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Abstract 

The human 15.5K protein binds to the 5' stem-loop of U4 snRNA (KtU4), promotes the 

assembly of the spliceosomal U4/U6 snRNP, and is required for the recruitment of the 

61K protein and the 20/60/90K protein complex to the U4 snRNA. In the crystallographic 

structure of the 15.5K-U4 snRNA complex, the RNA fold belongs to the family of kink 

turn (K-turn) motifs. This motif has a kink in the phosphodiester backbone that causes a 

sharp turn in the RNA helix. Two stems are connected by a purine-rich internal 

asymmetric loop, containing a flipped out uridine and two tandem sheared G-A base 

pairs. The shorter stem is attached to an external pentaloop. Using molecular dynamics 

simulations, I showed that the folding of KtU4 is assisted by protein binding. 

Conformational transitions such as the inter-conversion between alternative purine 

stacking schemes, the loss of G-A base pairs, and the opening of the K-turn (k-e motion) 

occurred only in the free RNA. The simulations provided the first atomic details of K-turn 

dynamics and were in excellent agreement with experimental data obtained by 

chemically probing the RNA structure and from single molecule FRET studies. In the 

free RNA, the k-e motion was triggered both by loss of G-A base pairs in the internal 

loop and backbone flexibility in the stems. However, the loss of G-A base pairs alone 

was insufficient for achieving a large opening of the free RNA. Essential dynamics 

showed that the loss of G-A base pairs is correlated along the first mode but anti-

correlated along the third mode with the k-e motion. Based on these findings, I conclude 

that G-A base pair formation occurs upon binding to the 15.5K protein, thereby 

stabilizing a selective orientation of the stems. 

The external loop was not revealed in the crystallographic structure of the 15.5K- 

KtU4 complex. In the simulations, it adopted a specific orientation which did not persist 

in the unbound RNA and did not form when the natively occurring external loop was 

replaced by different loops or by an extended helix. I propose that the lack of stacking 

interactions between the last base pair of the stem and the adjacent nucleotide in the 

external loop are important for the correct folding of the RNA and might play a role in the 

subsequent binding of the 61K protein to the U4 snRNA.   
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1. Introduction 

1.1. Spliceosome assembly and function 

 

 
 

Figure 1: Overview of the splicing process. 
(A) Consensus sequences within the mRNA introns [taken from Collins and Guthrie (5)]. (B) A schematic 
view of the assembly pathway highlighting all the intermediate steps; U1, U2, U4, U5 and U6 are the major 
spliceosome components (snRNPs) (courtesy to Reinhard Lührmann). (C) The mechanism of splicing 
reactions [taken from Collins and Guthrie (5)]. 
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The spliceosome is the complex macromolecular machinery that catalytically removes 

the non-coding sequences (introns) from the newly transcribed messenger RNA 

precursors (pre-mRNA). Most pre-mRNA introns are removed by the U2-dependent 

(major) spliceosome, which is composed of the small nuclear ribonucleoprotein particles 

(snRNPs) U1, U2, U4/U6 and U5 and numerous non-snRNP protein factors. A rare class 

of pre-mRNA introns is removed by the U12-dependent (minor) spliceosome, which 

contains a different set of snRNPs, namely U11, U12 and U4atac/U6atac, but shares U5 

snRNP with the major spliceosome [reviewed by Burge et al. (1)]. Each snRNP consists 

of specific and non-specific proteins that wrap around the RNA core. Different snRNPs 

recognize the introns via several consensus sequences (Figure 1A): (i) the 5’ splice site, 

(ii) the branch point adenosine; (iii) the poly-pyrimidine track located downstream from 

the branch point, and (iv) the 3’ splice-site. U1 joins the intron at the 5’ splice-site and U2 

recognizes the adenosine at the branch point via different splicing factors. U4, U5 and 

U6 are pre-assembled into a tri-snRNP before they join the spliceosome. During the 

activation step, U1 and U4 are released, and the catalytically active spliceosome 

acquires the capability to perform the splicing reactions. A detailed scheme of the major 

spliceosome assembly pathway showing all the intermediate complexes formed is 

presented in Figure 1B. The chemistry of the splicing process consists of two 

transesterification steps (Figure 1C): (i) the 2’ OH group of the adenosine branch point 

attacks the phosphate group of the 5’ splice site, and (ii) the terminal OH group of exon 1 

formed as a leaving group in the first step, attacks the phosphate group at the 3’ splice 

site, releasing the intron as a lariat [for detailed reviews see (2-4)]. 

 Dramatic RNA structural rearrangements occur during spliceosome activation 

(Figure 2). Before joining the spliceosome, U4 base-pairs with U6 snRNA forming a RNA 

duplex while U2 is associated with the adenosine branch point of the pre-mRNA. Upon 

activation, U4 is released from the spliceosome and U6 base-pairs with U2 snRNA 

forming the catalytically active RNA fold. It has been long debated whether the 

spliceosome is actually a ribozyme. A network of critical RNA interactions, between the 

snRNAs with one another and with the pre-mRNA substrate, that could perform all the 

functions required for catalysis has been identified. U6 and U2 snRNAs interact with the 

intron near two sites of chemistry – the 5’ splice site and the branchpoint via the 5’ splice 

site helix and BP helix respectively (Figure 2, upper panel).  
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Figure 2: RNA rearrangements during spliceosome activation. 

Large letters denote RNA sequences that are absolutely conserved in major and minor spliceosomes from 
mammals, worms, plants, yeast and trypanosomes. The exception (underlined), terminal intron Gs are 
replaced by covariant 5' C and 3' A in some introns. Black lines denote Watson-Crick base pairing 
interactions (the thinner lines denote interactions that are not absolutely conserved in all systems). Exons 
are denoted by rectangles, and the intron substrate is in black. Purple dotted lines indicate tertiary 
interactions a, b, and c. [taken from Collins and Guthrie (5)]. 
 
 
The adjoining U2/U6 helices I, II, and III could help juxtapose these two reactive sites for 

the first phosphoryl-transfer step. The highly conserved loop of U5 snRNA has been 

implicated in positioning the exons for ligation during the second phosphoryl-transfer 

step. Additional long range interactions have been identified (a, b, and c shown as 

dotted lines in Figure 2), suggesting the existence of a more compact RNA structure. 

These include an interaction between the first and last guanines of the intron (interaction 

a), and an invariant U6 RNA residue near the 5’ splice site helix with a budged U2 RNA 

residue in helix I [interaction b; for detail reviews see (5,6)]. Similarities between the 
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spliceosome and the group II introns, a class of ribozymes that catalyze their own 

removal by a similar splicing reaction have been documented, providing evidence that 

the splicing reaction is catalyzed by RNA and the spliceosome evolved from RNA 

enzymes (7-10). 

 It was proposed that Prp8, a highly conserved spliceosomal protein, acts as a 

protein cofactor to the RNA enzyme (11). Prp8 crosslinks extensively with the pre-mRNA 

substrate near the sites of chemistry for both steps of the splicing reaction. Prp8 also 

forms crosslinks within snRNPs to U5 and U6 snRNAs (12,13). Prp8 is thought to 

stabilize interactions between variant exon sequences and the highly conserved loop of 

U5 snRNA, which are not likely to be strong enough on their own to hold onto the 

cleaved 5’ exon between the first and second chemical steps (14,15). Protein cofactors 

are required by many ribozymes, including RNase P and most group I and group II 

introns, for catalysis under physiological conditions. However, protein-independent 

catalysis can occur in conditions that stabilize RNA structure, such as high 

concentrations of divalent metal ions, or in the presence of a crosslink that stabilizes a 

long range tertiary interaction (16,17). 

 RNA and protein might function intimately together in catalysis through a specific 

protein-RNA structure that cannot be achieved by the RNA alone. Many proteins that 

bind specifically to RNA have been observed to induce dramatic conformational changes 

in the RNA or to stabilize a unique RNA conformation (16,18,19). 

 Understanding the complexity of these processes requires data at atomic level 

on the active and inactive spliceosomes and their subcomponents. In the absence of 

such experimental data, the dynamics of small RNA motifs found in different snRNAs 

could provide valuable insights into the folding and dynamics of large RNAs, ultimately 

contributing to the elucidation of spliceosome assembly and function.  

1.2. The U4/U6�U5 tri-snRNP 

The association of the U4/U6�U5 tri-snRNP completes the assembly of the inactive 

spliceosome (complex B in Figure 1B). Within the U4/U6 di-snRNP, the U4 and U6 

snRNAs form a phylogenetically highly conserved Y-shaped U4/U6 interaction domain, 

consisting of two intermolecular helices (stem I and II), which are separated by the 5’ 

stem-loop of U4 (Figure 3). Both intermolecular helices are disrupted as the spliceosome 

become activated for catalysis; the region of U6 constituting stem II folds back on itself 

to form a new intramolecular stem-loop, and the region of U6 residing in stem I base-
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pairs with U2 snRNA to form part of the catalytic center. Concomitantly, U6 snRNA 

base-pairs with the 5’ end of the intron, while U1 snRNP dissociates from the 5’ splice 

site. In contrast to U6, U4 snRNA is released from the spliceosome, or remains only 

loosely attached to it [for detailed description of U4/U6 snRNP structure and function see 

(1,20-24)].  

 The mechanism by which the spliceosome is transformed into a catalytically 

active machine is only poorly understood at present. There is evidence that the yeast 

DExH/D-box RNA helicase Brr2p (human U5-200K) is one of the driving forces behind 

the disruption of the U4/U6 snRNA helices (25,26), but its precise mechanism of action 

is still unknown. Brr2p/U5-200K could unwind the U4/U6 duplex directly. However, the in 

vitro RNA helicase activity of purified U5-200K is a generic one, exhibiting no specificity 

for the naked U4/U6 duplexes (26). Alternatively, U4/U6 snRNA-binding proteins could 

play a role in regulating the stabilization/destabilization of the U4/U6 duplex. In this 

respect, information about interactions between U4/U6 snRNP proteins and the snRNAs 

is of particular importance.  

 

 
 

Figure 3: Secondary structure of U4/U6 snRNA. 
The black lines indicate Watson-Crick base-pairs and the circles indicate non-Watson-Crick interactions. 
The U4/U6 snRNP-specific proteins, 15.5K, 61K and 20/60/90K are shown as color filled circles of size 
proportional to the molecular weight [taken from Nottrott et al. (37)].  
  

Figure 3 shows a two dimensional view of the U4/U6 snRNA duplex. In addition to the 

seven Sm proteins that bind the Sm site of U4 snRNA, and the seven LSm (“like-Sm”) 

proteins (LSm 2-8) that are associated with the 3’ end of U6 snRNA, five proteins have 
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been found by biochemical means to be associated with the human 13S U4/U6 snRNP 

[reviewed by (4)]. These include three proteins with molecular weights of 20, 60 and 90 

kDa that form a stable, heteromeric complex [hereafter termed as 20/60/90K complex; 

(27,28)]. U4/U6 snRNP also contains a 15.5 kDa protein (15.5K) that binds directly to the 

5’ stem-loop of U4 snRNA (29) and it is also present in box C/D snoRNPs, providing a 

link between the pre-mRNA and pre-rRNA processing machineries (30). Finally, a 61 

kDa protein (61K) was identified and shown to be required for U4/U6�U5 tri-snRNP 

formation (31). It shares a homologous central domain with the proteins Nop56 and 

Nop58, which (like the 15.5K protein) are integral constituents of the box C/D snoRNPs 

(31,32). These U4/U6 snRNP-specific proteins are also associated with the HeLa 

U4atac/U6atac snRNP (33). Except for the 20K protein, the U4/U6 snRNP-specific 

proteins are evolutionary conserved, and orthologous proteins termed Snu13p (15.5K), 

Prp4p (60K), Prp3p (90K) and Prp31p (61K) are also associated with the 

Saccharomycetes cerevisiae U4/U6 snRNP particle (34-36).  

Nottrott et al. showed that (37): (i) the 61K protein and the 20/60/90K complex 

bind U4 and U4/U6 snRNA, respectively, only in the presence of the 15.5K protein, (ii) 

the association of the 61K protein and the 20/60/90K complex with the U4/U6 snRNA 

can occur independently of each-other, (iii) the 20/60/90K complex binds to a minimal 

U4/U6 snRNA duplex comprising stem II and the 5’ stem-loop of U4 snRNA, (iv) the 61K 

protein requires the 5’ stem-loop and the 5’ end of U4 snRNA for binding, (v) the 61K 

protein can be cross-linked to two distinct sites on U4 snRNA in native tri-snRNP 

particles (positions 37-39, 28 and 19-20 – see Figure 3).  

 It was proposed that U4 snRNA acts as a chaperone that delivers U6 to the 

spliceosome, sequestering a catalytically active domain of U6 snRNA until the 

dissociation of the U4/U6 snRNA duplex activates this domain for its function in splicing 

(21). Upon spliceosome activation, U6 snRNA forms a duplex with U2 snRNA and U4 

snRNA is released, becoming available for a new round of splicing. The mechanism of 

U4 snRNA dissociation is still under investigation. Nottrott et al. proposed that the 

20/60/90K complex might stabilize stem II such as to permit the dissociation of stem I 

first (37). Consistent with the idea of sequential dissociation, an intermediate in the 

catalytic core of the U12-dependent spliceosome has been detected that has an intact 

U4atac/U6atac stem II, but in which parts of stem I are already base-paired with U12 

snRNA (38). The role of U4/U6 snRNP-specific proteins in the spliceosome assembly 
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and activation is not yet completely understood. Therefore, further analysis of the 

function of each protein is required. 

1.3. The 15.5K protein  

Mutational analysis of U4 snRNA in Xenopus oocytes and in the HeLa in vitro splicing 

system demonstrated that the 5’ stem-loop is essential for pre-mRNA splicing and 

spliceosome assembly (39,40). Since the U4 snRNA 5’ stem-loop is dispensable for 

U4/U6 base pairing in vitro, it has been suggested that it functions in spliceosome 

assembly at a stage subsequent to U4/U6 snRNP formation (40). Prior to the 

characterization of U4 snRNP-specific proteins, it was not clear whether the function of 

U4 snRNA 5’ stem-loop is to interact with other RNAs in the spliceosome or to recruit 

snRNP proteins into the spliceosome. 

 The 15.5K was identified and characterized by Nottrott et al. and it was shown to 

bind specifically to the 5’ stem-loop of U4 snRNA. Ortologues of 15.5K protein have 

been identified in C. elegans, S. cerevisiae, S. pompe, and Arabidopsis thaliana sharing 

71-77% identity and 83-89% similarity with the human protein. Furthermore, the 15.5K 

protein shares significant homology with several other proteins in the database which 

are clearly not 15.5K orthologues. These include several ribosomal proteins such as 

L7AE from different organisms or the yeast ribosomal protein L30 (29). 

 

 
Figure 4: Minimal binding site for 15.5K protein.  

RNA construct used for the crystallization of 15.5K-KtU4 complex [taken from Vidovic et al. (44)]. 
 

Figure 4 shows a detailed view of the minimal RNA binding site of the 15.5K protein. It 

consists of an internal asymmetric loop which is closed by the long stem of the 5’ stem-

loop and a short stem. Close inspection of the 5’ stem-loop sequences of U4 snRNAs 
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revealed that nucleotides U31, G32, A33, G43 and A44 are 100% conserved in all U4 

snRNAs, except for U31 in Trypanosoma brucei. Furthermore, positions A29 and A30 

are always purines, exception being A29 in T. brucei and Physarum polycephalum. The 

seven mentioned nucleotides proved to be crucial for the binding of 15.5K protein to the 

U4 snRNA. At positions 29 and 30, the requirement for a particular nucleotide is less 

stringent, in that the adenosines can be replaced individually by guanosines without any 

loss of 15.5K protein-binding activity. If both positions contain guanosines, protein 

binding is reduced only slightly. In contrast, if the two adenosines are replaced 

simultaneously by cytidines, protein-binding activity is lost. Furthermore, deletion of one 

adenosine residue has a deleterious effect on the capability of the resulting mutant to 

interact with the 15.5K protein. Thus, there is a preference for purines at positions 29 

and 30 of the U4 snRNA stem-loop. In good agreement with their phylogenetic 

conservation (see above), the identity of nucleotides U31, G32, A33, G43 and A44 is 

crucial for protein-binding activity in vitro [for a detailed description of the binding of the 

15.5K protein to the U4 snRNA see (29)].  

 Based on the sequence comparisons at the time of its characterization, the 15.5K 

protein did not exhibit obvious structural similarities with members of well-established 

families of RNA-binding proteins. However, it shared the homologous central region of 

56 amino acids with several proteins from a variety of species which had one feature in 

common: they were all associated with RNP particles. Thus, the 15.5K was 

characterized as a novel RNA-binding protein.   

 The 15.5K protein has been found to perform a similar function in the minor 

spliceosome (29), the RNA binding site adopting a similar architecture as that observed 

in the major spliceosome (Figures 5A and 5B). Interestingly, in a subsequent study 

Watkins et al. have shown that the 15.5K protein is also a component of the box C/D 

snoRNPs and the U3 specific box B/C motif (30).  

These RNPs are involved in the processing and maturation of the precursor 

ribosomal RNA [rRNA; (41-43)]. The binding sites of the 15.5K adopt a similar fold stem-

loop-stem (Figure 5C and 5D) as that observed in the U4 snRNA. The 15.5K protein was 

the first protein shown to be a common component of the spliceosome and rRNA 

processing machinery. These findings raised the interesting possibility that the U4/U6 

snRNP and the box C/D RNPs share a common ancestral snRNP. It is likely that this 

complex functioned as a chaperone in guiding RNA folding and perhaps, in some cases, 

developed the ability to methylate the substrate RNA. The 5’ stem-loop complex of U4 
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snRNP may have evolved from a primitive box C/D snoRNP. Archaea possesses box 

C/D snoRNAs but do not contain pre-mRNA spliceosomal components, suggesting that 

the box C/D snoRNPs existed before the U4 snRNP [for detailed description see (30)] 

 

 
 

Figure 5: RNA motifs capable of binding the 15.5K protein. 
The highly conserved nucleotides required for 15.5K binding are indicated in white on a black background. 
Gray boxes indicate the remaining conserved nucleotides. (A) U4 snRNA; (B) U4atac; (C) box C/D motifs; 
the consensus U14, U8, and U3 box C/D motifs are draw to demonstrate the structural similarity with U4 
snRNA (D) proposed structure of  the U3-specific box B/C motifs [taken from Watkins et al. (30)].  
 

The crystal structure of the 15.5K-U4 snRNA was solved to a resolution of 2.9 Å and is 

shown in Figure 6. As described by Vidovic et al. (44), the RNA molecule folds into a 

compact structure that consists of two double-helical stems (stems 1 and 2) bridged by 

the (5+2) internal loop, which is asymmetric and highly structured. The two stems exhibit 

a slightly distorted A-form RNA double helix. A striking feature of the RNA structure is 

the strong bend at the internal loop, which adopts a complex fold: of its seven 

nucleotides, four form tandem G-A base pairs extending stem 2, while the remaining 

three are unpaired. Of these, one (U31) is flipped out: it protrudes away from the rest of 

the oligonucleotide chain and toward the protein. The sugar–phosphate backbone forms 

a sharp hairpin-like turn at this point. The other two unpaired bases, A29 and A30, are 

stacked onto the ends of stem 1 and stem 2: A29 is stacked onto the base pair G45-C28 

and thus caps stem 1, while A30, which has a syn and a 2�-endo conformation, is 

stacked onto A44 of the opposite strand and thus caps stem 2. The two G-A base pairs 

are of the sheared type characterized by hydrogen bonds from the 2-amino group of 
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guanine to N7 of adenine and from the 6-amino group of adenine to N3 of guanine. 

Between these two tandem-sheared G-A base pairs, the helix is strongly overwound, 

with a twist angle of 81°. This extreme helix twist leads to cross-strand stacking of the 

two adenines. Both the high twist and a cross-strand stacking of the adenines and 

guanines are common in tandem sheared G-A base pairs (45,46). 

 
 

Figure 6: Crystal structure of 15.5K protein bound to U4 snRNA. 
In the RNA, guanines are blue, adenines red, cytosines orange and uracils yellow; nitrogen atoms are 
indicated in cyan and oxygens in pink; hydrogen bonds are denoted as dotted black lines. The protein is 
drawn in cartoon representation: �-helices are purple, �-sheets yellow, coils white and turns cyan. Unless 
indicated otherwise, the coloring of this figure is transferred to all figures. 
 

In the present RNP complex, only adenines A33 and A44 exhibit perfect cross-strand 

stacking, while the corresponding guanines G43 and G32 are displaced. Interestingly, 

the cross-strand stacking of A33 and A44 is continued by a third adenine, A30, which is 

one of the unpaired internal loop nucleotides; thus, the structure exhibits a three-adenine 

cross-strand stack, with A44 from the one strand sandwiched between A33 and A30 
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from the other (‘3+1’ stacking scheme). Besides the base pairing and base stacking 

interactions, a network of hydrogen bonds involving several ribose 2�-OH groups further 

stabilizes the fold of the internal loop. The 2�-OH group of A44, which has a 2�-endo 

conformation, is within hydrogen-bonding distance of the N6 of A30, while the N1 of A44 

forms a hydrogen bond with the 2�-OH group of A29. Furthermore, the 2�-OH group of 

A33 forms hydrogen bonds to N3 of G45, and the 2�-OH of the flipped-out U31, which 

has also a 2�-endo conformation, forms a hydrogen bond with the phosphate group of 

A30. The 2�-OH groups of both guanosine nucleotides of the tandem G-A base pairs 

contribute to the hydrogen bond network as well. The G32 exhibits 2�-endo conformation 

and its 2�-OH group forms a hydrogen bond with N2 of G43. The conformation of the 

G43 ribose is 2�-endo, and its 2�-OH group forms a hydrogen bond with the phosphate of 

A44.A striking feature of the RNA structure is the sharp bend between the two double-

stranded stems. An angle between the helical axes of about 65° was calculated (Figure 

7A).  

 The 128 amino acid residues of the 15.5K protein fold into a single, compact 

globular domain of alternating �-helices and �-strands, forming an �-�-� sandwich 

structure. The central �-sheet consists of three antiparallel and one parallel �-strand 

positioned in the order �1, �4, �2, �3. Helices �1, �4, and �5 pack against one side of 

the �-sheet, while helices �2 and �3 are located on the other side.  

 In the 15.5K protein, the RNA binding surface consists of amino acid residues 

located in two �-helices (�2 and �4), one �-strand (�1), and three different loops (�1-�2, 

�2-�3, and �4-�4). These residues interact predominantly with the nucleotides of the 

(5+2) internal loop, and there are also contacts with the sugar–phosphate backbone of 

stem 2. 

 U31 is tightly bound in a pocket of the protein formed by Glu61 and Ile65, Lys86, 

and Ile100. The O4 of U31 forms two hydrogen bonds, with the amino group of Lys-86 

and the main chain amide of Glu61, respectively, and the 3-imino group of U31 forms a 

hydrogen bond with the main chain oxygen of Glu61. Furthermore, hydrogen bonds are 

present between the phosphate group of U31 and the main chain amides of Ala39 and 

Ile100. In addition to these hydrogen bonds, the base of U31 is in van der Waals contact 

with the hydrophobic side chains of Ile65 and Ile100 and the hydrophobic part of the 

Lys86 side chain. 

 The amino acid residues that contact the tandem-sheared G-A base pairs are 

Asn40, Glu41, and Lys44 (in loop �1-�2 and helix �2), which bind to the G32 Watson-



   Introduction 

 - 23 - 

Crick edge and the G43 Hoogsteen edge. The carboxylate group and the main chain 

amide of Glu41 are within hydrogen bonding distance of N1, N2, and O6 of G32; the �-

amino group of Lys44 is in hydrogen bond distance to N7 and O6 of G43; and the ND2 

of Asn40, which forms a hydrogen bond with the N7 of G32 and the main chain amide of 

Asn40, is in hydrogen bond distance with the O6 of G32. In the crystal structure, the 

orientation of ASN40 proved to be incorrect (see 5.3.1) 

 The base of the unpaired nucleotide A29, which stacks on the base pair G45-

C28 of stem 1, packs with its other side against the hydrophobic part of the side chain of 

Arg-97 in loop �4-�4. Likewise, the unpaired nucleotide A30, which extends the purine 

stacking of stem 2, packs on its opposite side against a hydrophobic protein surface 

provided by Lys37 and Val95 in loops �1-�2 and � 4-�4, respectively. 

 The negative charge of the RNA phosphates is neutralized by several basic 

protein residues. Lys44 and Arg97 are located within hydrogen bonding distance of the 

phosphates of C42 and A29, respectively. Additionally, Arg36, Lys37, and Arg48 are 

within 7–8 Å of the RNA and contribute significantly to the overall electrostatic picture. 

The 5’ stem-loop of U4 snRNA also contains an external pentaloop (U36-U37-

U38-A39-U40), the conformation of which was not revealed in the crystallographic 

structure although it was present in the crystallization construct [for complete description 

of the crystal structure see (44)]. 

1.4. The RNA K-turn motif 

The crystal structure of the 15.5K-U4 snRNA complex revealed a novel RNA structural 

motif (for description see 1.3) which was then observed in different large RNA structures. 

The motif, named the kink turn motif (K-turn) is a two-stranded, helix–internal loop–helix 

motif comprising 15 nucleotides. The first helical stem, the 'canonical stem' or 'C-stem', 

ends at the internal loop with two Watson–Crick base pairs, typically C–Gs, while the 

second helical stem, the 'non-canonical stem' or 'NC-stem', which follows the internal 

loop, starts with two non-Watson–Crick base pairs and is extended into the internal loop 

by sheared G–A base pairs (Figure 7B). The internal loop between the helical stems is 

always asymmetrical, and usually has three unpaired nucleotides on one strand and 

none on the other. The 5'-most nucleotide in the long strand of the loop stacks on the C-

stem, the second extends to stack on the NC-stem, and the third flips out from the 

compact RNA structure into protein pockets or into solution. The K-turn occurs six times 

in H.marismortui 23S rRNA, and twice in T.thermophilus 16S rRNA. Each one is 
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designated 'Kt-#', with Kt standing for kink-turn and the number indicating the helix of 

rRNA in which it is found. Although these eight K-turns vary somewhat in sequence, 

each has essentially the same distinctive three-dimensional form, and a consensus 

sequence can be derived [Figure 7C; for detailed description of the K-turn motif see 

(47)]. K-turns were also identified in the structure of the box C/D snoRNA bound to 

archaeal L7AE protein (48-50) and in the yeast L30E-mRNA complex (51). 

 
 

Figure 7: Structure of the K-turn motif. 
(A) KtU4 as found in the crystal structure. � is the angle between the P atoms of C47, U31, and G35. (B) 
Structural view of a sheared G-A base pair (for coloring see Figure 6). (C) Secondary structure diagrams of 
the eight K-turns found in the H.marismortui 50S and T.thermophilus 30S subunit structures and a derived 
consensus sequence. The names indicate in which rRNA helix each example of the motif is found. Solid 
lines represent Watson–Crick pairings between bases, and black dots represent mismatched base pairings. 
Yellow shading indicates nucleotides that conform to the derived consensus sequence [taken from Klein et 
al. (47)].   
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The K-turn is an important RNA recognition motif for the ribosomal proteins in the 50S 

subunit: five of the six K-turns in H.marismortui 23S rRNA make significant interactions 

with at least one ribosomal protein, and nine of the 28 observed proteins interact with K-

turns. One of these, Kt-46, also interacts extensively with two distant regions of the 

rRNA, demonstrating that K-turns also function to stabilize RNA tertiary structure. 

There is considerable variation in the way that K-turns interact with proteins in 

the ribosome. Four principal surface features are recognized: (i) the widened major 

groove of the C-stem; (ii) the flattened minor groove of the NC-stem; (iii) the sharply 

kinked sugar–phosphate backbone and the protruded nucleotide; and (iv) the exposed 

base planes. Recognition of these features involves complementary surfaces on proteins 

that allow the burial of significant hydrophobic surface area. These features enable a 

single K-turn motif to participate in many intermolecular interactions simultaneously, 

making it well suited to serve as a nucleation site around which large ribonucleoprotein 

assemblies can be built. Although these nine ribosomal proteins do not share a common 

structural domain that recognizes K-turns, there is at least one homologous family of 

RNA-binding domains that is specific for it. Holoarcuta marismortui L7AE, yeast L30E 

and the human 15.5K contain identical domain structures that bind K-turn RNA elements 

in the same fashion. It seems likely, therefore, that other proteins containing this RNA-

binding motif will be found to bind to K-turns the same way (47).  

 The K-turn is a member of the larger family of RNA motifs that are defined as 

directed and ordered stacked arrays of non-Watson–Crick base pairs forming distinctive 

folds of the phosphodiester backbones of the interacting RNA strands. RNA motifs 

mediate the specific interactions that induce the compact folding of complex RNAs. RNA 

motifs also constitute specific protein or ligand binding sites. A given motif is 

characterized by all the sequences that fold into essentially identical three-dimensional 

structures with the same ordered array of isosteric non-Watson–Crick base pairs [for 

detail review of RNA motifs see (52)]. 

 Out of the ten K-turns mentioned above, only one (Kt-38) has been found not to 

be associated with proteins, indicating that the motif could be a candidate for protein-

assisted folding. From here on I will refer to the K-turn motif formed by the 5’ stem-loop 

of U4 snRNA as ‘KtU4’. 
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1.5. Protein-assisted RNA folding 

Formation of a wide variety of protein–RNA complexes involves conformational changes 

in the protein, RNA, or both. In several cases, the folding of the RNA is assisted by 

protein binding. The terms ‘induced fit’ and ‘conformational capture’ were introduced for 

designating alternative pathways of conformational change upon complex formation. In 

the induced fit, the RNA undergoes a transition between two different well-defined 

conformations, whereas conformational capture refers to the stabilization by the protein 

of one specific conformation from a pool of conformations reflecting the inherent flexibility 

of the RNA (16,19,53). One example of protein-assisted RNA folding according to the 

induced fit mechanism is the binding of the 3' UTR of U1A pre-mRNA to the U1A protein 

(54-57). The conformational capture mechanism is harder to be identified experimentally 

because the free RNA is very flexible and therefore, not suited for crystallography or 

NMR studies. 

 Previous studies proposed a protein-assisted RNA folding for the K-turn motif by 

showing that the K-turn is a rather flexible entity in the unbound form (58,59). Single 

molecule fluorescence resonance energy transfer (FRET) studies performed by Goody 

et al. (58) provided evidence of large amplitude conformational transitions in the K-turn 

Kt7 that contains most of the motif’s consensus sequence. They observed that the K-

turn is dimorphic, undergoing a transition between a closed (kinked) and an open 

(extended) conformation (‘k-e motion’). A schematic representation of the transition is 

shown in Figure 8A. The k-e motion depends on the ionic strength but a significant 

population of the extended structure was observed even at high concentrations of 

divalent cations. However, our understanding of the atomic details of such transitions 

remains inadequate. 

 Prior to the work presented in this doctoral thesis, Stephanie Nottrott has 

performed chemical RNA modification studies showing that the free KtU4 lacks several 

secondary and tertiary structure interactions that are present in the complex. Using 

dimethylsulfate (DMS) she observed that the N1 position of A44 is clearly accessible, 

permitting chemical modification in the absence, but not in the presence of 15.5K protein 

(Figure 8B, cf. lanes 2 and 3). These data suggests that the inter-stem contact between 

the N1 position of A44 and the 2’ OH group of A28 is established only upon protein 

binding. RNA structural probing with Kethoxal showed that the nucleotides G32, G34, 

and G35 are clearly accessible for modification in the absence, but not in the presence 

of 15.5K protein (Figure 8C, cf. lanes 2,3 and 6,7 with lanes 4,5). In addition, G32, G34, 
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and G35 are also accessible for modification with Kethoxal after digestion of the bound 

15.5K with Proteinase K (Figure 8C, lanes 8,9). The N2 atom of G32 is involved in the 

base-pairing interaction of G32 with A44, while the N1 and N2 positions of G34 and G35 

form hydrogen bonds with C42 and C41 (60). 

 

 
 

Figure 8: Experimental data on the K-turn motif. 
(A) Schematic view of the single molecule FRET studies on Kt7 by Goody et al. (58). In the RNA used for 
labeling with fluorescein (green) and Cy3 (red) the stems were extended with extra Watson-Crick base 
pairs. The question mark indicates the lack of atomic detail information about the structures of the two 
states represented. (B) Primer extension analysis of U4 snRNA after DMS treatment of KtU4 RNA either 
in the absence or presence of recombinant 15.5K protein (lanes 2,3). Lanes 1,4 are control lanes (no DMS 
modification). (C) Primer extension analysis of U4 snRNA after Kethoxal treatment either in the absence 
(lanes 2,3,6,7) or presence (lanes 4,5,8,9) of 15.5K protein. Lanes 6–9 show RNA modification after 
Proteinase K digestion. Lanes 1,10 are control lanes (no Kethoxal treatment). Modified nucleotides are 
indicated by an arrowhead; nucleotides that are clearly protected from chemical modification in the 
presence of bound 15.5K protein are marked by asterisks. The presence or absence of the 15.5K protein is 
indicated by "+" or "-," respectively. C, U, A, and G refer to dideoxysequencing reactions and correspond 
to the sequence of human U4 snRNA; 0 indicates a control primer extension with unmodified U4 snRNA 
where no ddNTPs were added to the reaction, and the position of every tenth nucleotide of the U4 snRNA 
is indicated on the left in panels A and B, respectively. 
 

However, all these experiments did not provide any atomic details about the transitions 

that the free KtU4 undergoes upon binding to 15.5K protein. Furthermore, no structural 

data at atomic resolution is available to date for the unbound K-turns.  
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1.6. Computer simulations: benefits and challenges 

Computer simulations have become very powerful tools for studying biological 

processes, largely due to the rapid increase in computer power and improved accuracy. 

Advances such as the explicit modelling of solvent, further refinement of force fields, and 

the advent of the Particle Mesh Ewald (PME) method for treating long range electrostatic 

interactions have led to increasingly fruitful simulations of biological systems and 

processes (61-64). Molecular dynamics (MD) simulations have been applied in studies 

of RNA structure (65-69), RNA-metal ion binding (65,70-73) or RNA-protein interfaces 

(74-78). However, limitations remain; for example, MD trajectories are restricted to tens 

of nanoseconds time scale, reducing the range of processes that can be studied to those 

occurring in this time range. Thus, conformational sampling is still poor in standard MD 

simulations and large conformational transitions are inaccessible. Simulating a protein-

assisted RNA folding event poses several challenges: (i) the lack of structural data on 

the free RNA due to its flexibility; (ii) the time scale of the transitions relevant for the 

folding is often significantly larger than that accessible by standard MD protocols; (iii) the 

evolution of the system during MD simulations is largely dependent on the initial 

structure; (iv) the multitude of factors influencing the process occurring in the cell. 

Several methods have been developed to increase the conformational sampling 

during MD simulations. Among them, Locally Enhanced Sampling (LES), a mean field 

based theory has been previously applied in several studies investigating conformational 

diversity of small regions in proteins or nucleic acids (79-84). Coupled with PME, LES 

constitutes a powerful tool for locating experimental structures when starting from 

different conformations (84). The application of LES leads to a smoother potential 

energy surface allowing conformational transitions that are otherwise inaccessible to 

standard MD simulations (85). 

It was also shown that the application of LES triggers a large conformational 

transition in the lateral and diagonal thymine loops of DNA G-quartets (86). However, the 

structures to which the simulations converged were very different from the experimental 

structures. Since free energy calculations confirmed that the new structures were more 

stable, it was proposed that the inconsistencies arose from force field inaccuracies 

rather than artifacts introduced by the application of LES methodology. 
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1.7. Conformational parameters of nucleic acids 

Throughout the present dissertation, I will refer to several conformational parameters 

that describe the RNA structure. A summary of all dihedral angles describing the 

conformation of a typical nucleotide is shown in Figure 9. The most important 

parameters are: (i) the sugar pucker, (ii) the � angle, and (iii) the � angle. 

 The five-membered furanose ring is generally non-planar. It can be puckered in a 

twist (T) form with two adjacent atoms (C2’ and C3’) displaced on opposite sites of a 

plane through the other three atoms (C1’, O4’ and C4’). There are two most abundant 

conformations: (i) C2’-endo if the C2’ atom is above the plane and, (ii) C3’-endo if the 

C3’ atom is above the plane (Figure 9, upper right panel). C2’-endo pucker is specific for 

B-type helices (B-DNA) while C3’-endo pucker is specific for A-type helices (A-RNA, A-

DNA). In more general terms, the sugar pucker is described by a pseudorotation angle 

that is calculated using all the five dihedrals in the sugar (Figure 9). 

 
 

Figure 9: Conformational parameters in the RNA 
demonstrated on guanine. Carbons are shown in cyan, nitrogens in blue, oxygens in red and hydrogens in 
white. The two most abundant sugar puckers (C2’-endo and C3’-endo) are shown in the upper right panel. 
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The � angle describes the orientation about the glycosyl bond. Relative to the sugar 

moiety, the base can adopt three main orientations: ‘anti’, ‘high-anti’ and ‘syn’ (for the 

corresponding values of � see Figure 9). Nucleotides in A-type helices are generally in 

anti configuration, in B-type helices in high-anti, while the syn configuration is adopted 

only by purines (every second G in the left handed Z-DNA or A30 in the K-turn of U4 

snRNA). 

 Rotation about the exocyclic C4’-C5’ bond (described by the � angle) allows O5’ 

to assume different positions relative to the furanose (Figure 9).  

A detailed description of all the parameters describing the conformational 

diversity of nucleic acids is available in ‘Principles of Nucleic Acid Structure’ by Wolfram 

Saenger (87)  

1.8. Fluorescence of 2-aminopurine 

The fluorescent adenine isomer, 2-aminopurine (2AP), is widely employed as a reporter 

of the structure and dynamics of nucleic acids because its ability to form Watson-Crick 

base pairs with thymine (uracil) and its fluorescence quantum yield is very sensitive to 

structural context. 2AP fluorescence is strongly quenched both is single- and double-

stranded DNA (88), and this property has been exploited to probe the formation of R-

DNA triplexes (89), the dynamics of melting (90-92), abasic sites (93,94), mismatched 

base pairs (95), and metal ion binding (94,96) as well as thermodynamics and kinetics of 

protein-induced DNA conformational transitions (97-104). Quenching of 2AP 

fluorescence in DNA has been mainly attributed to base stacking and hydrogen bonding 

(105). The mechanism of quenching has been investigated theoretically by examining 

the electronic structure of 2AP in different environments (106-109). 

 Although it is mostly documented in fluorescence studies of DNA, the use of 2AP 

was extended to RNA for studying Mg2+ - dependent conformational changes in the 

hammerhead ribozyme (96) or the dynamics of GNRA tetraloops (110). 

2. Theoretical background 

2.1. Introduction to molecular modeling 

The rapid increase in the number of structures at atomic level of biologically relevant 

macromolecules provides a scaffold to explore macromolecular structural dynamics. 

Structures can only provide static views of the macromolecules, whereas the cellular 
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processes are highly dynamic and based on temporary interactions between large 

numbers of macromolecules. Conformational transitions occurring during biological 

processes are studied experimentally using techniques such as nuclear magnetic 

resonance (NMR) or fluorescence resonance energy transfer (FRET) and theoretically 

using a variety of computational methods included in the general field of ‘molecular 

modeling and simulation’. In her book ‘Molecular modeling and simulation: An 

interdisciplinary guide’, Tamar Schlick gives the following definition: “Molecular modeling 

is the science and art of studying molecular structure and function through model 

building and computation. The model building can be as simple as plastic templates or 

metal rods, or as sophisticated as interactive, animated color stereographics and laser-

made wooden sculptures. The computations encompass ab initio and semi-empirical 

quantum mechanics, empirical (molecular) mechanics, molecular dynamics, Monte 

Carlo, free energy and solvation methods, structure/activity relationships (SAR), 

chemical/biochemical information and databases, and many other established 

procedures. The refinement of experimental data, such as that obtained from NMR or x-

ray crystallography, is also a component of biomolecular modeling” (111). 

 The most accurate theoretical description of a molecular system is achieved by 

quantum mechanical methods (ab initio) which account for the interactions between all 

the particles in the molecular system including the electronic interactions. However, the 

size of even small biomolecules is large enough to make quantum mechanical 

calculations not feasible. Therefore, approximations are required in order to investigate 

macromolecules, leading to the development of empirical force field models (molecular 

mechanics). 

For the rest of this chapter, I will provide a detailed introduction into the 

theoretical background of the diverse methods that I applied. For further details, please 

refer to the references cited or to the book ‘Molecular Modeling: Principles and 

Applications’ by Andrew R. Leach (112).  

2.2. Empirical force fields: molecular mechanics 

Force field methods (also known as molecular mechanics) ignore the electronic motions 

and calculate the energy of the system as a function of nuclear positions only. Molecular 

mechanics is thus invariably used to perform calculations on systems containing 

significant numbers of atoms. In some cases force fields can provide answers that are 

as accurate as even the highest-level quantum mechanical calculations, in a fraction of 



   Theoretical background 

 - 32 - 

the computer time. However, molecular mechanics cannot of course provide properties 

that depend upon the electronic distribution in a molecule. 

 That molecular mechanics works at all is due to the validity of several 

assumptions. The first of these is the Born-Oppenheimer approximation (the separation 

of electronic and nuclear motions), without which it would be impossible to contemplate 

writing the energy as a function of nuclear coordinates at all. Molecular mechanics is 

based upon a rather simple model of the interactions within a system with contributions 

from processes such as the stretching of bonds, the opening and closing of angles and 

the rotation about single bonds. Even when simple functions are used to describe these 

contributions, the force field can perform quite acceptably. Transferability is a key 

attribute of a force field, for it enables a set of parameters developed and tested on a 

relatively small number of cases to be applied to a much wider range of problems. 

Moreover, parameters developed from data on small molecules can be used to study 

much larger molecules such as polymers. 

 Many of the molecular modeling force fields in use today for molecular systems 

can be interpreted in terms of a relatively simple four-component picture of the intra- and 

inter-molecular forces within the system. Energetic penalties are associated with the 

deviation of bonds and angles away from their equilibrium values, there is a function that 

describes how the energy changes as bonds are rotated, and finally the force field 

contains interactions between non-bonded parts of the system. More sophisticated force 

fields may have additional terms, such as hydrogen-bonding term, but they invariably 

contain these four components. An attractive feature of this representation is that the 

various terms can be ascribed to changes in specific internal coordinates such as bond 

lengths, angles, rotation of bonds or movements of atoms relative to each other. This 

makes it easier to understand how changes in the force field parameters affect its 

performance, and also helps in the parameterization process. One functional form for 

such a force field is given in Equation (1). 
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V(rN) denotes the potential energy, which is a function of the positons (r) of N particles 

(usually atoms). The first term in equation (1) models the interaction between pairs of 

bonded atoms, modeled here by a harmonic potential that gives the increase in energy 
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as the bond length ri deviates from the reference value req. The second term is a 

summation over all valence angles in the molecule, again modeled using a harmonic 

potential (a valence angle is the angle formed between three atoms A-B-C in which A 

and C are both bonded to B). The third term in equation (1) is a torsional potential that 

models how the energy changes as a bond rotates. The forth contribution is the non-

bonded term. This is calculated between all pairs of atoms (i and j) that are in the same 

molecule or in different molecules. In a simple force field the non-bonded term is usually 

modeled using a Coulomb potential term for the electrostatic interactions and a Lennard-

Jones potential for van der Waals interactions. 

 Unlike the van der Waals potential, the Coulomb interactions decay slowly with 

distance. In fact, electrostatic interactions are important for stabilizing biomolecular 

conformations in solvent and associating distant residues in the primary sequence in a 

compact (folded) structure. The charge distribution in a molecule can be represented in 

a number of ways, one common approach being an arrangement of fractional point 

charges throughout the molecule. If the charges are assigned to the nuclear centers they 

are often referred to as ‘partial atomic charges’ or ‘net atomic charges’.  

 Besides the terms described above, the force field contains also a so called ‘out-

of-plane’ bending term. This term is required to keep structures containing sp2 atoms 

such as the nucleic acids bases planar. There are several ways in which out-of-plane 

bending terms can be incorporated into a force field. One approach is to treat the atoms 

as an ‘improper’ torsion angle (a torsion angle in which the four atoms are not bonded in 

the sequence 1-2-3-4). A torsional potential of the form in equation (2) is then used to 

maintain the improper torsion angle at 0° or 180°. 

( ) ( )ωω 2cos1−= kv          (2) 

Although there are other ways to incorporate out-of-plane bendings terms into a force 

field, the improper torsion definition is most widely used as it can then be easily included 

with the ‘proper’ torsional terms in the force field.  

2.3. Force field parameter development 

For all the simulations described in this dissertation I used the ‘AMBER99’ force field 

(113), which is an improved version of the Cornell et al. 94 force field [equation (1); 

(114)]. These force fields were developed by the Kollman group and are distributed 

together with the AMBER (Assisted Model Building with Energy Refinement) software 

package. The force field contains parameters for all the standard nucleic acids and 
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protein residues. Parameter development is thus required only for new chemical 

compounds or unusual protein and nucleic acid residues. In this subchapter I will briefly 

describe how the force field parameters were developed by the Kollman group, 

emphasizing the strategy to be used to develop parameters for novel chemical entities. 

2.3.1. Atom types, bond, angle and dihedral parameters 

The first force field that was extensively used to simulate proteins and nucleic acids was 

developed by Weiner et al. (115,116). The Cornell et al. force field (AMBER94) is a 

second generation force field that was developed to adjust to the significant increase of 

computer power that allowed simulations using explicit solvent. Thus, the major changes 

that were introduced by Cornell et al. comparing to Weiner et al. force field were related 

to the non-bonded interactions. 

 The atom types are assigned to each atom in function of the hybridization state 

and environment. For example, there are nine different types assigned for sp2 atoms 

depending of their substituents.  An atom type is intrinsic to an array of distance, angle, 

and dihedral parameters involving the types of the neighboring atoms, as well as having 

its own van de Waals (VDW) parameters, and atomic mass (charge is not fixed per atom 

type). Therefore, if a new atom type is required, the first step is to attempt to reason by 

analogy and clone as many of the pre-existing parameters as possible to account for the 

environment of the new atom. It is instructive to consider the variability of the existing 

parameters, which tend to be duplicated over various combinations of atoms. This step 

may also be required if old atom types are used in a new topological relation. 

 Equilibrium bond lengths and angles may be obtained from tabulations of 

experimental data in the literature. Initial bond and angle force constants may be chosen 

based upon analogy to similar parameters in the force field or using the method of 

Hopfinger and Pearstein (117). For example, in complex fragments such as the nucleic 

acids bases, the req and �eq values have been taken from X-ray structural data, the Kr 

values determined by linear interpolation between pure single and double bond values 

using the observed bond distances and the K� values taken from vibrational analysis of a 

simple sp2 atom containing fragments such as benzene or N-methyl acetamide. That this 

approach was reasonably successful is supported by the reasonable agreement found in 

nucleic acid base vibrational analysis and suggested by the critical analysis of Halgren of 

the diagonal force constants used in different force fields (118). 
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During the development of the AMBER force field, the dihedral parameters were 

optimized on the simplest molecule possible and then applied to larger and more 

complex molecules. This approach is in contrast to one employed by other force field 

developers where the parameters are optimized to best reproduce the conformational 

energies of a large number of molecules. An advantage of the approach used by Cornell 

et al. is the lack of dependence of the resulting parameters on the particular molecules 

chosen for the test set. 

 The dihedral parameters, in conjunction with the atomic charges and van der 

Waals parameters are the primary determinants of the relative conformational energies 

of a molecule. The AMBER parameters ‘IDIVF’, ‘PK’, ‘PN’, and ‘PHASE’ are used to 

define the torsional potential energy function. Each bonded series of atoms I-J-K-L must 

have at least one set of these dihedral parameters in the force field (just as every 

bonded pair I-J or triplet I-J-K must have bond or angle parameters, except that for 

dihedrals multiple terms may be used). The torsional energy function formula (from the 

AMBER source code) is: 

 

( ) ( )[ ]PHASEPNIDIVFPKEtors −⋅+⋅= ϕcos1              (3) 

 

If atoms J and K are sp3 carbons (type CT) as in the molecule ethane (H3C-CH3), then 

the intrinsic barrier to rotation about the J-K bond is ~3 kcal/mol. This potential may be 

generic for torsions about CT-CT bonds (X-CT-CT-X), or explicit restricted to HC 

substituents (HC-CT-CT-HC). This choice determines IDIVF, which is the total number of 

torsions about a single bond that the potential applies to. If all atoms are explicit, then 

IDIVF=1 and the total potential for the bond (3.0 in this case) is divided by the number of 

torsions involved; since each substituent ’sees’ the opposite 3 substituents, there are 

3x3=9 torsions around the bond, as would be the case whenever the central bond is 

between two sp3 atoms. If the generic representation is chosen, then the entire potential 

is used and IDIVF=9. PK is equal to one-half of the barrier magnitude and would 

therefore be equal to 3.0 / 2.0 = 1.5 kcal/mol for the generic case, or 3.0 / 9 / 2.0 = 

0.1667 for the specific case. The topology about the dihedral of interest has a three-fold 

periodicity (PN); that is, there are three potential barriers as the C-C bond is rotated -180 

to 180 degrees. These barriers occur when the methyl hydrogens eclipse each other: at 

0, -120, and 120 degrees. Since the dihedral formula is a Fourier series truncated to a 

single cosine term, no phase shift would be needed to reproduce the potential energy 
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barriers and PHASE = 0 degrees. (PHASE = 0 degrees if an energy maximum is at 0 

degrees; PHASE = 180 degrees if an energy minimum is at 0 degrees). 

 These same torsional parameters can be used for n-butane, and the results are 

in good agreement with experiment and higher-level calculations for the relative energy 

of ‘trans’ and ‘gauche’ minima and ‘cis’ and ‘skew’ energy barriers. 

In the case of ethylene (H2C=CH2), the lowest-energy conformation of this 

molecule is planar with a two-fold (PN = 2), 60 kcal/mol barrier to rotation about the C=C 

bond. The barriers are found at dihedral angles of -90 and 90 degrees (energy minimum 

at 0 degrees), and can be reproduced by the truncated Fourier series only if a phase 

shift of 180 degrees (PHASE = 180.0 degrees) is used. 

 I used these two examples, as they are described in the AMBER user manual to 

illustrate how the dihedral parameters are derived for different atom types. A similar 

approach should be considered in case new dihedral parameters are needed and no 

analogy with existing parameters is possible. 

2.3.2. Van der Waals (VDW) parameters 

The shape of the VDW potential for a given atom type is specified in terms of the 

distance between two atoms of the same type at the minimum energy point. Half the 

interatomic distance at that point is treated as the basic radius, or ‘R*’, parameter for that 

type. The form for the radial potential for two atoms is the sum of the R* values of their 

types. The potential well depth (‘e’) of the minimum energy point between two atoms of 

the same type is combined with the potential of another atom type by taking the root of 

the product. (Other parametric forms can be used which tend to have different type-type 

‘combining rules’). The simplest approach to deriving VDW parameters is to match a 

relevant experimental determination of the size of the atom in question. One source of 

such measurements can be diffraction data. Another variety of experimental data that 

can contribute to parameterization is the free energy of solvation in water or another 

relevant solvent. However, it is still not clear whether the combination of experimental 

size and solvation free energy is sufficient to determine unique R* and e parameters for 

an atom in relation to an existing type. A further complication arises because an atom 

type may come into contact with more than one other type, and nothing in principle 

guarantees that VDW parameters for a group of types can be fitted to yield uniformly 

correct pairwise potentials. 
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2.3.3. Derivation of partial atomic charges 

The derivation of accurate and transferable partial charges on atomic centers is a key 

step in the calculation of the electrostatic interactions using the force field models. It was 

shown that the use of quantum mechanical electrostatic potential is an essential element 

in the derivation of charges that accurately represent the molecular multipole moments 

(115,116,119,120). Thus, the partial charge models most often involve a least-square fit 

between the model and the electrostatic potential. The charges derived might have been 

dependent on the ab initio basis set or semiempirical methodology, but a reasonable 

model of choice was the use of ab initio-derived charges using a 6-31G* basis set (121), 

which uniformly overestimates molecular polarity. This overestimate made such models 

relatively balanced with empirical solvent models such as TIP3P (119) or SPC (122) that 

are extensively used to explicitly represent the solvent during calculations. The water 

models were empirically calibrated to reproduce the density and enthalpy of vaporization 

of the liquid.  

 The electrostatic potential-derived charges suffered from two main 

disadvantages: (i) they were not transferable, chemically similar atoms often had 

variable charges, and (ii) the derivation of charges for large polymers became 

impractical, even with powerful computers. Moreover, spurious fluctuations were 

observed for the charges obtained in the least-squares fitting procedure for the 

statistically poorly determined (buried) centers. These problems were solved by the 

development and implementation of multiple-conformation fitting (121,123,124) and the 

RESP (restrained electrostatic potential) derived charges (123,124).  

 The detailed procedure of charge derivation for nucleic acid and protein residue 

was described by Cieplak et al. (125). Electrostatic potentials (ESP) at grids of points 

(120) around appropriate components of the nucleic acids and proteins were calculated 

with the Gaussian 90 program using the Hartree-Fock method with the 6-31G* basis set 

(new versions of Gaussian have been released since then or other quantum mechanical 

software may be used). Initially, calculations were performed for dimethylphosphate 

(DMP) in its gauche-gauche (g+, g+) conformation optimized at the 6-31G* level, as well 

as A and B standard forms of deoxyribonucleosides, standard forms of ribonucleosides, 

and all amino acids with appropriate CH3-CO- and –NH-CH3 blocking groups 

(dipeptides) optimized using molecular mechanics with the Weiner et al. force field. For 

each amino acid, ESPs were calculated for two sidechain conformers (or four, in the 

case of proline). However, with the increase of computer power, quantum mechanical 
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calculations such as ESP calculations are now feasible for larger compounds such as 

the nucleosides or entire amino acids and should be applied if atomic charges are to be 

derived for new chemical entities. 

 The next step in the charge derivation procedure is the RESP fitting 

methodology. The restrained ESP charge fitting is achieved using Equation (4).                                                                               
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In Equations (4), (5) and (6), Vi is the quantum mechanically calculated electrostatic 

potential (ESP) at point i, qj are the resultant charges, a is a scale factor defining the 

asymptotic limits of the strength of the hyperbolic restraint according to Equation (6), and 

b defines the tightness of the hyperbola around the minimum. A value of 0.1 was found 

to be appropriate for b (123). The gi are additional constraints imposed on resultant 

charges, and �i are Lagrange multipliers. The minimum of the f(q1,…,qnatoms) function is 

sought by requiring that 
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which leads to the matrix equation of the type  

��	Aq = B         (8) 

which must be solved for q. This is done iteratively when using nonzero hyperbolic 

restraints, since the left-hand side of equation (8) (matrix A) depends on charges q. 

 The RESP fitting involves a two-stage procedure with hyperbolic restraints. In the 

first stage, a weak hyperbolic restraint (a = 0.0005) to a target value of 0.0 is applied to 

all heavy atoms. Hydrogen atoms are not restrained because they are never buried 

within a molecule and are always well defined by the ESP points. In the second stage, 

charges on all atoms were kept frozen to their values obtained in the first stage, except 

those in methyl and methylene groups. CH3 and CH2 are refitted with the hydrogens 

within a given group constrained to have equivalent charges. The hyperbolic restraint 
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applied during the second stage is twice as strong as the one is stage one (a = 0.001). 

The two-stage restrained ESP charges exhibit less conformational dependence 

compared to the standard ESP charges, result in excellent conformational energies, and 

give good results for hydrogen bonding energies and free energies of salvation 

(123,124). 

 The necessity of a two-stage fit arises from the need to constrain atoms which 

are not symmetrically equivalent within the static conformation of the molecule used for 

the calculation but which become equivalent under dynamical conditions when rotation 

can occur. One example of this would be the three methyl hydrogens in methanol. If 

these nonequivalent atoms are forced to have the same charge during a one-stage fit, 

the charge on the oxygen is reduced to a value which does not yield good free energies 

of solvation or interaction energies. The two-stage fit then allows for the ‘best’ charges to 

be fit on the heteroatoms during the first stage, with the maximum number of degrees of 

freedom available to the molecule. Then methyl or methylene hydrogens are constrained 

to be equivalent in the second stage of the fit. For a detailed description of how the 

charges were derived for the nucleic acid and protein residues see (125).  

 However, the RESP charges derived using the procedure presented above are 

dependent on the orientation of the optimized structure provided by the quantum 

mechanical software (different optimizations lead to different orientations of the same 

molecule) and on the conformation of the molecule. In order to overcome these 

limitations, a new program (R.E.D: www.u-picardie.fr/labo/lbpd/RED/index.php) was 

recently developed. It employs a reorientation algorithm to perform multiorientation and 

multiconformation fit to derive RESP charges. R:E.D. provides a platform for automated 

derivation of reproducible RESP charges. 

2.4. Energy minimization 

The minimization of the potential energy function (i.e., geometry optimization) involves a 

search for the minimum of a function, and, to be efficient, requires calculations of 

derivatives of a function (in this case, the potential energy) versus independent variables 

(in our case, coordinates). Most programs use cartesian coordinates as independent 

variables, however, in some cases, internal coordinates may be used. The derivatives of 

potential energy are denoted as: 



   Theoretical background 

 - 40 - 

( ) ( )
ji

N

ij
i

N

i rr
rV

H
r
rV

g
∂∂

∂=
∂

∂=
2

,       (9) 

where gi is the gradient (i.e., first derivative) of the potential energy V(rN) with respect to a 

cartesian coordinate ri of an atom, and Hij is the second derivative of the energy with 

respect to the cartesian coordinates. In most modern programs these derivatives are 

calculated analytically, i.e., the appropriate mathematical formulae for corresponding 

terms are incorporated into the program. Some older codes compute derivatives 

numerically by approximating the slope of an energy function (or its gradient in the case 

of second derivatives) from finite differences. The table of all possible second derivatives 

versus cartesian coordinates of atoms has 3N rows and 3N columns and is called a 

‘Hessian matrix’. The derivatives are used not only in function minimization but also yield 

forces acting on atoms (from energy gradients) and normal modes of vibration (from the 

Hessian matrix). There are three major approaches to finding a minimum of a function of 

many variables: (i) ‘search methods’ - utilize only values of the function itself. They are 

usually slow and inefficient, but are very simple to program, since deriving cumbersome 

formulas for derivatives is not necessary. In spite of their inefficiency, the search 

algorithms are infallible and always find a minimum. For this reason, they are often used 

as an initial step, when the starting point in optimization is far from the minimum. Another 

disadvantage of search techniques is that they are very inefficient for a large number of 

optimized variables and converge very slowly when the number of variables is more then 

10, (ii) ‘gradient methods’ - utilize values of a function and its gradients. These are 

currently the most popular methods in molecular mechanics. They offer a much better 

convergence rate than search methods and do not require a lot of computer memory 

(only 3N first derivatives are needed). However, in some situations they fail to converge 

to a minimum. The ‘conjugated gradient’ algorithm is considered the most robust in this 

class, and (iii) ‘Newton methods’ - are the most rapidly converging algorithms which 

require values of function, and its first and second derivatives. The memory required for 

storing the Hessian matrix is proportional to N2 (i.e., prohibitive for large 

macromolecules). The ‘BFGS’ algorithm is considered the most refined one.  

In general, the minimization methods are iterative. They require on input some 

initial estimate for the position of the minimum, and provide a better estimate for the 

minimum as a result. This corrected estimate is used as an input into the next cycle (i.e., 

iteration) and the process is continued until there is no significant improvement in the 
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position of the minimum. Most search methods and minimization methods using 

derivatives are the ‘descent series methods’, i.e., each iteration results in a solution 

which corresponds to a lower (or equal) value for the energy function:  

 

( ) ( ) ( ) ( )min21 ... xVxVxVxV start ≥≥≥             (10) 

 

As a consequence, these methods can only find the minimum closest to the starting 

estimate and will never cross to a minimum (however deep) if it is separated from the 

starting estimate by a maximum (however small). This situation is schematically 

illustrated in Figure 10 where arrows indicate the direction of geometry optimization 

depending upon the starting point. 

 
 

Figure 10: simplified view of the energy landscape. 
The blue arrows indicate the direction of the minimization algorithm. x(start), x(1), x(2), x(min) represent 
successive coordinates during the minimization algorithm which starts at position x(start), goes through 
positions x(1) and x(2) until it reaches a minimum corresponding to x(min) 
 
Figure 10 is only a cartoon to illustrate the behavior of descent series minimization 

methods. Geometry optimization of real molecular systems involves simultaneous 

optimization of 3N cartesian coordinates, i.e, sometimes many thousands of variables. 

There is no general way of finding a global minimum (i.e., the minimum corresponding to 

the lowest possible value of the function). A different initial geometry will usually lead to 

a different final minimum. Only on very simple molecules will the single geometry 

optimization yield the global minimum on the first trial. However, It cannot be 

overemphasized that the result of a single minimization is usually a local minimum, not a 

global one. To find a global minimum (or at least, to be more confident about it) many 

minimizations need to be performed using different initial coordinates for each run.  
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All the structures that I simulated (see 2.8.1) were minimized using the conjugate 

gradient method before running MD simulations in order to remove any possible sterical 

clashes due to the low resolution of the crystal structure of the 15.5K-KtU4 complex. 

2.5. Molecular dynamics simulations 

In molecular dynamics, successive configurations of the system are generated by 

integrating Newton’s laws of motion. The result is a trajectory that specifies how the 

positions and velocities of the particles in the system vary with time. Newton’s laws of 

motion can be stated as follows: (i) a body continues to move in a straight line at 

constant velocity unless a force acts upon it, (ii) force equals the rate of change of 

momentum, (iii) to every action there is an equal and opposite reaction. The trajectory is 

obtained by solving the differential equations embodied in Newton’s second law (F = 

ma):   
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This equation describes the motion of a particle of mass mi along one corrdinate (xi) with 

Fxi being the force exerted on the particle in that direction. 

 There are many algorithms for integrating the equations of motion, several of 

which are commonly used in MD calculations. All algorithms assume that the positions 

and dynamic properties (velocities, accelerations, etc.) can be approximated as Taylor 

series expansions: 
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where v is velocity (the first derivative of positions with respect to time), a is acceleration 

(the second derivative), b is the third derivative, and so on. The ‘Verlet’ algorithm (126) is 

probably the most widely used method for integrating the the equations of motion in a 

MD simulation. It uses the positions and accelerations at time t, and the positions from 
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the previous step, r(t-�t), to calculate the new postions at t+�t, r(t+�t). The following 

relationship can be written between these quantities and the velocities at time t:  

( ) ( ) ( ) ( ) ...
2
1 2 +++=+ tatttvtrttr δδδ         (16) 

( ) ( ) ( ) ( ) ...
2
1 2 −+−=− tatttvtrttr δδδ           (17) 

Adding these two equations gives: 

( ) ( ) ( ) ( ) ...2 2 −+−−=+ tatttrtrttr δδδ            (18) 

The velocities do not explicitly appear in the Verlet integration algorithm. The velocities 

can be calculated in a variety of ways; a simple approach is to devide the difference in 

positions at times t+�t and t-�t by 2�t: 

( ) ( ) ( )[ ] tttrttrtv δδδ 2/−−+=           (19) 

Alternatively, the velocities can be estimated at the half-step, t+½�t: 
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Implementation of the Verlet algorithm is straightforward and the storage requirements 

are modest, comprising two sets of positions [r(t) and r(t-�t)] and the accelerations a(t). 

One of its drawbacks is that the positions r(t+�t) are obtained by adding a small term 

[�t2a(t)] to the difference of two much larger terms, 2r(t) and r(t-�t). This may lead to loss 

of precision. The algorithm has some other disadvantages. The lack of an explicit 

velocity term in the equations makes it difficult to obtain the velocities, and indeed the 

velocities are not available until the positions have been computed at the next step. In 

addition, it is not a self-starting algorithm; the new positions are obtained from the 

current positions r(t) and the positions from the previous time step, r(t-�t). At t=0 there is 

obviously only one set of positions and so it is necessary to employ some other means 

to obtain positions at t-�t. One way to obtain r(t-�t) is to use the Taylor series, Equation 

(17) truncated after the first term. Thus, ( ) ( ) ( )00 tvrtr δδ −=− .  

 Several variations on the Verlet algorithm have been developed. The ‘leap frog’ 

algorithm uses the following relationships: 
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To implement this algorithm, the velocities v(t+½�t) are first calculated from the velocities 

at time t-½�t and the accelerations at time t. The positions r(t+�t) are then deduced from 

the velocities just calculated together at the positions r(t) using Equation (21). The 

velocities at time t can be calculated from: 
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The velocities thus ‘leap-frog’ over the positions to give their values at t+½�t (hence the 

name). The positions then leap over the velocities to give their new values at t+�t, ready 

for the velocities at t+(3/2)�t, and so on. The leap-frog method has two advantages over 

the standard Verlet algorithm: it explicitly includes the velocity and does not require the 

calculation of differences of large numbers. However, it has the obvious disadvantage 

that the positions and velocities are not synchronized. This means that it is not possible 

to calculate the kinetic energy contribution to the total energy at the same time as the 

positions are defined (from which the potential energy is determined).  

 The ‘velocity Verlet’ method gives positions, velocities and accelerations at the 

same time and does not compromise precision: 

( ) ( ) ( ) ( )tatttvtrttr 2

2
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          (25) 

This method is actually implemented as three-stage procedure because, as can be seen 

from Equation (25), to calculate the new velocities requires the accelerations at both t 

and t+�t. Thus in the first step the positions at t+�t are calculated according to Equation 

(24) using the velocities and the accelerations at time t. The velocities at time t+½�t are 

then determined using: 
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New forces are then computed from the current positions, thus giving a(t+�t). In the final 

step, the velocities at time t+�t are determined using: 
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2.5.1. Choosing the time step 

There are no hard and fast rules for calculating the time step to use in MD simulations; 

too small and the trajectory will cover only a limited portion of the phase space; too large 

and instabilities may rise in the integration algorithm due to high energy overlaps 

between atoms. Such instabilities would certainly lead to a violation of energy and linear 

momentum conservation and could result in a program failure due to numerical overflow. 

The total error is correlated with the time step, with the largest errors arising for large 

time steps. Of course, with a small time step much more computer time will be required 

for a given length of calculation; the aim is to find the correct balance between simulating 

the ‘correct’ trajectory and covering the phase step. 

 When simulating an atomic fluid (such as solvated biomolecules) the time step 

should be small comparing to the mean time between collisions. When simulating 

flexible molecules, a useful guide is that the time step should be approximately one-tenth 

the time of the shortest period of motion. In flexible molecules, the highest-frequency 

vibrations are due to bond stretches, especially those of bonds to hydrogen atoms. A C-

H bond vibrates with a repeat period of approximately 10 fs.  

 The requirement that the time step is approximately one order of magnitude 

smaller than the shortest motion is clearly a severe restriction, particularly as these high-

frequency motions are usually of relatively little interest and have a minimal overall 

behavior of the system. One solution to this problem is to ‘freeze out’ such vibrations by 

constraining the appropriate bonds to their equilibrium values while still permitting the 

rest of the degrees of freedom to vary under the intra- and inter-molecular forces 

present. This enables a longer time step to be used. 

2.5.2. The SHAKE / RATTLE algorithm 

As discussed above, the choice of the time step in MD simulations of biomolecules is 

restricted by the highest-frequency vibrations of the system (vibrations of X-H bonds). 

Therefore, to increase the time step by a small margin (generally from 1 fs to 2 fs) a 

procedure called ‘SHAKE’ [combined with standard Verlet algorithm; (127)] or RATTLE 

[combined with the velocity Verlet algorithm; (128)] is applied to constrain the bonds 

involving hydrogen atoms to a fixed length.  

 In the general case, the equations of motion for a constrained system involve two 

types of force: the ‘normal’ forces arising from the intra- and inter-molecular interactions, 
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and the forces due to the constraints. The force due to the constraint �k that requires that 

the bond between atoms i and j remains fixed ca be written as follows: 

x
F k

kckx ∂
∂= σλ           (28) 

where �k is the Lagrange multiplier and x represents one of the Cartesian coordinates of 

the two atoms. If an atom is involved in a number of constraints then the total constraint 

force equals the sum of all such terms. The nature of the constraint for a bond between 

atoms i and j is: 

( ) 022 =−−= ijjiij drrσ           (29) 

The constraint force lies along the bond all the times. For each constrained bond, there 

is an equal and opposite force on the two atoms that comprise the bond. The overall 

effect is that the constraint forces do not work.  The constraint forces are obtained by 

differentiating the constraint with respect to the coordinates of atoms i and j and 

multiplying by an (as yet) undetermined multiplier: 
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The factor of 2 that arises when the square term was differentiated has been 

incorporated into the Lagrange multiplier �. The above expression for the forces can be 

incorporated into the Verlet algorithm as follows: 
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Recall that the positions that would be obtained from the Verlet algorithm without 

constraints are ( ) ( ) iiiii mtFtttrtrttr /)(2)( 2' δδδ +−−=+ . The summation in Equation (32) 

is over all constraints k that affect atom i. These constraints perturb the positions that 

would otherwise have been obtained from the integration algorithm, and so the above 

expression can be written: 
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Equations (29) and (33) constitute a system of two equations with two unknowns [ri(t+�t) 

and �k]. When there are many constraints, the problem is equivalent to inverting a k x k 

matrix, even when quadratic terms of � are ignored. The SHAKE method uses an 

approach in which each constraint is considered in turn and solved. Satisfying one 

constraint may cause another constraint to be violated, and so it is necessary to iterate 

around the constraints until they are all satisfied to within some tolerance. The tolerance 

should be tight enough to ensure that the fluctuations in the simulation due to the 

SHAKE algorithm are much smaller than the fluctuations due to other sources. Another 

important requirement is that the constrained degrees of freedom should be only weakly 

coupled to the remaining degrees of freedom, so that the motion of the molecule is not 

affected by the application of constraints. 

 In the case of the velocity Verlet algorithm, the method has been named 

RATTLE.  When velocities appear in the integration algorithm, they must be corrected as 

well as the positions. 

2.5.3. Periodic boundary conditions 

In MD simulations, the solvent can be represented either implicitly or explicitly. In all the 

simulations that I performed the solvent was explicitly represented using the TIP3P 

water model (119). A cubic box of solvent was built around the solute and periodic 

boundary conditions (PBC) were applied during the simulations. 

 If PBC were not applied, the system would simply terminate, and atoms near the 

boundary would have fewer neighbors than atoms inside. In other words, the sample 

would be surrounded by surfaces. This situation is not realistic. No matter how large the 

simulated system is, its number of atoms N would be negligible compared with the 

number of atoms contained in a macroscopic piece of matter (of the order of 1023), and 

the ratio between the number of surface atoms and the total number of atoms would be 

much larger than in reality, causing surface effects to be much more important than what 

they should.  

 When using PBC, particles are enclosed in a box, and this box is replicated to 

infinity by rigid translation in all the three cartesian directions, completely filling the 

space. In other words, if one of the particles is located at position r in the box, its 

assumed that this particle really represents an infinite set of particles located at: 

r+la+mb+nc, (l,m,n=−�, �). where l, m, and n are integer numbers, and a, b, and c are 

the vectors corresponding to the edges of the box. All these ‘image’ particles move 
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together, and in fact only one of them is represented in the computer program. The key 

point is that now each particle i in the box should be thought as interacting not only with 

other particles j in the box, but also with their images in nearby boxes. Thus, interactions 

can ‘go through’ box boundaries. In fact, one can easily see that: (i) the surface effects 

from the system were virtually eliminated, and (ii) the position of the box boundaries has 

no effect (that is, a translation of the box with respect to the particles leaves the forces 

unchanged).  

2.5.4. The Particle Mesh Ewald method 

The ‘Particle Mesh Ewald’ (PME) metod was developed by Darden et al. (129) for the 

evaluation of the electrostatic interactions of large periodic system. Those interactions 

that decay no faster than r-n, where n is the dimensionality of the system can be a 

problem as their range is often greater than half the box length. The charge-charge 

interaction, which decays as r-1, is particularly problematic in molecular simulations. 

There is much evidence that it is important to properly model these long-range forces, 

which are particularly acute when simulating charged species such as nucleic acids. The 

development of PME together with the explicit representation of the solvent and the 

increase of computer power had a great impact on the accuracy of biomolecular 

simulations (130). 

 The Ewald sum was first devised by Ewald in 1921 to study the energetics of 

ionic crystals. In this method, a particle interacts with all the other particles in the 

simulation box and with all of their images in an infinite array of periodic cells. The cell 

array is considered to have a spherical shape. The position of each image box (assumed 

for simplicity to be a cube of side L containing N charges) can be related to the central 

box by specifying a vector, each of whose components is an integer multiple of the 

length of the box, (±iL, ±jL, ±kL); i,j,k = 0,1,2,3, etc. The charge-charge contribution to 

the potential energy due to all pairs of charges in the central simulation box can be 

written: 
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where rij is the minimum distance between the charges i and j. There are six boxes at a 

distance L from the central box with coordinates (rbox) given by (0,0,L), (0,0,-L), (0,L,0), 

(0,-L,0), (L,0,0), and (-L,0,0). The contribution of the charge-charge interaction between 
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the charges in the central box and all images of all particles in the six surrounding boxes 

is given by: 
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This expression includes the interaction between charges in the central box for which 

|n|=0. The prime on the first summation indicates that the series does not include the 

interaction i=j for n=0. There is also a contribution from the interaction between the 

spherical array of boxes and the surrounding medium. The problem is that the 

summation in Equation (35) converges extremely slowly and in fact is conditionally 

convergent (contains a mixture of positive and negative terms which separately form 

divergent series). The sum of a conditionally convergent series depends on the order in 

which its terms are considered. An additional problem with the Coulomb interaction is 

that in can vary rapidly at small distances. 

 The trick when calculating the Ewald sum is to convert the summation into two 

series, each of which converges more rapidly. The mathematical foundation for this is 

the following identity: 

( ) ( )
r

rf
r
rf

r
−+= 11

          (36) 

The aim is thus to choose an appropriate function f(r) which will deal with the rapid 

variation of 1/r at small r and the slow decay at long r. In the Ewald method each charge 

is considered to be surrounded by a neutralizing charge distribution of equal magnitude 

but of opposite sign. A Gaussian charge distribution of the following functional form is 

commonly used: 
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The sum over point charges is converted to a sum of the interactions between the 

charges plus the neutralizing contributions. This dual summation (the ‘real space’ 

summation) is given by: 
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erfc is the complementary error function, which is: 
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( ) ( )dttxerfc
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The Ewald method thus uses erfc(r) for the function f(r) in Equation (36). This new 

summation involving the error function converges very rapidly and beyond some cutoff 

distance its value can be considered negligible. The rate of convergence depends upon 

the width of the canceling Gaussian distributions; the wider the Gaussian, the faster the 

series converges. Specifically, � should be chosen so that the only terms in the series 

(38) are those for which |n|=0 (i.e. only pairwise interactions involving charges in the 

central box, or if a cutoff is used � is chosen so that so that only interactions with other 

charges within the cutoff are included). A second charge distribution is now added to the 

system which exactly counteracts the first neutralizing distribution: 
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This summation is performed in the reciprocal space, the details of which I will not 

describe here. The vectors k are reciprocal vectors and are given by k=2�n/L. This 

reciprocal sum also converges much more rapidly than the original point-charge sum. 

However, the number of terms that must be included increases with the width of the 

Gaussians. There is thus a clear need to balance the real space and reciprocal space 

summations; the former converges more rapidly for large values of �, whereas the latter 

converges more rapidly for small �. A value of � of 5/L and 100-200 reciprocal vectors k, 

have been suggested as providing acceptable results. The reciprocal summation 

corresponds to the second term in Equation (36); the requirement for this term is that it is 

a slowly varying function for all r. As such its Fourier transform (which is what the 

summation is) can be represented by a small number of reciprocal vectors. The sum of 

Gaussian functions in the real space includes the interaction of each Gaussian with 

itself. A third self-term must therefore be substracted: 
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A fourth correction term may also be required, depending upon the medium that 

surrounds the sphere of simulation boxes. If the surrounding medium has an infinite 

relative permittivity (e.g. if it is a conductor) then no correction term is required. However, 
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if the surrounding medium is a vacuum (with a relative permittivity of 1) then the 

following energy must me added: 
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The final expression is thus: 

( )

( )��

� �

�

�

= =

= =

≠

∞

=

�
�
�
�

�

�
�
�
�

�

�

�
�
�
�

�

�
�
�
�

�

�

+−

−⋅��
�

�
��
�

�
−+

+
+

+

=
N

i

N

j

N

k

N

k
k

kk

ij
k

ji

ij

ijji

n

r
q

L
q

rk
k

k

qq

L

nr

nrerfcqq

V
0 0

1

2

1 0
3

0

2

0
2

2

2

2

0
3

00||

'

43
2

4

cos
4

exp
4

4
1

||

||

4

2
1

πε
π

πεπ
α

α
π

πεπ

α
πε

          (43) 

The Ewald summation is computationally quite expensive to implement. The most 

promising way to tackle this difficulty is to modify the problem such as the fast Fourier 

transform (FFT) can be used to compute the reciprocal space summation. The FFT 

algorithm scales with N·lnN (as compared with N2 scaling of the Ewald sum). If, in 

addition a sufficiently large value of � is chosen such that the inter-atomic interaction is 

negligible for rij greater than the cutoff then the real-space summation is reduced to 

order N and the order of the entire algorithm becomes N·lnN. 

 The FFT method requires that the data are not continuous but are discrete 

values. In order to employ FFT in the Ewald summation the point charges with their 

continuous coordinates must be replaced by a grid-based charge distribution. Each of 

the atomic point charges must thus be distributed among the surrounding grid points in 

some fashion so as to reproduce the potential of the charge at the original location. The 

more surrounding points that are used the more accurately the potential of the charge at 

the original location can be approximated but the greater the computational cost per 

particle. The particle-mesh method of Hockney and Eastwood (131) uses the nearest 27 

points in three dimensions. From this gridded charge density it is possible to calculate 

(through the use of the FFT algorithm) the potential due to the Gaussian distributions at 

the grid points, which by interpolation gives rise to the desired potential at (and thus the 

forces on) each of the particles. PME is a variant of the general scheme discussed in 

this chapter.  
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2.5.5. Constant temperature dynamics 

In order to be able to simulate the real behavior of macro-molecules, it is required to 

control the temperature during the simulations. The simulations that I describe were run 

at room temperature (300 K). In order to achieve the desired temperature, a constant 

volume equilibration phase (first equilibration phase of 60 ps with 1 fs time step) was run 

in which the temperature was slowly increased from a low initial value (10 K) to 300 K in 

the first 30 ps and was maintained at 300 K for the rest of 30 ps. The solute was 

restrained from fluctuation, thus allowing only solvent rearrangements. 

 The temperature was controlled by coupling the system to an external bath that 

is fixed at the desired temperature (132). The bath acts as a source of thermal energy, 

supplying or removing heat from the system as appropriate. The velocities are scaled at 

each step, such as the rate of change of temperature is proportional to the difference in 

temperature between the bath and the system: 
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� is a coupling parameter whose magnitude determines how tightly the bath and the 

system are coupled together. This method gives an exponential decay of the system 

towards the desired temperature. The change in temperature between successive time 

steps is: 
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The scaling factor for the velocities is thus: 
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If � is large, then the coupling will be week. If � is small, the coupling will be strong and 

when the coupling parameter equals the time step (� = �t) then the algorithm is 

equivalent to the more simple velocity scaling method (which I did not explain). 

 During the equilibration phase, the coupling was maintained stronger, while 

during the production runs (actual simulations) the coupling was weakened to reflect 

more the real behavior of the system which fluctuates about the desired temperature. 

 However, it must be noted that the temperature coupling method does not 

generate rigorous canonical averages. Velocity scaling artificially prolongs any 

temperature differences among the components of the system. Other methods such as 
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the stochastic collisions or the extended system methods shall be considered in the 

future. 

2.5.6. Constant pressure dynamics 

Just as the temperature can be specified and controlled during MD simulations, it may 

be important to maintain the system at constant pressure. This enables the behavior of 

the system to be explored as a function of the pressure, enabling the study of 

phenomena such as the onset of pressure-induced phase transitions. Many 

experimental measurements are performed under conditions of constant temperature 

and pressure, thus simulations in the isothermal-isobaric ensemble are most directly 

relevant to experimental data. 

 The pressure often fluctuates much more than quantities such as the total energy 

in a constant ‘NVE’ MD simulation. This is as expected because the pressure is related 

to the ‘virial’, which is obtained as the product of the positions and the derivative of the 

potential energy function. This product, ijijij drrdVr /)( , changes more quickly with r than 

does the internal energy, hence the greater fluctuation in the pressure. 

 A macroscopic system maintains constant pressure by changing its volume. A 

simulation in the isothermal-isobaric ensemble also maintains constant pressure by 

changing the volume of the simulation cell. The amount of volume fluctuation is related 

to the isothermal compressibility, k: 
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In an isobaric simulation, the volume can change in all directions, or just in one direction. 

The isothermal compressibility is related to the mean square volume displacement by: 
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The isothermal compressibility of an ideal gas is approximately 1 atm-1. Thus, for a 

simulation in a cubic box of side 20 Å (volume 8000 Å3) at 300 K, the root mean square 

change in the volume is approximately 18100 Å3. This is larger than the initial size of the 

box! For a relatively incompressible substance as water (k = 44.75 x 10-6 atm-1) the 

fluctuation is 121 Å3 (about 0.1 Å in each direction). These values have clear 

implications for the appropriate size of the simulation system. 
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In the simulations described in this dissertation, a second equilibration phase of 140 ps 

was run in the isothermal-isobaric conditions to allow the system to reach a proper 

density. The restraints on the solute movement (applied in the first equilibration step) 

were gradually reduced, such as that for the last 70 ps the solute was allowed to 

fluctuate freely. The system was coupled to a “pressure bath”, analogues to the 

temperature bath (132). The rate of change of pressure is given by: 
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�P is the coupling constant, Pbath is the pressure of the bath (in my case 1 atm), and P(t) is 

the actual pressure at time t. The volume of the simulation box was scaled by a factor �, 

which is equivalent to scaling the atomic coordinates by a factor of �1/3. Thus: 
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The constant k can be combined with the relaxation constant �P as a single constant. 

This expression can be applied isotropically (i.e. such as the scaling factor is equal in all 

three directions) or anisotropically (the scaling factor is calculated independently for 

each of the three axes). 

2.6. Locally enhanced sampling  

As described in 2.5.1. and 2.5.2., the time step in MD simulations is restricted to 1-2 fs. 

Thus, the time scale that is accessible to standard simulations in restricted to 

nanoseconds. However, conformational transitions that are relevant for the biological 

function of diverse macromolecules occur on the microseconds to seconds time scale, 

depending on the amplitude of such transitions. Additionally, the trajectories obtained 

from MD simulations depend on the starting structure and it is often the case that an 

experimental determined structure (that corresponds to a minimum on the energy 

surface) is unable to undergo conformational transitions if the energy barriers required 

are too large. 

 Methods have been developed to increase the conformational sampling during 

MD simulations. For studying the dynamics of KtU4 RNA I employed the ‘locally 

enhanced sampling’ (LES) method. LES is a mean-field based theory (MFT) that can be 

coupled with explicit solvent treatment and PME in constant pressure simulations using 

periodic boundary conditions (84). It consists of dividing the system into separate 
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regions and replacing them with multiple copies. In this way the energy potential surface 

is smoothened and the copies are allowed to sample more of the conformational space 

(85). Such a setup has been successfully employed before to explore structural diversity 

in RNA or protein loops (80-84). 

If the coordinate vector of all atoms in the molecular system is X, the probability 

of finding the molecular coordinates between X and X+dX is denoted by µ(X)dX, where 

µ(X) is the probability density of the coordinates, normalized to 1. The total energy of the 

system is given by:  

  �= dXXXVEeff )()( µ           (51) 

where V(X) is the potential energy function. If the system contains a single molecule with 

a unique conformation whose coordinates are X0, Equation (51) becomes:  

)( 00 XVE =           (52) 

The native conformation Xnat of the molecular system corresponds to the global minimum 

of Eeff. The search for this global minimum is hindered by the presence of many local 

minima. One way to alleviate this problem is to consider an effective, larger system as a 

computational tool to enhance the conformational sampling during simulations. This 

larger system is obtained by considering multiple copies of the molecule, or parts of the 

molecule.  

According to the ‘Hartree’ approximation, the probability density µ is replaced by 

a product of independent probability densities of different systems, using a Hartree 

product:  
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As examples of such a partition into subsystems, a ligand and a protein can be 

considered separately, the partition of a protein into backbone and side-chains, or the 

partition of an RNA stem-loop into loop and stem. The effective system is then built by 

considering multiple copies of each subsystem j.  

The probability density µ j of each subsystem is expanded into a finite number of 

delta functions:  
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where kj runs over all Kj copies of the subsystem j, P(j,kj) are normalization factors or 

probabilities veryfying:  
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For practical reasons, Kj is always finite.  

Substituting Equations (53) and (54) into Equation (51) and integrating over the 

spatial variables leads to the following functional form for the energy of the effective 

system: 
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The potential energy function V is assumed to be a one and two-body potential: 
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in which Equation (56) reduces to: 
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Equation (58) represents the effective energy function used in most MFT bio-

applications. In essence, MFT replaces the problem of finding the global minimum 

energy given by Equation (52) by the problem of finding the minimum of the "effective" 

potential energy described by Equation (58). Its major advantage is a significant 

reduction of the variable space. For example, there are Ki x Kj alternative configurations 

of subsystems i and j that can be examined using a single configuration of the effective 

system. 

 In the LES protocol, the normalization factors P are kept constant (usually taken 

as ji KkiP /1),( = , where Kj is the number of copies of subsystem j). A smoothening of 

the potential energy surface is achieved (85) that will enable the system to sample more 

of the conformational space. However, the degree of sampling depends on the number 

of copies Kj that are employed for the system j. If two many copies are employed, 

random transitions might occur, while if too few copies are employed, transitions might 

not occur at all leading to similar trajectories as standard MD simulations. The behavior 

of the system is also influenced by the way the subsystems were defined and thus, it is 
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recommended to test whether different choices of subsystems (LES regions) provide 

similar trajectories if the number of copies for each LES region is maintained constant. 

2.7. Electrostatic potential surfaces 

The electrostatic properties are crucial for macromolecular interactions, thus playing a 

role in all biological processes that involve molecular recognition. Therefore, calculation 

of the electrostatic potential on the molecular surfaces and/or around the molecules can 

give valuable insights into the structure-function relationship or can lead to the 

calculation of the free energy of solvation, a particularly important property of polar and 

charged molecules. 

Among the methods available for calculating the electrostatic potential, I will 

discuss briefly the methods base upon the Poisson or the Poisson-Boltzmann equations. 

These methods have been particularly useful for investigating the electrostatic properties 

of DNA, RNA or proteins. The solute is treated as a body of constant low dielectric 

(usually between 2 and 4), and the solvent is modeled as a continuum of high dielectric. 

The Poisson equation relates the variation in the potential 	 within a medium of uniform 

dielectric constant 
 to the charge density �. 

( ) ( )
εε

ρ
0

2 r
r =Φ∇           (59) 

The Poisson equation is thus a second-order differential equation 

( 2222222 zyx ∂∂+∂∂+∂∂=∇ ). For a set of point charges in a constant dielectric the 

Poisson equation reduces to Coulomb’s law. However, if the dielectric is not constant but 

varies with position, then Coulom’s law is not applicable and the Poisson equation is: 

( ) ( ) )(4 rrr πρε −=Φ∇⋅∇           (61) 

If mobile ions are present in the medium, their distribution in response to the electric 

potential can be accounted by the Poisson Equation. The ions are prevented from 

congregating at the locations of extreme potential due to the repulsive interactions with 

each other and natural thermal motion in the solvent. The ion distribution in the solvent is 

described by the Boltzmann distribution of the following form: 

)/)(exp()( TkrVNrn B−=           (62) 

where n(r) is the number density of ions at a particular location r, N is the bulk number 

density and V(r) is the energy change to bring the ion from infinity to the position r, kB is 

the Boltzmann constant and T is the temperature. 



   Theoretical background 

 - 58 - 

When these effects are incorporated into the Poisson equation the result is the Poisson-

Boltzmann equation: 

( ) ( ) ( )[ ] )(4sinh' rrkrr πρε −=Φ−Φ∇⋅∇           (63) 

k’ is related to the Debye-Hückel inverse length, k, by:  
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where I is the ionic strength of the solution, NA is the Avogadro’s Number, and e is the 

electronic charge. Equation (63) is a non-linear differential equation and can be written in 

an alternative form by expanding the hyperbolic ‘sin’ function as a Taylor series: 
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+Φ+Φ+Φ−Φ∇⋅∇           (65) 

The linearized Poisson-Boltzmann Equation can written by taking only the first term in 

the Taylor expansion, as: 

( ) ( ) )(4)(' rrkrr πρε −=Φ−Φ∇⋅∇           (66) 

Equation (66) cannot be solved analytically for complex geometries. So the Poisson-

Boltzmann equation is solved by the numerical methods (‘finite difference method’), in 

which the macromolecule (solute) is put in a cubic grid along with the solvent. Values of 

the electrostatic potential, charge density, dielectric constant and ionic strength are 

assigned to each grid point. The atomic charges usually don’t coincide with the grid 

points.  

There is a problem at the borders of the grid, since the grid points at the border 

have less than six neighboring points. So if the grid is much larger than the molecule, the 

border grid points are far away from the molecule, such that 	 outside of the grid can be 

set to zero. If the grid is huge, the computational cost becomes very high. A solution to 

this problem can be the use of low resolution, huge grid and interpolation of the 

electrostatic potential from this calculation to a high resolution, small grid. Such focusing 

steps can be repeated, if necessary.
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3. Materials and methods 

3.1. RNA constructs 

Five different RNA constructs shown in Figure 11 were used in the MD simulations. K1 

RNA (Figure 11A) is the RNA taken from the crystallographic structure of its complex 

with 15.5K protein (pdbid 1E7K) (44). K2 RNA (Figure 11B) contains the naturally 

occurring UUUAU external loop attached to the NC-stem. Since a similar pentaloop 

structure was unavailable in the data bases, I applied a restrained simulated annealing 

(RSA) protocol to obtain an initial structure of the loop. A single stranded RNA (5'-

GGUUUAUCC-3') was constructed using the NAB software (133). During the RSA 

trajectory the two guanines from the 5' end were forced to form base pairs with the two 

cytosines from the 3' end, thus adopting exactly the same conformation as in the crystal 

structure. The loop was allowed to move freely and explore the conformational space. 

The RSA protocol consists of 20 ps of vacuum MD simulation with distance-dependent 

dielectric constant. In the first ps the temperature was rapidly increased to 1000 K. For 

the next 4 ps the temperature was maintained at 1000 K, allowing the loop to sample the 

conformational space. The annealing step was achieved with a slow cooling phase 

followed by a fast cooling in the last 2 ps. The two G-C base pairs from the new stem-

loop were overlaid on the two G-C base pairs from the NC-stem in the complex. 

Simulated annealing was then performed using the new complex structure with the loop 

attached. All the residues from the crystal structure were fixed, such as to allow only 

loop movement. The resulting structure was then used as input for MD simulations. K3 

RNA (Figure 11C) has a UGAA tetraloop (pdbid 1AFX) in which U37 stacks on G38, C41 

stacks on A40 and A40 stacks on A39 (134) while K4 RNA (Figure 11D) has a UUAAUU 

loop (pdbid 1HS3) in which the nucleotide U establishes a non Watson-Crick base pair 

(N3-H-O2 and N3-H-O4 hydrogen bonds, sugars in cys orientation) with U40 (135). K5 

RNA (Figure 11E) has the C-stem extended with seven Watson-Crick base pairs and the 

NC-stem with six Watson-Crick base pairs.  

3.2. Molecular dynamics simulations 

Ten nanosecond MD trajectories were obtained for the complex, the unbound protein 

and the unbound RNA using all the RNA constructs described. The complexes and the 

unbound RNAs were neutralized with Na+ ions. All the systems were dissolved in a box 
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of TIP3P water with 12 Å distance between the edges of the box and the solute and 

were equilibrated as described in 2.5.5 and 2.5.6. Periodic boundary conditions were 

applied. The Particle Mesh Ewald (PME) method was used for the treatment of the 

electrostatic interactions (129). The SHAKE algorithm was applied to all the bonds 

involving hydrogen atoms thus allowing the use of a 2 fs integration time step (127). All 

the simulations were run at constant temperature of 300 K and at constant pressure of 1 

atm using the Berendsen’s coupling algorithm (132). The calculations were performed 

using the AMBER. 99 force field (113) and the NAMD program (136) on a p690 IBM 

cluster running on 16 CPUs. For the biggest system (the complex of 15.5K protein with 

K5 RNA) the calculation of one trajectory required ~500 hours of CPU time. For the 

smallest system (the unbound K1 RNA) the calculation required ~250 hours. For testing 

the reproducibility of the results I ran multiple trajectories using slightly different initial 

conditions and different software packages. The visualisation and analysis of the 

trajectories were performed with VMD (137) and different programs available in the 

distribution of the AMBER 7 software package (138,139) 

3.3. Locally enhanced sampling 

For the LES4 trajectory, I divided K1 RNA into four LES regions: (i) the two G-C base 

pairs from the NC-stem, (ii) the unpaired nucleotides, (iii) the two tandem-sheared G-A 

base pairs, and (iv) two of the three G-C base pairs from the C-stem. Each region was 

replaced by 4 identical copies. I applied LES coupled with PME method using explicit 

solvent and periodic boundary conditions. Ten nanosecond trajectories were obtained 

for the LES systems of the complex and of the unbound RNA using K1 and K2 RNAs. 

Shorter test trajectories were run for the unbound K3, K4 and K5 RNAs. The equilibrated 

non-LES structures have been used as input for the LES simulations. 

For the LES1 trajectory, one region confined to the entire internal loop (A29, A30, 

U31, G32, A33, G43, A44) was replaced with 4 identical copies. For the LES2 trajectory, 

2 different regions were defined in the RNA and each region was replaced with 4 

identical copies: (i) A29, A30, U31, G32, A33, G43, A44 (the internal loop); and (ii) G34, 

G35, C41, C42 (the two G-C base pairs of the NC-stem). The LES1 and LES2 

trajectories were obtained only for the naturally occurring RNA sequence both free and 

in the complex with the 15.5K protein. 

The trajectories were decomposed into individual trajectories of each copy, 

further processed, visualized and analyzed using the VMD software and the ‘ptraj’ and 
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‘carnal’ modules from the AMBER7 distribution. In the final step, snapshots were taken 

every 10 ps for data visualization. For clarity reasons, I labeled the MD trajectories as 

‘MD-LES’ when LES was not employed and ‘MD+LES’ when LES was applied. 

3.4. Essential dynamics 

Principal component analysis (PCA) of MD trajectory data, often called essential 

dynamics (ED), is frequently used to separate large-scale correlated motions from local 

harmonic fluctuations (140-143). ED analysis constructs a new orthogonal basis set for 

the atomic coordinates in a trajectory, such that the greatest variance occurs along the 

first vector, with decreasing variances along successive vectors. The eigenvalues from 

the decomposition of the eigenvectors represent the relative motion that occurs along 

each mode. The motion of a system during MD trajectories can be described by the 

displacement along the first few eigenvectors (144). There are a number of limitations 

associated with ED (145), but the method proved useful in identifying motions correlated 

with the large amplitude k-e motion of the RNA captured in the MD+LES trajectories.  

To perform ED, coordinate data from each time-step was fitted to the initial 

structure to remove translational and rotational motion. The fitted trajectory data were 

used to construct a covariance matrix. The diagonalization of the matrix was performed 

to find the diagonal matrix of eigenvalues and the matrix of column eigenvectors. The 

trajectory can be reconstructed using the eigenvectors with significant contribution to the 

global motion. The matrix of the projections of each time-step onto each mode was 

calculated by multiplying the trajectory matrix by the matrix of column eigenvectors. I 

performed ED of the LES4 trajectory using the ptraj module from the AMBER8 

distribution and visualized the modes with VMD using the IED program (144). I 

generated the covariance matrix for all the atomic coordinates in the RNA, diagonalized 

it, and wrote out the first 25 eigenvectors. The projections onto the first 3 modes were 

calculated and the motions along first and third modes were analyzed further.   

3.5. Generating electrostatic potential surfaces 

The electrostatic potential was calculated by solving the non-linear Poisson-Boltzmann 

equation using the APBS (Adaptive Poisson-Boltzmann Sover) software (146). ‘Pqr’ files 

(‘pdb’ files that include atomic charges and radii) were created from standard pdb file 

using the ‘ambpdb’ program from the AMBER distribution. A grid of 1293 was used with 2 
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levels of focusing with 0.8125, 0.8125, 0.8696 reductions. The calculations were 

performed at 298 K in 150 mM NaCl. 

 The electrostatic potentials were visualized with the VMD software, version 1.8.3 

by generating a molecular surface and coloring it according to the electrostatic potential 

(a feature which was newly implemented in VMD 1.8.3). I chose the RWB (red-white-

blue) color scale with a range of -3.5 to 3.5. 

3.6. Steady-state fluorescence spectroscopy 

The influence of replacing different bases in KtU4 with fluorescent analogues was tested 

by “in silico” energy minimization of the labeled RNAs and investigation of the optimized 

structures. 2AP and different pteridine analogues for adenine, as well as several 

pteridine analogues for guanine were tested (data not shown). In order to apply energy 

minimizations on the resulting structures, AMBER force field parameters were derived 

applying the described procedure (see 2.3 – data not shown). This study predicted that 

the replacement of A29 with 2AP should not influence significantly the structure of the 

RNA. In the crystal structure of the 15.5K-KtU4 complex, A29 is involved in hydrophobic 

interactions with the protein residue ARG97 and in stacking interaction with the G45-C28 

base pair of the C-stem. Thus, changes in the 2AP fluorescence in this position could 

presumably reflect differences in the number of stacking interactions involving A29. 

 Two oligonucleotides comprising the minimal binding site of 15.5K protein were 

ordered from Dharmacon: (i) an unlabeled oligo for control (seq: 5’-

G.C.C.A.A.U.G.A.G.G.U.U.U.A.U.C.C.G.A.G.G.C-3’), and (ii) a labeled oligo with 2AP 

replacing A29 (seq: 5’-G.C.C.2AP.A.U.G.A.G.G.U.U.U.A.U.C.C.G.A.G.G.C-3’). 

 Steady-state fluorescence measurements were performed using a Photon 

Technologies International C-60SE spectrofluorometer, equipped with a thermostatted 

cuvette holder. Emission spectra were recorded at an excitation wavelength of 305 nm. 

500 ml samples of 200 nM labeled RNA were measured in 5x5 mm cuvettes. All 

measurements, except for the temperature profiles were performed at 5°C. Protein 

titrations were performed by adding increasing amounts of 15.5K protein to a sample 

containing 200 nM labeled RNA. Two buffer systems were used: (i) buffer 1: 20 mM 

hepes pH=7.9, 150 mM KCl, and (ii) buffer 2: buffer 1 + 1.5 mM MgCl2. In all graphs 

(Figures E1 to E4) 2AP spectra are shown after substraction of background (buffer) 

spectra. 
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4. Aims, motivation and relevance 

I used an approach based on computer simulations to study the dynamics of KtU4. I 

simulated both the complex and the unbound RNA to investigate whether the folding of 

the RNA is assisted by binding to the 15.5K protein and whether such simulations can 

be correlated with data obtained by single molecule FRET and chemical RNA 

modifications experiments. Additionally, I aimed at: (i) characterizing the dynamics of the 

free RNA at atomic level, (ii) identifying specific flexible regions in the RNA that are 

responsible for the k-e motion, and (iii) predicting structural dynamics in the RNA and the 

15.5K protein that might regulate the hierarchical assembly of U4/U6 snRNP.  

 I showed that if started from their bound structures, the simulation of RNAs 

undergoing protein-assisted folding requires the use of enhanced sampling techniques in 

combination with standard MD. This conclusion was strengthened by Rázga et al. in two 

complementary studies that appeared recently (147,148). Although they reported 

relatively long standard MD simulations of different K-turns (up to 74 ns), they observed 

only partial opening of K-turns while the G-A base pairs remained stable throughout the 

simulations. The behavior of the RNA in the LES-MD simulations was in excellent 

agreement with data obtained by chemical probing of RNA structure and by single 

molecule FRET investigation of the RNA K-turn motif.  

  The study presented in this dissertation constitutes a novel application of LES to 

study dynamics of RNA motifs undergoing protein-assisted RNA folding and to deduce 

local conformational flexibility that is required for large conformational transitions such as 

the k-e motion of KtU4. Using this approach, I provided the first atomic details of a 

relatively large k-e motion of the K-turn motif. However, the structures observed during 

the LES-MD simulations should not be regarded as predicted structures of the free RNA. 

 Although standard MD simulations in combination with LES proved to be very 

powerful in studying dynamical transitions in the U4 snRNA K-turn motif, it was crucial 

that the results obtained from such simulations were constantly compared with emerging 

experimental data on the system under investigation. Thus, in addition to experimental 

data available from other studies, I employed steady-state fluorescence spectroscopy to 

investigate the dynamics of KtU4 in the presence and absence of 15.5K protein. The 

RNA was labeled by introducing 2AP at position 29 and the results were compared with 

the simulations. However, the experimental data are only preliminary and do not provide 

sufficient information for an in-depth comparison with the simulations. 



  Results 

- 64 - 

5. Results 

5.1. Protein-assisted folding of KtU4 

 
 

Figure 11: Simulated RNA constructs. 
(A) The K-turn motif found in the crystal structure of 15.5K-KtU4 complex(K1 RNA); the C-stem has 
three Watson-Crick base pairs (G26-C47, G46-C27 and G45-C28), the internal loop contains three 
unpaired nucleotides (A29, A30, U31) and two tandem-sheared G-A base pairs (G32-A44, G43-A33), and  
the NC-stem consists of two Watson-Crick base pairs (G34-C42 and G35-C41). � is the angle between the 
P atoms of C47, U31 and G35. (B) K2 RNA (naturally occurring): the pentaloop UUUAU (shown in red) is 
attached to the NC-stem of K1 RNA. (C) K3 RNA: the tetraloop UGAA was attached to the NC-stem of 
K1 RNA. (D) K4 RNA: the hexaloop UUAAUU was attached to the NC-stem of K1 RNA. (E) K5 RNA: 
the C-stem and the NC-stem of K1 RNA were extended with 7 and 6 Watson-Crick base pairs. The core of 
the K-turn RNA observed in the crystal structure is encircled in (B)-(E). 
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The simulations, in addition to the chemical RNA structure probing and the single 

molecule FRET studies described in the introduction provide conclusive evidence that 

the RNA K-turn motif, and in particular KtU4 is folded in a protein-assisted manner. In 

this subchapter, both standard MD simulations and MD+LES simulations (the LES4 

trajectory) are described, the trajectories of the free RNA being compared with the 

equivalent trajectories of the bound RNA.  

The increased flexibility in the free RNA and the observation of conformational 

transitions occurring only in the unbound RNA are proofs for the protein-assisted folding 

of KtU4. There is an excellent agreement between the simulations presented in this 

subchapter and the experimental data mentioned above (60). The behaviour of the 

system was independent on the choice of LES regions as long as they covered both the 

internal loop and the two stems.  

5.1.1. General analysis of the simulations 

Figure 11A shows the crystal structure of KtU4 RNA bound to 15.5K protein. I use the 

angle � formed by the P atoms of C47, U31 and G35 to characterize the degree of 

kinking in the RNA (Figure 11A). The � angle is sharper than the angle formed by the 

two helical axes (	) (~25º compared to ~68º) but it reflects the same property of the 

RNA (the sharp kinking in the sugar-phosphate backbone) and displays the same profile 

during the simulations. � is independent of structural instabilities as opposed to 	 which 

cannot be defined if the NC-stem loses its helical properties. The natural occurring RNA 

(K2) is shown in Figure 11B. I used the crystallographic structure of the RNA (K1), 

lacking the external pentaloop, as a template to build and simulate five different RNA 

constructs (see 2.8.1): (i) K1 (Figure 11A), (ii) K2 (Figure 11B), (iii) K3 (Figure 11C), (iv) 

K4 (Figure 11D), and (v) K5 (Figure 11E). The constructs produced similar trajectories 

both in the bound and unbound forms, with the differences mainly lying in the stability of 

the Watson-Crick base pairs of the NC-stem and in the behavior of the external loop. All 

the trajectories described were 10 ns long. In the text I refer to the naturally occurring K2 

RNA sequence unless indicated otherwise. 

 

MD-LES simulations 

The B-factors per residue were calculated for the bound and unbound RNA during the 

MD-LES trajectories (Figure 12A). The plot reveals that the unbound RNA fluctuates 

more than the bound RNA, indicating that the protein exerts a stabilizing effect on the 
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RNA. Significantly higher fluctuations in the unbound RNA are observed for the unpaired 

nucleotides A30 and U31 and for the G35-C41 and G34-C42 Watson-Crick base-pairs of 

the NC-stem. Root mean square deviations (rmsd) of the backbone for the core RNA 

structure (residues G26 to G35 and C41 to C47) were calculated using the initial 

structure as the reference (Figure 12B). I observed that the unbound RNA deviates more 

from the crystal structure that the bound RNA, with peak values for rmsd in the time 

interval between 1.5 ns and 3.5 ns, reflecting a slight opening of the K-turn. After 3.5 ns 

the K-turn closes back and stays closed until the end of the trajectory. The � angle has a 

peak value of ~40° after ~3.2 ns of the trajectory of the unbound RNA compared to a 

relatively constant 20º in the bound RNA (Figure 12C).  

 

 

 
 

Figure 12: General analysis of MD simulations. 
The case of K2 RNA. (A) B-factors per residue for the RNA structure during the MD-LES trajectories of 
the bound (red curve) and unbound RNA (black curve). (B) Root mean square deviations (rmsd) of the 
RNA backbone from the initial structure for the bound and unbound RNA during the MD-LES (red and 
black curves) and MD+LES trajectories (green and blue curves). (C) � angle of the bound and unbound 
RNA during the MD-LES (red and black curves) and MD+LES trajectories (green and blue curves). (D) 
Closed conformation of the K-turn (� = 20-40º). (E) Open conformation of the K-turn (� = 50-80º). In (C) 
and (D) the loop attached to the NC-stem is not shown. In (C) and (D) � is shown in black (Figure 11A) 
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MD+LES simulations (LES4 trajectory)  

When LES was applied, a dramatic conformational transition occurred in the unbound 

RNA (referred to as the ‘k-e motion’) with rmsd values reaching peak values of about 7 Å 

(~4 Å greater than the peak deviation of the bound RNA) after ~7 ns (Figure 12B). 

Interestingly, the K-turn partially reforms towards the end of the trajectory. The open 

conformation is characterized by � values of 50 - 90° (Figure 12C). A snapshot of the 

open conformation is shown in Figure 12D. Although the bound RNA opens slightly after 

~8.5 ns of the LES trajectory, the K-turn conformation is not significantly altered (� is 

relatively constant). Figure 12E shows a snapshot with the closed conformation of the K-

turn. The k-e motion of the free RNA is accompanied by local conformational transitions 

summarized in table 1.  

 
Table 1: Conformational transitions in the RNA (K2) 

Conformational transition  Bound RNA 

(MD-LES) 

Unbound RNA 

(MD-LES) 

Bound RNA 

(MD+LES) 

Unbound RNA 

(MD+LES) 

Opening of the K-turn no partial no yes 

Unpaired A30 

syn  > high anti/anti 

C2'endo > C3'endo 

 

no 

 

yes 

 

no 

 

yes 

Loss of G-A base pairs no no no yes 

Loss of inter-strand 

contacts 

 

no 

 

yes 

 

no 

 

yes 

 

5.1.2. Flexibility in the purine-rich internal loop  

The internal loop of KtU4 consists of two tandem-sheared G-A base pairs (G32-A44, 

G43-A33) and three unpaired nucleotides (A29, A30, U31). The four adenines establish 

a “3+1” stacking scheme in which A30 stacks on A44 which further stacks on A33. A29 

stacks on the G45-C28 base pair of the C-stem and makes hydrophobic contacts and 

hydrogen bonds with ARG97 of 15.5K protein. The guanines G32 and G43 establish 

contacts with 15.5K protein and U31 is flipped out and trapped in a pocket of the protein. 
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Only A29 and A30 can be mutated to other purines without abolishing protein binding 

(29). 

 

MD-LES simulations 

During the MD-LES trajectories of the unbound RNA, the ‘3+1’ stacking scheme (Figure 

13A) changed its conformational to a ‘2+2’ scheme (Figure 13B).  

 

 
Figure 13: Conformational states of A30. 

The case of K2 RNA. (A) ‘3+1’ stacking scheme formed by adenines A29, A30, A44 and A33 in the bound 
RNA, A30 being in a syn/C2'endo conformation. (B) ‘2+2’ stacking scheme formed by adenines A29, A30, 
A44 and A33 during the trajectories of the unbound RNA, A30 being in a high-anti, anti/C3'endo 
conformation. 
 

The conformation of A30 evolved from a C2'-endo sugar pucker and a syn base-sugar 

orientation to a C3'endo sugar and a high-anti (or anti) base-sugar orientation. The 

percentages in which A30 is found in either conformation during different trajectories are 

presented in table 2. The transition occurs after ~8 ns of the MD-LES trajectory of the 

unbound RNA. In the complex, the A30 is held in its syn/C2'-endo conformation by 

LYS37, which makes a stable contact network between the N7 atom of A30 and the 

phosphate backbone of the RNA. The conformational transition of the stacking scheme 

does not induce the opening of the K-turn; during the last 2ns of the MD-LES trajectory 

of the unbound RNA the K-turn remains closed (�=~20°) while the new stacking scheme 

forms.  
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Table 2: Conformational states of adenine A30 

 

Sugar Pucker (A30) (%) 

 


 angle (A30) (%) 

 

Trajectory 

C2'-endo  C3'-endo syn  high anti/anti  

Bound K2 RNA (-LES) 80  0 93 0 

unbound K2 RNA (-LES) 63  9 72 22 

bound K2 RNA (+LES) 36  0 21 1 

unbound K2 RNA (+LES) 16  24 10 84 

 

The tandem sheared G-A base pairs were stable during the MD-LES trajectories of the 

bound and unbound RNA. Nevertheless, several differences were observed when 

comparing the trajectories of the unbound and bound RNAs. In particular, the 

displacement of the G32 and G43 was minimized in the unbound RNA, resulting in a 

better stacking of the two guanines, and triggering a slight increase in the propeller twist 

of the two G-A base pairs. In the complex, G32 establishes contacts with the protein 

residue GLU40 while G43 makes hydrogen bonds with ASN40 and LYS44. These 

contacts result in a displacement between the two guanines that was maintained during 

the trajectories of the complex. 

 Several inter-stem contacts contributing to the stability of the kinked conformation 

are formed in the region of the internal loop: (i) the 2' OH group of A30 is hydrogen-

bonded with one oxygen atom from the phosphate group of U31, (ii) the 2' OH group of 

U31 is hydrogen-bonded with one oxygen atom from the phosphate group of A30, and 

(iii) the 2' OH group of A29 is hydrogen-bonded with the N1 atom of A44 (Figure 14A). 

These contacts are well preserved during the MD-LES trajectory of the bound RNA but 

are lost in the unbound RNA. The hydrogen-bonding distance between the 2' OH group 

of A29 and the N1 atom of A44 is plotted in Figure 14B.  

 

MD+LES simulations 

When applying LES, I observed the same conformational transition (‘3+1’�‘2+2’) of the 

stacking scheme in the unbound RNA on a shorter time scale. Due to the increased 

conformational sampling the number of intermediate states between the C2'-endo and 

C3'-endo conformations increased both for the bound and the unbound RNA. 
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Nevertheless there was a significant increase in the fractional population of the C3'-endo 

sugar pucker in the unbound RNA (table 2). 

 

 
Figure 14: Inter-stem contacts established in the RNA 

The case of K2 RNA. (A) The inter-stem contact formed between the O2' atom of A29 and the N1 atom of 
A44. (B) Hydrogen-bonding distance between the O2' atom of A29 and the N1 atom of A44 in the bound 
(red curve) and unbound RNA (black curve) during the MD-LES trajectories. (C) The inter-stem contact 
formed between the N2 atom of G45 and the O3' atom of A33. (D) Hydrogen-bonding distance between the 
N2 atom of G45 and O3' atom of A33 in the bound and unbound RNA during the MD-LES (red and black 
curves) and MD+LES (green and blue curves) trajectories. 
 

Both G-A base pairs opened during the MD+LES trajectories of the unbound RNA. 

Figure 15 shows the hydrogen-bonding distance between the N2 atom of G32 and the 

N7 atom of A44. The transition to the open conformation of the K-turn triggered the loss 

of the G-A base pairs. 
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Figure 15: The G32-A44 base pair. 
The case of K2 RNA; hydrogen-bonding distance between the N2 atom of G32 and the N7 atom of A44 in 
the bound and unbound RNA during the MD-LES (red and black curves) and MD+LES (green and blue 
curves) trajectories. The hydrogen bond is pointed with a double arrow head. 

5.1.3. Flexibility in the NC-stem  

To assess the stability of the G34-C42 and G35-C41 base pairs I calculated the 

percentage of trajectory frames in which the constituent hydrogen bonds were formed. 

The criteria chosen for hydrogen bond formation were: (i) maximal donor-acceptor 

distance of 3.15 Å and, (ii) maximal donor-hydrogen-acceptor angle of 60°. In table 3 I 

show the results for the standard MD trajectories of K1 RNA and the LES trajectories of 

K2 RNA in the bound and unbound forms.  

 

MD-LES simulations  

In the bound K1 RNA both base pairs were stable, whereas in the unbound K1 RNA the 

G35-C41 base pair opened and the G34-C42 base pair was less stable. However, 

during the MD-LES trajectories of K2, K3, K4 and K5 RNAs the NC-stem was stable 

(data not shown). The numbers in the first two rows of table 3 show that the opening of 

G35-C41 base pair occurred only in the unbound K1 RNA. Various inter-stem contacts 

are established between the NC-stem and the C-stem: (i) the 2' OH group of A33 is 

hydrogen-bonded with the 2' OH group of G45, (ii) the N2 atom of G45 is hydrogen-

bonded with the O3' atom of the sugar of A33, and (iii) the 2' OH group of G46 is 

hydrogen-bonded with one of the oxygen atoms of the phosphate group of G34. All 
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these contacts are well preserved during all the trajectories of the bound RNA. Figures 

14C and 14D show that the hydrogen bond distance between the N2 atom of G45 and 

the O3' atom of A33 is strictly correlated with the partial opening of the K-turn during the 

MD-LES trajectories (the loss of the hydrogen bond is observed in the same interval as 

the increase in the value of �). 

 

Table 3: Stability of the Watson-Crick base pairs of the NC-stem                     

 

G34-C42 base pair (%**) 

 

G35-C41 base pair (%**) 

 

Trajectory 

HB1* HB2* HB3* HB1* HB2* HB3* 

bound K1 RNA (-LES) 99 98 96 96 95 88 

unbound K1 RNA (-LES) 96 83 63 32 24 20 

bound K2 RNA (+LES) 70 62 53 52 44 44 

unbound K2 RNA (+LES) 62 52 36 17 15 14 

*The three hydrogen bonds of the G-C base pairs are: HB1=N2(G)-H(G)-O2(C); HB2=N1(G)-H(G)-
N3(C); HB3=N4(C)-H(C)-O6(G). 
** The percentage of trajectory frames in which the hydrogen bond is formed 

 

MD+LES simulations 

When applying LES, both base pairs remained relatively stable in the bound RNAs. The 

partial loss in stability compared to the non-LES trajectories reflects the increased 

sampling density. In both K1 and K2 unbound RNAs, the G35-C41 base pair opened 

and the G34-C42 base pair was less stable than in the bound RNAs, the opening of 

G35-C41 base pair occurring much faster in K1 RNA. The numbers in the last two rows 

of table 3 show that the stability of the NC-stem is dependent on protein binding, not only 

in K1 RNA but also in K2 RNA. Similar results were found for K3 and K4 RNAs, while in 

K5 RNA the NC-stem was stable regardless whether the RNA was bound or not to the 

protein. During the MD+LES trajectories the inter-stem hydrogen bond between the N2 

atom of G45 and O3' atom of A33 was lost for both the bound and unbound RNAs. 

Nevertheless, the distance between the two atoms is significantly larger in the unbound 

RNA (Figure 14D).  



  Results 

 - 73 - 

5.2. Dynamics of the free KtU4 

The behavior of the free RNA was not influenced by the number of LES regions as long 

as the conformational sampling was enhanced both in the internal loop and in the two 

stems. Only those LES setups under which the bound RNA was stable were considered 

for further processing. I chose to present in detail the LES4 trajectory because it was the 

longest (10 ns) and captured a significant reformation of the K-turn during the last 2 ns.  

 To study how the backbone flexibility in the stems influences the k-e motion of 

the K-turn, I restricted the degree of conformational freedom in the C and NC stems by 

confining LES to the internal loop (LES1) or to the internal loop and the NC stem (LES2). 

Simulations of the LES1 and LES2 systems were performed and the resulting 

trajectories were compared to the LES4 trajectory. 

 I present in this subchapter an in-depth analysis of simulations of the free K2 

RNA (naturally occurring) performed with different LES setups, finding that the largest k-

e motion was observed when LES regions were defined both in the internal loop and in 

the stems (LES4 trajectory). When LES was confined to the internal loop (LES1 

trajectory), the RNA adopted an alternative conformation that is characterized by a 

sharper kink in the backbone, loss of G-A base pairs and modified stacking interactions. 

Essential dynamics of the free RNA in the LES4 trajectory show that the opening of G-A 

base pairs is correlated along the first mode but anti-correlated along the third mode with 

the k-e motion. The dynamics along the third mode were similar to that observed in the 

LES1 trajectory. Thus, loss of G-A base pairs is insufficient for achieving a large opening 

of the free RNA, the k-e motion of the K-turn being promoted by structural flexibility both 

in the internal loop and in the helical regions. Based on these findings, I propose that the 

G-A base pair formation occurs upon binding to the 15.5K protein, stabilizing a selective 

orientation of the stems rather than contributing to the k-e motion in the free RNA. 

 The results presented in this subchapter are part of the paper that I published in 

Nucleic Acids Research together with Reinhard Klement and Tom Jovin (149). 

5.2.1. Opening-closing of KtU4 

The conformation of KtU4 as observed in the crystal structure with the external loop 

modeled is shown in Figure 16A. During the LES4 trajectory the RNA underwent a large 

conformational transition to an extended structure. Figure 16B shows a snapshot from 

the LES4 trajectory taken at maximum �. In the LES4 system, regions of enhanced 

sampling were defined both in the internal loop and in the stems (see 2.1.3). The large 
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opening of the K-turn is accompanied by loss of G-A base-pairs, modification of the 

stacking pattern in the internal loop and opening of G-C base pairs in the NC-stem. In 

the LES1 trajectory, enhanced sampling was confined to the internal loop and the RNA 

adopted an alternative conformation (Figure 16C) characterized by loss of G-A base 

pairs and a distinct modification of the stacking pattern in the internal loop. However, no 

opening of G-C base pairs in the NC-stem was observed. The new stacking patterns 

formed in the LES4 and LES1 trajectories are indicated by the long arrows. The 

conformation observed in the LES1 trajectory had kinks in both strands (indicated by the 

short arrows), the fold resembling that of K-turn Kt58 (Figure 16D). 

 
 

Figure 16: Different conformations of KtU4. 
The long arrows indicate newly formed stacking patters. The short arrows indicate the kink in the 
backbone. � is the angle between the P atoms of C47, U31 and G35. (A) KtU4 RNA structure from the 
crystallographic structure of KtU4-15.5K complex with the UUUAU external loop modeled; (B) Open 
conformation observed during the LES4 trajectory; (C) Tightly kinked alternative conformation captured in 
the LES1 trajectory; (D) Structure of the Kt58 for comparison with the structure in Figure 1C. 
 
 
The LES2 trajectory was obtained by applying enhanced sampling to the internal loop 

and the G-C base pairs of the NC-stem but not to nucleotides from the C-stem. 
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Interestingly, opening of the K-turn occurred in the LES2 trajectory but the amplitude of 

the transition was far smaller than that observed in the LES4 trajectory. The � angle for 

the three trajectories is shown in Figure 17A. In the LES4 trajectory the K-turn opening 

occurred rather quickly, reaching a peak after about 1.5 ns, after which the structure 

closed back such that after 3.7 ns the value of � was close to the value observed in the 

crystal structure. After 4 ns the RNA opened gradually, reaching the highest � (~90°) 

after approximately 7.1 ns. For about 1 ns, the structure remained open while during the 

last 2 ns, the K-turn partially reformed to a � value of 30°. In the LES1 trajectory partial 

opening occurred only after 2.6 ns and � reached a maximum value of 40° after ~3.2 ns. 

The partial open conformation was short-lived; after 3.5 ns the K-turn reformed while 

after 5 ns, � decreased to lower values than those observed in the crystal structure and 

remained constant for the rest of the trajectory. In the LES2 trajectory, partial opening 

occurred quickly and the amplitude was comparable to that in the LES4 trajectory for the 

first 4.5 ns. However, after ~5 ns the RNA closed and remained closed until the last ns, 

when partial opening was observed again.  

5.2.2. Opening of G-A base pairs 

Tandem-sheared G-A base pairs are formed by establishing N2(G)-H-N7(A) and N6(A)-

H-N3(G) hydrogen bonds. For studying the opening of G-A base pairs during the three 

different trajectories I calculated the donor-acceptor distance (d) between the N2 atom of 

guanines and N7 atom of adenines. Figure 17B represents the results obtained for the 

G32-A44 base pair, the G43-A33 base pair behaving in a similar manner. During the 

LES4 trajectory I observed large opening of the G32-A44 base pair only after 5.6 ns. In 

the interval 6-9 ns the base pair did not reform, but the relative movement of the two 

nucleotides showed a rather random distribution that did not correlate with the time-

evolution of �. The base pair reformed after ~9 ns but immediately opened again. In the 

LES1 trajectory, the same base pair opened partially after ~2ns and completely after 

~4ns. Surprisingly, during the last 6 ns of the LES1 trajectory, d was larger than in the 

LES4 trajectory and the G32-A44 base pair never reformed. Also unexpectedly, the 

movement of A44 relative to G32 was much larger in the tightly kinked LES1 

conformation than in the highly open LES4 conformation. The 2D plot of d against � 

shows that d increased with � for the most part of the LES4 trajectory. However, in a 

number of snapshots, the G-A base pair was open (large d) while the K-turn was 

relatively closed (small �) (Figure 17C). In the LES1 trajectory there was an anti-
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correlation between the opening of G-A base pairs and the opening of the K-turn, very 

large values for d corresponding to a very tight K-turn (Figure 17D).   

 

 
 

Figure 17: Correlation between opening of G-A base pairs and the k-e motion. 
(A) The � angle during the LES4 (black), LES1 (red) and LES2 (blue) trajectories; (B) The distance d 
between N2 of G32 and N7 of A44 during the LES4 (black), LES1 (red) and LES2 (blue) trajectories; (C) 
2D diagram of d(�) in the LES4 trajectory; (D) 2D diagram of d(�) in the LES1 trajectory. In (C) and (D), 
the maximal donor-acceptor distance (3.2 Å) for hydrogen-bond interaction is indicated with a horizontal 
line. 
 

In the crystallographic structure of the KtU4-15.5K complex, G32 stacks on G43 and A44 

stacks on A33. The planes of the two guanines are displaced, owing to hydrogen bond 

contacts between the RNA and the protein. The O6 atom of G32 is hydrogen-bonded 

with the peptide backbone N atom of GLU41 and the O6 and N7 atoms of G43 are 

hydrogen-bonded with the side-chains of ASN40 and LYS44. There is no protein contact 

involving A44 and A33, therefore their planes are oriented such as to allow a maximized 

stacking interaction. To measure the stacking between two RNA bases, I calculated the 

distance between their geometrical centers (D) and the angle between their planes (�). 

Maximum stacking is achieved when D is minimal and � is either close to 0° or 180°. For 
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G32/G43 and A44/A33 stacking interactions, � has a value close to 180° because the 

Watson-Crick edges of the stacked bases point in different directions. When a purine 

rotates about the N9-C1’ bond, � fluctuates between ~180° and ~0°.  

 

 
 

Figure 18: Scatter 3D plots of stacking interactions 
between: (A) G32/G43 in the LES4 trajectory. (B) G32/G43 in the LES1 trajectory. (C) A44/A33 in the 
LES4 trajectory. (D) A44/A33 in the LES1 trajectory. Stacking interaction occur when the distance (D) is 
minimal and the dihedral angle (�) between the planes of the nucleotides is either ~0° or ~180°. Rotation of 
the base about the N9-C1’ bond occurs when � leaps towards intermediate values. The scatter points are 
colored according to their y value (D) with a color map ranging from blue to red. 

 

I plotted in scatter 3D graphs, � (x axis) against D (y axis) and time (z axis) and colored 

the points according to their y (D) values with a colormap ranging from blue (bases close 

to each other) to red (bases far from each other). In this way, I could monitor the 

transitions between different stacking patterns and identify rotations of bases about the 
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N9-C1’ bond. The stacking between the two guanines was preserved and maximized 

during both the LES4 (Figure 18A) and LES1 trajectories (Figure 18B) while the stacking 

between the two adenines did not persist in either trajectory (Figures 18C and 18D). 

Either A44 or A33 rotated sharply about the N9-C1’ bond in both LES4 and LES1 

trajectories. In the LES4 trajectory, A33 rotated until its plane was almost perpendicular 

to the plane of G43, such as to increase the gap between the two stems, contributing to 

the large opening of the K-turn. During the last 2 ns of the LES4 simulation, the 

reformation of the kinked structure was accompanied by rotation of both A33 and A44 

and a random distribution of the relative orientations of the two adenines was observed. 

In the LES1 trajectory three different structure clusters could be distinguished: (i) A44 

stacked on A33 in the first 4 ns of the trajectory; (ii) A44 rotated, allowing the stems to 

achieve close proximity; (iii) the tightly kinked conformation formed, with the plane of 

A44 being almost perpendicular on the plane of G32. 

In summary, the transition to the open conformation (LES4) was facilitated by 

rotation of A33 about its N9-C1’ bond, while the tightly kinked structure (LES1) was 

formed upon equivalent rotation of A44. Interestingly, rotation of A44 was also observed 

during the reformation of the K-turn in the LES4 trajectory. 

5.2.3. Modified stacking patterns in the internal loop 

The rotation about the N9-C1’ bond of A33 in the LES4 trajectory and of A44 in the LES1 

trajectory was accompanied by formation of new stacking patterns in the region 

corresponding to the internal loop. In the LES4 trajectory the A44 stacked on G32 and 

further on G43 during the time of maximal K-turn opening (7-8 ns) (Figure 19A) while no 

such stacking interaction was formed in the LES1 trajectory (Figure 19B). The new 

stacking pattern formed by G43, G32 and A44 was interpolated horizontally between the 

two stems reflecting the maximal value of �. In the LES1 trajectory, A33 formed a new 

stacking interaction with G43 (Figure 19D) and no stacking was formed between A44 

and G32 (Figure 19C). The new stacking pattern formed by G32, G43 and A33 was 

extruded vertically from the stems, reflecting the minimal value of �.  

In both LES4 and LES1 trajectories one of the two adenines rotated about the N9-C1’ 

bond while the other formed a new stacking pattern with the guanines. A structural view 

of the transitions between different stacking patters is shown in Figure 20. Two 

significantly different conformations, one tightly kinked and one highly open were formed 

depending on the LES setup employed.  
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Figure 19: Scatter 3D plots of the stacking interactions 
between: (A) A44/G32 in the LES4 trajectory; (B) A44/G32 in the LES1 trajectory; (C) G43/A33 in the 
LES4 trajectory; (D) G43/A33 in the LES1 trajectory. For details clarifying the plots and coloring see 
Figure 18. 
 

 

However, both conformations were characterized by loss of G-A base pairs. Because 

the difference between the two trajectories was the degree of backbone flexibility 

permitted, I analyzed the correlation between the K-turn opening and motions in the 

sugar-phosphate backbone. 
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Figure 20: Structural view of the transitions between different stacking patterns in the free RNA. 
(A) G32/G43 and A44/A33 stacking interactions as observed in the crystal structure of KtU4-15.5K 
complex; (B) A44/G32/G43 stacking interactions formed in the LES4 trajectory after ~7 ns; (C) Rotation 
about the N9-C1’ bond in A33 and A44 as observed in the LES4 trajectory after ~9ns; (D) G32/G43/A33 
stacking interactions formed in the LES1 trajectory.  
 

5.2.4. Opening of KtU4 is correlated with backbone flexibility in the stems 

Local motions in the sugar rings and the phosphate groups of nucleotides at the point 

where the two stems branch revealed that certain conformations are required for the 

formation of the kinked structure. Stabilizing inter-stem contacts can form only if the 

interacting atoms are properly oriented for hydrogen bond formation. The following 

contacts are established between the C-stem and the NC stem: (i) the 2’ OH group of 

A29 is hydrogen-bonded with the N1 atom of A44; (ii) the 2’ OH group of A33 is 

hydrogen-bonded  with the 2’ OH group of G45; (iii) the N2 atom of G45 is hydrogen-
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bonded with the O3’ atom of A33; and (iv) the 2’ OH group of G46 is hydrogen-bonded 

with the phosphate group of G34. Applying LES to the stems loosens these contacts 

because the backbone has more conformational freedom, thus promoting the opening of 

the RNA. I investigated which local conformational transitions within different nucleotides 

were correlated with the K-turn opening, calculating: (i) the sugar pucker (the 

pseudorotation angle); (ii) the orientation between the base and the sugar (the 
 angle) 

and (iii) the orientation about the C4’-C5’ bond (the � angle).  

 
 

 
 

Figure 21: Correlation between backbone flexibility and the k-e motion. 
(A) The pseudorotation angle describing the sugar pucker of A33 during the LES4 (filled circles) and LES1 
(empty circles) trajectories; (B) The � angle describing the rotation about N9-C1’ bond in A33 during the 
LES4 (filled circles) and LES1 (empty circles) trajectories; (C) relative populations of �ap (black) and �sc 
(gray) configurations (describing the rotation about the C4’-C5’ bond).in G35, G46 and G45 in the LES4, 
LES1 and LES2 trajectories; the percentage of trajectory frames in which intermediate configurations were 
sampled is not shown. 
 

For detailed description of the parameters see 1.7. A33 was very flexible in terms of the 

sugar pucker and the 
 angle in the LES4 trajectory (Figures 21A and 21B). In the 

kinked conformation, A30 had a C3’-endo sugar pucker and an anti base-sugar 

orientation. When the RNA opened, the sugar pucker changed to C2’-endo and the 
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angle varied towards a syn orientation describing the rotation of A33 about the N9-C1’ 

bond. In the LES1 trajectory, although A33 was part of the defined LES region, its 

conformation was confined to a C3’-endo sugar pucker and an anti or high-anti base-

sugar orientation. The high-anti configuration was adopted after 5 ns, corresponding to 

lower � values.  

 The orientation about the C4’-C5’ bond allows O5’ to assume different positions 

relative to the furanose ring. If rotation about the C4’-C5’ bond is permitted in a single 

nucleotide, the entire backbone can adopt a different orientation. In the LES4 trajectory, 

such a rotation occurred in the G34, G35 and G46 nucleotides (Figure 6C). Both �ap [� 

� (�150º �180º)] and �sc [� � (30º 90º)] configurations were sampled by these 

nucleotides in the LES4 trajectory but not in the LES1 trajectory. Other nucleotides such 

as G45 showed no difference in the sampled configurations between LES4 and LES1 

trajectories (Figure 21C). In the LES2 trajectory, the �sc configuration was less sampled 

than in the LES4 trajectory by G35 and G34, while the � dihedral of G46 was restricted 

to values corresponding to the �sc configuration. 

5.2.5. Essential dynamics of the LES4 trajectory 

To study which types of motions are correlated with the k-e motion of KtU4 in the LES4 

trajectory I performed ED analysis. First the motion was decomposed onto the 25 

slowest modes (see 2.8.4), the contribution of the first three modes to the total motion 

being 68% (Figure 22A). The projection of the trajectory onto the first three modes 

showed that: (i) the first mode accounts for the large opening observed between 6 to 8 

ns; (ii) the second mode accounts for the partial opening observed between 1 to 2 ns; 

and (iii) the third mode accounts for the reformation of the K-turn observed between 8 to 

10 ns (Figure 22B). 

 The plot of � along the first mode (Figure 22C) shows that the ED analysis 

captures the large opening of the RNA, separating it from partial opening that occurs due 

to higher frequency motions. The motions along the first mode included: (i) opening of G-

A base pairs (Figure 22D); (ii) rotation of A33 about N9-C1’ bond; (iii) formation of the 

A44-G32-G43 stacking pattern; and (iv) rotation of A30 about the N9-C1’ bond. No 

correlated motion occurred in the NC-stem or in the external loop. 

 The plot of � along the third mode (Figure 22E) shows that the motion along this 

eigenvector reflected the closing of the RNA observed after 8 ns. The G-A base pairs 

remained largely open although the K-turn reformed (Figure 7F).  
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Figure 22: Principal component analysis of LES4 trajectory. 
(A) Decomposition of the trajectory along the first 25 modes. (B) Projection of the LES4 trajectory onto 
first (black line), second (blue line) and third (red line) modes. (C) � angle along the first mode; (D) 
Distance between N2 of G43 and N7 of A33 along the first mode. (E) � angle along the third mode; (F) 
Distance between N2 of G43 and N7 of A33 along the third mode. 
 

This anti-correlation was similar to that observed during the LES1 trajectory. The 

motions along the third slowest mode included: (i) closing of the K-turn; (ii) rotation of 

A33 about the N9-C1’ bond; (iii) rotation of A44 about the N9-C1’ bond; and (iv) motions 
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in the NC-stem and external loop. The similarity with the LES1 trajectory was striking 

with the exception that the G32-G43-A33 stacking pattern was not formed and the RNA 

did not kink as tightly. 

5.3. The role of the external UUUAU pentaloop 

The external UUUAU was not revealed in the crystallographic structure of the KtU4-

15.55K complex although it was present in the construct used for crystallization (44). It is 

very likely that the loop is very flexible even in the presence of the 15.5K protein, thus 

not permitting the construction of a reasonable electron density map at 2.9 Å resolution. 

This external loop was shown to cross-link with the 61K protein, thus suggesting that it 

might play a role in the binding of 61K to the U4 snRNA. However, the exact function of 

the external pentaloop is not yet understood.  

 Because no structural data was available for this loop, modeling was required to 

obtain an RNA construct for simulations that represents the naturally occurring sequence 

(K2). The loop was modeled as described (see 2.8.1) and the resulting trajectories 

showed a very interesting behavior of the UUUAU loop. The loop adopted a specific 

orientation, its backbone turning over C41 in the trajectory of the bound K2 RNA. This 

orientation was not stable in the unbound RNA and could not be established if different 

loops were attached to the NC-stem. The establishment of this orientation allows an 

optimization of the electrostatic interactions between the loop backbone and the protein 

residues ASN40 and LYS44. A similar orientation was observed in the structure of the K-

turn Kt15 in complex with the ribosomal proteins L7AE and L15E. 

 The behavior of the external loop described here was observed in the standard 

MD simulations, different trajectories of the bound and unbound K2 RNAs showing 

similar results. The application of LES leads to a destabilization of the specific 

orientation of the UUUAU pentaloop in the bound K2 RNA probably due to the increased 

flexibility in the proximity of the loop. It is very likely that applying an increased sampling 

procedure adjacent to a very flexible loop (as in the LES4 trajectory) resulted in an 

artificial behavior of the loop, thus making the MD+LES trajectories useless in the study 

of the external loop. 

5.3.1. Trajectories of the external loop in the bound and unbound RNAs 

During the non-LES trajectories of the bound K2 RNA, the sugar-phosphate backbone 

has a turn between the residues U40 and C41 and forms a groove that encloses the G-C 
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base pairs of the NC-stem (Figure 23A). This structure remains relatively stable during 

the simulations of the bound RNA but is lost in the unbound RNA after only hundreds of 

picoseconds.  The turn of the backbone is also observed in the crystal structure from the 

orientation of the phosphate group of C41. 

 

 
Figure 23: Interactions between the 15.5K protein and the external loop. 

(A) ASN40 and LYS44 of the 15.5K protein establish a bridge between G43 and the sugar-phosphate 
backbone of the external loop of the 5' stem-loop of U4snRNA. (B) Bridging distance between the O6 atom 
of G43 and the O2P atom of C41 for the unbound K2 RNA (black curve) and for the bound K2 (red curve), 
K3 (green curve), and K4 (blue curve) and K5 (brawn curve) RNAs during the MD-LES trajectories; the 
bridge is shown in figure 6A. (C) B factors per residue for the nucleotides of the external loop for the 
unbound K2 RNA (black curve) and for the bound K2 (red curve), K3 (green curve), and K4 (blue curve) 
RNAs during the MD-LES trajectories. (D)  ASN64 and LYS68 of the ribosomal L7AE protein establish a 
similar bridge between G43 and the sugar-phosphate backbone of the Kt15 RNA. 
 

Two amino-acid residues, ASN40 and LYS44, are important in maintaining this structure, 

forming a bridge between G43 and the backbone of the external loop. The NH2 group of 

ASN40 establishes hydrogen bonds with the O6 of G43 and with one oxygen atom of the 
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phosphate group of C41, and the NH3+ group of LYS44 establishes hydrogen bonds with 

the N7 of G43 and an oxygen atom of the phosphate group of C42 (Figure 23A). These 

protein-RNA interactions were stable during all trajectories of 15.5K-KtU4 complexes (for 

the K2 construct). However, in the crystallographic structure ASN40 has a different 

orientation most probably due to the relatively low resolution to which the crystal 

diffracted. Figure 23B shows that the bridging distance between the O6 atom of G43 and 

the phosphate group of C41 significantly increases during the trajectories of the unbound 

RNA when comparing the naturally occurring K2 RNA in its bound and unbound forms, 

while a comparison of the trajectories of the bound K2 RNA with the bound K3, K4 and 

K5 RNAs reveals that the bridging distance is dependent on the loop flexibility (Figure 

23B). The UGAA tetra-loop has a fold in which the uracil stacks on the guanine and the 

two adenines stack together (134). The UUAAUU hexa-loop has a further U-U base pair 

lengthening the NC-stem to three base pairs (135). Both structures prevent the 

backbone from turning over C41 and forming hydrogen bonds with ASN40 and LYS44, 

as observed in the case of the UUUAU pentaloop.  The pentaloop is the only loop in 

which the nucleotide next to C41 lacks stacking interactions with C41. To analyze the 

flexibility of the three different loops in the bound and unbound forms of RNA I calculated 

the B-factors per residue during the non-LES trajectories. From a comparison of the 

fluctuations of the UUUAU loop in the bound and unbound RNA, there is a significant 

decrease in flexibility from U36 to U40 in the bound RNA (Figure 23C, black and red 

curves), suggesting that the 15.5K protein stabilizes the orientation of the backbone of 

the loop in the vicinity of C41. Nevertheless, the absolute values of the B-factors indicate 

that the pentaloop is still very flexible, suggesting that other factors might contribute to its 

stability. In the RNAs bound to the 15.5K protein, the flexibility is lower at the end 

nucleotides and higher at the core nucleotides of the UGAA and UUAAUU loops (Figure 

23C, blue and green curves). This behaviour is expected because at the end nucleotides 

are covalently linked to a stable structure (C41 and G35, respectively). Although the 

UUUAU loop was modelled and the structures of UGAA and UUAAUU loops have been 

experimentally determined, the flexibility of the nucleotide N40 is lowest in the pentaloop. 

5.3.2. Trajectories of the UGAA and UUAAUU loops in the bound RNAs 

To investigate whether different loops attached to the NC-stem show a similar behaviour 

as the UUUAU loop, I modelled two RNA constructs: K3 and K4 RNAs. As described in 

2.8.1, K3 RNA has a UGAA tetraloop in which U37 stacks on G38, C41 stacks on A40 
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and A40 stacks on A39 while K4 RNA has a UUAAUU loop (pdbid 1HS3) in which the 

nucleotide U establishes a non Watson-Crick base pair (N3-H-O2 and N3-H-O4 

hydrogen bonds, sugars in cys orientation) with U40. The common feature of these 

structures is a stacking interaction between the last nucleotide of the NC-stem (C41) and 

the adjacent nucleotide in the loop (A40 in K3 RNA and U in K4 RNA) which is not 

present in K2 RNA. As shown in 3.3.1, the orientation adopted by the UUUAU loop in the 

bound K2 RNA was not adopted by the UGAA and UUAAUU loops in the bound K3 and 

K4 RNAs.  

 However, a very interesting behaviour of the loops was observed during the 10 

ns standard MD simulations of the bound K3 and K4 RNAs, the stacking interaction 

between C41 and N40 being destabilized. This destabilization was not observed in the 

unbound RNAs and was accompanied in the bound RNAs by a movement of the loop 

backbone towards the protein due to attractive electrostatic forces. However, the 

amplitude of the movement was much smaller than that observed for the UUUAU loop in 

the simulations of the bound K2 RNA. 

 

 
Figure 24: Stacking interactions between C41 and N40. 

(A) The distance between the geometrical centers of C41 and A40 is shown for the unbound K3 RNA 
(black curve) and for the bound K3 RNA (red curve)  (B) The hydrogen bonding angle between the O2 
atom of U, the H3 atom of U40 and the N3 atom of U40 is shown for the unbound K4 RNA (black curve) 
and for the bound K4 RNA (red curve). 
 

In the bound K3 RNA the stacking between C41 and A40 is destabilized after about 4.2 

ns as shown in Figure 24A by plotting the distance between the geometric centers of the 

two bases. A40 is pushed towards outside by the movement of the backbone towards 

the protein. In the bound K4 RNA, the U-U40 base pair is slightly destabilized by an 

increase in the buckle between the two bases that is also a result of the electrostatic 

attraction between the phosphate groups in the loop backbone and protein residues 
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(Figure 24B). The C41/N40 stacking interactions are preserved in the unbound RNAs. 

Snapshots taken from the trajectories of the bound K3 and K4 RNA are shown in Figure 

25 illustrating the transitions described above. 

 

 

 
 

Figure 25: Snapshots from the simulations of bound K3 and K4 RNAs: 
(A) The bound K3 RNA at the start of the simulations. (B) The bound K3 RNA after ~8 ns. (C) The bound 
K4 RNA at the start of the simulations. (D) The bound K4 RNA after ~5 ns. The external loop is encircled 
and the C41, A40 (in K3 RNA), U, and U40 (in K4 RNA) are highlighted 
 

5.3.3. Trajectories of the bound and unbound Kt15 

To find whether my model for the external loop shares structural features with other K-

turns, I extracted the K-turns and their associated proteins from the big ribosomal 

subunit of Haloarcula marismortui and investigated their 3D structures. 

Interestingly, the K-turn Kt15 shares many features with KtU4. The only 

difference is that instead of the G43-A33 base pair (in KtU4), Kt15 has an A-U-G triplex. 

The NC-stem has two Watson-Crick base pairs extended with a loop-like structure 

different from the UUUAU loop of U4 snRNA. Kt15 binds to the ribosomal L7AE protein 
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that has a similar fold to 15.5K protein. The loop-like structure of Kt15 starts with a 

distorted A-U base pair adjacent to last base pair of the NC-stem (Figure 26A). In the 

distorted A-U base pair, the propeller twist between the two bases is ~90°, permitting an 

orientation of the backbone similar to that observed for the UUUAU loop during the 

trajectories of the bound K2 RNA. In the L7AE protein two residues (ASN64 and LYS68) 

establish a bridge between the G nucleotide of the A-U-G triplex and the backbone of 

the loop-like structure (Figure 23D) in an almost identical manner as the ASN40 and 

LYS44 residues from 15.5K protein,  

I simulated the Kt15 RNA both in the unbound form and in the complex with the 

ribosomal L7AE protein, finding that the distorted A-U base pair evolves rapidly into a 

Watson-Crick base pair in the unbound RNA (Figure 26B) while remaining relatively (but 

not throughout the entire trajectory) stable in the bound Kt15.  

 
Figure 26: Snapshots from the simulations of Kt15. 

The black arrow indicates: (A) the distorted A-U base pair as observed in the crystal structure of the L7AE-
Kt15 complex (structure maintained during the simulation of the complex). (B) the formation of the 
Watson-Crick A-U base pair in the unbound Kt15 RNA. 
 

A comparison between the orientations observed during the trajectories of the bound 

and unbound KtU4 and Kt15 is shown in Figure 27. The orientation of the loop backbone 

creates a groove in which ASN and LYS residues contact the RNAs. However, in the 

bound Kt15 the groove is much narrower than that observed in bound KtU4 (compare 

Figure 27A with Figure 27C). In the unbound Kt15, upon the formation of the A-U base 

pair adjacent to the NC-stem, the groove becomes a typical major groove of an A-type 

helix (Figure 27B), while in the unbound KtU4, the was rapidly flattened (Figure 27D). 
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Figure 27: Orientations of the external loop in Kt15 and KtU4 
The backbone of the external loop is shown as a molecular surface colored by atom name (P yellow, O pink 
and N cyan). The black arrows indicate the groove formed by the RNA backbone. (A) The very narrow 
groove in Kt15 RNA if bound to L7AE protein. (B) The groove becomes a regular minor groove of an A-
type helix during the simulations of the unbound Kt15. (C) The groove formed in the simulations of the 
naturally occurring K2 KtU4 RNA bound to the 15.5K protein. (D) Flattening of the groove during the 
trajectories of the unbound K2 RNA. 
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5.4. Flexibility of the 15.5K protein 

Existing experimental data on the dynamics of the free K-turn RNA motif provided the 

opportunity to compare such data with the results obtained by computer simulations, 

validating in this way the simulations. Unfortunately, the experimental data on the 

dynamics of the free protein is scarce, and thus no such validation is possible. It is thus 

far not understood to what extent the 15.5K protein is folded upon binding to its cognate 

RNA or whether binding to a specific RNA influences the dynamics of the 15.5K protein. 

Additionally, it is likely that the 61K protein or other proteins contact the 15.5K protein 

(already bound to KtU4) upon binding to U4 snRNA. However, the precise interaction 

interface between 15.5K protein and other proteins is not known. The standard MD 

simulations (all 10 ns long) performed on the unbound 15.5K and L7AE proteins, on the 

complexes between 15.5K protein and K1, K2, K3, K4 and K5 RNAs, and on the L7AE-

Kt15 complex revealed that: (i) in the unbound 15.5K protein, the residues at the 

interface are more flexible but overall the free protein does not deviate significantly from 

the crystal structure of the protein in the complex, (ii) the 61K protein might contact a 

hairpin-like structure formed by PRO62 in the 15.5K protein, (iii) the flexibility of helix �5 

depends on the nature of the RNA bound to the 15.5K protein, the largest flexibility being 

observed for the naturally occurring K2 RNA, (iv) the helix �5 of L7AE is also flexible in 

the trajectory of the L7AE-Kt15 complex, and (v) different flexible regions in the 15.5K 

protein that might play a role in the interaction between the 15.5K protein and other 

U4/U6-specific proteins. However, these results have not been tested experimentally, 

thus providing only predictive information about interactions based on the dynamics of 

15.5K protein. 

5.4.1. Flexible regions in the 15.5K protein 

The B-factors per residue during four distinct trajectories of the 15.5K protein are plotted 

in Figure 28. The plot shows that, except for the five residues at the N-terminal and the 

C-terminal, several other flexible regions can be identified in the 15.5K protein: (i) 

residues 13 to 18 at the start of helix �1 (R1 shown in Figure 29A), (ii) residues 29 to 33 

at the end of helix �1 (R2), (iii) the residues 33 to 44 of helix �2 and sheet �1 in the 

trajectory of the unbound protein (R3; protein-RNA interface), (iv) residues 46 to 50 at 

the end of helix �2 (R4), (v) residues 58 to 68 of the unstructured region between sheet 

�2 and helix �3 (R5; shown in Figure 29B), (vi) the residue 73 to 78 at the end of helix 

�3 (R6; shown in Figure 29C), (vii) residues 93 to 98 of the unstructured region between 
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helix �4 and sheet �4 in the trajectory of the unbound protein (R7; protein-RNA 

inteface), (viii) residues 105 to 110 of the unstructured region between sheet �4 and 

helix �5 (R8; shown in Figure 29D), (ix) the helix �5 in the trajectory of the bound K2 

RNA (R9).  

 

 
 

Figure 28: B-factors per protein residue in different simulations. 
during the simulations of: 15.5K-K2 RNA complex (black curve), 15.5K-K5 RNA complex (red curve), 
15.5K-K1 RNA (green curve) and free 15.5K protein (blue curve) 
 

The flexibility of some of the regions does not show any dependence on: (i) whether the 

protein is bound or unbound to RNA, or (ii) on the RNA construct bound to the protein 

(R1, R2, R5, R6 and R8). All of these regions are unstructured, thus their flexibility might 

not have any functional relevance. However, I found that R5 and perhaps R6 (its 

flexibility might be related to that of R5) display several interesting features, R5 being 

also present in the ribosomal protein L7AE (see 3.4.3). Other regions such as R3, part of 

R5 and R7 constitute the protein-RNA interface and are flexible only in the free protein 

while R9 is of particular interest because its flexibility depends on the nature of the RNA 

structure bound to the protein (the helix �5 is flexible only in the naturally occurring 

15.5K-K2 RNA complex). The reproducibility of these findings was tested by running 

multiple trajectories of the same systems. The only system that produced different 

trajectories in terms of behaviour was the unbound protein which had a very flexible �5 
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in one trajectory and a rather stiff one in another trajectory (different software was used 

and slightly different initial conditions). However all the other flexible regions of the 

unbound protein were found in both trajectories. 

 

 
Figure 29: Flexible regions in the 15.5K protein (in all simulated system). 

The flexible regions are indicated by a transparent molecular surface colored by the secondary structure and 
by bond representations of the residues colored by atoms (A) R1 region (RES 10-15), (B) R5 region (RES 
58-68), (C) R6 region (RES 73-78), and (D) R8 region (RES 105-110) 
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A comparison between the B-factors per residue during the trajectories of the 15.5K-K2 

RNA complex and the L7AE-Kt15 complex revealed that the flexible regions of 15.5K 

protein overlap with the flexible regions of L7AE (Figure 30). Interestingly, the flexibility 

of helix �5 was also observed in the trajectories of both complexes. 

 

 

 
 
Figure 30: Comparison between the flexibilities of 15.5K and L7AE proteins bound to their cognate RNAs  
B-factors per protein residue are shown for: (A) the 15.5K protein in the simulation of the 15.5K-K2 RNA 
complex (black curve), and (B) the L7AE protein in the simulation of the L7AE-Kt15 RNA complex (red 
curve) 

5.4.2. The protein-RNA interface 

The protein-RNA interface is shown in Figure 31 and is composed of the entire regions 

R3 and R7 and part of the region R5. For detailed description of the contacts that are 

established between the protein and the RNA see 1.3. In the unbound protein, several 

inter-residue hydrogen bonds (stabilized in the complex by a network of hydrogen bonds 

involving also RNA bases) become instable. In the bound protein, ARG36 establishes 

hydrogen bonds with GLU41, the interaction being stabilized by a complete network 

involving the RNA nucleotides, G32 and G43 (Figure 32A). In the trajectory of the free 

protein, the hydrogen bonds formed between ARG36 and GLU41 are not stable and the 

residues become flexible and adopt random orientations in space (a snapshot is shown 
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in Figure 32B). However, the only influence observed in the overall protein structure due 

to such local instabilities is a shortening of �1. 

 
Figure 31: Protein-RNA interface. 

The protein residues are shown in two representations: (i) cartoon (�-helices purple, �-sheets yellow and 
unstructured regions white), (ii) bonds colored by atoms (carbons cyan, oxygens pink, nitrogens blue and 
hydrogens white. The RNA bases are shown in blue  
 

 

 
 

Figure 32: Example of protein-RNA contact. 
(A) as observed in the 15.5K-KtU4 complex; (B) as observed during the trajectory of the free 15.5K 
protein. Coloring is consistent with Figure 31. Hydrogen bonds are shown as dotted black lines 
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5.4.3. PRO62 induces a hairpin-like structure 

 

 
Figure 33: The hairpin-like structure in the 15.5K protein.  

Coloring is consistent with Figure 31 
 

R5 is the unstructured region between �2 and �3. ALA60 and GLU61 are contacting the 

RNA nucleotide U31, thus contributing to the protein-RNA interface. Although this region 

is clearly flexible in all the trajectories analyzed, its flexibility is somehow restricted by a 

hairpin-like structure induced by PRO62 (Figure 33). Interestingly, although it is located 

in the middle of an unstructured coil, this hairpin-like structure is relatively stable during 

all the simulations. Furthermore, the same structure is present in the ribosomal L7AE 

protein where it is part of the binding pocket of the L15E protein to L7AE.  

 PRO62 is surrounded by GLU61 and GLU64 in the 15.5K protein. However, ILE 

63 interposes between PRO62 and GLU64 as opposed to L7AE where two glutamates 

analogues to GLU61 and GLU64 are located in the immediate vicinity of the proline.  

The electrostatic potential represented on the molecular surfaces of the two 

proteins shows a negative area on a relatively positive wheel-like structure (Figure 34; 

white arrows). There are several differences between the two proteins: (i) the wheel-like 

structure is larger in the 15.5K protein, (ii) the pit on the molecular surface that is 

surrounded by the wheel-like structure is deeper in the 15.5K protein, (iii) the two 

negative charges (the two glutamates) are adjacent in the L7AE protein and are facing 
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each other in the 15.5K protein, and (iv) the positive charge around the glutamates is 

more pronounced in the 15.5K protein. However, in spite of these differences, there is a 

clear similarity between the R5 regions in the two proteins. 

 

 

 
 

 
Figure 34: Electrostatic potential on molecular surfaces. 

(A) Electrostatic potential on the molecular surface of 15.5K protein. (B) Electrostatic potential on the 
molecular surface of 15.5K protein. The black arrows indicate the RNA binding pocket while the white 
arrows indicate the location of the hairpin-like structure on the surface. The orientation of the proteins 
inside the surfaces is shown in (C) and (D).  
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5.4.4. The flexibility of �-helix 5 

 

 
 
 

Figure 35: Transitions in the �-helix 5 
The residues forming the inter-helix coil are shown as bonds colored by atoms. The black arrows indicate 
the locations of the coil (A) The helix �5 is shown as observed in the crystal structure of the 15.5K-KtU4 
complex. (B) Snapshot in which �5 is split into two short helices of approximately the same length by an 
inter-helix coil formed by residues SER118, ILE119, GLN120, GLN121. (C) Snapshot in which the coil is 
formed only by residue SER118. (D) Snapshot in which �5 is split towards its C-terminal end into two 
helices that form a sharp angle between them; the coil is formed by residue SER122 
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The helix �5 is very flexible both in the 15.5K-K2 RNA complex and the L7AE-Kt15 

complex. In the 15.5K-K1 RNA complex, its flexibility is reduced, while in all the other 

complexes, �5 is relatively rigid. The trajectories of the unbound protein were not 

conclusive regarding the flexibility of �5, in some trajectory the helix being flexible while 

in others rigid. The transitions occurring in the helix during the simulation of the 15.5K-

K2 RNA complex are shown in Figure 35. The long �-helix breaks into two short �-

helices with a coil between them. Different states were observed depending on the 

residues constituting the coil. In the most abundant state, the helix was split 

approximately in the middle, separating two short helices oriented at a variable (but 

generally small) angle against each other. Figure 35B shows a snapshot in which the 

coil is four residues (SER118, ILE119, GLN120, GLN121) long while Figure 35C shows 

a snapshot in which only one residue (SER 118) forms the coil. An alternative state was 

also observed in which the length of the two short helices were significantly different 

(Figure 35C) and the angle between them was sharper. However, the latter state was 

short-lived. Such transition were not observed or were very short-lived in the protein 

bound to other RNA constructs, providing an example of protein motions that are 

dependent on the nature of the bound RNA. 

5.5. Steady-state fluorescence spectroscopy 

 

 
Figure 36: Spectrum of 2-aminopurine in KtU4 

The black line shows the fluorescence spectrum of 2AP when incorporated in the RNA at position 29. The 
red curve shows a fluorescent spectrum of the unlabeled RNA as a control. The spectra are shown after 
background substraction (buffer spectrum). 
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A typical spectrum of 2-aminopurine (2AP) incorporated in KtU4 is shown in Figure 36. 

The emission had a maximum at 375 nm. Upon titration with 15.5K protein, the 

fluorescence of 2AP was quenched both in the absence (Figure 37A) and presence 

(Figure 37B) of Mg2+ ions in solution.   

 

 
Figure 37: Titration of labeled KtU4 with 15.5K protein 

in buffer 1 (A) - no Mg2+ ions present in solution - and in buffer 2 (B) - in the presence of 1.5 mM Mg2+ 

 

The melting profiles of the RNA in the two buffer systems are shown in Figure 38. In the 

absence of Mg2+ (Figure 38A), a steady decrease in fluorescence intensity was observed 

until 30°C. Between 30 and 40°C, the fluorescence intensity decreased more sharply, 

while after 50°C, the fluorescence showed a substantial increase. In the presence of 

Mg2+, the melting profile was similar (Figure 38B). However, the predicted melting 

temperature (Tm) was higher.  

 

 
Figure 38: Melting profiles of labeled KtU4 

in buffer 1 (A) - no Mg2+ ions present in solution - and in buffer 2 (B) - in the presence of 1.5 mM Mg2+. 
The predicted melting temperatures are indicated with a black arraw. 
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The influence of Mg2+ on the structure of KtU4 was tested by titration of the labeled RNA 

in buffer 1 with increasing amounts of MgCl2 at 5°C (Figure 39). A sharp decrease in 

fluorescence intensity was observed upon addition of up to 3 mM MgCl2, while 

increasing the concentration of cations above this value lead to a slight increase in 

fluorescence. 

 

 
Figure 39: Titration with Mg2+ of labeled KtU4 at 5°C 

 

 

6. Discussion 

6.1. Protein-assisted RNA folding 

I propose that the folding of KtU4 is assisted by the protein binding. The folding pathway 

is largely dependent on the RNA sequence and local flexibility. My model is based on 

MD simulations indicating significantly different trajectories for the bound and unbound 

RNAs and on the susceptibility to chemical modifications of different bases of the 

unbound and bound RNA. The protein cannot bind to the RNA and promote its folding 

unless the RNA has the inherent flexibility conferred upon it by the particular nucleotide 

sequence.  

 By probing the chemical reactivity of the N1 and N2 positions of guanines (using 

Kethoxal) and the N1 position of adenines (using DMS) in the presence and in the 

absence of 15.5K protein, Stephanie Nottrott showed that certain interactions in the RNA 
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arise only upon protein binding (60). Conversely, the simulations indicate that 

conformational transitions with loss of specific secondary structure elements occur only 

in the unbound RNA. These findings, summarized in table 4, suggest that the RNA 

folding is assisted by the binding of 15.5K protein. The K-turn opens and sometimes 

reforms in the absence of the protein, suggesting that in addition to protein binding, the 

local flexibility of the RNA plays a crucial role in the folding process. In most of the 

trajectories the K-turn does not reform from the open conformation within the 10 ns time 

limit, only the local conformational transitions being reversible. The transition between 

the closed and open conformations was observed using FRET for the K-turn Kt7, which 

contains the most of the consensus sequence of K-turn motifs (58). The opening-closing 

process of the K-turn observed by FRET may be quite different and occur on a longer 

time scale. Nonetheless, the present simulations show a significant degree of opening 

for the K-turn in the absence of the protein. 

 
Table 4: Interactions in the unbound RNA 

Interaction Unbound RNA 

(MD-LES) 

Unbound RNA 

(MD+LES) 

Unbound RNA 

(experiment) 

G35-C41 base pair lost (only K1) lost (K1, K2) lost 

G32-A44 base pair preserved lost lost 

G43-A33 base pair preserved lost no data 

A30-A44 stack lost lost no data 

A30-A29 stack formed formed no data 

O2' (A29)-H-N1(A44) lost lost lost 

N2(G45)-H-O3' (A33) preserved lost no data 

 

The K-turn formed by the 5' stem-loop of U4 snRNA is of particular interest because the 

binding of 15.5K protein to this RNA nucleates the assembly of U4/U6 snRNP (37). 

Several other studies devoted to the mechanism of K-turn RNA folding suggest that 

factors such as the association with proteins and the presence of metal ions in solution 

are important (58,59).  

 Previously, interactions such as Tat-TAR interaction of HIV-1 or the binding of 

U1A protein to its RNA substrate have been assigned to the induced fit category (54-

57,76,150,151). In these cases the conformation of the unbound RNA is stable but 
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significantly differs from that of the bound RNA. The conformational capture, [as 

described by Leulliot and Varani (53)], is more difficult to locate due to the large flexibility 

of the RNA, which adopts an equilibrium between different conformations in its unbound 

state such that structure determination is not feasible. The MD simulations do not 

sample continuous inter-conversions between conformations since such events occur in 

the microsecond to millisecond time scale. Nevertheless, the FRET study by Goody et 

al. (58) and the partial reforming of the kinked conformation during the simulations of the 

unbound RNA might suggest a ‘conformational capture’ mechanism for the folding of 

KtU4. In addition, the folding process is influenced by other factors such as ionic 

strength and magnesium ions, factors that were not considered in the current study. 

However, localized Mg2+ ions were not found in the crystal structure of the complex, 

suggesting that they influence the RNA folding by a ‘diffusely bound’ rather than ‘site 

bound’ mechanism (71,72).  

From the six K-turns found in the 23S rRNA of Haloarcula marismortui (47), one 

(Kt38) is not associated with proteins, suggesting that the folding of the K-turn motif is 

not always assisted by the protein binding but it also depends on the structural context in 

which the K-turn forms. The K-turns from the ribosome are segments of large RNA 

structures and therefore might have a folding pathway different from the 5' stem-loop of 

U4 snRNA, which is an isolated small RNA with a very flexible external loop attached to 

the NC-stem. 

6.2. The role of G-A base pair formation in the folding of KtU4 

It has been shown that mutation of any of the purines forming the G-A base pairs in 

KtU4 abolishes binding of the 15.5K protein (29). Therefore, the formation of G-A base 

pairs in the internal loop is required for the correct folding of the RNA. However, their 

precise role is not understood. I provide here the first insights at atomic detail into the 

correlation between G-A base pair formation and K-turn folding. The G-A base pairs are 

unstable in the absence of 15.5K protein. Thus, a reasonable assumption would be that 

they are required for the formation of the kinked structure. However, the opening of G-A 

base pairs is not tightly correlated with the k-e motion of the K-turn. When increased 

sampling was applied to both the internal loop and parts of the stems, the k-e motion 

was accompanied by loss of G-A base pairs (LES4 trajectory). Strikingly, when LES was 

confined to the internal loop, the RNA adopted a relatively stable alternative 

conformation in which the G-A base pairs did not form while the RNA was a more tightly 
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kinked structure resembling that of K-turn Kt58 (Figure 16D), having backbone kinks on 

both strands. I investigated whether this alternative conformation was stabilized due to 

LES artifacts by comparing the dynamics observed in the LES1 and LES4 trajectories. In 

the absence of experimental data at atomic level describing the dynamics of the free 

RNA, the identification of convergent motions between the LES1 and LES4 trajectories 

provides a reasonable argument that at least some of the dynamics observed in the 

LES1 trajectory occur during the k-e motion of the free RNA. The behavior of the RNA in 

the LES4 trajectory was in excellent agreement with data obtained by single molecule 

FRET experiments (58) and by chemically probing the RNA structure in the presence 

and absence of the 15.5K protein (60). To characterize the concerted motions in the free 

K-turn, I applied ED analysis of the LES4 trajectory. The slowest mode captured the k-e 

motion that is correlated with the opening of G-A base pairs. Surprisingly, along the third 

slowest mode, the degree of kinking in the RNA increased without the formation of G-A 

base pairs. Furthermore, the movement of the adenines relative to the guanines was 

even larger than that observed along the first mode and similar to the motions observed 

in the LES1 trajectory. The projection of the LES4 trajectory along different modes 

shows that the third eigenvector reflected the reformation of the K-turn in the last 2 ns of 

the trajectory. Therefore, the two simulations showed convergent motions, suggesting 

that the RNA is capable of adopting intermediate conformations characterized by a 

sharp angle between the two stems without the formation of G-A base pairs. The 

stabilization of the alternative conformation in the LES1 trajectory enabled the search for 

local structural dynamics contributing to the large opening of the RNA, such dynamics 

being identified by analyzing the divergent motions between the LES4 and LES1 

trajectories. 

From these findings, we infer that the loss G-A base pair is insufficient for 

achieving the k-e transition. The opening of the K-turn caused the G-A base pair to 

open, thus accounting for the correlation between these two motions along the slowest 

mode of the LES4 trajectory. The stability of the stacking interaction between G32 and 

G43 suggests that G32 and G43 together with the flipped out U31 and a particular 

orientation of A30 could be the recognition motif for the 15.5K protein. The protein has a 

tight cavity (Figure 40) formed by residues 37 to 41, 44 and 95 to 99, which recognizes 

the RNA and selects a specific orientation of the two stems. I propose that the role of the 

G-A base pairs is to stabilize the orientation of the two stems at a precise angle which is 

selected during protein recognition. 
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Figure 40: Protein cavity recognizing the RNA. 

Coloring of the RNA is consistent with Figure 11. The protein cavity is shown as a transparent molecular 
surface colored by secondary structure (�-helix purple, �-sheet yellow and unstructured region cyan 
 
The ribosomal K-turns vary in the angle between the stems and in the number and 

nature of non-canonical interactions, extending the NC-stem into the internal loop. Kt46 

and Kt58 have the highest degree of kinking (~21° and ~41° between the helical axes of 

the two stems). They contain three G-A base pairs followed by a G-U base pair while K-

turns with a lower degree of kinking bear two G-A base pairs, sometimes followed by a 

C-C base pair. This distribution suggests that there might be a connection between the 

orientation of the two stems and the number of G-A base pairs formed in the internal 

loop. The major function of the K-turns is to orient the two stems such as to permit 

binding of proteins that contact both stems or to provide the frame for large RNAs such 

as the ribosomal RNA to compact in the structures observed in the ribosomes. 

Therefore, it is plausible to suggest that the RNA folding in large structures requires 

specific orientations of helices that are regulated by non-Watson Crick interactions in 

flexible motifs such as the K-turns. It is very challenging to experimentally verify this 

hypothesis because adding or subtracting G-A base pairs from the RNA abolishes 

binding to their cognate proteins. Computer simulations are also limited due to the 

flexibility of the free RNAs which has to be accounted for to obtain an accurate 

representation of the simulated systems.   

It was suggested by one of the reviewers of the paper that I published in Nucleic 

Acids Research (149) that the instability of the G-A base pairs in the free KtU4 was 
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incompatible with thermodynamics experiments [(152) and refs therein] and may thus 

have been due to the limitations of LES and the force fields However, chemical RNA 

structure probing experiments have shown that both G32 and G43, as well as G34 and 

G35, are accessible to modification by kethoxal in the absence of 15.5K protein, 

indicating that the G-A base pairs and the G-C base pairs in the NC-stem are not formed 

in the unbound RNA (60). The stability of G-A base pairs during standard MD 

simulations of the free KtU4 might be due to the limited sampling accessible by standard 

MD. I believe that LES has proved useful in simulating the opening of G-A base pairs in 

the unbound KtU4. Nevertheless, I do not question the stability of sheared G-A base 

pairs in other RNAs or even in other K-turns. Additional studies are required to assess 

the stability of the G-A base pairs in the related ribosomal K-turns by considering both 

their bound proteins and attached RNA fragments.  

6.3. The role of backbone flexibility in the folding of KtU4 

If the loss of G-A base pairs was insufficient for achieving a large opening of the K-turn, 

it is likely that other factors contribute to the k-e transition. Capturing the LES1 

conformation enabled me to characterize the motions in the backbone of nucleotides 

situated at the branching origin of the stems that are relevant for the opening of the K-

turn. The rotational freedom about backbone bonds in A33, G34, G35 and G46 drives 

the k-e motion of the RNA. When this flexibility is restricted, the ability of the RNA to 

open is diminished (as observed in the LES1 and LES2 trajectories), suggesting that the 

formation of the K-turn is not a selective property of the internal loop but also involves 

the stems. A33 plays a special role in the transitions, being the most flexible nucleotide 

during the K-turn opening. Its pucker and 
 angle are highly correlated with the global 

RNA motions, suggesting that the degree of conformational freedom in A33 is of crucial 

importance for the K-turn dynamics. I show that the flexibility of A33 is influenced by the 

degree of rotational freedom about the C4’-C5’ bond in G46. The 2’ OH group of G46 

must adopt a correct orientation to form a hydrogen bond with the phosphate group of 

G34 that bridges the gap between the two stems at their branching origin. G45 does not 

show the same type of flexibility as G46 although it is closer to the internal loop, 

suggesting that the flexibility of G46 backbone directs the movement of the C-stem 

relative to the rest of the RNA. In the LES2 trajectory, the amplitude of the k-e motion is 

significantly lower than in the LES4 trajectory because conformational sampling in the C-

stem was not enhanced. The backbone of G46 does not have a sufficient degree of 
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conformational freedom to promote large RNA opening. Nevertheless, a certain degree 

of opening was observed in comparison to the LES1 trajectory, suggesting that flexibility 

in the backbone of G34 and G35 is equally important. 

6.4. RNA folding and U4/U6 snRNP assembly 

The 15.5K protein is required for the recruitment of other specific proteins to the U4/U6 

snRNP such as the 61K or the 20/60/90K protein complex (37). I propose that the 

assembly of U4/U6 snRNP is driven by the hierarchical folding of the 5' stem-loop of U4 

snRNA. First, the RNA is folded into a K-turn conformation upon binding of the 15.5K 

protein, while the pyrimidine-rich external loop remains flexible. The simulations of K2 

RNA show that the external loop adopts different conformations in the presence and 

absence of the protein, suggesting that the 15.5K protein creates a pre-folded structure 

of the external loop. It is very likely that the complete folding of the UUUAU loop is 

achieved only after recruitment of 61K protein to the U4 snRNA. When replacing the 

UUUAU loop with the UGAA, the UUAAUU loops, or seven Watson-Crick base pairs, the 

backbone cannot adopt the orientation required for establishing hydrogen bonds with 

ASN40 and LYS44, suggesting that this orientation might be the first step in the folding 

of the external loop.  

The naturally occurring RNA sequence (K2) is the only simulated construct in 

which C41 does not stack on the nucleotide N40 of the loop. Furthermore, electrostatic 

attractive forces between the protein helix �2 and the RNA backbone triggered structural 

changes in the external loops of the bound K3 and K4 RNAs: (i) loss of stacking 

between C41 and A40 in the UGAA loop (K3 RNA) and, (ii) instability of the U-U40 base 

pair in the UUAAUU loop (K4 RNA). These findings together with the experimental 

observation that the addition of one Watson-Crick G-C base pair to the NC-stem inhibits 

the binding of the 61K protein in vitro (data not shown), suggest that the lack of stacking 

interactions between C41 and N40 may be critical for the recruitment of 61K protein to 

the U4 snRNA. 

When bound to the ribosomal protein L7AE, the backbone of the K-turn Kt15 

shows a similar orientation with that observed in the trajectory of the bound K2 RNA. 

However, the UUUAU pentaloop from K2 RNA is replaced by a loop-like structure in 

Kt15. This structure has a distorted A-U base pair adjacent to the NC-stem, A not 

stacking on the nucleotide analogous to C41. Furthermore, in the trajectories of the free 

Kt15 this distorted base-pair becomes a canonical Watson-Crick base pair, indicating 
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that the canonical base pair is destabilized upon binding of L7AE to Kt15. However, the 

loop-like structure in Kt15 is stabilized by the binding of the ribosomal protein L15E and 

by a Mg2+ ion. The cation might be needed because the stabilization of such a structure 

requires more stabilizing factors than does the flexible pentaloop in KtU4. The 

similarities observed between the orientation of the external loop backbone in K2 RNA 

and the backbone of the loop-like structure in Kt15 indicate a possible common folding 

path of KtU4 and Kt15, in which the L7AE/15.5K protein stabilizes a pre-orientation of 

the structure adjacent to the NC-stem such as to create a groove which is further 

stabilized by the L15E/61K protein. The stabilization of the distorted A-U base pair in 

Kt15 might indicate that the lack of stacking between the twisted A and the nucleotide 

analogue to C41 is important for the formation of the ternary complex L7AE-L15E-Kt15 

such as the lack of stacking between U40 and C41 in KtU4 might be important for the 

formation of the ternary complex 15.5K-61K-KtU4. 

During the non-LES simulations, the NC-stem proved less stable in the unbound 

K1 RNA than in the bound K1 RNA, the external loops (K2, K3, K4 RNAs) or subsequent 

Watson-Crick base pairs (K5 RNA) stabilizing the stem in the absence of the protein. 

The LES simulations have shown that protein binding plays a role in the stabilization of 

the G34-C42 and G35-C41 base pairs when the NC-stem is attached to flexible external 

loops. Furthermore, the chemical probing experiments have shown that the NC-stem is 

unstable in the unbound RNA. These findings suggest that a non-rigid external loop is 

required to keep the NC-stem relatively flexible in the unbound KtU4. Therefore, it is 

likely that the NC-stem folds together with the G-A base pairs and the external loop upon 

binding of the 15.5K protein. 

6.5. Computer simulations of protein-assisted RNA folding 

Structural data are rarely available for both the free and bound RNAs in cases of protein-

assisted RNA folding. Computer simulation techniques provide the means for exploring 

the structure of the RNA in its unbound form and drawing conclusions about flexible 

regions contributing significantly to the folding process. For MD simulations, the starting 

structure is essential and dictates the evolution of the system. They are easily trapped in 

local minima on the potential energy surface. The time scale of conformational 

transitions important for the RNA folding is often much greater than that available for the 

simulations. MD simulations have been applied previously to U1A-RNA binding (75). In 

two recent studies that appeared almost in the same time as my article in the RNA 
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journal, Rázga et al. reported 35-40 ns MD simulations of three different K-turns and 

derived conclusions about the dynamics of the K-turn around the conformation observed 

in the ribosomal crystal structure (147,148). Neither their standard MD simulations nor 

mine demonstrated the transition between the closed and open conformations of the K-

turn, only partial opening being observed. Thus, I opted for LES to increase the 

conformational sampling during MD trajectories. A major advantage of this method is 

that it can be applied in combination with PME and explicit solvent (84). Nevertheless, 

smoothing the potential energy surface might permit transitions that do not occur in 

reality. Therefore, the choice of the LES regions and the number of copies is crucial.  

Considering the benefits of applying LES despite the drawbacks apparent in the 

study of DNA G-quartets (86), I propose that in the absence of atomic resolution 

structures of unbound RNAs, such theoretical approaches are suitable for studying the 

dynamics of RNAs undergoing protein-assisted folding starting from structures of 

protein-RNA complexes. However, they do not provide structural predictions. Thus, the 

structures observed during the LES-MD trajectories should only be regarded as 

possible, perhaps even highly plausible, transition states during dynamic motions rather 

than assumed as unique 3D arrangements of the free KtU4. In reality, the unbound RNA 

may undergo transitions of much grater amplitudes that cannot be simulated even with 

more extensive conformational sampling.  

For characterizing the k-e motion of the free RNA, in this dissertation I presented 

trajectories with LES systems containing four copies for four different regions. When the 

entire core structure of the K-turn RNA (K1 RNA) was replaced with three identical 

copies, the transition between the closed and open conformations was not observed, 

while with five copies the transition occurred for the unbound RNA on a shorter time 

scale but also for the bound RNA. The crystal structure of the complex was preserved 

during all viable simulations, its stability being the criterium for accepting trajectories for 

further processing. Using different combinations of LES regions I obtained different 

trajectories but observed the same local conformational transitions in the unbound RNA. 

Nevertheless, the transition from a closed to an open K-turn took place only when 

different LES regions were applied for the internal loop, the NC-stem and parts of the C-

stem, suggesting that the kinked conformation is an intrinsic property of the entire RNA. 

LES proved very useful for studying large conformational transitions such as the opening 

of the K-turn, while the standard MD simulations provided a more accurate description of 

fine contacts such as the inter-stem hydrogen bonds 
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6.6. Perspectives for simulating protein-assisted RNA folding 

The main limitation of LES is that it uses a rather artificial way to smoothen the potential 

energy barriers. The behavior of the RNA depends on the number of LES regions and 

the number of copies replacing each region. Nevertheless, using LES I obtained 

excellent agreement with experimental data in characterizing the behavior of KtU4. 

However, it was necessary to simulate both the free and bound RNAs under the same 

conditions to ensure that I was observing protein-assisted RNA folding and not random 

transitions in the RNA. This resulted in a sharp increase in CPU time required to obtain a 

viable trajectory. The next step in developing a protocol that can be extensively applied 

to study the mechanism of protein-assisted RNA folding would be to test whether the 

behavior of the K-turn motif can be reproduced by employing other enhanced sampling 

techniques such as replica exchange molecular dynamics simulations (153-155). Ideally, 

such a standardized protocol would not require the simulations of the bound RNAs and 

could predict induced fit or conformational capture mechanisms (19,53) only from the 

simulations of the free RNAs starting from their bound structures. Such a protocol is 

justified for studying systems for which structural data is very difficult to obtain due to 

their flexibility. The K-turn motif constitutes a typical example of such a system.  

Understanding the dynamics of RNA motifs such as the K-turn is required to 

elucidate the mechanisms of large RNA folding with the ultimate goal of characterizing 

the folding of structures such as the ribosome, the single recognition particle, the 

telomerase or the dynamical events occurring during the assembly of the functional 

spliceosome. 

6.7. Dynamics of 15.5K protein and U4/U6 snRNP assembly 

I showed that upon binding of the 15.5K protein to KtU4, the RNA folds in a protein-

assisted manner. The lack of structural information on the free protein raises the 

possibility that the fold of 15.5K protein is also stabilized upon binding to its cognate 

RNA. The simulations of the free protein and the complex revealed that only the protein-

RNA interface is stabilized upon binding to its cognate RNA suggesting that the 

conformational changes in the protein upon RNA recognition are minor. However, 

networks of hydrogen bonds involving both protein and RNA residues were broken in the 

absence of the RNA even though this did not results in major secondary structure 

rearrangements in the protein. Nevertheless further experimental evidence is required to 

test whether conformational transitions on larger time scale do not occur.  
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The binding of the15.5K protein is required for the recruitment of the 61K protein or the 

20/60/90 complex to the U4 snRNA. Thus, the dynamics of the 15.5K protein bound to 

KtU4 might play a role in regulating its interactions with other U4/U6 snRNP-specific 

proteins. Additionally, the 15.5K protein was the first protein found to be sheared by 

different RNPs such as U4/U6 snRNP and box C/D snoRNP. In different RNPs, the 

protein binds slightly different RNAs that are all proposed to be kink turns. I tested 

whether motions in the protein are dependent on the nature of the bound RNA. 

Surprisingly, quite far away from the protein-RNA interaction site, the flexibility of helix 

�5 depended on the nature of the bound RNA. In the trajectory of the complex with the 

natively occurring K2 RNA, the helix was very flexible while a very small degree of 

flexibility was observed in the trajectories of other complexes. �5 was also very flexible 

in the ribosomal protein L7AE when bound to its cognate Kt15 RNA, providing yet 

another common feature between the L7AE-Kt15 and 15.5K-KtU4 complexes. These 

findings suggest that a certain RNA type might regulate structural dynamics in the 15.5K 

protein to facilitate further interactions with other associated proteins. However, further 

simulations and/or experimental data are required to prove this supposition. In particular, 

structural data on the complex between the 15.5K protein and its binding sites within 

snoRNPs would be useful to study further the dynamics of the protein when bound to 

different RNAs. 

Besides the protein RNA interface and the helix �5, a flexible region was 

identified in the 15.5K protein in the unstructured region between the sheet �2 and the 

helix �3 (R5). Based on the analogy with the binding of the L7AE and L15E proteins to 

Kt15, I propose that the R5 region of the 15.5K is contacted by the 61K upon binding to 

the U4 snRNA. The ribosomal L7AE protein exposes a hairpin-like structure formed 

around a proline residue with two adjacent glutamates to a docking site on the surface of 

the L15E protein (Figure 41A). Experimentally, it was shown that the 61K protein cross-

links with both stems of KtU4 (37). Additionally, the hairpin-like structure is also present 

in the 15.5K protein (Figure 41B), suggesting that the 61K protein might recognize the 

15.5K-KtU4 complex in a similar fashion as the L15E recognizes the L7AE-Kt15 

complex. However, these findings provide only predictive information since experimental 

data on the 15.5K-61K protein complex is thus far unavailable and the 61K protein does 

not resemble the L15E protein. 
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Figure 41:  Proposed similarities between the L7AE-L15E-Kt15 and 15.5K-61K-KtU4 complexes. 

L7AE (A) and 15.5K (B) proteins are shown in cartoon representation (coloring as in Figure 6). The RNA 
bases are shown in blue and the RNA backbone in yellow. The L15E protein (A) is shown as a green 
molecular surface. The residues forming the hairpin-like structure (PRO62, GLU61, GLU64 in the 15.5K 
protein) are shown as bonds colored by atoms (carbons cyan, oxygens red, nytrogens blue and hydrogens 
white).  
 

6.8. Structural changes of KtU4 monitored by 2AP fluorescence  

The quenching of fluorescence upon protein binding both in the presence and in the 

absence of Mg2+ indicates that the cations are not required for the binding of 15.5K 

protein to KtU4 (result in agreement with available experimental data). The quenching of 

fluorescence in the presence of 15.5K protein may be attributed to the interaction 

between A29 and the protein residue ARG 97. However, it may also reflect a 

conformational transition in the RNA upon protein binding that leads to different stacking 

interactions of 2AP, consistent with the simulations and the chemical RNA structure 

probing suggesting a protein-assisted RNA folding mechanism. Both effects may be 

operative. 

 The temperature dependent quenching of 2AP fluorescence observed in the 

melting profiles up to 30°C was in agreement with previous studies of 2AP-labeled 

nucleic acids (156). The sharper decrease observed between 30 to 40°C in the absence 
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of Mg2+ (or between 30 and 45°C  in the presence of Mg2+) may possibly reflect a 

conformational transition that involves an increase in the number of stacking interactions 

between A29 and adjacent bases, interpretation in agreement with the simulations 

showing the transition between the “3+1” stacking scheme (A33-A44-A30 + A29) to the 

“2+2” stacking scheme (A33-A44 + A30-A29) in the unbound RNA. The gradual increase 

in fluorescence at temperatures above 50°C in the absence of Mg2+ suggests that the 

2AP stacking on the C-stem is lost upon melting of the latter. In the presence of Mg2+, 

the melting profile was similar. However, the difference between the predicted Tm in the 

two buffer systems suggests that the RNA is more structured in the presence of Mg2+. 

This effect is also suggested by the titration of the RNA with Mg2+at 5°C that showed a 

sharp decrease in fluorescence upon addition of up to 3 mM Mg2+. 

 These preliminary steady-state fluorescence measurements indicate that 2AP 

may be a good reporter for structural changes in the K-turn motif. Studies of the 2AP 

fluorescence lifetimes, and the kinetics of thermal unfolding and of the binding to the 

15.5K protein will be required to obtain a more detailed view of the transitions occurring 

in the K-turn motif and compare them with those observed in the simulations. 
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7. Summary and conclusions 

Throughout the dissertation I provided evidence that: (i) the 5’-stem loop formed by U4 

snRNA is folded only upon protein binding, (ii) the free RNA undergoes a dramatic 

conformational transition between a kinked and an extended conformation, (iii) the loss 

of G-A base pairs in the internal loop is not sufficient for achieving a large opening of the 

RNA, (iv) local backbone motions contribute significantly to the opening of the K-turn, (v) 

the backbone of the external UUUAU pentaloop adopts an orientation that is specific for 

the naturally occurring K2 RNA and is sheared between KtU4 and Kt15, (vi) hydrogen 

bonding networks between the protein residues at the interface are instable in the 

absence of the bound RNA without significantly altering the overall protein fold, (vii) the 

helix �5 is flexible only when the 15.5K protein is bound to the natively occurring K2 

RNA, and (viii) the flexible region R5 is sheared by the 15.5K protein and the ribosomal 

L7AE protein. L15E binds to L7AE by recognizing the R5 region, thus the analogue 

region in the 15.5K protein might constitute the binding site for the 61K protein.  

 Based on these findings, I propose the following model incorporating the motions 

occurring at the 5’ stem-loop of U4 snRNA (Figure 42): (i) the free KtU4 samples 

different conformations during a continuous inter-conversion between a partially kinked 

structure and an extended conformation, the structures of which remain unknown, (ii) 

upon binding to the 15.5K protein, a certain orientation between the two stems of the 

RNA is selected and the flexible external loop is oriented to form a groove in which 

protein residues can establish contacts with the RNA, (iii) formation of G-A and G-C 

base pairs in the NC-stem stabilizes the pre-selected orientation between the two stems, 

(iv) the binding of 61K to the U4 snRNA completes the folding of KtU4 by stabilizing the 

groove formed by the backbone of the external loop. Although experimental evidence is 

still scarce for the last step, the simulations and the analogy with the binding of L7AE 

and L15E to the Kt15 RNA show that this might be a possible path of the early U4/U6 

snRNP assembly. 
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