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1
Introduction

Magnetic resonance imaging (MRI) is a non-invasive method for cross-sectional

imaging of humans and animals with a wide range of applications in both clinical

radiology and biomedical research. A special emphasis is on the basic and clini-

cal neurosciences. Advanced techniques comprise functional MRI (fMRI) of brain

activation and diffusion tensor imaging (DTI) of white matter fiber architecture.

Because such applications depend on much more information than usually required

for the calculation of a structural image, the development of faster acquisition tech-

niques is an ongoing research topic of utmost importance.

The relatively low acquisition speed of MRI is caused by the use of a point-

by-point scanning scheme in Fourier space. This is in contrast to optical imaging

methods which are inherently parallel and typically acquire whole images at the

same time. A recent development in MRI is the adaptation of a parallel imaging

concept which makes use of multiple receive coils to acquire data in parallel. As we

will see, the reconstruction of such data requires the inversion of an ill-posed system

and a very accurate calibration of the sensitivities from the individual receive coils.

The main contribution of this thesis will be the development of a new algorithm

that solves the combined coil calibration and image estimation. The idea is based

on the formulation of autocalibrated parallel imaging in MRI as a nonlinear inverse

problem. This reconstruction problem is then solved with a Newton-based regular-

ization method. While conventional algorithms such as generalized autocalibrating

partially parallel acquisitions (GRAPPA) and autocalibrating variants of sensitivity

encoding (SENSE) are often limited by a miscalibration of the coil sensitivities, the

new algorithm is only limited by the noise amplification that arises due to the bad
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conditioning of the reconstruction problem.

Building on this algorithm, and in addition to its direct application for improved

parallel MRI, this thesis also contributes a new reconstruction technique for seg-

mented diffusion-weighted MRI. Here, conventional MRI reconstructions fail due to

the presence of uncontrollable phase variations in the segmented data sets. These

errors are caused by unavoidable brain pulsations and amplified by the strong diffu-

sion gradients. They lead to inacceptable motion artifacts in images that represent

a simple combination of the data from different segments. For this reason, it is

proposed to determine high-resolution phase maps for each individual segment by

parallel imaging, while taking advantage of the improved coil sensitivity calibration

by nonlinear inversion.

A general limitation of parallel imaging is due to the bad conditioning of the

inverse problem. Because quadratic regularization techniques are unable to distin-

guish between signal and noise, a trade-off between artifact power and noise has to

be made. New non-quadratic regularization techniques derived from the L1 norm

are able to suppress the noise much better. This thesis therefore presents a new

idea about strategies that integrate such techniques into algorithms that are based

on the iteratively regularized Gauss-Newton method. The development of these

new regularization techniques naturally links to the emerging theory of compressed

sensing. Here, the combination of non-quadratic regularization techniques and an

appropriate encoding of the information allows for a sparse representation of the

measurement object to be inferred from a reduced set of measurements, even with-

out the additional information from multiple receive coils.

In summary, this work explores and extends the concept of parallel imaging in

MRI. Despite being an established technique in clinical practice, parallel MRI ac-

quisitions can only fully be exploited when based on novel mathematical algorithms.

This thesis introduces some basic solutions.
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Magnetic Resonance Imaging

Atomic nuclei consist of protons and neutrons which are fermionic particles of spin

1/2. Spin is angular momentum related to an internal degree of freedom. While for

some atomic nuclei the total sum of the spin of all components is zero, some nuclei

have residual spin such as 1H, 13C, 15N , 19F , and 31P . The most important nucleus

for MRI is the nucleus of the hydrogen atom 1H which consists of a single proton

with spin 1/2. The nuclear spin creates a magnetic moment µ connected to the

spin S by the gyromagnetic ratio γ according to

µ = γS .

The quantity measured in nuclear magnetic resonance (NMR) experiments is the

electric current induced in a nearby coil by the rotating magnetic moment of a large

ensemble of excited spins. The NMR effect in condensed matter was discovered by

Purcell and Bloch in 1946 [87, 10].

2.1 Quantum Physics of the Nuclear Spin

The quantum mechanical description of a single isolated proton spin is given by a

two-states system. Mathematically, the state of such a system is described by a

normed vector ψ in a two-dimensional complex Hilbert space C2. Quantum me-

chanical observables are given by self-adjoint operators defined on this space. The

expectation value of an observable A in a given state ψ is

〈A〉 = 〈ψ,Aψ〉 .
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E

B0

∆E = hω

Figure 2.1: Splitting of the energy levels for a proton in an external magnetic field.

The observables related to the three components of the spin of a spin 1/2 particle

are the Pauli matrices

σx =
~
2

(
0 1

1 0

)
σy =

~
2

(
0 −i
i 0

)
σz =

~
2

(
1 0

0 −1

)
.

The time derivative of the expectation value of an observable A can be computed

with the commutator [·, ·] with the Hamilton operator H:

d

dt
〈A〉 =

i

~
〈[H,A]〉

The Hamilton operator for a particle with 1/2 spin contains an interaction term

which describes the coupling of the magnetic field with the magnetic moment of the

spin:

H = −µ ·B

With the Hamilton operator the dynamical behaviour of the expectation values of

the spin observables can be derived for arbitrary time-dependent magnetic fields

(see for example [45]):

d

dt
〈µ〉 = γ 〈µ〉 ×B (2.1)

In NMR experiments the magnetic field consists of a static component B0 which

lies - by convention - parallel to the z-axis of the coordinate system. Due to the

coupling of the nuclear magnetic spin with the magnetic field, the two energy levels

split up with increasing field strength as described by the two discrete eigenvalues

E± = ±γ ~
2
B0 of the Hamilton operator. In thermodynamical equilibrium the occu-

pation number of both energy levels is given according to the Boltzmann equation

N+

N−
= e

− ∆E
kBT .
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Figure 2.2: Pulsed MR experiment: In equilibrium, the magnetic moments align them-

selves along the static magnetic field B0. After excitation with a RF pulse the spins are

tilted into the xy-plane and precess with the Larmor frequency.

Here, kB is the Boltzmann constant and T the temperature. A slightly larger occu-

pation of the lower energy level causes an equilibrium magnetization

Meq = ρ
γ2~2

4kT
B0

parallel to the static B0 field (ρ the spin density). Associated to the energy difference

is a characteristic resonance frequency, the Larmor frequency ω0 = γB0. In pulsed

NMR experiments, a radio frequency (RF) field B1 with frequency ω0 is used to

excite the spins. The RF field vector lies in the xy-plane, perpendicular to the B0

field:

B(t) = B0 +B1(t) =


0

0

B0
z

+


B1(t) sin(ωt)

B1(t) cos(ωt)

0



During excitation, the magnetization vector is tilted towards the xy-plane where it

precesses with ω0. The flip angle is proportional to the integral over the envelope

B1(t) of the pulse (see [71]). A pulse which rotates the magnetization vector by a

certain flip angle α will be called an α-pulse (e.g., a 90◦-pulse) in the following.
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2.2 Relaxation Effects

In 1946, the dynamical equations have been extended by Bloch with two phenomeno-

logical terms [10]. The Bloch equation

d

dt
M = γM ×B +


− 1
T2
Mx

− 1
T2
My

Meq−Mz

T1

 (2.2)

describes the relaxation toward thermodynamical equilibrium. The constant T1 is

the spin-lattice relaxation time which describes the relaxation of the longitudinal

magnetization caused by energy exchange with the surrounding environment. The

constant T2 is called spin-spin relaxation time and describes the loss of transversal

magnetization. Because this decrease in transversal magnetization is not only caused

by the exchange of energy with the environment but also by energy exchange between

spins, T2 is smaller than T1.

To simplify the analysis of the experiments, the two components of the transver-

sal magnetization are usually combined to one single complex-valued quantity

M⊥ = Mx(t) + iMy(t) .

Note that for Bx = By = 0 equation (2.2) implies that M⊥ satisfies the differential

equation d
dt
M⊥ = −(iγBz(t) + 1

T2
)M⊥(t) with explicit solution:

M⊥(t) = M⊥(0)e−t/T2−iγ
R t
0 dt′Bz(t′) (2.3)

Mz(t) = Meq + (Mz(0)−Meq)e
−t/T1 (2.4)

In the absence of the B1 field the solution of the Bloch equations (2.2) is given by an

exponential decline of the rotating transversal magnetization with T2 time and an

exponential return of the longitudinal magnetization to the equilibrium value Meq

with T1.

The basic MR experiment, which goes back to Hahn in 1950 [43], is the following:

The sample is placed in a strong static magnetic field. Excitation with a RF field

near the resonance frequency ω0 of the system will rotate the spins into the xy-plane.

The angle of this rotation depends on the integral of the modulating function of the

applied RF pulse. After applying a 90◦ pulse, the magnetic moment lies in the

xy-plane and precesses with the Larmor frequency. This rotating magnetic moment

induces an electric current in nearby coils, which constitutes the basic signal in

MR spectroscopy and imaging. The exponential loss of transversal magnetization
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Figure 2.3: MR images with different contrast. From left to right: proton density, T1-

weighted, and T2-weighted images.

corresponds to a rapid decline of the received signal. Only after the longitudinal

magnetization has recovered, the experiment can be repeated.

The influence of the relaxation constants can be controlled by the parameters

of the NMR (or MRI) experiment. The signal generated depends not only on the

amount of proton spins in a given volume, but also on the time past after excitation.

In this way, the T2 relaxation directly modulates the generated signal. Because

often a repeated series of single excitations is used to create the signals, also the T1

relaxation time can influence the signal strength. If the repetition time (TR) is too

short, the magnetization does not reach the full equilibrium value before the next

excitation, and the signal depends on the T1 relaxation processes. The influence of

the relaxation processes on MRI images is demonstrated in Figure 2.3.

2.3 Signal Types

The basic techniques for generating a useful signal (an echo) will be described next.

Free Induction Decay After excitation with a RF pulse the excited spins send

out a signal with Larmor frequency. Because local field inhomogenities contribute to

the dephasing of the spins, the signal decays exponentially with an effective spin-spin

relaxation time (T ?2 ), which is somewhat smaller than T2.

Gradient Echo After excitation, the spin are dephased by an additional field gra-

dient. Due to this field gradient the signal decays rapidly. For a gradient-recalled
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RF

Signal

90◦

Figure 2.4: Free induction decay: The signal send out from the excited spins decays

according to T2 relaxation.

RF

Gradient

Signal

90◦

TE

Figure 2.5: Gradient echo: After dephasing of the spins with a gradient, an echo can be

created by rephasing with a gradient of opposite polarity.



14 CHAPTER 2. MAGNETIC RESONANCE IMAGING

RF

Gradient

Signal

90◦
180◦

TE/2TE/2

Figure 2.6: Spin echo: Dephased spins are rephased with a 180◦ pulse which rotates all

spins by 180◦ around the x-axis. The phase of the transversal magnetization is then exactly

inverted.

echo a gradient of opposite polarity is switched on which leads to a rephasing of the

spins and the creation of an echo (see Figure 2.5). Because the spins are only par-

tially rephased due to the combined effect of field inhomogenities and T2 relaxation,

the signal strength depends on the echo time (TE) according to exp(−TE/T ?2 ).

The gradient echo is the base of the fast low angle shot (FLASH) imaging se-

quence [33, 35, 41].

Spin Echo The spin echo was described first in 1950 by Hahn [44]. Similar to a

gradient echo, dephased spin are refocussed to obtain an echo. In contrast to gradient

echoes, spin echoes are created by inverting the transversal magnetization vector

with an additional 180◦ RF pulse. In this way, the accumulated phase differences

between different spins subject to different magnetic fields are inverted. After the

same time the spins are again exactly in phase and create a so-called spin echo.

For the spin echo phase differences created by the gradient as well as by local field

distortions are compensated. Therefore, the signal amplitude depends on the T2

relaxation time and not on T ?2 .

Stimulated Echo The stimulated echo was described by Hahn in 1950 [44]. The

stimulated echo is created with the use of three RF pulses. The crucial property

of the stimulated echo is the fact that the phase state of the excited spins is frozen

after the second pulse and restored after the third. This is done by rotating the

transversal magnetization into the longitudinal orientation with the second pulse.
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RF

Gradient

Signal

90◦ 90◦ 90◦

TE/2 TM TE/2

Figure 2.7: Stimulated echoes are created by three 90◦ pulses. After the second pulse the

prepared transversal phase state is rotated into the longitudinal direction. In this state it

is unaffected by T2 relaxation and off-resonance effects.

Here, it is not affected by T2 relaxation and off-resonance effects anymore. Instead,

it is subject to the much slower T1 attenuation. Fast imaging is possible by replacing

the third 90◦ pulse with a series of small pulses, splitting the prepared magnetization

into series of smaller echoes. Spectroscopy and imaging with stimulated echoes was

first described by Frahm et al. [35, 34].

2.4 Spatial Encoding

To discern the signals from spins located at different positions in the sample some

kind of spatial encoding has to be used. There are two basic principles which

are commonly used in MRI: slice selection, where only a single slice is excited,

and Fourier encoding, which can be used to encode the signal of the excited spins.

The two techniques are complementary: In 2D imaging, a slice is selected and the

remaining two dimensions are Fourier encoded, while in 3D imaging only Fourier

encoding is used for all three dimensions.

To excite only a slice of the sample an additional field gradient G is switched on

during the excitation pulse, giving a constant magnetic field which varies in space

according to

B0(x) = B0
0 +G · x .

In this way, the resonance frequency of the spins varies linearly along the gradient

direction ω(x) = γB0(x). The application of a pulse which can be decomposed
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t

excitation RF pulse

⇒

B

x

B0

B0(x)

excitation profile

Figure 2.8: Slice selection: A slice selection gradient leads to a linearly varying resonance

frequency of the spins. A sinc pulse then ideally excites a slice with rectangular profile.

B

x

B0

B0(x)

spin density ρ(x)

⇒
t

received RF-signal

Figure 2.9: Fourier encoding: A readout gradient leads to a linearly varying resonance

frequency of the spins. The signal is related to the Fourier transform of the spatial profile

of the transversal magnetization.

into many frequencies, will in good approximation only excite the spins with the

corresponding resonance frequencies (see [71]). For example, the application of a

sinc pulse where the Fourier transform consists of a continuous block of frequencies

between a lower and a higher limit excites only the corresponding region of spins

located between a respective lower and higher position along the gradient direction.

For practical reasons the pulse is cut off to a finite time which leads to an imperfect

slice profile. After selectively exciting a thin slice of spins, only this slice creates a

signal that needs to be encoded during the experiment.

For frequency encoding a gradient is turned on during the acquisition of the sig-

nal. Again, the resonance frequency depends on the position of the spin. Ignoring

relaxation effects, the received signal is proportional to a superposition of these

different resonance frequencies. The position of a spin is now encoded in the fre-

quency of the received signal. Because only one dimension can be encoded in this

simple way, frequency encoding has to be generalized by controlling the phase of

the transversal magnetization by more complex gradient switching schemes. In the
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following, the gradient may also vary in time:

B0(t,x) = B0
0 +G(t) · x (2.5)

In this general situation, the phase of the transversal magnetization can be described

by a k-space formalism, which will be derived in the following. According to (2.3),

the phase depends on the time integral over the gradients:

M⊥(t,x) = M⊥(0,x)e−i(ω0t+γx·
R t
0 dtG(t′)) with ω0 = γB0

0

To describe the time evolution of the gradient induced spatial phase variations, the

k-space trajectory k(t) is defined as

k(t) :=
γ

2π

∫ t

0

dτ G(τ) .

The real-valued signal created in a large coil surrounding the sample (oriented with

its symmetry axis parallel to the x-axis) can be calculated by integrating the mag-

netization over the complete volume:

<
∫

dxM⊥(x, t) = <
∫

dxM⊥(x, 0)e−2πik(t)·xe−iω0t

By quadrature demodulation the high frequency phase term e−iω0t is removed, and

real and imaginary parts of the remaining expression can be determined:

s(t) =

∫
dxM⊥(x, 0)e−2πik(t)·x

Assuming that the initial magnetization is directly proportional to the spin density ρ,

the signal is then proportional to the Fourier transform of ρ, sampled on a k-space

trajectory k(t):

s(t) ∝
∫
V

dx ρ(x)e−i2πx·k(t)

Slight inhomogenities in the B0-field as well as various other effects lead to deriva-

tions from this ideal signal equation.

In principle nearly arbitrary k-space trajectories can be used. The most im-

portant ones are shown in Figure 2.10. In practive, the use of a long trajectory

is problematic because the T2 relaxation and off-resonance effects caused by field

inhomogenities lead to blurring and phase variations in the reconstructed images.

Nevertheless, techniques such as echo planar imaging (EPI) [29] and spirals are of-

ten used when imaging speed is important. In the case of EPI, off-resonance effects

lead to distortions primarily in the direction perpendicular to the long line elements
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Figure 2.10: Typical k-space trajectories in MRI (clock-wise from upper left): echo-

planar, spiral, radial, and Cartesian encoding schemes.
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Read

Phase

TR

kread

kphase

Figure 2.11: (Left) Timing diagram of a generic FLASH MRI sequence comprising the

switching of a slice-selection, phase-encoding, and frequency-encoding gradient as well as

spoiler gradients and the RF pulse; (right) corresponding sampling trajectory.

of the trajectory. The effects of spiral trajectories are reviewed in [12]. To avoid

these problems, most image acquisition techniques use new magnetization for each

k-space line. Residual magnetization is then often dephased (spoiled) by the use of a

gradient after the acquisition of a line, so that its signal does not disturb the acqui-

sition of the following lines. Hence, the use of line-by-line scanning with a Cartesian

sampling scheme avoids most effects due to field inhomogenities and relaxation and

therefore allows for a simple reconstruction with a Fourier transform (FT). In such

trajectories, the direction of the k-space lines is called read direction, while the di-

rections perpendicular to the lines are called phase-encoding directions. Still, for

very fast acquisition radial trajectories are attractive because they combine some

of the advantages of line-by-line scanning with better undersampling behaviour and

motion robustness. Radial trajectories are discussed in [11].

2.5 The Mathematics of Image Reconstruction

The image reconstruction problem in MRI can be stated as: Find a function ρ ∈
L2(Rd) (d ∈ {2, 3} for 2D or 3D imaging, respectively) with support in a given

compact region Ω ⊂ Rd (the field of view (FOV)) and a Fourier transform which

matches the measured data y:

y = PkFρ supp ρ ⊂ Ω (2.6)
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Here, F denotes the Fourier transform and Pk the projection defined by the restric-

tion onto the measured k-space samples. Because the trajectoy k(t) is again sampled

on discrete time points, the Fourier transform of ρ is only known on a discrete set

of k-space samples, typically on a finite area around the origin of a Cartesian grid.

Because the solution to this reconstruction problem is not unique, it is common

practice to choose the one with minimal L2-norm. In general, this is justified by the

assumption that the missing higher frequencies are small. Basic properties of the

Fourier transform are discussed in the appendix.

2.5.1 Discretization

Most MRI acquisitions sample the k-space in a finite area on a Cartesian grid de-

scribed by

ΓN =
{
n ∈ Zd : N1/2 ≤ n1 < N1/2, · · · , Nd/2 ≤ nd < Nd/2

}
.

For simplicity, the size of the dimensions of the gridN = (N1, · · ·Nd) are all assumed

to be even. The FOV is assumed to be a quadratic region QR = (−R/2, R/2)d of

size R. Let ρ be the real continuous object, then the ideal (noiseless) sample values

are given by

yn = (Fρ)
(n
R

)
for n ∈ ΓN .

Let ρper denote the R-multiperiodic function ρper(x) :=
∑

n∈Zd ρ(x − Rn). Given

the standard orthonormal basis φn(x) = R−de
2πi
R

n·x of L2(QR) it can be expanded

into a Fourier series

ρper =
∑
n∈Zd

ρ̂per(n)φn with ρ̂per(n) = 〈ρper, φn〉L2(QR) .

The Fourier coefficients of low order are given directly in terms of the measured data

by

ρ̂per(n) = R−dyn for n ∈ ΓN .

With these coefficients the orthogonal projection

PNρper :=
∑

n∈ΓN

〈ρper, φn〉φn

can be defined. PNρper is the best L2 approximation in span {φn : n ∈ ΓN} ⊂
L2(QR) and is the desired solution of (2.6) with minimal L2 norm in L2(QR). Given
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the assumption supp ρ ⊂ QR, the function ρper coincides with ρ on QR, and the

truncation error is then given by the norm of the missing high frequencies

‖ρper − PNρper‖2
L2(QR) =

∑
n∈Zd\ΓN

|ρ̂per(n)|2 .

Should the assumption be violated, then ρper and its approximation PNρper contain

aliasing artifacts. This fact is related to the Nyquist-Shannon sampling theorem [95].

A discrete Fourier transform (DFT) yields the values of PNρper at the nodal points

{R
N
n : n ∈ ΓN}, which are presented to the operator as the reconstructed im-

age. A fast computation of the DFT is possible with fast Fourier transform (FFT)

algorithms, as discussed in the next section.

2.5.2 Fast Fourier Transform Algorithms

A DFT amounts to the evaluation of the sum

FTNk {fn}n=0,··· ,N−1 := f̂k =
N−1∑
n=0

ei
2π
N
knfn for k = 0, · · · , N − 1 . (2.7)

Because a direct evaluation would be quite expensive, the use of fast algorithms to

calculate the DFT is required for MRI. Such fast algorithms are called FFTs and

reduce the complexity of a DFT of size N from O(N2) for a direct evaluation to

only O(N logN) multiplications. The best known FFT is the Cooley-Tukey [25]

algorithm. It decomposes a DFT of size N = N1N2 into smaller DFT of sizes N1

and N2. With the decomposition of the indices k = k2 + k1N2 and n = n2N1 + n1

and the shortcut ξN for an N -th root of the unit of highest order, i.e. (ξN)N = 1

and (ξN)k 6= 1 for k ∈ {1, · · · , N − 1}, the following simple algebraic relation can

be proved:

(ξN)kn = (ξN1N2)(k2+k1N2)(n2N1+n1)

= (ξN1N2)N2k1n1(ξN1N2)k2n1(ξN1N2)N1k2n2(ξN1N2)N1N2k1n2

= (ξN1)k1n1(ξN1N2)k2n1(ξN2)k2n2

In the last step the rules ξAAB = ξB and ξAA = 1 have been used. Using this rela-

tion the derivation of a divide and conquer algorithm for the Fourier transform is
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straightforward:

FTNk {fn}n=0,··· ,N−1 =
N−1∑
n=0

(ξN)knfn

=

N1−1∑
n1=0

(ξN1)k1n1(ξN)k2n1

N2−1∑
n2=0

(ξN2)k2n2fn1+n2N1

= FTN1
k1

{
(ξN)k2n1FTN2

k2
{fn1+n2N1}n2=0,··· ,N2−1

}
n1=0,··· ,N1−1

This recursive application reduces all DFTs to prime-sized DFTs. Because a DFT

of size two is trivial, efficient computation for all powers of two is directly possible.

A DFT can be re-expressed as a convolution, a fact that can be used to implement

a prime-sized DFT with the help of an FFT of a different size [16, 89]. In this way,

efficient algorithms for all N can be constructed. Higher dimensional DFTs can be

decomposed into lower dimensional transforms in various ways.

2.6 Summary

The dynamical behaviour of the magnetic moment of a proton spin in external mag-

netic fields can be derived from a quantum mechanical description. In a strong static

magnetic field B0 the magnetization of an ensemble of spins acquires an equilibrium

magnetization parallel to the B0 field. Associated with the static magnetic field is

a characteristic resonance frequency, the Larmor frequency ω = γB0. By exciting

spins with a RF pulse B1 at the resonance frequency the spins are tilted towards

the plane perpendicular to the direction of the B0 field where they start to precess,

again with frequency ω0. The signal measured in MRI is related to the current in

a coil which is induced by this rotating transversal magnetization, expressed as a

complex-valued quantity. The return of the magnetization to its equilibrium value

is described by the Bloch equation which phenomenologically describes the impor-

tant T1 and T2 relaxation effects. By including time-varying field gradients to the

static B0 field it is possible to manipulate the position-depended phase state of the

rotating transversal magnetization. This can be described with the k-space for-

malism, and is exploited in imaging experiments to acquire discrete samples of the

Fourier transform of the spatial density distribution of the proton spins. The image

reconstruction problem can be formulated in a continuous setting. In the common

case where the discrete samples are given on a finite rectangular area of a Cartesian

grid, the minimum norm solution can be efficiently calculated with the help of FFT

algorithms.



3
Parallel Imaging

3.1 Introduction

A drawback of MRI is the long acquisition time. Parallel imaging is a general tech-

nique to accelerate MRI by the simultaneous use of multiple receive coils. Roughly

at the same time with the introduction of phased-array coils [91] parallel imaging

was first conceived [57, 61, 88, 66, 65, 22]. Clinical applications appeared only much

later with the introduction of the algorithms SMASH [99] and SENSE [86].

In parallel imaging, MRI acquisitions from multiple receive coils may be exploited

for encoding part of the spatial information of an object by the spatially varying coil

sensitivities. When used in conjunction with conventional phase-encoding by mag-

netic field gradients, coverage of the k-space for image reconstruction may become

undersampled along a suitable phase-encoding dimension which in turn corresponds

to a reduction of overall scan time.

3.2 Phased-Array Coils

Phased-array coils consist of many small coils which are electromagnetically decou-

pled as far as possible. They were originally introduced into MRI to combine the

advantage of higher signal-to-noise ratio (SNR) obtained with small surface coils

with the large FOV of volume coils [91]. The MRI signal obtained for multiple

receive coils is given by

sj(t) =

∫
dx ρ(x)cj(x)e−2πik(t)x + n(t) j = 1, · · · , N . (3.1)
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Here ρ denotes the proton density and cj the complex-valued spatial sensitivity

profiles of the individual receive coils. k(t) is the chosen k-space trajectory. The

signal sj is further disturbed by noise n. In the fully sampled case the data from each

individual channel can be reconstructed independently by Fourier transformation.

Figure 3.1 shows the respective images ŝj for a water phantom.

To obtain a single reconstructed image, the data from all coils have to be com-

bined. Assuming independent and identically distributed (i.i.d.) Gaussian white

noise, the best unbiased estimate for the image is given by [91, 105, 18]

ρest =
1∑
j |cj|2

∑
j

c?j ŝj (3.2)

with the complex conjugate c?j of the coil sensitivities and the image ŝj for each

individual channel. Because this estimator requires the knowledge of the sensitivity

profiles cj, a root of sum of squares (RSS) reconstruction is often used instead. Here,

a final image is reconstructed by calculating magnitude images with a point-wise

root of the sum of squares

ρRSS =

√∑
j

|ŝj|2 . (3.3)

Apart from the fact that the image is modulated by the root of the sum of squares

of the sensitivities of all receive coils, this can be considered an approximation of

the optimal formula (3.2), where the sensitivity at a certain position is estimated

from the corresponding signal c?j ≈ ŝ?j itself. Because this approximation is valid

only for locations with high signal, the RSS reconstruction introduces some bias and

provides a lower SNR by a factor of
√
N in areas of low signal intensity [40, 24, 68].

3.2.1 Whitening

The assumption of white noise holds true only approximatively for real MRI coil

arrays: The noise of different receive coils is correlated (often due to residual elec-

tromagnetic coupling) and of different variance. Given the corresponding statistical

parameters, which can be estimated from a noise calibration scan, the reconstruction

formulas and algorithms can be adapted for optimal results. Instead of modifying

the algorithm, the data can be ”whitened” in a pre-processing step which will be

described in the following.

In a first step, the noise covariance matrix has to be calculated from noise ni of

each channel i, obtained for example during a calibration scan:

Cij = 〈ni − n̄i, nj − n̄j〉
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Figure 3.1: Four individual images each calculated from the signal of its respective receive

coil exhibit a different spatial sensitivity profile.

In practice, the mean value n̄ can be assumed to be zero and its subtraction can be

omitted. An eigen decomposition of the covariance matrix C consists of an unitary

transformation U into a basis of eigenvectors and a diagonal matrix Σ of ordered

eigenvalues:

C = UΣUH Σ = (σmax, · · · , σmin)

With this data, it is possible to transform the channels to synthetic channels

s′i(t) =
∑
j

(Σ−1/2UH)ijsj(t)

with uncorrelated noise of equal strength. In general, this transformation has to

be taken into account in further processing step by modifying the signal equation

accordingly. For MRI, this can be done simply by calibrating the sensitivity profiles

from the transformed data.

When using coil elements which are accurately tuned to be decoupled and to

have similar noise variance, this whitening step can be omitted. Because this tech-

nique can be applied to transform the noise statistics into noise with the identity as

covariance matrix for all other cases, such statistics will be assumed in the rest of

the thesis.

3.2.2 Array compression

Computational requirements increase linearly (in the case of the GRAPPA algo-

rithm even quadratically) with the number of channels. For this reason, so-called

array compression techniques have been developed [17]. They reduce the number

of channels without significant loss of image quality. Similar to the whitening tech-

nique, this technique is based on an eigenvalue decomposition of a covariance matrix.

Here, instead of the noise, the signal from different channels is decorrelated.
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The covariance matrix is constructed from the data yi as

Cij = 〈yi − ȳi, yj − ȳj〉 .

This matrix has sizeN×N whereN is the number of channels. Again, the covariance

matrix has an eigen decomposition C = UΣUH . To decorrelate the acquired signal,

the channels are then transformed according to

s′i(t) =
N∑
j=1

UH
ij sj(t) .

It should be noted, that this transformation is an unitary transformation acting

point-wise on k-space. Thus, when all transformed channels are reconstructed ac-

cording to (3.2) with equally transformed sensitivities or with an RSS reconstruc-

tion (3.3), then the image reconstructed from the transformed channels is identical

to the optimal image reconstructed from the original data.

Sensitivities of the original and transformed channels are shown in Figure 3.2.

Most energy is now concentrated in the first channels according to the value of their

respective eigenvalue. In other words, the data is split into components, which are

ordered according to their importance. Because of this property, the transformation

is called principal components analysis (PCA). Computation time can be saved by

using only the first most important channels and simply discarding the rest. To

decide how many channels can be omitted, a possible strategy is to set an energy

cutoff, which quantifies the fraction of total signal energy which must remain. En-

ergy (corresponding to the eigenvalues) and cumulative energy for the synthetic

channels are shown in Figure 3.3.

3.3 Undersampling of k-space

The main idea behind parallel imaging is, that the Fourier encoding can partially be

replaced by the spatial information contained in the receive coil sensitivities. Hence,

the MRI acquisition is undersampled by skipping some of the costly phase encoding

steps, which directly translates into saved measurement time. If only every N-th line

is measured, the measurement is accelerated by a factor of N , known as reduction

or acceleration factor. In case of 2D imaging, the undersampling is employed in the

direction of the phase encoding direction, while in 3D imaging both phase encoding

directions can be used. The effect of regular undersampling on the individual coil

images can be explained by the convolution theorem (8.1): Regular undersampling

can be understood as multiplication with a Dirac comb function in k-space. In
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Figure 3.2: Left: Magnitude images of the sensitivities for all elements of the 32-channel

head coil. Right: Principal components of all channels ordered from left to right and top

to bottom.
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Figure 3.3: Sorted eigenvalues of the covariance matrix used in array compression in

descending order (lower graph) and cumulative energy content of the eigenvalues (higher

graph).
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image space, this multiplication translates to a convolution with a comb function of

reciprocal width (see appendix: Equation (8.5)), and an analogous result holds true

in the discrete periodic setting. This aliasing effect is demonstrated in Figure 3.4.

3.4 Image Reconstruction

To reconstruct an image from the undersampled multi-channel data, the signal equa-

tion (3.1) has to be solved for the unknown image ρ. If the coil sensitivity profiles

are known, the signal equation represents a linear system, which can be discretized

and solved numerically [53]. Existing direct methods to solve this system either

utilize the decoupling of the equation in image space for regular sampling patterns

like SENSE [88, 86, 85, 67], or approximate a sparse inverse in k-space such as si-

multaneous acquisition of spherical harmonics (SMASH) [99, 19] and its successors.

Unfortunately, the parallel imaging reconstruction problem becomes increasingly

ill-conditioned for large acceleration (or undersampling) factors. As a consequence,

the inversion of the system leads to the amplification of noise that contributes to

the data. To counter this effect the inversion has to be regularized [53]. Because

the fundamental issues of parallel imaging can be understood best from the math-

ematical formulation as a linear inverse problem, it will shortly be introduced in

the following, after discussing the discretization of the problem. Then the existing

algorithms will be discussed.

3.4.1 Discretization

Most of the time, the discretization scheme of Chapter 2.5.1 is implicitly assumed.

Still, it is useful to reconsider this for the parallel imaging signal equation (3.1).

Again, the function ρ as well as the coil sensitivities cj can be assumed to have

compact support. By periodic extension, this allows the k-space to be discretized

on a grid (see Chapter 2.5). The situation is more complicated for the necessary

cutoff in k-space. Here, a natural restriction of support is given for the data s, while

the support of the image ρ as well as sensitivities cj is a priori unbounded. Because

the multiplication of ρ with the sensitivities cj corresponds to a convolution of two

functions of unbounded support in k-space (which has to be evaluated in a bounded

region), at least one of these two functions has to be truncated in any numerical

implementation. Given a cutoff for the sensitivities, the maximum frequency of

the image, which can be shifted into the support of the data, can be computed.

It is the sum of the maximum measured frequency and the highest frequency in
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kphase

kpartition

Figure 3.4: Undersampling in k-space (left) corresponds to aliasing in the image domain

(right): (Top) In a 2D sequence, there is one phase encoding direction. In this example,

this direction is undersampled by a factor of four, which leads to aliasing in the correspond-

ing direction in the image domain. (Bottom) In 3D imaging, it is advantageous to split

the acceleration factor to both phase encoding directions. The image on the right-hand side

represents a section perpendicular to the read direction of the reconstructed 3D volume.
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Figure 3.5: Parallel image reconstruction using cyclic convolution (left) compared to

normal convolution (middle) with the coil sensitivities. The periodic boundary conditions

in k-space related to cyclic convolution lead to numerical errors. A difference image is

shown on the right.

the truncated k-space representation of the sensitivities. Because higher frequencies

cannot possibly be determined from the data, they can be set to zero. After this

implicit frequency cutoff for the image, the convolution can now numerically be

computed by an FFT.

Most image-domain algorithms for parallel imaging ignore this issue and simple

multiply sensitivities and object function and apply an FFT afterwards. This mul-

tiplication in the image-domain corresponds to cyclic convolution in k-space, which

introduces some numerical noise at the k-space border. Although very small, the

effect can sometimes lead to a visual degradation of image quality, as can be seen

in Figure 3.5.

3.4.2 Parallel Imaging as Linear Inverse Problem

In the following, a linear inverse problem is considered, which is notated as a forward

problem:

y = Ax+ n

Here, x is the unknown image, y is the data, A the forward operator and n the

noise. The matrix A is composed of three components

A = PkFC .

Here, C denotes the multiplication of the image with the coil sensitivities, F is

the Fourier transform, and Pk the projection onto the trajectory. In the context of
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parallel imaging, this problem is in general over-determined. This will be assumed

in the following. A solution is therefore calculated in the least-squares sense:

x̄ = argminx‖Ax− y‖2
2

Assuming that ker(A) = {0}, a direct formula for this solution is given by the

Moore-Penrose pseudo inverse [80, 83]

x̄ = A♦y A♦ = (AHA)−1AH .

In absence of systematic errors, this solution is the sum of the true solution and a

term corresponding of the reconstructed noise:

x̄ = x+ A♦n

Unfortunately, in the case of bad conditioning of the linear system, this noise term

can become very large. The noise amplification can be reduced by introducing a

small multiple of the identity matrix as a damping (or regularization) term into the

inversion:

x̄α = A♦αy A♦α =
(
AHA+ αI

)−1
AH

Formulated as minimization problem, the regularized solution is then

x̄α = argminx‖Ax− y‖2
2 + α‖x‖2

2 .

An example of the influence of this regularization parameter on parallel imaging

reconstruction is given in Figure 3.6. A low value of α leads to a noisy reconstruction,

while a high value causes reconstruction artifacts.

The identity matrix is the simplest choice for the regularization term, which

corresponds to a penalty of the L2 norm of the image. A closer look at different

regularization techniques is taken in Chapter 7.

3.5 Calibration of the Coil Sensitivities

To take full advantage of parallel imaging techniques the information that necessarily

needs to be derived from the sensitivities of the different receive coils has to be known

with sufficiently high accuracy. Unfortunately, however, the receive sensitivities

depend on the dielectric properties of the object under investigation and reflect

even small object movements.
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Figure 3.6: Reconstruction artifacts: When choosing the regularization parameter, high

noise amplification (left, weak regularization) has to be balanced against residual under-

sampling artifacts (right, strong regularization).

Figure 3.7: Effects of coil sensitivity miscalibration: (Left) The sensitivities have been

calibrated and allow for a reasonable reconstruction. (Right) Using the same coil sensitiv-

ities after moving the head to a new position leads to serious reconstruction artifacts.
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Figure 3.8: Auto-calibration: From a fully sampled center low resolution images can be

calculated. Division by an RSS image and post-processing yields approximate coil sensi-

tivities.

Coil sensitivities can be obtained with a pre-scan. Here, complete images ρi

are acquired for each channel. When data from the body coil with a very homoge-

neous sensitivity profile cbc ≈ const is available, coil sensitivities can in principle be

calculated up to a constant factor by division:

ŝj(x)

ŝbc(x)
=

cj(x)ρ(x)

cbc(x)ρ(x)
∝ cj(x)

In practice, a support mask {xwith |ρ(x)| > ε} has to be calculated, to exclude

regions without signal. Also, the result has to be smoothed and extrapolated to a

slightly larger region of support. When data from a body coil is not available, the

sensitivities can be calculated relative to the RSS reconstruction (3.3).

While this approach yields good coil sensitivities for phantom studies, a major

problem with this approach is the fact that movements of the subject can lead to

inconsistencies between the calibrated coil sensitivities and the actual measurement.

Especially when part of the subject moves into regions where no sensitivities could

be determined during calibration, reconstructed images are affected by severe arti-

facts (see Fig. 3.7). But even without these problems a pre-scan is an additional

time-consuming step during an examination, which must be repeated after each

patient repositioning, and therefore is a major practical hurdle.

To avoid these problems, autocalibrating methods have been developed which

determine the required information from a fully sampled block of reference lines

in the center of k-space. Because the reference lines are usually acquired exactly

at the same time as the actual object-defining lines in k-space, all aforementioned

miscalibration problems are completely avoided. For methods where explicit coil

sensitivities are required, the technique proceeds similar to the conventional cal-

culation of the sensitivities from data acquired with a pre-scan (see Figure 3.8).
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Methods which do not need explicit sensitivity maps will be discussed later. In all

these techniques, the measurement time spent for the acquisition of the reference

lines has to be balanced against truncation artifacts caused by the limited size of the

fully sampled k-space center. A considerably improved method for autocalibrated

parallel imaging will be presented in Chapter 5.

3.6 Algorithms

Most commercially available algorithms are currently based on direct matrix inver-

sion methods, which use special techniques to calculate a sparse inverse for the linear

system. There are many different variants, based on two lines of development: Meth-

ods formulated in the image domain were originally pioneered by Ra and Rim [88].

For practical computation, they exploit the decoupling of the equations in image

space for regular sampling patterns. In [86], this algorithm was analyzed and ex-

tended to improve SNR in the case of correlated noise. Also, the term SENSE for

this kind algorithms was introduced in this work. The other line of algorithms is

based on a sparse approximation of the inverse in the Fourier domain. Starting with

the SMASH algorithm [99] which gave the first in vivo demonstration of parallel

imaging, this line was then developed in multiple steps to the GRAPPA algorithm,

which is currently one of the most commonly used algorithms for parallel imaging.

Beside these direct methods, iterative algorithms provide a generic alternative which

overcome many limitations of the currently used direct techniques.

3.6.1 SENSE

The fast SENSE algorithm for regular Cartesian sampling, already conceived in [88],

is based on the decoupling of the signal equation in image space. Reconstruction

of the undersampled data for each channel j = 1, · · · , Ncoils with an FFT leads to

aliased images ŝj. For an acceleration factor of R in each point (x, y1) of these

aliased images exactly R equally spaced points (x, y1), · · · (x, yR) in the given FOV

are folded on top of each other: The linear system of equations decouples after

Fourier transformation to a large number of small independent linear equations
ŝ1(x, y1)

...

ŝNcoils(x, y1)

 =


c1(x, y1) · · · c1(x, yR)

...
...

cNcoils(x, y1) · · · cNcoils(x, yR)

 ·


ρ(x, y1)
...

ρ(x, yR)

 .

A graphical illustration is given in Figure 3.9 for a reduction factor of R = 2.

For each of these equations, each corresponding to a set of aliased points, a (reg-
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Figure 3.9: Decoupling of the linear system of equations for regular sampling patterns in

image space. Only a number of points equal to the acceleration factor are aliased on top

of each other. For each set of these points, the equations can be solved independently.
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ularized) pseudo inverse can be calculated. While the calculation of a direct in-

verse of the complete system for Npixels image pixels and Ncoils channels would

be prohibitively expensive in computation time and storage (with a matrix size of

Npixels×(Npixels/R)×Ncoils), the calculation of the inverse for Npixels/R equations of

size R×Ncoils is cheap. This sparse inverse can be stored in Npixels×Ncoils variables.

To obtain optimal SNR in the case of correlated noise, a whitening technique

can be used, or the inversion can be adapted as described in [86]. At least for higher

acceleration factors, regularization terms should be included. The extension of this

algorithm to 3D imaging is straightforward [107].

The restriction to regular undersampling patterns is removed in an algorithm

known as SPACE-RIP [67]. Here, the equations are decoupled only along the (fully

sampled) frequency-encoded direction into Nphase equations by Fourier transforma-

tion of the data along this axis. Each individual equation is again solved by applying

the pseudo inverse. The size of the individual equations increases from R × Ncoils

to Nphase×Ncoils, which requires somewhat more computation time as compared to

SENSE.

3.6.2 Conjugate Gradient Algorithm

The conjugate gradient algorithm can be used to iteratively solve linear inverse

systems, which are too large to be solved efficiently with a direct matrix inver-

sion [51]. In the context of parallel imaging, iterative algorithms, mostly based

on the conjugate gradient algorithms, present a generic alternative to the estab-

lished direct algorithms. Such algorithms are often referred to as conjugate gradient

SENSE (CG-SENSE). While in the past iterative algorithms have been used only

rarely due to their large computational demand, continuous progress in the devel-

opment of computer hardware render them viable.

For a Hermitian and positive definite matrix A, the conjugate gradient algo-

rithm calculates in each iteration an approximate solution to the equation Ax = y,

which minimizes the distance to the exact solution ‖xn−x?‖A in a so-called Krylov

subspace. This distance is measured with a norm ‖x‖A :=
√
xHAx. The Krylov

subspace is increased by one dimension in each iteration step n. The subspaces

are constructed by the repeated application of the symmetric system matrix to the

initial data vector y:

Kn
A,y = span

{
Any, An−1y, · · · , Ay,y

}
This construction yields a good approximate solution already in a Krylov subspace



3.6. ALGORITHMS 37

of small dimension, and, as a consequence, after only a small number of iterations.

Typically, the algorithm is stopped, when the residuum ‖Ax−y‖2 becomes smaller

than a given accuracy ε. For more information about the conjugate gradient algo-

rithm see [46].

Because the system is not symmetric for parallel imaging and additionally needs

to be regularized, the algorithm is applied to the regularized normal equation

(AHA+ αI)x = AHy .

The algorithm then converges to the desired solution x̄α = A♦αy.

Extension to Non-Cartesian Trajectories

For non-Cartesian trajectories, Fourier transform and projection Pk onto the mea-

sured data space cannot be implemented with a DFT anymore. For a direct recon-

struction of non-Cartesian data, a technique called gridding is used to approximate

an inverse of PkF with interpolation techniques. In the context of iterative recon-

struction techniques, only the forward operator, which maps from image to k-space,

and its adjoint have to be implemented, which avoids some steps of the gridding

technique. To evaluate the forward operator, the Fourier transformation is first

calculated on a Cartesian grid with a DFT and then interpolated to the desired

sampled points. According to the Whittaker-Shannon interpolation formula, the

exact values at the sample positions can be obtained with a sinc interpolation. For

practical reasons, this convolution has to be approximated by using some finite con-

volution kernel (typically a Kaiser-Bessel-function) and a roll-off correction in the

image domain.

While this procedure is fast compared to a direct computation of the Fourier

transform, it is still a major computational burden. In iterative reconstructions it

is possible to completely avoid this interpolation step during the iteration [104, 30].

Instead, the data is interpolated only once at the beginning of the iteration. The

conjugate gradient algorithm is applied to the normal equation:

AHy = AHAx

= CHF−1PkPkFCx

= CH F−1PkF︸ ︷︷ ︸
convolution

Cx

The left-hand side of this equation, the part which is only evaluated once, is approx-

imated by using an interpolation technique for the adjoint AH as detailed above,
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while the right-hand side, which needs to be evaluated in each iteration step, can

be implemented exactly without any approximation and without the use of expen-

sive operations. The right side contains a convolution [?] with the point spread

function (PSF) of the trajectory:

F−1PkF = [?]PSF

Due to the compact support (FOV) of the image x a corresponding projection PFOV

may be inserted into the equation:

PFOVF−1PkFPFOV = PFOV [?]PSF PFOV

Hence, the convolution kernel (the PSF) may be truncated to region of twice the

size and then implemented with FFTs and multiplication of the Fourier trans-

form T̂k,2×FOV of the truncated PSF:

PFOV [?]PSF PFOV = PFOVF−1T̂k,2×FOVFPFOV

Here, the diagonal operator Tk,2×FOV is a smeared version of the projection Pk. Be-

cause this convolution is implemented by two FFTs and point-wise multiplication,

it is not only much faster than any k-space interpolation technique, but also much

simpler to implement than gridding techniques. This is especially helpful for an im-

plementation on a graphical processing unit (GPU), which are difficult to program.

3.6.3 SMASH, AUTO-SMASH, GRAPPA

A second line in the evolution of methods for parallel imaging are algorithms which

try to complete the missing data in k-space before reconstructing the final image

with an FFT. These algorithms are all based on the k-space locality principle [112],

which postulates that points which are nearby in k-space are strongly correlated,

while this correlation decreases rapidly with the distance of the points. This is

also assumed to be the case between k-space samples from different coils. The

principle finds its justification in the limited FOV which allows for an exact sinc

interpolation in k-space and the extreme smoothness of the coil sensitivities. Because

the modulation of the spin density with the sensitivities corresponds to a convolution

with the Fourier transform of the sensitivities in k-space, smooth sensitivities relate

to convolution with a sharp function.

Because image reconstruction with known sensitivities is linear, the k-space lo-

cality principle expresses missing samples approximately as a linear combination of

nearby k-space samples from all coils.
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kphase

channels

Figure 3.10: SMASH algorithm: Each k-space sample of the image is assembled with a

linear combination of the nearest k-space samples from each channel.

The first algorithm of this type was the SMASH algorithm [98]. Here, harmonic

functions of low order are approximated by a suitable linear combination of the coil

sensitivity functions:

ei2πkx ≈
N∑
l=1

wlkcl(x) k = −R− 1

2
∆k, · · · , R− 1

2
∆k

K-space samples are then reconstructed by a linear combination from the nearest

measured k-space samples from all channels:

ρ̂(k) =
N∑
l=1

wlksl(k)

This process is shown in Figure 3.10. Because the use of only the nearest k-space

samples leads to a bad approximation which is only reasonable for very special coils

in specific geometric settings, the algorithm was soon generalized to include larger

k-space areas into the linear combination [19].

Further step-wise improvements have been the extension to autocalibration with

variable density trajectories. Here, the weights are not determined by a fit of the

coil sensitivities, but instead by a direct fit of some measured signal lines against

one [58] or more [48] reference lines. Because inaccurate calibration might lead

to cancellation artifacts, coil-by-coil reconstruction [77] was introduced. Here, the

missing data points are recovered for each channel, and then combined with the

actually measured data. The completed data set can then be reconstructed by an

FFT for each channel, followed by an RSS reconstruction (3.3). Thus, no signal

energy is lost in a linear combination of the channels. All these advancements were

finally integrated into the GRAPPA algorithm [37] (see Figure 3.11), where the
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kphase

channels

Figure 3.11: GRAPPA: In GRAPPA, all missing data from all coils are reconstructed

from neighboring k-space data.

combination of coil-by-coil reconstruction with a variable density sampling scheme

has the additional advantage, that the reference lines can be directly incorporated

into the reconstruction, thus increasing the SNR. Further developments include the

extension to 2D acceleration in 3D imaging [9] and to dynamic imaging [56]. Various

extensions and similar algorithms based on the k-space locality principle have been

proposed for non-Cartesian imaging [112, 49, 2, 50, 73, 94].

Field of View Limitations

In MRI without parallel imaging, it is a common practice to reduce the FOV as

much as possible to save phase-encoding steps. Making the FOV slightly smaller

than the actual object causes aliasing artifacts which appear on the border of the

object (see Chapter 2.5.1). Whenever one is only interested in the center part of

the image, this aliasing artifacts can be tolerated. For this reason, this technique is

often used to reduce the measurement time in MRI.

When used in combination with autocalibrating parallel imaging, this has the

effect that the normally fully sampled block of reference lines becomes undersampled.

Many autocalibration techniques which are based on the direct estimation of the

sensitivities from the k-space center rely on sensitivities with aliasing artifacts and

reconstruct images with aliasing in the center of the image. This typically renders

them useless. An interesting property of the GRAPPA algorithm is its ability to

reconstruct images which have residual aliasing only at the border of the image,

exactly as the images which can be obtained without parallel imaging.

The reason why this is possible is not yet fully understood. In [39] it is described

as an experimental fact, but no real explanation is given. In [8] it is stated that
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Figure 3.12: GRAPPA reconstruction: (left) full FOV with an acceleration factor R = 3

(right) reduced FOV with an acceleration factor R = 2. Both measurements have a similar

acquisition times. Although the acquisition with a reduced FOV has aliasing artifacts at

the border of the image, the quality in the center of the image is better than in the image

acquired with full FOV but higher acceleration factor.
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the GRAPPA algorithm calculates a low-resolution convolution kernel to unfold the

image. The proposed explanation is that due to the redundancy of multiple receive

coils, there are low-resolution reconstruction kernels even when the coil sensitivities

are not smooth.

3.7 Summary

Reconstruction algorithms for parallel imaging are based on the inversion of a linear

system of equations. In the case of autocalibrated parallel imaging, the reconstruc-

tion process is split into two separate linear steps: A linear calibration step and a

linear reconstruction step. For autocalibrated SENSE, the linear calibration step

consists in the determination of the coil sensitivities from the fully sampled k-space

center, followed by the inversion of a decoupled system of equations in image space.

For GRAPPA, the calibration step consists in the determination of a sparse approx-

imation to the inverse system matrix. In the reconstruction step this approximate

inverse is applied to the data to calculate the solution. In their original formulation,

both techniques rely on regular sampling patterns, although various studies gener-

alized the algorithms to irregular and non-Cartesian sampling schemes. A generic

alternative to these direct algorithms is the use of iterative techniques as these allow

for arbitrary sampling patterns, although at the expense of a prolonged computation

time. For a large number of channels, the computation time can be reduced for all

algorithms with the use of the array compression technique.



4
MRI System

In this chapter the MRI system which has been used for all experiments is described.

The discussion covers properties of the superconducting magnet, gradient system,

RF coils, computer system, and software framework.

4.1 Magnet and Gradient System

The main components of a MRI system are a strong magnet, the gradient system,

and RF coils. The magnet creates the static B0 field, while the gradient system

creates additional gradient fields, which can be changed during the experiments. RF

coils are used to transmit the excitation pulses, as well as to receive the measurement

signal. The MRI system used in this work is a Siemens TIM Trio whole body human

Figure 4.1: Whole-body MRI system: (left) with and (right) without housing.
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Figure 4.2: 8-channel, 12-channel, and 32-channel head coil arrays.

scanner (Siemens AG, Erlangen, Germany), which contains a liquid helium cooled

super-conducting magnet. The bore has a diameter of 60 cm offering a FOV of

50 cm in each direction. The main magnetic field is B0 = 2.89 T. At this field

strength, the Larmor frequency is ω/2π = 123.2 MHz. The gradient system has a

maximum gradient strength of 38 mT m−1 per axis and a maximum slew rate of

170 mT m−1 ms−1. The system provides 32 receive channels, which are digitized at

10 MHz with 24 bit analog-to-digital converters. Quadrature demodulation, low pass

filtering, and downsampling yield the real and imaginary part of the MRI signal.

4.2 Radio Frequency Coils

Built into the structure of the magnet is the so-called body coil, which is used as a

transmit coil for the excitation of the spins. It can also be used as a receive coil, but

provides only one single output channel and has a relatively low signal due to its

distance from the patient. For this reason, various receive coils are available, which

are often specialized for different body parts. In this work, 8, 12, and 32-channel

head coils have been used, with most experiments conducted with the 12-channel

head coil. This coil has additional electronics, which transform the received signals

in hardware. The signals from four sets of three coil elements (L,M,R) are inde-

pendently combined in hardware, according to the following unitary transformation:
P

S

T

 =


1
2

−i√
2
−1
2

1√
2

0 1√
2

1
2
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2
−1
2
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M

R


This transform is adapted to the properties of the coil so that most signal energy

is concentrated into the four primary modes (P ). The receive hardware has two
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operating modes: circulary polarized (CP)-mode and triple mode. In triple mode

the signals from all 12 channels are available for image reconstruction, while in CP-

mode, only the four primary modes (P ) are used. This mode can be used to save

computation time during image reconstruction, and is a very simple and hard-coded

alternative to the array compression technique described in Chapter 3.2.2.

4.3 Computer System and Software

The MRI system is equipped with three computers, the host, where the user inter-

face is running, a real-time computer system, which is used to control the image

acquisition processes, and an image reconstruction computer. The latter receives

the digitized data and reconstructs the images, which are then send back to the

host system to be presented to the operator. The image reconstruction system also

stores the raw data of all acquired data for some limited time. From here, raw data

can be acquired and transferred to a different computer for off-line processing.

For off-line image reconstruction two PowerEdge 2900 computer systems (Dell

Inc., Round Rock, USA) running the Ubuntu Linux operating system were available.

The smaller system is equipped with two dual core Intel (Intel Corporation, Santa

Clara, USA) Xeon u5060 CPUs at 3.20 GHz and with 4 GB RAM. The bigger system

has two quad core Intel Xeon (E5345) CPUs at 2.33 GHz and 8 GB RAM. The

systems are connected with a dedicated 1 Gigabit ethernet connection to the scanner

network as well as to each other.

Image reconstruction was done with programs written in the C programming

language (ISO/IEC 9899:1999) and making use of the POSIX application program-

mer interface (API) (ISO/IEC 9945) provided by the Ubuntu Linux operating sys-

tem. The programs were compiled with the GNU compiler collection (GCC)1. The

FFTW32 library provided a fast implementation of FFT algorithms. The program

collection includes a tool to extract the raw measurement data from the file obtained

from the scanner, pre-processing tools for whitening and array compression, and im-

plementations of various reconstruction algorithms. An image viewer (written with

the GTK library3) was used to visualize the reconstructed images. The algorithm

presented in the next chapter is also available as Matlab (or octave) code and can

be downloaded from the internet.4

1http:\\www.gcc.org
2http:\\www.fftw.org
3http:\\www.gtk.org
4http:\\www.biomednmr.mpg.de



5
Joint Estimation of Image Content

and Coil Sensitivities

5.1 Introduction

The use of parallel imaging for scan time reduction in MRI faces problems with

image degradation when using GRAPPA or SENSE for high acceleration factors.

While an inherent loss of SNR in parallel MRI is inevitable due to the reduced

measurement time, the sensitivity to image artifacts that result from severe un-

dersampling can be ameliorated by alternative reconstruction methods. Here, an

algorithm based on a Newton-type method with appropriate regularization terms is

demonstrated to improve the performance of autocalibrating parallel MRI – mainly

due to a better estimation of the coil sensitivity profiles. The approach yields im-

ages with considerably reduced artifacts for high acceleration factors and/or a low

number of reference lines forming the fully sampled k-space center.

The common reconstruction methods for autocalibrated parallel imaging are

based on a sequential approach: the determination of the information about the

coil sensitivities from the reference lines is followed by the reconstruction of an im-

age by a linear process. As will be explained later such two-step techniques make

only suboptimal use of the available data. With the help of an alternating mini-

mization method, Ying and Sheng [113] recently proposed to improve this situation

by iteratively optimizing both the coil sensitivities and the image content until a

joint solution is found. Extending these ideas, the purpose of this work is to show

how a regularized nonlinear inversion technique based on a Newton-type method

with appropriate regularization terms provides a generic and convenient framework
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for solving this problem in the context of MRI reconstruction.

5.2 Parallel Imaging as

Nonlinear Inverse Problem

In general, a determination of coil sensitivities from only the center of k-space does

not take advantage of all available information. Although the information about

a smooth coil profile is mostly localized in the k-space center, the measured data

represents the convolution of the coil profiles with the object function which shifts

information from the center of k-space to its outer parts. Because even small errors

in the sensitivity profiles lead to residual aliasing artifacts in the resulting image, an

optimal reconstruction should exploit all available k-space data rather than only a

small part in its center. This can be accomplished by a nonlinear inversion technique.

In order to solve for the object function and the sensitivity profiles at the same

time, the method proposed here applies a regularized nonlinear inversion to the

reconstruction problem. The basic MRI signal equation is understood as a nonlinear

operator equation with an operator F which maps the proton density, the image

content, and the coil sensitivity profiles to the measured data

F (x) = y with x =


ρ

c1

...

cN

 .

This equation is solved by a Newton-type algorithm, more precisely the iteratively

regularized Gauss-Newton method (IRGNM), see [31, 5, 59] as general references.

In the following it is assumed that the operator equation is given in a discretized

form where all functions are represented by vectors of point values on a rectangular

grid.

5.3 Algorithm

5.3.1 Iteratively Regularized Gauss Newton Method

The general idea of the Newton algorithm is as follows. A linearization of the

equation around an initial guess xn yields

F (xn + dx) ≈ DF (xn)dx+ F (xn) .
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Here DF (xn) denotes the Fréchet derivative (or Jacobian) of F at the point xn.

This linearized equation is then solved for the update dx

DF (xn)dx+ F (xn) = y .

Under certain conditions iterative updates of xn+1 = xn +dx converge to a solution.

To calculate an approximate solution to the linearized problem the conjugate

gradient algorithm can be used. This algorithm needs to be applied to a symmetric

matrix, a condition which can be ensured by multiplying both sides with the adjoint

of DF (xn)

DF (xn)HDF (xn)dx = DF (xn)H(y − F (xn)) .

Due to the bad conditioning of the linearized equations the inversion must be regular-

ized. Adding a positive definite regularization matrix (e.g., the identity) to the ma-

trixDF (xn)HDF (xn) yields the well-known Levenberg-Marquardt algorithm [70, 76](
DF (xn)HDF (xn) + αnI

)
dx = DF (xn)H(y − F (xn)) .

The regularization parameter αn is reduced in each step. For large values of αn the

algorithm is related to the gradient descent algorithm

(αnI) dx = DF (xn)H(y − F (xn)) .

For low values the algorithm represents the classic Gauss-Newton method

DF (xn)HDF (xn)dx = DF (xn)H(y − F (xn)) .

The Levenberg-Marquardt algorithm takes advantage of both these ideas by using

the more robust gradient descent algorithm at the beginning of the iterative process

(far from the solution) and the faster Gauss-Newton algorithm at the end (near

the solution). Its properties can be understood in a reformulation as a sequence

of quadratic optimization problems where the update dx corresponds to the unique

minimizer of the functional

‖DF (xn)dx− (y − F (xn))‖2 + αn‖dx‖2 .

Although each individual update is regularized to suppress noise, it is still possible

that small residual noise in each update accumulates in the final solution. A more

stable algorithm is given by changing the update rule to minimize

‖DF (xn)dx− (y − F (xn))‖2 + αn‖xn + dx− x0‖2 .
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In this case the regularization no longer applies to the update itself but to the result

of the update with respect to the initial guess. A suitably revised algorithm, the

IRGNM, then relates to an update rule

dx = (DF (xn)HDF (xn) + αnI)−1
(
DF (xn)H(y − F (xn)) + αn(xn − x0)

)
.

The regularization parameters are always chosen to be of the form αn = α0q
n with

the same q ∈ (0, 1), usually q = 2
3
.

To apply this IRGNM algorithm to parallel MRI reconstructions, implementa-

tions of the operator, its derivative, and the adjoint of the derivative are needed.

The operator is given by

F : x 7→


PkF{c1 · ρ}

...

PkF{cN · ρ}

 with x =


ρ

c1

...

cN

 ,

where F is the (multidimensional) Fourier transform and P is the orthogonal projec-

tion onto the trajectory which – for Cartesian sampling – is a diagonal matrix with

ones at the positions of the measured data and zeros elsewhere. The derivative of

the operator can easily be calculated by using the linearity of the Fourier transform

and the product rule of derivatives

DF (x)


dρ

dc1

...

dcN

 =


PkF{ρ · dc1 + dρ · c1}

...

PkF{ρ · dcN + dρ · cN}

 .

Due to the unitarity of F the adjoint is then given by

DFH(x)


y1

...

yN

 =


∑N

j=1 c
?
j · F−1{Pkyj}

ρ? · F−1{Pky1}
...

ρ? · F−1{PkyN}


with the star denoting pointwise complex conjugation.

Once the dependency on the coil sensitivities is removed, that is the coil sensitiv-

ities are treated as constants, the resulting operator becomes linear while the parts

corresponding to the update of the coil sensitivities in the derivative and its adjoint

vanish. As a consequence, the algorithm effectively transforms into a conjugate
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gradient (CG) variant of SENSE, as commonly used for non-Cartesian MRI [85].

When started with suitable coil sensitivities this modified algorithm produces so-

lutions similar to those obtainable from a CG-SENSE algorithm with decreasing

regularization.

Convergence

For Newton-type algorithms convergence is not automatically guaranteed and usu-

ally convergence results assume an initial guess close to the solution. In practice,

this seems to be no problem for the proposed algorithm. For example, in situations

where GRAPPA produces a reasonable image, the nonlinear inversion algorithm

decreases the residual in each iteration yielding a good solution after only 10 − 25

iterations – even for very low numbers of reference lines. In all these cases, the initial

guess was always chosen as described below. In extreme situations, that is without

any reference lines or for acceleration factors greater than the number of receive

channels, the algorithm is still able to decrease the residual but without generating

reasonable images. Very slow convergence in the sense that the norm of the residual

decreases very slowly is only observed when the image object is completely empty

and the algorithm tries to fit only noise. This case could be dealt with by calculating

the amount of energy in the data before starting the iteration.

The theoretical treatment of convergence is complicated by the fact, that par-

allel imaging is increasingly worse conditioned for higher acceleration factors. This

holds true even in the linear case and for perfectly known coil sensitivities. The

exact solution of the system is very far from the desired solution, because of the am-

plified noise. Every parallel imaging algorithm should therefore contain some form

of regularization. For the proposed algorithm this is accomplished by terminating

the iteration long before convergence to an undesirable solution is reached. In fact,

it would be advantageous to replace the assessment of convergence by a different

mathematical criterion. It might quantify the ability of the algorithm in conjunction

with its automatic stopping criterion (e.g., the discrepancy principle) to produce a

series of solutions for input vectors with decreasing noise that converges to the ex-

act solution of the noiseless case. While various formal theorems of this kind have

been proved for this algorithm [4, 54, 59], it was not yet attempted to verify their

assumptions in this specific case.
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5.3.2 Regularization of the Coil Sensitivities

A direct application of the described IRGNM algorithm to the problem of auto-

calibrated parallel imaging would yield an unrealistic solution to the MRI signal

equation. Basically, the coil sensitivities would include a substantial portion of the

object information and the object part would not be unfolded correctly. The reason

is that the equation is highly underdetermined – even in the fully sampled case.

This can be seen by the fact that multiplying the object part of a solution (ρ, cj)

by some arbitrary complex function g and dividing the coil sensitivities by the same

function gives another solution (ρ · g, cj/g).

The problem may be overcome by adding a priori knowledge about the object

and the coil sensitivities. For example, while the object may contain edges, the

coil sensitivities are generally rather smooth. This can be ensured by a smoothness

enforcing norm for the coil profiles that is used during the quadratic optimization

problems solved in each Newton step. An appropriate choice is the norm given by

||f ||l = ‖(I− s∆)l/2f‖ (5.1)

for some chosen index l and scaling parameter s. The 2D Laplacian is given by

∆ = ∂2
x+∂2

y . This norm can easily be calculated by weighting the standard L2 norm

in Fourier space by an additional term (1 + s‖k‖2)l/2. It penalizes high frequencies

where the penalty is a polynomial with degree l in the distance to the k-space center.

To achieve the desired regularization, the operator and the representation of the coil

profiles are transformed with a preconditioning matrix W which contains a Fourier

transform of the coil part multiplied by a diagonal weighting matrix
ρ

ĉ1

...

ĉN

 =


I

(1 + s‖k‖2)l/2F
. . .

(1 + s‖k‖2)l/2F




ρ

c1

...

cN

 .

The IRGNM algorithm is then applied to the following transformed but equivalent

system of equations

x̂ = W−1x

Gx̂ = FWx̂ = y .

Using these definitions the new minimization problem – to be solved in each Newton

step – is given by

‖DG(x̂n)dx̂− (y −G(x̂n))‖2 + αn‖x̂n + dx̂− x̂0‖2 .
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A closer look at the regularization term reveals the effect of the above modification

(assuming x0 = 0 for simplicity)

‖x̂− x̂0‖2 = ‖W−1x−W−1x0‖2

= ‖ρ‖2 +
N∑
j=1

‖ĉj‖2 using x0 = 0

= ‖ρ‖2 +
N∑
j=1

∥∥(1 + s‖k‖2)l/2Fcj
∥∥2

= ‖ρ‖2 +
N∑
j=1

‖cj‖2
l .

The L2 norm used in the regularization of the coil part of the transformed sys-

tem therefore corresponds to the norm (5.1) in the original space, penalizing high

frequencies and enforcing the smoothness of the coil sensitivities.

5.3.3 Choice of Parameters

The parameters for the proposed nonlinear inversion algorithm were chosen as fol-

lows: As initial guess x0 the object function ρ was set to constant 1 and the coil

profiles c1, . . . , cN to zero. The data vector was normalized in the L2-norm to 100.

The parameters in the regularization term of the coil sensitivities were set to l = 16

and s = 220 mm2. The first regularization parameter was chosen as α0 = 1 and

reduced by a factor q = 2/3 in each Newton step. To our experience the final results

are not sensitive to the choice of any of these parameters. The only critical value is

the regularization parameter αn∗ at the stopping index n∗, and hence the stopping

criterion for the Newton method. The choice of n∗ is a trade-off between small noise

(small n∗) and small undersampling artifact (large n∗).

Although the choice of the stopping index has been studied intensively in the

literature on inverse problems, and a number of methods such as Morozov’s discrep-

ancy principle [31] or Lepskii’s balancing principle [6] are available, no satisfactory

solution for the parallel MRI problem has been described to the best of our knowl-

edge. Part of the reason is that for images the L2 error does not accurately describe

the visual quality of a reconstruction. For the data presented here, the stopping

index was therefore chosen by visual inspection. Although it may be fixed for re-

peated measurements with the same MRI protocol, the automatic determination

of a robust stopping criterion is certainly a most desirable feature, but outside the

scope of this work. Further comments on the choice of the regularization parameter

can be found in Chapter 7.2.
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It should be noted that the choice of a regularization parameter is not unique

to the present algorithm but a general problem common to all parallel imaging

methods. Even some of the GRAPPA or SENSE images shown in this work could

probably be improved by manually optimizing the regularization parameters (cho-

sen by the vendor). Nevertheless, a simple adjustment of the GRAPPA and SENSE

regularization would not be enough to generate images equivalent to those obtained

by nonlinear inversion. For example, pronounced qualitative differences are demon-

strated for reconstructions with a low number of reference lines. As demonstrated

later in Figure 5.6 respective GRAPPA reconstructions exhibited both high noise

and residual ghosting artifacts, whereas nonlinear inversion resulted in very much im-

proved images. Because the overall regularization determines the trade-off between

noise and artifacts, the advantage of the proposed algorithm relative to GRAPPA

cannot be explained by a better choice of regularization parameters.

5.3.4 Postprocessing

As mentioned before, the system of equations is underdetermined even in the fully

sampled case. Although this ambiguity may be removed by the choice of the regular-

ization terms, the result is not necessarily identical to a typical RSS reconstruction.

This difference manifests itself as slight changes in the large-scale intensity distri-

bution. By multiplying the resulting image with the RSS of the estimated coil

sensitivities and dividing the coil sensitivities by the same quantity, this difference

can be removed in a simple step

ρfinal = ρ ·

√√√√ N∑
j=1

|cj|2 .

While not strictly necessary, this postprocessing is useful when comparing images

or coil sensitivities to images reconstructed with different regularization parameters,

other parallel imaging algorithms, or from fully sampled data sets.

5.3.5 Computational Speed

In the present implementation the reconstruction of a single 256 × 256 image by

nonlinear inversion takes less than a minute on a modern processor. While this is

too slow for applications to a complete 3D MRI data set, significant acceleration can

already be expected by simple measures such as a multithreaded implementation uti-

lizing multiple processor cores and switching from double to single precision floating
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point numbers. Further possibilities include preconditioning techniques (e.g., the

method presented in [55]), which would reduce the number of conjugate gradient

iterations, and adaptive discretization in particular of the coil profiles, which would

reduce the cost of the first Newton steps by an order of magnitude.

5.4 Experiments

5.4.1 Methods

Experimental examples were obtained for a water phantom and the brains of healthy

volunteers. Written informed consent was obtained from all subjects prior to the

examination.

The data was reconstructed with the proposed algorithm, and results were com-

pared to the GRAPPA algorithm implemented on the MRI system (software version:

VB13) and to an autocalibrated version of SENSE. As confirmed by personal com-

munication the GRAPPA implementation is based on the algorithm presented in

[37] but contains unpublished proprietary modifications. It may still serve as a valid

reference because it is widely distributed and its characteristics are documented in

numerous studies about parallel imaging methods and applications. The SENSE

algorithm used here relies on the autocalibration technique from [78] – including

an apodization with the Kaiser window (β = 4) – and employs an iterative (CG)

SENSE reconstruction [85] for image reconstruction. This generic SENSE version

was chosen, because it allows for the inclusion of reference lines in the reconstruction

– similar to GRAPPA and the proposed nonlinear inversion algorithm.

Images were acquired with the use of a 3D RF-spoiled FLASH sequence (TR/TE

= 10.6/4.2 ms, flip angle = 17◦) with an isotropic spatial resolution of 1 mm. Paral-

lel imaging was performed with variable acceleration (undersampling) factors in all

phase-encoding directions and with variable numbers of reference lines. To improve

the SNR of the 3D gradient-echo images of the human brain, the acquisitions em-

ployed two accumulations. For demonstration purposes individual partitions were

selected from the 3D data orthogonal to the readout direction, that is after 1D

Fourier transformation along the frequency-encoding axis. These 2D partitions were

extracted and subsequently reconstructed using the proposed algorithm.
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Figure 5.1: 3D FLASH MRI partitions of a phantom reconstructed with GRAPPA, auto-

calibrated SENSE (SENSE/auto), nonlinear inversion (Inv) and SENSE with coil sensitiv-

ities taken from nonlinear inversion (SENSE/Inv) for 2D acceleration factors of 6 = 3×2,

9 = 3 × 3, and 12 = 4 × 3 using 24 × 24 reference lines and 16, 19, and 21 iterations of

the nonlinear inversion algorithm, respectively.



56 CHAPTER 5. JOINT ESTIMATION

Figure 5.2: 3D FLASH MRI partitions of the human brain reconstructed with GRAPPA,

autocalibrated SENSE and nonlinear inversion (Inv) for 2D acceleration factors of 4 = 2×2

and 6 = 3× 2 using 16× 16 reference lines using 14 and 18 iterations, respectively.
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Figure 5.3: Coil sensitivities corresponding to the Inv reconstruction (2D acceleration

factor 4, 14 iterations) shown in Fig. 5.2.
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5.4.2 Results

Figure 5.1 shows 3D MRI partitions of a water phantom obtained for 2D acceleration

factors of 6 = 3×2, 9 = 3×3, and 12 = 4×3 using 24×24 reference lines. All acqui-

sitions employed the 12 channels of the head coil and the images were reconstructed

with GRAPPA, autocalibrated SENSE and nonlinear inversion, respectively. Visual

inspection reveals that GRAPPA and autocalibrated SENSE lead to ghosting arti-

facts for a 2D acceleration factor of 6 that get increasingly worse for higher degrees

of undersampling. In contrast, the proposed nonlinear inversion method is able to

reconstruct almost artifact-free images up to the theoretical maximum of 12, al-

though at this level the quality in central areas of the image begins to deteriorate.

The SENSE reconstructions in the bottom part of Figure 5.1 demonstrate that the

high quality of the nonlinear reconstructions is primarily due to an improved esti-

mation of the sensitivity profiles. SENSE reconstructions achieve a similar quality

if the coil sensitivities are not estimated from the reference lines but taken from the

calculations of the nonlinear inversion algorithm.

The above findings are confirmed for in vivo conditions. GRAPPA, autocali-

brated SENSE and nonlinear inversion reconstructions for 3D MRI partitions of the

human brain are compared in Fig. 5.2 for 2D acceleration factors of 4 = 2 × 2 and

6 = 3×2 using 16×16 reference lines. Again, GRAPPA and autocalibrated SENSE

images yield ghosting artifacts and considerably more noise than reconstructions

by nonlinear inversion (using 14 and 18 iterations). For the nonlinear inversion re-

construction with 2D acceleration factor 2 × 2, Figs. 5.3 to 5.5 detail the extreme

smoothness of the estimated coil sensitivities as well as the influence of the total

number of iterations and the number of iterative updates of the coil information,

respectively. The progressive reduction of the undersampling artifacts by increasing

the number of iterations from 11 to 14 is demonstrated in Fig. 5.4. Complemen-

tary, Fig. 5.5 supports the notion that the improved reconstructions by nonlinear

inversion are largely due to the improved estimation of the coil sensitivities. When

limiting the update of the coil information to 8, 10, 12 or 14 iterations, the re-

maining iterations of the image information (up to 14) refer to a linear inversion

similar to CG-SENSE. The comparison of respective reconstructions in Figure 5.5

clearly indicates that an early termination of the coil update leaves the rest of the

iterations with slightly incorrect coil sensitivities which in turn give rise to residual

ghosting artifacts in the final image. It should be noted that because these artifacts

are related to errors in the coil sensitivities and not due to the regularization, they

cannot be eliminated by adding further iterations without including an update of
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the coil information.

The relevance of the number of reference lines is examined closer in Figure 5.6

which compares 3D FLASH MRI partitions of the human brain reconstructed with

GRAPPA, autocalibrated SENSE and nonlinear inversion (2D acceleration factor

4) for 24× 24, 16× 16, and 8× 8 reference lines. While reconstructions by nonlin-

ear inversion exhibit no ghosting artifacts and only a moderate increase of central

noise for the lowest number of reference lines, GRAPPA and SENSE reconstruc-

tions are much more sensitive to accurate estimations of the coil information from

a sufficiently high number of reference lines. Severe undersampling artifacts occur

for both 16× 16 and 8× 8 reference lines.

5.5 Extensions

5.5.1 Partial Fourier Imaging

Partial Fourier imaging exploits the fact, that the fundamental measurement quan-

tity, the spin density, is real. Under ideal circumstances, only half of the k-space

must be measured, whereas the other half could be completed by complex conju-

gation. Unfortunately, various kinds of systematic errors, especially off-resonance

effects lead to phase variations in the magnetization, even after taking into account

the complex-valued sensitivity maps of the receive coils. For this reason, partial

Fourier techniques typically estimate a low-resolution phase map from the fully

sampled center and use this map in the reconstruction algorithm to compensate

the phase variations. Of course, this only works, if the phase variations are rather

smooth and can be obtained from the k-space center. Whenever the fundamental

assumption of a low-varying phase is violated and a high-resolution phase map can

not be determined with other methods (e.g., with a previously obtained field map

in the absence of other phase effects), data from partial Fourier acquisitions can not

properly be reconstructed.

The integration of partial Fourier acquisition with parallel imaging sometimes re-

alizes higher acceleration factors than each method alone [110, 20]. For the proposed

algorithm, this combination turns out to be almost trivial: Simply by constraining

the image function to be real, the (low-resolution) phase variations are automati-

cally moved to the sensitivity profiles. An example is shown in Figure 5.7, where

only 5/8 of the full k-space was acquired. According to the convolution theorem,

a direct reconstruction of a zero-filled k-space yields images which are blurred and

affected by ringing. In comparison, the reconstruction obtained by nonlinear in-
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Figure 5.4: Influence of the number of iterations (11 to 14) on the Inv reconstruction

(2D acceleration factor 4) shown in Fig. 5.2.
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Figure 5.5: Influence of the number of coil updates (8 to 14) on the Inv reconstruction

(2D acceleration factor 4, 14 iterations) shown in Fig. 5.2.
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Figure 5.6: 3D FLASH MRI partitions of the human brain reconstructed with GRAPPA,

autocalibrated SENSE and nonlinear inversion (Inv) for a 2D acceleration factor of 4 using

24× 24, 16× 16, and 8× 8 reference lines with 14 and 22 (8× 8) iterations.
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Figure 5.7: Partial Fourier acquisition (left) Zero-filling vs a reconstruction with regular-

ized nonlinear inversion and real-value constraint. The zero-filled k-space translates into

a blurred image. (Right) This blurring is avoided in the phase-constrained reconstruction.

Here, phase-cancellation effects are visible at the border of the air bubbles.

version with real-value constraint is free from these problems. This example also

demonstrates the occurrence of phase cancellation artifacts at the border between

water and air bubbles in the phantom, where the magnetic field is disturbed by

severe susceptibility changes.

5.5.2 Reconstruction with Reduced Field of View

As discussed in Chapter 3.6.3, one of the advantages of the GRAPPA algorithm

is the possibility to reconstruct images with a FOV, which was made smaller in

phase direction than the size of the measurement object. This situation, which

basically corresponds to the use of a fractional acceleration factor slightly higher than

the nominal one, turns out to be difficult to handle for autocalibration techniques

of image-based reconstruction algorithms. Here, the low-resolution image which

can be calculated from the fully sampled center already contains aliasing artifacts,

which makes the determination of the necessary coil sensitivities impossible. Because

this situation is of practical importance, it is shown how to adapt the regularized

nonlinear inversion algorithm to this case.

First, it should be noted, that for algorithms which operate in the image domain

it is possible to constrain the support of the object in arbitrary ways by including an
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Figure 5.8: Reconstruction with reduced FOV. (Left) GRAPPA reconstruction (Right)

Reconstruction with nonlinear inversion (Inv). The size of the mask is indicated.

appropriately chosen mask in the forward operator. This mask reduces the admis-

sible support of the object during reconstruction to arbitrary regions inside of the

FOV used for the measurement. Second, when the FOV as well as the acceleration

factor are changed by the same factor (e.g., doubled), but the mask constrains the

support of the object to the original value, then the reconstruction problem remains

basically unchanged. The only difference are the reference lines in the k-space cen-

ter, which are now closer together, yielding an aliasing-free determination of the

coil sensitivities. Starting from here, it is possible to increase the support of the

object to regions larger then the original FOV, also realizing fractional acceleration

factors. For the nonlinear inversion algorithm, it turns out, that the higher sampling

density of the reference lines is often not required. When the mask is only slightly

extended over the original FOV and includes the complete object, the algorithm

is able to reconstruct images, which are free from artifacts in the relevant center

part. A comparison with a GRAPPA reconstruction is shown in Figure 5.8 for data

acquired with an acceleration factor of 2, 4 channels, and 24 reference lines.

While in contrast to GRAPPA, this currently requires manual intervention to

determine the true size of the measurement object, in principle it is possible to

transfer the superior reconstruction quality of the nonlinear algorithm even to this

situation. Another slight disadvantage is the need to double the matrix size in the
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reconstruction. As described in the following section, this doubling is also the main

step needed to allow for the reconstruction of non-Cartesian data. This opens up

an even nicer solution for this imaging scenario: With the ability to reconstruct

non-Cartesian data, there is no reason any more to require the fully sampled center

to be on the same grid as the rest of the data. Here, the distance of the measured k-

space points in the center should be chosen small enough as required by the Nyquist

theorem, while the outer part can then be sampled with a pattern which can be

freely chosen to match the given speed and quality requirements. This would result

in reconstructions that are completely free from artifacts and thus allow arbitrary

fractional acceleration factors.

5.5.3 Non-Cartesian Trajectories

An extension to non-Cartesian trajectories can be achieved with the inclusion of an

interpolation step [62]. An even more promising approach, however, results from

a technique which is based on the convolution of the PSF. This is similar to the

convolution-based SENSE algorithm described earlier and will be described in the

following.

Again, starting from a continuous description, the forward operator F can be

decomposed into a (nonlinear) operator C, which contains the multiplication of the

object with the sensitivities, a projection onto the FOV, the Fourier transforma-

tion F , and a projection Pk onto the trajectory:

F = PkFPFOVC

Inserting this operator into the update rule of the IRGNM and making use of idem-

potence and self-adjointness of an orthogonal projection (PP = P and PH = P )

and the fact that the data y is already given on the trajectory Pky = y yields

dx =(DC(xn)HPFOVF−1PkFPFOVDC(xn) + αnI)−1(
DC(xn)HPFOVF−1(y − PkFPFOV ◦ C(xn)) + αn(xn − x0)

)
.

As in the case of the convolution-based SENSE algorithm, both terms F−1PkF can

be understood as a convolution with the PSF. Because this convolution is to be

calculated on an area with compact support, it can, after discretization, efficiently

be implemented with the use of an FFT algorithm. In a preparation step, the vector

y is discretized by interpolating the data onto a grid and the convolution kernel is

calculated.
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Figure 5.9: Reconstruction from data acquired with a radial spin-echo sequence. 96, 48

and 24 spokes: (top) gridding and (bottom) Inv reconstruction

Figure 5.9 shows images calculated from data of a radial spin-echo sequence

in comparison to a gridding reconstruction. Here, the data was acquired with 96,

48, and 24 spokes and using the 12 channel head coil. The gridded images are

increasingly affected by strong undersampling (streaking) artifacts for lower number

of spokes, which may be avoided by the nonlinear inversion algorithm.

5.6 Discussion

This work introduces a new reconstruction method for autocalibrated parallel imag-

ing which is based on regularized nonlinear inversion. The approach allows for a

simultaneous calculation of the unknown coil sensitivity maps and the unknown spin

density of the object using all available data. At least for the experimental condi-

tions examined here, that is 2D acceleration factors of up to 12, reference lines as

few as 8 × 8, and conventional 2D and 3D MRI sequences, the proposed strategy

yields images with visually reduced artifacts compared to the two-step approaches

GRAPPA and autocalibrated SENSE. These methods first estimate information

about the coil sensitivities (which in the case of GRAPPA is encoded in the recon-



5.7. SUMMARY 67

struction weights) from only a part of the data and then solve a linear equation

where the coil information remains fixed.

The necessity to improve the estimation of the coil sensitivity profiles in parallel

image reconstructions has also been recognized by others. As mentioned before,

it has recently been proposed to exploit the bilinear structure of the MRI signal

equation to solve the system of equations for the coil profiles and object functions in

an alternating way [113]. In comparison to the alternating minimization scheme, an

advantage of the Newton methods used here is a greater flexibility for incorporating

additional nonlinear constraints and regularization terms. Such options will be

even more important for higher acceleration factors that suffer from increased noise

amplification. A Newton-type method has also been used for parallel MRI in [7],

but the algorithm presented there computes the full Jacobian DF (xn) and uses

a QR decomposition to solve the regularized Newton equations. Therefore, the

time and memory complexity is much higher compared to the method presented

here. Moreover, the use of a small number of basis functions, which ensures the

smoothness of the coil profiles in [113] and [7] seems problematic because it limits

the accuracy of the profile reconstructions as opposed to the use of a regularization

term.

5.7 Summary

The formulation of the MRI reconstruction for multiple receive coils as a nonlinear

inversion problem and its application to autocalibrated parallel imaging has been

demonstrated to markedly improve the achievable image quality for high acceleration

factors when compared to conventional methods.

In addition to the basic algorithm, which is published in [103], three additional

extensions have been described: The use of a real-value constraint in combination

with a partial Fourier acquisition scheme, an extension to situations with a reduced

FOV, and, finally, the extension to non-Cartesian trajectories. Here, the improved

sensitivities allow for reconstructions of radially sampled data with an image quality

approaching that of the algorithm described in [13, 11], but without the use of the

– sometimes undesirable – total variation (TV) penalty.
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Segmented Diffusion Imaging

6.1 Introduction

Diffusion-weighted (DW) MRI is a technique with important clinical and scien-

tific applications. For example, it is a highly relevant tool in the diagnosis of acute

stroke, as the degree of water diffusion in affected brain regions is reduced. Because

it further provides directional information about the diffusion process, which in turn

can be used to track nerve fibers in the living brain, it emerges as an increasingly

used method to study the structural integrity and fiber architecture of white matter.

In this chapter, a reconstruction technique for segmented DW MRI is presented.

In MRI segmented k-space acquisitions are often attractive because they reduce the

length of an acquired echo train. For example, in EPI a shorter train of gradient

echoes translates into reduced susceptibility artifacts, while in rapid stimulated echo

acquisition mode (STEAM) MRI fewer stimulated echoes yield higher flip angles

and an improved SNR as recently demonstrated for black-blood cardiac MRI [60].

Unfortunately, however, segmented multi-shot acquisitions are not easily applicable

to DW MRI. This is because of the occurrence of spatially varying (nonlinear) phase

variations which are caused by unavoidable non-rigid brain pulsations and patient

movements during the action of the self-compensating diffusion-encoding gradients.

This phase information differs for each individual segment and therefore prohibits a

direct image reconstruction by a simple combination of all k-space data.

Current attempts to reconstruct motion-affected segmented k-space data make

use of low-resolution phase maps that are either obtained by a two-dimensional (2D)

navigator acquisition [79, 74, 3] or extracted from the fully sampled center of a self-



6.2. THEORY 69

calibrating k-space trajectory [84, 72, 82]. As a common feature, these techniques

rely on the assumption that the motion-associated phase varies only smoothly, so

that it can be accurately described by low spatial frequencies. In DW MRI of the

human brain this condition is not generally fulfilled. A robust and artifact-free

image reconstruction from segmented k-space acquisitions therefore requires high-

resolution phase maps. These experimental approaches, however, face shortcomings:

For DW EPI, a large 2D navigator may be compromised by susceptibility problems

which limit the accuracy of the resulting phase maps, while for DW STEAM MRI,

the need for multiple navigator acquisitions would eliminate the SNR advantage of

a shortened echo train.

Here, an alternative solution is presented which is based on an iterative inverse

image reconstruction technique that exploits the information from the entire k-space

as well as from multiple receive coils. The new method allows for the reconstruction

of DW images from segmented k-space acquisitions without motion-induced artifacts

and without the need for additional navigator acquisitions. It provides a more

general and robust solution than a recent proposal by Skare and colleagues [97]

which relies on a standard non-iterative SENSE or GRAPPA reconstruction and a

homogeneously sampled EPI trajectory.

6.2 Theory

6.2.1 Diffusion Tensor Imaging

Diffusion is random molecular motion. Often, diffusion processes are obstructed

in various directions. In the presence of magnetic field gradients moving spins ac-

quire an additional phase relative to stationary spins. For diffusion processes this

movement is random, causing a loss of coherence and corresponding signal loss. To

describe the influence of the diffusion process onto the MRI experiment, the Bloch

equations have been extended to the Bloch-Torrey equations [102]

∂

∂t
M (x, t) = γM (x, t)×B(x, t) +


−Mx(x,t)

T2

−My(x,t)

T2

Mz(x,0)−Mz(x,t))
T1

+ divD gradM (x, t) .

In this equation a diffusion term based on a symmetric positive definite tensor D as

a simple model for the directional nature of the diffusion process was included. Note,

that divergence and gradient operations act component-wise on the magnetization.

In the absence of a B1 field and for B0 as in (2.5), the evolution of the transversal
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Figure 6.1: Stejskal-Tanner-Sequence: Strong gradients are used to create a diffusion-

weighted spin echo. The two gradients left and right of the 180◦ pulse exactly compensate

each other. Thus, stationary spins are unaffected, while moving spins acquire some phase.

Due to the random Brownian movement of the diffusion process, this phase offset leads to

an incoherent dephasing of the spin and in consequence to a reduced signal strength. In

contrast, joint movement of many spins leads to coherent dephasing, which is visible as

phase distortions in the reconstructed image.

magnetization is then described by

∂

∂t
M⊥(x, t) = −

(
1

T2

+ i(ω0 + γ x ·G(t))

)
M⊥(x, t) + divD gradM⊥(x, t) .

The effect of diffusion in the presence of field gradients on the transversal magneti-

zation can be demonstrated with the simple ansatz

M⊥(x, t) = m(t) e
−
“

1
T2

+i(ω0+2π k(t)·x)
”
.

It yields an ordinary differential equation

dm(t)

dt
= −4π2m(t)k(t)TDk(t)

for m(t). The solution of this equation is given by

m(t) = m(0) e−4π2
R t
0 dt′k(t′)TDk(t′)

= m(0) e−Tr(DB(t)) with B(t) = 4π2

∫ t

0

dt′k(t′)k(t′)T .

Whenever the direction of the field gradient G(t) is constant, the effect on the mea-

surement can be specified by its direction g and the so called b-value b = TrB(TE)

at the time TE of the acquired echo.
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This effect is used in the Stejkal-Tanner sequence [100, 101] (see Figure 6.1) to

create a diffusion-weighted echo. Extending the sequence to a complete imaging

sequence allows to acquire diffusion-weighted images. Here, the obtained signal is

weighted by an additional diffusion term:

s(t) =

∫
dx ρ(x)e−bg

TD(x)g︸ ︷︷ ︸
ρb,g(x)

e−2πik(t)x

The direction g of the diffusion gradient and the b-value can be experimentally

controlled. After the acquisition of diffusion-weighted images ρb,g(x) for various

directions, the diffusion tensor can be estimated for each voxel.

The diffusion tensor can then be analyzed. A measure of the isotropic degree of

diffusion is given by the ADC value

ADC =
1

3
tr(D) .

Various derived quantities can be calculated from the eigenvalues v1, v2, v3 of the

tensors: A useful quantity for practical purposes is the fractional anisotropy (FA)

FA =

√
3

2

(v1 − ADC)2 + (v2 − ADC) + (v3 − ADC)

v2
1 + v2

2 + v3
3

,

which quantifies the anisotropy of the diffusion tensor. Where FA values are high,

it makes sense to study the main diffusion direction, which is given by the eigen

vector corresponding to the largest eigenvalue. In the white matter of the brain, the

direction of this eigen vector is assumed to point into the direction of nerve fibers.

This is exploited to analyze fiber connections in the brain (see Fig. 6.2). A more

detailed introduction to DTI can be found in [64].

6.2.2 Segmented Diffusion Imaging

In DW MRI as in many other imaging scenarios phase effects have to be taken into

account by including non-trivial phase maps into the signal equation

slj(t) =

∫
dx e−2πikl(t)xρb,g(x)eipl(x)cj(x) j = 1, · · · , N ; l = 1, · · · ,M.

The index describes the segment l of a multi-shot acquisition with M segments.

Because in DW MRI the phase information is not consistent between different seg-

ments, the situation requires individual phase maps eipl(x) for each segment l. In

most current approaches, phase maps and coil sensitivity maps are obtained with

the use of a 2D navigator acquisition or from additional autocalibration lines in the
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Figure 6.2: Fiber tracking with the Deffcon program [64]. Diffusion tensors are calculated

for each voxel in a 3D data set. Fiber connections in the white matter can be visualized by

integrating the vector fields given by the first eigen vector (the main diffusion direction).
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k-space center. Given those maps, the resulting reconstruction problem is linear and

can be solved with iterative methods such as conjugate gradient-based versions of

SENSE.

In Chapter 5 a new algorithm for autocalibrated parallel imaging was presented,

which combines the estimation of the coil sensitivities cj and the calculation of the

image ρ into a nonlinear reconstruction problem. The advantage of this nonlinear in-

version technique, namely a better estimation of both the image and coil sensitivities,

allows for higher reduction factors and fewer autocalibration lines than linear inver-

sion techniques. In a similar way, nonlinear inversion might be helpful to improve the

phase maps in multi-shot DW MRI as the approach would include the entire avail-

able k-space data, instead of relying on a small number of navigator echoes. In fact,

after only minor adjustments of the nonlinear inversion algorithm presented earlier,

its application to DW MRI lends itself as a generic alternative to conventional re-

construction methods. Despite some advances, however, the algorithm did not yield

completely satisfactory results for data sets with pronounced high-frequency phase

variations. For this reason, this work presents the development of a new multi-step

algorithm, which robustly reconstructs even severely motion-disturbed data.

6.2.3 Reconstruction Algorithm

By combining the coil sensitivities cj and the motion-associated phase maps eipl into

N×M generalized maps cplj(x) = eipl(x) ·cj(x), the mathematical problem becomes

identical to that of autocalibrated parallel imaging. In fact, when including a low

number of reference lines in each segment of a multi-shot acquisition, the regularized

nonlinear inversion algorithm may be directly applied for image reconstruction. The

implicit combination of the coil sensitivity maps and motion-associated phase maps,

however, is physically unmotivated as the occurrence of high spatial frequencies in

the phase maps violates the assumption of spatial smoothness for the coil profiles. It

nevertheless turns out that a proper choice of the weighting matrix W offers better

image quality than obtainable by a simple navigator-based approach.

An improved solution may be achieved with the use of a 2-step procedure. First,

the non-DW images are reconstructed by parallel imaging using nonlinear inversion.

This step also yields respective coil sensitivity maps which in a subsequent step are

exploited to calculate individual images for each segment by iterative linear inver-

sion. These images have the same motion robustness as any other single-shot acqui-

sition, so that a final image may be calculated by averaging the magnitude images

from all segments. This 2-step method mimics the ideas developed for diffusion-
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weighted EPI by Skare et al [97], but differs in the use of the nonlinear inversion

algorithm to obtain optimum coil sensitivities in the first step. In general, however,

the ill-conditioned parallel image reconstructions for individual segments lead to a

high noise amplification which affects the SNR of the final combined image.

For this reason, the above 2-step method was complemented by another parallel

image reconstruction process based on iterative linear inversion. This third step

replaces the simple averaging of images from all segments by a true reconstruction

of the final image and therefore takes advantage of all data from all segments and

coils. The required phase maps for each segment are obtained from the images

calculated in the second step and possess the same resolution as the final image.

The algorithm retains the motion robustness of the 2-step method, but avoids its

inherent noise amplification. Thus, the proposed 3-step method comprises three

consecutive calculations:

(1) In a first step, a non-DW image, that is an image without diffusion encoding

but otherwise identical acquisition parameters, is reconstructed from the data of all

segments by regularized nonlinear inversion as described above. In this step all phase

issues are ignored. This is possible because the relevant brain motions do not give

rise to pronounced phase variations in the absence of diffusion-encoding gradients.

The algorithm simultaneously recovers a high-quality image and sensitivity profile

for each receive coil.

(2) In a second step, complex-valued DW images are reconstructed separately for

each segment (and all diffusion directions) by linear inversion, that is with the use

of an iterative conjugate-gradient version of the SENSE algorithm. This calculation

takes advantage of the coil sensitivities cj determined in the first step.

(3) In a third step, real-valued DW images are reconstructed from the data of all

segments, again by iterative SENSE. This reconstruction uses the coil sensitivities

cj from the first step and the phase maps eipl that are available from the images

of each segment in the second step. This final step is similar to navigator-based

reconstructions, but differs in its use of motion-associated phase maps with much

higher spatial resolution.

Taken together, the first step serves to calculate the coil sensitivity maps while

ignoring phase problems, the second step estimates high-resolution phase maps that

represent motion-associated phase variations (for each individual segment), and the

third step calculates real-valued images (combining the data of all segments) by

using the previously determined coil sensitivities and phase maps.
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Figure 6.3: (a) Schematic diagram of a segmented multi-shot STEAM DTI sequence com-

prising an initial spin-echo (SE) diffusion module and a high-speed STEAM MRI sequence.

The sequence generates differently phase-encoded stimulated echoes (STE) by repeating the

final readout interval with variable low-flip angle RF pulses (α, repetition time TRSTE).

The acquisition of multislice diffusion-weighted images is repeated for multiple segments

and different diffusion-encoding gradient directions (repetition time TR). (b) Coverage of

(segmented) k-space for Cartesian encoding with centric reordering. The example refers

to the acquisition of 84 Fourier lines with the use of three segments and 8 reference lines.

For details see text.

6.3 Materials and Methods

Experiments were performed using either the 8-channel or 32-channel phased-array

head coil. Apart from preliminary studies of water phantoms, applications involved

DTI of the brain of young healthy adults. Written informed consent was obtained

from all subjects prior to the examination.

Segmented DW MRI was based on a rapid STEAM MRI sequence [33, 81] with-

out cardiac gating. As shown in Figure 6.3a the first 90◦ pulse of the STEAM se-

quence is replaced by a spin-echo (SE) diffusion module 90◦−DW−180◦−DW−SE,

while the final acquisition part is repeated in order to generate n stimulated echoes

(STE) – corresponding to n Fourier lines – for each segment. This readout interval

employs RF pulses with variable flip angles to ensure similar signal strengths for

each STE. The flip angles may be iteratively calculated according to

αi−1 = arctan(sinαi) · e−TR/T1

with αn = 90◦ and T1 the spin-lattice relaxation time. For studies of the human

brain T1 was chosen to be 800 ms for white matter at 3 T.
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DTI was performed at 2 mm isotropic spatial resolution using one non-DW im-

age and 24 DW images with b values of 1000 s mm−2 along different directions. A

total of 51 transverse-to-coronal 2 mm thick sections (orientation along the ante-

rior to posterior commissure) covered the brain with a rectangular 168 × 192 mm2

FOV and a matrix of 84× 96 complex data points (corresponding to a full Fourier

acquisition). For display purposes individual DW images were mildly processed by

adaptive filtering taking into account the local intensity distribution and continua-

tion of structures (software supplied by the manufacturer).

The coverage of k-space by segmented acquisitions with central reference lines

is illustrated in Figure 6.3b. The example refers to the case of three segments and

8 reference lines. For the above mentioned image matrix three segments reduce the

number of k-space lines (stimulated echoes) per segment from 84 to 33 or 34. While

a simple division would lead to 28 lines that homogeneously cover the entire k-space,

the use of 8 reference lines adds 5 or 6 more lines not counting those lines that are

already included in the original 28 lines.

For the sequence with three segments and 8 reference lines the repetition time

per segment was 15.3 s for 51 sections. The corresponding measuring time was

19 min for a DTI data set with 24 diffusion directions. Studies with four segments

and 16 reference lines yielded 33 lines per segment, a repetition time of 15.0 s, and

a measuring time of 25 min. The total reconstruction time on a computer with

two quad-core central processing units was 7 min for the 3-segment data set with 8

channels and 30 min for the 4-segment data set with 32 channels.

6.4 Results

Figure 6.4 shows motion-associated phase maps for a selected section and one seg-

ment of a 4-segment DW MRI data set of the human brain. These maps were

estimated according to the second step of the proposed reconstruction algorithm

taking into account the coil sensitivity maps obtained in the first step. The phase

maps refer to the non-DW image (upper left corner) and 24 DW images. The color

code facilitates the recognition of major phase changes. The absence of any visible

phase variations in the non-DW image confirms the assumption of a constant phase

in the first step, that is for the determination of the coil sensitivities from the non-

DW acquisitions by regularized nonlinear inversion. While most DW images lead

to maps with only moderate phase variations, some images are affected by phase
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Figure 6.4: Motion-associated phase maps from a 4-segment DW MRI data set of the

human brain (single section). The images were obtained during application of the second

step of the proposed 3-step method. They represent a non-DW image (upper left corner)

and all DW images (b = 1000 s mm−2, 24 directions) for one selected segment. The

color encodes phase values between 0 and 2 π. Some images are affected by marked phase

changes with high spatial frequencies (arrows).
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Figure 6.5: DW images (b = 1000 s mm−2, four sections) reconstructed from a 3-

segment DW MRI data set of the human brain with the use of (a) a direct application of

the nonlinear inversion algorithm, (b) a 2-step approach averaging the magnitude images

reconstructed for individual segments, and (c) the proposed 3-step method. The motion-

induced signal void obtained for the first approach (arrows) is avoided by the more complex

strategies, while the 3-step method further reduces the sensitivity of the 2-step approach to

noise.
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Figure 6.6: (a) Selected 24 of 51 multislice DW images for a single diffusion direction

and (b) all 24 DW images of a single section (b = 1000 s mm−2) reconstructed from a

3-segment DW MRI data set of the human brain with the proposed 3-step method.
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Figure 6.7: (a) Non-DW images, (b) DW images for a single diffusion direction (b = 1000

s mm−2), (c) isotropically DW images, and (d) maps of the fractional anisotropy recon-

structed from a 4-segment DW MRI data set of the human brain with the proposed 3-step

method (four sections).
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changes with high spatial frequencies (arrows). In particular, this applies to the

vicinity of the brain stem where brain pulsations are most pronounced.

Figure 6.5 compares the performance of three different reconstruction techniques

for four selected sections of a 3-segment acquisition. The results shown in Figure 6.5a

represent a direct application of the nonlinear inversion algorithm. It yields the final

DW image in only one reconstruction step, but merges the information from the coil

sensitivities and phase variations into a single map. In this case, the images still

suffer from residual motion artifacts (some signal void, arrows). Such problems are

avoided by the 2- and 3-step methods shown in Figures 6.5b and 6.5c, respectively.

However, because the 2-step method averages the noise-affected magnitude images

from the individual segments, the final DW images (Fig. 6.5b) exhibit a lower SNR

than the images obtained by the proposed 3-step method (Fig. 6.5c) in spite of an

identical regularization.

The general performance of the new method is demonstrated in Figures 6.6 and

6.7 for a 3- and 4-segment acquisition, respectively. Figure 6.6 summarizes 24 of

51 DW images of a multislice data set for a single diffusion direction (Fig. 6.6a)

as well as all 24 DW images of a single section (Fig. 6.6b). Finally, using the

proposed algorithm, Figure 6.7 shows non-DW images, DW images for one diffusion

direction, isotropically DW images, and maps of the fractional anisotropy for four

selected sections.

6.5 Discussion

It is common knowledge that segmented multi-shot DW MRI is affected by motion-

associated phase differences that preclude the reconstruction of artifact-free images

by a straightforward combination of respective k-space segments. Here it is demon-

strated that the typical phase variations in DW MRI of the human brain that are due

to cardiac-induced brain pulsations and residual subject movements cannot be repre-

sented by low-resolution k-space data as usually obtained from (external) navigator

acquisitions or (internal) autocalibration or reference lines. Instead, a substantial

fraction of DW images presents with phase variations that have to be characterized

at full spatial resolution using the entire available k-space data.

In a first attempt, the direct application of a regularized nonlinear inversion

algorithm turned out to be suboptimal as it forces smooth (low-resolution) coil sen-

sitivities and irregular (high-resolution) motion-associated phase maps into a single
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“reference” map that complements the image of the true object. An improvement

was achieved by a 2-step procedure which first reconstructs the non-DW images by

nonlinear inversion and then exploits the respective coil sensitivities to obtain DW

images for all segments with the use of an iterative SENSE-like algorithm. However,

when simply averaging the magnitude images of the individual segments to calculate

the desired DW image [97], then the enhanced noise sensitivity of the ill-conditioned

reconstruction problem for the undersampled segments affects the SNR of the final

image. The least motion sensitivity and best SNR was obtained by adding another

reconstruction by iterative linear inversion that exploits both the coil sensitivities

from the first step and the motion-associated phase maps that may be extracted

from the reconstructions of the second step. Because this third step uses the com-

plementary k-space data from all segments, it is much better conditioned than the

reconstructions from individual segments in the second step. The corresponding

absence of any detectable noise amplification during the final reconstruction leads

to a better SNR than obtainable by the 2-step method.

In comparison with other reconstruction techniques for segmented motion-affected

data sets, the main advantage of the proposed 3-step method is the consideration

of phase disturbances with high spatial frequencies. With respect to the work by

Skare et al[97] the approach further benefits from the high-quality coil sensitivi-

ties obtained by nonlinear inversion in the first step, the more flexible conjugate

gradient-based version of the SENSE algorithm in the second step (see below), and

the avoidance of any noise amplification in the third true reconstruction step.

The current implementation employed a Cartesian encoding scheme where in

each segment of both the non-DW and the DW acquisitions the center of k-space is

fully sampled by 8 or 16 lines. It should be noted, however, that the reference lines

for the DW images are not necessarily required for the proposed 3-step algorithm.

Their use was originally motivated to allow for a fair comparison with the direct

use of the nonlinear inversion technique, while later trials with reference lines and

iterative SENSE-like reconstructions in the second and third step helped to improve

the SNR. As far as non-DW images are concerned, the nonlinear inversion technique

is much less sensitive to a low number of central reference lines than conventional

approaches (see Chapter 5).

In addition, also other specific aspects of the actual work such as the use of a

full Fourier acquisition or even the choice of a Cartesian encoding scheme pose no

general restrictions for the 3-step method. Preliminary trials of both partial Fourier

schemes and radial encoding schemes for the same segmented DW STEAM MRI
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sequence proved to be successful.

In order to be applicable the proposed method has to meet only two experi-

mental conditions: (i) the non-DW images must be reconstructable by nonlinear

inversion, and (ii) each undersampled segment must contain enough data to allow

for a reasonable reconstruction by parallel imaging, for example iterative SENSE.

The first condition simply refers to the fact that the joint k-space of the non-DW

images from all segments constitutes a fully sampled center. It is needed to properly

estimate the coil sensitivities by regularized nonlinear inversion. The second condi-

tion requires the k-space lines in each segment of the DW images to be sampled in

a sufficiently interleaved and dense manner to enable adequate reconstructions by

parallel imaging. Apart from these requirements, however, the algorithm imposes

no further constraints on the trajectory.

An interesting question arises for the dependence of the final image on the accu-

racy or noise of the estimated phase maps. For the experimental parameters chosen

in this work, no difficulty was observed. In general, however, this may become a

concern for very high reduction factors, that is a large number of segments and a

correspondingly ill-conditioned linear system. A possible solution may be to con-

strain the second reconstruction step by an even stronger regularization. Of note,

the choice of regularization is not critical in the first and third step. Another possi-

ble source of reconstruction error may be due to alterations of the coil sensitivities

that could occur due to severe macroscopic motions during the acquisition process.

If this does not lead to a total corruption of the data set but emerges as a tractable

problem, then a possible remedy may be obtained by using a regularized nonlinear

inversion algorithm also in the second step. This would allow for a re-estimation of

the coil sensitivities for each individual segment.

Finally, a most elegant algorithm to tackle the reconstruction problem in seg-

mented DW MRI would be a regularized nonlinear inversion method which simulta-

neously treats coil sensitivities, motion-associated phase maps, and an object image

as three independent unknowns. Such a method should achieve the same quality and

robustness as the 3-step algorithm proposed here, but not suffer from the need to

first reconstruct images from individual segments. Unfortunately, preliminary trials

required a good initial guess for the phase maps which so far renders the approach

useless. Nevertheless, foreseeable improvements of the algorithm are likely to alter

the situation in future.
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6.6 Summary

This work presents a new inverse reconstruction method for segmented multi-shot

DW MRI which is based on the concepts of parallel imaging. Experimental ap-

plications deal with DW STEAM MRI of the human brain using 3 or 4 segments.

The algorithm first determines separate coil sensitivity and motion-associated phase

maps for each segment by taking advantage of the entire k-space data from multi-

ple receive coils. Subsequently, these maps are used to reconstruct object images

without motion artifacts – again by parallel imaging based on the data from all

segments. In contrast to existing approaches, the proposed method provides robust

solutions without compromised SNR even in cases where the phase variations are

characterized by high spatial frequencies.



7
Image Regularization

As evident from the PCA of the multi-channel MRI data, most of the energy is con-

centrated in very few principal components (see Chapter 3.2.2). To reach high accel-

eration factorsthe information contained in the principal components of low energy

needs to be exploited. Hence, even with a large number of channels and perfectly

known coil sensitivities, parallel imaging is limited by the high noise amplification

due to the bad conditionig of the system. In parallel imaging, regularization allows

the noise to be reduced, but only at the cost of residual undersampling artifacts.

While Tikhonov regularization is commonly used, more sophisticated regularization

techniques might be able suppress the noise much better, mitigating this situation.

In improved regularization, additional information about the mathematical struc-

ture of the image complements the weakly encoded information in the data. As it

turns out, this additional information even allows for a complete replacement of

the missing information under certain conditions. This is the topic of the new

research area called compressed sensing [21, 27]. After the discussion of the con-

ventional quadratic regularization, this chapter explores a novel idea how to extend

algorithms based on the IRGNM to include L1 and TV regularization terms.

7.1 Tikhonov Regularization

With the use of a regularization term preference for solution with certain properties

can be expressed. The most commonly used technique is quadratic or Tikhonov

regularization

‖Ax− y‖2
2 + α‖Γx‖2

2 .
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The simplest choice for Γ is the unit matrix, which corresponds to a penalty in the

L2 norm. The solution is then given by

xα = A♦αy A♦α =
(
AHA+ α2ΓHΓ

)−1
AH .

To understand the effect of the regularization, it is helpful to consider the singular

value decomposition (SVD) of the system matrix

A = UΣV H with Σ = diag (σ1, · · · , σn) .

The matrix is decomposed into two unitary matrices U and V and a (in general

non-quadratic) diagonal matrix consisting of the singular values σ1, · · · , σn which

will be assumed to be ordered in magnitude. The pseudo inverse is then given by

A♦ = V Σ−1UH .

Corresponding to small singular values there is a subspace in the domain, which is

encoded very weakly by the data. In the calculation of the solution by application

of the pseudo inverse this subspace is multiplied by reciprocals of the respective

singular values causing a strong increase of noise. A quantitative description of this

problem can be given by the condition number, which is defined as the relation

between the largest and smallest eigenvalue:

cond(A) =
σmax
σmin

Given a singular value decomposition of A = UΣV H , the solution can be expressed

as

A♦α = V Σ♦UH with Σ♦i =
σi

σ2
i + α2

.

For large singlar values σ � α the regularization term α has a small effect, while

for small singular values σ � α the explosion of the inverse is avoided.

Instead of choosing Γ = I, another common choice is the use of a derivative

operator Γ = D, which has a smoothing effect along the corresponding dimension.

Although it is commonly implemented with finite differences in image space, it is a

special case of a more general class, which can be expressed as diagonal weighting W

in the Fourier domain:

Γ = WF

Here, the regularization penalty is invariant to arbitrary shifts in the image domain,

which is a natural assumption in digital signal processing and imaging.
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7.2 Choice of the Regularization Parameter

Many techniques have been proposed, how to best choose the regularization param-

eter α. The most well known are the discrepancy principle, L-curve methods and

cross-validation methods. For example, the discrepancy principle chooses α such

that the norm of the residual is equal to a constant times the norm of the data er-

ror. In fact, all these methods try to optimize the regularization parameter in order

to minimize the reconstruction error in the L2 norm. In the case of linear inverse

problems, the expectation value of the error splits into two components

E
{
‖
(
AHA− α2I

)−1
AHy − x‖2

2

}
=

‖
((
AHA− α2I

)−1
AHA− I

)
x‖2

2 + E
{
‖
(
AHA− α2I

)−1
AHn‖2

2

}
.

The first term is caused by the suppression of legitimate signal during the recon-

struction which increases with stronger regularization, while the second error term

quantifies the reconstructed noise which decreases with regularization. In the total

error both terms are weighted equally.

Unfortunately, in the context of parallel imaging, minimizing this sum often does

not produce the visually best reconstruction. Although this depends on the exact

purpose, aliasing artifacts are usually considered worse than noise, because they

might lead to an erraneous interpretation of the image.

A heuristic criterion which seems to be useful in practice compares some mean

energy of k-space samples at actually measured positions to the k-space mean en-

ergy at predicted positions and chooses the value, where both quantities are equal.

Compared to criteria which are based on the L2 norm of error, this criterion chooses

a smaller regularization parameter, but still prevents that the noise dominates the

solution. Finally, it should be noted, that with many irregular sampling patterns

or non-Cartesian trajectories, the visual appearance of the undersampling artifacts

is completely different and often looks much more like noise. This might justify the

use of a conventional criterion, for example the discrepancy principle.

7.3 L1 Regularization

L2 regularization by its quadratic nature penalizes large values much stronger than

small values. In case of sparse images, where a transformed image vector Γx has

only very few non-vanishing entries, it makes sense to replace the L2 regularization



88 CHAPTER 7. IMAGE REGULARIZATION

Figure 7.1: MR image (left) and corresponding multi-scale wavelet transformation

(right). For many images, a wavelet transformation is able to compress most energy into

only few wavelet coefficients, providing a sparse representation of the image.

term with a regularization in the L1 norm.

argminx

{
‖Ax− y‖2

2 + ‖Γx‖1

}
(7.1)

The few largest values carry most of the image information, while the noise is dis-

tributed equally over all pixels. In the L1 norm the small values are penalized much

more, effectively suppressing the noise. This allows to find a sparse solution, which

consists only of the few non-vanishing coefficients which represent the real object.

Because most images are not sparse, a sparsity transformation Γ must be applied

for this technique to be effective. For example, after a wavelet transform a typical

(medical) image has only few non-vanishing coefficients (see Fig. 7.1): a fact, which

is also exploited in some noise filter and image compression algorithms (e.g., the

JPEG2000 compression standard).

In the following, an algorithm for integration of L1 regularization into algorithms

based on regularized nonlinear inversion with the IRGNM is developed. The algo-

rithm is based on the simple idea that L1 and L2 norm of a function can be related

by point-wise squaring, according to

‖f‖2
2 =

∫
dx |f(x)|2 =

∫
dx |f(x)2| = ‖f 2‖1 .

Point-wise squaring translates the quadratic regularization of a transformed system

to the desired L1 regularization for the original problem. An exact generalized
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formulation of this idea can be found in the next section. A first mathematical

analysis can be found in [108].

7.3.1 Nonlinear Transformation into a Quadratic Penalty

Because in the following the nonlinear transformation is needed also for multi-variate

functions f(x) ∈ RN , it is formulated for this general case. A suitable transforma-

tion should establish the following correspondence

∫
dx

N∑
j=1

fj(x)2 =

∫
dx

√√√√ N∑
j=1

f̂j(x)2 .

A point-wise transformation that maps the components fj 7→ f̂j correctly is given

by

Tε : (x1, · · · , xN) 7→ (x̂1, · · · , x̂N) = (x1, · · · , xN)

√√√√ε2 +
N∑
j=1

x2
j .

Here, a small parameter ε > 0 was introduced which will make the inverse of the

transformation differentiable at the origin. From rotational invariance in the com-

ponents it is clear that the inverse of T must have the following form:

Qε : (x̂1, · · · , x̂N) 7→ (x̂1, · · · , x̂N)

4

√
ε̂2(x̂···) +

∑N
i=1 x̂

2
i

For ε = 0, calculation yields the identity T0 ◦Q0 = Id on Rn\(0, · · · , 0) with ε̂ = 0.

To determine the function ε̂ in the general case, the transformation is expressed as

part of a transform with dimension N + 1 and ε = 0:

Q0(ε̂, x̂1, · · · , x̂N) =

 ε̂

4

√
ε̂2 +

∑N
j=1 x̂

2
j

⊕Qε(x̂1, · · · , x̂N)

With Q0 ◦ T0 = I the first component yields a quadratic equation for ε̂2 in terms of

ε and x̂1, · · · , x̂N :

ε =
ε̂

4

√
ε̂2 +

∑N
j=1 x̂

2
j

⇒ ε̂ =

√√√√ε4 + ε2
√
ε2 + 4

∑N
j=1 x̂

2
j

2
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7.3.2 Total Variation

The TV semi-norm of a continuously differentiable function f is given by

TV (f) =

∫
‖∇f‖2 .

A TV penalty suppresses noise very well and can be used to obtain a denoised image

from an original f0 by the minimization of the functional [92]

argminf
{
‖f − f0‖2

2 + αTV (f)
}
.

In one dimension, the total variation norm is just the L1 norm of the derivative,

which motivates the following algorithm. Following the idea presented above, a

nonlinear inverse problem F (x) = y with TV regularization should be transformed

into one with quadratic regularization. For simplicity, x will be assumed to be a real

or complex function defined on R2 (e.g., an image). As a first step to get an explicit

representation of the needed partial derivatives of x additional equations have to be

added: 
F 0 0

∂1 −I 0

∂2 0 −I


︸ ︷︷ ︸

G


x

∂1x

∂2x

 =


y

0

0



The components representing the partial derivatives are now transformed with Qε

which yields new variables

z0 = x

z1 = (Qε(∂1x, ∂2x))1

z2 = (Qε(∂1x, ∂2x))2 .

The final transformed problem is then given by

Ĝz =


y

0

0

 with Ĝz = G


x

(Tε(z1, z2))1

(Tε(z1, z2))2

 .

This nonlinear system of equations can be solved with the IRGNM (see Chapter 5).

In each iteration, the updated estimate for the solution is the minimizer of a linear

least-squares problem

‖DĜH∆zn − (y − Ĝ(zn−1))‖2
2 + αn‖zn‖2

2 .
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Figure 7.2: Parallel imaging reconstruction (3D FLASH, 2D acceleration factor R =

3 × 2, 12 channels and 24 × 24 reference lines) with different regularization techniques:

Conventional L2 regularization, L1 regularization in a wavelet basis, and TV regulariza-

tion.

Reverting the transformation for the regularization term reveals the TV semi-norm

‖x‖2
2 +

∫
z2

1 + z2
2 = ‖x‖2

2 +

∫ √
(∂1x)2 + (∂2x)2 + ε2 .

The constant ε > 0 must be included to be able to initialize the variables z1,2 to zero,

which would otherwise be “stuck” at zero due to the vanishing derivative. To reduce

its influence, it might be decreased in each iteration step. The influence of the L2

term ‖x‖2
2 can be be reduced by including additional weights in the transformed

system, which have been left out for simplicity.

7.4 Examples

As proof-of-principal, two examples are presented in this chapter. They have been

computed with the IRGNM applied to a suitable transformed system. The regular-

ization parameter was decreased only by a small factor 1.1 in each iteration step.

Unfortunately, this leads to a long reconstruction time of several minutes, but is

necessary to prevent instability of the reconstruction process in the current version

of the algorithm.
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7.4.1 Parallel Imaging

Figure 7.2 shows a single section of a full 3D MRI brain scan, accelerated with

parallel imaging by a factor of 6. The image was reconstructed with the nonlinear

regularized inversion algorithm (Chapter 5) which was extended with the new regu-

larization scheme. As wavelet transform biorthogonal Cohen-Daubechies-Feauveau

(CDF) 9/7 wavelets [23] have been used. The L2 regularized image is affected by a

high amount of noise, while the L1 wavelet and TV regularized images are able to

suppress most of the noise.

7.4.2 Compressed Sensing

While the use of the TV semi-norm for denoising is well known [92], it is also related

to a recent new area of research called compressed sensing. The first application of

the compressed sensing idea to MRI was given in [111]. A combination with parallel

imaging for radially sampled data was described in [13]. A general description of

compressed sensing for MRI can be found in [75]. Under suitable conditions an

object with a sparse representation can be recovered exactly from undersampled

data, for example randomly sampled Fourier data. Although theoretical results

currently restrict to simpler cases, one well-known example is the exact recovery of

the Shepp-Logan head phantom [96] from its radially sampled Fourier data with the

use of a TV constraint. Here, the algorithm is applied to a linear system Ax = y,

where A is a Fourier transform followed by a projection onto the radially sampled

data. Figure 7.3 shows the reconstructions of the Shepp-Logan phantom from 24

spokes with the use of the algorithm presented here.

7.5 Summary

The development of better regularization techniques is critical to exploit the full po-

tential of parallel imaging. Without efficient noise suppression higher acceleration

factors can not be used. After discussion of Tikhonov regularization, a new idea to

use L1-based regularization terms with the IRGNM was discussed. While the algo-

rithm presented in this chapter needs further work to increase its speed and stability,

the combination of the IRGNM with a nonlinear transform to achieve non-quadratic

regularization shows promise as a general framework for image reconstruction. This

was demonstrated with two examples from parallel imaging and compressed sensing.
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Figure 7.3: TV-constrained reconstruction of the Shepp-Logan phantom as a function of

the number of iterations from a data set with 24 radial spokes.



8
Summary and Outlook

8.1 Summary

In this thesis, the reconstruction problem of parallel imaging was investigated for

the case of MRI with multiple receive coils. Starting from conventional descriptions

of parallel imaging as a linear inverse problem, GRAPPA and SENSE algorithms

and their respective variants are discussed as the most commonly used algorithms in

commercially available MRI systems. As a more recent development, (CG-SENSE)

was evaluated as an iterative algorithm that is based on the conjugate gradient

algorithm. Iterative algorithms provide the highest flexibility, because they can eas-

ily be extended to irregular sampling patterns and non-Cartesian trajectories. For

the non-Cartesian case an efficient implementation based on a convolution could

be developed as an alternative to the standard interpolation techniques. Although

this implementation has already been described in the literature, it does not seem

to be well known. In the course of these initial analyses the main causes of resid-

ual image artifacts with existing parallel imaging approaches could be identified as

problems that arise from a miscalibration of the receive coil sensitivities and the bad

conditioning of the linear problem.

The problem of inaccurate coil sensitivities is addressed in Chapter 5. Based

on the formulation as a nonlinear problem a novel algorithm was developed that

considerably improves the estimation of the coil sensitivities in autocalibrated par-

allel imaging. It employs IRGNM with appropriate regularization terms and uses

the conjugate gradient algorithm to invert the Jacobian in each Newton step. The

method allows for a reconstruction of artifact-free images for higher acceleration fac-
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tors and with less reference lines than existing approaches. Its better performance

was experimentally demonstrated for MRI of a water phantom and a human brain.

In addition to the basic algorithm, the method was extended to allow for partial

Fourier imaging, imaging scenarios with a reduced field of view, and non-Cartesian

trajectories. In the latter case, the extension is based on the efficient convolution

implementation known from CG-SENSE and therefore lends itself to an easy imple-

mentation on a GPU.

The development of a new reconstruction technique for segmented DW MRI is

outlined in Chapter 6. In general, both rapid acquisition techniques for diffusion-

weighted imaging, STEAM and EPI, benefit from a shorter echo train length. Apart

from other strategies, a most efficient shortening can be achieved with a segmented

acquisition, which splits the measurement of all k-space data into a multiple mea-

surements. The major problem in segmented DW MRI, however, is the occurrence

of motion-induced phase variations in each data segment, which precludes a direct

combination of respective k-space lines. The new reconstruction proposed here splits

the problem into three steps. First, the non-DW images and the coil sensitivities are

jointly estimated with the algorithm from Chapter 5. Subsequently, the data from

each segment are separately reconstructed with an iterative linear inversion to yield

high-resolution estimates of the phase variations in each segment. This information

is used in a third step to combine the data from all segments. In comparison to

existing approaches, the new method allows for reconstructions with pronounced

motion robustness and without any compromise in SNR.

Finally, a general limitation of parallel imaging is addressed which is caused

by the bad conditioning of the inverse problem. It requires a trade-off between the

degree of residual undersampling artifacts (strong regularization) and increased noise

(weak regularization). Better regularization techniques are expected to mitigate

this situation. Chapter 7 presents a novel idea which explores the use of either a

L1 regularization or TV regularization by a nonlinear transformation of the image.

While these algorithms need further work to improve their speed and stability, they

are able to achieve a substantial noise suppression even for high acceleration (data

reduction) factors. These regularization techniques bridge the gap to the new field

of compressed sensing, which was demonstrated by a simple numerical example.
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8.2 Future Work

A major drawback of advanced iterative techniques for image reconstruction is the

increased computation time. While this is the main reason why such methods have

been disregarded in clinical settings, the situation may change in the near future.

Firstly, the progressional development of computer technology together with the

parallelization of the algorithm is expected to yield reasonable reconstruction times.

For example, for segmented DW MRI the proposed three-step technique needs to

iteratively calculate more than 1000 images for 3 to 4 segments and up to 32 receive

coils. This can be accomplished with a parallelized implementation in only 7 to

30 min on a modern 8-core machine. Hence, implementation on a massively parallel

GPU will further speed up the reconstruction time considerably.

Secondly, apart from parallelized implementations, the possibility of algorithmic

improvements should be investigated, as can be demonstrated by the application of

the array compression technique discussed in Chapter 3.2.2. For the example men-

tioned above, this technique allows for an acceleration by a factor of two yielding

3 to 15 min. And thirdly, preconditioning techniques are known to speed up the

conjugate gradient algorithm for many applications. Preconditioners are often con-

structed from approximative inverse solutions which, for example, may be obtained

from the known direct methods for parallel imaging. For the IRGNM, it is possible

to build a preconditioner dynamically during the iteration [55], a technique which

is attractive because it does not need domain-specific knowledge.

Because noise amplification is the limiting factor in parallel imaging, a better

regularization seems to be the most important next step. The integration of a non-

quadratic regularization into the regularized nonlinear inversion with the IRGNM

would provide a more powerful mathematical framework for many reconstruction

problems. Pertinent applications may range from parallel imaging to compressed

sensing and model-based reconstruction techniques (see below). Further work is

required to improve the speed and robustness of the ideas presented in Chapter 7.

Another remaining issue that needs to be addressed is the robustness of the

reconstruction. Especially in dynamic applications, it does not seem possible to

fully avoid randomly occurring non-stochastic errors in the data. Thus, when the

reconstruction by parallel imaging relies on only few measured data, the effect of

corrupted data on the result may be fatal. For this reason, such data must be

reliably identified and removed from the reconstruction. A possible solution could

result from the use of robust estimators as known from stochastics. For example,

the incorporation of a L1 norm in the data fit term is known to lessen the impact
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of outliers. Such strategies could be exploited in image reconstruction to ameliorate

the impact of corrupted data.

Finally, model-based reconstruction techniques emerge as another interesting

area which can be solved from the perspective of a nonlinear inverse problem. For

example, by extending the MRI signal equation with the relaxation terms, the esti-

mation of relaxation maps can be accelerated as shown in [15] for radial trajectories.

A similar idea was described in [1] for DTI. Here, instead of first calculating images

for all diffusion directions and then estimating the tensor for each voxel, the com-

plete tensor maps are directly calculated from the data. Such approaches rely on

accurate field maps, and for this reason would be a logical extension to the algorithm

described in Chapter 6.

In summary, advanced reconstruction techniques are necessary to fully exploit

the potential of parallel acquisition techniques in MRI. The results of this thesis

demonstrate that the formulation of the reconstruction as a nonlinear inverse prob-

lem adequately addresses many of the fundamental challenges. Based on experi-

mental demonstrations, the proposed methods not only outperform currently used

algorithms, but should provide a good mathematical framework for many other

reconstruction problems in MRI.



Appendix

Definition of the Fourier Transform

In the space L2(R) of equivalence classes of complex square integrable functions on

R, the Fourier transformation can be defined on the dense subset of L1-integrable

functions with the integral

Ff(k) =

∫ ∞
−∞

dxf(x)e−2πikx .

Since

〈f, g〉L2(R) = 〈Ff,Fg〉L2(R) ,

this formula defines a linear and isometric map from the dense subset L1(R)∩L2(R)

to L2(R). For this reason, it has a unique extension to a unitary operator on L2(R).

On the subset of L1-integrable functions, a formula for the inverse is given by

F−1f(x) =

∫ ∞
−∞

dk f̂(k)e2πikx .

Many practical problems need to be formulated in a more general setting than given

by the L2-space. The Fourier transform can be extended to the space S ′ of tempered

distributions, which is the dual space of the Schwartz space S of rapidly decreasing

functions. Since it can be shown that F(S) = S, the Fourier transform can be

extended to S ′ by the formula

〈Ff, φ〉 = 〈f,Fφ〉 f ∈ S ′, φ ∈ S .

Here, 〈·, ·〉 denotes the canonical bilinear dual pairing of S ′ and S. The Fourier

transform can be generalized to higher dimensions, starting from the integral

Fdf(k) =

∫
Rd

dk f(x)e−2πik·x .
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F
{
e−(·)2

}
(k) =

√
πe−π

2k2

(8.2)

Frect[−1/2,1/2](k) =
sin(πk)

πk
(8.3)

F
{
e2πia(·)} (k) = δ(k − a) (8.4)

Fcomba(k) =
1

a
comb1/a(k) (8.5)

Figure 8.1: The Fourier transform of some important functions and distributions.

Properties of the Fourier Transform

Some of its properties will be discussed shortly: According to the convolution theo-

rem, the Fourier transform translates convolution to point-wise multiplication:

F(f ? g) = (Ff) · (Fg) (8.1)

A shift is translated into a (linear) phase factor of the transformed function:

F {f( · −∆x)} = e−2πi∆xkFf

Another important property relates to the behavior under scaling with a constant λ:

F {f(λ · )} (k) =
1

|λ|
Ff(

k

λ
)

Building on the generalization to distributions, many processes arising in the digital-

ization of continuous problems may be described. An important example is sampling

on a regular grid (see Chapter 2.5.1), which can be formulated as multiplication by

a comb function, which is defined as sum of delta distributions shifted to equidistant

positions)

comba =
∞∑

l=−∞

δla .

By the Poisson summation formula

∞∑
n=−∞

f(t+ nT ) =
1

T

∞∑
k=−∞

f̂

(
k

T

)
e2πi k

T
t ,

its Fourier transform is again a comb function. A list of important Fourier transforms

of various functions and distributions can be found in Figure 8.1.



Abbreviations

CG-SENSE conjugate gradient SENSE

CP circulary polarized

CT computed tomography

DFT discrete Fourier transform

DTI diffusion tensor imaging

DW diffusion-weighted

EPI echo planar imaging

FA fractional anisotropy

fMRI functional MRI

GCC GNU compiler collection

GPU graphical processing unit

GRAPPA generalized autocalibrating partially parallel acquisitions

IRGNM iteratively regularized Gauss-Newton method

JSENSE joint SENSE

FFT fast Fourier transform

FID free induction decay

FLASH fast low angle shot

FOV field of view

FT Fourier transform
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MR magnetic resonance

MRI magnetic resonance imaging

NMR nuclear magnetic resonance

PCA principal components analysis

PF partial Fourier

PSF point spread function

RF radio frequency

RSS root of sum of squares

SENSE sensitivity encoding

SMASH simultaneous acquisition of spherical harmonics

SNR signal-to-noise ratio

STEAM stimulated echo acquisition mode

SVD singular value decomposition

T1 spin-lattice relaxation time

T2 spin-spin relaxation time

T ?2 effective spin-spin relaxation time

TE echo time

TR repetition time

TV total variation
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