Goal-Oriented Control of Selt-Organizing Behavior in
Autonomous Robots

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades
,Doctor rerum naturalium”
der Georg—August—Universitat zu Gottingen

vorgelegt von

Georg Martius

aus Leipzig

Gottingen 2010

Prof. Dr. Theo Geisel (Referent)
Max-Planck-Institut fiir Dynamik und Selbstorganisation und
Abteilung fiir Nichtlineare Dynamik, Georg—August—Universitdt Gottingen

Prof. Dr. Ralf Der (Referent)
MPI fiir Mathematik in den Naturwissenschaften, Leipzig

Dr. J. Michael Herrmann
Intitute of Perception, Action and Behaviour, University of Edinburgh

Tag der Miindlichen Priifung: 07. September 2009

Contents

Nomenclature

List of Symbols

1

Introduction

1.1 From Classical Artificial Intelligence to Embodied Systems
1.2 State of the Art in Autonomous Robot Control
1.3 Research Questions and Thesis Overview
1.4 List of Most Important Results

Robot Simulation Environment and Robotic Devices

2.1 Robot Simulator LPZROBOTS
2.1.1 Structure
2.1.2 User Interaction
2.1.3 Creating the Virtual World
2.1.4 Collision Detection and Surface Properties
2.1.5 Matrix Library oo
2.1.6 Highlights
2,17 Summary ...

2.2 The Zoo of Robotic Creatures
2.2.1 TwOWHEELED Robot
2.2.2 FOURWHEELED Robot
2.2.3 ROCKING STAMPER v v v i ittt it
2.24 BARREL Robot
2.2.5 SPHERICAL Robot
2.2.6 SHORT CIRCUITt v vt vttt e e e s s
2.2.7 Planar SNAKE Robot,
2.2.8° ARMBAND Robot
2.2.9 Summary

Homeokinesis for Robot Control

3.1 Introduction
3.2 Self-organization L
3.3 Sensorimotor Loop Setup
3.4 Dynamical Systems Formulation of the Sensorimotor Loop

iv CONTENTS
3.5 Homeokinetic Principle and Time Loop Error 40
3.6 Learning Rule of the Homeokinetic Controller 43
3.7 Fixed Points, Hysteresis, and Self-Switching Dynamics 45
3.8 System Dynamics in One Dimension 46
3.9 Summary ... e 48

4 Homeokinesis: Multidimensional, Properties and Extensions 49
4.1 Multi-dimensional Case and Motor Space 50

4.1.1 The Time-Loop Error in Sensor Space 50
4.1.2 The Time-Loop Error in Motor Space o1
4.1.3 Calculation Ruleso o 53
4.1.4 Pseudo-linear Controller and Linear World Model b}
4.1.5 Learning Dynamics in Sensor Space 56
4.1.6 Learning Dynamics in Motor Space 58
4.1.7 Initialization oL 29
4.2 Regularization Lo 60
4.2.1 Pseudoinverse 60
4.2.2 Disarm the Non-Linearities 61
4.2.3 Limiting Updates L 64
4.2.4 Square Root and Logarithm of the Error 64
4.3 Emergent Embodied Behavior — The ROCKING STAMPER 64
4.4 Sweeping Through the Behavior Space 67
4.4.1 Application to the BARREL robot 68
4.4.2 Application to the SPHERICAL Robot 70
4.5 Cognitive Deprivation and Informative Actions 73
4.5.1 Model Learning — Problems and Challenges 74
4.5.2 Deprivation Effecto 74
4.5.3 The Gradient Flow of the Parameters and Bootstrapping 76
4.5.4 Application to the TWOWHEELED Robot 78
4.5.5 SPHERICAL Robotina Basin 79
4.5.6 Application to the Planar SNAKE Robot 82
457 SUMMATY . . . o v e e e e 83
4.6 Low-Dimensional Modeso 83
4.7 Controller Extensions 89
4.7.1 Integration of Additional Error Functions 89
4.7.2 Continuity Preference oL 92
4.7.3 Model of the Prediction Error 93
4.8 Model Extension and Ambiguity oL 99
4.8.1 Shortcomings of Simplified World Model 99
4.8.2 Ambiguity in the Interpretation of Sensations 101
4.8.3 Controller Noise to Disentangle Ambiguity 102
4.8.4 Assume Maximal Self-Induced Observations 103

4.8.5 Enhanced World Model 108

CONTENTS v
4.8.6 Advanced Sensor Configuration 110

4.8.7 Application to Planar the SNAKE Robot IT 111

4.8.8 SUMMATY o oo 115

4.9 Discussion e 116

5 Guided Self-Organization 121
5.1 Guiding with Teaching L. 122
5.1.1 Direct Motor Teaching 123

5.1.2 Direct Sensor Teaching 125

5.2 Guiding with Cross-Motor Teaching 128
5.2.1 Enforcing Pairwise Symmetries 129

5.2.2 Permutation Relations 130

5.2.3 Arbitrary Cross-Motor Teaching Configurations 134

5.3 Guiding with Reward 135
5.3.1 Reinforcing Speed 137

5.3.2 Reinforcing Spin 139

5.4 Discussiono e 140

6 Goal-Oriented Behavior from Self-Organized Primitives 143
6.1 Acquisition of Behavioral Primitives, 144
6.1.1 Competing Experts o 145

6.1.2 Framework 146

6.1.3 Winner-Takes-All with Suboptimality Penalty and Annealing 149

6.1.4 Extraction in Action 154

6.1.5 Experts as Controllers 0. 162

6.1.6 Summary 167

6.2 Goal-Oriented Behaviors through the Combination of Primitives 167
6.2.1 Temporal Difference Learning — Reinforcement Learning 167

6.2.2 Experts as Discrete Actions 170

6.2.3 Obstacle Avoidance 172

6.3 Discussion 175

7 Conclusions 177
A Appendix 183
A.1 Derivation of Matrix Calculation Rules 183
A.2 Convergence of Enhanced World Model in a Simplified System 184
A.3 Experiment using the Enhanced World Model 185
Video References 187
Bibliography 189
Acknowledgments 203

vi

CONTENTS

NOMENCLATURE

vii

Nomenclature

Symbol Description

a column vector, lower case Latin letters

a; element of vector a in row 1

&n column noise vector, lower case Greek letters

€ constant factor like learning rates, also lower case
Greek letters

A matrix, capital letters

At pseudo-inverse of matrix A, see Section 4.1.3

Aij element of matrix A in row ¢ and column j

X i-th eigenvalue of matrix X

I identity matrix

a~t componentwise inverse of a vector: (a7!); = a; "

7 componentwise division: (%)l = ‘g—

aob vector multiplication componentwise: ¢ = a o b means
ci = a;b;

Aob row-wise multiplication of vector and matrix:
C=Aob=0boAmeans C;; = A;;b;

f(a) function f componentwise applied to a vector. If the
argument is clear in the context then we write only f.
Further we denote f(a); = f(a;) = f;

F(a) usual function (takes a vector as argument)

F! pagtial dg}gi(;/%tive of function F with respect to a
(Fa>ij = sz

E = error function (written without parameters)

a, sliding time average of a,, with r € (¢t — 7,t] (applied

componentwise on vectors)

mean value of time series a; (applied componentwise
on vectors)

viii

LIST OF SYMBOLS

List of Symbols

small constant
time constant

Symbol Description Equation
x sensor values 3.2
Y motor values 3.2
z membrane potential 3.10
W) world function 3.3
« hardware constant in toy world 3.7
K(") controller function 3.2,4.1
g(+) tanh activation function (componentwise) 3.30, 4.18
C controller weight matrix (¢ in 1-D) 3.2,4.18
h controller bias vector 3.2, 4.18
M(-) world model function 3.16, 4.2
A model weight matrix (a in 1-D) 3.26, 4.19
S second model weight matrix 4.91
b model bias vector 3.26, 4.19
L Jacobian matrix in sensor space 3.23, 4.8
J Jacobian matrix in motor space 4.15,4.34
R Linear response matrix (r in 1-D) 3.10, 4.34
< additive sensor noise 3.7
1 prediction error (noisy) 3.17
n prediction error at motor outputs 4.14
v postdiction error 3.24, 4.11
v postdiction error in motor space 4.16
E TLE (time-loop error) 3.25, 4.12
B* Some other error function labeled with x 4.70
Vx scaling of additional error x 4.71
€ learning rate 3.19
U(-) dynamical system in sensor space 3.17, 4.4
o(+) dynamical system in motor space 4.13
Y44 (-) Clipping function to the interval [a, b] 4.47
% translational velocity 4.105
w angular velocity 5.24, 6.37
Fi(+) prediction function of expert ¢ 6.1
wi weight matrix of expert ¢ 6.3
r Number of experts 6.1
=0 prediction error of expert ¢ 6.2
= minimum of prediction error of expert ¢ 6.17, 6.22
= penalized prediction error of expert ¢ 6.18
P penalty factor for suboptimality 6.18
0 In Chapter 6: Q-learning exploration 6.36
~y In Chapter 6: O-learning discount factor 6.24
A In Chapter 6: Q-learning eligibility trace decay 6.31
0

T

¢

noisy quantity

Chapter 1

Introduction

People think of these eureka moments
and my feeling is that they tend to be little things,
a little realisation and then a little realisation built on that.

Roger Penrose

Research interest in autonomous robotics has increased tremendously in the last decades.
The reason is not only that robots are such an exciting topic but also because our society has
many applications for intelligent mobile assisting devices, e. g. for the care of elderly people,
for emergency and rescue operations or as a plain household aid. It is widely recognized that
such complex robots need to be highly adaptive and self-learning machines in order to cope
with the ever-changing environment and complexity of the real world [94]. The present
thesis follows this line of thought by first considering the self-organized development of
sensorimotor coordination in autonomous robots. In the second part these highly adaptive
systems are shaped to achieve goal-oriented behaviors and finally to perform a given task
— from playful to purposeful behavior.

1.1 From Classical Artificial Intelligence to Embodied
Systems

Artificial intelligence (Al) is a research field that aims at understanding and synthesis
of intelligence. Back in the 1950s, intelligence was thought to be the result of a symbol-
crunching computer program located somewhere in our brain [101]. Since then the classical
approach has developed into a large field of research with many branches and has produced
impressive results in applied computer science and engineering. For example, the victory
of IBM’s chess-playing supercomputer (Deep Blue) over Garry Kasparov, the world chess
champion in 1997. In such formal or computational domains, like game playing and logical

2 1. INTRODUCTION

reasoning the traditional approach to intelligence seems to be adequate. However, it be-
came evident that natural forms of intelligence observed in animals or humans on a daily
basis cannot be explained with intelligence as a mere computational process, neglecting
the body-environment interactions [124]. One of the most influential trends in Al and
robotics started with Brooks in the 1980s when he promoted the so-called behavior-based
approach [24, 25|. The important aspect of this approach is a tight coupling between
sensation and action without the need for a complex internal representation. Influences
from cognitive science led to the concept of embodiment, which states that intelligence
requires a body [25, 28, 31, 122, 167]. From a more practical perspective this means that
the robot with its controller, body, and environment must be treated as a unity. This
went so far that the term morphological computation [115, 122], was coined, referring to
the seemingly computational processes that are performed by the physical components of
a robot. A prominent example is Tad McGeer’s passive dynamic biped walker [95] that
walks down a slope without any active control. Another example that illustrates nicely how
the environment can shape the behavior of a system controlled in a reactive manner is the
salamander. A salamander performs different motion patterns when walking on the ground
or swimming in the water with the same low-level sensorimotor mapping [69, 70|. The new
understanding of intelligence has led to a paradigm shift from knowledge-based systems
to embodied reactive systems [33, 67]. Physical and information-theoretical implications
of embodied adaptive behavior became important and the research focuses on systems
acting in the real, physical world. Dynamical systems theory was increasingly applied to
understand the lower level mechanisms underlying intelligent behavior [66]. Higher forms
of intelligence are now approached by starting from lower level ones. Consequently, action
and cognition are not supposed to be a result of something directly built into a robot but
rather the result of emergence and development [48, 85, 110].

1.2 State of the Art in Autonomous Robot Control

Before we review the most prominent approaches to autonomous robot control that aim
at the emergence of animal-like and intelligent behavior, let us first put them in coarse
relations. Evolutionary robotics, analogously to biological evolution, optimizes robots over
many “generations” to perform some task. However, the individual robots are mostly fixed
during their lifetime. Somewhat complementary is reinforcement learning, which is used
to obtain goal-oriented behavior in the lifetime of a robot. Developmental robotics is more
concerned with intrinsic motivation for learning and behavior in general and thus focuses on
the emergence of coordinated behavior without specific goals. In this matter information
theoretic quantities have recently been shown to play an important role. Finally, there is
the concept of homeokinesis that gives rise to the development of coordinated embodied
behavior within short time scales. Let us now go into detail.

Perhaps the most prominent approach to autonomous robot control is evolutionary robotics.
Stefano Nolfi gives the following accurate formulation in [104]:

1.2. STATE OF THE ART IN AUTONOMOUS ROBOT CONTROL 3

Evolutionary robotics is a new technique for the automatic creation of au-
tonomous robots. Inspired by the Darwinian principle of selective reproduction
of the fittest, it views robots as autonomous artificial organisms that develop
their own skills in close interaction with the environment and without human
intervention.

With genetic algorithms a fitness function, encoding some desired goal, is optimized in a
high-dimensional configuration space. Evolutionary robotics allows for the evolution of a
control program and/or the morphology of a robot to perform a desired behavior. This is
achieved by generating a set of possible solutions (individuals), which are then iteratively
recombined, mutated and selected until a satisfying solution is found. Evolutionary design
was successfully used in many robotic applications [78, 104, 105, 114, 146], but, up to now
it has not been possible to achieve an open-ended process, where more and more complex
structures/behaviors emerge. Suggestions on how to achieve such an artificial open-ended
evolution were given in [23, 102]. Raising computational power and further investigations
of the role of morphogenesis give hope for emergence of increasingly complex systems in
the following years. However, we are interested in the development of a robot during its
lifetime, which is not addressed by evolutionary robotics.

The online learning of goal-oriented autonomous behavior is most often achieved with re-
inforcement learning [161]. Reinforcement learning (RL) is concerned with how an agent is
to take actions in an environment to maximize a long-term reward. It is rooted in the con-
cept of classical conditioning [116], which says that a reward or punishment is associated
with an earlier presented conditional stimulus, such that later this stimulus is sufficient
to predict the reward or punishment. A generalization of this concept is the temporal
difference learning that is used to predict future rewards and to solve the reinforcement
learning task [176]. Interestingly, it was found that the firing rates of dopamine neurons® of
mammals show a convincing correspondence to the reward prediction error of the tempo-
ral difference learning theory [144]. RL algorithms attempt to find a policy that maps the
perceived states of the world to the actions that maximize the long-term reward. A major
milestone was achieved by Richard S. Sutton when he introduced the temporal difference
learning algorithm called TD(A) [158], which was even proven to converge to an optimal
solution [35]. Since then many different approaches to the RL problem have been proposed,
e.g. Q-learning [169], adaptive actor-critics algorithms [79], policy gradient methods [12]
and ISO-learning [77, 128]. Q-learning, for instance, is proven to generate an optimal
policy (action selection) in fully observable Markovian systems. These approaches have
yielded some remarkable empirical successes in learning to play games, including check-
ers [139], backgammon [163], and chess [13], but also to control robots, for instance to
play soccer |27, 156|, perform navigation tasks [54], control a fast biped walking [87], and
to control humanoid robots [120]. It is important to note that RL works best on discrete

!The dopamine neurons regulate the release of the neurotransmitter dopamine that regulates the
strength of synaptic connections for neurons that use dopamine as neurotransmitters, e. g. the dopaminergic
neurons chiefly found in the midbrain.

4 1. INTRODUCTION

state and action spaces. In real-world applications, however, we find high-dimensional
continuous spaces that make it necessary to use heuristics and sophisticated methods to
overcome the curse of dimensionality. RL can also be applied to continuous state and
action spaces using function approximators as proposed by Kenji Doya [52]. Nevertheless,
it is still based on trial-and-error, which can be an exhaustive process. Without a few clues
along the way, a learner can get lost exploring a huge space of poor solutions dominated by
negative reinforcement [81]. Additionally, RL commonly considers behaviors as sequences
of actions rather than as complete sensorimotor couplings.

A tight sensorimotor coupling is important for exploiting the feedback of the physical
interaction, i. e. to make use of the embodiment. In this context the framework of dynamical
systems, known from mathematics and physics, started to get increasing attention in the
last two decades |15, 73, 112|. It is a powerful method to analyze [66] and construct 39, 73]
robot controllers, as it allows one to formulate the evolution of a certain state of the system,
e.g. the sensor values, in a quantitative manner and enables analytical and qualitative
predictions. Dynamical system theory also led to the application of chaos control and
coupled chaotic oscillators to robotics [80, 125, 153].

Already Alan Turing expressed the importance of developmental aspects of human intelli-
gence: “Instead of trying to produce a program to simulate the adult mind, why not rather
try to produce one which simulates the child’s.” [165]. This is now addressed in the fields of
developmental robotics and active learning, which are concerned with open-ended learning
and the source of motivation. Research in developmental psychology states that humans
perform intrinsically motivated activities to experience a particular feeling of competence
and self-determination [37]|. Intrinsically motivated activities are also prominent at the
level of motor control. When considering mammals, for example, we observe the devel-
opment of complex sensorimotor coordination starting from the early phase of postnatal
epigenesis, which cannot be fully described by the genetic code [56]. Especially interesting
is the emergence of playful behavior, observed in many young mammals. For example, a
kitten first learns to walk from more or less random movements and then starts to play
with everything it can find. The reason why nature produces playful behavior is because
it enhances motor skills and the self-model of the animal that become vital in its later life.
Long ago it was realized that intrinsically motivated exploratory activities have a funda-
mentally different dynamics than goal oriented behaviors: they are not homeostatic, the
general tendency to explore is never saturated, and it is not a response to a perturbation
or deficit of any non-nervous-system tissue [171]. There have been a couple of efforts to
obtain an intrinsically motivated system. Jiirgen Schmidhuber proposed in 1991 a method
to introduce curiosity in a control system. He proposed to use the learning progress (com-
pression progress in his terms) of an internal model as a reward for a reinforcement learning
system [143]. The learning progress is indeed compatible with our intuitive understanding
of curiosity and boredom — easily predictable things get boring quickly but also inherently
unpredictable things, like the noisy display of a TV-set out of reception do not receive our
attention for more than a moment. Most other approaches to developmental robotics also
use the combination of RL and some intrinsic reward [65, 88]. Pierre-Yves Oudeyer and

1.2. STATE OF THE ART IN AUTONOMOUS ROBOT CONTROL 5

Frédéric Kaplan, instead, estimate the predictability of a situation with a meta-predictor.
They have been able to show playing behavior in a Sony AIBO robot [172], however with
very limited amount of discrete actions [110, 111]. Formulating the learning progress in
a probabilistic manner J. Michael Herrmann was able to obtain behavior for the sake of
information gain, resulting in a vivid interaction among agents [61] similar to the evolved
turn-taking robots by Hiroyuki lizuka and Takashi Ikegami [68|.

In general, information theory, as one of the most universal concepts in natural sciences,
has gained increasing attention in the field of robotics. Starting from the definition of
information entropy by Claude E. Shannon [145] it now offers a formal language to analyze
and compare seemingly different systems quantitatively. The application to robotic sys-
tems is rooted in the observation that many biological information processing systems are
optimal with respect to some quantity [10, 21]. Recent developments have shown that these
optimization criteria can be expressed in an information theoretical way, using quantities
like mutual information between certain channels or predictive information in the stream
of stimuli [22, 133]. Max Lungarella and Olaf Sporns demonstrated that maximizing the
information structure in the sensory stream can result in coordinated behavior [150]. In
another study they analyzed how the interaction with the environment and the morphology
of a situated robot shapes the information structure in the sensorimotor loop [86]. A more
general discussions about embodiment and information theoretic perspectives can be found
in [123, 127|. However, it is not clear how to directly obtain an on-line control strategy
from information theoretic quantities. On the one hand a long sampling is required and on
the other hand it is difficult to obtain the dependence of the quantities on the control pa-
rameters. Thus, the proposed methods so far use evolutionary algorithms to optimize the
quantities and obtain therefore only static controllers. The information theoretic approach
is not to be confused with the field of probabilistic robotics, pioneered by Sebastian Thrun
and Wolfram Burgard, which achieved remarkable results in the context of localization,
mapping and navigation of autonomous robots [164].

Since we are interested in the emergence of behavior in robotic systems the phenomena of
self-organization is of special interest for this work. Self-organizing processes bring about
the emergence of structure or function in many complex systems ranging from the fields of
physics, chemistry, computer science, economics and biological systems [58, 174]. As the
word self-organization suggests, it is about the evolution of a system in an organized form
that comes about from internal drives, thus from itself. A broader definition is given by
Hermann Haken: “A system is self-organizing if it acquires a spatial, temporal or functional
structure without specific interference from the outside.” [59]. It is not surprising that
artificial intelligence and robotics aim at systems that exhibit self-organizing processes in
one way or another. For example, swarm robotics [14, 17] uses mechanisms inspired by the
pattern formation of flocking birds [107, 132]. Self-organization is also found in learning
systems, for instance the structure of self-organizing maps [76] is not externally specified
but rather emerges in the course of learning.

6 1. INTRODUCTION

A general principle that tries to explain the functionality of complex self-organizing bi-
ological systems was introduced already in 1932 by Walter B. Cannon [26] and later by
W. Ross Ashby [5]. Tt is called homeostasis and asserts that a biological system acts to
maintain physiological variables at certain levels. As we know, many aspects of animal and
human body-functions can be indeed explained by the homeostasis of e. g. the blood pres-
sure, the body temperature, sugar levels and so forth. However, it cannot alone account
for the generation of coordinated behavior [171]. Inspired by homeostasis and the power
of self-organizing processes Ralf Der proposed a novel concept called homeokinesis |39, 44]
at the end of the last century. This principle aims at the self-organized generation of body
and environment related sensorimotor coordination without a specific goal — ergo intrinsi-
cally motivated playful behavior. The name homeokinesis reflects that a kinetic quantity
or dynamic regime is to be kept in a certain range. In fact, this range is chosen to be at the
edge-of-chaos. The main edge-of-chaos hypothesis asserts that biological systems, perform-
ing complex computation for survival, operate near a phase transition between ordered and
chaotic behavior [97]. This shows a close similarity to the concept of self-organized criti-
cality [9] known from physics. In the application to robots this can be intuitively phrased
as “active but predictive behavior” and leads to the spontaneous self-organization of many
behavioral patterns [42, 48|. Since we are convinced that playful and self-exploratory be-
havior is one of the important prerequisites for the development of complex goal-oriented
behaviors in a self-learning autonomous robot, we use the homeokinetic approach as the
basis for our research.

1.3 Research Questions and Thesis Overview

The following three major questions are investigated in this thesis:

e How can the homeokinetic controller be extended to operate on more complex systems,
e how can the self-organized robot control be guided to specific behaviors, and
e how can autonomous robots develop a pool of motoric skills in a self-driven way?

We are aiming at control algorithms that can be ultimately used in real world applications,
which implies continuous sensor and motor value streams and realistic environments. Since
the real world is much more complex than any analytically tractable model it is necessary
to check the hypotheses and algorithms on real robots or in realistic simulations. The
construction of a real robot is without a doubt the most rigorous and also entertaining
way of validation, but it is also very time consuming and costly. That is why we created
only one of those. For virtual world experiments the author developed an efficient and
physically realistic simulation tool [91], which allows for versatile experiments and is now
used by many researchers. The robot simulator and robotic platforms are presented in
Chapter 2.

In order to tackle the main questions it is important to first understand the dynamics,
the type of behaviors generated, and the limitations of the homeokinetic control. For that

1.3. RESEARCH QUESTIONS AND THESIS OVERVIEW 7

Chapter 3 introduces the concept of homeokinesis and highlights its essential properties
in the one-dimensional case. The multidimensional system is considered in Chapter 4,
where we present a uniform mathematical description of the system in different domains.
In the application to various robotic platforms we find highly embodied (body and envi-
ronment related) and coordinated behaviors [43, 46, 63]. The analysis also led us to the
re-examination of basic constitutes of the system. Even though the initial homeokinetic
controller achieves a vivid interaction for many robotic systems, we find plenty of room
and necessity for improvement also on the basic level. For example, the introduction of
suitable regularization measures yields a more robust control algorithm and the extension
of the adaptive internal world model will turn out to be essential for the control of more
complex robotic systems.

To achieve specific desired behaviors, we studied how to influence and shape the self-
organization process. In general terms, this approach is called guided self-organization [130,
136]. As the name suggests, the core idea is to combine goal-oriented design with self-
organized development to obtain a system which unites benefits of both. This is especially
important in high-dimensional systems where the self-organized search for useful behaviors
can take a very long time and it is not guaranteed that all possible behaviors are visited
in finite time. The novel idea of guided self-organization can be applied to many problems
in modern physics, e.g. in nano material science [30], and it is especially suitable for
developmental robotics. So far, there was only one international workshop in 2008 on this
topic [130], which postulated first conceptual ideas. Already before that we presented the
first guided self-organized robot in 2007 [90]. To our knowledge, the first application to
swarm robotics was also recently presented in [136].

The main challenge is how to balance guidance and self-organization such that the system
achieves the imposed goals without losing its flexibility and ability to re-organize itself. To
deal with this we propose two novel and general methods to shape the emergence of behav-
iors in Chapter 5. The first one deals with the integration of additional energy functions
into the original formulation of the homeokinetic controller using an appropriate metric
for the gradient descent. Furthermore we propose a mechanism to specify symmetries of
the physical system or of the desired behavior as soft-constraints. This produces efficient
self-exploration in high dimensional systems and allows one to achieve specific behaviors.
The second method uses an online reward signal to modulate the speed of search in the
behavior space, which has proven to be very effective in some applications [90].

One of the major achievements of the homeokinetic controller is its ability to find coher-
ent behaviors even for very complex and high-dimensional systems. Unfortunately, in its
present formulation all obtained behaviors are forgotten as soon as new behaviors are ex-
hibited, such that it cannot be used in many applications. A first step into the integration
of a long term memory was proposed by Frank Hesse [62]|, where behavioral changes are
stored in order to anticipate unpredictable situations. We present in Chapter 6 a generic
solution to the long standing problem of fading memory. We developed an additional
system that extracts and stores the most successful behaviors from the lively interacting

1. INTRODUCTION

robot [89]. This novel combination empowers a robot to acquire a repertoire of behaviors
without human intervention. The acquired behavioral primitives are then used to gen-
erate higher order behaviors and to solve practical tasks, which we demonstrate in two
applications.

In the last chapter we conclude our results and discuss perspectives for further research.

The research in the present thesis is reported in the “we” form, independently of whether
the results have been obtained in collaboration or solely by the author. The following
section presents the most important results obtained by the author at a glance.

1.4 List of Most Important Results

Complex virtual robots and environments can be set up in a short amount of time
and can be efficiently simulated with the developed robot simulator LPZROBOTS [91]
(Section 2.1).

Efficient usage of many sensors through the definition of sensorimotor dynamics in
motor space (Section 4.1.2).

Emergence of body- and environment-related behaviors from scratch is found in a
new set of robotic systems and the systematic exploration of the behavior space was
demonstrated (Sections 4.3 and 4.4) [43, 46].

Proof that the homeokinetic controller prevents a deprivation of the adaptive world
model by exploring all action subspaces. (Section 4.5) [45].

Foundation for the incorporation of goals into the original homeokinetic learning dy-
namics by appropriate integration of additional error functions (Section 4.7.1).

Enhanced world model that resolves the ambiguity between self-induced and environ-
mentally-induced sensations. Thus, the controller can cope with action-independent
dynamics in the environment (Sections 4.8 and 4.8.5).

Guided self-organization via direct teaching and cross-motor teaching leads to the
development of specific behaviors. Cross-motor teaching empowers fast coordinated
behavior in high-dimensional systems with little given information while maintaining
adaptability (Sections 5.1.1 and 5.2).

Shaping of the self-organizing behavior via online reward signals brings about a pref-
erence for desired behavior (Section 5.3) [90].

Acquisition of behavioral primitives with competing experts. Each expert reproduces a
certain behavior that was before generated by the homeokinetic controller. This is the
first time a generic long-term memory was integrated into the system (Sections 6.1.4
and 6.1.5) [89].

Task solving through the combination of behavioral primitives with reinforcement
learning, demonstrated with an obstacle avoidance task (Section 6.2.3).

Chapter 2

Robot Simulation Environment and
Robotic Devices

After three days without programming,
life becomes meaningless.

Master Programmer in “Tao of Programming”

by Geoffrey James

This chapter introduces the workbench used for the robotic experiments in this work. First
the developed robot simulator is introduced. We highlight its most important features and
present a novel collision model. Subsequently, the collection of virtual and real robotic
platforms that are used in the present thesis are shortly described. These sections may be
used as a reference for the forthcoming chapters. The hasty reader might skip this chapter
and return to the description of the robots as required.

2.1 Robot Simulator LPZROBOTS

Realistic computer simulations are very important not only for experimental scientists but
also for theoretical studies. They allow one to quickly check hypotheses and algorithms
and verify generalizations and approximations that have been done in the course of ana-
lytical derivations. This is especially fitting for robotics, where the hardware is normally
error-prone and requires rather intense maintenance. However, many argue that robot
experiments must be performed with real robots only. This harsh opinion is rooted in the
fact that software controllers tested in simulations often have not been able to reproduce
the same results in reality. Nevertheless, computer simulations are a valid test-bed and
provide at least a good starting point for the development of controllers [55]. The gap
between reality and simulation is also shrinking because we can nowadays perform physi-

10 2. ROBOT SIMULATION ENVIRONMENT AND ROBOTIC DEVICES

cally realistic computer simulations. Moreover, control algorithms for autonomous robots
should be adaptive enough to cope with the reality gap.

Despite the fact that there are many robotic simulators available, none of them were suited
to our needs. In the initial phase we verified several simulators, such as Player/Gazebo [109]
and Webots [32]. For example, the Gazebo simulator does not support custom materials
and Webots is an expensive proprietary simulator that cannot be customized easily. This
led us to the development of a new simulator called LPZROBOTS. The design and the
major part of the implementation was conducted by the author. Further credits go to
Frank Giittler, Frank Hesse, Ralf Der and Marcel Kretschmann.

This chapter is particularly aimed at those who plan to use the simulator, those interested
in physical robot simulations in general and those who want to have a look at the back-stage
of our virtual world of self-organizing creatures. In the next section we focus on the overall
structure of the simulator. Afterwards we will describe the user interaction (Section 2.1.2)
and show how to create virtual worlds (Section 2.1.3). In Section 2.1.4 we present an
new method to handle material properties in the simulation. It follows a description of
the matrix library (Section 2.1.5) and a list of highlighted features (Section 2.1.6). A
comprehensive documentation with technical details and the source code is available on
the project website [91].

2.1.1 Structure

Let us now consider the major design choices and the overall structure of the simulator. The
heart of the LPZROBOTS simulator is the main loop that performs a time discrete physical
simulation and determines the information flow. All important parts of the environment
and the robots can be specified in terms of rigid bodies with geometric shapes and physical
properties. The latter include the inertia tensor as well as surface properties. To be able
to observe the simulations a graphical representation is optionally rendered.

The main reason to develop and use a robot simulator is to test control algorithms. Ideally,
the control algorithms are quickly usable in other simulation environments and to control
real robots. Therefore the interface between controller and simulator must be generic and
the controllers should reside in a separate module instead of being tied into the simulator.
For the development of our algorithms it is important to be able to observe the evolution
of internal parameters online and to change some control parameters like learning rates
during the runtime!. For that reason, a framework for controllers called SELFORG was
developed independently from the simulator. It allows for quick controller development
and a flexible connection of robotic systems and controllers, which will be subject of the
next section. Since the software is written in C++ we used the concepts of object-oriented
programming. The knowledge of C++ is not obligatory to understand the main points

!The modification of parameters is only necessary during the test phase. In the later robot experiments
the parameters are not changed manually, except states otherwise.

2.1. ROBOT SIMULATOR LPzZROBOTS 11

Agent
Wired Controller
Robot Wiring Controller
Sensor values Sensor Preproc.
ense Motor values Motor Postproc " Control
Act .) step

| |
'

[Logging and Plotting]

Figure 2.1: Core architecture of an agent with a wired controller and a robot.
The arrows denote the information flow during one simulation step.

here. Nevertheless, some terms shall be briefly mentioned such as class that refers to an
object type, interfaces which is an abstract class to specify only the signature, and subclass
or inheritance for the mechanism to define a more specific class based on an existing one.

The SELFORG Framework

The SELFORG framework is designed for connecting a controller to any system, be it a real
robot, a simple academic program, or our full-fledged robot simulator. The most important
part is the wired controller, consisting of a controller and a wiring paired with some
utilities to log, plot and configure the system. The wiring allows for the preprocessing of
sensor and motor values, making the connection to different systems very easy. The wired
controller might be directly integrated into another program, e. g. into a real robot control
program. Alternatively it might be used within an agent together with the representation
of a robot. Figure 2.1 depicts the information flow within an agent and its structure.
Since all parts are specified using clear interfaces, a high reusability and interchangeability
is achieved.

Simulation Class and the Main Loop

Let us now come the actual simulator. The central element is the simulation class with
contains the main loop. In order to write a simulation, the user defines a subclass of
this class and overloads typically only one function, the start routine to specify the en-
vironment, the obstacles, the agents, and specific parameters. Given that, the simulator
enters the main loop and performs iteratively physical simulation steps using the “Open
Dynamics Engine” (ODE) [149]. A control step (Fig. 2.1) is performed every n-th iteration
(specified by the parameter controlinterval). This allows for a selection of the update
rate independently of the step size of the physical simulator. The update of the graphical
display, which is done using the graphics library “Open Scene Graph” [108], is executed

12 2. ROBOT SIMULATION ENVIRONMENT AND ROBOTIC DEVICES

(a) (b)

Welcome to the virtual ODE - robot simulator of the Robot Group Leipzig

Press Ctrl-C on the console for a commandline interface.
Press h on the graphics window for help).

[Simulation Environment]

cameraspeed= 100.000000
simstepsize= 0.010000 *
gravity= -9.810000 *
realtimefactor= 1.000000 *
drawinterval= 20.000000 *
randomseed= 1219862012.000000 *

#itHH#H#H
Type: ? for help or press TAB
>

.‘ @w ? help 1list load 1s quit set show store view

-
s g % Agents --------——————- (for store and load)

0: SchlangeLong
1: Nimm4_O

peve

P 6: Spherel
Objects -------------- (for set and show)
ID: Name

0: Simulation Environment

1: InvertMotorNStep

2: Schlangelong

Time: 00.04 Speed: 1.0x Ipzrobots Simulator Martius, Der. Guttler

Figure 2.2: User interface of the LPZROBOTS simulator. (a) Graphical simulation
window; (b) Terminal with console interface.

every k-th iteration, where k is calculated to achieve a proper frame rate of e. g. 25fps. In
order to obtain a smooth and continuous simulation the internal time of the simulation is
synchronized with the real time. Of course, different factors are supported to speed up or
slow down. The simulation class also has a variety of additional functions which can be
overloaded to have sufficient control over the simulation process, define custom keystrokes,
and trigger specific events.

2.1.2 User Interaction

The user interaction with the simulator is threefold. Operations concerning the display,
e.g. camera position, display style or video recording are accessible through the graphical
window. The camera can be manipulated with the mouse in combination with the mouse
buttons in different modes, which are shortly introduced in Section 2.1.6. A transparent
head-up display shows the simulation time and the simulation speed with respect to real
time. All available keystrokes can be displayed on demand at a help screen. The second
way of interacting with the simulator is via a console on the terminal window. It allows
one to set parameters and to store and load controllers. The console features a history,
auto-completion and many more characteristics of a UNIX shell. The interface was inten-
tionally uncoupled from the graphics in order to be usable in real robot experiments or
non-graphical applications. Both interfaces are depicted in Figure 2.2. Finally, the user can
display internal parameters online, such as sensor values, network synapses and so forth
with different custom tools like our neuronviz and guilogger as displayed in Figure 2.3.

2.1. ROBOT SIMULATOR LPzZROBOTS

[, Gnuplot <2> /%~ GUI Logger
1.5

x[0] — Menu

Disable[| O x O
Ref [
it O
x[0] [
x[11 [

|

O

Timer

| v

4
| Sl
'
4
| Sl
4
—
4

0 [boObO0b0000000000«eeEe 0000 '

0 50 100 150 200 250 300 0,111
312,591, 0,938122 Cl1,0]

/~ Gnuplot <3> cr1,110
1.5

1

xsl_norm_|
xsl_norm_avg
E U

n

O
DDDDDDD@@DDDD@@@@DDDDDDDDD '

=

(=)

°

O
DDDDDDDDDDDDDDDDDDDDD@@@@D

E]zooo

Send Crmnd

Figure 2.3: GUILOGGER window with two controlled Gnuplot windows. In the
main window (right) sets of channels are selected. Their temporal evolution is shown in
the subwindows (left), here sensor values and motor values, and synaptic weight of the
controller.

14 2. ROBOT SIMULATION ENVIRONMENT AND ROBOTIC DEVICES

2.1.3 Creating the Virtual World

This section will give a brief overview of how to create virtual worlds in LPZROBOTS and
discuss the major design choices. The usual problem in software engineering is to find the
right level of abstraction. Unfortunately, object-oriented programmers often tends to stack
one abstraction layer on top of another and opt for beauty and compactness at the price
of flexibility.

While designing the simulator we had to combine physical, geometrical and graphical
representations of the objects in the virtual world into one structure. This structure is
called primitive and can have all of these properties. However, there are cases where no
physical body or geometric representations are required or wanted. For example, static
objects in the world, like walls or the floor, do not need a mass and impulse because they
are considered to be unmovable. Likewise a massive weight inside of a robot, e.g. for
balancing, does not need a geometric shape for collision detection. For that reason, we
kept the abstraction layer thin and allowed for many customizations.

To build objects in the simulator one constructs primitives like spheres, boxes, capsules,
cylinders and combines shapes. They can be pairwise connected by joints, which in turn
can have motors attached to them. Eventually, the building blocks of the simulation must
be positioned correctly. There are two ways to do that, either with a quaternion and a
translation vector or with a 4 x 4 matrix containing both at once. We chose the latter,
because it is much simpler in concatenation and application of transformations. A special
case of homogeneous coordinates is used, which uses four dimensional vectors containing
(x,y, z,w) where z,y, z code the space coordinates and w is 0 for a orientation vector and
1 for a position in space. The transformation matrices contain a 3 x 3 rotation matrix and
a translation vector, which is only applied to position vectors.

T
T + Ty + 1312 + tyw

_ | e + T2y + 1322 + tyw (2 1)
13T + 193y + T332 + t,w ’

w

1 Ti2 T3
To1 T22 T23
31 T32 T33
t, t, t;

(a:yzw)

_ o O O

This allows one to concatenate transformations via simple matrix multiplication. For
complex objects like a multi-segment arm one can recursively add one segment after another
by only multiplying relative transformations with the transformation matrix of the previous
segment. In pseudo code we may write:

m «—globalPose
createSegmentAt(m)
for all [€ localTransformations do
m<«—lxm
createSegmentAt(m)
end for

2.1. ROBOT SIMULATOR LPzZROBOTS 15

2.1.4 Collision Detection and Surface Properties

One of the most important parts in the rigid body simulation is the detection and treatment
of collisions. The Open Dynamics Engine (ODE) [149], which we use for the rigid body
physics simulation, offers routines to check for collisions and proposes a number of so-called
contact points. The simulator can create contact joints at such points to mimic surface
interactions such as friction, bouncing and slip. In the following we will have a closer look
at the developed strategy for efficient collisions detection and the realization of material
and surface properties.

Efficient Collision Detection

To make collision detection practically computable also in larger systems ODE uses so
called collision spaces, that group a number of preferably close geometric bodies together.
Thus, robots, for example, usually have their own collision space. Collision detection is
first performed on the level of collision spaces using their bounding boxes, i. e. checking for
the intersection of the smallest cubes containing all bodies of a collision space. Only in
the case of an intersection of the bounding boxes the geometric bodies of the two collision
spaces must be pairwise tested. Additional collision tests within each space have to be
performed as well.

Since not all collision spaces are supposed to treat internal collisions, there is a list of
spaces to be checked. Further and more importantly not all geometric bodies are supposed
to collide with each other. For instance, bodies connected with joints should typically not
collide since they intersect by construction. To exclude pairs of bodies we introduced a
hash set which is checked for each potential collision. The efficiency is ensured, because
the hash set has a complexity in O(1) for element search as long as only few hash-collisions
occur. This is achieved by using the hash code 2b; 4+ b, where b; are the memory pointers
of the colliding body objects.

Material and Surface Properties

In order to model complex scenarios the collision treatment of the ODE needs to be aug-
mented. Normally collisions are treated in a global callback function where the two colliding
geometric bodies are given. In order to distinguish between different physical interactions,
each geometric body carries a substance? description. The interaction parameters are
then obtained through the combination of the two substances. We consider four different
parameters k,, kq, 1, and slip to describe the interaction. Here k, and k4 denote the spring
constant and damping constant respectively, p is the Coulomb friction constant, and slip

2The name substance was chosen due to the fact that the possibly better fitting term, material, is
already used by the graphics renderer to describe visual surface properties.

16 2. ROBOT SIMULATION ENVIRONMENT AND ROBOTIC DEVICES

Body 1 Body 2

Virtual Contact Point

ﬂnetra‘cion AN

€1 - ()

- (EEE |
-

hl - h2

Figure 2.4: Material-interaction model with two spring-damper elements.

is the force dependent slip (FDS) parameter. FDS is used to model non-coulomb friction
that occurs for example when the wheel of a car starts to slide sideways. More formally, the
two contacting surfaces slide past each other with a velocity proportional to the force that
is being applied tangentially to the surface. This differs from normal (Coulomb) frictional
effects since it does not cause a constant acceleration, but rather leads to a steady velocity.

Our design for the substance parameters are roughness (r), slip (s), hardness (h), and
elasticity (e). The Coulomb friction parameter p is obtained by a multiplication of the
roughness from both substances. This results in a high friction for two rough materials
but in low friction, if one of the materials is very smooth (e.g. ice). The slip parameter is
the sum of both slip parameters. The spring and damping constants are calculated using
the schema of two spring-damper elements serially connected as illustrated in Fig. 2.4.

The spring constant of each collision side is given by the hardness h; and h,. The spring
constant k, of the combined system is given by

1 1 1
— = — 4+ —. 2.2
bk (2:2)

The damping constant k,; is derived from the elasticity e of the combined spring-damper
system, but is more difficult to compute. Considering the damping in the form of energy
loss we can write the energy or work done by each spring as: W, = F - x; = l;:—j using
F = hgz;. The energy loss through damping is WP = W;(1 — ¢;). The final damping is
NOW:

wpP +wp
ki=(1-e)=——2
a= =) =37,
N F2<1 — €1>/h1 +F2(1 —62)/h2
B F2/hy + F2/h,

2.1. ROBOT SIMULATOR LPzZROBOTS 17

Table 2.1: Substance parameters and resulting interaction parameters.
Parameter Range Interaction Parameter
roughness (r) [0,00) =11 79

slip (s) [0,00) slip=s;+ 59
hardness (h) (0,00) k, = % (2.2)
elasticity () [0,1] kg = t2lizeiulize) (2.3)

_ h2(1—€1)+h1(1—62> (2 3)
hy + ho '

Table 2.1 summarizes the parameters and their dependencies. Now the parameters k, and
k4 need to be converted to the parameters used by the ODE, which is described in the

manual [149] and is given by ERP = —+22_ and CFM =

1
Atk‘p+kd) Atkp+k‘d .

Special Cases

The above described approach is perfectly suitable for typical rigid body interactions,
however, some special cases cannot be modeled. For instance, infrared distance sensors can
be implemented with ray-objects. Their sensor value is obtained from collision routines.
This is supported by an optional callback function of substance class which can overwrite
the default collision treatment. Another example of a special case is when a material has
different properties in different directions, like the skin of a snake. A similar situation
occurs when a conveyer belt is to be modeled. The uniform motion of the surface can be
implemented by custom collisions, instead of modeling the complicated belt structure.

2.1.5 Matrix Library

The author developed a small matrix library that is particularly suitable for the develop-
ment of our controllers but is nevertheless of general nature. It is part of the homeokinetic
controller package but can also be used and downloaded independently. Most available
matrix libraries focus on the optimization for large and often sparse matrices but lack a
concise syntax. Ideally one wants to write mathematical formulas in a one-to-one fashion
in the program code. This requires a compact syntax and convenient operators. Another
design criteria was the simplicity required when operating on simple embedded systems
like the Atmega chips [6] used for our real robot experiments.

The main features of the matrix library are automatic memory management, operator
overloading, and save operations. Vectors are treated as matrices with only one column
or one row. For each operation there is a copy version and an wn situ version. The latter
can be used for optimization purposes, but require careful thinking. The copy operations
work like their mathematical counterparts. Their operands are not changed and the result

18 2. ROBOT SIMULATION ENVIRONMENT AND ROBOTIC DEVICES

Table 2.2: Matrix operations of the matrix library (excerpt).

function name operator meaning description

c(a) C=A C=A copy operation
C.add(A,B) C=A+B|C=A+1B addition

C.sub(A,B) C=A-B|C=A-B subtraction

C.mult(A,B) C=A*xB|(C=A-B multiplication
C.mult(A,f) C=Axf |Cy=4,f scalar multiplication f € R
C.exp(A,i) C=A"1 C=A exponent ¢ € (—1,0,1,2,7T)
C=A.multrowwise(b) [C=A &b |C=A0b row-wise multiplication
C=A.map(g) Ci; = g(Aij) function application
C=A.mapP(arg,g) Ci; = g(arg, A;;) | func. appl. with argument
C=A.above(B) C= g vertical concatenation

is a new matrix. All operations perform range checks and insure dimension compatibility
which can be globally switched off for performance reasons. Beside the usual arithmetic
operations for matrices like +, —, * we introduce multiplication with a scalar, the exponent
operator and many more useful operations as listed in Tab. 2.2. Special attention should be
given to the exponent operator which, depending on the argument, is either the inversion
(-1), the identity matrix (0), the matrix itself (1), the square (2), or the transposed (7).
The latter is implemented by defining a symbol T" = 255, which is therefore just a number
and can be treated accordingly. Another interesting operation is the function application
operator called map following the style of functional programming. It applies a function to
all elements of a matrix componentwise. For the exponent and the row-wise multiplication
we reuse the operators ~ and & that are originally used for bit-wise operations. Somewhat
counterintuitive is their operator precedence (order of evaluation) which is lower than for
the other arithmetic operations. Since the precedence cannot be changed in C++ more
parentheses must be used.

The following illustrative code example shows the generation of a random matrix

Matrix W(20,5); // creates a (20 times 5) matrixz initialized with 0

W = W.map(random_minusone_to_one)*0.01 // assign random value
where double random_minusone_to_one(double) returns a random number between —1
and 1. The program code for the equation y = tanh(Cz + h) is for instance

Matrix y = (C * x + h) .map(tanh);
which looks very similar to the original mathematical formulation and is therefore quickly
written and more easily understood.

The performance of the code is still high even though new matrices are created for inter-
mediate results. We use high performance memory operation like memcpy and memzero to

2.1. ROBOT SIMULATOR LPzZROBOTS 19

speed up initialization and copy procedures. Additionally, all range checks can be excluded
at compile time after the code was successfully tested.

2.1.6 Highlights

Apart from the above mentioned features the simulator has much more interesting prop-
erties, some of which will be listed in this section.

Simulation
speed:

Camera
Control:

Video
Recording:

Multi
Threading;:

Playgrounds:

Terrains:

Many Exam-
ples:

The speed of the simulation can be controlled by a single factor, deter-
mining the ratio between simulation time and real time. The simulation is
synchronized with the clock so that a homogeneous time flow is achieved
independent of the currently available CPU resources, provided that they
are sufficient. This synchronization can also be turned off in order to run
at maximal speed. Depending on the complexity of the simulation the
speedup is up to 300 times and is usually above five on a typical desktop
machine (about 2.8 GHz Pentium IV).

The user can operate the camera in different modes and control its move-
ments with the mouse. The modes include a static camera that can be
swayed and tilted up and down and moved in all directions. Another
mode is the following mode that automatically moves the position of the
camera relative to a selected robot. The TV mode points the view of
the camera towards a selected robot. All camera movements are addi-
tionally smoothed to avoid unnatural jumps. These modes were mostly
implemented by Frank Giittler and details can be found in his master
thesis [57].

To capture the simulation in a movie, the user can at any time start and
stop the recording of a video. This might slow down the simulation speed,
however the video is kept at the right rate.

Since computers nowadays have several processing cores it is important
to parallelize the execution of code. The simulator can optionally run
the graphics, physics, and controllers in separate threads. To be able to
reproduce results, the handling of random numbers was modified to cope
with the parallel processing.

In order to create an appropriate environment for robots, there are several
obstacles and rectangular and round arenas available. Additionally, a
customized wall configuration can be created with the common 2D-CAD
program xfig [148] and imported into the simulator, see Figure 2.5.

For more challenging environments, a terrain using a height-map bitmap
can be created, see Figure 2.2.

In the current version the simulator bundle contains about 15 sample
simulations and 25 robots.

20 2. ROBOT SIMULATION ENVIRONMENT AND ROBOTIC DEVICES

Figure 2.5: Different Environments with obstacles.

2.1.7 Summary

This chapter provided a brief overview of the developed robot simulator, featuring much
more than could be highlighted here. Complex virtual robots and environments can be
set up in a short amount of time and efficient simulations are possible. We developed a
material interaction model that allows the user to specify intuitive material properties and
therewith more realistic simulations. The simulator has grown into a large software project
with more than 25000 physical lines of code, not counting the controllers and simulations.

2.2. THE Zoo OF ROBOTIC CREATURES 21

2.2 The Zoo of Robotic Creatures

In this section we describe the robots used in multiple places throughout this work. The
collection of robots is useful to study different aspects of the homeokinetic principle. Sim-
ple robots are required to have a straightforward testbed for new algorithms and more
complicated robots allow for the demonstration of various properties and limitations of
the homeokinetic control. The following sections serve as a reference and can also be read
when required.

Let us define the most important variables describing the sensors and motors of a robot.
Both sensor and motor values are real numbers. For a robot with n sensors and m motors
we denote the sensor values by the vector x € R™ and the motor values by y € R™.
The latter are defined to be in the interval [—1,1]. The sensor values are not particularly
constrained but often lie in the same range. The next section starts with a simple driving
robot and then we proceed to more complicated robotic systems.

2.2.1 TwWOWHEELED Robot

The TWOWHEELED robot is a simulated driving robot with a capsule shaped body and —
as the name suggests — two wheels, see Fig. 2.6. The wheels are driven by motors, which

(b)

Figure 2.6: Pictures of the simulated TWOWHEELED robot. The robot has two
actuated wheels and two wheel velocity sensors. (a) Screenshot taken from a simulation;
(b) Wire-frame view with the axis of wheel rotation.

can rotate in both directions. The motor signals determine the desired rotational velocity,
which is reached within one simulation time step if the required torque does not exceed the
maximal configured motor torque. The robot has two sensors measuring the actual wheel
velocities. Thus, we have n = m = 2. The sensors enable the controller to know when
an obstacle was hit, because the wheels would not rotate in this case. A demonstration of
the inertial and slip effects are given later in Section 4.8.4. Typical behaviors of this robot
are straight driving, when both motors perform the same action, curved driving, when the
motors rotate with different velocities, and finally turning at the point, when both motors
operate with opposite sign.

22 2. ROBOT SIMULATION ENVIRONMENT AND ROBOTIC DEVICES

2.2.2 FOURWHEELED Robot

Very similar to the TWOWHEELED robot is the FOURWHEELED robot, which has, not
surprisingly, four wheels instead of two. The motors and sensors work in the same way
as the ones of the TWOWHEELED robot (Section 2.2.1), only that there are four of each
kind (n = m = 4). Additionally, the robot is equipped with six infrared (IR) sensors as
depicted in Fig. 2.7. In reality these sensors actively sense by emitting a beam of light
and measure the strength of the reflection. Thus, they measure the distance to a reflective
obstacle. In the simulations they simply measure the distance to obstacles directly, so
that no differentiation among the materials exists. If no obstacles are within the range
of the sensor then its value is 0 and if an obstacle is very close then the sensor value is
1. In between a linear characteristics is used. The operation of the robot is a bit more
complicated compared to the TWOWHEELED robot, because the wheels on one side have
to be driven in a coordinated fashion. The reaction of the body to different combinations
of motor actions are given in Section 6.1.4. For normal driving the wheels on the same
side are controlled to have the same velocity.

(b)

f

Figure 2.7: Pictures of the simulated FOURWHEELED robot. The robot has four
actuated wheels and four wheel velocity sensors. (a) Screenshot taken from a simulation.
The IR sensors are drawn for illustration in black if they measure no obstacle and in red
of they do; (b) Wire-frame view with indicated IR sensor ranges, which are longer at the
front (left).

2.2.3 ROCKING STAMPER

The ROCKING STAMPER is the only real robot constructed by the author. It consists of
a bowl-like trunk with a pole mounted on it that is driven by two motors (m = 2) in
orthogonal directions, see Fig. 2.8 and 2.9. The robot is equipped with two infrared (IR)
sensors (n = 2) mounted at the front end of the trunk looking down and slightly sideways.
They measure the distance to the ground or to the wall, which changes depending on

2.2. THE Zoo OF ROBOTIC CREATURES 23

(a) , (b)

Atmel Controller

Figure 2.8: The ROCKING STAMPER, a pole driven bowl-shaped robot. (a)
Close view from the top; (b) Side view.

. Heavy Mass

Servo Motor 1 | Servo Motor 2
IR-Sensors — P

“ Ground

Figure 2.9: Schematic diagram of the ROCKING STAMPER. The pole is moved
relative to the trunk by the two servo motors. This causes the trunk to tilt so that the IR
sensors, which are mounted at the front, measure a different distance to the ground/wall.

the pose of the trunk in a nonlinear fashion. The motor commands dictate the nominal
positions of the servo motors, which determine the angles of the pole relative to the trunk,
as illustrated in Fig. 2.9.

The robot is equipped with an embedded controller board holding an Atmega3d2 processor
and a battery pack, thus the robot can operate autonomously. However, in the current
implementation the on-board hardware is only used to establish a connection to a work-
station which runs the actual control algorithm. From a performance point of view it is
possible to run the following control algorithms on a embedded processor, especially for
a two-dimensional system. However, it is easier to test and record data if the control
algorithm runs on a workstation.

24 2. ROBOT SIMULATION ENVIRONMENT AND ROBOTIC DEVICES

(a) (b)

Axes

(Sliders)

E2

Figure 2.10: BARREL robot. (a) Screenshot from a simulation. The red and green
masses are moved by actuators along the axes; (b) Schematic view of the robot. The
sensor values are x; = sin(6;). In the illustrated configuration z; < 0.

The robot can basically rock in two dimensions. The swing in the direction front-back is
more easily achieved because the body has a smoother curvature compared to the sideways
direction. By suitable combination of both rocking dimensions the robot can perform a
locomotion behavior. Another mode of operation occurs if the pole is moved quickly around
the center position, such that the massive weight stays almost at a fixed position, while
the trunk oscillates.

2.2.4 BARREL Robot

The BARREL robot has a cylindrically shaped body. Inside are two masses that are moved
by motors along orthogonal axes, as displayed in Fig. 2.10. The induced change of the
center of gravity causes the robot to roll in one direction or the other. The heavy masses
have the same weight as the hull. This implies a large inertia, so that a few revolutions are
required for acceleration and deceleration. Since the robot cannot turn, it can only move
along a line. The two motor values control the nominal positions of the masses along the
axes. A value of zero stands for a centered position and —1 and 1 correspond to the outer
positions. The position control is done with a PID3-controller implementation.

The robot has two axis-orientation sensors which simulate a gravitation sensor (n = 2).
For each of the two axes the projection of the axis direction onto the z-component of the
world-coordinate system is measured. The sensor values can also be defined as z; = sin(6;),
where 0; is the angle of the i-th internal axis to the ground plane, see Fig. 2.10(b). If the
axis is horizontal the corresponding sensor value is zero, and if the axis is vertical we find
a sensor value of —1 or 1. For a normal rolling mode the sensor values perform a harmonic
oscillation.

3PID stands for proportional-integral-derivative. This is a generic feedback control mechanism to
perform a set-point control.

2.2. THE Zoo OF ROBOTIC CREATURES 25

(a) (b)

Figure 2.11: SPHERICAL robot with axis-orientation sensors. (a) Screenshot from
a simulation. The red, green, and blue masses are moved by actuator along the axes;
(b) Schematic view of the robot with axis-orientation sensors (x;).

() (b)

IR sensor ray

N
IR sensor ray Floor,

Figure 2.12: SPHERICAL robot with infrared sensors. (a) Screenshot from a simu-
lation. The IR sensors are drawn in black if they measure no obstacle and in red of they
do; (b) Schematic view of the robot with IR sensors.

2.2.5 SPHERICAL Robot

The SPHERICAL robot is a 3D version of the BARREL robot (Section 2.2.4). It has a ball
shaped body and is equipped with three internal masses whose positions are controlled by
motors (m = 3), see Fig. 2.11(a). If not differently stated, then each mass has the same
weight as hull alone. The position control of the movable masses is done via servo motors.
The motor values define the nominal positions of the masses along the axes. A value of
zero stands for a centered position and —1 and 1 correspond to the outer positions.

We use this robot in two different sensor configurations. The first one uses axis-orientation
sensors (n = 3), see Fig. 2.11. These are the same sensors used with the BARREL robot.

26 2. ROBOT SIMULATION ENVIRONMENT AND ROBOTIC DEVICES

For each axis the projection of its direction onto the z-component of the world-coordinate
system is measured. The second setup uses infrared (IR) sensors as depicted in Fig. 2.12(b).
In total six sensors are used that extend the internal axes towards the outside of the robot
(n = 6). Each sensor measures the distance to the ground or to another object. The range
of the sensors is the 5 fold of the hull’s radius.

2.2.6 SHORT CIRCUIT

The SHORT CIRCUIT is not really a robot but rather a dummy construction used to test the
algorithms. The motor values are simply mapped to sensor values in a 1-to-1 fashion. More
precisely, for an n-dimensional SHORT CIRCUIT we define x; = y;, fori = 1,...,n. From a
controller point of view this construction behaves like a perfect robot when proprioceptive

sensors? are expected, because the control commands are virtually 100% executed.

2.2.7 Planar SNAKE Robot

The planar SNAKE robot is a high-dimensional virtual creature. It consists of a number of
segments that are pairwise connected by joints, see Fig. 2.13. Each joint has one degree of
freedom that is actuated by a servo motor. A motor value of zero corresponds to a straight
configuration and —1 and 1 are associated with the fully deflected positions at +90° off
center. The robot is underactuated, meaning the power of the motors is not sufficient to
move the joints independently of each other to any position. This effect is especially strong
at the joints in the middle of the robot. In order to change the joint angle, both halves
of the body have to be moved, which causes too much inertial momentum and friction.
Additionally to the motors, each joint is equipped with a position sensor that measures the
angle of deflection, see Fig. 2.13(b). These sensors provide a measure of the actual joint
configuration, which allows the controller to determine the effects of its actions.

2.2.8 ARMBAND Robot

Let us now consider the ARMBAND robot. The name comes from the German word Arm-
band meaning a wristband or bracelet of a watch. This robot consists of a sequence of n
flat segments placed in a ring-like configuration, where subsequent segments are connected
by hinge joints (in total n). The resulting body has the appearance of a bracelet or chain,
see Fig. 2.14(a),(b). Each joint is driven by a servo motor and has a joint-position sensor.
The joints have a center position, which is such that the robot is in a perfectly circular
configuration, see Fig. 2.14(b) (angle of 27 /n with respect to a straight positioning). The
motor values and sensor values are given in terms of joint angle deviations from the center,

4Proprioceptive sensors measure joint angles or positions of body parts.

2.2. THE Zoo OF ROBOTIC CREATURES

27

Figure 2.13: Planar SNAKE robot. The robot has n 4+ 1 segments connected by n
joints, each equipped with a servo motor and a joint-position sensor. (a) Screenshot of a
simulation (n = 15); (b) Schematic diagram with 8 segments (n = 7) . The red points
mark the positions of the servo motors. Each joint has a position sensor value x; = 6;,
which is zero for an extended joint. The maximally deflected positions are at § = +7/2
(90°).

28

2. ROBOT SIMULATION ENVIRONMENT AND ROBOTIC DEVICES

Figure 2.14: ARMBAND robot. (a,b) Screenshots from the simulation for n = 13. The
transparent sphere in the center marks the center of mass of the robot; (b) Configuration
where all sensors are zero (all joint are at center position); (c) Schematic view of the robot.
The prismatic structures are hinge joints actuated by servo motors. All joints are equal.
The motor values and sensor values are defined in terms of joint deflection angles (6;) from
the center position (see (b)). The values are scaled to the interval [—1, 1]. The joint limits
are: max=4/3-2m/n, and min=m/3.

2.2. THE Zoo OF ROBOTIC CREATURES 29

as displayed in Fig. 2.14(c). Note that the joints are highly coupled through the ring con-
figuration. Therefore, an independent movement of a single joint is not possible. Instead
it has to be accompanied by a movement of the neighboring joints and of distant joints.

2.2.9 Summary

In this section we introduced a set of robots that differ substantially in shape and mode
of operation. The number of degrees of freedom (DoF) ranged from two DoF of the
TWOWHEELED robot to 16 DoF of the SNAKE robot.

30

2. ROBOT SIMULATION ENVIRONMENT AND ROBOTIC DEVICES

Chapter 3

Homeokinesis for Robot Control

Simplicity is not the goal.
It is the by-product of a good idea
and modest expectations.

Paul Rand

In this chapter we will introduce the concept of homeokinesis [39, 44] and formulate it in
mathematical terms. First, we explain the motivation for this approach and describe it in
general terms. After that we briefly consider the phenomena of self-organization, as it plays
an essential role in the concept. We then proceed with the formulation of the sensorimotor
dynamics in the closed-loop setup. For the purpose of illustration we limit ourselves in
this chapter to one-dimensional systems. The multi-dimensional case will be the subject of
the next chapter. Before we derive the learning rules, we investigate the basic properties
of the non-linear control system in terms of fixed point stability and bifurcation behavior.
We demonstrate the system dynamics and its adaptive nature in a synthetic example at
the end of this chapter.

3.1 Introduction

The control of a robot can be much easier if the embodiment, namely the dynamics of
interaction of the body with the environment, is exploited. This requires that the robotic
device is controlled in a reactive manner, where motor actions are direct consequences of
sensory simulations, instead of the control with a mere sequence of actions [122]. Such a
setup is called closed-loop control and allows for the exploitation of the peculiarities of the
body-environment interaction. Even with a fixed mapping of stimuli to actions complex
behavior can emerge, see [124]. Considering the curiosity and playful behavior of young
mammals, there must be an intrinsic motivation to constantly explore one’s environment
and also the capabilites of one’s own body. In animals it is believed that playful behavior

32 3. HOMEOKINESIS FOR ROBOT CONTROL

is exhibited because it enhances motor skills. The motivation of homeokinesis is to propose
a principle that accounts for the generation of playful and coordinated behavior without
specific goals and ultimately achieve a robot that can actually learn something by itself.
In general terms the idea of homeokinesis is that the intrinsic motivation or drive to do
something is rooted in the requirement to keep the sensorimotor dynamics at the edge-of-
chaos — between inactivity and hyperactivity or, as we will see later, between sensitivity
and predictability. Since we are aiming at a control strategy for autonomous systems, a
fully internal representation of the sensorimotor dynamics is required, as we will present
below. Ralf Der proposed not only the abstract concept of homeokinesis [39] but also
provided a constructive definition using an energy function, namely the time-loop error
(TLE) [44], that allows for an on-line parameter update, as presented below. In this way
the dynamical system describing the sensorimotor dynamics is regulated by the internal
learning dynamics to a point where spontaneous symmetry breaking sets in and entirely
self-driven dynamics emerges. Let us now get an understanding of the widely used term
self-organization before we proceed to the formalization of the homeokinetic robot control.

3.2 Self-organization

Self-organization is used to describe the ability of certain non-equilibrium systems to ac-
quire an organized form, e.g. develop specific structures or patterns, in the absence of
external control or manipulation. Self-organization phenomena are observed in many com-
plex systems in the fields of physics, chemistry, computer science, economics, and biol-
ogy [58, 174]. Even though there is a general agreement in what is self-organized and what
is not based on visual inspection, there is little agreement on the precise meaning of the
word [126]. The field of synergetics provides a general approach to the self-organization of
patterns by the study of order parameters and phase transitions in open physical systems
far from the thermodynamic equilibrium. Open systems exchange energy or information
with the outside world, which is necessary to realize an entropy export, i.e. to generate
order within the system. However, when considering general dynamical systems we do not
need to model them in an energy consistent way.

Let us consider some examples to get an idea of the effects of self-organization. One of
the famous examples in physics is the spontaneous magnetization in ferromagnetic mate-
rials [29]. These materials consist of a field of spin states. At high temperatures their
orientation is random due to thermal fluctuations, such that the material shows no global
magnetization in the absence of an external magnetic field. Below a critical temperature,
the Curie temperature, the interaction between neighboring spins becomes import and
through spontaneous breaking of the rotational symmetry locally aligned clusters emerge.
The size and formation of clusters is self-organizing. The clusters become larger with
decreasing temperature such that eventually all spins are aligned.

3.2. SELF-ORGANIZATION 33

Figure 3.1: Self-organized pattern formation. (a) Coat pattern of a jaguar at about
3 month (top) and in adulthood (bottom); (b) Results of a 2D reaction diffusion system
with changed parameters to induce the transient from the upper to the lower pattern
(images from [83]).

Another example for self-organization is a reaction-diffusion system. The coupling of lo-
cal autocatalytic reactions and diffusion can lead to the formation of stationary spatio-
temporal patterns as proposed by Alan Turing [166]. Such processes are postulated to
cause for the pigmentation of animal coats during morphogenesis. The fur of a jaguar and
two different results of a reaction-diffusion system illustrate this similarity in Fig. 3.1.

Another interesting example is how ants find their way to food sources. Experiments
showed that only local interaction is required to make the ant colony choose the shortest
available food source [38]. Each ant leaves a pheromone trace on its way, whether it searches
for food or it returns to the nest. At crossings where several paths intersect they usually
choose the direction that is most strongly marked. Ants from nearby food sources will
return more quickly, such that those paths are more intensively marked - note the positive
feedback. This in turn increases the probability of more ants following the shorter paths,
such that the optimal path to the food sources self-organizes.

The above considered systems are composed of many small elements which locally interact
with each other and lead to the emergence of a global pattern. However, self-organization
can also be found in learning systems. For example, the structure in self-organizing
maps [76] is not externally specified but rather emerges in the course of learning. Also
here we find a mechanism of positive feedback, namely in the learning rule. For a given

34 3. HOMEOKINESIS FOR ROBOT CONTROL

stimulus, not only the best fitting neuron is identified and optimizes its receptive field, but
more importantly the neurons in its local neighborhood shift their receptive fields towards
the presented stimulus. This leads to a similarity between neighboring neurons such that a
more and more structural representation of the set of presented stimuli takes place which
eventually results in a topological map.

In all four systems we can identify a control parameter that changes the system behav-
ior qualitatively between an unorganized and self-organized state. The parameter in the
magnetization example is the temperature. When decreasing the temperature, a phase
transition from the non-magnetized to the magnetized state is provoked and the tempera-
ture regulates how large the regions of common magnetization are. In the reaction-diffusion
system there is the diffusion constant and the local reaction rate. In the case of the ants
the amount of pheromones an ant elicits can be considered as a control parameter. Since
the pheromones evaporate over the course of time, a too-weak marking of the tracks does
not lead to sufficient self-amplification such that no common path to the nearest food place
would emerge. In the example of the self-organizing map, the size of the neighborhood can
be considered as a control parameter, which changes the degree of structure in the map.
In all examples the control parameter changes the amount of feedback in the system.

The positive feedback gives rise to a bifurcating dynamics of the stable states of the system.
To get a more precise grasp of the matter let us consider a dynamical system with the one-
dimensional state x:

T =F(x,p), (3.1)

where F' : R x R — R is a smooth function, y is the control parameter, and & denotes the
time derivative as usual. This defines a particular dynamical system for a fixed p, which
has fixed points, i.e. points {z* | F/(z*) = 0}. The fixed points are characterized by their
stability which is quantified by the Jacobian (derivative) 2E(z*). In the vicinity of a stable
fixed point (%—i(a:*) < 0) the trajectories lead to the fixed point. The contrary is true if
98 (2*) > 0 and thus z* is an unstable fixed point. Small deviations from the z* lead to a
further divergence from the fixed point, see e.g. [157]. Changing the control parameter p
can change the position of the fixed point. At certain values u. the amount and the quality
of the fixed points change, which are called bifurcation points as illustrated in Fig. 3.2 for
a simple pitch-fork bifurcation. The displayed system at p < p. has a single stable fixed
point (z* = 0) where the system will eventually end up. If the control parameter is varied
from p < p. to > p. then small fluctuations, e. g. due to noise, will lead the system state

either to the positive or negative stable fixed point as indicated by the arrows in Fig. 3.2.

Besides the self-amplification there is also a need for a limiting force, e. g. a non-linearity,
because otherwise the system state would diverge. Consider for example # = px, which
has for p < 0 a stable fixed point z* = 0, but for x4 > 0 the state = diverges to +oo.
A limiting force is commonly achieved by a non-linearity in the system as we will see
later. Note that in natural systems this occurs automatically because of limited resources.
In summary, a non-linear system with bifurcating fixed points can exhibit spontaneous

3.2. SELF-ORGANIZATION 35

— | <
=
o
I— <0 | 1I—>\=<—)

Figure 3.2: Illustration of a pitch-fork bifurcation. Above a critical value pc of the
parameter ;. the stable fixed point z* = 0 is unstable (red line) and two stable branches
appear (blue line).

symmetry breaking and can show emergent phenomena when interacting with many other
such systems or with its environment. A single ant does not search for the closest food
source, but the interaction of many ants with the environment do. The same applies
to the other considered examples, in that only the concerted action of many individual
components leads to the global structuring. Note that the underlying dynamical system
describing the individual components does not change.

When considering adaptive and learning systems the change of organization is indispens-
able. The self-organizing map mentioned above is such a learning system and the organi-
zation of the system (as a whole) changes indeed. The term self-organizing is also used
in conjunction with the self-regulation of the control parameters of a dynamical system to
a critical point called self-organized criticality (SOC). SOC was introduced by Bak, Tang
and Wiesenfeld [9] and is a general concept to explain the observation of spatial and/or
temporal scale-invariant characteristic of many natural systems [100]. For example the size
of earthquakes, the size of homogeneously magnetized regions, the frequency of words in
a text, and the size of neural burst activities in the brain [16, 82] all exhibit a power law
statistics. These scale-invariant phenomenon are mostly observed at phase transitions and
require a precise tuning of the control parameters. A self-organized critical system self-
regulates the control parameters to the critical point. The term self-organization is used in
a different meaning here and we will refer to such systems as self-regulating. Nevertheless,
the bridge to our understanding of self-organization is that a system at the critical point
often exhibits self-organization phenomena.

To conclude, self-organization can occur on a system state level, forming global patterns
from local interactions if the control parameters are adjusted appropriately. In high di-
mensional systems with many control parameters it can be very useful if the dynamical
system self-regulates to this working regime. In the forthcoming robot control we will deal
with a self-regulating and self-organizing system. The configuration of control parameters
will self-regulate under the influence of the interaction of the robot with the external world

36 3. HOMEOKINESIS FOR ROBOT CONTROL

Motor values y,

World

= /\
? [Controller Unit K (z;)]
f=t+ l\/ Sensor values z;

Figure 3.3: Illustration of a robot in the sensorimotor loop.

such that behavioral patterns self-organize. In order to arrive at the point where we can
see that let us now specify our setup and the control system in detail.

3.3 Sensorimotor Loop Setup

In this work we consider systems, e.g. robots, in a closed sensorimotor loop with discrete
time. This means that at each instance of time t = 1,2, ... we obtain sensor values denoted
by x; € R™ which are processed by a control unit that in turn emits motor values denoted
by y: € R™. These motor values are executed by the actuators, which possibly effects the
environment and the hardware itself. New sensor values are read, now at time t + 1, and
the loop starts from the beginning. The important point is that the actions are a function
of the sensations. More precisely we denote the control function with K : R" — R™

yr = K(x) (3.2)

that maps the sensor values to motor values. We formally write the sensation of the robot
at time t as

xtJrl:W(yt7"'7y17xt7"'7x17t>7 (33)

where W is a usually unknown function representing the world. W maps all past motor
values and sensor values to sensor values of the next time step. Figure 3.3 shows an
illustration of the sensorimotor loop with a wheeled robot.

3.4 Dynamical Systems Formulation of the Sensorimo-
tor Loop

In this section we want to formulate the sensorimotor loop as a dynamical system and
illustrate some basic properties of a controller with a single neuron. Let us assume for
the moment that the world is known and is Markovian, i.e. without dependence on past
values. We can write

Tiy1 = W(yt, T, 75) . (3-4)

3.4. DYNAMICAL SYSTEMS FORMULATION OF THE SENSORIMOTOR LOOP 37

Based on the definitions (3.2), (3.4) we can express the sensorimotor loop in a closed form
as

1 = W(K (2), 24,). (3.5)

Since we want to restrict ourselves in this chapter to the one-dimensional case we have i.e.
m =mn = 1. Let the controller K be given by the following function

yy = K(z;) = tanh (cx; + h) , (3.6)

that represents a rate-based neuron with hyperbolic tangent activation function, the synap-
tic connection strength and the bias h. In general, the controller is a one-layer neural
network with a weight matrix. Let us use a simplified world that is defined as

T1 = Wy, v, t) = aye + st (3.7)

where ¢; is a zero mean noise process. In this example « is a hardware constant. The full
system equation reads

241 = atanh (cxy + h) + ;. (3.8)

This equation is very similar to the description of a single neuron with an excitatory self-
connection in an open-loop setup. The dynamics of such a neuron was investigated in
detail in [112, 113, 131]. Nevertheless, let us now find the fixed points of the dynamics and
analyze their parameter dependence. For this, we rewrite the equation (3.8) in terms of
the membrane potential

2z =cxs+h. (3.9)
By neglecting the noise we obtain
211 = rtanh(z) + h with r = ca . (3.10)

The fixed points are most easily determined graphically, as displayed in Fig. 3.4. However,
an analytical solution is also possible using the series expansion of tanh. We used the
expansion up to 12th order i.e. tanh(z) = z — 2 + 22 1120 | 6220 138020 4) (;13) Note
that this series converges slowly and the expansion to the 12th order is only accurate for
z € [=1.5,1.5]. It is also important to stop the series at a term with negative coefficient,

because otherwise the approximation erroneously produces more fixed points.

The solution of Eq. (3.10) is plotted as a bifurcation diagram for the parameters r and A in
Fig. 3.5 which shows a cusp bifurcation [2]. A cusp bifurcation usually appears in systems
that are topologically equivalent to

=01+ oz — 25, (3.11)

38 3. HOMEOKINESIS FOR ROBOT CONTROL

1.5 T T T T

1 _ et
el e |
0.5 F Z |

0.5 tanh(z
-l 1.2tanh(z) - 7
s . C 12tanh(2) 0.2 e
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 3.4: Graphical solution for the fixed points of z = r tanh(z) + h, Eq. (3.10)
for different values of r and h. For r = 0.5 (green line) we find only the fixed point
at z = 0 (stable). For r = 1.2 and h = 0 (blue line) there are two stable fixed points at
z £ 0.79 and the fixed point at 0 becomes unstable. If additionally h = 0.2 (black line),
only one fixed point remains at z ~ 1.2.

Writing Eq. (3.10) in terms of a differential equation
Z=rtanh(z)+h —z (3.12)

and using only the first two terms of the series expansion of hyperbolic tangent:

3
tanh(z) = 2 — % + 0>, (3.13)
we obtain
23
Z:r(z—g)—z+h, (3.14)

which is equivalent to Eq. (3.11) for 8; = 3h and 3, = 3(r — 1). It is important to note
that Eq. (3.14) has the same qualitative bifurcation behavior than Eq. (3.12).

Thus, we can draw upon the results obtained for such systems and give the equation for
the locations of the saddle-nodes for the approximated system as

2
h:i§e1+mwir>1. (3.15)

The saddle-nodes are also seen in Fig. 3.5 at the line where the red and green surface meet.

For better illustration Fig. 3.6 shows different sections of the fixed point structure. The
positions of the saddle notes, Eq. (3.15), show the typical cusp wedge, see Fig. 3.6(d). For
r < 1 the system has only one stable fixed point. We call the system subcritical, since the
fixed point is at small z and thus little activity occurs in the sensorimotor loop. For h =0
the system shows a pitchfork bifurcation point at » = 1, see Fig. 3.6(a). For h # 0 two

3.4. DYNAMICAL SYSTEMS FORMULATION OF THE SENSORIMOTOR LOOP

39

r

Figure 3.5: Bifurcation diagram for z = rtanh(z) + h, Eq. (3.10), as a surface.
Colors: blue, green are stable fixed points and red is unstable.

(a) (b)
VA zZ
15
1.0 1.0°
05 05:
r —
o5 05 1R 15 20 05|
~1.0 -10:
~15 ~15¢
(c)
VA

Figure 3.6: Bifurcation diagrams for z = rtanh(z) + h, Eq. (3.10). (a) Section at
h = 0; (b) Catastrophic bifurcation at h = —0.1; (c) The hysteresis in dependence of h
in the supercritical regime at r = 1.2, also indicated in Fig. 3.5. (d) Typical cusp wedge
showing the saddle nodes in dependence of r and h, cf. Eq. (3.15). The colored points are
correspondingly marked in (b,c). Colors: blue, green are stable fixed points and red
marks unstable fixed points.

40 3. HOMEOKINESIS FOR ROBOT CONTROL

branches emerge, see Fig. 3.6(b), and the bifurcation becomes catastrophic. Catastrophic
bifurcation means that the system state can undergo a drastic transition for small changes
in parameter values. To illustrate the consequences, Fig. 3.6(c) displays the bifurcation
diagram for the supercritical parameter » = 1.2 in dependence of h and shows a clear
hysteresis effect. This means that the system resides in its fixed point when the parameter
h is slowly decreased or increased until the fixed point disappears and the state jumps to
the fixed point with the opposite sign (dashed lines). When the parameter h is changed in
the other direction the same behavior is observed. Hence, for one parameter configuration
the system can be in two possible states and h can be used to force a transition.

To summarize, given a simple closed-loop system with a single nonlinear neuron we find
non-trivial fixed points and hysteresis depending on the control parameters. This type
of dynamics is found in many systems, e.g. in statistical mechanical models of magnets,
see [157]. For robot control it seems suitable to have r slightly above the bifurcation point
in order to have two stable fixed points which can be changed either by changing h or
by external influence. It is also important that the basins of attraction are large enough
to avoid noise induced switches. In the case of multiple sensors and motors we get, of
course, a much larger number of attractors and limit-cycles, which will be demonstrated
by application to robotic hardware later in this work.

3.5 Homeokinetic Principle and Time Loop Error

Given the properties of the control system described in the previous section, the challenge
is how to adapt the parameters r and h in order to obtain a certain type of behavior. As
discussed in the introduction of this chapter the homeokinesis describes a general principle
to self-regulate the parameters so that coordinated behavior emerges. We are not con-
cerned about a specific behavior but rather about a class of behaviors which are similarly
explorative, sensitive, and highly body and environment related. Thus far the description
of the system involves the unknown function W, cf. Eq. (3.5), and thereby one cannot in
general determine r. In order to obtain an entirely internal description of the sensorimotor
loop we introduce a so-called world model. The name already reflects the purpose: to be
a model for the processes that happen in the world perceivable by the sensors. In other
words, it is about predicting future sensor values based on present motor values. We make
the simplified ansatz and write formally M : R™ — R",

T = M(y,) (3.16)

where 7 is the predicted sensor value. The difference between the true sensor values and
the predicted ones is captured by the modeling error &1 = x411 — Z411 and we can write

Tip1 = P(e) + ega, (3.17)

3.5. HOMEOKINETIC PRINCIPLE AND TIME LOoOP ERROR 41

with
Y(z) = M (K (24)) (3.18)

where t(z;) is the internal representation of the sensorimotor loop. The modeling error
& captures the stochastic component of the sensorimotor loop which we expressed by ¢ in
the simple toy world, cf. Eq. (3.7), e.g. sensory noise and other influences that are not
captured by the internal model.

Now, we adapt the system parameter by using the closed dynamical description. In machine
learning the adaptation of parameters is often described by a gradient flow on an energy
surface also called error function, which will be denoted by E in the following. To decrease
the error function we use the gradient descent. Thus, any parameter of the system, say p,
is adapted by

Ap = —e— | (3.19)

where € is a learning rate. This adaptation will decrease the error at least to a local mini-
mum, assuming the learning rate was chosen sufficiently small. Hence, the main difficulty
in designing a controller is to construct an appropriate error function. One suggestive
concept is homeostasis. It was introduced by Cannon (1939) and later by Ashby [5] as a
general principle to explain the functionality of complex self-organizing biological systems
by the maintenance of physiological variables in certain intervals, e.g. the blood pressure,
the body temperature and so forth. In an abstract way we may similarly request a minimal
prediction error. In this case the error function reads

Epred _ |£|27 (320)

where ¢ is the prediction error, cf. Eq. (3.17). Without knowing the details about the
concise system, we can already analyze the coarse properties of the resulting behavior
by considering the minimum of EP™!. The system with minimal EP™? will prefer highly
predictable situations. These occur for instance when the robot does not move at all,
because the world model will quickly learn to predict the static sensor values. There is no
need for the robot to move because the system is stabilized over time and fluctuations are
suppressed. In the above considered setup there is another solution for infinitely large r,
which corresponds to a strong motor output, which is stable against perturbation. Even
though the robot would move in this case it is completely insensitive.

This behavior can also be explained by considering the stability to perturbations. The
system minimizing FP**! damps perturbations with progressing time. This leads to the
thought of inverting the time, because then we have a stabilization backwards in time,
which is also a destabilization forward in time. In terms of an error function the so-called
time-loop error (TLE) [44] or postdiction error was introduced, which we will derive in the
following. To achieve the stabilization backward in time we introduce the quantity v that

42 3. HOMEOKINESIS FOR ROBOT CONTROL

describes the necessary change to the sensor inputs to compensate for the prediction error.
Hence, v; is defined such that

V(@ + 1) = Topr + G (3.21)

and Z; = xz; + v; is called the virtual input. To calculate v it is necessary to invert the
sensorimotor loop function ¢. In practice this can be done with a Taylor expansion to the
first order

¢($t + Ut) = Zi’t+1 + 1/1;(1})?]13 + O(U?), (322)

where ¢/, denotes the derivative of ¢ with respect to x. In the multi-dimensional case the
derivative 1! is called Jacobian matrix and will be denoted by L. In the one-dimensional
case it is just a scalar number which is given by

o (x4)
L, = . 3.23
¢ 8£Ct ()
Using that, we obtain v in a linearized way as
gt—i—l
= 2T 3.24
Ut L, ()
and the time-loop error (TLE) as
E, = |v)* = & 2 : (3.25)
Ly

The minimization of the TLE might be phrased as the requirement to minimize the nec-
essary sensor value change that would have reduced the prediction error. The interesting
part of this error function is that it is composed of two terms, namely the prediction error
and the inverse Jacobian. The latter can be explained more intuitively as a measure of
sensitivity. Sensitivity describes how changes in sensory inputs influence the state of the
system over time and hence it is expressed by the derivative of the loop function. Since
the system is in a closed-loop setup, sensitivity leads to activity (non-zero motor values).
The modeling error £ is a measure of predictability because it captures the misfit between
true and predicted sensory information. Figure 3.7 depicts the information flow and the
setup of the homeokinetic control system.

Many self-organizing systems have two opposing forces that, in balance, bring the system
into the working regime, see Section 3.2. Here, the two forces are:

e the requirement for sensitivity, which results in a driving force and

e the nonlinearities of the controller together with the prediction error as a counter-
acting force.

3.6. LEARNING RULE OF THE HOMEOKINETIC CONTROLLER 43

‘ §iv1 = Tyl — Tpp1 “;
A
M (yy) Le;ming

t+1

Vd
t =

Motor values

K(xy) Lezyéing

Ut

Sensor values x;

Figure 3.7: Homeokinetic controller in the sensorimotor loop. The time-loop
error (TLE) is E = |v|? (Eq. (3.25)). w; is obtained by backpropagating the modeling
error & through .

Sensitivity and predictability are indeed opposing forces because predictability is best for
inactive behavior whereas high sensitivity leads to unpredictable behavior due to the am-
plification of small perturbations. In order to minimize the error function F, the prediction
error has to be small and the sensitivity of the sensorimotor loop large. Since both con-
tradict each other, the resulting robot behavior will be a compromise. Note that the
prediction error cannot be zero because we assume a certain sensory noise. Nevertheless,
if the prediction error is small (and the behavior is active) then the gradient, Eq. (3.19),
is smaller and thus a slower change in the system parameters takes place. In general, well
predictable and active behavior will persist for a longer time than inactive or unpredictable
behaviors.

3.6 Learning Rule of the Homeokinetic Controller

So far the world model was only introduced in an abstract manner. We will use the linear
function

M (y) = arye + b, (3.26)

where a; and b, are the parameter to be adapted. In the following, the time index on
all parameters will be omitted to avoid overly cluttered formulas. The adaptation of the
parameters can be performed by a supervised learning technique with training patterns
(y1—1, ;) obtained online. The term supervised learning is sometimes a bit misleading
since it does not imply an external teacher, but rather that desired outputs are available
for the given inputs. In our case the environment provides the desired values for the world
model. A standard learning rule for rate-based neural networks is the so-called delta-rule,

44 3. HOMEOKINESIS FOR ROBOT CONTROL

which is the gradient decent on the prediction error EP*d (Eq. (3.20)). We obtain the
following updates

Bt = |6 = (20— 2)° = (20— (ayemr +))°, (3:27)
aEpred

Aa = —¢ 9a = 62&%—1, (328)
aEpred

Ab = —¢ - €2¢; . (3.29)

More details on the calculation of such gradients are given later in Section 4.1.4. Now
we derive the update rules for the controller parameter in the one-dimensional case. The
multidimensional case and some extensions are discussed in the next chapter. For clarity,
we will omit the time index also on the state variables, which are taken at time t. From
now on the activation function of the controller neuron is denoted by

g(z) = tanh(z). (3.30)
Let us recall the system description Eqgs. (3.6, 3.18, 3.26)

K(x) = glex + h),
M(y) = ay +0,
Y(x) = M(K(x)) =a(g(cx+h)) +b.

We have

0
L= a—i = acyq, (3.31)
where ¢’ is taken at z = cx; + h. We can now calculate the gradient decent on the TLE
E = |5]? (Eq. (3.25)) as follows (note that we write g instead of g(z), and the same for ¢’

and ¢”)

OE £/ oL 10¢

A = — —_— = — 2— —_—— — —_— —
¢ “oc EL(L280+L86 ’
oL o "
— =ag +acg ',
Oc
23
%
dc ’
Ac= 65—2 (ag' + acg"x)
L3 '
We define a time-dependent learning rate ¢ = eaL%Qg’ > 0. Using tanh” = —2tanh tanh’

and y = g = tanh, we obtain the update rule for ¢ as

Ac =& (1 —2cyx) (3.32)

3.7. FIXED POINTS, HYSTERESIS, AND SELF-SWITCHING DYNAMICS 45

\A

>
yrvr"'!fo [
»

Figure 3.8: Evolution of z plotted in a hysteresis diagram depending on h. The
arrows indicate the direction of the h-dynamics. The state of the system oscillates between
the stable fixed points. The red line depicts the unstable fixed points.

and similarly for A as
Ah = & (—2cy) . (3.33)

Inspecting Eq. (3.32) one sees that it consists of a driving term, namely 1, and an anti-
hebbian term containing —yx, which will moderate the driving term. The update formula
for h, Eq. (3.33), reveals that h is driven in the opposite direction of y.

3.7 Fixed Points, Hysteresis, and Self-Switching Dy-
namics

Let us now consider again the toy world x;,1 = ay; +¢;, Eq. (3.7), and find the fixed points
of the learning dynamics. For simplicity, we assume the hardware constant @ = 1. The
world model M (y;) = ay; + by, Eq. (3.26), will have the parameters a = 1 and b = 0 after
successful learning. Setting the right side of Eq. (3.32) to zero gives

0=1—2ctanh(cz + h)z, (3.34)

which alone is not enough to get a value for c. However, x has its own fixed point dynamics
considered earlier (Eq. (3.8)) namely,

x = atanh(cx + h). (3.35)

For h = 0 we get! ¢ =~ 1.19 and x ~ £0.648 and therewith the membrane potential z =
cx + h is about £0.77. With a = 1 we find r = ¢, which is just above the bifurcation point,
see Fig. 3.6, where switches between the stable fixed points are possible with moderate
external perturbations or small changes in the value of h, see Fig. 3.6(c).

!There is another solution for ¢ < 0, which is neglected because it corresponds to a dynamics with
alternating sign of the motor values each time step.

46 3. HOMEOKINESIS FOR ROBOT CONTROL

1.2 T T T T T

1k . e

0.8
0.6

0.4
02 | f\\
0 rrrrdordhatbe ot L

o2 eV UU u ------ =
o6l o]

_08 ! ! ! ! !
0 10 20 30 40 20 60

7
S

QTR

Figure 3.9: State and parameter dynamics in the one-dimensional case. ¢
increases until it reaches its fixed point at 1.19. The bias h oscillates around zero and
causes the state x to jump between the positive and negative fixed points. See also Fig. 3.8.
Note that r = ac and z = cz + h. Parameter: ¢ € (—0.02,0.02), e = 1.

The dynamics of h is counteracting the dynamics of z because the terms ¢ and € in Eq. (3.33)
are positive and y = g(z) = tanh(cz + h) has the same sign as z. Therefore the following
relation holds

sgn(Ah) = —sgn(z). (3.36)

Note that the membrane potential z has essentially the same dynamics as x, since ¢ ~ 1.2
and h < 1 in the case considered here. Applying this to the hysteresis diagram for z reveals
that the parameter dynamics will cause the state dynamics to cycle along the hysteresis
between the two fixed points, as illustrated in Fig. 3.8.

The speed of parameter changes depends on the size of the error. If the prediction error
vanishes then the TLE is zero and no parameter change occur. However, in realistic
applications we assume a sensory noise, thus the prediction error is always non-zero. In
setups where not noise occurs one has to add additional noise to the sensor values.

3.8 System Dynamics in One Dimension

To illustrate this rather complicated interplay between state dynamics and parameter dy-
namics we plot a trace of the state x and the parameters ¢, h, and a for the one-dimensional
system with o = 1 obtained from computer simulation in Fig. 3.9. As expected from the
fixed point of the update dynamics, ¢ is seen to increase to a value of around 1.2. The
dynamics of h causes the state x to switch between the positive and negative fixed points
with the hysteresis clearly pronounced as predicted before, cf. Fig. 3.8. Note that the white
noise ¢ € (—0.02,0.02) added to the sensory input is the only cause of errors in this simple
setup.

3.8. SYSTEM DYNAMICS IN ONE DIMENSION 47

]..5 T T T T T T

1F A
[N
M P «1\‘& \““m‘, ﬁ\’«
0.5 . o™ | I W |
(™ \ I | . [

_15 ! ! ! !
2.5 T T T

15 | e N

0.5 ’ .

a C oo r h
_05 1 1 1 1

0 20 40 60 80 100 120

time

Figure 3.10: Simulation of the one-dimensional system with changing hardware
constant «. The world model parameter a and the controller parameter ¢ adapt to the
new situation after o was changed at second 25, 70, 95. The linear feedback strength r,
however, always recovers to the value around 1.2. The bias h oscillates and causes the
state x to jump between the positive and negative fixed points. The oscillation frequency
depends on the size of the prediction error, which essentially consists of the sensory noise
¢ multiplied by ¢ if a converged to . Parameter: ¢ € (—0.02,0.02), e = 1.

In order to illustrate the adaptivity and self-regulation to the working regime let us now
consider a changing world. In Fig. 3.10, the results of a simulation are displayed where
the hardware constant o (Eq. (3.7)) was drastically changed several times. The system
converges to its working regime after about 20sec. (Note that ¢ was initialized with 1.0).
At second 25 the hardware constant a was suddenly changed to 0.5. The world model a
slowly adapts to the new value and the controller parameter c reacts to the change by slowly
increasing until twice of the previous value. The adaptation is comparably slow because
the system becomes subcritical and therefore the error is only of the order of the noise.
The linear feedback strength r, however, is stabilized around 1.2 independent of the value
of «, as predicted by the theory. The hardware constant was again changed to o = 1 at
second 70, and to o = 1.5 after further 25sec. The working regime is again self-organized,
but now much quicker because the system is set to a supercritical state. In this state the
membrane potential z = cx + h (Eq. (3.9)) becomes large (in its absolute value) such that
the neuron is insensitive, i.e. the derivative of the activation function (Fig. 3.4) is small.
This region is called saturation region. The frequency of switches in the state dynamics

48 3. HOMEOKINESIS FOR ROBOT CONTROL

changes for different values of o because the additive noise ¢ is essentially multiplied by c,
which is larger for smaller «.

3.9 Summary

In this chapter we introduced the concept of homeokinesis in a mathematical way. First,
we formalized a dynamical system description of the sensorimotor dynamics in a closed-
loop setup. Already for the one-dimensional case with a hyperbolic tangent controller
neuron we found an interesting dynamics. The state, meaning the sensor value, under-
goes a pitchfork bifurcation when the feedback strength in the loop is sufficiently large.
Including the second parameter, namely the bias of the controller neuron we find a cusp-
bifurcation which brings about a hysteresis effect. To be able to define a learning rule for
an autonomous system, that is based on the dynamical properties of the dynamical system
a fully internal description is required. Hence, the unknown part of the loop, namely the
dynamics of the world, is substituted by an adaptive internal world model. With this we
have been able to formulate the time-loop error (TLE) which is an implementation of the
concept of homeokinesis. Therefore, the controller is called homeokinetic controller in the
following. We derived the parameters dynamics for the one-dimensional case and showed
the self-regulation to the working regime. This self-regulation is the result of two opposing
forces. On the one hand, there is the drive to increase the sensitivity of the loop, mean-
ing an increase of the Lyapunov exponent. This also implies that trivial fixed points like
complete inactivity will become unstable and the symmetry in the system will be broken
through noise-amplification. On the other hand, there is the requirement to maintain high
predictability of future sensations based on current actions. Since chaotic behavior cannot
be predicted this acts as a counterforce to the sensitivity. We also find that predictable
behavior persists longer than less predictable behavior. In total the system is governed by
the interplay between two dynamical systems. The first one is the dynamical system of
the sensor values, which is called the state dynamics. The second is the learning dynamics,
which changes the parameters of the first systems and is hence called parameter dynamics.
In general, a high adaptivity through fast parameter (synaptic) dynamics is used, such
that the world model and the controller parameters adapt quickly to new situations, which
was demonstrated using a simple toy example.

Chapter 4

Homeokinesis: Multidimensional,
Properties and Extensions

If everything seems under control,
you're not going fast enough.

Mario Andretti

A central point of this work is to analyze, improve and extend the homeokinetic con-
troller. First, we will consider the controller in multidimensional systems. This has been
studied before [44, 62|, but here we present a uniform view for systems with different num-
bers of sensors and motors and give a new formulation of the dynamics in motor space,
which is particularly suitable for systems with many sensors. Further, we propose essen-
tial improvement on the numerical robustness of the algorithm by introducing a couple of
regularizations. New robotic platforms that became available through the robot simulator
(cf. Section 2.1) enabled us to test the controller in various ways. Some of the robotic plat-
forms required extensions to the original homeokinetic controller in one way or the other,
which will be elaborated on as well. Often, however, we could reveal certain problems and
demonstrate their solution using simple toy systems allowing for an analytical presentation.
In this chapter we also investigate the properties and capabilities of the controller, which
are important for robotic applications.

While the first sections are largely mathematical, in later sections we support the theo-
retical results with experimental evidence, illustrated in plots and with video references.
Those who do not plan to follow the mathematical details, can proceed with Section 4.3.
In any case the nomenclature and the list of symbols are situated on pages vii and viii and
can serve as a useful reference.

50 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

4.1 Multi-dimensional Case and Motor Space

In chapter 3 the homeokinetic control algorithm based on the time-loop error (TLE) was
presented in the one-dimensional case. In this section, the generalization to the multi-
dimensional case will be provided. First we will give a general formulation of the sensori-
motor dynamics in sensor space, which is the same as in the one-dimensional case. Then
we will introduce a novel formulation of the dynamics in motor space. For both approaches
we derive the learning dynamics and discuss aspects of the parameter initialization.

4.1.1 The Time-Loop Error in Sensor Space

Essentially, we consider the same system as in Section 3.3 et seq. but with a multi-
dimensional state space. The system is considered again at discrete times t = 1,2,3, ...
with sensor values z; € R™ and motor values y; € R™ where n,m € NT. We have a
controller function K : R®™ — R™ that maps sensor values to motor values

Y = K(zt)) (41>
and an adaptive world model M : R" x R™ — R" that predicts new sensor values ¥
Trp1 = M(z4,y1) . (4.2)

In contrast to the one-dimensional formulation (Eq. (3.16)) we added the additional de-
pendence on x;, which will be used later. The prediction error reads

§t41 = Tpgp1 — Tyq - (4'3)
Now the dynamical system of the sensorimotor loop 9 : R" — R™ can be formulated as

V() = M(ze, K(24)), (4.4)
Tep1 = P(e) + eg,s (4.5)

which is a stochastic time discrete dynamical system. Note that K and M are also time
dependent due to adaptive parameters. At first we will calculate the terms in a general
manner, without considering specific implementation of the controller and model functions.

Analogously to the one-dimensional case, we define the postdiction error v, cf. Eq. (3.21),
as

Topr = V(@) + &1 = Y(x +vy). (4.6)

and we call ; = x; + v, the virtual input. To calculate v it is necessary to invert the
sensorimotor loop function . For that, we linearize the system by using the first order
Taylor expansion, i.e.

U(wy +vy) = V() + U (z)v, + O, (4.7)

4.1. MULTI-DIMENSIONAL CASE AND MOTOR SPACE 51

where v/ (x;) is the partial derivative of ¢ with respect to z. The derivative v, is given by
the Jacobian matrix with dimension n x n (all variables at time ¢)

()

A (4.8)

Thus we can write

Eov1 = Yhvy = Ly(x)v,. (4.9)
Using the derivatives of K and F' we can also write

Ly = M, (x, ye) I, () (4.10)

in matrix notation. The linear approximation is reasonable as long as we can assume that
the prediction error ¢ is small. If we assume that L is invertable, we obtain the input shift
v € R" and the TLE as

vy =L 6, (4.11)
Ey = |v)* = v v, = & (L)) - (4.12)

The structure of the error formula already reveals which kinds of behaviors are favored
when F is minimized. Since it is a product of the prediction error £ and the inverse of
the Jacobian matrix L, behaviors with low prediction error and high response strength on
all sensory channels are preferred. It also tells us that the eigenvalues of the Jacobian L
are increased when decreasing the error. The eigenvalues are a measure of the stability of
the system, and their logarithm is known as the local Lyapunov exponents. Hence, the
system is driven towards instability, which is counteracted by the non-linearities and by
the prediction error. A more detailed discussion of the general idea behind the TLE was
presented in Section 3.5.

4.1.2 The Time-Loop Error in Motor Space

So far, the dynamical system was defined in terms of sensory dynamics. To have an in-
vertable system we made the assumption that there are at least as many motors (m) as
sensors (n). However, when we think of a robot we realize that most likely the oppo-
site is the case, meaning m < n. This is called a bottleneck setup because the sensory
dynamics has a bottleneck at the motor values. As suggested by Ralf Der [40], it is ad-
vantageous to consider an alternative definition of the sensorimotor loop in motor space,
which circumvents the bottleneck and expresses the dynamics in terms of motor values.

The dynamical system in motor space is denoted by ¢ : R” x R™ — R™ and reads

(-1, Y1) = yr = K(M (241, Y1) + &) (4.13)

52 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

‘ §tr1 = Tey1 — Tey1 %— Ti+1

b

[M(Imyt)\ j
!

,,,,,,,,,,,,,,

i)
[K(it) Learréngj

w0 | (

[M<xt—la Yi-1) j

Yi—1 T Vi_q

Motor Space

Tt—1
Figure 4.1: Motor space scheme. The prediction error & is transformed into an error

in terms of motor values 7;, which is then used to obtain the input shift v;_; by inverting
the system, see Eq. (4.16).

Note that the system still depends on the sensor values. If the world model only depends
on the motor values this dependency can be eliminated. Instead of virtual sensor values
which we have derived in the sensor space setting, we will now create virtual motor values
denoted by v € R™. The idea is to first propagate the prediction error through the world
model to obtain a mismatch 17 € R™ in motor space, i.e.

M (e, yt) + &1 = M (24, Y2 + 1) -
Using again a linearized inverse we can find n explicitly as
N = le/+€t+17 (4.14)

where]\4;r denotes the pseudoinverse (discussed in the next section) of the derivative of
M (which is a matrix) with respect to y. From this we calculate the necessary change v in
motor values of the last time step that would minimize the mismatch 7 in analogy to the
calculations of v above (Eq. (4.6)), hence

Ye + 0 = O(Te—1, Ye—1) + M
= O(Te-1, Y1 + 11-1) .
An overview of the setup is given in Fig. 4.1. Analogously to Eq. (4.7) we linearize the

system and compute the Jacobian matrix, which is in motor space denoted by J € R™*™,
as

Ji = QS; = K;($t)M;(wt_1,yt_1). (4.15)

4.1. MULTI-DIMENSIONAL CASE AND MOTOR SPACE 53

If J is invertible we obtain v directly as

v = J; (4.16)
Hence, the formula for the error reads

Eo=v vy =n] (JJ]) e (4.17)

The consequence of the error minimization is essentially the same as in the sensor space.
One difference is that the prediction error at the motor values 7 contains the inverse of
the world model derivative (Eq. (4.14)). For a low error the world model has to have large
enough derivatives along all motor channels. The assumptions that are made for the size
of n become quickly invalid if the world model is degenerated.

Considering the dimensionality of J, we find that it is an m X m matrix, whereas in the
sensor space L has the dimensions n X n. Since we assumed that m < n, the matrix we
are to invert has smaller dimensions. Let us also consider the rank of J. For this we have
to consider the dimensionality of the derivatives K and M, (Eq. (4.15)). K} is an m X n
matrix and M; is an n X m matrix. While both multiplied give an m x m matrix, the
intermediate dimension (n) is higher. Additionally, the controller is updated to increase
the eigenvalues of J (Eq. (4.17)) so that it will depart from any singularity. Hence, J has
full rank if initialized correctly and is therefore invertible. For systems with m > n the
same holds for L in the sensor space dynamics.

4.1.3 Calculation Rules

Before we can look into the multidimensional version of the learning rules we have to
familiarize ourselves with some aspects of matrix calculus. The equations in this section
are labeled with (R1, R2, ...). In the later text we refer to them as “rule” with the
respective label.

First some simple relations that should serve as a reminder:
ATB=(BTA),
a'b=>b"a,
where the latter holds because the result is a scalar number.

A less common operation is the row-wise matrix and vector multiplication which we denote
with o. For the application to two vectors we define o : R™ x R™ — R™ as

(aob); = ab; (R1)

i.e. a componentwise multiplication. Additionally, we define the row-wise multiplication
of a matrix with a vector o : R™*" x R™ — R™*" as

54 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

Let us take a look at the properties of this operator. It is associative, commutative and dis-
tributive for vectors, Eq. (R1). With matrices, Eq. (R2), it is commutative and distributive
with respect to the vector, i.e.

Aob=boA,
(A+ B)ob=Aob+ Bob.

Interestingly the following equality holds as well:
(Aob)e = (Ac)ob. (R3)

The row-wise multiplication can also be written in terms of normal matrix multiplication
as
b, ifi=j,

(R4)

Aob= BA with B;; = {() otherwise

For the forthcoming calculations the differentiation of functions with respect to matrices
and vectors is required. These functions can most commonly be decomposed into a scalar
product of vectors like a'b. Fortunately, the calculations become much easier after some
rules are identified. The differentiation of a square norm

T

o . .0
a—X(I a=2a 8—X(1, (R5)

follows straight forward from the product rule.

If we assume now that a, b, ¢ are independent of X, the following equations hold:

O Ty T
a—XCL Xb=ab s (R6)
iaTg(Xb +¢)=(aog)b" with ¢’ = ¢'(Xb+¢). (R7)

0X

When a row-wise product is subject to differentiation then it behaves like a normal product,
meaning

0Aob 0A ob
ox —ax°ttAoax (R8)

which follows from Eq. (R4).

Finally the derivative of the inverse of a square matrix is given by

9A~! LO0A
T = A apAT (R9)

The derivation of the equations (R6 - R9) can be found in appendix A.1.

4.1. MULTI-DIMENSIONAL CASE AND MOTOR SPACE 55

Apart from the derivatives we also need the pseudoinverse of possibly rectangular or sin-
gular matrices. We use the Moore-Penrose inverse

AT =1im (ATA46T) " AT,

6—0

Usually A™ is obtained by singular value decomposition. However, since in our applications
we are only interested in approximate solutions it is sufficient to use a fixed, but small 9.
We use two forms of the pseudoinverse

A = (ATA+o1) AT and (R10)
At = AT (AAT 4 61) (R11)
The choice between Eq. (R10) and Eq. (R11) depends on the form of the matrix A. The

idea is that the matrix to invert has smaller dimensions, so if A has more columns than
rows then Eq. (R10) is used and vice versa.

4.1.4 Pseudo-linear Controller and Linear World Model

In the following we will derive the update rules for the case of a pseudo-linear controller
and a linear world model, as it was done in the one-dimensional case in Section 3.6.

The controller K : R — R™ is given by
K () = 9(Cay + b, (4.18)

where g : R™ — R™, ¢(z;) = tanh(z;). Note that we always mean componentwise ap-
plication, when scalar functions (written in lowercase letters) are applied to vectors. The
controller can be interpreted as a one-layer neural network in the rate-coding paradigm
with the synaptic weight matrix C' (m x n), the bias or offset vector h and the hyperbolic
activation function g. The motor values which are generated by the controller lie in the
interval (—1,1).

We use a linear world model, depending solely on the motor value, namely
M(zy, y) = Aye + 0, (4.19)

where A is an n X m weight matrix and b € R" is a bias or offset vector. For robotic appli-
cations this implies that the sensors are proprioceptive sensors, i.e. sensors that measure
internal quantities like joint angles or wheel velocities. Sensors without a direct motor-
depend value cannot be modeled with this approach. Later, in Section 4.8, we will consider
extended world models.

Let us first calculate the update rules for A and b. The error function is, as before, the
square norm of the prediction error & = x; — M (x4_1,y-1), i.e.

EPred = ¢T¢, . (4.20)

56 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

The update for the weight matrix A follows the gradient descent with a small damping as

1 o0&’ 1
SAA= - — A
€A 0A TA
0(xy — (Ay—1 +0)) 1 :

— _9¢T t ¢ S

= —2¢, oA 7_AA using rule (R5)

=25y, — TLA, using rule (R6). (4.21)

A

The damping is used to reduce initial components that are not influenced by the learning
dynamics. The timescale 74 is chosen to be very large, in order to minimize its perturbing
effect. For b we find similarly

T
Lo b 2&;. (4.22)
€A ob

4.1.5 Learning Dynamics in Sensor Space

Let us now derive the update rules for the controller parameters C' and h in sensor space.
By putting Eq. (4.18) and (4.19) into the system equation (4.5), we get:

i1 = A (9(Crxy + hy)) + by 4+ Epr (4.23)

For the sake of clarity we will omit the time index on all variables during the derivation. In
order to minimize the TLE (Eq. (4.12)) the parameters of the controller are to be adapted
according to the gradient descent, i.e.

SAC=-z5=—"75 (4.24)
1 OF
AR =G (4.25)

where €c is the learning rate of the controller, usually between 0.1 and 1 (fast synaptic
dynamics). Let us first calculate the Jacobian matrix L = M; K. The derivative of
M is simply given by the matrix A. The derivative of the controller also contains the
non-linearities, i.e.

K; — g/ o 07 (4.26)
where ¢’ = ¢/(Cz + h) and hence

L=A(g00C). (4.27)

4.1. MULTI-DIMENSIONAL CASE AND MOTOR SPACE 57

Recalling that v = L™1¢, the update for C'is

1 o —I— a .
;AC’ =-U 55Y using rule (R5)
-1
=T (%LC £+ L*%)
=L (—g—év + g—é) : using rule (R9) (4.28)

where the factor of 2 is absorbed by €-. The derivative of the prediction error can not be
calculated directly, because we have no information about the actual dependence of the
prediction error in the parameters of the controller. This will be the subject of Section 4.7.3.
So we are left with the first summand of Eq. (4.28). To shorten the equations and to obtain
the scalar product form for further application of calculation rules we introduce the vector
xE€R™as xy" =&¢T(LLT)™LA. Then

1 dg' o C
—AC =x" 4.2
- C=x Tol see (4.27)
oC 9¢)
_ T ro2 ~J
= (X (g ° 25 + 50 © C’) v) using rule (R8)
oC ag’)
_ T Y / T e
= (X aov) og +x ((CU) o OC) using rule (R3)
=(xv")og +x' ((Cv) o 2%) : using rule (R6)

As g = tanh it holds that ¢” = —2¢¢’. Recalling that ¢’ = ¢/(Cz+ h) we obtain the update
rule as:

1
—AC = (xv')og —2(xo(Cv)ogy)x'. using rule (R7) (4.29)
ec

Since the formulation of the error in Eq. (4.12) involves future observations we use the
error of the previous time step for the actual update, i.e.

1 OF,
—AC, = — .
o Ce 9C,

It is important to note that the only quickly varying variables are z, £ and therewith v, L, g
and ¢’. The parameters A, b, C, and h change at a slower timescale and are therefore always
taken at the current time step (no additional memory for the parameters is required). The
full update rule with time indices reads

1
;AC’,: = (XtvtT—l) 0gi 4 —2 (Xt o (Cyvy_q) o 9t—19£—1> 93:—1» (4.30)

58 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

where X;r — ft—r (LtilL;El)_l At and Vi1 = L;_llft

The update for h can be similarly calculated, thus

1 /
;Aht = -2 (Xt o (Cyvy_q) 0 gt_lgt_l)) (4.31)

4.1.6 Learning Dynamics in Motor Space

In this section the learning dynamics for the formulation of the sensorimotor dynamics in
motor space will be given. We use the pseudolinear controller, Eq. (4.18) and the linear
world model that is restricted to use motor values only, Eq. (4.19). As before, we perform a
gradient descent to adapt the parameters. However, the error is now defined by Eq. (4.17)
as

-1

EBe=vlwea=n (L)) e, (4.32)
with 7, = M;Jrftﬂ, see Eq. (4.14). The system equation is given by

Yo = K(M(z41,y1-1) + &) = g (C(Ays1 + b+ &) +h) . (4.33)
As before, the parameters (C, h, A, b) are taken at time ¢ because they are varying on
a slower timescale. Let us first calculate the Jacobian matrix. Using the derivatives of
M, = A and K, = g' o C (Eq. (4.26)) we find according to Eq. (4.15)

Jp = 9; o CiA; = 92 o Ry, (4-34)

with R, € R™*™ and R; = C}A;. This gives rise to a different formulation for the shift v
as

v =J; = R;* (gfl o 77t> =R ¢, using rule (R4) (4.35)
with ¢, = g/~ o7, Assembling the error function gives

—1 _
E,=v v =¢ R R, (4.36)

Now, let us compute the update of the controller matrix C'. Omitting the time indices
again we get:

-1
L ac= _9F _ —2yT@ = 2" (8R ¢+ 31%>

€c oC aC oC oC
4O0R 4, 0C .
_ o, Tp-1 1 Tp-1
=2v'R 8C'R (—2v'R ETek using rule (R9).

4.1. MULTI-DIMENSIONAL CASE AND MOTOR SPACE 59

We again define the vector x € R™, here as y = R 1Ty = (RRT)_IC and neglect the
factor of 2. Thus,

1 oC ¢

—AC =y —Av — "=

ec X o™ TN ac

T T 5’9/_1 on .
=x(Ar)' —x ———, using rule (R6).
oC
The derivative g—g, is zero, because we have no information of the dependence of the pre-
/—1

diction error on the controller parameters. Using B%C = —g'g/"% and ¢ = —2g;9, we
find

1 T 9 T

—AC = x(Av) =2 xo=on|a, (4.37)

€c g

where & denotes a componentwise division.
Now we need to assign the right time indices. According to Eq. (4.14) 1, depends on time
t + 1, and therefore the update rule has to be calculated using past inputs. As before,
we use the time ¢ for all parameters (A, b, C, h), because they vary on a slower timescale.

Hence,

1 _
g_AOt = thl(Atl/t,Q)T — 2 (th O gt 2 [e] ntl) xlz, (438)
C

Gi—s
with y;_1 = RtT_lut,Q.

The update for h can be similarly calculated,

1 .
~Ahy = -2 <Xt—1 022 m_l) . (4.39)
€c G2

4.1.7 Initialization

Following the paradigm of tabula-rasa initial conditions we initialize the controller param-
eters C' with small random values. However, one should check whether the sign of the
determinant of L (Eq. (4.27)), or J (Eq. (4.34)) is positive, and if not then reinitialize.
The reason is that the error £ diverges if L or J is singular. The sign of the determinant
defines the nature of the bifurcations taking place. If the determinant is negative, the
feed-back strength in the sensorimotor loop is driven towards large negative values. Once
beyond the flip bifurcation, the signs of the controller outputs are inverted in each time
step. This is difficult to realize for the robot and in general of questionable utility. In
some of the following examples the small random initialization is used. However, it has the

60 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

disadvantage of taking a long time for the system to reach its working regime. For most
experiments it is useful to initialize with a scaled unit matrix. Its scaling factor depends
on the assumed environmental feedback and is chosen such that the system is subcritical
at initialization time. The world model is also initialized with a unit matrix, as it adapts
quickly to the observed correspondence.

4.2 Regularization

This section is rather technical and mainly addresses readers who are planing to imple-
ment the algorithm. The calculation of the update terms involves a couple of numerically
unpleasant parts that need to be treated appropriately in order to obtain a stable algo-
rithm. The difficultly is that we have to solve the differential equation of the weight update
(C = —eg—g) in a discrete way without the possibility for a step width regulation or other
tricks. Moreover, the derivatives of the function E can be very large so that one should
either use a small step width or regularize. While a small step width would imply a short
cycle time, the sensorimotor loop cannot be driven too fast because 7) the robotic hard-
ware will only allow for a given computational power and i) inertial effects are too strong.
Remember that the executed actions need to show an effect in the sensations in order to
be conceivable by the world model. In real world applications the cycle time is also bound
by the typical signal traveling time. In most applications we use a update rate of 10 to
100 Hz. In fact, the solution we will pursue uses regularization in two places:

e the inversion of possibly singular matrices and

e the artifacts of linearization.

4.2.1 Pseudoinverse

The Moore-Penrose pseudoinverse was already introduced in Section 4.1.3. It is used to
calculate the inverse of the world model matrix since it is possibly rectangular. For reasons
of simplicity and performance, we use the formula Eq. (R10) namely

At = (ATA+061) AT

or its counterpart Eq. (R11), which are both approximations. The parameter ¢ determines
the degree of regularization. The eigenvalues of the inverse should be bounded from above
for stability reasons. In Fig. 4.2 the size of the largest eigenvalue)\fﬁ of the pseudoinverse
A% is plotted against the size of the smallest eigenvalue A2 of A for different &, which
follow the equation M" = A4 /(6 + (A4)?). Note that only real eigenvalues are considered.
For our applications we found a value of 6 = 0.001 to be appropriate.

4.2. REGULARIZATION 61

50 |, © o 6=001 ——]
::"'.:’_ J = 0.001
40 | 5 =0.0001 --ee]
P 5=0
L. 30 i
~ F
2 F % |
- |
0 1 R —

0 0.1 0.2 0.3 0.4 0.5
)\A
Figure 4.2: Influence of the regularization parameter § on the eigenvalues of
the approximated pseudoinverse.

In the update equations we also find the inverse of symmetric and positive definite matrices
such as LL". Here we perform a simpler regularization, with

1

(LLT)" = (LLT +o1)~ (4.40)

Since the eigenvalues of (LLT)" behave as 1/(AXL" + §), we use § = 0.05 to bound their
size similarly to above.

4.2.2 Disarm the Non-Linearities

Let us now consider the non-linearities. The only non-linearity in the system is the hy-
perbolic tangent activation function g(z) = tanh(z) with its derivatives and inverses. The
exact formulas for the first two derivatives are

Jd(z) =1-g%2), (4.41)

9"(2) = —29(2)g' (), (4.42)
as illustrated in Fig. 4.3(a). We must regularize the first derivative since it is used in the
denominator (e.g. Eq. (4.30) with Eq. (4.27)). The second derivative will be regularized

for consistency reasons. The most obvious way to regularize the first derivative is to add
a small constant ¢ > 0, similar to the Tikhonov regularization, such as

g5(2) =1+6 — ¢*(2). (4.43)

For our applications we will use § = 0.02. The second derivative is automatically regular-
ized when gj is used instead of ¢’ in Eq. (4.42). See Fig. 4.3(b) for both functions.

Using middle value theorem: A more elaborate regularization of the activation func-
tion (Eq. (4.41)) uses the middle value theorem. For this we have to consider where the

62 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

(a) (b)

1 T T T T T 1 T T T T
0.5 . 0.5 .
I e

A y i

05 | 92, __________ . 0.5 | g(,;; __________ .

_1 1 1 1 _1 1 1 1 1
-3 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3

Figure 4.3: Derivatives of hyperbolic tangent with regularized versions. (a) ac-
tivation function g(z) = tanh(z) and its first two derivatives; (b) simple regularized version
of the derivatives with § = 0.05 (chosen larger for visibility).

inverse of the derivative is used. It is used for the virtual inputs v, that are obtained by the
inversion of the linearized system using the Jacobian. Let us repeat the one-dimensional
case, see Egs. (3.24, 3.31),

1
acg'(z)

vy =L = et (4.44)

Remember that ¢ is the prediction error in sensor space and z is the membrane potential.
For simplicity we omit the time index and rewrite Eq. (4.44) with (= vc and n = i{ (Cis
now a quantity in terms of membrane potential and 7 is a quantity in motor space). The
resulting (linearized) relation is just

(= n. (4.45)

This linearization is not appropriate in the regions of high curvature of the activation
function (¢” in Fig. 4.3). To improve the inversion let us make use of the middle value
theorem, which says that if g is continuous and differentiable we can write

9(z) +n=g(z+¢) =g(2) +{4'(2) (4.46)

for a particular Z € [z,2 + ¢]. Thus, ¢ can be written as (= ¢/(Z)"'. While with
the correct Z the linearization would be exact, let us first consider a crude but efficient
approximation using Z &~ Z = z+n. This can be done since the derivative of the hyperbolic
tangent is in the interval (0, 1] and hence Z € [z, z + ¢]. An illustration of the approach is
given in Fig. 4.4.

4.2. REGULARIZATION 63

-3 -2 -1 0 1 2

Figure 4.4: Improved linearization of the activation function using middle value
theorem. We use z + 7 as a crude approximation for the correct middle value. Hence
¢ (z +n) (dotted green) is used instead of ¢'(z).

In order to avoid a too small derivative we additionally restrict Z to the interval [—3,3].
For that let us introduce the clipping function

a xT<a
T[a’b](iﬂ) =<b z>b (447)

x otherwise

that confines the argument to the interval [a,b]. In the formulas where ¢'(z) was used we

now write ¢'(Y(_33(Z)). Values outside the clipped interval are anyway far outside of the
working regime at z 4+ 0.77 (Section 3.7).

Using exact inverse: Instead of the approximation we can also perform an exact cal-
culation. Remember that we want to obtain ¢ in the form

¢=4'(zn)""n, (4.48)

where §'(z,m) = ¢'(Z) for the correct value of Z that satisfies Eq. (4.46). Using now
the inverse of the activation function (remember that g(z) = tanh(z)), namely the area
hyperbolic tangent, which is defined as

1 1+
artanh(x) = iln <1 — x) for |z] <1, (4.49)

we can calculate ¢ directly as
¢ = artanh(g(2) + 1) — 2, (4.50)

see Eq. (4.46). However, this is only valid as long as ¢g(z) + n € (—1,1), which we will
ensure using the clipping function (Eq. (4.47)). To obtain the correct §'(z,n) for Eq. (4.48)
we can simply use the difference quotient and obtain

Ny n
- _ 4.51
g'(zm) artanh(Y_o.999,0.009 (9(2) + 1)) — 2 0

All occurrences of ¢'(z) can be now substituted with ¢'(z,n).

64 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

4.2.3 Limiting Updates

Even after regularization the updates of the controller parameters can still be comparably
large. To avoid extreme changes in one iteration the updates are clipped to the interval
[—0.1,0.1] componentwise. Using the clipping function (Eq. (4.47)) the parameters update
for e.g. C' becomes

Cip1 = Ci + T0101(AC). (4.52)

This can safely be done because the clipping only happens in extreme cases. A large change
in parameters is nevertheless possible since a consistent change will act on several cycles.

4.2.4 Square Root and Logarithm of the Error

In order to limit the effect of extreme events and to make the algorithm more stable against
large prediction errors, we propose to use the square root or even the logarithm of the error
function. This can be simply implemented by applying a scalar factor to the normal update,
which we take to be ﬁﬁ in the square root case and ﬁ in the logarithmic case. The
empirically determined factors (1/10, 1/100) are used to achieve a similar learning rate as

in the case of the unmodified error for most applications.

4.3 Emergent Embodied Behavior —
The ROCKING STAMPER

After all the theoretical considerations let us turn to an example that demonstrates the
performance of the control system when applied to a physical body. What are the general
properties of the behavior we expect from the parameter dynamics described above? (cf.
Section 4.1.4 et seq.) One of the interesting phenomena observed is the active closing of
the sensorimotor loop such that the system is set in motion. Note again that we do not
specify a certain task nor provide domain-specific information. However, the generated
motion is not just random but comes about from the interplay between internal dynamics
and the interaction of the robot with its environment. Through the internal predictive
unit — the world model — the sensorimotor dynamics should settle into a continuous and
smooth trajectory.

In order to demonstrate this phenomenon we consider here a robotic system called ROCK-
ING STAMPER, consisting of a bowl-like object with a pole mounted on it that is driven by
two motors in orthogonal directions, see Section 2.2.3 for more details. The only sensors are
the two infrared sensors mounted at the front end of the trunk looking down and slightly
sideways. Their values x; and x5 depend on the distance to the ground or to the wall in a
highly nonlinear way. This is because the infrared sensor characteristics is not linear. Also,

4.3. EMERGENT EMBODIED BEHAVIOR — THE ROCKING STAMPER 65

(a)
25 F T . T T le —
2+ i
15 | i \J -
1w A i 1
05 Y \Vﬂ\/‘/\f w \j N\ l\/\ﬂ fU
0 \ U
0T 1 6 s 1w
time [sec] time [sec]

Figure 4.5: Behavior of the ROCKING STAMPER, from low initialization, rep-
resented by sensor readings and controller parameters. (a) Sensor values from
left (x1) and right (z2) infrared sensor. One can see clearly how the controller becomes
sensitive. (b) Controller parameter values C' over time. The sensitization is seen in the
increase of |Cjj|. The controller matrix is adapted to map the difference of both sensors
to servo 1 (y1) and the sum of both sensors to servo 2 (y2). The bias terms h; adapt such
as to compensate for the positive average of the sensor values.

the robots trunk tilts such that their angle to the ground varies. The controller outputs
(y) are the nominal positions of the servo motors which determine the angles of the pole
relative to the trunk.

After initialization, we at first have subcritical values for the feed-back strength of the
sensorimotor loop so that the influence of the noise is damped and we observe only small
fluctuations of the pole position. The learning dynamics increases the values of the con-
troller parameters C' and therefore the pole movements become stronger. Eventually the
bifurcation point (Fig. 3.6) is reached and an (irregular) oscillatory motion sets in. In
Fig. 4.5 the behavior, reflected by the sensor readings, and the parameter adaptation is
displayed.

These experiments are interesting in that, despite the extremely nonlinear and nondeter-
ministic behavior of the mechanical system, the controller learns to produce a motion which
probes the possibilities of its body in a more or less controlled manner. In Fig. 4.6 the
behavior in a later stage of the experiment is shown.

We observed a rocking (oscillatory) as well as a walking like behavior, the latter being
caused by a rotational mode of the pole with suitable phase shift. The emergence of these
modes is a direct consequence of the sensitization paradigm. In fact, it is in these modes
that the controller — based on the current sensor values — can evoke the maximum change
in the sensor values over the time step. The modes preferred by the physical systems,
e.g. oscillations at the eigenfrequencies, are excited for two reasons. First, the physical
system stabilizes against perturbations so that a better prediction is possible and second

66

4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

()

i ’ | I
| | n\‘\ J W ‘UM‘H \ ‘
|

w I H \ n\ fh" LAWY il »
i | f
wh M\'ﬂ‘ [\ﬂﬂi W\JN’ MUl ‘| u\\!q [u‘\‘J/\’H\,M‘/\\ﬂ\ \/\1 ”V\ wvlﬂm\”fd‘“/”\fﬁ

O H N Wk ot 3
T
p=

I VH\
“‘Ju ‘”

40 50 60 70 80 90 100 110
time [sec]

Figure 4.6: Environment sensitive behavior of the ROCKING STAMPER. (a) Sen-
sor values from left and right infrared sensor over time; (b) Parameter values over time.
Until second 64 we observed rocking (oscillatory) motion with a short break around second
48. Then the robot was manually set into a corner. The infrared sensors measure much
shorter distances since they see the walls instead of the ground. At second 88 the robot
was pulled back into free space. After each change of the environment the robot was calm
for a while (low sensor fluctuation) and probed the new environment, however, after a
short time the robot rocked again.

4.4. SWEEPING THROUGH THE BEHAVIOR SPACE 67

these modes comply with the requirement of high activity. We are tempted to say that
the controller develops a “feeling” for the body. In order to demonstrate the environment
related nature of the emerging behaviors we put the performing robot into a corner where
the infrared sensors measure the distance to the wall, which is much shorter and also has
a different characteristics, cf. Fig. 2.9 (p. 23). As a consequence the robot became calm
for a short time. Then the parameters adjusted to the new situation, so that again an
oscillatory behavior sets in, see Fig. 4.6. The same readaptation scenario occurred when
the robot was manually moved away from the corner.

In another experiment we showed that the robot always remains sensitive to its sensors,
which can be seen in [Video 1], where the infrared sensor values are changed by the hand
of the operator and an immediate reaction is observed. In [Video2|, we demonstrated
the quick adaptation to new situations by disabling a sensor or changing the sensor setup
during the experiment. In both cases the robot finds back to an active rocking behavior
after a short time. A nice sequence of locomotive behavior can be seen in the [Video 3.
The results presented in this section have been published in [43].

4.4 Sweeping Through the Behavior Space

In this section we want to investigate the explorative character of the homeokinetic con-
troller. For this we consider two different robots and study their behavior over time. Before
we look at the experiments we want to make a theoretical prediction by considering the
error function £ = ¢7 (LLT)_1§ again. Now the interesting part is the positive definite
matrix LLT. When we consider L € SO(n) (special orthogonal group) which means that
LT = L' and det L = 1, we find that LLT = I. The set of rotation matrices are also
element of SO(n) so that LLT is invariant to the rotation angle. A rotation matrix for L
causes a oscillation in the state space (sensor values) and the rotation angle decides about
the frequency of the oscillations. So in theory the oscillation frequency is not influenced
by the learning dynamics. This is not entirely true since L is not a perfect rotation matrix
because of non-linearities in the system. Additionally we have the dynamics of the bias h
to interfere, so that by way of the non-linearity the gradient descent can change the rota-
tion angle and very interesting phenomena arise. First we will consider a cylindrical robot
with two degrees of freedom. The robot exhibits a consequent frequency sweeping effect,
meaning that it accelerates and decelerates its rolling motion in a systematic manner. This
effect was first discovered by Naglaa Hamed [60] in a simplified toy world and verified by
the following experiment, published in [90]. Afterwards, we will consider the SPHERICAL
robot with a ball-shaped body and three degrees of freedom. There we observe a change
of rotation axes over time. Within the behavioral mode of rotating around one axis we
observe a frequency sweep, but less pronounced than in the case of the BARREL robot.

68 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

(b)

Figure 4.7: BARREL robot. (a) Schematic view of the robot; (b) Screenshot from a
simulation.

4.4.1 Application to the BARREL robot

Let us consider first the BARREL robot as depicted in Fig. 4.7. This robot has a cylin-
drically shaped body and two internal masses that can be moved along orthogonal axes.
The induced change of the center of gravity causes the robot to move. A more detailed
description of the robot is given in Section 2.2.4. The BARREL is a (simulated) physi-
cal object with strong inertia effects so that it is difficult, for instance, to drive it with
a pattern generator emitting a fixed frequency. In this case the BARREL will, for most
stimulation frequencies, exhibit a rather inhomogeneous behavior. However, if connected
to the homeokinetic controller with both the C' and A matrix initialized to a unit matrix,
the parameter dynamics will, after a short time, excite a rolling mode with the velocity
systematically increasing up to a maximum value. After this the velocity decreases to zero
and increases again with inverted sign, cf. [Video4].

In Fig. 4.8 one can see a part of the state and parameter dynamics of the system for
such a cycle. To improve stability we used the square root of the error as described in
Section 4.2.4. Note that the velocity of the robot can be directly read from the oscillations
of the sensor value x;, where high frequencies correspond to high velocities. The direction,
however, depends on the phase relation between x; and x5 (not shown). We can analyze
the matrix R during the course of time. The diagonal elements are Ry; ~ Rsy, whereas
R15 &~ —Ry;. This means that R has essentially the structure of a rotation matrix with a
scaling factor

. cos(#) —sin(f)
= (sin(@) cos(H)) ’ (4.53)

with different rotation angles 6 (see Fig. 4.8). The same holds for A and C. In the
experiment, the matrix R runs through the entire range of rotation angles 6 and hence
through the accessible velocities of the robot. The described sweeping behavior repeats

4.4. SWEEPING THROUGH THE BEHAVIOR SPACE

0.

(@3

1
0.8
0.6
0.4
0.2

0

-0.2
-0.4
-0.6
-0.8

(c)

_1 1 1 1 1 1
100 120 140 160 180 190 200

time [sec]

(b)

2+
150
1

T T
Ci1,Cao
12, Co1

S
15 b
2

0 ,
s | \/ :

100

time [sec]

(d)

120 140 160 180 190 200

25 T
2 F
1.5 ‘
1L
0.5

Ri1, Ryy
12, f2g
0

0

1Lk
-1.5

2L
-2.5

100

time [sec]

120 140 160 180 190 200

Figure 4.8: Behavior and parameter evolution for the BARREL robot in the

time interval 100 to 210 sec.

The region up to time 160 covers the period where

the robot actively slows down and then inverts its velocity and rolling backwards with
increasing speed. After that the speed eventually decreased again and so on. (a) sensor
value x1(t) and bias term hj(t) (for clarity only up to time 160); (b), (c) elements of
model matrix A and controller matrix C respectively; (d) Elements of matrix R = CA
and rotation angle #. Parameters: e = e4 = 0.05, V'E, update rate 25 Hz.

70 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

— Re(1)
L0 | Im(A5)
N AN/AN /\ A A=t

|
|
|
|
i \1\?6 2 \ 500 time
-05F {

-10¢

Figure 4.9: Eigenvalues of the controller matrix R = C'A during the entire
simulation run of the BARREL. The time is measured in seconds. The dashed vertical
lines mark the interval used in Fig. 4.8. Several periods of increasing and decreasing
oscillation frequency are observed.

more or less periodically as reflected by the eigenvalues of R depicted in Fig. 4.9. What do
the eigenvalues A\ tell us? They tell us in general how the system, i. e. the state, will evolve
in a qualitative manner. If they are outside of the unit circle (]Af| > 1) then the system
is unstable, otherwise the system is stable. However, we have to keep in mind that if we
consider R alone then we neglect the non-linearities which constrain the expansion. The
complex components of the eigenvalues found here indicate that the state of the system
performs an oscillation, which was expected from the form of R and is seen in Fig. 4.8(a).
The larger the complex components the larger the oscillation frequency. The complex parts
of the eigenvalues occur pairwise conjugated. At the zero-crossings of the complex parts
the robot is changing direction of motion. Note that the eigenvalues are ordered according
to their size, such that they swap roles at the zero-crossings.

One can understand the behavior of the robot partially by considering the term LLT in
the error function Eq. (4.12). When neglecting the non-linearities this becomes RR". If
R is a matrix of the SO(n) (special orthogonal) group, then RR" =T (unit matrix) which
is invariant against changes in the structure of R. In our case we find that R is a scaled
rotation matrix (Eq. (4.53)) so that we obtain RR" = u*I independent of §. The scaling
is required to compensate for the non-linearities. This, however, brings effects like phase
locking which are shortly discussed in Section 4.7.2. It is important to note that the
systematic sweeping is a consequence of the interplay between the state dynamics and the
learning dynamics, especially of the threshold values h; cf. [60] for further details.

4.4.2 Application to the SPHERICAL Robot

Let us now consider the SPHERICAL robot on a flat surface. The SPHERICAL robot is a
ball shaped robot equipped with three internal masses whose positions are controlled by
motors, see Section 2.2.5 for a detailed description. In this setup, the orientation sensors of

4.4. SWEEPING THROUGH THE BEHAVIOR SPACE 71

500 2000 1500 fime

(b)

bt imngn | REAS
500 ¢ 1000 = 1500 fime - IM(A§

0.0 Fresmrimsmatinerts ;,w."::,v'":"ﬂ'“:"‘,'\'
i

Figure 4.10: Eigenvalues of the controller matrices during a simulation of the
SPHERICAL robot on a flat surface. (a) Eigenvalues of the controller matrix C;
(b) Eigenvalues of the matrix R = C'A. The time is measured in seconds.

Parameters: ec = e4 = 0.3, VE, update rate 100 Hz.

the axes are used, providing three sensor values for each time step. The sensor prediction
causes high error values so that we use the square root of the error (Section 4.2.4) to
avoid divergence. For a wide range of learning rates the robot will basically perform a
continuous rolling motion. The rotation axis and the velocity of the robot are varied over
the course of time. However, the velocity does not change in the way it was observed at
the BARREL robot. Instead, the system changes the effective subspace of rotation, see also
the eigenvalues of the controller matrix C' and of the matrix R in Fig. 4.10.

If the SPHERICAL robot rolls around one of its internal axes, then the sensor value for this
axis has a little amplitude. Through the gyro effects, the position of the massive weight
on the rotation axis has little influence on the belonging sensor value (axis orientation).
Instead it will result in a curved movement. Since the reaction of the system to actions
(mass movements) along this axis is low, the sensitivity increasing mechanism will increase
synaptic weights to this motor neuron and will therefore lead to stronger actions along this
axis. This will eventually lead to a change in the rotation axis, as illustrated in Fig. 4.11
and demonstrated in [Video5|. As an indicating quantity we use the envelope of the sensor
values, see Fig. 4.11(a), which is the maximum sensor value reached in a certain sliding
window. Thus, they reflect the amplitude of the sensor value oscillations, which is in turn
low for a rotation around the respective axis. In the experiment the amplitude varies and
there are periods of low amplitude for each sensor, reflecting the changes in rotation axis.

72 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

(b) (c)
Vi
[@
g 0 x\ﬂh\\ g
E_ 20 #I-\""‘h T N
0 500 1000 time

Figure 4.11: Behavior of the SPHERICAL robot on flat surface. (a) Positive
envelop of the sensor values; (b) Velocity of the robot (smoothed); (c) Time evolution of
the power spectrum (spectral density) of the first sensor value (window size 20 sec, overlap
18sec). The time is given in seconds. The averaging for (a,b) was performed using a
sliding window of 5 sec.

In a second experiment, the robot uses six infrared-sensors which are mounted at the surface
of the hull at the intersection points with the internal axes. They point perpendicular to
the surface of the hull and measure the distance to a wall or to the ground, cf. Section 2.2.5.
In this setup we also use a slower update rate without the square root regularization and
obtain a qualitatively different behavior. The update dynamics also reaches high-frequency
regimes not visited otherwise. The reason is that the rate of change of the controller is
proportional to the prediction error. For large errors the controller changes so quickly that
the adaptive model cannot follow and thus new regimes are visited. However, after some
time these modes are left again. The behavior of the robot is illustrated in Fig. 4.12. To
get an idea about the excited oscillations, Fig. 4.12(a) shows a power spectrum® of the
sensor values over time. High frequency corresponds to high velocity. We can also observe
a breakdown in the eigenvalues when very high frequencies are reached and subsequent
recovery after some time. This phenomena will be the subject of discussion in the next
sections.

!The term ‘power spectrum’ is often used for the ‘power spectral density’, which is the square of the
Fourier transformed signal.

4.5. COGNITIVE DEPRIVATION AND INFORMATIVE ACTIONS 73

(a) (b)

100 =

. — Re(A
> 80 _ 15 ImR
& 60 o Jf 10 k
3 _— 05 RelAy

g Y % - | imi)
Y— 20 "-F_f-\,_....,.. _____ _R /\%
- &

1 1 - . . 1 = 05 - time |---- Im| A3

5000 5500 6000 6500 7000 time

Figure 4.12: Behavior of the SPHERICAL robot with IR-sensors. (a) Time evo-
lution of the power spectrum of the first sensor value (window size 20 sec, overlap 18sec).
One can see that a broad range of different frequencies (oscillations) are visited; (b) Eigen-
values of the matrix R. The time is given in seconds.

Parameters: ec = €4 = 0.01, update rate 25 Hz.

4.5 Cognitive Deprivation and Informative Actions

In this section we want to focus in particular on the consequences of the simultaneous
learning of the controller and the internal world model. In an engineering approach, the
world model would be trained by trying random actions. However, in high dimensional
systems such as complex robots or even humans it cannot be purely random, because of
the curse of dimensionality well known from statistical learning theory. It was realized to
be a serious problem in learning sensorimotor tasks already by Bernstein [19]. Moreover,
usually it is not even necessary to try all actions, but just those that contribute most to
the information gain of the model. In artificial intelligence these kinds of actions are called
epistemic actions, but the usage of the word is controversial such that we use the term
informative actions here. Our approach aims at the realization of self-exploration with
emergent informative actions instead of motor babbling.

The simultaneous learning of both, the controller and the model, faces among others the
so-called cognitive bootstrapping problem or learning paradox [18, 53, 152, 168|. Starting
at a “do nothing” and “know nothing” initialization of the controller and the world model
respectively, the robot does not have any information about the structure and dynamics of
its body, so that the world model has to learn this from scratch. However, in order to learn
effectively, the controls have to be informative so that the world model is provided with
the sensorimotor patterns necessary for its improvement. On the other hand, these actions
require a certain knowledge of the reactions of the body — information is acquired best by
informative actions. This bootstrapping situation in principle reappears on all stages of
the developmental process. We focus here, as before, on the low-level feedback loops to
achieve self-exploration of the physical properties of the body.

74 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

4.5.1 Model Learning — Problems and Challenges

Internal models are one of the prerequisites for a robot to become a cognitive system. In
the case of the human motor system, the role of internal models has been particularly
emphasized by the work of Wolpert [177, 178]. In the present work we are concerned with
forward models as given by Eq. (4.19), which are learnt in a supervised way on training
samples of the sensorimotor patterns (z;11,y;). Remember that the training patterns are
obtained from the interaction, such that no external supervisor is required. However, in
order to learn the relevant information about the world, the training instances must be
guaranteed to sufficiently sample not only the sensor space, but also the action space. In
practice it is complicated to ensure this sampling property. In case of on-line learning there
is always only a part of the state action space covered in a restricted interval of time. This
fact is widely recognized. We will demonstrate a possible solution to the bootstrapping
problem using the homeokinetic controller.

4.5.2 Deprivation Effect

Let us first look at how the world model is effected if the controller elicits limited actions.
For that we consider a controller restriction, which makes the actions exclude a certain
subspace. We will see that the world model gets a limited scope of accuracy and undergoes
therewith a process which we call cognitive deprivation. The term “cognitive” is used
because the world model reflects a cognitive ability of the robot, namely to perceive and
represent the reaction of the world in the current situation.

We consider for now only square matrices for A and C' (Egs. (4.19, 4.18)) and neglect the
bias terms h and b. Thus, the world model is given by

Zi't_|_1 = Ayt (454)
Let us assume that the controller matrix C™" has eigenvalues A\; > Xy > -+ > \,, with
corresponding normalized eigenvectors wu;, |u;| = 1. We formulate the restriction of the

controller by assuming), = § < 1, which implies |C™"y,,| = §. The controller reads
y = tanh (C™*"a,) . (4.55)

The restriction implies that y has only small components in the direction of w,, because
tanh(z) =~ z, for z < 1. Note that we do not assume a particular dynamics here, but we
expect the sensor value x to be bounded, e.g. to (—1,1).

First, we want to prove that the world model will also have this restriction after a certain
time of learning, meaning lim; ., |A;u,| < 1. The prediction error is again

§t = Typ1 — Typa - (4.56)

4.5. COGNITIVE DEPRIVATION AND INFORMATIVE ACTIONS 75

The world model is trained using standard gradient descent on the prediction error & &,
cf. Section 4.1.4. The update of A, see Eq. (4.21), is

08/ &
0A;

with e4 < 1. Note that AA;, = A;.1 — A, thus we can unfold the iteration and find for
A

AAt = —€4g

1 1
— _At = EAé'tyT — _At7 (457)
T T

1
Apr = Ao + ealyyy o=1-- (4.58)
Apir = Ago" + ealiyg o'+ ealoyl 0P+ +ealey) (4.59)

where 7 > 1 is a decay time constant. Let us now consider the projection of the world
model matrix onto the restricted direction, namely Auw,. Using Eq. (4.59) we can write

t
Agti ~ Aquno'™ + en Y &y uno (4.60)

=1

where we see that for large times the initial condition vanished:
t
tliinoo Ay, = Agun,ot™t +ey Zl &y unotTE (4.61)
0 =
Remember that the learning dynamics keeps the system away from the strongly nonlinear
regions, so that we can consider the linearized version y;, = C™%z,; and find that v, u, ~ §

for any time ¢. Using that 3 u, is a scalar number we can write the size of the projection
| Ayuy,| in the limit as

(4.62)

t
Z fi(Sat_i .
i=1

Let us now considering the upper bound of |A;u,|. If we now assume that |&;| < 1 (which
is reasonable), then we can use for the upper bound |¢;| = 1. Using the triangle inequality
we find

lim |Ayu,| = €a
t—>00

tliin | A, | < €40 = €40T. (4.63)

1—-0
From Eq. (4.63) we sce that the restriction is transferred to the model matrix A if § < 1.
In the upper calculation we made no assumptions about the concise dynamics of the sensor
values. Therewith we did not use that the modeling error ¢ is usually dependent on C'. To
get an impression of the real dynamics, the results of simulations with different robots are
displayed in Fig. 4.13. The size of the projection |Au,| approaches zero in an exponential
fashion. In all our numerical simulations of restricted systems we found that in the deprived

76 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

[T T T T T T T T

1k . i

L T~]

01 L ~~— Two-wheeled |Aup| —— 4

i ~~—_ Short Circuit|A up| |

0.01 ¢ T~ Snake [Awp| ----oeee E

[T~ Snake |Auq| |

0.001 | ”\\\ Snake unrestricted |A up| 3

0.0001 F)]

le-05 | ;

1e-06 L] : : ' .
0 100 200 300 400 500 600 700 800

time [sec]

Figure 4.13: Restriction of the world model matrix when a robot is driven
by a restricted controller plotted in logarithmic scale. Robots: TWOWHEELED —
2 Degrees of Freedom (DoF'), SHORT CIRCUIT — 10 DoF, SNAKE — 16 segments with 15 DoF.
For details on the robots, see Section 2.2. The eigenvector in the nullspace of the controller
matrix C'is denoted by u, and the eigenvector belonging to the largest eigenvalue of C'is u;.
There is a clear exponential decay for | A u,| expressing the deprivation of the world model,
except in the case the controller is not restricted (learned normally) (dotted blue). The
projections on the largest eigenvalue is not effected by the deprivation (dashed-dotted
cyan). Parameters: 7 = 5000,0 = A,, = 0.0001,e4 = 0.01.

situation the eigenvector of the smallest eigenvalue of A is identical to u,. In other words
the kernel of the controller matrix C' and of the world model A are identical. However, an
analytical proof seems so far impossible.

We have proven that in our setup a controller restriction leads to a deprivation of the world
model. More verbosely, if not all dimensions of the action space are covered from time to
time, then the world model will become inaccurate for the unvisited subspaces.

4.5.3 The Gradient Flow of the Parameters and Bootstrapping

We have demonstrated that, if the controller and therewith the actions y are restricted in
the sense that a certain subspace is excluded, the model will degenerate in that subspace
as well. This has the effect that the model might be completely wrong in this subspace.
The challenge for the controller is to find out this deprivation of the world model and to
issue motor commands which provide the world model with the sensor-action pairs (x,y)
necessary for learning the subspace neglected so far.

This is exactly what happens in our approach for the learning of the controller. It is
immediately seen when considering the gradient flow of the parameters. Remember that

5. COGNITIVE DEPRIVATION AND INFORMATIVE ACTIONS 77

the adaptation of the controller parameters is realized by the gradient descent of the error
function £ = ¢ (LLT)71¢ ie.

0
AC = —ec—F. 4.64
“ac (4.64)
The resulting dynamics of the parameters can, at a formal level, be argued to produce the
desired properties of the system. In fact, since LLT is symmetric we may decompose it as

= i)\fpza
=1

where P; = w;u, is the projector on the space of the eigenvector u; with \; being the

corresponding eigenvalue. Then (LLT) ' = Yo AIQP and

1 -
E=2 &6 (4.65)

with & = uj € is the projection of the model error into the subspace spanned by wu;. Both
A; and P; depend on the parameters C' of the controller in an intricate way. This expression
is only valid if the n x n matrix Q = LL" is of full rank, such that none of the); is equal
to zero. However, if we start with an L not of full rank, the parameter dynamics will drive
@ away from impending singularities due to the divergence of E for any \; — 0.

In more detail, writing Eq. (4.64) using Eq. (4.65) we get

- §GON 06
TIAC = Z(A e — & ao) (4.66)

and we see that the gradient flow is driven by two objectives. The first term in the sum
obviously tends to increase each of the eigenvalues)\; and hence increases the instability
in the corresponding subspace. The interesting point is in the pre-factor |§~l|2 /i, which
implies that the update is strong where); is small (high stability) and |&|? is large (high
modeling error component in this subspace). This can be interpreted as the tendency of
the parameter dynamics to produce in all directions the same degree of instability, with
subspaces of higher modeling error being destabilized even more strongly. Exploration
corresponds to a higher rate of noise amplification, such that one may say that subspaces,
which are less well represented by the model, are explored more intensively.

The second term in sum of Eq. (4.66) essentially counteracts the overshooting destabiliza-
tion of large error subspaces caused by the first term. The error components & not only
depend on the quality of the model, but depend also in an essential way on the behavior
of the robot. Hence, both the éz and eigenvalues)\; change with changing parameters.

78 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

For the restricted direction the factor of the first term of Eq. (4.66) is equal to |€,[2A;.
Because there is some noise in the world |,| is non-zero, so that we essentially have

1 o\,

Acrestr ~)
)\% O(restr

(4.67)

This implies that C™" will be changed such that \, increases drastically as long as the
model is wrong. This in turn gives rise to actions along u, (y'u, > 0) and training
examples for the world model are provided.

We may interpret this by saying that the controller tries more and more actions which
force the model to learn also the behavior in the unexplored subspace. Thus, these actions
are informative, because they feed the model with the necessary input-output pairs for
complete learning. The process is started by some fluctuation in the output of the controller
which may be called motor babbling. The exploration of the deprived subspace will start
with small actions and if the physical system is not restricted in the direction of the action
then the prediction errors will raise and larger explorative steps will be taken. If, however,
the controlled system is indeed restricted then the prediction errors will stay low and the
explorative actions will stay small. In this way physical restrictions are tolerated.

4.5.4 Application to the TWOWHEELED Robot

We are now going to evaluate the theory by controlling a robot. First, with a restricted
controller, such that motor commands within a subspace of the actuator space are gener-
ated. Then we activate the learning to observe the informative actions. For the experiment
we used the TWOWHEELED robot with two sensors and two motors as described in Sec-
tion 2.2.1. The restricted controller is given by

1 /1
C=C""=11p p+4I with p = E (1) (4.68)

and 0 = 0.001. The regularization with d1 is used to avoid a singularity of L, cf. Sec-
tion 4.1.7. C is a projector into the space spanned by p, hence both wheels receive the
same input and the robot will perform only straight forward and backward motion. The
factor 1.1 was used to compensate for the non-linearities introduced by the activation
function g. The controller is at the beginning of the experiment not subject to the learn-
ing dynamics, i.e. ¢¢ = 0. Thus, the bias h was modulated with a sine, so that the robot
drives straight forward and backward. As expected, we observe a degeneration of the world
model, see Fig. 4.14, which more or less converged to a singularity. Then the learning of the
controller was activated by setting ec = 0.01 and the activity in motor values goes down
for a short time, because the sine-modulation of the bias is absent and thus the feedback
strength is subcritical. A quick recovery of the parameters is observed and the robot starts
to move again. It is important to note that now the controller issues motor commands

4.5. COGNITIVE DEPRIVATION AND INFORMATIVE ACTIONS 79

which are mainly in the orthogonal subspace, meaning rotational. This is seen at the op-
posite sign of the two motor values y; and ys, see Fig. 4.14(c). This exploration continues
for about 40 sec until the world model is converged to the true relationship and therewith
both straight and rotational modes occur with about equal probability. The behavior and
the parameter dynamics is displayed in Fig. 4.14 and can be seen in [Video 6.

4.5.5 SPHERICAL Robot in a Basin

Let us now consider a more complicated robot, namely the SPHERICAL robot as introduced
in Section 2.2.5. The sensor values of the robot are the projections of the unit vectors in
the body coordinate system onto the z-axis of the world coordinate system. The motor
commands are the nominal position of the mass points on the inner axes. An interesting
effect is produced if we put the SPHERICAL robot into a circular basin as depicted in
Fig. 4.15. After an initial period the robot starts to roll back and forth in the basin. The
robot then performs rolling motions along a fixed height of the basin. The rolling motions
are well predictable by the model, since the sensor and motor values perform a harmonic
oscillation. If the robot is rolling at a fixed height then the dynamics remains constant,
such that these behaviors do not cause large prediction errors. As a consequence we find
that these modes are particularly stable and performed for a long time. In these periods
we observe a deprivation of the world model. In Fig. 4.16, the behavior of the robot is
characterized using the power spectrum of the sensor values and the smallest eigenvalue
of the world model. The initial phase is of the same nature as on the flat surface, i.e.
from time 0 — 80 one can see self-explorational modes, where different frequencies are
probed. Then a stable rotational mode emerged (time 80 — 110 and 140 — 170), which is
the circulation in the basin at a constant height, exhibited over many laps. The circulation
mode is seen in the power spectrum at the low frequency excitation. The high frequency
excitations are the movements of the axes of the robot due to the rolling and precession
motion. One can see that the value of the smallest eigenvalue \{' of A decreases while the
robot stays in one mode of behavior, cf. Fig. 4.16(a). The smallest eigenvalue is a measure
for the degeneracy of the world model, which deprives due to the restriction to a specific
mode of behavior. At time 115 the world model matrix is close to a singularity and the
bootstrapping of new actions sets in. This explorational period effectively explores the
orthogonal subspace such that the smallest eigenvalue of A is seen to increase rapidly. The
same starts again at time 140 and so forth.

In summary, the behavior of the SPHERICAL robot in the basin shows that the cognitive
deprivation effect can occur in a behaving robot without additional restrictions. We find
that the homeokinetic controller generates informative actions to improve the quality of
the world model.

80

4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

I

0.8
0.6
0.4

Y
!
i
p
Ww -' M
v M Y MM
uv, 3
A, fy M
; ;
l‘ [
I ‘\l
YT I
«v‘wy“va V”'} ﬁ\/‘w‘:“ﬁ“ AL
i
. u
L
H]
1

100 110 120 130 140 150 160 170
time [sec]

Figure 4.14: Cognitive deprivation and recovery in the case of a TWOWHEELED
robot. The first 103 sec the robot was controlled by a restricted controller Eq. (4.68) with
sine modulated h (oscillating forward /backward). After that the learning of the controller
was activated, marked with a dashed line. (a) Model matrix A and its smallest eigenvalue
A4 for the full time span. A degenerates until the controller is activated and stays more
or less a unit matrix after that; (b) Controller Matrix C with smallest eigenvalue AS’;
(c) Motor commands for left and right wheel yo, y1, and the steering value yo — y;. One
can clearly see that the robot performs rotational actions after the activation of learning.
Parameters: €., ¢, = 0.01, V'E, update rate 100 Hz.

4.5. COGNITIVE DEPRIVATION AND INFORMATIVE ACTIONS

Figure 4.15: SPHERICAL robot in a circular basin.

ime (a) (b) () (d)

150

200

100

50

Ny

L 50 L

' :
+ 0204060810 0 10 20 30 0 10 20 30 0 10 20 30
[A5 Frequency Frequency Frequency

Figure 4.16: Behavior of the SPHERICAL robot in a basin. Note that the time
axes are from bottom to top. (a): Time evolution of)\g‘, the smallest eigenvalue of the
model matrix A; (b-d): Time evolution of the power spectrum of the three sensor values
over time. Each row is the power spectrum of a certain time window. Consequent rows
are overlapping. Darker pixels stand for more energy. High frequency means here high
velocity of the robot. Parameters: ec = €4 = 0.1, update rate 50 Hz.

82 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

Time: 1925 Speed 1.0x Ipzrobots Simulator Martius. Der. Guttler

Figure 4.17: Planar SNAKE robot with 16 segments and 15 degrees of freedom.
In this experiment it is fixated at the first segment with a joint (white ring) and has no
friction with the ground.

4.5.6 Application to the Planar SNAKE Robot

Let us now consider the planar SNAKE robot as depicted in Fig. 4.17 with 16 segments
and 15 degrees of freedom. A more detailed description of the hardware can be found
in Section 2.2.7. We assume again an artificial controller restriction and investigate the
bootstrapping after the release of the restriction in this high-dimensional case. We provide
here a more general way to restrict the controller (compared to Section 4.5.4). We define
the direction of restriction by the vector p € R, with |[p| = 1, where P = pp' is the
projection matrix into the subspace to be avoided. The restriction of the controller is
achieved by

Cy=(1—-P)Cr1 +AC)I—P)" and h; = (I — P)(hy_1 + Ah). (4.69)

Essentially the restriction is enforced after the parameter update each time step. Hence,
the adaptation of parameters C' and h is still performed, but the components corresponding
to the p-space are projected away. In this example we use p; = ﬁ(—l)i which corresponds
to a zigzag posture of the robot. In Fig. 4.18 the evolution of |C p| and | A p| are displayed,
which are the lengths of the projections of C' and A into the space of P. After 120sec
the restriction of the controller was switched on by constantly applying Eq. (4.69). One
can see an exponential decay of the world model in the direction of p. At second 360 the
restriction was released again and the controller matrix C' almost instantaneously recovers
(shows a large projection |Cp| into the deprived space). The effectiveness of thereafter
elicited actions is shown by the rapid increase of the projections of the model matrix A.

4.6. LOW-DIMENSIONAL MODES 83

ICpl

0 100 200 300 400 500 600 700 800
time [sec]
Figure 4.18: Cognitive deprivation and bootstrapping with the SNAKE robot. p
is a vector pointing in the deprived direction. After 120 sec the restriction of the controller

was switched on and at second 360 the restriction was released again.
Parameters: ec = e4 = 0.01, V'E, update rate 100 Hz.

4.5.7 Summary

If internal models shall be learned in high dimensional systems then one faces the curse
of dimensionality. The random sampling of actions is not very promising in such a setup.
Additionally, in the closed-loop setup with simultaneous learning of world model and con-
troller it is well possible that substantial subspaces in the sensor-action space are not
visited. We have shown analytically that a restricted controller leads to a deprived world
model. However, we found that the homeokinetic approach provides a natural solution
for this problem. The controller generates explicitly motor commands that are directed
into the unknown regions of the sensor-action space. This has been clearly demonstrated
in several experiments, where a restriction was manually added, even in high-dimensional
systems with 15 DOF. In all cases the system recovered and ensured correct world model
learning. In an experiment with the SPHERICAL robot in a basin, where long-lasting stable
behaviors are observed, we could show that the deprivation and recovery actually happens
under normal conditions. We understand this as early robot development, i.e. the first
step of a self-organized development towards ever-increasing behavioral competencies and
understanding of the behavior of the body in its environment. We published the results
in [45].

4.6 Low-Dimensional Modes

In this section we report on some phenomenological findings in high-dimensional systems
with large inertia. Using, for instance, the SNAKE robot as in Section 4.5.6, we observe
that after some time the robot shows only a few, but highly coordinated behaviors. For
example, the robot is shaped like a crescent and moves such that the curvature alternates.
The behavior requires all joints to behave in a similar manner — in a collective way. More

84 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

12¢
10¢
0.8F

ACov(x) 06¢
04rF ’/\ \
02/= jV\/y'\/\f / \\JJ w; time
60 80 100 120 [min]

Figure 4.19: Eigenvalues of the covariance matrix of the SNAKE’s sensor values.
These are the variances along all 15 principal components of the sensor data of 5 minute
sliding windows. From 30 min on the number of effective principal components decreases,
so that later only one to three principal components are sufficient to describe most of the
data. Parameters: ec = e4 = 0.01, V'E, update rate 100 Hz.

insights into the behavior, especially into the dimensionality, can be obtained with the
help of the principal components analysis (PCA) of the sensor values. The sensor values
measure the joint angles, such that they are a description of the body posture. The
PCA is a method to transform the coordinate system of a given dataset such that the
first coordinate accounts for as much variance as possible and each succeeding component
accounts for as much of the remaining variance as possible. The transformation can be
obtained with the covariance matrix of the data. The eigenvalues of this matrix describe
the variance of the data along the belonging principal component which is given by the
belonging eigenvector. There are basically two quantities that we can extract from this.
First we obtain the number of principal components that are required to describe most of
the behavior in a certain time window. This is done by determining how many eigenvalues
are well above zero. The second quantity we can derive from the PCA are the principal
components in terms of sensor-value vectors, which are given by the eigenvectors of the
covariance matrix.

We conducted an experiment with the planar SNAKE robot with 16 segments (cf. Sec-
tion 2.2.7) that last over 2 hours simulated time. For the data obtained from the experi-
ment we find that after some time very few principal components are active, see Fig. 4.19.
This verifies the low-dimensional character of the observed behavior. We know that the
sensor values lie in the space spanned by the eigenvectors with non-zero corresponding
eigenvalues. This also means that when only one principal component is active (only one
eigenvalue is non-zero), the sensor value vectors point in the direction of this principal
component (eigenvector). Figure 4.20 shows the eigenvalues of the covariance matrix
(as in Fig. 4.19) but here in a normalized way together with the eigenvectors of the two
largest eigenvalues for successive windows of 1 minute. In the first 30 min a large num-
ber of principal components are used, represented by the high values in the corresponding
columns in Fig. 4.20(a). Later only one or two main principal components dominate. Fig-
ures 4.20(b),(c) display these two principal components scaled by their relative variance.

4.6. LOW-DIMENSIONAL MODES 85

1 F - . - l |
5r ' . L
(a) 10} : 05
15; . | | | |
1 25 50 75 100 125 0

al

1: = ek '1.. = = 1 04
(b) 10—.I'Ir "-'- “ "'r' - WM“HH .
s e a°- I 02

17 mEEE] "
5t _IIIIE JI-F-.(- |E ':-l =5 i ..I
(c) 10p .|.I-.:.|-II I:h.l.'-:. ' | - L . 5% i s I I_O-2
157 | L] LR -II - [| = L]] o
‘ ‘ ‘ ‘ 0.4
1 25 50 75 100 125
A B
(d) e i RS PEE. EEEEE 100
1 5 10 15 1 5 10 15

Figure 4.20: Principal components of the SNAKE’s sensor values over time. The
time is given in minutes. The covariance matrices have been computed on the sensor data
from one minute each. (a) Each column shows the normalized vector of eigenvalues of the
covariance matrix which is the variance along the principal components of 15 dimensional
sensor values during one minute. X°V(®) /|XC¥(@)|. (b) Each column shows the eigenvector

u! corresponding to the largest eigenvalue Acov(x) (first row of (a)). The vector is scaled

with the value of eigenvalue, meaning u Ov(x))\cov(x /|XCov(@)| - Alternative interpretation:
first principal component in sensor space scaled with the relative variance along this com-
ponent. (c) The second eigenvector scaled with the corresponding normalized eigenvalue
(second row in (a)); (d) Enlarged two columns of (b) at min 95 (A) and 100 (B).

After minute 36 a drastic change in the distribution of variances (a) occurs and only one
or two principal components dominate. Later two principal components are alternately
active, marked with A and B. These correspond to the eigenfunctions of the underlying
physical system, meaning a half waveform or full waveform, see also Fig. 4.21.

A A A B
Figure 4.21: Main modes of the SNAKE robot The labels A and B correspond to
the two principal components plotted in Fig. 4.20

86 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

0 10 20 30 40 10 20 30 40
Figure 4.22: The eigenvalues of the controller and world model for the first
45 min. The time is given in minutes and the curves show sliding averages of one minute
intervals. (a-c) Eigenvalues of controller matrix C; (d-f) Eigenvalues of world model
matrix A; (a,d) Absolute values; (b,e) Real components; (c,f) Imaginary components,
(f) only shows a subset for clarity.

The crucial point is at minute 29, when the largest eigenvalue of C' flips its sign (b).
There are also two eigenvalues with large imaginary components, which correspond to a
fast oscillation. At the same time the matrix A starts to degenerate, because the body
cannot follow such high frequencies.

The vectors are preprocessed to have a positive sign in the first few components?, in order
to increase clarity. It is striking that after 50 min the first and the second principal com-
ponent have essentially one of two forms, marked at minute 95 and 100, as displayed in
Fig. 4.20(d). Theses modes correspond to a half or a full period of a wave form in terms
of sensor values, meaning that the SNAKE is either shaped like a crescent or an ‘S’ with
different curvature and sign, see Fig. 4.21. This corresponds to the natural modes of the
physical system which we call “Eigensnakes”, cf. [Video 7].

The reader may wonder, because the reduction to a few low-dimensional modes is a contra-
diction to the previously discussed bootstrapping phenomenon. Remember that we found
that all eigenvalues of the system’s Jacobian matrix are kept away from zero, such that
high-dimensional modes should occur. To understand this phenomenon, let us have a
look at the underlying dynamics in more detail. As a quantitative measure we plot the
eigenvalues of the controller matrix C' and the world model matrix A for the first 45 min in

2The eigenvector is multiplied with —1 if the sum of the first 4 components is negative.

4.6. LOW-DIMENSIONAL MODES

87

(a) (b)
A
12,

1.0¢
0.8¢
0.6Ff |

04¢ :
0.2¢ |
L

|
_op. 20 40 60 80 100 120 _

(c) (d)

~0.2"
—04°
~06"

! 20 40 60 80 100 120

Figure 4.23: The eigenvalues of the linearized system matrix R. The time is given
in minutes and the curves show sliding averages of 5min intervals. (a) Absolute values;
(b) Real components; (c) Imaginary components, for clarity only a subset is plotted.
(d) Value of the error function E.

The eigenvalues of R start to decrease after minute 35 and the error increases rapidly.
However, the imaginary parts of the eigenvalues are much lower than those of C and A,
see Fig. 4.22.

88 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

Fig. 4.22. During the first 25 min we observe a variety of behaviors and all eigenvalues are
close to one. Then a period of high frequency oscillations follows, which is also reflected by
the raising of the imaginary part of C', Fig. 4.22(c). During this time the value of the TLE
raises to a large value. The step width of the gradient descent becomes too large so that
large updates occur. After 30 min the largest eigenvalues of C' actually gets a negative sign
on the real component. The physical body is not capable of following such high frequency
oscillations because of strong inertial effects. This causes the smaller eigenvalues of the
world model to drop to zero, Fig. 4.22(d). Now, the dynamics follows this pattern and
more and more eigenvalues get significant nonzero imaginary values and the world model
degenerates in many dimensions.

Let us have a look at the system matrix R = C'A, which neglects the non-linearities.
However, its eigenvalues are very similar to the ones of L, as long as the system is away from
the saturation region of the activation function (Section 3.8). In Fig. 4.23 the evolution
of the eigenvalues over two hours is plotted. Also here, we see a drop in the real and
absolute values between minutes 30 and 40. After that, a rather slow but steady decrease
is observed. Essentially only about half of the eigenvalues remain clearly above zero in
their real part. Interestingly, the imaginary parts of the eigenvalues are comparably small,
much smaller than the ones of A and C'. This tells us, again that the physical system
cannot perform fast oscillations and the world model acts like an inverse transformation
on the action of the controller. A striking figure is given by the value of the error function
E, which raises by orders of magnitude at the time of the breakdown, see Fig. 4.23(d).

What is the reason for this dynamics and why does not the bootstrapping mechanism coun-
teract this development? There are actually three reasons. The first one is the oversimpli-
fication of the world model, which cannot account for inertia and an action independent
dynamics in the environment. This leads to high prediction error in the current setup,
which in turn leads to instabilities of the gradient descent. To overcome this problem we
will elaborate on a world model extension later (Section 4.8).

The second reason is similar to the first one but applies to the controller. Currently the
controller only receives joint positions but no velocities or similar quantities. Thus, in
the current example the problems occur when the SNAKE starts to swing in a resonance
frequency and the controller neurons reach their saturation region. This over-excitation
leads the controller to damp these oscillations, which is, however, most easily achieved with
negative feed back. This in turn leads to negative eigenvalues of the C' matrix. In a later
experiment in Section 4.8.7 we show that this problem can be circumvented using a new
sensor setup and an advanced world model.

The third reason can be found again in the form of the error function itself. Actually, a
similar situation was discussed in Section 4.4, where the invariance of the error function
to the frequency of sensorimotor oscillations was elaborated. Here, we will make a more
general statement and consider again the error function £ = ¢" (LLT)_lf (Eq. (4.12)),
where L = A(g'oC). The matrix Q = LL" is of special interest here, because it is a positive

4.7. CONTROLLER EXTENSIONS 89

definite matrix with only real eigenvalues. If A\ are the (possibly complex) eigenvalues of
L then () has eigenvalues /\Z-Q =\ ()\ZL)* = |/\iL|2. The point is that the imaginary parts of
the A* only contribute to the size of the eigenvalues A?, however the oscillatory character
is hidden. Thus, the parameter dynamics is not regulating the frequencies directly. Let A;
be a complex eigenvalue on the unit circle of the Euler plane. We realize that the sign of
the real part can change, even though the absolute value stays constant. Therefore, the
dynamics does not need to cross the singularity at |\;| = 0, cf. Section 4.5.3, in order reach
the second solution of the fixed point equation of the learning dynamics with negative
feedback strengths, which we neglected before as the non-physical solution. To understand
what happens in this case, let us consider the one-dimensional case again. In Section 3.7
we calculated the fixed point for positive values of the controller parameters ¢. Note that
¢ = A% in the one-dimensional case. For a negative value of ¢ which occurs here, the motor
values have alternating sign each time step. With a minimal inertia the robot cannot follow
the oscillations and the sensor values will decrease to zero (assuming zero centered joint
sensors for example). The fixed point dynamics for ¢ is as before (cf. Eq. (3.34))

0=1—2ctanh(cx + h)z.

For x — 0 and ¢ < 0 we find ¢ — —o0.

To avoid this situation we propose a mechanism to reduce the oscillation frequency by
minimize the derivative of the motor values, elaborated in Section 4.7.2.

4.7 Controller Extensions

The self-organizing robot behavior that we have seen so far was a product of the interplay
between the physical interaction of the robot and the parameter dynamics, which was so
far solely driven by the gradient descent on the time-loop error (TLE). Ultimately we aim
to guide the self-organization towards desired behaviors. However, for that am appropriate
way to influence the parameter dynamics is required. Desired behaviors or constraints to
the parameter dynamics can be expressed in terms of an energy function or error function.
It seems obvious to combine the TLE and additional constraints into a single error function.
This will be the subject of the following section. After that we will apply this method to
reduce the frequency of oscillations and to integrate a model of the prediction error.

4.7.1 Integration of Additional Error Functions

In this section we want to set the foundation for the combination of additional error func-
tions with the TLE. This enables to impose additional constraints to the system for example
to avoid high-frequency oscillations or to achieve specific behaviors. The combination of
self-organization and specific constraints is called guided self-organization [130, 136]. Here,

90 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

we investigate two ways to generally integrate additional error functions into our system
and apply it afterwards to the reduction of high-frequency oscillations. In Chapter 5 we
will make use of the guided self-organization to obtain specific behaviors.

The complicated part in the combination of the self-organizing process and the additional
constraints is how to balance the two, because the emergent properties of self-organizing
systems are quickly lost if the appropriate working regime is left. Depending on the sys-
tem the working regime can be confined to a very small parameters regime, e.g. in the
case of the aligned magnetized regions in a ferromagnet at the critical temperature (see
Section 3.2). In systems that self-regulate the parameters to the appropriate regime, e. g.
in self-organized critical systems or in the homeokinetic controller, the integration of con-
straints is more easy. Nevertheless, it is important to balance the impact of the additional
drives and of the self-regulating drives. This is especially important in the case when the
additional drives contradict to the self-regulation mechanisms. Remember, the balanced
compromise between sensitivity and predictability kept by the homeokinetic controller. If
now a constraint leads to a low sensitivity then it can be less fulfilled compared to a com-
patible constraint. With the appropriate mechanisms there is hope to guide the system
gently into a desired direction without loosing the benefits of a self-organizing dynamics.

The most simple approach to combine the TLE and an additional error function would
be the plain sum of both functions. This, however, is likely to bring the system out of
balance. The reason is that the size of the TLE varies over orders of magnitude, whereas
the additional terms are often within one order of magnitude. The decisive quantity is
of course the steepness of the gradient rather than the size of the error itself. However,
large variations in size also imply a steeper gradient. At a first glance this size difference
seems to be no problem, because the TLE could bring the system back into balance when
its term dominates. But this is exactly the problem that there are periods when one term
dominates the dynamics and periods when the other term dominates. In other words, we
cannot find a fixed factor for the additional error function that would cause it to show an
effect in the average situation without destroying the self-organization.

Our first proposal is to scale the influence of the additional term with the size of the TLE.
Let us call the additional error function F*, with the superscript a standing for additional.
Note that later we will use other superscripts for particular additional error terms. More
formally, we first consider the update for the controller parameters caused by the additional
error alone, i.e.

oE*
AC* = — : 4.70
The overall update with the scaled additional term reads now (cf. Eq. (4.24) for comparison)
1 0FE
—AC = —— + 7, EAC?, 4.71
e ac 7 (4.71)

where the factor 7, defines the strength of the additional term with respect to the TLE
(E). The entire update size is still controlled by the learning rate ec.

4.7. CONTROLLER EXTENSIONS 91

This method enables the integration of the additional error quantity without destroying the
self-organization process, given a conveniently chosen value of 7,. However, this approach
has the disadvantage that the average size of the TLE (F) is unknown, such that the size
of the factor v, is very application dependent. Furthermore, the influence of E* on the
behavior is very little if the TLE is small. Remember that the additional error specifies
some kind of goal, which may not be sufficiently followed in this way. A solution would be
the normalization of E in the scaling factor, but this is complicated to achieve online.

Our second solution to the integration was obtained from the idea to combine the additional
error directly with the prediction error. The starting point was an additional error function
in the special form E% = (¢, where (is a vector in motor space. For the formulation of
the sensorimotor dynamics in motor space as defined in Sections 4.1.2 and 4.1.6, we could
write £ = (n+¢) " (JJ)"} (n+() as the total error. Unfortunately, this modification of the
error function leads to instabilities. Another way to modify the gradient is to transform
it into another metric. The plain gradient descent is only optimal if the space on which
the gradient is defined is not Euclidean. For an arbitrary Riemann metric the transformed
gradient is called natural gradient. The gradient has to be multiplied with the inverse
of the metric to produce the steepest direction as proven by Amari [3]. A more detailed
discussion can be found in [60], where the natural gradient was applied to the gradient of
the TLE directly to achieve a noise-dependent sensor integration. For our application we
can use the metric defined by the Jacobian matrix, i.e. JJ'. Instead of a scaling factor, as
in Eq. (4.71), we get here a ‘scaling’ matrix. The Jacobian matrix J of the sensorimotor
loop contains the non-linearities of the controller but not the prediction error. Depending
on whether we use the sensor space or the motor space implementation of the controller

we have to use the scaling matrix as a right-hand or left-hand factor. In sensor space we
find

1 OF ~1

—AC = ——= +7%AC (LLT) . 4.72

€C aC + K () ()
Note that g—g is given by Eq. (4.30). In motor space J is an (m x m) matrix and hence,

1 OF -1

—AC = ———=+7 (JJ") ACY, 4.73
where g—g is given by Eq. (4.38). For the update of the parameter h we apply the same
procedure, i.e. in motor space we find

1 oF _1 0"

—Ah=———~,(JJ" 4.74

cc on ~ V) (4.74)

cf. Egs. (4.25, 4.39). Intuitively, the step size in the direction of low response strength (low
sensitivity) is larger compared to the normal gradient. Also, the factor v, is less dependent
on the particular application.

To summarize, we now have two ways to integrate additional goals in terms of error function
into the update rule of the homeokinetic controller. The first one uses a pure scaling with

92 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

the TLE to obtain a balance between the self-organization and a desired drive. The second
way uses a transformed gradient using a metric defined by the “sensitivity” term of the
original TLE. It is less dependent on the size of the prediction error and maintains a better
balance between TLE and the additional error function.

4.7.2 Continuity Preference

In experiments with multidimensional systems we often observe high frequency oscillations
of the motor values. This is rarely desired in robotic applications, except maybe for the
SPHERICAL robot, which can physically perform fast rotational modes. The phenomena
of high frequencies is a side-effect of the earlier discussed exploratory character of the
algorithm that spans to the frequency domain as well. More precisely, in systems with more
than one degree of freedom oscillations in state space of any frequency can be achieved
(assuming the physical system is capable of performing them) when the system dynamics
(Eqgs. (4.4, 4.13)) performs a rotation of the state each time step. This happens if the
Jacobian L is a rotation matrix or more generally if L € SO(n) (special orthogonal group).
Then the product LL" = I and, therefore, E is invariant with respect to the rotation
angle, cf. Eq. (4.12). In practice L might not be exactly a rotation matrix, e.g. due to
non-linearities, but it is close enough, such that a large range of rotation angles can be
visited in a more or less random walk fashion, see Section 4.4 for more details.

In order to induce a preference for low frequencies we require a continuity in the motor
value stream. In other words, the derivatives of the motor values should be small. This
can be achieved by including an additional error function that minimizes the difference
between subsequent motor values. Thus we define E¢, where ¢ stands for continuity, as

E = (lys —wl?)*. (4.75)

The power 4 is used to have only little influence on slow oscillations and a large impact
on fast oscillations. The easiest way to minimize Eq. (4.75) is to consider the last motor
value (y;_1) as given and use supervised learning schema. Using the gradient descent we
find the additional update for C' as

AC® = |yt—1 - yt|2 : ((yt—l - yt) © 9/) 35:7 (4~76)

where ¢’ = ¢/(Cx; + h). This update is integrated into the total learning rule using the
natural gradient as discussed in Section 4.7.1. The total update in motor space is thus,

1 or -1
“AC = — 2= N ACE. 4.
- C 8C+%(JJ) C (4.77)

4.7. CONTROLLER EXTENSIONS 93

Experiment using SHORT CIRCUIT

Let us consider again the trivial toy world (SHORT CIRCUIT)

Tip1 = Y + St

where ¢ is a small white noise term. We can, for instance, initialize the controller as a
scaled rotation matrix
B cos(f) —sin(0)

C=1.15 (sin(é’) 005(9)) (4.78)
with the rotation angle 6 to directly obtain a certain frequency of oscillation. The factor of
1.15 is used bring the system close to the fixed point of the learning dynamics, which is at
¢ ~ 1.19 in the one-dimensional noise-free case, see Section 3.7. Since here we have noise in
the sensors values (¢ € (—0.1,0.1)) the fixed point is at ¢ ~ 1.15. In the multidimensional
case the learning dynamics would bring the eigenvalues of C' to this value (for a linear
world and A = I). Remember that the system is time-discrete so that we obtain either
true periodic or quasi-periodic behavior. For 27/6 € N we have periodic behavior with the
period 27/6. Since the controller neurons have a non-linear activation function we observe
preferred periods such as period 2 and 4. This phenomena is discussed in detail in e.g.
[60, 64]. For example, if we start with § = /3 (period 6), we find the system locking
into a period 4 oscillation (§ = 7/2). Figure 4.24(a),(b) shows this behavior in terms of
controller parameters and the corresponding state space. The transition to the period 4
oscillation is clearly visible. When Eq. (4.77) is used the system is quickly changing to
the low frequency regime (small #) even if the system was before already in a period 4
oscillation. This is shown in Fig. 4.24(c),(d) for the initial rotation angles § = 7/3 and
0 =m/2.

This method works up to a certain frequency. In the case of a period 2 oscillation (6 = 7)it
is not possible to come back to low frequencies. The motor values in this case have the
same value with alternating sign every time step, i.e. y; = —y;_1. Thus, the error function
(Eq. (4.75)) has a maximum at this rotation angle. The error decreases for both lower and

higher rotation angles in the same way, such that the gradient descent may as well increase
6.

To summarize, in a simple example we successfully implemented the preference for low
frequency oscillations. This was achieved by integrating the derivative of the motor values
as an additional error function into the total error function using the scaled gradient
method. A more complex example with the snake-like robot is given later in Section 4.8.7,
because a combination of the following extensions is used.

4.7.3 Model of the Prediction Error

Let us now consider another part of the time-loop error function (Eq. (4.12)), namely the
prediction error. When deriving the learning rules in Section 4.1.5, we realized that the

94 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

15+ e |

0.5 F~————ur .

-0.5 +]
T]

15 1Ci1,Coe —— 0 -

2L 12|7 21|’”"’|"))) .

0 50 100 150 200 250 300 350
time [10% steps|

-2 1 1 1 1 1 L | .
20 40 60 80 100 120 140 160
time [10? steps]

o

1.5

0.5

-0.5
-1
-1.5
-2

1
1
(d)
N Ci1,C2 7]
B 12, Coy e :
0 50 100 150

time [10? steps]

Figure 4.24: Parameter dynamics for oscillatory behavior with and without
continuity preference using the SHORT CIRCUIT setting. The panels (a,c,d) show
the evolution of the controller matrix C' and the rotation angle 6 (Eq. (4.78)).
(a) Normal update rule (Eq. (4.38)), initialized with § = 7/3 (60°); (b) Motor values
corresponding to panel (a) for different time intervals, as marked with respective colored
bars in (a); (c¢) Dynamics with continuity preference (Eq. (4.77)), initialized with 6 = 7 /3,
e = 0.01; (d) The same as in (c) but initialized with 6 = 7/2, v, = 0.01. Parameters:

cc=ea=0.1,¢€(-0.1,0.1).

4.7. CONTROLLER EXTENSIONS 95

actual dependence of the prediction error on the controller parameter is not known. The
reduction of the prediction error happens, so far, via the step size of the gradient. For large
prediction errors large steps are taken and vice versa. However, the steepest gradient to
reduce the prediction error could not be determined. This is not a mathematical problem
but rather a fundamental problem. In order to obtain a gradient of the prediction error
based on the control parameters one would need to replay each situation with different
control parameters. Since the world changes if we execute actions, a repetition of the exact
same situation is not possible. A general solution might be conceivable in the framework of
reinforcement learning if a sufficiently frequent repetition of similar situations is assumed.
In this section we will show how it is possible to directly reduce the prediction error in
setups with multiplicative noise. So far we have only considered additive sensory noise,
but many physical sensors show rather multiplicative noise characteristics. Let us recall
the definition of the prediction error (Egs. (3.17, 4.3)),

§ = X — Ty

The predicted sensor values T; have a known dependence on the controller parameters C'
and h, because 7, = Ag(Cxy_1 + h) + b (cf. Eq. (4.23)). However, the true sensor values
x; are also dependent on the actions and therewith on the controller, but in an unknown
way.

Here, we propose a method to model the influence of the actions on the prediction error,
in order to counteract the upcoming errors directly. To understand the dependencies we
consider first a system with artificially applied multiplicative noise. The main difference
to additive noise is that multiplicative noise is directly action dependent, so that we can
actively counteract the upcoming noise strength. Let us consider again a simple one-
dimensional toy world described by

T = oy + o f (ye), (4.79)

where ¢ is uniform white noise and f(y) represents the action dependence of the noise
strength. In this case the modeling error (one-dimensional) would look like

§ir1 = ayr — aye + o f (Ye) - (4.80)

Remember that the world model parameter a is adapted to minimize the error £2. Averaging
over a long time, we get $ = 0 (zero mean noise) and thus

§t2+1 = (o — aye + st f (1))?
= (a —a)*y7 + 2 f(ye)?.

After the convergence of a to its optimal value a the modeling error simply consists of the
multiplicative noise, i.e.

&1 = f (ye)- (4.81)

96 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

Since the noise ¢ is of course unpredictable, the remaining prediction error cannot be
modeled. Nevertheless, if we consider the size of the error we can access the dependence
described by f(y). This becomes clear if we consider the absolute value averages over
time, i.e. we find |§41] = ||| f(ye)| for uncorrelated f and ¢. Now we will assume that the
multiplicative noise strength f is symmetric for positive and negative y (point or mirror
symmetric)?, such that we can write

[Ee1] = Kf(lye]), (4.82)

with k = |§_t] being the fixed noise strength. Intuitively, the size of the remaining prediction
error is a function of the size of the motor action.

Before we can introduce the new method we need to specify the componentwise absolute
value of vectors, which is required in the multidimensional case. Let u € R™ be a vector
then we denote its componentwise absolute value by ju|: R" — R™,

uy; = abs(u;) = Jui, (4.83)
foralli=1...n.

Using the above considerations, we introduce an adaptive model of the absolute value of the
prediction error £. Based on Eq. (4.82), we make the ansatz that the size of the prediction
error can be modeled by an additional neural network based on the absolute motor values.
The network is called £&-model and we write

Ser1) = P(ye) + Gy (4.84)
with the neural network P(-),

P(ly) = s(Wige) , (4.85)
where W is a weight matrix, s(z) = 5 +i*z is the component-wise sigmoid function, and ¢

is the residual error. We use here the sigmoid function s instead of the hyperbolic tangent
because the image domain of s is solely positive and thus sufficient for the calculation of
an absolute value. The parameters of the neural network (V) are adapted to minimize the
residual error ("¢ using the gradient descent.

Now we can adapt the controller matrix C' to minimize £ explicitly by following the gradient
on EP = |¢!Tlel using Eq. (4.84). First, let us consider the one-dimensional case, where we
use lower case letters, i.e. w and c¢ instead of W and C. Remember that y, = g(cx; + h)
and abs'(x) = sgn(z), where sgn denotes the sign function, defined as

-1 x<0,
sgn(z) = 0 z=0, (4.86)
1 2>0.

3The calculation could also be performed without this assumption. Eq. (4.84) would then read |¢,, 1] =
IP(yt)| 4 (1 and all following calculations need to be adapted accordingly.

4.7. CONTROLLER EXTENSIONS 97

Using Eq. (4.84) we find that

18 2 / /
Act = _5% = —[&als'(wlyel) - sgn(ye) - g'(cx + hjwa,.

In the multidimensional case it is a bit more complicated. Let us first define the quantity
€ = €os(Wiyl). Using the rules for matrix calculation (Section 4.1.3), especially rule
(R7), we obtain an additional update term for the controller matrix C' as

ACT = — [WT:&H: osgn(y) o g'| z, (4.87)

where ¢’ is taken at (C'zy;+h). Note that the sign function sgn(-) is applied componentwise.
The derivative of the sigmoid function s(-) is given by

§'(z) = s(2)(1 — s(2)). (4.88)

The additional update Eq. (4.87) is integrated into the total update term using the natural
gradient as discussed in Section 4.7.1. The total update in motor space is thus,

1 _ 22 Ty-1 P
%AC— 80+7P(JJ) ACT, (4.89)

where vp needs to be chosen conveniently.

Experiment

In order to evaluate the new update term for the controller let us consider a simple setup
with sensors that produces a different amount of noise depending on the sensory value. This
is a common feature of physical sensors, such as infrared distance sensors. We consider
a two dimensional system, with multiplicative noise, similar to the one considered at the
beginning of this section, cf. Eq. (4.79). Let the world be given by

11 = oy + (L1 — |y1e])sie
Top1 = ooz + (0.1 4 |yae|)sor (4.90)

where ¢;; € (—0.2,0.2) is uniformly distributed noise. More intuitively, z; shows high
noise around zero and x, shows high noise around high absolute sensor values. Since
this perturbation cannot be modeled by the internal world model (Eq. (4.19)) we expect
an action-dependent error £&. By including the learning dynamics based on the £-model
Eq. (4.89), we expect the connection strengths to y; (C11, Ci2) to become further supercrit-
ical to avoid errors at smaller motor values, whereas the weights connecting ys (Co1, Cas)
will be decreased to prefer small motor values. The results of a simulation are displayed in
Fig. 4.25. During the first 2500 steps the parameter evolution was determined by the TLE
only (yp = 0). We observe the usual development of C, although Cy; is a already little

4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(b) 02 ' T e (el e £s
0.1 |
W \\"‘Al|“ | (‘
w MH“ Hl]" “ iw IM 1 H \ Th 'HWH ‘r'mfllllmll' H"HN‘I !‘\W‘WHW "NW !l"dl‘ ”l‘\\H ”IM‘!H ” M lw‘l“l I} \i "‘ﬂ
0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
R e

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
time [steps]

Figure 4.25: Effective error reduction through the ¢-model. (a) Values of the
controller matrix C; (b) Size of the modeling error {¢ (Manhattan-norm) with mean and
standard deviation o within sliding windows of 200 steps; (c¢) Motor values.

In the first 2500 steps the unmodified TLE was used (yp = 0.0). After that the learning
using the -model, Eq. (4.89), was activated (yp = 0.1). The error is decreased to the noise
level (dotted line at 0.04 in (b)). The parameter dynamics increases C1; and decreases Ca2
such that the errors at small y; and large yo are avoided. Parameters: ec = 0.75,e4 = 0.1.

4.8. MODEL EXTENSION AND AMBIGUITY 99

bit larger than Cs,. This is because the x5 shows a stronger noise for the typical value of
x =~ 0.65 and thus the controller neuron more frequently reaches the saturation region (Sec-
tion 3.8) causing a decrease of the corresponding connections, especially of Cyy. After the
activation of the new update (7p = 0.1) the prediction error depicted in Fig. 4.25(b) de-
creases rapidly due to increasing Cy; and decreasing Co as expected, cf. Fig. 4.25(a). The
error drops to the noise level which is at 0.04. This value is the result of the Manhattan-
norm? of the minimal size of the noise in each channel which is 0.1 € (—0.02,0.02). The
motor values clearly show the opposing effects of the update on the two channels. Nev-
ertheless, different frequencies and amplitudes are exhibited, causing the error to slightly
increase around step 4000, but it decreases again later.

We have seen in the experiment that the additional learning rule based on the £&-model helps
to directly minimize the prediction error in systems with multiplicative noise. Nevertheless,
the ¢&-model might be very inaccurate or even wrong and a resulting update would be
counterproductive. This can be easily circumvented by checking whether |(] is significantly
smaller than |¢| and only applying the additional update in those cases.

4.8 Model Extension and Ambiguity

In this section we investigate possible improvements of the adaptive internal world model.
The accuracy and suitability of the world model is of high importance because it represents
the controller’s ability to estimate responses to actions and is used to build a dynamical
system representation reflecting the sensorimotor dynamics of the robot. It is therefore
used in the self-regulatory mechanisms that adapt the controller to perform body compliant
behaviors.

First, we will show the insufficiency of the current world model in an experiment with the
SPHERICAL robot. Afterwards, we will see that a simple extension of the world model gives
rise to the fundamental problem of ambiguity between sensations, caused by the actions of
the robot, and those induced by an independent dynamics in the world. In the following
sections we will propose different solutions to deal with this ambiguity.

4.8.1 Shortcomings of Simplified World Model

Up to now an oversimplified world model was used, which models future sensor values
solely based on current motor actions, cf. Eq. (4.19)

M (x4,) = Ay, +b.

It is obviously insufficient in cases where parts of the sensor value dynamics follow an action-
independent dynamics. Consider for example the SPHERICAL robot, cf. Section 2.2.5,

4The Manhattan-norm also known as L'-norm and is defined as ||z, :== >, |z;].

100 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

time [sec]

Figure 4.26: Divergent error value for the SPHERICAL robot with light internal
masses. Despite the low learning rates ec = €4 = 0.01 the parameters fluctuate heavily
and the world model collapses. An irregular behavior is observed. (a) Motor commands
and averaged error (E) (scaled to fit in the plot); (b) Diagonal elements of controller
matrix C' and world model matrix A. Parameters: ec = €4 = 0.01, update rate: 100 Hz,
weight of internal masses: 1/2 of hull-mass.

when it is rolling down a slope. The sensors of the robot measure the orientation of the
axes with respect to the ground. In this case the sensory dynamics is not caused by the
robot actions, but rather by an environmental circumstance. However, a similar effect
occurs if the SPHERICAL robot is equipped with light internal masses compared to the
weight of its hull and is placed on level ground. After the robot acquired some rolling
velocity, the sensory dynamics is again dominated by the current motion and only little
influenced by the current actions due to the large inertia. In this hardware configuration
the learning dynamics can become unstable, such that a diverging error value is observed.
The divergence can happen even with comparably low learning rates of ¢ = 0.01, in
contrast to the normally used 0.1. Figure 4.26 illustrates the irregular behavior of the
robot and the parameter evolution. The high error values are the result of the intrinsic
dynamics of the sensor values when the body is rolling, which cannot be captured by
the simple world model. In earlier experiments with the SPHERICAL robot we used the
square root regularization of the error (Section 4.2.4) and heavier weights to avoid such
instabilities.

4.8. MODEL EXTENSION AND AMBIGUITY 101

4.8.2 Ambiguity in the Interpretation of Sensations

For many robotic systems, e. g. the SPHERICAL robot or the SNAKE robot (Section 4.6), it
is necessary to extend the world model to use sensory information as well. In the general
formulations in Section 4.1.1 we defined the world model M (z, y) conceptually as a function
of sensor values and motor values, cf. Eq. (4.2), but in the particular implementation only
the motor values y have been used (Eq. (4.19)). A simple extension of the previous world
model is to include a linear dependence on the sensor values as

M(xh yt) = Ayt + Sxt + b> (491>
with an (n X n) weight matrix S.

In a first practical appraisal we found out that S converges to a unit matrix and A to a
zero matrix. This seems very surprising, but considering the sensor values of subsequent
time steps we find that they are very similar in most applications. Why do we care how the
world model chooses to represent the correspondence? It is very important for the correct
functioning of the homeokinetic controller that A captures the correct correspondence
between actions and future sensations. Remember that the internal representation of the
sensorimotor dynamics (¢) depends on A. It is used to adapt the controller matrix C
such that a slightly supercritical feedback strength is obtained. If A now reflects a small
response of the sensor values to motor actions, then this leads to large elements in the
matrix C' and thus the working regime is left.

To get more insight into the problem let us consider again a simple fixed linear controller
yr = Cuay, (4.92)
and a deterministic toy world (without noise)
i1 = Wy, x) = Ay + Sy, (4.93)

where A and S are fixed matrices. Note the different notation of the matrices in the world
W (Eq. (4.93)) and the world model M (Eq. (4.91)). Naively we would expect that if
Eq. (4.91) is used then A and S converge to A and S respectively. However, considering
the true sensorimotor loop by putting Eq. (4.92) into Eq. (4.93) we find

$t+1 = (AC + S)ZL’t . (494)
The model of the loop using Eq. (4.91) reads
Tip1 = M (2, y:) + & = (AC + S)zp + & (4.95)

The parameters A and S are adapted to minimize |&|?. Hence, we find AC' + S = AC + S,
which is ambiguous in A and S. The problem is rooted in the fact that y and x are not
independent, which is also the case when the controller is subject to constant change due
to the learning dynamics. Thus, in the present formulation the ambiguity between self-
induced and environment-induced sensations cannot be disentangle. The resolution of this
ambiguity is the subject of the following investigations.

102 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

4.8.3 Controller Noise to Disentangle Ambiguity

In order to obtain some independence between sensor and motor values we can introduce
a perturbation to the motor signal, i.e. for the simple fixed controller we write

ye = Cap + e, (4.96)
where 77 denotes an m-dimensional zero mean noise process. The sensorimotor loop reads
Tip1 = (AC + S)zy + Ang. (4.97)

The error function for training the model parameters is EP"* = &, but for simplicity,
let us consider the one-dimensional case where the error function is given by EPred = £2.
Hence
& = (((AC + 8) & + An] = [(AC + S) z, + An))?
= ([(AC+8) — (AC +)] @+ (A— A)m)* .

In the time average we have 77 = 0 such that the linear term vanishes and the error is
essentially a sum of the original error plus a noise-dependent term, i.e.

& = ([(AC +8) = (AC + 8)] 2)* + (A = A)* i}

We see immediately that A — A, due to the second term and consequently also S — S.
However, in practice we find two complications. First, we want only a very small additional
noise, in order to avoid the noise influencing the behavior too much, and second, the world
usually acts as a low-pass filter due to inertia and therefore the perturbations are damped
away.

The controller noise can be used to separate world-intrinsic dynamics from action-induced
dynamics. However, by adding a noise term we somehow have to decide about its size and
distribution. Another more intrinsic definition of the noise term 7 is via the inverse of the
model,

D1 = M (2, yp) + &1 = M (2,90 + 1),

as in the motor space calculations in Section 4.1.2. To calculate we can use the pseudo-
inverse (rule (R10)) and find (cf. Eq. (4.14))

me= M & (4.98)

Since we do not have &, at the time when 7, is required, we assume some continuity in
time and use &. Using M (zy,y;) = Ay, + Sxy + b (Eq. (4.91)) and the pseudo inverse we
can explicitly calculate 7, by

no=(ATA+ANI)TTATE,. (4.99)

4.8. MODEL EXTENSION AND AMBIGUITY 103

What does it mean to use y + 1 as a motor command? Within the internal description of
the sensorimotor loop this motor command leads to a minimal prediction error in the next
time step, due to the construction of 7. Although, one could argue that it decreases the
speed of world model learning because of smaller prediction errors. Nevertheless, it follows
the idea of bringing external and internal dynamics closer together, which is one goal of the
controller. It should be stressed that it is not necessarily important to be able to control
and model all possible behaviors, but rather to control the system such that the behaviors
are predictable. Note that this mechanism is not as effective in reducing the prediction
error as the {-model (Section 4.7.3), since it does not change the controller parameters.
However, an even more effective and general approach is elaborated in the next section.

4.8.4 Assume Maximal Self-Induced Observations

We want to consider another approach to the disambiguation problem. Let us reiterate
the meaning of A and S in the new model (Eq. (4.91)). The weight matrix A captures
the direct causes of actions y; on the forthcoming sensor values x;,1, whereas S represents
the intrinsic dynamics of the environment captured by the sensor values. We have seen in
the toy example from Section 4.8.2 that both extremes are possible, namely to consider
everything self-induced or everything environment-induced, independent of the actual cor-
respondence. The approach we want to pursue now is to assume maximal self-induced
changes in the sensor values. We argue that it makes sense for an autonomous agent to
assume controllability of its sensations. Remember also that the controller is generally
adapted to make the internal representation of the sensor dynamics match the actual sen-
sor dynamics. If the world model is adapted such that an external dynamics is explained
in terms of its own actions then the controller tends to produce those actions that are
coherent with this model. In fact, we assumed full controllability with the original world
model. In the toy example a simple solution would be the damping of S. However, in
real applications the environment is more complicated and the correspondence of motors
to sensors is not linear because of inertial effects and other perturbations. In this case
the size of the damping has to be tuned in order to balance between the preference for
self-induced actions and the actual correspondence.

The solution we propose is to request that a small perturbation in the sensor values x, say
¢ € R™, can be compensated by a shift n € R™ in the actions v, i.e.

M (zy + Gy ye) = M (24,90 + 1),

with 7 being as small as possible. In other words, the world model is not only trained on
the prediction error (Eq. (4.20)) but also on 7,

B = &7 + | (4.100)
In general, 7; can be approximated by

Ne = le/il(zt)yt)Mg,;(l‘t)yt)Ctv (4.101)

104 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

which reads in the case Eq. (4.91) is used for the model

m= A5G, (4.102)

. onT
Following the calculations in Section 4.1.4, especially Eq. (4.21), we need to calculate ="

on'n
and a5 as

877T77 104
9A —2n' A 6_AA S¢
=-=2(A7") m’,
377T77_ T 4195

=2(47) ¢,

to obtain the new update equations for A and S as follows:

1 1
—AA =&y, + (A7) | - —A4, (4.103)
€A TA

1 1

—AS =&, - (A_l)T m¢ ——5. (4.104)
€A TA

Inspecting Eq. (4.103) we find that the second term (which is new) depends on the size of
1 which in turn depends on S. If e.g. (is strongly contracted by the application of S in
Eq. (4.102) (meaning S does not model this direction) then the impact of the additional
term is small. The perturbation (can be chosen to be a noise vector or the prediction
error. We use the latter and thus set (; = &;.

Experiment with the TWOWHEELED Robot

We conducted an experiment with the TWOWHEELED robot on flat ground. The robot is
described in detail in Section 2.2.1. For simplicity the robot had no obstacles and could
move freely. The motor values control the torque of the motors, which are attached to the
wheels. The sensors read the actual rotation speed of the wheels.

In Fig. 4.27(a) the physical properties of the robot are tested with impulse shaped actions in
order to demonstrate the effects of inertia and slip, see also [Video 8|. We observe that the
wheels are shortly slipping when the robot starts to accelerate abruptly, as indicated in the
plot. Otherwise the mass of the robot leads to a slow incline of the measured wheel velocity.
When decelerating sharply, the wheels slide again so that a seemingly abrupt response is
measured. However, the slip occurs only rarely when the robot is controlled with the
homeokinetic controller (not shown), because the motor values change more smoothly,
so that only inertial effects remain. In any case, the assumed linear correspondence of

4.8. MODEL EXTENSION AND AMBIGUITY 105

|
)
o O
i
i
S 2
N~
L

0 5 10 15 20 0 400 800 1200 1600
time [sec] time [sec]

Figure 4.27: TWOWHEELED robot: Illustration of inertial effects and the ex-
periment with extended world model. (a) Reaction of the robot to impulse-shaped
actions for both wheels, y: predefined actions, z: wheel velocity sensors; (b) Experiment
with homeokinetic controller and extended world model using Eqs. (4.103, 4.104). For the
first 900 sec the new update term was switched off by setting n = 0. Top: Prediction error
(&) and TLE (F) for the case with the extension, and prediction error for a run without the
extension (£°2) (sliding averages of 10 sec intervals). Bottom: First diagonal elements of
extended world model matrices A and S. After the activation (7 > 0) a quick recovery to
high values of A1; occurs and the prediction error decreases as well. Parameters: update
rate 100 Hz, ec = €4 = 0.1, 74 = 1000 - 100 (1000 sec).

106 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

actions and sensation is not correct. Let us calculate the velocity v of the robot for the
one-dimensional case (both wheels are considered as one wheel), which is given iteratively

by
Vitlr = V¢ + CLAt, (4105)

where a is the acceleration caused by the motors. The motors are such that their torque
depends on the difference between actual and desired velocity. For simplicity we assume
a wheel with radius 1, such that effective translational force is equal to the motor torque.
Hence,

foos
a= E(V — Vi), (4.106)
where v* is the desired velocity, f is the motor torque® and m is the mass. Putting
Eq. (4.106) in Eq. (4.105) we get

Vigl = iAt v+ <1 - iAt) V. (4.107)
m m

For our robot the velocity is measured by the wheel counters, thus z; = v;. The nominal

velocity is given by the motor value and therefore y; = v°. Hence, we get 2,1 = f/mAt y,+

(1 — f/mAt) z;, which has the same form as the extended world model, Z;11 = Ay, +Sx;+b

(Eq. (4.91)). Thus, the extended world model is suitable for this case.

In the experiment the additional term in the update rule (Egs. (4.103, 4.104)) was switched
off by setting n = 0 during the first 900sec. Indeed, the learning leads to the increasing
influence of S which results in a decrease of the values of A, cf. Fig. 4.27(b). After 900 sec
the full update rule is used and a quick regulation to a high value of A takes place. This is
correct because the inertia effect is comparably small. As expected the diagonal elements
of S maintain a certain non-zero level. The system is symmetric, so that the two diagonal
elements are identical and the non-diagonal elements of A and S are close to zero (not
shown). In comparison to the case without the extended world model the prediction
error is reduced as depicted in Fig. 4.27(b), thus, the additional update term performs as
expected.

Experiment with the SPHERICAL Robot

In the following experiment we will see that the extended world model makes it possible
to control the SPHERICAL robot with light internal masses, which was problematic before,
cf. Section 4.8.1. The hope is that the extended world model is able to make better
predictions especially before stable modes are found. The world model can thus correctly
predict the dynamics in the environment that is not or only partially controlled by the
robot’s actions. This is, for instance, the case with the currently considered SPHERICAL

5 f is actually the motor torque per velocity deviation of 1 (units are arbitrary)

4.8. MODEL EXTENSION AND AMBIGUITY 107

()

(b)

@ .

oo L T——

0 100 200 300 400 500 600
time [sec]

Figure 4.28: Smoothly behaving SPHERICAL robot using the extended world
model. The error function has a low value and the behavior is smooth but still diverse.
(a) Sketch of four typical behaviors (A-D); (b) Envelop of motor commands and the
error averaged over 10sec (scaled for visibility). Corresponding behaviors are indicated
with letters A-D; (c) Diagonals and two non-diagonal elements of the controller matrix C'
(d) Diagonals of the world model matrices A and S. Parameters: update rate 100 H z,
ec = €4 = 0.1, use of extended world model (Egs. (4.103, 4.104)).

108 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

robot which can be excited to perform a rolling mode which will persist for some time even
in the non-actuated situation. The evolution of the behavior and the parameters during
the experiment with the SPHERICAL robot are depicted in Fig. 4.28. In contrast to the
earlier experiment (Fig. 4.26) without the extended model, the error now falls to a low
value. Beside the error curve the positive envelops of the motor commands are plotted in
Fig. 4.28(b). The envelops are used since the actual motor values oscillated at a frequency
corresponding to the rolling speed of the robot. Hence, the envelops reflect the amplitude
of the oscillating masses on each axis. If the robot is controlled so that one of the internal
axes is the rotation axis, then the mass movement along this axis is small, which is seen
in a drop of the envelop. For further illustration the behavioral modes are schematically
depicted in Fig. 4.28(a), namely, the rolling mode around the three internal axis (A-C)
and around another axis (D). The latter requires a qualitatively different coordination.
The influence of the additional term S varies in different situations due to the additional
update term for the preference of self-induced changes, cf. Egs. (4.103, 4.104). Right at
the start a short period of larger values of the diagonals of S are observed, see Fig. 4.28(d).
This is due to the fact that the internal model of the sensorimotor dynamics is incorrect
and has to adapt first. Hence, the additional term S captures most of the dynamics. After
the first 15sec the parameter dynamics is smooth and periods of stable rolling behavior
follow. In the modes of rolling around a particular internal axis the sensory response along
this particular rotation axis is low, due to gyro effects. Thus, the corresponding weights
shrink (e.g. A;; up to second 120). At the same time a destabilization along this axis
occurs by a raising value of the corresponding element of C', as displayed in Fig. 4.28(c),
until a change of behavior is initiated.

To summarize, we implemented a learning rule for the extended world model that has
a bias towards self-induced sensory changes. This has proven effective in the considered
examples. In the next section we will consider a simpler and more scalable method to
achieve the same effect.

4.8.5 Enhanced World Model

The method proposed in the previous section works well, but it is computationally rather
expensive. Here, we will propose a simpler way to achieve a preference for self-induced
observations. We will use a special discounting for the training of the world model.

The new world model is again given by M (zy,y;) = Ay, + Sz +b, see Eq. (4.91). Since the
model matrix A (action to sensation mapping) should capture most of the correspondence,
we discount the additional term (S) during learning. Thus, there are two error function for
the learning process. The terms S and b are trained to minimize the unmodified prediction
error (Eq. (4.20)), i.e. BPred = ¢7¢ with & = 2, — (Ay,_1 + Szy_1 + b) for the new world
model. The adaptation of A is done using E'7"¢ = £'T¢’ where ¢’ is given by

é_; = Ty — (Ayt—l + (]. - (S)Sxt_l + b) y (4108)

4.8. MODEL EXTENSION AND AMBIGUITY 109

with the discount factor § < 1. Though the minimization of E7"*¢ the matrix A will adapt
to model a small part of the mapping represented by S at each update cycle, if that is
consistent. The effect of this amended learning on the prediction quality of the model is
negligible. The update rules for all parameters of the enhanced world model are

1 1
Laa—gy, - La, (4.109)
€A TA
1
—Ab= 4.110
€A €t7 ()
1 -1
SAS=¢ga) — —8. (4.111)
€A TA

Eq. (4.109) can also be written as in terms of & using Eq. (4.108) and we obtain

1 1
—AA=(&+ 681 1)y, — —A, (4.112)
€A TA

which illustrated the implementation of the discounting more clearly.

In the case of a linear and fixed controller y; = Cz; Eq. (4.92) and the toy world x;,1 =
Ay; +Sx; Eq. (4.93), the dynamics converges to A = A+SC~! and S = 0. The derivation
can be found in the appendix in Section A.2. With a non-linear and changing controller
this extreme bias towards self-induced observations changes into a balance, which can be
adjusted using the discount factor §. This can be seen in the following simulation. We
conducted the same experiments as in the previous section to validate the approach. In the
first experiment with the TWOWHEELED robot we show the effect of the discount factor.
The second experiment with the SPHERICAL robot shows essentially the same result as
presented in the previous section, such that we do not show them here, but rather in the
appendix in Section A.3.

Experiment

The following experiment uses the TWOWHEELED robot (Section 2.2.1) and is identical
to the one conducted in Section 4.8.4, except the usage of the enhanced world model with
discounted learning. Here we compare the results for different values of the discount factor
0. During the first 900 sec the bias towards self-induced observations was disabled using
d = 0in Egs. (4.109-4.111) to show the degeneration of A. Afterwards, depending on J a
quick or slow regulation to higher values of A takes place, see Fig. 4.29. As expected the
diagonal elements of S maintain a certain non-zero level, which is larger for low discount
factors. The system is symmetric, so that the two diagonal elements are identical and the
non-diagonal elements of A and S are close to zero (not shown). The prediction error is
not shown here because it behaves essentially like in Fig. 4.27.

To conclude, the enhanced world model works as well as the method proposed in the previ-
ous section but is computationally much less demanding. Both methods implement a bias

110 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

0.06
0.04 +

0.02

1.2 |

0.8 T
0.6
0.4

-0.2

0 400 800 1200 1600

time [sec]
Figure 4.29: TWOWHEELED robot with enhanced world model. The discounting
in Egs. (4.109-4.111) was switched off using § = 0 during the first 900sec. Displayed
are three runs with identical noise process, where § was set to 0.01, 0.005, and 0.001
respectively after second 900.
Top: Sliding averages of 10 second intervals of the TLE (E). Bottom: First diagonal
elements of world model matrices A and S for the three runs. (sliding averages of 10
second intervals).Parameters: update rate 100 Hz, ec = €4 = 0.1, 74 = 1000 - 100.

towards self-induced observations in the sensor values, which ensures that the estimated
action dependence of the sensor values is at least as large as it is in the actual world.
This is a promising approach to solve the problem of ambiguity between self-induced and
environment-induced observations. Such ambiguity arises quite generally when modeling
closed-loop sensorimotor dynamics and thus this approach might be interesting for a wider
range of applications.

4.8.6 Advanced Sensor Configuration

Now that a solution to the ambiguity problem was found we want to discuss some conse-
quences for further world model and controller extensions. Up to now, only sensors that
measure the same physical quantity that is controlled by the motor actions have been pos-
sible. For example, if the motor values control a joint angle then the sensors also had to
measure the joint angle, but not its velocity or the like. Nevertheless, we also used sensors
that have a less direct correspondence to the motor actions, such as the infrared sensors
of the ROCKING STAMPER in Section 4.3, or the orientation sensors of the SPHERICAL
robot. However, in these setups the sensors still show a proportional relationship to the

4.8. MODEL EXTENSION AND AMBIGUITY 111

motor values — at least in certain behavioral modes. An additional constraint to the sensor
setup is the number of sensors. Even though the formulation of the controller in motor
space made it possible to use more sensor than motors, it caused severe problems at the
level of sensor predictions. Recall that in the original world model (Eq. (4.19)) only the
current actions are used to predict future sensor values. With the extended world model
many senors are possible because the prediction takes the past sensor values into account.
Thus, a large range of sensor types, like time-delayed sensor values and derivatives can be
used and we can expect the controller to pick the most appropriate ones. The formulas
remains identical, because the new sensor values are simply combined into the sensor value
vector x. Let us consider the typical case when original sensor values and their derivatives
are used. Hence,

g=(s1 - Su & -0 &), (4.113)

where s; is the i-th original sensor value and §; denotes its temporal derivative. This setup
is an important step towards more and more complex systems which we will demonstrate
in the following experiment.

4.8.7 Application to Planar the SNAKE Robot 11

In order to test the extensions on a complex example we turn again to the previously
considered planar SNAKE robot, cf. Section 2.2.7. In Section 4.6 we identified several
problems with the control of this system. Large inertial effects revealed the insufficiency of
the world model and the system also entered high-frequency oscillations. In the experiment
considered here we use the same setup and the same parameter as in Section 4.6, but apply
the following three extensions:

e the continuity preference for the controller (Section 4.7.2),
e the enhanced world model (Section 4.8.5), and
e the advanced sensor setup as discussed in the previous section (4.8.6).

The robot has 16 segments resulting in m = 15 powered joints and 15 joint angle sensors.
The sensor values received by the controller consist of the 15 angular sensors, as before, and
their first derivative, summing up to n = 30 sensors in total. Thus, the controller matrix
C has dimensions 15 x 30, the world model matrices A and S have dimensions 30 x 15 and
30 x 30 respectively. To get an idea of the complexity let us calculate the dimensionality of
the state space and the parameter space. We use the controller implementation in motor
space (Section 4.1.2), and thus we have a 15 dimensional state space with intermediate
30 dimensions and 465 adapting parameters (synaptic weights) of the controller. Together
with the 1380 parameters of the adaptive world model this sums to 1845 synaptic weights.

The conducted experiment last 200 min. Over the entire time we observe frequent changes
of behaviors, where the eigen-modes of the physical body are occasionally excited, cf.

112 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

1.0/
08/
e

/\Cov(x)O'G ;/ N
04;
020 —
[e time
20 40 60 80 [min]

Figure 4.30: Eigenvalues of the covariance matrix of the SNAKE’s sensor values.
These are the variances along all 15 principal components of the sensor data of 5 minute
sliding windows. All principal components remain active, reflecting high-dimensional be-
haviors. Parameters: ec = e4 = 0.01, V'E, update rate 100 Hz, 4. = 0.001, § = 0.005.

[Video9]. In Fig. 4.30 the eigenvalues of the covariance matrix of the sensor values of 5 min
intervals are presented. The size of the eigenvalues reflects the variance in the 15 principal
components. All eigenvalues remain non-zero and they almost equally span over the interval
0 to 1. This is in contrast to the experiment in Section 4.6, where the eigenvalue spectrum
broke down after some time (Fig. 4.19). We can conclude that the behaviors exhibited
within 5 min keep a high dimensional structure. A more detailed view on the major two
principal components is given in Fig. 4.31, now for intervals of 2 min. The first two principal
components scaled by their relative variances are plotted in Fig. 4.31(b),(c). The vectors
are preprocessed to have a positive sign in the first few components, in order to increase
clarity. Very different major principal components are exhibited over time. However, the
main eigen-modes of the physical system are frequently excited in a similar manner as
observed before. The normalized eigenvalues of the covariance matrix, Fig. 4.20(a), show
that at the time when theses modes occur the first mode dominates the behaviors more
strongly (brighter stripes in the rows 3-15).

Let us have a look at the parameter dynamics. The controller matrix C'is no longer square,
since the derivatives of the sensors values are used as well. We consider a partition of C' into
two 15 x 15 square blocks, thus C'= (C! C?). C* connects joint angles with motor values.
The eigenvalues of this matrix and of the linearized system matrix are displayed in Fig. 4.32.
All real parts of the eigenvalues of C'! stay close to 1 and the two smallest eigenvalues have
non-zero complex parts. Nevertheless, the eigenvalues of the system matrix R have very
small complex components. This shows again that the SNAKE robot cannot perform high
frequency oscillations. The continuity preference extension is not able to suppress these
complex parts because they do not yet lead to oscillations in the motor values, since they
belong to the smallest eigenvalues. This is in contrast to the case without the continuity
preference in Fig. 4.22, where the largest eigenvalues have large complex components.

Finally, let us consider the parameters of the system at the end of the experiment. For
that we plot the matrices C, A, and S in Fig. 4.33. The controller matrix C' essentially
maps the joint angles and its derivatives to the motor values, which are nominal joint

4.8. MODEL EXTENSION AND AMBIGUITY 113

If s oo o e w T T B °°

(@ 10
15

[S20

® L
15+

[S20 ol

(c) 10} ;
15} =

144
10 15

(d) N - 4
1 5 10 15

»-\4
ol

Figure 4.31: Principal components of the SNAKE’s sensor values when using
the extended world model. The time is given in minutes. The covariance matrices
have been computed on the sensor data from 2min each. (a) Each column shows the
normalized vector of eigenvalues of the covariance matrix, i.e. A°¥(®) /|XCov(@)|: (b) Each

column shows the scaled eigenvector u! corresponding to the largest eigenvalue A1 (first row

Cov(x YCov(z
of (a)), by Ay /X)]

normalized eigenvalue; (d) Two columns of (b) at min 8 (A) and 144 (B) enlarged.
From time to time the eigen-modes of the physical system are still excited, as marked with
A and B. For more details see Fig. 4.20 (p. 85).

. () The second eigenvector scaled with the corresponding

114 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

(a) (b)
A AR E

1.0 m 0.06

T 10

05 1004
0.0 - ‘ O'SWO.OZ

50 100150 200 |
-0.5¢F ” 0.0 (—:_:;‘,,7-, <=1 0.00

-10} 0 50 100 150 200

Figure 4.32: Eigenvalues of the controller matrix and linearized system matrix
over time for the SNAKE robot. The time is given in minutes and the curves show
sliding averages of 3min intervals. (a) Eigenvalues of left square 15 x 15 block of C. The
solid lines show the real part and the dashed lines show the imaginary part (only 2 are
non-zero); (b) Eigenvalues of linearized system matrix in motor space R = C'A and the
TLE E (blue, right axes). Parameters: ec = €4 = 0.02, update rate 100 Hz, . = 0.001.

@ C200 (b) Azoo © S200
cl] c? 1 AL 1+ gl @
10 101 10} .
15 ! ; ; - 2 3 |
1 10 20 30 A s s
20+ 20+ .
-1 -05 0 05 1
[| Cn
-05 025 0 025 05 20! -
[- Fam 1 5 10 15 1 10 20 30

Figure 4.33: Controller and extended world model matrices at the end of the
SNAKE robot experiment. All matrices are taken at minute 200. (a) Controller matrix
C mapping joint angles (first 15) and their derivatives (angular velocities) (16-30) to motor
values (neglecting the non-linearity). A clear separation of the joint angles (left square
block C') and derivatives (right square block C?) takes place. Besides the strong diagonal
elements of C!, there are long range connections (yellow and blue areas). The derivatives
(C?) are actually negatively coupled to the motor values, reflecting a damping; (b) World
model matrix A. It maps motor values to future sensor values. The lower square block
(A?) is essentially zero because there is no correspondence between motor values (nominal
joint angles) and angular velocities; (c¢) World model matrix S (extension of the original
model). It maps actual sensor values to future sensor values. Note the different color code
to account for the smaller elements due to the discount.

4.8. MODEL EXTENSION AND AMBIGUITY 115

angles (neglecting the bias term and the non-linearity in Eq. (4.18)). As above we consider
a partition of C' into two 15 x 15 blocks, i.e. C' = (C' C?). Thus, C' maps joint angles
to nominal joint angles and shows mainly a diagonal structure as expected. Connections
between neighboring joints (secondary diagonals) are negative, but very weak. This cor-
responds to a zig-zag shape of the robot. Moving in such a zig-zag pattern reduces the
inertial effects, because the movements are locally compensated. In contrast, imagine that
a joint in the center of the SNAKE robot is controlled to change its angle independent
of the other joints. Then the entire body has to be moved which causes a large inertial
torque. There are also long range connections formed, as indicated by the pale yellow and
blue areas at both sides of C' in Fig. 4.33(a). These connections lead the whole body
movements indicated by the principal components in Fig. 4.31(d). The second block shows
that the angular velocities (sensors 16-30) are coupled inhibitory to the belonging joints
(diagonal of C?). This reflects a damping of the movement speed, which is not only a
consequence of the continuity preference extension of the controller, but also of the fact
that high angular velocities quickly lead to the saturation region of the controller neurons
at high joint angles. However, the angular velocities of the left and right neighbors have
an excitatory influence. Note that behavioral changes in such highly physically coupled
systems can be achieved with small changes in the controller connections.

The world model matrix A, see Fig. 4.33(b), maps motor values to future sensor values and
thus has the dimension 30 x 15. However, the lower square block (A?) is essentially zero
because there is no direct correspondence between motor values and joint velocities. The
new world model matrix S, Eq. (4.91), represents the learned mapping from current sensor
values to future sensor values, see Fig. 4.33(c). Its elements are much smaller because
of the bias towards self-induced observations realized by the discount factor 6 = 0.005,
Eq. (4.108). Let us consider the matrix in four 15x 15 blocks namely S, ..., S* as indicated
by the dashed lines in the plot. The diagonal elements of S* have small negative values
which is due to the following relationship: The new angular position of a joint is the desired
position (given by matrix A) minus some fraction of the old position (negative values in
S1) due to inertia. The top-right sub-matrix S? represents the mapping from angular joint
velocities to angular positions. This is basically determined by the C2. Interestingly, not
the neighbors, but the second next neighbors are coupled inhibitory. This is due to the
physical interaction of the joints. If one joint increases its angle, then the second next joint
is pulled, such that its angle decreases as illustrated in Fig. 4.34.

4.8.8 Summary

To summarize, the extended world model leads to a decreased prediction error, resulting in
a smooth and stable parameter dynamics in the here considered high-dimensional SNAKE
robot. The bias towards self-induced interpretation of the observed sensor values which
was implemented into the extended world model, has shown to be effective. This was
reflected by the large diagonal elements of the A matrix. Nevertheless, the inertial effects

116 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

Figure 4.34: Illustration of physical joint interactions of the SNAKE robot. We
consider 4 segments within a longer SNAKE robot and assume that the endpoints (blue
dots) of the considered part of the robot are fixed, reflecting the inertial effects of the
following segments. If the angle of the first considered joint (6) is decreased (; < 6;)
then the third joint angle increases (93 > 603) whereas the second joint stays almost the
same. Thus, a change in one joint angle effects the second next joints in the opposite
direction. Note that the joint sensor values are actually m — 6; (0 for a straight joint), see
Section 2.2.7.

and intrinsic joint interaction of the physical system were captured by the additional weight
matrix S of the world model. The extension of the controller to prefer continuous motor
values has shown the intended effect and no high-frequency oscillations have been exhibited.
We also demonstrated that due to the extended world model it is possible to use additional
sensors, like the angular velocity sensors used in the previous experiment. The detailed
analysis of the controller and world model structure has shown that the additional sensors
have been integrated into the sensorimotor dynamics in a reasonable fashion. We also
observed how the morphology of the physical body shapes the controller, such that the
eigenmodes of system are excited, but also a lot of other behaviors are shown.

4.9 Discussion

In this chapter we formulated the sensorimotor loop as a dynamical system in the mul-
tidimensional case and derived the update rules for the controller and the world model
parameters following the homeokinetic principle. These are given by the gradient descent
on the time-loop error (cf. Sections 4.1.1 and 4.1.5). The control algorithm does not opti-
mize a specific goal, but rather requires, quite generally, that the sensorimotor dynamics
is kept at the border of stability. In more intuitive terms the application of this princi-
ple to autonomous robots can be phrased as the aim to stay active and act predictably.
We applied several regularization mechanisms to obtain a robust and practically usable
control algorithm. This was demonstrated by experiments with simulated robots as well
as with a real robot, including a driving robot, the ROCKING STAMPER, the SPHERICAL
robot and the SNAKE robot. In our group many more robots have been controlled with
the homeokinetic controller, some of which are depicted in Fig. 4.35. Even though all

4.9. DISCUSSION 117

Figure 4.35: Other robots that have been controlled by the homeokinetic con-
troller. Left: PIONEER robot [98] playing with a ball. Experiment conducted by Ralf
Der and René Liebscher; Center: A simulated dog robot is learning to move; Right:
Simulated humanoid robot performing athletic exercises. Videos can be found at [47].

of the agents are completely different, the same controller® produces very different and
highly body and environment related behaviors, see also our collection of videos [47]. In
most cases we observe smooth trajectories and a dynamics that exploits the morphology
of the particular body. This is especially prominent in the experiments with the BARREL
and the SPHERICAL robot, cf. Sections 4.4.1 and 4.4.2 where different highly coordinated
rolling modes are exhibited. Also the application to the ROCKING STAMPER resulted in
the exploitation of the eigenfrequencies of the body and showed that the controller remains
highly plastic and adapts constantly to new situations. This was demonstrated by chang-
ing the sensor configuration or breaking a sensor during the experiment, which led to a
quick readaptation, such that the robot was, after a short time, again vividly interacting
with its environment.

Interestingly, the learning dynamics based on the time-loop error does not converge to a
fixed pointed but rather stays on a transient all the time, such that the constitutes of the
dynamical system, meaning the controller and the adaptive world model change constantly.
This can result in a systematic sweeping of the behavior space as we demonstrated using
different robots. The concomitant learning of the world model and the controller can
lead to an incomplete sampling of the behavior space and thus to a limited scope of the
world model. We elaborated on the problems of model learning when sub-dimensional
modes are persistent for longer times. The observed deprivation of the world model was
called “cognitive deprivation” and was analytically proven. Quite generally, systems where
both controller and world model have to be acquired at the same time face the so called
cognitive bootstrapping problem or learning paradox [53|, which might be phrased as the
problem that in order to improve the understanding of the world one has to act, but in
order to know how to act one needs to have already an understanding of the world. We
show analytically that the homeokinetic controller solves the bootstrapping problem by
producing explorative actions pointing into unexplored subspaces. The main result proves

6The dimensionality, implying the number of input and output neurons, is of course different.

118 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

that all subspaces of the sensor-action space are explored by keeping all eigenvalues of the
Jacobian matrix high.

The homeokinetic control can be interpreted as an implementation of the ideas of cogni-
tive embodied systems proposed by Rolf Pfeifer [122, 124| and has a promising approach
for developmental robotics [20]. It is the first system that has been shown to generate
such a variety of coordinated behaviors in physically complex robotic systems, from a
single unspecific principle. Let us compare the results to related efforts in evolutionary
robotics [104]. The creatures of the Framestick world |78], for instance, show that highly
coordinated behaviors in dynamically complex systems can be evolved using artificial evo-
lution. The main difference is that these controller are designed, through the optimization
of a specific fitness function, to show a specific behavior and perform only in a narrow range
of environmental conditions. Another related study is the “playground experiment” [111].
Using an artificial intrinsic motivation a Sony AIBO [172]| explores its surrounding and
tests various actions in a fully self-motivated way. Evaluating it critically we find that the
action space is a very low-dimensional discrete set and the behaviors consist of predefined
actions without dynamical complexity. Other approaches in developmental robotics using
reinforcement learning [161] and intrinsic motivation [65, 88] have much longer learning
times compared to our approach and suffer from the curse of dimensionality in complex
physical systems.

The homeokinetic controller in the original formulation is restricted to the use of specific
proprioceptive sensors, which measure the same physical quantity that is controlled by the
motor actions. Most robotic devices have many more sensors than motors, thinking of
distance sensors, tactile sensors or even visual input. Ideally, we want to supply a range of
different sensors to the controller and hope that the most appropriate ones are automat-
ically selected. To pursue this we presented a new formulation of the dynamics in motor
space, which is more suitable for systems with more sensors than motors, compared to
the original formulation in sensor space. However, the simple internal world model cannot
account for a complicated sensor setting and thus produces infeasible prediction errors.
Another reason to improve the internal world model was given in Section 4.6, where a
snake-like robot with many degrees of freedom and strong inertial effects was considered.
Due to the insufficiency of the internal world model, we observed a reduction of the be-
havioral richness to a few low-dimensional modes. We proposed an extended world model
that uses beside the motor values also the sensor values for its prediction. This raised the
inherent problem of the estimation of the causal effects of the robot’s actions from the
sensor values. We find an ambiguity between self-induced and environmentally-induced
changes in the sensor value stream. However, the actual effects of the actions have to be
properly extracted in order to regulate the controller parameters to the effective regime.
We proposed a rather general solution by specifying a bias towards self-induced observa-
tions and provided experimental evidence for its functional efficiency. A computationally
optimized variation uses a discount in the learning rule and is much simpler to implement.

4.9. DISCUSSION 119

We identified another shortcoming of the unmodified homeokinetic controller, namely
that often high-frequency oscillations are exhibited. However, the influence of the self-
organization process requires intricate mechanisms. We achieved a general formulation
to integrate additional goals or constraints in terms of error functions into the learning
dynamics, without destroying the self-organization process. This is a fundamental step
towards guided self-organization, which will be the subject of the next chapter. As a proof
of concept we formulated the preference for low frequency oscillations and applied it to the
previously floundering SNAKE robot. In this experiment we also successfully applied the
advanced sensor setup and the hierarchical world model. To conclude, it is now possible
to control high-dimensional system with strong inertial effects and more complex sensor
setups.

120 4. HOMEOKINESIS: MULTIDIMENSIONAL, PROPERTIES AND EXTENSIONS

Chapter 5

Guided Self-Organization

Conquest is easy. Control is not.

)

Captain Kirk in “Mirror, Mirror’

In this chapter we will focus on goal-directed behaviors. Usually, this is achieved by directly
optimizing the parameters of the control program to achieve a specific goal, for example
via reinforcement learning [161] or via evolutionary algorithms [104]. We will follow a
different path, namely to combine the self-organizing control with external drives. For
this combination we coined the term guided self-organization [90] and Mikhail Prokopenko
phrased it in a general perspective [130]. Before the term was only rarely used e.g. in
nano technology [30] or swarm robotics [136]. The core idea of guided self-organization is
to combine goal-oriented design with self-organized development to obtain a system which
unites benefits of both. Compared to traditional design which operates mostly in an all-
or-nothing fashion, self-organizing systems tend to have a high tolerance against failures
and degrade gracefully, rather than catastrophically.

What can we expect from a guided homeokinetic controller? We have seen in Chapter 4 that
a variety of behaviors emerged solely from the principle of homeokinesis. The process of self-
organization has quickly structured the vast space of action sequences into a set of behaviors
that show a coherent sensorimotor dynamics of the particular robot in its environment.
The hope is now to shape the self-organization process to produce specific behaviors within
a short time. Part of the idea is to channel the exploration of the homeokinetic controller
around certain desired behaviors, such that modes can be found which fit even better to
the particular robotic device. This is especially important in high-dimensional systems
where the self-organized search for behaviors can take a long time and it is not guaranteed
that all possible behaviors are visited in finite time. With additional soft constraints we
can expect to achieve potentially useful behaviors in high-dimensional robotic systems.

122 5. GUIDED SELF-ORGANIZATION

What are the challenges of guided self-organization? Let us compare self-organization
processes with technical design'. Self-organization is the evolution of a system into an
organized form in the absence of specific external pressures, whereas a technically de-
signed system has a given, usually rigid, structure without reorganization. In [129] Mikhail
Prokopenko emphasizes the differences as follows:

In fact, one may argue that the notions of design and self-organization are
contradictory: the former approach often assumes a methodical step-by-step
planning process with predictable outcomes, whereas the latter involves non-
deterministic spontaneous dynamics with emergent features.

This should not give the impression that self-organizing patterns are completely unpre-
dictable, but they have at least one unpredictable dimension.

On the methodological level we investigate three mechanisms of guidance. The first one
allows for the incorporation of supervised learning signals, e.g. specific nominal motor
commands, which we call teaching signals. This method is made possible through our
study of integrating additional error functions into the learning dynamics, cf. Section 4.7.1.
Using a distal learning [74] setup we study the use of teaching signals in terms of sensor
values. The second mechanism allow for the formulation of motor couplings. This will
be proven to be an effective and simple way to introduce constraints into the system and
facilitate the unsupervised development of specific behaviors. The third mechanism for
guiding the self-organization is discussed in Section 5.3 and uses online reward signals to
shape the emerging behaviors.

5.1 Guiding with Teaching

In this section we investigate different ways to guide the homeokinetic controller with su-
pervised learning signals. We call them teaching signals, because they are given externally
with respect to the self-organizing system. These signals can be incorporated using an
additional error function. An important prerequisite for this method was presented in
Section 4.7.1, where a natural gradient was used to maintain the balance between internal
self-regulation dynamics and external goal-oriented drives.

One way of influencing the behavior of the robot is to directly provide wanted motor pat-
terns, i.e. motor teaching signals. The reader might wonder why this is of practical value
since it requires precise information about the motor setup and its dynamics. Further-
more, if this information is already present one could use it to directly control the robot.
Nevertheless, there are two aspects which make it indeed useful. The explorative charac-
ter of the homeokinetic controller can be used to explore around the given motor pattern
and thus find a more suitable behavior for the particular situation. More importantly, the

'Design is here understood in the engineering sense to design for a particular function.

5.1. GUIDING WITH TEACHING 123

motor teaching mechanism can be used by higher level guiding mechanisms as discussed
in Section 5.2, that are again unsupervised and require much less information about the
dynamics of the robotic device.

Thus, we will first investigate direct motor teaching signals and then consider sensor teach-
ing signals.

5.1.1 Direct Motor Teaching

In this section we will show how to incorporate motor teaching signals into the self-
organizing control. For that we define an additional error function which penalizes the
misfit

n =y — (5.1)

between teaching motor values y° and actual motor values y;. Similarly to the prediction
error for the world model, Eq. (4.20), we find

B = Ty (5.2)
Using the gradient descent we find the additional update for the controller matrix C'
(Eq. (4.18)) as

B ,
AC® = 50 = (e og') !, (5.3)

where ¢’ = ¢'(Czy + h). The update for h is similarly obtained and reads

0B’

ARS = oy = nog. (5.4)
These additional terms are integrated into the final learning rule using the technique for
integrating additional error terms, cf. Section 4.7.1. Using Eqs. (4.73, 4.74) we find for the
formulation in motor space the following total update rules for C' and h:

1 OF
— A - T flA S .
) s

The guidance factor vg regulates the strength of the additional drive and has to be deter-
mined empirically. A small value of v leads to a small influence of the teaching signal and
results in a behavior that is mostly dominated by the original homeokinetic controller. For
large values of g the teaching signals are followed narrowly and few exploratory actions
are performed.

124 5. GUIDED SELF-ORGANIZATION

Y1ty (’YS _

2

SR "
R SRR

R
N =~ O
T T T
Q
—
—
I

_02 1) ..I - 1 1 1 1 1
0 20 40 60 80 100 120 140 160

time [sec]
Figure 5.1: TWOWHEELED robot controlled with homeokinetic controller and
direct motor teaching signals. For different values of g (guidance factor) the teaching
signals ¥ (Eq. (5.7)) are followed more or less accurately. (a) Nominal motor value y*
(identical in both components) and average motor value %(yl + yo) for different values of
the guidance factor vg; (b) Controller parameters of the first motor neuron for vg = 0.01.
Parameters: ec = €4 = 0.1, update rate 100 Hz.

Experiment

Let us evaluate this mechanism of guidance by using the TWOWHEELED robot, see Sec-
tion 2.2.1. We want to show that teaching signals can be used to specify a certain behavior
and that the influence of the teaching can be conveniently adjusted using vg. For that
let us consider two motor teaching signals which are subsequently used. First the nominal
motor values are given by a sine wave and then by a rectangular function with the same
value for both motors, i.e.

(5.7)

t

(45); = 0.85 - sin(wt) t <75
' 0.65 - sgn(sin(wt)) otherwise,

with ¢ = 1,2 and w = 27/50. The choice of the teaching signal has no deeper meaning.
Note that the nominal motor values should not be too large because otherwise the controller
is driven into the saturation region of the motor neurons, see Section 3.8. As we found in
Section 3.7, the fixed point of sensor dynamics in the toy example is at y &~ +0.65. This is
a good mean teaching signal size, which was also used in Eq. (5.7). As a rule of thumb we
recommend confining the motor teaching values to the interval [—0.85,0.85].

5.1. GUIDING WITH TEACHING 125

In Fig. 5.1 the produced motor values and the parameter dynamics are displayed for dif-
ferent values of the guidance factor (vys). For a low value of vg the desired behavior is
only followed by trend, whereas for higher values, e. g. 75 = 0.01, the robot mostly follows
the given teaching value with occasional exploratory interruptions. These interruptions
cause the robot, for example, to move in a curved fashion instead of strictly driving in a
straight line as the teaching signals dictate. The exploration around the teaching signals
might be useful to find modes which are better predictable or more active. It was shown in
the theory of cognitive deprivation (Section 4.5) that a long performance of a single low-
dimensional behavior can lead to the inaccuracy of the adaptive world model. Thus, the
explorative actions can supply the adaptive world model with necessary sensation-actions
pairs for complete learning.

The experiment demonstrated that motor teaching signals can be used to achieve a specific
behavior. This result is not very surprising, because the system is very simple and the
taught behavior did not conflict with the homeokinetic principle (sensitive and predictable).
However, it served as a proof of principle and showed that the balance between taught
behavior and remaining self-organized behavior can be adjusted using a single parameter.

5.1.2 Direct Sensor Teaching

In this section we transfer the direct teaching paradigm from motor teaching signals (Sec-
tion 5.1.1) to sensor teaching signals. This is a useful way of teaching because desired
sensor values can be more easily obtained than motor values, for instance by passively
moving the robot, or parts of the robot, assuming that proprioceptive sensors are present.
This kind of teaching is also commonly used when humans learn a new skill, e.g. think
of a tennis trainer that teaches a new stroke by moving the arm and the racket of the
learner. Thus, a series of nominal sensations can be acquired that can serve as teaching
signals. Setups where the desired outputs are provided in a different domain than the
actual controller outputs are called distal learning [50, 74, 155]. Usually a forward model
is learned that maps actions to sensations (or more generally to the space of the desired
output signals). Then the mismatch between a desired and occurred sensation can be
backpropagated to obtain the required change of action. The backpropagation can also be
done using an inversion of the forward model. Another option is the use of a backward
model, which learns the mapping from sensations to actions. The main difference between
backward models and inverted forward models is the handling of noisy subspaces. The
inverted forward model will expand these subspaces, whereas backward models will shrink
them.

In our case a forward model is already at hand, namely, it is given by the internal world

model, see Eq. (3.16). Instead of a backpropagation we can invert the world model directly

as done in Sections 4.1.2 and 4.1.6. Let the sensor teaching signal be given by x”. The

126 5. GUIDED SELF-ORGANIZATION

distal learning error is the misfit £ between desired sensations 2P and predicted sensations
7; (Eq. (4.2)), thus

& =) — Iy (58)

From Eq. (5.8) and using the world model M (Eq. (4.2)) we can calculate a misfit n; in
motor space that satisfies

ZL’? = i’t + étD = M(l‘t_l, Yt—1 + 7]5) . (59)
Using a linearization we can write
gtD = Mé(%—l, yt_l)nf +0 ((7729)2)) (5.10)

where M, denotes the derivative of M with respect to y. Using the pseudoinverse Mf of
the derivative of the world model M we can obtain 77 in a linearized way as

=M (z-1,y-1)E0 (5.11)

Since our particular implementation of the world model is linear (M (xy,y;) = Ay + b, cf.
Eq. (4.19)) we can obtain the exact formula for n; as

= AT (5.12)

Alternatively, we can calculate the motor teaching signal as y = A* (2P —b), which makes
it easier to confine them to an appropriate interval, see Section 5.1.1. Now the update
formulas for C' and h from the direct motor teaching setup are used, cf. Egs. (5.3, 5.4).
Note that the extended world model (Eq. (4.91)) used in Sections 4.8.4 and 4.8.5 has the
same derivative with respect to y, such that the formulas remain identical. Analogously to
Egs. (5.5, 5.6) and by using Eq. (5.11) we find the following update rules for C' and h:

La0= -0 oy (1) (A€ o) T (5.13)
€c

1 oF -1 ,

aAh = =25+ (JIT) " ((A*EP) o g)) | (5.14)

where ¢’ is taken at ¢'(Cx;_1 + h). The guidance factor is here called vp and regulates the
strength of the additional drive.

The application to the TWOWHEELED driving robot, as it was done in the previous section,
is trivial since the world model consists essentially of a unit matrix. Among the previously
considered robots the SPHERICAL robot has a non-trivial relation between sensor and motor
values, hence we will use it in the following experiment.

5.1. GUIDING WITH TEACHING 127

(a) (b)

rot.ax. [%]

+ | Rotation
80 AXxes

— 1
60 f
2
40+ -3
20+
0 : : ‘ ; ~— o
0 0.001 0.002 0.003 0.004 0.005

Figure 5.2: SPHERICAL robot and its behavior in a distal learning setup. (a) II-
lustration of the robot with its sensor values; (b) Behavior for the distal learning task,
Eq. (5.15). The plot shows the percentage of rotation around each of the axes for different
values of the guidance factor yp (no teaching for yp =0). The rotation around the red
axis is clearly preferred for non-zero vp. The mean and standard deviation of 10 runs
each 60 min long, excluding the first 10 min (initial transient, no teaching). Parameters:
ec = €4 = 0.1, update rate 100 Hz.

Experiment

In this experiment we use the SPHERICAL robot, as described in Section 2.2.5. For each
axis we have one sensor value that is the z-component of the axis vector in world coordi-
nates which is illustrated in Fig. 5.2(a). We use the world model extension as proposed
in Section 4.8 with the bias towards self-induced interpretation of sensor values, see Sec-
tion 4.8.4.

The objective of this experiment is to show that a simple teaching signal in terms of sensor
values can be used to effectively guide the behavior of the SPHERICAL robot towards
rotations around the first internal axis. To achieve that, we use the distal learning task
that requests a low value of the first sensor. More precisely,

2 = (z),], (5.15)

thus only the first component of the sensor value produces an error signal. We expect
that the robot will preferably rotate around the first axis since this keeps the first sensor
value low, see Fig. 5.2(a). To evaluate, we performed for different values of the guidance
factor 10 runs each with a duration of 60 min and the robot on the level ground. The
distal learning setup requires a well trained world model. Therefore no teaching signal
was provided during the first 10 min of the experiment. As a descriptive measure of the
behavior, we used the index of the internal axis around which the highest rotational velocity

128 5. GUIDED SELF-ORGANIZATION

was measured at each moment of time. Figure 5.2(b) displays for different values of the
guidance factor (yp) and for each of the axes the percentage of time it was the major axis
of rotation. Without teaching there is no preferred axis of rotation. With distal learning
the robot shows a significant preference for a rotation around the first axis up to 75 %.
For overly strong teaching, a large variance in the performance occurs. This is caused by a
too strong influence of the teaching signal on the learning dynamics. Remember that the
rolling modes can emerge due to the fine regulation of the sensorimotor loop to the working
regime of the homeokinetic controller, which cannot be maintained for large values of vp.

Why is it not possible with this method to force the controller to stay in the rotational
mode around the first axis? The answer is rather intuitive: When the robot is in this
rotational mode the teaching signal is negligible. However, the controller’s sensitization
will increase the impact of the first sensor, such that the mode becomes unstable again.

To summarize, the direct teaching mechanism proposed in Section 5.1.1 allows us to specify
motor patterns that are more or less closely followed, depending on the strength of integra-
tion of the additional force into the learning dynamics. In this section we considered sensor
teaching signals that were transformed into motor teaching signals using the internal world
model. We have shown that the SPHERICAL robot with the homeokinetic controller can
be guided to locomote mostly around one particular axis, by specifying a constant sensor
teaching signal at one of the sensors. The supervised learning in terms of sensor signals
is one step in the direction of imitation learning. Imitation learning [142]| deals with how
an autonomous robot can acquire behaviors from other agents or from humans. In this
setting the robot can typically perceive the movement via a camera or perhaps via its joint
sensors if the demonstrator was moving the parts of the robot’s body. In the latter case
the methods proposed here can be directly used. If only visual information is available
the correspondence problem concerning the mismatch between the teacher’s body and the
robot’s body needs to be resolved [34, 49, 134|, which is not discussed here.

5.2 Guiding with Cross-Motor Teaching

Many robotic systems and animals have a symmetric structure, e.g. a sagittal symmetry
between the left and right sides of the body or a number of identical legs and so forth.
We will now discuss how to provide the control system with information about the body
morphology and symmetries of the desired behaviors to influence the self-organization
process. For that we will use soft constraints which reduce the effective dimension of the
sensorimotor dynamics and thus guide the self-organization along a sub-space of the original
control problem. In biological systems these kinds of constraints are often implemented
on a low level of neuronal circuitry, e.g. pairs of antagonistic muscles are connected such
that activity of one inhibits activity of the other on the level of a-motor neurons and
inter-neurons in the spinal cord [118].

5.2. GUIDING WITH CROSS-MOTOR TEACHING 129

Inspired by this regulation we use the motor values of one controller neuron as a teach-
ing signal for another controller neuron. We call this method cross-motor teaching. To
describe which controller neuron receives a teaching signal from which we use cross-motor
connections. Note that despite the use of ‘teaching signals’ the algorithms is completely
unsupervised, because the signals are generated internally.

To introduce this method we will first consider pairwise symmetries and then generalize to
permutation relations. Finally, we will discuss how arbitrary cross-motor teaching can be
implemented to reduce the effective dimensionality of the search space.

5.2.1 Enforcing Pairwise Symmetries

First we want to influence the controller to prefer a mirror-symmetry in the motor patterns.
For that, pairs of motors are selected which are supposed to be synchronous. Let us consider
a particular pair of motors (7, s). We place a cross-motor connection from r to s and back.
Thus, the motor r is driven towards the value of motor s and vice versa. Hence, the
(internal) teaching signal is

(yf>r = (yt)s and (1%29)5 = (yt)ry (5'16)

which is used in Egs. (5.2-5.6).

Likewise, an anti-symmetric relation can be expressed with (y°), = —(y;)s and vice versa.
In this simple setup the cross-motor connections have either a positive or negative sign.
For those motors i that are not part of a pair we need to set (y°); = (y);, in order to
produce no error signal in the framework of direct motor teaching, Section 5.1.1. More
complex connection types are discussed later.

Experiment

To illustrate the concept we will consider the TWOWHEELED robot, see Section 2.2.1. The
robot has two motors actuated according to y; and ys. Let the preferred behavior be to

drive straight. This can be obtained by defining a symmetric relation between both motors
following Eq. (5.16), i.e.

(=2 and ()2 = (- (5.17)

For experimental evaluation we placed the robot in an environment cluttered with obsta-
cles. We performed for different values of the factor vg five runs of 20 min length. In order
to quantify the influence of the cross-motor teaching we record the trajectory, the linear
velocity, and the angular velocity of the robot. We expect an increase in linear velocity
because the robot is to move straight instead of turning. For the same reason the angular

130 5. GUIDED SELF-ORGANIZATION

(a) (b)
20¢ | area
[%]
15¢ 1150
— area
——Alvh
10 o (lwly | 1100
05: o e——-—#——-—e--"* .50
= — ° .
00— ‘ ‘ ‘ ‘
0 0.001 0.025 0.005 0.010
s vs = 0.005

Figure 5.3: Behavior of the TWOWHEELED robot with enforced symmetry of
the two motors. (a) Mean and standard deviation (of 5 runs each 20 min) of the area
coverage (area), the average velocity ({v)), and the average turning velocity ((Jw,|)) for
different values of the guidance factor g. Area coverage (box counting method) is given in
percent of the case without influence (s = 0) (right axis). The robot is driving straighter
and its trajectory covers more area for larger vg; (b) An example trajectory of the robot
with guidance factor vg = 0.005. Parameters: ec = ¢4 = 0.01, update rate 100 Hz.

velocity should go down. In Fig. 5.3 two sample trajectories and the behavioral quantifi-
cations are plotted. Additionally, we plot the relative area coverage?, which reflects how
much more area of the environment was covered by the robot with cross-motor teaching
compared to the original homeokinetic controller. As expected, the robot shows a distinct
decrease in mean turning velocity and a higher area coverage with increasing values of the
guidance factor. Note that the robot is still performing turns and drives both backwards
and forwards and does not get stuck at the walls, as seen in the trajectory in Fig. 5.3(b).
The properties of the homeokinetic controller, such as sensitivity and exploration, remain.

We have seen that a pairwise cross-motor teaching can be used to guide the self-organizing
control to drive mostly straight in the TWOWHEELED robot. The strength of this prefer-
ence can be adjusted by the guidance factor. The algorithm is unsupervised and the only
specific information that is given is the pair of motors to be synchronized. Let us now
proceed to a more flexible specification of cross-motor connections in order to deal with
more complex situations.

5.2.2 Permutation Relations

Now we want to consider a more general cross-motor connection setup where each motor
has one incoming and one outgoing connection, such that there is still only one teaching

2The area coverage of the trajectory is calculated using a box-counting method.

5.2. GUIDING WITH CROSS-MOTOR TEACHING 131

signal per motor. The cross-motor connections can be described by a permutation m,, of the
m motors that assigns each motor a source of teaching input. Additionally a sign function

X {1,...,m} — {—1,1} defines whether the motors are supposed to be symmetric or
antisymmetric. The teaching signal is then given by
(yf)l = X (T (1)) (%) 1,0, i) fori=1,...,m. (5.18)

The symmetric setup (Eq. (5.16)) is of course a special case of this notation. With a
cyclic schema of connections also a group of motors can be synchronized. In the following
experiment we use a rotation-symmetric configuration to show that a high-dimensional
chain-like robot can quickly develop a locomotion behavior.

Experiment

Let us now consider a more complex robot — the ARMBAND. This robot consists of a
sequence of flat segments placed in a ring-like configuration, where subsequent segments
are connected by motor-operated hinge joints. As a result we obtain a robot with the
appearance of a bracelet or chain, see Fig. 5.4(a). A detailed description of the simulated
hardware is located in Section 2.2.8. Since the robot is symmetric there is by construction
no preferred direction of motion, meaning that the robot controlled by the homeokinetic
controller will equally probable move forward and backward. The robot cannot turn or
move sideways, but it can produce a variety of postures and locomotion patterns.

With the method of cross-motor teaching we can select different symmetries, such that the

robot is more likely to perform a directed motion. For that we define the permutation,
(used in Eq. (5.18)), as

Tm(i) = (i +k+ |m/2]) mod m, (5.19)

where k € {—1,0,1}. We will only use positive connections, such that the sign function is
not required. Thus, the teaching signals are

(v), = (Yt) (i1t m/2)) mod m fori=1,...,m. (5.20)

The choice of k depends on the desired direction of motion and on whether the number of
joints m is even or odd. If m is even then k = —1 and k = 1 are used for both directions
(forward or backward) and k = 0 represents a point symmetric connection setup. In the
latter case the robot will not prefer a direction of motion and the behavior is similar to
the one without guidance. For an odd value of m, which is also used here, £k = 0 and
k = 1 can be used for backward and forward motion. In the following experiments the
robot has m = 13 motors. The motor connections for & = 1 are illustrated in Fig. 5.4(b).
Each motor connection is displayed by an arrow pointing to the receiving motor. Note
that the connections are directed and a motor is not teaching the same motor from which
it is receiving teaching signals. For k = 0 all arrows in Fig. 5.4(b) are inverted, meaning
that for each connection the sending and receiving motors would swap roles.

132 5. GUIDED SELF-ORGANIZATION

Figure 5.4: ARMBAND robot with cross-motor connections. (a) Screenshot from
the simulation. The transparent sphere in the center marks the center of mass of the robot;
(b) Schematic view of the robot. The prismatic structures are hinge joints actuated by
servo motors. The arrows indicate unidirectional cross-motor connections, where the head
points to the receiving unit. All links are equal, but for visibility reasons only four links
are drawn boldly. For this connection setup the robot preferably moves leftwards.

(b)

O g
0.000 0.002 0.004 0.006 0.008 0.010 500 1000 1500 [sec]
Figure 5.5: Performance of the ARMBAND robot with constant cross-motor
teaching. (a) Mean and standard deviation of the average velocity (v) and the average
absolute velocity (|v|) of 5 runs for different value of the guidance factor g; (b) Velocity
of the robot v (averages over 1 minute sliding window) for 3 runs at yg = 0.003.

Parameters: k =1, ¢ = €4 = 0.1, VE (Section 4.2.4), update rate 100 Hz.

5.2. GUIDING WITH CROSS-MOTOR TEACHING 133

To evaluate the performance we conducted for different values of the guidance factor vg 5
trials each 30 min long. In a first setting the cross-motor connections were fixed (k = 1)
for the entire duration of the experiment. We observed the formation of a locomotion
behavior after a very short time. Note that this behavior requires all joints of the robot
to be highly coordinated. As a quantitative measure of the performance we calculate the
horizontal velocity v using the center of mass of the robot, see Fig. 5.4(a). Thus, the
velocity is a scalar number and we define forward motion if v > 0 and backward motion if
v < 0. In this experiment we expect the robot to move only forward, because a fixed cross-
motor connection setup was used. The average velocity of the robot increased distinctively
with raising guidance factors, see Fig. 5.5(a). For excessively large values of the guidance
factor g the velocity goes down again. This occurs for two reasons: First, the cross-motor
teaching has a too strong influence on the working regime of the homeokinetic controller
and second the actual motor pattern of the locomotion behavior does not perfectly obey
the relations between the motor values as specified by Eq. (5.20). In order to satisfy the
constraints imposed by Eq. (5.20) all motor values need to be equal, which is of course not
the case in the locomotion behavior.

Without guidance the robot moves equally to both directions but with comparably low
velocity. This can be seen at the mean of the absolute velocity in Fig. 5.5(a). If the value
of the guidance factor is chosen conveniently, the robot moves in one direction with varying
speed see Fig. 5.5(b) where 3 velocity traces are displayed. The locomotive behavior can
also be seen in [Video 10] for a low value of guidance factor (v, = 0.001) and in [Video 11]
for a medium value of guidance factor (ys = 0.003). We also observe a peak of high
velocity after the first few minutes, which is followed by a dip before a more steady regime
is attained. During this time the controller is going from a subcritical regime (at t = 0) to
a slightly supercritical regime.

In a second setup we changed the cross-motor connections every 5min, i.e. k was changed
from 0 to 1 and back. A value of £k = 0 should lead to a negative velocity and a k =1 to
a positive velocity. To study the dependence on the guidance factor and to measure the
performance we use the average absolute velocity ((|v|)) and the correlation of the velocity
with the configuration of the cross-motor teaching (p(v,k)), see Fig. 5.6(a). Without
guidance (vs = 0) there is, as expected, no correlation with the supposed direction of
locomotion. For a range of values of the guidance factor we find a high total locomotion
speed with a strong correlation to the supposed direction of motion. Note that the size
of the correlation depends on the length of the intervals of one connection setting. For
long intervals the correlation will approach one. In Fig. 5.6(b) the velocity of the robot
is plotted for different runs with the same value of the guidance factor that was used in
the previous experiment (ys = 0.003). We observe that the robot changes the direction of
motion shortly after the configuration of couplings was changed, cf. [Video 12].

The experiment illustrates that we can achieve a specific behavior in a high-dimensional
robot (here 13 DoF) by using cross-motor teaching. With a set of motor couplings the
symmetry between two directions of motion was broken and a fast locomotion behavior

134 5. GUIDED SELF-ORGANIZATION

(a) (b)
20, 108
$-t 4 , -D
15/ f/ = M j\lm\ v
i 2 2r P W\QA i 4‘u‘/‘ Mr“
, B . 1
10+ las L (R VN (R
5 —uasf 5000 _ifiooo Lagbo time
05[— Vb 102 0 Lyl i WA Isec]
- p(V, k) i \‘M
00 L 0.0 a4}
0.000 0.002 0.004 0,006 0.008 0.010

s

Figure 5.6: Performance of the ARMBAND robot with changing cross-motor
teaching. (a) Mean and standard deviation of 5 runs of the average absolute velocity
(lv]) and the correlation p(v,k) of the velocity with the configuration of the couplings
for different values of the guidance factor 7vg; (b) Velocity (averages over 10sec sliding
windows) of the robot for 3 runs at yg = 0.003 and the supposed direction of motion
D = 2k — 1 for better visibility. Parameters: ec = €4 = 0.1, VE (Section 4.2.4), update
rate 100 Hz.

set in. When the connections are changed during the runtime the behavior of the robot
changes reliably. In the next section we will discuss methods to implement other types of
motor couplings that are not limited to a permutation setup.

5.2.3 Arbitrary Cross-Motor Teaching Configurations

In a more general form, the connection setup between motors can be expressed by a graph.
If we keep the restriction of the couplings to a symmetric or antisymmetric relation between
the motors then the graph can be expressed by an (m x m) connection matrix® M with
elements from {—1,0,1}. We define the teaching signal as the average of all incoming
connections, thus

()i = ZMW (), fori=1...m. (5.21)
] 1|MZ]|

The number of non-zero entries in each row must be larger than zero, i.e. Z;n:l |M;;| > 0.
A unit matrix for M represents no cross-motor teaching, since all motors receive only
their own motor value. Note that using the average value of several motor values as a
teaching signal has the disadvantage of reducing the activity in the sensorimotor loop.

3The connection matrix is also known as weight matrix and an entry in column i and row j represents
the connection from motor neuron 4 to j. In our case a value of 0 means no connection and values of —1
and 1 stand for a negative or positive teaching connection.

5.3. GUIDING WITH REWARD 135

This is because the average value often has usually a small magnitude, e. g. if positive and
negative motor values are combined.

Another interesting way of coupling would be to enforce a certain phase-difference between
two motors. However, this requires a suitable definition of a phase for each controller
output, which will not be studied here.

The proposed coupling graph requires rather detailed information about the robot’s mor-
phology and its dynamics. Nevertheless, we see a large potential for this method, because
the graph of connections could be learned by a higher level learning procedure. One possi-
ble way would be to use a Hebbian type learning to capture the correlations between motor
channels for a particular behavior that is produced by the homeokinetic controller from
time to time. Strong correlations between motor channels would suggest a cross-motor
connection between them (likewise a strong anti-correlation would suggest a connection
with negative sign).

The mechanism proposed here can also be transferred to sensor space using the direct
sensor teaching (Section 5.1.2). The configuration is then defined in terms of cross-sensor
coupling analogously to the definitions given above. This can become useful, for example
if a certain behavior is demonstrated by a human operator by passively moving the robot.
In the case of the ARMBAND robot, one can easily imagine that the robot is pushed along
the ground such that a locomotion pattern is formed. Based on the sensor readings, the
correlations between the sensor channels can be determined and serve as a basis for the
construction of a specific cross-sensor couplings.

Let us summarize: Starting from the guidance by teaching we introduced the concept of
cross-motor teaching that allows us to specify abstract relations between motor channels.
There are no external teaching signals required, because the motor values are used mutually
as teaching signals. The only specific information put into the system is mutual teaching
configuration. First we studied simple pairwise symmetric relations and shaped the behav-
ior of the TWOWHEELED robot to drive mostly straight through the cross-motor teaching
between both motors. This teaching method introduces soft constraints that guide the
self-organization process to a subspace of the entire sensorimotor space and therewith the
effective dimension of the search space for behaviors is reduced. This was demonstrated
using a high-dimensional robot — the ARMBAND. With a simple cross-motor teaching con-
figuration the robot developed within a short time fast locomotion behaviors from scratch.
The direction of motion was altered by a change in the connection setup.

5.3 Guiding with Reward

In this section we investigate how to guide the self-organization process by providing an
online reward or punishment. The starting point for the following considerations is the ob-
servation that the homeokinetic controller explores the behavioral space of the controlled

136 5. GUIDED SELF-ORGANIZATION

system, cf. Section 4.4. For instance, the behavior of the BARREL robot showed a sys-
tematic sweeping through the accessible frequencies of the sensor state reflected by rolling
modes with different velocities (Section 4.4.1). In the case of the SPHERICAL robot with its
three dimensional motor and sensor space we also observed a sweeping through a large set
of possible behaviors (Section 4.4.2). In a setup where the robot can move freely, it will ex-
hibit different slow and fast rolling modes around different axes. An important observation
is that behaviors which are well predictable will persist longer than others, cf. Section 3.5.
Nevertheless, due to the exploratory character of the controller all behavioral modes are
transient in their nature. In order to maintain a currently active behavior the adaptation
rate of the homeokinetic controller has to be low, because otherwise it will continue to
search for new behaviors. At first glance it seems to be counterintuitive that we have to
reduce learning speed in order to keep a behavior, but the point is that the controller has
already learned to produce the behavior when it is exhibited by the robot. It becomes
also clear if we think of the transient lifetimes of well and less predictable behaviors. The
homeokinetic controller gives the well predictable behavior a longer persistence, which is
indeed sound. Note that this reflects a change of adaptation speed, namely that for pre-
dictable behaviors a smaller gradient of the error function occurs, which implies smaller
learning steps. The idea is now to exploit this effect and regulate the speed of learning
based on reward or punishment. We can expect that rewarded behaviors persists longer
and punishment behaviors are left quicker.

Let us define a reward signal r(t) € R for each time ¢, which should be considered as a
punishment for negative values and as a reward for and positive values. To incorporate
the reward signal we define a new error function in the following way

E" = (1 — tanh(r(t)))E, (5.22)

where FE is the usual TLE function defined in Eq. (4.12). The factor (1 — tanh(r(t))
approaches zero for large positive rewards and 2 for large negative rewards as depicted
in Fig. 5.7(a). The multiplication of the error function is the same as multiplying the
learning rate. Thus, we could similarly write e, = (1 — tanh(r(¢)))ec. The construction
of the new error function Eq. (5.22) follows our considerations above. For a reward (r > 0)
the factor (1 — tanh(r(¢)) is smaller than 1 and thus decreases the learning speed. For
a punishment (r < 0) the learning speed is increased. The hyperbolic tangent imposes
constraints on effective values of r(t), namely they should be in the interval (—3,3) to
have a differentiable effect on the learning dynamics. However, it is not required that the
interval is being utilized by a particular reward function, nor does it do harm to exceed
the range.

Before we evaluate this method of guidance let us wrap up the mechanism. All behavioral
modes of the non-guided homeokinetic controller are transient. The lifetime of a behavior
normally depends on the size of prediction error £ (and on the sensitivity) so that well
predictable behavior remain longer. We used this to modulate the lifetimes based on
reward and punishment using an additional factor in error function (Eq. (5.22)) . Behaviors

5.3. GUIDING WITH REWARD 137

(a)
2 =T T T T
1 — tanh(r) ——

1.5 F E

1L N
0.5 N

O 1 1 1 S

-3 -2 -1 0 1 2 3

Figure 5.7: Reward dependent factor and the SPHERICAL robot in world co-
ordinates. (a) Factor for the modified error function, Eq. (5.22); (b) SPHERICAL robot
with angular velocity (w,) around the z-axis and velocity vector v in z-y-plane. Note that
x,y, z refer here to the axes of the world coordinate system.

with small or even negative reinforcement should be left rapidly, whereas large positive
reinforcement tends to increase the lifetimes, which is maximal for behaviors that are both
rewarded and well predictable.

Let us now apply the mechanism to shape the behaviors of the SPHERICAL robot. In
the following sections we will demonstrate two different behaviors which can be effectively
guided.

5.3.1 Reinforcing Speed

In the following experiment we will use the SPHERICAL robot, as described in Section 2.2.5.
One of the simplest possible desired behaviors of this robot is to move fast. Let us construct
the reward function for this goal. For small velocities the reward should be negative, thus
causing a stronger change of behavior, whereas larger velocities should result in a positive
reward. To achieve that, the reinforcement signal can be expressed as

r(6)= 5 vll - 1, (5.23)

where v, is the velocity vector of the robot, see Fig. 5.7(b). In order to compare the results
with the unguided case the reward is shifted, such that it is zero for the average velocity
of normal runs. The scaling is done to keep the reward within the effective range?*.

We conducted 20 trials with the SPHERICAL robot with reinforcement and 20 trials without
reinforcement, all with random initial conditions, each for 60 min in simulated real time

4Note that here the minimal reward is —1, so we do not use the entire range of punishment.

138 5. GUIDED SELF-ORGANIZATION

(a) (b)
10
run
velocity S 8r 127
10 5 6 reinforced -
[e]
_g 4 e, v'”““UA o, lm“"v,‘” N
8 2 ‘”‘u" R ““"‘ ' e T -
. 0] ‘)] |norm?| 1 1
10 T T T T T
run
4 > 8 197
£ 6 . -
reinforced
2 -§ 4 TP NN P TR T
2r Dol T ' ‘nor\malﬂ 7]
run 0 M| 1 1 1 1 1 1
1357 91113151719 0 500 1000 1500 2000 2500 3000 3500 4000

time in seconds

Figure 5.8: Performance of the SPHERICAL robot rewarded for speed. (a) Mean
and std. deviation of the velocity of the SPHERICAL robot for 20 runs each 60 min long with
(diamonds/solid line) and without (stars/dotted line) speed reinforcement. The label
‘all’ denotes the mean and std. deviation over the means of all runs which is significantly
(p < 0.001) higher for the reinforced runs; (b) Time course of the robot’s velocity for run
number 12 and 19, where blue/dotted shows the normal case and red/solid line shows
the reinforced case.

on a flat surface without obstacles. The robot also experiences rolling friction, so that fast
rolling really requires constant acceleration. In Fig. 5.8 the mean velocity (measured at the
center of the robot) for each simulation is plotted and the velocity trace of the robot for
two reinforced and two normal runs are displayed as well. The simulations are enumerated
and plotted pairwise in comparison, although the pairing is random. The mean velocities
of the reinforced runs are larger than the ones of the normal runs. This is especially evident
in the overall mean (mean of means marked with ‘all’” in Fig. 5.8(a)), which is significantly
different. The null hypothesis that the set of means of the reinforced runs and of the
normals runs have an indistinguishable mean was rejected with p < 0.001 using the t-test.
However, since straight and also fast rolling modes are easily predictable and active they
are also exhibited without reinforcement for a long time. The traces illustrate that the
robot with reinforcement reaches quicker a faster rolling motion and also stays longer in
these behaviors. It is important to note that the fast rolling modes are also found again,
after the robot is moving slower, see Fig. 5.8(b).

The guidance of the homeokinetic controller using a reward for fast motion has shown to
increase the average speed of the robot significantly. Nevertheless there are trials where
no increased speed was found.

5.3. GUIDING WITH REWARD 139

(a)

angular vel. T i
B |

20 5
2]
15 J
|20 run |
10 T 15 12
5 £ 10 }
\ s ‘
ot 5 ; run 0 WM s e it M S st N _

1357 9113151719 0 500 1000 1500 2000 2500 3000 3500 4000

time in seconds
Figure 5.9: Performance of the SPHERICAL robot rewarded for spin. (a) Mean
and std. deviation of the angular velocity w, of the SPHERICAL robot for 20 runs each
60 min long with (diamonds/solid line) and without (stars/dotted line) spin reinforce-
ment. The label ‘all’ denotes the mean and std. deviation over the means of all runs;
(b) Time course of the velocity for run number 12 and 19, where blue/dotted shows the
normal case and red/solid line shows the reinforced case.

5.3.2 Reinforcing Spin

In a different setup we want the robot to follow curves and spin in place. We use the angular
velocity w, around the z-axis of the world coordinates system, which is perpendicular to
the ground plane, as depicted in Fig. 5.7(b). The reward function is now given by

r(t) = észH —1. (5.24)

Again the reward is scaled and shifted to be zero for normal runs and to be in an appropriate
interval. Positive reward can be obtained by rolling in a curved fashion or by entering a
pirouette mode. The latter can be compared to a pirouette done by figure-skaters — with
some initial rotation the masses are moved towards the center, so that the robot spins fast in
place. The robot also experiences rolling friction, so that fast pirouettes are not persistent.
Again, we conducted 20 trials with reinforcement and 20 trials without reinforcement, each
for 60 min simulated real time on a flat surface without obstacles. In Fig. 5.9(a) the mean
angular velocity w, for each simulation is plotted. The angular velocities traces of the robot
in two reinforced and two normal runs are displayed in Fig. 5.9(b). In this scenario the
difference between the normal runs and the reinforced runs is indistinguishable. Nearly all
reinforced runs show a large mean angular velocity. The reason for this drastic difference
is that these spinning modes are less predictable and therefore quickly abandoned in the
non-reinforced setup. The traces show that the robot in a normal setup rarely performs
spinning motion, whereas the reinforced robot, performs after some time of exploration

140 5. GUIDED SELF-ORGANIZATION

very fast spinning motions, which are persistent for several minutes. In this setup it can
also be seen that the rewarded behaviors are found again after they are lost, see Fig. 5.9(b).

In this scenario the mechanism to modulate the learning speed by a reward signal showed
a strong effect on the behavior of the SPHERICAL robot. When controlled by the homeo-
kinetic controller without guidance the robot rarely exhibits narrow curves or spinning
behavior. In contrast the guided controller engaged the system into curved motion most
of the time. One might wonder how it is possible that this technique is able to reach a
behavior that is normally not exhibited. The reason is that when the robot is starting
to follow a curve, then the learning rate of the controller goes down, although the world
model is still learning normally. In the unguided case the prediction error will rise (because
it is a new behavior) and thus the controller will quickly leave this behavior. This actually
happens before a fast winding is reached. In the rewarded case the world model is able to
capture the behavior before it is left and thus also influences the control network, which
in turn enables the control system to enter modes of more narrow curves.

5.4 Discussion

In the first part of this chapter we proposed two methods to guide the otherwise freely self-
organized behavior based on teaching signals. We defined an appropriate error function
that allows one to directly specify a desired motor pattern and verified its functioning
with a simple robot experiment. The balance between self-organized behavior and taught
behavior can be adjusted with a single parameter. Using the internal world model we are
able to transform sensor teaching signals into motor teaching signals. In this framework,
the SPHERICAL robot was taught to prefer the rotation around one particular axis. This
was achieved solely by requesting a zero value of the sensor value measuring the axis
orientation of that particular axis.

The direct teaching mechanisms form the basis for further investigations that aim at higher
level guiding mechanisms, which we consider in the second part of this chapter (Section 5.2).
We introduced the method of cross-motor teaching with which abstract relations between
motor channels can be specified, such as symmetric or anti-symmetric activity or more
elaborate connection patterns. This induces soft constraints and therewith reduces the
effective dimensionality of the system. An example with the TWOWHEELED robot showed
that by enforcing the symmetry between the left and the right wheel the behavior changes
qualitatively to straight motion. Nevertheless, the explorative character of the controller is
not destroyed. The resulting behaviors are less specific than in the case of direct teaching.
For example the TWOWHEELED robot can drive forward or backward at its own choice,
whereas in the direct teaching setup the direction of driving is specified externally. It is also
interesting that the robot remains sensitive to perturbations and changes its behavior from
time to time so that the available environment is thoroughly scanned. Especially visible is
the effectiveness of guidance with the high-dimensional ARMBAND robot. A cross-motor

5.4. DISCUSSION 141

teaching configuration with only one connection per joint leads to a fast and coordinated
locomotion behavior. A change in the connections rapidly and reliably causes a change in
the direction of motion. This method offers a good way for higher level control structures
to direct the behavior of the robot.

In the third part of this chapter (Section 5.3) we proposed a simple method to guide
the self-organizing behavior using online reward signals. In essence, the original time-loop
error is multiplied by a strength factor, obtained from the reward signal. The approach was
applied to the SPHERICAL robot with two goals, fast motion and curved rolling. In both
cases the performance was significantly increased, although the reinforcement of fast motion
showed only a small effect, because the homeokinetic controller achieves fast rolling modes
already without guidance. When reinforcing curved rolling the results are distinctive. In
this case we find fast spinning modes, which are not observed otherwise. Nevertheless,
the exploratory character of the paradigm still remains intact. These results have been
published in [90].

Let us compare the guided self-organization using cross-motor teaching and rewards with
other approaches to autonomous robot control, namely evolutionary algorithms [104] and
reinforcement learning [161]. We will consider several dimensions along which they are
compared: (i) the achievement of the specified goal, (7i) the learning time, (i) the flex-
ibility of the solution, and (iv) the universality of the method. Evolutionary algorithms
can optimize the parameters of the controlling neural network and can possibly achieve
the behaviors demonstrated here. Similar systems in terms of dynamical complexity have
been considered in [36, 71, 93]. However, for high-dimensional systems, identical subcom-
ponents are often used and in any case it requires a long learning time (many generations
with many individuals). The final controller is mostly static, such that it only works in the
conditions it was evolved in. Evolutionary algorithms are universal, but the representation
of the problem in the artificial genome requires great care. When considering reinforcement
learning (RL) we have to distinguish how the control is organized. Traditionally RL uses
a set of discrete actions, which would be an intractably large set in the case of the 13-DoF
ARMBAND robot. RL would not yield a good performance in this case. In order to achieve
a good performance the space of actions has to be structured first. A very powerful RL
method is the natural actor-critics [121]. This allows for a continuous state and action
space and is currently the most efficient RL algorithm for high-dimensional systems [1].
Nevertheless, for example a seven DoF robotic arm requires initial supervised learning (by
human demonstration) before it can successfully learn to perform the task [119]. Even
with sophisticated methods like natural actor-critics the learning times are very long in
comparison to the approaches proposed here. RL can deal with delayed rewards since it
solves the credit assignment problem, whereas the reward schema used here (Section 5.3)
require online rewards. In the case of the cross-motor teaching the specification of the de-
sired behavior is indirect and limited in comparison to the possibilities of reward function
in RL and the fitness function in evolutionary algorithms. The methods proposed here for
guided self-organization are specific methods to shape the behaviors of the homeokinetic
controller. As a matter of fact, the desired behaviors are found very fast even in high-

142 5. GUIDED SELF-ORGANIZATION

dimensional and dynamically complex systems. However, the desired behaviors are only
partially followed. This is due to the underlying self-organization which causes an ongoing
exploration around the desired behaviors. Concerning the flexibility, the resulting con-
trollers are highly adaptive and can change quickly to new situations, which is one of the
major strengths of the self-organizing system. To conclude, the guided self-organization
methods offer a fast development of goal-oriented behaviors in high-dimensional continuous
robotic systems from scratch, which cannot be achieved with other learning control systems
so far. However, the implementation of goals is comparably limited. The reward-based
guidance allows any reward signals, but no time delays are tolerated. The cross-motor
teaching method is suitable to select a subset of behaviors, but cannot be generalized to
all behaviors. A combination of both methods is also possible, namely using cross-motor
teaching to be very effective in high-dimensional systems and additionally using rewards
to give a fine grain control over the behavior.

In the current setup the controller and the internal world model will forget past behaviors,
so that there is no long term effect of the reinforcement. Another problem for practical
applications is that we achieve only a tendency to a certain behavior and cannot guarantee
its successful execution. These problems will be tackled in the next chapter, where we will
look into the acquisition of behavioral primitives using a set of competing expert networks.
The presented guiding mechanisms are then usable to shape the development of behavioral
primitives.

Chapter 6

(Goal-Oriented Behavior from
Self-Organized Behavioral Primitives

An expert is a person
who has made all the mistakes
that can be made in a very narrow field.

Niels Bohr (1885 - 1962)

The homeokinetic control is a very powerful method to obtain coordinated behavior in
complex robot systems (Chapter 4), but it can not really be used in practical applications,
because one cannot directly accomplish a task with it. In the present chapter we will solve
this shortcoming in a surprisingly intuitive way.

A commonly used technique for learning a particular task is reinforcement learning® [161].
A reinforcement learning algorithm learns to choose the right sequence of actions to max-
imize a long-term reward. The latter has to be designed according to the current task.
Unfortunately, in real world applications the dimensionality of the systems is so large that
it is impossible to learn the right sequence of ad-hoc actions within a feasible amount
of time. Consider for example a robot with about 20 degrees-of-freedom (DoF), e.g. the
SNAKE robot as used in the present work (Section 2.2.7) or the Honda humanoid robot
AsiMO [173] (with 26 DoF), where each DoF needs a motor command at every instant in
time. Even if only three different commands per DoF are used then there are 32° > 10°
different actions to choose from. As it is impossible to search such a huge space for useful
actions for a particular situation, it is necessary to find a more compact representation by
coarse grain building blocks, namely behavioral primitives.

'Reinforcement learning refers here to the maximization of a future reward, which is possibly given
temporally delayed. This is in contrast to the immediate reinforcement signals that were used in Section 5.3.

144 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

As the concept of behavioral primitives is studied in fields of human movement science
and also in robotics, we find in the literature a variety of synonyms, such as ‘movement
primitives® [141], ‘motor schemas’ [4], and ‘units of action’ [154]. It is believed that the
existence of behavioral primitives is essential for complex and effective skill learning and
movement generation [141]. Behavioral primitives are defined as sequences of actions or
as a sensorimotor dynamics that accomplish a complete goal-oriented behavior. They can
be as simple as an elementary action, e. g. ‘extending a leg’, ‘waving a hand’, etc., but can
also comprise more complex movements. For the same reasons as given above, in [140]
it was stated that too simple low-level representations do not scale well to systems with
many degrees of freedom. Thus, it was suggested that behavioral primitives code complete
temporal behaviors, like ‘grasping a cup’, ‘walking’ or ‘shooting a ball’. Since they are to be
used as building blocks for more complex behaviors it is important that the primitives can
be easily sequenced and combined. An appropriate storage of the primitives can be done
in closed-loop controllers, much like the homeokinetic controller itself. This yields a good
generalization performance and smooths the transients between primitives, see also [162].

Let us now consider the behaviors that are performed by the homeokinetic controller with
some temporal persistence. Even though they do not have a specific goal 2, unless shaped
by guided self-organization, see Chapter 5, we argue that an observer can attribute a goal to
most of the particular behaviors, for example the different rolling modes of the SPHERICAL
robot appear to follow the goal of directed motion. Therefore these behaviors are likely to
be useful for the construction of more complex goal-oriented behaviors. The sensorimotor
loops established by the homeokinetic controller do not produce merely elementary actions
but ‘complete temporal behaviors’. We will see the large difference in the performance of
learning a task when behavioral primitives are used instead of elementary actions even in
low-dimensional systems.

In the first part of this chapter we will focus on the acquisition of behavioral primitives,
and in the second part we will use them in conjunction with reinforcement learning to
create composite goal-oriented behaviors.

6.1 Acquisition of Behavioral Primitives

If the robot re-encounters a situation in the environment it should be able to reuse behaviors
that have been acquired earlier. The extraction of behaviors from a continuous stream of
sensorimotor information involves clustering or segmentation, generalization, and suitable
storage. The segmentation is necessary to chop the data into chunks that belong to one
behavior. In the case of the self-organized motor control the behavior changes permanently,
such that the system is always on a transient from one behavior to another. However,
the lifetimes of these transients differ depending on the TLE, see Section 3.6. Highly

2Since the homeokinetic controller optimized the time-loop error Eq. (4.12) there is always the general
goal of self-exploration and active interaction but no specific goal per se.

6.1. ACQUISITION OF BEHAVIORAL PRIMITIVES 145

predictable and sensitive behaviors will remain longer than others, which makes them
easier to be extracted. Nevertheless, there is no typical timescale of a behavior. Beside
the appropriate segmentation, an important requirement for the behavioral elements is the
stability against perturbations and a wide generalization capability. This is advantageous
in order to reach and stabilize the belonging behaviors from different starting points in the
behavior-space. We will see that both properties are fulfilled by the behavioral primitives
used here.

We approach the challenge of behavior acquisition with multiple local models/controllers,
which follows the paradigm of ‘divide and conquer’, and is a common way to tackle com-
plex non-linear systems [99]. The mixture of local experts [72] is a method performing the
segmentation and modeling online. There, a gating network and a set of expert networks
are trained. The gating network learns to map the inputs to a weighted sum of the outputs
of a set of experts, whereas each expert learns the input to output mapping, depending
on the strength of its participation in the total output. Let us assume the data originates
from a set of different dynamics (e.g. different behaviors in the case of the robot) and the
system switches between them. In this scenario a problem arises when the gating is based
on the inputs alone. Namely that the underlying dynamics will have overlapping input do-
mains and thus the gating cannot easily distinguish between the dynamics. Neither does
the gating network encourage the expert to compete, but rather to cooperate. The latter
makes the representation more prone to the loss of information through interference with
previously learned relationships. A method that overcomes these problems is the compet-
ing experts schema [117], which we will introduce in more detail below. The competition
between the experts is based on a single quantity, namely on their ability to predict the
current data. This approach was successfully applied e.g. to the vowels recognition in
speech data [106] and the analysis of wake/sleep EEG signals [75]. In our case the data is
provided by the behaving robot, with each expert representing one behavior. The segmen-
tation between behaviors happens naturally at borders of the Voronoi cells |7] defined by
the areas where one expert is predicting best. Thus, in contrast to the setup with a gating
network, the segmentation is now not directly dependent on the inputs (sensor values).
Moreover, a good generalization is brought about by the neural networks which store the
behaviors in their synaptic weights.

The next section explains the competing expert schema and the softmax competition rule.
After that, a new winner-takes-all competition rule is proposed that is more suitable for
the data obtained from the behaving robot. Using two examples we demonstrate the
partitioning of behavior-space by the experts. Finally, we investigate how the experts can
be used to control the robot and to find flexible and combinable behavioral primitives.

6.1.1 Competing Experts

Let us now focus on the competing expert setup with softmax competition and annealing
as introduced by Pawelzik et al. [117]. Consider the time series {as, b} with t = 1,2, ...

146 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

of input-output pairs. The underlying dynamics of the time series is assumed to switch on
a rather slow timescale, which is also a valid assumption for the robot behaviors. We have
an ensemble of experts

F;:a,— b i=1,...r, (6.1)

mapping the input a; to the predicted output 5@ and we define for each expert the square
prediction error as

=) = [b — Fi(ar)]?. (6.2)

Let the experts Fj consist of neural networks with the parameter matrix W that is adapted
to minimize the prediction error via gradient descent as

=1

e (6.3)

AW = —(—:Fpiaw

The learning rates of the experts are composed of a maximal learning rate ex and a weight-
ing coefficient p! determined by the competition function called softmax:

i 6_5 Zf—:fé Eif‘l’ 6 4
S e o4

where [is the strength of the competition and ¢ is a time-horizon. For 3 = 0 all experts
learn equally and for § = oo there is a hard competition in the winner-takes-all fashion.
The weighting coefficients are intuitively the relative probability of contribution of each
expert to the current dynamics. Note that the weighting coefficients are normalized i. e.
Z?Zl pi = 1 and depend on ¢ future prediction errors. These are, however, not known

7

at the time of the competition and thus one can use instead of Zi:ﬂ; =,

a sliding
average =, which is iteratively defined as Z, = 1/6Z! + (1 —1/6)Z,_,. In order to ensure a
good distribution of experts, the competition strength [is adiabatically increased during
the learning, which is called annealing process. It must take place at a sufficiently long
timescale, because the diversification occurs at particular “temperatures” (1T' = %) where

the network parameters separate abruptly [137].

6.1.2 Framework

Ultimately the learned experts networks should serve as controllers for a particular behav-
ior. In order to guarantee a smooth transition between these behaviors, as well as a robust
and coherent activation of the appropriate behaviors, it is necessary to provide the robot
with a flexible representation of the behavioral primitives. We suggest using an adaptive
input-output mapping realized by a feed-forward neural network.

6.1. ACQUISITION OF BEHAVIORAL PRIMITIVES 147

~

Tt41

(5 Om0)[O 00

o
1B coe hidden layer

/ Wl\
Lt Ti-1

Figure 6.1: Topology of an expert neural network. Inputs are the vectors of sensor
values x; and z;_1. Red arrows denote all-to-all connections. The hidden layer consists
of neurons with hyperbolic tangent activation functions. The output layers have linear
neurons. See Eq. (6.6).

input

The design of the experts has to be done with some care, because they should have the
right complexity. On the one hand, too simple experts are not able to capture a single
behavior, such as a particular rolling mode of the SPHERICAL robot. In this case several
experts would be required for one behavior, which is undesirable because eventually the
experts are to be controllers for behavioral primitives. On the other hand, too complex
experts learn slower and most importantly will possibly capture multiple behaviors. Why
is this undesirable? Because if the experts are used as controllers for the robot, then it is
more difficult to predict which behavior will be exhibited. This raises the question of the
basin of attraction of the stored behaviors that will be discussed in Section 6.1.5 below.

The input-output configuration of the experts is similar to the one of the homeokinetic
controller, such that they can be used almost directly as a drop-in replacement for the
robot controller. However, the only difference is that they also receive delayed sensor
values, which enables them to capture behaviors that are based on the internal parameters
dynamics of the homeokinetic controller. Hence, we define

("%t“) — Pz, 1), (6.5)

Yi

forv=1,...,r experts. Note that (x) denotes an n + m dimensional column vector with
all entries from = above entries of y. The r expert networks have to learn the mapping
from sensor values (present and past) to motor values and future sensor values. In motor
control theory, these models are called forward and inverse models [177], which are jointly
comprised in the here-proposed experts. The architecture of an expert neural network is

148 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

Homeokinetic Controller Competition
§ii1 = T — Ty Compete
Vi on pred. error E
[World Model Net. j Experts Learning

Expert Network
(Controller & Model)

t+1

Learning

[Controller Network j

t

Motor values y; .)

Sensor values x;

Figure 6.2: Overall architecture of homeokinetic controller with the competing
experts long-term memory.

depicted in Fig. 6.1 and is given by

Ti—1

Fi(zy, w0 1) =Wy g {Wf(!) + Qi] + ¢5, (6.6)

where W/, Wi are synaptic weight matrices and ¢}, ¢4 are offset vectors of expert i. The
offsets are required to produce a non-zero output for zero inputs or to account for sensor
or motor values which have non-zero middle positions. The neurons in the hidden layer
have a non-linear activation function g¢(-) = tanh(:) (component-wise). Their number
(k) determines the dimension of the weight matrices and offset vector, i.e. W, € RF¥*2",
Wy € REmxk o e R* and ¢ € R*™. The interesting point is that we designed the
hidden layer as a bottleneck, i.e. k < n + m, such that an intermediate low-dimensional
representation has to be found, thus improving the generalization properties of the experts.
The entire setup with the homeokinetic controller is illustrated in Fig. 6.2. In the current
setup there is no information flow back to the homeokinetic controller, which presents an
interesting possibility for further improvements.

Analogously to Eq. (6.2) we define the prediction error & of expert i as the mismatch
between observed and predicted values, i.e.

, x
d= (") - oo, (67)
Yi—1
—i il i
Zi=& & (6.8)
The parameters of F; are adapted to minimize Z! by gradient descent. Since the network

has multiple layers the backpropagation learning rule [170] is used, which is a generalization
of the delta rule. For that the output of the hidden layer is required, which we denote by

d=olwi(ir)] o

6.1. ACQUISITION OF BEHAVIORAL PRIMITIVES 149

Using Eq. (6.9) the updates of the parameters W3 and ¢4 are simply given by delta rule as

AWS = Figio (6.10)
Agy=€'¢;. (6.11)

For the updates of W} and ¢! the mismatch & at the output layer is back-propagated to a
mismatch at the hidden layer pi € R¥ as

pi=W; & (6.12)
Then we find
.
AWl =i d)(17) (6.13)
T2
Adi = efipi. (6.14)

where ¢ is taken at W} (i’::;) + ¢, see Eq. (6.9), and o denotes the component-wise multi-

plication, see Section 4.1.3. The variable learning rate ef * is determined by the competition
algorithm. In the case of the annealed softmax competition we have e/ = erpl, where ep
is a uniform learning rate for all experts and p! is the weighting coefficients, cf. Eq. (6.4).

6.1.3 Winner-Takes-All with Suboptimality Penalty and Anneal-
ing

Although the competing experts algorithm is particularly suitable for non-stationary time
series with an underlying switching dynamics we encounter a fundamental problem when
applying it to the behavior extraction task. The assumptions that are made for the an-
nealing process, is that the switching between different dynamics occurs on a much faster
timescale than the annealing process. For the behaving robot controlled with the homeo-
kinetic controller, however, the switching between behaviors has a statistics that would
imply an extremely long annealing process. In our robotic systems we find often long peri-
ods of one behavior and a very inhomogeneous switching dynamics where certain behaviors
are very rarely exhibited. Remember that the parameter dynamics of the homeokinetic
controller has no fixed point, but is rather on a transient all the time. The length of
time that a particular behavior is exhibited depends strongly on the size of the TLE,
see Section 3.6, and on the physical stability of the behavior.

Ideally a behavior is captured by an expert when it is exhibited for a sufficiently long time
in total, independent of the amount of intermediate switches and the total run-time. We
also want a high degree of preservation in the once learned behavioral representations. The
latter implies a winner-takes-all learning scheme, because otherwise a strong interference
with already learned behaviors occurs. The most naive solution would be to always select

150 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

the best expert to learn the current pattern. However, in this case we observe that typically
one and the same expert always wins the competition and the remaining experts are not
allowed to learn anything. We propose a solution for this problem that we call suboptimality
penalty with annealing, that penalizes experts performing suboptimally with respect to their
past performance while individually annealing the learning rate. We introduce a minimal
achieved error for each expert and define the positive deviation from this minimum as
a measure of suboptimality. The reasoning is that when an expert leaves its domain
of competence then its performance drops, whereas uncommitted experts have a similar
prediction error on all behaviors and are thus less penalized.

The prediction error, Eq. (6.8), of the experts is noisy. Thus, we redefine it as

1 T 1 4
==& S+ (1—-— | =0, 6.15
= —g'd (1-)= (6.15)
which is simply the sliding average of the square misfit §§T§§ with the time constant 7.
To determine the best performance we define a second, longer averaged prediction error

=i 1, I\ =i
= =—Z4+(1-—1)=_,, 6.16
=t (1-)2 (6.16)
where the new time constant 7g is usually chosen to be 75 = 107g. The best obtained
performance of an expert is measured by the minimal achieved (smoothed) prediction error
and is therefore given by

== = 1

t I?Slgl t (6.17)
Using this, we define the suboptimality as the positive derivation from this minimum and
obtain the penalized prediction error as

== E +p-max(0,E — 5)?, (6.18)

where p is the penalty factor. The winning expert w, is the one with the lowest penalized
prediction error, thus

wy = arg min = . (6.19)
K3

In essence, the competition is based on the penalized prediction error, where the penalty is
given by the deviation from the minimal achieved error. Only the winning expert is trained
using the patterns observed from the robot. For that Egs. (6.10-6.14) are applied for i = wy.
An illustration of the method is provided in Fig. 6.3. For two behaviors and two experts
the typical development of the prediction errors and the derived quantities are shown. At
the beginning, expert number two wins the competition and improves its performance for
this behavior. After the behavior changes, the prediction error of expert two is still better
than the prediction error of the yet uncommitted expert (number one). However, the

6.1. ACQUISITION OF BEHAVIORAL PRIMITIVES 151

Error
Legend
:/../_.w .-\.,\.. Expert 1 wins
! i Expert 2 wins
penalized error S — =
" p - d? N =
~. dliding average / : :2
éQ
-
\ behavior A | B ~— active behavior

Time

Figure 6.3: Illustration of the competition of two experts with the penalty for
suboptimality algorithm. The orange and yellow bars indicate the currently active
behavior. In between a transient occurs. Expert 2 wins by chance at the beginning and
learns to predict behavior A, as seen at the drop of the prediction error (green lines).
When the behavior changes the prediction error of expert 2 increases and the penalized
error (brown dashed dotted line) becomes worse than the prediction error of expert 1
(blue line), thus expert 1 wins, and so forth. Note that due to the sliding average of the
prediction error (Eq. (6.15)) there is a time shift between the change of behavior and the
change of the winning expert.

152 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

suboptimality penalty shows its effect and so expert one wins and can therefore learn the
second behavior. Note that the switch to a new winning expert occurs temporally after
the change of behavior, which is due to the sliding averages of the errors. For that reason
it is advisable to perform the training with delayed training patterns, where the delay is
half of the averaging time constant 75. More formally, the update (Eqgs. (6.10-6.14)) of
the parameters of the current winning expert (¢ = w;) are calculated using input-output
pairs from t' =t — |71/2].

To ensure convergence the learning rate of the winning expert is annealed. Thus, the
learning rate ef * of expert 7 is given by

e = {(- %) @ i=w (6.20)

F; .
€1 otherwise.

The described algorithm can be successfully used to teach experts the robot behaviors
produced by the self-organizing controller. However, there are some useful extensions
which help to ensure convergence and enhanced the long-term plasticity of the system,
which are described now. The annealing of the learning rate of the winner, Eq. (6.20),
follows an exponential decay with time constant 7.. Such an exponential decay is too fast
to ensure convergence in general. However, we introduce a rate of “forgetting” (7z), at
which the learning rates of all experts are “warmed up” again. Instead of an exponential
increase we use a linear increase, thus, the learning rate e/ of expert 7 is given by

1-— i) i i=w
et = {<) (6.21)

e+ L otherwise.
TF

Eq. (6.21) comprises an exponential decay for the learning rate of the winning expert and at
the same time a linear increase for non-winning experts using a much longer time constant
Tr > T.. Assuming expert ¢ wins with probability p(i) we can estimate the asymptotic
learning rate as etF = TF;;(Z,). This maintains a certain flexibility in the system of experts
and allows for a possible reuse of already specialized experts in case they are unused for a

long time.

In order to improve the speed of learning and ensure that uncommitted experts are able
to quickly capture the observed behavior, it is advisable to have an initial phase where all
experts receive training patterns. Thus, Eqs. (6.10-6.14) are applied for ¢ = 1,...,r with
ef " = ep - e ¥771 independently of the competition, where 7; is a time constant defining
the length of the initial phase.

The second quantity that should be affected by the “forgetting” process is the minimal
error =°. A slow increase of the minimal errors for non-winning experts ensures that an
expert that is not selected as a winner for a very long time gets a higher chance to be
trained on a different behavior. Additionally, we only decrease the minimum error for the
winning expert, because there might be periods of trivial behavior that are predicted well

6.1. ACQUISITION OF BEHAVIORAL PRIMITIVES 153

by all experts, e. g. if all sensors and motor values are zero. The minimal prediction error
is thus given iteratively by

o min(éﬁfl, =) i=w, (6.22)
= (1 + #) otherwise, '

where 7r is again the “forgetting” time constant, see Eq. (6.21).

To summarize, we use a winner-takes-all competition with annealing learning rates and
a penalty term for suboptimality, which is defined using the minimal prediction error as
a measure for optimal performance. What are the conditions that need to be fulfilled
by the time series such that this algorithm works? Without going into much detail, the
first assumption is that the underlying source of the time series is multifold and exhibits a
certain switching between its different sub-dynamics (behaviors in our case). The switching
is assumed to occur on a slower timescale than the system cycle. While the switching from
one sub-dynamics to the next need not be abrupt, the transient period is assumed to be
shorter than the duration of the switching intervals. These assumptions are also made
for the original competing expert approach [117]. However, in contrast to the original
algorithm our approach does not require an equal sampling of all sub-dynamics and a
frequent switching between them.

Parameter selection

Let us now discuss the parameter selection. The learning rate er of the expert networks
must be chosen to fit the network size and the typical length of a period of oscillatory
behaviors. It should not be too large, to avoid local overfitting. In our applications we use
er € 10.001,0.01].

The fine tuning of the penalty factor p was found to be unnecessary. In our applications
we use a value between 1 and 10. The more experts competing, the higher the values of p
are recommended.

The remaining parameters are timescales. The shortest one is the error smoothing horizon
Tg. This should be rather small and should be adjusted to filter the noise in the prediction
error. It should be certainly not larger than a 10th of the expected behavior switching
time. The constant for annealing of the learning rate 7. and the length of initial learning
phase 77 are rather uncritical and we may chose 7. = 7; = 10/er. The time to forget
the best performance 7 must be larger than the maximal expected time to re-encounter
all behaviors. In the following robot experiments it is chosen to be 7 = 3 - 10° which
is equivalent to about one hour of simulated real time. Since most of the experiments
we report do not exceed this time, the forgetting is more of a conceptual term, ensuring
long-term adaptivity. We expect that it will become more important for long experiments,
especially with changing environments.

154 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

(a) (b)
L p=N, L p=T/Ap=a/2 0 p=T
0 prt—=t? T e
0 frovtsa e :
p S S S S i S .
0.5 -
-0.5 +
1k
)
0 N
Y T
0 5 10 15 20
time [sec]

Figure 6.4: Simulated FOURWHEELED robot. The robot has four independently
powered wheels and four wheel velocity sensors. (a) Screenshot of the simulation; (b) Re-
sponse of the robot to different activations of the motors. The motor values yi, . 4,
Eq. (6.23), follow an impulse function with different phase shifts p, top panel. The sensor
values x12 of the two front wheels show only a response in the case p = 0 and p = T,
middle panel. The driving velocity v and the turning velocity w are shown in the bottom
panel.

6.1.4 Extraction in Action

Let us now apply the competing experts architecture to the behavior extraction task at the
example of two robots. We start with a wheeled robot and continue with the SPHERICAL
robot.

Application to the FOURWHEELED Robot

The first robot we consider is the FOURWHEELED robot, as depicted in Fig. 6.4(a) and
described in Section 2.2.2. The robot has four independently driven wheels. In order to
move the robot reasonably a certain degree of coordination is required. To illustrate the
physical properties of the robot we use predefined motor values that are described by a
periodic impulse function as

1 sin(0.2t+ip) > 0.5,
yi = ¢ —1 sin(0.2t +ip) < —0.5, (6.23)
0 otherwise,
with the phase shift p. The responses of the robot for different values of p are plotted in

Fig. 6.4(b). Essentially the robot only moves if the wheels on one side rotate in the same
direction, i.e. for p = dm withd =0,1,....

6.1. ACQUISITION OF BEHAVIORAL PRIMITIVES 155

Figure 6.5: Distribution of 8 experts on the behavior space during a 30 minute
experiment with the FOURWHEELED robot. Each point represents the state of the
robot in terms of driving velocity v and rotation velocity w at a certain time. (a) Data
points as produced by the robot; (b) Clustering with experts. The color represents the
number of the winning expert (w). Only points with a low prediction error of the winning
expert are plotted. The center of the point-cloud for each expert is marked with a numbered
disk. Parameters of homeokinetic controller: ¢ = €4 = 0.05, 50 Hz update rate; for
competition: ep = 0.01, p = 10, 75 = 20.

When controlled with the homeokinetic controller a coordinated behavior develops very
quickly, such that the robot shows straight driving and curved driving with different radii.
For the behavior extraction we use the following parameters: There are r = 8 expert
networks with & = 2 hidden units (see Fig. 6.1). The learning rate for the experts is
er = 0.01 and the penalty factor p = 10. The timescale for the averaging of the prediction
error is 7 = 20. For the remaining parameters the default values are used, see Section 6.1.3.
We let the robot drive for 30 min and recorded the translational and rotational velocity as
well as the index of the winning expert. The behavior of the robot in terms of translational
and rotational velocities is displayed in Fig. 6.5(a). The resulting clustering is presented
in Fig. 6.5(b), where a clear partitioning of the behavior space is observed. There are two
experts for forward and backward driving (#1,#2) and two for rotation in place in both
directions (#4,#5). Experts #3, #6, and #7 represent curved driving with different radii
and expert #8 remains unused. The histogram of winning frequencies of the experts is
plotted in Fig. 6.6. The experts do not win with the same probability. This shows that
the extraction is not based on the duration and frequency of a behavior but rather its
qualitative properties. The trajectory of the robot is displayed in Fig. 6.7, where each part
is colored according to the winning expert. A clear and stable segmentation of the different
behaviors is seen from the start of the experiment on.

If there are many experts available then not all of them receive sufficient training data
to learn a behavior. We define a threshold at 1% of the learning time and those experts

156 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

rel. freg.

0.25¢
0.20¢]
0.15¢]
0.10¢
0.05¢ T

0.00 w
1 2 3 4 5 6 7 8

Figure 6.6: Histogram of winning. For each expert the relative frequency to win the
competition is plotted. The color-code is the same as in Fig. 6.5(b). The gray line at 0.01
marks the threshold under which the experts are considered to be uncommitted, here #8.

[— T T T T T L T T T T T T T T 7 \ T T T
205] _570\E E] ’,;7@]
10} 1 § ‘

E I 0l R]
ol > w 1 QR }

_10] ST)
-20| T 20! f
20 o 20 40 60 80 25 30 35 40 45 50

Figure 6.7: Trajectory of the robot in physical space, colored according to the
active expert. The right graph shows a magnified view of the rectangular area marked
in the left graph. The color code is identical to Fig. 6.5.

6.1. ACQUISITION OF BEHAVIORAL PRIMITIVES 157

(a) (b) (c)

Hexp. Hexp. Hexp.

8 s 8 8

6 6 6

4 4 4

2 2 2

O TE Q- e i e P Q) e

0 5 10 15 20 0.01 01 051 510 0.00 0.01 0.02 0.03 0.04 0.05

Figure 6.8: Parameter dependence of the number of committed experts. The
blue lines stand for the setup with independent robot behaviors and red dotted lines
stand for the case of a single recorded robot. For each parameter setting 10 independent
simulations have been performed, where the initial weights of the expert networks are
randomly chosen. The graphs show the dependence of the number of committed experts
on: (a) the averaging timescale 7g; (b) the penalty p (in log-linear scale); and (c) the
learning rate ep. Parameters (if not varied): 75 = 5, p = 10, e = 0.005.

that win less than 1% are considered to be uncommitted, see also Fig. 6.6. Let us study
how the number of committed experts is influenced by the system parameters. Essentially,
there are three parameters to check: the learning rate of the experts ep, the averaging
constant 7z and the penalty p. We use r = 12 experts in order to always have room
for uncommitted ones. We use two setups, one with a differently behaving robot? for
each trial and one with a single recorded robot behavior. In the first case the particular
sensorimotor data differs in the sequence and duration of behaviors. However, the number
of actually shown behaviors is roughly constant. In case of the recorded robot behavior
the only source of non-determinism is the random initialization of the synaptic weights
(W? q') of the experts. We found that the extraction algorithm has little dependence on
the choice of 7z and p, see Fig. 6.8(a),(b). Unsurprisingly, for a higher penalty we obtain
a higher number of experts. The learning rate e, however, has a significant impact on the
number of committed experts, see Fig. 6.8(c). For very low learning rates few experts are
committed, which is due to a slow learning progress. Thus, the minimal errors decrease
slowly and the penalty for suboptimality is less effective. Nevertheless, a wide range of
values of the learning rate results in a high number of committed experts, such that ep
does not require fine tuning. In general, we find no over-specialization, i. e. that behaviors
are not split into many small sub-behaviors, independent of the parameter choice, such
that uncommitted and highly adaptive experts remain available for new behaviors.

Let us now have a closer look at the clustering with different numbers of committed experts.
For better comparison we use the same recorded robot behavior as above (Fig. 6.8). In
Fig. 6.9 the winning statistics and the clustering of the behavior space for three different
values of the learning rate are displayed. When only 4 experts are committed we find a

3The robot was controlled with an independently initialized homeokinetic controller with a different
instance of the noise process, thus the behavior is not identical.

158 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

(a) 4 Exp. (e=0.001)

rel. freq.

0.30
0.25
0.20

0.15
0.10
0.05

0.00 -
1 3 5 7 9 1

(d) 4 Exp. (e#=0.001)
w

(b) 5 Exp. (ex=0.002)
rel. freg.

0.15
0.10
0.05
0.00 =

1 3 5 7 9 1

©

w

=}
]

(e) 5 Exp. (e7=0.002)

w
15
'“N!!ﬂiuuwx.

ol oo

T

ST R T T
-1gNL G5 | 05 10 15 -15-10-05 | 05"

—1.5t

-0.5;

_1.07 R .::... o
PR

A

.
-1.5¢

w 0.00

(c) 7 Exp. (ep=0.005)
rel. freq.

0.15
0.10
0.05

1 3 5 7 9 1

(f) 7 Exp. (ez=0.005)

w
1.5/
4 3
1.0

(A4

L 0.5

“15-10705
. -05/

Figure 6.9: Different number of committed experts depending on learning

rate.

The 12 experts are sorted according to their winning frequency. The winning

statistics (a-c) and the clustering of the behavioral space (d-f) for simulations with ep =
0.001,0.002,0.005 are displayed. For ep = 0.001 (a,d) only 4 experts are committed,
whereas for ez = 0.002 we find 5 and for e = 0.005 there are 7 experts committed. See
also Fig. 6.5 and Fig. 6.8. The underlying robot behavior was identical (a recorded run
was played back). Parameters: 77 = 5, p = 10.

6.1. ACQUISITION OF BEHAVIORAL PRIMITIVES 159

Figure 6.10: SPHERICAL robot with angular velocities around internal axes.

symmetric arrangement of experts covering the most prominent behaviors, Fig. 6.9(a),(d).
When more experts are committed, a more fine grain clustering occurs. For example, with
5 experts there are two experts for forward driving, one for slower (#5) and one for faster
(#4) motion, Fig. 6.9(b),(e). With 7 experts we get different representations for curved
behaviors, e.g. left curves with slow forward or backwards speed covered by experts #1
and #5 in Fig. 6.9(c),(f).

Before we turn to the SPHERICAL robot, let us summarize. The clustering of the behavioral
space of the FOURWHEELED robot was successfully performed by the proposed competing
expert algorithm. The parameter dependence turned out to be graceful and only the
learning rate had to be chosen appropriately. It should be emphasized that no over-
specialization was observed, such that uncommitted experts are available for future novel
behaviors.

Application to the SPHERICAL Robot

A more interesting robot in terms of behavior is the SPHERICAL robot, which was the
subject of several experiments, e.g. in Sections 4.8.4 and 5.3.1. We will now apply the
competing experts setup to this robot and extract primitive behaviors. In the following
experiments we use the three axis-orientation sensors described in 2.2.5. Thus the robot
has three motors and three sensors, which results in six inputs and six outputs for the
expert networks, Eq. (6.5). As the number of hidden units we have chosen k = 4, instead
of 2 in the case of the FOURWHEELED robot, because the behaviors have a more complex
dynamical structure. For example, when the robot rolls on a flat surface, the sensor values
perform a harmonic oscillation with different amplitudes. The frequency of this oscillation
depends on the velocity of the robot. If the rotation axis matches one of the internal axes,
(as in Fig. 4.28 (p. 107), A-C), then one sensor value has a zero amplitude. The internal
masses must perform an oscillation with a suitable frequency and phase-shift in order to
produce a coherent rolling behavior. In this way each particular behavior is characterized
by an orbit in the sensorimotor space, and the orbits of different behaviors are also partially
overlapping. In order to obtain a suitable visualization, we consider the angular velocities

160 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

Wy

Figure 6.11: Partition of the behavior-space of the SPHERICAL robot with 4
experts. Each point represents the state of the robot in terms of angular velocities around
the three internal axes of the robot at a certain time. Note that the angular velocities are
not directly accessible by the controller and by the experts. Nevertheless, a clear partition

is observed, where only three experts are committed.
Parameters of homeokinetic controller: ec = €4 = 0.1, update rate 100 Hz, extended world
model (Section 4.8.4); for competition: e = 0.001, p =1, 75 = 50.

Wg,y,» around the three internal axes, as depicted in Fig. 6.10. A rolling behavior with fixed
rotation axis and fixed velocity is represented by a single point in the space of angular

velocities.

In a first experiment we provide only r = 4 experts and select a low learning rate and
low penalty, such that only 3 experts are committed. The resulting clustering in terms
of angular velocities is depicted in Fig. 6.11. Each of the three experts occupies the
rotation around one particular internal axis, however, without discrimination of forward

and backward motion.

In a longer experiment with » = 20 experts and suitably selected parameters we find a
much more fine grain partition of the behavior-space, as depicted in Fig. 6.12. Not only
is the symmetry broken between forward and backward rolling around the different axes,
but also there are experts for different speeds around one and the same axis, e.g. expert
numbers #3 and #4. It should be noted that the experts cannot sense the rotation speed
directly, because their inputs are only axes orientations. So in terms of inputs and outputs
(sensor and motor values) the clusters are actually periodic orbits in a six dimensional
space. This demonstrates nicely the potential of the competing expert approach, which
does not depend on the input space but only on the prediction performance.

6.1. ACQUISITION OF BEHAVIORAL PRIMITIVES 161

Figure 6.12: Partition of the behavior-space of the SPHERICAL robot with 20
experts. FEach point represents the state of the robot in terms of angular velocities around
the axes of the robot at a certain time. For clarity only a selection of experts is drawn. In
contrast to Fig. 6.11 the experts specialize to have a specific velocity.

Parameters of homeokinetic controller: ec = €4 = 0.1, update rate 100 Hz, extended world
model (Section 4.8.4); for competition: ex = 0.005, p = 10, 75 = 50.

162 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

-1.5¢
Figure 6.13: Attractor behaviors of the experts for the FOURWHEELED robot.
The colored points and the transparent discs show the training data for the experts (points
where the expert won the competition), see Fig. 6.5 (p. 155) for a description. The black
disks mark the attractor behavior of each expert.

6.1.5 Experts as Controllers

The extraction of behaviors as discussed above can only be considered successful if the
behaviors can be reproduced reliably by the experts. For that reason we will analyze the
quality of the acquisition in terms of behaviors exhibited by the robot when the experts
are used as controllers. In order to obtain behavioral primitives it is important that the
behaviors are combinable and robust. Thus, it is important that there is an attractor
behavior obtained when a particular expert network is controlling the robot. Additionally,
the basin of attraction of each attractor behavior is of particular interest. This is the
region of the behavior-space from which the attractor behavior is reached. If the basin of
attraction is large or even spans the entire space of initial configurations then the expert
can be activated independently of the state of the robot. This makes the sequencing of
experts especially easy. Remember that the experts are closed-loop controller, hence, the
transition from one expert to the next will most likely happen on a smooth transient, which
we will see at the end of this section.

FOURWHEELED Robot

In the case of the FOURWHEELED robot we find for all committed experts stable attractor
behaviors with global basins of attraction. This is not very surprising because the con-
trol of a behavior consists essentially of constant motor values. We use one by one the
developed experts presented in Fig. 6.5 (p. 155) as controllers for the robot. Starting from
different initial conditions we measured the behaviors exhibited after a transient phase.

6.1. ACQUISITION OF BEHAVIORAL PRIMITIVES 163

Figure 6.14: Attractor behaviors and their basins of attraction of one expert
controlling the SPHERICAL robot in the under-represented case of 4 experts.
The expert #4 of Fig. 6.11 is used as an example. (a) Initial conditions (yellow), original
winning points (green), and final states of the robot (black); (b) Final states are parti-
tioned in 2 clusters as marked in (a); (c) Initial conditions belonging to the two clusters.
The cluster I (red) has a much larger basin of attraction.

For each expert there is a stable attractor behavior reached. These attractor behaviors
are displayed in Fig. 6.13 together with the original partitioning of the behavior space.
The shown behaviors are close to the original center of training points for the forward
and backward driving expert. The training points are those where the particular expert
won the competition and was allowed to learn the sensorimotor correspondence. With the
experts controlling curved driving a small deviation from the training data center is ob-
served, but the quality of the behavior is mostly preserved. Since expert #4 and #7 show
very similar behavior the acquisition of 6 distinct behavioral primitives has been achieved.
Even if the learning of the experts continues theses primitives are not forgotten due to the
exponentially decreased learning rate of the experts, Eq. (6.21). Nevertheless, a certain
fine tuning of the represented behaviors can still occur.

SPHERICAL Robot

In the case of the SPHERICAL robot, the control of the behaviors is much more complicated
than for the wheeled robot, because the weights have to be coordinated with the orientation
of the robot. We consider again the developed experts as controller for the robot. Firstly,
we want to analyze what happens if too few experts are provided, as in Fig. 6.11 (p. 160),
such that multiple behaviors are represented by the same expert. Let us consider the robot
behavior when controlled by expert #4 from Fig. 6.11 without additional noise in the sensor
values. Starting from a large number of different initial orientations and initial rolling
velocities the behavior after a sufficiently long time was recorded, see Fig. 6.14(a),(b).

164 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

Wy
101

wz 0

1

Wy
Figure 6.15: The main attractor behaviors of the three committed experts.

For each committed expert (#1, #2, and #4) in Fig. 6.11 (p. 160) the attractor behavior,
which has the dominant basin of attraction is presented. See also Fig. 6.14.

We observe two attractor behaviors which are not a single point in the space of angular
velocities, but appear as small clouds. With closer inspection we find small limit cycles
that corresponds to a slight precession? of the SPHERICAL robot. The first attractor cloud,
marked with I, lies inside the original behavior and represents the rolling motion around
the first internal axis. The second cluster, marked with II, represents a spurious behavior,
that is not connected to the training set. To determine the basin of attraction we associate
the initial conditions to the two clusters and find that the first cluster has a large basin of
attraction, whereas the behavior of the second cluster is only reached from a small subset
of the initial conditions, see Fig. 6.14(c).

The remaining two committed experts have a very similar structure of attractors. In
Fig. 6.15 the attractor behaviors with a large basin of attraction are displayed for all
experts. We find that the main attractor behaviors represent the rotation around all three
internal axes in one direction.

Let us now consider the case of many experts, as illustrated in Fig. 6.12 (p. 161). We find
mostly one attractor per expert with global basin of attraction. A selection of attractors is
displayed in Fig. 6.16. For each of the three internal axes, a behavioral primitive for forward
and backward rolling has developed. Beside that, there are behaviors that correspond to
a rotation around an axis different from the internal axes, e.g. expert #5 and #6. The
attractors of these two experts show particularly well their orbital structure in the space
of angular velocities. This usually corresponds to a slow precession movement of the
SPHERICAL robot.

4Precession refers to a cyclic change in the direction of the axis of a rotating object, e. g. a gyroscope.

6.1. ACQUISITION OF BEHAVIORAL PRIMITIVES 165

Figure 6.16: Attractor behaviors for the case of 20 experts with the SPHERICAL
robot. The colored points show the attractor behavior for each expert. For clarity only a
selection of experts is displayed. Each transparent sphere marks the center of the point-
cloud belonging to one expert.

166 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

11

Figure 6.17: Transient behavior when the SPHERICAL robot is controlled by
a sequence of experts. Each expert of the sequence #11, #4, #7, #14, #9, and #13
was subsequently controlling the robot for 30 sec. The colors correspond to the controlling
expert. The transparent spheres mark the attractor behaviors, see also Fig. 6.16. A smooth
transient between the attractor behaviors is observed.

The attractor behaviors represent the repertoire of primitive behaviors that have been ac-
quired during the online learning phase. In the here considered examples, the basins of
attraction of these behaviors are global if sufficiently many experts are provided. This
qualifies them as behavioral primitives because they can be arbitrarily sequenced to com-
plex behaviors. In order to study the sequencing and the transient behaviors between
the primitives we controlled to robot with a sequence of experts. Figure 6.17 shows the
trajectory of the SPHERICAL robot in the space of angular velocities for a sequence of 5
experts. Starting from a calm initial position (w,, . = 0), the robot reaches the attractor
behavior of the first expert (#11) on a smooth transient. After a certain time the control
was switched to the next expert in the sequence and for each transition a smooth tran-
sient to the belonging behavior is observed. This shows that the experts, which have been
acquired in a self-organized way, serve as combinable behavioral primitives.

6.2. GOAL-ORIENTED BEHAVIORS THROUGH THE COMBINATION OF PRIMITIVES 167

6.1.6 Summary

The online acquisition of behavioral primitives from the behaving robot controlled by the
homeokinetic controller was achieved with a set of competing experts. We proposed a novel
competition algorithm in the winner-takes-all manner with a penalty for suboptimality and
an individual learning rate annealing that leads to a suitable distribution of experts in the
behavior-space with long-term stability and without overfitting. The extraction of behav-
iors was shown for the FOURWHEELED robot and for the SPHERICAL robot with different
number of experts. In both cases the method did not require a fine-tuning of parameters
and showed a reliable partitioning of the behavior space. In both applications the trained
experts have shown their capability to control the robot. Additionally the analysis of the
stability of the reproduced behaviors revealed that in most cases the attractor behaviors
of the experts have a global basin of attraction. This allows for a simple combination of
behaviors by sequencing the experts. Thus, the experts represent behavioral primitives
that are flexible and robust building blocks for complex behaviors. A subset of the here
presented results has been published in [89].

6.2 Goal-Oriented Behaviors through the Combination
of Primitives

In the remaining part of this chapter we will investigate how the behavioral primitives can
be used to achieve goal-oriented behaviors. The system should learn to achieve a goal that
is specified by rewards and punishments. We will use a higher level of learning that is to
choose the right sequence of primitives to maximize the long-term reward. First, we will
introduce reinforcement learning, which is the most prominent approach to this kind of
learning problem. We will show how to use the behavioral primitives represented by the
experts (Section 6.1) as discrete action in the reinforcement learning framework. We then
apply the setup to an obstacle avoidance task using the FOURWHEELED robot and the
SPHERICAL robot.

6.2.1 Temporal Difference Learning — Reinforcement Learning

In this section we will formally introduce temporal difference learning and then describe the
standard reinforcement learning algorithm named Q-learning. Temporal difference (TD)
learning is a method to learn the prediction of a quantity that depends on future values of
a given signal, e. g. a reward signal [11]. TD learning is often used in reinforcement learning
(RL) to predict the total amount of reward expected in the future. Interestingly, recent
studies in neuroscience confirmed that animals must have a similar learning mechanism.

168 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

It was found in mammals that the firing rates of dopamine neurons® in the midbrain show
a convincing correspondence to the reward error function of the temporal difference learn-
ing theory [144]. In machine learning many different solutions to the RL task have been
proposed based on the TD learning algorithm called TD(\) introduced by Richard S. Sut-
ton [158]. The most prominent RL algorithms are Q-learning [169], adaptive actor-critics
algorithms [79], policy gradient methods [12] and ISO-learning [128|. A short overview of
the literature was provided in Section 1.2. For our applications we will use the Q-learning
algorithm, because it is simple and is proven to find an optimal solution for a deterministic
Markovian system [160].

Let us now go into more detail and formally define TD learning. The name ‘temporal
difference’ comes from the use of differences between predictions over successive time steps.
In an iterative manner the prediction is updated to bring it closer to the prediction of the
same quantity at the next time step. Suppose the system received at each time step t a
reward value r, € R. The TD learning tries to predict the quantity

Fo= T e+ s o = 3 Y T, (6.24)
=1

where v is a discount factor, with 0 < v < 1. Intuitively 7 is the discounted expected
reward, where the far future is less important than the immediate future. TD learning
exploits that we can write the expected reward iteratively as

Tt = T4l + Y 41 (6.25)

To predict the reward an input that characterizes the state of the system is required. Let
us denote the input as s; and the prediction function as P,(s;), where the goal is to achieve
P,(s;) = 7¢. Note that the expected reward 7; (Eq. (6.24)) implicitly depends on the current
and future states via the reward signals r;... The predictor carries a time index because
it is gradually improved over time. Rewriting equation Eq. (6.25) using the predictor we
obtain

Py(st) = rev1 + vP(S141) — prsa s (6.26)

where p;.1 is the misfit or TD error. Note that we use the predictor at time ¢ to predict
the reward using the next input. Now, the predictor is updated to minimize the TD-error
p. This leads to an iterative update rule

Prii(se) = Pi(se) + €pprya, (6.27)

where pii1 = 11+ 7P (si01) — Pi(s¢) and ep is a learning rate. Note that the state space is
commonly assumed to be discrete. In the simplest case the predictor can be implemented

5The dopamine neurons regulate the release of the neurotransmitter dopamine that regulates the
strength of synaptic connections for neurons that use dopamine as neurotransmitters, e. g. the dopaminergic
neurons chiefly found in the midbrain.

6.2. GOAL-ORIENTED BEHAVIORS THROUGH THE COMBINATION OF PRIMITIVES 169

as a look-up table. In the case of a continuous space the most commonly used variation
applies linear function approximators [11]. More sophisticated versions can be found in [51].

TD-learning can thus be used to estimate the value of a certain state with respect to future
rewards, however, it does not provide information on how to act in order to maximize this
reward. This is the purpose of reinforcement learning algorithms, which add a policy to
the system that decides about the actions to take. A simple but powerful RL algorithm
is Q-learning [169], that will be introduced in the following. The Q in its name is derived
from the originally used symbol for value table Q,(s,a) that assigns a value to each state-
action pair (s, a), where s denotes a discrete state and a denotes a discrete action. Using
TD learning, especially Eq. (6.27), the value table for the current state-action pair can be
updated as follows:

Qt+1(5t7 at) = Qt(St, at) + €p [Ttﬂ + ’anbe Qt(3t+17 a) - Qt(5t7 at) . (6-28)

The value of the next state is obtained using the maximum over all possible actions, which
is independent of the actually executed action. The selection of the action is called policy,
and thus this is called off-policy update. Let us denote the policy as 7(-) with

g1 = (541, Q). (6.29)

The simplest way is to choose the action which promises the maximal reward, i.e. a;y; =
arg max, Q;(s;+1,a) with a high probability and choose a random action otherwise. Note
that it is important to select suboptimal actions from time to time in order to explore
the value landscape and to find optimal solutions. A more sophisticated policy uses the
softmax function (which was also used in Section 6.1.1) to select good actions with a higher
probability than actions with a low value.

Let us now consider a variation of the Q-learning algorithm to perform an on-policy update,

namely SARSA [138, 159]|. The update formula for SARSA reads

Qur1(5t,a) = Qu(Se,ar) + €p [regr + 7Qu (5141, arg1) — Qul(se, ar)] (6.30)

where a;4 is given by the policy (Eq. (6.29)). Here, the actually performed action is used
to estimate the value of the next step. Therefore the behavior of the algorithm depends
on the policy. In our applications we will use SARSA.

A commonly used extension of TD-learning and reinforcement learning are eligibility
traces [147]. The idea is to update not only the prediction for the previous state but
also for a number of past states. Eligibility traces are often implemented with exponen-
tially decaying memory with decay parameter A\. To each state-action pair an eligibility
value (s, a) is assigned that accounts for how often this state-action pair was visited in
the past:

(s, 0) = {7)\@1(3, a)+1 s=s and a=q (6.31)

yAer—1(s, a) otherwise.

170 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

The integration of eligibility traced into SARSA is straight forward, it leads to a transfor-
mation of Eq. (6.30) to

Qt+1(87 a) - Qt(87 CL) + EPpt—l-let(S’ CL)) (632)
with
pr = Ter1 +7Qu(St41, ar1) — Qs (6.33)

For A = 0 this is equivalent to the original formulation (Eq. (6.30)), and with A = 1 all
elements of the table Q are updated each time. The integration into Q-learning is bit more
complicated, because it is an off-policy algorithm. In this case the eligibility traces have to
be interrupted when exploratory actions are chosen. More precisely, we set all e;(s,a) =0
if a; # argmax, Q;(s;_1,a).

6.2.2 Experts as Discrete Actions

We propose to use the behavioral primitives, studied in Section 6.1, as discrete actions for
the reinforcement learning. Thus we have a € {1,...,r}, where r denotes the number of
experts. In applications to robots we find two problems with reinforcement learning and
behavioral primitives. First, the typical duration of a behavior is unknown, e. g. a turning
behavior has an intrinsic timescale, but the behavior to drive straight can have all possible
durations. Hence, the selection of an uniform time-interval for RL updates and action
selection is difficult, if not impossible. The second problem is that the robotic system is
not necessarily Markovian. The Markov property states that the measured state describes
the system sufficiently, i.e. there is not past dependence. For example, if a robot has a
significant inertia, then the state would need to also capture the impulse of the robot to
be Markovian. Therefore the design of the state-space for the RL is crucial. However, the
state-space should also be as small as possible to keep the training time within feasible
bounds.

We are now going to exploit the modeling capabilities of the experts, to cope with the
delayed reaction of the physical body. Remember that the experts are able to predict
future sensors values, see Eq. (6.5), which will be most correct if their preferred behavior
is currently active. Thus, by comparing the prediction quality of all experts limited to
the sensor values, we obtain a good measure of the actually exhibited behavior. To get in
intuition, consider a simple driving robot with weak motors. Assume we have two experts,
the first one for forwards driving and the second one for backwards driving, see Fig. 6.18. If
now the first expert is controlling the robot it will drive forward, which is also reflected in
the sensor values. However, if the second expert is activated the robot will not immediately
drive backwards because of inertia, thus the sensor values will still report forward driving
for a certain time after the switching of control and the prediction error of the first expert
will be small. As soon as the sensor value reflects the backwards driving the prediction of

6.2. GOAL-ORIENTED BEHAVIORS THROUGH THE COMBINATION OF PRIMITIVES 171

control/action (a) { Expert/Action 1 M Expert/Action 2
position
time
velocity ® :
t ts time
best predicting (w?) { Expert 1 Expert 2 state s = (w?,...)

Figure 6.18: Illustration of a robot with large inertia and the best predicting
expert as part of the state variable. Periodic RL-steps occur at t;,t5,t5. The control-
ling expert is displayed on the top (blue boxes), which changes at to. Expert 1 moves
the robot forward and expert 2 backwards. The inertia causes a slow transition period
starting at to. As long as the velocity is positive expert 1 predicts best the sensor values
(wP = 1, green boxes). At t, the velocity of the robot flips sign and expert 2 predicts
best. Thus, at t5 a state change occurs and an additional RL-update takes place.

the second expert will be better than the prediction of the first expert. In summary, the
index of the expert with the least sensor prediction error provides a generic and discrete
measure of the actual behavior, independent of the controlling expert. We define the best
sensor predicting expert w? as

w? = arg min (l"t - -Fi(xt—la yt—l)(l,...,n)>2) (6-34)

where F'(-)1,..,) denotes the first n components of the output vector, namely only the
sensory component, see Eq. (6.5). We propose to use w? as part of the state variable for
reinforcement learning, i.e. s = (w?,...).

Let us focus on the problem of update rate selection. For example, in an obstacle avoidance
task the time interval between updates is supposed to be small in order to be able to react
on an appearing obstacle. However, if the robot gets stuck in a corner and tries to get
away there are many steps required until a reward in the obstacle-free part is received.
This is often so long that the learning times become intractable if short update cycles
are used. The approach we pursue runs the RL-update and action selection at fixed long
time-intervals and at times of state changes. Since the state is a discrete value it is easy
to detect a change. Figure 6.18 gives a schematic view of the entire scenario. Note that
the change in the state can either originate from a change of the best predicting expert w?
(Eq. (6.34)) or from a change of the context sensor state. The latter can be for example a

172 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

discrete infrared sensor configuration. In any case, the change of the state indicates that a
distinct situation is reached. This can be a direct consequence of the actions or an external
influence, e.g. the encounter of an obstacle. To account for the inhomogeneous update
cycles the reward has to be scaled with the interval length since the last update.

The system with w? in the state variable behaves quasi-Markovian® when observed at the
state changes. This is necessary because reinforcement learning algorithms require Marko-
vian systems. Thus, with the here-proposed method it is possible to use reinforcement
learning with robots that have large inertial effects.

6.2.3 Obstacle Avoidance

Let us now apply reinforcement learning with behavioral primitives to an obstacle avoidance
task using the FOURWHEELED robot and the SPHERICAL robot.

Application to the FOURWHEELED Robot

First we consider the FOURWHEELED robot again. Now the 6 infrared (IR) sensors as
used, see Section 2.2.2. These sensors actively sense by emitting a beam of light and
measure the strength of the reflection. Thus, they measure the distance to an reflective
obstacle. If no obstacle is in the range of the sensor, then its value is 0 and if an obstacle is
very close then the sensor value is 1. In between we use a linear characteristics. The task
for the robot is to drive forward while avoiding obstacles. Hence, the reward is given by

Ty = V¢ — 2max (fo)i , (6.35)

where v is the velocity of the robot (normalized to [—1,1]) and z!f is the vector of IR-
sensor values. If the robot bumps into an obstacle the reward is -1, whereas if the robot
drives in free space with maximal speed the reward is 1.

We use the SARSA(\) variation of the Q-learning algorithm, see Section 6.2.1. The selected
action (a;) decide which expert controls the robot at time t. We use the 7 committed
experts, see Fig. 6.5 (p. 155), hence the action space contains 7 actions. The inertia of
this robot is rather small such that we do not include w? (Eq. (6.34)) in the state s in
this example. Nevertheless, the state must incorporate the infrared sensor values in some
way. We use a discrete infrared sensor state with four components: s = (f, f;, b, s). If
the left-front IR sensor is non-zero then f; = 1 otherwise f; = 0. The same holds for
fr (right-front IR-sensor) and for b (back IR sensors). The term s, is either 0, 1, or 2
depending on whether the left sensor value is larger than the right sensor value or vice
versa or both are zero. Thus, there are 24 possible states. The policy we use is a simple

6We cannot prove that the system is actually Markovian, but the dependence on the past is very small.

6.2. GOAL-ORIENTED BEHAVIORS THROUGH THE COMBINATION OF PRIMITIVES 173

(a) (b)

reward

0.7 ¢
0.6¢
05¢F T /T’L‘;
04¢F . T/f 1

03¢ L1 7
02¢ //— — experts '
0.1°¢t Z — — predef. actions

:
0.0 Lsl ‘ ‘ ‘ . tim
01t 1000 2000 3000 4000 5000

=l
=~
1— =
1= =

1=

c

Figure 6.19: Comparison of the performance of reinforcement learning with ex-
perts opposed to reinforcement learning with predefined actions for the FOUR-
WHEELED robot. (a) Mean accumulated reward over 300 sec sliding windows in a run
of 5000sec; (b) Trajectory of the wheeled robot (red line) after learning the obstacle
avoidance task with behavioral primitives. Dotted black lines correspond to obstacles
and walls. Parameters: ep = 0.1, v = 0.7, o = 0.1, A = 0.7, RL-update rate 5Hz.

randomized strategy [81] that takes the action with the highest expected reward (greedy
method), but with the probability of ¢ chooses an action at random. Hence,

ith probability 1 —
ot {arg max, Q(s;,a) with probability 0, (6.36)

random action with probability o.

For an evaluation we compared the performance of Q-learning using the 7 experts with
Q-learning using predefined actions. These actions are given by the Cartesian product of
the four quantized actuator states. In order to reduce the number of actions we use three
discrete actions: forward rotation, backward rotation and no rotation, i.e. in total 43 = 81
actions. Figure 6.19(a) compares the performance using the mean accumulated reward.
Both methods lead to a positive overall reward, however with the behavioral primitives a
higher reward is obtained after a short time. This result was expected given the difference
in the size of the action space. For the robot controlled with behavioral primitives, the
trajectory after learning the obstacle avoidance task is shown in Fig. 6.19(b). A large area
of the cluttered environment is covered while a clear distance to the walls is maintained,
see also [Video 13].

Application to the SPHERICAL Robot

We also applied the learning scheme to the SPHERICAL robot, which is in this experiment
additionally equipped with six infrared (IR) sensors that extend the internal axes towards

174 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

reward

0.6}

04}

0.2} L

— - predefined
0.0 ‘ ‘ | ‘ .
h 2000 4000 6000 8000 10000
-0.2p :
TTTT T

ol T s T TR T

Figure 6.20: Comparison of the performance of reinforcement learning with
experts opposed to reinforcement learning with predefined actions for the
SPHERICAL robot. Mean accumulated reward over 300sec sliding windows in a run
of 10000 sec. The low performance with predefined actions shows that a structuring of the
behavior space is crucial. This is efficiently performed by the behavioral primitives.
Parameters: ep = 0.1, v =0.9, o = 0.1, A = 0.7, RL-update rate 5 Hz.

the outside of the robot as depicted in Fig. 2.12 (p. 25). For simplicity in this experiment
only the walls and obstacles are supposed to reflect the IR beams, such that the floor does
not influence the IR sensor values. The SPHERICAL robot is very difficult to control because
it shows huge inertial effects and the orientation and velocity of the robot influences the
result of the actions significantly. The task for the robot is to roll around one particular
axis while avoiding obstacles. Hence, the reward is given by (similar to Eq. (6.35))

e = wey — 2max (z{7), (6.37)

where w,; is the normalized rotation velocity around the first internal axis at time ¢ and
z!? is the vector of IR-sensor values.

The 20 behavioral primitives represented by the experts from Fig. 6.12 (p. 161) are used.
The state s = (wP, d) comprises the best predicting expert w? (Eq. (6.34)) and a discrete
IR-~state d = (I,r, f), with {,r, f € {0,1}. Imagine the robot is rolling around the first
internal axis with positive velocity, then we can define left, and right IR-sensors, which
are the ones extending the first axis. If the left sensor measures an obstacle then [= 1
otherwise [= 0 and the same for the right sensor and r. If one of the remaining sensors is
activated then f = 1, otherwise f = 0. Thus there are 20 - 8 = 160 states.

For comparison predefined actions are used in the same way as in the previous section,
i.e. for the three motors 3 positions are given (—1,0,1), which gives 3% = 27 actions.
The state space in this case contains the infrared state d as above and the current action,
i.e. s = (d,a) which results in 216 states. Figure 6.20 displays the performance of both
algorithms in terms of the mean accumulated reward. The reinforcement learning with
predefined actions is not able to achieve the task even after a long time. This is mainly
due to the fact that the pure rolling mode is hard to achieve with the elementary actions.

6.3. DISCUSSION 175

Figure 6.21: Trajectories of the SPHERICAL robot after learning to move freely
in two different environments based on the same set of behavioral primitives.

The performance using the experts is very effective. We performed the comparison to show
that it is very important to structure the behavior space in complex robotic systems. Even
though the dimensionality of the robot is low the dynamical complexity is high enough to
make it impossible to achieve the task with an ad-hoc definition of the discrete actions.

The trajectories of the SPHERICAL robot after learning the obstacle avoidance task in two
different environments is shown in Fig. 6.21. The environments are much larger compared
to the driving robot experiments, such that the robot is small in comparison. Most of the
time the robot stays away from the walls, see also [Video 14].

6.3 Discussion

In the first part of this chapter we proposed a technique that enables a robot to acquire
behavioral primitives from the self-organizing behavior generated by the homeokinetic con-
troller [89]. The extraction and storage of the behaviors is done online with a set of
competing experts implemented as neural networks in a closed-loop setup. We proposed a
novel competition schema called ‘suboptimality penalty with annealing’ that is particularly
suitable for the statistical properties of the self-organizing behaviors. In the considered ap-
plications, namely the FOURWHEELED driving robot and the SPHERICAL robot, the expert
networks are able to reproduce the learned behaviors in a self-stabilizing way, such that
the term ‘behavioral primitive’ is justified. The acquired behavioral primitives are not
merely a fixed sequence of actions but rather code for the dynamics, i. e. the sensorimotor
coordination of that particular behavior. For example, in the case of the SPHERICAL robot
a single behavioral primitive accounts for the rolling mode around one particular axis in-
cluding all possible transients to this behavior from other points in the behavior space, cf.

176 6. GOAL-ORIENTED BEHAVIOR FROM SELF-ORGANIZED PRIMITIVES

Fig. 6.16. This includes also the acceleration from a resting position or the change of the
rotation axis. According to Schaal [140], these are the types of motor primitives that are
required to be able to scale up to high-dimensional systems.

The acquisition of behavioral primitives solves the long standing problem that the self-
organized behaviors are not persistent. The combination of homeokinetic controller and
competing experts is an important step towards autonomous robot development. It allows
a robotic system to explore its physical capabilities and to gradually build up a repertoire
of behaviors. The competition algorithm was deliberately designed to have long-term
flexibility while minimizing the interference with already learned behaviors.

The second part of this chapter was devoted to the creation of goal-oriented behavior based
on the behavioral primitives. First we elaborated on the integration of the primitives into
the Q-learning algorithm. We proposed a generic way to obtain a measure of the current
behavior by exploiting the expert’s capability to predict the sensory dynamics. Inserting
this into the state of reinforcement learning leads to a space-efficient quasi-Markovian
description for robots with inertial effects. In a proof of concept the driving robot and
the SPHERICAL learned an obstacle avoidance task in cluttered environments. Especially
the experiment with the SPHERICAL robot demonstrated that the usage of behavioral
primitives is distinctively more effective than a set of predefined actions. The self-organized
acquisition of behavioral primitives is an promising way to structure the vast space of
possible actions into a small set of potentially useful primitives. This enables the usage of
simple reinforcement algorithms on high-dimensional continuous systems. The combination
with more sophisticated reinforcement algorithms such as the adaptive actor-critics [79]
can also eliminate the structuring of the context-sensor space, which was so far performed
manually.

Chapter 7

Conclusions

I never think of the future.
It comes soon enough.

Albert Einstein (1879 — 1955)

In this thesis we investigated control algorithms for autonomous robots that learn to control
the physical body without specific external pressures and continue to explore the dynamical
properties of the body and the environment. We pursued three complementary objectives.
First, we aimed at a better understanding of the homeokinetic controller, which led us to
the improvement of its basic constitutes, especially with respect to the representation of the
world. The second objective was to utilize this versatile controller to achieve goal-oriented
behaviors, which we solved with novel mechanisms of guided self-organization. The third
aim was to autonomously acquire a pool of reusable behavioral primitives that can be used
to perform tasks.

The control algorithms used in this thesis are based on the principle of homeokinesis |39,
44] that we described in Chapter 3. Essentially, the idea of homeokinesis is to keep the
dynamical regime of the sensorimotor loop in a range, where high sensitivity to sensory
inputs is assured, but chaotic behavior is avoided. The representation of the sensorimotor
loop in the homeokinetic control paradigm is a self-referential stochastic dynamical system.
The parameters are self-regulated such that the system is slightly above the bifurcation
point®.

First, we created an appropriate workbench for our studies, namely a full-fledged robot
simulator called LPZROBOTS [91] including many virtual robots with different complexities
(Chapter 2). This has proven to be very useful to test hypotheses and control algorithms
on a variety of robots. LPZROBOTS allows for physically realistic simulations of complex
rigid body objects and features a novel support for material, different motors and sensors,

'We mean the bifurcation point of the deterministic system (without noise). With noise there is an
effective bifurcation region [96].

178 7. CONCLUSIONS

graphical rendering, an interface to interactively change parameters, and so forth. The
simulator is an open source project and is used by other researchers as well. Apart from
the virtual robots, we also constructed a real robot, namely the ROCKING STAMPER [43]
(Section 2.2.3).

With the help of the computer simulations we applied the homeokinetic control to more
complex robots than those real robots that were available to our group. In these systems
we analyzed and illustrated the properties of the control algorithm. We have demonstrated
with a set of simulated robots the emergence of highly body and environment-related be-
haviors, even in systems where the control of these behaviors by hand is complicated [43, 46]
(Chapter 4). For a similar study see [62]. In most cases those are not merely random move-
ments, but develop into coordinated whole body motions where all degrees of freedom are
actively participating. The homeokinetic control can be interpreted as an implementation
of the ideas of cognitive embodied systems [122, 124]. Nevertheless, the application is
limited to robots with purely proprioceptive sensors. In systems with many degrees of
freedom we identified a mismatch between theoretical predictions and experiments, which
was mainly due to the insufficiency of the world model. The tendency of the parameter
dynamics to enter regimes of high frequency oscillations in the state dynamics is not fully
understood.

Extensive simulations with different robots revealed that there is still necessity for im-
provement and extension of the original homeokinetic controller. On the side of the overall
controller algorithm we improved the robustness by introducing different types of regular-
izations. The formalization of the dynamical system in terms of motor space coordinates
enables the efficient integration of many sensors. Before, the system was limited to max-
imally the same number of sensors as motors. Apart from that, an additional adaptive
model of the prediction error was proposed, allowing for its direct minimization in setups
with multiplicative noise. For setups with additive noise this remains an open problem. An
important constitute of the homeokinetic controller is the adaptive internal world model
that is learned online. We investigated two problems arising from the simultaneous learning
of the controller and internal model. The first is the effect of cognitive deprivation, which
occurs if the actions of the controller are constantly limited to a subspace of the available
action space. We showed analytically and experimentally that this problem is solved by
the homeokinetic controller in a natural way by producing explorative actions pointing
into unexplored subspaces [45]. The second problem arises when the internal world model
is extended to receive sensory inputs in addition to the motor values. Such an extension
leads to an ambiguity between self-induced and environmentally-induced changes in the
sensor values. This ambiguity must be resolved because knowledge about the actual effects
of the actions is required to regulate the controller parameters to the appropriate regime.
We proposed a general solution by specifying a bias towards self-induced observations and
provided experimental evidence for its functional efficiency. A computationally optimized
variation uses a discount in the learning rule.

179

Our extensions enable the integration of exteroceptive? sensors that allow the robot to
perceive changes in the environment. Furthermore, the new controller can cope with action-
independent dynamics of the body or within the environment, for instance those brought
about by inertial effects or moving objects. The extension of the controller network to
multiple layers or to include recurrent connections remains open.

The second part of this thesis is concerned with the generation of goal-oriented behav-
iors based on the homeokinetic control. We established several ways to shape the self-
organization process using specific goals (Chapter 5). On a general level, we proposed a
method to integrate additional constraints, in the form of energy functions, to the learning
dynamics of the homeokinetic controller. This makes it possible to combine supervised
learning with self-organization of behavior. For example, we demonstrated teaching in
terms of desired motor and sensor patterns. Using such mechanisms we derived a method
that we called cross-motor teaching, which allows for a specification of certain symmetries
in the desired behavioral patterns or in the morphology of the physical system and thus re-
duce the effective dimensionality of the system. This is especially important in cases where
useful behaviors lie on a manifold of small codimension, which are very rarely found by the
self-organizing controller. We demonstrated the effectiveness of cross-motor teaching with
the example of the high-dimensional ARMBAND robot. The robot developed a complex
forward and backward locomotive behavior depending on the specified symmetries®. Only
a certain class of behaviors are possible to stimulate with this form of guidance, namely
those which are sufficiently constrainable by cross-motor symmetries. A formal description
was not elaborated upon here. The cross-motor teaching needs to be specified externally,
which requires a certain insight into the dynamics of the behaviors. A learning of these
connections presents an interesting topic for further investigations. Another way to guide
the self-organization is to modulate the learning rate, such that wanted behaviors persist
longer and unwanted ones are left quicker in comparison to the unguided case [90] (Chap-
ter 5). This is a more generic way of shaping the behavior, but conceptually only those
behaviors can be obtained that are also exhibited in the unguided case.

It is now possible to guide the emergence of sensorimotor coordination towards desired
behaviors. However, in the current setup the behaviors are still impermanent and cannot
be retrieved on demand. To address this shortcoming we designed an additional learning
system that acquires and stores behavioral primitives (Chapter 6). We used a competing
expert schema [117] with a novel competition principle named suboptimality penalty with
annealing. We achieved an online partitioning of the behavioral space, such that each
expert learns a particular behavior [89]. When the robot was controlled by a particular
expert, a stable behavior with a global basin of attraction was observed in most of the con-
sidered cases. These are necessary properties for the further combination of the primitives.

2Exteroceptive sensors perceive the environment directly in contrast to the proprioceptive sensors which
measure the position of body parts. Note that before the extended world model, only proprioceptive sensors
have been possible.

3The locomotion behaviors are almost never found by the original controller and are now established
within short time.

180 7. CONCLUSIONS

Figure 7.1: BrorLoip PupPY robot by Robotis [135] with 15 DoF.

Thus, the set of experts represents a repertoire of combinable behavioral primitives. Note
that this set is obtained in an unsupervised way, without providing specific information.
Thus, we see this work as a promising approach for developmental robotics |20, 85]. The
huge space of possible action sequences is reduced to a small set of potentially useful prim-
itives. These can be used to solve tasks, which we have demonstrated using reinforcement
learning techniques. The behavioral primitives served in this way as discrete actions. We
illustrated the method on the example of an obstacle avoidance task, where we have shown
that it is much more effective to combine the reinforcement learning with the acquired
behavioral primitives than with a set of externally predefined actions, especially for robots
with dynamically complex behaviors.

Perspectives

Many learning methods struggle with the curse of dimensions occurring in realistic robotic
setups. The self-organization of control offers a way to structure the vast space of possible
sensorimotor mappings to a smaller set of body and environment-related behaviors. The
mechanism of guided self-organization can be used to further constrain the behaviors space,
such that suitable modes are developed quickly. This is especially useful in combination
with the acquisition of behavioral primitives to scale up to high-dimensional systems, for
example to our new Dog-like robot, see Fig. 7.1.

The guidance of self-organizing behavior is also applicable in the context of evolutionary
robotics. It was shown that, in general, lifetime plasticity can speed up the evolutionary
process and yield more powerful behaviors [103, 175]. The combination of homeokinetic
control with evolution algorithms was already suggested a decade ago [48]. Nevertheless,
the suitable mechanisms to influence the self-organization process have been missing. The
combination is now possible with the mechanisms proposed here. For instance, only the
configuration of the cross-motor teaching could be evolved, which has a much lower di-
mension than the full set of controller parameters. Additionally, the controller remains
adaptive and is likely to cope with different environmental conditions. In contrast to other

181

learning mechanisms, the homeokinetic controller generates coherent behaviors by itself,
such that a much smaller amount of information has to be genetically encoded. Apart
from the combination with evolutionary robotics, we hope that our work facilitates more
studies of the combination of goals and self-organization that has just started to attract
scientific attention [130].

A promising approach to complex control networks is based on recent findings in neu-
roscience. It was revealed that the bursts of neural activity in cortical slices show a
self-organized critical behavior [16], which was also implemented in artificial neural net-
works [82]. Such a network regulates the synaptic connections in a way that responses on
all scales are observed, which will bring about activity in the sensorimotor loop. However,
the integration of additional learning mechanisms, e.g. to maintain predictability or to
pursue goals, is not solved yet.

Another fascinating topic is the interaction of multiple homeokinetic agents, where first
insights have been obtained by the author [92|. According to Luc Steels, one of the re-
search challenges in the evolution of communication is “how populations of agents can
self-organize a shared repertoire of discrete building blocks grounded in a continuous phys-
ical medium” [151|. Thus, the emergence of social interaction, synchronization phenomena
and the negotiation of a communication schemata are interesting directions for further
investigations.

The application of homeokinetic control is especially promising for those robots that are
oriented towards entertainment, e. g. the AIBO robot by Sony [172] or the BIOLOID robots
by Robotis [135]. In this field it is important that the robot is self-developing and capable
of learning new things, because it makes them much more exciting. We reckon that the
application to traditional robotics and to prosthetics has become more realistic with the
here-proposed mechanisms. We see major strengths of our approach in the learning of new
skills and in unforeseen situations. The reliable performance of tasks can be achieved in
combination with traditional learning algorithms. However, there are many open questions,
for example, how lifelong adaptation of the behavioral primitives can be obtained and how
to achieve a balance between self-organized skill learning and goal-oriented learning and
so forth.

The consideration of the homeokinetic principle in the framework of information theory
is also very interesting, as it enables an analysis of the system from a different perspec-
tive. For instance, whether the control parameters are optimally regulated in terms of the
flow of information through the system [8, 41|. Furthermore, the information theoretical
interpretation might give rise to a different formulation of the learning dynamics.

There remains much to be done, but the path ahead of us is full of excitement.

182 7. CONCLUSIONS

Appendix A

A.1 Derivation of Matrix Calculation Rules

This section contains the derivation of the matrix calculation rules that were given in
Section 4.1.3 (p. 53).

Let us first consider Eq. (R6), i.e

a T T
a—XCL Xb—CLb

Let X be an m x n matrix. We can write a' Xb as
CLTXb = ZZGZXUb] (Al)
i=1 j=1

Since a and b are defined to be independent of X we find for the derivative with respect
to an element Xj;:

8Xkl Z Z a; wa = Cbkbl <A2)

i=1 j=1
This gives in matrix notation

0
a—XCL Xb— (akbl)]fl % "

.....

The derivation of equation Eq. (R7), i.e

9 AYAl
Sy 9(Xb+c)=(aog)b

184 A. APPENDIX

goes along the same line as above. Again a, b, ¢ are defined to be independent of X and we
find component-wise

8 m n , n
8Xkl Z a;q (Z (ijbj) + Ci) = Qrg (Z ijbj + Ck> bl . <A4)

J=1 J=1

Since g(-) is a component-wise function the term ¢ (E i Xrjbj + ck) is the k-th element of

the result vector of ¢'(Xb+ ¢) and hence we write only ¢g. In matrix notation we can use
the row-wise multiplication and we obtain

0
——a' g(Xb+c) = (argib)k=1...m = (a0 g')b" (A.5)
0X I=1,..n

U
The derivation of Eq. (R9), i.e.

oA~ 04
ox — 4 axA

where A is a square matrix can be obtained by considering the derivative of A=A first,
i.e.

0A™1A oA _,0A
X = aX A+ A a_X_O‘ (A.6)

Multiplying Eq. (A.6) with A~! from the right and rearranging the terms gives directly
Eq. (R9). O

A.2 Convergence of Enhanced World Model in a Sim-
plified System

This section provides the calculations of the limit behavior of the learning dynamics of
the enhanced world model, Section 4.8.5, in a simplified linear world with a fixed linear
controller.

Let the controller be linear and fixed controller, Eq. (4.92), as
yr = Cy (A7)
and the toy world be given by (Eq. (4.93))

Ty = Ayt_l + Sl’t_l . (AS)

A.3. EXPERIMENT USING THE ENHANCED WORLD MODEL 185

Let us repeat the prediction errors used for the world model matrices: The prediction error
used for adapting A is (Eq. (4.108))

& =x— (Ayp1 + (1 —06)Szi1 +b) (A.9)
and the one used for S and b is
ft = Xt — (Ayt—l + Sxt_l + b) . (AlO)

The learning dynamics Eqs. (4.109-4.111) converges if the prediction errors & and & are
zero. Thus, setting Eq. (A.8) into Eq. (A.9) and £, = 0 we get (omitting the time index)

Ay+ Sz = Ay + (1 —96)Sz +b. (A.11)

The bias b vanishes, such that we can omit it. Substituting y using Eq. (A.7) and resolving
for A yields

A=A+ (S-(1-9)S)C . (A.12)
Doing the same with Eq. (A.10) gives

S=A-A)C+S. (A.13)
Putting Eq. (A.12) in Eq. (A.13) reveals that

S=(1-1985, (A.14)
which implies that S = 0. Setting this into Eq. (A.12) gives

A=A+8SC. (A.15)

A.3 Experiment using the Enhanced World Model

This section present the results of the experiment with the SPHERICAL robot and the
enhanced world model with discounted learning as proposed in Section 4.8.5. The exper-
iment is identical to the one conducted with the extended world model in Section 4.8.4.
The SPHERICAL robot (Section 2.2.5) is particularly suitable for the application of the new
world model because it shows a sensor dynamics that is partly independent of the actions.
This occurs especially when the internal masses are located close to the center and the
robot is rolling. The evolution of the behavior and the parameters during the experiment
are depicted in Fig. A.1. The behavior is very similar to the one observed in Section 4.8.4
(Fig. 4.28), but we find a slower change of behavior. For a discussion of the parameter
dynamics we refer to Section 4.8.4.

186

A. APPENDIX

1
S o
o O Ot

~~
(¢]
~—

—_ =

S ocooo

Cop o

OO NS00 — b

100

200

300

time [sec]

400

500

600

Figure A.1: Smoothly behaving SPHERICAL robot with enhanced world model
using Eqs. (4.109-4.111). The error function has a low value and the behavior is smooth
but still diverse. (a) Envelop of motor commands and the error averaged over 10 sec (scaled
for visibility). (b) Diagonals and two non-diagonal elements of the controller matrix C;

(c) Diagonals of the world model matrices A and S. Parameters: update rate 100 H z,
cc=ea=0.1, 5 = 0.005.

Video References

The following videos can be found on the web-page
http://robot.informatik.uni-leipzig.de/martius/thesis.

[Video 1]

[Video 2|

[Video 3]

[Video 4]

[Video 5|

[Video 6]

[Video 7]

[Video §|

[Video 9]

[Video 10]

[Video 11|

ROCKING STAMPER: starts to move and shows sensitive reaction on sensors,
Section 4.3 (p. 67). start_sensitivity.mpg

ROCKING STAMPER: Adaptation to changed sensor setup and to a disabled
sensor, Section 4.3 (p. 67). sensor_flapped_disabled.mpg

ROCKING STAMPER: Close view of hardware and walk-like behavior, Section 4.3
(p. 67). close_walklike.mpg

BARREL robot: Sweep through behavior space, Section 4.4.1 (p. 68).
barrel.avi

SPHERICAL robot: Waxing and waning of rolling modes around different axes,
Section 4.4.2 (p. 71). Sphere_IR_roll_different_axis.avi

TWOWHEELED robot: At the start the controller is restricted. After the re-
striction is released informative actions are performed, Section 4.5.4 (p. 79).
cogdepr_2wheeled.avi

SNAKE robot: Low-dimensional modes, Section 4.6 (p. 86).
SnakelD_lowdimmode.avi

TWOWHEELED robot: reaction of the robot to impulse shaped actions, Sec-
tion 4.8.4 (p. 104). nimm2_impuls.avi

SNAKE robot: Behavior with continuity preference and extended world model
and advanced sensor setup, Section 4.8.7 (p. 112). SnakelD_withExt.avi

ARMBAND robot with cross-motor teaching: Slow locomotive behavior with
different postures (small guidance factor)), Section 5.2.2 (p. 133).
wheelie_golden_rolling_jumping.avi

ARMBAND robot with cross-motor teaching: Fast locomotive behavior with
small exploratory actions (normal guidance factor), Section 5.2.2 (p. 133).
wheelie_golden_wobble_rolling.avi

http://robot.informatik.uni-leipzig.de/martius/thesis
http://robot.informatik.uni-leipzig.de/martius/thesis/start_sensitivity.mpg
http://robot.informatik.uni-leipzig.de/martius/thesis/sensor_flapped_disabled.mpg
http://robot.informatik.uni-leipzig.de/martius/thesis/close_walklike.mpg
http://robot.informatik.uni-leipzig.de/martius/thesis/barrel.avi
http://robot.informatik.uni-leipzig.de/martius/thesis/Sphere_IR_roll_different_axis.avi
http://robot.informatik.uni-leipzig.de/martius/thesis/cogdepr_2wheeled.avi
http://robot.informatik.uni-leipzig.de/martius/thesis/Snake1D_lowdimmode.avi
http://robot.informatik.uni-leipzig.de/martius/thesis/nimm2_impuls.avi
http://robot.informatik.uni-leipzig.de/martius/thesis/Snake1D_withExt.avi
http://robot.informatik.uni-leipzig.de/martius/thesis/wheelie_golden_rolling_jumping.avi
http://robot.informatik.uni-leipzig.de/martius/thesis/wheelie_golden_wobble_rolling.avi

188 VIDEO REFERENCES

[Video 12] ARMBAND robot with cross-motor teaching: Fast locomotive behavior with
change in direction of motion after couplings were swapped, Section 5.2.2
(p. 133). wheelie_golden_teaching_pointsym.avi

[Video 13] FOURWHEELED robot: obstacle avoidance using reinforcement learning and
behavioral primitives, Section 6.2.3 (p. 173).
FourWheeled_obstacle_avoidance.avi

[Video 14] SPHERICAL robot: obstacle avoidance using reinforcement learning and behav-
ioral primitives, Section 6.2.3 (p. 175).
spherical_obstactle_avoid_square.avi

http://robot.informatik.uni-leipzig.de/martius/thesis/wheelie_golden_teaching_pointsym.avi
http://robot.informatik.uni-leipzig.de/martius/thesis/FourWheeled_obstacle_avoidance.avi
http://robot.informatik.uni-leipzig.de/martius/thesis/spherical_obstactle_avoid_square.avi

Bibliography

1]
2l
3]
4]
[5]
(6]

17l

8]

9]

[10]

[11]
[12]

[13]

D. Aberdeen. POMDPs and policy gradients. In Proc. of the Machine Learning
Summer School (MLSS), Canberra, Australia, 2006.

L. Abraham and K. Shaw. Dynamics, The Geometry of Behaviour. Addison-Wesley,
1992.

S. Amari. Natural gradients work efficiently in learning. Neural Computation, 10,
1998.

M. A. Arbib. Perceptual structures and distributed motor control. In V. B. Brooks,
editor, Handbook of Physiology — The nervous system, volume II, chapter Motor
Control, pages 1449-1480. American Physiological Society, Bethesda, MD, 1981.

W. R. Ashby. Design for a Brain. Chapman and Hill, London, 1954.

Atmel Corporation. 8-bit avr microcontroller.
http://www.atmel.com/products/avr/, 2008.

F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R. Sack, editor, Handbook
of Computational Geometry, chapter 5, pages 201-290. North Holland, Amsterdam,
Netherlands, 2000.

N. Ay, N. Bertschinger, R. Der, F. Giittler, and E. Olbrich. Predictive information
and explorative behavior of autonomous robots. The European Physical Journal B,
63(3):329-339, 2008.

P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: an explanation of 1/ f
noise. Physical Review Letters, 59:381-384, 1987.

H. B. Barlow. Critical limiting factors in the design of the eye and visual cortex.
Proc. R. Soc. Lond. B, 212:1-34, 1981.

A. G. Barto. Temporal difference learning. Scholarpedia, 2(11):1604, 2007.

J. Baxter and P. L. Bartlett. Direct gradient-based reinforcement learning. In Proc.
of the Intl. Symposium on Circuits and Systems, pages 111-271-274, 2000.

J. Baxter, A. Tridgell, and L. Weaver. Learning to play chess using temporal differ-
ences. Machine Learning, 40(3):243-263, 2000.

http://www.atmel.com/products/avr/

190 BIBLIOGRAPHY

[14] L. Bayindir and E. Sahin. A review of studies in swarm robotics. Turkish Journal of
Electrical Engineering, 2007.

[15] R. D. Beer. A dynamical systems perspective on autonomous agents. Technical
report, Artificial Intelligence, 1992.

[16] J. Beggs and D. Plenz. Neuronal avalanches in neocortical circuits. Journal of
Neuroscience, 23:11167-11177, 2003.

[17] G. Beni. From swarm intelligence to swarm robotics. In E. Sahin and W. Spears,
editors, Swarm Robotics: State-of-the-art Survey, LNCS. Springer-Verlag, 2000.

[18] C. Bereiter. Towards a solution to the learning paradox. Review of Educational
Research, 55(2):201-226, summer 1985.

[19] N. A. Bernstein. The Co-Ordination and Regulation of Movements. Pergamon Press,
1967.

[20] L. Berthouze and G. Metta. Epigenetic robotics: modelling cognitive development
in robotic systems. Cognitive Systems Research, 6(3):189-192, September 2005.

[21] W. Bialek, editor. Princeton Lectures on Biophysics, chapter Optimal signal process-
ing in the nervous system, pages 321-401. World Scientific, Singapore, 1992.

[22] W. Bialek. Thinking about the brain, July 2002.

[23] R. Bianco and S. Nolfi. Toward open-ended evolutionary robotics: evolving ele-
mentary robotic units able to self-assemble and self-reproduce. Connection Science,
4:227-248, 2004.

[24] R. A. Brooks. A robust layered control system for a mobile robot. Technical report,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1985.

[25] R. A. Brooks. Intelligence without representation. Artificial Intelligence Journal,
47:139-159, 1991.

[26] W. B. Cannon. The wisdom of the body, 1932.

[27] L. A. Celiberto, Jr., C. H. Ribeiro, A. H. Costa, and R. A. Bianchi. Heuristic Rein-
forcement Learning Applied to RoboCup Stmulation Agents, pages 220-227. Springer-
Verlag, Berlin, Heidelberg, 2008.

[28] H. J. Chiel and R. D. Beer. The brain has a body: adaptive behavior emerges from
interactions of nervous system, body and environment. Trends in Neuroscience,
20(12):553-557, 1997.

[29] S. Chikazumi and S. H. Charap. Physics of Magnetism. Krieger Pub Co, 1978.

[30] J. Choi, R. B. Wehrspohn, and U. Gosele. Mechanism of guided self-organization
producing quasi-monodomain porous alumina. Flectrochimica Acta, 50(13):2591—

BIBLIOGRAPHY 191

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

|41]

[42]

[43]

[44]

|45]

2595, 2005.

A. Clark. Being There: Putting Brain, Body, and World Together Again. MIT Press,
1998.

Cyberbotics Ltd. Webots 5.0 robot simulator. http://www.cyberbotics.com, 2008.

K. Dautenhahn. A paradigm shift in artificial intelligence: Why social intelligence
matters in the design and development of robots with human-like intelligence. In
Lungarella et al. [84], pages 288-302.

K. Dautenhahn and C. L. Nehaniv, editors. Imitation in animals and artifacts. MIT
Press, Cambridge, MA, USA, 2002.

P. Dayan and T. J. Sejnowski. TD(\) converges with probability 1. Machine Learning,
14(3):295-301, 1994,

E. de Margerie, J.-B. Mouret, S. Doncieux, and J.-A. Meyer. Artificial evolution of
the morphology and kinematics in a flapping-wing mini UAV. Bioinspiration and
Biomimetics, 2:65-82, 2007.

E. L. Deci and R. M. Ryan. Intrinsic Motivation and Self-Determination in Human
Behavior (Perspectives in Social Psychology). Springer, August 1985.

J.-L.. Deneubourg and S. Goss. Collective patterns and decision making. Ethology,
Ecology and Evolution, 1(4):295-311, December 1989.

R. Der. Self-organized acquisition of situated behavior. Theory in Biosciences,
120:179-187, 2001.

R. Der. Autonomous self-organization of behavior. unpublished, 2005. Working
paper.

R. Der, F. Giittler, and N. Ay. Predictive information and emergent cooperativity
in a chain of mobile robots. In S. Bullock, J. Noble, R. Watson, and M. A. Bedau,
editors, Proc. Artificial Life XI, pages 166-172. MIT Press, Cambridge, MA, 2008.

R. Der, M. Herrmann, and R. Liebscher. Homeokinetic approach to autonomous
learning in mobile robots. In R. Dillman, R. D. Schraft, and H. Wérn, editors,
Robotik 2002, number 1679 in VDI-Berichte, pages 301-306. VDI, 2002.

R. Der, F. Hesse, and G. Martius. Rocking stamper and jumping snake from a
dynamical system approach to artificial life. Adaptive Behavior, 14(2):105-115, 2006.

R. Der and R. Liebscher. True autonomy from self-organized adaptivity. In Proc. of
EPSRC/BBSRC Intl. Workshop on Biologically Inspired Robotics, HP Labs Bristol,
2002.

R. Der and G. Martius. From motor babbling to purposive actions: Emerging self-
exploration in a dynamical systems approach to early robot development. In S. Nolfi,

http://www.cyberbotics.com

192

BIBLIOGRAPHY

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

G. Baldassarre, R. Calabretta, J. C. T. Hallam, D. Marocco, J.-A. Meyer, O. Miglino,
and D. Parisi, editors, Proc. From Animals to Animats 9 (SAB 2006), volume 4095
of LNCS, pages 406-421. Springer, 2006.

R. Der, G. Martius, and F. Hesse. Let it roll — emerging sensorimotor coordination
in a spherical robot. In L. M. Rocha, L. S. Yaeger, M. A. Bedau, D. Floreano,
R. L. Goldstone, and A. Vespignani, editors, Proc, Artificial Life X, pages 192—198.
Intl. Society for Artificial Life, MIT Press, August 2006.

R. Der, G. Martius, F. Hesse, and F. Giittler. Videos of self-organized behavior in
autonomous robots. http://robot.informatik.uni-leipzig.de/videos, 2009.

R. Der, U. Steinmetz, and F. Pasemann. Homeokinesis - a new principle to back
up evolution with learning. In Proc. Intl. Conf. on Computational Intelligence for
Modelling, Control and Automation (CIMCA 99), volume 55 of Concurrent Systems
Engineering Series, pages 4347, Amsterdam, 1999. IOS Press.

J. Deutscher, A. Blake, and I. Reid. Articulated body motion capture by annealed

particle filtering. In IEEE Conf. on Computer Vision and Pattern Recognition., pages
126-133, 2000.

Y. Dongyong, J. Jingping, and Y. Yuzo. Distal supervised learning control and
its application to CSTRsystems. In SICE 2000. Proc. of the 39th SICE Annual
Conference., pages 209214, 2000.

A. Donzée. On temporal difference algorithms for continuous systems. In J. Filipe,
J. Andrade-Cetto, and J.-L. Ferrier, editors, ICINCO, pages 55—62. INSTICC Press,
2005.

K. Doya. Reinforcement learning in continuous time and space. Neural Computation,
12(1):219-245, 2000.

J. A. Fodor. Fixation of belief and concept acquisition. In M. Piatelli-Palmerini,
editor, Language and learning: The debate between Jean Piaget and Noam Chomsky,
pages 142-149, Cambridge, MA, 1980. Harvard University Press.

L. Frommberger. A generalizing spatial representation for robot navigation with rein-
forcement learning. In Proc. 20th Intl. Florida Al Research Society Conf. (FLAIRS-
2007), pages 586-591. AAAI Press, 2007.

S. Goschin, E. Franti, M. Dascalu, and S. Osiceanu. Combine and compare evolution-
ary robotics and reinforcement learning as methods of designing autonomous robots.
FEvolutionary Computation, 2007. CEC 2007. IEEE Congress on, pages 1511-1516,
Sept. 2007.

G. Gottlieb. Probabilistic epigenesis. Developmental Science, 10(1):1-11, 2007.

http://robot.informatik.uni-leipzig.de/videos

BIBLIOGRAPHY 193

[57]

[58]

[59]

[60]

[61]

[62]

[63]

|64]

|65]

[66]

[67]

|68

[69]

[70]

F. Giittler. Realitdtsnahe simulationsumgebung einer selbstorganisierenden roboter-
welt. Master’s thesis, University Leipzig, 2007.

H. Haken. Synergetics: An Introduction. Nonequilibrium Phase Transition and Self-
Organization in Physics, Chemistry, and Biology. Springer Verlag, 3rd revised and
enlarged edition edition, 1983.

H. Haken. Information and Self-Organization. A Macroscopic Approach to Complex
Systems. Springer Series in Synergetics; Springer eBook Collection. Physics and
Astronomy. Springer Berlin Heidelberg, Berlin, Heidelberg, 3. ext. edition edition,
2006.

N. Hamed. Self-Referential Dynamical Systems and Developmental Robotics. PhD
thesis, University of Leipzig, 2007.

J. M. Herrmann. Dynamical systems for predictive control of autonomous robots.
Theory in Biosciences, 120:241-252, 2001.

F. Hesse. Self-Organizing Control for Autonomous Robots. PhD thesis, University of
Gottingen, Institute for Nonlinear Dynamics, 2009.

F. Hesse, G. Martius, R. Der, and J. M. Herrmann. A sensor-based learning algorithm
for the self-organization of robot behavior. Algorithms, 2(1):398-409, 2009.

M. Hild. Neurodynamische Module zur Bewegungssteuerung autonomer mobiler
Roboter. PhD thesis, Humboldt-Universitiat zu Berlin, Mathematisch-Naturwissen-
schaftliche Fakultat II, 2007.

X. Huang and J. Weng. Novelty and reinforcement learning in the value system of
developmental robots, 2002.

M. Hiilse, S. Wischmann, P. Manoonpong, A. von Twickel, and F. Pasemann. Dy-
namical systems in the sensorimotor loop: On the interrelation between internal

and external mechanisms of evolved robot behavior. In Lungarella et al. [84], pages
186-195.

F. Iida, R. Pfeifer, and A. Seyfarth. Ai in locomotion: Challenges and perspectives
of underactuated robots. In Lungarella et al. [84], pages 134-143.

H. lizuka and T. Tkegami. Adaptability and diversity in simulated turntaking behav-
ior. Artificial Life, 10:361-378, 2004.

A. J. Ijspeert. A connectionist central pattern generator for the aquatic and terrestrial
gaits of a simulated salamander. Biological Cybernetics, 84(5):331-348, 2001.

A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen. From swimming to walking
with a salamander robot driven by a spinal cord model. Science, 315(5817):1416—
1420, 2007.

194

BIBLIOGRAPHY

[71]

[72]

(73]

[74]

[75]

[76]

7]

78]

[79]
[80]

[81]

[82]

[83]

[84]

A. J. Ijspeert, J. Hallam, and D. Willshaw. Evolving Swimming Controllers for a Sim-
ulated Lamprey with Inspiration from Neurobiology. Adaptive Behavior, 7(2):151—
172, 1999.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of
local experts. Neural Comput., 3(1):79-87, 1991.

H. Jaeger and T. Christaller. Dual dynamics: Designing behavior systems for au-
tonomous robots. Artificial Life and Robotics, 2:76-79, 1997.

M. I. Jordan and D. E. Rumelhart. Forward models: Supervised learning with a
distal teacher. Cognitive Science, 16(3):307-354, 1992.

J. Kohlmorgen, K.-R. Miiller, J. Rittweger, and K. Pawelzik. Analysis of wake/sleep
eeg with competing experts. In ICANN °97: Proc. of the 7th Intl. Conf. on Artificial
Neural Networks, pages 1077-1082, London, UK, 1997. Springer-Verlag.

T. Kohonen. Self-organization and associative memory: 3rd edition. Springer-Verlag
New York, Inc., New York, NY, USA, 1989.

C. Kolodziejski, B. Porr, M. Tamosiunaite, and F. Woérgotter. On the asymptotic
equivalence between differential hebbian and temporal difference learning using a
local third factor. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,
Proc. NIPS 08, pages 857-864. MIT Press, 2008.

M. Komosinski and S. Ulatowski. Framsticks: towards a simulation of a nature-like
world, creatures and evolution. In D. Floreano, J.-D. Nicoud, and F. Mondada,
editors, Advances in Artificial Life., volume 1674 of LNAI pages 261-265. Springer-
Verlag, 1999.

V. Konda and J. Tsitsiklis. Actor-critic algorithms, 2001.

Y. Kuniyoshi, Y. Yorozu, Y. Ohmura, K. Terada, T. Otani, A. Nagakubo, and
T. Yamamoto. From humanoid embodiment to theory of mind. In Embodied Artificial
Intelligence, pages 202-218, Berlin, Heidelberg, New York, 2003. Springer.

A. M. Leslie Pack Kaelbling, Michael Littman. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237-285, 1996.

A. Levina, J. M. Herrmann, and T. Geisel. Dynamical synapses causing self-organized
criticality in neural networks. Nature Physics, 3:857-860, 2007.

R. T. Liu, S. S. Liaw, and P. K. Maini. Two-stage turing model for generating
pigment patterns on the leopard and the jaguar. Physical Review E, 74(1):011914,
2006.

M. Lungarella, F. lida, J. C. Bongard, and R. Pfeifer, editors. 50 Years of Artificial
Intelligence, volume 4850 of LNCS. Springer, 2007.

BIBLIOGRAPHY 195

[85]

[36]

[87]

[33]

[89]

[90]

191

[92]

(93]

[94]

[95]

196]

[97]

M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini. Developmental robotics: a
survey. Connect. Sci., 15(4):151-190, 2003.

M. Lungarella and O. Sporns. Mapping information flow in sensorimotor networks.
PLoS Comput Biol, 2(10):e144, 10 2006.

P. Manoonpong, T. Geng, and F. Worgotter. Exploring the dynamic walking range
of the biped robot “runbot” with an active upper-body component. In IEEE Conf.
on Humanoid Robots, pages E-publication, Genova, 2006. (Humanoids 2006).

J. Marshall, D. Blank, and L. Meeden. An emergent framework for self-motivation in
developmental robotics. In Proc. 3rd Intl. Conf. on Development and Learning (ICDL
2004), pages 104-111, La Jolla, CA, 2004. Salk Institute for Biological Studies.

G. Martius, K. Fiedler, and J. M. Herrmann. Structure from Behavior in Autonomous
Agents. In Proc. IEEE Intl. Conf. Intelligent Robots and Systems (IROS 2008), pages
858 — 862, 2008.

G. Martius, J. M. Herrmann, and R. Der. Guided self-organisation for autonomous
robot development. In A. e Costa and Francesco, editors, Proc. Advances in Artifi-
cial Life, 9th European Conf. (ECAL 2007), volume 4648 of LNCS, pages 766-775.
Springer, 2007.

G. Martius, F. Hesse, F. Giittler, and R. Der. LPZROBOTS: A free and powerful
robot simulator. http://robot.informatik.uni-leipzig.de/software, 2009.

G. Martius, S. Nolfi, and J. M. Herrmann. Emergence of interaction among adaptive
agents. In M. Asada, J. C. T. Hallam, J.-A. Meyer, and J. Tani, editors, Proc. From
Animals to Animats 10 (SAB 2008), volume 5040 of LNCS, pages 457-466. Springer,
2008.

M. G. Mazzapioda and S. Nolfi. Synchronization and gait adaptation in evolv-
ing hexapod robots. In S. Nolfi, G. Baldassarre, R. Calabretta, J. C. T. Hallam,
D. Marocco, J.-A. Meyer, O. Miglino, and D. Parisi, editors, From Animals to Ani-
mats 9, SAB 2006, Rome, Italy, September 25-29, 2006, Proc., volume 4095 of LNCS.
Springer, 2006.

D. McFarland and T. Bésser. Intelligent behaviour in animals and robots. MIT Press,

Cambridge, MA, USA, 1993.

T. McGeer. Passive dynamic walking. Int. Journal of Robotics Research, 9(2):62-82,
1990.

C. Meunier and A. D. Verga. Noise and bifurcations. Journal of Statistical Physics,
50(1):345-375, 1988.

M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Revisiting the edge of chaos:

Evolving cellular automata to perform computations. Complex Systems, 7, 1993.

http://robot.informatik.uni-leipzig.de/software

196

BIBLIOGRAPHY

98]
199]

[100]

[101]

102]

103

[104]

[105]

[106]

107]

[108]

109

[110]

111

112]

MobileRobots Inc. http://www.mobilerobots.com, 2008.

R. Murray-Smith and T. A. Johansen, editors. Multiple Model Approaches to Mod-
elling and Control. Taylor and Francis, London, 1997.

M. E. J. Newman. Power laws, pareto distributions and zipf’s law. Contemporary
Physics, 46:323, 2005.

N. J. Nilsson. The physical symbol system hypothesis: Status and prospects. In
Lungarella et al. [84], pages 9-17.

S. Nolfi. Evolutionary robotics: Looking forward. Connection Science, 4:223-225,
2004.

S. Nolfi and D. Floreano. Learning and evolution. Auton. Robots, 7(1):89-113, 1999.

S. Nolfi and D. Floreano. FEvolutionary Robotics. The Biology, Intelligence, and
Technology of Self-organizing Machines. MIT Press, Cambridge, MA, 2001. 2001
(2nd print), 2000 (1st print).

S. Nolfi, D. Parisi, and J. L. Elman. Learning and evolution in neural networks.
Adaptive Behavior, 3(1):5-28, 1994.

S. J. Nowlan and G. E. Hinton. Evaluation of adaptive mixtures of competing ex-
perts. In NIPS-3: Proc. of the 1990 conference on Advances in neural information
processing systems 3, pages 774-780, San Francisco, CA, USA, 1990. Morgan Kauf-
mann Publishers Inc.

0. J. O'Loan and M. R. Evans. Alternating steady state in one-dimensional flocking,
1998.

Open Source Community. OpenSceneGraph — open source high performance 3d
graphics toolkit. http://www.openscenegraph.org, 2008.

Open Source Community. Player/Stage/Gazebo — free software tools for robot and
sensor applications. http://playerstage.sourceforge.net, 2008.

P.-Y. Oudeyer, F. Kaplan, and V. Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE Transactions on FEvolutionary Computation,
11(6), 2007.

P.-Y. Oudeyer, F. Kaplan, V. V. Hafner, and A. Whyte. The playground experiment:
Task-independent development of a curious robot. In D. Bank and L. Meeden, editors,
Proc. of the AAAI Spring Symposium on Developmental Robotics, 2005, pages 42—47,
Stanford, California, 2005.

F. Pasemann. Discrete dynamics of two neuron networks. Open Systems & Informa-
tion Dynamics, 2:49-66, 1993.

http://www.mobilerobots.com
http://www.openscenegraph.org
http://playerstage.sourceforge.net

BIBLIOGRAPHY 197

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

124]

[125]

[126]

[127]

F. Pasemann. Dynamics of a single model neuron. Intl. Journal of Bifurcation and
Chaos, 2:271-278, 1993.

F. Pasemann, U. Steinmetz, M. Hiilse, and B. Lara. Robot control and the evolution
of modular neurodynamics. Theory in Biosciences, 120:311-326, 2001.

C. Paul. Morphology and computation. In Proc. Int. Conf. on Simulation of Adaptive
Behavior, pages 33-38. MIT Press, 2004.

[. P. Pavlov. Conditioned Reflexes: An Investigation of the Physiological Activity of
the Cerebral Cortex. Oxford University Press, London, 1927.

K. Pawelzik, J. Kohlmorgen, and K.-R. Miiller. Annealed competition of experts for
a segmentation and classification of switching dynamics. Neural Comput., 8(2):340—
356, 1996.

K. Pearson and J. Gordon. Spinal reflexes. In E. Kandel, J. H. Schwartz, and
T. M. Jessell, editors, Principles of Neural Science, pages 713-736. McGraw-Hill,
New York, 4 edition, 2000.

J. Peters and S. Schaal. Natural Actor-Critic. Neurocomputing, 71(7-9):1180-1190,
2008.

J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for humanoid
robotics. In Proc. Third IEEE-RAS Intl. Conf. on Humanoid Robots (Humanoids
2003), 2003.

J. Peters, S. Vijayakumar, and S. Schaal. Natural Actor-Critic. In Proc. 16th Euro-
pean Conf. on Machine Learning (ECML 2005), pages 280-291. springer, 2005.

R. Pfeifer and J. C. Bongard. How the Body Shapes the Way We Think: A New View
of Intelligence. MIT Press, Cambridge, MA, November 2006.

R. Pfeifer, M. Lungarella, O. Sporns, and Y. Kuniyoshi. On the information theoretic
implications of embodiment — principles and methods. In Lungarella et al. [84], pages
76-86.

R. Pfeifer and C. Scheier. Understanding intelligence. MIT Press, Boston, 1999.

A. Pitti, M. Lungarella, and Y. Kuniyoshi. Exploration of natural dynamics through
resonance and chaos. In T. Arai, R. Pfeifer, T. R. Balch, and H. Yokoi, editors, IAS,
pages 558-565. IOS Press, 2006.

D. Polani. Foundations and formalizations of self-organization. In M. Prokopenko,
editor, Advances in Applied Self-organizing Systems, pages 19-37. Springer, 2008.

D. Polani, O. Sporns, and M. Lungarella. How information and embodiment shape
intelligent information processing. In Lungarella et al. [84], pages 99-111.

198 BIBLIOGRAPHY

[128] B. Porr and F. Worgotter. Isotropic sequence order learning. Neural Comput.,
15(4):831-864, 2003.

[129] M. Prokopenko. Design vs self-organization. In M. Prokopenko, editor, Advances in
Applied Self-organizing Systems, pages 3—17. Springer, 2008.

[130] M. Prokopenko, N. Ay, G. Baldassarre, F. Boschetti, M. Bruenig, M. Burtsev, R. Der,
J. Lizier, S. Nolfi, O. Obst, D. Polani, I. Tanev, L. Yaeger, and A. Zomaya. The First
Intl. Workshop on Guided Self-Organisation (GSO 2008). http://www.prokopenko.
net/gso.html, November 2008.

[131] S. Renals and R. Rohwer. A study of network dynamics. Journal of Statistical
Physics, 58:825-848, 1990.

[132] C. W. Reynolds. flocks, herds, and schools: A distributed behavioral model. In Proc.
Computer Graphics (SIGGRAPH ’87), number 4 in 21, pages 25-34, 1987.

[133] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek. Spikes: Ezxploring
the Neural Code. MIT Press, Cambridge, MA, 1st edition, 1997.

[134] J. Rittscher, A. Blake, A. Hoogs, and G. Stein. Mathematical modelling of animate
and intentional motion. Phil. Trans. R. Soc. Lond. B, pages 475-490, 2003.

[135] Robotis Ltd. Robotis web page. http://www.robotis.com, 2009.

[136] A. Rodriguez. Guided Self-Organizing Particle Systems for Basic Problem Solving.
PhD thesis, University of Maryland (College Park, Md., USA), 2007.

[137] K. Rose, E. Gurewitz, and G. C. Fox. Statistical mechanics and phase transitions in
clustering. Physical Review Letters, 65(8):945-948, Aug 1990.

[138] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems.
Technical Report 166, Engineering Department, Cambridge University, 1994.

[139] A. L. Samuel. Some studies in machine learning using the game of checkers. In
H. Billing, editor, Lernende Automaten, pages 155-178. Oldenbourg, Miinchen, 1961.

[140] S. Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive
Sciences, 6:233-242, 1999.

[141] S. Schaal. Learning robot control, pages 983-987. MIT Press, 2 edition, 2002.

[142] S. Schaal, A. Tjspeert, and A. Billard. Computational approaches to motor learning
by imatation, volume 1431, pages 199-218. oxford university press, 2004.

[143] J. Schmidhuber. Curious model-building control systems. In In Proc. Intl. Joint
Conf. on Neural Networks, Singapore, pages 1458-1463. IEEE, 1991.

[144] W. Schultz, P. Dayan, and P. R. Montague. A Neural Substrate of Prediction and
Reward. Science, 275(5306):1593-1599, 1997.

http://www.prokopenko.net/gso.html
http://www.prokopenko.net/gso.html
http://www.robotis.com

BIBLIOGRAPHY 199

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]
[154]

[155]

[156]

157]
[158]

[159]

C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27, 1948.

K. Sims. Evolving 3d morphology and behavior by competition. Artificial Life,
1(4):353-372, 1994.

S. Singh, R. S. Sutton, and P. Kaelbling. Reinforcement learning with replacing
eligibility traces. In Machine Learning, pages 123-158, 1996.

B. V. Smith. Xfig 2-d cad & drawing program for the X windows system. http:
//www.xfig.org, 2008.

R. Smith. Open Dynamics Engine — open source, high performance library for sim-
ulating rigid body dynamics. http://ode.org, 2008.

O. Sporns and M. Lungarella. Evolving coordinated behavior by maximizing infor-
mation structure. In L. M. Rocha, L. S. Yaeger, M. A. Bedau, D. Floreano, R. L.
Goldstone, and A. Vespignani, editors, Proc. Artificial Life X, pages 323-329. Intl.
Society for Artificial Life, MIT Press (Bradford Books), August 2006.

L. Steels. Evolving grounded communication for robots. Trends in Cognitive Science,
7(7):308-312, July 2003.

L. P. Steffe. The learning paradox: A plausible counterexample. In L. P. Steffe,
editor, Epistomological foundations of mathematical experience, pages 26-44, New
York, 1991. Springer.

S. Steingrube, M. Timme, F. Woergoetter, and P. Manoonpong. Self-organized adap-
tation of simple neural circuits enables complex robot behavior. under review.

D. Sternad and S. Schaal. Segmentation of endpoint trajectories does not imply
segmented control. Fxzperimental Brain Research, 1:118-136, 1999.

S. Stitt and Y. F. Zheng. Distal learning applied to biped robots. In Proc. of
the IEEFE Intl. Conf. on Robotics and Automation, pages 137-142. IEEE Computer
Society, 1994.

P. Stone and R. S. Sutton. Scaling reinforcement learning toward RoboCup soc-
cer. In Proc. of the 18th Intl. Conf. on Machine Learning, pages 537-544. Morgan
Kaufmann, San Francisco, CA, 2001.

S. Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, New York, 1994.

R. S. Sutton. Learning to predict by the methods of temporal differences. In Machine
Learning, pages 9—44. Springer, 1988.

R. S. Sutton. Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In Advances in Neural Information Processing Systems 8,
volume 8, pages 1038-1044, 1996.

http://www.xfig.org
http://www.xfig.org
http://ode.org

200

BIBLIOGRAPHY

[160]
[161]

[162]

[163]
[164]

(165
[166]

[167]

168

[169]

[170]

171]

[172]
[173]
[174]

[175]

[176]
[177]

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, March 1998.

R. S. Sutton and A. G. Barton. Reinforcement learning: Past, present and future.
In SEAL, pages 195-197, 1998.

J. Tani and M. Ito. Self-organization of behavioral primitives as multiple attractor
dynamics: A robot experiment. IEEE Transactions on Systems, Man, and Cyber-
netics, Part A, 33(4):481-488, 2003.

G. Tesauro. TD-gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation, 6(2):215-219, 1994.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). MIT Press, 2005.

A. M. Turing. Computing machinery and intelligence. Mind, 49:433-460, 1950.

A. M. Turing. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc., 237:37,
1952.

F. Varela, E. T. Thompson, and E. Rosch. The Embodied Mind. MIT Press, 1991.

E. von Glasersfeld. Scheme theory as a key to the learning paradox. In A. Tryphon
and J. Vonéche, editors, Working with Piaget: Essays in honour of Bdrbel Inhelder.,
pages 139-146. Psychology Press, London, 2001.

C. J. Watkins and P. Dayan. Q-learning. In Machine Learning, volume 8, pages
279-292, 1992.

P. J. Werbos. Backpropagation: Past and future. In Processing of the Intl. Conf. on
Neural Networks, volume I, pages 343-353, New York, July 1988. IEEE Press.

R. W. White. Motivation reconsidered: The concept of competence. Psychological
Review, 66:297-333, 1959.

Wikipedia. Aibo — wikipedia, the free encyclopedia, 2009. [Online; 3-June-2009|.
Wikipedia. Asimo — wikipedia, the free encyclopedia, 2009. |Online; 29-June-2009.

Wikipedia. Self-organization — wikipedia, the free encyclopedia, 2009. [Online; 28-
May-2009).

S. Wischmann, K. Stamm, and F. Woérgotter. Embodied evolution and learning: The
neglected timing of maturation. In Advances in Artificial Life: 9th European Conf.
on Artificial Life, LNAIL pages 284-293. Springer-Verlag, 2007.

F. Woergoetter and B. Porr. Reinforcement learning. Scholarpedia, 3(3):1448, 2008.

D. M. Wolpert and M. Kawato. Multiple paired forward and inverse models for motor
control. Neural Networks, 11:1317-1329, 1998.

BIBLIOGRAPHY 201

[178] D. M. Wolpert, R. C. Miall, and M. Kawato. Internal models in the cerebellum.
Trends in Cognitive Sciences, 2:338 — 347, 1998.

202 BIBLIOGRAPHY

ACKNOWLEDGMENTS 203

Acknowledgments

Many people have supported me during my PhD time and have contributed directly or
indirectly to this thesis, who I like to thank here.

I would like to thank Theo Geisel for giving me the possibility to work at this great institute
and for the constant support of my work. Thank you for investing so much effort to create
and retain such an excellent environment and working atmosphere in the group. I feel
honored to be part of it.

[am grateful to Ralf Der for bringing me to the fascinating topic of robotics, for supervising
my work, and for teaching me so much about what scientific work is all about. Your
inexhaustible optimism made it always a pleasure to work with you and it was very helpful
in times of trouble, no matter of which nature. Thanks for the guidance through my thesis
work.

I would like to thank J. Michael Herrmann for supervising my work, for raising many
fascinating questions (much more than one can solve in single thesis) and advising me to
answer some of them. It was great to have an interactive library present next door and
to have the ‘Herrmannscher Textverbesserungsalgorithmus’ available (though mostly non-
terminating). Thank you for having time whenever I needed it and also for the countless
funny conversations on scientific and everyday life issues.

I would like to thank Frank Hesse for the good collaboration, for helpful conversations and
for sharing many troubles with the robot simulations.

My special thanks goes to my wife Anna for giving my life a new meaning, for unlimited
support, for offering advice on scientific as well as non-scientific questions, and for giving
me the opportunity to challenge my poor language skills with the Russian language. I
thank my family for the love and support they gave me, for believing in me all the time
and for assisting me in many aspects of my life. At this point I would also like to thank
my best friends Alex, Patrick, and Jens in Leipzig for their support and fun.

Many thanks to Min, Wei, Pinar and Manamohan, with whom I shared the office, had
many nice conversations, and got an idea of Chinese, Indian, and Turkish mentalities
and cultures. Due to them my understanding of different accents of English improved
immensely. I thank Min for the nice trips to the countryside, the dumplings, and for being
a trusty friend.

I would like to thank Yorck who always had time for computer-related issues and supplied
me with just about every technical equipment I needed. Thanks also to Denny for keeping
the computing equipment at a rigorously high standard.

Thanks to the secretaries, especially Regina and Katharina for shielding me from most
of the bureaucratic paperwork. Tobias should not be forgotten here, because he was a
priceless aid in the jungle of upcoming GAUSS/GGNB/PTCN regulations.

204 ACKNOWLEDGMENTS

Thank you Sascha and Dirk for happily engaging me in entertaining conversations. Thanks
to Raoul, Anna, Tatjana, Marc, and all those who joined the lunch breaks to the Willi-
Mensa. Many thanks also to all members of the legendary Lunch Club™: Peter, Jacob,
Micha, Hecke, Wolfgang, Olaf, Tatjana, Min and Anna for deliciously prepared meals and
nice discussions. Due to Micha (Mr. Monteforte), Wolfgang and Mick I got the right type
of recreation by touring through the beautiful countryside of Géttingen — thanks a lot.

Apart from the above mentioned people I would like to thank Ghazaleh Afshar, Lishma
Anand, Jens Arnold, Demian Battaglia, Vitaly Belik, Oliver Bendix, Dmitry Bibichkov,
Armin Biess, Raffael Brune, Kai Broking, Nikolai Chapochnikov, Vincent David, Ahmed El
Hady, Stephan Eule, Katja Fiedler, Ragnar Fleischmann, Tanja Gindele, Carsten Grabow,
Babara Guichemer, Harold Gutch, Joachim Haft, Holger Hennig, Moritz Hiller, Sven
Jahnke, Hinrich Kielblock, Christoph Kirst, Christoph Kolodziejski, Birgit Kriener, Tomas
Kulvicius, Poramate Manoonpong, Irene Markelic, Matthias Mittner, Alejandro Morales
Gallardo, Jan Nagler, Neves Fabio Schittler, Lars Reichl, Martin Rohden, Holger Schanz,
Benjamin Schwenker, Andreas Sorge, Kristin Stamm, Fabian Theis, Christian Thiemann,
Corinna Trautsch, Frank van Bussel, Annette Witt, Steffan Wischmann, Florentin Worgot-
ter, and Fred Wolf for creating a distinct and wonderful atmosphere.

I am indebted to Michelle Monteforte for correcting my English and to Anna and Frank
(Hesse) for proof-reading my thesis. Thanks also to Hecke, Vitaly, and Manja for valuable
comments.

I would like to thank Frank Giittler, Frank Hesse, Marcel Kretschmann, and Katja Fiedler
for the collaboration on LPZROBOTS, Harold and Kolo for the shared worries about the
website, Hecke for the fun with the poster style, Patrick for tips and tricks in MATHEMAT-
ICA, and René Liebscher for the original IXTEX-Makefile.

Thanks to Theo for making the Dynamics Symposium possible every year, which was not
only very valuable in terms of scientific understanding and in terms of presentation skills,
but it was also great fun, especially on the slopes.

Due to Horst Willburger my stay in Vienna was really a joy — thanks. I would also like to
thank Stefano Nolfi for inviting me to Rome and for broadening my view on robotics. Last
but not least I thank our neighbors Alex and Ruth for the master’s coffee and the Internet
at home.

[acknowledge financial support from the Bernstein Center for Computational Neuroscience,
BMBF grant 01GQ0432.

	Contents
	Nomenclature
	List of Symbols
	Introduction
	From Classical Artificial Intelligence to Embodied Systems
	State of the Art in Autonomous Robot Control
	Research Questions and Thesis Overview
	List of Most Important Results

	Robot Simulation Environment and Robotic Devices
	Robot Simulator LpzRobots
	Structure
	User Interaction
	Creating the Virtual World
	Collision Detection and Surface Properties
	Matrix Library
	Highlights
	Summary

	The Zoo of Robotic Creatures
	TwoWheeled Robot
	FourWheeled Robot
	Rocking Stamper
	Barrel Robot
	Spherical Robot
	Short Circuit
	Planar Snake Robot
	Armband Robot
	Summary

	Homeokinesis for Robot Control
	Introduction
	Self-organization
	Sensorimotor Loop Setup
	Dynamical Systems Formulation of the Sensorimotor Loop
	Homeokinetic Principle and Time Loop Error
	Learning Rule of the Homeokinetic Controller
	Fixed Points, Hysteresis, and Self-Switching Dynamics
	System Dynamics in One Dimension
	Summary

	Homeokinesis: Multidimensional, Properties and Extensions
	Multi-dimensional Case and Motor Space
	The Time-Loop Error in Sensor Space
	The Time-Loop Error in Motor Space
	Calculation Rules
	Pseudo-linear Controller and Linear World Model
	Learning Dynamics in Sensor Space
	Learning Dynamics in Motor Space
	Initialization

	Regularization
	Pseudoinverse
	Disarm the Non-Linearities
	Limiting Updates
	Square Root and Logarithm of the Error

	Emergent Embodied Behavior -- The Rocking Stamper
	Sweeping Through the Behavior Space
	Application to the Barrel robot
	Application to the Spherical Robot

	Cognitive Deprivation and Informative Actions
	Model Learning -- Problems and Challenges
	Deprivation Effect
	The Gradient Flow of the Parameters and Bootstrapping
	Application to the TwoWheeled Robot
	Spherical Robot in a Basin
	Application to the Planar Snake Robot
	Summary

	Low-Dimensional Modes
	Controller Extensions
	Integration of Additional Error Functions
	Continuity Preference
	Model of the Prediction Error

	Model Extension and Ambiguity
	Shortcomings of Simplified World Model
	Ambiguity in the Interpretation of Sensations
	Controller Noise to Disentangle Ambiguity
	Assume Maximal Self-Induced Observations
	Enhanced World Model
	Advanced Sensor Configuration
	Application to Planar the Snake Robot II
	Summary

	Discussion

	Guided Self-Organization
	Guiding with Teaching
	Direct Motor Teaching
	Direct Sensor Teaching

	Guiding with Cross-Motor Teaching
	Enforcing Pairwise Symmetries
	Permutation Relations
	Arbitrary Cross-Motor Teaching Configurations

	Guiding with Reward
	Reinforcing Speed
	Reinforcing Spin

	Discussion

	Goal-Oriented Behavior from Self-Organized Primitives
	Acquisition of Behavioral Primitives
	Competing Experts
	Framework
	Winner-Takes-All with Suboptimality Penalty and Annealing
	Extraction in Action
	Experts as Controllers
	Summary

	Goal-Oriented Behaviors through the Combination of Primitives
	Temporal Difference Learning -- Reinforcement Learning
	Experts as Discrete Actions
	Obstacle Avoidance

	Discussion

	Conclusions
	Appendix
	Derivation of Matrix Calculation Rules
	Convergence of Enhanced World Model in a Simplified System
	Experiment using the Enhanced World Model

	Video References
	Bibliography
	Acknowledgments

