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Abstract

In this thesis we study differential geometry of noncommutative manifolds. We
introduce a general framework of noncommutative manifolds based on Poincaré
duality and study the notions of differential forms and Sobolev spaces for noncom-
mutative manifolds. We introduce conditions under which the noncommutative
manifolds have reasonable differential calculus and Sobolev theory. Furthermore,
we study the properties of the Laplace operator on differential forms, proving that
in certain cases it has compact resolvent similarly to the commutative situation.
This allows us to address the question of comparison of the “de Rham cohomology”
and periodic cyclic cohomology.

In the second part of the thesis, we introduce an analogue of the Seiberg–Witten
equations for noncommutative manifolds and prove that the known properties of
the Seiberg–Witten gauge theory continue to hold in the noncommutative situation.
For instance, as far as the noncommutative manifold has Sobolev theory which
has nice mutiplicative properties, the moduli space of smooth solutions coincides
with the moduli spaces of the Sobolev solutions for large values of the Sobolev
parameter. We also derive the holomorphic description of the moduli space for
toric deformations of Kähler manifolds, which allows us to compute the moduli
spaces for a family of such toric deformations where the underlying manifold has
constant scalar curvature.
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Introduction

The idea of noncommutative manifolds relies on the observation that certain
operator algebras, being noncommutative and very far from algebras of functions
(having, for instance, representations of type II), allow structures very similar to
that arizing on smooth functions on a manifold. This leads to the attempt to
describe differential-geometric constructions in functional-analytic and operator-
algebraic terms. Recently, the reconstruction theorem was proved by A. Connes,
which allows to say that a certain set of “axioms” characterizes noncommutative
manifolds in the right way.

The basic idea can be formulated as follows: a compact oriented manifold is a
topological space with a smooth structure and therefore has the fundamental class
in cohomology. If we switch from manifolds to noncommutative algebras, we are
thus led to the idea of saying that a noncommutative manifold is a dense subalge-
bra of a C∗-algebra having a “fundamental class”. However, we also have to switch
from cohomology to K-theory and thus forced to consider a fundamental class in
K-homology, which in the case of an ordinary manifold is given by the Dirac opera-
tor. The Dirac operator on a manifold is a certain unbounded selfadjoint operator
acting on a vector bundle over the manifold. It is well-known that vector bundles
over the manifold M correspond to finitely generated projective modules over the
algebra A = C∞(M), and the latter have obvious noncommutative counterparts.
Developing these ideas further, one can obtain a characterization of manifolds in
functional-analytic and operator-algebraic terms which allow to drop the assump-
tion on the commutativity of the algebra in question. Moreover, one obtains a
series of examples of such “noncommutative manifolds” given by deformations of
ordinary manifolds. It is very striking that the operator algebras which arise in this
way fail to be of type I, thus they have a quite complicated representation theory
and algebraic structure, being far away from commutative algebras.

In this context, several natural questions emerge. First of all, there is a general
question: which properties of the usual, commutative manifolds continue to hold
for noncommutative manifolds? What about calculus of differential forms, connec-
tions, curvature, Sobolev theory? Finally, what about invariants of gauge-theoretic
nature?

The author’s work on these questions lead to this thesis, whose results can be
summarized as follows. We start with the observation that the Poincaré duality
assumption is a crucial ingredient in the axiomatics for noncommutative manifolds
and that allowing the algebra A to have an abstract Poincaré dual B relaxes the
situation of the spin manifolds to a general setting, still allowing to develop the an-
alytic machinery but leading to a bit more general point of view, allowing to include
toric deformations of not necessarily spin manifolds to the list of noncommutative
manifolds. Then we proceed to the analytic properties of noncommutative mani-
folds, proving that the algebras A and B are automatically Fréchet algebras and
introducing a precursor of the Sobolev topology. Then we abstractly introduce the
spaces of differential forms and the Laplace operator on them. Unfortunately, we
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don’t know how to ensure that these spaces automatically form finitely generated
projective modules, and therefore we have to assume this for certain constructions.

Then we proceed to the proofs of certain theorems concerning Laplace opera-
tors. It turns out that in the case where the differential forms behave algebraically
like they do on an ordinary manifold, the Laplace operator automatically has com-
pact resolvent, thus yielding a finite-dimensional space of harmonic forms (“de
Rham cohomology”). We address the question of comparison between this “de
Rham cohomology” and periodic cyclic cohomology by means of a natural map
introduced by A. Connes and prove that this map is surjective in certain cases. We
also give counterexamples to the injectivity of this map.

After that, we give an affirmative answer to the question whether an analogue
of the “twisting procedure” for spinc structures on manifolds can be introduced
in the noncommutative setting. It turns out that we indeed can “twist” a given
structure on a noncommutative manifold by a “line bundle” (i.e. a bimodule whose
left and right dimensions equal 1), obtaining another structure of a noncommutative
manifold.

The last part of the thesis consists in studying a certain gauge theory on non-
commutative 4-manifolds, which is a straightforward generalization of the cele-
brated Seiberg–Witten gauge theory on ordinary manifolds. It turns out that many
interesting properties of the Seiberg-Witten theory still hold in the noncommutative
case (provided that one has a certain multiplicativity property of Sobolev spaces,
analogous to that of an ordinary manifold – it is, for instance, the case for toric
deformations of ordinary manifolds). For instance, elliptic regularity still yields the
independence of the moduli space of the degree of Sobolev completion, and the
virtual dimension of the moduli space is still given by the same formula as in the
commutative case. Finally, the holomorphic description of the moduli space for
Kähler manifolds is still valid for their toric deformations, and if the scalar cur-
vature of the deformed manifold is constant, we can actually compute the moduli
space – it then consists of one point exactly as in the commutative situation.



CHAPTER 1

Toolbox

In this chapter we collect some technical results needed in the sequel. Some of
these results are well-known and we basically just cite them here, some other are
modifications of well-known results or even new, but technical in nature.

1. Pre-Hilbert modules over pre-C∗-algebras

Definition 1.1. Let A be a unital pre-C∗-algebra, i.e. a dense unital Fréchet ∗-
subalgebra of a unital C∗-algebra A, stable under holomorphic functional calculus.
We denote by ‖·‖ the norm on A inherited from A. A Fréchet space X is called a
(right) Fréchet pre-Hilbert module over A if the following holds:

i) X is a right A-module,
ii) the multiplication map X×A→ X, (x, a)→ x · a is continuous,
iii) X is equipped with a continuous A-valued scalar product 〈·, ·〉A : X×X→

A with following properties:
(a) it is linear: 〈y, x+ z〉A = 〈y, x〉A + 〈y, z〉A,
(b) it is A-linear and involutive:

〈y, x · a〉A = 〈y, x〉A a,
〈x, y〉A = 〈y, x〉∗A ,

(c) it is positive and nondegenerate:

〈x, x〉A ≥ 0,

〈x, x〉 = 0 ⇔ x = 0.

For x ∈ X, we let ‖x‖ :=
√
‖〈x, x〉‖. This is a continuous norm on X.

We will not develop any general theory of modules over pre-C∗-algebras, but
we will need some simple facts about them which are very much analogous to those
about Hilbert modules over C∗-algebras. The ideas of the proofs are taken from
the proofs of corresponding statements for Hilbert C∗-modules, cf. [MT05]. The
following statement is a key to this.

Definition 1.2. If X, Y are two Fréchet pre-Hilbert modules and T ∈ HomA(X,Y),
then T is called adjointable if there exists T ∗ : Y→ X such that for all x ∈ X, y ∈ Y

〈Tx, y〉A = 〈x, T ∗y〉A
Proposition 1.3. i) Let X be a Fréchet pre-Hilbert module over a pre-C∗-

algebra A dense in A. Let X be its completion with respect to the norm
‖x‖. Then X is a Hilbert module over A.

ii) Let T : X → Y be an element in Hom∗A(X,Y). Consider its image T ∈
B(X,Y ) under the completion functor. Then T ∈ Hom∗A(X,Y ).

Proof. The first statement is well-known, see, for instance, [GBVF01, Sect.
3.8]. For the second, let ξ ∈ X, a ∈ A. Take ξn ∈ X, an ∈ A with ξn → ξ, an → a.
Then

T (ξa) = lim
n→∞

T (ξnan) = lim
n→∞

T (ξn)an = T (ξ)a.

�
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Definition 1.4. Let X be a right Fréchet pre-Hilbert module over A. Denote by
〈X,X〉 the closure inside A of the space

span{〈y, x〉 |x, y ∈ A}.
It is a Fréchet ∗-subalgebra of A. It is a closed two-sided ideal in A. If 〈X,X〉 = A,
then the module X is called full.

Example 1.5. i) A is a full Fréchet pre-Hilbert A-module with the scalar
product 〈b, a〉A = b∗a,

ii) a direct sum of Fréchet pre-Hilbert A-modules is a Fréchet pre-Hilbert
A-module in a natural way,

iii) if e ∈ Mk(A) is a projection, then the space eAk is a Fréchet pre-Hilbert
A-module when equipped with the scalar product inherited from Ak. A
module isomorphic to such is called a finitely generated projective Fréchet
pre-Hilbert module.

The following proposition is well-known, cf. [Con94, VI.1].

Proposition 1.6. Let A ⊂ A be a pre-C∗-algebra (i.e. a dense Fréchet subalgebra
stable under holomorphic functional calculus) and let X be a finitely generated pro-
jective right A-module. Then there is a structure of a self-dual Fréchet pre-Hilbert
module on X and such structure is unique up to an isomorphism.

Proposition 1.7. Let X and Y be two Fréchet pre-Hilbert modules over A and let
T ∈ Hom∗A(X,Y). Then T is a continuous linear A-module morphism.

Proof. The A-linearity follows easily from the adjointability and the linearity
of the scalar product:

〈y, T (x · a)〉 = 〈T ∗y, x · a〉 = 〈y, Tx〉 a = 〈y, Tx · a〉 .
To prove continuity, we use the closed graph theorem: if xα → x and Txα → y,
then for every z ∈ Y,

〈y − Tx, z〉 = 〈y, z〉−〈Tx, z〉 = lim 〈Txα, z〉−〈Tx, z〉 = lim 〈xα, T ∗z〉−〈x, T ∗z〉 = 0.

�

Lemma 1.8. Let X be a full Fréchet pre-Hilbert module over A. Consider the set

S = {c ∈ A | ‖c‖ ≤ 1, c =

k∑
i=1

〈xi, xi〉 k ∈ N, xi ∈ X}.

Then for every a ∈ A, a ≥ 0 and for every ε > 0, there exists an n ∈ N and an
element c ∈ S such that ‖(1− c)a‖ < ε.

Proof. As X is a full module, there are finitely many elements yi ∈ X with∥∥∥∥∥a−
k∑
i=1

〈yi, yi〉

∥∥∥∥∥ < ε/2.

Let

xi =

(
ε2 +

k∑
i=1

〈yi, yi〉

)−1/2

yi, i = 1, . . . , k,

c =

k∑
i=1

〈xi, xi〉 , b =

k∑
i=1

〈yi, yi〉 .

Then

‖c‖ =
∥∥∥(ε2 + b)−1/2b(ε2 + b)−1/2

∥∥∥ ≤ 1,
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thus c ∈ S. Taking f(t) = ε4t(ε2 + t)−2 and applying f to b, we obtain ‖f(b)‖ =
‖(1− c)b(1− c)‖ 6 ε2/4, thus ‖(1− c)b‖ 6 ε/2, which proves the lemma. �

Proposition 1.9. Let A be a unital pre-C∗-algebra and let X be a full Fréchet
Hilbert module over it which is finitely generated and projective. Then there are
elements ξ1, . . . , ξk ∈ X such that

k∑
i=1

〈ξi, ξi〉A = 1.

Proof. The previous lemma gives us an element c ∈ S such that ‖1− c‖ < 1/2

and c =
∑k
i=1 〈yk, yk〉 for some yk ∈ X. Thus the elements c is invertible in the

C∗-algebra A, and as c is selfadjoint, its spectrum lies on the positive real line
and is separated from zero. As A is stable under holomorphic functional calculus,
c−1/2 ∈ A. Thus, taking xi = yic

−1/2, we obtain the conclusion. �

Corollary 1.10. Under the assumptions of the proposition, there is a k ∈ N such
that the direct sum of k copies of X contains a copy of A:

(X)⊕k = A⊕ Y

Proof. Using the proposition, we find elements x1, . . . , xk and consider the
closed submodule Z of (X)⊕k generated by ιi(xi), i = 1, . . . , k, where ιi : X→ (X)k

is the canonical inclusion into the ith component. Then the map a 7→ (x1a, . . . , xka)
yields an isomorphism of right A-modules because

k∑
i=1

〈xib, xia〉A =

k∑
i=1

b∗ 〈xi, xi〉 a = b∗a.

�

Let us observe the following obvious proposition.

Proposition 1.11. Let X be a right Fréchet pre-Hilbert module over A which is
finitely generated and projective and let P : X → X be an A-endomorphism which
is a projection: P 2 = P = P ∗. Then Y := PX is a finitely generated projective
Fréchet pre-Hilbert module over A.

Proof. If X = eAn, then P is given by the left multiplication with a selfadjoint
matrix p ∈ eMn(A)e, and Y is therefore isomorphic to pAn. �

Definition 1.12. An A-basis for X is a finite set {vj}mj=1 ⊂ X such that

∀x ∈ X x =
m∑
j=1

vj 〈vj , x〉 .

Proposition 1.13. A right Fréchet pre-Hilbert module over A is finitely generated
and projective if and only if it has a finite A-basis.

Proof. If {vj} is an A-basis, then p := {〈vi, vj〉} ∈ Am is a projection, and
X ∼= pAm, the isomorphism given by

α : X→ pAm,

x 7→ (〈vj , x〉)j=1,...,m.

On the other hand, if X ∼= pAm, then the columns of p, regarded as elements
in Am, consitute an A-basis. �

The following construction is well-known in the case of C∗-algebras, cf. [MT05].
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Definition 1.14. Let A ⊂ B be a pair of Fréchet pre-C∗-algebras, and let E : B→
A be a linear map. E is called a conditional expectation, if E is a projection of
norm 1 onto A.

Proposition 1.15. If E : B→ A is a conditional expectation, then it is a bimodule
map: E(aba′) = aE(b)a′ for a, a′ ∈ A and b ∈ B.

Proof. Let E : B → A be the corresponding map between the C∗-completions
of B and A. Then E is a conditional expectation in the sense of C∗-algebras, and
therefore it is a bimodule map [MT05]. The claim follows by restriction to B. �

A conditional expectation E : B → A gives rise to an A-valued scalar product
on B defined by

〈b, b′〉A := E(b∗b′).

We will be mainly interested in conditional expectations of algebraically finite
index, which allow to endow B with a structure of a finitely generated projective
A-module.

Definition 1.16. A conditional expectation E : B→ A is said to be of algebraically
finite index if there is a finite set {ui}ni=1 in B such that for every b ∈ B

b =

n∑
i=1

uiE(u∗i x).

Such a finite set is called a quasi-basis for E.

Proposition 1.17. Let E : B → A be a conditional expectation of algebraically
finite index. Then B is a finitely generated projective Fréchet pre-Hilbert module
over A.

Proof. The statement follows from the fact that {ui} form a basis for B as
for a pre-Hilbert module over A, which in turn follows directly from the definition
of a quasi-basis. �

2. Pre-Hilbert bimodules

Here we develop the notions of Hermitian bimodules of finite type ovre pre-C∗-
algebras. The proofs are direct adaptaions of the corresponding statements from
[KW00], where an analogous theory was developed for bimodules over C∗-algebras.

In this section, A, B etc. will denote Fréchet pre-C∗-algebras.

Definition 1.18. A Fréchet space X is called a Fréchet pre-Hilbert A-B-bimodule
of finite type iff X is equipped with the structures of a left pre-Hilbert A-module
and a right pre-Hilbert B-module with corresponding scalar products A〈·, ·〉 and
〈·, ·〉B such that:

i) the actions of A and B commute;
ii) with these structures X is a finitely generated projective pre-Hilbert A-

module and a finitely generated projective pre-Hilbert B-module;
iii) A acts on X through an ∗-representation into B-adjointable operators, and

B acts on X through an ∗-representation into A-adjointable operators.

Proposition 1.19. Let X be an A-B-bimodule of finite type. Then the elements∑n
i=1 A〈ui, ui〉 and

∑m
j=1 〈vj , vj〉B are contained in Z(A) resp. Z(B) and are inde-

pendent of the choices of a right B-basis {ui} resp. left A-basis {vj}, respectively.
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Proof. Take another B-basis {u′1, . . . , u′p}. Then

n∑
i=1

A〈ui, ui〉 =

n∑
i=1 A

〈
p∑
k=1

u′k 〈u′k, ui〉B , ui

〉
=

=
∑
i,k

A
〈u′k, ui 〈ui, u′k〉B〉 =

p∑
k=1

A〈u
′
k, u
′
k〉.

Similarly, with a ∈ A,

a

n∑
i=1

A〈ui, ui〉 =

n∑
i=1

A〈aui, ui〉 =

n∑
i=1 A

〈
p∑
k=1

u′k 〈u′k, aui〉B , ui

〉
=

=
∑
i,k

A
〈u′k, ui 〈aui, u′k〉B〉 =

∑
i,k

A
〈u′k, ui 〈ui, a∗u′k〉B〉 =

=

p∑
k=1

A〈u
′
k, a
∗u′k〉 =

p∑
k=1

A〈u
′
k, u
′
k〉a.

�

Lemma 1.20. If X is an A-B-bimodule of finite type, and Y is a B-C bimodule of
finite type, then X⊗B C is an A-C bimodule of finite type.

Proof. Let {u1, . . . , un} be a right B-basis in X and {v1, . . . , vm} a right C-
basis in Y. Then

x =

n∑
i=1

ui 〈ui, x〉B , y =

m∑
j=1

vj 〈vj , y〉C .

Consider the set {ui ⊗ vj} ∈ X⊗B Y and calculate:

n∑
i=1

m∑
j=1

(ui ⊗ vj) 〈ui ⊗ vj , x⊗ y〉 =

n∑
i=1

m∑
j=1

(ui ⊗ vj) 〈vj 〈ui, x〉B , y〉C

=

n∑
i=1

ui ⊗

 m∑
j=1

vj
〈
vj , 〈ui, x〉∗B y

〉
C

 =

=

n∑
i=1

ui ⊗ 〈ui, x〉∗B y =

n∑
i=1

ui 〈ui, x〉B ⊗ y = x⊗ y.

�

Lemma 1.21. Let X be an A-B-bimodule of finite type which is full as a left A-
module. Then there exists a conditional expectation E : End∗B(X)→ A which is of
algebraically finite index.

Proof. We take a right B-basis {u1, . . . , un}. For T ∈ End∗B(X), we set

F (T ) :=

n∑
i=1

A〈Tui, ui〉.
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This is independent of the choice of a right B-basis in X, because if {u′k} is another
B-basis, then

(1.1)

n∑
i=1

A〈Tui, ui〉 =

n∑
i=1 A

〈
p∑
k=1

u′k 〈u′k, Tui〉B , ui

〉
=

=
∑
i,k

A
〈u′k, ui 〈Tui, u′k〉B〉 =

∑
i,k

A
〈u′k, ui 〈ui, T ∗u′k〉B〉 =

=

p∑
k=1

A〈u
′
k, T

∗u′k〉 =

p∑
k=1

A〈Tu
′
k, u
′
k〉.

Moreover, if we take T = Θx,y, then we obtain

F (T ) =

n∑
i=1

A
〈x 〈y, ui〉B , ui〉 =

n∑
i=1

A
〈x, ui 〈ui, y〉B〉 = A〈x, y〉,

and therefore

F (aTa′) = aF (T )a′, T ∈ EndB(X), a, a′ ∈ A.

The element z := F (id) is contained in Z(A). Let us show that it is invertible. By
Proposition 1.9, there exists a finite set of elements {xj}mj=1 ⊂ X such that

m∑
j=1

A〈xi, xi〉 = id .

The operator

S :=

m∑
j=1

Θxi,xi

is selfadjoint and positive, and therefore there is a constant C > 0 such that

C id >
m∑
j=1

Θxi,xi .

Now,

id =

n∑
i=1

Θui,ui ,

and therefore

F (C id) >
m∑
j=1

F (Θxi,xi) =

m∑
j=1

A〈xi, xi〉.

This shows that
n∑
i=1

A〈ui, ui〉 >
1

C

m∑
j=1

A〈xi, xi〉 =
1

C
id,

and this establishes the claim.
Now, we put

E(T ) := z−1/2F (T )z−1/2 = z−1F (T ) = F (T )z−1.
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Now, let {ui} and {vj} be the right B-basis and the left A-basis of X, respectively.
We show that Θui,vj forms a quasi-basis for F :

n∑
i=1

m∑
j=1

Θui,vjF (Θ∗ui,vjΘp,q) =

n∑
i=1

m∑
j=1

Θui,vjA
〈vj 〈ui, p〉B , q〉 =

=

n∑
i=1

m∑
j=1

Θui,vjA
〈vj , q 〈p, ui〉B〉 =

n∑
i=1

m∑
j=1

Θui,
A
〈q〈p,ui〉B,vj〉vj =

n∑
i=1

m∑
j=1

Θui,q〈p,ui〉B =

= Θp,q.

We put Uij := Θui,vjz
1/2. Then, using z ∈ Z(A), we obtain

E(Θp,q) =

n∑
i=1

m∑
j=1

UijE(U∗ijΘp,q) =

n∑
i=1

m∑
j=1

Θui,vjF (Θ∗ui,vjΘp,q) = Θp,q,

and therefore Uij form a quasi-basis for E. �

Given a pre-Hilbert A-B-bimodule of finite type, we just saw that EndB be-
comes a Hilbert A-A-bimodule of finite type. It is interesting to observe that this is
a particular case of the tensor product construction, if we use conjugate bimodules.

Definition 1.22. Let X be a pre-Hilbert A-B-bimodule. Let X be the conjugate
space of X, equipped with the B-A-bimodule structure as follows:

b · x := x · b∗,

x · a := a∗ · x

and with the scalar products as follows:

〈x, y〉A := A〈y, x〉
∗
,

B〈x, y〉 := 〈y, x〉∗B .

Proposition 1.23. Let X be an A-B-bimodule of finite type. Then

EndB(X) ∼= X⊗B X

as a pre-Hilbert A-A-bimodule via the map

Θx,y 7→ x⊗ y.

Proof. The mapping in question is A-linear:

a′Θx,ya(z) = a′x 〈y, az〉B = Θa′x,a∗y

and the constructions of Lemma 1.20 and Lemma 1.21 identify the bases for EndB(X)
in different pictures. �

Proposition 1.24. Let X be a full A-A-bimodule of finite type. Then X ⊗A X

contains the trivial A-A-bimodule A as a direct summand.

Proof. This follows from a direct adaptation of [KW00, Prop. 2.5] to our
situation. �
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3. Quasi-completions and Hilbert modules

Here we recall the notion of a quasi-completion of a topological vector space
from [Köt79].

Definition 1.25 ([Köt79, 18.4]). A locally convex space E is called quasi-complete
iff every bounded closed set of E is complete.

Example 1.26 ([Köt79, 23.3]). The dual E∗ of a barreled locally convex space
E is quasi-complete with respect to the weak-∗ topology. In particular, every von
Neumann algebra is quasi-complete.

Definition 1.27. A subset F of a locally convex space E is called quasi-closed if it
contains all the closure points in E of its bounded subsets. The quasi-closure of an
arbitrary subset G of E is defined to be the intersection of all quasi-closed subsets
of E containing G. The quasi-completion of E is defined to be the quasi-closure of
E in its completion E.

Lemma 1.28. Let E be a Banach space and E∗ its dual Banach space. Let F ⊆ E∗
be a subspace such that F ∩ (E∗)1 is weakly-∗ dense in (E∗)1. Then the quasi-
completion of F coincides with E∗.

Proof. As E∗ is quasi-complete with respect to the weak-∗ topology, the

quasi-completion F̂ ⊆ E∗. But every element in E∗ is a weak-∗ limit of a bounded

net from F , thus E∗ ⊂ F̂ . This proves the claim. �

Proposition 1.29. Let M be a von Neumann algebra and E be a Hilbert module
over M . Then the following conditions are equivalent:

i) E is self-dual;
ii) E is quasi-complete with respect to the topology defined by the family of

neighbourhoods of zero

UW := {ξ ∈ X |A〈ξ, ξ〉 ∈W},

where W is an ultraweak neighbourhood of zero in M ;
iii) the unit ball of E is complete with respect to the topology defined by the

seminorms

ξ 7→ ϕ(〈ξ, ξ〉)1/2,

where ϕ runs over normal states of M .

Proof. ii) implies iii) by the definition of quasi-completion and the ultraweak
topology (as given by normal functionals). To see that iii) implies ii), it suffices to
observe that bounded sets in the s-topology coincide with norm-bounded sets.

The equivalence of i) and iii) is established in [MT05, Thm. 3.5.1]. �

4. Perturbations of unbounded operators

In this section we recollect some facts about perturbations of unbounded op-
erators which will be used in the sequel. The main reference for these results is
[RS80, Ch. VIII, X], [RS78, Ch. XII, XIII].

Definition 1.30 ([RS80, VII.6]). Let H be a Hilbert space. A quadratic form q
on H is a map q : Q(q) × Q(q) → C, where Q(q) is a dense subspace in H, which
is called the domain of q, such that q(ψ, ·) is antilinear and q(·, ϕ) is linear. If for

all ψ,ϕ ∈ H q(ψ,ϕ) = q(ϕ,ψ), then q is called symmetric. If q(ϕ,ϕ) > 0 for all
ϕ ∈ Q(q), then q is called positive. If there exists an M such that for all ψ ∈ H

q(ψ,ψ) > −M 〈ψ,ψ〉, then q is called semi-bounded.
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Example 1.31. If A : Dom(A) → H is an unbounded selfadjoint operator on
H, then by the spectral theorem A is unitarily equivalent to the multiplication

operator with x on the direct sum
⊕N

n=1 L
2(R, dµn) for some N ∈ N ∪ {∞} and

some measures µn on R. We let

Q(q) =

{
{ψn(x)}Nn=1

∣∣∣∣∣
N∑
n=1

∫
R
|x||ψn(x)|2 dµn(x) <∞

}
and for each ψ,ϕ ∈ Q(q) we let

q(ψ,ϕ) :=

N∑
n=1

∫
R
xψn(x)ϕn(x) dµn(x).

We refer to q as to the quadratic form induced by A and let Q(A) := Q(q).

Definition 1.32. Let q be a semi-bounded quadratic form on H with q(ψ,ψ) >
−M 〈ψ,ψ〉 for ψ ∈ Q(q). The form q is called closed iff Q(q) is complete with
respect to the norm

‖ψ‖+1 :=

√
q(ψ,ψ) + (M + 1) ‖ψ‖2.

Theorem 1.33 ([RS80, Thm. VIII.15]). Every semi-bounded closed quadratic
form is induced by some uniquely determined selfadjoint operator A.

Theorem 1.34 (Minimax principle, [RS78, Thm. XIII.1, Thm. XIII.2]). Let A be
an unbounded bounded from below selfadjoint operator on a separable Hilbert space
H. We let

µn(A) := sup
ϕ1,...,ϕn−1

UA(ϕ1, . . . , ϕn−1),

where

UA(ϕ1, . . . , ϕn−1) = inf
ψ∈Dom(A), ‖ψ‖=1

ψ∈[ϕ1,...,ϕn]⊥

〈Aψ,ψ〉 = inf
ψ∈Q(A), ‖ψ‖=1

ψ∈[ϕ1,...,ϕn]⊥

〈Aψ,ψ〉 .

Then for each fixed n

i) either there are n eigenvalues of A, counted with multiplicity, which are
below the lower boundary of the essential spectrum of A, and µn(A) is the
n-th eigenvalue (counting multiplicity)

ii) or µn is the lower boundary of the essential spectrum of A, i.e. µn(A) =
inf{λ |λ ∈ σess(A)}; in this case µn(A) = µn+1(A) = . . . and there are at
most n− 1 eigenvalues below µn, counted with multiplicity.

Lemma 1.35 ([RS78, Thm. XIII.64, i), ii)]). Let A be an unbounded operator on
a Hilbert space and let Rµ(A) := (A−µ)−1 for µ ∈ ρ(A). The following statements
are equivalent:

i) (A− µ)−1 is compact for some µ ∈ ρ(A);
ii) (A− µ)−1 is compact for all µ ∈ ρ(A).

Proof. This is a trivial consequence of the resolvent formula

Rµ(A)−Rλ(A) = −(µ− λ)Rλ(A)Rµ(A)

and the fact that compact operators form an ideal in B(H)). �

Theorem 1.36 ([RS78, Thm. XIII.64]). Let A be an unbounded selfadjoint opera-
tor on a separable Hilbert space H which is bounded from below: 〈Aψ,ψ〉 >M 〈ψ,ψ〉
for some M ∈ R. The following statements are equivalent:

i) (A− µ)−1 is compact for some µ ∈ ρ(A);
ii) (A− µ)−1 is compact for all µ ∈ ρ(A).
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iii) for all b ∈ R the set {ψ ∈ Dom(A) | ‖ψ‖ 6 1, ‖Aψ‖ 6 b} is compact;
iv) for all b ∈ R the set {ψ ∈ Q(A) | ‖ψ‖ 6 1, 〈Aψ,ψ〉 6 b} is compact;
v) there is an orthonormal basis {ϕn}∞n=1 in H such that Aϕn = µnϕn with

µ1 6 µ2 6 . . . and µn →∞;
vi) µn(A)→∞, where µn(A) is the number obtained from the minimax prin-

ciple.

Definition 1.37. Let A be an unbounded positive selfadjoint operator on H and
let B be a selfadjoint operator on H such that

i) Q(B) ⊃ Q(A);
ii) | 〈Bϕ,ϕ〉 | 6 a 〈Aϕ,ϕ〉+ b 〈ϕ,ϕ〉 , ϕ ∈ Q(A)

for some a < 1 and b ∈ R. Then B is called a perturbation of A which is bounded
in the sense of quadratic forms.

Theorem 1.38 ([RS78, Thm. XIII.68]). Let A be an unbounded selfadjoint op-
erator on a separable Hilbert space H which is bounded from below. Let b be a
symmetric perturbation of A which is bounded in the sense of quadratic forms. Let
C = A+ b be defined as the sum of the corresponding quadratic forms. Then C has
compact resolvent iff A does.

Proof. By assumption,

|b(ψ,ψ)| 6 α 〈Aψ,ψ〉+ β 〈ψ,ψ〉

for some α < 1. Thus for every ψ ∈ Q(C) = Q(A)

〈Cψ,ψ〉 > (1− α) 〈Aψ,ψ〉 − β 〈ψ,ψ〉

and

〈Cψ,ψ〉 6 (α+ 1) 〈Aψ,ψ〉+ β 〈ψ,ψ〉 .
From the minimax principle for forms [RS78, Thm. XIII.2] it follows that

µn(C) > (1− α)µn(A)− β

and

µn(C) 6 (1 + α)µn(A) + β

Thus µn(A)→∞ iff µn(C)→∞, and the claim follows from Theorem 1.36. �

Lemma 1.39. Let A : D(A)→ H be an unbounded positive operator with compact
resolvent and let T ∈ B(H) be a finite rank selfadjoint operator. Then A + T has
compact resolvent.

Proof. We use the above characterization of positive operators with compact
resolvent (cf. Theorem 1.36): an unbounded positive operator A has compact
resolvent iff the set

Fb := {ψ ∈ D(A) | ‖ψ‖ 6 1, ‖Aψ‖ 6 b}

is compact for all b ∈ R. Obviuosly,

FTb := {ψ ∈ D(A) | ‖ψ‖ 6 1, ‖(A+ T )ψ‖ 6 b} ⊂ Fb+‖T‖,

and as FTb is closed, this proves the claim. �

Lemma 1.40. Let A : Dom(A) → H2 be a closed unbounded operator between
Hilbert spaces H1 and H2 and let T ∈ B(H1,H2) such that TH1 ∩ Dom(A∗) is
dense in H2. Suppose that A∗A has compact resolvent. Then (A+ T )∗(A+ T ) has
compact resolvent as well.
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Proof. A direct computation shows that

(A+ T )∗(A+ T ) = A∗A+A∗T + T ∗A+ T ∗T =: A∗A+R.

In terms of the corresponding quadratic forms the difference is equal to

〈Rξ, ξ〉 = 2 Re 〈Tξ,Aξ〉+ ‖Tξ‖2 6 ‖Aξ‖2
(

2
‖Tξ‖
‖Aξ‖

+
‖Tξ‖2

‖Aξ‖2

)
.

If ‖Aξ‖ > 4 ‖Tξ‖ for all ξ, then the multiplier on the right-hand side is less than
1, and we are done by Theorem 1.38. In general, we have to achieve it artificially.

Consider the finite-dimensional subspace F ⊂ H1 spanned by the eigenvectors
of A∗A with eigenvalues λ 6 16 ‖T‖2. Define a new operator B as follows: B :=

16 ‖T‖2 on F and B = A∗A on F⊥. Obviously, B still has compact resolvent.
Thus,

〈Bξ, ξ〉 > 16 ‖T‖2 ‖ξ‖2 ≥ 16 ‖Tξ‖2

and

〈Bξ, ξ〉 > ‖Aξ‖2 .
Thus

〈Rξ, ξ〉 = 2 Re 〈Tξ,Aξ〉+ ‖Tξ‖2 6 〈Bξ, ξ〉

(
2
‖Tξ‖ ‖Aξ‖
〈Bξ, ξ〉

+
‖Tξ‖2

〈Bξ, ξ〉

)
6

5

16
〈Bξ, ξ〉 .

Therefore the operator B+R has compact resolvent by Theorem 1.38, and so does
its finite-rank perturbation A. �

Lemma 1.41. Let H be a Hilbert space and A : D(A) → H be an unbounded
positive operator with compact resolvent. Let P ∈ B(H) be a projection such that

D(A) ∩ PH = PH. Then the operator PAP : PH → PH is a selfadjoint operator
with compact resolvent.

Proof. Once again we use the above characterization of positive operators
with compact resolvent (cf. Theorem 1.36): an unbounded positive operator A has
compact resolvent iff the set

Fb := {ψ ∈ D(A) | ‖ψ‖ 6 1, 〈Aψ,ψ〉 6 b}

is compact for all b ∈ R.
Let

FPb := {ψ ∈ D(A) ∩ PH | ‖ψ‖ 6 1, 〈Aψ,ψ〉 6 b}
Obviously, FPb = Fb∩PH, thus FPb is compact if Fb is. This proves the lemma. �

5. The Dixmier trace

The Dixmier trace plays a major role in noncommutative geometry, mainly
because it provides the right generalization of the integration over a Riemannian
manifold to the noncommutative case. In this section we recall the basic properties
of the Dixmier trace, following [Con94, IV.2.β]. We refer to [Con94, IV.2.β] and
[GBVF01] where other relevant properties of the Dixmier trace are described.

Let T be a compact operator on a separable Hilbert space H and let |T | =
(T ∗T )1/2 be its absolute value. Let

µ0(T ) > µ1(T ) > . . .

be the eigenvalues of |T |, sorted in descending order and repeated according to their
multiplicity. As T is compact, µn(T )→ 0, n→∞ (these are also called s-numbers
of T ).
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We set

σN (T ) =

N−1∑
k=0

µk(T ).

There is a wide variety of ideals in K(H) consisting of operators T with certain
asymptotics of σN (T ) and we refer to [Sim05] for the detailed treatment of them.
We will focus only on one of them, namely,

L(1,∞) := {T ∈ K |σN (T ) = O(logN)}.

The natural norm on L(1,∞) is given by

‖T‖1,∞ = sup
N>2

σN (T )

logN
.

With this norm L(1,∞) becomes a symmetrically normed ideal in K, i.e.

‖ATB‖ 6 ‖A‖∞ ‖T‖1,∞ ‖B‖∞
for any A,B ∈ B(H), T ∈ L(1,∞). This is an easy consequence of the fact that the
s-numbers of AT resp. TB are bounded by the s-numbers of T multiplied with the
norm of A resp. B.

We would like to define a functional on L(1,∞) for T > 0 as the limit of the
expressions

σN (T )

logN

for N →∞. The problem is that this sequence need not be convergent, and there-
fore one has to choose a certain kind of limiting procedure (applying a functional
in (`∞/c0)∗). If one wants linearity of the obtained mapping (as defined on opera-
tors), one is only allowed to deal with certain kinds of limits. Namely, one chooses
a functional ω ∈ (`∞)∗ with the following properties:

i) ω(α) > 0 if α ≥ 0,
ii) ω(α) = limn αn if αn is convergent,

iii) ω(α1, α1, . . . , αn, αn, . . . ) = ω(α).

We call such an ω a scale-invariant limit and we introduce the notation Limω(αn) :=
ω(α).

Remark 1.42. The very existence of the functionals ω ∈ (`)∞ with the third
property of scale invariance is not really obvious, so we sketch the construction
here. From a bounded sequence (αn) one can get a bounded function fα(λ) on R∗+
by setting fα(λ) = αn for λ ∈ (n− 1, n]. Now we consider the Cesàro means of fα
with respect to the Haar measure on R∗+:

M(fα)(λ) =
1

log λ

∫ λ

1

fα(u)
du

u
.

Thus, any linear L on Cb(R∗+) vanishing on C0(R∗+) and coinciding with the limit
if it exists gives a desired form ω by setting

ω(α) := L(M(fα)).

After this preparatory work, we can introduce the following definition:

Definition 1.43. For a fixed scale-invariant limit ω and 0 6 T ∈ L(1,∞), we let

Trω(T ) := Limω
σN (T )

logN

and call it the Dixmier trace of T .
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To understand the need of the scale invariance condition, we give the proof of
lineaity.

Proposition 1.44 ([Con94, IV.2.β]). The Dixmier trace is linear: if T1, T2 > 0
and T1, T2 ∈ L(1,∞), then

Trω(T1 + T2) = Trω(T1) + Trω(T2).

Proof. It follows easily from the minimax principle that

σN (T ) = sup{Tr(TP ) |P = P ∗ = P 2, Tr(P ) = N},
and therefore

σN (T1 + T2) 6 σN (T1) + σN (T2)

and
σN (T1) + σN (T2) 6 σ2N (T1 + T2).

Now, let αN := σN (T1)
logN , βN := σN (T2)

logN , γN := σN (T1+T2)
logN ; then the above inequalities

translate into

αN + βN 6
log 2N

logN
γ2N

and
γN 6 αN + βN .

Now, as log 2N
logN → 1 as N → ∞, the linearity follows after applying Limω using its

scale invariance. �

Corollary 1.45. The Dixmier trace uniquely extends to the whole ideal L(1,∞).

Proposition 1.46 ([Con94, Prop. IV.2.3]). Let T ∈ L(1,∞)

i) If T > 0, then Trω(T ) > 0.
ii) If S ∈ B(H), then Trω(ST ) = Trω(TS).

iii) Trω(T ) is independent of the choice of the inner product on H.

iv) Trω vanishes on the ideal L
(1,∞)
0 (H), which is the closure of the ideal of

finite-rank operators in the norm ‖·‖1,∞.

Proof. The property i) is obvious by construction. Now, if S ∈ B(H) is
invertible, then Trω(S−1TS) = Trω(T ), which implies ii) and iii). Property iv)
follows from the fact that Trω vanishes on finite-rank operators. �

At this point, it is natural to ask to what extent the Dixmier trace depends on
the choice of the functional ω. As it turns out, in certain cases we can obtain the
Dixmier trace by computing a residue.

Let T > 0 be an operator from L(1,∞). Then its complex powers T s are of
trace class for Re s > 1, and thus the equality

ζT (s) := Tr(T s) =

∞∑
n=0

µn(T )s

defines a holomorphic function on the half-plane Re(s) > 1. Now, we recall the
Tauberian theorem of Hardy and Littlewood:

Theorem 1.47 (Hardy-Littlewood). If an = O(1/n), and as x→ 1 we have
∞∑
n=1

anx
n → s,

then
∞∑
n=1

an = s.
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In our situation, this theorem leads to the following result:

Theorem 1.48. For T > 0, T ∈ L(1,∞), the following two conditions are equiva-
lent:

i)

(s− 1)ζ(s)→ L, s→ 1 + 0,

ii)

1

logN

N−1∑
n=0

µn(T )→ L, N →∞.

Thus, in this case the value of Trω(T ) is independent of the choice of ω, and,
if ζ(s) has a simple pole at s = 1, then this value is equal to the residue of ζ(s) at
s = 1.

It is exactly this point which allows us to make the connection between the
Dixmier trace and certain numerical values naturally obtained in differential geom-
etry as “residues of pseudodifferential operators” [Wod87].

Proposition 1.49. Let M be a d-dimensional compact Riemannian manifold, E →
M a Hermitian vector bundle over M and let T be a classical pseudodifferential
operator of order −d acting on sections of E. Then:

i) the corresponding operator T acting on the space L2(M,E) of square-
integrable sections of E belongs to L(1,∞);

ii) the Dixmier trace Trω(T ) is independent of ω and given by the following
expression:

Trω(T ) =
1

d(2π)d

∫
S∗M

TrE(σ−d(T )) ds,

where S∗M = {ξ ∈ T ∗M | ‖ξ‖} is the cosphere bundle of M , ds is the vol-
ume form associated with the metric on S∗M induced by the Riemannian
metric on M and TrE(σ−d(T )) is the trace of the principal symbol of T
viewed as an endomorphism of the pullback of E to S∗M .

Thus, there are many naturally arising measurable operators:

Definition 1.50. Let T ∈ L(1,∞). We say that T is measurable if Trω(T ) is
independent of ω.

Let us observe the following easy

Proposition 1.51 ([Con94, Prop. IV.2.6]).

i) Let T > 0, T ∈ L(1,∞). Then T is measurable iff the Cesàro means

M(fα)(λ) of the sequence αN = σN (T )
logN are convergent for λ→∞.

ii) The subset M ⊂ L(1,∞) of measurable operators is a subspace which con-

tains L
(1,∞)
0 and is closed in the (1,∞)-norm.

For our later purposes, we will need the following observation.

Proposition 1.52. Let D be an unbounded selfadjoint operator with compact re-
solvent such that |D|−d ∈ L(1,∞) for a d ∈ N (|D|−1 is hereby defined to be 0 on
kerD). Let A ⊂ B(H) be a ∗-subalgebra such that [|D|, a] is bounded for every
a ∈ A. Then the functional

a 7→ Trω(a|D|−d)
extends to a positive trace on A.
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Proof. Let a, b ∈ A. We consider

Trω((ab− ba)|D|−d) = Trω(ab|D|−d − a|D|−db) = Trω(a[b, |D|−d])

Now we want to prove that [b, |D|−d] is a trace-class operator, and for this we use
induction:

[|D|−1, b] = −|D|−1[|D|, b]|D|−1,

and

[|D|−k−1, b] = |D|−1[|D|−k, b] + [|D|−1, b]|D|−k,

which clearly implies the statement, because an operator of the form |D|−iS|D|−j
with i + j > d is of trace class. The positivity of the trace follows from the
computation

Trω(a∗a|D|−d) = Trω(a∗|D|−da),

and the observation that the operator a∗|D|−da is positive. �

The crucial observation about the Dixmier trace is that it depends only on
the “large-scale behaviour” of the operator; indeed, any finite-rank perturbation
doesn’t change it. In the above case of certain functionals on a ∗-algebra emerging
from an unbounded operator |D| and the Dixmier trace, we have better control on
the functional.

Lemma 1.53. Let D be an unbounded selfadjoint operator with compact resolvent
such that |D|−d ∈ L(1,∞) for a d ∈ N (|D|−1 is defined to be 0 on kerD). Then

Trω(T |D|−d) = 0

for T ∈ K.

Proof. It clearly suffices to prove the statement in the case T > 0. In this
case, we take a sequence Tn of positive finite-rank operators converging to T in
norm. In view of the equality

Trω(Ti|D|−d) = 0

and in view of the inequality∥∥T |D|−d∥∥
1,∞ 6 ‖T‖

∥∥|D|−d∥∥
1,∞

the functional T 7→ Trω(T |D|−d) is norm-continuous, thus the statement follows.
�

The following lemma shows that the trace we just constructed is independent of
certain “regular” perturbations of D. To get the idea of why this is true, we advise
the reader to think about the abovementioned example of an operator with scalar
principal symbol on a manifold: if we perturb, say, a Dirac operator by lower-order
terms, the principal symbol does not change, thus the Dixmier trace, being equal
to the Wodzicki residue, remains invariant.

Lemma 1.54. Let D be an unbounded selfadjoint operator with compact resolvent
such that |D|−d ∈ L(1,∞) for a d ∈ N (|D|−1 is hereby defined to be 0 on kerD). Let
T ∈ B(H) be a regular operator (belonging to the domain of δm for every m ∈ N,
where δ(·) = [|D|, ·]) and a ∈ B(H) be such that a|D|−d is measurable. Then
a|D + T |−d is measurable as well, and

Trω(a|D|−d) = Trω(a|D + T |−d).
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Proof. We begin with the equality

(D + T )∗(D + T ) = D2 + T ∗D +DT + T ∗T

and compute

|D + T |2 = |D|(1 + |D|−1T ∗F + FT |D|−1 + |D|−1T ∗T |D|−1)|D|,
where F = signD. Now, (1+ |D|−1T ∗F +FT |D|−1 + |D|−1T ∗T |D|−1) is a positive
operator of the form (1 +Q), where Q is a compact operator; in view of this,

|D + T |−2 = |D|−1(1 +Q)−1|D|−1

(here we once again use the convention that (1 +Q)−1 is equal to 0 on ker(1 +Q)).
Now,

[|D|, Q] = |D|−1[|D|, T ∗]F + F [|D|, T ]|D|−1 + |D|−1[|D|, T ∗T ]|D|−1

where R is a compact operator; in view of this,

|D + T |−2 = (1 + S)|D|−2,

where S is a compact operator. Thus, the statement is true for d = 2. For d = 2k,
we obtain

|D + T |2k = |D|(1 +Q)|D| . . . |D|(1 +Q)|D|,
and, as the multiple commutators of |D| and Q] are bounded,

|D + T |−2k = (1 + Sk)|D|−2k,

where Sk is a compact operator. The statement for d = 2k follows from Lemma
1.53.

To conclude that the lemma is true for odd d as well, we need to prove that
|D + T | − |D| = |D|S′, where S′ is compact. For this, we use the formula

|A| = π−1

∫ ∞
0

λ−1/2 A2

A2 + λ
dλ,

valid for a selfadjoint operator A.
Thus,

|D+T |−|D| = π−1

∫ ∞
0

λ−1/2
(
(|D + T |2 + λ)−1|D + T |2 − |D|2(|D|2 + λ)−1

)
dλ =

= π−1

∫ ∞
0

λ−1/2(|D+T |2+λ)−1(|D+T |2(|D|2+λ)−(|D+T |2+λ)|D|2)(|D|2+λ)−1 dλ =

π−1

∫ ∞
0

λ1/2(|D + T |2 + λ)−1(|D + T |2 − |D|2)(|D|2 + λ)−1 dλ =

= π−1

∫ ∞
0

λ1/2(|D + T |2 + λ)−1|D|Q|D|(|D|2 + λ)−1 dλ.

Now,

[Q, (|D|2 + λ)−1] = −(|D|2 + λ)−1[Q, |D|2](|D|2 + λ)−1 =

− (|D|2 + λ)−1|D|[Q, |D|](|D|2 + λ)−1 − (|D|2 + λ)−1[Q, |D|]|D|(|D|2 + λ)−1

is a compact operator, and the integral converges uniformly, because∥∥(|D + T |2 + λ)−1
∥∥ 6 λ−1,∥∥(|D|2 + λ)−1

∥∥ 6 λ−1,

thus the terms under the integral have order λ−3/2 at infinity. In view of this,

|D + T | − |D| = S′|D|,
where S′ is a compact operator. This proves the lemma. �
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6. Hochschild and cyclic homology and cohomology

In this section we review the definitions and properties of the Hochschild and
cyclic homology and cohomology. The references for this section are [CST04],
[Lod98].

Let A be a unital algebra. We denote by Ω∗(A) the universal differential graded
algebra over A, which is generated by x ∈ A with relations from A and additional
symbols dx, x ∈ A, where dx is linear in x and satisfies

d(xy) = xd(y) + d(x)y.

We also impose the relation d1 = 0, because we will be dealing with unital algebras
only. Sometimes this relation isn’t imposed, in particular, when there’s a need
to treat nonnital algebras. This doesn’t change the corresponding homologies, as
explained in [CST04, Rem. 2.15].

Thus, Ω∗(A) is a direct sum of subspaces

Ωn(A) = span {x0dx1 . . . dxn |xj ∈ A, j = 1, . . . , n} .

This decomposition makes Ω∗(A) a graded algebra.
We define several operators on Ω∗(A). The operator d is defined by

d(x0dx1 . . . dxn) := dx0 . . . dxn,

the operator b is defined by

b(ωdx) := (−1)degω[ω, x], ω ∈ Ω∗(A), x ∈ A,

b(dx) = 0,

b(x) = 0.

Clearly, d2 = 0, and one can prove that b2 = 0.
We also define the number operator

N(ω) := deg(ω)ω.

We define the Karoubi operator

κ := 1− db− bd.

One can verify that κ satisfies

(κn − 1)(κn+1 − 1) = 0

on Ωn(A). Thus, there exists an operator P on Ω∗(A) which projects onto the
generalized eigenspace of κ for the eigenvalue 1.

By construction, the operator P commutes with b, d, and N . Thus, setting
B := NPd, we find

Bb+ bB = 0, B2 = 0.

Explicitly, B is given on Ωn(A) by

B(ω) =

n∑
j=0

κjdω.
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Thus, we obtain a bicomplex

(1.2)

yb yb yb yb
Ω3(A)

B←−−−− Ω2(A)
B←−−−− Ω1(A)

B←−−−− Ω0(A)yb yb yb
Ω2(A)

B←−−−− Ω1(A)
B←−−−− Ω0(A)yb yb

Ω1(A)
B←−−−− Ω0(A)yb

Ω0(A)

Definition 1.55. The homology of the total complex of the bicomplex (1.2) is
called the cyclic homology HC∗(A).

Definition 1.56. The homology of the first column of the bicomplex (1.2) is called
the Hochschild homology HH∗(A).

Dualizing the above complex we get the bicomplex

(1.3)

xb xb xb xb
Ω3(A)∗

B←−−−− Ω2(A)∗
B←−−−− Ω1(A)∗

B←−−−− Ω0(A)∗xb xb xb
Ω2(A)∗

B←−−−− Ω1(A)∗
B←−−−− Ω0(A)∗xb xb

Ω1(A)∗
B←−−−− Ω0(A)∗xb

Ω0(A)∗

We omit the stars at the operators b, B and others because it will be always clear
from the context where they act.

Definition 1.57. The homology of the total complex of the bicomplex (1.3) is
called the cyclic cohomology HC∗(A).

Definition 1.58. The homology of the first column of the bicomplex (1.3) is called
the Hochschild cohomology HH∗(A).

We denote by Ω̂(A) the infinite product

Ω̂(A) :=
∏

Ωn(A)

We denote by

Hom(Ω̂(A), Ω̂(B)) = lim←−
m

lim−→
n

Hom

⊕
i6n

Ωi(A),
⊕
j6m

Ωj(B)

 .

It is a Z/2-graded complex with the boundary map

∂ϕ = ϕ ◦ ∂ − (−1)degϕ∂ ◦ ϕ,
where ∂ = B − b.
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Definition 1.59. The bivariant periodic cyclic homology HP∗(A,B) is defined as
the homology of the Hom-complex

HP∗(A,B) = H∗(Hom(Ω̂(A), Ω̂(B))), ∗ = 0, 1.

The periodic cyclic homology of A is defined to be

HP∗(A) := HP∗(C,A).

The periodic cyclic cohomology of A is defined to be

HP∗(A) := HP∗(A,C).

We let S be the shift operator on the cyclic bicomplex and I be the operator
including the Hochschild complex as the first column into the cyclic bicomplex; we
denote the corresponding induced operators on (co)homologies by the same letters.

Theorem 1.60 ([Lod98, Thm. 2.2.1], [Con94, Thm. III.1.26]). There are natural
long exact sequences

. . . −→ HHn(A)
I−→ HCn(A)

S−→ HCn−2(A)
B−→ HHn−1(A)→ . . .

and

. . . −→ HHn−1(A)
B−→ HCn−2(A)

S−→ HCn(A)
I−→ HHn(A)→ . . .

Proposition 1.61 ([CST04, Prop. 2.17]). We let

S : HCn → HCn−2

and

S : HCn → HCn+2

induced by S on the level of cyclic homology resp. cohomology. Then we have

HP∗(A) = lim−→
S

HC2n+∗(A)

and an exact sequence

0→ lim←−
S

1 HC2n+∗+1(A)→ HP∗(A)→ lim←−
S

HC2n+∗(A)→ 0.

Corollary 1.62. If HH∗(A) ∼= 0 for ∗ > d, then

HPdmod 2(A) = HCd(A),

HPdmod 2(A) = HCd(A),

HPdmod 2+1(A) = HCd+1(A),

HPdmod 2+1(A) = HCd+1(A),

While it is generally hard to understand the intersection product in bivariant
periodic cyclic cohomology [Pus98], in a particular case which will be interesting
for us it can be defined explicitly, and we give the construction below. Let [Φ] ∈
HP(A ⊗ B,C) be the class of Φ ∈ Hom(Ω̂(A ⊗ B),Ω(C)). We would like to define
a mapping

∩[Φ] : HP(C,A)→ HP(B,C).

This is defined as follows. Consider

α ∈ Hom(Ω̂(C), Ω̂(A))

and form α⊗ id ∈ Hom(Ω̂(B), Ω̂(A)⊗ Ω̂(B)).

There is a quasiisomorphism G : Ω̂(A) ⊗ Ω̂(B) → Ω̂(A ⊗ B) which we will
describe below. The class [α] ∩ [Φ] is given by the class of Φ ◦ G ◦ (α ⊗ id) ∈
Hom(Ω̂(B), Ω̂(C)).
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The quasiisomomorphism G is defined using the shuffle product sh and the
cyclic shuffle product sh′, whose definitions we briefly recall here, refering to [Lod98,
Sect. 4.3] for details.

By definition, a (p, q)-shuffle is a permutation σ ∈ Σp+q, the symmetric group
on (p+ q) letters, such that

σ(1) < σ(2) < · · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q).

For any algebra A, we let Σn act on Ωn(A) by

σ(a0da1 . . . dan) = a0daσ−1(1) . . . daσ−1(n).

Let B be another algebra. The shuffle product

sh : Ωp(A)⊗ Ωq(B)→ Ωp+q(A⊗B)

is defined by

sh(a0da1 . . . dap, b0db1 . . . bp) =
∑
σ

sgnσ · σ(a0b0da1 . . . dapdb1 . . . dbq),

where the sum runs over all (p, q)-shuffles.
Now, by definition, (p, q)-cyclic shuffles are elements of Σp+q obtained as fol-

lows. Perform a cyclic permutation of the set {1, . . . p} and a cyclic permutation of
the set {p+1, . . . , p+q}. Then shuffle the two results to obtain {σ(1), . . . , σ(p+q)}.
This is a cyclic permutation iff 1 appears before p+ 1 in this sequence.

Thus, we can define the cyclic shuffle product

sh′ : Ωp(A)⊗ Ωq(B)→ Ωp+q+2(A⊗B)

by

sh′(a0da1 . . . dap, b0db1 . . . bp) =
∑
σ

sgnσ · σ(da0da1 . . . dapdb0db1 . . . dbq),

where the sum runs over all cyclic (p, q)-shuffles.
Now, the abovementioned map G is matricially defined as follows:

G =


sh sh′ 0 . . .
0 sh sh′ 0
. . . 0 sh sh′

. . . . . . 0 sh


The Hochschild and cyclic homology and cohomology can be naturally gener-

alized to the case where our algebra is Z/2-graded (as explained in [Kas86]) or is
a m-algebra, i.e. a locally convex algebra equipped with a submultiplicative family
of seminorms (as explained in [CST04, Ch. 3]); all the above constructions can
be naturally generalized to this case and the above statements continue to hold.
We refer the skeptical reader to [Kas86] and [CST04] for the thorough treatment
of those generalizations, just mentioning that the necessary modifications are com-
pletely natural: in the Z/2-graded one naturally induces the grading from A to
Ω∗(A) and uses graded commutators instead of usual commutators, and in the case
where A is an m-algebra one uses completed tensor products to form ΩnA. We will
use these theories on Z/2-graded m-algebras (cf. Definition 2.3, Proposition 2.20)
omitting the technical particularities and bearing in mind that all the constructions
work “as they should”.



CHAPTER 2

Differential geometry of noncommutative
manifolds

In this chapter we discuss the notion of a noncommutative manifold, based on a
spectral triple with additional structures and prove various results concerning their
“differential geometry”. The “axioms” for spectral triples were first proposed in
[Con96]. We first discuss the content of the axioms in the commutative case, and
then pass to the noncommutative generalization.

1. Riemannian manifolds and spectral triples

In this section we consider “commutative” spectral triples, i.e. these associated
with compact Riemannian manifolds.

Let (M, g) be a compact spinc manifold of dimension d. Denote by A the
algebra C∞(M) of complex-valued smooth functions on M . The existence of a
spinc structure can be translated to the language of Morita equivalence as follows.
Let C := Γ∞(CliffC(T ∗M)) be the algebra of sections of the bundle of complex
Clifford algebras associated with the cotangent bundle of M . The existence of a
spinc structure is equivalent to the fact that there is a Morita equivalence of pre-
C*-algebras C ∼ A provided by a finitely generated projective Hermitian A-module
H∞ [GBVF01, Def. 9.7]. By the Serre–Swan Theorem [GBVF01, Thm. 2.10],
this bimodule corresponds to a vector bundle S over M which is called the spinor
bundle. It naturally carries a representation of C. If moreover M admits a spin
structure, it yields a real structure on the module H∞.

The main interest in considering spinc structures is that there is a naturally
defined unbounded selfadjoint operator D such that the triple (A,H, D) gives the
fundamental class in K-homology KK(A,C). Thus, while in general there are
many spectral triples associated with a manifold M , the existence of a spinc struc-
ture allows us to focus on fundamental classes only. The operator D is the Dirac
operator, and we refer to [GBVF01, Def. 9.10] for its precise construction.

Thus, from a compact spinc manifold of dimension d we can obtain the following
data:

i) a unital ∗-algebra A represented by bounded operators on a Hilbert space
H,

ii) an unbounded selfadjoint operator D with compact resolvent acting on H

subject to following conditions:

i) the eigenvalues {λk} of |D|, sorted in ascending order, satisfy λk = O(k1/d),
ii) [D, a] is bounded for every a ∈ A,
iii) [[D, a], b] = 0 for every a, b ∈ A,
iv) for a ∈ A, [D,A], the map t 7→ eit|D|ae−it|D| is C∞ in norm topology;
v) the A-module H∞ :=

⋂
n∈N Dom |D|n is Hermitian, projective and finitely

generated;
vi) the Hermitian structure on H∞ is compatible with the scalar product:

〈ξ, η〉 = Trω(〈ξ, η〉A |D|
−d) ∀ξ, η ∈ H∞

29
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vii) the class ∆∗[(A,H, D)] ∈ KK(A⊗Aop,C) yields the Poincaré duality iso-
morphism KK(C, A)→ KK(A,C) via the Kasparov intersection product.

We observe that these properties are all formulated in a way which is completely
independent of the commutativity of the algebra A and doesn’t appeal to any
geometric constructions. These conditions are the starting point of the proof of the
reconstruction theorem, which allows to get the manifold M back from the above
data. More precisely, one has:

Theorem 2.1 ([Con08]). Let (A,H, D) be as above with A commutative and let
there be an anticommutative Hochschild cycle c ∈ Zd(A,A) such that πd(c) = γ
(γ = 1 in the odd case). Suppose that the following regularity condition is satisfied:
for every T ∈ EndA(H∞), the map t 7→ eit|D|ae−it|D| is C∞ in norm topology.

Then there exists a compact oriented Riemannian manifold M with A = C∞(M).

2. Axioms for noncommutative spectral triples

The axioms for noncommutative spectral triples were proposed by A. Connes
in [Con96]. We will discuss them and then propose a slight generalization, based
on the Poincaré duality.

Definition 2.2. A noncommutative spin manifold (noncommutative spin geome-
try) of dimension d is given by the following data:

i) a unital ∗-algebra A represented by bounded operators on a Hilbert space
H,

ii) an unbounded selfadjoint operator D with compact resolvent acting on
H,

iii) if d is even, an bounded operator γ = γ∗, γ2 = 1 acting on H,
iv) an antilinear operator J : H→ H, J2 = ε ∈ {±1} depending on dmod 8.

subject to following conditions:

i) the eigenvalues {λk} of |D|, sorted in ascending order, satisfy λk = O(k1/d),
ii) [D, a] is bounded for every a ∈ A,

iii) γa = aγ for a ∈ A, γD = −Dγ, DJ = ε′JD, γJ = ε′′Jγ, where ε′, ε′′ ∈
{±1} depend on dmod 8,

iv) [[D, a], JbJ ] = 0 for every a, b ∈ A,
v) for a ∈ A, [D,A], the map t 7→ eit|D|ae−it|D| is C∞ in norm topology;
vi) the A-module H∞ :=

⋂
n∈N Dom |D|n is Hermitian, projective and finitely

generated;
vii) the Hermitian structure on H∞ is compatible with the scalar product:

〈ξ, η〉 = Trω(〈ξ, η〉A |D|
−d) ∀ξ, η ∈ H∞

viii) the class [D] ∈ [(A⊗Aop,H, D, J)] ∈ KR(A⊗Aop,C) yields the Poincaré
duality isomorphism KK(C, A)→ KK(A,C) via the Kasparov intersection
product.

The presence of the antilinear involution J and the choice of signs ε, ε′, ε′′

correspond to a spin manifold and therefore restrict the class of possible examples; in
particular, we will see that the toric deformations of manifolds need not be restricted
to the spin case. Besides that, one would certainly like to have a “canonical”
noncommutative geometry associated to every manifold, regardless of the existence
of a spin structure.

We propose a slight generalization of the axioms above, rich enough to give a
straightforward analogy between the commutative and noncommutative cases and
allow a slight extension of existing examples.
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Definition 2.3. A noncommutative manifold (noncommutative geometry) of di-
mension d is given by the following data:

i) two unital ∗-algebras A and B with commuting injective representations
of A and Bop by bounded operators on a Hilbert space H,

ii) an unbounded selfadjoint operator D with compact resolvent acting on
H,

iii) if d is even, a bounded operator γ = γ∗, γ2 = 1 acting on H,

subject to following conditions:

i) the eigenvalues {λk} of |D|, sorted in ascending order, satisfy λk = O(k1/d),
ii) [D, a] is bounded for every a ∈ A, [D, b] is bounded for every b ∈ B

iii) [[D, a], b] = 0 for every a ∈ A, b ∈ B,
iv) γa = aγ for a ∈ A, γD = −Dγ;
v) for S ∈ A∪B∪ [D,A]∪ [D,B], the map t 7→ eit|D|Se−it|D| is of class C∞

in the norm topology;
vi) the module H∞ = X :=

⋂
n∈N Dom |D|n is Hermitian, projective and

finitely generated as a left A-module and a right B-module;
vii) the Hermitian structures on X are compatible with the scalar product:

(2.1) 〈ξ, η〉 = Trω(A〈ξ, η〉|D|
−d) = Trω(〈ξ, η〉∗B|D|

−d) ∀ξ, η ∈ X

viii) the class [D] ∈ [(A ⊗ Bop,H, D, J)] ∈ KK(A ⊗ Bop,C) yields Poincaré
duality between A and B in KK-theory. Hereby B and B are endowed
with the grading induced by γ: B(0) = {γb = bγ}, B(1) = {γb = −bγ}.

This definition is certainly wider than the preceding one, because there we can
just take B = JAJ−1 and define the B-valued scalar product via

〈ξ, η〉B := JA〈Jξ, Jη〉J
−1.

On the other hand, now we can canonically encorporate any smooth manifold
M and its toric deformations in this framework. It is also known that the class of
C∗-algebras which satisfy Poincaré duality in KK-theory with themselves is much
smaller than the class of C∗-algebras which have a Poincaré dual in KK-theory
(even in the commutative case).

3. “Smooth”, “continuous” and “measurable” modules and algebras

There are several “levels” we can look at our spectral triple at: the fundamental
of them is the “smooth” level included into definitions. On this level we get the
following structure:

• two unital ∗-algebras A and B,
• an A-B-bimodule of finite type X ⊂ H over A,
• a trace τ on A and B which is compatible with the scalar product in H:
〈·, ·〉 = τ (A〈·, ·〉) = τ (〈·, ·〉B)

Hereby we denote by τ the linear functional on B(H) given by

τ(T ) = Trω(T |D|−d).

It restricts to a trace on A and B by the regularity assumption for elements of
A resp. B.

We can also look at the “continuous” and “measurable” level; the first corre-
sponds to the C∗-completions, the second corresponds to the von Neumann com-
pletions of the objects involved. To distinguish different “levels”, we introduce
the following notational convention: the “smooth” algebras and modules will be
denoted by mathcal-letters A, B, X etc., the C∗-algebras in question as well as
C∗-modules will be denoted by the letters A, B, X etc.; the von Neumann algebras
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and modules over them over them will be denoted by the mathscr-letters A , B,
X etc. The Hilbert space will always be denoted by H.

Proposition 2.4. Let ι be the inclusion A ⊂ B(H), and let e = e∗ = e2 ∈
Mm(A) be the projection such that X ∼= Ane as left Hermitian A-modules. Then
this isomorphism can be continued to an isomorphism of ∗-representations ι and µ
of A on H and L2(A, τ)me respectively.

Similarly, if f = f∗ = f2 ∈Mn(B) is the projection such that X ∼= fBn as right
Hermitian B-modules, then this isomorphism can be continued to an isomorphism
of ∗-representations ι and µ of Bop on H and fL2(B, τ)n respectively.

Hereby L2(A, τ) and L2(B, τ) denote the GNS spaces of A resp. B with respect
to τ .

Proof. The absolute continuity condition (2.1) tells precisely that the scalar
products on these modules become equal under the abovementioned isomorphisms.

�

Thus our Hilbert space comes equipped with a dense A–B-bimodule. The “con-
tinuous” and “measurable” variants of these modules can be obtained by replacing
A or B by their C∗- or von Neumann completions — and they can still be regarded
as subspaces in H. The main issue here is, however, that a priori there is no
guarantee that Ame ∼= fBn after identifying both with subspaces in H.

To circumvent this issue, we make the following observation which is essentially
a repetition of [KW00, Prop. 1.18], although there it was formulated for the C∗-
case only.

Proposition 2.5. Let A and B be two normed ∗-algebras and let X be a left Her-
mitian A-module and a right Hermitian B-module such that the actions of A and
B commute and yield ∗-representations of A in EndB(X) and of B in EndA(X),
respectively.

If X has a right B-basis {u1, . . . , un}, then

‖A〈ξ, ξ〉‖ 6

∥∥∥∥∥
n∑
i=1

A〈ui, ui〉

∥∥∥∥∥ ‖〈ξ, ξ〉B‖ .
If X has a left A-basis {v1, . . . , vm}, then

‖〈ξ, ξ〉B‖ 6

∥∥∥∥∥∥
m∑
j=1

A
〈vj , vj〉

∥∥∥∥∥∥ ‖A〈ξ, ξ〉‖ .
In particular, if X has a left A-basis and a right B-basis, then the norms coming

from the A-valued and the B-valued scalar product are equivalent.

Proof. If n = 1 and u is the basis element, then ξ = u 〈u, ξ〉B, and

〈ξ, ξ〉B = 〈u, ξ〉∗B 〈u, ξ〉B .
Moreover,

(2.2) A〈ξ, ξ〉 =
A
〈u 〈u, ξ〉B , u 〈u, ξ〉B〉 6 A〈u, u〉 ‖〈u, ξ〉B‖

2
,

which proves the claim in this case.
In the general case we make the following observation (cf. [KW00, Lemma

1.17]). Put Y := X ⊗ Cn and regard it as an A–B ⊗Mn(C)-bimodule, equipped
with the scalar products

A〈ξ, η〉 :=

n∑
i=1

A〈ξi, ηi〉,

〈ξ, η〉B⊗Mn(C) := (〈ξi, ηj〉B)ni,j=1.
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Then ũ := (u1, . . . , un) is a right B⊗Mn(C)-basis for Y.

Thus, putting ξ̃ := (ξ, 0, . . . , 0) and applying the first part of the proof, we
obtain the conclusion. �

This proposition shows that the following definition is correct.

Definition 2.6. We denote by A resp. B the C∗-completions of A resp. B in
B(H). We denote by X the completion of X with respect to either of the norms

A‖·‖ : ξ 7→ ‖A〈ξ, ξ〉‖
1/2

or
‖·‖B : ξ 7→ ‖〈ξ, ξ〉B‖

1/2

An easy observation is

Proposition 2.7. X is a Hilbert A–B-bimodule, which is finitely generated and
projective as a left A-module and as a right B-module. Moreover, we can identify
X with a subspace in H.

Proof. Let ξ = lim ξn, a = lim an with ξn ∈ X, an ∈ A. In view of the
inequality

‖anξn − amξm‖ 6 ‖an − am‖A‖ξn‖+ ‖am‖A‖ξn − ξm‖
the sequence {anξn} is a Cauchy sequence, and thus converges. We define aξ :=
lim anξn. A standard argument shows that the limit is independent of the choice of
the sequences {an} and {ξn}, and the continuity of the norms yields ‖aξ‖ 6 ‖a‖ ‖ξ‖.

Analogously, we set A〈ξ, ξ〉 := lim A〈ξn, ξn〉. The convergence of the sequence
is guaranteed by the inequality

‖A〈ξn, ξn〉 − A〈ξm, ξm〉‖ 6 (A‖ξn‖+ A‖ξm‖) A‖ξn − ξm‖,
and once again a standard argument shows that the limit is independent of the
choice of the sequence.

Now, a left A-basis for X is also a left A-basis for X, which proves that X is
finitely generated and projective. The corresponding statements involving B are
proved in a similar manner. �

Now we turn to the “measurable” variants of the statements above.

Definition 2.8. We let A be the von Neumann algebra generated by A in B(H)
and let B be the opposite of the von Neumann algebra generated by B in B(H).

An easy consequence of Proposition 2.4 is that the trace τ has a normal continu-
ation to both A and B and that the Hilbert space H becomes a finitely generated
projective normal left module over A and a finitely generated projective normal
right module over B. As our von Neumann algebras A and B are equipped with
a finite normal trace τ , from the classical work of Lück [Lüc02, Sect. 6.2] it is
known that such normal modules alway contain dense finitely generated projective
modules over A resp. B. Once again, the point is that these are in fact one single
module.

Proposition 2.9. Consider the following vector space topologies on X:

i) the topology (τA) defined by the following system of neighbourhoods of zero:

UW := {ξ ∈ X |A〈ξ, ξ〉 ∈W},
where W is a ultraweak neighbourhood of zero in A ⊂ A ;

ii) the topology (τB) defined by the following system of neighbourhoods of zero:

VW := {ξ ∈ X | 〈ξ, ξ〉B ∈W},
where W is a ultraweak neighbourhood of zero in B ⊂ B.
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These topologies coincide on bounded subsets of X, and the quasi-completions of X
with respect to these topologies are isomorphic topological vector spaces.

Remark 2.10. It is easy to see that these topologies are defined by the family of
seminorms

ξ 7→ ϕ(〈ξ, ξ〉)1/2,

where ϕ runs over normal states on A resp. B and therefore coincide with the
so-called s-topologies used in the characterization of self-dual modules over von
Neumann algebras.

Proof. Let ξi be a bounded net in X converging to zero in (τB). Then

τ (A〈ξi, ξi〉) = τ (〈ξi, ξi〉B)→ 0,

because τ is normal. We have to show that ai := A〈ξi, ξi〉 → 0 in the ultraweak
topology. It suffices to show that every subnet of {ai} has a subnet converging to
0. We take an arbitrary subnet of ai; as it is a bounded net, it has a ultraweakly
convergent subnet by the Banach–Alaoglu theorem, and the limit of the latter is a
positive operator a ∈ A with τ(a) = 0, because τ is normal. Thus a = 0, which
proves the first claim.

To prove the second claim, denote the quasi-completions of X with respect to
(τA) and (τB) by XA resp. XB . The second claim will now follow from the fact
that both XA and XB have the property that any element of them is a limit of a
bounded net from X (this is not automatic for quasi-completions in general). This
is in turn established by the following observation: let X ∼= Ame as a left A-module
and X ∼= fBn as a right B-module. Then XA

∼= A me, XB
∼= fBn in view of

Lemma 1.28 and the following facts:

• any self-dual Hilbert module over a von Neumann algebra is a dual Banach
space [MT05, Prop. 3.3.3],

• any finitely generated projective Hilbert module is self-dual [MT05].

�

Definition 2.11. We denote by X the quasi-completion of X with respect to one
of the topologies (τA) or (τB).

Proposition 2.12. X is naturally an A –B Hilbert bimodule, which is finitely
generated and projective over both A and B. Moreover, X can be identified with
a subspace in H.

Proof. We take an A-basis {v1, . . . , vm} for X. If ξi =
∑m
j=1 a

(i)
j vj is a

bounded Cauchy net for the topology (τA), convergent to ξ ∈ X , then for each j

a
(i)
j is a bounded net which is Cauchy for the ultraweak topology, thus convergent.

Therefore for each a ∈ A the nets aa
(i)
j are bounded and ultraweakly Cauchy.

Thus, the net
∑m
j=1 a

(i)
j vj is a bounded Cauchy net in X and therefore convergent.

We define aξ to be the limit of this net. As before, a standard argument shows
that this definition is independent of the choice of a bounded ξi. Thus, X is a
finitelu generated projective left A -module (isomorphic to A me as established the
previous proposition). Analogously, X is a finitely generated right B-module.

To define a Hilbert module structure, we observe that for a net ξi as above the
net A〈ξi, ξi〉 is a bounded Cauchy net in the ultraweak topology, thus convergent
to some a ∈ A , which we define to be A 〈ξ, ξ〉, ξ = lim ξi. As before, this choice is
independent of ξi. The first claim of the proposition follows.

The second claim of the proposition follows from the fact that the topology on
X inherited from H is weaker than the topologies (τA) and (τB). �
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Proposition 2.13. X is a full Hermitian A-module and a full Hermitian B-module.

Proof. It follows from the proof of Lemma 1.21 that X is full if and only if
the element

z =

n∑
i=1

A〈ui, ui〉

is invertible, where {ui}ni=1 is a right B-basis for X. It follows that X is full iff X
is full.

It follows from Proposition 1.19 that z ∈ Z(A). Consider the support projection
p ∈ A of z. As in the proof of Lemma 1.21, for any finite set {xj}mj=1 ⊂ X there
exists a C > 0 such that

z > C−1
m∑
j=1

A〈xi, xi〉.

It follows that the central supports of all A -valued scalar products are majorized
by p, which gives p = 1, because otherwise the representation of A on H cannot
be injective.

If n = 1, then [MT05, Prop. 3.4.1] gives us an element ζ ∈ X such that

A 〈ζ, ζ〉 = p = 1, which proves fullness of X . In general we have to adapt the
argument from [MT05, Prop. 3.4.1] to our situation.

We let for k ∈ N
zk = (z + 1/k)−1/2, u

(k)
i = zkui.

Then we get
n∑
i=1

A

〈
u

(k)
i , u

(k)
i

〉
6 1.

Let yi be a weak∗ accumulation point of u
(k)
i . It follows that ui = z1/2yi, hence

z = z1/2rz1/2,

where

r =

n∑
i=1

A 〈yi, yi〉 6 1.

Thus,
z1/2(1− r)z1/2 = 0,

and it follows that r = 1. �

4. Frechét topology on A and relevant modules

Now we will adapt some propositions from [Con08] from the commutative case
to our general situation. Most of them will be similar for A and EndB(X), although
there will be some slight differences.

For these constructions to work, we have to make some additional assumptions.
Let us strat with the definition of a regular operator.

Definition 2.14. For T ∈ B(H), we let δ(T ) := [|D|, T ]. T is called regular iff
δm(T ) is bounded for all m ∈ N.

It is easy to see that regularity of T is equivalent to the fact that the map
t 7→ e−it|D|Teit|D| is C∞ in the norm topology.

In this section, we assume that one of the following two assumptions hold for
the B-endomorphisms of X:

i) the algebra generated by A and [D,A] is equal to EndB(X) or
ii) every B-endomorphism is regular.

If we add to these one of two assumptions



36 2. DIFFERENTIAL GEOMETRY OF NONCOMMUTATIVE MANIFOLDS

i’) the algebra generated by B and [D,B] is equal to EndA(X) or
ii’) every A-endomorphism is regular,

then all the statements below remain true after exchanging A and B (or their
relevant completions).

By the regularity assumptions in the axioms for noncommutative geometry, i)
implies ii) and i’) implies ii’). These assumptions are not unnatural; in fact, the
assumptions ii) and ii’) were used by A. Connes in the proof of the Reconstruction
Theorem and seem to be crucial.

We equip the algebras EndA(X) and EndB(X) with the trace τ given by

τ(T ) = Trω(T |D|−d).

Lemma 2.15. The following conditions are equivalent for T ∈ B′:

i) T ∈ EndB(X);
ii) T belongs to the domain of δm for any natural m;

Proof. The implication i)⇒ ii) is a direct consequence of the above assump-
tions and the regularity condition. The implication ii) ⇒ i) can be proven along
the lines [Con08, Lemma 2.1] using X =

⋂
n Dom |D|n and the equality

|D|mTξ =

m∑
k=0

(
m

k

)
δk(T )|D|m−kξ, ξ ∈ Dom |D|m.

�

Lemma 2.16. The following conditions are equivalent for T ∈ A :

i) T ∈ A;
ii) [D,T ] is bounded and both T and [D,T ] belong to the domain of δm for

any natural m;
iii) T belongs to the domain of δm for any natural m;
iv) TX ⊂ X.

Proof. iv) ⇒ i): Let us assume iv). Then T is a B-endomorphism of X ∼=
fBm. Applying the conditional expectation on the von Neumann completion
E : EndB(X ) → A is by construction equal to E : EndB(X) → A, thus E(T ) =
T ∈ A, which shows i).

i) ⇒ ii) follows from regularity, ii) ⇒ iii) is immediate and iii) ⇒ iv) follows
analogously to the proof of Lemma 2.15. �

We shall now show that A is a Fréchet algebra when endowed with the sub-
multiplicative norms

‖x‖k := ‖ρk(x)‖ , ρk(x) =


x δ(x) . . . δk(x)/k!
0 x . . . . . .
. . . . . . x δ(x)
0 . . . 0 x

 .

Proposition 2.17.

i) δ : Dom δ → B(H) is a closed unbounded derivation;
ii) A is a Fréchet algebra when endowed with the norms ‖·‖k;
iii) EndB(X) is a Fréchet algebra when endowed with the norms ‖·‖k;

iv) the semi-norms ‖a‖′k := ‖[D, a]‖k are continuous on A.

Proof. The proof of [Con08, Prop. 2.2] applies mutatis mutandis, and we
sketch it here.
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i) Let Tn ∈ Dom δ be such that Tn → T in norm and δ(Tn) is norm convergent.
We have to show that T ∈ Dom δ and that δ(Tn) converges to δ(T ) in norm. Take
ξ ∈ Dom |D| and observe that

δ(Tn)ξ = |D|Tnξ − Tn|D|ξ,
so |D|Tnξ converges to |D|Tξ, because |D| is closed. Thus, δ(Tn)→ δ(T ) strongly
on Dom |D|, T ∈ Dom δ, and δ(Tn)→ δ(T ) in norm, since the limit of this sequence
coincides with δ(T ) on a dense subspace.

ii) A Cauchy sequence {an} with respect to the norms ‖·‖k is necessarily Cauchy
in A and thus converges to a T ∈ A ⊂ A′′. Since δ is closed, T ∈ Dom δ and
δ(an) → δ(T ) in norm. By induction T ∈

⋂
n Dom δn and thus T ∈ A by the

previous lemma. Furthermore, it follows that δk(an)→ δk(T ) in norm, and thus A

is a Fréchet space.
iii) is proven analogously to ii).
iv) The derivation T 7→ [D,T ] is closed similarly to δ, and thus the above

proof of completeness applies. The result then follows from the open mapping
theorem. �

Corollary 2.18. EndB(X) ⊂ EndB(X) and A ⊂ A are pre-C∗-algebras.

Proof. If T ∈ EndB(X) is invertible in EndB(X), then the resolvent formula

δ(T−1) = −T−1δ(T )T−1

and similar formulae obtained by applying δm to this show that properties ii) resp.
iii) from Lemma 2.15 resp. Lemma 2.16 are satisfied. �

Moreover, we get “Sobolev estimates” using that X is a finitely generated B-
module.

Definition 2.19. Define a family of norms on EndB(X) as follows:

‖T‖′′s =
∑
i

∥∥∥(1 +D2)s/2Tui

∥∥∥
2
,

where {ui} is a right B-basis for X.

Proposition 2.20.

i) When endowed with the norms ‖·‖′′s , EndB(X) is a Fréchet separable nu-
clear space and A is its closed subspace;

ii) The algebraic isomorphism X ∼= Ane is topological.
iii) The maps (T, ξ) → aξ and the A-valued inner product on X are jointly

continuous as maps EndB(X)× X→ X and X× X→ A.

Proof. i) Let {Tn} be a sequence in EndB(X) such that (1 + D2)s/2Tnui
converge for all s and i. We thus obtain vectors

zi := limTnui ∈ X.

Define an operator T : X → X by

T (uibi) = limTnuibi = zibi.

This is well-defined since bi are continuous with respect to the Fréchet space topol-
ogy on X. Thus T is an element of EndB(X). Moreover, if Tn ∈ A, T ∈ A by
construction, and Lemma 2.16 shows that T ∈ A. Besides that, by construction
Tn → T in the topology defined by the norms ‖·‖′′s , and therefore EndB(X) and
A are complete in this topology. Thus EndB(X) is a Fréchet space in this topol-
ogy, and being a closed subspace of the finite direct sum of finitely many separable
nuclear spaces X, it is itself separable and nuclear.
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ii) The product A × A → A is jointly continuous because the norms ‖·‖k are
submultiplicative. Thus eAn is a closed subspace and hence complete. The mapping
(a, ξ)→ a ·ξ is continuous because a is regular, and thus the open mapping theorem
gives the result.

iii) follows from ii) applied to B and the joint continuity of the product map. �

Corollary 2.21. The topologies on A given by three families of seminorms {‖·‖k},
{‖·‖k , ‖·‖

′
k}, {‖·‖

′′
s} coincide.

Corollary 2.22. The C∗-algebra A is separable.

Proposition 2.23. Let a = a∗ be a selfadjoint element of Mn(A) and f : R → C
be a smooth function defined on a neighbourhood of the spectrum of a. Then f(a) ∈
Mn(A).

Proof. We first consider the case n = 1. Let us denote βu(T ) = eiusaTe−iusa.
Then

1

n!
δn(eisa)e−isa =

∑
kj>0,∑
kj=n

i`s`
∫
S`

βu1

(
δk1(a)

k1!

)
· · · · · βu`

(
δk`(a)

k`!

)
du,

where S` = {u ∈ R` | 0 6 u1 6 · · · 6 u` 6 1} is the standard `-simplex. Thus,∥∥δk(eisa)
∥∥ = O(|s|k), |s| → ∞.

Therefore, after extending f to a compactly supported function, we obtain

f(a) =
1

2π

∫
R
f̂(s)eisa ds,

and this integral converges in the ‖·‖k-topology on A. For the general case, we
consider the derivation δ ⊗ 1 on Mn(A) and repeat the argument. �

5. The bimodule of endomorphisms

In this section we consider algebras of A - and B-endomorphisms of X , mainly
concentrating on the “measurable level”.

The von Neumann algebras EndB(X ) ∼= B′ and EndA (X ) ∼= A come equipped
with natural finite traces which we denote τ ′ [Tak02, Ch. V]. They can be defined
as follows: representing T ∈ EndB(X ) as a matrix [Tij ], we set

τ ′(T ) :=
∑
i

τ(Tii),

analogously for S ∈ EndA (X ). A direct computation shows that this defines a
normal trace on EndB(X ), and one can show [AK11] that it is well defined on
EndB(X ) (i.e. independent of the choice of a matrix representation).

Proposition 2.24. There is a faithful conditional expectation E : EndB(X )→ A ,
which is of algebraically finite index. Moreover, this conditional expectation maps
EndB(X) to A, and EndB(X) to A.

Proof. We use the conditional expectation obtained from Lemma 1.21: for
T ∈ EndB(X ), we let

(2.3) E(T ) := F (I)−1/2F (T )F (I)−1/2,

where

(2.4) F (T ) :=

n∑
i=1

A 〈Tui, ui〉



5. THE BIMODULE OF ENDOMORPHISMS 39

and {ui} is a right B-basis of X . E is a faithful conditional expectation, because
τ(F (T )) = τ ′B(T ), and both traces are faithful.

Now, if we choose {ui} to be the right B-basis of X and T ∈ EndB(X), then
E(T ) ∈ A; analogously, if T ∈ EndB(X), then E(T ) ∈ A. This finishes the
proof. �

Proposition 2.25. The trace τ on the von Neumann algebras A and B, the trace
τ ′ on B′ and A ′, the conditional expectation E and the operator-valued weight F
and different operator-valued scalar products on X are related as follows:

i) τ ′ = τ ◦ F ,
ii) A 〈ξ, η〉 = F (B′〈ξ, η〉), ξ, η ∈X ,
iii) 〈ξ, η〉B = F (〈ξ, η〉A ′), ξ, η ∈X .

Proof. The claim follows because of the computations

τ ◦ F (T ) = τ

(
n∑
i=1

A 〈Tui, ui〉

)
= τ

(
n∑
i=1

〈Tui, ui〉B

)
= τ ′(T )

and

τ (A 〈ξ, η〉) = τ (〈ξ, η〉B) = τ ′ (B′〈ξ, η〉)
and the fact that the inner products of the form A 〈ξ, ξ〉 resp. B′〈ξ, ξ〉 span A resp.
B, and the traces τ and τ ′ are faithful. �

Proposition 2.26.

i) The algebras EndB(X) and EndA(X) are Hermitian A–A resp. B–B-
bimodules, which are finitely generated and projective for both left and
right module structures.

ii) The algebras EndB(X) and EndA(X) are Hilbert A–A resp. B–B-bimodules
of finite type.

iii) The algebras EndB(X ) and EndA (X ) are Hilbert A –A resp. B–B-
bimodules of finite type.

Proof. By Lemma 1.21, the conditional expectation E is of algebraically finite
index. Thus, the formulae

A〈T1, T2〉 := F (T1T
∗
2 ) = z1/2E(T1T

∗
2 )z1/2

and

〈T1, T2〉A := F (T ∗1 T2) = z1/2E(T ∗1 T2)z1/2

define the structures of a finitely generated left resp. right Hilbert A-module on
EndB(H) [MT05, Sect. 4.5]. The “smooth” and “measurable” variants are analo-
gous. �

Proposition 2.27. There exists an L > 1 such that the mapping

L · F − idEndB(X )

is completely positive on EndB(X ).

Proof. By [FK98], there is a K > 1 such that the mapping K ·E− idEndB(H)

is completely positive, or equivalently,

K · E ⊗ idMn(C)− idEndB(X)⊗ idMn(C) > 0.

Thus,

K · F ⊗ idMn(C) = K · zE ⊗ idMn(C) >
∥∥z−1

∥∥−1 · idEndB(X)⊗ idMn(C),

which proves the claim. �



40 2. DIFFERENTIAL GEOMETRY OF NONCOMMUTATIVE MANIFOLDS

Proposition 2.28. Suppose that the trace τ has a normal faithful continuation to
the von Neumann algebras A ′ and B′, and Z (A ) = Z (B). Then the faithful
conditional expectation E : EndB(H)→ A constructed above preserves τ and is of
algebraically finite index. Moreover, this conditional expectation maps EndB(X) to
A, and EndB(X) to A.

Proof. We first suppose that Z (A ) = Z (B) = C. Then A and B′ are finite
von Neumann factors, τ coincides with the unique trace on both of them, and F (I)
is a scalar. By the theorem of Kadison about diagonalization of matrices over von
Neumann algebras [MT05, Thm. 6.1.1], X ∼= pBn, where p = diag(p11, . . . , pnn)
is a projection in Mn(B). Now, every endomorphism T of X can be written as a
matrix (tij) ∈Mn(B), and therefore

τ ◦ E(T ) = F (I)−1
n∑
i=1

〈Tui, ui〉 = F (I)−1
n∑
i=1

τ(tii).

But B′ is a factor and therefore the trace τ ◦E has to coincide with the trace
τ , because it has the right normalization.

For the general case we set Z = Z (A ) = Z (B) and decompose everything
into direct integrals:

H ∼=
∫ ⊕
X

Hx dµ(x),

A ∼=
∫ ⊕
X

Ax dµ(x),

B ∼=
∫ ⊕
X

Bx dµ(x)

such that Z coincides with the diagonal operators and τ |Z corresponds to µ
[Tak02, Thm. 8.21, Theorem 8.23]. Almost every Ax and almost every Bx is
a factor, and τ decomposes as

τ =

∫ ⊕
X

τx dµ(x)

where τx is the unique normalized trace on A ′x or B′x.
Now, we take a left A-basis {vj} and a right B-basis {ui} in X and consider its

direct integral decompositions via the above isomorphism:

vj =

∫ ⊕
X

vj(x) dµ(x)

ui =

∫ ⊕
X

ui(x) dµ(x)

The operator-valued weight F has the property that for every z ∈ Z

F (zT ) = zF (T ).

Therefore the conditional expectation E decomposes as a direct integral of
conditional expectations

E =

∫ ⊕
X

Ex dµ(x),

where

Ex : B′x → Ax.

In view of the first part of the proposition, each Ex preserves the normalized
trace τx on B′x; thus, the conditional expectation E preserves τ . �
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Corollary 2.29. If the trace τ has a normal continuation to A ′ and B′, and
Z (A ) = Z (B), then

τ(T ) = τ ′(z−1T ), T ∈ B′,

τ(T ) = τ ′(w−1T ), T ∈ A ′.

In particular, the norms induced on B′ resp. A ′ by the scalar products 〈·, ·〉τ
and 〈·, ·〉τ ′ are equivalent.

Proof. Indeed,

τ ′(z−1T ) = τ(z−1F (T )) = τ(E(T )) = τ(T ),

analogously for w. �

In the sequel, we will consider only the case where the assumptions of Propo-
sition 2.28 are true, but our conclusions will also be true in general, if we consider
only the scalar product 〈·, ·〉τ ′ on the endomorphisms. On the other hand, the scalar
product 〈·, ·〉τ has been considered so far as the main and most natural scalar prod-
uct on EndB(X); thus we wanted to address the question of their comparison.

6. Differential forms

In the previous section we have established the fundamental property following
from the axioms for noncommutative manifolds; namely, the Fréchet ∗-algebra gen-
erated by A and [D,A] in B(H), coincides with the endomorphisms of the Hilbert
bimodule X = H∞. In the commutative case it reflects precisely the statement that
the endomorphisms of the spinors are given by the Clifford algebra.

Now, in the commutative case, differential forms can be built out of the Clifford
algebra. As they are important for differential geometry, it would be desirable to
have an analogous construction in the noncommutative case. This can be done with
some algebraic considerations [Con94, V.1]. The outcome is as follows:

Proposition 2.30 ([Con94, Prop. V.1.4, Formula V.1.3]).

i) The following equality defines a ∗-representation π of the reduced universal
algebra Ω∗(A) on H:

(2.5) π(a0da1 . . . dan) = a0[D, a1] . . . [D, an], aj ∈ A.

ii) Let J0 = kerπ ⊂ Ω∗(A) be the graded two-sided ideal of Ω∗(A) given by

J
(k)
0 = {ω ∈ Ωk(A) |π(ω) = 0}; then J := J0 + dJ0 is a graded differential

two-sided ideal of Ω∗(A). If we denote Ω∗D := Ω∗(A)/J , then

(2.6) ΩkD
∼= π(Ωk)/π(d(J0 ∩ Ωk−1),

and it is an isomorphism of differential graded algebras;
iii) If (A,H, D) = (C∞(M), L2(M,S), ∂M ), where M is a spinc manifold of

dimension d, L2(M,S) the L2-sections of the spinor bundle, ∂M the Dirac
operator, then there is a canonical isomorphism of Ω∗D with the (graded)
de Rham algebra of differential forms acting by Clifford multiplication on
spinors, and under this isomorphism

(2.7) Trω(η1η
∗
2 |D|−d) = c(d)−1

∫
M

η1 ∧ ∗η2,

where c(d) = 2d−bd/2cπd/2Γ
(
d
2 + 1

)
.
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Proof. The proof is taken from [Con94]. i) is a matter of direct computation.
To prove ii), take J = J0 + dJ0 and observe that dJ ⊂ J , because d2=0. Thus,
we only need to show that J is an ideal. For that, take a homogeneous element
ω ∈ J (k) and decompose it as

ω = ω1 + dω2, ω1 ∈ J0 ∩ Ωk, ω2 ∈ J0 ∩ Ωk−1

and let ω′ ∈ Ωk
′
. We compute

ωω′ = ω1ω
′ + (dω2)ω′ = ω1ω

′ + d(ω2ω
′)− (−1)k−1ω2dω

′ =

=
(
ω1ω

′ + (−1)kω2dω
′)+ d(ω2ω

′),

which establishes ii).
The proof of iii) is omitted. �

This proposition leads to the following construction. Each π(Ωk(A)) is a closed
sub-bimodule of the A-bimodule EndB(X). Thus, if we want to represent our
differential forms in the endomorphisms of X, the following definition is natural:

Definition 2.31. We denote by ΩkD the A-orthogonal complement of π(d(J0 ∩
Ωk−1) in π(Ωk):

ΩkD := π(Ωk) ∩ π(d(J0 ∩ Ωk−1))⊥

By construction, ΩkD is a closed A-sub-bimodule in EndB(X). We do not have
any direct argument showing that it is finitely generated and projective (as a left or
right A-module) in general, although this holds in all examples known to the author.
Moreover, as we will see below, its “von Neumann version” is finitely generated and
projective in full generality.

Definition 2.32. We denote by ΩkD the quasi-completion of ΩkD in EndB(X ).

Proposition 2.33. ΩkD is an A -A bimodule which is finitely generated and pro-
jective as a left A -module as well as a right A -module.

Proof. Denote by Ek the quasi-completions of π(Ωk(A)) in EndB(X ). As
EndB(X ) is a finitely generated and projective A -module, Ek also are finitely
generated and projective. Now, the orthogonal complement of an arbitrary sub-
module of finitely generated projective A -module is finitely generated projective
by [MT05, Lemma 3.6.1]. �

Definition 2.34. Let HΩ = L2(EndB(X)) be the completion of EndB(X) with
respect to the following inner product:

(2.8) 〈T1, T2〉k := τ(T ∗1 T2)

and let Hk be the closure of π(Ωk(A)) in HΩ.
Let Pk be the orthogonal projection of Hk onto the orthogonal complement of

the subspace π(d(J0 ∩ Ωk−1)). We denote Λk the Hilbert space PkHk. Λ0 ∼= H0

will be also denoted L2(A).

Let us make an easy but useful observation.

Proposition 2.35.

i) the left and right actions of A on Λk define commuting ∗-representations.
ii) Pk are A -bimodule maps: Pk(aξb) = aPk(ξ)b, a, b ∈ A .
iii) Suppose that π(Ωk(A)) is an A-A-bimodule of finite type. The property

Pk(Ωk(A)) ⊂ Ωk(A) is equivalent to ΩkD being an A-A-bimodule of finite
type.
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Proof. i) and ii) were shown in [Con94, Prop. V.1.5]: the left and the
right A-actions on ΩkD define ∗-representations and they descend to Λk because
π(d(J0 ∩ Ωk−1)) is a sub-bimodule of π(Ωk), which shows i) and ii). To show iii),
first observe that by ii) Pk is a projection which commutes with the A-action. Thus,
if Pk ∈ EndA(ΩkD), then its image splits off as an orthogonal direct summand. On
the other hand, if ΩkD is a bimodule of finite type, then it splits off as a direct
summand in Ωk(A), and the projection onto it has to coincide with Pk; thus,
Pk(Ωk(A)) ⊂ Ωk(A). �

We will encounter the assumption of part iii) of the preceding proposition
several times, and it is therefore natural to introduce a name for this property.

Definition 2.36. A subspace W ⊂ π(Ω∗(A)) is called regular, if the projection PW

on its L2-closure maps regular elements to regular elements, i.e. PW(π(Ω∗(A))) =
W.

7. Connections and curvature

In this section we define the notion of a (Clifford) connection on a Fréchet pre-
Hilbert module over A. There is a notion of an abstract connection on a module
over an algebra A using the notion of abstract differential forms over A, but in
differential geometry one usually encounters another type of connection, namely, a
connection viewed as an operator sending sections of a vector bundle to differential
forms with values in this vector bundle. Thus, having defined differential forms
in our context, we are naturally led to the notion of a “differential-geometric”
connection. The reference for this section is [Con94].

Definition 2.37. Let E be Fréchet right pre-Hilbert module over A. A connection
on E is a linear operator

∇ : E→ E⊗A Ω1
D(A)

which satisfies the Leibniz rule

∇(ξa) = ξ ⊗ [D, a] + (∇ξ)a, ξ ∈ E, a ∈ A.

Connections on E naturally form an affine space over HomA(E,E⊗A Ω1
D(A)).

We define for ω ∈ Ω1
D(A), ξ, η ∈ E

〈ξ ⊗ ω, η〉Ω1
D

:= ω∗ 〈ξ, η〉A ,

〈ξ, η ⊗ ω〉Ω1
D

:= 〈ξ, η〉A ω.

This defines a pairing between E and E⊗A Ω1
D(A) with values in Ω1

D(A).

Definition 2.38. A connection on E is said to be metric-compatible iff

〈∇ξ, η〉Ω1
D
− 〈ξ,∇η〉Ω1

D
= −d 〈ξ, η〉 .

Metric-compatible connections on E naturally form an affine space over HomA(E,E⊗A

Ω1
D(A))sa, where

HomA(E,E⊗AΩ1
D(A))sa =

{
T ∈ HomA(E,E⊗A Ω1

D(A)) | ∀ξ, η ∈ E 〈Tξ, η〉Ω1
D

= 〈ξ, Tη〉Ω1
D

}
.

Definition 2.39. Let E be Fréchet left pre-Hilbert module over A. A connection
on E is a linear operator

∇ : E→ Ω1
D(A)⊗A E

which satisfies the Leibniz rule

∇(aξ) = [D, a]⊗ ξ + a(∇ξ), ξ ∈ E, a ∈ A.
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We define for ω ∈ Ω1
D(A), ξ, η ∈ E

Ω1
D
〈ω ⊗ ξ, η〉 := ωA〈ξ, η〉,

Ω1
D
〈ξ, ω ⊗ η〉 := A〈ξ, η〉ω

∗.

This defines a pairing between E and Ω1
D(A)⊗A E with values in Ω1

D(A).

Definition 2.40. A connection on E is said to be metric-compatible iff

Ω1
D
〈∇ξ, η〉 − Ω1

D
〈ξ,∇η〉 = −d 〈ξ, η〉 .

Given a connection ∇ on a right module E, there is a unique continuation of
∇ to an operator

∇̃ : E⊗A Ω∗D → E⊗A Ω∗D

given on E⊗A ΩkD by

∇̃(ξ ⊗ ω) := (∇ξ)ω + (−1)kξ ⊗ dω.

Definition 2.41. The curvature of the (right) connection∇ is the operator ∇̃2 : E→
E⊗A Ω2

D. It is a right A-homomorphism: ∇̃2 ∈ HomA(E,E⊗A Ω2
D).

Definition 2.42. Let E be an A-A-bimodule with fixed isomorphism of A-A-
bimodules σ : Ω∗D ⊗A E → E ⊗A Ω∗D. A biconnection on E (with respect to σ)
is a right connection ∇ such that

i) σ ◦ ∇ is a left A-connection,

ii) ˜(σ ◦ ∇) = σ ◦ ∇̃ ◦ σ−1.

The curvature of a biconnection is a bimodule morphism:

∇2 ∈ AHomA(E,E⊗A Ω2
D).

The unitary group of the endomorphisms of E acts on connections as follows.
Let u ∈ U(EndA(E)). Then u naturally acts on Ω1

D ⊗A E as 1⊗u, and this induces
an action on connections

∇ 7→ u∇u∗.

The curvature F∇ = ∇̃2 transforms under this action as

Fu∇u∗ = uF∇u
∗.

Remark 2.43. Let E is an A-A-bimodule such that for all k ∈ N

ΩkD ⊗A E ∼= E⊗A ΩkD

and

ΩkD ⊗A E ∼= E⊗A ΩkD

as A-A-bimodules, where E is the conjugate bimodule, then we have following
identifications:

HomA(E,E⊗A ΩkD) ∼= E⊗A E⊗A ΩkD
∼= ΩkD ⊗A E⊗A E.

Thus, if E ⊗A E ∼= A, then HomA(E,E ⊗A ΩkD) ∼= ΩkD, the identifications being
given by the rule

ω 7→ (ξ 7→ ω ⊗ ξ).
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8. Complex structures

A complex structure on a manifold M yields a bigrading of the algebra of
differential forms on that manifold and a splitting of the differential d into two
differentials: d = ∂ + ∂. In this section we define this sort of additional structure
for noncommutative manifolds and discuss related notions.

Definition 2.44. A complex structure on the noncommutative manifold over the
pair (A,B) is the decomposition of the graded involutive differential algebra Ω∗D(A)
as an associate to a bigraded differential algebra:

ΩnD(A) =
⊕
p+q=n

Ω
(p,q)
D (A),

d = ∂ + ∂,

where
∂ : Ω

(p,q)
D (A)→ Ω

(p+1,q)
D (A)

and
∂ : Ω

(p,q)
D (A)→ Ω

(p,q+1)
D (A)

with
∂(a)∗ = ∂(a∗)

and ∗(Ω(p,q)
D (A)) = Ω

(q,p)
D (A)

Formally, this definition resembles only the case of an almost complex structure,
but to our knowledge at present no satisfactory description of the integrability
conditions in the noncommutative setting has been worked out; on the other hand,
in the examples we have at hand the additional structure defined above will come
from an honest complex structure.

The existence of a complex structure allows us to decompose connections and
define the Cauchy–Riemann operators accociated with them.

Definition 2.45. Let ∇ : E → Ω1
D ⊗A E be a connection. The Cauchy–Riemann

operator associated with ∇ is the operator

∂∇ := π(0,1) ◦ ∇,
where π(0,1) is the projection onto the (0, 1)-forms.

Definition 2.46. The connection ∇ : E → Ω1
D ⊗ E is said to be holomorphic (or

induce a holomorphic structure on E) if its the Cauchy–Riemann operator satisfies

∂
2

∇ = 0.

The following proposition is straightforward.

Proposition 2.47. A connection ∇ is holomorphic if and only if the (0, 2)-part of
its curvature, π(0,2) ◦ F∇, is equal to zero.

9. Laplacian on functions and differential forms

After we have defined the differential forms, it is natural to pose the question
whether the usual properties of the exterior derivative and its adjoint hold in our
situation. In this section we assume that all π(ΩkD) and ΩkD are regular, and hence
A-A-bimodules of finite type.

Consider the following sequence of spaces:

(2.9) Λ0
d0−→ Λ1

d1−→ · · · → Λk
dk−→ Λk+1

dk+1−−−→ . . . ,

where the differentials correspond to the restrictions of d to ΩkD. This is a chain
complex of Hilbert spaces with densely defined closable differentials.
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Let d∗k : D(d∗k) → Hk be the adjoints of dk; they are closed densely defined
operators. We consider the Laplacian

(2.10) ∆k := d∗k ◦ dk + dk−1 ◦ d∗k−1.

It is a selfadjoint unbounded operator on Hk.
Now we establish generalizations of some classical results about the Laplacian.

These will be obtained in some steps: first, one has to analyze the connection
between the Laplacian and the square of D, which will give the right properties of
∆.

Now we want to compare the square of the Dirac operator with the Laplacian
on L2(A). For this, we define the following operator:

∇e : H∞ ∼= Ane→ Ω1
D(A)ne ∼= Ω1

D(A)⊗A H∞,

(2.11) (a1, . . . , an) 7→ ([D, a1], . . . , [D, an]) e

It is obviously a closable operator, and therefore it has an adjoint ∇∗e. Observe that
∇e is a connection on X compatible with the metric. It is called the Grassmanian
connection associated to the isomorphism X ∼= Ane, whence the notation.

In order to compare D and ∆e := ∇∗e∇e we need to relate the connection and
the “Dirac operator” D. This is done in the following proposition.

Proposition 2.48. There is an odd1 A-endomorphism T of H∞ such that D =
D′ + T , where

D′ = m ◦ ∇e.
Hereby m denotes the Clifford multiplication

m : Ω1
D(A)⊗A X→ X,

a[D, b]⊗ ξ 7→ a[D, b]ξ.

Proof. Take an A-basis {ui} of H∞ and set T := D −m ◦ ∇e. For ξ = aiui

Tξ = Dξ −m ◦ ∇eξ = [D, ai]ui + aiDui − [D, ai]ui − aim ◦ ∇eui = aiTui,

from which the statement follows. �

Remark 2.49. If a connection is compatible with the metric (cf. Definition 2.40),
the corresponding “Dirac operator” D∇ := m ◦ ∇ is selfadjoint.

〈D∇ξ, η〉 = 〈m ◦ ∇ξ, η〉 =
〈
m(
∑

ωi ⊗ vi), η
〉

=

= τ(ωi EndB(H)〈vi, η〉) = τ(〈∇ξ, η〉) = τ(〈ξ,∇η〉) = 〈ξ,D∇η〉 .

This shows that the difference term T is selfadjoint as well.

Lemma 2.50. The operator D′ is selfadjoint and has compact resolvent.

Proof. This is clear from the equality

(D′ + λ)−1 = (D + T + λ)−1 = (1 + (D + λ)−1T )−1(D + λ)−1.

with λ big enough to ensure that 1 + (D+ λ)−1T is invertible, and the fact that it
is enough to establish that the resolvent is compact for one single value of λ ∈ C
by Theorem 1.36. �

Proposition 2.51. The operator ∆e := ∇∗e∇e is a selfadjoint perturbation of D′2

which is bounded in the sense of quadratic forms. In particular, it is selfadjoint and
has compact resolvent.

1in the even-dimensional situation
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Proof. If {ui} is an A-basis of H∞ and ξ =
∑
i aiui, then

D′ξ =
∑
i

[D, ai]ui

and

∇ξ =
∑
i

[D, ai]⊗ ui,

because for the Grassmann connection∑
i

ai∇eui = 0,

if (a1, . . . , an) = (a1, . . . , an)e. Then〈
D′2ξ, ξ

〉
=
∑
i,j

τ ◦ F (EndB(H)〈[D, ai]ui, [D, aj ]uj〉) =

=
∑
i,j

τ ◦ F ([D, ai]EndB(H)〈ui, uj〉[D, aj ]
∗)

〈∇eξ,∇eξ〉 =
∑
i,j

τ ◦ F ([D, ai]A〈ui, uj〉[D, aj ]
∗)

Now, we observe that A〈ui, uj〉 = E
(

EndB(H)〈ui, uj〉
)

. Thus, by Proposition 2.27

‖D′ξ‖2 − ‖∇eξ‖2 6
(

1− 1

L

)
‖D′ξ‖2 < α2 ‖D′ξ‖2

for some α < 1. Therefore the operator D′2−∇∗e∇e is a selfadjoint perturbation of
D′2 which is bounded in the sense of quadratic forms, and by Theorem 1.38, ∇∗e∇e
is a selfadjoint operator with compact resolvent. �

Proposition 2.52. Let E be a finitely generated projective Hermitian left A-module,
let ∇ : E→ Ω1

D⊗A E be a metric compatible connection on E. Suppose that there is
a connection ∇e on E such that ∇∗e∇e has compact resolvent as a densely defined
operator on L2(E). Then ∇∗∇ is also a densely defined operator with compact
resolvent.

Proof. The connection ∇ differs from the Grassmann connection by an ele-
ment T ∈ HomA(E,Ω1

D ⊗A E), which is bounded, and therefore we are done by
Lemma 1.40. �

Theorem 2.53. The Laplace operator on functions ∆ := d∗d is an unbounded
selfadjoint operator with compact resolvent.

Proof. As X is a full pre-Hilbert module over A, there exists a k ∈ N such that

A is a direct summand of
⊕k

i=1 X. Consider this inclusion ι and the commutative
diagram

A
ι−−−−→

⊕k
i=1 Xyd y∇

Ω1
D(A)

ι−−−−→
⊕k

i=1 Ω1
D(A)⊗A X

As the compression of an operator with compact resolvent is an operator with
compact resolvent by Lemma 1.41, the claim follows. �

Corollary 2.54. Let E be a finitely generated projective Hermitian A-module. Con-
sider any metric compatible connection ∇ : E → Ω1

D(A) ⊗A E. Then ∇∗∇ is a
selfadjoint operator with compact resolvent.
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Proof. In view of Lemma 1.40, it is sufficient to consider the Grassmann
connection. In this case the statement follows using Lemma 1.41. �

To prove the statement about the Laplacian on forms, we need to make some
preparatory observations and additional properties.

Lemma 2.55. The following formulas are valid for ω ∈ Dom d∗k:

d∗k−1(aω) = Pk−1([D, a]ω) + ad∗k−1ω,

d∗k−1(ω · a) = Pk−1(ω[D, a]) + (−1)k−1d∗k−1ω · a.

Proof. For an arbitrary η ∈ ΩkD(A) the following holds:〈
d∗k−1(aω), η

〉
= 〈aω, dk−1η〉 = τ(aω · (dk−1η)∗) = τ(ω · (a∗dk−1η)∗) =

= 〈ω, a∗dk−1η〉 = 〈ω, dk−1(a∗η)〉 − 〈ω, Pk([D, a∗]η)〉 =

= τ(ad∗k−1ω · η∗) + 〈Pk−1([D, a]ω), η〉 =
〈
ad∗k−1ω, η

〉
+ 〈Pk−1([D, a]ω), η〉 .

The proof of the second statement is analogous. �

Next we introduce the following definition.

Definition 2.56. We say that the differential calculus on a noncommutative man-
ifold is Clifford-like if the following conditions are satisfied for all k ∈ N: ΩkD are
A-A-bimodules of finite type,

π(Ωk(A)) ⊂ π(Ωk+2(A)),

and

Ωk+2
D = π(Ωk(A))⊥ ∩ π(Ωk+2(A)).

Theorem 2.57. Suppose that the k-forms ΩkD constitute a finitely generated pro-
jective left A-module, and the differential forms are Clifford-like. Then the operator

∆k := d∗k ◦ dk + dk−1 ◦ d∗k−1 : Λk → Λk

is selfadjoint and has compact resolvent.

Proof. Take a basis {ω1, . . . , ω`} for ΩkD and consider the Grassmann connec-
tion

∇ : ΩkD → Ω1
D ⊗A ΩkD

associated with this basis. For an arbitrary form

ω =
∑

aiωi

we obtain

∇ω =
∑

[D, ai]⊗A ωi

whereas

dω =
∑

[D, ai]ωi +
∑

aidωi

and

d∗ω = Pk−1

(∑
[D, ai]ωi

)
+
∑

aid
∗ωi

in view of Lemma 2.55.
Now we use the same technique as before: we perturb the operators d and d∗

such that it doesn’t affect the compactness of the resolvent of d⊕ d∗ and compare
this new operator with ∇∗∇. To be more specific, we consider the densely defined
operators

d′ : Λk → Λk+1,∑
aiωi 7→ Pk+1

(∑
[D, ai]ωi

)
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and

δ′ : Λk → Λk−1,∑
aiωi 7→ Pk−1 ([D, ai]ωi) .

These operators are well-defined because of the following: if ω =
∑
aiωi = 0, then

∇ω =
∑

[D, ai]⊗A ωi = 0.

It is easy to see that R := d − d′ ∈ HomA(ΩkD,Ω
k+1
D ) and S := d∗ − δ′ ∈

HomA(ΩkD,Ω
k−1
D ). Thus, by Theorem 1.38, (d⊕d∗)∗(d⊕d∗) has compact resolvent

iff (d′ ⊕ δ′)∗(d′ ⊕ δ′) does.
Now we make use of the formulae

‖∇ω‖2 =
∥∥∥∑[D, ai]⊗A ωi

∥∥∥2

=
∑
i,j

τ
(
[D, ai]A〈ωi, ωj〉[D, aj ]

∗)
and

‖(d′ ⊕ δ′)ω‖2 =
∥∥∥∑[D, ai]ωi

∥∥∥2

=
∑
i,j

τ
(

[D, ai]EndB(X)〈ωi, ωj〉[D, aj ]
∗
)
.

The second formula follows from the assumption that the differential forms are
Clifford-like. Indeed, in this case ω ∈ ΩkD implies that ω ⊥ π(Ωk−2j(A)) for j ∈ N∗
and for each a ∈ A it follows that [D, a]ω ⊥ π(Ωk−2j−1(A)) for j ∈ N∗.

The statement of the theorem follows with the same technique as before: we

have A〈ωi, ωj〉 = E
(

EndB(H)〈ωi, ωj〉
)

and thus

‖∇ω‖2 − ‖(d′ ⊕ δ′)ω‖2 6
(

1− 1

L

)
‖∇ω‖2 < α2 ‖∇ω‖2

for some α < 1. Therefore the operator ∇∗∇ − (d′ ⊕ δ′)∗(d′ ⊕ δ′) is a relatively
infinitely small selfadjoint perturbation of (d′⊕ δ′)∗(d′⊕ δ′), and by Theorem 1.38,
is a selfadjoint operator with compact resolvent. �

Corollary 2.58. The “de Rham cohomology” of A

Hkd = ker dk/ im dk−1

is isomorphic to the finite-dimensional space of harmonic forms:

Hkd = ker ∆k.

10. Sobolev topologies and elliptic regularity

10.1. Sobolev topologies. In the previous section we have observed that
certain naturally arising operators acting on the space X and finitely generated
projective modules over X differ by a “relatively bounded perturbation”. Bearing
in mind the analogy to the commutative case, where the Laplacians are used to
define Sobolev norms on A and vector bundles, one may ask what happens with
the Sobolev topologies in our general case.

First of all we define the Sobolev topology of order s ∈ N on X as the topology
given by the scalar product

〈ξ, η〉s :=
〈
(1 +D2)sξ, η

〉
.

We denote by Hs or Hs(X) the completion of X with respect to this topology
and call it the s-th Sobolev space of spinors. It is obviously equal to Dom |D|s.

We introduce the order of operators acting on X:



50 2. DIFFERENTIAL GEOMETRY OF NONCOMMUTATIVE MANIFOLDS

Definition 2.59. A linear operator T : X → X is said to be of order (at most)
α ∈ Z iff for each s it extends to a continuous operator

T : Hs → Hs−α.

We denote this by ord(T ) 6 α.

Obviously, an operator of finite order is continuous as an operator X→ X, and
ord(T ) ord(S) 6 ord(T ) + ord(S), the inequality having the obvious meaning.

Proposition 2.60. If a bounded operator T : X→ X is regular, i.e. T ∈
⋂
n Dom(δn),

then T is of order 0.

Proof. Obvious using the equality

|D|mTξ =

m∑
k=0

(
m

k

)
δk(T )|D|m−kξ, ξ ∈ Dom |D|m.

�

Lemma 2.61. If T is a selfadjoint operator of order 1 such that D2 +T is positive,
then the topology on X defined by the scalar product

〈ξ, η〉′s :=
〈
(1 +D2 + T )sξ, η

〉
coincides with the Sobolev topology of order s.

Proof. Let s = 2k, k ∈ N. Then

〈ξ, ξ〉′s =
∥∥(1 +D2 + T )kξ

∥∥2
6 C ‖ξ‖22k = C

〈
(1 +D2)sξ, ξ

〉
for some C > 0.

Let now s = 2k + 1, k ∈ N. Denote Q =
√

1 +D2 + T . Then

‖Qξ‖2 =
〈
(1 +D2 + T )ξ, ξ

〉
6 ‖ξ‖21 + ‖Tξ‖ ‖ξ‖ 6 (‖T‖1→0 + 1) ‖ξ‖21 ,

where ‖T‖1→0 is the norm of the operator T : H1 → H0. Thus, ‖Q‖1→0 <∞, and

〈ξ, ξ〉′s =
∥∥Q(1 +D2 + T )kξ

∥∥2
6 ‖Q‖21→0

∥∥(1 +D2 + T )kξ
∥∥2

1
6 C ‖Q‖21→0 ‖ξ‖

2
s .

On the other hand,

‖ξ‖21 =
〈
(1 +D2)ξ, ξ

〉
6 ‖Qξ‖2 + | 〈Tξ, ξ〉 | 6 ‖ξ‖′21 + ‖ξ‖1 ‖ξ‖

′
1 ,

and it follows that ‖ξ‖21 6 γ ‖ξ‖
′2
1 . For suppose the contrary and choose a sequence

ξn with ‖ξn‖21 →∞ and ‖ξn‖′21 = 1. Then

‖ξn‖1 6 1 +
1

‖ξn‖1
→ 1,

yielding a contradiction.
Let us now argue by induction. If s = 2k,

〈ξ, ξ〉2k =
∥∥(1 +D2)kξ

∥∥2
=
∥∥(1 +D2 + T − T )kξ

∥∥2
6 ‖ξ‖′22k + C ′ ‖ξ‖22k−1 .

and if s = 2k + 1,

〈ξ, ξ〉2k+1 =
〈
(1 +D2 + T − T )(1 +D2)kξ, (1 +D2)kξ

〉
6
∥∥(1 +D2 + T − T )kξ

∥∥2

1
+ ‖T‖21→0 ‖ξ‖

2
2k 6 ‖ξ‖

′2
2k+1 + γ2 ‖ξ‖22k 6 C

′′ ‖ξ‖′22k+1 .

for some C ′, C ′′ > 0. This finishes the proof. �
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We recall from Proposition 2.20 that our algebra A as well as the space EndB

is complete when endowed with the topology given by the family of seminorms

‖a‖s =

(∑
i

∥∥∥(1 +D2)s/2aui

∥∥∥
2

)
,

where {ui} is a right B-basis for X. Equivalently, it is complete when endowed with
the topology given by the family of scalar products

〈T, S〉s =
∑
i

〈
(1 +D2)sT ∗Sui, ui

〉
.

If R is a regular selfadjoint operator, then the topology given by 〈·, ·〉s coincides
with the topology given by the scalar product

〈T, S〉′s =
∑
i

〈
(1 + (D +R)2)sT ∗Sui, ui

〉
,

in view of Lemma 2.61.
Bearing in mind the result that the “connection Laplacian” ∇∗∇ on X is not

very far from D2, we would like to investigate the family of scalar products on A

given by

〈b, a〉∇,s =
∑
i

〈(1 +∇∗∇)sb∗aui〉 ,

where ∇ is a metric compatible connection on X.
To do this, we introduce the following definition.

Definition 2.62. We say that the connections on X are compatible with the order
calculus if for any metric compatible connection

∇ : X→ Ω1
D ⊗A X

the operator ∇∗∇ : X→ X is an order one perturbation of D2:

∇∗∇ = D2 + T,

where T is of order 1.

Remark 2.63. It is reasonable to expect this condition to hold in general for
noncommutative manifolds, and it indeed does hold in known examples; however,
we are not aware of any proof of such a statement in general.

Proposition 2.64. Suppose that connections on X are compatible with the order
calculus. Consider the family of norms on A defined by the scalar products

〈a, a〉s = 〈(1 + ∆)sa, a〉 .
Then A is complete with respect to the locally convex topology defined by all these
norms, and this topology on A coincides with the topology given by the s-th Sobolev
scalar product.

Proof. Consider the right B-basis {u1, . . . , un} ⊂ X involved in the definition
of the Sobolev topology and the invertible element z =

∑n
i=1 A〈ui, ui〉. Consider

the closed A-submodule Y ⊂ ⊕nk=1X defined as the closure of the image of the map

ϕ : A→ ⊕nk=1X,

1 7→ (z−1/2u1, . . . , z
−1/2un).

For a, b ∈ A
n∑
k=1

A

〈
z−1/2auk, z

−1/2buk

〉
= ab∗,

thus, the module Y is isomorphic to A via ϕ.
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Thus, the Laplace operator ∆ on A corresponds under this isomorphism to the
connection Laplacian ∇∗∇ on Y for some metric compatible connection ∇.

By assumption and in view of Lemma 2.61 the s-th Sobolev topology on Y is
given by the scalar product

〈ξ, ξ〉s = 〈(1 +∇∗∇)sξ, ξ〉 , ξ ∈ Y,

which after using the isomorphism ϕ corresponds to the scalar product

〈a, a〉s = 〈(1 + ∆)sa, a〉
on A. This proves the first claim.

Now, again using Lemma 2.61, we may define the s-th Sobolev topology on Y

using the scalar product

〈ξ, ξ〉s =

n∑
k=1

〈
(1 +D2)sz−1/2uk, z

−1/2uk

〉
=

n∑
k=1

∥∥∥z−1/2uk

∥∥∥2

s
.

As z is regular, the topology defined by this scalar product coincides with the s-th
Sobolev topology. �

Corollary 2.65. If connections on X are compatible with the order calculus, then
all elements in ker ∆ ⊂ L2(A) belong to A.

Corollary 2.66. Let E be a finitely generated projective Hermitian A-module. Con-
sider any metric compatible connection ∇ : E→ Ω1

D(A)⊗AE. Consider the topology
on E given by the scalar product

〈ξ, ξ〉s = 〈(1 +∇∗∇)sξ, ξ〉 .
Then this topology coincides with the topology inherited from A using the isomor-
phism E ∼= Anp for p = p∗ = p2 ∈Mn(A).

Proof. This follows from the fact E can be considered as a closed submodule
of a direct sum of several copies of X. �

Corollary 2.67. In the assumptions of the Theorem 2.57 and if the connections
on X are compatible with the order calculus, then the following holds true. Consider
the family of scalar products on ΩkD(A) defined by

〈ω, η〉s := 〈(1 + ∆k)sω, η〉 .
Then the topology induced by this scalar product coincides with the Sobolev topology
induced on ΩkD as on a finitely generated projective module. In particular, ΩkD(A) is
complete with respect to the locally convex topology defined by these scalar products.

Proof. Using the proof of Theorem 2.57, one observes that the Laplace oper-
ator ∆k is an order one perturbation of ∇∗∇ (with respect to the Sobolev topol-
ogy inherited from the structure of a finitely generated projective module). Now,
Lemma 2.61 gives the statement. �

Corollary 2.68. In the assumptions of the previous Corollary, all elements in
ker ∆k ⊂ Λk are regular, i.e. belong to ΩkD.

It is natural to call the topologies given by the above scalar products Sobolev
topologies on the corresponding spaces (finitely generated modules, differential
forms etc.). This explains the notion of reasonable Sobolev theory : all “reason-
able” definitions of Sobolev topologies coincide. Similarly to the definitions above,
we may then introduce Sobolev spaces, denoting by Hs(A) the Hilbert space com-
pletion of A with respect to the s-th Sobolev topology. Notice that these norms
induce the corresponding Sobolev topology on any finitely generated projective
module E over A and endomorphisms of any finitely generated projective module
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over A; we denote the corresponding completions by Hs(E) and Hs(EndA(E)). It
then makes sense to speak about orders of operators on these Sobolev spaces as we
did above for Hs(X), and Lemma 2.61 remains applicable in this context (with D2

replaced by ∆ or ∇∗∇).

10.2. Elliptic regularity. In the development of the Seiberg-Witten gauge
theory we will use elliptic regularity in its abstract form, given by the following
simple observation.

Let H, K be two Hilbert spaces andA : H→ K an unbounded closable operator,
let H1 = DomA. Consider the equation

Aψ = η

and observe that

〈(1 +A∗A)ψ,ψ〉 = ‖ψ‖+ ‖η‖ .
Consider some scalar product 〈·, ·〉′ on DomA equivalent to that naturally given
by the above scalar product 〈(1 +A∗A)ψ, η〉 making it to a Hilbert space H1. It
follows that we can estimate the norm of ψ in H1 in terms of the norms of ψ and
Aψ on H:

‖ψ‖′ 6 C(‖Aψ‖+ ‖ψ‖).
Using Lemma 2.61, we will use this principle in following cases:

i) H = Hs(X), the s-th Sobolev space of spinors, A = D + T , where T is a
perturbation of order (at most) 1; H1 = Hs+1(X),

ii) H = Hs(ΩkD), the Sobolev space of k-forms, K = Hs(Ωk+1
D )⊕Hs(Ωk−1

D ),
A = d+ d∗ + T , where T is a perturbation of order (at most) 1,

concluding that the solution of the equation Aψ = η lies in the (s+ 1)-th Sobolev
space provided that η lies in Hs.

11. Poincaré duality and cyclic homology

In this section we discuss some maps which naturally arise in our context and
connect the cohomology of the differential algebra Ω∗D(A) with the periodic cyclic
cohomology of B (hereby B is considered as a Z/2-graded algebra and we use the
periodic cyclic cohomology for Z/2-graded algebras as in [Kas86]). The construc-
tions of the relevant maps is due to A. Connes [Con94, VI.4.γ]; however, nothing
more was known about these maps. We investigate this question more thoroughly.
Unfortunately, several technical conditions come into play here and the result we
obtain, although reflecting the situation in known examples, is not completely sat-
isfactory.

In this section we will assume that our noncommutative manifold satisfies the
following closedness condition:

Definition 2.69. The noncommutative manifold is said to satisfy the closendess
condition if for any x0, . . . , xd ∈ A⊗B

Trω(γ[D,x0] . . . [D,xd]|D|−d) = 0.

Proposition 2.70. The closedness condition is equivalent to the following:

BΦ = 0 as a cochain,

where Φ is the Hochschild cocycle on A⊗̂B given by

Φ(x0, . . . , xd) = τ(γx0[D,x1] . . . [D,xd]).

Proof. This is a matter of direct computation. �
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We recapitulate some lemmas from [Con95, VI.4] which give an interesting
construction allowing to compare the space of “harmonic forms” with the periodic
cyclic homology.

Lemma 2.71 ([Con94, Lemma VI.4.3]).

i) For every k 6 d and α ∈ Ωk(A), a Hochschild cocycle Cα ∈ Zd−k(B,B∗)
is defined by

Cα(b0, . . . , bd−k) = τ(γπ(α)b0[D, b1] . . . [D, bd−k]).

ii) If the closedness condition is satisfied, then Cα depends only on the class
of α in ΩkD(A), and we have

B0Cα = (−1)kCdα,

where B0ϕ(ω) = ϕ(dω).

Proof. i) follows by direct computation:

bCα(b0, . . . , bd−k+1) = τ(γπ(α)b0[D, b1] . . . [D, bd−k]bd−k+1)−

− τ(γπ(α)bd−k+1b0[D, b1] . . . [D, bd−k]) = 0.

For ii), we consider the differential graded algebra Ω∗D(A⊗B). We observe that
for α ∈ ΩdD(A ⊗ B), the value of τ(γπ(α0)) doesn’t depend on the choice of the
representative α0 of α and we denote this value by

∫
α.
∫

is a closed graded trace
on Ω∗D(A ⊗ B). Using the natural homomorphism Ω∗D(A) → Ω∗D(A ⊗ B), we see
that Cα depends only on the class of α. By construction, the Hochschild cocycle
Cα vanishes if one of bj is equal to 1. Thus,

(B0Cα)(b0, . . . , bd−k−1) =

∫
αdb0 . . . dbd−k−1 =

= (−1)k
∫

(dα)b0db1 . . . dbd−k−1 = (−1)kCdα(b0, . . . , bd−k−1).

�

Proposition 2.72 ([Con94, Prop. VI.4.4]).

i) For 0 6 k 6 d, the mapping α → Cα is well-defined from ΩkD(A) to the
Hochschild cocycles Zd−k(B,B∗).

ii) The image under C of ker d ⊂ ΩkD(A) is contained in Zd−kλ (B), i.e., if
dα = 0, then Cα is a cyclic cocycle.

iii) The image under C of im d ⊂ ΩkD(A) is contained in imB, where B : HHd−k+1 →
HCd−k(B) is the cyclic cohomology operation.

iv) C defines a map H∗(Ω∗D)→ HP∗(B).

Proof. The first assertion follows from the lemma. The second assertion
follows from the lemma and the fact that a Hochschild cocycle C is cyclic iff
B0C = 0. The third assertion can be proved as follows: first, if α = dβ, then
dα = 0, and thus Cα is a cyclic cocycle. Then Cα = (−1)k−1B0Cβ and, since Cα
is cyclic, ACα = (d − k + 1)Cα, where A is the cyclic antisymmetrization; thus,

Cα = (−1)k−1

d−k+1 BCβ belongs to the range of B. iv) follows from ii) and iii). �

In view of the results in the previous section, the spaces Hkd(Ω∗D) are finite-
dimensional, because they coincide with the kernels of the corresponding Laplace
operator ∆k on forms. It is a well-known result in differential geometry that in
the case of a manifold these spaces are independent of the choice of the metric and
coincide with the cohomology of the manifold (with complex coefficients).
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Now, we analyze the mapping we have around. We observe that the mapping
C defined above is well-defined on the level of Ωk(A) and descends to ΩkD(A).
Therefore one source of degeneration is the kernel of C on the level of ΩkD(A). We
observe the following easy

Lemma 2.73. Let ω ∈ Ωk(A) be in the image of the operator b: ω = bη. Then
Cω = 0.

Proof. Obvious by order one condition and vanishing of the trace on commu-
tators. �

Thus, we see that in the noncommutative case there is a major possibility for
C to have a kernel which wasn’t there in the commutative case, as there π(bη) =
0 for any η ∈ Ω∗(A). We will see later that this indeed happens in examples.
Nevertheless, often it is the only condition which characterizes the kernel of the
mapping C. To understand the situation better, let us introduce the following
subspace:

Definition 2.74. We let Ck be the subspace of ΩkD generated by commutators with
a ∈ A:

Ck := span{[ω, a] |ω ∈ ΩkD, a ∈ A}.

Obviously, Ck = π(b(Ωk+1(A))).

Definition 2.75. We say that the algebra Ω∗D(A) is graded-commutative modulo
im b, if the graded commutator of every two differential forms belongs to C:

[ω, η]gr := ωη − (−1)degω·deg ηηω ∈ Cdeg η+degω.

Graded-commutativity modulo im b implies the following interesting property.

Proposition 2.76. Suppose that the algebra Ω∗D(A) is graded-commutative modulo
im b and the subspace C is regular. Then the decomposition

Ω∗D = C(k) ⊕ C(k)⊥

is d-invariant.

Proof. This follows from the formulas

d[ω, a] = d[ω, a]gr = [dω, a] + [ω, da]gr.

and

d∗[ω, a] = d∗[ω, a]gr = [d∗ω, a] + Pk−1([ω, [D, a]]gr),

the latter being a consequence of Lemma 2.55. �

Theorem 2.77. Suppose the following:

i) the class of the cocycle [Φ] ∈ HP∗(A⊗̂B), ∗ = d mod 2, gives the funda-
mental class in periodic cyclic cohomology,

ii) the algebra Ω∗D(A) is graded-commutative modulo im b,
iii) C is a regular subspace of π(Ω∗D),
iv) ΩkD(A ⊗ B) is Clifford-like and for k < d, α ∈ Ωk(A ⊗ B), one has

Trω(γπ(α)|D|−d) = 0,
v) the Hochschild dimension of A is at most d.

Then the mapping C : H∗d(A)→ HP∗(B) is surjective.

Proof. By assumption, every element in HP∗(B) is obtained from an ele-
ment in HC∗(A) via the product with [Φ]. From the condition on the Hochschild
dimension we know that we can represent every element in HP∗(A) through its
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representative in HCd(A) or HCd+1(A), depending on the parity of d and ∗, i.e. as
a sum of forms. If ∗ = 0 and d is even, this sum is written as

ω = ω0 ⊕ ω2 ⊕ · · · ⊕ ωd.
As ω represents a class in HCd(A), (b+B)ω = 0, or, equivalently, Bωj = bωj+2 for

j = 0, 2, . . . . Writing B =
∑j
i=0 dκ

i on Ωj(A), we conclude that the classes of the
forms

ω′j =
1

j

j∑
i=0

κiωj

in ΩjD(A) satisfy dω′j ∈ C(j+1).

Consider the decomposition ΩjD(A) = C(j) ⊕ C(j)⊥. It is d-invariant by the
previous proposition, and thus we may conclude that the projections ηj of ω′j onto

(C)(j)⊥ satisfy dηj = 0.
By construction and Lemma 2.73, Cη coincides with the cocycle with compo-

nents
θd−j(b0, . . . , bd−j) = Trω(π(ωj)b0[D, b1] . . . [D, bd−j ]).

We have to compare this with Θ := [ω]∩ [Φ]. The components of the cocycle Θ are
given by the shuffle product and cyclic shuffle product:

Θd−j(b0, . . . , bd−j) = Φ(sh(ωj , b0db1 . . . dbd−j) + sh′(ωj−2, b0db1 . . . dbd−j)).

Now, by the closedness condition, Φ vanishes on any cyclic shuffle product, so the
term with sh′ vanishes. The remaining term is equal to

Φ(sh(ωj , b0db1 . . . dbd−j)).

By definition of the shuffle product, the factors of ωj and b0db1 . . . dbd−j appear in
the same order as they did in ωj and b0db1 . . . dbd−j . Thus all we have to do is to
permute da’s and db’s in all the terms in a way to get the first term, which is equal
to

Trω(π(ωj)b0[D, b1] . . . [D, bd−j ]) = Trω(π(ω′j)b0[D, b1] . . . [D, bd−j ]) =

= Trω(π(ηj)b0[D, b1] . . . [D, bd−j ]).

Observe that as a commutes with [D, b] and b commutes with [D, a], we only get
interesting terms when we permute [D, a] with [D, b]. Consider now the differential
forms over A⊗B and observe that

[D, a⊗ b] = a[D, b] + b[D, a]

by the order one condition. Thus, the class of [D, a][D, b]+[D, b][D, a] in Ω2
D(A⊗B)

vanishes, and we get that

[D, a][D, b] + [D, b][D, a] = f ∈ A⊗B.

Therefore, all additional terms we get from commutators vanish after taking Trω
by the condition iv). This finishes the proof. �

Unfortunately, in the preceding theorem there are many technical conditions
we couldn’t get rid of yet. However, we expect the condition on the Hochschild
dimension and vanishing of the trace to follow in general from the axioms.

We also observe the following simple fact connecting the property of Φ to be
the fundamental class and the orientability condition.

Proposition 2.78. Suppose that the class [Φ] ∈ HP∗(A⊗Bop) of the cocycle Φ is
the fundamental class in periodic cyclic cohomology and the orientability condition
is satisfied. Then the Hochschild cycle c from the orientability condition is the dual
of the trace τ on B.
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Proof. By assumption, the Hochschild cycle c is antisymmetric, i.e. λc = c;
thus, it gives a nontrivial element in HCd(A) ∼= HPd(A). As π(c) = γ,

Trω(γπ(c)b|D|−d) = Trω(b|D|−d), b ∈ B,

which proves the assertion. �

It is natural to ask, whether the converse is true: does the condition “Φ gives the
fundamental class in HP” imply the orientability condition? This seems plausible,
because one can look at the dual of the trace τ on B, obtaining some class in
HP∗(A), whose representative in HCd(A) is a natural candidate for the cycle c.
However, at present we don’t have any argument which would show this.

12. Twisting by bimodules

On a Riemannian spinc manifold M there are in general many spinc struc-
tures. The difference between two different spinc structures consists in twisting by
a U(1)-bundle. In the present section we describe an analogous construction for
noncommutative geometries.

Definition 2.79. Let E be a Hermitian A-A-bimodule of finite type. Consider
its von Neumann completion E . It is an A -A -bimodule of finite type over a von
Neumann algebra, and therefore has dimensions [Lüc02, Ch. 6]: d` – as a left
A -module and dr – as a right A -module. We say that E is of dimension d if
dr = d` = d.

Definition 2.80. Let E be an A-A-bimodule of finite type of dimension 1 which
as full as a left A-module and as a right A-module and such that for any η1, η2 ∈ E

τ(A〈η1, η2〉) = τ(〈η2, η1〉A).

Then we call E a twisting bimodule.

Theorem 2.81. Let (A,A,H, D) be a noncommutative geometry over (A,A) such
that for all a ∈ A

Trω(λ(a)|D|−d) = Trω(ρ(a)|D|−d),
where λ, ρ are left and right actions of A on X, respectively, and let E be a twisting
bimodule. Choose a metric compatible connection ∇ : E → E ⊗A Ω1

D(A). Define a
new noncommutative geometry as follows:

• H′ is the L2-completion of E⊗A X,
• the left action of A is induced by its left action on E,
• the right action of A is induced by its right action on X,
• the operator D′ = D∇ is given by D∇(η ⊗ ξ) := (∇η)ξ + η ⊗Dξ,
• if d is even, the operator γ′ is defined to be 1⊗ γ.

Then (A,A,H′, D′) is a noncommutative geometry over (A,A) of the same dimen-
sion as (A,A,H, D).

Proof. We have to check the conditions of Definition 2.3. In view of Theorem
1.38 and estimates therein, D′ has compact resolvent and satisfies condition i).
Conditions ii)–iv) can be checked by direct computations.

The compatibility of the scalar product with the inner products (condition vii))
is less trivial. To establish it, we have to analyze the situation more thoroughly.
First of all, we observe that the scalar product on H′ is compatible with both
A-valued inner products via the original trace τ :

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = τ(λ(
A
〈ξ1A〈η1, η2〉, ξ2〉)) =

= τ(ρ(〈ξ2, ξ1A〈η1, η2〉〉A)) = τ(ρ(A〈η1, η2〉 〈ξ2, ξ1〉A)),



58 2. DIFFERENTIAL GEOMETRY OF NONCOMMUTATIVE MANIFOLDS

and

τ(ρ(〈ξ1 ⊗ η1, ξ2 ⊗ η2〉A)) = τ(ρ(〈η1, 〈ξ1, ξ2〉A η2〉A))

= τ(λ(
A
〈〈ξ1, ξ2〉A η2, η1〉)) = τ(λ(A〈η2, η1〉 〈ξ1, ξ2〉A)).

Thus, the only thing we have to prove is that the original trace τ coincides with
the trace

a 7→ Trω(ρ(a)|D′|−d),
where we are denoting the right action of a on H′ (coming from the right action on
X) by ρ.

To prove this, we want to show that as a right A-representation, H′ is isomor-
phic to H via the isomorphism

ϕ : ξ 7→
∑
i

vi ⊗ ξ,

where {vi} is a right A-basis of E. For this, consider the isomorphism E ∼= pAn as
right Hermitian A-modules, where p = p∗ = p2 is a projection in Mn(A). Then it
follows that H′ ∼= pHn as right A-representations, and the above mapping maps
ξ ∈ H to p(ξ, . . . , ξ)t ∈ pHn.

Now we pass to the level of the von Neumann algebras. By the theorem of
Kadison, there is a unitary u ∈ Mn(A ) such that u∗pu = q is a diagonal matrix.
Therefore, H′ ∼= qHn as left A-representations. Now, the diagonal entries qii of q
are projections elements in A , and∑

i

τ(qii) = 1

because the dimension of E is 1. But as the action of A on E is faithful, qii must
be orthogonal projections with ∑

i

qii = 1

which proves the isomorphism H′ ∼= H of right A-representations.
Using the isomorphism ϕ, we may compare the operators D and ϕ−1D′ϕ. To

do this, we make the following computation:

ϕ−1D′ϕ(ξ) = ϕ−1

(∑
i

D′(vi ⊗ ξ)

)
=
∑
i

ϕ−1(∇viξ + vi ⊗Dξ)

= Dξ +
∑
i,j

pij [D, pji]ξ = Dξ + Tξ,

where T is a bounded regular operator. Thus, Lemma 1.54 tells us that the traces
given by

a 7→ Trω(ρ(a)|D|−d)
and

a 7→ Trω(ρ(a)|D′|−d)
coincide. Thus, the trace-compatibility property (condition vii)) is satisfied.

We also have to argue why the mapping

t 7→ eit|D
′|Se−it|D

′|

is of class C∞, S being the operator given by the left or right action of A on E⊗A

X. This follows from the following equivalent characterization of it, cf. [Con08],
[CM95]: it is enough to prove that S ∈ DomLmRn, where

L(S) = |D + T |−1[(D + T )2, S], R(S) = [(D + T )2, S]|D + T |−1.
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Now, the fact that T is regular yields S ∈ DomLmRn and
⋂
n Dom |D + T |n =⋂

n Dom |D|n. Thus, conditions v) and vi) are also satisfied.
Let us now show that the twisted noncommutative geometry also defines a

fundamental class in KK(A ⊗ Aop,C). This follows because its KK-class can be
written as the Kasparov product of the original fundamental class Θ ∈ KK(A ⊗
Aop,C) with the class [E] ⊗ 1 ∈ KK(A ⊗ Aop, A ⊗ Aop), where [E] ∈ KK(A,A) is
the class of the A-A-bimodule E. Thus, condition viii) is satisfied. This finishes
the proof. �

Observe that the new operator D′ depends on the choice of a metric compatible
connection on E, which we emphasize by writing D′ = D∇. This freedom will be
crucial for the further investigation of Seiberg–Witten equations in our situation.

Of course, this construction resembles the classical construction for spinc struc-
tures on manifolds obtained by twisting a spin or spinc structure with a line bun-
dle. The difference between spin and spinc structure is rephrased in the language
of noncommutative geometry via the conjugation operator J which we already en-
countered in the discussion of the axioms for noncommutative geometries, which
implies, for instance, X ∼= X for the A-A-bimodule X and its conjugate bimodule
X.

Another possible description of spin structures identifies them with spinc struc-
tures having trivial determinant bundle. Therefore we now turn our attention to-
wards the possible ways to describe the “determinant bundle” of a given spinc

structure.
Let us first analyze the “spin” case, where X ∼= X as an A-A-bimodule, the

isomorphism being given by the mapping

X→ X,

ξ 7→ Jξ.

We consider the algebra B := EndA(X). Using the isomorphism X ∼= X, we obtain
that

B ∼= EndA(X) ∼= AEnd(X)op,

where the last isomorphism (reading it from the right to the left) is given by the
formula

T 7→ (ξ 7→ T ∗ξ).

Thus, we may consider the A-A-bimodule

T := X⊗B X ∼= X⊗EndA(X) X,

where b ∈ EndA(X) acts from the right on X as

ξ · b := b∗ξ.

Now, T is isomorphic to the trivial A-A-bimodule A via the map

(ξ, η) 7→ 〈ξ, η〉A .

We also observe in this case that the algebra B, considered as an A-A-bimodule, is
naturally isomorphic to the bimodule

X⊗A X ∼= X⊗A X ∼= X⊗A X.

Let us now turn to the general case. Given a biconnection ∇ on X, we would
like to define a biconnection on T by setting

∇(ξ ⊗ ξ′) = ∇ξ ⊗ ξ′ + ξ ⊗∇ξ′.

We can do it under the following assumption.
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Definition 2.82. Let X be an A-A-bimodule and ∇ be a biconnection on X. We
say that ∇ is compatible with the endomorphisms, if the following conditions are
satisfied:

i) the algebra B = EndA(X) is isomorphic to the algebra B′ = AEnd(X)
op

via a fixed isomorphism θ : B→ B′;
ii) if one views B and B′ as A-A-bimodules B ∼= X⊗A X, B′ ∼= X⊗A X, then

the induced biconnections coincide using the isomorphism θ.

Given an endomorphism-compatible biconnection ∇ on X, we naturally obtain
a biconnection on B, viewed as an A-A-bimodule, such that

∇(Tξ) = ∇T · ξ + T∇ξ, T ∈ B, ξ ∈ X

and
∇(η · T ) = ∇η · T + η · ∇T, T ∈ B, ξ ∈ X.

Now, the compatibility of the biconnection with endomorphisms implies that
we can still define the A-A-bimodule

T := X⊗B X,

as well as the biconnection ∇ on it by setting

∇(ξ ⊗ ξ′) = ∇ξ ⊗ ξ′ + ξ ⊗∇ξ′.
We observe that if our noncommutative geometry is obtained by twisting a

“spin” noncommutative geometry by a bimodule E such that X ⊗A E ∼= E ⊗A X,
then we obtain

T ∼= E⊗A X⊗B X⊗A E ∼= E⊗A E,

which reflects exactly the fact that the determinant line bundle of a spin structure
twisted with a line bundle is the square of this line bundle. Thus, in the commu-
tative case our construction gives the well-known description of the determinant
line bundle. To see that our construction gives precisely the induced connection
on the determinant line bundle, one has to construct the isomorphism θ using of
the canonical antiautomorphism α of the Clifford algebra induced by the order and
sign reversal, cf. [GBVF01, Sect. 9.2, Sect. 9.3].



CHAPTER 3

Examples of noncommutative geometries

In this chapter we discuss the known examples of noncommutative manifolds
with respect to the results and conditions appeared in the last chapter. Using the
more general approach to the conditions for noncommutative manifolds based on
Poincaré duality, we can slightly expand the amount of known examples, encom-
passing toric deformations of arbitrary (not just spin) manifolds.

1. Oriented Riemannian manifolds

Let M be a compact oriented Riemannian manifold. Denote by A the algebra
C∞(M) of complex-valued smooth functions on M . Let B0 := Γ∞(CliffC(T ∗M))
be the algebra of sections of the bundle of complex Clifford algebras associated with
the cotangent bundle of M , considered as a Fréchet ∗-algebra. It is well-known that
the isomorphism class of the complex Clifford algebra Cd of a d-dimensional vector
space is determined as follows:

Cd ∼=

{
M2d/2(C), d even,

M2bd/2c(C)⊕M2bd/2c(C), d odd,

and the decomposition in the odd case corresponds to the decomposition of the
Clifford algebra in the even and odd parts. We let B := B0 if d is even, and we let
B be the algebra of sections of the even part of the complex Clifford algebra bundle
if d is odd.

We let X be the underlying Fréchet space of B endowed with a left action of
A coming from the inclusion A ⊂ B and a natural right action of B. Then by the
Serre-Swan Theorem, X is an A-B-bimodule of finite type. We endow X with the
Hermitian structures given by

A〈ξ, η〉(x) = Tr(ξ(x)η∗(x)), x ∈M,

where Tr is the natural trace on matrices, and

〈ξ, η〉B := ξ∗η.

If d is even, we let γ be the grading operator on X, having the even part of
the Clifford algebra bundle as the +1-eigenspace and the odd part of the Clifford
algebra bundle as the (−1)-eigenspace.

The algebras A and B are endowed with the naturally arising trace given on A

by

τ(a) :=

∫
M

a vol,

and on b by

τ(b) :=

∫
M

Tr(b) vol,

where vol is the volume form associated with the given Riemannian metric, and Tr
is the natural trace on matrices, and we let H be the completion of X with respect
to the scalar product

〈ξ, η〉 := τ(A〈ξ, η〉) = τ(〈ξ, η〉B).

61
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The Levi-Civita connection on M lifts naturally to a connection

∇ : X→ Ω1(M)⊗A X,

where Ω1(M) is the A-A-bimodule of differential 1-forms on M . Notice that there
is a natural identification of Ω1(M) with a subspace of B. Using this identification,
we obtain a Clifford multiplication map

m : Ω1(M)⊗A X→ X.

Hereby B acts on X from the left by multiplication.
We define the Clifford-Dirac operator as

D := m ◦ ∇ : X→ X.

It is an unbounded selfadjoint operator on H, which has compact resolvent and
whose eigenvalues have the asymptotics |λk| = O(k1/d).

Moreover, the spectral triple (A ⊗ B,H, D) determines the fundamental class
in KK(A⊗B), where A and B are the C∗-completions of A and B [Con94, VI.4.β].

Therefore, this noncommutative geometry canonically associated with an ori-
ented Riemannian manifold is subject to all conditions of Definition 2.3.

Let us discuss other conditions of the previous chapter for this example. For
instance, the bimodules ΩkD are identified with the bimodules of differential forms
[Con94, VI.1]. Therefore the condition for these modules to be finitely generated
and projective is satisfied. The theorem about the Laplace operator and connection
Laplacians having compact resolvent is in this situation well-known from classical
differential geometry.

If the manifold M is spin or spinc, one can as well consider the “noncommuta-
tive” geometries over A given by the spin or spinc Dirac operators.

In this case X will be the A-A-bimodule of the sections of the corresponding
spinor bundle equipped with the canonical Hermitian structure. In the spin case it
will be additionally equipped with the involution J coming from the real structure
of the spinor representation. In the even case the grading operator γ will be given
by the action of the volume form on spinors.

In the spin case the Levi-Civita connection lifts canonically to the spinor bundle,
allowing to define the Dirac operator as the composition of the connection operator
and the Clifford multiplication. In the spinc case the lift is not quite canonical;
namely, one has to choose a connection on the determinant line bundle of the spinc

structure, defined in exactly the same manner as we did before: if X is a spinor
bundle, we define

T := X⊗EndA(X) X,

where the right action of EndA(X) on X is defined using the canonical antiau-
tomorphism α of the Clifford algebra induced by the order and sign reversal, cf.
[GBVF01, Sect. 9.2, Sect. 9.3].

It is easy to see that the A-module T is of finite type, and thus corresponds
to a vector bundle, and one can easily check that it is of dimension 1. Thus,
it corresponds to a line bundle, which is called the determinant line bundle of the
given spinc structure. Using an arbitrary connection on the determinant line bundle
and the Levi-Civita connection, one can define a Clifford connection on the spinor
bundle and define the Dirac operator [GBVF01, Sect. 9].

It is interesting to observe that in this case the condition of Poincaré duality
in cyclic cohomology is satisfied: the cocycle Φ is given by

Φ(a0 ⊗ b0, . . . , ad ⊗ bd) =

∫
M

a0b0d(a1b1) ∧ d(adbd)

and thus does coincide with the fundamental class in HP(A⊗A,C) [BMRS08].
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2. Stabilizations

The “commutative case” of the previous section admits a straightforward gen-
eralization by “tensoring everything with matrices”. This is achieved as follows: let
for simplicity M be an odd-dimensional spin manifold; take the noncommutative
geometry (A,A,H, D) as in the previous section and consider the noncommutative
geometry

(A⊗Mn(C),A⊗Mn(C),H ⊗Mn(C), D ⊗ 1),

where Mn(C) acts on itself by left resp. right multiplication and is equipped with
the Hilbert-Schmidt scalar product. Then it is easy to see that we haven’t changed
anything in the asymptotic and commuting behaviour of D, and therefore we have
still obtained a noncommutative manifold in our sense. The interesting thing about
this simple example is the following: it shows that the natural map defined in
Proposition 2.72 may fail to be injective. Indeed, the periodic cyclic cohomology
is insensitive to tensoring with matrices, whereas the Laplace operator ∆k in this
example is easily seen to be equal to

∆k ⊗ 1: Ωk(M)⊗Mn(C)→ Ωk(M)⊗Mn(C),

and therefore dim ker(∆k ⊗ 1) = n2 dim ker ∆k.
This shows that in general we may only hope that this map is surjective, which

explains our interest in proving Theorem 2.77.

3. Toric deformations

We recapitulate the basic facts about toric deformations of manifolds, following
[CDV02, Sect. 12], and propose a slight generalization of these deformations to
encompass not only the spin case, but also the spinc and the general case, where
the Poincaré dual is given by the sections of the deformed Clifford bundle.

3.1. The general setup. The locally convex ∗-algebra C∞(Tnθ ) of smooth
functions on the noncommutative torus Tnθ was defined in [Con80]. It is a comple-
tion of the algebra Pol(Tnθ ) of “polynomials” on the noncommutative torus, which is
by definition the unital ∗-algebra generated by n unitaries U1, . . . , Un with relations

(3.1) UµUν = λµνUνUµ,

where λµν = eiθ
µν

for some antisymmetric matrix θ ∈Mn(R).
We denote by s→ τs the natural action of Tn on this algebra, defined by

τs(U
µ) = e2πisµUµ, µ = 1, . . . , n.

To obtain “smooth functions” on the noncommutative torus, we endow Pol(Tnθ )
with the locally convex topology generated by the seminorms

|u|r = sup
r1+···+rn≤r

‖ Xr1
1 . . . Xrn

n (u) ‖

where ‖ · ‖ is the C∗-norm (which is the sup of the C∗-seminorms) and where the
Xµ are the infinitesimal generators of the action s 7→ τs of Tn on Tnθ . They are the
unique derivations of Pol(Tnθ ) satisfying

(3.2) Xµ(Uν) = 2πiδνµU
ν

for µ, ν = 1, . . . , n. These derivations are ∗-derivations and they commute:

Xµ(u∗) = (Xµ(u))∗

and

XµXν −XνXµ = 0.
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This locally convex ∗-algebra is a nuclear Fréchet space and it follows from the gen-
eral theory of topological tensor products that the projective and injective topolo-
gies coincide [Gro55] on any tensor product,

E ⊗π C∞(Tnθ ) = E ⊗ε C∞(Tnθ )

so that on E ⊗C∞(Tnθ ) there is essentially one reasonable locally convex topology

and we denote by E⊗̂C∞(Tnθ ) the corresponding completion.
Let M be a smooth d-dimensional compact manifold endowed with a smooth

action s 7→ σs of the Lie group Tn. We also denote by s 7→ σs the corresponding
action of Tn on complex smooth functions on M with its standard topology and
on the graded-involutive differential graded algebra Ω(M) of smooth differential
forms.

We will now give a direct description of A = C∞(Mθ) as a fixed point algebra.
The completed tensor product C∞(M)⊗̂C∞(Tnθ ) is unambiguously defined by

nuclearity and is a unital locally convex ∗-algebra which is a complete nuclear
space. We define by duality the noncommutative smooth manifold M × Tnθ by

setting C∞(M×Tnθ ) = C∞(M)⊗̂C∞(Tnθ ); elements of C∞(M×Tnθ ) will be refered
to as the smooth functions on M × Tnθ .

Let C∞(M × Tnθ )σ×τ
−1

be the subalgebra of the f ∈ C∞(M × Tnθ ) which are
invariant by the diagonal action σ × τ−1 of Tn, that is such that σs ⊗ τ−s(f) = f

for any s ∈ Tn. One defines A = C∞(Mθ) = C∞(M × Tnθ )σ×τ
−1

; the elements of
A will be refered to as the smooth functions on Mθ.

Now we give a direct construction of smooth differential forms on Mθ. Let

Ω(Mθ) be the graded-involutive subalgebra (Ω(M)⊗̂C∞(Tnθ ))σ×τ
−1

of Ω(M)⊗̂C∞(Tnθ )
consisting of elements which are invariant by the diagonal action σ × τ−1 of Tn.
This subalgebra is stable by d⊗ 1 and therefore Ω(Mθ) is a locally convex graded-
involutive differential algebra. The action s 7→ σs of Tn on Ω(M) induces the action
s 7→ σs ⊗ 1 on Ω(M)⊗̂C∞(Tnθ ) which gives an action, again denoted s 7→ σs, of Tn
on the graded-involutive differential algebra Ω(Mθ).

Proposition 3.1 ([CDV02, Prop. 12.3]). The graded-involutive differential sub-
algebra Ω(Mθ)

σ of σ-invariant elements of Ω(Mθ) is in the graded center of Ω(Mθ)
and identifies canonically with the graded-involutive differential subalgebra Ω(M)σ

of σ-invariant elements of Ω(M).

In other words the subalgebra of σ-invariant elements of Ω(Mθ) is not deformed
(i.e. independent of θ). One has Ω(Mθ)

σ = Ω(M)σ ⊗ 1.
The notation Mθ, C

∞(Mθ) introduced here is coherent with the standard one
Tnθ , C∞(Tnθ ) used for the noncommutative torus. Indeed, we have C∞(Tnθ ) =

(C∞(Tn)⊗̂C∞(Tnθ ))σ×τ
−1

where σ is the canonical action of Tn on itself.
The construction of Ω(Mθ) admits the following generalization which will be

crucial for our later purposes. Let E be a smooth complex vector bundle of finite
rank over M and let Γ∞(M,E) be the C∞(M)-module of its smooth sections,
endowed with its usual topology of complete nuclear space. The vector bundle E
will be called σ-equivariant if there is an action s 7→ σs of Tn on E which covers
the action s 7→ σs of Tn on M . In terms of smooth sections this means that one
has

(3.3) Vs(fψ) = σs(f)Vs(ψ)

for f ∈ C∞(M) and ψ ∈ Γ∞(M,E). Let E = C∞(Mθ, E) be the closed subspace
of Γ∞(M,E)⊗̂C∞(Tnθ ) consisting of elements which are invariant by the diagonal
action V × τ−1 of Tn.

The locally convex space E = C∞(Mθ, E) is canonically a bimodule over A.
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Proposition 3.2 ([CDV02, Prop. 12.5]). The bimodule E is a finitely generated
projective module over A as a left and as a right module.

Moreover, any invariant Hermitian metric on E (which can be easily obtained
by averaging) gives two Hermitian structures on E: a left one and a right one. They
are defined by the rules

A〈ξ ⊗ a, η ⊗ b〉 := 〈ξ, η〉 ⊗ ab∗,

〈ξ ⊗ a, η ⊗ b〉A := 〈ξ, η〉 ⊗ a∗b,
Let T be a continuous C-linear operator on C∞(M,S) such that

(3.4) TVs = VsT

for any s ∈ Tn. Then C∞(Mθ, S) (⊂ C∞(M,S)⊗̂C∞(Tnθ )) is stable by T ⊗ 1
which defines the operator Tθ on C∞(Mθ, S). If T is a module homomorphism over
C∞(M), then it is obvious that Tθ is a bimodule homomorphism over C∞(Mθ).

An important (and slightly more general) example of this construction is the
following one: let ω 7→ ∗ω be the (conjugate-linear) Hodge operator on Ω(M)
corresponding to a σ-invariant Riemannian metric on M . One has ∗ ◦ σs = σs ◦
∗. Thus we obtain a conjugate-linear map ∗θ = ∗ ⊗ (·)∗ of Ω(Mθ) which is an
antiendomorphism: ∗(fωf ′) = f ′∗ ∗ωf∗. We denote ∗θ simply by ∗ in the following
and observe that ∗Ωp(Mθ) ⊂ Ωm−p(Mθ).

Theorem 3.3 ([CDV02, Thm. 12.8]). Let Mθ be a θ-deformation of M then one
has dim(Mθ) = dim(M), that is the Hochschild dimension dθ of C∞(Mθ) coincides
with the dimension d of M .

In the case where M is a spin manifold, the Dirac operator can be used to obtain
a noncommutative geometry over (A,A) together with the antilinear involution J .
Namely, one proves the following theorem:

Theorem 3.4 ([CDV02, Thm. 12.9]). Let Mθ be a θ-deformation of a com-
pact spin manifold M . Then there is a noncommutative spin geometry over A =
C∞(Mθ) satisfying all axioms of Definition 2.2.

We will now generalize this theorem to the case where M is no longer a spin
manifold, obtaining a noncommutative geometry in the sense of Definition 2.3. The
proof used in [CDV02] applies mutatis mutandis, and therefore we only sketch it.

3.2. The general case. Now we will generalize the constructions from [CDV02],
giving a noncommutative geometry for any toric deformation, regardless of whether
the underlying manifold is spin.

It is well-known and easy to check that we can average any Riemannian metric
on M under the action of σ and obtain one for which the action s 7→ σs of Tn
on M is isometric. Taking this Riemannian metric, we can first observe that the
Clifford bundle associated to the cotangent bundle is equivariant and thus the above
construction applies to the Clifford bundle in the even case and the even part of the
Clifford bundle in the odd case, giving a finitely generated projective left Hermitian
A-module X. Moreover, if we take the bundle B of complex Clifford algebras, then
the above construction will provide us with a Fréchet ∗-algebra B defined as

B := (Γ(M,B)⊗̂C∞(Tnθ ))σ×τ
−1

.

This algebra canonically acts on X from the right. The Clifford-Dirac operator
D constructed in Section 1 gives by the above construction an operator D ⊗ 1 on
X. Completing X with respect to the scalar product coming from the Hermitian
structure and the canonical trace

τ =

∫
· vol⊗τTnθ : A→ C,
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one obtains a Hilbert space H with commuting injective representations of A and
B. The compatibility of the scalar product with both Hermitian structures follows
from the compatibility in the non-deformed case. The order one condition and
smoothness conditions v), vi) can be proved in the same manner as in [CDV02].
The A and B-valued scalar products on X are given by

A〈ψ ⊗ f, ψ
′ ⊗ f ′〉 = C∞(M)〈ψ,ψ

′〉 ⊗ ff ′∗

and

〈ψ ⊗ f, ψ′ ⊗ f ′〉B = ψ∗ψ′ ⊗ f∗f ′.
As we are dealing with deformations of Poincaré dual algebras, the results of

[Rie93] apply, yielding the Poincaré duality condition. Thus, this toric deforma-
tion satisfies the axioms for noncommutative geometry over the pair (A,B) from
Definition 2.3.

In the even case, the grading operator γ from M is σ-invariant and therefore
yields an element γ ⊗ 1 which commutes with the A action and endows B with the
grading which coincides with the usual grading inherited from the Clifford bundle.

3.3. The spinc case. Let M now be a spinc manifold such that the determi-
nant line bundle of the spinc structure is σ-equivariant. We will now generalize the
deformation of [CDV02] to this case.

Let S be the spinor bundle corresponding th the chosen spinc structure. The
bundle S is not exactly σ-equivariant, so we cannot apply the results of the last sec-
tion directly. It is, however, equivariant in a generalized sense which was exploited
in [CDV02] and which we also apply here. Namely, the isometric action σ of Tn on
M does not lift directly to S but lifts only modulo {±1} ⊂ Tn. More precisely, one

has a twofold covering p : T̃n � Tn of the group Tn, and a group homomorphism

s̃ 7→ Vs̃ of T̃n into the group Aut(S) which covers the action s 7→ σs of Tn on M .
In terms of smooth sections, it means that

(3.5) Vs̃(fψ) = σs(f)Vs̃(ψ)

where f ∈ C∞(M) and ψ ∈ C∞(M,S) with s = p(s̃). The bundle S is Hermitian
and one has

(3.6) 〈Vs̃(ψ), Vs̃(ψ
′)〉 = σs 〈ψ,ψ′〉

for ψ,ψ′ ∈ C∞(M,S), s̃ ∈ T̃n and s = p(s̃). Furthermore, the Dirac operator D
commutes with the Vs̃.

To the projection p : T̃n → Tn corresponds an injective homomorphism of

C∞(Tn) into C∞(T̃n) which identifies C∞(Tn) with the subalgebra C∞(T̃n)ker(p)

of C∞(T̃n) of elements which are invariant by the action of the subgroup ker(p) '
Z2 of T̃n. Let T̃nθ be the noncommutative n-torus Tn1

2 θ
and let s̃ 7→ τ̃s̃ be the

canonical action of the n-torus T̃n on it. The very reason for this notation is that

C∞(Tnθ ) identifies with the subalgebra C∞(T̃nθ )ker(p) of C∞(T̃nθ ) of elements which
are invariant by the τ̃s̃ for s̃ ∈ ker(p) ∼= Z2. Under this identification, one has
τ̃s̃(f) = τs(f) for f ∈ C∞(Tnθ ) and s = p(s̃) ∈ Tn.

Define X = C∞(Mθ, S) to be the closed subspace of C∞(M,S)⊗̂C∞(T̃θ) con-

sisting of elements which are invariant by the diagonal action V × τ̃−1 of T̃n; this
is canonically a topological bimodule over C∞(Mθ). Since the Dirac operator com-
mutes with the Vs̃, C

∞(Mθ, S) is stable under D⊗id and we denote by Dθ the corre-
sponding operator on C∞(Mθ, S). Again, Dθ is a first-order operator of the bimod-

ule C∞(Mθ, S) over C∞(Mθ) into itself. The space C∞(M,S)⊗̂C∞(T̃nθ ) is canoni-

cally a bimodule over C∞(M)⊗̂C∞(T̃nθ ) (and therefore also on C∞(M)⊗̂C∞(Tnθ )).
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One defines a Hermitian structure on C∞(M,S)⊗̂C∞(T̃nθ ) for its left module struc-

ture over C∞(M)⊗̂C∞(T̃nθ ) by setting

A〈ψ ⊗ t, ψ
′ ⊗ t′〉 = 〈ψ,ψ′〉 ⊗ tt′∗

for ψ,ψ′ ∈ C∞(M,S) and t, t′ ∈ C∞(T̃nθ ). This gives by restriction the Hermitian
structure of C∞(Mθ, S) considered as a left C∞(Mθ)-module. Analogously, one
defines a right Hermitian structure by setting

〈ψ ⊗ t, ψ′ ⊗ t′〉A = 〈ψ,ψ′〉 ⊗ t∗t′

and obtains a right Hermitian structure on C∞(Mθ, S) by restriction.
All axioms of Definition 2.3 can be checked here similarly to the above general

case, yielding a noncommutative geometry over the pair (A,A) (possibly with X 6∼=
X).

Notice that when dim(M) is even, one has a Z2-grading γ of C∞(M,S) as
Hermitian module which induces a Z2-grading, again denoted by γ, of C∞(Mθ, S)
as Hermitian right C∞(Mθ)-module.

Moreover, the algebras

B = EndA(X)

and

Bo = AEnd(X)
op

are canonically antiisomorphic. Indeed, one has

B ∼= (Γ(CliffC(T ∗M))⊗̂C∞(Tnθ ))σ×τ
−1

,

Bo ∼= (Γ(CliffC(T ∗M))op⊗̂C∞(Tnθ ))σ×τ
−1

,

and we have the canonical isomorphism

θ : B→ Bo

given by

θ = α⊗ 1,

where α is the canonical antiautomorphism of the complex Clifford algebras given by
the order and sign reversal, [GBVF01, Sect. 9.2]. Moreover, any invariant spinc

connection on S gives an endomorphism-compatible biconnection on X, and the
construction of the bimodule T and the induced biconnection on it yields exactly
the right result: T is the bimodule canonically associated with the σ-invariant
determinant line bundle, and the induced biconnection is given by the invariant
connection we started with, cf. [GBVF01, Sect. 9.3, p. 386].

3.4. Fourier decomposition. Let us introduce an important tool in studying
the toric deformations of manifolds, the Fourier decomposition. Let L be a σ-
equivariant vector bundle over M and let L be the corresponding finitely generated
projective module, as explained above (the construction works equally well for
modules such as spinor bundles, although they are merely almost σ-equivariant).
Then any element of L can be written as a Fourier series

ξ =
∑
m∈Zn

ξm ⊗ Um,

where U (m1,...,mn) = Um1
1 . . . Umnn , and the elements ξm ∈ Γ(L)m, where Γ(L)m is

the subspace of Γ(L) consisting of the sections of L which transform corresponding
to the character m = (m1, . . .mn) of Zn in the representation σ : Tn → Aut(Γ(L))
arising from the action of Tn.

In particular, there is a map

E0 : L→ Γ(L)σ,
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ξ 7→ ξ0.

If L = M × C is a trivial bundle, then L = A, and the map E0 enjoys an
additional property of being a trace-preserving conditional expectation:

E0(afb) = aE0(f)b, a, b ∈ C∞(M)σ,

and

τ ◦ E0(f) =

∫
M

f0 = τ(f).

We also observe that if we equip the bimodule L coming from the Hermitian
vector bundle L with two A-valued scalar products,

A〈χ⊗ f, ζ ⊗ g〉 = 〈χ, ζ〉 ⊗ fg∗

and

〈χ⊗ f, ζ ⊗ g〉A = 〈χ, ζ〉 ⊗ f∗g,
then E0(A〈ξ, η〉) = E0(〈ξ, η〉A). The proof is straightforward using the fact that
E0 = 1⊗ τ on C∞(Mθ) and the tracial property of τ .

3.5. Differential forms and de Rham cohomology. Let us discuss further
the conditions which we encountered in Chapter 2 in the case of this toric defor-
mation. First of all, the following result is mentioned in [CDV02] in the spin case.
It can be obtained in the same way in general:

Proposition 3.5. In the situation of a toric deformation, the bimodules ΩkD(A)
coincide with the bimodules of differential forms Ωk(Mθ) constructed above.

In particular, they are A-A-bimodules of finite type and the differential calculus
on this noncommutative manifold is Clifford-like (Definition 2.56). Using the above
observations, it is also easy to see that the Laplace operator ∆k on k-forms coincides
with the operator ∆M

k ⊗ 1, here ∆M
k being the classical Laplacian on differential

forms on M . Therefore

dim ker ∆k = dim ker ∆M
k ,

and thus Hkd(A) ∼= HkdR(M). As the periodic cyclic cohomology is insensitive to de-
formations [CDV02], we conclude that the de Rham cohomology and the periodic
cyclic cohomology coincide in the case of toric deformations.

It is also interesting to analyze the mapping α 7→ Cα which we encountered
in Ch. 2 and which compares the de Rham cohomology with the periodic cyclic
cohomology and different conditions entering Theorem 2.77.

First of all, the subspace

Ck = span {[ω, a] |ω ∈ Ω∗, a ∈ A},
is easily seen to be equal to the regular subspace of differential forms whose Fourier
decomposition has no invariant term:

Ck = {ω |E(ω) = 0}.
Indeed, as the identity commutes with every element in the noncommutative torus,
the inclusion ⊂ is obvious. On the other hand, using the Fourier decomposition, it
is enough to prove that

ω = ωm ⊗ Um, m 6= 0,

is in Ck, which easily follows from the fact that for m 6= 0 one can write Um as a
commutator.

Using the characterization of the differential forms Ω∗(Mθ) given above, we
easily see that the algebra Ω∗D is indeed graded-commutative modulo im b in our
case:

[ω ⊗ f, η ⊗ g]gr = ω ∧ η ⊗ fg − (−1)degω deg ηη ∧ ω ⊗ gf.
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Now, the algebra Ω∗D(A⊗B) is easily seen to be isomorphic to the algebra

(Ω∗(M)⊗̂C∞(Tnθ )⊗̂C∞(Tnθ )op)σ⊗τ
−1⊗τ−1

,

and therefore is Clifford-like. For k < d, α ∈ Ωk(A⊗B), the element

π(α) ∈ (Γ(Cliff
(k)
C (M))⊗̂C∞(Tnθ )⊗̂C∞(Tnθ )op)σ⊗τ

−1⊗τ−1

,

where Cliff
(k)
C (M) is the subbundle of elements of the Clifford algebra bundle with

length at most k (given by the canonical length filtering on the Clifford algebra),
and therefore orthogonal to γ.

3.6. Sobolev theory. It is quite natural to expect that toric deformations of
ordinary manifolds inherit reasonable Sobolev theory from them, and this is indeed
the case: if we consider some operator P : X→ X given by

P =
∑
i

Di ⊗ fi,

where Di is a differential operator of order k, then P has order k on the Sobolev
spaces on X. This is easily seen by repeating the standard arguments from classi-
cal Sobolev theory on manifolds on the first tensor factor and using boundedness
of multiplication on C∞(Tnθ ) on the second tensor factor. Thus, in particular,
connection operators on X are compatible with the order calculus, and thus toric
deformations have reasonable Sobolev theory. Moreover, as the modules of differ-
ential forms are finitely generated and projective and the differential calculus is
Clifford-like, the Sobolev norms on differential forms defined using the Laplacians
coincide with the Sobolev norms induced from the structure of a finitely generated
projective module.





CHAPTER 4

Seiberg–Witten equations for noncommutative
manifolds

1. Classical Seiberg–Witten equations

In this section we briefly review the basics of the Seiberg–Witten theory. The
constructions are well-known and therefore we omit proofs and provide only refer-
ences. We refer to [Mor96], [Moo96], [Mar99], [Nic00] for systematic exposure.

Let M be a smooth closed orientable four-manifold with a Riemannian metric g.
Choose a spinc structure with a determinant line bundle L and let a be a connection
on L. Consider the Dirac operator,

Da : Γ(S+)→ Γ(S−),

where S± are the bundles of positive and negative spinors, respectively. Let q(ψ)
denote a self-dual 2-form associated to a spinor ψ in the following way. The endo-
morphisms of the positive part of the spinor bundle decompose as

EndC∞(M)(Γ(S+)) ∼= C∞(M)⊕ Ω2,+(M).

Consider the endomorphism Θψ,ψ of the spinor bundle. q(ψ) is defined to be the
projection of Θψ,ψ to Ω2,+(M).

The following nonlinear first order partial differential equations for a pair (a, ψ)

Daψ = 0,

F+
a = q(ψ),

are called the Seiberg–Witten equations. The gauge group G = C∞(M,U(1))
naturally acts on the configuration space, and the Seiberg–Witten equations are
invariant under this action.

One considers the Sobolev versions of the Seiberg–Witten equations completing
the gauge group G, the spinors and the differential forms on M with respect to the
Sobolev topology, thus obtaining the Sobolev gauge group Gs+1 and Sobolev moduli
spaces Ms. Using the multiplicative properties of the Sobolev spaces, one obtains

Proposition 4.1 ([Mor96, Prop. 2.2.11]). For s big enough, any Hs-solution to
the Seiberg–Witten equations is Gs+1-gauge equivalent to a smooth solution.

Thus, for s big enough, the Sobolev moduli space coincides with the smooth
moduli space. The advantage of switching to the Sobolev moduli space is that we
can use index theory to obtain information about it.

Proposition 4.2 ([Mor96, Lemma 4.6.1]). The linearization of the Seiberg–Witten
equations at a solution (a, ψ) yields an elliptic complex

0→ Hs+1(M, iR)
D1−−→ Hs(T ∗M⊗iR)⊕Hs(S+)

D2−−→ Hs−1(Λ2
+T
∗M⊗iR)⊕Hs−1(S−),

where D1(f) = (2df,−f · ψ), D2 = D(SW )(a,ψ) =

(
d+ −Dqψ

1
2 (·)ψ Da

)
. Its Euler

characteristic is equal to the index of the elliptic operator

χ(C) = Ind(Da ⊕ (d+ + d∗)),

71
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where Da : Γ(S+)→ Γ(S−), and d+ + d∗ : Ω1(M)→ Ω2,+(M)⊕ Ω0(M).

In the case where the manifold M is Kähler, then any spinc structure on M
has determinant line bundle K−1

M ⊗ L2
0 for some line bundle L0 over M , and the

space of positive spinors is equal to

Γ(S+) = Ω0(M,L0)⊕ Ω(0,2)(M,L0),

hence a spinor can be written as ψ = (α, β), and the connection a = A0 ⊗ A,
where A0 is the canonical holomorphic connection on K−1

M . In this case there is a
holomorphic description of the moduli space which looks as follows.

Theorem 4.3 ([Moo96, Thm. 3.9]). Assume that M is Kähler and let (a, ψ) be
a solution to the Seiberg–Witten equations. Then the following holds:

i) the connection A defines a holomorphic structure on L0, i.e. (FA)(0,2) = 0,
ii) αβ = 0,

iii) α is a holomorphic section of L0 and β is an antiholomorphic section of
Ω(0,2)(L0) with respect to the abovementioned holomorphic structure.

Moreover, in this case one can actually compute the whole moduli space.

Theorem 4.4 ([Mor96, Thm. 7.3.1]). Let M be a Kähler surface such that
degKX > 0. Then for the choice of the spinc structure whose determinant line
bundle is equal to K−1

X , there is a unique solution of the Seiberg–Witten equations.
Moreover, if the scalar curvature s of M is a constant and s < 0, this solution is
given by (α, β) = (

√
−s, 0) in the above picture.

The main goal of this chapter will be to provide the generalizations of the
abovementioned statements to the noncommutative context.

2. Noncommutative Seiberg–Witten equations

We consider a noncommutative geometry of dimension 4 over the pair (A,A)
with the smooth bimodule H∞ = X0 such that the bimodules of differential forms
are finitely generated and projective. Moreover, we assume that

EndA(X0) =

4⊕
k=1

ΩkD

and that
Ω4

D
∼= Aγ.

Thus, the endomorphisms of X0 decompose in the even and odd parts: the
even endomorphisms commute with the grading γ, and the odd endomorphisms
anticommute with γ. The even endomorphisms decompose as

EndA(X0)even ∼= EndA(X+
0 )⊕ EndA(X−0 )

Let us consider the mapping

ε : EndA(X0)even → EndA(X0)even,

T 7→ γT = Tγ.

In view of the assumptions above this mapping interchanges Ω4
D and A and

therefore leaves Ω2
D invariant. Thus, Ω2

D decomposes as

Ω2
D
∼= Ω2,+

D ⊕ Ω2,−
D ,

where Ω2,+
D = {T ∈ Ω2

D |Tγ = T}.
We take a twisting bimodule E and consider the twisted noncommutative ge-

ometry as in Theorem 2.81, using the metric-compatible connection as a parameter.
We denote the twisted bimodule E⊗AX0 by X and assume our bimodule E to carry
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a metric-compatible biconnection ∇0 which we will use as a reference connection.
The role of the twisting bimodule is twofold: first of all, it provides the freedom
in the choice of the “spinc structure”, but even if we take E = A to be the trivial
A-A-bimodule, it will still provide the necessary degree of freedom in the cohice od
a connection.

2.1. “Spin” version. We first describe the version of the Seiberg–Witten
equations starting with a spin noncommutative geometry because in this case there
is no additional term in the second equation and we therefore need no additional
assumptions on the bimodule X0.

We introduce the configuration space as

C = {(∇, ψ) | ∇ : E→ E⊗A Ω1
D a metric compatible connection, ψ ∈ X+},

where X+ = {ψ ∈ X |ψ = γψ}. This is an infinite-dimensional affine Fréchet space
modeled on HomA(E,E⊗A Ω1

D)sa⊕X+. Using the metric compatible biconnection
∇0 on E and the isomorphism Hom(E,E⊗A Ω1

D)sa ∼= Ω1
D,sa, we reparametrize the

configuration space as

C = {(A,ψ) |A ∈ Ω1
D,sa, ψ ∈ X+},

where Ω1
D,sa = {A ∈ Ω1

D |A = A∗} is the subspace of self-adjoint forms.

We introduce the mapping q : X+ → Ω2,+
D ,

q(ψ) := π2,+
EndA(X)〈ψ,ψ〉

where π2,+ is the projection from EndA(X+) to Ω2,+
D obtained from the decompo-

sition

EndA(X+) ∼= A⊕ Ω2,+
D .

This is automatically an A-A-bimodule map, and it coincides with (1− E), where
E is the canonical A-valued conditional expectation.

Notice that q satisfies

q(aψ) = aq(ψ)a∗, a ∈ A

because A ⊂ EndA(X) and π2,+ is a bimodule map.

Definition 4.5. The Seiberg–Witten equations are given by

D∇ψ = 0,(4.1)

2F+
∇ = q(ψ),(4.2)

where D∇ is the Dirac operator twisted with the connection ∇, cf. Theorem 2.81,
and F+

∇ := π+F∇, where π+ is the projection onto Ω2,+
D .

Proposition 4.6. Let the group G = U(A) = {u ∈ A |u∗u = uu∗ = 1} act in the
configuration space C by

u : ψ 7→ uψ, ∇ 7→ u∇u∗.

The Seiberg–Witten equations are invariant unter the action of G.

Proof. This is a straightforward computation: the first equation transforms
as

Du∇u∗u(η ⊗ χ) = u∇u∗uη · χ+ uη ⊗Dχ = uD∇ψ = 0,

and the second equation transforms as

2F+
u∇u∗ − q(uψ) = 2uF+

∇u
∗ − uq(ψ)u∗ = 0,

because the curvature transforms covariantly.This finishes the proof. �
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Remark 4.7. We introduced the factor 2 in front of the curvature in the second
equation because in the classical Seiberg–Witten equations one makes use of the
curvature of the connection on the determinant line bundle and not on the twisting
bundle.

2.2. General version. If we have a general 4-dimensional noncommutative
geometry over (A,A), then the bimodule X is not necessarily self-dual. However,
as we have seen in Section 12, it makes sense to consider the “determinant line
bundle” in this case, which potentially makes it possible to consider the Seiberg–
Witten equations in this case as well. In this subsection, we make an additional
assumption that the bimodule X is equipped with a biconnection ∇ compatible
with the endomorpisms and such that D = m ◦ ∇.

In the case of an ordinary spinc manifold there is a natural correspondence
between connections on the spinor bundle which are compatible with the Levi-
Civita connection and connections on the determinant bundle. Here we don’t have
such a direct correspondence and therefore have to use an ad hoc construction:
we demand that we have a starting biconnection on X and induce with it a bi-
connection on the “determinant bundle” whose curvature then enters the second
equation.

Let T := X ⊗EndA(X) X be the determinant A-A-bimodule. Recall that an
endomorphism-compatible biconnection on X induces a biconnection on T by

∇(ξ ⊗ η) = ∇ξ ⊗ η + ξ ⊗∇η.

We introduce the configuration space as

C = {(∇, ψ) | ∇ : E→ E⊗A Ω1
D a metric compatible connection, ψ ∈ X+}.

This is an infinite-dimensional Fréchet manifold modeled on HomA(E,E⊗A Ω1
D)⊕

X+. Using the metric compatible biconnection ∇0 on E as a reference connection
and repeating the construction of the preceding subsection, we reparametrize the
configuration space as

C = {(A,ψ) |A ∈ Ω1
D,sa, ψ ∈ X+}.

Definition 4.8. Let ∇0 be a biconnection on X such that D = m ◦∇0 and let ∇T

be the corresponding connection on T. Let F∇T
∈ Hom(T,T ⊗A Ω2

D) ∼= Ω2
D be the

curvature of ∇T. The Seiberg–Witten equations are given by

D∇ψ = 0,(4.3)

2F+
∇ + F+

∇T
= q(ψ).(4.4)

As before, we prove

Proposition 4.9. Let the group G = U(A) = {u ∈ A |u∗u = uu∗ = 1} act in the
configuration space C by

u : ψ 7→ uψ, ∇ 7→ u∇u∗.

The Seiberg–Witten equations are invariant unter the action of G.

Proof. This is a straightforward computation: the first equation transforms
as

Du∇u∗u(η ⊗ χ) = u∇u∗uη · χ+ uη ⊗Dχ = uD∇ψ = 0,

and the second equation transforms as

2F+
u∇u∗ + F+

∇T
− q(uψ) = 2uF+

A u
∗ + uF+

∇T
u∗ − uq(ψ)u∗ = 0,

because the curvature transforms covariantly, and the curvature of a biconnection
commutes with both actions of A. This finishes the proof. �
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Notice that in the commutative case this construction yields the classical Seiberg–
Witten equations with the gauge group G = C∞(M,U(1)), using the line bundles
as twisting bimodules.

We define the Seiberg–Witten functional

SW : C → X− ⊕ Ω2,+
D (A)

by

(∇, ψ) 7→ (D∇ψ, 2F
+
∇ + F+

∇T
− q(ψ)).

3. Moduli space and the deformation complex

The C∞-moduli space of the Seiberg–Witten equations is defined to be M :=
SW−1(0)/G. However, for technical reasons it is often more convenient to work
with Hilbert manifolds, and therefore typically one carries out the analysis of the
Seiberg–Witten equations working with Sobolev spaces. As the Sobolev theory on
noncommutative manifolds is not yet available in full generality, the proof of the
regularity theorem is now restricted to the case of toric deformations, although we
expect a similar argument to work in full generality.

Analogous to the classical case, we introduce several other variants of the mod-
uli space and the deformation complex. The proofs we give here are based on the
ideas of proof in the Seiberg–Witten and Donaldson gauge theories as well as their
generalizations in PU(2)-monopole theory. The proofs used can be directly applied
to our situation, because the properties of all ingredients involved in the proofs are
still at hand in our situation.

Recall that the Sobolev norms are defined on A as follows:

‖a‖s = 〈(1 + ∆)sa, a〉 ,
where ∆ is the Laplace operator on L2(A).

As Hilbert manifolds are generally easier to deal with as Fréchet manifolds, we
replace the configuration space and the moduli space by their Sobolev counterparts.
Then an elliptic regularity argument is used to prove that the moduli space is from
some point on independent of the choice of a particular Sobolev completion (the
parameter s above), and thus coincides with the smooth moduli space. This is
intimately related with the following question about multiplicative properties of the
Sobolev norms: for which values of s does the multiplication map m : A× A → A

extend by continuity to a continuous map m : Hs × H l → H l, 0 6 l 6 s? It is
well-known that in the commutative situation it does so for s > d/2, and for non-
commutative tori it is known to be the case for s > d, and it is known that for s > d
the C∗-algebra C(Tnθ ) ⊂ Hs(C∞(Tnθ )) [Spe91]. From this it is easy to deduce the
following result:

Proposition 4.10. Let A = C∞(Mθ) be a toric deformation of the manifold M of
dimension d, and let s > d. Then the multiplication map m : A × A → A extends
by continuity to a map m : Hs ×H l → H l, for 0 6 l 6 s giving the space Hs the
structure of a Banach ∗-algebra and the space H l the structure of a Banach module
over Hs.

The following two observations are easy but crucial for our analysis of the
situation.

Proposition 4.11. If the multiplication map m : A × A → A extends to a map
m : Hs×Hs → Hs, then the following holds true: for any finitely generated projec-
tive right module E over A the s-th Sobolev completion of the endomorphism algebra
EndA(E) is a Banach ∗-algebra. Moreover, the multiplication map EndA(E)×E→ E

extends to a map Hs(EndA(E))×H l(E)→ H l(E), 0 6 l 6 s.
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Proof. Obvious after identification of endomorphisms with a subalgebra of
matrices over A. �

Proposition 4.12. In the assumptions of the previous proposition, the quadratic
map E→ EndA(E), ψ 7→ Θψ,ψ, extends to a map Hs(E)×Hs(E)→ Hs(EndA(E)).

Proof. Using the isomorphism E ∼= eAn, one identifies the quadratic map
with

(a1, . . . , an) 7→ (aia
∗
j )i,j=1,...,n,

and the claim follows. �

For the rest of the section, we will assume the following property, which is
satisfied in examples due to the above observations.

Definition 4.13. We call the noncommutative manifold Sobolev-multiplicative, if
it has reasonable Sobolev theory and the multiplication map m : A×A→ A extends
to the Sobolev space Hs for s big enough.

Now it makes sense to consider the Sobolev configuration space

Cs = {(A,ψ) |A ∈ Hs(Ω1
D)sa, ψ ∈ Hs(X+)}

and the “Sobolev version” of the Seiberg–Witten equations (4.3).
We introduce the Sobolev version of the gauge group Gs as the completion of

the group G endowed with the Sobolev topology. It is a Hilbert Lie group modeled
on the Sobolev completion

Hs(A)sa = {f ∈ Hs(A) | f = f∗}.
Repeating the arguments in [Mor96], one obtains

Proposition 4.14. The configuration space Cs is an affine Hilbert space modeled
on Hs(Ω1

D)⊕Hs(X+), hence its tangent space canonically identifies with this Hilbert
space. The Hilbert Lie group Gs+1 acts smoothly on the configuration space Cs, and
the Seiberg–Witten functional extends to a smooth function on the configuration
space Cs.

Now we turn to a technical result which will be useful when comparing the
moduli spaces corresponding to different values of s. Its proof is a straightforward
adaptation of the well-known proof of the existence of a local Coulomb gauge for
SU(2) gauge theory, and we follow the strategy outlined in [DK90, Ch. 3]. To
prove it, we have to introduce the Coulomb gauge condition.

Using the reference biconnection ∇0 on E, the connections on E will be parame-
terized by one-forms A ∈ Ω1

D. This allows us to consider the metric on connections
given by

ρ(∇,∇′) = 〈∇ −∇′,∇−∇′〉2 ,
It is straightforward to check that this metric is gauge-invariant with respect to the
diagonal action of U(A):

ρ(u∇u∗, u∇′u∗) = ρ(∇,∇′).
We will also write ρ(A,B) for ρ(∇0 +A,∇0 +B). Obviously,

ρ(A,B) = ‖A−B‖22 .
We observe that, as ∇0 is a biconnection,

u∇0u
∗ = u[D,u∗] +∇0

Given a connection with a connection form A, let us define the operator

dA = d+ [A, ·] : A→ Ω1(A),
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and if u ∈ U(A) is a gauge transformation, we use the abbreviation u(A) to denote
u(∇0 +A)u∗ −∇0.

Definition 4.15. We say that a connection B is in Coulomb gauge with respect
to A if

d∗A(B −A) = 0.

We observe that the Coulomb gauge condition is given by the Euler-Lagrange
equation for the functional

B 7→ ‖B −A‖2

on the space of connections. Indeed, if we consider the one-parameter family of
gauge transformations of the form

ut = exp(tχ),

then

ut(∇0 +B)u∗t = ∇0 + ut[D,u
∗
t ] + utBu

∗
t ,

and, as
d

dt

∣∣∣
t=0

(ut[D,u
∗
t ] + utBu

∗
t ) = −[D,χ]− [B,χ] = −dBχ,

and thus we obtain

d

dt

∣∣∣
t=0
‖ut(B)−A‖2 = −〈χ, d∗B(B −A)〉 .

This description and the gauge invariance of the metric yield the following
observation: the Coulomb gauge condition is symmetric and gauge invariant, i.e.

d∗A(B −A) = 0 ⇔ d∗B(A−B) = 0.

Proposition 4.16. Let ∇ = ∇0 + A be a metric compatible connection on E.
There is a constant c(A) such that if ∇′ = ∇0 +B is another connection on E and
if a = B −A satisfies

‖a‖Hs < c(A),

then there is a gauge transformation u such that u∇′u∗ is in the Coulomb gauge
with respect to ∇:

d∗A(u∇′u∗ −∇) = 0.

Proof. We have to solve the equation

d∗A((dAu)u∗ − uau∗) = 0.

We use the ansatz u = exp(χ) and set

G(χ, a) = d∗A(dAe
χ)e−χ − eχae−χ).

The map G extends to a smooth map Hs+1 ×Hs → Hs−1, and the image of G is
contained in the Hs−1-closure of im d∗A. The derivative of G at the point χ = 0,
a = 0 is given by

DG(ξ, b) = d∗AdAξ − d∗Ab− d∗A[χ, a],

and thus the implicit function theorem gives a small solution χ to the equation
G(χ, a) = 0 for all a small enough, because the map ξ 7→ d∗AdAξ maps onto im d∗A
by the Fredholm alternative for the operator d∗AdA. �

The following lemma is an adaptation of [Mor96, Lemma 4.5.3] and has the
same purpose: it will guarantee that the moduli space is Hausdorff.
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Proposition 4.17. Let (An, ψn), (Bn, µn) ∈ Cs be two sequences which converge
to (A,ψ) resp. (B,µ) in Cs. Let un ∈ Gs+1 be the gauge transformations such that
for all n ∈ N

un(An, ψn) = (Bn, µn).

Then the sequence un ∈ Gs+1 contains a convergent subsequence with a limit u ∈
Gs+1 such that

u(A,ψ) = (B,µ).

Proof. By assumption, we have for all n ∈ N
[D,un] = unAn −Bnun.

The norms ‖Bn‖Hs and ‖An‖Hs are uniformly bounded, and so is ‖un‖H0 ; thus,
by continuity of multiplication, ‖[D,un]‖H0 is uniformly bounded, which means
exactly that ‖un‖H1 is uniformly bounded. Now, a bootstrapping argument using
the above equation implies that ‖un‖Hs+1 is uniformly bounded, and, as the em-
bedding Hs+1 ⊂ Hs is compact, after passing to a subsequence we may assume
that un → u in Hs. Clearly, [D,u] = uA − Bu ∈ Hs, and [D,un] → [D,u] in Hs,
which implies u ∈ Hs+1 and un → u in Hs+1. Passing to the limit and using the
continuity of the action on the configuration space, we obtain u(A,ψ) = (B,µ), as
desired. �

Corollary 4.18. The quotient Cs/Gs+1 is Hausdorff.

Proof. As all the spaces in question are first-countable, the non-Hausdorffness
would imply the existence of sequences (An, ψn) ∈ Cs and un ∈ Gs+1 such that
(An, ψn)→ (A,ψ), (An, ψn)un → (B,µ) such that (A,ψ) and (B,µ) are not gauge
equivalent. But this is impossible by the above lemma. �

We now arrive at the key result, which is proved similar to the classical case
using the elliptic bootstrapping technique.

Proposition 4.19. For s big enough, any Hs-solution of the Seiberg–Witten equa-
tions is Gs+1-equivalent to a smooth solution.

Proof. Let us fix a smooth connection ∇0 on E and write a Hs-solution
(∇, ψ) as (A,ψ), where A ∈ Hs(Ω1

D). We know by Proposition 4.16 that every
Hs-connection B which is close to A can be tranformed into the Coulomb gauge
relative to A, i.e. we can find u ∈ Hs+1 such that

d∗A(u−1(B)−A) = 0.

By the symmetry of the Coulomb gauge condition,

d∗u−1B(A− u−1(B)) = 0.

By the invariance of the Coulomb gauge condition, writing A′ = u(A) = B + a, we
have

(4.5) d∗Ba = 0.

Now we choose such a smooth connection B, and obtain for the difference form a
the equation

(4.6) d+
Ba+ (a ∧ a)+ = −F+

∇0+B −
1

2
F+
∇T

+
1

2
uq(ψ)u∗,

this being the gauge-transformed second Seiberg–Witten equation. The first equa-
tion gives

(4.7) (D + u(A))uψ = 0.

Now, as s is in the multiplicative range for Sobolev spaces, the right-hand side as
well as the term (a ∧ a)+ in the equation (4.6) are in Hs and thus by the elliptic
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regularity of the operator d∗B⊕d
+
B we obtain that a ∈ Hs+1. The elliptic regularity

of the operator D in (4.7) yields uψ ∈ Hs+1. But then uq(ψ)u∗ ∈ Hs+1, and elliptic
regularity of the operator in (4.6) gives a ∈ Hs+2. The elliptic regularity of (D+a)
in (4.7) then implies uψ ∈ Hs+2. By a bootstrapping argument we conclude that
uψ and a are indeed smooth. �

Finally, we consider the deformation complex associated with the Sobolev ver-
sion of Seiberg–Witten equations. For any Gs+1-invariant functional F : Cs → H

on the configuration space Cs and for any a ∈ F−1(0) one can consider the complex

TGs+1(e)
Dσ−−→ TCs(a)

DF−−→ H,

where the first map is induced by the infinitesimal action of Gs+1, and the second
map is induced by the differential of F at the solution a. The idea behind this is
to encode the “tangent space to the moduli space” in this deformation complex.
Indeed, it is natural to expect that the tangent space to the moduli space is equal
to the first cohomology of the complex above. The zeroth cohomology measures
the lack of freeness in the gauge action, and the second cohomology measures the
lack of transversality at a. Although we are yet unable to solve the transversality
issue in the noncommutative case, it is still interesting to see that the ellipticity
holds true, thus giving a hope to achieve smoothness of the moduli space.

Theorem 4.20. The linearization of the Seiberg–Witten equations at a solution
(A,ψ) yields an elliptic complex

0→ Hs+1(Asa)
D1−−→ Hs(Ω1

D,sa)⊕Hs(S+)
D2−−→ Hs−1(Ω2,+(A))⊕Hs−1(S−),

where D1(f) = (−dAf, f · ψ), D2 = D(SW )(a,ψ) =

(
d+ +A2 −Dqψ

(·)ψ D +A

)
. Its Euler

characteristic is equal to the index of the operator

χ(C) = Ind(DA ⊕ (d+ + d∗)),

where DA : X+ → X−, and d+ + d∗ : Ω1
D → Ω2,+

D ⊕A.

Proof. To compute the first differential, we have to compute the infinitesimal
action of the gauge group on (A,ψ). Taking ut = etf , we obtain

d

dt

∣∣∣
t=0

utψ = fψ,

d

dt

∣∣∣
t=0

(utAu
∗
t + ut[D,u

∗
t ]) = −dAf.

To compute the second map, we have to differentiate the functional SW at
(A,ψ). For this, consider a tangent vector (α, η) and compute

d

dti

∣∣∣
ti=0

(D∇+A+t1α)(ψ + t2η)− (D∇+Aψ), i = 1, 2.

A short computation gives us exactly the second row in the matrix above.
Now we have to compute the first row in the matrix. For this, we have to

understand the map ∇ → F+
∇ in terms of the “connection form” A. This is given

by identifying

HomA(E,Ω1
D ⊗A E) ∼= Ω1

D

and writing ∇ = ∇0 +A, where ∇0 is a biconnection. We get

(∇0 +A)(∇0 +A)ξ = F∇0ξ + (dA+A2)ξ,

where dA + A2 is understood in terms of differential forms (A2 being a 2-form).
Thus, we get the desired desult.
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Now, by the gauge invariance of the functional SW , the above sequence is a
complex, and we are interested in ints Euler characteristic. It is well-known that
the Euler characteristic of a complex

C0
d0−→ C1

d1−→ C2

is given by the index Ind(d∗0 ⊕ d1 : C1 → C0 ⊕ C2). Thus, all we have to do is to
analyze the operators which enter the complex. But it is easy to see that up to
operators of order 0 D1 coincides with the differential d : A→ Ω1

D, and D2 coincides
with the operator d+ ⊕ (D + A). Thus, the Euler characteristic of this complex is
given by

χ(C) = Ind(DA ⊕ (d+ ⊕ d∗)),
as desired. �

4. Toric deformations of Kähler manifolds

In this chapter we consider a 4-dimensional compact Kähler manifold M with
a holomorphic action of T2. We analyze the Seiberg–Witten equations in this
case, deriving a holomorphic description of the moduli space, analogous to that of
[Mor96].

As the T2-action is supposed to be holomorphic, the canonical bundle KM is
equivariant with respect to this action, and the Kähler form ω ∈ Ω1,1 is invariant.
There is a canonical spinc structure on M for which the determinant line bundle
coincides with K−1

M , and the decomposition in positive and negative spinors is as
follows:

Γ(S+) = Ω0(M)⊕ Ω0,2(M),

Γ(S−) = Ω(0,1)(M),

and the Clifford multiplication with a form a ∈ Ω1(M,C) is equal to the difference

of the exterior product and the insertion of
√

2π0,1(a) ∈ Ω0,1(M). Moreover, the
Dirac operator is given by

D =
√

2
(
∂ + ∂

∗)
: Ω0(M)⊕ Ω0,2(M)→ Ω(0,1)(M).

If L0 → M is a T2-equivariant line bundle over M we can twist the canonical
spinc-structure over M by L0 and obtain another spinc-structure, whose spaces of
positive and negative spinors are given by

Γ(S+
L0

) = Ω0(M,L0)⊕ Ω0,2(M,L0),

Γ(S−L0
) = Ω(0,1)(M,L0).

and the Clifford multiplication with a form a ∈ Ω1(M,C) is as before equal to the

difference of the exterior product and the insertion of
√

2π0,1(a) ∈ Ω0,1(M).
Let us now consider the toric deformation Mθ of M , twisted by the bimodule

L = (Γ(M,L0)⊗̂C∞(T2))σ×τ
−1

. First of all, we observe that by holomorphicity
of the action and the above decomposition of the spinor bundle, the spinor bundle
is actually σ-equivariant, and therefore the construction of the previous chapter

yields X = (Γ(M,SL0)⊗̂C∞(T2))σ×τ
−1

). Moreover, as the canonical holomorphic
connection ∇ on the determinant bundle was T2-invariant by assumption, we get a
canonical biconnection on the A-A-bimodule X, which induces a connection on the
determinant bimodule T; the latter is here isomorphic to

T ∼= (Γ(M,KM )⊗̂C∞(T2
θ))

σ×τ−1

.

Let us now consider the curvature equations. On a Kähler manifold there is
the following decomposition of the self-dual 2-forms:

Ω2,+(M) = Ω0(M) · ω ⊕
(
Ω2,0(M)⊕ Ω0,2(M)

)
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We now recollect the facts about the action of these forms on spinors. These
can be proven by direct computation and are as follows [Mor96, Sect. 7.1]:

i) the action of (2, 0)-forms on Γ(S+) is trivial;
ii) the Clifford multiplication with a (0, 2)-form µ acts on Ω0(M) as exterior

product with 2µ;
iii) the Clifford multiplication with a (0, 2)-form µ acts on Ω(0,2)(M) as inser-

tion of µ, given by (µ, λ) 7→ 2∗(µ∧λ), ∗ being the Hermitian continuation
of the standard Hodge operator: ∗f vol = f ;

iv) the action of the Kähler form ω is given by the multiplication with 2i on
Ω(0,2)(M) and with −2i on Ω0(M).

Thus, in the deformed case we naturally have the following description of the
relevant spaces and actions:

X+ ∼= L⊕ L⊗ Ω(0,2)(A),

Ω2,+ = (A · (ω ⊗ 1))⊕
(

Ω(2,0)(Mθ)⊕ Ω(0,2)(Mθ)
)
.

The Clifford multiplication by a 2-form η = ifω+µ, f ∈ A, µ ∈ Ω(0,2) is given
by (

2f ∗2 (µ ∧ ·)
2(µ ∧ ·) −2f

)
.

On the other hand, the matrix representation for Θψ,ψ is given by(
α
β

)(
α β

)
=

(
αα αβ

βα ββ

)
.

Therefore, q(ψ) is given by the matrix(
1
2

(
αα− ββ

)
αβ

βα 1
2

(
ββ − αα

))
Theorem 4.21. Let (∇, ψ) be a solution of the Seiberg–Witten equations on the
deformed compact Kähler manifold Mθ. Let ψ = (α, β) with α ∈ Ω0(Mθ) ⊗ L0,
β ∈ Ω(0,2)(Mθ)⊗̂L0. Then

i) ∇ is a holomorphic connection on L0,
ii) α is a holomorphic section of L0 with respect to this holomorphic structure,

iii) β is an antiholomorphic section of KM ⊗ L0,
iv) αβ = 0.

Proof. The equation for the spinor is written as

∂∇(α) + ∂
∗
∇(β) = 0.

If we apply ∂∇ to this equation, we get

(4.8) ∂∇∂∇(α) + ∂∇∂
∗
∇(β) = 0.

Now,

∂∇∂∇(α) = F
(0,2)
∇ · α.

Thus, from our equations we get

F
(0,2)
∇ =

1

4
βα,

and, inserting this into the above equation, we obtain

1

4
βαα+ ∂∇∂

∗
∇(β) = 0.
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Taking the L2-scalar product with β (by multiplying with β from the right and
taking the trace), we get

1

2

∥∥αβ∥∥2

2
+
∥∥∥∂∗∇(β)

∥∥∥2

2
= 0.

Thus, we conclude that αβ = 0, and ∂
∗
∇(β). But now we observe that then

F
(0,2)
∇ = 0, thus ∇ is a holomorphic connection in this case, and the condition

∂
∗
∇(β) = 0 means exactly that β is antiholomorphic. �

In the classical Seiberg–Witten theory one could at this point conclude that
one of the forms α and β vanishes identically, because one of them has to vanish
on an open subset of M . It is not clear yet whether a similar condition holds in the
noncommutative situation.

We now give an example of the computation of the moduli space. To carry out
the computation, we first need to prove an analogue of the Weitzenböck formula.

Lemma 4.22. Consider a toric deformation Mθ of a compact spinc manifold M
with an equivariant determinant bundle L. Let ∇0 : X → Ω1

D(A) ⊗A X be the
biconnection on X given by the invariant connection on L, and let ∇ = ∇0 + A be
a connection given by twisting ∇0 with a metric compatible connection ∇′ = d+A
on the trivial right A-module A, and let DA be the corresponding twisted Dirac
operator. Then the following formula holds true:

D2
A = ∇∗∇+

s

4
+
Fdet,∇0

2
+ FA,

where Fdet,∇0
denotes the curvature of the induced connection on the determinant

line bundle and s denotes the scalar curvature of M .

Proof. The twisted Dirac operator is given by

DA = D +A,

where A ∈ Ω1
D,sa(A) is the operator of Clifford multiplication with a 1-form.

Identifying Ω1
D(A) with a subspace in Ω1(M,C∞(T2

θ)), we may consider the
“local form” of such a differential form. Namely, A is locally represented as

A =

4∑
i=1

αiei ⊗ fi,

where αi ∈ C∞(M, iR), fi ∈ C∞(T2
θ), f

∗
i = fi, and ei is a local orthonormal frame

for M , which we may choose normal at a given point x ∈M , i.e. with ∇iek(x) = 0.
Analogously, the operator ∇∗∇ is represented as

∇∗∇ = (∇∗0 +A∗⊗)(∇0 +A⊗),

where
A⊗ : X→ Ω1

D ⊗A X,

ψ 7→ A⊗ ψ.
Now, A∗⊗ : Ω1

D ⊗A X→ X is given locally by

ω ⊗ ψ ⊗ f 7→ −
4∑
i=1

αi 〈ei, ω〉ψ ⊗ fif,

and the operator ∇∗0 is given by −Tr ◦(∇LC0 ⊗ id + id⊗∇0), where ∇LC0 is induced
by the Levi-Civita connection; abusing notation slightly, we still denote ∇LC0 by
∇0. Thus, we get

∇∗0

(∑
i

αiei ⊗ ψ ⊗ f

)
= −

∑
i

(∇0,i(αiei)ψ + αi∇0,iψ)⊗ f.
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Thus,

(∇0 +A⊗)(ψ ⊗ f) = ∇0ψ ⊗ f +
∑
i

αiei ⊗ ψ ⊗ fif,

and

(4.9) (∇∗0 +A∗⊗)(∇0 +A⊗)(ψ ⊗ f) =

∇∗0∇0ψ ⊗ f −
∑
i

αi∇0,iψ ⊗ fif

−
∑
i

(∇i(αiei)ψ + αi∇0,iψ)⊗ fif −
∑
i

α2
iψ ⊗ f2

i f =

∇∗0∇0ψ ⊗ f − 2
∑
i

αi∇0,iψ ⊗ fif −
∑
i

∂i(αi)ψ ⊗ fif −
∑
i

α2
iψ ⊗ f2

i f.

On the other hand,

(D +A)2(ψ ⊗ f) = (D +A)(Dψ ⊗ f +
∑
i

αiei · ψ ⊗ fif) =

D2ψ ⊗ f +
∑
i

αiei ·Dψ ⊗ fif +D
∑
i

(αiei · ψ ⊗ fif)+

+
∑
i,j

αiαjeiej · ψ ⊗ fifjf.

Let us now consider the Dirac operator on M and a connection on L locally given
by the same expression

∑
i αiei. We know by classical Weitzenböck formula from

differetial geometry [Mor96, Sect. 5.1] that

D2ψ −∇∗0∇0 =
s

4
ψ +

Fdet,∇0

2
ψ

and compute∑
i

(αiei ·Dψ +D(αiei · ψ))

=
∑
j,i

(αieiej · ∇0,jψ + αiejei · ∇0,jψ + (∂jαi)ejei · ψ)

=
∑
i,j

(∂jαi)ejei · ψ − 2
∑
i

αi∇0,iψ.

Thus,

((D +A)2 −∇∗∇)(ψ ⊗ f)

=
F∇0

2
+
s

4
+
∑
i 6=j

(∂jαi)ejei · ψ ⊗ fif +
∑
i<j

αiαjei ∧ ej · ψ ⊗ [fi, fj ]f

which is exactly the formula in the claim. �

Now we want to prove an estimate on the spinor part of a solution to Seiberg–
Witten equations which follows from the Weitzenböck formula. To do this, we will
need an analogue of a classical formula from differential geometry.

Proposition 4.23. In the assumptions of Lemma 4.22 the following equality holds
true:

∇∗∇ψ = −
∑
i

∇i∇iψ,

where
∇iψ = 〈ei,∇ψ〉 ,

and ei is a local orthonormal frame on M .
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Remark 4.24. Notice that the mapping ∇i as such doesn’t preserve X – it maps
to the space C∞(M)⊗̂C∞(T2

θ) and doesn’t preserve invariance in general (because
the local frame need not be T2-invariant).

Proof. Writing as before

A =
∑
i

αiei ⊗ fi,

we observe
∇i(ψ ⊗ f) = ∇0,iψ ⊗ f − αiψ ⊗ fif.

Thus,

∇i∇i(ψ⊗ f) = ∇0,i∇0,iψ⊗ f −∇0,i(αiψ)⊗ fif −αi∇0,iψ⊗ fif −α2
iψ⊗ f2

i f.

The equality now follows from (4.9). �

Lemma 4.25. Let (A,ψ) be a solution to the Seiberg–Witten equations on a toric
deformation Mθ. Then the spinor part is uniformly bounded in the following sense:

E0(〈ψ,ψ〉A) 6 −s.

Proof. Let (∇, ψ) be a solution to the Seiberg–Witten equations. The Weitzenböck
formula (Lemma 4.22) implies

∇∗∇ψ +
s

4
ψ +

q(ψ)

2
ψ = 0.

Thus, we obtain

(4.10) 〈∇∗∇ψ,ψ〉A +
s

4
〈ψ,ψ〉A +

〈q(ψ)ψ,ψ〉A
2

= 0.

Moreover, because the connection ∇ is compatible with the metric, we obtain
the equality

−
∑
i

∂2
i 〈ψ,ψ〉A = −

∑
i

〈∇i∇iψ,ψ〉A − 2
∑
i

〈∇iψ,∇iψ〉A −
∑
i

〈ψ,∇i∇iψ〉A ,

or, equivalently,

∆ 〈ψ,ψ〉A + 2
∑
i

〈∇iψ,∇iψ〉A = 〈∇∗∇ψ,ψ〉A + 〈ψ,∇∗∇ψ〉A .

Applying the conditional expectation E0 : A→ C∞(M), we obtain

∆E0(〈ψ,ψ〉A) + 2
∑
i

E0(〈∇iψ,∇iψ〉A) = E0(〈∇∗∇ψ,ψ〉A) + E0(〈ψ,∇∗∇ψ〉A).

Now, E0(〈ψ,ψ〉A) is a function on a compact manifold M . To obtain the desired
estimate, let x0 be a local maximum of E0(〈ψ,ψ〉A). Then ∆(E0(〈ψ,ψ〉A))(x0) > 0,
and we obtain

2 ReE0(〈∇∗∇ψ,ψ〉A) > 0.

Thus, applying E0 to the above equation (4.10), we obtain

(4.11)
s(x0)

4
E0(〈ψ,ψ〉A)(x0) +

E0(〈q(ψ)ψ,ψ〉A)(x0)

2
6 0.

Let us analyze the second term. We recall that if F : EndA(X+) → A is the
canonical operator-valued weight, then F (Θη,ζ) = A〈η, ζ〉; in particular,

F (Θη,ζΘξ,ξ) = F (Θη〈ζ,ξ〉A,ξ) =
A
〈η 〈ζ, ξ〉A , ξ〉,

and therefore

E0(F (Θη,ζΘξ,ξ)) = E0(
A
〈η 〈ζ, ξ〉A , ξ〉) = E0(〈ξ, η〉A 〈ζ, ξ〉A) = E0(〈ξ, η 〈ζ, ξ〉A〉A)

= E0(〈ξ,Θη,ζξ〉A).
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In view of this,

E0(〈q(ψ)ψ,ψ〉A) = E0(〈ψ, q(ψ)ψ〉A) = E0(A〈q(ψ)ψ,ψ〉)

= E0(F (q(ψ)Θ)) = E0

(
F

((
Θ− F (Θ)

2

)
Θ

))
,

where Θ = Θψ,ψ, and F is the canonical operator-valued weight F : EndA(X+)→ A

(recall that q(ψ) = Θ − F
2 (Θ), the factor 2 being the dimension of the positive

spinors). Let us now observe that Θ is selfadjoint and compute

(F (Θ)−Θ)2 = F (Θ)2 − F (Θ)Θ−ΘF (Θ) + Θ2 > 0,

from which it follows

F (Θ2) > F (Θ)2.

Thus,

F

((
Θ− F (Θ)

2

)
Θ

)
= F (Θ2)− F (Θ)2

2
>
F (Θ)2

2
= A〈ξ, ξ〉

2

2

Now, using the Schwarz inequality for conditional expectations E0(a∗a) >
E0(a)∗E0(a), we obtain

E0(A〈ψ,ψ〉
2
)

2
>
E0(A〈ψ,ψ〉)2

2
=
E0(〈ψ,ψ〉A)2

2
.

Thus,

s(x0)E0(〈ψ,ψ〉A)(x0) + E0(〈ψ,ψ〉A))2(x0) 6 0.

Thus, either E0(〈ψ,ψ〉A)(x0) = 0, which implies ψ = 0, or E0(〈ψ,ψ〉A)(x0) 6
−s(x0). This proves the lemma. �

Now let us come to the result which allows to compute the moduli space in some
interesting examples. The outline of the proof follows the approach in [LeB95].

Theorem 4.26. Let M be a compact complex surface with a holomorphic T2-
action and a Kähler metric of constant scalar curvature s. Consider the Seiberg–
Witten equations for the noncommutative geometry associated with the canonical
spinc structure on M . If s > 0, then there are no irreducible solutions of the Seiberg–
Witten equations; if s < 0, then the solution to the Seiberg–Witten equations is
unique and is given by

α = −
√
s, β = 0, A = 0.

Thus, the moduli space consists of one point.

Proof. As the T2-action is holomorphic, the Chern connection on the an-
ticanonical bundle, which is equal to the determinant bundle, is invariant. The
self-dual part of its curvature is known to be equal to isω/4, and therefore the
pair above is a solution to the Seiberg–Witten equations (another way to see it
consists in observing that if A has only an invariant component, the solution of the
Seiberg–Witten equations on Mθ coincides with the solution of the Seiberg–Witten
equations on M).

Now, the Weitzenböck formula (Lemma 4.22) implies (‖·‖ denoting the L2-
norm)∥∥∥∥2F+

A +
isω

4

∥∥∥∥2

= τ

(〈
2F+

A +
isω

4
, 2F+

A +
isω

4

〉
A

)
=
τ (〈q(ψ), q(ψ)〉A)

2
.

Now, q(ψ) = Θψ,ψ − A〈ψ,ψ〉
2 , and thus

〈q(ψ), q(ψ)〉A =
(
〈q(ψ),Θψ,ψ〉A

)
= A〈q(ψ)ψ,ψ〉

2
.
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and it follows from (4.10) that

τ(〈q(ψ), q(ψ)〉A) 6 −s
2
τ(〈ψ,ψ〉A) 6

s2

2
vol(M).

Thus, ∥∥2F+
A + ρ

∥∥2
6
∫
M

(s
4
‖ω‖

)2

vol =

∫
M

∥∥ρ+
∥∥2

vol,

where ρ is the Ricci form of M . Its cohomology class coincides with that of 2πc1(L),
where L = K−1

X is the anticanonical bundle. As the curvature s is constant, ρ is
harmonic, and therefore∫

M

∥∥ρ+
∥∥2

vol = 2π2c1(L)2 +
1

2

∫
M

‖ρ‖2 vol

6 2π2c1(L)2 +
1

2

∫
M

‖2E0(FA) + ρ‖2 vol 6 2π2c1(L)2 +
1

2

∫
M

‖2FA + ρ‖2 vol

=

∫
M

∥∥2F+
A + ρ

∥∥2
vol,

where E0(FA) is the invariant part of the curvature. Hereby we used that E0(FA)
is a closed form in the same cohomology class as ρ and the fact that the pairing
between the K-theory class of KX and the fundamental cyclic cohomology class is
expressed in the terms of the curvature [Con94, Prop. 3.8].

Now, in view of the inequality

‖2E0(FA) + ρ‖2 6 ‖2FA + ρ‖2 ,
the equality being equivalent to FA = E0(FA), we obtain

2FA + ρ = ρ,

and thus, A is a connection on a trivial module with curvature equal to 0.
Moreover, the above inequalities imply E0(〈ψ,ψ〉A) = −s, and thus (4.10)

implies ∇ψ = 0. Thus, ∇2ψ = 0. But the curvature on the second component is
necessarily nontrivial (coming from the curvature of L = K−1

X ), and therefore we
must have ψ = (α, 0). But then α =

√
−su, where u is a unitary, and, taking u as

the gauge transformation, we arrive at the described solution. �
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