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Introduction

What is a singularity? In agreement, both the Star Trek community and re-
searchers in differential geometry will understand it as a point in space of
infinite curvature. However there is really no need to go into spacetime to
find these things. Quite often during the last year when I looked into my
wallet I discovered a singularity, too. In this thesis we will however be con-
cerned with those singularities that occur in local analytic geometry.

It is an old habit of mathematicians to find hopefully interesting group
actions and look at the orbits. Let’s do that. If (M ,ω) is a symplectic mani-
fold then the group Sp(M ,ω) of symplectomorphisms has an adjoint action.
Concretely it acts on the vector space of symplectic fields g= Ti d Sp(M ,ω) =
{X ∈C∞T M | LXω= 0} by

G ×g→ g

Adφ(X ) = di d (conjφ)(X ).

If M is connected and 1-connected, then the symplectic fields are exactly the
hamiltonian fields which themselves correspond exactly to functions on M
modulo constants. In these terms the adjoint action can also be expressed
as

Adφ(X f ) = X f ◦φ−1 .

So the problem of finding the orbits comes down to right equivalence of
functions modulo constants. What about the manifold M? We can choose
it to be the whole of C2 for example. Such global right equivalence is usu-
ally much more difficult to understand than if we just take M to be a very
small set, namely a set germ in C2. Note finally that in dimension two, be-
ing symplectic or volume-preserving are equivalent conditions. In higher
dimensions symplectic is strictly stronger.
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Introduction

We assume more general that we deal with a holomorphic function germ
with an isolated critical point at the origin of Cn . Then the most important
invariant of right equivalence is the Milnor number. There are several equiv-
alent definitions of this µ to which we will come in chapter one. One defini-
tion is for example

µ( f ) = dimC

C{x1, . . . , xn}

〈∂1 f , . . . ,∂n f 〉 .

Volume-preserving geometry leads to the interpretation of µ in connection
with the Brieskorn module

H ′′
f =

Ωn
Cn ,0

d f ∧dΩn−2
Cn ,0

whose rank is alsoµ( f ). Their relationship will be considered in chapter two.
A third interpretation of µ occuring in the theory of unfoldings has led me to
a formula which is nested in the realm of pencils of holomorphic germs. This
is the content of chapter three. It is interesting to note that there is another
link to symplectic geometry, for we will see that fx g y − fy gx plays an impor-
tant role in chapter three and this expression is nothing else than the Poisson
bracket.

Let us now describe in more detail the various sections and the main re-
sults of the thesis.

Chapter one serves as an introduction to singularity theory. All of the ma-
terial here is "well-known". We give some basic properties of singularities
in the first section and in the next section we clarify the situation around
the fibration theorems. In particular these two sections will provide us with
many definitions of the Milnor number. We will not only deal with a germ
f : (Cn ,0) → (C,0) but also with higher dimensional target space. These iso-
lated complete intersections will be needed when we look at deformations
of the map f in chapter two.

The second chapter deals with volume-preserving geometry. The first sec-
tion gives a very nice overview of the situation, so I recommend to read it as
well as this introduction. The complex version of the Morse lemma asserts

viii



that a holomorphic critical germ f : (Cn ,0) → (C,0), whose Hessian determi-
nant is nonzero at the origin, is right equivalent to x2

1+. . .+x2
n . If one tightens

the notion of right equivalence by stipulating that the coordinate change has
to be volume-preserving, then one gets the classical theorem by Vey assert-
ing that there is a volume-preserving coordinate transformation mapping
f to Ψ(x2

1 + . . .+ x2
n) where Ψ ∈ C{t }. There is another proof of this result by

Garay even of a much more general statement, the isochoric versal unfolding
theorem. I have chosen isochoric as a synonym for volume-preserving since
as far as I know it is used in technical areas as well (isochoric process). In
the third and fourth section we deal with the theory of isochoric unfoldings.
We explain how the Brieskorn module and hence µ( f ) enters the picture.
To understand the proof of the versality theorem we have given background
material in section two. In the fifth section we show how one can prove Vey’s
lemma using the theory developed so far. Now there is even a third proof of
Vey’s lemma by Françoise ([Fra78]) whose idea was the following. Assume
that you already have the desired relation

f ◦Φ(x) =Ψ(x2
1 + . . .+x2

n) with Ψ(t ) = t +o(t ), say.

Putting Ψ(t ) = tu(t )2 for some u with u(0) 6= 0 one rewrites the relation as

f ◦Ψ(x) = [x1u(x2
1 + . . .+x2

n)]2 + . . .+ [xnu(x2
1 + . . .+x2

n)]2.

Then the map

(x1, . . . , xn) 7→ (x1u(x2
1 + . . .+x2

n), . . . , xnu(x2
1 + . . .+x2

n))

is a coordinate transformation and once it is applied, we can reduce the
problem to a problem on the Brieskorn module. In the last section of chapter
two we we generalize the approach by Françoise to arbitrary quasihomoge-
neous polynomials P instead of the x2

1 + . . .+x2
n in the lemmas 2.19, 2.21 and

2.22. They deal with the above-mentioned coordinate change which was
only sketched in Françoise’s paper. Having established this, we can use a
nonisolated version of the Brieskorn module which was already considered
in [Fra82] to deduce a normal form for P (x1, . . . , xn) = x1 · · ·xn . Uniqueness
will be proved by integration over the fibre. The following is the main new
result of the whole chapter and it was was recently published in [Sza12a].
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Introduction

Theorem. Let f : (Cn ,0) → (C,0) be a holomorphic germ that is right equiva-
lent to the product of all coordinates: f ∼ x1 · · ·xn . Then there exists a volume-
preserving automorphism Φ : (Cn ,0) → (Cn ,0) and an automorphism
Ψ : (C,0) → (C,0) such that

f (Φ(x)) =Ψ(x1 · · ·xn).

Ψ is uniquely determined by f up to a sign.

One of the classical interpretations of the Milnor number µ( f ) is as the
dimension of the parameter space of its semi-universal unfolding. Let f , g ∈
C{x, y} be vanishing at the origin and coprime. In [Suw83] Suwa has shown
that for meromorphic maps ( f : g ) : (C2,0) 99KP1 semi-universal unfoldings

exist and the parameter space has dimension dimC
〈 f ,g 〉

〈 fx g− f gx , f g y−g fy 〉 , once

this is finite. Because of that I have come to the conjecture that there must
be a relation between this number and other ingredients from the pencil
s f + t g , (s : t ) ∈ P1. And indeed there is and this is the content of the third
chapter. In the first section we give general results about the geometry of the
pencil. In particular we give some equivalent conditions for the bifurcation
set B( f , g ), the set corresponding to those pencil members which are special
compared to the generic one. In this section we will see that the formula

i ( f , fx g y − fy gx ) =µ( f )+ i ( f , g )−1

(where i is the intersection number) is essential. Using the Brieskorn mod-
ule I have found an interesting proof for

gcd( f , fx g y − fy gx ) = 1 ⇔ f isolated singularity,gcd( f , g ) = 1

which is part of the just mentioned formula.

In the second section I introduce the following numbers

µ( f , g ) = dimC

C{x, y}

〈 fx g − f gx , fy g − f g y 〉
,

ν( f , g ) = dimC

〈 f , g 〉
〈 fx g − f gx , fy g − f g y 〉

.
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I consider µ( f , g ) as a generalization of the classical Milnor number of a
single function to the Milnor number of a pair of functions. After some ele-
mentary properties are given in section two, the first main result is theorem
3.16:

Theorem. Let f , g ∈ C{x, y} be nontrivial germs that vanish at the origin.
Then the following statements are equivalent:

(i) µ( f , g ) <∞
(ii) ν( f , g ) <∞

(iii) gcd( f , g ) = 1 and every linear combination s f + t g (with (s : t ) ∈P1) has
an isolated critical point at the origin.

This relates the a priori infinitely many conditions (iii) to just the single
(i). Now B( f , g ) is the finite subset of P1 where the pencil member has
higher Milnor number than the generic one. The natural question is whether
B( f , g ) can have arbitrary finite cardinality. This is answerered positively in
an even stronger form in our second result, proposition 3.24:

Theorem. Let n ≥ 0 be a given integer. Then we can give explicitely f , g ∈
mC2,0 with µ( f , g ) <∞ such that B( f , g ) has cardinality n.

In the fourth section we give an account on the following conjecture 3.25
whose invention I described above.

Conjecture (Bifurcation Formula). Assume that f , g ∈C{x, y} both vanish at
the origin and that µ( f , g ) is finite. If µg en denotes the generic Milnor num-
ber and B∗ = B( f , g ) \ {0,∞} the reduced bifurcation set of the local pencil
generated by f and g (in this order), then the following relation holds:

µ( f , g ) =µ( f · g )+ ∑
(s:t )∈B∗

(
µ(s f + t g )−µg en

)
.

Unfortunately I was not able to prove this conjecture. However I have trust
in its validity due to numerous examples which I computed partially by hand
or in most cases using the computer algebra system SINGULAR. I have writ-
ten a SINGULAR library in the appendix with which it is easy to compute all
numbers that appear in the bifurcation formula for polynomial input ( f , g ).
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Introduction

One should note that my first result says that the left-hand side of the bifur-
cation formula is finite if and only if the right-hand side is. Finally I have
proven the conjecture in a special case and sketched a possible idea for a
general proof in the fourth section. We have proposition 3.27:

Proposition. The bifurcation formula is true when at least one of f , g is a
smooth germ.

The results obtained in chapter three will be published in [Sza12b].
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1. Geometry of Singularities

1.1. Topological and Algebraic Properties of
Singularities

Most of the material of this section can be found in the books [Dim92], [GLS07]
and [Mil68].

Following standard conventions we denote by V (I ) the vanishing locus of
an ideal of functions and by

p
I the radical ideal of I . Since we usually work

on germs of functions, V (I ) is a set germ. Occasionally we abbreviate the
partial derivatives ∂1, . . . ,∂n simply by a single ∂.

Let C{x1, . . . , xn} be the power series ring in n complex variables. Some-
times this ring is denoted as OCn ,0 emphasizing that it is the stalk of the
sheaf of germs of holomorphic functions on the n-dimensional complex
vector space. Its maximal ideal is denoted by mCn ,0. An element of C{x},
f : (Cn ,0) → C is nothing but a holomorphic function germ. If f ∈ mCn ,0,
then by V ( f ) we denote the germ of a set, whereas by ( f = 0) we will denote
the set of zeros of f not as a germ but for a fixed representative of f .

We say that f has an isolated singularity at the origin (or is an isolated
singularity) if its critical locus Crit( f ) = {x ∈ (Cn ,0)| ∂1 f (x) = 0, . . . ,∂n f (x) =
0} is either void or the origin itself. The ring C{x1, . . . , xn} is factorial and a
non-unit f is called reduced if in its prime factor decomposition no multiple
factor occurs. We have

Proposition 1.1. Let f : (Cn ,0) → (C,0) be a holomorphic germ.

1. If f has an isolated singularity at the origin, then it is reduced.

2. If n = 2 and f is reduced, then f has an isolated singularity at the origin.
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1. Geometry of Singularities

3. On the level of germs of sets we have V (∂ f ) ⊂V ( f ).

To two plane germs f , g : (C2,0) →Cwe can assign their intersection num-

ber i ( f , g ). It can be defined as the dimension of the vector space C{x,y}
〈 f ,g 〉 . With

this definition it follows that i ( f , g ) is zero if and only if f (0) 6= 0 or g (0) 6= 0.
Furthermore i ( f , g ) <∞ if and only if f and g have no common factor. If g
is irreducible and γ(t ) is a parametrization of V (g ), then i ( f , g ) can be com-
puted as the order in t of f ◦γ(t ).

To any holomorphic germ f : (Cn ,0) → C we can assign the Milnor num-
ber µ( f ) which can be given as the dimension of the vector space C{x1,...,xn }

〈∂1 f ,...,∂n f 〉 .
This number is finite if and only if f has an isolated singularity at the origin.

If f : (Cn ,0) → (C,0) is a holomorphic germ, we can take a sufficiently
small sphere S2n−1

ε (of radius 0 < ε¿ 1 around the origin 0) and intersect it
with the vanishing locus of f . This defines a link L := S2n−1

ε ∩( f = 0) ,→ S2n−1
ε

whose isotopy type is independent of the choice of ε. If we remove this ex-
ceptional set from the sphere we obtain the classical (knottheoretic) Milnor
fibration:

Theorem 1.2 (Milnor fibration).
Let f : (Cn ,0) → (C,0) be a holomorphic germ. Then for any sufficiently small
ε> 0, the map

f

| f | : S2n−1
ε \ L → S1

is a smooth locally trivial fibration.

The (diffeomorphism type of the) fibre of this fibration is called the Mil-
nor fibre of f . Since the topology of hypersurface singularities is so closely
related with knots resp. links we must dwell a little on that subject. One has
the following theorem of Milnor and Burghela-Verena:

Proposition 1.3 (Conic Structure Lemma).
Let f : (Cn ,0) → (C,0) be a holomorphic germ. Then the vanishing locus of f
is homeomorphic to the cone over the link of f with apex at 0. This home-
omorphism extends to the natural homeomorphism of the closed ball with

the cone over the sphere. To be precise, if we denote by Bε
2n

the closed ε-ball

2



1.1. Topological and Algebraic Properties of Singularities

around 0, then for sufficiently small ε> 0 we have a homeomorphism of pairs

(Bε
2n

,Bε
2n ∩ ( f = 0)) ≈ Cone(S2n−1

ε ,S2n−1
ε ∩ ( f = 0)).

In particular V ( f ) is contractible, whereas V ( f ) \ {0} is homotopy equiva-
lent to a disjoint union of circles with the same number of components as

the link has. Furthermore, the complement Bε
2n

\ ( f = 0) has the same ho-
mology as that stated in the next proposition.

Proposition 1.4. Let L ,→ S3 be a link with m components. Then

H0(S3 \ L;Z) =Z
H1(S3 \ L;Z) =Zm

H2(S3 \ L;Z) =Zm−1

Hi (S3 \ L;Z) = 0, i ≥ 3.

It is possible to describe explicitely a basis for the first homology of the
link complement. On each connected component of the link fix a point and
choose a small transversal slice through this point. Then in the transversal
slice take a loop encircling the distinguished point. When we do this for all
the distinguished points we get a collection of loops which provides a basis
for H1(S3 \L;Z). The following theorem is valid with modifications in higher
dimensions as well, the proof uses however the Gysin sequence, we refer to
[Dim92].

Theorem 1.5. Let f = f m1
1 . . . f mr

r be the prime factor decomposition of f ∈
mC2,0. Then the Milnor fibre F of f has exactly m := gcd(m1, . . . ,mr ) con-
nected components and for any base point z ∈ F we have an exact sequence

0 → [π1(S3
ε \ L, z),π1(S3

ε \ L, z)] →π1(F, z) →Zr−1 → 0 (1.1)

Proof. The Milnor fibration F → S3
ε \ L → S1 yields the exact homotopy se-

quence

0 →π1(F, z) →π1(S3
ε \ L, z) →π1(S1, f (z)) →π0(F ) →π0(S3

ε \ L) →π0(S1) = 0.

First recall that the link complement is connected. Therefore by the univer-
sal property of the abelianization we can factor one of the involved maps by

3



1. Geometry of Singularities

the Hurewicz homomorphism H

0 π1(F, z) π1(S3
ε \ L, z) π1(S1, f (z)) π0(F ) 0

H1(S3
ε \ L;Z)

φ

H
ψ

The map ψ sends a small transversal loop γi corresponding to the link
component V ( fi )∩S to its image in S1 by composition with f /| f |. Choose
a sufficiently small neighbourhood of a fixed point on ( fi = 0)∩ S3

ε so that
when we write

f

| f | =
f mi

i

| f mi
i |

r∏
j=1, j 6=i

f
m j

j

| f m j

j |
the product term is nonzero and such that the point is given in local coor-
dinates by (x, y) = (0,0), the function is fi = x and the transversal loop is
γ(t ) = (δe i 2πt ,0) where t ∈ [0,1] and δ << 1. Then after a coordinate trans-
formation we have

f

| f | ◦γ(t ) = xmi

|xmi | ◦γ(t ) = e i 2πmi t .

Hence Ψ maps the basis γ1, . . . ,γr of H1(S3
ε \ L;Z) to m1[S1], . . . ,mr [S1] mod-

ulo orientation. The image of Ψ is therefore mZ where m = gcd(m1, . . . ,mr )
and since H is surjective we get π0(F ) ∼= Z/mZ, hence the Milnor fibre has
m connected components. The final assertion about the exact sequence is
now easily seen.

Corollary 1.6. A reduced and a nonreduced holomorphic germ cannot be
right equivalent under a homeomorphism.

The following remarkable theorem is due to various people. It states that a
certain module is free and of finite rank. In 1970, E. Brieskorn and P. Deligne
proved the finiteness of the module and M. Sebastiani proved its torsionfree-
ness. A nice proof of the latter has also been given by B. Malgrange.

Theorem 1.7. ([Bri70], [Seb70], [Mal74])
If f : (Cn ,0) → (C,0) has an isolated singularity at the origin, then the Brieskorn

4



1.2. Milnor Fibrations

module

H ′′
f = Ωn

d f ∧dΩn−2

is a free C{ f }-module of rank µ( f ).

In the second chapter we will examine this and related modules more
closely.

1.2. Milnor Fibrations

In this section we introduce the Milnor-Lê fibrations not only for a single
holomorphic function germ f : (Cm ,0) → (C,0) but for a map germ f : (Cm ,0) →
(Ck ,0) which defines an isolated complete intersection singularity. We in-
dicate how the fibration theorem can be proved. On the one hand we will
need this more complicated situation for the generalization of the Brieskorn
module to a parametrized version due to Greuel in theorem 2.3. On the other
hand, a more thorough discussion of the fibration theorem is neccessary in
order to understand the difficulties for nonisolated singularities, which will
be require a different strategy. The function f (x1, . . . , xn) = x1 · · ·xn gives a
nonisolated singularity to which the fibration theorem is applied in the last
section of chapter two. For the isolated complete intersection case we re-
fer to [Loo84]. For the nonisolated case the reader is referred to the paper
[LT83].

Fix some natural numbers m > k and let f : (Cm , p) → (Ck ,0) be a holo-
morphic germ. We denote by Jac( f ) the ideal in OCm ,p which is generated by
the determinants of the k-minors of the Jacobian matrix of f . Let Crit( f ) be
the critical locus of f . This is the (germ of an) analytic set which is defined
by the vanishing of the ideal Jac( f ).

Proposition 1.8. Let f : (Cm , p) → (Ck ,0) be as above. Denote by X0 a suf-
ficiently small representant of the complex space germ ( f −1(0), p). Then the
following statements are equivalent:

1. f is flat at p and p is an isolated singular point of X0.

2. dim(X0, p) = m −k and p is an isolated singular point of X0.

5



1. Geometry of Singularities

3. dim(X0 ∩Crit( f ), p) ≤ 0, i.e. X0 ∩Crit( f ) is either empty or equals {p}.

4. OCm ,p /Jac( f ) is a finite OCk ,0-module (with module structure induced
by f ).

5. The restriction f| : (Crit( f ), p) → (Ck ,0) is a finite map germ.

The use of the scheme-theoretic fibre is important as one can see from the
example f (x, y) = x2. The above proposition was mentioned without proof
in [Gre75] for the more general case when (Cm , p) is replaced by the germ
of a complete intersection of the same dimension. (A proof can however be
found in Greuel’s thesis.)

In the situation of the last proposition, one says that f = ( f1, . . . , fk ) de-
fines an isolated complete intersection singularity (X0, p) at p. In this case
the ideal 〈 f1, . . . , fk〉 is radical in the ring OCm ,p ([Loo84], prop. 1.10).

For real numbers ε,δ> 0 denote by Bε(p) resp. B̄ε(p) the open resp. closed
ε-ball around p ∈ Cm with boundary Sε(p) and by Dδ(0) the open δ-ball
around the origin 0 in Ck . Let D( f ) := f (Crit( f )) be the discriminant of f
as a set (germ). Following Looijenga ([Loo84],p. 25f.) we introduce the fol-
lowing standard notations:

S = Dδ(0)

X = Bε(p)∩ f −1(S)

X = Bε(p)∩ f −1(S)

S′ = S \ D( f )

X ′ = Bε(p)∩ f −1(S′)

X
′ = Bε(p)∩ f −1(S′)

∂X ′ = ∂Bε(p)∩ f −1(S′).

By construction, f : X ′ → S′ is submersion. Even more holds.

Theorem 1.9 (([Ham71], [Mil68])). (Milnor-Lê fibration)
If f : (Cm , p) → (Ck ,0) defines an isolated complete intersection singularity,

6



1.2. Milnor Fibrations

then for all sufficiently small ε> 0 and sufficiently small 0 < δ¿ ε, the map

f : (X
′
,∂X ′) → S′

is a smooth (= C∞) locally trivial fibre bundle pair.

The map is written in such a way that ε and δ do not appear anymore. This
is standard practise not only due to convenience. In fact, for another choice
of 1 À εÀ δ> 0 we obtain a diffeomorphic fibration ([Loo84],prop. 2.9).

In general of course we cannot expect the discriminant to be just the ori-
gin. In fact, for an isolated complete intersection singularity the discrimi-
nant is an analytic set in (Ck ,0) of the same dimension at 0 as dim(Crit( f ), p).
This follows from the finite coherence theorem and the fact that the dimen-
sion does not change under the finite map f| : (Crit( f ), p) → (Ck ,0). For ex-
ample for an isolated hypersurface singularity f : (Cm , p) → (C,0) we have
by definition dim(Crit( f ), p) ≤ 0 and hence the discriminant is an analytic
set germ of dimension ≤ 0 in (C,0). In other words it consists of at most one
point. This is included in proposition 1.1, part (3) as well. What follows is
the classical

Theorem 1.10. (Milnor’s fibration theorem)
Let f : (Cm , p) → (C,0) be a holomorphic germ with Crit( f ) ⊂ {p}. Then for all
sufficiently small 0 < δ¿ ε¿ 1, the map

f : (Bε(p),Sε(p))∩ f −1(Dδ(0) \ {0}) → Dδ(0) \ {0}

is a smooth locally trivial fibre bundle pair.

f

The induced fibration f : X ′ → S′ is, when restricted on some small circle
S1
δ
⊂ S′, equivalent to the knottheoretic Milnor fibration in theorem 1.2 (i.e.

7



1. Geometry of Singularities

there is a diffeomorphism of circles and of the total spaces of the fibrations
which makes a commutative diagram). The general fibre is also called the
Milnor fibre Mil f ,0 (and this is the one we usually deal with) and its only non-

vanshing homology groups are H0(Mil f ,0;Z) = Z and Hn−1(Mil f ,0) = Zµ( f ,0).
In fact, Milnor has shown in [Mil68] that the Milnor fibre of f : (Cn ,0) → (C,0)
with an isolated critical point at the origin is homotopy equivalent to a CW
complex of dimension n − 1 (which is remarkable since the Milnor fibre is
a complex manifold of complex dimension n − 1) and its (n − 1)th homol-
ogy group has rank equal to the degree of the map ∂ f /‖∂ f ‖ : S2n−1

ε → S2n−1.
Palamodov has shown that this is equal to the formula already given in the
first section µ( f ,0) = dimCC{x}/〈∂1 f , . . . ,∂n f 〉.

As was noticed by Lê and others, for a general map germ f : (Cm , p) →
(Ck ,0), i.e. not neccessarily an isolated complete intersection singularity,
there need not exist a fibration in a neighbourhood of p and away from the
discriminant locus. I will refer to such a fibration as of Milnor-Lê type.

Consider for the following standard example

f : (C3,0) → (C2,0), f (x, y, z) = (x2 − y2z, y).

This map germ is flat and all fibres (even the special fibre) are smooth and f
is a submersion away from the zero fibre. However, the critical locus of f is
not isolated in f −1(0), but comprises the whole fibre. This makes it impos-
sible to apply the fibration theorem. Since moreover some of its nonspecial
fibres are connected, some are not (check f −1(0,δ) and f −1(δ2,0)), a fibra-
tion of Milnor-Lê type does not exist for this example.

Let us now sketch a proof of the fibration theorem. The main ingredi-
ent is the Ehresmann lemma which we recall. Let E be a smooth manifold
with boundary and B be a smooth manifold, connected for simplicity. Let
f : E → B be a proper smooth map such that rk( f ) = dimB and rk( f |∂E) =
dimB everywhere. Then f : (E ,∂E) → B is a smooth locally trivial fibre bun-
dle pair. This theorem will be applied to f| : Bε(p) ∩ f −1(Dδ(0) \ D( f )) →
Dδ(0) \ D( f ) which is clearly proper since Bε(p) is compact. The condi-
tion rk( f ) = dimB is of course fulfilled since we have already taken away
the discriminant locus where f is not a submersion. The second rank con-
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1.2. Milnor Fibrations

dition rk( f |∂E) = dimB is the troublemaker. It is a priori not clear whether
∂E = Sε(x)∩ f −1(Dδ(0)\D( f )) is a manifold at all. The basic idea is that - since
the fibre f −1(0) has x as an isolated singular point, the space Sε(x)∩ f −1(0)
will be smooth conjecturally. In fact, one can use the curve selection lemma
by Milnor to show that this intersection is transverse for all small ε.

Apart from the proof of the Milnor-Lê fibration theorem with the Ehres-
mann lemma one could also use the Thom isotopy lemma. Of course, then
we would not get a smooth fibration, but still a topological one which suf-
fices for most purposes. A basic condition behind behind the Thom lemma
is the so called Thom a f -condition, a relative Whitney-(a) condition. But
this condition can also be used in the smooth context. According to Hi-
ronaka ([Hir77]) for a holomorphic function germ f ∈ mCn ,0 one can find
a representative which has a complex-analytic Thom-Whitney stratification
such that f −1(0) is a union of strata. We show how one can conclude the fi-
bration theorem using this. It is a known property of Whitney stratifications
("Bertini-Sard") that by taking ε smaller if necessary, Sε(0) intersects all strata
transversely, in particular those of f −1(0). The image space has as stratifica-
tion the one consisting of {0} and its open complement (recall that all critical
points of f are known to be in f −1(0)). Since the a f -condition is satisfied for
these two stratifications, we can show that every f −1(t ), t ∈ Dδ( f (0))\ f (0) in-
tersects Sε transversely, for any sufficiently small δ<< ε (transverse intersec-
tion property). We argue by contradiction. So if this was not the case there
would exist a sequence yi ∈ Sε converging to some x ∈ f −1( f (0))∩ Sε such
that Tyi f −1( f (yi )) is not transversal to Sε at yi . Since the real codimension
of Sε is one, this is equivalent to say Tyi f −1( f (yi )) ⊂ Tyi Sε. By compactness
of the Grassmannian we can take a subsequence such that the left hand side
converges (for the right it is clear): limi Tyi f −1( f (yi )) ⊂ limi Tyi Sε = Tx Sε. If
we denote by S the stratum of f −1( f (0)) which contains x, we have by Thom-
a f that Tx S ⊂ limi Tyi f −1( f (yi )). Taking together this implies Tx S ⊂ Tx Sε.
Hence f −1(0) is not stratified-transverse to Sε, a contradiction. This trans-
verse intersection property suffices to get the fibration by the use of the
Ehresmann lemma again. More general one even has the following theorem
by Lê ([Lê77]) where X is arbitary analytic.

Theorem 1.11. (Lê’s fibration theorem)
Let X ⊂U ⊂Cn be an analytic subset of an open subset U in Cn . Let f : X →C
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1. Geometry of Singularities

be an analytic function with f (x) = 0 for some x ∈ X . Then for 0 < δ¿ ε¿ 1,
the restriction of f ,

f : Bε(0)∩X ∩ f −1(D∗
δ) → D∗

δ

is a stratified locally trivial fibration.

We have seen already a couple of different definitions of the Milnor num-
berµ of an isolated singularity f : (Cn ,0) → (C,0). It is the rank of the (n−1)th
homology group of the fibre of any of the Milnor fibrations (i.e. knottheo-
retic or complex-analytic). It can be computed as a vector space dimension.
It the degree of the map ∇ f /‖∇ f ‖ : S2n−1

ε → S2n−1 where ∇= (∂1, . . . ,∂n). But
it is also the degree of the branched covering ∇ f : (Cn ,0) → (Cn ,0). In two
dimensions µ( f ) is the Hopf invariant of ( fx : fy ) : S3

ε → P1 ∼= S2 since the
Hopf invariant of (x : y) : S3 → P1 is equal to one and we have a commuta-
tive diagram with ( fx , fy )/‖( fx , fy )‖ : S3

ε → S3 whose degree is µ( f ). A quite
remarkable property was already found by Milnor in his book: µ( f ) equals
the number of critical points in a generic (Morse) perturbation ft of f . We
suggest the reader to have a look at the nice paper by Orlik [Orl77], the clas-
sical books by Arnold, Varchenko and Gusein-Zade ([AGZV85], [AGZV88]) or
the newer book [Ebe01] by Ebeling.
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2. Milnor Number and
Volume-Preserving Geometry

2.1. The Hunting for Isochoric Normal Forms

For two smooth germs f , g ∈ mCn ,0 is is clear by the implicit function the-
orem that they are right equivalent. It is also true that they are even right
equivalent under a volume-preserving automorphism. If n = 2 then a vol-
ume form is nothing but a symplectic form and the just mentioned normal-
ization result is a sharpification of the classical Darboux theorem ([BBT03],
p. 520). In this chapter we are concerned with volume-preserving right
equivalence of holomorphic function germs. Let us understand why this
has something to do with the Milnor number. In the above example of a
smooth germ the Milnor number is zero. There is no obstruction to volume-
preserving right equivalence once you have usual right equivalence. So let’s
go one step further. If the Milnor number of some f ∈mCn ,0 is equal to one,
we have a critical Morse germ. The classical holomorphic Morse lemma tells
us that f is right equivalent to x2

1 + . . .+ x2
n . For the volume-preserving right

equivalence we have the following analogous result due to Vey.

Theorem (Volume-Preserving Morse Lemma).
Let f : (Cn ,0) → (C,0) be a critical Morse singularity. Then there exists a volume-
preserving automorphismΦ ∈ Aut(Cn ,0) and a holomorphic germΨ : (C,0) →
(C,0) such that

f ◦Φ=Ψ◦Q f .

Here Q f denotes the quadratic part of f at the origin. It is possible to demand
Ψ(t ) = t +O(t 2) and with this requirement Ψ is uniquely determined by f .

So whenµ= 1 there appears one continuous obstruction for volume-presering
right equivalence. This is the function Ψ. Nowadays there are three proofs
of this result, by Vey, Garay and Françoise. We will give a proof of this the-
orem using the more general result by Garay, namely the isochoric versal
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2. Milnor Number and Volume-Preserving Geometry

unfolding theorem whose proof requires some preparations about isochoric
unfoldings and it requires a generalization of the classical Brieskorn module
of a hypersurface singularity to an isolated complete intersection singular-
ity by Greuel. The isochoric versality theorem (2.9) can be formulated from
a "higher" point of view as follows.

Theorem 2.1. For an isolated singularity f ∈ mCn ,0 there occur µ( f ,0) con-
tinuous moduli for isochoric right equivalence.

We can make this precise in an alternative way, too. Namely, Françoise has
described something like the "moduli space" of isochoric right equivalence.
Let f : (Cn ,0) → (C,0) be an isolated singularity and for right equivalence
look only at coordinate transformations whose tangent map at the origin in
Cn is the identity. Call this space Aut1(Cn ,0). Let AutΩ(Cn ,0) be the volume-
preserving automorphisms and AutΩ1 (Cn ,0) = Aut1(Cn ,0)∩AutΩ(Cn ,0). Then
we define

M ( f ) := {Φ∗ f | Φ ∈ Aut1(Cn ,0)}

{Φ∗ f | Φ ∈ AutΩ1 (Cn ,0)}
.

Fix a basis Ω1, . . . ,Ωµ of the C{t }-module H ′′
f . Then one can define a map of

sets
M ( f ) →C{t }µ (2.1)

as follows. Take an element [g ] of the left-hand side. Take a representive g1 ∈
[g ]. By definition of M ( f ) there exists Φ1 ∈ Aut1(Cn ,0) such that Φ∗

1 g1 = f .
We can write

Φ∗
1Ω= a1 ◦ f Ω1 + . . .+aµ ◦ f Ωµ+dη

with d f ∧dη= 0 and uniquely determined (by Φ∗
1Ω) germs ai ∈C{t }.

The assignment in equation (2.1) is

[g ] 7→ (a1(t ), . . . , aµ(t )). (2.2)

This map is well-defined, injective and surjective onto a subspace ob-
tained by killing from C{t }µ a one-dimensional vector subspace (i.e. the im-
age is isomorphic to the vector space C{t }µ/C).

What is the geometric explanation behind all this? Stokes theorem in the
real two-dimensional plane asserts that

∮
C xd y computes the area of the in-
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2.1. The Hunting for Isochoric Normal Forms

terior that is surrounded by the simple closed curve C . When we think of
x, y as complex variables and the curve to be a cycle lying in some smooth
fibre of a function f ∈mC2,0, then one is led to believe that such an integral
should be significant for the study of volume-preserving equivalence and for
isochoric normal forms in particular. How many cycles (classes) are there in
the Milnor fibre? Of course µ( f ) = rk Hn−1(Mil f ,0;Z) many. The rank of the
Brieskorn module is also µ( f ). That this coincidence is not just accidental
will become clear in the section about the isochoric versal unfoldings where
it will be described why the Brieskorn module enters the game.

Let us investigate the condition that Hn−1(Mil f ,0;Z) has rank equal to one,
for this might lead to a single continous obstruction and hence to a normal
form if one believes the philosophy. Well for an isolated singularity f ∈mCn ,0

we know it is equivalent toµ( f ,0) = 1 and this is equivalent to f being critical
and Morse at the origin. Here we have the lemma of Vey which completely
answers the normal form problem. What about nonisolated singularities?
Can we list all nonisolated singularities f ∈mCn ,0 with rk Hn−1(Mil f ,0;Z) = 1?
If so, then each of them may be a potential candidate for an isochoric normal
form result. Let us look at dimension two. The following proposition should
be well-known, but a proof is difficult to locate.

Proposition 2.2. For f : (C2,0) → (C,0) the group H1(Mil f ,0;Z) has rank one

if and only if f is right equivalent to xa yb with gcd(a,b) = 1.

Proof. Let H1(Mil f ,0;Z) have rank one. If f = f q1
1 · · · f qr

r is the decomposition
of f into irreducible factors then according to Melle-Hernández ([MH99])
the Euler charateristic of the Milnor fibre of f can be computed from

χ(Mil f ,0) =− ∑
1≤i< j≤r

i ( fi , f j )(qi +q j )+
r∑

i=1
qi (1−µ( fi ,0)). (2.3)

From the first chapter we know that the number of connected components d
of the Milnor fibre equals the greatest common divisor of the q1, . . . , qr . Since

we can write f −δd = ∏
ξ

[
( f q1/d

1 · · · f qr /d
r )− ξδ]

(product over all dth roots
of unity, δ ∈ (C,0) sufficiently small), these components are all diffeomor-
phic and so we deduce from rk H1(Mil f ,0;Z) = 1 that d = 1. Then χ(Mil f ,0) =
1− 1 = 0 and we consider the above equation. If r was at least three, then∑

1≤i< j≤r i ( fi , f j )(qi+q j ) ≥∑r−1
i=1 i ( fi , fi+1)(qi+qi+1)+i ( f1, fr )(q1+qr ) is strictly
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2. Milnor Number and Volume-Preserving Geometry

larger than q1 + . . . qr−1 +qr ≥∑r
i=1 qi (1−µ( fi ,0)). So we must have r = 1 or

r = 2. If r = 1 (and d = 1) then f is irreducible and hence an isolated sin-
gularity. It is well-known that µ( f ,0) = 1 implies that f is right equivalent to
x y . In the remaining case r = 2 we have the equality

i ( f1, f2)(q1 +q2) = q1(1−µ( f1,0))+q2(1−µ( f2)),

so, since qi ≥ 1, i ( f1, f2) ≥ 1,1−µ( fi ,0) ≤ 1, it follows that i ( f1, f2) = 1 and
µ( f1,0) = µ( f2,0) = 0, i.e. f1, f2 are smooth and transverse. By the inverse
function theorem there is an automorphism of (C2,0) which transforms the
pair ( f1, f2) to (x, y). Hence f is right equivalent to xq1 y q2 with coprime
q1, q2. A different proof could be obtained by using the exact sequence from
theorem 1.5. One compares the exact sequences of f to that of the reduced
germ fr ed and uses results from group theory to conclude that fr e f is Morse.

What about the integral ofλ= x d y over a generator of H1(Mil f ,0)? Choose

real numbers 0 < s ¿ ε¿ 1 such that Mil f (s) = {(x, y) ∈ Bε(0)| xa yb = s} is the

Milnor fibre of f (x, y) = xa yb where a,b ∈N are coprime integers. Then we
can embed S1 into the Milnor fibre over s using the map

S1 3 z 7→ (x(t ), y(t )) = (zb s1/a+b , z−a s1/a+b).

In fact this map is an injective immersion of a compact space, hence an em-
bedding. (The injectivity follows from gcd(a,b) = 1.) We now integrate the
form xm ynd y along this cycle:∫

S1
xm yn d y =

∫
S1

zmb sm/(a+b)z−an sn/(a+b)(−a)z−a−1s1/(a+b)d z

=−as(m+n+1)/(a+b)
∫

S1
zmb−an−a−1d z.

This integral is nonzero if and only if mb − an − a = 0. Of course there are
choices of m,n where this is achieved. Thus, the embedded circle is homo-
logically nontrivial, i.e. represents a generator of H1(Mil f ,0;C) ∼= C. Now we
let m = 1 and n = 0, so that λ = x d y is a primitive of the volume form. Its
integral is nonzero if and only if b −a = 0. But since gcd(a,b) = 1 this holds
if only if a = b = 1.
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For a = b = 1 we have Vey’s lemma as an isochoric normal form for func-
tions which are right equivalent to xa yb = x y ∼ x2 + y2. But for other co-
prime a,b an isochoric normal form for functions which are right equivalent
to xa yb is unlikely to exist in the simple form f ◦Φ=Ψ(xa yb) withΦ volume-
preserving. At least I believe that it might exist in a more complicated form.

Now let us raise dimension. Françoise has considered a nonisolated ver-
sion of the Brieskorn module and has given explicitely gcd(m1, . . . ,mn) gen-
erators when f = xm1

1 · · ·xmn
n . So one might think that when the exponents

are coprime we could look for a normal form. By some technical reason it
works under the restriction when all exponents are equal to one. The author
has used the techniques from Françoise’s proof of Vey’s lemma in [Fra78]
to generalize its main components to quasihomogeneous polynomials and
then it allowed a proof of the following isochoric normal form in higher di-
mensions.

Theorem. Consider a holomorphic germ f : (Cn ,0) → (C,0) that is right equiv-
alent to the product of all coordinates: f ∼ x1 · · ·xn . Then there exists a volume-
preserving automorphismΦ : (Cn ,0) → (Cn ,0) and an automorphismΨ : (C,0) →
(C,0) such that

f (Φ(x)) =Ψ(x1 · · ·xn).

Ψ is uniquely determined by f up to a sign.

2.2. Brieskorn Modules And Integrals Over Cycles

In the seminal paper [Bri70] Brieskorn has introduced differentC{t }-modules
for the investigation of the monodromy of an isolated singularity. One of
these modules is given for an isolated singularity f : (Cn ,0) → (C,0) by

H ′′
f =

Ωn
Cn ,0

d f ∧dΩn−2
Cn ,0

.

HereΩk
Cn ,0 denotes the vector space of germs of holomorphic k-forms at the

origin in Cn . The C{t }-module structure of this module comes from mul-
tiplication with f . It is shown in the cited paper together with Sebastiani’s
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paper [Seb70], see also Malgrange [Mal74], that this is a free module with
rank equal to the Milnor number µ( f ,0) of f at the origin.

This classical Brieskorn module was extended to isolated complete inter-
section singularities by Greuel in ([Gre75]). We assume that conditions from
proposition 1.8 are fulfilled. I.e. f : (Cm ,0) → (Ck ,0) defines an isolated
complete intersection. The restriction to the Milnor ball, f : X ′ → S′ is a
fibre bundle after theorem 1.9. Its fibre has the homotopy type of a wedge
of spheres of dimension m − k. Their number is defined to be the Milnor
number of f , µ( f ). Let Ωs

f be the stalk at the origin in Cm of the relative

holomorphic s-forms on X (relative with respect to f : X → S). I.e. we have

Ωs
f =

Ωs
Cm ,0∑k

i=1 d fi ∧Ωs−1
Cm ,0

.

Then Greuel defines the OS,0-module

H ′′
f =

Ωm
Cm ,0

d f (dΩn−1
f )

.

Theorem 2.3 ([Gre75], prop. 4.8). With the above assumptions and nota-
tions, H ′′

f is free of rank µ( f ).

One can ask if it possible to gain similar results for nonisolated singular-
ities. Following analogy we face the problem of choosing the right noniso-
lated version of the Brieskorn module. Such nonisolated versions were e.g.
looked at in the paper by van Straten [Str87]. But also Françoise in his study
of normal forms was already considering

F f :=
Ωn
Cn ,0

{dη| d f ∧η= 0}
,

which is again a C{t }-module. For isolated singularities F f equals H ′′
f by the

de Rham lemma. (The de Rham states that wedging with d f gives an ex-
act sequence Ωn−2

Cn ,0 → Ωn−1
Cn ,0 → Ωn

Cn ,0, a consequence of homological com-
putations on the Koszul complex and the Nullstellensatz.) But for arbitrary
singularities not much is known.

Due to Barlet ([BS07], prop. 3.6 together with [Bar06] thm. 4.2.2.) we
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2.2. Brieskorn Modules And Integrals Over Cycles

know that for n = 2 the latter module is free of finite rank. However, in more
than two dimensions freeness of F f is in general not given ([BS07], remark
3.4). For normal crossings, J.-P. Françoise has computed explicit generators
of the nonisolated Brieskorn module.

Proposition 2.4 ([Fra82]). The nonisolated Brieskorn module FP of P (x) =
xm1

1 . . . xmn
n with mi ≥ 1 can be generated as aC{t }-module by d := gcd(m1, . . . ,mn)

elements. More precisely let us define ki := mi /d , i = 1, . . . ,n and

wi = xi k1−1
1 · · ·xi kn−1

n d x1 ∧ . . .∧d xn , i = 1, . . . ,d . (2.4)

Then the w1, . . . , wd generate FP .

We make two comments which we use later. For P = x1 · · ·xn , FP is gener-
ated by the single form d n x = d x1 ∧ . . .∧d xn .
The η as appearing in the definition of FP can even be chosen with η(0) = 0
here. We note that in the above statement convergence holds, i.e. it is not
just a formal statement, although this needs a discussion which is not con-
tained in the cited paper.

Let us consider a holomorphic function germ f : (Cn ,0) → (C,0) with an
isolated critical point at the origin. Starting from the Milnor fibration f : X ′ →
S′ we can assemble the i th complex homology of its fibres to a flat holomor-
phic vector bundle Hi := ∐

t∈S′ Hi (X t ;C) → S′, the i th homological Milnor
bundle of f . Actually any holomorphic vector bundle over a noncompact
Riemann surface is trivial, but instead of looking at global holomorphic sec-
tions we consider locally constant sections γ : S′ → Hi . Any holomorphic
i -form λ, which is closed on the fibre, gives rise to an integral

I : S′ →C, t 7→
∫
γ(t )

λ.

Since γ is usually multivalued (the bundle does not extend to the origin),
the function I is also multivalued. It can be shown by the Leray calculus
([Pha05]) that I is holomorphic. This will be used later.
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2.3. Isochoric Versal Unfoldings

Let f : (X ,0) → (Y ,0) be a morphism of complex space germs. An unfolding
of f is a holomorphic map F : (X ,0)× (S,0) → (Y ,0)× (S,0) of complex space
germs of the form F (x, t ) = (F̃ (x, t ), t ) and such that F̃ (x,0) = f (x). An in-
finitesimal unfolding of f is an unfolding of f as above with S = T where T
denotes the double point. In the sequel we fix a (holomorphic) volume form
Ω on the germ (Cm ,0). Let us discuss the notion of right left equivalence
with the neccessary modifications to account for the presense of Ω. We use
the symbol AΩ here. For the general theory of unfoldings the reader may
consult [Tei76], [Mar76], [Was74].

Two unfoldings F,G of f : (Cm ,0) → (Cp ,0) with the same base space germ
(S,0) are said to be AΩ-isomorphic if there exists a commutative diagram

(Cm ×S,0)
Φ

> (Cm ×S,0)

(Cp ×S,0)

F
∨

Ψ
> (Cp ×S,0)

G
∨

where Φ is

• an isomorphism of complex space germs,

• unfolding of the identity on (Cm ,0), i.e. it is of the form

Φ(x, s) = (φ(x, s), s)

with φ(x,0) = x for all x ∈ (Cm ,0),

• Ω-preserving, i.e. for every s ∈ (S,0) the holomorphic map

(Cm ,0) → (Cm ,0), x 7→φ(x, s)

preserves Ω,

and Ψ is

• an isomorphism of complex space germs,

18



2.3. Isochoric Versal Unfoldings

• an unfolding of the identity on (Cp ,0) which means that it is of the
form

Ψ(y, s) = (ψ(y, s), s) with ψ(y,0) = y.

The trivial unfolding of f with base (S,0) is the unfolding given by

f × idS : (Cm ×S,0) → (Cp ×S,0).

An unfolding F of f : (Cm ,0) → (Cp ,0) with base (S,0) is called AΩ-trivial if it
is AΩ-isomorphic to the trivial unfolding of f with base (S,0). An unfolding
F of f : (Cm ,0) → (Cp ,0) with base (S,0) is called AΩ-versal if every unfolding
G of f with base (S′,0) is AΩ-isomorphic to an unfolding obtained from F
by a base change h : (S′,0) → (S,0). This means that for every unfolding G :
(Cm ×S′,0) → (Cp ×S′,0) of f we have a commutative diagram

(Cm ×S′,0)
Φ

> (Cm ×S′,0)
(id,h)

> (Cm ×S,0)

(Cp ×S′,0)

G∨
Ψ

> (Cp ×S′,0)

H∨
(id,h)

> (Cp ×S,0)

F
∨

with Φ and Ψ as in the definition of "AΩ-isomorphic".

We can combine the two diagrams to a single one to get

(Cm ×S′, (x, s′))
(φ,h)

> (Cm ×S,φ(x, s′),h(s′))

(Cp ×S′, (y, s′))

G∨
(ψ,h)

> (Cp ×S, (ψ(y, s′),h(s′))

F∨

with y = G̃(x, s′),φ(·,0) = ·,ψ(·,0) = · and φ volume-preserving.

If (S′,0) is a smooth germ, then the two last diagrams are equivalent, for
by the implicit function theorem Φ and Ψ, as constructed from the latter
diagram, are isomorphisms.

ForΩ-isochore right equivalence of unfoldings we use the symbol RΩ and
all the definitions above have to be modified by merely setting Ψ := id.
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2. Milnor Number and Volume-Preserving Geometry

The next proposition allows us to understand the simplest types of un-
foldings, the infinitesimal ones. In general, some global property of a map
induces an infinitesimal property of this map (by computing the lineariza-
tion, so to say) and usually we are interested in the converse.

Proposition 2.5. Writing an infinitesimal unfolding F of f : (Cm ,0) → (C,0)
in the form F̃ = f +εg with g ∈OCm ,0 we have

• F is RΩ-trivial (as an unfolding of f ) if and only if

g ∈ {〈X ,∂ f 〉| LXΩ= 0, X hol. field on (Cm ,0)}.

• F is AΩ-trivial (as an unfolding of f ) if and only if

g ∈ {a ◦ f +〈X ,∂ f 〉| a ∈OC,0, LXΩ= 0, X hol. field on (Cm ,0)}.

Proof. The condition for F to be AΩ-trivial is in a formula

f (φ(x, s)) =ψ(F̃ (x, s), s).

We diffentiate with respect to s at s = 0 and get

〈∂ f (x), φ̇(x,0)〉 = ∂yψ◦ (F̃ (x,0),0)( ˙̃F (x,0))+∂sψ( f (x),0)

= ˙̃F (x,0)+∂sψ( f (x),0)

= g (x)+∂sψ( f (x),0),

which is the desired relation for AΩ. For RΩ we simply putψ(y, s) = y which
kills the last term.

From the last proposition it follows that

RΩ
f := infinitesimal unfoldings of f

RΩ-trivial ones
= OCm ,0

{〈X ,∂ f 〉| LXΩ= 0}
(2.5)

AΩ
f := inf. unfoldings of f

AΩ-trivial ones
= OCm ,0

{ f ∗OC,0 +〈X ,∂ f 〉| LXΩ= 0}
. (2.6)

Above we have denoted by <,> the standard complex bilinear pairing. Of
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2.3. Isochoric Versal Unfoldings

course one could also simpler write X ( f ) instead of 〈X ,∂ f 〉. The space RΩ
f

was called by Garay the isochoric Jacobian module. We note that the de-
nominators are not ideals in the ring OCm ,0, so that for example RΩ

f is not

endowed (at least not in the obvious way) with a ring structure. However, we
have:

Proposition 2.6. Let f be an isolated singularity as above. RΩ
f ,AΩ

f carry a

C{t }-module structure where the multiplication is defined by

a · [g ] := [(a ◦ f )g ], a ∈C{t }, g ∈OCm ,0.

AsC{t }-module we have a canonical isomorphism with the Brieskorn mod-
ule of f :

RΩ
f
∼= H ′′

f . (2.7)

Proof. We use the

Lemma 2.7. d f ∧ ivΩ= 〈v,∂ f 〉Ω

Since the formula is OX -linear in Ω we can assume for the proof of the
lemma that Ω is the standard volume form. Let v1, . . . , vm be vectors and
denote their j th component (in the standard basis) by v j

i . We set d x̂i = d x1∧
. . .∧d xi−1 ∧d xi+1 ∧ . . . and get

(iv1Ω)(v2, . . . , vm) = det(v)

= −
m∑

j=1
(−1) j v j

1 det(1, j -minor)

= −
m∑

j=1
(−1) j v j

1 d x̂ j (v2, . . . , vm),

so that ivΩ=∑m
j=1(−1) j+1v j d x̂ j . Therefore,

d f ∧ ivΩ=∑
i , j

(−1) j+1(∂i f )v j d xi ∧d x̂ j = 〈v,∂ f 〉d x1 ∧ . . .∧d xm .

This shows the lemma. The stated isomorphism of RΩ
f with the Brieskorn

module is simply multiplication with Ω. Under this vector space isomor-
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2. Milnor Number and Volume-Preserving Geometry

phism the module structure carries over to RΩ
f . The assertion for AΩ

f is then

immediate.

Proposition 2.8. If f : (Cm ,0) → (C,0) is an isolated singularity with Milnor
number µ, then RΩ

f is a free C{t }-modules of rank µ.

Proof. This follows from proposition 2.6 and the the Brieskorn-Sebastiani
theorem. �

The following theorem is due to [Gar04].

Theorem 2.9 (Isochoric Versal Unfolding Theorem).
Let f : (Cn ,0) → (C,0) be an isolated singularity and let

F : (Cn ×Ck ,0) → (C×Ck ,0), F (x, s) = ( f (x, s), s)

be an unfolding of f . Define the initial speeds

Ḟi := ∂ f (x, s)

∂si

∣∣∣∣
s=0

∈OCn ,0, i = 1, . . . ,k.

Then the following statements are equivalent:

1. The residue classes [Ḟ1], . . . , [Ḟk ] ∈AΩ
f generate the C{t }-module AΩ

f .

2. The residue classes [1], [Ḟ1], . . . , [Ḟk ] ∈RΩ
f generate theC{t }-module RΩ

f .

3. F is AΩ-versal (as unfolding of f ).

The usual unfolding theorem (i.e. for A -unfoldings) is the equivalence
between the first and the third item. And in this case the first item requires
that the residue classes of the initial speeds generate the vector space R f .
Its proof has as a major ingredient a version of the Weierstraß preparation
theorem, while the isochoric version needs Brieskorn modules instead.

2.4. Proof of the Isochoric Versality Theorem

We will provide a proof of the versality theorem for AΩ following the main
argument of J. Martinet ([Mar76]) and the neceessary modifications to ac-
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2.4. Proof of the Isochoric Versality Theorem

count for Ω made by M. Garay ([Gar04].

We start with a lemma whose implication (iii) ⇒ (i) will be the technical
clue in the proof below. We will equip the spaces Cn ,Cp+1,Ct with the coor-
dinates x,u resp. y .

Lemma 2.10. Let Ω be a holomorphic volume form on (Cn ,0). Let

H : (Cp+1 ×Cn ,0) → (Cp+1 ×Ct ,0), H(u, x) = (u, H̃(u, x))

be an unfolding in the parameters u = (u0, . . . ,up ) and denote by H0 := H |u0=0

the p-parametric unfolding obtained by setting u0 = 0. Then the following
statements are equivalent

i) There exists a submersive holomorphic germ h : (Cp+1,0) → (Cp ,0) such
that H is AΩ-isomorphic to h∗(H0).

ii) There exist germs of holomorphic vector fields X resp. Y at the origin of
Cp+1 ×Cn resp. Cp+1 ×Ct of the following form

X =
n∑

i=1
Xi (u, x)

∂

∂xi
+ ∂

∂u0
+

p∑
j=1

ξ j (u)
∂

∂u j
(2.8)

Y =
t∑

k=1
Yk (u, y)

∂

∂yk
+ ∂

∂u0
+

p∑
j=1

ξ j (u)
∂

∂u j
(2.9)

such that (Xi (u, x))n
i=1 is an Ω-preserving vector field for every small u

and X ,Y are H-related, i.e. D H(X ) = Y ◦H.

iii) There exist germs of holomorphic functions ξ j (u), Xi (u, x),Yk (u, y) near
the respective origins such that

∂H̃

∂u0
(u, x)+

p∑
j=1

ξ j (u)
∂H̃

∂u j
(u, x)+

n∑
i=1

Xi (u, x)
∂H̃

∂xi
(u, x) = (

Yl (u, H̃(u, x))
)t

l=1

(2.10)
where (Xi (u, x))n

i=1 is anΩ-preserving vector field on (Cn ,0) for every u ≈
0.

For the proof we refer to Martinet’s article.
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2. Milnor Number and Volume-Preserving Geometry

Let’s recall what we want to prove.

Theorem. Let f : (Cn ,0) → (C,0) be an isolated singularity and let

F : (Cn ×Ck ,0) → (C×Ck ,0), F (x, s) = ( f (x, s), s)

be an unfolding of f . Define the initial speeds

Ḟi := ∂ f (x, s)

∂si

∣∣∣∣
s=0

∈OCn ,0, i = 1, . . . ,k.

Then the following statements are equivalent:

1. The residue classes [Ḟ1], . . . , [Ḟk ] ∈AΩ
f generate the C{t }-module AΩ

f .

2. The residue classes [1], [Ḟ1], . . . , [Ḟk ] ∈RΩ
f generate theC{t }-module RΩ

f .

3. F is AΩ-versal (as unfolding of f ).

Proof. (3) ⇒ (1): This is an exercise in differentiating. (1) ⇒ (2): Trivial. (2)
⇒ (3): Let G : (Cl ×Cn ,0) → (Cl ×C,0) be an arbitrary deformation of f . We
need to show that G is AΩ-isomorphic to the unfolding h∗F for some germ
h : (Cl ,0) → (Ck ,0).

To this end, we use a well-known trick by Martinet. Writing

F (u, x) = (u, F̃ (u, x)) and G(v, x) = (v,G̃(v, x))

we form the direct sum H of the unfoldings F and G :

H : (Ck+l ×Cn ,0) → (Ck+l ×C,0), H(u, v, x) := (u, v, F̃ (u, x)+G̃(v, x)− f (x)).

Since we substracted f (x), this is again an unfolding of f . We obviously
have H |u=0 =G and H |v=0 = F .

The idea for the proof of the assertion, ((2) → (3)) is to apply lemma (2.10),
(iii) ⇒ (i), l -times to get a sequence of map germs

ĥ : (Ck+l ,0)
ĥ1−→ (Ck+l−1,0)

ĥ2−→ . . . → (Ck+1,0)
ĥl−→ (Ck ,0)
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2.4. Proof of the Isochoric Versality Theorem

such that

H becomes AΩ− isomorphic to ĥ∗F. (∗)

Because of H |u=0 = G it immediately follows that G is AΩ-isomorphic to
h∗F with h := ĥ|u=0 : (Cl ,0) → (Ck ,0). Hence, the assertion (2)⇒ (3) would
be proved.

The first step is to use (2.10), (iii) ⇒ (i), (with v1 instead of u0 and v1, . . . , vl ,
u1, . . . ,uk instead of u0, . . . ,up ). To do so, we need to show the validity of an
equation of the form

∂H̃

∂v1
(u, v, x)+

k∑
j=1

ξ j (u, v)
∂H̃

∂u j
(u, v, x)+ (∗∗)

+
l∑

j=2
ξ̂ j (u, v)

∂H̃

∂v j
(u, v, x)+

n∑
i=1

Xi (u, v, x)
∂H̃

∂xi
(u, v, x) = Y (u, v, H̃(u, v, x)).

If such an equation holds (on the level of germs, with (Xi )n
i=1 relatively Ω-

isochore), then, according to the lemma, H is AΩ-isomorphic to the un-
folding ĥ∗

1 (H |v1=0) for some germ ĥ1 : (Ck ×Cl ,0) → (Ck ×Cl−1,0). By ap-
plying this procedure recursively (to the pair (H |v1=0, H |v1=0,v2=0) instead of
(H , H |v1=0) in the next step, etc.), the proof of (*) is then completed.

(Remark. Here one has to show that for instance, if H is AΩ-isomorphic
to ĥ∗

1 H |v1=0 and if H |v1=0 is AΩ-isomorphic to ĥ∗
2 H |v1=v2=0, then H is AΩ-

isomorphic to (ĥ2 ◦ ĥ1)∗(H |v1=v2=0). )

We now verify the last equation (**). Consider

R
Ω,par

H̃
= O(Ck+l+n ,0)

{< X (u, v, x),∂x H̃ > | LXΩ= 0}
,

a parametric version of the isochoric Jacobian module. Similar to the last
section multiplication by the volume form shows that this is isomorphic to
the Greuel-Brieskorn module of H , a C{z,u, v}-module (via concatenation
with H). Now H−1(0) = {(u, v, x) ∈Ck ×Cl ×Cn | u = 0, v = 0, f (x) = 0} ∼= f −1(0)
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2. Milnor Number and Volume-Preserving Geometry

and from proposition 1.8 we see that H is an isolated complete intersection
singularity, therefore by theorem 2.3 R

Ω,par

H̃
is free of rank µ(H) =µ( f ).

The equation in question (**) can be written simply as the question whether
the residue class

[
∂H̃

∂v1
] ∈R

Ω,par

H̃

belongs to the C{z,u, v}-submodule of R
Ω,par

H̃
generated by the classes

[1], [∂u1 H̃ ], . . . , [∂uk H̃ ], [∂v2 H̃ ], . . . , [∂vl H̃ ].

We assert that this submodule is indeed the whole module.

Let m1 be the maximal ideal in C{z} and mk+l+1 be the maximal ideal in
C{z,u, v}. Denote by

π : RΩ,par

H̃
→

R
Ω,par

H̃

mk+l+1R
Ω,par

H̃

π| : RΩ
f →

RΩ
f

m1R
Ω
f

the canonical projections. Note that π| =π|u=v=0.

Now since R
Ω,par

H̃
is a C{z,u, v}-module of finite type, showing that the

above mentioned submodule is the whole R
Ω,par

H̃
, is therefore equivalent

by the Nakayama lemma to showing that π, restricted to the submodule, is
again surjective.
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2.5. Vey’s Isochoric Morse Lemma

Now look at the following commutative diagram

π(C{z,u, v} < [1], [∂u1 H̃ ], . . . , [∂vl H̃ ] >) ⊂ > R
Ω,par

H̃
/mk+l+1R

Ω,par

H̃

π
[
(C{z} < [1], [∂u1 H̃ |u=v=0], . . . , [∂vl H̃ |u=v=0] >]

∼= u=0,v=0

∨
⊂ > RΩ

f /m1RΩ
f

∼= u=0,v=0
∨

π
[
C{z} < [1], [∂u1 F̃ |u=0], . . . , [∂vl G̃|v=0] >]

wwwwwww
⊂ > RΩ

f /m1RΩ
f

wwwwww

π
[
C{z} < [1], [∂u1 F̃ |u=0], . . . , [∂uk F̃ |u=0] >]∪

∧

⊂ > RΩ
f /m1RΩ

f

wwwwww
The hooked arrows are inclusions, and the upper map to the right is the

isomorphism Cµ ∼=Cµ where µ=µ(H) =µ( f ). By hypothesis (1) in the state-
ment of the versality theorem, the moduleC{z} < [1], [∂u1 F̃ |u=0], . . . , [∂uk F̃ |u=0]
is equal to RΩ

f , hence the last line is an equality, so is the first. This completes

the proof.

2.5. Vey’s Isochoric Morse Lemma

Let f : (Cn ,0)→ (C,0) be a holomorphic function germ which is critical and
Morse at the origin. The classical Morse lemma asserts that there is a coor-
dinate transformation Φ ∈ Aut(Cn ,0) such that

f ◦Φ(x1, . . . , xn) = x2
1 + . . .+x2

n .

If one stipulates that the coordinate change has to be volume-preserving one
has the "lemme de Morse isochore" by J. Vey ([Vey77]):

Theorem 2.11 (Volume-Preserving Morse Lemma).
Let f : (Cn ,0) → (C,0) be a critical Morse singularity. Then there exists a volume-
preserving automorphismΦ ∈ Aut(Cn ,0) and a holomorphic germΨ : (C,0) →
(C,0) such that

f ◦Φ=Ψ◦Q f .

Here Q f denotes the quadratic part of f at the origin. It is possible to demand
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2. Milnor Number and Volume-Preserving Geometry

Ψ(t ) = t +O(t 2) and with this requirement Ψ is uniquely determined by f .

The rest of this section is devoted to a proof of this theorem. The existence
proof will make use of the isochoric unfolding theorem by Garay when the
Milnor number is one ([Gar07]). For the uniqueness of Ψ we discuss the lin-
ear problem and integrals over cycles in the Milnor fibre of f .

We start by looking at the linear problem. That is, we consider the group
action

SLnC×SymnC→ SymnC, (S, A) 7→ S t AS. (2.11)

Here SymnC is the vector space of complex, symmetric (n×n)-matrices. The
following easy proposition classifies the orbits of the group action.

Proposition 2.12. Two symmetric matrices A,B ∈Cn×n are equivalent (under
the congruence action of SLnC) if and only if either

• they have both the same rank k < n, or

• they have both the full rank k = n and det(A) = det(B).

Proof. The neccessity of the rank and determinant conditions is clear. So let
A and B have the same rank k. Since A is symmetric of rank k, by Sylvester
there is an invertible matrix S̃ ∈ GLnC such that S̃ t AS̃ is of the form(

Ik 0
0 0

)
where Ik is the k ×k-identity matrix (0 ≤ k ≤ n). Now we can choose any of

the n values of the root λ= n
√

det(S̃) and with the definition

S := 1

λ
S̃ we get S t AS = 1

λ2

(
Ik 0
0 0

)
, det(S) = 1.

If we write B in the same manner, we are left to check when the resulting
matrices

1

λ2

(
Ik 0
0 0

)
and

1

µ2

(
Ik 0
0 0

)
are congruent under SLnC.
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2.5. Vey’s Isochoric Morse Lemma

That’s why we look for a matrix S =
(

E F
G H

)
with det(S) = 1 and E ∈Ck×k ,F ∈

Ck×(n−k), etc. such that

S t 1

λ2

(
Ik 0
0 0

)
S = 1

µ2

(
Ik 0
0 0

)
.

This is equivalent to

1

µ2

(
Ik 0
0 0

)
=

(
E t G t

F t H t

)
1

λ2

(
Ik 0
0 0

)(
E F
G H

)
= 1

λ2

(
E t G t

F t H t

)(
E F
0 0

)
= 1

λ2

(
E t E E t F
F t E F t F

)

which means E t E = λ2

µ2 Ik and F t E = 0. So E is invertible and F = 0. Then

by a well-known theorem for computing the determinant of a block-matrix
with F = 0 we get

det

(
E F
G H

)
= det(E)det(H).

In order to get congruence under S ∈ SLnC, the matrices E and H have to be
chosen with

det(E)2 =
(
λ

µ

)2k

and det(H) = 1/det(E), while F = 0 and G arbitrary. (∗)

If k < n, such matrices can be easily found, e.g. by choosing E and H as
multiples of the identity matices of the corresponding dimension and such
that (*) holds. This shows the first part of the proposition.

However, when the rank k of A, is equal to n, then there is no H which
can force the determinant of S to be equal to one and so in this case we
really need det(E) = 1 (in fact S = E). Using the above notation, it suffices
to show that we can always find such S ∈ SLnC with S t 1

λ2 S = 1
µ2 I . By the

very definition of λ and µ we have det(A) = 1
λ2n and det(B) = 1

µ2n . Now since
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2. Milnor Number and Volume-Preserving Geometry

det(A) = det(B), we get (λ2/µ2)n = 1. Thus the desired result follows from

the next lemma with c := λ2

µ2 .

Lemma 2.13. There always exists a solution S ∈ SLnC of the equation S t S =
cI for any nth root of unity c.

Proof. Choose an nth root λ of c. Since cn = 1 we have λn = 1 or λn = −1.
In the first case put S = λI where I is the n ×n identity matrix; in the sec-
ond case put S = λdiag(−1,1, . . . ,1). Then in both cases S t S = λ2I = cI and
det(S) = 1.

This completes the proof of proposition 2.12.

Given two holomorphic germs f A(x) = x t Ax+O(‖x‖2) and f B (x) = x t B x+
O(‖x‖2) for some A,B ∈Cn×n and assume that there exist holomorphic germs
Φ : (Cn ,0) → (Cn ,0) and Ψ : (C,0) → (C,0) such that

(Cn ,0)
Φ
> (Cn ,0)

(C,0)

f B

∨
Ψ

> (C,0)

f A

∨

commutes. Then we have f A(Φ(x)) =Ψ( f B (x)) and by comparing the quadratic
parts we can deduce, using S := DΦ(0), that

S t AS =Ψ′(0)B. (2.12)

This makes clear the role of Ψ′(0) in Vey’s theorem: If det(A) = det(B) 6= 0 (as
is the case in the statement of theorem 2.11), we have Ψ′(0)n = 1. By lemma
2.13 we cannot get rid of this nonuniqueness ofΨ′(0), so we have to put it as
a requirement.

Lemma 2.14. Let f : (Cn ,0) →C be critical and Morse at the origin. Then for
any s-parametric unfolding G of f there is a commutative diagram
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2.5. Vey’s Isochoric Morse Lemma

(Cn ×Cs ,0)
Φ

> (Cn ,0)

(C×Cs ,G(0))

G
∨

Ψ
> (C, f (0))

f
∨

with Φ a Ω-preserving and holomorphic germ and Ψ a holomorphic germ.

Proof. We can consider f itself as an unfolding of f (i.e. k = 0 in the versality
theorem). Since f is Morse and critical, its Milnor number is µ = 1 so that
RΩ

f
∼=C{t }1 by the proposition 2.8. Therefore we can apply the AΩ-versality

theorem,(2) ⇒ (3), to F := f which shows the assertion.

The above lemma makes it now possible to prove the existence of Ψ in
Vey’s lemma. Put ft := (1− t )Q f + t f , t ∈ C. Then for any value ti ∈ [0,1], by
abuse of notation, the germ fs |s≈ti is an unfolding of fti . To be more precise,
by fs |s≈ti we denote the first map in the unfolding Fi of fti :

Fi : (Cn ,0)× (C, ti ) → (C,0)× (C, ti ), (x, s) 7→ ( fs (x), s).

The Hessian matrix of ft at the origin in Cn (!) is

Hess0( ft ) = (1− t )Hess0(Q f )+ t Hess0( f ) = Hess0( f ).

Hence each germ fti , ti ∈ [0,1], has the origin as a critical nondegenerate
point so that we can apply lemma 2.14 for every ti ∈ [0,1] to get the following
commutative diagram

(Cn ,0)× (C, ti )
Φi > (Cn ,0)

(C,0)× (C, ti )

Fi∨
Ψi

> (C,0),

fti∨

where the Φi is relative isochore. The domains of definition of the maps
involved, give, when ti varies over [0,1], an open cover of the compact set
[0,1], so that we may assume that we have a sequence 0 = t0 < t1 < . . . < tN =
1 of points in [0,1] and a commutative diagram
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(Cn ,0)
Φ1(·,t0)

> (Cn ,0) . . .
ΦN−1(·,tN−2)

> (Cn ,0)
ΦN (·,tN−1)

> (Cn ,0)

(C,0)

Q f = ft0∨
Ψ1(·,t0)

> (C,0) . . .

ft1∨
ΨN−1(·,tN−2)

> (C,0)

ftN−1∨
ΨN (·,tN−1)

> (C,0)

ftN = f
∨

Hence we obtain a commutative dia-
gram, as on the right, withΦholomor-
phic and isochore and Ψ holomor-
phic.

(Cn ,0)
Φ

> (Cn ,0)

(C,0)

Q f ∨
Ψ

> (C,0)

f
∨

Since Φ is isochore, it is a local biholomorphism by the inverse function
theorem. It remains to show that Ψ(t ) = t +O(t 2). Equation (2.12), applied
to our situation (since det(Hess0( f )) = det(Hess0(Q f ))), obviously gives us
Ψ′(0)n = 1. If Ψ′(0) = 1, the proof is completed. If this does not hold we
apply the previous considerations in linear algebra to c := 1

Ψ′(0) to obtain a
commutative diagram

(Cn ,0)
S

> (Cn ,0)

(C,0)

Q f ∨
c id

> (C,0)

Q f∨

where S is a volume-preserving matrix. To this diagram we compose the pre-
vious one to get an overall Ψ which is finally normed (Ψ′(0) = 1). �

Let us prove that Ψ is quite unique. Let t 7→ δ f (t ) ∈ Hn−1(X (t );C) be a lo-
cally constant section of the homological Milnor fibration of f . This gives
us a cycle in the Milnor fibre X (t ) of f over each t ≈ 0, t 6= 0, and well de-
termined by f up to sign. Let λ be any holomorphic n − 1-form which is
primitive for the standard volume-form Ω.

The association

I f : (C,0) →C, I f (t ) :=
∫
δ f (t )

λ|X (t ) (2.13)
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2.5. Vey’s Isochoric Morse Lemma

defines a holomorphic multivalued function with monodromy (−1)n . For a
given f , I f is only defined up to a global sign, which corresponds to the inital
choice of a vanishing cycle.

Proposition 2.15. Let Q(x) = x t Ax be any nondegenerate quadratic form (in
n complex variables). Then∫

δQ (t )
λ=

p
t

n

p
det(A)

πn/2

Γ( n
2 +1)

as multivalued germs in (C∗,0).

Note that the there are two choices of
p

det(A) and the monodromy of
p

t
n

is precisely (−1)n .

Proof. Let S ∈ GLnC be such that A = S t S (note that A is complex and
symmetric). Then Φ ∈ Aut(Cn ,0) with x = Φ(y) := S−1 y transforms Q(x) =
x t Ax into Morse coordinates (Φ∗Q)(y) = y t y . Denote by δI the vanishing
cycle of y → y t y and recall e.g. from [Lam81], p. 37 a concrete coordinate
description using the real sphere Sn−1. We get∫

δQ (t )
λ =

∫
Φ∗δI (t )

λ

=
∫
δI (t )

Φ∗λ

=
∫

y∈ptSn−1
Φ∗(λ)

=
∫

y∈ptB n
Φ∗d n x

=
∫

y∈ptB n
detDΦ(y) d y

= 1

det(S)

∫
y∈ptB n

d y

=
p

t
n

det(S)
Vol(B n)

=
p

t
n

p
det(A)

πn/2

Γ( n
2 +1)
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2. Milnor Number and Volume-Preserving Geometry

�

Proposition 2.16. Let f : (Cn ,0) → (C,0) be a critical Morse singularity with
quadratic part Q. Assume that we know f ◦Φ=Ψ◦Q for someΦ ∈ Aut(Cn ,0).
Let λ be a holomorphic primitive of the standard volume formΩ on Cn . Then∫

δ f (t )
λ= πn/2

Γ( n
2 +1)

(Ψ−1(t ))n/2√
det(Q)

(2.14)

as multivalued germs in (C∗,0).

Proof. It is essential to note that Φ∗ maps δQ (t ) to δ f (Ψ(t )). This follows
since Hn−1(MilQ (t );Z) ∼== Z and the fact that δQ (t ) is a generator of this
group and so must be mapped byΦ∗ to a generator of Hn−1(Mil f (Ψ(t ));Z) ∼=
Zµ =Z. From this we obtain∫

δ f (Ψ(t ))
λ=

∫
(Φ)∗δQ (t )

λ

=
∫
δQ (t )

(Φ)∗λ

Since Φ preserves dλ and exact forms are irrelevant for integration we get
together with proposition 2.15∫

δ f (Ψ(t ))
λ= πn/2

Γ( n
2 +1)

t n/2√
det(Q)

as asserted.

The last proposition gives us a geometric interpretation of Vey’sΨ-function.
It measures the volume in each fibre.

Corollary 2.17. Ψ f is unique up to the multiplication with an nth root of
unity.
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2.6. An Isochoric Normal Form for Reduced
Normal Crossings

This section is based on [Sza12a]. Using techniques from [Fra82] and [Fra78]
we will prove the following theorem.

Theorem 2.18. Consider a holomorphic germ f : (Cn ,0) → (C,0) that is right
equivalent to the product of all coordinates: f ∼ x1 · · ·xn . Then there exists
a volume-preserving automorphism Φ : (Cn ,0) → (Cn ,0) and an automor-
phism Ψ : (C,0) → (C,0) such that

f (Φ(x)) =Ψ(x1 · · ·xn).

Ψ is uniquely determined by f up to a sign.

Lemma 2.19. For v, w ∈Cn (written as column vectors) and a,b ∈Cwe have

det(aI +bv w t ) = an−1(a +bv t w).

This follows immediately from the next lemma.

Lemma 2.20. For v, w ∈Cn (written as column vectors) and λ ∈Cwe have

det(λI − v w t ) =λn−1(λ− v t w).

Proof. We can assume v 6= 0 and w 6= 0. Since we clearly have det(λI−v w t ) =∏n
i=1(λ−λi ), where λ1, . . . ,λn denote the eigenvalues of v w t , it suffices for

the assertion to determine all eigenvalues of v w t together with their alge-
braic multiplicity.

The eigenvalue zero occurs if and only if there is a nonzero vector x with
v w t x = 0. Now w t x is a number and we conclude (since v 6= 0) that it must
be zero then, i.e. x is perpendicular to w . Since w 6= 0, the dimension of the
kernel of v w t is therefore n −1, the algebraic multiplicity of the zero eigen-
value hence n −1 or n.

Now assume that there exists a nonzero eigenvalue λ of v w t . Then there
is x 6= 0 with v w t x =λx. It follows w t v w t x =λw t x, hence w t x(w t v−λ) = 0.
If w t x would be zero, then 0 = v w t x =λx, hence either λ= 0 or x = 0, giving
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2. Milnor Number and Volume-Preserving Geometry

a contradiction. So v t w =λ is the only possible nonzero eigenvalue of v w t .
And vice versa: if v t w 6= 0, then this is a nonzero eigenvalue with eigenspace
C< v >.

Hence, if v t w = 0 then only zero eigenvalues occur and we have det(λI −
v w t ) =λn and if v t w 6= 0 then precisely one nonzero eigenvalue occurs and
det(λI − v w t ) =λn−1(λ− v t w).

Lemma 2.21 (Main Lemma).
Let P be quasihomogeneous of type (w1, . . . , wn ; N ). Let u ∈OC,0 with u(0) 6= 0.
Then the map

A : (Cn ,0) → (Cn ,0), x 7→ (u(P (x))w1 x1, . . . ,u(P (x))wn xn)

defines an automorphism of (Cn ,0) with the following properties:

a) There exists a unique v ∈OC,0 such that the inverse map A−1 is given by

z 7→ (v(P (z))w1 z1, . . . , v(P (z))wn zn).

Furthermore v(0) 6= 0.

b) With this v, the Jacobian determinant of A−1 is given by

det(D A−1(z)) =
(

v(P )w + N

w
P

d

dP
v(P )w

)∣∣∣∣
P=P (z)

.

Here we have put w := w1 + . . .+wn .

c) If we denote the assignment u 7→ v by E : Units(OC,0) → Units(OC,0), then
E ◦E = id.

Proof. The assignment

A : x 7→ z := (u(P (x))w1 x1, . . . ,u(P (x))wn xn)

is an automorphism of (Cn ,0) since its Jacobian at the origin is regular:

D A(0) =
u(0)w1 0 . . .

. . .
. . . 0 u(0)wn

 .
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2.6. An Isochoric Normal Form for Reduced Normal Crossings

It is clear that the inverse of A is of the form A−1 : z → (ṽ1(z)z1, . . . , ṽn(z)zn)
for some ṽ ∈OCn ,0.

(In fact, if we write xi = xi (z) for the components of A−1(z), then zi =
u(P (x(z)))wi xi (z), so that zi must divide xi (z).)

In the sequel we are going to show that it is even of the form

z 7→ (v(P (z))w1 z1, . . . , v(P (z))wn zn)

for some v ∈OC,0! We also show that v is uniquely determined by u and that
v(0) 6= 0.

Let z = A(x). From

z = (u(P (x))w1 x1, . . . ,u(P (x))wn xn)

= (u(P (x))w1 ṽ1(z)z1, . . . ,u(P (x))wn ṽn(z)zn)

we conclude that
1 = u(P (x))wi ṽi (z) for i = 1, . . . ,n.

Hence for the function v̂ ∈OCn ,0 defined by

v̂(z) := 1

u(P (A−1(z)))
,

we have
ṽi (z) = v̂(z)wi for all i .

Now let us show that the function v̂ factors through P (z). First we rewrite
its defining equation

1 = u(P (x)) v̂(z)

= u(P (ṽ1(z)z1, . . . , ṽn(z)zn)) v̂(z)

= u(P (v̂(z)w1 z1, . . . , v̂(z)wn zn)) v̂(z)

= u(P (z1, . . . , zn)v̂(z)N ) v̂(z). (2.15)

To see factorization through P , we apply twice the implicit function theo-
rem as follows.
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2. Milnor Number and Volume-Preserving Geometry

1. The implicit equation u(v N t )v = 1 for v has a unique local solution
v = v(t ) : (C,0) → (C,1/u(0)). Indeed, the point (t = 0, v = 1/u(0)) is a
solution and the derivative after v is nonzero at this point:

∂v (u(0)v)|v=1/u(0) = u(0) 6= 0.

2. The implicit equation u(V N P (z))V = 1 for V has a unique local so-
lution V = V (z) : (Cn ,0) → (C,1/u(0)). Indeed, the point (z = 0,V =
1/u(0)) is a solution and the derivative after V at this point is nonzero:

∂V (u(0)V )|V =1/u(0) = u(0) 6= 0.

Now by the first item (only existence is used), v(P (z)) fulfils v(P (0)) =
1/u(0) and solves the equation u(v(P (z))N P (z))v(P (z)) = 1. Comparing this
result and equation (2.15) we can deduce from the second item (only unique-
ness is used) that

v(P (z)) = v̂(z). (2.16)

Hence ṽi (z) = v̂(z)wi = v(P (z))wi , hence A−1 is of the desired form as
stated in part a) of the assertion. Note that v̂(0) = 1/u(0) by its definition
and therefore also v(0) = 1/u(0).

The proof of part a) is not yet quite complete. What about the uniqueness
of v when we have just given u? By its very definition, v̂ is uniquely deter-
mined by u (and P ). Since v(P (z)) = v̂(z) and since P is surjective onto a
neighbourhood of zero, also v is uniquely determined by u.

For part c) of the assertion we note that the operator E which asigns to
u the function v is given by solving the implicit equation u(v N t )v = 1 with
v(0) = 1/u(0). So let E(u) = v and E(v) = w . Then we also have v(w(s)N s)w(s) =
1 for all s ∈ (C,0). If in the equation u(v(t )N t )v(t ) = 1 we substitute t =
w(s)N s, we get

u
[
v(w(s)N s)N w(s)N s

]
v(w N s) = 1

u[1N s] ·1/w(s) = 1

u(s) = w(s).

This shows part c).
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It remains to prove part b). The (i , j )th entry in the Jacobian matrix of the
transformation

A−1 : z 7→ (v(P (z))w1 z1, . . . , v(P (z))wn zn)

is given by

∂i (v(P (z))w j z j ) = w j (v(P (z)))w j −1v ′(P (z))∂i P (z)z j + v(P (z)w j δi j

= (v(P (z)))w j −1 [
w j v ′(P (z))∂i P (z)z j + v(P (z))δi j

]
In order to compute its determinant we use lemma 2.19 from above. This to-
gether with the Euler relation for weighted homogeneous polynomials yields

det(D A−1(z))

=
n∏

j=1
(v(P (z)))w j −1 ·det(v ′(P (z))∂i P (z)w j z j + v(P (z))δi j )

=
n∏

j=1
(v(P (z)))w j −1 · (v(P (z)))n−1

[
v(P (z))+ v ′(P (z))

n∑
j=1

w j z j∂ j P (z)

]
= v(P (z))w1+...+wn−n+n−1 · [v(P (z))+ v ′(P (z))N P (z)

]
=

(
v(P )w + N

w
P

d

dP
v(P )w

)∣∣∣∣
P=P (z)

,

where we used the abbreviation w = w1 + . . .+wn .

Given u, we get the map A of the lemma which we also denote by Au .
Then we have

AE(u) ◦ Au = id.

We make a remark which however will not be used elsewhere in this sec-
tion. Assume that instead of u we have just given the map A (of the form
Au with an unspecified u). Of course the ṽi zi which are the component
functions of A−1 are uniquely determined by A. Then from ṽi (z) = v̂(z)wi

we infer that the function v̂ is uniquely determined up to the multiplication
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2. Milnor Number and Volume-Preserving Geometry

with some number ξ ∈Cwhich fulfills ξwi = 1 for all i . If we demand that the
greatest common divisor of the w1, . . . , wn is equal to one, then ξ= 1 and so v̂
and also v are uniquely determined by A. Applying this argument to A−1 we
see that given a map A (of the form Au with some unknown u ∈ Units(OC,0))
the u is uniquely determined if gcd(w1, . . . , wn) = 1.

Let ( f0,Ω0) be a pair consisting of a germ of a function f0 ∈ OCn ,0 which
vanishes at the origin and a germ of a volume form Ω0 ∈ Ωn

Cn ,0. Then the
group Aut(Cn ,0) acts on the set of such pairs by the usual pulling back of
functions resp. forms. A normal form for a pair ( f0,Ω0) should then be a
nicely chosen pair in the same orbit. One way to achieve this is to look only
at pairs in the orbit of ( f0,Ω0) with the same f = f0. Another way would be to
consider only those pairs in the orbit of ( f0,Ω0) with the same Ω =Ω0. The
latter would give us an Ω0-preserving normal form for functions which are
right equivalent to f0. That these two approaches are interchangeable when
the right normal form is chosen is the content of the following lemma which
we will later only use in the direction (i i ) ⇒ (i ).

Lemma 2.22 (Exchange Lemma).
Let P be quasihomogeneous of type (w1, . . . , wn ; N ). For a holomorphic func-

tion germ f = f (y) : (Cn ,0) → (C,0) the following statements are equivalent:

i) There exist an automorphism Φ ∈ Aut(Cn ,0),y 7→ x and an automor-
phism Ψ ∈ Aut(C,0) such that

f (Φ−1(x)) =Ψ(P (x)) and (Φ−1)∗d n y = d n x.

ii) There exist an automorphism φ ∈ Aut(Cn ,0),z 7→ y and a function ψ ∈
OC,0 with ψ(0) 6= 0 such that

f (φ(z)) = P (z) and φ∗d n y =ψ(P (z))d n z.

Proof. We start with the implication (i ) ⇒ (i i ). Since Ψ′(0) 6= 0 there is a
germ u ∈OC,0,u(0) 6= 0 with Ψ(t ) = tu(t )N . From the quasihomogeneity of P
we get

Ψ(P (x)) = P (x)u(P (x))N

= P (u(P (x))w1 x1, . . . ,u(P (x))wn xn).
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If we define the map

A : (Cn ,0) → (Cn ,0),x 7→ z := (u(P (x))w1 x1, . . . ,u(P (x))wn xn)

then Ψ(P (x)) = P (A(x)). The first part of item (i ), f (Φ−1(x)) = Ψ(P (x)) can
therefore be rewritten as f (Φ−1(x)) = P (A(x)). Since by lemma 2.21 the map
A is an automorphism of (Cn ,0), we can rewrite this again: we letφ ∈ Aut(Cn ,0),
z 7→ y with φ :=Φ−1 ◦ A−1, then it follows f (φ(z)) = P (z). This is the first as-
sertion of item (i i ).

Again by lemma 2.21 there is v ∈OC,0, v(0) 6= 0 with

det(D A−1(z)) =
(

v(P )w + N

w
P

d

dP
v(P )w

)∣∣∣∣
P=P (z)

.

If we define ψ : (C,0) →C by this bracket, i.e.

ψ(t ) := v(t )w + N

w
t

d

d t

(
v(t )w )

,

then ψ(0) 6= 0 and we can write the pullback of the volume form as

φ∗d n y = (A−1)∗(Φ−1)∗d n y

= (A−1)∗d n x

=ψ(P (z))d n z.

This is the second assertion of item (i i ).

Now we prove the converse direction. So let us assume (i i ) is valid. First
we seek a solution v : (C,0) →C, v(0) 6= 0 of the equation(

v(t )w + N

w
t

d

d t
v(t )w

)
=ψ(t ) (2.17)

where ψ is the function as given in statement (ii), i.e. ψ : (C,0) → C,ψ(0) 6=
0. A solution can be obtained from a power series ansatz, namely if ψ(t ) =∑

ai t i and v w = ∑
bi t i , then comparison of the coefficients shows that the

stipulation

bi := ai

1+ (Ni /w)
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2. Milnor Number and Volume-Preserving Geometry

will provide a solution v w of the differential equation. Since ψ(0) is nonzero
so is v w (0). Hence, taking some wth root v of v w will give us v .

Now we define u ∈OC,0 as u = E−1(v), cf. lemma 2.21. Then det(D A−1
u (z)) =

det(D Av (z)) = ψ(P (z)) by that lemma and the definition of v . Now define
Φ := A−1

u φ−1. Then

(Φ−1)∗d n y = (φ◦ Au)∗d n y

= A∗
uφ

∗d n y

= A∗
u(ψ(P (z))d n z)

=ψ(P (Au(x)))detD Au(x)d n x

=ψ(P (z))detD Au(x)d n x

= d n x

Finally when we insert into the given relation f (φ(z)) = P (z) the expres-
sion z = Au(x) we can rewrite it as

f (Φ−1(x)) = P (Au(x))

= P (u(P (x))w1 x1, . . . ,u(P (x))wn xn)

= P (x)u(P (x))N .

So letting Ψ(t ) := tu(t )N we have the statement f ◦Φ−1(x) =Ψ(P (x)) of our
assertion. We note Ψ′(0) = u(0)N = 1/v(0)N 6= 0, so Ψ is an automorphism of
(C,0). This completes the proof.

We now show that part (i i ) in lemma 2.22 is true for P = x1 · · ·xn .

Now let f be right equivalent to this P . ChooseΦ1 ∈ Aut(Cn ,0) withΦ∗
1 f =

P . Using proposition 2.4 we see that there existsψ ∈C{t } and ηwith dP ∧η=
0,η(0) = 0 such that Φ∗

1 d n x =ψ◦P d n x+dη. Now it is important to note - as
shown in the proof by Françoise - that among the power series terms on the
left-hand side only the constant term, i.e. det(DΦ1)(0), will contribute to the
constant term of ψ and they are equal. In particular ψ(0) 6= 0.

We now make use of the
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Lemma 2.23. Let g ∈mCn ,0 and Ω1,Ω2 two n-forms on (Cn ,0) with the same
nonzero value at the origin. If there is an (n −1)-form η,η(0) = 0 with Ω1 −
Ω2 = dη such that d g ∧η = 0, then there exists Φ2 ∈ Aut(Cn ,0) with Φ∗

2 g = g
and Φ∗

2Ω1 =Ω2.

The proof is based on the path method and can be found in [Fra82].

Applying it to Ω1 :=Φ∗
1 d n x,Ω2 :=ψ◦Pd n x and g := P we get an automor-

phism Φ2 with Φ∗
2Φ

∗
1 d n x =ψ◦P d n x and Φ∗

2 P = P . So if we put φ :=Φ1 ◦Φ2

we have
φ∗d n x =ψ◦P d n x and φ∗ f = P.

This is item (i i ) of lemma 2.22. The implication (i i ) ⇒ (i ) thus yields the
existence of the normal form.

We now address the question of unicity of Ψ. The equation f ◦Φ(y) =
Ψ(P (y)) can be written as a commutative diagram

(Cn ,0) <
Φ

(Cn ,0)

(C,0)

f
∨

<
Ψ

(C,0)

P
∨

For sufficiently small ε> 0 and for all sufficiently small 0 < δ¿ ε we have
the Milnor-Lê fibration f : Bε ∩ f −1(D∗

δ
) → D∗

δ
where Bε is the open ε-ball

around 0 ∈ Cn and D∗
δ

is the open δ-ball around the origin in C minus this
point. The general fibre is called the Milnor fibre Mil f ,0 of f . For a quasi-
homogeneous P we can compute the Milnor fibre as the general fibre of the
global affine fibration P : Cn \ P−1(0) → C∗, see ([Dim92], p. 68 - 72). Hence
the Milnor fibre of P over s ∈ D∗

δ

MilP,0(s) = {x ∈ Bε| x1 · · ·xn = s}

is diffeomorphic to

{(x1, . . . , xn) ∈Cn | x1 · · ·xn = 1} ∼= {(x2, . . . , xn) ∈ (C∗)n−1}.

Similar statements hold if replace the standard ball Bε by a ball defined by a
rug function (Bε(ρ) = {x ∈Cn |ρ(x) < ε} where ρ : (Cn ,0) →R≥0 is real analytic
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such that ρ−1(0) = {0}.) So Hn−1(MilP,0(s);Z) ∼=Z with generator γ(P, s) given
by the product of (n −1) circles. In fact for s real and s < (ε/

p
n)n we have a

map

S1 × . . .×S1︸ ︷︷ ︸
n−1

,→ MilP,0(s), (z2, . . . , zn) 7→ (s1/n/(z2 . . . zn), z2s1/n , . . . , zn s1/n),

which is easily checked to be an embedding. Along this cycle we can inte-
grate any holomorphic (n −1)-form λ and if we choose λ as a holomorphic
primitive of d n x, e.g. λ = x1d x2 ∧ . . .∧d xn , then we evaluate the integral of
λ over one of the generators of Hn−1(MilP,0(s);Z) as∫

γ(P,s)
λ=

∫
S1×...×S1

s
d z2

z2
. . .

d zn

zn
=±(2πi )n−1s.

(Of course, if we had chosen the canonical orientation of MilP,0(s) as a com-
plex manifold we would get a plus sign, but it is not important here.)

Finally let γ( f , ·) be a locally constant section of the (n − 1)st homologi-
cal fibration of f , obtained by parallel translating one of the two homology
generators of a single reference fibre. Then we get an a priori multivalued
holomorphic function germ t 7→ ∫

γ( f ,t )λ.
From the commutativity of the above diagram it follows that an integral

homology generator of MilP,0(Ψ−1(t )) is sent via Φ∗ to one of the two gener-
ators of Hn−1(Mil f ,0(t );Z) and so we obtain∫

γ( f ,t )
λ=±

∫
Φ∗γ(P,Ψ−1(t ))

λ.

Now Φ being volume-preserving, it preserves λ up to a differential, so the
right-hand side becomes ∫

γ(P,Ψ−1(t ))
Φ∗λ

=
∫
γ(P,Ψ−1(t ))

λ

=±(2πi )n−1Ψ−1(t ).

Hence Ψ−1(t ) = ±( 1
2πi

)n−1 ∫
γ( f ,t )λ so that Ψ is uniquely determined by f ,
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possibly up to a sign.

And indeed we show that the alleged ambiguity in the choice of Ψ’s sign
cannot be eliminated: Take any permutation matrix S ∈Cn×n with determi-
nant −1 and let c be any number with cn = −1. Then the linear map x 7→
Φ(x) := cSx is volume-preserving and transforms x1 · · ·xn to (cx1) · · · (cxn) =
−x1 · · ·xn .
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3. Milnor Number and Meromorphic
Germs

3.1. Pencils and Bifurcation

Throughout this section we assume that f , g ∈ C{x, y} vanish at the origin
and are coprime. In this situation we may assign to the pair ( f , g ) a finite set
B( f , g ) which is a subset ofP1 such that roughly spoken the pencil members
s f + t g where (s : t ) ∈ B( f , g ) have different geometry than the remaining
members. We give the following different but equivalent definitions of this
bifurcation set:

• B j p : the bifurcation set determined by the jumping of the Milnor
number,

• Bal g : the bifurcation set from the algorithm by Maugendre and Michel,

• Bdi sc : the bifurcation set as a projective tangent cone of the discrimi-
nant,

• Btop : the bifurcation set determined by the embedded topological
type

There are other important characterizations which are quite difficult to re-
late. For example one can look at minimal resolutions of the meromorphic
germ ( f : g ) : (C2,0) 99K P1, compare [LW97]. One can also look at gradient-
like descriptions of B. They are based on Milnor’s proof of the knottheoretic
Milnor fibration as he introduced an analytic condition to see whether the
fibres of the holomorphic map f are not transverse to spheres around the
origin. This has been mimicked for meromorphic germs by Pichon [BP07]
and was used when they proved that there exists a knottheoretic Milnor fi-
bration

f /g

| f /g | : S3
ε \V ( f g ) → S1
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under the assumption that f , g ∈mC2,0 are coprime with bifurcation set con-
tained in {0,∞}. They also investigated the relation with other fibration the-
orems for meromorphic germs. However we shall not go deeper into this
direction.

It seems appropriate to start our investigation with the following theorem
which to my knowledge is essentially due to Zariski ([Zar65a],[Zar65b]) and
has been extended by Teissier and others to further equivalent conditions
([Tei76], p. 623) dealing e.g. with the resolutions of singularities.

Theorem 3.1. (Equisingularity of Plane Curves)
Let f : (X ,0) → (Y ,0) be a flat family of reduced plane curve germs parametrized
by a smooth complex space germ (Y ,0) and letσ : (Y ,0) → (X ,0) be a holomor-
phic section. Denote by r,δ,mult the number of irreducible components, the
δ-invariant resp. the multiplicity of the singularity. Then the following con-
ditions are equivalent:

a) The map y 7→µ(X y ,σ(y)) is constant.

b) The maps y 7→ δ(X y ,σ(y)) and y 7→ r (X y ,σ(y)) are constant.

c) The maps y 7→µ(X y ,σ(y)) and y 7→ m(X y ,σ(y)) are constant.

It might be useful to recall at that point Milnor’s formula µ( f ) = 2δ( f )−
r ( f )+1 for an isolated (plane) singularity f ∈mC2,0.

Now let us fix some (s0 : t0) ∈ P1 and investigate the space X as a germ at
{(0,0)}× {(s0 : t0)} defined by the vanishing of s f + t g in (C3, ((0,0), (s0 : t0))).
Let us denote by π : C3 → C the map which sends (x, y,λ) to λ. By choosing
suitable coordinates for P1 (i.e. λ= s/t or λ= t/s) we can restrict π to X and
call the associated germ of a mapping π : (X , {(0,0)} × {(s0 : t0)}) → (C,λ0).
Then one can see that the singular locus of X is contained in {(0,0)}×P1. In
the terminology of e.g. [BGG80] we have

Proposition 3.2. The map germ π : (X , {0}× {λ0}) → (C,λ0) is a flat and cen-
tered deformation of its central fibre.

Proof. For a (finitely generated) Cohen-Macaulay module M over a local
Noetherian ring (A,m) and for elements a1, . . . , ak ∈m it is known that dim(M/ <
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a1, . . . , ak > M) ≥ dim(M)−k with equality if and only if (a1, . . . , ak ) is an M-
regular sequence. As hypersurface rings are always Cohen-Macaulay, we can
apply this to M = OX = OC3,0/I where I is the ideal generated by f (x, y)+
λg (x, y). Since X has dimension two and the local ring associated to the zero
fibre OX0 = OX /λOX has dimension one, we obtain that (λ) is a OX -regular
sequence, i.e. is a nonzero divisor. Hence OX is a flat Oλ-module.
One speaks of a centered deformation when the singular locus of X has un-
derlying space {0}× (C,0).

We won’t use this but it is helpful to put our situation in a broader con-
text. Regarding the multiplicity we can even be more explicit than in the first
theorem (on equisingularitiy):

Proposition 3.3. Let f , g ∈mC2,0. Then all the pencil members s f +t g , (s : t ) ∈
P1, except maybe one, have the same multiplicity at the origin. More precisely
we have

• If mult( f ) 6= mult(g ), a multiplicity jump occurs of course.

• If mult( f ) = mult(g ), a multiplicity jump occurs if and only if the lead-
ing parts of f and g are linearly dependent if and only if f and g have
the same tangents including their multiplicities.

Proof. If m( f ) < m(g ), then m(s f + t g ) = m( f ) for all (s : t ) 6= (0 : 1). So let us
now come to the more interesting case m( f ) = m(g ). We may then safely
assume that f and g are homogeneous polynomials of degree m. Write
f (x, y) =∑m

i=0 ai xi ym−i and g (x, y) =∑m
i=0 bi xi ym−i . Then

s f + t g =
m∑

i=0
(sai + tbi )xi ym−i .

The multiplicity of s f + t g jumps to a higher value at this particular (s : t ) if
and only if the above polynomial vanishes, i.e. sai+tbi = 0 for all i = 0, . . . ,m.
For such an (s : t ) we have (s : t ) = (−bi : ai ) for all i for which ai and bi are
not both zero. Of course one such i must exist, for otherwise f and g would
be zero. Hence there occurs at most one jumping for the multiplicity and the
rest of the assertion is immediate.

For the understanding of the bifurcation set the following formula is in-
evitable, since it relates the Milnor number of the pencil members to the
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critical locus of the map ( f , g ). As Lê Dũng Tráng was so friendly to tell me,
he found this formula in his PhD thesis (1969) and it was published in Viet-
nam in 1971. One year later he gave a talk in Göttingen about it, the time
where Brieskorn had been (t)here. There is also a more general statement for
complete intersections which was proved using Morse theory by Lê ([Lê74])
or using sheaf theory etc. by Greuel ([Gre75]). Nowadays there is a simpler
proof, compare ([CA00], chapter 7).

Proposition 3.4 (Lê).
For f , g : (C2,0) → (C,0) we have the following equality

i ( f , fx g y − fy gx ) =µ( f )+ i ( f , g )−1. (3.1)

In case one of the two sides of this equation is infinite, so is the other.
For this special case the author found a new proof which is presented below.
We start with the following well-known lemma - a generalization to higher
dimensions can be found in ([Loo84], Theorem (2.8.iii)).

Lemma 3.5. Assume that a,b ∈C{x, y} vanish at the origin and are coprime.
Then ax by −ay bx is not identically zero.

Proof. Here is a proof when ab is reduced. Since a defines an isolated sin-
gularity, ax and ay are coprime. Thus, there is a power series germ c with
bx = cax and by = cay . Now we compute

(ab)x = ax b +abx = ax b +acax = ax (b + ca),

(ab)y = ay b +aby = ay b +acay = ay (b + ca).

Since ab defines an isolated singularity, b + ca must be a unit in C{x, y},
which is impossible since a and b vanish at the origin.
In general, i.e. when a or b is not neccessarily reduced, we observe that
since (a,b) = 1 and a(0) = b(0) = 0, the map (a,b) : (C2,0) → (C2,0) is surjec-
tive. Now V (ax by − ay bx ) is the critical set of (a,b) and if it was the whole
(C2,0), then (a,b) would have no regular values at all, contradicting Sard’s
theorem.

So V (ax by−ay bx ) ⊂ (C2,0) is either a curve germ (if ax (0)by (0)−ay (0)bx (0) =
0) or void (if ax (0)by (0)− ay (0)bx (0) 6= 0). The latter happens if and only if
( f , g ) is right equivalent to (x, y) (cf. the proof of proposition 3.10).
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Theorem 3.6. Let f , g ∈C{x, y} both vanish at the origin. Then the following
statements are equivalent:

1. the germ f is reduced and f , g are coprime,

2. the germs f and { f , g } = fx g y − fy gx are coprime.

Proof. The direction (2) ⇒ (1) is easily proved by contraposition: If f was
nonreduced, say f = pm q for some p, q ∈ C{x, y} with p(0) = 0 and m ≥ 2,
then we compute

fx g y − fy gx = (mpm−1px q +pm qx )g y − (mpm−1py q +pm qy )gx

= p
[
(mpm−2px q +pm−1qx )g y − (mpm−2py q +pm−1qy )gx

]
,

and hence the non-unit p divides f and D( f , g ) := { f , g }.

Now for the converse implication. So f is reduced and we can write f =
f1 . . . fr where each fi is irreducible and the fi ’s are pairwise coprime. Since
{ f , g } is a derivation in each entry we may even assume that f is f is irre-
ducible. Now if f and { f , g } would not be coprime, then the irreducible f
would divide D , hence there would be k ∈C{x, y} with f k = fx g y − fy gx .

Since f has an isolated singularity at the origin, the Brieskorn module

H := Ω2

{d f ∧dh| h∈C{x,y}} is a free C{ f }-module of finite rank. In particular it is
torsionfree, i.e. multiplication with f is injective. Let ω0 = d x ∧d y be the
standard volume form. Then f kω0 is zero in H , hence by what was just said,
kω0 is zero in H . This means that there exists h ∈C{x, y} with k = fx hy− fy hx .
Together with the definition of k we get f ( fx hy − fy hx ) = fx g y − fy gx , or by
rearranging the terms fx (g y− f hy )− fy (gx− f hx ) = 0, which is easily checked
to be equivalent to

fx (g − f h)y − fy (g − f h)x = 0.

The greatest common divisor of f and g − f h is again a unit and these
functions vanish at the origin. To finish the proof, we just apply the previous
lemma.

After these preparations we give several definitions of the bifurcation set.
We assume that f , g : (C2,0) → (C,0) are given coprime germs. There is a
uniquely determined set Btop ( f , g ) ⊂ P1 such that the following properties
hold for all (s1 : t1), (s2 : t2) ∈P1:
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a) B( f , g )top is a finite set

b) if s1 f + t1g has a nonisolated singularity at the origin, then (s1 : t1) ∈
B( f , g )top ,

c) if s1 f + t1g and s2 f + t2g both have an isolated singularity at the origin,
then

i) ({0},V (s1 f + t1g ),C2) ≈ ({0},V (s2 f + t2g ),C2) if (s1 : t1), (s2 : t2) are
both not in B( f , g )top ,

ii) ({0},V (s1 f + t1g ),C2) 6≈ ({0},V (s2 f + t2g ),C2) if (s1 : t1) ∈ B( f , g )top

but (s2 : t2) 6∈B( f , g )top

Above we have used ≈ as an abbreviation for homeomorphism of triples of
germs of sets at the origin. By definition of Btop ( f , g ) the pencil members
s f + t g with (s : t ) 6∈ Btop ( f , g ) have the same Milnor number. (Recall here
that the Milnor number is a topological invariant.) This common Milnor
number will be denoted by µg en( f , g ).

An alternative descrition of the bifurcation set is given by

B j p ( f , g ) = {(s : t ) ∈P1|∞≥µ(s f + t g ) >µg en( f , g ) ≡ min
(α:β)∈P1

µ(α f +βg )}.

Proposition 3.7. Btop ( f , g ) =B j p ( f , g )

Proof. This follows from the famous result of Lê and Ramanujam ([LR76]).

The next proposition gives another characterization of the bifurcation set.
Let C = { f , g } and C = ∏

C ai
i its prime factor decomposition. Since Φ :=

( f , g ) : (C2,0) → (C2,0) is a finite map, the image of Ci under Φ is a curve
germ ∆i and we let di be the degree of the branched covering Ci → ∆i . Fi-
nally let ∆=Φ(C ). The first part of the following formula is well-known (see
e.g. [Pł04], the second should be known but I know of no reference. Płoski
has given also another formula for µg en .

Proposition 3.8. Let f , g ∈mC2,0 be coprime. Then

1. B( f , g ) is the projective tangent cone of ∆( f , g )) and

2. µg en( f , g ) = 1− i ( f , g )+∑
ai di mult(∆( f , g )i ).
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Proof. Let U be a neighbourhood of the origin in C2 where f and g are de-
fined and where the map Φ = ( f , g ) : U → V is finite. Let the coordinates in
the image space be (u, v).
According to the projection formula for the intersection multiplicity we have

i ( f +ag , { f , g }) = i (Φ−1(u +av), { f , g })

= i (u +av,Φ∗{ f , g })

=∑
k

ak dk i (u +av,∆k ).

Appling the Lê’S formula to f +ag instead of f for any a ∈C, then 1−µ( f +
ag ) = i ( f , g )−i ( f +ag ,Γ( f , g )) shows that µ( f +ag ) is minimal if and only if
i ( f +ag , { f , g }) becomes minimal.

It is well-known that for plane curves C ,D we have i (C ,D) = m(C )m(D)+∑
p ip (Ĉ ,D̂) where the summation is over points in the exceptional divisor of

the blowup of (C2,0) and Ĉ ,D̂ are the respective strict transforms. Now it is
also known that Ĉ ∩E consists of the points that corresponds to tangents of
C . Hence i (C ,D) is minimal if and only if C ,D have no common tangents
and the minimal value is the product of the multiplicities of C ,D . In our
situation this amounts to say that each i (u+av,∆i ) is minimal if and only if a
does not belong to the tangent cone of∆i and the minimal value ofµ( f +ag )
is 1− i ( f , g )+∑

ai di mult(∆i ).

Example.
Let f (x, y) = xm + yn and g (x, y) := xp + y q with m > p and q ≥ n. We like to
compare i ( f ,C ) with i (u,Φ∗C ). (It should be the same.)

The analytic set germ

C = fx g y − fy gx = xp−1 yn−1(mqxm−p y q−n −pn)

has two components and its associated cycle is [C ] = (p−1)[x]+(n−1)[y]. We
have i ( f ,C ) = (p −1)i (xm + yn , x)+ (n−1)i (xm + yn , y) = (p −1)n+ (n−1)m.
The component C1 = V (x) is mapped under Φ to ∆1 = {(u, v) = t n , t q )| t ∈
(C,0)} = V (uq/d − vn/d ) where d := gcd(n, q). Similarly the component C2 =
V (y) is mapped underΦ to ∆2 = {(u, v) = (t m , t p )| t ∈ (C,0)} =V (up/e −vm/e )
where e := gcd(m, p). The map C1 →∆1 is the map (xm+yn , xp+y q ) : V (x) →
V (uq/d − vn/d ), the fibre over a general point, say (t n , t q ) for any t ∈ (C∗,0),
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is given by {(0, y)| (yn , y q ) = (t n , t q )} which has cardinality gcd(n, q) = d . In
the same way one computes deg(C2 →∆2) = e. Altogether we obtain

i (u,Φ∗C ) = i (u, (p −1)Φ∗C1 + (n −1)Φ∗[y])

= i (u, (p −1)deg(C1 →∆1)[∆1]+ (n −1)deg(C2 →∆2)[∆2])

= (p −1)di (u, [∆1])+ (n −1)ei (u, [∆2])

= (p −1)n + (n −1)m

Using that f +λg = xm +λxp + yn +λy q is right equivalent to xp + yn we
see that the generic Milnor number of the pencil made up by f and g is
µg en( f , g ) = (p −1)(n −1).

On the other hand the generic Milnor number is by the formula : µg en =
1− i ( f , g )+∑

ai di m(∆i ) = 1− i ( f , g )+ (p −1)d(n/d)+ (n −1)e(p/e). It can
checked that i ( f , g ) = pn: the germ xm/c + yn/c with c := gcd(m,n) is irre-
ducible. That’s why

i ( f , g ) = c · i (xm/c + yn/c , g )

= c ·ord g (±t n/c , t m/c )

= c ·ord(±t pn/c + t mq/c )

= c · (pn/c)

= pn

None of the previous definitions of the bifurcation set allows a computa-
tion of this finite set in concrete situations. This situation has been settled
by the following algorithmic description of B( f , g ) according to Maugendre
and Michel ([MM01]):

Define a set Bal g ( f , g ) as follows. Put Bal g ( f , g ) :=;.

1. If f and g are both reduced, proceed as follows. If ( fx g y − fy gx )(0) 6= 0
then Bal g ( f , g ) =; and the algorithm stops. If ( fx g y − fy gx )(0) = 0, for
each branch γ of fx g y − fy gx do the following.

• if i ( f ,γ) > i (g ,γ) add 0 to Bal g ( f , g ),

• if i ( f ,γ) < i (g ,γ) add ∞ to Bal g ( f , g ),

• if i ( f ,γ) = i (g ,γ), add λ to Bal g ( f , g ), where λ ∈ C∗ is unique
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number with i ( f +λg ,γ) > i ( f ,γ). Equivalently choose a parametriza-
tion φ(t ) of γ then (with m := i ( f ,γ) and a 6= 0,b 6= 0) we have

f ◦φ(t ) = at m +higher order terms

g ◦φ(t ) = bt m +higher order terms

and λ is determined from the equation a +bλ= 0.

2. If f or g is not reduced, apply an invertible linear transformation A =(
a b
c d

)
on the pair ( f , g ) to get a pair (a f +bg ,c f +d g ) with a f +bg

and c f +d g both reduced. Proceed as in (1) to determine Bal g (a f +
bg ,c f +d g ) and relate this to Bal g ( f , g ).

Proposition 3.9. Bal g ( f , g )al g =B j p ( f , g )

Proof. We sketch the simpler proof by A. Płoski in [Pł04]. If a ∈ P1 \ {∞} is
such that fa is reduced, then theorem 2.2(i) in the cited article is the formula

µ( f +ag )−µg en = ∑
i ( f ,γ)≥i (g ,γ)

ord(γ)(i ( f +ag ,γ)− i (g ,γ)),

where the sum is over the different branches γ of fx g y − fy gx with the re-
quired property and ord(γ) is the the multiplicity of γ in the prime factor de-
composition of fx g y − fy gx . From this formula the assertion can be read off,
we make clear the following: if for some a ∈ P1 \ {0,∞} we had i ( f +ag ,γ) >
i (g ,γ) then i ( f ,γ) = i (g ,γ). The values a =∞ and values of a for which fa

is nonreduced are handled similarly. The deduction of the above equation
makes use of Lê’s formula.

Proposition 3.10. Let f , g ∈ mC2,0. Then B( f , g ) is empty if and only if the
pair ( f , g ) is right-equivalent to (x, y).

Proof. We have shown that the bifurcation set is the projective tangent cone
of the discriminant. So B( f , g ) is nonempty if and only if the discriminant
is a curve. But this is always so except when { fx g y − fy gx = 0} is not the
germ of a curve at (C2,0), i.e. when C := fx g y − fy gx is nonzero at the origin.
Let us examine when this happens. If f or g is critical at the origin, then
C (0) = 0. So we can assume that f and g are smooth and after a suitable
coordinate transformation we have ( f , g ) = (x, ax+by+o(x, y)) in which case
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C = b + ∂y o(x, y). So C (0) 6= 0 if and only if b 6= 0. By a second coordinate
transformation we have ( f , g ) ∼ (x, y).

3.2. Milnor Number of Pairs of Functions

In this section we introduce a generalization of the classical Milnor number,
namely we associate to a pair of function germs a number µ( f , g ) which I
call Milnor number of pairs or meromorphic Milnor number.

For any f , g ∈ C{x, y} we introduce the notation 〈ω( f , g )〉 for the ideal in
C{x, y} generated by the elements fx g − f gx and fy g − f g y . It is clear that
〈ω( f , g )〉 is a subideal of 〈 f , g 〉. Sometimes if f and g are clear from the con-
text, we simply write ω instead of ω( f , g ). Let us now define the following
possibly infinite numbers

µ( f , g ) := dimC

C{x, y}

〈ω( f , g )〉 , (3.2)

ν( f , g ) := dimC

〈 f , g 〉
〈ω( f , g )〉 . (3.3)

Proposition 3.11. The numbers µ( f , g ) and ν( f , g ) just depend on the con-
tact equivalence class of ( f , g ). I.e. for any coordinate transformation Φ ∈
Aut(C2,0) and any unit u ∈C{x, y} we have µ(u · f ◦Φ,u · g ◦Φ) =µ( f , g ).

Proof. In fact by rearranging terms we get

〈ω( f ◦Φ, g ◦Φ)〉 = 〈( fx ◦ΦΦ1x + fy ◦ΦΦ2x )g ◦Φ − (gx ◦ΦΦ1x + g y ◦ΦΦ2x ) f ◦Φ,

( fx ◦ΦΦ1y + fy ◦ΦΦ2y )g ◦Φ − (gx ◦ΦΦ1y + g y ◦ΦΦ2y ) f ◦Φ〉
= 〈Φ1x ( fx ◦Φg ◦Φ− gx ◦Φ f ◦Φ)+Φ2x ( fy ◦Φg ◦Φ− g y ◦Φ f ◦Φ),

Φ1y ( fx ◦Φg ◦Φ− gx ◦Φ f ◦Φ)+Φ2y ( fy ◦Φg ◦Φ− g y ◦Φ f ◦Φ)〉.

Since detDΦ(0) 6= 0 this yields

〈ω( f ◦Φ, g ◦Φ)〉 = 〈 fx ◦Φg ◦Φ− gx ◦Φ f ◦Φ, fy ◦Φg ◦Φ− g y ◦Φ f ◦Φ〉
= 〈( fx g − gx f )◦Φ, ( fy g − g y f )◦Φ〉,
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which implies the first assertion. If u ∈C{x, y} one checks

〈ω(u f ,ug )〉 = 〈u2( fx g − f gx ),u2( fx g − f g y )〉,

which equals 〈ω( f , g )〉 in case u is a unit. The assertion for ν( f , g ) follows
easily as well.

Another simple but important observation is:

Proposition 3.12. Let f , g ∈C{x, y} and A =
(

a b
c d

)
∈ GL2C. Then

µ(a f +bg ,c f +d g ) =µ( f , g )

and the same property holds for ν.

Proof. One checks that under the transformation ( f , g ) 7→ A( f , g ), the dis-
tinguished generators of the ideal 〈ω( f , g )〉 are mapped to their (ad − bc)
multiples.

If one of the functions f or g is nonzero at the origin, then the meromor-
phic Milnor number reduces to the holomorphic case. Therefore the inter-
esting case is when both germs f and g vanish at the origin.

Proposition 3.13. Let f , g ∈ C{x, y}. If f (0) 6= 0 but g (0) = 0, then µ( f , g ) =
ν( f , g ) =µ(g ) (maybe infinite).

Proof. It is clear that if f (0) 6= 0 or g (0) 6= 0, we have µ( f , g ) = ν( f , g ). If we
assume f (0) 6= 0 then the ideals 〈ω〉,〈 f −2w〉 are the same and the latter can
be written as 〈∂(g / f )〉. Hence µ( f , g ) =µ(g / f ). Furthermore we have

µ(g / f ) =µ(g / f − g (0)/ f (0)) =µ
(

g f (0)− g (0) f

f (0) f

)
.

Now this quotient is zero at the origin, so that by the invariance of the Milnor
number under the action of the contact group we obtain µ( f , g ) =µ(g f (0)−
g (0) f ). In the case g (0) = 0, this reduces to the asserted equality.

The proof shows that if f , g both do not vanish at the origin, then we can
only conclude µ( f , g ) = ν( f , g ) =µ(g f (0)− g (0) f ).
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In the sequel we like to obtain an equivalent characterization of those
pairs ( f , g ) for which µ( f , g ) or ν( f , g ) is finite. By the results from above
we may assume throughout that f (0) = g (0) = 0.

Proposition 3.14. Let 0 6≡ f , g ∈C{x, y} be vanishing at the origin. Then

i) If f or g is not reduced, then V (ω) is not just the origin.

ii) If f , g have a common divisor h, then V (ω( f , g )) =V (h)∪V (ω( f /h, g /h)).

iii) If ( f , g ) = 1 and f , g are reduced, then the following implication is valid:

V (ω) ⊂V ( f )∪V (g ) ⇒ V (ω) ⊂V ( f )∩V (g ) = {0}.

iv) If f , g are coprime, then the following is equivalent:

a) V (ω) ⊂V ( f )∪V (g )

b) For every c ∈C∗, the germ f − cg is reduced.

Proof.
i) If f is nonreduced we can write f = pm q with p, q ∈ C{x, y}, p(0) = 0 and
m ≥ 2. The computation

f ∂g − g∂ f = pm q ∂g − g mpm−1q ∂p − g pm ∂q

= pm−1(pq ∂g − g mq ∂p − g p ∂q)

shows that V (p) ⊂V (w).
ii) Let f and g have a common divisor h, then we have a factorization f =
f1h, g = g1h and can compute

f ∂g − g∂ f = f1h(h∂g1 + g1∂h)− g1h(h∂ f1 + f1∂h)

= h2 ( f1∂g1 − g1∂ f1).

iii) Let V (ω) ⊂V ( f )∪V (g ). Then

V (ω) =V (ω)∩ (V ( f )∪V (g ))

=V (ω)∩V (〈 f 〉∩〈g 〉)
=V (〈ω〉+〈 f 〉∩〈g 〉),

57



3. Milnor Number and Meromorphic Germs

hence by the Nullstellensatz√
〈ω〉 =

√
〈ω〉+〈 f 〉∩〈g 〉. (∗)

If V (ω) = {0}, then there is nothing to show for iii). So we assume V (ω) ⊃
6=

{0} which means that there is an irreducible nonunit h with
p〈ω〉 ⊂ 〈h〉 (h

can be taken as one of the branches of V (ω)). Then by (*) we have not only
h| fx g − f gx and h| fy g − f g y but also h| f g . Since h| f g , the irreducible h
must be an irreducible factor of f or g up to a unit, say h = f1. Then f1| fx g −
f gx , fy g− f g y implies f1| fx g , fy g and from gcd( f , g ) = 1 we get f1| fx , fy . But
then f would not have an isolated singularity at the origin, hence would not
be reduced. A contradiction!
iv) We show the implication a) ⇒ b) by contraposition. Assume that there
is c ∈ C∗ with f − cg =: h nonreduced. The germ h can’t be identically zero
since gcd( f , g ) = 1. We compute

f ∂g − g∂ f = (cg +h)∂g − g∂(cg +h)

= h∂g − g∂h.

Since h is nonreduced it follows already from the item i) that V (ω) ⊃ V (h1)
where h1 is an irreducible nonunit and h2

1 divides h. In particular V (w) ⊂
V ( f )∪V (g ) can’t be true since otherwise for example V (h1) ⊂ V ( f ), so h1

divides f , but since h = f − cg , f and g would not be coprime.

Finally, we show b) ⇒ a), again by contraposition. So we assume that it is
not true that V (ω) ⊂V ( f )∪V (g ). If V (ω) is two-dimensional, then fx g − f gx

and fy g − f g y are identically zero in a neighbourhood of the origin. Then
f /g would be a locally constant, hence constant function on the connected
(C2,0) \V (g ), say equal to c ∈C. Hence f −cg = 0 on (C2,0) \V (g ) and there-
fore on all of (C2,0) by continuity, which contradicts ( f , g ) = 1 or (if c = 0)
f 6≡ 0.

In the remaining case, V (ω) is one-dimensional and by the contraposition
hypothesis it is not true that V (ω) ⊂V ( f )∪V (g ). Then there must be a one-
dimensional irreducible component V of V (w) with the property V ∩V ( f ) =
V ∩V (g ) = {0}. First of all note, since V is irreducible, V ∗ :=V \{0} is smooth
and connected. Since V ⊂V (ω) we have d( f /g ) = 0 on V ∗. Therefore f /g is
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3.2. Milnor Number of Pairs of Functions

a locally constant function, hence constant on V ∗, so equal to some c ∈ C∗.
Let h = f − cg . On V ∗ we have

∂h = ∂ f − c ∂g = ∂ f − f

g
∂g = g ∂ f − f ∂g

g 2 .

Hence V (∂h)∩V ∗ =V (ω)∩V ∗ =V ∗ which implies V (∂h) cannot be ; or {0},
hence h could not be an isolated singularity, i.e. is not reduced.

As a corollary to the proof we get the well-known result

Proposition 3.15. Given coprime 0 6≡ f , g ∈ C{x, y} with f (0) = g (0) = 0, the
set

Bni ( f , g ) := {(s : t ) ∈P1| s f +t g does not have an isolated singularity at the origin}

is finite.

The subscript ni stands for nonisolated.

Proof. Let the ci ’s be pairwise different complex numbers such that f − ci g
is not reduced. From the proof above, part (iv), (a) ⇒ (b), we infer that
V (ω) ⊃ some branch of( f − ci g ) for all i . Since the case V (ω) = (C2,0) does
not occur (see above proof), V (ω) is a curve or lower-dimensional. As a curve
it can have only finitely many branches. However the f − ci g ’s are pairwise
coprime. Hence the number of such ci ’s is finite.

It is known that for an ideal I ⊂ C{x, y} we have dim(C{x, y}/I ) <∞ if and
only if V (I ) ⊂ {0} (this follows e.g. by using cor. 1.74 of [GLS07] for the coher-
ent sheaf O/I ). If we apply this to the ideal 〈ω( f , g )〉we find that proposition
3.14 gives a criterion for the finitenss of µ( f , g ) which we will summarize in
the next theorem.

Before that we are concerned with the finiteness of ν( f , g ). That’s why we
assume ν( f , g ) <∞ but µ( f , g ) =∞. (It is clear that µ( f , g ) <∞ would im-
ply ν( f , g ) <∞). In this case we must have i ( f , g ) =∞, otherwise µ( f , g ) =
i ( f , g )+ν( f , g ) would be finite.

The intersection number of f and g is infinite if and only if their greatest
common divisor h is a nonunit. Writing f = f̃ h, g = g̃ h, we have ω( f , g ) =
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h2ω( f̃ , g̃ ) = h2ω̃. Hence we obtain an isomorphism of vector spaces (by di-
viding by h):

〈 f , g 〉
〈ω〉

∼= 〈 f̃ , g̃ 〉
〈hω̃〉 .

Make clear that we have an exact sequence of the form

0 → 〈ω̃〉
〈hω̃〉 →

〈 f̃ , g̃ 〉
〈hω̃〉 → 〈 f̃ , g̃ 〉

〈ω̃〉 → 0.

So since the middle-term vector space is finite-dimensional, so are the
other two. Since now f̃ and g̃ are coprime we have i ( f̃ , g̃ ) <∞. And because
the right vector space is finite-dimensional, we deduce µ( f̃ , g̃ ) < ∞. The
latter is just dimCC{x, y}/〈ω̃〉. But since the vector space to the left is also
finite-dimensional, so would be dimCC{x, y}/〈hω̃〉. This can’t be true since
h is a nonunit! Hence we get a contradiction showing that µ( f , g ) =∞ and
ν( f , g ) <∞ cannot hold simultaneously. We have proved:

Theorem 3.16. Let 0 6≡ f , g ∈ C{x, y} and assume f (0) = g (0) = 0. Then the
following statements are equivalent:

1. The number µ( f , g ) is finite.

2. The number ν( f , g ) is finite.

3. The germs f , g are coprime and every linear combination s f + t g (with
(s : t ) ∈P1) is a reduced germ.

The simplest example for an infiniteµ( f , g ) is given by f (x, y) = x, g (x, y) =
x−y2 in which case 〈ω〉 = 〈y2, x y〉 and V (ω) =V (y) is not just the origin. An-
other example is f (x, y) = x2−y2 and g (x, y) = x2+y2, where 〈ω〉 = 〈x2 y, x y2〉
so that V (ω) =V (x y).

Proposition 3.17. Let p, q ∈ mC2,0 be two homogeneous polynomials of the
same degree. Then µ(p, q) = 1 or µ(p, q) =∞.

Proof. Let d be the degree of p and q . If we had µ(p, q) <∞, then all sp +
t q are isolated singularities and homogeneous of degree d . But it is well-
known that in this case the Milnor number is given by (d −1)2 for all (s, t ).
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3.2. Milnor Number of Pairs of Functions

Hence there is no jump in the Milnor number along the pencil at all, mean-
ing B(p, q) =;, hence (p, q) ∼ (x, y), thus µ(p, q) = 1.

We have given a definition of a "Milnor number" of a pair of function
germs defined on two-dimensional complex space. How could we define
a similar number for higher dimensions? Let f1, . . . , fn : (Cn ,0) → (C,0) be
holomorphic germs defined in a neighbourhood of the origin in Cn . I sug-
gest to use the following definition

ν( f1, . . . , fn) = dimC

〈 f1 · · · f̂i · · · fn〉n
i=1

〈∑n
i=1(−1)i ∂ fi · f1 · · · f̂i · · · fn〉∂n

∂=∂1

. (3.4)

If the common zero locus of the fi ’s is merely the origin, I suggest to define

µ( f1, . . . , fn) = ν( f1, . . . , fn)+ i ( f1, . . . , fn), (3.5)

where i ( f1, . . . , fn) = dimCC{x1, . . . , xn}/〈 f1, . . . , fn〉. Then for f1 = x1, . . . , fn =
xn we obtain µ( f1, . . . , fn) = 1 as was the case when n = 2.

In the sequel we are going to classify pairs ( f , g ) with a given µ( f , g ) ≤ 2.

Since 〈ω〉 = 〈 fx g − f gx , fy g − f g y 〉 is a subideal in < f , g > we have the
following relation:

dimC

C{x, y}

〈ω〉 = dimC

C{x, y}

〈 f , g 〉 + dimC

< f , g >
〈ω〉 ,

µ( f , g ) = i ( f , g ) + ν( f , g ).

This immediately produces the following table with the help of which the
classification will be easy.

µ( f , g ) i ( f , g ) ν( f , g )

0 0 0
1 1 0
1 0 1
2 2 0
2 1 1
2 0 2
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First of all we need the

Lemma 3.18. For f , g ∈C{x, y} we have

• i ( f , g ) = 0 holds if and only if f (0) 6= 0 or g (0) 6= 0.

• i ( f , g ) = 1 holds if and only if ( f , g ) is right equivalent to (x, y).

Proof. Although this is known, we give a proof for completeness of the dis-
cussion. For the first item we merely note that i ( f , g ) = 0 iffif the ideal <
f , g > is the full ring C{x, y} which can only happen if one or both of f , g do
not vanish at the origin. Now for the second item. The relation i ( f , g ) = 1
holds iffif < f , g > is the maximal ideal. Hence there are a,b,c,d ∈ C{x, y}
with x = a f +bg and y = c f +d g . Derive after x, y and insert the origin (use
that f (0) = 0, g (0) = 0 by the first item) to get(

1 0
0 1

)
=

(
fx (0) gx (0)
fy (0) g y (0)

)(
a(0) c(0)
b(0) d(0)

)
.

It follows that det(∂( f , g )(0)) 6= 0 and the inverse function theorem does the
rest.

We assume overall that at least one of f (0), g (0) vanish.

Let i ( f , g ) = 0. Then lemma 3.18 and proposition 3.13 show that µ( f , g ) =
µ( f ) if g (0) 6= 0 (but f (0) = 0).

Case µ( f , g ) = 0. Then f is smooth and vanishing at the origin. Hence
we can transform ( f , g ) into (x,h) where h is a nonvanishing function at the
origin.

Case µ( f , g ) = 1. Then f is critical, Morse and vanishing at the origin.
Hence we can transform ( f , g ) into (x y,h) where h is a nonvanishing func-
tion at the origin.

Case µ( f , g ) = 2. Then, a well-know result from singularity theory gives
that ( f , g ) is right equivalent to (x2 + y3,h) with h(0) 6= 0.
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3.2. Milnor Number of Pairs of Functions

Now let i ( f , g ) = 1. Then ( f , g ) is right equivalent to (x, y) by lemma 3.18.
In this case µ( f , g )=1.

It remains the case where µ( f , g ) = 2 = i ( f , g ) and ν( f , g ) = 0.

If ν( f , g ) = 0, there exists power series a,b,c,d with

f = a( fx g − f gx )+b( fy g − f g y ),

g = c( fx g − f gx )+d( fy g − f g y ),

from which we infer

f (1+agx +bg y ) = g (a fx +b fy ),

g (1− c fx −d fy ) =− f (cgx +d g y ).

Assume that f (0) = 0, g (0) 6= 0. Then from the second equation we infer
1− c(0) fx (0)−d fx (0) = 0. Hence, f must be noncritical. Since g (0) 6= 0 this
is the first line of the table below. Hence there are no occurences. Assume
now that both f (0), g (0) vanish. Then ( f , g ) = 1 since µ( f , g ) < ∞. If f is
critical at the origin, then 1− c fx −d fy is a unit in the power series ring and
from ( f , g ) = 1 we get a contradiction. The same with g . Hence f , g are
both noncritical and vanish at the origin. Hence we can transform ( f , g ) to
either (x, y) or (x, x+h) where h ∈m2. The first case cannot occur since then
i ( f , g ) = 1. In the second case it follows from the later proposition 3.27 that
µ( f , g ) = µ(x,h) = µ(h) + 2 ∗ i (x,h) − 1 which yields the contradiction 2 =
µ(h)+2∗2. We summarize this short computations in the next proposition.

Proposition 3.19. When f (0)g (0) = 0 we have the following classification ta-
ble (up to right equivalence of pairs) where h ∈C{x, y} with h(0) 6= 0:

µ( f , g ) i ( f , g ) ν( f , g ) ( f , g )

0 0 0 (x,h) or (h, x)
1 1 0 (x, y)
1 0 1 (x y,h) or (h, x y)
2 2 0 void
2 1 1 void
2 0 2 (x2 + y3,h) or (x2 + y3,h)
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We note that h cannot be further specified. There are too many equiva-
lence classes. For example the pairs (x, ym +1) and (x, yn +1) with different
m,n are not right equivalent. Namely if ifΦ(x, y) = (φ(x, y),ψ(x, y)) was such
a transformation, then φ(x, y) = x and from the other equivalence relation
ψ(x, y)m+1 =ψ(x, y)n+1 we would getψ(x, y)m−n = 1, so thatψ(x, y) would
be constant, which is impossible.

The following proposition should be seen as the analogous result toµ( f ) =
1 iffif f Morse-critical. It follows from the above considerations when we
note the fact that for f , g ∈C{x, y} and g (0) 6= 0, we have that f /g is critical at
the origin if and only if f is critical. In this situation if furthermore f (0) = 0,
then f /g is Morse if and only if f is Morse (at the origin).

Proposition 3.20. Let f , g ∈C{x, y} with f (0)g (0) = 0. Then µ( f , g ) = 1 if and
only if we are in one of the following cases:

• The pair ( f , g ) is right equivalent to (x, y).

• We have f (0) 6= 0 and g / f is a vanishing Morse-critical germ at the ori-
gin.

• We have g (0) 6= 0 and f /g is a vanishing Morse-critical germ at the ori-
gin.

Proposition 3.21 (Deformation property of µ(−,−)).
Let f = f (x, y), g = g (x, y) ∈mC2,0 with µ( f , g ) <∞. Let f (x, y, t ), g (x, y, t ) be
unfoldings of f (x, y), g (x, y). Then for any sufficiently small neighbourhood
U of the origin in C2 we have for each sufficiently small t ∈C, t ≈ 0

µ( f , g ) = ∑
p∈Ut

µp ( f (x, y, t ), g (x, y, t ))

where Ut := {(x, y) ∈U | fx (x, y, t )g (x, y, t )− f (x, y, t )gx (x, y, t ) = 0, fy (x, y, t )g (x, y, t )−
f (x, y, t )g y (x, y, t ) = 0}.

Proof. The proof of such statements is nowadays standard. First, a suffi-
ciently small representative of the map

(C3,0) → (C3,0), (x, y, t ) → ( f (x, y, t )x g (x, y, t )− f (x, y, t )gx (x, y, t ),

f (x, y, t )y g (x, y, t )− f (x, y, t )g y (x, y, t ), t )
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is flat and finite. (The zero fibre is just a point, so finiteness follows from
the Weierstraß finiteness theorem. Due to the same reason, the map is flat,
compare [GLS07], prop 2.7.) From [GLS07], theorem 1.81 (principle of con-
servation of numbers) applied to the sheaf OC3 restricted to a small neigh-
bourhood of 0 the assertion follows.

3.3. Singularities in the Pencil

Let f , g be coprime holomorphic germs at the origin in C2 which vanish at
the origin. For any parameter value (s : t ) ∈P1 we obtain the germ of a holo-
morphic function s f + t g : (C,0) → (C,0). We know that usually not all pencil
members s f + t g have an isolated singularity at the origin. We know a nec-
cessary and sufficient condition for this taking place. With this statement in
mind it is worth to look at two other questions which somewhat look similar
but are not.

(I) Is there a neighbourhood U of the origin in C2 such that all functions
s f + t g : U →C have no critical point except the origin?

(II) Is there a neighbourhood U of the origin in C2 such that all varieties
{x ∈U | s f (x)+ t g (x) = 0} are smooth except at the origin?

We come to question (I). The answer is no, as can be seen by the following
example. Let f (x, y) := x y, g (x, y) := x2+y2+x3+y3. If (x, y) is a critical point
of s f + t g , then

s y + t (2x +3x2) = 0

sx + t (2y +3y2) = 0

When we multiply the first equation with x and the second with y and take
differences, we get t (2x2 +3x3 −2y2 −3y3) = 0. If t 6= 0, this is equivalent to

[2(x + y)+3(x2 +x y + y2)](x − y) = 0.

If we take the solution x = y of this equation and insert it into one of the two
equations above, we get sx+t (2x+3x2) = 0, hence either x = 0 (which would
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imply y = 0, so the point is the origin) or

(x(t ), y(t )) =
(
− s +2t

3t
,− s +2t

3t

)
would be a critical point of s f + t g . As (s : t ) approaches (−2 : 1), the point
(x(t ), y(t )) tends to the origin. This already shows the assertion. On the other
hand, it is interesting to note that (−2 : 1) is one of the bifurcation values. I
believe that this is a general phenomenon:

Conjecture 3.22. If a sequence of points xk 6= 0 converges to the origin 0 ∈C2

and if there are (sk : tk ) ∈ P1 such that xk is a critical point of sk f + tk g , then
(sk : tk ) has as accumulation points only values in B( f , g ).

I thought of a proof using the Łojasiewicz-inequality. For example it is
known ([Lê73]) that for a µ-constant family of isolated singularities

f + t g : (C2 ×C,0) → (C,0)

there exist a neighbourhood U of 0 ∈C2 such that for all small t the following
holds. When ∂x ( f + t g ) = 0 and ∂y ( f + t g ) = 0, then g = 0. But this does not
bring us further. Maybe it follows from a characterization of the bifurcation
locus using the gradient.

Let us approach question (II).

Proposition 3.23. If µ( f , g ) < ∞ there is a neighbourhood U of the origin
0 ∈C2 such that every variety {x| s f (x)+ t g (x) = 0} is smooth in U \ {0}.

I cannot find an example where the condition µ( f , g ) <∞ is really neces-
sary.

Proof. Let x be a nonzero point in (C2,0) and (s : t ) ∈P1 such that

s f (x)− t g (x) = 0,

∂x (s f − t g )(x) = 0,

∂y (s f − t g )(x) = 0.
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Assume without loss of generality s 6= 0 and put λ= t/s. We compute

( fx g − f gx )(x) = (λgx g − f gx )(x) = gx (x)(λg − f )(x) = 0

( fy g − f g y )(x) = (λg y g − f g y )(x) = g y (x)(λg − f )(x) = 0.

On the other hand since µ( f , g ) < ∞ there is a neighbourhood of the ori-
gin such that fx g − f gx , fy g − f g y have no common nonzero solution. This
completes the proof.

In the next statement we show that the bifurcation set can have any de-
sired cardinality even with the assumption that µ( f , g ) <∞.

Proposition 3.24. Let n ≥ 0 be a given integer.

(a) Then there exists f , g ∈m such that the pencil generated by f and g has
precisely n nonisolated members and all other members have the same
Milnor number.

(b) Then there exists p, q ∈m with µ(p, q) <∞ such that B(p, q) has cardi-
nality n.

Proof. If n = 0 we can take ( f , g ) = (p, q) = (x, y). If n = 1, then ( f , g ) =
(x, x + y2) resp. (p, q) = (x, x + x2 + y2) will provide examples for (a), (b) re-
spectively. Assume n ≥ 2 from now on. For part (a) we let f (x, y) = (n −1)xn

and g (x, y) = yn−ny xn−1. If (s : t ) = (1 : 0) we have s f +t g = (n−1)xn which is
a nonisolated singularity, for n ≥ 2. Let now t 6= 0. Then we may put λ := s/t
and compute the partial derivatives

(λ f + g )x = n(n −1)(λxn−1 − y xn−2)

(λ f + g )y = n(yn−1 −xn−1).

So if both derivatives vanished at (x, y), then from the second equation
we would get ξx = y for some ξ ∈Cwith ξn−1 = 1. Inserting this into the first
equation gives

λxn−1 − y xn−2 = 0

λxn−1 −ξxn−1 = 0

⇒ xn−1(λ−ξ) = 0.
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So if λ is not an (n − 1)st root of unity then any common solution (x, y) of
(λ f + g )x = 0 and (λ f + g )y = 0 is only the origin itself. I.e. we have an iso-
lated singularity. Hence the values of (s : t ) for which s f + t g is a noniso-
lated singularity are thus given by (1 : 0) and (ξ : 1) where ξ goes through the
(n−1)st roots of unity. At all other values of (s : t ) we have an isolated singu-
larity given by a homogeneous polynomial of degree n. By a result of Milnor
and Orlik any such singularity has Milnor number (n −1)2. In particular the
Milnor numbers are equal for those (s : t ). This proves part (a) of the asser-
tion.

Now we prove part (b). When n = 2 we can use (p, q) = (x2 + y3, x3 + y2)
where obviously the special pencil members are p and q with Milnor num-
bers both equal to 2 and all other pencil members have Milnor number equal
to 1. Finally we have µ(p, q) = 11 <∞.

From now on assume n ≥ 3. For any m ≥ (n −1)2 +1 with the previously
defined f , g the function pair

(p, q) = ( f + (n −1)ym , g ) = ((n −1)(xn + ym), yn −ny xn−1)

is as desired.

First note that m > n since n ≥ 3. We show that the germs xn + ym and
yn −ny xn−1 are coprime. In general xn + ym = ∏

ξ(xn/d −ξym/d ) where the
product is over the dth roots of −1 and d = gcd(m,n). So for a branch of
xn+ym we have a parametrization of the form γ(t ) = ( n/d

√
ξt m/d , t n/d ) which

does not kill (yn −ny xn−1)◦γ(t ) as is easily checked.

The germ p is an isolated singularity with Milnor number (n −1)(m −1).
Now define λ= s/t and compute the derivatives

(λp +q)x =λ(n −1)nxn−1 −n(n −1)y xn−2

= n(n −1)xn−2(λx − y),

(λp +q)y =λ(n −1)mym−1 +nyn−1 −nxn−1.

Let (x, y) be a critical point of λp+q . Then we have either x = 0 or λx−y = 0.
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In the first case we obtain λ(n−1)mym−1+nyn−1 = 0 which can be rewritten
as yn−1(λ(n −1)ym−n +n) = 0. Since m > n, the expression in brackets does
not vanish at the origin and so y = 0, in which case we would get an isolated
singularity of λp + q . In the second case we have λx − y = 0. Inserting this
into the equation for ∂y (λp +q) we get

λ(n −1)m(λx)m−1 +n(λx)n−1 −nxn−1 = 0

xn−1((n −1)mλm xm−n +nλn−1 −n
)= 0.

We again have two cases. Either λn−1 = 1 or not. If λn−1 6= 1, then the ex-
pression in brackets is nonvanishing at the origin. So x = 0 and therefore
y =λx = 0, too. In the case λn−1 = 1, we rewrite the last equation as

xm−1((n −1)mλm)= 0.

which implies x = 0, too. So for any λ ∈C, λp +q has an isolated singularity
at the origin. Since this holds also for λ =∞ (i.e. for p), we have µ(p, q) <
∞ by theorem 3.16. What about the bifurcation set? We know by part (a)
that the Milnor number of λ f + g is equal to (n − 1)2 for λ ∈ C not an (n −
1)th root of unity. Since m ≥ µ(λ f + g )+1, by Tougeron’s finite determinacy
result addingλ(n−1)ym to the isolated singularityλ f +g will not change the
Milnor number. So the generic Milnor number of the pencil generated by
p, q is µg en(p, q) = (n −1)2 and it remains to compare the Milnor number of
p resp. λp+q for λn−1 = 1 with (n−1)2. For p we have µ(p) = (n−1)(m−1) >
(n −1)2, so (s : t ) = (1 : 0) belongs to B(p, q). Finally let λn−1 = 1. We have

µ(λp +q) = i (λpx +qx ,λpx +qx )

= i (xn−2(λx − y),λ(n −1)mym−1 +nyn−1 −nxn−1)

= (n −2)i (x,λ(n −1)mym−1 +nyn−1 −nxn−1)

+ i (λx − y,λ(n −1)mym−1 +nyn−1 −nxn−1)

= (n −2)ordt (−nt n−1)+ordt (λ(n −1)m(λt )m−1 +n(λt )n−1 −nt n−1)

= (n −2)(n −1)+ (m −1)

= (n −1)2 + (m −n)

> (n −1)2 =µg en( f , g ).
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So (λ : 1) ∈B(p, q). Altogether we deduce that B(p, q) has n elements.

3.4. The Bifurcation Formula

Conjecture 3.25 (Bifurcation Formula). Assume that f , g ∈C{x, y} both van-
ish at the origin and that µ( f , g ) is finite. If µg en denotes the generic Milnor
number and B∗ =B( f , g )\{0,∞} the reduced bifurcation set of the local pen-
cil generated by f and g (in this order), then the following relation holds:

µ( f , g ) =µ( f · g )+ ∑
(s:t )∈B∗

(
µ(s f + t g )−µg en

)
. (3.6)

As a corollary of this conjecture we have

Conjecture 3.26. Under the above hypothesis µ( f , g ) ≥ µ( f g ) with equality
if and only if the meromorphic germ f /g is semitame (i.e. B( f , g ) ⊂ {0,∞}).

At this point it seems worth to recall the formula

µ( f g ) =µ( f )+µ(g )+2 · i ( f , g )−1. (3.7)

Note that the action of PGL(2,C) on P1 = P(C2) makes it possible to nor-
malize the bifurcation set: three different members of B can be assumed
to be {0,1,∞} by changing ( f , g ) to some (a f + bg ,c f + d g ). If we write
B = {(s1 : t1), . . .} as a subset of P1 then the map A ∈ PGL(2,C) can be ex-
plicitely given by

A = 1

s1t2 − s2t1

(
λs1 µs2

λt1 µt2

)
where λ= s3t2 − s2t3 and µ= s3t1 − s1t3.

We give some examples with shifting the bifurcation set. Let p(x, y) =
y4+x y2+x3 and q(x, y) = x y2+x2 y+x3. If f = p, g = q , then B = {− 2

3 ,−2,−1}
and the above formula reads 30 = 27+ (5−4)+ (5−4)+ (5−4).

If f = p, g = q − p, then B = {−2,2,∞} and the above formula is 30 =
28+ (5−4)+ (5−4).
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If f = q −p, g = p (so interchanging f , g from the last example) then B =
{0,− 1

2 , 1
2 } and the formula is 30 = 28+ (5−4)+ (5−4).

Finally if f = 3p − 2q, g = −p + 2q , then B = {0,−1,∞} and the formula
reads 30 = 29+ (5−4).

Note that the preceding three examples clearly show that one needs to ex-
clude 0 and ∞ from the bifurcation set in the formula.

Here is an example with higher Milnor numbers:

f (x, y) =−y4 + y5 −x y4 +x5, g (x, y) = 1

2
y5 + 1

2
x3 + 1

2
x5,

B( f , g ) = {0,∞},µ( f ) = 12,µ(g ) = 8,µg en = 6,µ( f , g ) =µ( f g ) = 43.

Proposition 3.27. The bifurcation formula holds when one of f , g is a smooth
germ.

Proof. Let f be smooth. After a linear coordinate transformation we can
assume f (x, y) = x. If g is smooth, too, it is either transversal to f or not. The
case of smooth transversals f , g is trivial since B( f , g ) =; and µ( f g ) = 1 as
well as µ(x, y) = 1. In the second case g (x, y) is a complex multiple of x so
that f , g are not coprime, which contradicts the hypothesis. Now let g be
nonsmooth. Then g ∈m2. Then µ( f , g ) <∞ if and only if x does not divide
g and g is reduced. So let us assume this.

Since all germs s f + t g = sx + t g are smooth except the one with s = 0, we
have B(x, g ) = {∞}, so that B∗(x, g ) = B(x, g ) \ {0,∞} = ;. By the general
formula µ(xg ) =µ(x)+µ(g )+2i (x, g )−1, the asserted formula is

µ(x, g ) =µ(g )+2i (x, g )−1+0.

Now it is easily checked that µ(x, g ) = i (g − xgx , xg y ) so that the formula
to be shown is equivalent to

i (g −xgx , xg y ) =µ(g )+2i (x, g )−1.

We now apply a special case of Lê’s formula 3.4 (applied to the pair (g , x))
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µ(g )+ i (x, g )−1 = i (g , g y ) to get the equivalent statements

i (g −xgx , g y )+ i (g −xg y , x) = i (g , g y )+ i (x, g ).

i (g −xgx , g y ) = i (g , g y )

Finally, for a quasihomogeneous germ g , this equality is easily seen, while in
general this last equation follows from (the proof of) lemma 6.5.7 in [Wal04].

In the remaining part of this section I like to discuss some ideas for a proof
of the bifurcation formula.

As part of the big conjecture we have the following

Conjecture 3.28 (Partial Conjecture). If f , g ∈ mC2,0 with µ( f , g ) < ∞ and
B( f , g ) ⊂ {0,∞} then µ( f , g ) =µ( f g ).

I can think of two ways of proving it. The first is to use repeated blowup.
The second is to use a homotopy.

For the homotopy approach I suggest to look at the map

[0,1]×S3
ε → S3, (τ, x, y) 7→

(
s(τ) fx g + t (τ) f gx , s(τ) fy g + t (τ) f g y

)∥∥(
s(τ) fx g + t (τ) f gx , s(τ) fy g + t (τ) f g y

)∥∥ .

Here the path [0,1] 3 τ 7→ (s(τ), t (τ)) ∈ P1 has to be chosen to connect the
points (1 : 1) (corresponding toµ( f g )) and (1 : −1) (corresponding toµ( f , g )).
Of course the above map does not exist in general. If it exists, it will imme-
diately follow that µ( f , g ) = µ( f g ) since the degree is a homotopy invariant.
In order to show that it exists one has to pay attention to the fact that ε must
not depend on τ, i.e. we make the

Conjecture 3.29. Let f , g ∈ mC2,0, µ( f , g ) < ∞ and B( f , g ) ⊂ {0,∞}. Then
there exists a neighbourhood U of the origin inC2 and a path (s, t ) = (s(τ), t (τ))
connecting (1 : ±1) such that the common zero locus of s(τ) fx g + t (τ) f gx = 0
and s(τ) fy g + t (τ) f g y in U is only the origin itself!

We can make this claim more precise in
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Conjecture 3.30. Under the above hypothesis the following holds for suffi-
ciently small ε > 0. There does not exist a series (si : ti ) ∈ P1 and points
(xi , yi ) ∈ Bε(0) \ {0} with the following properties

1.

si fx (xi , yi )g (xi , yi )+ ti f (xi , yi )gx (xi , yi ) = 0, (3.8)

si fy (xi , yi )g (xi , yi )+ ti f (xi , yi )g y (xi , yi ) = 0 (3.9)

2. (xi , yi ) → (0,0)

3. (si : ti ) → (1 : 1) or (1 : −1) .

To be more general we could ask to determine the set

P ( f , g ) := { lim
i→∞

(si : ti )| (si : ti ) ∈P1convergent,

∃ nonzero (xi , yi ) → (0,0) solving 3.8,3.9}. (3.10)

Let us give concrete examples. Let us consider the pair ( f , g ) = y2 − y3 −
x3, y3 + x2 + x3). Here we have µ( f , g ) = 11 and B( f , g ) = {0,∞} with generic
Milnor number equal to one and µ( f ) =µ(g ) = 2. If (x, y) 6= (0,0) and (s : t ) ∈
P1 \ {0,∞} solve both equations

s fx g + t f gx = 0 (3.11)

s fy g + t f g y = 0 (3.12)

and (x, y) is sufficiently close to the origin ("sufficiently close" depending
only on f and g not on (s : t )!), then (x, y) neccessarily solves

fx g y − fy gx = 0.

In fact, since the vector (s, t ) does not vanish we must have zero determinant
of the matrix that occurs in the above equations: f g ( fx g y − fy gx ) = 0. But if
we had f = 0, this would imply s fx g = 0 and s fy g = 0. Because f and g are
coprime and f has an isolated singularity we must have s = 0, which con-
tradicts our assumptions. Hence f 6= 0 and analogously g 6= 0 as was to be
shown. In this example we have fx g y − fy gx = x y(−4+6y −6x) which leaves
us with two cases: either x = 0 or y = 0. In the first case both equations are
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fulfilled if and only if y4(2s +3t )+ y5(−3s −3t ) = 0 which means y = 2s+3t
3s+3t .

In the second case we have the solution (x =− 3s+2t
2s+t , y = 0). So, whenever we

choose (s : t ) to stay away from {0,∞, (−3 : 2), (−2 : 3)}, all points (x, y) 6= (0,0)
which solve the equations 3.11 and 3.12 will stay away from the origin in a
uniform manner, i.e. there is a neighbourhood U ⊂ C2 of (0,0) and neigh-
bourhoods V ((si : ti )) ⊂ P1 of each of (si : ti ) ∈ {0,∞, (−3 : 2), (−2 : 3)} so any
solution (x, y) ∈U , (s : t ) ∈ P1 \

⋃
i V (si : ti ) of equations 3.11 and 3.12 will be

just the origin.
If we shift the above pair ( fo , go) to the new pair ( f , g ) = ( fo + go , go) =

(x2 + y2, x2 + x3 + y3), then µ( f , g ) = 11 and B( f , g ) = {(1 : −1),∞). The
generic Milnor number is 1 and the special Milnor numbers in the pencil
are µ( f −g ) = 2,µ(g ) = 2. The equation fx g y − fy gx = 0 does not change after
the shift. Inserting the solution x = 0 into the equations 3.11 and 3.12 will
give (2s +3t )y4 = 0. Inserting the solution y = 0 however gives x = −2 s+t

2s+3t .
Now when (s : t ) approximates the value (1 : −1) which is one of our homo-
topy end values, x tends to zero, i.e. in any neighbourhood of the origin there
exists a nonzero solution (x, y) of the set of equations with (s : t ) ≈ (1 : −1).

For the blowup approach we assume again B( f , g ) ⊂ {0,∞}. The conjec-
ture is µ( f , g ) = µ( f g ) when the left side is finite. Now we know how the
blowup-behaviour of the classical Milnor number is, namely

µ(h)−µ(ĥ) = mult(h)∗ (mult(h)−1)− r (h)+1 (3.13)

where ĥ is the strict transform of h under a single blowup (which is a multi-
germ, so µ(ĥ) is a sum of Milnor numbers) and where r (h) is the number of
different tangents of the germ h ∈mC2,0. If f , g are given with f (0) · g (0) = 0

and f̂ , ĝ denote their strict transforms, then we define µ( f̂ , ĝ ) as the sum
of the meromorphic Milnor number of ( f̂ , ĝ ) at all points of the exceptional
divisor E where at least one of f̂ or ĝ vanishes. This is the only reasonable
definition since taking a point p ∈ E where f̂ (p) 6= 0, ĝ (p) 6= 0 into account
would mean that we take every point p ∈ E, which are of course infinitely
many. In particular if f has a tangent corresponding to p ∈ E, but g has not,
then ĝ (p) 6= 0 and so µp ( f̂ , ĝ ) = µp ( f̂ ), i.e. the classical Milnor number. The
Milnor number of pairs occurs for the strict transforms only if f and g have a
common tangent. Let B̂ be the union of all the bifucation sets of the blowup
multigerms of pairs ( f̂ , ĝ ). Then I guess a way to prove the conjecture
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f , g ∈C{x, y}, f (0)g (0) = 0,B( f , g ) ⊂ {0,∞},µ( f , g ) <∞ ⇒ µ( f , g ) =µ( f g ).

should consist of the following steps.

(a) Show B̂∗ ⊂B∗. (Recall that B∗ :=B \{0,∞}.) This would make it possi-
ble to use induction on the number of blowups.

(b) Show µ( f̂ , ĝ ) <∞.

(c) Under the above assumptions we have the following blowup behaviour

µ( f , g )−µ( f̂ , ĝ ) = mult( f g )∗ (mult( f g )−1)− r ( f g )+1. (3.14)

(d) Show that after sufficiently many blowups the conjecture is true.

Part (d) is immediate because we can resolve the singularities of ( f : g ) ([LW97]).
Part (a) maybe also follows from this paper.

Regarding (b) we have to note that it may happen that µ̂ := µ( f̂ , ĝ ) is in-
finite. E.g. when f = x and g = x +h (with h ∈m2 reduced and x does not
divide h, see above), thenµ(x̂, �x +h) =∞. Butµ( f , g ) =µ( f , f +g ) andµ(x̂, ĥ)
is finite! This example motivates the following

Conjecture 3.31. When we assume that the multiplicity of the pencil mem-
bers s f + t g changes only when (s : t ) ∈ {0,∞} (in fact, there is only one mem-
ber where it can change), then µ( f̂ , ĝ ) is finite!

In the above example, the multiplicity of s · f + t ·g = sx+ t (x+h) changes
when (s : t ) = (1 : −1), so here µ( f̂ , ĝ ) is not neccessarily finite.

We will proceed along the lines of the proof of the blowup formula for the
classical Milnor number. There are various proofs of it. For example Pham
in [Pha74] proved it by using the formula i ( f , fx ) =µ( f )+i ( f , y)−1 and com-
puting the blowup in just one chart, namely the one where the derivative fx

looks nicer. In our case we do not have such a nice formula so we have to
proceed differently. We try to follow the method presented in Wall’s book
([Wal04], chapter 6) but will see where it has its drawbacks.
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Let m := mult( f ) and n := mult(g ). In the chart (x, y) 7→ (x y, y) of the
blowup we compute

f̂ (x, y) = f (x y, y)

ym

ĝ (x, y) = g (x y, y)

yn

∂x f̂ (x, y) = ∂x
f (x y, y)

ym

= fx (x y, y)y

ym

= fx (x y, y)

ym−1

∂y f̂ (x, y) = ∂y
f (x y, y)

ym

= fx (x y, y)x + fy (x y, y)

ym −m
f (x y, y)

ym+1 .

It follows

∂x f̂ (x, y) · ĝ (x, y)− f̂ ·∂x ĝ (x, y) = ( fx g − f gx )(x y, y)

ym+n−1 (3.15)

∂y f̂ (x, y) · ĝ (x, y)− f̂ ·∂y ĝ (x, y) = ( fx g − f gx )(x y, y)x

ym+n + ( fy g − f g y )(x y, y)

ym+n +

− (m −n)
( f g )(x y, y)

ym+n+1 (3.16)

I think the following is correct

Lemma 3.32. We have mult( fx g − f gx ) >= m +n −1 and the strict inequal-
ity holds if and only if for the homogeneous parts of f , g we have fhom =
C · ghom ym−n with C ∈C∗.
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Let us assume that we have the equalities

mult( fx g − f gx ) = m +n −1,

mult( fy g − f g y ) = m +n −1.

Then from equation 3.15 see that for any branch γ of fx g − f gx the strict
transform γ̂ is a "branch" of f̂x ĝ − f̂ ĝx . By equation 3.16 we get at any point
of the above blowup chart

i (γ̂, y ·(∂y f̂ ·ĝ− f̂ ·∂y ĝ )) = i (γ̂,
( fy g − f g y )(x y, y)

ym+n−1 −(m−n)
( f g )(x y, y)

ym+n ) (3.17)

Note that one summand vanishes in this computation! Now the exceptional
divisor is covered by this chart except for one point. Assume that all ac-
tion takes places there! (This is an assumptions on the tangents of fx g −
f gx , f g y − fy g !) By summing up over all branches γ this can be rewritten as

µ( f̂ , ĝ )+ i ( áfx g − f gx ,E) = i ( áfx g − f gx , áfy g − f g y − (m −n) f̂ g ), (3.18)

µ̂+mult( fx g − f gx ) = i ( áfx g − f gx , áfy g − f g y − (m −n) f̂ g ). (3.19)

The right hand side is very close to

i ( áfx g − f gx , áfy g − f g y = i ( fx g − f gx , fy g − f g y+
−mult( fx g − f gx )mult( fy g − f g y ).

If it was like this we would get in the end

µ( f , g )−µ( f̂ , ĝ ) = (m +n −1)(m +n) (3.20)

which is nothing but the formula µ( f g )−µ( f̂ g ) = mult( f g )(mult( f g )−1)+
r ( f g )−1 if f , g were irreducible and shared their tangent.

However, apart from the other assumptions made during the deduction
of this result, it is not true that

i ( fy g − f g y , x( fx g − f gx )− (m −n) f g ) = i ( fy g − f g y , x( fx g − f gx )).
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E.g. in the example f (x, y) = y3 − y4 − x3, g (x, y) = y4 + x2 + x3 (µ( f , g ) =
18,µ( f ) = 4,µ(g ) = 3,µg en = 3,B( f , g ) = {0,∞}) we have 26 6= 24. If it was
true that would be a meromorphic analogue to Wall’s lemma 6.5.7.

I like to leave the discussion of the blowup approach here and discuss
shortly the full conjecture. Maybe a way to prove the conjecture is to use
the deformation property of µ (proposition 3.21) and to find an unfolding
( ft , g t ) which has for small nonzero t only points in ( ft g t = 0) which have
µ( ft , g t ) = 1 (compare proposition 3.20). This would resemble the proof
by Brieskorn ([Bri70], Appendix) that the covering degree of ∇ f : (Cn ,0) →
(Cn ,0) equals rk H n−1(Mil f ,0). Can one use Suwa’s result ([Suw83]) on the
existence of meromorphic unfoldings?
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A.1. Implementation in SINGULAR

We use the computer algebra system SINGULAR ([Dec10]) to compute all
the ingredients of the bifurcation formula. For a given polynomial input
( f , g ) the following code will compute

i ( f , g ),µ( f , g ),µ( f g ),µg en( f , g )

and B( f , g ) together with the Milnor numbers of the special pencil mem-
bers. Of course most of the data exist only if f and g vanish at the origin
and are coprime. The implementation below follows the description of the
bifurcation set due to Maugendre and Michel. Let us first show how to apply
the procedure.

>LIB " bfs . l i b " ;
>ring r =0 ,( x , y ) , l s ;
>poly f = y^4+x * y^2+x ^3;
>poly g = x^2*y+y^2*x ;
>bfs ( f , g ) ;
=> i ( f , g)=10
=> milnor ( f , g ) = 30
=> milnor ( f *g ) = 27
=> Minmal polynomial i s :
=> ( a2−2a−1)
=> . . .
=> B( f , g ) = { ( 2 a) ,(−2a+4) ,−1}
=> mu = { 5 , 5 , 5 }
=> mugen = 4

The value (s : t ) ∈B( f , g ) such that s f + t g is a special member of the pencil
is encoded as λ= t/s if s 6= 0 or INF if s = 0. I.e. the special pencil members
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in the above example are f +2ag , f + (−2a +4)g , f − g . Here a is a complex
number annulating the minimal polynomial. Another example is

>bfs ( x^2+y^3 ,y ^ 2 ) ;
=> i ( f , g)=4
=> milnor ( f , g ) = INF
=> milnor ( f *g ) = −1
=> B( f , g ) = { INF , 0 }
=> mu = {−1 ,2}
=> mugen = 1

Here the special pencil members are " f +∞· g " = g and f + 0 · g = f . The
first has a nonisolated singularity (therefore µ( f , g ) =∞), while the second
has Milnor number two. The generic Milnor number of the pencil is 1.

In the implementation the Hamburger-Noether expansion of fx g y − fy gx

was used. One should use the printlevel=-1; command to turn off com-
ments during the computation of the branches (which are indicated by ...
in the above listing) or use printlevel=1; to allow for further user input
during this computation. The implementation checks whether a change
of ring was neccessary in order to compute the branches γ of fx g y − fy gx .
It uses the OrderCoeff auxiliary function to compute the order of f ◦ γ.
Such an expression can however be identically zero, in which case the al-
gorithm would not terminate. However since this happens if and only if f
is not reduced (assuming ( f , g ) = 1), in the very beginning we have shifted
( f , g ) to a pair ( f + ng ,n f + g ) with a shift n ∈ N≥2 such that f + ng and
n f + g are both reduced. Then we compute B( f +ng ,n f + g ) using the al-
gorithm of Michel and Maugendre and extract from it the bifurcation set of
the original pair ( f , g ) using the following: If (s : t ) ∈B( f +ng ,n f + g ), then
(s +nt : sn + t ) ∈B( f , g ) and vice versa.

1 ////////////////////////////////////////
2 version = " 1 . 0 " ;
3
4 info ="
5 LIBRARY : bfs . l i b
6 AUTHOR: Adrian Szawlowski
7 PROCEDURES: bfs ( poly , poly )
8 computes d e t a i l s of bifurcation formula and the bifurcation set
9 " ;
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10 /////// /////// //////// /////// /////// //////// /////// //////// ////
11
12 LIB " sing . l i b " ;
13 LIB "hnoether . l i b " ;
14
15
16
17 proc I s I n L i s t (number a , l i s t B)
18 {
19 i n t r e s u l t = 0 ;
20 i n t i ;
21 for ( i =1; i <= s i z e (B ) ; i ++)
22 { i f (B[ i ] == a ) { r e s u l t = 1 ; break ; }
23 }
24 return ( r e s u l t ) ;
25 }
26
27 ///////////////////////////////////////////////////////////
28 // assumes poly f i s a power s e r i e s in variable x and
29 // returns ( order of f , c o e f f i c i e n t )
30
31 proc OrderCoeff ( poly f )
32 {
33 i n t max = 50;
34
35 l i s t ergebnis ; // w i l l be of the form ( order , coeff ) where order >= −1
36 l i s t erg1 ; l i s t erg2 ;
37 i n t s ;
38 poly df= f ;
39
40
41 i f ( subst ( df , x , 0 ) ! = 0 )
42 { erg1 = 0 ; erg2 = subst ( df , x , 0 ) ; ergebnis = erg1+erg2 ;
43 return ( ergebnis ) ; }
44 else
45 {
46 for ( s = 1 ; s<=max; s ++)
47 {
48 df = d i f f ( df , x )/ s ;
49 // dividing by s w i l l produce numerical s t a b l i e r r e s u l t s
50 i f ( subst ( df , x , 0 ) ! = 0 )
51 {
52 erg1 = s ; erg2 = subst ( df , x , 0 ) ; ergebnis = erg1+erg2 ;
53 return ( ergebnis ) ;
54 }
55 }

81



A. Appendix

56
57 "ERROR: The polynomial "+ s t r i n g ( f )+" has no order up to "+ s t r i n g (max ) ;
58 "Try to modify the code by using more terms from the expansions ! " ;
59 ergebnis = −1 ,0;
60 return ( ergebnis ) ;
61 }
62 }
63
64 //////// /////// /////// //////// /////// /////// //////// /////// ////
65 proc bfs ( poly f , poly g )
66 "
67 USAGE: bfs ( f , g ) ; f , g polynomials in l o c a l ring with variables x , y
68 RETURN: the bifurcation set of ( f , g ) , bi furcation formula for ( f , g )
69 EXAMPLE: LIB " bfs . l i b " ; ring r =0 ,( x , y ) , l s ;
70 poly f =x^2+y ^3; poly g=x^3+y ^2; bfs ( f , g ) ;
71 NOTE: the bifurcation set w i l l be computed only i f f (0)= g (0)=0
72 "
73 {
74 ideal S = d i f f ( f , x ) * g − d i f f ( g , x ) * f , d i f f ( f , y ) * g − d i f f ( g , y ) * f ;
75 i n t mer_milnor = vdim( std ( S ) ) ;
76
77 // one of f ( 0 ) , g ( 0 ) i s not zero
78
79 i f ( subst ( f , x , 0 , y , 0 ) * subst ( g , x , 0 , y , 0 ) ! = 0 )
80 {
81 "Both input polynomials are nonzero at the origin ! " ;
82 return ( ) ;
83 }
84
85 i f ( subst ( f , x , 0 , y , 0 ) ! = 0 )
86 {
87 "The f i r s t input polynomial i s nonzero at the origin ! " ;
88 i f ( mer_milnor!=−1)
89 { " milnor ( f , g ) = "+ s t r i n g ( mer_milnor ) ; }
90 else { " milnor ( f , g ) = INF " ; }
91 return ( ) ;
92 }
93
94 i f ( subst ( g , x , 0 , y , 0 ) ! = 0 )
95 {
96 "The second input polynomial i s nonzero at the origin ! " ;
97 i f ( mer_milnor!=−1)
98 { " milnor ( f , g ) = "+ s t r i n g ( mer_milnor ) ; }
99 else { " milnor ( f , g ) = INF " ; }

100 return ( ) ;
101 }
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102
103 ideal T = f , g ;
104 i n t intersection_number = vdim( std (T ) ) ;
105 i f ( intersection_number == −1)
106 {
107 " ( f , g ) are not coprime " ; return ( ) ;
108 }
109 else {
110 " i ( f , g ) = "+ s t r i n g ( intersection_number ) ;
111 }
112
113 i f ( mer_milnor!=−1)
114 { " milnor ( f , g ) = "+ s t r i n g ( mer_milnor ) ; }
115 else { " milnor ( f , g ) = INF " ; }
116
117 "milnor ( f *g ) = "+ s t r i n g ( milnor ( f *g ) ) ;
118
119 // COMPUTATION OF THE BIFURCATION SET
120
121 // i f f or g are not reduced , then
122 // the algorithm by Michel , Maugendre w i l l f a i l
123 // since f \ c i r c \gamma w i l l be i d e n t i c a l l y zero
124 // for some branch \gamma of D = f_xg_y−f_yg_x
125 // so we need to s h i f t f , g to reduced germs
126 i n t s h i f t = 0 ;
127
128 i f ( milnor ( f ) == −1 or milnor ( g ) == −1)
129 {
130 for ( s h i f t =2; s h i f t <=100; s h i f t ++)
131 {
132 i f ( milnor ( f + s h i f t *g)!=−1 and milnor ( s h i f t * f +g)!=−1)
133 { break ; }
134 }
135
136 }
137 i f ( s h i f t == 100) { " f or g i s not reduced , computation
138 of B( f , g ) not done . Raise upper bound for < s h i f t > in code ! " ;
139 return ( ) ; }
140 poly fold = f ;
141 poly gold = g ;
142 f = fold + s h i f t * gold ;
143 g = s h i f t * fold + gold ;
144
145 def oldring = basering ;
146
147 poly D = d i f f ( f , x ) * d i f f ( g , y)−d i f f ( f , y ) * d i f f ( g , x ) ;
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148
149
150 i f ( subst (D, x , 0 , y , 0 ) ! = 0 )
151 {
152 "B( f , g ) = void " ; "mugen = 0 " ;
153 return ( ) ;
154 }
155
156
157 l i s t L = hnexpansion (D) ;
158
159 i f ( s i z e ( L [ 1 ] ) != −1)
160 // t h i s happens i f there was no ring extension for
161 // computing the branches of D
162 {
163
164 l i s t ps = param( L ) ;
165 i n t s = s i z e ( L ) ;
166 s e t r i ng oldring ;
167
168
169 number maxB;
170 i n t mugen;
171
172 l i s t B ;
173
174 i n t i ;
175 map Valuation ;
176 poly fgamma ;
177 poly ggamma;
178 l i s t Lf ;
179 l i s t Lg ;
180
181 number b ;
182 l i s t muB;
183 l i s t B s h i f t ;
184
185 for ( i =1; i <= s ; i ++) // going through the branches gamma of D
186 {
187 Valuation = oldring , ps [ i ] ;
188
189 // the following two objects are ( truncated ) power s e r i e s in x :
190 fgamma = Valuation ( f ) ;
191 ggamma = Valuation ( g ) ;
192 Lf = OrderCoeff (fgamma ) ;
193 Lg = OrderCoeff (ggamma) ;
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194
195 i f ( Lf [ 1 ] == −1 or Lg [ 1 ] == −1) { return ( ) ; }
196 i f ( ( Lf [ 1 ] > Lg [ 1 ] ) && ( I s I n L i s t ( 0 ,B) ! = 1 ) ) {B = B + l i s t ( 0 ) ; }
197 i f ( Lf [ 1 ] == Lg [ 1 ] ) {b = − number( Lf [ 2 ] ) / number( Lg [ 2 ] ) ;
198 i f ( I s I n L i s t (b , B) != 1) {B = B + l i s t (b ) ; } }
199 } // for
200
201 i f ( s i z e (B) == 0)
202 {
203 mugen = milnor ( f ) ;
204 i f ( s h i f t == 0)
205 {
206 i f ( milnor ( g)==−1)
207 {B = l i s t ( " INF " ) ; "B( f , g ) = { INF } " ;
208 "mu = "+ s t r i n g ( milnor ( g ) ) ;
209 "mugen = "+ s t r i n g (mugen ) ; }
210 i f ( milnor ( g)!=−1 and milnor ( g ) > mugen)
211 {B= l i s t ( " INF " ) ; "B( f , g ) = { INF } " ;
212 "mu = "+ s t r i n g ( milnor ( g ) ) ;
213 "mugen = "+ s t r i n g (mugen ) ; }
214 // in the remaining case B i s void ,
215 // but t h i s case was already treated above
216 // ( corresp . to D( 0 ) ! = 0 )
217 }
218 else
219 {
220 i f ( milnor ( g)==−1){ B s h i f t = l i s t (1/number( s h i f t ) ) ;
221 "B( f , g ) = { "+ s t r i n g ( B s h i f t )+" } " ;
222 "mu = "+ s t r i n g ( milnor ( fold + (1/ s h i f t ) * gold ) ) ;
223 "mugen = "+ s t r i n g (mugen ) ; return ( ) ; }
224 i f ( milnor ( g)!=−1 and milnor ( g ) > mugen)
225 { B s h i f t = l i s t (1/number( s h i f t ) ) ;
226 "B( f , g ) = { "+ s t r i n g ( B s h i f t )+" } " ;
227 "mu = "+ s t r i n g ( milnor ( fold + (1/ s h i f t ) * gold ) ) ;
228 "mugen = "+ s t r i n g (mugen ) ; return ( ) ; }
229 // in the remaining case B i s void ,
230 // but t h i s case was a c t u a l l y already
231 // treated above ( corresp . to D( 0 ) ! = 0 )
232 } // s h i f t >= 2
233 return ( ) ; // !
234 } // s i z e (B) == 0
235
236 i f ( s i z e (B) != 0)
237 {
238 i f ( s h i f t ==0)
239 {
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240 for ( i = 1 ; i <= s i z e (B ) ; i ++)
241 {
242 i f ( i ==1) {maxB = B [ 1 ] ; }
243 i f ( i >1) { i f (B[ i ] >maxB) {maxB = B[ i ] ; } }
244 muB = muB + l i s t ( milnor ( f +B[ i ] * g ) ) ;
245 }
246
247 mugen = milnor ( f + maxB * g + g ) ;
248 i f ( milnor ( g ) == −1) {B = B+ l i s t ( " INF " ) ;
249 muB = muB + l i s t ( milnor ( g ) ) ; }
250 i f ( milnor ( g ) !=−1 and milnor ( g) >mugen) {B = B+ l i s t ( " INF " ) ;
251 muB = muB + l i s t ( milnor ( g ) ) ; }
252 "B( f , g ) ={"+ s t r i n g (B) + " } " ;
253 "mu ={"+ s t r i n g (muB) + " } " ;
254 "mugen = "+ s t r i n g (mugen ) ;
255 }
256 else // i . e . s h i f t >= 2
257 {
258 for ( i = 1 ; i <= s i z e (B ) ; i ++)
259 {
260 i f (1+B[ i ] * s h i f t != 0)
261 { B s h i f t = B s h i f t + l i s t (number( s h i f t +B[ i ] ) / number(1+B[ i ] * s h i f t ) ) ;
262 muB = muB +
263 l i s t ( milnor ( fold +(number( s h i f t +B[ i ] ) / number(1+B[ i ] * s h i f t ) ) * gold ) ) ;
264 i f ( i ==1)
265 {maxB = number( s h i f t +B[ i ] ) / number(1+B[ i ] * s h i f t ) ; }
266 i f ( i >1)
267 { i f (number( s h i f t +B[ i ] ) / number(1+B[ i ] * s h i f t ) > maxB) {maxB = B[ i ] ; } }
268 }
269 i f (1+B[ i ] * s h i f t == 0)
270 {
271 B s h i f t = B s h i f t + l i s t ( " INF " ) ; muB = muB + l i s t ( milnor ( gold ) ) ;
272 }
273 }
274 i f ( milnor ( g ) == −1) // note that t h i s i s the new g !
275 { B s h i f t = B s h i f t + l i s t (number( 1 ) /number( s h i f t ) ) ;
276 muB = muB + l i s t ( milnor ( fold + (1/ s h i f t ) * gold ) ) ;
277 }
278
279 i f (1/ s h i f t > maxB) {maxB = 1/ s h i f t ; }
280 mugen = milnor ( fold + maxB * gold + gold ) ;
281
282 i f ( milnor ( g ) !=−1 and milnor ( g) >mugen)
283 { B s h i f t = B s h i f t + l i s t (number( 1 ) /number( s h i f t ) ) ;
284 muB = muB + l i s t ( milnor ( fold + (1/ s h i f t ) * gold ) ) ;
285 i f (1/ s h i f t > maxB) {maxB = 1/ s h i f t ; } }
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286
287
288
289 "B( f , g ) ={"+ s t r i n g ( B s h i f t ) + " } " ;
290 "mu ={"+ s t r i n g (muB) + " } " ;
291 "mugen = "+ s t r i n g (mugen ) ;
292 } // s h i f t >= 2
293 return ( ) ;
294 }
295
296
297 }
298
299 i f ( s i z e ( L[1])==−1)
300 { // change of ring was neccessary to compute the branches od D
301
302 def HNring = L [ 1 ] ;
303 s e t r i ng HNring ;
304 "Minimal polynomial i s : " ; minpoly ;
305 i n t s = s i z e (hne ) ; // number of branches of D
306
307 poly hnf = imap( oldring , f ) ;
308 poly hng = imap( oldring , g ) ;
309 poly hnfold = imap( oldring , fold ) ;
310 poly hngold = imap( oldring , gold ) ;
311 l i s t ps = param(hne ) ;
312
313
314 i n t i ;
315
316 number maxB;
317 i n t mugen;
318
319 l i s t B ;
320 l i s t B s h i f t ;
321 map Valuation ;
322 poly fgamma ;
323 poly ggamma;
324 l i s t Lf ;
325 l i s t Lg ;
326
327
328 number b ;
329 l i s t muB;
330
331 for ( i =1; i <= s ; i ++)
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332 // going through the branches gamma of D
333 {
334 Valuation = HNring , ps [ i ] ;
335
336 // the following two objects are ( truncated ) power s e r i e s in x :
337 fgamma = Valuation ( hnf ) ;
338 ggamma = Valuation (hng ) ;
339 Lf = OrderCoeff (fgamma ) ;
340 Lg = OrderCoeff (ggamma) ;
341
342 i f ( Lf [ 1 ] == −1 or Lg [ 1 ] == −1) { return ( ) ; }
343 i f ( ( Lf [ 1 ] > Lg [ 1 ] ) && ( I s I n L i s t ( 0 ,B) ! = 1 ) )
344 {B = B + l i s t (number ( 0 ) ) ; }
345 i f ( Lf [ 1 ] == Lg [ 1 ] ) {b = − number( Lf [ 2 ] ) / number( Lg [ 2 ] ) ;
346 i f ( I s I n L i s t (b , B) != 1) {B = B + l i s t (number(b ) ) ; } }
347 } // for
348
349 i f ( s i z e (B) == 0)
350 {
351 mugen = milnor ( hnf ) ;
352 i f ( s h i f t == 0)
353 {
354 i f ( milnor (hng)==−1)
355 {B = l i s t ( " INF " ) ; "B( f , g ) = { INF } " ;
356 "mu = "+ s t r i n g ( milnor (hng ) ) ;
357 "mugen = "+ s t r i n g (mugen ) ; return ( ) ; }
358 i f ( milnor (hng)!=−1 and milnor (hng) > mugen)
359 {B= l i s t ( " INF " ) ; "B( f , g ) = { INF } " ;
360 "mu = "+ s t r i n g ( milnor (hng ) ) ;
361 "mugen = "+ s t r i n g (mugen ) ; return ( ) ; }
362 // in the remaining case B i s void
363 // which was already treated above
364 }
365 else
366 {
367 i f ( milnor (hng)==−1){
368 B s h i f t = l i s t (1/number( s h i f t ) ) ;
369 "B( f , g ) = { "+ s t r i n g ( B s h i f t )+" } " ;
370 "mu = "+ s t r i n g ( milnor ( hnfold + (1/ s h i f t ) * hngold ) ) ;
371 "mugen = "+ s t r i n g (mugen ) ; }
372 i f ( milnor (hng)!=−1 and milnor (hng) > mugen)
373 { B s h i f t = l i s t (1/number( s h i f t ) ) ;
374 "B( f , g ) = { "+ s t r i n g ( B s h i f t )+" } " ;
375 "mu = "+ s t r i n g ( milnor ( hnfold + (1/ s h i f t ) * hngold ) ) ;
376 "mugen = "+ s t r i n g (mugen ) ; }
377 // in the remaining case B i s void , but t h i s case
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378 // was a c t u a l l y already treated above
379 // ( corresp . to D( 0 ) ! = 0 )
380 }
381 return ( ) ; // !
382 }
383
384 i f ( s i z e (B) != 0)
385 {
386
387 i f ( s h i f t == 0)
388 {
389
390 for ( i = 1 ; i <= s i z e (B ) ; i ++)
391 {
392 muB = muB + l i s t ( milnor ( hnf+B[ i ] * hng ) ) ;
393 }
394
395 for ( i =1; i <=1000; i ++)
396 {
397 i f ( I s I n L i s t (number( i ) ,B) == 0)
398 {mugen = milnor ( hnf+ i * hng ) ; break ; }
399 }
400 i f ( i ==1000) { " There was an error computing mugen" ; }
401
402 i f ( milnor (hng) == −1)
403 {B = B+ l i s t ( " INF " ) ; muB = muB + l i s t ( milnor (hng ) ) ; }
404 i f ( milnor (hng) !=−1 and milnor (hng) >mugen)
405 {B = B+ l i s t ( " INF " ) ; muB = muB + l i s t ( milnor (hng ) ) ; }
406 "B( f , g ) ={"+ s t r i n g (B) + " } " ;
407 "mu ={"+ s t r i n g (muB) + " } " ;
408 "mugen = "+ s t r i n g (mugen ) ;
409 }
410 else // s h i f t >= 2 and s i z e (B) ! = 0
411 {
412 for ( i = 1 ; i <= s i z e (B ) ; i ++)
413 {
414 i f (1+B[ i ] * s h i f t != 0)
415 { B s h i f t = B s h i f t + l i s t (number( s h i f t +B[ i ] ) / number(1+B[ i ] * s h i f t ) ) ;
416 muB = muB +
417 l i s t ( milnor ( hnfold +(number( s h i f t +B[ i ] ) / number(1+B[ i ] * s h i f t ) ) * hngold ) ) ;
418 }
419
420 }
421 i f ( milnor (hng) == −1) // note that t h i s i s the new hng !
422 { B s h i f t = B s h i f t + l i s t (number( 1 ) /number( s h i f t ) ) ;
423 muB = muB + l i s t ( milnor ( hnfold + (1/ s h i f t ) * hngold ) ) ;
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424 }
425 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
426 for ( i =1; i <=1000; i ++)
427 {
428
429 i f ( I s I n L i s t (number( i ) , B s h i f t ) == 0)
430 {mugen = milnor ( hnfold+ i * hngold ) ; break ; }
431 }
432
433 i f ( i ==1000) { " There was an error computing mugen" ; }
434
435 for ( i = 1 ; i <= s i z e (B ) ; i ++)
436 { i f (1+B[ i ] * s h i f t == 0)
437 {
438 B s h i f t = B s h i f t + l i s t ( " INF " ) ; muB = muB + l i s t ( milnor ( hngold ) ) ;
439 }
440 }
441
442 i n t mm;
443
444 i f ( milnor (hng) !=−1 and milnor (hng) >mugen)
445 { B s h i f t = B s h i f t + l i s t (number( 1 ) /number( s h i f t ) ) ;
446 mm = milnor ( hnfold + (1/ s h i f t ) * hngold ) ;
447 muB = muB + l i s t (mm) ;
448 i f (mm < mugen) {mugen=mm; }
449 }
450
451 "B( f , g ) ={"+ s t r i n g ( B s h i f t ) + " } " ;
452 "mu ={"+ s t r i n g (muB) + " } " ;
453 "mugen = "+ s t r i n g (mugen ) ;
454 }
455 }
456
457 s e t r i ng oldring ;
458 return ( ) ;
459 }
460 }
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