously existing branch.

3. If αc > α > αc there are three solutions of the self-consistency equation, two
of them are stable. The network “selects” the branch depending on the initial
conditions. For the simulations we always took the same initial conditions,
which created the sharp transition between two states of the network.

4. If α = αc there is a second bifurcation point. The initial stable branch and
the unstable branch disappear.
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5. If α > αc there is the unique solution of the self-consistency equation.

All regimes are shown in Fig. 6.8. For the network of N = 300 neurons with
u0 = 0.1. The bifurcation points are at αc = 0.534, αc = 0.547.

6.4.2 Stability analysis

The bifurcation diagram in the previous section makes the stability claims, which
have to be checked. We use simple perturbation analysis to study the stability of
the fixed points. On the first sight perturbation may influence synaptic strength
(for instance, by changing the maximal amount of the synaptic resources), or inter-
spike interval (by changing the strength of the external input) or both. But on the
second glance, perturbation of the ISI is immediately translated in the changes of
the synaptic strength by Eq. 6.16, 6.15. Thus we consider only perturbations in the
synaptic strength.

In the most interesting case 3 there are three fixed points, two of which are stable.
Consider, that parameter α satisfy αc > α > αc and at some time tp a perturbation

∆J is applied to all synapses such that for each i, j: J̃ij = Jij + ∆J . The effect of
such perturbation can depend on the current state of the system and the value of
∆J . Perturbation of the parameter uij leads to a qualitatively similar results.

In Fig. 6.9 one of the possible outcomes is shown. Before the perturbation network is
in the “active” state (synaptic strength is large), negative perturbation compel the
network to switch to the “resting” state. The individual dynamics of the synaptic
parameters plotted in Fig. 6.10 (left). If ∆J < 0 a perturbation results in the
temporary decrease of the avalanche size. This lead to the increase in the synaptic
resources Jij but decrease of uij, such that there product in total decrease. The
changes of the synaptic strength and the inter-spikes interval during the transient
period are shown in Fig. 6.10 (right).

In Fig. 6.11 the probability of switch is plotted as a function of ∆J . For this
graph 25 realization of the network in the active state was perturbed with the same
∆J < 0. After the network returned to the stationary state the average synaptic
strength was measured. As there is a stochastic influence on the network dynamics,
the result of the perturbation can not be described deterministically, thus for each
∆J the probability that network converges to “active” or “resting” state is plotted.
If |∆J | is large enough (in Fig 6.11 if ∆J < −0.21), then network switches without
fail, if |∆J | is small then steady state is preserved after the perturbation. Between
these extreme values of ∆J , both outcomes are possible.

As unstable fixed point closer to the “active” state, perturbation which is required
to switch from the “active” state is smaller, then one needed to leave the “resting”
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Figure 6.9: Switch of the stable fixed point by the strong perturbation. Each circle
depicts strength of one synapse and ISI for it. Initial state of the synapse plotted
in green. At the point marked with star the perturbation is applied, resulting in
another state also marked with star. Red circles denote a transient period, until
the network stabilizes. The new stable state is depicted by blue circles. Dotted line
shows the course of the transient. Dashed red and solid blue lines are same as in
Fig. 6.7 α = 0.535, ∆J = −0.5, N = 300, ν = 10, u0 = 0.1.

state Fig. 6.11. If parameter α increases, unstable fixed point moves towards the
“resting” state, resulting in the decrease of stability.

6.4.3 Thermodynamical limit

In Fig. 6.3 we have seen, that the critical region grows with the system size at
least for relatively small N . Such tendency is similar to what is observed in the
depressing model and it makes us believe that the tendency will preserve and in the
thermodynamical limit the critical region will be infinite. In this section we check
such conjecture. The derivation mainly follows the line of the analogous proof for
the depressing synapses from section 5.5.1.

First we recall equations which compose the self-consistency equation:

〈uij〉 =
u0

1 − (1 − u0)e
− 〈∆isi〉

νN

,

〈Jij〉 =
α

u0

1 − e−
1

νN
〈∆isi〉

1 − e−
1

νN
〈∆isi〉 + 〈uij〉e−

1
νN

〈∆isi〉
,
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Figure 6.10: Evolution of the synaptic parameters and ISI after the perturbation.
(left) Dashed graph with crosses corresponds to the right axes, solid-line graph
plotted on the left axes. (right) Graph with diamants plotted on the right axes,
graph without symbols on the left axes. Color code corresponds to Fig. 6.9: green
part depicts initial stationary state, red part - transient period, and blue part new
stationary state. α = 0.535 N = 300, ν = 10, u0 = 0.1.
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Figure 6.11: Outcome of perturbation. Probability of switching to another state
after the perturbation as a function of ∆J . (left) if the network was initially in the
“active” state, (right) if the network was initially in the “resting” state. Histograms
are computed based on 25 trials. α = 0.535, N = 300, ν = 10, u0 = 0.1.
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〈
∆isi
〉

=
θ − ǫN

Iext
(N − 〈uijJij〉(N − 1)).

An explicit form of the self-consistency equation reads

α〈uij〉
u0

1 − e−
1

νN
〈∆isi〉

1 − e−
1

νN
〈∆isi〉 + 〈uij〉e−

1
νN

〈∆isi〉
=

N

N − 1
− Iext〈∆isi〉

(θ − ǫN )(N − 1)
. (6.20)

In the limit N → ∞ one should scale the external input by Iext ∼ N−w with
w > 0. We will not explicitly solve the self-consistency equation, but consider the
approximation of the solution. As the system size growth, the average inter-spike
interval will scale with N . Let us now distinguish the following cases:

1. If 〈∆isi〉 ∼ N1+ǫ and ǫ > w,
then the right hand side (r.h.s.) of Eq. 6.20 approaches −∞, while 〈uij〉
approaches u0 and the l.h.s. is larger than 0.

2. If 〈∆isi〉 ∼ N1+ǫ and ǫ < w,
then the right hand side (r.h.s.) of Eq. 6.20 approaches 1 and the l.h.s tends
to α. Therefore solution exists only for α = 1.

3. If 〈∆isi〉 ∼ N1−ǫ and ǫ > 0,
then the r.h.s. of Eq. 6.20 tends to 1, whereas 〈uij〉 approaches 1 and 〈Jij〉
tends to 0, therefore l.h.s. approaches 0.

4. If 〈∆isi〉 ∼ N,
we can assume that 〈∆isi〉 = cN + o(N). Then 〈uij〉 is approaching

〈uij〉lim =
u0

1 − (1 − u0)e
− c

ν

, (6.21)

whereas 〈Jij〉 is tending to

〈Jij〉lim =
α

u0

1 − e−
c
ν

1 − e−
c
ν + 〈uij〉lime−

c
ν

. (6.22)

r.h.s. of (6.20) tends to 1, thus c is a solution of the equation

〈uij〉lim
α

u0

1 − e−
c
ν

1 − e−
c
ν + 〈uij〉lime−

c
ν

= 1. (6.23)

Lets z = e−
c
ν , Eq. 6.23 can be solved with respect to z

z± =
2 − u0 − α ±

√
−4u0 + 4u2

0 + α2

2(1 − u0

. (6.24)
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As u0 < 1, if α is sufficiently large, namely

α > 2
√

u0 − u2
0 (6.25)

then z ∈ R. And z+ is positive therefore, there exist a solution of Eq. 6.23.

Thus we showed that in all the cases, where solution exists (ii, iv), 〈uijJij〉 = 1 and
therefore, network is in the critical state. We also proved that solution exists for
all large enough values of α.
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Chapter 7

Dynamical systems formalism

Despite the constant attention from physicists to the mathematical theory of self-
organized criticality it is still in infants. One rare example of the research on strict
mathematical basis of SOC is the works of Krueger, Cessac, and Blanchard [19, 34].
Their advances in the research of the Zang model are described in section 2.2.2.

In the present chapter we propose the mathematical model of the neural network,
which was introduced in chapter 3. The network is characterized by the local
interactions, which lead to events widely extended in size and duration. To describe
such a phenomena the dynamical systems formalism is used. It is a natural approach
to try to access the macroscopic behavior of large systems from the microscopic
dynamical evolution. The macroscopic behavior at stationarity is characterized by
a probability measure, which one has to extract from the microscopic evolution.

The structure of this chapter will be as follows: first we introduce the model and
discuss its simple properties, then we find the invariant measure and in the end we
prove that the system posses the property of the topological transitivity. Where it
is possible we try to give also the physical interpretation alongside with definitions
and theorems.

7.1 Definitions

Let X = [0,∞]N , Xs = {x ∈ X|xi < 1, i = 1, . . . , N}. Let A be a measurable space
of sequences a = {a1, a2, a3, . . . , }, ai ∈ {1, . . . , N} equipped with a probability
measure ν. Let σ be a left shift, σ : A → A, a = {a1, a2, a3, . . . , } ∈ A, then
σ(a) = {a2, a3, . . .}.
Define G : {1, . . . , N} → X , where X is a set of all hyperbolic maps Xs → X. To
mimic a neural network behavior we will consider the particular case where G is
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defined as
Gk(x) = x + ekδ,

for 1 ≤ k ≤ N , where ek is a k-s basis vector in RN and 0 < δ < 1 is a parameter
of the model.

Let Z : X → {0, 1}N , x 7→ z, Zi(x) = zi = I[1,∞)(xi), where I[a,b] is an indicator
function of the interval [a, b].

F (x) = x +
α

N
e card{i|zi = 1} − z,

where e =
∑N

k=1 ek, α ∈ (0, 1) is a parameter of the model, referred in physics as a
connection strength. If y = F (x) then

yi = xi +
α

N
card{l|zl = 1} − zi. (7.1)

The physical model that allowes for the interpretation of the described variables
and functions is given in section 3. Namely, the parameter N denote the number of
neurons in the network, the coordinate xi of the variable x denote the membrane
potential of the neuron i. Thus the space Xs is a space of all stable configurations
(i.e., configurations when there is no neuron to fire). Members of the sequence
a ∈ A are indices of neurons to get the external input, and the sequence in total
defines the order of external inputs during the life of the network. The mapping Gl

brings the external input to the neuron l. The mapping F describes one step of the
avalanche: reset of all super-threshold neurons and delivery of the internal input to
all neurons. Parameter δ denotes the strength of the external input to the network
and α/N denotes the strength of connections between neurons.

Assumption 1. We will assume that the external input δ ∈ R \ Q is smaller than
the synaptic input α/N ∈ R \ Q, and for any a, b ∈ R \ Q, aδ + bα ∈ R \ Q .

The assumptions of irrationality and rational independence will be important for
the proof of topological transitivity later in this chapter. Keeping in mind the
physical interpretation of the model it is natural to assume that the parameters α
and δ are irrational with probability one, because in the real world they are rather
arbitrary and have no specific constrains to be rational. The last assumption that
δ < α/N is done to shorten the proofs. It is not changing anything in the logic of
them, but allows to consider a smaller number of similar cases. From the physical
point of view this means that we consider the strongly connected network with the
weak external input.

We define a measurable map T : A× Xs → A× Xs as follows

T (a,x) =
(
σa, F k(a,x) ◦ Ga1(x)

)
, (7.2)
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where k(a,x) ≥ 0 is a minimal integer such as F k(a,x) ◦ Ga1(x) ∈ Xs.

Remark 7.1.1. For any x ∈ Xs and a ∈ A there exists k(a, x) < ∞ such that,
T (a, x) = (σa, F k(a,x) ◦ Ga1x).

Proof. Denote F (x)i the ith coordinate of the vector F (x). Then for any x ∈ Xs

we have
N∑

i=1

F (x)i =
N∑

i=1

xi +
α

N
N

N∑

i=1

zi −
N∑

i=1

zi ≤
N∑

i=1

xi − 1 + α

and F (x)i > 0 for any i = 1, . . . , N . Therefore sum of all coordinates of x is
decreasing by at least 1 − α > 0 with each iteration of F , but all coordinates stay
larger than zero. Define kM as

kM = min

{
n ∈ N

∣∣∣∣∣n >

∑N
i=1 xi

1 − α

}
.

If k ≥ kM then
∑

i F
kM (x)i < 1 and hence for all i ≥ N , 0 < xi < 1 therefore

F k(x) ∈ Xs.

The map T summarizes the full dynamics of the network. If k(a,x) is larger than
zero then there is an avalanche happening in the network. The k(a,x) represent
the duration of the avalanche. The remark above proves that in dissipative system
(when α < 1) all avalanches have a finite duration. Now we will introduce the
avalanche size, which is described as the number of the coordinates of vector x
which were larger than one during the avalanche time.

Definition 7.1.1. Let x ∈ X and a ∈ A be fixed, T = F k(a,x)◦Ga defined as before
and k(a,x) > 0, then avalanche size ξ = ξ(a,x) is defined as

ξ(a,x) =

k(a,x)∑

j=0

N∑

i=1

Zi

(
F j ◦ Gax

)
. (7.3)

Define projections πX : A × Xs → Xs, πX(a,x) = x and πA : A × Xs → A,
πA(a,x) = a.

Proposition 7.1.2. Let x ∈ Xs, a ∈ A and let α + δ < 1. Then for any i ≤ N ,

k(a,x)∑

j=1

Zi(F
j ◦ Ga1x) ≤ 1.
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Proof. Let us assume that the statement of the proposition does not hold, then the
set

Ic =



i ≤ N

∣∣∣∣∣∣

k(a,x)∑

j=1

Zi(F
j ◦ Ga1x) ≥ 2



 6= ∅.

Define for each i ∈ Ic, ni ≤ k(a,x) such that
∑ni−1

j=1 Zi(F
j ◦ Ga1x) ≤ 1 but∑ni

j=1 Zi(F
j ◦ Ga1x) ≥ 2. Define n ≤ k(a,x) = mini∈Ic

ni and m = argmini∈Ic
ni.

Then for any l ≤ N ,

n−1∑

j=1

Zl(F
j ◦ Ga1x) ≤ 1, (7.4)

n∑

j=1

Zm(F j ◦ Ga1x) ≥ 2. (7.5)

Let y = F n−1 ◦Ga1(x) ∈ X. Subtracting the Ineq. 7.4 for l = m from the Ineq. 7.5
we obtain that Zm(F n ◦ Ga1x) ≥ 1. Therefore ym > 1

1 < ym = xm + δ · δm,a1 +α

∑N
l=1

∑n−1
j=1 Zl(F

j ◦ Ga1x)

N
− 1 < xi + δ +α− 1 < xi < 1,

hence we come to the contradiction to the fact that Ic 6= ∅.

Remark 7.1.3. Proposition 7.1.2 has a physical meaning that esch neuron can fire
only once during an avalanche.

Proposition 7.1.4. Let x ∈ Xs and let l satisfy #
{
i : xi > 1 − α l

N

}
< l and let

α + δ < 1 then

ξ(a, x) =

k(a,x)∑

j=0

N∑

i=1

Zi

(
F j ◦ Gax

)
< l.

Proof. Let y = T (a,x) = F k(a,x) ◦ Gax, for any m ≤ k(a,x) define the avalanche
size after m steps as,

ξm =

m∑

j=0

N∑

i=1

Zi

(
F j ◦ Gax

)
. (7.6)

We are going to prove that if ξ(a,x) = ξk(a,x) ≥ l then there exit at least l distinct
indices (in)l

n=1 such that xin > 1 − α l
N

.

If ξk(a,x) ≥ l then there exists n < k(a,x) such that ξn < l and ξn+1 ≥ l. By
the Prop. 7.1.2 for any i ≤ N ,

∑m
j=0 Zi (F

j ◦ Gax) ≤ 1. Combining it with the
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Figure 7.1: Set D. (left) for N = 2, set D is uncolored, C1 is green, C2 is orange.
(right) N = 3 set D is uncolored.

definition of ξm (7.6) we find that there are ξn distinct indices q1, . . . , qξn
such that∑n

j=0 Zqs
(F j ◦ Gax) = 1, for all s = 1, . . . , ξn. For these indices

0 < πX (T n ◦ Gax) = xjs
+ αξn/N − 1

therefore xqs
> 1 − αξn/N > 1 − αl/N . There are ξn+1 − ξn > 0 indices kt such

that for any t = 1, . . . , ξn+1 − ξn,

n∑

j=0

Zkt

(
F j ◦ Gax

)
= 0, (7.7)

n+1∑

j=0

Zkt

(
F j ◦ Gax

)
6= 0. (7.8)

Due to (7.7) the sets of indices {qi, . . . , qs} and {k1, . . . , kt} are not intersecting. We
define a set B as B = {qi, . . . , qs}

⋃{k1, . . . , kt}. From (7.8) it follows that for any
t ≤ ξn+1 − ξn

1 < πX

(
T n+1 ◦ Gax

)
kt

= xkt
+ αξn/N,

hence xkt
> 1−αξn/N > 1−αl/N . Therefore, for all indices i ∈ B, xi > 1−αl/N

and #(B) = ξn+1 ≥ l.

Remark 7.1.5. Proposition 7.1.4 allows to define an avalanche size directly from
the configuration x without performing the iterations of mapping F .
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7.2 The measure support

Definition 7.2.1. Let for any a ∈ A, Da ⊂ Xs be a set

Da =
∞⋂

i=1

πX(T i(a, Xs)), (7.9)

and D̂a be a subset of Xs on which πX (T (σna, ·)) acts bijective for any n ∈ N i.e.

D̂a =
{
x ∈ Xs

∣∣∣ ∀n ∈ N πX (T (σna,x)) ∈ D̂a,

and ∃y ∈ D̂a πX (T (σna,y)) = x
}

(7.10)

Remark 7.2.1. It is easy to see that for any a ∈ A, D̂a is a subset of Da. Later
in this this section we will show that also the opposite inclusion holds.

It is clear that D̂a 6= Xs. For example, if xi < min(α/N, δ) there exists no such
b ∈ A, y ∈ Xs that πXT (b,y) = x.

Let us define a collection of sets Ci such as

Ci =

{
x ∈ Xs

∣∣∣∣#
{

j ≤ N |xj <
iα

N

}
≥ i

}
. (7.11)

Remark 7.2.2. If x ∈ Xs \ Cl then there exists at least N − l + 1 distinct indices
k1, . . . , kN−l+1 such that xkj

> αl/N .

#

{
i

∣∣∣∣xi > α
l

N

}
≥ N − l + 1 (7.12)

Theorem 7.2.3. For any a ∈ A

D̂a = Xs \
N⋃

i=1

Ci.

Proof. Denote D := Xs \
⋃N

i=1 Ci.
We will first prove that T is invariant on D and then that it is also invertable on
D in the sense of definition 7.10.
1. Let us fix any x ∈ D and any a ∈ A. We have to prove that πX(T (a,x)) ∈ D. In
other words, we have to prove that for all i = 1, . . . , N , y = πX (T (a,x)) /∈ Ci. To
prove this we find a set of distinct indices Li := {l1, . . . , lN−i+1| ∀m, lm ≤ N} such
that for any m ∈ Li, ylm > αi/N . Consider two cases k(a,x) = 0 and k(a,x) > 0:
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If k(a,x) = 0 then for each j, xj ≤ yi, hence for each i, if x /∈ Ci then y /∈ Ci.
Therefore, we have to consider only the case k(a,x) > 0. By (7.3) we can define the
avalanche size ξ(a, x) = ξ. We will distinguish three cases ξ < i, ξ = i, and ξ > i.

a) Let ξ < i. We know that x /∈ Ci−ξ, then by Rem. 7.2.2 there exist N − (i−ξ)+1
distinct indices k1, . . . , kN−(i−ξ)+1 such that xkj

> α(i − ξ)/N .

We have defined
∑k(a,x)

j=0

∑N
i=1 Zi (F

j ◦ Gax) = ξ, hence there exist at least N − ξ

distinct indices rs such that
∑N

j=1 Zrs
(F j ◦ Gax) = 0.

#
({

k1, . . . , kN−(i−ξ)+1

}⋂
{r1, . . . , rN−ξ}

)
≥ N − i + 1,

therefore there exist distinct indices (lm)N−i+1
1 such that for all m ≤ N − i + 1,∑k(a,x)

j=0 Zlm (F j ◦ Gax) = 0 and xlm > α(i − ξ)/N .

yi = xi +
α

N

k∑

j=0

N∑

i=1

Zi

(
F j ◦ Gax

)
−

k∑

j=0

Zi

(
F j ◦ Gax

)

= xi + α
ξ

N
−

k∑

j=0

Zi

(
F j ◦ Gax

)
, (7.13)

hence

ylm = xi + α
ξ

N
> α

i − ξ

N
+ α

ξ

N
= α

i

N
(7.14)

b) Let ξ = i. Again, as
∑k(a,x)

j=0

∑N
i=1 Zi (F

j ◦ Gax) = ξ = i there exists a set
of N − i distinct indices KN−i = {k1, . . . , kN−i} such that for any m ∈ KN−i,∑k(a,x)

j=0 Zkm
(F j ◦ Gax) = 0, and for them by (7.13, 7.14) we have ykm

> αi/N .

Consider xa1 : As ξ > 0, we have xa1 + δ > 1 and
∑k(a,x)

j=0 Za1 (F j ◦ Gax) = 1.
Consequently

ya1 = xa1 +
α

N

k(a,x)∑

j=0

N∑

i=1

Zi

(
F j ◦ Gax

)
−

k(a,x)∑

j=0

Za1

(
F j ◦ Gax

)

= xa1 + δ + α
i

N
− 1 > α

i

N

We have a1 /∈ KN−i, thus Li = {a1} ∪ KN−i

c) Let ξ > i. As above, we find set of indices KN−ξ, such that for any m ∈ KN−i,∑k(a,x)
j=0 Zkm

(F j ◦ Gax) = 0, and ykm
> αξ/N > αi/N .

Applying Rem. 7.1.4, we find that there are at least ξ − i indices js, such that for
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any s ≤ ξ− i, xjs
> 1−α(ξ− i)/N . From Prep. 7.1.2

∑k
j=0 Zjs

(F j ◦ Gax) < 2. On

the other hand if
∑k

j=0 Zjs
(F j ◦ Gax) < 1, then

yjs
= xjs

+ α
ξ

N
> 1 − α

ξ − i

N
+ α

ξ

N
= 1 + α

i

N
> 1,

which is impossible. Therefore
∑k

j=0 Zjs
(F j ◦ Gax) = 1. Hence for these indices

yjs
= xjs

+ α
ξ

N
− 1 > 1 − α

ξ − i

N
+ α

ξ

N
− 1 = α

i

N
.

Sets of indices {k1, . . . , kN−ξ+1} and {j1, . . . , jξ−i} are not intersecting. Hence we
found Li = {k1, . . . , kN−ξ+1} ∪ {j1, . . . , jξ−i}.
2. Now we prove that for any x ∈ D and any b ∈ A there exists the preimage of
y ∈ D such that πX (T (b,y)) = x. Let b = cb1b2 . . .. If y = x− δec ∈ D then y is a
desired preimage.

Let y′ = x − δec /∈ D. We have x ∈ D thus for all i ≤ N , xi > α/N and δ < α/N
hence y ∈ Xs and therefore there exists l such that y′ ∈ Cl. Thus there exists a set
of indices Il = {i1, . . . , il} such that for any h ≤ l : yih < α l

N
. If c /∈ Il then x ∈ Cl,

which contradict to the fact that x ∈ D. Therefore there exists j, such that

xc > α
j

N
and xc − δec < α

j

N
.

We have δ < α/N , hence such index j is unique and j = l.

Let us define a transformation S : Xs → X such that

S(x) = x − αe + em(x), (7.15)

where m(x) = argmini≤N,i6=c(xi, xc − δ). Define y as:

y = Sl(x) − δec (7.16)

In the following we will show that y = Sl(x) − δec is a desired preimage.

In Fig. 7.2 the action of the mapping S is shown for the 2-d system. After some
number of iterations of S for both initial conditions the image is found to be con-
tained in D. After this time the iterating procedure is stopped and final value y
is obtained. In the following we show that for any initial condition x for which
y′ = x− δec /∈ D, such procedure gives a single solution y and it is a preimage of x

At first let us show that y ∈ D. As we know y′ ∈ Cl. Denote H = {h1 . . . hl}
a set of coordinates such that for any h ∈ H y′

h < α l
N

. Furthermore, let for any
i < l − 2 : hi < hi+1, and hl = c. The set H contains the indices of the l smallest
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δδ

αα

αα

Figure 7.2: Procedure of the preimage identification for N = 2. y′ ∈ C2, then l = 2
(left) and y′ ∈ C1, then l = 1 (right). Arrows indicate the sequence of images of x
(depicted by red circles) under the action of S.

coordinates of y′. Since x ∈ D, yields for any i < l, hi > α i
N

. As H is odered and
contains the indices of smallest coordinates of y′, we have m(x) = h1.

Application of S does not change the order of the coordinates except of the smallest
coordinate. Let for some g < l, yg = Sg(x), and i = m(yg), then yg

i = yg−1
i − α

N
+1 >

α l
N

. Thus for any g ≤ l, m (Sg(x)) = hg, and we can write the coordinates of the
vector y explicitly

yi =





xi(t) − α l
N

+ 1 if i ∈ H and i 6= c,

xc(t) − α l
N

+ 1 − δ if i = c,

xi(t) − α l
N

otherwise.

This implies that for any i : 0 < yi < 1, which mean that y ∈ Xs. Now we show
that g = l is the first entrance in Xs of the map Sg(x) among all g > 0. I.e. we
should proof that for any l > g > 0 : yg = Sg(x) /∈ Xs. Let i = m (Sg(x)), thus
i = hg and xi > α i

N
. Then

yg
i = xi − α

i

N
+ 1 > 1.

Now we show that πX (T (b,y)) = x. We have ỹ = Gc(y)c = yc +δ = xc(t)−α l
N

+1,
but xc > α l

N
, thus k(b,y) > 0.

F (ỹ) = ỹ +
α

N
e card{i|zi = 1} − z =

∑

i,ỹi>1

ỹ +
α

N
− ei,

thus F (ỹ) = S−card{i|zi=1}(y). For all i < l, S−i(y) /∈ Xs and S−l(y) ∈ Xs, therefore
F k(b,y) = S−l(y) = x.
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Figure 7.3: Image of πXT (a,x) for different x ∈ D. Each area on the left has the
same color as its image on the right.

Proposition 7.2.4. For any x ∈ Xs and a ∈ A there exists n ∈ N0 < ∞ such that
πX(T n(a, X)) ∈ D

Proof. Let x ∈ C1. Gax > x and x < e, hence there exists m, such that for
(b,y) = T m(a,x), T (b,y) = F k(b,y) ◦ Gb(b,y) and k(b, y) ≥ 1. For this (b,y) the
avalanche size ξ is not smaller than 1. Repeating the reasoning of Theorem 7.2.3
1.b we prove that πX(T (b,y)) /∈ C1.

Let x ∈ X \ ⋃n−1
i=1 Ci and T = F k(a,x) ◦ Ga, where k(a,x) ≥ 1, then T (a,x) ∈

X \ ⋃n
i=1 Ci. In the proof of the Theorem 7.2.3 1 we used only fact that x /∈ Cj ,

j < i to prove that T (a,x) /∈ Ci. Hence, knowing that x /∈ ⋃n−1
i=1 Ci we can repeat

the same reasoning to prove that T (a,x) /∈ Cl for any l ≤ n.

Remark 7.2.5. The proposition above provides the inclusion Da ⊂ D and combined
with the Theorem 7.2.3 proves that if there exists measure on X, which is invariant
under T , then it will be concentrated on D.

Proposition 7.2.6. Let x ∈ D, a = (a1, . . .) ∈ A, α + δ < 1, z = πX(T (a, x)) then
the following statements are equivalent:

1. k(a, x) ≥ 1

2. z− δej ∈ Cl for j = a1 and l = ξ(a, x).

Proof. “1⇒2”: Let

S =



j

∣∣∣∣∣∣

k(a,x)∑

i=0

Zj

(
F i ◦ Gax

)
6= 0



 ,
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|S| = ξ(a,x), a1 ∈ S. For any j ∈ S, j 6= a1

zj = xj − 1 + α
ξ

N
< α

ξ

N
,

za1 = xa1 + δ − 1 + α
ξ

N
< α

ξ

N
+ δ.

Therefore, z − δea1 ∈ Cξ.
“2⇒1”: As z − δej ∈ Cl it is clear that x 6= z − δej. But z = πX(T (a,x)) 6=
x + δej = Ga(x), thus k(a,x) > 0

Theorem 7.2.7.

1. If x ∈ D, and a = {a1, a2 . . .}, b = {b1, b2, . . .} ∈ A such that a1 6= b1, then
πX(T (a, x)) 6= πX(T (b, x)).

2. For any x ∈ D, there exist distinct y1, . . . , yn such that x = πX(T (ai, yi)), for
ai = (i, a2, a3, . . .).

3. For any x ∈ D and a ∈ A there exists one and only one y ∈ D, such that
πX (T (a, y)) = x.

Proof. 1. Let y = πX(T (a,x)) = πX(T (b,x)), then

ya1 = xa1 + δ +
α

N

k(a,x)∑

j=0

N∑

i=1

Zi

(
F j ◦ Gax

)
−

k(a,x)∑

j=0

Zi

(
F j ◦ Gax

)

= xa1 +
α

N

k(a,x)∑

j=0

N∑

i=1

Zi

(
F j ◦ Gbx

)
−

k(a,x)∑

j=0

Zi

(
F j ◦ Gbx

)
.

Hence
xa1 + δ + α

c1

N
− d1 = xa1 + α

c2

N
− d2,

where c1, c2, d1, d2 ∈ N0. Such equation has no solutions, because α and δ are
rationally independent.
2. We showed in the proof of the Theorem 7.2.3 (2) that for any x ∈ D, a ∈ A
and b ∈ A, b = b1, a1, a2, . . . there exists y ∈ D, such that T (b,y) = (a,x). So it is
only left to prove that if b 6= c, and πX(T (b,y1)) = πX(T (c,y2)) = x then y1 6= y2.
If this condition is not fulfilled, then for some y ∈ D there exists b 6= c, such that
πX(T (b,y)) = πX(T (c,y)), which contradicts to the proven statement 1.
3. Let πX (T (a,y1)) = πX (T (a,y2)) = x. Without loss of generality we can assume
that a1 = 1. Let k(a,y1) = k1 and k(a,y2) = k2. As it was proved in Prop. 7.2.6,
if x − δe1 ∈ D, then k1 = k2 = 0 and y1 = x − δe1 = y2. If x − δe1 /∈ D, then by
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Figure 7.4: Action of the combination of the procedures a and b on a small cube
depicted in red. Qδ and Qi are depicted in blue.

the Prop. 7.2.6 ξ(a,y1) = ξ(a,y2) =: ξ. For any j ≤ N

xj = y1
j + α

ξ

N
−

k1∑

j=0

Zi

(
F j ◦ Gay

1
)

= y2
j + α

ξ

N
−

k2∑

j=0

Zi

(
F j ◦ Gay

2
)
. (7.17)

If
∑k1

j=0 Zi (F
j ◦ Gay

1) =
∑k2

j=0 Zi (F
j ◦ Gay

2) then by Eq. 7.17 y1
j = y2

j . Otherwise,

without loss of generality
∑k1

j=0 Zi (F
j ◦ Gay

1) >
∑k2

j=0 Zi (F
j ◦ Gay

2). Then by the

Prop.7.1.2
∑k1

j=0 Zi (F
j ◦ Gay

1) = 1 and
∑k2

j=0 Zi (F
j ◦ Gay

2) = 0. Thus y1
j−1 = y2

j ,

but y1,y2 ∈ D and therefore y1
j < 1, y2

j > 0 which is impossible. Hence we showed
that for any j ≤ N , y1

j = y2
j .

Proposition 7.2.8. [53] Vol(Xs \ D) = α

7.3 Existence and properties of an invariant mea-

sure

Theorem 7.3.1. Let µ be a uniform Bernoulli measure on A and λ a Lebesgue
measure on D. Then µ × λ is a measure on A× D, which is invariant under the
transformation T .

Proof. We have to prove that for any a ∈ A and B ⊂ D, (µ × λ)(a, D) =
(µ × λ)(T−1(a, B)). πA (T−1(a, B)) = {g1, . . . , gN}, where gi = {i, a1, a2, . . .}. Let
B1, . . . , BN ⊂ D satisfy T (gi, Bi) = (a, B). Then T−1(a, B) =

⋃N
i=1(gi, Bi).

We prove that for any i ≤ N , λ(Bi) = λ(B). Without loss of generality i = 1. Let
us cut D by the hyperplane x1 = 1 − δ, hence we define D1 = {x ∈ C|x1 > 1 − δ},
D2 = C \D1. On D2, πXT (b1, ·) acts as a shift, and therefore preserves the measure
λ.
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We can decompose D1 into a union of parallelepipeds

Di1,i2,...iN = {x ∈ D|x1 > 1 − δ, 1 − α
i2 + 1

N
< x2 < 1 − α

i2
N

, . . .

1 − α
iN + 1

N
< xN < 1 − α

iN
N

, i1, . . . , iN ∈ N0}.

On each Di1,i2,...iN , πXT (b1, ·) acts as a shift and by Theorem 7.2.3 (statement 3)
for any l 6= m, πXT (b1, Dil)

⋂
πXT (b1, Dim) = ∅, hence πXT (b1, ·) preserves the

measure λ.

Theorem 7.3.2. For almost all (with respect to a uniform Bernoulli measure)
sequences a ∈ A, πXT (a, x) is topologically transitive on D.

It is sufficient to prove that for any rectangular parallelepiped Q1 ⊂ D and cube
Q2 ⊂ D and almost any a ∈ A, there exists n such that πXT n(a, Q1)

⋂
Q2 6= ∅.

Without loss of generality we can consider only cubes with the side length smaller
than δ.
Plan of the proof:

1. First we will show that for any point x ∈ D there exists a finite sequence am =
{a1, . . . , am} such that for any sequence a beginning with am, all coordinates
of the point πXTm(a,x) ∈ D have any predetermined residuals mod δ with
any predetermined precision.

2. Then we will introduce a partial order on D and show that there exists finite
sequence which leads to the mapping of any given point in D to the vicinity
of any of the minimum with respect to this partial order.

3. Having proved both previous points, we can show that for any two rectangular
parallelepipeds there exists the final transformation, such that the image of
the first will intersect with the second.

Before starting the proof we will recall the conditions, which were posed on the
parameters of the model α and δ:

i) α and δ are irrational and rationally independent,

ii) α + δ < 1,

iii) δ < α/N ,

iv) αN+1
N

< 1.
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The last condition is new, it does not pose much of physical constrains, but helps
in the proof

Lemma 7.3.3. Consider ε > 0 and any point z ∈ [0, δ)N , then for any point x ∈ D
there exists a sequence a(x, z) = (ai)

M
i=1 such that

∣∣πX

(
TM(a(x, z), x)

)
− z
∣∣ < ε (mod δ) (7.18)

and M = M(N, ε, α, δ) does not depend on x and z.

In the proof of this lemma we will use the following Minkowski theorem. Let ‖w‖
denote the distance from w to the nearest integer to w , i.e.

‖w‖ = min
n∈N

|w − n|. (7.19)

Theorem 7.3.4. [31] If θ is irrational and α can not be represented in a form
α = mθ + n for any m, n ∈ N then there exist infinitely many integer q such as

|q|‖qθ − α‖ <
1

4

Proof of the Lemma 7.3.3. a. Denote Qδ the cube [1− δ, 1]N . For any point x ∈ D
we construct a sequence b = (bi)

M ′

i=1 such that for any a ∈ A, πXTM ′
(ba,x) ∈ Qδ

and M ′ ≤ N⌊N/δ⌋, where ⌊w⌋ is the largest integer which is smaller than w and
ba = (b1, . . . , bM ′, a1, . . .).

b =

i1︷ ︸︸ ︷
1 . . . 1

i2︷ ︸︸ ︷
2 . . . 2 . . .

iN︷ ︸︸ ︷
N . . .N,

where ik =
⌊

1−xk

δ

⌋
.

For any j ≤ M ′ =
∑N

k=1 ik we have T j(b,x) = Gσj (b)(T
j−1(b,x)) and the addition

of δ does not change the residuals modulus δ, therefore

πXTM ′

(a,x) ≡ x (mod δ). (7.20)

b. Define for every i ≤ N

Qi = [α − δ, α)i−1 × [α, α + δ) × [α − δ, α)N−i. (7.21)

Qi is a square, laying in the δ-neighborhood of CN . If x ∈ Qδ then for any i ≤ N
xi + α > xi + δ > 1. Let a1 = i then by the conditions ii) and iii)

Ga(x) = (x1, . . . ,xi−1,xi + δ, xi+1, . . . , xN) /∈ D,

F ◦ Ga(x) =
(
x1 +

α

N
, . . . ,xi + δ +

α

N
− 1, . . . , xN +

α

N

)
/∈ D,
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F 2 ◦ Ga(x) = (x1 + α − 1, . . . ,xi + δ + α − 1, . . . , xN + α − 1) ∈ D.

Therefore T (a,x) = F 2 ◦ Ga(x) ∈ Qi. For any j, k ≤ N ,

πXT (a,x)j − πXT (a,x)k ≡ xj − xk (mod δ) (7.22)

and for any j
πXT (a,x)j ≡ xj + α − 1 (mod δ). (7.23)

Consider any x ∈ D. By a we have a sequence b = (bi)
M ′

i=1 which “transports” x
to the cube Qδ. As it is shown in b concatenating the sequence b and one element
sequence i we obtain c = bi, such that for any a ∈ A πXTM ′+1(ca,x) ∈ Qi.

Notation. Henceforth we refer to y = πXTM ′
(ba,x) ∈ Qδ as result of application

of a procedure a to x. We call c = bi the combination of the procedures a and b

A combination of the procedures a and b applied to x keeps the differences between
coordinates of x fixed (mod δ), but changes the residuals of each coordinate by α−1
(mod δ) Eq. (7.20, 7.22, 7.23). Fig. 7.4 illustrates the action of such a combination
on a cube for N = 2.

c. Let x ∈ Qk and let L be the smallest integer such that xk + Lδ ≥ 1. Consider
c = (cj)

L
j=1 is such that for any j < L, cj = k then, for any a ∈ A

y = TL−1(ca,x) = (x1, . . . ,xk−1, xk + (L − 1)δ, xk+1 . . . , xN ) . (7.24)

By the condition iv) on α and δ

Gk(y) = (x1, . . . ,xk−1, xk + Lδ, xk+1 . . . , xN ) /∈ D,

F ◦ Gk(y) =
(
x1 +

α

N
, . . . , xk + Lδ +

α

N
− 1, . . . , xN +

α

N

)
∈ D. (7.25)

Thus we have procedure c

πX

(
TL(ca,x)

)
=
(
x1 +

α

N
, . . . , xk + Lδ +

α

N
− 1, . . . , xN +

α

N

)
. (7.26)

Procedure c applied to x allows to keep all residuals but xk fixed, whereas residual
of xk is changed by α

N
− 1 (mod δ).

Let us consider all coordinates of x relative to the first coordinate (mod δ) i.e.
consider the vector V (x) = (x2 − x1 (mod δ), . . . , xN − x1 (mod δ)) =: x̃. Define
z̃ := (z2 − z1 (mod δ), . . . , zN − z1 (mod δ)). In the following we show how to
combine procedures a, b, and c to approximate z̃ by ỹ = V

(
πX

(
TM ′

(a,x)
))

such
that for any 1 < k ≤ N

|ỹk − z̃k| (mod δ) < ε/2.

Afterwards, by iteration of procedures a and b, which does not change the relative
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residuals we archive that

|y1 − z1| (mod δ) < ε/2

which completes the proof of the lemma.

The combination of a, b, and c increases the given coordinate by the value γ = α
N
−1

(mod δ). The coordinate that will be increased is determined in the procedure b by
choosing an appropriate cube Qi. By the property i) γ ∈ R \ Q and γ is rationally
independent on δ. Let us fix the k ≤ N . By the iteration of the procedures a, b
and c we obtain for any initial x̃k and any l ∈ N, Vk

(
πX

(
TM ′

(a,x)
))

= x̂k + lγ.
Therefore the problem is reduced to the following task: find L ∈ N such that for
any x̃k there exists l < L such that

|x̃k + lγ − z̃k| (mod δ) < ε/2. (7.27)

We divide the left side of (7.27) by δ and denote q = (x̃k − ẑk)/δ and φ = γ/δ. By
the property i) φ ∈ R\Q. Then the inequality (7.27) takes the form ‖q+ lφ‖ < ε/2,
where ‖ · ‖ is defined by (7.19).

To find a bound on l, which is uniform for all q ∈ R it is enough to find bound on l for
q ∈ [0, 1]. There exists a set of K =

[
4
ε

]
+2 rational numbers 0 < q1 < . . . < qK < 1

such as for any j < K, qj+1 − qj < ε/2 and |1 − qK + q1| < ε/2. By the Minkowski
theorem 7.3.4 for any j ≤ K there exists lj ∈ N such that ‖qj + ljφ‖ < ε/2. Let
us select L(ε, α, δ) = maxj≤K lj . For any q ∈ [0, 1] we can find a qj such that
‖qj − q‖ < ε/4 and then

‖q + ljφ‖ < ‖qj + ljφ‖ + ‖qj − q‖ < ε/2.

The constant L depends only on δ, α and ε and does not depend on the specific
z and x. Therefore to approximate each z̃k one needs at maximum (N − 1)L
consequent applications of a, b and c which results in a sequence a1 of length
M1 ≤ 3NL

(⌊
1
δ

⌋
+ 1
)
, such that for any k ≤ N and any a ∈ A

∣∣Vk

(
πX

(
TM1(a1a,x)

))
− z̃k

∣∣ < ε/2 (mod δ). (7.28)

Thus we conclude the first part of the proof.

Now, by the compostion of a and b we find a sequence a2 of length M2 such that
for any a ∈ A

∣∣πX

(
TM1+M2(a1a2a,x)

)
1
− z1

∣∣ < ε/2 (mod δ). (7.29)

The combination of the procedures a and b keeps x̃ fixed (mod δ), but changes the
residuals of each coordinate by γ = α−1 (mod δ) and γ is rationally independent of
δ. Thus we can precisely repeat the procedure described above, with the difference
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that we combine now only a and b and not a, b, and c.

Analogously to the previous reasoning, one needs not more than L iterations, and
therefore M2 < 2L

(⌊
1
δ

⌋
+ 1
)
. Hence we found the desired sequence a(x, z) =

(ai)
M
i=1 = a1a2 and M = M1 + M2

M < 3NL(δ, α, ε)

(⌊
1

δ

⌋
+ 1

)
+ 2L(δ, α, ε)

(⌊
1

δ

⌋
+ 1

)
,

which is independent on x and z

�

For any x,y ∈ D, we say that x > y if xi > yi for all i ≤ N . Thus we defined a
partial order on D. Consider µ ∈ Cl(D), where Cl(D) is a closure of the set D,

µ =

(
α

1

N
, α

2

N
, . . . , α

)
(7.30)

and let (µi)
N !
i=1 be the set of all vectors composed by permutations of coordinates of

µ.

Proposition 7.3.5. For any x ∈ D there exists k ≤ N ! such that x > µk and there
are no y ∈ D such that there exists an l ≤ N ! : y ≤ µl.

Proof. Let S be a permutation which orders the coordinates of x, i.e. xS(1) ≤
xS(2) ≤ . . . ≤ xS(N) and let z = (xS(1), xS(2), . . . , xS(N)). We have x ∈ D, hence
z ∈ D. It is enough to prove that z > µ. If it is not true then there exists k such
that zk ≤ µk = α k

N
. Thus, for any i ≤ k, zi ≤ α k

N
which mean that z ∈ Ck and

therefore z /∈ D. Contradiction.

If there exists y ∈ D such that y ≤ µl we can analogously order the coordinates of
y and µl and come to the same contradiction.

Lemma 7.3.6. For any point x ∈ D and any l ≤ N ! there exists a sequence
a(x) = (ai)

M(N,δ)
i=1 such that for any a ∈ A, y = πX

(
TM(N,δ)(a(x)a, x)

)
< µl + δe.

Where e = (1, . . . , 1) ∈ RN and M(N, δ) does not depend on x or l.

Proof. Let x ∈ Q1. If x ∈ D \ Q1 then by the procedure described in the
Lemma 7.3.3 we can find a sequence a1 of the length of M1, such that for any
a ∈ A: πX

(
TM1(a1a,x)

)
∈ Q1.

In the following we show how to find a sequence a2 such that |T M2(a2,x)−µ1| < δ,
where

µ1 =

(
α,

α(N − 1)

N
,
α(N − 2)

N
, . . . ,

α

N

)
. (7.31)
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µ1 is one of the possible permutations (µi)
N !
i=1 . For all others permutations the

procedure is completely analogous up to the order of coordinates.

Notation.

1. In the following, we consider all coordinates with a precision δ, i.e. when we
write x ≃ (r1, r2, . . . , rN), it means that for any i ≤ N , xi ∈ (ri − δ, ri].

2. Denote ai,δ the sequence {i, . . . , i} of a length L such that xi + (L − 1)δ < 1,
xi + Lδ ≥ 1.

3. We write that the sequence a = (aj)
R
j=1 is applied to x and that y is a result

of the application if y = πX

(
TR(a,x)

)
.

Now we prove by induction that for any k ≤ N there exists a finite sequence ak

such that for yk = πx

(
TMk(ak,x)

)
the following condition holds:

yk =

(
αk

N
+ δ,

α(k − 1)

N
+ δ, . . . ,

α

N
+ δ,

α(N + 1)

N
, . . . ,

α(N + 1)

N

)

First, let us prove the base for k = 1, k = 2. Initially, x ∈ Q1, hence

x ≃ (α + δ, α, . . . , α) .

Applying a1,δ to x we get as in Eq. (7.25)

x1 = πX

(
T
(
σL−1a1,δa, TL−1 (a1,δ,x)

))
= πX

(
F ◦ G1

(
TL−1 (a1,δ,x)

))
,

where L is a length of a1,δ.

x1 ≃
(

α

N
+ δ,

α(N + 1)

N
, . . . ,

α(N + 1)

N

)
.

Applying a2,δ to x1 we get

x2 ≃
(

α + δ,
α(N − 1)

N
+ δ, . . . ,

α(N − 1)

N

)
.

Applying again a1,δ

x3 ≃
( α

N
+ δ, α + δ, α, . . . , α

)
,

and then a2,δ to x3 we obtain

x4 ≃
(

2α

N
+ δ,

α

N
+ δ,

α(N + 1)

N
, . . . ,

α(N + 1)

N

)
.
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Now we prove the inductive step: for any k < N if

z ≃




k coordinates︷ ︸︸ ︷
αk

N
+ δ,

α(k − 1)

N
+ δ, . . . ,

α

N
+ δ,

N−k coordinates︷ ︸︸ ︷
α(N + 1)

N
, . . . ,

α(N + 1)

N


 ,

then by a finite number of operations of the form ai,δ one can get

y ≃




k+1 coordinates︷ ︸︸ ︷
α(k + 1)

N
+ δ,

αk

N
+ δ, . . . ,

α

N
+ δ,

N−k−1 coordinates︷ ︸︸ ︷
α(N + 1)

N
, . . . ,

α(N + 1)

N


 .

To do so, let us first apply ak+1,δ

z2 =

(
α + δ,

α(N − 1)

N
+ δ, . . . ,

α(N − k + 1)

N
+ δ,

α(N − k)

N
, . . . ,

α(N − k)

N

)
,

and then consequently apply a1,δ,

z
3 =




k coordinates︷ ︸︸ ︷
α

N
+ δ, α + δ,

α(N − 1)

N
+ δ, . . . ,

α(N − k)

N
+ δ,

N−k coordinates︷ ︸︸ ︷
α(N − k + 1)

N
, . . . ,

α(N − k + 1)

N


 .

Then a2,δ

z
3 =




k coordinates︷ ︸︸ ︷
2α

N
+ δ,

α

N
+ δ, α + δ, . . . ,

α(N − k + 1)

N
+ δ,

N−k coordinates︷ ︸︸ ︷
α(N − k + 2)

N
, . . . ,

α(N − k + 2)

N


 ,

and so forth until ak,δ, resulting in

zk+1 =




k coordinates︷ ︸︸ ︷
αk

N
+ δ,

α(k + 1)

N
+ δ, . . . ,

α

N
+ δ,

N−k coordinates︷ ︸︸ ︷
α, . . . , α


 .

By the application of ak+1,δ on zk+1 we obtain yk+1.

In total there are at maximum k + 2 iterations of ai,δ needed for each induction
step, which results in a sequence of maximum (k + 2)

([
1
δ

]
+ 1
)

symbols. Through
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N iteration of such procedure the final sequence af = (ai)
M(N,δ)
i=1 is acquired. It has

M(N, δ) ≤
N∑

k=1

(k + 2)

([
1

δ

]
+ 1

)
+ N1 (7.32)

symbols, where N1 is the number of symbols required to transport any x0 ∈ D to
the cube (procedures a. and b.) Q1, N1 ≤ 2N

([
1
δ

]
+ 1
)
.

Lemma 7.3.7. For any points x, z ∈ D and any ε > 0 there exists a finite sequence
a1 = (ai)

M
i=1 such that for any a ∈ A Euclidean distance ρ

(
z, πX(TM(a1a, x))

)
< ε

and M = M(N, ε, α, δ) does not depend on x and z.

Proof. By the Prep. 7.3.5 there exists a j < N ! such that z > µj. We can assume
that x ∈ Qδ (otherwise we apply to x the procedure a from the Lemma 7.3.3).
As it is shown in the Lemma 7.3.6 from any point x ∈ D it is possible to reach
δ-neighborhood of µj by finite, independent on x sequence a1 of length M1.

In the Lemma 7.3.6 the sequence a1 to reach the δ-neighborhood of µj is found
explicitly and it does not depend on the precise choice of x ∈ Qδ. Consequently we
can find a vector d = (d1, . . . , dN) such that

x − πX

(
TM1

(a1,x)
)
≡ d (mod δ). (7.33)

As it is proved in the Lemma 7.3.3, for any points x, z′ ∈ D it is possible to reach
the ε-neighborhood of z′ (mod δ) in the finite number of steps, i.e. there exists a
sequence a2 of the length M2 such that for any k ≤ N

∣∣∣πX(TM2

(a2,x))k − z′k

∣∣∣ < ε (mod δ). (7.34)

Let us construct such a sequence for the point z′ = z + d. Then

πX

(
TM2+M1

(a2a1,x)
)

= πX

(
TM1

(a1, TM2

(a2a1,x))
)
≡ TM2

(a2a1,x)−d (mod δ).

Thus by Eq. 7.34

∣∣∣πX

(
TM2+M1

(a2a1,x)
)
− z
∣∣∣ < ε (mod δ).

If z is in the δ-neighborhood of µj then after applying both sequences a1 and a2 the
image of x is in the ε-neighborhood of z. Otherwise, because z < µj we can find
the sequence a3 of length M3 < N

([
1
δ

]
+ 1
)

which does not change the residuals
and makes the difference between the image of x and z smaller than ε.

Now we have all the necessary tools to prove the Theorem 7.3.2.
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Proof of the theorem 7.3.2.
We have to prove that for almost all a ∈ A and for any open subsets of D: U, V ⊂ D,
there exists an n ∈ N such that πX (T n(a, U))∩V 6= ∅. Let us fix any point x ∈ U .
V is an open set, therefore there exists a cube QV ⊂ V with sides parallel to the
sides of the unit cube. Let z be the center of the cube QV and ε be the half of its
side length.

As it is proved in the Lemma 7.3.7, for any y ∈ D there exists a finite sequence
a1 = (ai)

L
i=1 such that for any k ≤ N , |πX

(
TM(a1,y)

)
k
− zk| < ε and hence

πX

(
TM(a1,y)

)
∈ QV and L < M(N, ε, δ, α).

Thus for any sequence a1, . . . , aj there exists a sequence b1, . . . , bL, . . ., such that
πX

(
T j+M(ab,x)

)
∈ QV , where ab = (a1, . . . , aj , b1, . . . , bL, . . .) and L < M(N, ε, δ, α).

Consider the sequence a ∈ A. If A is endowed with the uniform Bernoulli measure,
then with the probability one any finite subsequence will be found infinitely often
in a. Therefore, for almost all a ∈ A the conditions of the theorem will hold true,
and there exists an n such that πx (T n(a, U)) ∩ V ∋ πX (T n(a,x)).

�
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Chapter 8

Branching processes
approximation

This chapter focuses on the description of the network dynamics during an avalanche.
In physics, for such a description one uses a mean-field approximation [56, 76, 152],
which regards each element of the system as a subject of a local field, instead of
considering the full complexity of interactions.

For the SOC systems branching processes have served as a mean-field approximation
already for twenty years. However, the accuracy of this approximation is still judged
by the value of the critical exponent only and usually only in the limit of large
networks. Thus, no studies have been conducted on the speed of convergence or
any similarity between avalanches produced by branching processes and the system
dynamics.

In the present chapter we are trying to fill this shortcoming by studying the example
of the neural network proposed in chapter 3. We formulate the mathematical model
of an avalanche and prove the convergence in distribution to a certain branching
process. In chapter 4 we apply mathematical results presented in the current chapter
to develop the long-term plasticity rule, which drives the network to the critical state
from any initial condition.

8.1 Mathematical model of an avalanche

In the previous chapter the model of the network state and its dynamics is developed
for all stages of its evolution. Here we want to concentrate only on the dynamics
within an avalanche. To do so we consider only such a ∈ A and x ∈ DN ⊂ [0, 1)N ,
that πX(T (a, x)) = F k ◦Ga(x) and k(a,x) > 0. Let XN

s = [0, 1)N . The phase space
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is symmetric, therefore, without loss of generality a1 = N and 1 > xN > 1 − δ.
Denote by D̂N the subset of DN and DN−1 ⊂ XN−1

s such as

D̂N = {x ∈ D | 1 > xN > 1 − δ} , (8.1)

DN−1 =
{
y ∈ XN−1

s | ∀xN ∈ (1 − δ, 1), (y1, . . . , yN−1, xN) ∈ D̂N

}
. (8.2)

For the simplicity of notations, we consider the (N+1)-dimensional system, DN+1 ⊂
XN+1

s , and DN subspaces.

Suppose, that the distribution on DN is induced by the distribution on DN , and A
is endowed with the uniform Bernoulli measure. As it is shown in the Theorem 7.3.1
the Lebesgue measure on DN+1 is the only T−invariant measure, thus x is uniformly
distributed on DN+1, hence y = (x1, . . . , xN) is uniformly distributed on DN . Note,
that DN is not equal to a domain of the N -dimensional system DN , but it is
contained in DN .

DN = Xs \
N⋃

i=1

CN
i ,

where

CN
i =

{
x ∈ Xs

∣∣∣∣#
{

j ≤ N

∣∣∣∣ xj <
iα

N + 1

}
≥ i

}
⊂

{
x ∈ Xs

∣∣∣∣#
{

j ≤ N

∣∣∣∣ xj <
iα

N

}
≥ i

}
.

We study the random variable describing the number of coordinates i such that
xi > 1 for each iteration of F . Namely, for any l ≤ k(a,x) denote

ξl(x) =

N∑

i=1

zi(F
k(x)), (8.3)

where zi(x) = 1 iff x > 1 and zi(x) = 0 othervise. If l > k(a,x) then ξl = 0. The

length of the avalanche is given then by L =
∑k(a,x)

l=1 ξl(x).

For any y ∈ DN , if α+ δ < 1 then the sequence (ξi)
∞
i=1 is fully defined and indepen-

dent on the xN+1. This follows from the Prop. 7.1.2, which states that if α + δ < 1
then each coordinate exceeds one at maximum ones.

Before considering y to be uniformly distributed on DN , we prove some results for y
uniformly distributed in the unit cube [0, 1)N (which we address as simplified phase-
space). We show that in such a setup the sequence (ξi)

∞
i=1 can be approximated by

the sequence generated by a certain class of stochastic processes, namely Galton-
Watson branching processes. Afterwards, we prove that in the limit N → ∞, the
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x1x3xn x2

α

}ξ1 =2

2α

} ξ2 =1

α

}ξ3 =0

Figure 8.1: Example of one realization of the stochastic process (ξk,N)∞k=0. Coordi-
nates of x are plotted in the descending order.

results hold also for y uniformly distributed in DN .

8.2 Simplified phase-space model

Let N ∈ N, α ∈ (0, 1], αN = α
N

and (xi,N )N
i=1 be i.i.d. uniformly distributed on

[0, 1]. We recursively construct the random sequence (ξk,N)∞k=0 as follows

ξ0,N = 1, ξ1,N =

N∑

j=1

I[1−αN ,1](xj,N),

ξk+1,N =
N∑

j=1

I[1−αN

Pk
l=0 ξj,N ,1−αN

Pk−1
l=0 ξl,N ](xj,N). (8.4)

It is easy to see, that ξk,N defined here coincides with ξk(x) defined by Eq. 8.3. In
order to derive some properties of the large N limit of the sequence (ξk,N)∞k=0, we
construct another sequence

(
ξ∗k,N

)∞
k=0

in a similar manner but arising from different

initial random variables. Namely, let (x∗
i,N)

N(ω)
i=1 be instances of change of a Poisson

point process with the intensity N on the interval [0, 1]. N(ω) is a random variable
representing the number of events in the interval, it has a Poisson distribution with
rate N . We define ξ∗i,N to be generated from the sequence

(
x∗

i,N

)∞
i=1

analogously to
previous definition (8.4):

ξ∗0,N = 1, ξ∗1,N =

N(ω)∑

j=1

I[1−αN ,1]

(
x∗

j,N

)
,

ξ∗k+1,N =

N(ω)∑

j=1

I[1−αN

Pk
l=0 ξ∗

j,N
,1−αN

Pk−1
l=0 ξ∗

l,N
]

(
x∗

j,N

)
. (8.5)
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By definition of a Poisson point process, for any interval I

P




N(ω)∑

j=1

II

(
x∗

j,N

)
= k


 =

(N |I|)ke(N |I|)

k!
(8.6)

and for any disjoint intervals I1 and I2

N(ω)∑

j=1

II1

(
x∗

j,N

)
and

N(ω)∑

j=1

II2

(
x∗

j,N

)
are independent. (8.7)

8.3 Branching processes

Definition 8.3.1. Let Z0, Z1, Z2 . . . be a Markov process, Zi takes values in N0,
Z0 = 1. Let P be the distribution of Z1 (P (Z1 = i) = pi). Let P (Zi+1 = 0|Zi =
0) = 1 and (Zi+1|Zi = k) distributed as a sum of k independent random variables
distributed as Z1. Then Z0, Z1, Z2 . . . is a Galton-Watson branching process.

Denote by pi the probability P (Z1 = i), and let f(z) be a generating function of a
distribution of Z1. Denote

∑∞
i=0 Zi by L and let F (l) be a generating function of a

distribution of L, i.e.

f(z) =

∞∑

ν=0

pνz
ν , (8.8)

F (l) =

∞∑

n=1

Pnl
n, where Pn = P (L = n). (8.9)

Let ρ and α be the radii of convergence of the power series on the right sides of
(8.8) and (8.9) respectively. Since f(1) = 1 and F (1) = P (L < ∞) < 1 we know
ρ, α ≥ 1.

Lemma 8.3.1. [66] Let
G(l, z) = lf(z) − z

then z = F (l) is unique analytical solution of

G(l, z) = 0

in a certain neighborhood of (0, 0).

Lemma 8.3.2. Let a = F (α), then α < ρ
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Theorem 8.3.3. [112] Suppose that p0 > 0 and let d be the largest integer such
that pr 6= 0 implies that r is a multiple of d, r = 1, 2, . . .. If r− 1 is not divisible by
d, then we have P (L = r) = 0, while if r − 1 is divisible by d, then

P (L = r) = d

(
a

2παf ′′(a)

) 1
2

α−rr−
3
2 + O(α−rr−

5
2 ), r → ∞.

In the most interesting for applications to SOC case the expectation of Z1 is equal
to one (then the branching process is called critical). In such case a = α = 1 are
satisfying the conditions of the theorem and then

P (L = r) = d

(
1

2πf ′′(a)

) 1
2

r−
3
2 + O(r−

5
2 ), r → ∞.

Lemma 8.3.4. (ξ∗i,N)∞i=1 is a Galton-Watson branching process.

Proof. 1. First we should prove that (ξ∗i,N)∞i=1 is a Markov chain. Using (8.6) and
(8.7) we can compute:

P (ξ∗m+1,N = km+1|ξ∗m,N = km, . . . , ξ∗1,N = k1) =

= P




N(ω)∑

j=1

I[1−αN

Pm
l=0 ξ∗

j,N
,1−αN

Pm−1
l=0 ξ∗

l,N
]

(
x∗

j,N

)
= km+1|ξ∗m,N = km, . . . , ξ∗1,N = k1




= P




N(ω)∑

j=1

I[1−αN

Pm
l=0 kj ,1−αN

Pm−1
l=0 kl]

(
x∗

j,N

)
= km+1


 =

e−αN km(αkm)km+1

km+1!

= P (ξ∗m+1,N = km+1|ξ∗m,N = km).

2. It remains to prove the “branching-property”, namely, that (ξ∗m+1,N |ξ∗m,N = km)
is distributed as a sum of km independent copies of ξ∗1,N

P (ξ∗m+1,N = km+1|ξ∗m,N = km) = P




N(ω)∑

i=1

I[0,αN ·km](x
∗
i,N) = km+1




= P




mk∑

j=1

N(ω)∑

i=1

I[αN (j−1), αN ·j](x
∗
i,N ) = km+1


 .

By (8.6),
∑N(ω)

i=1 I[αN (j−1), αN ·j](x
∗
i,N ) has a Poisson distribution with the intensity α,

and by the definition ξ∗1,N =
∑N(ω)

i=1 I[1−αN ,1](x
∗
i,N) has the same distribution. Also

from (8.7)
∑N(ω)

i=1 I[αN (j−1), αN ·j](x
∗
i,N) and

∑N(ω)
i=1 I[αN (k−1), αN ·k](x

∗
i,N ) are independent
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for any 1 6 i, j 6 N and i 6= j.

8.4 Approximation of the avalanche distribution

Lemma 8.4.1.

P (ξ1,N = k1, . . . , ξm,N = km) =

(
N

k1, . . . , km

)
(1−αN

m−1∑

i=0

ki)
N−

Pm
i=1 ki

m∏

i=1

(αNki−1)
ki .

Proof. The proof is by induction for m for arbitrary integers k1, . . . , km.
Base: xi,N is uniformly distributed on [0, 1] hence ξ1,N =

∑N
j=1 I[1−αN ,1](xj,N) has a

binomial distribution with success probability αN and N trials, thus

P (ξ1,N = k1) =

(
N

k1

)
αk1

N (1 − αN)N−k1.

Inductive step: Let the inductive hypothesis holds for all m ≤ n. We prove that it
is also true for m = n + 1. Let ξn,N = kn, . . . , ξ1,N = k1, then by the definition of
ξi,N (Eq. 8.4):

n∑

l=1

kl =
n−1∑

r=1

N∑

j=1

I[1−αN

Pr
l=0 kj ,1−αN

Pr−1
l=0 kl]

(xj,N) =
N∑

j=1

I[1−αN

Pn−1
l=0 kj ,1](xj,N)

Let

Y =

{
xi,N /∈

[
1 − αN

n−1∑

l=0

kj , 1

]}
, (8.10)

then card(Y ) = N −∑n
l=0 kj. By definition,

ξm+1,N =

N∑

j=1

I[1−αN

Pm
l=0 ξj,N ,1−αN

Pk−1
l=0 ξl,N ](xj,N) =

∑

y∈Y

I[1−αN

Pm
l=0 kj ,1−αN

Pm−1
l=0 kl]

(y).

For all y ∈ Y

P
[
I[1−αN

Pn
l=0 kj ,1−αN

Pn−1
l=0 kl]

(y) = 1
∣∣∣ ξn,N = kn, . . . , ξ1,N = k1

]
=

αNkn

1 − αN

∑n−1
l=0 kj

.

Hence
∑

y∈Y I[1−αN

Pn
l=0 kj ,1−αN

Pn−1
l=0 ](y) has a binomial distribution with the success
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probability αNkn/(1 − αN

∑n−1
l=0 kl) and N −∑n

l=0 kj trials. Consequently,

P (ξn+1,N = kn+1 | ξn,N = kn, . . . , ξ1,N = k1) =

= P

(
N∑

j=1

I[1−αN

Pn
l=0 kj ,1−αN

Pn−1
l=0 kl]

(xj,N)

∣∣∣∣∣ ξn,N = kn, . . . , ξ1,N = k1

)

= P

(
∑

y∈Y

I[1−αN

Pn
l=0 kj ,1−αN

Pn−1
l=0 kl]

(y)

∣∣∣∣∣ ξn,N = kn, . . . , ξ1,N = k1

)

=

(
N −∑n

i=1 ki

kn+1

)(
αNkn

1 − αN

∑n
i=1 ki

)kn+1
(

1 − αN

∑n+1
i=1 ki

1 − αN

∑n
i=1 ki

)N−
Pn+1

i=1 ki

.

By the induction hypothesis

P (ξn,N = kn, . . . , ξ1,N = k1) =

(
N

k1, . . . , kn

)(
1 − αN

n−1∑

i=0

ki

)N−
Pn

i=1 ki n∏

i=1

(αNki−1)
ki.

Hence

P (ξn+1,N =kn+1, ξn,N = kn, . . . , ξ1,N = k1) =

=

(
N −∑n

i=1 ki

kn+1

)(
N

k1, . . . , km

)(
αNkn

1 − αN

∑n−1
i=1 ki

)kn+1

×

(
1 − αN

∑n
i=1 ki

1 − αN

∑n−1
i=1 ki

)N−
Pn+1

i=1 ki
(

1 − αN

n−1∑

i=0

ki

)N−
Pn

i=1 ki n∏

i=1

(αnki−1)
ki

=

(
N

k1, . . . , km, kn+1

)(
1 − αN

n∑

i=0

ki

)N−
Pn+1

i=1 ki n+1∏

i=1

(αNki−1)
ki.

Thus we have also computed the probability to obtain a certain sequence (ξk,N)∞k=0

with a finite number of non-zero members:

P N
k1,...,km

: = P (ξ1,N = k1, . . . , ξm,N = km, ξm+1,N = 0)

=

(
N

k1, . . . , km

)(
1 − αN

m∑

i=0

ki

)N−
Pm

i=1 ki m∏

i=1

(αNki−1)
ki.

For a sequence (ξ∗k,N)k=∞
k=0 such probability can be easily computed analogously to
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the Lemma 8.4.1.

P ∗,N
k1,...,km

:= P (ξ∗1,N = k1, . . . , ξ
∗
m,N = km, ξ∗m+1,N = 0) =

m+1∏

i=1

e−αki−1(αki−1)
ki

ki!
.

Let us denote

k0
m :=

m∑

i=0

ki, k1
m :=

m∑

i=1

ki.

Lemma 8.4.2.

P N
k1,...,km

− P ∗,N
k1,...,km

=

∏m
i=1(αki−1)

ki

k1! . . . km!
e−αk0

m

(
2k1

m
2 − k1

m

2N
+ O

(
k1

m
4

N2

))
(8.11)

Proof. We will use the following expansions:
First,

N !

(N − k)!
= Nk(1 − 1

N
)...(1 − k − 1

N
) = Nk exp

(
k−1∑

i=1

ln

(
1 − i

N

))

= Nke−
k(k−1)

2N exp

(
k−1∑

i=1

(
i

N
+ ln

(
1 − i

N

)))

= Nke−
k(k−1)

2N

(
1 + O

(
k3

N2

))
.

Second,

(N − k + 1) ln

(
1 − k

N

)
= (N − k + 1)

(
− k

N
+

1

2

k2

N2
+ O

(
k3

N3

))

=

(
−k +

3k2 − 2k

2N
+ O

(
k3

N2

))

Third, (
1 − k

N

)N−k+1

= e−k

(
1 +

3k2 − 2k

2N
+ O

(
k4

N2

))
.

Thus,

P N
k1,...,km

− P ∗,N
k1,...,km

=

∏m
i=1(αNki−1)

ki

k1! . . . km!

(
N !

(N − k1
m)!

(1 − αNk0
m)N−k1

m − e−αk0
mNk1

m

)

=

∏m
i=1(

α
N

ki−1)
ki

k1! . . . km!
e−αk0

mNk1
m

(
e−

k1
m(k1

m−1)

2N

(
1 + O

(
k1

m
3

N2

))
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(
1 +

3k1
m

2 − 2k1
m

2N
+ O

(
k1

m
4

N2

))
− 1

)
=

=

∏m
i=1(αki−1)

ki

k1! . . . km!
e−αk0

m

(
2k1

m
2 − k1

m

2N
+ O

(
k1

m
4

N2

))

Remark 8.4.3.
∣∣∣∣∣P
(

∞∑

i=1

ξi,N = r

)
− P

(
∞∑

i=1

ξ∗i,N = r

)∣∣∣∣∣ < 2r−1C(r)

∣∣∣∣
(

2r2 − r

2N
+ O

(
r4

N2

))∣∣∣∣ ,

(8.12)

here C(r) = maxk1+..+km=r,k1>0...km>0

Qm
i=1(αki−1)ki

k1!...km!
e−αk0

m depends only on r.

Proof. Let

Kr =

{
κ = (ki)

∞
i=1

∣∣∣∣∣

∞∑

i=1

ki = r, ai ≥ 0 ∀i ∈ N, if ki = 0 then kj = 0 ∀j > i

}
,

then we have
card(Kr) = 2r−1.

∣∣∣∣∣P
(

∞∑

i=1

ξi,N = r

)
− P

(
∞∑

i=1

ξ∗i,N = r

)∣∣∣∣∣ ≤
∑

κ∈Kr

∣∣∣P N
k1,...,km

− P ∗,N
k1,...,km

∣∣∣

≤ 2r−1 max
κ∈Kr

∣∣∣P N
k1,...,km

− P ∗,N
k1,...,km

∣∣∣

≤ 2r−1 max
κ∈Kr

∏m
i=1 (αki−1)

ki

k1! . . . km!
e−αk0

m

∣∣∣∣
(

2r2 − r

2N
+ O

(
r4

N2

))∣∣∣∣ .

Theorem 8.4.4. Let f(x) = eα(x−1), a > 0 in the interior of the circle of conver-
gence of f for which f ′(a) = f(a)/a and γ = a/f(a)

P

(
∞∑

i=1

ξi,N = r

)
=

=

(
a

2πγf ′′(a)

) 1
2

γ−rr−
3
2 + O

(
γ−rr−

5
2

)
+

∣∣∣∣2
r−1C(r)

(
2r2 − r

2N
+ O

(
r4

N2

))∣∣∣∣ .



110 8. Branching processes approximation
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Figure 8.2: Empirical density of the y1 for different dimensions N . All curves are
obtained for α = 0.7, δ = 0.02

8.5 Full phase-space

In this section we show that each coordinate of y ∈ DN converges in distribution
to a uniform random variable on [0, 1) in the limit of large system size N → ∞.
Due to SN symmetry of the system, without loss of generality we consider only a
distribution of the first coordinate of y. In Fig. 8.2 we plot the empiric density of
the y1 for different system sizes.

Theorem 8.5.1. Let y1 be the first coordinate of the random vector y ∈ DN . Then
y1 converges in distribution to a random variable uniformly distributed on [0, 1).

Proposition 8.5.2. Vol(DN) = 1 − α N
N+1

Proof. Denote β = α N
N+1

, then β
N

= α
N+1

. Using the results from [53]

Vol(DN) = Vol(DN with parameter β) = 1 − β.

Proof of the theorem 8.5.1. To understand the distribution of y1 better, let us
consider the probabilities P (y1 ∈ I), where I ⊂ [0, 1) is an interval.

P (y1 ∈ I) =
Vol
{
y ∈ DN | y1 ∈ I

}

1 − α N
N+1

=
|I| − Vol

{
I × [0, 1)N−1 \⋃N

i=1

(
I × [0, 1)N−1 ∩ Ci

)}

1 − α N
N+1

.
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Note, that we considered only such x that xN+1 > 1− δ > 1−α, therefore we have
I × [0, 1)N ∩ CN+1 = ∅. Denote

C1
i =

{
x ∈ Xs

∣∣∣∣#
{

1 < j ≤ N

∣∣∣∣ xj < α
i

N + 1

}
≥ i

}
,

C2
i =

{
x ∈ Xs

∣∣∣∣#
{

1 < j ≤ N

∣∣∣∣ xj < α
i

N + 1

}
= i − 1, x1 < α

i

N + 1

}
.

C1,2
i is a partition of Ci, namely C1

i ∪C2
i = Ci and C1

i ∩C2
i = ∅. For any I ⊂ [0, 1),

Vol
(
C1

i ∩ I × [0, 1)N−1
)

= |I| · Vol
(
C1

i

)
, (8.13)

and

Vol

(
N⋃

i=1

C1
i ∩ I × [0, 1)N−1

)
= |I| · Vol

(
N⋃

i=1

C1
i

)
.

Let us separate the following cases:
a. Let I ⊂

(
α N

N+1
, 1
)
, then for any i ≤ N + 1, I × [0, 1)N−1 ∩ C2

i = ∅. Therefore
from (8.13) we obtain

P (y1 ∈ I) = |I|
1 − Vol

(⋃N
i=1 C1

i

)

1 − α N
N+1

,

and for any point a ∈ (α N
N+1

, 1) it is possible to find a probability density function
f(a) of the random variable y1 and

fN(a) =
1 − Vol

(⋃N
i=1 C1

i

)

1 − α N
N+1

= fN
N . (8.14)

To find the volume of
⋃N

i=1 C1
i we use, that it is equal to a volume of

⋃N
i=1 C

1

i , where

C
1

i =

{
x ∈ [0, 1)N−1 |#

{
1 ≤ j ≤ N − 1|xj < α

i

N + 1

}
≥ i

}
.

Vol
(⋃N

i=1 C
1

i

)
is equal to a volume of the C-set for N − 1 dimensional system with

a connectivity parameter γ = αN−1
N+1

. Therefore, by Prop. 8.5.2, we have

fN
N =

1 − αN−1
N+1

1 − α N
N+1

. (8.15)

b. Let I ⊂
(
αN−1

N+1
, α N

N+1

)
, then for any i ≤ N , I × [0, 1)N−1 ∩ C2

i = ∅ and
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Vol
(
I × [0, 1)N−1 ∩ C2

N

)
= |I| · Vol (C2

N).

P (y1 ∈ I) = |I|
1 − Vol

(⋃N
i=1 C1

i

)
− Vol (C2

N) + Vol
(⋃N

i=1 C1
i ∩ C2

N

)

1 − α N
N+1

,

and for any point a ∈
(
αN−1

N+1
, α N

N+1

)
the probability density fN(a) is defined and

fN(a) =
1 − Vol

(⋃N
i=1 C1

i

)
− Vol (C2

N) + Vol
(⋃N

i=1 C1
i ∩ C2

N

)

1 − α N
N+1

= fN
N−1. (8.16)

c. Analogously to a and b one can find the probability density for all points except
the finite set (ai)

N
i=1, ai = α i

N+1
. The density is piecewise constant, for k < N and

for any a : α k
N+1

< a < α k+1
N+1

we have f(a) = fk. If a > α N
N+1

, fN(a) = fN
N . From

the derivation procedure it is obvious that fN ≥ fN−1 ≥ . . . ≥ f1. Let us consider
the limit density f(a) = limN→∞ fN(a). For any a

f(a) ≤ lim
N→∞

fN
N = lim

N→∞

1 − αN−1
N+1

1 − α N
N+1

= 1. (8.17)

However, by the dominated convergence theorem
∫ 1

0
f(a)da = 1, hence f(a) = 1

for almost all a ∈ [0, 1). Thus in the limit we obtain a uniform distribution on (0, 1].

�



Chapter 9

Conclusions

In this thesis, we studied different aspects of self-organized criticality (SOC). We
were mainly interested in the following two issues:� Appropriate modeling of self-organized criticality in neural systems. This

topic became particularly interesting, as there is strong evidence [14, 129] for
SOC in neuronal activity, recorded from the cortical slices.� Mathematical modeling and study of SOC. This field is still rather untouched,
which makes it even more attractive.

We started by introducing a simple model of a fully connected neural network in
chapter 2, which serves as a basis for building up interesting extensions in the
following chapters. This model has many merits: it is critical for some value of the
connectivity parameter, it comprises larger similarity with neuronal systems than
other SOC models, and last but not least, it is simple enough to allow for analytical
treatment [53]. However, it also has a significant drawback: to obtain the critical
state, one has to precisely tune the connectivity parameter. We introduced the
results, which have been discussed in [53], and then presented our new findings on
this model: we analytically derived the mean avalanche size and used this fact to
find a finite-size scaling of the critical distribution.

We developed a mathematical model of this network in the form of the stochastic
dynamical system T (a,x), where x ∈ Xs = [0, 1)N is a vector of membrane poten-
tials of all N neurons in the network. The set A consists of all one-sided infinite
sequences, and an a ∈ A denotes the sequence of external inputs. We analytically
defined a set D, so that for any initial condition x ∈ Xs after some number of iter-
ations M : T (a,x)M ∈ D. On the set D×A, we found an invariant measure, which
appears to be simply a product of a Lesbegue measure on D and any shift-invariant
measure on A. It turned out to be unique with respect to the choice of the measure
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on A. Then we studied the mixing properties of the mapping T . We proved that
if the set A is endowed with the uniform Bernoulli measure, then for almost all
a ∈ A, the projection of the mapping T on D is topologically transitive.

The knowledge of the invariant measure allows us to simplify the description of
avalanches by leaving out the external input component. An avalanche is thus a
random sequence (ξm)∞m=1 of integers, where ξm denotes the number of active neu-
rons at time m. The stochasticity in this sequence is introduced by the randomness
in the initial membrane potential vector x. We considered finite-dimensional dis-
tributions of the first k members of the sequence ξ. We proved that they converge
in the distribution to the sequence generated by a branching process with specific
branching distribution as the system size tends to infinity. We analytically defined
the difference between the probabilities of particular sequences generated by the
systems dynamics and the branching process. This allowed us to use results from
the theory of branching processes [66]. We showed that if the avalanche size grows
slowly in comparison to the system size, then the network can only be critical in
the limit of large networks for the specific connection strength α = 1. The corre-
sponding critical distribution has necessarily the exponent equal to −3

2
.

Using the mathematical observation, we defined an extension to the model by incor-
porating a homeostatic learning rule. The idea of this rule is based on the tradeoff
between the reliability of the synaptic transmission and the minimization of the
energy expenses of each neuron. As a solution for this trade-off, we proposed that
each firing neuron leads to one other spike in the network on average. As a result of
such a plasticity rule, the network converges to a critical state from any initial con-
ditions. The learning rule works very successfully, because in its essence it changes
the branching parameter in the direction towards critical branching. Moreover, we
proved that the avalanche size distribution coincides with the distribution of the
number of offsprings in the branching process [89].

We also considered a short term synaptic plasticity: depressing and facilitatory
synapses. We were able to show that if the simple network is endowed with a
dynamic synapses plasticity, then the critical neuronal avalanches turn from an ex-
ceptional phenomenon into a typical and robust self-organized critical behavior [91].
We revealed that the previously studied mathematical model serves as a mean-filed
approximation of the network with dynamic synapses. It allowed us to prove that,
in the limit of large networks, the critical state is achieved from any realistic initial
conditions. We also investigated different modifications of the network, and showed
that SOC is robust with respect to the structural changes of the system.

By modification of the dynamic synapses we obtained a network where the transition
to criticality occurs by a first order phase transition [90]. The mean-field analysis
provided an excellent theoretical prediction of the stationary state properties of the
network. Extensive numerical studies were conducted to supplement the theoretical
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treatment and have proved that approximations which are done to obtain analytical
results are justified and do not change the essence of the dynamics.

Our study showed that it is possible to obtain a self-organized critical network with
biologically realistic synaptic plasticity. On this basis, it is possible to construct
more detailed models, which will capture also other properties of the local field
potentials (LFP). Another interesting problem would be to find the explanation for
the difference of the power-law exponents in spike recording and LFP recording [14,
13].

On the other hand, we created a basis to study SOC in neuronal network by the
mathematically rigorous methods. There are many possibilities, by which to pro-
ceed. For example, the question of the ergodicity or other types of mixing (besides
topological transitivity) in the avalanching dynamical system still remains unan-
swered. Preliminary numerical results are in favor of ergodicity, but no rigorous
results are available so far.

All in all, we believe that this work is an important contribution to the understand-
ing of critical phenomena in neural networks. We hope that it will motivate further
research both in the study of neuronal models and in the mathematical approach
to this exciting question.
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Appendix A

A.1 Two methods to compute the average inter-

spike interval

The two methods (5.15), (5.18) to compute
〈
∆ISI

〉
differ in the way to compute

〈κ〉. The first method comprises a more detailed way to perform the computations,
which leads to the formula

〈κ1〉 =
θ

u〈Jji〉

N
〈L〉 + Iext 〈∆

iai〉
N

. (A.1)

The second formula appears more simple, but keeps also less details of the under-
lying processes

〈κ2〉 =
N

〈L〉 . (A.2)

Let us denote 〈uJij〉 by α0 The average avalanche size 〈L〉 is computed by Eq. 3.3.2

〈L(α0)〉 =
N

N − (N − 1)α0

(A.3)

and

〈∆iai〉 =
θ − ǫN

Iext
. (A.4)

For the simplicity of computations we assume θ = 1. In chapter 8 we show, that
ǫN → 0, when N → ∞. We consider large N and thus, we take ǫN = 0. Incorpo-
rating this conditions into (A.1) and (A.3, A.4) we obtain for large N

〈κ1〉 =
1

α0

N
N

N−(N−1)α0
+ 1

N

=
N (N − (N − 1)α0)

N − α0
. (A.5)
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Then the ratio 〈κ1〉/〈κ2〉 is

〈κ1〉
〈κ2〉

=
N

N − α0

N→∞−→ 1. (A.6)

The difference between 〈κ1〉 and 〈κ2〉 approaches α0(1 − α0). For the critical case
α0 → 1 and then the difference in the limit is equal zero. Also far from criticality
it has no influence on the thermodynamical limit.

A.2 Estimation of the power-law parameters

Power-law distributions are often occurring in statistical observations, for example
populations of cities, links to web sites, size of the earthquakes. Very often, such
distributions are considered to be a power-law just by visual inspection and rather
rarely parameters of distribution are estimated using proper statistical tools. In this
section we discuss methods of power-law estimation and show how we estimated the
parameters of the avalanche size distribution.

A quantity x obeys a power law if it is drawn from a probability distribution

p(x) ∝ x−γ (A.7)

where γ is a parameter of the distribution known as the exponent or scaling param-
eter. In practice it is rarely possible to know for sure that the observation is drawn
from a power-law distribution. However the observations might be consistent with
the model A.7 at least for some interval of the distribution. Hence the ultimate
goal is, given the observations, to specify the parameter γ and determine whether
observations follow the power-law distribution with this exponent.

Taking logarithms of both sides of Eq. A.7 we see that the power-law distribution
obeys ln p(x) = γ lnx + constant, implying that it follows a straight line on a
doubly logarithmic plot. One way to probe for power-law behavior is, therefore, to
construct a histogram representing the frequency distribution of x, and plot that
histogram on double logarithmic axes. Using the least-squares linear regression
on the logarithm of the histogram of x it is easy to obtain the estimation of the
parameter γ. This method of exponent-estimation is very popular, because it is
simple, fast and requires only a histogram.

Unfortunately, in many cases the usage of this method leads to large errors. One
can easily find an evidence of them by trying to estimate the exponent of the data
which is initially drawn from the power law. Results of such an estimation are shown
in the Table A.1. The linear regression in the logarithmic scale gives rather poor
results. The origin of such error are in the weighting of the deviations. In the least
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Estimation method Mean estimated γ σ bias
Linear 1.59 0.184 36%
Linear 5-points 2.50 0.045 0
Log-2 bins 1.77 0.038 29%
MLE 2.50 0.017 0

Table A.1: Different methods of power-law estimation. Sample results of parameter
estimation using various methods for 10,000 samples of power-law distribution with
γ = 2.500. Sample result based on 50 runs. Table is taken form [62]

square deviation the same weight is assigned for the deviation from the straight line
for small values of the observable as for the large ones. But large values appear very
rare and therefore their statistics in the histogram is strongly undersampled. This
gives rise to the bias. There are many articles in different areas of research devoted
to the bias induced by the linear regression estimation for example in [83, 69].

Very often in the real world power laws are present not in the form described in
Eq. A.7, but with a cut-off. For example, a power-law distribution with exponential
cut-off is given by

p(x) = Cγ,βx−γe−βx, (A.8)

where Cγ,β = 1/
∫∞

0
x−γe−βxdx is the normalization constant.

In the case when the estimated distribution has a cut-off the linear regression esti-
mation is based only on a small values of the observable and, therefore, it does not
feel the undersampling of the large x tail. It is also clear from the Table A.1, where
the estimation which is based only on the first five bins of the histogram does not
have any bias. In the case of neural avalanches a sharp cut-off is observed. For
the estimation of the distribution parameters we used a linear regression for three
reasons:� It is fast and does not require storage of large amount of data� Experimentalist use this method of estimation, therefore it is just reasonable

to use the same to be able to compare results� parameters estimated by linear regression are the same as the paremeters
obtained by maximum likelihood estimation (MLE)

We discuss the last point in more details, but first we explain how to do the MLE
estimation for the power law and especially for the power law with cut-off. The goal
of the maximum-likelihood method is to obtain an estimate for the parameter of the
probability distribution, which in this general case is γ. Because the experimental
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outcomes are assumed to be statistically independent, the combined probability to
find, in n measurements, the data x1, . . . , xn is given by:

L(γ) =
n∏

i=1

P (xi | γ), (A.9)

where L is the likelihood function. To avoid working with very large or small
numbers that can cause computational inaccuracies, and to facilitate the analysis
we use the logarithmic likelihood

ln L(γ) =

n∑

i=1

ln P (xi | γ), (A.10)

We now introduce γ∗, the value that maximizes L, which is known as the maximum-
likelihood value. It is the best estimate for real γ and we want to calculate its value.
We obtain γ∗ by solving

∂γ lnL(γ) = 0. (A.11)

For the continuous power-law distribution the density is given by

p(x) = (γ − 1)xγ (A.12)

the logarithmic likelihood function then takes form

ln L(γ) = n ln(γ − 1) − γ

n∑

i=1

ln xi, (A.13)

solution of (A.11) provide the following estimation of the power-law exponent

γ∗ = 1 + n

(
n∑

i=1

lnxi

)−1

. (A.14)

For the discrete power-law distribution normalization constant is given by Riemann
zeta function

Cγ =
1

ζ(γ)
=

1∑∞
k=1 k−γ

. (A.15)

Analogously to (A.12)(A.13)(A.14) one can find estimator for the exponent as a
solution of the equation

−
n∑

i=1

ln xi = n
ζ ′(γ)

ζ(γ)
. (A.16)

However one can find solution of Eq. A.16 only numerically. The avalanche size
distribution is obviously discrete therefore we will either use this estimation or
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explicitly look for the maximization of the logarithmic likelihood function.

Normally, empirical data does not follow the power-law distribution for all its values,
but only for some range (xmin, xmax). For x > xmax exponential or non-exponential
cut-off is observed, and for x < xmin small-values deviations. For example, neuronal
avalanches have a clear cut-off at the size a little smaller then the system size [14].
To incorporate this cut-offs in the estimation of the discrete power-law exponent
one has to change the normalization constant, i.e.

1

C (γ, xmin, xmax)
= ζ(γ) −

xmin∑

k=1

k−γ − ζ(γ, xmax), (A.17)

where ζ(γ, n) is the generalized Riemann zeta function. The bounds of the power-
law region xmin and xmax) can be extracted from the data.

It is not enough, to find the exponent of the best-matching power law, it is also
necessary to check, whether the hypothesis H0, that data is sampled from the power-
law distribution is correct. Unfortunately, there is no method to do it. The only
thing one can prove is that there are no reasons to claim, that data comes not
from the power-law distribution, i.e. that H0 hypotheses can not be rejected at
some significance level. To do we define the “distance” between distributions and
measure how far the empirical distribution of the data stays from the estimated
distribution. In some cases, the distribution of such distance is know, which allows
to make a test for the H0 hypothesis. For non-normal data the most common
distance is defined by the Kolmogorov-Smirnov statistic (KS) [117]. KS statistics is
defined as the maximum difference between the cumulative distribution functions
(CF) of the data and the fitted model

D = max
xmax≥x≥xmin

|S(x)P (x)|, (A.18)

here S(x) is the CF of the data for the observations with value between xmin and
xmax), and P (x) is the CF for the power-law model that best fits the data on the
interval xmax ≥ x ≥ xmin.

One of advantages of this statistics is formulated in the Glivenko-Cantelli theorem.
Namely, if the sample comes from distribution P (x), then D converges to 0 almost
surely when the sample size goes to infinity. Kolmogorov also provided results about
speed of this convergence and it is even possible to write explicitly the distribution
of the KS statistics for the case when xi are indeed drown from the hypothesized
distribution. This allows to compute the p-value for the power-law hypothesis. P -
value is a probability to get a statistics at least as extreme as observed given that
the hypothesis H0 holds. One rejects the null hypothesis if the p-value is smaller
than or equal to the significance level.
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α γLS ∆γ γMLE KS-statistics p-value
0.85 -2.01 0.022 -1.93 0.007 0.09
0.89 -1.376 0.002 -1.370 0.005 0.317
0.93 -1.20 0.01 -1.21 0.015 0.001

Table A.2: Check of the hypothesis of the power-law distribution. A network simu-
lated for different values of connectivity parameter α0. Basing on 105 avalanches an
empiric distribution functions is found. MLE estimation of the power-law exponent
γMLE and least-squares estimation γLS are found. The p-value is counted by the
generation of the 1000 Monte-Karlo data sets.

Unfortunately, KS statistic assumes that the hypothesized distribution of data x
is known which does not hold in our case. What we can obtain is the distance
between the empirical distribution of data and the best-matched power law, which
does not necessary coinside with the true underlying power law. Therefore, we
have to use Monte-Carlo approach to find the p-value by generating number of
power-law samples with the exponent γ. Then by comparing the distance between
each of this generated samples and their best-matched power-laws one can get the
p-value for the hypothesis H0. Namely procedure is as follows:

1. Determine the best fit of the power law to the data, estimating both the
scaling parameter γ and the cut-off parameters xmin and xmax

2. Calculate the KS statistic for the goodness-of-fit of the best-fit power law to
the data.

3. Generate a large number of synthetic data sets using the procedure above, fit
to each the power-law, and calculate the KS statistic for each fit.

4. Calculate the p-value as the fraction of the KS statistics for the synthetic data
sets whose value exceeds the KS statistic for the real data.

5. If the p-value is sufficiently small then the power-law distribution can be ruled
out.

We performed this procedure for the avalanche sizes distribution of the network of
size 100 in three different regimes: α0 = 0.85 subcritical regime, α0 = 0.89 critical
regime, and α0 = 0.93 super-critical regime. Results of estimation are shown in
the Table A.2. For the distributions, which are distinguished as critical by the
thresholding of the linear method, it is not possible to reject hypothesis H0 (p-
value> 0.1 ). An estimation of the power-law exponents also gives similar results
in both cases.
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A.3 Distribution of the inter-avalanche intervals

Let membrane potentials of all neurons be independent and uniformly distributed
on the interval [ǫN , θ]. We show, that in the limit N → ∞ inter-avalanche intervals
∆iai follow the geometric distribution,

Gp(n) = p(1 − p)n−1.

Let us first compute the probability P (∆iai = 1) of the event ∆iai = 1. Such event
means that the neuron j which got the external input had the membrane potential
hj ∈ (1 − Iext, 1). The probability of it is equal to p = Iext/(1 − ǫN ).

Let BN
L be the event that among L randomly chosen numbers between 1 and N

there are no coinsiding ones. Denote by B
N

L the complement of BN
L . Decompose

P (∆iai = L) as

P
(
∆iai = L

)
= P

(
∆iai = L

∣∣BN
L

)
P
(
BN

L

)
+ P

(
∆iai = L

∣∣∣BN

L

)
P
(
B

N

L

)
. (A.19)

We prove, that for any fixed L

P
(
BN

L

)
→N→∞ 1,

P
(
∆iai = L

∣∣BN
L

)
= Gp(L).

We can write P
(
BN

L

)
explicitly

P
(
BN

L

)
=

N(N − 1) . . . (N − L + 1)

NL
=

(
1 − 1

N

)
. . .

(
1 − L − 1

N

)
→N→∞ 1.

(A.20)
The event A =

{
∆iai = L

∣∣BN
L

}
mean, that first L − 1 neurons selected for the

external input had membrane potential smaller than 1 − Iext and the last had
the membrane potential larger than 1 − Iext. All the selected neurons were non-
repeating, therefore all of them were uniformly distributed on [ǫN , θ] and probability
of the event A is given by the geometric distribution.

Thus we have proven that ∆iai converges in distribution to the geometric distribu-
tion.



124 A. Appendix



Bibliography

[1] L. F. Abbott and R. Rohrkemper. A simple growth model constructs critical
avalanche networks. Prog Brain Res., 165:13–9, 2007.

[2] M. Abeles. Corticonics : neural circuits of the cerebral cortex. Cambridge
University Press, 1991.

[3] A. M. Alencar, S. V. Buldyrev, A. Majumdar, H. E. Stanley, and B. Suki.
Avalanche dynamics of crackle sound in the lung. Phys. Rev. Lett.,
87(8):088101, Aug 2001.

[4] A. A. Ali and D. Dhar. Structure of avalanches and breakdown of simple scal-
ing in the abelian sandpile model in one dimension. Phys. Rev. E, 52(5):4804–
4816, Nov 1995.

[5] P. Alstrom. Mean-field exponents for self-organized critical phenomena. Phys.
Rev. A, 38(9):4905–4906, 1988.

[6] K .B. Athreya and P. Jagers. Classical and Modern Branching Processes,
volume 84 of IMA. Springer, 1997.

[7] P. Bak. How Nature Works: The Science of Self-Organized Criticality.
Springer Verlag, 1999.

[8] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: an explanation
of 1/f noise. Phys. Rev. Lett., 59:381–384, 1987.

[9] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Phys. Rev. A,
38:364–374, 1988.

[10] M. Barma and D. Dhar. Slow relaxation in a model with many conservation
laws: Deposition and evaporation of trimers on a line. Phys. Rev. Lett.,
73(15):2135–2138, Oct 1994.

[11] M. F. Bear, B. W. Connors, and M. A. Paradiso. Neuroscience. Lippincott
Williams & Wilkins, 2 edition, 2001.



126 BIBLIOGRAPHY

[12] C. Bedard, H. Kroeger, and A. Destexhe. Does the 1/f frequency-scaling of
brain signals reflect self-organized critical states? Physical Review Letters,
97:118102, 2006.

[13] J. Beggs. The criticality hypothesis: how local cortical networks might opti-
mize information processing. Proceedings of the Royal Society A., 2007.

[14] J. Beggs and D. Plenz. Neuronal avalanches in neocortical circuits. J. Neu-
rosci, 23:11167–11177, 2003.

[15] J. Beggs and D. Plenz. Neuronal avalanches are diverse and precise activity
patterns that are stable for many hours in cortical slice cultures. J. Neurosci,
24(22):5216–5229, 2004.

[16] R. Bertram, A. Sherman, and E. F. Stanley. Single-domain/bound calcium
hypothesis of transmitter release and facilitation. Journal of Neurophysiology,
75(5):1919–1931, 1996.

[17] A. Bhowal. Damage spreading in the ’sandpile’ model of soc, 1997.

[18] G. Bi and M. Poo. Synaptic modification in cultured hippocampal neurons:
Dependence on sike timing, synaptic strength and postsynaptic cell type. J.
of Neurosci., 18(24):10464–10472, 1998.

[19] M. Biskup, Ph. Blanchard, D. Gandolfo, and T. Krüger. Phase transition and
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in the zhang model of self-organized criticality. Phys. Rev. E, 64(1):016133,
Jun 2001.

[36] B. Cessac and J. L. Meunier. Anomalous scaling and lee-yang zeros in self-
organized criticality. Phys. Rev. E, 65(3):036131, Feb 2002.

[37] D. Chialvo. Are our senses critical? Nature Physics, 2:301–302, 2006.

[38] K. Christensen. Self-organization in models of sandpiles, earthquakes, and
fireflies. PhD thesis, University of Aarhus, Denmark, 1992.

[39] K. Christensen and Z. Olami. Scaling, phase transitions, and nonuniversality
in a self-organized critical cellular automaton model. Phys. Rev. A, 46:1829–
1838, 1992.



128 BIBLIOGRAPHY

[40] B. Connors and M. Long. Electrical synapses in the mammalian brain. Annu,
Rev. Neurosci., 27(393-418), 2004.

[41] A. Corral. Comment on “do earthquakes exhibit self-organized criticality?”.
Physical Review Letters, 95(15):159801, 2005.
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