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Introduction

The representation theory of finite groups was introduced by Frobenius be-
tween the years 1896 and 1900 (see [8] and [9]). He suggested to his pupil
I. Schur that he should examine the representation theory of the infinite
group GLn(C) of invertible matrices over the field C of complex numbers.
In his doctoral thesis [18] Schur investigated homogeneous representations of
GLn(C). In particular, he showed that irreducible representations of GLn(C)
by matrices with r-homogeneous polynomial coefficients are in one-to-one
correspondence with the partitions of r into at most n parts. The work was
done by studying the space of r-homogeneous polynomial functions in the
standard n2 coordinates of GLn(C). In the subsequent work [19] Schur re-
proved his results by analysing the natural actions of the symmetric group
Σr and the general linear group GLn(C) on (Cn)⊗r.

For an arbitrary infinite field K the representation theory of the general
linear group GLn(K) starts with the work of Thrall [21] and the paper of
Carter and Lusztig [1]. The main tool is the hyperalgebra UK constructed
out of the Kostant Z-form of the universal enveloping algebra of the general
linear Lie algebra over Q. In particular, they constructed the ‘Weyl mod-
ules’ as certain subspaces of tensor space, showed they were defined over Z
and specialised to the irreducible modules in characteristic zero. The re-
duction of these modules modulo p turns out to be neither irreducible nor
indecomposable.

In his monograph [11] Green takes another approach, based on the obser-
vation that the category of r-homogeneous representations (over the infinite
field K) of the general linear group GLn(K) is equivalent to the category of
modules over a certain finite dimensional algebra, which he calls the Schur
algebra and denotes by S(n, r). This algebra can be described as follows. Let
V be an n-dimensional vector space over K. Then the permutation group
Σr acts on the tensor power V ⊗r by the rule

(v1 ⊗ v2 ⊗ · · · ⊗ vr)σ = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(n),

where σ is an element of Σr. Then the Schur algebra S(n, r) is the set of
all linear operators on the vector space V ⊗r which commute with the above
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action of the symmetric group Σr. We have the natural homomorphism T
from the the (infinite dimensional) group algebra K[GLn(K)] into the Schur
algebra S(n, r) given by the formula

T (g)v1 ⊗ v2 ⊗ · · · ⊗ vn = gv1 ⊗ gv2 ⊗ gvn,

where g is an element of GLn(K). It is clear that any finite dimensional
module over S(n, r) becomes a GLn(K)-module through the homomorphism
T . It is also not difficult to check that all such modules are r-homogeneous.
The main achievement of [11] was showing that every finite dimensional r-
homogeneous module over GLn(K) can be inflated from a module over the
Schur algebra S(n, r) through the homomorphism T .

Further investigation of Schur algebras and their generalisations was un-
dertaken in Donkin’s papers [3, 4, 5, 6, 7]. In particular, he has shown in [3]
that the category of modules over the Schur algebra S(n, r) is an example of
what has become known as a highest weight category.

The notion of highest weight category was introduced in the paper [2]
of Cline, Parshall and Scott. The main motivation for this notion were the
properties of the category O of highest weight modules for the universal
enveloping algebra U(g) of a semi-simple Lie algebra g over the field C.

Recall that a poset Λ is called interval-finite if for every µ ≤ λ in Λ, the
set [µ, λ] = { τ ∈ Λ | µ ≤ τ ≤ λ } is finite. The structure of a highest weight
category C is controlled by an interval-finite poset Λ, which is called a weight
poset. For every λ ∈ Λ there are five associated objects in C: the simple
object L(λ), the standard object ∆(λ), the costandard object ∇(λ), the
projective object P (λ) and the injective object I(λ). The set {L(λ) | λ ∈ Λ }
is the full collection of pairwise non-isomorphic simple modules in C. It is
required that L(λ) is the head of ∆(λ) and the socle of ∇(λ). Moreover,
the simple composition factors of Ker(∆(λ) → L(λ)) and ∇(λ)/L(λ) have
to be of the form L(µ) with µ < λ. The module P (λ) is required to be the
projective cover of the standard module ∆(λ) and of the simple module L(λ),
and I(λ) is required to be the injective hull of the costandard module ∇(λ)
and the simple module L(λ). Moreover, the module Ker(P (λ) → ∆(λ)) has
a filtration with composition factors of the form ∆(µ) with µ > λ, and the
quotient module I(λ)/∇(λ) has a filtration with subfactors of the form ∇(µ)
with µ > λ. Recall that the Grothendieck group K0(C) is defined as the
linear Z-span of (isomorphism classes of) objects of C modulo the relations
F1 − F2 + F3 = 0 for each short exact sequence

0 → F1 → F2 → F3 → 0

in C. From the definition of highest weight category it follows that the
modules {Pλ : λ ∈ Λ} and the modules {∆(λ) : λ ∈ Λ} are two different bases
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of the Grothendieck group K0(C). In particular, each standard module ∆(λ)
can be expressed in K0(C) as a linear combination of modules Pµ with µ ≥ λ.
The categorical counterpart of such an expression is a projective resolution
of ∆(λ). Thus, it is interesting to have descriptions of explicit projective
resolutions for standard modules.

In the case of the category of modules over the Schur algebra S(n, r), the
weight poset is the set Λ+(n, r) of all partitions of r into at most n parts. The
standard modules in this category are usually called Weyl modules. In [25]
Woodcock shows how to get a projective resolution for a Weyl module from
a projective resolution of a simple module for the Borel algebra S+(n, r).
The Borel algebra S+(n, r) was defined in [11] as a subalgebra of the algebra
S(n, r) generated by elements of the form T (g), where g is an upper triangular
matrix in GLn(K). The category of modules over the Borel algebra S+(n, r)
is again a highest weight category, but in this case the weight poset is given
by the set Λ(n, r) of all decompositions of r into at most n parts. Woodcock
proves that for λ ∈ Λ+(n, r) the simple module Kλ over S+(n, r) is acyclic
with respect to the induction functor HomS+(n,r)(S(n, r),−). Thus, if we
have an S+(n, r)-projective resolution of Kλ and apply to it the induction
functor we get a projective resolution for HomS+(n,r)(S(n, r), Kλ), which is
known to be isomorphic to the Weyl module V λ.

Inspired by these results, Santana, in [17], constructs the first two terms
of the minimal projective resolution of a simple module over the algebra
S+(n, r), for all n ∈ N, and the first three terms in the case n = 2 over a field
of positive characteristic. She also obtains the minimal projective resolutions
of simple modules over the algebras S+(2, r) and S+(3, r) over a field of zero
characteristic. The characteristic zero case was fully examined by Woodcock
in [24] using the BGG-resolution.

In this work we consider the case of an infinite field of positive charac-
teristic. Recall that the minimal projective resolution of a module M over a
finite dimensional algebra is a projective resolution

· · · → Pk
dk→ Pk−1 · · · → P1

d1→ P0 →M → 0

of M , such that Im(dk) ⊂ rad(Pk−1) for all k. It can be shown that there is a
unique projective resolution with this property, and that if M has finite pro-
jective dimension then the minimal projective resolution has minimal length
among projective resolutions of the module M .

We construct the minimal projective resolution for every simple module
over the algebra S+(2, r) (Theorem 35). In Corollary 40 we show that the



iv

global dimension of the algebra S+(2, r) is given by the formula

2

[
r

p

]
+ τ(r),

where

τ(t) =

{
0, t ∈ pZ,

1, t /∈ pZ.

Further, we derive projective resolutions of minimal length for Weyl mod-
ules over the Schur algebra S(2, r), corresponding to the regular weights,
by applying the induction functor (Remark 47 and Theorem 51). We also
construct (non-minimal) projective resolutions for simple modules over the
algebra S+(3, r) (Theorem 67).

The text is organised as follows. In Chapter 1 we introduce some com-
binatorial notation, and the definitions of partition, decomposition, tableau
and Young diagram.

In Chapter 2 we give the definitions of the Schur algebra and of its upper
Borel subalgebra. We also summarise in Theorem 18 the results from [17]
concerning projective and simple modules over the algebra S+(n, r).

In Chapter 3 we introduce the notion of a twisted double complex and
show how to use it to construct projective resolutions. The idea goes back
to Wall, who used these complexes for the construction of free resolutions of
trivial modules over finite groups ([22]).

The main results of the work are proved in Chapter 4 and Chapter 5. The
proof is based on two technical tools. The first is the multiplication rule of
Green given in Proposition 12, which allows us to derive necessary equalities
in the algebras S+(2, r) and S+(3, r). The second tool is Theorem 22 which
gives us the inductive step in the proofs.
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Chapter 1

Combinatorial notation and
definitions

In this work we use the following notation

• The set {1, 2, . . . , n} is denoted by n.

• The set of multi-indices {i = (i1, . . . , ir) : iρ ∈ n ∀ρ ∈ r} is denoted by
I = In = I(n, r).

• Let i, j ∈ I. We say that i ≤ j if iρ ≤ jρ for all ρ ∈ r.

• Denote by G = Σr the group of permutations of r. It acts on I on the
right as follows:

iπ = (iπ(1), . . . , iπ(r)) (i ∈ I, π ∈ G).

The group G also acts on I × I by

(i, j)π = (iπ, jπ) (i ∈ I, j ∈ I, π ∈ G).

• Let i, j ∈ I. We write i ∼ j if i and j belong to the same G-orbit.

• Let (i, j), (p, q) ∈ I × I. We write (i, j) ∼ (p, q) if (i, j) and (p, q)
belong to the same G-orbit, that is, p = iπ, q = jπ for some π ∈ G.

We shall use the following combinatorial notions.

Definition 1. A partition λ of r is a sequence λ = (λ1, λ2, . . . ) of non-
negative weakly decreasing integers λ1 ≥ λ2 ≥ · · · ≥ 0 such that

∑
λi = r.

The set of all partitions of r is denoted by Λ+(r). The λi are the parts of the
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CHAPTER 1. COMBINATORIAL NOTATION AND DEFINITIONS 2

partition. If λn+1 = λn+2 = · · · = 0, we say λ has length at most n. The set
of all partitions of length at most n is denoted by Λ+(n, r).

Dropping the condition that the λi are decreasing, we say that λ is a
composition of r. The set of all compositions of r is denoted by Λ(r). The
set of all compositions of r of length at most n is denoted by Λ(n, r).

There are two natural orderings on the set Λ(r).

Definition 2. (Dominance order) For λ, µ ∈ Λ(r), we say that λ dominates
µ and write λ D µ if

j∑
i=1

λi ≥
j∑
i=1

µi

for all j.

Definition 3. (Lexicographic order) For λ, µ ∈ Λ(r), we write λ ≥ µ if
λ = µ or the smallest j for which λj 6= µj satisfies λj ≥ µj. This is called
the lexicographic order on compositions.

There is a connection between compositions of r and multi-indices.

Definition 4. We say that a composition λ = (λ1, . . . , λn) is the weight of
i ∈ I(n, r), written i ∈ λ or λ = wt(i), if

λν = |{ρ ∈ r : iρ = ν}|

for all ν ∈ n.

Definition 5. We write i ≤ j for i, j ∈ I(n, r) if iσ ≤ jσ for all σ, 1 ≤ σ ≤ r.

Remark 6. It is clear that i ≤ j implies wt(i) D wt(j).

Let us give a definition of tableaux and diagrams.

Definition 7. Let λ ∈ Λ(n, r). The Young diagram for λ is the subset

[λ] = {(i, j) : i, j ∈ N, i ≥ 1, 1 ≤ j ≤ λi}

of Z2. Any map T from [λ] to N is called a λ-tableau.

If T is a λ-tableau, we will say that T (p, q) lies in the p-th row and the
q-th column. The set Rp = {T (p, k) : k ∈ N} is called the p-th row of T , and
Cq = {T (k, q) : k ∈ N} is called the q-th column of T .

We shall draw a λ-tableau with row indices increasing from top to bottom
and column indices increasing from left to right.
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If T maps into r and is a bijection, then T is called a basic λ-tableau. For
all λ ∈ Λ(n, r), let us fix the λ-tableau of the form

T λ =

1 2 . . . . . . λ1

λ1 + 1 λ1 + 2 . . . λ1 + λ2

. . . . . . . . .
r−λn+1 . . . r

Let λ ∈ Λ(n, r). We have a 1-1 correspondence between I(n, r) and the set
of all λ-tableaux given by

i 7→ T λi ,

where T λi has (p, q) entry equal to iTλ(p,q).

Definition 8. T λi is called row semi-standard if the entries of each row
increase weakly from left to right. T λi is called column standard if the entries
of each column increase from top to bottom. T λi is called standard if it is
row semi-standard and column standard. Let us denote Iλ = {i ∈ I(n, r) :
T λi is standard}.

We denote by l(λ) the element of Iλ such that

T λl(λ) =

1 1 . . . . . . 1
2 2 . . . 2
. . . . . . . . .
n . . . n

,

that is l(λ) = (1λ1 , 2λ2 , . . . , nλn). Denote by I(λ) the set {i ∈ I(n, r) : i ≤
l(λ), T λi is row semi-standard}.

Let i ∈ I(n, r) be of weight λ ∈ Λ(n, r) and s < t be two natural numbers.
For a natural number k < λt, denote by Aks,ti the multi-index i with the first

k occurrences of t replaced by s. We denote the weight of Aks,ti by Rk
s,t λ.

Notice that Rk
s,t λ = (λ1, . . . , λs + k, . . . , λt − k, . . . , λn).
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Chapter 2

Schur algebras

2.1 Definition of the algebra SK(n, r)

In this section we follow [11] and [14].
Let K be an infinite field (of any characteristic) and V a natural module

over GLn(K) with basis {v1, . . . , vn}. Then there is a diagonal action of
GLn(K) on the r-fold tensor product V ⊗r. With respect to the basis {vi =
vi1 ⊗ · · · ⊗ vir : i ∈ I(n, r)}, this action is given by the formula

gvi = gvi1 ⊗ · · · ⊗ gvir .

We denote by T : GLn(K) = GL(V ) → EndK(V ⊗r) the corresponding rep-
resentation of the group GLn(K) = GL(V ).

Definition 9 ([14, Def. 2.1.1]). The Schur algebra SK(n, r) is the linear
closure of the group {T (g) : g ∈ GLn(K)}.

We denote by ei,j the linear transformation of V ⊗r whose matrix, relative
to the basis { vi : i ∈ I(n, r) } of V ⊗r, has 1 in place (i, j) and zeros elsewhere.
The groupG acts (on the right) on EndK(V ⊗r) as follows: let u ∈ EndK(V ⊗r)
and σ ∈ G, then uσ(v) (u(vσ−1)σ), for all v ∈ V . We find that eσi,j = eiσ,jσ,
for all i, j ∈ I(n, r) and σ ∈ G.

Note, that A = EndK(V ) is an G-algebra. We collect some basic results
about G-algebras (for an arbitrary group G) in Appendix C.

Theorem 10 ([23, Theorem 4.4E]). Let K be an infinite field. The natural
inclusion of SK(n, r) into the algebra of G-invariants AG = EndK(V )G is an
isomorphism.

Let X be a transversal of the action of G = Σr on the set I(n, r)×I(n, r).
We have the following

5



CHAPTER 2. SCHUR ALGEBRAS 6

Proposition 11 ([14, Thm. 2.2.6]). The setξi,j =
∑

(p,q)∼(i,j)

ep,q : (i, j) ∈ X


is a basis for the algebra S(n, r).

Proof. It is clear that the setξi,j =
∑

(p,q)∼(i,j)

ep,q : (i, j) ∈ X


is a basis of EndK(V )G. Now, the result follows from Theorem 10.

Note that ξi,i = ξj,j if and only if i and j have the same weight. We will
write ξλ for ξi,i if i has weight λ.

In the following we will need to know how to multiply two basis elements
ξi,j and ξf,h of S(n, r). It is clear that ξi,jξf,h = 0 unless j ∼ f . Therefore,
only the formula for ξi,jξj,h is needed. Let Gi denote the stabiliser of i in G
and Gi,j = Gi ∩Gj, Gi,j,k = Gi ∩Gj ∩Gk. Then, if [Gi,h : Gi,h,j] denotes the
index of Gi,h,j in Gi,h, we have the following

Proposition 12 (Green [14, Thm. 2.2.11]). Let i, j, l be multi-indices
from I(n, r). Then

ξi,jξj,l =
∑
σ

[Giσ,l : Giσ,j,l]ξiσ,l,

where the summation is over a transversal {σ} of double cosets Gi,jσGj,l in
Gj.

Proof. Let Y be a transversal of the set of all cosets Gi,jσ in G, then we can
write ξi,j as

ξi,j =
∑
σ∈Y

eσi,j = TrPPi,j
(ei,j)

where, for any subgroups H, L of G such that H ≤ L, TrLH denotes the
“relative trace” map (see Appendix C). We shall write TrGH as Tr(H), for any
subgroup H of G, to avoid cumbersome suffixes.

We have
ξi,jξj,l = Tr(Gi,j)(ei,j) Tr(Gj,l)(ej,l).
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The Mackey formula (see Theorem 86) now gives

ξi,jξj,l =
∑
τ

Tr(Gτ
i,j ∩Gj,l)(e

τ
i,jej,l),

where the being over a transversal {τ} of the set of all double cosets Gi,jτGj,l

in G. Now, eτi,jej,l is zero unless jτ = j, that is unless τ ∈ Gj. If τ ∈ Gj, then
eτi,jej,l = eiτ,j. Notice, that Gτ

i,j = τ−1Gi,jτ = Giτ,jτ for any i, j ∈ I(n, r) and
τ ∈ G. Thus

Gτ
i,j ∩Gj,l = Giτ,j ∩Gj,l = Giτ,j,l

and
Tr(Gτ

i,j ∩Gj,l)(e
τ
i,jej,l) = Tr(Giτ,j,l)(eiτ,l).

Since Giτ,j,l ≤ Giτ,l, the last expression equals

[Giτ,l : Giτ,j,l] Tr(Giτ , l)(eiτ,l) = [Giτ,l : Giτ,j,l] ξiτ,l.

As a consequence of Proposition 12 and using the definition of ξi,j, we
have the

Corollary 13. For any i, j ∈ I(n, r),

ξi,iξi,j = ξi,jξj,j = ξi,j.

In particular, each ξλ is an idempotent, and

1S(n,r) =
∑

λ∈Λ(n,r)

ξλ

is an orthogonal decomposition of unity.

Proof. We have Gj = Gi,jGj,j, so there is only one double coset Gi,jeGj,j

in Gj. By Proposition 12, ξi,jξj,j = [Gi,j : Gi,j,j]ξi,j = ξi,j. Analogously,
ξi,iξi,j = ξi,j. The decomposition of unity follows from the definition of the
elements ξλ.

Definition 14. Let i, j ∈ I(n, r) and λ ∈ Λ(n, r). The element Cλ(i : j) =
ξi,l(λ)ξl(λ),j is called a codeterminant. If i, j ∈ Iλ, then the corresponding
codeterminant is called standard.

Denote by Ω the set {(i, j, λ) : i, j ∈ Iλ, λ ∈ Λ(n, r)}. The following is
proved in [14].

Proposition 15 ([14, Thm. 2.4.8]). The set {Cλ(i : j) : (i, j, λ) ∈ Ω} is a
basis for S(n, r).
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2.2 Definition of the algebra S+(n, r)

The definitions of this section are taken from [17].
Let us denote by B+

n (K) the subgroup of upper triangular matrices in
the general linear group GLn(K). Recall that T : GLn(K) → End(V ⊗r) is a
representation of GLn(K).

Definition 16 ([17, Def. 0.1]). The upper Borel subalgebra S+
K(n, r) of the

Schur algebra SK(n, r) is the linear closure of the group {T (g) : g ∈ B+
n (K)}.

Let Ω′ = {(i, l(λ)) : λ ∈ Λ(n, r), i ∈ I(λ)}. Note that Ω′ is a transversal
of the action of G = Σr on the set {(i, j) : i ≤ j}. The next statement was
proved in [12, §§3, 6].

Proposition 17. 1) The algebra S+
K(n, r) has K-basis {ξi,j : (i, j) ∈ Ω′}.

2) The radical ideal radS+
K(n, r) of S+

K(n, r) has K-basis {ξi,j : (i, j) ∈ Ω′, i 6= j}.

For every λ ∈ Λ(n, r), let us define the map χλ : S+(n, r) → K such that
χλ(ξλ) = 1 and χλ(ξi,j) = 0 otherwise.

The following was proved in [17].

Proposition 18 ([17, Prop. 2.2]). Let λ ∈ Λ(n, r). Then we have the
following.

1) The map χλ is a homomorphism of K-algebras. We denote by Kλ the
corresponding one-dimensional module over S+(n, r).

2) The set {Kµ | µ ∈ Λ(n, r) } is a full collection of pairwise non-
isomorphic simple S+(n, r)-modules.

3) The set {ξµ : µ ∈ Λ(n, r)} is a full collection of primitive idempotents
in S+(n, r).

4) Denote by Pλ the module S+(n, r)ξλ,λ. Then the modules Pλ are pro-
jective, and the set {Pµ : µ ∈ Λ(n, r)} is a full collection of pairwise
non-isomorphic principal indecomposable S+(n, r)-modules.

5) The modules Pλ and radPλ have K-bases

{ξi,l(λ) : i ∈ I(λ)} and {ξi,l(λ) : i ∈ I(λ), i 6= l(λ)},

respectively.

6) The simple module Kλ is isomorphic to the quotient module Pλ/ radPλ.
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Let us denote V λ = S(n, r) ⊗S+(n,r) Kλ. The module V λ is called the
Weyl module.

Remark 19. The algebra S(n, r) is quasi-hereditary and {V λ : λ ∈ Λ+(n, r)}
is a full set of pairwise non-isomorphic standard modules (see Appendix B for
more details about quasi-hereditary algebras and highest-weight categories).
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Chapter 3

Homological algebra
prerequisites

3.1 Twisted double complexes

In this section we introduce the notion of a twisted double complex. Such
terminology reflects the fact that twisted double complexes usually arise as
double complexes with the differential perturbed by a twisted cochain (cf.
[20, §3.3]).

Definition 20. A twisted double complex L is a collection of modules

{Ls,t : s, t ∈ Z}

and a collection of maps

dk : Ls,t → Ls+k−1,t−k, k ≥ 0

such that
n∑
k=0

dkdn−k = 0

for all n ≥ 0.

Every twisted double complex L defines a total complex X = Tot(L):

Xn =
⊕
s+t=n

Ls,t, d =
∑
i

di : Xn → Xn−1.

Let H•(L) denote the homology groups of the complex X = Tot(L). Then
we have the following

11
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Theorem 21. Suppose Ls,t = 0 if s < 0 or t < 0, and Hd0
s,t(L) = 0 if s > 0.

Then
Ht(X) ∼= Hd1

t (Hd0
0,•(L•,•)).

Proof. Consider the increasing filtration

Xk :=
⊕
t≤k

Ls,t

on the complex X. Under the conditions of the theorem we have, for the
corresponding spectral sequence,

E2
s,t
∼= Hd1

t (Hd0
s,•(L•,•))

∼=

{
0, s > 0,

Hd1
t (Hd0

0,•(L•,•)), s = 0.

Hence the spectral sequence collapses and

Ht(X) ∼= Hd1
t (Hd0

0,•(L•,•)).

3.2 Projective resolutions

The statement of the next theorem is implicitly contained in [22].

Theorem 22. Let A be an algebra over a field K and M a module over A.
Suppose N• is a (non-projective) resolution of the module M and P•,t are
projective resolutions of the modules Nt for t ≥ 0. Then the module M has
a projective resolution P• such that

Pn =
⊕
s+t=n

Ps,t.

Proof. Denote by εt the augmentation map P0,t → Nt. In the proof of
Lemma 2 in [22], it was shown that there exist A-module maps dk : Ps,t →
Ps+k−1,t−k such that

1) d0 : Ps,t → Ps−1,t is the differential of the resolution P•,t;

2) d1εs−1 = εsd : P0,t → Nt−1 (where d denotes the differential in N);

3)
∑n

k=1 dkdn−k = 0, for each n ∈ N.
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Then P = {Ps,t : s, t ∈ N} obtains a structure of a twisted double
complex such that

1) Hd0
s,t(P ) = 0 if s ≥ 1;

2) (Hd0
•,0(P ), d̄1) and N• are isomorphic as complexes of A-modules.

We therefore get, by Theorem 21,

Hs(P ) ∼= Hd1
s (Hd0

0,t(P )) ∼= Hs(N•) ∼=

{
M, s = 0,

0, s > 0.

Thus Tot(P ) is a projective resolution of M .
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Chapter 4

Projective resolutions for
S+(2, r)

4.1 The algebra S+(2, r)

Let λ = (λ1, λ2) and i ∈ I(λ), that is, i ≤ l(λ) and T λi is row semi-standard.
Then

T λi =
1 . . . 1 1 . . . . . . 1
1 . . . 1 2 . . . 2

Therefore i = l(µ) for some µ ≥ λ. Let us write ξµ,λ for ξl(µ),l(λ). It follows
from Proposition 17 that the algebra S+(2, r) has basis {ξµ,λ : µ ≥ λ}.

Lemma 23. Let ν, µ, λ ∈ Λ(2, r). If ν ≥ µ ≥ λ, then

ξν,µξµ,λ =

(
λ2 − ν2

µ2 − ν2

)
ξν,λ.

Proof. Let V be a 2-dimensional K-vector space with basis {v1, v2}. Then
by definition, S+(2, r) is a subalgebra of A = EndK(V ⊗r). We will check the
above stated equality of linear operators on the basis {vi = vi1⊗vi2⊗· · ·⊗vir :
i ∈ I(2, r)} of V ⊗r.

If i /∈ λ then ξµ,λ(vi) = 0 and ξν,λ(vi) = 0 by definition of the maps ξµ,λ
and ξν,λ.

Now let i ∈ λ. Since the action of S+(2, r) commutes with the action of
Σr, we can suppose that i = l(λ). Then

ξµ,λ(vl(λ)) =
∑

(s,q)∼(l(µ),l(λ))

es,q(vl(λ)) =
∑

(s,l(λ))∼(l(µ),l(λ))

vs =
∑

s∈µ:s≤l(λ)

vs.

15
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Multiplying the last equality by ξν,µ on the left hand side we get

ξν,µξµ,λ(vi) =
∑
s∈µ
s≤l(λ)

∑
t∈ν
t≤s

vt.

Let us compute the coefficient of vt in the last equation, that is, the number
of s ∈ µ such that t ≤ s ≤ l(λ).

Since l(λ)(j) = 1 implies s(j) = 1, we have s(j) = 1 for all j ≤ λ1.
Moreover, t(j) = 2 implies s(j) = 2. Since for the ν2 values ν1 + 1, ν1 +

2, . . . , r of j we have t(j) = 2, there are only λ2 − ν2 places in s with the
freedom of choice between 1 and 2. Further, on these λ2−ν2 places, 2 appears

µ2− ν2 times. Hence there are exactly

(
λ2 − ν2

µ2 − ν2

)
different s that satisfy the

above conditions. Thus

ξν,µξµ,λ(vl(λ)) =

(
λ2 − ν2

µ2 − ν2

) ∑
t∈ν:t≤l(λ)

vt =

(
λ2 − ν2

µ2 − ν2

)
ξν,λ(vl(λ)).

We will need the following well-known result.

Proposition 24. Let r, s ∈ N and r ≥ s. Write

r =
∞∑
k=0

rkp
k, s =

∞∑
k=0

skp
k,

where 0 ≤ rk, sk ≤ p− 1. Then(
r

s

)
≡
(
r0
s0

)(
r1
s1

)(
r2
s2

)
· · · (mod p).

Here

(
rk
sk

)
= 0 if rk < sk.

Proof. We have

(x+ 1)r ≡ (x+ 1)r0(xp + 1)r1(xp
2

+ 1)r2 · · · (mod p).

Now compare coefficients of xs on both sides.
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Proposition 25. The set

{ξλ,µ : λ2 − µ2 is a power of p}

generates S+(2, r).

Proof. From Corollary 17 we know that the set {ξρ,ν : ν ≥ ρ} is a basis
for S+(2, r). We shall show that each ξρ,ν is a product of elements from
{ξλ,µ : λ2 − µ2 is a power of p}. Suppose

ρ2 − ν2 = r0 + r1p+ r2p
2 + · · ·+ rkp

k

with 0 ≤ ri ≤ p− 1. Let us denote sj =
∑j

i=0 rip
i. Recall, that Rλ denotes

the partition (λ1+1, λ2−1), for λ ∈ Λ(2, r). By Lemma 23 and Proposition 24
we have

ξRsj+1 ν,Rsj νξRsj ν,ν =

(
ν2 − (Rsj+1 ν)2

ν2 − (Rsj ν)2

)
ξRsj+1 ν,ν =

(
sj+1

sj

)
ξRsj+1 ν,ν

=

(
r0
r0

)
· · ·
(
rj
rj

)(
rj+1

0

)
ξRsj+1 ν,ν = ξRsj+1 ν,ν .

By recursion, we get

ξρ,ν = ξρ,Rsk νξRsk ν,Rsk−1 ν · · · ξRs0 ν,ν .

This reduces the problem to the case ρ2 − ν2 = rpk with 0 ≤ r ≤ p− 1. We
have for 1 ≤ t ≤ p− 2 by Lemma 23 and Proposition 24

ξ
R(t+1)pk

ν,Rtpk
ν
ξ
Rtpk

ν,ν
=

(
(t+ 1)pk

tpk

)
ξ
R(t+1)pk

ν,ν
= (t+ 1)ξ

R(t+1)pk
ν,Rtpk

ν
.

Therefore, by induction,

r!ξ
Rrpk

ν,ν
= ξ

Rrpk
ν,R(r−1)pk

ν
ξ
R(r−1)pk

ν,R(r−2)pk
ν
. . . ξ

Rpk
ν,ν
.

Since for 0 ≤ r ≤ p− 1 the number r! is invertible in K, this completes the
proof.

In view of Lemma 23 and Proposition 25 we can consider S+(2, r) as a
path algebra of a quiver with relations1.

1The reader can find a short account about path algebras of quivers (with relations) in
Appendix A.
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For example, S+(2, 1) corresponds to the quiver

• //•
(0, 1) (1, 0)

with no relations. The algebra S+(2, 2) corresponds to the quiver

• //• //•
(0, 2) (1, 1) (2, 0)

with no relations if charK 6= 2 and to the quiver

• a //

c

&&• b //•
(0, 2) (1, 1) (2, 0)

with the relation ba = 0 if charK = 2.

4.2 Some facts about modules over S+(2, r)

Let V be a module over the algebra S+(2, r). We denote by V (λ) the λ-weight
subspace ξλV of V . Since 1 =

∑
λ∈Λ(2,r) ξλ, we have V =

⊕
λ∈Λ(2,r) V (λ).

Moreover, morphisms of S+(2, r)-modules preserve weight subspaces. There-
fore, a module over the algebra S+(2, r) can be considered as a collection of
spaces {V (λ) : λ ∈ Λ(2, r)} with maps

ξµ,λ : V (λ) → V (µ), µ ≥ λ,

such that ξν,µξµ,λ =

(
λ2 − ν2

µ2 − ν2

)
ξν,λ.

Let us denote by Supp(V ) the set {λ ∈ Λ(2, r) : V (λ) 6= 0}.
For the construction of a projective resolution of a simple module Kλ, we

will need modules intermediate between simple and projective ones.

Definition 26. We denote by Pλ,k the module over the algebra S+(2, r) with
basis {vµ : µ ≥ λ, pk | λ2−µ2}, where vµ ∈ Pλ,k(µ) and the action of S+(2, r)
is given by the formula

ξν,µvµ =


(
λ2 − ν2

µ2 − ν2

)
vν , if pk divides µ2 − ν2,

0, otherwise.

We shall prove in Lemma 28 that the modules Pλ,k are well defined.
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Remark 27. To avoid ambiguity, we will sometimes denote vµ from Pλ,k by
vµ,λ,k.

Let us show what the modules Pλ,k look like in the case r = 5 and p = 2.
Recall that we can consider the algebra S+(2, 5) as a quiver algebra of the
diagram

• a1 //

b1

&&

c1

88• a2 //

b2

&&

c2

88• a3 //

b3

&&• a4 //

b4

&&• a5 //•
(0, 5) (1, 4) (2, 3) (3, 2) (4, 1) (5, 0)

with relations

ai+1ai = 0 for 1 ≤ i ≤ 4

bi+2bi = 0 for 1 ≤ i ≤ 2

ai+2bi = bi+1ai for 1 ≤ i ≤ 3

a5c1 = c2a1.

The module P(0,4),0
∼= P(0,4) has the form

• a1 //

b1

<<

c1

''•

b2

<<

c2

''• a3 //• • a5 //•

where bullets (•) denote the non-zero basis elements of P(0,4) and only non-
zero maps are shown. The module P(0,4),1 has the form

•
b1

55

c1

''◦ • ◦ • ◦

where ◦ means that the corresponding weight space is trivial. The module
P(0,4),2 is two-dimensional and can be drawn as

•

c1

**◦ ◦ ◦ • ◦

Lemma 28. The modules Pλ,k are well-defined.
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Proof. We have to check that

(ξρ,νξν,µ)vµ = ξρ,ν(ξν,µvµ)

for all ρ, ν, µ ∈ Λ(2, r) such that ρ ≥ ν ≥ µ ≥ λ.
If µ2−ρ2 is not divisible by pk then, by definition of the module structure,

we get zero on both sides of the equality.
If pk divides µ2 − ρ2 but µ2 − ν2 is not divisible by pk then by Lemma 23

and Proposition 24 we have

ξρ,ν(ξν,µvµ) = ξρ,ν0 = 0,

and

(ξρ,νξν,µ)vµ =

(
µ2 − ρ2

µ2 − ν2

)
ξρ,µvµ

=

(
0

(µ2 − ν2)1

)
· · ·
(

0

(µ2 − ν2)k−1

)(
(µ2 − ρ2)k
(µ2 − ν2)k

)
· · · ξρ,µvµ

= 0,

since there exists at least one i ≤ k − 1 such that (µ2 − ν2)i 6= 0.
If pk divides µ2 − ν2 and µ2 − ρ2, then by Lemma 23

(ξρ,νξν,µ)vµ =

(
µ2 − ρ2

µ2 − ν2

)(
λ2 − ρ2

µ2 − ρ2

)
vρ =

(λ2 − ρ2)!

(µ2 − ν2)!(ν2 − ρ2)!(λ2 − µ2)!
vρ,

and

ξρ,ν(ξν,µvµ) =

(
λ2 − ν2

λ2 − µ2

)(
λ2 − ρ2

λ2 − ν2

)
vρ =

(λ2 − ρ2)!

(µ2 − ν2)!(λ2 − µ2)!(ν2 − ρ2)!
vρ.

Lemma 29. Let λ ∈ Λ(2, r). Then Pλ,k is a cyclic indecomposable module
with generator vλ.

Proof. Let µ ≥ λ and pk | λ2−µ2. Then by definition of the S+(2, r)-module
structure on Pλ,k

ξµ,λvλ =

(
λ2 − µ2

λ2 − µ2

)
vµ = vµ.

Furthermore, radPλ,k has basis { vµ : µ > λ, λ2 − µ2 ∈ pkZ }. Therefore
Pλ,k/ radPλ,k is one-dimensional and thus Pλ,k is indecomposable.
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Remark 30. It follows from the definition that Pλ,m ∼= Kλ for pm > λ2 and
from Proposition 18 that Pλ,0 ∼= Pλ.

Let us denote by Ann(vµ,λ,k) the annihilator of vµ,λ,k ∈ Pλ,k(µ). Then
for any ν 6= µ we have Ann(vµ,λ,k)ξν = S+(2, r)ξν . Denote Ann(vµ,λ,k)ξµ by
ann(vµ,λ,k).

Remark 31. Let λ ∈ Λ(2, r) and l ≥ 0. Since the module Pλ,l is cyclic with
generator vλ,l, we have a 1-1 correspondence between the set of S+(2, r)-maps
from Pλ,l to an S+(2, r)-module M and the set of elements m in M such that

Ann(vλ,l) ⊂ Ann(m)

or, equivalently, the set of elements m in M(λ) such that

ann(vλ,k) ⊂ ann(m) = Ann(m)ξλ.

Proposition 32. Let λ, µ ∈ Λ(2, r) and µ ≥ λ. Then

ann(vµ,λ,k) = {ξνµ : µ2 − ν2 /∈ pkZ} ∪
{
ξνµ :

(
λ2 − ν2

µ2 − ν2

)
∈ pZ

}
.

In particular,
ann(vµ,µ,k) = {ξνµ : µ2 − ν2 /∈ pkZ}.

Proof. This follows from the definition of the module structure on Pλ,k.

Proposition 33. Let λ, µ ∈ Λ(2, r) and µ ≥ λ. Suppose l ≥ k. Then

ann(vµ,µ,k) ⊂ ann(vµ,λ,l).

Proof. Let ξνµ ∈ ann(vµ,µ,k). Then µ2− ν2 /∈ pkZ. Since plZ ⊂ pkZ we have
µ2 − ν2 /∈ plZ, that is, ξνµ ∈ ann(vµ,λ,l).

It follows from Proposition 33 and Remark 30 that the map

Φµ,k
λ,l : Pµ,k → Pλ,l

vν,µ,k 7→ ξν,µvµ,λ,l

for µ ≥ λ, l ≥ k, is a well-defined map of S+(2, r)-modules.
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Proposition 34. Let λ, µ ∈ Λ(2, r) and µ ≥ λ. Suppose l ≤ k and λ2 −
µ2 + pl ∈ pkZ. Then

ann(vµ,µ,k) = ann(vµ,λ,l).

Proof. The inclusion ann(vµ,λ,l) ⊂ ann(vµ,µ,k) is proved in the same fash-
ion as Proposition 33. For the reverse inclusion, let ξνµ ∈ ann(vµ,µ,k). By
Proposition 32 we have µ2 − ν2 /∈ pkZ. If, furthermore, µ2 − ν2 /∈ plZ then
ξνµ ∈ ann(vµ,λ,l). Thus, we only have to consider the case µ2−ν2 ∈ plZ\pkZ.
We can write µ2 − ν2 in the form r0p

l + r1p
k with 1 ≤ r0 ≤ pk−l − 1. Note

that λ2−µ2 = spk−pl for some s and hence λ2−ν2 = (r0−1)pl+(r1 + s)pk.
From Proposition 24 we obtain(

λ2 − ν2

λ2 − µ2

)
≡
(
r0 − 1

pk−l − 1

)(
r1 + s

s

)
≡ 0 (mod p),

since r0 − 1 < pk−l − 1. Therefore ξν,µ ∈ ann(vµ,λ,l), as required.

It follows from Proposition 34 and Remark 30 that the map

Ψµ,k
λ,l : Pµ,k → Pλ,l

vν,µ,k 7→ ξν,µvµ,λ,l

is a well-defined inclusion of S+(2, r)-modules for l ≤ k and µ ≥ λ such that
λ2 − µ2 + pl ∈ pkZ.

4.3 Projective resolutions of simple modules

over the algebra S+(2, r)

We denote by Nω the set of all sequences of natural numbers with only finitely
many non-zero terms. Denote by ei ∈ Nω the sequence with 1 in the i-th place
and zero elsewhere. We identify Nk with the subsemigroup of Nω generated
by e1, e2, . . . , ek. Define the map | · | : Nω → N by the rule

|(n1, . . . , nk)| =
k∑
i=1

ni,

and the map f : Nω → N by the rule

f(n1, . . . , nk) =
∑
i≥1

(
p
[ni

2

]
+ ε(ni)

)
pi−1,
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Table 4.1: Values of f on N2

HHH
HHHn2

n1 0 1 2 3 4

0 0 1 p p+ 1 2p
1 p p+ 1 2p 2p+ 1 3p
2 p2 p2 + 1 p2 + p p2 + p+ 1 p2 + 2p
3 p2 + p p2 + p+ 1 p2 + 2p p2 + 2p+ 1 p2 + 3p
4 2p2 2p2 + 1 2p2 + p 2p2 + p+ 1 2p2 + 2p+ 1
5 2p2 + p 2p2 + p+ 1 2p2 + 2p 2p2 + 2p+ 1 2p2 + 3p

where ε(n) = 0 for n even and ε(n) = 1 for n odd. Note, that we denote by
[ ] the floor function, that is for α ∈ R the number [α] is an integer such that

0 ≤ α− [α] < 1.

We give some values of f on N2 in Table 4.1. We shall construct a
projective resolution of the module Pλ,k as a total complex of a multiple
complex parametrised by Nk, in which the module PRf(n) λ lies at the node
n ∈ Nk. In particular, for k ≥ logp(λ2) we get a projective resolution of the
module Kλ.

Theorem 35. Let λ ∈ Λ(2, r). Then the module Pλ,k over S+(2, r) has a
minimal projective resolution of the form

· · · −→ Cs(λ, k)
ds−→ · · · d2−→ C1(λ, k)

d1−→ C0(λ, k) −→ Pλ,k −→ 0,

where
Cs(λ, k) =

⊕
n∈Nk:|n|=s, f(n)≤λ2

PRf(n) λ

and

ds|P
Rf(n) λ

=
k∑
i=1

(−1)n1+···+ni−1∂i,n,

where
∂i,n = ΦRf(n) λ,0

Rf(n−ei) λ,0
: PRf(n) λ → PRf(n−ei) λ.

Before we prove the theorem, we give some examples for small λ. Let
p = 2 and λ = (0, 8). We collect in the following table values of n ∈ N4 such
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that f(n) ≤ 8:

n |n| f(n)
0 0 0 0 0 0
1 0 0 0 1 1
0 1 0 0 1 2
0 0 1 0 1 4
0 0 0 1 1 8
2 0 0 0 2 2
1 1 0 0 2 3
0 2 0 0 2 4
1 0 1 0 2 5
0 1 1 0 2 6
0 0 2 0 2 8
3 0 0 0 3 3

n |n| f(n)
2 1 0 0 3 4
1 2 0 0 3 5
0 3 0 0 3 6
2 0 1 0 3 6
1 1 1 0 3 7
0 2 1 0 3 8
4 0 0 0 4 4
3 1 0 0 4 5
2 2 0 0 4 6
1 3 0 0 4 7
0 4 0 0 4 8
3 0 1 0 4 7

n |n| f(n)
2 1 1 0 4 8
5 0 0 0 5 5
4 1 0 0 5 6
3 2 0 0 5 7
2 3 0 0 5 8
4 0 1 0 5 8
6 0 0 0 6 6
5 1 0 0 6 7
4 2 0 0 6 8
7 0 0 0 7 7
6 1 0 0 7 8
8 0 0 0 8 8

Thus the resolution from Theorem 35 of the module P(0,8),4
∼= K(0,8) looks

like

0 −→ P(8,0) −→ P(8,0) ⊕ P(7,1) −→ P(8,0) ⊕ P(7,1) ⊕ P(6,2)

−→ P(8,0) ⊕ P(8,0) ⊕ P(7,1) ⊕ P(6,2) ⊕ P(5,3)

−→ P(8,0) ⊕ P(7,1) ⊕ P(8,0) ⊕ P(7,1) ⊕ P(6,2) ⊕ P(5,3) ⊕ P(4,4)

−→ P(8,0) ⊕ P(7,1) ⊕ P(6,2) ⊕ P(6,2) ⊕ P(5,3) ⊕ P(4,4) ⊕ P(3,5)

−→ P(8,0) ⊕ P(6,2) ⊕ P(5,3) ⊕ P(4,4) ⊕ P(3,5) ⊕ P(2,6)

−→ P(8,0) ⊕ P(4,4) ⊕ P(2,6) ⊕ P(1,7) −→ K(0,8) −→ 0.

Let p = 3 and λ = (0, 10). Then we have the following n ∈ N3 such that
f(n) ≤ 10:

n |n| f(n)
0 0 0 0 0
1 0 0 1 1
0 1 0 1 3
0 0 1 1 9
2 0 0 2 3
1 1 0 2 4

n |n| f(n)
0 2 0 2 9
1 0 1 2 10
3 0 0 3 4
2 1 0 3 6
1 2 0 3 10
4 0 0 4 6

n |n| f(n)
3 1 0 4 7
5 0 0 5 7
4 1 0 5 9
6 0 0 6 9
5 1 0 6 10
7 0 0 7 10
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The corresponding resolution of the module P(0,10),3
∼= K(0,10) has the form

0 −→ P(10,0) −→ P(10,0) ⊕ P(9,1) −→ P(9,1) ⊕ P(7,3) −→ P(7,3) ⊕ P(6,4)

−→ P(10,0) ⊕ P(6,4) ⊕ P(4,6) −→ P(10,0) ⊕ P(9,1) ⊕ P(4,6) ⊕ P(3,7)

−→ P(9,1) ⊕ P(3,7) ⊕ P(1,9) −→ P(0,10) −→ K(0,10) −→ 0.

We precede the proof of Theorem 35 with a series of lemmata concerning the
modules Pλ,k.

Lemma 36. Let λ ∈ Λ(2, r) and k ≥ 1. Denote Rpk
λ by µ and Rpk+1

λ by ν.
Then there is an exact sequence

0 −→ Pν,k+1
η−→ Pµ,k

ϕ−→ Pλ,k
π−→ Pλ,k+1 −→ 0,

where π = Φλ,k
λ,k+1, ϕ = Φµ,k

λ,k and η = Ψν,k+1
µ,k .

Proof. The map π is surjective since Pλ,k+1 is a cyclic module generated by
the vector vλ,λ,k+1 = π(vλ,λ,k). Since λ2−µ2 6∈ pk+1Z, we have (Pλ,k+1)µ = 0.
Now, πϕ(vµ,µ,k) is an element of (Pλ,k+1)µ, and therefore πϕ(vµ,µ,k) = 0. Thus
Imϕ ⊂ Ker π. We now show that Ker π ⊂ Imϕ.

The kernel of π has basis {vρ,λ,k : λ2− ρ2 ∈ pkZ \ pk+1Z}. Let vρ,λ,k be an
element of this basis. We can write λ2 − ρ2 in the form r0p

k + r1p
k+1, where

1 ≤ r0 ≤ p− 1. By definition of the map ϕ we get

ϕ(vρ,µ,k) = ξρ,µvµ,λ,k =

(
λ2 − ρ2

λ2 − µ2

)
vρ,λ,k =

(
r0p

k + r1p
k+1

pk

)
vρ,λ,k

=

(
r0
1

)(
r1
0

)
vρ,λ,k = r0vρ,λ,k.

Hence ϕ(r−1
0 vρ,µ,k) = vρ,λ,k and vρ,λ,k ∈ Imϕ. We also obtain that

{vρ,µ,k : λ2 − ρ2 ∈ pk+1Z, ρ > µ} = {vρ,µ,k : µ2 + pk − ρ2 ∈ pk+1Z, ρ > µ}

is a basis for Kerϕ. Let vρ,µ,k be an element of this basis. Then we can write
µ2 − ρ2 in the form (p− 1)pk + rpk+1, where r ≥ 0. Therefore, by definition
of the map η,

η(vρ,ν,k+1) = ξρ,νvν,µ,k =

(
µ2 − ρ2

µ2 − ν2

)
vρ,µ,k

=

(
(p− 1)pk + rpk+1

(p− 1)pk

)
vρ,µ,k =

(
p− 1

p− 1

)(
r

0

)
vρ,µ,k = vρ,µ,k,
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that is, vρ,µ,k ∈ Im η and so Kerϕ ⊂ Im η. Now

ϕ ◦ η(vν,ν,k+1) = ξν,µϕ(vµ,µ,k) = ξν,µξµ,λvλ,λ,k =

(
pk+1

pk

)
vλ,λ,k = 0,

so Im η ⊂ Kerϕ. The injectivity of the map η follows from Proposition 34.
This concludes the proof of the lemma.

Corollary 37. Every module Pλ,k+1 has a “k-resolution”

· · · −→ P
Rf(m)pk

λ,k
−→ · · · −→ P

Rf(1)pk
λ,k

−→ Pλ,k −→ Pλ,k+1 −→ 0.

Proof. Apply the previous lemma to the modules P
Rmpk+1

λ
, m ≥ 0, and

glue the resulting exact sequences.

Corollary 38. For the S+(2, r)-module Pλ,1, the resolution

· · · −→ PRf(m) λ

dm−→ · · · d2−→ PRf(1) λ

d1−→ Pλ −→ Pλ,1 −→ 0

is a minimal projective resolution.

Proof. The minimality of the constructed resolution follows from the fact
that Im dm does not contain vRf(m−1) , since every element of SuppPRf(m) λ is
strictly greater than Rf(m−1) λ, that is, Im dm ⊂ radPRf(m) λ.

Proof. [Proof of Theorem 35] First, we have to check that all sequences

· · · −→ Cs(λ, k)
ds−→ · · · d2−→ C1(λ, k)

d1−→ C0(λ, k) −→ Pλ,k −→ 0

are well-defined chain complexes, that is, ds−1 ◦ ds = 0. In view of the
definition of ds, it is enough to check the equalities

∂j,n−ei
◦ ∂i,n = ∂i,n−ej

◦ ∂j,n : PRf(n)λ → P
Rf(n−ei−ej)λ

for all n ∈ Nk and all i, j such that 1 ≤ i, j ≤ k. Since PRf(n)λ is cyclic,
we will check the above equality only on the generating vector vµ,µ,0, where
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µ = Rf(n)λ. Let ν = Rf(n−ei)λ, κ = Rf(n−ej)λ and θ = Rf(n−ei−ej)λ. Define
γ : N → N by the rule

γ(n) =

{
1, if n is odd,

p− 1, if n is even.

Then

ν2 − µ2 = f(n)− f(n− ei)

=

(
p

([ni
2

]
−
[
ni − 1

2

])
+ ε(ni)− ε(ni − 1)

)
pi

=

{
pi, if ni is odd,

(p− 1)pi, if ni is even

}
= γ(ni)p

i.

Analogously,

κ2 − µ2 = θ2 − ν2 = γ(nj)p
j and θ2 − κ2 = γ(ni)p

i.

We have

∂j,n−ei
◦ ∂i,n(vµ,µ,0) = ∂j,n−ei

(ξµ,µvµ,ν,0) = ξµ,νvν,θ,0

=

(
θ2 − µ2

θ2 − ν2

)
vµ,θ,0 =

(
γ(nj)p

j + γ(ni)p
i

γ(nj)pj

)
vµ,θ,0

=

(
γ(ni)

0

)(
γ(nj)

γ(nj)

)
vµ,θ,0 = vµ,θ,0

and

∂i,n−ej
◦ ∂j,n(vµ,µ) = ∂i,n−ej

(ξµ,µvµ,θ,0) = ξµ,κvκ,θ,0

=

(
θ2 − µ2

θ2 − κ2

)
vµ,θ,0 =

(
γ(ni)p

i + γ(nj)p
j

γ(ni)pi

)
vµ,θ,0

=

(
γ(ni)

γ(ni)

)(
γ(nj)

0

)
vµ,θ,0 = vµ,θ,0.

Now we prove that the complexes (C(λ, k), d) are resolutions of Pλ,k by
induction on k.
Base of induction. The required claim for k = 1 is proved in Corollary 38.
Inductive step. Suppose we have proved that the complexes (C(µ, k), d)
are resolutions of Pµ,k for all k ≤ m and all µ ∈ Λ(2, r). Let us show that the



CHAPTER 4. PROJECTIVE RESOLUTIONS FOR S+(2, R) 28

complex (C(λ,m+1), d) is a resolution of Pλ,m+1. We consider (C(λ,m+1), d)
as a double complex K•,• with

Ks,t =
⊕

n∈Nm:|n|=s

PRf(n)Rf(t)pm
λ = Cs(R

f(t)pm

λ,m).

Then, by the inductive hypothesis, we have

Hd0
s (K•,t) = 0 for s > 0 and Hd0

0 (K•,t) ∼= PRf(t)pm
λ,m.

Moreover, the differential d1 : PRf(t)pm
λ,m → PRf(t−1)pm

λ,m coincides, up to
sign, with the differential from Corollary 37. Applying Corollary 37 and
Theorem 21 we get

Ht(K) ∼= Hd1
t Hd0

0,•(K•,•) ∼= Hd1
t (PRf(t)pm

λ,m) ∼=

{
0, if t > 0,

Pλ,m+1, if t = 0.

Therefore (C(λ,m+1), d) is a projective resolution of Pλ,m+1. Its minimality
follows from the fact that Im dj ⊂ radCj−1, for all j ≥ 1.

Corollary 39. Let λ ∈ Λ(2, r). Then the projective dimension of Kλ equals

2
[
λ2

p

]
+ τ(λ2), where

τ(t) =

{
0, t ∈ pZ,

1, t /∈ pZ.

Proof. It follows from Theorem 35 that pdimKλ = max{|n| : f(n) ≤
λ2, n ∈ Nk}, where pk ≥ λ2. From the definition of the maps f and | · |
it follows that if |n| = |m| and n D m, then f(n) < f(m). Thus we
can take the maximum over elements of the form (n1, 0, . . . , 0). Therefore

pdimKλ = max
{
n1 :

[
n1

2

]
p+ ε(n1) ≤ λ2

}
= 2

[
λ2

p

]
+ τ(λ2).

Corollary 40. The global dimension of S+(2, r) is 2
[
r
p

]
+ τ(r).

Proof. We have

gdim(S+(2, r)) = max {pdimKλ : λ ∈ Λ(2, r)}

= pdimK0,r = 2

[
r

p

]
+ τ(r).
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4.4 Projective resolutions of Weyl modules

over S(2, r)

In this section we construct a projective resolution, of minimal possible
length, of the Weyl module V λ for each λ ∈ Λ(2, r)+, such that λ1 − λ2 +
1 /∈ pZ. Recall, that Weyl module V λ is defined as the tensor product
S(2, r)⊗S+(2,r)Kλ

. We shall use

Theorem 41 ([25, Corollary 5.2]). For each λ ∈ Λ+(n, r)

ExtiS+(n,r)(S(n, r), Kλ) ∼=

{
V λ, if i = 0

0, if i > 0.

The idea is as follows. We apply the induction functor S(2, r)⊗S+(2,r) (−)
to the projective resolution of Kλ from Theorem 35. By Theorem 41, this
gives a projective resolution of the Weyl module V λ (for any λ ∈ Λ+(2, r)).
The problem is that this resolution can have length greater than the projec-
tive dimension of the module V λ. Therefore, we have to modify the resulting
resolutions. We are able to do this in the case λ1 − λ2 + 1 /∈ pZ.

We denote by L(µ) the simple module with highest weight µ ∈ Λ+(2, r)
over the Schur algebra S(2, r). Recall, that the projective dimension of V λ

is the maximal integer j such that there is µ ∈ Λ+(2, r) such that the ex-
tension group ExtjS(2,r)(V

λ, L(µ)) is non-trivial. It is clear that the group

ExtjS(2,r)(V
(λ), L(µ)) is non-trivial only if λ and µ are in the same block

of the algebra S(2, r). Denote by δ(λ) the maximal integer δ such that
λ1 − λ2 + 1 ∈ pδZ.

Theorem 42. Two weights λ, µ ∈ Λ+(2, r) are in the same block of the
Schur algebra S(2, r) if and only if

1) δ(λ) = δ(µ);

2) either λ1 − µ1 ∈ pδ(λ)+1Z or λ1 − µ2 + 1 ∈ pδ(λ)+1Z.

Proof. This result is a direct consequence of [6, Corollary, p.417] and [13,
7.2.(3)].

For λ ∈ Λ+(2, r) denote by d(λ) the integer
[
λ1−λ2

p

]
.
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Theorem 43. Let λ ∈ Λ+(2, r) be such that λ1 − λ2 + 1 /∈ pZ, and let
µ ∈ Λ+(2, r). Then

1) if µ < λ, then for all j ≥ 0, the group ExtjS(2,r)(V
λ, L(µ)) is trivial;

2) if µ ≥ λ and µ lies in the same block as λ, then Ext
d(µ)−d(λ)
S(2,r) (V λ, L(µ)) ∼=

k and ExtjS(2,r)(V
λ, L(µ)) = 0 for all j > d(µ)− d(λ).

Proof. By [3, 2.2d], we have for any two S(2, r) modules M and N and any
j ≥ 0, an isomorphism

ExtjS(2,r)(M,N) ∼= ExtjGL2(K)(M,N),

where GL2(k) is the general linear group of rank 2. Now, the first part of the
theorem follows from [13, Proposition 6.20]. The second part of the theorem
is a reformulation of [16, Lemma 2.1] and [16, Theorem 2.4]. See also [15,
Lemma 3.5, Lemma 5.1] for the notation.

Remark 44. Note, that from [3, 2.2d] it also follows that

ExtjS(n,r)(M,N) ∼= ExtjGLn(K)(M,N)

for any two S(n, r)-modules M and N , and for all n and r.

Let λ ∈ Λ+(2, r). Denote by ri the residue of λi modulo p. Define the
function T : Λ+(2, r) → { 0, 1 } by

T (λ) =

{
0, r2 < r1 + 1 and r1 6= p− 1,

1, r2 > r1 + 1 or r1 = p− 1.

Corollary 45. Let λ ∈ Λ+(2, r) and λ1 − λ2 + 1 /∈ pZ. Then the projective

dimension of the Weyl module V λ is 2
[
λ2

p

]
+ T (λ).

Proof. In order to determine the projective dimension of the Weyl module
V λ we have to determine the maximal integer j such that there is µ ∈ Λ+(2, r)
such that Extj(V λ, L(µ)) 6= 0. It follows from Theorem 43, that for a given
µ from the block of λ, such integer is equal to d(µ) − d(λ). Since d is an
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increasing function of µ, we have to find the maximal µ in the block of λ.

Let qi =
[
λi

p

]
. It is easy to check that

µ =


((q1 + q2 + 1)p+ r2 − 1, 0), if r1 = p− 1

((q1 + q2)p+ r2 − 1, r1 + 1), if r2 > r1 + 1

((q1 + q2)p+ r1, r2), if r2 < r1 + 1 and r1 6= p− 1.

Note that r2 = r1 + 1 is impossible, since λ1 − λ2 + 1 /∈ pZ. If r1 = p − 1,
then r2 6= 0 and

pdimV λ = d(µ)− d(λ)

=

[
(q1 + q2 + 1)p+ r2 − 1

p

]
−
[
(q1 − q2)p+ r1 − r2

p

]
= q1 + q2 + 1− (q1 − q2) = 2q2 + 1 = 2

[
λ2

p

]
+ T (λ).

If r2 > r1 + 1, then r2 − r1 − 2 ≥ 0, r1 − r2 ≤ −1 and

pdimV λ = d(µ)− d(λ)

=

[
(q1 + q2)p+ r2 − r1 − 2

p

]
−
[
(q1 − q2)p+ r1 − r2

p

]
= q1 + q2 − (q1 − q2 − 1) = 2q2 + 1 = 2

[
λ2

p

]
+ T (λ).

If r2 < r1 + 1 and r1 6= p− 1, then r1 − r2 ≥ 0 and

pdimV λ = d(µ)− d(λ) =

[
(q1 + q2)p+ r1 − r2

p

]
−
[
(q1 − q2)p+ r1 − r2

p

]
= q1 + q2 − (q1 − q2) = 2q2 = 2

[
λ2

p

]
+ T (λ).

Corollary 46. Let λ ∈ Λ+(2, r) and λ1−λ2 +1 /∈ pZ. If r2 = 0 or r1 = p−1
or r2 > r1 + 1, then pdimV λ = pdimKλ.

Proof. If r2 = 0, then τ(λ2) = 0 = T (λ). If r1 = p − 1 then r2 6= 0, since
λ1 − λ2 + 1 /∈ pZ. Therefore τ(λ2) = 1 = T (λ). If r2 > r1 + 1 then again
r2 6= 0 and τ(λ2) = 1 = T (λ). In all these cases it follows from Corollary 40
and Corollary 45 that

pdimV λ = 2

[
λ2

p

]
+ T (λ) = 2

[
λ2

p

]
+ τ(λ2) = pdimKλ.
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Remark 47. If λ ∈ Λ+(2, r) satisfies the conditions of Corollary 46, then
the projective resolution of the Weyl module V λ induced from the minimal
projective resolution of the S+(2, r)-module Kλ has minimal possible length.

Remark 48. If p = 2, then the conditions of Corollary 46 are satisfied for all
λ ∈ Λ+(2, r) such that λ1 − λ2 + 1 /∈ pZ.

Corollary 49. Let λ ∈ Λ+(2, r). Suppose that 0 ≤ λ2 ≤ p − 1. Denote by
r1 the residue of λ1 modulo p. If r1 + 1 > λ2 and r1 6= p− 1, then the Weyl
module V λ is a projective S(2, r)-module.

Proof. By Corollary 45 we have

pdimV λ = 2

[
r2
p

]
+ T (λ) = 2

[
λ2

p

]
+ T (λ) = 2 · 0 + 0 = 0.

Corollary 50. Let λ ∈ Λ+(2, r) and 1 ≤ λ2 ≤ p− 1. Then there is an exact
sequence of S(2, r)-modules

0 −→ S(2, r)ξRλ −→ S(2, r)ξλ −→ V λ −→ 0.

Proof. This is a sequence obtained by applying the functor S(2, r)⊗S+(2,r)

(−) to the projective resolution of the S+(2, r)-module Kλ:

0 −→ PRλ −→ Pλ −→ Kλ −→ 0.

The resulting sequence is exact by Theorem 41.

Proposition 51. Let λ ∈ Λ+(2, r). Suppose λ1 − λ2 + 1 /∈ pZ, r2 6= 0,

r1 6= p − 1 and r1 + 1 > r2. Denote by µ the partition
(
λ1 +

[
λ2

p

]
p, r2

)
.

Then the Weyl module V λ has a projective resolution of length 2
[
λ2

p

]
of the

form

· · · −→ Cs(λ, k)
ds−→ · · · d2−→ C1(λ, k)

d1−→ C0(λ, k) −→ V λ −→ 0,

where

Cs(λ, k) =
⊕

n∈Nk:|n|=s, f(n)≤λ2

S(2, r)ξRf(n) λ, for s ≤ 2
[
λ2

p

]
− 1

C
2[λ2

p ] = V µ ⊕ S(2, r)ξRµ.
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Proof. The resolution induced from the resolution of the S+(2, r)-module
Kλ constructed in Theorem 35 has the required form, except that

S(2, r)⊗S+(2,r) C2[λ2
p ] = S(2, r)ξµ ⊕ S(2, r)ξRµ

and
S(2, r)⊗S+(2,r) C2[λ2

p ]+1
= S(2, r)ξRµ.

By Corollary 50 the cokernel of the map S(2, r)ξRµ → S(2, r)ξµ is isomorphic
to the Weyl module V µ. Since µ satisfies the conditions of Corollary 49, the
module V µ is projective.
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Chapter 5

Projective resolutions for
S+(3, r)

5.1 First reduction

We shall need the following technical lemma.

Lemma 52. Let λ ∈ Λ(3, r), 1 ≤ s < t ≤ 3, and k + l ≤ λt. Then

ξAk
stA

l
stl(λ),Al

stl(λ)ξAl
stl(λ),l(λ) =

(
k + l

k

)
ξAk+l

st l(λ),l(λ).

Proof. The proof is analogous to the proof of Lemma 23.

Recall that by Proposition 17, the algebra S+(3, r) has basis {ξi,l(λ) : λ ∈
Λ(3, r), i ∈ I(λ)}. Let λ = (λ1, λ2, λ3) and i ∈ I(λ), that is, i ≤ l(λ) and T λi
is row semi-standard. Then T λi has the form

1 . . . . . . . . . . . . . . . . . . 1
1 . . . . . . 1 2 . . . 2
1 . . . 1 2 . . . 2 3 . . . 3

Let µ12 be the number of occurrences of 1 in the second row of T λi , µ13

the number of occurrences of 1 in the third row, and µ23 the number of
occurrences of 2 in the third row. Recall that for a multi-index j we denote
by Astj the multi-index obtained from j by replacing the first occurrence of
t by s. Then i = Aµ23

23 A
µ13

13 A
µ12

12 l(λ).

35
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Lemma 53. Let λ and i be as above. Then for j = Aµ12

12 l(λ) we have

ξi,l(λ) = ξi,jξj,l(λ).

Proof. We use Proposition 12 for the proof. We have

l(λ) = (1λ1 , 2λ2 , 3λ3),
j = Aµ12

12 l(λ) = (1λ1+µ12 , 2λ2−µ12 , 3λ3),
i = Aµ23

23 A
µ13

13 j = (1λ1+µ12 , 2λ2−µ12 , 1µ13 , 2µ23 , 3λ3−µ13−µ23).

Thus

Gj
∼= Σλ1+µ12 × Σλ2−µ12 × Σλ3 ,

Gi,j
∼= Σλ1+µ12 × Σλ2−µ12 × (Σµ12 × Σµ23 × Σλ3−µ13−µ23),

Gj,l(λ)
∼= (Σλ1 × Σµ12) × Σλ2−µ12 × Σλ3 .

We claim that Gj = Gi,jGj,l(λ). In fact, suppose (σ1, σ2, σ3) ∈ Gj. Then
(σ1, σ2, σ3) = (σ1, σ2, e)(e, e, σ3) and (σ1, σ2, e) ∈ Gi,j, (e, e, σ3) ∈ Gj,l(j).

Moreover,

Gi,j,l(λ)
∼= (Σλ1 × Σµ12) × Σλ2−µ12 × (Σµ12 × Σµ23 × Σλ3−µ13−µ23),

Gi,l(λ)
∼= (Σλ1 × Σµ12) × Σλ2−µ12 × (Σµ12 × Σµ23 × Σλ3−µ13−µ23),

that is, [Gi,j,l(λ) : Gi,l(λ)] = 1 and by Proposition 12,

ξi,l(λ) = ξi,jξj,l(λ).

Corollary 54. Let λ ∈ Λ(3, r). Denote by vλ a generator of the projective
S+(3, r)-module Pλ. Then Pλ has basis

{ξAµ23
23 A

µ13
13 A

µ12
12 l(λ),A

µ12
12 l(λ)ξAµ12

12 l(λ),l(λ)vλ : µ12 ≤ λ2, µ13 + µ23 ≤ λ3}.

Proof. This follows from Proposition 18 and Lemma 53.

We denote by v(µ23,µ13,µ12),λ the element

ξAµ23
23 A

µ13
13 A

µ12
12 l(λ),A

µ12
12 l(λ)ξAµ12

12 l(λ),l(λ)vλ

from the module Pλ. For any S+(3, r)-module M , the map from M(λ) to
HomS+(3,r)(Pλ,M) given by the formula

m 7→
(
Θλ
m : ξj,l(λ)vλ 7→ ξj,l(λ)m

)
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is an isomorphism since Pλ is generated by vλ and

Ann(vλ) =
⊕
µ 6=λ

S+(n, r)ξµ.

Definition 55. An N-sequence M• of S+(3, r)-modules is a collection {Mi :
i ∈ N} of S+(3, r)-modules together with S+(3, r)-maps di : Mi →Mi−1.

Proposition 56. For λ ∈ Λ(3, r), consider the N-sequence D• of S+(3, r)-
modules

· · · −→ Ds(λ)
ds−→ · · · d2−→ D1(λ)

d1−→ D0(λ) −→ 0,

where
Ds(λ) =

⊕
n∈Nω :|n|=s

P
R

f(n)
1,2 λ

and

ds|P
R

f(n)
1,2 λ

=
k∑
i=1

(−1)n1+···+ni−1∂i,n,

where

∂i,n = Θ
R

f(n)
1,2 λ

v
(γ(ni)p

i,0,0),R
f(n−ei)
1,2 λ

: P
R

f(n)
1,2 λ

→ P
R

f(n−ei)
1,2 λ

.

Then D• is a complex. It is exact at all terms except the zero term. The
S+(3, r)-module Qλ := H0(D•) has basis {ξAm

2,3A
l
1,3l(λ),l(λ)wλ : m + l ≤ λ3},

where wλ is the image of vλ.

Proof. Notice that all maps in the above sequence are homomorphisms of
S+(3, r)-modules.

Let ν = Rs
12 λ for some s ≥ 0. For each pair (µ23, µ13) such that µ23+µ13 ≤

λ3 = ν3 we denote by Pν(µ23, µ13) the subspace of Pν with basis

{ξAµ23
23 A

µ13
13 A

µ12
12 ν,A

µ12
12 νξAµ12

12 ν,νvν : µ12 ≤ ν2}.

Then we have an isomorphism

Pν ∼=
⊕

µ23+µ13≤λ3

Pν(µ23, µ13).

We say that the elements of Pν(µ23, µ13) have degree (µ23, µ13). It follows from
Lemma 52 that the maps ∂i,n preserve degree. Therefore the N-sequence D•
decomposes into the direct sum of N-sequencesD•(µ23, µ13) for µ23+µ13 ≤ λ3.
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Let λ′ = (λ1, λ2) ∈ Λ(2, r − λ3). Define ϕ•(µ23, µ13) : D•(µ23, µ13) →
C•(λ

′) by the rule

ϕs(µ23, µ13)|Pν(µ23,µ13) : Pν(µ23, µ13) → Pν′

v
(µ23,µ13,µ12),R

f(n)
12 λ

7→ v(λ1+µ12,λ2−µ12),Rf(n) λ′ .

By Proposition 18 and Corollary 54, all the maps ϕs(µ23, µ13) are isomor-
phisms of vector spaces. Moreover, from Lemma 52 and Lemma 23 it follows
that they commute with the ∂i,n. Thus the N-sequence D•(µ23, µ13) is iso-
morphic to a chain complex of vector spaces C•(λ

′). This shows that D• is a
complex and that

Hs(D•) ∼=

0, if s > 0,⊕
(µ23,µ13):µ23+µ13≤λ3

H0(C•(λ
′)), if s = 0.

By Theorem 35 we have H0(C•(λ
′)) ∼= Kλ′ and the space H0(C•(λ

′)) is gen-
erated by the image of vλ′,λ′ . This means that H0(D•) has a basis consisting
of the images w(µ23,µ13),λ = ξAµ23

2,3 A
µ13
1,3 l(λ),l(λ)wλ of the vectors v(µ23,µ13,0),λ =

ξAµ23
2,3 A

µ13
1,3 l(λ),l(λ)vλ.

5.2 Second reduction

For each λ, the module Qλ is a quotient of Pλ. Let πλ : Pλ → Qλ be the
natural projection. Then the kernel of πλ has basis

{v(µ23,µ13,µ12),λ : 1 ≤ µ12 ≤ λ2, µ23 + µ13 ≤ λ3}

or, in other words,

ann(wλ) = Ann(wλ) ∩ S+(3, r)ξλ

= 〈ξAµ23
23 A

µ13
13 A

µ12
12 l(λ),A

µ12
12 l(λ)ξAµ12

12 l(λ),l(λ) : 1 ≤ µ12 ≤ λ2, µ23 + µ13 ≤ λ3〉.

In particular, ann(wλ) is generated by the elements ξAt
12l(λ),l(λ) for t ≥ 1 as a

left ideal in S+(3, r).

Proposition 57. Let i = As13l(λ) = (1λ1 , 2λ2 , 1s, 3λ3−s) and ν = Rs
13 λ =

(λ1 + s, λ2, λ3 − s). Define the map Ξνλ : Qν → Qλ by the rule

ξj,l(ν)wν 7→ ξj,l(ν)ξi,l(λ)wλ.

Then Ξνλ is a well-defined map of S+(3, r)-modules.
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Before giving the proof, we introduce one more notation. Let λ ∈ Λ(n, r)
and σ ∈ Σn. We denote by [λ, σ] the element of Σr such that if

k−1∑
j=1

λj < i ≤
k∑
j=1

λj,

then

[λ, σ](i) =

σ(k)−1∑
j=1

λσ(j) + i−
k−1∑
j=1

λj.

For example,

[(2, 2), (12)] =

(
1 2 3 4
3 4 1 2

)
and [(1, 2, 3), (13)] =

(
1 2 3 4 5 6
4 5 6 2 3 1

)
.

Proof. We have to check that

ann(wν) ⊂ ann(ξi,l(λ)wλ).

Since ann(wν) is generated by the elements ξAt
12l(ν),l(ν)

, t ≥ 1, it is enough to
show that

ξAt
12l(ν),l(ν)

ξi,l(λ)wλ = 0

for all t ≥ 1. Let σ = [(λ1, λ2, s, λ3 − s), (23)]. Then

iσ = (1λ1 , 2λ2 , 1s, 3λ3−s)σ = (1λ1 , 1s, 2λ2 , 3λ3−s) = l(ν),
(At12i)σ = (1λ1+t, 2λ2−t, 1s, 3λ3−s)σ = (1λ1+s+t, 2λ2−t, 3λ3−s) = At12l(ν),

and therefore
ξAt

12l(ν),l(ν)
= ξ(At

12l(ν))σ,l(ν)σ
= ξAt

12i,i
.

We shall prove in Lemma 58 that

ξAt
12A

s
13l(λ),As

13l(λ)ξAs
13l(λ),l(λ) = ξAs

13A
t
12l(λ),l(λ),

and by Lemma 53 we have

ξAs
13A

t
12l(λ),l(λ) = ξAt

13A
s
12l(λ),As

12l(λ)ξAs
12l(λ),l(λ)

for λ ∈ Λ(3, r) and t ≤ λ2, s ≤ λ3. Therefore for t ≥ 1,

ξAt
12l(ν),l(ν)

ξi,l(λ)wλ = ξAt
12i,i

ξi,l(λ)wλ = ξAs
13A

t
12l(λ),At

12l(λ)ξAt
12l(λ),l(λ)wλ = 0,

since ξAt
12l(λ),l(λ) ∈ ann(wλ).
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Lemma 58. Let λ ∈ Λ(3, r), s ≤ λ3, and t ≤ λ2. Then

ξAt
12A

s
13l(λ),As

13l(λ)ξAs
13l(λ),l(λ) = ξAs

13A
t
12l(λ),l(λ).

Proof. Let

j = As13l(λ) = (1λ1 , 2λ2 , 1s, 3λ3−s),

i = At12j = (1λ1+t, 2λ2−t, 1s, 3λ3−s).

Denote [(λ1 + λ2, s, λ3 − s), (14)] ∈ Σr by σ. Then

l(λ)σ = (1λ1 , 2λ2 , 3s, 3λ3−s)σ = (3λ3−s, 3s, 1λ1 , 2λ2),
jσ = (1λ1 , 2λ2 , 1s, 3λ3−s)σ = (3λ3−s, 1s, 1λ1 , 2λ2),
iσ = (1λ1+t, 2λ2−t, 1s, 3λ3−s)σ = (3λ3−s, 1s, 1λ1+t, 2λ2−t),

and
Gjσ

∼= Σλ3−s × Σλ1+s × Σλ2 ,
Giσ,jσ

∼= Σλ3−s × Σλ1+s × (Σt × Σλ2),
Gjσ,l(λ)σ

∼= Σλ3−s × (Σs × Σλ1) × Σλ2 .

Hence Giσ,jσGjσ,l(λ)σ = Gjσ. Moreover,

Giσ,jσ,l(λ)σ
∼= Σλ3−s × (Σs × Σλ1) × (Σt × Σλ2),

Giσ,l(λ)σ
∼= Σλ3−s × (Σs × Σλ1) × (Σt × Σλ2),

that is, [Giσ,l(λ)σ : Giσ,jσ,l(λ)σ] = 1. Therefore, by Proposition 12,

ξi,jξj,l(λ) = ξiσ,jσξjσ,l(λ)σ = ξiσ,l(λ)σ = ξi,l(λ).

Lemma 59. Let λ ∈ Λ(3, r). Then for all s, t with s+ t ≤ λ3 we have

ξAs
23A

t
13l(λ),l(λ) = ξAs

23A
t
13l(λ),At

13l(λ)ξAt
13l(λ),l(λ).

Proof. The proof goes along the same lines as the proof of Lemma 53 .

Corollary 60. Let λ ∈ Λ(3, r). Then the module Qλ has basis

{ξAs
23A

t
13l(λ),At

13l(λ)ξAt
13l(λ),l(λ)wλ : s+ t ≤ λ3}.
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Proof. This is a direct consequence of Proposition 56 and Lemma 59.

Proposition 61. For λ ∈ Λ(n, r), let E• be an N-sequence of S+(3, r)-
modules

· · · −→ Em(λ)
dm−→ · · · d2−→ E1(λ)

d1−→ E0(λ) −→ 0,

where
Em(λ) =

⊕
n∈Nω :|n|=m

Q
R

f(n)
1,3 λ

and

dm|Q
R

f(n)
1,3 λ

=
k∑
i=1

(−1)n1+···+ni−1∂i,n,

where

∂i,n = Ξ
R

f(n)
1,3 λ

R
f(n−ei)
1,3 λ

: Q
R

f(n)
1,3 λ

→ Q
R

f(n−ei)
1,3 λ

.

Then E•(λ) is a complex that is exact at all terms except the zero term. The
S+(3, r)-module Rλ := H0(E•(λ)) has basis {ξAm

2,3l(λ),l(λ)uλ}, where uλ is the
image of wλ.

Proof. Let ν = Rr
13 λ = (λ1 + r, λ2, λ3 − r) for some r ≥ 0. We denote by

Qν(s) the subspace of Qν generated by

{ξAs
23A

t
13l(ν),A

t
13l(ν)

ξAt
13l(ν),l(ν)

wν : 0 ≤ t ≤ ν3 − s}.

We say that the elements of Qν(s) have degree s. Let us show that for
ν ′ = Rr′

13 λ, r′ ≤ r, the maps Ξνν′ preserve the degree defined in this way.
Denote r − r′ by r′′. We have

Ξνν′(ξAs
23A

t
13l(ν),A

t
13l(ν)

ξAt
13l(ν),l(ν)

wν) = ξAs
23A

t
13l(ν),A

t
13l(ν)

ξAt
13l(ν),l(ν)

ξAr′′
13 l(ν

′),l(ν′)wν′ .

Let σ = [(λ1 + r′, r′′, λ2, λ3 − t), (23)] ∈ Σr. Then

l(ν)σ = (1λ1+r′ , 1r
′′
, 2λ2 , 3λ3−r)σ

= (1λ1+r′ , 2λ2 , 1r
′′
, 3λ3−r) = Ar

′′
13l(ν

′),
(At13l(ν))σ = (1λ1+r′ , 1r

′′
, 2λ2 , 1t, 3λ3−r)σ

= (1λ1+r′ , 2λ2 , 1r
′′+t, 3λ3−r) = Ar

′′+t
13 l(ν ′),

(As23A
t
13l(ν))σ = (1λ1+r′ , 1r

′′
, 2λ2 , 1t, 2s, 3λ3−r−s)σ

= (1λ1+r′ , 2λ2 , 1r
′′+t, 2s, 3λ3−r−s) = As23A

r′′+t
13 l(ν ′).
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Therefore, by definition of the elements ξ•,• and by Lemma 52,

ξAs
23A

t
13l(ν),A

t
13l(ν)

ξAt
13l(ν),l(ν)

ξAr′′
13 l(ν

′),l(ν′)wν′

= ξ
As

23A
r′′+t
13 l(ν′),Ar′′+t

13 l(ν′)
ξ
Ar′′+t

13 l(ν′),Ar′′
13 l(ν

′)
ξAr′′

13 l(ν
′),l(ν′)wν′

=

(
t+ r′′

r′′

)
ξ
As

23A
t+r′′
13 l(ν′),At+r′′

13 l(ν′)
ξ
At+r′′

13 l(ν′),l(ν′)
wν′ ∈ Qν′(s),

and so E• ∼=
⊕

s≤λ3
E•(s). Let ν = (λ1, λ2 + r, λ3 − r) for some r. Denote

(λ1 + s, λ3 − r − s) by νs. Define

ψs : E•(s) → C•(λ
s)

ξAs
23A

t
13l(ν),A

t
13l(ν)

ξAt
13l(ν),l(ν)

wν 7→ ξRt l(νs),l(νs)vνs .

It follows from the definition of the differentials in E•(s) and C•(λ
s) that

ψs is a map of N-sequences. Moreover, since ψs is a bijection on the basis,
it is an isomorphism. Hence E•(s) is a complex isomorphic to C•(λ

s). By
Theorem 56, it is exact at all terms except the zero term and H0(E•(s)) ∼= K.
It is clear that the vector space H0(E•(s)) is generated by the image of
ξAs

23l(ν),l(ν)
wν .

5.3 Third reduction

Let λ ∈ Λ(3, r). Then Rλ is a quotient of Pλ. Denote by ρλ the natural
projection Pλ → Rλ. Then Ker ρλ has basis

ξAµ23
23 A

µ13
13 A

µ12
12 l(λ),A

µ13
13 A

µ12
12 l(λ)ξAµ13

13 A
µ12
12 l(λ),l(λ)vλ,

where µ23 + µ13 ≤ λ3, µ12 ≤ λ2, and µ13 + µ12 ≥ 1.

Lemma 62. Let ν = Rs
23 λ. Define the map Υν

λ : Rν → Rλ by the rule

ξAt
23l(ν),l(ν)

uν 7→ ξAt
23A

s
23l(λ),As

23l(λ)ξAs
23l(λ),l(λ)uλ.

Then Υν
λ is a well-defined map of S+(3, r)-modules.

Proof. The idea of the proof is the same as for Proposition 57 with the only
difference being that we need the equalities

ξAt
12A

s
23l(λ),As

23l(λ)ξAs
23l(λ),l(λ)

=

min(t,s)∑
j=0

ξAs−j
23 Aj

13A
t−j
12 l(λ),Aj

13A
t−j
12 l(λ)ξAj

13A
t−j
12 l(λ),At−j

12 l(λ)ξAt−j
12 l(λ),l(λ)
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and

ξAt
13A

s
23l(λ),As

23l(λ)ξAs
23l(λ),l(λ) = ξAt

13A
s
23l(λ),l(λ) = ξAs

23A
t
13l(λ),At

13l(λ)ξAt
13l(λ),l(λ).

These are proved in the next two lemmata.

Lemma 63. Let λ ∈ Λ(3, r). Then, for s and t with s+ t ≤ λ3, we have

ξAt
13A

s
23l(λ),As

23l(λ)ξAs
23l(λ),l(λ) = ξAt

13A
s
23l(λ),l(λ),

and
ξAs

23A
t
13l(λ),At

13l(λ)ξAt
13l(λ),l(λ) = ξAs

23A
t
13l(λ),l(λ).

Proof. The proof is the same as for Lemma 58.

Remark 64. Notice that ξAt
13A

s
23l(λ),l(λ) = ξAs

23A
t
13l(λ),l(λ) since for

σ = [(λ1 + λ2, s, t, λ3 − s− t), (23)] ∈ Σr

we have

l(λ)σ = (1λ1 , 2λ2 , 3λ3)σ = (1λ1 , 2λ2 , 3λ3) = l(λ),

As23A
t
13l(λ)σ = (1λ1 , 2λ2 , 1t, 2s, 3λ3−s−t)σ

= (1λ1 , 2λ2 , 2s, 1t, 3λ3−s−t) = At13A
s
23l(λ).

Lemma 65. Let λ ∈ Λ(3, r). Then for s ≤ λ3 and t ≤ λ2 + s we have

ξAt
12A

s
23l(λ),As

23l(λ)ξAs
23l(λ),l(λ)

=

min(t,s)∑
c=0

ξAs−c
23 Ac

13A
t−c
12 l(λ),Ac

13A
t−c
12 l(λ)ξAc

13A
t−c
12 l(λ),At−c

12 l(λ)ξAt−c
12 l(λ),l(λ).

Proof. We denote the left hand side of the equality by B and right hand
side by D. Then we have to prove that Bv = Dv for each v ∈ V ⊗r, where
V is a three-dimensional vector space with basis {v1, v2, v3}. It is clear that
this has to be checked only for the basis elements vi, where i ∈ I(3, r). For
i /∈ λ, Bvi = 0 = Dvi.
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Suppose now that i ∈ λ, and consider vi. Applying B to this element
we get

∑
j vj, where the sum is over j obtained from i in the following way.

First we replace 3 by 2 in some s places, then we replace 2 by 1 in t places.
In particular, on the second step, some new 2s can be replaced by 1s. We
say that j is of type c if there are c such 2s. Now each j of type c can be
obtained from i in the following way. First, we replace 2 by 1 in t− c places,
then we replace 3 by 1 in c places, and finally we replace 3 by 2 in s − c
places. Thus ∑

j is of type c

vj = ξAs−c
23 Ac

13A
t−c
12 i,Ac

13A
t−c
12 iξAc

13A
t−c
12 i,At−c

12 iξAt−c
12 i,i.

This completes the proof.

Proposition 66. For λ ∈ Λ(n, r), let F• be an N-sequence of S+(3, r)-
modules

· · · −→ Fm
dm−→ · · · d2−→ F1

d1−→ F0 −→ 0,

where
Fm(λ, k) =

⊕
n∈Nω :|n|=m

R
R

f(n)
2,3 λ

and

dm|R
R

f(n)
2,3 λ

=
k∑
i=1

(−1)n1+···+ni−1∂i,m,

where

∂i,m = Υ
A

f(n)
2,3 λ

A
f(n−ei)
2,3 λ

: R
R

f(n)
2,3 λ

→ R
R

f(n−ei)
2,3 λ

.

Then F• is a complex. It is exact at all terms except the zero term and
H0(F•) ∼= Kλ.

Proof. Let ν = (λ1, λ2 + r, λ3− r) for some r. Denote (λ2 + r, λ3− r) by ν ′′.
Define the map ϕ : F• → C•(λ

′′) by the formula

ξAs
23ν
uν 7→ ξRs ν′′vν′′ .

It follows from Lemma 23 and Lemma 52 that ϕ is a map of N-sequences.
Since ϕ is a bijection on bases, it is an isomorphism. Therefore by Theorem 35
we have that F• is exact at all terms except the zero term, and H0(F•) ∼= K
as vector spaces. Moreover, H0(F•) is generated by an element of weight λ,
and hence H0(F•) ∼= Kλ as S+(3, r)-modules.



CHAPTER 5. PROJECTIVE RESOLUTIONS FOR S+(3, R) 45

5.4 Projective resolution for the trivial mod-

ules over the algebra S+(3, r)

By Proposition 61, we have a Q•(λ)-resolution of modules Rλ and by Propo-
sition 56, a projective resolution P•(ν) of Qν . Therefore, by Theorem 22,
there is a projective resolution of Rλ with n-th term⊕

k+l=n

⊕
n2∈Nω

|n2|=l

⊕
n1∈Nω

|n1|=k

P
R

f(n1)
13 R

f(n2)
12 λ

.

Now, we have an R•(λ)-resolution of Kλ and a projective resolution for each
Rν .Therefore, from Theorem 22 we get the following

Theorem 67. Every simple module Kλ over the algebra S+(3, r) has a pro-
jective resolution

· · · −→ Cm
dm−→ · · · d2−→ C1

d1−→ C0 −→ 0,

where
Cm(λ, k) =

⊕
n1,n2,n3:|n1|+|n2|+|n3|=m

P
R

f(n3)
2,3 R

f(n2)
1,3 R

f(n1)
1,2 λ

.

5.5 Conclusions

The results of the previous section allow us to construct projective resolutions
for Weyl modules over the Schur algebra S(3, r). Namely, we apply the
induction functor S(3, r) ⊗S+(3,r) (−) to the resolutions from Theorem 67.
By [25, Theorem 5.1], this gives projective resolutions for the Weyl modules
V λ, where λ ∈ Λ+(3, r). Note that this gives neither the minimal projective
resolutions nor projective resolutions of minimal length, since the resolutions
constructed in Theorem 67 are not of minimal possible length.

The author plans to extend the results of this work to the case n ≥ 3.
It would be also interesting to find a construction for minimal resolutions of
one-dimensional modules over S+(3, r).
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Appendix A

Algebras and quivers

In order to work with algebras it is convenient to use the concept of quivers
and relations.

A.1 Representations of quivers

Definition 68. A quiver Γ is a directed graph Γ = (V,E, s, t) where V is the
set of vertices and E is the set of arrows, and s, t are maps E → V . Given
an arrow a ∈ E, we say it starts at vertex s(a) and terminates at t(a). The
quiver is said to be finite provided both V and E are finite sets.

Suppose Γ is a quiver; and K is a fixed field. A representation M of a
quiver Γ over K is given by (Mv, ϕa) where for any vertex v ∈ V we have a
vector space Mv, and for any arrow v

a→ w, there is a linear transformation
ϕa : Mv → Mw. If M = (Mv, ϕa) and N = (Nv, ψa) are representations of Γ
overK then a map η : M → N is defined to be η = (ηv) where ηv : Mv → Nv is
a linear transformation such that for any arrow v

a→ w there is a commutative
diagram

Mv
ϕa //

ηv

��

Mw

ηw

��
Nv

ψa // Nw

that is, ηwϕa = ψaηv. Denote the category of representation of Γ by R(Γ).

A.2 The path algebra of a quiver

Definition 69. Given v, w ∈ V ; then a path of length l ≥ 1 from v to w is
of the form (w|al, . . . , a1|v) with arrow ai satisfying t(ai) = s(ai+1) for all i,

47
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1 ≤ i ≤ l − 1, such that v is the starting point of a1, and w is the end point
of al. In addition, we also define for any vertex v of Γ a path of length zero
(form v to itself) denoted by v also (or (v||v)).

The path algebra KΓ of Γ is defined to be the K-vector space with basis
the set of all paths in Γ. The product of two paths is taken to be the
concatenation if it is againe a path, and zero otherwise. In this way, we
obtain an associative K-algebra which has an identity if and only if V is
finite (then the identity is given by

∑
v∈V

v). Note that the path algebra is

finite-dimensional if and only if V is finite, and there is no cyclic path in Γ.
We denote byKΓ+ the ideal ofKΓ generated by all arrows. Then (KΓ+)n

is the ideal generated by all paths of length ≥ n.

Proposition 70. The categories R(Γ) and KΓ are equivalent. In particular,
R(Γ) is an abelian category.

Proof. Given M = (Mv, ϕa) in R(Γ), define the KΓ-module TM with under-
lying vector space

⊕
v∈V

Mv with action of the algebra as follows:

Let m ∈Mv, then

vm = m,

wm = 0 for w 6= v,

am = ϕa(m) if a starts at v,

am = 0 otherwise.

Suppose T is a KΓ-module, define M = (Mv, ϕa) as follows:
If v ∈ V then take Mv = vT , and if v

a→ w is an arrow, then ϕa is the
linear transformation vT → wT which is given by left multiplication with a.

If η = (ηv) is a map M → N and T = TM and S = TN , then η induces
in an obvious way a KΓ-homomorphism which also denote by η. Any KΓ-
homomorphism arises from a map M → N .

A.3 Quiver with relations

Definition 71. Let v and w be vertices of a quiver Γ. A relation ρ on Γ
is an element ρ =

∑
cωω ∈ KΓ where the ω are paths between two fixed

vertices. If {ρν}ν is a set of relations for Γ then (Γ, {ρν}ν) is a quiver with
relations.

If ω = (w|an, . . . , a1|v) is a path in Γ andM = (Mv, ϕa) is a representation
of Γ, then “ω acts on V ” via the linear transformation ω(M) = ϕan . . . ϕa1 .
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More generally, if ρ is a relation in Γ, say ρ =
∑
ciωi, where ci ∈ K and each

ωi is a path then ρ(M) =
∑
ciωi(M).

Definition 72. Given a quiver with relations (Γ, {ρν}ν) and a representation
M = (Mv, ϕa) of Γ then M is a representation of (Γ, {ρν}ν) if for all ν we
have ρν(M) = 0.

Proposition 73. The category of representations of (Γ, {ρν}ν) is equivalent
to the category of modules over KΓ/I where I is the ideal of KΓ generated
by {ρν}ν.

Proof. The claim of the proposition is a direct consequence of definitions.



APPENDIX A. ALGEBRAS AND QUIVERS 50



Appendix B

Quasi-hereditary algebras and
highest weight categories

B.1 Hereditary ideals

Let A be a finite dimensional algebra over a field K.

Theorem-Definition 74. An ideal N of the algebra A is called the radical
of A and denoted by rad(A) if one of the following equivalent conditions holds:

1) The ideal N is the intersection of all maximal left ideals of A.

2) The ideal N is the intersection of all maximal right ideals of A.

3) The ideal N is the maximal nilpotent ideal in A.

Definition 75. An ideal I of A is said to be a hereditary ideal of A if

1) J2 = J ;

2) J rad(A)J = 0;

3) J , considered as a left A-module, is projective.

Proposition 76. If e is an idempotent of A, then (AeA)2 = AeA. Con-
versely, if J is an ideal of A such that J2 = J , then J = AeA for an
idempotent of A.

Proof. The first assertion is trivial. So assume that J2 = J . The algebra
B = A/ rad(A) is semi-simple, therefore any ideal of B is generated by an
idempotent. Any idempotent of B is of the form ē = e + rad(A) with an
idempotent e in A. Thus J + rad(A) = AeA + rad(A) for some idempotent
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e of A. Now, J2 = J implies (J + rad(A))i = J + rad(A)i for all i ≥ 1;
similarly, (AeA + rad(A))i = AeA + rad(A)i for all i ≥ 1. But for large i,
rad(A)i = 0, and therefore J = AeA.

Corollary 77. Let J be a hereditary ideal of a finite-dimensional algebra A.
Then there is an idempotent e ∈ A such that J = AeA.

Proposition 78. Let e be an idempotent of an algebra A. If the right module
(AeA)A or the left module A(AeA) is projective, then the multiplication map

µ : Ae⊗eAe eA→ AeA

is bijective. Conversely, assume that A is a finite-dimensional and that

e rad(A)e = 0.

Then, if µ is bijective, both modules (AeA)A and A(AeA) are projective.

Proof. For any left A-module M , consider the multiplication map

µM : Ae⊗AeA eA⊗AM →M.

The map µM is bijective for M = Ae, and therefore for all direct summands
of direct sums of the module Ae. Now, there is a surjective A-module ho-
momorphism of the form ⊕Ae → AeA, where the direct sum is indexed by
all elements of A. Since A(AeA) is projective, this epimorphism splits, and
it follows that µAeA is bijective. But this means that µ is bijective, since

eA⊗A AeA ∼= eAeA = eA.

The same argument applies in the case that A(AeA) is projective.
Now, assume that A is finite-dimensional and e rad(A)e = 0. Then

rad(eAe) = e rad(A)e = 0 and therefore eAe is semi-simple. In particular, all
modules over eAe are projective. Since (Ae)eAe and (eA)A are projective, the
module (Ae ⊗eAe eA)A is projective also. Thus, the bijectivity of µ implies
that (AeA)A is projective. Similarly, it implies that A(AeA) is projective.

Corollary 79. Let J = AeA be a hereditary ideal in a finite-dimensional
algebra A. Then the homomorphism

µ : Ae⊗eAe eA→ AeA = J

is bijective. Moreover, J , considered as a right A-module, is projective.
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Proposition 80. Let J be an ideal of a finite dimensional algebra A. Denote
by B the algebra A/J . Then J2 = J if and only if HomA(JA,MA) = 0 for any
B-module M . If J is projective, then J2 = J if and only if HomA (JA, BA) =
0.

Proof. First, assume that J2 = J and let ϕ : JA → MA be a homomor-
phism. Then ϕ(J) = ϕ(J2) ⊂ JM = 0, and thus ϕ = 0. Conversely, let
HomA(JA,MA) = 0 for any B-module M . Write YA = J/J2. Since JY = 0,
Y can be viewed as a B-module. Hence, HomA(JA, YA) = 0, and the canon-
ical epimorphism JA → YA shows that Y = 0.

Finally, assume that JA is projective and that HomA(JA, BA) = 0. Given
a B-module M , let F be a free B-module with an epimorphism π : F →M .
Since JA is projective, any map ϕ : JA → MA lifts to a map ϕ′ : JA → FA
with ϕ = πϕ′. But HomA(JA, FA) = 0, because F is a direct sum of copies
of B.

Definition 81. A finite dimensional associative K-algebra A is called quasi-
hereditary if there is a chain of (two-sided) ideals in A,

0 = J0 < J1 < · · · < Jn = A,

such that for any k ∈ {1, 2, . . . , n}, Jk/Jk−1 is a hereditary ideal of A/Jk−1.
We call such a chain of idempotent ideals a hereditary chain or defining
sequence for A.

B.2 Highest weight categories

Let C be a K-finite abelian category. This guarantees that Hom(M,N) is
a finite-dimensional K-vector space for M and N in C, composition is K-
bilinear and all objects have composition series. Recall that a composition
factor S of an object A in C is by definition, a composition factor of a
subobject of finite length. The multiplicity (possibly infinite) of S in A,
denoted [A : S], is defined to be the maximum of the multiplicity of S in all
subobjects of A of finite length.

Let Λ be a finite poset.

Definition 82. A category C over K as above is called a highest weight cat-
egory if there exists an interval-finite poset Λ (the “weights” of C) satisfying
the following conditions:

1) There exists a family {∆(λ) : λ ∈ Λ} of objects of C (variously called
the Weyl objects, the standard objects or the Verma objects).
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2) The head of ∆(λ) is simple; denoting this head by L(λ) then {L(λ)} is
complete set of simple objects in C. For each λ ∈ Λ, the composition
factors of ker(∆(λ) → L(λ)) are all of the form L(µ), for µ < λ.

3) Each L(λ) has a projective cover, P (λ), in C. There exists an epi-
morphism P (λ) → ∆(λ) whose kernel is filtered by some ∆(µ) with
µ > λ.

Dual statements exist about the costandard objects ∇(λ) (λ ∈ Λ), its
simple socle and associated injective hull I(λ) of L(λ).

Theorem 83 ([2, 3.4]). Let A be a finite dimensional algebra. The category
A-mod of A-modules together with (Λ,≤) is a highest weight category if and
only if A is quasi-hereditary.

We give an informal sketch indicating why this result is true. Somehow
one has to construct standard objects for a given quasi-hereditary algebra A
with a set of simple modules {L(λ)}.

We take the maximal hereditary chain

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jn = A

in A. Then it can be shown that all indecomposable summands of the A-
module Jk/Jk−1 are pairwise isomorphic. We denote by ∆(k) one of these
summands. It is a routine to check that the modules ∆(k) satisfies the
required in the definition of highest weight category.



Appendix C

The Mackey formula for
G-Algebras

In this appendix G is an arbitrary finite group.

Definition 84. A G-algebra over a field K is a K-algebra, on which G acts
as a group of K-algebra homomorphisms.

For each subgroup H ≤ G we denote by AH the subalgebra of G-invariant
elements in A. Clearly, if H, L are subgroups of G, then

H ≤ L⇒ AL ⊂ AH .

Definition 85. If H and L are subgroups of G such that H ≤ L, define the
K-linear map TrLH : AH → AL, by

TrLH(a) =
∑
σ∈X

aσ,

where the sum is over an H-transversal X of L, that is X is a set of repre-
sentatives of the cosets Hσ in L.

Because a ∈ AH , the value of TrLH does not depend on the choice of X.
Moreover, TrLH(a)τ = TrLH(a), since Xτ is an H-transversal of L if X is, for
any τ ∈ L.

Theorem 86 ([10, Lemma 4e]). If L is a subgroup of G, and D, H are
subgroups of L, then for any a ∈ AH ,

TrLH(a) =
∑
σ∈X

TrDHσ∩D(aσ),

55
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where X is an (H,D) transversal of L, that is X is a set of representatives
of the double cosets HσD in L. If a ∈ AH and b ∈ AD, then

TrLH(a) TrLD(b) =
∑
σ∈X

TrLHσ∩D(aσb).

Proof. For each σ ∈ X, let Yσ be an Hσ ∩ D-transversal of D. Then it is
easy to see that

Y = ∩σ∈XσYσ
is an H-transversal of L and the first equality holds by using this Y as a
transversal. Now

TrLH(a) TrLD(b) = TrLD(TrLH(a)b)

= TrLD

(∑
σ∈X

TrDHσ∩D(aσ)b

)

= TrLD

(∑
σ∈X

TrDHσ∩D(aσb)

)
=
∑
σ∈X

TrLHσ∩D(aσb).

The last equality follows from the fact that for any subgroups E ≤ D ≤ L
holds

TrLD
(
TrDE (a)

)
= TrLE(a).
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[19] , Über die rationalen Darstellungen der allgemeine linearen
Gruppe, I. Schur: Gesamte Abhandlungen Vol III, (eds. A. Brauer and
H. Rohrbach), Springer-Verlag, Berlin, 1973, pp. 68–85.

[20] V. A. Smirnov, Simplicial and operad methods in algebraic topology,
Translations of Mathematical Monographs, vol. 198, American Math-
ematical Society, Providence, RI, 2001, Translated from the Russian
manuscript by G. L. Rybnikov. MR MR1811110 (2002a:55013)

[21] R.M. Thrall, On the decomposition of modular tensors, I., Ann. of Math.
43 (1942), 671–684.

[22] C. T. C. Wall, Resolutions for extensions of groups, Proc. Cambridge
Philos. Soc. 57 (1961), 251–255. MR MR0178046 (31 #2304)

[23] H. Weyl, The classical groups, Princeton University Press, 1939.

[24] D. J. Woodcock, Borel Schur algebras, Comm. Algebra 22 (1994), no. 5,
1703–1721. MR MR1264736 (95e:20060)



BIBLIOGRAPHY 59

[25] , A vanishing theorem for Schur modules, J. Algebra 165 (1994),
no. 3, 483–506. MR MR1275916 (95d:20076)



BIBLIOGRAPHY 60



Lebenslauf

Name Ivan Yudin
Geburtsdatum 13.Juli 1977
Guburtsort Kiew(Ukraine)
Familienstand ledig

1984 - 1987 Grundschule 222, Kiew
1987 - 1990 Gesamtschule 50, Kiew
1990 - 1994 Liceum 142, Kiew
1994 - 1998 Studium an der Universität Kiew
1998 - 2001 Studium an der Universität Kaiserslautern
2001 - 2007 Doktorand an der Georg-August-Universität zu Göttingen


	Combinatorial notation and definitions
	Schur algebras
	Definition of the algebra SK(n,r)
	Definition of the algebra S+(n,r)

	Homological algebra prerequisites
	Twisted double complexes
	Projective resolutions

	Projective resolutions for S+(2,r)
	The algebra S+(2,r)
	Some facts about modules over S+(2,r)
	Projective resolutions of simple modules over S+(2,r)
	Projective resolutions of Weyl modules over S(2,r)

	Projective resolutions for S+(3,r)
	First reduction
	Second reduction
	Third reduction
	Projective resolution for the trivial S+(3,r)-modules
	Conclusions

	Algebras and quivers
	Representations of quivers
	The path algebra of a quiver
	Quiver with relations

	Quasi-hereditary algebras
	Hereditary ideals
	Highest weight categories

	The Mackey formula for G-Algebras

