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1 Introduction

Classical low-frequency financial data such as daily asset returns, have commonly been
analyzed via ARCH and GARCH time-series models during the last decades. These au-
toregressive conditional heteroscedastic processes were introduced in the seminal paper of
Engle (1982) and extended into various directions, see Pacurar (2008) for a recent survey. An
alternative to the ARCH-based framework is the class of (discrete-time) stochastic volatility
(SV) models, in which the variance is assumed to be driven by some latent stochastic process
(e.g., Taylor, 1986; Ghysels et al., 1995; Shephard, 1996; Barndorff-Nielsen & Shephard, 2001).
The common implicit assumption of most of these time-series models is that measurements
are evenly spaced in time.
Besides the large variety in discrete-time models, also continuous-time models have been
attracting much attention, most of them being based on stochastic differential equations.
The Black-Scholes option pricing model (Black & Scholes, 1973), which describes asset prices
by a geometric Brownian motion, is a famous representative of this class of models. In
the continuous-time framework, financial data are naturally seen as measurements of the
latent process. While for low-frequency data, these measurement locations usually form a
regular grid and only the observable or latent values and prices are subject to stochastic
behavior, an additional stochastic component arises when financial data at the transaction
level are considered. These are often called (ultra-)high-frequency data (e.g., Goodhart &
O’Hara, 1997; Ghysels & Jasiak, 1998; Engle, 2000). One of the essential characteristics
of this type of data is that the observations are irregularly spaced in time, and it proved
indispensable to include the process of transaction times into stochastic models in this
context. For this purpose, the concept of marked point processes (MPP) is suitable, as it
allows for arbitrary forms of dependence between the point locations and the so-called marks
(e.g., Karr, 1991; Møller & Waagepetersen, 2003; Schlather et al., 2004; Daley & Vere-Jones,
2008; Myllymäki & Penttinen, 2009; Ho & Stoyan, 2008; Diggle et al., 2010). In the financial
context, the point locations are given by the transaction time stamps, and the marks can
be any quantity associated with the transactions; in most cases, price and volume are of
practical relevance. The pioneering work of Engle (2000) triggered a considerable amount of
research and publications on MPP-based models for high-frequency financial data; a broad
survey can be found in Bauwens & Hautsch (2009).

While it is well-known that price volatility of exchange-traded assets increases in times of
high trading intensity (e.g., Easley & O’Hara, 1992), which is often modeled by allowing
the volatility process to depend on inter-trade durations, not much is known about general
influences of the pattern of transaction times on the volatility process at the microscopic
scale of minutes and seconds. However, the knowledge of these effects might help to improve
prediction of instantaneous volatility compared to prediction solely based on the history of
the price process. Important questions arising in this respect are:
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2 1 Introduction

• Does the knowledge of past transaction times have an influence on instantaneous
characteristics of the price process?

• If so, do the prevalent financial and econometric models account for these effects and,
if they do not, can we make them account for these time-stamp-price interactions by
suitable modifications?

These questions are considered in Chapter 3 of this thesis. Modeling transaction data as a
marked point process and using existing MPP theory and the E- and V-function introduced
by Schlather (2001), novel statistics are derived which enable to detect interaction effects
between past transaction dates and instantaneous asset price characteristics. In particular,
conditional expectations and variances are considered, where “conditional” refers to the
existence of other transactions at a fixed temporal distance and thus leads to functions whose
natural domain is (temporal) distance. After an application of these statistics to real data, an
empirical way of assessing the capability of statistical models to capture possible interactions
effects is followed: The model is estimated based on given data, new realizations of that model
are simulated, and the statistics are then re-applied to the simulated data. Exemplarily,
the famous UHF-GARCH model (Engle, 2000) is examined in Chapter 3. Additionally, an
extension of this model is proposed, which is of scientific interest on its own, in order to
make the model better account for the above effects of interaction. Statistical inference is
based on 7-year transaction data from German stock exchanges.

Besides the simulation-based approach of validating financial models with regard to their
capability of representing dependence between marks and point locations, an analytical
treatment of the proposed MPP characteristics is certainly preferable, but in many cases
unfeasible, e.g., in models that are given by a certain autoregressive specification. Models
for which an analytical treatment is at least partially feasible can be found by focusing on
a class that is based on Poisson point processes or, as a generalization thereof, on doubly
stochastic Poisson processes (DSPP). Then, due to the independence property of a Poisson
process, the randomness of the point locations can be integrated out in some sense if the
specification of marks depends on the point locations in a sufficiently simple manner. Some
examples thereof are presented in Chapter 4. A question that is of rather theoretical interest
in this connection is concerned with the range of valid functions for a particular statistic,
e.g., for the bi-directional V-function defined in Chapter 3. A contribution to that problem
is provided in the second part of Chapter 4.

The stochastic development of asset prices is commonly modeled through continuous-time
processes, which is a motivation for considering transaction data as measurements of a
latent continuous-time stochastic process, with unevenly spaced measurement locations (e.g.,
Aït-Sahalia et al. 2005; Hansen & Lunde 2006). This perception directly leads to a fruitful
combination of two fields of spatial statistics:
On the one hand, the principle goal of geostatistical methods is estimation and prediction of
a continuous-space process, based on discrete measurements with locations that might be
influenced by, but that do in turn not impact the underlying continuous-space process. While
geostatistical methods (e.g., Goovaerts 1997; Chiles & Delfiner 1999; Wackernagel 2003) were
originally developed in the context of environmental applications and thus space referred
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to (subsets of) R2 or R3 only, the concepts can also be applied to temporal processes (R1),
covering financial processes, or to processes on high-dimensional index spaces (Rd, d ∈ N).
On the other hand, MPP approaches put the focus on data, which, in general, cannot be
considered as measurements of a continuous-space process. Then, the properties of a typical
point or a typical pattern of points are of primary interest. Examples of genuine MPPs can
easily be found when interacting objects are observed in space or time. Trees in a forest, for
instance, compete with each other for resources—a fact that makes trees in a cluster of other
trees tend to be smaller. In particular, the variable “height of a tree” is unobservable at
locations where there is no tree and if there was a tree, this would possibly have influenced
the height of the surrounding trees. Similarly, financial transactions usually have an impact
on the future as well as on the instantaneous price process; hence this type of data exemplifies
how the distinction between the two perspectives can become blurred. However, this problem
has not been addressed in the literature up to now and will be dealt with in Chapter 5.

For a marked point process Φ = {(ti, yi) : i ∈ Z}, where ti and yi denote the point locations
and marks, respectively, the definition of (higher-order) mean marks is based on measures of
the form α(B) = E

∑
(t,y)∈Φ f(y)1B(t) or α(B) = E

∑
(t1,y1),(t2,y2)∈Φ f(y1,y2)1B((t1,t2)), for a

Borel set B in a suitable space. However, when the process is non-stationary or non-ergodic,
the definition of averages becomes ambiguous as the process might have a different stochastic
behavior in different realizations (non-ergodicity) or in different areas of the observation
window (non-stationarity). Then, also depending on which of the above perspectives one
takes and depending on the statistical questions at hand, it might be sensible to replace the
ordinary expectation functional in the above moment measures α by weighted means. In
Chapter 5, different definitions for the moments are investigated, including a new hierarchical
definition for non-ergodic MPPs, and embedded into a family of weighted mean marks.
Examples of applications are presented, in which different weighted mean marks all have a
sensible meaning at the same time, but for different statistical questions. Besides the relation
to methods from continuous-time and continuous-space process analysis, also asymptotic
properties of the corresponding estimators as well as optimal weighting procedures will be
illuminated.

The analysis of the tail behavior of financial returns is of great importance for the
assessment of financial risk (e.g., Embrechts et al., 1997; Embrechts, 2000; Bouchaud &
Potters, 2003; Gilli & Këllezi, 2006). Thickness of tails and tail dependence in multivariate
distributions, measured, for example, in terms of the extreme value index and in terms
of extremal coefficients (Smith, 1990), respectively, crucially determine the probability of
large portfolio losses, e.g., in times of financial crises. It is therefore of scientific interest
to define and analyze analogue quantities for high-frequency financial data by combining
extreme value theory (EVT) with MPP methods. In extreme value analysis, mostly only
those observations that are extreme in some sense are used for estimation, which can reduce
the amount of effectively used data dramatically. This might amplify the impact of structural
breaks or, more generally, of non-stationarity and non-ergodicity of financial processes. Based
on the MPP theory developed in Chapter 5, Chapter 6 provides new summary statistics for
the (multivariate) tail behavior of irregularly spaced data. By applying MPP versions of
the classical tail index to transaction data from German stock exchanges in a non-ergodic
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framework, new insights into the basic structure of this type of data are obtained, which are
of interest for risk management and algorithmic trading purposes, for instance. A simulation
study underpins the observed effects and enables assessing the finite sample properties of
the respective estimators.

The above conditional tail index is a univariate statistic, adapted to the MPP framework
as a function of the underlying point pattern. The next natural step from an EVT point
of view is the analysis of second- and higher-order characteristics that describe extremal
dependence between the marks of an MPP, similarly to the mark correlation function for
the central part of the distribution (in case second moments exist). As an example for
a second-order characteristic, the extremal correlation for a bivariate vector (Z0, Z1) in
the MDA of some extreme-value distribution and with identically distributed margins is
defined as limu→x0 P(Z1 > u |Z0 > u), where x0 is the upper endpoint of the distribution
of Z0 and Z1. These characteristics can in principle be carried over to the MPP setup
(cf. Section 6.5 for extremal coefficients of MPPs). The ultimate goal in the sense of full
information about the tail behavior and its interdependence with the irregular pattern of
points would be (conditional) MPP versions of the so-called exponent measure, which, for a
multivariate extreme-value distribution, describes the full dependence structure.
However, even in classical extreme value statistics, i.e. without the additional challenges
of MPPs, estimation procedures for max-stable processes and multivariate max-stable
distributions are still in development. Due to the lack of analytical tractability of many
max-stable distributions, maximum likelihood methods based on blockmaxima are often
unfeasible. Peaks-over-threshold (POT) methods form the second big class of estimation
approaches and make use of the fact that suitably defined exceedances over an increasing
critical value converge to a Poisson process (Leadbetter, 1991; Embrechts et al., 1997), from
which the max-stable process can be recovered. This is true for a large class of processes.
POT methods are particularly attractive from an MPP point of view as they consider all
“large” events and can thus be easily applied to the MPP framework, in contrast to the idea
of building blockwise maxima. POT methods can also be expected to yield stable results
when only small datasets are available.
Chapter 7 provides the basis for new POT approaches of inference for max-stable processes
on general spaces that admit a certain incremental representation. In important cases, this
representation has a much simpler structure than the max-stable process itself. The resulting
POT methods will incorporate all single events, for which a fixed component is extreme, i.e.
conditional distributions of the form [(Z0, . . . , Zk) |Z0 > u] will be considered. The results
of Chapter 7 are a contribution to the foundations of inference for max-stable processes;
further development of these concepts, in particular towards the MPP framework, are left
for future research work.

Except for the introductory part in Chapter 2 and the entire Chapter 4, all chapters are
based on manuscripts that are either submitted to or in revision for peer-reviewed journals.
In fact, Chapter 2 starts with some definitions and basic results from (marked) point process
theory. The second part of Chapter 2 is based on Appendix A in Malinowski & Schlather
(2011b) and introduces the conditioning on the existence of other points of the MPP, which is
the basis for the measures of interaction considered in this thesis. The manuscript Malinowski
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& Schlather (2011b), which is currently in revision for the Journal of Financial Econometrics,
provides the basis for Chapter 3. The manuscript is in turn a condensed, enriched, and
completely rewritten version of Chapter 4 of the diploma thesis Malinowski (2009). Chapter 4
contains a collection of models, for which the afore introduced measures of interaction can
be treated analytically. Parts of this chapter (the additive marking case in Section 4.2.2 and
Section 4.2.3) are already contained in the diploma thesis Malinowski (2009) in a slightly
different form. Chapter 5 studies more general summary statistics for possibly non-ergodic
MPPs on Rd. This chapter is based on the manuscript Malinowski et al. (2012a), which is
currently under review in Advances in Applied Probability. Chapter 6 combines MPP theory
with aspects from extreme value analysis and is based on the manuscript Malinowski et al.
(2012b), which has been submitted to Journal of Business & Economic Statistics. Chapter 7
is based on the manuscript Engelke et al. (2012b), which has been submitted to Advances in
Applied Probability. The results in this chapter apply to a family of max-stable processes that
admit a certain incremental representation. The manuscript additionally contains similar
results for the class of mixed moving maxima processes, which are not part of this thesis as
they were contributed by the co-authors.
In order to allow for a selective reading of the single chapters, they are coherent but not

constitutive, except for Chapter 2, which is required for Chapters 3 and 4. Chapter 6 is an
application of Chapter 5.

Within the framework of this PhD project, two further sub-projects have been carried
out, one of which can be seen as the statistical counterpart of Chapter 7 for the class of
Brown-Resnick processes (Brown & Resnick, 1977; Kabluchko et al., 2009). This was joint
work with Sebastian Engelke, a fellow PhD student, and resulted in the manuscript Engelke
et al. (2012a), which has been submitted to the Journal of the Royal Statistical Society,
Series B and in which the first author had the major contribution.
The other sub-project was deeply situated in the area of genetics and dealt with the temporal
development of stochastic dependence between different SNP-positions on the DNA, modeled
via Markov chains. This was joint work with Ulrike Ober, also a fellow PhD student, and
resulted in the manuscript Ober et al. (2012), which is at the moment being prepared for
submission.
A further publication is Malinowski & Schlather (2011a), which reviews the book Gentleman
(2008).





2 Marked point processes: Preliminaries and
measures of interaction

In the following, some of the basic definitions and results from marked point process (MPP)
theory needed for the subsequent chapters are briefly reviewed. A survey of the theory of
(marked) point processes can be found in Daley & Vere-Jones (2003, 2008) or Stoyan et al.
(1995).

2.1 Definition and properties of marked point processes
Definition 2.1.1 (Point processes on general spaces). A point process Φ on a complete
separable metric space (c.s.m.s.) X with Borel-σ-algebra B(X ) is a measurable mapping
from a probability space (Ω,A,P) into (M0(X ),M0(X )), where M0(X ) is the space of all
locally finite counting measures on X andM0(X ) is the smallest σ-algebra with respect to
which all mappings ϕ 7→ ϕ(A), A ∈ B(X ), are measurable. The induced probability measure
is given by PΦ(Y ) = P(Φ ∈ Y ), Y ∈ M0(X ). The process Φ is called simple, if almost all
realizations ϕ of Φ satisfy ϕ({x}) ∈ {0, 1} ∀x ∈ X .

Definition 2.1.2 (Moment measure). For a point process Φ on X , we define a measure
Λ by Λ(A) = EΦ(A), A ∈ B(X ). If Λ is locally finite, we call it intensity measure or first
moment measure of Φ.

If the intensity measure of Φ exists, by the usual argument of algebraic induction, we get
the most basic version of the class of Campbell theorems: E

∑
x∈Φ f(x) =

∫
X f(x)Λ(dx) for

f : X → R being measurable and non-negative or Λ-integrable. Summation over “x ∈ Φ”
actually means integration w.r.t. the random measure Φ.
A useful generalization of the first moment measure is the Campbell measure, which we
introduce in the following. With a slight abuse of notation we will also write P for the
induced probability measure PΦ. We define set functions CP and C !

P through

CP(A× Y ) =
∫
M0(X )

∫
X

1A(x)1Y (ϕ)ϕ(dx)P(dϕ) = E(Φ(A)1Y (Φ)),

C !
P(A× Y ) =

∫
M0(X )

∫
X

1A(x)1Y (ϕ− δx)ϕ(dx)P(dϕ),

A ∈ B(X ), Y ∈ M0(X ), and where δx denotes the Dirac measure at point x. It can be
shown that both set functions extend uniquely to σ-finite measures on the product-σ-algebra
B(X )⊗M0(X ).

7



8 2 Marked point processes: Preliminaries and measures of interaction

Definition 2.1.3 (Campbell measures). The unique extensions of CP and C !
P to σ-finite

measures on B(X )⊗M0(X ) are called Campbell measure and reduced Campbell measure,
respectively.

Since for each fixed Y ∈ M0(X ), the measures defined by A 7→ CP(A × Y ) and A 7→
C !
P(A× Y ), A ∈ B(X ), are absolutely continuous w.r.t. the intensity measure Λ of Φ, there

exist kernels P = {Px(Y ) : x ∈ X , Y ∈ M0(X )} and P ! = {P !
x(Y ) : x ∈ X , Y ∈ M0(X )},

respectively, such that

CP(A× Y ) =
∫
A
Px(Y )Λ(dx), (2.1)

C !
P(A× Y ) =

∫
A
P !
x(Y )Λ(dx) (2.2)

for all A ∈ B(X ), Y ∈M0(X ). The measures Px and P !
x are often referred to as (reduced)

Palm distribution at the point x.

Definition 2.1.4 (Poisson point process). A point process Φ on (X ,B(X )) is called Poisson
process if there exists a locally finite measure Λ : B(X )→ [0,∞] such that for every finite
family of disjoint bounded sets Ai ∈ B(X ), i = 1 . . . , k,

P(Φ(Ai) = ni, i = 1, . . . , k) =
k∏
i=1

Λ(Ai)ni
ni!

exp(−Λ(Ai)).

The measure Λ is called the parameter measure of Φ.

It is easily seen that the parameter measure of a Poisson process coincides with the intensity
measure.

Lemma 2.1.5. Let Φ be a Poisson point process on X with intensity measure Λ and
reduced Campbell measure C !

P : B(X )⊗M0(X )→ [0,∞]. Then C !
P can be decomposed into

C !
P = Λ× PΦ.

Proof. By definition of the reduced Palm distribution P !
x(·), it is C !

P(A×Y ) =
∫
A P

!
x(Y )Λ(dx)

for all A ∈ B(X ), Y ∈ M0(X ). Then the assertion is a direct consequence of Slivnyak’s
theorem (e.g., Daley & Vere-Jones, 2008, Prop. 13.1.VII) stating that Px is the convolution
of PΦ and δx, which is equivalent to P !

x = PΦ.

Definition 2.1.6 (Doubly Stochastic Poisson Process (DSPP)). Let Ξ be a random measure
on (X ,B(X )) whose realizations are a.s. locally finite and countably additive. Then a point
process Φ is a Doubly Stochastic Poisson Process, also called Cox process, directed by Ξ,
when, conditional on Ξ, realizations of Φ are those of a Poisson process with intensity
measure Ξ. We write Φ = ΦΞ .
If Ξ is induced by a Gaussian random field (Z(x), x ∈ X ) via Ξ(A) =

∫
A exp(Z(x)) dx,

A ∈ B(X ), we call ΦΞ a log Gaussian Cox process (LGCP) and also write ΦΞ = Φexp(Z).
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Definition 2.1.7 (Marked point process). A marked point process (MPP) Φ with locations
on Rd and marks in a c.s.m.s. M∗ is a point process on Rd×M∗ with the additional property
that the ground process Φg, defined by Φg(B) = Φ(B ×M∗), B ∈ Bd, itself is a simple point
process on Rd. LetM∗ be the Borel-σ-algebra of M∗. The MPP Φ is called stationary and
isotropic if the probability law PΦ is invariant under translations of the location component
and under rotations of the location component about the origin of Rd, respectively.

Let Φ be an MPP on Rd in the following and let Bd be the Borel-σ-algebra of Rd, d ∈ N.
The mark of a point t of an MPP is denoted by y(t). Besides the measure-theoretic notation
Φ =

∑
i∈Z δ(ti, y(ti)), we also use the notation Φ = {(ti, y(ti)) : i ∈ Z}, which rather reflects a

set-theoretic perspective. The intensity measure Λ is now a function on Bd ⊗M∗.
Similarly to the definition of the Palm distribution in (2.1) and (2.2), the measures on Bd,

defined by A 7→ Λ(A× L), L ∈M∗, are absolutely continuous w.r.t. the intensity measure
Λg of the ground process. Hence, there exists a kernel {Mt :M∗ → [0,∞], t ∈ Rd}, such
that

Λ(A× L) =
∫
A
Mt(L)Λg(dt), A ∈ Bd, L ∈M∗. (2.3)

The measure Mt is called (Palm) mark distribution at location t.
If Φ is stationary, we have that Λ( · × L) = λLν(·) for some λL ≥ 0, L ∈ M∗, and
that M(L) = Mt(L) = λL/λM∗ is independent of t. Then Λ can be decomposed into
Λ = Λg ×M = λgν ×M , where λg = λM∗ . We call M(·) the mark distribution. For the
stationary case, Campbell’s theorem then reads as

λg

∫
Rd

∫
M∗
f(t,y)M(dy)ν(dt) = E

∑
(t, y(t))∈Φ

f(t, y(t)) (2.4)

for every measurable function f : Rd ×M∗ → R that is either non-negative or Λ-integrable.

2.2 Measures of mark-location interaction
In the following, only MPPs on Rd are considered.

Definition 2.2.1 (Factorial moment measures, cf. Stoyan & Stoyan (1994); Schlather
(2001)). Let Φ be an MPP with locations on Rd and let f be a measurable, non-negative
function on (M∗)2. Then the measure α(2)

f on Rd × Rd, defined by

α
(2)
f (C) = E

6=∑
(t1, y1), (t2, y2)∈Φ

f(y1, y2)1C((t1, t2)), C ∈ B2d, (2.5)

is called generalized second-order factorial moment measure of Φ. Here, the “6=” over the
summation sign means that the sum runs over all pairs (t1, y1), (t2, y2) with t1 6= t2.

We assume Φ to be stationary from now on. In the following, we generalize the above
definition w.r.t. the non-negativity assumption on f . Let W ∈ Bd be a bounded window and
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f a real-valued function on (M∗)2 such that at least one of the two functions f+ = max{0, f}
and f− = max{0,− f} satisfies the condition

E
6=∑

(t1, y1), (t2, y2)∈Φ
f±(y1, y2)1[0,1](t1)1W (t2 − t1) <∞. (2.6)

Then, using the notation

C(I) =
{
(t1, t2) : t1 ∈ [0,1], t2 ∈ t1 + I

}
,

CW (I) = C(I ∩W ),

for I,W ∈ Bd,

α
(2)
f (CW ( · ))

is a signed measure on Rd. Note that the intersection with W is introduced for technical
reasons: We can easily construct examples of stationary MPPs for which both −∞ and +∞
occur as values of α(2)

f (C( · )), while, if f is suitably behaved, α(2)
f (CW ( · )) has values in

either (−∞,∞] or [−∞,∞).
Obviously, α(2)

f (CW ( · )) is absolutely continuous w.r.t. α(2)
1 (CW ( · )). Thus, we may define

µ
(2)
f (r) =

∂α
(2)
f (CW ( · ))

∂α
(2)
1 (CW ( · ))

(r), r ∈W\{0}.

As a Radon-Nikodym derivative, µ(2)
f is only uniquely determined α(2)

1 (CW ( · ))-almost every-
where. Since {0} is a α(2)

1 (CW ( · ))-null set for any W ∈ Bd, we define

µ
(2)
f (0) =

E
∑

(t1, y1)∈Φ f(y1, y1)1[0,1](t1)
E
∑

(t1, y1)∈Φ 1[0,1](t1) ,

which is the expectation of f w.r.t. the ordinary Palm mark distribution M , i.e., µ(2)
f (0) =∫

M∗ f(y,y)M(dy).

Remark 2.2.2. (a) We can also express µ(2)
f (0) in terms of the non-factorial second-order

moment measure α̃(2)
f , which is defined analogously to (2.5) but without the 6= over the

summation sign. Then, µ(2)
f (0) = α̃

(2)
f (C({0}))

/
α̃

(2)
1 (C({0})).

(b) Due to stationarity of Φ, we can also write µ(2)
f (r) as a two-dimensional derivative,

evaluated at an arbitrary tuple of locations with distance r:

µ
(2)
f (r) =

∂α
(2)
f (•)

∂α
(2)
1 (•)

∣∣∣∣∣∣
•=(t1,t1+r)
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for any t1 ∈ Rd. If the densities of α(2)
f (·) w.r.t. the two-dimensional Lebesgue measure

exist, we denote them by ρ(2)
f (·, ·) and get

µ
(2)
f (r) =

ρ
(2)
f (t1, t1 + r)
ρ(2)(t1, t1 + r)

for any t1 ∈ Rd.

In several MPP models, the mark of a point at location t can (conditionally on some
random driving mechanisms) be expressed as a deterministic function of t and of the process
of point locations (up to time t). To provide a unifying notation, we introduce the following
extension of α(2)

f : For any Bd ⊗M0(Rd)-measurable function g : Rd ×M0(Rd) → R, we
define a set function α(2)

f,g on B2d by

α
(2)
f,g(C) = E

6=∑
(t1, y1), (t2, y2)∈Φ

f(y1, y2)1C((t1, t2))g(t1, Φg − δt1), C ∈ B2d.

The following lemma provides a representation of α(2)
f,g in terms of Palm distributions.

Lemma 2.2.3. Let Φ be a possibly non-stationary MPP on Rd with distribution P and
intensity measure Λ. Let f : (M∗)2 → R and g : Rd ×M0(Rd)→ R be functions such that
the function hC : Rd ×M∗ ×M0 → R,

hC(t1,y1,ϕ) =
∫
Rd×M∗

1C((t1, t2))f(y1, y2)g(t1, ϕg)ϕ(dt2 × dy2),

is C !
P-integrable for every C ∈ B2d. Then, for C ∈ B2d,

α
(2)
f,g(C) =

∫
Rd

∫
M∗

∫
M0

∫
Rd×M∗

1C((t1, t2))f(y1, y2)g(t1, ϕg) (2.7)

ϕ(dt2 × dy2)P !
(t1,y1)(dϕ)Mt1(dy1)Λg(dt1),

where Mt is the (Palm) mark distribution at position t as defined in (2.3).

Proof. By definition, we have

α
(2)
f,g(C)

=
∫
M0

∫
Rd×M∗

∫
Rd×M∗

1C((t1, t2))f(y1, y2)g(t1, ϕg − δt1)

(ϕ− δ(t1,y1))(dt2 × dy2)ϕ(dt1 × dy1)PΦ(dϕ)

=
∫
M0

∫
Rd×M∗

hC(t1, y1,ϕ− δ(t1,y1))ϕ(dt1 × dy1)PΦ(dϕ).
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According to (2.2) and (2.3), for B ∈ Bd, L ∈M∗, Y ∈M0, we have

C !
P(B × L× Y ) =

∫
B

∫
L
P !

(t,y)(Y )Mt(dy)Λg(dt),

and, by algebraic induction,∫
M0

∫
Rd×M∗

h(t, y, ϕ− δ(t,y))ϕ(dt× dy)PΦ(dϕ) (2.8)

=
∫
Rd×M∗×M0

h(t, y, ϕ)C !
P(dt× dy × dϕ)

=
∫
Rd

∫
M∗

∫
M0
h(t, y, ϕ)P !

(t,y)(dϕ)Mt(dy)Λg(dt)

for any C !
P-integrable function h. Applying this with h = hC we get

α
(2)
f,g(C) =

∫
Rd

∫
M∗

∫
M0
hC(t1, y1,ϕ)P !

(t1,y1)(dϕ)Mt1(dy1)Λg(dt1),

which completes the proof.

Remark 2.2.4. The function g will have different meanings. If chosen to be a certain
indicator function, it introduces an additional conditioning in the corresponding second-order
mean mark. It can also take over the role of f(y1, y2) if the mark at a point t is given as a
deterministic function of Φg and t.

As a direct consequence of Lemma 2.2.3 we have

Corollary 2.2.5. Let B1, B2 ∈ Bd.

1. If the function f satisfies f(y1, y2) = f̃(y1) for all y1, y2 ∈ M∗ for some function f̃
(which we again denote by f), i.e. f is independent of its second argument, then (2.7)
can be written as

α
(2)
f,g(B1 ×B2) =

∫
Rd

∫
M∗

∫
M0

1B1(t1)f(y1)g(t1, ϕg)ϕg(B2)

P !
(t1,y1)(dϕ)Mt1(dy1)Λg(dt1).

2. If, additionally, y1 is given as a deterministic function y of t1 and ϕg − δt1, i.e.
y1 = y(t1, ϕg − δt1) for (t1,y1) ∈ supp(ϕ), then

α
(2)
f (B1 ×B2) = α

(2)
f,1(B1 ×B2)

= α
(2)
1,f◦y(B1 ×B2)

=
∫
Rd

∫
M∗

∫
M0

1B1(t1)f(y(t1, ϕg))ϕg(B2)P !
(t1,y1)(dϕ)Mt1(dy1)Λg(dt1)
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=
∫
Rd

∫
M0

1B1(t1)f(y(t1, ϕg))ϕg(B2)P !
t1(dϕg)Λg(dt1),

where P !
t is the Palm distribution of Φg. In this case, the calculation of α(2)

f is reduced
to the theory of unmarked point processes.

3. If, additionally, Φg is a Cox process with random intensity measure Ξ(·) =
∫
· L(t)dt,

then

α
(2)
f (B1 ×B2) =

∫ ∫
Rd

∫
M0

1B1(t1)f(y(t1, ϕg))ϕg(B2)PΦg |L=λ(dϕg)λ(t1)dt1PL(dλ).

Notation: The value of µ(2)
f (r), r ∈ Rd, represents the mean value of f(y1, y2) over all

pairs of points (t1, y1), (t2, y2) with t2 − t1 = r. This motivates using the notation

µ
(2)
f (r) = E

[
f(y(t), y(t+ r))

∣∣ t, t+ r ∈ Φg
]
.

In the following, we consider an MPP Φ on the real axis with real-valued marks. As
regards the function f , the two functions e(y1, y2) = y1 and v(y1, y2) = y2

1 are employed.

Definition 2.2.6 (Bi-directional second-order statistics). Let Φ be a stationary MPP on R
with real-valued marks and W ∈ B such that (2.6) is satisfied for f = e and f = v. Using
the above notation, we define

E(r) = µ(2)
e (r), r ∈ R, the bi-directional E-function,

and V (r) = µ(2)
v (r)− (µ(2)

e (r))2, r ∈ R, the bi-directional V-function.

Note that, in general, E(r) and V (r) are not continuous at r = 0, where the two-point
statistics E and V pass into one-point statistics. Similarly to Schlather (2001), E(r) and
V (r) can be interpreted as the conditional mean and variance of the mark of a point at an
arbitrary time t, given the existence of another point r units of time away, r ∈ R. Thus, a
negative value of r refers to the existence of another point in the past. E(0) and V (0) are
simply the unconditional mean and variance of a mark, respectively.

2.3 Estimation of conditional mean marks
We assume that the Lebesgue density ρ

(2)
f (r) of α(2)

f (C(·)) exists for r 6= 0. Then, it is
common to apply a ratio estimator for µ(2)

f (r) of the form µ̂
(2)
f (r) = ρ̂

(2)
f (r)/ρ̂(2)

1 (r) (Stoyan
& Stoyan, 2000), where

ρ̂
(2)
f (r) = 1

ν(L)

6=∑
(t1, y1), (t2, y2)∈Φ

f(y1, y2)1L(t1)Kh((t2 − t1)− r)
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for r 6= 0, a kernel function Kh with bandwidth h, and some observation window L of the
point process. Note that we abstain from an edge correction (e.g., Stoyan et al., 1995) as the
considered values of r are negligibly small, compared to the size of L. It can be shown that
this estimator is asymptotically unbiased, that is, if the bandwidth h converges to zero (cf.
Stoyan & Stoyan, 2000). Therein, it is also suggested to use the rectangular kernel instead of
the Epanechnikov kernel because of a smaller estimation variance. Furthermore, we replace
the bandwidth h by an adaptive bandwidth hr = min{h, |r|} for the following reason: By
using the bi-directional statistics µ(2)

f , we explicitly want to take account of the impact of the
sign of the distance. So, it would not be reasonable to use a tuple of points with a negative
distance for estimation of ρ̂(2)

f (r) for a positive r, and vice versa. For r = 0, µ(2)
f becomes a

one-point statistic and we apply ρ̂(2)
f (0) =

∑
(t1,y1)∈Φ f(y1, y1)1L(t1)/ν(L). We end up with

the following estimator of µ(2)
f :

µ̂
(2)
f (r) =

ρ̂
(2)
f (r)

ρ̂
(2)
1 (r)

=



∑
(t1, y1)∈Φ

f(y1, y1)1L(t1)∑
(t1, y1)∈Φ

1L(t1)
, r = 0

∑
(t1, y1), (t2, y2)
∈Φ∩(L×R)

f(y1, y2)1(r−hr, r+hr)(t2 − t1)

∑
(t1, y1), (t2, y2)
∈Φ∩(L×R)

1(r−hr, r+hr)(t2 − t1)
, r 6= 0.



3 Refined analysis of interactions within
high-frequency transaction data through marked
point process theory

This chapter is based on the manuscript Malinowski & Schlather (2011b).

3.1 Introduction
In the classical context of low-frequency data, asset prices are usually modeled as geometric
Brownian motions or, more generally, as (jump) diffusion processes, that is, solutions
to stochastic differential equations, with a possibly time-varying and random underlying
volatility. Barndorff-Nielsen & Shephard (2001), for example, propose a sophisticated
stochastic volatility model whose underlying volatility is given by a Lévy driven Ornstein-
Uhlenbeck process. While inhomogeneity of volatility in those models is often seen to be
caused by the flow of new information, the focus of this chapter is on volatility effects on a
high-frequency scale caused by temporal proximity of past or future trades.
Excited by the seminal work of Engle & Russell (1998) on modeling financial data at its

highest level of disaggregation as marked point processes (MPPs), a plenty of MPP models
for high-frequency data have been developed in recent econometric literature (see Bauwens
& Hautsch (2009) for a broad survey). As financial transactions occur irregularly spaced in
time, a standard procedure in this setting is to consider time stamps as the points of a point
process, marked by the according (log) prices or other characteristics. MPPs turned out to
be a well-suited tool for modeling temporal (and spatial) dependencies between marks as
well as interactions between marks and locations of the points.

Two main classes of MPP models for transaction data are commonly used: The class of
dynamic duration and autoregressive conditional duration (ACD) models (e.g., Ghysels &
Jasiak, 1998; Engle, 2000; Bauwens & Giot, 2001; Hautsch, 2004), see Engle & Russell (2009)
or Pacurar (2008) for a survey, and the broad class of models based on doubly stochastic
Poisson processes (DSPP) or Cox processes, where the underlying intensity can also be
specified dynamically (e.g., Hawkes, 1971; Russell, 1999; Hautsch, 2004; Bauwens & Hautsch,
2006; Rydberg & Shephard, 2000; Frey, 2000; Centanni & Minozzo, 2006).
The main contribution of this chapter is the analysis of new statistics for temporal

MPPs, namely the bi-directional E- and V-function. These functions can be interpreted as
conditional expectations and variances, respectively. While the definition here is tailored to
the temporal context, a slightly different definition is already known from MPPs in the field
of spatial statistics (Schlather, 2001). The new statistics will be used to detect and to model
interaction phenomena within high-frequency financial data and, based on this method, we

15
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will discuss an extension of the commonly used ultra-high frequency GARCH model of Engle
(2000) that includes certain effects of interaction. When applied to the UHF-GARCH model,
our statistics serve as useful additional model fitting criteria, besides classical model fitting
criteria.
Note that it is a well-known fact that the underlying (time-varying) variance of a price

process generally increases in times of high trading intensity (e.g., Easley & O’Hara, 1992).
Though, the bi-directional V-function will be able to distinguish between the influence of
past and future transactions and therefore allows for a more profound insight into the latent
volatility process and into interaction effects.

Our analysis is based on high-frequency transaction data. Due to increased automatization
in financial markets and the fast development in computing power and storage capacity,
(financial) databases today provide high-frequency data for a wide range of markets. Si-
multaneously, many econometric tools like ARCH, GARCH and related models have been
developed enabling an analysis of the market’s behavior at the fine scale of transaction
data (e.g., Goodhart & O’Hara (1997), Ghysels & Jasiak (1998), Engle & Russell (1998,
2009), Engle (2000), Zhang et al. (2001), Racicot et al. (2008), and the references therein).
Other approaches for modeling transaction price processes include, for example, the probit
regression model of Hausman et al. (1992) or the approach of decomposition of price changes
in Rydberg & Shephard (2003).
Compared to classical time-series analysis, high-frequency data pose some specific chal-

lenges. The most important feature is that financial transactions are not equally spaced
so that the standard theory of time series, which is based on fixed time interval analysis,
cannot be applied. One approach is aggregating returns to equally-spaced intervals but such
aggregation will either lose information (if the new intervals are large) or create noise due
to interpolation issues, or both. Aït-Sahalia et al. (2005), for example, show that, when
microstructure noise is included into the model, it is reasonable to keep transaction data at
their original ultimate frequency level. To avoid the disadvantages of temporal aggregation,
various point process methods have been developed that are tailored to the irregular spacing
of transaction level data. See Bauwens & Hautsch (2009) for a survey.
Further, inter-trade durations are usually clustered. That means, the autocorrelation

function of the durations is significantly positive with a slow decay, which can be associated
with long-memory properties of the process. Besides clustering, important properties are the
discreteness of the price process and diurnal or periodical patterns, e.g., volatility of prices,
traded volume and frequency of transactions exhibit a U-shaped pattern over the course of
the day.
All those features can have substantial implications on temporal dependencies and on

measuring volatility or other characteristics on a small scale. Especially, sequent inter-
transaction returns are not free of correlation as it is often assumed for low-frequency
data.

The remainder of this chapter is organized as follows: Section 3.2.1 starts with a detailed
example that shows the usefulness and importance of the bi-directional E-function and
its relatives. Section 3.2.2 provides an intuitive definition of the second-order statistics
E and V as well as appropriate estimators. In Section 3.3, we briefly review the ACD
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model and the commonly used UHF-GARCH model for high-frequency financial data that
was introduced by Engle (2000) (Subsections 3.3.1 and 3.3.2). We apply our second-order
statistics to the model but as analytical treatment is not possible for this kind of autoregressive
processes, simulation techniques are employed. By applying the UHF-GARCH model to
large transaction datasets of German stock index (DAX) enterprises (Subsection 3.3.3), we
can show that the model’s representation of interaction effects can be improved by some
extension. Section 3.4 summarizes and concludes.

3.2 Novel measure of interaction
3.2.1 Motivation
In order to motivate our new statistics, we consider the autocovariance function that is well
defined for any stationary process on a grid in R or on the whole real axis. In case that
locations are neither on a grid nor independent of the values of the marks, we face at least
two possibilities to extend the autocovariance function to this situation.
Let Φg = {ti : i ∈ Z} be the process of trading times ti with ti 6= tj for i 6= j and let the

marks y(ti) = log(pi/pi−1) be the inter-transaction log returns, where pi is the execution
price of the ith transaction. Let Φ = {(ti, y(ti)) : i ∈ Z} denote the resulting marked point
process. We assume that Φ is stationary and that all of the following quantities exist. Note
that, since points are irregularly spaced, we always have to condition on the existence of an
event at time t when we consider the corresponding mark. For instance, the overall mean ȳ
of the marks is given as ȳ = E[y(t) | t ∈ Φg] for any fixed t ∈ R.
Then the first possibility to generalize the autocovariance function is to consider

C(r) = E
[
(y(0)− ȳ)(y(r)− ȳ)

∣∣∣ 0, r ∈ Φg
]
.

A second possibility is to remember the genuine definition of the autocovariance function,
that is, we consider the covariance of two random variables, namely the marks y(0) and y(r),
conditionally on the existence of points of Φg at 0 and r:

Cov(r) = E
[
(y(0)− E(r)) · (y(r)− E(−r))

∣∣∣ 0, r ∈ Φg
]
,

where E(r) = E[y(0) | 0, r ∈ Φg].
In order to highlight the difference between these two quantities C and Cov, we consider

the following simple process, where the inter-transaction durations xi = ti − ti−1 and the
marks are given as follows:

xi = µ

xi−1
εi, εi ∼i.i.d. Exp, Eεi = µ, (3.1)

y(ti) = xi + c(1{Bi=1}∪{Bi−1=1}), Bi ∼i.i.d. Bernoulli(p).

This specification induces the durations to be negatively correlated at lag 1 and the mark
process to contain few pairs of neighboring huge values—at least if we choose p � 1 and
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c� 1. We will consider the particular choice µ = 1 [minute], p = 0.001 and c = 67. Figure
3.1 shows a realization of this process.

By construction of the above process, marks with a fixed and sufficiently small distance
are positively correlated, as the paired outliers overcompensate the duration’s negative
autocorrelation if c is sufficiently big. However, the quantity C(r) turns out not to be able
to discover this property but rather leads to a wrong conclusion (Figure 3.2). Although in
many other econometric examples there might not be such a big difference between the two
functions C and Cov, our simple example points out that it is important to choose the proper
definition of conditional covariance and that the conditional mean function E(r) therefore
plays an important role in the analysis of marked point processes.
A very natural generalization of the conditional mean function is obtained by applying
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Figure 3.1: Extract of a realization of the process in (3.1) with one pair of large values.
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Figure 3.2: Comparison of the functions C(r) and Cov(r) for the model given by (3.1).
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higher moments or by conditioning on more than two points:

E
[

k∏
i=1

y(ri)
∣∣∣∣∣ r1, . . . , rk, rk+1, . . . , rn ∈ Φg

]
, n > k. (3.2)

These conditional moments can be employed for testing whether the process under consider-
ation belongs to the so-called class of random field models, where the marks of the MPP
are given by a realization of a random field being independent of the location of the points.
In case of a Gaussian random field, the set of moment functions up to order k = 2 allows
for necessary and sufficient conditions to characterize independence between marks and
locations, hence also for tests on independence (Schlather et al., 2004). This underlines the
relevance of the above functions.
The conditional functions also serve as additional model fitting criteria: If they are not

constant, the data should not be represented by models that do not include interactions
between marks and locations.
Finally, they might be helpful for prediction when information about temporal locations

of transactions is available.

3.2.2 E- and V-function
While a measure-theoretical deduction of the new statistic has already been given in Chapter 2,
we give a more intuitive definition at this point; using the notation and the assumptions of
the previous Subsection 3.2.1.

Definition 3.2.1. Let Φ = {(ti, y(ti)) : i ∈ Z} be a stationary and simple MPP, which
particularly includes stationarity of the mark distribution and the mark’s moments. Then
the bi-directional E- and V-function are defined as the conditional expectation and variance,
respectively, of a trade’s mark at time t, given the existence of a trade at time t+ r:

E(r) = E[y(t) | t, t+ r ∈ Φg],
V (r) = E[(y(t)− E(r))2 | t, t+ r ∈ Φg], r ∈ R.

Due to the stationarity of Φ, E(r) and V (r) do not depend on the value of t ∈ R. Note
that only the existence of a transaction at instance t+ r enters into the definition, but not
the value of y(t + r). Our definition explicitly utilizes the total order on the set of real
numbers and therefore is a generalization of the corresponding second-order statistics in
Schlather (2001), where isotropy is a central assumption and E and V are functions of the
Euclidean distance between two points.
The two functions, E and V , are sensible tools for our purpose of analyzing interaction

effects but they cover at least two different effects: Due to the clustering of transaction
arrival times and the fact that volatility and trading intensity are positively correlated, we
expect to observe a symmetrically increasing bi-directional V-function for small absolute
values of r. Indeed, as we will see later, the V-function of real data exhibits an asymmetric
behavior and thus covers additional effects at a fine temporal scale.
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3.2.3 Estimation
We use the estimators proposed in Section 2.3. In particular, let L ⊂ R be an observation
interval and let f stand for one of the functions e(y) = y and v(y) = y2. Let us denote the
points of the marked point process within the interval L by (ti,yi), i = 1, . . . , N , and let
ti 6= tj for i 6= j. Then we take∑

1≤i,j≤N f(yi)1(r−hr, r+hr)(tj − ti)∑
1≤i,j≤N 1(r−hr, r+hr)(tj − ti)

if r 6= 0 and 1
N

∑N
i=1 f(yi) if r = 0 as an estimator for E(r) and V (r) +E(r)2, if f = e and

f = v, respectively. Here, hr = min{h, |r|} is an adaptive bandwidth of the rectangular
kernel function. Due to the massive dataset, edge correction (e.g., Stoyan et al., 1995) is not
needed.

3.3 GARCH models for high-frequency financial data
Engle (1982) introduced ARCH processes and therewith initiated a whole theory of modeling
and forecasting time-varying financial market volatilities. Originally only applied to equally
spaced data on a daily or larger scale, they were soon extended to more flexible GARCH
models, even allowing for high-frequency data that are not equally spaced.
After having briefly reviewed the two parts of the UHF-GARCH model of Engle (2000),

we apply the newly-defined E- and V-functions to this model.

3.3.1 The Autoregressive Conditional Duration model
Engle’s UHF-GARCH model is based on the Autoregressive Conditional Duration (ACD)
model of Engle & Russell (1998) that explicitly models the irregular spacing of transactions.
Let xi = ti − ti−1, i ∈ Z, be the duration between the (i − 1)th and the ith transaction

and let Ψi be the expectation of the ith duration conditional on all past durations, that
is, Ψi = E(xi | Fxi−1), where Fxi−1 = σ(xj , j ≤ i− 1) is the natural filtration of the duration
process. Then the ACD model consists of a parametrization of Ψ and the assumption
that xi = Ψiεi with εi ∼i.i.d. Fθ for some distribution function Fθ such that Eεi = 1.
In the simplest form of an ACD model, the εi follow an exponential distribution and
Ψi = ωD + αDxi−1 + βDΨi−1 with the parameters ωD, αD, βD ∈ R; this is called EACD(1,1).
The more general form is the ACD(p,q) model (see Engle & Russell, 1998). In order to
guarantee non-negativity of the durations, restrictions have to be imposed on the parameters
(Nelson & Cao, 1992). Parameters can be estimated by quasi maximum likelihood methods
(QMLE) by factorizing the joint density function of the observed durations into a product
of univariate conditional densities. Moreover, the model can be estimated using standard
GARCH estimation procedures by taking √xi as the dependent variable. We refer to Engle
& Russell (1998) for more details.
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3.3.2 The UHF-GARCH model and volatility modeling
In the following, the marks of the ACD point process are the inter-transaction log returns
ri = log(pi/pi−1). For modeling the returns, Engle (2000) applies a GARCH specification,
extended by additional variables. In particular, Engle (2000) incorporates the irregular
spacing of transaction data by considering the returns divided by the square root of the
corresponding durations. The conditional variance per transaction is defined by hi =
Var(ri | Fri−1∨Fxi ). As volatility is usually measured over fixed time intervals, Engle defines a
volatility per time unit by taking σ2

i = Var(ri/
√
xi | Fri−1 ∨ Fxi ), which leads to the equation

hi = xiσ
2
i . Then the standardized returns yi = ri/

√
xi are modeled as a GARCH(1,1) process

whereby further explaining variables are added to the variance equation in order to represent
economic effects:

σ2
i = ω + αε2

i−1 + βσ2
i−1 + γ1/xi + γ2xi/Ψi + γ3ζi + γ4/Ψi , (3.3)

where α, β, γj ∈ R, Ψi is the conditional expectation of the ith duration in the ACD model
and ζi is a kind of long run volatility of the returns.

In the following, in order to keep ML estimation simple and to ease comparison of parameter
estimates between different datasets, we use a simpler model of Engle (2000)—see Equation
(39) therein—, that is, γ2 = γ3 = γ4 = 0:

yi = µi + εi , (3.4)
µi = p1yi−1 + p2εi−1 + p3xi ,

εi = σizi with zi
i.i.d.∼ N (0, 1),

σ2
i = ω + αε2

i−1 + βσ2
i−1 + γ/xi

with the real-valued parameters p1, p2, p3, ω, α, β and γ.
Obviously, the conditional mean of yi, given all past returns and all durations up to xi,

is E(yi | Fyi−1 ∨ Fxi ) = µi and the conditional variance is given by Var(yi | Fyi−1 ∨ Fxi ) = σ2
i .

The following propositions deal with the unconditional mean and variance. The proofs only
involve elementary arguments and can be found in Malinowski (2009).

Proposition 3.3.1. Let µi be as in (3.4) with 0 < p1 < 1. Then the unconditional mean of
µi is

Eµi = 1
1− p1

p3Ex1

and the unconditional variance of µi is

Var(µi) =
∞∑
n=0

pn1

n∑
k=0

p2
3Cx(|n− 2k|) + 1

1− p2
1
(p2 + p1)2Eε2

1 ,

where Cx(l) denotes the covariance of the duration at lag l.
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Proposition 3.3.2. The unconditional variance of εi in Model (3.4) with 0 < α+ β < 1
and E|x−1

1 | <∞ is

Var(εi) = Eε2
i =

(
ω + γEx−1

1

) 1
1− (α+ β) .

Combining these two results and the fact that zi is stochastically independent of µiσi,
we can conclude that the unconditional variance of the returns depends linearly on the
parameter vector (ω, γ, p2

3), which will be useful in Section 3.3.3:

Corollary 3.3.3. The unconditional variance of yi = µi + εi is

Var(yi) =
(

1 + 1
1− p2

1
(p2 + p1)2

)(
ω + γEx−1

1

) 1
1− (α+ β) +

∞∑
n=0

pn1

n∑
k=0

p2
3Cx(|n− 2k|).

Similarly to Section 3.3.1, the parameter vector θ = (p1, p2, p3,ω, α, β, γ) of the UHF-
GARCH model can be estimated by QMLE methods using the log likelihood

`(θ) = −
n∑
i=1

(
log(σi(θ)) + (yi − µi(θ))2

2σi(θ)2

)
− n

2 log(2π). (3.5)

We should emphasize at this point that the UHF-GARCH model is only one approach
amongst others to describe financial market volatilities. Especially in terms of prediction,
realized volatility (e.g., Andersen et al., 2001; Barndorff-Nielsen & Shephard, 2002; Martens,
2002) is an important measure of variance and in recent econometric literature, different
generalizations thereof (e.g., power variation) and related issues like microstructure noise
have been investigated intensively (e.g., Barndorff-Nielsen, 2004; Hansen & Lunde, 2006;
Bandi & Russell, 2008; Andersen et al., 2011). Bollerslev & Wright (2001) was one of the first
papers that used high-frequency data to obtain non-parametric volatility forecasts, based
on realized volatility, that outperform certain parametric GARCH models. Racicot et al.
(2008) adjusted the approach therein for the irregular spacing of data and provided a detailed
comparison in terms of forecasting performance between different high-frequency variance
models. Their results are in line with previous studies and indicate that GARCH models can
have poor forecasting performance in an UHF context. However, in this chapter, our main
focus is not on forecasting properties and we limit ourselves to the UHF-GARCH model.

Remark 3.3.4. Note that the UHF-GARCH model in this subsection is indeed a stationary
and simple MPP under some mild conditions: Fernandes & Grammig (2006), for example,
provide the two conditions |βD| < 1 and E|βD + αDεi|m < 1 for some integer m > 1 that
guarantee strict stationarity of the sequence of durations in the ACD(1,1) model and hence
also stationarity of the unmarked point process Φg. Nelson (1990) gives conditions for strict
stationarity of the classical GARCH(1,1) process that can be directly adapted to the UHF-
GARCH(1,1) case. Accordingly, the assumptions of Proposition 3.3.2 and strict stationarity
of the durations are sufficient conditions for strict stationarity of the sequence of conditional
variances {σi}i∈Z. Stationarity of the series {µi}i∈Z follows by similar arguments and
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therewith strict stationarity of the series of returns. Combining those facts yields stationarity
of the UHF-GARCH model in the marked point process sense.

3.3.3 Application of the ACD-UHF-GARCH model to data
In order to avoid results to be driven by irregularities in the data and to achieve consistency
to the results of Engle (2000), we apply the same data pre-processing procedure which
particularly includes an adjustment for diurnal patterns in duration and return series.
Engle’s (2000) assessment of the estimated model is essentially done by a comparison of

the autocorrelation structure in the original time series with the residuals’ autocorrelation
structure. To this end, the Ljung-Box test statistic and the partial autocorrelation function
are considered.

Due to the immense datasets that are available nowadays, it becomes possible to additionally
consider refined statistics as model fitting criteria, such as the E- and V-function.

Siemens data

We apply the model estimation procedure to large transaction datasets from stock trading
in Germany, processed via the Xetra trading system in the period from 1997 till 2004. Data
were provided by the “Karlsruhe capital market database” (KKMDB).

In the following, we present the results of our analysis using the example of only one
enterprise from the German stock index DAX, but the qualitative results are valid for many
of the other DAX stocks as well. We choose the Siemens stock (ISIN DE0007236101), and
in order to avoid long term effects, we always consider a trading period of one year only
(January 1st, 2004 to December 31th, 2004). Siemens is one of Europe’s largest engineering
conglomerate with 405,000 employees worldwide, a total revenue of 75 billion euros per year
and an average pre tax income of 4.3 billion euros (averaged over the last 7 years). During
that period, the debt ratio increased from 66 percent to 72 percent, the total amount of debt
increased from 52 to 74 billion euros. According to traded volume and the Xetra liquidity
measure, which is based on implied transaction costs, Siemens belongs to the five most liquid
stocks on the German stock market.

For the MLE of the ACD(1,1) parameters, the initial parameter values are (ωD
0 , α

D
0 , β

D
0 ) =

(1, 0.5, 0.5). After the first run of the optimization procedure, a second run is performed
using the results of the first one as initial values and as scaling factors. By testing different
sets of initial values and scaling factors, the optimization procedure turns out to be very
robust with respect to bad choices of the starting parameters. The parameter estimates and
standard deviations are

ωD = 0.021 (0.00033),
αD = 0.11 (0.00072),
βD = 0.87 (0.001). (3.6)

Analogously, the parameters of the UHF-GARCH model for the returns are estimated
by maximizing the likelihood in (3.5), with θ0 = (0.1, 0.1, 0.01, 0.4, 0.4, 0.4, 0.4) as initial
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parameter vector. The reliability of this MLE is checked by re-estimating the parameters from
a simulation according to the MLE results. This leads to satisfactory results. The parameter
estimates of the extended GARCH(1,1) model for the returns are given in Table 3.1. The
standard errors show that here, p3 is statistically not distinguishable from 0. However, this
is not always the case (cf. Table 3.3).
Analogously to Engle (2000), we compare the autocorrelation structure in pre-processed

duration and return series to the autocorrelation in standardized residuals (Figure 3.3). The
corresponding Ljung-Box statistics with 15 degrees of freedom are given in Table 3.2.

Furthermore, we compare the E- and V-function of the data to those of the model, which
are obtained by simulating a new dataset according to the estimated parameters (Figure 3.4).
Note that we only simulate the returns; the durations are taken from the pre-processed dataset.
For conditions under which the estimated model satisfies the stationarity requirements in
the definition of the E- and V-function, see Remark 3.3.4. We observe an almost symmetric
graph of the V-function for the Siemens returns per time unit. Though, V (−r) is slightly
larger than V (r) for small positive values of r which means that past transactions have a
stronger influence on the actual variance than future transactions.
Recall that the UHF-GARCH model is seen as a model for the “returns per time unit”,

which are—up to now—defined as “returns per transaction” divided by the square root of
the durations. Next, we reverse this transformation by re-multiplying both the simulated
and the real “returns per time unit” with the square root of the durations, and also calculate
the V-function of the “returns per transaction”. (Figure 3.4 (bottom)).

Table 3.1: MLE results for the parameters of the model in (3.4)a

mean equation variance equation
p1 −0.026 (0.0031) ω 0.17 (0.0016)
p2 −0.18 (0.0029) α 0.067 (0.00078)
p3 −7.4e− 05 (0.00028) β 0.0091 (0.00026)

γ1 0.51 (0.0013)
a Standard errors given in parentheses.

Table 3.2: Comparison of Ljung-Box statistics between Engle’s (2000) original model in (3.4) and
its extension proposed in the sequel of this subsection.

original model extended model
duration return (return)2 return (return)2

LB(15) of time series a 141943 26823 9622 72234 76994
LB(15) of residuals b 4198 2422 24749 1324 1036
reducement c 0.03 0.09 2.6 0.018 0.013

a LB(15) of Siemens series of pre-processed durations and returns.
b LB(15) of standardized residuals of the respective model.
c Factor by which the statistic is reduced by the model.
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Figure 3.3: Top: Partial ACF of the Siemens series of pre-processed durations, returns and
squared returns.
Bottom: Partial ACF of the standardized residuals of the model.

Results

Besides the finding that asymmetric interaction effects between inter-trade durations and
volatility exist, the first important result of our analysis is that the E-function is constant
for all datasets of the DAX. This implies that the knowledge of previous transaction times
does not lead to a systematical shift in returns. Henceforth, we restrict to the V-function.
As a conclusion from Figures 3.3 and 3.4 and the part of Table 3.2 that refers to the

original model of Engle (2000), we can state: The model reduces autocorrelation of sequent
returns by a factor 0.3 but autocorrelation in squared returns is rather increased than
decreased. The Ljung-Box statistics of durations and returns are reduced by one to two
powers of ten. These results do not fully correspond with the findings in Engle (2000) where
a comparatively small IBM dataset is analyzed. Particularly, autocorrelation in squared IBM
returns is well represented by the model while autocorrelation in squared Siemens returns is
even strengthened. Almost all DAX datasets exhibit the same effect as the Siemens dataset
and its strength seems to depend on the parameter in the extended definition of “volatility
per unit of time” in the following paragraph.
Furthermore, we conclude that the V-function of the simulated “returns per time unit”

agrees with the Siemens data while the V-function of the simulated “returns per transaction”
does not fit well to the one of the true returns.



26 3 Refined analysis of interactions within high-frequency transaction data

−30 −20 −10 0 10 20 30

10
15

20
25

30

r [minutes away is a transaction]

V
(r

)
 
 

real data
simulated data
mean duration real data
mean duration simulated data

V−function, WKN 723610, p=1,
year=2004, n=955196

__

−30 −20 −10 0 10 20 30

0.
8

1.
0

1.
2

1.
4

1.
6

r [minutes away is a transaction]

V
(r

)

 
 

real data
simulated data
mean duration real data
mean duration simulated data

V−function, WKN 723610, p=1,
year=2004, n=955196

__

Figure 3.4: V-functions of Siemens and simulated return series.
Top: pre-processed real returns and simulated returns (“per time unit”).
Bottom: pre-processed real returns multiplied by pre-processed durations to the power of 1/2
and simulated returns multiplied by the same factors (“variances per transaction”).

The extended model

We try to give an explanation for the above behavior and propose an extension of the model.
In fact, the definition σ2

i = Var(ri/
√
xi | Fri−1∨Fxi ) of conditional “volatility per time unit”

is reminiscent of a Brownian-motion-like price process, where returns over disjoint periods
are independent and quadratic variation is proportional to the time t if the underlying
volatility is constant. However, Sun & Engle (2007) already inferred from an empirical
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analysis that this assumption is not necessarily adequate for high-frequency data. Further,
market microstructure theory yields that the observed price does not only represent the
efficient price, but also contains some microstructure noise, whose variance does not depend
linearly on duration at all. For an introduction to the issues of microstructure noise and
volatility measurement at high frequencies, see, for example, Andersen et al. (2009) or Bandi
& Russell (2006, 2008). Due to microstructure noise, realized volatility of the observed
price process, considered as a time-continuous process, does not necessarily converge to the
volatility of the efficient price if sampling frequency is increased. In conformity to this, we
observe a negative correlation in sequent returns and that volatility per transaction grows
less than linearly in duration (Figures 3.3 and 3.5).

One possibility of further investigating this problem is given by Meddahi et al. (2006) who
consider the discretization of the simple stochastic volatility model d log pt = √vtdWt at
irregularly spaced times, where pt is the price process, Wt a Brownian motion, and vt ≥ 0 a
stationary square-integrable process whose conditional mean E(vt+∆ | Fvt ) is an exponentially
fast mean-reverting function of ∆. The authors give an explicit form for the conditional
volatility Var(ri | Fri−1 ∨ Fxi ∨ Fvi−1), which shows that it is only approximately linear in
the duration xi and only if xi is very small or very large. However, they consider the
series fi = x−1

i Var(ri | Fri−1 ∨ Fxi ∨ Fvi−1) and show that fi is an autoregressive process with
time-varying parameters preserving the natural property fi → Ev0 for xi →∞. Furthermore,
the returns ri follow a square-root stochastic autoregressive volatility process—a class of
processes introduced by Meddahi & Renault (2004) that keep the structure under temporal
aggregation.

Here, we follow the idea of Sun & Engle (2007) who suggest a multiplicative model for the
“volatility per transaction” where the duration does not enter linearly but to the power of
some p. The parameter p is interpreted as a relative speed of information arrivals. Moreover,
the authors observe that the value of p depends on how liquidly a stock is traded and they
give an explanation related to the issue of informed and uninformed trading.
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Figure 3.5: Regression of volatility per transaction on duration compared with the ML
estimate of the exponent p.
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We adopt this idea and give an extended definition of conditional “volatility per time unit”
that incorporates the above microstructure effects:

σ2
i = Var(ri/xp/2

i | Fri−1 ∨ Fxi )

with some unknown parameter p ∈ [0, 1].
Similarly, we extend the variance equation of the UHF-GARCH model replacing in (3.4)

the term γ/xi by γ2/x
q
i , where q is an additional parameter that introduces more flexibility

in modeling the influence of durations on the volatility process. That is, we consider the
model

σ2
i = ω + αε2

i−1 + βσ2
i−1 + γ2/x

q
i . (3.7)

At this point, one could suppose that the conditional volatility σ2
i does not depend on

the duration any more after having divided the returns by the durations to the power
of p/2. However, this is not necessarily the case since this scaling only accounts for the
conditional variance Var(ri |xi) so that the term x−qi can still have a non-zero coefficient
in the autoregressive variance model. Indeed, the parameter estimates for γ and γ2 are
always significantly positive for both Engle’s IBM data and for our DAX data. Engle (2000)
understands this as a support of the Easley & O’Hara (1992) hypothesis that long durations
are an indicator for the absence of new information and therefore for a lower volatility of
the price process. Regardless of what is the true mechanism behind this effect, we simply
understand this as interaction between the point pattern and the corresponding returns.
Note that without the terms γ/xi and γ2/x

q
i in (3.4) and (3.7), respectively, the V-function

of the model would be a mere constant.

Reanalysis of Siemens data through the extended model

Conditionally on the model parameters θ = (p1, p2, p3, ω, α, β, γ2, q, p) and all durations xi,
the “return per transaction” ri has a Gaussian distribution with mean µi(θ)xp/2

i and variance
σ2
i (θ)x

p
i . The log likelihood (3.5) then becomes

`(θ) = −
n∑
i=1

log(σi(θ)xp/2
i ) +

(
ri/x

p/2
i − µi(θ)

)2

2σ2
i (θ)

− n

2 log(2π) (3.8)

and all parameters including p and q can be identified by QMLE.
In perfect accordance with the idea of Sun & Engle (2007) and the proposed model

extension, it turns out that p̂OLS, a linear regression estimate of the logarithmized equation
of the simple model vi = sxpi , is a very good approximation of p̂ML and hence a reasonable
starting value for the ML procedure. Here, vi = Var(ri |xi) denotes the conditional “volatility
per transaction”. In particular, to obtain p̂OLS, transactions are grouped by their respective
durations x and within each group j, j = 1, . . . ,m, the volatility v(j) of the respective returns
is calculated. Let x(j) be a representative duration of group j, then the model v(j) = sxp(j)
is fitted by a linear regression for the logarithmized equation log(v(j)) = log(s) + p log(x(j));
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see Figure 3.5.
The MLE results for the extended model are given in Table 3.3. Note that we have

allowed ω to become negative, still ensuring a positive value on the right-hand side (RHS) of
the Variance Equation (3.7).
The autocorrelation within return series and standardized residuals is illustrated by

Figure 3.6, the corresponding Ljung-Box statistics are given by Table 3.2. Figure 3.7 shows
the comparison of V-functions.
The extended model (p 6= 1) explains autocorrelations within the modified return series

fairly well. The major improvement in comparison to the case p = 1 is the relatively good
fit of the V-function of the simulated “returns per transaction”. Although the slope of the
curves near the origin does not fit perfectly to the true data yet, at least the level of variance
and the basic characteristics are the same.

Readjustment of model parameters for parallel shifts of the V-function

As can be seen from the V-function plot in Figures 3.4 and 3.7, the parameter estimates of
the UHF-GARCH model may lead to a V-function which has the same appearance as the
V-function of the real data, but which does not hit the actual level of variance.

However, in order to hit the actual V-function level and to ease comparison of the behavior
of the model’s and the data’s V-function, we can slightly modify the estimated parameters
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Figure 3.6: Top: Partial ACF of Siemens series after modified pre-processing (p = 0.252
instead of p = 1).
Bottom: Partial ACF of the standardized residuals of the model.
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Table 3.3: MLE results for the parameters of the extended modela

mean equation variance equation
p1 −0.13 (0.0036) ω 0.088 (0.0015)
p2 −0.2 (0.0036) α 0.09 (0.00075)
p3 −0.0092 (0.00067) β 0.87 (0.0012)

exponent parameter γ2 0.013 (0.00021)
p 0.252 (0.00062) q 0.65 (0.0022)

a Standard errors given in parentheses.

in such a manner that only the vertical location of the V-function is affected while the
appearance is kept fix: As can be seen from Corollary 3.3.3, the parameter triple (ω, γ, p2

3)
enters linearly into the unconditional variance of the UHF-GARCH model. That means,
if we use (cω, cγ,

√
cp3) instead of (ω, γ, p3) with a positive shifting factor c, the level of

variance will also be multiplied by the factor c. We choose c to be the minimizer of the
squared distance between simulated and empirical V-function. For the DAX datasets, c
mostly lies between 0.7 and 1.1.
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Figure 3.7: V-functions of Siemens and simulated return series, p = 0.252.
Top: pre-processed real returns and simulated returns (“per time unit”).
Bottom: pre-processed real returns multiplied by pre-processed durations to the power of p/2
and simulated returns multiplied by the same factors (“variances per transaction”).
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3.4 Discussion
Leveraging the total order of R, we have introduced novel second-order statistics for marked
point processes on R, in particular the bi-directional E- and V-function, in order to quantify
interaction effects between the pattern of transaction times and the price process; so far
basically in terms of conditional variances, but the approach can easily be extended to higher
moments and to conditioning on two or more transaction times.

We have applied the methods to the ACD-UHF-GARCH model of Engle (2000). Motivated
by implications from microstructure noise and by the results of Sun & Engle (2007), a modified
method of tackling the irregular spacing of financial transactions is proposed. Here, we
exclude the ACD model for the durations and only consider the GARCH model for the
returns, but it should be an issue of future research to also include the ACD part into the
analysis of E- and V-function. In particular, we add two new exponent parameters to the
model (p and q). Especially p can be estimated very robustly by ML and for 80% of the
datasets under consideration, p̂ is between 0.16 and 0.27.
Engle (2000) used an IBM dataset that contained about 100 times fewer transactions

than the DAX datasets employed in our analysis. While model estimation is also feasible
with small datasets, the empirical V-function of such a dataset is dominated by noise and
the impact of our extension w.r.t. to the newly-defined statistics is invisible. The reason
for this is that the estimator of V (r) only uses the set of pairs of points with a distance
of approximately r, which is usually a very small set compared to the overall number of
transactions. Though, large datasets reveal that both V-function and autocorrelations are
better represented by the extended model.
There are further open issues for future research work: For instance, the V-function

approach offers miscellaneous possibilities for quantifying the investigated effects, and Engle’s
GARCH model itself provides several variations with further explaining variables within
the variance equation that shall represent economic effects. Moreover, the role of the
autocovariance function Cov mentioned in Section 3.2.1 has to be investigated.
Although point processes are widely-used in high-frequency econometrics and it is well-

known in literature that the underlying volatility of the price process tends to be higher
in times of high trading intensity, there is only few literature that relates techniques from
spatial statistics, where general theory for MPPs has been developed, to financial data.
Interactions between durations and returns within high-frequency financial data are still
not comprehensively understood. Nevertheless, this chapter provides some promising tools
and techniques for tackling this issue and for including it into the framework of volatility
modeling at an intradaily scale.



4 Second-order moment measures in different
marked point process models

4.1 Introduction
In this chapter, the theoretical values of the bi-directional E- and V-function, introduced
and applied in Chapters 2 and 3, are determined for different MPP models. Although
not being directly used as models for transaction data in practice, some of these models
are well-established in environmental applications and can be thought of as ingredients for
sophisticated models in econometric applications. The models allow for a non-reversible
behavior of the MPP.

One of the models being investigated with regard to mark-location interaction phenomena
is based on the idea of intensity-dependent marking of log Gaussian Cox processes (LGCP).
Myllymäki (2009) extensively discusses this issue and combines two sources of covariance
between the marks: the intensity-dependency of marks and the spatial dependency of marks
(known from geostatistical marking) that cannot be explained by fluctuation of intensity.

A more general class of models is received by replacing the underlying Gaussian random
field by an arbitrary random intensity measure. While LGCP models with their advantageous
theoretical properties allow for an explicit calculation of second-order characteristics, other
specifications such as the generalized shot noise intensity discussed in Centanni & Minozzo
(2006), do not. Therein, the authors replace the intensity-dependent marking by a marking
based on inter-point distances. Although inter-point distances are directly connected to the
intensity of points and the marking is therefore still intensity-dependent in a sense, effectively,
the specification of marks is an autoregressive one.

The outline of this chapter is as follows: Section 4.2.1 considers Cox processes with a
marking based on shot-noise processes. In Section 4.2.2, a generalization of the model in
Myllymäki (2009) is presented by replacing the univariate intensity-generating field by a
bivariate Gaussian field: one of the two components drives the intensity and the other
component is used to construct the marks; then the random field’s covariance structure
directly translates into interaction between locations and marks. In the model in Section
4.2.3, the marks are generated by a function of the distance to previous points of the MPP,
supplemented by some noise, which is a generalized version of the model in Centanni &
Minozzo (2006). Section 4.2.4 is concerned with a model that describes the trading process
at the order book level. Finally, Section 4.3 provides a construction principle for MPPs to
realize a large subclass of all valid E- and V-functions.

33
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4.2 Analytical treatment of E- and V-function in MPP models based on
Poisson and Cox processes

We consider several types of marked point processes on the real axis, which are all based
on Poisson and Cox processes but which differ in their specification of the marks. Via a
random and non-constant intensity, the models are able to represent clustering effects in the
data. The marks are related to the process of point locations or to its intensity process via
different mechanisms.

4.2.1 Model 1: Cox processes marked by a random field with underlying shot noise
volatility

Let Φ̃ be an unmarked Cox process with random intensity L. In particular, we assume that
L is a second-order stationary log-Gaussian random field, i.e. L = exp(Z) with {Z(t)}t∈R
being a Gaussian field with mean µ, covariance function C and σ2 = C(0). Let {W (t)}t∈R
and {U(t)}t∈R be random fields of iid variables with W ≥ 0, EU(0) = 0 and VarU(0) = 1.
Conditionally on Φ̃ = ϕ̃, W = w and U = u, let the mark yi of a point ti be given by

yi = y(ti,ϕ̃) = u(ti)
√∫

t<ti

w(t)h(ti − t)ϕ̃(dt),

where h(·) is an integrable function on R+. Then we consider the MPP

Φ = {(t, y(t,Φ̃)) : t ∈ Φ̃}, (4.1)

i.e., the ground process of point locations is Φg = Φ̃. Note that, conditionally on Φg, the
marks are independent random variables. However, their variances depend on the past of
the process and are given by a shot noise process.

Remark 4.2.1. For an MPP as in (4.1), the E-function as well as all functions µ(2)
f with

f(y1, y2) = y
(2n−1)
1 , n ∈ N, are constant and zero due to the moment condition on U and the

independence between Φg and U .

Theorem 4.2.2. For an MPP as in (4.1), the V-function is given by

V (r) = EW ·
(

1r<0h(−r) +
∫ ∞

0
h(t) exp

(
µ+ σ2

2 + C(t) + C(r + t)
)
dt

)
, r ∈ R.

Proof. Applying f(y1, y2) = v(y1, y2) = y2
1 and conditioning on L, W and U , we are in the

situation of Corollary 2.2.5, part 3, i.e.,

α(2)
v (B1 ×B2)

=
∫∫∫ ∫

B1

∫
M0
v(y(t1, ϕg))ϕg(B2)PΦg |L=λ(dϕg)λ(t1)dt1PL(dλ)PW (dw)PU (du). (4.2)
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Applying Fubini’s theorem yields

α(2)
v (B1 ×B2)

=
∫∫∫ ∫

B1

∫
M0
u(t1)2

(∫
t<t1

w(t)h(t1 − t)ϕg(dt)
)
ϕg(B2)

PΦg |L=λ(dϕg)λ(t1)dt1PL(dλ)PW (dw)PU (du)

= EU2 · EW ·
∫ ∫

B1

∫
M0

(∫
t<t1

h(t1 − t)ϕg(dt)
)
ϕg(B2)

PΦg |L=λ(dϕg)λ(t1)dt1PL(dλ),

where EU2 = 1 by assumption.
W.l.o.g., B1 and B2 are disjoint intervals in R. If supB1 < inf B2 then the inner integral

w.r.t. PΦg |L=λ factorizes, because of stochastic independence, into Λ(B2) =
∫
B2
λ(t)dt and∫

M0

(∫
t<t1

h(t1 − t)ϕg(dt)
)

PΦg|L=λ(dϕg) =
∫ t1

−∞
h(t1 − t)λ(t) dt =

∫ ∞
0

h(t)λ(t1 − t) dt ,

where the first equality holds by the Campbell theorem, which is a special case of (2.8).
Otherwise, if inf B1 > supB2, with B2 = [a, b], we have:∫
M0

(∫
t<t1

h(t1 − t)ϕg(dt)
)
ϕg(B2)PΦg |L=λ(dϕg)

=
∞∑
k=0

P(Φg(B2) = k) ·
∫
M0

(∫
t<t1

h(t1 − t)ϕg(dt)
)
ϕg(B2)PΦg|L=λ,Φg(B2)=k(dϕg)

=
∞∑
k=0

exp(−Λ(B2))Λ(B2)k

k! · k
∫
M0

∫
(b,t1]∪B2∪(−∞,a)

h(t1 − t)ϕg(dt)PΦg|L=λ,Φg(B2)=k(dϕg)

= Λ(B2)
∞∑
k=1

exp(−Λ(B2))Λ(B2)k−1

(k − 1)!

·

 t1−b∫
0

h(t)λ(t1 − t)dt+
t1−a∫
t1−b

kh(t)λ(t1 − t)
Λ(B2) dt+

∞∫
t1−a

h(t)λ(t1 − t)dt


= Λ(B2)

 t1−b∫
0

h(t)λ(t1 − t)dt+
t1−a∫
t1−b

(Λ(B2) + 1)h(t)λ(t1 − t)
Λ(B2) dt+

∞∫
t1−a

h(t)λ(t1 − t)dt


= Λ(B2)

∞∫
0

h(t)λ(t1 − t)dt+
t1−a∫
t1−b

h(t)λ(t1 − t)dt ,

where the third equation again follows by the Campbell theorem (2.8) and from the indepen-
dence properties of the Poisson process.
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Thus,

α(2)
v (B1 ×B2)

= EW
∫ ∫

B1

[
Λ(B2)

∫ ∞
0

h(t)λ(t1 − t)dt+ 1B1>B2

∫
B2
h(t1 − t)λ(t)dt

]
λ(t1)dt1 PL(dλ)

= EW
∫ ∫

B1

∫
B2

(∫ ∞
0

h(t)λ(t1 − t) dt+ 1B1>B2h(t1 − t2)
)
λ(t2)dt2 λ(t1)dt1 PL(dλ).

Applying Fubini’s theorem and using the distribution of L, we finally get

ρ(2)
v (t1, t2)

= EW
∫ (∫ ∞

0
h(t)λ(t1 − t) dt+ 1t1>t2h(t1 − t2)

)
λ(t2)λ(t1)PL(dλ)

= EW
(∫ ∞

0
h(t)

∫
λ(t1 − t)λ(t2)λ(t1)PL(dλ) dt+ 1t1>t2h(t1 − t2)

∫
λ(t2)λ(t1)PL(dλ)

)
= EW

(∫ ∞
0

h(t) exp
(
3µ+ 3

2σ
2 + C(t) + C(t1 − t2) + C(t1 − t2 − t)

)
dt

+ 1t1>t2h(t1 − t2) exp(2µ+ σ2 + C(t1 − t2))
)
.

With ρ(2)
1 (t1, t2) =

∫
λ(t2)λ(t1)PL(dλ) = exp(2µ+ σ2 + C(t1 − t2)), it follows

V (r) = ρ
(2)
v (0, r)
ρ

(2)
1 (0, r)

= EW
(

1r<0h(−r) +
∫ ∞

0
h(t) exp

(
µ+ σ2

2 + C(t) + C(r + t)
)
dt

)
.

Example

We illustrate the MPP model in (4.1) by a simulation according to the following choice of
parameters: The random intensity of the Cox process is given by L = exp(Z), where Z is a
stationary Gaussian random field with mean − log(30), variance 0.1 and scale 200 [seconds],
and the function h is given by h(t) = exp(−0.0002 · t2). The resulting mean duration between
consecutive events is about 30 seconds, the length of the simulated dataset is 1000 times
8 hours. As for the random field W , we choose W (t) = 1 for t ∈ R. By choosing U to be
a field of iid N (0,1)-variables, we have that, conditionally on the ground process of point
locations, the marks are stochastically independent and Gaussian.
Figure 4.1 shows a 10-minutes window of the realization of the underlying shot noise

variance process, together with the squared marks. In Figure 4.2, we compare the theoretical
V-function according to Theorem 4.2.2 to the empirical one. We also consider the difference
V̂ (−r)− V̂ (r) for r > 0 compared to the function h that determines the shape of the shot
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noise process. Note that for r > 0,

V (−r)− V (r)

= h(r) +
∫ ∞

0
h(t)

[
exp

(
µ+ σ2

2 + C(t) + C(−r + t)
)
− exp

(
µ+ σ2

2 + C(t) + C(r + t)
)]
dt

and that the integral on the RHS is close to zero for small values of r.
The ratio between “quasi-symmetric” effects, which are caused by the covariance structure

of the Gaussian random field, and non-symmetric effects, which are caused by the shot-noise-
type marking, on the V-function can be controlled by the ratio between the function h and
the exponential of the first and second moments of the underlying Gaussian random field. If
the jump size W of the shot noise process is chosen to be different from one, this merely
results in a shift of the V-function by the constant factor EW .

While marks at different locations are conditionally independent of each other and hence
the conditional covariance function Cov(r) = µ

(2)
c (r) − µ(2)

e (r)µ(2)
e (−r) equals zero almost
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Figure 4.1: Realization of the variance process and squared returns.
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everywhere, considering the absolute value of the marks yields a non-trivial covariance
structure. Here, c(y1, y2) = y1y2 and e(y1, y2) = y1 and in intuitive notation, Cov(r) =
E
[
(y(0)−E(r)) · (y(r)−E(−r))

∣∣ 0, r ∈ Φg
]
. Figure 4.3 shows the estimates of the E-function

and of the conditional covariance function for the modification of Φ, where the marks are
replaced by their absolute values.
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Figure 4.3: E-function and conditional covariance function for the absolute value of the
marks.
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4.2.2 Model 2: Cox processes marked by a bivariate Gaussian random field
In this model, the process of point locations is given by a log Gaussian Cox process. The
marking is explicitly related to the associated Gaussian random field of the Cox process. One
possibility of realizing such a marking is to take the intensity at position t (or a transformation
thereof) directly as the mark of the point at t (e.g., Ho & Stoyan, 2008). Here, we follow a
more general approach:
We consider a bivariate stationary Gaussian field Z(t) = (Z1(t), Z2(t)), t ∈ R, where the

Z1-component will generate the intensity of the Cox process and the Z2-component will drive
the marks. This bivariate approach allows for flexible management of dependencies between
intensity and marks via the bivariate covariance function

C(r) =
(
C11(r) C12(r)
C21(r) C22(r)

)
, r ∈ R,

where Cij(r) = Cov(Zi(0), Zj(r)), i, j ∈ {1,2}. The mean of Z is denoted by (µ1, µ2).
In particular, the random intensity is given by exp(Z1(·)) and—conditional on Z—the

marks are essentially given by

ỹ(ti) = a+ b exp(Z2(ti)) + ε(ti), ε(ti) ∼ N (0, c2 + d2 exp(Z2(ti))) (4.3)
or by ỹ(ti) = exp(a+ bZ2(ti) + ε(ti)), ε(ti) ∼ N (0, c2 + d2Z2(ti)2), (4.4)

where ε(·) is iid Gaussian noise, independent of Z. This construction yields a stationary
MPP Φ where the unmarked ground process Φg = Φexp(Z1) is given by a LGCP with the
random intensity measure Ξ(B) =

∫
B exp(Z1(t)) dt. We refer to (4.3) and (4.4) as additive

and multiplicative marking, respectively.
In the financial context, the marks might be supposed to represent inter-transaction

returns. Then, adding a random sign to the marking in (4.3) and (4.4) yields a symmetric
marginal distribution of the marks:

y(ti) = U(ti) · ỹ(ti)

with U(·) being a field of iid variables with P(U(0) = ±1) = 0.5, independent of Z and ε.
Actually, marks are only defined for the points ti of the ground process, but y can also be

regarded as a function on R because the random fields U , Z2 and ε are defined on the whole
space. Conditioning on U , Z2 and ε, y is a deterministic function of the point location, only,
and we are again in the situation of Corollary 2.2.5, part 3.
The E- and V-function of this model are given by the following theorem:

Theorem 4.2.3. For an MPP Φ as described above, the E-function, the V-function Vadd
for the additive marking (4.3), and the V-function Vmult for the multiplicative marking (4.4)
are given by

E(r) = 0,
Vadd(r) = (a2 + c2) + b2 exp

(
2(µ2 + σ2

2 + C21(0) + 1r 6=0C21(r))
)

+ (2ab+ d2) exp
(
µ2 + σ2

2/2 + C21(0) + 1r 6=0C21(r)
)
,



40 4 Second-order moment measures in different marked point process models

Vmult(r) = exp(2a+ 2c2)E exp
(
Z1(0) + Z1(r)1r 6=0 + 2bZ2(0) + 2d2Z2(0)2)

· exp
(
−
[
(µ1 + σ2

1/2)(1 + 1r 6=0) + C11(r)1r 6=0
])
,

where σ2
i = Cii(0) = VarZi(·), i = 1,2.

For the proof of Theorem 4.2.3, we use the following elementary fact:

Remark 4.2.4. For a bivariate Gaussian random field Z as above, the vector

Z̃ = (Z1(0), Z1(r), Z2(0),Z2(r))>

has a multivariate Gaussian distribution with mean (µ1, µ1, µ2, µ2)> and covariance matrix

Σ =
(
Cov(Z̃i, Z̃j)

)
1≤i,j≤4 =

 C11(0) C11(r) C12(0) C12(r)
C11(r) C11(0) C12(−r) C12(0)
C12(0) C12(−r) C22(0) C22(r)
C12(r) C12(0) C22(r) C22(0)

. (4.5)

Thus, for γ ∈ R4, γ>Z̃ = γ1Z1(0) + γ2Z1(r) + γ3Z2(0) + γ4Z2(r) ∼ N (µ′, σ′2) with

µ′ = (γ1 + γ2)µ1 + (γ3 + γ4)µ2

and σ′2 = (γ2
1 + γ2

2)σ2
1 + 2γ1γ2C11(r) + 2(γ1γ3 + γ2γ4)C12(0)

+ (γ2
3 + γ2

4)σ2
2 + 2γ3γ4C22(r) + 2γ1γ4C12(r) + 2γ2γ3C12(−r). (4.6)

Note that C21(r) = C12(−r) for r ∈ R. Furthermore, stationarity of Z implies isotropy of
the univariate one-dimensional marginal fields, but in general, the cross-covariance function
does not have to be symmetric and therefore Z is not necessarily isotropic.

Proof of Theorem 4.2.3. Conditioning on U , Z and ε, we can apply Corollary 2.2.5, part 3,
with y(t1,ϕg) = y(t1) and get

α
(2)
f (B1 ×B2)

=
∫∫∫ ∫

M0

∫
R

1B1(t1)f(y(t1))ϕg(B2)λ(t1)dt1 PΦg| exp(Z1)=λ(dϕg)

Pε| exp(Z2)=m̃(dε̃)P(exp(Z1), exp(Z2))(dλ, dm̃)PU (du)

=
∫ ∫

R

∫
R

1B1(t1)1B2(t2)f(y(t1))λ(t1)λ(t2)dt1dt2 PW (dε̃, dλ, dm̃, du)

with W = (ε, exp(Z1), exp(Z2), U).
Using Fubini’s theorem, the Radon-Nikodym derivative of α(2)

f w.r.t. the Lebesgue measure
is given by

ρ
(2)
f (t1, t2) =

∫
f(y(t1))λ(t1)λ(t2)PW (dε̃, dλ, dm̃, du).

Since (λ, m̃) is a realization of (exp(Z1), exp(Z2)) and U and ε have zero mean, applying
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Remark 4.2.4 yields

ρ
(2)
1 (0, r) =

∫
λ(0)λ(r)PW (dε̃, dλ, dm̃, du)

= E exp(Z1(0) + Z1(r)) = exp(2µ1 + σ2
1 + C11(r)),

ρ(2)
e (0, r) =

∫
e(y(0))λ(0)λ(r)PW (dε̃, dλ, dm̃, du)

= E
(
U(0)ỹ(0) exp(Z1(0) + Z1(r))

)
= 0,

ρ(2)
v (0, r) =

∫
v(y(0))λ(0)λ(r)PW (dε̃, dλ, dm̃, du)

= E
(
U(0)2ỹ(0)2 exp(Z1(0) + Z1(r))

)
= E

(
ỹ(0)2 exp(Z1(0) + Z1(r))

)
.

For ρ(2)
v (0, r), we distinguish between the additive marking in (4.3) and the multiplicative

marking in (4.4). In the first case we have

ρ(2)
v (0, r) = E

(
[a+ b exp(Z2(0)) + ε(0)]2 exp(Z1(0) + Z1(r))

)
= E

(
[a2 + b2 exp(2Z2(0)) + ε(0)2 + 2ab exp(Z2(0))] exp(Z1(0) + Z1(r))

)
= a2E exp(Z1(0) + Z1(r)) + b2E exp(Z1(0) + Z1(r) + 2Z2(0))

+ E
(
(c2 + d2 exp(Z2(0))) exp(Z1(0) + Z1(r))

)
+ 2abE exp(Z1(0) + Z1(r) + Z2(0))

= (a2 + c2) exp
(
2µ1 + σ2

1 + C11(r)
)

+ b2 exp
(
2µ1 + σ2

1 + C11(r) + 2µ2 + 2σ2
2 + 2C21(0) + 2C21(r)

)
+ (2ab+ d2) exp

(
2µ1 + σ2

1 + C11(r) + µ2 + σ2
2/2 + C21(0) + C21(r)

)
. (4.7)

In the second case we have

ρ(2)
v (0, r) = E

(
[exp(a+ bZ2(0) + ε(0))]2 exp(Z1(0) + Z1(r))

)
= E

(
exp(2a+ 2bZ2(0) + 2ε(0) + Z1(0) + Z1(r))

)
= E

(
exp(2a+ 2bZ2(0) + 2c2 + 2d2Z2(0)2 + Z1(0) + Z1(r))

)
= exp(2a+ 2c2)E

(
exp(Z1(0) + Z1(r) + 2bZ2(0) + 2d2Z2(0)2)

)
. (4.8)

For r 6= 0, µf (r) is given by ρ(2)
f (0, r)/ρ(2)

1 (0, r); for r = 0 we have µf (0) =
∫
R f(y)M(dy)

according to Section 2.2. Applying stationarity of Φ, equation (2.8) with h(t) = 1y(t)∈L,
L ∈ B, and Fubini’s theorem yield

M(L) = (EΦg([0, 1]))−1 · EΦ([0, 1]× L)

= (EΛg([0, 1]))−1
∫ ∫

[0,1]
1y(t)∈Lλ(t)dtPW (dε̃, dλ, dm̃, du)
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= exp(−(µ1 + σ2
1/2))

∫
1y(0)∈Lλ(0)PW (dε̃, dλ, dm̃, du),

and hence

µf (0) = exp(−(µ1 + σ2
1/2))

∫
f(y(0))λ(0)PW (dε̃, dλ, dm̃, du).

Analogously to the calculation in (4.7) and (4.8), we get

E(0) = 0,
Vadd(0) = a2 + c2 + b2 exp(2(µ2 + σ2

2 + C12(0))) + (2ab+ d2) exp(µ2 + σ2
2/2 + C12(0)),

Vmult(0) = exp(−(µ1 + σ2
1/2)) exp(2a+ 2c2)E

(
exp(Z1(0) + 2bZ2(0) + 2d2Z2(0)2)

)
,

which completes the proof.

In Theorem 4.2.3, the V-function for the multiplicative marking is given in terms of an
expectation w.r.t. the underlying random field and involves linear and quadratic terms in Z.
The following remark provides a formula for the explicit calculation of these terms.

Remark 4.2.5. Let Σ and Z̃ be as in Remark 4.2.4. Let Γ ∈ M4×4(R) be such that
(Σ−1 − 2Γ ) is invertible and (Σ−1 − 2Γ )−1 is a valid covariance matrix. Then

E exp(γ>Z̃ + Z̃>ΓZ̃) (4.9)

= |1− 2ΣΓ |−1/2 · exp
(
−1

2µ
>Σ−1µ+ 1

2(Σ−1µ+ γ)>(Σ−1 − 2Γ )−1(Σ−1µ+ γ)
)
.

Proof. Using the notation ξ = µ+Σγ we have

E exp(γ>Z̃ + Z̃>ΓZ̃)

=
∫
R4

exp(γ>z + z>Γz) · (2π)−2|Σ|−1/2 exp
(
−1

2(z − µ)>Σ−1(z − µ)
)
dz

= (2π)−2|Σ|−1/2

·
∫
R4

exp(z>Γz) exp
(
−1

2
(
z − ξ

)>
Σ−1

(
z − ξ

)
+ 1

2γ
>Σγ + γ>µ

)
dz

= (2π)−2|Σ|−1/2

·
∫
R4

exp
(
−1

2
(
z − (Σ−1 − 2Γ )−1Σ−1ξ

)> (
Σ−1 − 2Γ

) (
z − (Σ−1 − 2Γ )−1Σ−1ξ

)
+ 1

2γ
>Σγ + γ>µ

− 1
2ξ
>Σ−1ξ

+ 1
2
(
(Σ−1 − 2Γ )−1Σ−1ξ

)>
(Σ−1 − 2Γ )

(
(Σ−1 − 2Γ )−1︸ ︷︷ ︸

=1

Σ−1ξ
))

dz
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=
∫
R4

(2π)−2|(Σ−1 − 2Γ )−1|−1/2

exp
(
−1

2
(
z − (Σ−1 − 2Γ )−1Σ−1ξ

)> (
Σ−1 − 2Γ

) (
z − (Σ−1 − 2Γ )−1Σ−1ξ

))
dz

|Σ|−1/2 · |(Σ−1 − 2Γ )−1|1/2 · exp
(1

2µ
>Σµ+ 1

2(Σ−1µ+ γ)>(Σ−1 − 2Γ )−1Σ−1ξ

)
= |1− 2ΣΓ |−1/2 · exp

(
−1

2µ
>Σ−1µ+ 1

2(Σ−1µ+ γ)>(Σ−1 − 2Γ )−1Σ−1ξ

)
.

Remark 4.2.6. As the cross-covariance function C21(r)—in contrast to the functions C11(r)
and C22(r)—does not have to be a symmetric function, the MPP in Theorem 4.2.3 is able
to model interactions between the locations and the marks of the point process in terms of
a non-symmetric V-function. The crucial point regarding this property is that we use a
bivariate random field. In the univariate case, these dependencies vanish.

Example

In order to illustrate the result of Theorem 4.2.3, we consider the theoretical and empirical
V-function of a log Gaussian Cox process with the additive marking (4.3). Let Z1 be a
univariate Gaussian random field on R having a Gaussian covariance model

C1(h) = variance · exp(−(h/scale)2).

We choose variance = 0.1, scale = 180 [seconds] and a mean of = − log(30), which causes
the mean duration between two points of the Cox process to be approximately 30 seconds.
Let the second component of Z be given by Z2(t) = Z1(t− s)− Z1(t+ s) for some shifting
constant s > 0, which will be set to 10 [seconds] in our case. Using the notation of Theorem
4.2.3, we have

µ = (− log 30, 0),
σ2

1 = 0.1,
σ2

2 = 2σ2
1 − 2C1(2s),

C12(h) = Cov(Z1(0), Z2(h)) = C1(h− s)− C1(h+ s).

For simplicity we let a = c = d = 0 and b = 1, i.e., the marks are simply

y(ti) = U(ti) · exp(Z2(ti)).

Figure 4.4 shows an extract of a realization of the corresponding MPP together with the
bivariate driving random field. The theoretical V-function and the empirical V-function are
shown in Figure 4.5. The length of the simulated dataset is 4000 hours.

As in the example in Section 4.2.1, the sign of the marks is independent of the process of
point locations and has zero mean, which causes both the E-function and the conditional
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covariance function Cov(r) to be zero almost everywhere. Hence, we consider these functions
for the absolute value of the marks in Figure 4.6.
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Figure 4.4: Realization of the above Cox process (45-minutes window). Only the absolute
value of the marks is shown.
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Figure 4.5: Theoretical and empirical V-function.
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Figure 4.6: Estimate of the E-function and the conditional covariance function for the abso-
lute value of the marks.

4.2.3 Model 3: Marking based on inter-point distances
In this subsection, we consider Poisson point processes with a marking based on inter-point
distances. To this end, we define a measurable function ptd : R×M0(R)→ (0,∞), which
stands for previous time stamp distance, by

ptd(t, ϕg) = t− sup{s ∈ supp(ϕg) | s < t},

i.e., ptd(t, ϕg) is the distance from t to the nearest previous point within the point pattern ϕg.
Let ỹ : (0,∞)× R→ R be a measurable function that is differentiable in its first component.
Let U = {U(t)}t∈R be a stationary random field and let y : R ×M0(R) → R be given by
y(t, ϕg) = ỹ(ptd(t, ϕg), U(t)). Then we consider MPPs of the form

Φ = {(t, y(t, Φ̃)) : t ∈ Φ̃}, (4.10)

where Φ̃ is a stationary unmarked Poisson point process on R.
As an example, one may imagine the specification in Centanni & Minozzo (2006), where

U is some Gaussian white noise and the marking is given by

y(t, ϕg) = µ ptd(t,ϕg) + α

∫ t

t−ptd(t,ϕg)
λ(s) ds+ σU(t)

for some constants µ, α and σ.
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Theorem 4.2.7. For an MPP as in (4.10), the E- and V-function are given by

E(r) =
∫ (

ỹ(0,u(0))−
∫ 0

a(r)

d

ds
(ỹ(−s, u(0))) exp(−λs) ds

)
PU (du) (4.11)

V (r) =
∫ (

(ỹ(0,u(0)))2 −
∫ 0

a(r)

d

ds
((ỹ(−s,u(0)))2) exp(−λs) ds

)
PU (du)− E(r)2 (4.12)

with a(r) =
{
r, r < 0
−∞, r ≥ 0 ,

given that the respective RHS integrals exist.

Remark 4.2.8. This result can be generalized straightforward to doubly stochastic Poisson
processes: Let L be the underlying random intensity function, which is assumed to be
stationary and to have finite second moments. Let µL and CL denote its mean and its
covariance function, respectively, and let Λ(·) =

∫
· L(s)ds. Then, if the following RHS

integrals exist, we have

E(r) =
∫ (

ỹ(0,u(0))−
∫ 0

a(r)

d

ds
(ỹ(−s, u(0))) exp(−Λ([s,0])) ds

)
λ(0)λ(r)1r 6=0 PL(dλ)PU (du) · µ(r)−1,

V (r) =
∫ (

(ỹ(0,u(0)))2 −
∫ 0

a(r)

d

ds
((ỹ(−s,u(0)))2) exp(−Λ([s,0])) ds

)
λ(0)λ(r)1r 6=0 PL(dλ)PU (du) · µ(r)−1 − E(r)2

with a(r) as in Theorem 4.2.7 and µ(r) =
{
CL(r) + µ2

L, r 6= 0
µL, r = 0 .

The proof is analog to that of Theorem 4.2.7 by conditioning on the intensity.

Proof of Theorem 4.2.7. According to Corollary 2.2.5, part 3, and conditioning on U , it is

α
(2)
f (B1 ×B2) =

∫ ∫
R

∫
M0

1B1(t1)f(y(t1, ϕg))ϕg(B2)PΦg(dϕg)λdt1 PU (du). (4.13)

We define A(t1) to be the inner integral of (4.13):

A(t1) =
∫
M0
f(y(t1, ϕg))ϕg(B2)PΦg(dϕg) = EΦg [f(y(t1, Φg))Φg(B2)].

W.l.o.g., we assume B1 and B2 to be disjoint intervals. We differentiate the two cases
sup(B1) < inf(B2) and inf(B1) > sup(B2):
In the first case, since Φg is a Poisson process, f(y(t1, Φg)) and Φg(B2) are stochastically
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independent. For PTD = ptd(t1, Φg) we have

P(PTD ≤ t1 − s) = 1− P(Φg([s, t1]) = 0) = 1− exp(−λ(t1 − s)), s ≤ t1. (4.14)

The corresponding density is h(t1 − s) = λ exp(−λ(t1 − s)). Thus,

A(t1) = λ|B2| ·
∫ t1

−∞
f(ỹ(t1 − s, u(t1))) exp(−λ(t1 − s))λ ds. (4.15)

With gt1(s) = f(ỹ(t1 − s, u(t1))) exp(−λ(t1 − s)) we have

α
(2)
f (B1 ×B2) =

∫ ( ∫
B1

∫
B2

(∫ t1

−∞
gt1(s)λ ds

)
λ2 dt2dt1

)
PU (du). (4.16)

In the second case, f(y(t1, Φg)) and Φg(B2) are obviously not stochastically independent.
Let B2 = [a,b]. Then

A(t1) =
∞∑
i=1

EΦg [if(ỹ(PTD ,u(t1))) |Φg(B2) = i ∧ PTD > t1 − b]

· exp(−λ|B2|)
(λ|B2|)i

i! exp(−λ(t1 − b))

+
∞∑
i=1

EΦg [if(ỹ(PTD ,u(t1))) | PTD ≤ t1 − b]

· exp(−λ|B2|)
(λ|B2|)i

i! [1− exp(−λ(t1 − b))]. (4.17)

For s ∈ B2 = [a,b] we have

P(PTD ≤ t1 − s |Φg(B2) = i ∧ PTD > t1 − b)

= 1− P(Φg([s,b]) = 0 |Φg(B2) = i) = 1−
(
λ(s− a)
λ(b− a)

)i
,

which gives the conditional density h1(t1 − s) = i (s−a)i−1

(b−a)i . For s ∈ [b,t1] we have

P
(
PTD ≤ t1 − s | PTD ≤ t1 − b

)
= 1− P

(
Φg([s,t1]) = 0 | PTD ≤ t1 − b

)
= 1−

exp(−λ(t1 − s))
[
1− exp(−λ(s− b)

]
1− exp(−λ(t1 − b))

= 1− exp(−λ(t1 − s))
1− exp(−λ(t1 − b))

,

which leads to a density h2(t1 − s) = λ exp(−λ(t1−s))
1−exp(−λ(t1−b)) . Plugging this into (4.17) and using∑∞

i=1 i exp(−c) cii! = c for c ≥ 0, an elementary calculation yields

A(t1) =
∫ b

a
gt1(s)λ (1 + λ(s− a)) ds+

∫ t1

b
gt1(s)λ ds · λ(b− a)

=
∫ b

a

∫ b

z
gt1(s)λ2 ds dz +

∫ b

a
gt1(s)λ ds+

∫ b

a

∫ t1

b
gt1(s)λ2 ds dz
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=
∫
B2

(
gt1(t2) +

∫ t1

t2
gt1(s)λ ds

)
λdt2,

where the second equality follows from changing the order of integration. Finally,

α
(2)
f (B1 ×B2)

=
∫ (∫

B1

∫
B2

(
gt1(t2) +

∫ t1

t2
gt1(s)λ ds

)
λ2 dt2dt1

)
PU (du). (4.18)

Combining (4.16) and (4.18) and using Fubini’s theorem, we obtain the Radon-Nikodym
derivative of α(2)

f with respect to the Lebesgue measure:

ρ
(2)
f (t1, t2) = 1t1<t2

∫ (∫ t1

−∞
gt1(s)λ ds

)
λ2 PU (du)

+ 1t1>t2
∫ (

gt1(t2) +
∫ t1

t2
gt1(s)λ ds

)
λ2 PU (du). (4.19)

Hence, re-substituting gt1 ,

ρ
(2)
f (0, r)

= 1r>0

∫ (∫ 0

−∞
f(ỹ(−s, u(0))) exp(λs)λ ds

)
λ2 PU (du)

+ 1r<0

∫ (
f(ỹ(−r,u(0))) exp(λr) +

∫ 0

r
f(ỹ(−s,u(0))) exp(λs)λ ds

)
· λ2 PU (du).

Since f(ỹ(−s, u(0))) was assumed to be differentiable with respect to s on (−∞, 0), partial
integration yields

ρ
(2)
f (0, r) = 1r>0

∫ (
f(ỹ(0,u(0)))−

∫ 0

−∞

d

ds
(f(ỹ(−s,u(0)))) exp(λs) ds

)
· λ2 PU (du)

+ 1r<0

∫ (
f(ỹ(0, u(0)))−

∫ 0

r

d

ds
(f(ỹ(−s,u(0)))) exp(λs) ds

)
· λ2 PU (du).

Applying f ≡ 1 yields ρ(2)
1 (0,r) = λ2.

For r 6= 0, the assertion of the theorem follows from µ
(2)
f (r) = ρ

(2)
f (0, r)/ρ(2)

1 (0, r).
For r = 0, we have µf (0) =

∫
M∗ f(m)M(dm) (cf. Section 2.2). Since PTD is exponentially

distributed, we have

M(L) = λ−1
∫ ∫ 0

−∞
1L(ỹ(−s, u(0))) exp(λs)λ dsPU (du), L ∈ B,

and hence

µf (0) =
∫
R
f(y)M(dy)
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= λ−1
∫ (∫ 0

−∞
f(ỹ(−s, u(0))) exp(λs)λ ds

)
λPU (du)

=
∫ (

f(ỹ(0,u(0)))−
∫ 0

−∞

d

ds
(f(ỹ(−s, u(0)))) exp(λs) ds

)
PU (du). (4.20)

Example

In order to illustrate the result of Theorem 4.2.7, we consider the theoretical and empirical
E- and V-function of a log Gaussian Cox process satisfying the assumptions of Remark 4.2.8.
Let L = exp(Z) be a log Gaussian random field with Z having an exponential covariance
model C(h) = variance ·exp(−|h|/scale).We choose variance = 0.1, scale = 180 [seconds] and
a mean of − log(30), which causes the mean duration between two points of the Cox process
to be approximately 30 seconds. For the function ỹ we choose ỹ(ptd, u) = u · (ptd +1)−0.5.
Let U be a field of iid variables with P(U(0) = ±1) = 0.5. Then, E(r) = 0 for all r ∈ R. We
have v(y(t, ϕg)) = U(t)2 · (ptd(t, ϕg) + 1)−1 = (ptd(t, ϕg) + 1)−1

The empirical V-function (Figure 4.7) is estimated from a simulated realization of the
marked Cox process with a length of 3200 hours. The corresponding (semi-)theoretical
characteristics are determined by simulation of the underlying random fields L and U (50,000
realizations).
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Figure 4.7: Theoretical V-function and empirical V-function of a simulation of the Cox
process model (4.10).
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4.2.4 Model 4: Order book model
In this subsection, we consider a continuous time model for the dynamics of a limit order
book, proposed by Cont et al. (2010), in which the flow of orders is driven by independent
Poisson processes.
The model and the notation used by Cont et al. (2010) can be summarized as follows:

• the prices at which limit orders can be placed are {1, . . . , N}, which represents the
multiples of a price tick

• all orders have unit size

• X(t) = (X1(t), . . . , XN (t)) denotes the process of outstanding limit orders for each
price, where |Xp(t)| is the number of outstanding limit orders at price p, 1 ≤ p ≤ N ,
and where a negative sign stands for bid (= buy) orders

• pA(t) = inf{p ∈ {1, . . . , N} : Xp(t) > 0} ∧ (N + 1) is the lowest ask price,
pB(t) = sup{p ∈ {1, . . . , N} : Xp(t) < 0} ∨ 0 is the highest bid price,
pM (t) = 1

2(pA(t) + pB(t)) is the mid-price at time t,
s(t) = pA(t)− pB(t) is the bid-ask spread at time t

• let λ, θ : {1, . . . , N} → [0,∞) be functions, given by λ(i) = λ0
iα and θ(i) = θ0

iα for some
λ0, θ0, α > 0

• order arrival times are given by stochastically independent Poisson processes with the
following intensities:
ask orders at price level p arrive at rate λ(p− pB(t)) for p > pB(t),
bid orders at price level p arrive at rate λ(pA(t)− p) for p < pA(t),
market sell orders arrive at rate µ,
market buy orders arrive at rate µ,
ask orders at price p are canceled at rate θ(p− pB(t))|Xp(t)| for p > pB(t),
bid orders at price p are canceled at rate θ(pA(t)− p)|Xp(t)| for p < pA(t)

Cont et al. (2010) show that under these assumptions, X is an ergodic Markov process and
has a proper stationary distribution.

Let Φg = {ti : i ∈ Z} be the process of all market order time stamps, with ti < ti+1,
i ∈ Z. In this order book set-up, let the marks yi be given by the absolute change in
mid-prices: yi = pM (ti) − pM (ti−1). Note that, if we assume the price level to be large
compared to the price changes yi, then the yi are approximately proportional to the logreturns:
log(pM (ti)/pM (ti−1)) ≈ (pM (ti) − pM (ti−1))/pM . Note that all prices are left-continuous
functions of time. Let si denote a second mark of transaction i representing the spread
immediately before the (i−1)-th transaction. Let zi ∈ {1,−1} indicate whether the (i−1)-th
market order was a sell (+1) or a buy (−1) order. Let di be the duration between the (i−1)-th
and the i-th market order and let xA,i and xB,i be the values of the order book process at
the respective ask and bid price immediately before the (i− 1)-th market order. Then we
consider the MPP Φ, given by the locations of all market orders, marked by the vector of
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price change, spread, sign, duration and the amount of outstanding limit orders at ask and
bid price: Φ = {[ti, (yi, si, zi, di, xA,i, xB,i)] : i ∈ Z}. Let us write mi = (yi, si, zi, di, xA,i, xB,i)
for the whole vector of marks.

In what follows, we aim to give an explicit representation of the E- and V-function of the
MPP Φ w.r.t. the price change component y. Let l : R×M0 → (0,∞) be a function that
returns the calendar time of the last market order before time t, i.e., l(t, ϕ) = max{ti ∈ ϕ :
ti < t}. With this notation, we have xA,i = XpA(l(ti,Φ))(l(ti, Φ)).
We make the additional assumption that whenever a sell limit order is placed at a price

p1 or a buy limit order is placed at a price p2 and there exists a price q1 > p1 or a price
q2 < p2 such that Xq1(t) = 0 or Xq2(t) = 0, respectively, then automatically additional limit
orders are placed that fill these gaps. This additional assumption guarantees that neither pA
nor pB can be moved by more than one tick by a single market order. We also exclude the
cancellation of limit orders, i.e., we set θ ≡ 0.
Moreover, we consider a modification of the E- and V-function, which only takes into

account those market orders, for which the spread is minimal, i.e., one tick. We define
Ẽ = dα̃

(2)
e

dα̃
(2)
1

and Ṽ = dα̃
(2)
v

dα̃
(2)
1

with

α̃
(2)
f (B1 ×B2) =

∫
M0

6=∑
(t1,m1),(t2,m2)∈ϕ

1B1(t1)1B2(t2)f(y1)1s1=1 PΦ(dϕ).

Theorem 4.2.9. Let Φ be an MPP as described above. We pretend that, for a market order
(ti,mi) ∈ Φ, the events {si = 1} (i.e, the bid-ask spread before the (i− 1)-th market order
is a single tick), {XpA(l(ti,Φ))(l(ti, Φ)) = 1 | si = 1} and {XpB(l(ti,Φ))(l(ti, Φ)) = −1 | si = 1}
are stochastically independent of the unmarked process Φg of all market order time-stamps.
Then the modified V-function Ṽ is given by

Ṽ (r) = 1
2M

(xA)|s=1({1})
(

1− λg
2(2λ0 + λg) + 1r<0 ·

λ0
2λ0 + λg

exp(r · (2λ0 + λg))
)
,

where λg = 2µ is the intensity of the Poisson process of market orders and M (xA)|s=1 is the
Palm mark distribution of the xA-component conditional on the s-component being equal
to 1.

Note that the above independence assumptions are clearly not satisfied by the process
under consideration. However, we take this as an approximation to the truth in order to
allow for an analytical calculation of the modified V-function. Due to the symmetry of the
model, the E-function equals 0 almost everywhere.

Proof of Theorem 4.2.9. Conditioning on Φ(B2 ×M∗) and applying Corollary 2.2.5, part 1,
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yields

α̃
(2)
f (B1 ×B2)

=
∫
N

∫
M0

6=∑
(t1,m1),(t2,m2)∈ϕ

1B1(t1)1B2(t2)f(y1)1s1=1 PΦ|Φg(B2)=n(dϕ)PΦg(B2)(dn)

=
∫
N

∫
R

∫
M∗

∫
M0

1B1(t1)f(y1)1s1=1ϕg(B2)P !′
(t1,y1)(dϕ)M ′t1(dy1)Λ′g(dt1)PΦg(B2)(dn),

where for fixed n ∈ N, P !′ , M ′ and Λ′g refer to the process Φ′ = Φ|{Φg(B2) = n}. Because of
the independence property of a Poisson process, we have Λ′g( · ∩ (R\B2)) = Λg( · ∩ (R\B2))
and since Φg is stationary, Λg(dx) = λgdx. With M (·) denoting the marginal distribution of
the respective mark component, we have

α̃
(2)
f (B1 ×B2)

=
∫
R

∫
N

∫
M∗,(y)

∫
M0

1B1(t1)f(y1)nP !′
(t1,y1|s=1)(dϕ)M ′(y)|s=1

t1 (dy1)M ′(s)t1 ({1})PΦg(B2)(dn)λgdt1

= λg

∫
R

1B1(t1)
∫
N
nM

′(s)
t1 ({1})

∫
M∗,(y)

f(y1)M ′(y)|s=1
t1 (dy1)PΦg(B2)(dn) dt1. (4.21)

Since the last transaction before t1 has a spread of 1, the change of mid-price (which is given
by y1), can only take one of the five values 0, ±1

2 , ±1:

• It equals 0 if the market order at time l(t1, ϕ) does not move the ask and the bid price.
This is the case for each of the following situations:

– z(l(t1, ϕ)) = −1 and XpA(l(t1,Φ))(l(t1, Φ)) > 1
– z(l(t1, ϕ)) = +1 and XpB(l(t1,Φ))(l(t1, Φ)) < −1
– z(l(t1, ϕ)) = −1 and XpA(l(t1,Φ))(l(t1, Φ)) = 1 and a new sell limit order at
pA(l(t1, Φ)) arrives until time t1

– z(l(t1, ϕ)) = +1 and XpB(l(t1,Φ))(l(t1, Φ)) = −1 and a new buy limit order at
pB(l(t1, Φ)) arrives until time t1

• It equals 1
2 if XpA(l(t1,Φ))(l(t1, Φ)) = 1 and z(l(t1, ϕ)) = −1 and no new limit order at

pA(l(t1, Φ)) arrives between time l(t1, Φ) and t1. In other words, the last limit order at
price pA is consumed, this increases the ask price by one tick and hence the mid-price
is increased by half a tick.

• It equals 1 if XpA(l(t1,Φ))(l(t1, Φ)) = 1 and z(l(t1, ϕ)) = −1 and a new buy limit order
at pA(l(t1, Φ)) arrives between time l(t1, Φ) and t1. I.e., both the bid price and the ask
price are increased by one tick, and so is the mid-price.

• Analogously for the values −1
2 and −1.
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We consider the inner part of the RHS of equation (4.21):∫
N
nM

′(s)
t1 ({1})

∫
M∗,(y)

f(y1)M ′(y)|s=1
t1 (dy1)PΦg(B2)(dn). (4.22)

Let f(y) = v(y) = y2. Then, f(y) takes values in {0, 1
4 , 1} only. Since the order book model

is symmetric w.r.t. the ask and bid side, we have

M
′(xA)
t ({1}) = M

′(xB)
t ({−1}),

M
′(z)
t ({1}) = M

′(z)
t ({−1}) = 1

2

for t ∈ R. Since buy and sell market orders arrive with the same rate and independently of
the processes of limit orders, and since the duration component is also independent of the
mark components s, z, xA and xB, M ′t can be decomposed in the following way:

M ′t(dm) = M
′(y)|s,z,xA,xB ,d
t (dy)M ′(xA,xB)|s

t (d(xA, xB))M ′(s)t (ds)M ′(z)
t (dz)M ′(d)

t (dd). (4.23)

For notational convenience, we define the events

A(t) = {XpA(l(t,Φ))(l(t, Φ)) = 1, z(l(t, Φ)) = −1, s(l(t, Φ)) = 1},
B(t) = {XpB(l(t,Φ))(l(t, Φ)) = −1, z(l(t, Φ)) = 1, s(l(t, Φ)) = 1}.

Also note that the arrival rate of new ask and bid orders between l(t, Φ) and t at price
pA(l(t, Φ)) and pB(l(t, Φ)), given the events A(t) and B(t), respectively, is λ(1) = λ0. Hence,
the probability that neither a new ask limit order nor a new bid limit order arrive at these
prices within a period of length d is exp(−2λ0d).
W.l.o.g. we assume B2 = [a2, b2] to be an interval. If t1 < min(B2), then the mark

at location t1 and Φg(B2) are obviously independent and hence M ′t1 = Mt1 . Since the
unconditional MPP Φ is stationary, the mark distribution does not depend on the location,
i.e., Mt1 = M . Then

(4.22) =
∫
N
nM (s)({1})PΦg(B2)(dn)

∫
M∗,(y)

f(y1)M (y)|s=1(dy1)

= M (s)({1})Λg(B2)
∫
M∗,(y)

f(y1)M (y)|s=1(dy1)

= M (s)({1})λg|B2|

·
∫
M∗,(y,xA,xB,d)

f(y1)M (y)|s=1,xA,xB ,d(dy1)M (xA,xB)|s=1(d(xA, xB))M (d)(dd)

= M (s)({1})λg|B2| · 2M (xA)|s=1({1})M (z)({−1})∫ ∞
0

(1
4 exp(−2λ0d) + 1 · (1− exp(−2λ0d))1

2

)
λg exp(−λgd)dd
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= M (s)({1})M (xA)|s=1({1})M (z)({−1})λ2
g|B2|∫ ∞

0

(
1− 1

2 exp(−2λ0d)
)

exp(−λgd)dd

= M (s)({1})M (xA)|s=1({1})M (z)({−1})|B2|
(
λg −

λ2
g

2(2λ0 + λg)

)
.

If t1 > max(B2), we condition on Φg(B2) and Φg([b2,t1]). Then

(4.22) =
∫
N×N

nM
′(s)
t1 ({1})∫

M∗,(y)
f(y1)M ′(y)|s=1

t1 (dy1)P[Φg(B2), Φg([b2,t1])](dn× dj),

where now M ′t1 refers to the process Φ′ = Φ | {Φg(B2) = n, Φg([b2, t1]) = j}. We decom-
pose the Palm mark distribution M ′t1 analogously to (4.23). Conditional on Φg(B2) =
n, Φg([b2, t1]) = j, the distribution M ′(d)

t1 corresponds to that of a maximum of independent,
uniformly distributed random variables. Recall that, by assumption, M ′(xA)|s=1

t1 ({1}) =
M (xA)|s=1({1}), M ′(xB)|s=1

t1 ({−1}) = M (xB)|s=1({−1}), and M ′(s)t1 ({1}) = M (s)({1}). Then,

(4.22) =
∫
N

∫
N
nM

′(s)
t1 ({1})∫

M∗,(y,xA,xB,d)
f(y1)M ′(y)|s=1,xA,xB ,d

t1 (dy1)M ′(xA,xB)|s=1
t1 (d(xA, xB))M ′(d)

t1 (dd)

PΦg([b2,t1])(dj)PΦg(B2)(dn)

=
∞∑
n=1

n exp(−λg|B2|)
(λg|B2|)n

n!( ∞∑
j=1

exp(−λg(t1 − b2))(λg(t1 − b2))j

j!∫ t1−b2

0

(1
4 exp(−2λ0d) + (1− exp(−2λ0d))1

2
)

2M (s)({1})M (xA)|s=1({1})M (z)({−1}) · j (t1 − b2 − d)j−1

(t1 − b2)j dd

+ exp(−λg(t1 − b2))∫ t1−a2

t1−b2

(1
4 exp(−2λ0d) + (1− exp(−2λ0d))1

2
)

2M (s)({1})M (xA)|s=1({1})M (z)({−1}) · n(t1 − a2 − d)n−1

(b2 − a2)n dd

)
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= exp(−λg(t1 − b2))M (s)({1})M (xA)|s=1({1})M (z)({−1})
∞∑
n=1

n exp(−λg|B2|)
(λg|B2|)n

n!

·
(∫ t1−b2

0

∞∑
j=1

(λg(t1 − b2))j

j!
(
1− 1

2 exp(−2λ0d)
)
j

(t1 − b2 − d)j−1

(t1 − b2)j dd

+
∫ t1−a2

t1−b2

(
1− 1

2 exp(−2λ0d)
)
n

(t1 − a2 − d)n−1

(b2 − a2)n dd

)

= exp(−λg(t1 − b2))M (s)({1})M (xA)|s=1({1})M (z)({−1})

·
(
λg|B2|

∫ t1−b2

0
λg

∞∑
j=1

(λg(t1 − b2 − d))j−1

(j − 1)!
(
1− 1

2 exp(−2λ0d)
)
dd

+
∫ t1−a2

t1−b2
λg

∞∑
n=1

n exp(−λg|B2|)
(λg(t1 − a2 − d))n−1

(n− 1)!
(
1− 1

2 exp(−2λ0d)
)
dd

)

= exp(−λg(t1 − b2))M (s)({1})M (xA)|s=1({1})M (z)({−1})

·
(
λg|B2|

∫ t1−b2

0
λg exp(λg(t1 − b2 − d))

(
1− 1

2 exp(−2λ0d)
)
dd

+
∫ t1−a2

t1−b2
λg exp(−λg|B2|) exp(λg(t1 − a2 − d)) (λg(t1 − a2 − d) + 1)

(
1− 1

2 exp(−2λ0d)
)
dd

)

= M (s)({1})M (xA)|s=1({1})M (z)({−1})λg

·
(
λg|B2|

∫ t1−b2

0

(
exp(−λgd)− 1

2 exp(−(2λ0 + λg)d)
)
dd

+
∫ t1−a2

t1−b2
(λg(t1 − a2 − d) + 1)

(
exp(−λgd)− 1

2 exp(−(2λ0 + λg)d)
)
dd

)
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= M (s)({1})M (xA)|s=1({1})M (z)({−1})λg

·
(
λg|B2|

(
1− exp(−λg(t1 − b2))

λg
− 1− exp(−(2λ0 + λg)(t1 − b2))

2(2λ0 + λg)

)

+
[
− (t1 − a2 − d) exp(−λgd)

+ 1
2
[λg(t1 − a2 − d)

2λ0 + λg
+ 2λ0

(2λ0 + λg)2

]
exp(−(2λ0 + λg)d)

]t1−a2

t1−b2

)
(by partial integration)

= M (s)({1})M (xA)|s=1({1})M (z)({−1})λg

·
(
λg|B2|

(
1− exp(−λg(t1 − b2))

λg
− 1− exp(−(2λ0 + λg)(t1 − b2))

2(2λ0 + λg)

)
+ (b2 − a2) exp(−λg(t1 − b2))

+ 2λ0
2(2λ0 + λg)2 exp(−(2λ0 + λg)(t1 − a2))

− λg(b2 − a2)
2(2λ0 + λg) exp(−(2λ0 + λg)(t1 − b2))

− 2λ0
2(2λ0 + λg)2 exp(−(2λ0 + λg)(t1 − b2))

)
= M (s)({1})M (xA)|s=1({1})M (z)({−1})λg

·
(
λg|B2|

(
1
λg
− 1

2(2λ0 + λg)

)

+ 2λ0
2(2λ0 + λg)2

[
exp(−(2λ0 + λg)(t1 − a2))− exp(−(2λ0 + λg)(t1 − b2))

])
= M (s)({1})M (xA)|s=1({1})M (z)({−1})

·
(
|B2|

(
λg −

λ2
g

2(2λ0 + λg)
)

+ λ0λg
(2λ0 + λg)2

[
exp(−(2λ0 + λg)(t1 − a2))− exp(−(2λ0 + λg)(t1 − b2))

])
.

Hence, if t1 < min(B2),

α̃(2)
v (B1 ×B2)

= M (s)({1})M (xA)|s=1({1})M (z)({−1}) · λg
(
λg −

λ2
g

2(2λ0 + λg)
) ∫

B1

∫
B2
dt2dt1
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and if t1 > min(B2),

α̃(2)
v (B1 ×B2)

= M (s)({1})M (xA)|s=1({1})M (z)({−1})

· λg

∫
B1

∫
B2

(
λg −

λ2
g

2(2λ0 + λg) + λ0λg
2λ0 + λg

exp(−(2λ0 + λg)(t1 − t2))
)
dt2dt1.

For f ≡ 1, we have (4.22) = M (s)({1})E(Φg(B2)) = M (s)({1})λg|B2| and hence

α̃
(2)
1 (B1 ×B2) = M (s)({1})

∫
B1

∫
B2
λ2

g dt2dt1.

Then

Ṽ (r) = dα̃
(2)
v

dα̃
(2)
1

(0, r)

= M (xA)|s=1({1})M (z)({−1})(
1− λg

2(2λ0 + λg) + 1r<0 ·
λ0

2λ0 + λg
exp(r · (2λ0 + λg))

)
.

The fact that the function Ṽ is constant on the positive half-axis merely reflects the
independence property of the Poisson point process. Conditioning on past transactions,
however, leads to an exponential increase of the variance in the above model.

4.3 Valid bi-directional E- and V-functions
Having calculated the theoretical E- and V-function for different MPP models in Section 4.2,
we now turn towards the question which functions belong to the class of valid bi-directional
E- and V-functions of stationary MPPs on R. To this end, we provide a modification of a
construction principle proposed in Schlather (2001, Section 5), which is based on bivariate
Gaussian variables and Matérn hard-core processes.

Theorem 4.3.1. Let R be a positive number and let E∗, V ∗ and C∗ be real-valued functions
on R with

E∗(r)2 ≤ V ∗(r), (4.24)
C∗(−r) = C∗(r), (4.25)∣∣C∗(r)− E∗(r)E∗(−r)∣∣ ≤ √[V ∗(r)− E∗(r)2] · [V ∗(−r)− E∗(−r)2] (4.26)
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for r ∈ R. Let

m ∈
(

inf
0<r<R

E∗(−r) + E∗(r)
2 , sup

0<r<R

E∗(−r) + E∗(r)
2

)
. (4.27)

Then there exists a stationary MPP Φ on R such that for almost all r ∈ [−R,R],

µ(2)
e (r) = E∗(r), µ(2)

v (r) = V ∗(r), µ(2)
c (r) = C∗(r),

and for almost all r with |r| > R,

µ(2)
e (r) = µ(1)

e = m, µ(2)
c (r) = m2,

where c is the function that maps a tuple of marks (y1, y2) to its product y1y2.

Proof. The proof is similar to that of Schlather (2001, Theorem 5.1). Condition (4.27)
implies the existence of a probability measure P with supp(P ) = [0, R] such that∫ R

0

E∗(−r) + E∗(r)
2 P (dr) = m.

Let Π1 be a stationary MPP on R with iid marks (α, ξ, η1, η2), where α is a random sign
with P(α = ±1) = 0.5, ξ ∼ P , η1, η2 ∼ N (0, 1), and all mark components are independent of
each other. By a thinning procedure, we obtain a second stationary MPP Π2. In particular,
we only keep those points of Π1 that do not have a neighbor within a distance less than or
equal to 4R, i.e.,

Π2 =
{

[t, (α, ξ, η1, η2)] ∈ Π1 : [t− 4R, t+ 4R] ∩Π1,g = {t}
}
.

Then, Φ is constructed as follows: The set of point locations of Φ is{
t, t+ αξ : [t, (α, ξ, η1, η2)] ∈ Π2

}
.

In other words, each point of Π2 gets a neighbor at the random distance αξ. The marks
of each of these pairs of points are given by a bivariate Gaussian vector with a covariance
matrix constructed from the functions E∗, V ∗ and C∗. For r ∈ R, let

σ2
1(r) = V ∗(r)− E∗(r)2,

σ2
2(r) = V ∗(−r)− E∗(−r)2,

τ(r) = C∗(r)− E∗(r)E∗(−r)

and let A(r) be a symmetric (2×2)-matrix such that A(r)2 =
(
σ2

1(r) τ(r)
τ(r) σ2

2(r)

)
. Note that A(r)2

is a valid covariance matrix if and only if conditions (4.24)–(4.26) are satisfied. To each pair
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of point locations (t, t+ αξ), we then assign the mark vector(
y1
y2

)
= A(αξ)

(
η1
η2

)
+
(
E∗(αξ)
E∗(−αξ)

)
,

which yields a bivariate Gaussian distribution with covariance matrix A(αξ)2. In summary,

Φ =
{[
t, (1, 0)A(αξ) ( η1

η2 )
]
,
[
t+ αξ, (0, 1)A(αξ) ( η1

η2 )
]

: [t, (α, ξ, η1, η2)] ∈ Π2
}
.

By construction, the distance between two points of Φ is contained in [−R,R] if and
only if the two points represent a pair (t, t + αξ) (with t ∈ Π2,g); the marks of points
with absolute distance larger than R are stochastically independent. We consider the tuple
(y1, y2, α, ξ, η1, η2) as a random vector on some space (Ω,A,P) and denote the expectation
w.r.t. P by E. Then, for r ∈ [−R,R], we have

µ(2)
e (r) = E[y1 |αξ = r] = E[y2 |αξ = −r] = E∗(r),
µ(2)
v (r) = E[y2

1 |αξ = r] = E[y2
2 |αξ = −r] = σ2

1(r) + E[y1 |αξ = r]2 = V ∗(r),
µ(2)
c (r) = E[y1y2 |αξ = r] = τ(r) + E∗(r)E∗(−r) = C∗(r)

for P ′-almost all r, where P ′( · ) = 1
2(P ( · ) + P (− · )). For |r| > R, we have

µ(2)
e (r) = Ey1 = E[E∗(αξ)] =

∫ R

0

E∗(−r) + E∗(r)
2 P (dr) = m,

µ(2)
v (r) = Ey2

1 = E[E∗(ξ2)] =
∫ R

0
E∗(r2)P (dr),

µ(2)
c (r) = (Ey1)2 = m2

for almost all r, which closes the proof.

Note that V ∗ and C∗ are the uncentered second-order moment measures of Φ. For the
centered V-function V (r) = µ

(2)
v (r)− µ(2)

e (r)2, there are analog conditions to (4.24)–(4.26).
The construction principle in Theorem 4.3.1 is based on isolating pairs of points by a
“hard-core thinning” of a Poisson point process. The radius R gives the range up to which
the E- and V-function can be freely controlled—only subject to the (modified) conditions
(4.24)–(4.26). Similar principles can be used to control the general second-order moment
measure µ(2)

f or higher-order moment measures, i.e., interaction of three or more points.





5 Intrinsically weighted means of marked point
processes

This chapter is based on the manuscript Malinowski et al. (2012a), submitted to Advances
in Applied Probability. Note that the definitions of mean mark in this chapter are slight
extensions compared to the definitions in Chapter 2 in that they include a weighting
component that might assign a different weight to each point of the MPP. While the focus of
the previous two chapters was rather on conditional variances of the marks, in what follows,
arbitrary moments of the marks are considered with particular regard to non-ergodic or
non-stationary MPPs.

5.1 Introduction
Marked point processes (MPPs) provide an adequate framework for modeling irregularly
scattered events in space or time in that they incorporate the joint distribution of the
observed values and the point locations (e.g., Karr, 1991; Møller & Waagepetersen, 2003;
Schlather et al., 2004; Daley & Vere-Jones, 2008; Myllymäki & Penttinen, 2009; Diggle et al.,
2010). Due to the variety of possible forms of dependence between marks and locations in
an MPP framework, already the notion of the mean, which is usually considered as being
the simplest summary statistic, rises tantalizing and challenging questions.
An introductory example for the type of MPP averages being considered within this

chapter is the trading process in financial markets. Transactions of assets are typically
characterized by the two quantities price and volume; a benchmark quantity that is of major
interest especially for institutional investors is the so-called volume-weighted average price
(VWAP) (e.g., Madhavan, 2002; Bialkowski et al., 2008). The VWAP of n transactions with
prices pi and traded volumes vi, i = 1, . . . , n, is defined as pVWAP =

∑
(pivi)/

∑
vi.

We embed this example in the following general MPP framework: We consider stationary
MPPs on Rd of the form

Φ = {(ti, yi, zi) : i ∈ N} ,

where ti ∈ Rd is the point location, yi ∈ R is the first mark and zi ∈ [0,∞) is a second mark
of the ith point of Φ. Formally, the mark at ti is given by the vector (yi,zi) ∈ R × [0,∞).
Let Φg = {t : (t,y,z) ∈ Φ} denote the ground process of point locations of Φ and let us
denote the marks at a location t ∈ Φg by y(t) and z(t). The non-negativity assumption on
the z-component simplifies technical assumptions when employing this mark component
as weights in weighted averages of the first mark component y(t), or of f(y(t)) for some

61
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function f : R→ R. In intuitive notation we write the corresponding weighted mean as

µ
(1)
f = E[z(t)f(y(t)) | t ∈ Φg], (5.1)

where we assume that the z-component is normalized such that E[z(t) | t ∈ Φg] = 1. Here, the
conditioning on “t ∈ Φg” is understood in the sense of the Palm mark distribution (Stoyan
et al., 1995, Chap. 4). Since the weights z(t) are provided by the MPP itself and may depend
on both the marks y(t) and the point locations t ∈ Φg, we refer to µ(1)

f as intrinsically
weighted mean mark of Φ. The formal definition of µ(1)

f and related quantities will be given
at the beginning of Section 5.2.

When a system of randomly distributed objects is modeled by means of MPPs, there can
exist different sensible choices of intrinsic weights z(t) leading to different weighted mean
marks that are relevant for one and the same process, but for different statistical questions:

• Average height of trees: Consider n forests of about equal size, each of which is sampled
on an area with fixed size and shape. Then the unweighted average of the height of all
trees provides a measure of the entire timber stand, which is relevant for forest inventory
applications. This amounts to z(t) = 1 in (5.1). Additionally, the average height of
a typical forest (as opposed to a typical tree) might be of interest, independently of
how dense the trees occur in the different forests. Then, a nested definition of mean
seems to be adequate where we first average within each forest and then between all
forests. This is equivalent to using a weighted average over all trees with z(t) being
proportional to the inverse of the number of trees in the forest that location t belongs
to.

• Density of insects on plants (cf. Begon et al., 1990): Consider n plants and a population
of insects distributed over the plants. Let ki, i = 1, . . . , n, be the number of insects on
the ith plant. In this set-up there are different well-established definitions of density
referring to different ecological effects. The ordinary density of insects, also called
resource-weighted density, is (k1 + . . .+ kn)/n and quantifies the average availability of
resources. In contrast, the organism-weighted density is the density that an average
insect experiences. Each individual on plant i experiences a density of ki insects per
plant, i.e., the organism-weighted density is (k2

1 + . . .+ k2
n)/(k1 + . . .+ kn). In MPP

notation, each insect is represented by a point, marked by the total number of insects
on the plant on which the insect is located. Then the organism-weighted density
corresponds to the ordinary mean mark (z(t) = 1), whereas the resource-weighted
density is the average of all plant-wise averages of the marks, i.e., z(t) = (nki)−1∑n

i=1 ki
if t belongs to plant i.

• Sampling of continuous-space processes: Taking measurements of continuous-space
or continuous-time processes usually aims at estimating or predicting the underlying
process and the mean of interest is therefore the spatial or temporal mean over the whole
domain of the process. Since measurement locations are not necessarily independent
of the underlying process, knowledge of the pattern of point locations might already
provide information about the values of the process. This situation is commonly
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referred to as biased or preferential sampling and different weighting approaches exist
to correct for this form of biases (e.g., Isaaks & Srivastava, 1989). Although most
statistical methods only use stationarity, ergodicity is often implicitly assumed. In case
of non-ergodicity, which means that different realizations can have a different stochastic
behavior, we are faced with an additional dimension of biasedness: Within each ergodic
subclass, the pattern of point locations can be independent of the underlying process,
while there might be a strong dependence between the pattern of measurement locations
and the process itself if multiple realizations are considered. For a simple example,
consider a Gaussian random field with a random mean m combined with a Poisson
point process of measurement locations whose intensity of points is a function of m.

While ergodicity of MPPs is necessary for a straightforward interpretation of the mark
distribution as the distribution of a typical point and, at least implicitly, is required by many
applications for consistent estimation, in this chapter, we investigate the behavior of moment-
based summary statistics in case of non-ergodic MPPs and intend to point out problems
of ambiguity in this context. When the different forests and plants in the above examples
are perceived as a set of MPP realizations and exhibit different ecological characteristics,
non-ergodicity has to be included. Examples for non-ergodic MPPs that evolve in time can
easily be found in the financial world: For subsequent days of asset trading, the process of
executed transactions can be considered as different realizations of a possibly non-ergodic
MPP. To treat non-ergodic MPPs adequately, we propose intrinsically weighted mean marks
as a special case of (5.1) in which the weights are constant within each ergodicity class but
allow for compensating for differences between the different ergodicity classes.

The remainder of this chapter is organized as follows: In Section 5.2 we recall and generalize
moment-based characteristics for MPPs which also form the central tool for the analysis of
interactions in MPPs. We study their behavior and interpretation for non-ergodic processes
and, following the idea of the above examples, propose alternative definitions of moment-
based summary statistics in Section 5.3. Different estimators for the above characteristics and
their asymptotic properties are discussed in Section 5.4; the chapter closes with a comparison
of the point process set-up with estimation of continuous-space processes, which typically
occur within geostatistical applications. Sections 5.7 and 5.8 review some basic results from
ergodic theory and contain the proof of Section 5.4, respectively.

5.2 MPP moment-measures and measurement of interaction effects
Throughout this chapter, Φ = {(ti, yi, zi) : i ∈ N} is a stationary marked point process on
Rd with marks (y(ti), z(ti)) = (yi, zi) ∈ R× [0,∞), and Φg = {t : (t, y, z) ∈ Φ} is its ground
process of point locations. In particular, the point configuration Φg is locally finite. Let us
remark that the following definitions of MPP statistics can directly be generalized to MPPs
on Polish spaces (cf. Kallenberg, 1986) whose marks are also in a Polish space.

One of the most basic mark summary statistic is the weighted mean mark µ(1)
f , which we

introduced in (5.1) as a conditional mean, conditional on the event {t ∈ Φg}. Since for fixed
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t ∈ Rd, this is a zero-probability event, the classical formal definition is

µ
(1)
f =

E
∑

(t,y,z)∈Φ zf(y)1B(t)
E
∑

(t,y,z)∈Φ z1B(t) (5.2)

for any Borel set B ⊂ Rd with ν(B) > 0, where ν denotes the Lebesgue measure. Here we
implicitly exclude the degenerate case z(t) ≡ 0. Due to the stationarity of Φ, this definition
does not depend on the choice of B.

Proposition 5.2.1. Both definitions of µ(1)
f , (5.1) and (5.2), coincide.

Proof. We use standard arguments of marked point process theory, similar to Daley &
Vere-Jones (2008, Chap. 13). Let g : Rd × R × [0,∞) → R be an integrable function
w.r.t. the intensity measure Λ(B × L) = E(Φ(B × L)), B ∈ B(Rd), L ∈ B(R × [0,∞)).
Stationarity allows to decompose Λ into the product λν ×M , where M is the (Palm) mark
distribution and λ > 0 is the intensity of the ground process Φg. Campbell’s theorem states
E
∑

(t,y,z)∈Φ g(t,y,z) = λ
∫∫
g(t,y,z)M(d(y,z))ν(dt) and plugging in g(t,y,z) = zf(y)1B(t)

yields

E
∑

(t,y,z)∈Φ
zf(y)1B(t) = λν(B)

∫
zf(y)M(d(y,z)) = λν(B)E [Zf(Y )] ,

for a random vector (Y,Z) distributed according to M . Thus, the right-hand side (RHS) of
(5.2) is E [Zf(Y )] /[EZ], which equals (5.1) under the assumption E[z(t) | t ∈ Φg] = 1.

The most relevant example of f in practical application is f(y) = yn for n = 1, 2, . . . Then,
if z(t) = 1 for t ∈ Φg, µ(1)

f simply represents the n-th moment of the (Palm) mark distribution.
Note that in case the MPP represents measurements of an underlying continuous process,
the mean mark can substantially differ from the mean of the underlying process due to
stochastic dependence between the sampling locations and the process itself.
While the above statistic µ(1)

f reflects (average) properties of single points, second-order
characteristics (in intuitive notation E[f(y(t1), y(t2)) | t1, t2 ∈ Φg, t1 6= t2]) provide a frame-
work to investigate dependency structures within MPPs. We use the superscripts (1) and (2)

to indicate whether first- or second-order measures are meant.

Definition 5.2.2. For any non-negative function f on R× R, we define a σ-finite measure
on Rd × Rd by

α
(2)
f (C) = E

6=∑
(t1,y1,z1),(t2,y2,z2)∈Φ

z1f(y1, y2)1C((t1, t2)), C ∈ B(Rd × Rd), (5.3)

which we call weighted second moment measure. Here, “6=” indicates that the sum runs over
all pairs of points with (t1, y1) 6= (t2, y2).
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With the notation

C(B, I) =
{{

(t1, t2) : t1 ∈ B, t2 ∈ t1 + I
}
, d = 1,{

(t1, t2) : t1 ∈ B, t2 ∈ t1 + {x ∈ Rd : ‖x‖ ∈ I}
}
, d > 1,

C(t, I) = C([0, t], I),
C(I) = C([0,1], I),

for B ∈ B(Rd), t ∈ Rd, I ∈ B(R), which slightly differs from the definition in Chapter 2 w.r.t.
the I-component,

α
(2)
f (C(I)), I ∈ B(R), (5.4)

defines a σ-finite measure on R. Well-known examples of second-order mark characteristics for
stationary and isotropic MPPs are Cressie’s mark variogram and covariance function (Cressie,
1993), Stoyan’s kmm-function (Stoyan, 1984), and Isham’s mark correlation function (Isham,
1985), which can all be expressed in terms of (5.3) or (5.4) with a constant z-component
and which are all functions of the Euclidean distance between two points of a stationary and
isotropic process. Schlather (2001) provided a unifying notation for the above characteristics
and further introduced new functions, E and V , where E(r) and V (r) represent the mean
and variance of a mark, respectively, given that there exists a further point at distance r > 0.
For the one-dimensional case, e.g., for temporal processes, in Chapter 3, we have extended
those characteristics to the non-isotropic set-up, where a negative value of r means that
the point that is conditioned on is in the past. The above second-order characteristics only
involve the three functions f(y1, y2) = y1y2, f(y1, y2) = y1 and f(y1, y2) = y2

1.

Definition 5.2.3. (cf. Schlather, 2001). For a general non-negative function f on R× R,
we define

µ
(2)
f (I) =

α
(2)
f (C(I))
α(2)(C(I))

, I ∈ B(R), (5.5)

if α(2)(C(I)) > 0. Here, α(2) is short notation for α(2)
f with f ≡ 1. We call µ(2)

f the (weighted)
second-order mean mark.

In the following, we always assume that I is chosen such that α(2)(C(I)) > 0. Note that
the distinction between d = 1 and d > 1 in the definition of the set C(B, I) allows to capture
a possibly anisotropic behavior of µ(2)

f in the one-dimensional case. In particular,

α
(2)
f (C(I)) =

EΦ
∑6=

(t1,y1,z1),(t2,y2,z2)∈Φ, t1∈[0, 1] z1f(y1, y2)1t2−t1∈I , d = 1
EΦ
∑6=

(t1,y1,z1),(t2,y2,z2)∈Φ, t1∈[0, 1] z1f(y1, y2)1‖t2−t1‖∈I , d > 1.

For higher dimensions, it is also possible to assign different directions of isotropy, but the
technical burden increases considerably as µ(2)

f will not be a function of a scalar argument
anymore. For further notational convenience, we assume that the derivative of α(2)

f w.r.t. the
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Lebesgue measure exists, which is then referred to as product density and denoted by ρ(2)
f .

Due to the stationarity of Φ, we have ρ(2)
f (t1, t2) = ρ

(2)
f (0, t2−t1) for almost all (t1, t2) ∈ R2d

and hence α(2)
f (C) =

∫
C ρ

(2)
f (0, h2 − h1)d(h1 × h2), C ∈ B(Rd × Rd). Let ρC,(2)

f (r), r ∈ R,
denote the derivative of α(2)

f (C(·)) w.r.t. the one-dimensional Lebesgue measure. Obviously,
α

(2)
f (C(·)) is dominated by α(2)(C(·)), which ensures that the limit of µ(2)

f (I) for |I| → 0
exists and can be expressed in terms of Radon-Nikodym derivatives. For r 6= 0 we define

µ
(2)
f (r) =

∂α
(2)
f (C(·))

∂α(2)(C(·))

∣∣∣∣∣∣
·=r

=
ρ
C,(2)
f (r)

ρ
C,(2)
1 (r)

. (5.6)

Note that for d = 1, we have ρC,(2)
f (r) = ρ

(2)
f (0, r). With a slight abuse of notation, we refer

to both definitions (5.5) and (5.6) as µ(2)
f , i.e., formally, µ(2)

f is a function on B(Rd) ∪ R\{0}.
For r 6= 0 and f only depending on its first argument, µ(2)

f (r) can be interpreted as the
(weighted) expectation of a mark at location t subject to the conditioning that Φ has a
point at location t and at location t+re1, i.e., µ(2)

f (r) = E[z(t)f(y(t)) | t, t+ re1 ∈ Φg], where
e1 denotes the vector (1, 0, . . . , 0)T ∈ Rd. For µ(2)

f (I), this interpretation becomes slightly
ambiguous: Considering an event at time t, there may be multiple other points located
within the set t+ I and in case that interactions of higher order are present, these will be
reflected by the second-order statistic µ(2)

f (I) as well. More precisely, by the definitions in
(5.5) and (5.6),

µ
(2)
f (I) = α(2)(C(I))−1

∫
I
µ

(2)
f (r) dα(2)(C(r)), (5.7)

i.e., µ(2)
f (I) is a weighted average of conditional expectations µ(2)

f (r) with weights proportional
to the expected number of pairs of points with distance dr.

Remark 5.2.4. (a) The extension to moment measures of higher order is straightforward
and allows to condition on arbitrary point constellations. In practice, however, mostly
first- and second-order statistics are considered.

(b) The non-negativity condition on f can be weakened by considering the restriction of
µ

(2)
f (·) to some bounded set J ∈ B(R). Then it is sufficient for f that α(2)

h (C(J)) <∞
is satisfied for h = f+ = max{f, 0} or for h = f− = −min{f, 0}.

(c) Another generalization allows to include further conditioning on the marks and is related
to Section 6.2, where µ(2)

f is being adapted to extreme value statistics. For fcond a
non-negative function on R× R we consider

µ
(2)
f, fcond

(I) =
α

(2)
f ·fcond

(C(I))

α
(2)
fcond

(C(I))
=
µ

(2)
f ·fcond

(I)

µ
(2)
fcond

(I)
. (5.8)
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Choosing fcond to be an indicator function fcond(y1, y2) = 1A(y1)1B(y2) implicitly condi-
tions the marks on the events A and B, respectively.

Remark 5.2.5. For d > 1, µ(2)
f is a function of the Euclidean distance between two points,

whereas for d = 1, µ(2)
f is a function of the signed distance. In the latter case, µ(2)

f (·) is in
general not symmetric: Consider a temporal process consisting of pairs of points (t1, t2) with
t1 < t2 and with small intra- but large inter-pair distances. Assume that the marks of different
pairs are stochastically independent and that for each pair of points f(y1, y2) > f(y2, y1)
holds. Then µ(2)

f (r) > µ
(2)
f (−r) holds for all r > 0 which are small enough and which can

occur as intra-pair distances.

For notational convenience, we will write µ(i)
f to indicate that a statement is valid for µ(1)

f

and µ(2)
f . Recall that µ(1)

f is a single number, whereas µ(2)
f = µ

(2)
f (·) is a function of distance.

5.3 New moment measures for non-ergodic MPPs
Ergodicity makes spatial averages over suitably increasing observation windows of a single
realization converge to the corresponding expectation over the state space:

|W |−1
∫
W
X(TxΦ) dx a.s.−→ E(X(Φ)), for |W | → ∞ suitably,

for any integrable function X on the space of all locally finite counting measures. Here, Tx
denotes the shift of the whole random point pattern Φ by x ∈ Rd. In essence, ergodicity
enables consistent estimation of MPP moment measures by observing a single realization on
a suitably increasing domain. In this section, though, we consider the opposite situation,
namely where Φ is a non-ergodic process. Although the above definitions of µ(i)

f are valid
irrespective of ergodicity properties, their meaning is slightly more complex in the non-ergodic
case, and alternative possibilities of defining conditional mark expectations arise canonically,
as we see in the following.

The following proposition directly relates to the fact that a non-ergodic MPP can be seen
as a hierarchical model, which, in a first step, draws an ergodic source of randomness out of
which the final realization is drawn in a second step.

Proposition 5.3.1. Let Φ be a non-ergodic MPP with probability law P . By M0 andM0
we denote the space of all locally finite counting measures on Rd × R× [0,∞) and the usual
σ-algebra, respectively. See Section 5.7 for more details. Then

µ
(1)
f =

EQ
[
µ

(1)
f,Φ|Q · α

(1)
Φ|Q(B)

]
α(1)(B)

, µ
(2)
f (·) =

EQ
[
µ

(2)
f,Φ|Q(·)α(2)

Φ|Q(C(·))
]

α(2)(C(·))
, (5.9)

where Q ∼ λ is a random variable with values in the space Perg of all ergodic MPP
probability laws, distributed according to some probability measure λ, such that P (M) =
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∫
Perg

Q∗(M)λ(dQ∗), M ∈M0. If µ(2)
f is evaluated for a fixed distance r ∈ R, α(2)(C(r)) has

to be replaced by ρC,(2)
1 (r) in (5.9).

Proof. The ergodic decomposition theorem (cf. Theorem 5.7.5) guarantees the existence and
uniqueness of a decomposition P (·) =

∫
Perg

Q∗(·)λ(dQ∗) and a corresponding mixing random
variable Q ∼ λ. Conditioning Φ on Q, we can decompose the moment measures α(i)

f and
obtain

µ
(2)
f (r) =

∂EQα
(2)
f,Φ|Q(C(·))

∂α(2)(C(·))

∣∣∣∣∣∣
·=r

=
∂EQα

(2)
f,Φ|Q(C(·))

/
∂ν(·)

∣∣∣
·=r

∂α(2)(C(·))
/
∂ν(·)

∣∣∣
·=r

=
EQρ

C,(2)
f,Φ|Q(0, r)

ρ
C,(2)
1 (0, r)

=
EQ
[
µ

(2)
f,Φ|Q(r) · ρC,(2)

1,Φ|Q(0, r)
]

ρ
C,(2)
1 (0, r)

,

where ν denotes the Lebesgue measure. For µ(2)
f (I) and µ(1)

f , the decomposition is analogous.

Example 5.3.2. The so-called log-Gaussian Cox process (Møller et al., 1998) is ergodic
if and only if the underlying stationary Gaussian random field Z is ergodic. A sufficient
condition for Z being ergodic is that the covariance function decays to zero. Amongst others,
Myllymäki & Penttinen (2009) and Diggle et al. (2010) use log-Gaussian Cox processes,
combined with an intensity-dependent marking, as parametric models for preferential sampling
applications.

Proposition 5.3.1 shows that in case of non-ergodicity, µ(i)
f is an average of its ergodic

subclasses counterparts, in which each class Q∗ is implicitly weighted by the respective
intensity α(i)

Φ|Q=Q∗ . If all ergodic subprocesses [Φ|Q = Q∗] have the same intensity measure,
the weights cancel out and we have µ(i)

f = EQµ
(i)
f,Φ|Q. Though, if α

(i)
Φ|Q is not constant for all

Q, a single ergodicity class Q∗ with a small probability of occurrence P (Q = Q∗) might be
able to drive the value of the moment measure µ(i)

f by means of a large value of α(i)
Φ|Q=Q∗ .

More precisely, let Q be a family of ergodic MPP distributions s.t. P (Q ∈ Q) = 1. Assume
that we can choose the values of µ(2)

f,Φ|Q=Q∗(r) independently of the location pattern and
vice versa. Then for given values of µ(2)

f,Φ|Q=Q∗(r), Q
∗ ∈ Q, we can choose the second-

order product densities ρ(2)
Φ|Q(0, r) in such a way that µ(2)

f (r) takes any value m for which
PQ(µ(2)

f,Φ|Q(r) > m) > 0 and PQ(µ(2)
f,Φ|Q(r) < m) > 0. In light of this observation, the demand

for a new characteristic µ̃(i)
f arises naturally, that summarizes the properties of all ergodicity

classes, irrespectively of how the processes of point locations differ between the different
ergodicity classes. We meet these requirements by a definition that excludes the implicit
weighting proportional to the ith order intensities:
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Definition 5.3.3. Let λ and Q be the ergodic decomposition mixture measure and mixture
variable, respectively, of Φ, and let EQ

∣∣µ(i)
f,Φ|Q

∣∣ <∞. Then we call

µ̃
(i)
f = EQµ

(i)
f,Φ|Q =

∫
Perg

µ
(i)
f,Φ|Q=Q∗ λ(dQ∗). (5.10)

the (equally-weighted) average ith-order mean mark of Φ.

Relating to the introductory forest example, the classical definition of the mean mark in
(5.2) corresponds to the average height of all trees, irrespectively of differences w.r.t. the
tree densities between the different forests, while the new definition in (5.10) refers to the
average height of a typical forest.

Remark 5.3.4. Comparing the new definition with (5.9) yields that µ̃(i)
f coincides with µ(i)

f

if α(i)
Φ|Q is λ-a.s. constant. This is particularly the case if Φ is ergodic.

Lemma 5.3.5. For any I ∈ B(R) we have

µ̃
(2)
f (I) = EQ

[
α

(2)
Φ|Q(C(I))−1

∫
I
µ

(2)
f,Φ|Q(r) dα(2)

Φ|Q(C(r))
]
.

If, for λ-almost all measures Q∗, µ(2)
f,Φ|Q=Q∗(r) is uniformly bounded by some positive constant

c(Q∗) and EQc(Q) <∞, for I ∈ B(R) and r ∈ R, we have

lim
I→{r}

µ̃
(2)
f (I) = µ̃

(2)
f (r).

Proof. The first assertion follows directly from applying the representation (5.7) to the
ergodic subprocesses [Φ|Q = Q∗]. Since limI→{r} µ

(2)
f (I) = µ

(2)
f (r) by construction, the

second assertion is merely an application of Lebesgue’s dominated convergence theorem.

From Lemma 5.3.5 we see that the nested conditional mean µ̃(2)
f (r) is a Radon-Nikodym

derivative of α(2)
f (C(·)) w.r.t. α(2)(C(·)) if and only if the expectation of α(2)

Φ|Q(C(·))µ(2)
f,Φ|Q(·)

factorizes. This contrasts the ordinary conditional mean µ(2)
f (r), which is already defined as

a Radon-Nikodym derivative of α(2)
f (C(·)) w.r.t. α(2)(C(·)).

The ergodic decomposition and an analog to Definition 5.3.3 can be applied to any
expectation-based functional of an MPP including the Palm mark distribution itself. While
the classical definition of the mean mark represents a typical point, irrespectively of the
different ergodicity classes, the two-stage-expectation µ̃(i)

f refers to the mean of a typical
realization. We provide more details on the meaning of the differences between µ(i)

f and µ̃(i)
f

and between different estimators in the next section.
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5.4 Estimation principles for the new MPP moment-measures
5.4.1 The ergodic case
For ergodic processes Φ, the pointwise ergodic theorem for MPPs (Proposition 5.7.4) yields
that

E

 6=∑
(t1,y1,z1),(t2,y2,z2)∈Φ

z1f(y1, y2)1(t1,t2)∈C(I)


= lim

n→∞

n−d 6=∑
(t1,y1,z1),(t2,y2,z2)∈ϕ

z1f(y1, y2)1(t1,t2)∈C(n1,I)


for almost all realizations ϕ of Φ, which builds the basis for the estimators being discussed
in this section. For readability reasons, and since we will be only dealing with second-order
statistics from now on, we drop the superscript (2) in all the estimators of µ(2)

f .
Applying the standard estimator for MPP moment measures to a realization of Φ observed

on the set [0,T], T ∈ (0,∞)d, we obtain

µ̂f (I, Φ,T) = α̂f (I, Φ,T)
α̂1(I, Φ,T) , (5.11)

where α̂f (I, Φ,T) =
∑6=

(t1,y1,z1),(t2,y2,z2)∈Φ z1f(y1, y2)1(t1,t2)∈C(T,I).

Lemma 5.4.1. If Φ is ergodic, µ̂f (I, Φ,T) is consistent for µ(2)
f (I). Here, “T → ∞” is

understood componentwise. If Φ is non-ergodic, µ̂f (I, Φ,T) is consistent if and only if
µ

(2)
f,Φ|Q=Q∗(I) is constant w.r.t. Q∗.

Proof. By Proposition 5.7.4, the tuple consisting of the numerator and the denominator of
(5.11), each normalized by the volume of [0,T], converges a.s. to

(
α

(2)
f (C(I)), α(2)(C(I))

)
if Φ is ergodic. The first assertion thus follows from the continuous mapping theorem.
In the non-ergodic case, clearly only µ

(2)
f,Φ|Q=Q∗(I) can be estimated consistently for Q∗

being the respective ergodicity class. Though, if µ(2)
f,Φ|Q=Q∗(I) is constant w.r.t. Q∗ we have

µ
(2)
f (I) = µ

(2)
f,Φ|Q=Q∗(I) for any Q∗ ∈ Perg.

To establish asymptotic normality of µ̂f (I, Φ,T), we introduce some idealized assumptions.
In particular, we assume stochastic independence between the point locations and the marks
of the MPP. For simplicity, we restrict to the case where f only depends on its first argument
and the MPP is a process on R.

Condition 5.4.2 (m-dependent Random Field Model). Let Φ̃ be a stationary unmarked
point process on R, for which neighboring points have some minimum distance d0 > 0. Let
{Y (t) : t ∈ R} be an independent stationary process with finite second moments and a
covariance function C that has finite range, i.e., C(h) = 0 for all |h| > h0 for some h0 > 0.
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Then, with m = [d0/h0], we say that an MPP Φ is an m-dependent Random Field Model, if
Φ

d= {(ti, Y (ti), 1) | ti ∈ Φ̃}.

The following theorem transfers a central limit theorem (CLT) for arrays of m-dependent
random variables to the MPP context. It also covers a thinning of the MPP in which the
threshold increases with the observation window. The result allows to derive asymptotically
exact confidence intervals for the estimator of µ(2)

f (I) and will be specialized in Chapter 6 in
the context of extreme value analysis for MPPs.

Theorem 5.4.3 (CLT for m-dependent Random Field Models). Let Φ be an ergodic MPP
that satisfies Condition 5.4.2. For f : R→ [0,∞) and u ≥ 0, let fu, fcond,u : R→ [0,∞) be
given by fu(y) = (f(y)− u)+ = (f(y)− u)1f(y)>u and fcond,u(y) = 1f(y)>u. Let

α̂∗fu(I, Φ, T ) =
6=∑

(t1,y1),(t2,y2)∈Φ

(
fu(y1)− µ(2)

fu,fcond,u
(I)
)
· fcond,u(y1) · 1(t1,t2)∈C(T,I)

be a centered version of α̂fu(I, Φ, T ), where µ(2)
fu,fcond,u

(I) is defined as in (5.8). Let (uT )T≥0
be a family of non-negative, non-decreasing numbers such that the following conditions are
satisfied:

lim
T→∞

E
[
fuT (Y (0))i

∣∣f(Y (0)) > uT
]
<∞ (i = 1, . . . , 4),

T−1α̂1(I, Φ, T )− λ
EΦα̂fcond,uT

(I, Φ, 1) → 0 a.s. (T →∞).

Then, for I ∈ B(R) and T →∞, we have

α̂∗fuT
(I, Φ, T )√

α̂fcond ,uT
(I, Φ, T )

⇒ N (0, su∞),

where

su∞ = lim
T→∞

{
(λuT T )−1 Var

[
α̂∗fuT

(I, Φ, T )
]}
,

λu = EΦ
[
α̂fcond ,u(I, Φ, 1)

]
, u ≥ 0.

The proof is given in Section 5.8. Note that the asymptotic variance su∞ can be given in
a more explicit form for suitable choices of f and suitable distributional assumptions on the
underlying random field Y . A related CLT result was provided by Heinrich & Molchanov
(1999) for random measures associated to germ-grain models.

5.4.2 The non-ergodic case
If Φ is non-ergodic, consistent estimation of summary statistics generally requires multiple
realizations of the process. Let P and λ denote the probability law and the ergodic mixture
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measure of Φ, respectively. Then, drawing iid realizations of Φ corresponds to drawing
ergodicity classes according to the mixture measure λ. Though, a finite collection of
realizations merely approximates the mixing measure λ and we can only expect consistency
if both n and T tend to infinity simultaneously. To see why n→∞ is not sufficient, consider
an MPP with infinitely many ergodicity classes Q1, Q2, . . . and with EΦ|Q=QiΦ([0, 1]) = 2−i.
Then, for fixed T, the probability of observing at least one point in a realization that belongs
to class i tends to zero as i→∞. Hence, the classes Qi, for i large, are only captured by
the estimator if T also tends to infinity.
Considering iid realizations Φ1, . . . , Φn of Φ, different possibilities arise of how to put

together the respective estimators. Let w = (w1, . . . , wn) denote a vector of weight functions
wi : M0 × [0,∞)d → [0,∞). We assume that for λ-almost all ergodic MPP laws Q∗ there
exist constants w∗i (Q∗) ≥ 0 with w∗(Q∗) =

∑n
i=1w

∗
i (Q∗) > 0 to which the weights converge

stochastically within the respective ergodicity class, i.e.,

PΦ|Q=Q∗ (|wi(Φ,T)− w∗i (Q∗)| > ε) −→ 0 (T→∞) (5.12)

for all ε > 0. Then we consider estimators of the form

µ̂n,wght
f (I,w) = µ̂n,wght

f (I,w, (Φ1, . . . ,Φn),T)

=
(∑

wi(Φi,T)
)−1 n∑

i=1
wi(Φi,T)µ̂f (I, Φi,T). (5.13)

Note that the functions wi might also depend on I. With w1 = . . . = wn = n−1, we obtain
as a special case

µ̂nf (I) = µ̂nf (I, (Φ1, . . . ,Φn),T) = n−1
n∑
i=1

µ̂f (I, Φi,T). (5.14)

As summarized by equation (5.9), µ(2)
f (I) is the weighted expectation of its subclass

counterparts µ(2)
f,Φ|Q(I), weighted proportional to the second-order point intensity α(2)

Φ|Q(C(I)).
Hence, in order that (5.13) consistently estimates µ(2)

f (I) for all possible combinations of
µ

(2)
f,Φ|Q=Q∗(I) and α(2)

Φ|Q=Q∗(C(I)), the weights have essentially to be chosen as

wi(Φi,T) = α̂(2)(C(T, I), Φi)/vT =
6=∑

t1,t2∈Φi,g
1(t1,t2)∈C(T,I)/vT, (5.15)

where vT is the volume of the cube [0,T]. By Proposition 5.7.4, α̂(2)(C(T, I), Φi)/vT

converges to α(2)
Φ|Q=Qi(C(I)) a.s. as T→∞, where Qi is the realized ergodicity class of Φi.

With w being the vector of weights from (5.15), we define

µ̂αf (I, (Φ1, . . . ,Φn),T) = µ̂n,wght
f (I,w, (Φ1, . . . ,Φn),T), (5.16)
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which, in a sense, represents the family of all pairs of points with a distance contained in
I from all realizations. This choice of weights satisfies the above stochastic convergence
condition (5.12) and is sufficient but not necessary for consistency. The following theorem
gives a weaker set of conditions that is still sufficient for consistency

Theorem 5.4.4. Let Φi, i ∈ N, be iid copies of a possibly non-ergodic MPP Φ and let Qji
denote the respective ergodicity classes. For weight functions w̃i : M0 × [0,∞)d → [0,∞)
and iid random factors Wi with E|Wi| < ∞, i ∈ N, let wi(Φi,T) = Wi · w̃i(Φi,T) and
w = (w1(Φ1,T), . . . , wn(Φn,T)). Then, µ̂n,wght

f (I,w) is consistent for µ(2)
f (I) if the following

conditions hold:

Wi > 0 a.s., (5.17)
Var w̃i(Φi,T) ≤ c1 for some c1 > 0, (5.18)

n−1E
n∑
i=1

w̃i ≥ c2 > 0 ∀n ≥ n0 for some n0 ∈ N, (5.19)

E [Wiw̃i(Φi,T)] = E [Wi] · E [w̃i(Φi,T)] , (5.20)

E
[
Wi · α̂(2)(C(T, I),Φi)µ(2)

f,Φ|Q=Qji
(I)
]

= E [Wi] · E
[
α̂(2)(C(T, I),Φi)µ(2)

f,Φ|Q=Qji
(I)
]
, (5.21)

P
{

nmax
i=1

∣∣∣∣∣ w̃i(Φi,T)
∑n
j=1 α̂

(2)(C(T, I),Φj)
α̂(2)(C(T, I), Φi)

∑n
j=1 w̃j(Φj ,T)

∣∣∣∣∣ > c3

}
→ 0 (n,T→∞). (5.22)

Proof. We consider∣∣∣∣∑n
i=1wi(Φi,T)µ̂f (I, Φi,T)∑n

i=1wi(Φi,T) − µ(2)
f (I)

∣∣∣∣
≤

∣∣∣∣∣∣∣
∑n
i=1wi(Φi,T)

[
µ̂f (I, Φi,T)− µ(2)

f,Φ|Q=Qji
(I)
]

∑n
i=1wi(Φi,T)

∣∣∣∣∣∣∣ (5.23)

+

∣∣∣∣∣∣∣
∑n
i=1Wiw̃i(Φi,T)µ(2)

f,Φ|Q=Qji
(I)∑n

i=1Wiw̃i(Φi,T) − µ(2)
f (I)

∣∣∣∣∣∣∣ . (5.24)

By Lemma 5.4.1, µ̂f (I, Φi,T) is consistent (for T → ∞) within the respective ergodicity
class. Thus, (5.23) converges to 0 in probability if T → ∞. Using the short notation
αi = α̂(2)(C(T, I), Φi) and w̃i = w̃i(Φi,T), we have

(5.24) =

∣∣∣∣∣∣∣
n∑
i=1

Wiαi
[
µ

(2)
f,Φ|Q=Qji

(I)− µ(2)
f (I)

]
∑n
j=1Wjαj

·
w̃i
∑n
j=1Wjαj

αi
∑n
j=1Wjw̃j

∣∣∣∣∣∣∣
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≤ nmax
i=1

{∣∣∣∣∣ w̃i
∑n
j=1 αj

αi
∑n
j=1 w̃j

∣∣∣∣∣
}
·
∣∣∣∣∣
∑n
j=1Wjαj∑n
j=1 αj

∣∣∣∣∣ ·
∣∣∣∣∣
∑n
j=1 w̃j∑n

j=1Wjw̃j

∣∣∣∣∣
·

∣∣∣∣∣∣∣
∑n
i=1Wiαi

[
µ

(2)
f,Φ|Q=Qji

(I)− µ(2)
f (I)

]
∑n
i=1Wiαi

∣∣∣∣∣∣∣ .
Since by assumption, (n−1E

∑n
i=1 w̃i)n∈N is eventually bounded away from 0 and the variance

of the w̃i is uniformly bounded, the law of large numbers yields that
∑n
j=1 w̃j/E

∑n
j=1 w̃j and∑n

j=1 W̃jwj/E
∑n
j=1Wjw̃j converge to 1 in probability. Additionally using that E[Wjw̃j ] =

EWjEw̃j , for n→∞, we get the convergence∑n
j=1 w̃j∑n

j=1Wjw̃j
=

∑n
j=1 w̃j/E

∑n
j=1 w̃j∑n

j=1Wjw̃j/E
∑n
j=1Wjw̃j

·
E
∑n
j=1 w̃j

E
∑n
j=1Wjw̃j

p−→ 1
EW1

as n→∞. Similarly, for n→∞ and n,T→∞, we have∑n
j=1Wjαj∑n
j=1 αj

p−→ E[W1α1]
Eα1

,

∑n
i=1Wiαiµ

(2)
f,Φ|Q=Qji

(I)∑n
i=1Wiαi

p−→
E
[
α

(2)
Φ|Q=Qji

(C(I)) · µ(2)
f,Φ|Q=Qji

(I)
]

E
[
α

(2)
Φ|Q=Qji

(C(I))
] = µ

(2)
f (I),

respectively. Together with (5.22) we obtain that (5.24) converges to 0 in probability, which
completes the proof.

Note that if w̃i = w̃ for all i ∈ N for some weight function w̃ with E|w̃(Φ,T)| < ∞, the
w̃i(Φi,T) are iid and conditions (5.18), (5.19) and (5.20) become obsolete.

Now we turn to the estimation of µ̃(2)
f (I). By construction (cf. Definition 5.3.3), µ̂nf (I)

consistently estimates µ̃(2)
f (I); in contrast to µ̂αf (I), it reflects a random pair of points with

distance I within a randomly chosen ergodicity class. Again, also other choices of weights
are feasible for consistent estimation of µ̃(2)

f (I), apart from the choice wi(Φi,T) = 1. By
replacing α̂(2)(C(T,I), Φi) by the constant 1 in Theorem 5.4.4, we get the following corollary.

Corollary 5.4.5. Under the assumptions of Theorem 5.4.4 with α̂(2)(C(T,I), Φi) being
replaced by the constant 1, µ̂n,wght

f (I,w) is a consistent estimator for µ̃(2)
f (I).

Remark 5.4.6. If Φ is ergodic, µ̂n,wght
f (I,w) is consistent for µ(2)

f (I) (as T→∞) for any
choice of weights w that satisfies (5.12). Note that in this case, consistency is independent
of n, which can be fixed to any finite value.

Proof. If Φ is ergodic, the mixing measure λ is the one-point distribution δP and condition
(5.12) simply means stochastic convergence of the weights w.r.t. P . The assertion directly
follows from the continuous mapping theorem.
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5.4.3 Variance minimization
In what follows, we seek for an optimal consistent estimator for µ̃(2)

f (I) in the sense of minimal
variance. We introduce some additional assumptions on the mark-location dependence for
analytical tractability. For simplicity, we set w̃i(Φi,T) = 1, i.e., we consider wi(Φi,T) = Wi.
Let A∗n denote the σ-algebra generated by the unmarked ground processes Φ1,g, . . . , Φn,g,
i.e., A∗n = σ({{ω : Φi,g(ω)(B) = k} : k ∈ N, B ∈ B, i = 1, . . . , n}). We assume that
E[µ̂f (I,Φi,T) | A∗n] is a.s. constant. We further assume that A∗n is maximal w.r.t. this
property and that Var [ µ̂f (I, Φ,T)| A∗n] is independent of the random ergodicity class Q.

Proposition 5.4.7. With the above notation and assumptions, the variance minimizing
weights for µ̂n,wght

f (I,w, (Φ1, . . . ,Φn),T) that satisfy (5.17)–(5.22) with α̂(2)(C(T, I), Φi)
being replaced by 1 are given by

wi(Φi,T) = Wi = Var [ µ̂f (I, Φi,T)| A∗n]−1 .

Note that an analog variance minimizing procedure via random factors Wi could also be
included into the estimator µ̂αf of µ(2)

f (I).

Proof of Proposition 5.4.7. For general A∗n-measurable weights wi(Φi,T), i = 1, . . . ,n, we
have

Var
[
µ̂n,wght
f (I,w, (Φ1, . . . ,Φn),T)

]
= E

[
1

(
∑
wi(Φi,T))2

n∑
i=1

wi(Φi,T)2 Var [ µ̂f (I, Φi,T)| A∗n]
]

+ Var
[

1∑
wi(Φi,T)

n∑
i=1

wi(Φi,T)E [ µ̂f (I, Φi,T)| A∗n]
]

= E
[
n∑
i=1

wrel
i (Φi,T)2 Var [ µ̂f (I, Φi,T)| A∗n]

]
+ 0 (5.25)

with wrel
i (Φi,T) = wi(Φi,T)/

∑n
i=1wi(Φi,T). Since any weighted average

∑
v2
i xi with

xi > 0 and
∑
vi = 1 is minimized by vi = x−1

i /
∑
x−1
i (Lagrange method), the unconditional

variance (5.25) is minimized by choosing

wi(Φi,T) = Wi = Var [ µ̂f (I, Φi,T)| A∗n]−1 .

The Wi are A∗n-measurable by definition of the conditional variance and satisfy (5.17)–(5.22)
with α̂(2)(C(T, I), Φi) being replaced by 1. Maximality of A∗n ensures optimality of the
weights.

If there exist interaction effects in the MPP that are of higher than second order, the
assumption on E[µ̂f (I,Φi,T) | A∗n] might not be satisfied anymore and weighting according to
the above conditional variances should be handled with care. Clusters of point locations which
tend to increase the conditional variance of µ̂f given the ground process, can additionally
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influence the mean of other marks in excess of the bivariate interaction measured by µ(2)
f (I).

Then, a bias will be introduced by using the above random weights. More generally, the
more is known about the relation between µ̂f (I, Φ,T) and the ground process Φg, the more
can be gained from using different (random) weights while preserving consistency of the
estimator. Without any assumption, only deterministic or independent weights are feasible
and then wi(Φi,T) = 1 is naturally the best choice, i.e., the use of µ̂nf (I).
We consider two simple examples of optimal weighting in the following. Here we as-

sume that the z-components of the marks are 1 for all points. Recall that µ̂f (I, Φ,T) =
α̂f (I, Φ,T)

/
α̂1(I, Φ,T), that the denominator is A∗n-measurable, and that α̂f (I, Φi,T) is a

sum consisting of α̂1(I, Φi,T) random summands.

Remark 5.4.8. In general, the summands of α̂f (I, Φi,T) are not iid since each value f(y1)
can occur multiple times in the sum—in fact, it occurs as many times as there are points t2
s.t. t2 − t1 ∈ I. However, if conditionally on A∗n, the summands were iid with variance v,
the conditional variance Var [µ̂f (I, Φ,T) | A∗n] would be v/α̂1(I, Φi,T).

In the following scenarios, we assume f to depend on its first argument, only.

Example 5.4.9. Let Φ have marks that are stochastically independent of the process of
point locations and let these point locations be fully regularly spaced in every realization. Let
vT and N = N(T) denote the volume of [0,T] and the random number of points in [0,T],
respectively, and assume that the f(yi), i ∈ Z, are iid with variance v. Then, asymptotically,
Var[µ̂f (I, Φ,T)|A∗n] ∼ v/N and the resulting weights are wi(Φi) = Ni/v, where Ni denotes
the number of points within the i-th realization.

Proof. For |I| and T large, we have α̂1(I, Φ,T) ∼ N · N |I|/vT and each distinct sum-
mand in α̂f (I, Φ,T) occurs N |I|/vT ∼ α̂1(I, Φ,T)/N times. Thus we have α̂f (I, Φ,T) ∼
α̂1(I, Φ,T)

∑N
i=1 f(yi)/N and Var[α̂f (I, Φ,T)|A∗n] ∼ α̂1(I, Φ,T)2v/N

Since N(T) is usually much smaller than α̂1(I, Φ,T), the variance Var[µf (I, Φ,T)|A∗n] in
Example 5.4.9 is larger than the one in the hypothetical example in Remark 5.4.8.
In the following example, we consider arbitrary point locations but still assume indepen-

dence between marks and locations.

Example 5.4.10. Let Φ̃ be a one-dimensional, stationary unmarked point process and Y a
stationary continuous-time process which is independent of Φ̃ and such that f(Y ) has finite
second moments. We consider the MPP Φ = {(t, Y (t), 1) : t ∈ Φ̃}. Then

Var [ µ̂f (I, Φ, T )| A∗n]

=
∑
t1∈Φg∩[0, T ]

∑
s1∈Φg∩[0, T ] Cov

[
f(Y (t1)), f(Y (s1))

]
n(t1, Φg, I)n(s1, Φg, I)[∑

t1∈Φg∩[0, T ] n(t1, Φg, I)
]2 ,

where n(t1, Φg, I) =
∑
t2∈Φg\{t1} 1t2−t1∈I .

The proof of this assertion is obtained as a side result of the proof of Theorem 6.2.1 in
Section 6.7, with u being replaced by −∞ and with the logarithm being replaced by a general
function f .
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5.4.4 Remarks
Remark 5.4.11. The weighting of multiple realizations and the intrinsically weighted means
coincide in the following sense: Let Φ1, . . . , Φn be iid copies of an MPP Φ = {(ti, yi, 1) :
i ∈ N}, for which the second mark component equals 1 for all points. Then the weighting
of realizations via wi(Φi,T) in the estimator (5.13) can alternatively be captured by the
second mark component. For i = 1, . . . , n, let Φ̃i =

{
(t, y, wrel

i (Φi,T)) : (t,y,1) ∈ Φi
}
,

where wrel
i (Φi,T) = wi(Φi,T)/

∑n
k=1wk(Φk,T). Let Ψn be the concatenation of the processes

Φ̃1, . . . , Φ̃n, each restricted to the observation window [0,T] and concatenated with a buffer
of max(I) and such that all points of Ψn are contained in [0,Tn] for some Tn ∈ Rd. Then,
with w = (wi(Φi,T))ni=1, we have

µ̂f (I, Ψn,Tn) = µ̂n,wght
f (I,w, (Φ1, . . . ,Φn),T).

We close this section with a note on the estimation of µ(2)
f (r) and µ̃(2)

f (r), r ∈ R.

Remark 5.4.12. For most MPPs used in applications, finding two points of an MPP with
a fixed distance r within a bounded observation window, has probability zero. Then the
simplest approach is to apply any of the estimators (5.11), (5.13), (5.14) or (5.16), with I
being a small interval containing r, e.g., [r − δ, r + δ] for some δ > 0. This is equivalent to
use (Nadaraya-Watson) kernel regression with the rectangular kernel, applied to the tuples
{(z1f(y1), dist(t2 − t1)) : (t1, y1, z1), (t2, y2, z2) ∈ Φ}, where dist(x) = x if x ∈ R1 and
dist(x) = ‖x‖ if x ∈ Rd with d > 1.
An obvious generalization is to replace the rectangular kernel by a general kernel Kh with
bandwidth h. For the basic estimator (5.11), this yields

µ̂f (r, Φ, T ) =
∑6=

(t1,y1,z1),(t2,y2,z2)∈Φ t1∈[0, T ] z1f(y1)Kh(r − dist(t2 − t1))∑6=
(t1,y1),(t2,y2)∈Φ, t1∈[0, T ]Kh(r − dist(t2 − t1))

,

likewise for the other estimators. If the support of Kh covers the whole real line, the
denominator is always strictly larger than zero, which simplifies implementation, but also
allows µ̂f (r, Φ, T ) to be driven by pairs of points whose distance differs largely from r.

5.5 Application to continuous-space processes
Picking up the introductory example on continuous-space processes, taking measurements
from such a process with measurement locations that are possibly irregularly spaced but
independent of the underlying process, leads to a subclass of MPPs. At the same time,
particularly developed in the geostatistical context, there exist numerous methods of inference
for continuous-space processes, including methods to account for biased and preferential
sampling. We compare the concept of intrinsically weighted means of MPPs to statistical
methods for continuous-space processes in the following.
One of the classical problems in geostatistical applications (e.g., Chiles & Delfiner, 1999)

is prediction of averages from measurements {(ti, Y (ti)) : i = 1, . . . , n}, where {Yt : t ∈ T},
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T ⊂ Rd, is a latent second-order stationary random field. When predicting global moments
of Y , redundancies in the data can be excluded via the spatial correlation structure, e.g., the
best linear unbiased estimator (BLUE) for EY is well-known to be (1′Σ−11)−1 · 1′Σ−1Y,
where 1 = (1, . . . , 1)′, Y = (Y (t1), . . . , Y (tn))′ and Σ = Cov(Y (ti), Y (tj))ni,j=1 (e.g., Chiles
& Delfiner, 1999, p.179). Basically, each data point is weighted by the corresponding column
sum of the precision matrix Σ−1. Note that even when the ti are on a fully regular grid,
the weights do not necessarily equal n−1. More generally, any estimator that is linear in
a transformation g of the data, including estimators for the correlation structure itself,
allows for assigning a different weight to each data point; then the estimator takes the form∑n
i=1 zig(Y (ti)) or

∑n
i,j=1 zijg(Y (ti), Y (tj)); similarly for higher-order moments. The weights

zi and zij are supposed to capture the spatial or temporal pattern of measurement locations
when statistical inference from irregularly spaced data is carried out. Similar weighting
procedures are used for declustering and debiasing methods (cf. Journel, 1983; Isaaks &
Srivastava, 1989; Deutsch, 1989; Bourgault, 1997; Emery & Ortiz, 2005; Olea, 2007).

Assertion 5.5.1. Identifying the geostatistical weights zi with the z-component of the MPP
Φ = {(ti,yi,zi) : i ∈ N}, the estimator

∑n
i=1 zig(Y (ti)) of Eg(Y ) coincides with the canonical

estimator for the weighted mean mark µ(1)
f , defined by (5.2).

The geostatistical guiding principle of choosing optimal weights for aggregation of mea-
surements adheres to the idea that a) there exists an underlying random field and b) that
this field can be measured at any location without causally influencing the other measure-
ments. It is important to note that this is far from being satisfied for processes in which
the measurements reflect physical objects that interact with each other. Trees in a forest,
for example, compete for resources and if another tree had been added at some point, the
measured characteristics of the surrounding trees would have likely changed. In the context
of high-frequency transaction data, measurements are taken in form of transactions, which, in
turn, not only influence the future price process but even the instantaneous price. Hence, the
imagination of an underlying random field is not well suited, at least not for the microscopic
scale of transactions. Though, with increasing distance, interaction effects between single
objects of an MPP may become negligible compared to the variability of the mark values and
the random field assumption might be sensible on a larger scale. This perspective motivates
combining classical mean mark estimators for MPPs of the form Φ = {(ti,yi,1) : i ∈ N} with
a geostatistical weighting. Partitioning the observation window in smaller parts, we assign a
z-component to Φ such that zi = zj whenever ti and tj belong to the same cell of the partition.
This leads to a classical unweighted average within each cell and therewith maintains the
information contained in the small-scale pattern of the point locations. Between the different
cells, we allow for a weighting in the geostatistical sense and therewith allow to smooth
out large-scale irregularities in the distribution of point locations. We denote the resulting
estimator by µ̂(1),geo

f .

Assertion 5.5.2. Considering a realization of Φ as a collection of realizations of a possibly
non-ergodic MPP on smaller observation windows corresponding to the above partition, the
form of µ̂(1),geo

f coincides with that of µ̂nf and µ̂n,wght
f , which estimate the average mean mark

µ̃
(1)
f (see Definition 5.3.3) instead of the classical mean mark µ(1)

f .
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The application of such a weighting scheme is of particular interest when the underlying
process jumps between different regimes that differ substantially from each other, e.g., w.r.t.
the intensity of point locations. In summary, applying the geostatistical idea of declustering
in the MPP context in a sense corresponds to the concept of non-ergodic modeling.

To avoid possible confusion, we conclude this section with a final remark.

Remark 5.5.3. For certain choices of f , the random field counterpart of µ(2)
f is well-defined.

For f(y1, y2) = y1y2, for instance, the counterpart is the ordinary (non-centered) covariance
function. If f only depends on one of the two marks of a pair of points, µ(2)

f implicitly
conditions on the existence of other points and there is no sensible way of interpreting a
suchlike statistic in a random field context, where there exist values at all points of the index
space. Nevertheless, the geostatistical idea of variance-minimizing weights can be applied to
µ

(2)
f by a simple mean squared error approach.

5.6 Discussion
The MPP summary statistics considered in this chapter are (weighted) mean marks. In
practice, the choice of weights is not always clear, for example when data from different
stochastic sources are combined. In Section 5.5, we point out that, if there was an underlying
continuous-time process from which the data were generated by a random sampling procedure,
then the mean of interest would rather be the temporal average over the whole index space
instead of the average over all sampling locations. The weights might then be chosen to
compensate for the irregular distribution of point locations. Though, the assumption of a
continuous-time background process is problematic if the points represent physical objects
that influence each other. Then, the mean of interest might include the randomness of the
point pattern, as it is reflected by the MPP moment measures α(2)

f .
Related questions arises when multiple realizations of a non-ergodic MPP are considered:
Should the definition of mean include possibly different intensities of points between different
ergodicity classes or not? A non-ergodic MPP can be seen as a hierarchical model and
expectation functionals w.r.t. the point process can naturally be replaced by two-step
expectations by averaging within each ergodicity class first and then aggregating the different
classes (cf. Section 5.3). This alternative definition filters out the differences w.r.t. the point
location patterns between different ergodicity classes. Which definition of mean should be
chosen eventually depends on the purpose of the characteristic at hand and on the intended
interpretation.

The above considerations contribute to the understanding of the relation between geosta-
tistical weighting methods, weighted averages for estimation of MPP moment measures, and
non-ergodic modeling of MPPs, but the topic is still not comprehensively understood. A
related, more general question, which to our knowledge is still open, is the following: Is it
possible to distinguish, by means of suitable summary statistics, genuine MPPs, in which
objects physically interact with each other, from MPPs that result from a possibly dependent
sampling of a random field? Concerning the distinction between independent and dependent
sampling within the latter class of MPPs, feasibility of this approach crucially depends on
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the distributional assumptions imposed on the marks. In the context of max-stable random
fields, for example, this distinction requires much more effort than in the classical Gaussian
world (cf. Section 6.5 and Schlather et al. (2004)).

5.7 Some basics of ergodic theory
Ergodicity is a mixing property that can be defined in the very general context of dynamical
systems. An MPP on Rd together with the group of Rd-indexed shift operators is a special
case of a dynamical system.

We denote by M0 the set of all locally finite counting measures on Rd×R, and byM0 the
smallest σ-algebra on M0 that makes all mappings M0 → N0 ∪∞, ϕ 7→ ϕ(S), measurable.
Formally, an MPP Φ is a measurable mapping from some probability space (Ω,A, P ) into
(M0,M0) and we can identify (Ω,A) with (M0,M0) in the usual way. Let T = {Tx : x ∈ Rd}
with

(Txϕ)(B × L) = ϕ((B + x), L), B ∈ Bd, L ∈ B. (5.26)

Recall that Φ is said to be stationary if the induced probability measure PΦ is T-invariant.
Further, a stationary MPP Φ is called ergodic if PΦ(A) is either zero or one for all T-
invariant sets A ∈ M0. Let A0 ⊂ M0 be the sub-σ-algebra of all T-invariant sets inM0,
i.e., A = T−1A for all A ∈ A0 and T ∈ T.
The following theorem is commonly termed pointwise or individual ergodic theorem in

literature and establishes almost sure convergence of a certain average of values of a random
variable X.

Definition 5.7.1 (Daley & Vere-Jones (2008, Def. 12.2.I)). A sequence of bounded convex
Borel sets Wn ⊂ Rd, n ∈ N, with Wn ⊂Wn+1 for n ∈ N, is called convex averaging sequence
in Rd if the maximal radius of a ball contained in Wn goes to infinity if n increases.

Theorem 5.7.2 (Daley & Vere-Jones (2008, Prop. 12.2.II)). Let (Ω,A, P ) be a probability
space and T = {Tx : x ∈ Rd} a group of measure-preserving transformations acting on
(Ω,A, P ) such that the mapping (Tx, ω) 7→ Txω is jointly measurable, i.e., (B(T)⊗A,A)-
measurable. (Multiplication in T is given by TxTy = Tx+y.) Let {Wn}n∈N be a convex
averaging sequence in Rd and A0 the σ-algebra of T-invariant events. Then for all real-
valued integrable functions X on (Ω,A, P )

X̄n = 1
ν(Wn)

∫
Wn

X(Txω) ν(dx) a.s.−→ E(X | A0), n→∞.

If X is additionally Lp-integrable, then E(X | A0) is also the Lp-limit of X̄n.

Remark 5.7.3. If P is ergodic (i.e., P (A) ∈ {0, 1} ∀A ∈ A0) then E(X | A0) reduces to the
constant EX. Loosely speaking, this means that a suitable average over transformations of a
single realization converges to the expectation over the state space Ω.

While Theorem 5.7.2 refers to a general probability space with a general group of transfor-
mations acting on it, the following Proposition relates this results to the context of MPPs on



5.7 Some basics of ergodic theory 81

Rd, in which the transformations Tx, x ∈ Rd, are given by shifts of the whole point pattern
by the vector x. Here, the point is that the index x ∈ Rd has a direct geometric meaning
when Tx is applied to a realization ϕ of Φ. This yields convergence of spatial averages within
a single realization of the MPP to the state space mean.

The proof of the following Proposition is based on a simple sandwich argument, which can
also be used for other consistency statements. We include the proof here, because to our
knowledge, it is not available in this form in pertinent literature. A similar assertion can be
found in (Daley & Vere-Jones, 2008, Thm. 12.2.IV).

Proposition 5.7.4. Let Φ be stationary and ergodic and T as in Theorem 5.7.2. Let
f : Rd × R×M0 → R be a non-negative function that satisfies f(t− x, y, Txϕ) = f(t, y, ϕ)
for all t, x ∈ Rd, y ∈ R, and that is integrable w.r.t. to the marked Campbell measure
C(B×L×M) = E

[
Φ((B∩ [0, 1]d)×L)1M (Φ)

]
, B ∈ Bd, L ∈ B, M ∈M0. We define random

variables X,Xn : M0 → R by

X(ϕ) =
∑

(t,y)∈ϕ, t∈[0, 1]d
f(t, y, ϕ),

Xn(ϕ) = 1
nd

∑
(t,y)∈ϕ, t∈[0,n]d

f(t, y, ϕ).

Then Xn converges to EΦX almost surely if n→∞.

Proof. An extension of the classical Campbell theorem (e.g., Daley & Vere-Jones, 2008,
lem. 13.1.II) guarantees that E|X| <∞ if f is integrable w.r.t. the Campbell measure. The
Wn = [0, n]d obviously form an averaging sequence and

Xn(ϕ) = 1
ν(Wn)

∑
(t,y)∈ϕ, t∈Wn

f(t, y, ϕ)
∫
Rd

1[t, t+1](x) ν(dx)

= 1
ν(Wn)

∫
Rd

∑
(t,y)∈ϕ, t∈Wn∩[x−1, x]

f(t, y, ϕ) ν(dx), (5.27)

where x ± 1 for x ∈ Rd is defined component-wise. Note that the integrand on the RHS
equals 0 whenever Wn ∩ [x− 1, x] = ∅, which means that x is not contained in Wn ⊕ [0, 1]d,
which is, on its part, a subset of Wn+1. Thus, we can shrink the region of integration to
Wn+1 without changing the integral. If we then drop the condition ‘t ∈ Wn’ under the
summation sign, we enlarge the whole expression since f is non-negative, i.e.

Xn(ϕ) ≤ 1
ν(Wn)

∫
Wn+1

∑
(t,y)∈ϕ, t∈[x−1, x]

f(t, y, ϕ) ν(dx)

= 1
ν(Wn)

∫
Wn+1

∑
(t,y)∈Tx−1ϕ, t∈[0, 1]d

f(t, y, Tx−1ϕ) ν(dx)

= ν(Wn+1)
ν(Wn)

1
ν(Wn+1)

∫
Wn+1−1

X(Txϕ) ν(dx), (5.28)
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where the second equation uses that f(t− x, y, Txϕ) = f(t, y, ϕ) and the last equation uses
that ν is shift-invariant. Since the ratio ν(Wn+1)/ν(Wn) converges to 1, Theorem 5.7.2 yields
that the RHS of (5.28) converges to EΦ(X | A0) for almost all ϕ ∈M0. Since Φ was assumed
to be ergodic, this conditional expectation equals EΦX.
Similarly, if we restrict integration in (5.27) to the set Wn−1, we reduce the value of the
integral. Since Wn−1 ⊕ [−1, 0]d ⊂Wn, we can again drop the condition ‘t ∈Wn’ under the
summation sign and by the same argument as before, we have

Xn(ϕ) ≥ 1
ν(Wn)

∫
Wn−1

∑
(t,y)∈ϕ, t∈[x, x+1]

f(t, y, ϕ) ν(dx) n→∞−→ EΦX

for almost all ϕ ∈M0. Thus, we have a sandwich relation for Xn(ϕ) and can conclude that
Xn → EΦX a.s.

Note that the convex averaging sequence {[0, n]d}n∈N in Proposition 5.7.4 can be replaced
by any sequence {W ⊕ nV }n∈N with W a bounded Borel set and V ⊂ Rd a convex and
bounded set with ν(V ) > 0 and 0 ∈ V .

In case that Φ is not ergodic, the following results provide a representation of Φ as a
mixture of a set of ergodic MPPs. To this end, let P (Perg resp.) denote the set of all
probability measures on (M0,M0) induced by stationary (and ergodic) MPPs and let Πerg be
the smallest σ-algebra making all mappings Perg → [0, 1], P 7→ P (A), A ∈M0, measurable.
We say that T fulfills the condition (LocCompGrp) if T is a locally compact, second-countable
Hausdorff group of jointly measurable, surjective transformations.
From Farrell (1962), we can extract the very general result

Theorem 5.7.5. Let (Ω,A) be a measurable space with Ω a complete separable metric space
and A its Borel-σ-algebra. Let T be a set of measurable transformations of Ω satisfying the
condition (LocCompGrp) and let P ∈ P. Here, P (Perg resp.) is the set of all T-invariant
(and ergodic) probability measures on (Ω,A). Then there is a unique probability measure λP
on (Perg, Πerg) and a Perg-valued random variable QP s.t.

P (A) =
∫
Perg

Q(A)λP (dQ) =
∫
Ω
QP (ω)(A)P (dω), A ∈ A,

i.e., λP is the distribution of QP .

In the context of MPPs on Rd, the group T of shifts, as defined in (5.26), obviously fulfills
the condition (LocCompGrp), and since M0 is a complete separable metric space andM0
its Borel-σ-algebra (e.g., Kallenberg, 1986), Theorem 5.7.5 can directly be applied, which
yields a decomposition of the non-ergodic MPP Φ with law P :

P (M) =
∫
Perg

Q(M)λ(dQ), M ∈M0.

Note that each Q induces a new ergodic MPP ΦQ : Ω → M0 which is given implicitly by
P (ΦQ ∈M) = Q(M), M ∈M0. By the second representation in Theorem 5.7.5, we can also
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consider Q as a random variable on (M0,M0, P ) with distribution λ = λP . Thus, Φ and QΦ
have a joint distribution and the conditional distribution of Φ given Q is well-defined:

P (· |Q = Q∗) = Q∗(·).

5.8 Proof of Theorem 5.4.3
The following lemma will be used in the proof of Theorem 5.4.3 and generalizes the classical
individual ergodic theorem (Daley & Vere-Jones, 2008, Prop. 12.2.II) to a situation in which
the thinning of the point process depends on the size of the observation window.

Lemma 5.8.1. Let Φ be a stationary and ergodic MPP on R with real-valued marks and let
(uT )T≥0 be a family of non-negative non-decreasing numbers such that

T−1α̂1(I, Φ, T )− λ
EΦα̂fcond,uT

(I, Φ, 1) → 0 a.s. (T →∞). (5.29)

Then, for T →∞, we have the almost sure convergence

α̂fcond,uT
(I, Φ, T )

TEΦα̂fcond,uT
(I, Φ, 1) −→ 1.

Note that the almost sure convergence (λT )−1α̂1(I, Φ, T )→ 1 as T →∞ follows from the
classical individual ergodic theorem (e.g., Daley & Vere-Jones, 2008, Prop. 12.2.II).

Proof of Lemma 5.8.1. With gu(y) = 1 − fcond,u(y), y ∈ R, we obtain the almost sure
convergence

α̂guT (I, Φ, T )
TEΦα̂guT (I, Φ, 1) → 1

from (Daley & Vere-Jones, 2008, Prop. 12.2.VII) and the subsequent remarks. Further,
λ = EΦα̂1(I, Φ, 1) = EΦα̂fcond,uT

(I, Φ, 1) + EΦα̂guT (I, Φ, 1). Hence,

α̂fcond,uT
(I, Φ, T )

TEΦα̂fcond,uT
(I, Φ, 1) =

α̂1(I, Φ, T )− α̂guT (I, Φ, T )
TEΦα̂fcond,uT

(I, Φ, 1)

=
λ α̂1(I,Φ,T )

λT − EΦα̂guT (I, Φ, 1) α̂guT
(I,Φ,T )

TEΦα̂guT (I,Φ,1)

EΦα̂fcond,uT
(I, Φ, 1)

and the RHS converges to 1 as long as EΦα̂1,fcond,uT
(I, Φ, 1) converges to 0 at a slower rate

(in the sense of (5.29)) than α̂1(I,Φ,T )
λT and α̂guT

(I,Φ,T )
TEΦα̂guT (I,Φ,1) approach 1.
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Proof of Theorem 5.4.3. We have

α̂∗fuT
(I, Φ, T )√

α̂fcond ,uT
(I, Φ, T )

=
α̂∗fuT

(I, Φ, T )√
[λuT T ]

√
[λuT T ]√
λuT T

√
λuT T√

α̂fcond ,uT
(I, Φ, T )

and by Lemma 5.8.1, the last factor converges to 1. (Here, for a ≥ 0, [a] denotes the
smallest integer ≥ a.) Hence, for convergence of the LHS it is sufficient to show that
α̂∗fuT

(I, Φ, T )/
√

[λuT T ] converges to a Gaussian variable. According to Kallenberg (1986,
Lemma 2.1, Lemma 2.3), we can write Φ as a sum of Dirac measures δ(Ti,Yi), i ∈ N, with
random vectors (Ti, Yi) and T1 ≤ T2 ≤ . . . If only a finite observation window [0, T ] is
considered, the number of summands N(T ) is also finite but random. Then we introduce a
modified version of α̂∗fu(I, Φ, T ), in which the sum is cut after a fixed number Nmax ∈ N of
terms:

α̂∗,Nmax
fu

(I, Φ, T ) =
N(T )∑
i=1

N(T )∑
j=1

(
fu(Yi)− µ(2)

fu,fcond,u
(I)
)
· fcond,u(Yi) · 1Tj−Ti∈I

· 1[∑i−1
i′=1

∑N(T )
j′=1 fcond,u(Yi)1Tj′−Ti′∈I+

∑j

j′=1 fcond,u(Yi)1Tj′−Ti∈I≤Nmax

].
Then we have

α̂∗fuT
(I, Φ, T )√
[λuT T ]

=
α̂
∗,[λuT T ]
fuT

(I, Φ,∞)√
[λuT T ]

+
α̂∗fuT

(I, Φ, T )− α̂∗,[λuT T ]
fuT

(I, Φ,∞)√
[λuT T ]

(5.30)

and the first summand of the RHS contains a non-random number of summands (namely
[λuT T ]). By the minimum distance assumption in condition (m-dependent Random Field
Model), each mark Yi occurs at most |I|/d0 times in α̂∗,[λuT T ]

fuT
(I, Φ,∞). By the finite-range

assumption on the covariance function of the underlying random field, the sequence (Yi)i∈N
is [h0/d0]-dependent. Hence, the sequence of summands in α̂∗,[λuT T ]

fuT
(Φ, I,∞) is [|I|h0/d

2
0]-

dependent. By assumption, the first four moments of the excesses Zi = [fuT (Yi) | f(Yi) > uT ]
exist and converge to some constant in (0,∞) as T →∞. Then the sequence of summands
in α̂

∗,[λuT T ]
fuT

(Φ, I,∞) satisfies the assumptions of Berk’s CLT for triangular arrays of m-

dependent random variables (Berk, 1973) and thus, for T →∞, α̂∗,[λuT T ]
fuT

(I, Φ,∞)/
√

[λuT T ]
approaches a Gaussian distribution with zero mean and variance

u∞ = lim
T→∞

Var
[
α̂
∗,[λuT T ]
fuT

(I, Φ,∞)
] /

([λuT T ]).

Next, we show that the second summand in (5.30) converges to 0 in probability. We
use the notation ∆αfu = α̂∗fu(I, Φ, T ) − α̂

∗,[λuT T ]
fu

(I, Φ,∞) and ∆α1 = α̂fcond,u(I, Φ, T ) −
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α̂
[λuT T ]
fcond,u

(I, Φ,∞) and consider

P(|∆αfuT | ≥ ε
√

[λuT T ])

= P
(
|∆αfuT | ≥ ε

√
[λuT T ]

∣∣∣ |∆α1| ≥ ε[λuT T ]
)
· P
(
|∆α1| ≥ ε[λuT T ]

)
+ P

(
|∆αfuT | ≥ ε

√
[λuT T ]

∣∣∣ |∆α1| < ε[λuT T ]
)
· P
(
|∆α1| < ε[λuT T ]

)
≤ P

(
|∆α1| ≥ ε[λuT T ]

)
+ P

(
|∆αfuT | ≥ ε

√
[λuT T ]

∣∣∣ |∆α1| < ε[λuT T ]
)
. (5.31)

Note that α̂[λuT T ]
fcond,uT

(I, Φ,∞) = [λuT T ] and hence

P
(
|∆α1| ≥ ε[λuT T ]

)
= P

(∣∣∣α̂fcond,uT
(I, Φ, T )

/
[λuT T ]− 1

∣∣∣ ≥ ε)→ 0 for T →∞. (5.32)

To estimate the the last summand in (5.31), we use again that the sequence (Yi)i∈N is
[h0/d0]-dependent and that the number of points in any interval of length |I| is bounded by
c = |I|/d0. This means that each term fuT (Yi) occurs at most c times in the sum ∆αfuT .
Obviously, the variance of ∆αfuT , or more generally all even centered moments of ∆αfuT ,
become maximal, if this boundary is bailed, i.e., if for a given total number ∆α1 of summands,
only [∆α1/c] different Yi are involved. With Z∗i = Zi −EZi = [fuT (Yi)

∣∣ f(Yi) > uT ]− e(uT ),
where e(u) = E

[
fu(Y (0))

∣∣ f(Y (0)) > u
]
, we get

P
(
|∆αfuT | ≥ ε

√
[λuT T ]

∣∣ |∆α1| < ε[λuT T ]
)

= P
(
|∆αfuT |

4 ≥ ε4[λuT T ]2
∣∣∣ |∆α1| < ε[λuT T ]

)
≤ P

(∣∣∣∣∑[ε[λuT T ]c−1]
i=1 cZ∗i

∣∣∣∣4 ≥ ε4[λuT T ]2
)

≤ c4
[ε[λuT T ]c−1]∑
i,j,k,l=1

E(Z∗i Z∗jZ∗kZ∗l ) · (ε4[λuT T ]2)−1

≤ c4 · [ε[λuT T ]c−1] ·
(
h0
d0

)3
E
[
(Z∗1 )4

]
· (ε4[λuT T ]2)−1

= (λuT T )−1ε−3
(
c
h0
d0

)3
E
[
(Z∗1 )4

]
(1 + o(1)) −→ 0, (T →∞).

Plugging this and (5.32) into (5.31) yields that ∆αfuT /
√

[λuT T ]→ 0 in probability.





6 Marked point process adjusted tail dependence
analysis for high-frequency financial data

This chapter is based on the manuscript Malinowski et al. (2012b) and can partly be seen
as an application of Chapter 5 in that large high-frequency datasets are modeled as a
non-ergodic MPP.

6.1 Introduction
The irregular spacing of financial data recorded at intra-day frequency level has been
inspiring an extensive usage of (marked) point process methods in econometric and financial
applications. The seminal paper of Engle (2000) and the contributions of Engle & Lunde
(2003), Bowsher (2007) and Bauwens & Hautsch (2009) are well-known examples. Yet,
at the same time, movements of asset prices are commonly modeled via continuous-time
stochastic processes—an approach that suggests to perceive transaction data as non-evenly
spaced measurements of an underlying continuous-time process (e.g., Aït-Sahalia et al.
2005; Hansen & Lunde 2006). As long as the pattern of point locations is stochastically
independent of the underlying process, global parameter estimation is well-established in
literature (e.g., Hamilton 1993; Chiles & Delfiner 1999; Wackernagel 2003) including various
contributions on declustering and debiasing of non-evenly spaced measurements (e.g., Journel
1983; Deutsch 1989; Isaaks & Srivastava 1989; Bourgault 1997; Emery & Ortiz 2005; Olea
2007). In contrast, preferential sampling introduces dependencies between locations and
measured values; ignoring these dependencies and applying standard tools can lead to severe
biases. Financial transaction data additionally involve another source of dependence: Since
executing a transaction impacts on both the instantaneous and on the future price process,
this form of taking measurements even causally influences the sample path. In suchlike
situations, the random process imagination becomes less meaningful and the focus should be
put on the marked points themselves rather than on a possibly underlying continuous-time
process. Here, MPPs provide a commonly used framework that can capture arbitrary forms
of dependency between point locations and marks (e.g., Karr 1991; Møller & Waagepetersen
2003; Schlather et al. 2004; Daley & Vere-Jones 2008; Myllymäki & Penttinen 2009; Bauwens
& Hautsch 2009; Diggle et al. 2010). While the effect of single transactions is relevant on a
rather small scale, on larger scales, continuous-time representations of asset prices might be
advantageous; a general challenge is to model these processes across different scales (e.g.,
Duval & Hoffmann, 2011).

Another main issue of financial modeling and quantitative asset pricing is the assessment
of financial risk. The rapid growth and globalization of financial markets together with the
financial crises during the last decades have led to a strong demand for risk management
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systems, which is also reflected by the regulatory accords issued by the Basel Committee
on Banking Supervision. While some of the early models for asset returns, e.g., the capital
asset pricing model (CAPM), are solely based on variances, risk measures that reflect the
shareholders’ preferences more adequately include the value at risk (VaR) and the expected
shortfall, which is an average VaR and belongs to the class of coherent risk measures (cf.
Artzner et al., 1999). In contrast to VaR, the expected shortfall takes into account the whole
tail of the distribution, yet it boils down the tail behavior to a single number and estimation
of these quantities requires to restrict to the rare extreme events. Here, extreme value theory
(EVT) provides suitable tools for precise estimation, based on the fundamental univariate
limit theorem by Fisher & Tippett (1928). EVT further builds the theoretical framework
for analyzing and modeling the joint extremal behavior of multiple assets, say, which is of
particular interest with regard to crashes and large portfolio losses (e.g., Embrechts et al.,
1997; Embrechts, 2000).

By means of MPP moment measures, the definition of moments for inter-transaction
returns is straightforward and can naturally be extended to the concept of conditional
moments; here, conditioning refers to the existence of other transactions at a fixed temporal
distance (cf. Chapter 3 and Schlather et al., 2004) and introduces a notion of dependence
between returns and the pattern of transaction times. While variances and covariances
rather refer to the center part of the return distribution, i.e., normal market conditions,
quantification of risk w.r.t. extreme market behavior particularly needs to include the returns’
tail behavior. This chapter tries to bring together the two concepts, MPPs and EVT, in
order to quantify interactions between the tail behavior and the pattern of transaction times.
In this context we have to question the assumptions of stationarity and ergodicity even

after having corrected for seasonalities and trends. Many financial and economic processes
exhibit structural breaks due to abrupt changes in the underlying economic mechanisms
and conditions. Andreou & Ghysels (2009) reviews the literature on structural changes
in financial time series and also covers stochastic volatility models for (intra-daily) asset
return data. The authors emphasize both that there is empirical evidence for the existence
of breaks in financial markets and that ignoring these structural breaks can have severe
implications on statistical inference. Commonly, structural breaks are captured by means
of regime-switching (in particular Markov-switching) models (Goldfeld & Quandt, 1973;
Cosslett & Lee, 1985), in which the model parameters are allowed to take on different values
in each of the different regimes. The regimes are given by an (unobserved) finite-state Markov
chain. Originally only being applied to measures of economic output such as gross domestic
product (Hamilton, 1989), applications of regime-switching models nowadays also include the
modeling of inflation and interest rates, exchange rates, asset returns with different volatility
regimes, and of other financial and economic quantities. We refer to Hamilton (2008), Piger
(2009) and Lange & Rahbek (2009) for surveys on regime-switching and Markov-switching
models and to Zucchini & MacDonald (2009) and Langrock (2011) for examples of applied
literature on hidden Markov models. While structural breaks in the above references usually
refer to substantial changes in the economy’s structure and thus to larger temporal horizons,
the concept of non-linear modeling has also found its way to the context of intra-day data.
Zhang et al. (2001) introduced a threshold autoregressive conditional duration (TACD)
model for financial transaction data that allows for multiple regimes and therewith improves
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several aspects of the original ACD model (Engle & Russell, 1998). Their results on NYSE
trading data suggest that the dynamics of the trading process differ between fast, normal
and slow trading periods. Bauwens & Hautsch (2009, p. 963) names further contributions in
which this model is extended and in which other mixture models are proposed. Based on a
linear joint model for price changes and durations (PCD model), McCulloch & Tsay (2001)
provide a nonlinear hierarchical model for financial transaction data which they consider
as a compromise between fitting a PCD model for each trading day separately and fitting
only a single PCD model for the concatenation of all trading days. They find that “there are
some special days on which the behavior of the stock seems different from the others”. In a
similar spirit, Cartea & Jaimungal (2010) use a hidden Markov model combined with a joint
model for price changes and durations in order to describe the intra-day dynamics of stock
markets, particularly with regard to algorithmic trading. Here, regime switches represent
different intra-day stages of the market.
In light of the above contributions on structural changes and nonlinear modeling, it seems
both reasonable and natural to perceive financial transaction data as a concatenation of
structurally different realizations of finite clock time length from a possibly non-ergodic MPP.
Our analyses with high-frequency transaction data further motivate using the non-ergodic
modeling approach developed in Chapter 5.

Since in general, the asymptotic distribution of point estimates for MPP characteristics
is not analytically tractable, variance estimates and confidence intervals either have to be
based on rather strong mixing or independence assumptions, or non-parametric techniques
such as subsampling and bootstrapping can be used. When estimating the tail dependence
index for stationary time series, which is closely related to estimating the ordinary tail index,
Laurini & Tawn (2008) and Ledford & Tawn (2003) state that confidence intervals based
on iid assumptions will be too small when the extremes are dependent. They propose a
block bootstrapping method to obtain proper variance estimates for their estimators. In
our MPP set-up and in view of the massive amount of data when intra-daily financial data
are used, the subsampling approach of Politis & Sherman (2001) can be expected to yield
reliable results. We will compare subsampling-based variance estimates to those obtained
from assuming independence between point locations and marks of the MPP.

The rest of this chapter is organized as follows: In Section 6.2, we first review some basic
concepts from EVT and MPP theory. Then the definition of conditional mean marks for
MPPs is tailored to the extreme value context, where the interest is rather in the tail behavior
and tail dependence than in moments. Section 6.5 also introduces extremal coefficients for
point processes and discusses the extreme value analog of a Gaussian random field model.
Though, the focus of this chapter is on the tail index of the mark distribution and its
interaction with point locations. We propose an alternative to subsampling in order to assess
the variability of the corresponding estimators and we provide a CLT-type result for MPPs
to obtain the estimators’ asymptotic distribution. In Sections 6.3 and 6.4, the methods are
applied to simulated data and to real high-frequency transaction data from the German
stock index DAX, respectively. We close with a summary and discussion of the results in
Section 6.6. Technical details and proofs are given in Section 6.7.



90 6 Marked point process adjusted tail dependence analysis for high-frequency financial data

6.2 Methods
Throughout this chapter, Φ = {(ti, yi) : i ∈ N} is a stationary (not necessarily ergodic)
marked point process on R with real-valued marks y(ti) = yi. Here, the ti can simply be
regarded as time points of transactions. Note that this is a special case of the framework in
Chapter 5, from where we also adopt the definitions and notation.

6.2.1 Extremes
A random variable X is said to be extreme-value distributed if it is non-degenerate and there
exist constants cn > 0 and dn ∈ R, n ∈ N, such that, for independent copies Yi, i ∈ N, of
a random variable Y , maxni=1(Yi − dn)/cn converges to X in distribution as n → ∞. The
distribution of Y is then said to be in the max-domain of attraction (MDA) of X. The
fundamental Fisher-Tippett-Gnedenko theorem states that there exist only three possible
distributions for X, out of which the Fréchet distribution exp(−x−α), x > 0, α > 0, is the
only heavy-tailed case and hence relevant for large parts of financial data. The quantity
α−1 is commonly referred to as tail-index or extreme-value parameter and controls the
thickness of the tail. For a random variable Y (w.l.o.g., Y ≥ 0) in the MDA of a Fréchet(α)
distribution, it is well-known that

ξ(u) = E(log Y − u| log Y > u)→ ξ = α−1 for u→∞ (6.1)

(Embrechts et al., 1997, Sec. 6.4.2). This result is also the basis for the well-known Hill
estimator (Hill, 1975) of the tail index.

6.2.2 (Conditional) tail index for MPPs

Using the first- and second-order moment characteristics µ(i)
f and µ̃(i)

f defined in Chapter 5
we are now able to define a tail-index for MPPs and to extend it to conditional tail indices.

An MPP analog of ξ(u) as in (6.1), is given by

E
∑

(t,y)∈Φ, t∈[0, 1](log y − u) · 1log y>u

E
∑

(t,y)∈Φ, t∈[0, 1] 1log y>u
.

which equals µ(1)
f,fcond

for f(y) = log y−u and fcond(y) = 1log y>u, and where µ(1)
f,fcond

is defined
analogously to µ(2)

f,fcond
in (5.8). Taking limits for u→∞ gives a definition of the marks’ tail

index in an MPP setting, based on its mean excess representation.
We define conditional tail indices by including an additional conditioning on the existence

of a further point, i.e.,

ξ(I, u) = µ
(2)
fu, fcond,u

(I)

with fu(y) = log y − u and fcond,u(y) = 1log y>u for y > 0. For y ≤ 0, we set fu(y) =
fcond,u(y) = 0. As in (5.6), we may define ξ(r, u) = µ

(2)
fu, fcond,u

(r) and consider ξ as a function
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on (B(R) ∪ R)× R+.
Let ξ̃(I, u) and ξ̃(r, u) denote the corresponding average second-order mean mark according

to Definition 5.3.3, i.e., the two-stage expectation, averaging within each ergodicity class
first, and then pooling the different classes. Finally, we let u tend to infinity and call
ξ(·) = limu→∞ ξ(·, u) and ξ̃(·) = limu→∞ ξ̃(·, u) conditional tail indices of a mark of Φ,
conditional on the existence of a further point at a certain distance.

6.2.3 Estimation
Following Section 5.4, the quantities µ(2)

f,fcond
(I) and µ̃(2)

f,fcond
(I) can naturally be estimated

through

µ̂n,wght
f,fcond

(I,w) = µ̂n,wght
f,fcond

(I,w, (Φ1, . . . ,Φn), T )

=
(∑

wi(Φi, T )
)−1 n∑

i=1
wi(Φi, T )µ̂f,fcond(I, Φi, T ), (6.2)

with

µ̂f,fcond(I, Φ, T ) = α̂f,fcond(I, Φ, T )
α̂1,fcond(I, Φ, T ) , (6.3)

α̂f,fcond(I, Φ, T ) =
6=∑

(t1,y1),(t2,y2)∈Φ
f(y1)fcond(y1)1(t1,t2)∈C(T,I),

where the weights wi(Φi, T ) are required to converge stochastically to some constant within
each ergodicity class. For instance, with wi(Φi, T ) = 1 and wi(Φi, T ) = T−1α̂f,fcond(I, Φi, T ),
respectively, µ(2)

f,fcond
(I) and µ̃(2)

f,fcond
(I) can be estimated consistently.

Estimation of tail behavior generally requires a trade-off between tail relevance and the
amount of data. For estimation of ξ̃, we have to choose a suitable threshold u and then
take the estimator of ξ̃(I, u) as an approximation of ξ̃(I). Plugging in fu(y) = log y − u
and fcond,u(y) = 1log y>u into (6.3), the canonical estimator of ξ(I, u), based on a single
realization of Φ, is

ξ̂(I, u, Φ, T ) =
∑6=

(t1,y1),(t2,y2)∈Φ(log y1 − u)1log y1>u1(t1,t2)∈C(T,I)∑ 6=
(t1,y1),(t2,y2)∈Φ 1log y1>u1(t1,t2)∈C(T,I)

.

Having n realizations of Φ, we will consider the estimator

ξ̂n,wght(I, u,w) = ξ̂n,wght(I, u,w, (Φ1, . . . , Φn), T ) = µ̂n,wght
fu, fcond,u

(I,w), (6.4)

where the RHS is given by (6.2). If all weights are chosen equal to 1, the estimator is already
consistent for ξ̃(I, u).
In order to employ a variance minimizing weighting similar to Section 5.4.3, we first

need to introduce a σ-algebra that contains all information about the point locations of
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Φ1, . . . , Φn and about the locations of points whose log marks exceed the threshold u. Let
Iu = {∅, [u,∞), [u,∞)c,R} ⊂ B(R) be the σ-algebra generated by the interval [u,∞) and let
M∗ be the smallest σ-algebra inM0, making all mappings ΦB×L : M0 → N0, ϕ 7→ ϕ(B×L),
B ∈ B(R), L ∈ Iu, measurable, i.e.

M∗ = σ
(
{Φ−1

B×L(k) : k ∈ N0, B ∈ B(R), L ∈ Iu}
)
.

Here, M0 is the canonical σ-algebra associated to Φ (cf. Definition 2.1.1). Then we set
A∗u = Φ−1(M∗) ⊂ A. Since σ(Φ−1(E)) = Φ−1(σ(E)) holds true for any subset E ⊂M0, we
have

A∗u = Φ−1(M∗) = σ(Φ−1({Φ−1
B×L(k) : k ∈ N0, B ∈ B(R), L ∈ Iu}))

= σ
({
{ω ∈ Ω : Φ(ω)(B × L) = k} : k ∈ N0, B ∈ B(R), L ∈ Iu

})
,

Φ−1
g (M0(R)) = σ(Φ−1

g ({Φ−1
B (k) : k ∈ N0, B ∈ B(R)}))

= σ
({
{ω ∈ Ω : Φ(ω)(B × R) = k} : k ∈ N0, B ∈ B(R)

})
.

Thus, Φ−1
g (M0(R)) ⊂ A∗u and the ground process Φg is (A∗u,M0(R))-measurable. By similar

arguments, also the N0-valued random variable α̂1,fcond ,u(I, Φ, T ) is A∗u-measurable.
Under some assumptions on the mark-location dependence, similar to those stated at the

beginning of Section 5.4.3, we can improve the estimator’s variance by choosing different
weights while retaining consistency. In particular, we assume E[ξ̂(I, u, Φi, T ) | A∗u] to be
constant a.s. Then, according to Proposition 5.4.7, the optimal weights in (6.4) are given
by the inverse of the conditional variances, i.e., wi = Var[ξ̂(I, u, Φi, T ) | A∗u]−1, provided
that they are stochastically independent of the mixing random variable Q that corresponds
to the ergodic decomposition of Φ according to Theorem 5.7.5. To get a feeling for the
behavior of these conditional variances, we derive explicit expressions under some idealized
assumptions. To treat the estimator’s variance analytically, we assume that the point
locations are independent of the marks and that the marks satisfy suitable mixing conditions.
The worthiness of the following results for practical applications is discussed in the adjacent
Section 6.2.4.

Condition (Independent-noise-marking). Let Yi, i ∈ Z, be iid variables in the MDA
of a standard Fréchet distribution. We say that an MPP Φ satisfies the condition (Independent-
noise-marking), if Φ d= {(ti, Yi) | ti ∈ Φ̃} for some stationary unmarked point process Φ̃ on R,
for which neighboring points have some minimum distance d0 > 0 and which is independent
of the Yi.
Condition (GRFM-trans). Let Φ̃ be as in condition (Independent-noise-marking), and
let {Y (t) : t ∈ R} be an independent random process which arises from a stationary Gaussian
process Z by a monotone transformation of the margins, i.e., Y = g(Z), such that the
marginals of Y are in the Fréchet MDA. The covariance function C of Z is assumed to have
a finite range, i.e., C(h) = 0 for all |h| > h0 for some h0 > 0. Then, we say that an MPP
Φ is a Gaussian random field model with transformed margins, for short: Φ satisfies the
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condition (GRFM-trans), if Φ d= {(ti, Y (ti)) | ti ∈ Φ̃}.
We can formulate the following theorem. The proof is given in Section 6.7.

Theorem 6.2.1. For a stationary MPP as in (GRFM-trans),

Var[ξ̂(I, u, T ) | A∗u] = vu

 ∑
t1∈Φg∩[0, T ] n(t1, Φg, I, u)2[∑
t1∈Φg∩[0, T ] n(t1, Φg, I, u)

]2 + εu

 ,
where vu = Var[log Y (0) | log Y (0) > u], n(t1, Φg, I, u) = 1log Y (t1)>u ·

∑
t2∈Φg\{t1} 1t2−t1∈I

and εu is an A∗u-measurable random variable with |εu| → 0 a.s. and in L1, as u→∞.

Since condition (Independent-noise-marking) is a special case of condition (GRFM-trans),
we directly get the following corollary:

Corollary 6.2.2. For an MPP Φ satisfying the condition (Independent-noise-marking), the
assertion of Theorem 6.2.1 holds with εu = 0.

If u is large enough, the term εu in Theorem 6.2.1 can be neglected and the resulting
optimal weights in ξ̂n,wght(I, u,w) are

wi(Φi, I, u) =

vu ·
∑
t1∈Φi,g∩[0, T ] n(t1, Φi,g, I, u)2[∑
t1∈Φi,g∩[0, T ] n(t1, Φi,g, I, u)

]2

−1

. (6.5)

For the continuous case ξ(r, u), we apply the analog of µ̂f,fcond(r, Φ, T ), which is given in
Remark 5.4.12 and in which the indicator function 1I is replaced by a general kernel Kh.
Then, the above formulae for the conditional variance and the weights are still valid if we
replace n(t1, Φg, I, u) by

n(t1, Φg, r, u) = 1log Y (t1)>u ·
∑

t2∈Φg\{t1}
Kh(r − (t2 − t1)).

6.2.4 Confidence intervals
In the following, we first derive the asymptotic distribution of ξ̂n,wght(I, u,w) under the
above assumptions (Independent-noise-marking) and (GRFM-trans). If these assumptions
are violated, the reliability of the resulting confidence intervals (CIs) can be assessed, e.g.,
via the non-parametric subsampling approach according to Politis & Sherman (2001).

Confidence intervals based on (Independent-noise-marking) and (GRFM-trans)

The estimator ξ̂n,wght(I, u,w) involves two levels of aggregation of independent or weakly
dependent random terms: the outer summation over different realizations and the inner
summation over all points of a particular realization.
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We consider the inner level of aggregation first and assume Φ to be ergodic throughout
this paragraph. We have ξ̂(I, u) = α̂fu,fcond ,u(I, Φ, T )/α̂1,fcond ,u(I, Φ, T ), which is an average
of a random number of (dependent) summands. We get the following CLT-type result, which
is a direct application of Theorem 5.4.3.

Theorem 6.2.3. Let Φ be an MPP as in (Independent-noise-marking) or (GRFM-trans)
and let (uT )T≥0 be a family of non-negative non-decreasing numbers such that the limit
u∞ = limT→∞ uT ∈ [0,∞] exists and

T−1α̂1,1(I, Φ, T )− λ
EΦα̂1,fcond,uT

(I, Φ, 1) → 0 a.s., as T →∞,

where λ is the intensity of point locations. Let

α̂∗fu,fcond,u(I, Φ, T ) =
6=∑

(t1,y1),(t2,y2)∈Φ

(
fu(y1)− µ(2)

fu,fcond,u
(I)
)
· fcond,u(y1) · 1(t1,t2)∈C(T,I)

be a centered version of α̂fu,fcond,u(I, Φ, T ).
Then, for I ∈ B(R) and T →∞, we have

α̂∗fuT ,fcond,uT
(I, Φ, T )√

α̂1,fcond ,uT
(I, Φ, T )

⇒ N (0, su∞),

where

su∞ = lim
T→∞

vuT ·
[
EΦg

∑
t1∈Φg∩[0, 1] n(t1, Φg, I, uT )2

EΦgα̂1,fcond ,uT
(I, Φ, 1) + EΦgεuT

]
,

vu = Var
[
log Y (0) | log Y (0) > u

]
, u ∈ [0,∞),

and εu is given by Theorem 6.2.1 or Corollary 6.2.2. If the family (uT )T≥0 is eventually
constant, then uT can be replaced by the limiting constant u∞ ∈ [0,∞). Furthermore, for u
large (and T > 0 arbitrary),

Var
α̂fu,fcond ,u(I, Φ, T )
α̂1,fcond ,u(I, Φ, T ) = Var

α̂∗fu,fcond ,u
(I, Φ, T )

α̂1,fcond ,u(I, Φ, T ) ≈ vuEΦg

{∑
t1∈Φg∩[0, T ] n(t1, Φg, I, u)2

α̂1,fcond ,u(I, Φ, T )2

}
.

(6.6)

For a proof, the reader is referred to Section 6.7.
Concerning the outer level of aggregation in ξ̂n,wght(I, u,w), again by a CLT argument, the

finite sample distribution is approximately Gaussian. By assumption, E[ξ̂(I,u,Φi,T ) | A∗u] is
a.s. constant and the weights in (6.5) are A∗u-measurable. Thus, the variance is obtained by a
straightforward calculation using Theorem 6.2.1 (cf. (6.7)–(6.9) below). The weights in (6.5)
can be considered as local weights in that they depend on the interval I. If ξ( · , u) is to be
estimated for different distances (e.g. for a set of intervals I1, . . . , IJ), the use of local weights
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might lead to instabilities and we may also consider global weights wk = w(Φk,∪jIj , u). In
this case we have

Var
[
ξ̂n,wght(I, u,w)

]
= Var

[
1∑

k w(Φk,∪jIj , u)

n∑
k=1

w(Φk,∪jIj , u)
α̂fu,fcond ,u(Φk, I, T )
α̂1,fcond ,u(Φk, I, T )

]

= EVar
[

1∑
k w(Φk,∪jIj , u)

n∑
k=1

w(Φk,∪jIj , u)
α̂fu,fcond ,u(Φk, I, T )
α̂1,fcond ,u(Φk, I, T )

∣∣∣∣∣ A∗u
]

≈ vu · E

[ 1∑
k w(Φk,∪jIj , u)

]2

n∑
k=1

[∑
t1∈Φk,g∩[0, T ] n(t1, Φk,g,∪jIj , u)

]2
∑
t1∈Φk,g∩[0, T ] n(t1, Φk,g,∪jIj , u)2

∑
t1∈Φk,g∩[0, T ] n(t1, Φk,g, I, u)2[∑
t1∈Φk,g∩[0, T ] n(t1, Φk,g, I, u)

]2
 .
(6.7)

If local weights wk = w(Φk, I, u) are used instead, (6.7) simplifies to

Var
[
ξ̂n,wght(I, u,w)

]
≈ vu · n · E

[[ 1∑
k w(Φk, I, u)

]2
]
. (6.8)

If equal weights are used,

Var
[
ξ̂n(I, u)

]
≈ vu · n−1 · E

 ∑
t1∈Φk,g∩[0, T ] n(t1, Φk,g, I, u)2[∑
t1∈Φk,g∩[0, T ] n(t1, Φk,g, I, u)

]2
 . (6.9)

In any of the three cases, the resulting CI is given by the Gaussian approximation. We will
refer to the CIs based on this approach as model-based confidence intervals.

Subsampling-based confidence intervals

While the assumptions (Independent-noise-marking) and (GRFM-trans) allow for a theoretical
calculation of the tail index estimator’s asymptotic variance, subsampling provides a fully
non-parametric way of estimating the uncertainty of the estimator. For a broad survey on
bootstrapping and subsampling methods, we refer to Politis et al. (1999). For a general
statistic s(Φ, T ) for which T Var[s(Φ, T )]→ V for some V > 0 as |T | → ∞, Politis & Sherman
(2001) showed that, under some mixing assumptions, V is consistently estimated through

V̂ = [(1− c)T ]−1
∫

[0,(1−c)T ]
cT · E

[
s(Φ−y, cT )− s(Φ, cT )

]2
dy
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if c = cT → 0 and cT →∞ as T →∞. Here, s(Φ, cT ) = [(1− c)T ]−1 ∫
[0,(1−c)T ] s(Φ−y, cT )dy

and Φx denotes the translation of the point pattern Φ by x.
The Riemann sum approximation of V̂ , is then given by

V̂ ∗ = n−1
n∑
i=1

T

n

[
s(Φ, [ i−1

n T, inT ])− s̄
]2

with s̄ = n−1∑n
i=1 s(Φ, [ i−1

n T, inT ]). Hence,

Var[s(Φ, T )] ≈ T−1V̂ ∗ = n−2
n∑
i=1

[
s(Φ, [ i−1

n T, inT ])− s̄
]2
.

With regard to ξ̂n(I, u), which already is an average of n realizations, an additional splitting of
the observation window is not needed if n is sufficiently large. Then, Var ξ̂n(I,u) is naturally
estimated through n−2∑n

i=1[ξ̂(I, u, Φi) − ξ̄]2, where ξ̄ = n−1∑n
i=1 ξ̂(I, u, Φi). Confidence

intervals can again be based on the quantiles of the normal distribution since ξ̂n(I,u) is
asymptotically Gaussian (for n → ∞) by the classical CLT. We will refer to these CIs as
subsampling-based confidence intervals.

6.3 Simulation study
The model

Doubly stochastic Poisson processes (DSPPs), also called Cox processes, are well-established
in the modeling of high-frequency financial data (e.g., Lando, 1998; Centanni & Minozzo,
2006; Hautsch, 2011). Here, we consider an DSPP-based MPP model, combined with an
intensity-dependent marking (e.g., Ho & Stoyan, 2008; Myllymäki & Penttinen, 2009). Let
Z(t) = (Z1(t), Z2(t)), t ∈ R, be a bivariate stationary Gaussian field, where Z1 generates
the intensity and Z2 drives the marks. This approach allows for a flexible management of
dependencies between intensity and marks via the matrix-valued cross-covariance function
C(r) =

(
C11(r) C12(r)
C21(r) C22(r)

)
, r ∈ R, where Cij(r) = Cov(Zi(0), Zj(r)), i, j ∈ {1,2}. The mean of

Z is denoted by (m1,m2). In particular, the random intensity of point locations is given
by exp(Z1(·)), i.e., the unmarked ground process Φg = {ti : i ∈ N} is a log Gaussian Cox
process (LGCP) with random intensity measure Λ(B) =

∫
B exp(Z1(t))dt. In addition, let

(Yi)i∈N be a sequence of independent random Fréchet variables with Yi ∼ Fα(ti), where
Fα(x) = exp(−x−α) denotes the Fréchet distribution function with parameter α, and α(·) is
given by α(t) = α0 + α1 exp(−Z2(t)), α0, α1 ≥ 0, t ∈ R. Let further (Si)i∈N be a sequence
of iid random signs with P(S1 = 1) = P(S1 = −1) = 0.5. Then, conditionally on Z, let the
marks be given by yi = m(ti) = SiYi, i.e., their absolute values are Fréchet-distributed with
an intensity-dependent tail parameter and their signs are random and independent of Z. In
order that the first moments of the marks be finite, we assume α0 ≥ 1.

Since F−1
α (V ) ∼ Fα for V ∼ U [0, 1], we can consider the marks yi = m(ti) as a deterministic

function of time if we condition on Z, on the random field V = {V (t)}t∈R of iid U [0, 1]
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variables and on the random field S = {S(t)}t∈R of iid signs:

mv,s,λ(t) =
[
m(t) |V (·) = v(·), S(·) = s(·), exp(Z2)(·) = λ2(·)

]
= s(t) · F−1

α0+α1/λ2(t)(v(t)).

If the two components of Z are positively correlated, the Fréchet parameter α tends to
be small when the intensity of points is high. This will lead to increased conditional tail
indices ξ(r, u) for small temporal distances r. (Recall that the ordinary tail index of a
Fréchet(α)-distribution is α−1.)

Theoretical value of ξ(r, u)

Since
[
Φ|Z, V, S

]
is a Poisson point process with deterministic marks, we can treat the

conditional tail index ξ(r, u) partially analytically using an extended Campbell theorem and
the fact that the reduced Palm measure of a Poisson process coincides with the probability
measure PΦ (e.g., Daley & Vere-Jones, 2008, Prop. 13.1.IV and Prop. 13.1.VII, resp.). For
the second order moment measure αf,fcond (cf. (5.3)), this yields

α
(2)
f`,fcond ,

(C(I)) =
∫∫ ∫

[0,1]
EΦ|Z,V,S [(f `fcond)(mv,s,λ(t1))Φg(I + t1)]

· λ1(t1)dt1 P(exp(Z1),exp(Z2))(dλ1, dλ2)PV (dv)PS(ds)

=
∫∫ ∫

[0,1]
(f `fcond)(mv,s,λ(t1))

∫
I+t1

λ1(r)dr

· λ1(t1)dt1 P(exp(Z1),exp(Z2))(dλ1, dλ2)PV (dv)PS(ds), ` ∈ {0, 1}.

Due to the Cox-process-based construction of Φ, the measures α(2)
f`,fcond

(C(·)), ` ∈ {0, 1}, are
dominated by the Lebesgue measure ν on R and with Fubini’s theorem we get

∂α
(2)
f`,fcond

(C(r))
∂ν(r) =

∫∫
(f `fcond)(mv,s,λ(t1))λ1(r + t1)λ1(t1)

P(exp(Z1),exp(Z2))(dλ1, dλ2)PV (dv)PS(ds).

Hence,

ξ(r, u) =
∂α

(2)
fu,fcond,u

(C(r))

∂α
(2)
1,fcond,u

(C(r))
=
∂α

(2)
fu,fcond,u

(C(r))
∂ν(r) ·

∂α(2)
1,fcond,u

(C(r))
∂ν(r)

−1

=

∫∫
(fufcond,u)(mv,s,λ(0))λ1(r)λ1(0)P(exp(Z1),exp(Z2))(dλ1, dλ2)PV (dv)PS(ds)∫∫
fcond,u(mv,s,λ(0))λ1(r)λ1(0)P(exp(Z1),exp(Z2))(dλ1, dλ2)PV (dv)PS(ds)

,

(6.10)
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where fu(y) = log y − u and fcond,u(y) = 1log y>u for y > 0 and fu(y) = fcond,u(y) = 0 for
y ≤ 0, as before. Note that the right-hand side (RHS) of (6.10) is not an integral w.r.t. the
law of the MPP anymore, but only w.r.t. the law of the random fields that drive the intensity
of points and the marking. Although it is analytically intractable, Monte-Carlo simulation
of Z, V and S provides an approximation ξ̂MC(r, u) of ξ(r, u) for the above model. This
enables a direct comparison of the true conditional tail index with the estimated one based
on realizations of the full point process.

Results

Since, by construction, locations and marks are dependent, the confidence intervals derived
in Section 6.2.4, which are based on the assumption (GRFM-trans), are only approximate
and possibly underestimate the true variance. By this simulation study, we can determine
the actual level of the confidence intervals.

The particular set-up is the following: For Z1, we choose a mean value of m1 = − log(0.5)
and the exponential covariance model C(h) = 0.1 exp(−|h|/4). Perceiving distances as
being measured in minutes, this choice causes the average distance between consecutive
observations to be approximately 0.5 minutes and interaction effects to range up to 10
minutes, which roughly corresponds to the respective numbers in real transaction data
(cf. Section 6.4). The second component of Z is a linear combination of shifts of Z1:
Z2(·) = Z1(·) +

∑n
i=1 ci[Z1(·) − Z1(· − si)] with ci, si ∈ R. This determines a particular

form for the cross-covariance function of (Z1, Z2). While c1 = . . . = cn = 0 implies
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Figure 6.1: Estimation of ξ(r, u) for u the 95% (left) and the 99% sample quantile (right) to-
gether with pointwise approximated 95%-CIs. The Gaussian kernel with a bandwidth of 4 and
the rectangular kernel with a bandwidth of 1 are used. An approximation of the theoretical
values ξ(r, u) (green line) is based on Monte-Carlo simulation of the RHS of (6.10) with 106

realizations of the random fields Z, V and S.



6.3 Simulation study 99

completely symmetric interaction effects between marks and locations, positive values
of c and s introduce asymmetry: Z2(t) is positively correlated with Z1(t) but Z2(t) is
particularly large if Z1 is small at the locations t − si. Since the Fréchet parameters of
the marks are given by α(t) = α0 + α1 exp(−Z2(t)), the larger the value of Z2, the heavier
the tail of the mark distribution. Hence, this specification of Z2 with positive values of
si induces a heavy tail at time t if the intensity of points at t is large or if there is an
increase in intensity immediately before t. We choose n = 100 for smoothness reasons and
(c1, . . . , c100) = (0.100, 0.099, . . . , 0.001) and (s1, . . . , s100) = (2, 4, . . . , 200)/60. Further, we
let α0 = 3 and α1 = 0.1.
The model is simulated on a 24,000 hour interval, which roughly corresponds to 3,000

days of trading, i.e., the point process contains approximately 3 million points. Figure 6.1
summarizes the behavior of the estimator ξ̂n(r, u) based on such a realization, where u is the
95% and the 99% sample quantile and n is chosen to be 100, which means that the simulated
dataset is split into 100 parts of a length roughly corresponding to one month. Note that in
the simulation, there is no instationarity or regime-switching included; hence, the non-ergodic
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Figure 6.2: Empirical level of the model-based CIs according to (6.6) in Theorem 6.2.3
(continuous lines) and of subsampling-based CIs from Section 6.2.4 (dashed lines) for different
thresholds u (from left to right, then top to bottom: 95%, 99%, 99.8% and 99.95%-quantile)
and for the two nominal levels 75% and 90% (dotted lines).
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modeling does not play an important role, here. As kernels for the estimator ξ̂(r, u), we
use the Gaussian and the rectangular kernel with a bandwidth of 4 and 1, respectively.
The approximated pointwise 95%-confidence intervals according to (6.6) in Theorem 6.2.3
(model-based CIs) are included. For the approximation ξ̂MC(r, u) of ξ(r, u), one million
realizations of the random fields Z, V and S on [−30, 30] are generated. Note that, once Z
is simulated, it is sufficient to simulate V (·) ∼ U [u∗, 1] with u∗ = inft∈[−30,30] Fα(t)(exp(u)).
For smaller values of V , fcond , u(m(t)) is zero and the corresponding points would not enter
the estimator.

In order to validate the confidence intervals, a realization of the above model is simulated
and the confidence intervals are calculated. Then, the model is simulated another 100 times
and for each grid point r ∈ [−30, 30], those realizations are counted whose respective values
ξ̂n(r, u) fall into the afore calculated CI. Then, the roles are interchanged 100 times such
that each realization once becomes the center of the CI. As nominal levels, we choose 75%
and 90%. Figure 6.2 shows the results for different values of the threshold u. It displays that
for a relatively low threshold (u = 95%-quantile), the variance of ξ̂n(r, u) is considerably
underestimated leading to an empirical level that is up to 25 percentage points below the
nominal level. With increasing threshold, this error decreases. Already for the 99.8%-quantile,
the confidence intervals hit the nominal level in average. The subsampling-based confidence
intervals hit the nominal level for all thresholds, as expected. Note that here, the subsampling
estimate of the variance of ξ̂n(r, u) is based on all 101 simulated realizations, while each
model-based CI is based on a single realization only. Hence, the variability of the subsampling
variance estimate is smaller than for the model-based approach; though, this does not affect
the comparison of coverage rates.

Figure 6.3 shows the estimator ξ̂n(r, u), applied to the union of all 101 simulated datasets,
together with an approximation to the true function ξ(r, u), obtained from Monte-Carlo
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threshold 0.98 quantile

distance r [minutes]

X
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)
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gaussian kernel, bw = 4
box kernel, bw = 1
+−2sd, CIwidth=0.0019
+−2sd
true curve (MC−simu)

based on 6.01e+07 tuples
from 101 (10201) obs
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distance r [minutes]
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)
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gaussian kernel, bw = 4
box kernel, bw = 1
+−2sd, CIwidth=0.0025
+−2sd
true curve (MC−simu)

based on 3.61e+07 tuples
from 101 (10201) obs
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)
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gaussian kernel, bw = 4
box kernel, bw = 1
+−2sd, CIwidth=0.0033
+−2sd
true curve (MC−simu)

based on 2.17e+07 tuples
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gaussian kernel, bw = 4
box kernel, bw = 1
+−2sd, CIwidth=0.0043
+−2sd
true curve (MC−simu)

based on 1.3e+07 tuples
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distance r [minutes]
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i(r

)
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gaussian kernel, bw = 4
box kernel, bw = 1
+−2sd, CIwidth=0.0011
+−2sd
true curve (MC−simu)

based on 1.66e+08 tuples
from 101 (10201) obs
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threshold 0.97 quantile

distance r [minutes]
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)
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gaussian kernel, bw = 4
box kernel, bw = 1
+−2sd, CIwidth=0.0014
+−2sd
true curve (MC−simu)

based on 1e+08 tuples
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threshold 0.98 quantile

distance r [minutes]

X
i(r

)

●

gaussian kernel, bw = 4
box kernel, bw = 1
+−2sd, CIwidth=0.0019
+−2sd
true curve (MC−simu)

based on 6.01e+07 tuples
from 101 (10201) obs
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Figure 6.3: Analogously to Figure 6.1, but averaged over all 101 realizations.
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simulation. The MC-estimate is fairly smooth since it is based on 108 random field realizations
on the interval [−30, 30]. The width of the confidence intervals is roughly one tenth of that
in Figure 6.1 since we have 101 realizations instead of one.

6.4 Application to transaction data from the German stock exchange
We apply the conditional tail index estimator ξ̂(r, u) to large transaction datasets from stock
trading in Germany, processed via the Xetra trading system between 1997 and 2004. We
consider blocks of size one year separately in order to exclude possible long-term effects.
The same data pre-processing as in Engle (2000) is applied in order to account for diurnal
patterns in the duration and return series. Further, the original returns are transformed to
returns per time unit (cf. Engle, 2000 and Malinowski & Schlather, 2011b).
In correspondence with the various contributions on structural changes and nonlinear

modeling of financial processes mentioned in the introduction, also in transaction datasets
we can observe periods of trading that behave differently from the major part of the trading
time. In the case that tail characteristics of the logreturns are of interest, only the set of
extremal transactions is considered, which may further strengthen the effects of structural
breaks. Hence, we consider a realization ϕ of the process Φ, observed on a certain interval
B, as a concatenation of multiple realizations ϕ1, . . . , ϕn of a possibly non-ergodic MPP,
observed on smaller intervals B1, . . . , Bn, respectively, where the Bi are pairwise disjoint and
B = ∪iBi; the objective is then to estimate the conditional tail index ξ̃(r, u). This means
that each trading period is considered to belong to one randomly chosen regime (ergodicity
class) out of a possibly infinite number of different regimes. Here, we assume additionally
independence between the concatenated parts, which is in general only an approximation
to the truth. However, if the clock time length D of each period is large compared to
the average inter-event distance within each realization of the point process, dependence
between events from different parts can be expected to be fairly small and the error of this
independence assumption is negligible. This argument might be formalized via some weak
mixing conditions guaranteeing that the estimators of µ(i)

f , applied to the small realizations,
become asymptotically independent (as D →∞). By the same arguments, edge effects due
to finite observation windows can be neglected (e.g., Stoyan et al., 1995).

As regards the concrete choice of D, McCulloch & Tsay (2001), for instance, assume that
the length of each realization corresponds to one trading day, but also other choices of D
might be adequate, depending on the statistical questions at hand.
In order to test the results for being significant, we consider the following null model: Within
each subsample of length D, the marks of the MPP are randomly permuted while the pattern
of point locations is kept fixed. Applying the above estimator to multiple realizations of this
null model yields a set of reference curves that correspond to the scenario “no interaction
effects”.

6.4.1 Results
We apply four different levels of disaggregation, in particular, we split the data into blocks
of length one year (n = 1), one month (n = 12), one week (n = 52) and one day (n ≈ 250).
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It turns out that a choice n > 1 yields more stable results and smaller estimated variances,
compared to n = 1. However, going below a length of one week (i.e., n > 52) does not
seem to be sensible since, particularly through the selection of extreme transactions, data
become sparse and many of the small blocks would not contain any observation exceeding
the threshold. Moreover, the estimation results do not differ significantly between moderate
choices of n, i.e., n between 12 and 52. In the following, we therefore restrict to the results
for partitioning into blocks of length one week, i.e. n = 52.

In section 6.2.3, variance-minimizing weights were introduced that maintain the consistency
property of ξ̂n,wght(r, u,w) for ξ̃(r,u) under some suitable independence assumptions. Though,
it turns out that non-equal weighting (i.e., the use of ξ̂n,wght(r, u,w) instead of ξ̂n(r, u)) only
marginally improves the estimator’s variance since all weights turn out to be fairly similar in
this particular dataset (exp(entropy(w)) ≈ n− 2). Hence, in order to be able to compare the
estimated variance to a subsampling-based variance estimate, we restrict to the unweighted
estimator in the following.
With regard to the choice of the threshold u, we remark the following: Actually, we are

interested in the limit of ξ̃(r, u) for u→∞, where in the general non-ergodic case, ξ̃(r, u) is
a weighted average over its ergodic counterparts. This averaging operator and the limit for
u can be interchanged:

lim
u→∞

ξ̃(r, u) = lim
u→∞

∫
Perg

ξΦ|Q=Q∗(r, u) λ(dQ∗) =
∫
Perg

lim
u→∞

ξΦ|Q=Q∗(r, u) λ(dQ∗),

so that using different sequences (un)→∞ for different ergodicity classes does not matter
from a theoretical point of view. However, in a finite sample context, a finite threshold has to
be chosen and the threshold values for the different ergodicity classes should be comparable.
Hence, we might want to choose u to be the (1− δ)-quantile of the mark distribution. Since
the quantiles are unknown and have to be estimated by their empirical counterparts, different
approaches arise to choose the thresholds: (a) choose u to be the global (1 − δ)-quantile
of the set of all log yi from all realizations or (b) calculate the (1 − δ)-quantile for each
realization separately. Especially for high quantiles, approach (a) causes many realizations
to be excluded from the average because they do not contain marks exceeding the threshold.
On the other hand, if—by chance—a realization does not contain extreme values, it is
reasonable to exclude it from extreme value parameter estimation. Therefore, we apply
a compromise: For every realization, we choose u to be the (1 − δ)-quantile of all log yi
belonging to the “natural” larger temporal unit, e.g., if a realization corresponds to one day,
the larger temporal unit is one week; accordingly for realizations consisting of one week or
one month.

Exemplarily, Figure 6.4 shows the conditional tail index estimator for a one-year period
(2004) of transaction data of the Deutsche Telekom AG stock (ISIN DE0005557508) with
a total of 898,000 transactions. Here, exemplarily, only the lower tail, i.e., negative log
returns, are considered. While in the above simulation study, the tails were symmetric by
construction, in real data we might expect the tails to behave differently. However, the basic
characteristics of the conditional tail index ξ(r) turn out to be the same for negative and
positive log returns in our transaction datasets. Note that this is contrary to larger scale
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return data (e.g., daily data), for which the negative returns usually exhibit heavier tails
than the positive returns.
Figure 6.4 exhibits that the tail index is significantly increased for small values of r

(from −5 to +10 minutes). The confidence intervals indicate the precision of the estimates.
Qualitatively the same results can be shown for most of the other stocks of the German
stock index that have sufficiently long records. The increase of the tail index ξ(r, u) at the
origin is not completely symmetric, but the decay for r > 0 (conditioning on the future) is
slower than for negative values of r. Assuming that causal influence can only be carried out
by past events, this might sound counterintuitive at first sight. Though, transactions are
generally clustered, which causes a large overlap between the data that enter into ξ̂n(r, u)
and those entering ξ̂n(−r, u). Furthermore, an extreme log return possibly induces further
immediate transactions due to reactions of other market participants. Hence, for small
positive values of r, ξ̂n(r, u) might be even larger than ξ̂n(−r, u), although there is no causal
influence from future transactions to current log returns. The gray curves in Figure 6.4 stem
from applying the estimator to multiple realizations of the null model. The fact that the
estimated curve for the original data projects beyond the range of the null model curves
confirms that mark-location interactions w.r.t. the tail index exist.
Another observation that can be made from Figure 6.4 and that also holds true for the

other German stock index datasets, is that the model-based confidence intervals approach
the subsampling-based intervals as the threshold increases to a sufficiently high level. Figure
6.5 shows the ratio of average model-based standard deviation to average subsampling
standard deviation, averaged over all distances r and upper and lower tails. Each boxplot
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Figure 6.4: Estimation of ξ(r, u) for a one-year period of transaction data of the Deutsche
Telekom AG stock (ISIN DE0005557508) with a total of 898,000 transactions. u being the
98.9%- (left) and the 99.77%-quantile (right). Pointwise 95%-CIs based on Theorem 6.2.3 and
subsampling-based CIs in dashed and dotted lines, resp. (Compare also Figure 6.1.) The gray
lines stem from realizations of a null model.
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Figure 6.5: Ratio of model-based standard deviation to subsampling standard deviation for
different thresholds: The i-th boxplot corresponds to the

(
1 − 0.05 · ( 1

2 )i−1)-quantile. Each
boxplot contains the values for the 12 largest datasets (≥ 500,000 transactions).

represents a different threshold and contains the values for the 12 largest datasets (≥ 500,000
transactions). For low thresholds, the true variance, represented by the subsampling variance,
is substantially underestimated by the model-based variance. For large thresholds, the ratio
is slightly larger than 1 in average, thus introducing a bit of conservatism in the resulting
confidence intervals. In summary, the asymptotic confidence intervals derived in Section
6.2.4, based on the assumption (GRFM-trans), work reasonably well for our transaction
datasets and yield reliable results for thresholds above the 99.5%-quantile.

6.5 Max-stable random field model
In the previous part of this chapter, tail dependence was understood as interaction of the
tail index with neighboring point locations in an MPP context. In classical extreme value
literature, tail dependence refers to the joint extremal behavior of the components of a
random vector or to the spatial dependence within a max-stable process, and there exist
different concepts of measuring tail dependence (e.g., Smith, 1990, Embrechts et al., 1997,
Sec. 8.1, Schlather & Tawn, 2003). In what follows, we combine the above concept of
measuring mark-location interactions in MPPs with the classical notion of tail dependence
for multivariate distributions. We will assume that the mark distributions belong to the
maximum domain of attraction (MDA) of a max-stable distribution.
A simple MPP Φ on T , T ⊂ R or T ⊂ Rd, is said to belong to the class of random field

models (Mase, 1996), if it is in distribution equal to unbiased sampling of a process, i.e.

Φ
d= {(t, Zt) : t ∈ Φg}

for some random process (Zt)t∈T being independent of the unmarked ground process Φg.
In this situation, mark-location interactions clearly do not exist. Hence, it is generally
worthwhile to obtain conditions that guarantee an MPP to be a random field model and
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that can be verified easily.
In the case where Z is a Gaussian random process, Schlather et al. (2004) provide an

obvious set of necessary and sufficient conditions. Since a multivariate Gaussian distribution
is determined by its mean and covariance structure, those conditions involve no higher than
second moments.
The dependence structure of extreme events, though, is generally much more complex

than in the Gaussian case and cannot necessarily be described by a finite set of parameters.
For a multivariate extreme value distribution (MEVD), the dependence structure is fully
characterized by the so-called spectral measure on the unit sphere (e.g., Resnick, 2008). In
applications, tail dependencies play an important role since they can seriously increase the
risk of extreme events, e.g., in an asset portfolio.

In Example 6.5.4, we will illustrate that, due to the complexity of the dependence structure
of a MEVD, it is not possible to establish a random field model criterion comparable to the
Gaussian case.

A set of simple characteristics summarizing the dependence structure of a multivariate
extreme-value distribution are the extremal coefficients (Smith, 1990). For Z = (Z1, . . . , Zn)
following a MEVD with identically distributed margins, there are 2n− 1 extremal coefficients
θI , I a non-empty subset of {1, . . . , n}, defined by P(maxj∈I Zj < z) = P(Z1 < z)θI . Even
the full set of extremal coefficients does not completely determine the spectral measure H.
Hence, we cannot expect a condition only based on extremal coefficients to be sufficient
to decide whether an MPP belongs to the class of max-stable random field models, even
though we restrict ourselves to MPPs with standard Fréchet marks. In the following, we
aim at constructing an MPP example with all extremal coefficients being independent of
further points of the MPP while the multivariate mark distribution is not independent of
the pattern of locations. We use a family of distributions that is determined by the full set
of extremal coefficients and that is obtained as limits of certain max-linear combinations (cf.
Schlather, 2002; Strokorb & Schlather, 2012).

6.5.1 Extremal coefficients for MPPs
First, we introduce extremal coefficients and conditional extremal coefficients for MPPs:
Analogously to (5.3), let α(n)

f be the n-th order f -moment measure of Φ with a non-negative
function f , i.e.

α
(n)
f (C) = E

6=∑
(t1,y1),...,(tn,yn)∈Φ

f(y1, . . . , yn)1C((t1, . . . , tn)), C ∈ B(Rn).

Again, the Radon-Nikodym theorem provides a density of α(n)
f w.r.t. α(n). For the special

choice f(y1, . . . , yn) = 1y1≤m1 · . . . · 1yn≤mn , this density is commonly referred to as the
n-point (Palm) mark distribution, which we denote as

F(t1,...,tn)(m1, . . . ,mn) =
∂α

(n)
f (·)

∂α(n)(·)
((t1, . . . , tn)) (6.11)
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for pairwise disjoint locations t1, . . . , tn. Its actual meaning might become clearer by writing
it as a conditional distribution:

F(t1,...,tn)(m1, . . . ,mn) = P(y(ti) ≤ mi, i = 1, . . . , n | t1, . . . , tn ∈ Φg). (6.12)

For more details on Palm mark distributions, the reader is referred to Stoyan et al. (1995,
Chap. 4) and Kallenberg (1986, p. 164).
In what follows, we assume the univariate margins of F(t1,...,tn) to be identical for α(n)-

almost all tuples (t1, . . . , tn), and we assume F(t1,...,tn) to be in the MDA of some extreme value
distribution G with Fréchet margins. Then, following Marshall & Olkin (1983, Prop. 3.1),
for example, and with m = (m1, . . . ,mn),

lim
u→∞

1− F(t1,...,tn)(um1, . . . , umn)
1− F(t1,...,tn)(u,∞, . . . ,∞) = − logG(m).

In particular, and by Taylor expanding logF(t1,...,tn) at 1, we have

lim
u→∞

logF(t1,...,tn)(u, . . . , u)
logF(t1,...,tn)(u,∞, . . . ,∞) = lim

u→∞

1− F(t1,...,tn)(u, . . . , u)
1− F(t1,...,tn)(u,∞, . . . ,∞) = − logG(1).

Hence, the limits in the following definition are well-defined.

Definition 6.5.1. For F(t1,...,tn) having identical margins and being in the MDA of some
MEVD with Fréchet margins, we define extremal coefficients

θt1,...,tn = lim
z→∞

logF(t1,...,tn)(z, . . . , z)
logF(t1,...,tn)(z,∞, . . . ,∞) , (6.13)

Furthermore, for m ∈ N and s1, . . . , sm ∈ Rd, we define conditional extremal coefficients

θs1,...,sm
t1,...,tn = lim

z→∞

logF(t1,...,tn,s1,...,sm)(z, . . . , z,∞, . . . ,∞)
logF(t1,...,tn,s1,...,sm)(z,∞, . . . ,∞) . (6.14)

Remark 6.5.2. (a) The marginal distributions of the max-limiting distribution of (6.11)
do not necessarily coincide for different sets of locations ti, even if two sets of locations differ
by one point, only.
(b) It is essential to require that (6.11) be in the MDA of some extreme value distribution
for all n ∈ N. If this was only required for n = 1,

F(t1,t2)( · ,∞) = P(y(t1) ≤ · | t1, t2 ∈ Φg)

would not necessarily be in the MDA of any EVD: Via a hard-core construction as in the
following Example 6.5.4, for instance, we can easily define a process for which F(t1,t2)(·,∞) =
P(Z ≤ · |Z < 1) if ‖t1 − t2‖ < 1 and F(t1,t2)(·,∞) = P(Z ≤ · |Z ≥ 1) if ‖t1 − t2‖ ≥ 1, for Z
being a standard Fréchet variable. Then, for ‖t1 − t2‖ < 1, the max-limiting distribution is
clearly degenerate.
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Remark 6.5.3. If Φ is stationary, the mark distribution F(t1,...,tn) and hence also θt1,...,tn
only depend on the distance vectors t2 − t1, . . ., tn − t1.
Let Φ be additionally isotropic. Note that, in general, this does not imply that F(t1,...,tn) only

depends on the Euclidean distances ‖t2 − t1‖, . . . , ‖tn − t1‖. To see this, consider a hard-core
MPP, in which each cluster of point locations forms the same non-equilateral triangle. Then,
stationarity means that all clusters have the same stochastic behavior. Now, if we mirror
some of the triangles and assign a different mark distribution to the respective clusters, the
Euclidean distances between the three points do not change but the mark distribution does
change. Note that this is not contradictory to the isotropy assumption since mirroring a
point configuration can in general not be replaced by a rotation.
However, if the point process is defined on the real axis, as it is the case for temporal data,

mirroring and rotating a point pattern yield the same result. Hence, in this case, isotropy
implies that θt1,...,tn only depends on the distances |t2 − t1|, . . . , |tn − t1|. Note that even
if all mark distributions are multivariate Gaussian, isotropy is not necessarily implied by
stationarity, as opposed to the case of a continuous-time Gaussian process.

In the following Example 6.5.4, we will construct an MPP, for which all multivariate mark
distributions, described by (6.11), are max-stable distributions. By marginal transformation
and hence w.l.o.g., we can assume that all mark distributions have standard Fréchet margins.
Particularly, this means that all univariate mark distributions are independent of the positions
of further points and that the limits in (6.13) and (6.14) can be dropped. Then

θs1,...,sm
t1,...,tn =

logF(t1,...,tn,s1,...,sm)(z, . . . , z,∞, . . . ,∞)
logFt1(z)

for any z > 0; the analog holds for (6.13).

6.5.2 Extremal coefficients and random field models
Obviously, the condition

θs1,...,sm
t1,...,tn = θt1,...,tn for α(n+m)-almost all t1, . . . , tn, s1, . . . , sm ∈ Rd, n,m ∈ N (6.15)

is a necessary condition for Φ to be a random field model. The following counterexample
however shows that even for the restricted class of MPPs with standard Fréchet margins,
(6.15) is not a sufficient condition. In a way, this contrast the Gaussian random field model
case for which Schlather et al. (2004) provide equivalent conditions based on conditional
means and covariances.

Example 6.5.4. For n ∈ N, let Sn denote the unit sphere in Rn+1. Let Φ∗ be a stationary
marked Poisson point process on Rd, d ≥ 3, with iid marks M = (α, β, ξ1, ξ2, Y ), where
α ∼ U(Sd−1), β ∼ U(Sd−2), ξ1 ∼ U((0, 1]), ξ2 ∼ U((1, 3]) and Y are independent random
variables, and where Y is a vector of five independent standard Fréchet variables.
Let Φ̃ consist of all points [t,M ] ∈ Φ∗ for which the ball B12(t) around t with radius 12

contains no further points of Φ∗. Then, we obtain an MPP Φ by adding two points to each
[t1,M ] ∈ Φ̃ in the following way: Let t2 = t1 + ξ1α and let t3 be uniformly distributed on an
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orbit consisting of all points from which t1 and t2 have the same fixed distance. More precisely:
t3 = (t1 + t2)/2 + ξ2 · ι(β), where ι is an inner-product-preserving embedding of Rd−1 ⊃ Sd−2
into Rd such that the center point of ι(Sd−2) equals 0 and the orthogonal complement of
ι(Sd−2) in Rd contains t2 − t1. Note that ‖t1 − t2‖ ∈ (0,1], ‖t1 − t3‖ = ‖t2 − t3‖ ∈ (1,4), and
that the distance between points from different clusters is ≥ 4. The corresponding marks
m1,m2,m3 are supposed to follow a multivariate Fréchet distribution. In particular let

A =

.5 0 .5 0 0
0 .5 .5 0 0
0 0 0 0 1

 and B =

.4 0 .4 .2 0
0 .5 .4 .1 0
0 0 0 0 1


and let y = (y1, y2, y3)T = A∨̇Y · 1ξ2≤2 + B∨̇Y · 1ξ2>2, where A∨̇Y denotes the vector of
max-linear combinations maxj AijYj, i = 1, 2, 3. Note that the extremal coefficients of A∨̇Y
have the simple form θI =

∑J
j=1 maxi∈I Aij (by direct calculation), where J = 5 in our case.

A and B are chosen such that the respective max-linear combinations have the same extremal
coefficients but not the same multivariate distribution.
In summary, t2, t3 and y are deterministic functions of [t1,M ] and

Φ =
{

[t1, y1], [t2, y2], [t3, y3] : [t1,M ] ∈ Φ̃
}
.

By construction, the marks of two points of Φ with a distance greater than 1 are stochas-
tically independent. Within each cluster consisting of three points, there is exactly one
pair of points with a distance less or equal than 1. For each cluster, y3 is independent
of (y1, y2) since the third row and the fifths column of A and B equal the unit vectors e5
and e3, respectively. Different clusters are also stochastically independent. Hence, every
extremal coefficient θt1,...,tn with 3 ≤ n ≤ ∞ can be expressed as a sum of bivariate extremal
coefficients and it suffices to consider those conditional extremal coefficients that condition
on the existence of only one additional point. Henceforth, we consider all coefficients θt1,t2
and θst1,t2, t1, t2, s ∈ Rd.
Due to stationarity of Φ and the rotation invariant construction of the local point clusters,

we may define θ(h) = θt1,t2 if ‖t2−t1‖ = h and θ(h, d1, d2) = θst1,t2 if additionally ‖s−t1‖ = d1
and ‖s− t2‖ = d2. Then the above construction yields that

θ(h, d1, d2) =
{

1.5, h ∈ [0, 1]
2, h ∈ (1,∞).

Note that, even for h ∈ [0, 1], no further distinction of cases is needed since the matrices A
and B are chosen such that they lead to the same extremal coefficients. Hence, θ(h, d1, d2)
only depends on h and we have that θ(h) = θ(h, d1, d2) for all valid d1 and d2.
However, for ‖t2 − t1‖ ∈ (0, 1], the conditional mark distributions

F(t1,t2,s)(m1,m2,∞)

obviously depend on the distance ‖s− t1‖ in the same way in which the choice between the
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matrices A and B depends on the distance to the third point of each cluster.

The example shows that max-stable random field models cannot be characterized by only
considering conditional extremal coefficients. Intuitively, the extremal coefficients only report
the multivariate distribution function on the diagonal, which is not sufficient information to
reconstruct the MEVD. Though, defining more general extremal dependence measures with
different thresholds mi for the different components y(ti) (e.g., Fasen et al., 2010), simply
leads to a re-parametrization of the distribution function and it would be a merely trivial
result to characterize a max-stable random field model via conditions of the type

F(t1,...,tn)(m1, . . . ,mn) = F(t1,...,tn,s1,...,sm)(m1, . . . ,mn,∞, . . . ,∞)
∀n,m ∈ N, ti, si ∈ Rd, mi ∈ R.

6.6 Discussion
Irregularly spaced financial data, particularly log returns between consecutive transactions
of electronically traded assets, can naturally be perceived as MPPs, which are therefore
well-established in financial and econometric literature. At the same time, modeling extreme
financial events is of pivotal interest, for example, for insurance or risk management purposes.
This chapter tries to bring together these two concepts.

Based on existing second-order moment measures for marked point processes, we propose
an MPP analog of the extreme value index (tail index) and extremal coefficients as well as
conditional versions thereof to detect whether these mark characteristics depend on the point
pattern in its neighborhood. MPP analogs for other summary statistics of (multivariate)
extreme value distributions can be defined in a similar way. While the tail index is a
univariate property, conditional extremal coefficients, for instance, allow for detection of
interaction of multivariate mark distributions with the pattern of point locations. Suchlike
characteristics can also help to detect, whether the sampling of a continuous-space process is
independent of the process itself or not.

Since the above summary statistics are defined as a mean of certain mark functionals, the
question arises, which mean is actually of interest in a practical situation. If there is an
underlying continuous-time process from which the data are generated by a random sampling
procedure, then the mean of interest will be reflected by the temporal average over the
whole index space instead of the average over the sampling locations. Weighting procedures
can then be used to compensate for the irregular distribution of point locations. Though,
the assumption of a continuous-time background process seems to be problematic in the
framework of financial transaction data since the observed values interact with each other and
with the point pattern. In Section 5.5, we already suggested to proceed differently for different
scales, i.e., to consider the data as a genuine MPP on the very small scale, but to assume
an underlying random field on larger scales and to correct for the irregular distribution of
locations by a weighting procedure based on the idea of variance minimization. This is closely
related to including non-ergodicity into the model and to replacing expectation functionals
w.r.t. the point process by two-step expectations that average within each ergodicity class
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first and then aggregate the different classes.

When being faced with real data, assuming ergodicity or not is entirely discretionary since
we are always restricted to finite observation windows. As regards financial transaction data,
we argue that it is sensible to perceive the data as a concatenation of multiple realizations of
a possibly non-ergodic MPP. Furthermore, regardless of whether the process is ergodic or
not, employing the estimators derived for the non-ergodic set-up can improve the statistical
properties of the estimate.

By applying the conditional tail index estimator to real transaction data, we see that the
tail index of log returns is significantly increased if there are other transactions within few
minutes before. We assess finite sample properties of the respective estimators, in particular
the variability, exploiting that, due to the thresholding, consecutive events that exceed the
threshold become stochastically independent under some weak assumptions. The variance
estimates based on the assumption (GRFM-trans) and the subsampling-based variance
estimates turn out to coincide for sufficiently high thresholds. Though, for general processes,
variance estimates of ξ̂n,wght(I, u,w) based on (Independent-noise-marking) or (GRFM-trans)
can be highly biased.

The detection of an increase of risk caused by the existence of other transactions, might by
itself be a valuable finding for risk management purposes or automated trading algorithms—
referring to a very fine temporal scale. Yet, it also indicates that treating this type of data
as measurements of a continuous-time process might be suboptimal because this does not
capture physical interaction between the observed events.

6.7 Proofs
The following lemma shows in which way the Gaussian dependence structure of the underlying
random field enters into the proof of Theorem 6.2.1.

Lemma 6.7.1. A random field Y on Rd as in assumption (GRFM-trans) has the following
property: For all t, s ∈ Rd, t 6= s, the conditional distribution

Fu(x, y) = P(log Y (t) ≤ x, log Y (s) ≤ y | log Y (t) > u, log Y (s) > u)

becomes a product distribution in the limit u → ∞. In copula language, the upper tail
dependence copula of any two-dimensional marginal distribution converges to the independent
copula.

Proof. Follows directly from Juri & Wüthrich (2003, Thm. 5.3) and the fact that a copula is
invariant under monotone transformation of the margins.

Proof of Theorem 6.2.1 and extension. With regard to the proof of Theorem 6.2.3, we con-
sider the more general case of

α̂fu,fcond ,u (I,Φ,T )
α̂1,fcond ,u (I,Φ,T )` with ` ≥ 0.
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With e(u) = E [log Y (0)− u| log Y (0) > u] we have

E
[ α̂fu,fcond ,u(I, Φ, T )
α̂1,fcond ,u(I, Φ, T )`

∣∣∣A∗u]
= α̂1,fcond ,u(I, Φ, T )−` · E

[∑
(t1,y1),(t2,y2)∈Φ, t1∈[0, T ](log y1 − u) · 1log y1>u · 1t2−t1∈I

∣∣∣A∗u]
= α̂1,fcond ,u(I, Φ, T )−` ·

∑
t1∈Φg∩[0, T ] 1log Y (t1)>u ·#{t2 ∈ Φg : t2 − t1 ∈ I}

· E [(log Y (t1)− u)|A∗u]

= e(u) · α̂1,fcond ,u(I, Φ, T )1−`. (6.16)

Furthermore,

Var
[ α̂fu,fcond ,u(I, Φ, T )
α̂1,fcond ,u(I, Φ, T )`

∣∣∣A∗u]
= E

[
(α̂fu,fcond ,u/α̂

`
1,fcond ,u)2 | A∗u

]
−
(
E[α̂fu,fcond ,u/α̂

`
1,fcond ,u | A

∗
u]
)2

= α̂−2`
1,fcond ,u

· E
[
α̂2
fu,fcond ,u | A

∗
u

]
− e(u)2α̂2−2`

1,fcond ,u
(6.17)

with

E
[
α̂fu,fcond ,u(I, Φ, T )2 | A∗u

]
= E

[ ∑
t1∈Φg∩[0, T ]

∑
s1∈Φg∩[0, T ]

(log Y (t1)− u)(log Y (s1)− u) · 1log Y (t1)>u1log Y (s1)>u

·#{t2 ∈ Φg : t2 − t1 ∈ I} ·#{s2 ∈ Φg : s2 − s1 ∈ I}
∣∣∣A∗u]

=
∑

t1∈Φg∩[0, T ]

∑
s1∈Φg∩[0, T ]

n(t1, Φg, I, u)n(s1, Φg, I, u)
· E
[
(log Y (t1)− u)(log Y (s1)− u) | A∗u

]
=

∑
t1∈Φg∩[0, T ]

∑
s1∈Φg∩[0, T ]

n(t1, Φg, I, u)n(s1, Φg, I, u)

·
[
E [log Y (0)− u|A∗u]2 + Cov

[
log Y (t1), log Y (s1) | A∗u

]]
=

∑
t1∈Φg∩[0, T ]

∑
s1∈Φg∩[0, T ]

n(t1, Φg, I, u)n(s1, Φg, I, u)
· Cov

[
log Y (t1), log Y (s1) | log Y (t1) > u, log Y (s1) > u

]
+ e(u)2 · α̂1,fcond ,u(I, Φ, T )2. (6.18)

Due to the finite range h0 of the covariance function of Y and the minimum distance d0
between point locations

E
[
α̂fu,fcond ,u(I, Φ, T )2 | A∗u

]
= vu

∑
t1∈Φg∩[0, T ]

n(t1, Φg, I, u)2 + e(u)2α̂1,fcond ,u(I, Φ, T )2 + εuvuα̂1,fcond ,u(I, Φ, T )h0
d0

(6.19)
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for some A∗u-measurable random variable εu with |εu| ≤ 1. It follows directly from Lemma
6.7.1 that the conditional covariance terms for t1 6= s1 vanish for u → ∞. Hence, εu → 0
a.s. and since εu is dominated by 1, also E|εu| → 0, as u → ∞. Note that, if additionally
condition (Independent-noise-marking) is satisfied, all covariance terms in (6.18) vanish due
to the iid assumption, up to those for which t1 = s1. Hence, εu equals 0 in this case.

Plugging (6.19) into (6.17) yields

Var
[
α̂fu,fcond ,u(I, Φ, T )/α̂1,fcond ,u(I, Φ, T )` | A∗u

]
= vu ·

∑
t1∈Φg∩[0, T ] n(t1, Φg, I, u)2

α̂1,fcond ,u(I, Φ, T )2` + εuvuα̂1,fcond ,u(I, Φ, T )1−2`h0
d0

(6.20)

and the proof is complete.

Proof of Theorem 6.2.3. Since the marginals of the underlying random field Y are assumed
to be in the Fréchet MDA, log Y (0) is in the Gumbel MDA. It is well known that being in the
MDA of the generalized extreme value distribution with shape parameter ξ is equivalent to the
distribution of excesses over high thresholds converging to the generalized Pareto distribution
(GPD) with the same shape parameter ξ (e.g., Embrechts et al., 1997, Thm. 3.4.13). In
the Gumbel case, where ξ equals 0, the corresponding GPD reduces to the exponential
distribution and therefore all moments of the excesses Zi = [log Y (0)−u | log Y (0) > u] exist
and converge to some constant in (0,∞) as u→∞.
Then, application of Theorem 5.4.3 yields the weak convergence of

α̂∗fuT ,fcond,uT
(I, Φ, T )

/√
α̂1,fcond ,uT

(I, Φ, T )

to a centered Gaussian variable.

For the asymptotic variance of α̂∗fu,fcond ,u
(I, Φ, T )/α̂1,fcond ,u(I, Φ, T )`, ` ∈ {0.5, 1}, note that

under the random field model assumption, ξ(I, u) = e(u). Hence, applying the decomposition
of variance w.r.t.A∗u and replacing fu(y) = log y−u by f̃u(y) = log y−u−e(u) in (6.16)–(6.20),
the terms e(u) in these equations vanish and it follows directly that

Var
[
α̂∗fu,fcond ,u

(I, Φ, T )
α̂1,fcond ,u(I, Φ, T )`

]
= Var

[
α̂fu,fcond ,u(I, Φ, T )
α̂1,fcond ,u(I, Φ, T )`

]
−Var

[
e(u) · α̂1,fcond ,u(I, Φ, T )1−`

]
,

(6.21)

for arbitrary u and T .
With (6.16) we get

VarE
[
α̂fu,fcond ,u(I, Φ, T )
α̂1,fcond ,u(I, Φ, T )`

∣∣∣A∗u
]

= Var
[
e(u)α̂1,fcond ,u(I, Φ, T )1−`

]
,
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which equals 0 if and only if ` = 1. Together with (6.20), we obtain

Var
[
α̂fu,fcond ,u(I, Φ, T )
α̂1,fcond ,u(I, Φ, T )`

]

= EVar
[
α̂fu,fcond ,u(I, Φ, T )
α̂1,fcond ,u(I, Φ, T )`

∣∣∣A∗u
]

+ VarE
[
α̂fu,fcond ,u(I, Φ, T )
α̂1,fcond ,u(I, Φ, T )`

∣∣∣A∗u
]

= vuE
[∑

t1∈Φg∩[0, T ] n(t1, Φg, I, u)2

α̂1,fcond ,u(I, Φ, T )2`

]

+ E
[
εuvuα̂1,fcond ,u(I, Φ, T )1−2`h0

d0

]
+ e(u)2 Var

[
α̂1,fcond ,u(I, Φ, T )1−`

]
(6.22)

with some random function εu satisfying |εu| ≤ 1 and εu → 0 a.s. and in L1 for u→∞ (see
the proof of Theorem 6.2.1).

Then, with (6.21), (6.22) and ` = 0.5, the asymptotic variance of
α̂∗fuT ,fcond ,uT

(I,Φ,T )√
α̂1,fcond ,uT

(I,Φ,T )
(for

T →∞) is

su∞ = lim
T→∞

vuT · EΦg

[∑
t1∈Φg∩[0, T ] n(t1, Φg, I, uT )2

α̂1,fcond ,uT
(I, Φ, T ) + εuT

h0
d0

]
,

where the expectation can also be applied to numerator and denominator separately due to
the a.s. convergence of α̂1,fcond ,uT

(I, Φ, T )/Eα̂1,fcond ,uT
(I, Φ, T ) (cf. Lemma 5.8.1). For fixed

u, the asymptotic variance of
α̂∗fu,fcond ,u

(I,Φ,T )√
α̂1,fcond ,u (I,Φ,T ) is

su = lim
T→∞

vu

[
EΦg

[∑
t1∈Φg∩[0, T ] n(t1, Φg, I, u)2

α̂1,fcond ,u(I, Φ, T ) + εu
h0
d0

]]
(6.23)

= vu

[
EΦg

∑
t1∈Φg∩[0, 1] n(t1, Φg, I, u)2

EΦgα̂1,fcond ,u(I, Φ, 1) + h0
d0

EΦgεu

]
, (6.24)

where the second equation follows by again applying Proposition 5.7.4 to both numerator
and denominator, and by noting that the ratio on the RHS of (6.23) is bounded by (|I|/d0)2.

The last assertion concerning the variance of
α̂fu,fcond ,u (I,Φ,T )
α̂1,fcond ,u (I,Φ,T ) and

α̂∗fu,fcond ,u
(I,Φ,T )

α̂1,fcond ,u (I,Φ,T ) also
follows from (6.21) and (6.22) with ` = 1.





7 Representations of max-stable processes based on
single extreme events

While conventional second-order dependency measures, such as the covariance, are well-
established for continuous-space processes as well as for the MPP framework, second-order
characteristics for the extremes are still in development. In the field of extreme value statistics,
(spatial) dependency of the extremes is modeled via max-stable processes; inference for general
max-stable processes is a major subject of current research. One of the two general classes
of estimation principles is the class of peaks-over-threshold methods, which are particularly
promising from an MPP point of view in that they can be expected to be also applicable to
data of MPP type. This chapter provides some theoretical foundations for new statistical
methods for the max-domain of attraction of max-stable processes, and closes with a short
outlook for how the results can be applied.
The chapter is based on the manuscript Engelke et al. (2012b).

7.1 Introduction
The joint extremal behavior at multiple locations of some random process {η(t) : t ∈ T},
T an arbitrary index set, can be captured via its limiting max-stable process, assuming the
latter exists and is non-trivial everywhere. Then, for independent copies ηi of η, i ∈ N, the
functions bn : T → R, cn : T → (0,∞) can be chosen such that the convergence

ζ(t) = lim
n→∞

cn(t)
(

nmax
i=1

ηi(t)− bn(t)
)
, t ∈ T, (7.1)

holds in the sense of finite-dimensional distributions. The process ζ is said to be max-stable
and η is in its max-domain of attraction (MDA). The theory of max-stable processes is mainly
concerned with the dependence structure while the marginals are usually assumed to be
known. Even for finite-dimensional max-stable distributions, the space of possible dependence
structures is uncountably infinite-dimensional and parametric models are required to find a
balance between flexibility and analytical tractability (de Haan & Ferreira, 2006; Resnick,
2008).

A general construction principle for max-stable processes was provided by de Haan (1984)
and Smith (1990): Let

∑
i∈N δ(Ui,Si) be a Poisson point process (PPP) on (0,∞)× S with

intensity measure u−2du · ν(ds), where (S,S) is an arbitrary measurable space and ν a
positive measure on S. Further, let f : S × T → [0,∞) be a non-negative function with∫
S f(s,t)ν(ds) = 1 for all t ∈ T . Then the process

ζ(t) = max
i∈N

Uif(Si, t), t ∈ T, (7.2)

115
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is max-stable and has standard Fréchet margins with distribution function exp(−1/x) for
x ≥ 0. In this chapter, two specific choices for f and (S,S, ν) are considered. First, let
{W (t) : t ∈ T} be a non-negative stochastic process with EW (t) = 1, t ∈ T , and W (t0) = 1
a.s. for some point t0 ∈ T . The latter condition means that W (t) simply describes the
multiplicative increment of W w.r.t. the location t0. For (S,S, ν) being the canonical
probability space for the sample paths of W and with f(w,t) = w(t), w ∈ S, t ∈ T , we refer
to

ζ(t) = max
i∈N

UiWi(t), t ∈ T, (7.3)

as the incremental representation of ζ, where {Wi}i∈N are independent copies of W . Since T
is an arbitrary index set, the above definition covers multivariate extreme value distributions,
i.e. T = {t1, . . . ,tk}, as well as max-stable random fields, i.e. T = Rd.
For the second specification, let {F (t) : t ∈ Rd} be a stochastic process with sample paths
in the space C(Rd) of non-negative continuous functions and

E
∫
Rd F (t)dt = 1. (7.4)

With Si = (Ti,Fi), i ∈ N, in S = Rd × C(Rd), intensity measure ν(dt× dg) = dtPF (dg) and
f((t,g), s) = g(s− t), (t,g) ∈ S, we obtain the class of mixed moving maxima (M3) processes

ζ(t) = max
i∈N

UiFi(t− Ti), t ∈ Rd. (7.5)

These processes are max-stable and stationary on Rd (see for instance Wang & Stoev (2010)).
The function F is called shape function of ζ and can also be deterministic (e.g., in case of
the Smith process). In Smith’s “rainfall-storm” interpretation (Smith, 1990), Ui and Ti are
the strength and center point of the ith storm, respectively, and UiFi(t− Ti) represents the
corresponding amount of rainfall at location t. In this case, ζ(t) is the process of extremal
precipitation.
Based on the two representations (7.3) and (7.5), we will provide convergence results for
processes in the MDA of ζ, which lead to new and efficient methods of inference.

When i.i.d. realizations η1, . . . , ηn of η in the MDA of a max-stable process ζ are observed,
a classical approach for parametric inference on ζ is based on generating (approximate)
realizations of ζ out of the data η1, . . . , ηn via componentwise block maxima and applying
maximum likelihood (ML) estimation afterwards. A clear drawback of this method is that
it ignores all information on large values that is contained in the order statistics below the
within-block maximum. Further, ML estimation needs to evaluate the multivariate densities
while for many max-stable models only the bivariate densities are known in closed form.
Thus, composite likelihood approaches have been proposed (Padoan et al., 2010; Davison &
Gholamrezaee, 2012).
In univariate extreme-value theory, the second standard procedure estimates parameters by
fitting a certain PPP to the peaks-over-thresholds (POT), i.e., to the empirical process of
exceedances over a certain critical value (Leadbetter, 1991; Embrechts et al., 1997). Also
in the multivariate framework we can expect to profit from using all extremal data via
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generalized POT methods instead of aggregated data. In contrast to the ML approach,
here, we assume that ζ admits one of the two representations (7.3) and (7.5) and we aim at
extracting realizations of the processes W and F , respectively, from single extreme events.
Here, the specification of a single extreme event will depend on the respective representation.
In Engelke et al. (2012a), this concept is applied to derive estimators for the class of Brown-
Resnick processes (Brown & Resnick, 1977; Kabluchko et al., 2009), which have the form
(7.3) by construction. With a(n) being a sequence with limn→∞ a(n) =∞, the convergence
in distribution (

η(t1)
η(t0) , . . . ,

η(tk)
η(t0)

∣∣∣∣∣ η(t0) > a(n)
)
⇒
(
W (t1), . . . ,W (tk)

)
, (7.6)

for t0,t1, . . . ,tk ∈ T , k ∈ N, is established for η being in the MDA of a Brown-Resnick process
and with W being the corresponding log-Gaussian random field.
Basrak & Segers (2009) and Meinguet & Segers (2010) consider multivariate time series

(Xt)t∈Z and time series in general Banach spaces, respectively, rescaled and conditioned on
‖X0‖ being large. They provide equivalent conditions for the existence of the corresponding
tail processes and its spectral decomposition, whereas here, we explicitly calculate the limiting
processes under more specific assumptions.
In this direction, we generalize the convergence result (7.6) in two different aspects.

Arbitrary non-negative processes {W (t) : t ∈ T} with EW (t) = 1, t ∈ T , are considered, and
convergence of the conditional increments of η in the sense of finite-dimensional distributions
as well as weak convergence in continuous function spaces is shown (Theorems 7.2.1 and
7.2.10). Since also M3 processes might admit an incremental representations (7.3) we provide
formulae for switching between the two representations in Section 7.3. Section 7.4 gives an
exemplary outlook on how our results can be applied for statistical inference.

7.2 Extracting the incremental process
Throughout this section, we consider a slightly more general version of representation 7.3,
which does not require that W (t0) = 1 a.s. for some t0 ∈ T . In fact, we suppose that
{ζ(t) : t ∈ T}, T an arbitrary index set, is normalized to standard Fréchet margins and
admits a representation

ζ(t) = max
i∈N

UiVi(t), t ∈ T. (7.7)

Here,
∑
i∈N δUi is a PPP on (0,∞) with intensity u−2du, which we call Fréchet point process

in the following. The {Vi}i∈N are independent copies of a non-negative stochastic process
{V (t) : t ∈ T} with EV (t) = 1, t ∈ T . For any fixed t0 ∈ T , we have

ζ(t) d= max
i∈N

Ui
(
1Pi=0V

(1)
i (t) + 1Pi=1V

(2)
i (t)

)
, t ∈ T, (7.8)
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where {Pi}i∈N are i.i.d. Bernoulli variables with parameter p = P(V (t0) = 0) and the V (1)
i

and V (2)
i are independent copies of the process {V (t) : t ∈ T}, conditioned on the events

{V (t0) > 0} and {V (t0) = 0}, respectively.
Note that for k ∈ N, t0, . . . , tk ∈ T , the vector ζ = (ζ(t0), . . . ,ζ(tk)) follows a (k+1)-variate

extreme-value distribution and its distribution function G can therefore be written as

G(x) = exp(−µ([0,x]C)), x ∈ Rk+1, (7.9)

where µ is a measure on E = [0,∞)k+1 \ {0}, the so-called exponent measure of G (Resnick,
2008, Prop. 5.8), and [0,x]C = E \ [0,x].

The following convergence result provides the theoretical foundation for statistical inference
based on the incremental process V .

Theorem 7.2.1. Let {η(t) : t ∈ T} be non-negative and in the MDA of some max-stable
process ζ that admits a representation (7.7) and suppose that η is normalized such that (7.1)
holds with cn(t) = 1/n and bn(t) = 0 for n ∈ N and t ∈ T . Let a(n)→∞ as n→∞. For
k ∈ N and t0, . . . ,tk ∈ T we have the convergence in distribution on Rk+1

(
η(t0)
a(n) ,

η(t1)
η(t0) , . . . ,

η(tk)
η(t0)

∣∣∣∣∣ η(t0) > a(n)
)
⇒
(
Z,∆Ṽ(1)

)
, n→∞,

where the distribution of ∆Ṽ(1) is given by

P(∆Ṽ(1) ∈ dz) = (1− p)P(∆V(1) ∈ dz)E
(
V (1)(t0)

∣∣∆V(1) = z
)
, (7.10)

z ≥ 0. Here, ∆V(1) denotes the vector of increments
(
V (1)(t1)
V (1)(t0) , . . . ,

V (1)(tk)
V (1)(t0)

)
with respect to

t0, and Z is an independent Pareto variable.

Remark 7.2.2. Note that, if ζ has standard Fréchet margins, any process η satisfying
the convergence in (7.1) can be normalized such that the norming functions in (7.1) are
cn(t) = 1/n and bn(t) = 0, n ∈ N, t ∈ T (Resnick, 2008, Prop. 5.10).

Proof of Theorem 7.2.1. For X = (η(t0), . . . ,η(tk)), which is in the MDA of the random
vector ζ = (ζ(t0), . . . ,ζ(tk)), it follows from Resnick (2008, Prop. 5.17) that

lim
m→∞

mP(X/m ∈ B) = µ(B), (7.11)

for all elements B of the Borel σ-algebra B(E) of E bounded away from {0} with µ(∂B) = 0,
where µ is defined by (7.9). For s0 > 0 and s = (s1, . . . , sk) ∈ [0,∞)k, we consider the sets
As0 = (s0,∞) × [0,∞)k, A = A1 and Bs = {x ∈ [0,∞)k+1 : (x(1), . . . ,x(k)) ≤ x(0)s} for s
satisfying P(∆Ṽ(1) ∈ ∂[0,s]) = 0. Since Bs satisfies Bs = cBs for any c > 0, we obtain

P
(
η(t0) > s0a(n), (η(t1)/η(t0), . . . , η(tk)/η(t0)) ≤ s

∣∣∣ η(t0) > a(n)
)

= a(n)P(X/a(n) ∈ Bs ∩A ∩As0)
a(n)P(X/a(n) ∈ A) −→ µ(Bs ∩A ∩As0)

µ(A) , (n→∞), (7.12)
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1 s0

s Bs

As0

Bs∩As0

Figure 7.1: The sets A, Bs and Bs ∩As0 for k = 1.

where the convergence follows from (7.11), if µ{∂(Bs ∩A ∩As0)} = 0. Let

ζ(1)(t) = max
i∈N

U
(1)
i V

(1)
i (t), t ∈ T, (7.13)

where
∑
i∈N δU(1)

i

is a Poisson point process with intensity (1 − p)u−2du, and let µ(1) be
the exponent measure of the associated max-stable random vector (ζ(1)(t0), . . . , ζ(1)(tk)).
Then the choice A = (1,∞)× [0,∞)k guarantees that µ(· ∩A) = µ(1)(· ∩A). Comparing the
construction of ζ(1) in (7.13) with the definition of the exponent measure, we see that µ(1)

is the intensity measure of the Poisson point process
∑
i∈N δ(U(1)

i V
(1)
i (t0), ..., U(1)

i V
(1)
i (tk)) on E.

Hence,

µ(A) =
∫ ∞

0
(1− p)u−2

∫
[u−1,∞)

P(V (1)(t0) ∈ dy)du

= (1− p)
∫ ∞

0
yP(V (1)(t0) ∈ dy) = (1− p)EV (1)(t0) = 1, (7.14)

where the last equality follows from EV (1)(t0) = EV (t0)/(1 − p). Furthermore, for s0 ≥ 1
and s ∈ [0,∞)k with P(∆Ṽ(1) ∈ ∂[0,s]) = 0,

µ(Bs ∩A ∩As0)/((1− p)µ(A))

=
∫ ∞

0
u−2

∫
[s0u−1,∞)

P
(
V (1)(t0) ∈ dy

∣∣∣∆V(1) ≤ s
)
P(∆V(1) ≤ s)du

=
∫

[0,s]

∫
[0,∞)

ys−1
0 · P

(
V (1)(t0) ∈ dy

∣∣∣∆V(1) = z
)
P(∆V(1) ∈ dz)

= s−1
0

∫
[0,s]

E
(
V (1)(t0)

∣∣∣∆V(1) = z
)
P(∆V(1) ∈ dz). (7.15)
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Equation (7.15) shows that the convergence in (7.12) holds for all continuity points s ∈ [0,∞)k
of the distribution function of ∆V(1).

Remark 7.2.3. 1. If V (1)(t0) is stochastically independent of the increments ∆V(1), we
simply have P(∆Ṽ(1) ∈ dz) = P(∆V(1) ∈ dz). This is particularly the case if ζ admits
a representation (7.3), which shows that (7.6) is indeed a special case of Theorem 7.2.1.

2. If p = P(V (t0) = 0) = 0, the exponent measure µ of any finite-dimensional vector ζ =
(ζ(t0), . . . , ζ(tk)), t0, . . . , tk ∈ T , k ∈ N, satisfies the condition µ

(
{0} × [0,∞)k

)
= 0,

and following Proposition 7.2.7, the incremental representation of ζ according to (7.3)
is given by ζ = maxi∈N Ui · (1, ∆Ṽi)>, where ∆Ṽi, i ∈ N, are independent copies of
∆Ṽ = ∆Ṽ(1).

Remark 7.2.4. In the above theorem, the thresholds a(n) tend to ∞ to make {η(t0) > a(n)}
a rare event. For statistical applications, a(n) should also be chosen such that the number of
exceedances N(n) =

∑n
i=1 1{ηi(t0) > a(n)} converges to ∞ almost surely, where ηi, i ∈ N,

are independent copies of η. By the Poisson limit theorem, this is equivalent to the additional
assumption that limn→∞ a(n)/n = 0, since then nP(η(t0) > a(n)) = n/a(n)→∞.

Remark 7.2.5. Engelke et al. (2012a) consider Hüsler-Reiss distributions (Hüsler & Reiss,
1989; Kabluchko, 2011) and obtain their limiting results by conditioning on certain extremal
events A ⊂ E. They show that various choices of A are sensible in the Hüsler-Reiss case,
leading to different limiting distributions of the increments of η. In case that ζ is a Brown-
Resnick process and A = (1,∞)× [0,∞)k, the assertions of Theorem 7.2.1 and Engelke et al.
(2012a, Thm. 3.3) coincide.

Example 7.2.6 (Extremal Gaussian process (Schlather, 2002)). A commonly used class of
stationary yet non-ergodic max-stable processes on Rd is defined by

ζ(t) = max
i∈N

UiYi(t), t ∈ Rd, (7.16)

where
∑
i∈N δUi is a Fréchet point process, Yi(t) = max(0, Ỹi(t)), i ∈ N, and the Ỹi are i.i.d.

stationary, centered Gaussian processes with E(max(0, Ỹi(t))) = 1 for all t ∈ Rd (Schlather,
2002; Blanchet & Davison, 2011). Note that in general, a t0 ∈ Rd s.t. Yi(t0) = 1 a.s. does not
exist, i.e., the process admits representation (7.7) but not representation (7.3). In particular,
for the extremal Gaussian process we have p = P(V (t0) = 0) = 1/2 and the distribution of
the increments in (7.10) becomes

P(∆Ṽ(1)∈ dz) = 1
2E
[
Y (t0)

∣∣∣ (Y (t1)/Y (t0), . . . , Y (tk)/Y (t0)) = z, Y (t0) > 0
]

· P
((
Y (t1)/Y (t0), . . . , Y (tk)/Y (t0)

)
∈ dz

∣∣∣Y (t0) > 0
)
.

While the Hüsler-Reiss distribution is already given by the incremental representation
(7.3), cf. Kabluchko (2011), other distributions can be suitably rewritten, provided that the
respective exponent measure µ is known.
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Proposition 7.2.7. Let ζ = (ζ(t0), . . . ,ζ(tk)) be a max-stable process on T = {t0, . . . , tk}
with standard Fréchet margins and suppose that its exponent measure µ is concentrated on
(0,∞)× [0,∞)k. Define a random vector W via

P(W ≤ s) = µ(Bs ∩A), s ∈ [0,∞)k, (7.17)

where A = (1,∞)× [0,∞)k and Bs = {x ∈ [0,∞)k+1 : (x(1), . . . ,x(k)) ≤ x(0)s}. Then W is
the incremental process of ζ in (7.3).

Proof. First, we note that (7.17) indeed defines a valid cumulative distribution function. To
this end, consider the measurable transformation

T : (0,∞)× [0,∞)k → (0,∞)× [0,∞)k, (x0, . . . , xk) 7→
(
x0,

x1
x0
, . . . ,

xk
x0

)
.

Then, T (Bs∩A) = (1,∞)× [0, s] and the measure µT (·) = µ(T−1((1,∞)× · )) is a probability
measure on [0,∞)k. Since

µ(Bs ∩A) = µ(T−1((1,∞)× [0, s])) = µT ([0, s]),

the random vector W is well-defined and has law µT .
By definition of the exponent measure, we have ζ d= maxi∈N Xi, where Π =

∑
i∈N δXi

is a PPP on E with intensity measure µ. Then, the transformed point process TΠ =∑
i∈N δ(X(0)

i , X
(1)
i /X

(0)
i , ..., X

(k)
i /X

(0)
i ) has intensity measure

µ̃((c,∞)× [0,s]) = µ
(
T−1 ((c,∞)× [0,s])

)
= µ(Bs ∩ ((c,∞)× [0,∞)k)) = c−1µ(Bs ∩A)

for any c > 0, s ∈ [0,∞)k, where we use the homogeneity property c−1µ(dx) = µ(d(cx)).
Thus, TΠ has the same intensity as

∑
i∈N δ(Ui,Wi), where

∑
i∈N δUi is a Fréchet point process

and Wi, i ∈ N, are i.i.d. vectors with law µT . Hence,

ζ
d= max

i∈N
T−1

((
X

(0)
i , X

(1)
i /X

(0)
i , . . . , X

(k)
i /X

(0)
i

))
d= max

i∈N
T−1 ((Ui,Wi

))
= max

i∈N
UiWi.

Example 7.2.8 (Bivariate Pareto-based distribution, cf. Resnick (2008, Ex. 5.16) and the
references therein). For T = {t0,t1}, the extreme value distribution

P(ζ(t0) ≤ x, ζ(t1) ≤ y) = exp(−x−1 − y−1 + (x+ y)−1), x,y > 0,

is the max-limit of a bivariate Pareto distribution. Using the density of the exponent measure,

µ(dx,dy) = 2(x+ y)−3dxdy,
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we get for s ≥ 0

µ(Bs ∩A) =
∫ ∞

1

∫ sx

0
µ(dx,dy)

=
∫ ∞

1
x−1

(
1− (1 + s)−2

)
dx = 1− (1 + s)−2.

Thus, for W in the representation (7.3), we have

P(W (t1) ≤ s) = 1− (1 + s)−2.

Example 7.2.9 (Symmetric logistic distribution, cf. Gumbel (1960)). Choosing the index
set T = {t0, . . . ,tk}, the symmetric logistic distribution is given by

P(ζ(t0) ≤ x0, . . . , ζ(tk) ≤ xk) = exp
[
−
(
x−q0 + . . .+ x−qk

)1/q
]
, (7.18)

for x0, . . . ,xk > 0 and q > 1. Hence, the density of the exponent measure is

µ(dx0, . . . ,dxk) =
(∑k

i=0 x
−q
i

)1/q−k−1 (∏k
i=1(iq − 1)

)∏k
i=0 x

−q−1
i dx0 . . . dxk.

Applying Proposition 7.2.7, the incremental process W in (7.3) is given by

P(W (t1) ≤ s1, . . .W (tk) ≤ sk) =
(
1 +

∑k
i=1 s

−q
i

)1/q−1
.

7.2.1 Continuous sample paths
In this subsection, we provide an analog result to Theorem 7.2.1, replacing convergence in
the sense of finite-dimensional distributions by weak convergence on function spaces. For
a Borel set U ⊂ Rd, we denote by C(U) and C+(U) the space of non-negative and strictly
positive continuous functions on U , respectively, equipped with the topology of uniform
convergence on compact sets.
Theorem 7.2.10. Let K ⊂ Rd be compact and {η(t) : t ∈ K} a C+(K)-valued process in the
MDA of a max-stable process {ζ(t) : t ∈ K} as in (7.3) in the sense of weak convergence on
C(K). W.l.o.g., assume that n−1 maxni=1 ηi(·)⇒ ζ(·) as n→∞. Let W be the incremental
process from (7.3) and Z a Pareto random variable, independent of W . Then, for any
sequence a(n)→∞, as n→∞, we have the weak convergence on (0,∞)× C(K)(

η(t0)
a(n) ,

η(·)
η(t0)

∣∣∣ η(t0) > a(n)
)
⇒ (Z,W (·)).

Remark 7.2.11. Analogously to Whitt (1970, Thm. 5), weak convergence of a sequence of
probability measures Pn, n ∈ N, to some probability measure P on C(Rd) is equivalent to weak
convergence of Pnr−1

j to Pr−1
j on C([−j, j]d) for all j ≥ 1, where rj : C(Rd)→ C([−j,j]d)

denotes the restriction to the cube [−j, j]d. Hence, Theorem 7.2.10 remains valid if the
compact set K is replaced by Rd.
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Proof of Theorem 7.2.10. As the process ζ is max-stable and η ∈ MDA(ζ), similarly to the
case of multivariate max-stable distributions (cf. Theorem 7.2.1),

lim
u→∞

uP(η/u ∈ B) = µ(B) (7.19)

for any Borel set B ⊂ C(K) bounded away from 0K , i.e., inf{sups∈K f(s) : f ∈ B} > 0,
and with µ(∂B) = 0 de Haan & Ferreira (2006, Cor. 9.3.2), where µ is the exponent measure
of ζ, defined by

P(ζ(s) ≤ xj , s ∈ Kj , j = 1, . . . ,m)

= exp
[
−µ

({
f ∈ C(K) : sups∈Kj f(s) > xj for some j ∈ {1, . . . ,m}

})]
for xj ≥ 0, Kj ⊂ K compact. Thus, µ equals the intensity measure of the PPP

∑
i∈N δUiWi(·).

For z > 0 and D ⊂ C(K) Borel, we consider the sets

Az = {f ∈ C(K) : f(t0) > z}, BD = {f ∈ C(K) : f(·)/f(t0) ∈ D}

and A = A1. Again, cBD = BD for any c > 0. Then, as W (t0) = 1 a.s., we have
µ(Az) =

∫∞
z u−2du = z−1 and for s0 ≥ 1 and any Borel set D ⊂ C(K) with P(W ∈ ∂D) = 0,

by (7.19), analogously to (7.12), we get

P
{
η(t0)/a(n) > s0, η(·)/η(t0) ∈ D

∣∣∣ η(t0) > a(n)
}

n→∞−→ µ(BD ∩As0)
µ(A) =

∫ ∞
s0

u−2P
{
uW (·) ∈ BD

}
du = s−1

0 P
{
W (·) ∈ D

}
,

which is the joint distribution of Z and W (·).

7.3 Incremental representation of mixed moving maxima processes
We show that under certain assumptions, processes of M3 type as in (7.5) also admit an
incremental representations (7.3) or (7.7). We distinguish between M3 processes with strictly
positive shape functions, for which an incremental representation (7.3) exists, and general
non-negative shape functions, for which only the weaker representation (7.7) can be obtained.
Note that the marginal distributions of an M3 process M as in (7.5) are given by

P(M(tl) ≤ sl, l = 0, . . . , k) = exp
(
−
∫
C(Rd)

∫
Rd

kmax
l=0

(f(tl − t)
sl

)
dtPF (df)

)
, (7.20)

for t0, . . . , tk ∈ Rd, s0, . . . , sk ≥ 0, k ∈ N.

7.3.1 Mixed moving maxima processes with positive shape functions
Theorem 7.3.1. Let M be an M3 process on Rd as in (7.5) with a shape function F
with F (t) > 0 for all t ∈ Rd. Let Π0 =

∑
i∈N δ(Ui,Ti,Fi) be the corresponding PPP on
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(0,∞)× Rd × C(Rd) with intensity u−2du dtPF (df). Then M admits a representation (7.3)
with t0 = 0 and incremental process W given by

P(W ∈ L) =
∫
C+(Rd)

∫
Rd

1{f(·−t)/f(−t)∈L}f(−t)dtPF (df), L ∈ B(C+(Rd)). (7.21)

Proof. We consider the two Poisson point processes on (0,∞)× C+(Rd)

Π1 =
∑
i∈N

δ(UiFi(−Ti),Fi(·−Ti)/Fi(−Ti)),

as a transformation of Π0 and Π2 =
∑
i∈N δ(U ′i ,Wi(·)), with Wi, i ∈ N, being independent

copies of W , and with
∑
i∈N δU ′i being a Fréchet point process. Then the intensity measures

of Π1 and Π2 satisfy

EΠ1([z,∞)× L)

=
∫
C+(Rd)

∫
Rd

∫ ∞
0

u−21{uf(−t)≥z}1{f(·−t)/f(−t)∈L} du dtPF (df)

= z−1
∫
C+(Rd)

∫
Rd

1{f(·−t)/f(−t)∈L}f(−t) dtPF (df)

= z−1P(W ∈ L) = EΠ2([z,∞)× L),

L ∈ B(C+(Rd)), z > 0, and hence Π1
d= Π2. The assertion follows from the fact that M is

uniquely determined by Π1 via the relation M(·) = max(v,g)∈Π1 vg(·).

While the definition ofW in (7.21) is rather implicit, in the following, we provide an explicit
construction of the incremental process W , which can also be used for simulation. To this
end, let

∑
i∈N δU ′′i be a Fréchet point process and let the distribution of (S,G) ∈ C+(Rd)×Rd

be given by

P
(
(S,G) ∈ (B × L)

)
=
∫
C+(Rd)

∫
Rd

1s∈B1f∈L
f(−s)∫
f(r)dr ds

(∫
f(r)dr

)
PF (df)

=
∫
C+(Rd)

∫
Rd

1s∈B1f∈Lf(−s) dsPF (df), (7.22)

B ∈ Bd, L ∈ B(C+(Rd)). In other words, PG(df) = (
∫
f(r)dr)PF (df) and, conditional on

{G = f}, the density function of the shift S is proportional to f(−·). Putting W (·) =
G(· − S)/G(−S), equation (7.21) is satisfied and with i.i.d. copies Wi, i ∈ N, of W , we get
that maxi∈N U ′′i Wi(·) is indeed an incremental representation (7.3) of the mixed moving
maxima process M .

Remark 7.3.2 (M3 representation of Brown-Resnick processes). We consider the following
two special cases of M3 processes:

1. Let Σ ∈ Rd×d be a positive definite matrix and let the shape function be given by
F (t) = (2π)−d/2|Σ|−1/2 exp

{
−1

2 t
>Σ−1t

}
, t ∈ Rd. Then, M becomes the well-known



7.3 Incremental representation of mixed moving maxima processes 125

Smith process. At the same time, by (7.22), S ∼ N(0,Σ) and G ≡ F . Thus

Y (t) = exp
{
−1

2(t− S)>Σ−1(t− S) + 1
2S
>Σ−1S

}
= exp

{
−1

2 t
>Σ−1t+ t>Σ−1S

}
.

Since E(t>Σ−1S)2 = t>Σ−1t, M is equivalent to the Brown-Resnick process in (7.24)
with variogram γ(h) = h>Σ−1h.

2. For the one-dimensional Brown-Resnick process ζ in (7.24) with variogram γ(h) = |h|,
i.e., Y is the exponential of a standard Brownian motion with drift −|t|/2, Engelke
et al. (2011) recently showed that the M3 representation is given by {F (t) : t ∈ R} =
{Y (t) | Y (s) ≤ 0 ∀s ∈ R : t ∈ R}, i.e., the shape function is the exponential of a
conditionally negative drifted Brownian motion. Having these two representations, it
follows that the law of the conditional Brownian motion F , re-weighted by

∫
F (t)dt

and randomly shifted with density F (−·)/
∫
F (t)dt, coincides with the law of Y .

7.3.2 Mixed moving maxima processes with finitely supported shape functions
Let M be an M3 process on Rd as in (7.5). In contrast to Subsection 7.3.1, where the shape
functions are required to take positive values, here, we allow for arbitrary shape functions
with values in [0,∞).

Theorem 7.3.3. The M3 process M as in (7.5) allows for an incremental representation of
the form (7.7), with incremental processes Vi given by

Vi(·) = Fi(· −Ri)/g(Ri).

Here Ri, i ∈ N, are i.i.d. copies of a random vector R with arbitrary density g satisfying
g(t) > 0 for all t ∈ Rd, and Fi, i ∈ N, are i.i.d. copies of the random shape function F .

Proof. With
∑
i∈N δUi being a Fréchet point process, we consider the process

M̃(t) = max
i∈N

UiFi(t−Ri)/g(Ri), t ∈ Rd,

which clearly is of the form (7.7). Then,

P(M̃(tl) ≤ sl, l = 0, . . . ,k) = exp
(
−
∫
C(Rd)

∫
Rd

kmax
l=0

f(tl − t)
g(t)sl

g(t)dtPF (df)
)
.

The right-hand side coincides with the marginal distribution of M , which is given by (7.20).
This concludes the proof.

Decomposing V as in (7.8) with t0 = 0, we obtain the equality in distribution

V (1)(·) d=
(
F (· −R)/g(R)

∣∣−R ∈ supp(F )
)
.
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Applying Theorem 7.2.1 yields

P
(
∆Ṽ(1) ∈ dz

)
= P

(
F (−R)/g(R) > 0

)
·
∫ ∞

0
yP
(
V (1)(0) ∈ dy, ∆V(1) ∈ dz

)
=
∫ ∞

0
y

∫
C(Rd)

∫
− supp(f)

1f(−t)/g(t)∈dy1(f(tl−t)/f(−t))k
l=1∈dzg(t)dtPF (df)dy

=
∫
C(Rd)

∫
supp(f)

f(t)1(f(tl+t)/f(t))k
l=1∈dzdtPF (df). (7.23)

The asymptotic conditional increments of η ∈ MDA(M) can be seen as a convolution of
the shape function’s increments with a random shift, whose density is given by the shape
function itself. The distribution is particularly independent of the choice of the density g in
Theorem 7.3.3.

Remark 7.3.4. Section 7.3.1 considers the subclass of M3 processes with strictly positive
shape functions and provides an incremental representation as in (7.3), which is nicely related
to the conditional increments of η due to the property W (0) = 1. Section 7.3.2 applies to
arbitrary M3 processes but only yields an incremental representation as in (7.7), for which
the incremental process V does not directly represent the conditional increments of η.

7.4 Outlook: Statistical applications
In univariate extreme value theory, a standard method for estimating the extreme value
parameters fits all data exceeding a high threshold to a certain Poisson point process.
This peaks-over-threshold approach has been generalized in Rootzén & Tajvidi (2006) to
the multivariate setting. Conditioning on the event that at least one component of a
random vector is large, the recent contribution Falk & Tichy (2012) analyzes the asymptotic
distribution of exceedance counts of stationary sequences.
Here, we have suggested conditioning a stochastic process {η(t) : t ∈ T} in the MDA of a
max-stable process {ζ(t) : t ∈ T} such that it converges to the incremental processes W
in (7.3). In this final section, some examples are provided of how these theoretical results
can be used for statistical inference. The approach is a multivariate peaks-over-threshold
method for max-stable processes, though the definition of extreme events differs from that
in Rootzén & Tajvidi (2006); Falk & Tichy (2012).
In the sequel, suppose that η1, . . . ,ηn, n ∈ N, are independent observations of the random
process η, already normalized to standard Pareto margins.

For a max-stable process ζ that admits an incremental representation (7.3), the statistical
merit of the convergence results in Theorem 7.2.1 and Theorem 7.2.10 is the “deconvolution”
of U and W , which allows to substitute estimation of ζ by estimation of the process W . As
only the single extreme events converge toW , we define the index set of extremal observations
as

I1(n) =
{
i ∈ {1, . . . n} : ηi(t0) > a(n)

}
,
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for some fixed t0 ∈ T . The set {ηi(·)/ηi(t0) : i ∈ I1(n)} then represents a collection of
independent random variables that approximately follow the distribution of W . Thus, once
the representation in (7.3) is known, both parametric and non-parametric estimation for the
process W is feasible. For statistical inference it is necessary that the number of extremal
observations |I1(n)| converges to ∞, as n→∞, cf. Remark 7.2.4.

Example 7.4.1 (Symmetric logistic distribution, cf. Example 7.2.9). The dependence pa-
rameter q ≥ 1 of the symmetric logistic distribution (7.18) can be estimated by perceiving the
conditional increments of η in the MDA as realizations of W and maximizing the likelihood

P
(
W (t1) ∈ ds1, . . .W (tk) ∈ dsk

∣∣ q)
=
(
1 +

∑k
i=1 s

−q
i

)1/q−(k+1) (∏k
i=1(iq − 1)

)∏k
i=0 s

−q−1
i ds1 . . . dsk.

Example 7.4.2 (Brown-Resnick processes, cf. Brown & Resnick (1977); Kabluchko et al.
(2009)). Let {Y (t) : t ∈ Rd} be a centered Gaussian process with stationary increments and
Y (t0) = 0 for some t0 ∈ Rd. Let γ(t) = E(Y (t)− Y (0))2, t ∈ Rd, denote the variogram of
Y . Then, with a Fréchet point process

∑
i∈N δUi and independent copies Yi of Y , i ∈ N, the

Brown-Resnick process for the variogram γ is given by

ζ(t) = max
i∈N

Ui exp (Yi(t)− γ(t− t0)/2) , t ∈ Rd. (7.24)

Its distribution only depends on γ. Here, W from representation (7.3) is the log-Gaussian
process. Hence, standard estimation procedures for Gaussian processes can be applied for
statistical inference. Engelke et al. (2012a) explicitly construct several new estimators of
the variogram γ based on the incremental representation, which also covers Hüsler-Reiss
distributions.
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