Calreticulin in kidney function and disease: chronic low level of calreticulin impairs Ca\(^{2+}\) homeostasis leading to mitochondrial dysfunction and chronic renal injury

In partial fulfillment of the requirements for the degree of “Doctor rerum naturalium (Dr. rer. nat.)”

Division of Mathematics and Natural Sciences
Georg-August University Goettingen

Submitted by

Asima Bibi

From Gujrat, Pakistan

Goettingen, 2012
Supervisor: Prof. Dr. Hassan Dihazi
Department of Nephrology and Rheumatology,
University Medical Center,
Georg-August University, Goettingen, Germany.

Reviewer 1: Prof. Dr. Sigrid Hoyer-Fender
Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology,
Georg-August University, Goettingen, Germany.

Reviewer 2: Prof. Dr. Jürgen Brochmøller
Department of Clinical Pharmacology,
University Medical Center,
Georg-August University, Goettingen, Germany.

Date of oral examination: 11/10/2012
DECLARATION

I hereby declare that the Ph.D. thesis entitled “Calreticulin in kidney function and disease: chronic low level of calreticulin impairs Ca\(^{2+}\) homeostasis leading to mitochondrial dysfunction and chronic renal injury” has been written independently, with no other sources than quoted, and no portion of the work referred to in the thesis has been submitted in support of an application for another degree.

Asima Bibi
To the loving memory of my Taia Aba (Uncle)

Dr. Muhammad Fazal
# Table of Contents

List of Abbreviations ........................................................................................................ viii
List of Tables ...................................................................................................................... xii
List of Figures ..................................................................................................................... xiii

1. General Introduction ........................................................................................................ 1
   1.1 Chronic kidney diseases ......................................................................................... 2
       1.1.1 Etiopathology of CKD .................................................................................. 3
       1.1.2 Risk factors of CKD ..................................................................................... 4
   1.2 Endoplasmic reticulum ............................................................................................ 5
       1.2.1 ER protein folding and ER resident proteins ............................................... 5
       1.2.2 ER stress ...................................................................................................... 6
       1.2.3 Intracellular Ca\(^{2+}\) homeostasis .............................................................. 8
   1.3 Calreticulin ................................................................................................................ 10
       1.3.1 Structure of calreticulin ............................................................................... 11
       1.3.2 Functions of calreticulin .............................................................................. 13
   1.4 Objectives .................................................................................................................. 17

2. Calreticulin is crucial for Ca\(^{2+}\) homeostasis mediated adaptation and survival of thick
   ascending limb of Henle's loop cells under osmotic stress ............................................. 18
   2.1 Abstract ................................................................................................................. 19
   2.2 Introduction ............................................................................................................ 20
   2.3 Materials and Methods ......................................................................................... 23
       2.3.1 Cell line and culture procedure .................................................................... 23
       2.3.2 Osmotic stress experiments ........................................................................... 23
       2.3.4 Protein extraction and estimation .................................................................. 24
       2.3.5 In-gel digestion and mass spectrometry analysis of protein spots .................. 25
       2.3.6 Western blot analysis .................................................................................... 26
       2.3.8 MTT cell viability assay ................................................................................ 26
       2.3.9 Ca\(^{2+}\) measurements ................................................................................... 27
       2.3.10 Quantitative real-time PCR ....................................................................... 28
       2.3.11 Construction of CALR expression and CALR siRNA vectors and cellular transfection ...... 28
2.3.12 Indirect immunofluorescence staining ...................................................... 29
2.3.13 Antibodies ......................................................................................... 29
2.4 Results ........................................................................................................ 30
2.4.1 ER Ca\(^{2+}\) binding proteins and osmotic stress .................................... 30
2.4.2 CALR and Ca\(^{2+}\) homeostasis under osmotic stress ............................. 37
2.4.3 CALR and cell death under osmotic stress ............................................. 40

3. Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury .................................................................................................................. 49

3.1 Abstract ........................................................................................................ 50
3.2 Introduction ................................................................................................... 51
3.3 Materials and Methods ................................................................................ 54
3.3.1 Animals ................................................................................................. 54
3.3.2 Morphometric analysis of kidneys .......................................................... 54
3.3.3 Histological analysis of kidneys ............................................................... 54
3.3.4 Immunohistological analysis of kidneys .................................................. 55
3.3.5 Electron microscopy .............................................................................. 55
3.3.6 Protein extraction, precipitation and estimation ...................................... 56
3.3.7 2-D gel electrophoresis (2-DE) .............................................................. 56
3.3.8 In-gel digestion and mass spectrometry analysis .................................... 57
3.3.9 Bioinformatic Analyses ........................................................................ 58
3.3.10 Western blot analysis .......................................................................... 58
3.3.11 Isolation of mitochondria ................................................................. 58
3.3.12 Cytochrome c oxidase activity assay .................................................... 59
3.3.13 Data analysis ....................................................................................... 59
3.3.14 Antibodies .......................................................................................... 59
3.4 Results ........................................................................................................ 59
3.4.1 Low Calr level results in progressive kidney damage in Calr\(^{+/−}\) mice ...................... 59
3.4.3 Ultrastructural analysis shows glomerular and tubular cell damage in Calr\(^{+/−}\) mice ........ 64
3.4.4 Enhanced expression of ECM proteins in advanced kidney injury in Calr\(^{+/−}\) mice........... 66
3.4.5 ER stress pathway is not operative in Calr\(^{+/−}\) mice kidney damage ............. 67
3.4.6 Comparative proteomic analysis show strong metabolic dysregulation in Calr\(^{+/−}\) mice kidneys ............................................................................................................. 70
3.4.7 Alteration of energy metabolism in Calr\(^{+/−}\) mice kidneys ......................... 75
3.4.8 Chronic low levels of Calr induces kidney injury through oxidative stress induction ...... 78
3.4.9 Activation of iNos dimerization in Calr⁺⁻ mice ................................................................. 80
3.4.10 Mitochondrial damage in Calr⁺⁻ mice ............................................................................. 81
3.5 Discussion ............................................................................................................................... 88
4. Summary .................................................................................................................................. 95
Bibliography .................................................................................................................................. 100
Appendix ........................................................................................................................................ 114
Acknowledgements .................................................................................................................... 120
Curriculum Vitae .......................................................................................................................... 122
List of Abbreviations

Δ: Mutant

2D DIGE: 2 dimensional differential in gel electrophoresis

ACN: Acetonitrile

ACTB: β-actin

ALS: Amyotrophic lateral sclerosis

ANOVA: Analysis of variance

ATP: Adenosine triphosphate

GBM: Glomerular basement membrane

BSA: Bovine serum albumin

Ca²⁺: Calcium ions

Calr: Calreticulin mouse

CALR: Calreticulin rabbit, human

cDNA: Complementary DNA

CHAPS: 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

CKD: Chronic kidney diseases

Cnx: Calnexin

Cox: Cytochrome c oxidase

CT: Threshold cycle

DMEM: Dulbecco's modified Eagle's medium

DMF: Dimethylformamide

DMSO: Dimethyl sulfoxide

DNA: Deoxyribonucleic acid

dNTPs: Deoxyribonucleotides
DTT: Dithiothreitol
ECM: Extra-cellular matrix
EF-2: Elongation factor 2
eif2α: Eukaryotic translation initiation factor-2α subunit
EMT: Epithelial to mesenchymal transition
ER: Endoplasmic reticulum
ERAD: ER-associated degradation
Erp72: Endoplasmic reticulum protein 72
ESI-QTOF-MS: Electrospray ionization time of flight mass spectrometry
ESRD: End stage renal disease
Ezr: Ezrin
FCS: Fetal calf serum
FITC: Fluorescein isothiocyanate
Fn1: Fibronectin
FSP1: Fibroblast specific protein 1
G: Gravitational (unit of centrifugation)
GFR: Glomerular filtration rate
Grp78: Glucose regulated protein 78
H&E: Hematoxylin and eosin
H₂O₂: Hydrogen peroxide
HCl: Hydrochloric acid
HE: Heparin
HRP: Horse radish peroxidase
IC: Interstitial cells
IEF: Iso-electric focusing
IgA: Immunoglobulin-A
IMCD: Inner medullary collecting duct
iNos: Induced nitric oxide synthase
InsP3: Inositol 1,4,5-trisphosphate receptor
IPG: Immobilised pH gradient
kDa: Kilo dalton
KEGG: Kyoto Encyclopedia of Genes and Genomes
Lam: Laminin
LC: Liquid chromatography
LDH: Lactate dehydrogenase
mGA: Mean glomerular area
mMA: Mean mesangial area
MS: Mass spectrometry
NaCl: Sodium chloride
NADH: Nicotinamide adenine dinucleotide
NCX: Na⁺ Ca²⁺ exchanger
NMR: Nuclear magnetic resonance
NO: Nitric oxide
OD: Optical density
OxPhos: Oxidative phosphorylation
P: Probability
PAGE: Polyacrylamide gel electrophoresis
PAS: Periodic acid shift
PBS: Phosphate buffer saline
PCR: Polymerase chain reaction
PDI: Protein disulphide-isomerase
PMCA: Plasma membrane calcium pump
PMSF: Phenylmethanesulfonylfluoride or phenylmethyisulfonyl fluoride
Prdx1: Peroxiredoxin 1
RNA: Ribonucleic acid
ROS. Reactive oxygen species
RT: Reverse transcriptase
SD: Standard deviation
SDS: Sodium dodecyl sulfate
SERCA: Sarco/endoplasmic reticulum Ca^{2+}-ATPase
siRNA: Small interfering RNA
Sod: Superoxide dismutase
STD: Standard
TALH: Thick ascending limb of Henle’s loop
TBS-T: Tris boric acid-tween
TCA: Tricarboxylic acid cycle
TFA: Trifluoroacetic acid
TG: Thapsigargin
TGFβ1: Transforming growth factor beta 1
TJ: Tight junctions
TM: Tunicamycin
UPR: Unfolded protein response
WT: Wild type
Zn^{2+}: Zinc ions
List of Tables

Table 2.1: Differentially regulated proteins in TALH-NaCl cells compared to TALH-STD cells ............... 44

Table 3.1: Proteins differentially regulated in the kidneys of WT and Calr<sup>+/−</sup> mice................................. 86
# List of Figures

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The ER stress response pathway.</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic representation of intracellular calcium homeostasis.</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>A model of linear and 3D structure of Calreticulin.</td>
<td>13</td>
</tr>
<tr>
<td>1.4</td>
<td>Calreticulin-Calnexin cycle representing the proper folding of glycoproteins in ER.</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>2D gel electrophoresis expression of differentially regulated proteins under osmotic stress conditions.</td>
<td>34</td>
</tr>
<tr>
<td>2.2</td>
<td>Time dependent expression changes of ER Ca(^{2+}) binding proteins under varied osmotic stress conditions.</td>
<td>36</td>
</tr>
<tr>
<td>2.3</td>
<td>Impact of hyperosmotic stress on expression of ER Ca(^{2+}) binding proteins under TM (5µg/ml) induced ER stress.</td>
<td>37</td>
</tr>
<tr>
<td>2.4</td>
<td>Time dependent increase of free Ca(^{2+}) in TALH cells exposed to hyper-osmotic stress.</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>Impact of HE and hyperosmotic stress on expression of proteins and cell viability in TALH cells.</td>
<td>39</td>
</tr>
<tr>
<td>2.6</td>
<td>Effect of overexpression of CALR on cell viability of TALH cells under hyperosmotic stress.</td>
<td>41</td>
</tr>
<tr>
<td>2.7</td>
<td>Knockdown of CALR enhances the resistance of TALH cells to hyperosmotic NaCl stress.</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Morphometric analysis of embryonic and adult kidneys of Calr KO mice.</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Progressive structural alterations in Calr(^{-/-}) mice.</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>Electron microscopy analysis of Calr(^{-/-}) and WT kidneys.</td>
<td>65</td>
</tr>
<tr>
<td>3.4</td>
<td>Immune expression of glomerular and tubulointerstitial injury markers.</td>
<td>67</td>
</tr>
<tr>
<td>3.5</td>
<td>Effects of low Calr level on expression of ER stress marker and EF-hand Ca(^{2+}) binding proteins.</td>
<td>70</td>
</tr>
<tr>
<td>3.6</td>
<td>2D gel map expression of differentially regulated proteins in Calr(^{-/-}) mice kidneys compared to WT.</td>
<td>72</td>
</tr>
<tr>
<td>3.7</td>
<td>Gene Ontology (GO) classification of differentially regulated proteins by DAVID Bioinformatics.</td>
<td>74</td>
</tr>
<tr>
<td>3.8</td>
<td>Energy metabolism pathways.</td>
<td>78</td>
</tr>
<tr>
<td>3.9</td>
<td>Induction of oxidative stress in Calr(^{-/-}) mice kidneys.</td>
<td>79</td>
</tr>
<tr>
<td>3.10</td>
<td>Activation of iNos in Calr(^{-/-}) mice kidneys.</td>
<td>81</td>
</tr>
<tr>
<td>3.11</td>
<td>Electron micrographs demonstrating mitochondrial damage in Calr(^{-/-}) mice.</td>
<td>84</td>
</tr>
<tr>
<td>4.1</td>
<td>Schematic representation of potential pathway of low calreticulin level in the progression of renal injury.</td>
<td>99</td>
</tr>
</tbody>
</table>
1. General Introduction
1.1 Chronic kidney diseases

Kidney, a major homeostatic organ or highly specialized “Natural filters” of the body, mainly functions to remove waste products, excess of water and salts from the blood and excretes them outside the body in the form of urine. The kidneys filter about 180 liters of blood every day and produce about two liters of urine. The kidneys also produce certain hormones such as erythropoietin, which stimulates the bone marrow to make red blood cells, renin which regulates blood pressure, calcitriol the active form of vitamin D, which helps maintain Ca$^{2+}$ for bones and for normal chemical balance in the body. Loss of renal function is a life threatening event due to accumulation of wastes in the blood and consequent body damage. Chronic loss of kidney function or chronic kidney disease (CKD) is becoming a major public health problem worldwide affecting 7.2% of the global adult population with the number dramatically increasing from 23.4% to 35.8% in the elderly persons aged over 64 years (Zhang & Rothenbacher, 2008). However, results from an epidemiological survey of chronic kidney disease in population of older adults in Germany also showed prevalence of CKD in 17.4% subjects aged 50-74 which increased with age and peaked 23.9% in age of 70–74 years (Zhang et al, 2009). CKD is associated with outcomes such as progression to end-stage renal disease (ESRD), development of cardiovascular disease, hospitalization, and death in community-based populations (Go et al, 2004; Orantes et al, ; Schiffrin et al, 2007; Tonelli et al, 2006; Weir). Progressive nature of CKD to end stage renal failure, a condition requiring dialysis or renal transplantation for long-term survival is putting an extensive load on global health care costs (Hossain et al, 2009; Lysaght, 2002; Meguid El Nahas & Bello, 2005; Zhang & Rothenbacher, 2008).
1.1.1 Etiopathology of CKD

The nephron, the structural and functional unit of the kidney is progressively damaged in many chronic kidney diseases starting with either glomerular or tubular injury. Despite the start, most renal diseases eventually converge into common histopathological impairments such as glomerulosclerosis and tubulointerstitial fibrosis leading to progressive functional deterioration of the renal system (Fogo, 2006; Lopez-Novoa et al, 2010; Meguid El Nahas & Bello, 2005).

**Glomerulosclerosis**

Glomerulosclerosis is thought to have a central pathogenetic role in the progression from chronic glomerulopathies to end-stage renal disease (Klahr et al, 1988). It frequently complicates most renal diseases and is characterized by progressive remodeling of the glomerular structure such as thickening of the glomerular basement membrane, expansion of mesangium, podocyte damage and disruption of glomerular filtration machinery. Microinflammation of endothelial cells is the early sign of glomerular injury leading to activation and release of a wide range of cytokines and growth factors from mesangial cells (Cybulsky et al, 2010). Under the influence of growth factors, especially transforming growth factor beta 1 (TGFβ 1), mesangial cells regress to an embryonic mesenchymal phenotype capable of excessive production and accumulation of extracellular matrix (ECM) such as fibronectin ultimately causing glomerular mesangial expansion and fibrosis (El-Nahas, 2003; Hohenadel & Van der Woude, 2004). These structural impairments are associated with proteinuria, disturbed glomerular filtration rate (GFR), tubule damage and fibrosis (Levey & Coresh, 2011; Lopez-Novoa et al, 2010). Stress states, such as sustained hypertension, nitric oxide and oxidative stress are commonly known to implicate in glomerulosclerosis (Modlinger et al, 2004; Oberg et al, 2004; Okada et al, 2012).
Tubulointerstitial fibrosis
Despite the primary cause, many renal diseases also lead to tubulointerstitial fibrosis. Inflammation, proliferation, apoptosis, and fibrosis are hallmarks of tubulointerstitial fibrosis (Zeisberg et al, 2000). Direct attack of disease or indirectly due to proteinuria from glomerular damage initiates the inflammation of tubular cells and interstitial fibroblasts and myofibroblasts associated with an increased synthesis and release of matrix proteins (Lopez-Novoa et al, 2010). Progressive deposition of harmful connective tissue in interstitial spaces of the kidney together with epithelial to mesenchymal transition (EMT) of tubular epithelial cells, are directing to apoptosis based tubular atrophy and the formation of atubular glomeruli. (Carew et al, ; Efstratiadis et al, 2009; Meguid El Nahas & Bello, 2005; Radisky et al, 2007; Zeisberg et al, 2000). Continuing injury, inflammation, and fibroblast activation, ECM deposition and proliferation lead to irreversible fibrosis.

1.1.2 Risk factors of CKD
Hypertension (Barri, 2008; Tedla et al, 2011), and diabetes (Bash et al, 2008; Pyram et al, 2011) are the two mainly discussed causes of kidney disease worldwide. Cytokines (Schulman, 2012), kidney infections (Barsoum, 2006), urinary obstruction or blockage with kidney stones (Rule et al, 2009), oxidative stress and hypoxia (Mimura & Nangaku, 2010), and salt-induced renal injury (Mimran & du Cailar, 2008; Susic & Frohlich, 2012; Tuomilehto et al, 2001) are also known as some of the potential risk factors of CKD. Progressive kidney injury also develops in many hereditary disorders such as atherosclerosis (Boykin et al, 2011; Kottgen et al, 2010; Vehaskari, 2011). Regardless of the underlying cause, CKD is characterized by appearance of glomerulosclerosis, and tubulointerstitial fibrosis with subsequent progression toward end stage renal disease (ESRD) (Meguid El Nahas & Bello, 2005).
In the last few decades, the progression of the disease process is well documented. Much interest has focused on investigating potential mechanisms to prevent or reverse the damage. However, the intracellular mechanisms responsible for renal disease initiation leading to complete damage are mostly not well understood. There is an immense need to explore the approaches to minimize the risks of renal diseases. Over the past few decades, intensive investigations of the molecular and cellular mechanisms revealed the association of ER function alteration in normal kidney structure and function, with the early-onset and pathogenesis of renal diseases (Cunard & Sharma, 2011; Cybulsky et al, 2010; Hebert & Molinari, 2007; Inagi, 2009; Inagi et al, 2008; Liu et al, 2008).

1.2 Endoplasmic reticulum

The ER is a perinuclear, cytoplasmic compartment comprising membranous network of branching tubules and flattened sacs. It is mainly recognized as a protein-folding factory involved in synthesis, proper folding, trafficking, and modification of proteins, degradation of proteins, as well as for synthesis of steroids, cholesterol, and other lipids. Ca$^{2+}$ storage and Ca$^{2+}$ signaling regulation is another basic important role of ER in cell (Baumann & Walz, 2001; Bedard et al, 2005; Inagi, 2009; Nauseef et al, 1995). Importantly, the ER contains numerous molecular chaperones and catalysts to aid in the ER functions.

1.2.1 ER protein folding and ER resident proteins

Newly synthesized proteins translocate to ER, where they are covalently modified and attain their correctly folded three dimensional conformation through ER resident chaperones including BiP /Grp 78, calreticulin (CALR), calnexin (Cnx), Grp94 and the thiol oxidoreductases PDI and ERp57, all involved in generating conformationally competent and functional proteins (Bedard et al, 2005; Brodsky & Skach, ; Ellgaard & Helenius, 2003;
Kleizen & Braakman, 2004). Each of these proteins follows their distinctive chaperon system for specific types of proteins.

### 1.2.2 ER stress

Environmental insults like ischemia, glucose deprivation, oxidative stress, osmotic stress or genetic mutation can cause expression regulation of ER chaperone proteins. This expression changes the result in aberrant ER function due to inefficient protein folding (Buchberger et al, 2010; Chevet et al, 2001; Wu & Kaufman, 2006; Yoshida, 2007; Zhao & Ackerman, 2006). Improper protein folding results in accumulation of misfolded proteins leading to ER stress and induction of ER stress response pathways (Figure 1.1). Misfolded proteins are corrected by either activation of unfolded protein response (UPR) (Hetz, 2012; Ron & Walter, 2007; Wu & Kaufman, 2006), a coordinated stress response that upregulates the capacity of the ER to process abnormal proteins or ER quality control CALR-Cnx cycle (Discussed later). UPR is an adaptive mechanism that targets the transcription regulation of proteins which can restore the proper folding of proteins through induction of chaperone such as Grp78 (Lee, 1992; Lee, 2007; Zhang et al, 2010).
Figure 1.1: The ER stress response pathway.

ER stress leads to accumulation of unfolded proteins in ER resulting in induction of four responses. A: Induction of ER chaperones such as Calr, Grp78 and Erp57 to correctly fold the misfolded proteins and avoid protein aggregates (Hong et al, 2004). B: Translation attenuation which reduces ER load by turning down the general translation (Lee do et al, 2010) C: ERAD is the ER quality-control system which detects and exposes to cytosolic proteasomal degradation of the misfolded proteins through ubiquitylation. D: apoptosis of cells in which severe and prolonged ER stress extensively impairs the ER functions and threatens the integrity of the organism (Timmins et al, 2009). ER: endoplasmic reticulum, ERAD: ER-associated degradation. Adapted from Araki et al. (Araki et al, 2003).

Accumulating data suggest a pathophysiological role of ER stress in renal diseases. Patient biopsies and animal models of kidney diseases demonstrate the implication of ER stress in the development and progression of both glomerular and tubular injuries (Chiang et al,2011; Inagi, 2009; Inagi et al, 2008). ER stress is also associated with many risk factors of CKD such as hypertension, diabetes, hypoxia/ischemia and genetic disorders giving a possible mechanistic link between disease mediators and final diseased state (Lindentmeyer et al, 2008;
Okada et al., 2012; Yoshida, 2007). In vitro studies further show an expression regulation of ER chaperones along with UPR activation in renal cells treated with cytokines, oxidative stress, or osmotic stress mediators (Bibi et al., 2011; Dihazi et al., 2005; Dihazi et al., 2011; Eltoweissy et al., 2011; Lindenmeyer et al., 2008; Yoshida, 2007). Using proteomics, Dihazi and coworkers demonstrated a clear correlation between upregulation of ER stress–related proteins and the fibrosis phenotype highlighting an important role of ER proteins in fibrosis progression (Dihazi et al., 2011).

1.2.3 Intracellular Ca\(^{2+}\) homeostasis

Ca\(^{2+}\) is an universal signal transduction element. Free intracellular Ca\(^{2+}\) is the physiologically active form of Ca\(^{2+}\) (Means & Rasmussen, 1988). It plays an important role in the regulation of diverse cellular processes from contraction, secretion, gene transcription, cell growth and movement to cell differentiation and death (Berridge, 1993). Maintenance of a constant luminal level of Ca\(^{2+}\) is also essential for the post-translational processing, folding and export of proteins (Verkhratsky, 2007). Therefore, the maintenance of free Ca\(^{2+}\) to certain critical limits called intracellular Ca\(^{2+}\) homeostasis is of prime importance in the cell to keep it functioning normally. Intracellular Ca\(^{2+}\) homeostasis refers to a cytosolic concentration as low as ~100 nM compared to 10,000 folds more in extracellular environment. Figure 1.2 represents the simple pathways and organelles involved in the intracellular Ca\(^{2+}\) homeostasis.

ER, being a major intracellular Ca\(^{2+}\) store plays an important role in the regulation of intracellular Ca\(^{2+}\) homeostasis (Berridge, 1993). Ca\(^{2+}\) signalling between ER and cytoplasm is tightly regulated by ER membrane Ca\(^{2+}\) entry and exit channels. Ca\(^{2+}\) enters the ER through SERCA, a Ca\(^{2+}\) pump that transfers Ca\(^{2+}\) from the cytosol to the lumen of the SR/ER at the expense of ATP hydrolysis (Kubala, 2006), whereas InsP3 (inositol 1,4,5-trisphosphate
receptor) and ryanodine receptors are used for Ca\textsuperscript{2+} release from the ER (Arendshorst & Thai, 2009; Vanderheyden et al, 2009). Moreover, ER luminal Ca\textsuperscript{2+} is also in homeostasis with total ER Ca\textsuperscript{2+} concentration (up to 1 mM) and the free ER Ca\textsuperscript{2+} concentration (200 μM). ER resident proteins, in particular the molecular chaperones and folding enzymes; Cnx, CALR, BiP, Grp94, and PDI have both high- and low-affinity Ca\textsuperscript{2+}-binding sites and are responsible for mediating intracellular Ca\textsuperscript{2+} dynamics (Michalak et al, 2002). Because of the sheer abundance and number of Ca\textsuperscript{2+}-binding sites, CALR is considered the most important protein for Ca\textsuperscript{2+} storage and buffering. It binds to over 50% of ER luminal Ca\textsuperscript{2+} (Nakamura et al, 2001) and engages in intracellular Ca\textsuperscript{2+} homeostasis due to two Ca\textsuperscript{2+} binding domains with different affinities and capacities. The protein is involved in a variety of cellular processes and functions from cell to organ level (discussed later in part 1.3).
A schematic representation of intracellular calcium homeostasis mechanism showing tightly regulated Ca\(^{2+}\) concentrations across the cell and cellular components like organelles and channels that may take part in this regulation. [Ca\(^{2+}\)]\(_i\): calcium concentration, iNCX: Na\(^+\) Ca\(^{2+}\) exchanger, MNCX: mitochondrial Na\(^+\) Ca\(^{2+}\) exchanger, PMCA: plasma membrane calcium pump, MPT: mitochondrial permeability pore, RyR: ryanodine, Ins(1,4,5)P\(_3\)R: inositol-1,4,5-trisphosphate receptors, SERCA: sarco-endoplasmic reticulum Ca\(^{2+}\) ATPase. Adapted from Popi Syntichaki and Nektarios Tavernarakis (Syntichaki & Tavernarakis, 2003).

### 1.3 Calreticulin

CALR also known as high-affinity Ca\(^{2+}\) binding protein, Calreguiin, Erp60, CRP55, CAB-63 and CaBP3 and calsequestrin-like protein (Michalak et al, 1992) is an endoplasmic reticulum resident protein. The protein was first identified in the 70s as a Ca\(^{2+}\) binding protein in
skeletal muscle sarcoplasmic reticulum (Ostwald & MacLennan, 1974). Fifteen years later, with advances in molecular biology, two groups, Koch and Michalak, isolated simultaneously the cDNA encoding this Ca\(^{2+}\)-binding protein (Kottgen et al, 2010; Michalak et al, 1992). The authors named this protein calreticulin (Kottgen et al, 2010). Since then, CALR emerged as a ubiquitously expressed protein in a wide range of species and in almost all cell types studied. CALR is highly conserved protein with over 90% amino acid identity existing between human, rabbit, rat and mouse forms of the protein (Michalak et al, 1992).

### 1.3.1 Structure of calreticulin

CALR, is a 46 kDa (400 amino acid residues) ER Ca\(^{2+}\) binding chaperon. Biochemical and structural studies have demonstrated three distinct structural domains of CALR: the amino-terminal N-domain, the middle P-domain, and the carboxyl-terminal C-domain. The protein also contains a cleavable amino acid signal sequence at the beginning of N-terminal directing the protein to ER and an ER retention/retrieval signal at the C-terminal (Fliegel et al, 1989; Kottgen et al, 2010; Mesaeli et al, 1999). (Figure 1.3A)

**N-domain:** The N-domain (residues 1–170) is an extremely conserved and highly folded globular domain composed of eight antiparallel β-strands (Opas et al, 1996) as shown in Figure 1.3B. The N-domain of CALR also has a lectin binding site and a polypeptide binding site (Kapoor et al, 2003; Leach et al, 2002). It also binds with protein disulphide-isomerase (PDI) and ERp57 mediated by Zn\(^{2+}\) (Baksh et al, 1995; Leach et al, 2002; Michalak et al, 1999; Pollock et al, 2004). N-domain has a binding site for rubella virus RNA, a putative phosphorylation site and a segment which binds to steroid hormone receptors and the cytoplasmic domains of integrin α subunits and is recently known to have a single high-affinity Ca\(^{2+}\) binding site (Chouquet et al, 2011; Kozlov et al, 2010; Pocanschi et al, 2011).
**P-domain:** The middle P-domain (residues 170–285) of CALR is a proline rich domain. The P domain is also known as “extended arm” based on its three-dimensional structure obtained by NMR technique (Figure 1.3B). Moreover, this hairpin loop is also known to interact with Erp57 (Ellgaard et al, 2002; Martin et al, 2006). The P-domain also binds Ca$^{2+}$ with high affinity ($K_d$ =1 μM) and low capacity (approximately 1 mol of Ca$^{2+}$ per mol of protein) (Baksh et al, 1995; Tjoelker et al, 1994). The P domain, having a lectin binding site, together with the N-domain is involved in the chaperoning of nascent polypeptides (Pocanschi et al, 2011; Vassilakos et al, 1998). (Figure 1.3)

**C-domain:** The C-domain (residues 285– 400) of CALR is highly acidic Ca$^{2+}$ binding and storage domain (Figure 1.3B). Depending on negatively charged residues of the C-domain, protein binds Ca$^{2+}$ with low affinity ($K_d$ =2 mM) and high capacity (approximately 25 mol of Ca$^{2+}$ per mol of protein) (Baksh et al, 1995; Mesaeli et al, 1999) and works as a Ca$^{2+}$-buffer in ER. The C-domain of CALR is also known to regulate the protein-protein interactions of CALR with PDI, Erp57 and other chaperones (Michalak et al, 1999).
1.3.2 Functions of calreticulin

CALR is a multi-functional Ca^{2+} binding chaperon of ER. It plays two main functions in ER as a chaperon and as a Ca^{2+} binding and storage protein. CALR is also found in several other sub-cellular locations: the cell surface, cytoplasm, and ECM (Gold et al, 2010). The presence
of CALR, a protein with ER retention signal KDEL, in other cell compartments was a mystery. However, Afshar and coworkers (Afshar et al, 2005) demonstrated the retrotranslocation process of CALR, which is safe from proteasomal degradation. Many extracellular function of CALR have been reported including roles in immunogenic cell death in cancer, cellular adhesion, cell migration, phagocytosis, inflammation, cell signaling, and enhancing wound healing (Gold et al, 2010). Cytosolic CALR is also involved in certain processes such as adhesion, gene expression, translation and nuclear export (Hsu et al, 2005).

**Calreticulin, an ER quality control protein**

CALR functions as a molecular chaperone in the folding of many proteins and especially glycoproteins. The property of CALR to help other proteins to fold correctly and become functional, assigns the protein as a quality control unit in ER. The majority of growing polypeptides aspargine side chains bind to glycans and are translocated to ER in N-glycosylated form and are correctly folded into functional transportable forms as shown in Figure 1.4. Briefly, Glucosidase I and Glucosidase II are two independent enzyme systems, which bring these unfolded nascent proteins to monoglucosylated form by trimming two terminal glucose residues. Chaperon systems of ER, which recognize and fold specifically N-linked monoglucosylated proteins comprises of CALR, Cnx and Erp57. CALR and Cnx are homologous lectin molecular chaperones in ER. Their central P-domain binds to the hydrophilic N-linked monoglucosylated glycans of unfolded and misfolded proteins in ER leading to their proper, functionl and transportable folded conformations (Hebert & Molinari, 2007; Kapoor et al, 2003; Meunier et al, 2002; Trombetta & Helenius, 1998). On the other hand, misfolded proteins are degraded through ERAD system. In contrast, folding is significantly impaired in CALR or Cnx-deficient cells having accelerated folding with an accumulation of misfolded proteins (Hebert & Molinari, 2007).
Figure 1.4: Calreticulin-Calnexin cycle representing the proper folding of glycoproteins in ER.

Adapted from Ellgaard and Helenius (Ellgaard & Helenius, 2003). EDEM: ER degradation-enhancing 1,2-mannosidase-like protein, ERAD: ER-associated degradation
General Introduction

**Calreticulin and Ca\(^{2+}\) homeostasis regulation**

ER, being a major store of intracellular Ca\(^{2+}\), exerts a key role in the complex and precise mechanism of Ca\(^{2+}\) signalling and homeostasis. The ER lumen Ca\(^{2+}\) storage capacity is enhanced by Ca\(^{2+}\)-binding proteins. CALR is one of the most important Ca\(^{2+}\) binding proteins of ER. CALR plays a critical role in the regulation of intracellular Ca\(^{2+}\) homeostasis directly through Ca\(^{2+}\) storage capacity of ER. Earlier studies with overexpression of CALR in various cell lines show increased ER Ca\(^{2+}\) storage capacity with almost no impact on protein folding (Bastianutto et al, 1995; Bibi et al, 2011; Mery et al, 1996; Opas et al, 1996). On the other hand, downregulation and deficiency of CALR decreases the ER Ca\(^{2+}\) storage (Bibi et al, 2011; Coe & Michalak, 2009; Michalak et al, 1999). It also controls the Ca\(^{2+}\) homeostasis through store operated Ca\(^{2+}\) influx. CALR interacts with Ca\(^{2+}\) entry and exit channels called SERCA and IP3R and modulates Ca\(^{2+}\) influx by controlling the extent of inositol 1,4,5-trisphosphate-induced Ca\(^{2+}\) store depletion (Mery et al, 1996; Michalak et al, 2002; Xu et al, 2000). Michalak et al. showed that CALR knockout is lethal due to impaired cardiac development (Michalak et al, 1999). They further demonstrated that this impairment of heart development is due to Ca\(^{2+}\) homeostasis regulation and not because of chaperon function of protein.

Short-term increase in Ca\(^{2+}\) is an essential signal for vitally important cell processes whereas, long-term increase in Ca\(^{2+}\) leads to irreversible impairment of cellular functions and/or structure, up to cell death. There is convincing evidence that sustained increase in intracellular Ca\(^{2+}\) alters cell functions and is associated with various diseases such as diabetes mellitus, hypertension, Alzheimer’s disease, neurodegenerative disorders, cardiac ischemia, and atherosclerosis and renal diseases (Chan et al, 2009; Lajdova et al, 2009; Rivera et al, 1996; Vamvakas & Anders, 1990; Zile & Gaasch, 2011). The role of intracellular Ca\(^{2+}\) homeostasis
disturbances has also been discussed in some renal diseases but very little is known about its the role in normal kidney function and mechanisms undergoing in renal impairments.

1.4 Objectives
The general aim of our group is to understand the molecular mechanisms, which are involved in renal function or lead a normal functioning kidney towards disease state. In this regard we have undertaken proteomic screening of several renal cell line models exposed to different physiological conditions, such as osmotic stress, oxidative stress, and cytokines. Moreover, proteome of renal cells derived from fibrotic human kidney were also compared to healthy renal cells. All these studies highlighted the involvement of a group of ER resident proteins mainly CALR, Grp78, Erp72 and Erp57 in kidney injury. The present work is focused on one of these proteins, CALR and its physiological importance in renal structure and function, specifically through the following aims:

i) To investigate the role of CALR in renal cells functions and adaptation specifically, the potential mechanism of CALR downregulation under conditions of osmotic stress. This is addressed in Chapters 2.

ii) To examine the in vivo role of chronic low level of CALR in kidney structure and function. Especially, to analyze the intracellular signaling pathways that regulates the development of chronic kidney injury in mice with chronic low level of CALR. This aim is addressed in Chapters 3.
2. Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle’s loop cells under osmotic stress

Asima Bibi, Nitin K. Agarwal, Gry H. Dihazi, Marwa Eltoweissy, Phuc Van Nguyen, Gerhard A. Mueller, Hassan Dihazi

2.1 Abstract

The thick ascending limb of Henle’s loop (TALH) is normally exposed to variable and often very high osmotic stress and involves different mechanisms to counteract this stress. ER resident calcium ions (Ca^{2+}) binding proteins especially calreticulin (CALR) play an important role in different stress balance mechanisms. To investigate the role of CALR in renal epithelial cells adaptation and survival under osmotic stress, two-dimensional fluorescence difference gel electrophoresis combined with mass spectrometry and functional proteomics were performed. CALR expression was significantly altered in TALH cells exposed to osmotic stress, whereas renal inner medullary collecting duct cells and interstitial cells exposed to hyperosmotic stress showed no significant changes in CALR expression. Moreover, a time dependent downregulation of CALR was accompanied with continuous change in the level of free intracellular Ca^{2+}. Inhibition of the Ca^{2+} release, through IP3R antagonist, prevented CALR expression alteration under hyperosmotic stress, whereas the cell viability was significantly impaired. Overexpression of wild type CALR in TALH cells resulted in significant decrease in cell viability under hyperosmotic stress. In contrast, the hyperosmotic stress did not have any effect on cells overexpressing the CALR mutant, lacking the Ca^{2+}-binding domain. Silencing CALR with siRNA significantly improved the cell survival under osmotic stress conditions. Taken together, our data clearly highlight the crucial role of CALR and its Ca^{2+}-binding role in TALH adaptation and survival under osmotic stress.
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle’s loop cells under osmotic stress

2.2 Introduction
The osmoregulation of the body is one of the most controlled physiological mechanisms, regulated by a balance of hydration and solute concentrations (Bourque, 2008). The kidney is one of the main organs of the body which maintain osmolality. As a consequence of this, the kidney cells are exposed to very hyper-osmotic environment compared to the rest of the body (Marsh & Azen, 1975). The thick ascending limb of Henle’s loop (TALH) segment is the part of the kidney nephron, which plays a vital role in urinary concentration mechanism by generating concentrated urine in antidiuresis and dilutes urine in water diuresis. Hyperosmolality affects numerous cellular functions and causes cell cycle delay and apoptosis in renal cells (Burg et al, 2007; Michea et al, 2000). To study the adaptive changes under variable osmotic stress conditions in this segment of the kidney, the TALH-cell line from rabbit kidney provides a unique tool. The ability at the cellular level to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism. TALH cells adapt to an increased levels of NaCl by morphological shrinkage (Grunewald et al, 2001). These morphological adaptations are accompanied by dramatic change in the proteome of the cells. Especially the downregulation of the ER Ca\textsuperscript{2+} binding chaperones like calreticulin (CALR), Erp72, and GRP78 is debatable, since such a reaction of a protein with chaperone function is quite unlikely under stress conditions in TALH cells (Dihazi et al., 2005). The aim of the current study is to understand the role of CALR in terms of Ca\textsuperscript{2+} homeostasis regulation in the adaptation mechanism of TALH cells under osmotic stress. CALR is a 46 kDa protein, which is ubiquitously expressed in nearly all cells of higher organisms (Mesaeli et al, 1999). It is subdivided into three structural and functional regions: a highly conserved N-domain, a proline-rich P-domain and a
Calreticulin is crucial for Ca\(^{2+}\) homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress.

very acidic C-domain, which binds Ca\(^{2+}\) with high capacity and low affinity. Different cellular functions have been characterized for CALR, intracellular as well as extracellular. Mainly due to its ability to bind monoglucosylated high mannose oligosaccharides, CALR plays an important role as a lectin-like chaperon by binding to incompletely folded proteins that contain one terminal glucose on N-linked oligosaccharides, retaining the protein inside the ER until proper folding (Peterson et al, 1995). Directing proper conformation of misfolded proteins and glycoproteins under stress conditions, CALR, is generally induced as stress response protein to protect the cells against various toxic insults (Ihara et al, 2005; Little & Lee, 1995; Liu et al, 1997; Marber et al, 1995; Morris et al, 1997; Sugawara et al, 1993) and is involved in various cellular functions and signaling, including apoptosis, stress responses, organogenesis, and transcriptional activity (Michalak et al, 2002). Ca\(^{2+}\) is an important signaling molecule and stored mainly in the lumen of the ER. Fluctuations of the ER luminal Ca\(^{2+}\) concentration result in disturbance of intracellular Ca\(^{2+}\) homeostasis. Intracellular Ca\(^{2+}\) homeostasis has received considerable attention as a cell death signal and as an activator of gene expression (Nicotera et al, 1992; Nicotera & Orrenius, 1998). CALR due to its Ca\(^{2+}\) binding C-domain and accumulation of large amounts of Ca\(^{2+}\) without an excessive increase in the free ER intraluminal Ca\(^{2+}\) concentration was proved to regulate the intracellular Ca\(^{2+}\) homeostasis and ER Ca\(^{2+}\) storage capacity (Fliegel et al, 1989; Gelebart et al, 2005; Nakamura et al, 2001; Treves et al, 1990; Vassilakos et al, 1998). Additionally, CALR appears to play an essential role in the development of heart and brain since CALR-deficient mice develop embryonic lethality due to decreased ventricular wall thickness, whereas cells derived from CALR knockout embryos have impaired Ca\(^{2+}\) homeostasis (Gelebart et al, 2005). Intracellular Ca\(^{2+}\) concentration (Ca\(^{2+}\)) also plays an important role in the signal transduction processes within the TALH cells and regulates the
Calreticulin is crucial for Ca\(^{2+}\) homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress.

transepithelial transport of sodium across the renal epithelial tubular cells (Friedman et al, 1981; Taylor & Windhager, 1979).
2.3 Materials and Methods

2.3.1 Cell line and culture procedure

The epithelial cell line used in these experiments was derived from a rabbit kidney’s outer medulla. Cultured cells were immortalized by SV 40 early region DNA (Bartek et al., 1991). They showed a high degree of differentiation and specialization and provided a suitable model to study TALH cell function in vitro. The TALH cell line was maintained as a monolayer culture in DMEM (Gibco) including 5.5 mmol/l d-glucose supplemented with 10% fetal calf serum (Roche), 1% MEM nonessential amino acids, 1% l-glutamine and 1% Penicillin/Streptomycin (Gibco). Cells were routinely cultured in 75 cm² tissue culture flasks (Falcon) at 37 °C in a humidified 5% CO₂/95% air atmosphere.

2.3.2 Osmotic stress experiments

After reaching 70% confluence, TALH cells cultivated in 300 mosmol/kg medium (TALH-STD) were stressed with 600 mosmol/kg NaCl medium. TALH-cell lines exhibiting a high resistance to osmolality (600 mosmol/kg) (TALH-NaCl) were established. The osmolality was adjusted with 3 M NaCl solution and was controlled routinely. Later on, the TALH-NaCl cells, which were growing for a long time in hyperosmolality NaCl medium (600 mosmol/kg) were transferred back to hypoosmotic medium (300 mosmol/kg) in a time dependent manner for 12, 24, 48 and 72 h. All osmotic stress experiments were repeated at least three times.

Isolation of IMCD and IC cells

Inner medullary collecting duct (IMCD) and interstitial cells (IC) were isolated from rat kidney by following the protocol of Grupp et al. (Grupp et al., 1998).
2.3.4 Protein extraction and estimation

75% confluent cultures were scraped and washed three times with PBS with the corresponding osmolality (300 or 600 mosmol/kg). The cells were harvested by centrifugation at 200×g for 10 min, the pellet was treated with 0.3-0.5 mL lysis buffer (9.5 M urea, 2% CHAPS (w/v), 2% ampholytes (w/v), 1% DTT, 10 mM PMSF). Ampholytes, DTT, pepstatin (to a final concentration of 1.4 µM), and complete from Roche Diagnostic (according to the manufacturer’s protocol) were added before use. To remove the cell debris, sample centrifugation was carried out at 13,000×g and 4°C for 45 min. Supernatant was recentrifuged at 13,000×g and 4°C for an additional 45 min to get maximal purity. The resulting samples were used immediately or stored at -80°C until use. Protein concentration was estimated according to Bradford (1976), using bovine serum albumin as a standard.

2.5. Two-dimensional fluorescence difference gel electrophoresis (2D DIGE) Protein extraction was performed as described above. The resulting pellet was solubilized in labeling buffer (30 mM Tris–HCl pH 8.5, 9.5 M urea, 2% CHAPS, 10 mM PMSF), centrifuged (5 min, 13,000 × g) and the protein concentration of the supernatant was determined as described above. For the fluorescence labeling, each dye was freshly dissolved in anhydrous N,N-dimethylformamide (DMF) (Sigma–Aldrich, St. Louis, USA) to a stock solution containing 1000 pmol/µl. One volume of CyDye solution was added to 1.5 volumes of high grade DMF, to make a 400 pmol CyDye solution. For minimal labeling 400 pmol of the amine-reactive cyanine dyes Cy3 and Cy5 was added respectively to 50 µg proteins from each TALH-STD and TALH-NaCl, following the manufacturer’s protocol (GE Healthcare). The labeling reaction was carried out at 4°C in the dark for 30 min and the reaction was terminated by addition of 10 nmol lysine at 4°C in the dark for 10 min. Equal volumes of 2× sample buffer (30mM Tris–HCl pH 8.5, 9.5 M urea, 2% CHAPS, 10 mM PMSF, 130 mM DTT and 2%
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress

ampholytes 3-10) were added to each of the labeled protein samples. To avoid the dye-specific protein labeling, every pair of protein samples from two independent cell extract preparations was processed in duplicate while swapping the dyes. Thereby, four replicate gels were obtained which allowed monitoring regulation factors down to two-fold changes. 50µg of an internal standard consisting of a mixture of all cell samples under investigation were labeled with 400 pmol Cy2 and included on all gels to facilitate gel matching, thereby eliminating experimental variation. The three differentially labeled fractions were pooled. Rehydration buffer (8 M urea, 1% CHAPS, 13 mM DTT and 1% ampholytes 3-10) was added to make a total volume of 185 µl prior to IEF. The 2-DE was performed with 11cm 3–10 IPG strips. The CyDye-labeled gels were scanned at 50µm resolution on a Fuji FLA5100 scanner (Fuji Photo, Kanagawa, Japan) with laser excitation light at 473nm and long pass emission filter 510LP (Cy2), 532nm and long pass emission filter 575LP (Cy3), and 635nm and long pass emission filter 665LP (Cy5). Fluorescent images were acquired in 16-bit TIFF files format. Spot matching across gels and normalization based on the internal standard was performed with Delta2D software (Decodon, Greifswald, Germany). To analyze the significance of protein regulation, a Student’s t-test was performed, and statistical significance was assumed for p values <0.01. For protein visualization, 2-DE was poststained with colloidal Coomassie blue (Roti-Blue) overnight. Differentially regulated proteins were excised and processed for identification by MS.

2.3.5 In-gel digestion and mass spectrometry analysis of protein spots

Differentially expressed spots were manually excised from the gels and in-gel digestion, mass spectrometry analysis and protein identification with database search was performed as described by Dihazi et al. (Dihazi et al, 2005).
2.3.6 Western blot analysis

In order to confirm the protein expression differences during 2-D DIGE analysis, Western blot analysis was performed for the proteins of interest according to a standard protocol of Towbin et al. (Towbin et al, 1979).

2.3.7 Tunicamycin (TM), heparin (HE) and thapsigargin (TG) treatment.

TALH-cells were cultured in 96-well microtiter plates at a concentration of 5x10³ cells per well (for cell viability assay) and to 70% confluence in 75 cm² tissue culture flasks (for Western blot analysis). A stock solution of TM, an ER stress inducer was prepared by dissolving in DMSO. Heparin, an IP3R antagonist and blocker was used to block the IP3R. A low molecular weight, water soluble heparin which can enter the cell was purchased from Sigma. It was dissolved in culture media. Cells were treated with a concentration of 5 µM TM and 25 µM HE alone and coupled with NaCl stress separately, for 24 hours compared to control groups with normal and NaCl stress media. Cells grown in normal media also received equivalent volumes of DMSO as a control. After 24 hours of treatments cells cultured in 96 well plates were further processed for MTT cell viability assay and samples were collected for Western blot analysis.

A stock solution of Thapsigargin (Sigma), a SERCA inhibitor was prepared by dissolving in DMSO and a concentration of 0.3 µM was used to treat the TALH-cells cultured in 6-well plate in a time dependent manner for 0-50 min. mRNA samples were collected for RT-PCR.

2.3.8 MTT cell viability assay

Cell viability was tested using cell Proliferation Kit I (MTT), a colorimetric assay for the non-radioactive quantification of cell proliferation and viability (Roche Applied Bioscience, Mannheim, Germany). Cells were plated in 200 µl of medium at a concentration of 5x10³
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress

cells per well in 96-well microtiter plates (tissue culture grade, Falcon) and MTT cell viability was performed according to manufacturer’s protocol. GraphPad Prism 4 software (GraphPad Software Inc., San Diego, CA) was used for statistical analysis. Comparisons of two groups were conducted using paired two-tailed t-test. A one-way ANOVA test was performed for comparisons among multiple groups, and statistical significance was set at p < 0.05. All assays were performed using at least three separate experiments in triplicate, and data were expressed as mean±SD in comparison to untreated cells (controls).

2.3.9 Ca\textsuperscript{2+} measurements

*Imaging of intracellular free Ca\textsuperscript{2+}*

Cells grown on cover slides were incubated with 2.5 mM probenecid (an inhibitor of organic ion transport by blocking multidrug resistance-associated proteins) for 30 min at 37 °C in standard medium. Loading of cells with fura-2/AM (Invitrogen) was performed according to Vamvakas et al. (Vamvakas & Anders, 1990) in 3 ml standard medium for cover slides in four well plates respectively, both containing fura-2/AM in a final concentration of 8 µM, 2.5 mM probenecid and 1:1000 Pluronic® F-127. After loading the cells for 1 h at room temperature, the samples were washed two times with standard medium containing 2.5 mM probenecid to prevent leakage of fluorescent dye. Subsequently, cells were allowed to incubate for 30 min at room temperature to deesterify fura-2/AM dye. The cover slides were removed from the well plates and imaging was carried out at 37 °C on the stage of an inverted microscope (Zeiss, Oberkochen) equipped for epifluorescence with objectives ranging from magnifications of 10× to 100× with oil-immersion.

*Measurement of intracellular free Ca\textsuperscript{2+} with FlexStation*
Measurement of free Ca\(^{2+}\) was also made with a fluorescence microplate reader (FlexStation, Molecular devices). Cells were plated in 200 µl of medium at a concentration of 5×10^3 cells per well in 96-well microtiter plates (tissue culture grade, Falcon). Fura-2/AM was loaded as described above. Fura-2/AM fluorescence was measured by illuminating the cells with an alternating 340/380 nm light every 5 s. Fluorescence intensity was measured at 510 nm. Automated pipette was settled for the addition of 45 ml of thapsigargin to remove extracellular Ca\(^{2+}\). Changes in intracellular Ca\(^{2+}\) concentration are presented as the change in the ratio of fluorescence intensity for excitation at 340 and 380 nm.

### 2.3.10 Quantitative real-time PCR

Short-term stress dependent CALR mRNA expression levels were determined by quantitative real-time PCR. Briefly, total RNA was isolated from TALH-STD and TALH-NaCl cells exposed for different times to NaCl stress with the column-based RNeasy Mini Kit (Qiagen, Hilden) according to the manufacturer’s protocol. RNA was transcribed using the SuperScript™ II RNase H-Reverse Transcriptase Kit. PCR was performed with a PCR kit (Invitrogen) according to the manufacturer’s directions. Primer sequences were as follows: Rabbit-CALR forward, 5’-GAA ATC GAC AAC CCC GAG TA-3’; reverse, 5’-CCT CGT CCT GCT TGT CTT TC-3’ (MWG Biotech, Ebersberg D). Quantitative real-time PCR was carried out on an Mx3000P PCR system (Stratagene, Amsterdam). Reaction conditions were adopted according to Hsu et al. (Hsu et al. 2005).

### 2.3.11 Construction of CALR expression and CALR siRNA vectors and cellular transfection

The construction procedure of wild type (WT-CALR), mutant without the Ca\(^{2+}\) binding C-domain (ΔCALR) and CALR siRNA vectors has been provided in detail in supplementary
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress.

data. All constructs were verified by sequencing. The transfection was performed using transfection reagent Lipofectamine 2000\textsuperscript{TM} (Invitrogen) according to manufacturer’s standard protocol. In brief, 2 µg of plasmids and 8 µl of Lipofectamine 2000\textsuperscript{TM} were added to 100 µl OptiMEM (Gibco). The mixture was gently mixed, incubated at room temperature for 20 min, and then added drop-wise to TALH cells cultured to approximately 80% confluence in 100-mm plates. The analysis of the transfection was carried out after three days of incubation. After 24 h, transfection media was changed with selection media for stable transfection. Cells were maintained in the selection medium for 14 days to achieve stable transfection and assessed for CALR expression by Western blot and immunofluorescence staining.

2.3.12 Indirect immunofluorescence staining

For the indirect immunofluorescence staining 10×10\textsuperscript{3} cells from each TALH-STD and TALH-NaCl were cultivated overnight in 16-well chamber slides. The medium was removed and the cells were washed twice with PBS-buffer. Fixation of the cells was carried out for 30 min at −20 °C with methanol/acetone (1:1, v/v). The fixed cells were blocked with 1:5 normal goat serum (DAKO)/PBS buffer for 1 h and incubated with primary antibodies overnight. Alexa Fluor labeled goat anti-rabbit antibody was used as secondary antibodies. The incubation was performed for 60 min at room temperature in the dark. Thereafter the samples were counterstained with DAPI in mounting medium. Afterwards samples were analyzed with immunofluorescence microscopy (Carl Zeiss Axiovert S100TV).

2.3.13 Antibodies

Rabbit anti-Erp72 polyclonal antibody was from Stressgen, mouse anti-β-actin monoclonal antibody and rabbit anti- GRP78/BiP polyclonal antibody were from Sigma, mouse anti-CALR monoclonal antibody was from BD Bioscience. Anti-CALR was purified from rat liver.
Calreticulin is crucial for Ca\(^{2+}\) homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress according the procedure of Nguyen Van and Soling (Nguyen Van, 1989). Alexa Fluor dye conjugated to secondary anti-rabbit antibody and Alexa dye conjugated to secondary anti-mouse antibody were from Molecular Probes. Anti-flag antibody was from Sigma.

### 2.4 Results

#### 2.4.1 ER Ca\(^{2+}\) binding proteins and osmotic stress

In order to understand the molecular mechanism of TALH cells adaptation and survival under osmotic stress, cell extracts were prepared from TALH-STD and TALH-NaCl cells. The protein extracts were subjected to DIGE analysis. The 2D DIGE images were analyzed with the Delta2D software (Decodon); interesting protein spots were excised and analyzed by mass spectrometry. The proteins were identified using MASCOT Database. 2D DIGE coupled with mass spectrometry analysis showed that many proteins were differently expressed in the stressed TALH-NaCl cells compared to TALH-STD cells. Among these differentially expressed proteins, a group of ER resident proteins, GRP78, Erp72 and especially CALR, were downregulated in TALH-NaCl cells as reaction on hyperosmotic stress. In contrast, other ER stress proteins like the heat shock proteins, HSP 70 and HSP 90 were found to be upregulated (Figure 2.1A) (Table 2.1).

In order to further investigate the effects of osmolality changes on the expression of these proteins in TALH cells, TALH-NaCl cells were exposed to hypoosmotic stress by culturing the cells back in isoosmotic medium (300 mosmol/kg). To assess the time dependent effect of osmolality changes on protein expression the cell were harvested after 24 and 48 h upon incubation in hypoosmotic medium. The protein extract were subjected to 2D DIGE analysis. TALH-STD was used as a control (Figure 2.1B). Quantitative analysis of the protein spots
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress

revealed that the expression of CALR, GRP78 and Erp72 increased progressively after the transfer of the TALH-NaCl cells to isoosmotic medium and achieves the level of the proteins in TALH-STD after 48 h of incubation (Figure 2.1C).
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress.
Calreticulin is crucial for $\text{Ca}^{2+}$ homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress.
Calreticulin is crucial for Ca\(^{2+}\) homeostasis mediated adaptation and survival of thick ascending limb of Henle’s loop cells under osmotic stress.

**Figure 2.1: 2D gel electrophoresis expression of differentially regulated proteins under osmotic stress conditions.**

(A) Downregulation of ER Ca\(^{2+}\) binding proteins under hyperosmotic stress conditions: dual color 2-D DIGE images of proteins extracted from TALH-STD control and TALH-NaCl cells. Cy3-labeled proteins are shown in green color (TALH-STD) and Cy5-labeled proteins are in red color (TALH-NaCl), whereas protein spots in yellow color are present in both samples. (B) 2D DIGE proteome analysis of the TALH-STD and TALH-NaCl cultured in hypoosmotic medium in a time dependent manner for 0 h (i), 24 h (ii) and 48 h (iii). Cy3 labeled proteins are false colored in blue (TALH-STD) and Cy5 labeled proteins are false colored in orange (TALH-NaCl). (C) Enlargement of the gel regions of interest showing protein spots found to be differentially expressed: (i) CALR, (ii) Erp72, (iii) GRP78 and (iv) ACTB (β-actin). The protein expression quantification for selected proteins is given in form of bar diagrams. Expression of the same protein was quantified under different hypo-osmotic conditions shown in the form of black bar while control is shown in the form of white bar. Results are given as the means±SD from three independent DIGE experiments.

To validate the data obtained from 2D DIGE and protein identification, we confirmed the regulation profiles of the three differentially expressed key proteins by Western blot, namely CALR, GRP78 and Erp72. The Western blot analysis showed a downregulation of these proteins when TALH-STD cells were transferred to hyperosmotic NaCl medium in a time
Calreticulin is crucial for Ca\(^{2+}\) homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress

dependent manner from 12 to 72 h (Figure 2.2A). In contrast, the TALH-NaCl cells showed an upregulation of these proteins when they were cultured back to hypoosmotic standard medium in a time dependent manner from 12 to 72 h (Figure 2.2B). To compare the results obtained with TALH cells under hyperosmotic stress, similar experiments were performed with IMCD and IC primary cells, which were isolated from rat kidney. After three passages of cell culture, the cells were subjected to NaCl stress for 72 h and samples were collected for Western blot analysis. In contrast to TALH cells, IMCD and IC cells showed that CALR expression was not affected with osmotic stress in both cell types. Whereas Erp72 was found to be upregulated in IMCD cells, IC cells showed no regulation of Erp72 under hyperosmotic stress (Figure 2.2C).
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress.

Figure 2.2: Time dependent expression changes of ER Ca\textsuperscript{2+} binding proteins under varied osmotic stress conditions.

Western blot analysis of ER Ca\textsuperscript{2+} binding proteins (CALR, Erp72 and GRP78) found to be differentially expressed in time dependent manner under osmotic stress. Protein expression was investigated with respective antibodies for CALR, Erp72 and GRP78, while ACTB was kept as control: (A) TALH-STD cells cultivated in hyper-osmotic stress of NaCl for 24, 48 and 72 h. (B) TALH-NaCl cells cultivated back to hypo-osmotic medium for 24, 48 and 72 h. (C) IC and IMCD kidney cells under control and exposed to NaCl stress for 72 h.

To further characterize the role of the downregulation of these proteins for the TALH cell survival under hyperosmotic stress, we investigated the impact of upregulation of these proteins on cells subjected to osmotic stress. As expected TALH cell treated with TM resulted in ER-stress reflected in upregulation of CALR, GRP78 and Erp72. Cells exposed to a combination of tunicamycin and hyperosmotic stress showed a downregulation of the three
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress

investigated proteins (Figure 2.3A) accompanied by a significant increase in cell death revealed by the cell viability assay (Figure 2.3B).

**Figure 2.3: Impact of hyperosmotic stress on expression of ER Ca\textsuperscript{2+} binding proteins under TM (5µg/ml) induced ER stress**

(A) Western blot analysis of the expression changes of CALR, GRP78 and Erp72 in TALH-STD cells treated with TM and exposed to NaCl stress for 72 h. ACTB was kept as control. (B) MTT cell viability assay, 5000 cells/well were cultured in 96 well cell culture plates, incubated with NaCl stress or 5µM TM or both for 72 h. The cell viability was measured and plotted in the form of bar diagrams with the cell treatment on x-axis and cell viability on y-axis. TM: tunicamycin ns, non significant and ** shows significance.

2.4.2 CALR and Ca\textsuperscript{2+} homeostasis under osmotic stress

To investigate the impact of stress on Ca\textsuperscript{2+} store in ER, TALH cells growing in isoosmotic medium were transferred in hyperosmotic environment and the ER- Ca\textsuperscript{2+} release was monitored using fura-2/AM fluorescence dye, fluorescence microscopy and AnalySIS software. 10 min after stress application, a significant increase in ER- Ca\textsuperscript{2+} release could be detected (Figure 2.4A). A time dependent increase of Ca\textsuperscript{2+} release could be observed: the Ca\textsuperscript{2+} release was 1.6-fold higher after 20 min and 1.8 after 30 min of incubation in hyperosmotic medium when compared to the cell in isoosmotic one (Figure 2.4B). Parallel to Ca\textsuperscript{2+} imaging, RT-PCR was carried out for CALR. The increase in CALR threshold cycles (CT) confirmed
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress

an alteration in CALR-expression under osmotic stress. Parallel to the increase in Ca\textsuperscript{2+} release, a time dependent downregulation of CALR could be measured (Figure 2.4C). RT-PCR analysis of CALR expression from TALH cells treated with thapsigargin and exposed to hyperosmotic stress revealed an upregulation of CALR in the first 50 min as showed by a diminution in CT, while this decrease was stabilized afterwards. The decrease in CT value reflects the upregulation of CALR after thapsigargin treatment in contrast to downregulation of CALR when exposed to NaCl stress (Figure 2.4D). As reaction on Ca\textsuperscript{2+} loss upon thapsigargin treatment, the cells increase the expression of CALR to prevent excessive attenuation in Ca\textsuperscript{2+} and to rescue the homoeostasis.

**Figure 2.4:** Time dependent increase of free Ca\textsuperscript{2+} in TALH cells exposed to hyperosmotic stress.

(A) Control cells in isoosmotic medium (STD), and cells exposed to NaCl stress for 10 and 20 min. (B) Quantitative analysis of fluorescence intensity in fura-2/AM-stained TALH cells after osmotic stress treatment. Results are given as the means±SD from three independent experiments. (C) Quantitative real-time PCR for the mRNA of CALR in TALH cells from 0 to 70min in NaCl stress. (D) Real-time PCR analysis of CALR
Calreticulin is crucial for Ca^{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress

expression in TALH cells treated with 0.3µM TG. The bar diagram showed the CALR mRNA in the form of CT value on y-axis while time is plotted on x-axis. TG: thapsigargin.

To investigate the impact of Ca^{2+} release inhibition on ER Ca^{2+} binding protein expression and cell viability under osmotic stress, TALH cell treated with 25µM heparin, to block the IP3R mediated Ca^{2+} release, were exposed to hyperosmotic stress with NaCl. Cells treated with heparin alone showed no pronounced effect on the expression of CALR. In contrast, we could demonstrate a significant downregulation of GRP78 and Erp72 in TALH cells under NaCl stress with and without heparin treatment (Figure 2.5A). In comparison CALR was only downregulated in TALH cells under NaCl stress without heparin. Cells treated with heparin or heparin combined with NaCl stress showed no significant effect on CALR expression (Figure 2.5A). To determine the effect of alteration of Ca^{2+} traffic combined with osmotic stress on cell viability and proliferation, MTT test was carried out with TALH cells exposed to different conditions of heparin treatment with and without NaCl stress. The cell viability assay revealed a significant increase in cell death of heparin treated cells upon exposition to NaCl stress compared to NaCl or heparin treatment separately (Figure 2.5B).

Figure 2.5: Impact of HE and hyperosmotic stress on expression of proteins and cell viability in TALH cells.
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress

(A) Western blot analysis of the TALH-STD cells treated with HE and exposed to NaCl stress for 72 h compared to untreated control cells for the expression of CALR, Erp72, and GRP78 while ACTB was kept as control. (B) MTT cell viability assay, 5000 cells/well cultured in 96 well cell culture plates, incubated with NaCl stress or 25\(\mu\)M heparin or both. The cell viability (%) was measured from values obtained from the assay and plotted in form of bar diagrams with the cell treatment on x-axis and cell viability on y-axis. HE: heparin.

2.4.3 CALR and cell death under osmotic stress

CALR is an ER- Ca\textsuperscript{2+} binding protein, to investigate the impact of CALR due to its Ca\textsuperscript{2+} binding capacity on cell adaptation and survival in hyperosmotic stress, vectors expressing WT-CALR and ∆CALR (mutant without the Ca\textsuperscript{2+} binding site) were constructed and transfected into TALH cells separately. Intracellular localization of CALR and ∆CALR was examined by indirect immunofluorescence staining. As shown in Figure 2.6A, CALR showed a perinuclear reticular pattern in all cases, including the control and gene-transfected cells, although the signal intensity was increased in the transfectants compared to the control cells. Moreover, the Figure 2.6A also shows the transfection efficiency analyzed with anti-flag antibody against the flagged CALR transfected cells. To assess whether the increase in CALR expression interfered with ER Ca\textsuperscript{2+} storing capacity and Ca\textsuperscript{2+} homeostasis, we measured the free intracellular Ca\textsuperscript{2+} in cells transfected with WT-CALR and ∆CALR compared with control TALH cells. FlexStation and imaging analyses showed almost same basal levels of free intracellular Ca\textsuperscript{2+} in both WT-CALR and ∆CALR transfected cells. However thapsigargin induced a significant increase in free intracellular Ca\textsuperscript{2+} in cells overexpressing WT-CALR compared to ∆CALR and control, whereas the difference between ∆CALR and control was not significant (Figure 2.6B, Supplemental Figure 2.1). These results revealed the higher Ca\textsuperscript{2+} storing capacity of WT-CALR compared to ∆CALR and that the Ca\textsuperscript{2+} buffering capacity of the cells is directly correlated to CALR level in ER. The cell viability assay was
performed with WT-CALR and ΔCALR transfected cells exposed to hyperosmotic NaCl stress compared to non-transfected control cells. We observed a significant decrease in cell viability (%) in cells overexpressing WT-CALR under NaCl stress conditions compared to control non-stressed conditions. Moreover these cells also showed significant increase in cell death compared to cells over-expressing ΔCALR with no Ca\(^{2+}\) binding region (almost 70%) and non-transfected cells exposed to NaCl stress (almost 70%) (Figure 6C).

**Figure 2.6:** Effect of overexpression of CALR on cell viability of TALH cells under hyperosmotic stress.

(A) Immunolocalization of transfected and endogenous CALR in TALH cells. (i) Endogenous CALR. (ii) Transfected CALR with anti-flag antibody. (iii) Transfected WT-CALR. (iv) Transfected mutant CALR (ΔCALR). (B) Quantitative analysis of free Ca\(^{2+}\) using FlexStation in cells overexpressing WT-CALR and ΔCALR. Transfected cells were loaded with fura-2/AM dye. Free Ca\(^{2+}\) was measured in terms of fluorescence intensity of fura-2/AM at basal and TG induced levels. Results are given as the means±SD from three independent experiments. (C) MTT cell viability assay, TALH cells transfected with WT-CALR and ΔCALR...
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress.

were cultured to approximately 70% confluence in 96-well culture plates. After 24 h, cells were incubated to hyperosmotic NaCl medium for 72 h and proceeded for MTT cell viability assay. The cells expressing ∆CALR showed significant less cell death compared to cells overexpressing WT-CALR under hyperosmotic stress conditions. Results are given as the means ±SD from three independent experiments. TG: thapsigargin.

To further evaluate the role of CALR expression in TALH cells under hyperosmotic stress, we knocked down the expression of CALR in TALH cells with siRNA vector. Western blot analysis and immunofluorescence staining showed an efficient reduction in endogenous CALR protein levels compared to control (Figure 2.7A and B). Interestingly, the knockdown of CALR led to significant reduction in cell death under hyperosmotic stress condition compared to control cells under the same conditions (Figure 2.7C).
Calreticulin is crucial for Ca\(^{2+}\) homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress.

Figure 2.7: Knockdown of CALR enhances the resistance of TALH cells to hyperosmotic NaCl stress.

(A) Immunofluorescence staining of CALR in non-transfected cells (i) and cells transfected with siRNA vector for the knockdown of CALR (ii) showing the knockdown of CALR. (B) Western blot analysis of TALH-STD, cells transfected only with vector (transfected control) and cells transfected with siRNA vector targeting CALR (TALH-CALR siRNA) against CALR antibody showing almost 100% knockdown of CALR in siRNA transfected cells compared to controls. (C) MTT cell viability assay, cell viability assay was performed to access the effect of knockdown of CALR with siRNA on the viability of TALH cells under hyperosmotic NaCl stress. The cells with CALR knockdown showed significant decrease in cell death after 24 and 48 h NaCl stress compared to TALH cells under NaCl stress as a control. Results are given as the means±SD from three independent experiments.
Calreticulin is crucial for Ca\(^{2+}\) homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress

### Table 2.1: Differentially regulated proteins in TALH-NaCl cells compared to TALH-STD cells.

<table>
<thead>
<tr>
<th>Spot</th>
<th>Name of protein</th>
<th>Gene Name</th>
<th>Uniprot Accession</th>
<th>MS/MS Score</th>
<th>Nominal Mass (KDa)</th>
<th>Up/down regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calreticulin</td>
<td>CALR</td>
<td>P15253</td>
<td>215</td>
<td>48.274</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>78 kDa glucose-regulated protein</td>
<td>GRP78</td>
<td>P20029</td>
<td>325</td>
<td>72.422</td>
<td>↓</td>
</tr>
<tr>
<td>3</td>
<td>Protein disulfide isomerase A4</td>
<td>Erp72</td>
<td>P08003</td>
<td>98</td>
<td>71.973</td>
<td>↓</td>
</tr>
<tr>
<td>4</td>
<td>Heat shock protein 70</td>
<td>Hsp70-1</td>
<td>Q9MYS2</td>
<td>110</td>
<td>57.484</td>
<td>↑</td>
</tr>
<tr>
<td>5</td>
<td>Heat shock protein HSP 90-alpha</td>
<td>HSP90AA1</td>
<td>P30946</td>
<td>72</td>
<td>46.811</td>
<td>↑</td>
</tr>
<tr>
<td>6</td>
<td>Vimentin</td>
<td>Vim</td>
<td>Q6S5G2</td>
<td>144</td>
<td>68.946</td>
<td>↑</td>
</tr>
<tr>
<td>7</td>
<td>Alpha-enolase</td>
<td>Eno1</td>
<td>P17182</td>
<td>165</td>
<td>47.140</td>
<td>↑</td>
</tr>
<tr>
<td>8</td>
<td>Creatine kinase B-type</td>
<td>Ckb</td>
<td>Q04447</td>
<td>85</td>
<td>42.713</td>
<td>↑</td>
</tr>
</tbody>
</table>
2.5 Discussion

In recent years, CALR was described to play a role in many biological systems, including functions outside the ER, indicating that the protein is a multi-process molecule. Regulation of Ca\(^{2+}\) homeostasis and ER Ca\(^{2+}\) buffering by CALR might be the key for the explanation of its multi-process property. CALR due to its chaperon function is generally induced as a stress response protein to correct misfolded proteins. In proteomic analysis of cellular response to osmotic stress in TALH cells, Dihazi et al. described the downregulation of CALR under hyperosmotic stress as part of the osmotic stress resistant in kidney cells (Dihazi et al, 2005). In contrast to TALH cells, IMCD cells and IC of kidney showed no regulation under hyperosmotic stress conditions. Furthermore renal fibroblast cell lines subjected to hyperosmotic stress showed a significant upregulation of ER-stress proteins, e.g. CALR, GRP78 and Erp72 (Dihazi et al, 2011). This revealed a TALH cells specific role of CALR downregulation. In the present study, we investigated the role of downregulation of CALR in TALH cells adaptation to osmotic stress. Reversible regulation of CALR in TALH-NaCl under hypoosmotic stress conditions showed that the downregulation of the protein is a part of the cell resistance to osmotic stress. Furthermore, TM treatment of TALH cells strengthens our theory of the non-chaperon function of CALR under osmotic stress conditions. TM is an antibiotic that inhibits N-linked glycosylation of proteins leading to accumulation of misfolded proteins in the endoplasmic reticulum. Incorrect folding of proteins in the ER causes ER stress and upregulation of ER stress proteins, e.g. CALR and GRP78 (Elbein, 1987). Upregulation of CALR under TM treatment did not have any significant impact on cell viability, whereas TM treatment combined with hyperosmotic stress which resulted in significant reduction in the cell viability. CALR is one of the major Ca\(^{2+}\) buffering chaperones
Calreticulin is crucial for Ca^{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress. It plays a critical role in Ca^{2+} signaling in the endoplasmic reticulum lumen and has significant impacts on many Ca^{2+} dependent pathways (Coe & Michalak, 2009). CALR is involved in regulation of intracellular Ca^{2+} homoeostasis and ER Ca^{2+} capacity. Regulation of Ca^{2+} homeostasis and ER Ca^{2+} buffering by CALR might be the key to explain its multiprocess properties (Coe & Michalak, 2009; Fliegel et al, 1989; Nakamura et al, 2001; Treves et al, 1990). Time dependent increase in the intensity of free intracellular Ca^{2+} coupled with continuous decrease of mRNA levels of CALR under NaCl stress revealed that CALR expression is interconnected with Ca^{2+} homeostasis. Our results suggested that the unusual downregulation of a protein with chaperon function under stress condition is necessary to free Ca^{2+} from ER store and to increase cytosolic Ca^{2+} levels to inhibit the excessive NaCl transport across the plasma membrane. Despite the increased free Ca^{2+} ions, it does not elicit cell death directly like excessive Na^{+}, which may damage cells by direct osmotic effects (Nicotera & Orrenius, 1998). Further, a recent study on murine renal epithelial cells showed that Ca^{2+} inhibits the Na^{+} transport (Sugawara et al, 1993) and changes in cytosolic Ca^{2+} levels play a critical role in the regulation of transepithelial sodium transport. This suggest the involvement of a process of coupled Na^{+}/Ca^{2+} exchange across the plasmamembrane by the sodium gradient (Friedman et al, 1981; Taylor & Windhager, 1979). Therefore, it is possible that cytosolic Ca^{2+} buffering system consisting of mitochondria, endoplasmic reticulum, and Ca^{2+} binding proteins may also play a role in this control system. Inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca^{2+} release channel on the endoplasmic reticulum of all types of cells and controls via Ca^{2+} mobilization which ultimately attributed to a perturbation in intracellular Ca^{2+}, the Ca^{2+} homeostasis (Elbein, 1987; Kottgen et al, 2010; Thastrup et al, 1990). Heparin is an IP3R antagonist and potentially blocks the IP3 mediated release of Ca^{2+} from endoplasmic reticulum (Walensky & Snyder, 1987; Kottgen et al, 2010; Thastrup et al, 1990).
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress 

Our study revealed that blocking the Ca\textsuperscript{2+} release by IP3R antagonist had no impact on the expression of CALR. In contrast, emptying the ER Ca\textsuperscript{2+} stores by inhibition of SERCA pumps with thapsigargin resulted in upregulation of CALR. This highlights direct correlation between Ca\textsuperscript{2+} signaling and CALR expression alteration. On the other hand, Camacho and Lechleiter reported that CALR expression influence the IP3R mediated Ca\textsuperscript{2+} signaling by inhibiting the repetitive intracellular Ca\textsuperscript{2+} waves in ER (Camacho & Lechleiter, 1995). The fact that heparin significantly increased the cell death under NaCl stress conditions, supported the theory, that downregulation of CALR accompanied with Ca\textsuperscript{2+} signaling regulation is essential for the cell survival under hyperosmotic stress. The further evidence for the involvement of CALR due to its Ca\textsuperscript{2+} storage capacity under osmotic stress was provided by overexpression of WT-CALR and ∆CALR, without the Ca\textsuperscript{2+} binding C-domain in TALH cells. It is evident that overexpression of CALR increases ER Ca\textsuperscript{2+} storage capacity and Ca\textsuperscript{2+} buffering power of the ER lumen with increased intracellular free Ca\textsuperscript{2+} on induction (Xu et al., 2000; Bastianutto et al., 1995; Mery et al., 1996). The C-domain of CALR is a highly acidic region that binds 20–50 mol of Ca\textsuperscript{2+} per mole of protein and has been shown to be the major site of Ca\textsuperscript{2+} storage within the endoplasmic reticulum. The work done on the expression of the high capacity Ca\textsuperscript{2+}-binding domain of CALR suggested that ectopic expression of the CALR C-domain increases Ca\textsuperscript{2+} stores (Wyatt et al, 2002). Cells overexpressing WT-CALR binds Ca\textsuperscript{2+} and prevents the Ca\textsuperscript{2+} release from ER to cytosol when exposed to NaCl. In contrast, cells overexpressing ∆CALR cannot bind efficiently Ca\textsuperscript{2+} resulting in increased release of Ca\textsuperscript{2+} from ER under NaCl stress conditions. This allowed a faster adaptation to hyperosmotic stress conditions. Similar effects were described on Xenopus oocytes by Xu et al. that deletion mutant with an increase in intracellular free Ca\textsuperscript{2+}, requires the CALR high capacity Ca\textsuperscript{2+}-binding domain to reduce the elevations of Ca\textsuperscript{2+} ions due to Ca\textsuperscript{2+} influx (Xu et
Calreticulin is crucial for Ca\textsuperscript{2+} homeostasis mediated adaptation and survival of thick ascending limb of Henle's loop cells under osmotic stress. Moreover, knockdown of CALR with siRNA showed no significant impact of hyperosmotic stress on cell viability compared to control. Increased osmotic stress resistance in cells expressing ΔCALR or in siRNA CALR knockdown cells confirmed the role of CALR in cell survival under NaCl stress. Taken together, the results directly support the notion that CALR plays a crucial role in the adaptation and survival of TALH cells under hyperosmotic NaCl stress conditions due to its Ca\textsuperscript{2+} binding and storage capacity. The presented data are good basis for \textit{in vivo} studies to highlight the role of CALR and Ca\textsuperscript{2+} signaling in the onset and progression of kidney diseases.
3. Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

Asima Bibi, Hassan Dihazi
3.1 Abstract
Calreticulin (Calr) is an important endoplasmic reticulum resident calcium binding protein. Recently, our work showed that calreticulin expression alteration is involved in the functioning of renal cells coupled with disturbances in Ca\(^{2+}\) homeostasis. The aim of the present study was to investigate if there is any critical role of Calr level in the renal function and in onset and progression of kidney diseases. The chronic physiological low level of Calr was achieved by using heterozygote Calr mice (Calr\(^{+/-}\)). Histological analysis illustrated that low expression of Calr caused progressive renal injury in Calr\(^{+/-}\) mice as evidenced by an age-dependent development of the glomerulosclerosis and tubulointerstitial damage. Upregulation of the cytosolic calcium buffering proteins with almost no significant change in ER stress proteins was observed in the kidneys of 40 wk old Calr\(^{+/-}\) mice, ruling out ER stress and suggesting disturbance of intracellular calcium homeostasis as a causal factor for the renal injury. Further proteomic analysis revealed expression alterations in proteins associated with oxidative stress, energy production and mitochondrial damage. Here, especially the significant downregulation of Sod1 coupled with irregular, aggregated immunohistochemical expression could only be observed in the kidneys of heterozygote mice. High magnification electron microscopy analysis displayed the enlarged, swollen and vacuolated mitochondria confirming the mitochondrial damage in Calr\(^{+/-}\) mice kidneys. Decrease in activity of cytochrome c oxidase in isolated intact mitochondria further confirmed the impairments of mitochondria and energy metabolism in Calr\(^{+/-}\) kidneys.

Consequently, our findings suggest that chronic low level of Calr results in downregulation of Sod1 accompanied with increase in oxidative stress and mitochondrial damage. This plays an aggravating role in the progression of renal injury throughout chronic kidney disease.
3.2 Introduction

Chronic kidney disease (CKD) is becoming a major public health problem worldwide affecting 7.2% of the global adult population (Zhang & Rothenbacher, 2008). Despite the start, most renal diseases eventually converge into common histopathological impairments such as glomerulosclerosis and tubulointerstitial fibrosis leading to progressive functional deterioration of renal system (Meguid El Nahas & Bello, 2005). In the last few decades, progression of the disease process is well documented. Much interest has focused on investigating potential mechanisms to prevent or reverse the damage. However, the intracellular mechanisms responsible for renal disease initiation leading to complete damage are mostly not well understood. Accumulating evidence from focus on the molecular and cellular mechanisms of CKD, including our previous studies, revealed a pathophysiologic involvement of ER, especially ER Ca\(^{2+}\) binding proteins in renal disease progression (Bibi et al, 2011; Dihazi et al, 2011; Eltoweissy et al, 2011; Lindenmeyer et al, 2008; Yoshida, 2007). Therefore, ER Ca\(^{2+}\) binding proteins have become an area of interest to understand the possible links in renal disease initiation and progression. In the present study, we will focus on one of the major Ca\(^{2+}\) binding proteins, calreticulin (Calr), and its potential role in the progression of kidney injury.

Calr is an ubiquitously expressed ER resident Ca\(^{2+}\) binding chaperon. Biochemical and structural studies have demonstrated three distinct structural and functional domains of Calr; the amino-terminal lectin binding N-domain for chaperone function of the protein, the middle proline rich P-domain assisting in both Ca\(^{2+}\) storage and chaperone activity, and the carboxyl-terminal, highly acidic Ca\(^{2+}\) binding and storing C-domain followed by an ER retention/retrieval signal on C-terminal (Fliegel et al, 1989; Kottgen et al, 2010; Mesaeli et al, 1999). Within ER, Calr plays two important functions; as a chaperon in ER quality control
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

and binding to high concentration of ER luminal $\text{Ca}^{2+}$ in ER $\text{Ca}^{2+}$ storage and buffering. Consistent with $\text{Ca}^{2+}$ storing property, expression (up or down) studies of Calr show direct correlation of Calr expression with ER $\text{Ca}^{2+}$ storage capacity (Bastianutto et al, 1995; Bibi et al, 2011; Martin et al, 2006; Michalak et al, 1999; Opas et al, 1996). In addition to storage of $\text{Ca}^{2+}$, Calr is also known to modulate $\text{Ca}^{2+}$ signalling and homeostasis through store operated $\text{Ca}^{2+}$ influx from plasma membrane. It interacts with $\text{Ca}^{2+}$ entry and exit channels SERCA and IP3R and modulates $\text{Ca}^{2+}$ influx by controlling the extent of inositol 1,4,5-trisphosphate-induced $\text{Ca}^{2+}$ store depletion (Mery et al, 1996; Michalak et al, 2002; Xu et al, 2000).

A major breakthrough in Calr research was made in 1999, when Mesaeli et al. showed that Calr deficiency in mice is lethal and homozygote animals mostly die between E12/E15 due to impaired heart development (Michalak et al, 1999). Further studies showed development of cardiomyopathy, exencephaly, and omphalocele in Calr deficient mice. Calr is also stated to perform an anti-oxidative role in protecting human type II alveolar epithelial cells against hypoxic injury (Xu et al, 2000). Many extracellular functions of Calr have been reported including roles in immunogenic cell death in cancer, cellular adhesion, cell migration, phagocytosis, inflammation, cell signaling, and enhancing wound healing (Gold et al, 2010).

Additionally, we have recently demonstrated that Calr level is playing important role in the functioning and survival of renal cells through $\text{Ca}^{2+}$ homeostasis (Bibi et al, 2011).

Since the generation of Calr KO mice in 1999, most of the work has been done at different embryonic stages, whereas viable Calr heterozygotes has not been enough investigated. In the present study, we have focused on the viable Calr heterozygote mice. The aim of the study was to analyze the impact of chronic low level of Calr on kidney structure and function. Results obtained showed a significant effect of low Calr level on the development of kidney injury. Proteomic screening further highlighted the impact of Calr low level, through Sod1
repression mediated oxidative stress induction and mitochondrial damage in the progression of kidney injury.
3.3 Materials and Methods

3.3.1 Animals

Calreticulin heterozygote (Calr⁺⁻) and wild type (WT) littermate mice in identical C57BL/6J genetic backgrounds were obtained from Prof. Marek Michalak, University of Alberta, Edmonton, Alberta, Canada. Mice were bred under specific-pathogen-free housing conditions and genotyped as previously described in Michalak et al. (Michalak et al., 1999). A total of 25 Calr⁺⁻ and 25 WT mice were sacrificed. For embryonic studies, ages of embryos subject to analysis were given as embryonic day (E). The presence of a copulation plug was defined at E0.5. Embryos were removed from euthanized mothers, analyzed and genotyped at E17.5. To access morphological and further biochemical analyses of adult kidney, three time points of average age 15, 30 and 40 weeks (wk) were decided. All experimental procedures were performed according to the German animal care and ethics legislation and were approved by the local government authorities.

3.3.2 Morphometric analysis of kidneys

Immediately after cervical dislocation, the freshly excised kidneys from embryos (WT, Calr⁺⁻ and Calr⁻⁻) and adult mice (WT, Calr⁺⁻) were quickly removed, cleaned of surrounding fat, washed in sterile saline solution, and weighed. Kidneys were dissected along sagittal section for macroscopic and microscopic analyses of the renal injury in Calr⁺⁻ mice. The macroscopic differences in Calr⁺⁻ kidneys compared to WT controls were recorded using a Nikon D5000 Camera. Data were recorded from all the 50 mice used in the present study.

3.3.3 Histological analysis of kidneys

Freshly excised embryonic and adult kidneys were immediately fixed overnight in a freshly prepared 5% paraformaldehyde solution. Fixed kidneys were processed for paraffin
embedding and sectioning using standard procedures. 3 µm thick tissue sections were stained with PAS reagent and hematoxylin-eosin, separately for light microscopic examination and histological evaluation. Histological analysis was performed with ImageJ software as described by Rangan and Tesch (Rangan & Tesch, 2007). Briefly, the mean glomerular areas (mGA) of at least 30 glomeruli tuft /animal group were measured. PAS-positive material in each of these glomeruli was quantified and expressed as the mean mesangial area (mMA).

3.3.4 Immunohistological analysis of kidneys

Immunostaining of deparaffinized and rehydrated sections was performed to detect the expression of several proteins. Following antigen retrieval pretreatment in 0.01 M citric acid using Braun Electrical steamer for 25 min, endogenous peroxidase was inactivated with 3% H2O2 in PBS for 10 min at room temperature in the dark. Sections were blocked with 10% goat serum in PBS for 1 h and incubated with primary antibodies overnight at 4°C. Primary antibodies were detected with HRP labeled secondary antibody for 1 h at room temperature (GE Healthcare). For negative controls tissue sections were incubated only with the secondary antibody. The detection reaction was developed with 3,3-diaminobenzidine (Sigma) for 10 min at room temperature in the dark. Nuclei were counterstained with hematoxylin before examination. All tissue sections were dehydrated in graded alcohols and xylene and embedded in mounting solution Entellan (Merck). Some primary antibodies were also detected with fluorescence Alexa 555–conjugated goat anti-rabbit or Alexa 488–conjugated goat anti-mouse secondary antibody (Invitrogen) as recommended. Slides were rinsed and mounted with Vectashield 4,6-diamidino-2-phenylindole (DAPI) (Vector Laboratories) for visualization of nuclei.

3.3.5 Electron microscopy
For ultrastructural electron microscopy, 4mm3 kidney samples were taken from three mice per group, fixed in Karnovsky solution. After dehydration in graded series of ethanol, tissue samples were cleared in propylene oxide, and embedded in epoxy resin as described previously (Girgert et al). Ultrathin sections (70 nm) were prepared (Reichert-Jung Ultracut E; Leica, Wetzlar, Germany) and examined under an electron microscope (LEO 906E; Zeiss, Oberkochen, Germany).

3.3.6 Protein extraction, precipitation and estimation

Kidneys were homogenized in buffer containing Tris-HCl 50 mmol/L (pH 7.4), 1% Triton X-100, 100 mmol/L NaCl and protease inhibitors. After incubation for 30 min at 4°C, kidney tissue homogenates were centrifuged two times at 14,000 rpm for 30 min, and the supernatant was collected. To reduce the salt contamination and to enrich the proteins, protein precipitation was performed Whole tissue homogenate was precipitated by methanol-chloroform as previously described by (Dihazi et al, 2005). The precipitation eliminates lipids, nucleotides, and salts, which improves the resolution of 2D gel analysis (Gorg et al, 1997). Protein concentration was measured according to Bradford assay (Bradford, 1976), using bovine serum albumin as a standard.

3.3.7 2-D gel electrophoresis (2-DE)

2-D gel electrophoresis (2-DE) analysis of Calr+/− kidneys compared to WT kidneys was performed according to Dihazi et al., 2011. Briefly, a total protein concentration of 150 μg in rehydration buffer (8 M urea, 1% CHAPS, 1% DTT, 0.2% ampholytes, and a trace of bromphenol blue) was loaded on 11-cm IPG strips pH 5-8 from Bio-Rad (Hercules, CA) using passive rehydration at 20 °C. Isoelectric focusing was performed using the Protean IEF cell (Bio-Rad) for 50,000 Vh. After equilibration, IPG strips were loaded on 12% BisTris
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

Criterion precast gels (Protean Xi, Bio-Rad) and run at 200 V for second dimension separation of proteins.

For image analysis, 2D gels were fixed in a solution containing 50% methanol and 12% acetic acid for 2 h and stained with Flamingo fluorescent gel stain (Bio-Rad, Hercules, CA, USA) for minimum 5 h. After staining, gels were scanned at 50 μm resolution on a Fuji FLA5100 scanner. The digitalized images were analyzed; spot matching across gels and normalization were performed using Delta2D 3.4 (Decodon, Braunschweig, Germany). In order to ensure that the same spot area was quantified in all gels, a master gel was created by fusing all gel images with the maximum intensity option selected in Delta2D. To analyze the significance of protein regulation, a Student's t-test was performed, and statistical significance was assumed for P values less than 0.01.

3.3.8 In-gel digestion and mass spectrometry analysis

Significantly regulated spots were excised from the gels and tryptic in-gel digestion and peptide extraction were performed as previously described by Dihazi et al. (Dihazi et al., 2011). Briefly, gel spots were rinsed twice in 25 mM ammonium bicarbonate (amBic) and once in water, shrunk with 100% acetonitrile (ACN) for 15 min, and dried in a Savant SpeedVac for 20–30 min. All excised spots were incubated with 12.5 ng/μl sequencing grade trypsin (Roche Molecular Biochemicals, Basel, CH) in 25 mM amBic overnight at 37 °C. Peptide extraction was carried out twice using first 50% CAN/1% trifluoroacetic acid (TFA) and then 100% ACN. All extracts were pooled, and the volume was reduced using SpeedVac. Tryptic peptides were subjected to mass spectrometric sequencing using a Q-TOF Ultima Global mass spectrometer (Micromass, Manchester, UK) equipped with a nanoflow ESI Z-spray.
Protein identification was carried out with Mascot search engine against MSDB and Swissprot databases through using a peptide mass tolerance and fragment tolerance of 0.5 Da.

### 3.3.9 Bioinformatic Analyses

To examine potential protein function categories and pathways of significantly regulated proteins, we performed bioinformatic analysis using a public protein software named DAVID Functional Annotation Bioinformatics Microarray Analysis (http://david.abcc.ncifcrf.gov/).

### 3.3.10 Western blot analysis

Western blot analyses were performed according to Towbin et al. (Towbin et al., 1979). Equal amount of proteins (50-75 µg) were separated by polyacrylamide gel electrophoresis (SDS-PAGE) and transferred on nitrocellulose membranes (Amersham Pharmacia Biotech, Buckinghamshire, UK). The membranes were blocked in 5% non-fat dry milk in Tris buffer and incubated with the indicated primary antibody at 4ºC overnight. To visualize the protein bands, fluorescence labeled secondary antibody was used. To confirm equal protein loading, the blots were reprobed with β-actin (Actb).

### 3.3.11 Isolation of mitochondria

Kidney mitochondria were isolated from average 40 weeks old WT and Calr<sup>+/−</sup> mice following the mitochondria isolation kit for issues and cultured cells protocol (amsbio, UK). 150 mg of mice kidneys were minced and homogenized with a Douncer homogenizer in 2 ml mitochondrial isolation buffer provided with kit. The suspension was centrifuged at 600 xg for 10 min and the resulting supernatant at 10,000 g for 15 min at 4ºC. After centrifugation, the mitochondrial pellet was collected from the lower interface and washed in mitochondrial isolation buffer by repeating the above centrifugation steps. Isolated mitochondrial pellet were
either resuspended in mitochondria storage buffer for intact mitochondria for functional assay or lysed with mitochondria lysis buffer for Western blot analysis of mitochondrial proteins.

### 3.3.12 Cytochrome c oxidase activity assay

Cytochrome c oxidase (Cox) activity was determined in intact isolated mitochondria from kidney tissues using the Cox Kit according to the manufacturer’s instructions (Mitochondrial activity assay kit, amsbio, UK). The colorimetric assay is based on the observation that a decrease in absorbance at 550 nm of ferrocytochrome c is caused by its oxidation to ferricytochrome c by Cox.

### 3.3.13 Data analysis

All blots were quantified using the ImageJ software. Graphpad prism was used for graphical presentation and analysis by Student’s t-distribution. Results are expressed as the average of three or more independent experiments. Results are presented as the mean±SD of at least three independent experiments. Differences were considered statistically significant when p<0.05.

### 3.3.14 Antibodies

Monoclonal rabbit anti-Fn1, anti-Lamc1, anti-Grp78, anti-Park7, and mouse anti- Actb antibodies were from Sigma. Polyclonal rabbit anti- Ddit3/Chop and anti-Sod1 antibodies were from Abnova. Rabbit monoclonal anti- Pvalb, anti-Cam, anti-Prdx6, anti- Nos1, anti-Phb, anti-Vdac1 antibodies were from Abcam. Rabbit anti-Hsp47 monoclonal antibody was purchased from Sigma.

### 3.4 Results

#### 3.4.1 Low Calr level results in progressive kidney damage in Calr +/- mice
As reported earlier Calr gene knockout is embryonic lethal and Calr−/− embryos die during embryonic stages with multiple developmental defects especially heart development (Mesaeli et al., 1999). To investigate the role of Calr in kidney development, viable and fertile heterozygote Calr+/− mice were mated. Viable embryos were obtained at E17.5 and kidneys were excised. Gross morphological analysis showed significant reduction in the size of the Calr−/− embryos. However, phenotype of the kidneys of the Calr+/− embryos did not show any significant differences compared to WT (Figure 3.1A). H&E staining of E17.5 kidney sections further revealed severe developmental defects in Calr+/− especially the formation of comma- and S-shape was impaired compared to WT. Moreover, the ureter bud formation seems to be affected resulting in less developed kidneys. In contrast, the staining of the kidneys from Calr+/− embryos showed normal renal embryonic structures (comma and S-shapes), but their number was reduced compared to WT (Figure 3.1B) revealing a disadvantage in kidney development of Calr+/− embryos.

Our previous studies (Dihazi et al., 2005, Bibi et al 2011) revealed that chronic reduction of Calr could play a significant role in kidney function. Despite the major differences in kidney development, we investigated adult Calr+/− mice to study the chronic low level of Calr in structure and function of the kidney. Morphological examination of freshly excised adult kidneys from 5 different animals from 12, 30 and 40 wk old mice showed a progressive deterioration of kidneys with development of hypertrophy (Figure 3.1C). 70% of Calr+/− animals at an average age of 40 wk showed severely affected kidneys with remarkable morphological differences compared to young Calr+/− and WT controls of same age. 10% Calr+/− mice of total Calr+/− animals displayed hemizygous kidneys with one missing kidney (Fig 3.1D) whereas 20% showed heterozygous kidneys with one hypoplastic kidney.
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

Figure 3.1: Morphometric analysis of embryonic and adult kidneys of Calr KO mice.

(A) Whole mount views of control and mutant fetuses of the indicated genotypes of WT, Calr<sup>+/−</sup> and Calr<sup>−/−</sup> at E17.5 in upper lane with corresponding kidneys in lower lane. The size and gross morphology of Calr<sup>+/−</sup> embryos and kidneys are comparable to WT whereas, Calr<sup>−/−</sup> shows significant morphological alteration with remarkable reduced size. (B) Histological staining of embryonic kidney section with H&E stain shows similar structures in Calr<sup>+/−</sup> and WT kidneys compared to severely affected Calr<sup>−/−</sup> kidneys. (C) Gross morphology of kidneys from 15, 30 and 40 weeks Calr<sup>+/−</sup> mice (from left to right) from external sight (upper lane) showing a progressive enlargement and impairment of kidneys. Bar diagram represents the significant increase in kidney weight at 40 wk of age. Longitudinal sections of kidneys showing progressive internal impairments (lower lane) indicated with arrows (yellow) in Calr<sup>+/−</sup> mice. Genotypes are indicated at the top. wk: weeks

3.4.2 Calr<sup>+/−</sup> mice develop progressive glomerulosclerosis and tubulointerstitial damage

Histological examination of kidneys from 15 to 40 wk old mice revealed the development of progressive pathological changes in both glomerular tufts and interstitial tubular parts of Calr<sup>+/−</sup> kidneys compared to WT (Figure 3.2A-D). Consistent with macroscopic examination, kidneys from 15 wk old Calr<sup>+/−</sup> mice showed indistinguishable changes resulting in normal
prenatal and postnatal nephrogenesis in Calr<sup>+</sup>− mice. At 30 wk, glomeruli of Calr<sup>+</sup>− mice demonstrated prominent mesangial expansion with increased matrix deposition. However, in Calr<sup>+</sup>− mice of 40 wk of age, more advanced glomerular damage with characteristic sclerotic lesions evolved (Figure 3.2A). In addition to glomerulosclerosis, tubulointerstitial area was also severely affected at this age with a significant number of dilated, atrophic and necrotic tubules with expanded lumen (Figure 3.2B). Measurement of mean glomerular area and volume, as a parameter for overall glomerular architecture, showed a progressive increase in the glomerular size from 15 to 40 wk (Figure 3.2C). Similar results were also observed when measuring the mean mesangial area. Moreover, at advanced stage expansion in mesangial matrix was manifested with significant increase in the PAS-positive area (Figure 3.2D). The histological impairments were confirmed with classical H&E staining (Supplemental Figure 3.1A).
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

Figure 3.2: Progressive structural alterations in Calr^{+/−} mice.
Paraffin embedded kidney sections (3 µm) were stained with PAS to compare the kidney structures of Calr\textsuperscript{+/−} at 15 wk, 30 wk and 40 wk of age. (A) Glomerular histopathology analysis. The pictures display representative glomeruli of PAS-stained sections from Calr\textsuperscript{+/−} mice (lower lane) and WT mice (upper lane). At 15 wk of age, size and structure of glomerulus is comparable with WT mice. At 30 wk of age, size of glomerulus is significantly enlarged with little deposition of mesangial matrix compared to WT. At 40 wk of age, glomerular damage is highly significant showing expansion of mesangium with accumulation of PAS-positive material indicated with arrowhead in Calr\textsuperscript{+/−} mice (Magnification x40). (B) Tubulointerstitial analysis. The pictures show progressive tubulointerstitial necrosis in Calr\textsuperscript{+/−} mice (lower lane) compared to WT mice (upper lane). At 40 wk of age, tubules are damaged with necrotic debris and PAS positive brush borders indicated with asterisks (Magnification x20) and one shown in higher magnification at the corner. (C) Bar diagram show an increase in mGA in the kidneys of 30 and 40 wk old Calr\textsuperscript{+/−} mice in comparison to that of young Calr\textsuperscript{+/−} and WT mice of same age (P < .05). (D) Bar diagram show a significant increase in mMA in 40 wk old Calr\textsuperscript{+/−} mice compared to young Calr\textsuperscript{+/−} mice of 15 and 30 wk old and WT of same age. The data shown are mean ± SE (n = 30 glomeruli per group, P<0.05). PAS: periodic acid shift, mGA: mean glomerular area, mMA: mean mesangial area.

3.4.3 Ultrastructural analysis shows glomerular and tubular cell damage in Calr\textsuperscript{+/−} mice

To investigate the structural changes in Calr\textsuperscript{+/−} mice, electron microscopy analysis was performed. As expected, the electron microscopy results were consistent with the light microscopic observations. Ultrastructural analysis revealed significant alterations in 40 wk old Calr\textsuperscript{+/−} mice compared to WT mice (Figure 3.3A-E) and young Calr\textsuperscript{+/−} mice kidneys (Supplemental Figure 3.2). Ultrastructural changes in Calr\textsuperscript{+/−} mice were characterized by a significant mesangial sclerosis, marked and irregular thickening of the glomerular basement membrane and enlarged vacuolated podocytes with foot process broadening and effacement.

In addition to glomerular abnormalities, damage of the renal tubules was noted as focal loss of the brush border of the epithelial lining of proximal renal tubules and disturbance of tight junctions. These data indicate that a critical level of Calr is necessary to maintain glomerular and tubular architecture.
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

Figure 3.3: Electron microscopy analysis of Calr^-/- and WT kidneys.

Kidney section from 40-weeks-old WT and Calr^-/- mice were assessed by electron microscopy. Representative electron microscopic images show damaged structures in Calr^-/- (lower panel) compared with normal structures in WT (upper panel). (A) At lower magnification (10 µm), changes in glomerular matrix of Calr^-/- mice became visible with extensive accumulation of ECM compared to WT (*). (B) Irregular glomerular basement membrane indicated with GBM compared to normal in WT (10 µm). (C) Vacuolated podocyte indicated with red asterisks (2 µm). (D) Extensive podocyte foot process indicated with black arrows (1 µm) in Calr^-/- mice. (E) Representative micrographs of proximal tubular cells showing disturbance of tight junctions and brush borders in
Calr\textsuperscript{+/−} mice indicated with TJ and BB compared to WT (10 µm). GBM: basement membrane, BB: brush borders, TJ: tight junction

### 3.4.4 Enhanced expression of ECM proteins in advanced kidney injury in Calr\textsuperscript{+/−} mice

Following the histological findings of kidney damage, immuno-histochemical analysis of kidneys of 40 wk old Calr\textsuperscript{+/−} mice demonstrated the enhanced expression of ECM proteins in both glomeruli and tubulointerstitial parts. A strong deposition of Fn1 was observed in the mesangium of glomeruli and interstitial areas of Calr\textsuperscript{+/−} compared to WT controls (Fig 3.4A). Immunofluorescence staining of Fn1 confirming the deposition of protein in expanded mesangium of Calr\textsuperscript{+/−} kidney glomeruli and interstitial spaces is provided in supplementary data (Supplemental Figure 3.1B). Besides the higher expression of Fn1, Lam expression was also significantly enhanced in Calr\textsuperscript{+/−} mice kidneys (Figure 3.4B). However, no significant immunoreaction was observed for Ezr, a podocyte marker, in glomeruli of Calr\textsuperscript{+/−} kidneys compared to control confirming the severe damage of podocytes (Fig 3.4C). Western blot analysis confirmed the expression of these kidney injury markers in total protein extract of 4 different Calr\textsuperscript{+/−} mice kidneys, whereas WT mice kidneys were kept as control (Fig 3.4D).

These data indicate that Calr level is critical for maintaining an intact kidney as well as in the progression of kidney injury.
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

Figure 3.4: Immune expression of glomerular and tubulointerstitial injury markers.

Representative images of glomerular and tubulointerstitial areas from WT (upper panel) and Calr\textsuperscript{+/−} (lower panel) kidneys stained with (A) fibronectin (Fn1), (B) laminin (Lam), and (C) ezrin (Ezr). We observed a marked increase in Fn1 and Lam expression in the glomeruli (Magnification x40) and tubulointerstitial areas (Magnification x20) of Calr\textsuperscript{+/−} kidneys indicated with yellow arrows. Whereas expression of Ezr was less in glomeruli of Calr\textsuperscript{+/−} kidneys compared to WT kidneys. (D) Representative Western blot analyses of Fn1, Lam, and Ezr in whole kidney lysate of WT and Calr\textsuperscript{+/−} mice. (E) Bar diagram representing the quantification of the Western blot results shown in D. (n=4, *, P < 0.05). β-actin (Actb) was used as loading control.

3.4.5 ER stress pathway is not operative in Calr\textsuperscript{+/−} mice kidney damage

Calr is a chaperone protein implicated in protein folding and is a Ca\textsuperscript{2+} binding protein responsible for the Ca\textsuperscript{2+} storage and Ca\textsuperscript{2+} homeostasis regulation. To determine which functional aspect of Calr downregulation is operative in Calr\textsuperscript{+/−} mice kidney injury, we investigated the expression of proteins linked to downstream effects of either ER stress response or Ca\textsuperscript{2+} signaling regulation.
Immunohistochemical staining showed that intensity of ER chaperon Grp78 expression was not significantly altered (Figure 3.5A). Western blot and 2D gel analyses further confirmed that expression of Grp78 is unchanged demonstrating the absence of ER stress in Calr\(^{+/-}\) mice (Figure 3.5D, Figure 3.6B). In addition to ER chaperon Grp78, Hsp47 and downstream proteins of ER stress pathway, chop and eif2\(\alpha\)-phospho were also not altered in Calr\(^{+/-}\) mice compared to WT mice (Figure 3.5E). All these results depict that ER stress is not operative in Calr\(^{+/-}\) mice kidney damage.

Ca\(^{2+}\) homeostasis is an important cellular phenomenon. Increase in free intracellular Ca\(^{2+}\) is associated with disturbance of Ca\(^{2+}\) homeostasis. Alterations in free intracellular Ca\(^{2+}\) level result in the expression regulation of a group of EF-hand cytosolic Ca\(^{2+}\) binding proteins. Here, we examined the expression of some of the EF-hand Ca\(^{2+}\) binding proteins; S100a4, Pv and Cam with immunohistochemistry and immunoblotting in the Calr\(^{+/-}\) kidneys. The S100a4 was highly expressed in tubular epithelial cells of Calr\(^{+/-}\) kidneys compared to WT (Figure 3.5B). Specific staining of distal convoluted tubules with Pv showed tubular damage in terms of decrease in tubular lumen and damaged tubular walls (Figure 3.5C). Expression of Cam was disturbed with overall nonspecific staining compared to specific tubular staining in WT mice (Figure 3.5D). Western blot analysis further confirmed the altered expression of calcium binding proteins. Actb was kept as control (Figure 3.5E).
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury.
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

Figure 3.5: Effects of low Calr level on expression of ER stress markers and EF-hand Ca^{2+} binding proteins.

Representative images for immunohistochemical staining of Grp78, S100a4, Pv and Cam are shown in 40 wk old Calr^{+/−} (upper lane) and WT (lower lane) mice kidney sections. (A) Grp78 staining is showing no significant expression changes (B) S100a4 is overexpressed in epithelial tubular cells highlighted with arrows, (C) Pv staining shows an expression decrease in tubular lumen and damaged tubular wall indicated with arrows (D) Cam expression alters from highly specific tubular expression in WT (indicated with arrows) to overall nonspecific expression in Calr^{+/−} mice kidney section. (Magnification: x20). (E) Immunoblotting of Grp78, chop, eif2α-phospho, Hsp47, S100a4, Pv, and Cam was performed for kidney lysate of Calr^{+/−} and WT mice. Actb was used as loading control. Bar diagram represents the quantification of the Western blot results shown in D. (n=4. *, P < 0.05).

3.4.6 Comparative proteomic analysis show strong metabolic dysregulation in Calr^{+/−} mice kidneys

To investigate the mechanism behind the kidney injury in Calr^{+/−} mice, proteomic analysis was performed. Kidneys were obtained from both WT and Calr^{+/−} mice at an average age of 40 weeks and homogenized. Proteins were extracted and purified from both WT and Calr^{+/−} mice kidney homogenates, and separated by 2-D gel electrophoresis as described in Methods part. For comparison, three independent 2-DE images of each protein extract from three independent WT and Calr^{+/−} mice were selected for statistical analysis. Significantly regulated proteins in Calr^{+/−} mice kidneys as compared to their corresponding control (Delta 2D analysis, see Materials and Methods) were excised from gels, in-gel digested with trypsin, and prepared for mass spectrometric (MS/MS) analysis. Proteins were identified by the sequence databases search using Mascot.

The low Calr level results in statistically significant changes (p<0.05) in the expression of 65 proteins, obtained from WT and Calr^{+/−} kidneys. By mass spectrometry we identified about 50 of the differentially expressed proteins in the whole lysate. Among them, 22 protein spots
were downregulated, and 28 were upregulated (Table 3.1). A proteome map from three independent experiments labeled with differentially regulated proteins is presented in Figure 3.6A. Some of the interesting proteins spots are highlighted in higher magnifications with their expression quantification (Figure 3.6B).
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury.

Figure 3.6: 2D gel map expression of differentially regulated proteins in Calr<sup>−/−</sup> mice kidneys compared to WT.

(A) Overlapping 2-DE expression map of WT and Calr<sup>−/−</sup> kidneys. Blue spots indicate higher expression in WT mice samples than in Calr<sup>−/−</sup> mice samples. Orange spots indicate the reverse. Overlapping spots are shown in black. (B) Magnified images of regions of interest showing differentially regulated proteins in the Calr<sup>−/−</sup> mouse kidney. The protein expression quantification for selected proteins is given in form of bar diagrams. Results are given as the means ± SD of the percentage volume of spot from at least three independent experiments (P < 0.05).

Each identified protein was assigned to cellular components, functional categories and biological processes based on the Gene Ontology annotation system using the DAVID Functional Annotation Bioinformatics Microarray Analysis (http://david.abcc.ncifcrf.gov/). Interestingly, the largest part of the identified proteins was found to be located in the mitochondrion (Figure 3.7A). Functional analysis with DAVID Bioinformatics tool classified the differentially regulated proteins into 24 different functional protein categories according to Gene Ontology annotation, some proteins belonging to more than one category due to their
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury.

Multifunctional properties (Supplemental Figure 3.3). Proteins categories belonging to mitochondria are shown (Figure 3.7B). Classification of proteins according to biological processes illustrates that many of the identified proteins were assigned into energy metabolism, response to oxidative stress and mitochondria dysfunction (Figure 3.7C). Taken together, the proteomic data provides converging evidence for perturbations in a number of key metabolic pathways and evidence for kidney injury.
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury.

Figure 3.7: Gene Ontology (GO) classification of differentially regulated proteins by DAVID Bioinformatics.

Categorization was achieved by correlating GO identification numbers corresponding to cellular component and biological process with the regulated proteins. Values in figures presented the ratio distribution of proteins found in that respective category, (A) identified proteins categorized based upon their cellular component, (B) identified mitochondrial proteins categorized based upon their functional category. Gene names for proteins indicated in blue are downregulated, whereas, the ones in orange are upregulated in Calr<sup>−/−</sup> compared to WT mice (C) identified proteins categorized based upon their biological processes.
3.4.7 Alteration of energy metabolism in Calr<sup>+/−</sup> mice kidneys

Life is the interplay between structure and energy. Classification of differentially regulated proteins into functional categories and pathway analysis demonstrated that the majority of them were enzymes that catalyze reactions in intermediary energy metabolism (Figure 3.8A). For example, 5 enzymes of the cytosolic resident pathways glycolysis/gluconeogenesis were upregulated. Ldhb, an enzyme for anaerobic respiration was upregulated. However, in contrast to cytosolic energy pathways, the majority of enzymes belonging to mitochondrial energy production were downregulated. Among these, an important oxidative energy metabolism pathway is pyruvate metabolism, which is a link between glycolysis and TCA cycle. Enzymes of the pyruvate metabolism were altered with 4 downregulated enzymes and 2 upregulated. In addition to carbohydrate metabolism, 3 enzymes of fatty-acid oxidation, another major pathway for oxidative energy metabolism, were also downregulated in Calr<sup>+/−</sup> mice kidneys. End products of carbohydrate and fatty acid metabolism enter the TCA cycle to produce NADH. Here, 4 enzymes of TCA cycle were significantly regulated. Among them, 3 were downregulated and 1 was upregulated. TCA cycle mainly reduces NAD<sup>+</sup> to NADH, which enters the electron transport chain for ATP production on the basis of oxidative phosphorylation. Our proteomic data further demonstrated the downregulation of 3 enzymes of electron transport chain, which might result in diminished oxidative phosphorylation (Figure 3.8B). All these results showed that Calr<sup>+/−</sup> mice have reduced oxidative energy metabolism enzymes, one might expect them to exhibit low energy levels leading to signs of energetic stress.
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury.

Figure 3.8 continued....
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

**Figure 3.8: Energy metabolism pathways.**

(A) Pathway analysis of regulated proteins using DAVID Bioinformatics showing majority of pathways related to energy metabolism (B) The KEGG ([http://www.genome.jp/kegg/pathway.html](http://www.genome.jp/kegg/pathway.html)) #00010 pathway diagrams shows the major carbohydrate metabolic pathways including glycolysis/gluconeogenesis, pyruvate metabolism, citric acid/TCA cycle, fatty acid metabolism, and Val-Leu-Ile degradation. Enzymes in orange color denote upregulated, while in green color denote downregulated.

### 3.4.8 Chronic low levels of Calr induces kidney injury through oxidative stress induction

Excessive ROS production or inefficient antioxidant system are known as major causes of oxidative stress in the target cells and tissues. Our proteomic analysis revealed that low Calr level results in impairment of the antioxidant system of kidney through significant downregulation (2.6 fold) of an important antioxidant enzyme, Sod1 in Calr+/- mice. Furthermore, significant upregulation (>2 fold) of a group of proteins called peroxiredoxins; Prxd1, Prxd2 and Prdx6 validated the occurrence of oxidative stress. Peroxiredoxins (Prdxs) work as a cellular redox control via their ability to eliminate organic hydroperoxides. Their upregulation in cells and tissues under oxidative stress conditions is known as one of the cellular recovery responses after oxidative damage (Ishii & Yanagawa, 2007). Furthermore, the significant upregulation (>2 fold) of another oxidative stress response protein Park7 (Figure 3.6B), as shown by proteomic data, confirmed the high oxidative stress level in Calr+/- mice.

Western blot analysis from the kidney lysate of each of the four different Calr+/- and WT mice further confirmed the significant downregulation of antioxidant Sod1 and upregulation of Prdx6 and Park7 proteins in all Calr+/- mouse kidney lysates on individual basis compared to the WT mice. The expression of Actb, kept as a protein loading control, was unchanged (Figure 3.9A). Immunohistochemical analysis of Sod1 further demonstrated anomalous
expression of this protein in Calr<sup>+/−</sup> mice kidneys. Sod1 is expressed in irregular aggregate form in Calr<sup>+/−</sup> mice compared to homogenous distribution in WT mice kidneys. Sod1 aggregates could be better observed by co-staining of Sod1 with ubiquitin (Figure 3.9B). Immunofluorescence staining of Prdx6 showed an enhanced expression in Calr<sup>+/−</sup> kidneys (Figure 3.9B). These results indicate that the Calr<sup>+/−</sup> mice kidneys, due to ineffective antioxidant system, were subjected to oxidative stress leading to renal injury.

![Image](image_url)

**Figure 3.9: Induction of oxidative stress in Calr<sup>+/−</sup> mice kidneys.**

(A) Western blot analysis of oxidative stress related proteins; Sod1, Prdx6, and Park7 were performed for kidney lysate of Calr<sup>+/−</sup> and WT mice. Actb was used as loading control. Bar diagram representing the quantification of the Western blot results shown in D. (n=4, *, P < 0.05). (B) Left panel: Immunohistofluorescence staining show uneven Sod1 staining in Calr<sup>+/−</sup> mice indicated with black arrows compared to uniform staining in WT mice. Middle panel: immunofluorescence staining of Sod1 coupled with ubiquitin further confirmed the presence of
uneven Sod1 aggregates indicated with red arrows compared to overlapped Sod1 and ubiquitin staining in WT indicated with yellow arrows. Right panel: immunofluorescence staining of Prdx6 showing an enhanced expression of the protein in Calr⁺⁻ kidneys. Magnification: x40-100.

### 3.4.9 Activation of iNos dimerization in Calr⁺⁻ mice

Nitric oxide synthase plays a critical role in ROS generation, mitochondrial function and signaling during inflammation. Overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNos) has been implicated in the pathogenesis of many disorders. It is well known that iNos is functional only in its dimer form (Kolodziejski et al, 2003). Immunochemical staining of iNos in Calr⁺⁻ showed no significant expression changes compared to WT kidneys (Figure 3.10A). In contrast, Western blot analysis showed an induction of higher molecular weight iNos dimer in Calr⁺⁻ mice compared to lower molecular weight inactive monomer in WT mice (Figure 3.10B). These results provide evidence for the involvement of nitric oxide stress in Calr⁺⁻ kidney.
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

Figure 3.10: Activation of iNos in Calr<sup>+/−</sup> mice kidneys.

(A) Immunohistochemical (upper lane) and immunofluorescence staining of iNos shows no significant change in expression of protein in Calr<sup>+/−</sup> compared to WT with lower magnification (x20). However, zoomed tubules shown at corners represent an expression alteration of iNos in Calr<sup>+/−</sup> compared to WT (Magnification: x40). (B) Western blot analysis of iNos was performed for kidney lysates of Calr<sup>+/−</sup> and WT mice. Actb was used as loading control. Bar diagram representing the quantification of the MM and DM of iNos Western blot results shown in B (n=4. *, P < 0.05). MM: monomer, DM: dimer.

3.4.10 Mitochondrial damage in Calr<sup>+/−</sup> mice

In order to examine the effect of oxidative stress on intracellular organelles, we used high magnification electron microscopy analysis. Interestingly, ultrastructural examination of kidney tissues showed profound alterations in mitochondrial morphology and number in both glomerular and tubular cells in Calr<sup>+/−</sup> mice kidneys compared to WT ones. In comparison to
normal mitochondrial structures of WT kidney cells (Figure 3.11A-B), the Calr\(^{+/−}\) kidney mitochondria displayed vacuole like structures with prominent loss of cristae and inner mitochondrial membrane (Figure 3.11C). The latter varied widely in size and shape, from small and rounded to markedly enlarged and swollen with disorganized and fragmented cristae in podocytes (Figure 3.11D). Moreover, proximal tubular cells also showed swelling of several mitochondria with regression of their cristae and an increased number of mitochondria with loss of other cellular structures (Figure 3.11E).

Examination of electron micrographs from kidneys of Calr\(^{+/−}\) mice also revealed the presence of mitochondrial autophagy in some tubular cells. A number of mitochondria were observed enclosed in vacuoles with clear cristae (Figure 3.11F). Progressive degradation in some places with presence of myelin like structures (Figure 3.11G) provides further evidence of autophagy of mitochondria. In contrast to autophagy, certain tubular cells were densely packed with mitochondria (Figure 3.11H).

To investigate the possible expression alteration of proteins associated with mitochondria damage, mitochondria from WT and Calr\(^{+/−}\) mice kidneys were isolated and lysed as described under “Materials and Methods.” The expressions of soluble mitochondrial proteins were quantified using Western blot analysis. The data showed a significant downregulation of outer membrane channel Vdac1; whereas Phb a mitochondrial chaperon and stress induced protein was upregulated in Calr\(^{+/−}\) mice kidneys compared to control. Cat, a mitochondrial oxidative stress marker was also upregulated (Figure 3.11I). In addition, fluorescence staining of Cat showed a perturbed expression with clear translocation to nuclei (Figure 3.11J).

In addition to structural impairments coupled with protein alterations, we performed Cox activity assay with intact isolated mitochondria to evaluate the effects of the low Calr level on kidney mitochondrial ETC function (Figure 3.11K). Cox or complex IV of the mitochondrial
electron transport chain is the primary site of cellular oxygen consumption and, as such, is central to oxidative phosphorylation and the generation of ATP. The data showed that a decrease in the enzyme activity occurred in Calr<sup>+/−</sup> mice exhibiting the mitochondrial dysfunction leading to reduced energy metabolism.
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury.

**Figure 3.11: Electron micrographs demonstrating mitochondrial damage in Calr+/- mice.**

**A-B:** Representative electron micrographs for ultrastructural morphology of mitochondria from WT kidney. (A) a podocyte showing normal mitochondria pointed with white asterisks (B) Higher magnification image of normal WT mitochondria indicated with white arrows.  

**C-H:** Representative electron micrographs for ultrastructural morphology of mitochondria from Calr+/- kidney (C) a podocyte with damaged vacuolated mitochondria highlighted with red asterisks (D) Higher magnification image of a podocyte illustrating mitochondrial swelling and damage with disordered cristae indicated with red arrows (E) Mitochondrial swelling in a proximal tubular cell indicated with arrow (F) a number of mitochondria are enclosed in a membranous network in tubular cell (G) progressive autophagous damage of mitochondria enclosed in a vacuolated structure pointed with arrow (H) Robust number of mitochondria in certain tubular cells indicated with arrow.  

**I:** Western blot analysis of mitochondrial proteins; Vdac1, Phb and Cat from isolated mitochondrial lysate of WT and Calr+/- kidneys. Ponso stained Cellulose membrane is used as a PLC. Quantification of protein expression is shown in bar diagram.  

**J:** Immunofluorescence staining of Cat: Immunofluorescence staining of Cat coupled with ubiquitin shows enhanced expression in glomerulus (left panel indicated with box) and nuclear translocation in
proximal tubules of Calr<sup>−/−</sup> kidney (right panel indicated with box) compared to WT kidney (upper row). (K) Quantification of cytochrome c oxidase activity. Intact mitochondria were isolated for the quantification of cytochrome c oxidase activity. Comparison of respiratory activity between Calr<sup>−/−</sup> and WT kidneys revealed about 50% decrease in mitochondrial activity in Calr<sup>−/−</sup> compared to WT kidneys. Results are given as the means ± SD of the percentage volume of spot from at least three independent experiments (P < 0.05). PLC: protein loading control.
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

Table 3.1: Proteins differentially regulated in the kidneys of WT and Calr<sup>−/−</sup> mice

<table>
<thead>
<tr>
<th>Spot</th>
<th>Name of protein</th>
<th>Gene Name</th>
<th>Uniprot Accession</th>
<th>MS/MS Score</th>
<th>Nominal Mass (KDa)</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abhydrolase domain-containing protein 14B</td>
<td>Abhd14b</td>
<td>Q8VCR7</td>
<td>99</td>
<td>22,451</td>
<td>2.06 ↓</td>
</tr>
<tr>
<td>2</td>
<td>Alcohol dehydrogenase [NADP+]</td>
<td>Akr1a1</td>
<td>Q9JI16</td>
<td>262</td>
<td>36,587</td>
<td>3.49 ↑</td>
</tr>
<tr>
<td>3</td>
<td>Aldehyde dehydrogenase, mitochondrial</td>
<td>Aldh2</td>
<td>P47738</td>
<td>63</td>
<td>56,538</td>
<td>3.31 ↑</td>
</tr>
<tr>
<td>4</td>
<td>Alpha-enolase</td>
<td>Eno1</td>
<td>P17182</td>
<td>110</td>
<td>47,141</td>
<td>2.84 ↑</td>
</tr>
<tr>
<td>5</td>
<td>Aminoacylase-1</td>
<td>Acy1</td>
<td>Q99JW2</td>
<td>113</td>
<td>45,781</td>
<td>4.50 ↓</td>
</tr>
<tr>
<td>6</td>
<td>ATP synthase subunit alpha, mitochondrial</td>
<td>Atp5a1</td>
<td>Q03265</td>
<td>236</td>
<td>59,753</td>
<td>3.49 ↓</td>
</tr>
<tr>
<td>7</td>
<td>ATP synthase subunit beta, mitochondrial</td>
<td>Atp5b</td>
<td>P56480</td>
<td>505</td>
<td>56,300</td>
<td>2.04 ↓</td>
</tr>
<tr>
<td>8</td>
<td>Catalase</td>
<td>Cat</td>
<td>P24270</td>
<td>54</td>
<td>59,795</td>
<td>1.92 ↑</td>
</tr>
<tr>
<td></td>
<td>Cytochrome b-c1 complex subunit 1, mitochondrial</td>
<td>Uqcr1</td>
<td>Q9CZ13</td>
<td>58</td>
<td>52,852</td>
<td>1.91 ↓</td>
</tr>
<tr>
<td>9</td>
<td>Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial</td>
<td>Alh4a1</td>
<td>Q8CHT0</td>
<td>83</td>
<td>61,841</td>
<td>1.69 ↑</td>
</tr>
<tr>
<td>10</td>
<td>Dihydrolipoic acid-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial</td>
<td>Dlat</td>
<td>Q8BMF4</td>
<td>110</td>
<td>67,942</td>
<td>5.8 ↑</td>
</tr>
<tr>
<td>11</td>
<td>Dihydrolipoic acid-residue succinyltransferase component of 2-oxoglutarate dehydrogenase, mitochondrial</td>
<td>Dlst</td>
<td>Q9D2G2</td>
<td>98</td>
<td>22,23</td>
<td>6.82 ↓</td>
</tr>
<tr>
<td>12</td>
<td>Electrogenic sodium bicarbonate cotransporter 1</td>
<td>Nbc1</td>
<td>O88343</td>
<td>43</td>
<td>121,484</td>
<td>3.47 ↓</td>
</tr>
<tr>
<td>13</td>
<td>Electron transfer flavoprotein subunit beta</td>
<td>Etfb</td>
<td>Q9DCW4</td>
<td>50</td>
<td>27,623</td>
<td>3.95 ↓</td>
</tr>
<tr>
<td>14</td>
<td>Enoyl-CoA hydratase, mitochondrial</td>
<td>Echs1</td>
<td>Q8BH95</td>
<td>384</td>
<td>31,474</td>
<td>3.53 ↓</td>
</tr>
<tr>
<td>15</td>
<td>Ezrin</td>
<td>Ezr</td>
<td>P26040</td>
<td>95</td>
<td>69,407</td>
<td>1.91 ↓</td>
</tr>
<tr>
<td>16</td>
<td>Fibrinogen beta chain</td>
<td>Fgb</td>
<td>Q8K0E8</td>
<td>132</td>
<td>54,753</td>
<td>2.42 ↓</td>
</tr>
<tr>
<td>17</td>
<td>Fructose-bisphosphat aldolase B</td>
<td>Aldob</td>
<td>Q91Y97</td>
<td>271</td>
<td>39,507</td>
<td>2.18 ↑</td>
</tr>
<tr>
<td>18</td>
<td>Glutamate dehydrogenase 1, mitochondrial</td>
<td>Glud1</td>
<td>P26443</td>
<td>79</td>
<td>61,337</td>
<td>2.16 ↑</td>
</tr>
<tr>
<td>19</td>
<td>Glucose dehydrogenase-3-phosphate dehydrogenase</td>
<td>Gapdh</td>
<td>P16858</td>
<td>194</td>
<td>35,810</td>
<td>2.13 ↑</td>
</tr>
<tr>
<td>20</td>
<td>Heat shock cognate 71 kDa protein</td>
<td>Hspa8</td>
<td>P63017</td>
<td>158</td>
<td>68,779</td>
<td>2.16 ↑</td>
</tr>
<tr>
<td>21</td>
<td>Heat shock protein beta-8</td>
<td>Hspb8</td>
<td>Q9JK92</td>
<td>151</td>
<td>21,533</td>
<td>2.19 ↑</td>
</tr>
<tr>
<td>22</td>
<td>Hemoglobin subunit beta-1</td>
<td>Hbb-b1</td>
<td>P02088</td>
<td>461</td>
<td>15,840</td>
<td>4.24 ↓</td>
</tr>
<tr>
<td>23</td>
<td>Hydroxycapril-coenzyme A dehydrogenase, mitochondrial</td>
<td>Hadd</td>
<td>Q61425</td>
<td>366</td>
<td>34,464</td>
<td>2.00 ↓</td>
</tr>
<tr>
<td>24</td>
<td>Ketohexokinase</td>
<td>Khk</td>
<td>P97328</td>
<td>91</td>
<td>32,75</td>
<td>1.65 ↑</td>
</tr>
<tr>
<td>25</td>
<td>L-lactate dehydrogenase A chain</td>
<td>Ldha</td>
<td>P06151</td>
<td>77</td>
<td>36,499</td>
<td>2.18 ↓</td>
</tr>
</tbody>
</table>
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

<table>
<thead>
<tr>
<th>No.</th>
<th>Protein Name</th>
<th>Gene Symbol</th>
<th>Accession</th>
<th>FDR</th>
<th>Adj. P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>L-lactate dehydrogenase B chain</td>
<td>Ldhb</td>
<td>P16125</td>
<td>190</td>
<td>36,572</td>
</tr>
<tr>
<td>30</td>
<td>Malate dehydrogenase, cytoplasmic</td>
<td>Mdh1</td>
<td>P14152</td>
<td>50</td>
<td>36,511</td>
</tr>
<tr>
<td>31</td>
<td>Malate dehydrogenase, mitochondrial</td>
<td>Mdh2</td>
<td>P08249</td>
<td>75</td>
<td>35,611</td>
</tr>
<tr>
<td></td>
<td>Mitochondrial peptide methionine sulfoxide reductase</td>
<td>Msra</td>
<td>Q9D6Y7</td>
<td>96</td>
<td>25,988</td>
</tr>
<tr>
<td>33</td>
<td>Na(+)H(+) exchange regulatory cofactor NHE-RF3</td>
<td>Nherf3</td>
<td>Q9JIL4</td>
<td>126</td>
<td>56,499</td>
</tr>
<tr>
<td>34</td>
<td>Protein 8, mitochondrial</td>
<td>Ndufs8</td>
<td>Q8K3J1</td>
<td>123</td>
<td>24,038</td>
</tr>
<tr>
<td>35</td>
<td>Origin recognition complex subunit 3</td>
<td>Orc3</td>
<td>Q9JK30</td>
<td>81</td>
<td>82,342</td>
</tr>
<tr>
<td>36</td>
<td>Peroxiredoxin-1</td>
<td>Prdx1</td>
<td>P35700</td>
<td>120</td>
<td>22,176</td>
</tr>
<tr>
<td>37</td>
<td>Peroxiredoxin-2</td>
<td>Prdx2</td>
<td>Q5M9N9</td>
<td>73</td>
<td>21,791</td>
</tr>
<tr>
<td>38</td>
<td>Peroxiredoxin-6</td>
<td>Prdx6</td>
<td>O08709</td>
<td>141</td>
<td>24,871</td>
</tr>
<tr>
<td>39</td>
<td>Phosphoglycerate kinase 1</td>
<td>Pgk1</td>
<td>P09411</td>
<td>103</td>
<td>44,55</td>
</tr>
<tr>
<td>40</td>
<td>Protein DJ-1</td>
<td>PARK7</td>
<td>Q99LX0</td>
<td>160</td>
<td>20,021</td>
</tr>
<tr>
<td></td>
<td>Pyridine nucleotide-disulfide oxidoreductase</td>
<td>Pyroxd2</td>
<td>Q3U4I7</td>
<td>175</td>
<td>62,685</td>
</tr>
<tr>
<td>41</td>
<td>Serum albumin</td>
<td>Alb</td>
<td>P07724</td>
<td>92</td>
<td>68,693</td>
</tr>
<tr>
<td></td>
<td>Short-chain specific acyl-CoA dehydrogenase,</td>
<td>Acads</td>
<td>Q07417</td>
<td>165</td>
<td>44,89</td>
</tr>
<tr>
<td>43</td>
<td>mitochondrial</td>
<td>Sord</td>
<td>Q64442</td>
<td>193</td>
<td>38,249</td>
</tr>
<tr>
<td>44</td>
<td>Sorbitol dehydrogenase</td>
<td>Grp75</td>
<td>P38647</td>
<td>128</td>
<td>73,528</td>
</tr>
<tr>
<td>45</td>
<td>Stress-70 protein, mitochondrial</td>
<td>Sod1</td>
<td>P08228</td>
<td>143</td>
<td>15,943</td>
</tr>
<tr>
<td>46</td>
<td>Superoxide dismutase [Cu-Zn]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toll/interleukin-1 receptor domain-containing</td>
<td>Tirap</td>
<td>Q99JY1</td>
<td>203</td>
<td>26,035</td>
</tr>
<tr>
<td>47</td>
<td>adapter protein</td>
<td>Tpi1</td>
<td>P17751</td>
<td>262</td>
<td>32,192</td>
</tr>
<tr>
<td>48</td>
<td>Triosephosphate isomerase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>60 kDa heat shock protein, mitochondrial</td>
<td>Hspd1</td>
<td>P63038</td>
<td>236</td>
<td>60,955</td>
</tr>
<tr>
<td>50</td>
<td>78 kDa glucose-regulated protein</td>
<td>Grp78</td>
<td>P20029</td>
<td>110</td>
<td>72,422</td>
</tr>
</tbody>
</table>
3.5 Discussion
In this study, we presented the first report for the potential role of reduction of Calr level in triggering renal injury leading to CKD. Morphological analyses of Calr^{−/−} mice indicate a progressive development of kidney injury with marked structural defects such as glomerulosclerosis and tubulointerstitial fibrosis at advanced stage complement with previously reported symptoms of CKD. Glomerulosclerosis is consistent with progressive increase in glomular volume, mesangial expansion and deposition of ECM, whereas tubulointerstitial fibrosis is characterized by tubular necrosis with deposition of ECM in interstitial spaces. Ultrastructural analysis further demonstrates GBM defects, vacuolated podocyte along with foot process effacement and loss of tubular brush borders. Severely impaired expression of Ezr, a podocyte marker, in Calr^{−/−} kidneys further confirms severe podocyte damage (Hsu et al, 2005). Moreover, expression of S100a4 is extremely enhanced in tubular epithelial cells. S100a4 is also known as FSP1 (fibroblast specific protein 1) expressed specifically in fibrosing cells and involved in the development of fibrosis (Strutz et al, 1995). Finally, the distinct and dramatic renal phenotypes observed with Calr^{−/−} mice suggest that balanced expression of Calr is pivotal in renal health and establish its role in the pathogenesis of renal disease.

Calr is mainly involved in two major functions; as a chaperon and as a Ca^{2+} binding protein within ER (Coe & Michalak, 2009). Therefore, the progression of kidney injury in Calr^{−/−} mice can be anticipated from either improper protein folding or Ca^{2+} cytotoxicity. Malfunctioning of chaperons result in accumulation of misfolded proteins leading to ER stress. ER stress is peer reviewed to play a pathophysiological role in several renal diseases (Chiang et al, ; Cybulsky et al, 2010; Inagi, 2009; Inagi, 2010). It is also known that ER stress results in the activation of UPR, a coordinated stress response that upregulates the capacity of...
the ER to process abnormal folded proteins (Hetz, 2012; Ron & Walter, 2007). As an adaptive mechanism, UPR further targets the transcription regulation of proteins, which can restore the proper folding of proteins such as Grp78 (Lee, 2007) or phosphorylation of eukaryotic translation initiation factor-2α subunit (eif2α), which decreases the ER load by turning down the general translation (Lee do et al, 2010). However, in the present study, expression of Grp78 and eif2α-phospho are not significantly changed excluding the role of ER stress in renal damage. In addition, prolonged ER stress followed by extended UPR is also known to play hazardous role via triggering cellular apoptosis and Chop/Gadd153 is induced as a proapoptotic signal (Araki et al, 2003). The unaltered expression of Chop in Calr+/− kidneys further rules out the role of ER stress in renal damage. Calr is also known as a major Ca2+ buffering protein of ER. Another hypothesis for the involvement of Calr in renal injury can be because of decreased Ca2+ buffering through Calr within ER resulting in increased free reactive intracellular Ca2+. Calr+/− mice showed a significant upregulation of a group of EF-hand cytosolic Ca2+ binding proteins such as Cam, Pv and S100a4. These proteins, that contain EF-hand motifs, are Ca2+ sensors and are mainly involved in Ca2+ buffering in the cytosol. Upregulation of these proteins suggests an involvement of disturbance of free intracellular Ca2+ levels in Calr+/− kidney injury (Cioffi, 2011). Previous studies have shown similar results, namely that regulation of expression of Calr leads to altered ER Ca2+ buffering capacity with almost no impact on protein folding (Bastianutto et al, 1995; Bibi et al, 2011; Opas et al, 1996).

The application of proteomics, a combination of sophisticated techniques including 2D gel electrophoresis, image analysis, mass spectrometry, amino acid sequencing, and bioinformatics, provides major opportunities to elucidate disease mechanisms and to identify new diagnostic markers and therapeutic targets (Chambers et al, 2000; Vidal et al, 2005). In
the present study, we used proteomics to further reveal the molecular mechanisms associated with renal injury in Calr<sup>+/−</sup> kidneys. Proteomics identification coupled with bioinformatics analysis characterizes the involvement of oxidative stress, mitochondrial dysfunction and energy metabolism in the worsening of kidneys in Calr<sup>+/−</sup> mice.

Oxidative stress is known as a major culprit in the progression of chronic kidney diseases (Djamali, 2007; Forbes et al, 2008). Generally, oxidative stress is the result of an imbalance between generation of free radicals and radical scavenging antioxidant systems. Therefore, the degree of imbalance defines the degree of oxidative stress (Droge, 2002; Finkel & Holbrook, 2000). Our proteomic analysis of kidneys of Calr<sup>+/−</sup> mice compared to WT mice revealed regulation of various proteins related to induction of or induced by oxidative stress. Mainly 3 out of 6 isoforms of peroxiredoxins are upregulated in our Calr<sup>+/−</sup> mice kidneys. Peroxiredoxin along with thioredoxin comprise an important anti-oxidative system which is sensitive to ROS accumulation (Michalak et al, 2002). Induction of ROS sensitive redox system confirms that oxidative stress is operative in the deterioration of kidneys in Calr<sup>+/−</sup> mice (Immenschuh & Baumgart-Vogt, 2005).

The superoxide dismutase (Sod) family is a major antioxidant system (Kojima et al, 2012). Sod1 is an important antioxidant widely distributed in the tissues and represents 90% of the total Sod activity which protects a range of tissues from various oxidative stresses (Fridovich, 1997). Proteomic analysis further revealed a significant decrease in Sod1 expression in Calr<sup>+/−</sup> mice. Downregulation of Sod1 might cause vulnerability to oxidative stress mediated renal injury in Calr<sup>+/−</sup> mice. Several studies have already reported downregulation of Sod1 as a causal link between oxidative stress and progressive renal injury (Inagi et al, 2008; Kapoor et al, 2004; Vaziri et al, 2003; Vaziri & Rodriguez-Iturbe, 2006; Wyatt et al, 2002). Knockout studies also indicate that elimination of the Sod1 gene is associated with a variety of renal

In addition to downregulation, we showed for the first time an irregular expression of Sod1 in the form of aggregates or inclusion bodies in kidneys of Calr\(^{+/−}\) mice compared to homogenous distribution in WT mice kidneys. To our knowledge, such inclusion bodies have been discussed in the neurodegenerative disease amyotrophic lateral sclerosis (ALS) ((Shaw, 2005) but not in any kidney disease. 20% of the familial ALS cases have a mutation of the Sod1 gene and are characterized by progressive degeneration of motor neurons (Wijesekera & Leigh, 2009). Despite the exact mechanism of action, the SOD1 aggregates have been proposed to play a cytotoxic role by reducing the availability of other essential intracellular proteins (Bruening et al, 1999), interfering normal intracellular mechanisms such as proteasome degradation (Allen et al, 2003), oxidative stress (Johnston et al, 2000) or by interacting with cellular organelles like mitochondria leading to dysfunction (Faes & Callewaert, 2011). In a recent study, downregulation of Calr in Sod1 mutant mice further demonstrated a link between these two proteins (Bernard-Marissal et al, 2012).

Mitochondria play vital roles in energy production, metabolism, apoptosis, necrosis, intracellular signaling and Ca\(^{2+}\) homeostasis. They are quite sensitive cellular organelles particularly, because of their capacity to change morphology, number and function in response to cellular stressors and diseases including diabetes, neurodegenerative diseases and cancer. Distribution of differentially regulated proteins in Calr\(^{+/−}\) mice according to cellular localization and functional categories also showed that 36 % of the regulated proteins belong to mitochondria and mitochondrial functions (Figure 3.7). Electron microscopy further revealed that the mitochondria are vacuolated and dilated with disorganized cristae and
damaged inner membrane, which is in agreement with neuronal mitochondrial damage in ALS (Echaniz-Laguna et al., 2002; Higgins et al., 2003; Meunier et al., 2002; Song et al., 2012; Vande Velde et al., 2011). Upregulation of mitochondrial chaperones Grp75, Hsp60 and Phb further confirmed the mitochondrial damage in Calr$^{−/−}$ mice kidneys.

Chronic low level of Calr coupled with consistent increase in free intracellular Ca$^{2+}$ might play a toxic role leading to mitochondrial damage in Calr$^{−/−}$ mice through dimerization of iNos in its active dimer form. Active iNos is known to produce NO. Under pathological conditions, NO might react with O$_2$ to produce peroxynitrite (ONOO$^−$) species which modifies proteins leading to mitochondrial dysfunction (Radisky et al., 2007; Sandhu et al., 2005). Moreover, accumulation of mitochondrial reactive oxygen species as a result of Sod1 downregulation, might lead to oxidative damage and mitochondrial dysfunction. Oxidative stress is inseparably linked to mitochondrial dysfunction, as mitochondria are both generators of and targets for reactive species (Andreyev et al., 2005; Balaban et al., 2005; Maleki et al., 2012; Small et al., 2012). Previous studies have also shown mitochondrial damage as an important phenomenon related to Sod1 down regulation, Sod1 knockout (Jang et al., 2010), or Sod1 mutation (Faes & Callewaert, 2011; Magrane et al., 2012).

Mitochondria are considered the powerhouse of the cell and play a central role in energy metabolism because of producing more than 80% of the cellular energy. Therefore, mitochondrial dysfunction, as a consequence of calcium load and oxidative stress can lead to impaired energy metabolism in Calr$^{−/−}$ mice kidneys. With the use of the KEGG pathways, a very consistent view related to energy metabolism showed a significant downregulation of enzymes belonging to mitochondrial resident energy pathways such as the oxidative phosphorylation (OxPhos) pathway. On the other hand, cytosolic resident energy production with glycolysis pathway is enhanced. It is well known that the mitochondrial respiratory chain
together with ATP synthase constitutes the OxPhos machinery, which produces 15 times more energy equivalents in the form of ATP than the glycolytic pathway does (Huttemann et al, 2012). Therefore, enhancement of glycolysis might be unable to fulfill cellular energy needs in Calr^{+/−} kidneys leading to starved cellular conditions. Decreased cytochrome c oxidase activity further confirmed the loss of proper mitochondrial function leading to energy crisis in Calr^{+/−} mice kidneys. Ca^{2+} concentration changes are known to directly correlate to changes in mitochondrial energy metabolism and ATP production through interaction with OxPhos and electron transport chain enzymes (Glancy & Balaban, 2012; Griffiths & Rutter, 2009). Moreover, it can also act through the decrease in Vdac1 expression, which is well established to regulate the energy balance of mitochondria and the entire cell by serving as a common pathway for metabolite exchange between mitochondria and cytoplasm (Shoshan-Barmatz et al, 2008). As Vdac1 is absolutely required for PINK1/Parkin-mediated selective autophagy of damaged mitochondria, its downregulation further accelerate the accumulation of necrotic and damaged toxic mitochondria in intracellular environment leading to cell apoptosis (Geisler et al, 2010).

Earlier studies showed that cellular ability to utilize different metabolic pathways in support of energy production is critical for survival under stress, and if compromised, activates the programmed cell death and dies by autophagy; a phenomenon whereby cells can digest themselves from within (Sandhu et al, 2005). Calr^{+/−} mice kidneys show similar results with presence of mitochondrial autophagy and robust increase in number.

In summary, we demonstrated that low level of Calr is responsible for the impairment of entire pathways involved in oxidative stress, mitochondrial structure and function, and energy metabolism at the protein level and is linked to the pathology of renal injury of Calr +/- mice.
Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury

Our observations suggest a notion that chronic low level of Calr favors conditions for the onset and progression of chronic kidney disease.
4. Summary
Chronic kidney disease (CKD) is becoming a major public health problem worldwide. The persistent progression of CKD is postulated to result from a self-perpetuating vicious cycle of events activated after initial injury. Being a major excretory and homeostatic organ of the body, kidney is continuously exposed to toxic wastes, excess of water and ions. In an attempt to understand the molecular mechanisms, which lead a normal functioning kidney towards disease state, proteomic screening of renal cells under various physiological conditions such as osmotic stress, oxidative stress and cytokines were performed. The data highlighted the expression regulation of an endoplasmic reticulum resident Ca\(^{2+}\) binding protein, calreticulin. Within endoplasmic reticulum (ER), calreticulin plays important function as a chaperon directing proper conformation of proteins, as well as a major ER Ca\(^{2+}\) binding protein, which controls cytosolic and ER Ca\(^{2+}\) levels. The purpose of this study was to investigate the potential role of calreticulin and mechanisms connecting this protein in regulating the renal cells function and progression of renal injury.

In vitro investigations described in Chapter 2 using two-dimensional fluorescence difference gel electrophoresis combined with mass spectrometry analysis revealed an expression alteration of calreticulin in renal cells under osmotic stress conditions. It was also found that downregulation of calreticulin is combined with continuous change in the level of free intracellular Ca\(^{2+}\). On the other hand, inhibition of the Ca\(^{2+}\) release, through IP3R antagonist, prevented calreticulin expression alteration under hyperosmotic stress, whereas the cell viability was significantly impaired. An increase in ER Ca\(^{2+}\) storage with decreased cell viability was observed in cells overexpressing wild type calreticulin compared to no significant change in Ca\(^{2+}\) level and viability in cells overexpressing mutant calreticulin, lacking the Ca\(^{2+}\) binding domain. Furthermore, free Ca\(^{2+}\) level and cell survival were significantly improved under osmotic stress conditions by silencing calreticulin with siRNA.
Taken together, our data clearly highlight the crucial role of calreticulin in renal cells functioning and survival through modulating Ca$^{2+}$ homeostasis under osmotic stress conditions.

The work presented in Chapter 3 was performed with adult heterozygote Calr$^{+/−}$ mice having chronic low level of calreticulin to further investigate the *in vivo* impact of downregulation of calreticulin on kidney structure and function. A progression of renal injury evidenced by development of glomerulosclerosis and tubulointerstitial damage was observed in histological analysis of Calr$^{+/−}$ mice kidneys from different age groups. The significant overexpression of cytosolic Ca$^{2+}$ binding proteins with an insignificant alteration of ER stress proteins, suggested the role of intracellular Ca$^{2+}$ homeostasis disturbance in renal impairments in Calr$^{+/−}$ mice. It was also found that endoplasmic reticulum stress protein markers are not significantly induced. Proteomic analysis further highlighted the role of oxidative stress and mitochondrial dysfunction in renal injury in Calr$^{+/−}$ mice kidneys. Especially, the reactive oxidative species scavenging enzyme, Sod1 expression was not only significantly downregulated but also showed irregular aggregates with immunohistochemical staining. Ultrastructural analysis further indicated significantly impaired mitochondrial morphology characterized by enlarged, swollen mitochondria with disturbed membranous structures in Calr$^{+/−}$ mice. These morphological changes were accompanied by biochemical abnormalities with specific decreases in the activity of cytochrome c oxidase of the mitochondrial electron transfer chain. Consequently, the oxidative stress together with mitochondrial damage and energy imbalance resulted in kidney injury in Calr$^{+/−}$ mice. A diagram summarizing the results of this chapter is provided in in Figure 4.1.

In conclusion, the work presented in this thesis, revealed for the first time, the role of calreticulin in renal cells function and in the progression of chronic kidney injury. The study
also points out that low level of calreticulin mediated \( \text{Ca}^{2+} \) homeostasis disturbances impacts the mitochondrial morphology, function and expression of Sod1. It will be interesting to investigate the exact mechanism by which calreticulin modulates Sod1 downregulation, at the molecular level. This should provide more concentrated foci for future experimentation. However, our findings highlighted a new potential mechanism of the progression of CKD and encourage new directions in CKD research, which in turn should have impact on treatment approach, diagnosis and prevention of CKD.
Figure 4.1: Schematic representation of potential pathway of low calreticulin level in the progression of renal injury.

Low expression of calreticulin results in the elevated cytosolic Ca\(^{2+}\) level. The present study revealed the overexpression of cytosolic Ca\(^{2+}\) buffering proteins; Pv, Cam and S100a4 as a result of increase in Ca\(^{2+}\) level. We further observed that low calreticulin level results in the dimerization of iNos, downregulation of Sod1 and expression alteration of proteins related to cellular energy metabolism. Based on the present data and literature, we hypothesized that downregulation of Sod1 results in accumulation of ROS, which may lead to a pathological alteration in mitochondrial function, favouring more ROS generation, and oxidative stress. Oxidative stress in turn results in accumulation of ECM, mitochondrial necrosis and energy imbalance; all these impairments finally converge to renal injury. Red arrows show the up- or downregulation. Broken line indicates the supposed link.

BIBLIOGRAPHY


Brodsky JL, Skach WR Protein folding and quality control in the endoplasmic reticulum: Recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 23: 464-475


Coe H, Michalak M (2009) Calcium binding chaperones of the endoplasmic reticulum. Gen Physiol Biophys 28 Spec No Focus: F96-F103


Higgins CM, Jung C, Xu Z (2003) ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci 4: 16


Kubala M (2006) ATP-binding to P-type ATPases as revealed by biochemical, spectroscopic, and crystallographic experiments. Proteins 64: 1-12


Marsh DJ, Azen SP (1975) Mechanism of NaCl reabsorption by hamster thin ascending limbs of Henle’s loop. Am J Physiol 228: 71-79


Michalak M, Robert Parker JM, Opas M (2002) Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32: 269-278


Mimura I, Nangaku M (2010)


Construction of CALR-expression and CALR-siRNA vectors

The pCMV2 flag-tag-CALR construct was generated by insertion of flag DNA fragment into pVCM2 with the KDEL retention signal at the 3’-end. In brief, the flag-KDEL-construct (generated by PCR) was inserted into the MluI-XbaI-sites of pCMV2

ACGCGTAGATCTAAGCTTGATTACAAGGACGATGACGATAAGATCGATTRRSKLD
YKDDDDDKIDAGTGAGAAGGACGAGCTATGAATCGATAGATCTTGAAAGCTTAGT
GAGSEKDE L * ID S E * KLSEAAA GAT GAG CTT TGA TCT AGA KDEL * SR

* Bold underline: flag peptide sequence; faint underline: Ristriction sites MluI and XbaI

CALR fragment was generated by PCR using the sense primer (5’-AAG CTT GAA TTC CCT CGG CCC GCC ATGCTCCTT TCGGTG CCG CTC-3’), and antisense primer (without EKDEL coded nucleotides and flanked by MluI site): (5’-CATAGCACGCGTTGATGTACCTCTTCACCAG-3’) and inserted into pCMV2-flag-KDEL via EcoRI and MluI.

The production of CALR without the calcium binding site (∆CALR) was carried out by standard PCR procedure using the same sense primer for CALR as above and the antisense primer (5’-GC GAATTC AAGCTTCTACAGCTCATCCTTACTGCTTGCTCCTTCATCTGCT TCTC-3’). The insertion of ∆CALR into the pCMV2 was performed via EcoRI (Sonnichsen et al, 1994).

siRNA oligonucleotides specific for the knockdown of CALR expression (sense strand: 5’-ACCTCGGCGATCAGGAGAGAAAGATAAATCAAGAGTTTTATCCTTCTCCTGATCGCCT T3’), (antisense strand: 3’-CAAAAAGCGATCAAGGAGAGATAAATCAAGAGTTTTATCCTTCTCCTGATCGCCT T3’), were designed in our laboratory and synthesized by Eurofins MWG Operon. siRNA vector was constructed by ligating oligonucleotides in psiRNAh7SK
neo vector (Invivogen). Stable clones were selected by adding 1 mg/ml Neomycin. All constructs were verified by sequencing. TALH-cells cultured to approximately 80% confluence were transfected with siRNA containing vector for the knockdown of CALR using transfection reagent Lipofectamine 2000™ (Invitrogen) according to standard protocol of manufacturer.

**Supplemental Figure 2.1: Measurement of free intracellular Ca$^{2+}$ in TALH-cells overexpressing WT-CALR and mutant CALR compared to TALH-STD cells.**

Cells grown on cover slides were loaded with fura-2/AM in a final concentration of 8 µM. Imaging was carried out at 37 °C on the stage of an inverted microscope for the measurement of free intracellular Ca$^{2+}$ in terms of fluorescence intensity emitted by fura-2/AM.
Supplemental Figure 3.1: Histological analysis of Calr\(^{+/−}\) mice kidneys. (A) Paraffin embedded kidney sections (3µm) were stained with H&E to compare the kidney structures of Calr\(^{+/−}\) at age of 40 wk with WT mice at the same age. (B) Immunofluorescence staining of Fn1 of 40 wk old WT and Calr\(^{+/−}\) kidneys.
Supplemental Figure 3.2: Electron microscopy analysis of young Calr<sup>+/−</sup> mice kidneys. Kidney section from 12-weeks-old WT and Calr<sup>+/−</sup> mice were assessed by electron microscopy. Representative electron microscopic images show normal structures in young Calr<sup>+/−</sup> (A) lower magnification shows no deposition of ECM (10µm) (B) Normal glomerular basement membrane indicated with GBM and podocyte foot process indicated with arrow (2µm). (C) Podocyte with normal mitochondria (1µm). (E) Representative micrographs of proximal tubular cells from showing normal TJ ans BB in 12 wk Calr<sup>+/−</sup> mice (10µm). GBM: glomerular basement membrane, BB: brush borders, TJ: tight junction

Supplemental Figure 3.3: Functional classification of differentially regulated proteins on the basis of functional protein categories. Distribution of all differentially regulated proteins, according to the Gene Ontology (GO) annotation system, was performed using the DAVID database bioinformatic resources (http://david.abcc.ncifcrf.gov/).
In the name of Allah, the most Merciful, the most Gracious. I am thankful to Allah Almighty, that after four year’s journey, I finally arrived at the end of the road. But this was not a lonely trip, and I would like to thank a number of great people who helped me to achieve this goal.

First, I would like to express my gratitude to my supervisor, Prof. Dr. Hassan Dihazi for giving me opportunity to work as a member of “AG Dihazi”. He has been a great source of inspiration and motivation throughout my PhD period, and without whom, this thesis would not have been a reality. I have enjoyed being taught and guided by him, and I hope that this project serves as the foundation for many more years of collaboration.

This thesis owes a great deal to the support and guidance of Prof. Dr. Sigrd Hoyer-Fender and Prof. Dr. med. Jürgen Brockmöller. I would like to take opportunity to thank them for accepting to be my supervisors and the interest they have shown throughout in my work.

Special thanks go to Elke Brünst-Knoblich, who not only guided and helped me in lab work but also was very helpful in private issues throughout my stay in Germany. I would also like to thank to my research colleagues and friends Marwa, Gry, Ivana, Constanze and Diana for their support, guidance and friendship. I am proud to have such fellows who deserve my high appreciation. I would also like to thank to Prof. Dr. Gerhard A. Müller, who kindly provided me opportunity to stay in Department of Nephrology, University Medical Center Goettingen.

I am thankful to Jenny Krugel for providing support in Electron Microscopy, Dr. Abdul Rahman Asif for Proteomic Analysis and Dr. Phuc Von Nugvan for providing guidance in Molecular Biology work. I would also like to thank to Prof. Dr. Michalak, Alberta, Canada who kindly provided “Calreticulin knockout mice” for my PhD project.
None of the work offered here would have been possible without the financial support afforded from Higher Education Commission of Pakistan and German Academic Exchange Service (DAAD). I am very thankful to both of these organizations for their support.

Friends, I am so fortunate to have you all. I am thankful to Rehana, Mubeen, Zia bhai, Tayyab, Aneela and many others for their support, company and entertainment to make my PhD period, a memorable time of my life. Thanks to my very dear and near friend, Zakia for her never-ending emotional and moral support. I would also like to mention my little sweet and cute friend Khadija Zia for her lovely chit chats.

I would like to thank to a very special category. They are friends but I find them more like a family in Goettingen. Maliha, Shahid bhai, Seemin aapi, Abid bhai, Sana, Imran bhai, and very sweet and cute Mashal, Eshal and Hamza, for their love, support, homelike environment and a lot more during my stay in Germany. Especially our memorable tours; I can never forget those fantastic moments.

Very special thanks go to all my family members in Pakistan; my mother, sisters, brothers, sisters-in-law, brothers-in-law, nieces and nephews. In all aspects of my life they have provided me endless support encouragement and love. In particular, I am deeply grateful to my brother Waqar Alam for being a pillar of support and love, during all stressful moments of my PhD project.

Asima
Curriculum Vitae

Personal Data

Name Asima Bibi
Place and date of Birth Gujrat, 02-04-1983
Country of Origin Pakistan
Email asmaalam11@hotmail.com

Academic Career

2008-2012 PhD (Biology), George August University, Goettingen, Germany
2006-2008 M.Phil (Zoology), University of Agriculture, Faisalabad, Pakistan
2004-2006 M.Sc. (Zoology), University of Agriculture, Faisalabad, Pakistan
2002-2004 B.Sc (Zoology, Botany and Chemistry), University of Punjab, Lahore, Pakistan

Research presentations/Published abstracts:

- Oral presentation: Bibi A., Calreticulin (CALR) expression and calcium homeostasis regulation plays important role in the osmotic stress adaptation of thick ascending limb of Henle’s loop (TALH) cells, Göttinger Transporttage 2010, October 16-17.2010, Göttingen, Germany.
- Poster presentation in Göttingen Proteomic Forum, 18 November 2010, Göttingen, Germany.


List of Publications:


- Buchmaier, B., Bibi, A., Dihazi, G.H., Mueller, G.A., El Toweissy, M., Renal cells express different forms of vimentin, the independent expression regulation alteration of these forms is important in cell resistance to osmotic stress and apoptosis. Plos One, (In revision).

proteome, World J. Stem Cells, (In revision).

- Reduced calreticulin level results in oxidative stress mediated mitochondrial damage and kidney injury (in process).

Key qualifications:


- Introduction to laboratory animal science, February 21-25, 2011, Central animal facility, University Medical center, Goettingen, Germany.

Distinction and awards:

- Scholarship award for doctoral studies in Germany by Higher education commission of Pakistan (HEC) (2008-2012).

- First position holder in class through the period of 2004-2008 in University of Agriculture, Faisalabad, Pakistan.

Referenc:

Prof. Dr. Hassan Dihazi
Department of Nephrology and Rheumatology,
University Medical Center Goettingen, Germany.
Telefon: +49 551-39-91221
Fax: +49 551-39-8906
Email: dihazi@uni.med-goettingen.de