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Zusammenfassung 

Das Protein Aktin ist eine wichtige Komponente des Zytoskeletts und wird in vivo in 
Filamente, Bündel und Netzwerke organisiert. Aktinfilamente gelten als Modell-
systeme für semiflexible Polymere um grundlegende Probleme und Fragestellungen in 
der Polymerphysik zu beantworten. In der hier vorliegenden Arbeit werden 
Experimente zum Verhalten einzelner semiflexibler Filamente in mikrofluidischer 
Umgebung vorgestellt. Des Weiteren werden Methoden der Mikrofluidik zur Analyse 
der zeitlichen Entwicklung des Entstehens von Aktinbündeln verwendet. 
Der erste Teil dieser Arbeit beschäftigt sich mit den Eigenschaften der Aktinfilamente 
in Mikrokanälen im Fluss. An verschiedenen Stellen entlang eines Querschnitts des 
Kanals werden Filamente bei unterschiedlichen Geschwindigkeiten analysiert. Die 
fluoreszentmarkierten Filamente werden mikroskopisch abgebildet. Dabei ermöglicht 
eine Laseranregung kurze Belichtungsdauern. Die semiflexible Eigenschaft der 
Filamente ist in den durchgeführten Experimenten von besonderer Bedeutung aufgrund 
der Tatsache, dass die Kanaldimensionen (Kanalbreite und Kanaltiefe) in etwa der 
charakteristischen Längen der Aktinfilamente (Konturlänge und Persistenzlänge) 
entsprechen. Durch den Fluss im Mikrokanal werden die Aktinfilamente gestreckt oder 
gebogen, wobei gestreckte Filamente häufiger zu beobachten sind. Diese sind außerdem 
nahezu in Flussrichtung ausgerichtet. Die Wahrscheinlichkeitsverteilungen des End-zu-
End-Abstandes und des Winkels des End-zu-End-Vektors relativ zur Flussrichtung bei 
unterschiedlichen Geschwindigkeiten zeigen, dass die Streckung und Ausrichtung mit 
zunehmenden Geschwindigkeiten ansteigt. Die charakteristischen Orientierungs-
parameter, der bevorzugte Winkel und die Breite der Wahrscheinlichkeitsverteilung des 
Winkels, gehorchen den Skalengesetzen für steife oder stark gestreckte Polymere im 
einfachen Scherfluss. Zusätzlich zu den gestreckten Filamenten kann teilweise auch 
eine Taumelbewegung beobachtet werden, bei der ein Ende eines Filaments das andere 
überholt. Die Krümmungsradien der gebogenen Filamente während des Taumelns 
nehmen mit ansteigenden Geschwindigkeiten ab. Unter Verwendung des 
Kräftegleichgewichts von Reibungs- und Biegekräften wird ein Skalengesetz hergeleitet, 
mit welchem die experimentellen Werte äußerst gut beschrieben werden können. 
Gebogene Filamente werden zusätzlich auch in der Kanalmitte beobachtet, deren relativ 
stabile Formen durch Parabeln beschrieben werden können. Der Grund für die 
Verbiegung dieser Filamente ist das nicht-monotone, parabolische Flussprofil. Die 
parabelförmigen Konturen können mit einem Model eines elastischen Stabes 
beschrieben werden. 



 

 

 

Zusätzlich zu den Konformationen und Orientierungen der Filamente im Fluss wird die 
Häufigkeitsverteilung der Filamente an verschiedenen Kanalpositionen entlang eines 
Querschnittes analysiert. Wahrscheinlichkeitsverteilungen des Schwerpunktes zeigen, 
dass die Filamente nicht gleichmäßig über die ganze Kanalbreite verteilt sind. In Nähe 
der Wände existieren deutliche Verarmungszonen. Bei hohen Flussgeschwindigkeiten 
bildet sich zusätzlich eine starke Verarmungszone in der Kanalmitte aus. Eine 
Verringerung der Filamentdiffusivität hin zur Wand ist aufgrund der ansteigenden 
Scherrate vorhanden. Dies führt zu einer Bewegung der Filamente weg von der 
Kanalmitte. In Nähe der Wände lassen sich die Verarmungszonen durch sterische und 
hydrodynamische Wechselwirkungen mit den Wänden erklären. Die ortsabhängige 
Diffusivität der Filamente kann bestimmt werden indem eine Proportionalität zwischen 
Diffusivität und mittlerer quadratischer Abweichung der Filamentsegmente von der 
Stromlinie des Filamentsschwerpunktes angenommen wird. Unter Verwendung dieser 
Diffusivität können die Wahrscheinlichkeitsverteilungen des Schwerpunktes bei ver-
schiedenen Geschwindigkeiten berechnet werden. Die berechneten und experimentellen 
Verteilungen zeigen die gleichen grundlegenden Merkmale wie Verarmungszonen an 
den Wänden und in der Kanalmitte. Im Grenzfall für hohe Geschwindigkeiten erlaubt 
das Modell sogar eine quantitative Beschreibung.  
Im zweiten Teil der Arbeit wird die Bildung von Bündeln bestehend aus Aktin-
filamenten unter Zugabe bündelbildender Proteine oder mehrwertiger Ionen diskutiert. 
Mit Methoden der Mikrofluidik basierend auf hydrodynamische Fokussierung wird die 
Bündelung zeitaufgelöst auf molekularer Skala fluoreszensmikroskopisch abgebildet. 
Ausgehend von einzelnen Filamenten wird die Bildung der Bündel und deren 
Anwachsen analysiert. Aus der Intensität des Fluoreszenssignals kann dabei die Anzahl 
der Filamente innerhalb eines Bündels bestimmt werden. Die Auswertung zeigt, dass 
die Bündlung von Aktinfilamenten ein diffusionslimitierter Prozess ist. Durch Analyse 
der thermischen Fluktuationen der Bündel lassen sich auch ihre mechanischen 
Eigenschaften bestimmen. Die Abhängigkeit der gemessenen Persistenzlänge von der 
Anzahl der Filamente innerhalb eines Bündels weißt auf eine schwache Kopplung der 
Filamente untereinander hin. Diese Kopplung resultiert vermutlich aus einer 
Optimierung der Ladungsverteilung innerhalb der Bündel.  
Die Ergebnisse der vorliegenden Arbeit zeigen, dass die Kombination von Mikrofluidik 
und Fluoreszensmikroskopie eine leistungsfähige Methode zur Untersuchung von 
Bündel- oder Netzwerkbildungen ist. Besonders beachtenswert ist die Möglichkeit einer 
zeitaufgelösten Beobachtung und Analyse, die ein sehr großes Potential der Erforschung 
anderer zeitabhängiger Prozesse, wie beispielweise von enzymatischen Reaktionen und 
Polymerisationen hat.  



       

 

Abstract 

Actin, a protein and major component of the cytoskeleton, is organized in vivo into 
filaments, bundles, and networks which play an important role in mechanical stability 
and cellular motility. Aside from their biological relevance, actin filaments can be used 
as model systems for semiflexible polymers to answer fundamental physical questions 
in polymer science. In the presented thesis, results are discussed which consider the 
behavior of single semiflexible polymers in the field of microfluidics. Moreover, 
microfluidic tools are also used to study the bundling of actin filaments in vitro.  
In the first part of this thesis, the behavior of semiflexible actin filaments in flow inside 
microchannels is investigated. The filaments are analyzed at different channel positions 
along a cross-section for different flow velocities. To this end, fluorescently labeled 
actin filaments are observed by using fluorescence microscopy for which a laser 
illumination enables short exposure times. In order to gain results for which the 
semiflexible nature of actin filaments is significant, the channel dimensions (width and 
depth) are adapted to have approximately the same size as the characteristic lengths of 
the filaments (persistence length and contour length). The results indicate that the 
microflow causes either elongation or bending of filaments. Predominately, the 
filaments are elongated. The elongated filaments are nearly aligned in the flow direction. 
The elongation and alignment increase with larger flow velocities as it is seen in the 
end-to-end distance probability distributions and the angle probability distributions. The 
characteristic parameters of the filament orientation, the preferred angle and the width 
of the angle probability distribution, obey scaling laws which are known for strongly 
elongated or stiff polymers in simple shear flow. In addition to elongated filaments, 
tumbling of filaments is observed. The radii of curvature of bent filaments during 
tumbling decrease with increasing velocities. By balancing drag forces and bending 
forces, a scaling is derived with which the experimental values can be described. 
Additionally, bent filaments are also found at the channel center. In this region, the bent 
shapes are stable and can be quantified by parabolas. These bent conformations can be 
related to the non-monotonic parabolic velocity field, and the parabolic profiles can be 
reconstructed by modeling filament as elastic rods.  
Additionally to conformational and orientational studies of actin filaments in flow, an 
important point of interest is the channel positions along the cross-section at which 
filaments are most frequently found. The center-of-mass probability distributions show 
that the filaments are not equally distributed over the channel width. For large velocities, 
filaments are less frequently found near the channel center. Furthermore, depletion 



 

 

 

layers near walls are observed. Consequently, filaments migrate away from the channel 
center as well as away from the channel walls. The cross-streamline migration away 
from the channel center can be explained by a decrease of the filament diffusivity 
toward the walls due to an increase of the shear rate. Near walls, steric and 
hydrodynamic interactions with the walls lead to depletion layers. To quantify the 
spatially-varying diffusivity, the segment distributions of filaments at different channel 
positions as well as for different velocities are analyzed. Assuming proportionality 
between the diffusivity and the mean square deviation of segments from the center-of-
mass streamline of filaments, the diffusivity at each channel position for a certain flow 
velocity can be determined. Using this diffusivity, a governing equation for the center-
of-mass probability distribution is set up in which the spatially-varying diffusivity and 
hydrodynamic interactions with the walls can generate drift on the filaments. The 
calculated and measured distributions show the same essential characteristics like 
depletion layers at walls and the channel center. For large velocities, a nearly 
quantitative agreement is obtained.  
The second part of this thesis considers the actin bundling in the presence of linker 
molecules. Using microfluidic tools, a method is developed in order to observe the 
bundling of actin filaments in situ at a molecular level. The bundles are imaged by 
fluorescence microscopy and the intensity of the emitted light from a bundle is a 
measure for the number of filaments inside the bundle. Usage of a hydrodynamic 
focusing device enables a time-resolved visualization of the bundling from single 
filaments to thick bundles. As a result, it is shown that bundling is a diffusion-limited 
process. Furthermore, the analysis of thermal fluctuations of bundles characterizes their 
mechanical properties and a relation between the persistence length and the number of 
filaments is obtained. This relation suggests a weak coupling between filaments inside 
bundles, probably induced by the electrostatic nature of actin.  
The results presented in this thesis show that the combination of microfluidics and 
fluorescence microscopy is a powerful tool to investigate the kinetics of the actin 
bundling at a molecular scale. More generally, the time-resolved visualization of the 
step-by-step process has a large potential for studies of any bundling or network 
formation, and also for other time-dependent processes such as enzymatic reactions or 
polymerizations.  
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Chapter 1  

Introduction 

The field of microfluidics aims to develop techniques to manipulate, control, and 
analyze chemical reactions and physical as well as biological processes on the micro- 
and nanoscale. To this end, the behavior of small fluid volumes is studied. The popular 
idea of a “lab-on-a-chip” is to integrate several laboratory operations, for example 
sample preparation and detection, into a single microfluidic device. Due to the 
miniaturization of the system, samples that are expensive or difficult to obtain can be 
handled. Additionally, integration of several steps into one microfluidic device enables 
faster analysis. The possibility of single particle detection increases the measurement 
sensitivity. Furthermore, important conditions of processes, such as concentrations or 
temperature, can be controlled precisely. It is conceivable that in the future integrated, 
portable clinical diagnostic devices for home use will replace time-consuming 
laboratory analysis. Nowadays, many microfluidic applications are already available 
including techniques for DNA sequencing, polymerase chain reaction, cell sorting, and 
cell culture [1, 2]. 
Typical micro- and nanofluidic devices have a length scale comparable to the dimension 
of many components involved in fundamental biological processes such as several 
biopolymers (e.g. DNA or actin). Microfluidics are therefore a powerful tool for 
manipulating and studying individual biopolymers, and experiments and techniques can 
be performed which are not possible at macroscopic scales [3]. Furthermore, 
microfluidic devices can mimic conditions that exist in biological systems. For example, 
the flow and geometry of blood vessels can be modeled similar to physiological 
conditions [4]. 
Microchannels can also be used to study effects due to confinement, which is often 
found in biological systems such as for individual actin filaments confined by the dense 
cytoskeleton network inside cells [5, 6]. The cytoskeleton of cells is a complex polymer 
network which plays an important role in cellular motility and mechanical stability. By 
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decreasing the complexity of the system by performing in vitro experiments with only a 
few components, the mechanical properties of the different components and their 
interactions can be analyzed. This helps to identify their biological relevance and to 
obtain a more precise picture of composition, properties, behavior, and functionalities of 
the cytoskeleton.  

1.1 Microfluidics of Dilute Polymer Solutions 

The physical behavior of a fluid with only a nano- or picoliter in volume can differ 
dramatically from that known at the macroscopic scale. One important property at the 
microscale is the Reynolds number, which is the ratio of inertial forces to viscous forces. 
In microfluidic channels, the Reynolds number is typically very small and the flow is 
laminar. Thus, flow fields for Newtonian fluids are deterministic and in principle 
predictable, which simplifies the handling of fluids in several aspects. On the other hand, 
the laminar flow can also be a disadvantage because mixing only occurs by diffusion. 
For efficient mixing, techniques are required which increase the interfaces between the 
fluids [7]. The behavior of fluids in microfluidic devices are also dominated by fluidic 
resistance, surface tension, and an increased surface area to volume ratio [8]. In addition, 
so-called complex fluids, to which polymer solutions belong, can behave quite 
differently compared to simple Newtonian fluids. For example, the flow can become 
chaotic, even at small Reynolds numbers, for dilute polymer solutions by a phenomenon 
called elastic turbulence [9, 10]. Since polymers are involved in many microfluidic 
applications, for example in DNA or protein analysis [3], knowledge about the behavior 
of polymers in microfluidic devices is important. Material transport properties, 
orientation, and configuration are useful for designing new devices and developing new 
microfluidic techniques. In order to increase the understanding, many experiments have 
been performed by observing the behavior of polymers in different flow fields [11-16]. 
In particular, the conformation and orientation of DNA molecules (e.g. λ-DNA with 
persistence length about 50nm and contour length about 16.5µm [17]) have been 
investigated extensively in many flows, including elongational [14, 18], shear [11-13], a 
combination of both elongational and shear [16], oscillatory [15], and Poiseuille [19]. 
As a result it has been shown that the DNA molecules in shear flow stretch and align in 
the flow direction [12] and additionally tumble due to thermal noise or velocity 
fluctuations [11, 20]. However, little is known about the behavior of other biopolymers 
in microflow, which cannot necessarily fit into the DNA descriptions. There are 
interesting questions regarding the semiflexible actin, which are discussed in this thesis.  
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1.1.1  Cross-Streamline Migration 

Besides the orientational and configurational behavior of polymers in different flow 
fields, the positions of polymers inside microchannels are an important point of interest 
for microfluidic applications. Due to cross-streamline migration of polymers under flow, 
the concentration of polymers along a cross-section of a channel is not constant. There 
is experimental evidence of depletion layers near confining walls in curvilinear [21-23] 
and rectilinear geometry [23-25]. However, predictions from different theoretical and 
computational studies for polymers in microchannels are controversial, even in 
answering fundamental questions such as the direction of migration toward or away 
from walls [23, 26, 27]. 50 years ago, a decrease of the depletion layers with larger 
shear rate was assumed because the alignment and elongation of the polymers in flow 
reduce the steric hindrance to approach a wall [23]. However, it was experimentally 
found that for flexible polymers depletion layers near a single wall increase with higher 
flow strength [25].  
Thermodynamic arguments predict migration toward the channel center for Poiseuille 
flow and therefore describe correctly the increase of depletion layers near the walls [23, 
28]. For this special flow field, the local shear rate has a minimum at the channel center 
and decreases toward the walls. Thus, polymers near walls are more stretched than 
polymers at the channel center. Since the configurational entropy is decreased for a 
stretched polymer, the entropy is largest at the channel center. This leads to the above 
mentioned assumption of migration toward the channel center, and the probability to 
find a polymer at the channel center should be largest. However, some computer 
simulations disagree with this prediction and they suggest, additionally to depletion 
layers at the walls, a local minimum in the probability distribution of the center-of-mass 
of the polymers at the channel center  [29, 30]. Furthermore, migration is always caused 
by position-dependent configurations of polymers across the channel in thermodynamic 
theories, and therefore no migration is predicted in uniform flow. However, experiments 
[23] and computer simulations [30] demonstrate that depletion layers near walls exist 
even in the case of uniform shear flow. Consequently, thermodynamic theories cannot 
describe migration of polymers completely. In a flowing polymer solution in 
microchannels, thermodynamic arguments should also be treated carefully [27, 31]. 
These systems are not at equilibrium and an external force is needed to describe the 
flow scenario.  
Recently, it has been shown in computer simulations [29, 30] that hydrodynamic 
interactions of polymers with walls are needed in order to understand cross-streamline 
migration in microfluidic devices. Generally, in kinetic theories two different sources 
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for migration in straight channels have been predicted [26, 29]. Near a wall, a 
deterministic migration is generated by broken symmetry of hydrodynamic interactions, 
which leads to migration of polymers away from walls [26, 29]. This is consistent with 
the experimental results of increased depletion layers near a single wall found for DNA 
molecules [25]. Additionally, Brownian migration [26, 29, 32, 33] is expected in 
inhomogeneous flow due to a coupling of a spatial-varying diffusion of polymers with 
hydrodynamics which leads, for Poiseuille flow, to a migration away from the channel 
center [29]. So far, no measurements show an experimental evidence for Brownian 
cross-streamline migration in straight channels.  

1.1.2 Actin Filaments: a Model System for Semiflexible Polymers 

The behavior of flowing polymers in microchannels is not only determined by the flow 
field and channel geometry, but certainly also by the properties of the polymers. An 
important property to quantify the polymer stiffness is the persistence length Lp, which 
is the distance over which the segment orientations are correlated. For flexible polymers 
the persistence length is small in comparison to the contour length L (L >> Lp), and for 
stiff polymers it is large (L << Lp). In an intermediate regime for which the persistence 
length is approximately equal to the contour length (L ≈ Lp), the polymer is described as 
semiflexible.  
Our experiments are performed with actin filaments, a component of the cytoskeleton of 
cells, which is often used as a model system for semiflexible polymers [5, 34]. Actin 
filaments have a persistence length of about 13 µm [5, 6]. In vitro, the average length of 
actin filaments is typically 5-20µm [35], depending strongly on conditions during the 
polymerization process. Thus, actin filaments belong indeed to the class of semiflexible 
polymers. However, a polymerized actin solution in vitro is always polydisperse and the 
lengths of the filaments vary. They can be up to 100µm long [36]. Consequently, 
looking only at very long (L >> Lp) or very short (L << Lp) filaments, actin can also be 
used as a model system for flexible or stiff polymers. Because the persistence length of 
actin is several micrometers long, the contour can be observed with microscopy 
techniques. Thus, conformations and dynamics of actin can be studied directly. The 
possibility to visualize the contour is a key advantage of actin over synthetic polymers, 
which have typically persistence lengths of only a few nanometers [37].  
Most experimental studies in microfluidics have been performed with flexible polymers 
(often DNA [9-16, 19-22, 25, 38] ) or stiff polymers (e.g. microtubules [39, 40]). In this 
thesis, the behavior of semiflexible polymers is investigated in pressure-driven flow. To 
obtain specific features in the behavior of the polymers resulting from their semiflexible 
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nature, the relevant length scales are chosen to have almost the same size. More 
specifically, the characteristic lengths of the polymers (contour length and persistence 
length) are commensurate with the channel dimensions (width and depth). The 
orientation and conformation of the polymers are analyzed at different channel positions. 
Furthermore, the center-of-mass probability distribution is measured along a cross-
section of the channel in order to study cross-streamline migration of polymers over the 
entire channel. In addition to the investigations of single actin filaments in microflow, 
microfluidic tools are also used in this thesis to bundle actin in situ.   

1.2 Actin Networks and Bundles 

 
Figure 1-1: Actin networks in muscle cells (red color: actin, blue color: cell nucleus) [5]. 

Actin is one of the three major components of the cytoskeleton of cells and plays an 
important role for determining the cell shape, providing mechanical support, and 
enabling cell motility and cell division [41]. Actin is one of the most abundant proteins 
in eukaryotic cells. In muscle cells, actin is, together with myosin, the major protein and 
makes up about 10% [41] of the weight of the total cell proteins. Even in non-muscle 
cells, actin comprises 1-5% [41]. Actin is also one of the most highly conserved 
proteins differing by no more than 5% between species [41]. Actin monomers are 
globular proteins consisting of approximately 375 amino acids (43kD). The monomers 
can polymerize into filamentous actin, which are thin helical fibers of approximately 
7nm in diameter and up to several micrometers in length. Actin filaments have polarity 
and their ends (designated as minus and plus end) can be distinguished because the actin 
monomers are all orientated with their cleft end in one direction (toward the minus end). 
Monomers can bind to both end of filaments but filaments grow faster at the plus end. 
The polymerization is reversible and filaments can depolymerize by dissociation of 
monomers. Both actin filaments and monomers are found in vivo. Polymerization and 
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depolymerization inside a cell, depending on many of different factors, determine the 
length distribution of the filaments.  
Within a cell, actin filaments are organized in bundles and three-dimensional networks. 
Bundles are closely packed parallel arrays of actin filaments, whereas actin networks 
are loosely packed three-dimensional, often orthogonal, meshworks. The actin 
cytoskeleton is a dynamic system, where filaments shrink or grow in length, and 
bundles and networks are formed or dissolved. This fast modification in their 
organization can lead to large changes in the cell shape. 
The crosslinking into bundles and networks as well as the polymerization and 
depolymerizition of actin are regulated by a large number of different actin-binding 
proteins (ABPs). Over 150 ABPs are known, accounting for approximately 25% of 
cellular proteins [42]. There are ABPs that bind to monomers, but some also bind to 
filaments. The roles of ABPs include sequestering, capping, cutting, and stabilizing 
actin filaments. Furthermore, some ABPs crosslink actin filaments in higher ordered 
structures. In the following discussion, we focus on these actin crosslinking proteins and 
show some examples of actin arrangements inside cells. Typically, actin crosslinking 
proteins have two actin binding sites and their length and flexibility determine whether 
predominantly bundles or networks are formed. Short rigid proteins force actin 
filaments to lie close together. Parallel aligned arrays of actin filaments are formed and 
result in actin bundles. In contrast, long flexible proteins can arrange actin filaments in a 
more complex manner with more distance between them, resulting in networks.  

 
Figure 1-2: Actin bundles and networks.  a) Dense actin bundle formed by fimbrin. b) Loosely 

spaced actin bundle formed by α-actinin. c) Actin network formed by filamin.  

Within a cell, the highest concentration of actin filaments is beneath the plasma 
membrane [41], where the filaments are organized in a network called the cell cortex. 
One ABP involved in this network is filamin, which binds two orthogonal actin 
filaments together and create a loose three-dimensional network (figure 1-2c). The 
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structure of the actin network varies in different cells, but the main task of the cell 
cortex is the same for all cells: to determine and to stabilize the cell shape. Furthermore, 
the cell cortex is involved in a variety of surface activities such as cell movement. 
Another example of actin organization is the formation of dense actin bundles, which 
exist in fingerlike membrane projections like microvilli [41]. In microvilli, the actin 
filaments are closely packed due to the ABPs fimbrin and villin (figure 1-2a). The stiff 
actin bundles support the fragile projecting membrane. The major effect is the increase 
of the surface of cells, which facilitates absorption and secretion. 
More loosely spaced actin bundles are formed by the ABP α-actinin (figure 1-2b). 
These actin bundles build, for example, the contractile ring during cell division. The 
increase of bundle spacing allows interactions with the motor protein myosin. The 
motor protein myosin can “walk” along actin filaments, driven by hydrolysis of ATP, 
and contraction and deformation can occur. Besides cell division, interactions of actin 
and myosin are responsible for a variety of cellular movements, in particular for muscle 
contraction.  
To better understand the behavior and role of actin bundles and networks, in vitro 
experiments have been performed [42-53]. In vitro, actin filaments can be crosslinked 
by ABPs [42, 43], by counterion condensation in the presence of multivalent ions [44, 
45], and by depletion forces in the presence of coiled polymers [54, 55]. Using bulk 
rheology measurements, visoelastic properties of actin networks have been investigated 
for semi-dilute entangled actin networks [47, 48], concentrated gel-like actin networks 
[46, 49] and crosslinked actin networks [50-53]. Microrheology, where the thermal 
motion of small particles inside a network is analyzed, has been used to increase the 
microscopic understanding of actin networks [56, 57].  To obtain information about the 
structure of actin networks, solutions have been studied mainly using x-ray scattering 
[58-62], (confocal) fluorescence microscopy [57, 63], electron microscopy [62, 64], and 
optical birefringence [65, 66].  
The crosslinking and bundling of actin filaments have been usually observed in bulk 
solutions, having a large number of filaments and crosslinker molecules inside the 
solution. Mainly, the macroscopic behavior has been analyzed. Only a few experiments 
have considered the behavior of individual actin bundles formed by ABPs [67] and the 
behavior of filaments in a network at a mesoscopic length scale [68]. In this thesis, 
dynamics of individual bundles, consisting of only a few actin filaments, are 
investigated. Furthermore, experiments are performed to study the kinetics of actin 
bundling. Using microfluidic tools, we are able to observe the time-resolved evolution 
of actin bundles starting with a large number of individual actin filaments and ending 
with only a few thick bundles.  
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Chapter 2  

Materials and Methods 

2.1 Soft Lithography  

We fabricate the microfluidic devices using soft lithography [69, 70]. This technique 
consists of two basic steps. Firstly, a master is produced by photolithography (see figure 
2-1). In a second step, a negative replica of the master is made using an elastomeric 
polymer (see figure 2-2).  

 
Figure 2-1: Photolithography. a) Clean silicon wafer. b) Spincoated photo resist.  c) Illumination 

with UV light through a mask. d) Master.   

 
Figure 2-2: Fabrication of a PDMS replica. a) PDMS poured on the master. b) Open 

microstructure in PDMS. c) Microfluidic device. 

For fabrication of the master, a photo resist is spincoated onto a silicon wafer (figure 
2-1b). After connecting a mask with the photo resist, the resist is illuminated by UV 
light and the exposed areas are crosslinked (figure 2-1c). Removing all not-illuminated 
photo resist with a solvent, a master is obtained consisting of a patterned resist on a 
silicon wafer (figure 2-1d). To produce a replica of the master in PDMS 
(poly(dimethlysiloxane)), the PDMS-precursor is mixed with a crosslinker and poured 
onto the master (figure 2-2a). After curing, the PDMS can be peeled off (figure 2-2b). 
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The resulting open microstructure can be covered with a cover slip, tubes can be added, 
and the microfluidic can be used for experiments (figure 2-2c).  
The major advantage using soft lithography is the fast prototyping of microfluidic 
devices, that allows in principle the realization of new designs in 24h [70, 71]. Once the 
more time-consuming step of producing a master has been made, the master can be used 
many times for making microfluidic devices in PDMS. Furthermore, PDMS is 
inexpensive, chemical inert, flexible, and transparent [69]. The surface can be 
functionalized and bond to other materials such as glass [72]. For example, covering the 
channels with a cover slip, which is useful for many microscopy experiments, is easily 
achieved by oxidation.  
In the experiments, the microchannels have a depth of about 10µm (experiments in 
chapter 5) or about 20µm (experiments in chapter 6). The photo resist SU-8 2005 or the 
more viscous resist SU-8 50 (Micro Resist Technology GmbH, Berlin) is used for 
fabrication of the masters to obtain the wanted height of the microstructures. The 
lithography parameters for fabrication of the masters are specified in table 1.  
 

 SU-8 2005/ 10µm SU-8 50/ 20µm 

spin coating: Omnicoat in 5s to 500rpm 
in 7s to 2000rpm 
30s @ 2000rpm 

- 

baking 1min @ 200°C - 

spin coating: photo resist in 5s to 500rpm 
in 1s to 800rpm 
60s @ 800rpm 

in 10s to 700rpm 
in 30s to 4500rpm 
30s @ 4500rpm 

soft baking 1min @ 65°C 
4min @ 95°C 

10min @ 65°C 
45min @ 95°C 

exposure  
(λ=365nm, 15mW/cm2) 

28s 30s 

post baking 6min @ 95°C 10min @ 95°C 

Table 1: Parameters used for photolithography. 

The silicon wafer is cleaned with isopropanol and dried with nitrogen. In the case of 
using SU-8 2005, a thin layer of Omnicoat (Micro Resist Technology GmbH) is 
spincoated onto the silicon wafer and baked. The thin layer of Omnicoat improves the 
adhesion of the resist to the silicon wafer. For the more viscous resist SU-8 50, this 
intermediate step is not necessary. After this preparation, a thin layer of photo resist is 
spincoated onto the wafer and baked again. Using a mask aligner (MJB3; Süss 
Microtech AG, Garching), a lithography mask is brought in contact with the resist and 
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illuminated with UV light. Depending on the size of the structures, a chrome mask 
(ML&C, Jena-Maue) or a lithography transparency (JD-Photo-Tools Ltd., Oldham, UK) 
is used. The chrome mask has a higher resolution and is taken for structures ≤ 10µm. 
For larger structures, the resolution of a lithography transparency is sufficient. For 
completely crosslinking the exposed areas, the photo resist is baked again. After 
developing using SU-8 developer (Micro Resist Technology GmbH), the master 
consisting of micostructures of photo resist on a silicon wafer is obtained. 
The master is treated with heptafluoropropyl-trimethylsilane (97%, Sigma Aldrich, 
München) to ensure a hydrophobic surface from which the PDMS can easily be pulled 
off.  Therefore, the master is placed together with 10µl silane in a desiccator, the system 
is evacuated for 1 hour, and the silane absorb from the gas phase to the surface. Sylgard 
184 PDMS (Dow Corning GmbH, Wiesbaden) is mixed with his crosslinker and 
thoroughly poured onto the master. To remove air bubbles inside, the sample is placed 
again in a desiccator and the system is evacuated until no bubbles are visible anymore. 
The sample is baked for 4 hours at 60°C to crosslink the PDMS. Finally, the PDMS is 
pealed off from the master.  
The PDMS is bonded to a cover slip to obtain a closed microfluidic device. Before the 
bonding, holes are punched with a blunt needle into the filling areas. Then, the PDMS is 
put together with a cover slip into a plasma cleaner (Harrick Plasma, Ithaca, USA). 
Plasma is created for 10s at a pressure of 2mbar and the surfaces are oxidized. Bringing 
both surfaces immediately after oxidation in contact, a covalent bond between glass and 
PDMS is formed. Polyethylene tubes (inner diameter: 0.28mm, outer diameter: 0.61mm; 
Smiths Medicas International Ltd, UK) are glued into the connection holes using a 
special two-component glue for plastics (Loctite 406; Novodirect, Kehl/Rhein). The 
microfluidic device is now ready-for-use.  

2.2 Sample Preparation  

To prevent absorption of actin filaments at the walls, the channels are coated before the 
experiment. For experiments with single actin filaments, the channels are rinsed with a 
1mg/ml BSA (bovine serum albumin; Sigma Aldrich, München) solution. BSA 
saturates the surfaces and prevents thereby non-specific protein absorption.  
Additionally a 1mg/ml BSA solution is added 1:10 to the actin solution of the 
experiment. Unfortunately, actin bundles stick to the BSA-coated surfaces, and a more 
complicated polyelectrolyte multilayer coating is used for actin bundling experiments 
(see figure 2-3).  
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Figure 2-3: Polyelectrolyte multilayer coating.  

Immediately after oxidation, the surfaces are negatively charged [72]. Rinsing the 
channels with a 1mg/ml PEI (poly(ethyleneimine)) solution, the positively charged PEI 
coat the surfaces. In a next step, the channels are coated with a negatively charged 
1mg/ml PSS (poly(styrene sulfonate)) solution. Finally, the channels are rinsed with a 
1mg/ml PLL(20)-g[3.5]-PEG(2) (SurfaceSolutionS GmbH, Zürich, CH) solution, which 
consists of PLL (poly(L-lysine)) grafted to PEG (poly(ethylene glycol)). PLL is 
positively charged and bind therefore to the PSS layer. The densely packed PEG chains 
at the surfaces reduce protein absorption [73, 74]. The channels are rinsed with water 
after each coating step. Tests with different coated surfaces showed that less actin 
bundles stick to the multilayer coated surfaces compared to directly with PLL-g-PEG 
coated surfaces (without the intermediate step of PEI and PSS). Probably, the binding of 
PLL to a soft surface is better which is generated by the intermediate coated layers of 
PEI and PSS.  

 
Figure 2-4: Position-dependent velocity inside a microchannel due to diffusion of water through the 

PDMS. 

microfluidic device… 
... in water bath 
… in air 
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During the experiment and also at least three hours before the start of the experiment, 
the microfluidic device is in a water bath. This is important because PDMS is permeable 
to water [75]. Water can diffuse (diffusion constant: D ≈ 10-9m2/s [75]) through the 
PDMS out of the channel. A water bath saturates the PDMS with water [76]. Without a 
water bath, the velocity becomes slower along the channel and the concentration of 
particles inside the aqueous solution increases. To illustrate this effect, the velocity 
along a channel (width: 50µm, depth: 30µm) is shown in figure 2-4. The velocity was 
firstly measured for a microfluidic device in air and a clear decrease along the channel 
was found. Having the same microfluidic device for 2 hours in a water bath, the velocity 
was nearly constant.  

2.3 Liquid Pumping System 

To create a pressure-driven flow inside the channels, we use two different methods. For 
wide channels (> 20µm x 20µm) and a high velocities (> 500µm/s), we use custom-
made syringes pumps. For narrower channels or smaller velocities, the feed of our 
syringe pumps is too small to ensure a uniform velocity. For these cases, an external 
pressure is applied at the tubes. During experiments, the pressure is created by the 
difference of the height (∆h = 1cm-1m) of two reservoirs (see figure 2-5a). To fill the 
channels and to rinse them with a larger amount of liquid, e.g. for a coating, a higher 
pressure is needed. In these cases, the pressure is generated by a compressed gas 
cylinder filled with nitrogen. The gas cylinder is connected by tubes via a reducing 
valve with a reservoir (see figure 2-5b). A pressure inside the microfluidic device 
between 0.1bar and 2bar can be adjusted by the reducing valve.  

 
Figure 2-5: Pressure-driven flow: a) by the height of two reservoirs, b) by the pressure of a gas 

cylinder. 
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The flow rate Q within a microchannel is given by Q = ∆p/Rc, where ∆p is the pressure 
difference across the channel and Rc is the channel resistance. The resistance of a 
circular channel is given by [3] 

4

8
r
L

R c
c π

η
= , 2.1 

where η is the viscosity, Lc is the length of the channel and r is the radius. 
Approximately, this is also the resistance of a symmetric rectangular channel. If the 
width d of a rectangular channel is much larger than its height h (d >> h), the resistance 
is given by [3] 

dh
L

R c
c 3

12
π

η
= . 2.2 

Therefore, a long narrow channel exhibits a higher fluidic resistance than a wide short 
channel. Our microfluidic devices resist a pressure up to ∼2bar. To work with low 
pressures, the resistance of the channels has to be as small as possible. The width and 
depth of the channels are often specified by experiment, but we try to keep the length of 
the channels short. Furthermore, we often use parallel channels (see figure 2-5) with 
total resistance Rc = Rc,0/Nc, where Nc is the number of channels and Rc,0 is the resistance 
of a single channel. 

2.4 Fluorescence Microscopy 

The actin filaments, labeled with a fluorescent dye, are imaged by fluorescence 
microcopy. The used setup is shown in figure 2-6. As a modification of the fluorescence 
microscope (BX61; Olympus GmbH, Hamburg), a laser (GL532T-300; wavelength: 
532nm; power: 300mW; AMS Technologies AG, Martinsried/München) can be used as 
a light source. This is in particularly important for imaging of fast flowing objects. In 
figure 2-7, pictures of actin filaments in flow are shown recorded with different 
exposure times. The contour blurs more and more with increasing exposure time. To 
avoid this effect, the use of short enough exposure times, depending on the velocity of 
the actin filaments, is necessary. An increase of the intensity of the light source is a 
promising possibility to decrease the required exposure time for imaging the actin 
filaments. Therefore, the experiments of flowing actin filaments are performed with the 
laser, whereas for non-flowing actin filaments the intensity of the Xe-lamp (75W) is 
sufficient. For illuminating actin filaments with the laser, an exposure time of only 
0.5ms is used for imaging. In contrast, an exposure of 25ms is required in the case of 
the Xe-lamp.  
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Figure 2-6: Laser setup for fluorescence microscopy. 

The sample is illuminated by the laser with an optical path according to Köhler 
illumination. The parallel laser light (diameter: ≈ 1mm) is expanded 10 times with a 
beam expander (Thorlabs GmbH, Karlsfeld). With an achromatic lens (focal length: 
30cm), the light is focused to the back focal plane of the objective (100x Plan 
Apochromat oil immersion) so that parallel laser light illuminates homogenously the 
sample from above. In doing so, the light passes a laser clean-up filter, and a dichroic 
mirror reflects the light down to the sample. The light excites dye molecules in the 
sample and they emit a lower energy light. The used fluorescence dye is rhodamine, and 
its absorption and emission spectrum is seen in figure 2-8b. The emitted light passes the 
dichroic mirror and a high pass filter. Wavelengths above 545nm are cut off, in 
particular possible reflections of the laser at the sample. Images are taken with a 
sensitive CCD-camera (PCO SensiCamQE; PCO, Kehlheim). The transmission 
spectrum for all filters (AHF, Tübingen) are shown in figure 2-8a. 
To avoid photo bleaching and breaking of the actin filaments due to too long 
illumination of the sample, a shutter creates a stroboscopic illumination. The shutter 
 

 
Figure 2-7: Blurring of the contour due to long exposure (velocity of the actin filaments: ≈ 0.7mm/s).  

Exposure times :  a) 0.5ms, b) 1ms, c) 2.5ms, d) 5ms, e) 10ms.  
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Figure 2-8: a) Transmission spectra of the filter set used for fluorescence microscopy consisting of a 

clean-up filter, a dichroic mirror, and a high pass filter [77]. b) Absorption and emission spectrum 

for rhodamine [78]. 

(LS6; Uniblitz, Rochester, USA) is synchronized with the CCD-camera, so that the 
camera only takes pictures when the shutter is open. Another advantage of the 
stroboscopic illumination is the possibility of observing fast changes in the filament 
contour by illuminating the sample several times during a single image exposure. 
Consequently, the filament can be observed in shorter time periods than the limitation 
of the high-sensitive CCD-camera with a frame rate of about 10Hz allows. An example 
of the stroboscopic effect is shown in figure 2-9. The same flowing actin filament is 
visible in one single image several times.  

 
Figure 2-9 a) Stroboscopic illumination (∆tclose: shutter is closed; topen: shutter is open; texp: exposure 

time of one image). b) Actin filament during a single image exposure: ∆topen = 1ms, ∆tclose = 30ms, 

texp = 300ms. 
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2.5 Actin Polymerization 

Lyophilized powder of rhodamine labeled actin monomers from rabbit muscle 
(molecular weight of 43kDa, purity >99%) as well as all buffers are purchased from 
Cytoskeleton (Denver, USA). After arrival, the actin powder is stored at -70°C. The 
protein is reconstituted to 10mg/ml in a buffer solution (containing 5 mM Tris-HCl (pH 
8.0), 0.2 mM CaCl2, 0.2 mM ATP, 5% sucrose, and 1% dextran) by dissolving the 
powder in ultrapure water. The solution is diluted to 0.2mg/ml in A-buffer (5 mM Tris-
HCl (pH 8.0), 0.2 mM CaCl2, 0.2 mM ATP, and 0.5mM DTT (dithiothreitol)). The 
actin concentration of this solution is optimized to obtain few long actin filaments after 
the polymerization [5]. The solution is placed on ice for two hours to depolymerize 
actin oligomeres, which can form during storage. To induce actin polymerization, the 
salt concentration is increased by adding a polymerization buffer (500mM KCl, 20mM 
MgCl2 and 10mM ATP) of 1/10th of the volume of the actin solution. The critical 
concentration of monomers above actin polymerize into filaments depends strongly on 
the conditions of the actin solution like the ion concentration and temperature. At room 
temperature in absence of monovalent and divalent ions, the critical concentration is 
greater than 3mg/ml [79]. The critical concentration is decreased to 0.03 mg/ml in the 
presence of 2mM MgCl2 and 50mM KCl [79], which are the conditions of the actin 
solution after adding the polymerization buffer. The actin solution is incubated for two 
hours at room temperature, and the actin monomers polymerize into filaments. Finally, 
the actin solution is diluted to 70nM in stabilization buffer (90% A-buffer, 10% 
polymerization puffer, and 70nM phalloidin) and stored at 4°C until the experiment is 
started. The actin concentration of 70nM ensures a dilute solution of actin filaments for 
single molecule experiments and prevents interactions among each other [5]. Phalloidin 
stabilizes the actin filaments and prevent them for depolymerization. The mechanical 
properties of phalloidin-stabilized actin filaments are changed slightly, which should be 
kept in mind by transferring results of in vitro measurements to in vivo systems. The 
persistence length is increased by a factor of two [80], but the filaments are still 
semiflexible and the basic results are valid.  
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2.6 α-Actinin 

The ABP α-actinin is used for actin bundling experiments. The lyophilized powder 
(molecular weight about 100kD, purity >90%) is also purchased from Cytoskeleton and 
stored at -70°C. The protein is reconstituted to 2.5mg/ml in buffer (20mM NaCl, 20mM 
Tris-HCl (pH 7.2), 5% sucrose and 1% (v/v) dextran). The solution can be stored at 4°C 
several weeks. Before starting an experiment, the solution is diluted to the required 
concentration.  
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Chapter 3  

Worm-Like Chain Model 

3.1 Persistence Length 

The stiffness of a polymer is often characterized by the persistence length Lp, which is a 
measure of the typical length scale for thermal shape fluctuations. The persistence 
length is given by the ratio of bending rigidity κ  and thermal energy kbT [81] 

Tk
L

b
p

κ= , 3.1 

where kb is the Boltzmann constant and T is the temperature. Actually, the persistence 
length depends on temperature, but the persistence length is usually considered at room 
temperature. For flexible polymers such as λ-DNA (Lp ≈ 50nm, L ≈ 16.5µm [17]), the 
persistence length is much smaller than the contour length L (Lp << L). Conformational 
entropy dominates the system, and the configuration in equilibrium is coiled (R << L; R: 
end-to-end distance). In the case of stiff polymers, the persistence length is much larger 
than the contour length (Lp >> L). An example of stiff polymers in biology is 
microtubules (Lp ≈ 6mm, L ≈ 10-3-1mm [81]). The contour of stiff polymers is like a 
rigid rod (R ≈ L), and fluctuations of the contour are hardly visible. For semiflexible 
polymers, the persistence length and the contour length have the same order of 
magnitude (Lp ≈ L). Actin filaments (Lp ≈ 13µm, L ≈ 10µm), which are described in this 
thesis, belong to the category of semiflexible polymers. In this case, bending energy 
dominates the system over conformational entropy. 
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3.2 Worm-Like Chain 

 
Figure 3-1: Worm-like chain represented by the continuous space curve r(s) parameterized by the 

arc-length s. t(s): tangent vector, R: end-to-end distance, L: contour length, ϑ: angle between two 

tangent vectors. 

The polymer model often used to describe semiflexible polymers is the worm-like chain 
model, which was first introduced by Kratky and Porod [82] in 1949. The polymer is 
considered as a thin, incompressible, flexible rod with a finite bending rigidity κ. The 
polymer is represented by the continuous space curve r(s), which is parameterized by 
the arc length s and has a total length of L (see figure 3-1). The statistical properties of 
the worm-like chain are determined by the free energy functional [83] 
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which is obtained by calculating the total elastic energy of a particular conformation. 
The local inextensibility of the chain is expressed by the constraint |∂2r/∂s2| = 1 along 
the entire contour. The probability for different conformations of the semiflexible 
polymer is obtained by Boltzmann weighting the energy of the system.  
Despite the mathematical difficulties of the model [84], some properties of the 
semiflexible polymers can be calculated analytically. The correlation of the tangent 
vectors t = ∂r/∂s shows an exponential decay [83] 
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where the brackets denote an average over all possible configurations. If the polymer is 
confined in two dimensions, equation 3.3 is still correct if a 2-dimensional persistence 
length Lp,2D  = 2Lp is used.  
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The mean square end-to-end distance is given in the worm-like chain model by [83]: 
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Additionally, the end-to-end distance probability distribution can be calculated 
analytically [85] 
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where N1 is a normalization constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER 3  WORM-LIKE CHAIN MODEL 

 

 - 22 - 

 
 

 



 

CHAPTER 4  

- 23 - 

Chapter 4  

Polymers in Microflow 

This chapter considers the behavior of polymers in microflow. In the first section, the 
flow fields are characterized by the Reynolds number. Then, the forces acting on a 
Brownian particle are described. Finally, the behavior of polymers in shear flow and 
migration effects in non-homogenous flow are illustrated by a dumbbell model.  

4.1 Reynolds Number 

Flow of a fluid is often classified into two flow regimes: the turbulent flow and the 
laminar flow [86]. Turbulent flow is chaotic and unpredictable in contrast to laminar 
flow, where the velocity field is either stationary or slowly varying in time. Neighboring 
streamlines flow parallel to each other in the case of laminar flow, whereas streams are 
mixed chaotically in turbulent flow. The dimensionless Reynolds number Re indicates 
whether the flow is laminar or turbulent, and is defined as [86] 

η
vdρRe = , 4.1 

where d is a characteristic length scale of the system (e.g. channel width), ρ is the 
density, η is the viscosity and v is the velocity of the fluid. The Reynolds number is a 
measure of the ratio of inertial and viscous forces on the fluid. For small Reynolds 
numbers (Re < 1), viscous forces dominate and the flow is laminar. In an intermediate 
regime 1 < Re < Recrit, where the critical Reynolds number Recrit is typically 1000-2500 
depending on the geometry [87], the flow is still laminar but inertial forces become 
significant. Above the critical Reynolds number (Re > Recrit), the flow is turbulent. In 
microfluidics, the Reynolds numbers are usually very small, the flow is laminar, and 
inertial effects are irrelevant. For water (ρ  ≈ 1kg/L, η ≈ 1mPa⋅s) flowing with a velocity 
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of 1mm/s in a straight channel with a width of 10 µm (which is used in the experiments), 
the Reynolds number is Re ≈ 10-2. 

4.2 Motion of Brownian Particles 

4.2.1 Drag Force  

A particle moving through a viscous fluid will experience a frictional force from the 
surrounding solvent molecules that oppose its motion. This drag force in the regime of 
small Reynolds numbers is proportional to the velocity [88]: 

vF fdrag c−= , 4.2 

where cf  is the drag coefficient and v is the velocity of the particle relative to the fluid 
velocity.  
For a sphere, the drag coefficient is [81] 

rc f πη6= , 4.3 

where r is the radius of the sphere.  
 

 
Figure 4-1: Drag force of a cylinder moving with velocity v. The drag force F┴ for a motion 

perpendicular to the axis of the cylinder is larger than the drag force F|| in direction to the axis. 

For a cylinder with length L and radius r (see figure 4-1), the direction of the movement 
is important. The drag coefficient for a motion perpendicular to the axis of the cylinder 
is [81] 
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which is larger than the drag coefficient of a motion parallel to the axis [81] 
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4.2.2 Diffusion 

When a small particle is suspended in a fluid, it is subject to collisions with the 
surrounding molecules of the fluid caused by thermal energy of the system. During each 
collision, the change in momentum imparted on the particle varies randomly, which 
makes it undergo a “random-walk” motion, called Brownian motion. Diffusion is the 
spreading of free particles due to their Brownian motion and can be characterized by the 
mean square displacement [89] 

Dtnd22 =r  4.6 

in a time t, where D is the diffusion coefficient of the particles in the surrounding fluid, 
and nd is the dimension of the system.  
To describe the molecular Brownian motion of a free particle, the forces acting on it 
should be considered. First of all, the random collisions of the solvent molecules with 
the Brownian particle result in a rapidly varying force Fbrown(t). This force fluctuates on 
the time scale of 10-14s [89]. As soon as the particle attains a finite velocity, it feels a 
drag force (see equation 4.2) due to systematic collisions of the particle with the solvent 
molecules. Newton’s equation of motion for a Brownian particle with mass m can be 
written as [90] 

This equation is also referred to as the Langevin equation. The fluctuations of the 
random force Fbrown(t) can be characterized in thermodynamic equilibrium by the 
fluctuation dissipation theorem [90]: 

The brackets denote ensemble averaging with respect to many possible realizations of 
the fluctuating force Fbrown,  kb is the Boltzmann constant, T is the temperature, and δ(t) 
is the delta distribution. 
Neglecting inertial forces (small Reynolds numbers), integration of the Langevin 
equation 4.7 gives the position r(t) of a particle at time t with velocity v(t) = dr(t)/dt. 
For a one-dimensional motion of a particle, the position at time t is given by 
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The mean square displacement can be calculated as 

which can be simplified to 

With the fluctuation dissipation theorem (equation 4.8), the mean square displacement 
results in 

Comparison with equation 4.6 gives the Einstein-Stokes relation between the diffusion 
coefficient D and the drag coefficient cf: 

f

b
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4.2.3 Hydrodynamic Interactions 
 

 
Figure 4-2: Illustration of hydrodynamic interactions. One particle (blue) is moving through a 

solvent due to a force F.  This motion excites a flow field (red lines). Other particles (grey) feel this 

flow field and move along its streamlines.  

Several particles suspended in a fluid are coupled by the displacement of the molecules 
of that fluid. The motion of one particle excites a motion of the surrounding solvent 
molecules, and the resultant flow field is felt by all other particles and influences their 
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motions. Hence, the particles experience a force whose origin is the movement of 
another particle. This coupling is called a hydrodynamic interaction. In figure 4-2, such 
a situation is illustrated.  
In general, all particles moving with a velocity dr/dt ≠ 0 relative to the fluid perturb the 
velocity field v(r) of the solvent. If the drag force Fdrag,j, which acts on the j-th particle 
at the position rj, is weak enough, the perturbation of the velocity field is small. Then, 
the perturbation v´(ri) of the solvent velocity at position ri of the i-th particle can be 
approximated by a linear function of the hydrodynamic drag force Fdrag,j [89]. Including 
the motion of all particles, the perturbation flow is given by  

∑=′
j

jdragiji ,)( FΩrv , 4.14 

where Ω is the hydrodynamic interaction tensor, which is for N particles a N x N tensor, 
whose components ijΩ  are a 3x3 matrix. For free particles, the components of the 
hydrodynamic interaction tensor Ωij  are a function of the displacement (ri-rj) between 
the particles i and j [89]. The velocity of the solvent can be estimated by a linear 
superposition  

)( irvv(r) ′+  4.15 
of the unperturbed velocity v(r) of the fluid and the perturbation v´(r) due to 
hydrodynamic interactions.  
For a polymer, the hydrodynamic interactions of the different segments depend on the 
polymer conformation and decrease slowly with distance between the interacting parts. 
Hydrodynamic interactions become very important if the length scale of the system is 
comparable with a characteristic length scale of the polymer [90].  

4.3 Polymers in Shear Flow 

4.3.1 Weissenberg Number 

In addition to the forces (drag force, Brownian force, and hydrodynamic interactions) 
acting on a rigid particle in a fluid considered in section 4.2, elastic forces are important 
for a polymer molecule suspended in a solvent [90]. The shear rate of a flow is a 
measure of the deformation rate of a fluid and is in general described by a tensor [88]. 
For a planar flow with velocity field v = vxex+ vyey, the shear rate is given by [91] 
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The flow can deform the polymer depending on the shear rate and the elasticity of the 
polymer. The dimensionless Weissenberg number [8] 

relWi τγ&=  4.17 
relates a characteristic relaxation time relτ  of the system to the flow deformation time 

1−γ& . For small Weissenberg numbers (Wi << 1), the polymer relaxes before the flow 
deforms it significantly. When the Weissenberg number becomes ∼1, the polymer has 
no time to relax back in its equilibrium state and polymer deformations become 
significant [8].  

4.3.2 Dumbbell Model 

 
Figure 4-3: Dumbbell model. The dumbbell consists of two beads which are connected by a spring. 

Fspring is the spring force, R1 and R2 are the positions of the beads, R is the end-to-end vector and Rc 

is the center-of-mass vector.  

A dumbbell model can be used as a simple model for a polymer [90, 92, 93]. The 
dumbbell consists of two beads of radius a and negligible mass, which are connected by 
a spring (see figure 4-3). The beads represent the ends of the polymer, while the spring 
represents entropic forces. The dumbbell can be characterized by the positions of the 
beads R1 and R2 or by its end-to-end vector R = R2-R1 and its center-of-mass vector 
Rc = (R2+R1)/2. The center-of-mass vector Rc describes the transport of a dumbbell in a 
flow field and the end-to-end vector R describes the conformation (stretching and 
orientation) of the dumbbell. The extension of the dumbbell is given by R = |R|. 
 



 

CHAPTER 4 

       

 - 29 - 

The positions of the beads R1 and R2 are determined by hydrodynamic drag forces, 
Brownian forces, hydrodynamic interactions, and the elastic force of the spring. The 
force balance at the i-th bead is given by 

Inserting the hydrodynamic drag force (equation 4.2) and describing the flow field at the 
position Ri of the i-th bead by a superposition (see equation 4.15) of the (unperturbed) 
solvent velocity v(Ri) and the perturbation v´(Ri) due to hydrodynamic interactions, the 
Langevin equation for the i-th bead of a dumbbell results in 

where dRi/dt is the velocity of the i-th bead.  
In linear approximation of the perturbation velocity (see equation 4.14), the Langevin 
equation can be written as 

where D is the diffusion tensor, whose components are defined as 

δij is the Kronecker symbol, which is one for i = j and otherwise zero, and I is the unit 
matrix.  
With equation 4.20, the evolution of the end-to-end vector  
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and the evolution of the center-of-mass vector 
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can be derived.  
The spring force acting on the first bead Fspring,1 is opposite to the spring force Fspring,2   
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spring,i
f

brown,i
f

ii
i

c
t

ct
FFRvRvR 1)(1)()(

d
d ++′+=  , 4.19 

( ) ))(1)()(
d

d
, spring,ibrown,i

fij
jspring,brown,jiji

i t
c

t
t

F(FFFΩRvR ++++= ∑
≠

 

                ( )∑
=

++=
2

1
)(1)(

j
spring,jbrown,jij

B
i t

Tk
FFDRv , 

4.20 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ijij

f
Bij c
Tk ΩID δ1 , 4.21 



 

CHAPTER 4  POLYMERS IN MICROFLOW 

 

 - 30 - 

acting on the second bead:  

The simplest form for the spring force is the Hookian law [90] 

where H is the spring constant. However, a Hookian dumbbell can be infinitely 
expanded, which is unphysical. A more realistic model is a FENE (finitely extensible 
non-linear elastic) dumbbell, which incorporates nonlinear effects of stretching a 
polymer into the model. The spring force can be approximated by the Warner spring 
law [90]:  

where L is the maximal extension of the dumbbell, corresponding to the contour length 
of the polymer. The relaxation time in the FENE dumbbell model is related to the spring 
constant by [90] 

and the extension of the dumbbell without external force by [90] 

For the case that hydrodynamic interactions can be neglected, the evolution of the end-
to-end vector (equation 4.22) can be simplified to 

)(2))()((
d
d

12 t
ct brownspring

f

ξFRvRvR ++−= , 4.29 

where ξbrown(t) describes the thermal fluctuations of the entire dumbbell. The thermal 
noise ξbrown(t) of the dumbbell can be modeled by a Gaussian white noise, which is 
characterized by the correlation [94]  

With the Warner spring law (equation 4.26), the end-to-end vector is determined by 
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The velocity field is smooth on the scale of the typical size of a polymer in laminar flow 
[89]. The velocity difference v(R1)-v(R2) is approximately proportional to the velocity 
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gradient, such that the k-th component of the velocity difference can be estimated as 

where v(Rc) is the velocity at the position of the center-of-mass of the dumbbell, and Rx, 
Ry, Rz are the components of the end-to-end vector R. With this approximation, the k-th 
component of end-to-end vector (equation 4.31) is determined by 
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4.3.3 Dumbbell in Simple Shear Flow  

 
Figure 4-4: Dumbbell in simple shear flow. The coordinate system (x, y , z) is moving with the 

center-of-mass velocity of the dumbbell. Orientation of the dumbbell can be described by the angles 

Θ and Φ in a spherical coordinate system (R, Θ, Φ).       

A simple shear flow is described by the velocity field [89] 
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where γ&  is the shear rate (see equation 4.16).  
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A simple shear flow has two effects on the dumbbell: advection of the dumbbell due to 
the velocity of the surrounding solvent, and rotation and stretching of the dumbbell 
because of velocity gradients. Rotation and stretching of the dumbbell are described by 
the end-to-end vector, and advection by the motion of the center-of-mass vector. The 
center-of-mass vector primarily follows the streamlines of the fluid. Diffusion of the 
center-of-mass away from the present streamline is small and occurs at larger time 
scales than the rotation and stretching of the dumbbell. Therefore, the equation of 
motion of the end-to-end vector can be decoupled from the equation of motion of the 
center-of-mass vector and in the following discussions the situation is always 
considered in a moving coordinate system ( zyx ~,~,~   ) with the center-of-mass as its origin 
(see figure 4-5).  
With the known velocity field (equation 4.34) for simple shear flow, the evolution of 
the k-th component of the end-to-end vector (equation 4.33) can be written as [94] 
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To investigate the orientation dynamics, it is useful to parameterize the end-to-end 
vector R into spherical coordinates (R, Θ, Φ) and the evolution of the end-to-end vector  
R = (RcosΦcosΘ, RcosΦsinΘ, RsinΘ) can be transformed to [95]: 
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According to 4.36 and 4.37, the probability distribution function P(Θ,Φ) for the angles 
is symmetric with respect to Φ but not symmetric with respect to Θ. Therefore, the 
averaged value of Θ is not zero. The angle Θt of the maximum of the probability 
distribution and the half-width ∆Θ can be estimated by balancing the shear and noise 
terms in equation 4.36, where the noise )(, tξ brownΘ  can be described as Gaussian white 
noise with correlation [94]  
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This leads to scaling laws at large Weissenberg numbers Wi  >> 1 (or Θ << 1) [94]: 
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In the regime R << L, the extension of a flexible polymer can be approximately  
described by a linear elastic dumbbell R ∝  Wi. This leads to the scaling [94] 

1−∝∝ WitΘ∆Θ  . 4.41 

If flexible polymers are strongly elongated or stiff polymers are considered, the 
polymers can be treated as a rigid rod (R ≈ L), and a quite different scaling behavior [94] 

3/1−∝∝ WitΘ∆Θ  4.42 

is found.  
These scaling laws have been also confirmed by a more realistic Gaussian semiflexible 
polymer model [96] and by numerical simulations [94].  

4.4 Cross-Streamline Migration  

 
Figure 4-5: Migration of a particle inside a straight microchannel. The particle moves with velocity 

v along the streamlines in the x-direction. The particle obtains a velocity vmig in the y-direction for 

the case of cross-streamline migration.  

In the 1830s, Poiseuille observed an absence of red blood cells near walls during his 
studies of blood flow. This non-homogenous distribution of blood cells was related to 
migration perpendicular to flow direction. The observation was later confirmed by 
Fåhraeus and Lindquist (1931), who showed additionally that the migration of particles 
inside blood depends on their size [97]. Based on these studies, migration of non-
biological flow was investigated [98]. In 1962, Segré and Silberberg studied the radial 
distribution of rigid neutrally buoyant spheres flowing through circular tubes [99]. 
Surprisingly, they observed an accumulation of spheres at a radial position of 
approximately 0.6 pipe radii. Consequently, they found migration away from the 
centerline that was different from most of the former studies. Recently, accumulations 
of rigid spheres at a channel position between the channel wall and the centerline have 
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been also observed inside microfluidic devices [100]. In microfluidics, cross-streamline 
migration can also be important for polymer solutions, such as for the existence of 
depletion layers near walls found in several experiments [23]. Studies with flexible 
polymers showed that the depletion layer near a single wall increases with larger flow 
velocities [25].   
Considering a small particle in laminar flow inside a straight channel (see figure 4-5), 
the particle will primarily move along the streamlines. In this section, mechanisms are 
considered which create a drift and consequently migrate the particle away from the 
present streamline. If inertia is neglected, Bretherton showed that no force perpendicular 
to the flow direction can exist for a single rigid particle in unidirectional flow [101]. For 
vanishing Reynolds number, the Navier-Stokes equation results in the linear Stokes 
equation without an inertial contribution. If a rigid particle migrates in Poiseuille flow at 
zero Reynolds number toward the wall, the particle would migrate toward the centerline 
under flow reversal due to the reversibility resulting from the linearity of the Stokes 
equation [102]. However, the two scenarios are symmetric and therefore cross-
streamline migration is forbidden at Re = 0. In order to obtain a lateral force on the 
particle, a nonlinearity is necessary [103]. Nonlinearity can be generated by inertia 
(finite Reynolds number), which is considered in the next section. Deformation of 
particles can also induce nonlinearities and thereby create migration [103]. Furthermore, 
particle interactions for suspensions with finite volume fractions can become 
irreversible. In section 4.4.2, cross-streamline migration of a polymer illustrated by a 
dumbbell is considered for vanishing Reynolds numbers. In this case, the 
conformational changes of a polymer in flow as well as “particle interactions” of the 
different segments of a single polymer via hydrodynamic interactions are important.   

4.4.1 Inertial Migration  

In vertical tubes, heavier particles migrate in upwards flow toward the walls, whereas 
lighter particles migrate toward the centerline [104, 105]. For neutrally buoyant rigid 
spheres, experiments by Segré and Silberberg showed an accumulation at a radial 
position of approximately 0.6 pipe radii of the circular tubes (diameter: ≈ 1cm) [99]. 
These experiments were performed in the laminar flow regimes with Reynolds numbers 
Rec based on the channel width d between 2 and 700. The results are confirmed by other 
experimental studies, for all of which the Reynolds number was of order unity or higher 
[104, 106, 107]. For example, Goldsmith and Mason showed that rigid particles are 
homogenously distributed across the channel for very low Reynolds numbers, and they 
migrate to a position between the wall and the centerline for finite Reynolds numbers 
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[108]. While the former studies were all performed at the macroscopic scale with large 
tube dimensions (typically millimeter-centimeter in diameter), recent experiments 
showed that inertial migration can also be significant in microfluidics [100]. In 
microchannels (width d ≈ 50µm), 9µm large spheres migrate to an equilibrium position 
in flow with velocities of about m/s. In this case, the particle Reynolds number is of 
order of one [100]. The particle Reynolds number in Poiseuille flow based on the size of 
the particle (diameter a of the sphere) and the averaged shear rate is given by 

d
avRe o

p η
ρ 2

= ,  4.43 

where v0 is the maximal velocity of the fluid at the centerline.  

 
Figure 4-6: Migration of a sphere in simple shear flow at finite Reynolds numbers. The velocity of 

the sphere vs differs from the velocity of the fluid.  The dashed green arrows illustrate the fluid flow 

relative to the sphere. a) A sphere moving slower than the fluid experiences a force in the direction 

of larger flow velocities. b) A sphere moving faster than the fluid experiences a force in the 

direction of lower flow velocities.  

The experimental results for all studies mentioned above have been explained by inertial 
effects due to finite Reynolds numbers  [109-116]. Brownian motion of the particles is 
not included in the considerations. In 1965, Saffman [115] illustrated how fluid inertia 
can induce a lateral force in simple laminar shear flow for a rigid sphere having a non-
zero velocity relative to the fluid. He considered the scenario of a sphere in an 
unbounded fluid and calculated, via matched asymptotic expansion method, the lateral 
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force. This force arises from the interaction of the disturbance flow created by the 
sphere and the velocity gradient. The magnitude of this force is given by [115] 

vKaFs
2/12/12 )(ηργ&= , 4.44 

where K ≈ 6.46 is a numerical constant and v is the velocity of the sphere relative to the 
fluid. The direction of this lateral force is always toward regions where the fluid 
velocity relative to the particle is larger (see figure 4-6) [103, 110]. Due to the finite size 
of the particle, solvent molecules have to be displaced laterally when the sphere moves 
with a relative velocity to the fluid in flow direction. This displacement becomes 
irreversible at large distances away from the sphere because of inertia. The difference in 
the velocity of the displaced fluid from the background flow is larger for higher relative 
fluid velocities. Therefore, a pressure gradient along the sphere is created which 
generates a force in the direction of the larger relative velocity. This means that a 
particle moving faster than the fluid migrates toward slower flow (see figure 4-6b). 
Conversely, a particle moving slower experiences a force in the direction of the larger 
flow (see figure 4-6a). 

 
Figure 4-7: Cross-streamline migration due to rotation of a sphere in flow. 

In simple shear flow, a neutrally buoyant sphere moves with the same velocity as the 
fluid and no Saffman force is induced. However, the Saffman force is relevant for non-
neutrally buoyant spheres. A heavier sphere moving upwards in a vertical tube 
experiences a force toward the wall, while a lighter sphere experiences a force toward 
the centerline. This is qualitatively consistent with the experiments mentioned above 
[104, 105, 117].  
Additionally, rotation of a sphere can also lead to migration analogous to the Magnus 
effect (figure 4-7). A pressure reduction is created by the rotational velocity at the side 
of the sphere where the velocity increases the fluid velocity. Consequently, the sphere 
will migrate in this direction. This lift force is given by  [118] 

vaFRB Ωρπ 3= , 4.45 
where Ω  is the angular velocity and v is the fluid velocity. In Poiseuille flow, the 
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migration due to rotation of the sphere is always in direction toward the centerline [103]. 
Thus, this force cannot explain the migration of neutrally buoyant spheres away from 
the channel center, as was observed by Segré and Silberberg. An additional aspect has 
to be considered in Poiseuille flow, namely the curvature of the velocity field  [109, 111, 
119]. Dividing the sphere with finite size in two halves, the side toward the wall has an 
overall larger relative velocity compared to the side toward the centerline (see figure 
4-8). Consequently, the sphere migrates toward the channel wall by using the same 
argument considered for the Saffman force. If the sphere comes close to the wall, it is 
repelled from the wall due to inertial interactions with the wall [110, 119, 120]. The 
interplay between the wall repulsion and the migration away from the centerline due to 
the curvature of the velocity field creates an equilibrium position at a position between 
the wall and the centerline. For non-neutrally buoyant spheres, an additional Saffman 
contribution has to be considered. 

 
Figure 4-8: Inertial migration of a sphere in Poiseuille flow due to the curvature of the flow field. 

The sphere migrates in direction toward the channel wall. The green arrows illustrate the relative 

fluid velocity.  

Most theoretical studies are based on solutions of the Navier-Stokes equation by using 
perpetuation methods  [109-116]. At small distances around the sphere, the disturbance 
flow created by the sphere is to leading order determined by the Stokes equation. The 
viscous forces are dominant compared to inertial forces in this regime, the so-called 
inner region. However, they are on the same order at large distances away from the 
sphere (outer region). The Saffman force (equation 4.44) has been calculated for an 
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unbounded fluid for which the inertial effects in the far field are responsible for its 
existence. However, the walls confine the fluid inside tubes. If the walls of the tube lie 
in the outer region, the particle motion is influenced by the inertial effects in the far 
field [109, 110]. If the channel width is small enough that the walls are found in the 
inner region, irreversible inertial interactions with the walls are relevant. The length 
scales cv Redvl // 0 ==ηρ  and ( ) 2/12/1

0 // cs Redvdl == ηρ  determine at which distance 
away from the particle the inertial effects from the far field become important for 
Poiseuille flow [109, 110, 116]. If the channel Reynolds number is of order of one, both 
length scales are comparable with the channel width and inertial effects from the far 
field are significant. Therefore, the theoretical studies can be classified by the channel 
Reynolds number [110] in regimes Rec << 1 [111, 112], Rec = O(1) [109, 110, 113, 116], 
and Rec >> 1 [109, 114, 115]. In all of these studies, the particle Reynolds number and 
the ratio of sphere diameter and channel width have been assumed to be small (Rep << 1 
and a/d << 1).  
Although the experiments showing the migration of the sphere away from the centerline 
are performed with channel Reynolds numbers of unity or larger, the first theoretical 
theories in confined geometries considered the regime Rec << 1 [111, 112]. Regular 
perpetuation techniques are used to obtain an expression for wall-induced inertial 
effects. The migration velocity can be calculated from [112] 
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where ( )yfv  is of order one and depends only on the channel position. ( ) 0=yfv  at 
exactly the middle between the wall and the centerline (channel position ym). ( )yfv  is 
positive (which means migration toward the wall) between the centerline and ym, and 

( )yfv  is negative (migration toward the centerline) between the wall and ym. 
Consequently, it can be expected that the particles migrate to the middle between the 
wall and the centerline.  
For the regime Rec = O(1) in which the experiments have been performed, singular 
perpetuation methods are used in order to include inertial effects in the far field. The 
lateral force for a neutrally buoyant sphere is given by [109] 
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where ( )yRef cA ,  is a coefficient which dependent on channel position and channel 
Reynolds number but not on the particle size. ( )yRef cA ,  is positive at the channel 
center (migration toward the wall) and negative at the channel wall (migration toward 
the centerline). ( )yRef cA ,  decreases monotonically from the channel center toward the 
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wall and is zero at the equilibrium position. For rotational spheres, a correction can be 
made to include the migration toward the centerline due to the rotation of the sphere 
[109]. This correction is only small because the force due to rotation is one order of 
magnitude smaller than the force in equation 4.47 [110]. Balancing the lateral force with 
the Stokes drag force avFdrag πη3= , the migration velocity is given by [100] 
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This expression converges asymptotically for decreasing channel Reynolds numbers 
toward equation 4.46 [29]. The migration velocity depends on particle size, and 
decreases strongly for smaller particles. This might explain why migration was only 
observed in the above mentioned microfluidic experiments when the particle Reynolds 
number is of order of one [100].  
The expressions 4.46 and 4.48 have been calculated for rigid spheres of diameter a.  In 
chapter 5, we consider the cross-streamline migration of semiflexible actin filaments 
(diameter ≈ 7nm, length ≈ 8µm) in aqueous solution (ρ  ≈ 1kg/L, η ≈ 1mPa⋅s) inside 
microchannels (width d ≈ 10µm, length ≈ 2cm) at flow velocities of about mm/s. The 
Reynolds numbers based on the channel width are Rec ≈ 10-3…10-2. Considering an 
actin monomer (length ≈ diameter ≈ 7nm) as a rigid sphere, the migration velocity 
vmig ≈ 3·10-15m/s can be estimated by equation 4.46. The diameter of a sphere having the 
same volume V ≈ 3·10-22m3 (mass: ≈ 3·10-19kg) as a filament is d = 80nm. Such a sphere 
migrates with velocity vmig ≈ 5·10-12m/s. Therefore, inertial effects can be neglected for 
cross-streamline migration. However, a description of polymer migration has to include 
conformational changes due to the flow field, Brownian motion, and “particle-particle” 
interactions (i.e. interactions between the segments of a single polymer). 

4.4.2 Migration of Polymers 

Depletion layers of polymers near walls were observed in several experiments and were 
explained by cross-streamline migration of polymers away from the wall [23]. 
Additionally, computer simulations of flexible polymers as well as of stiff Brownian 
rods suggest migration away from the centerline in Poiseuille flow [26, 29-31, 121-124]. 
In the previous section, the cross-streamline migration of non-Brownian rigid particles 
at finite Reynolds numbers has been considered for which inertial effects are important. 
Other mechanisms are discussed for polymers in flow at low Reynolds numbers [23, 26, 
27, 29-33, 121-126]. In this section, the migration of polymers at vanishing Reynolds 
numbers is illustrated by a dumbbell model. 
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Figure 4-9: Migration of a dumbbell inside a straight microchannel. The dumbbell (R: end-to-end 

vector, Rc: center-of-mass vector) moves with velocity v along the streamlines in the x-direction and 

obtains a velocity vmig perpendicular to flow direction in the case of cross-streamline migration. 

Considering a Brownian dumbbell inside a channel, one motion, moving the dumbbell 
away from the present streamline, is diffusion. Normal Fickian diffusion has no 
preferred direction and a dumbbell diffuses with the same probability up or down (y-
direction in figure 4-9). Neglecting steric exclusion effects near walls, the probability to 
find a dumbbell with random initial conditions at a position y inside the channel is for 
all positions the same and is independent from the flow strength. This section explains 
mechanisms that create a drift and consequently migrate the dumbbell away from the 
present streamline. This leads to an inhomogeneous center-of-mass probability 
distribution for a dumbbell inside the microchannel. 
In section 4.3.2, the dumbbell model is introduced and forces (drag force, Brownian 
force, hydrodynamic interactions, and spring force) acting on the beads are considered. 
To study cross-streamline migration, hydrodynamic interactions are important [29], 
which are neglected in the consideration of the orientation of a dumbbell in shear flow 
(section 4.3.3). Furthermore, the diffusion coefficient is allowed to depend on the 
conformation of the dumbbell [127]. As before, the dumbbell is described by its end-to-
end vector R and its center-of-mass vector Rc. For a dumbbell with random initial 
conditions, the probability of each possible state characterized by R and Rc at a time t is 
given by the configurational probability distribution function Ψ(Rc,R,t), which is 
determined by the governing equation [29] 
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The velocity of the center-of-mass cR&  is determined by equation 4.23 and the rate of 
change of the end-to-end vector R&  is determined by equation 4.22, where the Brownian 
force at the i-th bead is given by [26]: 
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The center-of-mass probability distribution n(Rc,t), which describes the position of the 
dumbbell inside the microchannel, is obtained by integrating the configurational 
probability distribution function Ψ(Rc,R,t) over all possible end-to-end vectors [29] 

RRRR d),,(),( ∫= ttn cc Ψ  . 4.51 

Defining  

),,(ˆ),(),,( ttnt ccc RRRRR ΨΨ = , 4.52 

integration of equation 4.49 over R gives the governing equation for the center-of-mass 
probability distribution [26]   
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where ncc Rj &=  is the center-of-mass flux, and the angle bracket designates an 
ensemble average over the configuration variable R and is defined, more generally, for 
any variable A as 

Rdˆ∫= ΨAA . 4.54 

Multiplying the governing equation of the center-of-mass vector (equation 4.23) with Ψ, 
and integrating over R, the center-of-mass flux can be calculated yielding [29] 
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where )()( 12212211
T

K DDDDD +++= and )()( 12212211 ΩΩΩΩΩ −+−= . KD  is the 
so-called Kirkwood diffusivity for a dumbbell. The Kirkwood diffusivity is often used 
as the diffusion coefficient for a polymer [89]. 
The steady state solution of the center-of-mass probability distribution is determined by 
(see equation 4.53) 

0=
∂

∂− c
c

j
R

 , 4.56 

where the flux jc is given by equation 4.55. In principle, the center-of-mass probability 
distribution in steady-state is obtained by solving this equation.  
The last term in equation 4.55 is the normal Fickian diffusion, which is proportional to 
the gradient of the center-of-mass probability distribution (gradient of the 
“concentration”). All other terms, which are proportional to the center-of-mass 
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probability distribution, can lead to migration. The first line in this equation represents a 
deterministic contribution to migration and the second a Brownian contribution to 
migration.  
The first term in the first line of equation 4.55 is the contribution from the imposed flow 
field. In rectilinear channels, the components of the flow field in wall-normal direction 
are zero and therefore no cross-streamline migration can be induced directly by the 
imposed flow field.  
In the presence of a wall, the second term in the first line of equation 4.55 leads to 
migration of the dumbbell away from the wall due to hydrodynamic interactions of the 
dumbbell with the wall [26, 29]. A stretched dumbbell induces a flow field that is not 
symmetric because of the broken symmetry in the geometry near a wall. This situation 
is illustrated in figure 4-10. Due to shear, the dumbbell becomes stretched and 
orientated parallel to the streamlines of the fluid. The dumbbell wants to relax back, and 
thereby creates a point force at each bead which acts on the solvent molecules of the 
fluid. The generated flow field is symmetric in the case of no walls (see figure 4-10a) 
and the dumbbell has no tendency to move up or down. In confining geometries (see 
figure 4-10b), the flow field generated by hydrodynamic interactions is no longer 
symmetric. Near walls, the no-slip boundary condition “deforms” the flow field. In a 
simple picture, the flow is reflected at the walls. Then, the dumbbell obtains a 
deterministic drift away from the wall. 
In inhomogeneous flow, the second line in equation 4.55 can also lead to cross-
streamline migration [29, 32, 33]. The first two terms are contribution due to variations 
in the bead mobility at different channel positions. When the influence of the wall on 
the bead mobility is neglected, the bead mobility is constant and these two terms vanish 
[29]. The third term is due to spatial variations in the dumbbell diffusivity. In general, 
the diffusivity of a dumbbell depends on its conformation [29], and the conformation in 
spatially non-uniform flow fields can be strongly position-dependent. In pressure-driven 
flows, the different local shear rates lead to position-dependent averaged stretching of a 
dumbbell. Thus, the diffusivity of a dumbbell varies along the cross-section of the 
channel, resulting in migration of the dumbbell away from the centerline [29]. This 
situation is illustrated in figure 4-10b. The dumbbell is more stretched away from the 
centerline than at the centerline, where the local shear rate is zero. The diffusion 
constant D1 of a not-stretched dumbbell at the centerline is larger than the diffusion 
constant D2 of a stretched dumbbell closer to the wall. A dumbbell diffuses faster away 
from the centerline than toward the centerline which leads to migration toward the wall.  
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Figure 4-10: a) Hydrodynamic interactions of a dumbbell in bulk fluid. Relaxation of the dumbbell 

induces a symmetric microflow. b) Migration of a dumbbell in pressure-driven flow in confining 

geometry. Relaxation of the dumbbell induces an asymmetric microflow near the wall, which moves 

the polymer away from the wall. Different local shear rates inside the channel leads to position-

dependent averaged stretching of the dumbbell. This leads to a spatially-varying diffusivity and to 

migration away from the centerline. 

To summarize, two different migration mechanisms influence the center-of-mass 
probability distribution in rectilinear channels for dumbbells in pressure-driven flow: 
hydrodynamic interactions with walls lead to migration away from the walls and 
spatially-varying diffusivity leads to migration away from the centerline. Neglecting 
spatial-variations in bead mobility, the governing equation for the center-of-mass 
probability distribution (equations 4.53 and 4.55) can be simplified in the two-
dimensional case for a straight channel. The center-of-mass probability distribution 
perpendicular to flow direction (y-direction in figure 4-9) is determined for any time t 
by  

where  

At steady-state, migration is balanced by diffusion.  
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Chapter 5  

Semiflexible Filaments in Pressure-

Driven Flow 

In this chapter, measurements of actin filaments in flow inside microfluidic channels are 
discussed. Experiments are performed by using fluorescence microscopy, allowing the 
direct observation of the contours in flow. Dilute solutions ensure that interactions 
between different filaments are negligible and the approach can be focused on single 
polymer dynamics. Actin filaments are semiflexible polymers with a persistence length 
of Lp ≈ 13µm [5] and typical contour length in the experiments of L ≈ 8µm. The width 
and depth of the microchannels are about 10µm. Hence, all important length scales of 
the observed system have approximately the same magnitude. The orientations and 
conformations of actin filaments at different channel positions and velocities are 
analyzed. Furthermore, the frequencies of filaments at certain channel positions along a 
cross-section of the channel are measured and information about cross-streamline 
migration is obtained.  

5.1 Experiment 

The used microchannels have a depth of h = 10±1µm and width of d = 11±1µm, and 
therefore the aspect ratio (depth/width) is close to unity (see figure 5-1). After filling the 
channels with a dilute solution of actin filaments (70nM), a pressure-driven flow is 
created (see section 2.3). The channels have a length of about 2cm, and the actin 
filaments are analyzed at the end of the channels. Using FemLab, a commercially 
available software (FemLab GmbH, Göttingen), the flow field is simulated and is 
shown in figure 5-2. Although the flow field can be calculated analytically [128], it is 
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approximated for the following discussions by the Poiseuille flow (see figure 5-2b) in 
order to obtain a simple expression. For Poiseuille flow, the solvent velocity at z = 0 is 
given by 
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where ex is the unit vector in x-direction, v0 is the maximal velocity inside the channel 
and d is the channel width. In this approximation, the local shear rate (see equation 4.16)  
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is proportional to the channel position y  with a minimum 0=γ&  at the centerline.  

 
Figure 5-1: Flowing actin filaments inside microchannels with width d and depth h. The x-axis 

points in flow direction and the y- and z-axis are perpendicular to the flow direction.  The origin of 

the coordinate system is at the channel center z = 0 and y = 0.  The filaments are observed in a plane 

±0.5µm at z = 0 (grey area).  

 
Figure 5-2: FEM-simulation (finite element method) of the flow field. a) Slice of the flow field at 

x = const. b) Velocity profile in y-direction at z = 0 and x = const.  
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The contour lengths of the actin filaments inside the dilute solution varies, and the 
solution always contains some very short actin filaments (< 1µm). These short filaments, 
whose velocities differ only little from the velocity of the solvent, are used to determine 
the velocity of the fluid in the experiments. The velocities of many short filaments at the 
channel center are measured and the averaged value is taken for the maximal velocity v0. 
The microscope is focused to the half the channel height (grey area in figure 5-1). In the 
analysis, we consider only filaments which have a relatively sharp contour and thus 
coincide more or less with their 2D projection (i.e. which are mainly located in the focal 
plane ±0.5µm). Typical shapes of flowing actin filaments inside a microchannel are 
shown in figure 5-3. With the exception of filaments in the channel center, filaments are 
mostly elongated and aligned in the flow direction (see figure 5-3a). Furthermore, 
tumbling of filaments is observed (see figure 5-3b). In section 5.4, the behavior of these 
filaments is investigated in more detail. At the channel center, a parabolic shape of actin 
filaments can often be seen (figure 5-3c). This shape will be analyzed in section 5.4.3. 
 

 
Figure 5-3: Typical shapes of actin filaments in flow (velocity: v0 ≈ 500µm/s) in microchannels 

(width d = 11µm): a) elongated filament, b) tumbling filament and c) parabolically bent filament. 

The images are obtained using stroboscopic illumination (time period: ∆t ≈ 30ms). 

The influence of confining geometry on orientation and conformation is small for actin 
filaments in microchannels of about 10µm  [5, 6]. Actin filaments (contour length of 
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about 8µm) can rotate freely inside the channels. This allows us to treat actin filaments 
as free polymers and alignment and conformation changes can be directly interpreted in 
the context of flow.  
Without flow, the semiflexible filaments are randomly orientated and the thermal 
fluctuations are large. The entire contours of the filaments are often not completely 
found in the focal plane. Thus, the imaging of actin filaments without flow can be 
problematic and imprecise. However, fluctuations of the shape are suppressed in flow 
and the actin filaments are predominantly aligned and elongated (see figure 5-3 and for 
more details section 5.4). The extension perpendicular to the observed plane (z-direction 
in figure 5-1) decreases with larger velocity of the flowing solution, and the 2D-
description of the shape converges toward the actual 3D-shape of the filaments. Thus, 
the error in the following analysis decreases with larger velocities. 

5.2 Data Analysis 

 
Figure 5-4: Creating a pixelline from the recorded picture. 

Starting with the recorded picture, a pixelline of the contour is drawn (see figure 5-4), 
using several image filters. These are basically a median filter to reduce noise, a 
binarization filter to create a black-white image, and a skeletonization filter to create a 
line with a width of one-pixel (for details see [5]). The image processing is performed 
using a combination of software packages (AnalySIS (Soft Imaging Systems, Münster), 
ImageProPlus (Media Cybernetics, Silver Spring, USA) and Adobe Photoshop (Adobe 
Systems, San Jose, USA)). Analyzed parameters of the pixelline (see figure 5-5 for 
definitions) are measured using a MatLab (The Mathworks, Natick, USA) macro.  
The first parameter considered for each filament is the contour length L. Due to 
polydispersity, the length of the recorded actin filaments varies. In order to keep 
polymer properties constant, the analysis includes only filaments with approximately 
the same contour length (averaged contour length: 8±2µm) and neglects all shorter or 
longer ones. For each velocity, around 1000 filaments are analyzed. 
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Figure 5-5: Definition of the parameters. x-axis: in flow direction. y-axis: perpendicular to the flow 

direction with origin at the channel center and walls at y = ±d/2. L: contour length of the actin 

filament. R: end-to-end distance. P(x1,y1) and P(xn,yn): endpoints of the contour (P(xn,yn) is the end 

with the smaller x-value (xn < x1)). Θ: angle of the end-to-end vector relative to the flow direction. 

To measure the elongation of filaments, the end-to-end distances R between both ends at 
positions P(x1,y1) and P(xn,yn) are determined: 
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The positions of filaments inside the microchannels are measured by the center-of-mass 
in the y-direction 

∑
=

=
n

i
icm y

n
y

1

1 , 5.4 

where yi is the position of the i-th pixel and n is the total number of pixels in the 
pixelline. All filaments are measured and analyzed across the entire channel in the y-
direction. To improve the statistics, we project the data onto one channel half. This is 
achieved by taking the absolute value for the center-of-mass in equation 5.4.  
The angle Θ  of the end-to-end vector relative to the flow direction describes the 
orientations of actin filaments within the channel. We define that the angle Θ  is positive, 
if the endpoint P(xn,yn) with the smaller x value is closer to the walls than the other 
endpoint P(x1,y1): 
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To determine the averaged orientation of the filaments, an orientational order parameter  

2
1cos3 2 −= ΘS  5.6 

is calculated [89].  
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If this order parameter is zero (S = 0), the filaments are randomly orientated over all 
possible angles ( °≤≤°− 9090 Θ ). In this case 3/1cos 2 =Θ , resulting in an averaged 
angle of Θ ≈ 55° for free polymers in the 3-dimensional case. The more the filaments 
are aligned, the more the order parameter increases, and in the situation where all 
filaments are perfectly parallel, the order parameter is one (S = 1).  

5.3 Relaxation of Actin Filaments  

 
Figure 5-6: Relaxation of bent actin filaments. Different colors represent individual filaments. The 

plotted line represents the function f(t) = 1-exp(-t/0.4s). 

Actin filaments in flow are elongated or bent (see figure 5-3). Stopping the flow, 
filaments relax back to equilibrium on a characteristic time scale. This relaxation time is 
an important property for the description of polymer deformations in flow. Comparison 
of relaxation time and flow deformation time, which can be expressed by the 
Weissenberg number (see chapter 4.3.1), specifies how strongly the polymer is 
deformed in flow.  
To measure the relaxation time of actin filaments, a flowing solution (v > 1mm/s) is 
stopped abruptly (within ∼50ms) and snapshots of the shapes are taken in time intervals 
of ∆t = 80ms. The end-to-end distances R of initially bent filaments are measured and 
the evolution for different filaments is shown in figure 5-6. The curves are normalized 
by an averaged end-to-end distance in equilibrium, which is measured at long times. 
The initial, small normalized end-to-end distances of bent filaments increase with time 
until they fluctuate around a value of one.  
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All relaxation curves are fitted with an exponential function 
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where t0 and the relaxation time τrel are fit parameters. The time t0 varies for different 
analyzed filaments because they have slightly different starting conditions depending on 
how strongly the filaments are bent at the beginning of the observation. In figure 5-6, 
the curves of the individual filaments are shifted by the value of t0 for better comparison, 
so that all curves converge. 
Averaging the relaxation times for all analyzed filaments results in τrel,exp = (0.4±0.2)s. 
The large error arises from imprecisely measured positions of the endpoints, which can 
often be only roughly estimated in the recorded pictures. Actin filaments, which at the 
beginning of the measurement are found almost exclusively in the focal plane, often 
move away from the focus during relaxation due to their randomly oriented and largely 
fluctuating 3-dimensional conformations in equilibrium.  
The relaxation process can be described by balancing drag force and bending force at 
each segment of the filament at every time. A relaxation time [81] 
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can be derived, where cf is the drag coefficient per length and n0 marks different 
hydrodynamic modes. With persistence length Lp = 13µm [5], contour length L = 8µm, 
Boltzmann constant kB = 1.4⋅10-23J/K [87], temperature T = 293K and drag coefficient 
per length cf = 1.8mPas, the longest relaxation time (n0 = 1) can be calculated to be 
τrel,theo ≈ 0.3s. The drag coefficient cf = 1.8mPas of actin in water (viscosity η = 1mPas) 
is calculated (equation 4.4) by considering actin filaments in a first approximation as a 
rigid cylinder with length L = 8µm and diameter d = 7nm. The calculated relaxation 
time τrel,theo ≈ 0.3s agrees with the experimental determined relaxation time 
τrel,exp =  0.4±0.2s within its error range.  
The strong dependence of relaxation time on contour length in equation 5.8 (i.e. with 
the power of four) points out a problem for determining the relaxation time in our 
experimental system. Although in the analysis we include only filaments having 
approximately the same length (L = 8±2µm), the relaxation time of each individual actin 
filament is very sensitive to slight differences in length. Nevertheless, a mean relaxation 
time of τrel ≈ 0.3-0.4s is reasonable.   
As mentioned above, the relaxation time is mainly needed to determine the Weissenberg 
number. The length distribution is the same for all of the results and the mean relaxation 
time is a constant. In the experiments, the Weissenberg number is only adjusted by 
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changing the flow rate. Therefore, we predominately use the shear rate γ&  as the 
parameter to characterize the flow and not the Weissenberg number. To obtain a rough 
idea of the Weissenberg number, the shear rate needs only to be multiplied by a 
relaxation time of τrel ≈ 0.3-0.4s. 

5.4 Conformations of Actin Filaments  

5.4.1 Orientation 

 
Figure 5-7: Orientational order parameter. a) Orientational order parameter plotted against the 

channel position. b) Orientational order parameter plotted against the shear rate. The dashed 

curve is only a guide to the eye. 

In figure 5-7a, the orientational order parameter S (see equation 5.6), which describes 
the averaged alignment of the filaments, is plotted versus channel position ycm for 
different velocities. The order parameter S increases from the channel center (ycm = 0µm) 
out to the channel walls (ycm = 5.5µm). Accordingly, actin filaments at the channel 
center are less aligned compared to those near walls, where the filaments are oriented 
nearly parallel to the walls. It is also seen, by comparing the curves for different 
velocities, that the order parameter increases with larger velocities. Thus, the filaments 
are more aligned at higher flow rates. In Poiseuille flow, the local shear rate is position-
dependent (see equation 5.2). At the channel center, the local shear rate is zero, and the 
influence of the flow on filament orientation is small. Close to the walls, the shear rate 
is large, and the flow affects the orientation of the filaments clearly. Hence, the increase 
in alignment of the filaments toward the walls might be caused by an increase of the 
local shear rates. Furthermore, the local shear rate at a certain channel position increases 
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also with larger velocities. A consequence is an increase of alignment at identical 
positions for larger velocities, which is consistent with the observations.  
By calculating the local shear rate from channel position and velocity (see equation 5.2), 
the direct relation between the order parameter and the shear rate is obtained and is 
shown in figure 5-7b. As expected, the averaged alignment of the filaments increases 
with larger shear rates. The curves for flow velocity v0 ≥ 0.64mm/s collapse in one 
single curve. This indicates that the different local shear rates are the fundamental cause 
for the position-dependent alignments of filaments inside the microchannel. Near walls, 
alignement is additionally influenced by the walls. This is in particular important for 
small velocities, where Brownian fluctuations of the shape are less suppressed. The 
deviations of several data points measured for the smallest velocity v0 ≈ 0.23mm/s from 
the master curve are probably generated by the walls. 
So far, we described the influence of flow on filament orientation by the local shear rate 
at the center-of-mass of the filaments, which can be regarded as an averaged shear rate 
acting on the entire filament. However, this description predicts that filaments at the 
centerline ( 0=γ& ) should be not aligned (order parameter S = 0), which is not the case 
in the measurements (see figure 5-7). Parts of the filaments always feel the shear 
influencing the conformation and orientation due to the filament extension 
perpendicular to flow direction that is not insignificant. So far, we ignored the 
microscopic picture of the polymer, where each polymer segment is influenced by the 
local shear rate at its own position - which can be slightly different from the shear rate 
at the center-of-mass. Except close to the walls, this description works quite well, 
confirmed by the collapse of the curves of the order parameter measured for different 
velocities onto a single curve depending only on shear rate at the center-of-mass. 
However, one feature of the Poiseuille flow is the non-monotonic behavior of the shear 
rate across the channel with a minimum 0=γ&  at the centerline. In addition, filaments 
near the centerline, where small shear barely suppresses fluctuations, have a large 
extension perpendicular to the flow direction. Therefore, it is reasonable to expect that 
conformational changes of filaments crossing the centerline are more complicated than 
merely elongation and alignment in the flow direction. A more detailed analysis of these 
filaments near the centerline is given in section 5.4.3.  
The order parameter at a certain channel position (e.g. y = 2.5µm) does not dramatically 
change with velocity. However, the order parameter describes only an averaged 
alignment of filaments in flow. The orientations of filaments at one channel position can 
be characterized in more detail by the probability distribution of the angle Θ. The angle 
probability distribution is obtained by dividing the Θ −scale in intervals of ∆Θ = 2° and 
counting for each interval the number of filaments with corresponding angles. The 
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distribution is normalized by the total number of analyzed filaments. In figure 5-8, angle 
probability distributions are shown for filaments located at ycm = (2.5±1)µm for the 
different flow velocities. The channel position ycm = (2.5±1)µm is almost at the halfway 
point between the channel walls and the channel center. This position is chosen because 
effects due to the non-monotone behavior of the local shear rate at the channel center 
can be negligible as well as effects due to confining walls.  

 
Figure 5-8: Angle probability distribution of actin filaments at ycm = 2.5±1µm for different velocities. 

Lines are Gaussian fits. The corresponding local shear rates at the position ycm = 2.5µm are 480s-1, 

340s-1, 130s-1 and 50s-1. The inset shows the distribution in a semi-logarithmic scale for the largest 

velocity v0 = 2.4±0.7mm/s. 

The angle probability distributions for the different velocities all have the same 
characteristics. The distributions are almost symmetric with respect to the maximum. 
With increasing velocities, the distribution narrows and the absolute value of the 
maximum increases. Thus, the filaments align almost entirely in the flow direction and 
the alignment increases with velocity - as already expected from the previous discussion 
of the order parameter. Indeed, the position Θt of the maximum is slightly above Θ  = 0 
for all velocities, and shifts to lower angles with increasing velocity. Consequently, the 
preferred orientation of the actin filaments is slightly larger than zero but converges to 
the scenario in which the filaments are perfectly aligned parallel to the walls.   
It can be seen in figure 5-8 that the angle probability distributions can be fitted as 
Gaussian distributions. For flexible polymers in simple shear flow, it has been reported 
that at larger Weissenberg numbers only the tails of the distributions deviate strongly 
from Gaussian distributions [20]. Some theories predict a weaker decay with a scaling 
of ΘΘ 2sin −∝  for |Θ| >> Θt at large Weissenberg numbers [95, 96]. It is seen in the 
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inset in figure 5-8 (semi-logarithmic plot), that this scaling describes the tails in the 
distribution for a large velocity v0 = 2.4±0.7mm/s quite well. 

 
Figure 5-9: a) Width ∆Θ of the angle probability distributions. b) Position Θt of the maximum of the 

angle probability distributions. Red lines have the slope of -1/3. 

The width ∆Θ and the maximum position Θt of the angle probability distributions, 
obtained from the Gaussian fits, are shown in figure 5-9. The flow field at the channel 
position of interest can be roughly described as simple shear flow (see [20]) with shear 
rate µm).5.2(γ& For less elongated flexible polymers (R << L) scaling laws 

11 −− ∝∝∝ γ∆ΘΘ &Wit  (see equation 4.41) are predicted, which are quite different to 
scaling laws 3/13/1 −− ∝∝∝ γ∆ΘΘ &Wit  (see equation 4.42) predicted for strongly 
elongated or stiff polymers (R ≈ L) at large Weissenberg numbers. The red lines in the 
double logarithmic plots in figure 5-9 have a slope of -1/3. Comparison of these lines 
with the experimental data points shows that the width and the maximum position can 
be described with the scalings of elongated polymers. Therefore, the actin filaments 
behave more like a rigid rod than an elastic flexible polymer concerning their 
orientation. In contrast, in experiments for flexible polymers in simple shear flow a 
cross-over region has been observed between a decay with slope of -1 for small 
Weissenberg numbers and a decay with slope of -1/3 for large Weissenberg numbers 
[20, 129]. However, actin is a semiflexible polymer. In contrast to flexible polymers 
like DNA, which are coiled in equilibrium (R << L), actin filaments already have an 
extended configuration (R ≤ L) without flow. Therefore, it is not surprising that all data 
points can be described by a single scaling law. 
As noted above, the angle probability distributions are not symmetric with respect to 
Θ = 0. Rather, the entire curves are shifted to a value slightly larger than zero. In figure 
5-10, two different scenarios for the filament orientation depending on the sign of the 
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Figure 5-10: Scenarios for filaments with a positive angle and for filaments with a negative angle. 

angle are shown. The two scenarios are quite different concerning their velocity at the 
end-points of the filament. For an angle Θ  > 0, the filament is in a stable conformation. 
Depending on the shear rate, the filament will be elongated a little more, but the basic 
elongated shape will persist. On the other hand, thermal fluctuations can move the 
filament in a scenario with Θ  < 0. In this case, the actin filament has an unstable 
conformation and the end with the faster velocity will pass the other end. In fact, we 
have observed such tumbling in experiments with actin filaments (figure 5-3c).  The 
tumbling of the filament will continue until a stable conformation is obtained. 
Consequently, the probability to find filaments with Θ  > 0 is larger, and this explains 
the preferred positive values in the angle probability distribution. 

5.4.2 Elongation and Tumbling 

As seen already in the snapshots of the actin filaments in figure 5-3, the actin filaments 
change their conformations in flow. To quantify the conformational changes for a 
certain channel position ycm = (2.5±1)µm, the end-to-end distance R normalized by the 
contour length L of each filament is measured. The end-to-end distance probability 
distribution is obtained by dividing the R/L-scale in intervals of ∆R/L = 0.02 for which 
the numbers of filaments with corresponding R/L are counted. The distribution is 
normalized by the total number of analyzed filaments. In figure 5-11a, the end-to-end 
distance probability distributions are shown for the no flow scenario and for two flow 
velocities. Without flow, filaments with a normalized end-to-end distance R/L < 0.7 are 
not found. The number of filaments with a certain R/L increases slowly for larger R/L 
values until the maximum R/L ≈ 0.97 is reached and the distribution shows a steep 
decrease. This end-to-end distance probability distribution of actin filaments in 
microchannels without flow is approximately in agreement with theoretical calculations  
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Figure 5-11: Normalized end-to-end-distances of actin filaments in flow. a) End-to-end distance 

probability distributions for different velocities. The line in the plot for the no flow scenario is the 

theoretical expectation (equation 3.5) of a worm-like chain with Lp = 13µm and L = 8µm. Insets 

shows the end-to-end-distance probability distributions of small R/L values for which the R/L-scale 

was subdivided in larger intervals of ∆R/L = 0.05. The corresponding local shear rates at the 

position ycm = 2.5µm are 0s-1, 50s-1 and 480s-1. b) Averaged end-to-end distance <R/L> against shear 

rate (error bars: standard deviation). 

for modeling the filament as worm-like chain with persistence length Lp = 13µm and 
contour length L = 8µm (see line in figure 5-11). When flow is added, the maximum of 
the distribution becomes larger, shifts to larger R/L values and the distribution narrows. 
In other words, the filaments are more elongated in flow. Furthermore, it is seen in the 
insets in figure 5-11a, by comparing the distributions for small R/L values, that more 
actin filaments with smaller R/L exist in flow than in equilibrium. These values belong 
to the tumbling filaments which are mentioned already in the last section. During 
tumbling, the ends of the filaments come close together, and the end-to-end distance of 
actin filament in flow is sometimes even smaller than in equilibrium. The elongation 
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and the tumbling of the filaments are considered in the following discussions in more 
detail.  
Typically, the degree of elongation is described in polymer science by the averaged end-
to-end distance [89], and therewith the behavior of DNA in shear flow, for example, has 
been characterized [129]. However, calculating the average of all measured normalized 
end-to-end distances, a decrease of <R/L> for actin filaments in flow is obtained that is 
seen in figure 5-11b. The cause of this decrease is the tumbling of filaments, although 
about 70% of all analyzed filaments are in an elongated state. Therefore, the averaged 
end-to-end distance is not the correct parameter to characterize the elongation of the 
filaments in flow. Without flow, the measured averaged end-to-end distance 
<R/L> = 0.91 is consistent with theoretical expectations (see equation 3.4) of 
<R/L> = 0.90 for actin filaments modeled as worm-like chain with persistence length 
Lp = 13µm and contour length L = 8µm.  

 
Figure 5-12: Conformations of actin filaments in flow. Flow elongates the semiflexible polymer. Due 

to thermal fluctuations of the shape, a filament can move in an unstable scenario (Θ  < 0) and the 

filament tumbles. a) Number of fully-elongated filaments against velocity. b) Radius of curvature of 

bent filaments during tumbling.  
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Using the definition that filaments have a fully elongated state for R/L > 0.9, the degree 
of elongation with larger flow velocities can be quantified by the number of fully 
elongated filaments Nmax relative to the total number N0 of analyzed filaments (see 
figure 5-12a). Nmax/N0 increases with larger velocities as progressively more filaments 
become fully elongated. But Nmax/N0 is clearly below one for all flow velocities, which 
would be the case if all filaments were fully elongated. Fully elongated filaments lie on 
a single streamline, where no force to elongate the filaments exists because all parts of a 
filament have the same velocity. The absence of the elongational force causes relaxation. 
For relaxed filaments, the velocity along the contour varies, the drag forces at the 
segments are different, and the filaments will be elongated again. Therefore, filaments 
in flow stretch and relax constantly and the state of full elongation for all filaments can 
never be obtained, not even at very large shear rates. In addition, the relaxed filaments, 
for which the thermal shape fluctuations are large, tumble sometimes instead of 
elongate, depending on their orientations relative to the flow direction (see section 
5.4.1). 
Tumbling of polymers has been also observed for flexible polymers such as DNA in 
shear flow [129, 130]. During tumbling, flexible polymers choose many different 
conformational pathways, and they often relax back into a coiled state. In contrast, the 
conformations of actin filaments are always similar in their observed tumbling motions 
and the actin filaments are more strongly bent than in equilibrium. The semiflexible 
actin filaments resist the flow field, which tries to fold the polymer, and the bent shapes 
with always the same finite curvature reflects the large persistence length of the 
semiflexible polymer. The bent contour of the tumbling filaments can be approximated 
by a constant radius of curvature (see figure 5-13b). The averaged radius of curvature rc 
is plotted against the velocity in figure 5-12b. With larger velocities, the radius of 
curvature decreases and the filaments are more strongly bent.  
For a first analytical treatment [131], the filament is modeled as an elastic rod, which is 
bent along a semi-circle of radius rc with one long elongated end (see figure 5-13a). 
Comparable shapes are found experimentally (see figure 5-13b) in early states during 
tumbling. The bending for later tumbling states can be described analogously, resulting 
in the same scaling argument.  
Parameterization of the semi-circle in polar coordinates with the arc length 
s = rcϕ  results in  
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Figure 5-13: Radius of curvature of tumbling filaments. a) Model of a bent filament during 

tumbling. The curvature of the contour is assumed to be constant with radius of curvature rc. The 

filament is considered at a channel position y0. b) Snapshot of an actin filament during tumbling.  

The hydrodynamic beam equation of an elastic rod connects the drag force, which 
induces bending, to the bending moment of an elastic rod [81]: 

where κ  is the bending rigidity (see equation 3.1), cf is the friction coefficient per 
length, and v is the velocity of the rod relative to the solvent. 
The movement of the ends of the filament relative to each other during tumbling is 
much slower than for two solvent molecules with the same starting positions. It is 
therefore justifiable to assume a constant velocity of the entire filament at one snapshot 
during tumbling and to approximate the filament velocity by the solvent velocity v(y0+rc) 
at the long end of the filament (where most of the filament still is). The solvent velocity 
at the channel position of interest is given by the velocity profile of the Poiseuille flow 
(see equation 5.1). The averaged velocity of the filament relative to the solvent can be 
estimated as the filament velocity v(y0+rc) relative to the solvent velocity v(y0) at the 
position y = y0: 

Considering the tumbling of a filament at a position y0 = 2.5µm, the first term on the 
right side is larger than the second term, because typical radii of curvature in 
experiments are rc < 1µm (see figure 5-12b). Therefore, the averaged velocity of the  
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filament relative to the solvent can roughly be described as  

With this estimation and equation 5.9, the hydrodynamic beam equation (equation 5.10) 
results in  

Thus, the dependence of the radius of curvature on the velocity v0 is given by 

This scaling is consistent with the experimental values, which is seen in the double 
logarithmic plot in figure 5-12b.  The measured data points are well described by the 
green line, which has a slope of -1/4. Thus, the actin filaments behave like elastic rods 
that are bent due to different drag forces along the contour and balanced by the bending 
forces. 
In summary, actin filaments in pressure-driven flow are elongated or tumble. An 
exception is found at the channel center, where the behavior is quite different and is 
discussed in the next section. The averaged alignment in flow direction is position-
dependent and increases toward the walls as well as for larger velocities. The orientation 
of a filament decides whether the filament will elongate or will tumble. Most of the time, 
an actin filament is elongated and the elongation is on average larger for increased 
velocities. For a fully-elongated filament, the elongational force is missing and the 
filament will relax. For a relaxed filament, the thermal shape fluctuations are large. The 
fluctuating filament elongates again or moves in an unfavorable orientation and tumbles. 
A tumbling filament can be modeled as an elastic rod for which the radius of curvature 
decreases with larger velocities. After finishing the tumbling cycle, the filament will 
elongate or tumble once more, depending again on the orientation. Thus, the actin 
filaments change constantly their shapes and elongate, relax and tumble. 

5.4.3 Conformations at the Centerline 

Figure 5-14 shows actin filaments near the centerline. In this region, the actin filaments 
can be divided into two classes: elongated filaments (figure 5-14a) and bent filaments 
(figure 5-14b). Filaments also exist which have an elongated end and the other end is 
bent (figure 5-14c). Elongated filaments rarely cross the centerline, and it seems that as 
soon as a filament crosses the centerline it becomes bent. 
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Figure 5-14: Conformations of actin filaments near the centerline (yellow line: centerline, gray lines: 

walls) for v0 = 1.7±0.5mm/s. 

Whereas elongated filaments near the centerline are in accordance with elongated 
filaments at y = 2.5µm considered in the previous section, bent filaments at the 
centerline differ from the bent filaments during tumbling. In contrast to the tumbling 
filaments, bent shapes at the centerline are relatively stable. The evolution of a bent 
filament can be seen for instance in figure 5-3c.  

 
Figure 5-15: Bent filaments at the centerline. The red and black lines represent individual filaments 

at a velocity of v0 = 2.4±0.7mm/s and v0 = 0.23±0.05mm/s, respectively.  The blue lines show the 

average of all curves of individual filaments having the same velocity. The yellow lines are 

parabolic fits of the averaged curves.  

In figure 5-15, the x-y coordinates of bent filaments are plotted for two velocities. The 
filaments are more strongly bent for the larger velocity. The blue lines are averaged 
curves, and the yellow lines are the parabolic fits of these averaged curves. Therefore, 
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the experimentally determined shapes of the filaments can be described with parabolic 
profiles, at least for the parts of the contours close to the centerline. The velocity field of 
a Poiseuille flow is also parabolic (equation 5.1), and it seems that the bent parabolic 
shapes reflect characteristics of the flow field. In the following discussion, we seek a 
connection between the bent filaments and the parabolic velocity field.  
To analyze the bending of actin filaments in the middle of the channel and its 
connection to the parabolic velocity field, actin filaments are considered as elastic rods 
(see inset in figure 5-15) [131]. With such a simple polymer model, the bending during 
tumbling is already described successfully (section 5.4.2). For simplification, we 
consider only symmetric filaments with ends at y = ±Ly/2. The shape of the rod is 
determined by the balance of drag force and bending force at each point of the rod, 
neglecting Brownian forces in a first consideration. This leads to the hydrodynamic 
beam equation (equation 5.10), which has already been used to studying the bending of 
tumbling filaments. In Cartesian coordinates and small angle approximation, the 
hydrodynamic beam equation is given by [81] 

where the velocity ∂x/∂t is related to the solvent velocity. We want to describe stable 
conformations and therefore the velocity vp at each point of the filament is the same. 
Assuming a parabolic flow profile for the solvent, the velocity ∂x/∂t results in 
∂x/∂t = vp-v0(1-y2/(d/2)2) and the hydrodynamic beam equation can be written as 

To solve this differential equation, a polynomial ansatz is made 

which already takes into account that all coefficients of power higher than 6 are zero, 
and all coefficients of uneven power have to be zero due to the symmetry of the 
equation. With this ansatz, the coefficients 

can be determined.  
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Taking as a boundary condition that there is no force or torque at the free ends of the 
filament 

the velocity vp of the filament is given by 

and the coefficient c2 can be calculated to 

With all calculated coefficients and knowledge of the filament velocity, the shape of a 
bent filament in the middle of a channel is given by  

where l = (kBTLP/(cfv0))1/3. Thus, the shape of filaments at the centerline can be 
considered as a parabolic shape with some higher ordered correction terms. This is in 
excellent agreement with experiment, where we indeed often found parabolic profiles of 
bent filaments in the channel center (see figure 5-15).  

 
Figure 5-16: Comparison of the calculated prefactor of the parabolic profiles for filaments in the 

channel center with the experimental values.  
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To check experimental and theoretical descriptions, the prefactor 1/l3d2 has to be 
compared. From the parameters of the parabolic fits of the averaged experimental 
curves we calculate 1/l3d2, with results given in figure 5-15. In this case, the length Ly, 
which is needed for calculation, is obtained by assuming a symmetric filament with 
experimentally found parabolic shape and a contour length of L = 8µm. We also 
calculated 1/l3d2 from polymer properties (Lp ≈ 13µm; cf  ≈ 1.8mPas/m) and channel 
dimension (d = 11µm). It is seen in figure 5-16 that the theoretical description is in 
reasonable agreement with the experimentally determined data points. Thus, with this 
simple model of an elastic rod we understand the existence of parabolic shapes at the 
centerline caused by the parabolic velocity field and we can describe them 
quantitatively. Brownian motion, which is neglected in this model, will lead to some 
fluctuations of the basic parabolic shape but is nevertheless not required in this model.  

5.5 Center-of-Mass Probability Distribution 

After analyzing the conformations and orientations of flowing actin filaments in 
microchannels, this section studies the probability to find a filament at a certain channel 
position. For this, the center-of-mass of each filament is measured and the numbers of 
filaments at certain channel positions ycm in intervals of ∆y = 0.5µm along the cross-
section are counted. The center-of-mass probability distributions are shown in figure 
5-17 for different flow velocities. The distributions are normalized by the total number 
of analyzed filaments. An experimental uncertainty is caused by the 2-dimensional 
imaging of the filaments in the focal plane of the microscope (see section 5.1). Only 
filaments found mainly in the focal plane are included into the statistics. Due to this 
selection, filaments with unfavorable orientations relative to the focal plane are 
neglected in the statistics although they have their center-of-mass in the considered 
plane. The error bars in the plots of figure 5-17 are calculated by estimating the 
percentage of bent filaments with larger extension than 1µm in z-direction 
(perpendicular to the focal plane). For this error estimation, the bent filaments 
(parabolic bent filaments at the channel center and tumbling filaments) are considered 
because they have larger extensions perpendicular to the flow direction than the 
elongated filaments. Since the filaments are more bent at larger shear rates (see sections 
5.4.2 and 5.4.3), the center-of-mass probability distributions become more precise 
toward the walls and at larger velocities.   
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Figure 5-17: a)-e) Center-of-mass probability distributions for different flow velocities. The plots 

show the distribution of filaments along a cross-section of the channel for one channel half with the 

channel center at ycm = 0µm and the channel wall at ycm = 5.5µm. f) Comparison of the center-of-

mass distributions for the different velocities. The plots show the distributions along the cross-

section of the entire channel with walls at ycm = -5.5µm and ycm = 5.5µm by mirroring the 

distributions seen in a)-e).  
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Without flow, the center-of-mass probability distribution has a maximum at the channel 
center and decreases toward the walls. Therefore, actin filaments are most frequently 
found at the channel center. Close to the channel walls, a depletion layer can be 
observed, where filaments are hardly found. At a small flow velocity 
v0 = 0.23±0.05mm/s, the distribution is constant almost over the entire channel and only 
very close to the walls a smaller number of actin filaments is still observed. In contrast, 
the center-of-mass probability distributions have a local minimum at the channel center 
for flow velocities v0 ≥ 0.64mm/s. Most actin filaments in flow at large velocities are 
not found at the channel center, but approximately at the halfway point between the 
centerline and the walls. The minimum at the channel center becomes more pronounced 
with higher velocities. Furthermore, by comparing the distributions near the walls it can 
be seen that actin filaments are less depleted from the walls for a velocity 
v0 = 0.23±0.05mm/s than without flow, but an increase of the velocity leads again to 
larger depletion layers at the walls.  
In recent computer simulations, the center-of-mass probability distributions of flexible 
polymers modeled by several connected bead-spring dumbbells have also shown a 
minimum at the channel center and depletion layers at the walls [29, 30, 121, 122, 132]. 
However, comparison of different simulations with comparable parameters points out 
some discrepancies concerning the height of the minimum as well as the size of the 
depletion layers, in particular for narrow channels. But it is quite striking to note that the 
minimum at the channel center is not pronounced in any of the simulations, even been 
discussed that this effect is negligible [132]. Simulations of Brownian stiff rods in 
Poiseuille flow predict also a minimum at the channel center but this minimum deviates 
only up to 10% from the maximal value [31, 123, 124]. Additionally, for stiff rods a 
depletion layer at the walls is also expected [123]. The results for the semiflexible actin 
filaments cannot be compared quantitatively with any of these simulations because 
other parameters are chosen and in particular the stiffness is not comparable. However, 
the strongly pronounced minimum at the channel center differs completely from the 
expectations of all simulations, hinting that this effect is caused by the semiflexible 
nature of the polymer.  
Without flow, some configurations observed in free geometries are forbidden near a 
wall due to polymer-wall contacts. Therefore, the configurational entropy near a wall is 
reduced. This leads to a steric repulsion of polymers away from the walls and polymers 
are depleted in a layer which is in the order of the polymer size [23]. For stiff polymers, 
simulations [124] show that the center-of-mass probability distribution increases from 
zero at the wall to a constant value achieved at a half contour length away from the wall. 
A stiff polymer with a center-of-mass at this point can still touch the wall. For the 
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semiflexible actin filaments, according arguments would predict that the steric 
hindrance affects the center-of-mass distribution near a wall up to half of the averaged 
end-to-end distance <R/2> away from the wall (see figure 5-18a). With an averaged 
end-to-end distance of about 7µm (equation 3.4), depletion is expected in a layer up to 
3.5µm away from the walls which corresponds to a channel position ycm ≈ 2µm. This is 
in agreement with the measured center-of-mass probability distribution without flow. 
Aside from the constrained orientation near a wall, the semiflexible filaments are also 
sterically excluded due to their worm-like structure with extension perpendicular to the 
mean orientation of about a few micrometers.  

 

 
Figure 5-18: Steric volume exclusion. a) The orientations of the semiflexible filaments are randomly 

and the thermal fluctuations are large. This leads to a strong steric repulsion from the walls and 

large depletion layers. b) The filaments are aligned and elongated in flow. The steric hindrance is 

therefore reduced.  

In flow, the filaments are elongated and aligned almost in flow direction (see section 5.4) 
and the steric hindrance of the filaments near the walls is decreased (see figure 5-18b). 
Consequently, depletion layers due to steric repulsion become smaller. This is 
consistent with the measured center-of-mass probability distribution, for which more 
actin filaments are found near the walls for a small velocity v0 = 0.23±0.05mm/s than 
for no flow conditions. Since the elongation and alignment of filaments increases with 
larger flow velocities, it could be expected that the depletion layer thickness decreases 
with increasing velocity. However, this is not the case and other effects, besides steric 
interactions, have to be discussed.  
Generally, kinetic theories suggest two mechanisms leading to cross-streamline 
migration of flowing polymers in Poiseuille flow [26, 29]: hydrodynamic interactions 
with the walls cause migration of polymers away from the walls and spatially-varying 
diffusivity leads to migration away from the channel center. These two mechanisms are 
illustrated in chapter 4.4 by a dumbbell model and are summarized in figure 5-19.  
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Figure 5-19: Migration of polymers. Relaxation of the polymer (≙ recoil and/or reorientation of the 

polymer) induces an asymmetric microflow near the walls, which moves the polymer away from the 

wall. Different local shear rates inside the channel leads to position-dependent averaged stretching 

and/or orientation of the polymer. This leads to a spatially-varying diffusivity and to migration 

away from the centerline. a) Dumbbell model (see chapter 4.4). b) Semiflexible polymers. 

c) Brownian stiff rods.  

Relaxation of the polymers, recoiling in the case of flexible polymers [25] and 
reorientation in the case of stiff polymers [123], induces an asymmetric microflow 
which moves the polymers away from the walls. An increase of the depletion layer 
thickness with higher velocities is expected such as it is also observed in the center-of-
mass probability distributions for the semiflexible actin filaments. Therefore, it seems 
that the depletion layers are determined, additionally to steric interactions discussed 
above, by hydrodynamic interactions. Whereas the steric interactions are largest for the 
no flow scenario and decrease strongly in flow, the hydrodynamic interactions with the 
wall are zero without flow and become larger with higher velocities. Beside the wall 
effects, cross-streamline migration can be caused by spatially-varying diffusivity. In 
order that the diffusivity of a polymer depends on the channel position, the 
conformations have to vary inside the channel. In section 5.4, it is already shown that 
the conformations and orientations of the actin filaments change along the cross-section 
of the channel. Therefore, the precondition for a spatially-varying diffusivity is fulfilled. 
The diffusivity of the actin filaments inside the microchannel is discussed below in 
more detail. In general, migration away from the channel center is expected for 
polymers in Poiseuille flow [26, 29]. This leads to a local minimum in the center-of-
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mass probability distribution at the channel center such as it is observed for the actin 
filaments at large velocities. The maximum in the center-of-mass probability 
distributions of the actin filaments exists because filaments migrate away from the 
channel center, but also migrate away from the channel walls and accumulate therefore 
at a channel position between the channel center and the channel walls. Thus, kinetic 
arguments can explain qualitatively the center-of-mass probability distribution for the 
actin filaments in flow by steric interactions, hydrodynamic interactions with the walls, 
and spatially-varying diffusivity. Obviously, migration due to spatially-varying 
diffusivity dominates for the semiflexible actin filaments at large velocities and the 
attention is therefore mainly paid to the spatially-varying diffusivity in the following 
discussions.  

5.5.1 Analytic Description of the Center-of-Mass Probability  

Distribution 

In the following section, we want to quantify the center-of-mass probability 
distributions of the semiflexible actin filaments by an analytic description. According to 
kinetic theories discussed above, an analytic description should include the drift due to 
hydrodynamic interactions with walls and the drift due to the spatially-varying 
diffusivity. Steric interactions are neglected for simplification. The evolution of the 
center-of-mass probability distribution n(ycm) along the cross-section of a straight 
channel is determined for any polymer in flow by  
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The first term in the flux describes the drift due to hydrodynamic interactions with the 
walls (an expression for K(ycm) is given below) [26], the second term describes the drift 
due to the spatially-varying diffusivity D(ycm) [32], and the last term is the contribution 
due to the Fickian diffusion. A derivation of this equation can be seen in chapter 4.4 for 
the dumbbell model (see equation 4.57). In steady-state, the flux must be zero. In order 
to solve equation 5.23 to obtain the center-of-mass probability distribution, the 
hydrodynamic interactions with the walls and the diffusivity of the actin filaments 
inside the microchannel have to be known. 
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5.5.1.1   Hydrodynamic Interactions with the Walls 

For only one single wall at y = d/2, the drift of polymers due to hydrodynamic 
interactions with the wall is calculated in [26] and K(ycm) is derived to 
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where )(~
cmyK  depends on channel position as well as on polymer properties. 

For semiflexible polymers, the dependence of )(~
cmyK on the shear rate is given by [126] 
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where K0 is a proportional constant.  

5.5.1.2   Spatially-Varying Diffusivity 

In general, the dependence of the diffusivity on shape conformations of polymers is 
complicated and is also affected by hydrodynamic interactions [32, 33, 125]. For 
flexible polymers, the diffusivity changes mainly due to the elongation from coiled 
polymers at the channel center to stretched polymers with larger diffusivity at the walls 
(see figure 5-19a). The flexible polymers diffuse faster away than towards the channel 
center, and migration of polymers away from the channel center is the consequence. For 
stiff polymers, the flow influences strongly the averaged orientation of them within the 
channel (see figure 5-19c). Since the diffusivity of rods depends on the orientation (see 
equations 4.4 and 4.5), the diffusivity is also position-dependent for stiff rods but can 
only change maximal by a factor of two. For semiflexible actin filaments, the filaments 
elongate as well as orientate but the change in both parameters of filaments near the 
centerline compared to those near walls is rather small (see section 5.4.1). A 
particularity in the conformation of semiflexible actin filaments compared to flexible 
and stiff polymers with equal contour lengths is the large size of the thermal shape 
fluctuations perpendicular to the mean orientation of the polymer. Even in flow, the 
deviations of filament segments from the center-of-mass streamline are often several 
micrometers and therefore in the same order of magnitude as the channel width.  
To measure these deviations, the contours of filaments are divided into segments in 
intervals of ∆x = 0.5µm along the center-of-mass streamline (see figure 5-20). Since 
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Figure 5-20: Analysis of the thermal fluctuations.  

most filaments have an elongated shape (> 70%), we focus the investigation on these 
filaments and neglect the bent filaments. The position yseg of a segment in the y-
direction is measured for each segment of a filament. Considering only filaments which 
have their center-of-mass at the same certain channel position ycm, the numbers Nseg of 
segments of these filaments inside intervals of ∆y = 0.1µm along the y-axis are counted. 
The obtained segment distribution for the certain channel position ycm is normalized by 
the total number of segments. For each center-of-mass position, about 200 filaments are 
analyzed. Figure 5-21a shows the segment distributions for three center-of-mass 
positions ycm at a velocity v0 = 2.4±0.7mm/s, and figure 5-21b shows the segment 
distributions for filaments with the center-of-mass at ycm = 2±0.5µm for different flow 
velocities.  
All segment distributions have a maximum at the center-of-mass position of the 
filaments. The heights of the maximum are smaller and the distributions are wider for 
filaments closer to the channel center (figure 5-21a). Additionally, an increase of the 
flow velocities narrows the distributions and leads to larger maxima (figure 5-21b). 
Consequently, the deviations of segments from the center-of-mass streamline are, on 
average, larger for filaments near the channel center than at the walls and for filaments 
at smaller flow velocities. This is a consequence of the increase in the local shear rate 
toward the walls and for larger flow velocities. Larger shear rates elongate the filaments 
more strongly in the flow direction and therefore the extensions of the filaments 
perpendicular to flow direction are decreased, leading to the smaller deviations. As seen 
in figure 5-21, the distributions can approximately be described by Gaussian 
distributions with a maximum at yseg = ycm, although the tails of the distributions deviate 
slightly from the Gaussian distributions (see semi-logarithmic plots in figure 5-21c-d).  
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Figure 5-21: Segment distributions. a) Segment distributions at different channel positions for 

v0 = 2.4±0.7mm/s.  b) Segment distributions for filaments with center-of-mass at ycm = (2±0.5)µm for 

different flow velocities. c) Semi-logarithmic plot of a). d) Semi-logarithmic plot of b). The channel 

center is at y = 0 and the walls at y = 5.5µm. 

In the semi-logarithmic plots, it can additionally be seen that the distributions are 
slightly asymmetric. The segments deviations from the center-of-mass streamline are 
larger for segments found in direction toward the centerline (yseg < ycm) than in direction 
toward the walls (yseg > ycm). This is a consequence of the large extensions of the 
filaments perpendicular to the flow direction. The local shear rate )( segyγ&  at the 
segments positions deviate from the shear rate )( cmyγ&  at the center-of-mass position. 
For segments with y > ycm, the local shear rate at its own positions is larger than for 
segments with y < ycm. Consequently, the contour of a single filament is unequally 
elongated and parts of the contour with y > ycm are more elongated (≙ smaller deviation) 
than parts with y < ycm. Thus, the conformational changes due to the position-dependent 
shear rate are not only seen in the segment distributions by comparing filaments at 
different positions, but also in the contour of a single filament. However, the differences 
in the deviations from the center-of-mass streamline for segments y > ycm and y < ycm are 
very small. Therefore, the position-dependent behavior of segments relative to the 
center-of-mass is neglected in the following discussions.  
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Figure 5-22: a) σ2 against channel position for different velocities. b) σ2 against Weissenberg 

number. 

For filaments at a certain channel position ycm, the mean deviation of the segments from 
the center-of-mass streamline can be quantified by the standard deviation 
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where yseg,i denotes the position measurement of a single segment and ns is the total 
number of segments. The mean square deviation σ2 is plotted for all measured velocities 
against the channels positions in figure 5-22a. In this plot, the decrease of σ2 toward the 
walls and at higher flow velocities is clearly seen. 
 Calculating the Weissenberg number (equation 4.17) by using the relaxation time 
τrel,exp = 0.4s and the shear rate ,/8)( 2

0 dyvy cm=γ&  the dependence of σ2 on the 
Weissenberg number is obtained and shown in figure 5-22b. The data points for the 
different velocities fall all at a single curve. Thus, the Weissenberg number relWi τγ&=   
determines how large σ2 is. A parameter relD τσ /~ 2=  for a certain shear rateγ&  can be 
calculated which has the units of a diffusivity. The time τrel is the hydrodynamic time 
scale of the polymer system and characterizes the dynamics of the thermal fluctuations. 
The length σ, obtained by averaging the segment deviations from the center-of-mass 
streamline over many segments of several filaments, can also be considered as the 
typical distance a segment can reach in the time τrel due to thermal fluctuations (see 
figure 5-23). D~  decreases strongly with increasing shear rate as its is seen in figure 
5-24 and presumably reflects the shear-dependent diffusion behavior of the actin 
filaments inside the microchannels. Therefore, it is reasonable to assume that the  
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diffusivity D of the actin filaments is proportional to the parameter D~ , 

)(~)( γγ && DD ∝ , 5.29 

and therefore decreases with increasing shear rate. Consequently, the diffusivity of the 
actin filaments is position-dependent and decreases toward the walls. A decrease of the 
diffusivity toward the walls suggests cross-streamline migration in direction toward the 
walls which is consistent with the center-of-mass probability distributions.  

 
Figure 5-23: Illustration of the “segment-diffusivity” of actin filaments inside microchannels.  

 
Figure 5-24: D~  against the shear rate.  The line has the function 0.67µm2/s/(1+(9.8⋅10-3s·γ ˙ )1.25). 
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To obtain an expression for the spatially-varying diffusivity, D~  can be fitted with a 
function ))(1/(~ cbaD γ&+= , where a, b and c are fit parameters. Using the relation 
between the channel position and the shear rate (equation 5.2), the position dependent 
diffusivity of the actin filaments can be written as 
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where D0 is a proportional constant, and a = 0.67µm2/s, b = 9.8⋅10-3s, and c = 1.25 are 
the results obtained from the fit. 
After quantifying the spatially-varying diffusivity of the semiflexible actin filaments, 
the center-of-mass probability distribution n(ycm) can be determined by solving equation 
5.23. Considering only one channel half and assuming that a filament is only influenced 
by the hydrodynamic interactions with a single wall, the governing equation of the 
center-of-mass probability distribution in steady-state can be simplified to 
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where )(~
cmyK  is given in equation 5.27 and )( cmyD  in equation 5.30. This differential 

equation can be solved by  
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a = 0.67mm2/s, b = 9.8⋅10-3s, and c = 1.25. The integral can be calculated (appendix 8.1) 
with Mathematica (Version 6.0, Wolfram Research, Oxfordshire, UK). The parameter 
n0 can be considered as normalization constant and K0/D0 can be interpreted as a 
weighting of the drift term due to hydrodynamic interactions with the wall and the drift 
term due to spatially-varying diffusivity.  
For one parameter set [133], n(ycm) is shown in figure 5-25. In this parameter set, the 
channel width d = 11µm and the different velocities v0 are chosen equal to the 
experiment. K0/D0 is kept constant for all velocities and only the constant n0 varies for 
the different velocities. For this parameter set, n(ycm) shows for all velocities a minimum 
at the channel center and a maximum at a channel position somewhere between the 
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Figure 5-25: Center-of-mass probability distributions calculated for steady-state conditions for a 

parameter set [133]. In the governing equation of the center-of-mass probability distribution, 

hydrodynamic interactions with the wall and a spatially-varying diffusivity are included. The 

diffusivity is assumed to be proportional to the measured mean square deviation of segments from 

the center-of-mass streamline.  

channel center and the channel walls. Whereas the minimum at the smallest velocity 
v0 = 0.23mm/s is slightly pronounced and the distribution can roughly be considered as 
constant, the minima become more pronounced and the peak heights of the maxima 
become larger with increasing velocities. Furthermore, the distributions decrease toward 
the wall. Depletion layers near the wall can be observed for which the thicknesses are 
larger at higher velocities. Thus, n(ycm) qualitatively shows the main features observed 
for the center-of-mass probability distributions of the semiflexible actin filaments 
(figure 5-17): almost equally distributed filaments for small velocities, a minimum at 
the channel center and a maximum between the channel center and the walls for large 
velocities, and depletion layers at the walls. The peak heights of the maxima are 
comparable to those of the measured distributions. For the two largest velocities, n(ycm) 
and the measured distributions are in agreement almost over the entire channel as seen 
in figure 5-26. The model is most suitable for large velocities for which steric 
interactions are negligible. Steric interactions, which are neglected in this model, 
generate a depletion layer already without flow and become smaller with increasing 
velocities. This leads to the much larger depletion layers in the experiment for small 
velocities compared to the calculations.  
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Figure 5-26: Comparison of the calculated center-of-mass probability distribution n(ycm) with the 

measurements for actin filaments at large velocities.   

In summary, we measured the center-of-mass probability distributions of actin filaments 
in flow along a cross-section of a straight channel for different velocities. For small 
velocities, the filaments are almost homogenously distributed over the channel. In 
contrast, a striking local minimum is found at the channel center for large velocities. 
This minimum becomes more pronounced with increasing velocities. Additionally, 
depletion layers near the walls are observed. These results can be explained by kinetic 
arguments. Spatially-varying diffusivity causes cross-streamline migration away from 
the channel center, resulting in a local minimum at the channel center. Hydrodynamic 
interactions with walls lead to cross-streamline migration away from the channel walls, 
creating depletion layers near the walls. For small velocities, steric interactions 
influence additionally the depletion layers. The dependence of the diffusivity on the 
shear rate is measured by assuming proportionality between the diffusivity and the 
mean square deviation of segments from the center-of-mass streamline. Including this 
diffusivity and hydrodynamic interactions with the wall into the center-of-mass flux, the 
center-of-mass probability distribution is calculated from the condition that the center-
of-mass flux has to be zero in steady-state. For suitable weighting of the two drift terms, 
the calculated center-of-mass probability distributions for the different velocities show 
the same characteristics as observed in the measured distributions. For large velocities, 
an approximately quantitative agreement is even obtained. In particular, the striking 
minima at the channel center are well reproduced for which the shear rate dependence in 
the measured diffusivity is responsible.  
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5.6 Curved Channels  

In the previous sections of this chapter, the behavior of actin filaments in pressure-
driven flow is analyzed. The conformations and orientations of the semiflexible 
filaments are discussed and in particular the center-of-mass probability distributions for 
different flow velocities are considered. For all these investigations, experiments are 
performed using a simple rectilinear geometry with an aspect ratio (depth/width) of 
unity. However, the results discussed for the straight channels are not necessarily valid 
for other geometries. The knowledge of the behavior inside different geometries might 
be used to manipulate the polymer in a controlled manner. In order to understand the 
influence of the channel geometry, the behavior of actin filaments inside curved 
channels with a constant curvature (see figure 5-27a) is considered in this section. The 
channels, with a width of d = 11±1µm and depth of 10±1µm, have the same dimensions 
as in the experiments in straight channels. The optical focal plane of the microscope is 
again adjusted to the half the channel height. The radius of curvature of the channels is 
Rc = 15±1µm. 

 
Figure 5-27: Actin filaments inside curved channels. a) Curved channel geometry.  d: width of the 

channel, Rc: radius of curvature, ri: position of the i-th pixel of a filament. Filaments are analyzed 

inside the blue area (α = 120°). b) Snapshots of flowing actin filaments inside curved channels 

(v0 ≈ 1mm/s, d ≈ 11µm, Rc ≈ 15µm).  

Typical snapshots of actin filaments inside curved channels are shown in figure 5-27b. 
The actin filaments adapt to the geometry and therefore they are slightly bent. 
Additionally, tumbling filaments and parabolic bent filaments are also observed in 
analogy to the straight channels (see section 5.1).  
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According to the geometry, positions are measured in polar coordinates and the center-
of-mass is characterized by the radius 
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where ri is the radius of each pixel along the pixelline and np is the total number of 
pixels. This corresponds to the center-of-mass position ycm along a cross-section of the 
channel with channel center at ycm = 0 and walls at ycm =  ±d/2. All actin filaments found 
at the end of the curved channel (see blue area in figure 5-27a) are analyzed.   

 
Figure 5-28: a) FEM-simulation of the velocity field (the picture shows a slice of a 3D-simulation at 

the focal plane). Black lines are streamlines of the velocity field. b) Velocity profiles along the cross-

section in a straight channel and in the curved channel (y = 0: centerline, y = 5.5µm: outer wall, 

y = -5.5 µm: inner wall). c) Shear rate versus position y.  

A FEM simulation of the flow field inside the curved channel is shown in figure 5-28a. 
The velocity profile along a cross-section of the channel, seen in figure 5-28b, is 
asymmetric and the maximum of the velocity is shifted toward the inner wall. This is a 
consequence of the different lengths of the inner and outer walls with no-slip boundary 
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conditions. Solvent molecules in the channel half at the longer outer wall experience on 
average a larger internal friction from the neighboring solvent molecules than molecules 
in the channel half at the inner wall. Therefore, the molecules at the longer outer wall 
flow more slowly. 

 

 
Figure 5-29: Center-of-mass probability distributions in curved channels for different velocities.  

For comparison, the distributions inside the straight channels are plotted. Additionally, the shear 

rates for the curved and straight channel geometry are shown. The inner wall is at ycm = -5.5µm and 

the outer wall at ycm = 5.5µm.   

The center-of-mass probability distributions of actin filaments inside curved channels 
are shown for three velocities in figure 5-29. The distributions are normalized for each 
center-of-mass position by the circular arc length of the analyzed area and by the 
number of analyzed filaments. For comparison, the center-of-mass probability 
distributions for straight channels of comparable velocities are also plotted. For a small 
velocity v0 ≈ 0.2mm/s, the distribution is constant almost over the entire channel. Only 
small depletion layers at both walls can be seen, for which the thickness is larger at the 
outer wall than at the inner wall. In contrast, the distributions for larger velocities have 
local minima which become more pronounced with larger flow velocities. Additionally, 
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the depletion layer thicknesses are increased. Thus, the basic characteristics of the 
center-of-mass probability distributions in curved channels are the almost same as in 
straight channels and can also be explained with the same arguments: migration away 
from the channel center due to a spatially-varying diffusivity and migration away from 
the walls due to hydrodynamic interactions. However, the center-of-mass probability 
distributions are not symmetric relative to the channel center such as it is observed in 
the straight channels. The minima of the distributions are not directly found at the 
channel center and the thicknesses of the depletion layers at the inner walls are clearly 
smaller than at the outer walls. It seems that the entire distributions are shifted toward 
the inner walls.  
As discussed in the last section, cross-streamline migration due to a spatially-varying 
diffusivity strongly influences the center-of-mass probability distributions. In order to 
obtain information about the migration behavior in the curved geometry, the thermal 
fluctuations of the filaments are analyzed by measuring the segment distributions. 
Furthermore, the center-of-mass probability distributions are calculated for steady-state 
conditions. 

 
Figure 5-30: a) Segment distributions inside curved channel for v0 = 1.7±0.5mm/s at two channel 

positions.  The lines are Gaussian distributions. The inner wall is at ycm = -5.5µm and the outer wall 

is at ycm = 5.5µm.  b) D~  against the shear rate.   

Analogous to the straight channels, the segment positions yseg are measured and the 
frequencies of segments at certain channel positions are counted for all filaments with 
center-of-mass position ycm. The segment distributions are normalized by the total 
number of analyzed segments. Two segment distributions are shown in figure 5-30a for 
a velocity v0 ≈ 1.7mm/s. The two chosen positions, ycm ≈ -2µm and ycm ≈ 2µm, have the 
same distances from the channel center. The distribution is narrower and the maximum 
is larger for filaments at ycm ≈ 2µm (outer channel half) than at ycm ≈ -2µm (inner 
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channel half). Consequently, the mean square deviation 2σ  of segments from the 
center-of-mass streamline is smaller at ycm ≈ 2µm than at ycm ≈ -2µm. The geometrical 
influence on the thermal fluctuations due to the channel curvature is small [134].  Thus, 
the results can be related to the larger shear rate ( ) 1s260µm2 −≈=cmyγ&  compared to 

( ) .s110µm2 1−≈−=cmyγ&  Calculating relD τσ /~ 2=  for the two positions, the data points 
are in agreement with the measurements in the straight channels as seen in figure 5-30b. 
Therefore, it is reasonable to assume the same shear rate dependence for D~  as in the 
straight channels. The center-of-mass flux in the curved geometry in y-direction is given 
by 
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where nc(ycm) is the center-of-mass probability distribution for the curved geometry, 
( ))(~

0 cmyDDD γ&⋅=  and .)()(~ 3/2
0 cmcm yKyK γ&⋅=  For each wall, the drift due to 

hydrodynamic interactions with this wall is approximated by the expression (see 
equation 5.25) for a single wall. An additional drift of polymers predicted due to 
misalignment of the relaxing force of the elongated polymers and the curved flow [23] 
is not included. For steady-state conditions, the center-of-mass flux has to be zero. The 
shear rate )( cmyγ& along the cross-section is obtained by FEM-simulations. The equation 
can be solved numerically with Mathematica and nc(ycm) is shown for different 
velocities in figure 5-31. For the constant K0/D0, the same value [133] is taken as for the 
straight channels.  

 
Figure 5-31: Calculated center-of-mass probability distributions nc(ycm) for the curved geometry in 

steady-state. The channel center is at ycm = 0, the inner wall at ycm = -5.5µm and the outer wall at 

ycm = 5.5µm.  
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The calculated center-of-mass probability distributions nc(ycm) have for each velocity a 
local minimum, a maximum in each channel half, and depletion layers at the walls. The 
minima and the maxima become more pronounced and the depletion layer thicknesses 
increase with increasing velocities. These results are comparable to the straight channels. 
But other than in the straight channels, nc(ycm) is asymmetric. The minimum is not at the 
centerline, but rather at ycm = -1µm. Thus, the minimum is shifted to the channel 
position at which the shear rate is zero. Furthermore, the maximum is closer to the wall 
in the inner channel half compared to the outer channel half. The peak heights of the 
two maxima are only slightly different and also the depletion layers at the walls have 
comparable sizes for each velocity. The kink of nc(ycm) at the minima is unphysical and 
is only caused by the assumed diffusivity, which has a discontinuity at the channel 
center.  

 
Figure 5-32 Comparison of the calculated center-of-mass probability distribution nc(ycm) for 

v0 = 1.7mm/s in steady-state with the measurement for actin filaments inside the curved channel 

geometry. 

For comparison, figure 5-32 shows the calculated center-of-mass probability 
distribution nc(ycm) and the measured distribution for a velocity v0 ≈ 1.7mm/s in the 
same plot. Both distributions are asymmetric and the minima are shifted toward the 
inner wall. However, the shift of the minimum is smaller for the measured data points. 
Furthermore, the depletion layers at both walls have comparable sizes for the calculated 
distribution, but are clearly different in the measurement. An important assumption, 
which we have made to calculate the center-of-mass probability distribution, is the 
steady-state condition. However, the actin filaments flow only a short time ( ms30≈t ) 
inside the curved part of the microchannels, due to the design of the microfluidic device 
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(see figure 5-27). The distances which they can migrate in this time are therefore 
probably small, and steady-state conditions cannot necessarily be expected. 
The initial conditions in the experiment are the symmetric center-of-mass probability 
distributions of the straight channels before the filaments flow in the curved part of the 
channels. Inside the curved geometry, the filaments will be redistributed. Considering a 
certain streamline, the distance between this streamline and the inner wall decreases in 
the curved channel part as seen in the FEM-simulation in figure 5-28a. Consequently, 
the filaments are shifted toward the inner wall by assuming that the filaments primarily 
follow the streamlines. Thus, redistribution of filaments occurs in the curved part of the 
microchannel without the need of any migration or diffusion. Using the calculated 
center-of-mass probability distribution n(ycm) for the straight channels as initial 
conditions of the filaments distribution, the redistributions of filaments due to the 
streamline displacements generate the asymmetric center-of-mass distribution ns(ycm) 
shown in figure 5-33. This distribution ns(ycm) is calculated by shifting the channel 
positions by the streamline displacements obtained from the FEM-simulation. 
Comparison of ns(ycm) with the measurement shows that the profiles of the distributions 
in the middle of the channel is very similar. ns(ycm) fits better to the measured data than 
the calculated distribution nc(ycm) for steady state conditions. In particular, the minimum 
  

 
Figure 5-33: Redistribution of actin filaments due to streamline displacement.  The plot shows an 

comparison of the measurement with the calculated center-of-mass probability distribution ns(ycm) 

obtained by shifting the channel positions of the center-of-mass distribution n(ycm) for the straight 

channel according to the streamline displacements. Additionally, the distribution nc(ycm) is plotted 

which was calculated for steady-state conditions. The velocity for all shown distributions is 

v0 ≈ 1.7mm/s.  
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is found at the same channel position. This indicates that for short times the streamline 
displacement is the main cause for the asymmetry in the center-of-mass probability 
distribution. For long times for which steady-state conditions can be assumed, the 
calculated distribution nc(ycm) suggests that the asymmetry becomes even larger. The 
local minimum will be more shifted toward the inner wall to the channel position for 
which the local shear rate is zero. However, the depletion layer at the outer wall is 
clearly larger in the measurement than in both calculated distributions nc(ycm) and 
ns(ycm). Apparently, additional geometry effects influence the center-of-mass probability 
distribution. For curved geometries, a further cause of migration has been predicted 
which has not been included in any of our calculations, namely the misalignment of the 
relaxing force and the curved flow [23]. The direction of this migration is suggested 
toward the inner wall and this might explain the larger measured depletion layer at the 
outer wall.  
In summary, we measured the center-of-mass probability distributions of actin filaments 
inside curved microchannels with constant curvature for different velocities. Analogous 
to the straight channels considered in the last section, the distributions have depletion 
layers near the walls and a local minimum for large velocities. In contrast to the straight 
channels, the distributions are asymmetric and the local minimum is shifted toward the 
inner wall. Additionally, the depletion layer at the outer wall is larger than at the inner 
wall. We showed for one velocity that this asymmetry is mainly caused by the 
displacement of streamlines in the curved channel part due to the design of the 
microfluidic device. In the experiment, the actin filaments are inside the curved channel 
part for only a short time in which steady-state is not reached. Calculations of the 
center-of-mass probability distribution for steady-state conditions suggest that the 
distribution becomes more asymmetric for later times and in particular the local 
minimum is more shifted toward the inner wall. 
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Chapter 6  

Actin Bundles 

This chapter discusses the bundling of actin filaments in vitro. More specifically, the 
mechanical properties of actin bundles and the time evolution of the formation are 
considered. Experiments are performed, in which the bundling is induced by the actin-
binding protein (ABP) α-actinin or by counterion condensation in the presence of Ca2+. 
The fluorescently labeled actin filaments are observed by fluorescence microscopy and 
the intensity of the emitted light gives us a measure about the number of filaments 
inside a bundle. Analysis of the thermal shape fluctuations of bundles provides 
information about their mechanical behaviors. Furthermore, bundling kinetics are 
studied by using a hydrodynamic focusing device which allows in a time-resolved 
manner the observation of the bundling.   

6.1 Mechanisms of Actin Bundle Formation 

Actin filaments are organized into bundles inside cells (see chapter 1.2). Within a cell, 
ABPs are responsible for the bundle formation. Typically, these ABPs have two binding 
sites that interact with a specific subdomain of actin and thereby crosslink two actin 
filaments (see figure 6-1a). The structure and behavior of the actin bundles depend 
strongly on properties of the linker molecules. For the relatively long actin-binding 
protein α-actinin (length about 40nm), the actin filaments are organized into a loosely 
packed, disordered square lattice [60]. 
Due to the electrostatic nature of actin, actin bundles are also formed in the presence of 
multivalent ions by counterion condensation (see figure 6-1b) [44, 45]. Actin filaments 
are overall negatively charged polyelectrolytes (charge density about -4e-/nm at 
physiological conditions [135]) and they attract cations from the buffer solution. Long-
range attractions, resulting from fluctuations in the counterion charge density along the 
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polyelectrolytes, can become larger than the repulsion of the equally charged 
polyelectrolytes at high ion concentration [58, 61]. The consequence is the formation of 
actin bundles consisting of close packed actin filaments. The cations between the actin 
filaments are correlated and organized into density waves that are coupled with an 
additional twist of the helical inhomogeneously-charged filaments to optimize the 
charge distribution inside the actin bundles [61].  

 

 
Figure 6-1: Actin bundle formed a) by ABPs (e.g. α-actinin), b) by polyvalent counterion 

condensation, and c) by depletion forces.  

Besides electrostatic interactions, unspecific binding between actin filaments leading to 
actin bundling can also be purely entropic [54, 55]. Actin filaments are bundled by 
depletion forces in the presence of coiled polymers such as poly(ethylene glycol) (PEG), 
(see figure 6-1c). The polymers are excluded from the actin filaments within a so-called 
depletion zone that has a thickness on the order of the radius of gyration of the polymers. 
When two filaments come close together, the two depletion zones around the filaments 
overlap. The gain in total free volume which the polymers can occupy leads to an 
increase in the configurational entropy. The consequence is an effective attraction 
between the actin filaments and formation of close packed actin bundles [54]. 

6.2 Bending of Actin Bundles 

Two limited models that describe the bending of actin bundles are illustrated in figure 
6-2 [67]. In the decoupled case (figure 6-2a), the actin filaments inside the bundle bend 
independently. A sliding of actin filaments against each other occurs without any 
resistance from the linker molecules, which are sheared or redistributed.  In the fully 
coupled case (figure 6-2b), the actin filaments are hold close together by the linker  
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Figure 6-2: Actin bundle models: a) decoupled filaments and b) fully coupled filaments.  

molecules, which resist an interfilament shearing of the bundle. Consequently, the 
filaments are forced to an additional stretching or compression. This costs energy. 
Therefore, bundles in the fully coupled case are stiffer than in the decoupled case.   
In the decoupled case, the actin filaments inside the bundle all have the same bent shape. 
To bend the bundle, the same bending energy (see equation 3.2) 
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is needed to bend each filament, where κfilament is the bending rigidity of a single 
filament. The bending energy of the bundle with bending rigidity κbundle, 
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can also be calculated by the sum of the bending energy of all actin filaments 
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where n is the number of filaments inside the bundle. Thus, the bending rigidity of the 
entire bundle  

filamentbundle nκκ = , 6.4 

is proportional to the number of filaments inside the bundle.  
Since the persistence length is proportional to the bending rigidity (see equation 3.1), 
the persistence length depends linearly on the number n of filaments 

nLp ∝  6.5 

in the decoupled case.  
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Figure 6-3: Cross-section of a bundle. 

For the fully coupled case, the bending of the bundle can be considered as the bending 
of one single mechanical beam with an almost homogenous density and a circular cross-
section (see figure 6-3). The bending rigidity of a mechanical beam is given by [81] 

EI=κ , 6.6 
where E is the Young modulus and I = πa4/4 [81] is the second moment of inertia of a 
circular cross-section with radius a. Therefore, the persistence length, which is 
proportional to the bending rigidity (see equation 3.1), results in 

4aLp ∝ . 6.7 

The cross-section area A of a bundle is proportional to the number n of filaments inside 
the bundle and is also proportional to the square of the radius for a circular cross-section: 

2anA ∝∝ . 6.8 
Using the relations in equation 6.7 and 6.8, the dependence of the persistence length on 
the number of filament is given by 

2nLp ∝  6.9 

for the fully coupled case.  

6.3 Fluctuating Actin Bundles 

6.3.1 Experiment and Analysis 

To form actin bundles by counterion condensation, an actin solution (70nM) is mixed 
carefully 3:7 with a 10mM CaCl2 solution. The solution is equilibrated for 1-20min to 
give the actin filaments time to form bundles with different thicknesses. A drop (1µl) of 
the solution is placed at a microscope slide and a cover slip is put on top of the solution 
(see figure 6-4). Glue seals the microscope slide and the cover slip to avoid evaporation.  
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Figure 6-4: Actin Bundles in a quasi 2D-system.  

The microscope slide and the cover slip are covered before use with a PEG layer (see 
chapter 2.2) to reduce sticking of the actin bundles at the glass surfaces. The actin 
bundles are confined in the height (≈ 1µm) but can fluctuate freely in the plane parallel 
to the microscope slide [36]. The fluctuations of the contour can be observed with 
fluorescence microscopy, because the actin bundles are always located in the focal 
plane. Thus, the actin bundles are investigated in a quasi 2-dimensional system, where 
the fluctuations in the height are negligible.  
 

 
Figure 6-5: Fluctuating actin bundle (time period between the images: ∆t = 240ms). This actin 

bundle consists of three parts: one thin end consisting of a single filament, a middle part consisting 

of two filaments and one thick end consisting of many filaments.   

An example of a fluctuating actin bundle is shown in figure 6-5. By means of the 
intensity along the bundle, the bundle can be divided into three parts with 
approximately uniform intensity (see first image in figure 6-5). The thin end (right end 
in the images) is a single actin filament, the middle part consists of two actin filaments, 
and the thick end consists of several filaments. The fluctuations of the shape at the thin 
end are much larger than the fluctuations at the middle part or at the thick end. 
Obviously, the stiffness of bundles depends on their thickness. The intensity at different 
positions of the considered bundle is shown in figure 6-6. An increase of the intensity is 
obtained from a single filament to a thicker bundle. In the following, we want to use this 
effect to determine the number of filaments inside bundles.  
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Figure 6-6: Intensity along lines at different positions (see inset) of the actin bundle.  

For the analysis, the bundles are divided into parts with approximately uniform intensity. 
The different parts are treated as bundles consisting of a constant number of filaments 
along its contour. For each part of a bundle, the intensity is measured along lines 
perpendicular to the contour in distances of 0.5µm along the contour. The background is 
subtracted from the intensity profiles and the sum of the intensity is calculated for each 
profile. The sum of intensity is averaged over all measured intensity profiles in all 
recorded images. A parameter I0 is obtained, which corresponds to the number of 
filaments inside a bundle.  
The persistence lengths of bundles are determined by measuring the tangent correlation 
(see equation 3.3). A pixelline is created from the recorded image by using several 
image filters (see chapter 5.2). After smoothing the pixelline with a spline fit, the 
pixelline is divided into tangent vectors of equal lengths and the angles ϑ  are measured 
between all tangent vectors. To obtain the tangent correlation <t(s)t(s+l)> of two 
tangent vectors separated by a distance l, the cosine of the angle ϑ(l) is averaged over 
the measurements of all possible realization of the distance l along the pixelline in one 
picture and over all recorded pictures for the same bundle. The spline fit for smoothing 
the pixelline and the length of the tangent vectors are optimized to reduce errors due to 
the “pixellization” of the contour (for details see [5]). 
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6.3.2 Persistence of Actin Bundles 

Figure 6-7 shows the tangent correlations for the middle part and for the thin end of the 
actin bundle seen in figure 6-5. The thick end of this bundle is too short and too stiff for 
a reasonable analysis of its fluctuations. The tangent correlations decay exponentially, 
which is also expected for a free semiflexible polymer modeled as a worm-like chain 
(see equation 3.3). From exponential fits, the persistence lengths Lp are obtained. The 
persistence length Lp ≈ 25µm for the middle part is about two times larger than for the 
thin end, having Lp ≈ 14µm. The persistence length of the thin end is in agreement with 
measurements of single actin filaments [5].  

 
Figure 6-7: Tangent correlation (semi-logarithmic scale) of the actin bundle from figure 6-5.  

The persistence lengths are determined for several bundles by measuring the tangent 
correlation, for which about 100 pictures per bundle are analyzed. Additionally, the 
intensities I0 of the bundles are measured. With the same techniques, single actin 
filaments are also analyzed. We are limited with the analysis to bundles consisting of 
only a small number of filaments. For thick bundles, the thermal fluctuations are only 
very small due to the increased persistence lengths. Typically, actin bundles are only 
homogenous in their thickness at a length scale of a few micrometers. At this length 
scale, thick bundles behave like a stiff rod and a reasonable analysis of fluctuations to 
determine the persistence length cannot be performed.  
In figure 6-8, the persistence lengths and intensities are shown for all analyzed bundles 
and filaments. The persistence lengths increase with larger intensities. Four 
accumulations of data points are found at I0 ≈ 4700, I0 ≈ 7400, I0 ≈ 9400 and I0 ≈ 15100. 
Apparently, we observed four different kinds of bundles. Data points for bundles at 
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Figure 6-8: Persistence length of actin bundles against intensity.  

I0 ≈ 4700 agree in their intensities and persistence lengths with measurements of single 
actin filaments. Therefore, these data points can be related to parts of bundles consisting 
of a single filament. The data points at the next higher intensities I0 ≈ 7400 and 
I0 ≈ 9400 correspond to measurements of bundles consisting of two and three filaments. 
Comparing the distances between the data points, the intensity I0 ≈ 15100 belongs to a 
larger number of filaments than four. Assuming that the difference in intensity for 
bundle consisting of n and n+1 filaments decreases exponentially (see also section 
6.4.2), the data points at I0 ≈ 15100 correspond to bundles consisting of n ≈ 7 filaments. 
After relating the intensity measurements with the number n of the filaments, the 
persistence lengths are averaged for all data points with the same n. The obtained 
persistence lengths in dependence on number n are shown in figure 6-9.  
Bundles consisting of filaments between n = 3 and n = 7 are missing in the experiment. 
Additionally, bundles consisting of two filaments are found less often than single 
filaments and bundles consisting of three filaments. It is possible that these results only 
indicate that too few bundles were analyzed. However, it is also imaginable that bundles 
consisting of special numbers of filaments are more stable and that these bundles are 
found more frequently in solution. The filaments inside the bundles formed in the 
presence of divalent ions are close packed in a hexagonal order [58, 59]. The top layer 
of all favorite configurations (n = 1, n = 3 and n = 7) are completely filled with 
filaments, which might be a hint for a larger stability of these configurations. In order to 
support this hypothesis, further investigations with larger sampling sizes are necessary.  
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Figure 6-9: Persistence length of actin bundles against the number of actin filaments inside the 

bundle. 

As seen in figure 6-9, the persistence length of actin bundles increases strongly with the 
number of filaments. For comparison, the two limited cases, nL p ∝ (see equation 6.5) 
for decoupled filaments and 2nLp ∝  (see equation 6.9) for fully coupled filaments, are 
drawn. The measured values lie in an intermediate regime and the filaments are neither 
decoupled nor fully coupled. It seems that filaments are partly coupled with a 
persistence length of 3.1nLp ∝ . This coupling is surprising, because no linker molecules 
crosslink two filaments directly by binding to both filaments for bundles formed by 
counterion condensation. Thus, no linker molecules have to be stretched for a sliding of 
actin filaments against each other, and the decoupled case could be expected. However, 
this is not the case and the binding of the actin filaments leading to the bundling has to 
be considered. The actin filaments in bundles formed by counterion condensation are 
held together by electrostatic interactions. One model used to explain actin bundling is 
based on thermal fluctuation correlation effects between 1D Wigner crystals of 
counterions condensed on filaments [136, 137]. In figure 6-10, the charge distribution of 
a bundle consisting of two filaments is considered. For a straight bundle (figure 6-10a), 
the charges are ordered in a lattice that always has the same distance between 
neighboring condensed charges. In contrast, some charges have an unfavorable distance 
to neighboring charges (figure 6-10b) for a bent bundle in which the filaments are bent 
independently (decoupled case). To avoid this, an additional stretching or compression 
of the filaments is necessary. This leads to an indirect coupling of the filaments, which 
explains the partly coupled behavior. For actin bundles formed by multivalent ions, 
other effects are also observed which point to deformations of actin filaments inside 
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bundles in order to avoid an unfavorable charge distribution. In rings of actin bundles, 
the contour is not smooth like in bundles formed by ABPs or depletion forces. Kinks are 
found that are also explained by optimizing the charge distribution inside the actin 
bundles [136]. Furthermore, the helical actin filaments inside the bundles are twisted 
due to electrostatic interactions [58, 61].  
 

 
Figure 6-10: Charge distribution of actin bundles.  a) For a straight bundle, a lattice of charges is 

found. b) In a bent bundle, some neighboring charges (red color) have an unfavorable distance.  

The partly coupled behavior measured for bundles formed by counterion condensation 
is not universally valid for all actin bundles. Actin bundles formed by ABPs or 
depletion forces can show a different behavior due to other types of interactions that 
lead to bundling. Recent experiments show that the persistence length depends on 
properties and concentration of the linker molecules for actin bundles formed by ABPs 
[67]. The decoupled case, the fully coupled case, and also a partly coupled case is 
measured for different conditions [67]. Actin bundles formed by depletion forces show 
a fully coupled behavior [67].  
In summary, the persistence of actin bundles formed by multivalent ions was 
investigated in this section. Intensity measurements of the fluorescently labeled actin 
filaments allow us to identify the number of filaments inside the bundles. Analyzing the 
thermal fluctuations of the bundles by the tangent correlation, the persistence length of 
each bundle can be determined. Considering several bundles, the persistence length in 
dependence on the number of filaments is obtained. The results suggest a partly coupled 
behavior of the actin filaments inside the bundles. This coupling is probably due to an 
optimization of the charge distribution inside the bundles.  
After characterizing the mechanical behavior of actin bundles, the evolution of the actin 
bundling is investigated in the next section. Whereas in this section multivalent ions are 
used for the formation of actin bundles, we change the linker molecules for subsequent 
investigations. In the following section, we use the ABP α−actinin. Aside from the 
larger relevance for biology systems, the advantage of using α-actinin is the possibility 
to label them with a fluorescence dye in order to perform FRET experiments (see 
section 6.4.3). 
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6.4 Bundling Kinetics 

6.4.1 Hydrodynamic Focusing 

 
Figure 6-11: Formation of actin bundles in a hydrodynamic focusing device. 

To study the time-resolved formation of actin filaments into bundles, we use a 
hydrodynamic focusing device [138] consisting of a crossed channel geometry (see 
figure 6-11). The solution in the main channel is hydrodynamically focused by the 
fluids from two side channels. The mixing of the fluids in the outlet channel occurs only 
by diffusion due to laminar flow inside the microchannels (small Reynolds numbers). 
The width of the center stream in the outlet channel can be adjusted by the velocities of 
the side channels relative to the velocity of the main channel. If all velocities inside the 
inlet channels are the same, the center stream occupies one third of the volume of the 
outlet channel. For larger velocities in the side channels relative to the main channel, the 
center stream becomes narrower. Concentrations of the fluids inside the outlet channel 
can be controlled by adjusting the width of the center stream.  
Hydrodynamic focusing devices are often used to study the reaction of two solutions by 
diffusive mixing [139-142]. Usually, a solution containing the first reagent is injected 
into the main channel and a solution containing the second reagent is injected from the 
side channels. Measuring different positions along the outlet channel, the evolution of 
the reaction can be analyzed at different times.  
To study the formation of actin bundles, a solution with actin filaments (70nM) is 
injected into the main channel (width: 30µm, depth: 20µm). From both side channels 
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(width: 30µm, depth: 20µm), an aqueous solution containing the actin-binding protein 
α-actinin (10nM) is injected. The velocities ( m255µ=inv ) in all inlet channels are the 
same. Inside the outlet channel (width: 50µm, depth: 20µm, length: ≈ 0.7m), the fluids 
velocity is of v̄  = 450µm/s. Actin filaments are imaged at different positions along the 
outlet channel by using fluorescence microscopy. We know from measurements of the 
center-of-mass of actin filaments inside microchannels (see chapter 5.5) that most 
filaments are not found in the center of the channels. Therefore, we focused the 
microscope to a plane 8µm below the upper (glass) surface of the microfluidic device. 
This has also the advantage that the actin filaments are mainly stretched and aligned 
(see chapter 5.4) and fluctuations out of the focal plane are reduced. 

6.4.2 Evolution of Actin Bundling 

Figure 6-12a shows typical recorded pictures at different positions along the outlet 
channel. The intensities of lines drawn through the bundles, which are a measure of the 
number of filaments inside the bundles, are seen in figure 6-12c. At the beginning of the 
outlet channel (x = 0cm), the observed macromolecules are single actin filaments. 
Along the outlet channel, the filaments form bundles and the bundles grow in their 
thickness.  

 
Figure 6-12: Formation of actin bundles in a hydrodynamic focusing device. a) Snapshots at 

different positions along the outlet channel. b) Sketch of the microfluidic device. c) Fluorescence 

intensity of the actin bundles.  
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Using the known velocity v̄  in the outlet channel, measurements at a position x can be 
also considered as observation of the bundling process at a time t̄   = x/v̄ . We start the 
measurement at t̄   = 1.3min for which the most of the filaments are still in the state of 
single filaments. At t̄   = 1.3min, the filaments are spread over the entire channel width 
by diffusion and migration. The diffusion of α-actinin (small molecules: length about 
40nm) is much faster than for actin filaments and they are already homogenously 
distributed after about 20s. Therefore, we start the measurements at a time where both 
solutions are mixed completely.  

 
Figure 6-13: Intensity probability distributions at different times.  

For different times, the maximal intensity Imax of each bundle relative to the background 
is measured in the recorded images. Around 1000 bundles are analyzed for each time. 
The intensity scale is subdivided into intervals of ∆Imax = 48 for which the numbers of 
bundles with corresponding Imax are counted. The obtained intensity probability 
distribution at a time t̄   is normalized by the total number of analyzed pictures. Figure 
6-13 shows the intensity probability distributions at different times. The distributions 
have a maximum at Imax ≈ 900. The peak heights of these maxima, which are a measure 
for the number of single filaments inside the solution, decrease with increasing time. 
Therefore, less single actin filaments are observed at later times. Comparing the two 
distributions for smallest times ( t̄   = 1.3min and t̄   = 3.5min), the maximum at 
Imax ≈ 900 is clearly smaller at t̄   = 3.5min and instead the intensities Imax > 1400 are 
more frequently. Some filaments, which are detected at t̄   = 1.3min still as single 
filaments, are bound together and form bundles consisting of a few filaments. For later 
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times, the frequencies in the intensity range of Imax ≈ 1400-2000 decrease again and the 
frequencies get instead larger at higher intensities. This indicates an increase of the 
number of filaments inside the bundles. Thus, filaments firstly organize into bundles 
and the numbers of filaments forming these bundles increase with time, as expected.  

 
Figure 6-14: Gaussian fits of the intensity probability distributions.  

To determine the frequency of bundles consisting of n filaments at different times, the 
intensity probability distributions are fitted by a sum of Gaussian distributions, where 
the n-th Gaussian distribution corresponds to n filaments (n = 1: single filaments, n = 2: 
bundle consisting of two filaments, etc.). In figure 6-14, such Gaussian fits are shown 
for two different times. The positions and widths of the Gaussian distributions are kept 
constant for all fits at the different times. The positions (I1 = 900 and I2 = 1341) of the 
first and second Gaussian distributions and its widths ( 1w  = 334 and 2w  = 472) are 
obtained by fitting the intensity probability distribution for t̄   = 1.3min with two 
Gaussian distributions. The width of the n-Gaussian distribution is assumed to increase 
with number of filaments inside a bundle with 1wnwn = . The positions of the 3th-5th 
Gaussian distributions are determined by the fits of the distributions for t̄   = 3.5min and 
t̄   = 5.5min. Due to the increasing width of the Gaussian distributions and therewith the 
increasing overlap of neighboring distributions, the positions at larger numbers (n > 5) 
cannot be determined anymore. In these cases, the decrease in distance between 
neighboring Gaussian distributions, which is obtained for small numbers, is continued 
exponentially. The area under the n-th Gaussian distribution corresponds to the 
frequency of bundles consisting of n filaments inside the solution. The frequency 
distributions of the number n at different times are shown in figure 6-15.  
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Figure 6-15: Frequency distributions of the number of filaments inside bundles at different times.   

To quantify the time evolution of the bundling process, we assume a step-growth 
process modeled similar to a step-growth polymerization [143]. As the name already 
implies, the formation of thick bundles is considered by a series of steps. An example of 
a possible formation from single filaments to a thick bundle is drawn in figure 6-16. The 
actin filaments are considered as rods, each having the same length. Each filament and 
each bundle is allowed to bind to other bundles/filaments and the number of filaments 
inside the resulting bundle is the sum of all involved filaments:   
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where An is a bundle consisting of n filaments.  
Indeed in reality, the actin bundling is more complicated as the reaction equations 6.10 
in this model can describe. Typically, the thickness of a bundle is not homogenous 
along the contour. The number of filaments inside the bundle can vary along its contour 
and is not necessarily the sum of all actin filaments inside the entire bundle. For 
example, two short actin filaments can bind to a long filament in the way that a bundle 
consisting of only two filaments is generated (see figure 6-16b). In addition, bundles 
grow not only in thickness, but also in length [144, 145] (see figure 6-16c). But 
experiments show [144, 145], that the increase of the length is a slow process in 
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Figure 6-16: Step-growth process. a) Possible formation of an actin bundle step by step. b)-c) 

Possible configurations of filaments inside actin bundles which are observed in experiments but not 

included into the model.  

comparison to the increase of the thickness of bundles. We measure the bundling of 
actin filaments at relatively small times. Therefore, it can be expected that the main 
process is indeed the increase of the thickness as described in the step-growth model. 
Assuming that all bundles and all single filaments bind to other bundles and filaments 
with the same probability at a time t, the bundling can be considered as a second-order 
reaction in which two bundles/filaments reacts to a thicker bundle: 

AAA
k

→+ , 6.11 

where A denotes a bundle or a single filament and k is the rate constant. According to 
this reaction equation, the concentration [A] of the sum of bundles and single filaments 
inside the solution at a time t is determined by the rate law [143] 

[ ] [ ][ ]AAk
dt
Ad −= . 6.12 

The solution of this differential equation is given by [143] 

[ ] [ ]
[ ] tAk
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0

0
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= , 6.13 

where [A]0 is the initial concentration of single filaments.  
Describing the bundling as a reaction for which each filament has exactly one binding 
site, the reaction can be considered as the attaching of bundles/filaments at free binding 
sites of other bundles or filaments. (n-1) reactions are needed for formation of a bundle 
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consisting of n filaments. The bundle contains (n-1) reacted filaments (≙ filaments 
whose binding sites are occupied form other filaments) and one unreacted filament 
(≙ filament with free binding site). Therefore, each bundle and each single filament has 
exactly one unreacted filament, and the concentration of unreacted filaments is equal to 
the concentration [A] of the sum of bundles and single filaments. The probability for a 
bundle consisting of n filaments is equal to the probability that (n-1) reactions have 
occurred and one filament has not reacted. If p is the probability for binding one single 
filament or bundle to another filament or bundle until the time t, (1-p) is the probability 
for an unreacted filament. Thus, the probability xn of a bundle consisting of n filaments 
is given by  

)1()( 1 pppx n
n −= − . 6.14 

The probability p can be expressed by the fraction of filaments which have reacted at 
anytime until the time t. The concentration of reacted filaments can be calculated by the 
difference of the concentration [A]0 of all single filaments in the beginning of the 
experiments and the concentration [A] of unreacted filaments. Using equation 6.13 for 
the concentration [A], the probability p leads to 
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The probability p is zero at the beginning, increases with time, and becomes one at t = ∞. 
In the experiment, the frequency distribution of the number of filaments inside a bundle 
at a time t̄   is measured (see figure 6-15). The measured frequency of a bundle 
consisting of n filaments is proportional to the probability xn that a bundle with this 
number is formed. The logarithm of xn  

)1ln(lnlnln pppnxn −+−=  6.16 
is a linear function in n with a slope depending on p. Fitting the logarithm of the 
frequency distribution at a time t̄   linearly, the probability p(t) can be calculated from 
the slope. The results at different times are shown in figure 6-17. As expected, the 
probability increases with time. The data points are fitted with a function p(t) = ct/(1+ct), 
where the fitting parameter c is related with the rate constant k by c = k[A]0 (see 
equation 6.15). As a result, c = 4⋅10-3s-1 is obtained. The initial concentration 
[A]0 =  0.8⋅10-12M of actin filaments is estimated by the averaged number N0 = 0.36 of 
actin filaments inside the considered volume 27.5µm x 27.5µm x 1µm (focal depth 
about 1µm) in one picture at a time t̄  = 1.3min. This leads to a rate constant for the 
bundling process of k = 5⋅109s-1M-1.  
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Figure 6-17: Probability of binding one filament/bundle to another filament/bundle. 

The measured rate constant should be considered as an estimation of how fast the 
bundling process occurs. Aside from simplifications in the model, an experimental 
problem complicates the interpretation of the measurements. At late times, a larger 
amount of short actin filaments is observed than in the beginning of the experiment. It 
seems that actin filaments somehow break and the total number of filaments increases 
during the bundling process. Perhaps, ends of only partly-bound filaments break away 
from the bundles due to the shear in the microchannels. It is also possible that the 
shortening of actin filaments is a general mechanism involved in the actin bundling, as 
reported for measurements under quite different conditions [146, 147]. For further 
experiments, it would be helpful to prevent the shortening of actin filaments or to 
quantify the increase and include it into the model to obtain more precise information 
about the time evolution of the bundling process. Although improvements of the 
experiment and model promise a better understanding of the bundling process, the order 
of magnitude of the measured rate constant in this experiment already gives us the time 
scale for the actin bundling.  
For diffusion-controlled reactions, the rate constant is limited by the time which is 
needed to bring the reactants together by diffusion. Assuming that two reactants react 
immediately after bringing them together, the rate constant for ellipsoidal molecules is 
given by [148] 

where D is the diffusion constant, NA ≈ 6⋅1023mol-1 is the Avogadro constant, and a is 
the major and b the minor semi-axis of the ellipsoid. Using the diffusion constant 

)/2ln(
4

ba
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D = kbT(ln(2a/b)+0.5)/8πηa [81] of ellipsoids perpendicular to the main axis (the actin 
filaments/bundles are mainly aligned in flow direction), the rate constant is simplified to 

Considering the actin filaments (length ≈ 8µm) as ellipsoid with semi-axes a ≈ 4µm and 
b ≈ 44nm (assuming that the actin filaments are covered completely with α-actinin 
having a length of 40nm), the diffusion-controlled rate constant leads to 
kdiff = 1.4⋅109s-1M-1. This is in the same order of magnitude as the measured rate 
constant. Thus, the bundling of actin filaments is a diffusion-controlled process. Actin 
filaments which are brought close enough together by diffusion bundle almost 
immediately and diffusion is the limiting factor for the velocity of the bundling process.  

6.4.3 Outlook 

We showed with our experiment the possibility to investigate the time evolution of a 
bundling process by using microfluidic tools. Intensity measurements of the emitted 
light from the fluorescently labeled filaments determined the number of filaments inside 
bundles. Measurements at different channel positions in a hydrodynamic focusing 
device, which correspond to measurements at different times of the bundling process, 
allowed the observation of the time-depending bundling states, starting with single 
filaments and resulting in thick bundles. Using a step-growth model, a rate constant for 
the bundling was determined which shows that actin bundling is a diffusion-controlled 
process.  
The description of a step-growth process for the actin bundling is a simplification which 
in future may be improved to gain deeper insights into the time evolution. Actually, we 
already see effects due to slight deviations from the model in which is assumed that all 
bundles as well as all single filaments can bind to each other with the same probability 
to form thicker bundles. With this assumption, the most molecules in the solution 
should always be single filaments, even at very large times. But it can be seen in figure 
6-15, that for late times the single filaments are found less frequently than bundles 
consisting of two filaments. Thus, the probability to bind to a bundle must be larger in 
comparison to the probability to bind to a single filament. It is also imaginable that actin 
bundles with special numbers of filaments are more likely formed as it is already 
speculated in section 6.3.2. To understand such details, further experiments are needed. 
Modification of the experiment such as changes in actin concentration and/or α-actinin 
concentration could lead to additional aspects of the bundling process. Furthermore, the 
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use of different linker molecules could show similarities and special features from 
different kinds of actin bundles.  
So far, we imaged only one component, the actin filaments, involved in the bundling. 
No attention is paid to the linker molecules and the interactions leading to bundling are 
not concrete in the model. FRET (Fluorescence Resonance Energy Transfer) 
microscopy can help to obtain a better understanding of the interactions inside the 
bundles. This technique is based on a radiationless energy transfer between two dye 
molecules which have an overlap in the emission spectrum of the first dye and the 
absorption spectrum of the second dye. The first dye is excited by an external 
illumination of the sample with wavelength according to its absorption spectrum. 
Instead of emission of photons, for small distances (typically < 10nm) the energy of the 
exited states of the first dye is transferred by long-range dipole-dipole interactions to the 
second molecule and excites its state. Then, light from the second dye molecule is 
emitted. Information about the distance between the molecules can be determined by 
measuring the intensity of the emitted light from the first dye as well as from the second 
dye.  

 
Figure 6-18: Emission and absorption spectra of Alexa488 and Alexa555 [149].  

 
Figure 6-19: FRET microscopy of an actin bundle illuminated with a laser at 488nm and imaged at 

a) 495-515nm and at b) 616-665nm [149].   
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Preliminary experiments with actin filaments labeled with Alexa488 and α-actinin 
labeled with Alexa555 (both dyes purchased from Molecular Probes, Carlsbad, US) 
show promising results. The absorption and emission spectra for both dyes are shown in  
figure 6-18. A solution of actin bundles is illuminated at a wavelength of 488nm. At this 
wavelength, Actin-Alexa488 is excited, whereas the fraction of excited α-Actinin-
Alexa555 is negligible. In figure 6-19, two images of the same actin bundle recorded at 
different wavelengths with a confocal microscope (Leica Microsystems GmbH, Wetzlar) 
are shown. The contrast between the bundle and the background is weak and the bundle 
is hardly visible for 495-515nm (see figure 6-19a), whereas the intensity of the bundle is 
strong for 616-665nm (see figure 6-19b). Considering the emission spectra for both 
dyes, the measured light at 495-515nm is mainly emitted from the Actin-Alexa488 and 
the measured light at 616-665nm from α-Actinin-Alexa555. Thus, the emitted light of 
Actin-Alexa488 (which is exited by the external light source) is small compared to the 
emitted light of α-Actinin-Alexa555. Consequently, an energy transfer from Actin-
Alexa488 to α-Actinin-Alexa555 has occurred. This indicates the system is suitable for 
FRET microscopy. 
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Chapter 7  

Conclusions 

Polymer and protein solutions are involved in many microfluidic applications for which 
knowledge about their behavior in microflow is helpful in dealing with these liquids. In 
order to further our understanding of polymer properties in microflow, the behavior of 
actin filaments in pressure-driven flow has been discussed in this thesis. Actin filaments 
provide an ideal platform to study the properties of semiflexible polymers. The results 
presented in this thesis are therefore relevant from a fundamental point of view. 
Additionally, actin filaments play an important biological role in cellular motility and 
mechanical stability of cells. Consequently, the organization of filaments in bundles and 
networks is of significant relevance. In the second part of this thesis, the properties of 
actin bundles and kinetics of the formation process were considered in vitro. To this end, 
a method to observe the actin bundling at a molecular scale in a time-resolved manner 
has been developed. 
Fluorescently labeled actin filaments were observed using fluorescence microscopy 
which enables the visualization of the filament contours. A laser setup was built that 
facilitates short exposure times in order to avoid blurring of the contours of fast flowing 
filaments. Using stroboscopic illumination, dynamics of filaments in short time periods 
can be observed by illuminating the sample several times during a single image 
exposure.  
The analysis of the contours of filaments in flow inside microchannels provided 
information about the conformational, orientational, and transport properties of 
semiflexible polymers. Experiments were performed with a dilute actin solution in order 
to investigate single polymer dynamics. Microchannels were used with aspect ratios 
(depth/width) of unity. The channel widths had almost the same size as the 
characteristic lengths of the polymers (contour length and persistence length). At this 
length scale, effects due to the semiflexible nature of actin filaments are predominant. 
The orientations and conformations of the filaments in flow were characterized by 
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measuring the orientational order parameter, the angle probability distribution, and the 
end-to-end distance probability distribution. The results showed that the flow mainly 
elongated and aligned the filaments. The averaged alignment increased toward the 
channel walls. This was correlated to the increase of the local shear rate from zero at the 
centerline to maximal values at the walls. Additionally, the alignment and elongation 
increased for larger flow velocities. The characteristic parameters of the filament 
orientation, the preferred angle and the width of the angle probability distribution, 
obeyed scaling laws which are known for stiff or strongly-elongated polymers in simple 
shear flow. However, the filaments were not always in an elongated state and the 
contours changed from time to time. For example, fully-elongated filaments lying on a 
single streamline relaxed because of the absence of an elongational force. Mostly, the 
relaxed filaments elongated again. But sometimes, tumbling of filaments was observed. 
Furthermore, a particularity in conformation was found in the channel center due to the 
non-monotonic, parabolic velocity profile. In this region, stable bent parabolic shapes of 
filaments were observed. The bent contours of the tumbling filaments as well as of the 
parabolically bent filaments were described sucessfully by modeling the filaments as 
elastic rods. Balancing drag forces and bending forces, a scaling law was derived with 
which the measured decrease of the radii of curvature of the tumbling filaments with 
larger velocities was quantified. Moreover, the parabolic contours at the channel center 
were described. 
In addition to conformational and orientational studies, the frequencies of filaments at 
different channel positions along a cross-section were examined. Whereas filaments for 
small velocities were equally distributed almost over the entire channel width, filaments 
for large velocities were most frequently observed approximately at the halfway points 
between the channel center and the channel walls. The center-of-mass probability 
distributions for large velocities showed local minima at the channel center. This 
striking minima became more pronounced at larger velocities. Furthermore, depletion 
layers near walls were found for which the thicknesses increased with larger velocities. 
These observations were explained by kinetic arguments. Spatially-varying diffusivity 
causes cross-streamline migration away from the channel center, leading to minima in 
the distributions. Hydrodynamic interactions with the walls generate a microflow which 
moves filaments away from walls as well and thereby creates depletion layers. 
Additionally, steric interactions with walls influence the depletion layers, in particular 
for small velocities. To characterize the thermal fluctuations of semiflexible actin 
filaments inside microchannels, segment distributions at different channel positions as 
well as for different velocities were analyzed. Assuming proportionality between the 
filament diffusivity and the mean square deviation of filament segments from the 
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center-of-mass streamline, the dependence of the filament diffusivity on the shear rate 
was determined. Including this diffusivity and hydrodynamic interactions with walls in 
the governing equation of the center-of-mass probability distributions, they were 
calculated analytically for different velocities. The calculations showed the same 
essential characteristics as the measurements. For large velocities, a nearly quantitative 
agreement was even obtained. First measurements and calculations in a curved 
geometry suggested that center-of-mass probability distributions become asymmetric, 
and in particular the local minimum is shifted toward the inner wall.  
The second part of this thesis considered the bundling of actin filaments by counterion 
condensation in the presence of Ca2+ or by the actin-binding protein α-actinin. A 
method was developed to time-resolved measure the formation from single filaments to 
thick bundles at a molecular scale. The numbers of filaments inside bundles were 
determined by intensity measurements of the emitted light from fluorescently labeled 
filaments. Using a hydrodynamic focusing device, the bundle states at different times 
during the bundling process were studied in situ. Describing the bundling by a step-
growth model, a rate constant was determined which showed that the bundling is a 
diffusion-controlled process. Furthermore, the analysis of thermal fluctuations 
characterized the mechanical properties of bundles. The persistence lengths were 
obtained which increased with larger numbers of filaments. The results suggested a 
weak coupling between filaments, which is probably due to an optimization of the 
charge distribution inside bundles.  
The results presented in this thesis contribute to the understanding of complex fluids in 
microfluidic as well as of biological systems. Knowledge about the behavior of 
semiflexible polymers inside microfluidic channels can be useful for many microfluidic 
applications. For example, information about the channel positions facilitates their 
detection and manipulation. Based on the results, new techniques such as for the 
analysis or separation of polymers might be developed. Since flow at the microscale is 
omnipresent in biological systems, the results are additionally of fundamental biological 
interest. Similar kinds of problems as presented in this thesis are found inside the body 
such as the flow of particles, cells, and polymers inside blood vessels. Furthermore, first 
steps were performed to investigate the kinetics of the actin bundling by using 
microfluidic tools. Further studies are necessary for deeper insights and we propose to 
use FRET microscopy in order to gain more information about the interactions inside 
the bundles during their formation. Aside from actin bundling, the concepts and 
methods might be also used to time-resolved study the formation of actin networks as 
well as the organization of other biological systems.  
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Chapter 8  

Appendix 

8.1 Calculation of the Center-of-Mass Probability      

Distribution 

Considering only one channel half of a straight channel with a wall at y = d/2, the 
governing equation of the center-of-mass probability distribution n(ycm) in y-direction 
(perpendicular to flow direction) for steady-state conditions is given by (see chapter 
5.5.1) 
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v0 is the maximal velocity at the channel center, d is the channel width, and ycm is the 
center-of-mass position of the filaments. The constants a = 0.67mm2/s, b = 9.8⋅10-3s, 
and c = 1.25 are determined by fitting the measured diffusivity.  
The differential equation can be solved by  
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The function g(ycm) is given by 

)( cmyg = ∫{[ (8⋅v0⋅y /d2)2/3(1+ (9.8⋅10-3⋅8⋅v0⋅y/d2)1.25] /(0.67(d/2-y)2)}dy 

= (8⋅v0/d2)2/3{1.5⋅1/3⋅{3⋅y2/3/(d/2-y) + 2⋅31/2⋅(d/2)-1/3⋅arctan[3-1/2(1+2(2⋅y/d)1/3] 

+ 2⋅(d/2)-1/3⋅ln[(d/2)1/3-y1/3] - (d/2)-1/3⋅ln[(d/2)2/3+ (d/2⋅y)1/3+y2/3]} 

+ (8⋅9.8⋅10-3⋅v0/d2)1.25{288⋅y11/12 + 264⋅d/2⋅y11/12/(d/2-y) 

- 506⋅(d/2)11/12⋅arctan[31/2-2⋅(2⋅y/d)1/12] 

+ 506⋅31/2⋅(d/2)11/12⋅arctan[3-1/2(-1+2(2⋅y/d)1/12]  

+ 506⋅31/2⋅(d/2)11/12⋅arctan[3-1/2(1+2(2⋅y/d)1/12] + 506⋅(d/2)11/12⋅arctan[31/2+2(2⋅y/d)1/12]  

+ 1012⋅(d/2)11/12⋅arctan[(2⋅y/d)1/12] 

+ 506⋅(d/2)11/12⋅ln[(d/2)1/12-y1/12] - 506⋅(d/2)11/12⋅ln[(d/2)1/12+y1/12] 

+ 253⋅(d/2)11/12⋅ln[(d/2)1/6-(d/2y)1/12+y1/6] - 253⋅(d/2)11/12⋅ln[(d/2)1/6+(d⋅y/2)1/12+y1/6] 

+ 253⋅31/2⋅(d/2)11/12⋅ln[(d/2)1/6-31/2((d⋅y/2))1/12+y1/6] 

- 253⋅31/2⋅(d/2)11/12⋅ln[(d/2)1/6+31/2(d⋅y/2)1/12+y1/6] }/264}.



 

CHAPTER 8 

- 115 - 

8.2 Bibliography 

1. D.N. Breslauer, P.J. Lee, and L.P. Lee, Microfluidics-based systems biology. 

Molecular Biosystems, 2006. 2(2): p. 97. 

2. S.K. Sia and G.M. Whitesides, Microfluidic devices fabricated in 

poly(dimethylsiloxane) for biological studies. Electrophoresis, 2003. 24(21): 

p. 3563. 

3. D.J. Beebe, G.A. Mensing, and G.M. Walker, Physics and applications of 

microfluidics in biology. Annual Review of Biomedical Engineering, 2002. 

4: p. 261. 

4. M.K. Runyon, B.L. Johnson-Kerner, and R.F. Ismagilov, Minimal 

functional model of hemostasis in a biomimetic microfluidic system. 

Angewandte Chemie, 2004. 43(12): p. 1531. 

5. S. Köster, Biological matter in microfluidic environment - from single 

molecules to self-assembly. Doktorarbeit, Göttingen, 2006. 

6. S. Köster, D. Steinhauser, and T. Pfohl, Brownian motion of actin filaments 

in confining microchannels. Journal of Physics-Condensed Matter, 2005. 

17(49): p. S4091. 

7. A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, and G.M. 

Whitesides, Chaotic mixer for microchannels. Science, 2002. 295(5555): p. 

647. 

8. T.M. Squires and S.R. Quake, Microfluidics: Fluid physics at the nanoliter 

scale. Reviews of Modern Physics, 2005. 77(3): p. 977. 

9. A. Groisman and V. Steinberg, Elastic turbulence in a polymer solution flow. 

Nature, 2000. 405(6782): p. 53. 

10. A. Groisman and V. Steinberg, Elastic turbulence in curvilinear flows of 

polymer solutions. New Journal of Physics, 2004. 6: p. 29. 



 

CHAPTER 8 APPENDIX 

 

 - 116 - 

11. D.E. Smith, H.P. Babcock, and S. Chu, Single-polymer dynamics in steady 

shear flow. Science, 1999. 283(5408): p. 1724. 

12. P. LeDuc, C. Haber, G. Bao, and D. Wirtz, Dynamics of individual flexible 

polymers in a shear flow. Nature, 1999. 399(6736): p. 564. 

13. P.S. Doyle, B. Ladoux, and J.L. Viovy, Dynamics of a tethered polymer in 

shear flow. Physical Review Letters, 2000. 84(20): p. 4769. 

14. T.T. Perkins, D.E. Smith, and S. Chu, Single polymer dynamics in an 

elongational flow. Science, 1997. 276(5321): p. 2016. 

15. Y.L. Chen, M.D. Graham, J.J. de Pablo, K. Jo, and D.C. Schwartz, DNA 

molecules in microfluidic oscillatory flow. Macromolecules, 2005. 38(15): p. 

6680. 

16. J.S. Hur, E.S.G. Shaqfeh, H.P. Babcock, and S. Chu, Dynamics and 

configurational fluctuations of single DNA molecules in linear mixed flows. 

Physical Review E, 2002. 6601: p. 1915. 

17. P.J. Hagerman, Flexibility of DNA. Annual Review of Biophysics and 

Biophysical Chemistry, 1988. 17: p. 265. 

18. D.E. Smith and S. Chu, Response of flexible polymers to a sudden 

elongational flow. Science, 1998. 281(5381): p. 1335. 

19. S. Shrewsbury and C. Hallett, Salmeterol 100 µg: an analysis of its 

tolerability in single- and chronic-dose studies. Annals of Allergy, Asthma, 

& Immunology, 2001. 87(6): p. 465. 

20. S. Gerashchenko and V. Steinberg, Statistics of tumbling of a single polymer 

molecule in shear flow. Physical Review Letters, 2006. 9603(3): p. 8304. 

21. K.A. Dill and B.H. Zimm, A rheological seperator for very large DNA 

molecules. Nuceleic Acids Research, 1979. 7: p. 735. 



 

CHAPTER 8 

       

 - 117 - 

22. R.H. Shafer, Radial migration of DNA molecules in cylindrical flow. 

Biophysical Chemistry, 1974. 2: p. 185. 

23. U.S. Agarwal, A. Dutta, and R.A. Mashelkar, Migration of macromolecules 

under flow - The physical origin and engineering implications. Chemical 

Engineering Science, 1994. 49(11): p. 1693. 

24. D. Ausserré, J. Edwards, J. Lecourtier, H. Hervet, and F. Rondelez, 

Hydrodynamic thickening of depletion layers in colloidal solutions. 

Europhysics Letters, 1991. 14: p. 33. 

25. L. Fang, H. Hu, and R.G. Larson, DNA configurations and concentration in 

shearing flow near a glass surface in a microchannel. Journal of Rheology, 

2005. 49(1): p. 127. 

26. H.B. Ma and M.D. Graham, Theory of shear-induced migration in dilute 

polymer solutions near solid boundaries. The Physics of Fluids, 2005. 17(8): 

p. 83103. 

27. J.A. Millan, W.H. Jiang, M. Laradji, and Y.M. Wang, Pressure driven flow 

of polymer solutions in nanoscale slit pores. Journal of Chemical Physics, 

2007. 126(12): p. 24905. 

28. F.H. Garner and A.H. Nissab, Rheological properties of high viscosity 

solutions of long molecules. Nature, 1946. 158: p. 634. 

29. R.M. Jendrejack, D.C. Schwartz, J.J. de Pablo, and M.D. Graham, Shear-

induced migration in flowing polymer solutions: Simulation of long-chain 

DNA in microchannels. Journal of Chemical Physics, 2004. 120(13): p. 

6315. 

30. O.B. Usta, J.E. Butler, and A.J.C. Ladd, Flow-induced migration of 

polymers in dilute solution. The Physics of Fluids, 2006. 18(3): p. 31703. 



 

CHAPTER 8 APPENDIX 

 

 - 118 - 

31. L.C. Nitsche and E.J. Hinch, Shear-induced lateral migration of Brownian 

rigid rods in parabolic channel flow. Journal of Fluid Mechanics, 1997. 332: 

p. 1. 

32. G. Sekhon, R.C. Armstrong, and S.J. Myung, The origin of polymer 

migration in a nonhomogenuos flow field. Journal of Polymer Science, 1982. 

20: p. 947. 

33. P.O. Brunn and S. Chi, Macromolecules in nonhomogeneous flow fields: A 

general study for dumbbell model macromolocules. Rheologica Acta, 1984. 

23: p. 163. 

34. J. Käs, H. Strey, J.X. Tang, D. Finger, R. Ezzell, E. Sackmann, and P.A. 

Janmey, F-Actin, A model polymer for semiflexible chains in dilute, 

semidilute, and liquid crystalline solutions. Biophysical Journal, 1996. 70(2): 

p. 609. 

35. S. Burlaco, P.A. Janmey, and J. Borejdo, Distribution of actin filament 

lengths measured by fluorescence microscopy. The American Physiological 

Society, 1992: p. C569. 

36. A. Ott, M. Magnasco, A. Simon, and A. Libchaber, Measurement of the 

persistence length of polymerized actin using fluorescence microscopy. 

Physical Review A, 1993. 48(3): p. R1642. 

37. E. Frey, Physics in cell biology: On the physics of biopolymers and 

molecular motors. Chemphyschem, 2002. 3(3): p. 270. 

38. D. Stein, F.H.J. van der Heyden, W.J.A. Koopmans, and C. Dekker, 

Pressure-driven transport of confined DNA polymers in fluidic channels. 

Proceedings of the National Academy of Sciences of the United States of 

America, 2006. 103(43): p. 15853. 

39. Y.M. Huang, M. Uppalapati, W.O. Hancock, and T.N. Jackson, Microtubule 

transport, concentration and alignment in enclosed microfluidic channels. 

Biomedical Microdevices, 2007. 9(2): p. 175. 



 

CHAPTER 8 

       

 - 119 - 

40. T. Kim, M.T. Kao, E. Meyhofer, and E.F. Hasselbrink, Biomolecular motor-

driven microtubule translocation in the presence of shear flow: analysis of 

redirection behaviours. Nanotechnology, 2007. 18(2): p. 25101. 

41. H. Lodish, A. Berk, L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell, 

Molecular Cell Biology. 2000, New York: W. H. Freeman. 

42. P. Sheterline, J. Clayton, and J. Sparrow, Actin. 1998, Oxford: Oxford 

University Press. 

43. T.D. Pollard and J.A. Cooper, Actin and actin-binding proteins. A critical 

evaluation of mechanisms and functions. Annual Review of Biochemistry, 

1986. 55: p. 987. 

44. J.X. Tang, T. Ito, T. Tao, P. Traub, and P.A. Janmey, Opposite effects of 

electrostatics and steric exclusion on bundle formation by F-actin and other 

filamentous polyelectrolytes. Biochemistry, 1997. 36(41): p. 12600. 

45. J.X. Tang, S.E. Wong, P.T. Tran, and P.A. Janmey, Counterion induced 

bundle formation of rodlike polyelectrolytes. Berichte der Bunsen 

Gesellschaft für Physikalische Chemie, 1996. 100(6): p. 796. 

46. P.A. Janmey, S. Hvidt, J. Käs, D. Lerche, A. Maggs, E. Sackmann, M. 

Schliwa, and T.P. Stossel, The mechanical properties of actin gels - elastic 

modulus and filament motions. Journal of Biological Chemistry, 1994. 

269(51): p. 32503. 

47. J.Y. Xu, W.H. Schwarz, J.A. Käs, T.P. Stossel, P.A. Janmey, and T.D. 

Pollard, Mechanical properties of actin filament networks depend on 

preparation, polymerization conditions, and storage of actin monomers. 

Biophysical Journal, 1998. 74(5): p. 2731. 

48. K.S. Zaner, Physics of actin networks: 1. Rheology of semi-dilute F-actin. 

Biophysical Journal, 1995. 68(3): p. 1019. 



 

CHAPTER 8 APPENDIX 

 

 - 120 - 

49. K.S. Zaner and T.P. Stossel, Physical basis of the rheologic properties of F-

actin. Journal of Biological Chemistry, 1983. 258(18): p. 11004. 

50. W.H. Goldmann, M. Tempel, I. Sprenger, G. Isenberg, and R.M. Ezzell, 

Viscoelasticity of actin-gelsolin networks in the presence of filamin. 

European Journal of Biochemistry, 1997. 246(2): p. 373. 

51. K.P. Janssen, L. Eichinger, P.A. Janmey, A.A. Noegel, M. Schliwa, W. 

Witke, and M. Schleicher, Viscoelastic properties of F-actin solutions in the 

presence of normal and mutated actin-binding proteins. Archives of 

Biochemistry & Biophysics, 1996. 325(2): p. 183. 

52. R. Ruddies, W.H. Goldmann, G. Isenberg, and E. Sackmann, The 

viscoelasticity of entangled actin networks - The influence of defects and 

modulation by talin and vinculin. European Biophysics Journal, 1993. 22(5): 

p. 309. 

53. D.H. Wachsstock, W.H. Schwarz, and T.D. Pollard, Affinity of alpha-actinin 

for actin determines the structure and mechanical properties of actin 

filament gels. Biophysical Journal, 1993. 65(1): p. 205. 

54. M. Hosek and J.X. Tang, Polymer-induced bundling of F-actin and the 

depletion force. Physical Review E, 2004. 6905(5): p. 1907. 

55. A. Suzuki, M. Yamazaki, and T. Ito, Polymorphism of F-actin assembly. 1. 

A Quantitative phase diagram of F-actin. Biochemistry, 1996. 35(16): p. 

5238. 

56. I.Y. Wong, M.L. Gardel, D.R. Reichman, E.R. Weeks, M.T. Valentine, A.R. 

Bausch, and D.A. Weitz, Anomalous diffusion probes microstructure 

dynamics of entangled F-actin networks. Physical Review Letters, 2004. 

9217(17): p. 8101. 

57. J.H. Shin, M.L. Gardel, L. Mahadevan, P. Matsudaira, and D.A. Weitz, 

Relating microstructure to rheology of a bundled and cross-linked F-actin 



 

CHAPTER 8 

       

 - 121 - 

network in vitro. Proceedings of the National Academy of Sciences of the 

United States of America, 2004. 101(26): p. 9636. 

58. T.E. Angelini, H. Liang, W. Wriggers, and G.C.L. Wong, Like-charge 

attraction between polyelectrolytes induced by counterion charge density 

waves. Proceedings of the National Academy of Sciences of the United 

States of America, 2003. 100(15): p. 8634. 

59. T.E. Angelini, L.K. Sanders, H.J. Liang, W. Wriggers, J.X. Tang, and G.C.L. 

Wong, Structure and dynamics of condensed multivalent ions within 

polyelectrolyte bundles: a combined x-ray diffraction and solid-state NMR 

study. Journal of Physics-Condensed Matter, 2005. 17(14): p. S1123. 

60. O. Pelletier, E. Pokidysheva, L.S. Hirst, N. Bouxsein, Y. Li, and C.R. 

Safinya, Structure of actin cross-linked with alpha-actinin: A network of 

bundles. Physical Review Letters, 2003. 9114(14): p. 8102. 

61. G.C.L. Wong, A. Lin, J.X. Tang, Y. Li, P.A. Janmey, and C.R. Safinya, 

Lamellar phase of stacked two-dimensional rafts of actin filaments. Physical 

Review Letters, 2003. 9101(1): p. 8103. 

62. M.O. Steinmetz, A. Hoenger, P. Tittmann, K.H. Fuchs, H. Gross, and U. 

Aebi, An atomic model of crystalline actin tubes - combining electron 

microscopy with X-ray crystallography. Journal of Molecular Biology, 1998. 

278(4): p. 703. 

63. L.S. Hirst, R. Pynn, R.F. Bruinsma, and C.R. Safinya, Hierarchical self-

assembly of actin bundle networks: Gels with surface protein skin layers. 

Journal of Chemical Physics, 2005. 123(10): p. 4902. 

64. H.J. Kwon, A. Kakugo, K. Shikinaka, Y. Osada, and J.P. Gong, Morphology 

of actin assemblies in response to polycation and salts. Biomacromolecules, 

2005. 6(6): p. 3005. 



 

CHAPTER 8 APPENDIX 

 

 - 122 - 

65. A. Suzuki, T. Maeda, and T. Ito, Formation of liquid crystalline phase of 

actin filament solutions and its dependence on filament length as studied by 

optical birefingence. Biophysical Journal, 1991. 59: p. 25. 

66. J. Viamontes and J.X. Tang, Continuous isotropic-nematic liquid crystalline 

transition of F-actin solutions. Physical Review E, 2003. 6704(4): p. 701. 

67. M. Claessens, M. Bathe, E. Frey, and A.R. Bausch, Actin-binding proteins 

sensitively mediate F-actin bundle stiffness. Nature Materials, 2006. 5(9): p. 

748. 

68. W.H. Roos, A. Roth, J. Konle, H. Presting, E. Sackmann, and J.P. Spatz, 

Freely suspended actin cortex models on arrays of microfabricated pillars. 

ChemPhysChem, 2003. 4(8): p. 872. 

69. Y.N. Xia and G.M. Whitesides, Soft lithography. Annual Review of 

Materials Science, 1998. 28: p. 153. 

70. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides, Rapid 

prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical 

Chemistry, 1998. 70(23): p. 4974. 

71. D. Qin, Y.N. Xia, and G.M. Whitesides, Rapid prototyping of complex 

structures with feature sizes larger than 20 µm. Advanced Materials, 1996. 

8(11): p. 917. 

72. H. Makamba, J.H. Kim, K. Lim, N. Park, and J.H. Hahn, Surface 

modification of poly(dimethylsiloxane) microchannels. Electrophoresis, 

2003. 24(21): p. 3607. 

73. S. Lee and J. Voros, An aqueous-based surface modification of 

poly(dimethylsiloxane) with poly(ethylene glycol) to prevent biofouling. 

Langmuir, 2005. 21(25): p. 11957. 

74. S. Pasche, S.M. De Paul, J. Voros, N.D. Spencer, and M. Textor, Poly(L-

lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide 



 

CHAPTER 8 

       

 - 123 - 

surfaces: A quantitative study of the influence of polymer interfacial 

architecture on resistance to protein adsorption by ToF-SIMS and in situ 

OWLS. Langmuir, 2003. 19(22): p. 9216. 

75. J.M. Watson and M.G. Baron, The behaviour of water in 

poly(dimethylsiloxane). Journal of Membrane Science, 1996. 110(1): p. 47. 

76. E. Verneuil, A. Buguin, and P. Silberzan, Permeation-induced flows: 

Consequences for silicone-based microfluidics. Europhysics Letters, 2004. 

68(3): p. 412. 

77. http://www.ahf.de/asp/. 

78. http://probes.invitrogen.com/servlets/spectra. 

79. I.D. Cytoskeleton, USA, About actin. 

http://www.cytoskeleton.com/products/actins/aboutactin.html. 

80. H. Isambert, P. Venier, A.C. Maggs, A. Fattoum, R. Kassab, D. Pantaloni, 

and M.F. Carlier, Flexibility of actin filaments derived from thermal 

fluctuations - Effect of bound nucleotide, Phalloidin, and muscle regulatory 

proteins. Journal of Biological Chemistry, 1995. 270(19): p. 11437. 

81. J. Howard, Mechanics of motor proteins and the cytoskeleton. 2001, 

Sunderland: Sinauer Associates. 

82. O. Kratky and G. Porod, Röntgenuntersuchung gelöster Fadenmoleküle. 

Recueil des travaux cimiques des Pays-Bas, 1949. 68: p. 1106. 

83. L.D. Landau and E.M. Lifshitz, Statistical Physics. 1958, London: 

Pergamon Press. 

84. G.A. Carri and M. Marucho, Statistical mechanics of worm-like polymers 

from a new generating function. Journal of Chemical Physics, 2004. 121(12): 

p. 6064. 



 

CHAPTER 8 APPENDIX 

 

 - 124 - 

85. J. Wilhelm and E. Frey, Radial distribution function of semiflexible 

polymers. Physical Review Letters, 1996. 77(12): p. 2581. 

86. R.A. Granger, Fluid Mechanics. 1995, New York: Dover Publications. 

87. H. Stöcker, Taschenbuch der Physik. 1998, Frankfurt: Verlag Harri Deutsch. 

88. E. Guyon, J.-P. Hulin, L. Petit, and C.D. Mitescu, physical hydrodynamics. 

2001, Oxford: Oxford University Press. 

89. M. Doi and M.D. Edwards, The theory of polymers dynamics. 1999, Oxford: 

Oxford University Press. 

90. R.G. Larson, The rheology of dilute solutions of flexible polymers: Progress 

and problems. Journal of Rheology, 2005. 49(1): p. 1. 

91. D.E. Smith, H.P. Babcock, and S. Chu, Single-polymer dynamics in steady 

shear flow. Science, 1999. 283(5408): p. 1724-1727. 

92. R.B. Bird, C.F. Curtiss, R.C. Amstrong, and O. Hassager, Dynamics of 

Polymeric Liquids-Fluid Mechanics. Vol. 1. 1987, New York: Wiley-

Interscience. 

93. M. Bixon, Polymer dynamics in solution. Annual Review of Physical 

Chemistry, 1976. 27: p. 65. 

94. A. Celani, A. Puliafito, and K. Turitsyn, Polymers in linear shear flow: A 

numerical study. Europhysics Letters, 2005. 70(4): p. 464. 

95. M. Chertkov, I. Kolokolov, V. Lebedev, and K. Turitsyn, Polymer statistics 

in a random flow with mean shear. Journal of Fluid Mechanics, 2005. 531: p. 

251. 

96. R.G. Winkler, Semiflexible polymers in shear flow. Physical Review Letters, 

2006. 9712(12): p. 8301. 



 

CHAPTER 8 

       

 - 125 - 

97. R. Fåhraeus and T. Lindquist, The viscosity of blood in narrow capillary 

tubes. American Journal of Physiology, 1931. 96: p. 562. 

98. A.D. Maude and R.L. Whitmore, The wall effect and the viscometry of 

suspensions. British Journal of Applied Physics, 1956. 7: p. 98. 

99. G. Segré and A. Silberberg, Behaviour of macroscopic rigid spheres in 

Poiseuille flow Part 2. Experimental results and interpretation. Journal of 

Fluid Mechanics, 1962. 14: p. 136. 

100. D. Di Carlo, D. Irimia, R.G. Tompkins, and M. Toner, Continuous inertial 

focusing, ordering, and separation of particles in microchannels. 

Proceedings of the National Academy of Sciences of the United States of 

America, 2007. 104(48): p. 18892. 

101. F.P. Bretherton, The motion of rigid particles in a shear flow at low 

Reynolds number. Journal of Fluid Mechanics, 1962. 14: p. 284. 

102. R.G. Cox and S.G. Mason, Suspended particles in fluid flow through tubes. 

Annual Review of Fluid Mechanics, 1971. 3: p. 291. 

103. J.P. Matas, J.F. Morris, and E. Guazzelli, Lateral forces on a sphere. Revue 

de l Institut Francais du Petrole, 2004. 59(1): p. 59. 

104. R.C. Jeffrey and J.R. Pearson, Particle motion in laminar vertical tube flow. 

Journal of Fluid Mechanics, 1965. 22: p. 721. 

105. R. Eichorn and S. Small, Experiments on the lift and drag of spheres 

suspended in Poiseuille flow. Journal of Fluid Mechanics, 1964. 20: p. 513. 

106. D.R. Oliver, Influence of particle rotation on radial migration in the 

Poiseuille flow of suspensions. Nature, 1962. 194: p. 1269. 

107. A. Karnis, H.L. Goldsmith, and S.G. Mason, The flow of suspensions 

through tubes. V. Inertial effects. Canadian Journal of Chemical Engineering, 

1966. 44: p. 181. 



 

CHAPTER 8 APPENDIX 

 

 - 126 - 

108. H.L. Goldsmith and S.G. Mason, The microrheology of dispersions. 

Rheology: Theory and Applications, 1967. 4: p. 87. 

109. E.S. Asmolov, The inertial lift on a spherical particle in a plane Poiseuille 

flow at large channel Reynolds number. Journal of Fluid Mechanics, 1999. 

381: p. 63. 

110. A.J. Hogg, The inertial migration of non-neutrally buoyant spherical 

particles in 2-dimensional shear flows. Journal of Fluid Mechanics, 1994. 

272: p. 285. 

111. B.P. Ho and L.G. Leal, Inertial migration of rigid spheres in 2-dimensional 

unidirectional flow. Journal of Fluid Mechanics, 1974. 65: p. 365. 

112. P. Vasseur and R.G. Cox, The lateral migration of a spherical particle in 

two dimensional shear flows. Journal of Fluid Mechanics, 1976. 78: p. 385. 

113. J.A. Schonberg and E.J. Hinch, Inertial migration of a sphere in Poiseuille 

flow. Journal of Fluid Mechanics, 1989. 203: p. 515. 

114. C.J. Lin, J.H. Perry, and W.R. Schowalter, Simple shear flow round a rigid 

sphere: inertial effects and suspension rheology. Journal of Fluid Mechanics, 

1970. 44: p. 1. 

115. P.G. Saffman, The lift on a small sphere in a slow shear flow. Journal of 

Fluid Mechanics, 1965. 22: p. 385. 

116. E.S. Asmolov, The inertial lift on a small particle in a weak-shear parabolic 

flow. Physics of Fluids, 2002. 14(1): p. 15. 

117. P. Vasseur and R.G. Cox, The lateral migration of spherical particles 

sedimenting in a stagnant bounded fluid. Journal of Fluid Mechanics, 1977. 

80: p. 561. 

118. S.I. Rubinow and J.B. Keller, The transverse force on a spinning sphere 

moving in viscous fluid. Journal of Fluid Mechanics, 1961. 11: p. 447. 



 

CHAPTER 8 

       

 - 127 - 

119. L.G. Leal, Particle motions in a viscous fluid. Annual Reviews of Fluid 

Mechanics, 1980. 12: p. 435. 

120. L.Y. Zeng, S. Balachandar, and P. Fischer, Wall-induced forces on a rigid 

sphere at finite Reynolds number. Journal of Fluid Mechanics, 2005. 536: p. 

1. 

121. J.P. Hernandez-Ortiz, H.B. Ma, J.J. Pablo, and M.D. Graham, Cross-stream-

line migration in confined flowing polymer solutions: Theory and simulation. 

The Physics of Fluids, 2006. 18(12): p. 23101. 

122. R. Khare, M.D. Graham, and J.J. de Pablo, Cross-stream migration of 

flexible molecules in a nanochannel. Physical Review Letters, 2006. 

9622(22): p. 4505. 

123. D. Saintillan, E.S.G. Shaqfeh, and E. Darve, Effect of flexibility on the 

shear-induced migration of short-chain polymers in parabolic channel flow. 

Journal of Fluid Mechanics, 2006. 557: p. 297. 

124. R.L. Schiek and E.S.G. Shaqfeh, Cross-streamline migration of slender 

Brownian fibers in plane Poiseuille flow. Journal of Fluid Mechanics, 1997. 

332: p. 23. 

125. P.O. Brunn, Polymer migration phenomena based on the general bead-

spring model for flexible polymer. Journal of Chemical Physics, 1984. 

80(11): p. 5821. 

126. C. Sendner and R.R. Netz, Shear-induced repulsion of a semiflexible 

polymer from the wall. Europhysics Letters, 2008. 81: p. 54006. 

127. N. Phan-Thien, O. Manero, and L.G. Leal, A study of conformation-

dependent friction in a dumbbell model for dilute solutions. Rheologica Acta, 

1984. 23: p. 151. 

128. F.M. White, Viscous Fluid Flow. 1991, New York: McGraw-Hill. 



 

CHAPTER 8 APPENDIX 

 

 - 128 - 

129. R.E. Teixeira, H.P. Babcock, E.S.G. Shaqfeh, and S. Chu, Shear thinning 

and tumbling dynamics of single polymers in the flow-gradient plane. 

Macromolecules, 2005. 38(2): p. 581. 

130. J.S. Lee, E.S.G. Shaqfeh, and S.J. Muller, Dynamics of DNA tumbling in 

shear to rotational mixed flows: Pathways and periods. Physical Review E 

Statistical Physics, Plasmas, Fluids, & Related Interdisciplinary, 2007. 75(4): 

p. 802. 

131. H. Stark, private communications. 

132. R.M. Jendrejack, E.T. Dimalanta, D.C. Schwartz, M.D. Graham, and J.J. 

Pablo, DNA Dynamics in Microchannel. Physical Review Letters, 2003. 

91(3). 

133. K0/D0 = 3000; v0 = 0.23mm/s, 0.64mm/s, 1.7mm/s, 2.4mm/s; n0 = 2.3 ⋅10-10, 

1.9 ⋅10-10, 1.3 ⋅10-10, 1.2 ⋅10-10. 

134. S. Köster, H. Stark, T. Pfohl, and J. Kierfeld, Fluctuations of single confined 

actin filaments. Biophysical Reviews and Letters, 2007. 2(2): p. 155. 

135. J.X. Tang and P.A. Janmey, The polyelectrolyte nature of F-actin and the 

mechanism of actin bundle formation. Journal of Biological Chemistry, 

1996. 271(15): p. 8556. 

136. A. Cebers, Z. Dogic, and P.A. Janmey, Counterion-mediated attraction and 

kinks on loops of semiflexible polyelectrolyte bundles. Physical Review 

Letters, 2006. 9624(24): p. 7801. 

137. N. Gronbechjensen, R.J. Mashl, R.F. Bruinsma, and W.M. Gelbart, 

Counterion-induced attraction between rigid polyelectrolytes. Physical 

Review Letters, 1997. 78(12): p. 2477. 

138. J.B. Knight, A. Vishwanath, J.P. Brody, and R.H. Austin, Hydrodynamic 

focusing on a silicon chip - Mixing nanoliters in microseconds. Physical 

Review Letters, 1998. 80(17): p. 3863. 



 

CHAPTER 8 

       

 - 129 - 

139. R. Dootz, A. Otten, S. Köster, B. Struth, and T. Pfohl, Evolution of DNA 

compaction in microchannels. Journal of Physics-Condensed Matter, 2006. 

18: p. S639. 

140. T. Pfohl, A. Otten, S. Köster, R. Dootz, B. Struth, and H.M. Evans, Highly 

packed and oriented DNA mesophases identified using in situ microfluidic 

X-ray microdiffraction. Biomacromolecules, 2007. 8(7): p. 2167. 

141. S. Köster, J.B. Leach, B. Struth, T. Pfohl, and J.Y. Wong, Visualization of 

flow-aligned type I collagen self-assembly in tunable pH gradients. 

Langmuir, 2007. 23(2): p. 357. 

142. L. Pollack, M.W. Tate, A.C. Finnefrock, C. Kalidas, S. Trotter, N.C. 

Darnton, L. Lurio, R.H. Austin, C.A. Batt, S.M. Gruner, and S.G.J. Mochrie, 

Time resolved collapse of a folding protein observed with small angle x-ray 

scattering. Physical Review Letters, 2001. 86(21): p. 4962. 

143. P.W. Atkins, Physikalische Chemie. 2.Edition ed. 1990, Berlin: Wiley-VCH. 

144. G.H. Lai, R. Coridan, O.V. Zribi, R. Golestanian, and G.C.L. Wong, 

Evolution of growth modes for polyelectrolyte bundles. Physical Review 

Letters, 2007. 98(18): p. 7802. 

145. H.J. Kwon, Y. Tanaka, A. Kakugo, K. Shikinaka, H. Furukawa, Y. Osada, 

and J.P. Gong, Anisotropic nucleation growth of actin bundle: A model for 

determining the well-defined thickness of bundles. Biochemistry, 2006. 

45(34): p. 10313. 

146. D. Biron and E. Moses, The effect of alpha-actinin on the length distribution 

of F-actin. Biophysical Journal, 2004. 86(5): p. 3284. 

147. D. Biron, E. Moses, I. Borukhov, and S.A. Safran, Inter-filament attractions 

narrow the length distribution of actin filaments. Europhysics Letters, 2006. 

73(3): p. 464. 



 

CHAPTER 8 APPENDIX 

 

 - 130 - 

148. O.G. Berg and P.H. von Hippel, Diffusion-controlled macromolecular 

interactions. Annual Review of Biophysics and Biophysical Chemistry, 

1985. 14: p. 131. 

149. M.-C. Renoult, Study of the actin-bundling with α-actinin in microflow by 

FRET microscopy. 2007, practicum report, Max-Planck Institut für Dynamik 

und Selbstorganisation, Göttingen. 

 

 



 

 

Publications 

Electrowetting: A convenient way to switchable wettability patterns 
Frieder Mugele, Anke Klingner, Jürgen Bührle, Dagmar Steinhauser, and Stephan 
Herminghaus. 
2005, Journal of Physics-Condensed Matter, 17(9), p. S559. 
 
Brownian motion of actin filaments in confining microchannels 
Sarah Köster, Dagmar Steinhauser, and Thomas Pfohl. 
2005, Journal of Physics-Condensed Matter, 17(49), p. S4091. 
 
Microfluidic mixing through electrowetting-induced droplet oscillations 
Frieder Mugele, Jean-Christophe Baret, and Dagmar Steinhauser. 
2006, Applied Physics Letters 88, p. 204106. 
 
Cross-streamline migration of semiflexible actin filaments  
Dagmar Steinhauser, Holger Stark, Sarah Köster, and Thomas Pfohl. 
In preparation. 
 
Semiflexible polymers in microflow 
Dagmar Steinhauser, Holger Stark, and Thomas Pfohl. 
In preparation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
  



Danksagung 

An dieser Stelle möchte ich mich bei all denen bedanken, die mich während meiner 
Promotion unterstützt und zum Gelingen dieser Arbeit beigetragen haben. Mein 
besonderer Dank gilt hierbei Thomas Pfohl für die intensive und sehr gute Betreuung. 
Zahlreiche Diskussionen, gemeinsames Entwickeln neuer Ideen und hilfreiche 
Vorschläge während der gesamten Promotionszeit waren die Grundlage für diese Arbeit. 
Zusätzlich zu den wissenschaftlichen Hilfestellungen hat Thomas mich auch mit seiner 
positiven und motivierenden Art immer unterstützt und bei Misserfolgen aufgemuntert 
und weitergeholfen.    
Stephan Herminghaus danke ich für die fachliche Anregungen und die Ermöglichung 
meine Arbeit am Max-Planck-Institut für Dynamik und Selbstorganisation durchführen 
zu können. Die gute Ausstattung und die tollen Möglichkeiten des Instituts haben die 
Verwirklichung und Durchführung vieler Experimente erleichtert. Bei Tim Salditt 
möchte ich mich für die Übernahme des Gutachtens bedanken, sowie auch für sein 
wissenschaftliches Interesse an meiner Arbeit und die Einladung zur Winterschule. Des 
Weiteren gilt mein Dank  Rainer Ulbrich, Marcus Müller, Markus Münzenberg und 
Reiner Kree für die freundliche Bereiterklärung der Mitgliedschaft im 
Prüfungskomittee. 
Der „Arbeitsgruppe Pfohl“, bestehend aus Eric Stellamanns, Heather Evans, Rolf 
Dootz, Sarah Köster, Semra Öztürk und Sravanti Uppaluri, möchte ich für die gute 
Zusammenarbeit,  gegenseitige Unterstützung und tolle Athmosphäre danken. Die 
gemeinsamen Unternehmungen und Erlebnisse werden mir in guter Erinnerung bleiben. 
Im Besonderen möchte ich mich bei Heather für die Korrekturen an dieser Arbeit 
bedanken. Ebenso gilt mein Dank auch Sarah, deren Erfahrungen und vorangegangene 
Arbeiten rund um das Aktin für mich sehr hilfreich waren. Marie-Charlotte Renoult 
möchte ich danken für die Zusammenarbeit während ihres Praktikums bezüglich der 
FRET-Mikroskopie von Aktinbündeln. 
Bei Holger Stark bedanke ich mich für Diskussionen und die Hilfe zur theoretischen 
Beschreibung der Experimente, insbesondere der Biegung der Aktinfilamente im Fluss. 
Den Technikern Wolf Keiderling und Udo Krafft gilt mein Dank für die meist 
schnelle und sehr zuverlässige Hilfe bei Aufbauten und technischen Problemen. Ohne 
diese Hilfe wären manche Experimente nur schwierig durchzuführen gewesen. 
Abschließend möchte ich noch meinen Eltern und Geschwistern für ihre 
Unterstützung und Aufmunterungen herzlich danken. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Lebenslauf 

 

Persönliche Angaben 

Name:    Dagmar Regine Steinhauser 

Geburtstag:   22. Juni 1979 

Geburtsort:   Schwäbisch Hall 

Staatsangehörigkeit:  deutsch 

 

 

Ausbildung 

Seit 06/2004  Promotion am Max-Planck-Institut für Dynamik und  

   Selbstorganisation in Göttingen 

02/2004  Diplom in Physik 

03/2003 – 02/2004 Diplomarbeit in der Abteilung Angewandte Physik der 

Universität Ulm  

07/2000 – 02/2004  Studium der Physik an der Universität Ulm 

07/2000  Wechsel in der Diplomstudiengang Physik 

10/1998 – 07/2000  Diplomstudium der Wirtschaftsphysik an der Universität Ulm 

06/1998  Abitur 

08/1989 – 06/1998 Besuch des Gymnasiums in Gerabronn 

08/1985 – 07/1989 Besuch der Grundschule in Langenburg 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Titel
	Zusammenfassung
	Abstract
	Contents
	1 Introduction
	1.1 Microfluidics of Dilute Polymer Solutions
	1.1.1 Cross-Streamline Migration
	1.1.2 Actin Filaments: a Model System for Semiflexible Polymers

	1.2 Actin Networks and Bundles

	2 Materials and Methods
	2.1 Soft Lithography
	2.2 Sample Preparation
	2.3 Liquid Pumping System
	2.4 Fluorescence Microscopy
	2.5 Actin Polymerization
	2.6 α-Actinin

	3 Worm-Like Chain Model
	3.1 Persistence Length
	3.2 Worm-Like Chain

	4 Polymers in Microflow
	4.1 Reynolds Number
	4.2 Motion of Brownian Particles
	4.2.1 Drag Force
	4.2.2 Diffusion
	4.2.3 Hydrodynamic Interactions

	4.3 Polymers in Shear Flow
	4.3.1 Weissenberg Number
	4.3.2 Dumbbell Model
	4.3.3 Dumbbell in Simple Shear Flow

	4.4 Cross-Streamline Migration
	4.4.1 Inertial Migration
	4.4.2 Migration of Polymers


	5 Semiflexible Filaments in Pressure-Driven Flow
	5.1 Experiment
	5.2 Data Analysis
	5.3 Relaxation of Actin Filaments
	5.4 Conformations of Actin Filaments
	5.4.1 Orientation
	5.4.2 Elongation and Tumbling
	5.4.3 Conformations at the Centerline

	5.5 Center-of-Mass Probability Distribution
	5.5.1 Analytic Description of the Center-of-Mass Probability

	5.6 Curved Channels

	6 Actin Bundles
	6.1 Mechanisms of Actin Bundle Formation
	6.2 Bending of Actin Bundles
	6.3 Fluctuating Actin Bundles
	6.3.1 Experiment and Analysis
	6.3.2 Persistence of Actin Bundles

	6.4 Bundling Kinetics
	6.4.1 Hydrodynamic Focusing
	6.4.2 Evolution of Actin Bundling
	6.4.3 Outlook


	7 Conclusions
	8 Appendix
	8.1 Calculation of the Center-of-Mass Probability Distribution
	8.2 Bibliography

	Publications
	Danksagung
	Lebenslauf

