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Notation

D∞(G) Max domain of attraction of G, page 11

F 1 − F , tail distribution function

d
=,

d→ Equality in distribution, convergence in distribution

v→ Vague convergence, page 36

w→ Weak convergence

φ Characteristic function

sign Signum function, sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and
sign(x) = 0 if x = 0, page 28

∨,∧ Maximum, minimum

ox(1) A function that tends to zero as x does, page 45

R̄, R̄+, R̄+,0 R ∪ {−∞,∞}, (0,∞], [0,∞]

B, B̄ Borel-σ-Algebra on R, Borel-σ-Algebra on R̄

C Cone, x ∈ C ⇒ tx ∈ C, ∀t ∈ R, page 36

Sd−1, Sd−1
+ {x ∈ Rd ‖x‖ = 1}, {x ∈ Rd ‖x‖ = 1,x ≥ 0}

M+(C) Space of all non-negative Radon measures on C, page 37

∂A Boundary of the set A

L Probability law

Nµ,σ2 Normal distribution with mean µ and variance σ2, stands also for its
distribution function

Par(κ) Pareto distribution with index κ > 0, page 26

Unif[a, b] Uniform distribution on −∞ < a < b <∞

v



‖ · ‖p lp-norm, page 9

‖ · ‖op Operator norm, page 60



Chapter 1

Introduction: On Light Tails,
Heavy Tails and Extremes

1.1 Preliminaries

The aim of this thesis is to find and explore new connections between two classes of
distributions, those with heavy tails and those with light ones, with a special focus
on their extremal behavior. Before we start to explain the course of analysis and
the selected connections in more detail, we will take the time to introduce the types
of distributions, clarify what we mean when speaking of “light” and “heavy” tails of
distributions and note some of the connections between the three types which have
been studied so far.

First of all, note that the word “tail” has a double meaning in probability theory:
The tail function of a random variable X with distribution function F is given by
F := 1−F . Second, the word “tail” is often used as an abbreviation for “tail behavior”
of a distribution and describes the asymptotic behavior of F as x → ∞ (right tail of
the distribution) and of F as x → −∞ (left tail of the distribution). As we will see
later on, the tail of a distribution always comes into play when we deal with limit
theorems in probability, for example for sums or maxima of i.i.d. random variables.
At the latest since the evolving of extreme value theory one could notice a tendency
towards clustering different types of distributions which then got the label “light-tailed”
or “heavy-tailed”. To start with, the phrase “light-tailed” is a term often used in the
literature but seldom exactly defined. Often, this expression stands for distribution
functions F for which

∫
eα|x| F (dx) < ∞ holds for an α > 0. This assumption implies

that the random variable X which has distribution function F possesses finite moments
of all orders. This includes all bounded random variables and those which have tails
that decrease at least exponentially fast, meaning that there exists a β > 0 such that
both

lim
x→∞

eβxF (x) = 0 and lim
x→−∞

e−βxF (x) = 0

hold. As for the “heavy-tailed” random variables, this characteristic is often associ-
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1.2: Connections through Limit Theorems

ated with so-called regular variation of the respective distribution function. We call a
function f : R → R regularly varying (at +∞) with index λ ∈ R if

lim
x→∞

f(tx)

f(x)
= tλ (1.1.1)

holds for all t > 0. If λ = 0 then the function is called “slowly varying”. See [6] for an
extensive treatment of this topic. A non-negative random variable X is called regularly
varying with index α > 0 if the respective tail distribution function is regularly varying
with index −α. Extensions of this definition to real valued random variables and
random vectors have been made and will later be introduced when needed.

The next two sections deal with some already known connections between light and
heavy tails which constitute the background for our further analysis.

1.2 Connections through Limit Theorems

Probably the most common example of a “typical” light-tailed distribution is the nor-
mal distribution, which we denote as Nµ,σ2 . Its predominant role in probability theory
is demonstrated by the Central Limit Theorem:

Theorem 1.2.1 (Central Limit Theorem according to Lindeberg, cf. [20])
Let X1, X2, · · · ∈ R be mutually independent random variables with distribution func-
tions F1, F2, . . . such that

E(Xk) = 0, Var(Xk) = σ2
k > 0,

and put
s2
n = σ2

1 + · · ·+ σ2
n, n ∈ N.

Assume that for each t > 0

s−2
n

n∑

k=1

∫

|y|≥tsn

y2 Fk(dy) → 0, n→ ∞, (1.2.1a)

or, what amounts to the same, that

s−2
n

n∑

k=1

∫

|y|<tsn

y2 Fk(dy) → 1, n→ ∞. (1.2.1b)

Then the distribution of the normalized sum

S∗n =
X1 + · · ·+Xn

sn

converges to the standard normal distribution N0,1.
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1.2: Connections through Limit Theorems

Often, this theorem is applied to the special case of identically distributed random
variables where sn = nσ2

1 → ∞. It is thus evident from (1.2.1a) that the limit behavior
of the normalized sums S∗n is only determined by the tails of the distribution function
F1 and unaffected by its behavior in regions which are bounded away from −∞ and
∞. It is well known that in the i.i.d. case a finite variance of X1 is sufficient for the
Central Limit Theorem to hold. Therefore, all light-tailed distributions as introduced
in the beginning of this chapter (except for the degenerate ones) satisfy the conditions
of the Central Limit Theorem. Before the rise of extreme value theory and the recently
developed sensitivity for non light-tailed distributions, the Central Limit Theorem was
often used as a justification for the assumption of normally distributed random variables
in models: The normal distribution emerges in all cases where the variable in question
is the sum of many small, light-tailed influences and where we can only observe the
final result, which may then be modelled by the the normal distribution.

More generally, limit theorems for sums of i.i.d. random variables may also hold
if they possess infinite variances and in those cases the limit may well differ from the
normal distribution. This leads us to the class of α-stable distributions which can be
described by their characteristic function φ of the type (cf. [21], Chapter 34)

log(φ(t)) = iat− b|t|α (1 + ic sign(t)ω(t, α)) ,

with a ∈ R, b ≥ 0, c ∈ [−1, 1], α ∈ (0, 2] and

ω(t, α) =

{

tan
(
π
2
α
)
, if α 6= 1,

2
π

log |t|, if α = 1.

The normal distribution is a special case of this class of distributions with α = 2.
It is now well known that if X1, X2, . . . are i.i.d. random variables and if there exist
sequences of norming constants a(n) and b(n), n ∈ N, such that

∑n
i=1Xi − b(n)

a(n)
(1.2.2)

converges in distribution (to a non-degenerate limit), this limit distribution is neces-
sarily α-stable (cf. [21], Chapter 33). Thus, for α = 2 the limit distribution is itself
light-tailed, while one can show that for α < 2 the limit distribution has regularly vary-
ing tails with index α (cf. [20], Chapter 17.5). By comparing the light-tailed normal
distribution and the heavy-tailed rest of the α-stable distributions we may therefore
observe the first connections between the aforementioned classes of distributions.

Now, apart from results about the uniqueness of possible limit distributions, there
has always been great interest in necessary and sufficient conditions on the distribution
of the Xi in order to ensure the weak convergence of (1.2.2). Starting from a certain
α-stable limit distribution this problem deals with the characterisation of the so-called
“(sum-)domains of attraction”. Again, regular variation is an important characteristic
in this context. For non-negative i.i.d. random variables X1, X2, . . . with distribution
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1.2: Connections through Limit Theorems

function F there exist sequences a(n) > 0, b(n) ∈ R, n ∈ N, such that (1.2.2) converges
weakly to a non-degenerate limit distribution if and only if the so-called truncated
moment function

µ(x) =

∫ x

0

y2 F (dy)

is regularly varying with index 2 − α, α ∈ (0, 2], where the value of α corresponds to
the index of the α-stable limit distribution. For real valued random variables an addi-
tional, but mild assumption about the balance of positive and negative tail is necessary,
cf. [20], Chapter 17. Thus, both the light-tailed and heavy-tailed distributions play
an important role in limit theorems for sums of i.i.d. random variables and relevant
distributions of both groups can be seen as special representatives of the parametric
family of α-stable distributions.

A second branch of limit theorems are those for maxima of i.i.d. random variables,
which build the foundation of extreme value theory. In contrast to (1.2.2), one is
interested in weak convergence of the distribution of

max(X1, . . . , Xn) − b(n)

a(n)
(1.2.3)

for suitable sequences of norming constants a(n) > 0 and b(n) ∈ R, n ∈ N. It is a
fundamental theorem in extreme value theory that the only possible non-degenerate
limit distributions (up to a linear transformation) are of the form (cf. [17], Chapter
3.4)

Fγ(x) =

{

exp
(
−(1 + γx)−1/γ

)
, γ 6= 0

exp (− exp(−x)) , γ = 0
, for 1 + γx > 0, Fγ(x) = 0, else.

Note that limγ→0(1 + γx)−1/γ = exp(−x) for all x ∈ R, thus we have a smooth
parametrization. One often distinguishes the cases γ < 0 (Weibull), γ = 0 (Gumbel)
and γ > 0 (Fréchet) - see Chapter 2 for details. We note that for γ ≤ 0 the distribution
Fγ is light-tailed (meaning that all moments exist) while for γ > 0 it is heavy-tailed
and regularly varying with index γ−1. Again, we have a transition from light-tailed
distributions to heavy-tailed ones in the spectrum of possible limit distributions.

Like in the case of sums, one is interested not only in possible limit distributions
but also in necessary and sufficient conditions on the distribution of the Xi in order to
ensure the weak convergence of (1.2.3). Starting from an extreme value distribution
Fγ this problem deals with the identification of the so-called “(max-)domains of attrac-
tion”. Again, regular variation is an important characteristic in this context, especially
for the case γ > 0. For i.i.d. random varibales X1, X2, . . . with distribution function
F there exists a sequence a(n) > 0, n ∈ N, such that (1.2.3) (with b(n) ≡ 0) converges
weakly to Fγ with γ > 0 if and only if F is regularly varying at +∞ with index 1/γ.
The characterisation for the case γ < 0 also involves regular variation, but in a modi-
fied form since this case only includes bounded random variables. Light-tailed random
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1.3: Connections through Random Difference Equations

variables like the normal oder exponential distribution are typical representatives of
the max domain of attraction for the case γ = 0 (Gumbel distribution), which is the
most tedious case of the three regarding its charaterization. Chapter 2 deals with this
case in more detail.

Noticing the similarities between the limit theorems for sums and for maxima of
i.i.d. random variables one could furthermore ask whether it is possible to combine
those limit theorems in a more general framework. Based on [38], this has been done
in Chapter 2.

1.3 Connections through Random Difference Equa-

tions

The last section introduced some functional similarities between special cases of light-
tailed and heavy-tailed distributions regarding both limit distributions for sums and
maxima of i.i.d. random variables and their respective domains of attraction. Note,
however, that in general light-tailed distributions of the random variables X1, X2, . . .
lead to light-tailed limit distributions, while heavy-tailed distributions of the random
variables X1, X2, . . . lead to heavy-tailed limit distributions both for sums and for
maxima. In this section, in contrast, we will examine how light-tailed random variables
can be used as “input” for a time series model which then has heavy-tailed random
variables as “output” in the form of a stationary solution. While a multivariate version
of this model will be studied in Chapter 4, we will introduce the univariate version here
first (cf. [22]).

Let (At, Bt)t∈N be an i.i.d. sequence of R
2-valued random vectors and let a real-

valued time series (Xt)t∈N0 satisfy the recursive equation

Xt = AtXt−1 +Bt, t ∈ N, (1.3.1)

where X0 is supposed to be independent of (At, Bt)t∈N. Equation (1.3.1) is then called
“random difference equation” (RDE). Applications of this type of model are numerous,
cf. [42], and imply that Xt represents the value of certain objects (e.g. the price of an
asset, the amount of a certain good or the size of a population) at time t, where Bt is
a quantity that is added or subtracted and At determines the proportional growth or
decay of the stock from time t − 1 to t. Now, an important question for this kind of
equations is whether a stationary distribution of (Xt)t∈N exists. Note that a random
variable X with this stationary distribution would satisfy the equation

X
d
= AX +B, (1.3.2)

where (A,B) has the same distribution as (At, Bt), t ∈ N, and is independent of X (cf.
[42], Lemma 1.1).
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1.3: Connections through Random Difference Equations

Iterating the recursion we get that

Xt = Bt + AtBt−1 + AtAt−1Bt−2 + · · ·+ AtAt−1 . . . A2B1 + AtAt−1 . . . A1X0, t ∈ N.

A sufficient condition for a stationary solution to (1.3.2) is the existence of a κ > 0
such that

E|A|κ = 1, E|A|κ log+ |A| <∞, 0 < E|B|κ <∞,

together with some mild assumptions about certain distributions related to A and B
being non-lattice (cf. [28]). These assumptions are typically satisfied for light-tailed
distributions of A and B. Although it is in general hard to make precise statements
about the distribution of a stationary solution to (1.3.2), it is well-known that the solu-
tion has certain asymptotic properties. One can show that under the assumptions made
above the distribution of X solving (1.3.2) asymptotically behaves like the distribution
of maxn∈N |

∏n
i=1Ai| (cf. [28]). Taking logarithms, we may identify the transformed

random variable as the maximum of a random walk (maxn∈N

∑n
i=1 log |Ai|) whose dis-

tribution can be found using renewal theory (cf. [19], Chapter 11). One can then show
that there exist constants c− and c+ such that

P (X > x) ∼ c+x
−κ and P (X < −x) ∼ c−|x|−κ (1.3.3)

for large values of x. Thus, by starting with light-tailed random variables (At, Bt)t∈N

and using a simple recursive definition we end up with heavy-tailed random variables as
the stationary solution to the process studied. Examples for applications of the model
(1.3.1) and especially its multivariate extensions encompass the popular GARCH(p, q)
models for financial time series and are in line with the observations of heavy tails of
marginal distributions for financial data. More on this will be laid out in Chapter 3.
It is devoted to the extension of the work done in [39] to two connected time series. It
deals with the so-called “tail chain” of a process, which is an instrument to describe
the behavior of a time series (Yt)t∈Z given that we have an extreme observation at time
zero. Putting it more formally, we look at the limit

lim
u→∞

L
(
Y−n
u
, . . . ,

Y0

u
, . . . ,

Ym
u

|Y0| > u

)

(1.3.4)

for m,n ∈ N. One can show that the existence of a non-degenerate weak limit of (1.3.4)
is closely related to multivariate regular variation of the time series. Furthermore, if
the time series behaves asymptotically like a random difference equation (the meaning
of “asymptotically” in this context is explained in [39] and Chapter 3) one can show
that the limit law in (1.3.4) has an especially simple form, like a multiplicative random
walk with light-tailed increments.

It becomes clear from Equation (1.3.3) that κ, the tail index of regular variation for
X, is the key characteristic for the asymptotic behavior of the distribution of the sta-
tionary solution to (1.3.2). In the univariate case, we recall from the assumptions made

6



1.3: Connections through Random Difference Equations

above that κ is uniquely determined by being the solution of the equation E|A|κ = 1.
While this equation is analytically solvable for some distributions of A, it can always be
tackled numerically (at least as long as one can simulate from the distribution of |A|),
and therefore the derivation of κ bears no problems in the one-dimensional setting.
This changes dramatically as one passes over to multivariate RDEs (cf. Chapter 4),
where the finding of the right κ for a given distribution of the matrix A is connected to
the solution of a relation much more complicated than E|A|κ = 1 and a simple formula
for κ depending on the distribution of A is only known in a few special cases. A new
way of assessing the index of regular variation by a combination of theory and Monte
Carlo simulation is proposed in Chapter 4.
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Chapter 2

Limit Laws for Power Sums and
Norms of i.i.d. Samples

2.1 Introduction

The aim of this chapter is to explore connections between limit laws for sums and
limit laws for maxima by combining both sums and maxima in the broader setting of
lp-norms. This chapter is based on the article [26].

The use of lp-norms is a well-known way of measuring vectors in Rn. In the following,
we study lp-norms of random samples, where X1, X2, . . . are i.i.d. positive random
variables. Let the lp-norm ‖ ·‖p of a positive sample X1n = (X1, X2, . . . , Xn) be defined
as

‖X1n‖p =

(
n∑

i=1

Xp
i

)1/p

, p > 0, (2.1.1)

and ‖X1n‖∞ = max{X1, . . . , Xn}. (We do not exclude 0 < p < 1 in (2.1.1) although
‖ · ‖p is not a norm in that case.) For p = 1 or p = ∞ and n→ ∞ the limit behavior of
these norms is well explored in terms of limit results for sums and for maxima of i.i.d.
samples which have already been mentioned in the introduction. Here, however, we
allow p to grow with n, thus looking at lp(n)-norms of samples as n→ ∞. Our analysis
of lp(n)-norms of samples is based on the closely related behavior of power sums of the
form

(
‖X1n‖p(n)

)p(n)
=

n∑

i=1

X
p(n)
i .

For both norms and power sums, the limit behavior is determined by the distribution
of X1 and the behaviour of p(n) as n → ∞. Typically, an important role will be
played by the largest summand, especially for heavy-tailed distributions of X1 and
fast-growing sequences p(n). We show that nontrivial limit laws emerge if p(n) is
chosen in accordance with the tail behavior of X1. The resulting families of limit laws

9



2.2: Fundamentals

can be considered as links between the limit theory for sums on the one hand and
extreme value theory on the other hand.

For samples X1n of positive i.i.d. random variables and properly chosen sequences
p(n) → ∞ the limit behavior of the appropriately normalized power sums

∑n
i=1X

p(n)
i − b̂(n)

â(n)

has been studied recently in [4] and [7]. Both articles are based on a Tauberian approach
and assume a certain asymptotic tail behavior ofX1. Surprisingly, the emerging families
of limit distributions are identical for the different tail behaviors studied there. We will
demonstrate that this generality is no coincidence, that is, we will show that the limit
behavior of power sums and norms of samples is basically governed by max domains
of attraction. Now, since the distributions studied in [4] and [7] belong to the Gumbel
max domain of attraction, they yield the same family of limit laws.

While it is illustrated in [4] that the analysis of power sums has applications, for
example, in branching processes and the Random Energy Model (see [11]), the limit
distributions of norms are of theoretical interest, since they build a smooth transition
between limit laws for sums and for maxima.

For samples X1n of i.i.d. positive random variables from the max domain of attrac-
tion of the Weibull or Fréchet distribution the limit laws for the suitably normalized
lp(n)-norms

‖X1n‖p(n) − b̃c(n)

ãc(n)

have been derived in [38]. Schlather’s method, which is based on the asymptotic tail
behavior of the distribution of X1, works well for the cases studied there but fails for
the Gumbel domain of attraction as it contains distributions with a wide range of
different tail behavior.

Using a connection between extreme value theory and limit theorems for sums in
our proofs, we follow a different approach. This method is applicable to each of the
three max domains of attraction in the same way as demonstrated in Section 2. For the
Gumbel case, by use of the von Mises representation of its max domain of attraction,
we obtain convergence to the family of distributions found in [4] and [7], which is
stated in Section 3, and proved in Section 4. However, in some cases this convergence
is restricted to certain subsequences. Section 5 provides such an example as well as
some further results for the Gumbel case. Section 6 is dedicated to the Weibull and
the Fréchet case.

2.2 Fundamentals

Our approach is based on extreme value theory. Consequently, all distributions that
are considered here are assumed to be in the max domain of attraction of an extreme
value distribution.

10



2.2: Fundamentals

Let X1, X2, . . . be i.i.d. with distribution function F . Then F is said to be in the
max domain of attraction of an extreme value distribution with distribution function
G if there exist norming constants a(n) and b(n) such that

lim
n→∞

P

(
max{X1, . . . , Xn} − b(n)

a(n)
≤ x

)

= G(x) (2.2.1)

for all x ∈ R. Then G belongs to one of the three possible extreme value distributions
(see, e.g., [37]), namely

• the Weibull distribution with parameter α > 0

Ψα(x) = exp(−(−x)α), x ≤ 0,

• the Fréchet distribution with parameter α > 0

Φα(x) = exp(−x−α), x ≥ 0,

• the Gumbel distribution

Λ(x) = exp(−e−x), x ∈ R.

We write F ∈ D∞(G) if F is in the max domain of attraction of G.
Both limit theorems for maxima and for sums can be formulated in such a way that

part of the necessary and sufficient conditions depends on the behavior of the tails of
the distribution functions. This connection between sums and maxima, which, to our
knowledge, has been established first in [29], p. 315, will form the base of our analysis.

One can show (see, e.g., [17], Proposition 3.3.2) that equation (2.2.1) is equivalent
to

lim
n→∞

nF (a(n)x+ b(n)) = − log(G(x)), x ∈ R. (2.2.2)

On the other hand, for sums

Sn = ξn,1 + . . .+ ξn,kn − b(n)

of independent and infinitesimal random variables ξn,l with distribution functions Fn,
n ∈ N, 1 ≤ l ≤ kn, a criterion for convergence as formulated in [21], p. 116-117, includes
an expression similar to (2.2.2). Here, it is necessary that there exist nondecreasing
functions

M(·) with M(−∞) = 0 and N(·) with N(+∞) = 0,

defined on [−∞, 0) and (0,+∞], respectively, such that at every continuity point of
M(u) and N(u) it holds that

lim
n→∞

knFn(u) = M(u), u < 0, (2.2.3)

11



2.3: Main results for the Gumbel case

lim
n→∞

knF n(u) = −N(u), u > 0. (2.2.4)

The similarity between (2.2.2) and (2.2.4) is fundamental to our analysis. In the
next section, it will be used for the Gumbel max domain of attraction and we will
derive limit laws for power sums. As a second step, we then use the following lemma
by Bogachev [7] to derive the limit distributions for the corresponding norms.

Lemma 2.2.1 ([7], Lemma 9.1) Let {S(t), t ≥ 0} be a family of positive random
variables, such that for some (non-negative) functions B(t), A(t) and a non-degenerate
random variable Y ,

S∗(t) :=
S(t) − B(t)

A(t)

d→ Y (t→ ∞),

where
d→ stands for convergence in distribution. Set R(t) := S(t)1/t and B∗(t) :=

B(t)/A(t).

(a) If B∗(t) → ∞ as t→ ∞, then

tB∗(t)

(
R(t)

B(t)1/t
− 1

)

d→ Y (t→ ∞).

(b) If B∗(t) ≡ 0 then

t

(
R(t)

A(t)1/t
− 1

)

d→ log Y (t→ ∞).

2.3 Main results for the Gumbel case

Throughout this section let X1, X2, . . . be a sequence of i.i.d. positive random variables
with distribution function F ∈ D∞(Λ). Then, according to (2.2.2), there exist norming
constants a(n) and b(n), such that

lim
n→∞

nF (a(n)x+ b(n)) = − log(Λ(x)) = exp(−x). (2.3.1)

If the summands ξn,k := (Xk − b(n))/a(n) were infinitesimal, equation (2.3.1) would
ensure that the convergence criterion (2.2.4) is met for the sums

∑n
i=1 ξn,i. However,

since

sup
1≤k≤n

P

(∣
∣
∣
∣

Xk − b(n)

a(n)

∣
∣
∣
∣
≥ ǫ

)

≥ sup
1≤k≤n

P

(
Xk − b(n)

a(n)
≤ −ǫ

)

≥ P

(
max1≤k≤nXk − b(n)

a(n)
≤ −ǫ

)

(2.3.2)

→ Λ(−ǫ) > 0, n→ ∞,

12



2.3: Main results for the Gumbel case

we know that this is not the case. To apply the connection between (2.2.2) and (2.2.4),
we use a power transformation of the summands. If follows from the domain of the
Gumbel distribution, which is (−∞,∞), that

b(n)/a(n) → ∞ (2.3.3)

as n→ ∞. Let us replace x in (2.3.1) by

gn(x) :=
b(n)

a(n)
(xa(n)/cb(n) − 1)

with c > 0. Because of (2.3.3) this function converges pointwise to c−1 log x as n→ ∞.
Therefore,

nF
(
b(n)xa(n)/cb(n)

)
= nF (a(n)gn(x) + b(n))

= nF
(
a(n)

(
c−1 log x+ o(1)

)
+ b(n)

)

∼ − log
(
Λ
(
c−1 log x

))
= x−1/c, n→ ∞, (2.3.4)

where the asymptotic relation follows from the local uniformity of weak convergence to
a continuous limit (see [17], p. 149). Note that formula (2.3.4) equals condition (2.2.4)
for sums of the form

n∑

i=1

(
Xi

b(n)

)cb(n)/a(n)

, (2.3.5)

which consist of infinitesimal summands. Consequently, we will analyze limit theorems
for power sums of the form (2.3.5). An analogous procedure can be applied to the
Weibull case, while the power transformation is not needed in the Fréchet case.

For further investigation of the Gumbel case, the so-called von Mises representation
of a distribution function F ∈ D∞(Λ) will be used.

Lemma 2.3.1 ([37], Proposition 1.4) A distribution function F with upper endpoint
x∞ ≤ ∞ belongs to the Gumbel max domain of attraction if and only if for x ∈
(−∞, x∞) there exists a representation

F (x) = c(x) exp

(

−
∫ x

z0

1(z0,x∞)(u)

f(u)
du

)

(2.3.6)

for some z0 < x∞ with limx→x∞ c(x) = c > 0 and an absolutely continuous strictly
positive function f on [z0, x∞) with limx→x∞ f

′(x) = 0.

We are now able to formulate our main result.

Theorem 2.3.2 Let X1, X2, . . . be positive i.i.d. random variables with distribution
function F ∈ D∞(Λ). Choose norming constants for the sequence of maxima

b(n) = F←(1 − 1/n) and a(n) = f(b(n))

13



2.3: Main results for the Gumbel case

with F←(x) = inf{t ∈ R : F (t) ≥ x}, f from the von Mises representation (2.3.6) and
define p(n) := b(n)/a(n). There exists a family Fc of distribution functions of the form
given below and a subsequence nk → ∞ such that for every c > 0 there exist norming
constants âc(nk), b̂c(nk), k ∈ N, so that

Fc(x) = lim
k→∞

P

(∑nk

i=1X
cp(nk)
i − b̂c(nk)

âc(nk)
≤ x

)

.

The norming constants âc(nk) and b̂c(nk) can be chosen according to Table 2.1.

c âc(n) b̂c(n)

0 < c ≤ 1

2

√

nVar(X
cp(n)
1 1{X1≤b(n)}) nE(X

cp(n)
1 1

{X
cp(n)
1 ≤âc(n)}

)

1

2
< c < 1 b(n)cp(n)

nE(X
cp(n)
1 1{X1≤b(n)}) +

b(n)cp(n)

1 − c

c = 1 b(n)cp(n)
nE(X

cp(n)
1 1{X1≤b(n)})

c > 1 b(n)cp(n) 0

Table 2.1: Norming constants

If 0 < c ≤ 1
2
, the Fc equal the standard normal distribution function N0,1.

If 1
2
< c < ∞, the Fc are given by Fc(x) = G1/c(x), where G1/c is an α-stable

distribution function with α = 1/c, skewness β = 1 and characteristic function

φ1/c(u) =







exp

(

−Γ(1 − 1/c)|u|1/c exp

(

−iπ
2c

sign(u)

))

, c 6= 1

exp

(

iu(1 − γ) − π

2
|u|
(

1 + i sign(u)
2

π
log |u|

))

, c = 1.

(2.3.7)

Here, γ is the Euler constant, and Γ(·) is the gamma function.

The limit laws for lp(n)-norms, which are missing in [38], are readily obtained with
the help of Lemma 2.2.1.

Corollary 2.3.3 Let X1n and p(n) be as in Theorem 2.3.2. There exists a family F̃c
of distribution functions of the form given below and a subsequence nk → ∞ such that
for every c > 0 there exist norming constants ãc(nk), b̃c(nk), k ∈ N, so that

F̃c(x) = lim
k→∞

P

(

‖X1nk
‖cp(nk) − b̃c(nk)

ãc(nk)
≤ x

)

.

If 0 < c ≤ 1
2
, the F̃c equal the standard normal distribution function N0,1.

If 1
2
< c ≤ 1, the F̃c are given by F̃c(x) = G1/c(x).

If 1 < c <∞, the F̃c are given by F̃c(x) = G1/c(exp(x)).

14



2.4: Proof of Theorem 2.3.2

Furthermore,

F̃c(cx) → Λ(x), c→ ∞. (2.3.8)

Proof. The existence of norming constants and the form of the limit distributions follow
from Lemma 2.2.1. We use part (a) of the lemma if c ≤ 1 and part (b) if c > 1. Relation
(2.3.8) has been shown in [7], Theorem 10.2.

2.4 Proof of Theorem 2.3.2

4.1 Main idea
We use the abovementioned theorem for limit laws of sums (see [21], p. 116-117). It
has already been shown that the summands in (2.3.5) are infinitesimal. Let F c

n denote
the distribution function of (X1/b(n))cp(n). Since F c

n(u) = 0 for all u < 0, from (2.2.3)
we readily obtain M(·) ≡ 0. For u > 0 it follows from (2.2.4) and (2.3.4) that for any
subsequence nk → ∞,

N(u) = − lim
k→∞

nkF c
nk

(u) = −u−1/c, u > 0. (2.4.1)

We are now left to prove (see [21], p. 116) that, along a certain subsequence nk,

lim
ǫ→0

lim inf
k→∞

nk

(
∫ ǫ

0

x2dF c
nk

−
(∫ ǫ

0

x dF c
nk

(x)

)2
)

= lim
ǫ→0

lim sup
k→∞

nk

(
∫ ǫ

0

x2dF c
nk

−
(∫ ǫ

0

x dF c
nk

(x)

)2
)

=: σ2 ∈ [0,∞). (2.4.2)

Note that

0 ≤
∫ ε

0

x2dF c
nk

(x) −
(∫ ε

0

xdF c
nk

(x)

)2

≤
∫ ε

0

x2dF c
nk

(x),

and we will in fact show that, for an appropriate subsequence nk,

lim
k→∞

nk

∫ ε

0

xpdF c
nk

(x) =
1

cp− 1
εp−1/c, p > 1/c, (2.4.3)

which will readily imply that σ2 = 0. The limit (2.4.3) would follow immediately if one
could interchange limit and integration. We will choose a proper subsequence in order
to justify this interchange by dominated convergence.

4.2 Choice of a proper subsequence
Let f be given by (2.3.6). Choose a sequence bk → x∞ such that for the function
g(x) := f(x)/x the inequality g(y) ≥ g(bk) holds for all y ∈ (z0, bk) and all k ∈ N.
For instance, since g is continuous and converges to zero (see [37], Lemma 1.2), set
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2.4: Proof of Theorem 2.3.2

bk := min{x ∈ [z0, x∞)|g(x) ≤ 1/k}. Setting nk := ⌊1/F (bk)⌋, where ⌊x⌋ denotes the
integer part of x, it follows that

nkF (f(bk)x+ bk) ∼
F (f(bk)x+ bk)

F (bk)

=
c(f(bk)x+ bk)

c(bk)
exp

(

−
∫ f(bk)x+bk

bk

1(z0,x∞)(u)

f(u)
du

)

∼ exp(−x), k → ∞, (2.4.4)

with the same argumentation as in the proof of Lemma 2.3.1 (see [37], p. 42). There-
fore, both sequences (f(bk), bk) and (a(nk), b(nk)) can be used as norming constants
for the maxima along the subsequence nk. By the Convergence to Types Theorem, it
follows that

lim
k→∞

a(nk))

f(bk)
= lim

k→∞

f(b(nk))

f(bk)
= 1 and lim

k→∞

bk − b(nk)

f(bk)
= 0. (2.4.5)

In the following let nk be chosen as described above.

4.3 Application of dominated convergence
Partial integration in (2.4.3) yields

nk

∫ ε

0

xpdF c
nk

(x) = −nk
∫ ε

0

xpdF c
nk

(x)

= −nkεpF c
nk

(ε) + nkp

∫ ε

0

xp−1F c
nk

(x)dx, (2.4.6)

where the first term in (2.4.6) converges to −εp−1/c for every subsequence nk → ∞ by

(2.3.4). In what follows let βck := f(b(nk))
cb(nk)

. Now,

nkF c
nk

(x) = nkF (b(nk)x
βc

k)

∼ F (b(nk)x
βc

k)

F (b(nk))

=
c(b(nk)x

βc
k)

c(b(nk))
exp

(
∫ b(nk)

b(nk)x
βc

k

1(z0,x∞)(u)

f(u)
du

)

=
c(b(nk)x

βc
k)

c(b(nk))
exp

(

1

c

∫ 0

log x

f(b(nk)) exp (βcku)

f (b(nk) exp (βcku))

× 1(z0,x∞) (b(nk) exp (βcku)) du

)

.

With the previously defined g we get

nkF c
nk

(x) ∼ c(b(nk)x
βc

k)

c(b(nk))
exp

(

1

c

∫ 0

log x

g(b(nk))

g(b(nk) exp(βcku))
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2.4: Proof of Theorem 2.3.2

× 1(z0,x∞) (b(nk) exp (βcku)) du

)

. (2.4.7)

For ǫ ∈ (0, c) there exists a k(ǫ) ∈ N such that |c(b(nk)) − c| < ǫ for all k > k(ǫ).
Since F lies between 0 and 1 and the exponential part of F in (2.3.6) is monotonically
decreasing, it follows that

c(y) ≤ exp

(
∫ b(nk(ǫ))

z0

1(z0,x∞)(u)

f(u)
du

)

for y < b(nk(ǫ)). Therefore, we can find a constant C > 0 such that

c(b(nk)x
βc

k)

c(b(nk))
≤ C

for all x < 1 if k is large enough. For such x and k we get

nkF c
nk

(x) ≤ C exp

(

1

c

∫ 0

log x

g(bk)(1 + ǫ)

g(b(nk) exp(βcku))
1(z0,x∞) (b(nk) exp (βcku)) du

)

≤ C exp

(

−1 + ǫ

c
log x

)

because of (2.4.5), the choice of nk and since b(nk) ≤ bk.
Taking the limit in (2.4.6), we can interchange limit and integral by Lebesgue’s

Theorem to obtain

lim
k→∞

nk

∫ ε

0

xpdF c
nk

(x) = −εp−1/c + p

∫ ε

0

xp−1x−1/cdx

= −εp−1/c +
cp

cp− 1
εp−1/c =

1

cp− 1
εp−1/c.

4.4 Limit distributions and norming constants for c > 1
2

For c > 1
2

both (2.2.4) and (2.4.2) are met and the limit law has characteristic function
φ(·), where

log(φ(t)) = iµt− σ2

2
t2 +

∫

|u|>0

(

eiut − 1 − iut

1 + u2

)

dN(u) (2.4.8)

(see [21], p. 117), with
N(u) = −u−1/c, σ2 = 0, (2.4.9)

and location parameter µ yet to be determined. Hence, the limit law is α-stable (see
[21], p. 164) with α = 1/c and skewness parameter β = 1. The value of µ depends on
the choice of additive norming constants. We choose

Bc(n) =







0 for c > 1

nE(X
cp(n)
1 1{X1≤b(n)}) for c = 1

nE(X
cp(n)
1 1{X1≤b(n)}) + b(n)cp(n)

1−c
for 1/2 < c < 1.
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2.4: Proof of Theorem 2.3.2

Then, for τ > 0, it follows that (see [21], pp. 84, 117)

µ = lim
k→∞

[

nkE

((
X1

b(nk)

)cp(nk)

1{“

X1
b(nk)

”cp(nk)
≤τ
}

)

− Bc(nk)

b(nk)cp(nk)

]

−
∫ τ

0

x3

1 + x2
dN(x) +

∫ ∞

τ

x

1 + x2
dN(x).

Using (2.4.9) and considering various cases for the constant c we obtain

• For c > 1:

µ = lim
k→∞

nk

∫ τ

0

x dF c
nk

(x) − 0 − 1

c

∫ τ

0

x2−1/c

1 + x2
dx+

1

c

∫ ∞

τ

x−1/c

1 + x2
dx

=
1

c

∫ τ

0

(

x−1/c − x2−1/c

1 + x2

)

dx+
1

c

∫ ∞

τ

x−1/c

1 + x2
dx

=
1

c

∫ ∞

0

x−1/c

1 + x2
=

π

2c cos
(
π
2c

)

by (2.4.3) and [23], # 3.241(2).

• For c = 1:

µ = lim
k→∞

nk

(∫ τ

0

x dF c
nk

(x) −
∫ 1

0

x dF c
nk

(x)

)

− 1

c

∫ τ

0

x

1 + x2
dx+

1

c

∫ ∞

τ

x−1

1 + x2
dx

=
1

c

∫ τ

1

x−1 dx− 1

c

∫ τ

1/τ

x

1 + x2
dx =

1

c
log τ − 1

c
log τ = 0,

since limit and integration are interchangeable on the interval (1, τ), and because
of [23], # 2.145(2).

• For 1/2 < c < 1:

µ = lim
k→∞

nk

(∫ τ

0

x dF c
nk

(x) −
∫ 1

0

x dF c
nk

(x)

)

− 1

1 − c

− 1

c

∫ τ

0

x2−1/c

1 + x2
dx+

1

c

∫ ∞

τ

x−1/c

1 + x2
dx

= −1

c

∫ ∞

τ

(

x−1/c − x−1/c

1 + x2

)

dx− 1

c

∫ τ

0

x2−1/c

1 + x2
dx

= −1

c

∫ ∞

0

x2−1/c

1 + x2
dx =

π

2c cos
(
π
2c

)

again by (2.4.3) and [23], # 3.241(2).
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It is shown in [4], Theorem 6.2, that the characteristic functions (2.4.8) may be
written in the form (2.3.7) with constants as stated in Theorem 2.3.2.

4.5 Limit distributions and norming constants for c ≤ 1

2

The case c ≤ 1
2

is studied seperately, as we have to change the multiplicative norming
constants to keep the sum of the truncated variances bounded. According to [21], p.
130-131, for a given subsequence nk, it suffices to find a sequence Cnk

→ ∞ such that

lim
k→∞

nk

∫

|x|>Cnk

dF c
nk

= 0 (2.4.10)

and

lim
k→∞

nk
C2
nk





∫

|x|<Cnk

x2dF c
nk

(x) −
(
∫

|x|<Cnk

xdF c
nk

(x)

)2


 = ∞. (2.4.11)

To satisfy condition (2.4.11), we subtract the median mn from each variable (2.3.5)
as done in [19]. It follows from (2.3.4) that mn tends to zero. From local uniform
convergence we obtain

nkF
c,m
nk (x) ∼ x−1/c, x > 0, (2.4.12)

where F c,m
nk

denotes the distribution function of the median-subtracted variables. Hence,
(2.4.10) is valid for every sequence Cnk

that tends to infinity. To verify (2.4.11) we
make use of the median-normalization. Feller shows (see [19], p. 527) that it suffices
to find a sequence Cnk

such that

lim
k→∞

nk
C2
nk

(
∫

|x|<Cnk

x2dF c,m
nk

(x)

)

= ∞.

But it follows from (2.4.12) and Fatou’s Lemma that

lim
k→∞

nk

∫

|x|<ǫ

x2dF c,m
nk

(x) = ∞

for any ǫ > 0. Hence, an appropriate sequence Cnk
can be constructed. We can choose

norming constants as given in the theorem.

2.5 Further results for the Gumbel case

The following corollary shows that in some cases the restriction to certain subsequences
is not necessary.

Corollary 2.5.1 Let X1, X2, . . . be i.i.d. with distribution function F ∈ D∞(Λ) with
representation (2.3.6) and let g(x) := f(x)/x be ultimately monotone. Let p(n) be
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defined as in Theorem 2.3.2. Then, for every c > 0, there exist norming constants
âc(n), b̂c(n) such that

lim
n→∞

P

(∑n
i=1X

cp(n)
i − b̂c(n)

âc(n)
≤ x

)

= Fc(x),

with Fc defined as in Theorem 2.3.2. The norming constants may be chosen according
to Table 1.

Proof. If g is ultimately monotone, the constant z0 can be shifted in such a way that
g is monotonically decreasing on (z0, x∞). The proof of Theorem 2.3.2 then shows the
convergence for the whole sequence.

The following example illustrates that the restriction in Theorem 2.3.2 is not purely
technical.

Example 2.5.2. Let X1, X2, . . . be i.i.d. with tail distribution function

F (x) = exp

(

−
∫ x

0

u

1.5 + sin(u)
du

)

.

Then F ∈ D∞(Λ), but there exist c > 0 and a sequence nk → ∞ such that no norming

constants exist that ensure convergence of the power sums
∑nk

i=1X
cp(nk)
i to the limit

distribution function Fc of Theorem 2.3.2.

Proof. Set f(x) = x−1(1.5 + sin(x)). Since f ′(x) → 0 as x → x∞ = ∞, it follows from
Lemma 2.3.1 that F has a von Mises representation (2.3.6), and therefore F ∈ D∞(Λ).
Now, let us choose a subsequence that does not allow for the interchange of limit and
integral on the left hand side of (2.4.3). Here, the idea is to find a sequence nk such that
the integrand in (2.4.7) is large for small values of x. By reasoning similar to the proof of
Theorem 2.3.2, it is possible to choose a subsequence nk such that b(nk) = (k+0.5)π are
suitable norming constants for the maxima. With g(x) = f(x)/x = x−2(1.5 + sin(x)),
along this sequence we have g(b(nk)) = 2.5((k + 0.5)π)−2. It follows for the second
term on the right hand side of (2.4.6) that

2nk

∫ ε

0

xF c
nk

(x) dx ∼ 2

∫ ε

0

exp

(

log x+

∫ b(nk)

b(nk)x
βc

k

1

f(u)
du

)

dx

= 2

∫ log ε

−∞

exp

(

2y +

∫ b(nk)

b(nk) exp(βc
ky)

1

f(u)
du

)

dy. (2.5.1)

Next, we will show that −(2 + ǫ)y is a lower bound for the inner integral in (2.5.1) in
certain regions of the integration range. To this end, we analyze the behavior of the
inner integral for y in a neighborhood of

yk := log

(
k − 0.5

k + 0.5

)
(k + 0.5)2π2

2.5
= −(k + 0.5)π2

2.5
+ o(1).
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Choose δ > 0 and y ∈ (yk − δ, yk + δ) with δ(y) := y − yk. It follows that

−1

y

∫ b(nk)

b(nk) exp((yk+δ(y))βc
k)

1

f(u)
du

=

∫ (k+0.5)π

(k−0.5)π exp(δ(y)g(b(nk))/c)

u

1.5 + sin(u)
du

2.5

(k + 0.5)π2
(1 + o(1))

=

∫ (k+0.5)π

(k−0.5)π+o(1)

1

1.5 + sin(u)
du

(
2.5

π
+ o(1)

)

=

∫ 0.5π

−0.5π+o(1)

1

1.5 + sin(u)
du

(
2.5

π
+ o(1)

)

=
2√
1.25

(

arctan

(
1.5 tan(π/4) + 1√

1.25

)

− arctan

(
1.5 tan(−π/4) + 1√

1.25

))

×
(

2.5

π
+ o(1)

)

≈ 2.236 + o(1),

by use of [23], #2.551(3).
Hence, for every ǫ > 0 and δ > 0 there exists a k(δ, ǫ) ∈ N such that

∫ b(nk)

b(nk) exp
“

y
a(nk)

cb(nk)

”

1

f(u)
du ≥ −(2.2 − ǫ)y

for all y ∈ (yk − δ, yk + δ) with k > k(δ, ǫ). The integrand in (2.5.1) is therefore
bounded from below by exp(−(0.2− ǫ)y) in a region of length 2δ that tends to −∞ as
k → ∞. This prevents the convergence of the integral on the right hand side of (2.4.3)
as k → ∞. Now, since we have shown that the lim sup in (2.4.2) is infinite, we can argue
similarly to the case c ≤ 1/2 in the proof of Theorem 2.3.2. Namely, the distributions
of the power sums converge to a normal distribution along this subsequence. By the
Convergence to Types Theorem this prevents convergence to Fc for c > 1/2.

Note the analogy of this example to distributions that have a rather light tail but
are not in D∞(Λ) because of their discreteness (e.g., a binomial distribution). Similar to
discrete laws, the tail distribution function given in the example above has a somewhat
stairlike appearance since f is an oscillating function.

The next theorem shows that the limit distributions that are not covered by The-
orem 2.3.2 are quite similar to the ones studied so far.

Theorem 2.5.3 Let X1n and p(n) be defined as in Theorem 2.3.2. Assume that there
exist c > 0, a subsequence nk → ∞, and norming constants âc(nk) and b̂c(nk) such
that a limit distribution function

F̂c(x) = lim
k→∞

P

(∑nk

i=1X
cp(nk)
i − b̂c(nk)

âc(nk)
≤ x

)
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2.6: The Weibull and Fréchet cases

exists and is not of the same type as the Fc in Theorem 2.3.2, i.e., there exists no linear
transformation l(·) such that F̂c(x) = Fc(l(x)) for all x ∈ R. Then, c > 1/2 and F̂c is
of the same type as N0,1 or G1/c ⋆N0,σ2 , where ⋆ denotes the convolution of distribution
functions.

Proof. Every limit law has to be infinitely divisible and is uniquely determined by its
Lévy measure and σ2. The Lévy measure is defined by M(·) and N(·) in (2.2.3) and
(2.2.4). If we choose multiplicative norming constants as in (2.3.5), cf. the proof of
Theorem 2.3.2, we have M(·) ≡ 0, and N(·) of the form (2.4.1). With asymptotically
different norming constants we obtain M(·) ≡ N(·) ≡ 0. Apart from the arbitrary
location and scale parameters the limiting law is determined by whether it has a normal
component (i.e. σ2 > 0 in (2.4.8)) or not. To determine this component, consider the
lim sup in (2.4.2). If it is infinite, then, similarly to the case c ≤ 1/2 in the proof
of Theorem 2.3.2, we obtain convergence to a normal distribution along a certain
subsubsequence; if it equals zero, we obtain convergence to an α-stable distribution;
if it is finite and positive, by choosing the corresponding subsubsequence we obtain
convergence to an α-stable distribution convoluted with a normal distribution. Hence,
the subsequence converges to a distribution of the stated form.

2.6 The Weibull and Fréchet cases

The limit laws of norms for the Weibull and the Fréchet max domain of attraction are
studied in [38]. With the technique stated above we find limit distributions for power
sums and are able to simplify some of the proofs in [38].

Let X1, X2, . . . be i.i.d. positive random variables with distribution function F ∈
D∞(Ψα) and upper endpoint x∞ < ∞. Without loss of generality, x∞ = 1. Now,
possible norming constants for the sequence of maxima are given by a(n) = 1−F←(1−
1/n) and b(n) ≡ 1 (see [17], Theorem 3.3.12). Similar to (2.3.2) we can conclude that
the summands ξn,k := (Xk − a(n))/b(n) are not infinitesimal. Since b(n)/a(n) → ∞
as n → ∞, a power transformation allows us to analyze sums of the form (2.3.5). We
obtain M(·) ≡ 0 and

N(u) = − lim
n→∞

nF c
n(u) = log(Ψα(log(u1/c))) = −

(

− log u

c

)α

, u ∈ (0, 1),

for the Lévy measure of the limit law of the power sums (2.3.5). To show that condition
(2.4.2) is met we make use of a special representation of F :

F (x) = c(x) exp

(

−
∫ x

0

δ(t)

1 − t
dt

)

(2.6.1)

for x ∈ (0, 1) with δ : R+ → R+, δ(t) → α and c(t) → c > 0 as t → 1 (see [37],
Corollary 1.14).
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2.6: The Weibull and Fréchet cases

Equation (2.4.2) is again used to derive σ2. Interchanging limit and integral in

lim
n→∞

np

∫ ǫ

0

xp−1F c
n(x) dx, p > 0,

is allowed because of dominated convergence: Choose the functions c and δ in (2.6.1)
such that |δ(t) − α| < ε for all t ∈ (0, 1) and some ε with 0 < ε < α. Now, we obtain

nF c
n(x) ∼

c(x1/cp(n))

c(F←(1 − 1/n))
exp

(

−
∫ x1/cp(n)

F←(1−1/n)

δ(t)

1 − t
dt

)

≤ C max

[

exp

(

−(α− ε)

∫ x1/cp(n)

F←(1−1/n)

1

1 − t
dt

)

,

exp

(

−(α + ε)

∫ x1/cp(n)

F←(1−1/n)

1

1 − t
dt

)]

= Cmax
{
exp

(
(α− ε) log

(
p(n)(1 − x1/cp(n))

))
,

exp
(
(α + ε) log

(
p(n)(1 − x1/cp(n))

))}

≤ C max
{
(− log(x1/c))α−ε, (− log(x1/c))α+ε

}
.

It follows from (2.4.2) that σ2 = 0.

Theorem 2.6.1 Let X1, X2, . . . be positive i.i.d. random variables with distribution
function F ∈ D∞(Ψα), α > 0, and upper endpoint 0 < x∞ <∞. Let

b(n) ≡ x∞, a(n) = x∞ − F←(1 − 1/n) and p(n) = b(n)/a(n).

Then, there exists a family Fc of distribution functions of the form given below such
that for every c > 0 there exist norming constants âc(n), b̂c(n), n ∈ N, so that

Fc(x) = lim
n→∞

P

(∑n
i=1X

cp(n)
i − b̂c(n)

âc(n)
≤ x

)

.

The limit distribution functions are of the type Fc(x) = Hc(x), where Hc has charac-
teristic function of the form (2.4.8) with σ2 = 0 and N(u) = −c−α (− log u)α 1(0,1)(u).

Corollary 2.6.2 ([38], Theorem 2.2) Let X1n and p(n) be as in Theorem 2.6.1. Then,
for every c > 0, there exist norming constants ãc(n), b̃c(n), n ∈ N, such that

H̃c(exp(x)) = lim
n→∞

P

(

‖X1n‖cp(n) − b̃c(n)

ãc(n)
≤ x

)

.

Let us conclude by considering the Fréchet max domain of attraction. In contrast
to the cases studied above, a purely multiplicative normalization is sufficient for the
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2.6: The Weibull and Fréchet cases

sequences of maxima, i.e. a(n) = F←(1− 1/n) and b(n) ≡ 0 (see [17], Theorem 3.3.7).
Since a(n) → ∞ as n → ∞, the variables ξn,k = (Xk − b(n))/a(n) are infinitesimal,
here.

Let X1 be a random variable with distribution function F ∈ D∞(Φα). Then, the
random variable Xc

1, c > 0, belongs to the sum domain of attraction of an α-stable
distribution (see, e.g., [17], Theorem 2.2.8). Hence, there exist norming constants
âc(n) and b̂c(n) and a limit distribution function Fc such that

Fc(x) = lim
n→∞

P

(∑n
i=1X

c
i − b̂c(n)

âc(n)
≤ x

)

for all x ∈ R. If c < α/2, the Fc equal the normal distribution function N0,1, whereas
for c ≥ α/2 they equal an α-stable distribution function Gα/c. This connection between
limit laws for sums and for maxima of random variables with regularly varying tails is
in fact well known and has been studied in [13]. Schlather’s result for the limit laws of
norms is stated below for completeness.

Corollary 2.6.3 ([38], Theorem 2.3) Let X1n = (X1, X2, . . . , Xn) where X1, X2, . . . are
positive i.i.d. random variables with distribution function F ∈ D∞(Φα), α > 0. There
exists a family F̃c of distribution functions of the form given below such that for every
c > 0 there exist norming constants ãc(n), b̃c(n), n ∈ N, so that

F̃c(x) = lim
n→∞

P

(

‖X1n‖c − b̃c(n)

ãc(n)
≤ x

)

.

If 0 < c ≤ α
2
, the F̃c equal the standard normal distribution function N0,1.

If α
2
< c ≤ α, the F̃c are given by F̃c(x) = Gα/c(cx).

If α < c <∞, the F̃c are given by F̃c(x) = Gα/c(x
c).

Note the similarity between the family of laws that we obtained for the Gumbel
case and the family for the Fréchet case with α = 1. For c ≤ 1 the limit distribution
functions F̃c are equal for the two cases whereas for c > 1 the limit random variables
in the Gumbel case are logarithms of the limit random variables in the Fréchet case.
For c→ ∞ this reflects the relation Λ = Φ1 ◦ exp.

Closing the gap which existed for the Gumbel case we have thus shown that for all
three max domains of attraction a family of limit distributions exists which builds a
smooth transition from the limit laws for sums to the limit laws for maxima.
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Chapter 3

Extremal Behavior of two
Connected RDE-like Time Series

3.1 Introduction

The previous chapter dealt with connections between limit laws for sums and limit laws
for maxima. While the three classes of extreme value distributions have been studied
seperately we have nevertheless been able to notice similarities between the diffrent
cases, cf. for example the remark on the families of distributions for the Gumbel and
the Fréchet case at the end of the last chapter. In this section we allow for an interplay
of heavy-tailed and light-tailed distributions where the latter are used as input for a
time series which will show heavy-tailed stationary behavior.

It has already been mentioned in the introduction that heavy-tailed distributions
emerge as the stationary solutions to so-called random difference equations (RDEs).
In the following we will study univariate RDEs while their multivariate analogs will be
analyzed in Chapter 4. To this end, let (Xt)t∈Z satisfy the equation

Xt = AtXt−1 +Bt, t ∈ Z, (3.1.1)

where (At, Bt)t∈Z is an i.i.d. sequence in R2 with (At, Bt) independent of (Xs)s<t. A
well known sufficient condition for the existence of a stationary solution to (3.1.1) is
stated in the following theorem.

Theorem 3.1.1 (cf. [22], Lemma 2.2 and Theorem 4.1) Let (3.1.1) be given as above
and let there exist a κ∗ > 0, such that

E
(
|A1|κ

∗)
= 1,

E
(
|A1|κ

∗

log+ |A1|
)
<∞

and let the conditional law of log |A1|, given A1 6= 0 be nonarithmetic. If furthermore

E
(
|B1|κ

∗)
<∞,
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3.1: Introduction

then there exists a unique stationary solution (Xt)t∈Z to (3.1.1) and there exist constants
C+, C− ∈ R

+
0 such that

P (Xt > x) ∼ C+x
−κ∗ , P (Xt < −x) ∼ C−x

−κ∗ , x→ ∞. (3.1.2)

Here, C+ = 0 or C− = 0 indicate that P (Xt > x) = o(x−κ
∗
) or P (Xt < −x) = o(x−κ

∗
),

respectively, and C− + C+ > 0 if and only if

P (B1 = (1 −A1)c) < 1 (3.1.3)

for all c ∈ R.

Thus, if C+ > 0 or C− > 0 the upper or, respectively, lower tail of the stationary
solution to (3.1.1) is regularly varying with index κ∗.

In this chapter we are going to study the extremal behavior of the process (Xt)t∈Z

and related processes. For this purpose, we are not only interested in the extremal
behavior of a single observation at a given time but in the behavior of the whole
process, given that we have an extreme observation of, say, X0. Thus, we are looking at
the finite-dimensional distributions of the properly scaled process, conditioning on the
event |X0| > u as u → ∞. Let us, for a start, assume that the conditions of Theorem
3.1.1 together with (3.1.3) are satisfied and that (Xt)t∈Z is a stationary solution to
(3.1.1). The regular variation of the distribution F |X0| then guarantees that the weak
limit

lim
u→∞

L
( |X0|

u
|X0| > u

)

exists and equals a Pareto distribution with parameter κ∗ (Par(κ∗), for short) since

lim
u→∞

P

( |X0|
u

> x |X0| > u

)

= lim
u→∞

F
|X0|

(xu)

F
|X0|

(u)
= x−κ

∗

for all x > 1. Using the constants C− and C+ we may also analyze the behavior of the
upper and the lower tail of X0 separately, namely

lim
u→∞

P

(
X0

u
> x |X0| > u

)

=
C+

C− + C+
x−κ

∗

and

lim
u→∞

P

(
X0

u
< −x |X0| > u

)

=
C−

C− + C+
x−κ

∗

which leads to

L
(
X0

u
|X0| > u

)

w→ L(M ·X),

for u→ ∞, where M and X are independent random variables with

P (M = −1) =
C−

C− + C+
, P (M = 1) =

C+

C− + C+
,
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3.2: Segers’ results for a single RDE-like time series

and X ∼ Par(κ∗).
Analyzing the process following an extreme observation at time zero we may apply

the continuous mapping theorem to derive that for n ∈ N:

L
(
X0

u
,
X1

u
, . . . ,

Xn

u
|X0| > u

)

w→ L
(

MX,MXÃ1, . . . ,MX

n∏

i=1

Ãi

)

, (3.1.4)

for u → ∞ with random variables M,X as above and Ãi, i = 1, . . . , n, i.i.d. and
independent of (M,X) with the same distribution as A1. Obviously, just like the
original process defined in (3.1.1), the limit process in (3.1.4) is a Markov chain and
since it describes the extremal behavior of the process it is called the “tail chain” of the
process (cf. [40]). It was shown in [39] that the “forward” tail chain in (3.1.4) can be
complemented by a “backward” tail chain which describes the conditional distribution
of the properly scaled process before the extreme event at time zero. Again, this process
has a simple Markovian structure. Segers’ approach now amplifies the analysis of RDEs
to processes which behave asymptotically like RDEs in the sense that, roughly speaking,
Xt+1 ∼ XtAt for large values of Xt, where At is a random variable independent of Xt.
For comparison and motivation we will recapture some of Segers’ results, which we will
sometimes slightly modify where it is useful for our later extensions.

3.2 Segers’ results for a single RDE-like time series

Let us consider the real-valued stochastic process (Yt)t∈Z defined by the recursive equa-
tion

Yt = Φ(Yt−1, ǫt), t ∈ Z, (3.2.1)

where

(i) (ǫt)t∈Z ∈ Rd are i.i.d. random vectors and ǫt, t ∈ Z, is independent
of (Ys)s<t,

(ii) Φ is a measurable function from R × Rd to R.

(3.2.2)

Since we leave the framework of RDEs we cannot deduce the existence of a station-
ary solution to (3.2.1), furthermore, if one exists, we do not know about its regular
variation properties. Therefore, we will assume that a stationary solution to (3.2.1)
exists and fullfills the following two conditions.

Condition 3.1 a) There exists 0 < κ <∞ such that

lim
y→∞

P (|Y0| > yx)

P (|Y0| > y)
= x−κ, 0 < x <∞.

Moreover, there exists 0 ≤ p ≤ 1 such that

lim
y→∞

P (Y0 > y)

P (|Y0| > y)
= p.
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3.2: Segers’ results for a single RDE-like time series

Condition 3.2 a) There exists a function φ : Rd × {−1, 1} → R such that

lim
y→∞

Φ(yw(y), v(y))

y
= wφ(v, sign(w))

for all w(y) → w 6= 0, v(y) → v ∈ Rd and

lim
y→∞

Φ(yw(y), v(y))

y
= 0

for w(y) → 0, v(y) → v ∈ Rd.

To be in line with our subsequent modifications on the theorems the assumptions on
Φ are slightly stronger than the ones originally formulated in [39]. This also motivates
the assumption ǫt ∈ Rd instead of the broader setting of Segers where the ǫt are just
assumed to be random elements of a measurable space. The motivation for Condition
3.2 a) becomes clear by writing

lim
y→∞

L
( |Y0|

y
,
Y0

|Y0|
,
Y1

|Y0|
|Y0| > y

)

= lim
y→∞

L




|Y0|
y
,
Y0

|Y0|
,
Φ
(

|Y0| Y0

|Y0|
, ǫ1

)

|Y0|
|Y0| > y



 ,

where the condition admits the application of the continuous mapping theorem (cf.
Theorem 4.27, [27]). Induction then allows to derive the so-called “forward tail chain”
of the process (Yt)t∈N0 , cf. [39], pp. 4-5, for details of the proof.

Proposition 3.2.1 (cf. [39], Theorem 2.3) Let (Yt)t∈Z (not necessarily stationary) be
given by (3.2.1)-(3.2.2) and let Conditions 3.1 a) and 3.2 a) hold. Then for t ∈ N, as
y → ∞,

L
( |Y0|

y
,
Y0

|Y0|
, . . . ,

Yt
|Y0|

|Y0| > y

)

w→ L(Y,M0, . . . ,Mt), (3.2.3)

with

Mj = h(Mj−1, Aj , Bj), j = 1, 2, . . . ,

where h : R3 → R, h(y, a, b) := y
(
a1(0,∞)(y) + b1(−∞,0)(y)

)
and Y,M0, (A1, B1), (A2, B2), . . .

are independent with

(i) Y ∼ Par(κ),

(ii) P (M0 = 1) = p = 1 − P (M0 = −1),

(iii) L(Ai, Bi) = L(φ(ǫt, 1), φ(ǫt,−1)), i ∈ N.

If (Yt)t∈Z is additionally assumed to be stationary, there also exists a so-called
“backward tail chain” which has a surprisingly simple form as well.
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3.2: Segers’ results for a single RDE-like time series

Proposition 3.2.2 (cf. [39], Theorem 5.2) Let (Yt)t∈Z be a stationary process given
by (3.2.1)-(3.2.2) and let Conditions 3.1 a) and 3.2 a) hold. Then for all s, t ∈ N, as
y → ∞,

L
( |Y0|

y
,
Y−s
|Y0|

, . . . ,
Yt
|Y0|

|Y0| > y

)

w→ L(Y,M−s, . . . ,Mt), (3.2.4)

with

(i) Y ∼ Par(κ), independent of (Mt)t∈Z,

(ii) (Mt)t∈Z is a BFTC(κ, µ) where µ = L(M0,M1) with (M0,M1) as in Proposition
3.2.1.

The expression BFTC stands for back-and-forth tail chain and is defined as follows

Definition 3.2.3 (cf. [39], Definition 4.1). A discrete-time process (Mt)t∈Z is said to
be a back-and-forth tail chain with index 0 < κ < ∞ and forward transition law µ,
notation BFTC(κ, µ), if

(i) L(M0,M1) = µ,

(ii) µ∗ := L(M0,M−1) is adjoint to µ, meaning that

E[(xM0)
κ
+ ∧ (yM1)

κ
+] = E[(xM−1)

κ
+ ∧ (yM0)

κ
+], ∀x, y ∈ R, (3.2.5)

(iiia) for all integer t ≥ 1 and all real xt−1, xt−2, . . . ,

L(Mt|Mt−1 = xt−1,Mt−2 = xt−2, . . . ) = L(h(xt−1, A1, B1)),

where A1 and B1 are independent with

L(A1) = L
(
M1

M0

M0 = 1

)

, L(B1) = L
(
M1

M0

M0 = −1

)

.

(iiib) for all integer t ≥ 1 and all real x−t+1, x−t+2, . . . ,

L(M−t|M−t+1 = x−t+1,M−t+2 = x−t+2, . . . ) = L(h(x−t+1, A−1, B−1),

where A−1 and B−1 are independent with

L(A−1) = L
(
M−1

M0
M0 = 1

)

, L(B−1) = L
(
M−1

M0
M0 = −1

)

.

While this definition seems to be a bit “ad hoc” at first sight, it can be shown that
the definition of the adjoint measure as in (3.2.5) and the definition of the BFTC as in
3.2.3 guarantees that the following proposition holds.
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Proposition 3.2.4 (cf. [39], Proposition 4.2) Let (Mt)t∈Z be a BFTC(κ, µ). For all
integers s ≥ 1 and t ≥ 0 and for every bounded, measurable function f : R

s+t+1 → R

such that f(x−s, . . . , xt) = 0 as soon as x−s = 0, the numbers

E

[

f

(
M−s+i
|Mi|

, . . . ,
Mt+i

|Mi|

)

|Mi|κ
]

, i = 0, . . . , s

are all the same.

It can be shown that a process with this property has the same structure as the
limit law

lim
y→∞

L
(
Y−s
|Y0|

, . . . ,
Yt
|Y0|

|Y0| > y

)

.

Since for a given measure µ it is not clear from the definition if the adjoint measure µ∗

actually exists it is useful to know that the unique existence of µ∗ is guaranteed if µ is
the distribution of a random vector (M0,M1) such that

(i) P (M0 = 1) = p = 1 − P (M0 = −1) and

(ii) E
[
(σM1)

κ
+

]
≤ P (M0 = σ) for σ ∈ {−1, 1} (cf. [39], Proposition 3.1).

Since Equation (3.2.5) is quite unhandy to derive µ∗ from µ for practical purposes (for
example for simulations), we may use that the relation

E
[
1{M∗0 =σ}f(M∗1 )

]

= E
[
f(M0/|M1|)(σM1)

κ
+

]
+
(
P (M0 = σ) − E((σM1)

κ
+)
)
f(0)

holds for all M∗1 -integrable functions f and for σ ∈ {−1, 1} with L(M0,M1) = µ and
L(M∗0 ,M

∗
1 ) = µ∗ (cf. [39], Proposition 3.1).

Taken together, Propositions 3.2.1 and 3.2.2 show that the limit distribution

lim
y→∞

L
((

Y0

y
,
Y−s
|Y0|

, . . . ,
Yt
|Y0|

)

|Y0| > y

)

of the scaled conditional process has a very simple structure, where multiplication with
independent factors leads us to the next value of the chain. We may think of the tail
chain as a process consisting of two components: The scale of the process is determined
by a Pareto distributed random variable Y while its relative behavior is determined by
a multiplicative random walk which solely depends on p ∈ [0, 1] and the distribution
of φ(ǫt,±1). Many applications of this and related models (see, for example, Section
3.7) imply a light-tailed distribution of φ(ǫt,−1) and φ(ǫt, 1). Thus, while the marginal
distribution of Yt is heavy-tailed and, as is shown in Section 6 of [39], the stationary
process (Yt)t∈Z given by (3.2.1)-(3.2.2) is regularly varying if it satisfies Conditions
3.1 a) and 3.2 a), its extreme value behavior is strongly influenced by the light-tailed
distributions of φ(ǫ,±1).
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3.3 Extension to two connected time series

We will now extend the setting of [39] to the scenario of two connected time series.
When modelling processes it is sometimes convenient to use two separate time series
which are connected in a simple way. This holds especially true for financial time series
- think for example of the ARCH (“autoregressive conditional heteroscedasticity”) and
GARCH (“generalized ARCH”) modelling where the price of an asset is driven by an
underlying volatility process. A GARCH(p, q) process with p, q ∈ N0 consists of two
time series (Xt)t∈Z and (σt)t∈Z which satisfy the following two equations:

Xt = σtǫt+1, t ∈ Z, (3.3.1)

with ǫt, t ∈ Z, i.i.d., ǫt independent of (Xs−1, σs)s<t and E(ǫt) = 0,Var(ǫt) = 1 (of-
ten, the ǫt, t ∈ Z, are assumed to be standard normally distributed). The so-called
“volatility process” (σt)t∈Z ≥ 0 is given by

σ2
t = α0 +

p∑

i=1

αiX
2
t−i +

q∑

j=1

βjσ
2
t−j , t ∈ Z, (3.3.2)

with αi, βj ≥ 0 and αpβq 6= 0. A GARCH(p, 0) model corresponds to an ARCH(p)
model. Under certain assumptions about the distribution of ǫt and the values of the
αi’s and βj ’s one can show that a stationary solution to (3.3.1) and (3.3.2) exists. For
example, a sufficient condition is given by

∑p
i=1 αi +

∑q
j=i βj < 1 (cf. [1], p. 190).

Compare [8] and [41] for the origins of GARCH(p, q) models and [1] for a compound
treatment of their characteristics. See also Chapter 4 where we will come back to
regular variation properties of GARCH(p, q) processes.

One can interprete these two time series as a visible one ((Xt)t∈Z, the price of the
asset) and a hidden one, which cannot be observed directly ((σt)t∈Z, the volatility).
Figure 3.1 shows a part of the S&P 500 time series and the estimated corresponding
volatility. While the GARCH(p, q) models have become extremely popular tools in
financial mathematics the most used specification is the simplest form of the model,
the GARCH(1, 1) process.

The aim of our extensions of Segers’ theorems is to analyze the joint behavior of
two connected time series like the ones of a GARCH(1, 1) process with the help of a
tail chain approach. Motivated by the setting of a visible process (further denoted by
(Xt)t∈Z) and an underlying process (further denoted by (Yt)t∈Z) we are interested in the
behavior of the underlying process, given that we have an extreme observation of the
visible process. We will assume that the underlying process satisfies the assumptions
made in [39] just like the volatility process of a GARCH(1, 1) model does.

Therefore, let (Yt)t∈Z be a stationary time series given by (3.2.1)-(3.2.2) and let
Conditions 3.1 a) and 3.2 a) be satisfied. Furthermore, let

Xt = Ψ(Yt, ǫt−s−, . . . , ǫt+s+), t ∈ Z, (3.3.3)
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3.3: Extension to two connected time series

S & P 500

01.06.84 19.10.87 27.10.97 14.04.00 24.07.02

−0
.2

−0
.1

0
0.

05
0.

1

 Estimated volatility

01.06.84 19.10.87 27.10.97 14.04.00 24.07.02

0
0.

02
0.

04
0.

06
0.

08

Figure 3.1: S&P 500 index and estimated volatility using a GARCH(1, 1) model and [43].

with −s− − 1 ≤ 0 ≤ s+ and measurable Ψ : R
s−+s++2 → R. Thus, the visible process

(Xt)t∈Z depends on the underlying process (Yt)t∈Z and both share the innovations ǫt, t ∈
Z, as a source for random development. Note that the recursive definition of Yt would
allow us to find a function Ψ̃ : Rs−+s++2 → R such that Xt = Ψ̃(Yt−s−, ǫt−s− , . . . , ǫt+s+).
This would allow us to set s̃+ = s−+ s+ and s̃− = 0, but the original definition is often
more suitable to examples and will therefore be kept.

An example for time series described by (3.2.1)-(3.2.2) and (3.3.3) is given by a
GARCH(1,1) process, which has the simple form

Xt = σtǫt+1, t ∈ Z, (3.3.4)

(for technical reasons we will mainly look at

X2
t = σ2

t ǫ
2
t+1, t ∈ Z,

instead) and
σ2
t = α0 + α1σ

2
t−1ǫ

2
t + β1σ

2
t−1, t ∈ Z, (3.3.5)

with suitable constants α0, α1, β1 > 0 and ǫt, t ∈ Z, i.i.d. with E(ǫt) = 0,Var(ǫt) = 1.
Taking (σ2

t )t∈Z as (Yt)t∈Z and (X2
t )t∈Z as (Xt)t∈Z this example satisfies equations (3.2.1)-

(3.2.2) and (3.3.3) with

Φ(x, e) = α0 + α1xe
2 + β1x, Ψ(x, e) = xe, s− = −1, s+ = 1.
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3.3: Extension to two connected time series

We will assume that Ψ satisfies a condition analogue to 3.2 a), where we have to
keep in mind that (Xt)t∈Z is in general not a Markov chain like (Yt)t∈Z.

Condition 3.2 b) There exists a function ψ : Rs−+s++1 × {−1, 1} → R such that

lim
y→+∞

Ψ(yw(y), v(y))

y
= wψ(v, sign(w))

for all w(y) → w 6= 0, v(y) → v ∈ Rs−+s++1 and

lim
y→+∞

Ψ(yw(y), v(y))

y
= 0

for w(y) → 0, v(y) → v ∈ Rs−+s++1.

Furthermore, we will assume that X0 and Y0 are tail equivalent.

Condition 3.1 b) There exists C > 0 such that

lim
x→∞

P (|X0| > x)

P (|Y0| > x)
= C.

If it is possible to find two independent random variables Ỹ and Z̃, such that

|Y0| d
= Ỹ and |X0| d

= Ỹ Z̃ and if 0 < E(|Z̃|κ+ε) < ∞ holds for an ε > 0, then
Condition 3.1 b) follows from Condition 3.1 a) as a consequence of Breiman’s Lemma
with C = E(|Z̃|κ) (cf. [12]). Of course, Conditions 3.1 a) and 3.1 b) imply that

lim
x→∞

P (|X0| > yx)

P (|X0| > x)
= y−κ, 0 < y <∞.

Given these assumptions we now want to derive the form of the limit law

lim
x→∞

L
(
Y−s
x
, . . . ,

Y0

x
, . . . ,

Yt
x

|X0| > x

)

, (3.3.6)

for s, t ∈ N. Now, the difficulty consists in the interconnection of the time series (Xt)t∈Z

and (Yt)t∈Z. A large observation of X0 depends on Y0 but also on (ǫ−s−, . . . , ǫs+). But
then these ǫt’s also directly influence the values of Y−s−, . . . , Ys+. Therefore, it has to
be evaluated if a tail chain approach is suitable for the analysis of (3.3.6), and, if so,
which parts of the time series (Yt)t∈Z can be treated with this approach. We will show
that the tail chain approach is suitable for Yt, t < s− − 1, and Yt, t > s+, and split
up the time series accordingly. For further investigations, we have to assume that the
conditional limit distribution of (Y−s−−1, . . . , Ys+) exists.

Condition 3.3 There exists a random vector (Y X
−s−−1, . . . , Y

X
0 , . . . , Y X

s+
) such that

lim
x→∞

L
(
Y−s−−1

x
, . . . ,

Y0

x
, . . . ,

Ys+
x

|X0| > x

)

= L(Y X
−s−−1, . . . , Y

X
0 , . . . , Y X

s+). (3.3.7)

33



3.3: Extension to two connected time series

From a theoretical point of view one can show that the family of distributions
defined by the left hand side of (3.3.7) and indexed by x is tight if Conditions 3.1 a)
and 3.1 b) are fulfilled and if (Yt)t∈Z is stationary, therefore a weak accumulation point
must exist but is not necessarily unique. From a practical point of view the verification
of Condition 3.3 may get cumbersome, therefore we provide some Lemmata to facilitate
this task. To start with, it is often easier and sufficient to check whether the limit of
the conditional distribution of (Y−s−−1, ǫ−s−, . . . , ǫs+), given that we have an extreme
observation of |X0|, exists:

Lemma 3.3.1 Let (Yt, Xt)t∈Z be given by (3.2.1)-(3.2.2) and (3.3.3) and let Condition
3.2 a) be satisfied. If there exists a random vector (Ŷ X

−s−−1, ǫ
X
−s−

, . . . , ǫXs+) such that

lim
x→∞

L
(
Y−s−−1

x
, ǫ−s−, . . . , ǫs+ |X0| > x

)

= L(Ŷ X
−s−−1, ǫ

X
−s−

, . . . , ǫXs+), (3.3.8)

then Condition 3.3 is satisfied with

L
(
Y X
−s−−1, . . . , Y

X
s+

)
= L

(

Ŷ X
−s−−1, . . . , Ŷ

X
s+

)

, (3.3.9)

where
Ŷ X
−s−−1+n = Ŷ X

−s−−1+n−1φ
(

ǫXs−−1+n, sign(Ŷ X
−s−−1+n−1)

)

(3.3.10)

for all n ∈ {1, . . . , s− + s+ + 1}.

Proof. Let (3.3.8) hold. We will analyze the joint limit behavior of Yt and ǫt, t ∈ Z,
and show that for all i ∈ {0, . . . , s− + s+ + 1}

lim
x→∞

L
(
Y−s−−1

x
, . . . ,

Y−s−−1+i

x
, ǫ−s−, . . . , ǫs+ |X0| > x

)

= L(Ŷ X
−s−−1, . . . , Ŷ

X
−s−−1+i, ǫ

X
−s−, . . . , ǫ

X
s+) (3.3.11)

where Ŷ X
−s−−1+n is defined as in (3.3.10) for 0 ≤ n ≤ i. The claim then follows for

i = s− + s+ + 1, the proof is by induction on i. For a start, if i = 0, then (3.3.11)
follows from (3.3.8).

For the induction step let (3.3.11) hold for i ∈ {0, . . . , s− + s+} and set for abbre-
viation ǫ = (ǫ−s−, . . . , ǫs+) and ǫ

X = (ǫX−s−, . . . , ǫ
X
s+

), then

lim
x→∞

L
(
Y−s−−1

x
, . . . ,

Y−s−+i

x
, ǫ |X0| > x

)

= lim
x→∞

L




Y−s−−1

x
, . . . ,

Y−s−+i−1

x
,
Φ
(

x
Y−s−+i−1

x
, ǫ−s−+i

)

x
, ǫ |X0| > x





= lim
x→∞

L
(

gx

(
Y−s−−1

x
, . . . ,

Y−s−+i−1

x
, ǫ

)

|X0| > x

)

,
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3.3: Extension to two connected time series

with

gx(y−s−−1, . . . , y−s−+i−1, e)

:=

(

y−s−−1, . . . , y−s−+i−1,
Φ
(
xy−s−+i−1, e−s−+i

)

x
, e

)

with e = (e−s−, . . . , es+). As x tends to infinity, this function converges pointwise to

g(y−s−−1, . . . , y−s−+i−1, e)

:=
(
y−s−−1, . . . , y−s−+i−1, y−s−+i−1φ(e−s−+i, sign(y−s−+i−1)), e

)

because of the assumptions made in Condition 3.2 a). Together with the induction
hypothesis this lets us apply a version of the continuous mapping theorem (Theorem
4.27, [27]),

lim
x→∞

L
(
Y−s−−1

x
, . . . ,

Y−s−+i

x
, ǫ |X0| > x

)

= lim
x→∞

L
(

gx

(
Y−s−−1

x
, . . . ,

Y−s−+i−1

x
, ǫ

)

|X0| > x

)

= L
(

g(Ŷ X
−s−−1, . . . , Ŷ

X
−s−+i−1, ǫ

X)
)

= L
(

Ŷ X
−s−−1, . . . , Ŷ

X
−s−+i−1, Ŷ

X
−s−+i−1φ(ǫX−s−+i, sign(Ŷ X

−s−+i−1)), ǫ
X
)

.

This proves (3.3.11) for all i ∈ {1, . . . , s− + s+ + 1} and shows that Condition 3.3 is
satisfied.

The next lemma might be helpful to derive the distribution in (3.3.8).

Lemma 3.3.2 Let (Yt, Xt)t∈Z be given by (3.2.1)-(3.2.2) and (3.3.3), stationary, and
let Conditions 3.1 a) and b) be satisfied. Let ǫ, ǫX and e stand for the same vectors
as in the proof of Lemma 3.3.1. If there exist functions f+ and f−, both mapping
Rs−+s++1 × R+ to [0, 1] such that

lim
x→∞

P

( |X0|
x

> 1 ǫ = e,
Y−s−−1

x
> y

)

= f+(e, y)

and

lim
x→∞

P

( |X0|
x

> 1 ǫ = e,
Y−s−−1

x
< −y

)

= f−(e, y)

for all (e, y) ∈ Rs−+s++1 × R+, then (3.3.8) is satisfied with

P
(

Ŷ X
−s−−1 > y, ǫX ∈ A

)

=
p

C
y−κ

∫

A

f+(e, y)P ǫ(de) (3.3.12)
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3.4: Multivariate regular variation

and

P
(

Ŷ X
−s−−1 < −y, ǫX ∈ A

)

=
1 − p

C
y−κ

∫

A

f−(e, y)P ǫ(de), (3.3.13)

for all y > 0, A ∈ Bs−+s++1.

Proof. To see that (3.3.12) holds under the above circumstances, let us write

lim
x→∞

P

(
Y−s−−1

x
> y, ǫ ∈ A |X0| > x

)

= lim
x→∞

P
(
Y−s−−1

x
> y, ǫ ∈ A, |X0| > x

)

P (|X0| > x)

= lim
x→∞

P
(
Y−s−−1 > xy

) ∫

A
P (|X0| > y ǫ = e, Y−s−−1 > xy)P ǫ |Y−s−−1>xy(de)

P (|X0| > x)

ǫ,Y−s−−1ind.
= lim

x→∞

P
(
Y−s−−1 > xy

) ∫

A
P (|X0| > y ǫ = e, Y−s−−1 > xy)P ǫ(de)

P (|X0| > x)

stationarity
= lim

x→∞

P (Y0 > xy)
∫

A
P (|X0| > y ǫ = e, Y−s−−1 > xy)P ǫ(de)

P (|X0| > x)

Domin. conv.
= lim

x→∞

P (Y0 > xy |Y0| > xy)P (|Y0| > xy)

P (|X0| > x)

∫

A

f+(e, y)P ǫ(de)

3.1 a), b)
=

p

C
y−κ

∫

A

f+(e, y)P ǫ(de).

Equation (3.3.13) follows analogously.

Note that Lemma 3.3.2 gives a complete characterization of (Y X
−s−−1, ǫ

X
−s−, . . . , ǫ

X
s+)

only in the case that P (Y X
−s−−1 = 0) = 0.

3.4 Multivariate regular variation

Although Lemmas 3.3.1 and 3.3.2 give a notion when Condition 3.3 is satisfied, this
condition looks like a very strong assumption. Nevertheless, it is closely related to the
theory of multivariate regular variation which is quite well explored for large classes
of common time series models. From the equivalent definitions of multivariate regular
variation which are known, we choose the same as is used in [39], although we will use
the slightly more general concept of multivariate regular variation on a cone instead
of multivariate regular variation on R̄d (cf. [36], Chapter 6). Let C be a cone, i.e. a
non empty subset of R̄d, such that x ∈ C implies that tx ∈ C for all t > 0. We call a
random vector Y ∈ Rd multivariate regularly varying with index κ > 0 on C if there
exists a univariate regularly varying function U : R+ → R+ with index −κ (cf. (1.1.1))
and a non-degenerate, non-zero Radon measure ν on C such that

P (Y ∈ x·) /U(x)
v→ ν(·), x→ ∞, (3.4.1)
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3.4: Multivariate regular variation

where
v→ stands for vague convergence (cf. [36], p. 49) in M+(C), the space of all

non-negative Radon measures on C. The choice of C is often crucial for the analysis
of regular variation, cf. [36], Chapter 9.4. Popular choices for C are C = R̄d \ {0} or
C = R̄d

+ \ {0}, in the following we will choose C =
(
R̄+,0 × R̄d

)
\ {0}. Excluding the

zero implies that the compact sets in C are those which are bounded away from 0 (cf.
[36], Proposition 6.1), so if we want to prove multivariate regular variation of a random
vector Y on C we have to check if the relation

lim
x→∞

P (Y ∈ xA)

U(x)
= ν(A)

holds for all A ⊂ C bounded away from 0 with ν(∂A) = 0. One can show that the
limit measure ν is necessarily homogeneous, meaning that

ν(xA) = x−κν(A)

holds for all x > 0, A ⊂ C (cf. [36], p. 168).
In this section we will analyze how Condition 3.3 is connected to multivariate regular

variation of the vector (|X0|, Y−s−−1, . . . , Ys+) and especially if one implies the other.
We will see that although the characteristics look similar, without further assumptions
neither of them implies the other.

Let us first assume that (Yt, Xt)t∈Z is stationary and given by (3.2.1)-(3.2.2) and
(3.3.3). Further, let us assume that (|X0|, Y−s−−1, . . . , Ys+) is multivariate regularly
varying on C =

(
R̄+,0 × R̄s−+s++2

)
\ {0} (which is, for example, known to be the case

for GARCH(p, q) processes if we look at (X̃t, Ỹt)t∈Z with X̃t := X2
t , Ỹt := σ2

t , cf. [1],
p. 191, see also Chapter 4). Comparing the definition of multivariate regular variation
and Condition 3.3 we note that we can of course write the latter as

lim
x→∞

P

((
Y−s−−1

x
, . . . ,

Y0

x
, . . . ,

Ys+
x

)

∈ A |X0| > x

)

= lim
x→∞

P
((

Y−s−−1

x
, . . . , Y0

x
, . . . ,

Ys+

x

)

∈ A, |X0| > x
)

P (|X0| > x)
(3.4.2)

= P
((
Y X
−s−−1, . . . , Y

X
s+

)
∈ A

)

for a random vector (Y X
−s−−1, . . . , Y

X
s+

) and all A ∈ Rs−+s++2 with P ((Y X
−s−−1, . . . , Y

X
s+

) ∈
∂A) = 0. By continuity from below it suffices to look at those A which are bounded
away from 0 in order to derive Condition 3.3 from (3.4.2). The assumption of mul-
tivariate regular variation of (|X0|, Y−s−−1, . . . , Ys+) now guarantees the existence of a
function U : R+ → R+ such that

lim
x→∞

P
((

Y−s−−1

x
, . . . , Y0

x
, . . . ,

Ys+

x

)

∈ A, |X0| > x
)

P (|X0| > x)

= lim
x→∞

P
((

Y−s−−1

x
, . . . , Y0

x
, . . . ,

Ys+

x

)

∈ A, |X0| > x
)

U(x)

U(x)

P (|X0| > x)
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3.4: Multivariate regular variation

=
ν((1,∞) × A)

ν((1,∞) × Rs−+s++2)
(3.4.3)

if the denominator is positive. One easily checks that (3.4.3) defines a probability mea-
sure for A ∈ Bs−+s++2 and may be set as the law of the random vector (Y X

−s−−1, . . . , Y
X
s+)

if ν((1,∞)×Rs−+s++2) > 0. Because of the aforementioned homogeneity of ν we note
the equivalence

ν((1,∞) × R
s−+s++2) = 0 ⇔ ν((δ,∞) × R

s−+s++2) = 0 ∀ δ > 0. (3.4.4)

Thus, ν((1,∞) × Rs−+s++2) = 0 implies that the mass of ν is concentrated on the
hyperplane {0} × Rs−+s++2. Unfortunately, this is not excluded by the definition of
regular variation. Nevertheless, since we know that ν is non-degenerate and since the
process (Yt)t∈Z is stationary, we may derive that

ν((1,∞) × R
s−+s++2) = 0 ⇒ lim

x→∞

P (|Y0| > x)

U(x)
> 0.

Now, ν((1,∞) × Rs−+s++2) = 0 implies that

lim
x→∞

P (|X0| > x)

U(x)
= 0.

Hence, ν((1,∞)×Rs−+s++2) = 0 entails that |X0| and |Y0| are not tail equivalent, thus
it is a contradiction to Condition 3.1 b). Taken the other way round, this leads us to
the following proposition.

Proposition 3.4.1 Let (|X0|, Y−s−−1, . . . , Ys+) ∈ R+ ×Rs−+s++2 be a multivariate reg-
ularly varying vector with index κ and let Condition 3.1 b) hold, then Condition 3.3 is
satisfied.

Next, we will analyze the opposite direction, which means the question if Condition
3.3 implies multivariate regular variation. In a first step, let us study the limit behavior
of

L
( |X0|

x
,
Y−s−−1

x
, . . . ,

Ys+
x

|X0| > x

)

(3.4.5)

as x→ ∞, extending the view to the joint limit behavior of |X0| and (Y−s−−1, . . . , Ys+).
Let us assume that Condition 3.3 holds and in addition

lim
t→∞

P (|X0| > xt)

P (|X0| > t)
= x−κ (3.4.6)

for all x > 0 (which follows of course if we would assume Condition 3.1 a) and b)). We
will show that the family of probability distributions in (3.4.5) is tight. Let therefore
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3.4: Multivariate regular variation

ǫ > 0 and let B ⊂ Rs−+s++2 be a compact set such that P ((Y X
−s−−1, . . . , Y

X
s+

) ∈ B) ≥
1 − ǫ/3. Then

P

( |X0|
x

∈ [1, (ǫ/3)−1/κ],

(
Y−s−−1

x
, . . . ,

Ys+
x

)

∈ B |X0| > x

)

≥ 1 − P

( |X0|
x

> (ǫ/3)−1/κ |X0| > x

)

− P

((
Y−s−−1

x
, . . . ,

Ys+
x

)

∈ Bc |X0| > x

)

≥ 1 − ǫ/3 − ǫ/3 − ǫ/3 = 1 − ǫ

for x large enough. The family of multivariate distributions in (3.4.5) is therefore tight
and there exists a subsequence xn, n ∈ N, along which convergence to a probability
measure holds (cf. [5], Theorem 25.10). Let now u ≥ 1 and B ∈ Bs−+s++2 with
P ((Y X

−s−−1, . . . , Y
X
s+

) ∈ ∂(u−1B)) = 0, then

lim
x→∞

P

(( |X0|
x
,
Y−s−−1

x
, . . . ,

Ys+
x

)

∈ (u,∞) × B |X0| > x

)

= lim
x→∞

P
((

Y−s−−1

x
, . . . ,

Ys+

x

)

∈ B, |X0| > ux
)

P (|X0| > ux)

P (|X0| > ux)

P (|X0| > x)

= lim
x→∞

P

((
Y−s−−1

ux
, . . . ,

Ys+
ux

)

∈ u−1B |X0| > ux

)
P (|X0| > ux)

P (|X0| > x)

= u−κP
((
Y X
−s−−1, . . . , Y

X
s+

)
∈ u−1B

)
. (3.4.7)

By the tightness of distributions, the r.h.s. of the last equation now defines a probability
distribution on [1,∞)×Rs−+s++2 and the convergence holds independent of the chosen
subsequence. Define a random variable |X0|X living on the same probability space as
(
Y X
−s−−1, . . . , Y

X
s+

)
such that

P
(
|X0|X > u,

(
Y X
−s−−1, . . . , Y

X
s+

)
∈ B

)
= u−κP

((
Y X
−s−−1, . . . , Y

X
s+

)
∈ u−1B

)

holds for all u ≥ 1 and B ∈ Bs−+s++2. Then

L
(( |X0|

x
,
Y−s−−1

x
, . . . ,

Ys+
x

)

|X0| > x

)

→ L
((
|X0|X , Y X

−s−−1, . . . , Y
X
s+

))
, x→ ∞.

Having thus shown that the limit of the conditional distributions in (3.4.5) exists, we
will next derive a useful characteristic of it. Therefore, apply the continuous mapping
theorem to the function

f : R+ × R
s−+s++2 → R+ × R

s−+s++2, f(x0, y−s−−1, . . . , ys+) =

(

x0,
y−s−−1

x0
, . . . ,

ys+
x0

)

,

which leads to

lim
x→∞

P

(( |X0|
x
,
Y−s−−1

|X0|
, . . . ,

Ys+
|X0|

)

∈ (u,∞) × B |X0| > x

)
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= lim
x→∞

P

((
Y−s−−1

|X0|
, . . . ,

Ys+
|X0|

)

∈ B |X0| > ux

)
P (|X0| > xu)

P (|X0| > x)

cont. mapping
= u−κP

((

Y X
−s−−1

|X0|X
, . . . ,

Y X
s+

|X0|X

)

∈ B

)

for u ≥ 1 and B ∈ B−s−+s++2 with P

((
Y X
−s−−1

|X0|X
, . . . ,

Y X
s+

|X0|X

)

∈ ∂B

)

= 0, thus leading

to the following lemma.

Lemma 3.4.2 Let (Yt)t∈Z and (Xt)t∈Z be defined as in (3.2.1)-(3.2.2) and (3.3.3) and
let Condition 3.3 and Equation (3.4.6) hold. Then there exists a random variable
|X0|X, living on the same probability space as (Y X

−s−−1, . . . , Y
X
s+) and having marginal

distribution P (|X0|X > u) = u−κ for u ≥ 1, such that

lim
x→∞

L
(( |X0|

x
,
Y−s−−1

|X0|
, . . . ,

Ys+
|X0|

)

|X0| > x

)

= L
(
|X0|X

)
× L

((

Y X
−s−−1

|X0|X
, . . . ,

Y X
s+

|X0|X

))

,

where “×” denotes the product measure.

Next, we will use this lemma to derive that (|X0|, Y−s−−1, . . . , Ys+) is regularly
varying on the cone R̄+ × R̄s−+s++2 if it satisfies the assumptions of Lemma 3.4.2,
where the method of our proof is based on the one used in [25] for the proof of Lemma
6.1 there. Let us define sets

Vu,B := {(x, y−s−−1, . . . , ys+) ∈ R+ × R
s−+s++2 : x > u, x−1(y−s−−1, . . . , ys+) ∈ B}

for u > 0, B ∈ Bs−+s++2. Set A := {Vu,B \ Vv,B : 0 < u ≤ v, B ∈ Bs−+s++2}, then A is
a semiring. Define set-functions µ, µx, x ∈ R+, on A by

µx(Vu,B\Vv,B) :=
P
((
|X0|
x
,
Y−s−−1

x
, . . . ,

Ys+

x

)

∈ Vu,B

)

P (|X0| > x)
−
P
((
|X0|
x
,
Y−s−−1

x
, . . . ,

Ys+

x

)

∈ Vv,B

)

P (|X0| > x)

and

µ(Vu,B \ Vv,B) := u−κP

((

Y X
−s−−1

|X0|X
, . . . ,

Y X
s+

|X0|X

)

∈ B

)

−v−κP
((

Y X
−s−−1

|X0|X
, . . . ,

Y X
s+

|X0|X

)

∈ B

)

. (3.4.8)

Now, by Carathéodory’s Extension Theorem (see, for example, [27], Theorem 2.5) all of
these measures can be extended to the generated sigma-algebra B+⊗Bs−+s++2. The ex-
tensions are unique, since all measures are σ-finite on R+×Rs−+s++2 =

⋃∞
k=1 V1/k,Rs−+s++2.
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We extend µ and µx, x ∈ R+, to B̄+ ⊗ B̄s−+s++2 by setting

µx(R̄+ × R̄
s−+s++2 \ R+ × R

s−+s++2) = µ(R̄+ × R̄
s−+s++2 \ R+ × R

s−+s++2) = 0.

Finally, to show vague convergence on the µ-continuity sets of A we note first that
µ({u} × B) = 0 and therefore µ(∂Vu,B) = µ(Vu,∂B) for all u > 0, B ∈ Bs−+s++2.
Therefore, for each set Vu,B \ Vv,B ∈ A with µ(∂Vu,B) = 0 we get from Lemma 3.4.2
that

µx(Vu,B \ Vv,B) = µx(Vu,B) − µx(Vv,B) → µ(Vu,B) − µ(Vv,B) = µ(Vu,B \ Vv,B)

as x→ ∞. Since µ(R̄+×R̄s−+s++2\R+×Rs−+s++2) = 0, this implies vague convergence
of

P
((
|X0|
x
,
Y−s−−1

x
, . . . ,

Ys+

x

)

∈ ·
)

P (|X0| > x)

to the Radon measure µ on B̄+ ⊗ B̄s−+s++2 and therefore multivariate regular variation
of (|X0|, Y−s−−1, . . . , Ys+) on the cone R̄+ × R̄s−+s++2.

Lemma 3.4.3 Let (Yt)t∈Z and (Xt)t∈Z be defined as in (3.2.1)-(3.2.2) and (3.3.3) and
let Condition 3.3 and Equation (3.4.6) hold. Then (|X0|, Y−s−−1, . . . , Ys+) is multivari-
ate regularly varying with index κ on the cone R̄+ × R̄s−+s++2.

However, this alone does not necessarily lead to regular variation on R̄s−+s++3\{0}.
One could think of situations where the conditioning on |X0| > zx for a z > 0 as x → ∞
may guarantee a certain tail-behavior of the remaining components of (Y−s−−1, . . . , Ys+)
which gets lost if we drop this condition. This may be a special case of so-called hidden
regular variation, cf. [36], Chapter 9.4. However, the picture changes if we add more
assumptions about the stationary sequences (Yt)t∈Z and (Xt)t∈Z. If we assume that
Conditions 3.1 a)-b) and 3.2 a) hold in addition to Condition 3.3 we may derive the
following. Let x0 > 0,−∞ ≤ y−i < 0, 0 < y+

i ≤ ∞, i = −s− − 1, . . . , s+ and set

x− = (0, y−−s−−1, . . . , y
−
s+

), x+ = (x0, y
+
−s−−1, . . . , y

+
s+

).

To verify that the multivariate regular variation can be extended to R̄s−+s++3 \ {0} we
have to show that

lim
x→∞

P
([

x− ≤
(
|X0|
x
,
Y−s−−1

x
, . . . ,

Ys+

x

)

≤ x+
]c)

P (|X0| > x)

v→ µ1([x
−,x+]c) (3.4.9)

holds for all such choices of x−,x+ and a Radon measure µ1 on B̄s−+s++3 \ {0} with
µ1 B̄+×B̄

s−+s++2 = µ. By inclusion-exclusion we get that

P
([

x− ≤
(
|X0|
x
,
Y−s−−1

x
, . . . ,

Ys+

x

)

≤ x+
]c)

P (|X0| > x)
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=
P
(

{|X0| > xx0} ∪
⋃s+
i=−s−−1

(
{Yi < xy−i } ∪ {Yi > xy+

i }
))

P (|X0| > x)

=
P (|X0| > xx0)

P (|X0| > x)
+
P
(
⋃s+
i=−s−−1

(
{Yi < xy−i } ∪ {Yi > xy+

i }
))

P (|X0| > x)
−

P
(

{|X0| > xx0} ∩
⋃s+
i=−s−−1

(
{Yi < xy−i } ∪ {Yi > xy+

i }
))

P (|X0| > x)
.

Here, the first and the third term in the sum converge because of Conditions 3.1 a), 3.1
b) and Condition 3.3. For the second term we may use that Conditions 3.1 a) and 3.2 a)
induce multivariate regular variation of the vector (Y−s−−1, . . . , Ys+) on R̄s−+s++1 \ {0}
(cf. [39], Theorem 6.1). Then by Condition 3.1 b) it must be the case that P (|X0| > x)
is a proper scaling function for P (x−1(Y−s−−1, . . . , Ys+) ∈ ·). Therefore, the second
term also converges.

Proposition 3.4.4 Let (Yt, Xt)t∈Z be a stationary sequence given by (3.2.1)-(3.2.2)
and (3.3.3) and let Conditions 3.1 a)+b), 3.2 a)+b) and 3.3 be satisfied. Then,
the vector (|X0|, Y−s−−1, . . . , Ys+) is multivariate regularly varying with index κ on
(
R̄+,0 × R̄s−+s++2

)
\ {0}.

Of course, the limit measure on
(
R̄+,0 × R̄s−+s++2

)
\ {0} can trivially be continued

on R̄s−+s++3 \ {0} since the first component of the vector is necessarily non-negative.
Although Conditions 3.1-3.3 seem to involve quite a lot of assumptions, it is often

easy to prove that Conditions 3.1 and 3.3 are satisfied, since they can be derived from
well-known results about the stationary behavior of time series, which often allow us to
draw conclusions about univariate and multivariate regular variation of the time series
(Yt)t∈Z and (Xt)t∈Z. These results are then helpful to show the existence of the limit
distribution in Condition 3.3, although explicit calculations for further analysis might
get tedious. Condition 3.2 is in most cases easy to check.

Because of the aforementioned homogeneity the measure µ in (3.4.8) (or its exten-
sion defined in (3.4.9)) has a spectral form and can be written as

µ
(
{x ∈ C : ‖x‖ > r, ‖x‖−1x ∈ A}

)
= r−κS(A), (3.4.10)

(with C = R̄+ × R̄s−+s++2 or C = R̄+,0 × R̄s−+s++2 \ {0}) for all r > 0, where S
is a Radon measure on SC := {x ∈ C : ‖x‖ = 1}, A ⊂ SC (cf. [30], p. 36). For
C = R̄+,0 × R̄s−+s++2 \ {0} we know in addition that S is finite (cf. [37], p. 281). Here,
‖ · ‖ denotes an arbitrary norm, for example the l2-norm. Lemma 3.4.2 shows that in
our case this decomposition also holds for the seminorm

f : R+ × R
s−+s++2 7→ R+, f(x0, y−s−−1, . . . , ys+) := x0.

This can be interpreted as follows: The limit process can be split up in two parts,
which are independent of each other. The first one determines the scale of the limit
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process, while the second one determines its “direction”. The use of this decomposition
for both simulations and calculations is highly dependent on the form of the spectral
measure. In some cases, the spectral measure and therefore the limit process admits a
very simple representation, like in the case of the existence of a forward and backward
tail chain for a single process.

In the next section, we will show that outside of the range of direct dependence
(meaning to the left of −s−−1 and to the right of s+) the results of Propositions 3.2.1
and 3.2.2 can be carried over to the case where we condition on |X0| > x instead of
|Y0| > x.

3.5 Main result

Before we state and prove our main result, we should again point out that an important
difference between the single time series model analyzed in [39] and the correlated time
series analyzed here is the double role of the ǫi which influence both the progress of
(Yt)t∈Z and the relation of (Yt)t∈Z and (Xt)t∈Z. Note that in Proposition 3.2.1 the
distribution of ǫt does not directly appear and only the distribution of φ(ǫt) is needed.
Therefore, as a first step, we modify Proposition 3.2.1.

Lemma 3.5.1 Let (Yt)t∈Z be given by (3.2.1) and (3.2.2) and let the conditions of
Proposition 3.2.2 be satisfied. Then for all s, t ∈ N

lim
y→∞

L
(
Y−s
y
, . . . ,

Y−1

y
,
|Y0|
y
,
Y0

y
, ǫ1,

Y1

y
, . . . , ǫt,

Yt
y

|Y0| > y

)

= L(Y Y
−s, . . . , Y

Y
−1, Y, Y

Y
0 , ǫ

Y
1 , Y

Y
1 , ǫ

Y
2 , Y

Y
2 , . . . , ǫ

Y
t , Y

Y
t ),

with

• Y ∼ Par(κ), ǫYi
d
= ǫi, M0 with P (M0 = 1) = p = 1−P (M0 = −1) all independent

and Y Y
0 = YM0,

• Y Y
i = h(Y Y

i−1, Ai, Bi), with Ai = φ(ǫYi , 1), Bi = φ(ǫYi ,−1), i ≥ 1,

• Y Y
−i = h(Y Y

−i+1, A−i, B−i), i ≥ 1, with

L(A−i) = L
(
M−1

M0
M0 = 1

)

, L(B−i) = L
(
M−1

M0
M0 = −1

)

, i ≥ i,

where L(M−1,M0) = µ∗, the adjoint measure to L(M0,M1). The A−i, B−i, i ≥ 1,
are independent and independent of (Y, Y Y

0 , ǫ
Y
1 , Y

Y
1 , . . . ).

Proof. This follows directly from Proposition 3.2.2 if t = 0. For t > 0 we note that
the ǫi, i ≥ 1, are independent of (Y−s, . . . , Y−1, Y0) and there exist suitable functions
gy : Rt+1 → R2t, y > 0, such that

(

ǫ1,
Y1

y
, ǫ2,

Y2

y
, . . . , ǫt,

Yt
y

)

= gy

(
Y0

y
, ǫ1, . . . , ǫt

)

.
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Analogously to the proof of Proposition 3.2.1 in [39] we may then apply the continuous
mapping theorem which leads to the result.

We are now ready to prove our main result.

Theorem 3.5.2 Let (Yt, Xt)t∈Z be given by (3.2.1)-(3.2.2) and (3.3.3), stationary and
let Conditions 3.1 a)+b), 3.2 a)+b) and 3.3 be satisfied. Then, for all integers m >
0, n ≥ 0

lim
x→∞

L
(
Y−s−−m

x
, . . . ,

Ys++n

x
|X0| > x

)

= L(Y X
−s−−m

, . . . , Y X
s++n)

with (Y X
−s−−1, . . . , Y

X
s+

) from Condition 3.3 and

Y X
t = h(Y X

t−1, At, Bt), t > s+,

Y X
−t = h(Y X

−t+1, A−t, B−t), t > s− + 1,

where (At, Bt), t ∈ Z, are independent and independent of (Y X
−s−−1, . . . , Y

X
s+

) with

L(At, Bt) = L(A1, B1), t ≥ 1, L(At, Bt) = L(A−1, B−1), t ≤ −1,

with L(A1, B1) and L(A−1, B−1) defined as in Proposition 3.2.2.

This theorem indicates that outside of the range of influence of X0 the tail chain
behaves “normally” (i.e., like the one that is conditioned on {|Y0| > x}).

Proof. Let f : R
s−+s++m+n+1 → R be bounded and continuous. We will show that

lim
x→∞

E

(

f

(
Y−s−−m

x
, . . . ,

Ys++n

x

)

|X0| > x

)

= E
(
f(Y X

−s−−m, . . . , Y
X
s++n)

)
(3.5.1)

with (Y X
−s−−m

, . . . , Y X
s++n) as defined in the theorem for all f .

The idea of the proof is to shift the time series, using its stationarity, thereby
clarifying the dependence structure between the ǫi, i ∈ Z, and both (Xt)t∈Z and (Yt)t∈Z.

Note that for m = 1 we may conduct the proof analogously to the proof of Proposi-
ton 3.2.1 in [39]. Since (ǫs++1, ǫs++2, . . . ) is independent of (X0, Y−s−−1, . . . , Ys+) the
continuous mapping theorem can be applied to derive (3.5.1) and leads to the multi-
plicative structure with independent increments.

Let now m > 1 and n ≥ 0. Let us further assume that f(x) = 0 as soon as the first
component of x equals 0. Note that an arbitrary function f : Rs−+s++m+n+1 → R can
be additively split up in two functions f1 and f2 such that

f(x−s−−m, . . . , xs++n) = f(x−s−−m, . . . , xs++n) − f(0, x−s−−m+1, . . . , xs++n)
︸ ︷︷ ︸

=:f1(x−s−−m,...,xs−+n)
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+ f(0, x−s−−m+1, . . . , xs++n)
︸ ︷︷ ︸

=:f2(x−s−−m+1,...,xs−+n))

,

so f1 satisfies this assumption and f2 is merely a function of (x−s−−m+1, . . . , xs++n).
Since (3.5.1) is satisfied by a function of (x−s−−1, . . . , xs++n) we may work inductively
and the assumption about the structure of f is no loss of generality.

Then

lim
x→∞

E

(

f

(
Y−s−−m

x
, . . . ,

Y0

x
, . . . ,

Ys++n

x

)

|X0| > x

)

= oδ(1) + lim
x→∞

E

(

f

(
Y−s−−m

x
, . . . ,

Y0

x
, . . . ,

Ys++n

x

)

1{|Y−s−−m|>δx} |X0| > x

)

,

where the first term is bounded by

sup{f(x−s−−m, . . . , xs++n)|(x−s−−m+1, . . . , xs++n) ∈ R
s−+s++n+m, x−s−−m < δ}

which tends to zero as δ → 0 because of the assumptions made about f . With Condition
3.1 b) and with stationarity we get

lim
x→∞

E

(

f

(
Y−s−−m

x
, . . . ,

Y0

x
, . . . ,

Ys++n

x

)

1{|Y−s−−m|>δx} |X0| > x

)

= lim
x→∞

E
(

f
(
Y−s−−m

x
, . . . , Y0

x
, . . . ,

Ys++n

x

)

1{|X0|>x}1{|Y−s−−m|>δx}

)

P (|X0| > x)

3.1 b)
=

δ−κ

C
lim
x→∞

E
(

f
(
Y−s−−m

x
, . . . , Y0

x
, . . . ,

Ys++n

x

)

1{|X0|>x}1{|Y−s−−m|>δx}

)

P (|Y−s−−m| > δx)

=
δ−κ

C
lim
x→∞

E

(

f

(
Y−s−−m

x
, . . . ,

Y0

x
, . . . ,

Ys++n

x

)

1{|X0|>x} |Y−s−−m| > δx

)

Stationarity
=

δ−κ

C
lim
x→∞

E

(

f

(
Y0

x
, . . . ,

Ys−+m

x
, . . . ,

Ys++n+s−+m

x

)

1{|Xs−+m|>x} |Y0| > δx
)

y:=δx
=

δ−κ

C
lim
y→∞

E

(

f

(

δ
Y0

y
, . . . , δ

Ys−+m

y
, . . . , δ

Ys++n+s−+m

y

)

1{δ|Ψ(Ys−+m,ǫm,...,ǫs−+s++m)|>y} |Y0| > y
)

.

An application of the continuous mapping theorem in connection with Lemma 3.5.1
yields that this expression equals

δ−κ

C
E
(

f
(
δY Y

0 , . . . , δY
Y
s−+m, . . . , δY

Y
s++n+s−+m

)
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1{δ|Y Y
s−+mψ(ǫYm,...,ǫ

Y
s−+s++m)|>1}

)

=
δ−κ

C
E

(

f

(

δY M0, . . . , δY Mm−1

s−+m
∏

i=m

h(Mi−1, φ(ǫYi , 1), φ(ǫYi ,−1))

Mi−1
, . . . ,

δY Mm−1

s++n+s−+m
∏

i=m

h(Mi−1, φ(ǫYi , 1), φ(ǫYi ,−1))

Mi−1

)

1
{δ|YMm−1

Qs−+m

i=m

h(Mi−1,φ(ǫY
i

,1),φ(ǫY
i

,−1))

Mi−1
ψ(ǫYm,...,ǫ

Y
s−+s++m)|>1}

)

,

with Y, ǫY1 , ǫ
Y
2 , . . . as in Lemma 3.5.1 and P (M0 = 1) = p = 1 − P (M0 = −1),

Mi = h(Mi−1, φ(ǫYi , 1), φ(ǫYi ,−1)), i ∈ N.

Since Y is independent of all other variables with Y
d
= U−1/κ for U ∼ Unif[0, 1] and

the ǫYm, ǫ
Y
m+1, . . . are independent of M0,M1, . . . ,Mm−1 this equals

δ−κ

C

∫

R
s−+s++n+1

E

( 1∫

0

f

(

δu−1/κM0, . . . , δu
−1/κMm−1h1

(
Mm−1

|Mm−1|
, e

)

,

. . . , δu−1/κMm−1h2

(
Mm−1

|Mm−1|
, e

))

1
{δκ|Mκ

m−1h3

“

Mm−1
|Mm−1|

,e
”κ
|>u}

du

)

P
(ǫYm,...,ǫ

Y
m+s−+s++n)

(de)

for suitable, measurable functions h1, h2, h3. Now, substituting v for δ−κ|Mm−1|κu, we
get that this expression equals

1

C

∫

R
s−+s++n+1

E

( δ−κ|Mm−1|κ∫

0

f

(

v−1/κ M0

|Mm−1|
, . . . , v−1/κ Mm−1

|Mm−1|
h1

(
Mm−1

|Mm−1|
, e

)

,

. . . , v−1/κ Mm−1

|Mm−1|
h2

(
Mm−1

|Mm−1|
, e

))

|Mm−1|κ

1
{|h3

“

Mm−1
|Mm−1|

,e
”κ
|>v}

dv

)

P
(ǫYm,...,ǫ

Y
m+s−+s++n)

(de).

Letting δ tend to zero eliminates |Mm−1| in the bounds of the integral and interchange
of expectation and integral leads to

1

C

∫

R
s−+s++n+1

∞∫

0

E

(

f

(

v−1/κ M0

|Mm−1|
, . . . , v−1/κ Mm−1

|Mm−1|
h1

(
Mm−1

|Mm−1|
, e

)

,
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. . . , v−1/κ Mm−1

|Mm−1|
h2

(
Mm−1

|Mm−1|
, e

))

|Mm−1|κ

1
{|h3

“

Mm−1
|Mm−1|

,e
”κ
|>v}

)

dv P
(ǫYm,...,ǫ

Y
m+s−+s++n)

(de).

We are now able to apply Proposition 4.2 of [39] (stated before as Proposition 3.2.4)
with s = m− 1, t = 0 and i = m− 1 and i = 0 respectively to transform the integrand
of this expression. It then equals

1

C

∫

R
s−+s++n+1

∞∫

0

E

(

f

(

v−1/κM−m+1

|M0|
, . . . , v−1/κ M0

|M0|
h1

(
M0

|M0|
, e

)

,

. . . , v−1/κ M0

|M0|
h2

(
M0

|M0|
, e

))

1
{|h3

“

M0
|M0|

,e
”κ
|>v}

)

dv P
(ǫYm,...,ǫ

Y
m+s−+s++n)

(de),

where (M−m+1, . . . ,M0) is the BFTC as in Proposition 3.2.2. Note that |M0| = 1 and
that (ǫYm, . . . , ǫ

Y
m+s−+s++n) is independent of (M−m+1, . . . ,M0) (cf. Lemma 3.5.1) which

allows us to leave the measure unchanged in the two expressions. After this essential
time shift we are doing every step of the proof “backwards”, starting with inserting δ
again. The above expression then equals the limit for δ → 0 of

1

C

∫

R
s−+s++n+1

δ−κ
∫

0

E

(

f
(
v−1/κM−m+1, . . . , v

−1/κM0h1 (M0, e) ,

. . . , v−1/κM0h2 (M0, e)
)
1{|h3(M0,e)κ|>v}

)

dv P
(ǫYm,...,ǫ

Y
m+s−+s++n)

(de).

y:=vδκ

=
δ−κ

C

∫

R
s−+s++1

1∫

0

E

(

f
(
δy−1/κM−m+1, . . . , δy

−1/κM0h1 (M0, e) ,

. . . , δy−1/κM0h2 (M0, e)
)
1{δκ|h3(M0,e)κ|>y}

)

dy P
(ǫYm,...,ǫ

Y
m+s−+s++n)

(de).

Since (ǫ1, . . . , ǫ1+s−+s++n) has the same distribution as (ǫm, . . . , ǫm+s−+s++n) (and there-
fore as (ǫYm, . . . , ǫ

Y
m+s−+s++n)) and is independent of M0,M−1, . . . (cf. Lemma 3.5.1), we

may also write

=
δ−κ

C

∫

R
s−+s++1

1∫

0

E

(

f
(
δy−1/κM−m+1, . . . , δy

−1/κM0h1 (M0, e) ,

. . . , δy−1/κM0h2 (M0, e)
)
1{δκ|h3(M0,e)κ|>y}

)

dy P (ǫ1,...,ǫ1+s−+s++n)(de)
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=
δ−κ

C
E

(

f

(

δY M−m+1, . . . , δY M0

s−+1
∏

i=1

h(Mi−1, φ(ǫi, 1), φ(ǫi,−1))

Mi−1
, . . . ,

δY M0

s++n+s−+1
∏

i=1

h(Mi−1, φ(ǫi, 1), φ(ǫi,−1))

Mi−1

)

1
{δ|YM0

Qs−+1

i=1

h(Mi−1,φ(ǫi,1),φ(ǫi,−1))

h(Mi−1
ψ(ǫ1,...,ǫs−+s++1)|>1}

)

= lim
y→∞

δ−κ

C
E

(

f

(

δ
Y0

y
M̃−m+1, . . . , δ

Ys−+1

y
, . . . , δ

Ys−+s++1

y
M̃s−+s++n

)

1{|δXs−+1|>y} |Y0| > y

)

with
M̃−1 = h

(

sign(Y0), Ã−1, B̃−1

)

, M̃−i = h(M̃−i+1, Ã−i, B̃−i), i ≥ 2,

M̃s−+s++2 = h
(

sign(Ys−+s++1), Ãs−+s++2, B̃s−+s++2

)

,

M̃i = h(M̃i−1, Ãi, B̃i), i ≥ s− + s+ + 3,

where (Ãi, B̃i)i∈Z are supposed to be independent of (Yt, Xt)t∈Z and with the same
distribution as (Ai, Bi)i∈Z in the theorem. Now by stationarity and the assumptions
about global independence of (Ãi, B̃i)i∈Z this equals

lim
y→∞

δ−κ

C
E

(

f

(

δ
Y−s−−1

y
M̂−s−−m, . . . , δ

Y0

y
, . . . , δ

Ys+
y
M̂s++n

)

1{|δX0|>y} |Y−s−−1| > y

)

with

M̂−s−−2 = h
(

sign(Y−s−−1), Ã−s−−2, B̃−s−−2

)

, M̂−i = h(M̂−i+1, Ã−i, B̃−i), i ≥ s− + 3,

M̂s++1 = h
(

sign(Ys+), Ãs++1, B̃s++1

)

, M̂i = h(M̂i−1, Ãi, B̃i), i ≥ s+ + 2.

Finally, this gives us

= lim
x→∞

E

(

f

(
Y−s−−1

x
M̂−s−−m, . . . ,

Y0

x
, . . . ,

Ys+
x
M̂s++n

)

1{|Y−s−1|>δx} |X0| > x

)

= o(δ) + E
(
f
(
Y X
−s−−m, . . . , Y

X
0 , . . . , Y X

s++n

))

with
(
Y X
−s−−m

, . . . , Y X
0 , . . . , Y X

s++n

)
as stated in the theorem. Now, with δ → 0 this

leads to the proposition.

48



3.6: Application for simulating the extremal index

3.6 Application for simulating the extremal index

Our analysis of two connected time series was originally motivated by simulation studies
to estimate the extremal index and related characteristics of a GARCH(1, 1) process
(cf. equations (3.3.4) and (3.3.5)) based on the procedure in [14] for ARCH processes.
The extremal index is a way to characterize the extremal behavior of a time series,
especially its dependencies in the occurence of extremal observations. Many processes
have the property that extremal observations come in so-called “clusters”. Now, the
extremal index is defined as follows.

Definition 3.6.1 (cf. [17], Definition 8.1.2). Let (Xt)t∈N be a stationary process
with marginal distribution function F and θX a non-negative number. Set Mn :=
max(X1, . . . , Xn) for n ∈ N. Assume that for every τ > 0 there exists a sequence
(un)n∈N such that

lim
n→∞

nF̄ (un) = τ,

lim
n→∞

P (Mn ≤ un) = e−θXτ .

Then θX is called the extremal index of the sequence (Xn)n∈N.

One can show that θX ∈ [0, 1], where θX = 1 for a process of i.i.d. observations.
Roughly speaking, the lower the value of θX , the more dependence there is in the
extremal behavior of the process. A handy interpretation of θX can be deduced if we
return to the aforementioned clusters of the extremal process, specifying their meaning.
One can show that under some mixing conditions on (Xt)t∈N the family of probability
laws

L





r(n)
∑

i=1

1{Xi>n}

r(n)
∑

i=1

1{Xi>n} > 0



 (3.6.1)

for a suitable sequence r(n) → ∞ converges as n→ ∞ to a probability law which then
describes the number of exceedances over a growing threshold, given that we have at
least one exceedance over this threshold in a certain part of the time series. If the limit
distribution in (3.6.1) is the distribution of a random variable N , then under some mild
additional assumptions we get that θ−1

X = E(N) (cf. [17], p. 421-422).

Furthermore, one can show that θX may be written as

θX = lim
n→∞

lim
x→∞

P (max(X1, . . . , Xn) < x | X0 > x)

in the case of a GARCH(1, 1) model (cf. [17], p. 422-423, and [15], Section 5.2). A
related characteristic is the extremal coefficient function, which is introduced in [18]:

χ(t) = lim
x→∞

P (Xt > x|X0 > x), t ∈ Z.
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Under the assumption of a symmetric distribution of the ǫt we may easily deduce
the extremal behavior of (Xt)t∈Z from the extremal behavior of (|Xt|)t∈Z. With the
help of Theorem 3.5.2 we are now able to find

lim
x→∞

L
(σ−n
x
, . . . ,

σ0

x
, . . . ,

σm
x

X0 > x
)

, m, n ∈ N,

where the use of the BFTC simplifies both calculations and simulations from this dis-
tribution. For simulations, because of the simple form of Ψ, we are able to reconstruct
the tail process of (|Xt|)t∈Z from a given realisation of the tail process of (σ2

t )t∈Z, thus
we are able to retrieve realisations from the distribution of

lim
x→∞

L
( |X−n|

x
, . . . ,

|X0|
x
, . . . ,

|Xm|
x

|X0| > x

)

, m, n ∈ N. (3.6.2)

Since for symmetric distributions of ǫ0 the sign of ǫt, t ∈ Z, is independent of its absolute
value and does neither influence (σt)t∈Z nor (|Xt|)t∈Z we may model the process (Xt)t∈Z

as
Xt = |Xt|Bt, t ∈ Z,

where the Bt, t ∈ Z, are i.i.d. and independent of (|Xt|)t∈Z and (σt)t∈Z with P (B0 =
1) = P (B0 = −1) = 1/2. Multiplying the realisations from (3.6.2) with the i.i.d.
Bt, t ∈ Z, then allows us to get realisations with distribution

lim
x→∞

L
(
X−n
x

, . . . ,
X0

x
, . . . ,

Xm

x
|X0| > x

)

, m, n ∈ N.

Using only the realisations with positive observation at time zero finally leads to sim-
ulating from

lim
x→∞

L
(
X−n
x

, . . . ,
X0

x
, . . . ,

Xm

x
X0 > x

)

, m, n ∈ N.

These realisations may then be used for Monte Carlo methods to derive the extremal
index, the extremal coefficient function or related characteristics for the GARCH(1, 1)
model. See [15], Chapter 5 (especially Section 5.3) for a detailed analysis of this topic
and simulation results. The value of the use of the BFTC becomes especially clear for
the estimation of the values of χ(t) for t < 0 and a new characteristic derived in [15],
Chapter 5.

3.7 Further applications

This last section shall illustrate the use of Theorem 3.5.2 for the analytical derivation
of extremal characteristics of two connected time series. For a simple example of two
time series (Xt)t∈Z and (Yt)t∈Z, we will analyze the two probabilities

lim
n→∞

lim
x→∞

P (max(|Y1|, . . . , |Yn|) < x | |Y0| > x) (3.7.1)
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and

lim
n→∞

lim
x→∞

P (max(|Y1|, . . . , |Yn|) < x | |X0| > x). (3.7.2)

Since the first limit can be interpreted (under some additional assumptions on
the time series (Yt)t∈Z) as the extremal index of the time series (|Yt|)t∈Z, the second
characteristic can be interpreted as a simple form of a “cross extremal index” for two
time series. However, the main goal of this last chapter is to show how the second
expression can easily be derived once the right instruments have been found to tackle
the first one.

In the following we will deal with the special case of an ARCH(1) model.
To be more precise, let us assume a simple ARCH(1) model of the following form,

where we will use the notation σ2
t instead of Yt due to the conventions of financial time

series:

Xt = σtǫt+1, σ2
t = α0 + α1X

2
t−1 = α0 + α1σ

2
t−1ǫ

2
t ,

for t ∈ Z with α0 > 0, α1 > 0 and let ǫ2t , t ∈ Z, be i.i.d. uniformly distributed on
(0, a

α1
), with 1 < a < e. This simple distribution assumption for ǫ2t ensures (because of

a < e) that a stationary solution for σ2
t , and therefore for Xt, exists (cf. [32], Theorem

2) while it also allows us to calculate the extremal index for this model.
As is well known (see [1], p. 192, for example) the stationary distributions of both

σ2
t and X2

t are regularly varying with index κ which is defined by the unique positive
solution of the equation

E
[
(α1ǫ

2
t )
κ
]

= 1

So, in our case, we may calculate κ from

1

a

∫ a

0

xκ dx = 1 ⇔ aκ

κ+ 1
= 1.

Now, for calculating the extremal index θσ2 for (σ2
t )t∈Z in this model, the equation

θσ2 = lim
n→∞

lim
u→∞

P (max(σ2
1, . . . , σ

2
n) ≤ u | σ2

0 > u)

may be used (its applicability to the ARCH(1) model is shown in [34]). The tail chain
representation of the conditional time series gives us

θσ2 = lim
n→∞

P

(

Y α1ǫ
2
1 < 1, . . . , Y

n∏

i=1

(α1ǫ
2
i ) < 1

)

where Y ∼ Par(κ) and the ǫi, i ∈ N, are i.i.d. according to the distribution specified
above and independent of Y (cf. [34]). We may also write

θσ2 = lim
n→∞

P

(

log(Y ) + log(α1ǫ
2
1) < 0, . . . , log(Y ) +

n∑

i=1

log(α1ǫ
2
i ) < 0

)
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= lim
n→∞

∫ 0

−∞

κeκxP

(

max
n∈N

(

log(Y ) +

n∑

i=1

Yi

)

< 0 log(Y ) = −x
)

dx,

where Y1, Y2, Y3, . . . are independent of Y and i.i.d. with the same distribution as
log(α1ǫ

2
1) (cf. [40], p. 41). The independence of Y and Y1, Y2, . . . then leads to

P

(

max
n∈N

(

log(Y ) +
n∑

i=1

Yi

)

< 0 log(Y ) = −x
)

= P

(

max
n∈N

(
n∑

i=1

Yi

)

< x

)

.

Next, define functions Qp : R → [0, 1], p ∈ N0, as Q0 ≡ 1 and Qp(x) :=
P (max1≤n≤p (

∑n
i=1 Yi) < x). Then (cf. [40])

Qp(x) =

∫ ∞

0

Qp−1(y)F
log(α1ǫ21)(x− dy).

It follows from the definition of the Qp that Qp+1(x) ≤ Qp(x) for all x ∈ R. Therefore,
monotone convergence ensures that Qp(x) converges to a monotone function Q(x) :
R → [0, 1] (cf. [24], Section 11.5). The limit Q then satisfies the so-called Wiener-Hopf
equation

Q(x) =

∫ ∞

0

Q(y)F log(α1ǫ21)(x− dy)

=

∫ ∞

0

Q(y)
1

a
ex−y1(−∞,log(a)](x− y) dy

=
1

a

∫ ∞

max(0,x−log(a))

Q(y)ex−y dy.

In a first step, we will show that our limit Q is non-degenerate. Since (
∑n

i=1 Yi)n∈N is

a random walk with step distribution function F log(α1ǫ21) and

E(log(α1ǫ
2
1)) = a(log(a) − 1) < 0

we may use that

Q(x) = P

(

max
n≥1

n∑

i=1

log(α1ǫ
2
i ) < x

)

(3.7.3)

and

P

(
n∑

i=1

log(α1ǫ
2
i ) > 0 for infinitely many n ≥ 1

)

= P

(

1

n

n∑

i=1

log(α1ǫ
2
i ) −E(log(α1ǫ

2
1)) > |E(log(α1ǫ

2
1))| infinitely often

)

= 0
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by the strong law of large numbers (cf. [24], Section 11.5). Therefore, there are almost
surely only finitely many positive partial sums of the process (

∑n
i=1 Yi)n∈N and therefore

the distribution function of maxn≥1

∑n
i=1 log(α1ǫ

2
i ) is non-defective.

In the following, we will first analyze the explicit solution of

H(x) =
1

a

∫ ∞

max(0,x−log(a))

H(y)ex−y dy (3.7.4)

and later explore its asymptotic properties.

• Explicit solution of (3.7.4)

To simplify the following calculations, let H̃(x) = e−xH(x). We then find that
H̃ satisfies

H̃(x) =
1

a

∫ ∞

max(0,x−log(a))

H̃(y) dy.

The function H̃(x) is therefore continuous on R and constant on (−∞, log(a)).
For x ≥ log(a) we may differentiate the last equation on both sides, where in
x = log(a) we may restrict ourselves to taking the right-hand derivative. This
leads us to

H̃ ′(x) = −1

a
H̃(x− log(a)), x ≥ log(a).

Next, we have to solve this so-called differential-delay equation. Of course, the
solution can only be determined up to a multiplicative constant. So, for H̃(x) =
y0, x ≤ log(a), we find the solution as (cf. [16], p. 8)

H̃(x) = y0

⌊ x
log(a)

⌋
∑

i=0

(

−1

a

)i
(x− i log(a))i

i!
, x > log(a). (3.7.5)

• Asymptotic behavior of the solution of (3.7.4)

Since we know from (3.7.3) that one solution of (3.7.4) is a distribution function
and the general solution is determined up to a multiplicative constant we may
conclude that for any solution H(x) of (3.7.4) with initial value y0 there exists a
constant c(y0) ∈ R such that

lim
x→∞

H(x) = c(y0).

In the next step we find the uniquely determined initial value x0 which ensures
that H(x) is a distribution function. To this end, we analyze the asymptotic
behavior of H(x) as x→ ∞.

Note first that for x > log(a)

H(x) −H(log(a)) =

∫ x

log(a)

H ′(y) dy
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=

∫ x

log(a)

H(y) −H(y − log(a)) dy

=

∫ x

x−log(a)

H(y) dy −
∫ log(a)

0

H(y) dy

=

∫ x

x−log(a)

H(y) dy − y0(a− 1).

Therefore, the limit c(y0) = limx→∞H(x) has to satisfy the equation

c(y0) − y0a = log(a)c(y0) − y0(a− 1) ⇔ c(y0) =
y0

1 − log(a)
.

Putting it the other way round, we may thus conclude that x0 = 1 − log(a) leads to a
solution of (3.7.4) which actually is a distribution function. This finally gives

Q(x) =

{

(1 − log(a))ex, x ≤ log(a)

(1 − log(a))ex
∑⌊ x

log(a)
⌋

i=0

(
−1
a

)i (x−i log(a))i

i!
, x > log(a).

The extremal index may then be calculated as

θσ2 =

∫ 0

−∞

κeκxQ(x) dx =

∫ 0

−∞

κe(1+κ)x(1 − log(a)) dx = (1 − log(a))
κ

1 + κ
.

Since the extremal index is not affected by monotone transformations we may conclude
that

θσ2 = θσ

Calculating the extremal index or other characteristics of (σ2
t )t∈Z belongs to the

standard analysis of a single time series and can in many cases be simplified by the
use of the tail chain approach. Theorem 3.5.2 now allows us to use the tools we have
already elaborated for the single time series case for the analysis of two adjoint time
series. In our example we may thus exploit the calculations we have made so far to
work out characteristics which depend on the joint extremal behavior of (X2

t )t∈Z and
(σ2

t )t∈Z.
We have seen in section 3.6 that in some cases it might be necessary to condition

on the event X2
0 > x for x → ∞ while looking at the time series σ2

t , thus finding the
limit

θσ2,X2 := lim
n→∞

lim
x→∞

P
(
σ2

1 < x, . . . , σ2
n < x, |X2

0 > x
)
. (3.7.6)

To calculate the value of θσ2,X2 we have to take into account that, given the condition
that X2

0 = σ2
0ǫ

2
1 is large, ǫ1 no longer has the same distribution as ǫ2, ǫ3, . . . . However,

this condition does not influence the distribution of the ǫt with t ≥ 2. Therefore we may
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still make use of our function Q(x) but use a slightly different “starting distribution”
to calculate θσ2,X2:

θσ2,X2 = lim
n→∞

lim
x→∞

P
(
σ2

1 < x, . . . , σ2
n < x|X2

0 > x
)

= lim
n→∞

lim
x→∞

∫ 0

−∞

P

(

max
2≤i≤n

(
i∑

k=2

log
(
α1ǫ

2
k

)

)

≤ −s log

(
σ2

1

x

)

= s

)

P
log

„

σ2
1

x

«

log

„

X2
0

x

«

>0
(ds)

= lim
n→∞

∫ 0

−∞

Qn−1(−s) lim
x→∞

P
log

„

σ2
1

x

«

log

„

X2
0

x

«

>0
(ds). (3.7.7)

For the conditional distribution needed for the integral above, we get

P

(

log

(
σ2

1

x

)

> u log

(
X2

0

x

)

> 0

)

=
P (o(1) + α1σ

2
0ǫ

2
1 > xeu, σ2

0ǫ
2
1 > x)

P (σ2
0ǫ

2
1 > x)

=

∫∞

−∞

∫

x
s

max
“

1, ex

α1

” F σ2
0(dv)F ǫ21(ds)

P (σ2
0ǫ

2
1 > x)

Now, regular variation of F
σ2
0 and Breiman’s lemma (cf. [12]) lead us to

lim
x→∞

P

(

log

(
σ2

1

x

)

> u log

(
X2

0

x

)

> 0

)

=

∫∞

−∞
sκ
(

max
(

1, e
u

α1

))−κ

F ǫ21(ds)

E (ǫ2κ1 )

=

(

max

(

1,
ex

α1

))−κ

=

{

1, x < log(α1)

ακ1e
−κx, x ≥ log(α1)

. (3.7.8)

The value of θσ2,X2 now depends on the value of α1. It is only greater than zero if
α1 < 1 since σ2

1 ∼ α1X
2
0 holds for large values of X2

0 . Now, using (3.7.7) and (3.7.8),
we get

θσ2,X2 = lim
n→∞

∫ 0

log(α1)

Qn−1(−x)ακ1κe−κx dx =

∫ 0

log(α1)

Q(−x)ακ1κe−κx dx.

In contrast to θ, we need to integrate Q(x) over the positive axis which complicates
our calculations since Q(x) is defined in sections. As an example and to keep things
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simple, we may choose α1 = a−1, such that we only have to integrate over (0, log(a)).
In this case we get

θσ2,X2 = a−κκ

∫ log(a)

0

eκxex(1 − log(a)) dx

=
(
a− a−κ

) κ

1 + κ
(1 − log(a)).

For this model specification it means that

θσ2,X2 =
(
a− a−κ

)
θX2 =

(
(1 + κ)1/κ − (1 + κ)−1

)
θX2

which leads to
θσ2,X2

θσ2

= (1 + κ)1/κ − (1 + κ)−1 > 1

for all κ > 0. A possible interpretation is the following: |X0| > x is a better indication
for large values of σt in the future than |σ0| > x would be, although in this context
this can mainly be explained by the different scales of the two time series.

This example clarifies that with the help of Theorem 2.3.2 the same procedure for
all questions involving the limit distribution

lim
x→∞

L
(
Y−s−−m

x
, . . . ,

Ys++n

x
| |X0| > x

)

can be handled by

1. exploring the tail chain for the process (Yt)t∈Z

2. exploring the “starting distribution”

lim
x→∞

L
(
Y−s−−1

x
, . . . ,

Ys+
x

| |X0| > x

)

3. joining those two pieces together according to Theorem 2.3.2.

However, the purely analytical approach is limited to relatively simple cases due to the
complexity of the involved calculations (for example, the solution to the Wiener-Hopf
equation as used above is only known explicitly in a few cases). The focus on the
application of the results should therefore rather lie on simulations which have proven
to be a powerful tool to explore extremal characteristics in the GARCH(1,1) case.
Again, in these simulations we can notice the interplay of heavy-tailed and light-tailed
random variables. For the single time series model as described in [39] we are able to
simulate from the tail of (Yt)t∈Z by simulating one heavy-tailed Pareto random variable
and then multiply with (for the most applications:) light-tailed random increments.
For the two time series model which we have analyzed we are able to simulate from
the tail of (Yt)t∈Z given that |X0| is extreme, where we start with simulating from
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(Y X
−s−−1, . . . , Y

X
s+

). By Lemma 3.4.2 this vector is the product of a Pareto random
variable and a in most cases light-tailed random vector which are independent. Again,
we have one heavy-tailed component which determines the scale of the tail-process and
light-tailed increments which determine its further direction.
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Chapter 4

A New Way of Assessing κ in RDEs

4.1 Introduction

In this chapter we analyze multivariate random difference equations (RDEs), which
are of the form

Yt = AtYt−1 + Bt, t ∈ N, (4.1.1)

for Yt ∈ Rd, where At are random Rd×d-matrices and Bt are random Rd-vectors. We
assume that (At,Bt)t∈N are i.i.d. and independent of Y0. We are interested in the
existence of a stationary distribution µ∗ of Yt, t ∈ N0, which means that

Y∗
d
= AY∗ + B

holds for Y∗ with L(Y∗) = µ∗ and (A,B)
d
= (A1,B1) independent of Y∗. Of special

interest in this setting are conditions for (A1,B1) to guarantee the existence of a
stationary distribution and specific characteristics of it.

In a seminal paper [28], Kesten gave those conditions for (A1,B1) (mainly for the
case of non-negative entries of A1 and B1) and furthermore derived a property of the
stationary distribution µ∗ which could later be shown to imply multivariate regular
variation, cf. [10]. While we have already come across multivariate regular variation in
Chapter 3, we will use a slightly different but equivalent definition in this context. A
random vector Y∗ ∈ Rd is multivariate regularly varying with index κ > 0 if and only
if there exists a random vector θ ∈ S

d−1 := {x ∈ R
d ‖x‖ = 1} and C > 0 such that

P
(

‖Y∗‖ > uy, Y∗

‖Y∗‖
∈ ·
)

P (‖Y∗‖ > y)

v→ Cu−κP (θ ∈ ·), y → ∞, (4.1.2)

where ‖·‖ denotes the l2-norm on Rd (although, in principle, (4.1.2) holds for any norm
on Rd) and

v→ stands for vague convergence in M+(R̄+ × Sd−1). The equivalence to
the definition which we have used in Chapter 3 becomes clear if one compares (4.1.2)
and (3.4.10). Kesten’s Theorem now says that under suitable assumptions about the
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distribution of (A1,B1) a stationary solution Y∗ to (4.1.1) exists and satisfies (4.1.2).
Both the law of θ, called the spectral measure, and the index of regular variation κ
are important characteristics of the stationary time series defined by (4.1.1), in partic-
ular with regard to its extremal behavior. For example, under the same assumptions
about (At,Bt)t∈N as in [28] it was shown in [35] that for a stationary process (Y∗t )t∈N

satisfying (4.1.1) the distribution of n−1/κ max(Y∗0,Y
∗
1, . . . ,Y

∗
n) converges weakly to a

non-degenerate limit distribution as n→ ∞.
However, for most cases and especially for higher-dimensional matrices, the formula

for the derivation of κ which is stated in [28] is not analytically solvable. This instance
is especially problematic since κ is not only of interest in itself but needed for lots
of further derivations and simulations about the extremal behavior of a stationary
solution to (4.1.1), for example for the simulations related to GARCH(1, 1) processes
which have been mentioned in Chapter 4.5 and executed in [15], Section 5.3. This
chapter deals with a new method for assessing the index of regular variation which
adopts some defining properties of κ used in the proofs of [28] and determines its value
with the help of Monte Carlo simulations.

The precise setting of the time series we deal with will be stated in Section 4.2. This
mainly recaptures the conditions from [28] and states the most commonly used formula
for κ, which is both analytically and numerically unfeasible for most applications. In
Section 4.3 we will then describe the theoretical base for our new method to determine
κ. Section 4.4 discusses the numerical implementation and Section 4.5 shows some
simulation results.

4.2 Setting

In this section, we will introduce the notation and the assumptions made in [28].
Basically, we will make the same assumptions as have been made there. Since the
assumptions are quite technical we will also give an example of a class of time series
for which the assumptions are satisfied. The original assumptions and the main result
of [28] have been properly reformulated in [2] and shall, for convenience, be restated
here.

Theorem 4.2.1 (cf. [2], Theorem 2.4) Let (An,Bn)n∈N be an i.i.d. sequence of d × d
matrices An with non-negative entries and d-dimensional non-negative-valued random
vectors Bn 6= 0 almost surely. Assume that the following conditions hold:

(a) For some ǫ > 0, E‖A1‖ǫop < 1, where ‖ · ‖op denotes the operator norm on Rd×d

corresponding to the l2-norm, meaning that ‖A‖op := sup‖x‖=1 ‖Ax‖.

(b) A1 has no zero rows almost surely.

(c) The set

{ln ‖an · . . . · a1‖op : n ≥ 1, an · . . . · a1 > 0 and an, . . . , a1 ∈ support of PA1}
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generates a dense group in R.

(d) There exists a κ0 > 0 such that

E

(

min
i=1,...,d

d∑

j=1

Aij

)κ0

≥ dκ0/2 (4.2.1)

and
E
(
‖A1‖κ0

op ln+ ‖A1‖op

)
<∞. (4.2.2)

Then the following statements hold:

1. There exists a unique solution κ∗ ∈ (0, κ0] to the equation

0 = lim
n→∞

1

n
lnE‖An · . . . ·A1‖κ

∗

op. (4.2.3)

2. There exists a unique probability measure µ∗ for Y0 such that the process (Yt)t∈N

as defined by (4.1.1) is stationary.

3. If E‖B1‖κ∗ <∞, then there exists a random variable θ ∈ Sd−1 such that Y∗ with
probability distribution µ∗ satisfies Equation (4.1.2) with κ = κ∗.

Remark 4.2.2.

(a) The first condition given here is a sufficient condition which ensures the exis-
tence of a negative Lyapunov exponent γ for the sequence A1,A2, . . . . A weaker
condition, which is obviously more difficult to prove, would be that

γ := inf

{
1

n
E ln ‖An · . . . ·A1‖op, n ∈ N

}

< 0

holds. If E ln+ ‖A1‖op <∞ then

γ = lim
n→∞

1

n
ln ‖An · . . . · A1‖op a.s., (4.2.4)

cf. [2], p. 97. Furthermore, if a non-negative random matrix A1 satisfies
E ln+ ‖A1‖op <∞ and assumptions (b) and (c) of Theorem 4.2.1, then also

γ = lim
n→∞

1

n
ln ‖An · . . . ·A1x‖ a.s., ∀x ∈ S

d−1
+ := {x ∈ R

d
+ : ‖x‖ = 1}, (4.2.5)

cf. [28], p. 224. For a specific choice of A1 the question whether or not γ < 0 can
often be answered by Monte Carlo simulations and the help of (4.2.4) or (4.2.5).

(b) Inequality (4.2.1) is a sufficient but not necessary condition, cf. Remark 4.3.2 (b).
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(c) The third part of the proposition follows from Corollaries 2.6 and 2.7 in [2] if κ∗

is not an even integer. For general κ∗ this follows from [10], p. 704.

Corollary 4.2.3 Let the conditions of Theorem 4.2.1 be satisfied and let in addition
A1 have no zero columns almost surely and

E

(

min
j=1,...,d

d∑

i=1

Aij

)κ0

≥ dκ0/2. (4.2.6)

Then the statements of the Theorem hold not only for the RDE defined by (4.1.1) but
also for the RDE defined by

Ỹt = At
tỸt−1 + Bt, t ∈ N. (4.2.7)

The index of regular variation is the same for both RDEs.

Proof. Since ‖A‖op = ‖At‖op for all A ∈ R
d×d the additional assumptions imply that

the conditions of Theorem 4.2.1 are satisfied for the RDE defined in (4.2.7). Since the
index of regular variation is determined by (4.2.3) it is the same for both RDEs.

In the following, we will often assume that both the assumptions of Theorem 4.2.1
and of Corollary 4.2.3 are satisfied. The reason for this is as follows: Kesten’s proofs
which we will pick up eventually use multiplication from the left when multiplying
a (row) vector with a matrix, thus looking at xtA1 for x ∈ Rd. Since it seems to
be confusing to multiply from the right in the definition of the RDE but to multiply
from the left for the rest of the analysis, we decided to unify the approach and always
multiply from the right in the following. Since

A1x = (xtAt
1)
t

for all x ∈ Rd and A1 ∈ Rd×d, everything that Kesten derives for At
1 by multiplying

from the left holds for A1 and multiplication from the right. Therefore, the assumptions
of Theorem 4.2.1 and Corollary 4.2.3, taken together, ensure that Kesten’s methods
to derive κ∗ from the law of A1 also work for At

1 and therefore both multiplication
from the left and from the right are feasible in our proofs. For details, see the proof of
Proposition 4.3.1.

Although Theorem 4.2.1 guarantees the existence of a κ∗ which equals the index
of regular variation of the stationary solution to (4.1.1), Equation (4.2.3) gets quite
cumbersome once d > 1. For the case d = 1 and Ai = Ai ∈ R+, i ∈ N, Equation (4.2.3)
simplifies to

E
(
Aκ
∗

1

)
= 1.

For d > 1, simpler results for the determination of κ∗ can be derived under additional
assumptions about the form of A1 in special cases. One of these examples has been
analyzed in [31] and deals with the GARCH(1, 1) process. Before we state the explicit
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formula in this case we shall explain how GARCH(p, q) models fit in the setting of
RDEs. Recall from Chapter 3 that a GARCH(p, q) process satisfies the equations

Xt = σtǫt+1, t ∈ Z, (4.2.8)

σ2
t = α0 +

p∑

i=1

αiX
2
t−i +

q∑

j=1

βjσ
2
t−j , t ∈ Z, (4.2.9)

with αi, βj ≥ 0 (cf. the beginning of Section 3.3 for further details). Let now

Xt =
(
σ2
t+1, . . . , σ

2
t−q̃+2, X

2
t , . . . , X

2
t−p̃+2

)t ∈ R
p̃+q̃−1, t ∈ Z, (4.2.10)

with p̃ := max(p, 2) and q̃ := max(q, 2). Set

At =


















α1ǫ
2
t+1 + β1 β2 . . . βq̃−1 βq̃ α2 α3 . . . αp̃−1 αp̃

1 0 . . . 0 0 0 0 . . . 0 0
0 1 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 1 0 0 0 . . . 0 0
ǫ2t+1 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 1 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 0 . . . 1 0


















∈ R
(p̃+q̃−1)×(p̃+q̃−1)

(4.2.11)
for t ∈ Z with ǫt, t ∈ Z, i.i.d. with E(ǫ0) = 0, Var(ǫ0) = 1, βq+1 = β2 = 0 if q ≤ 1 and
α2 = 0 if p = 1 and

Bt = (α0, 0, . . . , 0)t ∈ R
p̃+q̃−1, t ∈ Z, (4.2.12)

then
Xt = AtXt−1 + Bt, t ∈ Z.

Thus, if we are only interested in the absolute values of a GARCH(p, q) process, we
may write it as an RDE (cf. [1], p. 49). Furthermore, one can show (cf. [2], Theorem
3.1 (B)) that an iterated version of this RDE satisfies the conditions of Theorem 4.2.1
if

1) the Lyapunov exponent of A1 is negative, which is for example the case if α0 > 0,
∑p

i=1 αi +
∑q

j=1 βj < 1 or
∑p

i=1 αi +
∑q

j=1 βj = 1 with the further assumption
that the αi, βj are all positive and ǫ1 has infinite support and no atom at zero
(cf. [2], Remark 3.2),

2) the distribution of ǫ1 has a positive density on R such that E|ǫ1|h < ∞ for all
h < h0 and E|ǫ1|h0 = ∞ for some h0 ∈ (0,∞],

3) Not all of the parameters αi, βj vanish.
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Here, with iterated version we mean that there exists m ∈ N with

Ã1 := Am · · · · · A1, Ã2 := A2m · · · · · Am+1, . . .

and

B̃1 := Bm +

m−1∑

i=1

Am · · · · ·Am−i+1Bm−i,

B̃2 := B2m +
m−1∑

i=1

A2m · · · · · A2m−i+1B2m−i, . . .

such that
X̃t := Xmt = ÃtX̃t−1 + B̃t, t ∈ Z,

and (Ã1, B̃1) satisfies the assumptions of Theorem 4.2.1 (cf. [2], p. 108). For a concrete
choice of the parameters and the distribution of the innovations ǫt, t ∈ Z, one can often
show that the assumptions of Theorem 4.2.1 and Corollary 4.2.3 are already satisfied
for m = 1 (cf. the numerical example in Section 4.5).

Note that the process (Vt)t∈Z := (σt+1, . . . , σt−q̃+2, |Xt|, . . . , |Xt−p̃+2|)t∈Z
is multi-

variate regularly varying with index 2κ if the squared process (Xt)t∈Z is multivariate
regularly varying with index κ (cf. [2], Corollary 3.5).

In the special case of a GARCH(1, 1) process which satisfies the above conditions
one can show (cf. [31], Theorem 2.1) that κ∗ is determined by the equation

E
[(
α1ǫ

2
0 + β1

)κ∗
]

= 1. (4.2.13)

For a given distribution of ǫ0 Equation (4.2.13) can properly be solved by analytical
or numerical methods. So far, the GARCH(1, 1) process and, as a special case, the
ARCH(1) process are two of very few examples for common RDEs which allow for a
simple calculation of κ∗.

The straightforward approach of trying to evaluate the right hand side of Equation
(4.2.3) for different values of κ in order to find the κ∗ which solves (4.2.3) faces two
problems. First, the expression on the right hand side of Equation (4.2.3) can only be
evaluated for a fixed number n of matrices and we do not know about the convergence
rate of the expression and therefore if this approximation is feasible. Second, at least in
some cases, the operator norm of the product of matrices shows a heavy tailed behavior,
which makes Monte Carlo estimation of deduced expressions especially difficult.

4.3 Theoretical background

In this section we will derive a characterisation of κ∗ which is alternative to (4.2.3).
This characteristic is used in the proof of Theorem 3 in [28] but not stated explicitly
in the results.
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Proposition 4.3.1 Let (An,Bn)n∈N be an i.i.d. sequence which satisfies the conditions
of Theorem 4.2.1 and Corollary 4.2.3. Then for every κ ∈ (0, κ0] there exists a pair
(ρκ, νκ) where ρκ > 0 and νκ is a probability measure on S

d−1
+ such that

∫

S
d−1
+

E

[

‖A1x‖κ f
(

A1x

‖A1x‖

)]

νκ(dx) = ρκ

∫

S
d−1
+

f(x) νκ(dx) (4.3.1)

holds for all continuous functions f on S
d−1
+ . For all pairs (ρκ, νκ) which satisfy (4.3.1)

for a given value of κ ∈ (0, κ0], the value of ρκ is uniquely determined by κ. Compared
with Theorem 4.2.1 it holds that κ = κ∗ is the unique solution to ρκ = 1.

Proof. Let κ ∈ (0, κ0]. The existence of a tupel (ρκ, νκ) which satisfies (4.3.1) is shown
in step 1 of the proof of Theorem 3 in [28], (cf. Equation (2.65)) by using a fixed point
argument. While this fixed point argument only shows the existence, it is shown later
in the proof (cf. step 4) that for all κ ∈ (0, κ0] every fixed point satisfies

log(ρκ) = lim
n→∞

1

n
log
(
E‖An · · · · · A1‖κop

)
(4.3.2)

and the value is therefore unique. Moreover, it is shown in step 4 of the proof that
the function ρκ is log-convex and continuous on (0, κ0] and that log ρκ < 0 on (0, δ) for
some δ > 0. Therefore, there exists only one κ > 0 with ρκ = 1. It is shown in step
4 of Kesten’s proof that this κ is the same as κ1 in Kesten’s Theorem 3 and therefore
as κ∗ in our setting. Note that Kesten uses multiplication from the left when dealing
with matrices so Equation (2.65) in [28] is not equal to our Equation (4.3.1) but stated
as ∫

S
d−1
+

E

[
∥
∥xtA1

∥
∥
κ
f

(
xtA1

‖xtA1‖

)]

νκ(dx) = ρκ

∫

S
d−1
+

f(x) νκ(dx).

Note, however, that we may write the left hand side of our Equation (4.3.1) as

∫

S
d−1
+

E

[

‖A1x‖κ f
(

A1x

‖A1x‖

)]

νκ(dx)

=

∫

S
d−1
+

E

[
∥
∥(xtAt

1)
t
∥
∥κ f

(
(xtAt

1)
t

‖(xtAt
1)
t‖

)]

νκ(dx)

=

∫

S
d−1
+

E

[
∥
∥xtAt

1

∥
∥
κ
f

(
(xtAt

1)
t

‖xtAt
1‖

)]

νκ(dx).

which corresponds to Kesten’s approach applied for the RDE (4.2.7). Since we assume
that both A1 and At

1 satisfy the assumptions of Theorem 4.2.1, we may use Kesten’s
conclusions for the RDE (4.2.7). Since ρκ satisfies Equation (4.3.2) which is left un-
changed by transposing the matrices, its value is the same whether we analyze the
RDE (4.1.1) or (4.2.7).
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Remark 4.3.2.

(a) Since the function ρ(κ) := ρκ is log-convex, continuous on (0, κ0] and log ρκ < 0
on (0, δ) for some δ > 0, a typical representative of it can be sketched as follows:

0

1

2

3

4

0 1 2 3 4

ρ(κ)

κ

κ∗

(b) The assumption (4.2.1) is only needed to ensure that ρκ0 ≥ 1 (cf. [28], Equation
(2.66)) which, together with the abovementioned properties of ρ(κ), guarantees
that κ∗ exists. If all assumptions of Theorem 4.2.1 but Inequality (4.2.1) are
satisfied, Proposition 4.3.1 still holds. If furthermore there exists a κ ∈ (0, κ0]
such that ρκ = 1, the statement of Theorem 4.2.1 follows, cf. the proof of Theorem
3 in [28].

As for the evaluation of ρκ, we get the equation

∫

S
d−1
+

E [‖A1x‖κ] νκ(dx) = ρκ

∫

S
d−1
+

νκ(dx) = ρκ, (4.3.3)

with setting f ≡ 1 in (4.3.1). We will use this equation for the determination of κ∗.
The idea is to try out different values of κ, simulate from the (or: one of the) respective
measure(s) νκ and evaluate the expression on the left hand side of (4.3.3) via Monte
Carlo simulation to derive a Monte Carlo estimator ρ̂κ of ρκ. From the different values
of κ the one with ρ̂κ ≈ 1 gives an estimate for κ∗. Unfortunately, the simulation from
the measure νκ turns out to be difficult. Nevertheless, we can make use of the following
fact.

Proposition 4.3.3 Let (An,Bn)n∈N be an i.i.d. sequence which satisfies the conditions
of Theorem 4.2.1 and Corollary 4.2.3 and let a constant C > 0 exist such that ‖A1‖op ≤
C almost surely. Let κ ∈ (0, κ0] and let (ρκ, νκ) be as in Proposition 4.3.1. Define three
independent random variables θκ ∈ S

d−1
+ ,A ∈ Rd×d and U ∈ [0, 1] with

θκ ∼ νκ, A
d
= A1 and U ∼ Unif[0, 1].
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Then,

P (θκ ∈ S) = P

(
Aθκ

‖Aθκ‖
∈ S U ≤ ‖Aθκ‖κ

Cκ

)

(4.3.4)

holds for all S ∈ Bd
S

d−1
+

.

Proof. The proof follows the ideas of [3], p. 1075. Let f be a continuous function on
S
d−1
+ . Then,

E

(

f

(
Aθκ

‖Aθκ‖

)

U ≤ ‖Aθκ‖κ
Cκ

)

=
E
(

f
(

Aθκ

‖Aθκ‖

)

1{U≤ ‖Aθκ‖κ

Cκ }
)

P
(

U ≤ ‖Aθκ‖κ

Cκ

)

=
E
(

f
(

Aθκ

‖Aθκ‖

)
‖Aθκ‖κ

Cκ

)

E
(
‖Aθκ‖κ

Cκ

)

=
E
(

f
(

Aθκ

‖Aθκ‖

)

‖Aθκ‖κ
)

E (‖Aθκ‖κ)

=
ρκE(f(θκ))

ρκ
= E(f(θκ)),

where the penultimate equality follows from (4.3.3) and (4.3.1).

Remark 4.3.4. Proposition 4.3.3 is a modification of an idea found in [3], p. 1075, where
an algorithm has been proposed to sample from νκ∗ . It has been shown there (cf. [3],
Proposition 5.1) that νκ∗ is the spectral measure of the stationary solution to (4.1.1),
that means the probability distribution of θ in (4.1.2). The idea of Basrak and Seger’s
algorithm is to use Markov chain Monte Carlo to simulate from νκ∗ . Unfortunately,
there is a mistake in their proof regarding the stationary distribution of the underlying
Markov chain. As a consequence, their algorithm does, in most cases, not allow us to
sample from the measure νκ∗ .

To be more precise, the Markov chain defined in [3] is given in terms of a simulation
algorithm of the following form:

Start with x0 ∈ S
d−1
+ ,

repeat

{
sample A from the law of A1,

set Y = Axi/‖Axi‖,
with probability ‖Axi‖κ

∗
/Cκ∗, accept Y as xi+1

}
until Y is accepted

However, sticking to the same value of xi at each proposal for the algorithm prevents it
in most cases from having νκ∗ as stationary distribution, in contrast to the statement in
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[3]. The algorithm still works in special cases, for example if A1 is a random orthogonal
matrix (B. Basrak, J. Segers, private communication), but for a continuous function f
on S

d−1
+ it holds in general that

E(f(xi+1)) =

∫

S
d−1
+

E
(

f
(

Ax
‖Ax‖

)

‖Ax‖κ
)

E (‖Ax‖κ) P xi(dx) 6=
E
(

f
(

Axi

‖Axi‖

)

‖Axi‖κ
)

E (‖Axi‖κ)
.

Therefore, if xi has distribution νκ, κ ∈ (0, κ0], the right hand side equals E(f(xi)),
but the left hand side does not equal this expression.

In the next section, we propose an alternative algorithm which makes use of Propo-
sition 4.3.3 in a different way.

4.4 Simulation algorithm

For κ ∈ (0, κ0], consider the slightly modified algorithm

repeat

{
sample A from the law of A1,

sample θκ from the law νκ
set Y = Aθκ/‖Aθκ‖,
with probability ‖Aθκ‖κ/Cκ accept Y as xi
}
until Y is accepted

Then, by Proposition 4.3.3 xi also has distribution νκ. Unfortunately, in order for this
algorithm to work properly we would need a way to sample independent copies of θκ

from νκ which is exactly what we need the algorithm for. We propose the following
workaround.

The idea is again based on the proof of Theorem 3 in [28]. Let certain operators
Tκ on the space of probability measures on S

d−1
+ be defined with the help of A1 and

κ ∈ (0, κ0]. Therefore, for a given probability measure ν on S
d−1
+ let Tκ(ν) be the

probability measure on S
d−1
+ which satisfies

∫

S
d−1
+

f(x)Tκ(ν)(dx) =

∫

S
d−1
+

E
(

f
(

A1x

‖A1x‖

)

‖A1x‖κ
)

ν(dx)
∫

S
d−1
+

E(‖A1x‖κ)ν(dx)
(4.4.1)

for all continuous functions f on S
d−1
+ . In [28], similar operators are used (cf. the oper-

ators T ∗κ in step 1 of Kesten’s proof of his Theorem 3), but without the normalization
which we have introduced by dividing by

∫

S
d−1
+

E(‖A1x‖κ)ν(dx). Therefore, in [28]

the operators are defined on the whole space of signed measures on S
d−1
+ while we will

restrict the operator to the space of probability measures on S
d−1
+ .
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4.4: Simulation algorithm

Proposition 4.4.1 Let the conditions of Proposition 4.3.1 be satisfied and let Tκ for
κ ∈ (0, κ0] be defined as above. Then, there exists at least one fixed point of Tκ and
every fixed point satisfies Equation (4.3.1) with a suitable constant ρκ.

Proof. Let f be a continuous function on S
d−1
+ and let ν be a fixed point of Tκ. Now,

∫

S
d−1
+

E

(

f

(
A1x

‖A1x‖

)

‖A1x‖κ
)

ν(dx)

(4.4.1)
=

∫

S
d−1
+

E(‖A1x‖κ)ν(dx)

∫

S
d−1
+

f(x)Tκ(ν)(dx)

=

∫

S
d−1
+

E(‖A1x‖κ)ν(dx)

∫

S
d−1
+

f(x)ν(dx)

= ρκ

∫

S
d−1
+

f(x)ν(dx)

with ρκ =
∫

S
d−1
+

E(‖A1x‖κ)νκ(dx). Since ρκ is independent of f , Equation (4.3.1)

follows. Because the assumptions of Proposition 4.3.1 are satisfied there exists at least
one probability law νκ which satisfies Equation (4.3.1). Calculations similar to the ones
above then show that νκ is a fixed point of Tκ.

However, it is not stated in [28] nor can it be shown by simple methods that the
recursive application of the operator Tκ converges to a fixed point for an arbitrary
starting measure ν on S

d−1
+ . Nevertheless, if the recursion converges then the fixed

point ν ′κ fulfills (4.3.1). Thus, an iterated application of the operator Tκ can be used
as the basic idea for an algorithm which allows us to simulate from νκ.

Therefore, we consider the following modification of the above algorithm:

Start with a sample (x1, . . . ,xn)
repeat {
repeat {
sample A from the law of A1,

draw x randomly from the sample (x1, . . . ,xn)
set Y = Ax/‖Ax‖,
with probability ‖Ax‖κ/Cκ accept Y as x′i
}
until Y is accepted

}
until we have generated a new sample (x′1, . . . ,x

′
n)

replace (x1, . . . ,xn) by (x′1, . . . ,x
′
n)

Here, instead of sampling from a certain distribution, the algorithm draws ran-
domly from a given population (x1, . . . ,xn), which corresponds to the sampling from
an empirical distribution function. Note that for n → ∞ the empirical distribution
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4.4: Simulation algorithm

function of an i.i.d. sample converges to the underlying distribution function by the
Glivenko-Cantelli theorem. We then generate x′1,x

′
2, . . . according to the rejection

sampling algorithm stated at the beginning of this section with the difference that
we do not sample from νκ but from the empirical distribution ν̂(x1,...,xn) of the sample
(x1, . . . ,xn). A modification of the proof of Proposition 4.3.3 shows that the sample
(x′1, . . . ,x

′
n) generated in this way has the same distribution as an independent sample

from the law Tκ(ν̂(x1,...,xn)). Again by Glivenko-Cantelli, for large values of n the em-
pirical distribution ν̂(x′1,...,x

′
n) of the new sample approximately equals the distribution

Tκ(ν̂(x1,...,xn)).
Now, in the next step we repeat the algorithm and draw from (x′1, . . . ,x

′
n) to gen-

erate a sample (x′′1, . . . ,x
′′
n). Approximately, the empirical distribution of this sample

equals Tκ(ν̂(x′1,...,x
′
n)). We proceed this way to iterate the operator Tκ on our samples.

Doing this with a statistical software like R allows us to keep an eye on the conver-
gence behavior of the algorithm while creating the samples one after another. In the
two-dimensional case we may project S1

+ ⊂ R2 to [0, π/2] and describe the samples by
their one-dimensional empirical distribution functions. It turns out that for the cases
which we have studied (see below) the empirical distribution functions show conver-
gence behavior, as measured in the test-statistic of the Kolmogorov-Smirnov test for
two successive samples. This implies that our algorithm succeeds in finding a fixed
point of Tκ, although further research needs to be done in order to strengthen its
theoretical fundament.

Now, putting the pieces together, a general procedure for determining κ∗ for a
given RDE is the following. For different values of κ we evaluate ρ̂κ from (4.3.3) in
order to find the unique κ∗ for which ρ̂κ∗ ≈ 1. We simulate vectors x1,x2, . . . from
νκ (see above) and are left to evaluate E(‖A1xi‖κ) for i = 1, 2, . . . for a Monte Carlo
estimation of ∫

Sd−1

E(‖A1x‖κ)νκ(dx).

Depending on both the dimension of the matrix A1 and its underlying distribution,
this can be done either analytically (probably with the help of numerical integration)
or again by doing Monte Carlo simulations for each realization of xi.

We close this section with a remark on the assumption of the finite upper bound
for the operator norm of A1 which is needed for our algorithm. Of course, there are
many applications in which an upper bound of the operator norm of A1 does not exist.
For example, consider the matrix given in (4.2.11) when the ǫt, t ∈ Z, are normally
distributed, which is a frequent assumption for this model. An ad hoc solution to this
problem would be to use a truncated version A

(C)
1 instead of A1 for the simulations,

with
L(A

(C)
1 ) = L (A1 ‖A1‖op ≤ C) . (4.4.2)

The following lemma shows that this approach is feasible.

Lemma 4.4.2 Let the assumptions of Proposition 4.3.3 be satisfied and for a sequence
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Cn → ∞, n ∈ N, let A
(Cn)
1 be random matrices related to A1 and Cn by (4.4.2) such

that the A
(Cn)
1 also satisfy the assumptions of Theorem 4.3.3. For κ ∈ (0, κ0] denote

the value of ρκ associated with A
(Cn)
1 by ρ

(Cn)
κ . Then

ρ(Cn)
κ → ρκ

for n→ ∞ and all κ ∈ (0, κ0].

Proof. Note that

E
(

‖A(Cn)
1 ‖κ0

op ln+ ‖A(Cn)
1 ‖op

)

<∞, ∀n ∈ N,

and that

E

(

min
i=1,...,d

d∑

j=1

A
(Cn)
ij

)κ0

→ E

(

min
i=1,...,d

d∑

j=1

Aij

)κ0

, n→ ∞,

as well as

E

(

min
j=1,...,d

d∑

i=1

A
(Cn)
ij

)κ0

→ E

(

min
j=1,...,d

d∑

i=1

Aij

)κ0

, n→ ∞,

therefore the value of κ0 associated with ACn
1 can be chosen as κ

(Cn)
0 ∈ [κ0, κ0 + ǫ]

for ǫ > 0 and n large enough. Now, for every κ ∈ (0, κ0] there exists a sequence of

probability measures ν
(Cn)
κ , n ∈ N, on S

d−1
+ and a sequence of constants ρ

(Cn)
κ , n ∈ N,

such that
∫

S
d−1
+

E

[

‖A(Cn)
1 x‖κf

(

A
(Cn)
1 x

‖A(Cn)
1 x‖

)]

ν(Cn)
κ (dx) = ρ(Cn)

κ

∫

S
d−1
+

f(x)ν(Cn)
κ (dx) (4.4.3)

holds for all continuous functions f on S
d−1
+ and all n ∈ N. In the following, let f ≡ 1.

Because S
d−1
+ is a compact space, every sequence of probability measures on it has a

convergent subsequence. Let now nk, k ∈ N, and ν∗κ such that ν
(Cnk

)
κ

w→ ν∗κ for k → ∞.
We will apply the continuous mapping theorem (cf. Theorem 4.27, [27]) to show that
the expression

∣
∣
∣
∣
∣

∫

S
d−1
+

E
(

‖A(Cnk
)

1 x‖κ
)

ν
(Cnk

)
κ (dx) −

∫

S
d−1
+

E (‖A1x‖κ) ν∗κ(dx)

∣
∣
∣
∣
∣

(4.4.4)

converges to 0. Therefore, we will derive first that

E‖A(Cnk
)

1 xk‖κ → E‖A1x‖κ (4.4.5)

as k → ∞ for all sequences xk → x ∈ S
d−1
+ . This is because

∣
∣
∣E‖A(Cnk

)

1 xk‖κ − E‖A1x‖κ
∣
∣
∣ ≤

∫

S
d−1
+

∣
∣
∣
∣

1{‖a‖op≤Cnk
}‖axk‖κ

P (‖A1‖op ≤ Cnk
)
− ‖ax‖κ

∣
∣
∣
∣
PA1(da).
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Now, with M = P (‖A1‖op ≤ Cnk
)−1 + 1 the integrand is bounded by M‖a‖κop and for

k large enough we may for example set M ≤ 3. Since E‖A1‖κop < ∞ (cf. Equation
(4.2.2)), dominated convergence allows us to interchange limit and integral and there-
fore (4.4.5) holds. Now, Equation (4.4.5) allows us to apply the continuous mapping
theorem to (4.4.4) which shows that the expression converges to 0 as k → ∞. With
(4.4.3) we then get that

∣
∣
∣
∣
∣
ρ

(Cnk
)

κ −
∫

S
d−1
+

E (‖A1x‖κ) ν∗κ(dx)

∣
∣
∣
∣
∣
→ 0, k → ∞,

and therefore ρ
(Cnk

)
κ converges to a constant ρ∗κ. But then

ρ∗κ

∫

S
d−1
+

f(x)ν∗κ(dx) = lim
k→∞

ρ
(Cnk

)
κ

∫

S
d−1
+

f(x)ν
(Cnk

)
κ (dx)

= lim
k→∞

∫

S
d−1
+

E

[

‖A(Cnk
)

1 x‖κf
(

A
(Cnk

)

1 x

‖A(Cnk
)

1 x‖

)]

ν
(Cnk

)
κ (dx)

=

∫

S
d−1
+

E

[

‖A1x‖κf
(

A1x

‖A1x‖

)]

ν∗κ(dx)

holds for all continuous functions f on S
d−1
+ again by the continuous mapping theorem

with arguments similar to the ones used above where we may replace M by M‖f‖∞.

Therefore ρ∗κ = ρκ regardless of the chosen subsequence, that means ρ
(Cn)
κ → ρκ for

n→ ∞.

4.5 Simulation results

We will finish this chapter with an example for the evaluation of κ for a GARCH(1, 2)
model with parameters taken from [9], where different GARCH(p, q) models (with
parameters (p, q) equal to (1, 1), (1, 2), (2, 1) and (2, 2), respectively) are fitted to DM-
U.S. Dollar exchange rate data. We will analyze the index of regular variation for the
estimated GARCH(1, 1) and GARCH(1, 2) model. For the first model with parameters

α0 = 0.0069, α1 = 0.0449, β1 = 0.9414

and standard normal innovations we may evaluate κ∗1,1 by numerical integration from
the Equation

E
[(
α1ǫ

2
0 + β1

)κ∗1,1

]

= 1

(cf. (4.2.13)) as

κ∗1,1 ≈ 6.2,
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that means the associated stationary distributions of σt and |Xt| are regularly varying
with index 2κ∗1,1 ≈ 12.4. For the GARCH(1, 2) case, the model parameters are given
by

α0 = 0.0049, α1 = 0.0313, β1 = 1.2819, β2 = −0.3229

with standard normal innovations. Note that one of the parameters is negative which
is in line with a well-known extension of the model (cf. [33]), where our parameters
satisfy equations (23)-(27) in [33] (note that due to a different notation, the model is
named GARCH(2, 1) in that paper, instead of GARCH(1, 2) in our notation). This
guarantees that the volatility process as defined by (4.2.9) stays positive if we choose
the initial values σ2

0 , σ
2
1 from a certain range.

In our case, we can reduce the RDE notation for GARCH(p, q) models from Section
4.2 to the analysis of the time series (σ2

t , σ
2
t−1)t∈N which can be written as a two-

dimensional RDE with
(
σ2
t+1

σ2
t

)

=

(
1.2819 + 0.0313ǫ2t+1 −0.3229

1 0

)(
σ2
t

σ2
t−1

)

+

(
0.0049

0

)

, (4.5.1)

for t ∈ N with i.i.d. standard normal ǫt, t ∈ N. The matrix A1 in this model has negative
entries but one can show that if (σ2

1, σ
2
0) ∈ S := {x ∈ R2

+ x = (cos(θ), sin(θ)), θ ∈
[0, s]} ⊂ S1

+ with s ≈ 1.2391 then also An · . . . · A1(σ
2
1 , σ

2
0)
t ∈ S almost surely for

all n ∈ N. This suffices to apply the results which have been stated for non-negative
matrices, cf. Remark 1 in [28]. In order to show that the assumptions of Theorem 4.2.1
and Corollary 4.2.3 are satisfied, we evaluate the Lyapunov exponent γ by Monte Carlo
simulations and get

γ
a.s.
= lim

n→∞

1

n
log(‖An · · · · · A1x‖) ≈ −0.048 < 0, ∀x ∈ S,

and due to the light tails and the continuity of the assumed normal distribution for
the innovations ǫt, t ∈ N, we can easily check that the conditions of Theorem 4.2.1
and Corollary 4.2.3 are satisfied for arbitrarily large κ0 (with exception of (4.2.1) and
(4.2.6), but cf. Remark 4.3.2 (b)). For our simulations we have used a truncated
version of the matrix by truncating the absolute value the innovations ǫt, t ∈ N, at
the 99.999%-quantile of the standard normal distribution. To derive the corresponding
upper bound C for ‖A1‖op we have used that ‖A1‖op = supx∈S ‖A1x‖ = ‖A1(1, 0)t‖.

Our simulations for the GARCH(1, 2) model give us the estimate

κ̂∗1,2 ≈ 6.1,

cf. the estimated curve of ρκ for the GARCH(1, 2) model (Figure 4.1) below.
Compared to the value of κ∗1,1 ≈ 6.2 for the GARCH(1, 1) model both models

seem to reflect a similar structure of the extremal behavior of the time series, at least
regarding the index of regular variation.

In order to visualize the function ρ(κ) for the GARCH(1, 2) model we have evaluated
ρκ one after another for a equidistantly spaced sequence of κ’s in Figure 4.1. If the aim
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Figure 4.1: Estimated values of ρκ for the GARCH(1, 2) model in [32].

is to find κ∗ in a more efficient way, the next value of κ for which ρκ is to be evaluated
can be chosen subject to the previously found values of ρκ.

The example code for the evaluation of ρκ for κ = 6, a sample size of n = 100.000
and 10 iterations of the sampling procedure for νκ is shown below.

Listing 4.1: Example code

# Numerical eva lua t i on o f rho kappa f o r kappa=6
# and GARCH(1 ,2 ) model
alpha1<−0.0313
beta1<−1.2819
beta2<− −0.3229
quant i l e <−0.99999 # Quant i le used f o r t runca t i on

n<−100000 # sample s i z e
Ceps<−qnorm( quan t i l e ) # Truncation po int f o r the innova t i ons
Cmatrix<−s q r t ( ( beta1+alpha1∗Cepsˆ2)ˆ2+1)
# Resu l t ing bound f o r the operator norm
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4.5: Simulation results

kappa<−6
# I n i t i a l i z e sample , uni formly d i s t r i b u t e d on S
x<−seq (0 , 1 . 2391 , l ength . out=n)
# Ten i t e r a t i o n s o f the a lgor i thm
f o r ( j in 1 : 1 0 )
{

xnew<−rep (0 , n)
i<−0
# Rej ec t i on sampling
whi l e ( i<n)
{
theta<−sample (x , 1 , r ep l a c e=FALSE)
eps i l on<−rnorm (1 )
whi l e ( abs ( e p s i l o n )>Ceps ){ eps i l on<−rnorm (1)}
Y<−matrix ( c ( beta1+alpha1∗ e p s i l o n ˆ2 ,1 , beta2 , 0 ) , 2 )

%∗%c ( cos ( theta ) , s i n ( theta ) )
i f ( r un i f (1)<((Y[1 ]ˆ2+Y[ 2 ] ˆ 2 ) ˆ ( kappa /2))/ Cmatrixˆkappa )
{

i<−i +1;xnew [ i ]<−atan (Y[ 2 ] /Y[ 1 ] )
}

}
# Print KS−Test to check convergence
p r i n t ( ks . t e s t (x , xnew ) )
# renew sample
x<−xnew

}
# Evaluate E | Ax i |ˆ kappa f o r each x i
# Use numer ica l i n t e g r a t i o n
f i n a l<−rep (0 , n )
f o r ( i in 1 : n)
{

Yvector<−c ( cos ( x [ i ] ) , s i n ( x [ i ] ) )
integrand<−f unc t i on (x ){ ( s q r t ( ( ( beta1+alpha1∗xˆ2)∗Yvector [1 ]+
beta2∗Yvector [2 ] )ˆ2+ Yvector [ 1 ] ˆ 2 ) ) ˆ kappa∗dnorm(x )/
(1−2∗(1−quan t i l e ) )}
f i n a l [ i ]<− i n t e g r a t e ( integrand , lower=−Ceps , upper=Ceps ) $value

}
# Mean o f t h i s va lue s i s est imate f o r rho kappa
p r i n t (mean( f i n a l ) )

Figure 4.2 shows the histogram of the sample (x1, . . . ,xn) after ten iterations of the
algorithm for κ = 6. The value of x = (x1, x2) ∈ S1

+ is projected on θ = arctan(x2/x1) ∈
[0, π/2].
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Figure 4.2: Histogram of the sample after ten iterations of the algorithm for κ = 6.

The efficiency of this algorithm depends heavily on the values of both κ and C, the
bound for the operator norm of A1. Since the rejection algorithm is fastest for low
values of Cκ, it works best for relatively low values of κ and C (keep in mind that C > 1,
since otherwise ρκ < 1 for all κ). For the GARCH(2, 1) model estimated in [32] the
value of C for a reasonably truncated normal distribution of the innovations ǫt, t ∈ Z,
does not allow for the evaluation of ρκ in the region of interest. For the GARCH(1, 2)
model analyzed above, the successive evaluation of ρκ of κ = 0.1, 0.2, . . . , 6.9, 7 with
result visualized in Figure 4.1 takes about two days and the analysis of GARCH(1, 2)
models for financial time series should in general be feasible with our new method. Our
method can be used to explore whether different models which are fitted to the same
data have similar extremal characteristics or to analyze the influence of the parameters
of a certain model (for example the αi, βj in the GARCH(p, q) model but also the
distribution of the ǫt, t ∈ Z) on its extremal properties.

The idea of simulating with this new method has a lot in common with the idea
of simulating from the tail chain which was used in Chapter 3. In both cases we are
able to simulate directly from the tail of the distribution of interest, either by sampling
from the tail chain or from the spectral measure. Compared to the alternative of first
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simulating realizations of the time series (for example of a GARCH(p, q) process) and
then using only the extremal observations of it, these new methods are much more
efficient and stable. Furthermore, they illuminate how the extremal behavior of a time
series is influenced by its often light-tailed innovations which are the main ingredients
for our simulations.
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