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Abstract
Predicting genetic values is important in animal and plant breeding, personalized medicine

and evolutionary biology. Traditionally, prediction is based on a best linear unbiased
prediction (BLUP) approach within a linear mixed model framework, with covariance
structures obtained from relationship measures between individuals. Nowadays, single
nucleotide polymorphism (SNP) data allow to incorporate genomic information into the
model (genomic BLUP (GBLUP)).
Prediction is also the principal topic in geostatistics in the framework of correlated data.

Here, the so-called “kriging” approach performs BLUP using parameterized covariance
functions. In this thesis, the kriging concept to perform genomic prediction using the
family of Matérn covariance functions is adopted and kriging is compared to GBLUP in a
whole-genome simulation study. The results of the simulation study suggest that kriging is
superior over GBLUP in non-additive gene-action scenarios.
The methodological development of genome-based prediction methods has become even

more important with the increasing availability of whole genome sequence data. This thesis
provides the world-wide first application of phenotype prediction based on sequence data
in a higher eukaryote using the “Drosophila melanogaster Genetic Reference Panel”, which
comprises sequences and phenotypic data of 157 inbred lines of the model organism Drosophila
melanogaster. For the traits “starvation resistance” and “startle response” moderate predictive
abilities are obtained performing GBLUP, utilizing 2.5 million SNPs to infer genomic
relationships between individuals. The predictive ability of a Bayesian method with internal
SNP selection is not higher than the one obtained with GBLUP, and predictive ability of
GBLUP decreases only when fewer than 150,000 SNPs are used.

For a third trait (“chill coma recovery”) the GBLUP approach fails completely. Based on
differentiated analyses and a corresponding two-marker genome-wide association study, two
possible reasons for this failure are identified: the bimodal phenotypic distribution and an
extensive network of epistatic interactions between SNPs.

The accuracy of genomic prediction is also affected by the underlying structure of linkage
disequilibrium (LD) between SNPs. Several formulae for the expected levels of LD in finite
populations have been proposed in the literature, most of them being approximate. In this
thesis, an alternative recursion formula for the development of LD over time is proposed.
A simulation study illustrates that for all parameter constellations under consideration the
proposed formula performs better than the widely used formula of Sved. The theory of
discrete-time Markov chains further allows the derivation of the expected amount of LD
at equilibrium, leading to a formula for the effective population size Ne. By analyzing the
effect of non-exactness of the recursion formula on the steady-state, it is demonstrated that
the resulting error in expected LD can be substantial. Using the human HapMap data, it is
further illustrated that the Ne-estimate strongly depends on the distribution of minor allele
frequencies taken as a basis to select SNPs for the analyses.
Comprising a wide spectrum of investigations at the interface between statistics, animal

breeding and genetics, the findings of this thesis are of interest from a practical as well as
from a methodical statistical point of view.
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Zusammenfassung

Die Vorhersage genetischer Werte ist von großer Bedeutung in der Tier- und Pflanzenzucht,
der personalisierten Medizin und der Evolutionsbiologie. Traditionell werden genetische Werte
durch eine beste lineare unverzerrte Vorhersage (BLUP) im Rahmen eines linearen gemischten
Modells ermittelt, dessen Kovarianzstrukturen aus Verwandtschaftsmaßen zwischen Indi-
viduen berechnet werden können. Heutzutage ermöglichen Single Nucleotide Polymorphism
(SNP) Marker die Einbeziehung genomischer Informationen in das Model (genomisches BLUP
(GBLUP)).

Die Vorhersage von Zufallsvariablen auf Basis korrelierter Daten ist auch eines der
wichtigsten Gebiete in der Geostatistik. Dabei wird der sogenannte „Kriging“-Ansatz
verwendet, bestehend aus einem BLUP-Ansatz mit parametrisierten Kovarianzfunktionen.
In der vorliegenden Arbeit wird das Kriging Konzept auf die genomische Vorhersage über-
tragen. Unter Verwendung der Familie der Matérn Kovarianzfunktionen wird Kriging mit
dem GBLUP-Ansatz in einer genomweiten Simulationsstudie verglichen. Die Ergebnisse
der Simulationsstudie lassen darauf schließen, dass Kriging dem GBLUP-Ansatz in nicht-
additiven Genwirkungs-Szenarien überlegen ist.
Mit der zunehmenden Verfügbarkeit genomweiter Sequenzdaten hat die methodologische

Entwicklung genom-basierter Vorhersagemethoden erneut an Bedeutung gewonnen. Diese
Arbeit enthält die weltweit erste Studie zur phänotypischen Vorhersage unter Verwendung von
Sequenzdaten in einem höheren eukaryotischen Organismus. Der „Drosophila melanogaster
Genetic Reference Panel“ dient dabei als Datengrundlage und umfasst Sequenzen sowie phäno-
typische Daten von 157 Inzuchtlinien des Modellorganismus Drosophila melanogaster. Für die
beiden Merkmale „starvation resistance“ und „startle response“ können unter Verwendung
von 2.5 Millionen SNPs moderate Vorhersagegenauigkeiten mit GBLUP beobachtet werden.
Die Vorhersagegenauigkeit einer Bayesschen Methode mit interner SNP-Selektion ist nicht
größer als die durch GBLUP erzielte Genauigkeit, und die Vorhersagegenauigkeit des GBLUP-
Ansatzes nimmt erst ab, wenn weniger als 150.000 SNPs verwendet werden.

Für ein drittes Merkmal („chill coma recovery“) erzielt der GBLUP-Ansatz nur sehr geringe
Genauigkeiten. Mit Hilfe differenzierter Analysen und einer genomweiten Assoziationsstudie,
welche paarweise Interaktionen zwischen Markern miteinbezieht, werden zwei mögliche
Ursachen für das Scheitern des GBLUP-Ansatzes identifiziert: die bimodale phänotypische
Verteilung sowie ein extensives Netzwerk epistatischer Interaktionen zwischen SNPs.

Es ist bekannt, dass die Genauigkeit der genomischen Vorhersage auch durch die zugrunde
liegende Struktur des Kopplungsungleichgewichtes (linkage disequilibrium (LD)) zwischen
SNPs beeinflusst wird. Mehrere, meist approximative Formeln für die erwartete Höhe an
LD in Populationen endlicher Größe existieren bereits in der Literatur. In dieser Arbeit
wird eine alternative Rekursionsformel vorgeschlagen, welche die zeitliche Entwicklung des
LDs beschreibt, und in einer Simulationsstudie wird gezeigt, dass die vorgeschlagene Formel
der vielfach verwendeten Formel von Sved in allen betrachteten Parameterkonstellationen
überlegen ist. Die Theorie zu zeit-diskreten Markovketten erlaubt weiterhin die Herleitung
des erwarteten LDs im Gleichgewichtszustand, was wiederum zu einer Formel für die effek-
tive Populationsgröße Ne führt. Durch die Analyse des Effektes der Nicht-Exaktheit der
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Rekursionsformel auf den Gleichgewichtszustand kann gezeigt werden, dass der resultierende
Fehler an erwartetem LD beachtlich sein kann. Unter Verwendung des humanen HapMap
Datensatzes wird außerdem deutlich gemacht, dass der Ne-Schätzer stark von der Verteilung
der Allelhäufigkeit des selteneren Allels abhängt, die den zur Analyse ausgewählten SNPs
zugrunde liegt.

Die vorliegende Arbeit umfasst ein weites Spektrum an Untersuchungen an Schnittstellen
der Statistik, Tierzucht und Genetik. Die vorgestellten Ergebnisse sind sowohl aus praktischer
als auch aus methodisch-statistischer Sicht von Interesse.
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1 Introduction: Challenges in Animal Breeding and
Genetics in the Face of Genomic Revolution

The prediction of phenotypic or genetic values (GVs) is one of the most important subjects
in animal and plant breeding and has recently gained relevance in other areas of research
like personalized medicine and evolutionary biology. The most prevalent methodological
approach in this field is best linear unbiased prediction (BLUP) applied in a linear mixed
model framework, dating back to the works of Henderson in the 1950s (Henderson et al.,
1959). In this approach, random components of the linear mixed model used for prediction
are usually assumed to be multivariate normally distributed, with predetermined covariance
structures based on relationship measures between individuals.
Over the last decades, a “genomic revolution” has found its way into both research and

practical applications, since the available amount of genomic data has risen exponentially.
Single nucleotide polymorphism (SNP) data provide a valuable new source of information,
which can be used for prediction purposes, as well as for genome-wide association studies
(GWAS), whose aim is the identification of genomic regions with potential influence on the
considered trait. Starting with only a few available SNPs at the outset of this advent in the
late 1990s, SNP arrays comprising several tens or hundreds of thousands of markers have
been developed commercially in the meantime and their use has become standard practice.

Different BLUP methods have been proposed to take genomic marker information into ac-
count (Meuwissen et al., 2001), and constructing “genomic relationship” matrices (VanRaden,
2008) has led to so-called genomic best linear unbiased prediction (GBLUP) approaches. In
this context, Gianola et al. (2006) were the first to propose a non-parametric treatment of
genomic information, using reproducing kernel Hilbert space regression methods. However,
only the case of Gaussian covariance functions was considered in their analyses.
Prediction is also the principal topic in geostatistics in the framework of correlated data.

Here, the so-called “kriging” concept has been developed by Matheron in the 1960s (Matheron,
1962, 1963), which is also based on a BLUP approach for the prediction of regionalized
random variables in a low-dimensional space, and the corresponding covariance structure is
typically determined by a parameterized covariance function. Based on a given (limited) set
of measurements, the prediction of the variable realization in any point of the considered
space is of interest. In principle, kriging consists of two steps: (i) estimation of the unknown
parameters and hidden variables (in particular by (restricted) maximum likelihood (ML)
methods) and (ii) prediction of the values of the regionalized variables by performing a BLUP,
under the auxiliary assumption that the parameter values and hidden variables estimated in
the first step are the true ones. While in geostatistics the application of kriging is naturally
limited to few dimensions, the basic approach is rather universal (Schölkopf et al., 2004).
The first goal of this PhD project was the aggregation of both areas of research – animal
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2 1 Introduction: Challenges in Animal Breeding and Genetics in the Face of Genomic Revolution

breeding on the one hand and geostatistics on the other hand – in the course of the genomic
revolution. It is well-known that solving the kriging system (which is in fact a BLUP system
based on a specific linear mixed model) is equivalent to solving the so-called Mixed Model
Equations (MME) established by Henderson (1963). Piepho (2009) was the first performing
genomic prediction with stationary covariance functions in a genomic context by performing
genome-wide selection in maize, but it has not been investigated so far, whether classical
covariance functions from the geostatistical framework like the widely used family of Matérn
functions can also be employed for genomic modeling in animal breeding.
Having both concepts at hand – the classical BLUP approach from animal breeding and

the geostatistical kriging method – the following questions arise, which are of interest both
from a statistical as well as from a biological point of view:

• How does the kriging approach perform in comparison to the classical GBLUP ap-
proach, especially when a very flexible class of covariance functions like the family of
Matérn covariance functions is used or when different gene-action scenarios underly
the considered trait?

• Is there a mathematical relationship between covariance structures based on the family
of Matérn functions and the widely used genomic relationship matrix according to
VanRaden (2008)?

One way to investigate these questions is by means of a whole-genome simulation study
considering additive, additive-dominance and epistatic gene-action models. Simulation
studies are commonly used in the animal breeding community, especially in the framework of
model and method comparison (see e.g. Meuwissen et al. (2001); Long et al. (2010)). Along
these lines, it is sensible to investigate different kriging approaches, for which parameters and
hidden variables are estimated via ML, with the aim to compare the predictive performance
of the kriging methods to the standard GBLUP method on the basis of simulated genomic
and phenotypic data.

Piepho (2009) used the Gaussian and the exponential covariance function in his analyses,
and the Gaussian kernel was also applied by Gianola et al. (2006) and de los Campos
et al. (2009, 2010a,b). Both kernels are special cases of the family of Matérn covariance
functions. It is therefore natural to consider the whole class of covariance functions to
reflect the functional dependency of the observed covariances from the distance of genotypes
expressed as Euclidean norm, after giving a detailed description of the underlying statistical
theory. Furthermore, it can be shown that in a limiting case the genomic covariance structure
proposed by VanRaden (2008) may be considered as a covariance function with corresponding
quadratic variogram and it can be proven that predicted GVs are only scaled by a factor if
the covariance structures are linearly transformed.

The results of this simulation study and the related findings have been published in Ober
et al. (2011) and form chapter 3.
Beginning in the year 2000, first full genome sequences have been released, e.g. for the

model species Drosophila melanogaster (Adams et al., 2000) and Arabidopsis thaliana (The
Arabidopsis Genome Initiative, 2000) as well as for humans (International Human Genome
Sequencing Consortium, 2001). Since then, the incremental decoding of full genome sequences
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for more and more species has been revealed to be an additionally challenging aspect of
the genomic revolution, and full genome sequencing projects like the HapMap project for
humans (The International HapMap Consortium, 2003) have induced a supplemental increase
in genome-wide data available for research purposes. The methodological development of
prediction methods taking these data into account has therefore become even more important.

While it has become standard to apply genomic-based prediction using SNPs from genotyp-
ing platforms, the application has been limited with respect to the number of SNP markers
(usually fewer than 100,000) entering the model, and GBLUP methods have not been applied
using complete genome sequences. However, it has been expected that the availability of
sequence data through next generation sequencing technologies would also revolutionize the
field of genomic prediction in terms of predictive ability (Meuwissen & Goddard, 2010).

Besides the GBLUP method, a second class of prediction methods has been developed by
Meuwissen et al. (2001) within a Bayesian framework: The widely used “BayesB” method is
also based on a linear mixed model for the phenotypic values, but the random component is
a vector of SNP effects whose genetic variances are modeled via a prior distribution.
GBLUP approaches are based on a linear mixed model for the phenotypic values, which

includes a vector of random GVs of individuals whose covariance structure is inferred from
genomic data, and the GBLUP model is equivalent to the so-called “Random Regression
BLUP” (RRBLUP) model under certain conditions. This model includes a vector of random
marker effects (instead of a vector of GVs) which are assumed to be drawn from the same
normal distribution and uncorrelated. GBLUP and RRBLUP both rely on the assumption
that all SNPs are contributing equally to the GVs, which is obviously not true if there are
only a few quantitative trait loci (QTL) underlying the trait. The BayesB method therefore
includes only a predefined fraction of the available markers into the model to conform with
the alternative assumption that most loci are expected to have zero effect on the phenotype,
and the remaining non-zero marker effects are drawn from normal distributions with random
variances.

It has been suggested that differences between the two prediction methods will become
more pronounced in terms of predictive ability with the availability of full genome sequence
data, and simulation studies (Meuwissen & Goddard, 2010) have shown that RRBLUP or
equivalent GBLUP procedures do not take full advantage of high-density marker data if the
number of causal SNPs is small, while approaches with an implicit feature selection such as
BayesB might be more accurate. If, in contrast, the number of causal loci is large, RRBLUP
or GBLUP methods may yield accurate predictions because the assumption that every SNP
has an effect is more realistic. With the availability of whole genome sequence data for
prediction, this issue can finally be investigated using real instead of simulated data.
In this regard, it is important to note that genome-based prediction follows a different

paradigm than genome-wide association studies (GWAS). While prediction methods are
based on linear mixed models with random components describing SNP effects or GVs,
GWAS usually identify single molecular variants associated with phenotypic variability using
statistical tests, typically based on standard ANOVA models including only one SNP effect
at a time as fixed factor variable which is individually tested for significance. The target of
this approach is not to predict phenotypes or GVs but to gain knowledge about the biological
mechanisms underlying the trait.
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So far, sequencing techniques have only been applied to individuals or cohorts of limited
size, but initiatives to sequence larger panels are under way for humans (The 1000 Genomes
Project Consortium, 2010; Elshire et al., 2011) and cattle (The 1000 Bull Genomes Project,
www.1000bullgenomes.com), and genotyping by whole genome resequencing will become
a standard technology in the foreseeable future. In this context, the first study enabling
sequence based prediction has been awaited curiously by the scientific community, and the
following problems are of importance from a statistical as well as from a practical point of
view:

• Can genomic prediction be efficiently implemented for the GBLUP method using whole
genome sequence data?

• Is there a gain in using sequence data as opposed to moderate or high density SNP
array data?

• How does the classical GBLUP method perform compared to the BayesB method,
when whole genome sequence data are included?

• Is it possible to increase predictive ability by a pre-selection of SNPs or models with
an internal feature selection?

• How comparable are the results of genomic prediction and GWAS? Do areas encom-
passing SNPs with large estimated effects based on the RRBLUP approach coincide
with areas including significant SNP positions identified in a corresponding GWAS?

A suitable data set to answer these as well as other closely related questions is the recently
published “Drosophila melanogaster Genetic Reference Panel” (DGRP, Mackay et al. (2012)),
which comprises whole genome sequence data for 192 inbred lines of Drosophila melanogaster.
The Drosophila “fruit fly” is the number one model organism in genetics research (Brookes,
2001) and the DGRP data set comprises the first substantial sample of sequences of a higher
eukaryotic organism.

The release of the DGRP data has been considered to be a landmark publication, providing
an enormously valuable community resource for genetics research and the publication Ober
et al. (2012a), included in chapter 4, is in fact one of the first studies working with this data
set. At the same time, Ober et al. (2012a) provide the first application of genomic prediction
using whole genome sequence data. In the corresponding investigations, approximately 2.5
million SNPs derived from the sequences of 157 DGRP lines are used to predict GVs for
two traits (starvation resistance and startle-induced locomotor behavior) based on different
cross-validation procedures.

One important feature of the genetic architecture of quantitative traits is epistasis (Falconer
& Mackay, 1996), which occurs when the effect at one locus is modified by the genotype
at another locus. The dynamics of epistatic interactions in natural populations though are
poorly understood (Swarup et al., 2012).
Since the GBLUP method is predominantly designed for traits with a purely additive

genomic background, it is canonical to suspect underlying epistatic gene-action scenarios
when observing a poor predictive ability. While predictive abilities for starvation resistance

www.1000bullgenomes.com
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and startle response turned out to be moderately high (Ober et al., 2012a), almost no
predictive ability was observed for a third trait (chill coma recovery). As the study in Ober
et al. (2012a) does not comprise the chill coma data, it is interesting to investigate possible
special characteristics of the chill coma trait in search for potential (biological) explanations
for the failure of the GBLUP approach in this case. In this thesis (chapter 5), we specifically
focus on the influence of

• a region on chromosome 2L dividing the DGRP lines into two clusters, which can be
revealed using the basic idea of the geostatistical variogram,

• and the bimodality of the phenotypic data.

The latter turns out to be the critical point in identifying extensive epistatic interactions
between SNPs affecting the chill coma phenotype on the basis of extended ANOVA-models
which account for this bimodality.

While it is standard to carry out association studies including single SNP effects (as done
in Mackay et al. (2012) for starvation resistance, startle response and chill coma recovery),
epistatic interactions between SNPs are not included into association studies by default.
However, hints of epistasis are manifold for diverse species (see e.g. Flint & Mackay (2009);
Steinmetz et al. (2002)). In a recent study, Swarup et al. (2012) found extensive epistasis for
olfactory behavior, sleep and waking activity in D. melanogaster, and also gave an overview
of previously reported studies investigating epistatic interactions for other traits and species.
In light of this, it is interesting to pursue hints of epistatic interactions, whenever they occur,
since they might allow new insights into the complex biology underlying the considered trait.

In this thesis we present the basic procedures used in the corresponding statistical analyses
to detect these interactions for chill coma recovery. The proposed procedures rely on a
two-step GWAS, whose ANOVA-models account for both the phenotypic bimodality (in the
first step) and for possible interaction terms (in a second step). We also sketch the first
findings of this research, which comprise meaningful hints of epistasis underlying the chill
coma recovery trait. Since these results were promising with respect to the epistatic findings,
they gave rise to many possible subsequent investigations.

To fully understand the complexity of the chill coma recovery trait from a biological point
of view, further analyses have been carried out in collaboration with the working group
of Prof. Mackay, including Gene Ontology enrichment analyses as well as genetic network
investigation. Based on the results presented in chapter 5, a complex genetic architecture of
the chill coma fitness trait could be revealed by confirming extensive epistasis and identifying
alleles with large effects (Ober et al., 2012b). This enabled novel insights into the genetic
architecture of chill coma recovery time.

It is well-known that the accuracy of prediction methods based on marker data depends on
many factors: the heritability of the trait, its genetic architecture (number of loci affecting
trait variation, mode of inheritance, and distribution of allelic effects (Hayes et al., 2010)),
the size of the genome, the marker density and the sample size used in the statistical
analysis (Daetwyler et al., 2010). Another important factor determining the accuracy is the
underlying pattern of stochastic correlation between SNP markers (usually termed “linkage
disequilibrium” (LD), Hill & Robertson (1968)).
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The concept of LD forms the basis of the promise of genomic prediction methods, since
the inclusion of marker information into genomic prediction methods is based upon the
assumption that genotyped genetic markers entering the statistical model are in LD with
(possibly not genotyped) QTL affecting the trait. The description of patterns of LD in the
considered population is therefore obligated when performing a study using real or simulated
data. LD is also one of the most important measures considered in population genetics
(cf. Hedrick (2011) and the references therein), since it is related to the so-called “effective
population size” Ne, which can be estimated based on the LD structure in the population of
interest.

Substantial efforts have been made to describe the evolution of LD over time mathematically,
and computing its expectation in the population exactly has remained an intriguing open
problem (Song & Song, 2007). One standard approach to estimate Ne from LD is based on
a formula proposed by Sved (1971) for the expected LD “at equilibrium”, which relies on a
recursion formula for the development of expected LD from one generation to the next. The
estimation of Ne based on LD has become common practice in animal breeding (de Roos
et al., 2008; Flury et al., 2010; Qanbari et al., 2010), plant breeding (Remington et al., 2001)
and human genetics (Tenesa et al., 2007; McEvoy et al., 2011), since it also allows to describe
the evolution of Ne over time (Hayes et al., 2003).
Several formulae for the expected levels of LD in populations of finite size have been

proposed during the last decades and their plausibility has been shown empirically. However,
most of their derivations contain heuristic parts, so that they remain questionable from a
mathematical point of view. Therefore, a sound mathematical approach to describe the
development of LD in a finite population is urgently needed. On that account, we propose
a clearer approach in chapter 6 which is based on an alternative linear recursion formula
for the expected LD. In fact, the exact formula for the expected LD, which depends on
the distribution of allele frequencies, can be calculated only theoretically. We give an
approximate solution and analyze its validity extensively in a simulation study. Compared
to the widely used formula of Sved (1971), the proposed formula turns out to perform better
for all parameter constellations under consideration.

The mathematical theory underlying these formulae assumes that the underlying population
is “ideal”, i.e. there is random mating in non-overlapping generations, a constant population
size, no selection, no migration and no mutation. Populations considered in practice usually
do not fulfill these conditions. It is therefore of interest to calculate the effective population
size Ne based on the average LD-value observed from the population. By definition, Ne is the
size of an ideal population “at equilibrium” with the same structure of LD as the population
under consideration. In previous studies, “equilibrium” was defined as the point in time at
which the expected LD of the next generation equals the LD of the previous one (see e.g.
Sved (1971); Tenesa et al. (2007)). Using this definition and assuming a linear recursion
formula for the development of LD from one generation to the next, the expected LD at
equilibrium can easily be calculated. However, two major statistical problems arise from this
definition:

• It is not clear whether this equilibrium will ever be achieved.

• One cannot infer from this definition how the formula for the expected LD at equilibrium
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is affected if the recursion formula is not exact but only approximate.

We address these problems by a novel approach in chapter 6 and analyze the expected LD
at equilibrium using the theory of discrete-time Markov chains for the development of the
vector of gamete frequencies in the population over time, with equilibrium being defined
as the steady-state of the chain. This allows the mathematical derivation of the expected
amount of LD at equilibrium based on a linear recursion formula under the assumption
that the recursion is exact. An additional analysis considers the effect of non-exactness of a
recursion formula on the steady-state, demonstrating that the resulting error in expected
LD can be substantial.
Another issue in this context is related to the distribution of minor allele frequencies

(MAFs) of the SNPs used for Ne-estimation: While the natural MAF distribution is usually
skewed with a substantial excess of small MAF values, commercial SNP arrays are often
constructed such that the MAF distribution is uniform (cf. Matukumalli et al. (2009)),
leading to the question how this affects Ne-estimation and how reliable previously reported
estimates are. In an application to the HapMap data of two human populations (The
International HapMap Consortium, 2003) we therefore illustrate the dependency of the
Ne-estimate on the MAF distribution, showing that estimates can vary by up to 30% when
a uniform instead of a skewed MAF distribution is taken as a basis to select SNPs for the
analyses.
Based on a rigorous statistical approach, our analyses enable new insights into the

mathematical complexity of LD-evolution.

This PhD thesis comprises a wide spectrum of investigations at the interface between
statistics, animal breeding and genetics. Its findings are of interest from a practical as well as
from a methodological and statistical point of view. Parts of this thesis have been published
in international peer-reviewed journals, making valuable contributions to ongoing research
questions.

Chapter 2 provides a brief description of the basic principles of the kriging concept and the
BLUP approach in a linear mixed model framework with a focus on the equivalence of the
kriging system and the MME. The investigation of the relationship between both methods
taking genomic data into account is included in chapter 3 and published in Ober et al. (2011).
The first application of the GBLUP approach using full genome sequence data of the DGRP
lines is described in chapter 4 and published in Ober et al. (2012a). Chapter 5 analyzes
the special characteristics of the chill coma recovery trait. A manuscript with continuative
analyses, which is not contained in this thesis, is currently in revision for PLoS Genetics
(Ober et al., 2012b). Finally, chapter 6 investigates the evolution of LD in a finite population.
A corresponding publication is in preparation (Ober et al., 2012c).

In order to allow a selective reading of the single chapters, they are coherent but not
constitutive (except for chapter 5 which relies on chapter 4).





2 Kriging, Best Linear Unbiased Prediction (BLUP)
and the Mixed Model Equations (MME)

In chapters 3 and 4, the basic principle of best linear unbiased prediction (BLUP) is repeatedly
used in the context of the geostatistical kriging approach and within the framework of linear
mixed model theory. The BLUP approach in linear mixed model theory is closely related to
the so-called “Mixed Model Equations” (MME). In this chapter, we will therefore briefly
discuss the basic concepts of kriging and the equivalence of the BLUP approach and the
MME.

2.1 Basic concepts of kriging
In geostatistics, kriging is nowadays the standard approach whenever spatial prediction of a
so-called regionalized variable (Matheron, 1989) has to be performed based on a few isolated
measurements of the quantity. To this end, it is assumed that the regionalized variable is a
realization of a random function with a certain covariance structure. Mostly, the latter is
given by a parameterized covariance function (Cressie, 1993). The kriging approach usually
consists of two steps: (i) estimation of the unknown parameters and hidden variables and
(ii) prediction of the values of the regionalized variables by performing a BLUP approach,
under the auxiliary assumption that the parameters and hidden variables estimated in the
first step are the true parameters.
Depending on the specific side conditions of the kriging procedure, many variants of the

unique kriging principle have been published (Chilès & Delfiner, 1999; Wackernagel, 2003;
Cressie, 1993). The type of kriging is implied by the unbiasedness condition: In “simple
kriging” it is assumed that the underlying regionalized variable (which is used for prediction)
has known mean, whereas in “universal kriging”, a linear model for the unknown mean of
the underlying regionalized variable is assumed.
Let us consider the different kriging concepts more detailed:
Let Z(·) be a regionalized random variable with covariance function C, i.e.

C(xi, xj) = Cov(Z(xi), Z(xj)),

with locations xi, xj ∈ Rd. Our aim is to predict the value of Z(x0) conditional on the
observed values of Z(x1), . . . , Z(xn). We perform a BLUP by predicting Z(x0) as

Ẑ(x0) =
n∑
i=1

ai(x0)Z(xi) = (Z(x1), . . . , Z(xn))a

9
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with a := (a1(x0), . . . , an(x0))T and minimizing

Var(Ẑ(x0)− Z(x0)) =
n∑

i,j=1
ai(x0)aj(x0)C(xi, xj) + Var(Z(x0))− 2

n∑
i=1

ai(x0)C(xi,x0)

= aTCa + C(x0, x0)− 2aTC0

with C := {C(xi,xj)}ni,j=1 and C0 := (C(x1, x0), . . . , C(xn, x0))T subject to the unbiasedness
condition

0 != E(Ẑ(x0)− Z(x0)) = (E(Z(x1)), . . . ,E(Z(xn)))a − E(Z(x0)).

2.1.1 Simple kriging
In simple kriging, we may assume E(Z(x)) = 0. Then, the unbiasedness condition is
automatically fulfilled and the function to be minimized becomes

Φ := aTCa + C(x0, x0)− 2aTC0.

Taking the derivative with respect to a leads to

∂Φ

∂a = 2Ca − 2C0
!= 0 ⇔ a = C−1C0,

provided that C(·, ·) is a strictly positive definite function.

2.1.2 Universal kriging
In universal kriging, we assume E(Z(x)) = ∑m

i=1 βifi(x) = (f1(x), . . . , fm(x))β with a vector
β ∈ Rm and known functions f1, . . . , fm. Then, the unbiasedness condition amounts to

aTFβ − FT
0 β = 0 for all β ∈ Rm

with F :=

f1(x1) · · · fm(x1)
...

...
f1(xn) · · · fm(xn)

 and FT
0 := (f1(x0), . . . , fm(x0)), which is fulfilled if and

only if aTF = FT
0 . The function to be minimized becomes

Φ := aTCa + C(x0, x0)− 2aTC0 + 2(aTF− FT
0 )λ,

where λ is the corresponding Lagrange multiplier. Taking the derivatives with respect to a
and λ leads to

∂Φ

∂a = 2Ca − 2C0 + 2Fλ != 0 and ∂Φ

∂λ
= FTa − F0

!= 0,
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which finally yields the universal kriging system(
F C
0 FT

)
·
(
λ
a

)
=
(

C0
F0

)
. (2.1)

2.2 BLUP and the MME
While geostatisticians usually solve the kriging system to obtain a BLUP of their random
variable of interest, animal breeders mostly solve the MME introduced by Henderson et al.
(1959) to obtain a BLUP of total genetic values of individuals. Although both approaches can
obviously be embedded into a mixed model framework, it is not quite evident at first sight
that the two different systems of equations are in fact closely related. More precisely, the
BLUP approach applied to certain components in a mixed model context (which naturally
leads to a linear system of the same form as the kriging system) can be shown to be equivalent
to solving the MME. Since both systems are often used without reference to each other
in the literature, a derivation of the equivalence is given in the following. Note that the
basic idea of this derivation has been established by Henderson (1963) and independently by
Goldberger (1962).

2.2.1 The BLUP approach in the mixed model framework
Consider the following linear mixed model:

y = Wβ + Zu + e

with β being an m-vector of fixed effects, u being a p-vector of random effects with E(u) = 0
and variance-covariance matrix Cov(u) = A, and e being an n-vector of residual effects with
E(e) = 0 and Cov(e) = R. Further assume that u and e are uncorrelated. W and Z are
supposed to be known incidence matrices of dimensions n×m and n× p. Let

V := ZAZT + R

be the variance-covariance matrix of y. In the following, we will assume that A and R are
positive definite, which implies that A−1,R−1 and V−1 exist. (Note that strictly positive
definite functions are defined in analogy to positive definite matrices and that positive definite
functions are defined in analogy to positive semi-definite matrices.) We will further assume
that the rank of W equals m (which implies that WTV−1W is invertible). Our aim is to
predict

KTβ + MTu

via a BLUP approach, with K and M being coefficient matrices (both having q rows)
and with “best prediction” characterized by simultaneously minimized variances of all q
components of KTβ + MTu− ̂KTβ + MTu. That is we want to find an estimator

̂KTβ + MTu = LTy (2.2)
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for some coefficient matrix L, provided that KTβ is estimable for all β ∈ Rm.
By definition, KTβ is estimable if it has a linear unbiased estimate, i.e. if there exists a
matrix K̃T with

E(K̃Ty) = KTβ for all β ∈ Rm

⇔ K̃TWβ = KTβ for all β ∈ Rm

⇔ K̃TW = KT .

If KTβ is estimable, the Aitken Theorem (Aitken, 1934), which is a generalization of the
Gauss-Markov Theorem, ensures that a best linear unbiased estimate (BLUE) of KTβ exists
and is unique. Since E(LTy) = LTWβ and E(KTβ + MTu) = KTβ, the prediction (2.2) is
unbiased if and only if

LTWβ = KTβ for all β ∈ Rm ⇔ LTW = KT .

Subject to this condition, we have to minimize

Var((KTβ + MTu− LTy)i)

for i = 1, . . . , q, where the subscript i indicates the ith row of a matrix. In the following, the
ith columns of K,L and M are denoted by ki, li and mi.
We first note that

Var((KTβ + MTu− LTy)i)
= (Cov(MTu− LTy))ii
= (Cov(MTu− LT (Wβ + Zu + e)))ii
= (Cov((MT − LTZ)u + LTe))ii
= ((MT − LTZ)A(M− ZTL) + LTRL)ii
= mT

i Ami −mT
i AZT li − lTi ZAmi + lTi ZAZT li + lTi Rli.

Minimizing this expression with respect to li subject to the side condition lTi W = kTi from
LTW = KT finally leads to the system of equations(

W ZAZT + R
0 WT

)
·
(
λi
li

)
=
(

ZAmi

ki

)
,

for i = 1, . . . , q, where λi is the corresponding Lagrange multiplier. Summarizing these
systems for i = 1, . . . , q yields(

W V
0 WT

)
·
(
λ
L

)
=
(

ZAM
K

)
(2.3)
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with λ := (λ1, . . . ,λq). Note that (2.3) is of the same form as q (combined) universal kriging
systems specified in (2.1). Hence we have to solve

VL− ZAM + Wλ
!= 0 (2.4)

and WTL−K != 0. (2.5)

From (2.4) we get

L = V−1(ZAM−Wλ). (2.6)

Plugging this into (2.5), we obtain

WT (V−1ZAM−V−1Wλ)−K = 0
⇔ WTV−1Wλ = WTV−1ZAM−K
⇔ λ = (WTV−1W)−1(WTV−1ZAM−K). (2.7)

Plugging this formula into (2.6), we arrive at

LT = (MTAZT − λTWT )V−1

= MTAZTV−1 − (WTV−1ZAM−K)T (WTV−1W)−1WTV−1

= MTAZTV−1 + KT (WTV−1W)−1WTV−1 (2.8)
− (WTV−1ZAM)T (WTV−1W)−1WTV−1︸ ︷︷ ︸

=MTAZTV−1W(WTV−1W)−1WTV−1

. (2.9)

Indeed, L and λ from (2.7) and (2.8) solve the system (2.3).
Now, let

β̂ = (WTV−1W)−1WTV−1y,

which is the generalized least square (GLS) solution for β. Then, the BLUP of KTβ+ MTu
is given by

LTy = KT β̂ + MTAZTV−1(y−Wβ̂). (2.10)

Particularly, the BLUP of u is given by

û = AZTV−1(y−Wβ̂)

and the BLUE of β equals β̂, which can easily be seen by choosing K = 0 and M = I (and
K = I and M = 0, respectively) in equation (2.10).
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2.2.2 Equivalence to the MME
Consider now the following linear system of equations, also known as the Mixed Model
Equations (MME):(

WTR−1W WTR−1Z
ZTR−1W ZTR−1Z + A−1

)
·
(
β̂
û

)
=
(

WTR−1y
ZTR−1y

)
. (2.11)

In the following, we will show the equivalence of the BLUP for u and the BLUE for β to the
solution of the MME. First of all, the Sherman-Morrison-Woodbury formula (Henderson &
Searle, 1981) states that

V−1 = R−1 −R−1ZTZTR−1 with T = (ZTR−1Z + A−1)−1. (2.12)

From the MME we get

(ZTR−1Z + A−1)û = ZTR−1(y−Wβ̂)
⇔ û = TZTR−1(y−Wβ̂).

Using (2.12), we also have

AZTV−1 = AZTR−1 −AZTR−1ZTZTR−1

= A(T−1 − ZTR−1Z)TZTR−1

= TZTR−1. (2.13)

Hence, we get

û = AZTV−1(y−Wβ̂), (2.14)

which is the BLUP of u. From the MME we also have

WTR−1Wβ̂ + WTR−1Zû = WTR−1y.

By plugging in û from eq. (2.14), we finally get

WTR−1Wβ̂ + WTR−1ZAZTV−1(y−Wβ̂) = WTR−1y
⇔ WT (R−1 −R−1Z AZTV−1︸ ︷︷ ︸

(2.13)
= TZTR−1

)

︸ ︷︷ ︸
=V−1

Wβ̂ = WT (R−1 −R−1ZAZTV−1)︸ ︷︷ ︸
=V−1

y

⇔ β̂ = (WTV−1W)−1WTV−1y,

which is the GLS solution for β. Indeed, û and β̂ solve the MME (2.11).
Thus, we have shown that solving the linear system (2.3) for the two cases (i) W = 0 and
Z = I and (ii) W = I and Z = 0 to obtain a BLUP of u and a BLUE of β, respectively, is
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equivalent to solving the MME (2.11).
Note that the solution of the MME can also be obtained by maximizing the likelihood

function of (y,u) with respect to β and u under the assumption that u and e are multivariate
normally distributed.





3 Predicting Genetic Values: a Kernel-Based Best
Linear Unbiased Prediction with Genomic Data

This chapter is based on the article Ober et al. (2011).

3.1 Background
Predicting genotypes and phenotypes plays an important role in many areas of life sciences.
Both in animal and plant breeding, it is essential to predict the genetic quality (the so-called
total genetic value (GV)) of individuals or lines, based on different sources of knowledge. Often,
phenotypic measures for various traits are available and the additive genetic relationship
between individuals (Wright, 1922) can be derived, based on the known pedigree. Best
linear unbiased prediction (BLUP, Henderson (1973)) of breeding values is a well established
methodology in animal breeding (Mrode, 2005) and has recently gained relevance in plant
breeding (Piepho et al., 2008). In both areas, the main interest is in complex traits with a
quantitative genetic background.
In human medicine, the interest is in predicting phenotypes, rather than genotypes, for

simple or complex traits (e.g. the probability/risk to encounter a certain disease). Genetic
prediction is mainly applied in the context of genetic counseling by predicting the risk of
genetic disorders with known mono- or oligogenetic modes of inheritance and a certain history
of cases in a known family structure, but accurate predictions of genetic predispositions to
human diseases should also be useful for preventive and personalized medicine (de los Campos
et al., 2010a). Wray et al. (2007) discuss the potential use of prediction of the genetic liability
for traits with a complex quantitative genetic background in a human genetics context, and
the variety of possible methods, including linear models, penalized estimation methods and
Bayesian approaches was reviewed by de los Campos et al. (2010a).
With the availability of high-throughput genotyping facilities (Ranade et al., 2001),

genotypes for massive numbers of single nucleotide polymorphisms (SNPs) are available and
can be used as an additional source of information for predicting GVs. Meuwissen et al.
(2001) have suggested to include SNP information in a statistical model of prediction. They
used three statistical models: a model assigning random effects to all available SNPs (later
termed “genomic BLUP”), assuming all SNP effects to be drawn from the same normal
distribution, and two Bayesian models, where all (“BayesA”) or a subset (“BayesB”) of
the random SNP effects are drawn from distributions with different variances. Various
modifications of these methods and additional models have been subsequently suggested
(Gianola et al., 2009).

Gianola et al. (2006) and Gianola & van Kaam (2008) have suggested a non-parametric
treatment of genomic information by using Reproducing Kernel Hilbert Spaces (RKHS)

17
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regression, which has already been demonstrated with real data (González-Recio et al., 2008,
2009). As was argued by de los Campos et al. (2009), the RKHS regression approach to
genomic modeling represents a generalized class of estimators and provides a framework
for genetic evaluation of quantitative traits that can be used to incorporate information on
pedigrees, markers, or any other ways of characterizing the genetic background of individuals.

Opportunities to enhance genetic analyses by using non-parametric kernel-based statistical
methods are enormous and these methods have been considered in different areas of genetic
research. Schaid (2010a,b) provides an overview of measures of genomic similarity based
on kernel-methods and describes how kernel functions can be incorporated into different
statistical methods like e.g. non-parametric regression, support vector machines or regular-
ization in a mixed model context. Only recently, kernel-based methods have also been used
in association studies (Yang et al., 2008; Kwee et al., 2008) and QTL mapping for complex
traits (Zou et al., 2010), which demonstrates their great potential and flexibility.
Prediction is also relevant in other areas of research: In large parts of geostatistics, the

spatial distribution of variables (like temperature, humidity, ore concentration, etc.) is
considered. Based on a given (limited) set of measurements, the prediction of the variable
realization in any point of the considered space is of interest. A standard approach for
prediction in this case is the so-called “kriging” (Chilès & Delfiner, 1999) which makes use of
a parameterized covariance function of the regionalized variables.

While in geostatistics the application of kriging is naturally limited to few dimensions, the
basic approach is rather universal (Schölkopf et al., 2004). In this chapter we apply kriging
to the genomic prediction problem. Here, one dimension reflects genotype realizations at one
SNP. In the genomic context, with p SNPs, realizations are in an p-dimensional orthogonal
hypercube. Due to the biallelic nature of SNPs, only three genotype realizations (coded
e.g. as 0, 1 and 2) are possible in each dimension, so that the number of possible genotype
constellations over p SNPs is 3p.

The concept of kriging is closely related to the concept of best linear unbiased prediction
(BLUP). Cressie (1990) provides a “historical map of kriging” up to 1963 in which he also
refers to Henderson (1963) who introduced BLUP in animal breeding. The steps of kriging
are equivalent to “empirical BLUP”-procedures known in other frameworks, and kriging can
be viewed as a “spatial BLUP”. The conceptual equivalence of geostatistical kriging and
BLUP has already been discussed by Harville (1984). Robinson (1991) provides a detailed
review on the history of estimation of random effects via BLUP and its various derivations.
He also points out the similarities between BLUP and kriging.

The equivalence of kriging with BLUP in a space spanned by genomic data was first noted
by Piepho (2009), who also discusses relationships with other estimation principles, like ridge
regression (Whittaker et al., 2000) and least squares support vector machines (Suykens et al.,
2002). Comparing the performance of spatial mixed models to ridge regression with maize
data, he found that spatial models provide an attractive alternative for prediction. He also
points out that the BLUP model used in Meuwissen et al. (2001) has an interpretation as
a spatial model with quadratic covariance function. Spatial models for genomic prediction
were also used by Schulz-Streeck & Piepho (2010).

Moreover, kriging is known to be closely related to radial basis function (RBF) regression
methods (Myers, 1992). Long et al. (2010) showed with real and simulated data that non-
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parametric RBF regression methods can outperform BayesA when predicting total GVs in
the presence of non-additive effects using SNP markers.

In this chapter we will demonstrate the potential of the kriging approaches applied to
genomic data: As a novelty, we will suggest the family of Matérn covariance functions to
reflect the functional dependency of the observed covariances from the distance of genotypes
expressed as Euclidean norm. Based on this model and the assumed covariance function, we
will suggest two kriging approaches. Under both models, parameters and hidden variables are
estimated via maximum likelihood (ML) and BLUP of the unknowns is established by solving
the corresponding linear kriging systems. All predictions can also be implemented in the
form of the so-called mixed model equations (Henderson, 1973). The predictive performance
of the two models will be compared to a common genomic BLUP as a reference method in a
whole-genome simulation study considering various gene-action models.

Furthermore, we will show that in a limiting case the genomic covariance structure proposed
by VanRaden (2008) can be considered as a covariance function with corresponding quadratic
variogram. Besides we will prove theoretically that predicted GVs are only scaled by a factor
if the covariance structures are linearly transformed. Finally, we will discuss further options
for a more differentiated modeling using the suggested methodological approach.

3.2 Prediction methods
3.2.1 Kriging
The term kriging stems from the prediction of ore concentrations in deposits and was mainly
developed by Matheron (1962, 1963) based on the master’s thesis of Krige (1951). In
geostatistics, kriging is nowadays the standard approach whenever spatial prediction of a
so-called regionalized variable (Matheron, 1989), e.g. temperature, ozone concentration or
soil moisture, has to be performed based on a few isolated measurements of the quantity. It
is assumed that the regionalized variable is a realization of a random function with a certain
covariance structure. Mostly, the latter is given by a parameterized covariance function
(Cressie, 1993), and the random function is assumed to be Gaussian.

The kriging approach consists of two steps: (i) estimation of the unknown parameters
and hidden variables (in particular by ML or REML) and (ii) prediction of the values of
the regionalized variables by performing a BLUP, under the auxiliary assumption that the
parameter values and hidden variables estimated in the first step are the true ones.
Many variants of the general kriging principle have been discussed (Cressie, 1993). The

type of kriging is implied by the unbiasedness condition: In “simple kriging” it is assumed
that the underlying regionalized variable has zero-mean, whereas in “universal kriging” a
linear model for the mean of the underlying regionalized variable is assumed.

3.2.2 The model for polygenic and genomic data
In our further studies, we assume to have q individuals with pedigree information, n of
them being genotyped and having phenotype measurements of a certain quantitative trait.
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Typically, GVs have to be predicted for individuals that are genotyped, but have no phenotype
data.
We use the following model for the given data:

yi = wT
i β + zTi u + g(xi) + ei, i = 1, . . . n,

where yi is a measurement of the phenotype for individual i, β is an f -vector of nuisance
location parameters, xi is a p-vector of dummy SNP instance variates (genotype) observed on
individual i, and g is an unknown, random function as described below. Let u ∼ N (0, σ2

uA)
be a q-vector of additive genetic effects of q individuals where σ2

u is the additive genetic
variance due to unmarked polygenes, and A is the numerator relationship matrix. The
entries of the numerator relationship matrix are twice the coefficients of coancestry between
individuals. The vectors wT

i and zTi are known incidence vectors; zi is a unit vector with one
component being 1 and all the others zero, indicating the respective position in the pedigree.
Let e = (e1, . . . , en)T be the vector of environmental residual effects with e ∼ N (0, σ2

eI),
where σ2

e is the environmental variance.
We assume that {g(xi),xi ∈ Rp} is a Gaussian random field (Lifshits, 1995) with E(g(xi)) =

0 and covariance structure given by Cov(g(xi),g(xj)) = E(g(xi)g(xj)) = Kν,h,σK (xi,xj),
where Kν,h,σK (· , ·) is a covariance function depending on parameters ν, h, and σK . Let
Kν,h,σK = (Kν,h,σK (xi,xj))1≤i,j≤n be the corresponding covariance matrix.

The family of Matérn covariance functions: For the covariance structure we suggest to use
the so-called family of Matérn covariance functions, which was introduced by Matérn (1960)
and Handcock & Wallis (1994), and which is defined by

Cov(g(xi),g(xj)) = Kν,h,σK (xi,xj) = σ2
K ·

21−ν

Γ (ν)
(√

2ν‖xi − xj‖/h
)ν

Kν
(√

2ν‖xi − xj‖/h
)
.

Here, ‖·‖ is the Euclidean norm, ν > 0 is a smoothness parameter, h is a scale parameter, σ2
K

is the variance parameter and Kν(·) is a modified Bessel function of the second kind of order
ν (Abramowitz & Stegun, 1984). The Matérn function is isotropic, in that Cov(g(xi),g(xj))
only depends on the Euclidean norm of the separation vector xi − xj .
Matérn covariance functions build a very general class of covariance functions including

special cases like the exponential (ν = 1/2) and the Gaussian (ν =∞) covariance function,
the ones that have also been used by Piepho (2009). If the smoothness parameter ν is of
the form m+ 1/2, where m is an integer, the Matérn function factorizes into the product of
an exponential function and a polynomial of degree m, cf. Table 3.1 and Figure 3.1. The
best fitting parameter value ν is determined through the model-fitting approaches described
below.
In matrix notation, the statistical model is

y = Wβ + Zu + g(X) + e, (3.1)

where W = (wT
1 , . . . ,wT

n )T is an (n × f)- and Z = (zT1 , . . . , zTn )T is an (n × q)-incidence
matrix and g(X) = (g(x1), . . . , g(xn))T . Finally, we assume that the random vectors u, e
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Figure 3.1: Matérn covariance functions for h = 1, σ2
K = 1 and different values of ν.

From top to bottom ν =∞, 10, 2.5, 1.5, 0.5.

Table 3.1: Special cases of Matérn covariance functions

ν h Kν,h,σK (xi,xj)

Exponential 0.5 1 σ2
K · exp(−‖xi − xj‖)

1.5 1 σ2
K · exp(−

√
3‖xi − xj‖) ·

(
1 +
√

3‖xi − xj‖
)

2.5 1 σ2
K · exp(−

√
5‖xi − xj‖) ·

(
1 +
√

5‖xi − xj‖+ 5
3‖xi − xj‖2

)
Gaussian ∞ 1 exp(−1

2‖xi − xj‖2)

and g(X) are independent.

3.2.3 Two kriging approaches and a reference model
We consider two models to predict the total genetic value zT0 u + g(x0) of a certain genotyped
individual indexed by 0. This individual belongs to the set of q individuals, but it does
not have to be phenotyped. The models differ in the size of the sets of quantities that are
estimated in the first kriging step and subsequently used for predictions.
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Universal Kriging: Modeling of y: We exploit the fact that y has a multivariate normal
distribution,

y ∼ N (Wβ, σ2
uZAZT + Kν,h,σK + σ2

eI),

and estimate the parameters β, σu, σe, ν, h and σK by maximizing the loglikelihood of the
corresponding density function.
Then, we perform a best linear unbiased prediction of g(x0) and zT0 u, i.e. we apply the

BLUP principle: To obtain ĝ(x0) we minimize

E(ĝ(x0)− g(x0))2 −→ min!

with the linear predictor ĝ(x0) = aTg y under the condition aTg W = 0. This approach is
called “universal kriging” in other areas of research (Cressie, 1993). In fact, the condition
assures aTg Wβ = 0 and therefore Eg(x0) = 0 = aTg Wβ = Eĝ(x0) , i.e. ĝ(x0) is unbiased. Let
K0 = (Kν,h,σK (x1,x0), . . . ,Kν,h,σK (xn,x0))T . The approach results in the following kriging
system of equations: [

W σ2
uZAZT + Kν,h,σK + σ2

eI
0 WT

]
·
[
λ
ag

]
=
[
K0
0

]
.

Note that this linear system does not depend on β. Analogously, zT0 u can be predicted by
the universal kriging estimator ẑT0 u = aTu y, where au satisfies[

W σ2
uZAZT + Kν,h,σK + σ2

eI
0 WT

]
·
[
λ
au

]
=
[
σ2
uZAz0

0

]
,

and one gets ẑT0 u + ĝ(x0) as BLUP of zT0 u + g(x0).
Mixed Model Equations (MME). In the animal breeding context it is well-known that a

BLUP-approach for the model y = Wβ + Zu + g(X) + e is equivalent to solving the MMEWTW WTZ WT

ZTW ZTZ + σ2
e
σ2
u
A−1 ZT

W Z I + σ2
eK−1

ν,h,σK

 ·
 β̂

û
ĝ(X)

 =

WTy
ZTy

y

 (3.2)

for given variance components estimated e.g. by ML. For a derivation of the MME from the
kriging system compare section 2.2 or Dempfle (1982).

Simple Kriging: Joint modeling of y, u and g(X): In the second approach we model the
hidden variables u and g(X) explicitly and consider the joint density function fy,u,g of y,u
and g(X) which equals

fy,u,g(X)(y,u,g(X)) = fy|u,g(X)(y) · fu(u) · fg(g(X))
= fe(y−Wβ − Zu− g(X)) · fu(u) · fg(g(X))
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= c · exp
(
−1

2 ·
[ 1
σ2
e

‖y−Wβ − Zu− g(X)‖2
])

· exp
(
−1

2 ·
[ 1
σ2
u

uTA−1u
])
· exp

(
−1

2 ·
[
g(X)TK−1

ν,h,σK
g(X)

])
with

c−1 = (2π)n+q/2σne · σqu(det A)1/2 · (det Kν,h,σK )1/2.

Here, we have to estimate the parameters β, σu, σe, ν, h, σK and the hidden variables u and
g(X). Note that in this approach we consider u and g(X) to be parameters that have to be
estimated via ML in the first kriging step. Therefore, we maximize the loglikelihood J of the
density function fy,u,g, i.e. we maximize

J = log(c)− 1
2 ·
[ 1
σ2
e

‖y−Wβ − Zu− g(X)‖2 + 1
σ2
u

uTA−1u + g(X)TK−1
ν,h,σK

g(X)
]

(3.3)

with respect to β,u and g(X). Taking the derivatives with respect to β,u and g(X) leads
to the linear system given in eq. (3.2) which yields estimators for β,u and g(X). When
using these estimates in eq. (3.3), the value of J depends only on σu, σe, ν, h and σK . Thus,
J can be maximized numerically with respect to these parameters, leading to estimates
for β, σu, σe, ν, h, σK ,u and g(X). According to the kriging philosophy, we now assume the
values of the estimators (especially the value of the estimator for g(X)) to be the true ones,
and g(x0) is predicted via ĝ(x0) = aTg g(X) by the BLUP principle. That is, we minimize

E(ĝ(x0)− g(x0))2 −→ min!

with the linear estimator
ĝ(x0) = aTg g(X).

This approach is called “simple kriging” (Cressie, 1990, 1993; Chilès & Delfiner, 1999). Note
that ĝ(x0) is always unbiased. The solution is

ĝ(x0) = KT
0 K−1

ν,h,σK
g(X). (3.4)

Finally, the predicted GV is given by ̂g(x0) + zT0 u = ĝ(x0) + zT0 û, where û is the estimator
obtained in the iterative procedure described above.

Reference model (genomic BLUP): This approach performs a genomic BLUP based on the
model

y = Wβ + Zu + X̃g + e,

which leads to the kriging system[
W σ2

uZAZT + σ2
gX̃GX̃T + σ2

eI
0 WT

]
·
[
λ
a

]
=
[
σ2
uZAz0 + σ2

gX̃Gx̃0
0

]
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and predicting ̂zT0 u + x̃T0 g = aTy.
Here, β, e ∼ N (0,σ2

eI),u ∼ N (0, σ2
uA),W and Z are defined as in the previous approaches.

The vector g ∼ N (0, σ2
gG) is multivariate normal with G being a genomic relationship

matrix calculated by using the approach of VanRaden (2008). (For the definition of the
genomic relationship matrix see the formulas in section 3.6.) The matrix X̃ is a known
incidence matrix whose rows consist of unit vectors with one component being 1 and all the
others zero, indicating the respective position in the g-vector. Variance components for this
model are estimated via ML.

3.3 Simulation study
In a first step, four types of simulations were performed differing in the hypothetical gene-
action scenario: “additive”, “additive-dominance” with two different ratios of dominance
variance to additive variance and “epistasis”. For each scenario 50 independent simulations
were run, resulting in 50 data sets per scenario.

The simulation process basically followed that of Meuwissen et al. (2001), Solberg et al.
(2008) and Long et al. (2010).

3.3.1 Population and genome
In each scenario, the population evolved during 1,000 generations of random mating and
random selection with a population size of 100 (50 males and 50 females) in each generation
to reach a mutation-drift balance. After 1,000 generations, the population size was increased
to 500 at generation t = 1,001 by mating each male with 10 females, with one offspring per
mating pair. In generations t = 1,002; . . . ; 1,011 offspring were born from random mating
of individuals of the previous generation. The 1,500 individuals of generations 1,008, 1,009
and 1,010 were used as estimation set, the 500 individuals of generation 1,011 formed the
validation set for which total GVs were predicted. Pedigree data were recorded for individuals
of the last 10 generations. SNP data of individuals were recorded both for the estimation-
and the validation set. Phenotypes were only stored for individuals of the estimation set.
The simulated genome consisted of 1 chromosome of length 1 Morgan, containing 100

equally spaced putative QTL. Each QTL was flanked by 30 equally spaced SNP markers
resulting in 3,030 markers (M) in total. The layout of the chromosome was therefore given
by

M1−M2− . . .−M30−QTL1−M31− . . .−M60−QTL2− . . .−QTL100−M3,001− . . .−M3,030.

Starting with monomorphic loci in the base generation, mutation rates at QTL and SNP
markers were 2.5×10−3 per locus per generation (t = 1; . . . ; t = 1,000), to obtain an adequate
number of segregating (biallelic) loci. On average, simulation resulted in 2,745 segregating
markers and 98 segregating QTL in generation t = 1,001. Only segregating markers and QTL
were considered in the following generations. True total GVs were obtained by summing up
the QTL effects resulting from the following three gene-action models.
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3.3.2 Three different gene-action models
Additive scenario A: Each QTL locus had an additive effect only, without dominance or
epistasis. The additive effect (a) was equal to the allele substitution effect, such that for
genotypes QQ, Qq and qq their GVs were 2a, a and 0, respectively. The value of a at each
QTL locus was sampled from a normal distribution N (0,0.1).

Additive-dominance scenarios AD1 and AD2: Each QTL locus had both an additive and a
dominance effect. Two different scenarios were considered, setting the ratio of dominance
variance to additive variance at each QTL to δ = 1 or δ = 2. The additive effects (a) were
obtained as in the additive scenario. Given the additive effect ai and allele frequency pi at
the ith locus, its dominance effect (di) was determined by solving the equation

δ =
σ2
D,i

σ2
A,i

= (2pi(1− pi)di)2

2pi(1− pi)[ai + ((1− pi)− pi)di]2
,

see Falconer & Mackay (1996). Genetic values at that locus were then given by 2a, a+ d
and 0 for genotypes QQ, Qq and qq respectively.

For simplicity, independence between QTL was assumed and, as a result, the total additive
(dominance) variance was summed over all loci.

Epistasis scenario E: In this model there was no additive or dominance effect at any of
the individual QTL. Epistasis existed only between pairs of QTL. The forms of epistasis
included additive × dominance (A×D), dominance × additive (D ×A), and dominance ×
dominance (D ×D). Additive and (A×A) epistatic effects were excluded, to prevent the
additive variance from dominating the total genetic variance.

All segregating QTL were involved in epistatic interactions. QTL were randomly chosen to
form pairs and each pair was assigned an (A×D) interaction effect `AD, a (D×A) interaction
effect `DA and a (D ×D) interaction effect `DD, which were all equal and sampled from a
normal distribution N (0,4). Given a pair of QTL (i = 1,2), its epistatic value was given by

`ADx1z2 + `DAz1x2 + `DDz1z2,

where xi and zi were additive and dominance codes at locus i, respectively. For genotype
QQ at locus i, xi = 1, zi = −0.5; for Qq, xi = 0, zi = 0.5; and for qq, xi = −1, zi = −0.5,
compare Cordell (2002). The total GV was the sum of the epistatic values produced by the
QTL pairs.
Note that although no additive, dominance and (A × A) epistatic effects were explic-

itly simulated, the model still generated additive (σ2
A), dominance (σ2

D) and epistatic
(σ2
A×A, σ

2
A×D, σ

2
D×A, σ

2
D×D) variances. The procedure of estimating these variance compo-

nents followed Cockerham (1954), assuming independence between two loci of each QTL
pair and between QTL pairs.
On average, simulation in the epistatic scenario resulted in a broad-sense heritability of
0.84. Furthermore, 30% of the total genetic variance was attributed to additive effects, 27%
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was due to dominance effects, 14% was due attributed to (A×A)-effects, 25% was due to
(D ×A)- and (A×D)-effects and 4% was due to (D ×D)-effects.

In all scenarios phenotypic records were obtained by adding a normally distributed N (0, σ2
e)

residual term to the total GVs of the individuals. The environmental variance σ2
e was obtained

such that the narrow sense heritability was 0.25 in all scenarios.

3.3.3 Additional scenarios
Four additional scenarios based on scenario AD1 were simulated, to analyze the influence of
the number of chromosomes, the QTL architecture, the SNP density and a polygenic effect
on the prediction accuracy:

• Scenario AD1.2 : Three chromosomes of length 1/3 Morgan were simulated, each
containing 33 equally spaced QTL and 1,000 SNPs.

• Scenario AD1.3 : Three chromosomes of length 1/3 Morgan were simulated, each of
them containing 1,000 SNPs and the first two of them containing 50 equally spaced
QTL. The third chromosome contained no QTL.

• Scenario AD1.4 : The same as scenario AD1.2 but with each chromosome containing
33 equally spaced QTL and 3,000 SNPs.

• Scenario AD1.5 : The same as scenario AD1, but additionally a polygenic effect u was
simulated, starting from generation 1,006. Here, the ratio of additive QTL variance to
polygenic variance was set to 3. The polygenic effect u of an offspring was calculated
as 0.5 · (umother + ufather) +m, where m is its Mendelian sampling term drawn from a
normal distribution

N (0, 0.25 · (2− (Fmother + Ffather)) · σ2
poly),

with Fmother and Ffather being the inbreeding coefficients of the corresponding mother
and father. Here, the true total GV was obtained by summing up the QTL effects and
the polygenic effect.

3.3.4 Statistical analyses
The three methods were compared for their accuracy of predicting the true GVs of the
individuals in generation t = 1,011. For this we applied the three approaches described in
section 3.2.3 to the 50 simulated data sets consisting of 5,500 individuals, the last 5,000
of them having pedigree information and the last 2,000 of them being fully genotyped, as
described in the previous section. Total GVs of the non-phenotyped individuals in generation
t = 1,011 (validation set) were predicted. Thereby, parameters and hidden variables were
estimated with the help of 1,500 individuals (generations 1,008–1,010, estimation set).
All approaches were implemented using R software (R Development Core Team, 2012;

Ihaka & Gentleman, 1996). The ML estimation of the parameters and hidden variables was
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done using the R-package “RandomFields”, Version 2.0.23 (Schlather, 2001–2009), and its
function “fitvario”. The function “fitvario” determines the ML by the function “optim” of R
with automatically created starting values.

All models were run on a 1.9 GHz PC running Linux. On average, computing times
per data set ranged from approximately 20 minutes (genomic BLUP) over 77 minutes
(universal kriging) to 227 minutes (simple kriging), but no special efforts were made to
achieve computational efficiency at this stage.

For each method and each gene-action scenario, we computed the correlation between the
predicted and the true GVs. This was done both for the estimation set of 1,500 individuals
and for the validation set of 500 individuals. In addition, we calculated the average true GV
of the 50 individuals with the highest predicted GVs in the validation set. Finally, results
were summarized by averaging over the 50 data sets and a paired t-test was applied to test
for significant differences between each pair of characteristics at the 1% significance level.
One data set and the corresponding R-code for the prediction of GVs are available on

http://www.stochastik.math.uni-goettingen.de/~schlather/genoKriging/.

3.4 Results of the simulation study
The results of 50 replicates for the different gene-action models and scenarios are shown in
Tables 3.2–3.3.

Table 3.2: Average correlations between predicted and true GVs

scenario set universal kriging simple kriging genomic BLUP

A estimation set 0.801α1,2 (0.005) 0.772β (0.009) 0.815γ (0.004)

validation set 0.773α (0.005) 0.731β (0.008) 0.776γ (0.005)

AD1 estimation set 0.754α (0.004) 0.652β (0.009) 0.670β (0.004)

validation set 0.571α (0.006) 0.530β (0.010) 0.558γ (0.007)

AD2 estimation set 0.854α (0.004) 0.624β (0.013) 0.621β (0.005)

validation set 0.490α (0.007) 0.447β (0.009) 0.457β (0.007)

E estimation set 0.910α (0.009) 0.631β (0.015) 0.681γ (0.006)

validation set 0.468α (0.006) 0.411β (0.008) 0.437γ (0.007)

1 Results were averages of 50 replicates. Standard errors of the means in parentheses.
2 Different small Greek letters in the rows indicate significant differences (1 % level of significance).

http://www.stochastik.math.uni-goettingen.de/~schlather/genoKriging/
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In the additive scenario, universal kriging yields a correlation between predicted and true
simulated GVs which is almost as high as the correlation obtained by the reference method
genomic BLUP, both in the estimation and in the validation set (cf. Table 3.2), while simple
kriging yields the lowest correlations both in the estimation and in the validation set.
These results are similar to the findings of Piepho (2009) and Schulz-Streeck & Piepho (2010)
who also report that for an additive true genetic model the prediction accuracies for ridge
regression (with covariance-structures based on relationship matrices) and spatial models
(with covariance-structures based on covariance functions) are similar.

In the AD and E scenarios, universal kriging outperforms genomic BLUP in both estimation
and validation set by showing the highest average correlations. The difference in correlations
of universal kriging and genomic BLUP is highest in the E scenario and the scenario with
the higher ratio of dominance to additive variance (≈ 0.03 for the results of the validation
set, which is an increase of accuracy by approximately 7%).

Scatterplots of the correlations of the 50 replicates for the different methods and scenarios
are shown in Figure 3.2, which also demonstrate the better performance of universal kriging
in the presence of dominance and epistasis. With the degree of non-additivity ((E, AD2) >
AD1 > A) the accuracy of prediction in the validation set compared to the estimation set
deteriorates.

Comparing the average true GV of the 50 individuals (10%) ranked best by prediction in
the validation set (cf. Table 3.3), universal kriging and genomic BLUP yield results which are
not significantly different from each other both in the A and AD scenarios, while universal
kriging outperforms genomic BLUP in the E scenario. Again, simple kriging performs worst
in all scenarios apart from AD1.

Table 3.3: Average true GVs of the 50 highest ranked individuals (validation set)

scenario universal kriging simple kriging genomic BLUP

A 2.420α1,2 (0.259) 2.291β (0.261) 2.432α (0.258)

AD1 1.754α (0.182) 1.648α (0.186) 1.728α (0.177)

AD2 1.720α (0.172) 1.563β (0.178) 1.612α (0.171)

E 6.410α (0.502) 5.847β (0.476) 5.893β (0.485)

1 Results were averages of 50 replicates. Standard errors of the means in parentheses.
2 Different small Greek letters in the rows indicate significant differences (1 % level
of significance).

All three methods, being unbiased by definition, show almost no empirical bias of total
GVs (results not shown).
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Figure 3.2: Scatterplot of the correlations between true and predicted GVs both
for the estimation and the validation set and for the different scenarios (additive
(A), additive-dominance with ratio of dominance to additive variance of 1 or 2
(AD1 and AD2) and epistasis (E)) to compare. Scatterplots are produced to compare
universal kriging (UK) with genomic BLUP (GBLUP), UK with simple kriging (SK) and UK
with GBLUP.
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The results of the additional scenarios AD1.2 to AD1.5 indicate that the predictive ability
of the universal kriging approach is robust with respect to the number of chromosomes, the
QTL distribution, the SNP density and the inclusion of a polygenic effect (cf. Table 3.4). In
scenario AD1.4 with higher SNP density the absolute values of correlations between true
and predicted GVs are slightly higher compared to scenario AD1.2 with lower SNP density.
In scenario AD1.5 the absolute values of correlations between true and predicted GVs are
lower for all three methods.

Table 3.4: Additional scenarios: average correlations between predicted and true GVs

universal kriging simple kriging genomic BLUP

scenario est. set1 val. set2 est. set val. set est. set val. set

AD1 0.754α3,4 (.004) 0.571α (.006) 0.652α (.009) 0.530α (.010) 0.670α (.004) 0.558α (.007)

AD1.2 0.751α (.004) 0.550α (.006) 0.627α (.007) 0.511α (.008) 0.666α (.005) 0.541α (.007)

AD1.3 0.753α (.005) 0.554α (.010) 0.630α (.009) 0.518α (.011) 0.670α (.006) 0.543α (.010)

AD1.4 0.758α (.004) 0.567α (.007) 0.642α (.007) 0.531α (.008) 0.677α (.005) 0.558α (.007)

AD1.5 0.718β (.004) 0.528β (.006) 0.623α (.009) 0.496α (.008) 0.666α (.005) 0.518β (.007)

1 Estimation set
2 Validation set
3 Results were averages of 50 replicates. Standard errors of the means in parentheses.
4 Different small Greek letters in the columns indicate significant differences (1 % level of significance).

3.5 Discussion
Overall, results indicate the superiority of universal kriging over genomic BLUP in the
presence of non-additive effects. Simple kriging was shown to have a poorer predictive ability
compared to universal kriging and genomic BLUP in all considered gene-action models and
scenarios.
The poorer predictive ability of simple kriging is most likely due to the high number of

parameters estimated in the first kriging step and the resulting numerical difficulties in
optimization. In simple kriging 3,505 parameters (u,g(X), σ2

e , σ
2
u, σ

2
K , ν, h) are estimated

compared to only 5 parameters in universal kriging and 3 parameters in genomic BLUP.
The poor performance of simple kriging and the influence of the high-dimensional parameter
space need further investigations, especially, as simple kriging is known to work well in
low-dimensional geostatistical frameworks.

The simulation study is primarily meant as a “proof of concept”. Results demonstrate that
the suggested kriging procedures based on the Matérn function are able to yield competitive
results, despite the fact that the modeling of the genomic part of the data by use of the
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Matérn function follows a completely different reasoning than in the usual methods. This
also demonstrates the flexibility of the basic kriging principle.

The importance of the Matérn family is highlighted by Stein (1999), who recommends the
use of the Matérn model in the context of prediction of spatial data. The Matérn model has
been widely used in other areas of research, see Guttorp & Gneiting (2006) for a historical
excursion. One of the most important reasons for adopting the Matérn model is the inclusion
of the parameter ν in the model which controls the smoothness of the underlying random
field. Whereas Stein (1999) advocates the simultaneous estimation of all relevant parameters
via (restricted) maximum likelihood, Ruppert et al. (2003) and Nychka (2000) remark that
the likelihood-based estimation of h and ν may lead to problems as both parameters enter
in a nonlinear fashion which may cause the ML fitting to be computationally intensive. Our
experience so far indicates that the simultaneous estimation of all relevant parameters is
feasible.

As an alternative to the ML estimation of parameters, one could also use REML (Patterson
& Thompson, 1971) to adjust for the loss of degrees of freedom caused by the fixed effects and
to produce less biased estimates. In our simulation study there is only one fixed effect (i.e.
β is a scalar and W = (1, . . . , 1)T ), such that there will be little difference between REML
and ML estimates for variance components in the reference method GBLUP (Abney et al.,
2000; Webster et al., 2006; Bonate, 2006; Ruppert et al., 2003). This is also mostly the case
in practical applications, where highly accurately predicted GVs are used as phenotypes and
only an overall mean is included in the model. With respect to the parameter estimates in
the kriging approaches using the Matérn function, it is not clear whether REML is preferable
to ML, as the parameters h and ν enter in a nonlinear fashion.

3.5.1 Relation between the Matérn covariance function and the covariance matrix of
VanRaden (2008)

To investigate the general relationship between covariance matrices based on the Matérn
function and the genomic relationship matrix of VanRaden (2008), we consider the so-called
variograms which are often used in spatial statistics (cf. Wackernagel (2003); Chilès &
Delfiner (1999) for instance).
For a random field {g(x),x ∈ Rs}, the theoretical variogram is defined by γ(xi,xj) =

0.5E((g(xi)− g(xj))2) for xi,xj ∈ Rs. If Var(g(xi)) = σ2
g and E(g(xi)) = 0 for all xi ∈ Rs,

the variogram is given by

γ(xi,xj) = σ2
g − Cov(g(xi),g(xj))

for xi,xj ∈ Rs. If further Cov(g(xi),g(xj)) only depends on the Euclidean distance ‖xi−xj‖,
the variogram γ can be considered as a function on [0,∞).
In section 3.6 we show that in a limiting case (in which the number of SNPs tends to

infinity) the covariance structure of VanRaden (2008) only depends on the Euclidean distance
between the SNP vectors and that the corresponding variogram is a quadratic function on
[0,∞).

In all kriging procedures, ν was estimated to be larger than 5, indicating an approximately
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Gaussian form of the covariance function. In fact Kν,h,σK (xi, xj) = σ2
K exp

(
−‖xi−xj‖2

2h2

)
for

ν →∞. The corresponding variogram for the Matérn function is then given by

γMatern(x) = σ2
K

(
1− exp

(
− x2

2h2

))
≈ σ2

K

2h2x
2

for x ∈ [0,∞) by Taylor expansion up to the second derivative around zero. This means
the corresponding variogram of the Matérn function is approximately quadratic for x

h small
and for ν →∞. If both variograms, the one induced by VanRaden’s covariance structure
and γMatern, were exactly quadratic, the corresponding covariance matrices would be linear
transformations of each other. The equivalence of a quadratic covariance function and the
second order Taylor expansion of the Gaussian model has also been noted by Piepho (2009).

Note that the Matérn covariance function is at least three times differentiable for ν > 1.5
(Guttorp & Gneiting, 2006), such that it is still possible to derive a second order Taylor
expansion for 1.5 < ν <∞, leading to a quadratic variogram for small distances x as well.

3.5.2 Using linear transformations of covariance matrices leads to linearly transformed
predicted genetic values

In this context another interesting relation can be shown: There is a linear relation between
the predicted GVs, if there is a linear relation between the phenotypic covariance matrices
B and B̃ and a linear relation between the covariance vectors B0 and B̃0 on the right
hand sides of the kriging systems under the assumption that W = (1, . . . , 1)T = j and that

V :=
[
W B
0 WT

]
is invertible: In detail, it can be shown

ã = d̃

d
· a

for the linear (kriging) systems [
j B
0 jT

]
·
[
λ
a

]
=
[
B0
0

]
(3.5)

and [
j dB + cJ
0 jT

]
·
[
λ̃
ã

]
=
[
d̃B0 + c̃j

0

]
(3.6)

with d 6= 0 and J = (j, . . . , j), from which we get G̃V = d̃
d ·GV. The proof of this result is

given in section 3.7.
This general result has important practical implications: It is shown that predictions

resulting from the two systems (3.5) and (3.6) are identical although a constant (c and c̃) is
added to the phenotypic covariance matrix or the covariance vector on the right hand side of
the kriging system, or to both. In the genetic context, such a modification changes relevant
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population parameters, like heritabilities as well as genetic and phenotypic correlations.
Despite this, predicted GVs remain completely unaffected.
Scaling the phenotypic covariance matrix and the covariance vectors by a factor (d and

d̃) also changes the heritability, but is shown to lead to a mere linear transformation of the
GVs, thus providing an identical ranking of individuals according to their predicted GVs.
However, results obtained from such a scaled system might lead to a higher or lower level of
mean squared errors.
As stated before, solving the kriging systems is equivalent to solving the corresponding

MME. Hence, we have also proved that the solutions û and ĝ(X) of the MME are scaled by
the factor d̃

d , if the phenotypic covariance matrix and the covariance matrix of Zu + g(X)
are linearly transformed.

To our knowledge, the above theoretical result (including the scaling factors d and d̃) has
not been proved elsewhere in this explicit form, but some authors refer to the invariance
of the predictions to the addition of a multiple of the matrix J: It is well-known that in
ordinary kriging with constant mean one only needs to know the covariance function up to a
constant (Matheron, 1971; Christensen, 1990). Kitanidis (1993) discusses in the context of
so-called “generalized covariance functions” the variability among the covariance functions
that behave identically in terms of prediction. The invariance to the addition of a multiple
of J in a mixed model context is also mentioned in Piepho (2009).

3.5.3 Reproducing Kernel Hilbert Space approach
In this subsection we contrast our approach to the Reproducing Kernel Hilbert Spaces
approach of Gianola & van Kaam (2008). Stein (1999) strongly advocates use of the Matérn
family because of the wide range of smoothness controlled by the smoothness parameter
0 < ν < ∞. In our study ν was estimated to be larger than 5 in all kriging procedures,
indicating an approximately Gaussian form of the covariance function, the one which has
been used by Gianola & van Kaam (2008). Gianola & van Kaam (2008) use the same model
as in (3.1) except for the assumption that g is a Gaussian random function. They consider
the functional

J(g|s) = 1
σ̃2
e

n∑
i=1

(yi −wT
i β − zTi u− g(xi))2 + s

2‖g(·)‖H

where g and yi −wT
i β− zTi u are implicitly assumed to be elements of a Reproducing Kernel

Hilbert Space H for fixed β and u. Then, the representer theorem (Schölkopf et al., 2001)
states that the minimizer of J(g|s) has the form

ĝ(x0) =
n∑
j=1

αjK(x0,xj) = αTK0, (3.7)

where the αi’s are unknown coefficients. The function to be minimized becomes

J(β,u,α|s) = 1
2σ2

e

‖y−Wβ − Zu−Kα‖2 + s

2α
TKα.
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Gianola & van Kaam (2008) state further that a random-effects treatment of u leads to the
functional

J(β,u,α|s) = 1
2σ̃2

e

‖y−Wβ − Zu−Kα‖2 + 1
2σ̃2

u

uTA−1u + s

2α
TKα,

which then has to be minimized. Taking the gradients of J(β,u,α|s) with respect to β,u
and α and setting them to zero leads to the following linear system of equations:WTW WTZ WTK

ZTW ZTZ + σ̃2
e
σ̃2
u
A−1 ZTK

KTW KTZ KTK + sσ̃2
eK

 ·
β̂û
α̂

 =

WTy
ZTy
KTy

 (3.8)

By equating ĝ(X) = Kα̂, σ2
e = sσ̃2

e and σ2
u = sσ̃2

u, eqs. (3.2) and (3.8) are obviously identical,
as well as eqs. (3.4) and (3.7). Finally, Gianola & van Kaam (2008) proceed with embedding
the above approach into a Bayesian framework.
The approach of Gianola & van Kaam (2008) and our approach are different in that we

maximize the full likelihood whereas they drop the summand log(c) in eq. (3.3). Note that c
depends on the unknown parameters, i.e. the variance components and the parameters of
the Matérn covariance function. Dropping the summand log(c) therefore leads to different
estimates of the parameters. Scheuerer (2011) argues that the factor c might be included
even in the framework of Reproducing Kernel Hilbert Spaces. Hence, maximizing J in eq.
(3.3), is partially justified even if the normal assumption for the ei does not hold.

3.5.4 Further options
The general non-parametric approach of basing the prediction on a covariance function
offers a number of possibilities for more differentiated modeling. While in spatial statistics
using the Euclidean distance is a natural choice, other distance metrics (Reif et al., 2005)
may be more adequate in the genomic context. With dense marker maps it is found
that the genome is structured in haplotype blocks of varying length (The International
HapMap Consortium, 2005; Qanbari et al., 2010) within which the loci are in high linkage
disequilibrium, i.e. genotypes are highly correlated. Here, it might be adequate to account
for this non-independence in the definition of the scale, since otherwise highly correlated loci
will lead to a massive double counting. A further option is to implement a feature selection
which could e.g. give a higher weight to SNPs that are positioned in genomic regions which
are found to be relevant for the physiological pathways (Wang et al., 2007) underlying the
studied trait complex.

3.5.5 Total GVs
Prediction of the total GV of an individual, including non-additive components, is of different
relevance in different fields. In animal breeding, the value of a breeding animal is mostly
determined by its so-called breeding value which is purely additive. While it is possible to
predict non-additive genetic components even in pedigree-based estimation procedures (see
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e.g. Hoeschele (1991); de Boer & Hoeschele (1993)), these components are in general not
transmitted to the offspring and therefore are mostly considered as nuisance parameters in
animal breeding.
In plant breeding, prediction of the total GV as part of the phenotype is more relevant,

especially since the biological nature of some crop species and/or reproductive biotechnologies
allow an identical reproduction (cloning) of given genotypes. Complex gene models including
dominance and epistasis might be especially useful in predicting crossbred performance, but
the relevance is rather diverse across the agriculturally used plants (Holland, 2001).
It was recently suggested that under polygenic inheritance the additive part is the domi-

nating genetic component (Hill et al., 2008) and that under directional selection the rate of
change is largely determined by the additive genetic variance, so that attempts to include
non-additive terms in prediction might be, at best, useless or even harmful (Crow, 2010).
These arguments pertain both to animal and plant breeding and need careful consideration
based on empirical evidence.

Predicting the genetic disposition in humans in the context of preventive and personalized
medicine using whole genome markers is a relatively new and controversial topic (see de los
Campos et al. (2010a) for a review). The main motivation to consider such approaches comes
from the phenomenon that even in extremely large scale studies the genetic background
of complex diseases cannot be sufficiently determined with classical mapping approaches
(the so-called “case of the missing heritability”; Maher (2008)). Disposition for complex
diseases is assumed to be affected to a considerable extent by non-additive allelic interactions,
and hence models allowing for such interactions are expected to yield improved predictions
compared to purely additive models.

3.6 Relation between the Matérn covariance function and the covariance
matrix of VanRaden (2008)

We show that the covariance structure of VanRaden (2008) leads to a quadratic variogram γ
in a limiting case. The covariance matrix of VanRaden (2008) is defined as

G = (M−P)(M−P)T
2∑s

j=1 pj(1− pj)
,

where M is the (n× s)-matrix of SNP vectors for the n animals with s SNPs coded by −1,0,1
and the jth column of P is (2(pj − 0.5), . . . , 2(pj − 0.5))T , where pj is the frequency of the
second allele at locus j.

Let P̃ = (2(p1−0.5), . . . , 2(ps−0.5)) and let D = 2∑s
j=1 pj(1−pj). In the genomic BLUP

model we assumed g ∼ N (0, σ2
gG). It follows easily that

Cov(gi, gj) =
σ2
g

D
(mi• − P̃)(mT

j• − P̃T )

=
σ2
g

D

(
−1

2‖mi• −mj•‖2 + 1
2‖mi• − P̃‖2 + 1

2‖mj• − P̃‖2
)
, (3.9)
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where mi• denotes the ith row of M and ‖ · ‖ is the Euclidean norm. Consider Mij as a
random variable with values −1,0,1 and corresponding probabilities (1− pj)2, 2pj(1− pj), p2

j .
Then E(Mij) = 2(pj − 0.5) and Var(Mij) = 2pj(1 − pj) for all i = 1, . . . , n. With Yj =
(Mij − 2(pj − 0.5))2 we have E(Yj) = Var(Mij) = 2pj(1− pj) and

1
D
‖mi• − P̃‖2 =

 s∑
j=1

Yj

 s∑
j=1

E(Yj)

−1

. (3.10)

Now consider the limiting case s→∞ and assume the series p1, p2, . . . and (1−p1), (1−p2), . . .
to be uniformly bounded away from zero, which implies

c ≤
∑s
j=1 E(Yj)
s

≤ 0.5 (3.11)

for some c > 0 and for all s. Assume further that Y1, Y2, . . . are uncorrelated. Because of
Var(Yi) <∞ we can apply Rajchman’s version of the strong law of large numbers (Rajchman
(1932), cited by Krengel (2005), p. 154) which yields∑s

j=1(Yj − E(Yj))
s

−→ 0

with probability 1 for s→∞. Because of eq. (3.11) we also have∑s
j=1 Yj∑s

j=1 E(Yj)
− 1 =

(∑s
j=1 (Yj − E(Yj))

s

)(∑s
j=1 E(Yj)
s

)−1

−→ 0

with probability 1 for s→∞, from which we get that the left hand side of eq. (3.10) converges
to 1 with probability 1 for s→∞. Together with eq. (3.9) it follows

Cov(gi, gj) +
σ2
g

2D‖mi• −mj•‖2 −→ σ2
g(0.5 + 0.5) = σ2

g

with probability 1 for s→∞, i.e. Cov(gi, gj) ∼ σ2
g

(
1− ‖mi•−mj•‖2

2D

)
and Var(gi) ∼ σ2

g for s
large. Hence, Cov(gi, gj) only depends on the Euclidean distance ‖mi• −mj•‖ of the SNP
vectors for s large. If we consider gi as the value of a random field on Rs at position mi•,
then the corresponding variogram is

γg(mi•,mj•) = σ2
g − Cov(gi, gj) =

σ2
g

2D‖mi• −mj•‖2

for s large, i.e.

γg(x) =
σ2
g

2Dx
2

for x ∈ [0,∞).
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3.7 Using linear transformations of covariance matrices leads to linearly
transformed predicted GVs

In this section we show that using linear transformations of covariance matrices in the
universal kriging system leads to linearly transformed predicted genetic values, as discussed
in section 3.5.2. The proof starts with calculating

(3.6) ⇔
[

j dB
0 jT

]
·
[
λ̃
ã

]
+
[
0 cJ
0 0

]
·
[
λ̃
ã

]
=
[
d̃B0 + c̃j

0

]

⇔
[

j dB
0 jT

]
·
[
λ̃
ã

]
+ c ·

∑
i

ãi︸ ︷︷ ︸
=0

[
j
0

]
=
[
d̃B0 + c̃j

0

]

⇔
[

j B
0 jT

]
︸ ︷︷ ︸

=V

·
[
λ̃
d
ã

]
=
[
d̃
dB0 + c̃

d j
0

]
.

Here we used the unbiasedness condition jT ã = ∑
i ãi = 0. Hence we get[

λ̃
d
ã

]
= V−1 ·

[
d̃
dB0 + c̃

d j
0

]
(3.5)= d̃

d
·
[
λ
a

]
+ V−1 · c̃

d

[
j
0

]
.

Furthermore, we have[
j
0

]
= V ·

[
1
0

]
⇔ c̃

d
·
[

j
0

]
= V ·

[
c̃
d
0

]
⇔ V−1 · c̃

d

[
j
0

]
=
[
c̃
d
0

]
.

Thus, we get [
λ̃
d
ã

]
= d̃

d
·
[
λ
a

]
+
[
c̃
d
0

]
and therefore ã = d̃

d
· a

which finishes the proof.





4 Using Whole Genome Sequence Data to Predict
Quantitative Trait Phenotypes in Drosophila
melanogaster

This chapter is based on the article Ober et al. (2012a).

4.1 Introduction
Most efforts to understand the genetic architecture of quantitative traits have focused on
mapping the variants causing phenotypic variation in quantitative trait locus (QTL) mapping
populations derived from crosses between lines genetically divergent for the trait, or in
association mapping populations, with the goal of understanding the biological underpinnings
of trait variation (Mackay et al., 2009). However, the ability to accurately predict quantitative
trait phenotypes from information on genotypic variation in the absence of knowledge of
causal variants will revolutionize evolutionary biology, medicine and human biology, and
breeding of agriculturally important plant and animal species. The premise of personalized
medicine is based on prediction of individual genetic risk to disease from genome-wide
association studies (Wray et al., 2007; de los Campos et al., 2010a), and the ability to select
individuals or lines in animal and plant breeding programs based on genotypic information
circumvents the costly process of progeny testing and reduces the generation interval in
applied breeding programs, leading to greater efficiency (Hayes et al., 2009; Lorenz et al.,
2011).
In classical animal and plant breeding, the genetic quality of individuals or lines is

predicted from phenotypic values of selection candidates and their relatives. The widely used
Best Linear Unbiased Prediction (BLUP, Henderson (1973)) method models the covariance
structures between individuals via the numerator relationship matrix, which is constructed
from known pedigree information and thus reflects expected relationships between individuals
(i.e. the proportion of shared alleles of identical ancestral origin) given the pedigree. The
advent of high-throughput genotyping platforms for many agronomic species (Ranade et al.,
2001) enabled genotyping large numbers of individuals for dense panels of single nucleotide
polymorphisms (SNPs) spanning the genome. The expected, pedigree-based numerator
relationship matrix can then be replaced by a realized, genome-based relationship matrix
(often called the “genomic” relationship matrix, VanRaden (2008)). This approach is
equivalent to a random regression approach in which all SNP genotypes are simultaneously
accounted for as explanatory variables in a multiple regression model (Goddard, 2009). In
animal and plant breeding, selection based on genome-based predictions of genetic values is
expected to massively increase genetic progress (Meuwissen et al., 2001; Hayes et al., 2009)

39
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and has quickly found its way into widespread practical application (see Hayes et al. (2009);
Lorenz et al. (2011) for reviews).

Genome-based prediction follows a different paradigm than genome-wide association studies
(GWAS). GWAS identify single molecular variants associated with phenotypic variability
using individual statistical tests for significance of each variant. Genome-based prediction uses
the entire genomic variability captured by the available marker set to explain the observed
phenotypic variation, and does not rely on selection of single loci based on significance tests.
Standard prediction methods are thought to work for traits with a highly polygenic or even
infinitesimal (Fisher, 1918) genetic architecture, where the effect of a single variant is too
small to be captured by a statistical test in a GWAS. There is strong empirical evidence that
many quantitative traits have such a highly polygenic genetic architecture in farm animals
(Pimentel et al., 2011), agriculturally used plants (Schön et al., 2004), model organisms and
humans (Mackay, 2004; Flint & Mackay, 2009).

With the advent of next generation sequencing technologies, it is now feasible to implement
genomic prediction based on complete genome sequences of higher organisms. While these
techniques have only been applied to individuals or cohorts of limited size (Eck et al., 2009)
to date, initiatives to sequence larger panels are under way (The 1000 Genomes Project
Consortium, 2010; Elshire et al., 2011), and genotyping by whole genome resequencing will
become a standard technology in the foreseeable future.
The accuracy of prediction methods based on marker data depends on the heritability of

the trait, its genetic architecture (number of loci affecting trait variation, mode of inheritance,
and distribution of allelic effects, Hayes et al. (2010)), the LD reflecting effective population
size, the size of the genome, the marker density and the sample size used in the statistical
analysis (Daetwyler et al., 2010). Various methods of prediction incorporating genomic
information have been studied on real and simulated data, including Genomic Best Linear
Unbiased Prediction (GBLUP) approaches with genomic relationship matrices (VanRaden,
2008), Random Regression BLUP (RRBLUP), Bayesian linear regression methods (Meuwissen
et al., 2001; Gianola et al., 2009) or fully non-parametric approaches (Gianola & van Kaam,
2008; de los Campos et al., 2009; Long et al., 2010; Ober et al., 2011).
As elucidated in chapter 1 and already applied in chapter 3, GBLUP approaches are

based on a linear model for the phenotypic values, which encompasses a vector of random
genetic values of individuals whose covariance structure is inferred from genomic data. The
linear model underlying the RRBLUP approach includes a vector of random marker effects
(instead of a vector of genetic values) which are assumed to be drawn from the same normal
distribution and uncorrelated. This model primarily provides estimates of SNP effects, but
estimated genetic values of individuals can be derived as linear combinations of the estimated
SNP effects, yielding the same predictions of individual genotypic or phenotypic values as
GBLUP. The BayesB method (Meuwissen et al., 2001), on the other hand, fits only a small
fraction of the available markers to conform with the assumption that most loci are expected
to have zero effect on the phenotype, and the remaining non-zero marker effects are drawn
from normal distributions with random variances.
It has been proposed (Meuwissen & Goddard, 2010) that differences between prediction

methods will become more pronounced with the availability of full genome sequence data.
According to a study with simulated data (Meuwissen & Goddard, 2010), RRBLUP and
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equivalent GBLUP procedures do not take full advantage of high-density marker data if the
number of causal SNPs is small, while approaches with an implicit feature selection such as
BayesB might be more accurate. If, on the other hand, the number of causal loci is large,
RRBLUP or GBLUP methods may yield accurate predictions because the assumption that
every SNP has an effect is closer to reality.
Implementing genomic prediction with full genome sequence data raises a number of

questions. What is the most efficient way to incorporate the complete genomic information
in prediction? How much predictive ability is gained by using whole genome sequence
data compared to high density SNP panels? Is it possible to increase predictive ability
by a pre-selection of SNPs or models with an internal feature selection? How comparable
are the results of genomic prediction and genome-wide association? In this chapter we
address these questions empirically based on full genomic sequences of a population of
Drosophila melanogaster inbred lines. The inbred lines have been sequenced, and constitute
the “Drosophila melanogaster Genetic Reference Panel” (DGRP, Mackay et al. (2012)), a
new community resource for genetic studies of complex traits.

We report the results of a full sequence based genomic prediction for two quantitative traits,
starvation stress resistance and locomotor startle response, both of which display considerable
genetic variation in natural populations and respond rapidly to artificial selection (Ayroles
et al., 2009; Harbison et al., 2004; Jordan et al., 2007). We used whole-genome sequences
determined on the Illumina platform for 157 (155) DGRP lines for starvation resistance
(startle response) (Mackay et al., 2012). Our reference method is a GBLUP approach in
which ≈ 2.5 million polymorphic SNPs are used to derive a genomic relationship matrix
(VanRaden, 2008). We evaluated predictive ability via cross-validation (CV), and compared
prediction within vs. across sexes, various SNP densities, and training set sizes. We assessed
whether BayesB is superior over GBLUP given full genome sequence data (Meuwissen &
Goddard, 2010), and compared our genomic prediction results with those of GWAS conducted
on the same DGRP lines (Mackay et al., 2012).
To our knowledge, this is the first application of genomic prediction on empirical whole

genome sequence in a substantial sample of a higher organism. However, this study, as well
as all previous association studies, only assesses the effects of common SNPs, since the effects
of rare alleles cannot be estimated due to the small sample of sequenced lines. The results
illustrate both the potential of the approach and challenges to be addressed in the future.

4.2 Results
4.2.1 Genomic Best Linear Unbiased Prediction (GBLUP)
We constructed a genomic relationship matrix (VanRaden, 2008) from ≈ 2.5 million SNPs
for which the minor allele was present in at least four of the DGRP lines (Mackay et al.,
2012). A histogram of the off-diagonal elements of this matrix for 157 DGRP lines used in
the GBLUP analyses (Figure 4.1) and a corresponding heatmap (Figure 4.2) show that there
were no large blocks of high genomic relationship among the lines.

The average genomic relationship is close to zero, as expected, but there is considerable
variance around this average (Figure 4.1), as indicated by two block of lines with average
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Figure 4.1: Histogram of the offdiagonal elements of the genomic relationship ma-
trix G. The genomic relationship matrix G was calculated according to VanRaden (2008)
using 157 lines and 2.5 million SNPs.

genomic relationships within each block of 0.25 and 0.34 (Figure 4.2). We performed genomic
prediction for starvation stress resistance and locomotor startle response. The phenotypes
used were the medians of many (40–52) individually tested males and females for each line,
or the average of the male and female medians (Table 4.1).

Table 4.1: Mean and standard deviation of phenotypic values and of the number of individ-
ual records per line. Phenotypic values were calculated as the averages of the medians of male
and female records (“all”) or as the medians of female or male records separately.

starvation resistance startle response

phen. value1 # rec. per line2 phen. value # rec. per line

all 52.5± 10.7 104.1± 21.5 29.4± 6.6 80.1± 7.4

female 44.9± 10.0 52.2± 11.2 29.2± 6.7 40.2± 3.9

male 60.2± 13.4 51.8± 10.8 29.5± 6.7 39.8± 4.3

1 Phenotypic values.
2 Number of records per line.
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Figure 4.2: Heatmap of the genomic relationship matrix G. The genomic relationship
matrix G was calculated according to VanRaden (2008) using 157 lines and 2.5 million SNPs.
The “S” after the line-ID indicates that the line belongs to the set of lines for which pheno-
typic records for startle response were also available (in addition to the phenotypic records of
starvation resistance).

We used several cross-validation (CV) procedures for each trait (Table 4.2). In the 5-fold
CV, predictive ability was 0.239± 0.008 for starvation resistance and 0.230± 0.012 for startle
response. In human studies the efficiency of a predictor is reported as the squared correlation
r2 rather than r (Makowsky et al., 2011), so that in terms of variance explained the estimates
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Table 4.2: Average correlations between predicted genetic values and observed phenotypes
for different CV procedures with GBLUP and different traits.

type of CV starvation resistance startle response

(4:1)-CV1 all2 0.2393(0.008) 0.230 (0.012)

(3:2)-CV all 0.213 (0.006) 0.216 (0.011)

(2:3)-CV all 0.176 (0.006) 0.181 (0.010)

(1:4)-CV all 0.124 (0.006) 0.128 (0.006)

(4:1)-CV male – female4 0.164 (0.007) 0.217 (0.011)

(4:1)-CV female – male 0.182 (0.007) 0.235 (0.012)

(4:1)-CV male – male 0.203 (0.008) 0.230 (0.012)

(4:1)-CV female – female 0.254 (0.009) 0.216 (0.011)

1 “(t : v)-CV” means: t parts are used as training set and v parts are used as validation
set.

2 The average of the medians of male and female measurements was used to predict
line phenotypes. Predicted phenotypes were then correlated with the averages of
the medians of male and female measurements.

3 Average correlation between predicted genetic values and observed phenotypes.
Results are averages over 20 replicates. Standard errors of the means in parentheses.

4 “CV sex1 – sex2” means: Medians of measurements of sex1 were used in the training
set, medians of sex2 were used in the validation set.

were 0.074 ± 0.005 for starvation resistance and 0.080 ± 0.005 for startle response. The
observed accuracy depends on the size of the training set (Figure 4.3), with decreasing
accuracies obtained with smaller training sets. Predictive abilities are roughly halved for
both traits when using only 20% instead of 80% of the data to train the model. Maximum
likelihood estimates of narrow-sense heritabilities based on the GBLUP model using the
genomic relationship matrix were 1.0 in all analyses (Table 4.3), reflecting the fact that
phenotypes are averages over many replicates and thus residual variance is minimal. Hence,
the phenotypes used represent the line genotypes with maximum accuracy, which is the ideal
case for training the genomic model.

Using male performance data to train the model and using the results to predict the female
performance (or vice versa) does not affect the predictive ability for startle response, but
substantially reduces the predictive ability for starvation resistance, reflecting a higher degree
of genotype by sex interaction in this trait (Mackay et al. (2012), and see below). Prediction
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is more accurate in females than in males (0.254 vs. 0.203) for starvation resistance, while
there is little difference for startle response.
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Figure 4.3: Accuracy of prediction of GBLUP for CVs with different numbers of
lines in the training set. Each boxplot illustrates the average accuracies for 20 replicates
of the CV procedure using GBLUP. The left (right) plot shows accuracies for starvation resis-
tance (startle response). The solid line is the curve of Daetwyler et al. (2010) fitted to the em-
pirical data, which results in estimates of Ne = 8,747 and Ne = 8,676 for starvation resistance
and startle response. All 2.5 million SNPs were used to construct the genomic relationship
matrix in the GBLUP model.

Table 4.3: Variance components and heritabilities estimated from GBLUP using all 157 (155)
lines. Variance components were estimated by maximum likelihood using the R-package “Ran-
domFields” and its function “fitvario” and the averages of the medians of male and female
records (“all”) or the medians of female or male records separately as phenotypic data.

starvation resistance startle response

σ̂2
g σ̂2

e ĥ2
GBLUP σ̂2

g σ̂2
e ĥ2

GBLUP

all 62.6 0 1 21.7 0 1

female 91.2 0 1 22.4 0 1

male 57.9 0 1 22.5 0 1
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A series of 5-fold CVs for starvation resistance using different SNP densities showed that
predictive ability remained almost constant if every 16th SNP (≈ 150,000 SNPs) was used
to construct the genomic relationship matrix (Figure 4.4). The predictive ability began to
deteriorate when fewer than 150,000 SNPs were used, but only vanished completely when as
few as ≈ 2,500 SNPs (every 1,024th SNP) were used.
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Figure 4.4: Predictive ability of 5-fold CV with GBLUP for starvation resistance
using different numbers of SNPs. Each boxplot shows the average predictive abilities
for 20 replicates of 5-fold CV using GBLUP. For the CVs leading to the (k + 1)-th boxplot,
every 2k-th SNP was used to build the genomic relationship matrix G according to VanRaden
(2008). This was done for the thinning factors k = 0, . . . , 10. The red dots indicate the average
predictive abilities.

The corresponding LD distribution for SNP neighbors for different SNP densities is shown
in Figure 4.5, illustrating the extreme short-range extent of LD in the D. melanogaster
genome. The average LD between SNPs (after imputation) whose distance lay in the
interval [10,50] ([100,200] , [900,1000]) bp was r2 = 0.24 (0.14, 0.07) for the autosomes and
r2 = 0.38 (0.23, 0.10) for the X -chromosome. Long-range LD between pairs of loci at the
opposite ends of chromosome arms or across different chromosome arms was on average 0.007
both for the autosomes and the X -chromosome.
For starvation resistance, the influence of the minor allele frequency of the SNPs used

on the predictive ability was assessed with a series of 5-fold CVs using SNP sets with
different average minor allele frequency. We find that the variability of the predictive ability
increases when the average minor allele frequency of the SNPs used to construct the genomic
relationship matrix is decreased (Figure 4.6). In 20 replicates of an additional 5-fold CV, in
which we randomly chose 77,817 SNPs to build the genomic relationship matrix, an average
predictive ability of 0.221± 0.009 was obtained, which is in the range obtained when every
32nd SNP (≈ 77,817 SNPs) was used (0.211± 0.008, Figure 4.4).
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Figure 4.5: The distribution of r2 between SNP neighbors for different SNP den-
sities. For the (k + 1)-th stacked bar, every 2k-th SNP was used, k = 0, . . . , 10. Then, the
distribution of r2 for the resulting SNP neighbors was calculated.

Running 20 replicates of a 5-fold CV using 10 randomly chosen blocks of adjacent SNPs
(each block consisting of 7,781 SNPs) led to an average predictive ability of 0.210± 0.011.

To analyze whether the predictive ability is due to lines which are more highly related,
we ran an additional 5-fold CV with 20 replicates in which the two groups of higher overall
relatedness (Figure 4.2) were excluded. Here we found an average predictive ability of
0.290± 0.008 for starvation resistance, which is larger than the average predictive ability we
obtained using all lines (0.239± 0.008). For startle response, excluding the two groups led to
a decrease in predictive ability (0.168± 0.017 in comparison to 0.230± 0.012).

4.2.2 Effective population size derived from empirical accuracies of genomic prediction
The accuracy of genomic prediction is a function of a number of quantities, including the
size of the training set and the effective population size Ne (Daetwyler et al., 2010). Ne

has an effect on the number of independently segregating chromosome segments, Me, in a
population (the larger Ne, the larger Me); and the predictive ability of GBLUP is higher
when the number of segments is small. By varying the size of the training set in a series
of CVs, we can estimate Ne by fitting a curve through the empirical accuracies obtained
(Figure 4.3).

We estimated N̂e = 8,748 for starvation resistance and N̂e = 8,676 for startle response.
The coefficient of determination of the fitted curve was R2 = 0.70 (0.44) for starvation
resistance (startle response). The bias corrected empirical 95% confidence intervals for the
Ne estimates obtained with bootstrapping (Efron & Tibshirani, 1986) were [8,173; 9,474] for
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Figure 4.6: Predictive ability of 5-fold CV with GBLUP for starvation resistance
using different set of SNPs with different average minor allele frequencies. Each
boxplot shows the average predictive abilities for 20 replicates of 5-fold CV using GBLUP and
SNPs with different average minor allele frequencies. The different average minor allele fre-
quencies are plotted as green dots. To choose the SNPs for each bin of minor allele frequency
the SNPs were sorted by minor allele frequency and then divided into 32 blocks, i.e. each bin
contained ≈ 77,817 SNPs. The horizontal green line indicates the average predictive ability
obtained using every 32nd SNP (resulting in 77,817 SNPs as well), which was 0.212± 0.008.

starvation resistance and [7,716; 9,925] for startle response.
The effective population size in the Raleigh population (from which the DGRP lines were

drawn) was estimated to be ≈ 19,000 in 1984, with a massive fluctuation between years
(Kusakabe et al., 2000). Our estimates of Ne ≈ 8,700 correspond to Me = NeLf

ln(2NeLf ) ≈ 2,000
independently segregating chromosome segments. In this formula Lf is the length of the
female genome in Morgans (there is no recombination in male Drosophila). Since the
sequenced animals resulted from 20 generations of full-sib mating following the original
sampling from the Raleigh population, the DGRP lines are not expected to have the same
Me as the original population and are consequently expected to have a different Ne.

We can use the curves fitted through the empirical accuracies (Figure 4.3), to predict the
expected accuracy of prediction for an arbitrarily large size of the training set: If 1,000 lines
were available in the training set, the curve would predict accuracies of ≈ 0.58 for starvation
resistance and startle response. This value was obtained by using N̂e and ĥ2

GBLUP = 1 as
well as Np = 1,000 and Lf = 2.451 in the modified formula of Daetwyler et al. (2010).



4.2 Results 49

4.2.3 Effective population size derived directly from linkage disequilibrium
We also estimated the effective population size based on LD directly. For a distance bin of 0.02
Morgan we obtained average LD-values of 0.010 (0.009, 0.008, 0.011, 0.008) for chromosome
2L (2R, 3L, 3R, X). These values correspond to an estimated effective population size of
N̂e = 3,415 (5,541, 10,663, 2,811, 9,710), approximately 25 generations ago. The average
estimated effective population size is N̂e = 6,428, which is in the range of the estimates based
on the observed accuracies.

4.2.4 Genomic prediction with SNP selection
Genomic prediction might be improved if we only fit SNPs which are associated with variance
in a trait, because we then concentrate on the biologically relevant genomic regions, and
excluding SNPs which are not associated with the trait reduces statistical noise. We tested
this hypothesis using the starvation resistance data. We identified the 5% SNPs with the
highest absolute estimated effect or the highest estimated genetic variance, respectively, in
the training set of the respective 80% of the folds in a 5-fold CV. We then used these subsets
of selected SNPs to predict the phenotype in the remaining 20% of the fold. Predictive ability
was improved by 3.3% over the reference scenario when using the 5% SNPs with largest
effects (average predictive ability of 0.247± 0.008 in comparison to 0.239± 0.008). Using the
5% SNPs with greatest variance explained, predictive ability was improved by 2.1% (average
predictive ability of 0.244± 0.008). In both cases, the improvement is marginal and provides
little support for the idea of SNP pre-selection.
We also compared our GBLUP results to those from a method which does not assume

that all SNP effects are drawn from the same normal distribution and carries out an internal
feature selection. We ran 20 replicates of a 5-fold CV for starvation resistance using BayesB
(Meuwissen et al., 2001). In each round of the Markov Chain Monte Carlo based procedure
(see section 4.4.11), 99.5% of the SNPs were assumed to have no effect and the effects of the
remaining 0.5% of the SNPs were drawn from normal distribution with random variances.
In most folds of each single CV and for all replicates of CV, the observed predictive abilities
differed only marginally between BayesB and GBLUP (Figure 4.7). The average predictive
ability obtained with BayesB was 0.238± 0.008 which is not appreciably different from the
result obtained with GBLUP (0.239± 0.008).

4.2.5 Genomic prediction vs. GWAS
Although genomic prediction follows a different paradigm than genome-wide association
studies, it is informative to compare significant SNP positions from the GWAS to areas of
large estimated SNP effects resulting from the GBLUP model. Previously (Mackay et al.,
2012), a GWAS of 168 DGRP lines (of which the material used here is a subset) identified
115 SNPs associated with starvation resistance and 75 SNPs associated with startle response
at a nominal p-value ≤ 10−5 in the analyses of sex-averaged data. We estimated SNP effects
using RRBLUP and compared them to the significant SNPs from the GWAS study (Suppl.
Figures S1 and S2). There is excellent concordance of signals from both approaches in some
regions (e.g. the genome-wide largest SNP effects on chromosome 3L for starvation resistance
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Figure 4.7: Predictive ability for GBLUP vs. BayesB using phenotypic values of
starvation resistance. Predictive abilities are plotted for 20 replicates of a 5-fold CV, each
replicate consisting of 5 corresponding folds of CV.

and 2L for startle response), while concordance is poor in other regions, especially on the X
chromosome.
We further investigated whether the most significant SNPs detected in the GWAS are

reflected by large SNP effects in the GBLUP study using a different approach. For each
significant SNP position from the GWAS we took the 100 neighboring SNPs (50 on each side)
and calculated the sum of the absolute values of their estimated effects using the GBLUP
model. To avoid an effect of different sample size, we used the 75 most significant loci from
the GWAS for both traits. We compared these sums to the sums of the absolute values of
estimated SNP effects in ≈ 250,000 sliding windows spanning the whole genome (with each
window containing 100 neighboring SNPs). We observed a clear separation of the density
functions of these sums for both startle response and starvation resistance (Figure 4.8).
The density resulting from the sliding window approach reflects the overall distribution

of the suggested statistic in the sample. For starvation resistance (startle response) a
threshold value of 0.0076 (0.0046), cf. Figure 4.8, cuts off the upper 10% of the respective
distribution. Applying the same threshold with the density function reflecting the statistic
for the significant GWAS positions, 66.7% (74.7%) of the distribution exceeds the threshold,
indicating that signals found in the GWAS are also associated with large estimates of the
SNP effects in the genomic model.
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Figure 4.8: Distribution of absolute SNP effects. The density of the sum of the abso-
lute SNP effects from GBLUP is plotted for sliding windows of 100 adjacent SNPs covering
the whole genome (black) and for windows around the 75 most significant SNPs (red) ac-
cording to the GWAS of Mackay et al. (2012). The left (right) plot shows the densities for
starvation resistance (startle response). The blue vertical line indicates the 90% quantile of
the black density function.

4.2.6 Analyses of individual trait data
In addition to the line medians we also analyzed individual records (104± 21 individual flies
per line tested for starvation resistance and 80± 7 for startle response) to assess whether
the variance between lines can be fully explained by additive gene effects or if non-additive
mechanisms have an impact. This was done by modeling the covariance structure between
lines based on the additive and additive × additive genomic relationship matrix and testing
the goodness of fit of the respective models. Most applications of genomic prediction are
for outbred populations, for which the additive genetic variance and corresponding narrow-
sense heritability determine the extent to which phenotypes in the next generation can be
predicted from information obtained on the current generation. However, the variance among
DGRP lines is the total genetic variance, and is possibly inflated by additive by additive
epistatic variance (Falconer & Mackay, 1996). Therefore, we performed several analyses
on measurements of individual flies to determine the nature of the total genetic variance,
especially to what extent the presence of non-additive genetic variance might have affected
predictive abilities. We fitted three different models to the individual phenotype data: Model
1 contained a random line effect, and lines were assumed to be unrelated. In Model 2,
a random additive line effect g was added, whose covariance structure was modeled via
the genomic relationship matrix G. In Model 3, an additional random additive × additive
epistatic effect g×g was included, whose covariance structure was modeled via the Hadamard
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product G ◦G. Since the between line variance relates to inbred lines, while the additive
and additive × additive variance component pertain to the non-inbred base population (or
a hypothetical random mating F2 produced from the inbred lines), the variance between
inbred lines in Model 1 is expected to be twice the additive genetic variance in Model 2 or 3
under a fully additive model.

We estimated variance components for all three models pooled across sexes and separately
for males and females (Suppl. Tables S1 and S2). We find little evidence of non-additive
genetic variance for these traits. The estimate of σ2

g from Model 2 is ≈ 1
2σ

2
line from Model

1, and Model 2 gave a significantly better fit than Model 1 when applying the likelihood
ratio test, again indicating that the observed between line variance is due to additive gene
action. Inclusion of the g × g component was not significant for either of the traits. We
found significant sex by line interaction variance for starvation resistance, but not for startle
response (Suppl. Tables S1 and S2), which is in accordance with the findings of the genomic
prediction across sexes (Table 4.2) and previous analyses of these data (Mackay et al., 2012).

4.3 Discussion
We report the first (to our knowledge) application of genomic prediction to a real set of full
genomic sequencing data in a eukaryotic organism. Although predictive abilities obtained
with starvation resistance and startle behavior are only moderate to low, and although we
limited our analysis to SNPs that are common due to the small sample size of lines, this
study can be seen as a proof of concept for this approach. There are several reasons for
the limited predictive ability obtained in this study. First, the training set is small, with a
maximum of ≈ 120 observations in the 5-fold CV, and the accuracy of genomic prediction is
a function of the size of the training set (Daetwyler et al., 2010). Using the curves fitted
through the empirical accuracies (Figure 4.3), we predict accuracies of ≈ 0.58 for starvation
resistance and startle response, if 1,000 sequenced lines were available for the training set.

The second important factor affecting accuracy of prediction is the number of independently
segregating chromosome segments, Me (Daetwyler et al., 2010). In our study we obtained
Me ≈ 2,000. This is larger than usually observed for Holstein cattle (Me ≈ 640 with
Ne ≈ 100 and genome length L ≈ 30 Morgans (Qanbari et al., 2010)), but is smaller than the
corresponding value in the human genome (Me ≈ 14,000 with Ne ≈ 3,000;L ≈ 30 Morgans,
(Tenesa et al., 2007)). (Note that in mammalian species, there is recombination in both
sexes and Me = 2NeL

ln(4NeL) (Goddard, 2009).)
Accuracy of genomic prediction is thought to come from two sources: (i) SNPs in useful

LD with causal loci; and (ii) SNPs reflecting the relationship structure between the training
set and the set to be predicted (Habier et al., 2007). Due to the very fast decay of LD in
the D. melanogaster genome, few SNPs are in useful LD with any causal polymorphism.
Even if we define “useful LD” very conservatively as r2 > 0.2, then on average only a region
of 120 bp around a causal polymorphism was in useful LD on an autosome (400 bp on the
X chromosome). This means that on average 3 (6) SNPs were in useful LD with a causal
autosomal (X -linked) polymorphism, as the average distance between neighboring SNPs
was 45 bp (66 bp) on an autosome (X chromosome). If predictive ability was mainly driven
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by SNPs in LD with causal polymorphisms, reducing the SNP density should lead to a
massive decay of predictive ability of the models, which was not observed. Little decrease
in predictive ability was seen, even if every 32nd SNP was used in the model, in which
case hardly any SNP would be in useful LD with causal polymorphisms. The underlying
mechanism therefore seems to depend on a sufficient number of SNPs being in low LD with
causal polymorphisms, rather than few SNPs in close physical association and high LD. In
the DGRP population, LD approaches a small but positive baseline level with increasing
physical distance (Mackay et al., 2012), so that even with large physical distances a minimum
level of LD is maintained, which was on average 0.007 ≈ 1

n with n = 157 being the sample
size.

The number of SNPs for maximal accuracy of genomic prediction with unrelated individuals
has been estimated as 10NeL (Meuwissen, 2009), corresponding to ≈ 110,000 SNPs in the
present study.

For starvation resistance, we find that the empirical accuracy levels off when approximately
every 16th SNP is used, which is equivalent to ≈ 155,000 or 7.3NeLf = 14.6NeL SNPs.
Adding more SNPs beyond this value does not lead to any improvement in the genomic
prediction of starvation resistance, but also does not reduce accuracy, which one might expect
when using more SNPs than actually needed. While fitting large numbers of “superfluous”
SNPs may be considered as noise in the RRBLUP model, these SNPs can also be seen to
provide a better basis to estimate the realized relationship matrix in the GBLUP model,
which leads to a higher accuracy of the estimated realized relationships. Since both models
are fully equivalent (Goddard, 2009) no penalty is expected in the prediction of genomic
values.

Since pedigree information for the founders of the inbred lines was not available, our
estimates of heritability and genomic prediction are based on the actual degree of identity-by-
descent sharing between relatives (Visscher et al., 2006). There is little pedigree structure in
the DGRP lines, with the exception of two distinct blocks of higher relatedness, comprising
18 and 13 lines, respectively, with a genomic relationship within blocks of ≈ 0.25 and 0.34.
When these blocks were excluded from the data, predictive ability in a 5-fold CV increased
(decreased) for starvation resistance (startle response), suggesting that prediction in the
DGRP population does not rely on distinct family structures. Given this together with the
short-range extent of LD in the D. melanogaster genome and the robustness of the accuracy
of genomic prediction with reduced marker density, we conclude that the observed accuracy
of prediction for starvation resistance and startle response is primarily due to the long-range
LD in the population, or equivalently, the subtle relationship structure as reflected by the
genomic relationship matrix.
We restricted our analyses to SNPs for which the minor allele was present in at least

four DGRP lines (a minor allele frequency of 0.025). We applied this threshold to avoid
computational limitations, especially when applying the BayesB method; and for consistency
with the GWAS in the DGRP (Mackay et al., 2012), which used the same filtering criterion.
Thus, we did not utilize the ≈ 2 million SNPs with minor allele frequencies less than this,
nor did we take other forms of molecular variation into account.
Structural variations such as transposable elements have been repeatedly reported to be

associated with phenotypic variation (González & Petrov, 2009), therefore we must consider
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to what extent not including these variants in the models affected prediction accuracy. Given
that we do not observe an increase in predictive ability when increasing the number of SNPs
from ≈ 150,000 to 2.5 million, we do not expect that increasing the marker density by adding
more SNPs and other variants will have a significant effect on predictive ability. Additionally,
SNPs with low minor allele frequencies were shown to be highly variable in predictive ability,
so that the potential amount of information possibly added by the 2 million low frequency
SNPs is limited. However, accounting for all polymorphisms in the model means that some
fraction of the genetic variants must causally affect the trait. Simulations (Meuwissen &
Goddard, 2010) including the causal polymorphism in the model improves the predictive
ability over models based only on neutral SNPs in LD with the causal variants. Further
research is needed to understand these mechanisms in the context of genomic prediction
based on empirical data.
The accuracy of BayesB has outperformed that of GBLUP in several simulation studies

(Meuwissen et al., 2001; Habier et al., 2007). Simulation results have suggested that GBLUP
did not take full advantage of genome sequence data, suggesting that Bayesian methods are
needed to obtain maximum accuracy (Meuwissen & Goddard, 2010). The superiority of
BayesB over GBLUP is expected to increase with marker density, and decrease when the
size of the training data set is increased (Meuwissen, 2009). However, we did not find that
BayesB yielded a significantly higher predictive ability than GBLUP in the 20 replicates
of 5-fold CV with starvation resistance implemented in the present study. We used a very
high marker density and a small training set, and yet GBLUP performed as well as BayesB.
These conclusions should be taken with caution, since the available size of the training set
was extremely small in our study due to the limited availability of fully sequenced lines. In
Daetwyler et al. (2010), BayesB yielded a higher accuracy than GBLUP, when the number
of simulated QTL was low; but GBLUP slightly outperformed BayesB, when the number of
QTL became large, since the GBLUP model is equivalent to RRBLUP, in which all SNPs are
assumed to have an effect drawn from the same normal distribution. Although this model
may not seem biologically plausible, it performed as well as BayesB in the present study,
consistent with several studies on real data from dairy cattle for different traits (Hayes et al.,
2009; VanRaden et al., 2009).

The finding that BayesB did not outperform GBLUP in the present study is consistent
with a quasi-infinitesimal genetic architecture; and results indicate that starvation resistance
and startle response are complex traits with a highly polygenic genetic architecture rather
than being driven by a few major causal genes. This is in agreement with previous studies
stating that starvation resistance and startle response can be considered to be model traits
with a complex (i.e. quasi-infinitesimal) genetic background (Ayroles et al., 2009; Harbison
et al., 2004; Jordan et al., 2007); and it is also in line with the results from the GWAS
(Mackay et al., 2012). One reasonable conclusion might be that there are so many causal
polymorphisms, each with a small effect, that the ≈ 2,000 effective chromosome segments
are saturated with causal variants and the effects of segments follow a normal distribution.
Under this circumstance, GBLUP is expected to perform as well as BayesB. However, these
hypotheses clearly need further investigation. More systematic model comparisons based on
the available data were not considered here due to the prohibitive computing time required
for BayesB.
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Previously, gene centered multiple regression and partial least square (PLS) regression
models were used to predict starvation resistance and startle response phenotypes from
genotypic data (Mackay et al., 2012). In both cases only SNPs that had nominal significance
levels of P < 10−5 from the GWAS were used. The gene centered prediction models found
that a few SNPs explained a large fraction of the genetic and phenotypic variance of the
traits, while the PLS models found that the significant SNPs explained a high fraction of the
phenotypic variance. The purpose of these studies was a comparison with human association
studies, in which the faction of the variance explained by significant variants in the entire
sample is commonly quoted. These approaches are fundamentally different from the BLUP
approach used in this study. The BLUP approach includes random components and their
covariance structure in the model, whereas regression models do not incorporate random
terms except from the residuals; and the BLUP approach does not rely on a pre-selection of
SNPs based on a GWAS. Most critically, we evaluated the robustness of the BLUP predictions
using 5-fold cross-validation; whereas the previous analyses only tested the explanatory
power of the most significant associated SNPs using the entire sample. Had we done the
same analysis using GBLUP, we would be able to predict 100% of the variance.

The imperfect concordance of the positions of the most significant SNPs from the GWAS
and the largest estimates of SNP effects from RRBLUP is a consequence of the different
objectives of the two approaches. A sequence-based GWAS is conducted to identify causal
polymorphisms and provide estimates of allelic effects and frequencies. Also, the GWAS suffers
from estimating one effect at a time and so does not necessarily position the QTL accurately.
The goal of RRBLUP is to predict the phenotype using all available SNP information
simultaneously. Here, estimated SNP effects are a by-product and mapping causal variants is
not the primary objective. Given that the number of SNP effects to estimate is much larger
than the number of observations, effects are estimated using penalized multiple regression
approaches, shrinking estimated effect sizes towards zero. In addition, the magnitude of
estimated SNP effects from RRBLUP is a function of the marker density. The higher the
marker density, the more SNPs will be in LD with a causal mutation; therefore, the true
allele substitution effect of a causal polymorphism will be split up and assigned in parts to a
series of SNPs in the respective haplotype block. This can mask both the effect size, because
one large effect may come in many small pieces; and the mapping position, because any SNP
in LD with the causal polymorphism may have a substantial estimated effect. Nevertheless,
some of the largest SNP effects from RRBLUP are in the proximity of prominent SNPs
identified in the GWAS, so that to some extent positional information can still be retrieved
from the RRBLUP results.
A methodology combining the strengths of both approaches – unbiased effect estimates

and high positional resolution of GWAS with the simultaneous analysis of all SNPs, high
predictive power and quality control via CV of genomic approaches – still needs to be
developed. Results obtained in our study cannot be directly compared to predictive abilities
in human studies due to the extremely small training set size (120 in CV), and Drosophila
has much larger Ne and rapid decline of LD compared to humans. When genomic prediction
in human studies was based on large training sets (thousands), substantial SNP panels (400k)
and a highly heritable trait (h2 = 0.80), predictive ability of genomic models was found to
exceed what has been previously reported using a reduced number of markers pre-selected
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based on GWAS (Makowsky et al., 2011) and genomic prediction based on pre-selected SNPs
was found to be of limited use in human studies of height (Aulchenko et al., 2009).

In the near future individual whole genome sequences will become increasingly available for
large numbers of individuals in many species (The 1000 Genomes Project Consortium, 2010;
Elshire et al., 2011). Sequence-based predictions will therefore be relevant for prediction
of risk disease and individualized medicine in humans, and for genome-based selection in
farm animals and crops. The main findings of our study are: (i) genomic prediction can be
efficiently implemented via GBLUP with full genome sequence data; (ii) there is little, if
any, gain in predictive ability if the number of SNPs is increased above 14.6NeL (equivalent
to ≈ 43,000 in Holstein cattle and 1,300,000 in humans); and (iii) approaches based on
external or internal (BayesB) selection of subsets of SNPs were not found to provide a
substantial gain in predictive ability compared to GBLUP. All findings must be seen against
the background of the small sample size and the specific genetic constellation, with almost
unrelated inbred lines and highly accurate phenotypes. Nevertheless, these results provide
a realistic assessment of the potential benefits of sequenced-based prediction applied to
non-model organisms and indicate avenues for future research.

4.4 Materials and methods
4.4.1 The “Drosophila melanogaster Genetic Reference Panel” (DGRP)
The full “Drosophila melanogaster Genetic Reference Panel” (DGRP) (Mackay et al., 2012),
a recently developed new community resource for genetic studies of complex traits, consists
of 192 D. melanogaster lines derived by 20 generations of full-sib mating from wild-caught
females from the Raleigh, North Carolina population. Whole genome sequence data of
168 DGRP lines (Freeze 1.0) have been obtained using a combination of Illumina and
454 next generation sequencing technology, which are available from the Baylor College
of Medicine, http://www.hgsc.bcm.tmc.edu/project-species-i-DGRP_lines.hgsc. We
used the Illumina sequences for 157 DGRP lines in this study.

4.4.2 Data preprocessing
SNPs were called from the raw sequence data as described previously (Mackay et al., 2012).
We used SNPs with a coverage greater than 2X but less than 30X, for which the minor
allele frequency was present in at least four lines, and for which SNPs were called in at
least 60 lines. This series of filters gave a total of 2,490,165 SNPs for this analysis; 582,024
on 2L, 478,218 on 2R, 563,094 on 3L, 534,979 on 3R and 331,850 on the X chromosome.
We did not consider the few SNPs on the very short chromosome 4. In total there were
18,077,784 missing SNP genotypes (4.6%), which we imputed using Beagle Version 3.3.1
software (Browning & Browning, 2009).

http://www.hgsc.bcm.tmc.edu/project-species-i-DGRP_lines.hgsc
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4.4.3 Phenotypic values
Phenotypic measurements for starvation resistance were available for all 157 DGRP lines,
and for startle response on 155 lines (Mackay et al., 2012). We used the average of the
medians of measurements for each trait in males and females as the phenotypic value yi
of the ith line, i.e. yi = 0.5((zf )i + (zm)i), where (zf )i and (zm)i are the medians of the
measurements for female and male individuals of the ith line. We used medians because of
the skewed distribution of traits; however, medians are highly correlated with line means. For
starvation resistance (startle response) there were on average 52± 11 (40± 4) measurements
for females, and 52± 11(40± 4) measurements for males (Table 4.1). Measurements were
taken in several replicates for each trait (Mackay et al., 2012).

4.4.4 Cross-validation
We used different cross-validation (CV) procedures (Stone, 1974, 1977; Allen, 1974) to assess
the predictive ability of different methods. In one replicate of a CV, the lines are randomly
divided into a training set, which is used for parameter estimation; and a validation set, for
which genetic values are predicted. The CV procedures differ in the ratios of the numbers
of lines belonging to the training and validation sets: In a (t : v)-CV (with integers t and
v), the lines are randomly divided into (t+ v) groups. The t groups build the training set,
and the remaining v groups build the validation set. For this classification, there are

(t+v
t

)
possibilities. For each of these possibilities (“folds”), total genetic values for the lines of the
validation set are predicted and the corresponding predictive ability is calculated. The

(t+v
t

)
predictive abilities are then averaged to obtain one average correlation per CV replicate. For
example, one (3:2)-CV, consists of

(3+2
3
)

= 10 CV folds, over which predictive abilities are
averaged. A (t : 1)-CV is also called (t+ 1)-fold CV.

We used (4:1)-, (3:2)-, (2:3)- and (1:4)-CVs to analyze the effect of decreasing training set
size. The CVs also differed in the constellations of phenotypic records used for the training
and validation set. For example, the notation “(4:1) male – female” indicates that only
the medians of male records were used in the training set, and that the predicted genetic
values were correlated with the medians of female records of the validation set to obtain
the predictive ability in a (4:1)-CV. CVs were also run for different marker densities, using
every 2k-th SNP (k = 0,1, . . . , 10). Additionally, 5-fold CVs using only the 5% SNPs with
the largest absolute values of estimated effects (obtained in the training set), or using only
the 5% SNPs with the largest SNP variances (obtained in the training set) were performed.
The additive genetic variance marked by the ith SNP was calculated as 4pi(1− pi)ŝ2

i with
allele frequency pi and estimated SNP effect ŝi. In another series of 5-fold CVs we randomly
chose 77,817 SNPs to build the genomic relationship matrix or we randomly chose 10 blocks
of adjacent SNPs (each block consisting of 7,781 SNPs). In an additional 5-fold CV we
excluded the lines in the two blocks of higher relatedness (Figure 4.2) from the data. Each
type of CV was replicated 20 times, resulting in 20 average predictive abilities.

We also analyzed the influence of minor allele frequency on the predictive ability by another
series of 5-fold CV. For this, we sorted all SNPs by their minor allele frequency and divided
the sorted vector into 32 blocks. For each block we ran 20 replicates of a 5-fold CV using
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GBLUP and the corresponding ≈ 78,000 SNPs.

4.4.5 Predictive ability and accuracy
Predictive ability was measured in terms of correlation between predicted genetic values and
observed phenotypic values. The corresponding accuracy ρ, defined as the correlation between
true and predicted genetic value, was obtained by dividing the observed predictive ability by
the square root of the observed heritability h2 (Legarra et al., 2008). The heritability was
based on the GBLUP model (see below).

4.4.6 Genomic prediction with GBLUP
The underlying statistical model is

y = Wµ+ Zg + e. (4.1)

In this model, the ith component of the q-vector y is the phenotypic value of the ith line
that is used for prediction, i.e. the average of the medians of the phenotypic measurements
for males and females for this line. Moreover, W = (1, . . . , 1)T , µ is the overall mean;
g ∼ N (0, σ2

gG) is assumed to be multivariate normal, with G the genomic relationship
matrix of all n lines (VanRaden, 2008) and σ2

g the additive genetic variance among lines.
The matrix Z is an (q × n)-incidence matrix, whose rows consist of unit vectors with one
component being 1 and all the others zero, indicating the respective positions of lines used
for prediction in the g-vector of genetic values of all lines. The term e ∼ N (0,σ2

eI) is the
residual, where σ2

e is the residual variance. Following the approach of VanRaden (2008), G
was defined as

G = (M−P)(M−P)T
2∑s

j=1 pj(1− pj)
,

where M is the (n × s)-matrix of SNP genotype vectors for the n lines with the s SNPs
coded as −1,1 and the jth column of P is (2(pj − 0.5), . . . , 2(pj − 0.5))T , where pj is the
frequency of the second allele at locus j.

Note that the GBLUP approach is the same as the reference approach considered in section
3.2.3, but without including a polygenic component u.

Variance components were estimated via maximum likelihood (ML) using the R-package
“RandomFields”, Version 2.0.46, and its function “fitvario”. The BLUP approach to obtain
the vector of genetic values is equivalent to solving the following Mixed Model Equations
(MME), cf. section 2.2: [

WTW WTZ
ZTW ZTZ + σ2

e
σ2
g
G−1

]
·
[
µ̂
ĝ

]
=
[
WTy
ZTy

]
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A narrow-sense heritability based on the GBLUP model (4.1) was calculated as

ĥ2
GBLUP =

σ̂2
g

σ̂2
g + σ̂2

e

.

4.4.7 Estimation of SNP effects
The GBLUP model (4.1) is equivalent to the following linear model (also termed random
regression BLUP model) in which all SNPs are assumed to have an effect drawn from the
same normal distribution (Goddard, 2009):

y = Wµ+ Z(M−P)s + e,

where Z,M and P are as described above and s ∼ N (0, σ2
sI) is the vector of SNP effects

with σ2
s = σ2

g

2
∑s

j=1 pj(1−pj)
. Using this equivalence, the SNP effects can be predicted as

ŝ = σ̂2
sI(M−P)TZT (σ̂2

sZ(M−P)(M−P)TZT + σ̂2
eI)−1(y−Wµ̂)

=
σ̂2
g

2∑s
j=1 pj(1− pj)

(M−P)TZT (σ̂2
gZGZT + σ̂2

eI)−1(y−Wµ̂).

To estimate the SNP effects resulting from GBLUP for a single trait, we used all of the
available lines, i.e. y in model (4.1) contained the phenotypic values of all lines so that Z = I
in the corresponding formulas. Note that only the inversion of a matrix of size equal to the
number of sequenced lines is required.

4.4.8 Distribution of linkage disequilibrium
We used r2 (Hill & Weir, 1994) as a measure of LD between a pair of loci. With two biallelic
loci A and B with alleles A1, A2, B1, and B2 and frequencies pA1 ,pA2 , pB1 , and pB2 , we
denote the frequencies of the genotypes A1B1, A1B2, A2B1, and A2B2 as x11, x12, x21, and
x22 respectively. Then,

r2 = (x11x22 − x12x21)2

pA1pA2pB1pB2
.

We performed the LD analyses using the imputed SNP matrix of ≈ 2.5 million SNPs for the
157 lines. We calculated the distribution of LD between all pairs of neighboring SNPs for
different marker densities, using every 2k-th SNP (k = 0,1, . . . , 10). The extent of long-range
LD was calculated for 20,000 pairs of SNPs randomly sampled from the first and the last
50,000 SNPs per chromosome arm. Moreover, the average LD was calculated between SNPs
on different chromosome arms, by sampling 10,000 pairs of SNPs for each combination of
chromosome arms.
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4.4.9 Effective population size derived from empirical accuracies of genomic prediction:
We modified the formula of Daetwyler et al. (2010) for the expected accuracy, E(ρ), of
GBLUP given different population parameters (see section 4.5 for more details on the
derivation in the case of D. melanogaster):

E(ρ) =
√√√√ Nph2

Nph2 + NeLf
ln(2NeLf )

(4.2)

Ne is the effective population size, Np is the size of the training set, Lf is the length of the
female genome in Morgans and h2 is the narrow-sense heritability of the trait estimated from
model (4.1). The term Me = NeLf

ln(2NeLf ) describes the number of independently segregating
genome segments (Goddard, 2009).
We ran CVs with different numbers of lines (Np,1 = 31.4, Np,2 = 62.8, Np,3 = 94.2, Np,4 =

125.6 for starvation resistance and Np,1 = 31, Np,2 = 62, Np,3 = 93, Np,4 = 124 for startle
response) in the training set (20 replicates each). Average numbers of lines in the training set
are reported, which are non-integer values for starvation resistance because in a (t+ v)-CV,
division of 157 lines into t + v groups may give unequal numbers of lines in the different
partitions. Given the corresponding average accuracies ρij , i = 1, . . . , 4, j = 1, . . . , 20 for the
CV replicates, we estimated Ne by fitting a curve to the points (Np,i, ρij). To fit the curve,
we chose Ne such that the sum of the squared differences of the observed accuracies and the
accuracies obtained by (4.2) was minimized:

N̂e = argmin
Ne

∑
i,j

ρij −
√√√√ Np,ih2

Np,ih2 + NeLf
ln(2NeLf )


2 ,

using ĥ2 = ĥ2
GBLUP = 1 and Lf = 2.451 Morgan. We calculated the length of the female

genome in Morgans by summing the lengths of the chromosomes in base-pairs (23.0 (21.4, 24.4,
28.0, 21.8) Mbp for chromosome 2L (2R, 3L, 3R, X), Adams et al. (2000)) and multiplying
by the average recombination rates of females for the different chromosomes in Morgans per
base-pair (Fiston-Lavier et al., 2010).
After performing bootstrapping (1,000 replicates), the bias corrected empirical 95%

confidence intervals (2.5% error in each tail) for the Ne estimates (Efron & Tibshirani,
1986; Efron, 1987) were calculated as[

Ĝ−1(Φ(2z0 + z(α)), Ĝ−1(Φ(2z0 + z(1−α))
]
,

where Ĝ−1(α) is the 100α-percentile of the bootstrap cumulative distribution function,
z(α) is the 100α-percentile of the standard normal distribution function Φ, α = 0.025 and
z0 = Φ−1(Ĝ(N̂e)).
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4.4.10 Effective population size derived directly from linkage disequilibrium
To estimate the effective population size based on LD, the following formula was used (Sved,
1971):

E(r2) = 1
1 + 2Necf

+ 1
n
⇔ Ne =

1
E(r2)− 1

n

− 1

2cf
,

where n is the number of lines and cf is the recombination rate in female individuals, cf.
section 4.5 for more details on this formula.

4.4.11 Genomic prediction with BayesB (Meuwissen et al., 2001)
The underlying model for the Markov Chain Monte Carlo based BayesB method is

y = Wµ+ Ms + e,

where y,W, µ,M and e are as defined previously and s is the vector of normally distributed
and independent SNP effects. The variance of the ith SNP effect, σ2

si , is assigned an
informative prior. The prior distribution of the genetic variances aims to resemble a situation
where there are many loci with zero variance and only some loci with variance not equal
to zero. Therefore, the prior distribution of the variance of a marker effect is a mixture of
distributions which is given by

σ2
si

{
= 0 with probability π
∼ χ−2(ν, S) with probability (1− π).

Note that this implies that the unconditional distribution of each single marker effect is a
mixture of a point mass at 0 (with probability π) and of a t-distribution with zero mean,
ν degrees of freedom and scale parameter S (Gianola et al., 2009), i.e. BayesB assigns the
same unconditional prior distribution to each marker effect.
In our studies, we used ν = 4 and the scale parameter S was calibrated as

S =
(ν − 2)σ2

genetic
(1− π)ν∑s

j=1 2pj(1− pj)
.

We chose π = 0.995, such that approximately 125,000 markers were contributing to the addi-
tive genetic variance. For the residual variance, σ2

e , the prior distribution was χ−2(νres, Sres),
with νres = 10 and

Sres = (νres − 2)σ2
res

νres
.

Values for σ2
genetic and σ2

res were chosen in the order of magnitude of the variance components
of the GBLUP model (4.1), which were estimated using all lines and “fitvario”. The BayesB
procedure is described in detail in Meuwissen et al. (2001). It consists of running a Gibbs
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chain, where additionally a Metropolis-Hastings algorithm (10 iterations) is used to sample
from p(σ2

si |y
∗), where y∗ denotes the data y corrected for the mean µ and all genetic effects

other than the marker effect si. Following graphical inspection, we ran BayesB with a
chain length of 40,000 iterations including a burn in of 5,000 iterations that were discarded.
To perform the BayesB approach, we used GenSel (Fernando & Garrick, 2009), which is
implemented in C++. BayesB is computationally very intensive. The analyses were run on
a Mac Pro 2x 2.93 GHz 6-Core Intel Xeon with 64 GB RAM running Mac OS X Server
10.6.7. One fold of a 5-fold CV for starvation resistance took approximately 70 hours.

4.4.12 Comparing areas with large SNP effects with significant SNP positions
A genome-wide association study (GWAS) revealed 203 (90) significant SNP positions for
starvation resistance (startle response) (Mackay et al., 2012), where a SNP position was
considered significant if at least one of the three p-values, obtained using only male, only
female or sex-pooled phenotypic records, was ≤ 10−5. We considered the subset of SNPs for
which p-values of SNP effects of pooled data were ≤ 10−5, to be more conservative and to
be consistent with the previous analyses, leading to 115 (75) significant SNPs for starvation
resistance (startle response).
We compared genomic regions for which GBLUP estimated large SNP effects to these

significant SNP positions of the GWAS. To avoid an effect of different sample sizes, we chose
the 75 most significant SNPs from the GWAS analysis for each trait. For each of these SNPs,
we chose the 100 closest (neighboring) SNPs (50 on each side) and calculated the sums of
absolute values of the corresponding 100 SNP effects (resulting from the GBLUP model).
We compared the distribution of these sums to the distribution of the sums of the absolute
values of estimated SNP effects in ≈ 250,000 windows of 100 neighboring SNPs covering
the whole genome by plotting the corresponding density functions. To obtain the sums
of the absolute values of estimated SNP effects covering the whole genome, the windows
were overlapping, displaced by 10 SNP positions. If the genomic regions for which GBLUP
estimated large SNP effects coincide with the significant SNP positions of the GWAS, we
expect the density functions to be separated.

4.4.13 Variance component estimation using ASReml (Gilmour et al., 2006) and
individual trait records

For each trait, we fitted three different models using individual trait records. The first model
included a fixed sex effect, a random line effect, a random line-sex-interaction term and a
random term accounting for the different replicates in which measurements of the traits were
taken:

phenotype = µ+ sex + line + sex ∗ line + replicate(sex ∗ line) + residual (Model 1)

In the second model, an additional random genetic effect g was added for each line. The
variance-covariance matrix of the vector of these genetic effects was assumed to be given by
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the genomic relationship matrix G of VanRaden (2008):

phenotype = µ+ sex + line + sex ∗ line + replicate(sex ∗ line) + g + residual (Model 2)

In the third model, an additional random additive × additive epistatic effect g × g was
included for each line. The variance-covariance matrix of the vector of these genetic effects
was given by the Hadamard product G ◦G (Henderson, 1984) of the genomic relationship
matrix G of VanRaden (2008):

phenotype = µ+ sex + line + sex ∗ line + replicate(sex ∗ line)
+ g + (g × g) + residual (Model 3)

Other two-way epistatic interactions, like additive × dominance or dominance × dominance,
should not exist in inbred lines, provided inbreeding is complete. Variance components and
their standard errors were estimated using ASReml 2.0 (Gilmour et al., 2006). The analyses
were done pooled across sexes as well as separately for males and females. The analyses of
separate sexes did not include the sex term, and the replicate(sex∗line) term was reduced to
replicate(line).

4.4.14 Heritabilities
The broad-sense heritability for Model 1 was calculated as

Ĥ2
Model 1 = σ̂2

line + σ̂2
sex∗line

σ̂2
line + σ̂2

sex∗line + σ̂2
residual

,

cf. Ayroles et al. (2009). Narrow sense heritabilities for Models 2 and 3 were calculated as

ĥ2
Model 2 =

σ̂2
g

σ̂2
line + σ̂2

sex∗line + σ̂2
g + σ̂2

residual

and

ĥ2
Model 3 =

σ̂2
g

σ̂2
line + σ̂2

sex∗line + σ̂2
g + σ̂2

g×g + σ̂2
residual

.

These heritabilities are based on individual trait records.
Unless stated otherwise, all statistical analyses were performed using R software (R

Development Core Team, 2012; Ihaka & Gentleman, 1996). The R-package “ff” (Adler et al.,
2012) was used to handle the large amount of SNP data efficiently in terms of memory
capacity.
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4.5 More details on the expected LD and Me

When working with D. melanogaster, we have to pay attention to a specific characteristic:
Male individuals do not recombine, i.e. the overall recombination rate c equals 1

2cf , where
cf is the recombination rate in female individuals. Moreover, the genome length in Morgans
is L = 0.5Lf , where Lf is the length of the female genome in Morgans.

4.5.1 The formula of Sved (1971) for the expected linkage disequilibrium
The following formula for the expected LD at equilibrium in a population based on the
effective population size Ne was proposed by Sved (1971):

E(r2) = 1
1 + 4Nec

⇔ Ne =
1

E(r2) − 1
4c (4.3)

Here, Ne corresponds to an effective population size t = 1
2c generations ago (Hayes et al.,

2003). Using c = 1
2cf we obtain

E(r2) = 1
1 + 2Necf

⇔ Ne =
1

E(r2) − 1
2cf

,

t = 1
cf

generations ago.
If this formula is used to estimate Ne based on a finite sample of individuals, one should

adjust for the chromosome sample size (Weir & Hill, 1980), which equals the number of
individuals n in the case of inbred lines. Then,

E(r2) = 1
1 + 2Necf

+ 1
n
⇔ Ne =

1
E(r2)− 1

n

− 1

2cf
.

Note that when applying this formula to the DGRP population, the estimated Ne is not the
effective population size of the local wild population the actual lines were sampled from, but
the effective population size of an idealized population having the same structure of LD as
the DGRP inbred lines. This means that we consider the 157 independent gametes of the
DGRP inbred lines as a random sample of this idealized population.
Several derivations of the above formula have been suggested in the last forty years

(Sved, 1971; Sved & Feldmann, 1973; Tenesa et al., 2007; Sved, 2008, 2009) and sim-
ulation studies have shown that the simulated values of r2 agree reasonably well with
the expectations based on this formula. However, we found that all derivations men-
tioned above have serious shortcomings from a mathematical point of view. Similar con-
cerns over the exact validity of the formula and their derivations were recently raised by
Sved (2008), p. 185, cf. also the manuscript published on John Sved’s personal homepage
(http://www.handsongenetics.com/PIFFLE/LinkageDisequilibrium.pdf). We clearly
think that further research is needed to find a substantiated derivation and that results
based on this formula should therefore be taken with caution. We will deal with this issue in

http://www.handsongenetics.com/PIFFLE/LinkageDisequilibrium.pdf
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detail in chapter 6, also proposing an alternative formula for the expected LD in a finite
population.

4.5.2 More details on the derivation of the number of independently segregating
chromosome segments Me and the expected accuracy of prediction E(ρ):

The formula of Daetwyler et al. (2010) for the expected accuracy of genomic prediction E(ρ)
with GBLUP depends on the number of independently segregating genome segments Me

(Goddard, 2009):

E(ρ) =
√

Nph2

Nph2 +Me

We will give more details on how Me can be calculated in the case of D. melanogaster. The
derivation of Me for a diploid population is given in Goddard (2009) and based on the
formula of Sved for the expected LD E(r2) at equilibrium (Sved, 1971). Central in Goddard’s
derivation is the calculation of the double integral over the formula for E(r2). In general,
one can verify that

1
a2

1

∫ a1

0

∫ a1

0

1
a3 + a2|x1 − x2|

dx1dx2

=2(a3 + a1a2) ln(a3 + a1a2)
a2

1a
2
2

− 2a3 ln(a3)
a2

1a
2
2
− 2 ln(a3)

a1a2
− 2
a1a2

,

for arbitrary constants a1, a2, a3 with a1, a2 > 0. If a3 ∈ {1,2} and if a2 is large enough, the
double integral is approximately

1
a2

1

∫ a1

0

∫ a1

0

1
a3 + a2|x1 − x2|

dx1dx2 ≈
2(a1a2) ln(a1a2)

a2
1a

2
2

= 2 ln(a1a2)
a1a2

.

Following the derivation of Goddard (2009), we need to calculate the double integral over eq.
(4.3) and displace c by the distance |x1 − x2| which leads to

1
L2

∫ L

0

∫ L

0

1
1 + 4Ne|x1 − x2|

dx1dx2 = 1
L2
f

∫ Lf

0

∫ Lf

0

1
1 + 2Ne|x1 − x2|

dx1dx2

≈ 2 ln(Lf2Ne)
Lf2Ne

= ln(Lf2Ne)
LfNe

.

Here, the first equality holds because of the transformation formula and the identity L = 1
2Lf

in the case of D. melanogaster. Using this result, Me can be derived as in Goddard (2009),
leading to

Me = NeLf
ln(2NeLf ) .
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Hence, the formula of Daetwyler et al. (2010) for the expected accuracy of prediction in the
case of D. melanogaster equals

E(ρ) =
√

Nph2

Nph2 +Me
=
√√√√ Nph2

Nph2 + NeLf
ln(2NeLf )

,

where Np is the size of the training set and h2 is the narrow-sense heritability of the trait
estimated from the GBLUP model.
Note that we do not claim at this point that Goddard’s approach to derive the formula

for Me is correct.

4.6 The expected value of the genomic relationship matrix of VanRaden
(2008)

In this section we will show that the expected value of the genomic relationship matrix G of
VanRaden (2008) is given by the additive relationship matrix A, i.e.

E(G) = A.

Following VanRaden (2008), G is defined as

G = (M−P)(M−P)T
2∑s

k=1 pk(1− pk)
,

where M is the (n × s)-matrix of SNP genotype vectors for the n lines with the s SNPs
coded as −1,1 and the kth column of P is (2(pk − 0.5), . . . , 2(pk − 0.5))T , where pk is the
frequency of the second allele at locus k for k = 1, . . . , s.
Let mi be the vector of SNP genotypes of individual i, i.e. mi = (mi1, . . . ,mis). Then,

M = (m1, . . . ,mn)T . We consider the case of fully homozygous individuals due to full-sib
mating. Then, the genotype mik of individual i = 1, . . . , n at locus k = 1, . . . , s can be
considered as a discrete random variable with values −1,1 and probabilities (1− pk), pk, and
it is

E(mik) = −(1− pk) + pk = 2pk − 1

for all i = 1, . . . , n. Moreover, we have
s∑

k=1
Cov(mik,mjk) = aij

s∑
k=1

σ2
m•k

,

where aij is the coefficient of relationship between individuals i and j, and σ2
m•k

is the variance
of the genotype variable m•k at locus k of the original base-population, see Cornelius &
Dudley (1975) for a derivation of the covariance between relatives under full-sib mating.
The variance of m•k in the base population is equal to the variance of a random variable
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with values −1,0,1 and probabilities (1− pk)2, 2pk(1− pk), p2
k, which equals

σ2
m•k

= E(m2
•k)− E(m•k)2

= (−1)2 · (1− pk)2 + 02 · 2pk(1− pk) + 12 · p2
k

−
(
−1 · (1− pk)2 + 0 · 2pk(1− pk) + 1 · p2

k

)2

= 2pk(1− pk).

This leads to
s∑

k=1
Cov(mik,mjk) = aij

s∑
k=1

2pk(1− pk). (4.4)

Define D := 2∑s
k=1 pk(1− pk). The expected value of G can now be calculated as

[E(G)]ij =
[
E
(

(M−P)(M−P)T
D

)]
ij

= 1
D
E
[
(mi − (2(p1 − 0.5), . . . ,2(ps − 0.5))) · (mj − (2(p1 − 0.5), . . . ,2(ps − 0.5)))T

]
= 1
D
E
[
((mi1, . . . ,mis)− E(mi1, . . . ,mis)) · ((mj1, . . . ,mjs)− E(mj1, . . . ,mjs))T

]
= 1
D

s∑
k=1

E [(mik − E(mik)) · (mjk − E(mjk))]

= 1
D

s∑
k=1

Cov(mik,mjk)

= 1
2∑s

k=1 pk(1− pk)

(
aij

s∑
k=1

2pk(1− pk)
)
, using eq. (4.4)

= aij

for i,j = 1, . . . , n, i.e. E(G) = A.
The derivation presented above was for the case of fully homozygous individuals due to

full-sib mating. The identity E(G) = A can analogously be derived for a non-homozygous
population. Then, the genotype mik of individual i at locus k can be considered as a discrete
random variable with values −1,0,1 and probabilities (1− p)2, 2pk(1− pk), p2

k.





5 Analyses of Chill Coma Recovery Data: Evidence
of Epistatic Interactions

5.1 Introduction
In addition to phenotypes of starvation resistance and startle response, the DGRP data also
comprised phenotypic records of the trait “chill coma recovery” (Jordan et al., 2007; Ayroles
et al., 2009; Mackay et al., 2012) for 147 lines. This trait describes the time to recover from
a chill-induced coma and builds a component of fitness in Drosophila and other insects.

We analyzed this trait using the same procedure as described in the previous chapter. In
contrast to the results reported for starvation resistance and startle response, we found that
for chill coma recovery genomic-based prediction had essentially no predictive ability in the
analyses of sex-averaged and male data, and that it had very low predictive ability for the
female data.

In search for possible explanations for this behavior, we encountered several characteristics
of the DGRP data:

• a region on chromosome 2L dividing the lines into two clusters

• the bimodality of the phenotypic chill coma recovery data

While further analyzing both characteristics, we found strong hints of

• numerous pairwise epistatic interactions of SNPs underlying the chill coma recovery
trait.

In the following, we will describe the approaches taken to get to these findings. The results
presented in this chapter form a basis for numerous possible further investigations. To
fully understand the complexity of the chill coma recovery trait from a biological point
of view, further analyses have been carried out in collaboration with the working group
of Prof. Mackay, including Gene Ontology enrichment analyses as well as genetic network
investigations, revealing a complex genetic architecture of the chill coma fitness trait by
confirming extensive epistasis and identifying alleles with large effects. This finally led to
novel insights into the underlying biology of chill coma recovery time. A joint manuscript
including these continuative analyses is currently in revision for PLoS Genetics (Ober et al.,
2012b); its content is briefly summarized in section 5.6.

69



70 5 Analyses of Chill Coma Recovery Data: Evidence of Epistatic Interactions

5.2 Investigations in analogy to the analyses of starvation resistance and
startle response

In line with the study using whole genome sequence data for prediction described in chapter 4,
the same analyses as applied to the starvation resistance and startle response data were
carried out for the chill coma recovery data, using the same set of ≈ 2.5 million SNPs as
before. The corresponding results are presented in the following subsections.

5.2.1 The chill coma recovery data
Phenotypic records of coma chill recovery were available for 148 out of the 157 DGRP
lines. For details on the sampling procedure we refer to Mackay et al. (2012). There were
on average 101 ± 15 measurements of female individuals, and 100 ± 16 measurements of
male individuals per line. One extreme outlier-line (“RAL-879”) was excluded from further
analyses for this trait, in line with Mackay et al. (2012). The mean and standard deviation
of the phenotypic values for the three traits are shown in Table 5.1.

Table 5.1: Mean and standard deviation of phenotypic values and of the number of records
per line for chill coma recovery. Phenotypic values were calculated as the averages of the medi-
ans of male and female records (“all”) or as the medians of female or male records separately.

chill coma

phen. value1 # rec. per line2

all 16.3± 4.8 200.7± 30.7

female 16.1± 5.2 100.8± 15.4

male 16.5± 4.7 99.9± 16.0

1 Phenotypic values.
2 Number of records per line.

Lines for which phenotypic records of chill coma recovery were available are also marked
by a “C” in the heatmap of the genomic relationship matrix according to VanRaden (2008)
(Suppl. Figure S3).

5.2.2 Results of the GBLUP approach
The results in terms of predictive ability obtained with various CV procedures using the
GBLUP approach (with covariance structure given by the genomic relationship matrix
according to VanRaden (2008)) are shown in Table 5.2. We found that genomic-based
prediction for chill coma recovery had essentially no predictive ability when using a 5-fold
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CV and the sex-averaged records or the median of male records only, but that it worked
with low predictive ability, if only the medians of female records were used.

Table 5.2: Average correlations between predicted genetic values and observed phenotypes of
chill coma recovery for different CV procedures using GBLUP.

type of CV correlation

(4:1)-CV all1 −0.0382 (0.010)

(4:1)-CV male – female3 −0.053 (0.011)

(4:1)-CV female – male −0.041 (0.008)

(4:1)-CV male – male −0.148 (0.011)

(4:1)-CV female – female 0.051 (0.008)

(3:2)-CV female – female 0.041 (0.009)

(2:3)-CV female – female 0.023 (0.008)

(1:4)-CV female – female 0.016 (0.006)

1 The average of the medians of male and female measurements
was used to predict line phenotypes. Predicted phenotypes
were then correlated with the averages of the medians of male
and female measurements.

2 Average correlation between predicted genetic values and ob-
served phenotypes. Results are averages over 20 replicates.
Standard errors of the means in parentheses.

3 “CV sex1 – sex2” means: Medians of measurements of sex1
were used in the training set, medians of sex2 were used in
the validation set.

This low predictive ability for chill coma recovery was not an artifact but was systematic,
as illustrated by a series of CVs with reduced size of the training set (cf. Table 5.2 and
Figure 5.1), where a decline of accuracy could be observed, when the size of the training
set decreased. This series of CVs was performed using female measurements only, as no
predictive ability could be observed for chill coma recovery with sex-averaged and male
measurements even with the largest training set used in the 5-fold CV (Table 5.2).

The low predictive ability for chill coma recovery was also consistent with the fact that the
narrow sense heritability estimated from the GBLUP model was 0 using sex-averaged records
or only the medians of male records, while heritability was 0.09 when using the medians of
female records only (Table 5.3).
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Figure 5.1: Accuracy of prediction of GBLUP for CVs with different numbers of
lines in the training set using female measurements of chill coma recovery. Each
boxplot illustrates the average accuracies for 20 replicates of the CV procedure using GBLUP.
The solid line is the curve of Daetwyler et al. (2010) fitted to the empirical data. All 2.5
million SNPs were used to construct the genomic relationship matrix in the GBLUP model.

Table 5.3: Variance components and heritabilities for chill coma recovery estimated from
GBLUP using all 147 lines. Variance components were estimated by maximum likelihood
using the R-package “RandomFields” and its function “fitvario” and the averages of the medi-
ans of male and female records (“all”) or the medians of female or male records separately as
phenotypic data.

chill coma

σ̂2
g σ̂2

e ĥ2
GBLUP

all 0 22.6 0

female 2.2 22.8 0.09

male 0 21.5 0

5.2.3 Analyses of individual trait data
As for the other two traits, we also analyzed individual trait data to assess whether the
variance between lines can be fully explained by additive genetic effects or if non-additive
mechanisms have an impact. We considered the same three linear models already used
in section 4.4.13. Results of these analyses are summarized in Suppl. Table S3: When
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including the additive × additive epistatic component g × g into the model, the estimate
of the between line variance σ2

line was zero, while σ2
line was 25.6 when the g × g component

was not included. For a trait with largely additive × additive epistatic variation, we expect
σ2

line = 4σ2
g×g, where σ2

g×g is the additive × additive epistatic variance in the non-inbred
base population. Since this is indeed what we observed (σ2

line = 28.6, σ2
g×g = 7.21 ≈ 28.6/4

using all records), it might be that additive × additive epistasis is an important feature of
the genetic architecture of chill coma resistance. It has to be noted that all three models had
basically the same likelihood (cf. Table S3), also stressing that the line differences cannot
be assigned to additive genetic effects. In consequence, genomic prediction based on an
additive model is bound to fail, which is consistent with what we observed using the GBLUP
approach.

5.2.4 Comparing areas with large SNP effects with significant SNP positions
In Mackay et al. (2012), a GWAS revealed 235 significant SNP positions for chill coma
recovery, where a SNP position was considered as “significant”, if at least one of the three
p-values, obtained using only male, only female or pooled phenotypic records, was ≤ 10−5.
Here, we only considered SNP positions showing a p-value ≤ 10−5 with female phenotypic
records to be more conservative and to be consistent with the previous analyses of starvation
resistance and startle response (cf. section 4.4.12), leading to 145 significant SNPs. For the
75 most significant putative QTLs from the GWAS of Mackay et al. (2012), we considered
the 100 neighboring SNP positions and calculated the sum of the absolute values of their
estimated SNP effects (using the GBLUP model), along the lines of the analyses of the
other two traits starvation resistance and startle response in section 4.4.12. These sums were
compared to the sums of the absolute values of estimated SNP effects in ≈ 250,000 windows
of 100 neighboring SNPs covering the whole genome, cf. Figure 5.2 for the density functions
of these sums. For chill coma recovery, the separation of the densities is small (using female
records only), as opposed to what we observed for the other two traits (cf. Figure 4.8).

A Manhattan plot of the estimated SNP effects obtained with GBLUP is shown in Suppl.
Figure S4, also indicating the positions of significant SNPs according to the GWAS.
Overall, results indicate that the proportion of causative genetic factors captured by the

GWAS is only poorly corresponding to the estimated SNP effects from the genomic model,
and the accordance of large estimated SNP effects with significant markers is less pronounced
for chill coma recovery in comparison to starvation resistance and startle response.



74 5 Analyses of Chill Coma Recovery Data: Evidence of Epistatic Interactions

0.0000 0.0005 0.0010 0.0015

0
10

00
20

00
30

00
40

00

 

sum of absolute SNP effects (coma female)

de
ns

ity

Figure 5.2: Distribution of estimated SNP effects for chill coma recovery. The den-
sity of the sum of the absolute values of the SNP effects (estimated from the GBLUP model)
for chill coma recovery is plotted for sliding windows of 100 adjacent SNPs covering the whole
genome (black) and for windows around the 75 most significant SNPs (red) according to the
GWAS of Mackay et al. (2012). Only female measurements were used.

5.3 Observation I: two clusters of lines in relation to a large region on
chromosome 2L

5.3.1 Phenotypic differences
To further assess the potential for genomic prediction, we applied a diagnostic tool based
on the expectation, that if a trait is inherited under an additive model, pairs of individuals
with higher additive genomic relationship coefficient should be more similar in phenotype.
This hypothesis was tested by fitting a linear regression of the squared differences of the
standardized phenotypic values on the additive genomic relationship coefficient for all pairs
of lines. This was done for sex-averaged records as well as for male and female measurements
separately and for all three traits. For the pair of lines i and j, for example, (yi − yj)2

was plotted against the entry gij of the genomic relationship matrix G, where yi and yj
denote the phenotypic records of lines i and j after standardization. This was repeated
for all possible combinations of i and j. A linear regression was fitted and the one-sided
null hypothesis b > 0 (positive slope) was tested using a corresponding t-test. Phenotypic
dissimilarity would decrease with genomic relationship under the alternative hypothesis.

Results are illustrated in Figure 5.3: While the hypothesis could be rejected for starvation
resistance and startle response, this was not the case for chill coma recovery. Here, the
estimated slope was positive for sex-averaged or male traits, and slightly negative when using
female records only.
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Figure 5.3: Plot of the standardized squared phenotypic differences for different
traits against the genomic relationship coefficients gij. The genomic relationship coef-
ficients were calculated according to VanRaden (2008). A regression line was fitted and the
one-sided null hypothesis b > 0 (positive slope) was tested. From left to right: average medi-
ans of male and female records, medians of female records, medians of male records were used
as phenotypic values. From top to bottom: starvation resistance, startle response, chill coma
recovery.
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5.3.2 Empirical variogram – evidence of two clusters of lines
Another way to reflect this dependency is the so-called “empirical variogram”, a geostatistical
tool usually applied in the context of the analysis of stochastic random fields (cf. Wackernagel
(2003) and chapter 3, in which we considered the variogram corresponding to the genomic
relationship matrix of VanRaden (2008) in a limiting case). To obtain the empirical variogram,
the average squared differences between the standardized phenotypic values were plotted
against the average Euclidean difference of the SNP vectors for pairs of lines falling into
different bins of (Euclidean) distances. We chose 20 distance bins such that each bin contained
the same number of pairs of lines.

The empirical variograms for all three traits are displayed in Figure 5.4. While the empirical
variograms for starvation resistance and startle response show a monotone increasing trend,
this trend cannot be observed for chill coma recovery, and especially the points belonging to
the last 6 bins of distances (marked in red in Figure 5.4) are conspicuous.
Schlather & Tawn (2003) used a similar tool (the extremal coefficient cloud) in an

exploratory analysis of daily rainfall data, and by identifying outliers they were able to reveal
inconsistencies in their underlying data set.
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Figure 5.4: Empirical variogram of the standardized phenotypic values of different
traits. From left to right: starvation resistance, startle response, chill coma recovery. On the
x-axis: Euclidean distance between SNP vectors. On the y-axis: average squared difference
of the standardized phenotypic values (using average medians of male and female records)
for pairs of lines lying in the corresponding bin of Euclidean distance between SNP vectors.
The distance bins were chosen such that 20 bins containing the same number of points were
created, for which the average squared difference of the standardized phenotypic values was
calculated.

To investigate the untypical form of the empirical variogram for chill coma recovery,
we plotted a histogram for each distance bin showing how often the different lines were
contributing to its variogram-point (results not shown). We identified 25 lines that were
extraordinarily frequently contributing to the variogram-points of the last 6 distance bins
(compared to the other lines). Based on this, the 147 lines having phenotypic records for
chill coma recovery could be divided into two clusters consisting of 122 and 25 lines. In the
following, we will denote these two clusters by “C1” and “C2”. The IDs of lines belonging to
cluster C2 are listed in Suppl. Table S4. Most lines of cluster C2 also belong to one of the two
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blocks of higher relationship displayed in the heatmap (Suppl. Figure S3). Excluding cluster
C2 from the variogram calculations finally led to a more typical (monotonically increasing)
empirical variogram (Figure 5.5).
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Figure 5.5: Variogram of the standardized phenotypic values of chill coma recov-
ery after excluding lines of cluster C2.

5.3.3 Indices of fixation (FST-values)
To further analyze the clusters C1 and C2 obtained in the previous section, we considered a
measure of population differentiation, the so-called “fixation index”, which was developed in
the 1920s by Sewall Wright (cf. Wright (1984)) and which measures the diversity of randomly
chosen alleles within the same subpopulation relative to that found in the entire population.

Following Gianola et al. (2010), the fixation index (also called FST-value) of the `-th locus
can be obtained as

FST,` =
p2
C1,`

+ p2
C2,`
− 0.5 · (pC1,` + pC2,`)2

pC1,` + pC2,` − 0.5 · (pC1,` + pC2,`)2 ,

where pC1,` and pC2,` are the allele frequencies of the second allele at locus ` for the clusters
C1 and C2, respectively. Its values range from 0 to 1, the latter implying that the two
considered populations are completely separate.

Using C1 and C2 obtained from the variogram analyses, we calculated the average fixation
indices for sliding windows of 100 adjacent loci, displaced by 10 SNP positions, across the
whole genome. The results for the five chromosomes are displayed in Figure 5.6.

Interestingly, there is a region on chromosome 2L of approximate length of 15,000,000bp
showing extraordinarily high FST-values in the range of [0.1,0.2]. In Figure 5.6, we also
indicated the significant SNP positions revealed in the GWAS by Mackay et al. (2012) for
starvation resistance, startle response and chill coma recovery. For chill coma recovery, we
checked whether the region with high FST-values included extraordinarily many significant
SNP positions revealed in the GWAS, but this was not the case. However, it cannot be ruled
out at this stage of research that this region might have a special effect on the trait.
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Figure 5.6: Average FST-values for sliding windows of 100 adjacent loci between
the two clusters C1 and C2 of lines. Significant SNP positions (p-value < 10−5) according
to the GWAS of Mackay et al. (2012) are indicated for starvation resistance (red), startle
response (orange) and chill coma recovery (green).

5.3.4 Conjecture: presence of the “Nova Scotia” inversion
Sturtevant (1931) was the first reporting the so-called “Nova Scotia”-inversion in D. melano-
gaster, denoted by “In(2L)NS”, which is a rare cosmopolitan inversion lying on chromosome
2L, whose computed breakpoints include 23E2− 23E3 and 35F1− 35F2 (see www.flybase.
org). It might be that the 25 lines of C2 (or the 122 lines of C1, respectively) are carriers of

www.flybase.org
www.flybase.org
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this inversion, which could be an explanation for the extraordinarily high FST -values of the
two clusters in this region.

5.3.5 Cross-validations for different clusters
As a first analysis of whether the large region on chromosome 2L has an effect on the trait,
we ran several types of 5-fold CVs (20 replicates each) using GBLUP and different sets of
SNPs and lines. The set of SNPs used to construct the genomic relationship matrix G
according to VanRaden (2008) could be:

• all 2.5 million SNPs (“all SNPs”)

• the 2.5 million SNPs without the SNPs in the region with high FST -values on chromo-
some 2L (“SNPs without 2L-region”)

• or the SNPs in the region with high FST -values on chromosome 2L (“SNPs of 2L-region
only”).

The set of lines used in the CV could be:

• all 147 lines (“all lines”)

• the 122 lines belonging to C1

• or the 22 lines belonging to C2.

Hence, there were in total 9 possible different scenarios, each of which was investigated using
the average median of male and female records (“all”), the median of male records only
(“male”) or the median of female records only (“female”) for each line as phenotypic value.

The predictive abilities, the estimated variance components and the corresponding heri-
tabilities for the different CV procedures are shown in Table 5.4. Predictive abilities increased,
when only the 25 lines of C2 were considered, with another increase in predictive ability
when SNPs from the 2L-region were excluded. It is also noticeable, that predictive abilities
are especially poor when all lines but no SNPs from the 2L-region are used.

The relatively high predictive abilities using the 25 lines of C2 could be an artifact due to
the small sample size. Consider e.g. two standard normally distributed uncorrelated random
variables 0. Then, the probability to obtain an empirical correlation greater or equal to 0.25
when drawing 25 realizations of this bivariate distribution is approximately 0.11, illustrating
that the high predictive abilities achieved in the study should not be overvalued.

In summary, these analyses did not uncover the causations of the low accuracies obtained
with the GBLUP approach applied to the chill coma recovery data entirely, and it remains
in large parts unclear, which effect the clustering based on the 2L-region has on this trait.
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Table 5.4: Results of (4:1)-CVs of GBLUP for chill coma recovery, using different sets of
lines and SNPs: average correlations, estimated variance components and corresponding heri-
tabilities. Each scenario was investigated using the average median of male and female records
(“all”), the median of male records only (“male”) or the median of female records only (“fe-
male”) for each line as phenotypic value. Variance components were estimated using “fitvario”
from the R-package “RandomFields”, version 2.0.46.

set of lines
phenotypes SNP set all lines C1 (122 lines) C2 (25 lines)

all all SNPs cor1 −0.036 (0.009) −0.140 (0.011) 0.248 (0.041)
σ̂2
g 0 0 7.32
σ̂2
e 22.57 23.98 0
ĥ2 0 0 1

SNPs without 2L-region cor −0.092 (0.010) −0.169 (0.012) 0.331 (0.027)
σ̂2
g 0 0 7.07
σ̂2
e 22.58 23.98 0
ĥ2 0 0 1

SNPs of 2L-region only cor 0.064 (0.007) 0.025 (0.017) 0.087 (0.046)
σ̂2
g 0.42 0.55 0
σ̂2
e 21.72 22.93 15.30
ĥ2 0.02 0.03 0

female all SNPs cor 0.048 (0.008) −0.008 (0.013) 0.311 (0.037)
σ̂2
g 2.24 0 9.06
σ̂2
e 22.84 28.95 0
ĥ2 0.09 0 1

SNPs without 2L-region cor 0.020 (0.010) −0.019 (0.014) 0.368 (0.028)
σ̂2
g 1.13 0 8.74
σ̂2
e 24.72 28.95 0
ĥ2 0.05 0 1

SNPs of 2L-region only cor 0.094 (0.005) 0.041 (0.013) 0.178 (0.042)
σ̂2
g 0.91 1.78 0
σ̂2
e 25.50 25.54 18.99
ĥ2 0.03 0.07 0

male all SNPs cor −0.147 (0.011) −0.226 (0.012) 0.164 (0.042)
σ̂2
g 0 0 6.91
σ̂2
e 21.50 22.94 0
ĥ2 0 0 1

SNPs without 2L-region cor −0.208 (0.012) −0.268 (0.011) 0.272 (0.027)
σ̂2
g 0 0 6.70
σ̂2
e 21.50 22.94 0
ĥ2 0 0 1

SNPs of 2L-region only cor 0.014 (0.009) 0.018 (0.020) −0.051 (0.050)
σ̂2
g 0 0 0
σ̂2
e 21.50 22.47 14.08
ĥ2 0 0.01 0

1 Average correlation between predicted genetic values and observed phenotypes. Results are
averages over 20 replicates. Standard errors of the means in parentheses.
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5.4 Observation II: bimodal phenotypic distribution
In the last sections it is described how we identified two clusters of lines in relation to a large
region on chromosome 2L. Apart from that, we discovered that the phenotypic distribution
of chill coma recovery is in fact a mixture of two normal distributions.

5.4.1 Bimodal distribution of phenotypes
Given the phenotypic values for the chill coma recovery trait, we applied the R-package
“mixtools” (Young et al., 2010) to analyze whether the corresponding distribution was a
mixture of two or more normal distributions. We used the function “boot.comp” to chose the
number of components of the mixture distribution. This function is based on a parametric
bootstrap approach to test the number of components in the mixture model sequentially.
We found that two components were the optimal choice for the chill coma recovery data. In
a second step, the function “normalmixEM” was used to determine the parameters of the
two distributions, which has implemented an Expectation Maximization (EM) algorithm
which maximizes the conditional expected complete-data loglikelihood at each step.

Using the average of medians of male and female records for each line as phenotypic data, we
found that the distribution is a mixture of the two normal distributions N (13.53, 1.872) and
N (20.39, 4.772) with weights given by 0.597 and 0.403. Hence, the phenotypic distribution is
indeed bimodal. The corresponding density functions are shown in Figure 5.7 (left plot).
The same scenario can be observed when only the male (female) medians of records are

used as phenotypic values (middle (right) plot of Figure 5.7).
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Figure 5.7: Bimodality of the chill coma recovery phenotypes. Histograms of the
phenotypic distribution for chill coma recovery are displayed using the averages of the medi-
ans of male and female records (left plot), the medians of female records (middle plot) or the
medians of male records (right plot) as phenotypic values. The red and green lines are the
density functions of the two components of the mixture distribution. The dashed black line is
the density function of the mixture distribution.

Given the two components of the mixture distributions, the lines could be allocated to one
of these two components based on their posterior probabilities to belong to the distributions,
which were given as part of the output of “normalmixEM”. The posterior probabilities for each
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line are listed in Suppl. Table S5. Clustering the lines based on their posterior probabilities
finally led to two different populations denoted by “Pop1” and “Pop2” (consisting of 99 and
48 lines). All lines with a posterior probability greater than 0.5 to belong to the second
distribution were assigned to Pop2.

5.4.2 First analyses using Pop1 and Pop2
In a first step, we redid the 5-fold CVs using GBLUP separately for Pop1 and Pop2. The
results are summarized in Table 5.5. Performing a 5-fold CV using GBLUP and only female
records of Pop1 led to a moderate predictive ability of 0.288 (0.014), indicating that the lack
of accuracy of GBLUP (using all lines and sex pooled records) might stem from a complex
structure of population-sex-interactions underlying the trait, possibly in combination with
epistasis as indicated in previous sections. This suggests the hypothesis that the genomic
relationship matrix G is not able to model this complexity adequately.

Table 5.5: Average correlations between predicted genetic values and observed phenotypes
for different CV procedures with GBLUP using chill coma recovery data.

type of CV correlation

(4:1)-CV all1 Pop12 0.1273 (0.014)

(4:1)-CV all Pop2 −0.375 (0.024)

(4:1)-CV female – female4 Pop1 0.228 (0.014)

(4:1)-CV female – female Pop2 −0.338 (0.025)

(4:1)-CV male – male Pop1 −0.047 (0.017)

(4:1)-CV male – male Pop2 −0.181 (0.030)

1 The average of the medians of male and female measurements
was used to predict line phenotypes. Predicted phenotypes
were then correlated with the averages of the medians of male
and female measurements.

2 “Pop1” means: Only lines of Pop1 were used in the estimation
and in the validation set.

3 Average correlation between predicted genetic values and ob-
served phenotypes. Results are averages over 20 replicates.
Standard errors of the means in parentheses.

4 “CV sex1 – sex2” means: Medians of measurements of sex1
were used in the training set, medians of sex2 were used in
the validation set.

We also calculated the FST -values for Pop1 and Pop2, but there were no regions with
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higher FST -values like in the case of C1 and C2 (results not shown). There is also no
extraordinary overlap between the clusters C1 and C2 and the clusters Pop1 and Pop2, as
one might have suspected: In total, 48

147 ≈ 33% of the lines belong to Pop2. Assuming that
there is no connection between C1/C2 and Pop1/Pop2, we would expect that 33% · 25 = 8
lines out of the 25 lines from C2 belong to Pop2. Indeed, there are 8 lines from C2 belonging
to Pop2 (cf. Suppl. Tables S4 and S5). Thus, there is no hint for a connection between
C1/C2 and Pop1/Pop2.

5.5 Epistatic interactions
Due to the results of section 5.2.3, we suspected that the chill coma recovery trait is driven by
many epistatic interactions between pairs of SNPs. To test for possible epistatic interactions,
we developed the following approach, which also accounts for the Pop1/Pop2-clustering.

5.5.1 Candidate list of SNP positions
Starting point was the set of individual trait records, which we averaged over the replicates
(for each line/sex combination). To get a candidate list of SNP positions that could possibly
be involved in epistatic interactions, we ran a linear mixed model using SAS software (SAS
Institute, 2002-2008) separately for each SNP position, applying the following proc GLM-
procedure and using the averaged individual trait data as response variable coma:

proc GLM data=dat;
by position;
class line sex pop SNP;
model coma = sex sex*pop sex*SNP sex*pop*SNP

line(pop*SNP) pop SNP SNP*pop;
random line(pop*SNP) / test;
ods output RandomModelANOVA = result_GWAS;
run;

In this model, pop was a dummy variable with values 1 and 2 indicating whether a line
belonged to Pop1 or Pop2. The terms SNP, sex and line were categorical variables describing
the SNP value (coded with 0 and 2), the sex and the line-ID, all treated as fixed effects.
The nested interaction term line(pop*SNP) was treated as a random effect. The several
components of this linear mixed model were tested for significance (type III sum of squares).
Based on the results of these genome-wide ANOVA-tests, we looked for SNP positions

• with significant pop- and pop*SNP-interactions:
There were 1,508 SNP positions with a p-value < 1 · 10−5 for both terms.

• with significant pop- and pop*SNP*sex-interactions:
There were 6,555 SNP positions with a p-value < 1 · 10−5 for both terms.
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• with significant differences in allele frequencies between two populations Pop1 and
Pop2, based on Fisher’s Exact Test (Fisher, 1922):
There were 521 SNP positions for which the difference was significant (p-value < 5·10−6).

These SNP positions built a candidate list which was used in further analyses.

5.5.2 The “Flyland” data set
The third category of candidate SNPs was amended by several SNP positions identified using
the so-called “Flyland” data set, which was produced in the laboratory of Prof. Mackay.
The Flyland data set consists of a synthetic outbred, intercross population based on a

subset of 40 DGRP lines, which were crossed in a “round robin” manner, followed by 70
generations of random mating. After doing different assays to assess phenotypes of 2,000
flies for various traits, a pooled DNA sequencing of flies belonging to the top and bottom
15% of the phenotypic distribution curve for a given trait was performed in a second step.

From the 40 DGRP lines forming the basis of the Flyland data, 23 (6) lines belonged to
Pop1 (Pop2). Using the corresponding allele frequencies from the pooled sequencing in the
two subsets forming the top and bottom 15% of the phenotypic distribution curve for chill
coma recovery, we looked for SNP positions with significant differences between these two
pools (using again Fisher’s Exact Test, p-value < 5 · 10−4). This finally resulted in 170
additional SNP positions, which were added to the above candidate list of SNP positions.

5.5.3 Tests for significant pairwise interactions
The candidate list finally consisted of 8,750 SNP positions in total. In a next step, all possible
pairs of SNPs from the candidate list were tested for significant pairwise interactions, using
SAS software (SAS Institute, 2002-2008) and applying the following proc GLM-procedure,
using again the average of the medians of male and female measurements as response variable
in a linear model (as already done in the GBLUP approach). The linear model included the
fixed categorical variables SNP_A and SNP_B for the genotypes of the two considered SNP
positions as well as the corresponding fixed interaction term SNP_A*SNP_B:

proc GLM data=dat;
by position;
class line SNP_A SNP_B;
model av_median = SNP_A SNP_B SNP_A*SNP_B ;
ods output ModelANOVA = result_Epistasis;
run;

The interaction terms SNP_A*SNP_B in the ANOVA-models were tested for significance (type
III sum of squares). As expected, we found many significant epistatic interactions, confirming
our hypothesis that there are complex structures underlying the trait, which involve both
the population structure and epistasis. In total, we found

15 (15; 46; 184; 897; 4,508; 18,856; 52,353)
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significant pairwise interactions using a significance threshold for the p-value of

10−12(10−11; 10−10; 10−9; 10−8; 10−7; 10−6; 10−5).

The 897 significant interactions corresponding to a threshold of 10−8 are exemplarily
displayed in Figure 5.8. To obtain this network representation, all positions showing a
significant interaction with at least one other position were placed in a circle as equally
spaced nodes. Significant interactions were then drawn as edges between the nodes, using
the R-package “diagram” (Soetaert, 2011) and its function “plotweb”. Note that a lot of LD
between neighboring SNP positions can be observed from this network plot.

Figure 5.8: Network plot of the 897 significant epistatic interactions between
SNPs (p-value 10−8), which were found based on the candidate list of SNP posi-
tions.

5.6 Clustering and epistatic interactions as a basis for further
investigations

The results on the chill coma recovery trait presented in the previous sections allow a first
insight into the complex biological background of the trait and give rise to many possible
research directions. Possible approaches include the further analysis of epistasis, e.g., by
assigning the epistatic SNP positions to biological relevant pathways. This seems to be the
most promising course of action. As noted before, another potential route is the analysis
of whether the lines of cluster C1 (or C2) carry the Nova Scotia inversion. The procedural
method and the results of this chapter can therefore serve as a stepping stone for further
studies, which may lead to a better understanding of the complex trait. Some of these
analyses have already been carried out in collaboration with the working group of Prof.
Mackay and the results are described in a joint manuscript which is currently in revision for
PLoS Genetics (Ober et al., 2012b). We will briefly report the results of Ober et al. (2012b)
in the following section. Note that parts of the analyses presented in Ober et al. (2012b)
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to infer epistatic interactions for the chill coma trait differ only slightly from the analyses
presented in the previous sections. Ober et al. (2012b) additionally perform gene ontology
and network analyses based on the inferred interactions.

5.6.1 Results of Ober et al. (2012b)
In summary, Ober et al. (2012b) found an unexpectedly complex genetic architecture
underlying the chill coma recovery trait, comprising a few alleles with large additive effects as
well as complex networks of epistatic interactions, leading to failure of genomic prediction and
misleading results from single marker genome-wide association studies. The methodological
strategy and the corresponding results of Ober et al. (2012b) are displayed schematically in
Figure 5.9.
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Figure 5.9: Schematic illustration of the GWAS approaches used in Ober et al.
(2012b).

As shown in section 5.4.1, the DGRP lines partition into two populations with different
means. Using this result, Ober et al. (2012b) further illustrate that these two populations
exhibit patterns of sexual dimorphism as well as different magnitudes of genetic and en-
vironmental variance. Based on the hypothesis that the difference in mean between the
two populations is in part due to variants with large additive effects on the trait, Ober
et al. (2012b) looked for significant SNPs from a single-marker GWAS and for SNPs with
significant differences in allele frequencies between the two populations, revealing 6–7 SNPs
which contributed to 22–26% of the total genetic variance, depending on the analysis, and in
contrast to the GBLUP predictions in which the additive genetic variance was estimated to be
zero. It was further hypothesized that the remaining genetic variance was due to epistasis and
different genetic architectures in the two populations. Indeed, when performing a GWAS for
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chill coma recovery time in line with the analysis in section 5.5 and including the main effect
of population and its interactions with the fixed factor variables SNP and sex, Ober et al.
(2012b) identified 8,086 (2,453) SNPs for which the effect of population was highly significant
and for which one of the interaction terms population*SNP or population*sex*SNP was
significant at a nominal p-value less than 10−5 (10−6). Based on these findings, Ober et al.
(2012b) sought to identify

• pairs of significantly interacting SNPs among these variants

• significant interactions between the 8,086 SNPs and the SNPs showing significant
differences in allele frequencies between the two populations

• and significant interactions between the ≈ 2.5 million SNPs and the SNPs with large
effects.

The corresponding two-marker GWAS (including almost 60 million linear two-marker models)
finally revealed ≈ 55,000 significant interactions (p-value less than 10−5).
After removal of pairs of SNPs in perfect LD and concentrating only on significant

interactions with p-values less than 10−7, 2,515 interactions involving 961 SNPs within 483
annotated genes remained. These genes were enriched for Gene Ontology terms linked to
signaling and metabolic pathways, and comprised a tightly woven genetic interaction network.
Ober et al. (2012b) further found that the discovered genes affecting the time to recover from
chill coma were involved in nervous system development and signaling, which is biologically
plausible. Besides, it is intriguing that many intergenic SNPs far away from annotated genes
participate in numerous interactions, potentially defining novel regulatory regions.

5.7 Discussion
5.7.1 Evidence of epistasis in the literature
Epistasis is known to be an important component of the genetic architecture of quantitative
traits, as reviewed e.g. by Flint & Mackay (2009), Mackay et al. (2009) and Anholt (2010).
According to Mackay et al. (2009), epistasis “refers to the masking of genotypic effects at one
locus by genotypes of another locus (Phillips, 2008) and also to any statistical interaction
between genotypes at two or more loci (Falconer & Mackay, 1996; Lynch & Walsh, 1998)”.

Various studies have already reported substantial evidence of epistatic interactions among
QTLs affecting quantitative traits in different species like Drosophila and mice (Flint &
Mackay, 2009), chickens (Carlborg et al., 2006), Arabidopsis (Kroymann & Mitchell-Olds,
2005) and yeast (Sinha et al., 2008; Steinmetz et al., 2002). As outlined by Mackay et al.
(2009) and Swarup et al. (2012), epistatic interactions in Drosophila have been documented
to affect metabolic activity as well as olfactory and locomotor behaviors, and epistatic
interactions have been found for traits measuring bristle number, wing shape and longevity.
This diversity of results stresses the importance of epistasis with respect to the genetic
architecture of quantitative traits, and it also highlights the need for prediction models
allowing to account for epistasis.
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One challenging aspect in this regard is the fact that the existing forms of epistasis are
manifold. Mackay et al. (2009) explain: “Epistatic effects can be as large as main QTL
effects, and can occur in opposite directions between different pairs of interacting loci and
between loci without significant main effects on the trait. Epistasis can also occur between
closely linked QTLs (Kroymann & Mitchell-Olds, 2005; Steinmetz et al., 2002; Sinha et al.,
2008) and even between polymorphisms at a single locus (Stam & Laurie, 1996).”

Ober et al. (2012b) further state that “if epistasis is present but not accounted for, estimates
of allelic effects from association studies will be biased (Carlborg et al., 2006; Phillips, 2008),
potentially accounting for missing heritability (Zuk et al., 2012) and leading to a failure of
genomic prediction. On the other hand, knowledge of epistatic interactions can be used to
infer genetic networks affecting complex traits (Phillips, 2008).”

5.7.2 The animal breeder’s point of view
The lack of accuracy of prediction for chill coma recovery using GBLUP is bewildering from
an animal breeder’s point of view: While 38% to 39% of the phenotypic variation based on
individual measurements are due to line differences (Suppl. Table S3), only a small proportion
of the variance (0% to 3%) can be assigned to additive genetic causes, and adding an additive
× additive component does not improve the model at all based on the loglikelihood.
Different predictive abilities for different traits have also been obtained in practical

applications of genomic prediction to agriculturally relevant species. In an application to
genomically predict testcross performance across families in maize (Albrecht et al., 2011),
predictive ability for grain dry matter yield was 0.48 while it was 0.64 for grain dry matter
content, although both traits have very similar heritabilities. In Hayes et al. (2010), such
differences are explained with differences in the architecture (mainly the number of QTL
with very large effects) of the quantitative traits studied.

Based on the bimodality of the distribution of phenotypic values, which we could demon-
strate for the chill coma trait, we retrospectively know that the underlying assumption of the
GBLUP model – the normal distribution of the phenotypic values, all having approximately
the same phenotypic mean and variance – is violated in chill coma recovery records of the
DGRP data set. Hence, it is not astonishing that the GBLUP approach did not yield high
predictive abilities. More importantly, the fact that we found many epistatic interactions
between SNPs in this study and in Ober et al. (2012b) provides a reasonable explanation
for the failure of the GBLUP approach, since the covariance matrix G used in the GBLUP
approach is based on the additive relationship between lines and does not account for possible
epistatic interactions between SNPs.

5.7.3 Conclusion
In summary, our analyses and the study in Ober et al. (2012b) demonstrate that epistasis can
be of great importance for the specification of a quantitative trait and that it can even lead
to a failure of prediction approaches. Additionally, “epistasis poses considerable statistical
challenges like estimating the contribution of entire networks of interacting loci to genetic
variance, predicting network responses to natural or artificial selection or incorporating such
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networks into genomic prediction models”, as stated in Ober et al. (2012b).





6 The Expected Linkage Disequilibrium in Finite
Populations Revisited

In chapter 4, we applied a formula proposed by Sved (1971) for the expected linkage
disequilibrium (LD) at equilibrium to estimate the effective population size for the DGRP
data. In section 4.5, we further indicated that the exact validity of this formula is questionable
from a mathematical point of view and that further research is necessary to investigate the
formula and its derivations more detailed. We will deal with this subject comprehensively in
the subsequent sections.

6.1 Introduction
In genetics research, the decay of LD as a function of the distance of the considered loci is
an important characteristic of a population. One measure of LD between two loci which
has widely been used in the literature is r2 (cf. Hill & Weir (1994)), which depends on the
frequencies of gametes in the considered population.
Moreover, it is commonly assumed that a finite population of size N with constant

recombination rate c achieves a state of “equilibrium” after a certain time. Usually, this
state of equilibrium is said to be reached when the expected amount of LD does not change
from one generation to the next.
The effective population size Ne, which is defined as the size of an ideal population at

equilibrium with the same structure of LD as the population under consideration (cf. Hedrick
(2011)), is an important population parameter when considering how real populations evolved
over time. In practice, Ne cannot be measured but LD can. Hence, efforts have been made to
link the two quantities by formulae of the form E(r2) ≈ f(c,Ne), with a function f depending
on c and Ne.

6.1.1 Sved’s formula for the expected linkage disequilibrium (Sved, 1971)
The following formula for the expected LD at equilibrium in a population was proposed by
Sved (1971) and has been used extensively to estimate Ne:

E(r2) = 1
1 + 4Nec

(Sved’s formula) (6.1)

The equality can be written as

Ne =
1

E(r2) − 1
4c = 1− E(r2)

4cE(r2) ,

91
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and by using an empirically estimated E(r2), the effective population sizeNe can be calculated,
as done in chapter 4 for the DGRP lines. Then, the estimated Ne corresponds to an effective
population size 1

2c generations ago (Hayes et al., 2003). In the following, we will refer to
formula (6.1) as “Sved’s formula”. Sved (1971) derived this formula based on the following
recursion formula for the conditional probability QT of identity by descent (IBD) at the
second locus, given that two sampled gametes from the population are IBD at the first locus
in generation T :

QT =
(

1− 1
2N

)
(1− c)2QT−1 + 1

2N (1− c)2 (Sved’s recursion formula) (6.2)

Note that this recursion formula is of linear form QT = aQT−1 + b with constants a and
b. Sved claims that QT = E(r2

T ), where r2
T is the LD after T generations. Additionally,

equilibrium is considered to be the point in time for which QT+1 = QT . Based on this
definition, the equation QT = E(r2

T ) combined with eq. (6.2) yields approximately eq. (6.1)
for small values of c and after replacing N with Ne.
Sved’s formula has been used in different areas of research and applications, ranging

from animal breeding (Meuwissen et al., 2001; de Roos et al., 2008; Flury et al., 2010;
Qanbari et al., 2010) and plant breeding (Remington et al., 2001) to human genetics (Tenesa
et al., 2007; McEvoy et al., 2011), and it has become one of the standard approaches for
Ne-estimation.

6.1.2 Mathematical shortcomings of previous derivations
Several other derivations of the formula have been suggested in the last forty years (Sved
& Feldmann, 1973; Tenesa et al., 2007; Sved, 2008, 2009). We found that all derivations
are in some parts of heuristic nature, including mathematical gaps or unsound conclu-
sions, as already indicated in section 4.5. Indeed, concerns over the validity of the formula
and their derivations have already been raised by Sved (cf. Sved (2008), p. 185, and a
manuscript published on Sved’s personal homepage http://www.handsongenetics.com/
PIFFLE/LinkageDisequilibrium.pdf). In the following, we will sketch some of the mathe-
matical concerns unfolding in these derivations.

Derivations of Sved (Sved, 1971; Sved & Feldmann, 1973; Sved, 2008, 2009)

In the manuscript mentioned above Sved reports a misunderstanding in the original derivation
(Sved, 1971), in which eq. (6.2) is derived, stating that the recursion formula (6.2) should
have been QT =

(
1− 1

N

)
(1−c)2QT−1 + 1

N (1−c)2. But this would not lead to Sved’s formula
at equilibrium. It is further argued that a second misunderstanding seems to cancel out
the first one leading to eq. (6.2) again, but some uncertainty about the correctness of the
equations remains, as stated by Sved in the manuscript mentioned above.

A second key step in this derivation is the equation QT = E(r2
T ) which finally leads to eq.

(6.1) at equilibrium. To justify this equation, the following argumentation is used: Imagine,
a gamete is sampled at random from the population. A second gamete with the same
genotype at the first locus is sampled afterwards. The genes at the first locus are said to be

http://www.handsongenetics.com/PIFFLE/LinkageDisequilibrium.pdf
http://www.handsongenetics.com/PIFFLE/LinkageDisequilibrium.pdf
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identical by descent (IBD) per definition. Then, Sved uses the formula p2
B1

+ p2
B2

for the
probability of homozygosity at the second locus, where pB1 and pB2 are the corresponding
allele frequencies. The expression p2

B1
+ p2

B2
is the unconditional probability of homozygosity,

not taking into account the homozygosity at the first locus in LD, while the conditional
probability is expected to be greater than p2

B1
+ p2

B2
.

Sved & Feldmann (1973) rediscuss this approach and propose a modified recursion formula
which is QT =

(
1− 1

2N

)
(1− c)2QT−1 + 1

2N , but the proof of E(r2
T ) = QT is still lacking.

Finally, another approach is presented in Sved (2008, 2009) by combining the concepts of
correlation of two loci and probability of IBD. The critical point in these derivations is that
correlations are assumed to be additive. However, this assumption is only verified for the
one-locus case, and a proof for the required two-locus case is missing.

Derivation of Tenesa et al. (2007)

Tenesa et al. (2007) provide a shorter derivation of Sved’s formula using the equation
E(rt+1) = (1 − c)rt. Here, the left-hand side is a constant, whereas the right-hand side is
a random variable. Additionally, Var(r) ≈ (1−E(r)2)

n is used as a general expression for the
sampling variance of an estimate of a correlation coefficient r with sample size n. In this
context, it is not distinguished between the true underlying correlation ρ and the empirical
correlation coefficient r. It is not stated either for which underlying distribution this formula
can be applied. According to Hotelling (1953), Var(r) ≈ (1−ρ2)2

n holds for a bivariate normal
distribution. Note that the numerator is squared, whereas this is not the case in the formula
used by Tenesa et al. (2007). It is unclear, whether and how the formula used by Tenesa
et al. (2007) is related to the result of Hotelling (1953), since in the case of LD the underlying
distribution is bivariate Bernoulli, and approximation by a bivariate normal distribution is
questionable in this case.

All points of critique mentioned so far stress the need for a clearer approach and an
extensive empirical analysis of the existing formulae.

6.1.3 Organization of the chapter
The rest of this chapter is organized as follows: In section 6.2, we propose an alternative
linear recursion formula for the expected LD in a finite population and analyze its validity
in an extensive simulation study (section 6.3). The new formula is also compared to Sved’s
recursion formula, and the dependency of the precision of both formulae on the constellation
of allele frequencies is analyzed.

In section 6.4, we consider the expected LD at equilibrium in the mathematical framework
of the theory of discrete-time Markov chains. On the basis of a (linear) recursion formula,
we derive a formula for the expected amount of LD at equilibrium, leading to a formula for
the effective population size Ne. First, the derivation is given under the assumption that
the recursion formula is exact. We then analyze how the non-exactness of a linear recursion
formula affects the result for the expected LD at equilibrium.
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In section 6.6, we estimate effective population sizes for the human HapMap data (The
International HapMap Consortium, 2003) using records of two populations. To illustrate the
impact of the allele frequency spectrum used, this is done for different sampling schemes
based on minor allele frequencies.
We finally discuss the practical implications of our findings in section 6.7.

6.2 A new recursion formula
6.2.1 Basic principles and assumptions
Hill & Robertson (1968) proposed r2 as a measure of LD between a pair of loci. With
two biallelic loci A and B with alleles A1, A2, B1,B2 and frequencies pA1 ,pA2 , pB1 ,pB2 , we
denote the frequencies of the genotypes A1B1, A1B2, A2B1, and A2B2 by x11, x12, x21, and
x22, respectively. Then,

r2 = (x11x22 − x12x21)2

pA1pA2pB1pB2
. (6.3)

Note that if we consider the allelic states at the two loci as Bernoulli variables with parameters
pA1 and pB1 , then r2 is the square of the correlation coefficient of these two random variables.

In the following, we consider a diploid population of finite size N at some arbitrary point
T = t0 in time and two biallelic loci A and B as described above, with gamete frequencies
xt0 := (xt0,11,xt0,12,xt0,21,xt0,22). Assuming random mating and a constant recombination
rate c, we can calculate the probabilities x′t0 := (x′t0,11, x

′
t0,12, x

′
t0,21, x

′
t0,22) for receiving the

four different genotypes when producing an offspring gamete as

x′t0,11 = xt0,11 − cD0, x′t0,12 = xt0,12 + cD0, x′t0,21 = xt0,21 + cD0

and x′t0,22 = xt0,22 − cD0, (6.4)

with D0 := xt0,11xt0,22 − xt0,12xt0,21. For a detailed derivation we refer to Hedrick (2011), p.
528ff and the references therein. We are now interested in the expected squared correlation
coefficient Ext0 (r2

t0+1) of the two random variables (the allelic states at the two loci) in
T = t0 + 1, given xt0 (and hence r2

t0) from T = t0. Since a constant population size is
assumed, the population in T = t0 +1 is formed by 2N gametes, and the absolute frequencies
of the four types of gametes (n′11, n

′
12, n

′
21, n

′
22) := 2Nxt0+1 follow a multinomial distribution

with parameters 2N and p = (x′t0,11, x
′
t0,12, x

′
t0,21,x

′
t0,22).

6.2.2 Analytic expression for the expected LD in the next generation
Based on the above assumptions, the exact expected LD in T = t0 + 1 conditional on xt0 is
given by:

Ext0 (r2
t0+1) = Ext0

(
(n′11n

′
22 − n′12n

′
21)2

(n′11 + n′12)(n′21 + n′22)(n′11 + n′21)(n′12 + n′22)

)
, (6.5)
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where Ext0 denotes the expectation with respect to the multinomial distribution with
parameters 2N and p = x′t0 as described above. Analytical treatment of this expectation
(i.e., expressing it in terms of the probabilities x′t0,ij) does not seem to be feasible for general
N . The open question is now how to deal with the complex formula. Even if one tried
to approximate the expectation of the ratio by the ratio of expectations (cf. e.g. Ohta &
Kimura (1971); Hill (1977)), the result would still depend on xt0 in a very complex manner.
Therefore, it is reasonable to work with an approximation of this expression, involving only
r2
t0 on the right-hand side of eq. (6.5).

6.2.3 The alternative recursion formula for the LD
According to Sved’s approach and based on the assumptions of the previous sections, we
propose the following form of an approximate recursion formula for the expected LD in the
population, given the gamete frequencies xt0 in T = t0:

Ext0 (r2
t0+1) = ar2

t0 + b = ar2(xt0) + b, (6.6)

where a and b are functions of c and N . Note that r2
t0 is in fact a function of xt0 , which we

indicate sometimes by writing r2(xt0). We further choose

a = (1− c)2
(

1− 1
2N

)
and b = 1

2N − 1− c . (6.7)

Note that this choice differs from Sved’s recursion formula only in the value of b (cf. eq. (6.2)),
what we will justify in the subsequent sections. The coefficients a and b were determined
heuristically followed by a systematic validation.

6.3 Simulation study to analyze the performance of the new recursion
formula

6.3.1 Simulation set-up
The general idea of the simulation study is the following: For a given combination (N, c,xt0)
in T = t0, we randomly draw Nsample samples of 2N gametes according to the above
multinomial distribution with parameters 2N and p = x′t0 . For each of these samples,
xt0+1 and the allele frequencies are obtained as empirical gamete and allele frequencies in
T = t0 + 1, and r2

t0+1 is calculated according to eq. (6.3). Then, Ext0 (r2
t0+1) is approximated

by averaging over the Nsample values of r2
t0+1. Given all tuples (N,c, r2

t0 ,
̂Ext0 (r2

t0+1)), we can
systematically analyze the fit of eq. (6.6) in combination with eq. (6.7), as described below.
The simulation was done for all combinations of N , c and xt0 , where

N ∈
{

22, 23, . . . , 214
}

c ∈ {0, 0.001, 0.002, . . . , 0.01, 0.02, . . . , 0.5}
xt0,11 ∈ {0, 0.05, 0.1, . . . , 1}
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xt0,12 ∈ {0, 0.05, 0.1, . . . , (1− xt0,11)} , for given xt0,11

xt0,21 ∈ {0, 0.05, 0.1, . . . , (1− xt0,11 − xt0,12)} , for given xt0,11, and xt0,12.

Note that xt0,22 is determined by xt0,22 = 1 − xt0,11 − xt0,12 − xt0,21. For each parameter
constellation, the number of realizations Nsample was chosen dynamically, as described below.
Further note that 0.05 was chosen as grid-length for xt0 , although each component of xt0 can
theoretically take only values in

{
0, 1

2N ,
2

2N , . . . , 1
}
. For N < 32, we simulated according to

this real grid, but got almost identical results. For large N , the computational costs are too
high to simulate from the true grid

{
0, 1

2N ,
2

2N , . . . , 1
}
.

Parameter constellations causing at least one allele frequency to be zero were excluded
from the analyses, because in this case r2

t0 cannot be calculated.

6.3.2 Measures of the goodness of fit
We propose the following characteristic as a measure of goodness of fit of eq. (6.6):

F :=
Ext0 (r2

t0+1)− ar2
t0

b
− 1,

for given a and b. If equalities (6.6) and (6.7) were exact, we would observe F = 0 for all
possible parameter constellations. In section 6.5.5 we show that F is closely related to the
relative error of the expected LD at equilibrium due to the non-exactness of the recursion
formula. Note that F is especially sensitive for a misspecification of b in eq. (6.7). Since
Ext0 (r2

t0+1) is unknown, we use

F̂ =
̂Ext0 (r2

t0+1)− ar2
t0

b
− 1,

where ̂Ext0 (r2
t0+1) is obtained from the simulation study.

Dynamic sampling: In the simulation process described above, Nsample was chosen dynami-
cally such that the standard deviation of F̂ was approximately constant over all combinations
(N,c,xt0): It is

s.d.(F̂ ) = s.d.

 ̂Ext0 (r2
t0+1)− ar2

t0

b
− 1



=
s.d.

(
̂Ext0 (r2

t0+1)
)

b

=
s.d.(r2

t0+1)
b ·
√
Nsample

.
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The right-hand side is constant if

Nsample =
(
s.d.(r2

t0+1)
b

· d
)2

with any constant d > 0. To obtain s.d.(r2
t0+1), we performed a preliminary simulation study

according to the same simulation set-up, but with a constant sample size of 10,000, and the
empirical standard deviation of r2

t0+1 was calculated for all (N,c,xt0)-constellations. The
value of d was chosen such that the maximal value of Nsample equaled 5 · 106. This led to an
average sample size of 462,800 with a median of 15,000.
All statistical analyses were performed using R software (R Development Core Team,

2012). The R-package “multicore” (Urbanek, 2011) was used to parallelize the simulation.

6.3.3 Results of the simulation study
We found that F̂ was centered around 0 (Supp. Figure S5). When all values of F̂ below the
2.5% and above the 97.5% quantiles were excluded, F̂ ranged between −1 and 1 indicating
that the recursion formula fits the simulated data reasonably well. Values of F̂ below the
2.5% quantiles and above the 97.5% quantiles were found to be generated by parameter
constellations for which

P := xt0,11xt0,12xt0,21xt0,22

was close to zero, i.e. for constellations in which at least one gamete frequency in T = t0 was
close to zero (results not shown).
We used boxplots to display F̂ for different parameter constellations. Boxplots were

created separately for different values of N , c, P and S := xt0,11 + xt0,12. Note that S equals
the allele frequency pA1 at the first locus and for symmetry arguments is representative for
all other allele frequencies. Values of P (and S) were subdivided into 20 (and 15) equidistant
bins, respectively. Outliers (i.e. values which lie beyond the extremes of the whiskers) are
not displayed in any of the plots.
From Figure 6.1 we can see that the proposed recursion formula fits the data reasonably

well, both for varying N and c. The bias as a function of N is almost constant, and it
decays with increasing c. The goodness of fit depends heavily on P and S: F̂ is larger and
more variable for small P and for extreme S, but F̂ still ranges between −1.5 and 1.5 in all
considered boxplots.
Figure 6.2 shows that Sved’s recursion formula does not fit the simulated data as well as

the new formula, especially for c > 0.01 and for N < 30. This insufficient fit for c > 0.01
also pertains to the boxplots for varying P and S (as F̂ is averaged over all constellations
of (N,c,xt0) for a fixed bin of P and S, respectively). For c < 0.01, there are only marginal
differences between F̂ based on Sved’s recursion formula and the new recursion formula.
Contourplots were drawn for the empirical mean of F̂ 2, with the mean calculated using

all values of F̂ obtained for a given combination of values on the vertical and horizontal
axis of the contourplot. For example, in the contourplot with axes (N,c) (cf. Figure 6.3) F̂ 2

values were averaged over all possible combinations of (xt0,11,xt0,12,xt0,21,xt0,22) for a fixed



98 6 The Expected Linkage Disequilibrium in Finite Populations Revisited

4 8 16 64 256 1024 4096 16384

−
1

0
1

2
3

4
5

N

F̂

● ● ● ● ● ● ● ● ● ● ● ● ●

c

F̂

0 0.01 0.1 0.2 0.3 0.4 0.5

−
1

0
1

2
3

4
5

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

P = x11x12x21x22

F̂

0 0.001 0.002 0.003 0.004

−
2

−
1

0
1

2

●

●

● ●
●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

0 0.2 0.4 0.6 0.8

−
2

−
1

0
1

2

S = x11 + x12

F̂

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

Figure 6.1: Boxplots of F̂ , separately for different bins of N, c, P := x11x12x21x22
and S := x11 + x12, based on the new recursion formula. Here, P is the product of
gamete frequencies and S is the allele frequency of the first allele at the first locus. F̂ was
calculated according to the new recursion formula. Outliers (i.e. values which lie beyond the
extremes of the whiskers) are not shown.

combination (N,c). For a clearer representation of the contourplots, we excluded all values
of F̂ below the 2.5% and above the 97.5% quantiles beforehand.

The contourplot of Figure 6.3 shows that F̂ 2 depends only slightly on N and c, emphasizing
the adequate fit of the new recursion formula. Figure 6.4 and Suppl. Figures S6 and S7 approve
the previous results on the dependency of the goodness of fit on gamete and allele frequencies
in T = t0: The quality of the fit is reduced for S < 0.2, S > 0.8, P < 0.0004 as well as for
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Figure 6.2: Boxplots of F̂ , separately for different bins of N, c, P := x11x12x21x22
and S := x11 + x12, based on Sved’s recursion formula. Here, P is the product of gamete
frequencies and S is the allele frequency of the first allele at the first locus. F̂ was calculated
according to Sved’s recursion formula. Outliers (i.e. values which lie beyond the extremes of
the whiskers) are not shown.

∆MAF := |min(pA1 , pA2)−min(pB1 , pB2)| < 0.2. The term ∆MAF describes the absolute
difference in minor allele frequencies (MAFs) of both loci, with pA2 = 1−pA1 = xt0,21 +xt0,22
and pB2 = 1− pB1 = xt0,12 + xt0,22. To obtain the contourplots in this case, the values of
∆MAF were subdivided into 10 equally spaced bins.
Note that similar structures in the contourplots with respect to the dependencies on the

allele frequencies can be observed for the goodness of fit of Sved’s recursion formula (results
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Figure 6.3: Contourplot of the average values of F̂ 2. For a given combination of
(log2(N), c), the values of F̂ 2 were averaged over all possible combinations of xt0 . Contour-
plots were created after excluding the extreme 2.5% quantiles of F̂ .

not shown).
Overall, the results confirm that an exact recursion formula must depend on the gamete

frequencies. However, this would lead to complex formulae, especially for the state of
equilibrium, which we will discuss in section 6.5.

6.3.4 Comparison of slope and intercept of the recursion formulae to empirical values
We compared the new recursion formula (eq. (6.6) in combination with eq. (6.7)) to the
recursion formula of Sved (eq. (6.2)) by plotting the slope a against c for a given N . The
same was done for the intercept b. Given N and c, we also fitted a linear regression model
to the tuples (r2

t0 ,
̂Ext0 (r2

t0+1)) from the simulation study and added the points (c, â) (and
(c, b̂), respectively) to the plots, where â and b̂ were the estimated slope and intercept from
the regression model. The results are shown in Figure 6.5.
The slopes a for the two recursion formulae are identical and coincide well with the

empirical ones, with a better agreement for larger N (Figure 6.5). The intercepts, though,
differ greatly remarkable between the two approaches, especially for c > 0.1 and for small N .
The intercepts according to Sved’s formula are not in agreement with the empirical ones
for small N and c > 0.1. This is also reflected in the large values of F̂ for increasing c (cf.
Figure 6.2). Differences between the intercepts according to Sved’s recursion formula and
the new recursion formula become less pronounced for increasing N and for decreasing c.
We tried to improve the fit of a and b based on Figure 6.5, especially for small N , by
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Figure 6.4: Contourplot of the average values of F̂ 2. Left plots: For a given com-
bination of (S, log2(N)), the values of F̂ 2 were averaged over all possible values of c and
xt0 (upper plot). The lower plot illustrates the average value of F̂ 2 as a function of P for
log2(N) = 8. Right plots: For a given combination of (S, c), the values of F̂ 2 were averaged
over all possible values of log2(N) and xt0 (upper plot). The lower plot illustrates the aver-
age value of F̂ as a function of P for c = 0.2. Contourplots were created after excluding the
extreme 2.5% quantiles of F̂ .

using different formulae for a and b in eq. (6.7), e.g. a =
(
1− 1

3N

) (
1− c

(
1− 1

3N

))2
and

b = 1
2N+1−c . However this did not lead to a significant improvement in terms of F̂ (results

not shown). Since the true relation between E(r2
t0+1) and r2

t0+1 is not linear, optimizing a
(weighted) average of F̂ is relevant. Thus, we would recommend to use Figures 6.1 and 6.2
as a basis for the assessment of adequacy.
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Figure 6.5: Comparison of slope and intercepts of Sved’s and the new recursion
formula to simulated values. Left plots: The slope a (identical for Sved’s and the new
recursion formula) is plotted against c for different values of N . The black dots are the slopes
empirically obtained via linear regression. Hereby, the average LD values obtained in T =
t0 + 1 were regressed against r2

t0
. Right plots: The intercepts b of the recursion formulae are

plotted against c for different values of N . Blue (red) lines indicate Sved’s (the new) recursion
formula. The black dots are the slopes empirically obtained via linear regression.
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6.4 The expected LD at equilibrium based on the theory of discrete-time
Markov chains

6.4.1 Assuming that the recursion formula is exact
In previous studies, “equilibrium” was defined as the point in time at which the expected
LD of the next generation equals the LD of the previous one (see e.g. Sved (1971); Tenesa
et al. (2007)). Using this definition and assuming a linear recursion formula with coefficients
a and b (eq. (6.6)), the expected LD at equilibrium equals b

1−a .
Two major problems arise from this definition: Firstly, it is not clear whether this

equilibrium will ever be achieved. Secondly, one cannot infer from this definition how the
formula for the expected LD at equilibrium is affected if the recursion formula is not exact
but only approximate.
To overcome these problems, a mathematically deeper definition of equilibrium can be

given based on the theory of Markov chains, since the sequence of gamete frequencies
xT , T = t0, t0 + 1, . . . forms a homogeneous Markov chain with transition probabilities
given by the multinomial distribution of the number of gametes of the four types in each
generation. In this framework equilibrium is defined as the steady-state of the considered
Markov chain, and the expected LD at equilibrium can be calculated as expectation of r2

under the steady-state distribution.
Under the assumption that the underlying recursion formula is exact, the expected LD at

equilibrium based on this approach turns out to be

R := E(r2
∞) = b

1− a (6.8)

for |a| < 1, in concordance with the above formula. A detailed derivation based on the
Markov chain theory is given in section 6.5.2. Note that despite the apparent coincidence
with formulae currently used in practice, usually no reference to the Markov chain theory is
made. The same Markov chain model for the evolution of gamete frequencies has been used
by Karlin & McGregor (1968) (in a study on the ascertainment of fixation probabilities) and
by Littler (1973) (in a study on the LD measure D = x11x22 − x12x21).

Furthermore, the Markov chain theory has the advantage that it also allows the calculation
of the expected LD at equilibrium in the case of a non-exact recursion formula. We will
come back to this issue in section 6.4.2, in which we will analyze how this non-exactness
affects the formula for the expected LD at equilibrium.

Using a and b of eq. (6.7) in eq. (6.8) yields the following formula for the expected LD at
equilibrium:

R =
1

2N−1−c
1− (1− c)2(1− 1

2N )
(6.9)

= 1
(2N − 1− c)− (2N − 1− c)(1− c)2(1− 1

2N )
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This formula differs from Sved’s formula (eq. (6.1)). Solving eq. (6.9) for N yields

N = 1
2(8cR− 4c2R)

(
Y +

√
−4(8cR− 4c2R)(−R+ cR+ c2R− c3R) + Y 2

)
, (6.10)

with Y := 2− 2R+ 8cR− 2c3R, taking into account that N cannot be negative.
To compare the formulae for the expected LD at equilibrium according to eqs. (6.1) and

(6.9), we plotted E(r2
∞) based on both recursion formulae against c for N ∈ {4,16,64,256}.

Results are shown in Figure 6.6.
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Figure 6.6: Comparison of Sved’s formula and the new formula for the expected
LD R at equilibrium: R is plotted against c for different values of N . Red (black) lines
show R according to the new (Sved’s) formula. The dots indicate the values of R for c =
0, 0.005, . . . , 0.05.

Only small differences between both recursion formulae are observed for large N in Figure
6.6, whereas the difference gets more pronounced, when N is small (cf. Figure 6.5 where
similar effects can be realized). The new recursion formula predicts higher values for the
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expected LD at equilibrium for small values of N .
Real populations usually do not fulfill the implicit assumptions of ideal populations. It

is therefore of interest to calculate the effective population size Ne based on the average
LD-value observed from the population for a given value of c. By definition, Ne is the size of
an ideal population at equilibrium with the same structure of LD as the population under
consideration. In practice, Ne is obtained from the right-hand side of eq. (6.10), using the
average LD-value observed from the data as value of R.

6.4.2 Non-exactness of the recursion formulae
As indicated above, another problem which has not been discussed in the literature so far
arises from the non-exactness of the recursion formulae. This problem can also be overcome
by the Markov chain theory.

In the case of a non-exact recursion formula, the Markov chain theory allows to transfer an
error term in the recursion formula to the state of equilibrium. In section 6.5.3, we provide
the corresponding calculations and show that in case of a non-exact recursion formula

Rε := Eµ(r2
∞) = b+ π∗ε

1− a

for |a| < 1, where π∗ is the stationary distribution of the considered Markov chain and

ε = (ε(s1), . . . , ε(sz))T

with ε(si) := Esi(r2
t0+1)− ar2(si)− b

is the residual term of the recursion formula depending on the different possible values si of
xt0 . Then, the term Rε

R − 1 = π∗ε
b measures the relative influence of π∗ε on the expected LD.

To analyze the effect of the non-exactness, we calculated π∗ε
b for different (N,c)-combinations.

The results are listed in Table 6.1 for N = 4,8,16 and c = 0.001,0.01,0.05,0.1,0.2,0.3. More
details on this are given in sections 6.5.4, 6.5.5 and 6.5.6.
Table 6.1 illustrates that the error-term can lead to a deviance of expected LD up to

25% suggesting that the effect of non-exactness may be non-negligible. These analyses were
restricted to small values of N , since the calculation times increase rapidly with N .

To get a first impression on the development of π∗ε
b for N > 16, we also plotted the negative

mean and the maximum value of ε divided by b, given by the terms S1 = − 1
z

∑
i
εi

b and
S2 = maxi |εi|

b , for more values of N and c (Figure 6.7). Note that this does not incorporate
the stationary distribution π∗ and that ε-values in these plots were based on the simulation
study using the grid of (x11, x12, x21, x22)-values with fixed grid-distance of 0.05, which is not
as fine as the “true” grid if N > 20 so that results at this point have to be taken with caution.
More detailed analyses and a comprehensive simulation study are needed to underpin the
quantitative results on the influence of ε on the expected LD at equilibrium.
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Table 6.1: Values of π∗ε
b for different (N,c)-combinations. Absorbing states were excluded

beforehand, and π∗ was rescaled so that its entries summed up to 1 afterwards.

c N = 4 N = 8 N = 16
0.001 −0.264 −0.199 −0.067
0.01 −0.255 −0.165 −0.023
0.05 −0.176 −0.088 0.096
0.1 −0.116 −0.018 0.195
0.2 −0.074 0.053 0.297
0.3 −0.025 0.097 0.324
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Figure 6.7: Values of S1 = − 1
z

∑
εi

b (upper left plot) and S2 = maxi |εi|
b (upper

right plot) for different values of N and c, calculated on the basis of the simula-
tion study. Note that the simulation study was based on a grid of (xt0,11,xt0,12, xt0,21,xt0,22)-
values with fixed grid-length 0.05. Absorbing states were excluded beforehand. The left (right)
lower plot illustrates the values of S1 (S2) as a function of log2(N) for c = 0.2.
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6.5 More details on the expected LD at equilibrium based on Markov
chain theory

6.5.1 The expected LD at equilibrium based on a recursion formula
Given a recursion formula like eq. (6.6), we will derive a formula for the expected LD at
equilibrium which is based on the theory of Markov chains (for introductory books on Markov
chains we refer to Grimmett & Stirzaker (2001) or Norris (1997), for instance). Note that the
derivation pertains to all recursion formulae with arbitrary coefficients a and b with |a| < 1
and that we will provide a general mathematical description of the term “equilibrium” which
will be defined as the steady-state or “equilibrium state” of the considered Markov chain.

According to the multinomial model for the development of the population of gametes (see
section 6.2), the sequence of gamete frequencies xT , T = t0, t0 + 1, . . . forms a homogeneous
Markov chain with transition matrix P which is given by the multinomial distribution of the
number of gametes of the four types in each generation. The parameters of the multinomial
distribution are 2N and p = (x′T,11, x

′
T,12, x

′
T,21,x

′
T,22). Since the population size is finite, the

Markov chain has a finite set S of states s1, . . . , sz. Here, the si are quadruples of frequencies
(x11,x12,x21,x22), each of which describes a possible partition of the 2N gametes into the
four types of gametes. In total, there are

(2N+3
2N

)
possible states (Karlin & McGregor, 1968).

Let πT , T ≥ t0, denote the probability vector of xT . Then

πt0+n = πt0Pn

for n = 1, 2, . . .. We write r2
T := r2(xT ), Esj (r2

T ) := E(r2
T |xt0 = sj) for all T ≥ t0, and ej for

the j-th unit vector (ej = (0, . . . ,0,1,0, . . . ,0) where the 1 is at the j-th position).

6.5.2 Step I: Assuming that the recursion formula is exact
Let us first assume that the recursion formula (6.6) with coefficients a and b holds for some
statistic r2 depending on the time T and on the state xt0 in T = t0. Note that the following
derivation is valid for arbitrary values of a and b with |a| < 1. From the recursion formula
we get ∑

j

pjEsj (r2
t0+1) = a

∑
j

pjr
2(sj) + b

for all probability vectors µ = (p1, . . . , pz) with pj ≥ 0 and ∑j pj = 1. With a slight abuse
of notation, we also write Eµ(r2

T ) for the expectation of r2
T , given that the initial probability

vector πt0 equals µ. Then, the last equation is equivalent to

∑
j

pj

(∑
i

(ejP)ir2(si)
)

= aEµ(r2
t0) + b.
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The left-hand side equals∑
i

∑
j

pj(ejP)ir2(si) =
∑
i

(µP)ir2(si) = Eµ(r2
t0+1).

Hence, we have

Eµ(r2
t0+1) = aEµ(r2

t0) + b

for an arbitrary initial probability vector µ, and the weak Markov property yields

Eµ(r2
T+1) = aEµ(r2

T ) + b

for all T ≥ t0. If πt0 = µ, then πT = µPT−t0 , and the last equation is equivalent to∑
j

(πT+1)jr2(sj) = a
∑
j

(πT )jr2(sj) + b.

If the Markov chain is regular, the convergence theorem for regular discrete Markov chains
yields πT → π∗ for T →∞ with π∗ being the unique stationary distribution, i.e. both sides
converge and we get

Eµ(r2
∞) = aEµ(r2

∞) + b ⇔ R := Eµ(r2
∞) = b

1− a (6.11)

for |a| < 1. Note that we need regularity of the Markov chain when applying the convergence
theorem and that a chain is called “regular” if some power of P contains only positive
elements. In our setting with P based on the multinomial distribution, this is a priori not
true since “absorbing states” in the Markov chain exist. These absorbing states reflect
situations in which one or more alleles are fixated. We will deal with this problem in section
6.5.4.

6.5.3 Step II: Dealing with non-exactness of the recursion formula
Since we know that eq. (6.6) with a and b only depending on N and c is not correct, we will
now analyze how the non-exactness of eq. (6.6) affects the formula R = b

1−a (cf. eq. (6.11)).
For each state xt0 , let

ε(xt0) := Ext0 (r2
t0+1)− ar2(xt0)− b (6.12)

be the residual term of the proposed recursion formula, and let further ε = (ε1, . . . , εz)T =
(ε(s1), . . . , ε(sz))T be the vector of residual terms for the different states si of the Markov
chain. As before, we can calculate

∑
j

pj

(∑
i

(ejP)ir2(si)
)

= aEµ(r2
t0) + b+

∑
j

pjε(sj),
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leading to

Eµ(r2
t0+1) = aEµ(r2

t0) + b+ µε

for an arbitrary initial probability vector µ. The weak Markov property yields

Eµ(r2
T+1) = aEµ(r2

T ) + b+ µPT−t0ε

for all T ≥ t0. If πt0 = µ, then πT = µPT−t0 , and the last equation is equivalent to∑
j

(πT+1)jr2(sj) = a
∑
j

(πT )jr2(sj) + b+ πTε.

Using πT → π∗ for T →∞ as before, this finally leads to

Eµ(r2
∞) = aEµ(r2

∞) + b+ π∗ε ⇔ Rε := Eµ(r2
∞) = b+ π∗ε

1− a (6.13)

for |a| < 1. Hence the formula for the expected LD at equilibrium differs from eq. (6.11) by
the summand π∗ε

1−a .

6.5.4 Dealing with absorbing states
In the setting so far, the Markov chain contains several “absorbing” states (states which force
the chain to move in a certain subset of the set of states). These absorbing states correspond
to situations in which one or two alleles at the considered two loci are already fixed. Hence,
the Markov chain is not regular and the convergence theorem for Markov chains cannot be
applied. Furthermore, r2 is not defined in case one or more allele frequencies are equal to
zero. In practice, pairs of SNPs with fixed alleles are not considered when estimating the
expected LD in the population. Therefore, we propose to modify the transition matrix P
of the chain by enforcing at least one immediate mutation of an allele in case this allele
has become fixed. The corresponding rows of P are modified for the absorbing states by
choosing the transition probabilities in these rows as indicated in Table 6.2 mimicking the
enforced mutations to leave the absorbing state.

Note that, since r2
t0 could also not be calculated in the simulation study when one or more

allele frequencies were equal to zero, this modification of the Markov chain does not influence
the recursion formula and the results of the simulation study with respect to the goodness of
fit.

Further note that this modification is biologically inspired by the event of mutations and
that this modification is only one possibility among others to deal with the problem of
absorbing states. One could e.g. also discard columns and rows of absorbing states in the
P-matrix and rescale the rows so that their sums are equal to 1. Yet, it is a priori not clear
which effect different procedures have on the resulting stationary distribution π∗ and what
they mean in terms of a stochastic model underlying the chain. Further research is needed
in this area.
In the following, we will concentrate on the first possibility described above mimicking
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Table 6.2: Absorbing states and their modified transition probabilities.

“Absorbing state” Transition State after enforced mutation

x11 x12 x21 x22 probability x11 x12 x21 x22

1 0 0 0 1 1− 2
2N

1
2N

1
2N 0

e∗ 1− e 0 0 0.5 e− 1
2N 1− e 1

2N 0

0.5 e 1− e− 1
2N 0 1

2N

0 1 0 0 1 1
2N 1− 2

2N 0 1
2N

0 e 0 1− e 0.5 1
2N e− 1

2N 0 1− e

0.5 0 e 1
2N 1− e− 1

2N

0 0 1 0 1 1
2N 0 1− 2

2N
1

2N

e 0 1− e 0 0.5 e− 1
2N

1
2N 1− e 0

0.5 e 0 1− e− 1
2N

1
2N

0 0 0 1 1 0 1
2N

1
2N 1− 2

2N

0 0 1− e e 0.5 1
2N 0 e− 1

2N 1− e

0.5 0 1
2N e 1− e− 1

2N

* with arbitrary constant e ∈ (0, 1)

biological mutations. If c > 0, all transition probabilities are strictly larger than zero for
some power of the modified transition matrix, and the Markov chain is regular allowing for
the calculation of expected LD at equilibrium as described in the previous sections. From
now on, we will restrict to the modified transition matrix.

6.5.5 The term π∗ε
b

as parameter of interest
Let R be as before and let Rε denote the expected LD at equilibrium taking into account
the error term ε. Then, the relative difference between these two values is given by

Rε

R
− 1 =

b+π∗ε
1−a
b

1−a
− 1 = π∗ε

b
.
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Hence,
∣∣∣π∗ε
b

∣∣∣ measures the relative influence of π∗ε on the expected LD. Note that ε
b =

(F (s1), . . . , F (sz)) and that π∗ depends on N and c. If we were able to obtain the stationary
distribution π∗ for a fixed combination of N and c, we could quantify

∣∣∣π∗ε
b

∣∣∣. The identity
ε
b = (F (s1), . . . , F (sz)) motivates the choice of F as a measure of goodness of fit of the
recursion formula since we are especially interested in the expected LD at equilibrium.
The following statistics give a first glance at the behavior of π∗ε

b :

S1 :=
−1
z

∑
i εi

b
and S2 := maxi |εi|

b

S1 is closely related to Figure 6.1 and corresponds to the negative mean of values illustrated
in each boxplot. S2 gives an upper bound for

∣∣∣π∗ε
b

∣∣∣.
6.5.6 Empirical analysis based on the new recursion formula
To analyze the term π∗ε

b for the new recursion formula, we repeated the simulation study
described in section 6.3 for N = 4,8,16 and c = 0.001,0.01,0.05,0.1,0.2,0.3 using the following
(true) grid for xt0 = (xt0,11,xt0,12,xt0,21,xt0,22):

xt0,11 ∈
{

0, 1
2N ,

2
2N , . . . , 1

}
xt0,12 ∈

{
0, 1

2N ,
2

2N , . . . , (1− xt0,11)
}
, for given xt0,11

xt0,21 ∈
{

0, 1
2N ,

2
2N , . . . , (1− xt0,11 − xt0,12)

}
, for given xt0,11, and xt0,12.

As mentioned before, this grid comprises the exact and full set of states of the Markov
chain. We chose Nsample so that it had approximately the same magnitude as in the previous
simulations.

To obtain the stationary distribution π∗, we built the transition matrix P of the Markov
chain according to the multinomial distribution. The absorbing states listed in Table 6.2 were
modified as described above. Then, we calculated Pn for n = 21, . . . , 215. At equilibrium,
each column of Pn is constant. By graphical inspection, it could be observed that this
situation was always reached within n = 215 generations so that all rows of the power Pn

were equal to the stationary distribution π∗. In practice, ̂Ext0 (r2
t0+1) is estimated using SNP

pairs with non-fixed alleles in the population. Hence, we are interested in π∗ε
b where π∗ and

ε only contain non-absorbing states. Therefore, we calculated εi(xt0) for all non-absorbing
states xt0 based on ̂Ext0 (r2

t0+1) obtained from the simulation and rescaled π∗ so that its sum
equaled 1 after excluding all absorbing states. Then, π∗ε

b could be calculated for different
(N,c)-combinations, to analyze the influence of the non-exactness of the recursion formula.
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6.6 Application based on the HapMap data
As an application of the equilibrium-formula based on the proposed recursion formula, we
estimated Ne from LD using human data from the HapMap project (The International
HapMap Consortium, 2003, 2007) and applying eq. (6.10) as described in section 6.4.1. We
also investigated, how the MAF distribution of SNP pairs, used to estimate the expected LD
in the population, influences the average LD values and hence also the estimates of Ne.

6.6.1 The HapMap data set
The HapMap data set comprises 270 samples from four populations. In this study, we
consider two different populations, the Yoruba in Ibadan, Nigeria (YRI) and Utah residents
with Northern and Western European ancestry from the CEPH collection (CEU). For
each population, the data comprises 30 trios of individuals. The data are available from
http://hapmap.ncbi.nlm.nih.gov/downloads/index.html.en. For both populations, we
used allele frequencies from phases II and III (release #27) as well as LD data from phases I, II
and III (release #27) for single nucleotide polymorphisms (SNPs) lying on the 22 autosomes,
and a corresponding genetic map (from phase II, estimated from phased haplotypes in
release #22 (NCBI 36)) (The International HapMap Consortium, 2007). LD values were
available for markers up to 200kb apart. For autosome 22, e.g., there were ≈ 38,000 (34,000)
SNPs occurring in 10,133,060 (8,130,042) LD values for the YRI (CEU) population, for
which the genetic distance between the corresponding SNP pairs was available. Summing
over the 22 autosomes, there were in total ≈ 2,868,000 (2,560,000) SNPs occurring in
701,820,000 (563,239,000) LD values for the YRI (CEU) population.

6.6.2 Estimation of Ne for the YRI and CEU population
We estimated Ne separately for the YRI and the CEU population for each of the 22 autosomes,
using eq. (6.10) for the expected LD at equilibrium, with R = E(r2

∞), estimated as average
LD value obtained from the data for given c, and replacing N with Ne.

Following Weir & Hill (1980) we adjusted for the chromosome sample size n by subtracting
1
n from the sample-based LD values. This is necessary, since even in the case of independent
loci E(r2) = 1

n . It has been shown by Bishop et al. (1975), p. 382, that nr2 has an approximate
χ2

1 distribution for a bivariate Bernoulli distribution with independent components, and
hence E(r2) = 1

n in this case. With this adjustment,

N̂e = 1
2(8cR̃− 4c2R̃)

(
Ỹ +

√
−4(8cR̃− 4c2R̃)(−R̃+ cR̃+ c2R̃− c3R̃) + Ỹ 2

)
, (6.14)

with Ỹ := 2− 2R̃+ 8cR̃− 2c3R̃ and R̃ = Ê(r2)− 1
n .

For the HapMap data of the YRI and CEU population, n = 120, since sequences of 30 trios
for each population were available, comprising 4 independent parental gametes for each trio.
Estimates of Ne and average LD values were obtained for different bins of the recombination
rate c. To classify the pairs of SNPs to the bins, c was approximated by the genetic distance
in Morgan. Note that this approach is admissible for small distances. For each autosome,

http://hapmap.ncbi.nlm.nih.gov/downloads/index.html.en
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100 equidistant bins of c ranging from 0 to the maximal genetic distance occurring in the
data were chosen. For each bin of c, the average r2 value minus 1

120 was calculated and used
in eq. (6.14) to obtain an estimate of Ne. The estimated Ne was plotted against log10( 1

2c)
(Figure 6.8). Additionally, a plot of the adjusted average LD value against c was generated
(Figure 6.8). Results were plotted for all bins of c containing at least 1,000 LD values.

The decay of LD with genetic distance for the YRI and CEU population can be seen in the
upper plots of Figure 6.8, estimates of Ne are displayed in the lower plots. Note that, since
Ne of human populations is large (Ne > 1,000), eqs. (6.9) and (6.1) basically lead to the same
estimates (results not shown). Ne is smaller for the CEU population (lower right plot of
Figure 6.8) and increasing from ≈ 5,000 to ≈ 10,000 for 1

2c ranging from 1,500 to 200, whereas
Ne for the YRI population is decreasing for these values of 1

2c . Hayes et al. (2003) argue that
the Ne estimate for a fixed c corresponds to an estimated Ne approximately 1

2c generations
ago. Applying this concept and assuming a generation interval of 25 years, the above time
frame encompasses 37,500 to 5,000 years ago, and we find N̂e ≈ 15,000 (5,800) for the YRI
(CEU) population ≈ 1,000 generations (= 25,000 years) ago, as well as N̂e ≈ 20,500 (10,000)
for YRI (CEU) ≈ 8,000 generations (= 200,000 years) ago (cf. Figure 6.8).
For values of c with log10( 1

2c) < 1.75, a high variability of N̂e values can be observed
(Figure 6.8). We hypothesize that the corresponding values of LD observed from the data are
in the order of magnitude one would expect if loci were independent, in which case it would
not make sense to estimate Ne. This hypothesis can also be warranted by the approximate
χ2 distribution of nr2 for independent loci.

6.6.3 Influence of MAF distribution on the Ne-estimates
As the detailed analysis of F̂ indicated that the expected LD also depends on the distribution
of allele frequencies, it is important to investigate how the underlying MAF distribution
affects the estimation of Ne.

In commercial SNP array construction for animal breeding purposes, the use of SNPs with
uniform MAF distribution is common practice. A uniform MAF distribution is in general
not pursued in human genetics, but may still occur, e.g. in studies using phase I data of the
HapMap project (The International HapMap Consortium, 2003), where an ascertainment
bias can be observed (Nielsen, 2000; Nielsen et al., 2004; Clark et al., 2005; Pe’er et al.,
2006).
An enforced uniform MAF distribution may introduce a systematic and substantial

downward bias in Ne estimates, especially for historical effective population sizes, which we
demonstrated with the YRI and the CEU population using data of autosome 22:
Histograms for the MAF values for all SNPs occurring in SNP pairs for which LD values

and the genetic distance were available (Figure 6.9) show that in both populations low MAFs
are overrepresented.

For each population we sampled 10,000 SNP positions out of the ≈ 38,000 (36,000) SNPs
available for YRI (CEU) according to two different scenarios:

(1) The 10,000 positions were sampled randomly, i.e. from the true skewed MAF distribu-
tion (cf. Figure 6.9).
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Figure 6.8: LD and estimates of Ne for the YRI and CEU population based on
the new recursion formula displayed for the 22 autosomes. The upper plots show the
decay of LD for varying c, estimated from SNPs on different autosomes. In the lower plots,
the corresponding estimates of Ne are plotted against log10( 1

2c ). The left (right) plots are for
the YRI (CEU) population. Ne estimates based on a given value of c correspond to the point
in time “ 1

2c generations ago” (Hayes et al., 2003).

(2) MAFs were divided into 10 equidistant bins between 0 and 0.5. Then, 1,000 SNPs
from each bin were sampled to mimic a uniform MAF distribution, and all those LD
values of pairs of SNPs were kept for which the positions of both SNPs were among



6.6 Application based on the HapMap data 115

MAF

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5

0
50

0
10

00
20

00

MAF

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5

0
50

0
10

00
20

00
Figure 6.9: Histograms of the MAF distribution for all SNPs occurring in the LD
data of autosome 22. The left (right) plot shows the histogram for the YRI (CEU) popula-
tion.

the 10,000 sampled positions.

For each scenario, Ne was estimated for different bins of c. We chose 24 equidistant bins of c
ranging from 0 to ≈ 0.002 and 25 equidistant bins of c ranging from ≈ 0.002 to ≈ 0.02. The
whole sampling process was repeated 100 times. This resulted in 100 estimated Ne values
per scenario and per bin of c, for which boxplots were created to display the distributions of
Ne for both scenarios. Boxplots were only created for bins in which on average (averaged
with respect to the 100 replicates) at least 1,000 LD-values were available.

Figure 6.10 illustrates the influence of the MAF distribution of SNP pairs used for LD
estimation on the Ne estimates in the two populations, respectively. Ne was estimated for
different time points “ 1

2c generations ago” (Hayes et al., 2003), as described above. The plots
demonstrate that the Ne estimates using a skewed MAF distribution are up to 30% larger
than the ones using a uniform MAF distribution for large values of 1

2c . For example, for
1
2c = 500, the estimated Ne ranges from ≈ 9,000 (5,400) using a skewed MAF distribution to
≈ 12,100 (6,900) using a uniform MAF distribution and the YRI (CEU) population.

6.6.4 Comparison with recent results of other studies
Tenesa et al. (2007) used the phase I HapMap data to estimate Ne in the YRI and CEU
population based on ≈ 1,000,000 SNPs from 23 chromosomes. The intermarker distance
was in the range of 5kb to 100kb for all SNP pairs. Using only SNPs on autosome 22
and estimating recombination rates from a nonlinear model, Tenesa et al. (2007) estimated
N̂e = 3,246 for the YRI and N̂e = 1,459 for the CEU population. Overall, their estimates
appeared to be much lower than the usually quoted value of 10,000 (Takahata, 1993; Harding
et al., 1997). Using a model-free method to estimate recombination rates however changed
the estimate of Ne between +33% and −45%. Results for the YRI population indicated an
ancestral population size of ≈ 7,000 followed by expansion in the last 20,000 years (≈ 1,000
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Figure 6.10: Estimates of Ne for the YRI and CEU population for different dis-
tributions of MAFs. The left (right) plot is for the YRI (CEU) population. Each boxplot
represents the distribution of Ne estimates for a given bin of distance c between SNPs in Mor-
gan. Ne was estimated based on the new recursion formula. Estimates of Ne were obtained
for two different scenarios: (1) SNP positions were randomly sampled, i.e. from a skewed
MAF distribution. (2) SNP positions were randomly sampled, so that the distribution of cor-
responding MAFs was uniform. The sampling process was replicated 100 times and Ne was
estimated for each replicate, resulting in 100 Ne-estimates per scenario and per bin of c. Blue
boxplots represent the distribution of Ne-estimates for scenario (1), black boxplots represent
the distribution of Ne-estimates for scenario (2). Only SNPs on chromosome 22 were consid-
ered. Note that the scale of the x-axis is not linear. Ne estimates based on a given value of c
correspond to the point in time “ 1

2c generations ago” (Hayes et al., 2003).

generations), whereas results for the CEU data supported recent dramatic population growth
from an ancestral population size of ≈ 2,500.
Our study, based on all 22 autosomes, also indicates a population growth for the CEU

population (cf. Figure 6.8), but no growth can be observed for the YRI population over the
period 37,500 to 5,000 years ago. One possible reason for the discrepancy of the results may
be that Tenesa et al. (2007) used a smaller SNP set and different recombination rates, due
to the different methods of obtaining these rates. More importantly, the results were based
on a release of phase I, whereas we used phase II data of the HapMap project. Additionally,
Tenesa et al. (2007) excluded all SNPs with MAF < 0.05 for the LD estimation, whereas no
filtering was performed in the present study.

Tenesa et al. (2007) also analyzed the effect of a possible ascertainment bias in the HapMap
phase I data (Nielsen, 2000; Nielsen et al., 2004; Clark et al., 2005; Pe’er et al., 2006) by
simulating SNPs with complete ascertainment and simulating SNPs according to a uniform
MAF distribution (still excluding SNPs with MAF < 0.05). They found that Ne estimates
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were biased downwards by 18% in the second scenario (which is supposed to mimick the MAF
distribution of the HapMap phase I data) and concluded that this was also true for their
estimated Ne of the HapMap population. As opposed to this, in the present study a skewed
MAF distribution for SNPs occurring in the LD data was observed, as illustrated in Figure
6.9, which is due to the ≈ 2.1 million additional SNPs of phase II data compared to the phase
I data, which comprised only 1.3 million SNPs (The International HapMap Consortium,
2007). However, the simulation results of Tenesa et al. (2007) qualitatively confirm our
results of the previous section with respect to the influence of the MAF distribution on the
Ne-estimates.

Park (2011) used HapMap phase III data to estimate Ne of the current human population
based on two different methods, one using the deviation from linkage equilibrium (LE),
the other based on the deviation from Hardy-Weinberg Equilibrium (HWE). For the YRI
population, estimates fluctuated between 1,275 and 7,729, depending on the method, whereas
estimates for the CEU population ranged between 1,331 and 10,437, illustrating again the
great variability of results. Park (2011) argued that the HWE-based method presented the
Ne of the current generation, whereas the LE-based method reflected values of “current and
recent” generations. By considering the ratio of HWE- and LE-based estimates it was found
that both populations experienced a recent population growth, which was more distinct for
the CEU population.
McEvoy et al. (2011) also estimated Ne based on the HapMap phase III data set. It

was found that the CEU population experienced a population growth from Ne ≈ 5,000 to
Ne ≈ 11,000 between 800 and 240 generations ago, whereas Ne of the YRI population stayed
fairly constant during this time. To decrease a possible ascertainment bias, McEvoy et al.
(2011) only used SNPs that were segregating in all populations.

Our estimates of Ne are highly variable in size for recent points in time (< 50 generations
ago, corresponding to < 1,250 years ago). A similar variability is reported in Tenesa et al.
(2007), whereas no results are presented in McEvoy et al. (2011) for these points in time.

In summary, our results agree reasonably well with previously reported findings. Similar
to the findings of McEvoy et al. (2011), we found the YRI population to be ≈ 2.5 times as
large as the CEU population 1000 generations (25,000 years) ago, while the effective sizes of
the two populations converge when considering more recent points in time. The observed
increase of the European population between 15,000 to 10,000 years before present in the
so-called neolithic expansion is in agreement with archaeological findings and coincides well
with findings from independent sources, such as the estimations of Fu et al. (2012) based on
mitochondrial genomes. However, it has been shown that the margin of fluctuation is large
and that results should always be seen in relation to other existing studies.

6.6.5 Limitations
As indicated in section 6.4.2, results of the HapMap application have to be taken with
caution, since the underlying recursion formula is not exact, contrary to what is assumed in
the derivation of formula (6.8), which underlies formula (6.10). Complications arising from
the non-exactness have neither been considered in previous studies so that our results are
comparable to the results of other studies from this perspective. The non-exactness also
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pertains to the apparent dependency of the development of LD on allele frequencies, for
which current recursion formulae do not account. All findings therefore have to be considered
against the background of the implicit assumptions underlying eq. (6.10).

6.7 Discussion
6.7.1 The influence of SNP array designs on Ne-estimates
We showed in the simulation study as well as in the application to the HapMap data, that
allele frequencies have a strong influence on the performance of the recursion formula and
on the estimation of Ne. While the true MAF distribution in practical applications (e.g.,
in sequencing studies) is usually skewed with a substantial excess of small MAF values,
commercial SNP arrays are often constructed such that the MAF distribution is uniform,
i.e., alleles with extreme MAFs are systematically underrepresented (see e.g. (Matukumalli
et al., 2009) for the construction of a density SNP genotyping array for cattle). Hence, using
LD values based on such a SNP array can have a major impact on estimates of Ne and may
result in biased estimates of Ne compared to a situation in which the MAF distribution is
not uniform. A similar bias may appear if a SNP array is constructed to reflect the allele
frequency spectrum in one population but then is used to estimate Ne in other populations.

6.7.2 Analytic expression vs. approximate recursion formula
The proposed recursion formula for Ext0 (r2

t0+1) is still not completely unbiased, which can be
seen in the boxplots of Figure 6.1. One possibility to reduce the bias is to use b̃ = (1 +m)b
instead of b where m is chosen such that

F −m = 0 ⇔ Ext0 (r2
t0+1) = ar2

t0 + b̃.

The bias is in fact a function of the gamete frequencies, which can be seen when the upper
plots of Figure 6.1 are created separately for different bins of P and S (results not shown).
This leads back to the problem that an exact recursion formula will depend on the frequencies
as well.
Even if it was possible to derive an exact recursion for a specific pair of loci with given

allele frequencies, many pairs of loci are used to estimate the expected LD, and one would
have to account not only for the allele frequencies of a single pair of loci but for the whole
distribution of underlying frequencies, which is simply not feasible.

6.7.3 Obtaining the expected LD at equilibrium directly
One general way of obtaining the expected LD at equilibrium, without using any recursion
formula, is to consider the matrix P of transition probabilities of the Markov chain and
to calculate the limit of Pn for n → ∞ to obtain the stationary distribution of gamete
frequencies. From this, the expected LD at equilibrium can be calculated directly. However, a
problem with this approach is that the size of P is

(2N+3
2N

)
×
(2N+3

2N
)
(there are

(2N+3
2N

)
possible

states of the Markov chain (Karlin & McGregor, 1968)), which makes numerical calculation
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impossible even for moderately high N . We have already encountered this problem when
analyzing the term π∗ε

b relating to the non-exactness of the recursion formula.
As an alternative, one could also simulate the Markov chain of gamete frequencies directly

(instead of calculating Pn for n→∞) and determine the stationary distribution based on the
realization of the Markov chain. This could be done for different values of N and c, and the
expected LD could be calculated based on the empirically obtained stationary distribution.
Afterwards, the expected LD could be expressed as a function of N and c which then could
be used for the estimation of Ne. This approach is left for future work.

6.7.4 Consequences of non-exact recursion formula
Previous studies are based on the implicit assumption that the underlying recursion formula is
exact and the formula for the expected LD at equilibrium does not incorporate an error-term
of the recursion formula. For N < 16, we showed that the error-term in the recursion formula
can lead to a non-negligible deviance of expected LD at equilibrium. These analyses were
restricted to small values of N due to the limited calculating capacity and only illustrate the
effect qualitatively. It might be that the error-term becomes negligible for increasing N (and
small values of c) so that results from previous studies remain reliable. The critical question
remains, how reliable estimates of Ne are if they are based on a non-exact recursion formula,
and further research is needed in this field.

6.7.5 Alternative approaches in the literature
In the literature, there are several other references with alternative approaches to derive
formulae for Ne based on LD. Hayes et al. (2003), e.g., state that Ne can be estimated based
on the chromosome segment homozygosity (CSH) by using the relation CSH = 1

4Nec+1 , which
is the same formula one obtains based on Sved’s recursion from eq. (6.2). However, in the
course of their derivation it is assumed that the two considered loci behave independently,
which is equivalent to Sved’s questionable calculation of homozygosity at the second locus,
given the alleles on the first locus are IBD.

Ohta & Kimura (1971) derived an approximate formula for the expected LD at equilibrium
using the theory of diffusion process approximation. Here, the ratio of expectations instead
of the expectation of the ratio is used to calculate the expected LD, resulting in

E(r2) ≈ 5 + 2Nec

11 + 26Nec+ 8(Nec)2 . (6.15)

McVean (2007) demonstrated that the main difference between Sved’s formula for the
expected LD at equilibrium and eq. (6.15) is for small values of Nec: While the expected
LD based on Sved’s formula approaches 1 for c tending to zero, eq. (6.15) tends to a value
considerably less than 1. Comparing both estimates from Monte Carlo coalescent simulation,
McVean (2007) found that neither of the formulae provides a particularly accurate prediction
for the expected value of LD at equilibrium, unless rare variants (MAF < 0.1) are excluded.
But eq. (6.15) still predicts the general shape of the decrease in LD with increasing Nec, and
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it fits the simulated data better than Sved’s formula when compared to a sliding average of
simulated LD values.
Song & Song (2007) also used diffusion process approximation to derive a formula for

the expected LD at equilibrium for a model with recurrent mutation, genetic drift and
recombination. Note that the considered process in diffusion approximation is continuous
in both time and space. Diffusion processes possess many nice properties which allow the
calculation of certain expectations at stationarity with little effort (Song & Song, 2007).
Song & Song (2007) were able to express the LD at equilibrium as infinite sum over certain
terms, which in turn can be evaluated using the diffusion approximation, finally enabling
a numerical calculation of the expected LD. One drawback of this approach is that the
diffusion approximation is only valid for sufficiently large populations. For Nc→∞ Song &
Song (2007) derived a closed-form expression for the expected LD at equilibrium which is
the same as obtained by Ohta & Kimura (1971) for the expectation of the ratio.
Song & Song (2007) provide an approximate formula for the expected LD at equilibrium

directly, without making a detour via a recursion formula, and despite the fact that derivations
based on diffusion approximations are a priori valid for sufficiently large populations only, it
might be that their approach constitutes a reasonable approximation even for small values
of N . So far, we have not compared the validity of the proposed formula for the expected
LD at equilibrium in this study with the results obtained by Song & Song (2007), nor
have we compared our Ne-estimates with estimates based on coalescent approaches, as e.g.
proposed by Li & Durbin (2011), who use both local homozygosity and LD information
to estimate Ne for all past times via a “pairwise sequentially Markovian coalescent model”.
These comparisons are left for future research. “Direct” approaches as applied by Song
& Song (2007) or Li & Durbin (2011) can easily incorporate mutation and recombination
rates and do not rely on the formula of Hayes et al. (2003) for the determination of the
corresponding time in point an Ne-estimates refers to, whose derivation was in fact based on
the concept of “chromosome segment homozygosity” instead of LD.

6.7.6 Conclusions
In this study, we provide a theoretical basis for modeling the evolution of LD in a finite
population using the framework of Markov chain theory with underlying multinomial distri-
bution. On the basis of simulation studies, the HapMap application and the analyses of the
state of equilibrium, we can summarize the following points:

The proposed recursion formula seems to provide a better overall fit than Sved’s recursion
formula. If N is large or if c is small, differences become marginal.

The performance of such recursion formulae heavily depends on allele frequencies, and LD
is in general a function of the allele frequencies and the gamete frequencies. Hence, estimates
of average LD in the population considerably depend on the MAF distribution of the SNP
pairs used for estimation. Therefore, if the formula for the expected LD at equilibrium is
used to estimate Ne, this estimate will also depend on the MAF distribution of the SNPs
used to calculate the average value of LD for a given genetic distance c. This effect was
illustrated in the HapMap application. It is important to keep in mind that SNP arrays
used in certain populations not necessarily will reflect the allele frequency spectrum of this
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population, which can bias resulting estimates of Ne.
The currently used formulae for the expected LD at equilibrium are based on the assumption

that the recursion formulae are correct. As shown in this study, one can theoretically account
for the non-exactness of the recursion formula when deriving a formula for the expected
LD at equilibrium, but exact solutions can only be obtained for small values of N due
to computational limitations. For small values of N , the expected bias at equilibrium is
non-negligible, and we have indicated how the effect can be approximated for larger values of
N . Since the effect of the non-exactness might have a substantial influence on the resulting
formula, as we have demonstrated in our empirical analyses, this might also be relevant for
practical applications. In any case, the mathematical complexity of the problem studied
warrants some caution when using the results. Estimates of Ne based on this method should
always be confirmed by some other, independent method (cf. section 6.7.5) and possible
sources of bias should critically be monitored.
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Table S4: Clustering based on the variogram analyses using the chill coma recovery data.
Listed are the IDs of the 25 lines belonging to C2.

Line ID

26 28 93 105 138

161 233 313 350 358

359 377 383 386 426

492 595 642 646 721

776 786 837 852 894
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Table S5: Clustering based on the bimodality of the phenotypic distribution of chill coma
recovery. The table contains the line IDs and the corresponding posterior probabilities to
belong to the two distributions of Pop1 and Pop2.

line ID prob1∗ prob2∗∗ line ID prob1 prob2

101 0.01 0.99 502 0.92 0.08
105 0.84 0.16 508 0 1
109 0.79 0.21 517 0.79 0.21
129 0.05 0.95 531 0.6 0.4
153 0.79 0.21 535 0.92 0.08
136 0.47 0.53 555 0.84 0.16
138 0.2 0.8 563 0.92 0.08
142 0.93 0.07 57 0 1
149 0.79 0.21 589 0 1
158 0.92 0.08 59 0.88 0.12
161 0 1 591 0.88 0.12
176 0 1 595 0.93 0.07
177 0.66 0.34 639 0 1
181 0 1 642 0.84 0.16
195 0.92 0.08 646 0 1
208 0.88 0.12 69 0.91 0.09
21 0.05 0.95 703 0 1
217 0.93 0.07 705 0 1
227 0.71 0.29 707 0.02 0.98
228 0.93 0.07 712 0.91 0.09
229 0.9 0.1 714 0.93 0.07
233 0.92 0.08 716 0.84 0.16
235 0.47 0.53 721 0.71 0.29
237 0.66 0.34 727 0 1
239 0 1 73 0 1
26 0.79 0.21 730 0.82 0.18
28 0.79 0.21 732 0.88 0.12
280 0.9 0.1 737 0.93 0.07
287 0.9 0.1 738 0.71 0.29
309 0.9 0.1 75 0 1
313 0 1 757 0.75 0.25
310 0.88 0.12 761 0.71 0.29
318 0.79 0.21 765 0.71 0.29
325 0.9 0.1 774 0.92 0.08
332 0.92 0.08 776 0.05 0.95
338 0.93 0.07 783 0.82 0.18
350 0.93 0.07 786 0.6 0.4
352 0.92 0.08 787 0.15 0.85
356 0.7 0.3 790 0 1
357 0.91 0.09 796 0.01 0.99
358 0.93 0.07 799 0.32 0.68
359 0.92 0.08 801 0.9 0.1
362 0.79 0.21 802 0.93 0.07
365 0.91 0.09 804 0 1
367 0.92 0.08 805 0.9 0.1
370 0.71 0.29 808 0.71 0.29
371 0.88 0.12 810 0.9 0.1
373 0.93 0.07 812 0 1
374 0.84 0.16 818 0.05 0.95
375 0.93 0.07 820 0.92 0.08
377 0 1 822 0.02 0.98
379 0.9 0.1 83 0.08 0.92
38 0.6 0.4 832 0.6 0.4
380 0.93 0.07 837 0.02 0.98
381 0.93 0.07 85 0.92 0.08
383 0.92 0.08 852 0.93 0.07
386 0.91 0.09 855 0 1
391 0.92 0.08 857 0.93 0.07
392 0.39 0.61 859 0.9 0.1
399 0.88 0.12 861 0 1
409 0.93 0.07 88 0 1
41 0 1 882 0 1
42 0 1 884 0 1
426 0.92 0.08 887 0.9 0.1
427 0.9 0.1 890 0.32 0.68
437 0 1 892 0 1
440 0.91 0.09 94 0.88 0.12
441 0.9 0.1 897 0 1
443 0.93 0.07 907 0 1
45 0.9 0.1 908 0 1
461 0.9 0.1 91 0.92 0.08
49 0.92 0.08 911 0.92 0.08
491 0.92 0.08 93 0.91 0.09
492 0.84 0.16

* Posterior probability to belong to Pop1 based on the EM-
algorithm of the R-package “mixtools”.

** Posterior probability to belong to Pop2.
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Figure S1: Manhattan plot of the estimated SNP effects for starvation resistance
for different chromosomes. The SNP effects were estimated using the GBLUP approach
and sex-averaged phenotypic values of 157 lines. Vertical lines indicate the 115 significant
SNP positions according to the GWAS of Mackay et al. (2012) using sex-pooled records.
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Figure S2: Manhattan plot of the estimated SNP effects for startle response for
different chromosomes. The SNP effects were estimated using the GBLUP approach and
sex-averaged phenotypic values of 155 lines. Vertical lines indicate the 75 significant SNP
positions according to the GWAS of Mackay et al. (2012) using sex-pooled records.
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Figure S3: Heatmap of the genomic relationship matrix G. The genomic relationship
matrix G was calculated according to VanRaden (2008) using 157 lines and 2.5 million SNPs.
The “S” (“C”) after the line-ID indicates that the line belongs to the set of lines for which
phenotypic records for startle response (chill coma recovery) were also available.
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Figure S4: Manhattan plot of the estimated SNP effects for chill coma recovery
for different chromosomes. The SNP effects were estimated with the GBLUP approach.
As phenotypic values of the 147 lines, only female records were used. Vertical lines indicate
the 145 most significant SNP positions according to the GWAS of Mackay et al. (2012) using
female records only.
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Figure S5: Density function of F̂ . The left plot shows the density for all obtained values
of F̂ . To obtain the right density plot, values of F̂ below the 2.5% quantile and above the
97.5% quantile of the distribution of F̂ were excluded.
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Figure S6: Contourplot of the average values of F̂ 2. Left plots: For a given combina-
tion of (P, log2(N)) the values of F̂ 2 were averaged over all possible values of c and xt0 (upper
plot). The lower plot illustrates the average value of F̂ 2 as a function of P for log2(N) = 8.
Right plots: For a given combination of (P,c) the values of F̂ 2 were averaged over all possi-
ble values of log2(N) and xt0 (upper plot). The lower plot illustrates the average value of F̂ 2

as a function of P for c = 0.2. Contourplots were created after excluding the extreme 2.5%
quantiles of F̂ .
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Figure S7: Contourplot of the average values of F̂ 2. Left plots: For a given combi-
nation of (∆MAF, log2(N)) the values of F̂ 2 were averaged over all possible values of c and
xt0 (upper plot). The lower plot illustrates the average value of F̂ 2 as a function of P for
log2(N) = 8. Right plots: For a given combination of (∆MAF,c) the values of F̂ 2 were aver-
aged over all possible values of log2(N) and xt0 (upper plot). The lower plot illustrates the
average value of F̂ 2 as a function of ∆MAF for c = 0.2. Contourplots were created after
excluding the extreme 2.5% quantiles of F̂ .
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