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Chapter 1

Introduction

1.1 Preliminaries

Networks are everywhere in nature and society; for more than a century they have been recog-
nized in diverse contexts such as the nervous system (Meynert, 1884), food chains (Camerano,
1880), and kinship relations (Radcliffe-Brown, 1922). Despite the fact that networks and net-
work effects have been noted in the above as well as genetics, criminology, epidemiology, and
elsewhere, investigation into how network interaction affects both collective and individual dy-
namics has been somewhat piecemeal until the last two decades, when relatively inexpensive
large scale computational resources have become available to researchers.

This new, computationally aided focus on dynamical interaction in networks has, however,
brought up new computational issues. In particular, overall dynamics can often depend ex-
plicitly and sensitively on the presence or absence of an individual connection [77, 112, 127].
This affects not only outcomes for particular instances, but our ability to calculate these out-
comes as well. The introduction of a presence/absence distinction as an important factor may
mean that exact computation requires exhaustive enumeration of discrete objects, discrete op-
timization subject to constraints, or some similar operation, which puts us in the realm of
NP-complete problems [49].

Graph theory is the branch of mathematics that studies abstract and, one could say, static
networks. It has been around in its own right for more than a century, and has made useful
contributions to the natural sciences [52], though most graph theoretical applications have been
to fields such as computer science, algorithmics, operations research, and industrial engineering.
Results from graph theory have been instrumental in the understanding of one class of networks
supporting an interaction of sorts that were already being studied intently before the last two
decades: human-made communication, traffic, and flow networks. Canonical algorithms for
determining the shortest path between two sites (Dijkstra’s algorithm), the minimum cost
spanning tree (Kruskal’s algorithm), and the minimum cut-set e.g. bottleneck in a flow network
(the Ford-Fulkerson algorithm) date from the 1950’s and 1960’s [31].

Graph theorists have been grappling with NP-completeness and related issues in computational
complexity theory for as long as anyone; the first inklings that some standard combinatorial
optimization problems are fundamentally harder than others came from graph theorists such
as Jack Edmonds during the 1960’s [36]. In the intervening time they have put together
an extensive toolkit for tackling problems at the edge of tractability; this includes optimized
brute force (so called “constant shaving”), various heuristics, polynomial time approximation
schemes, randomized algorithms, and perturbation/restriction of problem instances.

9



10 CHAPTER 1. INTRODUCTION

In the last two decades while we have seen increasing interest in natural and social networks,
we have also seen an corresponding increase in interdisciplinary work involving graph theorists
and computer scientists on one hand and physicists, biologists, sociologists etc. on the other.
This has been very much a two-way street: while the general scientific community has a strong
interest in the development of faster and better computational techniques, graph theory and
computer science for their part have benefited greatly from such things as the introduction
of small world networks [124] and power-law graphs [5, 116], as well as e.g. the discovery of
phase-transitions in the difficulty of hard computational problems [46].

1.1.1 Summary of Topics

In this cumulative thesis we look at results concerning two separate topics.

The first topic belongs to the general problem of reconstruction of interaction networks using
only per-site information. Section 1.2 in the introduction briefly surveys the field up to this
date. Chapter 2 consists of the article “Inferring Synaptic Connectivity from Spatio-Temporal
Spike Patterns”. In this article a method for exact reconstruction of leaky integrate-and-fire
networks from spike time data is presented. This method is capable of reconstructing networks
of several hundred neurons in a relatively short time; it is not only a significant advance on
the current state of the art with respect to model neuron networks, it stands as a proof in
principle that the problem of exact reconstruction of pulse-coupled networks is not inherently
intractable due to discrete interactions. In section 5.1 of the conclusion we present several ideas
for extending this theoretical result to deal with more realistic neuronal networks.

The second topic is the relation between Potts/Ising models from statistical physics and the
chromatic polynomial from graph theory. A general outline of the problem and various math-
ematical issues related to it is given in section 1.3 of the introduction. Two of the articles
presented in this thesis deal with this topic. Chapter 3, “Counting Complex Disordered States
by Efficient Pattern Matching: Chromatic Polynomials and Potts Partition Function”, presents
a new method for computing the chromatic polynomial of a given graph based on algebraic
operators that can be implemented with simple match-and-replace rules in any symbolic math
system. On strip lattices the running time of the new method is competitive with previous
specialized lattice-based methods from statistical physics; however, it is also capable of work-
ing on arbitrary graphs without modification, so vastly expands the structural range of graphs
that can be accessed. Among the results presented in this article is the chromatic polynomial
of the 4 × 4 × 4 simple cubic lattice (free boundary conditions), the first time this has ever
been successfully computed; previous research had been restricted to relatively unphysical
2-dimensional systems by feasibility issues. In chapter 4, “Chromatic Polynomials of Random
Graphs”, the greater flexibility of the new method is exploited to do extensive calculations of
chromatic polynomials on random graphs with between 12 and 30 vertices across the entire
range of edge-densities. Our finding is that the complex root sets of the chromatic polynomials
of random graphs fall into stereotypical locations depending on size and density; in particular,
when the average degree is fixed the point at which the complex root set will meet the real
line is very predictable, and independent of the total number of vertices. Several implications
of this for statistical physics are discussed in the conclusion of the article.

While these two topics are scientifically quite independent of each other, they both arise from
ongoing research projects of the MPIDS Networks Dynamics Group. Application of various
graph theoretical and combinatorial optimization techniques were an essential part of the work



1.2. NETWORK RECONSTRUCTION 11

I have done on these projects; however, I am mindful of the fact that the scientific aims are
primary. Hence the emphasis in the articles and introductory material is on “Network Dynam-
ical Systems” rather than “Combinatorial Optimization”; discussion of implementation details
and technical computational issues are reserved for the appendix. No specialist knowledge of
computer science or graph theory should be required to understand the material here and in the
articles. Where concepts or terminology from these fields come up they will be accompanied
with brief definitions, explanations, or external references as needed.

1.2 Network Reconstruction

Relevant Paper:

1. Frank Van Bussel, Birgit Kriener, and Marc Timme, Inferring Synaptic Connectivity
from Spatio-Temporal Spike Patterns, under review at Frontiers in Computational Neuro-

science

Inverse problems lie at the heart of science: we know outcomes, and we want to know what
lead to these outcomes. While natural scientists were always aware of the complex network
interactions that underlie much of the phenomena they studied, it is only in the last couple of
decades, with access to inexpensive large-scale digital computation, that they could study such
interactions on a realistic scale. The problem of recovering networks based on their observed
dynamics has therefore attracted growing attention [2, 24, 133, 134].

Perhaps because predicting dynamics of complex networks based on known connectivity is
itself usually very difficult, explicit inverse methods that give the exact strength of pair-wise
connections have not been the focus of most of this attention; instead, it has been directed
to methods based on correlations in activity between different areas of the network. Much
work has been devoted to establishing functional and/or effective connectivity, particularly in
neuroscience, but more recently in other areas of biology such as genetics and ecology [27, 60].

1.2.1 Functional connectivity

Within neuroscience the study of functional connectivity comes directly out of the long tradition
of research in neurophysiology devoted to modular specialization of function in specific areas
of the brain. A variety of techniques and tools are available, but for the most part they involve
application of cross-correlations and other covariance based statistics to PET, EEG, fMRI,
and other data [38, 50, 70]. The advantages are obvious: it ties into a large existing body of
knowledge on area specialization; no strong assumptions about the nature of the interactions
or the underlying neuron model need be made; and it can work with data that is noisy, large
grained, or imprecise. On the other hand, it has the usual problems of broadly targeted
statistical techniques, such as determining direction of connectivity, or making distinction
between direct and indirect connectivity. As well, almost by definition it yields results that are
on a much different scale than the neurons that make up the network.

This last point, I think, is important. While large-scale statistical methods will remain useful
for the foreseeable future in establishing connectivity between regions of the brain, ultimately
we also want to isolate small-scale functional subassemblages such as timers, gates, tags, and
masks (discrete filters). These are what graph theorists call “gadgets”, small subgraphs with
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a consistent topology that encode some generic information or purpose. A plausible approach
to doing this is to scan connectivity tables of slightly larger-scaled regions of interest for these
subassemblages; which of course requires accurate connectivity tables in the first place. Work
in this vein has already begun with respect to establishing relative frequency of various small
graph motifs in real neuronal networks [108]. So far the networks involved have been limited
in size (roughly 100 neurons or less) and acquired only with extensive experimental effort.

There has been some work using more sophisticated statistical techniques (PCA, Grainger
causality) to determine effective connectivity of neurons on an individual basis from simula-
tion data, but it has had mixed success. Statistical methods pursued on the micro scale have
the same limitations they do on the macro scale; as well, such methods tend to require rel-
atively large amounts of data, which must furthermore fulfill not entirely realistic conditions
(e.g. constant statistical properties, no mutual couplings, entrainment cannot occur) [70].

A note on effective connectivity. It seems that many researchers regard the terms “effective
connectivity” and “functional connectivity” as roughly interchangeable, while others attempt
to draw a subtle but real distinction between them; the nature of this distinction is a matter
of debate among (some) neuroscientists [38, 50]. Here I only want to register that I am aware
that effective connectivity may be a separate issue that will have to be addressed in future
papers; for obvious reasons I would prefer not to wade into any open controversies surrounding
the issue at the present time.

1.2.2 Explicit reconstruction methods for oscillator networks

While eventual application to neuronal networks has been the motivation for much reconstruc-
tion research, the general network inverse problem is of independent mathematical interest, and
has possible applications in diverse fields such as chemistry, sociology, and genetics [41, 78].
Hence much of the work on explicit reconstruction and similar problems has focused on con-
tinuously interacting oscillator networks e.g. Kuramoto, Lorenz, or Rössler oscillators, arising
out of the general study of dynamics of oscillator networks [113, 133, 134].

We do not have space to do more than touch upon the large body of proto-reconstructive work
that has been done. Noteworthy for our purposes are studies such as those by Zanette [135],
and Kori and Mikhailov [62], which look at propagation of perturbations through the network
emanating from a single node. In such systems it is possible to directly relate the degree and
timing of the perturbation experienced by nodes to their topological distance from the source.
Following from these results Radicchi and Ortmann [90] considered how quickly parts of a
network synchronized to pacemaker cells. Here as well distance between nodes was a major
influence, though other aspects of the network topology such as the presence or absence of
closed cycles had an effect. Timme [112] showed that, independent of distance metrics, the
way a network is partitioned by its strongly connected components has a determinative effect
on its ability to synchronize after random perturbation, and that in reverse one can measure
the network’s ability to synchronize to learn about the its connectivity.

While it does not address topological issues, the autosynchronization technique of Parlitz [86]
should be mentioned here since it stands as a precursor to connectivity reconstruction method-
ology that has followed. This technique is able to recover multiple parameter values simul-
taneously, up to complete systems of ODE’s, by synchronizing a model system to the dynamics
of the original system as given by time series data.
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The method of Yu, Righero, and Kocarev [134], for example, follows directly from Parlitz’s
approach: network topology is recovered by synchronization of a model network to the original
network’s dynamics by a process of continuous error minimization. A later approach given by
Yu and Parlitz [133] dispenses with the entire comparison network i.e. the second connectivity
matrix, though it does feature a set of comparison values for the dynamics and output functions
of the individual nodes in the network. In this case, an external driving that is proportional to
the difference between the node’s current phase value and its comparison value is applied, and
the network is brought into a steady state by adjustment of the comparison values. Once the
network achieves its steady state the connectivity can then be recovered from the comparison
values and the total driving strength.

All the full and partial reconstruction approaches mentioned above depend on networks achiev-
ing synchronization or stable dynamics; so far the only method (that I know of) to reconstruct
oscillator networks which does not is that of  Le.ski and Wójcik [67]. Their method features a
time consuming statistical comparison of the transient portion of time series, so it can only
reconstruct one connection at a time. For comparison, the Yu, Righero, and Kocarev method
has been used to reconstruct networks of 16 nodes, and the Yu and Parlitz method has been
used for networks with at least 50 nodes [133, 134].

1.2.3 The response dynamics framework

We will take a closer look at the reconstruction approach for phase-coupled networks devel-
oped by Timme [113], since it has a direct relevance on my subsequent work on pulse-coupled
networks. The basic idea is that measurements of stable response dynamics under different
external driving conditions are used to construct linear systems that can be solved to obtain the
incoming connections for each node. We start with a network of N oscillators with dynamics
described by the differential equations

φ̇i = ωi +
N∑

j=1

Jij fij(φj − φi) + Ii (1.1)

where φi(t) is the measured phase of oscillator i at time t, ωi is its natural frequency, Jij

is the coupling strength, fij is the coupling function, and Ii is an external driving force. If
such a system is able to synchronize when undriven (Ii = 0) it will phase lock under a small
enough perturbation. If the systems is perturbed M times by using different drivings Ii,m,
m = 1, 2, ..., M ≤ N , we obtain

Di,m = Ωm − Ω0 − Ii,m =

N∑

j=1

Jij [fij(φj,m − φi,m) − fij(φj,0 − φi,0)] (1.2)

where Ωm is the system’s collective frequency under driving m and Ω0 is the undriven collective
frequency. Via linearization we get the following approximation:

Di,m =
N∑

j=1

Ĵij(φj,m − φj,0) where Ĵij =

{
Jij f ′

ij(φj,0 − φi,0) for i 6= j
−

∑
k,k 6=j Jik f ′

ik(φj,0 − φi,0) for i = j .
(1.3)

If we let θj,m = φj,m −φj,0 this gives us the linear system D = Ĵθ, which can be directly solved
to obtain the off-diagonal elements of the connectivity matrix J (the diagonal elements are
assumed to be zero to begin with).
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This method gives both the topology and the connection strengths with high degree of accu-
racy. It has been used with success on Kuramoto oscillator networks (fij = sin) [113], and
preliminarly results indicate that it is applicable to higher dimensional systems. It is impor-
tant to note that the response dynamics (multiple driving) framework is detachable from the
linearization aspect of the solution. Here linearization is necessary to approximate the system,
so the dynamics need to be stable; networks with entirely different interactions (e.g. discrete,
repulsive, non-oscillatory) displaying irregular or chaotic dynamics can in principle also be re-
constructed using response dynamics, as long as some way exists of solving or estimating the
ODE’s.

Another feature of the method is that it is amenable to an optimization that can reduce
the number of different drivings M required (and hence experimental or simulation runs) to
significantly less than N . This optimization, previously presented by Collins and various col-
laborators in [41, 132], makes use of singular value decomposition plus an L1-norm minimizing
heuristic based on the naturalistic assumption that the network in question is sparse. This
same optimization is used as well in chapter 2, where it is described in some detail; since there
are aspects of its application that I am continuing to work on, further discussion of this issue
is left to section 5.1.1 below.

1.2.4 Explicit reconstruction methods for pulse-coupled networks

A voluminous literature exists on the dynamics of neuronal and general pulse-coupled networks.
It should also be noted that while biological neuron models are the most common subject or
proposed application of these studies, many other natural phenomena can also be considered
as discrete-interaction networks [75], while abstract versions such as “chip-firing games” are as
well studied by mathematicians and graph theorists [11, 16]. While there is often a topological
aspect to this research, due to space and time constraints I will restrict myself here to previous/
contemporary research that has an actual reverse-engineering component.

As with reconstruction of continuous oscillator networks, there was some work done in the
1990’s with regard to recovering model parameter information from the dynamics displayed by a
single node. Noteworthy in this regard is the prediction/correction method used by Sauer [97] to
reconstruct the attractor of single integrate-and-fire neuron from time series data. The premise
is that, due to synchronizing influences, multiple interactions from unknown neighbours could
be modeled as input from a single low-dimensional chaotic attractor; hence the demonstration
of the method used spike trains generated by applying a threshold-with-spike to Lorenz and
Rössler attractors.

Work in earnest on multiple neuron network reconstruction has begun only in the last decade.
The most direct attack on the problem has been given by Makarov et al [70]; they provide
a method that recovers not only topology and connection weights, but also the other model
parameters for a generic integrate-and-fire neuron network. The basis of the method is a fit
with continual error minimization of each individual neuron’s phase values (i.e. potential) to
oncoming spike data, until the parameters and connection weights are consistent with the
spiking that is seen. The method has been tested on biological as well as simulation data
with some success; however, the largest network they report as having reconstructed this way
consists of only 5 neurons.

An approach coming from the opposite direction is given by Memmesheimer and Timme [73,
74]. They give mathematical criteria which any network must fulfill in order to generate
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a specified precisely timed periodic spike pattern. In principle, a particular periodic spike
pattern may be producible by infinitely many different neuronal networks, though there are
also impossible patterns which cannot be generated by any (the methodology can detect both
cases). The criteria can be then applied to design a network to generate the pattern in question.

Even relatively simple model neurons can display behavioural quirks that have no analogue in
continuous interaction networks (these quirks are of course built into the models to mimic the
behaviour of real neurons). Any eventual practical reconstruction technique will have to either
handle all such eventualities, or consist of a repertoire of specialized subroutines for different
spiking regimes. The beginnings of an approach to neurons displaying bursting behaviour has
been made by Shen, Hou, and Xin [101, 102]; after extensively studying the effect of adding or
strengthening network couplings on burstiness, they show that the degree distribution of the
network can be obtained via a mean-field method.

1.2.5 Leaky integrate-and-fire neuron model

Before we move on to the second half of this introduction I would like to briefly discuss the
leaky integrate-and-fire neuron model, and in particular the mathematically equivalent but
notationally different versions used during the reconstruction project. I hope this removes
any potential confusion that might be caused by close comparison of chapter 2 and e.g. the
reconstruction code provided in appendix A.2.

The version of the leaky integrate-and-fire neuron that I myself used for the initial planning
phase of the reconstruction project was:

Ci

dVi

dt
= Ii −

1

Ri

Vi + Si(t) (1.4)

where Ci, Ii, Ri, and Vi are the capacitance, external current, membrane resistance, and
membrane potential respectively, in their standard units. Si is the interaction term that for
discrete pulse interactions would be ±∞ at the instant that a spike arrived, and be zero
otherwise. This model is based on the one given in Koch and Segev’s Methods in Neuronal

Modeling [40].

Since we did not expect be fiddling with the value of the capacitance while fixing the other
parameters, for simplicity the following “working model” was used throughout the development
phase (i.e. coding of the simulation program, derivation of the solution, and coding of the
reconstruction routines):

dVi

dt
= Ĩi − γVi + Si(t) (1.5)

where Ĩi = Ii/Ci in volts per second, and γ = 1/(CiRi) is the “leakage” in units of 1/seconds.
Since the interaction is instantaneous the capacitance cannot affect it; as well, whatever the
interaction contributes when the RHS is integrated is immediately deposited into the value of
Vi, where the capacitance works through γ. It should be noted that large scale testing of the
reconstruction programs was implemented through a wrapper that took as parameters those
used in the (1.4) model, and then converted to the (1.5) working values.

Admittedly, in reports, program code, and other documents that were generated throughout
the project a common form of notational abuse was committed, where Ii or I was written
without any indication that this was not in fact an electrical current in the ordinary sense
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(i.e. we did not bother with the tilde). To my knowledge this never once caused any mistakes
to be made in any analysis, coding, or testing. However, when it came time to write the results
up for publication we realized we would need to use a notation that was unambiguous and not
vulnerable to misunderstanding due to typographical omissions. After it was decided to submit
to Frontiers in Computational Neuroscience we adopted a version of the LIF model that was
more in line with the usage in the neuroscience literature:

dVi(t)

dt
= γ (RiIi − Vi(t)) + S(t) , (1.6)

where 1/γ is the membrane time constant (γ still having the same units as in (1.5)), and Ri

and Ii have their familiar meanings as in (1.4).

1.3 Chromatic Polynomials

Relevant Papers:

1. Marc Timme, Frank Van Bussel, Denny Fliegner, and Sebastian Stolzenberg, Counting
Complex Disordered States by Efficient Pattern Matching: Chromatic Polynomials and
Potts Partition Functions, New Journal of Physics 11 023001 (2009)

2. Frank Van Bussel, Christoph Ehrlich, Denny Fliegner, Sebastian Stolzenberg, and Marc
Timme, Chromatic Polynomials of Random Graphs Journal of Physics A: Mathematical

and Theoretical 43 175002 (2010)

The history of the chromatic polynomial gives a nice example of the convergence of entirely
separate streams of inquiry that can sometimes happen in science and mathematics. In 1912
the American mathematician G. Birkhoff proposed the chromatic polynomial as a way of using
complex analysis to prove the then 4-color conjecture in graph theory [14]. Mathematical work
in this vein resulted in much of worth, though in the end the 4-color theorem itself was proven
by more straightforwardly combinatorial means [8, 117, 128]. In recent decades, however,
the chromatic polynomial has become the focus of attention from statistical physicists due
to its connection to the Potts model of interacting spins on a lattice [29, 103, 104, 105]; the
nature of this connection will be outlined below. Chapter 4 of this thesis contributes further
to the convergences: while our study of the chromatic polynomials of random graphs is at base
motivated by statistical physics concerns, it also ties into the study of random graphs pioneered
by the Hungarian mathematician P. Erdös in the 1950’s.

Before we proceed, we will need some definitions. Given a graph G with vertex set V and edge
set E, where N = |V | and M = |E|, a proper coloring of G is defined as an assignment of values
(colors) to the vertices of G such that no two vertices connected by an edge share the same
value. G is q-colorable if there is a proper coloring of G using q or fewer colors; the chromatic

number χ(G) is then the minimum q such that G is q-colorable. The chromatic polynomial

P (G, q) is the associated counting function for proper q-colorings of G, that is, it tells us how
many ways we can color G with q colors. Hence for integer q such that 0 ≤ q < χ(G) we have
P (G, q) = 0.
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There are many different formulas for the chromatic polynomial, though the simplest is prob-
ably:

P (G, q) =

N∑

k=0

akq
k =

∑

E′⊆E

(−1)|E
′|qκ(E′) (1.7)

where κ(E ′) is the number of connected components of the graph induced by the edge subset E ′.
This formula, a straightforward application of the combinatorial inclusion-exclusion principle,
is not of much use for computational purposes, but it does tell us that P (G, q) is a polynomial
of order N , that the signs of the coefficients alternate, and that aN = 1, aN−1 = −M , and
a0 = 0. A more elegant expression is based on the Deletion-Contraction recurrence: for any
edge e ∈ E,

P (G, q) = P (G − e, q) − P (G · e, q) (1.8)

where G − e is G with the edge e removed, and G · e is G with the endpoints of e contracted
to a single vertex. This simple formula is the basis for almost all general purpose programs for
calculating chromatic polynomials [83, 91]. Similarities between this recurrence and recurrences
for various other graph invariants where noted by the English/Canadian mathematician W.
Tutte in the 1940’s; these prompted him to generalize the chromatic polynomial into the
bivariate Tutte polynomial [117]:

T (G, x, y) =
∑

E′⊆E

(x − 1)κ(E′)−κ(E)(y − 1)|E
′|+κ(E′)−N . (1.9)

Tutte himself early realized that this generalized polynomial had uses in statistical physics as
well as graph theory, though the full extent of the connection was not clear until the work of
Fortuin and Kasteleyn in the early 1970’s [39].

1.3.1 The Potts model

The standard q-state Potts model was introduced in 1952 as a generalization of the 2-state Ising
model for interactions on a crystal lattice [88, 131]. It describes systems in which sites can
take one of q different values, and the interactions occur only between neighbouring sites on
a lattice that are in the same state. The total energy in the global state σ = {σ1, . . . , σN} is
given by the Hamiltonian

H(σ) = −J
∑

(i,j)∈E

δσiσj
(1.10)

where J is the interaction strength, and E is the set of connections.

For the ferromagnetic (J > 0) Potts model, phase diagrams and critical exponents are now
known for various infinite lattices [7, 104, 131]. The model in this case is amenable to mean
field solutions as well as numerical methods such as Monte Carlo or renormalization group
techniques. While the model was originally thought to be of theoretical interest only, by the
1980’s several real systems were found to correspond closely enough to it to allow experimental
confirmation of theory based predictions; these include the cubic ferromagnet DyAl2 (q = 3)
and O2 adsorbed on nickel (q = 4) [131]. The antiferromagnetic (J < 0) case is not so well
understood. It is known that for large enough q the system is disordered: it has positive
ground state entropy, with T = 0 belonging to the high temperature regime. As well, for
countably infinite G with maximum degree k, when q > 2k there are no first order phase
transitions [96, 104].
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The partition function for this system at positive temperature T = (kBβ)−1 is

Z(G, q, T ) =
∑

σ

e−βH(σ)

=
∑

σ

∏

(i,j)∈E

(1 + (eβJ − 1)δσiσj
) (1.11)

where kB = Boltzmann constant and G is the lattice or structure corresponding to the edge-set
E. The relation between the Potts model and the Tutte polynomial comes out of the second
of these representations [39, 126]; if we set y = eβJ then evaluating the Tutte polynomial along
the hyperbola (x− 1)(y − 1) = q gives us the Potts partition function for that value of q. The
partition function for ferromagnetic Potts model lies on the branch of the hyperbola with both
x and y > 1, with temperature increasing from 0 to ∞ as x is increased; the antiferromagnetic
Potts partition function is in the part of the other branch where y > 0, with the remainder of
the branch not corresponding to anything physical.

While the Tutte polynomial generalizes both the Potts partition function and the chromatic
polynomial, the above does not give their relation directly. The chromatic polynomial exists
along the line y = 0, meeting the edge of every antiferromagnetic hyperbola as x decreases
from 1 to −∞. When J < 0 we have eβJ → 0 as T → 0, so in the zero-temperature limit the
partition function for the antiferromagnetic case simplifies to:

lim
T→0

Z(G, q, T ) =
∑

σ

∏

(i,j)∈E

(1 − δσiσj
). (1.12)

The product here will equal 1 if all pairs of adjacent nodes are in different states, and 0
otherwise; it functions as an indicator that the assignment of states given by σ is equivalent
to a proper coloring of G. Since Z(G, q, T ) just sums over these indicators it is itself then
equivalent to the chromatic polynomial P (G, q).

For this reason the statistical physics community has taken a serious interest in chromatic
polynomials, with the location of their roots in the complex plane being a particular focus. In
the 1950’s Lee and Yang [66] showed that for some ferromagnetic systems it was possible to
bound critical values, if all zeros of the partition functions for such systems had a non-zero
imaginary part. On the other hand, if the complex root set approaches arbitrarily close to
the real line as the system size N is increased, then in the N → ∞ limit it is possible for the
(real-valued) partition function to go to zero, leading to singularities in the system which might
indicate phase transitions or critical points. This second situation has come up repeatedly in
the study of antiferromagnetic systems; since no general Lee-Yang-type theorem exists here, for
the zero-temperature limit of the antiferromagnetic Potts model results have been established
on a lattice by lattice basis [96, 104]. This has led some authors to refer to the principles
involved in the plural, as Lee-Yang theorems [104].

1.3.2 Chromatic roots

Most statistical physics research on the chromatic polynomial has been done on thin sections of
2-dimensional lattices [28, 92, 96, 103], since their repetitive layered structure lend themselves
to specialized computational and analytic techniques. In terms of the system size N these
lattice strips are among the largest graphs for which chromatic polynomials have so far been
computed. For thin-enough strips it is sometimes possible to calculate the N → ∞ limit
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Figure 1.1: General form of the limiting curve for the chromatic root set of a lattice strip. An
example of such a limiting curve for a specific lattice (4 × n, square, FBC) is shown in figure
1 of chapter 4

of the chromatic root set to obtain a continuous curve, which allows one to invoke the Lee-
Yang theorems mentioned in the previous subsection. The solutions obtained so far have been
“highly lattice-dependent” compared to what is found for ferromagnets [96]; even so, there
are some common features [28, 92, 96, 103, 105]. Typically root sets trace out a somewhat
elongated backwards “C” curling around the point 1 + 0i. Gaps and small horns often show
up in characteristic locations (see figure 1.1). For 2-dimensional lattices the imaginary values
fall between 2.5i and −2.5i; these bounds increase to around ±4i for 3-dimensional lattices.
Similarly, real values for most 2-dimensional lattices are less than 3, but can reach higher
for 3-dimensional lattices and 2-dimensional triangular lattices. Negative real values are not
unknown but not often encountered, and so far the magnitudes involved have been very small.

To give these results some context we should take a look at what is known in general about the
root sets of chromatic polynomials. To start, explicit formulas for the chromatic polynomial
in terms of its coefficients are known for many simple graph families such as cycles, “wheels”,
“gears”, “helms”, “barbells”, “books” and the like, as well as some individual graphs of peren-
nial interest such as the Petersen graph [125]. The roots of the cycle CN are equally spaced
around a unit circle centered at 1 + 0i and thus represent the limiting case of a non-trivial
complex chromatic root set; many of the other families on the above list have chromatic poly-
nomials with many repeated small factors, so they only have a small, usually fixed, number of
distinct roots regardless of the number of vertices involved. Chordal graphs (nonplanar trian-
gulations, a larger class that includes trees and complete graphs) have chromatic polynomials
with only integer roots, as do certain almost but not quite chordal graphs [34].

More generally, a graph G with N vertices will have no real chromatic roots less than 0 or
greater than N . As well, no graph exists with a real chromatic root in either of the intervals
0 < z < 1 or 1 < z ≤ 32

27
[56]. An important result due to Sokal [105] is that over the set

of all graphs chromatic roots are dense in the complex plane. If the set is restricted to all
planar graphs this result still holds, with the possible exception of the unit disk centered at
1+0i (chromatic roots for some planar graphs are known to fall inside this disk but the density
question is unresolved).

Loose upper and lower bounds on chromatic root location do exist for parameterized graphs.
For a graph with maximum degree ∆ and second highest degree ∆2, the modulus |z| of any
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chromatic root z satisfies |z| ≤ 7.963907∆ and |z| ≤ 7.963907∆2 + 1, with no similar bound
possible for third highest degree; this is again due to Sokal [104]. No graph is actually expected
to have a chromatic root this distance from the origin, with the true bound conjectured to
be closer to 1.6∆, but this is so far unproven [94]. An even looser but less structure-specific
bound is given by Brown [21], who shows that all non-zero chromatic roots of a graph with
N vertices and M edges are in the disk |z − 1| ≤ M − N + 1; he also gives a lower bounds
of sort, proving that at least one of these roots must have modulus |z| ≥ M−1

N−1
. The existence

of the anomalous non-chordal graphs mentioned above removes the possibility of setting any
unqualified non-zero lower bound on the imaginary values. Brown does show, however, that
for every N there does exist a graph on N vertices with at least one root z having imaginary

value Im(z) >
√

N
4

.

1.3.3 Computational complexity

For readers who are unfamiliar with the basic outline of computational complexity theory a
brief review is given in appendix C.5.1.

Graph coloring, the problem of determining whether a given graph G has at least one q coloring
for arbitrary q, is one of the original NP-complete problems. Hence determining the chromatic
number is as well NP-complete. Since calculating the value of the chromatic polynomial for a
given G and q is a counting problem rather than a decision problem it does not belong to the
computational complexity class NP; determining the chromatic polynomial of a graph is instead
#P-complete, where the class #P is the counting problem analogue to NP. #P-complete
problems are as least as hard as any NP-complete problem and presumed to be some orders
of magnitude harder; even in the case that P=NP and graph coloring is actually easy, the
chromatic polynomial and other #P-complete problems would likely stay intractable [31, 85].

Until recently the best general case algorithms for the chromatic polynomial have been based
on the deletion-contraction formula [15, 91]. Since this works by recursively removing edges
from the graph until there are none left, a naive implementation on a graph with N vertices and
M edges would require 2M ∼ 2N2

recursive calls. This can be reduced by sophisticated pruning
or identification of computational branches, plus a judicious ordering of edges, but pursuing
such strategies involves as well their own computational demands, and improved versions do
not achieve running times better than exponential in the number of edges anyhow. For certain
graph classes there are polynomial time algorithms; these include the chordal graphs mentioned
above, P4-free graphs, and graphs of bounded treewidth [9].

Lattice strips belong to the last of these classes, hence their popularity among researchers
despite the limited physical applications of long, very thin systems. It should be noted that the
various specialized algorithms, while often linear in the length of the graph, have embedded
constants that grow exponentially with the width, so the range of feasible values really is
limited. The fastest but most lattice-specific algorithms are those that depend not only on
bounded treewidth but also a layered repeating structure; among these are Sokal’s transfer
matrix approach and Shrock’s method of generating functions [28, 96]. These have been used
not only to calculate chromatic roots for very long strips but also the limiting curves of the zero
set as N → ∞. Dependence on repeating structure, of course, precludes using the algorithms on
arbitrary graphs or even arbitrary low treewidth graphs. For such graphs deletion-contraction,
as implemented in Mathematica or Maple, is still the standard approach [123, 130].
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1.3.4 Random graphs

Because of the pioneering work on random graph theory done by Erdös and Rényi in the late
1950’s, the standard random graph is commonly denoted as an Erdös-Rényi (ER) random
graph [59]. The theory has a close relation to the probabilistic method in combinatorics, also
developed by Erdös [3]. Random graphs are everywhere in research, since an instance of a
random graph can stand as an initial approximation to an unknown arbitrary system. Hence
they are often used for testing algorithms, analytic methods, and theories. As one would expect,
there is a degree of overlap between random graph theory and statistical physics; for example,
percolation theory deals with connectedness in relatively sparse random graphs [99, 100].

The two models of the ER random graph are:

G(N, p) the graph has N vertices, between every pair of vertices an edge exists with uniform
probability p ;

G(N, M) the graph is chosen uniformly from all graphs with N vertices and M edges.

In the N → ∞ limit the two models are largely equivalent, though when N is finite (and in
particular, when N is relatively small) they can give slightly different results. Because any part
of a G(N, p) graph can be considered independently of any other part this model lends itself to
pencil-and-paper estimates and situations where global constraints are of no importance. On
the other hand, when the global edge-density of the graph is to be precisely specified one must
use the G(N, M) model. This, for example, is the case in the random graph process, a way of
modeling stochastic processes for which connectivity increases with time.

Large random graphs can possess surprisingly definite properties and precise invariants [59].
For example, for ǫ > 0 and large enough N , we have that

if p <
(1 − ǫ) log(N)

N
then G(N, p) will almost surely have isolated vertices, and

if p >
(1 + ǫ) log(N)

N
then G(N, p) will almost surely be fully connected. (1.13)

(this is an extension of Erdös’ famous Giant Component result [58]). The situation is similar
for many other features, such as clique size, diameter, or whether the graph has a Hamiltonian
cycle [3, 59]. Of particular relevance to this paper, since the chromatic number to some extent
puts a bound on where chromatic roots can appear, is the result due to Bollobás [19] that
is highlighted in the chapter 4: the chromatic number of a G(N, p) random graph is almost
always (

1

2
+ o(1)

)
log

(
1

1 − p

)
N

log N
. (1.14)

Here o(1) contains decreasing lower order terms as well as corrections for rounding etc.

Such sharp thresholding results have increased the profile of random graph theory, but they
have also made clear that ER random graphs might not always be appropriate for modeling
systems where little is known as opposed to absolutely nothing. Recent decades have therefore
seen various alternatives brought forward, such as small-worlds and scale free networks [69,
79, 81, 124]. These more accurately reflect what we now know about networks in social,
economic, biological, transportation and many other contexts. They also, however, involve
new complications at every stage of research, starting with the determination of what kind of
network we are dealing with in the first place.
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1.3.5 Collecting the threads

As mentioned at the beginning of this section, our chromatic polynomial research takes up the
various lines of inquiry outlined in the previous subsections: statistical physics, algorithmics,
and random graph theory. Here I will briefly outline how they lead into the material of chapters
3 and 4.

To begin with, as with much recent work on chromatic polynomials [92, 96] the motivation
and the basic methodology comes from statistical physics. This begins with the formula that
underlies the new algorithm presented in chapter 3, which is based on the antiferromagnetic
Potts partition function as given in (1.12) in section 1.3.1. Furthermore, while we do maintain
an interest in some questions of a graph theoretical nature, our main focus is on the behaviour
of entire chromatic root sets for physically relevant graphs, since in infinite size limit these
give indication of possible phase transitions and other critical phenomena (cf sections 1.3.1 and
1.3.2). Note that the current state of art/knowledge in this area is still formative, and does
not yet support any general scientific conjectures such as “Do all antiferromagnetic X’s do Y
at the zero temperature limit?”

The main reason for this is twofold. First, as given in section 1.3.3, calculating chromatic
polynomials is extremely difficult, enough so to make tackling graphs as small as 30 or 40
vertices a daunting proposition. Second, the behaviour of chromatic root sets seen so far in
both the physics and graph theoretic contexts is, as mentioned in section 1.3.2, not consistent
enough for us to even guess as to what the general case is. Up to the publication of chapter 3
the largest graphs chromatic polynomials had been calculated for were all thin 2-dimensional
lattice strips [28, 96], so nobody was in a position to say how representative the results would
be of physically realistic 3-dimensional systems.

Our approach to the problem has likewise been twofold. In chapter 3 we attack it by main
force, so to speak, utilizing the new algorithm implemented with additional optimizations in
the computer algebra system Form [121] to calculate chromatic polynomials for the 4× 4 × 4
simple cubic lattice and various other large 3-dimensional lattices (see appendix B.1 for details
about the optimizations). In chapter 4 we come at the problem in a more extensive way, by
doing chromatic polynomial calculations for more than a thousand random graphs. While
the individual graphs involved are smaller than those featured in chapter 3, they span the
entire range of connection densities and are structurally arbitrary; up to this time the fastest
algorithms for the problem were only equipped to handle very sparse and highly structured
graphs. The results obtained dovetail with those of random graph theory given in section 1.3.4,
with the chromatic root sets falling predictably into locations determined by the size of the
graph and the connection density.



Chapter 2

Article: Inferring Synaptic Connectivity from Spatio-

Temporal Spike Patterns

Frank Van Bussel, Birgit Kriener, and Marc Timme

Under review at: Frontiers in Computational Neuroscience

Submitted: May 14, 2010

23



24 CHAPTER 2. INFERRING SYNAPTIC CONNECTIVITY



Inferring Synaptic Connectivity from Spatio-Temporal
Spike Patterns

Frank Van Bussel∗1,2,3, Birgit Kriener1,2, Marc Timme1,2,3

1 Network Dynamics Group, Max Planck Institute for Dynamics

and Self-Organization, Göttingen
2 Bernstein Center for Computational Neuroscience Göttingen
3 Fakultät für Physik, Georg-August-Universität Göttingen, Germany

∗ Correspondence:

Network Dynamics Group, MPIDS,

Bunsenstrasse 10, 37073 Göttingen, Germany

fvb@nld.ds.mpg.de

Abstract

Networks of well-known constituents but unknown interaction topology arise across
various fields of biology, including genetics, ecology and neuroscience. The collective
dynamics of such networks is often sensitive to the presence (or absence) of individual
interactions, but there is usually no direct way to probe for their existence. Here we
present an explicit method for reconstructing interaction networks of leaky integrate-
and-fire neurons from the spike patterns they exhibit. The approach works well
for networks in simple collective states, e.g. close to complete synchrony, but is
also applicable to networks exhibiting complex spatio-temporal spike patterns. In
particular, stationarity of spiking time series is not required.

Keywords: networks, inverse methods, leaky integrate-and-fire neuron, irregular

spiking, chaotic spiking, synchronization

Submission for: Frontiers in Computational Neuroscience

1. Introduction

Reconstructing or reverse-engineering the exact interaction topology of coupled dynamical units
has become an active area of research in different fields of biology, including genetics, ecology
and neuroscience (see Yeung et al., 2002; Makarov et al., 2005; Cadenasso et al., 2006, for recent
theoretical results). In neuroscience, such efforts generally focus on establishing the functional or
effective connectivity between individual neurons or different regions of the brain using methods
based on correlations in the activity between the constituent parts of the network (Aertsen &
Gerstein, 1985; Aertsen et al., 1989). This research has yielded many valuable results (Jirsa &
McIntosh, 2002), commonly on a scale larger than the individual elements such as nerve cells
and synaptic connections that make up the networks involved.

1
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Explicit approaches that reconstruct actual connections between individual elements are more
difficult in general, but where feasible they offer exact, fine-grained results, for instance by
establishing the presence or absence of individual synapses. These more detailed approaches
have attracted serious attention recently, triggered by the availability of large high-resolution
data sets and the computational power to handle them. Noteworthy from a theoretical point
of view is a method of stochastic optimization (Makarov et al., 2005) that fits a network model
of spiking leaky integrate-and-fire (LIF) neurons to an oncoming data stream and thus avoids
estimating parameters beforehand. The performance of this reconstruction method has been
addressed for simulated, as well as real, extracelluar multiunit array (MUA) recordings. The
computational requirements seem however somewhat prohibitive as the largest network which
Makarov et al. report having reconstructed consists of N = 5 neurons.

Other studies have focused on networks of smoothly coupled units. One of the earlier results in
this regard is a synchronization method presented by Yu et al. (2006). Assuming pre-knowledge
of all model parameters, a second network of the same units is set up as a model, and its
interaction topology is varied via continual error minimization until it synchronizes with the
original system. Via a thresholding process, the resulting topology is identified as that of the
original network. This approach has been shown to perform well for networks of up to N = 16
nodes. Yu & Parlitz (2008) combine the basic idea of error minimization with an intricate
mechanism for driving the network to a steady state, at which point the connectivity can be
recovered from the individual node dynamics. Since this technique dispenses with the need
to explicitly model the connectivity of the network they are able to achieve reconstructions of
significantly larger networks (N = 50).

An alternative approach for smoothly coupled systems close to steady states (Timme, 2007) uses
measurements of the collective response dynamics under different external driving conditions.
As the collective dynamics depends on both the (known) driving signals and the (unknown)
interaction topology, an increasing number of driving-response experiments yields more and
more restrictions onto the topology. Worked out explicitely for phase-locking oscillators, the
method is insensitive to details of the units’ dynamics and their coupling function and a linear
approximation is often sufficient to infer the topology. Hence, the experiments yield a system
of linear equations that restrict the topology consistent with all experiments that is then solved
to obtain the incoming connections for each unit. This approach has been successfully applied
to Kuramoto oscillators, where networks of size N up to about 103 units were reconstructed.
Assuming sparsity of the network connectivity, such reconstructions may be supplemented by an
optimization step (Timme, 2007) that reduces the number of experiments needed to reconstruct
up to a desired accuracy (cf. also Yeung et al., 2002; Napoletani & Sauer, 2008). Since all
experimental approaches in practice have to deal with a systematic undersampling with regard
to finite measurement times and the number of neurons that can be reliably recorded, such
optimization methods are likely a necessary step in any potentially useful algorithm.

Here, we present a method to explicitly reconstruct both topology and weights of networks of
pulse-coupled, spiking units. It extends the driving-response approach for smoothly coupled
phase-oscillators given by Timme (2007) to pulse-coupled leaky integrate and fire neurons. In
particular, it uses the information provided by spike times only and does not require explicit
access to the actual state variables (membrane potentials) over time. Moreover, the method
developed here does not require steady states as in Timme (2007) or Yu & Parlitz (2008), but
works as well for complex spatio-temporal activity, such as irregular or even chaotic spiking,
given that certain technical conditions are met. The robust optimization technique (Yeung et
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al., 2002; Timme, 2007; Napoletani & Sauer, 2008) can be applied here as well, to reconstruct
networks of several hundred nodes from a comparably small number of experiments with only a
small loss of accuracy.

Biological neuronal networks naturally present much more challenging problems for reconstruc-
tion than moderately sized networks of model neurons. The technique presented here should
hence not be considered as a substitute to current approaches that work with spiking data from
experiments, but as a theoretical complement. This notwithstanding, it has the particular fea-
ture to require only spike times and no access to the actual membrane potential. Since in practice
intracellular recordings from a large group of neurons are still beyond technical feasibility, in
general any method that can work given spike times only has strong merits. In this sense it
presents a necessary first step towards a robust explicit method that could be used in tandem
with larger-scale statistical methods.

2. Neuron model and reconstruction theory

2.1. Dynamics and collective solution between subsequent spikes

Leaky integrate-and-fire neurons with current-based synapses incorporate two key features of
biological neurons: they integrate the input currents of their presynaptic neurons and send spikes
whenever this accumulated and filtered presynaptic input sufficiently depolarizes the membrane
potential V (t). Though this class of LIF neurons lacks a lot of biophysical detail such as the spike
dynamics itself, voltage-dependent integration properties, or neuronal morphology, their study
can help to understand biologically relevant collective dynamic states of neuronal networks, such
as population rate oscillations (Brunel & Hakim, 1999; Brunel, 2000), propagation of synchronous
activity volleys (Diesmann et al., 1999), or asynchronous irregular activity states (Brunel, 2000;
Jahnke et al., 2009). Moreover, they are simple enough to be amenable to analytical methods and
thus reveal principle insights regarding relations between network interactions and dynamics. In
general, the collective dynamics of even simple networks of LIF neurons can be highly complex,
depending not only on interaction topology but also on synaptic coupling strengths, local neuron
parameters, and initial conditions (van Vreeswijk & Sompolinsky, 1996; Timme et al., 2002;
Denker et al., 2004; Zillmer et al., 2009).

The subthreshold dynamics of the membrane potential Vi(t) of a LIF neuron i is given by the
linear ordinary differential equation

dVi(t)

dt
= γ (RIi(t) − Vi(t)) + Si(t) , (1)

where γ is the inverse of the membrane time constant, R is the membrane resistance, Ii(t) is the
incoming synaptic current, and Si(t) represents the interaction term. Whenever Vi(t) crosses a
threshold value VT the neuron emits a spike and is reset to the potential VR < VT . Without
recurrent interactions (Si(t) ≡ 0), for constant Ii and Vi(0) = VR, the solution of (1) is

Vi(t) = RIi(1 − e−γt) + VR e−γt. (2)

When RIi > VT (suprathreshold current), the solution becomes periodic, Vi(t + Ti) = Vi(t)

with period Ti = 1
γ

ln
(

RIi−VR

RIi−VT

)
. The subthreshold dynamics of neuron i within a network of

N coupled LIF neurons with a non-zero interaction S given by a weighted δ-pulse function is
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described by

dVi(t)

dt
= γ (RIi − Vi(t)) +

N∑

j=1

∑

k∈N

aij δ (t − tj,k − τ) , (3)

where tj,k is the k-th spike time of neuron j, τ is the synaptic transmission delay, and aij <
(VT −VR) is the synaptic coupling strength of the connection j → i. We remark that there is no
prior restriction on whether the synaptic coupling strengths aij are zero (no synapse present),
positive (excitatory), or negative (inhibitory). The general solution of the non-autonomous
inhomogeneous linear differential equation (3) for times t > t0 with initial condition Vi(t0) is
given by (cf. Arnol’d, 1992)

Vi(t) = RIi

(
1 − e−γ(t−t0)

)
+ Vi(t0) e−γ(t−t0) +

N∑

j=1

∑

k∈N ,

t0<tj,k+τ≤t

aij e−γ(t−tj,k−τ) . (4)

This solution, which holds for all times t > t0 until neuron i next experiences a threshold crossing,
provides the basis for the reconstruction method described below.

2.2. General reconstruction methodology

How can we obtain the interaction strengths aij for a particular neuron i and thus the network
topology? The aim is to assemble multiple linearly independent instances of (4) into a linear
system of rank N and solve for the unknown aij values. If the dynamical quantities t0, t, Vi(t0)
and Vi(t) are specified, equation (4) provides a restriction on the N input coupling strengths
aij for a given neuron i. Choosing sufficiently many different values of the pairs t and t0 so
as to provide linearly independent instances of (4) will therefore give N restrictions that fully
determine all coupling strengths aij, j ∈ {1, . . . , N}. Repeated for each i this yields the entire
network topology.

Acceptable inter-spike intervals. We can use subsequent spike times t0 = ti,ℓ−1 and t = ti,ℓ to
fix the dynamical quantities if they are chosen in an appropriate way. We first note that we
can safely use any spike time for an initial condition, since post-spike the LIF neuron always
immediately resets to voltage VR. Hence our criterion for choosing an interval depends only on
the way threshold crossings are induced, either by an incoming excitatory spike (spike-induced

spiking) or by passive propagation due to sufficiently large driving Ii (current-induced spiking).
For current-induced spiking the membrane potential Vi(t

−
i,ℓ) of neuron i is known to be exactly

at the threshold value VT , while spike-induced spiking generally supplies excess depolarization
such that the free membrane potential would be at some unknown value Vi(t

−
i,ℓ) > VT . If we

restrict our choice of intervals (ti,ℓ−1, ti,ℓ) to those terminating with current induced spikes the
following substitutions are valid in (4):

Vi(t0) := Vi(t
+
i,ℓ−1) = VR

Vi(t) := Vi(t
−
i,ℓ) = VT . (5)

In order to find these intervals we must compare the spike times ti,ℓ of neuron i with all possible
arrival times tj,k + τ of all neurons j (including i itself). To exclude intervals with potentially
spike-induced spikes, we restrict the analysis to intervals where no tj,k + τ coincides with the
respective ti,l and hence define the inter-spike interval (ti,ℓ−1, ti,ℓ) as acceptable for neuron i if
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Figure 1: Topology Reconstruction from simple periodic and complex aperiodic spike

patterns (A) Simple periodic spike pattern of an inhibitory network. (B) Connection weights
of the same network, with full-rank reconstruction error aij − âij and its magnification; strengths
and errors are color coded on same scale. Error is on the level of numerical accuracy (C) Complex
spatio-temporal spike pattern of a heterogeneous network with both inhibitory and excitatory
connections. (D) Connection weights and error for the heterogeneous network. Both networks
share the same underlying adjacency structure; the heterogeneous network was obtained from
the inhibitory network by randomly changing the signs of connections with probability p = 0.5.
Simulation parameters for both systems: driving γRI = 1 mV/ms, ∆I = 0.05 (5% uniform
random variation), γ = 0.6321/ms, VR = 0 mV, VT = 1 mV, τ = 0.25 ms.

tj,k + τ 6= ti,ℓ for all j ∈ {1, . . . , N}, k ∈ N . (6)

It is important to note two things: first, that we often have at our disposal many more than
N acceptable intervals; and second, that not every set of N acceptable intervals will provide
N linearly independent instances of (4). In particular, consecutive acceptable intervals might
contain very similar arrival patterns, resulting in badly-conditioned or even low-rank systems. Of
course, there is no constraint to select only N intervals; if we use M > N intervals then the system
will be formally overdetermined but solvable, though M ≫ N is not favorable for efficiency
reasons. Usually, selecting a subset of N or more intervals distributed across the respective
incoming spike trains will be sufficient if the spiking is asynchronous and irregular (meaning
that inter-spike interval correlations decrease quickly with time), the mean firing rate for all
neurons is > 0, and the spike recording is long enough to find sufficiently many uncorrelated
acceptable inter-spike intervals to derive N linearly independent instances of (4). Since we do
not know a priori how long “long enough” is, an alternative approach that for all practical
purposes guarantees linear independence (as long as all other conditions hold) is to gather
data from multiple, relatively short spike trains obtained under varied driving conditions Ii,m,
m ∈ {1, . . . , N} (cf. Timme, 2007) which additionally satisfy ∀i,j i 6= j ⇒ Ii,m 6= Ij,m.
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In section 3.1 we will discuss various strategies for selecting subsets of acceptable intervals, in
section 3.2 how much spike data is commonly needed to obtain full accuracy, and in section 3.4
how singular value decomposition can be applied to solve underdetermined systems i.e. using
M < N intervals.

Assuming there are M ≥ N acceptable intervals that will ensure linear independence, all presy-
naptic connections for neuron i, Ai = (ai1, . . . , aiN) are obtained in the following way: let
Di,m = (ti,ℓm−1, ti,ℓm

) be the m-th member of our subset of acceptable inter-spike intervals, and
Ti,m = ti,ℓm

− ti,ℓm−1 be the respective inter-spike interval of neuron i. We then define the M ×N
matrix Θ(i) and the column vector B(i) by

Θ
(i)
mj =

∑

k∈N ,

tj,k+τ ∈ Di,m

exp (−γ [ti,ℓm
− tj,k − τ ]) and

B(i)
m = VT − RIi,m

(
1 − e−γ Ti,m

)
− VRe−γ Ti,m . (7)

The incoming connectivity for neuron i is obtained by solving the linear system

Θ(i)A⊤
i = B(i) (8)

for Ai. Repeating the procedure for each neuron i ∈ {1, . . . , N} separately yields all N rows of
the coupling matrix A, and thus the entire synaptic connectivity of the network.

2.3. Reconstruction in the presence of simple periodic spiking

The method described above can be applied to a broad range of spiking patterns and does not rely
on network synchronization, phase locking, or other steady state requirements; however, systems
that do exhibit phase locked dynamics are well-suited for systematic tests of the method. For
this purpose we applied it to networks that produce simple periodic patterns, i.e. all neurons fire
exactly once before the same spike pattern repeats.

If the neurons fire in a simple periodic pattern such that for any given interspike interval
(ti,ℓ−1, ti,ℓ) each neuron j 6= i spikes exactly once within (ti,ℓ−1 − τ, ti,ℓ − τ), all intervals are
acceptable and (4) simplifies to

VT = RIi

(
1 − e−γ(ti,ℓ−ti,ℓ−1)

)
+ VR e−γ(ti,ℓ−ti,ℓ−1) +

N∑

j=1

aije
−γ(ti,ℓ−tj−τ) (9)

for all i ∈ {1, ..., N}. Such networks are in particular phase-locked. If a network is able to achieve
such periodic simple spike patterns under N independent driving conditions Ii,m, m ∈ {1, ..., N},
all intervals are hence acceptable and for convenience we can always choose the last intervals
recorded in the simulation to solve the N linear systems (4). This means that although this type
of network dynamics makes it necessary to repetitively drive the system with independent sets
of currents (otherwise repeated spike patterns within the inter-spike intervals will lead to linear
dependent rows in the derived Θ matrix (7)), it spares us the necessity of scanning the spike
data for acceptable intervals and hence allows for fast reconstruction. We will refer to this case
as the specialized method and will use a sub-class of networks that can reliably produce simple
periodic spiking, homogeneous inhibitory LIF networks, as a testbed for it.
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Figure 2: Reconstruction accuracy for phase-locking networks as affected by period-

icity. (A) Maximum reconstruction error eij = |aij − âij | vs. phase locking as measured by
the maximum difference between final period lengths of different neurons (∆T ). (B) Length of

simulation runs Sm (given as number of spikes emitted by neuron i, |S
(i)
m |) needed to achieve a

specified ∆T (exit tolerance). Annotations: (1) indicates non-full-rank solutions due to insuffi-
cient synchronization; (2) indicates numerical saturation. Data is from sample network used for
figures 1(A) and (B).

Characterization of the homogeneous inhibitory subclass: when stimulated with a homogeneous
current Ii = I (where I is constant), inhibitory networks where ai ≡

∑
j aij < 0 and 0 <

(maxi ai−mini ai) < τ will generate stable phase-locked states with common period T net (Denker
et al., 2004). However, heterogeneous currents Ii, e.g. randomly drawn from some distribution
P(I) with small but finite variance, will additionally broaden the temporal spread of the pattern
of spikes and might lead to loss of stability. Hence, to better control stability, we assume that
ai = a < 0 for each i, such that the spread of the spike pattern is solely caused by the spread
∆Ii,m ≡ maxi Ii,m − mini Ii,m of the driving currents per experiment m ∈ {1, ..., N}.

3. Implementation and performance

3.1. Acceptable interval searches

For LIF networks other than the homogeneous inhibitory networks described in section 2.3, spike
patterns will almost always be asynchronous rather than simple periodic; hence we must actively
search through spike trains for acceptable intervals.

In principle, if a full-rank system is embedded in the data then only N intervals are required,
some of which may contain zero or more than one representative tj,k+τ value. One alternative to
trying to identify such a minimum set of intervals would be to select M > N intervals according
to some criterion which either guarantees or at least maximizes the chance that we have a full
rank subset; we could, for example, select all available acceptable intervals. Similarly, if we have
M > N intervals we have the choice of solving the overdetermined M×N by e.g. a least-squares
method, or aggregating instances of (4) to patch together an N × N system.

In our implementation we used independent partial scans of spike train segments to collect
M ≥ N intervals; the scans use the heuristic described below to construct a full-rank system
if possible while reducing search time and keeping M reasonably close to N . Multiple intervals
found in close proximity are combined to create exactly solvable N × N systems, since they
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are preferrable to overdetermined systems in terms of both time requirements and numerical
stability.

Within segments, our search strategy is based on a minimum-scan-length policy. Given data
segments Sm, m ∈ {1, . . . , N}, then for each neuron i each segment Sm is scanned only as far as
needed to obtain representative tj,k + τ values for all neurons j, and intervals are only chosen if
they contributed a new member to the representative set. Instances of (4) for the intervals are
then summed to become the m-th row of the solution matrix Θ(i) and m-th element of the vector
B(i). When particular representatives are not present in particular segments then corresponding
Θ

(i)
j,m elements are set to zero. Balancing representatives by requiring a full set for each row and

excluding redundancies is more than we technically require, but in practice this results in better
conditioned Θ(i) matrices and hence more accurate results.

3.2. Accuracy

The reconstruction error is negligible for networks with phase-locked spike patterns as well as
those with irregular spiking, as shown for example in figure 1. The numerical noise that does
appear in the reconstructions is the result of small truncation errors in the derived data being
propagated through global operations such as matrix inversion. When the specialized version
of the method is used on phase-locking networks, this error level is as well directly and linearly
dependent on the degree of synchronization experienced by the network (see figure 2). As the
exit tolerance is decreased this tunable error meets a hard limit where the truncation is no longer
caused by early termination of the simulation, but instead to the fixed precision numbers used
by the machine the calculations are performed on. It should be noted that (apart from their
influence on the network’s ability to synchronize) the magnitude of simulation parameters does
not affect the accuracy of the results in any noticable way.

Since the general reconstruction method does not depend on synchronization, for data character-
ized by sustained irregular or chaotic spiking the entire error can be attributed to fixed-precision
effects. A necessary precondition for achieving this level of accuracy is of course that enough
data be made available. As figure 3(A) shows, the minimum number of intervals required to
achieve full accuracy is not large; roughly 7 or 8 per segment (≈ 160 total) for our 20 neuron
sample network, for example. Whether data is obtained from N independent drivings or from
a single run does not as well seem to have a large effect; sampling out of a very long run does
reduce the minimum requirement by an interval or two, but the amount of data that must
be generated in the first place to achieve this effect is appreciably greater. Compare also the
specialized method featured in figure 2, where the data requirement is exactly one interval per
segment, but to achieve e.g. 10−10 accuracy each segment needs to be ≈ 60 intervals long.

Independent of the driving conditions applied, there is no prior constraint on network config-
urations solvable by the methodology (subject to obvious provisos e.g. there should not be
individual suprathreshold connections); there is likewise no prior guarantee that any particular
driving will give good results. In practice, randomly varied driving which satisfies RIi > VT al-
most always gave us fully accurate reconstructions. There are two situations can cause problems
for the general method when otherwise long-enough data streams are made available: i) quies-
cent neurons (no recoverable incoming or outgoing connections), and ii) neurons for which all
spiking throughout entire segments is spike-induced (outgoing connections recoverable, incoming
connections not). Only (i) arose in our testing on random networks with random drivings, and

never with networks subject any kind of balance conditions e.g.
∣∣∣
∑

j,inhib aij

∣∣∣ ≃
∣∣∣
∑

j,excit aij

∣∣∣ .
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Figure 3: Reconstruction accuracy for complex spatio-temporal patterns as affected

by search requirements. (A) Maximum reconstruction error eij = |aij − âij| vs. data
availability as measured by segment length (in spikes) for slowest neuron. Different curves
compare effect of data source: (blue) segments obtained under N different drivings, (green)
contiguous segments taken from one run of moderate length where driving was not modified,
or (red) same conditions, but segments taken at equally spaced intervals from a single long
run (roughly 1000 spikes per neuron). Runs use the same sample network and parameters as
shown in figures 1(C) and (D). (B) Interval search length L using min-scan-length strategy vs.
size of network N for different connection densities P . Note: all reconstructions here achieved
the numerical limit of accuracy. Simulation parameters: balanced networks (

∑
j aij = 0) with

no other restriction on pre- or postsynaptic connectivity, data obtained under N uniformly
randomized driving conditions, base driving γRI = 1.5 mV/ms, ∆I = 0.01; τ = 2 ms, γ =
0.05/ms, VR = 0 mV, VT = 20 mV.

It should be noted that with respect to both situation (i) and situation (ii) the accuracy of
reconstruction of the remainder of the network is not affected, and if need be both situations
can be prevented by adjusting the driving to the relevant neurons.

3.3. Efficiency

To check the speed of the methods we reconstructed networks of N = 50 to N = 500 neurons.
As the range of N here implies, moderately sized networks (several hundred neurons) are still
quite feasible for both the specialized and the general method; using the specialized method
reconstruction of 250 neuron networks took about one minute on a single node of a 4-CPU 2
GHz machine, while general reconstruction of the same network took about 20 minutes.

As these time ranges imply, the general method’s reliance on data acquired from directly search-
ing spike trains makes it noticably slower than the specialized method in the size range tested
here. This is in part due to the length of searches, but fixed costs for setting up the searches
and computational platform were also factors (implementations were done in Matlab, which is
optimized for matrix operations but not generic search routines).

The worst case running time for the search phase of the general method is O(SmaxN
3), where

Smax is the length of the longest spike train. In practice most searches are not worst case; for
the network of figure 1(D), for example, the mean spike train length was 92 spikes, while the
mean search length was 12 intervals and the mean number of intervals selected was around 3. As
figure 3(B) shows, the search length does not seem to increase as N grows but rather converges
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to a constant value; a similar effect is seen with the connection density (and hence the number
of connections). We note that if either situation (i) or (ii) mentioned in section 3.2 occurs, the
search time will in fact revert to the theoretical worst case.

3.4. Exploiting sparsity - solutions for underdetermined systems

Recent studies (Yeung et al., 2002; Timme, 2007) used singular value decomposition USV T =
Θ(i) and optimization for sparsity to reconstruct with M ≪ N distinct driving conditions.
In general, this yields the underdetermined system Ai = V S̃−1UTB(i) + V x where S̃−1 is the
pseudoinverse of S and x is any vector. Setting x = ~0 gives us the usual least squares solution,
but on the naturalistic assumption that neuronal network connectivity matrices A are very
sparse we can choose x so as to maximize the number of zeros in each Ai. To do this we use
the heuristic of solving the overdetermined system V x = −V S̃−1UTB(i) for x so as to minimize
the L1-norm of the difference; our implementation uses the fast L1-norm solver of Barrowdale
& Roberts (1974).

Of primary interest is the lowest M < N we require to obtain sufficiently many reconstructed
couplings âij close enough to the corresponding elements of the original connectivity matrix

aij , so that Â (after appropriate rounding) can be used as a plausible estimate for A in any
hypothetical analysis. Hence along with the usual error measurements we used a custom quality-
of-fit metric, Q

(w)
α (M), that essentially yields the proportion of sufficiently close element-to-

element matches for a given M :

Q(w)
α (M) = w

1

| nz(A)|

∑

aij 6=0

H

(
(1 − α) −

|âij − aij|

max |A|

)

+ (1 − w)
1

| z(A)|

∑

aij=0

H

(
(1 − α) −

|âij − aij |

max |A|

)
(10)

where nz(A) and z(A) are the sets of all non-zero and all zero elements of A, respectively, and
H is the Heaviside step function. The weighting is incorporated to prevent false high scores
when M is low and the target A is very sparse (cf. the original version of the quality measure in

Timme, 2007). We exclusively used Q
(w)
α with w = 0.5, which in the following we simply denote

by Qα. Figure 4.a shows a sampling of Qα values versus M .

For networks with simple phase-locked spike pattern dynamics, comparison of interpolated values
of Qα across different values of N , M , the number of connections E, and other simulation
parameters confirm that the quality of reconstruction for M < N depends almost entirely on
M/N and the edge density P = E/N2. To determine the minimum M necessary to achieve a
desired quality of fit we define

Mq,α = min
1≤M≤N

{M : Qα(M) ≥ q} . (11)

The Qα profiles in figure 4.a show that there will be values of q for which Qα does not exist or
is not unique. When both q, α ≥ 0.75, however, Mq,α is well-defined and we consistently obtain
relations of the form

Mq,α ≈ Eβ + c (12)

where β = 1
2

+ ǫ, with |ǫ| ≪ 1/2 and c ≪ E. A simple log-log fit of the data from 4(B), for
example, gives a scaling exponent of 0.504, with c below 1. The overall result implies that we
can expect Mq,α to grow linearly with N when P is fixed, and roughly as

√
P when N is fixed.
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Figure 4: Quality of rank-deficient reconstruction. (A) Various Qα values vs. M (N = 50,
mean number of presynaptic connections K = 12, τ = 2 ms, γ = 0.05/ms, VR = 0 mV, VT =
20 mV, base driving γRI = 1.5 mV/ms, ∆I = 0.01). (B) Log-log plot of M0.90,0.95 vs. E for
networks with N = 20 to 40 neurons and average presynaptic connections K = 1, 2, . . . , N − 1
(over 600 points in total). Qα values for (B) were obtained from averages of 20 trials for each N, K
combination over each M from 1 to N ; simulation parameters were τ = 0.25 ms, γ = 0.6321/ms,
VR = 0 mV, VT = 1 mV, base driving γRI = 1 mV/ms, ∆I = 0.001. All networks: random
homogeneous inhibitory with normally distributed random connection weights.

For general spatio-temporal patterns we obtain similar results, though they are not as pro-
nounced or consistent, and there seems to be a greater dependence on factors other than M , N ,
and E, such as actual network parameters and specific spike pattern. The particular interval
search strategy used has an influence as well. These intermingled technical issues require further
theoretical and computational studies.

4. Discussion

Understanding the relationship between structure and function of neuronal circuits lies at the
very core of neuroscience. Modern recording devices, such as multi-unit arrays (MUA) that
record the extracellular spike activity of tens to hundreds of neurons, provide time series whose
interpretation can aid the understanding of the relevant functional connectivity and its spatial
structure (cf. Aertsen & Gerstein, 1985; Aertsen et al., 1989; Berger et al., 2007, 2010, and
others). Yet, to reconstruct the detailed connectivity of a neuronal network from recorded spike
data is beyond recent data analysis techniques due to the complexity of both the individual
neuron dynamics as well as the intricate mesh of somata and neurites encountered.

Here we have developed an explicit method for the reconstruction of network connectivity of leaky
integrate-and-fire (LIF) neurons from spike-time information that is fast, accurate, and robust.
The method works natively on networks exhibiting nonstationary complex spatio-temporal dy-
namics (i.e. “plain” irregular spiking, Sec. 2.2); to solve networks with strong synchronizing
tendencies it can, for example, make use of multiple randomized external driving conditions. A
specialization of the method allows it to very efficiently reconstruct networks exhibiting simple
spike patterns (Sec. 2.3), a dynamics that is reliably generated by a large subset of uniformly
inhibitory LIF networks. This class is often used as a stand-in for inhibition dominated cortical
networks (cf. Brunel & Hakim, 1999; Denker et al., 2004; Jahnke et al., 2009).

The general method is capable of reconstructing networks with several hundred neurons and ar-
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bitrary connectivity in a quite reasonable time given standard computational resources. In this
regard the methodology compares favorably with reconstruction methods previously put forward
for neuron networks (Makarov et al., 2005) and oscillator networks (Yu et al., 2006). Further-
more, the method is amenable to an optimization used earlier with reconstruction techniques for
networks with fixed point dynamics (Yeung et al., 2002) and periodic dynamics (Timme (2007),
cf. also Napoletani & Sauer (2008)) that substantially reduces the amount of data required.

The method introduced here is one of the first to achieve synapse-level reconstructions working
from spike-based data, and it extends recoverability of pulse-based networks far beyond previ-
ously accessible sizes. However, as it currently stands, it does have its limitations that need
to be addressed by future research. To begin with, it is model dependent, and requires fixed
known parameter values, even though these values need not be the same for every neuron in
the network. Neuron models with more realistic spike generation mechanisms are worth further
analysis within the response-dynamics idea that underlies our methodology. Possible extensions
include: the spike-response model, a modifications of LIF neuron that incorporates refractori-
ness; the two variable adaptive exponential integrate-and-fire neuron, which is capable of a much
wider range of individual neural behaviour (bursting, fast and slow mode, etc.); and further
non-linear models such as the quadratic integrate-and-fire neuron. Ultimately, the general aim
is that a single algorithm contains the specifications for a repetoire of different models, which
can be adapted to particular self-contained networks or also parts of networks, given an input
model that mimicks the residual large-scale network or upstream input areas. Since all available
recording techniques have to deal with the general problem of undersampling, both with regard
to the number of neurons as well as with regard to the finite time a stable recording is possible,
minimizing the data required for desired accuracy is an important feature of any potentially
useful reconstruction algorithm.

The method presented here is not aimed to replace large-scale correlation-based methods, as
functional connectivity continues to be the main approach to reconstruction problems in neu-
roscience. However, to determine the details within the regions of interest that functional con-
nectivity studies identify will require methods that can provide data on the scale of individual
synaptic connections. If explicit methods such as the one presented here can be developed to
work on large-scale networks with appropriate biophysical neuron models, they may become in-
valuable in these studies. Thus we see our methodology as an eventual complement to techniques
currently in use.
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Abstract. Counting problems, determining the number of possible states of

a large system under certain constraints, play an important role in many areas

of science. They naturally arise for complex disordered systems in physics and

chemistry, in mathematical graph theory, and in computer science. Counting

problems, however, are among the hardest problems to access computationally.

Here, we suggest a novel method to access a benchmark counting problem,

finding chromatic polynomials of graphs. We develop a vertex-oriented

symbolic pattern matching algorithm that exploits the equivalence between the

chromatic polynomial and the zero-temperature partition function of the Potts

antiferromagnet on the same graph. Implementing this bottom-up algorithm

using appropriate computer algebra, the new method outperforms standard top-

down methods by several orders of magnitude, already for moderately sized

graphs. As a first application, we compute chromatic polynomials of samples

of the simple cubic lattice, for the first time computationally accessing three-

dimensional lattices of physical relevance. The method offers straightforward

generalizations to several other counting problems.
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Given a set of different colors, in how many ways can one color the vertices of a graph such

that no two adjacent vertices have the same color? The answer to this question is provided by

the chromatic polynomial of a graph [1, 2], which gives the number of possible colorings as a

function of the number q of colors available. It is a polynomial in q of degree N, the number

of vertices of the graph. The chromatic polynomial is closely related to other graph invariants

e.g. to the reliability and flow polynomials of a network or graph (functions that characterize its

communication capabilities) and to the Tutte polynomial. These are of widespread interest in

graph theory and computer science and pose similar hard counting problems.

The chromatic polynomial is also of direct relevance to statistical physics, as it is equivalent

to the zero-temperature partition function of the Potts antiferromagnet [3, 4]: the Potts model [3]

constitutes a paradigmatic characterization of systems of interacting electromagnetic moments

or spins, where each spin can be in one out of q > 2 states; it thus generalizes the Ising model

where q = 2. For antiferromagnetic interactions, neighboring spins tend to disalign such that

at zero-temperature the partition function of the Potts antiferromagnet counts the number of

ground states of a spin system on a graph just as the chromatic polynomial counts the number of

proper colorings of the same graph. For sufficiently large q there are many system configurations

in which all pairwise interaction energies are minimized at zero-temperature. Indeed, these

systems exhibit a large number of disordered ground states that is exponentially increasing

with system size. Thus, the Potts model exhibits positive ground state entropy, an exception to

the third law of thermodynamics. Experimentally, complex disordered ground states and related

residual entropy at low temperatures have been observed in various systems [5]–[10].

Although there are several analytical approaches to find chromatic polynomials for families

of graphs and to bound their values [1]–[4], [11]–[17], there is no closed-form solution to

this counting problem for general graphs. Algorithmically it is hard to compute the chromatic

polynomial, because the computation time, in general, increases exponentially with the number

of edges in the graph [18]. It also strongly depends on the structure of the graph and rapidly

increases with the graph’s size, and the degrees of its vertices, cf [19]–[21]. Therefore, most

studies on chromatic polynomials up to date have focused on small graphs and families of

graphs of simple structure and low vertex degrees, e.g. two-dimensional lattice graphs [15]–[17]

(an interesting recent attempt to analytically study simple cubic lattices considered strips

with reduced degrees [11]). In fact, it is not at all straightforward to computationally access

larger graphs with more involved structure, including physically relevant three-dimensional

lattice graphs. Finding the chromatic polynomial of a graph thus constitutes a challenging,

computationally hard problem of statistical physics, graph theory and computer science

(cf [18, 19]).

Below we present a novel, efficient method to compute chromatic polynomials of larger

structured graphs. Representing a chromatic polynomial as a zero-temperature partition function

of the Potts antiferromagnet, we transform the computation into a local and vertex-oriented,

ordered pattern matching problem, which we then implement using appropriate computer

algebra. In contrast to conventional top-down methods that represent and process the entire

graph (and many modified copies thereof) from the very beginning, the new method presented

here works through the graph bottom-up and thus processes comparatively small local parts of

the graph only.

Consider a graph G that is defined by a set of N vertices i ∈ V = {1, . . . , N } and a set of

M := |E | edges {i, j} ∈ E , each edge joining two vertices i and j which are then called adjacent

or neighboring. This graph is said to be (properly) q-colored if every vertex is given one out of
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q colors {1, 2, . . . , q} such that every two adjacent vertices have different colors. The number

of q-colorings of a graph G is expressed by its chromatic polynomial P(G, q), a polynomial in

q of order N [2].

The deletion–contraction theorem of graph theory [2] suggests a simple algorithm to

compute the chromatic polynomial of a given graph recursively. In principle, this algorithm

works for arbitrary graphs and is therefore, with certain improvements, implemented in

general-purpose computer algebra systems such as Mathematica [22]–[24] and Maple [25]

(cf also [26, 27]). However, applying the theorem recursively the chromatic polynomial of

exponentially many graphs must be found, the (weighted) sum of which yields the chromatic

polynomial of the original graph. This reflects how hard the problem is algorithmically and

severely restricts the applicability of computational methods, in particular if they employ

standard top-down processing.

We now describe our novel algorithm. It is based on the antiferromagnetic (J < 0) Potts

model [3, 4] with Hamiltonian

H(σ ) = −J
∑

{i, j}∈E

δσi σ j
(1)

giving the total energy of the system in state σ = (σ1, . . . , σN ). Here individual spins σi can

assume q different values σi ∈ {1, . . . , q}, generalizing the Ising model (q = 2) [28]. Two spins

σi and σ j on the graph G interact if and only if they are neighboring, {i, j} ∈ E , and in the

same state, σi = σ j , i.e. the Kronecker-delta is δσ i σ j
= 1 (otherwise, for any pair σi 6= σ j , it is

δσ i σ j
= 0). Thus, the total interaction energy is minimized if all pairs of neighboring spins are

in different states.

The partition function Z(G, q, T ) =
∑

σ
exp(−β H(σ )) at positive temperature T =

(kBβ)−1, where kB is the Boltzmann constant, can be represented as

Z(G, q, T ) =
∑

σ

∏

{i, j}∈E

(1 + vδσi σ j
), (2)

where v = exp(β J ) − 1 ∈ (−1, 0]. In the limit T → 0 (implying β J → −∞ and thus v → −1)

this partition function counts the number of ways of arranging the spins σ such that no two

adjacent spins are in the same state. Thus, the zero-temperature partition function (2) exactly

equals [4] the chromatic polynomial

P(G, q) = lim
T →0

Z(G, q, T ) (3)

on the same graph G leading to the representation [4, 12]

P(G, q) =

q∑

σ1=1

· · ·

q∑

σN =1

∏

{i, j}∈E

(1 − δσi σ j
), (4)

of the chromatic polynomial in terms of sums over products of Kronecker-deltas.

The algorithm exploits this representation by expanding the products in (4) and

symbolically evaluating the right-hand side vertex by vertex (cf figure 1), considering each

individual sum
∑

σk
as an operator. This operator interpretation relies on a recently studied

algebraic structure of expressions containing Kronecker-deltas [29]. Here such an operator has

the simple actions
∑

σk

1 = q, (5)
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∑

σk

δσkσ j1
= 1, (6)

∑

σk

δσkσ j1
δσkσ j2

= δσ j1
σ j2

, (7)

and for an arbitrary number r ∈ N0 of factors,
∑

σk

δσkσ j1
· · · δσkσ jr

= δσ j1
σ j2

· · · δσ jr−1
σ jr

, (8)

if the jρ , ρ ∈ {1, . . . , r}, are pairwise distinct and all jρ 6= k.

For illustration consider the chromatic polynomial

P(G, q) =

q∑

σ3=1

q∑

σ2=1

q∑

σ1=1

(1 − δσ1σ2
)(1 − δσ1σ3

)(1 − δσ2σ3
) (9)

of a triangular (complete) graph comprised of N = 3 vertices and M = 3 edges. We start at

vertex i = 1 by expanding the relevant product

p1 = (1 − δσ1σ2
)(1 − δσ1σ3

) (10)

= 1 − δσ1σ2
− δσ1σ3

+ δσ1σ2
δσ1σ3

(11)

that is comprised of all factors that contain σ1. (We note that Birkhoff [1] in 1912 already

used closely related expansions to theoretically derive an alternative representation of chromatic

polynomials.) Symbolically applying the above replacement rules (8) yields a ‘partial partition

function’

z1 =

q∑

σ1=1

p1 (12)

= q − 2 + δσ2σ3
, (13)

and thus P(G, q) =
∑q

σ3=1

∑q

σ2=1 z1(1 − δσ2σ3
). Proceeding with the vertices i = 2 and i = 3 in

a similar fashion, we obtain p2 = (q − 2 + δσ 2σ 3
)(1 − δσ 2σ 3

), z2 =
∑q

σ2=1 p2 = (q − 1)(q − 2),

p3 = z2, and reduce the chromatic polynomial to the final result

P(G, q) = z3 =

q∑

σ3=1

p3 = q(q − 1)(q − 2), (14)

successively.

For a general graph G on N vertices, the algorithm is analogous to the example. First define

z0 = 1. Then, passing through the vertices from i = 1 sequentially up to i = N ,

1. construct and expand pi = zi−1

∏
{i, j}∈E(1 − δσ i σ j

) where the product is over all edges

incident to i that have not been considered before, i.e. j > i ;

2. symbolically evaluate the sum zi =
∑

σi
pi applying the simple rules (5)–(8) given above.
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Figure 1. The bottom-up, local and vertex-oriented nature of the algorithm.

Sequential processing of edges (dark) adjacent to vertices (a) i = 1, (b) i = 2, and

(c) i = 3. The remainder graph (light) is not affected when processing vertex i.

Partial partition functions zi−1 computed so far (before each vertex step i) are

shown in square brackets.

These operations are local and vertex oriented in the sense that they jointly consider all

edges {i, j} incident to an individual vertex i at any one time. A major advantage of this bottom-

up algorithm is that all edges that are not currently processed are kept outside the computations

until they are needed, quite in contrast to standard top-down deletion–contraction algorithms. If

a graph G has a layered structure,

G =
⋃

ν

Hν (15)

with layers Hν , constituting samples of periodic lattices or aperiodic graphs, the vertices i are

selected (i.e. numbered) layer by layer such that the operations only affect a particularly small

portion of the graph at once (figure 1). These graphs have bounded tree widths, cf [30, 31].

More generally, vertices are numbered appropriately beforehand, for instance, using minimal

bandwidth of the graph as a heuristic criterion [32].

The computation of the chromatic polynomial has been reduced to a process of alternating

expansion of expressions and symbolically replacing terms in an appropriate order. In the

language of computer science, these operations are represented as the expanding, matching,

and sorting of patterns, making the algorithm suitable for computer algebra programs optimized

for pattern matching.

To exploit fully the capabilities of this algorithm, we implemented it using the language

Form [33, 34] which is specialized to large-scale symbolic manipulation problems and as

such a successful standard tool for, e.g., Feynman diagram evaluation in precision high-energy

physics [35, 36].

New Journal of Physics 11 (2009) 023001 (http://www.njp.org/)

http://www.njp.org/


6

0 50 100 150 200 250 300
M

–2

0

2

4

6

lo
g

1
0

(t
/s

)

0 50 100 150 200 250
M

–2

–1

0

1

2

3

4

lo
g

1
0

(t
/s

)

Figure 2. Computation time t (in s) for square lattice samples of sizes 2 × n

(main panel) and n × n (inset) increases with the number of edges M of the

graph. The new method (•) drastically outperforms standard methods used in

Mathematica (◦) and Maple (�), both with respect to the scaling of the algorithm

(quantified by the local slope) and the absolute effectiveness (quantified by the

absolute times needed), even for moderately sized graphs.

A practically relevant measure for the speed of our method is the total CPU time t it needs

for a specific calculation. For hard counting problems one generally expects an exponential

increase t ≈ A exp(αm) with the size m ≫ 1 of the problem, here defined as the number

m = M of edges for chromatic polynomials of general graphs. For graphs with bounded tree

widths [30, 31], the solution time of the counting problem typically only grows exponentially

with the width of the graph, i.e. in the square of the number of vertices in the subgraphs Hν . The

factor α in the exponent determines the scaling of the computation time with problem size and

measures the efficiency of the algorithm, whereas the prefactor A fixes the absolute time needed

and depends, among other things, on the software environment and hardware used.

To compare our method to existing ones, we first computed chromatic polynomials of

samples of the two-dimensional square lattice with free boundary conditions (2 × n strips

that have M = 3n − 2 edges and n × n patches that have M = 2n(n − 1) edges). The total

computation times t have been measured as a function of M for the new method as well as

for the standard methods used in Mathematica [22, 23] and Maple [25], respectively. Figure 2

shows that the scaling α of the algorithm (given by the local slope of the data points in the

logarithmic plot) of our new method is markedly better than the ones found for the standard

deletion–contraction methods. This implies that the new method outperforms these standard

computational methods in the absolute computation time by several orders of magnitude already

for moderately sized graphs. With increasing graph size, the advantages of our method become

more pronounced. For example, for the 2 × 100 strip of the square lattice (M = 298 edges), the

pattern matching method needs a computation time of the order of t ≈ 2 s whereas extrapolation

of the data shown in figure 2 indicates that the same problem is not computationally accessible

using the standard deletion–contraction methods.

Moreover, in contrast to transfer matrix or other, analytical recurrence methods [12, 13, 15],

our bottom up method also works in a simple way for graphs with non-identical subgraphs

Hν , such as randomly diluted lattices. The same comparison as above for randomly diluted
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Figure 3. Computation time t (in s) for randomly edge-diluted square lattice

samples with next-nearest neighbour interactions (displayed as a cartoon inset

in panel (a)). The new method (filled symbols) strongly outperforms standard

deletion-contraction method (Mathematica, open symbols). (a) Computation

time versus the actual total number M of edges for samples of 3 × n

vertices where each original edge has been deleted independently with

probability p = 0.1 (circles) p = 0.2 (triangles) and p = 0.5 (squares). (b)

Computation time versus the fraction f of edges present. Edges are sequentially

randomly removed independently, starting from an undiluted 3 × 5 square

lattice graph ( f = 1) with next-nearest neighbour interactions; the graph

is diluted until before it becomes disconnected below f ≈ 0.4. Whereas

the computation times using the new method are still at fluctuation level

(t < 10−2 s), standard methods take at factor of 103–107 longer.

3 × n square lattice samples with next-nearest neighbor interactions (figure 3) confirms the

pronounced outperformance and moreover illustrates the general applicability of our method,

also in comparison with recursive analytical methods.

As a first application to an open hard counting problem in physics, we now turn to

three-dimensional lattices of direct physical relevance. First, we consider n × n × n samples

of the simple cubic lattice with free boundary conditions, which have N = n3 vertices and

M = 3n2(n − 1) edges. We found chromatic polynomials up to n = 4 (N = 64, M = 144).

A representation of the chromatic polynomial P(G, q) in terms of its N complex zeroes

q1, . . . , qN [37] is shown in figure 4(a) for n = 3 and 4. We further consider simple cubic

lattice strips that extend in the diagonal (111) direction with periodic boundaries in the two

other (transverse) directions. This keeps the number of vertices within one layer low, at the

same time allowing for a large number Nc of vertices with the same degree (equal to six)

as vertices in the infinite lattice, a fact that is heuristically known to be essential for a rapid

convergence towards the thermodynamic limit (N , M → ∞). The largest three-dimensional

sample graphs shown in figure 4(b) have N = 384 vertices, M = 1128 edges and a fraction

Nc/N = 368/384 ≈ 0.96 of vertices with correct degree (as compared to Nc/N = 8/64 ≈ 0.13

for the 4 × 4 × 4 sample extending along the Cartesian axes and to Nc = 0 for previous attempts

to address three-dimensional lattices). The computation time was approximately 11 h on a single

Linux machine with an Intel Pentium 4, 2.8 GHz-32 bit processor.

In summary, we have presented a novel method to calculate chromatic polynomials of

graphs. Using the partition function representation, it proceeds vertex by vertex employing an
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Figure 4. Complex zeroes representing chromatic polynomials of samples of

the simple cubic lattice: (a) n × n × n Cartesian samples with free boundary

conditions and (b) 2 × 4 × n3 diagonal samples with periodic transverse

boundary conditions, with up to M = 1128 edges.

a priori reduction to local operations only and is thus particularly suited for graphs exhibiting

a layered structure. The method combines a symbolic bottom-up algorithm, which is based on

systematic term-wise expansion and pattern matching, with an appropriate computer algebra

program [33, 34]. Our method is applicable to general types of graphs, including graphs with

bounded and unbounded tree widths as well as randomized graphs. We demonstrated by several

sets of examples that it drastically outperforms existing standard methods for all these types

of graphs. As a practical application, we computed chromatic polynomials for samples of the

simple cubic lattice, for the first time computationally accessing three-dimensional lattices of

physical relevance.

Since the main ideas underlying our method are simple to apply, they may be

generalized in a straightforward way and also be transferred to other challenging counting

problems. Among others, one may compute quantitative measures relevant in computer

science that give information about the communication capabilities of a network, such as

(i) the flow polynomial and (ii) the reliability polynomial [41, 42]. It is equally possible to

determine (iii) ferromagnetic and (iv) positive temperature partition functions of statistical

physics [38]–[40] and, equivalently, (v) the Tutte polynomial (of two variables q and v, cf

equation (2)), valuations of which directly result in the number of spanning subgraphs, the

number of spanning trees, and other invariants of a graph [12, 13]. Of course, applications in

graph theory may include studies of families of graphs where computational results seemed

impossible so far, because the computational effort is substantially reduced. As the new method
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yields exact results not only for the final solution (in our examples, the chromatic polynomial)

but also in the intermediate steps (the partial partition functions above), it may moreover be

combined with analytical tools [11], [15]–[17], [38, 40, 42] to obtain unprecedented results

for various classes of graphs. Finally, the method can easily be implemented in parallel

computations. Taken together, the novel bottom-up pattern matching algorithm combined with

specialized computer algebra presented here constitutes a promising starting point to access a

number of challenging, computationally hard counting problems from statistical physics, graph

theory and computer science.
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Abstract

Chromatic polynomials and related graph invariants are central objects in both

graph theory and statistical physics. Computational difficulties, however, have

so far restricted studies of such polynomials to graphs that were either very

small, very sparse or highly structured. Recent algorithmic advances (Timme

et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic

polynomials for moderately sized graphs of arbitrary structure and number of

edges. Here we present chromatic polynomials of ensembles of random graphs

with up to 30 vertices, over the entire range of edge density. We specifically

focus on the locations of the zeros of the polynomial in the complex plane.

The results indicate that the chromatic zeros of random graphs have a very

consistent layout. In particular, the crossing point, the point at which the

chromatic zeros with non-zero imaginary part approach the real axis, scales

linearly with the average degree over most of the density range. While the

scaling laws obtained are purely empirical, if they continue to hold in general

there are significant implications: the crossing points of chromatic zeros in

the thermodynamic limit separate systems with zero ground state entropy from

systems with positive ground state entropy, the latter an exception to the third

law of thermodynamics.
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1. Background

The chromatic polynomial P(G, q) counts the number of ways one can colour the vertices

of a graph G with q colours such that every two adjacent vertices are coloured differently. It

was introduced by Birkhoff in 1912 [3] as a way to bring complex analysis to bear on what

was then still the 4-colour conjecture. The function P(G, q) is closely related to the Tutte

polynomial and valuations of these polynomials provide information about many important

graph invariants [18]. In recent decades chromatic polynomials, and in particular their zero

sets (an equivalent representation), have become the focus of attention from physicists due

to their connection to the Potts model in statistical physics [22]. For specific lattices, this

has given us very detailed information about chromatic zeros [5, 14, 15]; however, there

has been little progress towards understanding their location for general graphs. This is in

large part due to limited computational accessibility; for all but the smallest, sparsest or most

highly structured graphs, calculating the chromatic polynomial is extremely difficult because

generally the computation time increases exponentially in the number of edges [21]. Since we

lack instances of chromatic polynomials for ‘ordinary’ graphs from which to build intuition,

we currently have little idea what to expect for moderately sized graphs that are not extremely

sparse or highly structured. Hence, we possess no basic background for comparison of the

few non-minimal instances known so far, cf e.g. [13, 14].

Random graphs constitute a natural first candidate towards building such an intuition.

Since random graphs serve as initial approximations or null models of systems with unknown

structure, they are ubiquitous in scientific and mathematical research and commonly used as

testbeds for theories, algorithms and analytic tools. Random graph theory starts with the work

of Erdös and Rényi in the late 1950s, and the standard random graph (where each edge is present

independently with the same fixed probability) is therefore usually named an Erdös–Rényi

(ER) random graph. ER random graphs have been shown to have some remarkably robust

properties and precise invariants [9]. This applies to several problems related to chromatic

polynomials, such as the value of the chromatic number of a random graph,(
1

2
+ o(1)

)
log

(
1

1 − p

)
N

log N
, (1)

where N ≫ 1 is the number of vertices and p is the edge probability [4]. The chromatic number

is the lowest number q∗ of colours required to achieve a (proper) colouring, P(G, q∗) > 0.

However, to the best of our knowledge, the chromatic polynomial itself has not to date been

subject of such investigation. Given the overlapping interests of random graph theory and

statistical physics this might seem somewhat surprising, but computational accessibility has

so far been highly limited.

In this paper, we start to fill this gap using a promising vertex-based, symbolic pattern

matching method developed recently [17] to compute chromatic polynomials of moderately

sized graphs. Like other techniques developed for physics applications (cf [7]), it is capable

of fast computations on graphs consisting of periodically repeating subgraphs; however, one

of the new method’s important features is that it also works on arbitrary graphs, for example

on samples of various random-bond-diluted lattices [17]. It performs significantly better than

standard general purpose methods, allowing access to larger graphs with an arbitrary number

of edges than have previously been considered, such as three-dimensional cubic lattices.

Here we compute and analyse chromatic polynomials for moderately sized ER random

graphs across the entire range of edge densities for selected N. Our aim is to obtain general

estimates for chromatic zero locations with respect to both mean value and variability, which

can then be compared to what is known for specific lattices and other graphs. Since for

decent statistics chromatic polynomials of many graphs for each given set of parameters need

2
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to be computed, the maximum value we consider here is N = 30; chromatic polynomials

for individual graphs with higher N are possible to compute, but resource constraints make

computing a large number of realizations problematic.

As indicated in the following, the chromatic zeros of random graphs are laid out in a very

regular way and systematically depend on edge density. While unanticipated, this feature is

in fact entirely consistent with previous random graph results; until now, however, not enough

was known for informed speculation on the subject. Based on our data, we provide a scaling

law for the point at which the complex zeros approach the real line, as well as estimates for

various other quantities of interest.

2. Chromatic polynomials, partition functions and their zeros

We begin with some notation: given a graph G with the vertex set V = {v1, v2, . . . , vN } and

edge set E = {e1, e2, . . . , eM} and a set of colours C = {1, 2, . . . , q}, we say that a proper

q colouring of G is an assignment of values from C to the vi ∈ V such that no two vertices

connected by an edge share the same value. G is q-colourable if there is a proper colouring

of G using q or fewer colours; the chromatic number of G is then the minimum q such that

G is q-colourable. The chromatic polynomial P(G, q) is the associated counting function for

proper q-colourings of G; that is, it tells us how many ways we can colour G with at most q

colours.

The representation

P(G, q) =
q∑

σN =1

· · ·
q∑

σ1=1

∏

(i,j)∈E

(
1 − δσiσj

)
(2)

of the chromatic polynomial in terms of sums over polynomials in Kronecker deltas δσiσj

seems particularly suited for computations [17] and also directly shows a link to Potts partition

functions in statistical physics (see below). Here every σ = (σ1, . . . , σN ) is an assignment of

values (colours) from {1, 2, . . . , q} to the N vertices of G and the product runs over all edges

e = (i, j) of G. For a given colouring σ, the product equals one if no two adjacent vertices

have the same colour, and zero otherwise; it functions as an indicator that the assignment is

a proper colouring of G. Equivalently, σ can be regarded as a global microscopic state of an

antiferromagnetic Potts model with the individual σi’s being local states or spin values. From

this viewpoint, (2) counts the number of energy minimizing global states.

The connection to statistical physics arises from the fact that the chromatic polynomial

equals the antiferromagnetic Potts partition function Z(G, q, T ) in the zero temperature limit

since Z(G, q, T ) counts the number of spin configurations where all neighbouring spins

disalign [22]. Let us be more specific. The standard q-state Potts model was introduced

in 1952 as a generalization of Ising’s 2-state model for interactions on a crystal lattice

[1, 11, 12, 22]. It describes systems in which site variables (magnetic moments, spins or

other kinds of local states) can take one of q different values, and interactions occur only

between neighbouring sites that are in the same state. The total energy in the global state σ is

given by the Hamiltonian

H(σ) = −J
∑

(i,j)∈E

δσiσj
(3)

where J is the interaction strength and E is the edge set of the underlying graph G. The partition

function for this system at positive temperature T = (kBβ)−1 is

Z(G, q, T ) =
∑

σ

e−βH(σ) =
∑

σ

∏

(i,j)∈E

(
1 + (eβJ − 1)δσiσj

)
(4)

3
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Figure 1. Chromatic roots for strip lattices. Small disks: roots for a 4 × 18 square lattice, free

boundary conditions. Solid lines: limiting curve for a 4 × ∞ lattice (again free b.c.).

where kB is the Boltzmann constant. If J < 0 (antiferromagnet), the T → 0 limit eβJ → 0

yields a partition function that equals (2).

Because of this equivalence statistical physicists have shown increasing interest in the

chromatic polynomial, and in particular its zeros in the complex plane. The original Lee–Yang

theorem [10] established the conditions on features of ferromagnetic systems that ensure that

all zeros of the partition function have non-zero imaginary part, thereby bounding certain

critical values [14]. This kind of reasoning has been extended to antiferromagnetic systems

by what some authors refer to as Lee–Yang theorems, plural [16]. If in the N → ∞ limit

the complex zeros of the partition function converge to pinch the real axis, this indicates the

existence of singularities in the system at these real values and so possible phase transitions

or critical points. For instance, the q-state Potts antiferromagnet may exhibit a critical real

qc > 0 above which the zero-temperature partition function is analytic in the thermodynamic

limit. Thus, for q < qc, the zero-temperature phase is ordered, whereas the high-temperature

phase (T → ∞) is generically disordered, indicating a phase transition in temperature T

between ordered and disordered states. For q > qc, the system exhibits ground state disorder

at T → 0, an exception to the third law of thermodynamics [8].

For computational reasons, the bulk of statistical physics research on the chromatic

polynomial has been conducted on strip lattices (see, e.g. [5, 13–15]): these are both sparse

and have a repeating structure, and so are the most computationally tractable graphs also for

moderate sizes. This structure lends itself to the use of specialized techniques, so lattices

are to date the largest graphs chromatic polynomials have been computed for; in fact, for

such strip graphs it is sometimes possible to calculate N → ∞ limit sets of chromatic zeros

analytically [5, 14]. Such lattice data represent probably our most detailed knowledge of

how the entire zero sets of chromatic polynomials are laid out, and there are in fact certain

qualitative consistencies in these findings; figure 1 gives an example of how the chromatic

zero sets of strip lattices are laid out. Most noticeable is that, for many lattice strips, zero

sets invariably trace out a somewhat elongated backwards ‘C’ curling around the point 1 + 0i.

Gaps and small horns are common features, showing up in characteristic locations.

3. Exploring the chromatic zeros of random graphs

To gain first insights towards chromatic zeros of random graphs, we consider the two models

of the ER random graph [9]:

4
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Figure 2. Complex zeros of chromatic polynomials of random graphs. (a) Zeros for G(20, p) with

selection probability p ∈ {0.1, 0.2, . . . , 0.9}; (b) zeros for G(20,M) graphs with M determined

by fixed edge density P ∈ {0.1, 0.2, . . . , 0.9}; (c), (d) and (e) zeros with positive real part for

G(N, M) graphs for selected N, M = [KN/2] determined by the average degree K ∈ {3, 4.5, 6, . . .}.
In all figures, chromatic zeros for 20 sample graphs per parameter set are plotted together. Density

is indicated by colour, running from red (low density) to blue (high density).

• G(N,p): the graph has N vertices and between every pair of vertices an edge exists with

uniform probability p. The edge density P = |E|/
(
N

2

)
of any individual instance will

then vary normally around p.

• G(N,M): the graph is chosen uniformly from all graphs with N vertices and M edges. The

density P then has the fixed value M
/(

N

2

)
.

In the N → ∞ limit, the two models are largely equivalent; for finite N they can give

different results, but the main reasons to use one or the other are practical. From the outset,

we had no clear idea of what to expect, so we began with a preliminary investigation of

G(N,p) graphs restricted to N = 20. For each of the parameter values p ∈ {0.1, 0.2, . . . , 0.9},
we generated 20 sample graphs; we then calculated the chromatic polynomials with a FORM

[19] implementation of the new algorithm [17] and solved for the zeros of each polynomial

numerically using MPSOLVE [2]. Complex zeros of all graphs plotted together are shown in

figure 2(a). When first viewing these results, we were struck by the distinct banding in both

the horizontal and vertical directions, which implied that the complex zero sets could have

a very predictable layout depending on the basic graph parameters. After confirming that

similar patterns did not arise from zero sets of random polynomials with similar coefficients,

we proceeded to the second phase of our investigation, which was designed to measure the

simultaneous effect of both edge-density and the number of vertices on the zero locations in a

more systematic way.

5
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3.1. Parameters and constraints

In these more extensive investigations, we consider the G(N,M) instead of the G(N,p) model.

A cursory examination of the G(20, p) data showed that the positions of chromatic zeros with

non-zero imaginary part are very sensitive to the exact value of P. For example, within each

p group we found the correlation between the mean real value of these complex zeros, and

the exact P value (as measured from counting the edges in the generated graphs) was between

0.982 and 0.994. Since we were interested in the effect of density on zero location we then

decided to directly control for P. Figure 2(b) shows zero sets for fixed-density G(N,M) graphs.

Also, we parameterized density by average degree K = 2M/N rather than directly by P,

or by M. For a single value of N, it would not matter which of these was used since they can be

simply converted one to another, but over different N the choice of metric affects the amount

of data generated and the ways one can aggregate it. A deciding factor was that K arises

naturally in the study of physical systems which feature a bounded number of interactions.

Finally, we added the constraint that graphs were to be 2-connected: that is, every pair

of vertices in the graph belong to at least one cycle. ER random graphs experience a sharp

connectivity transition as density is increased [9]. Though the theoretical result is in the large

N limit, the effect is manifest even for N in the range of the random graphs we used; none of

our G(20, 0.1) graphs were even 1-connected, while all of the G(20, p) graphs for p � 0.3

were at least 2-connected. Since the chromatic polynomial of an unconnected graph can be

factorized into the chromatic polynomials of its connected components, aggregating data from

graphs without controlling connectivity would have had the annoying effect of confounding

the low-density data for runs with different values of N, without otherwise telling us anything

we do not already know.

We used N ∈ {12, 15, 18, 21, 24, 27, 30} and K ∈ {3, 4.5, 6, 7.5, . . . , d}, where d is

highest value divisible by 1.5 that is less than N − 2. For each of the 77 (N,K) pairs, 20

instances of G(N,M) graphs were generated using the integer M that was closest to KN/2. As

above, chromatic polynomials were then calculated with the new algorithm and zeros extracted

using MPSOLVE. Figures 2(c)–(e) show all chromatic zeros in the upper half complex plane

for some N. Note that the upper value and spacing of the N values chosen were primarily

determined by computational concerns; for low N chromatic polynomials for all graphs could

be calculated in a matter of seconds, but in the high range, a single graph could require two or

more days. In total 1540 random graphs were generated, resulting in 35 700 individual data

points (chromatic zeros).

3.2. Analysis of specific features of chromatic zeros

From the combined data, we extracted various graph invariants directly, such as the chromatic

number, number of real and integer zeros, zero multiplicities, the maximum modulus,

maximum real zero and maximum real and imaginary parts of zeros. Of particular interest

to us were the shapes traced out by the complex chromatic zero set (i.e. zeros with non-zero

imaginary part) in the complex plane and the point at which this set approaches closest to the

real axis. The second of these we will denote as the crossing point XN,r for the parameter r

(which can be average degree K or density P as required).

The crossing point is a finite system analogue to the critical value qc discussed by previous

authors [5, 13, 15], which properly speaking can arise only in the N → ∞ limit when critical

phenomena arise, and the zero-set becomes continuous such that its intersection with the real

axis can be solved explicitly. Since our graphs (and hence their chromatic zero sets) are finite,

the crossing points XN,r were instead estimated in the following way.

6
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• For each parameter pair (N,K), we collected the chromatic zeros with positive imaginary

value for all 20 graphs into one set (zeros with negative imaginary value are their complex

conjugates, and can thus be neglected).

• We fit an arc segment to each collected zero set in the complex plane; moreover, we did

a linear fit to determine orientation (left or right leaning). All fits used a least-squares

Euclidean distance from each zero to the nearest point on the arc (or line) as a metric. It

should be noted here that centres and radii of arcs were not constrained in any way (for

example, to lie on the real axis).

• The crossing point XN,K is then given by the positive intersection of the arc and the

real axis. Also, the curvatures of the zero sets are obtained from the arc radii, and their

orientations from the slopes of the linear fits.

4. Scaling of chromatic zeros

Preliminary visual inspection of the complex chromatic zeros as shown in figure 2 revealed

several consistent features. For all N tested, the zero sets at low densities are close to the

origin and laid out almost circularly around the point 1 + 0i; as the density is increased, they

gradually move away from the origin and uncurl until they are almost vertical, after which

the half-sets in the lower and upper complex plane remained relatively straight, but become

shorter and angled, now away from the origin.

Perhaps most surprising is the way that zero sets for graphs with the same average degree

K almost always fell into roughly the same location regardless of the N value. Figure 3(a)

shows complex zeros for K = 9. We note that the curvatures of these zero sets do vary, and

that those of the smallest (hence densest) graphs pull to the right somewhat. Thus, it would

seem that while location and therefore crossing point is largely determined by average degree,

features like the shape and height of the sets will depend on P and N in a more complex

way.

The zero locations (see figure 3(b)) suggest that for random graphs with edge-density

below a certain cutoff Pc the crossing point XN,K scales linearly with K but is otherwise

insensitive to changes of N. As we will show below, it also turns out that XN,K has a predictable

location for densities above Pc; in this range, however, it is no longer a linear function of K

but a still relatively simple function of N and P. We remark that for low K, there is somewhat

more variability in the data than elsewhere.

4.1. Determining cutoff density

By most measures the cutoff density Pc is somewhere between 0.6 and 0.7. Though by no

means conclusive, the best empirical metrics we have point to a value of Pc ≈ 0.65. The most

dispositive evidence involves the shape and orientation of the zero set. As we have noted, for

a given N, as K (or P) increases the shape of the zero set consistently goes from an arc curving

around the origin to a pair of roughly straight lines leaning away from the origin. Our working

assumption is thus that the cutoff should occur at the value of K (or P) where the zero set is

most vertical, simultaneously consistent with either a very large arc curling left or a straight

line leaning imperceptibly right. This can be made more precise by considering the slopes

of linear fits to the complex chromatic zero sets. For our data the slopes are negative for all

zero sets with P � 0.648, and positive for all zero sets with P � 0.652 (no zero sets were

associated with a density between these values).

7
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Figure 3. Crossing points for chromatic zero sets. (a) Complex chromatic zeros in upper half

plane plus arc fits for average degree K = 9, various N. (b) Crossing point XN,K versus K for each

N, K . (c) (Inset) Crossing points versus average degree restricted to graphs with density P < 0.65

with fit line XN,K = 0.58K + 0.41.

4.2. Crossing point for P < Pc

Crossing points for P < Pc exhibit a close to linear scaling with the average degree, cf

figure 3(c). Fitting XN,K against K below the cutoff gives the relation as

XN,K = 0.582K + 0.406. (5)

Goodness of fit tests confirm that regardless of possible higher order terms the data points are

aligned very closely to the fit line. The reduced chi-squared χ2
r for the fit is a quite low 0.295

(χ2
r is the standard χ2 normalized by the degrees of freedom; a value of one or less indicates

that the model accounts for the data adequately or better, while values significantly greater

than one mean the fit is of poor quality).

We note that the variability in measured data is greater for low K values than for high.

This is in part due to the fact that we have more low K data points than high ones, and that

the variability of zero location is definitely greater at low densities (noticeable from simple

visual inspection of zero plots). But there seems to be another factor at work as well. For

individual N values, the differences between the calculated XN,K values and the fit are not

scattered about the line, but instead are larger (and consistently positive) towards both ends

of the applicable density range. Also, the crossing point for K = 2 (a cycle) should be at

Re(q) = 2, while the fit line predicts a too-low value of 1.57. This may imply that actual

curves are either very gently rounded, or that there is a separate low density regime where

a different slope applies. We do not currently have any good criterion for distinguishing a

second cutoff, however. Moreover, the magnitude of these differences is small, and does not

seem to increase with larger N.

4.3. Crossing point for P > Pc

The crossing points above the cutoff density do not scale directly with K; in fact, it is not

clear from visual inspection that they conform to any simple function of K or P. Hence, it

8
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Figure 4. Rescaled crossing points XN,P /N versus
√

1 − P 2, P > Pc .

is something of a surprise to find out that for P > Pc, the crossing points are rather well

described by

XN,P = N
(
a − b

√
1 − P 2

)
, (6)

where a ≈ 0.9 and b ≈ 0.65 ≈ Pc, as shown in figure 4. This relation was obtained by

considering a rescaling of the crossing point values to correct for the fact that the distance

from the cutoff crossing point XN,Pc
to N increases as roughly 0.4N with N. It turned out that

when rescaled this way, the XN,P values for different N fell close to the same arc segment

when plotted against P and hence the
√

1 − P 2 term in the relation above. The exact linear fit

has a χ2
r of 0.2868.

4.4. Further quantities of interest

As mentioned above, we have considered a large number of other quantities of interest. Each

of these quantities requires a thorough scaling analysis on its own, such that we here give only

a brief summary of the most important results and refer the reader to an extensive presentation

in a future publication. Both the maximum zero modulus |zmax| and the maximum imaginary

value max(Im(z)) also turn out to have simpler scalings than were anticipated. The maximum

modulus is well approximated across all densities by the linear relation

|zmax| = 0.91K − 0.79, (7)

though the exact relation again is probably nonlinear at least in the high and low density range;

while all points are close to the fit line, the errors are not scattered normally but definitely pull

up at both ends (cf figure 5). The maximum imaginary value does not grow linearly with K,

but a linear relation can be obtained by rescaling:

max(Im(z)) = 1.15K
√

1 − P − 1.67. (8)

A χ2
r value of 0.296 again confirms a high quality fit. Since K = P(N − 1), for fixed P

this relation does give a linear scaling, this time in N. We note that P
√

1 − P achieves its

maximum at P = 2
3
; hence, this result dovetails with our finding of the density cutoff for the

crossing point scaling at Pc ≈ 0.65, based on the most vertical layout of the chromatic zero

set.

9
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Figure 5. (a) Maximum modulus |zmax| (mean over each N, K parameter set) versus average

degree K (cf. (7)). (b) Maximum imaginary value max(Im(z)) (mean over each N,K parameter

set) versus K
√

1 − P (cf. (8)). Inset shows associated real values versus KP .

5. Conclusions

Applying the recently suggested vertex-based computational method [17] yielded some corner-

stone insights into the features of chromatic polynomials of random graphs: the complex zeros

of chromatic polynomials of moderately sized random graphs systematically change with the

number of vertices N, the density P and the average degree K. For fixed N, the shapes of the

complex zero sets evolve as P increases, from tracing an arc around the point 1 + 0i at low

P, to being almost vertically aligned at the cutoff density Pc ≈ 0.65, to sitting along pairs

of straight lines leaning away from the origin at higher P. The crossing point XN,K of the

complex zeros scales linearly with the average degree K for P < Pc; above this cutoff the

crossing point appears to be a simple function of N and
√

1 − P 2. If these results continue to

hold for larger N, the implications are straightforward. Fixing the average degree K, we have

P → 0 as N → ∞; this suggests that for an infinite random graph with bounded degree,

the chromatic zero set converges to an arc around 1 + 0i that crosses the real axis at a finite

position. On the other hand, if P is fixed or converges to a positive value, then K → ∞,

and the crossing point and in fact all chromatic zeros with non-zero imaginary value diverge

to (complex) infinity. The former is most relevant for statistical physics: if G is an infinite

disordered system with bounded connectivity, then in the zero-temperature limit the zeros of

the antiferromagnetic Potts partition function meet the real axis at a finite, predictable location

that depends on the system’s coordination number.

Besides extending our studies to related polynomials such as Tutte or reliability

polynomials [6, 18], the chromatic polynomial itself requires several future studies. In

particular, there is of course much that still needs to be done with respect to Erdös–Rényi

random graphs. Ideally we would like to obtain results for larger N for additional verification.

However, while the new method [17] does achieve a significant speedup, the problem of

computing the chromatic polynomial remains difficult and so there is a limit to feasible N,P

values.

Nevertheless, even for accessible classes of graphs, several features of their chromatic

polynomials are not yet settled. While our results indicate that for Erdös–Rényi (ER) random

graphs, the location of chromatic zeros may be quite predictable, there are many related graphs

10
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of interest with as yet unknown features. Preliminary studies on two other classes of graphs,

regular random graphs and random bipartite graphs, suggest how far and in what direction our

current results might extend. As one might expect, with respect to regular random graphs,

the main effect is to reduce the variation in zero location across instances. The layout of

the chromatic zero sets for random bipartite graphs, on the other hand, is markedly different

than what we see for general ER random graphs, particularly at higher densities. Since many

lattices are also bipartite, this bears a closer study.

Two further ‘standard’ classes of networks and graphs include the following.

• Small-world graphs. There is a possibility that our scalings may depend on properties

that will almost always hold for small enough random graphs yet almost never hold for

large enough ones. One such property relates to the presence of triangles and other small

cycles. None of our graphs with average degree more than three were triangle free, though

for densities P < 1, large enough random graphs will usually be triangle free, and infinite

random graphs are locally indistinguishable from trees. Small-world graphs [20], which

maintain their neighbourhood properties as they grow larger, are hence natural candidates

for study.

• Scale-free networks. Some previous work on chromatic polynomials has brought up the

possibility that the presence of high degree vertices may have a large influence on the

location of some of the graph’s chromatic zeros [16]. We have not detected a pronounced

effect coming from the maximum degree itself but this might be due to the strongly central,

unimodal distribution of the degrees for the random graphs we considered. Hence, it is

entirely possible that the non-effect we noticed is due to our maximum degrees not being

large enough compared to the average degrees to exert an independent influence. To test

this supposition, a natural option would be to compute chromatic zeros of graphs with

scale-free degree distributions. The vertex-based symbolic method we used [17] would

need to be adapted to compute reasonable size instances.
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Chapter 5

Ongoing and Future Work

5.1 Network Reconstruction

In chapter 2 a method is proposed to recover the complete topology and connection strengths
of a leaky integrate-and-fire neuron network from spike-time data. The method is robust
with respect to irregular spiking dynamics and hence will work with a broad range of network
topologies and mixtures of excitatory and inhibitory connections. Furthermore, it is quite fast,
accurate, and does not require arbitrary amounts of raw data to work.

The main significance of the method as it now stands is: explicit reconstruction techniques
for neuronal networks cannot now be ruled out due to inherent algebraic or computational
intractability of the problem. We know now that reconstruction of networks of model neurons
with discrete-pulse interactions on a moderately large scale is feasible, not highly vulnerable
to numerical instabilities, and within the computational complexity class P, that is, problems
with a polynomial running time.

To extend our methodology to more naturalistic situations would not involve any great con-
ceptual leaps. While the method as given is model dependent, and requires exact, known
parameter values and exact spike time data to achieve full accuracy, as we shall see below
the underlying framework is quite flexible, and many of the prior conditions can be relaxed
considerably.

To begin with, the article itself mentions the possibility of using different neuron models. This
is an obvious next step which we do intend to follow up on, though time constraints have not
permitted us to do any concrete work in this direction as of yet. I personally think that, as
long as the dynamics are monotonic for individual neurons and satisfy some simple additivity
properties under interaction, the method can be modified to function by way of an interpolation
scheme with empirically derived numerical phase response curves as well.

Due to space constraints the article had to omit other possible extensions which would allow
the method to work with more realistic data or larger networks. In the following subsections I
will outline some of these that are already in the preliminary implementation stage:

− Relaxing desired precision in order to dramatically reduce data requirements;

− Dealing with noise and uncertainty in spike time data;

− Taking advantage of parallel and distributed computation possibilities.
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Figure 5.1: Mq,α scalings for Kuramoto networks. Left: M0.98,0.95 vs. N (log-log) for networks
with in-degree fixed at 10 (i.e. edge-density decreasing). Right: M0.98,0.95 vs. number of
connections E ∼ N2 (log-log) for networks with edge-density greater than 5%. Blue dots are
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In subsection 5.1.4 I will then discuss how these various ideas can be put together to build a
comprehensive computational system for the problem.

5.1.1 Logarithmic versus square-Root scaling of Mq,α

A feature of both [113] and the chapter 2 is the use of the singular-value-decomposition with
an L1-norm optimization step to significantly reduce the number of different driving conditions
required for an adequate reconstruction. In both articles the metric Mq,α is used to estimate
the minimum number of drivings M that is needed to insure a desired accuracy, and in both
a scaling is given for this quantity. An alert reader familiar with [113] may have noticed that
there Mq,α grows logarithmically in the network size N (shown here in figure 5.1(left)), while
in chapter 2 it scales roughly as the square-root of the number of connections E, hence linearly
with N . It should be noted that for a similar application of SVD with L1-norm minimization
by Yeung et al [132] the scaling was found to be logarithmic as in [113].

What can explain these different scalings? While there are minor differences in how Mq,α is
calculated in the respective papers, these are incorporated mostly to prevent false high scores
at the margins of usability i.e. relatively low desired q and α; when q, α ≥ 0.90 these differences
should not affect the order of the scaling. One may then conclude that the divergence in scalings
results from the diverse dynamics of the continuously coupled Kuramoto system used as the
testbed in [113] and the pulse-coupled leaky integrate-and-fire neurons of chapter 2. Attractive
as such a notion might be, as one can see from figure 5.1(right) this is also not the case. For
Kuramoto oscillator networks in the density range P ∈ (0.05, 1) the value of Mq,α grows as

√
E

as well.

The problem is that, as figure 5.1(left) shows, there are too many data points supporting a
logarithmic scaling with respect to at least some Kuramoto systems for us to just dismiss the
possibility. My personal speculation was that the logarithmic scaling might apply to a low
or decreasing density regime, and when serious testing was begun on the LIF reconstruction
method I hoped that the new Mq,α results would confirm this.



5.1. NETWORK RECONSTRUCTION 67

No evidence whatsoever of a low-density regime came up in the LIF test results. Over 300,000
separate M < N reconstructions were done on homogeneous inhibitory LIF networks in order
to obtain Mq,α for over 600 size-density parameter pairs. Densities ranged from 0.025 on up;
while not as low as the 0.01 densities tested with some of the Kuramoto networks, this should
have been low enough to see at least some effect if it existed. The absence of two regimes in the
new data led me to consider whether the different testing protocols used for the two projects
might have had an influence on the results.

For the LIF networks the connections were given random real weights according to a Gaussian
distribution; these weights were subject to some rescaling, but this went to insuring that the
mini-distribution of incoming weights for each target neuron was sufficiently broad (among
other things). For the Kuramoto networks the testing divided into two main sets, one on
random networks with fixed in-degree 10 to generate data for [113], and a second on general
random networks with various connection densities and no fixed degree. The connection weight
was not random but fixed at one, then normalized so that for each node the total incoming
weight was the same. When in-degree is also fixed such a scheme will result in a uniform
weighting, but when in-degree is allowed to vary randomly (and the average degree is large
enough) then the connection weights across the entire network will also vary in a random-like
way. For additional comparison, the genetic networks that Yeung et al studied in [132] were
{0, 1} matrices i.e. connections uniformly had a weight of 1.

My revised hypothesis is that the explanation is information theoretic, and the divergent scal-
ings seen with Kuramoto networks results from the connection weighting scheme used; the
ultimate implication is that for either system if we only wanted indicators for the presence or
absence of connections rather than accurate strengths the minimum M required would indeed
scale logarithmically or at least less than square-root with N . There are various ways this could
be tested. Since indicator reconstructions are likely to be useful when the target networks do
not have fixed connection weights, we would want to test the hypothesis on randomly weighted
networks, by rounding reconstructed connection weights to {−, 0, +} i.e. detect presence or ab-
sence of arbitrarily weighted connections. This would be accompanied by a control run using
fixed weight networks for comparison.

5.1.2 Reconstruction of noisy LIF networks

The reconstruction methodology as described in chapter 2 does not ostensibly deal with noisi-
ness or variability in the data. Some preliminary work on incorporating random variation and
uncertainty into our methods has already been done, with promising results. Modified versions
of both the general and fast specialized method have been used to reconstruct small networks
from simulation data where quantities such as pulse strength and delay time were allowed to
fluctuate randomly as well as deterministic simulation data with externally added noise (spike
time jitter). As one would expect, reconstructions of noisy systems never obtain the numerical
limit of accuracy; but with bounded noise levels we do obtain predictably bounded error levels
and so reasonably trustworthy estimates of network connectivity. Figure 5.2 shows M < N
reconstructions with random added noise for various Qα values. The use of M < N recon-
struction for these plots is essentially diagnostic (simple checkerboards would reveal little of
interest), but they also show that the SVD plus L1-norm M < N optimization can act like a
numerical filter to improve accuracy (cf. [78]).
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Right: Quality of reconstruction Qα for various values of α and σ = 10−4〈P 〉 and 10−3〈P 〉.

The general method and the fast specialized method for phase-locked simple spike patterns
extend to noisy data in different ways. For the fast method it is simply a matter of extrapolating
a representative spike pattern and set of period lengths from the given data, which requires
removing transients from the time series and gathering appropriate statistics. The fast method
with noise works well on spike trains with externally added noise, as well as data from networks
that are able to remain phase-locked when there is variation in e.g. delay times or pulse strengths
within the simulation. In the latter case, however, it is possible for this internal noise to perturb
the network out of synchronization (often into two or more competing groups of internally
phase-locked neurons), which then makes specialized reconstruction impossible.

While we have done some successful reconstructions of noisy LIF networks with an extended
general method, this is still a work in progress. Incorporating noise here has issues that do
not arise for the specialized method. To begin with, since spike arrivals can happen at any
point in an interval, we cannot aggregate the data directly but must first incorporate it into
rows of the solution system; this leads to biases in the solution, and we have yet to work out
a formula that will correct for it entirely. More problematic is how spike time jitter / delay
time uncertainty affects the acceptable interval searches. When exact delay/spike times are
not known the criteria for an acceptable interval (ti,ℓ−1, ti,ℓ) must include:

∀j, k : tj,k + τ 6= ti,ℓ ± ǫ (5.1)

where 2ǫ is the window of uncertainty. The larger ǫ is the more false negatives (acceptable
intervals flagged as unacceptable) are generated; simple probability dictates that for a fixed ǫ
increasing the network size will have the same effect. This both reduces the data available to
construct a solution and makes the searches longer. As well, when ǫ > 0 we now have to look
out for possible arrivals near the beginning of intervals:

∃j, k : tj,k + τ ∈ (ti,ℓ−1 − ǫ, ti,ℓ−1 + ǫ) , (5.2)
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since of course if this is detected we do not know if the arrival occurred in the interval
(ti,ℓ−2, ti,ℓ−1) or (ti,ℓ−1, ti,ℓ). This roughly doubles the number of rejections.

That said, the general method for noisy systems does achieve ballpark solutions. It is quite
possible that in conjunction with a stringent rounding regimen such as described in the previous
subsection it will be able to provide quite trustworthy results; this has yet to be studied.

5.1.3 Parallelization and subnetwork reconstruction

Another aspect of the general method that is not touched upon in chapter 2 are the possibilities
of partitioning computations in order to make more use of available resources as well as use
less time overall.

Since computations (including the search phase) of presynaptic connections for each neuron
are independent the underlying algorithm is naturally parallelizable; all that would be required
is generic distribution code to parcel out computations to processors and collect the results
when each is done. Since spike trains are never modified these can be kept in shared memory
while all searches proceed simultaneously. For an N neuron network each process would also
require its own O(N2) memory space in order to construct the respective Θ(i) matrices and B(i)

vectors; since these are no longer needed after the connectivity for neuron i is established, a
single cluster node can process several neurons in sequence without requiring additional space.

Something that could work for us on a more fundamental level would be the ability to do
reconstructions independently on subnetworks embedded into a larger network. Applicability
here is not that we could compute different subnetworks simultaneously, but rather that we
can avoid computing some connectivities altogether (i.e. ones we are not interested in or that
we expect to be null). If a 500 neuron region of interest is embedded in a 3× 104 assemblage
we prefer not to have to do calculations for all possible connections in the greater network
(almost a billion) in order to determine the status of the quarter million or so that we care
about. Hence it would pay to take advantage of whatever modularity the problem possesses.

When I was working on Kuramoto system I already had begun to study the feasibility of
subnetwork reconstruction using the general response-dynamics framework, though there (and
with the specialized LIF method) global synchronization of the network was an issue. With
the general LIF method we do not have strong constraints on how the entire network behaves,
so subnetwork reconstruction easily falls into two aspects:

i) If we have reason to believe that there is no presynaptic connection from a neuron j to
a neuron i then regardless of neuron j’s activity it can be excluded from all searches and
calculations relating to i’s incoming connectivity, thereby reducing search/comparison
time and the size of the linear systems constructed. More generally, if R is a large
network and Q ⊂ S ⊂ R with the property that no neuron in R\S has a potential
connection to any neuron in Q, and we know all spike times for S, we can reconstruct all
incoming connections for Q (internal to Q and from the boundary S\Q to Q) regardless
of any larger dynamics playing out in R.

ii) Even if neuron j is a presynaptic neighbour of neuron i, if there are sufficiently many
acceptable interspike intervals for i that do not contain any representative arrival times
tj,k + τ for j we can correctly solve for all the other possible presynaptic neighbours that
are represented while excluding j. More generally, if S ⊂ R and spiking in R\S is not
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present in a large enough subset of interspike intervals we can reconstruct all connections
internal to S regardless of what connections it actually has from the rest of R.

The idea then is to use both aspects to patch together connectivity graphs of large networks
from full computations on smaller portions. I will note here that this is already the practice
with respect to full and partial reconstructions on the individual neuron scale based on purely
experimental techniques [108]. Aspect (i) is of particular relevance when areas of interest are
well defined in terms of clustering metrics, with sparser connections to the rest of the network.
In order to determine these areas and where the interfaces between them lie we could possibly
use an intermediate scale covariance approach based on functional connectivity techniques
currently in use. Aspect (ii) would come into play in conjunction with either pre-established
external driving strategies (since a non-driven section of a neuronal network can be expected
to spike much more infrequently than a driven section) or by explicitly suppressing output in
certain areas by e.g. pharmaceutical means.

5.1.4 A comprehensive overview

The above is not an exhaustive list of possible extensions: I have not mentioned, for example,

− how assumptions about neuron specialization with respect to inhibitory or excitatory
post-synaptic connections can be leveraged to reduce the solution space,

− how constraint satisfaction methods from optimization theory can be used to obtain
bounds on connection strength when quiescence or consistent spike-induced spiking is
present, or

− how external driving strategies could be utilized to promote neural behaviour best suited
for reconstruction.

Our methodology going forward. It is important to note that all the above extensions (from the
previous subsections as well as the previous paragraph) are fully compatible with each other.
Furthermore, all the involved issues (requirements in terms of raw data points per recovered
connection, network size and partitionability, noise, spiking regimes, etc.) would have to be
addressed by any practical method for reconstructing biological neuron networks. What I
ultimately envision for the reconstruction methodology then is that it will combine all the
above extensions into a general augmented method:

i) A framework that supports a repertoire of theoretical and/or numerical models by switch-
ing in/out, rather than one that is model independent or uses a single model general
enough to apply to all spiking regimes and all structural/functional classes of neurons.

ii) An algebraic kernel that uses rounding/bounding to obtain desired basic information
about presence/absence/sign of connections, so that substantially less raw data is required
and processed data discarded.

iii) Search, aggregation, and preprocessing routines designed to deal with noise, uncertainty,
and variability in the spike time data.
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This would be combined with targeted driving strategies during experiments, and a prior
analysis stage undertaken to determine neuron models / parameter values, and to isolate the
sections of the network likely to contain a significant number of connections.

The neuronal reconstruction problem. Nothing in the general augmented method outlined
above depends on any specific developments in experimentation, only on sufficiently reliable
spike time data being available in sufficient quantities. Hence if the augmented method can
be brought to completion it could easily become the standard technique for detailed neuronal
network reconstruction, considering the current state of the art with respect to this and the
general oscillator network problem [70, 113, 133, 134].

The applications of detailed neuronal connectivity tables are many [26]. The one that I am
personally most interested in is the search for neuronal “gadgets”, as mentioned in section
1.2.1 of the introduction. The eventual aim of course is to determine the mechanisms for such
things as memory lookup or formal rule-following [18]. The first step in this direction would
be to search for small motifs that reappear significantly more often then would be implied by
random or lattice-like (i.e. neighbourhood) connectivity, since the presence of small repeating
substructures might signify some specific neural function e.g. activate or deactivate a neigh-
bouring cluster. Such motif research is already underway [26, 107, 108], utilizing connectivity
data laboriously obtained over the last two decades via whole-cell recordings and similar tech-
niques; the size of the networks they have at their disposal for analysis range from less than 100
neurons for mammalian data to 197 neurons for the well-studied c. elegans. For computational
reasons motif sizes considered so far are small (up to 5 neurons), but results already indicate
that some do show up more often than expected [108].

Work in this vein is only just starting, but if a motif was found that was a plausible candidate
for e.g. a neuronal router, then the obvious next step would be to determine whether there was
any stereotypical structural/topological relation between separate instances of such a motif
occurring in the same network. If a defined repeating pattern of motifs were found then this
would require analysis as a possible mechanism for a higher order function, and so on [87].
Any such research would be greatly aided by the presence of more and larger detailed neuronal
connectivity tables.

5.2 Chromatic Polynomials

In chapter 3 a new algorithm for computing chromatic polynomials of graphs based on the
antiferromagnetic Potts partition function is presented. The algorithm makes use of symbolic
pattern matching to evaluate algebraic operators, so is well suited to highly optimized computer
algebra systems such as J. Vermaseren’s Form [121]. While designed to calculate strip lattices
commonly studied in statistical physics, it is capable of computing chromatic polynomials
for arbitrary graphs and is much faster than generic chromatic polynomials solvers such as
those provided with Mathematica or Maple. Chromatic root sets for various lattices of
physical interest are shown, including the unprecedented 4× 4× 4 cubic lattice. In chapter 4
the new algorithm is used to compute chromatic polynomials of Erdös-Rényi random graphs,
which have not to this point received any significant attention in this regard. It is found that
the root sets of edge-density parameterized ER random graphs are laid out in a very regular
and predictable fashion, something that could not be anticipated from the prior literature on
chromatic polynomials but is consistent with previous random graph results for other invariants
such as chromatic number or clique size. While empirical, the results imply that in the infinite
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size limit chromatic root sets of random graphs with fixed average degree K will cross the real
axis at a consistent (finite) location: ≈ 0.6K + 0.4.

As with the neuronal network research there are future directions for which some preliminary
work or planning has already been done. In the following subsections I will discuss:

− Ongoing lattice calculations, including those for crystals other than the simple cubic
lattice and a limiting curve technique developed within our research group for infinite
lattice strips;

− Chromatic polynomials of random graphs generated under various structural constraints
(different degree distributions, bipartness, etc.);

− Extension of the new algorithm to methods for related functions such as the Tutte poly-
nomial and the Reliability polynomial.

5.2.1 Lattice calculations

By design the new algorithm presented in chapter 3 is natively optimized for chromatic poly-
nomial calculations on lattice strips similar to those studied by Shrock [28] or Sokal [96]. On
square lattices with fixed width the running time is linear in the length of the strip (though
running time will grow exponentially with the width if it is allowed to vary). This allows long,
thin strips to be calculated quite quickly.

The feature that sets this algorithm apart from competing techniques, such as transfer matrices,
is that it does not depend on repeating substructures at all, but only on the width (for a
discussion of graph theoretical generalizations of the width metric see appendix C.5.2). For
this reason not only are ordinary square lattices feasible, but also e.g. bond-diluted lattices
or other kinds of graphs where layers are not identical; as well, the algorithm can be run “as
is” on any kind of repeating structure without extensive preprocessing, as long as the vertices
are ordered from one end of the strip to the other. Other fast specialized techniques, such as
Shrock’s method of generating functions, require extensive (by hand) recalculations of bases
when a new kind of lattice is attempted.

One thing this has made possible is work on 3-dimensional lattices. The signature calculation
of chapter 3 was the first ever computation of the chromatic polynomial for the 4×4×4 simple
cubic lattice (free boundary conditions). For my own part I have continued calculations on the
4× 4× 4 simple cubic lattices with periodic boundary conditions. As figure 5.3(left) shows, so
far the computations have made it to 2 periodic boundaries, with each new periodic boundary
having a non-trivial effect on the real axis crossing point of the root set. As of this writing
a calculation for the cubic lattice with all 3 boundaries periodic is ongoing, but the addition
of each periodic boundary condition has resulted in an order-of-magnitude increase in running
time, so it is quite likely that this will remain unfinished by the time of my defense.

Work on 3-D lattices is an ongoing project by multiple members of our group. In particular, we
have been working towards a systematic investigation of AF Potts partition zeros in the complex
plane for various other crystal lattices (face-centered cubic, body centered cubic, diamonds,
hexagonal etc.). This has included calculations for finite length strips, and analytic solutions
for the limiting curves of the zero set in the infinite length limit.
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Figure 5.3: Chromatic roots for finite lattices. Left: 4×4×4 simple cubic lattices with {0, 1, 2}
periodic boundaries. Right: 2 × 2 × n body-centered cubic lattices for n = 20 (red +) and
40 (green ×) obtained from computations on diagonal slices, periodic in first 2 dimensions.
Second plot courtesy of Niels Kurz [65].

Figure 5.3(right) shows a plot of roots for finite 3-dimensional diagonal slices of the body-
centered cubic lattice. The strips of 3-D lattices we work on come in two flavours: the familiar
j × k × n straight sections, and j × k × n diagonal slices taken through infinite lattices (j and
k here indicate the maximum width of individual layers of the slice with respect to the first
two dimensions). Under free boundary conditions diagonal slices have the advantage that they
have a larger number of vertices with a full set of neighbours (i.e. that achieve the infinite sys-
tem’s coordination number) than a comparable straight section; furthermore, under periodic
boundary conditions they can avoid some issues that come up with thin 3-D sections (e.g. for a
2×4×n straight section applying a periodic boundary to the first dimension is redundant since
the affected vertices already have a connection, but this will not happen with a similarly-sized
diagonal strip taken at the appropriate angle).

Limiting curves for root sets. As mentioned in the introduction, some researchers have obtained
limiting curves for the chromatic root sets of infinite length strips by analytic means [28, 96].
Notable in this regard is the method of generating functions used by Shrock and collabora-
tors [28, 29, 92, 103]. This technique uses the Deletion-Contraction formula, given here in
section 1.3 as (1.8), to build a recurrence relation for a sequence Pn where the individual terms
are the chromatic polynomials of a given repeating strip of length n. A generating function of
a sequence a0, a1, a2, . . . is a formal power series for which ak is the coefficient of the xk term.
One common use of these is to obtain information about a sequence defined by a recurrence
relation; it is, for example, possible to solve the recurrence entirely if the generating function
can be reduced to known functions by way of sum, product, derivative, etc. operations.

The interested reader is referred to [92] for more details on the method. Suffice it to say that
for strip lattices the recurrence relation itself is not solved, but rather it is shown that any
generating function constructed from the Deletion-Contraction based recurrences Shrock uses
is the ratio of two functions N /D, with all the information required to numerically calculate
the limiting curves contained in the relatively tractable divisor function D.
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Figure 5.4: Limiting curve (in green) for chromatic root set of 2× 3×∞ simple cubic lattice
obtained by the generating function method (free boundary conditions). Plot courtesy of Niels
Kurz [65].

While the approach is ingenious, it does have the limitation that the base cases for each
recurrence relation have to be determined by manual application of the Deletion-Contraction
formula, so it cannot just be set to work upon any lattice of interest without a fair amount
of human effort beforehand. As the size or complexity of the layers of the strip increase
determining the best order for applying the Deletion-Contraction operations so as to minimize
the number of base cases becomes a mathematically hard problem in its own right. Hence
applying the Shrock method as it stands to lattices in higher dimensions, especially crystal
lattices, becomes problematic in practice (though conceptually the problem is unchanged).

Our hypothesis was that the entire procedure could be automated using the new algorithm in
its Form implementation. This has been verified by a Diplome student, Niels Kurz, working
partly under my supervision; he has developed a set of complementary Form, Mathematica,
and numeric programs that when given a generic specification for a repeating strip graph will
derive a recurrence relation, extract the divisor function D, and then numerically determine
the limiting curve for the chromatic zeros. Figure 5.4 gives an example of the results we have
obtained. It should be noted that while the generating function and hence numerator and
divisor functions for a given strip graph calculated by our automated procedure are necessarily
equal to those determined by Shrock’s manual method, the form of the recurrences is radically
different. Shrock’s method uses multiple base cases (chromatic polynomials of small sublattices)
to define a single sequence, but our method finds a set of mutual recurrences for separate
sequences An, Bn, Cn, . . . , each having a single basis; the number of sequences involved depends
on the size and complexity of an individual layer of the strip.

Ironically, Mr. Kurz’s success with regards to the recurrences has revealed a second computa-
tional bottleneck. For both the original Shrock method [92] and our automated procedure [65]
deriving the divisor function D from the recurrence(s) involves symbolically solving the deter-
minant of an n × n matrix, where n here is the number of base cases [92] or sequences [65].
Solving symbolic determinants is an NP-complete problem, so e.g. 100 by 100 matrices are
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out of the question, at least in Mathematica. Furthermore, the number of sequences in our
mutual recurrences grows exponentially with the number of vertices in an individual layer of
the strip, for the same reason that the running time of the new algorithm in general grows
exponentially with the width of a finite strip graph. The current limit for the size of arbitrarily
connected layers the automated procedure can handle is about 10 vertices (sparsely connected
layers can be a bit larger). It should be noted that with the Shrock recurrences the number
of base cases needed will as well grow exponentially in the width, so their group has possibly
encountered the same problem.

Mr. Kurz and I have discussed the possibility of speeding up the determinant calculation by
moving the operation from Mathematica into Form. Since Form does not have a symbolic
determinant operation of its own while Mathematica does, this would involve a new round
of coding from scratch, though it also means we could take computational advantage of any
special structure our matrices have. The NP-completeness of the determinant problem means
that size of the layers would still be limited, but even an extra 4 or 5 vertices greatly increases
the structural range of strips we can access. As well, Form’s superior handling of memory
and disk access might make it possible to push a little further, say to 4× 4 layers of an infinite
straight section of a simple cubic lattice.

5.2.2 Random graphs

As chapter 4 reveals, there is a characteristic layout for the chromatic roots of a generic
arbitrary graph (as manifested by a random graph) that depends primarily on the size N and
edge-density P , and only secondarily on any other (variable) structural characteristics. When
these layouts are compared to chromatic root sets and limiting curves for strip lattices there
seems to be a) much more disparity in the layouts for the lattice strips than the random graphs,
and b) among those lattice strips having roots sets in roughly the same inverted “C” shape as
random graphs of similar density, some noticable differences (e.g. features like horns and gaps,
as well as general stretching in the imaginary direction). The question now is, what accounts
for the difference and diversity. Possibilities are:

Large scale structure. Since lattices are highly structured, they tend to have global properties
not shared by random graphs. For example, a square lattice (FBC) is close-to-regular,
bipartite, planar etc.

Small scale structure. The fact that lattices are defined by simple repeating subgraphs may
mean their root sets inherit eccentricities from the subgraph that are emphasized by the
repetition.

Sparsity. Lattices are relatively sparse, and sparse random graphs showed the most variation
in chromatic root location across instances.

Width. For computational reasons lattice calculations are commonly done on long, thin sec-
tions.

While these characterizations are all graph theoretical, there is a physical implication. Crystals,
for example, are (as graphs) regular, often bipartite, and sparse; but they are rarely planar or
only a few atoms wide.
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Figure 5.5: Left: chromatic roots for random regular graphs, N = 20, degree K = 2, 3, ..., 17
by color (red: 2 to blue: 17). Right: roots for random bipartite graphs in upper half plane,
N = 20, average degree K = 3, 4, ..., 9 by color (red: 3 to blue: 9).

To begin with, we have done chromatic polynomial calculations for a selection of larger Erdös-
Rényi random graphs, specifically for order N = 33 and 36 across a subset of the range of
edge-densities P . Since both running times and space requirements increase exponentially far
fewer trials were done than the 20 per parameter set featured in chapter 4. The results for
these runs largely confirm the scalings and qualitative assertions given in the article, though
the “end-of-range” effect noted there, where the variability/deviation in e.g. crossing point
measurements increases for very low densities, is present as well and seems in fact a bit more
pronounced.

While there is a great deal of variability in the running time, the large number of runs done in
total means we have fairly trustworthy empirical estimates how the running time increases with
N (and P ) in general for arbitrary graphs (reminder: P (1− P ) has its maximum at P = 0.5):

talg ≈ cm

exp(
√

P (1− P )N)

exp(5
√

1− P )
= O

(
e

N
2

)
(5.3)

where cm is a constant dependent on the machine we are running on. From this we can predict
that sparse random graphs (P ≤ 0.10) will still be quite doable for N up to 60 and maybe a
bit more, while graphs in the density range 0.50 ≤ P ≤ 0.60 will become problematic by the
time N gets to 35 or so (a four week calculation on one of our institute’s cluster nodes, by my
calculation).

The above puts a limit on the size of graphs we can handle, and in particular means that some
classes of graphs are beyond reach, if they are defined by statistical or other properties that
only become evident when the number of vertices is large. Among such classes are scale free
graphs, since we would need at least 100 vertices to get more than two decades in the degree
distribution. Small world and other clustering-coefficient determined graphs of the size usually
seen in physics papers are similarly infeasible. We must instead limit our tests to structural
properties that are well defined at all sizes.

Two such properties are fixed vertex degree, and two-colorability. As mentioned in chapter 4,
preliminary work has already been done on regular graphs and bipartite graphs; see figure 5.5
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Figure 5.6: Chromatic roots for 20 vertex random graphs having girth g = 3, 4, 5, 6 (by color)
with average degree K = 3 (left) and 4 (right).

for chromatic root layouts. The basic pattern we see with random regular graphs is quite similar
to that for ER random graphs, for which the degrees have a Poisson distribution, though as
one might expect the scatter in root location across different graphs is much less. With random
bipartite graphs we see a significantly different layout, especially as the density P approaches
the maximum limit of a little over one-half. At lower densities the location and shape of the
chromatic root sets are not that different than those for ER random graphs, though somewhat
more angular. As P → 0.50 the shape morphs into something like the a left curly bracket “{”;
the effect across the entire range of densities is like nothing so much as a Persian recurve bow
being drawn back. This certainly begs for a more in-depth mathematical analysis.

As mentioned in the introduction, several researchers in both physics and graph theory have
postulated that maximum degree (or possibly second highest degree) has a determinative effect
on chromatic root location [94, 104], though I am personally skeptical that this holds for
any but special cases. For random graphs maximum degree is correlated with density P
and size N , which (together) are correlated with root location as determined by the crossing
point XN,P , maximum modulus |zmax|, and other metrics; so across all graphs we do see a
correlation between maximum degree and location. However, when controlled for average
degree (i.e. parameter set) all correlation in our random graph data disappears. Since the
degree distribution of ER random graphs has a strong central tendency this might not be
dispositive, so for additional confirmation tests need to be done where one or two vertices have
very high degree while the average degree is kept low (the poor man’s scale-free graph). I
predict that if a significant effect due to maximum degree is seen it will only be in the location
of a few outlier roots (|zmax|) rather than in the main body of the root set as reflected in XN,P

or the mean real value.

As well, there is an issue that should be addressed relating to the neighbourhood structure
of, respectively, degree- and density-parameterized random graphs. A common property of
density-parameterized ER random graphs, small worlds, and various lattices is that as size N
is increased certain local statistics are maintained: the number of triangles and other small
cycles an individual vertex is part of. With respect to small worlds and lattices these statistics
pertain to spatially-defined localities; for lattices in particular they continue to hold as N →∞
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even though P → 0. With ER random graphs, however, for local statistics to be maintained
while N is increased the density P must be held constant. If instead the average degree K is
fixed then (as with a lattice) P → 0 but (unlike a lattice) all fixed-size neighbourhoods grow
sparser. In the N → ∞ limit almost all finite connected subgraphs of a random graph with
fixed or bounded vertex degree are in fact trees.

Since a main conjecture in chapter 4 is based on extrapolating our empirical results for fixed
average degree random graphs to infinite size N , resolving the effect of neighbourhood structure
is a priority; ideally we would like evidence that it does not have a large effect on layout or
location of chromatic roots either way. Some preliminary work has already been done with
high girth graphs (the girth of a graph is its minimum cycle length), which can stand in for the
general situation where larger N implies sparser neighbourhoods; girth 4 implies no triangles,
girth 5 no triangles or 4 cycles, etc. Figure 5.6 shows chromatic roots for graphs of various
girth plotted against each other, including girth = 3 (i.e. ordinary random graphs). The
overall location seems little changed (in particular, the crossing points coincide), though for
the graphs with K = 3 and girth = 6 there are definitely features one usually sees in lattice
plots.

The more physically relevant situation where local statistics are maintained as network size
grows still requires exploration. This of course is exactly what lattices are supposed to model,
so a randomized lattice topology leaps to mind. Note that what is described here is not the
kind of bond- or site-diluted lattice that arises in percolation theory as much as a tiling of a
spatially extended vertex set with distinct small ER random graphs satisfying a given set of
parameters. For the same reason that we cannot undertake calculations on lattices of arbitrary
width, testing would probably have to be restricted to random layered graphs; similarly, the
kind of long jumps seen in small worlds are ruled out.

One thing that our recent lattice work described in section 5.2.1 makes possible is calculation
of chromatic zero set limiting curves for infinite length strips made up of repetitions of the
same random layer. While such a graph would not properly be random (more like a randomly
distorted strip lattice), it would be of interest to compare such curves to both the arc fits to
chromatic roots of multiple finite random graphs given in chapter 4 and the limiting curves
for regular lattices obtained by ourselves and other researchers; in particular, if the curves
consistently looked more like the arc fits it would mean that particular structural aspects of
regular lattices are responsible for their chromatic variability and quirks (gaps, horns, etc.),
while if the same kind of quirks and variability showed up as for the lattice curves we might
need to look more directly at the effect of small width itself on root location.

5.2.3 Other graph polynomials

Finally, we have a longer term project involving the extension of the basic formula underlying
the new algorithm to related polynomials and functions of interest. These of course include the
Potts partition function Z(G, q, T ) at greater than zero temperatures and the Tutte polynomial
T (G, x, y) at arbitrary x, y values, which are both discussed in the introduction.

The new algorithm in its bare form (sans optimizations) can be converted into a Potts partition
solution for both ferromagnetic and antiferromagnetic models at any temperature T simply by
changing (1 − δσiσj

) in (1.12) to (1 + (eβJ − 1)δσiσj
) as in (1.11), where T = (kBβ)−1, kB is
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the Boltzmann constant, and J = {−1, 1} depending on whether the interaction is repulsive
or attractive. For notational simplicity we let v = (eβJ − 1), giving us the representation

Z2(G, q, v) =

q∑

σ1=1

· · ·

q∑

σN=1

∏

(i,j)∈E

(1 + vδσiσj
) , (5.4)

where E is the edge-set of G. This can be solved using the same algebraic operators as the
chromatic polynomial representation, hence the same pattern matching rules. However, if v
is left unspecified the result is a bivariate polynomial in v and q, which means the running
time is substantially longer. We have done some testing of this version of the Potts partition
function in a Form implementation using both symbolic and numeric v. Specifying a value for
v beforehand gives us a faster running time, but it still never comes close to the speed of the
chromatic polynomial solver since there is practically no cancellation of terms resulting from
the fact that for Kronecker deltas

δσiσj
× (1− δσiσj

) = 0 . (5.5)

An important optimization in the current implementation of the chromatic polynomial solver
is based on pre-clearing terms that will eventually be cancelled out this way (see appendix B.1
for details).

The Tutte polynomial T (G, x, y) is by design a generalization of the chromatic polynomial
P (G, q) from one to two variables, so solutions for P will directly give us the values of T along
the x-axis:

T (G, x, 0) = (−1)N P (G, 1− x)

(x− 1)κ(G)
. (5.6)

where N (as usual) is the size of G and κ(G) counts the number of its connected components.
Outside of this domain we can make use of the fact that evaluations of the Tutte polynomial
along selected hyperbolas in the (x, y) plane give us the Potts partition function, so that

T (G, x, y) =
Z2(G, (x− 1)(y − 1), y − 1)

(x− 1)κ(G)(y − 1)N
. (5.7)

Note that we are using the simplified version of the general Potts partition function (5.4) here
i.e. y − 1 = v. Since the partition function is only defined in the limit for zero states or zero
temperature special handling would be required for Tutte values when x or y equals one. While
it would not be difficult to redefine our summation operators to evaluate this directly as e.g. a
Form program, there is no immediate computational advantage in doing so (for example,
coefficients of the delta terms become bivariate rational fractions, which is unhelpful), though
possible optimizations have yet to be investigated.

As well as these there are a number of related univariate graph theoretical polynomials such
as the Reliability polynomial [29] and the Flow polynomial [126]. The Jones polynomial from
topology as well is derivable from the generalized Potts partition function for a subclass of
knots (which are prime, reduced, and alternating; see [37]).

Of these we have made a preliminary foray into calculations of the Reliability polynomial. The
all terminal reliability R(G, p) gives the probability that there is a working pathway between
every pair of nodes in G when individual links have probability p of being valid and 1 − p of
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failing. While it is much studied by theorists [126] computational hardness limits its applica-
bility in communications engineering. The basic definition gives us the following expression in
terms of connected spanning subgraphs of G induced by subsets E ′ of the edge set E:

R(G, p) =

E′⊆E∑

κ(E′)=1

p|E
′|(1− p)|E−E′|. (5.8)

If κ(G) > 1 then R(G, p) is uniformly 0, otherwise it is greater than 0 for all p in the range
(0, 1]. Since R(G, p) satisfies a Deletion-Contraction formula of its own it is reducible to the
Tutte polynomial via:

R(G, p) = pN−1(1− p)M−N+1T

(
G, 1,

1

1− p

)
, (5.9)

where M is the number of edges |E|. Note that x = 1 here means that solution by simple
evaluation of (5.7) is problematic. However, if we now feed the changes of variables through
both (5.7) and (5.9) and bring the prefactors into the body of the expression given in (5.4)
then R can be solved by:

R(G, p) = S1 S2 · · ·SN−1

∏

(i,j)∈E

(1− p + p δi,j) , (5.10)

where (since we are no longer summing over q states) S is now simply a formal operator which
evaluates as

Sk 1→ 0 Sk δk,j1 → 1 Sk δk,j1δk,j2 → δj1,j2 etc. (5.11)

Similarly, since we are no longer assigning different colors to vertices δi,j is now an indicator
that an edge exists between vertices i and j. This means that the entire product in (5.10) is
technically equal to 1 from the start; deferring evaluation of the delta-terms until they reach the
appropriate operator is necessary to determine how much retention (p δi,j) or deletion (1− p)
of given edges affects the probability that the whole graph is still connected.

Expression (5.10) effectively traces its way edge-by-edge through all simple paths between ver-
tex 1 and all other vertices 2 through N , which is why the S operator is only applied N−1 times.
As with the basic chromatic polynomial algorithm (which traces through all q-colorings) an
important aspect of this is that not every distinct possibility is explicitly instantiated. Instead,
at the k-th iteration the coefficient of each delta-term contains information in polynomial form
about all partial solutions (respectively edge selections or vertex colorings) compatible with any
single route going forward i.e. computational branches are merged when possible. Similarly,
every delta-term is consistent with many possible forward routes, but branching does not occur
until necessary.

As such, (5.10) as implemented in Form achieves running times that are comparable to the
chromatic polynomial algorithm without any of the subsequent optimizations applied to it.
This is certainly nice but it will not get us a 4 × 4 × 4 cubic lattice. Since in (5.10) there is
nothing to give rise to significant cancellations along the lines of (5.5), we are currently looking
at alternative ways of achieving a similar speedup.
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5.3 General Prospects and Conclusions

The astute reader may have figured out by now that I do not plan on invoking any overarching
theory to connect the two scientific topics of this thesis. Commonly, when a thesis or mono-
graph deals at length with several seemingly unrelated phenomena, there is a single underlying
mathematical or formal principle involved e.g.

– fireflies, Josephson junctions, bridges falling down ⇒ synchronization;

– earthquakes, financial markets, baby names ⇒ scaling laws;

and so forth. In our case what is common to both topics is network structure, hence graph
theory and combinatorial optimization are needed to deal with them. This alone, however, does
not mean that any particular computational or analytic technique is sufficient to our purposes,
but rather the opposite.

The first of our topics was the inverse problem for leaky integrate-and-fire neuron networks. It
turns out that the base problem is in fact tractable i.e. it belongs to the computational class
P, problems that have a polynomial running time in terms of the size of the input. While we
have yet to apply the method to other models, I believe it is likely that the general problem of
abstract neuronal network reconstruction (that is, simple model neurons without uncertainty
displaying irregular but not pathological spiking) will similarly be in P. Going forward the
issue will not be one of NP-completeness, but instead reliability and practical applicability
when more realistic models and data are brought in. We should note that these are the same
issues that arise in development of first order numerical or statistical techniques, which are as
well (usually) unproblematic in algorithmic terms.

The second of our topics was evaluation of the antiferromagnetic Potts partition function in
the zero temperature limit a.k.a. the chromatic polynomial. In this case the base problem is
computationally hard, harder in fact than NP-complete, since it is a counting problem rather
than a simple decision problem. Here a fair amount of effort was put into algorithmic tweaking
to improve performance in terms of running time, since this is the primary bar to dealing
with realistic physical systems. While these improvements are a real advance on the state of
the art and do make significantly more systems accessible, almost all moderately large graphs
(e.g. more than 100 vertices) are still well out of reach, and are likely to remain so forever.
Hence we have no choice but to focus on still relatively small but feasible systems in hope that
results will be representative of the more general situation; such systems include the lattice
strips and random graphs featured in the articles.

Solutions to the main problems and the many subproblems involved required application of
a range of mathematical and optimization techniques. Individually many of these techniques
are quite basic and well-known, such as the algebra used in the reconstruction method for full
rank systems; other techniques were designed from scratch to deal with particular issues, such
as the vertex reordering used for the chromatic polynomial work (see appendix B.1).

As work in complex networks becomes more ambitious, this kind of wide band approach will
probably be necessary for at least those problems with a combinatorial or graph theoretic
aspect. Computational complexity theory does not give us a magic bullet for dealing with
NP-complete problems embedded in natural systems, but it does give us a road map for
navigating our way around them. This will no doubt become an essential aspect of future
research on large scale complex systems.
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Appendix A

Network Reconstruction: Additional Material

A.1 Overview of Network Reconstruction Procedures

In this appendix I will briefly discuss the general computational framework for the leaky
integrate-and-fire network reconstruction project, as well as some aspects of prior work on
the Kuramoto system. Listings for the main programs used in the LIF project are given below
in appendix A.2.

Reconstruction research involves the following programs:

1. Simulation code;

2. Reconstruction programs:

(a) Assemble raw simulation data into linear systems;

(b) Solver for determined and under-determined linear systems;

3. Medium and large scale testing:

(a) Network generation and weighting;

(b) Scripts for multiple parameterized test runs;

(c) Collect and analyze test run results.

1. Simulations: For both the preliminary Kuramoto network research and for the devel-
opment of the LIF neuron network reconstruction methods I began by writing simulation
programs in Matlab. The main purpose was to have data for testing the various recon-
struction methodologies readily available in a convenient format, since large scale testing and
analysis was also done in Matlab. As well, for the LIF reconstruction problem writing the
simulation code myself rather than depending on a publicly available system such as Brian

or Nest [42, 44] definitely gave me an insight into how to solve the LIF inverse problem.

Kuramoto oscillator simulation kuramoto.m: this is a simple implementation of a numerical
solution to the Kuramoto ODE system [64]. It takes the following parameters: the connectivity
matrix J , the oscillators’ natural frequencies ω, the external driving I (one value for each
oscillator), optional initialization values so that runs could be stopped and then restarted,
and several performance related parameters such as time-step, exit tolerance, and timeout. It

97
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returned values for the oscillators’ phases φ and derivatives φ̇ at the point of termination in
two vectors, as well as optional diagnostic data.

LIF neuron simulation spike.m: this is an event-based simulation with somewhat more in-
volved internal workings and interface than the kuramoto program described above. The
system parameters are in the “working model” units as described in section 1.2.5. Two are
mandatory: the connectivity matrix A, and the external driving Ĩ, in V/s, one value per neu-
ron. Optional parameters are given in (string,value) pairs; system relevant ones are the leakage
γ, the threshold voltage VT , the delay τ , as well as the reset voltage VR and refractory period r
(for the sake of simplicity we did not test non-zero values for these last two, though in principle
the LIF reconstruction methods can be easily modified to work with them). Different values
of γ, VR, etc. can be specified for each neuron, and a different τ for each connection if desired;
this has in fact been made use of in the preliminary testing of the noisy/variable reconstruction
methods mentioned in section 5.1.2. Initial values for neuron voltages and in fact the entire
state of an ongoing simulation run can as well be given as inputs, in order to allow stop/restart
runs as with the Kuramoto networks, and a large number of performance parameters (various
timeouts, tolerances, and such) are also available.

The spike.m simulator returns three data objects. The first is a structure which I will denote
as R containing the following information for every neuron at the point of termination: last
period length, last spike time, elapsed time from last spike, voltage level, number of spikes
so far, difference between last and previous period lengths (used in default exit condition),
and projected time until the next spike (if no further arrivals). The second object is the raw

spike-time data S, as a set of vectors of times (one vector per neuron; vector element S
(i)
k holds

the time of k-th spike emitted by neuron i). The last object is the simulator’s internal state
representation, which is needed if the run is to be restarted from the point of termination.

With respect to its internal workings spike is a classic event-based simulation using e.g. a heap-
based event queueing system and adaptive memory allocation (both are common optimizations
in this context [31]). For the general reader the most relevant aspect is likely the simultaneous
event handling, which can affect the network dynamics. To start, delays and refractory periods
are always invoked even when the value is zero. The order of simultaneous events in the queue
is: spike, arrivals by pulse strength (signed minimum to maximum), exit from refractory state.
This guarantees that, first, arrivals coinciding with spikes are always discarded, and second,
simultaneous arrivals always have the effect of a single arrival with a pulse strength equal to the
sum of the components. The latter in particular means that arrivals will only induce a spike
in response if the total strength is suprathreshold regardless of whether any of the individual
values are.

2a. Linear systems: Construction of linear systems from the Kuramoto simulation data is
a fairly simple process, so a “reconstruction program” separate from the general batch testing
programs was never written. Assuming we have N oscillators with natural frequency ω and
connectivity J , when kuramoto is run M times with driving Ii,m on the i-th oscillator during the
m-th run, we obtain values for φi,m and φ̇i,m (cf. (1.1) in section 1.2.3 of the introduction). If
each run achieves a phase-locked condition then φ̇i,m = Ωm, the network’s collective frequency
at the end of run m. Since in most testing the oscillators were given a uniform natural frequency
this value would also be the undriven collective frequency Ω = ωi, i = 1, 2, . . . , N . To solve for
the Laplacian matrix Ĵ (cf. (1.3)) we require matrices D and Θ, where Di,m is Ωm −Ω− Ii,m,
and Θj,m = φj,m −mini φi,m (i.e. we normalize Θ to obtain nonnegative values relative to the
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slowest oscillator on each run). This gives us the solvable system D = ĴΘ. In testing the
normalization etc. operations were generally done by the calling procedure on a per-vector
basis (i.e. for each kuramoto run), after which the collected vectors were concatenated into the
required matrices.

For neuron reconstruction things are a bit more complicated, most immediately by the fact
that there are two major and several minor/preliminary versions of the reconstruction program,
which assemble the data required for the linear systems in quite different ways. Chronologically
the first major version was what is denoted as the specialized method in chapter 2 (code available
in section A.2.1 as spk2net special), which uses the per-run data from the R structure. The
second major version was what is denoted as the general method (spk2net in section A.2.2).

The specialized method for LIF networks spk2net special: as mentioned in chapter 2, one of
the main advantages of using the specialized method when it is applicable is that it simplifies
the business of gathering whatever raw data is needed. Since in our simulations the period and
last spike times are included in the state information given in the R structure, spk2net special

does not in fact do any data gathering at all, but expects the necessary values in pre-packaged
form as M × N matrices (i.e. each row corresponds to a different run, each column to a
neuron). Some additional processing is required to turn these values into the desired elapsed
times between possible arrivals tj,m + τ and final spike times ti,m. The only aspects of this that
might be notable are a) arrivals for some neurons may need to be back-shifted by a period length
or two in order to fall into last interspike intervals for other neurons, and b) no assumptions
about the nature of the network with respect to phase-locking, inhibitory connections etc. are
made use of. In the production version, if after the requisite time shifts there are either missing
or multiple tj,m + τ representatives the program will either terminate or log possible errors in
the output (this is omitted from the code below for readability).

The general method for LIF networks spk2net: In chapter 2 it is mentioned that there are in
fact many alternative ways we could go about selecting acceptable interspike interval data and
assembling it into a (possibly overdetermined or underdetermined) linear system. Determining
which of these alternatives is definitively the best is a subject for further study, so here I will
limit myself to the current implementation using the minimum scan-length policy. The idea
is that for the incoming connectivity for each neuron i we only scan each data segment long
enough to get a representative arrival time from each prospective pre-synaptic neuron j; this
does not itself guarantee linear independence, but does guarantee non-zero columns in the
solution matrices if this is at all possible, which in practice seems to be all we need when the
segments are obtained under different driving conditions or the spiking is sufficiently irregular,
and there is not too much spike-induced spiking.

Another aspect of our data aggregation is that expressions derived from all selected intervals
of a particular segment are summed to create one row of the solution matrix. This again is
not necessary, but it is both more efficient computationally, and seems to very consistently
give us much better conditioned linear systems and hence better accuracy. This mode of
aggregation is most simply implemented when data from a single run S0 is pre-divided into
time-disjoint segments Sm, m = 1, 2, . . . , M ; an additional bonus is that the same code then
works for spike times obtained under M different drivings. At some point I would certainly like
to investigate whether some more global approach to sifting the intervals might reduce overall
data requirements, but so far I have not had the time.
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Code for the spk2net program is given below. Aside from issues mentioned above, one aspect of
the search implementation that the reader might remark upon is that the scans are conducted
in reverse, from the end to the beginning of the spike trains. The primary reason for this is
that detection of spike-induced spiking happens slightly earlier, saving some computational
effort. As well, when data is obtained under M different drivings, if the initial conditions are
the same for each run (e.g. in our testing, uniformly zero voltages), then selecting data from
the ends rather than beginnings helps insure linear independence in the solution matrices.

2b. System solver: After selection of data and construction of linear systems the Kuramoto
network reconstruction and all versions of the LIF neuron network reconstruction revert to
essentially the same procedure: if the linear system has N rows the Θ matrix is inverted
and multiplied into the relevant RHS, if not singular value decomposition with the L1-norm
optimization is used. In our suite of programs the SVD with optimization is handled by
sparsolve, which in turn calls barfit to do the L1-norm minimization; code for both is given
in appendix A.2 as well. The one major difference with respect to the network type is that
Kuramoto networks have continuous interactions so only one Θ matrix is needed to recover the
incoming connectivity for all nodes, while for the LIF neuron networks a separate Θ(i) needs
to be constructed for each post-synaptic neuron i (sparsolve is structured so as to work for
either situation).

The basic idea for how the optimization is applied is given in both chapter 2 and [113], so I will
not reiterate it here. It is important to note that at this point using M < N driving conditions
or data segments achieves no computational savings, since SVD will result in an N×N system
regardless of the size of the original Θ matrices and the L1-norm minimization is an extra step
that must be executed for every set of incoming connections. Furthermore, while the barfit

implementation is much faster than generic approaches to L1-norm minimization available in
Matlab or Mathematica, its running time depends (nonlinearly) not only on N and M but
also the connection density P , and is as well somewhat variable across instances where all these
parameters are fixed. Since this has not been a priority I do not have an exact formula worked
out (though I would like to eventually), but based on the runs for homogeneous inhibitory LIF
networks the average running time is O(f(M/N)g(P )N2), where both f and g are roughly
decreasing (f is not monotonic, while g seems to level out for P ≥ 0.5).

3a. Network generation: The networks used for debugging, development testing, and
large scale testing were almost always strongly connected random directed graphs generated
in Matlab. Appendix C.1 discusses the graph generation and manipulation programs (which
were also used for the other line of research) in more detail. As mentioned in section 5.1.1
above, for large scale testing the weighting was done differently for the Kuramoto and LIF
networks, with Kuramoto connection weights being fixed and normalized (so that every node
had the same total weight of incoming connections), while the LIF connections weights were
randomized according to a Gaussian distribution, and for some banks of runs normalized by
total incoming weights, while for other banks only adjusted to keep them within preset bounds
on minimum and maximum magnitude.

3b. Test runs: Large scale runs were dealt out onto our institute’s clusters using com-
piled Matlab controller scripts that go through the entire cycle of generating and weighting
networks, generating random drivings, running simulations and collecting data, running the
reconstruction programs for the (usually multiple) desired M values, and then collecting the
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results into .mat files for further analysis. During the course of work on the Kuramoto net-
works the protocol went through some adjustments, until by the time we started testing the
LIF reconstruction methods it had settled into the following:

− Fixed system parameters such as delay time τ and threshold VT were held in a .mat file
that was distributed along with the compiled script. These parameters were always given
in units applicable to the original model (e.g. conductance in Farads, resistance in Ohms
etc.; see section 1.2.5) and in the script translated into terms of the working model (γ,

Ĩ, etc.)

− Varied parameters were given in the command line. This always included N and the
relevant connectivity measure (density P , number of connections |E|, or average degree
K), as well as any parameter of interest for a particular bank of runs, such as the
connection weight factor w or the desired driving spread ∆I.

− We usually had a target of 20 trials for each parameter set, which allowed us to gather
statistics on the reliability of reconstruction etc. Due to time constraints this target was
relaxed for larger N . For some runs these trials were collected by the compiled script,
for others they were done separately and the aggregation was done in the next stage.

3c. Data analysis: On completion the compiled Matlab scripts would deposit final results
in .mat files. Saved data would not include simulation data or reconstructed networks, since
storage requirements would be excessive given the large number of runs done. In all cases
sufficient setup data (such as target networks in sparse format and drivings used) would be
kept in case we wanted to rerun simulations from scratch, but so far we have not needed to
do this since no problems with the implementation of the method itself (i.e. requiring further
debugging) have arisen. Saved data included various quality of reconstruction metrics, such
as Qα as described in the article, and also mean and maximum absolute and relative errors
(according to the standard definition), and the correlation coefficient of values in the original
and reconstructed matrices. Some simulation statistics were saved (though not the entire
contents of each generated R structure) as well as extensive running time and reconstruction
diagnostic information.

Before we go on I will briefly note here that differing notations are used for directed networks
in different disciplines. While this is largely a cosmetic issue easily resolved by taking matrix
transposes at appropriate times, there is the potential for confusion so it should be addressed.
In the general usage among graph theorists and computer scientists, as well as implementations
in general purpose mathematics software such as Mathematica, a directed edge vi 7→ vj is
indicated by a non-zero {i, j} element in the graph’s adjacency matrix A; and when directed
graphs are used to model things such as traffic, flow, or causal networks, direction follows the
flow or causality (e.g. Ai,j > 0 and Aj,i = 0 means that there is a one-way flow from location i
to location j). Basically, outputs are counted along rows and inputs along columns.

Among the papers in the references above most of those that involve neuron and oscillator
networks reverse this order, so that Ai,j is the strength of the vj 7→ vi connection. Not
all: at least one physics paper [90] uses the graph theory / Mathematica ordering, and
a number of others avoid direct reference to the indexed connectivity matrix entirely. As a
graph theorist I myself prefer the graph theoretical convention, and this is how the graph
generation programs are implemented, as well as the LIF simulator and various versions of the
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LIF neuron reconstruction program from the development, debugging, and large scale testing
phases. However, in the description from chapter 2 as well as in the simplified reconstruction
code given below the reverse ordering vj 7→ vi more prevalent in the neuroscience community
is adopted.

A.2 Selected Code

A.2.1 Specialized (fast) reconstruction method for LIF networks

(Matlab code)

function A = spk2net_special(T, L, II, gamma, tau, vT)

%

% Reconstruction of synchronized N-node inhibitory LIF network.

% T : MxN, periods (when stable); T(m,j) => run m, neuron j

% L : MxN, last spike times of each node for each run

% II : MxN, input currents to each node for each run

% gamma : leakage

% tau : delay time

% vT : threshold potential

%

% Returns reconstructed network in matrix A.

% Note: this code has been simplified from the test version, which contains

% error checking, diagnostics, timing, and various Matlab optimizations.

[M, N] = size(T);

A = zeros(N, N);

B = vT - II / gamma .* (1 - exp(-gamma * T));

% Arrival times are taken relative to node i’s last spike from each run.

% Note: if j last spiked after i did, we need to use its 2nd (or, depending

% on delay times, 3rd) last spike time. Since system is stable this can be

% obtained by subtracting the affected nodes’ periods.

for i = 1:N

tmpD = L(:,i)*ones(1,N) - (L + tau);

ij = tmpD < 0;

tmpD(ij) = tmpD(ij) + ceil(abs(tmpD(ij))./T(ij)) .* T(ij);

Theta = exp(-gamma * tmpD);

if M == N

A(i,:) = (inv(Theta) * B(:,i))’;

else

A(i,:) = sparsolve(Theta, B(:,i))’;

end

end

return;



A.2. SELECTED CODE 103

A.2.2 General reconstruction method for LIF networks

(Matlab code)

function A = spk2net(S, II, gamma, tau, vT)

%

% General reconstruction method (heterogeneous connections)

% S : MxN cell array, S{m,j} contains spiketimes for node j during run m

% II : MxN, input currents for each run for each node

% Remaining inputs (gamma, tau, vT) have same meaning as for specialized

% spk2net reconstruction program. Returns reconstructed network in

% matrix A.

[M N] = size(S);

Theta = repmat({zeros(M, N)}, 1, N); % cell array of system matrices

B = zeros(M, N); % RHS’s of the systems

lenS = cellfun(’length’, S); % number of spikes of all trains

% Basic procedure for pulling out data used for reconstruction: scan from end

% for acceptable intervals. A particular acceptable interval is used if it

% has arrivals from nodes that we still need information for; otherwise it is

% discarded. Scan continues until we have data from all possible connections,

% or we run out of spikes. In the latter case entries for the some connections

% are left at 0.

for m = 1:M % for every run

for i = 1:N % for every receiving node

idx = lenS(m,:); % indices into spike times for sending nodes

thetami_tot = zeros(1, N);

bmi_tot = 0;

for k = length(S{m,i}):-1:2 % for every interspike interval

ti = S{m,i}(k); t0 = S{m,i}(k-1); % current interval is [t0,ti]

thetamik = zeros(1, N);

failed = false; needed = false;

for j = 1:N % for every possible sending node

while (idx(j) > 0) && (S{m,j}(idx(j))+tau > (ti + eps*ti))

idx(j) = idx(j) - 1;

end

if idx(j) == 0

continue; % end of data reached for this connection

elseif S{m,j}(idx(j))+tau >= (ti - eps*ti)

failed = true; % unacceptable interval, don’t use

break;

end

(continued on next page)
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(continued from previous page)

while (idx(j) > 0) && (S{m,j}(idx(j))+tau > (t0 + eps*t0))

if thetami_tot(j) == 0

needed = true;

end

thetamik(j) = thetamik(j) + ...

exp(-gamma * (ti - (S{m,j}(idx(j)) + tau)));

idx(j) = idx(j) - 1;

end

end % end loop over potential neighbours j = 1:N

if needed && ~failed

bmi_tot = bmi_tot + (vT - (II(m,i)/gamma) * ...

(1-exp(-gamma*(ti - t0))));

thetami_tot = thetami_tot + thetamik;

if all(thetami_tot ~= 0)

break; % have data from every possible

end % incoming connection, we’re done

end

end % end loop over intervals k = length(S{m,i}):-1:2

B(m,i) = bmi_tot;

Theta{i}(m,:) = thetami_tot;

end % end loop over receiving nodes i = 1:N

end % end loop over runs m = 1:M

% Now solve the systems ...

for i = 1:N

if M == N

A(i,:) = (inv(Theta{i}) * B(:,i))’;

else

A(i,:) = sparsolve(Theta{i}, B(:,i))’;

end

end

return;
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A.2.3 Sparse system solver

(Matlab code)

function x = sparsolve(A, b, s_tol)

% x = sparsolve(A, b, s_tol)

%

% Solve the underdetermined system A*x = b for x, where A is M by N,

% B is M by K, and x is N by K, so as to hopefully maximize the number

% of 0 and near-0 elements in x. This is done using singular value

% decomposition and the barfit L-1 norm minimizer. Will also work

% if M >= N (system is exact or overdetermined); in this case method

% reduces to using Matlab’s pinv to obtain the usual solution of Ax = b.

%

% Optional 3rd argument s_tol sets tolerance for singular values. Default

% is value used by Matlab for the pinv function.

[m n] = size(A);

[m2 k] = size(b);

if m ~= m2

error(’Matrices A and b must have compatible dimensions.’);

end

[U S V] = svd(A);

if nargin < 3

s_tol = max(n,m) * S(1,1) * eps;

end

St = S’;

ii = find(St);

jj = St(ii) < s_tol;

St(ii(jj)) = 0;

St(ii(~jj)) = 1./St(ii(~jj));

X1 = V * St * U’* b; % = least squares (pinv) solution to system

if m >= n % least squares = exact or closest solution

x = X1;

else % o.w. V*(y + St*U’*b) are also solutions.

x = zeros(size(X1));

for i = 1:k % want V*y = -V*St*U’*b in as many elements as possible.

y = barfit(V(:,(m+1):n), -X1(:,i));

x(:,i) = V(:,(m+1):n)*y + X1(:,i);

end

end

return;
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A.2.4 Barrowdale-Roberts L1-norm minimizer

(Matlab code)

function x = barfit(A, b)

% x = barfit (A, b)

%

% Finds x which minimizes |Ax - b|_1 (ie. 1-norm of the residuals) using

% the Barrowdale/Roberts algorithm (Comm.of the ACM June 1974)

% Last row and col of tableau store indices so we can extract sol’n when done

% m = number of equations, n = number of unknowns (m >= n)

[m n] = size(A);

AA = [A b n+[1:m]’; [zeros(1,n); [1:n]] zeros(2,2)];

tmp = find(b<0);

AA(tmp,:) = -AA(tmp,:); % normalize so that all vals in b col are +ve

AA(m+1,1:n) = sum(AA(1:m,1:n)); % marginal costs

stage = 1; % If A is not full rank useless columns are swapped to the

start = 1; % front and start variable is incremented

indep = 0; % number of independent basis vectors

x = zeros(n,1); % solution vector

while stage < 3

% determine entering vector. Stage 1: if last row element is > n col is

% slack which has already been swapped out of the basis. Of available

% cols choose the one with the largest marginal cost (abs because cost

% goes both ways when you are trying to minimize L1 norm). In stage 2 we

% are no longer swapping vectors into the basis etc, so we don’t need

% to pre-filter this way.

if stage == 1

t1 = find(abs(AA(m+2,start:n)) <= n);

[mx id] = max(abs(AA(m+1,t1)));

p_in = t1(id) + start - 1;

else % stage == 2

[mx xid] = max(AA(m+1,start:n));

[mn nid] = min(AA(m+1,start:n));

if start > n

stage = 3;

break;

elseif mx >= -mn - 2 && mx > eps

p_in = xid + start - 1;

elseif -mn - 2 > eps

p_in = nid + start - 1;

else % no decent marginal costs left...

stage = 3;

break;

end

end

(continued on next page)
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(continued from previous page)

if AA(m+1,p_in) < 0

AA(:,p_in) = -AA(:,p_in);

if stage == 2

AA(m+1,p_in) = AA(m+1,p_in) - 2;

% Note: this -2 fiddling is how B&R avoid the necessity of

% having 2 constraints for every residual...

end

end

% determine leaving vector

t1 = find(AA(indep+1:m,p_in) > eps) + indep;

chk = AA(t1,n+1) ./ AA(t1, p_in); % ratio of bound to potential pivots

while ~isempty(chk)

[mn id] = min(chk);

if mn == 0

% If there are 0’s in b col then there is possibility of cycling

% because of degeneracy; idea here is to use magnitude of AA vals as

% tie breakers to avoid that (seems to work well in practise, but I

% have no rigorous proof etc). When mn is not 0 we can depend on

% numerical errors to perturb the system enough to nudge it out of

% cyclic behaviour (don’t freak, this is what the pros do).

id2 = find(chk == 0);

[mn id3] = max(abs(AA(t1(id2),p_in)));

id = id2(id3);

end

p_out = t1(id);

pivot = AA(p_out, p_in);

if AA(m+1,p_in) - 2*pivot <= eps;

break % values close enough to pivot, so do it...

else

% o.w. we reduce marginal costs across the board and check another

% pivot. This while loop should only do O(m) iterations the first

% couple of times, after which the marg.costs should be in spitting

% distance of the A matrix values...

AA(m+1,start:n+1) = AA(m+1,start:n+1) - 2.*AA(p_out,start:n+1);

AA(p_out,start:n+2) = -AA(p_out,start:n+2);

chk(id) = [];

t1(id) = [];

end

end

(continued on next page)
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(continued from previous page)

if isempty(chk) % most likely because nothing was found in the 1st

if stage == 1 % place. column is useless, but we still have others

% to try, so swap it out of the working space

AA(:, [start, p_in]) = AA(:, [p_in, start]);

start = start + 1;

if indep + start > n

stage = 2;

end

continue;

else % stage = 2

disp(’CALCULATION TERMINATED PREMATURELY DUE TO ROUNDING ERRORS.’);

x = [];

return;

end

end

% pivot on p_in, p_out

t_out = AA(p_out,start:n+1) ./ pivot;

t_out(p_in - start + 1) = 1 + 1/pivot;

t_in = AA(1:m+1, p_in);

t_in(p_out) = pivot - 1;

AA(1:m+1,start:n+1) = AA(1:m+1,start:n+1) - t_in * t_out;

% this should have the effect of setting

% pivot -> 1/pivot,

% a in pivot row -> a/pivot

% a in pivot col -> -a/pivot

% a_i,j = a_i,j - a_i,pivrow * a_pivcol,j / pivot

t = AA(p_out, n+2); % swap index vals in last row,col of pivot

AA(p_out, n+2) = AA(m+2, p_in);

AA(m+2, p_in) = t;

if stage == 1 % move new basis vector to top of the tableau

indep = indep + 1;

AA([indep p_out],start:n+2) = AA([p_out indep],start:n+2);

if indep + start > n

stage = 2;

end

end

end

% extract solution from tableau (in indep rows of b col, not necessarily in

% any kind of order...)

t = AA(1:indep,n+2);

x(abs(t)) = AA(1:indep,n+1) .* sign(t);

return;



Appendix B

Chromatic Polynomials: Additional Material

B.1 Overview of Chromatic Polynomial Procedures

I will outline here the general procedure used for calculating the chromatic polynomials involved
in the random graph work as well as some of the original and continuing lattice work that
I myself am conducting. Note: the computational framework used by Niels Kurz for the
crystal lattice and limiting curve work is quite distinct, incorporating among other things,
extensive Mathematica code (for generating Form-compatible crystal specifications, doing
calculations on Form output, etc.); see [65].

For general graph calculations the procedure is multi-stage:

1. Graph generation or specification (usually in Matlab);

2. (Optional) calculate an optimized vertex ordering and (if necessary) export reordered
graph to text format;

3. Generate Form code for given graph;

4. Run Form with generated code to calculate the chromatic polynomial;

5. Calculate roots of polynomial obtained using MPSolve numerical root finder;

6. Import root files (text) back into Matlab for further analysis.

1. Graph generation: Since this is a common feature to both my lines of research technical
details are dealt with separately in appendix C.1. For the random graph research banks of test
graphs for each parameter set were generated in groups using a common Matlab script.

2. Vertex reordering: For a general discussion of graph-width metrics and vertex reorderings
see appendix C.5.2 below. Currently for serious calculations I use what I call a minimum
termwidth ordering, which is specially-designed to address computational issues for our worst
case graphs.

The termwidth metric: the idea is that we want to reduce the number of delta-terms within
the intermediate expressions as much as possible, since the new algorithm spends most of its
time searching through them and sorting them. Due to the sorting as well as the possibility of
running out of storage space our focus is on reducing the maximum size the expression reaches

109
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over an entire run. In the i-th iteration the number of delta-terms can be affected by several
things; what are most under our control via ordering are ni, the number of forward neighbours
of already processed vertices v1, v2, . . . , vi, and mi, the number of edges between these forward
neighbours. While of course we want ni as low as possible, for a given ni we would also like mi

as high as possible in order to take advantage of cancellation as given in (5.5) of section 5.2.3;
ideally, the ordering we obtain would in fact minimize the number of independent sets within
this set of forward neighbours. Since counting independent sets is a #P-complete problem
in its own right, the metric we use is an approximation based on the assumption that the
distribution of edges is uniformly random:

tmwi = (ni + 1) +

ni∑

k=2

(
ni

k

)
p(k

2
) where p = 1−

2mi

ni(ni − 1)
. (B.1)

The (ni + 1) term here stands for the minimum possible number of delta-terms (one for each
forward neighbour as well one delta-free term). For a given N vertex graph G and permuta-
tion φ = (j1, j2, . . . , jN), the termwidth can now be defined for the vertex reordering φ(G) as
max1≤i≤N tmwi(φ(G)).

Close-to-optimal termwidth orderings: Finding a vertex ordering that minimizes termwidth
is an NP-complete problem (as is, in fact, finding an ordering that simply minimizes the
maximum ni value over all iterations). To find decent orderings I have adopted a hybrid
approach that uses branch-and-bound search with a timeout parameter along with multiple
restarts from random initial orderings. Branch-and-bound search will always find an optimal
solution if given arbitrary time, though it is commonly the case that such an optimal solution
is found early in the search and that the bulk of the running time is spent merely confirming
this. Since we are not concerned with provably optimal solutions here but are happy with any
ordering that is significantly better than the alternatives we can set a timeout value t that kicks
in if the period between finding two consecutive solutions that improve the bound exceeds t.
Randomized restarts prevent the search from being adversely affected by a bad initial ordering.

For graphs in the 20 vertex range optimal solutions are always found in a single pass with a
timeout of t ≥ 10 ms CPU time; for graphs in the 30 vertex range doing 5 or so restarts with
a timeout of 10 to 20 seconds gives good results, but for a set of 20 or so graphs this should be
done over lunch or overnight since the timeouts do have a tendency to add up. In my own setup
the entire operation (multiple randomized searches) is implemented in the Matlab program
mintermw. See figure B.1 for example of a minimum termwidth ordering applied to a small
graph.

3. Code generation: This is done using the standalone program mkfrm. It accepts a text
file in one of various generic graph formats (adjacency list, edge list, or adjacency matrix),
converts to an internal graph format, and then outputs Form code to calculate the chromatic
polynomial (examples of desired input formats are included in figure B.1). Since mkfrm is
coded in C and does mostly text-processing a program listing would be of little interest so
is not included here. I will discuss tweaks and optimizations of the Form code itself below;
first we will briefly look at the second major optimization, which is the instituting of forward

checks to remove terms that will eventually cancel by way of (5.5) in section 5.2.3. Aside from
simplifying the process of making Form code for specific graphs, the calculation of the forward
check sets and implementation of the checks is the main “value-added” contribution of mkfrm.



B.1. OVERVIEW OF CHROMATIC POLYNOMIAL PROCEDURES 111

The implementation of the forward checking is based on some properties of Kronecker deltas
and the way they are made use of by the new algorithm. The first of these is given in (5.5),
namely that since all positive powers of δx are equal then δx(1− δx) = 0. At the beginning of
the i-th iteration of any calculation the current expression can be written as

P (G, q) =

q∑

σi=1

· · ·

q∑

σN=1

Pi

∏

{k,j}∈E,k≥i

(1− δσk,σj
) , (B.2)

where Pi is the result of previous application of the algebraic operators, so is made up of
complex delta terms having coefficients which are polynomials in q. Note that if any of these
terms contains a δx that is equivalent to δσk,σj

for some {k, j} in the product
∏

then that
term can be cancelled immediately. However, for reasons of efficiency Pi is the only part of the
above expression that can be resident in memory, and if k ≫ i then the redundant term will
survive and maybe even proliferate for many iterations before it and its descendants are finally
removed when the particular (1− δσk ,σj

) that cancels it is brought into the expression.

An additional complicating but ultimately useful aspect of this is that there are multiple ways
that the product of Kronecker deltas can be written that are equivalent under the algebraic
operators:

∑

σk

δσk ,σj1
δσk ,σj2

· · · δσk,σjr
≡

∑

σk

δσk ,σj1
δσj1

,σj2
· · · δσjr−1

,σjr
→ δσj1

,σj2
· · · δσjr−1

,σjr
. (B.3)

In the implementation we therefore adopt a normalized higher arity form of the Kronecker
delta which collects all sigmas that can be chained as above into a single factor of the term.
This augmented delta works as follows:

δσi1
,σi2

,...,σk,...,σis−1
,σis
× δσj1

,σj2
,...,σk,...,σjr−1

,σjr
= δσi1

,...,σj1
,...,σk,...,σis ,...,σjr

(B.4)

i.e. we can merge the product of deltas that contain any common index into a single delta,

δσi1
,σi2

,...,σk,...,σij
,...,σk,...,σis−1

,σis
= δσi1

,σi2
,...,σk,...,σij

,...,σis−1
,σis

(B.5)

i.e. any redundant indices fall out, and

δσi1
,σi2

,...,σk,...,σj ,...,σis−1
,σis
×

(
1− δσk ,σj

)
= 0 . (B.6)

i.e. any pair of indices matching an edge in the remainder of the graph allows us to remove the
term.

Hence the forward check step consists of scanning these augmented deltas for index pairs that
belong to edges in the graph. While it results in much simpler looking code if all edges in
the graph are scanned every time, the actually relevant edges are necessarily between forward
neighbours during a particular iteration, and a great deal of work is saved if the checks are
restricted to these. The original motivation for implementing a code generator as opposed to,
say, writing a single generic Form program that read in graph specifications itself, was that
this allowed a distinct set of scans to be set up each time.

Additionally, Form has a quite useful feature that multiple pair-wise scans of an index set
can be set up simultaneously, as long as both halves of the target index set are monotonically
increasing. Hence an additional task for mkfrm is to partition the edges of the forward neighbour
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sets into as small a number as possible of conforming target index sets (in the second Form

program in section B.2 these target sets are explicitly given as the sets k1a1, k1b1, k2a1, and
so on). While different methods of varying complexity have been tried for this, a simple greedy
selection process has given results that are as good as any other method, so that is what is
currently used.

4. The Form code: As can be seen from the programs given in section B.2, the layout and
ordering of operations in the generated code have evolved somewhat over time (all variations
given here, and some others, are available from mkfrm with different command line options).

The first program shown here gives the new algorithm as described in chapter 3 in the most
direct way possible in Form. The reader is referred to [120, 121] for more information on
the notation etc. The second program is essentially the first with the two main optimizations
implemented: the vertex reordering (visible in the program only in the L F1 =... statements
giving the forward connections of every vertex), and the forward checking for cancellation
described above (as multiple set declarations and a one-line subloop in the main body of the
program).

Visually the third program (not shown in its completeness) seems to be radically different from
the other two; however, the change from the first to the second is actually more substantial.
The modifications to the third program would not noticeably affect performance except for
worst case graphs e.g. more than 30 vertices, not dense but not extremely sparse, and having a
relatively high width by any metric (treewidth, bandwidth, or our own termwidth); they have
been implemented largely to help us squeeze by performance bottlenecks posed by memory and
disk constraints as well as certain limits arbitrarily put in place by Form.

Loop unrolling and explicit invocation of check sets: since in Form loops are implemented
textually in the preprocessing stage our own unrolling of the loop does not actually constitute
a real change. The reason for doing this is that Form has an internal limit on the number of
variables that can be declared across an entire program, which prevents us from declaring an
arbitrarily large number of forward check sets at the head of the file. This limit is high enough
that it did not cause problems for random graph runs (N ≤ 36), but it did come into play with
the 4× 4× 4 lattices with two or three periodic boundary conditions.

Introducing the (1 − δσi,σj
) factors for each {i, j} separately: that is, instead of bringing in

all factors involving σi simultaneously in the i-th iteration after pre-multiplying them to-
gether. The idea is that when all factors for i are brought in at once the current expression
Pi temporarily swells to many times its previous size (or subsequent size, after collection and
pre-cancellation of terms). When memory resources are sufficiently large this fluctuation is
not a serious problem, and can even be dealt with more efficiently sometimes by doing an
additional forward check on each subproduct before it is incorporated into the main expres-
sion. However, for graphs at the margin of feasibility it really does help that a) the tem-
porary size of the expression never increases to more than twice its previous/subsequent
size, and b) a forward check can be instituted each time to keep the ongoing size as low
as possible.

The remaining changes are put in place to take advantage of the more predictable nature of the
result when only one factor at a time is multiplied in. For example, terms that are the same
as in the previous iteration since they come from 1× Pi instead of −δσi,σj

× Pi do not need to
be checked at all, nor do terms already containing an index for j. Similarly, when the term is
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new/modified it saves a bit of time to first check for neighbours of j and only afterwards do
the delta merges and general forward checking.

5. Chromatic root sets: Upon completion of the Form calculations roots for each poly-
nomial are determined using the unisolve root-finder which is part of the MPSolve pack-
age [13]. Among the advantages of MPSolve is that like Form it natively works with arbi-
trarily large integers. Coefficients for chromatic polynomials of large sparse graphs such as 3D
diagonal slices could have so many digits they ran out Form’s line length limit of 256 chars
(long lines are wrapped, so no information is lost, but catching and fixing this when it occurred
was indeed an annoyance). For the random graph runs the unisolve performance parameters
were set to give results to 40 decimal places of precision (since complex roots could be very
close to the real line at times), and output was saved in Gnuplot compatible two-column text
files.

It should be noted that for almost calculations the Form statistical output is also saved. The
running time data and maximum storage requirements for the random graph research was used
extensively in the development of the major optimizations, and in particular determining the
reordering metrics which were best for different density graphs.

6. Data analysis: Once the roots are calculated they are reimported into Matlab for further
analysis. For the random graphs root data was processed in several stages: i) automated reading
of root files in batches corresponding to parameter sets, saved into primary data structures as
is and also divided among integer, real non-integer, and complex roots; ii) extraction of unique
complex roots in upper half-plane from the primary structure, which are saved after an initial
sorting by distance from the real-axis into a secondary data structure along with some basic
statistics such as mean real value etc.; iii) more in-depth analysis of the root data contained in
the secondary structure, including arc fitting and extremal value calculations.

B.2 Selected Code

As mentioned above in section B.1, no single Form program is used, instead programs for
specific graphs are automatically generated by mkfrm. Here is code for a sample graph using
3 different output options (bare, with basic optimizations, and heavily optimized). Since the
code is machine generated it does not contain comments, so I will here give a brief description of
what is happening in it. For detailed information on specific keywords, program initialization
and data types, and other language constructs see Form documentation [120, 121].

To start, figure B.1 below shows sample input used to generate the programs in mkfrm; the first
is a 10 vertex random graph as originally created in Matlab (used for the bare program), and
the second is the same graph subject to a minimal termwidth reordering (used for the other
two programs).

In all programs, ki where i is either a constant or a form preprocessor variable e.g. ‘i’ is
an index to a vertex of the graph, and d(ki,kj,...) is a generalized higher-arity delta term
δσi,σj ,... as described in the previous appendix, part 3. The expression F holds the eventual
result. To enhance efficiency, the polynomial coefficients of each delta term are contained in
an accumulator acc(), and operations involving the polynomial variable q are done in terms
of the program variable [q-1] = q − 1.
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Section B.2.1. The bare program begins by setting up expressions Fi which are equal to∏
i(1− δσi,σj

) for individual i values. Each such expression starts as the product of e(ki,kj)
factors (one for each edge in the graph); before actual processing (1 - d) factors are substi-
tuted for the e factors and expanded, with the products of 2-ary delta terms then collected
into generalized deltas. The .sort statement has the effect of sorting all unhidden expressions
(by term), but it is also necessary to invoke it whenever on wants to move on to a new block of
code. After this is done the Form Hide statement is used to protect the Fi expressions from
further modification.

In the main loop, the statement Muliply F‘i’ has the effect of multiplying the i-th product
of delta terms into the current expression. Upon doing so, products of delta terms that share
an index are merged (as described in the previous appendix part 3), indices are sorted via
Symmetrize, and redundant indices are removed.

Match and replace rules are implemented via id,ifmatch->1 statements; the first of these
corresponds to equation (6) in chapter 3 and the second to (7). The ifmatch->1 part of the
rule sends subsequent processing to the line Label 1; i.e. skips the next match-and-replace
(this is one way to do “if-then-else” in Form). The last match and replace, corresponding to
(5) in chapter 3, is implemented by simply multiplying [q-1]+1 = q into any terms that did
not match the previously invoked rules.

After the loop is finished the F expression consists of a single accumulator containing the result
polynomial. The final operations are mostly cosmetic, including rewriting the expression in
terms of q rather than (q − 1) and specifying the order that terms (of the polynomial) are
displayed.

Section B.2.2. The program with basic optimizations works in exactly the same way, except
we are now using the second graph in figure B.1 (optimized vertex ordering) and forward
checking is in place. The addition of forward checking means that the first part of the code
looks radically different, but that is all merely putting definitions in place to use during the
main program loop.

The first set of definitions are C-style #define preprocessor instructions at the head of the
code to set the number of forward checks required during each iteration (recall in the previous
appendix part 3 that the forward checks have to be partitioned so as to be compatible with
Form’s fast vectorized multiple index search). This number is given as text (e.g. "1" etc.)
since the preprocessor is a text processor, so will not take numerical or variable values at the
onset (it does the text-to-numerical and -variable conversion as it proceeds).

The second, longer set of definitions are the forward check sets themselves. The sets are indices
corresponding to vertices in the graph. Each set comes in a pair kiaj and kibj for the j-th
check during the i-th iteration, with a and b corresponding to endpoints of the edge involved.

Checking is invoked within a subloop after the Symmetrize statement in the main loop. If
the reader requires further explanation of the mechanism involved in this one line of code it is
really recommended that they consult the Form documentation [121].

Section B.2.3. Here we show a section of the highly optimized production code corresponding
to one iteration of the previous program. Note: the term “production code” may not be that
well known outside of programming circles, but it refers to finished code that is ready for final
application i.e. not still in the development or debugging stage. I do not know of any word
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1: 4, 5, 6, 8, 10;

2: 3, 8, 10;

3: 2, 5, 6, 9, 10;

4: 1, 5, 7, 10;

5: 1, 3, 4, 6, 7, 8, 10;

6: 1, 3, 5, 7, 8, 9;

7: 4, 5, 6, 8, 10;

8: 1, 2, 5, 6, 7, 10;

9: 3, 6;

10: 1, 2, 3, 4, 5, 7, 8;

1: 3, 4;

2: 3, 6, 9;

3: 1, 2, 4, 7, 9;

4: 1, 3, 5, 6, 7, 8;

5: 4, 6, 7, 9, 10;

6: 2, 4, 5, 7, 8, 9;

7: 3, 4, 5, 6, 8, 9, 10;

8: 4, 6, 7, 9, 10;

9: 2, 3, 5, 6, 7, 8, 10;

10: 5, 7, 8, 9;

Figure B.1: Graph used for sample Form programs. Left: Original random graph. Right:
Same graph, subject to mintermw vertex reordering. Below each figure is adjacency list for the
graph with respective orderings (mkfrm input).

that means the same thing with any wider currency, so I will use it here to denote the version
of the program that would be used for any serious calculations.

As explained in part 4 of the previous appendix, the changes here involve unrolling the main
loop, unpacking the

∏
i expressions by multiplying in each (1 − δσi,σj

) factor individually,
instantiating as constants or indices many previously defined variables and sets, and threading
the application of the forward checks to avoid checking delta terms we know beforehand do not
contain any matches. The match-and-replace rules are invoked as in the previous versions of
the program, though only after all relevant (1− δσi,σj

) factors for each i have been multiplied
in.

The evaluation of the section is conditional on preprocessor variables ‘startv’ and ‘endv’

since one aspect of the production code is that it supports a limited version of call-with-current-

continuation i.e. the ability to temporarily stop the process and then restart it at a different
time and even location using previously saved state information. In this case the stopping
points are fixed at beginnings of

∏
i evaluations and have to be specified by the user when

beginning a run.

Otherwise, this version of the code has the same basic structure as the others, though of course
predefinitions of e.g. forward check sets and subsidiary expressions Fi for each

∏
i are now gone

since they are not needed.
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B.2.1 Form code without optimizations

#-

CFunctions acc;

Tensors e,d;

Symbols x,q,[q-1];

Indices k,k0,...,k10;

Off Statistics;

Format nospaces;

Format 80;

L F1 = e(k1,k4)*e(k1,k5)*e(k1,k6)*e(k1,k8)*e(k1,k10);

L F2 = e(k2,k3)*e(k2,k8)*e(k2,k10);

L F3 = e(k3,k5)*e(k3,k6)*e(k3,k9)*e(k3,k10);

L F4 = e(k4,k5)*e(k4,k7)*e(k4,k10);

L F5 = e(k5,k6)*e(k5,k7)*e(k5,k8)*e(k5,k10);

L F6 = e(k6,k7)*e(k6,k8)*e(k6,k9);

L F7 = e(k7,k8)*e(k7,k10);

L F8 = e(k8,k10);

L F9 = 1;

L F10 = 1;

id e(k?,k0?) = 1-d(k,k0);

repeat id d(k?,?a)*d(k?,?b) = d(k,?a,?b);

.sort

PolyFun acc;

On Statistics;

Hide;

L F = 1;

#do i = 1,10

Multiply F‘i’;

repeat id d(?a,k?,?b)*d(?c,k?,?d) = d(?a,?c,k,?b,?d);

Symmetrize d;

repeat id d(?a,k?,k?,?b) = d(?a,k,?b);

id,ifmatch->1,d(k‘i’,k?) = 1;

id,ifmatch->1,d(k‘i’,?b) = d(?b);

Multiply acc([q-1]+1);

Label 1;

id d = 1;

.sort:‘i’;

#enddo

PolyFun;

On highfirst;

id acc(x?) = x;

id [q-1] = q-1;

Print +f +s;

.end
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B.2.2 Form code with basic optimizations

#-

#define chk1 "1"

#define chk2 "2"

#define chk3 "2"

#define chk4 "4"

#define chk5 "3"

#define chk6 "3"

#define chk7 "2"

#define chk8 "1"

#define chk9 "0"

#define chk10 "0"

CFunctions acc;

Tensors e,d;

Symbols x,q,[q-1];

Indices k,k0,...,k10;

set k1a1:k3;

set k1b1:k4;

set k2a1:k3,k4,k6;

set k2b1:k4,k6,k9;

set k2a2:k3;

set k2b2:k9;

set k3a1:k4,k6,k7;

set k3b1:k6,k7,k9;

set k3a2:k4,k6;

set k3b2:k7,k9;

set k4a1:k5,k6,k7,k8;

set k4b1:k6,k7,k8,k9;

set k4a2:k5,k6,k7;

set k4b2:k7,k8,k9;

set k4a3:k6;

set k4b3:k9;

set k4a4:k5;

set k4b4:k9;

set k5a1:k6,k7,k8,k9;

set k5b1:k7,k8,k9,k10;

set k5a2:k6,k7,k8;

set k5b2:k8,k9,k10;

set k5a3:k6,k7;

set k5b3:k9,k10;

set k6a1:k7,k8,k9;

set k6b1:k8,k9,k10;

set k6a2:k7,k8;

set k6b2:k9,k10;

set k6a3:k7;

set k6b3:k10;

set k7a1:k8,k9;



118 APPENDIX B. CHROMATIC POLYNOMIALS: ADDITIONAL MATERIAL

set k7b1:k9,k10;

set k7a2:k8;

set k7b2:k10;

set k8a1:k9;

set k8b1:k10;

Off Statistics;

Format nospaces;

Format 80;

L F1 = e(k1,k3)*e(k1,k4);

L F2 = e(k2,k3)*e(k2,k6)*e(k2,k9);

L F3 = e(k3,k4)*e(k3,k7)*e(k3,k9);

L F4 = e(k4,k5)*e(k4,k6)*e(k4,k7)*e(k4,k8);

L F5 = e(k5,k6)*e(k5,k7)*e(k5,k9)*e(k5,k10);

L F6 = e(k6,k7)*e(k6,k8)*e(k6,k9);

L F7 = e(k7,k8)*e(k7,k9)*e(k7,k10);

L F8 = e(k8,k9)*e(k8,k10);

L F9 = e(k9,k10);

L F10 = 1;

id e(k?,k0?) = 1-d(k,k0);

repeat id d(k?,?a)*d(k?,?b) = d(k,?a,?b);

.sort

PolyFun acc;

On Statistics;

Hide;

L F = 1;

#do i = 1,10

Multiply F‘i’;

repeat id d(?a,k?,?b)*d(?c,k?,?d) = d(?a,?c,k,?b,?d);

Symmetrize d;

#do j = 1,‘chk‘i’’

id d(k‘i’,?a,k1?k‘i’a‘j’[x],?b,k2?k‘i’b‘j’[x],?c) = 0;

#enddo

repeat id d(?a,k?,k?,?b) = d(?a,k,?b);

id,ifmatch->1,d(k‘i’,k?) = 1;

id,ifmatch->1,d(k‘i’,?b) = d(?b);

Multiply acc([q-1]+1);

Label 1;

id d = 1;

.sort:‘i’;

#enddo

PolyFun;

On highfirst;

id acc(x?) = x;

id [q-1] = q-1;

Print +f +s;

.end
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B.2.3 Form production code

(excerpt: lines 351–397 of 474)

#if ( ( ‘startv’ <= 7 ) && ( ‘endv’ >= 7 ) )

multiply left 1-d(k7,k8);

id,ifmatch->E7a0,d(k7,k8)*d(k7,?a) = d(k7,k8,?a);

id d(k7,k8)*d(?a,k8,?b) = d(k7,?a,k8,?b);

Goto E7b0;

Label E7a0;

id d(k7,k8,?a,k?{k9,k10},?b) = 0;

id d(k7,k8,?b)*d(?a,k8,?c) = d(k7,?a,k8,?b,?c);

Symmetrize d;

id d(k7,?a,k9,?b,k10,?c) = 0;

repeat id d(?a,k?,k?,?b) = d(?a,k,?b);

Label E7b0;

.sort:v=7(8);

multiply left 1-d(k7,k9);

id,ifmatch->E7a1,d(k7,k9)*d(k7,?a) = d(k7,k9,?a);

id d(k7,k9)*d(?a,k9,?b) = d(k7,?a,k9,?b);

Goto E7b1;

Label E7a1;

id d(k7,k9,?a,k?{k8,k10},?b) = 0;

id d(k7,k9,?b)*d(?a,k9,?c) = d(k7,?a,k9,?b,?c);

Symmetrize d;

id d(k7,?a,k8,?b,k10,?c) = 0;

repeat id d(?a,k?,k?,?b) = d(?a,k,?b);

Label E7b1;

.sort:v=7(9);

multiply left 1-d(k7,k10);

id,ifmatch->E7a2,d(k7,k10)*d(k7,?a) = d(k7,k10,?a);

id d(k7,k10)*d(?a,k10,?b) = d(k7,?a,k10,?b);

Goto E7b2;

Label E7a2;

id d(k7,k10,?a,k?{k8,k9},?b) = 0;

id d(k7,k10,?b)*d(?a,k10,?c) = d(k7,?a,k10,?b,?c);

Symmetrize d;

id d(k7,?a,k8,?b,k9,?c) = 0;

repeat id d(?a,k?,k?,?b) = d(?a,k,?b);

Label E7b2;

.sort:v=7(10);

id,ifmatch->E7,d(k7,k?) = 1;

id,ifmatch->E7,d(k7,?b) = d(?b);

Multiply acc([q-1]+1);

Label E7;

id d = 1;

.sort:7;

#endif
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Appendix C

Some Remaining Issues

In this final appendix I will tie up a few loose ends, mostly relating to technical and coding
issues which apply equally to both projects; while the main programs and analysis for the
projects were quite distinct, many of the same utilities etc. were used for both. Most of these
are of no interest theoretically (e.g. routines for plotting multiple data-sets, handling variable-
order argument lists, etc.); here I will discuss those where implementation could have a bearing
on results (e.g. with respect to random sampling statistics and such).

C.1 Graph Generation and Manipulation Programs

One aspect that was common to both projects was that they both required many specific
graphs for both testing during the code development and producing data for the articles. In
particular, random graphs of various types were extensively used; hence I put together a suite
of simple programs in Matlab for generating both random and structured graphs as well as
performing basic operations and calculations on existing graphs.

All graphs are instantiated as {0, 1} adjacency matrices (weighting of connections, when ap-
plied, was a separate step). Matlab sparse matrix format was used for graphs with more
than 20 vertices. Programs gtofile.m and filetog.m were used to export/import graphs
from/to Matlab to/from common text formats (adjacency list, edge list, adjacency matrix,
and Mathematica compatible).

Random graph generators: these all had a common interface:

− Number of vertices N , or an existing graph G (as adjacency matrix) that we want to
randomly augment.

− Density parameter: edge selection probability p (0 < p < 1), a fixed integer number of
edges M , or degree K as required by the type of graph.

− Any additional structural parameters as needed.

− (optional) text flag to specify whether desired graph is to be simple (default) or directed.
None of the generation programs supported graphs with multiple edges or self-loops;
these are easily obtained by from random integer matrices anyways.

− (optional) connectivity specification. By default there is no constraint on connectivity
of the graphs generated, but in most applications we preferred graphs to be strongly
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connected (every pair of vertices are on a cycle) or at least weakly-connected (every pair
of vertices have a set of links between them). When this was requested the generation
program would retry a fixed number of times (1000 by default) until the generated graph
satisfied the connectivity test; if none was found the empty matrix [] would be returned.
This is not as efficient as e.g. laying down a random tree or cycle as a connected bed
for the rest of the graph, and it could in borderline cases give false negative results, but
it insures that the generated graphs are selected uniformly from the set of all weakly-/
strongly-connected labelled graphs sharing the same parameters.

The current suite of random graph programs include the following:

randgraph.m : Erdös-Rényi (ER) random graph generator for both G(N, p) and G(N, M)
models (depending on whether density parameter is given as real between 0 and 1 or
integer between 1 and the maximum possible number of edges). Potential edges are
assigned a uniform random number between 0 and 1 and selected if that value is less
than or equal to the relevant baseline; for G(N, p) this is of course p, while for G(N, M)
it is the random value associated with the M-th order statistic.

randkdeg.m : The main use of this program is generation of random K-regular graphs, though
the interface allows generation of random graphs with arbitrary degree sequences by
giving an N -element degree sequence vector instead of a single integer K as the density
parameter. For directed graphs a 2 × N matrix of out- and in-degrees can be given,
with ∞ used to flag that the particular out-/in-degree is unconstrained. Graphs are
generated according to the commonly used configuration model: vertices are assigned
stubs according to desired degree, and these are randomly fused to create edges. It
is possible for the fuse operation to paint itself into a corner; when this happens the
entire generation is restarted from scratch (there is a fixed number of retries before the
procedure gives up). The configuration model does not sample uniformly from the space
of all labelled graphs with a given degree sequence, but no method currently exists that
works as well and as quickly.

randbpart.m : Random bipartite graph generator. The size of the parts {m1, m2} is specified
as a third parameter, if omitted they are equally sized or differ by one. The part sets
will consist of consecutive vertices in the generated graph; this samples uniformly from
the space of all graphs with this kind of partitioning, but note that randomly selecting
an integer value for m1 and then randomly permuting the vertex order of the resulting
graph does not uniformly sample from the space of all labelled bipartite graphs. An older
version of the program did attempt to do this kind of global sampling, but the part sizes
were then necessarily not fixed. For our uses it was more important to be able to set part
sizes ahead of time, so I reverted to the simpler format used now, though at some future
point I would like to merge to two versions so as to support both fixed and variable part
sizing.

randtree.m : Generate random trees from scratch or random spanning trees from a given
graph G. The second parameter is optional and sets the maximum degree of the tree.
Spanning tree generation is via a randomized version of Kruskal’s minimum spanning
tree algorithm. Note that a low maximum degree may make it difficult or impossible to
generate a spanning tree from a particular graph; for example, when maximum degree
= 2 it is equivalent to the NP-complete problem of finding a Hamiltonian path.
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randorient.m : Generate a random orientation of a given simple graph G (an orientation
is a directed graph that is obtained from an undirected graph by giving every edge
a direction). As well, random tournaments (orientations of the complete graph on N
vertices) can be generated from scratch. Optional arguments allow the user to specify
that the graph is to be regular or acyclic (but not both at the same time).

rewire.m, randwire.m : Rewiring for e.g. creation of Strogatz small worlds from lattices and
other structured graphs. The first works by simple random deletion and addition of
edges under no other constraints, the second does rewiring by changing endpoints of non-
adjacent edges so as to preserve the degree sequence of the graph. As well, I have done
some preliminary work on random graphs with small-world or lattice like neighbourhood
properties created by randomly connecting points embedded in R

n using probabilities
based on distances (engraph.m, i.e. Euclidean nearest-neighbour graph). Creation of
“naturalistic” small-worlds e.g. graphs with pronounced clustering that otherwise look
random at the neighbourhood level is a topic of interest among network researchers [80].
Since my own work in the end did not heavily depend on small-world or related properties
these initial forays were set aside as I progressed with the main projects.

Aside from this I made regular though not continual use of certain simple structured graphs;
a single program, makeadj.m, was used to generate these. Its output includes paths, cycles,
lattices, complete graphs, circulant graphs (the basis for Strogatz’s small-world construction),
hypercubes, etc.; where relevant these are available in either the directed or undirected version.
More involved constructions are available by applying graph operations such as union, Cartesian
product, or join to the results (for example, a toroidal lattice via the Cartesian product of two
cycles).

C.2 Graph Diagnostic and Analysis Programs

Since for the most part my research involved generating graphs to structural requirements
rather than doing calculations on existing / “real world” graphs, there was no real need for
an extensive library of routines for graph theoretical analysis. In Matlab the programs used
most were various graph plotters (e.g. with and without arrowheads) and a straightforward
implementation of the Floyd-Warshall all-pairs shortest path-lengths algorithm, floydw.m; the
output (given in a matrix of distances) allows one to determine characteristic path length,
maximum shortest path length i.e. diameter, and minimum cycle length i.e. girth.

Additionally some programs were programmed in the C language since they involved compu-
tations that Matlab is not well suited to. The most important of these is of course the mkfrm

program for generating Form programs to calculate chromatic polynomials, discussed above
in section B.1.

One other standalone graph program of note is mintw, a graph treewidth calculator. It takes the
same kind of input as mkfrm i.e. a text file holding a graph specification as an adjacency list, and
returns the treewidth, and optionally the tree decomposition of the graph or an ordering of ver-
tices I will denote as a “general elimination ordering”, which is the order the vertices first appear
as one traces through the decomposition. For certain classes of graphs such as chordal graphs
this ordering is the perfect elimination ordering, which has important algorithmic properties;
for example, a chordal graph in a perfect elimination ordering will be optimally colored by the
polynomial-time greedy coloring heuristic, which otherwise does not perform particularly well.
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Calculating the treewidth of a graph is an NP-complete problem in its own right. My im-
plementation uses a simplified version of Gogate and Dechter’s branch-and-bound treewidth
algorithm [43]. In addition to using an upper bound based on the best result found so far (like
any branch-and-bound algorithm would) it makes clever uses of lower bounds and pruning
rules based on the theory of graph minors; they call it an “anytime” algorithm because if it is
terminated prematurely the decomposition returned is usually very good if not known-to-be-
optimal.

As mentioned in appendix C.5.2, treewidth is an important diagnostic concept in graph theory
with many applications in the study of NP-complete problems (the perfect elimination ordering
being just one). However, we found that the treewidth calculator was of limited usefulness in
the work on chromatic polynomials. To begin with, for lattices there are more direct and
meaningful measures of width (the transverse dimension lengths), so as a diagnostic treewidth
is somewhat redundant; similarly for dense random graphs we know the treewidth will always
be large, so knowing the exact value is a bit like having insult added to injury.

In particular, doing calculations of chromatic polynomials using the general elimination or-
dering did not result in any speedup, except for the chordal graphs mentioned above (these
graphs have little in common with lattices and are very unlikely to be randomly generated, so
they were not a focus of any serious work we did). It should be mentioned that the ordering I
first used for the non-lattice chromatic polynomial calculations was that given by Matlab’s
bandwidth minimizer symrcm, which implements a reverse Cuthill-McKee heuristic. For arbi-
trary graphs symrcm outperforms the g.e.o. by a large margin, while our homemade ordering
mintermw correspondingly outperforms symrcm. That said, a treewidth calculator still has
potential uses, outside of the context of chromatic polynomials.

C.3 Subsidiary Non-Graph Techniques

In this section I will outline a couple of techniques that I developed for certain aspects of data
analysis done for the two projects. While the particular analyses these were used for have
not yet appeared in any articles, I believe the techniques themselves might be more generally
useful. Note: as far as I know from discussion with people at our institute and internet searches
no algorithms or code were available for these specific problems, though I have not done any
kind of thorough survey of the areas of mathematics involved.

Transient removal from time series data. Concerning the work on reconstructing LIF
networks from noisy data in section 5.1.2 it was mentioned the specialized method could be
made to work with noisy data, by calculating the mean period over the entire spike train and
then estimating a relative spike time value by linear fitting. For this to be at all reliable initial
transients had to be removed from the time series; with both noisy and noiseless homogeneous
inhibitory networks under variegated driving, the firing rate for different neurons is widely
distributed at first and only eventually converges to the collective frequency.

A traditional fast, “hands-off” method for removing transients from stationary time series
is a quite simple technique called mean-crossing, used widely in experimental science and
performance evaluation of man-made systems such as computer networks. Given a time series
X = X1, X2, . . . , Xr, the mean crossing point t is the index where the mean value of the initial
subsequences 〈X1, X2, . . . , Xs〉, s = 1, 2, . . . , t first crosses the global series mean 〈X〉. One
then discards the initial subsequence, retaining Xt, Xt+1, . . . , Xr.
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Figure C.1: Comparative results for transient removal methods using two sample time series
taken from noisy spike trains that generated figure 5.2 (period P vs. time T ). All plots:
blue lines indicate data that is kept, cyan data that is discarded. Dashed black line is cutoff
point. Top row: transient removal using mean crossing method. Solid red line indicates mean
of initial subsequences. Bottom row: transient removal by the reverse cumulative maximum
method for the same data. Solid red line here is values that maximally diverge from the mean
of the remainder of the series.

This will work well enough if the time series is nice and long relative to the transient, but as can
be seen from the top row of figure C.1 for short time series there are several different problems
that can arise. One problem, shown on the top left, occurs when the subsequence means trace
out a roughly monotonic function; this causes the truncation to happen too far into the series,
leaving little to work with. The second problem, shown on the top right, occurs when there is
overshooting as the series tries to become stable. A related problem (not shown) occurs when
the transient is marked by large fluctuations we want to remove, but not steady progression in
one or another direction. In both of these cases the series mean value is crossed too early, and
members of the series are retained that could adversely affect further calculations.

After discussion with members of our institute who have worked extensively with time series
data (Jan Nagler and Annette Witt) it seemed to me that mean crossing was essentially the
only “sight-unseen” transient removal method in common use i.e. the alternative is to remove
transients by eye or reasoning about the source of the particular data set. Since this was not
an option with respect to my transients I decided to try putting together something of my own.
The criteria were that the technique had to run in linear time (like mean crossing), not require
preset parameters which had optimal values that depended on the particular time series (such
as maximum allowable variance), and avoid metrics that prioritize either as-long-as-possible or
as-short-as-possible transients.
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I will denote the following heuristic as the reverse cumulative maximum method. It is designed
to retain a representative section of substantial length from a short time series, though not to
minimize transient length, so may be of limited use for long time series (where mean crossing
should do an acceptable job anyhow). The idea is that for any sequence of random numbers the
probability that the next number is the maximum of what we have seen so far is monotonically
nonincreasing; hence the distance between numbers that increase the value of the cumulative
maximum is a metric of sorts for stationarity. In particular, if we start to see more rather than
less increases in the value of the cumulative maximum divergence from the mean it is because
the magnitude of the fluctuations is becoming larger or the sequence is beginning to trend away
from the previous mean. For a time series that eventually becomes stationary we can utilize
this by working in reverse i.e. from the end to beginning.

Formally: let X = X1, X2, . . . , Xr be our time series, and let ui be the absolute difference
between Xi and the mean of the remainder subsequence starting at i and going to the end:

ui = |Xi − 〈Xi, Xi+1, . . . , Xr〉| . (C.1)

Note: all values for ui are easily calculated together in linear time by taking a cumulative sum
of X, going from Xr to X1. The associated series vi evaluates our distance function:

vi = arg max
j
{uj : i ≤ j ≤ r} − i . (C.2)

Again, all vi values together can be determined in linear time by working from the end of the
ui sequence. When vi = 0 then Xi is the maximum or minimum of its remainder subsequence;
taken together the indices of all vi that equal 0 point to increases in the reverse cumulative
maximum of the ui sequence. Between any consecutive pair of these the movement in X is
bounded by a fluctuation that occurs later in the time series, so a long sequence of non-zero
v values is a reasonable indicator that the series is somewhat stable in that region. Hence
we index the beginning of the retained section of the series according to the beginning of the
longest sequence of non-zero vi values:

itr = arg max
i
{vi : i = 1, 2, . . . , r} . (C.3)

The transient X1, X2, . . . , Xitr−1 is discarded and Xitr, Xitr+1, . . . , Xr is kept.

As can be seen from the bottom row of figure C.1, this certainly gives better results than mean
crossing for the data at my disposal. It could be argued that the transients removed are not
minimal, though as stated above the concern was only to make sure that enough remained for
decent statistics; this is a heuristic for removing transients from relatively large sets of time
series when one cannot visually or otherwise verify the results, so it is designed to err on the
side of caution in both directions. I have yet to subject this method to any kind of rigorous
analysis, for example, look more closely into the behaviour of the cumulative maximum function
for various probability distributions. Note: this transient removal technique is implemented
within the code for the noisy version of specialized reconstruction method, but as yet I have
not coded an independent version (in Matlab or elsewhere) for general use.

Cluster detection with transitive negative constraints. A great deal had to be left out
of chapter 4 due to simple space constraints. Our criteria for what was retained was simply
common sense: we presented the results that were most striking in terms of their implications,
how simple the fit functions were, and how low the error was. Left out were some things that
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I believe are very intriguing, though admittedly not as developed or pointing as clearly to an
easily stated conclusion. In particular, the layout of the chromatic root sets suggests that a
formula exists that specifies the location of all complex roots, though as of the writing we had
come up with nothing as simple as the formulas for the crossing point, the maximum modulus,
and the maximum imaginary value.

As part of an initial foray into determining if such a global formula existed part of the data
analysis for the project involved partitioning the chromatic roots for sets of polynomials into
clusters, so that mean values and variances could be taken to give us an initial estimate for
the generic location of each root. For graphs with density P ≈ 0.5 this was simply a matter of
sorting by imaginary value, since their complex chromatic roots are laid out almost vertically in
the complex plane. For lower density graphs this was made difficult by the fact that i) the layout
was not vertical but arclike, ii) the locations of the roots had more scatter across different
graphs, and iii) some graphs had fewer complex roots than others.

Since the arc fits were done independently using data from all 20 sample graphs at once, one
option when the associated polynomial had a full set of complex roots was to simply project
the roots onto the fitted arc and then sort the roots according to their projection points. This,
however, would be problematic if we wanted to compare the centroid locations to the arc
placement, which is what we intended. A more scrupulous approach dictated that the clusters
be determined independently i.e. we would try to find the natural clustering dictated by the
data. This would also avoid problems arising from polynomials that did not have the full set
of complex roots (a minority, but generally one or two instances in every sample set).

An immediate problem was that the clustering was under the constraint that no two roots from
the same polynomial could be in the same cluster. While Matlab has two different clustering
programs available (kmeans for the fast K-means clustering heuristic, and clusterdata using
the more general hierarchical approach), neither of these support constraints on the clusterings
they return. After scanning through the journal databases I found a few previous attempts at
constrained clustering; of these, the only one that strictly maintained negative constraints was
the COP K-means algorithm of Wagstaff et all [122].

Before I can discuss COP K-means or my own approach any further I should outline the basic
K-means algorithm:

1. Given: a set of points X = x1, x2, . . . , an integer K, and C, a set of K initial centroid
locations.

2. Each iteration do:

(a) Initially all clusters Sj are emptied.

(b) Calculate the distance of each point xi to each centroid Cj.

(c) Put each xi into the cluster Sj that minimizes dist(xi, Cj), the distance to the current
centroid for Sj .

(d) Recalculate all centroid locations Cj based on the points now contained in each
cluster Sj .

3. Continue iterating until the allocation of points X to clusters S does not change.
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Figure C.2: Clustering of complex root data from chromatic polynomial calculations on random
graphs obtained using rckmeans. Left: clustering for N = 18, average degree K = 4.5, with
arc fit for same data. Black circles indicate cluster centroids. Right: all clusters (indicated by
color) with vertical and horizontal arc fits for N = 21.

This heuristic is not guaranteed to find the clustering S that minimizes the point-to-centroid
distance across all possible partitions of X into K sets, but its performance is usually quite good
with respect to both running time and point placement. Most implementations do not require
an initial centroid set (which can be generated out of X easily enough), and the algorithm is
not restricted to any particular distance metric. The main limitation noted with it is that it
requires the user specify the number of clusters beforehand rather than have it arise naturally
out of the data, but for us that is a feature (we do not want more clusters than a full set of
complex chromatic roots implies, and we can not have less).

COP K-means is probably the simplest possible extension of the basic K-means algorithm to
handle constraints (which is not necessarily a bad thing). Positive constraints are necessarily
transitive i.e. if xi has to be clustered with xj , and xj with xk, then necessarily xi will be
clustered with xk. Hence we can collect all points with positive constraints into equivalence
classes Eℓ, remove the points from the original X, and then add the centroid of each Eℓ as
a (single) representative value. Negative constraints (which are not necessarily transitive) are
handled differently: during step 2c, clusters Sj are checked in increasing order of centroid
distance to xi, which is allocated to the first one which does not already contain a proscribed
point i.e. not necessarily the closest. As Wagstaff et al note, the allocation of points during
each iteration is then highly dependent on the order they are processed.

For my data the COP K-means algorithm gave very sub-optimal results even for data sets taken
from the mid-density range (which as mentioned above do not require a clustering algorithm in
the first place). After playing around with a few point reordering ideas, none of which gave great
results, I decided that some dynamic reclustering was required. Furthermore, I could utilize
the fact that our negative constraints were in fact transitive as well to streamline the extra
computations required. I call this variant rckmeans, for “COP K-means with resettlement”.

We use the same framework as the basic and COP K-means, with an added depth parameter
D. Step 2c is modified as follows: for each point xi let k be its negative constraint class

1. Find the cluster Sj1 that does not contain a member of class k and is closest to xi.

2. For every cluster Sj2 that is closer to xi i.e. c = dist(xi, Cj1)−dist(xi, Cj2) > 0, recursively
determine the cost of resettling the current occupant of Sj2 that belongs to class k.
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3. If any other cluster has a total resettlement cost lower than c, place xi in the Sj3 that
minimizes total distances to centroids and resettle the chain of displaced points into the
appropriate clusters down the line. Otherwise xi goes into cluster Sj1.

The parameter D governs the depth of the recursion. If it is set to 0 then the algorithm reverts
to COP K-means i.e. no displacement occurs, if it is set to 1 then the current occupant from
class k can only be displaced to a k-empty cluster, and so on. If D = ∞ then the recursion
goes as far as needed to insure that the total distance to centroids over all points is minimum
possible for the given centroid locations, which in the worst case will require resettlement
calculations that are exponential in the number of clusters K. For the data used in the article
a value of D = 2 gave quite good results in an acceptable amount of time (K-means itself is
after all a heuristic with no global optimality guarantee to begin with).

Figure C.2 (left) shows an example of a clustering obtained using rckmeans with D = 2 on
chromatic root data from a relatively sparse graph. The technique was subsequently applied to
the random graph data to obtain generic estimates of all individual chromatic root locations.
Ranking of clusters according to centroid displacement along the previously obtained vertical
arc fits allows us to associate clusters for different parameter pairs, making it possible to do
horizontal arc fits i.e. across density parameter values. Figure C.2 (right) shows these horizontal
fits for N = 21 along with the vertical arc fits we already had.

C.4 Specialized Chromatic Polynomial Techniques

Here I will outline a couple of results/methods for chromatic polynomials which do not utilize
the new algorithm presented in chapter 3, and are otherwise somewhat tangential to the main
project.

Closed formula for 3 × n square lattice. While both Shrock and Sokal have results for
the limiting curve of the root set of the FBC 3× n square lattice in the n → ∞ limit, to my
knowledge nobody had worked out a closed formula i.e. something in the vein of what we have
for the 2× n square lattice:

P (L2×n, q) = (q − 1) q (q2 − 3q + 3)n−1 , (C.4)

or the 3× n square lattice with a periodic transverse boundary, which in graph theory termi-
nology would be called an iterated 3-prism:

P (Y3×n, q) = (q − 2)(q − 1) q (q3 − 6q2 + 14q − 13)n−1 . (C.5)

The simplicity of these formulas arises from the fact that the layers of the strips in question are
complete graphs (K2 and K3 respectively), allowing us to build from a simple base graph (the
4-cycle C4 for L2×n and the ordinary 3-prism Y3 for Y3×n) using the principle that if the graph
can be disconnected by the removal of a complete subgraph then its chromatic polynomial can
be easily factorized [127].

Since the 3 × n square lattice with free boundary conditions is not so easily detachable, the
closed formula is nowhere as simple as the above. I came upon it during my first year at the
MPI (i.e. as a research assistant) while experimenting with various approaches to speeding up
the new chromatic polynomial algorithm’s calculations. One idea that was checked was whether
a specialized version for strip lattices which bundled operations over an entire layer might be
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more efficient. My ultimate conclusion was that the new algorithm itself was not improved
by doing this. This work, while a non-result in one sense, did have an influence on future
directions: with respect to the later versions of the new algorithm (which could be considered
going into the opposite direction of breaking down the operations into more atomic parts, see
code in appendices B.2.2 and B.2.3); and as well the implementation of the recurrence-finding
phase of Niels Kurz’s automated limiting curve technique (the new algorithm is used as is to
determine a set of mutual recurrences i.e. a per-layer bundling, see section 5.2.1 of the thesis).

Before I came to my ultimate conclusion I took a short detour through some alternate ap-
proaches for specialized graphs that did not use the new algorithm. One idea I had was to
track the operations of a state machine doing a proper q-coloring of a 3 × n lattice row by
row. There are two kinds of row colorings: one using 2 colors (“r b r”) and one using 3 colors
(“r b g”); in each case, we can use some of the colors from the previous row and some new
colors (except in the special case of the first row). The two kinds of colorings correspond to
states of the machine, and the number of ways we incorporate colors from the previous row (the
current state) determines how many ways there are to there are to go to the next state, while
the number of colors used in the current row quantifies the number of colors available. The
following table gives an example, the simplest transition (from a 2-colored row to a 2-colored
row):

r b r q(q − 1) used
b r b 1 counts
b α b (q − 2)
α r α (q − 2)
α γ α (q − 2)(q − 3) .

Here α and γ are colors that are not used in the current row, with respectively q− 2 and q− 3
choices. Summing over the counts here gives the total number of ways to go from one row to
another. Doing this for the other 3 possible transitions as well gives us the following transition
table:

Transition Label Count
(2)→ (2) A = q2 − 3q + 3
(3)→ (2) B = q2 − 4q + 5
(2)→ (3) C = q3 − 6q2 + 13q − 10
(3)→ (3) D = q3 − 6q2 + 14q − 13

These transitions give us a recursive expression for the number of q-colorings of L3×n. Our
state machine has to end in one of its two states i.e. the last row has to be colored with either
2 or 3 colorings. If we let Pn and Qn be the numbers of ways to color L3×n so that the last row
has respectively 2 or 3 colors, we then have

P (L3×n, q) = Pn + Qn

Pi = APi−1 + BQi−1 (C.6)

Qi = CPi−1 + DQi−1 (C.7)

P1 = q(q − 1)

Q1 = q(q − 1)(q − 2)
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It should be noted that this mutual recurrence is not the same as what would be obtained by
the automated recurrence calculator of Niels Kurz, which for the 3 × n FBC lattice involved
recurrences for 4 sequences rather than the 2 here.

While the recurrences in (C.6) and (C.7) do allow us to calculate P (L3×n, q) for particular
values of n, in terms of efficiency it is no improvement on the new algorithm. However, with
some manipulation the two recurrences above can be rewritten as the following Fibonacci type
recurrences:

Pi = (A + D)Pi−1 + (BC −AD)Pi−2 (C.8)

Qi = (A + D)Qi−1 + (BC − AD)Qi−2 (C.9)

Fibonacci type recurrences have an easy solution since the characteristic equation (a quadratic
polynomial) can be solved symbolically,

Fn = αFn−1 + βFn−2

=
(α− φ)F1 − F2

α− 2φ
φn−1 −

φF1 − F2

α− 2φ
(α− φ)n−1

where φ =
α +

√
α2 + 4β

2
.

From this point it is merely a matter of substituting in (A+ D) for α, q2−3q + 3 for A, and so
on, and then add the resulting expressions for Pn and Qn. Since the forms of (C.8) and (C.9)
are so similar the final result turns out to have a fair amount of symmetry:

H1 = (q − 2)(q2 − 3q + 5)

H2 = (q − 1)(q − 2)(q2 − 3q + 3) + 2

H = (q2 − 5q + 7)
(
(q2 − 2q + 2)(q2 − 3q + 3) + 2

)

P (L3×n, q) =
q(q − 1)

2n

((
q − 1 +

H2√
H

)
(H1 +

√
H)n−1 +

(
q − 1−

H2√
H

)
(H1 −

√
H)n−1

)

Using the state machine approach I was able to also get mutual recurrences for 4 × n, 5× n,
and other FBC lattices, though since the number of states in the machine grows exponentially
with the width of the lattice these did not turn out to be solvable in the above manner. The
approach could be automated for square lattice strips but did not lend itself to a more general
application in the same way the automated recurrence generator of Niels Kurz does. That
said, this does stand as a precursor to his use of mutual recurrences, and as well gives the most
succinct solution to the problem that I know of.

Very fast recursive formula for complete bipartite graphs. The complete bipartite
graph Kn,m is a mainstay of graph theory. Since it is commonly used to model global resource
allocation problems, in terms of applications it shows up in industrial, engineering, and eco-
nomics contexts much more frequently than in the natural sciences. Complete bipartite graphs
are extremal with respect to edge-density of bipartite graphs, and bipartite graphs in general
have chromatic roots that stretch further from the real line than ER random graphs (as we
can see from figure 5.5 in section 5.2.2). Hence the chromatic root locations for Kn,m may have
relevance for questions about bounds on chromatic root layout / location, in particular, with
respect to the maximum imaginary value max Im(z) and the maximum root modulus max |z|
(see section 1.3.2 in the introduction).
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Figure C.3: Left: complex chromatic roots in upper half plane for Kn,n, n = 2, 3, . . . , 50. Color
by n (red: 2 to blue: 50). Right: some per graph root location metrics against n (dots are
measured values, lines are fits).

One problem with Kn,m when n is close to m (and in particular Kn,n, the densest bipartite graph
on N = 2n vertices) is that these are precisely the worst case graphs for the new algorithm.
The edge-density of Kn,n is close to one half (as n → ∞ the density P → 1

2
from above),

and bipartite graphs in general have the property that the neighbourhood of every vertex is
an independent set (meaning we do not get as much speedup from the forward check that
pre-clears delta terms from the expression). Hence during the preliminary phase of the random
graph project, when I was looking at the effect of various structural properties on chromatic
root location, I also looked at a specialized chromatic polynomial solver for Kn,m. The idea is
that actually coloring these graphs is quite easy: the sets of colors used for the two partitions
have to be disjoint, but within each partition the coloring can be arbitrary.

This gives rise to the following summation formula for the chromatic polynomial of Kn,m:

P (Kn,m, q) =
n∑

k=1

{
n

k

}
q !

(q − k)!
(q − k)m (C.10)

Where
{

n

k

}
is the Sterling number of the 2nd kind for n and k, which counts the number of ways

to partition a set of n elements into k non-empty subsets. Each term within the summation
counts the number of ways to color the graph using k of the q colors in the first partition (up
to the maximum possible n) and the remaining colors in the other partition. This in fact can
be extended to the general complete ℓ-partite graph Kn1,n2,...,nℓ

by nesting summations, though
we will stick with the bipartite formula for the sake of simplicity.

While there is no closed form solution for Sterling numbers in n and k they have a nice
recurrence relation,

{
n

k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
,

{
n

1

}
= 1,

{
n

n

}
= 1 . (C.11)

The full solution of (C.10) is then fairly easily computed in Form by precalculating the needed
Stirling numbers in a triangular table and then evaluating the summation as given. This was
the basis for my original complete ℓ-partite graph chromatic polynomial solver. It achieved
a significant speedup over the new algorithm (enough to accomplish my specific aims at the
time), but it would still take a while on even bipartite graphs if n was large.
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The real speedup occurs when instead of calculating Stirling numbers separately the recurrence
is incorporated directly into the summation formula. While neither of the two summations
that result is itself a chromatic polynomial, they do give us a per term relation between the
summations for P (Kn−1,m, q) and P (Kn,m, q) which can be exploited. Let T

(k)
n,m be the k-th

term of (C.10) for a particular n and m. Then it simultaneously satisfies the two recurrences

T (k)
n,m = (q − k) T

(k)
n,m−1, =

(q − k)m

(q − k + 1)m−1
T

(k−1)
n−1,m + k T

(k)
n−1,m (C.12)

where of course T = 0 if k is outside of the range 1 ≤ k ≤ n. To reach a particular P (Kn,m, q)
we start with K1,m−n+1, which is a tree, and then alternately increment n and m. The efficiency
of the implementation depends on how one handles all the (q − k)m factors when m is sizable;
if expansion of these products is deferred as long as possible then the time savings turn out to
be very great.

Computations using this recurrence implemented in Form are extremely fast. Figure C.3
shows chromatic roots for all Kn,n for n = 2 to 50; K50,50 has 100 vertices and edge-density
P ≈ 0.5, but the calculation required only 3 seconds on our cluster machine. I have done
computations of the Kn,n chromatic polynomials for n up to 100 (200 vertices, 1 minute and 13
seconds), which most likely sets a size record for graphs in that density range (I only plotted
the roots for the first 50 because, ironically, Form would wrap the extremely large coefficients
of the later polynomials into multiple lines, requiring time-consuming manual labor to put into
a format acceptable to the root finder).

I have not had time to do any kind of in-depth analysis of the results obtained so far, but as
figure C.3(right) shows, for Kn,n the growth in various metrics of interest is quite linear in n
(it should be kept in mind that for these graphs n is not only the partition size, but also the
average degree K and maximum degree ∆). The measured scaling for the maximum modulus
max |z| is 1.513∆, and for the maximum imaginary value max Im(z) is 0.679N . These speak
to, respectively, Sokal’s conjectured upper bound of 1.6∆ for max |z|, and Brown’s theoretical

result that for every N there is a graph with a chromatic root z such that Im(z) >
√

N
4

(both
are mentioned in the introduction, section 1.3.2). As well, by doing ellipse fits to the root
sets (arcs do not work as well here as with the ER random graphs) a scaling for the crossing
point XN,K of 0.467K was obtained. This is less than for the random graphs (0.582K) but not
orders-of-magnitude less. It should be noted that XN,K is substantially greater than the value
of the chromatic number, which is fixed at 2 for all these graphs. In fact, all the larger Kn,n

graphs had chromatic roots very close to each integer from 2 to XN,K , so close that the root
finder MPSolve was not able to distinguish them even using 40 digits of numerical precision.

C.5 Computational Complexity

C.5.1 Complexity classes

Here I will very briefly review computational complexity theory, or at least the part of it
that is most relevant to our implementation issues. All the material here is in any standard
undergraduate algorithmics textbook such as Cormen, Leiserson, and Rivest [31]; for readers
who really want to sink their teeth into the topic Papadimitriou [85] or Hopcroft and Ullman [49]
are the recommended texts for complexity theory and general computability theory respectively.
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To start, while we are always concerned with the actual running time of an algorithm on a
particular problem instance, to talk about this with any kind of generality requires that we
consider things in terms of how running times respond to changes in the size of the input. Since
actual running time can vary a great deal we will restrict ourselves to the worst-case running
time over all inputs of the same size; we can then say for an algorithm A that its running time
is a function T (n) of the input size n. Encoding of inputs will be discussed below, for now we
will just assume that the variables n, m, etc. will refer to common sense things like the number
of nodes or connections in a graph, clauses or variables in a logic problem, rows or elements of a
matrix, etc. Things like constant factors or lower order terms are usually machine or platform
dependent, so we will almost exclusively use asymptotic (“big Oh”) notation:

O(f(n)) = {g(n) : ∃ c, n0 > 0 s.t. ∀ n ≥ n0, 0 ≤ g(n) ≤ cf(n)} . (C.13)

Note that this is technically set-theoretical notation: O(f(n)) is the set of all functions that
grow no faster than f(n); but by a common abuse of notation we would say, if e.g. T (n) =
5n2 + 3n + 1, that T (n) is O(n2) or T (n) = O(n2) (I have never met anyone who insisted on
the more correct form T (n) ∈ O(n2)). But it should be kept in mind that this is an upper
bound, and that 3n + 1,

√
n, log n, and the like are all as well in O(n2).

The computational complexity class P. An algorithm A with running time T (n) is said to run
in polynomial time if T (n) = O(nk) for some constant k. In such a case one may also say that
A is a polytime algorithm. Note that this definition includes algorithms with running times
described by e.g. T (n) = O(n100) or T (n) = 1020n, neither of which would be considered fast;
cases like these, however, do not commonly come up in practice, or mathematically affect the
classification.

By extension, a problem R is said to be polynomial-time solvable if there exists an algorithm
A that solves R in polynomial time. The computational complexity class P is then simply the
set of all polynomial-time solvable problems (to put this into a rigorous formulation requires
some formal language theory [31], but the outcome is the same).

Problems in P are regarded as “the tractable problems” for partly historical/psychological and
partly set-theoretical reasons. Historically, many important algorithms have running times
described by low-order polynomials, for example, Quicksort (O(n2), where n is the length of
the list to be sorted), or Gaussian Elimination (O(n3) where n is the number of equations).
When running implementations of these or similar algorithms in e.g. Matlab we do not worry
about increasing in the size of the problem instance from n to n+1 or n+2; though obviously if
one were to e.g. double the size of the problem the change in running time would be noticeable.

More importantly, in set-theoretical terms the class P is closed under composition. A polytime
algorithm that invokes a polytime subroutine will remain polytime; hence requiring polytime
transforms and similar operations on input or output do not affect the a problem’s membership
in the class. This is relevant not only for the definitions of NP and NP-completeness below,
but also because:

− P is the same under several important abstract models of computation: the universal
Turing machine, Church’s lambda calculus, the register machine (an idealization of the
ordinary computers we actually use), etc. Such models are denoted as Turing-complete

since they represent the limit of what is known to be achievable by an effective-procedure.
While they do differ in native efficiency, it has been shown that all Turing-complete
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models proposed so far are able to simulate the operations of all other TCM’s with only
a polynomial amount of overhead.

− P is the same under commonly-used input encodings. How the input is encoded will affect
the size of problem instances and therefore the specific behaviour of T (n); however, if T
is polynomial in any k-ary encoding for k ≥ 2 it will be polynomial in all such encodings.
This extends to common encodings involving integers in a fixed-word binary format and
fixed-precision real numbers, as long as all atomic operations on individual words etc. are
polynomial in the number of bits (which is the case for the operations done by CPU’s and
math coprocessors in ordinary computers as well as basic functions in e.g. the C math
library).

Note that the second point here justifies common sense generically optimized encodings only.
In particular, many algorithms that would be super-polynomial in the usual fixed-word size
binary encoding are polynomial in terms of a unary encoding, simply because the size of the
input expands exponentially. Relatedly, problems with a succinct description such as a single
number or index have to be considered in terms of the binary representation of that number.
Hence prime-factorization of a number n is (as of this writing) super-polynomial, even though
it can be done in time O(n2), since the actual length of n on one’s computer would be log n
(a unary encoding of any number used for e.g. RSA encryption could not be contained in an
ordinary computer memory anyhow).

The computational complexity class NP. By definition, if a problem R is known to be in P

then there must exist a polynomial time algorithm for it. The class NP can be regarded as
the epistemological limit of P, that is, all problems that we can not say are not in P. The
original definition of NP has it as the set of all problems that do have a polynomial time solu-
tion, if implemented on a nondeterministic Turing machine (hence the name, “Nonderministic
Polynomial”).

Here we will define NP in a more down-to-earth way by way of polynomial time verifications.
To do so we will need to restrict ourselves to the set of decision problems, i.e. those requiring
a 1-bit {“yes”, “no”} answer. We will see shortly that related optimization and other kinds of
problems can also be justly described as being in NP, though technically (in the complexity
literature) NP, as well as P and the set of NP-complete problems are all formal languages
consisting of encodings of positive instances of decision problems.

Let R be a decision problem. We first define R+ as the set of all positive problem instances x of
R i.e. those with a “yes” answer. An algorithm AR(x, y) is defined as a verification algorithm
for R+ if

∀ x ∈ R+ ∃ y s.t. AR(x, y) = “yes” (C.14)

∀ x /∈ R+ ∀ y AR(x, y) 6= “yes”

The additional input, y, is known as the certificate for the problem instance x; it will be
discussed below. Note that A is not required to terminate for any x that is not a positive
problem instance of R (though presumably if it does it answers “no”); the complement of R+

does not necessarily contain only the negative instances of R, but also possibly any kind of
heterogeneous set-theoretical garbage.

The nature of the certificate in the proofs and definitions is purposely left open, but in practice
for a particular decision problem the set of certificates for positive instances are solutions to
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the non-decision version of the problem. For an example, consider the decision problem Graph

Coloring:

COL(G, k) : is there a proper coloring C of G using k or fewer colors?

For any positive instance of COL(G, k) the certificate is simply a proper k-coloring of G.

Technical definition of NP: the language (i.e. set of positive problem instances) R+ belongs to
NP if and only if there exists a polynomial time verification algorithm AR for R+ and constant
c such that

x ∈ R+ ⇔ ∃ y with |y| = O(|x|c) s.t. AR(x, y) = “yes” (C.15)

i.e. AR verifies R+ in polynomial time.

Extensions to ordinary usage: to begin with, if the instances x of a decision problem R partition
into a set of positive instances defining a language R+ ∈ NP and a set of negative instances
which do not it is proper to say that the abstract problem R itself is a problem in NP. In this
sense, NP consists of all decision problems for which a solution can be verified in polynomial
time. Note that this verification remains asymmetrical, since (as of this writing) in general
there is no negative certificate with polynomially bounded size, i.e. the class NP is not known
or expected to be closed under complement.

To extend further to various non-decision versions of problems we start by noting that NP,
like P, is closed under composition. More particularly, if R ∈ NP, and an algorithm A1 can
solve a problem S by making a polynomial number of calls with polynomially bounded input
sizes to a subroutine A2 that solves R, then S is in NP as well. This kind of reduction of the
problem S to R is known as an oracle reduction (though the bounds on calls and input belong
to this context; oracle reductions are widely used in complexity and computability theory for
classes far outside of P or NP).

When needed the decision problem oracle is standard method to show that an associated
non-decision problem belongs in the extended sense to NP. Note that this does not apply to
every possible associated problem, since some, such as counting and enumeration problems,
are very likely not in NP regardless of whether P = NP or not. Here we will look at three
variations: the optimization problem, the optimal value problem (what value does the solution
of an optimization problem give the relevant metric), and what I will call simply the certificate
problem (i.e. the most directly related non-decision problem). COL(G, k) will be used as the
example problem:

Certificate. COLy(G, k): provide a proper k-coloring of G (or NULL if no such coloring exists)

Optimal value. χ(G): what is the chromatic number of G i.e. the fewest number of colors
needed for a proper coloring?

Optimization. COLopt(G): provide an proper coloring of G using as few colors as possible.

First we note that all of these are at least as hard as COL, since they all can be used to solve
the decision problem (e.g. compare the return value of χ(G) to k).

The reduction of χ(G) to COL(G, k) is quite simple: call COL(G, k) for each k = 1, 2, . . . ,
in order, stopping at the first “yes” answer we receive. Since G must be at most N -colorable,
where N is the number of vertices in G, this is a polynomial number of calls. For problems
where the metric can range much higher than the input size this idea can still be used: instead
of iterating we use binary search to find where the metric changes from “no” to “yes”.



C.5. COMPUTATIONAL COMPLEXITY 137

Reductions of certificate problems to decision problems commonly involve progressively filling
in a solution by testing slightly modified versions of the input on the oracle. For example, to
solve COLy(G, k) one possible procedure would be:

1. Let G′ ← G

2. For j = 1, 2, . . . , k select any uncolored vertex v from G and assign it color j

(a) For each uncolored vertex u ∈ G s.t. uv is not an edge, let G′′ be the result of
merging the vertices u and v in G′, with the merged vertex retaining the label v.

i. If COL(G′′, k) = “yes” then assign u color j (in G) and let G′ ← G′′.

ii. Else leave u uncolored and G′ as is ...

3. End of loop.

The idea is that a coloring of the graph obtained by merging the vertices u and v is equivalent
to a coloring where u and v get the same color. The graph needs to be shrunk progressively in
order to make sure that incompatible non-neighbours of each v are not included in the same
color class. When the outer loop is done G′ should be a k vertex graph (or smaller) and G
should be properly k-colored; the coloring defines a homomorphism between G and G′, and if
the coloring is actually optimal then G′ should be the complete graph Kk.

To get from the decision problem to the optimization problem we just do both of the above
reductions, the second one using the optimal k value found by the first. It should be noted that
if the decision problem is in P then reductions of this sort should keep associated optimization
and optimal value problems in P as well. Hence decision problems in P do in fact have
polynomial time verifiers for negative problem instances (e.g. check the optimal value against
the query value), which means the decision problem restricted version of P is known to be
closed under complement.

Anyhow, at this point we can ask: P = NP? The next step is to show why the answer is
“Probably not”.

NP-completeness. In popular intuition, the NP-complete problems are the “hard” computa-
tional problems, in opposition to the “easy” problems in P. The intuition is essentially correct,
the complicating factor is that nothing in the definition of NP given above warrants further
subdivision into “easy” and “hard” pieces. The only real evidence of this division is empirical:
the “easy” problems currently have polytime algorithms, while none have been devised for any
of the “hard” problems yet, despite a great deal of effort. In principle the status of unresolved
mathematical questions does not change even in the face of massive amounts of empirical data
(cf. the Riemann hypothesis, the Graceful Tree conjecture, and the like). The beauty of NP-
completeness theory is that it puts the above-mentioned empirical division into a mathematical
framework that has force in even the most rigorous contexts.

To begin, we need a technical definition of “hard” that will give us an entry to the problem.
This precludes the obvious choices such as hard = exponential or hard = superpolynomial since
this just leaves us where we are except with a redundant new term (for the same reason, no one
has bothered to technically define easy = polynomial either). Instead, we will base our definition
of hardness on mathematical reducibility (note: not restricted to the oracles mentioned above)
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with an algorithmic constraint. The idea is that if problem S can be “easily” reduced to
problem R then we can say that S is “no harder” than R.

We will have to return briefly to the positive instance decision problem restricted versions of
our sets (i.e. the formal language framework). Let R+ and S+ be the sets of positive instances
for the problems the decision problems R and S respectively, and let Σ∗ be the universe of
encodings i.e. including not only the members of R+ and S+ but also all instances (positive and
negative) for all decision problems plus arbitrary nonsense encodings. S+ is polynomial-time

reducible to R+ (notation: S+ ≤P R+) if there exists a polynomial-time computable reduction

function f : Σ∗ → Σ∗ such that

∀ x ∈ Σ∗ : x ∈ S+ iff f(x) ∈ R+. (C.16)

An algorithm Af that computes a reduction function f is known as a reduction algorithm.
Note that outside of the time constraint that these are ordinary/arbitrary mathematical prob-
lem reductions; in particular, these reductions are transitive (by polynomial closure under
composition).

Now we can define (a type of) hardness: a problem (i.e. a language composed of positive
problem instances) R+ is NP-hard if

∀ S+∈ NP : S+ ≤P R+. (C.17)

Once the technical matters are out of the way this definition extends readily to ordinary usage
as with the definition of NP itself. The set of NP-hard problems contains problems outside
of NP, so we need one more definition to bring it all home.

Definition: A problem R is NP-complete if

1. R ∈ NP,

2. R is NP-hard.

In this sense we can rigorously say that the NP-complete problems are the hard ones in NP.

We still need to populate the set of NP-complete problems. One thing that made this easier
than one might anticipate is that, by transitivity of the ≤P relation,

R is NP-hard and R ≤P S ⇒ S is NP-hard, (C.18)

that is, to show any problem S ∈ NP is NP-complete one merely has to show that any
problem R currently known to be NP-complete can be reduced to it. Much of the early work
(1970’s) in complexity theory was devoted to these kinds of reductions, by which the list of
known NP-complete problems has grown into the thousands; textbooks that deal with NP-
completeness such as CLR [31] will usually feature many fully worked-out examples. As well,
sketch reductions are still a useful tool for algorithm designers such as myself to quickly check
if a new problem they encounter may pose tractability issues.

To make use of the above we need at least one problem that can be proven to be NP-complete
by itself e.g. by showing every other problem in NP can be explicitly reduced to it. This is
given by:

Theorem (Cook, 1971): The problem Boolean Satisfiability (SAT (V, F )) is NP-complete.
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The SAT (V, F ) problem is that of determining where there is an assignment of truth values to
variables V = {x1, x2, . . . , xn} such that the logical formula F made up of variables in V plus
connectives AND, OR, and NOT , is true. The proof is a classic of the genre, involving a non-
deterministic Turing machine that solves SAT problems being run on logical expressions that
are in essence simulations of other non-deterministic Turing machines solving other problems
in NP, the basic idea being that these logical expressions always have polynomially bounded
length.

A few more brief points. This is the basic outline of the theory of NP-completeness, but a few
things should noted before leaving the subject.

1. To resolve the famous P = NP question in the positive direction requires merely providing
a polynomial time algorithm for any NP-complete problem. No such algorithm has been found
so far, which has lead most interested parties to believe that P 6= NP. The search for a proof
in the negative direction has of course also not yielded a resolution to the problem, but in this
case it was never expected to be easy in the sense of a simple algorithmic construction.

2. Reminder: NP-complete problems are far from the hardest computational problems in
existence. P and NP actually sit at the bottom two rungs of what complexity theorists call
the Polynomial Hierarchy; if P = NP this collapses, but the Polynomial Hierarchy itself resides
within an even bigger hierarchy that includes monsters such as EXPSPACE, i.e. the set of all
problems that require at most an exponential amount of memory resources. There are actually
normal sounding problems that belong in these higher realms: for example, the problem of
deciding whether two regular expressions are equivalent is known to have an exponential lower
bound on its worst case running time.

3. Plus note: NP does not divide neatly into P and NP-complete problems, but has regions
consisting of problems that are (so far) neither. These problems include Graph Isomorphism

(decide whether the labelled graphs G1 and G2 are equivalent) and Prime Factorization (factor
a given integer into its prime components).

4. Lastly, there are complexity classes for types of computations we have not been able to
touch on here. These include classes for approximation algorithms (example: FPTAS, fully

polynomial-time approximation schemes) and randomized algorithms (example: RS, random-

ized polynomial time), and in fact combinations (example: PRAS, polynomial-time randomized

approximation schemes). While many NP-complete problems support quite decent approxi-
mation schemes, it been has shown that unless P = NP some are not approximable to even a
constant factor (Graph Coloring is one of them).

C.5.2 Graph width metrics

Here I will discuss and define some graph width metrics as well as associated vertex orderings,
since these have had an impact on my own research as well as being an important part of graph
theory.

To start, the word “width” itself has no specific technical definition in graph theory, being
reserved for common sense usage, such as to refer to the transverse length of a 2-dimensional
lattice. What this native sense of the word shares with various defined graph widths is certain
algorithms have difficulty pulling a wide graph through a computational bottleneck.
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The affected algorithms are those for which the unprocessed neighbours of processed vertices
(what I will call the frontier) have a direct influence on the computation. This can of course vary
between algorithms. For example, Dijkstra’s shortest path algorithm [31] requires maintenance
of a priority queue containing all the frontier vertices. In any decent implementation individual
operations on the queue are logarithmic in its length, and there can never be more than N
elements in the queue for an N vertex graph, so this is livable. On the other hand, for the
new chromatic polynomial algorithm presented in chapter 3 the number of delta terms in the
current expression can become exponential in the size of the frontier, if the frontier vertices
constitute an independent set. Avoiding this situation was the main reason I devised my own
width metric, termwidth and its associated ordering (see part 2 of appendix B.1).

Bandwidth. Aside from the width of a lattice, the graph width metric scientists will be most
familiar with is bandwidth, since it is applied to matrices as well as graphs. Like many graph
widths, including termwidth, it applies natively to labelled graphs, and in a derived sense to
unlabelled graphs according to a minimax formula. For the labelled graph Gℓ = (Vℓ, Eℓ) with
ordered vertex set Vℓ = v1, v2, . . . , vN , the bandwith is

bw(Gℓ) = max
vivj∈Eℓ

|i− j| , (C.19)

which is exactly the bandwidth of the adjacency matrix of Gℓ. Note that any graph except one
with no edges whatsoever can be given an ordering that achieves a bandwidth of N − 1. The
bandwidth for the unlabelled graph G is obtained from the above by

bw(G) = min{bw(Gℓ) : ℓ is any ordering of G}. (C.20)

Calculating the unlabelled graph bandwidth is an NP-complete problem. A fast heuristic
for bandwidth optimal orderings that gives decent results is the Cuthill-McKee algorithm for
matrices. Apparently for some algebraic applications the reverse of this ordering is preferable
(the metric is unchanged), so Matlab for example supplies a function symrcm to calculate
this reverse Cuthill-McKee ordering. During the first phase of my own chromatic polynomial
research I used this ordering, but re-reversed since the original Cuthill-McKee works better for
graphs with density below ≈ 0.5.

Minimizing bandwidth is always good for graph computation since then you can treat your
frontier as if it was a bounded-size moving window. However, for some computations we do
not really need to worry about the entire frontier at all times, but only those parts of the
frontier that could potentially interact (in a computational way) with the vertex currently
being processed. This, for example, is the case with the greedy graph coloring algorithm.
There are some vertex orderings for which the greedy coloring is the optimal coloring; these are
not orderings that minimize bandwidth, but instead minimize the possibility of the algorithm
surprising itself as it e.g. colors around a cycle.

Treewidth. Within the graph theory community treewidth is regarded as the most important
width metric. The idea of treewidth is that computations on trees are usually very fast since
computations on each branch are independent (i.e. tree computations never surprise them-
selves). The metric is based on a grouping of the vertices called a tree decomposition, which
associates vertices that have potential interactions while separating out groups that can be
dealt with independently. This does not itself define a fixed ordering since, as with trees, an
algorithm can start anywhere, as long as it goes down one branch at a time.

Definition of a tree decomposition: let G = (V, E) be a graph on N vertices, X = X1, X2, . . . , Xt

be a family of subsets of V , and TX be a tree on t vertices such that each vertex of TX is
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associated with an Xi ∈ X (so we can simply call the members of X the vertices of TX). The
tree TX constitutes a tree decomposition of G if:

1. V =

t⋃

k=1

Xk

2. ∀ vivj ∈ E ∃ Xk s.t. vi ∈ Xk and vj ∈ Xk (C.21)

3. vi ∈ Xk1
and vi ∈ Xk2

⇒ vi ∈ Xk for all Xk on the path between Xk1
and Xk2

in T .

Reminder: every path in a tree is unique. Condition 1 insures that every vertex v is covered,
while condition 2 basically states that we are concerned with edge-interaction. Condition 3 is
the definitive one: those Xk containing a particular vertex v make up a (connected) subtree of
T . We can consider this subtree as putting a tractable topology on v’s (algorithmic) interaction
with other vertices.

Tree decompositions are not unique, and there is a trivial decomposition where the entire graph
is contained in a single tree node that does not tell us anything about the graph. The width
of a tree decomposition is defined as the size of the largest Xk, minus 1 (this is in order that
trees themselves have an optimal decomposition width of 1). The treewidth of a graph G is
then defined as

tw(G) = min

{
max
Xk∈X

(|Xk| − 1) : TX is a tree decomposition of G

}
. (C.22)

Computing the treewidth of an arbitrary graph is of course NP-complete. Treewidth itself
has a reserved place in computational complexity theory: many NP-complete problems can be
computed in polynomial time on treewidth-bounded graphs (graph coloring is one of them).
Before we get too excited, it should be kept in mind what this really means: it is easy to do
computations on very thin graphs. It is true that the NP-complete results extend to arbitrary
bounds on treewidth, but as this bound grows linearly the embedded constant in the running
time grows exponentially. In section 5.2.1 of the thesis we note the same thing happening with
the running time of the new chromatic polynomial algorithm on fixed width lattice strips.

Treewidth vs. bandwidth. For any graph, tw(G) ≤ bw(G), since for any labelled graph Gℓ we
can obtain a valid tree decomposition by collecting every set of consecutive vertices in a moving
window of size bw(Gℓ) + 1. The difference is often large, since bandwidth does not respect any
kind of branching structure (e.g. trees can have arbitrary bandwidth). Pathwidth is a related
width metric that uses essentially the same construction as treewidth, but with TX constrained
to be a path rather than an arbitrary tree. As one would expect, the pathwidth pw(G) of a
graph G satisfies tw(G) ≤ pw(G) ≤ bw(G), and it too is not bounded for trees.

For the m × n square lattice (FBC), treewidth, pathwidth, and bandwidth are all equal to
min(m, n). While it is easy to find graphs on N = mn vertices with a width by any of these
metrics greater than

√
N , these tend to be very dense, such as the complete graph KN . When

density is taken into account lattices are in a sense among the worst case graphs for width
metrics of all sorts.
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