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Chapter 1

Introduction

Statistics is the theory of decision making when the probabilistic model is unknown.

The theory as it stands today, was developed in the last century and is based on a

statistical problem (E,B, Pθ {θ ∈ Θ})† and a decision, termed estimation or hypothesis

testing. In both cases, the decision is based on quantiles of the unknown distribution,

hence estimation of these quantiles is the most important issue in the theory. On the

basis of these quantiles one can calculate the error probability for the decision. The main

issue of the present dissertation is to introduce a new method for estimating quantiles.

It is based on the Almost Sure Central Limit Theorem.

The Almost Sure Central Limit Theorem (ASCLT) was first presented independently

by Fisher (1987), Schatte (1988) and Brosamler (1988). The classical central limit

theorem says that for an i.i.d. L2-sequence of random variables Xi with expectation 0

and variance 1, the distribution on X1+...+Xn√
n

converges weakly to the standard normal

distribution represented by Φ. The ASCLT states that

lim
N→∞

1
log N

N∑
n=1

1
n

1{X1+...+Xn < t
√

n} = Φ(t) a.s. (1.1)

One motivation to this type of theorem comes from Brownian motion B(t). Note that

Brownian motion on R+ has the property that 1√
s
B (st) , (t ≥ 0) is the same Brownian

†Here, (E,B) is a sample space and Pθ {θ ∈ Θ} is a family of probability measures. For basic defini-
tions relating to statistical decision theory, we refer to Strasser (1985).

1



2 Chapter 1. Introduction

motion for any s > 0, in the sense of distributions. Therefore the maps gs : C (R+) →
C (R+) defined by gs(f)(t) = 1√

s
f (st) define a flow Gs (s ∈ R) by Gsf = ges (f). This

flow has an invariant measure given by the Wiener measure P . It is known that it is

ergodic. Hence by the ergodic theorem, for any measurable h : C (R+) → R,

1
T

∫ T

0
h (Gs(·)) d s →

∫
h (f) dP (f) a.s.

Making the variable transform from τ = es and S = eT , we arrive at

1
log S

∫ S

1

1
τ
h (gτ (·)) d τ →

∫
h (f) dP (f) .

Now take h (f) = 1(−∞, t] ◦ f(1), to obtain

1
log S

∫ S

1

1
τ
1(−∞, t] ◦ (gτ (·)(1)) d τ →

∫
h (f) P (d f)

= E (h (B)) = P (B(1) ≤ t)

= Φ(t).

The discrete version of this is exactly of the form (1.1).

Another aspect of the ASCLT method we would like to address here is the possibility

of making new decision procedures. This may be done like in quality control meth-

ods/procedures when constantly observed data forces decision when crossing a given

quality level. Note that the classical theories are based on the facts from distribution

theory while our proposed approach is using the almost sure concept which permits ex-

tension of data even when knowing the past. This is a variant of the sequential testing.

Further, we note that all of the results concerning the theorem are asymptotic in na-

ture and are based on logarithmic averages. Thus the rate of convergence (proposed in

the theorem) is very slow. Due to this, the general application of the newly proposed

methods of hypothesis testing in data analysis, particularly for data from biological

and medical experiments, would be nearly impossible since these data are usually char-

acterized by very small samples sizes. Thus, we intend to also propose small-sample

approximations to the corresponding asymptotic results presented.

The proposed hypothesis testing methods have several good properties. These will be

discussed in the respective chapters. One of the key properties of these methods would
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be that estimation or use of variance of the observations will never be done. This has

important implications in practical data analysis situations. Through this thesis, we are

thus opening the path of research with two aspects - making almost sure decisions and

variance(-estimation)-free direct method of estimating the limiting distribution of the

statistics.

Due to the nature of the new approach presented, there are several open and unsolved

problems arising out of the proposals. Thus we also intend to present such problems

and challenges as and when they arise naturally and follow in an intuitive manner.

Also, in the literature, results can be found regarding the ASCLT for several types

of statistics. For example, Berkes and Csáki (2001) and later Holzmann et al. (2004)

present ASCLT for U-Statistics. In our work, we will state and prove the ASCLT for

rank statistics. Rank statistics form the foundation for several nonparametric methods

and a short introduction to this important class of statistics is presented. We will also

state some results from the literature which aid the proof of the theorem.

In order to evaluate the performance of the proposed tests, we apply them in both

parametric as well as nonparametric test situations. Another main aspect of the thesis

is that, we discuss in detail about the famous Behrens-Fisher Problem, which was first

discussed by German researcher Behrens in 1929 and then pursued by Fisher in later

years. We discuss several commonly used solutions for the problem and also present

some information on associated software packages available to implement them. We

also propose the new solutions for the Behrens-Fisher problem based on the ASCLT

from the viewpoint of small-sample approximation.





Chapter 2

Hypothesis Testing based on

ASCLT

Introducing a new approach of thinking and handling the statistical inferential methods,

particularly testing of hypothesis, is one of the fundamental aims of this thesis. For a

review of the underlying theoretical principles, ideas and methods of hypothesis testing,

we refer to standard books by Kendall and Stuart (1973) and Lehmann (1986) and, for

a more intuitive and applied approach towards hypothesis testing, the recent book by

Casella and Berger (2002).

The mathematical foundations of the theory of hypothesis testing based on the Almost

Sure Central Limit Theorems will be laid in this chapter. Asymptotic results and the

general procedures and proposals for hypothesis testing will also be presented here.

These results will be used in the Chapter 4 to develop tests for specific situations and

also situation-specific small-sample approximation procedures will be presented there.

2.1 Introduction to ASCLT

The ASCLT was first introduced in literature independently by Fisher (1987), Brosamler

(1988) and Schatte (1988). The work by Fisher (in 1987) in Göttingen presented the

theorem from the point of view of the ergodic theory, as explained briefly in Chapter

1. The theorem proposed by these authors extended the classical central limit theorem

5



6 Chapter 2. Hypothesis Testing based on ASCLT

to an almost sure (or pointwise) version and hence the name Almost Sure Central Limit

Theorem. For brevity, we will use ‘ASCLT’ to represent ‘Almost Sure Central Limit

Theorem’. The version of the theorem as introduced by Fisher (1987), Brosamler (1988)

and Schatte (1988) is presented below.

Theorem 1. Let X1, X2, . . . , Xn be i.i.d. random variables with Sk = X1+· · ·+Xk, 1 ≤
k ≤ n being the partial sums. If EX1 = 0, EX2

1 = 1 and E|X1|2+δ is finite for some

δ > 0 then,

lim
N→∞

1
log N

N∑
k=1

1
k
1{

Sk√
k

< x
} = Φ(x) a.s. for any x, (2.1)

where Φ is the standard normal distribution function and 1{A} is the indicator function

of the set A.

In the above theorem, Schatte (1988) assumed δ = 1. It can be noted that a similar

result was stated (without proof) in p. 270 of Lévy (1937).

Following the above discovery, during the past decade and half, there were many inter-

esting developments of limit theorems involving log averages and log densities. Several

authors have investigated the ASCLT for independent random variables, e.g., Atlagh

(1993), Atlagh and Weber (1992) and Berkes and Dehling (1993). Recently, Berkes and

Csáki (2001) discuss several examples of applications of ASCLT, for e.g., limit theorems

for extrema, distribution of local times, U -Statistics, etc. Holzmann et al. (2004) and

Min (2004) also present the ASCLT for U -statistics. For detailed survey and discussion

on the papers relating to ASCLT, we refer to Berkes (1998) and Atlagh and Weber

(2000).

We will not go into the details and discussion surrounding the literature on ASCLT,

as most of them treat the theorem from a pure mathematical perspective. Whereas,

our interest lies more in using the standard version of the theorem in order to develop

hypothesis testing procedure(s). For this purpose we will use the result of the following

form presented by Berkes and Dehling (1993).

Theorem 2 (Berkes and Dehling, 1993). Let X1, X2, . . . be independent random

variables and an, bn > 0 numerical sequences such that setting Sn = X1 + · · ·+ Xn, we

have

Ef

(∣∣∣∣Sn − an

bn

∣∣∣∣) ≤ (log log n)−1f(e(log n)1−ε
), n ≥ n0 (2.2)
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for some ε > 0 where f ≥ 0 is a Borel measurable function on (0,∞) such that both

f(x) and x/f(x) are eventually nondecreasing and the right-hand side of (2.2) is non-

decreasing for n ≥ n0. Assume also that

bl/bk ≥ C(l/k)γ , l ≥ k (2.3)

for some constants C > 0, γ > 0. Then for any distribution function G, the following

statements are equivalent:

• For any Borel set A ⊂ R with G(δA) = 0 we have

lim
N→∞

1
log N

N∑
k=1

1
k
1{

Sk−ak
bk

∈A
} = G(A) a.s., (2.4)

where the exceptional set of probability zero is independent of A.

• For any Borel set A ⊂ R with G(δA) = 0 we have

lim
N→∞

1
log N

N∑
k=1

1
k
P

{
Sk − ak

bk
∈ A

}
= G(A). (2.5)

2.2 Hypothesis Testing, Quantiles and Random Intervals

As briefly explained in the Chapter Introduction, our main proposal towards the ASCLT-

based theory of hypothesis testing will be via the estimation of the quantiles of the

distribution of the concerned statistic(s). First, the results concerning the estimation of

the quantiles will be explained, and then two methods of testing hypothesis based on the

estimated quantiles will be described. Most of the developments here will be addressing

a setting of an one-sample situation. These results can be generalised to other complex

situations, though some care and mathematical thinking would be involved in doing so.

Some discussion in that direction would be considered when dealing with the situation

of a general two-sample testing problem in Chapter 4.
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Notation and Assumptions

For n ≥ 1(n ∈ N), let Tn be a sequence of real-valued statistics defined on some measur-

able space (Ω,B) and P be a family of probabilities on B. Also let, E (Tn) = nµ (P ) for

P ∈ P, where µ(P ) ∈ R is unknown. We assume that Tn satisfies the Central Limit The-

orem(CLT) and the ASCLT for each P ∈ P with constants bn = n−1/2, an(P ) = nµ(P )

and distribution function GP , where GP is unknown, for example, Normal N (µ, σ2),

where µ and σ as unknown. That is,

P ({ω ∈ Ω : bn(Tn(ω)− an(P )) ≤ t}) −→ GP (t), for t ∈ CG (2.6)

and

1
log N

N∑
n=1

1
n

1{bn(Tn−an(P ))≤t} −→ GP (t) P − a.s., for t ∈ CG, (2.7)

where CG denotes the set of continuity points of GP . We would like to make the following

remark with reference to the above equation (2.7).

Remark: For sufficiently large value of t ∈ R in (2.7) such that 1{bn(Tn−an(P ))≤t} ≡
1, ∀n ≤ N , the LHS of the equation will be of the form:∑N

n=1
1
n

log N
.

This fraction should be (and is expected to be) equal to 1. But even for very large values

of N, this is not the case. For examples, for N = 102, the above ratio is approximately

1.13, and for N = 1010, it is approximately 1.025. For any application in statistics, we

will seldom come across a situation with sample size of N = 1010. Hence,

1
log N

N∑
n=1

1
n

1{bn(Tn−an(P ))≤t}

will not be a distribution function for even very large values of N . Thus, in the sequel

we propose to use directly the averaging term
∑N

n=1
1
n instead of “log N” in formulae of

the form 2.7. Further, for convenience, we denote CN =
∑N

n=1
1
n .
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Consequently, the following two functions are now defined for each ω ∈ Ω and t ∈ R,

G̃N (t, ω) = C−1
N

N∑
n=1

1
n

1{bn(Tn−an(P ))≤t}

= C−1
N

N∑
n=1

1
n

1(−∞,t] (bn(Tn − an(P ))) (2.8)

and

ĜN (t, ω) = C−1
N

N∑
n=1

1
n

1{bnTn≤t} = C−1
N

N∑
n=1

1
n

1(−∞,t] (bnTn) . (2.9)

In the sequel we will be presenting results for fixed ω ∈ Ω, though all the results would

be applicable to each ω ∈ Ω. Thus, for simplicity we will denote the functions defined

in (2.8) and (2.9) as G̃N (t, ω) by G̃N (t) and ĜN (t, ω) by ĜN (t), respectively. Similarly,

we will also denote µ (P ) and an (P ) simply by µ and an, respectively, since the results

will hold true for every P ∈ P.

Now some properties and results establishing the relationship of the two functions de-

fined above in (2.8) and (2.9), with the true distribution GP are presented below.

Lemma 3. G̃N and ĜN are empirical distribution functions. Moreover, G̃N (t) con-

verges GP (t) a.s. for every t ∈ CG.

Proof. Let us first consider G̃N .

Now for, t < s ∈ R, it is clear that,

1(−∞,t] (x) ≤ 1(−∞,s] (x) for x ∈ R.

This implies that, G̃N (t) ≤ G̃N (s) for n ≤ N , N ∈ N fixed. Thus the function is

monotonically increasing in t ∈ R.

We also observe that,

lim
t→−∞

1(−∞,t] (bn(Tn − an)) = 0 =⇒ lim
t→−∞

G̃N (t) = 0

and
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lim
t→∞

1(−∞,t] (bn(Tn − an)) = 1 =⇒ lim
t→∞

G̃N (t) = 1.

Further we note that the function G̃N is a step function in t and it ranges between

[0, 1]. Finally, since the function G̃N (t) has constant values for t ∈ (ti−1, ti] for each

i = 2, . . . , s, and G̃N (t) ≡ 0 for t ∈ (−∞, t1] and G̃N (t) ≡ 1, for t ∈ (ts,∞), it is clear

that it is left continuous in t ∈ R. Thus G̃N is an empirical distribution function.

Similarly, observing that ĜN is a special case of G̃N with an ≡ 0, all the above arguments

hold true for ĜN and thus it is also an empirical distribution function.

The result of G̃N (t) converging GP (t) a.s. ∀t ∈ CG, is a special case of the next theorem.

So the proof follows from there.

The next theorem establishes the relation between G̃N and GP .

Theorem 4 (Glivenko-Cantelli). We have that,

lim
N→∞

sup
t∈R

∣∣∣G̃N (t)−GP (t)
∣∣∣ = 0 a.s.

Proof. Let ε > 0. Choose t’s ∈ R such that, −∞ < t1 < t2 < . . . < ts < ∞ so that,

GP (t1) < ε

GP (tk)−GP (tk−1) < ε, k = 2, 3, . . . , s

1−GP (ts) < ε.

Now, due to (2.7) and the fact that CN
log N → 1 , ∃N0 ∈ N such that ∀N ≥ N0, |G̃N (ti)−

GP (ti)| ≤ ε, i = 1, . . . , s. We now prove the result for general t, such that ti−1 < t < ti

for some i ≥ 2, or t < t1 or t > ts. Consider,

∣∣∣G̃N (t)−GP (t)
∣∣∣ =


G̃N (t)−GP (t), G̃N (t) > GP (t)

0, G̃N (t) = GP (t)

GP (t)− G̃N (t), G̃N (t) < GP (t)

≤


G̃N (ti)−GP (ti) + GP (ti)−GP (t), G̃N (t) > GP (t)

0, G̃N (t) = GP (t)

GP (t)−GP (ti−1) + GP (ti−1)− G̃N (ti−1), G̃N (t) < GP (t)
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≤


ε + GP (ti)−GP (ti−1)

0

GP (ti)−GP (ti−1) + ε

 ≤ 2ε

The above Lemma establishes a version of the Glivenko-Cantelli theorem with respect

to the empirical distribution functions under our considerations. Such results have been

also presented in literature for several cases in the framework of ASCLT under different

settings. For example, Atlagh (1996) shows a version of the Glivenko-Cantelli theorem

for independent random variables with normal distribution.

Having shown that the empirical distribution converges to the true distribution, it is now

our intention to establish similar results for the quantiles of these distributions. This

will lead towards the further idea of hypothesis testing. Before presenting the results

relating to the quantiles of the distributions, we need to define certain functions which

would be used in the results.

Definition 5 (Inverses of GP , G̃N and ĜN). For fixed N ∈ N, let the inverse of any

distribution function F̃N , denoted by function F̃−1
N , be defined by,

F̃−1
N (α) =


sup{t | F̃N (t) = 0}

sup{t | F̃N (t) < α}, for α ∈ (0, 1)

inf{t | F̃N (t) = 1}.

(2.10)

The inverses of GP , G̃N and ĜN are obtained by substituting these functions appropri-

ately in place of F̃N in the above equation and are represented by G−1
P , G̃−1

N and Ĝ−1
N ,

respectively.

Definition 6 (Empirical α-Quantiles). The empirical α-quantiles of statistics Tn, n ≤
N ∈ N, are defined with respect to G̃N and ĜN , for α ∈ [0, 1], by

t̃ (N)
α = G̃−1

N (α) (2.11)

t̂ (N)
α = Ĝ−1

N (α) (2.12)

Lemma 7. The functions G−1
P , G̃−1

N and Ĝ−1
N are left continuous for α ∈ (0, 1).
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Proof. For ease of notation, let us denote the inverse functions by F−1(α), for 0 < α < 1.

Let (αn) be a sequence such that αn ↑ α. Further, let ε > 0. Now, since

F−1(α) = sup{t | F (t) < α},

there exists a sequence (tn) such that F (tn) < α, and tn ↑ F−1(α). Hence, there exists

n0 ∈ N such that for n ≥ n0

tn ≥ F−1(α)− ε.

Moreover, as αn ↑ α and F (tn0) < α, there exists n1 ∈ N such that for n ≥ n1

αn > F (tn0).

Consequently, for n ≥ n1

F−1(αn) = sup {t | F (t) < αn}

≥ sup {t | F (t) = F (tn0)}

≥ tn0

≥ F−1(α)− ε.

Similar to Theorem 4, we have the following result which presents the relation between

the empirical and the true quantiles.

Lemma 8. Let the α-quantile of GP be denoted and defined by tα(P ) = G−1
P (α) and let

tα (P ) = sup {t | GP (t) ≤ α}, then

tα (P ) ≥ lim sup
N→∞

t̃ (N)
α ≥ lim inf

N→∞
t̃ (N)
α ≥ tα(P ) P − a.s.

Proof. For α ∈ [0, 1), consider s ∈ R such that s > G−1
P (α), which implies, GP (s) ≥ α.

By Theorem 4, ∃N0 ∈ N such that for N ≥ N0,

G̃N (s) > α

⇒ s /∈
{

t | G̃N (t) ≤ α
}

⇒ s > G̃−1
N (α)
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⇒ inf
s

{
s | s > G−1

P (α)
}

= G−1
P (α) ≥ lim sup

N→∞
G̃−1

N (α)

⇒ tα ≥ lim sup
N→∞

t̂(N)
α

Let r ∈ R such that r < G−1
P (α) ⇒ GP (r) < α. Then ∃N1 ∈ N such that for N ≥ N1,

G̃N (r) < α

r ∈
{

t | G̃N (t) ≤ α
}

⇒ r ≤ G̃−1
N (α)

⇒ G−1
P (α) ≤ lim inf

N→∞
G̃−1

N (α)

Thus,

G−1
P (α) ≤ lim inf

N→∞
G̃−1

N (α) ≤ lim sup
N→∞

G̃−1
N (α) ≤ tα (P )

For the case when α = 1 or = 0, using Definition 5 and Theorem 4, the result follows in

the same manner.

Corollary 9. If GP is continuous, then

lim
N→∞

t̃ (N)
α = tα(P ) P − a.s.

Having shown that the estimated, empirical quantiles converge a.s. to the true ones, we

are now interested in constructing intervals using the quantiles, based on which testing

of hypothesis concerning the relevant parameter is proposed. It has to be noted here

that though most of the above results relate to G̃N , these can be applied to ĜN , which

is a special case with sequence an ≡ 0, n = 1, . . . , N as defined in (2.9).

There are practical difficulties in using the function G̃N because usually we are interested

in some parameter, say µ, and it is unknown. So, we propose our further results on

testing of hypothesis based on ĜN and finally we will provide a hint on how to develop

similar results using G̃N .

Before presenting the next result, for simplicity, let us denote the distribution GP

parametrised by µ, by Gµ. Correspondingly, the inverse of Gµ is denoted by G−1
µ .

And when µ = 0, we denote Gµ by just G and similarly, G−1
µ by just G−1 in order to
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facilitate easier presentation and distinguish between the special (case of µ = 0) and the

general cases.

Lemma 10. For α ∈ [0, 1] satisfying G−1
P (α) < 0 < G−1

P (1− α), we have the following

statements:

1. If an(P ) = 0, ∀n, then

lim
N→∞

P
(
0 ∈

[
t̂ (N)
α , t̂

(N)
1−α

])
= 1 a.s. (2.13)

2. If an 6= 0, ∀n, and an(P ) →∞ or an(P ) → −∞,

lim
N→∞

P
(
0 ∈

[
t̂ (N)
α , t̂

(N)
1−α

])
= 0 a.s. (2.14)

Proof. Let α ∈
[
0, 1

2

)
. Then we have,

α = ĜN

(
t̂ (N)
α

)
=

1
CN

N∑
n=1

1
n

1{
bnTn ≤ t̂

(N)
α

}

=
1

CN

N∑
n=1

1
n

1{
bn(Tn−an)≤ t̂

(N)
α −anbn

}
= G̃N

(
t̂ (N)
α − anbn

)
Thus when an = 0, ∀n, using Lemma 8 and Corollary 9,

t̂ (N)
α − anbn = t̃ (N)

α = G̃−1
N (α) → G−1

µ (α) = tα a.s. (2.15)

Similarly, t̂
(N)
1−α → t1−α, a.s. Now, by assumption that G−1

P (α) < 0 < G−1
P (1− α), the

result 1 follows.

Moreover, for anbn → ∞ (or −∞), as n → ∞, also t̂
(N)
α → ∞ (or t̂

(N)
1−α → −∞).

Therefore, 0 < t̂
(N)
α (or 0 > t̂

(N)
1−α) =⇒ 0 /∈

[
t̂
(N)
α , t̂

(N)
1−α

]
a.s.

Theorem 11. Under assumption that G̃−1
N (α) = Ĝ−1

N (α)− aNbN , for α ∈ [0, 1].

1. If an(P ) = 0 ∀n,

lim
N→∞

P
(
bNTN ∈ A(N)

α

)
= 1− 2α a.s. (2.16)
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2. If an(P ) 6= 0; an(P )bn →∞ or −∞ as n →∞,

lim
N→∞

P
(
bN (TN − aN ) ∈ A(N)

α

)
= 0 a.s., (2.17)

where A
(N)
α =

[
t̂
(N)
α , t̂

(N)
1−α

]
.

Proof. 1. From (2.15) in the proof of above Lemma 10,

lim
N→∞

P
(
bNTN ∈ A(N)

α

)
= lim

N→∞
P
(
bNTN ∈

[
G−1(α), G−1(1− α),

])
= 1−G

(
G−1(α)

)
−
(
1−G

(
G−1(1− α)

))
by (2.6)

= 1− α− (1− (1− α)) = 1− 2α

2. If t̂
(N)
α →∞,

P
(
bN (TN − aN ) ∈ A(N)

α

)
≤ G̃N

(
Ĝ−1

N (1− α)
)
− G̃N

(
Ĝ−1

N (α)
)

Now, by assumption,

= G̃N

(
G̃−1

N (1− α) + aNbN

)
− G̃N

(
G̃−1

N (α) + aNbN

)
By using the results of Theorem 4, Lemma 8 and Corollary 9, we have,

N→∞−→ GP

(
G−1

P (1− α) + lim
N→∞

aNbN

)
−

GP

(
G−1

P (α) + lim
N→∞

aNbN

)
= 0.

Similarly the result can be derived for t̂
(N)
α → −∞.

Based on the Lemma 10 and Theorem 11 we can now define the so-called ASCLT-

based tests. Before we do so, let the following slightly changed notation be set. Let

X = (X1, . . . , XN ) denote a sample of size N with i.i.d. elements Xi ∼ Gµ for parameter

µ ∈ R. Let also the corresponding observed sample by denoted x = (x1, . . . , xN ).

Further, let TN (X) and TN (x) be the statistics based on the r.vs and computed from

the sample x, respectively, with E (TN (X)) = Nµ. Finally, let quantiles estimated from

the sample x by denoted by t̂
(N)
α (x) and t̂

(N)
1−α(x).
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Definition 12 (ASCLT-test Method 1). For a test of hypothesis of H0 : µ = 0

against H1 : µ 6= 0 at a significance level of 2α, the ASCLT-test method 1 is defined by

the decision function,

δ (x) =

1 (Accept H0), 0 ∈
[
t̂
(N)
α (x), t̂

(N)
1−α(x)

]
0 (Reject H0), otherwise.

(2.18)

Definition 13 (ASCLT-test Method 2). For a test of hypothesis of H0 : µ = 0

against H1 : µ 6= 0 at a significance level of 2α, the ASCLT-test method 2 is defined by

the decision function,

δ (x) =

1 (Accept H0),
TN (x)

N ∈ A
(N)
α

0 (Reject H0), otherwise,
(2.19)

where A
(N)
α =

[
µ̂ + t̂

(N)
α (x)√

N
, µ̂ +

t̂
(N)
1−α(x)√

N

]
.

We note here that, when the distribution is symmetric around the parameter µ, the

above interval A
(N)
α is equivalent to

[
µ̂− t̂

(N)
1−α(x)√

N
, µ̂− t̂

(N)
α (x)√

N

]
.

Further, we also note that the interval A
(N)
α used in the above definition contains the

estimator of parameter µ. In Chapter 4, there is a proposal for such an appropriate

estimator.

It can also be noted that the results of Lemma 10 and Theorem 11 can be extended to

the situation where the quantiles are estimated based on G̃N . But the following issues

have to be taken care of, in doing so:

• The estimation of the quantiles using function G̃N is done irrespective of the

hypothesis of µ = 0, i.e., the estimated quantile will be centered at mean 0 whether

µ = 0 or not. This approach of estimation would be new, but very interesting to be

explored in future in a detailed manner. On the contrary, the quantile estimation

based on ĜN follows the conventional idea, i.e., setting µ = 0 and then estimating

the quantiles.

• In practice, to replace the term an = nµ in the equation of G̃N would have to be

dealt with carefully, since, µ is unknown and the entire problem revolves around
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testing for µ. One of the ways to address this problem is by assuming that Tn

satisfies the law of iterated logarithm, i.e.,

lim sup
N→∞

|TN −Nµ|√
N log log N

< ∞.

As a final remark, it can be noticed from the material presented in this chapter that the

procedures of hypothesis testing that is proposed are totally free of variance estimation.

The methods proposed are thus unique from this perspective too, compared to the other

existing tests of hypothesis wherein usually the concerned statistic is standardized with

respective variance. Another philosophical perspective of these methods is with respect

to making almost sure decisions which was briefly mentioned discussed in Chapter 1.

The performance of these methods is evaluated in Chapter 4 via extensive simulation

studies in specific situations.





Chapter 3

ASCLT for Rank Statistics

3.1 Introduction

In this chapter we will be concerned with establishing the ASCLT for the two-sample

linear rank statistics, which will be defined and discussed in the due course. Let us first

set the notation in order to present the material with ease.

Notation:

Notation and definition of terminology that will be considered throughout this chapter is

set here. Let (X1, . . . , Xm, Xm+1, . . . , Xn) be i.i.d random variables(r.v.s) such that the

first m r.v.s correspond to the first sample and are distributed as F and the remaining

n−m r.v.s correspond to the second sample and are distributed as G. Also let Ri denote

the mid-rank of the Xi, over all n random variables. Further let the weighted average

of the two distribution functions be denoted by Hn(x), which is defined by,

Hn(x) =
1
n

(mF (x) + (n−m) G (x)) .

Let also the empirical distribution of each of the samples be given by

F̂ (x) =
1
m

m∑
k=1

c(x−Xk)

Ĝ (x) =
1

n−m

n∑
k=m+1

c(x−Xk),

19
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where c(u) = 0, 1
2 or 1 according as u <,= or > 0, is called the normalized version of

the count function c(·). Thus, the corresponding empirical version of Hn(x) is denoted

and defined by,

Ĥn(x) =
1
n

(
mF̂ (x) + (n−m)Ĝ(x)

)
=

1
n

n∑
k=1

c(x−Xk)

We refer to Akritas et al. (1997) for some discussion on these notation and terminology,

and their practical implications.

Based on the above notation, many (two-sample) nonparametric test statistics have the

form of two-sample linear rank statistics which is presented as,

Tn =
n∑

i=1

aiJ
(
Ĥn (Xi)

)
(3.1)

for n ≥ 2; 1 ≤ m(n) = m < n such that m(n)
n

n→∞−→ λ ∈ (0, 1), a constant, and where

ai = 1 or 0 according as 1 ≤ i ≤ m or m < i ≤ n and J : (0, 1) → R is absolutely

continuous score function. We assume that m = m(n) depends on n, and as n → ∞,

both the sample sizes increase. The asymptotic normality of such statistics was first

proved by Chernoff and Savage (1958). Subsequent general results were presented by

Hájek (1968), Pyke and Shorack (1968), Dupac and Hájek (1969) and Denker and Rösler

(1985). For some discussion these developments we refer to the introductory part of

Brunner and Denker (1994).

In this work, we are now interested in proving the ASCLT result for the rank statistics

given in (3.1). First, two results from literature, which would be used in the proof of the

theorem on ASCLT on rank statistics, is presented below. The first result was originally

proposed by Berkes and Dehling (1993), and later reported and discussed in Berkes

(1998). We present the version which corresponds to Corollary 2.2 of Berkes (1998).

The second result is Proposition 1 of Lesigne (1999).

Lemma 14 (Berkes, 1998). Let X1, X2, . . . be independent random variables with

E (Xk) = 0, E
(
X2

k

)
= σ2

k, (k = 1, 2, . . .) and let b2
n =

∑n
k=1 σ2

k. Assume that for some

constants γ > 0, C > 0,

bl

bk
≥ C

(
l

k

)γ

, (1 ≤ k ≤ l), (3.2)



3.2. ASCLT for Rank Statistics 21

and the sequence (Xn) satisfies the Lindeberg condition

lim
n→∞

1
b2
n

n∑
k=1

E
(
X2

k1{|Xk|≥εbn}
)

= 0 ∀ε > 0. (3.3)

Then

lim
N→∞

1
log N

∑
k≤N

1
k
1{

Sk
bk

<x
} = Φ(x) a.s. for all x,

where Sk = X1 + . . . + Xk, (k = 1, 2, . . .).

Lemma 15 (Lesigne, 1999). † Let Vn and Wn, for n ∈ N, be two sequences of random

variables such that:

1. the sequence Vn satisfies the ASCLT, that is to say, almost surely, the sequence of

probability measures

1
log n

n∑
k=1

1
k
1{Vn}

converges weakly to the Gaussian law N(0, 1);

2. for all ε > 0, there exists δ > 0 such that

P (|Vn −Wn | > ε) = O

(
1

(log n)δ

)
.

Then the sequence Wn satisfies the ASCLT.

3.2 ASCLT for Rank Statistics

Along with notation and terminology introduced in the previous section, let σ̃2
n denote

the variance of the centered rank statistics, Tn−E (Tn). From existing standard results

(c.f. Brunner and Denker, 1994), it is also clear that the E (Tn − E (Tn)) = 0. We

note here that the σ̃2
n are strictly positive for all distributions except for which the one-

point distributions. So, in the following theorem we exclude such distributions from our

consideration.
†I would like to specially thank Dr. Aleksey Min for pointing to this result and reference.
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Assumptions 3.2.1.

1. Let the score function J be twice differentiable and J ′′ be bounded.

2. The underlying distribution functions F and G are arbitrary, with the exception

of the trivial one-point distribution

3. n → ∞, m = m(n) ↑ and m
n → λ, such that

∣∣m
n − λ

∣∣ = O
(

1
(log n)δ

)
, for some

δ > 0.

4. The asymptotic variances of J (H (X1))+hF (X1) and hF (Xm+1) are strictly pos-

itive, where hF (X) =
∫

J ′ (H (t)) c (t−X) F (d t).

Theorem 16 (ASCLT for Two-Sample Linear Rank Statistics). Let the as-

sumptions defined in 3.2, hold. Then the two-sample linear rank statistics satisfies the

ASCLT. That is,

1
log n

n∑
k=1

1
k
1{k−1/2(Tk−m

∫
J(Hk(t))dFmk

(t)) ≤ t} → Φσ(t) P − a.s.

Proof. The basic idea of the proof would be to decompose n−1/2
(
Tn −m

∫
J (Hn(t)) dFm (t)

)
for n ∈ N (n ≥ 2) such that a part of the decomposition satisfies ASCLT and the others

go to 0, almost surely in the sense of Lemma 15.

Let F and corresponding empirical counterpart F̂ be denoted by Fm and F̂m, respec-

tively, in order to emphasize the dependence of these distributions on sample size of first

sample, m.

The statistic Tn can be expressed in terms of the empirical distributions via integral as

Tn =
m∑

i=1

J
(
Ĥn (Xi)

)
= m

∫
J
(
Ĥn (t)

)
dF̂m (t) .

Now we consider the Taylor expansion of Tn around Hn(t), which is given by,

Tn = m

[∫
J (Hn (t)) d F̂m (t) +

∫ (
Ĥn −Hn

)
(t) J ′ (Hn (t)) d F̂m (t)

+
1
2

∫ (
Ĥn −Hn

)2
(t) J ′′ (θ (t)) d F̂m (t)

]
, (3.4)
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where θ (t) ∈
[
Ĥn (t) ,Hn (t)

]⋃[
Hn (t) , Ĥn (t)

]
.

We use the above expansion (3.4) of Tn, along with subtracting m√
n

∫
J(Hn(t)) d Fm(t)

from n−1/2Tn and further decomposing the term
∫ (

Ĥn −Hn

)
(t) J ′ (Hn (t)) d F̂m (t), in

order to obtain an expression of the following form:

1√
n

(
Tn −m

∫
J (Hn(t)) dFm (t)

)
= A1 +A2 + B + C,

where the respective terms are given by,

A1 =
m√
n

(∫
J (Hn (t)) d F̂m (t)−

∫
J (Hn (t)) d Fm (t)

)
,

A2 =
m√
n

∫
J ′(Hn(t)) (Ĥn −Hn)(t) dFm(t),

B =
m√
n

∫
J ′(Hn(t)) (Ĥn −Hn)(t) d

(
F̂m(t)− Fm(t)

)
, and

C =
m

2
√

n

∫
J ′′ (θ (t)) (Ĥn −Hn)2(t) d F̂m(t).

Now, let us consider the first two terms A1 and A2 together and then the two other

terms are considered individually.

Terms A1 and A2: It is straight forward to note that the term A1 can be expressed

of the following way:

A1 =
m∑

i=1

1√
n

[J (Hn (Xi))− E (J (Hn (Xi)))] . (3.5)

Similarly, we get an expression for term A2.

A2 =
m√
n

∫
J ′(Hn(t))

(
1
n

n∑
i=1

c(t−Xi)−Hn(t)

)
F (d t)

=
m

n

1√
n

[
m∑

i=1

∫
J ′(Hn(t)) (c(t−Xi)− F (t))F (d t)

+
n∑

i=m+1

∫
J ′(Hn(t)) (c(t−Xi)−G (t))F (d t)

]
(3.6)

Our intention is to use the Lemma 14 in order to establish the required result of the

ASCLT for rank statistics. But we can not use the above two forms of A1 and A2 which
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presented via the function Hn(t), since it is defined and based on n. We rather need a

sequence of i.i.d. r.v.s. Thus, we propose the following modifications of A1 and A2, and

show that these modifications and the original terms are almost surely the same (in the

sense of Lesigne, 1999).

Ã1 =
m∑

i=1

1√
n

[J (H (Xi))− E (J (H (Xi)))] . (3.7)

Ã2 = λ
1√
n

[
m∑

i=1

(hF (Xi)− E (hF (Xi)))

+
n∑

i=m+1

(hF (Xi)− E (hF (Xi)))

]
, (3.8)

where H = λF + (1− λ)G and hF (X) =
∫

J ′ (H (t)) c (t−X) F (d t).

We note here that the individual quantities on the R.H.S.’s of the above expressions

(3.5) and (3.6), and also expressions (3.7) and (3.8), are not i.i.d. but only independent.

Let us introduce random variables Yi, i = 1, . . . , n such that,

Yi =

[J (H (Xi))− E (J (H (Xi)))] + λ (hF (Xi)− E (hF (Xi))) , i = 1, . . . ,m

λ (hF (Xi)− E (hF (Xi))) , i = m + 1, . . . , n.

We note here that rank statistics are defined on an array of r.v.s Xi, i = 1, . . . ,m, m +

1, . . . , n. But, in order to apply the result of Lemma 14, we need to have a sequence of

r.v.s. Since, by assumption, m is increasing, we can rearrange any given array of r.v.s

to form a sequence of r.v.s. Let, for 1 ≤ k ≤ l ∈ N, Ik ⊂ {1, . . . , k} such that for i ∈ Ik,

Xi corresponds to distribution F . Moreover, Ik ⊂ Il ⊂ {1, . . . , l}.

By assumption we note that J and J ′ are bounded. Thus, the r.v.s Yi, i = 1, . . . , n

are bounded. We also see that E (Yi) = 0. Further, denoting bn =
∑n

i=1 σ2
i , where

E
(
Y 2

i

)
= σ2

i , by Assumption (4) and that the distribution functions F and G are not

one-point distributions, we have bn →∞.

Thus the sequence of r.v.s Yi satisfy the Lindeberg condition defined in (3.3) in Lemma

14. That is,

1
n

n∑
i=1

∫
|Yi|>bnε

(Yi − E (Yi))
2 → 0 ∀ε > 0.
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Further let mk ≤ ml ∈ N. Then, by assumption,
∣∣ml

l − λ
∣∣ ≤ ( c

(log n)δ

)
, for some δ > 0

and some constant c, and thus also,
∣∣∣ l−ml

l − 1 + λ
∣∣∣ ≤ (

c′

(log n)δ′

)
, for some δ′ > 0 and

some constant c′.

Let a2
F = σ̃2

ml
Var (hF (X1)) and a2

G = Var (hF (Xml+1)). Now consider,

∑
i∈Il

σ2
i +

∑
i/∈Il

σ2
i = mla

2
F + (l −ml)a2

G

≥
(

lλ− lc

(log n)δ

)
a2

F +
(

l(1− λ)− lc′

(log n)δ′

)
a2

G

≥ 1
2
l
(
λa2

F + (1− λ)a2
G

)
for large l. (3.9)

Similarly,

∑
i∈Ik

σ2
i +

∑
i/∈Ik

σ2
i = mka

2
F + (k −mk)a2

G

≤ 2k
(
λa2

F + (1− λ)a2
G

)
for large k. (3.10)

So we see that the requirement (3.2) of Lemma 14 is established by combining the above

two inequalities (3.9) and (3.10), for 1 ≤ k ≤ l,

bl

bk
=

∑
i∈Il

σ2
i +

∑
i/∈Il

σ2
i∑

i∈Ik
σ2

i +
∑

i/∈Ik
σ2

i

≥ 1
4

l

k
for large k, l.

Thus, having shown that the conditions of Lemma 14 are satisfied, we have Ã1 +Ã2
a.s.−→

Φσ, where Φσ is the distribution function of the Normal distribution parameterized by

mean 0 and variance σ2, and σ2 is the variance of the r.v.s Yi, i = 1, . . . , n. But we are

interested in showing the result for A1 +A2. For this, we establish the following result

using Lemma 15,

A1 +A2 − Ã1 − Ã2 → 0 a.s.

Consider,

E
(
A1 − Ã1

)2
≤ m

n
Var (J (Hn (Xi))− J (H (Xi)) + E (J (Hn (Xi)))− E (J (H (Xi))))
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≤ 2λ
[
E (J (Hn (Xi))− J (H (Xi)))

2 +

E
(
E (J (Hn (Xi)))− E

(
J (H (Xi))

2
))]

By the definitions of Hn and H, and by applying mean value theorem,

≤ 2λ
∥∥J ′∥∥∞ sup

t
|Hn (t)−H (t)|2

Now, by the Assumption 3.2(3),

E
(
A1 − Ã1

)2
= O

(
1

(log n)γ

)
for some γ > 0. (3.11)

Similarly,

E
(
A2 − Ã2

)2
≤

(m

n

)2
Var (hFn (Xi)− hF (Xi) + E (hFn (Xi))− E (hF (Xi))) ,

where, hFn (X) =
∫

J ′ (Hn (t)) c (t−X) F (d t) and hF introduced earlier. Thus, by

similar arguments above, using the mean value theorem, the definitions of Hn and H

and the Assumption 3.2(3), we get,

E
(
A2 − Ã2

)2
≤ 2λ2

∥∥J ′∥∥2

∞ sup
t
|Hn (t)−H (t)|2

= O

(
1

(log n)γ′

)
for some γ′ > 0. (3.12)

From (3.11) and (3.12), by applying Lemma 15, we have that Ã1 + Ã2
a.s.−→ Φσ implies

A1 + A2
a.s.−→ Φσ, for σ defined earlier. We also note here that, by virtue of the same

lemma, it is enough to show the following, in order to establish that the rank statistics

satisfy the ASCLT:

P

(∣∣∣∣ 1√
n

(
Tn −m

∫
J (Hn(t)) dFm (t)

)
−A1 −A2

∣∣∣∣ > ε

)
= O

(
1

(log n)δ′

)
,

for some ε > 0 and δ′ > 0. Since, we have shown above that A1 + A2 satisfies the

ASCLT, we have,

P

(∣∣∣∣ 1√
n

(
Tn −m

∫
J (Hn(t)) dFm (t)

)
−A1 −A2

∣∣∣∣ > ε

)
= P (| B + C | > ε)

≤ E (B + C)2

ε2
by Chebyshev’s inequality,

(now by using Cr inequality, we get, )
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≤
2
(
EB2 + EC2

)
ε2

. (3.13)

Thus it is sufficient to show that,

EB2, EC2 = O

(
1

(log n)δ′

)
, for some δ′ > 0,

which follows by EB2, EC2 = O
(

1
n

)
. So, we consider each of the terms B and C and

show the required result.

Term B:

Let us first express the term as follows:

B =
m√
n

1
nm

[
n∑

r=1

m∑
i=1

φ1 (Xi, Xr)− φ2 (Xr)

]
,

where

φ1 (Xi, Xr) =

J ′ (H (Xi)) [c (Xi −Xr)− F (Xi)] , r = 1, . . . ,m;

J ′ (H (Xi)) [c (Xi −Xr)−G (Xi)] , r = m + 1, . . . , n,

φ2 (Xr) =


∫

J ′ (H (t)) [c (t−Xr)− F (t)] d F (x) , r = 1, . . . ,m;∫
J ′ (H (t)) [c (t−Xr)−G (t)] d F (x) , r = m + 1, . . . , n.

Taking expectations of the above equation (3.14),

E
(
B2
)

=
m2

n · n2m2

n∑
r=1

n∑
s=1

m∑
i=1

m∑
j=1

E ([φ1 (Xi, Xr)− φ2 (Xr)] · [φ1 (Xj , Xs)− φ2 (Xs)])

Now by using the property of independence of the r.v.s, we get

E
(
B2
)

≤ 1
n3

n∑
r=1

m∑
i=1

E (φ1 (Xi, Xr)− φ2 (Xr))
2

=⇒ E
(
B2
)

= O

(
n ·m · ‖J ′‖2

∞
n3

)
= O

(
λ ‖J ′‖2

∞
n

)
(3.14)
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Term C: The term can be expressed as,

C =
1

2
√

nn2

m∑
r=1

n∑
i=1

n∑
j=1

(
J ′′ (θ (Xr)) φ (Xi, Xr) · φ (Xj , Xr)

)
,

where φ (Xi, Xr) = c (Xr −Xi)−Hn(Xr). Now squaring and taking expectation of the

above equation, we get

E
(
C2
)

≤
‖J ′‖2

∞
4n5

m∑
r=1

n∑
i=1

n∑
j=1

m∑
s=1

n∑
i′=1

n∑
j′=1

[
φ (Xi, Xr) · φ (Xj , Xr) · φ (Xi′ , Xs) · φ

(
Xj′ , Xs

)]
.

By independence of the r.v.s, we get

E
(
C2
)

= O

(
λ2 ‖J ′′‖2

∞
n

)

Finally, using the results of (3.14) and (3.15) in (3.13) and noting that J has bounded

second derivative and λ ∈ (0, 1), a constant, we see that

P

(∣∣∣∣ 1√
n

(
Tn −m

∫
J (Hn(t)) dFm (t)

)
−A1 −A2

∣∣∣∣ > ε

)
= O

(
1
n

)
= O

(
1

(log n)δ′

)
,

for some δ′ > 0, thus proving the required result.



Chapter 4

Applications and Numerical

Results

4.1 Introduction

The theoretical results presented in Chapters 2 and 3 were set on a general framework.

Application-specific tests of hypothesis could be developed using the results from those

chapters. One of the main aims of this chapter is to present examples of few such

applications. It has to be emphasized that the theoretical results were all asymptotic in

nature. Moreover, for hypothesis testing purposes we are interested in the quantiles on

the tail of the distribution. Thus, intuitively it is evident that estimation of such tail

quantiles, t̂α and t̂1−α (defined in Definition 6, on page 11), based on the ASCLT would

require large sample sizes to get close to the true quantiles, tα and t1−α.

For applications in real-time data analysis, particularly for medical data, often one has

to deal with situations involving small sample sizes. Thus, there is a need to create a

‘bridge’ between the asymptotic result and the corresponding proposal of approximations

for testing hypothesis based on small sample sizes. In this chapter some proposals

for such a link would be suggested based our experience with simulated data. These

proposals could be classified into two broad categories:

1. General proposals that can be applied to all tests of hypothesis, and

29
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2. Test-specific proposals.

Before going directly to the proposals to adjust for small-sample cases for the ASCLT-

based tests, we note here that, in general, any small-sample test theory (or) approxima-

tion, should ideally satisfy the following properties and aspects:

• The test, under the concerned null hypothesis, should maintain the pre-assigned

level of significance, 2α.

• While moving away from the null hypothesis situation towards the alternative(s),

the test should exhibit good power (i.e., Type-II error, β, should be made small).

• As the sample sizes increase to become very large, the approximation method

proposed for small-samples should lead and coincide with the asymptotic theory,

in a natural sense.

It has to be noted here that, in many cases, theoretical evaluation of the above properties

of a small-sample test theory is not known. Thus, numerical studies based on computer

simulations have to be used to check these properties. Random and quasi-random num-

bers should be generated under the concerned hypothesis and the type-I error rate of the

method should be estimated. Similarly, the power property be evaluated by generating

data under the alternative(s). The property of the approximation method converging to

the asymptotic result(s) can also be verified numerically, though usually this property

is possible to be derived theoretically in a straight forward manner. Finally, the test

should work well (in terms of satisfying the above three properties) for cases when the

assumed underlying distributions in the asymptotic theory are used in the evaluations

via the numerical simulations in the small-sample cases. The performance of the test

can also be evaluated for other distributions and the properties should be observed.

The general proposals for such small-sample approximations for the ASCLT-based tests

can now be summarized as follows:

• From the statements of the ASCLT (presented in previous chapters), the role of

sub-samples (or partial sums) involved in the process of estimating the quantiles

can be observed. Though this would not be of concern for very large samples,
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this would affect the quantile-estimation process for small and even moderately-

sized samples (say, sample size N ≤ 1000). In order to overcome this problem,

we propose to use permutations of the full sample in the process of estimation

of the quantiles. The number of permutations to perform and how the results

are computed based on these permuted samples will be described in the following

sections of this chapter.

• As already seen in the previous chapter, the use of quantity CN =
∑N

n=1
1
n , instead

of log N , in the ASCLT is proposed, where N is the sample size.

• The quantiles estimated via the ASCLT-based procedure(s) need to be ‘adjusted’

or ‘transformed’ to incorportate the information that these are based on very small

samples compared to the large sample sizes that the asmyptotic theory assumes.

• From the Definition 13 of ASCLT-test method 2, we see that there is an unknown

part, namely µ, in the proposed interval A
(N)
α . This has to be obviously substituted

with suitable estimator to make this method applicable.

The actual implementation of the proposals made above would be done in the course

of this chapter. This would aid the better understanding of what these suggestions

could mean in practice. It has to be made clear here that these suggestions and any

modifications of the general theory presented earlier, in due course of this chapter, are

all based on extensive simulation-based studies which were carried out during the period

of the research. There is not enough mathematical justification or foundation for certain

suggestions for modifications. This is one of the open problems emulating from this work

and has be addressed in future. Thus, there could be comparable or better methods

which may be arrived at in the future. By the sheer fact that there is no existing

parallel method to the approach presented based on the ASCLT, one has to explore

it to the core. So, the basic idea of the proposals made here is an indication towards

further building, exploration and fine-tuning of these methods to form more formidable

and reliable methods. Further, an aspect of the style of presentation is that, we would

suggest considerations for future research and work, as and when such a proposal could

follow naturally in an obvious manner. This is also due to numerous open problems and

the wide possibilities of to-dos arising out of the new methodologies being proposed.

There would, anyway, be a separate short section in the next chapter with a summary

of only wider and major proposals for further research.
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In this chapter three specific tests of hypothesis will be considered, namely

• the parametric one-sample test for mean, assuming normal distribution of the

sample,

• the parametric two-sample test for equality of means, with the assumption of

normal distribution of the samples involved, with and without the assumption of

equal variances, and

• its nonparametric equivalent, without the assumption of normal distribution of

the samples but having equal or unequal variances.

The two-sample testing cases, without the assumption of equal variances, described

above, are commonly referred to as (parametric) Behrens-Fisher problem and Nonpara-

metric Behrens-Fisher problem, respectively, and these will be formally defined in the

following, relevant sections. Historical perspectives along with certain controversies sur-

rounding these test problems are also discussed. Detailed review of several existing

solutions for the problems are also presented with some associated software mentioned,

wherever appropriate. Finally, a summary of the independent evaluations of these meth-

ods via monte carlo simulations is presented and discussed. The superiority, or at least

a competing, comparative performance, of the ASCLT-based tests to existing methods

is verified and established via the simulation results.

It has to be remarked that, being a new approach towards the testing of hypothesis,

the ASCLT-based test would need many simulation-based testing and evaluation to

establish its performance and/or superiority over other existing methods. Many such

simulations, under varied setups with different sample sizes were performed and the

results evaluated. Since the results had very similar pattern and due to considerations

of space in the thesis, we present only very few of the results to provide a glance of the

results. Some more results from similar simulations are planned to be made available

via the webpage:

http://neulat.stochastik.math.uni-goettingen.de/users/tknathan/asclt/

in order to aid further usage and evaluations by researchers interested in this area.
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All simulations were performed via programs written in C programming langauge and

compiled used the GNU C compiler 3.3.4 based on interface provided by Cygwin 1.3.

The scientific computations within the C environment were performed using the GNU

Scientific Library (GSL) 1.5. All the programming was performed using open

source software, except for the Operating System, which was Microsoft Windows XP

Professional.

4.2 One Sample Case

We consider the parametric one-sample situation assuming that the sample is normally

distributed (with finite variance) and we will be interested in test of hypothesis regarding

the mean. Independent comparisons of simulation-based analysis and results from two

existing, standard procedures are made with the ASCLT-based tests (methods 1 and 2).

The notation is set here and it will be followed in the rest of this section on one-sample

case. Let the vector of the sample of size N be denoted by x = (x1, . . . , xN ), the elements

of which are assumed to be independent realisations of N (µ, σ). We are then interested

in testing a hypothesis,

H0 : µ = µ0 Vs H1 : µ 6= µ0; w.l.o.g, we take µ0 = 0. (4.1)

We fix a significance level of 2α, which, for our simulations, would be either 5% or 10%.

The optimal test with such a set-up is the one-sample student’s t-test, the description

of which could be found in any basic, introductory book on statistics. So, the results of

t-test via the simulations are computed and would be considered bench-mark result for

comparing the results from other methods presented below. The t-test is available as a

standard function in almost all available statistical software packages.

4.2.1 Bootstrap BCa Method

A short introduction to bootstrap methods is presented in subsection 4.3.2 (on page

45). Since the proposal with ASCLT-based tests would involve a random-interval based

testing approach, a bootstrap method based on a similar idealogy is considered here.

Construction of several confidence intervals (CIs) following the bootstrapping technique
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is available from the literature, one among which is the popular book by Efron and

Tibshirani (1993). The reader is referred to Efron and Tibshirani (1993) and Carpenter

and Bithell (2000) for a discussion on which CIs are applicable/appropriate under what

situations. For our consideration, we will present the one which they recommend for

wide usage, namely the BCa (it is the abbreviation standing for Bias-Corrected and

Accelerated) interval (c.f., Efron and Tibshirani, 1993, Chapter 14). The algorithm for

construction of the BCa interval intended for a 1− 2α coverage, can be summarized as

follows.

Begin Algorithm - BC a interval

• Form B bootstrap† data sets x(∗b), b = 1, . . . , B, where x(∗b), are sampled with

replacement from the original sample x = (x1, . . . , xN ).

• Evaluate the mean x
(∗b)
· , b = 1, . . . , B for each bootstrap data set. Let x· denote

the mean of the original sample x.

• The bias, say denoted by z0, is then estimated using the following formula:

ẑ0 = Φ−1

#
{

x
(∗b)
· < x·

}
B

 ,

where Φ−1 denotes the inverse function of the standard normal cumulative distri-

bution funtion.

• Let the notation x(i) denote the original sample with the ith sample point xi

removed ( =⇒ the size of x(i) is N − 1.) Let then x(i) denote mean of the

sample x(i) and let x(·) =
∑N

i=1 x(i)/N , the mean of quantities (x(1), . . . , x(N)).

The acceleration is now estimated with the following expression:

â =

∑N
i=1

(
x(·) − x(i)

)3
6
{∑N

i=1

(
x(·) − x(i)

)2}3/2
.

• The computed x
(∗b)
· ’s are sorted in ascending order and vector (x(∗,(1))

· , . . . , x
(∗,(B))
· )

is formed.
†Bootstrap data sets are those which are formed by re-sampling (with replacement) from the original

samples. These samples are used in the computation of relevant bootstrap estimates.
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• Finally, the BCa interval is given by

BCa =
(
x

(∗,(Bα1))
· , x

(∗,(Bα2))
·

)
,

where,

α1 = Φ

(
ẑ0 +

ẑ0 + z(α)

1− â
(
ẑ0 + z(α)

))

α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α)

1− â
(
ẑ0 + z(1−α)

)) ,

and where Φ(·) is the standard normal cumulative distribution function and z(α)

is the 100αth percentile point of a standard normal distribution. Moreover, if Bα1

and Bα2 are non-integers, then they are approximated to the closest interger.

End Algorithm - BC a interval

This algorithm is implemented in SPlus 7/R 2.2.0 in the library bootstrap with the

function bcanon. There is also a macro written in SAS and made available in Tibshirani

(1985).

Using the above algorithm, once the BCa interval is computed, we consider that there is

evidence in support of the hypothesis H0 defined in (4.1), if µ0 ∈
(
x

(∗,(Bα1))
· , x

(∗,(Bα2))
·

)
;

otherwise the hypothesis can be rejected.

4.2.2 ASCLT Tests

Here the modified, small-sample approximation for ASCLT-based tests will be presented

for the parametric one-sample situation under consideration.

As said in the Introduction of this chapter, we will propose certain modifications and

transformations to the theoretical proposal of ASCLT-based tests in order to make them

applicable in situations of small sample sizes.

Begin Algorithm - ASCLT-based parametric one-sample test for mean
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Let the ith permuted sample vector be denoted and given by

x∗i = permute(x), i = 1, . . . ,nper,

where nper represents the total number of permutations of the sample we are interested

in.

Now for each of the permuted sample, we compute weighted partial means as

SS ∗i
n = n · x ∗i

n√
n

=
√

n · x ∗i
n , n = 1, . . . , N,

where x ∗i
n denotes the mean of the partial, ith permuted sample (x ∗i

1 , . . . , x ∗i
n ), n =

1, . . . , N .

The average of these SS ∗i
n is given by,

SS
∗i =

1
N

N∑
n=1

SS ∗i
n .

For α ∈ (0, 1), the quantiles q̂
∗i,(N)

α and q̂
∗i,(N)
1−α are now estimated via the relationship

(2.12) defined by the ASCLT in chapter 2:

q̂ ∗i,(N)
α = max

{
q

∣∣∣∣∣ C−1
N

N∑
n=1

1
n

1{SS ∗i
n < q} ≤ α

}

q̂
∗i,(N)
1−α = max

{
q

∣∣∣∣∣ C−1
N

N∑
n=1

1
n

1{SS ∗i
n < q} ≤ 1− α

}

where CN =
∑N

n=1
1
n .

We split the algorithm into sub parts to implement the two methods proposed via

Definitions 12 and 13 (on page 16).

Begin Sub-Algorithm: ASCLT-test method 1

qα =
∑nper

i=1 q̂
∗i,(N)
α

nper
and q1−α =

∑nper
i=1 q̂

∗i,(N)
1−α

nper
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Reject H0 if

0 6∈
[
qα, q1−α

]
. (4.2)

End Sub-Algorithm: ASCLT-test method 1

Begin Sub-Algorithm: ASCLT-test method 2

In an attempt to implement the result of Theorem 11, we propose to transform the

estimated quantiles as follows and call them transformed quantiles,

q̂
∗i,(N)

α,trans. =

(
SS

∗i − q̂
∗i,(N)
1−α

)
√

N
and q̂

∗i,(N)
1−α,trans. =

(
SS

∗i − q̂
∗i,(N)

α

)
√

N
.

Further we denote the averages of the estimated, transformed quantiles over the different

permuted samples as,

qα,trans. =

∑nper
i=1 q̂

∗i,(N)
α,trans.

nper
and q1−α,trans. =

∑nper
i=1 q̂

∗i,(N)
1−α,trans.

nper
.

Finally we propose an adjustment of these quantiles above, with the following expres-

sions:

qα,fin =
qα,trans. − 2α · λN,2α ·

(
qα,trans. + q1−α,trans.

)
κN,2α

q1−α,fin =
q1−α,trans. − 2α · λN,2α ·

(
qα,trans. + q1−α,trans.

)
κN,2α

,

where κN,2α and λN,2α are constant coefficients for a given N and 2α, and they have to

be numerically determined for each sample size N ∈ N and significance level 2α.

Now, reject H0 if

xN 6∈
[
qα,fin, q1−α,fin

]
,

where xN denotes the mean of the original sample x.

End Sub-Algorithm: ASCLT-test method 1

End Algorithm - ASCLT-based parametric one-sample test for mean
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Table 4.1: Determined coefficients, κn,α and λn,α, for different sample sizes and signifi-
cance levels 2α

2α = 5% 2α = 10%
N κN,2α λN,2α κN,2α λN,2α

10 0.52 2.9 0.51 3.9
15 0.59 2.65 0.58 3.6
20 0.645 2.45 0.624 3.3
25 0.68 2.1 0.67 3.1
30 0.72 2.0 0.70 3.0

Through simulation studies, the constant coefficients κN,2α and λN,2α have been found

for some select values of sample sizes and significance levels. The values for these

coefficients were basically determined by more of an trial-and-error approach, using

the required significance level to be achieved and also sometimes trying to match the

results from the t-test. Such numerically determined values are presented in Table 4.1.

As can be seen, though the finding of the values of these coefficients were not done

from a mathematical perspective, they have some pattern (monotonously increasing or

decreasing), implying the fact that they are not random. One of the main, immediate

further research topic of this thesis is to determine the mathematical foundation of such

values of these coefficients and to derive a general formula to compute these for any N

and 2α.

4.2.3 Simulation results

Monte carlo simulations were performed to observe the properties of the t-test, BCa

(interval) method and the ASCLT-based methods 1 and 2, in maintaining the pre-

assigned significance level 2α and regarding power. Following are the common setting

for these simulations:

1. Total number of simulation runs for each result presented, say NSIM, is 10000.

2. For BCa method, B = 2000.

3. For both methods of ASCLT-based tests, nper = 2000.

4. All tests were two-sided and performed at a significance level of 2α = 5% or 10%.
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Table 4.2: Results for simulated level for 2α (in %) under H0 : µ = 0 for samples from
N (µ = 0, σ), for varying σ given in the first column. Columns labelled ‘A-M1’ and
‘A-M2’ represent the results from ASCLT-test methods 1 and 2, respectively.

σ t-test BCa A-M1 A-M2 t-test BCa A-M1 A-M2

n = 10 and 2α = 5% n = 10 and 2α = 10%
1.0 5.05 10.24 19.70 4.98 9.99 15.37 20.45 9.92
1.5 5.46 10.75 20.68 5.31 10.00 15.29 21.03 9.92
2.0 5.22 10.18 19.51 5.22 9.76 14.78 20.20 9.73
3.0 5.24 10.68 20.70 5.26 10.07 15.53 20.81 10.20
4.0 5.22 10.00 19.93 4.99 9.92 15.25 20.76 10.00
5.0 5.03 9.88 19.92 4.89 10.06 15.96 21.56 10.26

n = 15 and 2α = 5% n = 15 and 2α = 10%
1.0 4.71 7.93 10.08 4.68 10.13 13.22 11.06 10.02
1.5 5.01 8.27 10.42 4.99 9.91 13.56 11.17 9.99
2.0 4.86 8.73 10.90 5.06 10.31 13.75 11.57 10.38
3.0 5.14 8.25 10.76 5.23 10.40 14.05 11.82 10.61
4.0 4.90 7.94 10.37 4.96 9.81 13.29 11.27 10.05
5.0 5.20 8.32 10.95 5.41 9.55 12.86 10.89 9.73

As mentioned in the beginning of this chapter, only few parts of all the simulations that

we performed are reported here since the general trend of the results remain the same

over several settings. Simulations evaluating the property of maintaining significance

level are presented in Table 4.2 and those relating to the study of power are plotted in

Figure 4.1. Note that, in the table, the results corresponding to ASCLT-test method 1

are presented in italized text. By this we intend to imply that, we do not recommend

using this method for real-data analysis purposes. But the results are presented here

only to observe and show the general performance of this method and for possible further

work.

It is clear from the table and the figure that the t-test maintains the pre-assigned level

2α and at the same time exhibiting good power. On the other hand, the BCa method

displays very liberal performance with respect to maintaining the pre-assigned level

2α. This result comes in as quite a surprise given the support it has been provided

independently by Efron and Tibshirani (1993) and Carpenter and Bithell (2000). But

as we observed the pattern, the liberality of this method reduces as the sample size

increases. But even for sample size n = 30 for 2α = 5%, the method had, on the
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Figure 4.1: Power curves of different methods for N = 10 at significance level 2α = 10%,
and N = 15 at significance level 2α = 5%, based on samples generated from N (µ, σ = 3)
and N(µ, σ = 1), respectively. (µ’s are varying and it is plotted in the x-axis.)
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average, an estimated type-I error rate of 6.5%. The results of ASCLT-test method

1 are provided only for observational purpose and not for real comparison with other

methods. Finally, the ASCLT-test method 2 displays comparable results to the t-test,

both in terms of maintaining level and power property. In fact, in many cases relating to

the power, the ASCLT-test method 2 has, approximately, 1% better power than t-test

in spite of maintaining level 2α. Thus, a completely satisfactory performance of the

ASCLT-test method 2 is shown via these simulations concerning level and power.

4.3 Two-sample case - Behrens Fisher Problem

Often in medical data, the problem of unequal variances of observations between the

groups is encountered. Considerable literature has been developed in this area and even

in the simple two-sample situation, this problem is still actively tackled in order to

obtain accurate results. In spite of the vast literature, a common drawback of many

such sophisticatedly developed methodology is that many of them are based on strong

underlying assumptions and strict model conditions. In this section, an overview of

one such frequently encountered and widely addressed situation, namely Behrens-Fisher

Problem, will be presented, which will be followed by the application of ASCLT-test

methods to the problem. Numerical as well as graphical illustrations of simulation-

based analysis will be used to demonstrate the performance of the ASCLT-test, along

with frequently used competing methods from literature. Subsequent comparison with

results from some existing standard methods are also presented. Let us first set the

formal definition of the Behrens-Fisher Problem.

Definition 17 (Behrens-Fisher Problem). Suppose that

E =
(
Rn1×n2 ,B,

{
Fn

µ1,σ1
× Fm

µ2,σ2
|µ1, µ2 ∈ R, σ2

1, σ
2
2 ≥ 0

})
is a statistical experiment†, where n1, n2 ∈ N, (Rn1×n2 ,B) represents the (measurable)

sample space and
{
Fn1

µ1,σ1
× Fn2

µ2,σ2
|µ1, µ2 ∈ R, σ2

1, σ
2
2 ≥ 0

}
is the product of family of

probability measures. Further, let T = (H0,H1) be a partition of
{
µ1, µ2 ∈ R, σ2

1, σ
2
2 ≥ 0

}
.

Then, the experiment E along with partition T , is called a Behrens-Fisher Problem if

H0 = {(µ1, µ2, σ1, σ2) |µ1 = µ2}.
†For basic definitions (from a mathematical perspective) relating to hypothesis testing, we refer to

Strasser (1985).
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For the parametric Behrens-Fisher problem, in the above definition, the F ’s are taken

to be Normal distributions. Thus, from an applied point of view, for i.i.d N
(
µi, σ

2
i

)
random variables (Xi1, . . . , Xini), i = 1, 2, the parametric Behrens-Fisher problem is

that of testing

H0 : µ1 = µ2 Vs. H0 : µ1 6= µ2, (4.3)

without the assumption of σ2
1 = σ2

2.

4.3.1 Behrens Fisher Problem - Overview

Behrens (1929) proposed a method to test the hypothesis of comparing means of two

samples from normal distributions with unequal variances. Fisher (1935, 1941) de-

veloped a solution (for the test proposed by Behrens, 1929) using fiducial inference-

arguments. Since then the test problem has been popularly called as Behrens-Fisher

Problem (and sometimes also referred to as Fisher-Behrens Problem or, simply, Behrens

Problem). For brevity, we will use abbreviation ‘BFP’ to read as ‘Behrens-Fisher Prob-

lem’. Moreover, considering the setup addressed by Behrens (1929) as a stituation of

parametric case of BFP, later a generalized version of BFP without the assumption of

normally distributed samples was introduced and has also been extensively studied in the

literature. This case has been called as the ‘Generalized BFP’ or also as ‘Nonparametric

BFP’, which will be discussed in the next section.

From the time of the article by Behrens (1929), BFP has been an active topic of consider-

ation in statistical literature. It was so common and widely addressed that it prompted

the well-known statistician Professor Scheffé to write (as the first sentence of one of his

papers),

“The most frequently occuring problem in applied statistics is, in my opinion ... the

Behrens-Fisher Problem ...”(Scheffé, 1970).

The problem has being approached via different techniques and with wide range of math-

ematical aspects and treatment. To mention a few, there are exact tests (e.g. Behrens,

1929, or Bayesian approaches) and approximate tests (e.g. Smith, 1936; Satterthwaite,

1946; Welch, 1947; Aspin, 1948; Cochran and Cox, 1957; Howe, 1974); Bayesian solutions

(e.g. Jeffreys, 1939; Patil, 1964; Duong and Shorrock, 1992; Lee, 1997), Bootstrapping

and Re-sampling methods (e.g. Beran, 1988; Hall and Martin, 1988; Compagnone and
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Denker, 1996; Babu and Padmanabhan, 2002; Reiczigel et al., 2005), Confidence-Interval

approach (e.g. Banerjee, 1961; Howe, 1974; Lee, 1997; Wang and Chow, 2002), Likelihood

Ratio test (e.g. Bozdogan and Ramirez, 1986; Troendle, 2002; Dong, 2004), Permuta-

tion methods (e.g. Pitman, 1937; Janssen, 1997), Generalized p-value approach (e.g.

Weeranhandi, 1995) and Rank-based approaches for Generalized BFP (e.g. Sen, 1962;

Fligner and Policello II, 1981; Brunner and Neumann, 1982, 1986; Brunner and Munzel,

2000). (This list also includes solutions for nonparametric BFP). It can be noted that

the literature spans from early Twentieth century to very recent times.

Furthermore, historical views, reviews and controversies (particularly between the ap-

proaches proposed by Behrens-Fisher and those by Satterthwaite-Welch-Smith) sur-

rounding the developments of the solutions are available from Robinson (1976); Wal-

lace (1980); Barnard (1984); Moser and Stevens (1992); Miller (1997) and Lee (1997).

Thomasse (1974) gives summarized practical recipes of several popular, interesting and

even controversial methods that were available during the time of his writing.

4.3.2 Solutions for BFP

In this subsection, a brief overview and description of the algorithm of certain commonly

used methods for the (parametric) BFP is given. It should be emphasized that there

are many authors who consider one or the other method as more, or even most, favor-

able compared to others. Here, as a general rule, the methods suggested most in our

experience from applications and literature survey are presented and discussed. First,

a common set of notation and terminology for all the procedures/solutions for BFP de-

scribed below, is presented here. Let the vector of i.i.d random variables corresponding

to the two samples be denoted by X(i) = (Xi1, . . . , Xini)
′, i = 1, 2, and the correspond-

ing observed sample values be x(i) = (xi1, . . . , xini)
′, i = 1, 2, where n1 and n2 are the

respective sample sizes. Now, let x1· and x2· denote the respective sample means. Also,

let s2
1 and s2

2 denote the corresponding empirical variances. Finally, let the notation ta,b

denote the ath quantile of a (central) t-distribution with b degrees of freedom.

SWS approximation

This approximation is due to the independent results from Smith (1936), Satterthwaite

(1946) and Welch (1947). The idea here is to reject H0, defined in Definition 17, at a
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given level of significance 2α if,

|x1· − x2·|√
s2
1

n1
+ s2

2
n2

> t2α,r ,

where the approximate degrees of freedom r is estimated by,

r =

(
s2
1

n1
+ s2

2
n2

)2

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1

.

This test has been widely recommended in literature since it maintains the pre-assigned

significance level, 2α, and also exhibits good power properties. For example, Mehta

and Srinivasan (1970); Lee and Gurland (1975) and, more recently, Wang and Chow

(2002) have conducted extensive study of many solutions available for the BFP. These

and several other authors concluded, or at least remarked, that the SWS approximation

works the best for the BFP among the several methods that they compared. Because of

its good performance, this approximation has been widely implemented in several sta-

tistical software including Microsoft MS-Office XP Professional Excel (via TTEST), SAS

9.1 (via procedure PROC TTEST), SPlus 7/R 2.2.0 (via t.test function), SPSS 13.0 (via

T-TEST) and STATA 9.0 (via .ttest). We will thus consider the SWS approximation

as a gold-standard test for comparisons (in the situation of parametric BFP) in our

simulation studies presented in the later part of this section.

Software STATISTICA 7 also offers T-test procedure providing for BFP, but the

method used for this purpose is not explicitly stated in the documentation. But from

what we have observed with few example data sets, it became clear that STATISTICA

7 also implements the SWS approximation.

Cochran-Cox’s approximation

According to Cochran and Cox (1957), for a given level of significance 2α, the null

hypothesis of H0, given in Definition 17, can be rejected if,

|x1· − x2·|√
s2
1

n1
+ s2

2
n2

>
t1−α,n1−1

s2
1

n1
+ t1−α,n2−1

s2
2

n2

s2
1

n1
+ s2

2
n2

. (4.4)

Note that for n1 = n2 = n (say), RHS of the above inequality is just t1−α,n−1. It is

well known that this test is quite conservative in maintaining pre-assigned significance
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level, 2α (c.f. Lee and Gurland, 1975). In their original proposal, Cochran and Cox

(1957) make it clear that during the time of publishing their work, there was exten-

sive dependence on the printed Fisher and Yates statistical tables for the BFP. Thus,

Cochran and Cox (1957) suggested the above approximation (4.4), in cases when these

tables were “not readily accessible”. They also agree that the proposed approximation

(4.4) “probably errs slightly on the conservative side”. According to our knowledge,

particularly with the advent of extensive computing systems, there has not been any

account of when the test is recommended in preference to other competing methods.

This approximation has been implemented in SAS’s PROC TTEST.

Bootstrap Method

Bootstrap methods (and related idea of jackknife and resampling procedures) were in-

troduced during mid-Twentieth century. But they have been extensively explored only

during the last two decades or so. One of the main reasons for such a recent popu-

larity is owing to the availability of stronger and powerful computational capacity and

efficiency. For a technical introduction of Bootstrap methods we refer to Davison and

Hinkley (1997), and for applied overview, Efron and Tibshirani (1993).

There are several proposals of bootstrap two-sample t-test, particularly addressing the

BFP, available from the literature. We will be using the one which is widely used in

practice due to Efron and Tibshirani (1993).

One of the general ideas of bootstrap test of hypothesis (i.e., not restricted to the BFP)

is to estimate the so-called Achieved Significance Level (ASL) based on the observed

dataset(s) and the concerned (null) hypothesis is rejected or accepted depending on

whether ASL ≤ 2α or ASL > 2α, respectively, where 2α is the pre-assigned significance

level. In their book, Efron and Tibshirani (1993) propose a method to address the prob-

lem of testing equality of means without making any assumptions on the equality (or

unequality) of the variances. Moreover, they recommend and perform only one-sided

test of hypothesis. The reason for them to do so, according to them, is that “The two-

sided ASL is always larger than the one-sided ASL, giving less reason for rejecting H0.

The two-sided test is inherently more conservative”(pp. 212). This argument may suit

a general-purpose application. But for biostatistical investigations two-sided tests are

widely preferred and, sometimes, also expected to be performed by regulatory authori-

ties. So, their proposed algorithm is slightly modified (according to their suggestion) to
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implement a two-sided test (refer to Efron and Tibshirani, 1993, page 212 and Algorithm

16.2 on page 224). This modified algorithm can be summarized as follows:

Begin Algorithm - A Bootstrap solution for BFP

• Transform the observed variables to x̃ij = xij − xi· + z, i = 1, 2; j = 1, . . . , ni,

where z is the mean of the combined sample (x11, . . . , x1n1 , x21, . . . , x1n2).

• Form B bootstrap† data sets
(
x(∗b)

1 ,x(∗b)
2

)
, b = 1, . . . , B, where x(∗b)

i , i = 1, 2, are

sampled with replacement from (x̃i1, . . . , x̃ini).

• Evaluate for each data set,

t(∗b) =
x

(∗b)
1· − x

(∗b)
2·√

s
2,(∗b)
1
n1

+ s
2,(∗b)
2
n2

, b = 1, . . . , B, (4.5)

where x
(∗b)
1· and x

(∗b)
2· are respective sample means and s

2,(∗b)
1 and s

2,(∗b)
2 are respec-

tive variances of each of the bootstrap data sets x(∗b)
1 and x(∗b)

2 , b = 1, . . . , B.

• Calculate the approximate Achieved Significance Level, ÂSL, given by,

ÂSL =
#
{
|t(∗b)| ≥ |tobs|

}
B

,

where, tobs is the t-value computed by using the original samples (instead of the

bootstrap data sets) in (4.5).

• Reject H0 if ÂSL ≤ 2α.

End Algorithm - A Bootstrap solution for BFP

According to our knowledge, this algorithm has not been implemented directly in any of

the existing standard statistical software packages. This is the case even in SPlus or R,

where the authors have their own ‘library’ of functions. But it is quite straight-forward

to implement the above algorithm using SAS’s IML (Interactive Matrix Language) or

SPlus’s/R’s standard commands and functions.
†Bootstrap data sets are those which are formed by re-sampling (with replacement) from the original

samples. These samples are used in the computation of relevant bootstrap estimates.
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Bayesian t-test

Bayesian approach towards hypothesis testing is based on a completely different philoso-

phy compared to the conventional, frequentist approach of hypothesis testing. But, since

the approach is gaining popularity among more and more users, we include a Bayesian

test here in order to facilitate comparison to other competing methods. We will be us-

ing the recently proposed Bayesian version of two-sample t-test by Gönen et al. (2005).

Since the Bayesian methodology being a whole area of itself, we intend to present only

the minimum explanation here, so as to make the implementation of the method as clear

as possible than to going into the theoretical aspects of them. For an introduction to

general Bayesian theory we refer to Lee (1997); Bolstad (2004) and for a more practical

view, Woodworth (2004).

The general, fundamental Bayesian idea is to combine the sample information along with

prior knowledge in terms of probabilities in deriving the final posterior probabilities

(or probability distributions) and thus basing the inferences on them. The Bayesian

formulation of hypothesis testing for two sample t-test involves placing prior probabilities

π0 and π1 (π0 + π1 = 1) on the respective hypotheses H0 : µ1 = µ2 and H1 : µ1 6= µ2.

Then these probabilities are ‘updated’ via the Bayes’ theorem to obtain the posterior

probabilities

P (Hj |data) =
πjP (data |Hj)

π0P (data |H0) + π1P (data |H1)
, j = 0, 1,

where P (Hj |data) denotes the marginal density of the data under Hj . It is suggested

often to use the Bayes Factor(BayFac), as defined below, instead of the formulation

above in order to overcome partially the sensitivity of the posteriors on the priors π0

and π1:

BayFac =
P (data |H0)
P (data |H1)

.

It is interpreted as the data providing evidence in support of H0 when BayFac ≥ 1, and

against H0 if BayFac < 1.

Gönen et al. (2005) consider the set up the two-sample problem such that the random

variables Xij ∼ N (µi, σ
2) , i = 1, 2; j = 1, . . . , ni. Then the pooled-variance, two-sample
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t-statistic is defined and denoted by

t =
X1· −X2·
sp/

√
nδ

, (4.6)

where s2
p =

(
(n1 − 1)s2

1 + (n2 − 1)s2
2

)
/(n1 + n2− 2) is the pooled variance estimate and

nδ = 1/(n−1
1 + n−1

2 ). For testing

H0 : µ1 = µ2 Vs. H1 : µ1 6= µ2, (4.7)

Gönen et al. (2005) propose the following form of the Bayesian Factor:

BayFac =
Tν (t|0, 1)

Tν

(
t |λ√nδ, 1 + nδσ2

) , (4.8)

where t is defined in (4.6), λ and σ2 are the prior mean and variance of the standardised

effect size (µ1−µ2)/σ under H1 (defined in equation 4.7), ν = n1 +n2−2, and notation

Ta(·|b, c) denotes the probability density function of non-central t-distribution having

location b, scale
√

c and degrees of freedom a.

Instead of going into the merits and discussion surrounding the choice of priors to be

implemented in (4.8), we directly provide here the general rule-of-thumb choice proposed

by Gönen et al. (2005). They suggest the use of sample size-power relationship to

estimate these priors to be used in (4.8) as follows (assuming a power of 80%):

• for 2α = 5%: λ = 2.80√
nδ

and σδ = 2.19√
nδ

, and

• for 2α = 10%: λ = 2.49√
nδ

and σδ = 1.94√
nδ

,

where nδ is defined in (4.6).

The following important points have to be remarked with respect to this procedure.

• It is well known that a careful selection of the prior distributions is an important

step while using Bayesian methods. This usually requires expert assistance. Gönen

et al. (2005) also gives clear indication to this effect, though they recommend a

general-purpose prior based sample size-power relationship assuming underlying

normal distribution of the samples. We will use these priors in our simulations.
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It will be evident from the simulation results as to how crucial and important,

careful selection of priors is when using Bayesian methods.

• The Bayesian procedure by Gönen et al. (2005) assumes homoscedastic variances,

thus can not be applied to the BFP. However, as stated above, our intention is

to merely compare the results among competing methods, at least in situations

where they are validly applicable. For sake of completeness, we will also present

the results of simulations with heteroscedastic variances, but in such cases we will

denote the results for Bayesian test with italized text in order to represent that

the method should not have been used ‘in principle’. This is explained more in

Section 4.3.4, where the simulation results are presented and discussed.

4.3.3 ASCLT-test for BFP

As mentioned earlier in Chapter 2, one of the major advantages of the ASCLT-based

tests of hypothesis is that the procedures do not involve variance estimation in them.

Though the origination of BFP is based on the concept of unequal variances, the study

by both Moser and Stevens (1992) and Sprott and Farewell (1993) give detailed accounts

of how important and crucial the assumption of equal or unequal variances (or regarding

the ratio of the variances) between the two concerned samples are, in order to arrive at

inferences regarding the population mean difference†. Thus, BFP would be one of the

ideal situations to demonstrate the ASCLT-tests’ effectiveness.

Further more, it has to be mentioned here that the general hypothesis-testing theory de-

veloped in Chapter 2 considers an one-sample setup, i.e., only one sequence of identically

and independently distributed variables was considered. Formally one has to extend this

theory to the two or more variables’ case. But in view of Lindeberg-Levy version of AS-

CLT, and noting that the variables here are independent, but not necessarily identically

distributed, the theory can be derived for such extensions. We assume the result for a

two-sample case under discussion, and proceed with the two-sample approximate tests

based on ASCLT.

With extensive computations and programming, we have identified modifications to the

ASCLT-based general theory of hypothesis-testing from Chapter 2 to make it applicable
†We refer to the unpublished work by Dickson available online at

http://uts.cc.utexas.edu/∼ccbv001/stats/cond.html for an interesting, general discussion and sum-
mary on assumptions and pre-testing of equality of variance.
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to the BFP in discussion. The proposed modifications are presented here as the following

algorithm. We will follow the same notation and terminology for the samples defined in

the beginning of Section 4.3.2, and additionally let n = min(n1, n2).

Begin Algorithm - ASCLT tests for parametric two-sample testing problem

The two samples are independently permuted nper times (nper is chosen by user - as

a general rule, the larger the value of nper, the better is the approximation), with pth

permuted sample vector denoted and given by

x∗pi = permute(xi), i = 1, 2; p = 1, . . . ,nper .

Note that this are not “bootstrapping”, but pure permutations, that is, only ‘shuffling’

the data points with each vector of the sample xi, i = 1, 2. Note also that independent

permutations imply that the shuffling scheme for the first sample in the pth permutation

is highly likely to be different than the shuffling scheme for the second sample.

Now for each of the permuted sample, we compute quantities:

SS ∗p
k = k ·

x ∗p
1,k − x ∗p

2,k√
k

=
√

k ·
(
x ∗p

1,k − x ∗p
2,k

)
, k = 1, . . . , n, (4.9)

where x ∗p
i,k , i = 1, 2, denotes the mean of the partial sample

(
x ∗p

i1 , . . . , x ∗p
ik

)
of size k.

And let, SS
∗p =

∑n
k=1 SS ∗p

k
n for each permutation p = 1, . . . ,nper.

The quantiles t̂
∗p,(n)
α and t̂

∗p,(n)
1−α are now estimated by

t̂ ∗p,(n)
α = max

{
t

∣∣∣∣∣C−1
n

n∑
k=1

1
k
1{SS ∗p

k < t} ≤ α

}

t̂
∗p,(n)
1−α = max

{
t

∣∣∣∣∣C−1
n

n∑
k=1

1
k
1{SS ∗p

k < t} ≤ 1− α

}

where Cn =
∑n

i=1
1
i . From here, we propose the two methods of arriving at a decision

to accept or reject the hypothesis H0 defined in (4.3).
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Begin Sub-Algorithm: ASCLT-test Method 1

tα =

∑nper
p=1 t̂

∗p,(n)
α

nper
and t1−α =

∑nper
p=1 t̂

∗p,(n)
1−α

nper

Now, we propose to reject H0 if

0 6∈
[
tα, t1−α

]
. (4.10)

End Sub-Algorithm: ASCLT-test Method 1

Begin Sub-Algorithm: ASCLT-test Method 2

Subsequently, define transformed quantiles,

t̂
∗p,(n)
α,trans. =

(
SS

∗p − t̂
∗p,(n)
1−α

)
√

n
and t̂

∗p,(n)
1−α,trans. =

(
SS

∗p − t̂
∗p,(n)
α

)
√

n
.

Further define,

tα,trans. =

∑nper
p=1 t̂

∗p,(n)
α,trans.

nper
and t1−α,trans. =

∑nper
p=1 t̂

∗p,(n)
1−α,trans.

nper

Finally, a transformation of the quantiles with the following expression is performed:

tα,fin =
tα,trans. − 2α · λn1,n2,2α ·

(
tα,trans. + t1−α,trans.

)
κn1,n2,2α

(4.11)

t1−α,fin =
t1−α,trans. − 2α · λn1,n2,2α ·

(
tα,trans. + t1−α,trans.

)
κn1,n2,2α

, (4.12)

where κn1,n2,2α and λn1,n2,2α are constant coefficients for given values of n1, n2 and

2α, and they have to be numerically determined for each sample size n1, n2 ∈ N and

significance level 2α.

Now, reject H0 if

xn1 − xn2 6∈
[
tα,fin, t1−α,fin

]
,

where xn1 and xn2 denote the respective means of the original sample x1 and x2.

End Sub-Algorithm: ASCLT-test Method 2

End Algorithm - ASCLT tests for parametric two-sample testing problem1



52 Chapter 4. Applications and Numerical Results

The numerically found values of κn1,n2,2α and λn1,n2,2α, introduced in the above algo-

rithm, for certain cases are enlisted in Table 4.3. These values for the coefficients were

determined by more of an trial-and-error approach, using the required significance level

to be achieved and also sometimes trying to match the results from SWS appraoximation

(which we set as the gold standard test in the situation of the BFP). As can be observed

from the Table 4.3 that, though the finding of these values were not done following a

pure mathematical rule, the values do have some regular pattern (monotonously increas-

ing or decreasing). This implies that they are not ad-hoc, random quantities, but they

could very well have a mathematical structure underlying them.

Moreover, before proposing transformation tα,fin and t1−α,fin in equations (4.11) and

(4.12), we did perform extensive computations to have simpler form of the transfor-

mation. For example, we tried methods without the additive term corresponding to

λn1,n2,2α, and having only the multiplicative coefficient similar to κn1,n2,2α. In such a

setup, for the normally distributed samples we were able to produce results similar to

the one produced by using such complex transformation. Whereas, in the case of non-

normal samples, the results were very close to that of SWS approximation which does

not perform well in such situations (as will be observed from the next section on simula-

tion results). With the complex transformation proposed above in (4.11) and (4.12), the

results are better than the SWS approximation. Therefore, we propose and use these

transformations.

The ASCLT procedure(s) described here forms the first step towards developing a general

method for the situation two samples with unequal sample sizes. The ASCLT-test

method 2 (on which we would mainly focus) presented above performs very good for

Table 4.3: Numerically determined coefficients κn1,n2,2α and λn1,n2,2α for the ASCLT-
test method 2, for different sample sizes and significance levels

2α = 5% 2α = 10%
n1 = n2 κn1,n2,2α λn1,n2,2α κn1,n2,2α λn1,n2,2α

10 0.523 3.00 0.512 3.98
15 0.595 2.70 0.585 3.705
20 0.65 2.50 0.63 3.40
25 0.685 2.15 0.67 3.14
30 0.72 2.00 0.70 3.00
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equal sample sizes n1 = n2 = n, as will be seen from the next subsection with simulation

results. Though the procedure can be applied for situations with unequal sample sizes,

our studies reveal that the method does not consistently maintain the pre-assigned

significance level, 2α, for unequal sample sizes. That is, for any given combination of

n1 and n2, ASLCT-test method 2 maintains the pre-assigned level for certain patterns

of equal and unequal variances (increasing or decreasing) but breaks down for some

others. But, the solution for equal sample sizes-case, presented here, would be the first

step towards developing a general method for the situation two samples with unequal

sample sizes. According to the current understanding and exploration, following are the

very likely indications towards modifying the procedure to properly address the situation

of unequal sample sizes:

• In the current approach, the minimum of n1 and n2 is taken and considered in

the procedure, mainly through the equation (4.9). There could be a modification

in this, by implementing the knowledge of unequal sample sizes in this part. This

aspect may get clearer when the specific mathematical theory surrounding the

two-sample ASCLT is explicitly derived.

• There are currently two additive components in the numerator on the RHS of

equations (4.11) and (4.12). There could be a third (or more) component involved

and/or even the current two components could be split to form more components.

There could also be some multiplicative term or constant. All these have to be

explored from either mathematical viewpoint or simulation-based studies, or both.

Parts of the proposals above are planned to be worked on, subsequent to the formal

completion of this thesis.

Along with all of the explained methods above, the two-sample student’s t-test was

also implemented to study the performance of the test, mainly in comparison to the

independent results from the SWS approximation. Moreover, we simulated situations of

equal and unequal variances of the parent distribution. So, t-test would be the optimal

test to use under homoscedastic samples.
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4.3.4 Simulation Results and Discussion

The methods detailed in the Subsection 4.3.2 will be implemented along with the

ASCLT-tests described in Subsection 4.3.3, via monte-carlo simulations in order to

compare the results among these procedures and also observe the pattern, if any, of

the individual methods. It has to be noted that the simulation results for each method

is independent of the others and by ‘comparison of results of these methods’ we imply

that the finally arrived-at results of these methods are reviewed independently and with

reference to each other with respect to maintaining the pre-assigned level of significance

and power properties. Numerical results will be presented via tables and figures, and

also summarized through discussion in this section.

Note that not all methods described in the two Subsections 4.3.2 and 4.3.3 above, are,

in principle, applicable to all situations which are simulated. So, in order to make

comparison and interpretation easier we follow the scheme that the numerical results

of methods which are validly applicable (i.e., simulation setting matching with those of

the theoretical assumptions) are presented in straight, normal-face font. If a method

is not applicable due to conflict between the simulation setting and the theoretical

assumptions, then we present the results of those in italized text. Such italized text

would then indicate that the concerned method should not have been used ‘in principle’.

In spite of this remark, it should also be realised that in real-life situations it is quite

difficult to recognize such differences (w.r.t. the theoretical assumptions) with accuracy.

It can be noted that Moser and Stevens (1992) and, later, Sprott and Farewell (1993)

show results concerning pre-testing for the assumptions before moving on to perform the

actual test of hypothesis of interest. They advice that this should not be performed and

it could have serious consequences on the final results. Further, one of the intentions of

presenting the results of even such “non-applicable” methods is to observe how ‘good’

or ‘bad’ the methods could perform when the underlying assumptions with respect to

variances, are not fulfilled, without formally testing for such assumptions.

The following are the common setting of parameters for all simulations:

• Total number of simulation runs for each result presented, say NSIM, is 10000.

• For Bootstrap test, B = 2000

• For ASCLT tests, P = 2000

• All tests were two-sided and performed at a significance level of 2α = 5% or 10%.
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Simulations based on Normal Distribution

The idea here is to evaluate the performance of the two-sample tests when the samples

come from normal distributions. Within this framework, we consider two scenarios - one,

where the two samples originate from populations with equal variances, σ2
1 = σ2

2 = σ2,

say, and the other where the variances are different in the parent populations, i.e., the

situation of the BFP.

The results of the simulations corresponding to sample sizes n1 = n2 = 10, 15 and 30

for significance levels 2α = 5% and 2α = 10% are presented in the Tables 4.4 and 4.5,

respectively, and the power curves for sample sizes n1 = n2 = 10 and 15, respectively,

covering cases of unequal and equal variances are presented in Figure 4.2. The power

curves are shown only for select methods since some of the curves are very close to each

other and would be difficult to distinguish between themselves. The main findings from

the results presented in the tables and figures can be summarized as follows.

• The SWS approximation is slightly conservative compared to the t-test in the

case of σ1 = σ2. The performance of this approximation improves as sample sizes

increases. Moreover, this pattern continues in the situation of varying variances,

but here the t-test tends to be liberal, while the SWS keeps the level. So assuming

normal distribution of the sample, SWS could very well be used, in general, instead

of t-test, particularly for larger sample sizes without much cause of concern about

the assumption on variances.

• The Cochran-Cox approximation is very conservative for the situation with σ1 =

σ2. It tends to get slightly better with increasing difference between the variances

- still being on the conservative side. This approximation is better avoided in

practice.

• The bootstrap method tends to be very conservative too and displays similar

results as the Cochran-Cox approximation.

• A surprising part is the results from Bayesian method at 2α = 5% level. The

method seems to work ‘better’ at 2α = 10% compared to the performance at

2α = 5%. It can also be noted that the pattern over equal and unequal variances

situations do not vary too much. Moreover, from the two power curves in Figure

4.2, it can be seen that there is some severe problem with the shape of the curves
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- the main difference between the two plots being the variation of mean of the first

or the second sample fixing the other mean as constant. As mentioned earlier, the

priors suggested by the authors were used here. Thus, issues with both the achieved

significance level and power, indicate a strong signal for the need of Bayesian

expert(s) to advice on appropriate priors for every situation independently and on

a case-by-case basis.

• The ASCLT-test method 1 test results show a pattern of moving from being ex-

tremely liberal for small sample sizes to very conservative as the sample sizes

increase. This numerical observation is in agreement with the Lemma 10. This is

an important point to note, since this could be another further topic for detailed

research - considering and constructing the theory of hypothesis-testing from an

‘almost sure’ point of view with debate over the conventional methods used in

practice, at present. The reason why it can not discussed straight-away from the

results presented here is that, the power of such a test gets to become worse. So,

one of the main directions for further work would be to have a procedure which

can lead to an almost sure decision. More of this will be discussed in the next

Chapter.

• Finally, the performance of the ASCLT-test method 2 test is sometimes little

liberal and sometimes little conservative. On an average, the method maintains the

level and also has good power. Indeed the power of this method is approximately

1-2% better than that of SWS approximation, in spite of maintaining level on par

with the SWS approximation. In summary, the results of this method are very

much comparable and similar to the SWS approximation, which we set as the

gold-standard for comparisons.

It has to be noted that these summaries are based on the equal sample sizes that we

have considered. The pattern of these findings may change for unequal sample sizes.
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Table 4.4: Results for simulated level at 2α = 5% under H0 : µ1 = µ2 based on samples
from N (µi, σi). Column labelled ‘Boot’ gives the result for Bootstrap method, and ‘A-
M1’ and ‘A-M2’ represent the results from ASCLT-test methods 1 and 2, respectively.

σ1 σ2 t-test SWS CocCox Boot Bayes A-M1 A-M2
n1 = n2 = 10

1.0 1.0 5.22 5.05 3.61 3.39 8.80 18.59 4.85
2.0 2.0 5.23 5.08 3.71 3.31 8.95 19.14 4.92
3.0 3.0 5.32 5.21 3.93 3.53 8.85 18.77 5.08
4.0 4.0 4.99 4.88 3.59 3.22 8.53 18.09 4.79
2.0 1.0 5.26 4.75 3.97 3.23 8.62 18.59 4.99
3.0 1.0 5.96 5.14 4.60 3.83 10.08 19.74 5.58
4.0 1.0 6.25 5.33 4.90 3.94 9.50 19.54 5.92
1.0 2.0 5.68 5.21 4.31 4.22 9.41 19.52 5.34
1.0 3.0 5.96 5.28 4.69 4.71 9.70 19.84 5.79
1.0 4.0 6.20 5.22 4.74 5.04 10.04 19.81 5.86

n1 = n2 = 15

1.0 1.0 4.72 4.65 3.86 3.63 8.46 9.01 4.46
2.0 2.0 5.01 4.94 4.00 3.96 8.37 9.54 4.77
3.0 3.0 4.65 4.61 3.83 3.75 8.24 9.62 4.50
4.0 4.0 5.05 4.97 4.14 3.94 8.86 9.88 4.79
2.0 1.0 5.06 4.84 4.26 3.94 8.92 9.70 4.88
3.0 1.0 5.21 4.74 4.31 3.78 8.55 9.73 4.85
4.0 1.0 5.96 5.36 5.05 4.42 9.43 10.73 5.61
1.0 2.0 5.43 5.10 4.34 4.38 8.76 10.07 5.04
1.0 3.0 5.82 5.23 4.72 4.85 9.11 10.40 5.44
1.0 4.0 5.20 4.58 4.34 4.49 9.07 9.94 4.84

n1 = n2 = 30

σ1 σ2 t-test SWS CocCox Boot Bayes A-M1 A-M2
1.0 1.0 4.85 4.85 4.34 4.22 7.93 1.45 4.61
2.0 2.0 5.08 5.07 4.67 4.62 8.24 1.61 4.90
3.0 3.0 4.95 4.93 4.61 4.57 8.16 1.63 4.82
4.0 4.0 5.00 4.99 4.65 4.56 8.72 1.80 4.86
5.0 5.0 4.85 4.83 4.47 4.38 7.80 1.37 4.73
2.0 1.0 5.15 4.96 4.60 4.43 8.81 1.64 4.89
3.0 1.0 4.84 4.42 4.29 4.10 8.57 1.56 4.59
4.0 1.0 5.16 4.75 4.65 4.40 8.41 1.79 4.87
5.0 1.0 5.28 4.91 4.83 4.62 8.03 2.05 5.05
1.0 2.0 4.90 4.69 4.41 4.45 8.67 1.66 4.66
1.0 3.0 5.52 5.17 4.99 5.04 8.57 1.89 5.31
1.0 4.0 5.44 4.89 4.78 4.93 8.33 1.92 5.09
1.0 5.0 5.53 5.11 5.06 5.00 8.84 2.08 5.30
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Table 4.5: Results for simulated level at 2α = 10% under H0 : µ1 = µ2 based on samples
from N (µi, σi). Column labelled ‘Boot’ gives the result for Bootstrap method, and ‘A-
M1’ and ‘A-M2’ represent the results from ASCLT-test methods 1 and 2, respectively.

σ1 σ2 t-test SWS CocCox Boot Bayes A-M1 A-M2
n1 = n2 = 10

1.0 1.0 9.84 9.65 8.13 8.02 10.33 19.36 9.08
2.0 2.0 10.05 9.90 8.33 8.21 9.85 19.54 9.30
3.0 3.0 9.90 9.76 8.38 8.22 9.62 19.32 9.26
4.0 4.0 10.44 10.26 8.73 8.55 10.37 20.26 9.73
5.0 5.0 9.85 9.66 8.01 7.76 10.20 19.96 9.13
2.0 1.0 10.59 9.96 8.81 8.25 10.44 20.21 9.75
3.0 1.0 10.50 9.66 9.01 8.10 10.26 19.97 9.75
4.0 1.0 11.58 10.38 9.77 8.90 10.97 20.72 10.69
5.0 1.0 11.30 9.96 9.68 8.64 11.23 20.52 10.31
1.0 2.0 10.46 9.91 8.70 8.79 10.72 20.48 9.60
1.0 3.0 11.70 10.70 9.90 10.29 10.93 21.00 10.86
1.0 4.0 10.77 9.73 9.21 9.26 10.75 20.25 10.00
1.0 5.0 11.50 10.10 9.73 10.09 10.90 20.91 10.59

n1 = n2 = 15

1.0 1.0 9.75 9.63 8.53 8.57 9.41 9.91 9.33
2.0 2.0 9.82 9.79 8.87 8.77 9.39 10.35 9.67
3.0 3.0 9.77 9.73 8.59 8.60 9.38 10.21 9.59
4.0 4.0 10.12 10.03 8.88 8.93 9.96 10.58 9.93
5.0 5.0 10.15 10.09 8.89 8.88 10.24 10.64 9.96
2.0 1.0 10.08 9.70 8.94 8.70 9.39 10.63 9.87
3.0 1.0 11.11 10.44 10.07 9.76 10.65 11.43 10.80
4.0 1.0 10.28 9.54 9.33 8.92 9.66 10.59 9.98
5.0 1.0 10.61 9.76 9.66 9.25 10.36 10.96 10.33
1.0 2.0 10.41 10.19 9.42 9.49 9.77 10.79 10.15
1.0 3.0 10.27 9.68 9.26 9.62 9.63 10.59 10.00
1.0 4.0 10.55 9.77 9.48 9.69 10.76 11.07 10.28
1.0 5.0 10.34 9.46 9.22 9.46 9.89 10.73 10.01

n1 = n2 = 30

1.0 1.0 9.74 9.70 9.11 9.24 9.60 2.18 9.83
2.0 2.0 10.02 10.01 9.49 9.59 9.40 1.77 10.17
3.0 3.0 10.19 10.18 9.67 9.60 9.90 1.92 10.32
4.0 4.0 10.40 10.36 9.90 9.94 9.86 2.16 10.58
2.0 1.0 9.96 9.70 9.40 9.44 9.28 2.00 10.03
3.0 1.0 9.94 9.63 9.44 9.27 9.35 1.91 10.07
4.0 1.0 10.53 10.28 10.19 9.97 10.29 2.28 10.65
5.0 1.0 9.86 9.42 9.34 9.21 9.64 2.31 9.95
1.0 2.0 10.18 10.10 9.76 9.81 9.51 2.23 10.43
1.0 3.0 10.65 10.32 10.06 10.24 9.54 2.16 10.76
1.0 4.0 10.24 9.80 9.71 9.84 9.41 2.25 10.35
1.0 5.0 10.70 10.18 10.09 10.28 10.47 2.59 10.81
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Figure 4.2: Power curves of different methods for cases with n1 = n2 = 10 and n1 =
n2 = 15 based on samples from N (µi, σi).
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Simulations based on lognormal and exponential Distributions

In reality, it is usually not possible to determine the form of the parent distribution from

which the data comes. In medical applications there are situations where the source of

the data could have been lognormal or exponential distribution. So, we wanted to see

how the results for the methods presented above, change if the assumption of normality is

not fulfilled. Tables 4.6 presents the results concerning the simulated significance level of

the methods in situations where the two samples come from a lognormal distributions

having equal means, with equal and unequal variances. Similarly, Table 4.7 presents

results concerning samples from exponential distributions with equal means. Note that

for two exponential distributions with same parameter, say, λ, then mean = λ and

variance = λ2. Thus, having equal means for two exponential distributions, the situation

of BFP can not be generated. So here, we are interested in studying only the performance

of the different methods under the influence of exponential distribution. As usual,

wherever certain method is not applicable, the results are presented in italics.

From the results presented in Tables 4.6 and 4.7, the following observations can be made:

• The three tests, namely, t-test, SWS and Cochran and Cox approximations tend to

be quite conservative in exponential distribution situation and both conservative

and liberal under lognormally distributed samples. Surprisingly, in most situa-

tions t-test seems to perform better than the SWS approximation and the worst

performance (among these three tests) is by Cochran and Cox approximation.

• Bootstrap method tends to be very conservative.

• With exponentially distributed samples, bayesian test exhibits similar result as it

did in the case of normally distributed samples and it shows conservativeness under

lognormally distributed samples for 2α = 10%. The 2α = 5% case seems to have

similar problems as observed in earlier the simulations with normally distributed

samples.

• The ASCLT-test method 2 exhibits both conservativeness and liberality under log-

normal distribution case. But still it shows results closer to the pre-designated level

in majority of the cases, compared with the performance of other methods. And

in the exponentially distributed samples, in spite of being slightly conservative, it

performs the best.
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Table 4.7: Results for simulated level H0 : µ1 = µ2, for samples generated from expo-
nential distributions∗ with parameters λi, i = 1, 2. Columns ‘Boot’, ‘A-M1’ and ‘A-M2’
give the results from Bootstrap and ASCLT-test methods 1 and 2, respectively

λ1 = λ2 t-test SWS CocCox Boot Bayes A-M1 A-M2
n1 = n2 = 10 and 2α = 5%

1 3.83 3.45 2.79 2.07 8.57 20.55 4.13
2 4.57 3.87 2.96 2.25 9.01 21.20 4.87
3 4.20 3.71 2.90 2.14 9.13 21.77 4.57
4 4.37 3.85 3.06 2.25 8.63 20.75 4.78
5 4.17 3.54 2.93 2.18 8.63 20.98 4.51

n1 = n2 = 10 and 2α = 10%

1 9.30 8.73 7.68 6.62 10.22 22.42 9.31
2 9.11 8.49 7.45 6.32 9.44 21.91 9.15
3 10.15 9.37 8.07 6.86 10.43 22.71 10.20
4 9.68 9.09 7.89 6.81 10.23 22.44 9.70
5 9.63 9.05 7.90 6.63 10.44 22.40 9.91

∗ The density of exponential distribution that we consider is of the form f(x) = 1
λi

e
− x

λi , for x ≥ 0, λi >
0 and i = 1, 2.

4.4 Nonparametric Behrens-Fisher Problem

The nonparametric BFP is also referred by some authors as the generalized BFP. For

sake of simplicity, we abbreviate ‘Nonparametric Behrens-Fisher Problem’ by ‘NP-BFP’.

Several authors propose their own way of interpreting and defining their version of the

hypothesis for NP-BFP. We will look at the individual definitions of the problem when

presenting the authors’ solution corresponding to their definition of the NP-BFP. The

main reason for such differences is that prior to the past decade, the so-called ‘non-

parametric tests’ were defined via hypothesis in a semi-parametric setup (cf. Lehmann,

1986, pp. 323). Only recently the fully nonparametric approach has been advocated by

experts like Akritas, Brunner, Thompson, etc,. So, for our consideration, we propose the

following definition from literature which is based on the fully nonparametric approach

from an applied perspective.

Definition 18 (Nonparametric Behrens-Fisher Problem). Let Xi1, . . . , Xini , i =

1, 2, be i.i.d random variables such that Xi1 ∼ Fi, i = 1, 2. Then the Nonparametric
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Behrens-Fisher Problem is that of testing

Hp
0 : p =

1
2

Vs. H1 : p 6= 1
2
, (4.13)

where p = P {X11 < X21} + 1
2 {X11 = X21}, the so-called Relative Treatment Effect

(RTE).

For the standard nonparametric two-sample location problem, when σ1 = σ2, the

Wilcoxon-Mann-Whitney(WMW) test is robust in maintaining level and has good power

(Lehmann, 1975, pages 76-81). In this situation, it is also distribution-free and its crit-

ical values have been tabulated extensively. However, if the scales are unequal, then

the WMW statistic is not even asymptotically distribution-free, since its asymptotic

variance would depend on the unknown distribution. Consequently, using the critical

values for equal scales in this case, leads to grossly inflated levels (c.f. Fligner and Po-

licello, 1981, Table 2). Thus the WMW test can not be considered as a solution to the

NP-BFP. So, below we present and discuss some solutions proposed in the literature for

the NP-BFP. We then present the solution via the ASCLT-test methods based on rank

statistics. This will be followed by the presentation of simulations results comparing the

independent results of the performance of the methods.

We first fix a common set of notation which we will use throughout this section in the

description of the methods which follow. Let Xi = (Xi1, . . . , Xini) be the vectors of i.i.d

random variables for the ith sample for i = 1, 2. Further, let the overall mid-rank of Xij

be denoted and defined by Rij = 1
2 +

∑2
k=1

∑nk
l=1 c(Xij − Xkl), where c(u) = 0, 1

2 or 1

according as u <,= or > 0 is called the normalized version of the count function c(·).
Let also the corresponding observed sample be denoted by xi = (xi1, . . . , xini) , i = 1, 2.

4.4.1 Babu and Padmanabhan (2002) Resampling Method

Babu and Padmanabhan (2002) propose two resampling-based procedures for the NP-

BFP of testing for the equality of the medians of two continuous distributions having

the same shape, but possibly unequal variances. Thus the hypothesis they are interested

in testing is

HBP
0 : µ̃1 = µ̃2 Vs. HBP

1 : µ̃1 6= µ̃2, (4.14)
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where µ̃i, i = 1, 2, denotes the median of the respective parent distribution of first and

second sample.

For our application here, of the two procedures suggested by them, we will consider only

the one that they report to perform better for small sample sizes.

We follow the same notation of variables introduced in the beginning of this section.

Additionally, let X̃1 and X̃2 denote the sample medians of first and second samples. Let

also s1 and s2 denote the respective sample standard deviations.

Begin Algorithm - Babu and Padmanabhan Method

Firs, define transformed observations zi as

zi =


(
X1i − X̃1

)
/s1 if 1 ≤ i ≤ n1(

X2(i−n1) − X̃2

)
/s2 if n1 < i ≤ n1 + n2

Denoting Q = n1 + n2, the following terms are computed,

U =
1

n1n2

n1∑
i=1

n2∑
j=1

1{X1i≤X2j},

p̃ =
1

Q2

Q∑
i=1

Q∑
j=1

1{zis1≤zjs2} and

T =
√

n (U − p̃) .

Now, let (z∗,b1 , . . . , z∗,bQ ) be sample values of bootstrap sample b, b = 1, . . . , B, from the

original sample of (z1, . . . , zQ). Also let yb
1i = z∗,bi s1, i = 1, . . . , n1 and yb

2i = z∗,bi+n1
s2, i =

1, . . . , n2. Based on these values, the following quantities are computed:

U∗,b =
1

n1n2

n1∑
i=1

n2∑
j=1

1{yb
1i≤yb

2j},

p∗,b =
1

Q2

Q∑
i=1

Q∑
j=1

1{
z∗,b
i s∗,b

1 ≤z∗,b
j s∗,b

2

} and

T ∗,b =
√

n
(
U∗,b − p∗,b

)
,
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where s∗,b1 and s∗,b1 are the respective standard deviations of samples
(
yb
11, . . . , y

b
1n1

)
and(

yb
21, . . . , y

b
2n2

)
. The computed

(
T ∗,1, . . . , T ∗,B) are arranged in ascending order to form

vector
(
T ∗,(1), . . . , T ∗,(B)

)
. Finally the α ·Bth and (1−α) ·Bth percentile are determined

as T ∗,(α·B) and T ∗,((1−α)·B) (if α·B and (1−α)·B are not integers, then they are rounded

to the closest integer.) The decision for evidence to accept the hypothesis HBP
0 defined

in (4.14), is reached if T ∈
(
T ∗,(α·B), T ∗,((1−α)·B)

)
.

End Algorithm - Babu and Padmanabhan Method

The authors present several simulation results regarding the achieved significance level

using their method. They show that their method exhibits a mixed result - being

conservative or liberal sometimes, and some others when the test maintains the pre-

assigned level.

4.4.2 Reiczigel el al. (2005) Bootstrap Method

Unlike complicated-looking the Babu and Padmanabhan (2002) resampling method, a

more straight-forward bootstrap method is proposed by Reiczigel et al. (2005). The

technical difference between the two methods is that, Babu and Padmanabhan (2002)

propose a overall resampling from the transformed, pooled samples; whereas, Reiczigel

et al. (2005) suggest bootstrapping within each of the respective samples. The authors

also discuss extensively the necessity and importance of the two sample problem in

biometry, in particular they discuss problems in parasitology and psychology, where

non-parametric methods are recommended due to the nature of the data arising out of

such fields.

In their paper, the authors suggest four different transformations of the original sample

before proceeding with the bootstrapping and further computations based on it. They

also recommend a particular transformation to be the “most appropriate”. Thus, we

will use this transformation in the following algorithm of their method.

Begin Algorithm - A Bootstrap solution for NP-BFP

• Transform the observations of the second data set x2 to, say, x3, where each

element of is x3 given by x3i = x2i − c1, where the constant c1 is the median of
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the values x1i − x2j over all i = 1, . . . , n1 and j = 1, . . . , n2. Note that x3 is just

the notation for transformed x2. Thus, n2 = n3, the size of vector x3.

• Form B bootstrap data sets
(
x(∗b)

1 ,x(∗b)
3

)
, b = 1, . . . , B, where x(∗b)

i , i = 1, 3,

are sampled with replacement from (xi1, . . . , xini). Let ranks of corresponding

observations the combined bootstrap sample
(
x(∗b)

1 ,x(∗b)
3

)
be denoted by R

(∗b)
i,j for

i = 1, 3 and b = 1, . . . , B.

• Evaluate for each bootstrap data set,

t
(∗b)
RW =

R
(∗b)
1· −R

(∗b)
3·√

s
2,(∗b)
1
n1

+ s
2,(∗b)
3
n3

, b = 1, . . . , B, (4.15)

where R
(∗b)
1· and R

(∗b)
3· are respective means of the ranks corresponding to each

sample and s
2,(∗b)
1 and s

2,(∗b)
2 are respective variances of ranks for each of the

bootstrap data sets x(∗b)
1 and x(∗b)

3 , b = 1, . . . , B. Let also the tRW, obs be the

t-value computed by using the ranks of the original samples in equation (4.15)

above.

• The bootstrap p value (or what is commonly known as “Achieved Significance

level”) is then calculated as bootp = 2min (p1, p2), where,

p1 =
1
B

B∑
b=1

1{
t
(∗b)
RW ≥ tRW, obs

} and p2 =
1
B

B∑
b=1

1{
t
(∗b)
RW ≤ tRW, obs

}.

• Reject Hp
0 if bootp ≤ 2α.

End Algorithm - A Bootstrap solution for NP-BFP

In simple terminology, the authors suggest a bootstrapped, rank-version of the SWS

approximation for t-test. The method is not directly implemented in and statistical

packages known. But the authors have a SPlus/R function and also an Microsoft

windows-based executable file to perform the computations for given samples. This

can be downloaded from http://www.univet.hu/users/jreiczig/brw/



4.4. Nonparametric Behrens-Fisher Problem 67

4.4.3 Brunner and Munzel (2000) Method

Along with the notation set in the beginning of this section, let R
(i)
ij = 1

2 +
∑ni

l=1 c(Xij −
Xil), the internal ranks of within sample i, where c(·) is the normalized count function.

Brunner and Munzel (2000) consider a test of hypothesis of the form defined in Definition

18. An unbiased and consistent estimator of the RTE, defined in the (4.13), is given by,

p̂ =
1
n1

(
R2· −

n2 + 1
2

)

Based on the above estimator of the RTE, following statistic is proposed,

WBF
N =

1√
N

R2· −R1·
σ̂N

,

which has, asymptotically, a standard normal distribution under the hypothesis Hp
0 :

p = 1
2 , where

σ̂2
N = N ·

[
σ̂2

1

n1
+

σ̂2
2

n2

]
,

where in turn,

σ̂2
i =

1
(ni − 1) (N − ni)

2

ni∑
k=1

(
Rik −R

(i)
ik −Ri· +

ni + 1
2

)2

.

4.4.4 ASCLT Methods for NP-BFP

Based on the Theorem on ASCLT for Rank Statistics (Chapter 3, page 22, Theorem 16),

here we propose a small-sample approximation for the two-sample NP-BFP. The only

difference here would be that, we will not be using the standard normal distribution as

proposed in the Theorem, but allowing the estimation of the quantiles of general distri-

bution, say G, like in the parametric situation (Section 4.3.3). For our consideration,

we use the hypothesis defined in the (4.13).

Thus, the small-sample approximation is similar to the one proposed for the parametric

BFP, though here overall mid-ranks of the observations are appropriately used. Also
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the coefficients used in the transformations of the quantiles would be slightly different

in terms of their numerical values. Along with the standard notation set previously for

NP-BFP, let n = min(n1, n2).

Begin Algorithm - ASCLT Methods for NP-BFP

The two samples are independently permuted nper times (nper is chosen by user - as

a general rule, the larger the value of nper, the better is the approximation), with pth

permuted sample vector be denoted and given by

x∗pi = permute(xi), i = 1, 2; p = 1, . . . ,nper .

Now for each of the permuted sample, we compute quantities:

SS ∗p
k = k ·

R
∗p
1·,k − 0.5
√

k
=

√
k ·
(
R

∗p
1·,k − 0.5

)
k = 1, . . . , n, (4.16)

where R
∗p
1·,k =

∑k
j=1 R ∗p

1j,k

k , where R ∗p
ij,k, i = 1, 2; j = 1, . . . , k denote the overall mid-rank

of observations of the combined, partial samples (X∗p
11 , . . . , X∗p

1k , X∗p
21 , . . . , X∗p

2k) for each

k = 1, . . . , n. That is,

R ∗p
ij,k =

1
2

+
2∑

l=1

k∑
m=1

c(X∗p
ij −X∗p

lm), k = 1, . . . , n.

Now, let SS
∗p =

∑n
k=1 SS ∗p

k
n for each permutation p = 1, . . . ,nper.

The quantiles t̂
∗p,(n)
α and t̂

∗p,(n)
1−α are now estimated by

t̂ ∗p,(n)
α = max

{
t

∣∣∣∣∣C−1
n

n∑
k=1

1
k
1{SS ∗p

k < t} ≤ α

}

t̂
∗p,(n)
1−α = max

{
t

∣∣∣∣∣C−1
n

n∑
k=1

1
k
1{SS ∗p

k < t} ≤ 1− α

}

where Cn =
∑n

i=1
1
i . From here, we propose the two methods of arriving at a decision

to accept or reject the hypothesis H0 defined in (4.13).
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Begin Sub-Algorithm: ASCLT-test Method 1

tα =

∑nper
p=1 t̂

∗p,(n)
α

nper
and t1−α =

∑nper
p=1 t̂

∗p,(n)
1−α

nper

Now, we propose to reject H0 if

0 6∈
[
tα, t1−α

]
. (4.17)

End Sub-Algorithm: ASCLT-test Method 1

Begin Sub-Algorithm: ASCLT-test Method 2

Subsequently, define transformed quantiles,

t̂
∗p,(n)
α,trans. =

√
n
(
SS

∗p − t̂
∗p,(n)
1−α

)
n

=

(
SS

∗p − t̂
∗p,(n)
1−α

)
√

n

t̂
∗p,(n)
1−α,trans. =

√
n
(
SS

∗p − t̂
∗p,(n)
α

)
n

=

(
SS

∗p − t̂
∗p,(n)
α

)
√

n
.

Further define,

tα,trans. =

∑nper
p=1 t̂

∗p,(n)
α,trans.

nper
and t1−α,trans. =

∑nper
p=1 t̂

∗p,(n)
1−α,trans.

nper

Finally, a transformation of the quantiles with the following expression is performed:

tα,fin =
tα,trans. − 2α · λn1,n2,2α ·

(
tα,trans. + t1−α,trans.

)
κn1,n2,2α

(4.18)

t1−α,fin =
t1−α,trans. − 2α · λn1,n2,2α ·

(
tα,trans. + t1−α,trans.

)
κn1,n2,2α

, (4.19)

where κn1,n2,2α and λn1,n2,2α are constant coefficients for a given n1, n2 and 2α, and

they have to be numerically determined for each sample size n1, n2 ∈ N and significance

level 2α.

Now, reject H0 defined in (4.13) if

R1· − 0.5 6∈
[
tα,fin, t1−α,fin

]
,
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where R1· =
∑n1

j=1 R1j

n1
, where the Rij denotes the overall mid-rank of observation Xij .

End Sub-Algorithm: ASCLT-test Method 2

End Algorithm - ASCLT Methods for NP-BFP

As mentioned earlier, the numerical values of the coefficients κn1,n2,2α and λn1,n2,2α differ

from those estimated for the parametric BFP. But the concept and underlying idea of

transforming the quantiles remain the same. The numerically found values of these

coefficients for some combinations of sample sizes n1 = n2 = n and 2α = 5% or 10% are

presented in Table 4.8. The same discussion regarding such transformations of quantiles

in page 52, holds here.

4.4.5 Simulation Results

Similar to the simulations for the parametric BFP, monte carlo simulations were also

performed to evaluate the performance of the above solutions for the NP-BFP. The

same common settings as for the parametric BFP (set on page 54) were also used for

the simulations here. As usual, we present only a small portion of the output and the

remaining will be made available online since the pattern of the results were similar.

The results for two simulation setting are presented in Tables 4.9 and 4.10. The first table

corresponds to the results of normally distributed samples , while the second one presents

the results for samples generated from lognormal distribution. The parameters used for

the distribution under each simulations are also tabulated in the tables. Moreover, we

Table 4.8: Numerically determined coefficients κn1,n2,2α and λn1,n2,2α, for different sam-
ple sizes and significance levels for the ASCLT-test method 2 for NP-BFP

2α = 5% 2α = 10%
n1 = n2 κn1,n2,2α λn1,n2,2α κn1,n2,2α λn1,n2,2α

10 0.6 3.00 0.58 3.95
15 0.65 2.60 0.63 3.7
20 0.696 2.45 0.67 3.35
25 0.727 2.10 0.705 3.05
30 0.76 1.90 0.73 2.90
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Table 4.9: Results for simulated level based on samples from N (µ = 0, σ) of 2α, under
H0 defined in (4.13). Columns ‘A-M1’ and ‘A-M2’ represent the ASCLT-test method 1
and 2, respectively.

σ1 σ2 Reiczigel Bab-Pad Br-Mun A-M1 A-M2
n1 = n2 = 15 and 2α = 5%

1.0 1.0 4.15 4.41 5.14 4.15 3.83
2.0 1.0 4.90 5.24 5.44 5.02 4.72
3.0 1.0 4.94 6.06 5.19 5.33 4.80
4.0 1.0 5.29 6.44 5.26 5.78 5.23
5.0 1.0 5.61 7.33 5.56 6.50 5.77

n1 = n2 = 15 and 2α = 10%

1.0 1.0 9.05 9.10 9.94 4.75 8.02
1.0 2.0 9.34 10.33 9.79 5.26 8.50
1.0 3.0 9.98 11.28 9.79 5.63 9.22
1.0 4.0 10.65 12.92 10.43 6.43 10.33
1.0 5.0 10.16 12.74 9.74 6.31 9.92

have followed the same convention as in the previous sections, by presenting results of

procedure not applicable ‘in principle’ in italized text.

Based on the results seen in Tables 4.9 and 4.10, we summarize the findings here:

• It can be noticed that none of the methods is consistently conservative or liberal

in maintaining the pre-assigned level 2α (of course, except for the ASCLT-test

method 1, which we do not discuss).

• In the normal sample situation, Reiczigel et al. (2005) method seems to be a

bit conservative, but as the difference in the variance between the two groups

increases, this method seems to get liberal. The same pattern also seems to hold

for Babu and Padmanabhan (2002) method. On the other hand, Brunner and

Munzel (2000) method seems to be consistently bit liberal at 2α = 5% and bit

conservative at 2α = 10%. Finally, the newly proposed ASCLT-test method 2, at

2α = 5% seems to move from being conservative to liberal as the difference in the

variance increases and is consistently conservative for the case when 2α = 10%.

• Under the lognormal distribution of the samples, there is mixed performance

among all methods, though the ASCLT-test method 2 seems to be performing

the ‘best’ among the lot, exhibiting results closest to the pre-assigned level.
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It is clear from the results that the performance of ASCLT-test method 2 which was

nearly the best in the parametric situation is only of a satisfactory nature here. One

possibility to fine-tune the method to produce better results is by exploring and mod-

ifying the coefficients κn1,n2,2α and λn1,n2,2α carefully. But it has to be noted that we

arrived at the numerical values provided in Table 4.8 after extensive simulation-based

studies. Moreover, the procedure directly implementing the Theorem on ASCLT for

Rank Statistics (Theorem 16), should be performed to observe the pattern of results

from them.

4.5 Conclusion

We discussed several analysis methods for the parametric one-sample and two-sample

t-test situations, the BFP and the NP-BFP. We also had some detailed discussion sur-

rounding the BFP. Along with the other existing methods, small-sample approximation

for the ASCLT-test methods were also presented. Extensive simulations were performed

to evaluate these methods and also to compare the independently produced results in

terms of their power and maintenance of pre-assigned level. From a general overview,

we see that the results of ASCLT-test method 2, in most of the cases, performs either

comparably to the existing standard method(s) or even better than all competing meth-

ods. The simulation results from ASCLT-test method 1 were always presented, but not

discussed. This is because, we are interested in leaving the results for future explorations

of this method from the point of view of almost sure decisions regarding the concerned

hypothesis.





Chapter 5

Discussion and Conclusion

5.1 Further Plans of Research and Open Problems

By virtue of being a new approach of testing based on ASCLT, the field throws open a

lot of interesting and challenging problems - both from pure mathematical viewpoint,

as well as from the perspective of applications. Though the open problems could be

addressed by taking solely one or the other viewpoint, according to our experience,

the best solutions are possible with the mixture of mathematical theory along with

supporting simulation-based, application-oriented evaluation. To some extent this was

done in this thesis, wherein we maintained a balance between the asymptotic theory

and real-life, small sample approximations.

Throughout the thesis, wherever appropriate, there have been suggestions for modifica-

tion, improvement and new proposals for further research. There are also many more

suggestions possible. Here we highlight only the major open questions to be addressed

and immediate consequences of work to be done.

• The mathematics of using the function G̃N proposed in Chapter 2, for applications

should be explored in the similar manner as was done using function ĜN . This

could lead to results similar to the one using ASCLT-test method 2, since in

ASCLT-test method 2 the estimated quantiles are adjusted for µ after estimation

and when using G̃N a similar adjustment would already happen at the stage of

estimation of the quantiles.

75
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• As mentioned in Chapter 4, one of the immediate, important further development

of the methods proposed in the situation with two-sample testing is regarding

the unequal sample sizes. Though the proposed procedures in Chapter 4 can be

implemented in situations with unequal sample sizes, their properties with respect

to maintaining level and power are not satisfactory. Since many real-life situations

involve samples of different sizes, this is important to be carried out in order to

facilitate wider usage of the new ASCLT-test method.

• Mathematical formulation of the coefficients κN,2α and λN,2α proposed in Chap-

ter 4, Section 4.2.2 (on page 35) and other such coefficients in other subsequent

sections of that chapter have to be worked out. This would be very helpful for

general applications and there would be no need to look up tables like 4.1, 4.3 and

4.8.

• The approach we have taken here is to consider a interval-based testing - more

specifically, without the conventional ‘p-value’ concept. Thus, another possible

approach using the ASCLT is the one similar to the concepts of bootstrap or

permutation tests, namely the ‘Achieved Significance Levels’. With this approach,

a p-value is constructed based on the ASCLT directly and the decision could be

based on whether this p-value is greater or lesser than or equal to 2α.

• The concept of Group Sequential Trials/Experiments is getting more common in

clinical trials, as there are several advantageous of following such an approach.

One of the main problems in implementing such trials is due to inflation of level α

because of the multiple tests performed during the course of the trial. Whereas,

this problem of α-inflation could be solved by using the ASCLT procedure in such

multi-stage trials. This idea has to be explored in detail as well.

• We performed some further simulation studies for multi-sample, one-way layout

design, with a similar approach that we adopted in the two-sample testing problems

done in Chapter 4. Though the results are not presented here, we observed that the

method performs better also in the one-way layout and shows clear and positive

signs of extending to complex designs. Two main problems in such extensions

are the issues with unequal sample sizes and the mathematical justification with

respect to the coefficients. These have to addressed adequately and the methods

developed further.



5.2. Conclusions 77

5.2 Conclusions

This thesis presented some existing theoretical results on the ASCLT. This was followed

by proposals for estimating quantiles of the distribution of the concerned statistics. Two

methods of hypothesis testing based on these estimated quantiles were proposed. The

ASCLT for rank statistics was also proposed and proved.

From the asymptotic, theoretical results presented, modifications for small-sample-based

applications were proposed in Chapter 4. We considered the parametric one sample

test, the BFP and NP-BFP. Of these, the BFP was discussed in detail with several

indications to the past literature and reviews. The results of ASCLT-test method 2

was very satisfactory in nearly all the situations presented and compared to existing,

standard methods. For the BFP, this method was having similar and comparable results

to the SWS approximation, which is widely accepted as the best approximate solution for

the BFP. Similarly, ASLCT-test method 2 for NP-BFP performed quite satisfactorily.

On the other hand, though having a similar resampling-based approach, the bootstrap

methods, seem to completely breakdown in several situations discussed.

5.3 Future Outlook

The fundamental statistical theories of hypothesis testing were laid in early Twentieth

century. Some of the remarkable developments concerning hypothesis testing were due to

series of papers by Neyman and Pearson starting from 1928 (Neyman and Pearson, 1928).

These theories were further developed and fine-tuned by mathematical statisticians until

the concepts were universally set and well accepted among the scientific community. It

is evident that such theories were developed on pure mathematical and hypothetical

setting and there were not enough computing facilities to simulate artificial settings in

order to sufficiently evaluate or modify the theory.

On the other hand, with the advent of rapid and efficient computing, in recent times,

several methods based on the ideas of Bootstrapping, Jack-knifing, Re-sampling, etc,.

are being proposed. Such procedures are built on the conventional foundations for

the theory of hypothesis testing, and thus, they improve only the methods of arriving

at inference - not directly the inference itself. There has not been much thinking into
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reinventing the basics of statistical decision-making process, as such, in order to overhaul

the theory in an effort to make better and more reliable decisions.

In this thesis, we get a step ahead in this direction of starting a new way of thinking

and looking at statistical decision problems. We proposed the usage the ASCLTs to

construct conventional-type hypothesis-testing procedure. At the same time, we also

proposed and left open (for further development) the new concept of, what we call,

almost sure decision theory (via the ASCLT-test method 1). This procedure has to

be explored very carefully, from mathematical, philosophical and application-oriented

approaches.
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