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Introduction

Les personnes habituées à raisonner au moyen des

déplacements infiniment petits pourront, au premier

abord, trouver cette méthode indirecte, peut-être

même artificielle.

G. Koenigs, Sur l’enseignement de la cinématique,
1912

Thin-walled structures such as plates and shells are abundant in architecture
and mechanical engineering, and efficient accurate simulations of these structures
have a very long history of research. The most popular approach for this task
has been and remains the classical finite element (FE) analysis. This technique,
widely-used in the engineering community, gave rise to a large amount of different
shell models, whose common focus is quantitative accuracy in the limit of refine-
ment of the involved finite dimensional function spaces. The question underlying
this thesis is quite different. Motivated by applications in virtual reality, it is
the quest for a shell model that is qualitatively accurate already with relatively
few degrees of freedom, and thereby suitable for real-time simulations involving
large deformations. In other words, we were looking for a shell model that inher-
ently mimics the physical behaviour of a shell, such that it is physically plausible
already on coarse meshes.

So much for what we were aspiring at, but the apparent lack of such a model
despite the heavy research background, and the various techniques that had been
explicitly developed to handle the theoretical and numerical challenges of shell
models gave a significant hint that this would not be a free lunch. In particular, it
seemed very recommended to find an alternative angle to approach the problem,
rather than to follow the strenuous path of finite element analysis. The vote went
to discrete differential geometry (DDG). Developed rather recently in the vicinity
of computer graphics, this language has appeared very pertinent to formulate
models for fast, yet physically credible computations, e.g., for rods and cables
[JLLO09, BWR+08]. While a framework different from the classical shell analysis
was amenable to provide new insights in the geometry of shells, it was still far from
certain that it would actually lead us to a suitable or even better model than the
existing ones. Thus, this thesis relates how far one can go in the construction of
a purely geometric discrete shell model on triangle meshes, and what advantages
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this approach provides compared to alternative frameworks.

Right at the beginning of this investigation, a major concern turned out to be
the choice of a kinematic shell model suitable for the discrete geometric view. The
most popular shell kinematics are the shear-rigid Kirchhoff or Koiter kinematics
and the shear-deformable Reissner-Mindlin or Cosserat kinematics, and it appears
that setting the priority on theoretical or on practical aspects seems to favour
the one or the other of these two formulations. The first chapter is dedicated
to discuss this issue. It eventually leads us to adopt a shear-deformable shell
model viewed as a mixed penalty formulation of a shear-rigid kinematic model.
This choice allows us to benefit from the lower regularity requirements of a mixed
formulation while keeping the possibility to recover a Kirchhoff model.

The ease and unambiguity of a discrete formulation strongly depends on the
particular smooth formulation one relies on. The vast majority of shell mod-
els in finite element methods is based on a coordinate formulation of the smooth
kinematics, as this fits the coordinate-based view of FE discretisations and imple-
mentations. In the discrete geometric setting however, dealing with coordinates
is awkward and defeats the purpose of the whole approach, whose inherent goal
is to deal with the geometry itself, not with its representation. Exterior calculus
has been found to be an appropriate terminology to this setting (see [DHLM05]),
and in Chapter 2 we therefore use this mathematical framework to deduce a
coordinate-free deformation energy for an inextensible one-director shell from
the 3D elastic energy. While the resulting energy formulation is comparable to
the existing index-prone expressions, we are not aware of a similarly concise for-
mulation of this energy. In any case, it will ease the subsequent construction of
the discrete geometric model considerably.
In the same chapter, we will present a second formulation of the energy in terms

of a differential one-form that will be introduced as ’shear form’, and which en-
codes virtually on its own all the information of the shell. Although we will not
use this formulation for our discrete model, writing down the smooth Cosserat
model in this unusual form, where shearing is the main ingredient, is of interest
in itself.

A fundamental difficulty for discrete approximations of shear-deformable shells
is the widely lamented shear locking. Chapter 3 intends to shed light on this
phenomenon in the nonlinear setting, by using the clear understanding that has
already been achieved for the linearised framework. The gained intuition is then
used to motivate the distribution of degrees of freedom on a simplicial mesh, and
in particular the positioning of discrete directors on edges. In the end, discrete
shearing is defined as a projection of the directors to rotating discrete tangent
planes on edges. Indeed, it turns out that prescribing discrete tangent planes only
partially, in the direction containing the highest order information, practically
allows to avoid shear locking without actually increasing the number of degrees
of freedom.

Chapter 4 presents a very geometric and little-known piecewise constant dis-
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cretisation of quadratic forms on simplicial meshes. This framework, that allows
to define discrete quadratic forms by only prescribing their values along edges, is
then used to construct discrete first and second fundamental forms. In particular,
the resulting membrane and bending energies are proven to be consistent. The
construction turns out to provide a geometric reformulation and justification of
established piecewise constant approximations for membrane and bending strains
from finite elements for shell.

Eventually, by combining the shearing, membrane and bending parts, we obtain
the Discrete Cosserat Shell (DCS) model, which perfectly corresponds to the
applications we had in mind. This model is described in Chapter 5. Transferred
to the finite element framework, this model can be interpreted as a geometric
version of the nonlinear shearable shell element TLLL briefly presented by Flores
et al. [FOZ95]. However, its geometric deduction allows for a very different
reinterpretation of the popular though disputed assumed strain approach used
in the formulation of this element. The chapter ends on a selection of numerical
benchmarks that validate the model.

The last chapter provides a critical discussion of the DCS model by confronting
it with existing low-order shell and plate models, deduced by finite element
methods as well as from other discretisation techniques. From there, we will
briefly address two more general matters that came up during this work, one
questioning the evaluation of shell models, the other discussing the limitations of
low-order models for shell simulations.

While adopting a geometric viewpoint, we tried in the course of the construc-
tion of the presented discrete model to take into account as many insights and
achievements from alternative discretisation methods as possible, in particular
from the finite element analysis. The necessary translation task – from one vo-
cabulary to the other and back – made it possible to gain various insights into the
geometry behind shell FE by putting techniques such as the MITC formulation
for Reissner-Mindlin plates, assumed strain approaches and rotation-free shell el-
ements in a different perspective, and thereby highlight relations and underlying
geometric concepts which remained unnoticed or unexplained.
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Chapter 1

Choosing a kinematic model

There is no universally accepted basic

two-dimensional model of plate stretching or

bending.

Richard S. Falk [Fal08]

In this chapter, we motivate our choice of a Cosserat shell model as kinematic
foundation for the discrete model. We first introduce the two most popular shell
kinematics based on surface theory, namely the shear-rigid Kirchhoff-based model
and the shear-deformable Cosserat model. Although the latter seems debatable
when it comes to its deduction from 3D elasticity, its lower regularity requirements
and its reliability in practice make it an attractive model for the discrete geometric
setting. Thus, we compromise by building our discrete model on a Cosserat
approach considered as a mixed penalty formulation of a Kirchhoff model, leaving
the possibility to constrain it to a shear-rigid model if needed.

1.1 Shear-rigid and shear-deformable shells

The simplest way to describe the deformation of a thin plate or shell, as for
example a metal sheet, is to ignore the small extension in a third dimension and
reduce its behaviour completely to the behaviour of a two-dimensional manifold
embedded in R3. Undeformed and deformed configurations are then completely
determined by the position of this surface – usually called mid-surface – in space.
This is the view of the Kirchhoff, Kirchhoff-Love or Koiter model which is based
on the Kirchhoff assumption:

"normals to the undeformed middle surface move to normals of the
deformed middle surface without any change in length" [Koi71].

1



2 Chapter 1 – Choosing a kinematic model

For moderately thicker structures, as for example a thin rubber plate, this de-
scription seems overly simple, as ’something’ is likely to happen through the thick-
ness. The Cosserat, Naghdi or Reissner-Mindlin approach softens the Kirchhoff
assumption in this respect by introducing additional degrees of freedom. These
so called inextensible directors can be seen as generalized surface normals, which
are allowed to deviate from the true surface normals of the mid-surface during
the deformation, thereby accounting for a transversal shearing of the shell across
the thickness (Fig. 1.1).

normals

mid-surface

directors

CosseratKirchhoff

Fig. 1.1 Whereas Kirchhoff-based models describe the shell by the mid-surface and
surface normals only, the Cosserat model introduces an additional free director field as
a substitute for the normal field

.

For the construction of the discrete model, we will rely on the tools of discrete
differential geometry. The underlying concept of this approach is that physical
properties are mostly encoded by geometric properties, and that hence it is cru-
cial for the discrete model to mimic the smooth geometry. This essential relation
is also well-known in the finite element (FE) community, and was particularly
underlined by the landmark work of Arnold, Falk and Winther [AFW09]. Work-
ing directly on the discrete geometry, as done in the DDG framework, is a very
natural way to be liable to respect this principle.
In practice, this means that the model will be expressed in terms of degrees of

freedom directly attached to the combinatorial entities of the simplicial mesh, i.e.,
to vertices, edges or faces, without explicitly recurring to specific interpolation
schemes as is customary in FE. While this method is very efficient for building
discrete models that preserve the fundamental properties of its physical proto-
type, it restricts us to low-order approximations, which are known to be very
tenuous, especially for shell modelling. Building the model on shell kinematics
that require as little regularity as possible is therefore a first important step to
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avoid theoretical and numerical difficulties of the prospective discrete model.

When transitioning to the discrete setting, the kinematic formulation under-
lying Kirchhoff models is commonly known to bring on the difficulty of having
to ensure global 𝐶1-continuity of the approximating discrete surface in order to
avoid what Zienkiewicz [ZT00] calls kinks, i.e., the emergence of infinite bend-
ing energies. Indeed, in Kirchhoff models, bending strains are encoded by the
curvature of the mid-surface, and it is an ubiquitous obstacle in the definition of
discrete local curvatures on simplicial meshes that smooth curvatures are given
by second order derivatives of the embedding. Accordingly, for piecewise linear
approximations of the embedding, second derivatives –if not subject to additional
procedures– lead to distributional quantities which cannot be used directly as a
meaningful pointwise measure of smooth curvatures.

In order to overcome this problem, it is common practice to treat surface
normals as extra degrees of freedom. A mixed penalty formulation of Kirchhoff
shells, such as provided by the Cosserat approach, is one variation of this theme:
By introducing a free director field as a substitute for the normal field, one
obtains curvatures as first derivatives of these directors and can thereby work with
piecewise linear approximations without imploring regularity issues directly from
the start. Although these shear-deformable shell and plate models commonly
face the problem of so-called shear locking, the Cosserat model therefore seems
to be a more appropriate formulation for a low-order geometric discretisation.

However, in opposition to Kirchhoff models, Cosserat models seem more con-
troversial in view of their theoretical foundation.

Remark. As we want to describe the shell from a differential geometric point of
view, we will focus on kinematic formulations essentially based on the differential
description of an embedded two-dimensional manifold. Various popular shell for-
mulations are in contrast built on the full 3D model. We will not consider such
kinematics and refer to [YSMK00] for an overview of different popular frame-
works for shell modelling. Notice that one of these formulations also goes under
the name of ’Cosserat model’, or ’micropolar model’. It is based on a 3D descrip-
tion that associates an 𝑆𝑂(3)-frame with each particle of the considered solid to
encode strains and stresses (e.g., [NJ09]). Although both approaches are founded
on the work of the brothers Eugène and François Cosserat from 1896 [CC96], they
need to be carefully distinguished. In this thesis, the Cosserat model will always
designate a shear-deformable geometrically nonlinear shell model.
For a comprehensive discussion of the history, the achievements and the chal-

lenges in shell modelling we refer to the very informative introduction of Bischoff
et al. in [BBWR04].
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1.2 Theoretical concerns for shear-deformable shell

models

There are mainly two approaches to justify the deduction of 2D shell models
from 3D elasticity. On the one hand, one can use an asymptotic expansion of
the 3D equations and neglect terms that are small by the a priori assumptions.
This goes under the name of asymptotic analysis and is the subject of a large
literature, mostly on the engineering side [Ber09, CL96, GKN93]. On the other
hand, there is a more rigorous mathematical view that looks at the Γ-convergence
of the minimizers of the elastic energy when 𝑡 tends to 0 by different rates and
under different boundary conditions.
Both of these points of view suggest that the Cosserat model with its inex-

tensible directors is built on an artificial distinction of entities entering with the
same order of magnitude in the 3D kinematics. Its justification with respect to
the 3D model appears to rely on very particular assumptions on the considered
geometry and boundary conditions.

1.2.1 Asymptotic analysis

The classical way of deducing shell models is to expand the 3D elastic energy
into a Taylor series in terms of relative thickness 𝑡/𝐿 and curvature radii 𝑡/𝑅,
where 𝑡 is the thickness of the shell, 𝐿 the diameter of the surface and 𝑅 its
smallest curvature radius. From this, by relying on model assumptions involving
the geometry and the considered deformation of the shell, terms that are ’small’
are neglected, leading to different shell kinematics.

R

t

L

In this setting, Kirchhoff models can be seen as an approximation of the
3D model of order 𝒪(𝑡/𝐿, 𝑡/𝑅), and the Cosserat model as an higher order ap-
proximation of 𝒪((𝑡/𝐿)3, (𝑡/𝑅)2) [Ber09]. Notice however that the latter relies
on the assumption on the geometry of the shell that

𝐿≪ 𝑅,
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i.e., that the length of the geometry is much smaller than the curvature radius.
Already if 𝐿 ∼ 𝑅 or even slightly larger (which happens even for moderate
curvatures), the shearable model becomes incoherent, as it drops the terms (𝑡/𝑅)3

but keeps the terms (𝑡/𝐿)3 which are of the same order.

Moreover, although this straightforward asymptotic deduction is –as Berdichevsky
states– "methodologically convenient", it is not suitable to rigorously describe the
limit behaviour of the 3D elastic energy when the thickness 𝑡 tends to zero, as it
cannot capture the correlation between quantities that enter at different orders
of 𝑡.

1.2.2 Γ-convergence

Properly defining Γ-convergence is out of the scope of this thesis. For our pur-
poses, it is sufficient to understand that, in contrast to classical asymptotic anal-
ysis, it provides a notion of convergence that allows to examine asymptotic be-
haviours when a problem involves quantities vanishing at different rates. Such a
tool is necessary for the analysis of the asymptotic behaviour of minimizers of the
3D shell energy for 𝑡 → 0. Indeed, depending on the boundary conditions, parts
of this energy scale like 𝑡 or 𝑡3, whereas the volume of the shell always scales like
𝑡 (see, e.g., [LR96]).

For plates, it was thereby shown that asymptotically there are only two possible
behaviours. In one case, the plate turns into an elastic membrane, where all
deformations are responded by a metric distortion (stretching). In the other
case, the plate basically behaves like a thin metallic sheet, that can only be bent
but not stretched, and the energy corresponds to the original Kirchhoff model
(in particular with respect to the material parameters) [FJM02]. Hence, at least
for plates, no other asymptotic regime is possible, such that the assumption of a
shear-deformable shell has no right of being in this setting. The same is however
true for plates that can both stretch and bend, which underlines that these results
are to be understood as asymptotic behaviours and cannot solve the question of
which physical models are practically sound or not.

However, it seems that at least the assumption of the director to be inextensible
is delicate to justify rigorously. Friesecke et al. [FJM02] show that the order by
which the directors can be distorted from the normals, which is accounted for in
the Cosserat model, is of the same order as the stretching along these directors,
which is explicitly not accounted for by the assumed inextensibility.

This result is supported by the asymptotic analysis carried out by LeDret
and Raoult in [LR00] where they compare the asymptotic limit model of the
3D nonlinear shell energy and the Cosserat energy for different assumptions.
They show that the limit energies only coincide when the director field is left
completely unconstrained.

Paroni, Podio-Guidugli and Tomassetti describe in [PPGT06] how to obtain
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the Reissner-Mindlin plate model, which is the linearised pendant of the Cosserat
model (see Chapter 3), as the Γ-limit of certain 3D energy functionals under
specifically chosen assumptions. It particularly relies on the fact that the 3D en-
ergy features certain second-order terms, which fits to the already conveyed pic-
ture that a shear-flexible model which does not allow for through-the-thickness
stretching lies in an intermediate approximation regime.

1.3 Practical advantages

While from a purely theoretical point of view the Cosserat model seems debatable,
it has very strong practical advantages that makes it attractive for actual com-
putations.

On the one hand, the wide use of this model in engineering practice face that it
actually does give a better approximation for moderately thick plates compared
to the shear-rigid Kirchhoff shell models.
In the linear setting, this can be rigorously verified. For a square plate un-

der small uniform load, there are analytic solutions available for 3D kinematics,
the Kirchhoff model and for the Reissner-Mindlin model [SRR69]. It is thereby
possible to evaluate the error coming from the model assumptions exclusively,
disregarding any further discretization errors. Figure 1.2 shows the relative error
of the Kirchhoff solution and the Reissner-Mindlin solution with respect to the
analytic 3D solution for different thickness values 𝑡. It clearly shows that for
moderately large 𝑡, the error of the Kirchhoff model is relatively large, whereas
the Reissner-Mindlin model stays surprisingly accurate.
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Fig. 1.2 Error of the analytic Kirchhoff solution and the analytic Reissner-Mindlin
solution with respect to the analytic 3D solution, for a clamped square plate of edge
length 1 for increasing thickness 𝑡.

On the other hand, as already mentioned in Section 1.1, by measuring bending
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by the change of directors instead of the change of normals, the shear-deformable
Cosserat model involves only first order derivatives of its variables and makes it
thereby possible to approximate these variables with piecewise linear functions
without further ado.

Eventually, we decided that the practical accuracy and the computational ad-
vantages of the Cosserat shell outweigh the theoretical concerns that we will
however keep in mind. In particular, we will interpret the Cosserat model as
a mixed formulation of the Kirchhoff model by treating the additional shearing
term as either a penalty term (Cosserat) or a constraint (Kirchhoff), and thereby
keep the option to restrict the model to a shear-rigid model.

Remark. Another compromise between the convenience of the low regularity and
the indications of the theoretical results would be to use a model based on ex-
tensible directors. However, this approach excludes the use of a plane strain
assumption and therefore requires a more involved constitutive model.
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Chapter 2

Smooth energy formulation

Interestingly, notions that pertain to differential

geometry per se [...] appear most naturally in the

derivation [...] of three-dimensional elasticity and

shell theory.

Philippe G. Ciarlet [Cia05]

A crucial step in the construction of a discrete geometric model is to for-
mulate the adopted smooth kinematic model in terms of differential geomet-
ric entities. In this objective, this chapter provides an asymptotic deduction of
such an expression for the Cosserat shell energy. The proposed formulation only
involves coordinate-free differential quantities of the undeformed and deformed
mid-surfaces, namely the respective first fundamental forms, 𝐼 and 𝐼, generalized
second fundamental forms, 𝐼𝐼 and 𝐼𝐼𝑛, and a differential one-form 𝜎𝑛 encoding
shearing, that we call the shear form. Eventually, we obtain the very concise
formula

𝒲 =
1

2

∫︁
𝒮

(︁ 𝑡

4
‖𝐼 − 𝐼‖2𝑀 +

𝑡3

12
‖𝐼𝐼𝑛 − 𝐼𝐼‖2𝑀 + 𝑡𝜅𝐺|𝜎𝑛|2

)︁
d𝐴

that will be described in detail below.
Additionally, in Section 3, we present an alternative formulation of the defor-

mation energy that reduces the model to variations of the shear form 𝜎𝑛.

2.1 Deduction of a geometric energy formulation

In this section, we start from a kinematic description of an elastic deformation
of an inextensible one-director shell in 3D, and deduce its energy in terms of
fundamental forms of the mid-surface. As already suggested by the last chapter,
the proper rigorous deduction of a 2D shell model from a 3D shell description
keeps being an arduous topic of research [Mar08, FJM06].

9



10 Chapter 2 – Smooth energy formulation

We do not aim to contribute to this question. Instead, we will follow the deduc-
tion of the inextensible one-director model as formulated by Simo and Fox [SF89].
In particular, we adopt their smallness assumptions and constitutive relations.
Several different kinematic formulations for shearable shells are available, and we
chose to follow this particular one for its geometric taste and its popularity in
the engineering community. In contrast to the original work however, we will
use a very different vocabulary by relying on the framework of exterior calculus.
While this approach is rather unusual for shell models, it allows us to deduce
very naturally a coordinate-free energy formulation.
For further more classical deductions of the Cosserat shell energy from 3D elas-

ticity by asymptotic analysis, we refer to [Ber09, Mar08].

2.1.1 3D kinematics

Definition 2.1. A configuration of a shell or simply a shell 𝒮 = (𝒮, 𝑛, 𝑡) is a
triple composed of an embedded two-dimensional differentiable manifold 𝒮 (the
mid-surface), a differentiable unit vector field 𝑛 : 𝒮 → S2 (the inextensible direc-
tor field) mapping to the unit sphere S2, and a constant thickness 𝑡 ∈ R.

Let 𝒮̄ = (𝒮, 𝑛̄, 𝑡) be the undeformed configuration of a shell. We will assume
that the undeformed reference configuration is always unsheared, i.e., directors
and normals of the undeformed mid-surface 𝒮 coincide. Throughout, barred
quantities will refer to the undeformed configuration.

Definition 2.2. A deformation of a configuration of a shell is a map

Φ = (𝜑, 𝑛) : 𝒮 × [− 𝑡

2
,
𝑡

2
] → R3

(𝑥, 𝜉) ↦→ 𝜑(𝑥) + 𝜉𝑛(𝑥) ,

such that 𝜑 is a diffeomorphism onto its image and 𝑛 : 𝒮 → S2 is a differentiable
unit vector field. The resulting deformed configuration is then given by

𝒮 = (𝒮 := 𝜑(𝒮), 𝑛 := 𝑛 ∘ 𝜑−1, 𝑡) .

Thus 𝑛 is the pullback of the deformed director field 𝑛 to the undeformed mid-
surface.

Next, we introduce the fundamental differential entities that will appear in the
elastic energy.

Definition 2.3. Let 𝑣, 𝑤 ∈ 𝑇𝒮 be tangent vector fields on a shell’s mid-surface
𝒮. The first fundamental form 𝐼 of 𝒮 is given by

𝐼(𝑣, 𝑤) = ⟨𝑣, 𝑤⟩ ,
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where ⟨ , ⟩ stands for the euclidean metric in R3 that is inherited by 𝒮 as a
submanifold. We call generalized second and generalized third fundamental forms
with respect to a director field 𝑛 on 𝒮 the symmetric quadratic forms given by:

𝐼𝐼𝑛(𝑣, 𝑤) =
1

2
(⟨d𝑛(𝑣), 𝑤⟩+ ⟨𝑣,d𝑛(𝑤)⟩)

𝐼𝐼𝐼𝑛(𝑣, 𝑤) = ⟨d𝑛(𝑣),d𝑛(𝑤)⟩ ,

where d denotes the (metric-free) Cartan outer derivative [Spi98].

We use a subscript 𝑛 to distinguish these generalized second and third funda-
mental forms from their classical counterparts of surface theory with whom they
coincide when the director field 𝑛 is equal to the unit surface normal.

Definition 2.4. We call the shear form of a shell the one-form 𝜎𝑛 associated with
the projection of the director 𝑛 to the tangent space of the mid-surface through

(𝜎𝑛)𝑝 : 𝑇𝑝𝒮 → R
𝑣 ↦→ ⟨𝑛(𝑝), 𝑣⟩

for all 𝑝 ∈ 𝒮.

When 𝑛 corresponds to the surface normal, the shear form 𝜎𝑛 clearly vanishes.

These geometric entities are defined for any configuration of a shell, regardless
of a specific deformation. In order to derive a deformation energy, it is conve-
nient to consider them on a fixed reference surface, which we choose to be the
mid-surface of the undeformed configuration. Specifically, for a deformed shell
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(𝒮, 𝑛, 𝑡), obtained by a deformation (𝜑, 𝑛), such that 𝒮 = 𝜑(𝒮) and 𝑛 = 𝑛 ∘ 𝜑−1,
we consider the pullbacks:

𝜑*𝐼(𝑣, 𝑤̄) = ⟨d𝜑(𝑣),d𝜑(𝑤̄)⟩

𝜑*𝐼𝐼𝑛(𝑣, 𝑤̄) =
1

2
(⟨d𝑛(d𝜑(𝑣)), d𝜑(𝑤̄)⟩+ ⟨d𝜑(𝑣),d𝑛(d𝜑(𝑤̄))⟩)

𝜑*𝐼𝐼𝐼𝑛(𝑣, 𝑤) = ⟨d𝑛(d𝜑(𝑣)), d𝑛(d𝜑(𝑤̄))⟩
𝜑*𝜎𝑛 = 𝜎𝑛 ∘ d𝜑 ,

with 𝑣, 𝑤̄ ∈ 𝑇𝒮. In the following, we will mostly be working on the undeformed
shell and consider these pullbacks, such that, if not stated otherwise, we will
abuse notation and omit the pullback operator 𝜑*.

Let (𝒮, 𝑛, 𝑡) be a deformed shell. For simplicity, let assume there exists a
smooth embedding 𝑥 : R2 → R3 of 𝒮 (the arguments can easily be extended to
the general case, when 𝒮 is described by a differentiable atlas). Every point 𝑋
of the three-dimensional structure Φ(𝒮 × [−𝑡/2, 𝑡/2]) ⊂ R3 occupied by the shell
in space can be represented by

𝑋 := 𝑥+ 𝜉𝑛 ,

with 𝜉 ∈ [−𝑡/2, 𝑡/2]. The metric tensor of Ω writes

C(𝑥,𝜉) : = d𝑋⊤d𝑋

= (d𝑥+ 𝜉d𝑛+ d𝜉𝑛)⊤(d𝑥+ 𝜉d𝑛+ d𝜉𝑛)

= d𝑥⊤d𝑥+ 𝜉(d𝑥⊤d𝑛+ d𝑛⊤d𝑥) + 𝜉2d𝑛⊤d𝑛

+ d𝜉(d𝑥⊤𝑛) + (𝑛⊤d𝑥)d𝜉 + d𝜉2𝑛⊤𝑛 .

As we assume the director 𝑛 to have unit length, the last term simplifies to d𝜉2.
In the other terms we easily recognize the generalized fundamental forms of the
mid-surface as well as the shear form, leading to

C(𝑥,𝜉) = 𝐼 + 2𝜉𝐼𝐼𝑛 + 𝜉2𝐼𝐼𝐼𝑛 + (d𝜉𝜎𝑛 + 𝜎𝑛d𝜉) + d𝜉2 .

As signalized before, we consider the pullbacks of the deformed fundamental
forms, hence all the operators involved in this expression are defined on the
undeformed shell.

In the same vain, on the unsheared (𝜎𝑛 = 0) undeformed configuration (𝒮, 𝑛̄, 𝑡),
the undeformed metric C̄ writes

C̄ = 𝐼 + 2𝜉𝐼𝐼 + 𝜉2𝐼𝐼𝐼 + d𝜉2 .

Notice that we consider the fundamental forms, which are quadratic forms
on the two-dimensional tangent space 𝑇𝒮, as semi-definite quadratic forms on
𝑇𝑠,𝜁(𝒮 × [−𝑡/2, 𝑡/2]) ∼= 𝑇𝑠𝒮 ×R by extending them constantly on [−𝑡/2, 𝑡/2]. We
similarly extend the differential one-forms 𝜎𝑛 and d𝜉 through

𝜎𝑛(𝑣, 𝜏) := 𝜎𝑛(𝑣)

d𝜉(𝑣, 𝜏) := d𝜉(𝜏)

for all (𝑣, 𝜏) ∈ 𝑇𝑠𝒮 × R.
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2.1.2 Elastic energy

The elastic energy of the deformation Φ is determined by the change of metrics:

E :=
1

2
(C− C̄) .

Focussing on deformations with large rotations but small strains, we will assume
a Saint-Venant-Kirchhoff material and use a linear material law. We denote by
‖ · ‖M the material norm corresponding to the chosen linear material law, hence
for a symmetric tensor A defined on the undeformed shell, we set

‖A‖2M := tr(A⊤MA) ,

where M is some appropriate material tensor. We extend this norm canonically
to a metric ⟨, ⟩M by setting

⟨A,B⟩M := tr(A⊤MB)

for symmetric tensors A,B.

Applied to the elastic strain tensor E, this norm encodes the density of the po-
tential elastic energy of the deformation. The resulting deformation energy 𝒲 of
the shell is then given by the integral of ‖E‖2M over the undeformed configuration
𝒮 × [−𝑡/2, 𝑡/2]:

𝒲 :=
1

2

∫︁ 𝑡/2

−𝑡/2

∫︁
𝒮
‖E‖2Md𝐴𝜉d𝜉 .

For offset surfaces of 𝒮 at a distance 𝜉, Steiner’s formula [Ste81] provides the
expression of the area element as

d𝐴𝜉 = (1− 2𝜉𝐻̄ + 𝜉2𝐾̄)d𝐴 ,

where 𝐻̄ and 𝐾̄ are the mean and Gauss curvature of the undeformed mid-
surface 𝒮. Hence the energy splits into

𝒲 =
1

2

∫︁
𝒮

⎛⎜⎜⎜⎝
∫︁ 𝑡/2

−𝑡/2
‖E‖2Md𝜉⏟  ⏞  
E1

− 2𝐻̄

∫︁ 𝑡/2

−𝑡/2
‖E‖2M𝜉d𝜉⏟  ⏞  
E2

+ 𝐾̄

∫︁ 𝑡/2

−𝑡/2
‖E‖2M𝜉2d𝜉⏟  ⏞  
E3

⎞⎟⎟⎟⎠ d𝐴 .

(2.1)

Developing 2.1 in powers of 𝜉 yields a messy expression with terms up to
order 7. To simplify this expression, we use that the one-form d𝜉 is constant and
equal to 1, that scalar products of d𝜉𝜎𝑛 and fundamental forms vanish, and that
odd powers of 𝜉 cancel when integrated over the symmetric thickness [−𝑡/2, 𝑡/2].
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Remark. For the last simplification we need to use that the considered mid-surface
of the shell actually lies centred in between the top and bottom surfaces of the
shell, otherwise several more terms have to be carried along.

Especially the shearing term of the metric tensor E which, for (𝑣, 𝜏), (𝑤, 𝜌) ∈
𝑇𝒮 × R, writes

d𝜉(𝑣, 𝜏)𝜎𝑛(𝑤, 𝜌) + 𝜎𝑛(𝑣, 𝜏)d𝜉(𝑤, 𝜌) = d𝜉(𝜏)𝜎𝑛(𝑤) + 𝜎𝑛(𝑣)d𝜉(𝜌)

reduces to
𝜎𝑛(𝑤) + 𝜎𝑛(𝑣) ,

and for simplicity we will denote its norm by ‖2𝜎𝑛‖M.

Eventually, for E1 we get

E1 =
1

4

(︁
𝑡(‖𝐼 − 𝐼‖2M + ‖2𝜎𝑛‖2M) +

𝑡3

3
‖𝐼𝐼𝑛 − 𝐼𝐼‖2M

+
𝑡3

6
⟨𝐼 − 𝐼, 𝐼𝐼𝐼𝑛 − 𝐼𝐼𝐼⟩M +

𝑡5

80
‖𝐼𝐼𝐼𝑛 − 𝐼𝐼𝐼‖2M

)︁
.

Developing E2 yields

E2 =
1

4

(︁ 𝑡3
3
⟨𝐼 − 𝐼, 𝐼𝐼𝑛 − 𝐼𝐼⟩M +

𝑡5

20
⟨𝐼𝐼𝑛 − 𝐼𝐼, 𝐼𝐼𝐼𝑛 − 𝐼𝐼𝐼⟩M

)︁
.

For E3, we obtain

E3 =
1

4

(︁ 𝑡3
12

(︁
‖𝐼 − 𝐼‖2M + ‖2𝜎𝑛‖2M

)︁
+
𝑡5

80
(4 ‖𝐼𝐼𝑛 − 𝐼𝐼‖2M + 2⟨𝐼 − 𝐼, 𝐼𝐼𝐼𝑛 − 𝐼𝐼𝐼⟩M)

+
𝑡7

518
‖𝐼𝐼𝐼𝑛 − 𝐼𝐼𝐼‖2M

)︁
.

2.1.3 Parametrization-free Cosserat energy

The reduction from the 3D elastic energy to a simpler 2D shell energy by asymp-
totic analysis relies on smallness assumptions that tend to make several terms of
the 3D energy neglectable. The main assumptions is inherent to shell models per
se, namely that the ratio thickness/length 𝜏 is small

(Athick) 𝜏 :=
𝑡

𝐿
≪ 1 .

As mentioned in the previous paragraph, in order to justify the use of a linear
material law, we also need to assume that the deformation only involves small
membrane strains, and more specifically small with respect to the thickness ratio
𝜏 . This corresponds to

(Amem) 𝜀𝑚 := ‖𝐼 − 𝐼‖M ≪ 𝜏 .
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To simplify notations, we will assume that the problem is scaled such that the
thickness 𝑡 is equal to the ratio thickness/length, thus 𝑡 := 𝜏 . If we use (Athick)
and only retain terms of order lower than 𝒪(𝑡4), the terms in the energy (2.1)
become

E1
′ :=

1

4

(︁
𝑡(‖𝐼 − 𝐼‖2M + ‖2𝜎𝑛‖2M) +

𝑡3

3
‖𝐼𝐼𝑛 − 𝐼𝐼‖2M

+
𝑡3

6
⟨𝐼 − 𝐼, 𝐼𝐼𝐼𝑛 − 𝐼𝐼𝐼⟩M

)︁
E2

′ :=
1

4

(︁ 𝑡3
3
⟨𝐼 − 𝐼, 𝐼𝐼𝑛 − 𝐼𝐼⟩M

)︁
E3

′ :=
1

4

(︁ 𝑡3
12

(︁
‖𝐼 − 𝐼‖2M + ‖2𝜎𝑛‖2M

)︁)︁
.

If we further assume (Amem) and neglect terms of order 𝒪(𝑡3𝜀𝑚) ≤ 𝒪(𝑡4), we
can drop E2

′ and what remains of E1
′ and E3

′ is:

E1
′′ :=

1

4

(︁
𝑡(‖𝐼 − 𝐼‖2M + ‖2𝜎𝑛‖2M) +

𝑡3

3
‖𝐼𝐼𝑛 − 𝐼𝐼‖2M

)︁
E3

′′ :=
1

4

(︁ 𝑡3
12

‖2𝜎𝑛‖2M
)︁
.

For the whole energy, this leads to:

𝒲 =
1

2

∫︁
𝒮

(︁ 𝑡

4
‖𝐼 − 𝐼‖2M +

𝑡3

12
‖𝐼𝐼𝑛 − 𝐼𝐼‖2M +

1

4
(𝑡+ 𝐾̄

𝑡3

12
)‖𝜎𝑛‖2M

)︁
d𝐴 .

Interestingly, we observe that the shearing stiffness seems to depend on the Gauss
curvature 𝐾̄ of the undeformed configuration. In particular, for developable
surfaces, the term 𝐾̄ 𝑡3

12‖𝜎𝑛‖
2
M vanishes. To drop this term in the general case

and actually recover an expression similar to the one in [SF89], we will further
have to assume that this Gauss curvature is smaller than the thickness 𝑡, as then
we can again argue that 𝐾̄𝑡3 is of order 𝒪(𝑡4) and can be neglected. Hence we
add the assumption

(Agauss) 𝐾̄ ≤ 𝜏 = 𝑡 .

Cosserat energy By adapting the 3D material norm to a plane strain as-
sumption, we finally obtain the deformation energy of a homogeneous, isotropic,
inextensible one-director shell, comparable to the energy proposed in [SF89]:

𝒲 =
1

2

∫︁
𝒮

(︁ 𝑡

4
‖𝐼 − 𝐼‖2𝑀 +

𝑡3

12
‖𝐼𝐼𝑛 − 𝐼𝐼‖2𝑀 + 𝑡𝜅𝐺|𝜎𝑛|2

)︁
d𝐴 . (2.2)

The deduced 2D material norm ‖ · ‖𝑀 is then given by

‖ · ‖2𝑀 :=
𝐸

(1− 𝜈2)
( 𝜈 tr(·)2 + (1− 𝜈) tr(·2) ) .
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The deduced material constant 𝐺 = 𝐸
2(1+𝜈) is the shearing modulus, and 𝜅 is the

shear correction factor.

Remarks.

1. We will not discuss the justification of using a linear material law for ap-
plications with large deformations and small strains. A deduction of material
tensors and laws, and a discussion of when they are appropriate can be found in,
e.g., [Ogd97].

2. The shear correction factor is introduced to compensate higher order effects
of the shear stresses through the thickness that appear when these stresses get
larger. The particular choice of this factor with respect to the material tends to
be important only for laminated plates and shells. For homogeneous, isotropic
plates with a Poisson ratio of approximately 0.3, 𝜅 is usually set to 5

6 . Though
seemingly a crude trick to rescue the model although the model assumptions
break down, it works surprisingly well in practice. See [BDS93] and [DAT10] for
further discussions on this topic.

3. Notice that this energy formulation can easily be extended to non-homogeneous
and non-isotropic materials by use of an appropriate material norm ‖ · ‖M, or by
directly adapting ‖·‖𝑀 and an additional norm that encodes an anisotropic shear
behaviour.

Kirchhoff energy If we assume the deformed directors to coincide with the
surface normals of the deformed mid-surface, expression (2.2) similarly provides a
compact energy formulation for the shear-rigid shell model respecting the Kirch-
hoff assumption, comparable to classical formulations, e.g., [Cia05]:

𝒲Kirchhoff =
1

2

∫︁
𝒮

(︁ 𝑡

4
‖𝐼 − 𝐼‖2𝑀 +

𝑡3

12
‖𝐼𝐼 − 𝐼𝐼‖2𝑀

)︁
d𝐴 .

Here 𝐼𝐼 denotes the pullback of the classical second fundamental form of the
deformed mid-surface.

2.2 Alternative formulation

In this section, we will present a formulation for the bending and shearing parts
of the Cosserat energy in terms of the shear form, which provides a very different
view on shearable shell models. Although this formulation will not be used in
the remainder of the thesis, we present it here as we believe that this view is
amenable to provide new tools for a rigorous analysis of shear-deformable models
in the nonlinear case.

As before, let 𝒮 ⊂ R3 be the embedded undeformed configuration of the mid-
surface of a shell (𝒮, 𝑛̄, 𝑡) of thickness 𝑡, and let 𝒮 be the deformed configuration
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of 𝒮 under a deformation 𝜑.

In the following, we will be dealing with both the shear form on the deformed
surface as well as with its pullback, such that in the latter case the pullback
operator 𝜑* will be written explicitly.
The vector fields 𝑣, 𝑤 will denote commutative local tangent vector fields on 𝒮.

We distinguish by ·+ and ·− the symmetric and antisymmetric part of a bilinear
form respectively.

To obtain the bending energy of 𝒮 in terms of 𝜎𝑛, we need to look at its
covariant derivative ∇𝜎𝑛 which is defined as

(∇𝑤𝜎𝑛)(𝑣) = ∇𝑤(𝜎𝑛(𝑣))− 𝜎𝑛(∇𝑤v) .

∇𝜎𝑛 will be considered as a (in general non-symmetric) bilinear form

∇𝜎𝑛 : (𝑣, 𝑤) ↦→ ∇𝑤𝜎𝑛(𝑣)

that can be decomposed orthogonally with respect to the metric ⟨ , ⟩ in its
symmetric and its antisymmetric part:

∇𝜎𝑛 = (∇𝜎𝑛)+ + (∇𝜎𝑛)− .

Lemma 2.1. The generalized second fundamental form 𝐼𝐼𝑛 of 𝒮 is the symmetric
part of ∇𝜎𝑛. Its pullback can be expressed through

𝜑* (∇𝜎𝑛)+ = ∇(𝜑*𝜎𝑛)
+ − ⟨Hess 𝜑, 𝑛⟩ .

Remark. As the covariant derivative is symmetric if and only if 𝜎𝑛 is closed
[Pet06], this means in particular that for closed shear forms, covariant derivative
of the shear form and generalized second fundamental form coincide.

Proof. The generalized second fundamental form on 𝒮 is given by

𝐼𝐼𝑛(𝑣, 𝑤) =
1

2
(⟨d𝑛(𝑣), 𝑤⟩+ ⟨𝑣,d𝑛(𝑤)⟩) .

For ∇𝜎𝑛 we have

∇𝜎𝑛(𝑣, 𝑤) = ∇𝑤(𝜎𝑛(𝑢))− 𝜎𝑛(∇𝑤𝑣)

= ∇𝑤⟨𝑛, 𝑣⟩ − ⟨𝑛,∇𝑤𝑣⟩
= ⟨d𝑛(𝑤), 𝑣⟩

so (∇𝜎𝑛)+ = 𝐼𝐼𝑛.

Let 𝑣, 𝑤̄ ∈ 𝑇𝒮 be tangent vectors to the undeformed mid-surface 𝒮, and let again
be 𝑛 = 𝜑*𝑛 the pullback of the deformed director field. For the pullback of the
shear form, we then get

∇(𝜑*𝜎𝑛)(𝑣, 𝑤̄) = ⟨(∇𝑣d𝜑)(𝑤̄), 𝑛⟩+ ⟨d𝜑(𝑤̄),d𝑛(𝑣)⟩
= ⟨Hess 𝜑(𝑣, 𝑤̄), 𝑛⟩+ ⟨d𝜑(𝑤̄), d𝑛(𝑣)⟩
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thus

⟨d𝜑, d𝑛⟩ = 𝜑*∇𝜎𝑛 = ∇(𝜑*𝜎𝑛)− ⟨Hess 𝜑, 𝑛⟩ .

�

Alternative Cosserat energy The elastic energy of the deformed Cosserat
shell (2.2) for an isometric deformation can hence be written in terms of the shear
form as

𝑊 (𝒮) := 1

2

∫︁
𝒮

𝑡3

12
‖(𝜑*∇𝜎𝑛)+‖2𝑀 + 𝑡𝜅𝐺|𝜑*𝜎𝑛|2d𝐴

=
1

2

∫︁
𝒮

𝑡3

12
‖ (∇(𝜑*𝜎𝑛))

+ − ⟨Hess 𝜑, 𝑛⟩‖2𝑀 + 𝑡𝜅𝐺|𝜑*𝜎𝑛|2d𝐴 .

2.3 Towards a discrete model

We presented two different formulations of the Cosserat energy, both relying on
coordinate-free differential operators whose smooth properties are well-known.
On our way to a discrete model, the next step is to find discrete pendants to these
entities which mimic, if not all their smooth properties, at least those properties
that are substantial for the regarded problem. Depending on the considered
quantities and involved operators, this task can be more or less challenging.

In this view, we will build our discrete shell model on the energy formulation
(2.2), involving quadratic forms and one-forms rather than the formulation of the
energy in terms of derivatives of the shear form.
Although the latter seems more elementary, it involves a covariant derivative,

whose geometric discretisation is more delicate and would require a satisfying
theory of discrete connections. Though a fascinating question, this would carry
us too far away from the very practical question we had in mind, and we refer
to [Nov03, LMW04, CDS10] for work in this direction. Moreover, trying to
discretise a Hessian defeats the motivation of using a Cosserat model in order to
avoid higher order derivatives.
In contrast, the main players in the first energy formulation are differential

one-forms and quadratic forms, who have a rather simple structure and clear
properties that can be mimicked in the discrete setting. This will be the topic of
the next two chapters.

Linear elasticity and geometrically nonlinear shells Throughout the the-
sis, we will keep relating different aspects of the geometrically nonlinear Cosserat
model to concepts of linearised plate analysis. Linear elasticity aims to describe
small deformations and therefore only considers a first order approximation of
the elastic model. This linearisation restricts the range of practical applications,
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and the resulting discrete models are in particular not suited for the simulation
of large deformations of shells like the ones we have in mind.
However, the finite element analysis available in the linear framework provides

a very good understanding of the underlying phenomena and the fundamental
correlations of the smooth formulation that should be respected. It can therefore
be used as a reliable guide to avoid unnecessary discretization issues.
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Chapter 3

Shear locking and discrete

tangent planes

One needs to recognize that different physical

quantities have different properties, and must be

treated accordingly.

Mathieu Desbrun et al. [Bob08]

In order to define a discrete shell model, we need to determine how to describe
the discrete mid-surface and the discrete director field. In the DDG setting, the
canonical choice to approximate the mid-surface is an embedded two-dimensional
simplicial mesh, and the position of the discrete surface is usually described by
the positions of the vertices of this mesh. For the director field however, there is
a priori no intuitive choice of whether to attach it to vertices, edges or faces.
Discrete shearable shell models are known to be prone to so-called shear

locking which, in finite element analysis, is usually due to an incompatibility
of the approximating finite-dimensional spaces. In order to get an indication of
how to place directors in a way to avoid such incompatibilities, the first section
of this chapter will demonstrate the phenomenon of shear locking for the linear
Reissner-Mindlin plate model where it is relatively well understood. In the sec-
ond section, we use these insights to eventually put the discrete directors on edge
midpoints. The definition of a discrete shear form then leads us to an unusual
though very beneficial definition of edge-based discrete tangent planes.

3.1 Shear locking in the linear setting

An often used heuristic to explain locking is that bending induces shearing when it
should not. Indeed, in the Cosserat energy (2.2), the weights attached to shearing

21
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and bending contributions are essentially

c𝑠ℎ𝑒𝑎𝑟 :=
5𝑡

6

𝐸

2(1 + 𝜈)
and c𝑏𝑒𝑛𝑑 :=

𝑡3

12

𝐸

(1− 𝜈2)
=

𝑡2

5(1− 𝜈)
c𝑠ℎ𝑒𝑎𝑟 .

This means that as soon as 𝑡2

5(1−𝜈) is considerably smaller than 1, which happens
quickly when the thickness 𝑡 is small, shearing is much more penalized than
bending. Thus if bending induces shearing, much more energy is needed for the
deformation, and the deflections predicted by the model are smaller than they
should.

3.1.1 Shear locking for the Timoshenko beam

Shear locking is not proper to shearable plates, but already occurs in shear-
deformable beams, so called Timoshenko beams. We will briefly describe this case
to prepare the more involved situation of shear locking of the Reissner-Mindlin
plate.

Let 𝑤 : [0, 𝐿] → R denote the scalar vertical displacement of the centreline
of a beam of length 𝐿, and 𝜃 : [0, 𝐿] → R the scalar rotation of the director
(Fig. 3.1). Both scalar functions are assumed to be weakly differentiable, i.e., lie
in the Sobolev space 𝐻1([0, 𝐿]). We will further denote by ‖ · ‖𝐿2([0,𝐿]) the usual
𝐿2-norm of the considered domain.

t

Fig. 3.1 The variables of the Timoshenko beam model are scalar displacements 𝑤 and
scalar rotations 𝜃. 𝑁̄ denotes the undeformed surface normal.

The deformation energy of a Timoshenko beam of length 𝐿 and thickness 𝑡 is
then given by

𝑊𝑏𝑒𝑎𝑚 =
1

2
(

∫︁ 𝐿

0
(𝜃′)2d𝑥⏟  ⏞  

bending

+ 𝑡−2

∫︁ 𝐿

0
(𝜃 − 𝑤′)2d𝑥⏟  ⏞  

𝑠ℎ𝑒𝑎𝑟𝑖𝑛𝑔

) .
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Similarly to the Cosserat shell energy, this energy is composed of a bending
part and a shearing part (the membrane part is neglected because we are in the
linearised setting). For a simpler presentation, the problem is scaled such that
no material coefficients appear.

A possible way to discretise this problem which is very well known to lead to
locking is to split the interval [0, 𝐿] in segments of length ℎ and approximate both
variables by piecewise linear, continuous functions. On a segment [𝑥𝑖, 𝑥𝑖 + ℎ] ⊂
[0, 𝐿] let for instance

𝑤ℎ(𝑥) := 𝑎𝑥+ 𝑏

𝜃ℎ(𝑥) := 𝛼𝑥+ 𝛽 ,

with 𝑎, 𝑏, 𝛼, 𝛽 ∈ R. Then the shearing part can be bounded by∫︁ 𝑥𝑖+ℎ

𝑥𝑖

(𝜃ℎ − 𝑤′
ℎ)

2d𝑥 =

∫︁ ℎ/2

−ℎ/2
(𝛼𝑥+ (𝛽 − 𝑎))2d𝑥

≥
∫︁ ℎ/2

−ℎ/2
(𝛼𝑥)2d𝑥

=
ℎ2

2

∫︁ 𝑥𝑖+ℎ

𝑥𝑖

𝛼2d𝑥 .

The inequality holds independently of 𝛼 and 𝛽 because we integrate over a sym-
metric domain.
The last expression can be written as

ℎ2

2

∫︁ 𝑥𝑖+ℎ

𝑥𝑖

𝛼2d𝑥 =
ℎ2

2

∫︁ 𝑥𝑖+ℎ

𝑥𝑖

(𝜃′)2d𝑥 ,

and by summing over all intervals, we obtain a lower bound for the shearing part
in terms of the bending part

‖(𝑤′
ℎ − 𝜃ℎ)‖𝐿2([0,𝐿]) ≥

ℎ√
12

‖𝜃′‖𝐿2([0,𝐿]) .

From this inequality, we see that for positive ℎ, the shearing part cannot be
zero as long as the bending part does not vanish. More generally: if the dis-
crete spaces containing grad𝑤ℎ and 𝜃ℎ do not overlap sufficiently to allow ‖𝜃ℎ −
grad𝑤ℎ‖𝐿2([0,𝐿]) to vanish unless both components are zero, then bending induces
shearing, and the model locks.
For more details on shear locking for the Timoshenko beam and for an analytic

description of locking in general, we refer to Braess [Bra01]. A further insight-
ful intuition on shear locking in terms of a shear gap is given by Bletzinger et
al. in [BBR00].

3.1.2 Shear locking for the Reissner-Mindlin plate

For shear-deformable Reissner-Mindlin plates, the interactions of the involved
function spaces are more challenging than for the Timoshenko beam.
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The Reissner-Mindlin plate problem

Let {𝑒1, 𝑒2, 𝑒3} be an orthonormal basis in R3, and let the mid-surface 𝒮 of the
undeformed plate lie in the plane spanned by {𝑒1, 𝑒2}. In the Reissner-Mindlin
model, the deformation Φ of the plate is assumed to have the form

Φ : (𝑥, 𝑦, 𝑧) ↦→

⎛⎜⎝𝑥𝑦
𝑧

⎞⎟⎠+

⎛⎜⎝𝑧𝜃1(𝑥, 𝑦)𝑧𝜃2(𝑥, 𝑦)

𝑤(𝑥, 𝑦)

⎞⎟⎠ ∈ R3 .

Fig. 3.2 Lateral and top view of the deformation of a Reissner-Mindlin plate. The
involved variables are: scalar displacements 𝑤, vector-valued rotations 𝜃, vector-valued
shearing 𝛾.

The involved variables are again scalar vertical or transversal displacements
𝑤 ∈ 𝐻1(𝒮) of the mid-surface, and a vector field 𝜃 ∈ H1(𝒮) := [𝐻1(𝒮)]2 of so-
called infinitesimal rotations measuring how far and in which direction directors
deviate from undeformed normals (see Fig. 3.2). The Reissner-Mindlin deforma-
tion energy of a plate of thickness 𝑡, under some external force 𝑓 , is then given
by

𝒲𝑅𝑀 =
𝑡3

2
𝑎(𝜃, 𝜃) +

𝑡

2
‖𝜃 − grad𝑤‖20 − 𝑡3(𝑓, 𝑤) (3.1)

where 𝑎 is the bounded, coercive symmetric bilinear form defined as

𝑎 : H1(𝒮)×H1(𝒮) → R

(𝜃, 𝜏) ↦→ 𝐸

(1− 𝜈2)
( 𝜈 tr(𝜀(𝜃)) tr(𝜀(𝜏)) + (1− 𝜈) tr(𝜀(𝜃) · 𝜀(𝜏)) ) .

As usual in linear elasticity, the differential operator 𝜀 gives the symmetric part
of the derivative of a function in H1(𝒮).

Before entering the details, let us give a proper definition of shear locking for
Reissner-Mindlin plates.
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Definition 3.1. A discretisation of the Reissner-Mindlin model is called shear
locking free if the discrete solution (𝑤ℎ, 𝜃ℎ) converges uniformly in thickness 𝑡, 𝑡 >
𝜉 > 0, to the smooth solution (𝑤, 𝜃). It is said to suffer shear locking otherwise.

Remark. In engineering literature, shear locking is often tacitly defined as a de-
terioration of the convergence rate when 𝑡 gets smaller, which is not equivalent,
but captures the most current appearance of shear locking.

A straightforward discretisation of this energy is very likely to lead to shear
locking, especially for low-order approximations, because of the incompatibilities
between the discrete function spaces used to approximate 𝑤 and 𝜃, just as in the
case of the Timoshenko beam.

Many techniques have been proposed to overcome this difficulty, including the
introduction of bubble functions [AF89], penalty terms [Lov04], and reduced inte-
gration [AT95], and although mostly theoretically justified, such regularizations
tend to occlude an intuitive understanding of the discrete model. Also, most of
these approaches are specifically adapted to a single discrete formulation.
A more systematic analysis that provides a general recipe to construct locking-

free Reissner-Mindlin plate elements was proposed by Brezzi, Bathe, Fortin and
Stenberg [BFS91, BBF89]. As it provides valuable insight in the nature of shear-
ing and shear locking, we will describe this approach in more detail, following
closely the exposition by Braess in [Bra01].

How to prevent shear locking

The first step of this method is to reformulate the smooth equation as a mixed
formulation. More precisely, an additional shearing vector field

𝛾 = 𝑡−2(𝜃 − grad𝑤) ∈ L2(𝒮) := [𝐿2(𝒮)]2

is introduced and (3.1) is restated in a weak and mixed formulation as

𝑎(𝜃, 𝜓) + (grad 𝑣 − 𝜓, 𝛾)0 = (𝑓, 𝑣)0, ∀ (𝑣, 𝜓) ∈ 𝐻1(𝒮)×H1(𝒮) (3.2)

(grad𝑤 − 𝜃, 𝜂)0 − 𝑡2 (𝛾, 𝜂)0 = 0, ∀ 𝜂 ∈ L2(𝒮) .

As a next step, the analysis of this equation is simplified by splitting it into
more familiar problems. To do so, one first notices that 𝛾 lies in the Sobolev space
𝐻(rot,𝒮), i.e., rot 𝛾 ∈ 𝐿2(𝒮), because rot grad𝑤 = 0 ∈ 𝐿2(𝒮) and rot 𝜃 ∈ 𝐿2(𝒮).
Moreover, it holds 𝐻(rot,𝒮) ⊂ L2(𝒮), such that, if 𝒮 is simply connected, we

can use the Helmholtz-decomposition of L2(𝒮) and write 𝛾 as

𝛾 =: grad 𝑟 + curl 𝑞

with 𝑟 ∈ 𝐻1(𝒮) and 𝑞 ∈ 𝐻1(𝒮)/R.
If we substitute this expression in the previous system (3.2), some simple manipu-
lations allow to split the latter into a Stokes’ equation and two Poisson equations:
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Find 𝑟 ∈ 𝐻1(𝒮) such that

(grad 𝑟, grad 𝑣)0 = (𝑓, 𝑣)0, ∀ 𝑣 ∈ 𝐻1(𝒮) .

Then find (𝜃, 𝑝) ∈ H1(𝒮)× 𝐿2(𝒮) such that

𝑎(𝜃, 𝜓)− (rot𝜓, 𝑞)0 = (grad 𝑟, 𝜓)0, ∀ 𝜓 ∈ H1(𝒮)
−(rot 𝜃, 𝑝)0 − 𝑡2 (curl 𝑞, curl 𝑝)0 = 0, ∀ 𝑝 ∈ 𝐿2(𝒮) .

Finally, find 𝑤 ∈ 𝐻1(𝒮) with

(grad𝑤, grad 𝑧)0 = (𝜃, grad 𝑧)0 − 𝑡2(𝑓, 𝑧)0, ∀𝑧 ∈ 𝐻1(𝒮) .

Remark. We denote by curl : 𝐿2(𝒮) → H1(𝒮) the differential operator that is
adjoint to rot : H1(𝒮) → 𝐿2(𝒮) with respect to the 𝐿2-metric.

This reformulation of the Reissner-Mindlin equation in well-studied Poisson
and Stokes problems considerably simplifies the task of identifying sufficient prop-
erties to avoid the locking problem.
Consider a finite element discretisation of the Reissner-Mindlin model, where

𝑊ℎ ⊂ 𝐻1(𝒮) denotes the finite-dimensional function space approximating scalar
displacements, Θℎ is a finite-dimensional vector space lying inH1(𝒮) approximat-
ing rotations of the directors, and Γℎ ⊂ L2(𝒮) stands for the finite-dimensional
space approximating shearing.
We further introduce a reduction operator

𝑅 : H1(𝒮) → Γℎ

and slightly alter the initial Reissner-Mindlin energy in a way to obtain the fol-
lowing discrete problem:

Find (𝑤ℎ, 𝜃ℎ) ∈𝑊ℎ ×Θℎ and 𝛾ℎ ∈ Γℎ such that

𝑎(𝜃ℎ, 𝜓) + (grad 𝑣 −𝑅𝜓, 𝛾ℎ)0 = (𝑓, 𝑣)0, ∀ (𝑣, 𝜓) ∈𝑊ℎ ×Θℎ (3.3)

(grad𝑤ℎ −𝑅𝜃ℎ, 𝜂)0 − 𝑡2 (𝛾ℎ, 𝜂)0 = 0, ∀ 𝜂 ∈ Γℎ .

Let further be 𝑄ℎ ⊂ 𝐿2(𝒮) an additional discrete function space, whose role
will become clear shortly. Then we can formulate the following 5 conditions on
𝑊ℎ,Θℎ,Γℎ, 𝑄ℎ and on the reduction operator 𝑅:
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The shear-locking-free properties (Brezzi, Bathe, Fortin 1989):

(P1) grad𝑊ℎ ⊂ Γℎ .

(P2) rot Γℎ ⊂ 𝑄ℎ .

(P3) Θℎ, 𝑄ℎ is suitable for a Stokes’ problem (inf-sup-compatible):
There exists 𝜀 > 0 such that

inf
𝑞∈𝑄ℎ

sup
𝜃∈Θℎ

(rot 𝜃, 𝑞)0
‖𝜃‖1‖𝑞‖0

≥ 𝜀 . (3.4)

(P4) The diagram

H1(Ω)

𝑅

��

rot // 𝐿2(Ω)

𝑃
��

Γℎ
rot // 𝑄ℎ

commutes, for 𝑃 : 𝐿2(𝒮) → 𝑄ℎ being the 𝐿2-projection.

(P5) 𝑊ℎ
grad−−−→ Γℎ

rot−−→ 𝑄ℎ is an exact sequence, i.e., ker rot = imgrad .

These conditions were first listed and investigated by Brezzi, Bathe and Fortin
[BBF89], and they basically guarantee that the discrete spaces mimic the smooth
setting sufficiently for the problem-splitting described above to go through. In-
deed, the following theorems show how the conditions allow

(a) the existence of a discrete Helmholtz-Hodge decomposition of Γℎ, such that
the discrete problem can be rewritten analogously to (3.2), and

(b) the well-posedness of the involved Poisson and the Stokes equations.

Theorem 1 (Brezzi, Bathe, Fortin 1989). If (P1), (P2) and (P5) are satisfied,
then

Γℎ = grad𝑊ℎ ⊕ rot𝑄ℎ

yields an 𝐿2-orthogonal decomposition.

Therefore, we can split the discretised equation (3.3) in an analogous way to
(3.2) into two Poisson equations and a generalized Stokes problem.

The property (P4), sometimes called the commuting diagram property, makes
sure that the Poisson problems are well-posed. The involved discrete Stokes’
problem writes

𝑎(𝜃ℎ, 𝜓)− (rot𝜓, 𝑞ℎ)0 = (∇𝑟, 𝜓)0, ∀ 𝜓 ∈ Θℎ

−(rot 𝜃ℎ, 𝑝)0 − 𝑡2 (curl 𝑞ℎ, curl 𝑝)0 = 0, ∀ 𝑝 ∈ 𝐿2 .

From property (P3) it follows by usual analysis of Stokes’ problems, that the
discrete problem is inf-sup-stable.
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Theorem 2 (Braess, Peisker 1992). Let

𝐴𝑡((𝜃ℎ, 𝑞ℎ), (𝜓, 𝑝)) := 𝑎(𝜃ℎ, 𝜓) + (rot𝜓, 𝑞ℎ)0 − (rot 𝜃ℎ, 𝑝)0 − 𝑡2 (curl 𝑞ℎ, curl 𝑝)0 .

If the couple (Θℎ, 𝑄ℎ) satisfies (P3), then there exists 𝛼 > 0 independent of 𝑡 and
ℎ such that for all (𝜃ℎ, 𝑞ℎ) ∈ (Θℎ, 𝑄ℎ) it holds

sup
𝜓∈Θℎ
𝑝∈𝑄ℎ

𝐴𝑡((𝜃ℎ, 𝑞ℎ), (𝜓, 𝑝))

‖𝜓‖0 + ‖𝑝‖0 + 𝑡‖ curl 𝑝‖
≥ 𝛼 (‖𝜃ℎ‖1 + ‖𝑝ℎ‖0 + 𝑡‖ curl 𝑝ℎ‖0) .

See [PB92] for a proof of both theorems.

Searching for a lowest-order locking-free Reissner-Mindlin element

These conditions can now be used to search for a locking-free Reissner-Mindlin
plate element which involves at most piecewise linear approximation spaces, as
in terms of degrees of freedom this is the maximum a DDG model naturally
provides.

On the triangular mesh Kℎ of the discrete plate, with maximum edge length
ℎ, and triangular faces TKℎ

, we consider the following finite-dimensional function
spaces

𝑀0 = {𝑓 ∈ 𝐻1(𝒮ℎ)| 𝑓 |𝑇 constant ∀ 𝑇 ∈ TKℎ
}

𝑀1
0 = {𝑓 ∈ 𝐻1(𝒮ℎ)| 𝑓 |𝑇 linear ∀ 𝑇 ∈ TKℎ

, 𝑓 continuous and vanishes

on the boundary}
𝑀1
𝑛𝑐 = {𝑓 ∈ 𝐿2(𝒮ℎ)| 𝑓 |𝑇 linear ∀ 𝑇 ∈ TKℎ

, 𝑓 continuous on edge midpoints}

𝑅𝑇0 = {𝑓 ∈ 𝐿2(𝒮ℎ)| 𝑓 |𝑇

(︃
𝑥

𝑦

)︃
=

(︃
𝑎

𝑏

)︃
+ 𝑐

(︃
𝑦

−𝑥

)︃
, 𝑎, 𝑏, 𝑐 ∈ R,∀ 𝑇 ∈ TKℎ

} .

The spaces 𝑀0 and 𝑀1
0 are the usual constant and piecewise linear Lagrange

finite element spaces. 𝑀1
𝑛𝑐 are the Crouzeix-Raviart elements, which are linear

over each triangle and continuous at edge-midpoints. 𝑅𝑇0 denotes the rotated
lowest-order Raviart-Thomas vector fields. These are piecewise linear vector fields
whose edge-tangential projection is constant on each edge and continuous between
triangles. These last two spaces are non-conforming, i.e., they are not contained
in 𝐻1(𝒮).

The possible combinations of spaces that satisfy the inf-sup-condition (3.4)
have been thoroughly investigated before, and in particular it is well-known that
combinations of conforming constant or piecewise linear finite spaces are not
suitable candidates. However, if we soften the requirements to allow for a non-
conforming approach, we can find at least one couple of such spaces, namely
((𝑀1

𝑛𝑐)
2, 𝑀0) [CR73].
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Moreover, the rotated lowest-order Raviart-Thomas space has a discrete Helmholtz
decomposition

𝑅𝑇0 = grad𝑀1
0 ⊕ curl𝑀0 .

Hence there is a triple of spaces that is able to mimic the Helmholtz decomposi-
tion and the inf-sup stability required for the Reissner-Mindlin-problem, namely:

𝑊ℎ =𝑀1
0 , Θℎ = (𝑀1

𝑛𝑐)
2 , Γℎ = 𝑅𝑇0 . (3.5)

By their non-conformity, these finite dimensional spaces fail however to satisfy
condition (P4).

Fig. 3.3 FE-scheme of the low-order Reissner-Mindlin plate element proposed
by Oñate, Zarate and Flores in [OZF94].

This triple corresponds to a Reissner-Mindlin plate element proposed by Oñate,
Zarate and Flores in [OZF94]. Arnold and Falk carried out a convergence analysis
of this element in [AF97] and proved a convergence order of max(𝑡2, ℎ2) where
𝑡 is the thickness of the plate and ℎ the mesh size. This convergence order is
unusual and actually prevents classical convergence for fixed thickness 𝑡 while ℎ
tends to zero, and in particular this element is not locking-free in the sense of
Definition 3.1.
However, it still seems to be the best compromise we can get while sticking

to a piecewise linear discretisation, as it is sufficiently suitable for applications
involving thin structures on relatively coarse meshes, which corresponds to the
purpose we had in mind. In such applications it holds ℎ≫ 𝑡 and the convergence
order comes down to 𝒪(ℎ2). Moreover, this shell element is not locking in the
engineering sense given that the convergence rate gets better for 𝑡 getting smaller.

Remarks.

1. The fact that shearing is approximated by a Raviart-Thomas space perfectly
agrees with the view of shearing as a differential one-form. Indeed, Raviart-
Thomas spaces are equivalent to the discrete Whitney forms [Whi57], which are
the discrete pendant to one-forms in terms of the de-Rham complex [AFW09].

2. In the convergence analysis by Arnold and Falk it appears that this plate ele-
ment does not achieve uniform convergence because of the additional consistency
error introduced by the non-conforming approximation of the rotations Θ.



30 Chapter 3 – Shear locking and discrete tangent planes

3. Our quest for a lowest-order locking-free plate element focused on satisfying
propositions (P1)–(P5). However, alternative characterizations of ’locking-free’
seem similarly unable to overcome the lack of degrees of freedom, as the provenly
shear locking free element of lowest order that we are aware of is the model
proposed by Arnold and Falk [AF89], which uses nonconforming piecewise linear
displacements𝑊ℎ =𝑀1

𝑛𝑐, and piecewise constant shearing Γℎ =𝑀0, but needs to
augment the piecewise linear rotations by a cubic bubble 𝐵3, thus Θℎ =𝑀1

0 ⊕𝐵3.

3.2 Where to place directors?

As directors are involved in both shearing and bending, their positioning on the
discrete mesh requires particular care in order to avoid shear locking. This is
where we can make use of the insights of the linear setting. Indeed, it seems
a reasonable requirement for a nonlinear shell model to be suitable for small
displacements, i.e., for linearised problems. Hence, our discrete Cosserat shell
model should also be as suitable as possible for the Reissner-Mindlin plate setting,
which means that it should recover the Reissner-Mindlin element (3.5) that we
identified as the best lowest-order model we could get regarding the applications
we are aiming at. In this objective, the correspondences between the linear and
the nonlinear model provide a strong hint of where to place the degrees of freedom.

The position of the vertices will, for small deformations, be encoded by scalar
vertical displacements. Hence, if we want to recover conforming piecewise linear
approximations for the latter, it is natural to use a conforming piecewise linear
approximation of vertex positions. This agrees with simply using the vertices as
degrees of freedom as suggested by the DDG approach.

To relate rotations and directors, let us remind the deformation of the plate 𝒮
in the Reissner-Mindlin model

Φ :

⎛⎜⎝𝑥𝑦
𝑧

⎞⎟⎠ ↦→

⎛⎜⎝𝑥𝑦
𝑧

⎞⎟⎠+

⎛⎜⎝𝑧𝜃1(𝑥, 𝑦)𝑧𝜃2(𝑥, 𝑦)

𝑤(𝑥, 𝑦)

⎞⎟⎠ .

If in the nonlinear setting we assume the deformation to be small enough that
only vertical displacements 𝑤 appear, the deformation has the form

Φ :

⎛⎜⎝𝑥𝑦
𝑧

⎞⎟⎠ ↦→

⎛⎜⎝𝑥𝑦
𝑧

⎞⎟⎠+

⎛⎜⎝ 0

0

𝑤(𝑥, 𝑦)

⎞⎟⎠
⏟  ⏞  

𝜑(𝑥,𝑦,𝑧)

+𝑧𝑛(𝑥, 𝑦, 𝑧) .

The rotations 𝜃 : 𝒮 → R3 are assumed to be small, such that the unit director
field 𝑛 can be approximated by

𝑛 ∼= 𝑁̄ + 𝜃 ,
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where 𝑁̄ is the normal of the undeformed mid-surface. This gives us the relation
between directors and rotations (see Fig. 3.2).
Similarly, the pullback of the surface normal 𝑁 of the deformed configuration

writes approximately
𝑁 ∼= 𝑁̄ + grad𝑤 .

By substituting 𝑁̄ by 𝑁 − grad𝑤, we obtain as shear form

𝜎𝑛(𝑣) = ⟨𝑁 − grad𝑤 + 𝜃,d𝜑(𝑣)⟩ = ⟨(𝜃 − grad𝑤),d𝜑(𝑣)⟩ .

It follows that the shearing field 𝜃 − grad𝑤 is indeed the linearisation of the
projection 𝑛tan of the director onto the tangent plane of the deformed mid-surface.

Hence, in the linearised setting, the directors will provide both the rotations
and the shearing vector field. The corresponding finite function spaces 𝑀1

𝑛𝑐 and
𝑅𝑇0 both carry their degrees of freedom on edges, such that there is a strong
motivation to attach directors to edges.
Moreover, in the smooth setting, shearing was described as a one-form. If we

want to mimic this structure and treat discrete shearing as a discrete one-form,
edges are again the natural place to associate shearing with, independently of
what is happening in the linear setting.

Now that we established that –in view of the the linear setting– directors
should be attached to edges, the next question arises: If shearing is the projection
of directors to tangent planes, how to define tangent planes –or equivalently
normals– on edges?

3.3 Discrete edge normals

In order to investigate a definition of discrete normals on edges that is suitable
for our model, we will consider a simplicial mesh that is inscribed to a smooth
surface.

Definition 3.2. Let 𝒮 be a smooth embedded surface with normal field 𝑁 , and
let K be an embedded simplicial surface. We say that K is closely inscribed to
𝒮 if the vertices of K all lie on 𝒮 and if the shortest distance map 𝜓 : 𝒮 → K
defined by

𝜓(𝑥) = 𝑥− 𝜆(𝑥) ·𝑁(𝑥) ,

with a scalar function 𝜆 : 𝒮 → R, is bijective.
In that case, we call the inverse 𝜋 := 𝜓−1 : K → 𝒮 the normal projection onto 𝒮
(see Fig. 3.4).

The seemingly most straightforward choice to define normals on a triangle mesh
is to use piecewise constant triangle normals. However, for a triangular mesh
closely inscribed to a smooth surface (Fig. 3.4), the quality of the approximation
of these normals strongly depends on the approximated smooth geometry 𝒮 as
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Fig. 3.4 A simplicial mesh closely inscribed to a surface. The bijection 𝜋 projects
points of the mesh K to the surface 𝒮 along the surface normal N.

well as on the quality of the triangular mesh K, namely the local curvature of 𝒮,
the local distance from K to 𝒮, and on the angles of the triangular faces of K
[MT04].

Moreover, trying to improve this approximation by averaging these face nor-
mals on vertices or edges will not help. Meek and Walton [MW00] showed by
asymptotic analysis that the arithmetic mean of triangle normals on a discrete
mesh enclosed to a smooth surface can approximate the surface normal still only
up to 𝒪(ℎ):

Lemma 3.1 (Meek, Walton 2000). For non-uniform data, the unit vector parallel
to the arithmetic mean of unit normals of the triangular faces around a point
approximates the unit normal to the surface at that point to accuracy 𝒪(ℎ).

Numerical experiments indicate that the same holds for an average of area- and
angle-weighted triangle normals.

In contrast, if we desist from triangle normals and focus on edges, it is easily
observed that these approximate, at their midpoint, tangent vectors, and thereby
one direction of the corresponding tangent plane, up to second order, indepen-
dently of the shape of the triangles.

Lemma 3.2. Let K be a simplicial mesh closely inscribed to a sufficiently smooth
surface 𝒮. Let 𝜋 : K → 𝒮 by the bijective normal projection onto the surface. Let
e be an edge and 𝑚e its midpoint. Then e approximates a tangent vector of the
tangent plane 𝑇𝜋(𝑚e)𝒮 up to second order.
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Indeed, it is well-known that for a planar curve, a central finite difference ap-
proximation at the midpoint gives a second order approximation of the tangent
vector at that point. Hence, if we consider the curve resulting from the intersec-
tion of the surface 𝒮 with any plane containing the edge, at its midpoint the edge
approximates the tangent vector to this curve up to second order.

Given that the smooth surface normal in 𝜋(𝑚𝑒) is orthogonal to the approxi-
mated tangent vector, we obtain that one of the unit vectors orthogonal to the
edge approximates (again at the edge midpoint) the smooth normal up to second
order. In actual computations, we will not know the exact position of this par-
ticular normal vector, such that all we know about it is that it is attached to the
edge midpoint and orthogonal to the edge. Therefore, we will only use this incom-
plete information to fix the discrete normal and its corresponding tangent plane,
without imposing any further –possibly overly restrictive– assumed knowledge
about it.

Remarks.

1. Note that this partial construction of discrete normals can only be realized
on edges. On faces as well as on vertices, there is in general no distinguished
direction that approximates the tangent plane more accurately than another.

2. An alternative way to get a second order approximation of smooth normals
is to construct a quadratic fit to the vertices of a triangle flap (a triangle and
its three neighbours) and compute its normal field. However, this construction is
very sensitive to vertex positions and valence, as discussed in [Zor05, RGZ07].

The Kirchhoff limit

Yet another way to characterize shear locking is the inability of the shear-deformable
model to provide a satisfying Kirchhoff model when shearing is constraint to van-
ish, i.e., when directors are constrained to coincide with normals.
In that case, bending will again be evaluated through the change of discrete

normals, and if normals are defined by the vertex positions only, curvature will be
given by second derivatives of piecewise linear functions. Hence we run back into
the high regularity requirements of the Kirchhoff model that we tried to avoid in
the first place by choosing a kinematic shell model based on a mixed formulation.
This emphasizes the close connection between locking and the definition of the
discrete normals used to evaluate the shearing part.

The above definition of normals is not based on the position of the vertices only,
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but contains a rotation around the edge as an additional degree of freedom. It is
thereby more likely to provide a consistent notion of curvature, and indeed, such
a definition of normals has already been used successfully for Kirchhoff plates and
shells, namely in the so-called Morley triangle and its nonlinear generalizations.
The relation of our model to these elements will be discussed in more detail in
the next chapter, where we define discrete curvatures and bending.

3.4 Discrete shearing

Conceptually, our construction of tangent planes introduces an additional degree
of freedom which is the angle of the discrete edge normal with respect, for ex-
ample, to the angle bisecting edge normal. Practically, however, this degree of
freedom is already determined by the director.

Indeed, during the computation, the discrete configuration will be determined
by the principle of least energy, meaning that we will minimize the total energy
to find the position of the vertices and the directors. The same holds for the
additional degree of freedom in the definition of the discrete tangent plane. Hence,
as these tangent planes only enter in the shearing energy, the actual tangent plane
on an edge e is the plane that

(i) contains the edge e, and

(ii) minimizes the length of the projection of the director onto this plane.

The minimization (ii) only involves the position of the directors, hence the
position of the tangent planes is already fixed in terms of the position of the
directors: no more degree of freedom is left.

Lemma 3.3. The discrete tangent plane satisfying (i) and (ii) is such that the
projection of the director onto this plane is the projection on the corresponding
unit edge ê itself (Fig. 3.5).

Condition (i) leaves the potential plane only the freedom to turn around the
edge axis. It is clear that any position of this plane different from the one de-
scribed in the lemma would induce an additional contribution along a direction
normal to e, increasing the length of the projected director.
The normal corresponding to this tangent plane is the unit vector orthogonal

to e and lying in the plane spanned by the edge and the director.

Discrete tangential projection Thus we set as discrete tangential projection
of the director:

ntan := ⟨n, ê⟩ê . (3.6)
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Fig. 3.5 Gray arrows represent admissible edge normals. The edge normal N inducing
the smallest discrete tangential projection ntan of the director n is the one lying in the
same plane as the edge and n.

It was already underlined that we consider shearing as a one-form. We want to
mimic this structure by defining discrete shearing by a discrete one-form. Such
forms, so-called Whitney one-forms, are defined by one value per edge, such
that this edge-wise projection of discrete directors to discrete tangent planes
is sufficient to determine the shear form completely. The discrete shear form,
denoted by s is hence uniquely defined through

s(ê𝑖) := ⟨n𝑖, ê𝑖⟩ .

3.5 Consistency

Whitney one-forms are known to yield an approximation of an interpolated
smooth one-form that is consistent of order ℎ. By consistent, we mean that
if we approximate a smooth surface by a series of closely inscribed discrete sur-
faces (Def. 3.2), with mesh size ℎ → 0, whose piecewise constant normal fields
converge to the smooth normal field, then the discrete energy recovers the smooth
energy in the limit of refinement. In our case, the discrete shear form does not
sample the exact shear form. Instead it samples a one-form defined by the pro-
jection of the smooth director in specific directions of the smooth tangent plane.
However, this is sufficient for the consistency of the discrete shear form.
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Proposition 3.1. The discrete shear form s and the smooth shear form 𝜎𝑛 satisfy⃒⃒⃒⃒∫︁
𝒮
‖𝜎𝑛‖2d𝐴−

∫︁
K
‖s‖2dA

⃒⃒⃒⃒
≤ 𝐶ℎ ,

where 𝐶 is a positive constant independent of ℎ.

Proof. Let us consider a triangle T of K with edges e𝑖. We will view an edge as
a parametrized path e𝑖 : [0, |e𝑖|] → K on K. Let further 𝜁𝑖 := 𝜋 ∘ e𝑖 be the image
of this path on 𝒮.

The de-Rham map 𝑅 that provides the link between a smooth one-form 𝜎𝑛 on
𝜋(T) and a discrete Whitney one-form on T is defined by a Whitney interpolation
of the values

𝑅𝜎𝑛(𝜁𝑖) =

∫︁
𝜁𝑖

𝜎𝑛d𝑠 .

In contrast, the discrete shear form s was defined by a Whitney interpolation of
the edge values s(ê𝑖) = ⟨n𝑖, ê𝑖⟩ , First, we have that

𝑅𝜎𝑛(𝜁𝑖) = s(e𝑖) +𝒪(ℎ2) . (3.7)

Indeed, let 𝜁𝑖 be the tangent field to 𝜁𝑖 on 𝒮. Then 𝑅𝜎𝑛(𝜁𝑖) can be expressed in
terms of the director field 𝑛 as

𝑅𝜎𝑛(𝜁𝑖) =

∫︁
𝜁𝑖

⟨𝑛, 𝜁𝑖⟩d𝑠 .

A constant approximation of the integral in 𝑚𝑖
′ yields

𝑅𝜎𝑛(𝜁𝑖) = ⟨𝑛(m𝑖
′), 𝜁𝑖(m𝑖

′)⟩|𝜁𝑖|+𝒪(ℎ2)

where |𝜁𝑖| is the length of the path 𝜁𝑖. By definition of 𝜁𝑖 and 𝜁𝑖, and again by a
simple finite difference approximation, we have 𝜁𝑖 = d𝜋(ê𝑖) = ê𝑖 +𝒪(ℎ2). Thus,
we get

𝑅𝜎𝑛(𝜁𝑖) = ⟨𝑛(𝑚𝑖
′), ê𝑖⟩|𝜁𝑖|+𝒪(ℎ2)

= s(ê𝑖)|𝜁𝑖|+𝒪(ℎ2) .

With |𝜁𝑖| = |e𝑖|+𝒪(ℎ2) and the linearity of s we obtain the statement.

From (3.7) we can now deduce the approximation by measuring the error in-
troduced by a Whitney interpolation 𝑊 of the edge values {s(e𝑖)}𝑖. Notice that
the definition of Whitney interpolation requires barycentric coordinates. On the
smooth surface 𝒮 the choice of such coordinate functions can be delicate. For our
purposes –as we only consider the interpolation elementwise– we make use of the
bijective normal projection 𝜋 between the piecewise flat surface K and 𝒮 to use
the well-defined barycentric coordinates of the corresponding flat triangle.
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As 𝜋 is sufficiently regular, we can then apply approximation results of a Raviart-
Thomas interpolation (e.g., [AADL11]), which corresponds to a Whitney inter-
polation on flat triangles.
We obtain

‖𝜎𝑛 − s‖∞,T = ‖𝜎𝑛 −𝑊𝑅𝜎𝑛‖∞,T +𝒪(ℎ2) = 𝒪(ℎ) .

Triangle inequality and integration over the corresponding surfaces yields the
statement of the proposition (see also the proofs of Section 4.3 for further details
about the error made by the transition through 𝜋).

�
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Chapter 4

Discrete fundamental forms

For triangular elements it is remarkable that many

formulations contain awkward procedures while

deriving the element stiffness matrix.

Kai-Uwe Bletzinger et al. [BBR00]

In this chapter, we describe a very useful though little-known geometric pattern
for defining discrete quadratic forms on triangle meshes. This cast is then used
to define discrete fundamental forms, which are in particular shown to lead to
consistent membrane and bending energies. Moreover, the geometric derivation
of these discrete energies allows to set well-established piecewise constant finite
element strain measures in a common framework and underline their geometric
character.

4.1 Discrete quadratic forms

In the smooth setting, first and second fundamental forms are symmetric quadratic
forms on the tangent space of the considered surface. Such a quadratic form on
R2, say 𝑄, is uniquely defined by three values that can be provided by its evalu-
ation either on a basis {e𝑖, e𝑗} through

𝑄(e𝑖, e𝑖), 𝑄(e𝑗 , e𝑗), 𝑄(e𝑖, e𝑗),

or on 3 non-parallel vectors {e𝑖, e𝑗 , e𝑘} through

𝑄(e𝑖, e𝑖), 𝑄(e𝑗 , e𝑗), 𝑄(e𝑘, e𝑘).

In the latter case, e𝑘 := 𝛼𝑖e𝑖 + 𝛼𝑗e𝑗 is a linear combination of the remaining
vectors with coefficients 𝛼𝑖 ∈ R, and the mixed term 𝑄(e𝑖, e𝑗) can simply be
recovered by polarisation:

𝑄(e𝑘, e𝑘) = 𝑄(𝛼𝑖e𝑖+𝛼𝑗e𝑗 , 𝛼𝑖e𝑖+𝛼𝑗e𝑗) = 𝛼2
𝑖𝑄(e𝑖, e𝑖)+𝛼

2
𝑗𝑄(e𝑗 , e𝑗)+2𝛼𝑖𝛼𝑗𝑄(e𝑖, e𝑗) .

39
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A piecewise constant discrete quadratic form Q on a simplicial mesh can be
defined in the exact same way, given that in each triangle plane, Q is a quadratic
form in R2. Distinguished directions in such a triangle plane are the triples of
edges e𝑖 or of orthogonal dual edges e

*
𝑖 = e⊥𝑖 , i.e., the edges rotated clockwise by

90 degrees in the triangle plane.

In the following, let AT denote the area of a triangle T, and let (𝑖𝑗𝑘) be a
cyclic permutation of indices (123). It holds

Lemma 4.1. Let a quadratic form Q in the plane of a non-degenerate triangle
T be prescribed along the triangle edges e𝑖 or the dual edges e*𝑖 by

Q𝑖 := Q(e𝑖, e𝑖) , Q*
𝑖 := Q(e*𝑖 , e

*
𝑖 ) .

Then Q can be written as:

Q = − 1

8A2
T

∑︁
(𝑖𝑗𝑘)

(Q𝑖 −Q𝑗 −Q𝑘)e
*
𝑖 ⊗ e*𝑖 (4.1)

= − 1

8A2
T

∑︁
(𝑖𝑗𝑘)

(Q*
𝑖 −Q*

𝑗 −Q*
𝑘)e𝑖 ⊗ e𝑖 .

Proof. Let T be a planar triangle with vertices v1, v2, v3, oriented edges e𝑖 := v𝑘 − v𝑗
and dual edges e*𝑖 . If T is not degenerate, the edges are pairwise non-parallel,
hence the dyadic products e*𝑖 ⊗ e*𝑖 form a basis for quadratic forms, such that Q
can be written as

Q =

3∑︁
𝑠=1

𝜇𝑠e
*
𝑠 ⊗ e*𝑠
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with coefficients 𝜇𝑖 ∈ R that are to be determined. Prescribing the values Q(e𝑖)
along the edges e𝑖 leads to:

Q(e𝑖) = e𝑇𝑖 Qe𝑖 =
3∑︁
𝑠=1

𝜇𝑠 e
𝑇
𝑖 (e

*
𝑠 ⊗ e*𝑠)e𝑖 =

3∑︁
𝑠=1

𝜇𝑠 (e
𝑇
𝑖 e

*
𝑠)

2 for 𝑖 = 1, 2, 3 .

Let 𝜃𝑖𝑠 be the oriented angle between e𝑖 and e*𝑠, and 𝛼𝑖𝑠 the oriented angle between
e𝑖 and e𝑠. Then it holds by elementary geometric considerations, for 𝑖 ̸= 𝑠

|e𝑇𝑖 e*𝑠| = |e𝑖||e𝑠|| cos(𝜃𝑖𝑠)| = |e𝑖||e𝑠|| cos(𝛼𝑖𝑠 −
𝜋

2
)|

= |e𝑖||e𝑠|| sin(𝛼𝑖𝑠)|
= |e𝑖 × e𝑠|
= 2AT .

Together with the orthogonality of e𝑖 and e*𝑖 , it follows

Q(e𝑖) =

3∑︁
𝑠=1,𝑠 ̸=𝑖

𝜇𝑠(2AT)
2

1

4A2
T

Q(e𝑖) = 𝜇𝑗 + 𝜇𝑘 for 𝑖 = 1, 2, 3

where the indices 𝑖, 𝑗, 𝑘 cycle through (123). Solving the resulting linear system
finally yields

𝜇𝑖 = − 1

8A2
T

(Q(e𝑖)−Q(e𝑗)−Q(e𝑘)) .

The expression involving the evaluations on the dual edges Q*
𝑖 follows from an

analogous deduction.
�

Remark. An similar approach allows to express the quadratic form as

Q|T = − 1

8A2
T

3∑︁
𝑖=1

Q𝑖(e
*
𝑗 ⊗ e*𝑘 + e*𝑘 ⊗ e*𝑗 ) .

4.2 Discrete fundamental forms

We will make use of the definition of discrete quadratic forms just introduced to
define the discrete first and generalized second fundamental forms on a discrete
shell. All we have left to do is to describe how these discrete forms should act
on edges (or on dual edges, but we will settle for edges). These values will be
determined by relying on finite difference approaches of the smooth expressions.
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If the discrete surface K is closely inscribed to 𝒮, the edge vectors e𝑖 are a finite
difference approximation of tangent vectors of the surface. As the continuous first
fundamental form of a surface 𝒮 measures the squared length of tangent vectors,
𝐼(𝑣, 𝑣) = ‖𝑣‖2, we assign the discrete first fundamental form I along an edge the
analogous value, i.e., the squared length of the corresponding edge:

I(e𝑖, e𝑖) := ⟨v𝑘 − v𝑗 , v𝑘 − v𝑗⟩ = ‖e𝑖‖2 . (4.2)

The smooth generalized second fundamental form applied to a tangent vector 𝑣
yields a directional ’normal’ (or rather ’directoral’) curvature 𝐼𝐼𝑛(𝑣) = ⟨d𝑛(𝑣), 𝑣⟩.
As directors are not attached to vertices, measuring their change along edges is
not possible directly. Yet, by noting that the segment which connects two edge
midpoints of a triangle is parallel to the third edge and has half its length, the
discrete second fundamental form can still be defined by a simple finite difference
discretisation of the smooth expression. With n𝑖 := n(e𝑖) we obtain:

IIn(e𝑖, e𝑖) := 2⟨n𝑗 − n𝑘, v𝑘 − v𝑗⟩ = 2⟨n𝑗 − n𝑘, e𝑖⟩ . (4.3)

For our particular application to elastic deformations, there is a subtle refor-
mulation of the expression for discrete quadratic forms which allows to make the
implementation more efficient.
In the smooth setting, we already saw that in order to measure the change

of first and second fundamental forms on a common reference surface, we need
to pull back the operators of the deformed surface. For the discrete quadratic
forms, we could do the same and pull back the discrete form explicitly to the un-
deformed configuration, leading to an unhandy expression involving two different
bases {ē*𝑖 ⊗ ē*𝑖 }𝑖 and {𝜑*(e*𝑖 ⊗ e*𝑖 )}𝑖:

Q̄− 𝜑*Q = − 1

8A2
T

∑︁
(𝑖𝑗𝑘)

(Q̄𝑖 − Q̄𝑗 − Q̄𝑘) ē
*
𝑖 ⊗ ē*𝑖 − (Q̃𝑖 − Q̃𝑗 − Q̃𝑘)𝜑

*(e*𝑖 ⊗ e*𝑖 )

(4.4)

where
Q̄𝑖 = Q̄(ē𝑖) , Q̃𝑖 := Q(e𝑖) .

A more efficient procedure is to consider the deformed fundamental forms as a
quadratic forms on the undeformed triangle by defining directional values directly
on the undeformed edges through

Q𝑖 := Q(ē𝑖) .

Thereby, we only use one basis ē𝑖 ⊗ ē𝑖 for both forms without introducing any
approximation.

A similarly compact expression (but with a slightly different scaling) for dis-
crete membrane strains and shape operators has already been used in [GSH+04].
However, the authors use different formulas for each of these forms, such that the
similarity in structure is not made entirely clear.
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4.3 Consistency

In the last chapter, we already showed that our definition of the discrete shearing
energy is consistent (Proposition 3.1). We will now show that by using finite
difference approximations of the smooth directional evaluations of the quadratic
forms, we also naturally guarantee the discrete fundamental forms and especially
the corresponding energy to be consistent.

4.3.1 Notation and assumptions

Throughout this section, we will denote by ℎ the maximum mesh size of the
undeformed and deformed discrete surfaces K̄,K.
We will also assume that discrete surfaces are closely inscribed (Def. 3.2) into
the approximated smooth surfaces, i.e., that K̄ is closely inscribed to 𝒮 and
K is closely inscribed to 𝒮. The normal projections from the inscribed discrete
undeformed, resp. deformed, surface to the undeformed , resp. deformed, smooth
surface are denoted by 𝜋̄, resp. 𝜋. For ease of notation, we will denote the images
𝜋̄(x̄), 𝜋(x) of points x̄ ∈ K̄, x ∈ K, by x̄′,x′:

x̄′ := 𝜋̄(x̄)

x′ := 𝜋(x) .

We will further use the following assumptions:

· The undeformed and deformed smooth surfaces 𝒮,𝒮, are compact.

· The smooth undeformed and deformed surfaces 𝒮,𝒮, the smooth director fields
𝑛̄, 𝑛, and the diffeomorphism 𝜑 describing the deformation are 𝒞∞. The cur-
vatures of 𝒮 and 𝒮 are uniformly bounded.

· We denote by {v̄𝑖}𝑖 the vertices of the undeformed discrete triangulated surface
K̄. The vertices of the deformed discrete surface K are then given by {𝜑(v̄𝑖)}𝑖
and K inherits the connectivity of K̄.

· The closely inscribed discrete surfaces K̄,K, have vertices on their boundaries
that sample the boundaries of the smooth surfaces.

· The aspect ratio of the triangles of K̄ is uniformly bounded.

· For both K̄ and K we assume that the triangulation is quasi-uniform, i.e.,
that there exist positive constants 𝑐1, 𝑐2, such that for the length ℎ𝑖 of every
deformed or undeformed edge it holds 𝑐1ℎ𝑖 ≤ ℎ ≤ 𝑐2ℎ𝑖.

· Discrete directors sample the smooth director field on edge midpoints, i.e., a
director n𝑖 on an edge e𝑖 with midpoint m𝑖 is defined as n𝑖 := 𝑛(𝜋(m𝑖)).

Notice that because 𝜑 is a diffeomorphism, it follows from the assumptions
that the aspect ratio of the triangles of K is also bounded.
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4.3.2 Consistency of membrane and bending energies

The proof of the consistency relies on elementary Taylor approximations and
the following lemmas which are mostly based on results by Morvan and Thib-
ert [MT04].

Lemma 4.2. Let 𝜋 : K → 𝒮 be the piecewise differentiable normal projection as
defined in Definition 3.2. Let further 𝑁 be the unit normal field of 𝒮. Then for
the scalar function 𝜆 : 𝒮 → R defined by

𝜋(x) = x+ 𝜆(𝜋(x))𝑁(𝜋(x))

it holds per triangular element T with diameter ℎT

(𝑎) ‖d𝜆‖∞,T = 𝒪(ℎT)

(𝑏) ‖𝜆‖∞,T = 𝒪(ℎ2T)

where ‖ · ‖∞,T is the maximum norm on T.

Proof. For the proof of the lemma, we will first show that there exists a positive
constant 𝑐 such that

𝑐 ≤ ‖d𝜋‖∞,T .

It was shown in [HPW05] that the area distortion 𝐴 := d𝜓𝑇d𝜓 induced by 𝜓 can
be expressed as

𝐴 = 𝑃 ·𝑄−1 · 𝑃

where 𝑃 and 𝑄 can be diagonalized (not simultaneously in general) as

𝑃 =

(︃
1− 𝜆𝜅1 0

0 1− 𝜆𝜅2

)︃
𝑄 =

(︃
(cos𝛼)2 0

0 1

)︃
.

Here 𝜅1, 𝜅2, are the principal curvatures of the smooth surface 𝒮 and 𝛼 is the
angle between the unit normal field 𝑁 of 𝒮 and the piecewise constant normal
field N of the discrete surface. We assume 𝛼 to be smaller than 𝜋/3 which holds
for bounded aspect ratio and sufficiently small ℎ.

This expression can now be used to bound d𝜓 and consequently d𝜋. Indeed, by
looking at the eigenvalues of 𝑃,𝑄−1, we get

‖d𝜓𝑇d𝜓‖ ≤ max{|1− 𝜆𝜅1|2, |1− 𝜆𝜅2|2} ·max{1, 1

(cos𝛼)2
} .

As 𝛼 ≤ 𝜋/3 we have
1

(cos𝛼)2
≤ 4 .

Moreover, let the principal curvatures of 𝒮 be bounded by 𝑘, |𝜅𝑖| ≤ 𝑘, and let
𝑙 := sup𝑥∈𝒮 𝜆(𝑥) <∞. Then we get that

|1− 𝜆𝜅𝑖|2 ≤ |1 + 𝑙𝑘|2 =: 𝐶/4 ,
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where 𝐶 is a positive constant and 𝐶/4 tends to 1 as ℎ (and therefore 𝜆) tends
to 0.
Altogether, we obtain a uniform upper bound for ‖d𝜓𝑇d𝜓‖,

‖d𝜓𝑇d𝜓‖ ≤ 𝐶 .

From this, it follows that ‖d𝜓‖ ≤
√
𝐶 is also bounded. As 𝜋 is the inverse of the

bijective mapping 𝜓, we finally get that d𝜋 has a uniform lower bound

𝑐 ≤ ‖d𝜋‖ .

(a) In order to show the first statement, we express 𝜆 alternatively by its pullback
𝜆 ∘ 𝜋 to K via 𝜋:

(𝜆 ∘ 𝜋)(x) = ⟨𝑁(𝜋(x)), 𝜋(x)− x⟩ .

Restricted to T, the derivative of this pullback is directly related to the angle 𝛼
between the surface normals of 𝒮 and T. Indeed, let 𝑢 be a unit tangent vector
to T, then it holds

d(𝜆 ∘ 𝜋)(𝑢) = ⟨d𝑁(d𝜋(𝑢)), 𝜋(x)− x⟩+ ⟨𝑁(𝜋(x)),d𝜋(𝑢)− 𝑢⟩ .

Using that d𝜋(𝑢) and d𝑁(d𝜋(𝑢)) are tangential to 𝒮 whereas 𝜋(x) − x and
𝑁(𝜋(x)) are normal, it follows

d(𝜆 ∘ 𝜋)(𝑢) = ⟨𝑁(𝜋(x)), 𝑢⟩

and consequently

|d(𝜆 ∘ 𝜋)| ≤ | sin𝛼| .

It was shown in [MT04] that this angle scales like ℎT in the maximum norm,

hence we get that ‖d(𝜆 ∘ 𝜋)‖ = ‖d𝜆 d𝜋‖ ∼ ℎT . With ‖d𝜆‖ = sup|𝑢|=1
|d𝜆(d𝜋(𝑢))|

|d𝜋|
and given that by the previous statement ‖d𝜋‖ is uniformly bounded below, it
follows that d𝜆 also scales like ℎT.

(b) The second statement follows immediately by integration: if the derivative
d𝜆 grows at most at rate ℎT, 𝜆 can at most grow at rate ℎ2T .

�

Lemma 4.3. Let 𝒮 and K satisfy the assumptions of 4.3.1. Then, in any point
x ∈ K

‖𝐼|𝜋(x) − I|x‖𝑀 ≤ 𝐶ℎ2

‖𝐼𝐼𝑛|𝜋(x) − IIn|x‖𝑀 ≤ 𝐶ℎ

where 𝐶 is a positive constant depending on the properties of 𝒮 and the shape
regularity of K.
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Fig. 4.1 A triangle T and its image 𝜋(T) on the smooth surface 𝒮 with the correspond-
ing notations. Gray dashed lines connect points on T with their corresponding image on
𝒮.

Proof. First, we introduce several notations, illustrated by Figure 4.1. Consider
a triangle T of K and its image 𝜋(T) ⊂ 𝒮. The scalar coefficient 𝑐 will denote
different constants independent of ℎ, but depending on the geometry of 𝒮 and K.
Indices 𝑖, 𝑗, 𝑘 will designate a cyclic permutation of indices 1, 2, 3.

Let g𝑖 denote the parametrized segments connecting edge midpoints m𝑘,m𝑗 , in
T, such that

g𝑖 : [0, ℎ𝑖/2] → K , 𝑔𝑖(0) = m𝑘 , 𝑔𝑖(ℎ𝑖/2) = m𝑗 ,

and let
𝛾𝑖 := 𝜋 ∘ 𝑔𝑖 : [0, ℎ𝑖/2] → 𝒮

be the normal projection of 𝑔𝑖 on the smooth surface. Also, let p𝑖 := 𝑔𝑖(ℎ𝑖/4) be
the midpoint of 𝑔𝑖, and let

ê𝑖 := 𝑔′𝑖(ℎ𝑖/4)

𝑣𝑖 := 𝛾′𝑖(ℎ𝑖/4) = d𝜋(ê𝑖) .

Notice that ê𝑖 is a unit vector parallel to the edge vector e𝑖 and 𝑣𝑖 := 𝛾′𝑖(ℎ𝑖/4) is
a tangent vector to 𝒮 in p′𝑖.

For the proof of the statement about the second fundamental form, we will pro-
ceed in three steps.
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(i) It holds 𝐼𝐼𝑛|p′𝑖(𝑣𝑖) = IIn|p𝑖(ê𝑖) +𝒪(ℎ).

As we consider 𝛾𝑖 as a mapping in R3, we can approximate d𝜋(ê𝑖) = 𝑣𝑖 by a
central finite difference approximation

𝑣𝑖 =
2

ℎ𝑖
(m′

𝑗 −m′
𝑘) +𝒪(ℎ2) .

Similarly, for the director field 𝑛 it holds

d𝑛(𝑣𝑖)|p′𝑖 =
2

ℎ𝑖
(𝑛(m′

𝑗)− 𝑛(m′
𝑘)) +𝒪(ℎ2) .

By definition we have 𝐼𝐼𝑛|p′𝑖(𝑣𝑖) = ⟨d𝑛(𝑣𝑖)|p′𝑖 , 𝑣𝑖⟩ and obtain

𝐼𝐼𝑛|p′𝑖(𝑣𝑖) =
4

ℎ2𝑖
⟨𝑛(m′

𝑗)− 𝑛(m′
𝑘),m

′
𝑘 −m′

𝑗⟩+𝒪(ℎ2) ,

and by inserting the definition of the discrete directors {n𝑖}𝑖 it writes

𝐼𝐼𝑛|p′𝑖(𝑣𝑖) =
4

ℎ2𝑖
⟨n𝑗 − n𝑘,m

′
𝑘 −m′

𝑗⟩+𝒪(ℎ2) .

According to statement (b) of the previous lemma, 𝜆 : 𝒮 → R is of order ℎ2,
hence m𝑖 = m′

𝑖 +𝒪(ℎ2). It follows

𝐼𝐼𝑛|p′𝑖(𝑣𝑖) =
4

ℎ2𝑖
⟨n𝑗 − n𝑘,m𝑘 −m𝑗⟩+𝒪(ℎ2)

=
2

ℎ2𝑖
⟨n𝑗 − n𝑘, v𝑘 − v𝑗⟩+𝒪(ℎ2) .

By definition of the discrete quadratic form IIn we finally obtain

𝐼𝐼𝑛|p′𝑖(𝑣𝑖) = IIn|p𝑖(ê𝑖) +𝒪(ℎ2) .

%
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(ii) It holds 𝐼𝐼𝑛|x′(𝑣𝑖) = IIn|x(ê𝑖) +𝒪(ℎ).

Let x denote some arbitrary point in T. Let us keep denoting by ê𝑖 the translation
of ê𝑖 to x, and set 𝑣𝑖 := d𝜋x(ê𝑖).

As on T d𝜋 is smooth (because 𝒮 is smooth), we can consider d𝜋(·)(ê𝑖) as a
function of the point where it is evaluated and get the approximation

‖𝑣𝑖 − 𝑣𝑖‖R3 = ‖d𝜋x(ê𝑖)− d𝜋p𝑖(ê𝑖)‖R3 ≤ 𝑐‖x− p𝑖‖R3 ≤ 𝑐

2
ℎ .

As 𝑛 is assumed smooth, the change of d𝑛 from p′𝑖 to x′ is bounded by the
geodesic distance from x′ to p′𝑖 on 𝒮, hence by ℎ ([MT04]).
Thus, the change of d𝑛 is bounded by ℎ and the vectors 𝑣𝑖, 𝑣𝑖, as well as the
points x′, p′𝑖, are close to each other with respect to ℎ. Thus it holds

|𝐼𝐼𝑛|x′(𝑣𝑖)− 𝐼𝐼𝑛|p′𝑖(𝑣𝑖)| = |⟨d𝑛x′(𝑣𝑖), 𝑣𝑖⟩ − ⟨d𝑛p′𝑖(𝑣𝑖), 𝑣𝑖⟩| ≤ 𝑎3ℎ .

Using that IIn is constant on T and including (i) finally gives

|𝐼𝐼𝑛|x′(𝑣𝑖)− IIn|x(ê𝑖)| ≤ |𝐼𝐼𝑛|x′(𝑣𝑖)− 𝐼𝐼𝑛|p′𝑖(𝑣𝑖)|+ |𝐼𝐼𝑛|p′𝑖(𝑣𝑖)− IIn|p𝑖(ê𝑖)|
≤ 𝑐ℎ .

%

(iii) It follows |‖𝐼𝐼𝑛|x′‖2𝑀 − ‖IIn|x‖2𝑀 | ≤ 𝐶ℎ.

The formula for quadratic forms derived in (4.1) holds similarly for 𝐼𝐼𝑛|x′ and
IIn|x. Moreover, the expression still holds if the 3 directions used to evaluate the
form do not form a triangle, except for the simplification of the cross product.

By use of (ii), all the corresponding components in these expressions differ by
order ℎ, hence the corresponding quadratic forms only differ by order ℎ and we
obtain the statement

‖𝐼𝐼𝑛|x′ − IIn|x‖𝑀 ≤ 𝐶ℎ .
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%

One could proceed in a similar way to get the statement of the lemma for the
consistency error of the first fundamental form. An alternative way is to recognize
that the difference between the smooth and the discrete first fundamental forms
is the metric distortion induced by the normal projection 𝜋 or, equivalently, by
its inverse mapping 𝜓.
Therefore, we can make use of the properties of the metric distortion
𝐴 = 𝑃 ·𝑄−1 · 𝑃 already mentioned in the proof of Lemma 4.2. Indeed, 𝜆 is of
order ℎ2, such that for an eigenvalue of 𝑃 we have 1−𝜆𝜅𝑖 = 𝒪(1+ℎ2). Moreover,
the angle 𝛼 is of order ℎ, hence for the non-constant eigenvalue of 𝑄 we also get
(cos𝛼)2 = 𝒪(1 + ℎ2). It follows that 𝐴 approaches the identity by order ℎ2 in
the operator norm. As we are considering a finite dimensional space, all norms
are equivalent, and we get

‖𝐼 − I‖𝑀 ≤ 𝐶ℎ2 .

�

We can now deduce the consistency error of the membrane and bending energies
with respect to the 𝐿2-norm.

Let 𝜑*𝐼, 𝜑*𝐼𝐼𝑛, denote the pullbacks of the fundamental forms of the deformed
smooth surface to the undeformed smooth surface

𝜑*𝐼(𝑣𝑖) = 𝐼(d𝜑(𝑣𝑖)) = ⟨d𝜑(𝑣𝑖), d𝜑(𝑣𝑖)⟩
𝜑*𝐼𝐼𝑛(𝑣𝑖) = 𝐼𝐼𝑛(d𝜑(𝑣𝑖)) = ⟨d𝑛(d𝜑(𝑣𝑖)),d𝜑(𝑣𝑖)⟩ .

Let the deformed edge e𝑖 be given by

e𝑖 = 𝜑(v𝑘)− 𝜑(v𝑗) ,

and let m𝑖 =
1
2(𝜑(v̄𝑗)+𝜑(v̄𝑘)) be its midpoint. Then we can define the pullbacks

of the discrete fundamental forms by

I*(^̄e𝑖) := ⟨ê𝑖, ê𝑖⟩
II*n(^̄e𝑖) := 2⟨n(m𝑗)− n(m𝑘), ê𝑖⟩ .
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Proposition 4.1. Let 𝒮, K̄, and 𝒮,K, satisfy the assumptions of 4.3.1. Then⃒⃒⃒⃒∫︁
𝒮
‖𝜑*𝐼 − 𝐼‖2𝑀d𝐴−

∫︁
K̄
‖I* − Ī‖2𝑀dĀ

⃒⃒⃒⃒
≤ 𝐶ℎ2⃒⃒⃒⃒∫︁

𝒮
‖𝜑*𝐼𝐼𝑛 − 𝐼𝐼 𝑛̄‖2𝑀d𝐴−

∫︁
K̄
‖II*n − ĪIn̄‖2𝑀dĀ

⃒⃒⃒⃒
≤ 𝐶ℎ

where 𝐶 is a positive constant depending on the properties of 𝒮 and the shape
regularity of K.

Proof. On the undeformed surface, we can directly apply the results of the
previous lemma to get the pointwise estimate

‖𝐼 − Ī‖𝑀 ≤ 𝐶ℎ2

‖𝐼𝐼𝑛 − ĪIn‖𝑀 ≤ 𝐶ℎ .

For the deformed fundamental forms however, we have to show that for the
pullbacks 𝜑*𝐼, 𝜑*𝐼𝐼𝑛, of the fundamental forms of the smooth deformed surface
and for the discrete fundamental forms I*, II*n, we still have

‖𝜑*𝐼 − I*‖ ≤ 𝐶ℎ2

‖𝜑*𝐼𝐼𝑛 − II*n‖ ≤ 𝐶ℎ .

First, by finite difference approximation, we have

d𝜑(𝑣𝑖) =
1

ℎ
(𝜑(v̄𝑗)− 𝜑(v̄𝑘)) +𝒪(ℎ2)

= ê𝑖 +𝒪(ℎ2) . (4.5)

Thus for the first fundamental form we immediately get

𝜑*𝐼(𝑣𝑖) = ⟨ê𝑖, ê𝑖⟩+𝒪(ℎ2)

= I*(^̄e𝑖) +𝒪(ℎ2) .

In order to get the approximation for the second fundamental form, we need to
show that

m𝑖
′ = 𝜑(m̄′

𝑖) +𝒪(ℎ2) . (4.6)

Then
𝑛(𝜑(m̄′

𝑖)) = 𝑛(m𝑖
′) +𝒪(ℎ2) = n𝑖 +𝒪(ℎ2) .

follows because of the smoothness of 𝑛, and this eventually implies

d𝑛(d𝜑(𝑣𝑖)) =
2

ℎ
(n𝑗 − n𝑘) +𝒪(ℎ2) .

To prove (4.6), we first notice that m𝑖
′ = m𝑖 +𝒪(ℎ2), such that it is sufficient to

show m𝑖 = 𝜑(m̄′
𝑖) + 𝒪(ℎ2). Then, we can consider the undeformed edge ē𝑖 as a
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parametrized path, ē𝑖 : [0, ℎ] → R3, with ē𝑖(0) = v̄𝑗 , ē𝑖(ℎ) = v̄𝑘 and ē𝑖(ℎ/2) = m̄𝑖.
We further define a path 𝜉 on 𝒮 by

𝜉(𝑡) := 𝜑 ∘ 𝜋̄ ∘ ē𝑖(𝑡) ,

which is the image by 𝜑 of the projection of ē𝑖 on the smooth surface 𝒮. This
path can be used to rewrite m𝑖 and 𝜑(m̄

′
𝑖) as

m𝑖 =
1

2
(𝜉(0) + 𝜉(ℎ))

𝜑(m̄′
𝑖) = 𝜉(ℎ/2) .

Equation (4.6) then follows by inserting the Taylor expansion of 𝜉 in ℎ and in
ℎ/2.

Combining (4.5) and (4.6), we get

𝜑*𝐼𝐼𝑛(𝑣𝑖) = II*n(^̄e𝑖) +𝒪(ℎ2) .

From the approximations pf the directional evaluations of the pullback of the
fundamental forms, step (ii) and (iii) of the proof of Lemma 4.3 go through and
we get

‖𝜑*𝐼 − I*‖𝑀 ≤ 𝐶ℎ2

‖𝜑*𝐼𝐼𝑛 − II*n‖𝑀 ≤ 𝐶ℎ .

To prove the statement of the proposition, it is now sufficient to apply triangle
inequalities repeatedly. For the first fundamental form, we get, in the weighted
Frobenius norm ‖ · ‖𝑀 ,

‖𝜑*𝐼 − 𝐼‖𝑀 = ‖𝜑*𝐼 − I* + I* − 𝐼‖𝑀
= ‖I* − 𝐼‖𝑀 +𝒪(ℎ2) ,

and

‖I* − Ī‖𝑀 = ‖I* − 𝐼 + 𝐼 − Ī‖𝑀
= ‖I* − 𝐼‖𝑀 +𝒪(ℎ2) .

Thus we obtain
|‖(𝜑*𝐼 − 𝐼)‖2𝑀 − ‖(I* − Ī)‖2𝑀 | = 𝒪(ℎ2) .

The same procedure yields the estimate for the second fundamental form:

|‖(𝜑*𝐼𝐼𝑛 − 𝐼𝐼 𝑛̄)‖2𝑀 − ‖(IIn − ĪIn̄)‖2𝑀 | = 𝒪(ℎ) .

To get the statement of the proposition, we then have to integrate over the
corresponding surfaces. As |det d𝜋| is of order 1 +𝒪(ℎ2), we get∫︁
𝒮
‖𝜑*𝐼 − 𝐼‖2𝑀d𝐴−

∫︁
K̄
‖I* − Ī‖2𝑀dĀ =

∫︁
K̄

(︀
‖𝜑*𝐼 − 𝐼‖2𝑀 |det d𝜋| − ‖I* − Ī‖2𝑀

)︀
dĀ

≤ 𝐶ℎ2 .
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Similarly, for the second fundamental form we obtain∫︁
𝒮
‖𝜑*𝐼𝐼𝑛 − 𝐼𝐼 𝑛̄‖2𝑀d𝐴−

∫︁
K̄
‖II*n − ĪIn̄‖2𝑀dĀ ≤ 𝐶ℎ .

�

4.4 Relation to existing constant strain models

4.4.1 Geometric reformulation of the constant strain triangle

For the membrane energy, the presented discrete model recovers the widely used
constant strain triangle (CST) that results from piecewise linear interpolation
(𝑀1

0 ) of the positions. This relation was already mentioned in [GSH+04] where
the membrane strains were expressed very similarly. It can be made explicit
by elementary manipulations of the stiffness matrix of the 𝑀1

0 basis functions
expressed in barycentric (triangular) coordinates. As this calculation does not
provide any further insight, we will omit it.

4.4.2 Connection to the triangular Morley element

In the last chapter, we noticed that it is crucial for a shearable shell model to
provide reliable predictions when shearing is constrained to vanish, i.e., in the
Kirchhoff limit, as this behaviour is strongly related to its susceptibility to shear
locking.
With our definition of shearing, imposing the Kirchhoff assumption implies

that every director n𝑖 is forced to stay orthogonal to its corresponding edge e𝑖
and is thus left with a single degree of freedom which can be seen as a turning
angle around the edge axis.

More precisely, on an edge e𝑖 shared by triangles T and T̃, let 𝛼𝑖 be the angle
between the (unsheared) director n𝑖 and the triangle normal N of T, in the plane
orthogonal to the edge e𝑖 (see Fig. 4.2). Then we can write the director n𝑖 as

n𝑖 = cos(𝛼𝑖)N + sin(𝛼𝑖) ê
*
𝑖 ,

and eventually obtain

IIn(e𝑖)− IIn(e𝑗)− IIn(e𝑘) = −8AT

|e𝑖|
sin(𝛼𝑖) .

Inserting this in (4.1) and using the rescaled basis {|ē𝑖|2 (ê*𝑖⊗ ê*𝑖)}𝑖=1,2,3 (where
ê* denotes the rotated unit edge), we obtain the following Kirchhoff version of
our second fundamental form:

IIKirchhoff :=
3∑︁
𝑖=1

sin(𝛼𝑖)

h𝑖/2
ê*𝑖 ⊗ ê*𝑖 . (4.7)
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Fig. 4.2 T and T̃ are neighboring triangles with common edge e𝑖. ê*𝑖 is the unit
edge, rotated by 90 degrees in the plane of T. The angle 𝜃𝑖 is the angle between the
adjacent face normals N and Ñ; 𝛼𝑖, 𝛼̃𝑖 denote the angles between the director n𝑖 and N, Ñ
respectively. 𝜑𝑖 is the angle between n𝑖 and the angle bisecting direction.

The height h𝑖 of the triangle T appears through 2AT = |e𝑖| · h𝑖.

This Kirchhoff formulation points out a close relation to the so-called Morley
triangle [Mor71], which was later reintroduced as the low-order Kirchhoff plate
element DKT6 [BZH01]. The non-conforming finite element space corresponding
to this element can be written as

ℳ := {𝑣 ∈ 𝑃 2(𝑇 )|
∫︁
e
[∇𝑣 · ê*]d𝑠 = 0 ∀ edges e} (4.8)

where [·] denotes the difference in values (component-wise) from one element
to the another across a common edge. In words, these are piecewise quadratic
functions which are continuous at vertices, and whose edge tangential projection
is continuous at edge midpoints. A possible set of degrees of freedom of this
Kirchhoff plate element are the values of the displacement 𝑤ℎ of the vertices and
the derivative ∇𝑤ℎ · ê*𝑖 in normal direction to the edge at edge midpoints. This
derivative is a scalar value, that can be used to approximate the rotation angle
𝛼𝑖 at the edge midpoint, and thus provides the relation to the above-mentioned
Kirchhoff model.

Nonlinear versions of the Morley element for shell models (which also treat the
membrane strains with CST) are the model proposed by van Keulen and Booij
[vKB96] on the finite element side, and the discrete mid-edge shape operator
(MSO) derived in [GGRZ06] from the geometric view.
The shape operator MSO was numerically shown to be extremely robust to

mesh structure, especially compared to other current low-order operators esti-
mating curvature, including quadratic fit and the cotangent formula. The shell
model derived in this thesis provides a shear-deformable version of this operator,
and thereby generalizes it to a wider range of applications, while inheriting its
robustness with respect to mesh-structure.
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Lemma 4.4. For shallow shells and for sufficiently fine mesh resolutions, the
Kirchhoff limit of the discrete second fundamental form corresponds to the mid-
edge shape operator.

Proof. Let Λ denote the mid-edge shape operator on a triangle T. It is defined by
means of a finite difference approximation of the change of particularly defined
mid-edge normals m𝑖 given by

m𝑖 = N+ (𝜃𝑖/2 + 𝑠𝑖𝜑𝑖)e
*
𝑖 .

As before, N is the face normal of T, 𝜃𝑖 is the angle between the face normals of
T and of the neighbouring triangle T̃, 𝑠𝑖 equals ±1, and 𝜑𝑖 designates the free
angle between m𝑖 and the angle bisecting direction (see Fig. 4.2). The directional
evaluations of the shape operator Λ along edges are given by

Λ(e𝑖) := 2 ⟨m𝑘 −m𝑗 , e𝑖⟩
= 2 ((𝜃𝑘/2 + 𝑠𝑘𝜑𝑘)e𝑖 · e*𝑘 − (𝜃𝑗/2 + 𝑠𝑗𝜑𝑗)e𝑖 · e*𝑗 ) .

If the angles 𝜃𝑖 and 𝜑𝑖 are small, which is for example the case for shallow shells
or for sufficiently fine triangulations, the director n𝑖 of the Cosserat model can
be expressed as

n𝑖 = N+ (𝜃𝑖/2 + 𝑠𝑖𝜑𝑖)e
*
𝑖 + sin(𝜓𝑖) e𝑖

= 𝑚𝑖 + sin(𝜓𝑖) e𝑖 ,

where 𝜓𝑖 is the signed shear angle in direction of e𝑖.

The values of IIn along edges are then given by

IIn(e𝑖) = Λ𝑖 + 2 (sin(𝜓𝑗)e𝑖 · e𝑗 − sin(𝜓𝑘)e𝑖 · e𝑘) .

In particular, for vanishing shear angle 𝜓𝑖 = 0, we get IIn(e𝑖) = Λ(e𝑖), and hence
the corresponding quadratic forms are equal.

�

4.4.3 The geometry of rotation-free elements

Closely related to the Morley triangle –conceptually as well as analytically– are
so-called rotation-free shell elements. However, whereas for the Morley triangle
the angle at edge midpoints is a priori free, rotation-free elements –as their name
suggests– get rid of this rotation by prescribing the angle by the vertex positions
of the neighbouring triangles, following some specific rule.

In their very enlightening investigation of various rotation-free models [GT07],
Gaerdsback and Tibert point out that several of these models rely on a same pro-
cedure to generate an operator measuring two-dimensional curvature by a linear
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superposition of 3 one-dimensional curvature measures. Yet, this superposition is
considered by the authors as ad hoc, as "no exact relation exists" between these
quantities of different dimensions. The geometric perspective of our construc-
tion not only provides a rigorous justification of this relation through (4.7). It
also allows to correctly interpret the involved quantities, as it turns out that this
common superposition procedure actually corresponds to the construction of a
discrete second fundamental form per triangle in our geometric sense through

IIrotation−free :=

3∑︁
𝑖=1

𝜅𝑖 ê*𝑖 ⊗ ê*𝑖 .

where {𝜅𝑖}𝑖=1,2,3 are prescribed directional curvatures. This makes also clear that
by this method, the one-dimensional curvatures {𝜅𝑖}𝑖=1,2,3 that are considered as
normal curvatures across edges (e.g. by an integrated hinge angle) are effectively
not used as such. A discrete second fundamental form with curvatures {𝜅𝑖}𝑖=1,2,3

across edges, i.e., along rotated unit edges ê
*
𝑖 should in contrast be written as

ĨIrotation−free :=
3∑︁
𝑖=1

(𝜅𝑖 − 𝜅𝑗 − 𝜅𝑘) ê𝑖 ⊗ ê𝑖

(compare to (4.1)).

Remarks.

1. It is well known that the accuracy of such rotation-free elements (and
low-order elements in general) can strongly depend on the specific shape of the
mesh and the position of the mesh with respect to the considered geometry.
By providing a correct intuition of what geometric entity is actually used as
curvature, the insight we worked out in this last section is useful to understand
for which mesh-patterns and geometries a particular definition of curvature is
particularly suitable and for which it might break down.

2. It is a comfortable side effect of the uniform description of the membrane
and the bending strains in terms of structure that the same code can basically
be reused, which eases the implementation considerably (see Appendix).



56 Chapter 4 – Discrete fundamental forms



Chapter 5

DCS: A Discrete Cosserat

Shell model

The approaches to discretization preferred in

different areas often have little in common.

Denis Zorin [Zor05]

In this chapter, we present the Discrete Cosserat Shell (DCS) model that pro-
ceeds from the investigations of the previous chapters. The resulting model turns
out to be an enhancing geometric reformulation of a Reissner-Mindlin shell ele-
ment proposed by Flores et al. [FOZ95], and provides in particular an alternative
interpretation of the assumed strain approach of this model. The last two sections
are dedicated to theoretical and numerical validations.

5.1 Discrete model

Definition 5.1. A discrete shell K = (K, n, 𝑡) is composed of an embedded 2-
dimensional simplicial surface K = (VK,EK,TK) with vertices VK, edges EK,
and triangular faces TK, a unit director field n based on edge midpoints, and a
thickness 𝑡 ∈ R.

Definition 5.2. A deformation of a discrete initial configuration K̄ = (K̄, 𝑛̄, 𝑡)
is a mapping

F = (f,n) : K̄ → K

where f maps each vertex to a point in R3, and n associates a unit director with
each undeformed edge.
The deformed shell K is the discrete shell whose simplicial mid-surface is defined
by vertices VK = f(V̄K̄), with the same connectivity as K̄, and the director field
n = n associated with its edges.

57



58 Chapter 5 – DCS: A Discrete Cosserat Shell model

Just as in the smooth case, we will assume that undeformed configurations are
unsheared, i.e., undeformed directors are all orthogonal to their corresponding
edge. As this does not completely pin down their position, we additionally assume
that they all point on the same side of the mid-surface, and minimize the induced
bending energy.

Remark. The proof for consistency of the last chapter is not affected by this
assumption. Indeed, although the pullback 𝑛̄(𝜋(𝑚e)) = 𝑁̄(𝜋(𝑚e)) must not be
orthogonal to the edge e, and hence the discrete director field only approximately
samples the smooth director field, this approximation is still good enough given
that the smooth surface normal is perpendicular to the edge up to second order
[GGRZ06].

Discrete stretching and bending energies First and generalized second
fundamental forms were defined as discrete quadratic forms, constant per triangle,
determined by 3 edge-values as given in (4.2) and (4.3). The values for the
undeformed and deformed first fundamental forms have the expressions

ĪT(ē𝑖, ē𝑖) := ⟨v̄𝑘 − v̄𝑗 , v̄𝑘 − v̄𝑗⟩ = ‖ē𝑖‖2 (5.1)

IT(ē𝑖, ē𝑖) := ⟨f(v̄𝑘)− f(v̄𝑗), f(v̄𝑘)− f(v̄𝑗)⟩ = ‖e𝑖‖2 .

For the generalized second fundamental forms we have

ĪIn̄,T(ē𝑖, ē𝑖) := 2⟨n̄𝑘 − n̄𝑗 , ē𝑖⟩ (5.2)

IIn,T(ē𝑖, ē𝑖) := 2⟨n𝑘 − n𝑗 , e𝑖⟩ .

Here, we directly define the pullback of the deformed fundamental forms on
the undeformed configuration, as described in Section 4.2.
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Discrete shear form The discrete shear form is a discrete one-form, again
defined by values on edges. These values are the projection of the director on the
discrete edge-based tangent plane as defined in (3.6):

sn(e𝑖) = |ntan𝑖 |2 = ⟨n𝑖, ê𝑖⟩2 .

To obtain the actual piece-wise linear one-form sn from these values, one simply
uses a Whitney one-form interpolation scheme as described in the appendix.

We also refer to the appendix for the details of the actual implementation of
the energies.

Discrete Cosserat Energy Altogether, we obtain the total elastic energy of
DCS for isotropic homogeneous materials:

W =
1

2

∑︁
T∈TK

(︂
AT(

𝑡

4
‖IT − ĪT‖2𝑀 +

𝑡3

12
‖IIn,T − ĪIn̄,T‖2𝑀 ) + 𝑡𝜅𝐺

∫︁
T
|sn|2dA

)︂
.

(5.3)

The sum is over triangular faces TK, and AT denotes, as before, the area of such
a face. The material norm ‖ · ‖2𝑀 and the shear modulus 𝐺 are the same as in
the remarkably similar smooth energy (2.2).
Again, this formulation can easily be extended to non-isotropic materials.

5.2 A geometric justification of assumed strains

Our discrete energy formulation can easily be translated to the FE language.
As already mentioned in the last chapter, the membrane energy corresponds to
the energy resulting from a piecewise linear conforming interpolation of vertex
positions. The bending energy results from a piecewise linear non-conforming
interpolation of the directors based on midpoints, whereas the shearing field is a
lowest order Raviart-Thomas interpolation of the directors’ projection onto the
edges.

DCS may thus be seen as a geometric reformulation of the shell element TLLL
considered by Flores et al. [FOZ95]. However, a doubt persists as it does not
become clear how the shearing part of TLLL is exactly evaluated. What is
stated explicitly though, is that the shearing energy of this element is based
on an assumed strain ansatz that postulates a linear shear field with constant
edge tangential components [OZF94], and relies on a very particular choice of
interpolated edge values.

The assumed strain ansatz is widely used in the construction of shear-deformable
triangular shell elements, as well as in other elasto-plastic simulations where nu-
merical difficulties are ubiquitous. For Reissner-Mindlin plates, the basic idea is
very simple: to make sure that shearing can be zero independently of bending



60 Chapter 5 – DCS: A Discrete Cosserat Shell model

contributions, the easy way out is to write down the shearing and bending strain
matrices, deduce the relation that shearing must satisfy analytically in order to
be able to vanish, and replace the initial shear strain matrix by a substitute shear
strain matrix which does satisfy these relations [OZST92].

The difference of distinct assumed strain approaches lies in the construction of
this substitute matrix. The most common approach is to sample shearing only in
those points where the relation is satisfied, which leads to reduced integration. A
seemingly more subtle approach (which still often recovers a reduced integration
approach) is to define shear strains a priori such that they satisfy the previously
identified relations, which can again be done in different ways [OZST92, BR97,
NTRNXB08].

Assumed strain approaches as well as reduced integration methods are often
disputed, since, albeit practically useful and theoretically justified in many cases
(for example if they correspond to an easier numerical treatment of an equivalent
mixed formulation [MH90]), they are often used incautiously, lacking rigorous
analysis (see, e.g., [CB03, Dvo95]). In any case, the shear strain is explicitly
constructed such that in the discrete setting, the bothersome locking cannot
occur. Although this approach is very pragmatic, it does not directly rely on a
property of the initial smooth problem and might thus be considered as ad hoc
[BBR00].

For DCS, if the shearing energy is essentially equivalent to the one obtained
by the particular assumed strain ansatz of TLLL, it results from very differ-
ent geometric arguments. Using only the edge-tangential parts of the directors,
specifically at edge midpoints, results from the additional degree of freedom in
the definition of discrete tangent planes, which was in turn motivated by the
insight that measuring shear in this way corresponds to using the most reliable
information of the mesh exclusively. From this, preserving the structure of shear-
ing as a one-form naturally suggests the Raviart-Thomas interpolation of these
values.

Remark. In Chapter 3, we also observed that a different definition of normals, in
particular a definition completely prescribed by the vertex positions, is likely to
lead to an unsuitable bending energy when shearing is constrained to zero. Hence
our evaluation of shear also makes sure that shearing can vanish independently of
bending, but this is a side effect of the approach rather than the actual motivation
of our definition of shear strains.

5.3 Zero-energy configurations

The linear Reissner-Mindlin plate element corresponding to DCS was shown to be
free of spurious modes [OZF94]. We will give an elementary geometric proof that
in practice the same holds for the nonlinear model DCS, as the only zero-energy
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configurations apart from global isometries are configurations where directors are
flipped, i.e., rotated by 180 degrees around the edge.

Proposition 5.1. The discrete energy (5.3) has no zero-energy configurations
except for global isometries of the undeformed configuration and flipping of direc-
tors.

Proof. It is sufficient to show the statement for a single triangle. Let v̄𝑖 and n̄𝑖
be the 3 vertices and 3 directors of an undeformed configuration of a triangle. In
particular, directors are unsheared, i.e., orthogonal to their corresponding edges.

Let (v𝑖,n𝑖)𝑖=1,2,3 be a prospective zero-energy configuration of the triangle.
Stretching energy can only be zero if the edges have the same length as in the
undeformed configuration. Given that the triangle is defined by these lengths up
to global isometries, it follows that any configuration with zero membrane energy
is a global rotation of the triangle. Hence, let discard global isometries of the
triangle and set v𝑖 = v̄𝑖.
To find the possible positions of directors n𝑖 = n𝑖 that lead to zero energy, it
is then sufficient to look at different configurations of the directors on a fixed
triangle.

As usual, let e𝑖 = v𝑘 − v𝑗 . In order to annul shearing and bending respectively,
it must hold for {n𝑖}𝑖=1,2,3:{︃

⟨n𝑖 − n̄𝑖, e𝑖⟩ = 0

⟨(n𝑘 − n̄𝑘)− (n𝑗 − n̄𝑗), e𝑖⟩ = 0 ,
(5.4)

where (𝑖𝑗𝑘) = (123) designates a cyclic permutation of indices. Hence, we have
to prove that a solution n𝑖 to this system satisfies n𝑖 = ±n̄𝑖.

Fig. 5.1 E𝑖 is the plane orthogonal to the edge e𝑖, containing n̄𝑖. E+
𝑖 is the halfspace

intersecting the triangle, E−
𝑖 its complement. The bending energy is the same for +n̄𝑖 or

its flipped position −n̄𝑖.
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If we set 𝛿n𝑖 := n𝑖− n̄𝑖 as the difference of the directors, the use of e𝑖+e𝑗+e𝑘 = 0
yields {︃

⟨𝛿n𝑘, e𝑖⟩ = ⟨𝛿n𝑗 , e𝑖⟩
⟨𝛿n𝑘, e𝑗⟩ = ⟨𝛿n𝑗 , e𝑘⟩ ,

for the second equation. Consequently all the products ⟨𝛿n𝑖, e𝑗⟩ for 𝑖 ̸= 𝑗 are
equal, say to some 𝛼 ∈ R. Taking into account the first equation of (5.4), a
solution n𝑖 of the linear system needs to satisfy

⟨𝛿n𝑖, e𝑗⟩ = 𝛼 · (1− 𝛿𝑖𝑗) ∀ 𝑖, 𝑗 = 1, 2, 3

where 𝛿𝑖𝑗 is Kronecker’s delta.

Hence 𝛿n𝑖 is orthogonal to e𝑖 for all 𝑖 = 1, 2, 3. By assumption on the undeformed
configuration n̄𝑖 is orthogonal to e𝑖, and therefore the deformed director n𝑖 is also
orthogonal to e𝑖.
Let E𝑖 denote the plane orthogonal to e𝑖 that passes through the edge midpoint
(see Fig. 5.1), which thus contains n̄𝑖 as well as n𝑖.
The direction of n𝑖 separates this plane in two half-spaces. Let E+

𝑖 denote the
half-space of E𝑖 which crosses the inside of the triangle, E

−
𝑖 its complement. Then

there are 3 possibilities.
If 𝛿n𝑖 lies in E+

𝑖 , then ⟨𝛿n𝑖, e𝑗⟩ ≥ 0 and ⟨𝛿n𝑖, e𝑘⟩ ≤ 0, such that 𝛼 = 0. By
symmetry, the same holds for 𝛿n𝑖 ∈ E−

𝑖 . Finally, if 𝛿n𝑖 = 𝜆n̄𝑖 for some 𝜆 ∈ R,
then n𝑖 = ±n̄𝑖 because both n𝑖 and n̄𝑖 have unit length.

�

This means that the energy is not only blind to a global change of orientation
of the discrete surface, but simply rotating directors by 180 degrees locally does
also not affect the energy.

=

However, for practical applications this is not an issue. To compute a defor-
mation, we follow a principle of least energy and compute local minima of the
elastic deformation energy. In particular, if we start from a configuration where
all directors are on the same side of the surface, the directors will stay away from
configurations that require high energy. Crossing the triangle plane in order to
flip induces large bending energy, hence such a configuration will naturally be
avoided as long as the step between two successive configurations is not so large
that the corresponding energy well can be jumped over.



5.4 Numerical validation 63

5.4 Numerical validation

As suggested by tests run with TLLL ( [FOZ95]) and its underlying linear plate
element ([OZF94]), DCS passes classical linear and nonlinear shell benchmark
tests. Some representative results are presented here.

A note on boundary conditions In the following computations, the bound-
ary conditions that are used are clamped and simply supported boundaries, and
application of external loads and moments. To simulate simply supported bound-
aries, we simply fix the vertex degrees of freedom, and leave directors free. For
clamped boundary conditions, we fix positional and director degrees of freedom.
This interpretation of ’clamped’ is sometimes called soft clamped, and in this case,
shearing strains on the boundary do not need to vanish. Another variant, also
called hard clamped, is to fix normals on the boundary and impose that directors
and normals coincide there. A similar distinction can be made when applying
moments. In our computations, we applied the moment to directors, without any
further constraint on the shearing strains.
For a detailed discussion about boundary conditions for Kirchhoff and Cosserat

shells, we refer to standard textbooks such as [CB03].

5.4.1 Analytic linear benchmarks

For small deformations of square and circular plates, analytic solutions for partic-
ular benchmarks are available, for Kirchhoff plates, Reissner-Mindlin plates and
sometimes for the 3D model. A general method to obtain analytic solutions for
arbitrary boundary conditions and more involved geometries is still a matter of
research [BK04].

We tested DCS on clamped circular and square plates under uniform load.
The convergence plots show the logarithm of the relative error with respect to
the analytic solution of the most deflected point at full load against the logarithm
of the mesh density (♯ elements)−1/2 or the average edge length of the elements.

Circular plate under uniform load

For the circular plate of radius 𝑟 under uniform load 𝑞, exact formulas exist for
the deflections for clamped (𝑤𝑐) and simply supported (𝑤𝑠𝑠) boundaries. If we

call 𝐷 the bending modulus, defined as 𝐷 := 𝐸𝑡3

12(1−𝜈2) , these formulas correspond

to [TWK59]:

Kirchhoff:

𝑤𝐾𝑐 =
𝑞 𝑟4

64 𝐷
, 𝑤𝐾𝑠𝑠 =

(5 + 𝜈) 𝑞 𝑟4

64 𝐷 (1 + 𝜈)
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Fig. 5.2 Convergence of DCS to the analytic solution for a clamped scircular plate
under uniform load for various thicknesses.

Reissner-Mindlin:

𝑤𝑅𝑀𝑐 = 𝑤𝐾𝑐

(︃
1 +

4

1− 𝜈

(︂
𝑡

𝑟

)︂2
)︃
, 𝑤𝑅𝑀𝑠𝑠 = 𝑤𝐾𝑠𝑠

(︃
1 +

4

3

(3 + 𝜈)

(1− 𝜈)(5 + 𝜈)

(︂
𝑡

𝑟

)︂2
)︃
.

We did the experiment for a disk of radius 𝑟 = 1 with material parameters
𝐸 = 1.7242 · 107, 𝜈 = 0.3, for thicknesses

{1 · 10−1, 5 · 10−2, 1 · 10−2, 5 · 10−3, 1 · 10−3} .
The load 𝑞 was adapted to the thickness in a way to keep the expected deflection
between 1 · 10−4 and 1 · 10−8.
The meshes are pictured next to the convergence plot in Fig. 5.2. As the general
behaviour did not differ from clamped to simply supported boundary conditions,
we only present the experiments for clamped boundaries.

The results support that DCS converges quadratically to the analytic deflection
of the Reissner-Mindlin plate for sufficiently small thicknesses. For larger 𝑡, we
can observe the theoretical convergence rate 𝒪(max(𝑡2, ℎ2)) as refining the mesh
increases the error.

Square plate under uniform load

For the square plate of edge length 1 under uniform load, we used again as
material parameters 𝐸 = 1.7242 · 107, 𝜈 = 0.3, and the thickness values

{1 · 10−1, 5 · 10−2, 1 · 10−2, 1 · 10−3} .
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Fig. 5.3 Convergence of DCS to the analytic solution for a clamped square plate under
uniform load as given in [TWK59] on a regular mesh, a cross mesh and an irregular mesh.
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The applied uniform load density is such that it integrates to 1 over the whole
plate. For simply supported boundaries, analytic solutions are obtained by a
series extension due to Navier. For clamped boundaries, they are deduced from
a clever superposition of these solutions for different loads, see [TWK59].

The presented results were obtained for clamped boundaries. We did this
experiment on three different meshes (see Fig. 5.3) to inspect the dependency of
DCS on mesh structure.

The general behaviour differs only slightly, which validates that DCS inher-
its the robustness to mesh structure from its related Kirchhoff version MSO
[GSH+04]. Just as for the circular plate, we see a deterioration of the convergence
rate when 𝑡 gets larger, which illustrates again the theoretical convergence rate
𝒪(max(ℎ2, 𝑡2)).

5.4.2 Nonlinear benchmarks

The static nonlinear test problems listed below are taken from the paper by Sze,
Liu and Lo on Popular benchmark problems for geometric nonlinear analysis of
shells [SLL04]. The reference values are the values given in the mentioned paper,
which correspond to the converged solutions of the all-purpose quadrilateral shell
element S4R of the finite element software Abaqus.

Table 5.1 below contains the relative errors in deflection of the vertices with
the largest deflection, with respect to the number of degrees of freedom. The
subsequent figures show the corresponding deflection curves of these particular
vertices, i.e., their position at different ratios P/Pmax of the applied load P with
respect to the total load Pmax. The black curve represents the reference solution,
the coloured curve show the values obtained with DCS on different mesh resolu-
tions. The numbers in the legend give the number of degrees of freedoms that
was solved for. It shows that even on coarse meshes, DCS behaves qualitatively
correct.

Table 5.1 Relative error of the deflections simulated with DCS with respect to the
converged solution of Abaqus’ S4R element

Loaded cantilever Slit annular plate Pinched hemisphere

DOFS
Relative error

DOFS
Relative error

DOFS
Relative error

z-direction x-direction vertex A vertex B vertex A vertex B

153 1.34e-2 1.87e-2 135 4.415e-1 5.632e-1 120 7.75e-1 8.651e-1

495 3.3e-3 5.17e-3 651 1.574e-2 3.00e-1 432 6.432e-1 1.342e-1

1755 8e-4 2.13e-3 2379 1.31e-2 4.69e-2 1872 2.01e-1 1.51e-2

6579 5e-4 1.36e-3 9075 1.25e-2 1.96e-2 7200 4.2e-2 6e-4
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Fig. 5.4 Cantilever subjected to end shear force A cantilever of length
𝐿 = 10, width 1 and of thickness 𝑡 = 0.1 is clamped on one side. On the
other end, we apply a total force of Pmax = 4 by uniform incrementation. The
considered material parameters are 𝐸 = 1.2 · 106, 𝜈 = 0.
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Fig. 5.5 Cantilever subjected to moment In this example, a slightly differ-
ent cantilever (𝐿 = 12, 𝑡 = 0.1, 𝐸 = 1.2 · 106, 𝜈 = 0) is again clamped on one side.
On the other side, we successively apply a moment such that the cantilever rolls
up, forming a series of circular arcs.
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Fig. 5.6 Slit annular plate An annular plate (𝐸 = 21 · 106, 𝜈 = 0) of inner
and outer radii 6 and 10, and of thickness 𝑡 = 0.03 is cut open at some point.
One side of the cut is clamped, the other side is pulled up vertically. By the
geometry of the plate, this deformation activates membrane strains as well as
bending strains.
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Fig. 5.7 Pinched Hemisphere On the pinched hemisphere
(𝐸 = 6.825 · 107, 𝜈 = 0.3) of radius 𝑅 = 10 and thickness 𝑡 = 0.04, two
pairs of antipodal points are simultaneously pulled outwards (A and its opposite)
and pushed inwards (B and its opposite). The curves show the deflection of A
and B in these respective directions.



Chapter 6

Discussion

There are very few topics in structural mechanics

where so many investigations have been published.

Bischoff et al. [BBWR04]

The question that motivated this thesis was how far we could go in constructing
a physical shell model by means of discrete geometric tools, and to see what ad-
vantages this approach can provide. This last chapter gives a critical examination
of the discrete geometric model that resulted from this approach by comparing it
to a selection of low-order shell models which were constructed from very different
perspectives.
The second section provides a discussion on the difficulty of an objective evalu-

ation of the quality of shell models in general, and the limits of low-order models
in particular.

6.1 Comparison to existing low-order shell models

As noticed in literally any publication on plate and shell models since at least
the 1970’s, the massive amount of existing models makes it impossible to even
roughly account for all of them. In this section, we picked those classes of models
–possibly biased in favour of more geometric models– that seemed conceptually
closest to the aim we had in mind, and opposed them to our model. Before doing
so, we will briefly summarize the model that our geometric approach resulted in.
A condensed overview of this comparison in table form is provided at the end of
this section.
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6.1.1 Recapitulation of DCS

DCS behaves qualitatively correct and sufficiently accurate in nonlinear bench-
marks on coarse meshes, which is exactly the goal we were aiming at. Its un-
derlying linear plate model is theoretically well understood, and in particular for
small 𝑡 on relatively coarse meshes, this model has optimal convergence order
𝒪(ℎ2). While we have not tackled the more challenging problem of a theoretical
convergence proof for the nonlinear model, we could show that the discrete en-
ergy is consistent, and we identified the –practically benign– zero-energy modes
of the model.
Moreover, by following the ideas of discrete exterior calculus and keeping in

mind structure preservation in the sense of [AFW09], we managed to define the
discrete energies via purely geometric arguments, avoiding assumed strains, re-
duced integration or other stabilization techniques. Finally, its close relation to
the shear-rigid model MSO and the linear benchmarks suggest that DCS is very
robust with respect to mesh structure.

6.1.2 Low-order shell FE: MITC3

A very popular class of Reissner-Mindlin plate and shell elements is based on the
"mixed-interpolation of tensorial components" (MITC) approach, first proposed
by Bathe et al. [BBF89]. The linear plate models of this type are built on the
propositions (P1)–(P5) that we investigated in Chapter 3 for the construction
of DCS. For most of these elements, theoretical analyses are available, and for
example the lowest order quadrilateral plate element MITC4 was shown to be
optimally convergent (𝒪(ℎ2)) on regular grids.

The MITC shell models are based on a degenerate solid approach rather than
on a two dimensional shell formulation. The construction of these models is
based on the choice of independent interpolation schemes for the different strains
and an appropriate way to couple them. This coupling is done on so-called tying
points, whose precise positioning on the element can strongly affect the predictive
capability of the shell element [BLH03]. In particular, this construction seems to
involve several choices without providing a good general guide to make them:

To construct the MITC triangular shell finite elements, each transverse
shear strain interpolation scheme can be combined with various inplane strain
interpolation schemes. As a result, we can develop many new shell finite el-
ements, but only few elements will be effective for practical purposes. [LB04]

This also explains why different MITC shell models came up more or less one
by one during the last 30 years (MITC4 in 1984 [DB84], MITC9 and MITC16
in 1993 [BB93], improved MITC9 in 2003 [BLH03], MITC6a and MITC6b in
[LB04], improved MITC6a in 2007 [dVCS07]).
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One of the possible low-order triangular version of this class, named MITC3,
was numerically analysed in 2004 [LB04]. Similarly to DCS, shearing is evalu-
ated at edge midpoints and (by an assumed strain approach) assumed constant
along each edge. From there however, the three edge values are used to construct
two linear strain fields, providing together an isotropic shear strain field over the
triangle.
This element gives satisfying results in numerical nonlinear experiments and

does not exhibit any spurious zero-energy modes in numerical tests. In linear
benchmarks though, it shows that its convergence behaviour strongly depends on
the considered mesh [LNB07]. In particular, it seems shear locking free on cross
meshes, but shows locking on regular meshes when the (thickness / length)-ratio
is smaller than 1 · 10−3. In [LNB07], MITC3 is compared to three further 3-node
triangular shell finite elements, among which it performs best in the sense that
it shows the ’least’ amount of locking and of mesh dependence.
On the theoretical side, no convergence or consistency results seem to be avail-

able for any triangular MITC shell element yet, in particular not for MITC3.

6.1.3 Discrete geometric models

Physically based models have recently become popular in computer graphics ap-
plications, such that various discrete geometric methods for the simulation of
thin-walled structures are already in use in this field. The most popular might
be the discrete shell model, proposed in [GHDS03], which is based on using hinge
angles for the bending strains. However, the predictive reliability of this model is
known to be extremely mesh dependent, as even in standard benchmarks it does
not converge for some mesh patterns [GGRZ06].

An improvement to this problem was brought by the already mentioned MSO
model. The main difference between MSO and DCS is that, as a shear-deformable
model, DCS is physically more accurate for moderately thick shells. For engineer-
ing applications, this difference in accuracy for a given material can be crucial.
For computer graphic applications however, the precise material and thereby
material constants are mostly not available, and the main concern is to have
qualitatively plausible deformations.

Numerical tests on thick and thin shells of different bending and shearing
stiffness suggest that purely in terms of deformation behaviour, using a shear-
deformable model rather than a shear-rigid model does not make a significant
difference, at least not for homogeneous material with relatively simple bound-
ary conditions. More interesting effects might however be achievable for special
boundary conditions and inhomogeneous/anisotropic material, and even more
likely by stepping back from the physical model and varying bending and shear-
ing stiffnesses independently.
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6.1.4 Mimetic discretisation

Recently,mimetic finite differences andmimetic discretisation [BLS05] approaches
have been proposed in the engineering community as a technique to treat par-
tial differential equations on general polygonal meshes. Just as for the discrete
geometric approach, the discrete problem is formulated essentially in terms of
the degrees of freedom. This technique has been successfully applied to several
different physical applications, including electromagnetism, linear diffusion and
continuum mechanics.

While we are not aware of any mimetic models suitable for geometrically non-
linear shell deformations, Beirão da Veiga and Mora proposed a mimetic Reissner-
Mindlin plate model for polygonal meshes [BdVM11], including non-convex poly-
gons. For this discretisation, the authors start again from the familiar ’locking-
free’ conditions for Reissner-Mindlin plates as described in Chapter 3, in par-
ticular assuring a discrete Helmholtz decomposition of their finite dimensional
function spaces.
These finite spaces are eventually determined by nodal values for the scalar

displacements 𝑤ℎ, by nodal values and edge-tangential values for the rotation
field 𝜃ℎ, and by edge-tangential values only for the shearing 𝛾ℎ. In particular, in
the specific case of a triangular mesh, they obtain as finite-dimensional function
spaces 𝑊ℎ =𝑀1

0 and Γℎ = 𝑅𝑇0, similarly to DCS, but for rotations Θℎ they re-
cover the Morley space ℳ as seen in (4.8). They prove their element to converge
linearly, and uniformly with respect to thickness.

6.1.5 Isogeometric shells

Another relatively recent tool for shell analysis is based on isogeometric analysis
which was introduced by Hughes et al. [HCB05] in 2005. The main advantage of
this approach is its foundation on NURBS-basis functions which are also used in
many commercial computer-aided design (CAD) software tools. Particularly for
industrial applications, this allows to cycle through design and analysis phases
without the tedious conversion from one representation to another. In perspective
of the applications which motivated this thesis, like automotive design and digital
mock-up, this seems a major advantage.

Moreover, the global support of the basis functions makes it very easy to
achieve global 𝐶1-continuity, which is a major problem in shell analysis, such
that isogeometric analysis seems particularly well-suited for these applications.
Unfortunately, the large support comes with various drawbacks. Not only it in-
volves more degrees of freedom, but it also requires technical effort to handle local
events, in particular local refinement [VGJS11]. Moreover, the regularity of the
NURBS function only holds patch-wise. When different patches are connected,
in general not even 𝐶0-continuity can be assured without altering at least one of
the patches [BCC+10].



6.1 Comparison to existing low-order shell models 73

For the special case of shell analysis, isogeometric models have been proposed
by Kiendl et al. [KBLW09] for Kirchhoff, and by Benson et al. [BBHH10] for
Reissner-Mindlin shell modelling. Both models show very good numerical results.
However, both models tend to favor the use of higher-order polynomials on coarser
meshes to get the most efficient and accurate outcome. Especially in the shear-
deformable model, locking is not avoided explicitly (in particular no reduced
integration is used), but bypassed by the use of higher-order basis functions.

An isogeometric model for linear Reissner-Mindlin plate analysis which seems
more closely related to DCS, was recently developed by Beirão da Veiga et
al. [BdVBL+12]. This model uses the capacity of spline basis functions to approx-
imate differential forms "in the spirit of [AFW09]". Specifically, the regularity
of the spline function spaces adequately mimics the structure of the de Rham
complex, and by treating all the variables of the model –not only shearing– as
differential forms, the others are able to find discrete spaces for deflections 𝑊ℎ

and rotations Θℎ which directly satisfy

grad𝑊ℎ ⊂ Θℎ .

Optimal convergence of this method is proven theoretically and illustrated nu-
merically for spline spaces up from degree 𝑝 = 2.

6.1.6 Subdivision shells

Subdivision surfaces were initially used in computer graphic applications for
smooth rendering of surfaces. When used for analysis, they are closely related
to the isogeometric approach, as they can be seen as a generalization of spline
surfaces, essentially relying on the refinability of B-spline functions [ZS00].

They were first introduced for Kirchhoff shell analysis by Cirak et al. [COS00]
and recently extended to shear-deformable shells [CLB11]. In the latter model,
bending is measured by second derivatives, just as in the shear-rigid model, and
shearing is measured independently. By separating bending and shearing, the
unfavourable correlation between these energies which produces locking is a priori
avoided, and the model thus seems equally suitable for both thin and thick shells.

This separation of bending and shearing might seems slanted, as it leads to a
shell model that carries the difficulties of both the Kirchhoff approach and the
Cosserat shell. However, in contrast to finite elements, for subdivision shells –
just as for NURBS– the inter-element regularity required for second derivatives is
very easily obtained, such that the 𝐶1-continuity is not a challenge. Decoupling
bending and shearing then solves the shear locking problem in a very simple
manner. However, a complete independence of bending and shearing is physically
unjustified, and does not correspond to any theoretical model deduced from 3D or
2D kinematics.
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6.2 Limitations

While working on this thesis, two uncomfortable questions kept coming up. The
first is:

What is a fair evaluation of nonlinear shell models?

The second can be formulated provocatively as:

In view of the progress in terms of fast computation, is it necessary to reduce
the number of degrees of freedom to a strict, possibly excessive minimum?

This concluding section proposes a discussion of these concerns.

6.2.1 How to evaluate?

As depicted in Chapter 5, we evaluated the DCS model by linear as well as
nonlinear benchmarks, as it is usual for testing shell elements. Already for the
linear tests, it was not completely clear what a fair comparison would be. Analytic
solutions are usually given in terms of a formula depending on the thickness,
the material parameters and the load, but the transition from the linear to the
nonlinear regime is not sharp, such that the choice of these parameters also affects
whether the reference value is to be expected or not.

In the nonlinear setting, reference benchmarks are usually provided by estab-
lished elements, that were tested against yet older elements or results, and in the
end it is not clear whether the initial reference solutions refer to 3D solutions,
to shearable or unshearable shell models. The practical purpose of a shell model
is to give a satisfying approximation of the ’real’ three dimensional problem,
such that it seems tempting to compete with reference 3D values. However, this
comparison is clearly unfair, as even the best discrete model and the highest reso-
lution cannot overcome modelling errors, which are inherent in a 2D shell model.
For a proper evaluation, it thus seems essential to have reliable evidence about
the material and geometry parameters for which the different model assumptions
become neglectable. This would allow to know in which cases shear-rigid and
shear-deformable shells should coincide, and in which both shell models should
coincide with the 3D model. Such thresholds do not seem to be available in the
literature.

If the reference model and the test parameters are chosen, the next question
arises: what norm should be used to measure the error? In engineering litera-
ture, nonlinear shell models are mostly evaluated by comparing the deflection of
some distinguished point to an established reference. This is also the method we
adopted. However, there are many different and seemingly equally justified tech-
niques taking into account one or several criteria among displacements, strains,
stresses and energies, sometimes even taking into account whether the discrete
model is based on a mixed formulation or not (see e.g. [CB03] for an overview).
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Finally, the question remains what particular geometries and meshes should
be tested. In computer graphics applications, robustness with respect to mesh
dependence is very important as the considered meshes are often created by
meshing algorithms that often provide relatively random Delaunay triangulations.
Therefore, the models presented in this community are usually tested for meshes
of different quality and regularity.
For engineering literature, the dependence on the mesh is rather secondary, as

most often the geometries are meshed for the very purpose of the analysis, and
this is usually done as uniformly as possible. In these cases however, it seems
important that the model behaves similarly well on different types of geometries
and for different boundary conditions and strain regimes [CB03].

In the end, we decided to mainly followed the engineering criteria for our
benchmarks, as the validity of benchmarks seems to strongly depend on what is
trusted from experience in the target community.

6.2.2 Low-order for efficiency?

The main constraint in the construction of the presented model was to build
a shell model in the framework of discrete differential geometry. This was not
out of dogmatic beliefs, but on account of the numerous discrete models which,
by their relatively simple geometric structure, had already shown to give very
valuable insights in several physical applications. And indeed, also in the case of
shell simulation and shear locking our investigations unveiled new insights.

From a purely practical aspect, the discrete geometric point of view however
restricts the model to low-order approximations, as it relies on dealing with the
basic combinatorial entities of the mesh only. It is well known in FE analysis that
some physical models, including shells and fluid simulations, become sensitively
more difficult when they are treated with too few degrees of freedom.For instance,
the difficulties of Kirchhoff and Cosserat shells, namely the 𝐶1-continuity and
shear locking, both become less of a challenge when using slightly higher order
discretisations. For the issue of shear locking, this also shows in the comparative
Table 6.1 at the end of this chapter.

Still, even in practical engineering applications it is very common to stick with
low-order approximations and deal with the adherent difficulties. Historically, the
main argument for this focus is that low-order models are easier to implement
and seemingly faster to compute. However, it strongly depends on the considered
problem and the expected accuracy whether the trade-off between precision and
resolution favours using a low-order model on a high-resolved mesh or a high-
order model on a coarse mesh. For a very insightful investigation of this problem
for plates we refer to [AP02], [Sur94].

Moreover, given the the extreme progress in terms of computational power, it
appears questionable if searching for the absolute minimum of degrees of free-
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dom for the sake of fast computations is still a valid argument. Especially
recent achievements in the computer graphics community, where fast simula-
tions of elasto-plastic deformations, even with 3D models, are rather common
[MDM+02, CPSS10, MTPS08, WRK+10] suggests that being able to use models
with moderately many degrees of freedom in real-time simulations seems more
of a challenge on the implementation side. While such fast models do not aim
at the precision available in finite element models, making use of some of their
tools and model simplifications used to speed up computations might lead to an
appropriate compromise between fast computation and a more comfortable way
to accuracy.
Hence, while keeping in mind that higher order approaches can introduce the-

oretical challenges on their own (such as sensitivity to mesh distortion and oscil-
lations near boundaries and singularities [RWRA09, HCP11]), it might be worth-
while to concede discrete shell models more degrees of freedom without giving up
the aim of computational efficiency.
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Appendix

Quick implementation guide

This appendix relates very concisely the different energies determining the model,
in a formulation suitable for a quick implementation.

The canonical starting point for discrete geometric models in general is a half-
edge mesh data structure, that allows to easily assign values and variables to the
different simplicial entities of the mesh, and provides enough connectivity infor-
mation to allow to easily loop over adjacent vertices, faces and edges (OpenMesh
is a possible open source candidate). In this data structure, we first have to as-
sign the variables that is solved for, which are the positions of the vertices, i.e.,
a 3-vector per vertex, and the position of the directors, i.e., a 3-vector per edge.
It is then easy to assign each triangle the corresponding energy, only using the
local variables of the triangle, and the global energy is assembled by summing up
the triangle-wise energies.

Membrane and bending energies per triangle

We describe how to easily implement the norm of a quadratic form as given in
Section 4.1. Membrane and bending energies of DCS then only differ with respect
to some particular coefficients given below.
Notice that the code can be used virtually unchanged for alternative definitions
of first and second fundamental forms.

Let P be a quadratic form, written on a triangle T as

PT = − 1

8A2
T

3∑︁
𝑖=1

(P𝑖 − P𝑗 − P𝑘)(ē
*
𝑖 ⊗ ē*𝑖 ) (6.1)

where P𝑖 = P(e𝑖) are the directional values depending on the variables of the
problem (vertex positions and directors), and ē*𝑖 the orthogonal dual edges of
the undeformed configuration. As usual, AT denotes the area of the considered
triangle.
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The energy associated with P is then determined by its norm

𝑊PT =𝑀
(︀
𝜈 tr(PT)

2 + (1− 𝜈) tr((PT)
2)
)︀

where 𝑀 is a coefficient depending on the material and 𝜈 is the Poisson ratio.

As we want to measure the change of a fundamental form Q from the un-
deformed configuration to the deformed configuration, we set Q̄𝑖 := Q̄(ē𝑖) and
Q𝑖 := Q(ē𝑖), and denote by 𝛿Q the quadratic form defined by values

𝛿Q𝑖 := Q𝑖 − Q̄𝑖 .

Substituting P by 𝛿Q in (6.1) and inserting the resulting expression in the
formula for the energy 𝑊 𝛿Q(T), we get

𝑊 𝛿Q =𝑀
1

(16A2
T)

2

3∑︁
𝑖,𝑜=1

(𝑖𝑗𝑘),(𝑜𝑝𝑞)

(𝛿Q𝑖 − 𝛿Q𝑗 − 𝛿Q𝑘)(𝛿Q𝑜 − 𝛿Q𝑝 − 𝛿Q𝑞)𝑞𝑖𝑜

where

𝑞𝑖𝑜 := 𝜈 tr(ē*𝑖 ⊗ e*𝑖 ) tr(ē
*
𝑜 ⊗ ē*𝑜) + (1− 𝜈) tr(e*𝑖 ⊗ e*𝑖 · ē*𝑜 ⊗ ē*𝑜) .

With tr(ē*𝑖 ⊗ ē*𝑖 ) = ē*𝑖 · ē*𝑖 = ē𝑖 · ē𝑖, 𝑞𝑖𝑜 simplifies to:

𝑞𝑖𝑜 = 𝜈(ē𝑖 · ē𝑖)(ē𝑜 · ē𝑜) + (1− 𝜈)(ē𝑖 · ē𝑜)2 .

From this, the only thing that needs to be adapted to the particular quadratic
form we are dealing with, are the values 𝛿Q𝑖 and the material coefficient 𝑀 .

For the DCS membrane energy:

𝛿Q𝑚
𝑖 = (ē𝑖 · ē𝑖 − e𝑖 · e𝑖)

𝑀𝑚 =
𝐸𝑡

(1− 𝜈2)

For the DCS bending energy:

𝛿Q𝑏
𝑖 = 2 ( (𝑛̄𝑘 − 𝑛̄𝑗) · ē𝑖 − (𝑛𝑘 − 𝑛𝑗) · e𝑖 )

𝑀 𝑏 =
𝐸𝑡3

12(1− 𝜈2)

The barred quantities refer to the undeformed configuration and stay unchanged.
In particular, they will drop when taking derivatives.

Remark. If we use the alternative formulation

P(𝑇 ) = − 1

8A2
T

3∑︁
𝑖=1

P𝑖(ē
*
𝑗 ⊗ ē*𝑘 + ē*𝑘 ⊗ ē*𝑗 ) ,

the deduction of an implementation-ready formulation goes through in a similar
way.
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Shearing per triangle

The shearing energy is a discrete one-form, prescribed by one value per edge. To
measure the energy per triangle for a given configuration, we have to integrate
the corresponding linear function over the triangle T.

Let s be the discrete shear-form on the triangle, determined by the edge values

𝑠𝑖 := n𝑖 · ê𝑖 = n𝑖 ·
(v𝑘 − v𝑗)

‖v𝑘 − v𝑗‖
.

In terms of the basis functions {𝜓𝑖}𝑖 for Whitney one-forms [Bos88], which take
value 1 on edge e𝑖 respectively, and 0 on the remaining edges, the discrete shear
form sn is simply given by

sn =
∑︁
𝑖

𝑠𝑖𝜓𝑖 .

In particular, the DCS shearing energy writes

𝑊 𝑠(T) := 𝑡𝜅𝐺

∫︁
T
⟨s, s⟩d𝐴 =

𝑡

4
𝜅𝐺
∑︁
𝑖

𝑠2𝑖

∫︁
T
⟨𝜓𝑖, 𝜓𝑖⟩d𝐴+ 2

∑︁
𝑖 ̸=𝑗

𝑠𝑖𝑠𝑗

∫︁
T
⟨𝜓𝑖, 𝜓𝑗⟩d𝐴

(6.2)
with the material coefficient 𝑚𝑠 =

𝐸
2(1+𝜈) and the shear correction factor 𝜅 = 5

6 .

We will present a concise derivation of the 𝐿2-norms of the Whitney basis
functions in terms of geometric entities of the triangle.

The basis functions 𝜓𝑖 can be expressed in terms of Whitney zero-forms 𝜑𝑖,
which are nothing else than the usual Lagrange 𝑀1 basis functions, as

𝜓𝑖 = 𝜑𝑘d𝜑𝑗 − 𝜑𝑗d𝜑𝑘 .

The derivatives of these in turn have a very simple expression when written as
vector fields, namely

∇𝜑𝑖 =
1

2AT
N× e𝑖 ,

where N is the triangle’s unit normal (see, e.g., [BKP+10]). In particular

|∇𝜑𝑖|2 =
|e𝑖|2

4A2
T
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and

⟨∇𝜑𝑗 ,∇𝜑𝑘⟩ =
|e𝑗 ||e𝑘|
4A2

T

cos(e𝑗 , e𝑘) .

Using the familiar 𝐿2-norms of the hat functions 𝜑𝑖∫︁
T
|𝜑𝑖|2d𝐴 =

AT

6
,

∫︁
T
⟨𝜑𝑖, 𝜑𝑗⟩d𝐴 =

AT

12

and setting 𝑙𝑖 := ‖e𝑖‖, 𝛼𝑗𝑘 := cos(e𝑗 , e𝑘), the 𝐿
2 inner products of the Whitney

basis functions eventually simplify to

∫︁
T
⟨𝜓𝑖, 𝜓𝑖⟩d𝐴 =

1

24A2
T

(︂
𝑙2𝑗 + 𝑙2𝑘 +

1

2
𝑙𝑗𝑙𝑘𝛼𝑗𝑘

)︂
∫︁
T
⟨𝜓𝑖, 𝜓𝑗⟩d𝐴 =

1

48A2
T

(︀
𝑙𝑗𝑙𝑘𝛼𝑗𝑘 − 2𝑙𝑗𝑙𝑖𝛼𝑗𝑖 − 𝑙2𝑘 + 𝑙𝑖𝑙𝑘𝛼𝑘𝑖

)︀
.

These values can then be introduced into (6.2).

Notice that in the case of small membrane strains, the deformation is almost
isometric, meaning that the shape of each single triangle stays almost unaltered
with respect to the undeformed configuration. In that case, it is sufficient to
precompute only once the values for AT, {𝑙𝑖}𝑖, {𝛼𝑖𝑗}𝑖,𝑗 , and for the above integrals.

Constraint on length of directors

Throughout the theoretical description of our model, we assumed that directors
had unit length, which is consistent with the model assumption that no transverse
through-the-thickness strains can occur. For the implementation however, we
used a Newton’s method in order to minimize the discrete energy, such that we
use the gradient and the Hessian of the discrete Cosserat energy. One possible
way to make sure that the directors keep unit length during the Newton steps
is to take the derivatives of the directors on the unit sphere. As a simplifying
alternative to this cumbersome procedure, we suggest to use the usual derivatives
in R3 and introduce an additional energy, meant to encounter stretching of the
directors, without affecting on the numerical efficiency or stability.

This energy is edge-based and has the simple form

𝑊 𝑙(e𝑖) =𝑀𝑚(1− n𝑖 · n𝑖)2

where𝑀𝑚 is the membrane stiffness already used to penalize in-plane stretching,
and hence encodes the resistance of the material to change of length in any
direction if the material is isotropic.
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Simulation

Once the energies are defined, the deformation is determined by the lowest pos-
sible energy configurations, meaning that the energy needs to be minimized. To
do so, there are several possibilities, like minimization algorithms and Newton-
like methods, merely requiring some linear algebra and/or optimization libraries.
For our implementation, we chose to rely on the classical Newton’s method and
decided to use the C++-libraries PETSc and TAO. Depending on what sort of
Newton algorithm one uses, first and second derivatives of the energy are required.
The provided expressions for the energy make it comfortable to compute the an-
alytic derivatives, thereby allowing for a very efficient computation. Automatic
differentiation tools are also an option, although they are usually slower.
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List of notations

Smooth setting
𝒮̄,𝒮 undeformed, deformed shell configuration
𝒮,𝒮 undeformed, deformed mid-surface
𝑛̄, 𝑛 undeformed, deformed director field
𝑛 pullback of the deformed director field
𝐼, 𝐼𝐼𝑛, 𝐼𝐼𝐼𝑛 first fundamental form, and generalized

second and third fundamental forms
𝜎𝑛 shear form
Φ deformation of a shell
𝜑 deformation of the mid surface
𝒲 elastic deformation energy
𝜔 ‖𝐼𝐼𝑛‖2Frob, bending energy density
d𝐴 volume element
𝑁 unit normal field

Discrete setting
K̄,K undeformed, deformed shell configuration
K̄,K undeformed, deformed mid surface
n̄,n undeformed, deformed director field
ntan projection of the discrete director

to the discrete tangent plane
n pullback of the deformed director field
I, II𝑛 first and generalized second fundamental forms
s𝑛 shear form
F deformation of a discrete shell
f deformation of the discrete mid surface
W discrete deformation energy
w ‖IIn‖2Frob, discrete bending energy density
dA volume element
N triangle normals or averaged triangle normals

Function spaces
𝑀0 piecewise constant functions
𝑀1

0 piecewise linear continuous functions
𝑀1
𝑛𝑐 piecewise linear non-conforming functions

(Crouzeix-Raviart)
𝑅𝑇0 rotated lowest order Raviart-Thomas space
ℳ discrete Morley space

Reissner-Mindlin plate
𝑊,𝑊ℎ continuous, discrete scalar displacements
Θ,Θℎ continuous, discrete rotation field
Γ,Γℎ continuous, discrete shear vector field
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𝑄,𝑄ℎ rot-part in the smooth and continuous Helmholtz
decomposition of Γ,Γℎ

𝑅 Reduction operator

Material parameters
𝐸, 𝜈 Young’s (elastic) modulus and Poisson ratio

𝐺 shear modulus: 𝐸
2(1+𝜈)

𝐷 bending modulus: 𝐸𝑡3

12(1−𝜈2)
𝜅 shear correction factor, usually 5

6
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