
On the Stability of Julia Sets of
Functions having Baker Domains

Dissertation

zur Erlangung des Doktorgrades
der Mathematische-Naturwissenschaftlichen Fakultäten
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This thesis deals with Baker domains and approximation of Julia sets,
so it belongs to the area of ”Holomorphic Dynamical Systems”. Dynamical
systems belong to the all-day life of scientists and engineers and are closely
related to the term of iteration.
Processes of iteration occur if the state of a system is changed by external
influences at discrete points of time. Examples are the weather, turbulent
flows in liquids or the development of populations.
Moreover, iteration can be a tool to solve other mathematical problems or
to approximate their solutions. Among various numerical methods we only
mention Newton’s method to approximate roots of differentiable functions.
All these dynamical systems have in common that they may develop in dif-
ferent directions. The boundary between different initial states of different
developments is just the Julia set of the corresponding function.
Julia sets were systematically analyzed for the first time around 1920 by
the French matematicians P. Fatou and G. Julia, who concentrated on ra-
tional functions and observed that Julia sets are either very simple objects
or extremly complicated. The development of powerful computers and new
mathematical methods gave a boost to the research in this area in the 80’s,
and since then also a theory of iteration of entire transcendental functions
has been founded.
The aim of this work is to describe what can happen to the Julia sets if an
entire transcendental function satisfying a certain condition (having so-called
Baker domains or wandering domains) is approximated by a sequence of poly-
nomials or is perturbed holomorphically in a class of entire transcendental
functions.
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Organization of the paper
This paper comes in four chapters: the Introduction, Preliminaries and No-
tation, the Results and the Proofs.
All the results will be stated in chapter 3, and, for example, a result in sec-
tion 3.1.1 will have its proof located in section 4.1.1.
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Chapter 1

Introduction

For any polynomial f : C → C or any entire transcendental function
f : C → C we can divide the plane into the Fatou set, roughly speak-
ing the set of points which are locally stable under iteration, and the Julia
set. In the case of polynomials, the structure and type of components of
the Fatou set are quite well understood, for entire transcendental functions
there are additional possibilities of types of Fatou components, namely Baker
domains and wandering domains, where questions remain open.
A natural question to ask is how the nature of a dynamical system obtained
by iteration changes if the studied function is perturbed. A lot of efforts
has been put into studying this question for holomorphically parameterized
functions of polynomials, culminating in the study of the famous Mandelbrot
set. Although there are some important open problems left in this area, also
the interest in families of entire transcendental functions has risen. A lot of
analogies to the polynomial case have been found, including the existence of
so-called copies of the Mandelbrot set for families of entire transcendental
functions.
A question related to this area can be formulated as follows: If a sequence of
entire functions fn converges to some function f , do we have J(fn)→ J(f)?
Some partial answers have been given, the answer is affirmative if the Fa-
tou set of the limit function is empty or consists of attracting basins only.
The problem is more delicate if the Fatou set of the limit function contains
Leau domains or Siegel disks, leading to the well-studied phenomenon of the
“parabolic implosion”. The Julia sets do not necessarily converge in this
case, depending on the sequence fn.
For Baker domains and wandering domains a deeper study of possible sce-
narios is still missing, examples both with possible answers have been given
by Morosawa.
In the first section we will study the family of entire transcendental functions

7



8 CHAPTER 1. INTRODUCTION

given by Fb = {gb : C → C , gb(z) = z − 1 + bzez}. All of these functions
feature Baker domains. Firstly we will examine the corresponding dynamical
planes. Then we will see that it is possible to reasonably define sets in the
parameter plane (in analogy to the quadratic polynomials), and deal with
global questions on the parameter plane, in particular, we will establish the
existence of a copy of the Mandelbrot set. For a closely related family this
will imply the existence of a sequence of Mandelbrot copies tending to a fi-
nite point. Furthermore, at this point our results will be sufficient to find a
partial answer on the (local) question of convergence of the Julia sets in this
family. To the best of our knowledge, this is the first example of this kind
on families of functions having Baker domains.
In the second section we prepare ourselves to studying this question of con-
vergence of Julia sets for a wider class of limit functions, namely the class
F = {f : C → C : f(z) = z − c+ P (z)eaz,Re ac > 0, 0 6≡ P a polynomial},
by looking at the dynamical planes of these functions, in particular, at Baker
domains in each of the corresponding Fatou sets.
We continue with studying sequences of polynomials tending to these en-
tire transcendental functions and consider the sequences of Julia sets of the
polynomials. Of course, if these Julia sets converge to the Julia set of the
limit function, then one can ease the examination of the dynamical system
induced by the transcendental limit function by studying the Julia sets of
the polynomials insted, which is considerably simpler.
Our main result will be that it depends on the choice of the polynomials if the
Julia sets converge. More precisely, for each function f in F we will give two
sequences of polynomilas, for one sequences the Julia sets do not converge
to the Julia set of f , while for the other one at least the Baker domains are
approached (in a way we will define later). We will give sufficient conditions
for the convergence of the whole Julia sets in this case.
Beside the convergence of polynomials to entire transcendental functions, it
is also interesting to pick up the case of entire transcendental functions tend-
ing to an entire transcendental function. In the first section we consider a
family of functions all having Baker domains, in the fourth section we study
the family Fc = {fc : C → C , fc(z) = z − c + ez}. We already know that
some of these functions do have Baker domains, but some do not, so the
question arises what happens in the points of bifurcation. In this family
there are four different scenarios of bifurcations, interestingly the Julia sets
change their topological nature drastically (concerning the number of Fatou
components as well as their type), but the Julia sets move continuously in
each case. The methods we will use provide us with a direct link to the bifur-
cation of Baker domains and the bifurcation of Leau domains, the parabolic
implosion.
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We then extend our results of the previous section to a subset of our new
family, this time we even obtain results on the convergence of Julia sets of
polynomials to the Julia sets of limit functions having wandering domains.
Finally, we use our results to think about a question raised by König: He
classified Baker domains in three categories and asked if there is a category
containing only Baker domains that are stable under perturbation; we will
give examples to show that this is not the case, a more detailed study of this
problem gives some more concrete results.
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Chapter 2

Preliminaries and Notation

2.1 Background in Complex Dynamics

Let f : C → C (or f : C → C , respectively, in case of a polynomial) be
an entire function, but not a constant or linear map. We denote the n−th
iterate of f with fn, that is, f 0(z) = z and fn+1(z) = f(fn(z)) for n ≥ 0.
This induces a partition of the complex plane into the Fatou set
F (f) = {z : {fn}n∈N forms a normal family in a neighborhood of z} and its
complement, the Julia set J(f) = C \ F (f). A special role is played by the
periodic points of f . A point z ∈ C is called periodic of period p if f p(z) = z
and p is the smallest integer having this property. A periodic point z of period
p is called indifferent if |(f p)′(z0)| = 1. If (f p)′(z0) = e2πiα for some α ∈ Q ,
it is a parabolic (or rationally indifferent) periodic point, if (f p)′(z0) = e2πiα

for some α ∈ R \ Q , z0 is called irrationally indifferent and is either the
center of a Siegel disk (see below) or it is contained in the Julia set. In the
latter case it is called a Cremer point. If f p(z) = z and |(f p)′(z)| < 1, z
is an attracting periodic point, in the special case (f p)′(z) = 0 z is called a
super-attracting periodic point.

We give some basic features of the Fatou and the Julia set:

• J(f) and F (f) are completely invariant, that is,
z ∈ J(f)⇔ f(z) ∈ J(f) and z ∈ F (f)⇔ f(z) ∈ F (f)

• F (f) is open and J(f) is closed

• J(f) = ∂F (f) or J(f) = C

• the Julia set is equal to the closure of the set of repelling periodic points

• F (f) = F (fn) and J(f) = J(fn) for n ≥ 1

11
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• J(f) is the smallest closed, completely invariant set containing at least
three points. In fact, J(f) is always uncountable

• for any compact set K ⊂ C and open set U ⊂ C with U ∩ J(f) 6= ∅
we have fn(U) ⊃ K for all but finitely many n ∈ N
• if f(U) ⊂ U for an open set U whose complement (in C ) consists of at

least three points, then U ⊂ F (f) (Montel).

Here and in the following, for proofs see [5], [6] or [12]. The classical references
are [22], [23], [24], [25], [32] and [33].
A maximal domain of normality of the iterates of f is a component of the
Fatou set. The image of a component U is always contained in a component
U1, and a component U is called periodic of period p if f p(U) ⊂ U and p is
the smallest integer having this property.
For entire functions, an invariant Fatou component U satisfies one of the
following:

• U contains an attracting fixed point z0. Then fn(z) → z0 for every
z ∈ U as n→∞ and U is called the immediate attracting basin of z0.

A =
∞⋃
n=0

f−n(U) is called the attracting basin of z0.

• ∂U contains a fixed point z0 ∈ C and fn(z) → z0 for every z ∈ U as
n → ∞. Then f ′(z0) = e2πip/q for some p/q ∈ Q . In this case, U is
called parabolic domain or Leau domain.

• There exists an analytic homeomeorphism Φ : U → D , where D is the
unit disk, such that Φ(f(Φ−1(z))) = e2πiα for some α ∈ R \Q . In this
case, U is called a Siegel disk.

• fn(z) → ∞ for every z ∈ U as n → ∞. In this case, U is called a
Baker domain.

The classification for periodic components is analogous.

If fn(U) ∩ fm(U) = ∅ for a component U and all n 6= m ∈ N , then U
is called a wandering domain. A crucial role in iteration theory is played by
the singularities of the inverse function. Let CP (f) be the set of all roots of
f ′, called critical points, CV (f) = f(CP (f)) the set of critical values of f
and AV (f) be the set of asymptotic values, these are all values v such there
exists a continuous curve γ tending to ∞ such that f(z) → v as z ∈ γ and
|z| → ∞. The points where not all branches of the inverse function of f can
be defined holomorphically are
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• all critical values

• all asymptotic values and

• limit points of critical or asymptotic values.

These points form the set of singular values SV (f). The last possibility can
only occur if the function f has infinitely many asymptotic values.
We define the set of post-singular values (the post-singular set) by
P (f) =

⋃∞
n=0 f

n(SV (f)). We have the following relations between the post-
singular set and the components of the Fatou set:

Theorem
Let C = {U0, . . . , Up−1} be a periodic cycle of Fatou components.
a)

If C is a cycle of immediate attracting basins or Leau domains, then
Uj ∩ SV (f) 6= ∅ for some j ∈ {0, . . . , p− 1}.

b)
If C is a cycle of Siegel disks, then ∂Uj ⊂ P (f) for all j ∈ {0, . . . , p− 1}.

Concerning the Cremer points, the following holds:

Theorem (Zheng, [55])
If z is a Cremer point of an entire function f , then z is contained in the set
of accumulation points of P (f), called the derived set P (f)′ of P (f).

The relations between wandering domains or Baker domains and the post-
singular values are more complicated, we will give some results in the next
section.
A result on the connectivity of Fatou components we will use is the following
one:

Theorem
a)

All periodic components of the Fatou set of f are simply connected.
b)

If F (f) contains a Baker domain, then all components of the Fatou set
are simply connected.

In the remainder of this section we will introduce some terms we will work
with in the following chapters.
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Let g be a holomorphic self-map of the punctured plane C ∗ such that
exp ◦f = g ◦ exp. Then f is called a logarithmic lift of g, and we have
J(g) \ {0} = exp(J(f)). Furthermore, z is a critical point of f if and only if
ez is a critical point of g (see [8]).

The following results and definitions are given in [13]:
Let f be an entire transcendental function. Let D be an open disk in the
plane which contains all singular values of f and let Σ be the complement
of D. Then any connected compent T of f−1(Σ) is an unbounded disk and
f : T → Σ is a universal covering. We call an invariant subset C of J(f)
an N−bouquet for f if for ΣN = {(s) = (s0s1s2 . . . )|sj ∈ Z , |sj| ≤ N} and
N ∈ N the following holds:

• there exists a homeomorphism h : ΣN × [0,∞)→ C

• π◦h−1◦f ◦h(s, t) = σ(s), where π : ΣN×(0,∞)→ ΣN is the projection
map and σ : ΣN → ΣN is the shift map defined by
σ(s0, s1, s2, . . . ) = (s1, s2, . . . )

• lim
t→∞

h(s, t) =∞ for any s ∈ ΣN

• lim
n→∞

fn ◦ h(s, t) =∞ if t 6= 0.

Let Cn be an n−bouquet and suppose that Cn ⊂ Cn+1 ⊂ . . . is an increasing
sequence of bouquets. Then the set C = ∪n≥0Cn is called a Cantor bouquet.

We will use quasi-conformal maps in some proofs, we will just give the basic
definitions. For more on quasi-conformal mappings see [1] or [39].

Definition (quasi-regular, quasi-conformal map)
A continuous map φ is called K-quasi-regular (K ≥ 1) if locally it has dis-
tributional derivatives and the complex dilatation µ(z) defined locally by

∂φ

∂z
= µ(z)

∂φ

∂z

satisfies |µ| ≤ K−1
K+1

almost everywhere.
If φ is K-quasi-regular for some K, we say that φ is quasi-regular. If φ is
(K-)quasi-regular and injective, then φ is called (K-)quasi-conformal.

A quasi-regular map can always be written as a composition f ◦ φ of a
quasi-conformal map φ and a holomorphic map f . A map is analytic iff
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it is 1-quasi-regular.

A polynomial-like map of degree d ≥ 2 is a triple (f, U, U ′), where U and
U ′ are open sets in C isomorphic to discs with U ⊂ U ′ and f : U → U ′

is a holomorphic map such that every point in U ′ has exactly d preimages
counted with multiplicity.
The filled Julia set of a polynomial-like map f can be defined in the same
fashion as for polynomials by

Kf = {z ∈ U : fn(z) ∈ U for all n ∈ N }.

We say that two functions f, g are quasi-conformally conjugate if
f ◦ φ = φ ◦ g for some quasi-conformal homeomorphism φ. Two polynomial-
like maps f, g are hybrid equivalent if they are quasi-conformally conjugate
and the conjugacy φ can be chosen such that ∂zφ = 0 almost everywhere on
Kf .
The relation between polynomial-like maps and an actual polynomial is given
in the Straightening Theorem ([16]):

Theorem (Douady, Hubbard)
Let f : U → U ′ be a polynomial-like map of degree d. Then, f is hybrid
equivalent to a polynomial of degree d. If Kf is connected, then P is unique
up to conjugation by an affine map.

Definition (analytic family)
Let Λ be a Riemann surface and F = {fλ : Uλ → U ′λ, λ ∈ Γ} be a family of
polynomial-like maps. Set

U = {(z, λ) : z ∈ Uλ}
U ′ = {(z, λ) : z ∈ U ′λ}

f(λ, z) = (λ, fλ(z)).

Then, F is called an analytic family of polynomial-like maps if it satisfies the
following properties:

• U and U ′ are homeomorphic over Λ to Λ× D

• the projection from the closure of U in U ′ to Λ is proper

• the map f : U → U ′ is holomorphic and proper.



16 CHAPTER 2. PRELIMINARIES AND NOTATION

We can define the set

MF = {λ ∈ Λ : Kλ is connected}

in analogy to the Mandelbrot set M.
Let F = {fλ : Uλ → U ′λ, λ ∈ Γ} be an analytic family of polynomial-like
maps of degree 2. For each λ ∈ MF , fλ is hybrid equivalent to a quadratic
polynomial of the form Qc(z) = z2 + c. The map

C : MF →M
λ 7→ c = C(λ)

is well-defined. We have the theorem

Theorem (Douady, Hubbard)
Let A ⊂ Λ be a closed set of parameters homeomorphic to a disk and contain-
ing MF , wλ the critical point of fλ and suppose that for each value λ ∈ Λ \A
the critical value fλ(wλ) ∈ U ′λ \ Uλ. Assume also that as λ goes once around
∂A, the vector fλ(wλ)− wλ turns once around the origin. Then, the map C
is a homeomorphism and it is analytic in the interior of MF .

A family F satisfying the hypothesis of this theorem is called Mandelbrot-like.

The proof of the following powerful tool can be found in [26], [29] or [53].

Lemma (generalized qc-Lemma)
Let f : C → C be a quasi-regular map. Assume that all iterates f n are
K−quasi-regular with a fixed K. Then there exists a quasi-conformal map
φ : C → C such that φ ◦ f ◦ φ−1 is analytic.

2.2 Baker domains and wandering domains

In this section we will give a short survey on Baker domains.
The first example of a Baker domain was given by Fatou in 1919, his example
was the function f(z) = z − 1 + ez (with minor changes in notation). The
left half plane is invariant with respect to f , and it is easy to see that the
sequence of iterates of f tends to the constant function ∞ on this half plane.
Hence, there is a Baker domain containing the left half plane. It also contains
all (infinitely many) singularities of the inverse function.
A significantly different example was given by Herman [28] in 1985, the func-
tion f(z) = z + iλ + e−z has for a suitable value of λ ∈ R a Baker domain
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again containing a half plane. This Baker domain does not contain singular
values.
Another example of a univalent Baker domain was given by Bergweiler ([7],
1995), he showed that the function f(z) = 2z + log 2− 2 + e−z also features
a univalent Baker domain.
In 1997, Baker and Dominguez [2] showed that the Fatou set of f(z) = z+e−z

contains infinitely many Baker domains, each of them is contained in a strip
of height 2π. Each of these Baker domains contains exactly one singular
value.
All of these examples have in common that the functions f are logarithmic
lifts of entire functions.
Examples of Baker domains not obtained by logarithmic lifts were given by
Rippon and Stallard in 1999 ([48] and [49]), they showed that for
a > 1, b > 0, k = 0, 1, . . . the function f(z) = az + bzke−z(1 + o(1)) has a
Baker domain containing a large part of the right half plane, if a = 1 then
there are infinitely many Baker domains and each of them is contained in a
horizontal strip.
The same authors also give functions having one or infinitely many p-cycles
of Baker domains for any p ∈ N . They show that in some of these examples,
f is univalent on such a p−cycle, while in other examples there are p−cycles
containing infinitely many critical values.
In 2001, Baranski and Fagella [3] proved the existence of an invariant, uni-
valent Baker domain which is approximately a logarithmic spiral.
Now we turn to general theorems on Baker domains. As mentioned in the
introduction, Baker domains of entire functions are necessarily simply con-
nected.
The first result on relations between the set of singular values and Baker
domains was given by Eremenko and Lyubich [19] who proved that if an
entire function has a Baker domain, then its set of singular values is un-
bounded. Herman observed that one can use Sullivan’s idea in the no-
wandering-domains-theorem for rational functions to show further connec-
tions, for example, that any cycle of Baker domains of f(z) = z + P (z)eQ(z),
where P and Q are polynomials, meets SV (f).
The result of Eremenko and Lyubich was strengthened by Bargmann ([4],
2001), who proved that if an entire function has an invariant Baker domain,
then there exist constants c > 1 and r0 > 0 such that
SV (f) ∩ {r < |z| < cr} 6= ∅ for all r > r0. On the other hand, there are
many examples of Baker domains not containing singular values. The exam-
ple of Bergweiler mentioned earlier even features a Baker domain U of an
entire function f such that the distance between U and the postsingular set
is strictly positive. Bergweiler gives in [10] some necessary conditions for the
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existence of univalent Baker domains.
Finally, Bergweiler showed in the same paper that if a, α > 0,
f(z) = z+a+ o(1) as z →∞ and |arg z| ≤ α and f is of finite order, then f
has a Baker domain U containing a sector of the form {|arg z| ≤ α,Re z > R}
and U ∩ SV (f) is unbounded.
Baker and Dominguez [2] proved statements on the boundary of unbounded
components of the Fatou set, in particular, that if U is a non-univalent Baker
domain of an entire transcendental function f , then the boundary of U is
highly disconnected and U has infinitely many accesses to ∞.
Baranski and Fagella [3] gave a classification of univalent Baker domains.
For a univalent Baker domain, the boundary can consist of one or two com-
ponents, the question if it can consist of more than two components is still
open.
A complete classification of Baker domains was given by König ([34], English
version in [35]), we only cite the part concerning entire functions:

Definition (absorbing domain, conformal conjugacy)
Let B be a Baker domain of the entire function f .
a)

A domain D ⊂ B is called absorbing for f if

• D is simply connected

• f(D) ⊂ D

• for all compact sets K ⊂ B there exists an n ∈ N such that f n(K) ⊂ D.

b)
Let H be the right half plane. A triple (D, φ, T ) is called a conformal

conjugacy if

• D ⊂ B is absorbing for f

• φ : B → Ω ∈ {H ,C } is analytic on B and univalent on D

• T : Ω↔ Ω is a Möbius transformation, φ(D) is absorbing for T

• for all z ∈ B we have Φ(f(z)) = T (Φ(z)).
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Theorem (König)
Let f be an entire transcendental function and U0, . . . , Up−1 a p−cycle of
Baker domains. Then there exists a conformal conjugation of f p in U0. We
can achieve that

• T (z) = z + 1 and Ω = C or

• T (z) = z ± i and Ω = H or

• T (z) = cz for some c > 1 and Ω = H .

These possibilities exclude each other.

In other words, Baker domains are linearizable on a subset.
König also gave a criterion to check which case of the theorem applies, in
the following theorem, ”f ∼ z + 1”refers to the first case in the preceding
theorem, etc..

Theorem (König)
Let B ⊂ C be a hyperbolic domain, f : B → B be a holomorphic function
with fn →∞ for n→∞, and (V, φ, T ) be a conformal conjugacy of f . For
w0 ∈ B set wn = fn(w0), dn = d(wn, ∂B). Then

f ∼ z + 1 ⇔ lim
n→∞

wn+1−wn
dn

= 0 for all w0 ∈ B
f ∼ z ± i ⇔ lim

n→∞
inf |wn+1−wn|

dn
> 0 for all w0 ∈ B

but inf
w0∈B

lim
n→∞

wn+1−wn
dn

= 0

f ∼ cz for some c > 1 ⇔ lim
n→∞

|wn+1−wn|
dn

> β for all w0 ∈ B, n ∈ N
and some β = β(f) > 0.

König shows that in the first case of his theorem the Baker domain always
contains a singular value.
Among various estimations for dynamics on Baker domains to be found in
the papers of Rippon and Stallard and in [6] we only mention the following
which implies some kind of ”speed limit” on Baker domains:
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Lemma (Bergweiler, Rippon, Stallard)
If B is an invariant Baker domain of the entire function f , then
a)

there exist a constant A > 1 and a path γ tending to ∞ such that
f(γ) ⊂ γ ⊂ B and |z|

A
≤ |f(z)| ≤ A|z| for all z ∈ γ and

b)
for any compact set K ⊂ B there exists an C > 1 such that

|fn(z′)| < C|fn(z)| for all n ∈ N and z, z′ ∈ K.

Hence, the convergence to ∞ on Baker domains is always quite slow, at
most of linear growth.

Since we will deal with some functions having wandering domains as well,
we recall some facts on wandering domains.
First of all, the result of Eremenko and Lyubich also states that functions
with a bounded set of singular values do not have wandering domains, nei-
ther. Fatou and Cremer proved that all limit functions on wandering do-
mains are constant. Clearly, all finite limit functions are contained in the
Julia set. This result was strengthened by Bergweiler, Haruta, Kriete, Meier
and Terglane [9], who showed that the set of limit functions is contained in
the set P (f)′ ∪ {∞}. A further known result is that if an entire function
has a wandering domain, then either the constant function ∞ is the only
limit function or there are infinitely many limit functions (this result can be
obtained by combining the results of Perez-Marco [47] and Bueger [11], it
was stated for the first time in [55]). In the first case, the wandering domain
is called a Baker wandering domain. Eremenko and Lyubich proved in [18]
that wandering domains of the second type exist, but no function having this
phenomenon is explicitly known. Also open is the question if the set of finite
limit function is always unbounded in this case.
Baker showed that in Baker wandering domains there are no limitations of
the speed of convergence towards ∞, in contrary to the dynamics on Baker
domains, as we have seen above.
There are plenty of examples of wandering domains, free of singular values
or not, or with any given connectivity. But it is not known if it is possible to
have a wandering domain U of an entire transcendental function such that
the distance between the forward iterates of U and the postcritical set is
strictly positive, as is possible for Baker domains (obviously, wandering do-
mains having this property are Baker wandering domains). In section 3.1.1
we will use a necessary condition for this to happen.
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Finally, note the following definition:

Definition (asymptotic path)
Let f be an entire transcendental function having wandering domains. We
say that two wandering domains V,W are equivalent if there exist m,n ∈ N
such that fm(V ) and fn(W ) are contained in the same Fatou component. An
equivalence class of this relation is called asymptotic path.

The term of asymptotic path is also referred to as ”large orbit”.
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2.3 Notation

Most of the notations we will use are standard notations, but some are not,
so here is a list:

C = C ∪ {∞}
C ∗ = C \ {0}
D(M,R) = {z : |z −M | < R} where M ∈ C , R > 0
D = D(0, 1)
D ∗ = D \ {0}
H+ = {z : Im z > 0}
N = {1, 2, . . .}
N 0 = {0, 1, 2, . . .}
R +

0 = R + ∪ {0}
MC = C \M
||f ||K = maxz∈K |f(z)| for compact sets K
d(·, ·) denotes the Euclidean distance between points or a point and a set
[·, ·]U denotes the hyperbolic metric on a hyperbolic domain U
dist (·, ·) denotes the Hausdorff distance between two sets
O+(·) denotes the forward orbit of a set or a point
O−(·) denotes the backward orbit of a set or a point
O(·) denotes the union of forward and backward orbit of a set or a point
B denotes the set of Brjuno numbers
rad(D) denotes the radius of a round disk D.



Chapter 3

Results

3.1 A one-parameter family

We will study the family of entire transcendental functions given by
Fb = {gb : C → C , gb(z) = z − 1 + bzez}.

3.1.1 The dynamical plane

Fix a b ∈ C ∗.

3.1.1.1 Existence of a Baker domain

Theorem 1
The Fatou set of gb contains an invariant Baker domain Bb. For δ ∈ (0, 1)

and a sufficiently large R > 0 the set {z : |bzez| < δ,Re z < −R} ⊂ Bb is an
absorbing domain for gb.

Concerning the dynamics on the Baker domain we have the following

Proposition 1
a)

For all z ∈ Bb, g
n+1
b (z)− (gnb (z)− 1) tends to 0 as n tends to ∞.

b)
For any compact set K contained in the Baker domain Bb the set
{Im z : z ∈ ⋃∞i=0 g

i
b(K)} is bounded.

We also have absorbing domains in the form of sectors:

Corollary 1
For any sufficiently small v ∈ R − and α ∈ (0, π), the set
{z : | arg (z − v)− π| < α} is an absorbing domain of gb.

23
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Figure 3.1: The Julia set of g1 is shown in black, the grey set is the absorbing domain
as given in the theorem with δ = 0.5 and R = 1.
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3.1.1.2 Singular values

First, we state the following result on the type of singular values:

Lemma 1
gb has no asymptotic values and the set of critical values is unbounded.

Concerning the critical values, we have the following crucial result:

Theorem 2
Bb contains all critical points of gb except for at most one.

This point, provided its existence, will be called the free critical point. We
will see that we can find a function b 7→ z0(b) holomorphic on C \R +

0 , where
z0(b) is the free critical point of gb, provided its existence (if it does not exist,
z0(b) is just some critical point contained in Bb). In the case b ∈ R + the
free critical point does not exist (see the lemma below). In this sense, the
free critical point moves ”nicely”, and the fact that we cannot define it for
all parameters does not cause any inconveniences.

Lemma 2
If b ∈ R +, then all critical points of gb are contained in Bb.

3.1.1.3 Components and geometry of the Fatou set

An important tool will be the following proposition.

Proposition 2
For all bounded sets M ⊂ C there exists a domain V ⊃ M such that the

triple (gb, V, gb(V )) is a polynomial-like map.

The number of additional periodic Fatou components is limited:

Proposition 3 (number of non-repelling cycles)
There exists at most one cycle of non-repelling periodic points of gb and
Bb is the only Baker domain in F (gb). Furthermore, all components of the
Fatou set are simply connected and all (preimages of) attracting or parabolic
domains or Siegel disks are bounded.
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The ”skeleton” of the Fatou set is described as follows:

Proposition 4
i)

There are Jordan curves Γk, k ∈ Z \ {0}, such that

• all Γk are pairwise disjoint

• each Γk is forward invariant and contained in Bb

• each Γk contains exactly one critical point

• each Γk is contained in a horizontal strip of height 5π

• each component S of C \⋃k∈Z \{0} Γk, except for at most one, is mapped

biholomorphically to C \(γ1∪γ2), where γ1, γ2 are Jordan arcs contained
in ∂Sk

• each Γk stretches from ”−∞” to ”∞”

• if b ∈ C \R +
0 , then

⋃
k∈Z \{0} Γk contains all critical points of gb except

for z0(b), if b ∈ R +, then all non-real critical points are contained in⋃
k∈Z \{0} Γk, so at most two are ”missing”.

ii)

J(gb) is thin at ∞, more exactly, there exists an ε > 0 such that for all
but finitely many k ∈ Z \ {0} the ε−neighborhood of Γk is contained in Bb.

Remark 1
Using the same arguments as in [30] one can show that each component of
C \⋃k∈Z \{0} Γk except for at most one contains a repelling fixed point located
on the boundary of Bb. This point is also called Denjoy-Wolff point.

Remark 2
Using a theorem of Stallard in [52] it immediately follows that if the free
critical point does not exist or is contained in the preimage of the Baker
domain or attracted by an attracting cycle, then the Lebesgue measure of the
Julia set of gb is equal to 0.
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3.1.1.4 On the existence of wandering domains

The function gb has an infinite-dimensional Teichmüller space. Hence, we
cannot follow Sullivan’s idea to prove the non-existence of wandering do-
mains, but we can give some criterions to rule out their existence.

Theorem 3
If gb has a wandering domain V , then

• there are no non-repelling periodic points

• the sequence of iterates of gb has infinitely many limit functions on V ,
including ∞

• the free critical point exists and is contained in the Julia set, but not in
the boundary of a wandering domain (in particular, it is not contained
in a wandering domain!). The sequence of its iterates has infinitely
many accumulation points, including ∞

• b 6∈ R .

In particular, gb has no Baker wandering domains.
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3.1.2 The parameter plane

Let B(Fb) = {z : all critical points of gb are contained in Bb}.

Proposition 5
B(Fb) is open, and all components of B(Fb) ∪ {0} are simply connected.

Having a result in the next section in mind, we prove

Theorem 4
The parameter plane of Fb contains a copy of the Mandelbrot set. The main

cardiod contains all parameters corresponding to functions having attracting
fixed points.

Figure 3.2: Parameter plane of Fb, the set
B(Fb) is shown in white.
Range:[−57.5, 17]× [−50, 50]
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Figure 3.3: Zoom of the parameter plane of Fb, range:[−5.45,−2.15]× [−2.2, 2.2]
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3.1.3 A related family

Let Fa = {fa : C → C , fa(z) = z − 1 + (1 − az)ez}. A short calculation

shows that if gb(z) = z− 1 + bzez, fa(z) = z− 1 + (1− az)zez and −ae 1
a = b,

then gb and fa are conjugated via the linear map z 7→ z + 1
a
. Using this

conjugacy we can immediately transfer the results on the dynamical plane of
Fb to all functions in Fa, except for the case a = 0. In this case we have the
following

Lemma 3 (a = 0)
f0 has no wandering domains, and the only periodic Fatou component is a

Baker domain which contains all critical points.

0 is some kind of singularity in the parameter plane:

Theorem 5
In the parameter plane of Fa there exists a sequence of copies of the Mandel-

brot set of period one (i.e. all parameters in the main cardiods correspond to
functions having attracting fixed points) tending to the set {0} in the Haus-
dorff metric. There also exists a 2:1-covering of the Mandelbrot set.

LetB(Fa) = {z : all critical points of fa are contained in the Baker domain of fa}.
This gives the next at first sight surprising result.

Corollary 2
B(Fa) \ {0} is open, but B(Fa) is not open.

An explanation to this phenomenon is the

Lemma 4
The set of critical points does not move continuously in 0 (with respect to the
Euclidean metric).

More precisely, there are sequences an → 0 such that fan has an ”additional”
critical point zn such that |Re zn| → ∞, while the critical points of f0 are
contained in the imaginary axis. This additional critical point makes it pos-
sible that there are non-repelling cycles for fan , while such cycles do not exist
for f0.

Remark 3
Using that the absorbing domains can be taken such that they move con-
tinuously one can show that if fa has no parabolic cycles, Siegel disks or
wandering domains, then Julia set moves continuously in a with respect to
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the Hausdorff metric, even in a = 0. On the other hand, there are parame-
ters such that the Julia set does not move continuously there, as can be seen
from the existence of Mandelbrot-like families and the discontinuities of the
Julia set for the quadratic family.

Figure 3.4: Parameter plane of Fa,
the set B(Fa) is shown in white.
Range: [−12.5, 62.5]× [−50, 50]

Figure 3.5: Zoom of the parameter
plane of Fa, range: [−0.25, 4.25]×
[−3, 3]
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Figure 3.6: Zoom of the parameter plane of Fa, range: [−0.025, 0.185]×[−0.14, 0.14]
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Figure 3.7: Zoom of the parameter plane of Fa, range: [0.041, 0.059]× [0.098, 0.122]
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3.2 Generalization

Let F = {f : C → C : f(z) = z−c+P (z)eaz,Re ac > 0, 0 6≡ P a polynomial}.
We will transfer some results from the preceding section to this more general
class of functions and provide the properties we will need in the subsequent
chapters.
A simple calculation gives

Remark 4
The class F is closed with respect to affine conjugations.

In the following, let f ∈ F , so f(z) = z − c+ P (z)eaz and a, c, P as above.

Lemma 5
f is a logarithmic lift of an entire function if and only if P is constant and
a = 1.

We will take a closer look at functions obtained by logarithmic lifts in section
3.4.1. Concerning the singular values we have the following:

Lemma 6
f has no asymptotic values.

Our previous methods are sufficient to establish the existence of Baker do-
mains.

Theorem 6
The Fatou set of f contains a Baker domain B, and for δ ∈ (0, 1) and

sufficiently large R > 0 the set
Dδ,R = {z ∈ C : |P (z)eaz| < δ,Re az < −R} ⊂ B is an absorbing domain
for f . For all points z ∈ B, fn+1(z)− (fn(z)− c)→ 0 as n tends to ∞.

Corollary 3
B is an example of the first case in König’s classification of Baker domains.

Remark 5
We can take δ and R such that Dδ,R does not contain singular values.

If we restrict our class of functions, then we can make a statement on the
number of free critical values.

Proposition 6
If Re ac > 0.3, then B contains all but finitely many critical values of f .
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This proposition reduces the number of possible periodic Fatou components.

Lemma 7
Let h(z) = z − c. There exists an absorbing domain D of B and a constant
M > 0 such that for all compact sets K ⊂ D and all n ∈ N we have
d(fn(K), hn(K)) < M .

These Baker domains have some features in common with invariant Leau do-
mains; the same functional equation is satisfied (on the absorbing domains),
and all points tend to ∞ along a unique attracting direction, which is illus-
trated by the following picture of the Julia set of f(z) = z−1+ez conjugated
with z 7→ 1

z
:

Figure 3.8:
Range: [−0.2, 0.2]× [−0.3, 0.3]

Remark 6
In particular, if a and c are in R , then for any compact set K contained in
the Baker domain the set {Im z : z ∈ ⋃∞i=0 f

n(K)} is bounded.

Again, we can also find absorbing domains of a simpler form:

Remark 7
For any α ∈ (0, π) there exists a m ∈ R − such that the sector
{z : |arg (z −m)− arg c| < α} is an absorbing domain.
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Remark 8
With some more technical work one may prove that for each f ∈ F there
exist approximately horizontal channels contained in the Baker domain (as
for the special case treated earlier). Having established this, the results on
wandering domains and the existence of polynomial-like maps for Fa carry
over to F (with some obvious changes), in particular, the absence of Baker
wandering domains if f(z) = z − c + P (z)ez and Re c > 0.7.

Figure 3.9: The Julia set of f(z) = z−1−i+z3ez

is shown in black, the grey set is the absorbing
domain as given in the theorem with δ = 0.5
and R = 5
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3.3 Approximation of Julia sets

We will deal with the following problem: If we have a sequence of entire
functions fn converging locally uniformly on compact subsets, do we have

lim
n→∞

J(fn) = J( lim
n→∞

fn)?

In general, the answer is ”no”, as we will see below, but the question has
been answered more detailed, depending on the type of Fatou components
of the limit function.

3.3.1 Preliminaries

To talk about convergences, we need a metric. This will be provided in this
section (cf. [42]).
Let ρ be the chordal metric on C . The ε−neighborhood of a closed set A
with respect to the hyperbolic metric is denoted by Uε(A). Let A and B be
non-empty compact sets in C . The Hausdorff distance dist (A,B) is defined
by

dist (A,B) = inf{ε > 0 : A ⊂ Uε(B), B ⊂ Uε(A)}.
This distance defines the Hausdorff metric on the set of all non-empty com-
pact sets in C . Let K and Kn be non-empty compact sets in C . We say
that Kn converges to K in the Hausdorff metric if dist (Kn, K) → 0 as n
tends to ∞.
The following property of Julia is also referred to as lower semicontinuity.
Henceforth, ”converge” means ”converge locally uniformly on compact sub-
sets”.

Lemma 8 (lower semicontinuity, [15],[42])
Let fn and f be entire functions. If fn converges to f , then, for an arbitrary
ε > 0, there exists an N > 0 such that

J(f) ⊂ Uε(J(fn))

for all n > N .

The proof is based on the fact that the Julia set is equal to the set of re-
pelling periodic points. Hence, if we take any z ∈ J(f), we can find in a
ε/2−neighborhood of z a repelling periodic point of f , by the Hurwitz the-
orem we then obtain that all but finitely many fn have repelling periodic
points in the ε−neighborhood of z.
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Definition 1 (Carathéodory convergence of open sets)
Let O and On be open sets in C . We say that On converges to O in the
Carathéodory sense if the following two conditions hold:

• for any compact set I ⊂ O we have I ⊂ On for all but finitely many
n ∈ N

• if an open set U is contained in Om for infinitely many m ∈ N , then
U ⊂ O.

The two ideas of convergence defined above have the following relationship:

Lemma 9
Non-empty compact sets Kn converge to K in the Hausdorff metric if and
only if the complements KC

n of Kn converge to the complement KC of K in
the Carathéodory sense.

The lemma on semicontinuity is rephrased as follows:

Lemma 10
Assume that entire functions fn converge to f locally uniformly. If for an
open set U U ⊂ F (fn) holds for all but finitely many n, then U ⊂ F (f).

Finally, we introduce a term which is slightly weaker than convergence in the
Carathéodory sense:

Definition 2 (approaching of open sets)
Let O and On be open sets in C . We say that On approach O if

• for any compact set I ⊂ O we have I ⊂ On for all but finitely many
n ∈ N and

• for any ε > 0, ∂O ⊂ Uε(∂On) for all but finitely many n ∈ N .

An example of a sequence of Fatou components which approach an open set
but do not converge to it are the basins of attraction of∞ of the polynomials
Qn(z) = z2 + 0.25 + 1

n
that approach the basin of ∞ of

Q0.25(z) = z2 + 0.25, but do not converge to it. An example of Fatou sets
of a sequence of functions that do not approach the Fatou set of the limit
function is given by fn(z) = (1

e
+ 1

n
)ez, where F (fn) = ∅ for all n ∈ N , but

F ( lim
n→∞

fn) is not empty, since it contains a Leau domain. It is easy to check

that we have the following criterion for approaching (forward and backward)
orbits of Fatou components:



3.3. APPROXIMATION OF JULIA SETS 39

Lemma 11
Assume that fn converges to f locally uniformly and let U be a Fatou compo-
nent of f . If for any compact set K ⊂ U we find an m ∈ N such that fm(K)
is contained in Fatou components Un of fn for all but finitely many n ∈ N ,
then O(Un) approaches O(U). If all Fatou components of f are approached
by Fatou components of fn, then J(fn)→ J(f) in the Hausdorff metric.

We remark that the set of all non-empty compact sets in C is pre-compact
(cf. [15]), so for any sequence of non-empty compact sets Kn we find a
converging subsequence.

3.3.2 Known results

We recall some known results on the continuity of Julia sets.

Theorem 7
If fn, n ∈ N , are entire functions converging to a function f , ∞ ∈ J(f)
and F (f) consists of attracting basins only, then J(fn) tends to J(f) in the
Hausdorff metric. In particular, this conclusion holds if J(f) = C .

The condition ∞ ∈ J(f) is necessary to avoid some pathological cases such
as a sequence of entire transcendental functions tending to a polynomial.

Remark 9
In general, attracting basins of finite periodic points do not cause any dis-
continuities of Julia sets. If we have a sequence fn tending to f , where F (f)
contains an attracting basin A, then for sufficiently large n the Fatou sets of
the approximating functions contain attracting basins An such that ∂O(An)
approaches ∂O(A). The proof of this fact relies on Hurwitz’ theorem stating
that if f has an attracting fixed point z then all but finitely many of the ap-
proximating functions fn have attracting fixed points zn such that zn → z.

If we leave the smooth world of attracting cycles, we have to face more com-
plicated situations, even if the functions we are dealing with are comparably
simple:
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Theorem 8 (Douady, [15])
Let P d the set of polynomials of degree d.
a)
If f0 ∈ P d has a parabolic cycle, then the functions f 7→ J(f) and f 7→ K(f),
where K(f) is the filled Julia set of f , are not continuous at f0 in P d.
b)
If f0 ∈ P d has a Siegel disk but no parabolic cycle, then the function f 7→ J(f)
is not continuous at f0, but f 7→ K(f) is continuous at f0 in P d.

Figure 3.10: Filled Julia set of
Q0.25(z) = z2 + 0.25

Figure 3.11: Filled Julia set of
Q0.25393+0.00046i(z) = z2+0.25393+
0.00046i

Hence, the case of Siegel disks is ”tame”, while the case of parabolic cycles
is not. This rich phenomenon is called ”parabolic implosion”, it also helped
to better understand features of rational functions, for examples to prove
that the Hausdorff dimension of the boundary of the Mandelbrot set is 2 or
the existence of rational maps where the Hausdorff dimension of the Julia
set is arbitrarily close to 2. The parabolic implosion has been studied in
detail (see ([15], [38], [45], [46] and [51]), it has been found that if the Fa-
tou set of a rational function f0 of degree d consists of parabolic domains
only (or their preimages), and fn → f is a sequence of rational functions
of degree d, then any possible limit set of the Julia sets of fn can be de-
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scribed in terms of a so-called Julia-Lavaurs set. This set is defined by
J(f0, g) = {z : gm(z) ∈ J(f0) for some m ≥ 0}, where g is a holomorphic
map defined in the parabolic basins. Some properties of these Julia-Lavaurs
sets have been revealed, for example, they always have empty interior if f0

is a polynomial.
One can say more if one restricts the set where the approximating functions
come from. For example, it is known that if we take the quadratic polyno-
mials Qc(z) = z2 + c and approach Q1/4, then there are only finitely many
directions in the c−plane causing discontinuities.

3.3.3 Approximation of functions having Baker domains

For Baker domains and wandering domains a corresponding theory has not
been set up yet. Morosawa gave in [41] and [42] examples of Baker domains
and wandering domains which are approximated by polynomials such that
the Julia sets of the polynomials converge to the Julia set of the limit function
in the Hausdorff metric. If we use the functions we considered in the last
section, we will obtain the following:

Theorem 9
Let P be a polynomial not vanishing everywhere, a, c ∈ C such that

Re ac > 0 and f(z) = z − c + P (z)eaz. Let B be the Baker domain of f
studied in 3.2.
a)
If Pn(z) = (1− c

n
)z − c + P (z)(1 + az

n
)n, then there exist Fatou components

Bn of Pn such that the ∂O(Bn) approaches ∂O(B). In particular, if f has
no wandering domains, Siegel disks or parabolic cycles and only one Baker
domain, then J(Pn) converges to J(f) in the Hausdorff metric.
b)
If Qn(z) = z − c+ P (z)(1 + az

n
)n and ac ∈ [1, 2), then J(Qn) 6→ J(f) in the

Hausdorff metric.

In general there may be discontinuities in case a) as well, but the Baker
domain is not the ”culpable” for that. The restriction of the values of ac
in b) is necessary for our proofs, since we use the fact that the polynomials
Qn have attracting fixed points and that these basins intersect the Baker
domain. If ac 6∈ D(1, 1), then Qn has no attracting fixed points anymore.
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Remark 10
Morosawa studied the sequence P̃n(z) = (1 − 1

n
)z − 1 + n−1

n+1
(1 + z

n
)n+1 and

proved that the Julia sets of P̃n converge to the Julia set of f(z) = z−1+ez in
the Hausdorff metric. Using symmetry arguments he showed that all critical
points of P̃n tend to the same finite attracting fixed point, so the Julia set of
P̃n is a simply closed curve, even a quasicircle. Fagella proved in [20] that the
Julia sets of all gλ, λ ∈ C ∗, contains Cantor Bouquets. Using the lift once
more we obtain that the Julia set of the limit function f contains a Cantor
Bouquet, so we have the result that this very complicated structure in J(f)
is approximated by ”smooth” curves!
The proofs of Morosawa can be generalized to all functions of the type
f(z) = z − c+ ez, c ∈ {z : Re z > 0} (if we set
P̃n(z) = (1− c

n
)z−c+n−c

n+1
(1+ z

n
)n+1), the result of Fagella gives us the existence

of Cantor Bouquets for all of these functions as well. Further generalizations
seem to be difficult, for one reason because the existence of Cantor Bouquets
is more difficult to prove if f is not a lift of an entire functions, for another
reason, since the Fatou set of such an f may contain several periodic Fatou
components, so in general the Julia set of the approximating polynomials is
not a simply closed curve (but still might be a closed curve).

One remaining question is how grave the discontinuity of the Julia set in part
b) of the theorem is. The computer pictures seem to support the

Conjecture 1
∂ limn→∞K(Pn) = J(f).

If this was true we could speak, in analogy of the Siegel disk case men-
tioned in section 3.3.2, of ”tame” discontinuities.

Remark 11
Numerical experiments suggest that the sequence of sets J(Qn) does not con-
verge, but the sequences J(Q2n) and J(Q2n+1) do (to different limit sets).
In the special case Qn(z) = z − 1 + (1 + z

n
)n it is easy to verify that −2n is

a super-attracting fixed point of Qn if n is even, while for odd n R − belongs
to the immediate basin of ∞.

Remark 12
The existence of parabolic periodic points for the limit function does not nec-
essarily mean that the Julia sets of the polynomials do not converge. For
example, if we look at the function fa(z) = z − 1 + (1 − az)ez, a ∈ C ,
again, then we see that 0 is a parabolic periodic point of f1. The polynomials
Pn(z) = (1 − 1

n
)z − 1 + (1 − z)(1 + z

n
)n have attracting fixed points at 0.
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Figure 3.12: Julia set of
f(z) = z − 1 + ez,
range:[−7.5, 7.5]× [−10, 10]

Figure 3.13: Filled Julia set of
P32(z) = (1− 1

32
)z− 1 + (1 + z

32
)32,

range:[−71.75,−7.75]× [−55, 55]

Figure 3.14: Filled Julia set of
P1024(z) = 1023

1024
z−1+(1+ z

1024
)1024,

range:[−2299, 251]× [−1700, 1700]
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Figure 3.15: Filled Julia set of
P32(z) = (1− 1

32
)z− 1 + (1 + z

32
)32,

range:[−7.5, 7.5]× [−10, 10]

Figure 3.16: Filled Julia set of
P1024(z) = 1023

1024
z−1+(1+ z

1024
)1024,

range:[−7.5, 7.5]× [−10, 10]

Figure 3.17: Filled Julia set of
Q32(z) = z − 1 + (1 + 1

32
)32,

range:[−71.75,−7.75]× [−55, 55]

Figure 3.18: Filled Julia set of
Q1024(z) = z − 1 + (1 + 1

1024
)1024,

range:[−2299, 251]× [−1700, 1700]
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Figure 3.19: Filled Julia set of
Q32(z) = z − 1 + (1 + z

32
)32,

range:[−7.5, 7.5]× [−10, 10]

Figure 3.20: Filled Julia set of
Q1024(z) = z − 1 + (1 + z

1024
)1024,

range:[−7.5, 7.5]× [−10, 10]

Figure 3.21: Filled Julia set of
Q32(z) = z − 1 + (1 + z

32
)32,

range:[−35.75,−28.25]× [−5, 5]

Figure 3.22: Filled Julia set of
Q1024(z) = z − 1 + (1 + z

1024
)1024,

range:[−35.75,−28.25]× [−5, 5]
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Figure 3.23: Filled Julia set of
Q1025(z) = z − 1 + (1 + z

1025
)1025,

range:[−7.5, 7.5]× [−10, 10]

Figure 3.24: Filled Julia set of
Q1025(z) = z − 1 + (1 + z

1025
)1025,

range:[−35.75,−28.25]× [−5, 5]

Figure 3.25: Filled Julia set of
Q1024(z) = z − 1 + (1 + z

1024
)1024

conjugated with z 7→ 1
z
,

range:[−0.375, 0.375]× [−0.5, 0.5]

Figure 3.26: Filled Julia set of
Q1025(z) = z − 1 + (1 + z

1025
)1025

conjugated with z 7→ 1
z
,

range:[−0.375, 0.3755]× [−0.5, 0.5]
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We already know that we can find a domain U containing 0 such that f1 is
polynomial-like of degree 2 on U . Since this property is stable under pertur-
bation, we find domains Un containing 0 such that Pn is polynomial-like of
degree 2 on Un. Using the straightening theorem we see that each Pn is hybrid
equivalent to a quadratic polynomial Qcn, where Qcn = z2 + cn, cn ∈ (−3

4
, 1

4
)

and cn → 1
4

as n tends to ∞. f1|U is hybrid equivalent to Q 1
4
. In various

papers it has been found that J(Qcn) → J(Q 1
4
) in the Hausdorff metric, so

J(Pn)→ J(f1).
Another way to come to the same conclusion is to use McMullen’s theorems
in section 4.4.
For Siegel disks we can do even better in this family: since the filled Julia
sets of quadratic polynomials having Siegel disks move continuously, also the
closure of the attractive basin of ∞ of these polynomials moves continuously.
Using the straightening map we can transfer this result to the family Fa,
yielding that the Baker domains move continuously even if there are Siegel
disks.

3.4 Bifurcations of Baker domains

In this section we will investigate the limit processes
fc(z) = fc1+ic2(z) = z− c1− ic2 + ez → fic2 and study the limit functions. In
particular, we are interested in what happens to the Baker domains and if
these changes are ”smooth”. This will give us Baker domains of a different
case of König’s classification than before and examples of instable Baker
domains and wandering domains. We will see that if we approach these limit
functions with polynomials we will obtain similar results as in the preceding
section.

3.4.1 The dynamical plane

Our main tool will be the fact that each fc is a logarithmic lift of an entire
transcendental function, an easy calculation shows that if gλ(z) = λzez and
λ = e−c, then exp ◦fc = gλ ◦ exp.
The family {gλ(z) = λzez, λ ∈ C ∗} has been intensively studied, for example
in [20], [21] and [27], while the case fc, c ∈ R +, is examined in [43].
Before we state a theorem, recall the definition of the Brjuno set:
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Definition 3 (Brjuno set)
Let θ ∈ R \Q and (pn

qn
)n∈N be the rational approximations to θ coming from

the continued fraction expansion. The set of Brjuno numbers is defined as

B = {θ ∈ R \Q :
∑

n∈N

log qn+1

qn
<∞}.

Our main result in this section is the

Theorem 10
Let fc(z) = z − c+ ez, c ∈ iR . We have the following possibilities:
a)
If c = 0, then the Fatou set of fc consists of infinitely many Baker domains
and their preimages.
b)
If c = 2πip/q, p/q ∈ Q \ {0}, (p, q) = 1, then the Fatou set of fc consists of
wandering domains only. Let k be the smallest integer larger than |p/q|, then
the number of asymptotic paths of wandering domains is equal to k times the
number of parabolic petals of gexp(−c) at 0.
c)
If c = 2πiα, where α is contained in the Brjuno set, then the Fatou set of fc
consists of a univalent Baker domain and its preimages.
d)
If c = 2πiα, where α is irrational and not contained in the Brjuno set, then
the Fatou set of fc is empty.

Remark 13 All results we will use for the case λ ∈ D ∗ can be found in
section 3.2; actually, it is easy to see a little bit more: it has been proved that
gλ is structurally stable if λ ∈ D ∗ ([31]), so for λ1, λ2 ∈ D ∗ the functions
gλ1, gλ2 are quasiconformally conjugate. Using the same ideas as in [14] we
can see that the Baker domain is in fact the only Fatou component of f− lnλ0

for some λ0 ∈ D ∗ and therefore for all λ ∈ D ∗, so these Baker domains are
completely invariant as are the coresponding attracting basins of gλ.

In section 4.4 we will give details on the location of the singular values of fc,
but since we do not need that in the following chapters, we did not include
this in our theorem.
We note that the Baker domain can vanish or split into infinitely many
components; König remarked that in the cases a) and c) the Baker domains
belong to the second class of his classification, so in any case the functions
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are dynamically distinguishable from the functions we dealt with in section
2.3.

3.4.2 Radial continuity of Julia sets

If we have a holomorphically parameterized family of rational maps and a
sequence of parameters contained in a hyperbolic component approaches a
point on the boundary ”nicely” (that is, not tangential to the boundary), then
the corresponding Julia sets converge to the Julia set of the limit function
(see [36]). For entire transcendental functions this result is not known, but
at least in our special case the analogous result holds:

Theorem 11
For λ ∈ ∂D and ε > 0, J(g(1−ε)λ) converges to J(gλ) as ε tends to 0.

Using the lift, we obtain the corresponding result for our family {fc}:

Corollary 4
Let c ∈ R and ε > 0. Then J(fε+ic) converges to J(fic) as ε tends to 0.

Remark 14
Morosawa and Taniguchi [43] proved this result for c = 0 directly in the
c−plane, but it seems to be difficult to carry over their method to all c ∈ R .
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Figure 3.27: Julia set of
f(z) = z − 1 + ez,
range: [−7.5, 7.5]× [−10, 10]

Figure 3.28: Julia set of
f(z) = z − 0.000001 + ez,
range: [−7.5, 7.5]× [−10, 10]

Figure 3.29: Julia set of
f(z) = z − 1 + iπ

2
+ ez,

range: [−7.5, 7.5]× [−10, 10]

Figure 3.30: Julia set of
f(z) = z − 0.01 + iπ

2
+ ez,

range: [−7.5, 7.5]× [−10, 10]
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Figure 3.31: Julia set of
f(z) = z − 1 + i(1 +

√
5)π + ez,

range: [−7.5, 7.5]× [−10, 10]

Figure 3.32: Julia set of
f(z) = z − 0.01 + i(1 +

√
5)π+ ez,

range: [−7.5, 7.5]× [−10, 10]
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3.4.3 Approximation of Baker domains and wandering
domains

Again, we can approximate the functions f(z) = z − c + ez, c ∈ iR , with
polynomials and ask if the Julia sets of the polynomials converge to the Julia
sets of the limit functions. The following theorem shows that the results are
similar to the results in section 3.3.

Theorem 12
Let f(z) = z − c + ez, c ∈ iR . Then there exists a sequence of entire

transcendental functions fn and sequences Pn and Qn of polynomials such
that fn → f, Pn → f and Qn → f and
a)

J(fn) = C for all n ∈ N
b)

J(Pn)→ J(f) in the Hausdorff metric
c)

If c
2πi
∈ Q ∪ B , then J(Qn) 6→ J(f) in the Hausdorff metric. In par-

ticular, we can take the polynomials Qn such that J(Qn) → C 6= J(f). If
c

2πi
6∈ Q ∪ B , then such a sequence of entire functions gn with

gn → f, J(gn) 6→ J(f) in the Hausdorff metric does not exist.

Of course, the case c
2πi
∈ Q provides a direct link between the parabolic

implosion and the instability of Baker domains.
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Figure 3.33: Filled Julia set of
f(z) = z − 0.01 + (1 + z

32
)32,

range: [−71.75,−7.75]× [−55, 55]

Figure 3.34: Filled Julia set of
f(z) = z − 0.01 + (1 + z

1024
)1024,

range: [−7.5, 7.5]× [−10, 10]

Figure 3.35: Filled Julia set of
f(z) = z − 0.01 + iπ

2
+ (1 + z

32
)32,

range: [−71.75,−7.75]× [−55, 55]

Figure 3.36: Filled Julia set of
f(z) = z−0.01+iπ

2
+(1+ z

1024
)1024,

range: [−7.5, 7.5]× [−10, 10]
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Figure 3.37: Filled Julia set of
f(z) = z−0.01+ i(1+

√
5)π+(1+

z
32

)32,
range: [−71.75,−7.75]× [−55, 55]

Figure 3.38: Filled Julia set of
f(z) = z−0.01+ i(1+

√
5)π+(1+

z
1024

)1024,
range: [−7.5, 7.5]× [−10, 10]
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3.4.4 Stability

König raised the question which of his classes of Baker domains are stable
under perturbations. Using our previous results we may answer this question
for our one-parameter-families.
In the following, a ”Baker domain of type 1” is a Baker domain belonging to
the first class of König’s theorem, etc..
In 3.3 we have seen that Baker domains of type 1 can be stable. Our results
in 3.4.1 give that Baker domains of type 2 may be unstable. To make this
statement more precise, we formulate the

Lemma 12
Let fc(z) = z − c + ez, c ∈ C .
fc has a Baker domain if and only if one of the following holds:
a)

Re c > 0 or
b)

c = 0 or
c)

c
2πi
∈ B .

In the first case and second case the Baker domains of fc are of type 1, in
the third case all Baker domains are of type 2.

Hence, the set {c : fc has a Baker domain of type 1} is the right half
plane plus the point 0; the set {c : fc has a Baker domain of type 2} is a
Cantor set, in particular, it has empty interior.
On the other hand, we can find a holomorphically parameterized family such
that a function fc, where Re c > 0, is not stable in this family; recall that by
Bergweiler’s estimations on Baker domains for any invariant Baker domain B
of an entire transcendental function f we can find a forward invariant curve
γ ⊂ B such that |f(z)| < A|z| for some A > 0. Hence, γ is an asymptotic
path of the asymptotic value 0 of the meromorphic function
g : C → C ; z 7→ f(z)

z2 . Now consider for a fixed c contained in the right half
plane the functions fλ,c(z) = λz2 + z − c + ez. Clearly, fλ,c → fc as λ → 0.
Since 0 is the only asymptotic value of the function z 7→ ez

z2 , g has only one
asymptotic value, namely λ. We deduce that fλ,c has no invariant Baker do-
main if λ 6= 0, so the set {λ : fλ,c has an invariant Baker domain of type 1}
has empty interior. But this case might be an example of a singularity in the
parameter plane as in 3.1.3, since it is easy to check that the set of critical
points does not move continuously with respect to the Euclidean metric in
0.
The result of Rippon and Stallard mentioned in the introduction gives that
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there exists holomorphically parameterized families such that all of these
functions have Baker domains of type 3, for example, all of the functions
fλ(z) = 2z + λez, λ ∈ C ∗, have such a Baker domain. Using the same argu-
ment as above we see that the set
{λ : gλ,c has an invariant Baker domain of type 3} = {0} if we define gλ by
gλ(z) = λz2 + 2z + ez.
In an analogous manner one can do this for Baker domains of type 2 as well.
So, functions having Baker domains can be imbedded in families making them
stable or unstable, comparably to functions having parabolic cycles or Siegel
disks. None of these types is always stable as are attracting basins. Never-
theless, by restricting the space of functions we may try to obtain stronger
results:
Let g be an entire transcendental function of bounded type such that g(0) = 0
and O−(0) = {0}. Then g(z) = λzmeh(z), where λ ∈ C ∗, m ∈ N and h is
entire. By Bergweiler’s result in [8] there exists a logarithmic lift f of g.
Using the linearizations of Fatou components of g one can see that f has a
Baker domain of type 3 if and only if g has a super-attracting fixed point
at 0 (this happens if and only if m > 1), f has a Baker domain of type
1 if and only if g has a parabolic fixed point at 0 with only one petal at-
tached to 0 or an attracting but not super-attracting fixed point at 0, and
f has a Baker domain of the second type iff 0 is the center of a Siegel disk.
If we perturb g we see how the Baker domain of f changes (or does not
change). A closer look reveals that for any family F = {fλ}λ∈Λ holomor-
phically parameterized by a complex manifold Λ of such functions the set
M2 = {f ∈ F : f has a Baker domain of type 2} is closed, possibly with
empty interior, and M3 = {f ∈ F : f has a Baker domain of type 3} is
empty or equal to Λ. The analogy to more explored Fatou components in
this case motivates questions if one can enlarge the class of “allowed” func-
tions as the following one:

Question 1
Can one give some conditions such that for any family F = {fλ}λ∈Λ of
entire transcendental functions having Baker domains and satisfying these
conditions the set {f ∈ F : f has a Baker domain of type 2} is closed and
{f ∈ F : f has a Baker domain of type 3} is open?

We conjecture that the functions fλ(z) = λz− 1− ez have Baker domains of
type 3 if and only if λ ∈ (1,∞) and a Baker domain of type 1 only for λ = 1.
If this is true, then the condition ”F is holomorphically parameterized and
the set of critical points moves continuously with respect to the Euclidean
metric with the parameter” is not sufficient. Hence, these conditions have to
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be quite restrictive (as the condition that all fλ are logarithmic lifts). König
proposed to use methods similar to the λ−Lemma for rational functions to
work on this problem.

3.5 Open questions

As mentioned before, the question of the structure of the possible limit sets of
sequences of polynomials tending to an entire transcendental function having
Baker domains is still open; we have seen that C is a possible limit set, but
one may ask if it the only limit set not having empty interior. Note that the
analogous question concerning the parabolic implosion for entire transcen-
dental functions is also still open.
A related problem is formulated in Conjecture 1.
Next, we suppose that the calculations in 3.2 and 3.3 can be generalized, for
example one may try to take P to be a entire transcendental or rational func-
tion. This might help to better understand Baker domains of meromorphic
functions.
Another question is formulated in section 3.4.4.
Finally, there are more questions concerning the approximation of entire tran-
scendental functions by polynomials. We only want to mention the following:
fc(z) = z + c − ez has wandering domains for c = 1 + 2πi (it is similar to
Herman’s example). For all sequences gn of entire functions tending to f
we have lim

n→∞
J(gn) = J(f1), since the Fatou set of f1 consists of basins of

super-attracting fixed points only. Furthermore, J(f1) = J(f1+2πi). Do we
have lim

n→∞
J(hn) = J(f1+2πi) for all sequences hn of entire functions tending

to f1+2πi?
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Chapter 4

Proofs

4.1 A one-parameter family

4.1.1 The dynamical plane

4.1.1.1 Existence of a Baker domain

Let δ ∈ (0, 1) and

Mδ = {z : |gb(z)− (z − 1)| < δ}
= {x + iy : y2 < δ2 e−2x

|b|2 − x2}.
We will use later that a point z in Mδ satisfies gb(z) ∈ D(z− 1, δ), in partic-
ular, Re gb(z) < Re z − (1− δ). Some short calculations give

Lemma 13
For any c > 0, the function x 7→ c e

−2x

|b|2 − x2 has at most one maximum and
one minimum. Both the maximum value and minimum value are smaller
than 1/4, while the maximum and minimum are in R −0 .

Proof:
Let h(x) = c e

−2x

|b|2 − x2. Then h′(x) = −2(c e
−2x

|b|2 + x). Any critical point

x of h satisfies c e
−2x

|b|2 = −x, so h(x) = −x − x2 ≤ 1/4. Furthermore,

h′′(x) = 4c e
−2x

|b|2 − 2 has at most one root, so there are at most two roots

of h′. Finally, h′(x) < 0 on R +. 2

59
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Noting that h(z)→ +∞ as x→ −∞, we obtain the

Corollary 5
Mδ is non-empty, symmetric with respect to the real axis, consists of at most

two components and exactly one component is unbounded. If there are two
components, then the bounded one is contained in the strip
{z : |Im z| ≤ 1/2}. If z ∈ Mδ and Im z > 1/2, then x + iy ∈ Mδ for all
x, y satisfying x < Re z, |y| < Im z. Furthermore, if x ∈ MC

δ ∩ (0,∞), then
Mδ ⊂ {z : Re z < x}.

Figure 4.1: M1 for |b| = 0.1 Figure 4.2: M1 for |b| = 2.7
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Figure 4.3: M1 for |b| = 4

Now we focus on the unbounded component. The functions
h1,2(x) = ±δ( e−2x

|b|2 −x2)1/2 are defined on an interval (−∞,−R), decrease/increase
exponentially as x tends to −∞ and parameterize the boundary of Mδ on
that half plane. Take R = R(δ) > 0 such that |h′1,2(x)| > δ

1−δ on (−∞,−R).
Then for all z ∈ Mδ ∩ {z : Re z < −R} =: Dδ,R the disk D(z − 1, δ) is
contained in Dδ,R. By definition of Mδ, D(z − 1, δ) contains gb(z), we con-
clude that Dδ,R is forward invariant with respect to gb, even its boundary is
mapped into itself. Since Re gb(z) < Re z − δ for all z ∈ Mδ, it is contained
in a Baker domain Bb.
Note that this argumentation works for all δ ∈ (0, 1) and also for any trans-
lation of a set Dδ,R to the left.
In the following, let δ and R(δ) be such that Dδ,R is forward invariant. Since
R(δ) is fixed, we will drop an index and write Dδ.

Proposition 7
For all z ∈ Bb there exists an n ∈ N such that gnb (z) ∈ Dδ.

Proof:
For any z ∈ Dδ we have gb(z) ∈ D(z − 1, δ), so zn = gnb (z) remains in the
sector {x + iy : x < Re z, | y−Im z

x−Re z
| < δ

1−δ}. Hence, the Euklidean distance
between the boundary of Dδ and zn tends to ∞ as n tends to ∞.
The fixed points of gb are located on the boundary of the set
M1 = {x + iy : y2 < e−2x

|b|2 − x2} = {z : |bzez| = 1}. ∂M1 and ∂Dδ have an

asymptotic distance (in the sense of Lemma 29) of | ln δ|.
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Figure 4.4: The Julia set of g−3

is shown in black, the absorbing
domain as constructed above (for
δ = 0.5 and R = 1) in blue and
neighborhoods of the fixed points
in red

Since | d
dz
bzez | = |b(z + 1)ez| = |bzez + bez| ≈ |bzez| = 1 if z ∈ ∂M1 and |z|

is sufficiently large, the fixed points have an asymptotic vertical distance of
2πi. As we will prove later, gb has at most one non-repelling cycle, so all
fixed points except for at most one belong to the Julia set. Hence, we find a
K > 0 such that d(z, ∂B) < |z − v| + K for all z ∈ Dδ and v ∈ ∂Dδ. From
the estimation 1

2d(z,∂B)
≤ ρ(z) ≤ 2

d(z,∂B)
for the hyperbolic metric ρ(z)|dz|

on Bb we obtain the following estimation for the hyperbolic distance on Bb

between zn and the boundary of Dδ:
Let γv,n be the segment connecting zn and v ∈ C .

[zn, ∂Dδ]Bb = inf
v∈Dδ

∫
γv,n

dz
2d(z,∂B)

≥ inf
v∈∂Dδ

1
2

∫
γv,n

dz
d(z,v)+K

= inf
v∈∂Dδ

1
2

|v−zn|∫
0

dx
x+K

= inf
v∈∂Dδ

1
2

ln(|v − zn|+K)− lnK,

which tends to ∞ as n tends to ∞. On the other hand, the hyperbolic met-
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ric is contracting, so for any z′ ∈ Bb we have [zn, g
n
b (z′)]Bb ≤ [z, z′]Bb . This

implies z′n ∈ Dδ for n sufficiently large. 2

Hence, for any ε > 0 and any z ∈ Bb we find an n0 ∈ N such that
gb(z) ∈ {z : |gb(z) − (z − 1)| < ε} for all n > n0. This proves the first
statement of Proposition 1.

Corollary 6
Dδ is an absorbing domain of gb.

Proof:
The only condition we have to prove is the condition on compact sets. Let
K ⊂ Bb be a compact set. Dδ attracts all points of the Baker domain, so⋃
n∈N 0

g−nb (Dδ) ⊃ Bb. This union covers K, and since K is compact, we find
a finite subcovering, say,

⋃
n∈I g

−n
b (Dδ), where I ⊂ {0, . . . , nmax} is a finite

index set. But this means that gnmax
b (K) ⊂ Dδ. 2

This finishes the proof of Theorem 1, and we will prove the second state-
ment of Proposition 1 in a more general setting in section 4.2.

4.1.1.2 Singular values

Proof of Lemma 1:
The first statement will be proved in a more general context in section 4.2,
the second statement is a consequence of a result of Lyubich and Eremenko
mentioned in the introduction. 2

Let us define

Mc = {z : |g′b(z)− 1| < 1}
= {x + iy : y2 < e−2x

|b|2 − (x+ 1)2}
= {t− 1 + iy : y2 < e2 e−2t

|b|2 − t2}.
The last equation shows that Mc is just a translation by one of a set we dealt
with in Lemma 13, so we obtain analogous results as for the set Mc above:

Lemma 14
Mc is non-empty, symmetric with respect to the real axis, consists of at most

two components and exactly one component is unbounded. If there are two
components, then the bounded one is contained in the strip
{z : |Im z| ≤ 1/2}. If z ∈ Mc and Im z > 1/2, then x + iy ∈ Mc for all x, y
satisfying x < Re z, |y| < Im z. Furthermore, if x ∈ MC

c ∩ (−1,∞), then
Mc ⊂ {z : Re z < x}.
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Note that a point z ∈Mc satisfies g′b(z) ∈ D(1, 1), in particular,
Re g′b(z) > 0 and |Im g′b(z)| < 1. Obviously, all critical point of gb are located
in ∂Mc.
We have the following estimations for the critical values:

Lemma 15 (critical values)
Let z = x+ iy ∈ C be a critical point of gb. Then

a) bez = − 1
z+1

b) gb(z) = z − 2− bez = z − 2 + 1
z+1

= z − 2 + x+1
|z+1|2 − i

y
|z+1|2

c) |y| > 1.5⇒ gb(z) ∈ D(z − 2, 2/3) and

d) y > 0⇒ Im gb(z) < y.

Proof:

a)
g′b(z) = 0

⇒ 1 + b(z + 1)ez = 0
⇒ bez = − 1

z+1
.

b)
g′b(z) = 0

⇒ bzez = −1− bez
⇒ gb(z) = z − 1 + bzez

= z − 2− bez
= z − 2 + 1

z+1
.

c)
|y| > 1.5

⇒ |z + 1| > 1.5
⇒ gb(z) = z − 2 + 1

z+1
∈ D(z − 2, 2/3)

by b).
d)
This is an immediate consequence of b). 2

Now we are ready to deal with the critical points. Our general method
to show that a critical point is contained in the Baker domain will be to con-
struct an invariant open set intersecting the Baker domain and containing
this critical point. The general idea of the construction is described in the
following proposition:
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Proposition 8
Let z = x + iy be a critical point of gb in the upper half plane,
x0 < x, Im gb(x̃ + iy0) > y0 for some y0 < y and all x̃ < x. If the to the left
unbounded rectangle R given by the points x0 + iy and x0 + iy0 is contained
in Mc ∩M1, then it satisfies gb(R) ⊂ R. The analogous statement is true
for all critical points in the lower half plane. Furthermore, if gb(z) ∈ R and
all points v contained in the segment S = {t + iy : x0 ≤ t ≤ x} satisfy
Re gb(v) < Re gb(z), then gb(S) ⊂ R.

R

y

x

g
b
(R)

M

Mc

z

y
0

0

S

1

Proof:
The hypothesis implies that Re gb(z) < Re z for all z ∈ R ⊂ M1. Further-
more, we have Im gb(x̃ + iy) < y (Lemma 22) and Im gb(x̃ + iy0) > y0 for

all x̃ < x. Together with Re g′b(z) = dIm gb(x+iy)
dy

> 0 on R ⊂ Mc, this im-
plies the first claim. The second claim is again a consequence of Lemma 22. 2

Due to the relations gb(z) = gb(z) and g′b(z) = 0 ⇔ g′
b
(z) = 0 we may

restrict to the case Im b ≥ 0 while examining the forward orbits of the criti-
cal points. We will do so in our proofs.
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The critical points are determined by the equation

g′b(z) = 0
⇔ 1 + b(z + 1)ez = 0

⇔ b = −e−z
z+1

,

so the function h(z) = − e−z
z+1

maps critical points of gb to the parameter b.

h′(z) = −−e−z(z+1)−e−z
(z+1)2 = z+2

(z+1)2 e
−z, so the singularities of the inverse func-

tion of h are the critical value e2 and the asymptotic value 0.
C \R +

0 is simply connected, so all branches of h−1 are defined and holomor-
phic in this domain and each of these branches maps the parameter value
to some critical point of the corresponding function. If we take a parameter
b0 in R − close to 0, then the intersection of the boundary of Mc and the
upper half plane is the graph of a monotonous function. Some elementary
calculations give that the critical points are symmetric with respect to the
real axis (for this real parameter) and that R contains exactly one critical
point. We may denote the critical points with zn(b0), n ∈ Z , such that
Im zn(b0) > Im zm(b0) if m < n,m, n ∈ Z , and z0(b0) ∈ R . By our previous
observations we can extend zn(b) to analytic functions on C \ R +

0 for each
n ∈ Z .

Lemma 16 (critical points)
Let b ∈ C \ R +

0 . Then

1. Im zn(b) > π if n > 0, Im b ≥ 0

2. Im z−n(b) < 0 if n > 0

3. Im z0(b) > 0 if Im b > 0

4. Im z0(b) ∈ (−π, π)

5. Im zn(b) > Im zm(b) if n > m

6. |Im zn(b)− Im zn+1(b)| and |zn(b)− zn+1(b)| tend to 2π as |n| tends to
∞.
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Proof:
We begin with observing that if Im b ≥ 0, then the horizontal line at iπ does
not contain a critical point:

g′b(x + iπ) = 0
⇔ 1 + b(x + 1 + iπ)ex+iπ = 0

⇔ b = e−x
x+1+iπ

= e−x( x+1
|x+1+iπ|2 − i π

|x+1+iπ|2 )

⇒ Im b < 0.

Now the first statement follows from observing that the strip
{z : 0 < Im z ≤ π} does not contain critical points if b ∈ R − (as done
in Lemma 25) and the continuity of the functions zn. Our calculations also
shows that Im z0(b) < π if Im b ≥ 0.
Next, if x ∈ R is a critical point, then 1 + b(x + 1)ex = 0, so b ∈ R as well.
If b ∈ R −, then z0(b) ∈ R , and since R contains only one critical point we
have Im zn(b) < 0 for all n < 0. This proves statement 2.
To see the third statement it suffices to show that there exists a parameter
b on the upper half plane such that the line at iπ

2
contains a critical point.

Let x ∈ R , then b = −e−x−iπ/2
1+x+iπ/2

satisfies

g′b(x + iπ/2) = 1 + −e−x−iπ/2
1+x+iπ/2

(x + 1 + iπ/2)ex+iπ/2 = 0.

By 1. and 2. it has to be the critical point z0(b). Hence, z0(b) is contained in
the strip bounded by the real axis and the horizontal line at iπ if Im b > 0,
by symmetry it is always contained in the strip bounded by the horizontal
lines at iπ and −iπ if b ∈ C \ R +

0 .
To show the fifth statement for Im b ≥ 0 and |Im zn| > 1/2 or |Im zm| > 1/2
we note that two critical points never collide for a parameter outside R +,
otherwise some functions zn(b) would not be analytic in this parameter value.
Since all critical points move along the boundary of Mc which itself moves
continuously, this proves the statement outside the strip {z : |Im z| < 1/2}
(note that outside this strip the boundary of Mc is the union of the graphs of
two continuous and monotonous functions by Lemma 13). Inside the strip a
possible problem is that the boundary of Mc might no longer be the graph of a
monotonous function. But we know that Im zn(b) > 0 if n > 0, Im z1(b) > π
and Im z−1(b) < 0, so we only need that Im z−2(b) < −2π. This is true for
b ∈ R − (Lemma 25), and we conclude with showing that the line at −2πi
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does not contain critical points if Im b ≥ 0:

g′b(x− 2πi) = 0
⇔ 1 + b(x + 1− 2πi)ex−2πi = 0

⇔ b = − e−x
x+1−2πi

= e−x(− x+1
|x+1−2πi|2 − i 2π

|x+1−2πi|2 )

⇒ Im b < 0.

To see the last statement we recall that ∂Mc is mapped by g′b into ∂D(1, 1)
and contains all critical points. It suffices to show that |g ′′b (z)| tends to 1 as
z ∈ ∂Mc and |z| tends to ∞. We calculate
|g′′b (z)| = |b(z + 2)ez| = |b(z + 1)ez + bez| → 1 under these conditions. 2

Theorem 2 and Lemma 2 will be a consequence of the following proposi-
tion:

Proposition 9
a)

If b ∈ C \R +
0 and n ∈ Z \{0}, then there exists a rectangle Rn of the form

{z : Re z < x0, y0 < Im z < y1} such that y1 − y0 < 2π, gb(Rn) ⊂ Rn and
gb is conformal on Rn. Furthermore, we can take Rn such that Rn contains
gb(zn(b)) and there is a segment connecting zn(b) with ∂Rn which is mapped
into Rn as well.
b)

If b ∈ R + ∪D(0, 0.1) \ {0}, then all critical points of gb are contained in
the Baker domain Bb.

Proof:
a)

Again, we may restrict to the case Im b ≥ 0. Let b = c + id, c ∈ R and
d ∈ R +. For b ∈ R − the strip {z : 0 < Im z ≤ π} does not contain critical
points (see Lemma 25), so Im zn(b) > y+(b) = π for n > 0 and by symmetry
Im zn(b) < y−(b) = −π for n < 0 (y+(b) and y−(b) are defined in Lemma
27). Since Im gb(zn) < Im zn(b) for all n > 0, we have Im z1(b) 6= y+(b)
for all b ∈ C \ R +

0 , so continuity gives that Im zn(b) > y+(b) for all
b ∈ C \R +

0 and n > 0. Hence, for each critical point zn(b), n > 0, the value
y+
n (b) = maxy<Im zn(b){y = y+(b) + 2πk, k ∈ N 0} > 0 is well defined. Analo-

gously, we obtain a value y−n (b) = miny>Im zn(b){y = y−(b)−2πk, k ∈ N 0} < 0
for each zn(b), n < 0. In Lemma 27 we calculate some properties of y+

n (b)
and y−n (b).
First, let n > 0.
Combining Lemma 23 and Proposition 8 gives that the to the left unbounded
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rectangle Rn(b) given by zn(b)− 4/3 and Re zn(b)− 4/3 + iy+
n (b) is forward

invariant. The same proposition gives that the segment connecting zn and
zn − 4

3
is mapped into Rn as well (note Lemma 15c) and Lemma 22b)1. for

that). To see the conformality we note that the boundary of Rn is mapped

univalently to a Jordan curve. This is a consequence of dIm gb(x+iIm zn(b))
x

< 0

for x < Re zn(b) (Lemma 22),
dIm gb(Re zn(b)− 4

3
+iy)

x
> 0 for y ∈ (y+

n , Im zn(b))

and dIm gb(x+iIm zn(b))
x

> 0 for x ∈ R (Lemma 27).

The case n < 0 is only slightly more difficult. As we fix a parameter b
we will drop b in our notations from now on.
Let n < 0, zn = xn + iyn be a critical point of gb, let L1 be the line
{x + iy−n : x ≤ xn − 4/3}, L2 the segment connecting xn − 4/3 + iy−n and
zn − 4/3 and L3 the line {z + iyn : x ≤ xn − 4/3}. We will show that the
rectangle R bounded by L1 ∪ L2 ∪ L3 is forward invariant with respect to
gb. First, let yn ≤ −2/3. By Lemma 23, R is contained in M1 ∪Mc and
we are done by applying proposition 8 once more. Combining Proposition 8,
Lemma 22 and Lemma 15c), respectively, gives that zn ∈ Bb as well.
If yn > −2/3 then we prove that the to the left unbounded rectangle R̃
given by zn and Re zn + iy−n is mapped into R. Note that Lemma 24 gives
xn = Re zn < −1. The segment S connecting zn and xn + iy−n is contained
in Mc ∪ {zn}, so we have Im gb(zn) < Im gb(xn + iy) < Im gb(xn + iy−n ) for
y−n > y > yn. Again using S ⊂ Mc ∪ {zn} we obtain |Im g′b(z)| < 1 for all
z ∈ S, so

Re gb(xn + iy) < Re gb(zn) + 2/3
= xn − 2 + Re 1

zn+1
+ 2/3 < xn − 2 + 2/3

= xn − 4/3,

therefore S is mapped into R.
To see that the line {x+ iy−n : x ≤ xn} is mapped into R we note that
Im gb(x + iy−n ) < y−n and d

dx
Re gb(x + iy−n ) > 0 for all x < xn (Lemma 27,

6.), so Re gb(x+ iy−n ) < Re gb(xn + iy−n ) < xn − 4
3
.

The fact that the line {x+ iyn : x ≤ xn} is mapped into R is a consequence
of xn < −1,Re gb(zn) = xn − 2 + xn+1

|zn|2 < xn − 2 and Lemma 22a) and b).
The conformality can be seen as above.
b)

Let b ∈ R +. Since gb maps R into itself, the set of critical points and
the Julia set are symmetric with respect to the real axis.
Let z = x+ iy be a critical point in the upper half plane. Let
y0 = maxn≥0{2πn : 2πn < y}, then Im gb(t + iy0) = y0 + by0e

t ≥ y0 for all
t ∈ R . First, we look at the case Im z ≥ π/2. In this case, Lemma 23 shows
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that the to the left unbounded rectangle given by z−4/3 and Re z−4/3+iy0

satisfies the hypothesis of Proposition 8. Thus, it is contained in the Baker
domain Bb, and as before we see that the critical point z is contained in Bb

as well.
If Im z < π/2, then we calculate
Re gb(z) = Re (x− 2− bez) = x− 2− b cos yex < x− 2.
The segment S connecting z and Re z is contained in Mc, by definition of Mc

we have |Im g′b(v)| = |dRe gb(v)
dIm v

| < 1 for all v ∈Mc, so Re gb(v) < Re v for all
v ∈ S. Furthermore, Im g′b(x + iy) = b((x + 1) sin y + y cos y)ex, so x < −1.
For each t ∈ R − we have gb(t) < t − 1, so the interval (−∞, t) is invariant.
Now we can apply Lemma 22 as before and conclude that the boundary of
the to the left unbounded rectangle R given by z and Re z is mapped into
R, so R is invariant.

It remains to look at critical points on the real line. If |b| ≥ 1, then
e0

|b|2 − (1)2 ≤ 0, so every real critical point is contained in R −0 (Lemma 14).

All points t ∈ R −0 satisfy gb(t) ≤ t − 1. Thus, all real critical points are
contained in the Baker domain.
If |b| < 1, then g′b(x) = 1 + b(x + 1)ex > 1 + 1(−e−2) > 0 for all x ∈ R , so
there are no real critical points.

Now we will examine the punctured disk D(0, 0.1) \ {0}.
Let b ∈ D(0, 0.1) \ {0}. By a), symmetry arguments and our results on
R + we only need to consider the critical point z0 = z0(b) = x + iy for b
in the upper half plane and the real critical points for b ∈ R −. First, let b
be in the upper half plane H+. We already know that Im z0 ∈ [0, π), and
the reasoning, following the ideas used in a), is as follows: first, we see that
e−6/4

|b|2 − (1 + 3/4)2 > π2, so x > 3/4. This yields |bez0 |−1 = |z0 + 1| > 7/4, so

Re gb(z0) = x − 2− Re 1
z0+1

< x− 2 and Im gb(z0(b)) > y − 7
4
> −7

4
. As in

Lemma 27 we can find a y+ ∈ [−2π − 7
4
,−7

4
) such that Im gb(t+ iy+) > y+

for all t ∈ R . We seek to show that the rectangle given by z0(b) − 2 and
x− 2 + iy+ is forward invariant. In order to be able to apply Lemma 22 and
Proposition 8 we only need to show that Re z0(b)− 2− 2π − 7

4
∈ M1 ∩Mc,

and to do this we show that

e−2(x−2)

|b|2 − (x− 2)2 > (2π + 7
4
)2 and e−2(x−2)

|b|2 − (x− 2 + 1)2 > (2π + 7
4
)2.

Since x > 3/4 > 1/2, the second inequation implies the first one, and
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e−2(x−2)

|b|2 − (x− 2 + 1)2

= (e4 − 1) e
−2x

|b|2 + e−2x

|b|2 − (x+ 1)2 + 4x

> (e4 − 1)49
16

+ y2 + 43
4

> (2π + 7
4
)2,

and we may conclude as before.
It remains to look at the real critical points of parameters in (−0.1, 0). If
b ∈ (−0.1, 0), then for any x ∈ R we have bxex < be−1 yielding
gb(x) < x− 1 + be−1 < x− 1 + e−1/10. Hence, R ∈ Bb. 2

Note that −1 + 3πi
2

is a critical point of gb0, where b0 = − 2e
3π

. Further-
more, y+(− 2e

3π
) = π and the strip {z : |Im z| ≤ π} does not contain critical

points, so z1(− 2e
3π

) ∈ (y+(− 2e
3π

), y+(− 2e
3π

) + π). Since

gb(z1(b) + 1) = z1(b) + 1− 1 + b(z1(b) + 1)ez1(b)+1

= z1(b) + eb(z1(b) + 1)ez1(b)

= z1(b)− e+ eg′b(z1(b))
= z − e,

we obtain z1(b) 6= y+(b) and z1(b) 6= y+(b)+π for all b ∈ {z : Im z > 0}∪R −.
We can proceed analogously for z−1(b) and obtain

Corollary 7
R1 is contained in the strip
{z : y+(b) < Im z < y+(b) + π} ⊂ {z : 0 < Im z < 3π} and R−1 is contained
in {z : y−(b) > Im z > y−(b)− π} ⊂ {z : 0 > Im z > −3π}.

Remark 15
Doing things more carefully, one may prove that for all parameters b satisfy-
ing 0 < |b| < 1/4 all critical points of gb are contained in the Baker domain
Bb.

The last information we need to know about critical points is if there are
multiple critical points.

Lemma 17
If gb has a multiple critical point, then b = e2.

Proof:
One obtains this result by solving the systems of two equations given by
g′b(z) = g′′b (z) = 0 for b (analogously to the proof of Lemma 21). 2
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4.1.1.3 Components and geometry of the Fatou set

Proof of Proposition 4:
We will use the rectangles Rk, k ∈ Z \ {0}, as constructed in Proposition 9.
i)

Again, it suffices to do this for Im b ≥ 0. In section 4.1.1 we labelled all
critical points of gb with zk, k ∈ Z , for all b ∈ C \ R +

0 . Using continuity
arguments we can do this for all non-real critical points of gb, b ∈ R +, as
well. Let k ∈ Z \ {0}, let vk = gb(zk), wk = gb(vk) and Lk be the segment
connecting vk and wk.
Then γk := O+(gb(Lk)) is contained in a to the left unbounded horizontal
rectangle Rk as was stated in Corollary 7. Since zk is a simple critical point,
there is exactly one curve Γk in g−1

b (γk) such that Γk is mapped 2:1 to γk and
γk ⊂ Γk.

k y

y

y

+

+

-

+2πi

z kw vkk

kL

R
γ k

Obviously, Γk ⊂ Bb. Proposition 9 gives that Γn and Γm are disjoint for
m 6= n.
If k > 0, then the lower boundary of Rk contains a line of the form
{t + iy+

k : t ≤ Re zk}, where y+
k has the property that Im gb(x + iy+

k ) > y+
k

for all x ∈ R (see Lemma 27). If z ∈ {t + i(y+
k + 2π) : t ∈ R }, then

Im gb(z) > y+
k +2π, so z 6∈ Γk. As in Lemma 27 we find an y−k ∈ (y+

k −3π, y+
k )

such that Im gb(z) ≤ y−k if Im z = y−k . Hence, Γk is contained in the strip
{z : y+

k − 3π < Im z < y+
k + 2π}. Now suppose that the set {Re z : z ∈ Γk}
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is bounded above. Let U be a domain bounded by Γk not containing a half
plane. Then gb(∂U) = γk, so the image of U contains a half plane. But
the image of a set of the form {z : y0 > Im z > y0 − 5π,Re z < c}, where
y0, c ∈ R , cannot contain a half plane due to our results on the Baker do-
main. Thus, Γk stretches to ”+∞”. Note that γ1 ⊂ R1(b) ⊂ {z : Im z > π}
and z0(b) is always contained in the strip bounded by Γ1 and Γ−1 if b ∈ R +

0 .
If b ∈ R +, then all real critical points (which are at most two) are contained
in this strip.
Let k > 0 and Sk the set bounded by Γk and Γk+1. ∂Sk is forward invariant
and Sk does not contain a critical point. Define S̃k = Sk \ g−1

b (Γk ∪ Γk+1).
Sk\S̃k is a finite union of disjoint Jordan arcs, so S̃k is simply connected. The
boundary of S̃k is mapped to γk∪γk+1, and the Open Mapping Theorem gives
∂gb(S̃k) = γk ∪ γk+1, so gb(S̃k) = C \ (γk ∪ γk+1) is simply connected as well.
Furthermore, gb|S̃k is a proper mapping of finite degree. By the Riemann-

Hurwitz-Formula gb|S̃k is univalent. This in turn implies Sk \ S̃k = ∅, so gb|Sk
is a conformal mapping from Sk onto C \ (γk ∪ γk+1). We obtain the analo-
gous result for −k and the strip bounded by Γ−k and Γ−k−1.

ii)
Let D = D0.5,R be a fundamental domain as given by Theorem 1. We

may assume that 0 6∈ D (otherwise we take a R̃ < R such that this is true).
D is of the form {x + iy : y2 < 1

4
e−2x

|b|2 − x2, x < −R}. All critical points are

located on the curve ∂Mc = {x+ iy : y2 = e−2x

|b|2 − (x+ 1)2}. The asymptotic

distance in the sense of Lemma 29 between ∂Mc and ∂D is | ln 0.5| = ln 2.
Every critical point satisfies gb(z) = z−2+ 1

z+1
. If |z| is sufficiently large then

gb(z) ∈ D, so D contains all but finitely many critical values. Furthermore,
all but finitely many curves γn, n ∈ Z \{0}, as constructed in i) are contained
in D. Let I be the index set such that D contains γn if and only if n ∈ I, then
d(
⋃
i∈I γi, ∂Bb) > σ for some σ > 0. Let K > 0 such that the translation of

D by K contains the disk D(0, 2) and 1
2
|bvev||v+x

v
|ex−x−10π−1 > 0 for all

x ∈ (K,∞) and v ∈ ∂D (note that |bvev| is bounded away from 0 on ∂D).
Let DK be the translation of D by K. Then

||g′b||DK = sup
z∈DK

|1 + b(z + 1)ez|
= sup

z∈DK
|1 + b(z −K)ez−KeK + b(K + 1)ez|

≤ 1 + sup
z∈D

eK |bzez|+ sup
z∈DK

|b(K + 1)ez|

= 1 + eK

2
+ sup

z∈DK
|b(K + 1)ez| <∞.

Let Γk be the component of g−1
b (γk) as in i), then we can find an ε1 > 0 such
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that ε1−neighborhood of DK ∩
⋃
i∈I Γi is contained in Bb.

D
D

D(z, )

M

g (z)

K
C

c

b 

εΓi

~ ln 2

We are done if we show that for some ε > 0, all i ∈ I and z ∈ DC
K ∩ Γi we

have ε||g′b||D(z,ε) < d(gb(z), ∂D). Let ε > 0 such that 2εeε|bzez|+ ε < 1
4
|bzez|

for all z ∈ DC
K. Let i ∈ I, z ∈ DC

k ∩ Γi, v ∈ ∂D ∩ {x + iIm gb(z), x ∈ R }
and ṽ ∈ ∂D ∩ {x + iIm z, x ∈ R }. Using that gb(z) ∈ γi, that each Γi is
contained in a horizontal strip of height less than 5π and that any tangent
to ∂D has a slope of modulus larger than one (cf. the construction of D) we
obtain d(gb(z), ∂D) > 1

2
|gb(z) − v| and |v − z| < |z − ṽ| + 10π =: x + 10π,

where x ∈ (K,∞). Hence,

d(gb(z), ∂D)
> 1

2
|gb(z)− v|

≥ 1
2
(|gb(z)− z| − |v − z|)

≥ 1
2
(|bzez − 1| − x− 10π)

≥ 1
2
(|bzez| − 1− x− 10π)

= 1
4
|bzez|+ 1

2
(1

2
|bṽeṽ|| ṽ+x

ṽ
|ex − 1− x− 10π)

≥ 1
4
|bzez|

≥ 2εeε|bzez|+ ε
≥ ε(|b(z + 1 + ε)ez+ε|+ 1)
≥ ε||g′b||D(z,ε).

Hence, D(z, ε) ⊂ Bb. 2

Corollary 8
Together with Corollary 7 the proof of i) gives that the curves Γ1 and Γ−1 are
contained in the strip {z : −4π < Im z < 4π}.
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Another useful corollary is the following.

Corollary 9

There exists an ε > 0 such that d(P (f) \O+(z0(b)), ∂Bb) > ε.

Figure 4.5: The Julia set of g−3

is shown in black,the blue set is
the absorbing domain as given in
the theorem with δ = 0.5 and
R = 1, the green set is the attract-
ing Basin of an attracting fixed
point. Neighborhoods of the criti-
cal points are plotted in red

Proof of Proposition 2:
Once more we may restrict to b ∈ H+ \ {0}. Let M be a bounded set,
let M̃ be a bounded, simply connected set containing M, gb(M), a criti-
cal point z and gb(z). For b ∈ H+ Lemma 27 guarantees the existence of
y−, y+ ∈ R such that Im gb(x + iy−) < y− and Im gb(x + iy+) > y+ for all
x ∈ R and y− < infz∈M̃ Im z and y+ > supz∈M̃ Im z, for b ∈ R \ {0} we
can choose such values in the set {nπ : n ∈ Z }. Furthermore, we can find
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n > 1, x− < 0 and x+ > 0 such that M̃ is contained in the rectangle R
given by x− + i(y−n (b)− 2πn), x+ = i(y−n (b)− 2πn), x− + i(y−n (b) + 2πn) and
x++i(y−n (b)+2πn), and such that the segment connecting x−+i(y+

n (b)−2πn)
and x+ + i(y+

n (b) + 2πn) is contained in M1 and |gb(z)| > maxz∈R |z| for all
points on the segment connecting x−+i(y+

n (b)−2πn) and x++i(y+
n (b)+2πn).

Then gb(∂R) does not intersect R but encloses R. We may assume that ∂R
does not contain critical points, otherwise we change R a little but such that
this is true and R still has the properties mentioned above. There exists a
simply closed curve γ ⊂ gb(∂R) such that the interior int γ of γ does not
intersect gb(∂R). Then gb is polynomial-like on the component of g−1

b (int γ)
which is contained in R and contains M̃ . 2

Proof of Proposition 3:
Assume that gb has more than one non-repelling cycle. Then we can find a
bounded domain U containing two such cycles such that gb is polynomial-
like on U . This implies the existence of a polynomial P such that all critical
points of P except for at most one escape to∞ having two finite non-repelling
cycles. Shishikura [50] proved that this is impossible.
By a result mentioned in the introduction all Fatou components are simply
connected if an entire function has a Baker domain. Assume that we have an
unbounded periodic Fatou component V 6= Bb of period p. By Proposition
4 we can find an C > 0 such that U =

⋃p−1
i=0 g

i
b(V ) is contained in the strip

{z : |Im z| < C}. Clearly, the set {Re z : z ∈ U} is unbounded above,
but now we obtain for all z ∈ U having a sufficiently large real part that
(Re gb(z))

2 > |gb(z)| − C2 ≈ b|z|eRe z � (Re z)2, so gnb (z) tends to ∞ as n
does. By Corollary 10 we already know that this is impossible.
The statement on the number of Baker domains will be proved in the next
subsection. 2

4.1.1.4 On the existence of wandering domains

The following lemma and corollary deal with points escaping to ∞.

Lemma 18
There exists an ε > 0, R > 0 such that the set {z : |z| > R, |g ′b(z)| < 1 + ε}
is contained in Bb.

Proof: We will prove a more general statement in section 4.2. 2
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Corollary 10 If gnb (z)→∞, then z ∈ Bb ∪ J(gb).

Proof:
Suppose that gnb (z) → ∞, but z 6∈ Bb ∪ J(gb). Then z is contained in the
Fatou set, so we can find a neighborhood of U of z such that all points in
U tend to ∞ under iteration. By the previous lemma, (g′b)

n(z) tends to ∞
as well. By Bloch’s theorem the images gb(U) contain circles of ”exploding”
radii. This is impossible, since we have horizontal channels with an bounded
width. 2

This implies that Bb is the only Baker domain of gb. Moreover, gb has no
Baker wandering domains. We also have the following:

Lemma 19
Let V be a wandering domain of gb. Then the free critical point is contained

in the Julia set, but not on the boundary of a wandering domain. Moreover,
the constant limit function ∞ is contained in the set of limit functions, and
for each z ∈ V the set {Im gnb (z), n ∈ N } is unbounded.

Proof:
First, we prove that the constant function ∞ is contained in the set of limit
functions.
Let V be a wandering domain of gb. If U =

⋃
n∈N g

n
b (V ) would be bounded

then we could find a domain V ⊃ U such that gb is polynomial-like on
V , contradicting the fact that polynomials do not have wandering domains.
Hence, U is unbounded. Now assume that U is contained in a horizontal
strip, say, U ⊂ {z : |Im z| < C} for some C > 0, then the set {Re z : z ∈ U}
is unbounded above. But for all z ∈ U having a sufficiently large imaginary
part we obtain (Re gb(z))

2 > |gb(z)|−C2 ≈ b|z|eRe z � (Re z)2 contradicting
the fact that {gb|V }n∈N does not converge do the constant function∞. Hence,
the set {Im gnb (z) : z ∈ V } is unbounded, now Proposition 4 implies that ∞
is a limit function of {gb|V }n∈N .
Again by Proposition 4 we have curves Γn, n ∈ Z , separating the plane into
approximately horizontal strips. Moreover, we can find an ε > 0 such that
the ε−neighborhood of all Γn is contained in the Baker domain for all but
finitely many n. We keep the notation of proposition 4 and denote the strips
with Sn, n ∈ Z , in such a way that Γn ⊂ ∂Sn.
Let V again be a wandering domain of gb and assume that the free critical
value z0 is contained in V . We already know that the set {Im gnb (z) : z ∈ V }
is unbounded, so we can find sequences |nk|, mk tending monotonously to

∞ such that gmkb (V ) ⊂ Snk and gmb (V ) ⊂ ⋃|nk|−1
i=−|nk|−1 Snk for m < mk (an

alternative approach would use a symbolic description).
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b

0

mg   (V)=V

2 1m  -m

1
1

bb

m2g   (V)=g        (V )

2 1m  -mg         (V)
b

>ε

Vz

Let V1 = gm1
b (V ), then we have d(gmk−m1

b (V1), SV (gmk−m1

b )) > ε for all but
finitely many k. This is a contradiction to the following lemma. 2

Lemma 20
Let f be an entire transcendental function and U be a simply connected Fa-
tou component of f . If there exists a constant C > 0 and a sequence nk
tending to ∞ such that for any z ∈ U, d(fnk(z), ∂fnk(U)) < C holds, then
d(fnk(U), SV (fnk)) tends to 0 as k tends to ∞.

Proof: (Similar ideas have been used in ([7], Lemma 3)
We may assume that U is a wandering domain or Baker domain, otherwise
the claim is always true.
Let U and C be as in the hypothesis, nk a subsequence tending to ∞
and z0 ∈ U such that dk := d(fnk(z0), ∂fnk(U)) < C and assume that
d(fnk(U), SV (fnk)) > ε for all k ∈ N . The branches gk = (fnk)−1 mapping
fnk(z0) to z0 are well-defined and holomorphic on D(znk , dnk +ε). The family
given by
φk : D → C , z 7→ gnk((ε+dnk)z+znk) is normal by Montel’s Strong Theorem
(note that for any function having Baker domains or wandering domains the
set of singular values of f has infinitely many elements). Since φk(0) = z0 for
each k ∈ N , the constant function∞ is not a possible limit function. We have
points vk satisfying vk ∈ J(f) and |zk − vk| = dk. Let v′k = φ−1

k (gk(vk)) ∈ D .
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By construction,

0 < |zk − vk| = dk < dk + ε < C + ε
and

0 < |v′k| = |vk−zk
ε+dk
| = dk

ε+dk
< C

ε+C
< 1.

For any limit function φ of {φk}k∈N there exists a v′ such that |v′| =: r ∈ (0, 1)
and φ(v′) ∈ J(f). This implies that no limit function can be constant. Let
nki be a subsequence of nk such that φnki converges to a holomorphic func-
tion φ. Let D = φ(D(v′, (1 − r)/2)). For all but finitely many i we have
fnki (D) ⊂ D(znki , ε + dnki ) ⊂ D(znki , ε + C). This is a contradiction to
φ(v′) ∈ J(f) and the expanding property of the Julia set. 2

Now we are ready to prove our main results on wandering domains:

Proof of Theorem 3:
It is known that all limit functions of iterates on a wandering domain are
constants contained in the derived set of the postcritical set. In our case this
means that limit functions of a wandering domain of gb have to be contained
in the set of accumulation points of the forward orbit of the free critical point,
denoted with w(z0(b)).
We already know that gb has no Baker wandering domains, so if a wandering
domain exists, then there are infinitely many limit functions of the iterates
on this domain. Lemma 19 implies that ∞ ∈ w(z0(b)).
Suppose that gb has a wandering domain. If b ∈ R \ {0}, then symmetry
arguments give that w(z0(b)) ⊂ R , this is a contradiction to Lemma 19.
If gb has an attracting or parabolic cycle, then the set w(z0(b)) is finite, so we
do not have wandering domains. If gb has a Cremer point or a Siegel disk, we
can find a bounded domain U such that gb|U is polynomial-like on U and U
contains the Siegel disk or the Cremer point, respectively, and the free crit-
ical point z0 = z0(b). We then have a polynomial P and a quasi-conformal
map φ such that gb|U = φ−1 ◦ P ◦ φ. All critical points of P escape to ∞
except for φ(z0) which accumulates at the Cremer point or at any point of
the boundary of the Siegel disk, respectively. Hence, the forward orbit of
φ(z0) is contained in φ(U) and we deduce that O+(z0) ∈ U . Thus, there are
no wandering domains. 2



80 CHAPTER 4. PROOFS

4.1.2 The parameter plane

Lemma 21
For each m ∈ C \ {2} there exists exactly one b ∈ C \ {0} such that gb has

a fixed point with multiplier m.

Proof:
We have

gb(z) = z
⇒ −1 + bzez = 0
⇒ bzez = 1.

Together with g′b(z) = m this yields

g′b(z) = m
⇒ 1 + bzez + bez = m
⇒ 2 + bez = m
⇒ bez = m− 2
⇒ 1

z
= m− 2

⇒ z = 1
m−2

⇒ b = (m− 2)e
1

2−m .

2

Proof of Proposition 5:
The first part of this proposition follows from the fact that for every b ∈ C ∗
the set of critical points moves continuously with respect to the Euclidean
metric in some neighborhood of b and that the fundamental domains we con-
structed can be taken such that they move continuously as well.
Let U be a component of B(Fb) ∪ {0}. Take for any connected compact set
K satisfying ∂K ⊂ B(Fb) the compact set K̃ ⊃ K such that ∂K̃ ⊂ K and
all components of K̃ are simply connected (this is K with ”all holes filled”).
By Proposition 9.c) we may assume that 0 6∈ K̃.
Consider continuously moving fundamental domains Db for each b ∈ K̃. The
set D =

⋂
b∈K̃ Db is non-empty, and we can find some n ∈ N such that

gnb (z0(b)) ∈ D for all b ∈ ∂K̃. Since the map b 7→ gnb (z0(b)) is analytic, the
maximum principle implies gnb (z0(b)) ∈ D for all b ∈ K̃, so K̃ ⊂ B(Fb). 2

Proof of Theorem 4:
In section 4.1.1 we labelled all critical points with zn(b), n ∈ Z , for pa-
rameters in C \ R +

0 . Here we only need to consider z−1(b), z0(b) and z1(b).
The critical points depend holomorphically on the parameter in C \R +

0 and
we proved that the to the left unbounded rectangle R1 given by the points
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z1(b)−4/3 and Re z1(b)−4/3+iy+(b) is invariant, where y+(b) is the solution
of the equation

Re b sin y + Im b cos y = 0, (4.1)

defined by the starting value y+(−1) = π. y+(b) depends continuously on
b and takes values in [0, 2π). Note that y+(b) + π is also a solution of this
equation, and, since Im gb(x+ iy+(b)) > y+(b) as calculated above, we obtain
Im gb(x + i(y+(b) + π)) < y+(b) + π.
On the other hand, we have gb(z1(b) + 1) = z1(b)− e, so Im z1(b) 6= y+(b) +π
for all x ∈ R .
We can check that for some parameter in R − the inequation
Im z1(b) < y+(b) +π holds (as done before Corollary 7), so this is true for all
parameters in C \R +

0 by continuity. Hence, the rectangle we constructed is
of height less than π. Note that the equation (4.1) can also be expressed as
Im (bex+iy) = 0. The strip S = {z : y+(b) < Im z < y+(b) +π} is mapped by
the function z 7→ bez to the upper or to the lower half plane. Since z1(b) ∈ S
and Im bez1(b) > 0 (Lemma 15), S is mapped to the upper half plane. This
means that the rectangle R1(b) is the component of
{z : bez ∈ H+} ∩ {z : z − z1(b) ∈ Q−−} having z1(b) on the boundary, where
Q−− is the lower left quadrant.
Analogously, the rectangle R−1(b) given by z1(b)− 4/3 and
Re z1(b) − 4/3 + iy−(b) is invariant, where y−(b) is the solution of (4.1) de-
fined by the starting value y−(−1) = π. It is the component of
{z : Im bez < 0} ∩ {z : z − z1(b) ∈ Q−+} having z−1(b) on the boundary,
where Q−+ is the upper left quadrant.
The sets R1(b) and R−1(b) are non-empty, disjoint, unbounded, contained in
the Baker domain Bb of gb and move continuously with b. Consider the set
A1 = {b ∈ C \ R +

0 : gb(z0(b)) ∈ R1(b)}.
This is the set
{b ∈ C \R +

0 : Im bez0(b) ≥ 0} ∩ {b ∈ C \R +
0 : gb(z0(b))− z1(b) ∈ Q−−}. All

components of A1 are simply connected and unbounded, all components of
C \ A1 are simply connected domains.
The same argumentation holds for A−1 = {b ∈ C \R +

0 : gb(z0(b)) ∈ R−1(b)}
as well, so all components of C \ (A1 ∪ A−1) are simply connected domains
as well. Now, let M ⊃ [0, 60] be a closed, simply connected set contained in
B(Fb) and Λ the component of D(0, 60) \ (A1∪A−1 ∪M) containing −2e1/2,
which is the parameter value such that the corresponding function has a
super-attracting fixed point. Then Λ is a non-empty, bounded and simply
connected domain.

Let V be a large square given by points ±v,±v such that Re v > 0, V con-
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Figure 4.6: Sketch of Λ

tains gb(z0(b)) for all b ∈ Λ and the images of the segments L1, L2 connecting
v, v, and −v,−v respectively, do not intersect V . Such a V exists as gb(z0(b))
is analytic in a neighborhood of Λ, and if v is sufficiently large then L1 is
contained in the set M1(b) for all b ∈ Λ, so Re gb(z) < Re z for all of these
points, while points in L2 satisfy |gb(|Re v|+ iy)| > |v|eRe v � |v|.

Let b ∈ Λ. Let Γ1(b) and Γ−1(b) as constructed in the proof of Proposi-
tion 4. We know that they separate the plane into two sets with unbounded
imaginary parts and a strip S(b). Symmetry arguments give that
z0(−2e1/2) = −1/2 is contained in S(−2e1/2). Sinces the curves Γ±1(b) move
continuously with b and z0(b) moves holomorphically, the definition of Λ gives
that z0(b) ∈ S(b) for all b ∈ Λ (for if z0 ∈ ∂S(b), then
gb(z0(b)) ∈ R1(b) ∪R−1(b) and b 6∈ Λ).
Now, ∂(S(b) \ g−1

b (γ−1 ∪ γ1)) is mapped by gb to Γ1 ∪ Γ−1. Setting
S̃b = S(b) \ g−1

b (γ−1 ∪ γ1) we note that gb|S̃b : S̃b → C \ (γ−1 ∪ γ1) is a proper

map, and since S̃b contains exactly one critical point we see that it is a 2:1-
covering.
Hence, there is a component Ub of g−1

b (V \ (R1 ∪R−1)) compactly contained
in Sb. Since gb

(
∂(V \ (R1∪R−1))

)
∩V \ (R1∪R−1) = ∅ (here we make use of

gb(Ri) ⊂ Ri for i = −1, 1), Ub is compactly contained in U ′b = V \ (R1∪R−1).
U ′b contains the critical value, Ub the critical point, so the map gb|Ub : Ub → U ′b
is a polynomial-like map of degree 2. By construction, Ub and U ′b move con-
tinuously with b.



4.1. A ONE-PARAMETER FAMILY 83

It only remains to check the hypothesis of the Douady-Hubbard-Theorem.
Λ is a simply connected domain, we have simply-connected domains Ub and U ′b
such that the family {gb|Ub : Ub → U ′b}b∈Λ is an analytic family of polynomial-
like maps of degree 2.

Furthermore, if b ∈ ∂Λ, then the critical point leaves the domain Ub under
iteration (note Lemma 26). Since B(Fb) is open, it is not a problem that Λ
is open, as we could find a closed subset Λ̃ ⊂ Λ such that ∂Λ̃ ⊂ B(Fb) and
Λ̃ satisfies all for our purpose important properties as well.

So far, the results of Douady and Hubbard give us that Λ contains a set
MF which is a covering of the Mandelbrot set, respecting the dynamics. We
still have to check the parametric degree of the straightening map (i.e. the
continuous map taking MF into the Mandelbrot set). It is enough to check
that the vector gb(z0(b))−z0(b) turns once around 0 as b describes the bound-
ary of Λ. We have gb(z0(b)) − z0(b) = z0(b) − 2 + 1

z0(b)
− z0(b) = −2 + 1

z0(b)
,

and since the function mapping b to z0(b) is univalent in C \ R +
0 ⊃ Λ, the

winding number we are looking for is equal to one. 2

Lemma 22
a)

If g′b(z0) = 0 and Im z0 > 0, then Im gb(z0) < Im gb(x+ iIm z0) < Im z0

and dIm gb(x+iIm z0)
dx

< 0 for all x < Re z. The analogous statement is true if
Im z0 < 0. If z0 ∈ R , then R is invariant.
b)

If g′b(z0) = 0 and

1. the line {x+ iIm z0 : x < Re z0} is contained in Mc

or

2. x0 < −1,

then Re gb(x+ iIm z0) < Re gb(z0) for all x < Re z0.
c)

If g′b(z0) = 0 and x0 > −1, then Re gb(x + iIm z0) < Re gb(z0) for all
x ∈ [−2,Re z0].
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Proof:
Let b = c+ id and z0 = x0 + iy0.
a)

Let

h(x) = Im gb(x + iy0)− y0

=
(
x(c sin y0 + d cos y0) + y0(c cos y0 − d sin y0)

)
ex.

h′(x) = ((x+ 1)(c sin y0 + d cos y0) + y0(c cos y0− d sin y0))ex has exactly one
root, it has to be x0. Now h(x) → 0 as x tends to −∞ and h(x0) < 0
(Lemma 15d)) implies a).
b)

If the line L = {x+iy0 : x < x0} is contained in Mc, then Re g′b(z) ∈ (0, 2),
this implies the claim.
If x0 < −1, we calculate

g′b(x + iy) = 1 +
(
c((x+ 1) cos y − y sin y) + d(−y cos y − (x+ 1) sin y)

)
ex+

+i
(
c((x+ 1) sin y + y cos y) + d(−y sin y + (x + 1) cos y)

)
ex

=: 1 + ((x + 1)c1 − c2)ex + i((x + 1)c2 + c1)ex.

Assume that c1 is negative, then Im g′b(x0 + iy0) = 0 implies c2 < 0 and
Re gb(z0) > 1; hence, this is impossible, so c1 ≥ 0. This yields
Re gb(x + iy0) = x − 1 + (c1x− c2)ex < x0 − 1 + (c1x0 − c2)ex0 = Re gb(z0)
for x < x0.
c)

Again we use the notation
g′b(x + iy) = 1 + ((x + 1)c1 − c2)ex + i((x + 1)c2 + c1)ex as in b). Let
x0 > −1 and assume that c1 is positive. Then Im g′b(x0 + iy0) = 0 im-
plies c2 < 0 and Re g′b(z0) > 1; again, this is impossible, so c1 ≤ 0. This
gives c2 > 0 and Re g′′b (x + iy) = ((x + 2)c1 − c2)ex < 0 on [−2, x0), so
Re g′b(x + iy0) > Re g′b(x + iy0) = 0 on [−2, x0), proving our claim. 2

Lemma 23
If Im b ≥ 0, |Im z| > 2

3
and g′b(z) = 0, then the to the left unbounded

rectangle given by z − 4
3

and z − 4
3

is contained in M1 ∩Mc.

Proof:
Let z = x + iy. By Corollary 5 and Lemma 14 we know that R ⊂ Mc and
that if suffices to prove that zn − 4

3
∈M1. Again using the above-mentioned
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lemma we know that y2 = e−2x

|b2| − (x+ 1)2 =: h(x) and

−2( e
−2x

|b2 + x + 1) = h′(x) < 0. We have

e−2(x− 4
3 )

|b2| − (x− 4
3
)2 = e

8
3
e−2x

|b2| − x2 + 8
3
x− 16

9

= e
8
3 (y2 + (x+ 1)2)− x2 + 8

3
x− 16

9

= e
8
3y2 + e

8
3 (x+ 1)2 − x2 + 8

3
x− 16

9

=: e
8
3y2 + P (x).

The polynomial P has a minimum at t =
−e 8

3− 4
3

e
8
3−1

, and the minimum value

is larger than −(e
8
3 − 1)4

9
. Hence,

e−2(x− 4
3 )

|b2| − (x− 4
3
)2 − y2 = (e

8
3 − 1)y2 + P (x) > (e

8
3 − 1)4

9
− (e

8
3 − 1)4

9
= 0. 2

Lemma 24
If Im b ≥ 0, Im z ∈ (−π

2
, 0) and g′b(z) = 0, then Re z < −1 and

Re gb(z) < Re z − 2.

Proof:
Let b = c + id. Due to symmetry arguments we may restrict to d ≥ 0 and
Im y > 0.

g′b(x+ iy) = 1 + b(z + 1)ez

= 1 +
(
(c(x+ 1)− dy) cos y − (d(x + 1) + cy) sin y

)
ex+

+i
(
(c(x + 1)− dy) sin y + (d(x+ 1) + cy) cos y

)
ex

= 1 +
(
c((x+ 1) cos y − y sin y) + d(−y cos y − (x + 1) sin y)

)
ex

+i
(
c((x + 1) sin y + y cos y) + d(−y sin y + (x + 1) cos y)

)
ex

=: 1 + (ca1 − da2)ex + i(ca2 + da1)ex.

Assume that g′b(x + iy) = 0, y ∈ (−π
2
, 0) and x > −1. We have da2 < 0. If

ca1 6= 0, then Im g′b(x + iy) = 0 implies ca1 > 0 and Re g′b(x + iy) > 1, and
if ca1 = 0, then we have Re g′b(x + iy) > 1 as well, so g′b(x + iy) 6= 0 in both
cases. The last statement is a consequence of Lemma 15. 2

Lemma 25
There exists a b ∈ R − such that Im z1(b) > π and Im z−2(b) < −2π.

Proof:
First, we show that the strip {0 < Im z ≤ π} does not contain critical points
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if b ∈ R −. We have
g′b(x + iy) = 1 + b((x + 1) cos y − y sin y)ex + ib((x + 1) sin y + y cos y)ex. If
y > 0 and sin y ≥ 0, then Im g′b(x+ iy) = 0 implies cos y(x+ 1) ≤ 0 yielding
Re g′b(x + iy) ≥ 1.
For symmetry reasons the strip {0 > Im z ≥ −π} does not contain critical
points neither, so Im z−1(b) < −π. If |b| is sufficiently small, then the curve
γ = ∂Mc ∩ {z : −π ≥ Im z ≥ −2π} is close to a segment of length π, in
particular, its length is less than 3π

2
. Furthermore, again for |b| sufficiently

small we have γ ⊂ {z : Re z > −2}, so g′′b (z) = b(z+2)ez 6= 0 on γ and using
our definition of Mc we obtain

|g′′b (z)| = |b(z + 1)ez + bez|
≤ |b(z + 1)ez|+ |bez|
= |b(z + 1)ez|+ | 1

z+1
|

= 1 + | 1
z+1
|

≤ 1 + 1
π

< 4
3

for z ∈ γ. Since g′b(γ) ⊂ ∂D(1, 1), this implies that there is at most one
critical point contained in γ, which is the point z−1(b).
Hence, Im z−2 < −2π. 2

Lemma 26
If b ∈ ∂D(0, 60) \ {60}, then z0(b) leaves any compact set contained in
{z : |Im z| < 4π} under iteration.

Proof:
Let S4π := {z : |Im z| < 4π} and |b| = 60, but b 6= 60. Then
e−2(−1.03)

|b|2 − (−1.03 + 1)2 < 0 and e−2(−1)

|b|2 − (−1 + 1)2 > 0, so the boundary of
Mc consists of two components. Take a simply connected curve γ enclosing
the bounded one but not intersecting the other one. For every z ∈ γ we have
1 < |b(z+1)ez| = |g′b(z)|. Rouché’s Theorem gives that the number of critical
points of gb in the interior of γ is equal to the number of roots of b(z + 1)ez

in the same domain, this number is one. For b0 = −60 the critical point is
z0(−60), by continuity it is always the point z0(b) for b ∈ ∂D(0, 60) \ {60}.
Let z0 = z0(b) = x0 + iy0. Our calculations above imply that x0 > −1.03,
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and Lemma 14 gives |y0| < 1
2
, so

|gb(z0)| = |z0 − 2− bez0 |
> 60ex0 − (1

4
+ x2

0)
1
2

> 60ex0 − 4
≥ 60e−1.03 − 4

> (2 ln 60 + 16π2)
1
2 .

If gb(z0) ∈ S4π, then |Re gb(z0)| > 2 ln 60. Now
1
4
e−2(−2 ln 60)

3600
− (2 ln 60)2 = 1

4
3600− 4(ln 60)2 > (4π)2, so

h(x) = 1
4
e−2x

3600
− x2 > (4π)2 for all x < −2 ln 60. |h′(x)| = 2( e

−2x

3600
+ x) > 1

for all x < −2 ln 60, and our results in section 3.1.1 give that the domain
D0.5,2ln60,0.5 is a fundamental domain of Bb containing the set
{z : Re z < −2 ln 60, |Im z| < 4π}.
Hence, if gb(z0) ∈ S and Re gb(z0) < −2 ln 60, then gb(z0) ∈ Bb and
gnb (z0)→∞.
The only remaining possibility is Re gb(z0) > 2 ln 60, but in this case we set
z1 = gb(z0) and obtain |z2| = |gb(z1)| = |z1− 1 + bz1e

z1 | ≥ |bez1 − 1||z1| − 1 >
60|z1|. z3 = gb(z2) is not contained in the strip S4π or is contained in the
fundamental domain Db,−2 ln 60,0.5 of Bb or satisfies |z3| > 60|z2|, by repeating
this process we obtain that gb(z0) leaves any compact set contained in S4π

under iteration. 2

Lemma 27
There are continuous functions y+ : H+ \ {0} → [π, 2π] and
y− : H+ \ {0} → [−π, 0] such that for any n ≥ 0, x ∈ R and b ∈ H+ ∪ R −
the following holds:

1. Im gb(x + i(y+(b) + 2πn)) > y+(b) + 2πn

2. Im gb(x + i(y+(b) + 2πn+ π)) < y+(b) + 2πn+ π

3. Im gb(x + i(y−(b)− 2πn)) < y−(b)− 2πn

4. Im gb(x + i(y−(b)− 2πn− π)) < y−(b)− 2πn− π

5. y+(b) = π and y−(b) = −π for b ∈ R −

6. dIm gb(x+i(y+(b)+2πn))
dx

> 0 and dIm gb(x+i(y−(b)+2πn))
dx

< 0 for all x ∈ R .
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Proof:
Let b = c + id. For b0 ∈ R −, y+(b0) = π is a solution of the equation
c sin y + d cos y = 0, and the solution of this equation depends continuously
on b as b 6= 0 is contained in the closed upper half plane, so this gives rise
to a continuous function y+ : H+ \ {0} → R . For points b in the upper half
plane H+ close to R − we have c < 0, d > 0, and y+(b) is contained in the
interval (π, 2π). Furthermore, if b ∈ H+, then π and 2π are no solutions of
the equation mentioned above, so y+ takes values in [π, 2π] only.

For all x ∈ R , n ∈ N and d > 0 we have

Im gb(x + i(y+(b) + 2πn))
= y+(b) + 2πn+

(
x(c sin(y+(b) + 2πn) + d cos(y+(b) + 2πn))+

+(y+(b) + 2πn)(−d sin(y+(b) + 2πn) + c cos(y+(b) + 2πn))
)
ex

= y+(b) + 2πn− (y+(b) + 2πn)
(
− d sin(y+(b) + 2πn) + c cos(y+(b) + 2πn)

)
ex

= y+(b) + 2πn− y+(b)+2πn
d

(c2 + d2) sin(y+(b) + 2πn)ex

> y+(b) + 2πn,

for b ∈ R − we have Im gb(x+ i(y+(b) + 2πn)) > y+(b) + 2πn as well.
From this calculations one can also see the second statement, since we only
have to change the sign of sin(y+(b) + 2πn), which gives the desired result.
Analogously, we consider the function y− : H+ \ {0} → R defined by the
equation c sin y + d cos y = 0 and the value y−(b) = −π for b ∈ R −. For
b ∈ H+ close to R − we have y−(b) ∈ (−π, 0), while y−(b) 6= −π for b ∈ H+,
so y− takes values in (−π, 0) only.
For all x ∈ R , d > 0 we have Im gb(x + iy−(b)− 2πn) =

= y−(b) − 2πn − y−(b)−2πn
d

(c2 + d2) sin(y−(b) − 2πn)ex < y−(b), for b ∈ R −
this holds as well. Again, statement 4 can be seen from the same calculation.
5. follows immediately from the definitions, and to see 6. we use for b 6∈ R −
the already calculated formula
Im gb(x+i(y+(b)+2πn)) = y+(b)+2πn− y+(b)+2πn

d
(c2 +d2) sin(y+(b)+2πn)ex

giving the desired result, for b ∈ R − the calculations are analogous. 2

4.1.3 A related family

Proof of Theorem 5:
As mentioned in the text, we have conjugacies between the functions fa and
gb if b = −ae 1

a . We also have seen that if b ∈ R +, then all critical points
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are contained in the Baker domain of gb. Now we examine the preimages
of the positive real axis with respect to the function h(z) = −ze 1

z , for all
parameters a contained in these preimages the Baker domain of fa contains
all critical points of fa.
0 is an essential singularity of h, and R + does not contain a singular value.
We see that the preimages of R + separate the complex plane into infinitely
many domains, only one of them is unbounded.

Figure 4.7: Neighborhood of
h−1(R +)

Each bounded one is mapped 1:1 onto C \R +
0 , the unbounded one is mapped

2:1 onto the same set. The only critical point of h is 1 (obviously contained
in the unbounded component of C \ h−1(R )), the critical value −e is ex-
actly the ”mouth” of the cardiod of the Mandelbrot copy of Fb. This last
fact gives that there is a 2:1-covering of the Mandelbrot set in the parameter
plane of Fa, and since 0 is an essential singularity of h, we have a sequence
of preimages of the Mandelbrot copy of Fb tending to {0}, and all of these
copies are Mandelbrot copies for Fa. 2
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Proof of Lemma 4:
The critical points of f0 are the points zk = (2k+ 1)πi, k ∈ Z . If ε > 0, then
f ′ε(−1 + 1

ε
) = 1 > 0, while f ′ε(x) < 0 for sufficiently large x ∈ R +. Hence,

there exists a critical point of fε in (−1 + 1
ε
,∞). 2

4.2 Generalization

The function f(z) = z− c+P (z)eaz is conformally conjugate to the function
g(z) = z − ac + aP ( z

a
)ez. Hence, we may assume in our proofs that a = 1.

Since we proved some similar statements before, we will concentrate on the
differences to the special case if we do not need new methods.

Proof of Lemma 6:
Assume that f has an asymptotic value. Then 0 is an asymptotic value of
the function z 7→ f(z)

z
= 1 − c

z
+ P (z)

z
eaz, so −1 is an asymptotic value of

g(z) = P (z)
z
eaz. But g has only one asymptotic value, namely 0. 2

Proof of Lemma 5:
If P ≡ b ∈ C ∗, then f is a logarithmic lift of g(z) = e−czebz . If P is not
constant, then the set of critical points is not 2πi−periodic, as we will see
below. Hence, it cannot be a logarithmic lift. 2

Proof of Theorem 6:
Fix a δ ∈ (0,Re c) and consider the set

Mδ = {z : |f(z)− (z − c)| < δ}
= {z : |P (z)ez| < δ}.

The set {Re z : z ∈ Mδ} is bounded above, since the right-hand side of the
equation |P (z)| = δe−Re z tends to 0 as Re z tends to +∞, while the left-
hand side tends to ∞.
If d = deg P = 0, then Mδ is just a half plane. If d = deg P ≥ 1, then we
see from the calculation

|P (z)|2 = δ2e−2Re z

⇔ ∑
i+j≤d ai,jxy

j = δ2e−2x

that the left-hand side is dominated by the addend a0,2dy
2d, we conclude that

there is a half plane HR = {z : Re z < −R} such that the set HR ∩Mδ is
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the union of the graphs of two monotonuos functions and
x + iy ∈ HR ∩Mδ ⇒ |y|2d ≈ δ2 e−2x

|a0,2d| .

As in section 4.1.1 we can take an R > 0 such that the set Dδ,R = HR ∩Mδ

is forward invariant, and the same arguments give that it is an absorbing
domain and the last statement of the theorem. 2

Proof of Proposition 6:
All critical points are contained in the set
γc = {z : |f ′(z) − 1| = 1} = {z : |(P (z) + P ′(z))ez| = 1}. Lemma 29 gives
that γc and ∂Mδ (see the proof of Theorem 6) are asymptotically parallel
with a distance of ln δ. For any critical point z of f we have

f ′(z) = 0
⇒ 1 + (P (z) + P ′(z))ez = 0
⇒ P (z)ez = −1− P ′(z)ez
⇒ f(z) = z − 1− c− P ′(z)ez.

Now P ′(z)ez tends to 0 as z ∈ γc and |z| → ∞. Hence, for any ε > 0 we
have f(z) ∈ D(z − 1 − c, ε) for all but finitely many critical points of f . If
| ln Re c| < Re 1+c, then we can find an δ > 0 such that ln Re c < Re 1+c+δ
and all but finitely many critical points of f are mapped into an absorbing do-
main Dδ,R as constructed above. Therefore, all but finitely many critical val-
ues are contained in the Baker domain B. The condition | ln Re c| < Re 1+c
is satisfied for all c > 0.3. 2

Proof of Lemma 7:
For any constants R > 0, ε > 0 we can find a bounded domain UR,ε such
that |P (z + v)| < (1 + ε)|P (z)| for all z ∈ UR,ε and v ∈ D(0, R). Let
δ = Re c/3, U = U 4

3
c,exp(δ)−1 and Dδ be a absorbing domain for f as con-

structed in section 3.2. There exists a translation D of Dδ to the left
such that D ∩ U = ∅. D is an absorbing domain as well and satisfies
z ∈ D ⇒ |P (z)ez| < δ. Let h(z) = z − c. For any compact set K ⊂ D
we have

K ⊂ {z : Re z < x} ⇒ f(K) ⊂ {z : Re z < x− Re c + δ}.

This yields

max
z∈f(K)

|P (z)ez| = max
z∈K
|P (f(z))ef(z)| ≤ max

z∈K
|eδP (z)ez−Re c+δ| = e−δ max

z∈K
|P (z)ez|.
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By induction we obtain

d(fn(K), hn(K)) ≤
m∑
n=1

max
z∈fn−1(K)

|P (z)ez|

≤
m∑
n=1

max
z∈K
|P (fn−1(z))ef

n−1(z)| < δ
∞∑
n=1

(e−δ)n <∞.

2

Lemma 28
If Re ac > ln 2, then there exist ε > 0, R > 0 such that the set
f({z : |z| > R, |f ′(z)| < 1 + ε}) is contained in the Baker domain B of f .

Proof:
Let ε ∈ (0,Re c). We can find an R = R(ε) > 0 such that
|(P (z) + P ′(z))ez| < 2 + ε and |z| > R imply |P ′(z)ez| < ε (since the degree
of P ′ is smaller than the degree of P ).
If |f ′(z)| < 1 + ε, then |1 + (P (z) + P ′(z))ez| < 1 + ε, so
|(P (z) + P ′(z))ez| < 2 + ε. Hence, z is contained in the set
Mε = {z : |(P (z) + P ′(z))ez| < 2 + ε} and we choose an absorbing domain
D = De−ε,R̃ as constructed above with R̃ > R. The asymptotic horizontal
distance between ∂Mε and ∂D in the sense of Lemma 29 is
ln(2 + ε)− ln e−ε = ln(2 + ε) + ε. If |z| > R̃, then we obtain

f(z) = z − c+ P (z)ez

= z − 1− c + 1 + P (z)ez + P ′(z)ez − P ′(z)ez
= z − 1− c + f ′(z)− P ′(z)ez
∈ D(z − 1− c, 1 + 2ε).

If we choose ε sufficiently small, then

Re c > ln(2 + ε) + 3ε
⇒ Re c− 2ε > ln(2 + ε) + ε
⇒ | − 1− Re c+ 1 + 2ε| > ln(2 + ε) + ε.

By increasing R̃ if necessary we obtain our claim. 2
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Lemma 29
Let P be a polynomial of degree d, Q a polynomial of degree d′ < d,
a < b ∈ R + and γ1, γ2 be the curves in C defined by the equations
|P (z)ez| = a and |(P (z) + Q(z))ez| = b, respectively. Then the ”asymp-
totic horizontal distance” between γ1 and γ2 tends to ln b − ln a in the sense
that for each ε > 0 we can find an y0 > 0 such that |y| > y0, x1 + iy ∈ γ1 and
x2 + iy ∈ γ2 imply |(x2 − x1)− (ln b− ln a)| < ε.

Proof:
As we have seen above, there exists an R > 0 such that the set
Ma = {z : |P (z)ez| = a, |z| > R} consists of two disjoint curves, each of
them is the graph of a monotonous function and is contained in a half plane
{z : Re z < z0}. Since deg Q < deg P , we have |Q(z)ez| → 0 as z ∈ ∂Ma

and |z| → ∞. Furthermore, for any ε > 0, K > 0 there exists a C > 0 such
that |P (z +K)| > |P (z)|e−ε/2 for all |z| > C.
Let ε > 0, δ = ln b − ln a and y0 such that |Q(z)ez| < b(eε/2 − 1) for all
z ∈ ∂Ma satisfying |Im z| > y0 and such that |P (z + δ + ε)| > |P (z)|e−ε/2
for all z 6∈ D(0, y0). Let x1 + iy be as in the hypothesis.
Then

|(P (x1 + iy + δ + ε) +Q(x1 + iy + δ + ε))ex1+iy+δ+ε|
≥ |P (x1 + iy)ex1eδ+εe−ε/2| − |Q(x1 + iy + δ + ε))ex1+iy+δ+ε|
= a b

a
eε/2 − |Q(x1 + iy + δ + ε))ex1+iy+δ+ε|

> beε/2 − b(eε/2 − 1)
= b.

Analogously, one obtains |(P (x1+iy+δ−ε)+Q(x1+iy+δ−ε))ex1+iy+δ−ε| < b.2

4.3 Approximation of Julia sets

4.3.3 Approximation of functions having Baker do-
mains

Proof of Theorem 9a):
For simplicity we will prove the claim only for the case P (z) = bzd for some
d ∈ N 0, b ∈ C ∗, but since we only use arguments for ”large” values of |z| it
will be clear that our arguments hold for the general case as well.
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First, we fix an n and define some constants (for some definitions we assume
n to be sufficiently large):
Let
c = c1 + ic2,
r = Re c/3 > 0,
0 < ε < min{r/3, c1/8, |c|2/c1, |c|2/c2, |c|2/2},
k ∈ N such that k < εn

|c|2 ,

kmax ∈ N ∩ [ εn|c|2 − 1, εn|c|2 ),
K be a compact set contained in the Baker domain B of f ,
m ∈ R +, w ∈ R , l ∈ N such that f l(K) ⊂ D(−m + iw,m/2) =: D0,

(3m
2

+ |w|)de−m/4 < ε/|b| and m > 40
3
r+|c|
c1

(the existence of m, l, w is
guaranteed by Lemma 7),
Dk = D(−m+ iw − kc,m/2 + kr) and
D = D(−n, n−√n).

Note that Pn(−n) = −n and P ′n(−n) = 1 − c
n
. The value 1 − c

n
is

located on the segment connecting 1 and 1 − c. Since the real part of c is
positive, 1 − c

n
is contained in the unit disk for sufficiently large n. Hence,

−n is an attracting fixed point for all but finitely many n.

The proof amounts to showing that D0 is contained in the Fatou set
of Pn for all but finitely many n. We will do this in three steps:

a)Pn(Dk) ⊂ Dk+1 for all 0 ≤ k ≤ kmax and all but finitely many
n

b) Pn(D) ⊂ D for all but finitely many n

c) Dkmax ⊂ D for all but finitely many

n.

a)
Actually, this claim is not too surprising, since the limit function sends a
disk Dk into the disk Dk+1. However, we deal with sets tending to ∞ (as
kmax depends on n), so the claim is not obvious. First, using our definitions
of k and ε as above we see that
n− m

4
− kc1

2
> n− m

4
− nεc1

2|c|2 >
n
2
|c1|
|c|2
|c|2
|c1| −

m
4

= n
2
− m

4

and
k
n
c2

2 <
k
n
|c2| < ε < c1/8



4.3. APPROXIMATION OF JULIA SETS 95

and
k
n
|c2| < |c2|

2
nε
|c|2 <

n
2
|c2|
|c|2
|c|2
|c2| = n

2
.

We have to show that if |v| = m
2

+ kr, then
|Pn(v −m+ iw − kc) +m− iw + kc+ c| < m

2
+ kr + r.

The following calculations are valid for all sufficiently large n.

Pn(v −m + iw − kc) +m− iw + kc+ c
= v n−c

n
+ cm−iw+kc

n
+ b(v −m+ iw − kc)d(n+v−m+iw−kc

n
)n

=: v n−c
n

+ cm−iw+kc
n

+ bh̃(k).

First, we show that |h̃(k)| < ε
|b| .

|h̃(k)| = |v −m + iw − kc|d|n+v−m+iw−kc
n

|n
≤ (|v|+m + |w|+ |kc|)d|n+v−m+iw−kc

n
|n

= (3m
2

+ |w|+ k(r + |c|))d|n+v−m+iw−kc
n

|n
≤ (3m

2
+ |w|+ k(r + |c|))d|

3
2
|v|+n−m+iw−kc

n
|n for almost all n

= (3m
2

+ |w|+ k(r + |c|))d|
3
4
m+ 3

2
kr+n−m+iw−kc

n
|n

= (3m
2

+ |w|+ k(r + |c|))d|n−
m
4

+iw+k( 3
2
r−c)

n
|n =: h(k)

(h(k))2 can be extended to a differentiable function from R + into itself,

h2(x) =
(

3m
2

+ |w|+ x(r + |c|)
)2d(

(
n−m

4
+x( 3

2
r−c1)

n
)2 + (w−xc2

n
)2
)n

=
(

3m
2

+ |w|+ x(r + |c|)
)2d(

(
n−m

4
−xc1/2)

n
)2 + (w−xc2

n
)2
)n
,

we obtain (again, for all but finitely many n and 0 ≤ x ≤ kmax)

1
2
dh2(x)
dx

[(
3m
2

+ |w|+ x(r + |c|)
)2d−1(

(
n−m

4
−xc1/2
n

)2 + (w−xc2
n

)2
)n−1]−1

= d
(
r + |c|

)(
(
n−m

4
−xc1/2
n

)2 + (w−xc2
n

)2
)
+

+
(

3m
2

+ |w|+ x(r + |c|)
)(n−m

4
−xc1/2
n

(− c1
2

)− w−xc2
n

c2

)

≤ d
(
r + |c|

)(
(
n−m

4

n
)2 + (w−n/2

n
)2
)

+
(

3m
2

+ |w|+ x(r + |c|)
)(−n/2+m/4

n
c1
2
− wc2

n
+ 1

8
c1

)

= d
(
r + |c|

)(
(
n−m

4

n
)2 + (w−n/2

n
)2
)

+
(

3m
2

+ |w|+ x(r + |c|)
)(
− c1

4
+ 1

8
c1 + c1m/8−wc2

n

)

≤ d
(
r + |c|

)(
1 + 1

4

)
+
(

3m
2

+ |w|+ x(r + |c|)
)(
− c1

8
+ c1m

8n
− wc2

n

)

≤ 5
4
d(r + |c|)− 3

2
m c1

16

< 0,

since m > 40
3
r+|c|
c1

.
Now we know that h(k) ≤ h(0), and
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h(0) = (3
2
m + |w|)d|n−m/4+iw

n
|n → (3

2
m + |w|)d|eiw−m/4| < ε

|b| . Hence,

|h̃(k)| < ε
|b| for all 0 ≤ k ≤ kmax.

We can proceed with

|Pn(v −m+ iw − kc) +m− iw + kc+ c|
= |v n−c

n
+ cm−iw+kc

n
+ bh̃(k)|

≤ |v||n−c
n
|+ |c|m+|w|

n
+ k|c|2

n
+ |b||h̃(k)|

< |v|+ |c|m+|w|
n

+ k|c|2
n

+ |b||h̃(k)|
< m

2
+ kr + ε+ ε+ ε

< m
2

+ kr + r.

This proves Pn(Dk) ⊂ Dk+1 for all but finitely many n and 0 ≤ k ≤ kmax.

b)
We have to show that if |v| = n− √n, then
|Pn(v − n) + n| < n−√n.

|Pn(v − n) + n|
= |v n−c

n
+ b(v − n)d( v

n
)n|

= |v||1− c
n

+ b(v − n)d( v
n
)n−1 1

n
|

= |v||1 + 1
n
(b(v − n)d( v

n
)n−1 − c)|.

Now,

|b(v − n)d( v
n
)n−1|

≤ |n
v
||b||(2n)d(n−

√
n

n
)n|

= |n
v
||b||(2n)d((1− 1√

n
)
√
n)
√
n|

≤ |n
v
||b||(2n)d(1

e
+ ε0)

√
n|,

which is small for sufficiently large n. We may deduce that
Re b(v − n)d( v

n
n−1 − c) < −Re c/2, by the same argumentation as in

the proof that the fixed point is attracting for all but finitely many n we see
that |1 + 1

n
(b(v− n)d( v

n
)n−1 − c)| < 1 for all but finitely many n. This shows

part b).

c)
In this part, we have to show that
d(−n,−m + iw − kmaxc) + m/2 + kr < n − √n. We drop the index, so let
k = kmax. We have
nc1
|c|2

4
3
> nc1
|c|2 = n

|c|2
r
3
> nε
|c|2 > k,

so with c0 = kr+m/2+|w| (recall thatAn−1 ≤ kmax ≤ An for some A ∈ R +)
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|n−m− kc+ iw|+m/2 + kr < n− √n
⇐ |n−m− kc| < n−√n− kr −m/2− |w|
⇔ |n−m− kc| < n−√n− c0

⇔ |n−m− kc|2 < (n−√n− c0)2

⇔ (n−m− kc1)2 + k2c2
2 < (n− c0)2 − 2(n− c0)

√
n + n

⇔ n2 − 2n(m+ kc1) + (m+ kc1)2 + k2c2
2 < n2 − 2nc0 + c2

0 − 2n
√
n+ 2c0

√
n+ n

⇔ −2n(m + kc1) + (m+ kc1)2 + k2c2
2 < −2nc0 + c2

0 − 2n
√
n + 2c0

√
n+ n.

We only need to consider the terms in which n occurs squared, these are the
terms kn and k2, since k depends linearly on n:

−2kc1n+ k2|c|2 < −2nkr + k2r2

⇔ 0 < 2nk(c1 − r)− k2(|c|2 − r2)
⇔ 0 < 2nk 2

3
c1 − k2(|c|2 − r2)

⇔ 0 < 4
3
c1n− k(|c|2 − r2)

⇔ k < 4
3

nc1
|c|2−r2

⇐ k < 4
3
nc1
|c|2 .

This finishes the proof. 2

Remark 16
All calculations also work if we use the generalization of Morosawa’s sequence
as mentioned in the text.

Before proving part b) of the theorem, we need some estimations:

Lemma 30
Let P be a polynomial of degree d ∈ N 0 with leading coefficient a 6= 0. Let
t,K ∈ R + and Sn = {z : Re z < −n, |Im z| < K}.
a)

If δ ∈ (−∞, n− d ln(t1/dn)), then for all large n
||P (z)||D(−n,n−d ln(tn)−δ) < |a|(2n)d.

b)
If δ ∈ (−∞, n− d ln(t1/dn)), then for all large n
||(1 + z

n
)n||

D(−n,n−d ln(t1/dn)−δ) < n−d 1
t
e−δ.

c)
If δ ∈ R +, then for all large n
minD(−n,n−d ln(t1/dn)+δ)C∩Sn |P (z)(1 + z

n
)n| ≥ 2d |a|

t
eδ/8.
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Proof:
a)

We have P (z) = azd +O(zd−1), so

|P (z)| = |a||z|d +O(|zd−1|)
≤ |a||2n− d ln(tn)|d +O(nd−1)
≤ |a||2n|d − 2|a|d ln(tn)(2n)d−1 +O(nd−1)
< |a||2n|d for large n.

b)
We start with the fact that ln(1− 1

x
) < − 1

x
for all x ∈ (1,∞). Hence,

ln(1− 1
x
) < − 1

x

⇔ x ln(1− 1
x
) < −1

⇔ (1− 1
x
)x = exp(x ln(1− 1

x
)) < e−1

and

||(1 + z
n
)n||

D(−n,n−d ln(t1/dn)−δ)
= (1 + −d ln(t1/dn)−δ

n
)n

= ((1− d ln(t1/dn)+δ
n

)
n

d ln(t1/dn)+δ )d ln(t1/dn)+δ

< (exp(−1))d ln(t1/dn)+δ

= 1
(nt1/d)d

e−δ

= 1
tnd
e−δ.

c)
First, we show that (1− 1

x
)x > e−1−1/x for sufficiently large x ∈ R +.

We have

(1− 1
x
)x = exp(x ln(1− 1

x
)) > e−1−1/x

⇔ x ln(1− 1
x
) > −1− 1

x

⇔ ln(1− 1
x
) + 1

x
+ 1

x2 > 0.

Now, h(x) := ln(1− 1
x
)+ 1

x
+ 1
x2 → 0 as x→∞ and h′(x) = 1

x3 ( x
x−1
−2) < 0

for large x, so (1− 1
x
)x > e−1−1/x for sufficiently large x.

This yields

minD(−n,n−d ln(t1/dn)+δ)C |(1 + z
n
)n|

= (1 + −d ln(t1/dn)+δ
n

)n

= ((1− d ln(t1/dn)−δ
n

)
n

+d ln(t1/dn)−δ )d ln(t1/dn)−δ

> (exp(−1− d ln(t1/dn)−δ
n

)d ln(t1/dn)−δ

= 1
tnd
eδe−

(d ln(t1/dn)−δ)2
n

> 1
tnd
eδ/2 for large n.
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Furthermore, we have for large values of |z| that |P (z)| > |a||z|de−δ/4 and
for z ∈ D(−n, n− d ln(t1/dn)− δ)C ∩ Sn that
|z| ≥ |Re z| ≥ | − 2n+ d ln(t1/dn) + δ| = |2n− d ln(t1/dn) + δ|, so

minD(−n,n−d ln(t1/dn)−δ)C∩Sn |P (z)(1+ z
n
)n| ≥ |a||2n−d ln(t1/dn)+δ|d

tnd
e−δ/4eδ/2 > |a|

t
2deδ/8.2

In the following, let a be the leading coefficient of the polynomial P ,
c ∈ [1, 2), Qn(z) = z − c+ P (z)(1 + z

n
)n and d the degree of P .

Proposition 10 (location of attracting fixed points)
Let δ,K ⊂ R + and Sn(K) as above. Then there exist ε, σ > 0 such that for
all large n and all fixed points zn of Qn in Sn(K) the following conditions are
satisfied:
a)

zn ∈ An = D(−n, n− d ln(2n( |a|
c

)1/d) + δ)\D(−n, n−d ln(2n( |a|
c

)1/d)−δ).
b)
|Q′n(zn)| < 1− σ.

c)
D(zn, ε) is contained in the immediate attracting basin of zn.

Proof:
a)

All fixed points zn of Qn satisfy |P (zn)(1 + zn
n

)n| = c. Hence, the claim
follows from the preceding lemma.
b)

We have Qn(zn) = z, so P (zn)(1 + zn
n

)n = c and
Q′n(zn) = 1 + c

1+zn/n
+ P ′(zn)(1 + zn

n
)n.

By Lemma 30 and a), |1+ zn
n
| ≤ c

2d|a|nd , and P ′ is a polynomial of degree d−1,

so we may assume that |P ′(zn) < (2n)d−1|. Hence, |P ′(zn)(1 + zn
n

)n| < R
n

for
some R > 0.
By a) we can write zn = −n+ rneiφ, where

r ∈ (−1+
d ln(

2|a|n
c

)

n
− δ

n
,−1+

d ln(
2|a|n
c

)

n
) and |φ| < εn, where εn → 0 as n→∞.

Let δ = 2− c > 0. If n is sufficiently large, we have | c
r
| < |c|+ δ

2
= 2− δ

2
, and

we are done with noting that if |φ| is sufficiently small and n large, then the
value 1− (2− δ

2
)eiφ + Rv

n
is contained in the disk D(0, 1− δ

4
) for all v ∈ D .
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c)
We calculate

Q′′n(z) = (1 + z
n
)n((n−1

n
)P (z)(1 + z

n
)−2 + 2P ′(z)(1 + z

n
)−1 +P ′′(z)). For δ > 0,

large n and
z ∈ D(−n, n− d ln(2n( |a|

c
)1/d) + δ) \D(−n, n− d ln(2n( |a|

c
)1/d)− δ) we have

|1 + z
n
| > 1/2, so Q′′n(z) < |1 + z

n
|n(4|P (z)|+ 4|P ′(z)| + |P ′′(z)|).

From the estimations in Lemma 30 we obtain a M > 0 such that for a
sufficiently small ε > 0 the inequation |Q′′n(z)| < M holds for all large n and
z ∈ D(zn, ε).
By b) and decreasing ε if necessary we may assume that |Q′n(z)| < 1 on
D(zn, ε). This proves part c). 2

We fill this proposition with life by proving

Lemma 31 (Existence of fixed points in Sn(K))
Let An be as above, then we can find a K > 0 such that An∩Sn(K) contains
at least two fixed points of Qn for large n.

Proof:
Let Q̃n(z) = Qn(z)− (z− c) = P (z)(1 + z

n
)n and γn = Q̃−1

n (∂(D(0, c)). Then
γn is a union of finitely many closed curves containing all fixed points of Qn,
and γn ∩ Sn(K) ⊂ An for any fixed K and large n.

We have Q̃′n(z) = Q′n(z) − 1 = ( P (z)
1+z/n

+ P ′(z))(1 + z
n
)n. By using the

estimations from Lemma 30 we can find a constant M > 0 such that
minz∈γk∩Sn(K) |Q̃′n(z)| = M , in particular, there are no critical points of Q̃n

in γn ∩ Sn(K).
Let K = 4πc

M
, then γn ∩ Sn(K) contains a Jordan curve of length at least K

or two Jordan curves of length larger than K/2. Since |Q̃′n < M | on these
curves and these curves are mapped to ∂D(0, c), we obtain at least two
points z1 6= z2 ∈ γn ∩ Sn(K) such that Q̃n(z1) = Q̃n(z2) = c. Hence, z1 and
z2 are fixed points of Qn. 2

Finally, we prove a lemma which enables us to give estimates for preimages:

Lemma 32
Let P be a polynomial, ||P ||D ≤ 1 and f(z) = z + P (z). Then 0 ∈ f(D ).

Proof:
We only have to deal with the case 0 6∈ f(∂D ), otherwise the claim is
obvious. ||P ||D ≤ 1 yields that f(1) is contained in the open right half
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plane, f(−1) is contained in the open left half plane. Let γ1 be the arc
connecting 1 and -1 and containing i and γ2 the arc connecting 1 and -1 and
containing −i. f(γ1) does not intersect the negative imaginary axis, neither
does f(γ2) intersect the positive imaginary axis. Hence, f(∂D ) is a closed
curve winding around 0, so 0 ∈ f(D ) in this case. 2

Now we are ready to prove part b) of the theorem.

Proof of Theorem 9b):
Due to the preceding estimations we find two sequences z1(n), z2(n) and
K, ε > 0 such that for i = 1, 2 and sufficiently large n the following holds:

• zi(n) is an attracting fixed point of Qn

• |Im zi(n)| < K

• zi(n) + 3ε
4
∈ A∗(zi(n)) ∩D(−n, n− d ln(2n( |a|

c
)1/d)− ε/2), where

A∗(zi(n)) is the immediate attracting basin of zi(n).

We will show that there exists a compact set R contained in the Baker
domain of f such that R ∩ O−(zi(n)) 6= ∅ for i = 1, 2. This implies
that R contains points of the Julia set of Qn for infinitely many n, so
dist (J(Qn), J(f)) > dist (R, ∂B) > 0.
The general idea is to iterate the values zi(n) + 3ε

4
backwards, by showing

that Qn is ”close ” to the translation by −c on some domain in the left half
plane we see that there exists a branch of the inverse function of Qn which is
”close” to the translation by c. Hence, the backward iterates move ”almost”
horizontally, and by estimating the imaginary parts of the backward iterates
we will obtain the existence of our desired set R. The technical main
problem is to quantify the words ”close” and ”almost” above.
First, let us define some constants:

Let δ be the unique value in R + such that δ = c− exp(− δ
2
− ε

2
),

K such that Im |zi(n)| < K as above,

K1 = e−ε/2
∞∑
s=1

(e−δ)i ∈ (0,∞),

K̃ = K +K1 + 2,

M = 3
2
|a|e

∞∑
i=0

(1 + i)2e−i <∞,

α0 < −2 such that the rectangle
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R = {z : α0− 2c− 1 < Re z < α0− 1, |Im z| < K̃} is contained in the Baker

domain of f , |α0|deα0M < 1 and 3
2
|a|(x2 +K2)d/2exeK̃ < 3

2
if x < α0,

C0 > K̃ such that for any z satisfying z ∈ D(−n, C0), z + c 6∈ D(−n, C0)
and |Im z| < K̃ we have Re z > −n+ C0 − 2c and n large such that

• ||P (z)||D(0,2n−d ln(cn)) < |a|(2n)d and

• |a|(2n)d(C0

n
)n < c

2c+2
and

• if σ > C0, z ∈ D(−n, σ), |Im z| < K̃,Re z < −n, then
D(z + c, exp(− δ

2
− ε

2
)) ⊂ D(−n, σ − δ

2
)

(possibly we have to increase C0 to obtain the last property).
Let z0 ∈ {z1(n) + 3

4
ε, z2(n) + 3

4
ε}.

Step 1:
We have z0 ∈ D(−n, n−d ln(2n( |a|

c
)1/d)−ε/2), and by our hypothesis we see

that D1 = D(z0 + c, exp(− δ
2
− ε

2
)) ⊂ D(−n, n− d ln(2n( |a|

c
)1/d)− ε/2− δ/2).

Using Lemma 30 we see that ||Qn(z)−(z−c)||D1
< exp(− δ

2
− ε

2
) = rad (D1).

Hence, ∂D1 is mapped by Qn to a closed curve γ such that z0 ∈ int γ, so
there is a z1 ∈ D1 ∩Q−1

n (z0).
We can do the same to z1, recall that
z1 ∈ D(−n, n− d ln(2n( |a|

c
)1/d)− ε/2− δ/2), and setting

D2 = D(z1 + c, exp(−2 δ
2
− ε

2
)) we have

||Qn(z)−(z−c)||D2 < exp(−2 δ
2
− ε

2
) = rad(D2). After finitely many steps we

end up with a v ∈ O−(z0) ∩ D(−n, C0), provided that the imaginary parts
of our backward iterates do not move too much. But for any zj ∈ P−j(z0)
constructed this way we have

|Im zj − Im z0| ≤
j∑
s=1

||Qn(z)− (z − c)||Ds

=
j∑
s=1

exp(−s δ
2
− ε

2
)

< e−
ε
2

∞∑
s=1

(exp(− δ
2
))s

= K1.

Hence, we have a v ∈ O−(z0) ∩D(−n, C0) ∩ {z : |Im z| < K +K1}.

Step 2:
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We have

||Qn(z)− (z − c)||D(−n,C0) = ||P (z)(1 + z
n
)n||D(−n,C0)

≤ |a|(2n)d(C0

n
)n

< c
2c+1

by our hypothesis. Using the same argument as in Step 1, we can iterate v
backwards. For every backward iteration, the real part moves at least by
c− σ. We are interested in the value v′ ∈ O−(v) obtained by this procedure
such that v′ ∈ D(−n, C0) but v′ + c 6∈ D(−n, C0). The number of iterations
m we need satisfies m(c − σ) < 2C0 + 1. The distance |Im v − Im v′| is
smaller that m||Qn(z) − (z − c)||D(−n,C0) ≤ 2C0+1

c−σ σ = 2C0+1
c− c

2C0+2
σ = 1. We

conclude that there is a v′ ∈ O−(z0)∩{z : |Im z| < K+K1 + 1}∩D(−n, C0)
such that v′+ c ∈ D(−n, C0). Using our hypothesis we see that Re v′ > −n.

Step 3:
We continue our backward iteration, using different estimations.
For each z satisfying Re z ∈ (−n, α0) and |Im z| < K̃ we
have |z|2 ≤ K̃2 + α2, so |P (z)|2 ≤ |a|2(3

2
)2(K̃2 + α2)d and

|z + n| < K̃ + α + n, so |(1 + z
n
)n| < (1 + K̃+α

n
)n < eα+K̃ , and we

obtain |P (z)(1 + z
n
)n| < 3

2
|a|(K̃2 + α2)d/2eα+K̃ < c

2
. If we construct the

preimages of v′ as before and make shure that the imaginary parts always
have modulus smaller than K̃, then we obtain a v0 ∈ O−(z0) ∩R as desired.
To estimate the imaginary parts, we do the following:
Note that h(x) = 3

2
|a|((x + 3

2
c)2 + K2)d/2ex+ 3

2
ceK̃ is an increasing function

on (−∞, α0) ⊂ (−∞,−2). We construct the first preimage v ′1 of v′, by our
estimations above we know it can be found in the disk D(v ′ + c, c/2). Let
x0 = Re v′ ∈ (−n, α0), then we can calculate the value
||Qn(z)− (z − c)||D(v′+c,c/2) more precisely to be

||Qn(z)− (z − c)||D(v′+c,c/2) ≤ 3
2
|a|((x0 + 3

2
c)2 +K2)d/2ex0+ 3

2
ceK̃ =: a1.

Hence, v′1 ∈ D(v′ + c, a1). The condition |αd0eα0 |M < 1 guaran-
tees that a1 < 1, so |Im v′1| < K̃. We repeat this method to
obtain a preimage of v′1, it is contained in the set D(v′1, a2), where

a2 = 3
2
|a|((x0 + 3

2
c + 3

2
c)2 + K2)d/2ex0+3ceK̃. Again, |αd0eα0 |M < 1 yields

|a1 +a2| < 1, so |Im v2| < K̃. We can continue iterating backwards to obtain
v′i, i = 3, ... as long as Re v′i < α0. Using that Re v′i − Re v′i−1 ∈ ( c

2
, 3c

2
) as

long as v′i is defined, we end up with a v0 ∈ O−(z0) ∩R.
Since we can do this with both attracting fixed points, R contains points of
two different Fatou components, so it contains points of the Julia set and
our proof is complete.
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2

4.4 The limiting processes Re ac→ 0

4.4.1 The dynamical plane

For each λ ∈ C ∗, the function gλ has exactly two singular values, namely
the critical value −λ

e
and the asymptotic value 0. A result of Eremenko and

Lyubich gives that these functions do not have Baker domains or wandering
domains, another result in the same paper states that there are at most two
non-repelling cycles. The case c ∈ {z : Re z ≥ 0} corresponds to the case
λ ∈ D ∗, this is the case we are interested in. Note that 0 is always a fixed
point of gλ, its multiplier is λ.
In the following, let λ and c be such that λ = e−c.
First, we look at the case λ ∈ D ∗. 0 is an attracting fixed point of gλ, the
Baker domain of fc is the lift of the immediate attracting basin of 0. One
way to see that this basin contains the critical point -1 (and not only the
asymptotic value 0), or, equivalently, that the Baker domain contains all
critical points of fc, is to use the result of Bergweiler in the introduction,
another way is to observe that any attracting (but not super-attracting)
basin contains a singular value which is not (pre-)periodic. This implies
that if λ ∈ D ∗, then F (gλ) contains exactly one periodic component, as well
as F (fc) does.
Since all Fatou components of gλ are finally mapped into the immediate
attracting basin of 0, all Fatou components of fc are finally mapped into the
Baker domain. Hence, fc has no wandering domains.
We turn to the case λ = exp(2πip/q), where p/q ∈ Q and (p, q) = 1.
0 is a parabolic fixed point, using that there is only one singular value
which is contained in the Fatou set we see that the Fatou set consists of
one cycle of parabolic domains (and possible preimages). The Fatou set of
f0 has already been described in [43], [44] or [49], it consists of infinitely
many invariant Baker domains contained in horizontal strips of height 2π,
the horizontal lines at 0 and 2πik, k ∈ N , are contained in the Julia set.
For each point in such a Baker domain, the real part tends to −∞ under
iteration. Each Baker domain contains exactly one critical value, and all
critical values are contained in these Baker domains. Using estimations in
[43] one easily verifies that these Baker domains are examples for the second
case of König’s classification.
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If c = 2πin for some n ∈ Z \ {0}, then J(fc) = J(f0) by using the lift, and
it is easy to see that the Baker domains for f0 turn into wandering domains
for fc. Nothing different happens if more general λ = exp(2πip/q), p, q as
above, but p 6= 0; the petals of the parabolic fixed point 0 of gλ are lifted
to wandering domains of fc, this can be observed by choosing a point in
a petal and following its forward orbit and lifting this orbit (note that
winding once around the origin in the dynamical plane of gλ is lifted to a
translation by 2πi in the dynamical plane of fc). Here as well, for a z in such
a wandering domain, the real part tends to −∞ under iteration, but this
time the imaginary part does as well. These wandering domains are Baker
wandering domains. Note that if gλ has q petals attached to the origin,
then for each of these wandering domains V the union

⋃q
n=1 f

n
c (V ) contains

exactly one critical point if V is a lift of a petal. Conversely, all singular
values of fc are contained in wandering domains. Finally, we can use the
argumentation from the case λ ∈ D ∗ to show that fc has no other periodic
Fatou components and no other asymptotic path of wandering domains.
Hence, the number of asymptotic paths of wandering domains only depends
on the number q of petals of gλ and the smallest integer k larger than |p/q|,
it is equal to kq.

Next, we will look at the case where 0 is the center of a Siegel disk
of gλ. We will use the following result of Geyer:

Theorem 13 (Geyer, [27])
0 is the center of a Siegel disk of gλ if and only if λ is contained in the set
of Brjuno numbers.

This case has already been described in [3] and [34]. The corresponding
functions fc have univalent Baker domains Bc containing half planes, they
are examples of class 2 in König’s classification. Proposition 11 tells us that
the Siegel disks are the only periodic Fatou components of gλ, and as above
we see that the Baker domains are the only periodic Fatou components of
fc and that fc has no wandering domains.

It only remains to check the case where 0 is an irrationally indifferent
non-linearizable fixed point. Theorem 11 tells us that gλ has no Siegel disks
for such a λ. Since 0 is a Cremer point, the forward orbit of the critical value
has to accumulate at 0 (see the introduction), so it cannot be contained in
an attracting or parabolic basin. Hence, the Fatou set is empty, and we also
obtain that J(fc) = C .
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Proposition 11
If gλ has an irrationally indifferent fixed point at 0 then there is no (other)
Siegel disk.

The idea behind this proposition is that the boundary of a Siegel disk
is contained in the closure of the post-singular set, while Cremer points
are contained in the derived set of the post-singular set. gλ has only two
singular values, one of them, namely 0, is fixed. If the theorem would be
false, then the other singular value would accumulate at the Cremer point
and at any point of the boundary of the Siegel disk or at any point of the
boundary of both Siegel disks, respectively. We will show that such a ”part
time job” is impossible (even the case that both Siegel disks have the same
boundary is not possible).

Proof:
Shishikura proved in [50] the sharp bound of non-repelling cycles of ra-
tional functions, a generalization of his method for entire transcendental
is sketched in [17]. We will follow these arguments, the main idea is to
perturb the function in question to make an indifferent periodic point attract-
ing while leaving the number of singularities of the inverse function invariant.

Suppose that gλ has an irrationally indifferent fixed point at 0 and a
cycle of Siegel disks {S1, . . . , Sp} with centers {z1, . . . , zp} not containing 0.
Let z0 be a preimage of z1 not contained in the indifferent cycle (such a point
exists, since 0 is the only value having only finitely many preimages under
gλ) and let R be the map R : C → C ; z 7→ 1

z−z0 . We can find a polynomial

h of degree m such that h(0) = 0, h(− 1
z0

) = 0, h(R(zi)) = 0, h′(− 1
z0

) = 0 and

h′(R(zi)) = −1(i = 1, . . . , p). Let ρ : R +
0 → [0, 1] be a C∞-function such that

ρ(x) = 1 on [0, 1] and ρ(x) = 0 on [2,∞). Then Hε(z) = z+ εm+1h(z)ρ(ε|z|)
is a quasiconformal homeomorphism for small values of ε, in particular, Hε

has no critical points (the calculations can be found in [36]). Furthermore,
Hε → id uniformly as ε→ 0. Hε is analytic in D(0, 1

ε
) ∪D(0, 2

ε
)C .

R maps the disk D(z0, ε) into the set D(0, 1
ε
)C . Let Dε be the attracting

basin of gλ ◦ R−1 ◦ Hε ◦ R containing z1, and rε = d(z1, ∂Dε). It can be
shown that for any α > 0 there exists a K(α) > 0 such that rε > K(α)εα for
sufficiently small values of ε (for a way how to prove this see [36]). Hence,
gλ ◦R−1 ◦Hε ◦R(D(z0, ε)) ⊂ Dε for sufficiently small ε.
We define fε = gλ ◦ R−1 ◦ Hε ◦ R. Note that R−1(H−1

ε (R(R −))) is an
asymptotic path of the asymptotic value 0 of fε. Summing up, R−1 ◦Hε ◦R
and fε have the following properties:
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• R−1 ◦Hε ◦R is a quasiconformal homeomorphism, conformal in
C \D(z0, ε) and D(z0,

ε
2
)

• {z1, . . . , zp} is an attracting cycle of fε, 0 is an irrationally indifferent
fixed point

• fε has two singular values, one asymptotic value which is fixed and one
critical value

• fε(D(z0, ε)) is contained in an attracting basin of fε.

Note that all iterates of fε are K−quasi-regular with a fixed K, since fε
maps the disk D(z0, ε) into C \ D(z0, ε), where fε is holomorphic, and the
values stay there forever. Hence, we may use the generalized qc-lemma
mentioned in the introduction and obtain an entire map having the same
dynamical properties. But the attracting cycle requires a singular value
contained in an attracting basin such that the forward iterates are bounded
away from the Julia set. The other singular value is fixed, but under these
circumstances it is impossible to have another irrationally indifferent fixed
point. 2

4.4.2 Radial continuity of Julia sets

To prove Theorem 11 we will establish the corresponding result for the func-
tions gλ. We will have to distinguish between the possible types of the fixed
point 0.

Proposition 12 If gλ(z) has a fixed Siegel disk centered at 0, then the sets
J(gtλ), t ∈ (0, 1), converge to J(gλ) as t approaches 1.

Proof:
Yoccoz proved the analogous result for the family Pa(z) = az+ z2 in [54], his
result was generalized for a larger class of rational functions in [36]. We will
adapt this method to our case, closely following the exposition in [36].
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First, we note that the Siegel disk is the only periodic Fatou component of
gλ by Proposition 11, and 0 is an attracting fixed point of gtλ for t ∈ (0, 1).
We have a linearizing function Ψ with the following properties:

1. Ψ : D → S is biholomorphic

2. gλ(Ψ(z)) = Ψ(λz)

3. Ψ(0) = 0.

We will prove that for any ε > 0 there exists a t0 ∈ (0, 1) such that 1 > t > t0
implies Ψ(D(0, 1 − ε)) ⊂ A∗tλ, where A∗tλ is the immediate attracting basin
of the attracting fixed point 0 of gtλ.
Fix an ε > 0, we write r′ = 1− ε, r′′ = 1− ε

2
and s = 1− t for t ∈ C .

By continuity, for any n ∈ N we have a δ = δ(n, ε) > 0 such that

|1− t| < δ, |z| ≤ r′′, m ∈ {0, . . . , n}, implies gmtλ(Ψ(z)) ∈ S.

Fix an n > 0. For any m ∈ {0, . . . , n} the functions

ym : D(0, δ)×D(0, r′′)→ S; (s, z) 7→ gmtλ(Ψ(z))

and

xm : D(0, δ)×D(0, r′′)→ D ; (s, z) 7→ Ψ−1(ym(s, z))

are well-defined and holomorphic.
Some calculations using 2. and g(1−s)λ(z) = (1− s)gλ(z) give
xm(0, z) = λmz,

∂xn
∂s

(0, z) =
∂yn
∂s

(0, z)
1

Ψ′(xn(0, z))
, (4.2)

∂ym
∂s

(0, z) = −ym(0, z) + g′λ(ym−1(0, z))
∂ym−1

∂s
(0, z) (4.3)

and

g′λ(ym−1(0, z)) = λ
Ψ′(xm(0, z))

Ψ′(xm−1(0, z))
, (4.4)

each for z ∈ D(0, r′′) and m ∈ {1, . . . , n}.
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The function k : D → C ; z 7→ Ψ(z)
zΨ′(z) is analytic, and using the recursion in

(4.3), that ym(0, z) = Ψ(xm(0, z)), (4.2) and (4.4) we obtain
∂xn
∂s

(0, z) = −λnz∑n
i=1 k(λiz).

Applying Birkhoff’s ergodicity theorem in [37] yields

limn→∞
1
n

∑n
i=1 k(λiz) = 1

2π

∫ 2π

0
k(|z|eiφ)dφ.

The mean value theorem gives
limn→∞

1
n

∑n
i=1 k(λiz) = k(0) = 1 uniformly on D(0, r′).

Hence, for any σ > 0 we can find an N0 = N0(σ) > 0 such that

∣∣∣∣
∂xN
∂s

(0, z) +NλNz

∣∣∣∣ =

∣∣∣∣
∂xN
∂s

(0, z) +NxN (0, z)

∣∣∣∣ < Nσ (4.5)

for z ∈ D(0, r′) and N > N0.
The analiticity of the xn(n = 0, ..., N) on D(0, δ(N, ε))×D(0, r′′) implies for
each σ > 0 the existence of a s0 > 0 such that

s ≤ s0, |z| ≤ r′ ⇒ |xN (s, z)− xN(0, z)− s∂xN
∂t

(0, z)| ≤ sσ and sN < 1/4.

(4.6)
Using (4.5) and (4.6) we obtain for |z| = r′ that

r′|∂xN (s,z)
xN (0,z)

− 1 + sN | ≤ 2Nsσ.

We choose σ = r′
4

and obtain xN (s,z)
xN (0,z)

∈ D for s < s0. This means that

g(1−s)λ(Ψ(D(0, r”))) ⊂ Ψ(D(0, r”)) for s < s0 and we are done. 2

Remark 17
This proof does not use specific properties of f , so it can be used to prove
that for any entire function f having a fixed Siegel disk S at 0 the immediate
attracting basins of 0 of (1− ε)f converge to S as ε tends to 0.

To handle the parabolic case, we will follow a method of McMullen in
[40]. All of his arguments work in our case as well, for the convenience of
the reader we will give an outline of the proof. Note the following definitions
and theorems given by McMullen, we will restrict them to our special case,
for more generality see McMullen’s paper.
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Definition 4 (multiplicity, dominant convergence)
Let fn be a sequence of entire functions converging uniformly on compact
subsets to a function f .
a)

If f(0) = 0, f ′(0) = 1, f (i)(0) = 0, f (r)(0) 6= 0 for 1 < i < r, then r is
called the multiplicity of the parabolic fixed point 0, denoted with mult (f, 0).
b)

We say that (fn, 0) converges to (f, 0) dominantly if fn(0) = 0 for all but
finitely many n and if there exists an M > 0 such that

|f (i)
n (0)| ≤M |f ′n(0)− 1| for 1 < i < mult (f, 0).

c)
Let fn(0) = 0 for all but finitely many n and (f ′(0))q = 1 and q minimal

with this property. We say that (fn, 0) converges to (f, 0) dominantly if (f qn, 0)
converges to (f q, 0) dominantly.

Definition 5 (horocyclically)
Let λn → 1 in C ∗, where λn = exp(Ln + iθn) with θn → 0. We say that

λn → 1 horocyclically if θ2
n

Ln
→ 0.

Theorem 14 (Theorem 7.2 in [40], dominant normal form)
Suppose (fn, 0)→ (f, 0) dominantly, mult (f, 0) = r > 1. Then after passing
to a subsequence and making a change of coordinates we can assume that

fn(z) = λnz + zr +O(zr+1)

f(z) = z + zr +O(zr+1).

Theorem 15 (Theorem 8.2 in [40])
Let fn → f on a neighborhood of ∞ where

fn(z) = λnz + 1 +O(1/z)

f(z) = z + 1 +O(1/z),

and λn → 1 horocyclically. Then for any ε > 0, there are (1 + ε)-quasi-
conformal maps φn → φ defined near ∞ and conjugating fn → f to Tn → T ,
where

Tn(z) = λnz + 1

T (z) = z + 1.
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Theorem 16 (Theorem 8.3 in [40])
Let fn → f on a neighborhood of ∞ where

fn(z) = λnz + z1−p +O(1/zp)

f(z) = z + z1−p +O(1/zp),

p ≥ 1 and λn → 1 horocyclically. Then for any ε > 0, there are (1+ε)-quasi-
conformal maps φn, φ defined near ∞ and conjugating fn → f to Tn → T ,
where

Tn(z) = λn(zp + 1)1/p

T (z) = (zp + 1)1/p.

After passing to a subsequence we can assume that φn → φ.

Lemma 33 (McMullen, Lemma 9.3 in [40])
Let λn → 1 horocyclically, and let Tn(z) = λnz + 1. Then for any R > 0
there exists an N such that

|T kn (x)| > R

whenever |x| < R and n, |k| > N .

A short calculations yields that we may apply these theorems.

Lemma 34
If λ0 = exp(2πip/q), p/q ∈ Q and an is a real sequence converging to 1 from
below, then (gqanλ, 0) converges to (gqλ, 0) dominantly.

Proof:
Let λn = λ0an. We have to show that there exists an M > 0 such that
|(gλn)(i)(0)| < M |(gλn)′(0)− 1| = M |λqn − 1| for all 1 < i ≤ q.

Fix an i ∈ {2, . . . , q}. We have g
(i)
λn

(0) = λi, so the map λ 7→ (gλn)(i)(0) is a
polynomial in λ. λ0 is a root of this polynomial and a root of order one of
the polynomial λqn − 1. Using its analyticity we can find an Mi such that

|g(i)
λn

(0)| < Mi|λqn− 1| for all λ sufficiently close to 0 and our claim follows. 2

Proposition 13
If gλ has a parabolic fixed point at 0, then J(g(1−ε)λ) tends to J(gλ) as ε

tends to 0.
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Proof:
First, let λ = 1.
Let λn be a sequence approaching 1 from below. We will show that for any
x ∈ F (gλ) there exists a neighborhood U of x such that U ⊂ F (gλn) for all
large n. Note that we may replace x by some iterate of gλ at any stage of the
proof. Applying the preceding theorems, we see that there is an R > 0 such
that for all n >> 0 the linearized dynamics Tn on the neighborhood |z| > R
of ∞ is topologically conjugate to the dynamics of gpλn on a neighborhood of
0.
The conjugacy φn from gλn to Tn converges to a conjugacy φ from gλ to T .
Replacing x with giλ for large i we can assume that x′ = φ(x) is defined and
satisfies Re x′ > R (since the real part increases under iteration by T ). By
McMullen’s Lemma we can choose a neighborhood V of x′ and N > 0 such
that

|T in(z)| > R for all z ∈ V, i > N and n > N. (4.7)

For 0 < i ≤ N , we have |T i(x′)| > R; since Tn → T , by increasing N we can
obtain 4.7 for all i > 0 and n > N .
Since φn → φ and φ(x) ∈ V , there is a neighborhood U of x such that
φn(U) ⊂ V for all n >> 0. By 4.7, the iterates giλn(z) then remain close to
0 for all z ∈ U and i > 0. Thus {gλn} is a normal family, so U ⊂ F (gλn) as
required.
If λ = exp(2πip/q), where p/q ∈ Q \ N , the proof is fairly analogous; by
McMullen’s Theorems we obtain conjugacies φn → φ to the system Tn → T ,
where
Tn(z) = λn(zp + 1)1/p and Tn(z) = (zp + 1)1/p.
Composing these maps with the map z 7→ zp we obtain a new semiconjugacy
φ̃n → φ̃ to the system we looked at in the case λ = 1; now we can choose V
and U as before and obtain U ⊂ F (gλn). 2

Proof of Theorem 11:
The cases c

2πi
∈ Q and c

2πi
∈ B follow from the Propositions 12 and 13; if

c
2πi
6∈ Q ∪ B , then J(fc) = C , and we are finished by noting the theorem

in section 3.3.2.

4.4.3 Approximation of Baker domains and wandering

domains

Proof of Theorem 12:
The set of irrational values not contained in the Brjuno set is dense in R , so
for any t = c

2πi
∈ R we can find a sequence tn → t, where tn ∈ R \ (Q ∪B ).
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Setting cn = 2πitn we obtain J(fcn) = C , this gives the first claim.
To see c), we use the same sequence cn. Recall that for any sequence Pn,m
converging to fcn we have J(Pn,m)→ J(fcn) = C . Now we choose a sequence
an tending to ∞ sufficiently fast and obtain J(Pn,an)→ C 6= J(fcn).
The proof of b) is very similar; we know that J(fc+iε) → J(fc) and
J(Pc+iε,n)→ J(fc+iε), where Pc+iε,n = (1− c+iε

n
)−c− iε+(1+ z

n
)n, so for any

sequence an tending to ∞ sufficiently fast we have J(Pc+i 1
n
,an)→ J(fc). 2

4.4.4 Stability

Proof of Lemma 12:
In view of our previous results we only have to prove that fc has no Baker do-
mains if Re c < 0. Again, we first look at the function gλ(z) = λzez, λ = e−c.
0 is a repelling fixed point of gλ, so every point z contained in the Fatou set
tends to a cycle of attracting or parabolic periodic points not containing 0
or is contained in a cycle of Siegel disks not containing 0. If we consider fc
we see that the lift of a point contained in a cycle of attracting or parabolic
domains of gλ either tends to an attracting or parabolic cycle of fc or tends
to ∞, but in the latter case it cannot be contained in a periodic Fatou
component. Analogously, the lift of a point contained in a Siegel disk of gλ
may tend to ∞, but in this case it enters each Fatou component only once
and then enters the next one, so the Fatou set of fc may contain attracting
or parabolic cycles, cycles of Siegel disks or wandering domains, but no
Baker domains. 2
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Orsay, 1989.

[39] O. Lehto and K. I. Virtanen. Quasikonforme Abbildungen. Springer,
New York, Berlin, Heidelberg, 1965.

[40] C. T. McMullen. Hausdorff Dimension and Conformal Dynamics II:
Geometrically Finite Rational Maps. Comment. Math. Helv., 75:535–
593, 2000.



BIBLIOGRAPHY 117
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