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A Note on Notation

Small bold face letters will be used to denote vectors being elements of some finite-dimensio-
nal vector space. Especially, x will usually denote the solution of some set of linear algebraic
equations and b its right-hand side. Matrices will be denoted by capital bold face letters and A
mostly represents the coefficient matrix of a set of linear algebraic equations.

In quantum-mechanical problems the solution of the Schrödinger equation, i.e. the wave
function, will be denoted by Ψ. In finite element problems the solution of the fully discretized
problem gets an index h to denote the mesh width.
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Overview

The first goal of this thesis is the design of SciPAL (Scientific and Parallel Algorithms
Library), a C++-based and operating-system-independent library. The core of Sci-
PAL is a domain-specific embedded language [9] for dense and sparse linear algebra
which is presented in chapter 1. Chapter 2 shows that by using SciPAL, algorithms
can be stated in a mathematically intuitive, unified way in terms of matrix and vec-
tor operations. The resulting rapid prototyping capabilities are discussed by using LU
factorization and principal component analysis as example. SciPAL ports the most
frequently used linear algebra classes of the widely used finite element library deal.II
to CUDA (NVidia’s extension of the programming language C for programming their
GPUs). Thereby, simulation frameworks based on deal.II can easily be adapted to
GPU-based computing. Besides adding a user-friendly API to any BLAS SciPAL par-
ticularly aims at simplifying the usage of NVidia’s CUBLAS, especially the issues of
data transfer arising from CUDA’s distributed memory programming model. Chapter 3
closes the first part with a brief discussion of the necessary steps to solve sparse,
unstructured linear systems.

The second part of this thesis is a collection of various examples which started as
projects based on deal.II and at some point profit from being moved to the GPU. They
are drawn from the field of neuroscience, enginering of indoor airflow, quantum trans-
port in semiconductor heterostructures and structure-function interaction of proteins.

Chapter 4 contributes to the interactive stimulation of light-sensitive neurons by
evaluating the efficiency of existing algorithms and their speedup by CUDA.

The accurate numerical prediction of indoor airflows for building configurations of
practical relevance is of paramount importance for the energy-efficient design of mod-
ern buildings. Chapter 5 discusses CUDA-based preconditioning for indoor airflow
and the technical implications for existing codes written for the numerical solution of
the underlying Reynolds-averaged Navier-Stokes equations.

Chapter 6 focuses on the main issues of designing proper boundary conditions for
finite element simulations of quantum transport in the Landauer-Büttiker picture. The
simulation of a two-dimensional electron gas for a given set of model parameters is
not a big deal. The difficult part is an accurate formulation of transparent boundary
conditions needed to truncate the source and drain leads to a finite length.

The formulation of a GPU-based framework for quantum wave-packet dynamics in
chapter 7 is straightforward if formulated in terms of matrix-vector products and is an
example for how to combine the topics of this thesis to solve a new problem class.

The accurate simulation of single-molecule impedance spectroscopy of globular
proteins must be done in 3D. Current theoretical models ignore boundary conditions
and the electro-chemical properties of ions completely. Chapter 8 introduces and im-
proved model based on the Poisson-Nernst-Plack equations. The physical properties
are dominated by boundary layers and the discontinuity of the dielectric permittivity
at the protein-solvent interface. The goal of the simulation is the determination of the
electro-diffusive fluxes in the solvent. To avoid the inclusion of the protein interior in
the simulation the Poisson problem in the protein interior is replaced by a boundary-
value problem leading to a FEM-BEM coupling. Since it is basically an elliptic problem
multigrid methods are particularly well-suited for its efficient solution.
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Chapter 1

SciPAL: A library for GPU Computing

The first goal of this thesis is the design of SciPAL, the Scientific and Parallel Algorithms Library. Its
design concepts and most important implementation details are discussed in this chapter.

Numerical linear algebra is the backbone of most fields of scientific computing. The BLAS stan-
dard [45] defines a procedural programming interface for the most frequently recurring basic linear
algebra subroutines. The core of SciPAL is set of C++-classes for matrices and vectors supporting an
operator-based programming interface with the purpose to encapsulate the error-prone usage of the
bare BLAS programming interface. This is realized by a domain-specific embedded language [9] for
dense and sparse linear algebra abstracting from the particular BLAS implementation.

A current trend in high performance computing is to use the graphics processing unit (GPU) as
general-purpose co-processor to a computer’s central processing unit (CPU). This trend was triggered
by the development of CUDA, NVidia’s extension of the programming language C for programming
their GPUs. CUDA considerably simplifies using a GPU for non-graphic purposes. The CUBLAS
library, the CUDA-based BLAS implementation, allows users to almost immediately take advantage
of the high computing power of a GPU in an existing application. By SciPAL’s hardware abstraction
capabilities, algorithms can be stated in a mathematically intuitive, unified way even for CUBLAS-based
computations. A standalone matrix-vector library is not of great value. Hence SciPAL is designed to be
compatible with the widely used finite element library deal.II right from the start.

1.1 Introduction

Computers evolve more and more into heterogeneous compute environments in which, es-
pecially non-graphics related, data-parallel work is delegated from the central processing
unit (CPU) to the graphics processing unit (GPU). Exploiting the GPU for other than their
traditional task of 3D graphics has quickly become a subject of its own and is by now known
as general purpose GPU (GPGPU) computing. At the beginning GPGPU computing relied
on reinterpreting OpenGL textures as vectors and matrices, respectively, and to use the means
provided by GLSL (the GL shading language) to implement linear algebra operations [28].
One of the first dedicated high-level languages for GPGPU computing, Brook for GPU [31],
was developed at the Stanford University Graphics Lab. This eventually evolved into AMD’s
Brook+ which became part of AMD’s ATI Stream computing environment and the nowadays
popular CUDA (compute unified device architecture) by NVidia which is used in this work.

CUDA extends the C programming language by the means to execute C functions in parallel
on the GPU and concurrent to the CPU. Anyone proficient in C knows CUDA as well, at least in
principal, which keeps the learning barrier rather low. Programming with CUDA shares many

15
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similarities to MPI [106] in that the GPU consists of several multicore processing units with
private, dedicated memory equivalent to a node of a cluster. Data exchange happens via the
global GPU memory which is the analog to the network connections in a cluster. Yet, CUDA
is conceived for a different miniaturization level and rather complements MPI by potentially
speeding up what in the MPI context has been defined as job for an individual node of a cluster.

Because of its versatility in domain-specific types and focus on type correctness C++ has
emerged to be the object-oriented (OO) programming language of choice for scientific com-
puting. The modularity of OO software leads to a much higher level of code reuse and thus
a more rapid software development. To extensively reuse already well-tested pieces of code
is one of the paradigms of OO programming. The disadvantage is that excessive use of OO
features like virtual functions may lead to poor performance. An economic approach is to
merge the best of both worlds: Use C++, especially its operator-overloading capabilities, for
an intuitive, user-friendly application programmer’s interface (API) close to the mathematical
abstraction and offload the work to a BLAS function. User-friendly APIs based on C++ and
high-performance computing are not a contradiction. A good example for a modern software
library of high performance following object-oriented design principles is the widely used finite
element library deal.II [20, 21].

The first step towards an operator-based API is to hide the precision dependence of the
names of BLAS functions in wrapper functions with unified names by C++’s polymorphism.
The standard problem in C++ with overloaded operators modeling linear algebra operations
is their greedy evaluation. With no further action intermediate results are evaluated immedi-
ately which in most cases is redundant. The essential ingredient of an efficient operator-based
interface are expression templates (ET), [130, 131, 132], [9, Chapter 10] and composition clo-
sure objects (CCO), as Stroustroup calls them [123, 122, Section 22.4 and earlier editions].
Their purpose exactly is to eliminate the redundant evaluation of temporary results in compos-
ite expressions by deferring the execution of individual operations until the full expression is
known. The difficulty in this lazy evaluation is to map expressions to BLAS functions without
creating large amounts of redundant source code. Using C++’s template capabilities SciPAL
generates the BLAS expressions from a few building blocks and provides an integration of the
large amount of existing, highly optimized BLAS libraries in a hardware-independent manner.
Therefore, the goal of encapsulating the bare CUBLAS API to leverage its usage and which is
as cumbersome as any other BLAS API immediately leads to a much more general solution.

The modular structure of SciPAL allows to compare the performance of different BLAS im-
plementations and hence different hardware and parallelization concepts under otherwise iden-
tical conditions. A by-product of C++’s type correctness is that a lot of errors can be detected
by the compiler already before run-time in contrast to C or FORTRAN. For small software
projects this issue might be of minor importance but for larger simulations or analyses, possi-
bly running for weeks or months, this is crucial.

1.1.1 BLAS

BLAS itself is a proposal for a standard API for basic linear algebra operations dating back
to 1979. It groups operations according to their run-time complexity into three levels (vector-
vector, matrix-vector and matrix-matrix operations). It requires a separate implementation for
each precision, e.g. for matrices A, B, C and scalars α , β the generalized matrix-matrix product

C = αA ·B+βC (1.1)
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is implemented four-fold in the functions sgemm, dgemm, cgemm, zgemm, which encode
the single- and double-precision real and complex version, respectively. Often the function
names are prepended by identifiers for the specific BLAS implementation. In contrast to mod-
ern C++-based programming function names (and their argument lists) are neither really self-
explanatory nor self-documenting as is illustrated by the generalized matrix-matrix (GEMM)
multiplication in listing 1.1. Maybe, in this case the name is decipherable, at first sight the
arguments certainly are not. Nor is this the case for functions like cublasStrsm.

Listing 1.1: Declaration of the CUBLAS variant of the single-precision real GEMM operation.

void
2 cublasSgemm (char transa, char transb, int m, int n,

int k, float alpha, const float *A, int lda,
4 const float *B, int ldb, float beta,

float *C, int ldc)

BLAS contains the most ubiquitous time-critical routines encountered in industrial and
scientific applications. Therefore, a lot of effort has been spent on producing optimal imple-
mentations exploiting the peak floating point performance and memory bandwidth for a broad
range of problem sizes. Each of these implementations is tuned for a specific hardware, e.g.
Intel’s MKL, AMDs ACML with the ACML-GPU extension for GPU-computing on AMD
Radeon graphics cards or CUBLAS as its reincarnation on NVidia GPUs. Despite the API the
high level hardware-specific optimizations of the various BLAS libraries make them an invalu-
able tool for performance-critical programs and thus are worthwhile to add what is beyond the
scope of BLAS: A user-friendly API.

1.1.2 Related Projects

The idea of adding a C++-interface to BLAS or LAPACK is not new, there are several projects
(uBLAS [2], CPPLAPACK [3], LAPACK++ [4], TNT [7]) with varying states of completeness
and activity. Particularly interesting is MTL4 [55] which rebuilds BLAS and LAPACK from
scratch in C++. It uses all the advanced template metaprogramming strategies. MTL4 has a
mathematically inspired API yet said to reach a similar performance as BLAS or LAPACK.

Mangor et al. have developed an expression-template-based library for vector algebra op-
erations [141]. By design they are limited to CUDA for parallelization and BLAS-level-1
operations, i.e. saxpy-like operations. Another attempt to combine GPU computing with ex-
pression templates appeared in the context of rigid body dynamics [121] but had its focus on
simplifying complex vector expressions inside of CUDA kernels where vectors itself were ele-
ments of a large array with a size proportional to the number of rigid bodies (i.e. hard spheres).
Smart expression templates with a scope beyond BLAS-level-1 operations are provided by
Blaze [65, 63, 64] which ignores GPGPU computing by purpose according to the authors.

1.2 API Design and Implementation

The goal of SciPAL is to formulate linear algebra operations in the shortest possible way. For
instance, when multiplying a vector x by a matrix A with vector b as result we want to type:

b = A * x;
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This requires several steps. First of all, the notion of matrices and vectors has to be con-
verted into proper C++ classes. Secondly, we have to implement an assignment = and a mul-
tiplication operator * with the appropriate associativity. The techniques to reach this are lazy
evaluation of operator expressions, composition closure objects and expression templates.

The backbone of SciPAL is the class for arrays encapsulating the memory management in
Sec. 1.4.2, the class for dense matrices given in Sec. 1.4.3 and a class for vectors, cf. Sec. 1.4.4.
On top of these are convenience classes which provide views on subsets of matrices or vectors.
These classes abstract from the type T of the matrix or vector elements and from the BLAS im-
plementation given by the template parameter BW. Their purpose is to incorporate BLAS as
high-performance implementation of the linear algebra operations performed on matrices and
vectors and to form the bridge to the operator-based API for these operations.

The naming convention defined by BLAS causes a four-fold maintenance effort for a single
routine. The first step in designing an abstraction layer for decoupling BLAS-based programs
from the underlying particular BLAS-library is to make use of C++’s polymorphism, i.e. the
name of a function is a combination of its bare name and the types of its arguments. The com-
piler distinguishes functions of the same name by differences in their types of arguments or
argument lists. This still leaves the option to provide precision-dependent optimizations in the
function’s body. Therefore, to unify names of the BLAS functions we need a structure like the
one in Sec. 1.4.1 providing wrapper functions with idential names for the different precisions.

Auxiliary functions for e.g. memory allocation are unified by templatizing their wrapper
function with respect to the number type so that they have to be implemented only once. A nice
feature of existing BLAS libraries is that they keep track of execution errors such that one can
check for errors after each function call. To enable the error checking in an all-or-nothing
fashion the query of the BLAS error state is incorporated into the wrapper functions so that
run-time errors can be accurately tracked down by the debugger as discussed in Sec. 1.4.1.
In order to avoid any performance penalty due to the wrapper functions they are declared
as inline. Then, the compiler can replace them at their point of invocation by their body
which effectively saves one function call.

Unlike in C++, the BLAS function names (and their argument lists) are neither really self-
explanatory nor self-documenting as the sgemm example in listing 1.1 shows. One of the
paradigms of linear algebra is to formulate as much of an algorithm in terms of matrix-matrix
products as possible. Hence, a direct use of the BLAS API does not really lead to code which
is easy to maintain.

In order to ensure compatibility to deal.II, matrix and vector classes will be template
classes conforming to the interface implicitly defined by the way the Krylov solver classes
of deal.II use their template arguments internally. For matrices this boils down to implement a
member function vmult such that b = A ·x can be written as:

A.vmult(b, x);

The function vmult is to be declared inline and hides the details of the corresponding
BLAS functions, e.g. sgemv if A is a single precision, dense matrix of unknown symmetry.
Compared to C or the call to the corresponding BLAS function with 10 arguments, this is
already more expressive. Yet, for algorithms rich in matrix-vector products like conjugate
gradients or GMRES [112] this still can degrade code readability. Similar examples of frequent
occurrence are dot products and norms.
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1.2.1 Lazy Evaluation

It is well-known that the standard way of overloading binary non-member operators in C++
requires temporary objects for storing and returning the result of the operation. It is obvious
that this may lead to remarkable performance losses and especially in the case of large objects
may become a question of memory availability. The key to avoiding unnecessary temporary
objects is lazy evaluation, i.e. to defer the evaluation of individual expressions until the whole
expression has been completely parsed and processed. This is of particular importance in an
expression formed by a chain of elementary linear algebra operations. The basic concept of lazy
evaluation is not restricted to making the computation of an algebraic expression more efficient.
It has a much broader scope and may also be successfully used in designing frameworks for
building parsers like the C++ template library spirit [5] which is part of the boost project [1].
In fact spirit is a domain specific embedded language for context-free languages, i.e. those
generated by type-2 grammars of the Chomsky-hierarchy [6].

Composition Closure Objects

The basic ingredient of lazy evaluation of linear algebraic operations is to store the compound
mathematical expression in a tree with operands as leafs and operators as nodes. From the
tree structure the compiler can deduce the final expression and replace the chain of operations
by a single call to a function which provides an optimal implementation for the compound
expression. For instance, for the example in Eq. (1.1) the compiler should replace the operator-
based expression by the equivalent call to sgemm, dgemm, cgemm or zgemm depending on
the number type and selected precision.

Deferring the computation of the expression is achieved by overloading, e.g. the multipli-
cation operator *, such that merely a small object is returned. The only purpose of this object
is to hold references to the operands such that the operands can be retrieved at a later time.
Such objects are called composition closure objects (CCO) by Stroustroup [123, 122, Section
22.4 and earlier editions]. For a matrix-vector product they look like:

struct MVmult
2 {

const Matrix & A;
4 const Vector & x;

6 MVmult(const Matrix & l, const Vector & r)
:

8 A(l), x(r) {}
};

An alternative designation as smart expression templates has been coined recently by Iglberger
et al. [64]. An overloaded operator for this operation is essentially given by:

inline MVmult
2 operator * (const Matrix & A,

const Vector & x)
4 {

return MVmult(A, x);
6 }



20 CHAPTER 1. SCIPAL: A LIBRARY FOR GPU COMPUTING

By declaring operator * as inline the compiler may optimize away the temporary object
for the expression and replace it by the evaluation of the assignment operator. The final step is
to equip the Vector class with a constructor which takes the expression as argument:

Vector (const MVmult & mv)
2 {

this->reinit(mv.A.n_rows());
4 mv.A.vmult(*this, mv.x);
}

For objects already instantiated we need an assignment operator performing equivalent opera-
tions. The actual implementation of composition closure objects is more involved as we rather
code them as template classes with the types of the left- and right-hand side operands and of
the mathematical operation as template arguments.

BLAS offers several routines providing operations optimized for matrices of special struc-
ture. This can be managed by a class MatrixTraits which contains flags for symmetry,
upper or lower triangularity or bandedness as static constants so that they can be evaluated at
compile-time. For instance, in the vmult member function the compiler then can select the
proper branch from the different cases of a switch statement and remove all other. This is
similar to the way how deal.II works out the dimension-handling. For the purpose of a simple
presentation we do not include the traits in the code listings.

Transposition of Objects

To indicate transposition of a matrix or vector SciPAL provides a unary expression structure
(templatized with respect to the object’s type) which simply stores a reference to the object
we want to use the transpose of. The transpose of a vector is interpreted as a row vector if
the original one is a column vector and vice versa. Thus, x * transpose<Vector>(x)
indicates the outer product of a vector x with itself which can be easily mapped to one of
the BLAS ger-functions which exactly compute such a product. Given a matrix A the tem-
porary object transpose<Matrix>(A) exists long enough so that the reference to the
original matrix can be extracted. The lengthy typename could be abbreviated using a suit-
able typedef. If the transpose is frequently needed one can instantiate a permanent object:

transpose<Matrix> A_T(A);
2

b = A_T * x;

The most general expression offered by BLAS is the generalized matrix-matrix multiplica-
tion or the corresponding generalized matrix-vector multiplication. We exploit this consider-
able simplification and restrict the capabilities of our ET engine to the set of BLAS operations.

1.2.2 Porting to Other Platforms

With API and BLAS implementation separated from each other it becomes very easy to port an
application to any hardware platform for which a BLAS library and a C++ compiler exist. If at
all, only the BLAS wrapper class has to be reimplemented. Due to the widespread distribution
of Linux this requirement is met on virtually any modern hardware, even on embedded devices
like smartphones or tablet computers. For instance, Apple even requires that apps for their
mobile devices are implemented in either C, C++ or Ob jective-C.
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C = α A · B + β C

C = α A · B + β C

C = α A · B + β C
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C = α A · B + β C
C = α A · B + β C

C = α A · B + β C

C = α A · B + β C
C = α A · B + β C

Figure 1.1: Expression tree for GEMM. The tree for GEMV would look the same except for
B and C being vectors then. The left-to-right associativity of operator * assures that αA is
considered as the terminal subexpression and not A ·B.

1.3 Example: GEMM tree

To give an idea of what an expression tree might finally look like we sketch the case of the
generalized matrix-matrix multiplication. For each final expression Expr the result of which
we want to assign to a vector or matrix we need a constructor like:

Vector(const Expr & e) { e.apply(*this); }

To avoid writing n constructors for n different expressions we could extend the constructor to
be a template function leaving the redundant code duplication to the compiler:

template<typename X>
2 Vector(const X & x) { x.apply(*this); }

Unfortunately, this is too generic as, for instance, this pattern would cover as well:

Vector v(5);

Inevitably this will fail. The compiler would interpret 5 as some sort of int, i.e. as a built-in
primitive data type which does not offer an apply() member function. The solution to this
problem is the introduction of a templatized expression base class [56]:

template<typename E> struct Expr : public E {
2

const E & operator˜() const
4 {

return static_cast<const E&>(*this);
6 }
};
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and the corresponding, less ambiguous, constructor:

template<typename X> Vector(const Expr<X> & x)
2 {

˜x.apply(*this);
4 }

The ~ operator provides a type-safe downcast to the dynamic type of the expression and builds
on the Barton-Nackman trick [9, Sec. 9.8].

Before we proceed we should think about what type of compound operations BLAS offers,
what elementary expressions are needed for them and in which cases we explicitly have to take
into account the notion, or better: concept, of a matrix or a vector. As long as no equation
solving is involved we can ignore the division operator as it would only appear in scaling
operations and thus can be mapped to multiplication with a reciprocal. Negative signs in front
of matrices or vectors can be swallowed up by unary expressions. It remains the need for the
concept of a product and a sum where sums can only be applied to operands of the same type.
It does not make sense to add a row of a matrix to a column vector. Products are more flexible
as, for instance, they allow to create matrices from the product of a column with a row vector.
Distinguishing between matrix-vector and matrix-matrix products is also necessary. At least in
the final expression at the point where the decision is made about which BLAS function has to
be used. Further difficulties arise from the need to have the choice between matrices or vectors
or subsets of them as it frequently is the case in all standard factorization methods (LU, QR,
SVD). Therefore, the next building block is a template for binary expressions:

template<typename _L, Operator _o, typename _R>
2 struct BinaryX : public Expr<BinaryX<_L, _o, _R> > {

4 typedef _L L;
typedef _R R;

6
const L& l; const R& r;

8
static const Operator op = _o;

10
BinaryX(const L& l, const R & r) : l(l), r(r) {}

12 };

14 enum Operator {times, divide, plus, minus };

It encapsulates the storage of the references to the operands, the operator flag and provides
abbreviations for the operands’ types. Subclassing refines the concept to sums and products:

template<typename Number, typename Matrix>
2 struct Sum : public BinaryX<Number, plus, Matrix> {

4 typedef BinaryX<Number, plus, Matrix> B;

6 typedef typename B::L L;
typedef typename B::R R;

8
Sum(const L & l, const R & r) : Base(l, r) {}

10 };
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template<typename Number, typename Matrix>
2 struct Prod : public BinaryX<Number, times, Matrix> {

4 typedef BinaryX<Number, times, Matrix> B;

6 typedef typename B::L L;
typedef typename B::R R;

8
Prod(const L & l, const R & r) : Base(l, r) {}

10 };

Scaled matrices and scaling of matrix-matrix products and the like is then obtained from a set
of typedefs which will serve for processing the expression tree in the GEMM operation:

typedef Prod<Number, Matrix> scaledM;
2

typedef Prod<Matrix, Matrix> MM;
4

typedef Prod<scaledM, Matrix> scaledMM;

The final GEMM expression could be built by subclassing a specialization of the Sum template:

typedef Sum<scaledMM, scaledM> GEMMBase;
2
struct GEMM : public GEMMBase

4 {
typedef typename GEMMBase::L L;

6 typedef typename GEMMBase::R R;

8 GEMM(const L & l, const R & r) : GEMMBase(l, r) {}

10 void apply(Matrix& result)
{

12 // unroll tree of scaledMM subexpression
T alpha = l.l.l;

14 const Matrix & A = l.l.r;
const Matrix & B = l.r;

16
// unroll tree of scaledM subexpression

18 T beta = r.l;

20 // Adapt name of destination to BLAS
Matrix & C = result;

22
// the details of the call to gemm are hidden

24 // in a member function of the matrix type.
// whether A or B is transposed is figured out there.

26 C.scaled_mmult_add_scaled(alpha, A, B, beta);
}

28 };

The code snippets in this section are intended to highlight the principal problems when design-
ing a system of CCOs based on expression templates. They are not supposed to work right
after copy-paste-compile. Especially the unconditional genericity of templates may sometimes
provide more combinations of types than actually wanted.
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1.4 API Classes

We close this chapter by a brief discussion of the main classes of the SciPAL library. To this
end, we follow the fate of CUBLAS’ dot-function. As a level-1-function dot does not have
too many arguments and thus the number of uninteresting details is still at an acceptable level.

1.4.1 struct cublas

The basis for creating an efficent C++ interface to CUBLAS is to use C++’s function over-
loading mechanism to define number type independent classes for matrices, vectors and views
on, i.e. subsets of, matrices and vectors. At the bottom is a structure cublas providing an
abstraction from the precision dependence of the names of the CUBLAS-functions:

struct cublas
2 {

template<typename T>
4 static void Alloc(T *&dev_ptr, size_t n) {

6 cublasStatus status = cublasAlloc(n, sizeof(T), (void**)&dev_ptr);
check_status(status);

8 }

10 static
float dot(int n, const float *x, int incx, const float *y, int incy);

12
static

14 double dot(int n, const double *x, int incx, const double *y, int incy);
// ...

16 };

These wrapper functions additionally provide an error-checking mechanism using CUBLAS’
status tracking. As they are static we never have to instantiate an object of this class. A simple
example for the encapsulation of the type-dependence consider the real-valued single precision
version of the dot-function which computes the scalar product of two linear arrays:

float cublasSdot (int n,
2 const float *x, int incx,

const float *y, int incy) { ... }
4 /* double and complex variants follow */

Either one looks it up in the CUBLAS reference [102] or one makes an educated guess about
the meaning of the parameters. Important for us are the pointers *x and *y which point to the
arrays to be multiplied in this function. The key to unified names is function overloading. We
still have to stick with the same number of functions, but now the compiler picks the proper
CUBLAS function according to the type information associated with the function arguments:

inline float
2 cublas::dot (int n, const float *x, int incx, const float *y, int incy)
{

4 float result = cublasSdot(n, x, incx, y, incy);
// check error status

6 return result;
}
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Declaring the wrapper functions as inline lets the compiler eliminate the additional function
call. Making the wrapper functions static members eliminates the need to actually instantiate
an object of type cublas. We can use the wrapper functions for encapsulating the error check-
ing that is provided by CUBLAS. This can be done either unconditionally or only in DEBUG

mode during the development phase of a project. The version for double precision exemplifies
conditional compilation of the error-checking:

inline double
2 cublas::dot (int n, const double *x, int incx, const double *y, int incy)
{

4 double result = cublasDdot(n, x, incx, y, incy);

6 #ifdef DEBUG
cublasStatus status = cublasGetError();

8 check_status(status);
#endif

10
return result;

12 }
/* complex variants follow */

To realize a precision-independent scalar product, free of long argument lists, we overload the
multiplication operator * as member of the Vector class:

template<typename T, typename BW> class Vector {
2 // constructors, etc ...

4 public:
T operator * (const Vector<T> & other) const

6 {
BW::dot(this->__n_elements,

8 this->__values, 1,
other.__values, 1);

10 }

12 private:
T * __values; // pointer to first element of this vector

14 int __n_elements; // length of this vector

We have not yet justified, why cublas has to be a structure and why it does not suffice to
use a namespace or why we do not use some clever macro-based mechanism to achieve this
type independence. Let’s rule out the latter first. Often one finds macro-based function name
re-definitions, like, e.g. in the code of SuperLU [82] (cf. file sluCnames.h in the sources):

#if (F77_CALL_C == ADD__)
2 #define sdot_ sdot__
...

4 #endif

6
#if (F77_CALL_C == UPCASE)

8 #define sdot_ SDOT
...

10 #endif
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In our case we would use something like:

#ifdef USE_FLOAT
2 #define Number float
#define dot cublasSdot

4 ...
#endif

6
#ifdef USE_DOUBLE

8 #define Number double
#define dot cublasDdot

10 ...
#endif

Compilation would then be started with -DUSE_FLOAT or -DUSE_DOUBLE (g++-style preproces-
sor flags) so that the preprocessor would convert lines like:

Number result = dot(n, x, incx, y, incy);

into the proper calls to cublasSdot or cublasDdot, respectively. Only in rare cases such con-
structs are easy to debug. Although the preprocessor replaces the function names at compile-
time the debugger does not so at run-time. Thus it is not able to jump through the actual
function call stack to the point where an error occured. This is one of the reasons why exten-
sive use of preprocessor macros is discouraged in Google’s C++ styleguide. On the other hand,
in the wrapper-function approach the names in the actual function call stack correspond to what
the debugger actually finds in the source code and thus tracking down bugs is easy. Especially,
if they are of algorithmic type and not just simple segmentation faults.

Up to now we have merely discussed the generic limitations of the (CU)BLAS API. We have
not used any specific CUBLAS feature so far, hence it should be clear that this approach works
for other BLAS implementations as well. Be it the publicly available ATLAS library or Intel’s
math kernel library (MKL).

If, for example, we define our matrix class to have as template argument not only the num-
ber type but also an additional argument BW for the BLAS-wrapper structure we reach a much
higher abstraction level. Neither matrix or vector class depend on a specific BLAS imple-
mentation nor does any algorithm which is exclusively based on these classes. This enables
us to execute exactly the same algorithm on various types of hardware. This in turn yields
much more realistic performance comparisons. Once an algorithm has been formulated, e.g.
LU factorization, all we have to do is to define another structure atlas for wrapping up the
ATLAS library, for instance. Then, if we have a class LUFactorization<T> which has already
a template argument for the number type T we just add a second template argument for the
BLAS wrapper and redefine the matrix type to be used:

template<typename T, typename BW> class LUFactorization {
2
public:

4 typedef Matrix<T, BW> M_t;

6 void factorize(M_t & A);
// attributes for L, U, etc ...

8 };
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1.4.2 class Array<T>

As basis for matrices and vectors we use a template class Array which encapsulates the mem-
ory management into a unified front end. Its sole purpose is to (re-)allocate n elements of
type T and to provide access to the raw memory location in a controllable way through the val

function. Access to the raw memory is required by the bare BLAS functions.

template <typename T, typename BW>
2 class Array

:
4 protected BW::template Data<T> {

6 typedef typename BW::template Data<T> Base;

8 public:
Array();

10
Array(int n);

12
void reinit(int n);

14
T * val();

16
const T * val() const;

18
int n_elements() const { return __n; }

20
Array<T, BW> & operator = (const Array<T, BW>& other);

22
protected:

24 int __n;

26 // avoid automatic generation of copy constructor
Array(const Array<T, BW>& other) {}

28 };

1.4.3 class Matrix<T, BW>

SciPAL’s matrix class is designed to conform to the interface of the FullMatrix class offered
by deal.II. The memory management is delegated to the Array class. A very useful feature
of deal.II is its SmartPointer class which provides reference-counting pointers based on
a subscription mechanism. In order to let a smart pointer point to an object, the class the
object is instantiated from must be derived from the dealii::Subscriptor class. The
constructors, typedefs for template meta-programming purposes, assignment and incremen-
tal operators, matrix-vector and matrix-matrix multiplications behave as expected by deal.II-
based programs. In addition, the Matrix class offers the initialization from an expression or a
dealii::IdentityMatrix either via constructor or assignment operator. This includes
the necessary memory operations. The class definition is given in following listing.
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template<typename T, typename BW>
2 class Matrix

:
4 protected bw_types::Array<T, BW>, public dealii::Subscriptor {

6 public:
typedef T Number;

8 typedef T value_type;
typedef BW blas_wrapper_type;

10
Matrix();

12
Matrix(int n_rows, int n_cols);

14
Matrix(const Matrix<T, BW> & other);

16
template<typename X> Matrix(const Expr<X> & AB);

18
Matrix(const dealii::IdentityMatrix & Id);

20
void reinit(int n_rows, int n_cols);

22
template<typename X>

24 Matrix<T, BW> & operator = (const Expr<X> & AB);
// omitted: operator = Matrix

26 // operator = dealii::IdentityMatrix

28 // omitted: operator +=, -= Matrix
// operator *= Number

30
template<typename VECTOR1, typename VECTOR2>

32 void vmult(VECTOR1& dst, const VECTOR2& src) const;
// omitted: Tvmult

34
void scaled_vmult(T beta, Vector<T, BW>& dst,

36 T alpha, const Vector<T, BW>& src) const;

38 // dst = this * src
void mmult(Matrix<T, BW>& dst, const Matrix<T, BW>& src) const;

40 void mmult(SubMatrixView<T, BW>& dst, const Matrix<T, BW>& src) const;
// omitted: other matrix-matrix multiplications

42
int n_rows() const { return __n_rows; }

44 int n_cols() const { return __n_cols; }

46 T operator ()(const unsigned int i, const unsigned int j) const;

48 T l2_norm() const;

50 inline const bw_types::Array<T, BW> & array() const { return *this; }

52 private:
int __n_rows;

54 int __n_cols;
};
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1.4.4 class Vector<T, BW>

Dense vectors which are compatible to the Krylov solver suite of deal.IIhave to provide a few
BLAS1 functions but otherwise there are only little requirements on the class interface. To
simplify data transfer between CPU and GPU there is an assignment operator which allows
to copy either an STL vector or a dealii::Vector from the CPU side to the GPU. The
reverse direction is provided by the push_to member functions. In order to copy directly into
an STL vector or a dealii::Vector would require to change their interfaces.

template<typename T, typename BW>
2 class Vector {

4 void reinit (const Vector&, bool leave_elements_uninitialized = false);

6 // members required by deal.II’s Krylov solvers
double operator * (const Vector &v) const;

8
void add (const Vector &x);

10
void add (const double a, const Vector &x);

12
void sadd (const double a, const double b, const Vector &x);

14
void equ (const double a, const Vector &x);

16
Vector & operator *= (const double a);

18
double l2_norm () const;

20
// stuff for CUDA

22 inline Array<T, BW> & array() { return *this; }

24 Vector<T, BW> & operator = (const std::vector<T> & other);

26 Vector<T, BW> & operator = (const dealii::Vector<T> & other);

28 template<typename T2>
void push_to(std::vector<T2> & dst) const;

30
template<typename T2>

32 void push_to(dealii::Vector<T2> & dst) const;

34 void set(int k,const T value);
}

1.4.5 class SubMatrixView<T, BW>

SubMatrixView primarily serves to modify only subsets of a matrix. For instance in the
QR-factorization of a matrix A only the elements starting at the kth row and kth column
have to be modified by the Householder transformation which eliminates the subdiagonal
part of the kth column. To construct a view of a matrix the constructor of the view must
get passed the matrix together with the indices of row and column ranges of the view in a
[begin, past-the-end)-style as for iterators in the STL, see the following listing. In all other
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respects SubMatrixView offers the same operations as Matrix. In addition, it provides
member functions for changing the range of rows and columns of the view. This class is exten-
sively used in the operator-based formulation of the LU factorization in the next chapter.

template<typename T, typename BW> class SubMatrixView {
2
public:

4 SubMatrixView(Matrix<T, BW> & src, int r_begin, int r_end,
int c_begin, int c_end);

6
template<typename X>

8 SubMatrixView<T, BW> & operator = (const Expr<X> & AB);

10 // omitted: += and -=
// omitted: access to raw data

12
template<typename VECTOR1, typename VECTOR2>

14 void vmult(VECTOR1& dst, const VECTOR2& src) const;

16 template<typename VECTOR1, typename VECTOR2>
void Tvmult(VECTOR1& dst, const VECTOR2& src) const;

18
private:

20 // pointer to actual matrix
dealii::SmartPointer<Matrix<T, BW> >__src;

22
// omitted: default and copy constructor; copy-assignment

24 // omitted: attributes for storing the index ranges passed to the
constructor

26 public:
// omitted: functions to read out dimensions of a view

28
// move mask to another part of the matrix

30 void shift(int m_r, int m_c);

32 void reset(int new_r_begin, int new_r_end,
int new_c_begin, int new_c_end);

34 };

1.4.6 Vector Views

The remaining core classes all follow the same logic as the the SubMatrixView class:

• VectorView<T, M_or_V> which is a base class for subvectors. It deduces the type of the
blas wrapper from the template argument M_or_V which can be either the Matrix or
the Vector class. The number type is passed as T.

• ColVectorView<T, M_or_V> implements a subvector of a column vector or a matrix col-
umn. The template arguments have the same meaning as for VectorView<T, M_or_V>.

• RowVectorView<T, M_or_V> provides a subvector of a row vector or a matrix row. The
template arguments have the same meaning as for VectorView<T, M_or_V>.



Chapter 2

CUDA by Example: Inversion and
Analysis of Dense Matrices

To outline the benefits of the DSEL concept forming the basis of SciPAL introduced in the preceding
chapter, in particular the operator-based programming interface, we discuss the implementations of a
few factorization methods for dense matrices.

The LU factorization demonstrates that an operator-based API can not only be utilized to encode
evaluation but also to solve linear systems. It serves as a quick introduction to CUDA-programming
and the necessary changes to the programming paradigms. Nonlinear Iterative Partial Least Squares
(NIPALS) is a popular algorithm for principal component analysis (PCA) [40]. Since an independent
procedural CUBLAS implementation of NIPALS [12] exists, it was chosen as test case to verify that the
operator-based interface does not incur any run-time overhead.

2.1 LU Factorization

A standard operation in numerical linear algebra is solving a linear system of n equations
with a dense coefficient matrix A ∈ Kn×n. For simplicity we assume K = R. Provided A is
nonsingular the common approach is not to invert A directly but rather to factorize A into two
triangular matrices, an upper one U with unit diagonal and a lower one L. Then, the solution
is computable from solving two auxiliary linear systems of triangular shape by forward and
backward substitution. The constitutive relation for the entries Lrc and Urc of L and U is

n

∑
k=1

LrkUkc = Arc (2.1)

which can be made unique by requiring Uii = 1. As integral part of standard textbook knowl-
edge [53, 39, 60] LU factorization has a solid mathematical foundation and we can limit our
focus to the CUDA-specific details.

In essentially all modern computer architectures memory accesses are much slower than
the execution of floating operations. Therefore, performance is memory bound in most cases.
As shown in detail in [39] this can be remedied by trying to formulate an algorithm in terms
of matrix-matrix (i.e. BLAS3) operations as far as possible. BLAS3 operations have a better
floating point operations over memory access ratio than BLAS2 or BLAS1. This increases
performance by shadowing memory accesses by floating point computations.

31
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In the following it suffices to know that partitioning A, and thus L and U, in 2×2 blocks
the LU factorization can be written as

A≡
(

A11 A1c

Ar1 Arc

)
=
(

L11
Lr1 Irc

)(
I11

Ãrc

)(
U11 U1c

Irc

)
(2.2)

where Ãrc is the Schur complement of Arc and I11 and Irc are identity matrices of suitable size.
The skeleton of one iteration of a block-wise LU factorization has basically three steps:

1. Factorize upper left diagonal block A11. Find matrices L11 and U11 such that

L11U11 = A11 (2.3)

where A11 ∈ Kb×b is of blocksize b ≤ n. The matrices L11 and U11 are of the same
dimension and lower or upper triangular. The optimal choice of b depends on the hard-
ware. Since this is the only step requiring a manual implementation we resolve it down
to the element level:

f or 1≤ k ≤ b :

Lkk = Akk/Ukk = Akk, (2.4)

Ukc =
1

Lkk
Akc, ∀ k +1≤ c≤ b (2.5)

Lrk = Ark/Ukk = Ark, ∀ k +1≤ r ≤ b (2.6)

Arc = Arc−LrkUkc ∀ k +1≤ r,c≤ b (2.7)

2. Solve triangular systems to compute the off-diagonal blocks

U1c = L−1
11 A1c, Lr1 = Ar1U−1

11 . (2.8)

The equivalent systems L11U1c = A1c and Lr1U11 = Ar1 can be mapped to one of the
*trsm- functions (the wildcard * represents the prefix for the particular BLAS imple-
mentation and the precision) which solve triangular systems with multiple right-hand
sides. This will serve as an example how CCOs cannot only indicate the evaluation of
an expression but also trigger the solution of a linear algebraic system.

3. Once the off-diagonal blocks Lr1 and U1c have been computed the part of A not yet
factorized has to be modified for the next iteration by forming the Schur complement

Ãrc = Arc−Lr1U1c . (2.9)

The Schur complement corresponds to a rank-b update of Arc and can be realized by a
generalized matrix-matrix product as provided by the *gemm function.

These steps have to be repeated for the modified Arc until the number n− r of remaining rows
and columns is smaller than or equal to the blocksize b. In that case set b = n− r and execute
step-1 to finish the factorization as there is no lower right block left.

The goal is to implement these steps with overloaded operators as shown in listing 2.1. We
assume that the overall algorithm is implemented as a member function of a class as in the
complete listing 2.8 at the end of this section.
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Listing 2.1: Body of the blocked LU factorization.

SubMatrix L_11, U_11, A_11, L_r1, U_1c, ...
2

for (...)// loop over blocks on diagonal
4 {

L_11 * U_11 = A_11;
6

L_11 * U_1c = A_1c;
8

L_r1 * U_11 = A_r1;
10

A_rest -= L_r1 * U_1c;
12 }

Provided the transpose of a matrix A is diagonally dominant numerical stability of the LU
factorization is sufficient and pivoting can be avoided [53, Sec. 3.4.10].

2.1.1 Details for off-diagonal blocks

Before we discuss the computation of L11 and U11 to introduce CUDA programming by ex-
ample we show how to define the CCO for solving triangular systems. The code is given in
listing 2.3 which is written for clarity - not for the most general applicability. Provided properly
named objects are in place we want that solving L11U1c = A1c for U1c is triggered by

L_11 * U_1c = A_1c;

and Lr1U11 = Ar1 by the obvious counterpart (lines 7 and 9 in listing 2.1). The corresponding
expressions must be made aware of several features of the operands: i) which operand repre-
sents the solution, ii) is the matrix upper or lower triangular, iii) is the diagonal filled with 1s.
The first is easy: Just use const properly (line 5 in the listing below).

Listing 2.2: Operator for Lr1.

template <typename T>
2 inline
LeftMSolve<T>

4 operator * (SubMatrix<T>&l,
const SubMatrix<T>&r)

6 {
return LeftMSolve<T>(l,r);

8 }

Listing 2.2 shows the operator needed for solving Lr1U11 = Ar1. Tied to this operator is
a structure LeftMSolve for holding references to the operands and encoding the particular
operation. It should be obvious that with a proper Traits structure LeftMSolve can be
made to model triangular systems of the type AX = B as well. For convenience it is also
possible to add the cases XAT = B and AT X = B. Going away from BLAS this structure could
also be used to implement the application of an incomplete LU-factorization.

Since communication with BLAS only happens via its wrapper class, LeftMSolveworks
for CPU-based implementations like ATLAS in exactly the same way as for GPU-based li-
braries like CUBLAS rendering CPU and GPU indistinguishable from a user’s perspective.
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Listing 2.3: Composition closure object for solving for the off-diagonal block Lr1.

struct LeftMSolve
2 { // XA = B

SubMatrix<T> &l; const SubMatrix<T> &r;
4

LeftMSolve(SubMatrix<T>& _l, const SubMatrix<T>& _r) : l(_l), r(_r) {}
6

LeftMSolve<T> & operator = (const SubMatrix<T> & rhs)
8 {

l = *(rhs.__src); // Copy rhs for in-place solving
10

char side = ’R’, uplo = ’U’, // Set up blas arguments.
12 transa = ’N’, diag = ’U’; // This is just for the sake

int m = rhs.r_end() - rhs.r_begin(); // of readability.
14 int n = rhs.c_end() - rhs.c_begin();

T alpha = 1.0;
16 const T * const A = r.val();

int lda = r.leading_dim();
18 T * B = l.val();

int ldb = l.leading_dim();
20

BW::trsm(side, uplo, transa, diag,
22 m, n, alpha,

A, lda,
24 B, ldb);

return *this;
26 }

};

2.1.2 Factorization of Diagonal Block and Introduction to CUDA

The discussion of the computation of L11 and U11 primarily gives a brief introduction to pro-
gramming with CUDA. Since CUDA is an extension of the C programming language writing
code is straightforward after having got acquainted with the fact that the GPU memory is dis-
tinct from a computer’s ordinary memory which implies explicit copy operations. Managing
parallelism requires a special syntax for starting the kernels and a few new keywords and intrin-
sics/directives. The most important ones are __global__, __shared__ and __syncthreads().

CUDA in a Nutshell

If BLAS is used the factorization of the upper left diagonal block is the only step which requires
some manual implementation. Basically, CUDA extends standard C by a few keywords and
the concept of single instruction multiple thread execution in order to enable the programming
of graphics cards. For successfully programming with CUDA one has to have a closer look
at the hardware and to understand how to max out its capabilities. Otherwise there is no gain
compared to an ordinary C program but the cost for development is considerably higher.

The most prominent feature of the hierarchical nature of the hardware is that not only the
memory consists of several levels but also the compute resources as well. Computation is
performed by compute cores pooled to so-called shared multiprocessors (SMP) of fixed size.
In case of Tesla cards based on the Fermi architecture each SMP has 32 cores.
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On the current Kepler architecture (GK104) one SMP has 384 cores. Due to its design for
gaming purposes the performance for double precision (roughly ≤ 5% of the single precision
floating point performance) is rather low. Therefore, in the following we only consider Fermi.
A Fermi-based GPU consists of up to 16 SMPs or 512 compute cores in total. The execution
model is denoted rather as single-instruction multiple threads (SIMT) than single instruction
multiple data (SIMD) as is common practice for multicore CPUs.

To run a function on the GPU it must be coded as a kernel. This is a function which can be
called from the CPU but its body is executed on the GPU. Parallelism is achieved by starting
several instances of a kernel at once. Each instance of a kernel is executed by a dedicated thread
which is pinned to one compute core and destroyed when kernel execution finishes.

To map the large numbers of threads to the hardware thread execution is organized in a
hierarchical manner as well. The logical unit for memory accesses and instruction execution is
the warp which is formed by 32 threads. Up to 32 warps form a thread block. During its lifetime
a thread block is assigned to a particular SMP and cannot migrate from one SMP to another.
To hide memory latencies several thread blocks are executed on an SMP at once. How many,
depends mainly on the consumption of registers and shared memory in the kernel. The precise
number of threads per block for optimal performance is primarily a matter of the hardware
parameters. Due to the access latencies at the various memory levels as a rule of thumb 256
is a good choice. Finally, thread blocks are organized in a grid whose dimension and shape
are chosen to reflect the problem size. Blocks and grids can be 1-, 2- or 3-dimensional. The
built-in variables ThreadIdx and BlockIdx enable a thread to figure out its position within
a block of size BlockDim and and a grid of size GridDim.

The important parts of the memory hierarchy are the on-chip (i.e. on the single com-
pute core) registers, on-chip (rather on-SMP) shared memory (SHM), respectively L1-cache,
a shared off-chip L2-cache and finally the global memory accessible from both the GPU and
via the PCIe-Bus from the CPU. Yet another level is obtained from using page-locking in the
CPU-side memory and mapping it into the address space of the GPU.

Shared memory and L1-cache are both part of a fast on-SMP memory of 64 Kb which can
be configured as either 48 Kb SHM + 16 Kb cache or 16 Kb SHM + 48 Kb cache. This can be
tuned for each kernel invocation separately. The shared memory of an SMP is organized in 32
banks which can be simultaneously, i.e. within one cycle, read or written by the threads of a
warp. For double precision access is not by warp but by half-warp because in general at most
128 Bytes can be read or written at a time.

The off-SMP L2-cache of a Fermi GPU consists of 768 Kb which is accessible from all
SMPs. L1- and L2-cache buffer the accesses to the global memory. There is no direct access to
the global memory anymore as in previous architecture generations. The caches are subdivided
into cachelines of 128 Bytes each. To maximize performance all entries needed by the threads
of a warp should be located in the same cacheline. Further details about the hardware can be
found in the Fermi whitepaper [8] and the CUDA programming and best practices guides.

CUDA in Action

Triggering the kernel execution is shown in listing 2.4. After defining the dimensions of the grid
of thread blocks (line 4) and of the thread block (line 5) the kernel is started like a C function.
The sizes of the grid and thread blocks are passed by the <<< ... >>> syntax after the kernel’s
name. Here, we need a grid with one two-dimensional thread block as large as the matrix block.
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Listing 2.4: Starting a CUDA kernel for factorizing the diagonal block.

template<typename T>
2 void LUKernels<T>::diag_block_lu(T *a_d, int block_offset,

int n_remaining_blocks, int n_rows_padded){
4 dim3 grid(1);

dim3 threads(TILE_SIZE, TILE_SIZE);
6 __diag_block_lu<<<1,threads>>>(a_d ,block_offset, n_rows_padded);

cudaThreadSynchronize();
8 }

Listing 2.5: CUDA-based factorization of diagonal block.

#DEFINE TILE_SIZE 16
2 template <typename T> __global__
void __diag_block_lu(const T *A, T *_LU, int block_id, int n_rows)

4 {
// Prepare buffering A in shared memory.

6 // Add a column to avoid bank conflicts
// in column-wise access.

8 __shared__ T LU[TILE_SIZE][TILE_SIZE + 1];

10 // position within thread block
int row = threadIdx.y, col = threadIdx.x;

12
// global matrix indices

14 int r = block_id * TILE_SIZE + row;
int c = block_id * TILE_SIZE + col;

16
// column-wise lexicographic indexing

18 int idx = n_rows * c + r;

20 // load matrix entries into shared memory
LU[row][col]= A[idx];

22
for(int k = 0; k < TILE_SIZE; ++k)

24 {
if (row == k && col > k)

26 LU[row][col]/= LU[k][k];
__syncthreads();

28
if (row > k && col > k)

30 LU[row][col] -= LU[row][k] * LU[k][col];
__syncthreads();

32 }
_LU[idx] = LU[row][col];

34 }

Listing 2.5 shows the CUDA kernel for computing L11 and U11. Line 2 shows that CUDA
supports template functions. The keyword __global__ in line 2 indicates that it is a kernel.

As arguments we pass a pointer const T *A to the global memory position containing the
matrix to be factorized, a pointer const T *_LU where the factors are to be stored, the id of
the block on the diagonal which is to be factorized and the number of rows of A so that we can
convert from 2D matrix indexing to a 1D lexicographical row-wise indexing.
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Basically, each thread works on one element of A11, L11 and U11. Therefore, they will have
to exchange data, that is those entries of L11 and U11 which have already been computed. This
is only possible by storing them in shared memory which eventually sets a limit on the size of
a matrix block. The factorization of the block is the task of a single thread block and therefore
the size of the block is limited by the resources one thread block is able to allocate.

Lines 11 to 18 serve figuring out which element of A
Shared Memory Conflicts

0 1 2 3

4 0 1 2

3 4 0 1

2 3 4 0

1 2 3 0

__shared__ T LU[TILE_SIZE][TILE_SIZE + 1]; 

odd number 
of columns:

distribute row starts
(0, 0, 0, 0)

 over 
shared memory 

banks 
(I, II, III, IV)

I II III IV

Figure 2.1: Odd-numbers of
columns resolve conflicts in
shared memory accesses.

the thread is responsible for.

Line 8 declares an array in shared memory which will
be used to store intermediate results. The TILE_SIZE de-
fined in line 1 indicates the number of rows and columns of
the block and is a preprocessor macro because it must be
known at compile-time. Passing it as template parameter
did not work over several major CUDA revisions. There
are basically two kinds of shared memory access which do
not lead to bank conflicts which force the thread scheduler
to serialize the individual accesses. For maximum through-
put either no two threads of a warp read mutually distinct
elements from one bank or parts of a warp try to read one
element from one bank (broadcast read). Figure 2.1 illus-
trates how to avoid bank conflicts when distributing a 2D

array with 4 columns over 4 banks which are numbered from I to IV. To fulfill that at a given
time no two threads read different elements from the same bank the array must be padded by
an extra column so that rows do not start in the same bank anymore. The same technique is
used in line 8. The colored indices denote the entries within a row. The black and red ellipses
indicate simultaneous access by row and column, respectively. The odd number of columns
assures that each thread reads from a different bank even when reading a column is necessary.

Line 21: Each thread loads one entry of A from global into shared memory. Local coor-
dinates in the block are row and col, idx is the lexicographic value of the global coordinates.
Memory accesses coalesce and all of a warp’s memory transactions are done in one cycle.

Line 23-32 performs the LU-factorization. Only the rows of U11 need to be explicitly
computed since the columns of L11 are an implicit result of the Schur complement.

Let’s walk through the for-loop: k=0: Work on row 0 and all of its off-diagonal elements.
By def. U11 = 1 (in the single-element sense). Similar to the macroscopic off-diagonal blocks
in Eq. (2.8) we compute the row U1c by dividing by L11 = A11 which is stored in _LU[0][0].
By construction Lr1 = Ar1, thus there is nothing to do for the column Lr1. The x-component of
the built-in variable threadIdx runs fastest, hence the if-statement diverges only within one
warp which limits the performance penalty due to the branch divergence to a minimum.

Line 27: The statement __syncthreads() synchronizes all threads within one thread block
and makes sure that all threads have written their results back to shared memory before the next
line of the kernel is executed by any other thread in the block. The synchronization is necessary
because we need the updated values in the computation of the Schur complement in lines 29-30.
Line 33 transfers the elements of L11 and U11 back to global memory.
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Starting the Kernel

After going through the details of computing the entries of L11 and U11 in parallel we show
how to encapsulate the CUDA code so that the overall program flow is not littered with CUDA-
specific code snippets hampering portability. Instead the kernel is called indirectly via a wrap-
per function diag_block_lu which is a member of an interface class LUKernels.

The purpose of the interface class is to collect and hide the CUDA-specific details of the
numerical back end in one place. A sketch of its structure is shown in listing 2.6. The host
part of a program only needs to know the declarations of the wrapper functions and not their
definitions. Calling the wrapper function from an overloaded operator is analogous to how
the trsm BLAS-function is called in listing 2.3.

Listing 2.6: Interface to CUDA-based implementation.

template<typename T>
2 struct LUKernels<T>
{

4 static void diag_block_lu (T *a_d,
int block_offset,

6 int n_remaining_blocks,
int n_rows_padded);

8
// ... and other functions

10 };

Integration into Larger Projects

Providing full template specializations [129] of the various wrapper functions makes the NVidia
C-compiler (nvcc) generate code for the given number types so that code generated by g++ can
link against it. To be able to do this basically in one line, cf. listing 2.7, is yet another reason
why all wrapper functions are collected in one class. Otherwise, each template wrapper func-
tion would require a specialization for each value its template argument may have. Compared
to the indirect specialization by means of a specialized class template this leads to a lot of re-
dundant code. Especially if kernels have more than one template argument and all reasonable
combinations of template arguments have to be explicitly given.

Listing 2.7: Full template specialization of the interface class.

template class LUKernels<float>;
2
template class LUKernels<double>;

The next issue is the integration of a kernel into a larger program in a modular way so that
switching back and forth between a CUDA and a non-CUDA implementation of a function is
easy. A natural extension of this idea is to modularize the ”CUDA backend” of a program such
that one can even switch between different parallelization techniques at runtime. How to do
this in a modular manner to minimize impact on the implementation of algorithms is a subject
of chapter 4 about real-time computation of phase holograms.
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Listing 2.8: Body of the blocked LU factorization.

template <typename T>
2 void
LUDecomposer<T>::factorize(typename cublas<T>::Matrix &A)

4 {
typedef cublas::SubMatrixView<T> SMV;

6
// Initialize L und U

8 // as identity matrices.
dealii::IdentityMatrix I(A.n_rows());

10
L = I;

12 U = I;

14 const int bs = TILE_SIZE;
const int n_blocks = (A.n_rows()+blocksize-1)/blocksize;

16
for(int b=0; b< A.n_rows(); )

18 {
const SMV L_11 = L (b, b + bs, b, b + bs);

20 const SMV U_11 = U (b, b + bs, b, b + bs);
const SMV A_11 = A (b, b + bs, b, b + bs);

22
// step 1: diagonal block

24 // We must be able to
// distinguish writable from

26 // read-only submatrices.
const_cast<SMV&>(L_11) * const_cast<SMV&>(U_11) = A_11;

28

30 if( b< n_blocks-1)
{

32 const SMV L_r1 = L (b + bs, A.n_rows(), b, b + bs);
const SMV A_r1 = A (b + bs, A.n_rows(), b, b + bs);

34
const SMV U_1c = U (b, b + bs, b + bs, A.n_cols());

36 const SMV A_1c = A (b, b + bs, b + bs, A.n_cols());

38 SMV A_rc = A (b + bs, A.n_rows(), b + bs, A.n_cols());

40 // step 2: off-diagonal blocks
// Syntax highlighting makes it clear

42 // which factor will contain the solution
// of the triangular systems.

44 L_11 * const_cast<SMV&>(U_1c) = A_1c;

46 const_cast<SMV&>(L_r1) * U_11 = A_r1;

48 // step 3: Schur complement
A_rc -= L_r1 * U_1c;

50 }

52 b += std::min(bs, A.n_rows() - b);
}

54 }
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2.2 Iterative Principal Component Analysis

Principal component analysis (PCA) [107, 40] is a standard technique in multivariate data
analysis to structure large data sets and hence to extract useful information from it. It is also
known as Karhunen Loeve decomposition [70, 85] or empirical orthogonal functions [137].

The essence of a PCA is to compute a partial singular value decomposition (SVD) in order
to obtain the k largest and dominating singular values and the associated singular vectors. The
SVD of a matrix A ∈ Rm×n is given by

A = UΣVT =
n

∑
i=1

σiuivT
i

where U ∈ Rm×n and V ∈ Rn×n orthogonal matrices and Σ ∈ Rn×n is a diagonal matrix con-
taining the singular values σi sorted according to their size. The columns ui of U and vi of
V, respectively, are the left- and right-singular vectors for the corresponding singular values.
In the context of PCA the right-singular vectors are called principal component directions [57]
and the left ones normalized principal components. The standard or direct approach to com-
puting an SVD is a two-stage process. At the beginning the matrix is converted to bidiagonal
form by using Householder transformations. The second, and much cheaper, step diagonalizes
the intermediate bidiagonal matrix and returns the vector of singular values and two orthogo-
nal matrices which multiplied with the orthogonal matrices from step one yield the left- and
right-hand side singular vectors.

To avoid the expensive bi-diagonalization step necessary in direct SVD methods, fast PCA
algorithms, especially for very large data sets are formulated as iterative methods. An example
of everyday importance for a very large data set is the Google matrix for website connectivity
with billions of rows and columns [99]. A simple but effective implementation is the Nonlin-
ear Iterative Partial Least Squares (NIPALS) algorithm [143] which can be considered as a
truncated SVD which computes the leading singular values and vectors by applying the power
method for eigenvalue computation to the covariance matrix. In particular it can be completely
formulated in terms of BLAS functions and there are investigations of its performance on dif-
ferent hardware architectures [12, 13].

2.2.1 NIPALS Algorithm

After organizing the raw data as a matrix X ∈ Rm×n where each row contains the result of
one run of an experiment, e.g. a time series, the goal is to represent the data as a useful
part X̂ ∈ Rm×n and a residual matrix R = X− X̂. The columns of X must be mean centered,
that is to compute the average of the entries of a column and to subsequently subtract that
average from the entries of the column.

The NIPALS algorithm [143, 76] iteratively computes a truncated SVD of the mean-centered
data matrix X. The pseudo code and a SciPAL-based implementation are given in Fig 2.2. For
a comparison of implementations an implementation which makes direct use of CUBLAS in
double precision is given in listing 2.9. In the field of data analysis the columns of the ma-
trix UΣ are usually called scores and the columns of V loadings. We stick with this notation
by defining S as the subset of the K first columns of UΣ and L as the K first columns of V.
For individual columns or rows of those quantities we actually compute we use a MATLAB
like syntax, e.g. L(:,k) denotes the k-th column of matrix L.
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The NIPALS algorithm is given in pseudo code form in Fig. 2.2 and works as follows. The
residual matrix R is initialized by the data X (steps 1). The first K principal components are
extracted one at a time (step 2). The largest eigenvalue of the covariance matrix XXT and the
largest singular value of X can be characterized by the Rayleigh quotient

λ = σ
2
1 = max

v∈Rm,v6=0

vT XXT v
vT v

.

Therefore, using the power method for computing the largest eigenvalue and its associated
eigenvector of XXT gives σ1 and u1. This is, what steps 8-10 in the pseudo code in Fig. 2.2 do.

Interleaved with the computation of σkuk ≡ S(:,k) is the determination of vk ≡ L(:,k)
in step 7. Note that due to step 9 we have RT S(:,k) = RT RL(:,k) which corresponds to an
application of the power method to XT X. When S(:,k) is close to σkuk we have RT S(:,k) ≈
VΣUT σkuk = vkσ2

k .

Once the difference |λ −λ ′| of two successive approximations of an eigenvalue of the co-
variance matrix XXT has become sufficiently small the data matrix is deflated (step 12) which
removes any contribution due the principal component from the data so that the next principal
component will be orthogonal to all previously computed ones (at least in exact arithmetic).
After K ≤ n iterations, the decomposition of X is

X =
K

∑
i=1

σiuivT
i +R.

The sample code in Fig. 2.2 demonstrates the major advantages of SciPAL, i.e. mathemat-
ically intuitive source code due to expression templates. In order to verify an implementation
of the NIPALS-PCA is correct we compute test data from orthogonal matrices U and V as de-
scribed in Sec. 2.2.2 and given singular values. A test of NVidia’s CUBLAS against ATLAS in
both single and double precision by a PCA of the data A can be as dense and clear as in the
following code. The details for timing measurements have been omitted.

void test_nipals()
2 {

PCA<float, cublas> pca_f_cuda;
4 pca_f_cuda.nipals(A);

6 PCA<double, atlas> pca_d_atlas;
pca_d_atlas.nipals(A);

8 }

With our template-based approach, we have to implement NIPALS only once. By spe-
cializing the PCA class we can generate different implementations for varying floating point
types and BLAS implementations within a single line of code as it is exemplified in the
test_nipals function above. Therefore, we achieve the same results with less than a quar-
ter of code in a much more intuitive notation.
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1. R← X

2. for (k = 0, ...,K−1) do {

3. λ = 0, λ ′ = 2ε

4. S(:,k) = R(:,k)

5. while (|λ −λ ′|> ε) do {

6. λ ← λ ′

7. L(:,k)← RT S(:,k)

8. L(:,k)← L(:,k) /‖L(:,k)‖

9. S(:,k)← RL(:,k)

10. λ ′←‖S(:,k)‖

11. }

12. R← R−S(:,k)(L(:,k))T

13. }

template <typename T, typename blas>
2 void
PCA<T, blas>::PCA::nipals(const

HostMatrix& X)
4 {

R = X;
6

transpose<Matrix> R_T(R);
8

for (int k = 0; k < n_components;
k++)

10 {
T lambda = 0.,

12 lambda_old = 0.;

14 bool converged = false;

16 MatrixSubCol t_k(T, 0, k);
MatrixSubCol p_k(P, 0, k);

18 MatrixSubCol r_k(R, 0, k);

20 t_k = r_k;

22 for (int j = 0;
j < max_iter &&

!converged; j++)
24 {

p_k = R_T * t_k;
26 p_k /= p_k.l2_norm();

28 t_k = R * p_k;
lambda = t_k.l2_norm();

30
converged =

32 std::fabs(lambda -
lambda_old)

<= num_zero;
34

lambda_old = lambda;
36 }

R -= t_k *
38 transpose<MatrixSubCol>(p_k);

}
40 }

Figure 2.2: Left: NIPALS Pseudo code. For individual columns or rows we use a MATLAB
like syntax, e.g. L(:,k) denotes the k-th column of matrix L. Right: Implementation of NIPALS
using SciPAL. In particular, error checking is completely hidden in SciPAL and thus executed
automatically. In contrast to the bare CUBLAS implementation SciPAL takes into account error
reports of CUBLAS functions other than those for memory allocation. Note the light-weight
views on the k-th columns of the load and score matrix.
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Listing 2.9: NIPALS implementation taken from [12]. Most of the code is devoted to error
checking which is partially replaced by ”...” due to space constraints.

int nipals_cublas(int M, int N, int K, double *T, double *P, double *R)
2 {
cublasStatus status;

4 int J = 10000;
double er = 1.0e-7;

6 int k, n, j;

8 double *dR = 0;
status = cublasAlloc(M*N, sizeof(dR[0]), (void**)&dR);

10 if(status != CUBLAS_STATUS_SUCCESS)
...

12 status = cublasSetMatrix(M, N, sizeof(R[0]), R, M, dR, M);
if(status != CUBLAS_STATUS_SUCCESS)

14 ...
double *dT = 0;

16 status = cublasAlloc(M*K, sizeof(dT[0]), (void**)&dT);
if(status != CUBLAS_STATUS_SUCCESS)

18 ...
double *dP = 0;

20 status = cublasAlloc(N*K, sizeof(dP[0]), (void**)&dP);
if(status != CUBLAS_STATUS_SUCCESS)

22 ...
double *dU = 0;

24 status = cublasAlloc(M, sizeof(dU[0]), (void**)&dU);
if(status != CUBLAS_STATUS_SUCCESS)

26 ...
cublasDcopy(M, &dR[0], 1, dU, 1);

28 for(n=1; n<N; n++) cublasDaxpy(M, 1.0, &dR[n*M], 1, dU, 1);
for(n=0; n<N; n++) cublasDaxpy(M, -1.0/N, dU, 1, &dR[n*M], 1);

30
double a, b;

32 for(k=0; k<K; k++) {
cublasDcopy(M, &dR[k*M], 1, &dT[k*M], 1);

34 a = 0.0;
for(j=0; j<J; j++) {

36 cublasDgemv( t , M, N, 1.0, dR, M, &dT[k*M], 1, 0.0, &dP[k*N], 1);
cublasDscal(N, 1.0/cublasDnrm2(N, &dP[k*N], 1), &dP[k*N], 1);

38 cublasDgemv( n , M, N, 1.0, dR, M, &dP[k*N], 1, 0.0, &dT[k*M], 1);
b = cublasDnrm2(M, &dT[k*M], 1);

40 if(fabs(a - b) < er*b) break;
a = b;

42 }
cublasDger(M, N, -1.0, &dT[k*M], 1, &dP[k*N], 1, dR, M);

44 }
cublasGetMatrix(M, K, sizeof(dT[0]), dT, M, T, M);

46 cublasGetMatrix(N, K, sizeof(dP[0]), dP, N, P, N);
cublasGetMatrix(M, N, sizeof(dR[0]), dR, M, R, M);

48
status = cublasFree(dP);

50 status = cublasFree(dT);
status = cublasFree(dR);

52 return EXIT_SUCCESS;
}
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2.2.2 Designing Matrices for Factorization Tests

Validation of factorization methods requires well-defined test matrices which are to be recov-
ered by factorizing their product. Constructing a matrix from a product of two given matrices is
simple. However, most factorization methods have as result one or more orthogonal matrices.
For instance, given an orthogonal matrix Q ∈ Rm×m and an upper triangular matrix R ∈ Rm×n

a QR-factorization of A = QR, see e.g. [53], should restore Q and R up to numerical accuracy.
Singular value decomposition, see again [53], and NIPALS both produce two orthogonal ma-
trices. Especially in the presence of finite precision the construction of orthogonal matrices is
difficult. A simple way to construct orthogonal matrices by Sylvester [125] dates back to 1867.
Starting from the 1-by-1 matrix H0 = (1) so-called Hadamard matrices with sizes of power of
two can be constructed recursively

∀k ≥ 1 : Hk :=
(

Hk−1 Hk−1
Hk−1 −Hk−1

)
. (2.10)

Their entries are either +1 or −1. They are, up to a factor k, orthogonal and symmetric which
leads to the, for testing purposes, important property

HkHT
k = HT

k Hk = HT
k HT

k = kI.

We generate matrices of sizes which are not a power of 2 as block-diagonal matrices where the
blocks are filled with the lowest number of normalized Hadamard matrices. Residual matrices
are generated as Ri j = 1+ sin(i ·nrows + j). This is far from optimal from the point of view of
pseudo random number generation but easy to remember and easy to test.
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Figure 2.3: CUBLAS test on Tesla C2070 (left) and ATLAS test on Nehalem Xeon (right).
TDSEL is on the ordinate and Tproc on the abscissa. Problem size ranged from 64 to 2048. For
each matrix size 313 runs were executed.

2.2.3 Performance Comparisons

To check that SciPAL comes without any additional computational costs, we test the plain
BLAS implementation [13] of NIPALS by Andrecut against the implementation using SciPAL
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Figure 2.4: CUBLAS test (left), ATLAS test (right) on the MacBook Pro. TDSEL is on the
ordinate and Tproc on the abscissa. Problem size ranged from 64 to 882 rows. For each number
of rows the number of columns increased by 17%. For each matrix 313 repeated runs were
executed. On this platform the GPU lacks support for double precision.

for both the CUBLAS and ATLAS library. We run each instance several times for every matrix
size to compute average run-times T and their standard deviations ∆T , which are non-vanishing
due to mechanisms like temperature control and possibly concurring tasks on the same ma-
chine. The runtime for the plain BLAS implementation is denoted as Tproc and the one due to
SciPAL as TDSEL. From our measurements it is simple to determine for which problem sizes
computation on graphics cards is superior to a run on the CPU and whether our C++-wrapper
is free of any run-time overhead on both architectures.

The tests were performed on two different machines with two different graphics cards.
The first test site is a MacBook Pro with a Core 2Duo T9300, NVidia 8600m GT, Mac OS
X 10.5.8 and Apple’s g++ 4.0.3 as compiler. The 8600m GT GPU does not provide double
precision arithmetic and therefore tests are limited to the single precision case. The sec-
ond site is a workstation equipped with a quad-core Nehalem Xeon E5520 as CPU and a
NVidia Tesla C2070 based on NVidia’s Fermi architecture as GPU. The operating system is
ubuntu 10.04 with g++ 4.4.3. The optimization switches for the compiler were identical on both
machines: -finline-limit=2000 -Os -arch i386. When plotting TDSEL vs. Tproc

as in Figs. 2.4 and 2.3 the result should be a straight line of points with slope 1. This is in-
deed the case indicating that both implementations were equally fast. This proves our claim
of zero run-time overhead. We consider run-times as equal on average, i.e. neither implemen-
tation is faster and especially our object-oriented one is not slower, if both intervals [TDSEL−
∆TDSEL,TDSEL +∆TDSEL] and [Tproc−∆Tproc,Tproc +∆Tproc] intersect each other and both con-
tain the diagonal. For large problems (upper right corner in Fig. 2.3) the high parallelism of the
GPU architecture starts to pay off and runtimes are shorter than on the CPU by an order of mag-
nitude, which appears as different scaling of the axes. Note the dependency of GPU-runtimes
on computation precision, i.e. faster computation with single precision than with double preci-
sion, which is not present in the CPU-runtimes of the Xeon system.
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Chapter 3

CUDA-based Sparse Linear Algebra

Parallel numerical linear algebra is not complete without the sparse case. This chapter summarizes the
integration of CUDA into the linear algebra modules of an existing PDE library and of an established
Navier-Stokes simulation code.

Integration into deal.II is easy: write a class for sparse matrices which copies the data of a
dealii::SparseMatrix on the GPU and offers a vmult member function for the sparse matrix-
vector product. The other crucial ingredient, a suitable vector class, has already been introduced in
chapter 1. The Krylov solvers of deal.II are templatized with respect to the matrix and vector class.
Thus, for them there is nothing to do.

As example for an existing PDE code we chose PNS [105, 73], the Parallel Navier-Stokes solver
for indoor airflow used at the Institut für Energietechnik at the TU Dresden and developed at the In-
stitut für Numerische und Angewandte Mathematik at the University of Göttingen. The PNS code is
written in plain C. Therefore, the integration of CUDA proved challenging. As a result, this chapter
presents only a high-level description of the necessary changes limiting code snippets to the body of a
CUDA implementation of a sparse matrix-vector product.

In a very terse form Secs. 3.2 and 3.3 have been published previously as part of [77].

3.1 Krylov solvers

The last chapter introduced a small set of tools to solve linear systems which have a dense coef-
ficient matrix. If the system is uniquely solvable one uses LU otherwise QR factorization. The
principal component analysis can be considered as a least squares solver in disguise [41, Sec.
7.2.3]. In contrast to direct methods it solves a problem by iteratively computing the dominant
part of the spectrum and the associated eigensubspace using the power method. If one were
to solve the least squares problem hidden in the PCA one would then seek the solution in the
eigensubspace. Since eigenvectors are mutually orthogonal this procedure can be considered as
a projection method in which the approximate solution is orthogonal to the residual and equals
the projection of the true solution into the subspace spanned by the dominant eigenvectors.

This idea carries over to solving linear algebraic systems with a large and sparse coefficient
matrix A ∈ Kn×n, K = R or K = C, by Krylov methods. In contrast to the iteration of the
power method used in the NIPALS-PCA in Sec. 2.2 the history of all intermediate vectors is
kept. The subspace in which the solution is sought is denoted as the Krylov subspace

Km(A,v) := span{v,Av, . . . ,Am−1v} . (3.1)

47
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For general non-hermitian matrices the Arnoldi procedure, introduced in 1951, provides an or-
thogonal projection onto the subspace Km(A,v)⊂Kn×n. For symmetric matrices this reduces
to the Lanczos tridiagonalization. In contrast to the truncated SVD the subspace depends not
only on the matrix A but also on the initial residual r0 = b−Ax0 and thus on the right-hand
side b and initial solution x ∈ Kn. From this a set of orthogonal vectors v j and a Hessenberg
matrix H is computed which maps the v js to the non-orthogonal Akr0:

r0 = (b−Ax0) , β = ‖v0‖2 , v1 = r0/β (3.2)

vm := [v1, . . . ,vm] Hm := {hi j}i, j ∈K(m+1)×m (3.3)

for j = 1, . . . ,m : (3.4)

w := Av j (3.5)

for i = 1, . . . , j : (3.6)

hi j = wT vi (3.7)

w = w−hi jvi (3.8)

h j+1, j = ‖w‖2 (3.9)

v j+1 = w/h j+1, j (3.10)

The Hessenberg matrix describes a least squares problem

ym = argminy‖βe1−Hmy‖ (3.11)

which helps to solve the original set of equations

xm = x0 +Vmym , (3.12)

rm = M−1(b−Axm) . (3.13)

This extension of the Arnoldi method is the essence of the Generalized Minimual Residual
(GMRES) method [113]. If A is symmetric the Hessenberg matrix becomes a symmetric tridi-
agonal matrix. In that case Arnoldi becomes the popular Lanczos iteration with a tree-term
recurrence for the hi j. It is the basis for the computation of eigenvalues of symmetric matrices
and the conjugate gradient algorithm to solve systems of linear equations with a sparse, sym-
metric coefficient matrix. A comprehensive list of Krylov methods and a detailed analysis of
their theoretical properties can be found in [112].

From a practical point of view Krylov methods are easy to implement since all they need
are matrix-vector multiplications and a few BLAS-1 operations of which the scalar product
often suffices. These properties make Krylov methods robust black-box solvers for a large
class of problems. The linear algebra classes of deal.II are a fairly complete set of current
implementations of these methods.

Due to their template nature deal.II’s Krylov solvers can be ported to CUDA easily: All
one has to do is to provide a class for vectors and one for sparse matrices which internally
have their data on the GPU and use CUDA for the arithmetic. As class for the vectors the one
presented in Sec. 1.4.4 can be used. Like the class for dense matrices, cf. Sec. 3.3, the class
for sparse matrices only has to offer the vmult and Tvmult member functions for the products
A ·x and AT ·x, respectively. If the latter is not referenced by a Krylov solver we do not have
to implement it either and get away with even less work.
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3.2 Preconditioning

Compared to the dimension of the original problem Krylov methods generally need only a
small number of basis vectors to converge. However, for badly conditioned matrices conver-
gence quickly deteriorates. In general, the condition number is the ratio ‖A‖/‖A−1‖ for some
matrix norm ‖ · ‖. For symmetric matrices the condition number can be defined as the ratio of
the absolute values of the extremal eigenvalue and the smallest eigenvalue. Especially matrices
representing discretized partial differential equations have a condition number which rapidly
grows with spatial resolution as the smallest eigenvalue typically tends to zero with diminish-
ing mesh width. The convergence properties of Krylov methods can be restored and improved
by preconditioning the matrix, i.e. to get the condition number somehow close to unity.

From the plethora of preconditioning methods we consider four in this work. In the com-
putation of indoor airflow, cf. chapter 5, the sparse approximate inverse (SpAI) method and
polynomial preconditioning (PPc) with Faber polynomials is benchmarked against an exist-
ing incomplete LU factorization (ILU) from the BLANC package [108]. The general problem
with factorization-based preconditioners is that the forward and backward solve necessary in
each step of the Krylov method is a priori difficult to parallelize. The other two methods are
Block-Jacobi and geometric multigrid. Strictly speaking this is only one method as we use
Block-Jacobi as smoother in the multigrid cycle and not as standalone preconditioner.

Particularly suitable are sparse approximate inverses as they only need sparse matrix-vector
products for application. For their initialization merely approximate sparse matrix-sparse ma-
trix products are required which boil down to inner products of sparse vectors. It seems that
there has been published only little about CUDA-based parallel preconditioners for the non-
symmetric case and even less for matrices arising from multiphysics applications like non-
isothermal air-flow. For factorization-based preconditioners there exist a parallel implemen-
tation of block-diagonal ILU [136], ILU [59] and a biorthogonalization-based SpAI [144]
which is the work most closely related to ours. However, [144] only measures the speedup
of a CUDA-based implementation of SpAI over an OpenMP-based one for different sparsifi-
cation strategies. We compare the performance of a serial ILU-implementation with an unfac-
tored SpAI. Sparse approximate inverses can tackle indefinite matrices as well and thus have a
broader scope of applicability than ILU.

3.2.1 Concept

We now take a closer look at the parallel preconditioning techniques applied in the iterative so-
lution of the discretized indoor airflow problems Eqs. (5.15) and (5.16) by Krylov-type meth-
ods [112]. Given a linear system

Ax = b

with A ∈ Rn×n and x, b ∈ Rn where x is the sought solution, the essence of preconditioning is
to find a matrix M ∈ Rn×n of which the inverse M−1 is easy to compute and yet approximates
the inverse A−1 of A well. Once a suitable M has been found the solution of Ax = b is obtained
either by solving the right-preconditioned system

AM−1y = b , (3.14)

x = M−1y (3.15)
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or by solving the left-preconditioned one

M−1Ax = M−1b . (3.16)

Depending on the preconditioning strategy computing the inverse is meant either literally or in
the sense of solving auxiliary linear systems. The SpAI and PPc strategy belong to the former
and ILU to the latter.

In the SpAI case an approximate inverse M−1 ≈ A−1 is computed so that applying M−1

reduces to a single SpMV operation. Based on information about the spectrum σ(A)⊂C of A
the PPc strategy computes a polynomial representation of M−1 from the shape of an inclusion
set D ⊃ σ(A), D ⊂ C. In this case preconditioning means to perform a number of SpMV
operations proportional to the polynomial degree.

3.2.2 Block-Jacobi

The simplest preconditioning strategy is to use the inverse of the diagonal of A. Compared
to modern methods like ILU and geometric or algebraic multigrid methods the plain Jacobi
method is only of historical interest. A more effective way is to use a block-diagonal matrix
where each block is the inverse of the corresponding block in A. If the blocks are considered
as dense submatrices the LU-Kernel from Sec. 2.1.2 can be used to compute them in parallel.
The subsequent application of the preconditioner amounts to a simple matrix-vector multipli-
cation which we anyway have to parallelize for implementing a Krylov method. This Block-
Jacobi preconditioner can be used as smoother in the geometric multigrid methods employed
in the simulation of dielectric relaxation spectroscopy in the last chapter of this work.

3.2.3 Sparse Approximate Inverse

To compute a sparse M−1 ≈ A−1 we solve the n independent minimization problems for the
columns m j of M−1 where e j is the jth column unit vector

M−1 := arg min
S∈Rn×n

‖I−AS‖F , m j := argmin
s∈Rn

‖e j−As‖2 . (3.17)

Eqs. (3.17) are solved iteratively by the minimal residual (MinRes) algorithm [112, Sections
5.3 and 10.5] with initial guess M−1

0 = AT . We compute all m j in parallel by

r j = e j−Am j (3.18)

p j = Ar j (3.19)

α j =
(r j,p j)
(p j,p j)

(3.20)

m j = m j +α jr j (3.21)

until convergence. The SpMV products Ar j are computed only once per step. The residuals r j

and search directions p j can be computed simultaneously by the corresponding sparse-matrix-
sparse-matrix products. Similarly, all α j can be computed in parallel easily, as there are no
dependencies among the scalar products nor among the different α j. Even though A and M−1

are sparse, the residual matrix R≡ (r0, . . . ,rn−1) might be not. The same holds for the matrix of
search directions P≡ (p0, . . . ,pn−1) = AR. To avoid a huge fill-in we fix the sparsity patterns
of both R and P beforehand to be the one of AT .
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3.2.4 Polynomial Preconditioning

Like Krylov methods PPc is based on the fact that for a linear system Ax = b with initial
solution x0 and initial residual r0 = b−Ax0 the residual in the nth iteration step is

rn = pn(A)r0 = [I−Aqn(A)]r0 (3.22)

where qn(z) is the iteration polynomial of the chosen Krylov method and is at most of degree
n−1. The identity matrix is denoted by I. By construction the error in the nth iteration step is

en = A−1b−xn = pn(A)e0

which requires ‖pn(A)‖< 1 to achieve convergence. After diagonalization this is equivalent to

‖pn(z)‖< 1, ∀z ∈ σ(A),

which follows from

qn := argmin
s∈Pn−1

max
λ∈σ(A)

|1−λ s(λ )| (3.23)

where Pn is the space of polynomials of degree up to n. In practice, pn is rather computed for a
compact inclusion set D⊂C containing σ(A) since this does not require an explicit knowledge
of σ(A). Due to pn(0) = 1 we must exclude 0 from D. The minimization problem (3.23) is
equivalent to best approximation on a compact set in C which is solved by Faber polynomi-
als [134, 135] which are completely determined by the shape of the boundary ∂D of D.

Our PPc algorithm is based on the Arnoldi-Bratwurst-Faber (ABF) method [83, 75] of
which we give a detailed outline in chapter 7. The main advantage of ABF-like methods is
that ∂D is given as the image of an analytically known conformal map f , the exterior mapping
function (EMF), yet their shape is not necessarily convex which simplifies to fulfill the restric-
tion 0 /∈ D. Faber polynomials are only defined implicitly, cf. Eq. (7.8), and their computation
has to be done by a n-term recursion, cf. Eq. (7.9). If D is an ellipse, the Faber polynomials
coincide with the Chebyshev polynomials and can be computed efficiently from a three-term
recurrence. This carries over to a non-convex D constructed from the image of an ellipse under
a Moebius transformation. The EMF can be cast into the form of a generalized Joukowski map

f : C→ C , f (w) :=
w2 + µ1w+ µ0

ν1w+ν0
(3.24)

which, following [84], leads to three-term recurrences for the residual polynomial pn, Eq. (7.30),
and the iteration polynomial

qn(z) = (1− pn(z))/z . (3.25)

The derivation of the latter is similar to the one of the former in chapter 7 and hence is skipped.
The iteration polynomial is needed for computing the solution of the linear system

xn = x0 +qn(z)r0 (3.26)

in the nth iteration step. Convergence of the method is completely determined by the parame-
terization of the enumerator of f and is measured by the asymptotic convergence factor

R(D) =
1

| f−1(0)|
=

1∣∣∣− µ1
2 −

1
2

√
µ2

1 −4µ0

∣∣∣ . (3.27)

Therefore, the crucial step is to compute the four complex constants µ0, ν0, µ1, ν1 from an
estimated shape of the spectrum.
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Algorithm - Pseudo code

Here, we collect all relevant equations and give a memory-efficient formulation in pseudo code
taken from [83]. In the following ~r0, ~rn, ~x, ~x0, ~vn, ~Fn−1, ~Fn, ~Gn−1, ~Gn indicate arrays of real
floating point numbers that have to be stored and fn−1, fn, ρn−2, ρn−1, ρn, ν0, ν1, µ0, µ1 and S
are all floating point numbers. The coefficient matrix is A.

• Compute σ(A), a small set of dominating eigenvalues from GMRES’ Hessenberg matrix

• given σ(A), determine ν0, ν1, µ0, µ1 as described in [83, Secs 3.2 and 3.3].

• Due to the three-term recurrence the initialization phase has two stages. The actual
recurrence is given by Eqs. (7.29)-(7.34) and the final solution follows from

Stage 0:

ρn−2 = 2

S = −ν0/ν1

~r0 = ~b−A~x0

fn−1 = 2
~Fn−1 = 2~r0

~Gn−1 = ~0

Stage 1:

fn = −µ1

ρn−1 = fn−S
~Fn = −µ1~r0 +ν1A~r0

~Gn = −ν1~r0

~rn = (1/ρ1)~Fn− (S/ρ1)~r0

Recurrence:

while ‖~rn‖2 ≥ Tol :

fn = −µ1 fn−µ0 fn−1

ρn = fn−Sn

~vn = ν1~Fn +ν0~Fn−1

~Fn = = A~vn−µ1~Fn−µ0~Fn−1

~Gn =
−1
ρn

(
~vn + µ1ρn−1~Gn + µ0ρn−2~Gn−1

)
~rn = (1/ρn)~Fn− (Sn/ρn)~r0

ρn−1 = ρn

for ∗ ∈ { f ,ρ,~F , ~G} : ∗n−1 = ∗n

~x = ~x0 + ~Gn

In case PPc is used for enhancing SpAI all occurrences of A must be replaced by AM−1.
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3.3 Implementation Issues

The SpMV is the most frequently recurring pattern in the numerical linear algebra for PDE
solvers and therefore deserves a detailed discussion of how it can be implemented efficiently
with CUDA. A general feature of finite-element matrices on arbitrary unstructured meshes is a
lack of structure. The common storage formats for sparse matrices like CSR (compressed stor-
age row) induce an indirect and in general random access to the elements of the source vector
of the SpMV. For highly data-parallel and throughput oriented architectures like CUDA this is
far from optimal as it destroys cache locality and ruins efficient usage of coalesced memory
transfers which are crucial for hiding the latency times. In case of PNS this is partly overcome
by ordering the solution components per grid point so that in our vector-valued subproblems
(Oseen and k-ε) some local structure is induced and matrix elements can be stored as small
dense matrices and the vector entries associated with one matrix element are ordered tuples
within a single cache line (provided the whole vector is properly aligned).

In case of PNS iterative solvers require only a small set of basic operations like linear
combinations of vectors or matrix-vector products thus porting them to CUDA is fairly easy.
How to do this follows the same lines of reasoning as the design of the matrix and vector class
in chapter 1 and is not further discussed. As already outlined at the beginning, for deal.II there
is virtually nothing to do as far as the solvers are concerned.

3.3.1 Sparse Matrix-Vector Product

The circumstance that multiplying a matrix element with the corresponding subvector is in
fact a product of a small dense matrix and a small dense vector regularizes the memory access
pattern and increases data re-usage so that it is useful to store the vector entries in shared
memory. Due to this special structure we implemented our own SpMV product which we have
based on ideas found in [25, 26] and reach roughly 50-70% of the possible memory bandwidth
on a Tesla C2070 which is consistent with literature [25, 26] when solving the Oseen problem,
cf. Eq. (5.15). The Oseen problem is a typical representative for PDEs leading to a block-sparse
matrix where matrix elements are not just single numbers but rather small dense matrices.

In the following we discuss how to max out CUDA for the Oseen problem which represents
the bulk of the work to be done in one time step in the simulation of indoor airflow. To start
with, recall the way CUDA performs memory accesses (in the following we assume double
precision as this is what counts for solving PDEs):

Within one cycle one half warp can load up to 128 Bytes either from global, shared or local
(if it is not too much these are on-chip registers) memory, i.e. 16 doubles. Alignment and
shared memory bank conflicts decide about the ”up to”. For the latter we recall Sec. 2.1.2.

The difficulty for the SpMV lies in loading the source x in y = Ax as sparsity of A implies
random access to x. On pre-Fermi cards this was partially resolved by using the texture mem-
ory which is optimized for random accesses in that sense, that it offers some sort of caching.
On the Fermi architecture access to global memory is cached and access to the cache is fast (1
cycle). Listings 3.1-3.4 show the complete and fully functional code of the CUDA implemen-
tation of the SpMV. Using the fact that x is stored in chunks of 4 doubles due to the node-wise
ordering and each matrix is a dense 4×4 matrix, i.e. it has 16 entries which exactly fit into one
cache line we do the following: Each half warp computes all element MV products for a row
of A. For a blocksize of 256 we have 16 half warps. Hence one block processes 16 consecutive
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rows.

Listing 3.1: SpMV kernel: Declaration

template <typename T>
2 __global__ void
__blanc_spmv_4(const int nRows,

4 const int * const rowPtr, const int * const colIndices,
const T * const nonZeroEntries, const int eltdim,

6 const T * const x, T * y)
{

We have to buffer the x and the partial sums. This is done by the shared memory arrays:

Listing 3.2: SpMV kernel: Work arrays

// We need two shared arrays. One for the partial sums of y = A*x ...
2 __shared__ T y_ps_shm[256 /*BLOCKSIZE*/];

// and one for the values of the source vector x
4 __shared__ T x_shm[64 /*half-warp size * eltdim*/ ];

6 // Initialize the shared arrays
y_ps_shm[threadIdx.x] = 0.;

8
if (threadIdx.x < 64)

10 x_shm[threadIdx.x] = 0.;
__syncthreads();

For the navigation within a matrix element we need several local variables. With these we
determine which entries a thread has to load and process:

Listing 3.3: SpMV kernel: Local variables

// 16 threads, i.e. each half-warp processes a row of 4x4-Matrices
2 const int n_entries_per_element = eltdim*eltdim;

4 int n_rows_per_block = blockDim.x/n_entries_per_element; // 256/16 = 16

6 int local_row = threadIdx.x/16 /*n_entries_per_element*/; // thread
0-15 : 0th row, 16-31 : 1st row, 32-47 : 2nd row, ...

8 int entry_idx = threadIdx.x%16 /*n_entries_per_element*/; // local,
row-wise indexing of entries of a matrix element; range: 0-15

10 int x_component = entry_idx%eltdim;
int local_entry_row = entry_idx/eltdim;

12
// block row

14 int row = blockIdx.x * n_rows_per_block + local_row;
// does row index exceed bounds?

16 if(row >= nRows ) return;
// global row index for entry in y

18 int entry_row = eltdim * row + local_entry_row;

20 int rowlen = rowPtr[row+1] - rowPtr[row];

22 const T* A_i = &nonZeroEntries[rowPtr[row]*eltdim*eltdim];
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24 int y_ps_pos = threadIdx.x;

Listing 3.4: SpMV kernel: The bare algorithm

volatile T * y_ps = y_ps_shm +y_ps_pos ;
2

// loop over elements of a row
4 for(int j = 0; j < rowlen; j++)

{
6 int c = colIndices[rowPtr [row]+j ] ; // global column index

8 int c_entry = eltdim * c + x_component; // global Index of an
entry in source vector

10 int c_x_shm = local_row*eltdim + x_component; // local row

12 // 1. load entries of source vector
if (entry_idx < eltdim)

14 x_shm[c_x_shm] = x[c_entry];

16 // 2. load entries of element
T A_ij = A_i[j*n_entries_per_element + entry_idx];

18
// 3. compute partial sum

20 (*y_ps) += A_ij * x_shm[c_x_shm];
}

22
// accumulate parial sums; assumption: eltdim == 4 !!!

24 if (x_component < 2) (*y_ps) += *(y_ps +2);

26 if (x_component ==0) (*y_ps) += *(y_ps +1);

28 if (x_component ==0) y[entry_row] = (*y_ps); // final result written to
destination vector

}

The keyword volatile in line 1 enforces the compiler to execute each read operation for a
variable and avoids over-optimization. Within a warp execution is synchronous and within
each thread the kernel code is processed strictly in a serial manner. Therefore, we do not have
to synchronize after loading the entries of x by the first 4 threads of a warp. Only after they
have been loaded the entries of the matrix element are loaded.

3.3.2 Sparse Matrix-Sparse Matrix Residual

The essential operation for assembling a SpAI is the inner product of two sparse vectors
whereas its application only requires the standard SpMV product. Due to the ordering of the
solution components for vector-valued problems multiplying two vector elements amounts to
multiplying small dense matrices. Especially in the 4×4 case this allows for an efficient hard-
ware utilization by assigning each inner product to a half-warp. Then, global memory accesses
in loading source and destination elements fully coalesce as they take place as multiples of 128
Byte which is an exact match for the size of the cache lines [8]. Our inner product resembles
the one given in [144] except that we have to multiply and add small dense matrices.
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Chapter 4

Real-Time Stimulation Patterns for
Interactive Photostimulation

One of the most successful applications based on the library introduced in the first part is the computa-
tion of phase-only holograms. Initially aimed at investigating the feasibility of computing phase masks
in real-time with respect to the timescale of the dynamics of neural activity, the project evolved into a
GPGPU framework for phase retrieval problems.

A fair comparison of different parallelization techniques requires a unified algorithm execution.
This requires a separation of algorithmic details from the details of parallelization. This separation led
to the introduction of the concept of a parallel architecture abstraction layer, PAAL.

4.1 Introduction

The development of light-sensitive neurons has been a milestone in optogenetics [38]. The ul-
timate goal is a non-destructive and fast, yet accurate photo-stimulation of individual sites in
networks of living neurons. With respect to energy efficiency and spatial resolution holographic
methods are considered to be the most suitable [52] for this task. Holograms, i.e. computer
generated phase masks, displayed on a spatial light modulator (SLM) realize pixel-wise phase
retardations of a coherent laser beam. Upon illumination the intensity of the Fourier transform
of the phase mask yields a high-resolution optical stimulation pattern at the specimen. For a
sketch of the experimental setup see Fig. 4.1. The optical stimulation pattern follows from the
subset of neurons selected for stimulation. By targeting specific neurons the neural activity in
the network and thus its collective behavior can be influenced.

The origin of the neural activity is the generation of spikes in the membrane potential at the
axon hillock depending on the synaptic input. The spikes travel along the axon to the synaptic
connections to other nerve cells. In genetically altered neurons light-sensitive ion channels are
expressed in the cell membrane. If lit with the correct frequency the ion channels may open
and thus change the membrane potential which eventually either inhibits or enhances spike
generation. After transmission to the next neuron the spike adds to the synaptic input which
may result in another spike. For interactive modification of the spiking behavior the optical
stimulus must be generated within the time a spike needs to travel from one neuron to the other.
Interspike intervals of adjacent neurons are in the range of 10-20 ms and set the time-scale for
computing the unknown phase mask. Due to this severe time constraint multi-site stimulation
thus had to use precomputed phase masks, up to now. For interactive network control phase
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Figure 4.1: Holographic illumination of a network of opto-genetically altered neurons.

masks must be computed online which for frame rates in the required range of 0.1 to 1 kHz
poses a substantial challenge. On nowadays many- and multi-core processing units this can
only be achieved by extensive parallelization.

Mathematically, computing a phase mask for a given optical stimulation pattern constitutes
an inverse problem equivalent to wavefront reconstruction (see [89] and references therein)
and is an instance of the phase retrieval problem in diffraction imaging [124]. Numerical ap-
proaches to the phase problem abound, but convergence results and global solutions are limited
to special cases [58, 23] that do not necessarily apply to the case discussed in this chapter. An
arbitrary optical stimulation pattern is unlikely to have a phase-only Fourier transform. Thus
our phase retrieval problem is fundamentally inconsistent as defined in [90]. To account for the
mathematical structure, a careful analysis of the performance of the parallelization techniques
available and a strong focus on long-term software reusability distinguishes this work from
others, e.g. [93, 119, 139]. Useful approximations of a phase mask for a given optical stimula-
tion pattern can be achieved by iterative algorithms like the widely used Method of Alternating
Projections [133], also known as Gerchberg-Saxton algorithm [50].

On the next pages we will combine parallel computation on graphics cards with C++-based
generic programming and a sound mathematical theory. Only this combination of techniques
allows to generate phase masks within 10 ms, matching the dynamics of neural activity.

4.2 Method of Alternating Projections

The wavefront is to be altered by a phase shift at the finite number of pixels of the SLM. The
entire system is modeled on a finite dimensional vector space. Let Lx,Ly > 0 be the dimensions
of the SLM and nx,ny the respective number of pixels. We seek a signal u∈CN for N ≡ nx×ny.
The intensity distribution of the laser beam sets the amplitude of the wavefront u on the SLM.
Assuming a constant intensity over one pixel, we discretize the intensity distribution by the
nonnegative p ∈ RN . Wavefronts u emanating from the SLM are given by the set of vectors
with fixed amplitudes

S ≡ {u ∈ CN : |u jk|= p jk, j = 1,2, . . . ,nx, k = 1,2, . . . ,ny}. (4.1)
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Propagation of the light through the lens system is modeled by Fraunhofer diffraction [54].
The light at the SLM is related to the observed optical stimulation pattern at the specimen by
the Fourier transform F . Waves with modulus matching the amplitude distribution m ∈ RN of
the optical stimulation pattern form the set

M ≡ {u ∈ CN : |(Fu) jk|= m jk, j ≤ nx, k ≤ ny}. (4.2)

On the one hand our wavefront must fulfill the amplitude constraint Eq. (4.1), on the other hand
the amplitudes of its Fourier transform are fixed by the intensity distribution of the stimulation
pattern, Eq. (4.2). Altogether, the mathematical problem we address is to

Find u ∈ S∩M. (4.3)

For a nonempty intersection the problem is defined to be consistent; otherwise it is said to
be inconsistent or ill-posed. A common algorithm for problems of this type is the method of
alternating projections [133, 50]. For a review of this and other projection-based approaches for
the phase retrieval problem see [23]. Algorithms of this kind are built on projection operators
onto the constraint sets S and M. By a projection of a point u in a space X onto a subset C of
that space, we mean the mapping of that point to the set of nearest points in C with respect to
the norm induced by the real inner product on X . For general phase retrieval problems, it was
proved in [89] that

PSu =

{
v : v jk =

{
p jk

u jk
|u jk| , if u jk 6= 0;

p jk exp(iθ), for θ ∈ [0,2π)

}
, (4.4a)

PMu =
{

F−1û : û ∈ M̂(u)
}

(4.4b)

are projections onto the sets S and M, respectively, where

M̂(u)≡

{
v̂ : v̂ jk =

{
m jk

(Fu) jk
|(Fu) jk| , if (Fu) jk 6= 0

m jk exp(iθ), for θ ∈ [0,2π)

}
. (4.4c)

For given u0 ∈ CN the method of alternating projections computes the iterates uν via

uν+1 ∈ PSPMuν , ν = 0,1,2, . . . (4.5)

The multi-valuedness of Eq. (4.4) makes Eq. (4.3) a non-convex feasibility problem [89]. Hence
Eq. (4.5) must be understood as a selection from set-valued mappings. Due to nonconvexity,
except in special cases [58], global convergence of Eq. (4.5) cannot be guaranteed in general.
For consistent phase retrieval problems local convergence results are available [90]. Yet, it is
more the exception than the rule that our phase retrieval problem will be consistent: a set of
fixed amplitudes cannot produce an arbitrary optical stimulation pattern. Our tests indicate that
our phase retrieval problems were indeed inconsistent as measured by the magnitude of the gap

G ≡ ‖PSuν −PMuν‖2 (4.6)

between accumulation points in M and their projections onto S. The gap is measured in the
standard Euclidean norm ‖ · ‖2. This systematic inconsistency is a major difference between
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optogenetic photo-stimulation and phase retrieval problems due to imaging experiments. In
the latter the diffraction pattern comprising the set M is causal, that is, comes from diffraction
by a physical object, for instance a protein crystal. Assuming that Eq. (4.3) is inconsistent,
we content ourselves with finding best approximation pairs (u∗,v∗) ∈ CN ×CN with u∗ ∈ S,
v∗ ∈M, PMu∗ = v∗ and PSv∗ = u∗.

To account for the particularities of optogenetic photo-stimulation, we define the physical
error as the sum of the pixel-wise relative violation of deviation tolerances between target and
reconstructed optical stimulation pattern [116]. We allow for a relative deviation t` = 0.1 for
non-zero target pixels and an absolute deviation of td = 3 · 10−4 for non-lit pixels. Violations
are summed in multiples of t` and td . With a≡ uν

jk being the intensity from the current iteration
step, A≡ m jk the intensity in the target optical stimulation pattern and Θ(·) the Heaviside step
function, the total error is the sum of

E` = ∑
pixels∈light

(
td|A−a|

t`A
− td

)
·Θ
(
|A−a|

A
− t`

)
, (4.7a)

Ed = ∑
pixels∈dark

(a− td) ·Θ(a− td) . (4.7b)
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Figure 4.2: Software structure and its association with hardware components.

The compound system of CPU and GPU with dedicated memories represents a non-uniform
memory access (NUMA) architecture with a very heterogeneous distribution of processing
capabilities and internal transfer rates. Figure 4.2 shows a schematic of the class structure and
its distribution over the compound system of CPU and GPU. In general, the major bottleneck is
the PCIe-BUS which according to the PCIe v2.0 specification has a maximal transfer rate of 8
GByte/sec although in practive one rather gets 4 to 5 GByte/sec. This will rise to 16 GByte/sec
with the forthcoming PCIe v3.0, yet memory transfer rates within the GPU is of the order of
100 GByte/sec. On CPUs with integrated memory controllers the memory transfer rates are in
the range of 20 to 30 GByte/sec.



4.3. UNIFIED IMPLEMENTATION 63

pixel 
operation

CUDA 
kernel

OpenMP 
<T>

pThreads 
<T>

CUDA 
<T>

wrapper template

Impl

<T>

<arch, dummy>

HologramKernelsImpl

<T>

<T>

<T, arch>
HologramKernels

Figure 4.3: Class diagram of the implementation of the PAAL concept. Class names are un-
derlined. Template arguments are given in the red boxes. Dashed boxes indicate the partial
template specializations.

To anticipate the rapid evolution of hardware and parallelization techniques we spent con-
siderable effort on modularizing the program using C++’s templating capabilities. CUDA ex-
tends C for programming NVidia GPUs. OpenMP mainly supports multithreaded paralleliza-
tion on multi-core CPUs. Depending on the parallelization paradigm the program works on
different sides of the PCIe-BUS. To achieve hardware-specific optimizations at the low-level,
e.g. for the details of Eq. (4.4), yet keeping the implementation of algorithms generic we in-
troduced the concept of a parallel architecture abstraction layer (PAAL). Since most of our
computational tasks are data-parallel they are perfect candidates for abstraction with respect to
floating-point precision and parallelization technique. This is easily achieved by a suitable set
of template parameters leaving the generation of the hardware-specific part of the code to the
compiler. As FFTs in the implementation of the projector onto the constraint due to the optical
stimulation pattern, Eq. (4.4b), we use either FFTW [47] or NVidia’s cuFFT.

The aim of the PAAL concept is a quick recombination of algorithms and parallelization
strategies by explicit template specializations. The front end comprises the user-interface (UI)
and manages the execution of the phase retrieval algorithms for which separate driver classes
exist, e.g. GS-DRIVER for the method of alternating projections. The final phase mask is
transferred to an OpenGL framebuffer object for display on the SLM, cf. Fig. 4.2.

The PAAL concept is explained best by walking through the essential code snippets. This
is done roughly in a top down approach, i.e. from host to device and how things build on each
other. A sketch of the class structure is given in Fig. 4.3. At the top is the interface to the
GS-Driver which is formed by the class HologramKernels, given in listing 4.1. It takes two
template arguments: T for the precision and arch for the architecture the algorithm is to run on.
At the bottom of the hierarchy is the operation one has to do on a particular pixel, cf. listing 4.5.
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PAAL Header File

To express that the class HologramKernels is implemented with HologramKernelsImpl inher-
itance is private [96] (indicted by the dashed line in Fig. 4.3) and listing 4.1.

Listing 4.1: PAAL header: front end class: HologramKernels

template<typename T,
2 ParallelArch arch>
struct HologramKernels

4 :
HologramKernelsImpl<T>::template Impl<arch, T>

6 {};

The class HologramKernels needs partial specializations (given in listing 4.2) for the different
architectures because for the CUDA kernels the wrapper functions behave differently with
respect to the architecture. On a NVidia GPU they have to call a CUDA kernel. On a CPU
they have to either use OpenMP or pthreads for parallelization. The parallel execution of the
per-pixel operation __ps_element() (cf. listing 4.5) via OpenMP or pthreads can be done
directly in the specialization of the wrapper function, cf. listing 4.8. In the following we omit
the pthreads specialization as it is structurally very similar to OpenMP.

Listing 4.2: PAAL header: specialized front end classes.

template<typename T>
2 struct HologramKernels<T, gpu_cuda>

:
4 HologramKernelsImpl<T>::template Impl<gpu_cuda, T>
{

6 HologramKernels(int /*num_omp_threads*/) {}
};

8

10 template<typename T>
struct HologramKernels<T,cpu>

12 :
HologramKernelsImpl<T>::template Impl<cpu, T>

14 {
HologramKernels(int num_omp_threads)

16 {
omp_set_num_threads(num_omp_threads);

18 }
};

20
#endif // CUDA_KERNEL_STEP_16_CU_H

The wrapper functions are implemented by the internal class Impl of HologramKernelsImpl.
The reason for this awkward design is that the C++ standard does not allow to define partial
specializations of (a subset of) the member functions of a class. This issue can be circumvented
by introducing an internal class with a dummy template parameter and to partially specialize
its members. Within the class Impl the particular type of real and complex numbers is deduced
from the template parameter T by means of the PrecisionTraits structure. This is a typical
example of template metaprogramming [9]. See the following listing.
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Listing 4.3: PAAL header: class: HologramKernelsImpl

template<typename T>
2 struct HologramKernelsImpl {

4 template <ParallelArch arch, typename dummy > class Impl;

6 template <typename dummy> class Impl<gpu_cuda, dummy> {
public:

8 typedef typename PrecisionTraits<T, gpu_cuda>::CudaComplex Complex;
typedef typename PrecisionTraits<T, gpu_cuda>::NumberType Number;

10
void ps(Complex *d_devPtr, const Complex *d_original, int size);

12 // omitted: rescaling, RAAR, randomization, error estimation
};

14
template <typename dummy> class Impl<cpu, dummy> {

16 public:
// omitted: typedefs for Complex and Number

18
// same functions as in the CUDA-specific version of this class

20 void ps(...);
};

22 };

PAAL Source File

The backend, i.e. the details of the implementation, are stored in a separate source file to
keep g++ away from CUDA-specific code. Within the evaluation of Eqs. (4.4) and (4.4c) we
need precision-dependent tolerances for what is considered as zero. To this end we localize
the inevitable magic numbers in a structure __eps and a function __is_zero. In case of be-
ing compiled into a CUDA kernel the __device__ keyword is put into effect indicating that
the function can only be executed on the device, i.e. the GPU. Prepending __device__ by
__host__ signals the compiler (i.e. nvcc) to compile two versions of a function or operator.
One for the execution on the GPU and one for the CPU. At the binary level these are distinct
functions.

Listing 4.4: Parallel architecture abstraction layer - Backend (Kernels, etc ...)

template <typename T> struct __eps { T operator()(); };
2
template<> __host__ __device__

4 double __eps<double>::operator()() { return 1e-8; }

6 template<> __host__ __device__
float __eps<float>::operator()() { return 1e-4; }

8

10 template <typename T>
__host__ __device__ bool __is_zero(T x);

12
__host__ __device__ bool __is_zero(double x) { return abs(x) < 1e-16; }

14
__host__ __device__ bool __is_zero(float x) { return abs(x) < 1e-8; }
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The actual work is done by an architecture-independent function __ps_element, cf. list-
ing 4.5. Its arguments are a pointer d_devPtr* to the beginning of the array of pixels of the
iterated image Fuν , a pointer d_original* to the beginning of the array of pixels of the original
image and the lexicographic index of the pixel x.

Listing 4.5: PAAL: Architecture-independent per-pixel operation of PS, Eq. (4.4a).

template <typename T, ParallelArch arch>
2 __host__
__device__

4 void
__ps_element(T *d_devPtr, const T *d_original, int x)

6 {
typedef typename PrecisionTraits<T, arch>::NumberType Number;

8 __eps<Number> eps;
Number eps2 = eps()*eps();

10
//Copy pixel values from global memory to local memory

12 // to avoid multiple reads of the same value.
Number real = d_devPtr[x].x;

14 Number imag = d_devPtr[x].y;

16 //Calculate modulus of pixel (complex)value
Number abs = sqrt(real*real+imag*imag);

18 Number abs2 = abs*abs;
//original value

20 Number original = d_original[x].x;

22 //if original image is zero, then reconstructed image is zero, too
if(original < 2*eps())

24 {
d_devPtr[x].x = 0;

26 d_devPtr[x].y = 0;
}

28 else
{

30 //rescaling of the complex values
if( !__is_zero(abs)) {

32 real = (real/abs)*original;
imag = (imag/abs)*original;

34 }

36 //write result back to global memory.
d_devPtr[x].x = real;

38 d_devPtr[x].y = imag;
}

40 }

The CUDA kernel basically has the same arguments as the element function. The only
difference is, that the kernel gets passed the size of the image as third argument in order to
avoid operating on non-existent pixels. The kernel computes the position x of its pixel from
its threadIdx and BlockIdx (line 5 in listing 4.6) introduced in Sec. 2.1.2. Both arrays are
one-dimensional reflecting the storage of the images as linear arrays of pixels. Given the pixel
position the element function is invoked.
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Listing 4.6: PAAL: CUDA kernel for amplitude adaption

template <typename T>
2 __global__ void __ps(T *d_devPtr, const T *d_original, int size)
{

4 //Calculate the thread ID. The thread ID determines the pixel.
int x = blockDim.x*blockIdx.x+threadIdx.x;

6
//Prevents kernel to calculate something outside the image vector.

8 if(x<size)
__ps_element<T,gpu_cuda>(d_devPtr,d_original,x);

10 }

The missing link between back end and driver class is provided by the specializations of
the wrapper functions for the kernels. The GPU version (listing 4.7) starts as many threads as
there are pixels for the kernel __ps.

The CPU-OpenMP version (listing 4.8) has a for-loop over all pixels in the image which
is parallelized by an OpenMP preprocessor directive. Since we defined the __ps_element
to be a __host__ __device__ function, we can call the same function from the CPU
as from the GPU but without the intermediate kernel layer. In this way we have the actual
computation implemented only once. With the individual specialized classes wrapped around
this implementation we can choose our computing precision and hardware.

Listing 4.7: PAAL: GPU specialization of wrapper function

template<typename T>
2 template< typename dummy>
void

4 HologramKernelsImpl<T>::Impl<gpu_cuda, dummy>::ps
(Complex *d_devPtr, const Complex *d_original, int size)

6 {
#if __CUDA_ARCH__ < 200

8 int threads_per_block = 512;
#else

10 int threads_per_block = 1024;
#endif

12 int blocks = (size + threads_per_block - 1) / threads_per_block;

14 __ps<T><<<blocks,threads_per_block>>>(d_devPtr, d_original, size);
cudaThreadSynchronize();

16 }

Listing 4.8: PAAL: CPU specialization of wrapper function

template<typename T>
2 template< typename dummy>
void

4 HologramKernelsImpl<T>::Impl<cpu, dummy>::ps
(Complex *d_devPtr, const Complex *d_original, int size)

6 {
#pragma omp parallel for private(i)

8 for(int i = 0;i < size;i++)
__ps_element<T, cpu>(d_devPtr, d_original, i);

10 }
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Finally, we have to provide full template specializations of all the combinations of precision
and architecture template parameters we want to work with. This must be at the end of file as
all functions have to be declared and their bodies defined before the class can be explicitly in-
stantiated by the compiler [129]. The explicit specializations are necessary, at least for CUDA,
since we compile the back end with a different compiler than the front end of the program.

Listing 4.9: PAAL: Explicit template specializations

template class HologramKernels<float2, gpu_cuda>;
2 template class HologramKernelsImpl<float2>::Impl<gpu_cuda, float2>;

4 template class HologramKernels<float2, cpu_openmp>;
template class HologramKernelsImpl<float2>::Impl<cpu_openmp, float2>;

6
template class HologramKernels<float2, cpu_pthreads>;

8 template class HologramKernelsImpl<float2>::Impl<cpu_pthreads, float2>;

10 // and the same again for double2
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Figure 4.4: Convergence for a spot pattern of the physical error and the constraint gap.
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Figure 4.5: Siemens star: Convergence for single and double precision.

4.4 Results and Conclusion

The optical stimulation pattern for benchmarking the computation of the phase masks for
photo-stimulation are bright spots on a dark background (Fig. 4.4). The limits of spatial reso-
lution in the reconstruction is tested on the Siemens star (Fig. 4.5).

In both cases we use PMû0 as initial phase mask where u0 is the 1-bit target optical stim-
ulation pattern. Thus, our initial condition is computed by taking the Fourier transform of the
targeted pattern, adapting the Fourier coefficients to the amplitude constraints on the SLM and
transforming back into real space again.
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4.4.1 Benchmarking

For interactive holographic photostimulation the physical error, Eq. (4.7), must reach a sub-
threshold level within interspike intervals, i.e. 10 to 20 ms. Hence, the first issue is which
parallelization technique provides sufficient performance to meet this requirement. The GPU-
based computations were done on a Tesla C2070. The CPU-based ones using OpenMP or
pthreads were run on a two-socket system with X5650 Xeons. The CPUs have six cores each
and support hyperthreading which not in all cases pays off for numerical computations. There-
fore we decided to use 12 threads, i.e. as much as there are physical cores.

Computing a single phase mask on the CPU requires
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Figure 4.6: GPU runtimes for var-
ious image sizes and 25 iterations.

several seconds no matter whether OpenMP or pthreads
are used. When using CUDA and thus moving to the
GPU the total runtimes basically match the interspike in-
terval constraint. Fig. 4.6 shows GPU runtimes in total
and broken down into the contributions due to FFT (green
and cyan bars) and enforcement of amplitude constraints
(blue and grey bars) for different image sizes and 25 iter-
ations of Eq. (4.5). The runtimes are further subdivided
into the results for single and double precision indicated
by the red and magenta bars, respectively.

For the resolution of our SLM (800× 600) comput-
ing 25 iterations in single precision takes 45 ms including
transfer of the given targeted optical stimulation pattern
to the GPU (1 ms). The iteration essentially converges

after one step (Fig. 4.4) so that a reasonable optical stimulation pattern is available already
after less than 10 ms. The precise number depends on the problem size and how many iteration
steps are actually done. The proportion of work to be done in the FFT increases with probem
size as the FFT is of log-linear complexity whereas enforcing the amplitude constraints is linear
in the problem size as each pixel is visited only once per iteration and exchange of information
between different pixels is not required.

Figure 4.7 shows the speedups of the CUDA imple-
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Figure 4.7: Speedup per iteration
for various image sizes.

mentation over its OpenMP and pthreads counterparts.
On average CUDA is 50 times faster per iteration than
the 12-thread CPU variants. The performance gain per it-
eration solely depends on the size of an image and not on
its content. For the Fermi architecture used in the Tesla
C2070 the floating point performance in double precision
is half of the one for single precision. Basically, this can
be attributed to the fact that a double is twice as large as
a float and thus requires twice as much memory band-
width to reach the same performance. On CPUs this is
less of an issue due to the different architecture which is
reflected by the fact that for double precision the speed-
up roughly is only half of the one for single precision.
Yet, this is still sufficient to compute optical stimulation
patterns even in double precision within the time limits set by the interspike intervals.
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4.4.2 Precision and Convergence

The second issue is the influence of the floating point precision ε on convergence and perfor-
mance. Figure 4.4 shows the convergence and reconstruction results for a sample spot pattern
as it would be used in a photostimulation experiment. Figure 4.5 summarizes the results for the
well-known Siemens star which is a standard test image for the spatial resolution achieved by
reconstruction algorithms.

The reconstructed images are given as inset with a logarithmic gray scale for intensity. The
convergence curves represent the behavior of the physical error, Eq. (4.7), and the gap, Eq. (4.6),
with respect to the number of iterated steps in Eq. (4.5). We are interested in the influence of
the hardware architecture and the precision. Hence the convergence history is given for single
and double precision on GPU and CPU. The details of the curves for the gap and for the physi-
cal error in the insets reveal that the behavior primarily depends on whether the computation is
run in single or double precision but not on the architecture. This is a subtle effect on the order
of the single precision accuracy as illustrated by the scaling of the ordinates in the insets.

Both figures show that convergence of the phase mask in single is as good as in double
precision as each quantity has a unique limit value independent of the precision.

The intensity plots of the reconstructed pat-
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Figure 4.8: Resolution limits revealed by
Siemens star.

terns indicate that the contrast between lit and un-
lit areas is approximately 3 orders of magnitude.
The close-up view on the center of the Siemens
star in Fig. 4.8 points out that structures down to
a few pixels can be resolved. The insets of both
figures 4.4 and 4.5 demonstrate that the gap, as
defined in Eq. (4.6), and the physically motivated
error, Eq. (4.7), saturate within one iteration in-
dicating the inconsistency of our phase retrieval
problem. All later changes are O(ε). For prac-
tical purposes convergence does not depend on

hardware as the limit values of error and gap are several orders of magnitude larger than any
precision. Depending on ε we expect the following resolution limits for G. Our number of
pixels is of the order of 106. Assuming statistical independence for the errors of uν

jk we get
as theoretical limit Gth ∝ 103ε , i.e. 10−5 for single precision (ε = 10−8) and 10−13 for double
precision (ε = 10−16). An interesting phenomenon reflecting the difference between exact and
finite precision arithmetic is revealed by comparing the convergence behavior as function of ε .
Single precision (blue and red curves) cannot resolve the inconsistency of the phase retrieval
problem, i.e. whether or not S∩M = /0, as G ≈ Gth. According to [90] this should improve
convergence. The downside is, that while the phase retrieval problem appears to be consis-
tent from a numerical point of view, larger ε means worse approximation of the projection
operators. For double precision (green and magenta curves) we get more accurate projection
operators but at the same time the gap is resolved (since for both precisions G is of similar mag-
nitude). This renders the phase retrieval problem inconsistent again, justifying our assumption
of inconsistency. Our results also indicate that, despite a rather large G the method of alter-
nating projections does not suffer from stagnation at bad local minima which otherwise would
call for more sophisticated algorithms like RAAR [88].
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Chapter 5

Preconditioning for Indoor Airflow

In the following the results concerning the acceleration of PNS (the Parallel Navier-Stokes Solver) [105,
73] by porting its linear algebra to CUDA are presented. PNS solves the Reynolds-averaged Navier-
Stokes equations for simulating indoor airflow and is coupled to the TRNSYS package [104] for building
simulations. The accurate numerical prediction of indoor-air flows for building configurations of prac-
tical relevance [87] is of paramount importance for the energy-efficient design of modern buildings.

Matrices from such a real-life application should be perfect for testing whether NVidias marketing
division has made promisses which at the end are hard to keep.
The results for the sparse approximate inverse preconditioner have been published as part of [77].

5.1 Bouyancy Driven Fluid Flow

A possible basis of indoor airflow simulations are the non-dimensional incompressible, non-
isothermal Reynolds-Averaged Navier-Stokes (RANS) equations coupled to the k-ε turbulence
model [98]. A detailed account of the RANS model used in PNS can be found in [74, 87] which
also covers more general boundary conditions and the details of the wall function method.
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Figure 5.1: (a) Separate treatment of boundary layer Ωδ . (b) A snapshot of the flow field and
distribution of air age (with permission by R. Gritzki). The three boxes at the left are windows.
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A decent parallelization of a RANS simulation tool box capable of meeting the challenges
of real-life engineering problems is a topic of its own, see [86] and T. Knopp et al. in [91] for an
overview. In this chapter we contend ourselves with using this existing RANS implementation
as a block-box generator for unstructured, large sparse matrices.

5.1.1 Navier-Stokes Equations

To model the bare flow in a bounded domain Ω⊂ R3 with boundary ∂Ω one seeks velocity u,
pressure p and temperature θ solving

∂tu−∇ · (2νeS(u))+(u ·∇)u+∇p = −βθg ,

∇ ·u = 0 , (5.1)

∂tθ +(u ·∇)θ −∇ · (ae∇θ) = c−1
p q̇V

with the rate of strain tensor
S(u) := (∇u+∇uT )/2,

isobaric volume expansion coefficient β , gravitational acceleration g, volumetric heat source q̇V

and isobaric specific heat capacity cp. Buoyancy forces are modeled by the Boussinesq approx-
imation. The turbulence model requires the introduction of the effective viscosities

νe = ν +νt ,

ae = a+at

with kinematic viscosity ν , turbulent viscosity νt , thermal diffusivity

a = ν/Pr

and turbulent thermal diffusivity
at = νt/Prt

with Prandtl numbers Pr = 0.7 and Prt = 0.9 for air. The non-constant νt and at reflect turbulent
effects and depend on the turbulence model. The sign of u ·n, n being the outer normal, rules
the division of ∂Ω into wall zones ΓW , inlet zones Γ− and outlet zones Γ+ where we impose

σ(u, p)n≡ 2νeS(u)− pI = τnn on Γ−∪Γ+, (5.2)

u = 0 on ΓW , (5.3)

with σ(u, p) = 2νeS(u)− pI. For θ we require

θ = θin on Γ−, (5.4)

ae∇θ ·n = 0 on Γ+, (5.5)

θ = θw on ΓW . (5.6)

The in- and outflow conditions in Eqs. (5.2) and (5.4) are suitable for natural ventilation.
Near ΓW , u and θ exhibit strong gradients. Fig. 5.1a shows a typical near-wall profile for the
streamwise component of u for the flow along a heated vertical wall.
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5.1.2 Discretization in Time

For simplicity, time discretization is performed with the BDF(1) scheme. This leads to a se-
quence of coupled nonlinear problems within each time step. The global problem in Ω reads

−∇ · (2νeS(u))+(u ·∇)u+
1
δ t

u+∇p = −βθg+
1
δ t

uold , (5.7)

∇ ·u = 0 (5.8)

−∇ · (ae∇θ)+(u ·∇)θ +
1
δ t

θ = c−1
p q̇V +

1
δ t

θold (5.9)

with modified boundary conditions on ΓW

u ·n = 0 , (5.10)

(I−n⊗n)σ(u, p)n = τt(u,uL,θ L) , (5.11)

ae∇θ ·n = c−1
p q̇(uL,θ L). (5.12)

Boundary data τt , q̇ at ΓW are taken from the solution (uL, pL,θ L) of Eqs. (5.7) in the boundary
layer Ωδ := {x ∈Ω : dist(x,ΓW ) < yδ} with a modified wall-function approach, thus avoiding
locally fine meshes and expensive anisotropic grid refinement in Ωδ , cf. Fig. 5.1a.

5.1.3 Turbulence Model

As global turbulence model in Ω a standard one- or two-equation model suffices like the k-ε
turbulence model [98]. A reasonable parametrization for indoor airflow is

νt = cµk2/ε ,

cµ = 0.09 .

The turbulent kinetic energy k and dissipation ε are semidiscrete solutions of

−∇ · (νk∇k)+(u ·∇)k +
1
δ t

k = Pk +G− ε +
1
δ t

kold , (5.13)

−∇ · (νε∇ε)+(u ·∇)ε +
1
δ t

ε +C2
ε2

k
= C1

ε2

k
(Pk +G)+

1
δ t

εold (5.14)

with effective viscosities

νk = ν +νt/Prk ,

νε = ν +νt/Prε ,

production and buoyancy terms

Pk = 2νt |S(u)|2 ,

G = βatg ·∇θ

and empirical constants

C1 = 1.44 , Prk = 1.0 ,

C2 = 1.92 , Prε = 1.3.

The k-ε Eqs. (5.13), (5.14) are solved in Ω\Ωδ with suitable boundary conditions for k,ε on Γδ .



76 CHAPTER 5. PRECONDITIONING FOR INDOOR AIRFLOW

5.1.4 Full Discretization

For the full discretization the model is decoupled and linearized within each time step. Two
basic problems are to be solved:

i) An Oseen problem with variable viscosity ν and positive reaction term

−∇ · (2νS(u))+(a ·∇)u+ cu+∇p = f in Ω ,

∇ ·u = 0 in Ω (5.15)

with boundary conditions

σ(u, p)n = τnn on Γ−∪Γ+ ,

(I−n⊗n)σ(u, p)n = τt ,

u ·n = 0 on ΓW .

ii) Advection-diffusion-reaction (ADR) problems for θ , k and ε with variable viscosity

−∇ · (ν∇u)+(a ·∇)u+ cu = f in Ω̃ (5.16)

where Ω̃ = Ω or Ω̃ = Ω\Ωδ with Dirichlet boundary Γ̃D and von Neumann boundary Γ̃N . The
boundary conditions are

u = g on Γ̃D ,

ν∇u ·n = h on Γ̃N .

The testcase considered in Sec 5.2 requires an additional equation like (5.16) for the air age.
For the finite element discretization of (5.15)-(5.16) an admissible triangulation of Ω is

assumed. The discrete subspaces are defined to consist of globally continuous and piecewise
linear ansatz and test functions. The standard Galerkin FEM for the Oseen problem (5.15) with
an equal-order ansatz for velocity and pressure does not pass the discrete inf-sup condition and
must be stabilized [51]. For reasons of numerical stability pressure stabilization [68] (PSPG)
together with divergence and SUPG [30] stabilization must be applied. The Galerkin-FEM for
the ADR-problem (5.16) needs stabilization and is SUPG-stabilized, too.

The resulting linear systems are highly non-symmetric and in general of non-normal type.
The discretized Oseen problem has a saddle-point structure. Figure 5.2 shows the dominating
eigenvalues of the discretized Oseen problem for the testcase to be considered in Sec. 5.2.
Preconditioning strategies for Eqs. (5.15) and (5.16) aim at a better clustering of the spectra.

5.2 Numerical Results

There seems to be only little which has been published about CUDA-based parallel precon-
ditioners for nonsymmetric matrices and even less for multiphysics applications like non-
isothermal air-flow including radiative heat transfer. In contrast to [144] we compare the
performance of a serial ILU-implementation with an unfactored SpAI. The Block-Jacobi pre-
conditioner parallels the approach pursued in [136]. However in the tests presented here, the
blocksize is restricted to the number of DoFs per node (the ’dim’ column in Table 5.1) and
for the matrix element on the diagonal the full rather than the incomplete LU factorization is
computed.
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Figure 5.2: The dominating 128 eigenvalues λ of the unpreconditioned Oseen matrix (·), right-
preconditioned by ILU (×) and by SpAI (◦). The x-axis is in logarithmic scale to highlight the
order of magnitude of the real parts. Eigenvalues were computed from the Hessenberg matrix
obtained from the Arnoldi process using MATLAB’s eig() function.

Our tests were done on a Dell T7500 workstation equipped with two Intel Xeon X5650,
96 GB RAM, and two NVIDIA Tesla C2070, running under Ubuntu 10.04 and CUDA 4.0.
As integrated development environment we use QtCreator. The test programs are compiled in
its predefined release mode. Total runtimes and times per iteration are summarized in Table 5.1.

Our test matrices stem from a case study of indoor air flow in a room subject to energy-
focused building refurbishment. The goal was to measure the impact on air exchange by decen-
tralized air-conditioning attached to the windows. The room was discretized by a tetrahedral
mesh with 80621 nodes resulting in 644968 degrees of freedom (DoFs) in total. For details see
Table 5.1. A snapshot of the flow field and distribution of air age is displayed in Figure 5.1b.
We solve Eqs. (5.15) and (5.16) by GMRES [112] and QMRCGSTAB [33]. Especially the
latter has turned out to be the best choice for solving a broad range of problems and on average
needs 30% less iterations to converge. Therefore, GMRES is not considered in the following.
As reference preconditioner on the CPU we use ILU(0), i.e. the sparsity pattern of the L and U
factors are restricted to the one of the original matrix.

For illustrating the performance of the preconditioners we considered the clustering of the
spectra of the preconditioned linear systems and the convergence history. For good precon-
ditioning eigenvalues should cluster in the vicinity of the point (1,0) in the complex plane,
cf. Fig. 5.2 for a comparison of SpAI with ILU.
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Figure 5.3: SpAI results for QMRCGSTAB [33].
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Figure 5.4: Block-Jacobi results for QMRCGSTAB [33].
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Figure 5.5: PPc results for the Oseen problem solved by QMRCGSTAB.

5.2.1 Polynomial Preconditioning

Polynomial preconditioning as described in Sec. 3.2.4 was slower than the CPU-based ILU.
The high polynomial degree needed for convergence and the increased iteration count more
than compensated the gain in speed obtained from the parallelization of the SpMV. For sake
of completeness the results for PPc are listed as well but without detailed discussion. The
convergence history for the Oseen problem when solved with QMRCGSTAB preconditioned
for different polynomial degrees is shown in Fig. 5.5. The inclusion set and the dominating
part of the spectrum of the unpreconditioned matrix is given in Fig. 5.6.

5.2.2 Sparse Approximate Inverse

The convergence histories for different numbers nMR of MinRes steps are summarized in
Figs. 5.3. Our tests show that already nMR = 1 suffices to obtain a preconditioner with rea-
sonable performance, cf. Fig. 5.3. SpAI takes more steps to converge than ILU but this is more
than compensated by the efficient implementation of the SpMV which is needed to apply the
preconditioner. In most of the cases ILU is outperformed by SpAI.

Table 5.1 shows that for the Oseen subproblem, which is the most expensive one, we mea-
sured an average speed up of ca. 40 for the individual iteration step but have to pay with a
considerably higher iteration count until convergence. Thus, our CUDA-based SpAI is roughly
five times faster than the ILU preconditioner used so far. As the increased iteration count is due
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Figure 5.6: Spectrum (blue dots) and inclusion set (red) for the Oseen problem.

to the change of the preconditioner from ILU to SpAI the same behavior should occur if the
SpAI was parallelized on the CPU using OpenMP for instance. For that case we would expect
a speedup of the individual iteration step which would only compensate the increased amount
of iterations due to the lower memory bandwidth of current CPUs compared to GPUs so that
there would be no net gain. For instance, a Westmere Xeon has roughly one-fifth of the band-
width of a Tesla card. Hence, to get a speed up due to massive parallelization a high-bandwidth
architecture like CUDA is mandatory.

With respect to the number of iterations SpAI is not as effective as ILU. Yet, ILU is outper-
formed because the individual SpAI-preconditioned Krylov iteration step is almost two orders
of magnitudes faster, especially for the Oseen problem. Provided the decision has been made
to stick with the SpAI approach from Sec. 3.2.3, Eq. (3.14) shows that further improvements
must tackle the problem of finding a cheap inverse of AM−1. A simple and cheap improvement
would be to use a Block-Jacobi preconditioner based on the diagonal elements Di := (AM−1)ii

and to precondition Eq. (3.14) with the matrix J−1 := (D−1
i )N

i=0 from the left. As the corre-
sponding kernels are already at our disposal, cf. Sec. 2.1.2, we could also base J−1 on the
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LU-factorizations of 16×16 or 32×32 diagonal blocks and either compute their exact inverse
in parallel on the GPU or stick to the traditional approach to solve small linear systems. The
structure of J−1 should simplify coalesced memory accesses in the SpMV thus exploiting the
theoretical memory bandwidth.

5.2.3 Block-Jacobi

The results on preconditioning with the Block-Jacobi preconditioner are summarized in Fig. 5.4.
The timing results are given in Table 5.1. Of all tested parallel preconditioners Block-Jacobi
was the most satisfactory alternative to ILU. The setup is cheap, its application only requires
one SpMV and because of the block-diagonal structure of the preconditioning matrix the access
to the source vector is not random. However, like for the SpAI case the number of iterations to
reach convergence is higher than for ILU. For the Oseen equation and the equation for the air
age SpAI and Block-Jacobi have a similar convergence behavior. Both need roughly the same
number of iterations The big difference is the behavior for the k-ε model and the temperature
equation. For k-ε SpAI is slower than ILU whereas Block-Jacobi only needs roughly twice
as much iterations as ILU which suffices to be faster than ILU by almost an order of magni-
tude. For the temperature equation Block-Jacobi is faster than SpAI and ILU whereas for the
equation for air age SpAI is faster than ILU and Block-Jacobi.

Table 5.1: Typical speedups for the different parallel preconditioning strategies. To optimize
usage of CPUs and GPU move the Oseen problem to the GPU and solve the other problems on
the CPU. Numbers are approximate as in practice the precise figures differ from one time-step
to another, e.g. due to changes in machine load or variations in the matrix properties.

case nnz dim DoFs iterations to time per Wall
convergence iteration / sec time / sec
ILU 180 0.6 110

Oseen 18275344 4 322484 SpAI 1280 0.014 18
Faber (20) 700 0.3 210

Block-Jacobi 1100 0.015 16
ILU 5 0.4 2

k-ε 4568836 2 161242 SpAI 240 0.01 2.4
Faber (20) 256 0.2 51

Block-Jacobi 11 0.02 0.2
ILU 8 0.05 0.4

Fourier 1142209 1 80621 SpAI 60 0.01 0.6
Faber (20) 256 0.1 26

Block-Jacobi 31 0.01 0.3
ILU 40 0.05 2

air-age 1142209 1 80621 SpAI 64 0.01 0.6
Faber (20) 230 0.1 23

Block-Jacobi 120 0.01 1.2



Chapter 6

Quantum Simulation of
Single-Electron Transport

. . . and now for something completely different1: Boundary conditions.
High electron mobility GaAs/AlGaAs heterostructures can accommodate two-dimensional electron

gases of almost macroscopic size. Recent experiments [126, 127, 11, 78] on ballistic transport and
magneto-conductance have shown that even in high purity samples the remaining weak disorder poten-
tial due to the donor layer causes a branching of electron flow in the two-dimensional electron gas. The
wave nature of the current carrying, electronic scattering states can only be revealed by directly solving
the Schrödinger equation for the entire system including the semi-infinite leads. In an experiment the
transport properties of a heterostructure are often governed by a small part of the device. The truncation
of the parts of the experimental domain irrelevant for the scattering can only be achieved by artificial,
transparent boundaries. For wave-like phenomena restricting the computation to a finite region is prone
to spurious reflections.

To exploit the flexibility concerning complex geometries and the high quality of current conservation
provided by higher order finite elements we need exact transparent boundary conditions for the case
that the scattered wave function is a superposition of several modes and is modeled by finite elements.
The Hardy space infinite element method [61] provides a rigorous way of setting up taylor-made, exact
transparent boundary conditions for finite element simulations of the quantum magneto-conductance in
the Landauer-Büttiker picture.

In this chapter we describe a deal.II-based, finite element simulation framework for the investiga-
tion of branching of electron flow due to weak disorder potentials in the presence of a magnetic field in
heterostructures of macroscopic size. For the sake of brevity, the scope of this chapter is limited to the
discussion of discretizing a Hamiltonian on a domain with transparent boundaries and the validation of
the methods using a non-trivial physical model problem. The discussion of parallelization is resumed in
chapter 7 where a framework for time-dependent transport is developed.

6.1 Introduction

During the past three decades, low-temperature quantum transport phenomena in mesoscopic
electron devices have been intensively studied. Their in-depth study in electron inversion layers
in heterostructures, metallic films and MOSFETs has been initiated by the discovery of signa-
tures of quantum interference in the electric current through mesoscopic devices. Especially
sub-micron Aharonov-Bohm (AB) like geometries [117, 17], quantization of the conductance

1Little homage to Monty Python’s Flying Circus
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of point contacts, in Hall geometries [71, 128, 140] and by advances in low-temperature physics
without experiments close to absolute zero temperature would not have been possible. Other
phenomena of interest are, for instance, reproducible (universal) conductance fluctuations [46]
or signatures of quantum chaos in electron transport through two dimensional cavities [92]. Re-
cently, spatially resolved recordings of electron densities using scanning tunneling microscopy
techniques have revealed caustic phenomena and current branching in absence [126, 127, 78]
and in presence of magnetic fields [11, 95].

The theoretical understanding of quantum transport has been pioneered by R. Landauer [80]
and Büttiker [32]. Quantitative calculations of the phenomena have been carried out by using
the Landauer relation between zero-temperature direct current electron conductance and quan-
tum transmission [37].

In practice, this implies that the calculation of the quantum coherent transport effects re-
quires knowledge of the quantum transmission amplitudes [66]. These can be determined
without explicitly knowing the scattering states. However, a central result of recent scanning
tunneling experiments [126, 127, 11] is a spatially resolved picture of the electron density of
the two-dimensional (2D) electron gas (2DEG) under the condition of stationary current flow.
For a detailed comparison of theory, simulation and experiment the computation of the scatter-
ing wave functions is mandatory. It is the aim of this thesis to outline a tool for the accurate
prediction of the wave functions of scattering states in semi-infinite systems with complex
boundaries.

In the ballistic regime, i.e. on length scales less than the mean free path between two
scattering events, electrons move almost freely. By lowering the temperature the inelastic mean
free path due to interaction effects can be made arbitrarily long leaving the mean free path due
to impurities, i.e. a material parameter, to set the length scale for the dimensions of a ballistic
2DEG device. In specimen smaller than the mean free path scattering occurs only at the walls
and in the contacts.

At low temperatures and for high electron-mobility materials like GaAs/AlGaAs hetero-
structures the mean free path of an electron can be of the order of hundreds of micrometers.
Hence, transport in micron-size semiconductor devices as commonly used in experiments can
be considered as essentially ballistic and the quantum mechanical properties follow from the
single-electron Schrödinger equation using an appropriate effective mass for the electron.

Modern fabrication technologies allow for preparation of almost ideal 2DEGs with large
electron mean free paths. It nevertheless seems necessary to take into account some random-
ness in terms of a weak potential in order to explain certain experimental findings like the
branching of electron flow mentioned above. A commonly accepted source for disorder is the
weak potential created by charge fluctuations in the donor layer beneath the 2DEG. The influ-
ence of magnetic fields on quasi-ballistic electron transport in 2DEGs plays also an important
role in many experiments [37].

The main contribution of this thesis is to adapt a recently developed type of transparent
boundary conditions (TBC) for finite element methods for acoustic scattering [101] to quantum
transport computations in semi-open electron systems. The presentation of the TBC is inde-
pendent of the spatial dimension and thus applies to the three-dimensional case as well. Due to
the widespread interest gained by imaging the current carrying electron states in magnetic fo-
cussing [11, 95] it is shown how to extend the TBC to account for the experimentally important
case of a constant magnetic field perpendicular to the 2DEG.

The benefits of the method are demonstrated by computing the scattering states and their
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spatial electron density distributions for the specimen with chamfered corner discussed in the
thesis by Metzger[95]. The purpose of the TBC is to truncate the specimen to the physically
relevant part such that the computational domain is confined to the subregion where scattering
actually occurs. This substantially lowers the computational cost and enables us to do a full
quantum mechanical calculation of the stationary scattering states taking into account several
incident and transmitted transport channels. In contrast to standard recursive Green’s function
approaches based on tight-binding methods we use higher order finite elements and work on
irregular, problem-adapted meshes which cannot be obtained from cartesian grids by means of a
single coordinate transformation [111]. The numerical accuracy of the method is demonstrated
by studying the quality of the current conservation in a quantum wire.

6.2 Modeling Ballistic Electron Transport

The scattering domain is modeled as some finite area Ω, cf. Fig. 6.1. Electrons can enter and
leave the scattering domain only via perfect leads which by definition have constant width and
infinite length. Any additional transverse potential in a lead remains constant along its length.
Sections of the lead where the potential varies in the longitudinal direction must be included in
the scattering domain.
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Figure 6.1: Sketch of experiment. Hatched subdomains denote regions containing scatterers.

The walls of the leads and the impenetrable part of the boundary ∂Ω of the scattering
domain are denoted as ∂ΩHw. The contacts between the leads and the scattering domain are
referred to as either ∂ΩS, for the source lead, or as ∂ΩD for drain leads. The quantum point
contacts (QPCs) employed in experiments for connecting the leads to the specimen are modeled
as short narrow constrictions of the leads close to Ω cf. Fig. 6.7.

In the following we consider geometries with only two leads. One acts as source and the
other as drain. We could deal with the general multi-terminal case from Fig. 6.1 as well but in
the context of this work the focus is rather on replacing sections of the hard walls by transparent
boundaries. Within the leads the coordinate x denotes the longitudinal coordinate and points
away from Ω. The transverse coordinate is y. The coordinates (x,y) in the leads are local
ones, i.e. x = 0 denotes the interface to the scattering domain. We will use this convention
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throughout this work as the meaning of x and y is usually obvious from the context unless
otherwise stated. The wave function Ψp in the drain is a superposition of the incident plane
waves ψq from the source after scattering. Their individual contributions are measured by
scattering amplitudes tpq.

At absolute zero of the temperature, in the absence of any interaction, electron transport is
quantum mechanically coherent and only the electrons at the Fermi level with energy EF and
wave length λF contribute to the current. For these electrons the wave function in a drain lead
far away from the scattering domain can be written as

Ψp = ∑
q

tpqψq , (6.1)

ψq = gq(y)eikqx (6.2)

where q counts the active states in the drain. We assume that the states in the source and
drain lead with respect to their local coordinate systems are given by the same set of orthogonal
functions {ψp}p∈N. The details of the transverse potential in the drain determine the shape of
the transverse profile gq(y) of the wave function and the distribution of the energy levels

εq = EF − k2
q

due to the transverse confinement. Current is carried only by those modes for which longitudi-
nal wave numbers kq =

√
EF − εq are real.

The functions gq(y) solve the transverse eigenproblem and are mutually orthogonal. Units
are chosen such that the effective mass of the electron, its charge and Planck’s constant are
one, see Sec. 6.2.2. Normalization of the functions gq is chosen such that∫

∂ΩX

|gq|2 = 1, X ∈ {S,D} . (6.3)

6.2.1 Quantum Conductance

Transmission and reflection probabilities are computed from the quantum mechanical proba-
bility current density.

In a lead of finite width L the net current density for an arbitrary wave function Ψ is given
by the normal component which can be obtained by computing the contribution flowing in the
direction of the outbound normal n of the channel cross section

j(y) =
h̄

m∗
Im(Ψ∂nΨ

∗) (6.4)

where ∂n = n ·∇ is the normal derivative and m∗ is the effective mass. Integrating over the
lead’s cross section gives the current

J = Im
(∫ L

0
dyΨ(xout ,y)∂nΨ

∗(xout ,y)
)

, (6.5)

where xout is the longitudinal coordinate denoting the position where the lead is cut off, see
Fig. 6.2. The wave function and thus the probability current in Eq. (6.5) depends on the incom-
ing mode p. Normalizing the current with respect to the current of the incoming mode of wave
number kp = pπ , i.e. to divide the current by kp, gives the transmission probability

Tp(Ψp) = Jp/kp . (6.6)
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The total transmission T is given by summing over p, i.e. the contributions due to all open
input modes. In our units it is identical to the total conductance

T = ∑
p

Tp(Ψp) = ∑
p

Jp/kp . (6.7)

The unknown amplitudes tpq ∈ C are determined by the details of the scattering mechanism
and the particular input mode ψp in the source lead. Provided both leads have the same shape
and mode p is used as input, utilizing the decomposition given in Eq. (6.1) the conductance
between the source and one drain lead is given by the well-known Landauer-Büttiker formula

G =
e2

0
h

T =
e2

0
h ∑

p
∑
q

kq

kp
|tpq|2 (6.8)

where e0 is the elementary charge.

6.2.2 Single Electron Description

The wave function Ψ describing our scattering state on Ω is determined by the stationary
Schrödinger equation

1
2m∗

[(
h̄
i
∇−qA(x)

)2

+V (x)−E

]
Ψ = 0 (6.9)

of a single electron with effective mass m∗, charge q and total energy E in the presence of a
vector potential A(x) giving rise to a static magnetic field. The model is completed by a suitable
set of boundary conditions to describe hard walls and the semi-infiniteness of the leads.

To describe a constant magnetic field within the scattering domain Ω we use A(x) =
B(−y,0,0)T , i.e. the Landau gauge. Throughout this work, B is considered as the primary
control parameter. Depending on the spatial scale a the dimensionless quantities 2m∗a2

h̄2 E → E,
qa
h̄ A→ A, a∇→ ∇, 2m∗a2

h̄2 qV →V lead to the final dimensionless Schrödinger equation[
−∇

2 +2iA ·∇+ |A|2 +V −E
]

Ψ = 0 . (6.10)

The spatial scale a (corresponds to the lattice parameter in tight-binding calculations) is taken
to be in the range .1 to 1µm. As effective mass we can use the one of GaAs, i.e. m∗ = 0.067m0
at 0 K when measured in units of the mass of a free electron m0.

At those parts ∂ΩHw of the boundary ∂Ω where no leads are attached to the scattering
domain Ω the wave function is subject to perfectly hard walls, i.e. we have to use homogeneous
Dirichlet conditions by setting the value of the wave function to zero

Ψ

∣∣∣
∂ΩHw

= 0 . (6.11)

Far away from the scattering domain the scattered part of the electron’s wave function has to
match the free-particle behavior of the wave function in the leads, i.e. it has to fulfill Sommer-
feld’s radiation condition

lim
x→∞

x
1
2 (∂x− ik)Ψ

∣∣∣
∂ΩD

= 0 . (6.12)
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6.2.3 Variational Formulation

We subdivide the domain Ω into a finite interior part Ωint consisting of the scattering domain
and the stubs, cf. Fig. 6.2, and an exterior part Ωext containing the unbounded exterior parts of
the leads. The edge interfacing Ωint and Ωext at the cut off will be denoted by Γ. By construction
finite elements are only applicable to bounded domains which obviously contradicts leads of
infinite length. The semi-infinite extent of the leads has to be modeled by suitable surrogate

!"Hw

0

1

0

y =

y =
x = x = xout

y

x
"ext

" int

   #

Figure 6.2: Sketch of outlet interface to exterior Hardy domain. The dotted line separates the
finite domain Ω of the interior problem from the infinite exterior domain Ωext .

boundary conditions which allow an outgoing wave to pass without any artificial reflections.
Such a condition is essentially given by Sommerfeld’s radiation condition, Eq. (6.12), but for
numerical purposes its direct application is impractical. Instead, we construct the boundary
conditions from Hardy-space infinite elements [61] which basically are a transformation of
Sommerfeld’s radiation condition, cf. Eq. (6.12), to the unit circle. The zero-Dirichlet boundary
conditions modeling the hard walls are directly built into the function space in which the
solution is sought. The weak form is obtained from multiplying both sides of Eq. (6.10) with a
test function Φ and integrating over Ω

−
∫

Ω

Φ∇
2
Ψ+2i

∫
Ω

ΦA ·∇Ψ

(6.13)

+
∫

Ω

Φ
[
|A|2 +V −E

]
Ψ = 0 .

For scalar products we introduce the short-hand notation

(u,v)D :=
∫

D
uv (6.14)

where D is the domain of integration and u and v are some functions defined on D. If D denotes
a subset of the boundary u and v denote the restrictions to it.
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The weak form is obtained by integrating by parts which removes one derivative of the
solution. To this end, we explicitly write (·, ·)Ω = (·, ·)Ωint + (·, ·)Ωext and integrate on both
subdomains independently. In the arising boundary terms, (·, ·)∂Ωint and (·, ·)∂Ωext , we denote
by nint the outer normal of the interior domain Ωint and by next the outer normal of the exterior
domain Ωext . At the interfaces Γ where Ωint and Ωext have a common edge both normals are
opposite to each other, nint |Γ =−next |Γ. The test functions Φ are chosen such that they vanish
on ∂ΩHw so that only the boundary terms at the interfaces Γ remain. To emphasize that we are
going to treat interior and exterior differently, the integrals on the exterior part will be given
explicitly. Then, the weak form formally reads

(∇Φ,∇Ψ)
Ωint

+
(
Φ,
[
|A|2 +V −E

]
Ψ
)

Ωint
+(Φ,2iA ·∇Ψ)

Ωint
− (Φ,∂nint Ψ)

Γ

(6.15)

+
∫

∞

0

∫
Γ

∇Φ ·∇Ψ+2iΦA ·∇Ψ+Φ
[
|A|2 +V −E

]
Ψ−

∫
Γ

Φ∂next Ψ = 0 .

For notational simplicity we define the bilinear forms a(·, ·) for the interior problem

a(Φ,Ψ) := (∇Φ,∇Ψ)
Ωint

+
(
Φ,
[
|A|2 +V −E

]
Ψ
)

Ωint
(6.16)

+(Φ,2iA ·∇Ψ)
Ωint

and b(·, ·) for the sum of the exterior problems in the truncated part of the leads which eventu-
ally will give us the required transparent boundary conditions

b(Φ,Ψ) := ∑
c

(∇Φ,∇Ψ)
Γc×R+

+
(
Φ,
[
|A|2 +V −E

]
Ψ
)

Γc×R+ (6.17)

+(Φ,2iA ·∇Ψ)
Γc×R+ .

For the drain lead the surface integrals in Eq. (6.15) cancel each other. In the source lead the
wave function consists of an incoming plain wave part f and a contribution due to the back-
scattering at the contact. As Ψ describes the scattered part of the wave function the surface
integrals do not cancel and the surface integral over f remains. This yields the right-hand side

f (Φ) := (Φ,∂next f )
Γin

(6.18)

where Γin is the interface to the source lead. The variational problem is:

find Ψ ∈ X ⊂ H1(Ωint) such that ∀Φ ∈ X :

a(Φ,Ψ)+b(Φ,Ψ) = f (Φ) . (6.19)

The terms due to the interior problem can be treated by standard finite element methods. For
the details of how to setup the solution space X we refer the interested reader to the thorough
disscussion in [100]. Repeating the construction of X is not the purpose of this thesis.
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6.3 Hardy Space Infinite Elements

For the exterior problem we have to convert the integral over the longitudinal coordinate into
an integral over a finite domain to make the integral exist.

6.3.1 Converting
∫

∞

0 to
∫ 2π

0

The inapplicability of finite element methods to infinite domains forces us to model the leads
as finite stubs by truncation at xout , see Fig. 6.2. To recover the infiniteness of the domain
we employ so-called Hardy space infinite elements (HSE) as developed in the thesis by Nan-
nen [100]. In contrast to other methods Hardy space infinite elements are formally exact and
lead to a rather sparse matrix for the discretized boundary conditions.

HSE map the longitudinal coordinate x of the unimportant exterior subdomain onto the
unit circle so that

∫
∞

0 is transformed into
∫ 2π

0 . This is achieved by applying a Möbius trans-
formation Mκ0 to the Laplace transform û(s) of the wave function u(x) with respect to the
longitudinal coordinate

u(x) L7−→ û(s)
Mκ07−→ Û(z) . (6.20)

The Laplace transform L maps the real axis to another straight line through the origin in
the complex plane and Mκ0 maps the line onto the boundary of the unit disk. If there is
no ambiguity we drop the index κ0 of M . Given a function u(x) : R+ → C we will denote
its ML -transform as Û(z). Applied to a univariate plane wave with wave number k and
amplitude u0 ∈ C this chain of transformations looks as follows

u0eikx L7−→ u0

s− ik
Mκ07−→ −iu0

κ0(z+1)− k(z−1)
. (6.21)

This results in a finite element formulation [61] which for the interior domain of interest keeps
the usual notion of approximating the wave function as a function of position in space whereas
on those parts of the boundary representing the cut-off cross sections of the leads a different set
of tensor-product polynomials is used. For the longitudinal direction they may be thought of as
modeling the behavior in a generalized frequency domain while keeping the spatial dependency
for the transverse direction. An important feature of HSEs is the ability to correctly take into
account constant magnetic fields.

The most important tool for converting the integrals over the semi-infinite domain of the
leads into integrals over some finite domain is the following identity [100] based on Cauchy’s
integral theorem

(u,v)R+ =
∞∫

0

u(r)v(r)dr =
1

2πi

∫
κ0R

û(s)v̂(s)ds (6.22)

=
κ0

iπ

2π∫
0

Û
(

e−iθ
)

V̂
(

eiθ
)

dθ =
κ0

iπ

(
Û ,V̂

)
S1 .



6.3. HARDY SPACE INFINITE ELEMENTS 93

Mapping the tilted real axis to the unit circle S1 is achieved by the Möbius transformation

ϕ(z) := iκ0
z+1
z−1

, z = e−iθ ,ℜκ0 > 0 ,

(6.23)

(M f )(z) :=
1

z−1
f (ϕ(z)) , f : κ0R→ C .

Due to the symmetry properties of the exterior domain Ωext = R+×∂Ωc = R+× [0,1] we can
make a separation ansatz factoring out the longitudinal direction x

Ψ(x,y) = ψ(y)u(x) , (6.24)

Φ(x,y) = φ(y)v(x) (6.25)

and apply the ML -transform to the longitudinal direction

ML Ψ(x,y) = ψ(y)(ML u)(z) , (6.26)

ML Φ(x,y) = φ(y)(ML v)(z) . (6.27)

Let us first apply the HSE method to a simplified case in which there is no vector potential
in the leads (independent of the issue of how to realize this in an experiment). Due to the
separation ansatz and the fact that on Ωext the potential only depends on the local transverse
coordinate y, cf. Fig. 6.2, the scalar products factorize

(∇Φ,∇Ψ)
Ωext

+(Φ, [V −E]Ψ)
Ωext

= (φy,ψy)Γ
(u,v)R+

(6.28)

+(φ ,ψ)
Γ
(ux,vx)R+ +(φ , [V −E]ψ)

Γ
(u,v)R+ .

Derivatives with respect to a coordinate are indicated by indices. By applying Eqs. (6.26)
and (6.27) we get as weak formulation of the transparent boundary condition

iπ
κ0

b(Φ,Ψ) = ∑
c∈{contacts}

({
(φy,ψy)Γc

+(φ , [V −E]ψ)
Γc

}(
Û ,V̂

)
S1 +(φ ,ψ)

Γc

(
Ûx,V̂x

)
S1

)
.

(6.29)

6.3.2 Incorporation of Magnetic Fields

In contrast to [101] we additionally have to incorporate the magnetic field into the boundary
conditions. The Landau gauge A = (−y,0,0) facilitates this task because: (i) On boundaries
perpendicular to the vector potential only the terms due to the transverse coordinate have to be
modified. (ii) in this gauge the vector potential can always be regauged transparently [22] so
that it is oriented parallel to the lead’s direction and thus perpendicular to the interface, i.e. in
the lead’s coordinate system it is again of the form A(x) = B(−y,0,0)T . Then, the boundary
term b(·, ·) has to be augmented by

2Bκ0

π
∑

c∈{contacts}

(
Ûx,V̂

)
S1 (φ ,−yψ)

Γc
. (6.30)
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In order to use the standard FEM approach we still need to define a finite dimensional
subspace of the functions on the unit circle. This is accomplished by using the span of a finite
set of complex trigonometric monomials restricted to the unit circle.

{z0,z1, . . . ,znH}, z = eiθ ,θ ∈ [0,2π) . (6.31)

For details see [61, 101].

6.3.3 Finite Element Discretization

As shown in [100] a ML -transformed function F̂ can still be decomposed into a solely
interface-dependent part f0 := f (xout) and a pure volume part F ∈ H+(S1) describing the be-
havior in the open domain Ωext\Γ. As it plays a role whether or not we transform a function f
or its radial derivative f ′ we have two rules how to represent this decomposition

F̂(z) =
1

2iκ0
[ f0 +(z−1)F(z)] , (6.32)

F̂ ′(z) =
1
2
[ f0 +(z+1)F(z)] , (6.33)

F(z) :=
2iκ0F̂(z)− f0

z−1
. (6.34)

Because of the limit theorem for Laplace transformations a ML -transformed function F̂ has
the important property [100, Lemma 4.13]

f0 = f (xout) = 2iκ0F̂(1) , (6.35)

f ′0 = f ′(xout) = −4iκ0
dF̂
dz

(1)−2iκ0F̂(1) . (6.36)

As cell T for our finite element we use the unit circle S1 in the complex plane extruded in the
direction of an adjacent edge e⊂ Γ on the interface Γ to the interior domain Ω. In the following
we will call this a Hardy cylinder. The polynomial space PT defined on this cell T is a tensor
product formed by the polynomial space V e

h containing the traces of the interior shape functions
restricted to the edge e ⊂ Γ with dimension m, the number of degrees of freedom (DoFs) on
an edge, and the discretized Hardy space for the radial direction which itself is a tensor product
of C and the space Πn of complex polynomials up to degree n. Its DoFs are the polynomial
degrees and the function value of the wave function at the interface

T = e×S1 , (6.37)

PT = (C×Πn)×V e
h , (6.38)

dim PT = (1+n+1)m . (6.39)

The shape functions on a Hardy cylinder are given by discretizing the separation ansatz

b jk : PT → C , b jk(y,z) = ϕ(y) jb̂k(z) . (6.40)
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Recalling the basic properties of Hardy spaces a natural choice of a finite-dimensional subspace
of H+(S1) in which an approximation Fh of F might be sought is given by using the span of
the first N +1 trigonometric polynomials. Thus, we can expand F̂h and F̂ ′h as

iκ0F̂h(z) = α−1b̂−1(z)+(z−1)
N

∑
k=0

αkzk =
N

∑
k=−1

αkb̂k(z) , (6.41)

F̂ ′h(z) = α−1b̂′−1(z)+(z+1)
N

∑
k=0

αkzk =
N

∑
k=−1

αkb̂′k(z) (6.42)

in order to approximate their exact values as given in Eqs. (6.32) and (6.33). This leads us to
a non-orthogonal set of shape functions b̂k for the function values and b̂′k(z) for the derivative
values, respectively. Their explicit expressions are

b̂−1(z) =
1
2

, (6.43)

b̂k(z) =
1
2

zk(z−1) 0≤ k ≤ n , (6.44)

b̂′−1(z) =
1
2

, (6.45)

b̂′k(z) =
1
2

zk(z+1) 0≤ k ≤ n . (6.46)

Denoting the first degree of freedom by a negative index may be a unusual, but becomes evident
when looking at the resulting matrices from this finite element method. The first DoF is the
one on the interface and by convention is counted as an interior DoF. As, on the other hand, it
is also addressable from the exterior it gets as index −1 to indicate that one grabs into the last
column of the matrix block representing the discretization of the interior.

Having defined the shape functions we can compute the matrices by making the following
ansatz for the discretized wave function in the exterior

Ψ̂h(y,z) = ∑
T

∑
j,k∈T

Ψ̂
T
jkb jk = ∑

T
∑

j,k∈T
Ψ̂

T
jkϕ(y) jb̂k(z) . (6.47)

Note that the indices i and j represent the local enumeration of the shape functions on a Hardy
cylinder T . Plugging this ansatz into the exterior part of the variational form, Eq. (6.29), and
testing with bil gives the entry of the global system matrix

Hil, jk = −2iκ0 ∑
T

∑
j,k∈T

(
∇bil,Ψ̂

T
jk∇b jk

)
T

+2iκ0E ∑
T

∑
j,k∈T

(
bil,Ψ̂

T
jkb jk

)
T

(6.48)

= −2iκ0 ∑
T

∑
j,k∈T

(ϕi,ϕ j)Γ

(
b̂′l, b̂

′
k
)

S1 Ψ̂
T
jk

−2iκ0 ∑
T

∑
j,k

(
ϕ
′
i ,ϕ
′
j
)

Γ

(
b̂l, b̂k

)
S1 Ψ̂

T
jk

+2iκ0E ∑
T

∑
j,k

(ϕi,ϕ j)Γ

(
b̂l, b̂k

)
S1 Ψ̂ jk . (6.49)
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In these expressions the individual matrix entries from the interface contributions are readily
identified. They are formed by the traces of the interior finite elements on the interface Γ

between the finite and infinite domain and will be denoted by

MΓ = (ϕi,ϕ j)Γ , (6.50)

AΓ = (ϕ ′i ,ϕ
′
j)Γ . (6.51)

For the radial Hardy space contributions we analogously denote the entries of the mass and
stiffness matrices as

M̂ = (b̂l, b̂k)S1 , (6.52)

Â = (b̂′l, b̂
′
k)S1 =

1
2π

∫
S1

b̂′l(z)b̂
′
k(z̄) |dz| . (6.53)

where we have suppressed the indices at the entries of the matrices M and A. Going back
to Eq. (6.48) and using tensor notation we get for the exterior part of the global system matrix

Hext = −2iκ0
[
MΓ⊗ Â+AΓ⊗M̂−EMΓ⊗M̂

]
Ψ̂ . (6.54)

6.3.4 Computation of the Matrix Entries

The entries of Hext are obtained from analytical evaluation of Eqs. (6.52) and (6.53) in which
we parameterize the unit circle by z = eiθ . For coupling on the interface we get

M̂−1,−1 =
1
4

= Â−1,−1 . (6.55)

The interactions of interface DoF and volume shape functions b̂k(z), k ≥ 0 are

M̂−1,k =
1

2π

∫
S1

1
4

(
ei(0−(k+1))θ − ei(0−k)θ

)
dθ

=
1
4
(δ0,k+1−δ0,k) = − 1

4
δ0,k k ≥ 0 (6.56)

Â−1,k =
1
4
(δ0,k+1 +δ0,k) = +

1
4

δ0,k k ≥ 0 (6.57)

For the truncated part of the leads we have to compute the interactions among the volume shape
functions b̂k(z), j,k ≥ 0, which amount to

M̂ j,k =
1

2π

∫
S1

1
4

(
ei( j+1)θ − ei jθ

)(
e−i(k+1)θ − e−ikθ

)
dθ

=
1

2π

∫
S1

1
4

(
ei( j−k)θ − e−i( j−(k−1))θ e−i( j−(k+1))θ − e−i( j−k)θ

)
dθ

=
1
4
(−δ j,k−1 +2δ j,k−δk, j+1) , (6.58)

Â j,k =
1
4
( δ j,k−1 +2δ j,k +δk, j+1) . (6.59)
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In summary, the matrix representation of the radial part of the hardy space boundary conditions
is given by the matrices

M̂ =
1
4



+1 −1
−1 +2 −1

−1 +2 −1
−1 +2 −1

. . .
−1 +2 −1

−1 +2


(6.60)

Â =
1
4



1 1
1 2 1

1 2 1
1 2 1

. . .
1 2 1

1 2


(6.61)

6.4 Software Validation on the Quantum Wire

For validating our methods we consider the simple quantum wire and study the different aspects
of the quality of the numerical solution individually. All computations have been based on the
finite element library deal.II 2. To show the usefulness of the new method for unbounded
domains we simulate the quantum transport through a semi-open corner device as used in
magnetic focussing experiments and which is discussed in [95]. In the simulation the domain
of the device is truncated to roughly 5× 5µm which contains the experimentally interesting
part. This is possible only by imposing transparent boundary conditions.

Dependence on HSE parameters

We did not find any significant effect of the HSE parameters, i.e. κ0 and nH , on the current
conservation, provided the method is correctly employed, i.e. κ0 defines a line that does not
intersect with the spectrum of the Hamiltonian. Therefore, in the following we rather focus on
the effects on the numerical error induced by using different finite elements and mesh widths.

Perfect Lead

Figure 6.3 shows a contour plot of the electron density |Ψ|2 in an empty channel for two
different polynomial degrees of the finite elements. Since the channel is empty we have as
analytic solution for a wave incident from the left Ψ(x,y) ∝ sin(πy)eikx and |Ψ|2 ∝ sin(πy), i.e.
the electron density does not have any explicit dependence on the longitudinal coordinate x as
it is to be expected. We chose Lx = 6.9 as length in x-direction and Ly = 1 as width. For linear
elements we chose mesh widths hx = .121 and hy = .125. For the quartic elements we used
hx = .484 and hy = .5. Thus, in both cases we had 9 degrees of freedom (DoFs) on the width
of the channel and 1026 DoFs in total. As Fig. 6.3 shows, at this resolution the linear elements

2www.dealii.org
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Figure 6.3: Higher order FEM solution (solid) vs. linear elements (dashed). Contour lines
represent electron density |Ψ|2, EF = 28, Lx = 6.9, ndo f s = 1026.

still produce some wiggling structure in x-direction whereas the quartic elements produce a
constant profile, i.e. real and imaginary part of the wave function have the correct phase shift
of π/2. This could be further quantified by a more thorough convergence analysis but the
picture norm reveals the physical consequences of the effect better.

Perfect Lead with Potential Barrier

The quality of the current conservation in the presence of a scatterer is studied next. The
results are shown in Figs. 6.4 and 6.5. We use a simple step barrier of height U = 20 and
length L = 2.25 in a section of an infinite wire with domain Ωint = [0,xout ]× [0,1] with xout = 6,
see inset of Fig. 6.4. The conductance is computed from Eq. (6.7) and depicted in Fig. 6.4
together with the corresponding error in the current conservation for R0 +T0 as function of the
Fermi energy and shows the expected quantization and oscillations near its jumps as it can be
found in standard textbooks. The steps in the conductance reflect the number of open modes
whereas the oscillatory behavior is due to the barrier length.

To compare the quality of the current conservation three combinations of finite elements
and mesh refinement which all lead to the same number of DoFs have been used. The under-
lying coarse grid consists of six cells of size 1×1. Since deal.II for two-dimensional compu-
tations only provides quadriliteral cells all finite elements are constructed from tensor products
of finite elements of intervals. For linear elements (Q1) the mesh was refined five times so that
the final mesh width was h = 1/32. For quadratic elements (Q2) which (away from the domain
boundaries) have two degrees of freedom per coordinate direction per cell the meshwidth was
h = 1/16. Similarly, quartic elements (Q4) have 4 degrees of freedom per coordinate direction
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per cell and require only h = 1/8 to obtain the same number of DoFs.
The lower part of Fig. 6.4 clearly shows that higher order elements pay off by two effects.

On the one hand, the error behavior for elements of even order is much smoother than for
elements of odd order, especially linear ones. On the other hand, although quartic elements
were employed on the coarsest grid the error in the current conservation is by almost two
orders of magnitude smaller than for quadratic elements. This can be understood by looking
at the trace theorems from finite element theory [81] which predict that the error in Eq. 6.5
induced by replacing the exact wave function by the numerically computed one should scale
like hq where q is the polynomial order of the element. Hence, in case of quartic elements a
global refinement of the mesh by a factor of 2 should reduce the error by a factor of 16. This is
highlighted in Fig. 6.5 by choosing a log16 scale for the abscissa.

6.5 Magnetic Focussing in 2DEGs

Electrons moving in a magnetic field B with

source

Classical Trajectories

drain

magnetic
field

Figure 6.6: Classical electron trajectories
in the magnetic focusing device studied
by Metzger [95]. Colors indicate different
strengths of the magnetic field.

velocity v are subject to the Lorentz force

FL = q(v×B) . (6.62)

For electrons the charge q is negative. Hence,
electrons moving from left to right in Fig. 6.6
curve downward if the magnetic field points into
the plane of the figure. From the balance of cen-
tripetal and Lorentz force we can compute the
classical cyclotron radius

Rc =
m|v|
q|B|

. (6.63)

In the absence of a potential electrons of energy
E = mv2/2 hit the drain if Rc = R, cf. Fig. 6.7. For
this to happen the magnetic field strength must be

B0 =
√

E
R

. (6.64)

As units for B0 we choose the dimensionless ones introduced in Sec. 6.2.2. In a quantum me-
chanical description of a moving electron subject to a constant magnetic field perpendicular to
the plane of motion the classical behavior should be recoverable from the wave function Ψ.
When plotting its modulus as in Fig. 6.11 the classical trajectories should appear as local max-
imums in areas where no self-interference occurs. In areas where the wave function interferes
with itself due to reflections at nearby hard walls the wave trains should be perpendicular to
the local direction of the trajectories. Similar to the classical setting only for selected values of
the magnetic field strength the electronic wave function should be able to penetrate from the
bulk into the drain. For geometric reasons this should happen mainly at integer multiples of B0.
Measuring the quantum mechanical current, Eq. (6.5) at the terminal cross section of the drain
and plotting its normalized form, Eq. (6.6) against the magnetic field measured in units of B0
gives the magneto-conductance curves in Figs. 6.8-6.14. Peaks indicate that a transmission of
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electrons from source to drain has taken place at the corresponding value of the magnetic field.
When scaling the magnetic field with B0 the transmission becomes a universal feature which
does not depend on the absolute size of the device anymore. Due to the fact that electrons
can leave the source under different angles there is a multitude of classical trajectories leav-
ing the source and the peak height is a measure for how many classical trajectories lead from
source to drain. This allows to construct a probabilistic theory for the transmission based on
the classical trajectories which then can be compared to the quantum theory. A representative
selection of results for the magneto-conductance and associated electron densities are shown
in Figs. 6.8-6.14 for the system sketched in Fig. 6.7. It models a magnetic focusing device pre-
viously studied by Metzger [95] who computed the conductance from an ensemble of classical
single-electron trajectories.

Before we can simulate the quantum mechanical properties of the device sketched in Fig. 6.7
by solving the Schrödinger equation (6.10) for fixed energies E to get the scattering states Ψp

for the various input modes we have to check whether we can trust the Hardy space transparent
boundary conditions, i.e. physical results do not depend on the method’s parameters.

R L LAoff LAdecay

R L LAoff LAdecay

R L LAoff LAdecay

source

drain

R L LAoff LAdecay

R L LAoff LAdecay

regauging 

Figure 6.7: Coarse grid of the focusing device. Grey arrows indicate in- and outbound waves
on the transparent boundaries. Color gradients denote the areas where the vector potential is
turned off. In the outlet this must be preceeded by a regauging step.
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6.5.1 Choice of Model parameters

Because of the size of the device used in experiments we only consider the physically inter-
esting part of it, i.e. the lower left corner with dimensions of about 5x5µm. Much of the
experimental effort is spent on connecting the leads to the bulk of the device by quantum point
contacts (QPC) so that electrons entering the device from the exterior reservoirs have a well-
defined electronic state and a very narrow distribution of their direction of motion. The QPCs
connecting the wide leads to the bulk are modeled by narrowing the leads to a third of their
width where they are attached to the bulk. In order to directly compute the wave function
several modifications are necessary:

(i) Close to boundaries parallel to the vector field we turn off the vector potential smoothly
in a strip of width LAdecay (indicated by the color gradient ranging from blue or red to white
in Fig. 6.7) such that no artificial reflections occur. This allows us to re-use the transparent
boundary conditions from the Helmholtz case where the leads have been cut off. The vector
potential merely constitutes an additional phase factor but does not change the energy of an
electron which justifies this truncation. Using the continuous regauging method from [22] we
can locally change the direction of the vector potential in the leads such that we subsequently
may turn it off in a reflectionless manner (indicated by the color gradient ranging from blue to
red in Fig. 6.7). This does not change the quantum mechanic flux through the leads’ artificial
cut off boundaries where we measure. Hence, we have restored a situation in which boundary
conditions for the simpler Helmholtz case suffice.

(ii) To model the point-like contacts between the 2DEG and the wires the boundary is
shaped like a shallow funnel on the side of the 2DEG.

(iii) The electron density ne− used in the magnetic focussing devices studied by Metzger in
his thesis [95] is in the range of 2.2 to 2.5·1011cm−2. The electron density can be computed
from the volume occupied by one state in k-space. In 2D this is given by 4π2/L2 where L2 is the
area covered by the 2DEG. The volume of the Fermi sphere in 2D is given by πk2

F . Including
spin degeneracy the number of states in the Fermi sphere is given by NkF = 2πk2

F/(4π2/L2).
Their density is obtained by dividing by the sample size again which yields ne− = NkF /L2 =
k2

F/2π = 2π/λ 2
F . From this we can calculate the Fermi wavelength as a function of the electron

density in cm λF =
√

2π/ne− . In the experiments the distance from the lower left corner to the
centers of the QPCs, i.e. the cyclotron radius R, is 3µm. To minimize the computational effort
it turned out that in computational units R = 6.5a which corresponds to 13 cells in the coarse
grid is an economic choice. Thus, 1cm = 104R/3 where a is our length scale which emerged
from the dimensional analysis in Sec. 6.2. Therefore, up to ±10% the Fermi energy in our
dimensionless units is EF = k2

F = 2πne−(3 · 10−4/Rc)2 ≈ 3000 and the Fermi wave length is
λF = 2π/

√
EF ≈ .12a or 4 wavelengths per coarse grid cell. The computations presented here

have been performed for EF = 715.5, i.e. ne− ≈ 6 ·1010cm−2, which lies half-way between the
energy needed for opening the 8th and 9th mode in the reservoir part of the leads, respectively.

Additionally, we provide the possibility to add a ”door sill” potential Vds in the constrictions
to let only pass electrons with kinetic energy in the direction of the lead (long straight arrow
in the source lead in Fig. 6.6). In the local coordinates of the leads the shape of Vds is Vds =
αEF cos2(πx/2Lds), α ∈ [0,1) and Lds is a parameter measuring the width of the door sill. For
|x| > Lds we set Vds ≡ 0. The parameter Lds is of the order of half of the size of a coarse grid
cell. Electrons with a finite amount of kinetic energy for a movement transverse to the direction
of a lead (zig-zagging arrows in Fig. 6.6) are reflected.
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6.5.2 Independence of Method parameters

E = 160

nH = 10
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T B/B0

Figure 6.8: The number of DoFs of the Hardy space elements does not change the transmission.

Before assessing the physical properties of the device in more detail the dependence on
the parameterization of the boundary conditions has to be tested. As in the case of a quantum
wire the Möbius parameter κ0 does not play a significant role as long as the corresponding axis
in the complex plane does not intersect the spectrum of the Hamiltonian. The independence
of the conductance of the number of Hardy-space DoFs nH is demonstrated in Fig. 6.8. The
Fermi energy, here denoted as E, and the nH used in these tests is given in the legend of the
figure. The overall system size is L = 8 and geometric parameters for the decay of the vector
potential are LAo f f = 6.5 and LAdecay = .75. To emphasize that for practical purposes the curves
are identical the transmission values have been arbitrarily shifted by 0.0015 with respect to
each other. At the northern boundary the cut off of the vector potential can be made sharp. For
finite values of the magnetic flux the wave function almost vanishes close to boundary.

Varying the position of the subdomain in which the vector potential decays does not influ-
ence the transmission. The width LAdecay slightly changes peak heights for values of the mag-
netic flux which are large compared to what the computational mesh can resolve, see Fig. 6.9.
Nevertheless, the positions of the peaks do not change.

The dependence of transmission on energy is shown in Fig. 6.10. All simulations were
done with the same spatial resolution. Rescaling of the magnetic field with B0 reveals the
universality of the peaks positions. For larger magnetic fields (B/B0 ' 3) the mesh is not able
to properly resolve the features of the wave function. Therefore, the last resolved peak of a
transmission curve is considered to be dominated by numerical artifacts.
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L = 6.5, LAoff = 5.75, LAdecay = 0.75
L = 8.0, LAoff = 6.50, LAdecay = 0.75
L = 8.0, LAoff = 7.25, LAdecay = 0.75
L = 8.0, LAoff = 6.70, LAdecay = 1.30

T B/B0

T
B

/B
0

E = 120, nH = 5

Figure 6.9: Transmission for different system sizes and cut off parameters LAo f f and LAdecay .

T B/B0

T
B

/B
0

Figure 6.10: Energy dependence of the transmission as a function of magnetic flux. The bulk is
of size 6.5x6.5. The strip in which the vector potential decays starts at x = 5.75 and ends at 6.5.
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6.5.3 Electron Densities and Conductance

Figure 6.11 is the quantum mechanical complement to Fig. 6.6. It shows the modulus of the
wave function Ψ0 for four different values of the magnetic field strength. The modulus is the
square root of the electron density and simpler to plot in a meaningful way. In the classical
picture electrons enter through the lead on the left and, in case of transmission, leave through
the lead on the right. The top left subfigure shows a situation which corresponds to the blue
trajectory in Fig. 6.6. The bottom left figure is equivalent to the green trajectory. The top right
represents a non-conducting state, indicated by the negligible modulus of the wave function in
the source drain. In the subfigure on the lower right-hand side the magnetic field strength is
such that the classical trajectory would make three contacts with the walls of the device before
hitting the drain. This case also shows why a fixed mesh width leads to insufficiently resolved
transmission peaks for high magnetic fields. High magnetic fields focus the wave function
such that at some point the extent of the local maximums of the modulus perpendicular to the
classical direction of motion is smaller than the diameter of a grid cell.

Transmission curves for a device with and without chamfered corner are shown in Fig 6.12.
The chamfered corner moves the peak at B/B0 ≈ 2 to higher values of the magnetic field. This
can be understood by considering the classical trajectories. The chamfered corner hinders the
trajectories for B/B0 / 2 to hit the drain.

A purely quantum mechanical feature of the transmission curves are all the small wiggles
between the main peaks which are located around the integer values of B/B0. The wiggles are
caused by the small local maximums in the electron density close to the hard walls which by
increasing magnetic field strength get pushed into the drain one after another.

Figure 6.11: Modulus of Ψ0. Top: Second magnetic focussing peak (left) and non-transmitting
state at B/B0 ≈ 3.5 (right). Bottom: Third (left) and fourth (right) focussing peak.
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Figure 6.12: Transmission curves for all open input modes at E = 715.5, L = 7, in the clean
sample and without barriers in contacts. Coarse meshes are shown in insets and differ only by
the shape of the lower left corner.
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Electron Beam Collimation in the Contacts

Adding local barrier potentials in the QPCs collimates the electron beam and suppresses the
caustic peak located at

√
2B0 and other peaks. By varying the height of the ”door sill” potentials

it can be figured out which peaks are mostly due to electrons leaving the source under a finite
angle with respect to the lead axis. The suppression of the caustic peak agrees with the results
from semi-classical methods [95]. Figure 6.13 shows the results for varying the height of the
door-sill potentials (given in units of the Fermi energy in the legend) for L = 9, Rc = 6.5,
EF = 715.5 and no chamfered corner.
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Figure 6.13: Suppression of caustic peaks by door-sill potentials.

Influence of disorder

We close this chapter by first results on the influence of disorder on the magneto-conductance.
A common source for a disorder potential in a semiconductor heterostructure the layer of donor
atoms beneath the 2DEG. Its strength is measured in units of the Fermi energy EF and common
values are in the range of a few per cent EF . A simple model for disorder is a superposition of
N plane waves with random phases ϕi, wave numbers ki, and directions αi

V (x,y) =
γ

N

N

∑
i=1

cos [ki · (x cosαi + y sinαi)+ϕi] . (6.65)

The standard deviation of the potential can be adjusted by choosing the factor γ accordingly.
Wave numbers are usually chosen from a narrow gaussian distribution around some mean wave
number k0. The correlation length lc is proportional to 1/k0, cf. [118].

The transmission curves are given in Fig. 6.14 and have been measured for various real-
izations of a random plane wave potential with 50 waves and correlation length lc = .2275.
Each realization is identified by the seed used for the random number generator. The seed is
given in the legends of the figure. The fixed parameters are E = 715.5, B0 = 4.863 and L = 8.
The chosen energy corresponds to a Fermi wave length λF = .235. The barrier height in the
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contacts is 0.9E. The strength of the disorder potential is 0.02E. The coarse meshes are given
as insets. in agreement with [95] we observe a splitting of the first focusing peak at B/B0 = 1.
Our simulations show that the broad peak over the range B/B0 ∈ (2.4,3) is also sensitive to
the details of the realization of the disorder. The shape of the double peak at B/B0 = 2 mainly
depends on the presence of the chamfered corner but only little on the details of the disorder
since around B/B0 ≈ 2 the conductance curves are all very close and almost fall on top of each
other. What changes, though, is the peak height. Yet, in contrast to the odd-numbered peaks
the position does not vary with the disorder.
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Figure 6.14: Transmission for various realizations of a random plane wave potential.



Chapter 7

Exponential Integrators for Quantum
Time Propagation

This chapter is not so much about solving yet another problem from scratch. Instead it provides a
blueprint for combining topics of previous chapters into a solver for a new problem class. The basis
of quantum time propagation is a fast application of the Hamiltonian to a given state. For a numeri-
cal simulation this translates to the need of a fast evaluation of matrix vector products. This has been
discussed in Sec. 1.2 and 3.3.1. The evolution of a quantum state over time can be described by a
matrix exponential, at least symbolically. In a numerical setting the exponential will become a finite
series for which we will put to good use the ideas behind the polynomial preconditioner from Sec. 3.2.4.
Time-dependent quantum mechanics are often studied in systems which are much larger than what is nu-
merically feasible. Hence, accurate transparent boundary conditions are needed in order to truncate the
physically uninteresting parts of the domain which was the main theme of chapter 6. Last but not least,
SciPAL’s operator-based API allows for a concise implementation when assembling all the pieces into
a simulation framework for time-dependent phenomena in disordered semiconductor heterostructures.

7.1 Quantum Time Propagation in a Nutshell

Quantum wave packet dynamics is another broad class of problems which dramatically profit
from parallelization just by using a parallelized matrix-vector product. Well-known represen-
tatives of this class are molecular charge and energy transfer processes [94], electrodynamics
of passive media, e.g. photonic materials [29], and ab-initio calculation of chemical reac-
tion rates [97, 34]. Especially for the latter exponential integrators are considered as a good
choice [142, 109]. Besides single-particle systems like in chapter 6 or in [78], the dynamics
of dissipative or open quantum systems [62, 138] are frequently investigated by wave packet
methods. From the propagation of the density matrix the time-correlation function can be
computed which is the Fourier transform of the spectral density. The latter can be directly
compared to experimental measurements of absorption spectra. A seminal application of the
theory of open quantum systems [138] is the understanding of photosynthesis at the atomic
level in light harvesting systems [36].

The quantum aspects of the dynamics of virtually all of these problems can be described
by the time-dependent Schrödinger equation

i∂tΨ = HΨ . (7.1)

109
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The physical properties of a quantum problem and the numerical artifacts like transparent
boundary conditions are completely encoded in the details of the Hamiltonian H. Provided H
is time-independent and at some initial time t0 a state Ψ(t0) is known, the solution Ψ(t) at all
later times t > t0 and thus the dynamical behavior is, at least in a formal sense, described by

Ψ(t) = e−i(t−t0)HΨ(t0) . (7.2)

To compute Ψ(t) from Eq. (7.2), rather than directly solving the PDE (7.1), one has to find
a way to evaluate the action of the propagator e−i(t−t0)H on the initial state Ψ(t0). In general,
to evaluate the matrix exponential for large intervals t− t0 the semigroup property of e−i(t−t0)H

is employed. Instead of one big leap rather N small steps of length τ = (t− t0)/N are taken

Ψ(t) =
(
e−iτH)N

Ψ(t0) . (7.3)

A traditional method for approximating the incremental propagator e−iτH is operator splitting.
The Hamiltonian H = T +V is the sum of kinetic, T = ∇2/2m, and potential energy, V . After
discretization the potential energy is a diagonal matrix whereas the kinetic energy leads to some
banded matrix. However, in momentum space the kinetic energy is essentially the square of
the modulus of the wave vector k and T becomes a diagonal matrix T̂ = |k|2 (the factor 1/2m
is absorbed in properly chosen units). This observation led to a symmetric operator-splitting
scheme [44] based on the Baker-Campbell-Hausdorff series for the incremental propagator

e−iτH = e−iτV/2e−iτT e−iτV/2eO(τ3) . (7.4)

Since T and V do not commute this splitting is not exact. The linear and quadratic error
terms are canceled by the symmetric distribution of the V/2 terms. Application of the ki-
netic energy operator to a state Ψ in momentum space is realized by computing the Fourier
transform F (Ψ) of Ψ, multiply by e−iτ|k|2 and transforming back. Therefore, the complete
propagation scheme for one time step is

Ψ(t + τ) = e−iτH
Ψ(t) = e−iτV/2F−1

{
e−iτT F

(
e−iτV/2

Ψ(t)
)}

. (7.5)

Im(z)

Re(z)

σ(A)

D   

Im(w)

Re(w)

 R

 f
∂D = {f(w) : |w| = R}

Figure 7.1: The exterior mapping function f constructs the inclusion set D as image of a circle
of radius R. Blue dots represent dominant eigenvalues obtained from the Arnoldi process.
These are used to fit known shapes of D.
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7.2 Propagation Scheme based on Faber Polynomials

The appealing property of Eq. (7.5) is that one does not need to know anything about the
spectrum σ(H) of H. Yet, if some information about σ(H) is available the operator-splitting
is not necessary and a more accurate propagation scheme can be devised by expanding the
incremental propagator into a Faber series. Faber series are based on Faber polynomials which
were introduced to generalize the Taylor expansion from the unit disc to an arbitrary simply
connected domain D [43]. They are unique with respect to the shape of the particular domain D.

7.2.1 Faber Polynomials

Provided D ⊂ C is compact, 0 /∈ D and the complement Dc is simply connected in C := C∪
{∞}, Riemann’s Mapping Theorem guarantees the existence of a conformal map f : Sc→ Dc,
known as exterior mapping function (EMF) of D, cf. Fig. 7.1. S is the unit disc and Sc its
complement. The starting point for determining the coefficients of Faber polynomials is the
expansion of the EMF and its inverse into Laurent series

f (w) = t

(
w+a0 +

∞

∑
k=0

ak

wk

)
, (7.6)

f−1(z) =
z
t
+b0 +

∞

∑
k=0

bk

zk , (7.7)

where t := f ′(∞) is the transfinite diameter of D. Faber polynomials Fn(z;D) for a given domain
D are defined as the regular part of [ f−1(z)]n, n≥ 0. Given the Jordan curve JR := { f (w) : |w|=
R > 1} which forms the boundary of the open set J the nth Faber polynomial for D = J̄ is im-
plicitly defined by its generating function

f ′(w)
f (w)− z

=:
∞

∑
n=0

Fn(z)
wn+1 , |w|> R , z ∈ J . (7.8)

The sequence starts with F0(z) = 1 and continues for n≥ 1 with

Fn(z) =
z
t
Fn−1(z)−

n−2

∑
j=0

b jFn−1− j(z)−nbn−1 (7.9)

which is of exact degree n with leading term (z/t)n. This general recursion requires to keep all
previously computed polynomials which would lead to an uneconomic propagator because of
the quadratic complexity with respect to the polynomial degree. According to [84] Eq. (7.9)
can be shortened to a three-term recurrence if the EMF is a rational function of the form

f (w) ≡ P(w)
Q(w)

:=
w2 + µ1w+ µ0

ν1w+ν0
. (7.10)

The parameters ν0, ν1, µ0, µ1 are completely determined by the shape of D.
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7.2.2 Polynomial Approximation of the Exponential Integrator

One of the lessons of chapter 3 was, that although rich in matrix-vector products (MVP),
for PDEs polynomial preconditioning is inferior to other preconditioning methods since gains
from parallelization are balanced by the large number of MVPs needed to achieve convergence.
The reason is that the asymptotic convergence rate R, Eq. (3.27), which measures the reduction
of the residual per iteration step, approaches one with decreasing mesh width.

However, in the context of quantum time propagation the situation changes as R = 1 would
mean a perfect conservation of the norm of the wave function which is one of the fundamen-
tal properties of a quantum mechanical system. Although very similar from a technical point
of view, propagation of a wave packet requires one additional step compared to precondition-
ing. For the latter it suffices to recursively compute one Faber polynomial Fn of desired degree n
whereas for the former we additionally have to approximate the propagator e−itH by a linear
combination of Faber polynomials. Just as for the operator-splitting scheme the semigroup
property is employed so that it is the incremental propagator e−iτH which has to approximated
by polynomial expansion

Ψ(t) =
(

e
−itH

N

)N
Ψ(t0)≈

(
m

∑
n=0

cnFn(H)

)N

Ψ(t0) . (7.11)

It is known from complex analysis that Faber polynomials [135] provide a near-best approxi-
mation. For the practical purposes this means that this expansion is the best one can get. To
achieve a good approximation of e−iτH we need a good estimate of σ(H), the spectrum of H,
which can be obtained from the Arnoldi procedure in Sec. 3.1 by diagonalizing the Hessenberg
matrix. Given an estimate of σ(H) we determine an inclusion set covering as little of the upper
half of the complex plane as possible to avoid blow up of the factor max∂D |exp(−iτz)|, see the
discussion of the convergence properties of the scheme in [29]. The expansion coefficients cn

only depend on the incremental timestep τ and the shape of the inclusion set D. The latter is the
image of a circle of radius r under the exterior mapping function f , Eq. (7.10). The coefficients
are obtained from Cauchy’s integral formula for a holomorphic function g : D→ C. For z ∈ D
and by the definition of the Faber polynomials, Eq. (7.8), we have

2πi g(z) =
∮

∂D

g(u)
u− z

du (7.12)

=
∮
|w|=R

g( f (w))
f (w)− z

d f
dw

dw (7.13)

=
∮
|w|=R

g( f (w))
∞

∑
n=0

Fn(z)
wn+1 dw (7.14)

=
∞

∑
n=0

Fn(z)
∮
|w|=R

g( f (w))w−(n+1)dw . (7.15)

Set g( f (w)) = exp(−iτ f (w)) and the integral in the last expression gives

cn = cn(τ) =
1

2πi

∮
|w|=r

e−iτ f (w)w−(n+1)dw . (7.16)
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7.2.3 Choice of Inclusion sets

In quantum chemistry or photonics the inclusion set often is approximated by ellipses if ana-
lytical expressions for the coefficients cn are desired or the spectrum is enclosed in polygons
for which the EMF can only be computed numerically.

In case of an ellipse, i.e. f (w) = a2w + b2/w, a,b ∈ R and noting that on the unit cir-
cle aw/b = eix we have 2abcos(x) = a2w + b2/w, the integral in Eq. (7.16) can be computed
analytically. By use of elementary trigonometric identities and the definition of Bessel’s first
integral [10, Eq. 9.1.21] we get for the coefficients

cn(τ)≡ i−nJn(2abτ) =
1

2π

(a
b

)n ∫ 2π

0
e−iτ2abcos(x)−inxdx. (7.17)

The asymptotic behavior of the Bessel function, Jn(u) = O((u/2)k), for small arguments,
i.e. u �

√
k +1, leads to an exponential convergence of the Faber series, Eq. (7.19), pro-

vided u = 2abτ < 2. The disadvantage of ellipses is the possibly large area which has to be
covered in the positive half-plane of C leading to more terms required in the polynomial ex-
pansion of e−iτH .

The great achievement of [83] was the introduction of croissant-shaped, non-convex inclu-
sion sets with a closed form for the EMF as given in Eq. (7.10) and a short recursion for the
Faber polynomials. In that case the coefficients are given by

cn(τ) =
1

2πi

∮
|w|=r

e−iτ w2+µ1w+µ0
ν1w+ν0 w−(n+1)dw . (7.18)

7.2.4 Propagation Polynomials

The propagation from t to t + τ requires to compute

Ψ(t + τ) =
m

∑
n=0

cnFn(H)Ψ(t) (7.19)

by sequentially computing

ψn := Fn(H)Ψ(t) (7.20)

and then forming the linear combination

Ψ(t + τ) :=
m

∑
n=0

cnψn . (7.21)

As Eq. (7.16) shows all the coefficients cn can be computed in advance and thus are considered
as known in the following. The numerical approximation of Ψ(t + τ) will be denoted as Ψm

and ψn will be used synonymously for the numerical approximation of Fn(H)Ψ(t).
To compute the action of the nth Faber polynomial on the initial state r0 = F0Ψ(t)≡Ψ(t)

the propagation polynomial (it plays the same role as the initial residual in Krylov methods)
will be approximated by normalized Faber polynomials F̃n(z), i.e. F̃n(0) = 1 and

ψ̃n = F̃n(H)r0 =
1
ρn

Fn(H)r0 (7.22)
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where the normalization constant is given by

ρn := Fn(0) . (7.23)

To apply the theory for non-convex inclusion sets the recursion for the Faber polynomials has
to expressed in terms of shifted Faber polynomials F̂n which are related to the original ones by

F̂n(z)−Fn(z) =
(
−ν0

ν1

)n

=: Sn , ν0 6= 0 , (7.24)

F̂n(z)−Fn(z) = 1 =: Sn , ν0 = 0 . (7.25)

The sole reason for their introduction is the fact that shifted Faber polynomials can be expressed
in terms of the zeroes w1(z) and w2(z) of an auxiliary polynomial P(w)− zQ(w)

(w−w1(z))(w−w2(z)) = w2 +(µ1−ν1z)w+(µ0−ν0z) (7.26)

and thus w1(z) and w2(z) are given in terms of the parameters of the EMF in Eq. (7.10). The
explicit expression for the shifted Faber polynomials is

F̂n(z) = w1(z)n +w2(z)n, n≥ 1 . (7.27)

As shown in [84] (Thm 3.1) for domains Moebius-equivalent to an ellipse shifted Faber poly-
nomials can be computed from a three-term recurrence with coefficents which are functions of
the zeroes w1(z) and w2(z). For convenience we introduce some auxiliary functions

2W (z) := w1(z)+w2(z) = ν1z−µ1 ,

V (z) := w1(z)w2(z) = µ0−ν0z .

In terms of these functions the recursion is given by

F̂0(z) = 2

F̂1(z) = 2W (z)
F̂n(z) = 2W (z)F̂n−1(z)−V (z)F̂n−2(z) , n≥ 2 . (7.28)

By grouping terms according to the dependence on z of the coefficients and defining

vn(z) := ν1F̂n−1(z)+ν0F̂n−2(z) (7.29)

the final form of the nth polynomial is

F̂n(z) = zvn(z)−µ1F̂n−1(z)−µ0F̂n−2(z) . (7.30)

From this recursion we can immediately deduce a recursion for the normalization factor by
evaluating Eqs (7.24) and (7.25) at z = 0 which gives

F̂n(0) = −µ1F̂n−1(0)−µ0F̂n−2(0) , n≥ 2 , (7.31)

ρn = F̂n(0)−Sn , n≥ 2 . (7.32)
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with the special values ρ0 = 2 and ρ1 =−µ1−S for initialization. In terms of the shifted Faber
polynomials the propagation polynomial is

pn(z) =
1
ρn

[
F̂n(z)−Sn] (7.33)

which follows from Eq. (7.22). For the normalized intermediate states we get

ψ̃n = pn(z)r0 . (7.34)

For the final state we have

Ψm = cmψm +
m−1

∑
n=0

cnψn

= cmψm +Ψm−1 = cmρmψ̃m +Ψm−1 . (7.35)

The polynomial corresponding to the recursive computation of the final state plays the same
role as the iteration polynomial in polynomial preconditioning but is simpler to compute.
Hence, for implementing the scheme we can copy the MATLAB pseudo code given in Liesen’s
PhD thesis and use it for quantum time propagation in wave packet methods after the proper
modifications for the computation of Ψm.

Due to the exponential convergence of the Faber series [42] the point of truncation, i.e.
the value of m in Eq. (7.19) is chosen such that cm ≤ Tol. The real parameter Tol is a user-
prescribed tolerance, e.g. Tol = 10−15 like in [29]. Since the ck can all be computed prior to
the first timestep there computation can be utilized to dynamically determine m which is then
kept fixed during the whole simulation as the ck only depend on the spectral properties of H
which are time-independent.

7.3 Time-Dependent Magnetic Focussing

Chapter 6 gave a detailed account of the computation of stationary currents due to ballistic elec-
tron transport through a two-dimensional electron gas. The particular physical issues addressed
were the influence of an external magnetic field and the presence of disorder. A more intuitive
picture of electron propagation can be obtained from time-resolved simulations of the quan-
tum mechanical system as recently discussed [78] which uses the operator-splitting scheme
together with inexact absorbing boundary conditions. The last task is to design an initial state.
The easiest realization is to use a wave packet with a Gaussian distribution of velocities (wave
numbers). In real space it is of the form

Ψ(x, t = 0) =
exp
(
− |x−x0|2

2a2 + a2k2
0

4

)
a
√

πI0(a2k2
0/2)

J0(k0|x−x0|) . (7.36)

It is parameterized by the mean wave number k0, the initial position x0 and the half width 1/a
of the wave number distribution. The functions J0 and I0 denote Bessel functions of the first
and second kind, respectively. As of writing this thesis there does not seem to be any systematic
investigation of time-resolved transport of 2DEG corner device presented in Sec. 6.5.
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Chapter 8

Dielectric Relaxation Spectroscopy of
Ubiquitin in Aqueous Solution

Recent dielectric spectroscopy studies of ubiquitin in solution have revealed the influence of
conformational sampling on the direct current contribution to the dielectric loss spectrum.
Initial theoretical studies show that a simple 2-state, ratchet-like model for the conformational
dynamics of a protein coupled to a Fokker-Planck model for the mobile ions may explain the
experimentally observed sub-β peak in the dielectric loss spectrum.

This chapter discusses the main issues of replacing the stochastic description by a more
realistic Poisson-Nernst-Planck model for the ion dynamics and the electrostatic potential:

- The set of partial differential equations modeling dielectric relaxation spectroscopy are
derived from the continuity equation and the electro-diffusive fluxes.

- The simulation of the dielectric relaxation spectroscopy experiment on a generic, sol-
vated globular protein needs appropriate boundary conditions for the dielectric relaxation cell
and for the protein-solvent interface. The experimental setup introduces solvent-electrode in-
terfaces which give rise to dielectric double layers well-known from the electro-chemistry of
surfaces. The excluded volume interaction between protein and ions leads to an integral equa-
tion for the electrostatic potential on the protein-solvent interface.

- In the bulk the model is discretized by finite elements which is coupled to a boundary
element method for the non-local boundary condition on the protein-solvent interface.

- Last but not least, a hybrid parallelization strategy is outlined using CUDA for the data-
parallel cell contributions.

First results on the simplified two-dimensional model indicate the validity of the model.

8.1 Introduction

Structural protein dynamics are a key component for protein function and have been used to
explain a large variety of complex processes spanning timescales from picoseconds to seconds
or minutes. Nuclear magnetic resonance (NMR) spectroscopy is the most frequently used
experimental technique to characterize protein dynamics, yet it is not able to span the full
range of timescales in question. Especially, the rates for the intramolecular dynamics in the so-
called supra-τc time window between the nanosecond rotational correlation time τc and 50 µs
are usually inaccessible to NMR techniques or can at best be measured indirectly.
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However, in the case of free ubiquitin in solution [18] the internal dynamics could be deter-
mined directly by dielectric relaxation spectroscopy (DRS). The dielectric spectrum of ubiqui-
tin is known for a long time [72] with a, by now, well established set of peaks of which the most
prominent ones are those for tumbling of the protein’s static dipole (β -peak near 10 MHz) and
for reorientation of bulk water (γ-peak near 10 GHz). Peaks at lower frequencies and of less
striking height were either overlooked, for technical reasons not observable or were explained
rather generically, e.g. by unidentified protein-water interactions or the movement of polar side
groups of the amino acids. Recently published evidence for interaction of protein conformation
and direct current (DC) conductivity in dielectric spectroscopy experiments [18] revealed the
importance of low frequency peaks as they seem to be intimately connected to the kinetics of
the conformational sampling of a protein. In the case of ubiquitin the recently discovered sub-β
peak [18] is considered to reflect the ability of a protein to temporarily store various amounts
of ions in its dielectric double layer, thus working like an internal capacitor. To explain this
on a microscopic level it is currently postulated that, depending on its conformation, a protein
molecule stores different amounts of ions in its hydration shell. Due to overall charge conser-
vation this influences the number of mobile ions in solution and thus the direct current in a
DRS experiment has to fluctuate with conformation. Therefore, if this mechanism pertains and
is attributable to the sub-β peak, then further insight into the mechanisms of molecular recog-
nition and other types of structural protein dynamicscan be obtained from careful investigation
of the low-frequency part of the dielectric loss spectrum.

Numerical modeling allows us to study the level of detail required in the physical descrip-
tion of the protein and the DRS experiment needed to explain the sub-β peak. The electrostatics
of the aqueous environment of the protein molecule are described by means of the Poisson-
Nernst-Planck equation which extends the usual Poisson-Boltzmann description by stationary
currents due to the local potential. The protein is considered as globular and as a simply con-
nected zone of excluded volume for the mobile ions. The protein is characterized by the shape
of this exclusion zone, its dielectric constant and the distribution of static charges in this zone
to represent local inhomogeneities which are caused by the different amino acid residues. The
link to the experiment is provided by a ratchet-like stochastic dynamics of switching between
a set of conformations with exponentially distributed waiting times which leads to a simulated
time series of the DC component of the DR spectrum.

8.2 Master-Fokker-Planck Theory

The simplest model for the interaction between conformational dynamics and the DC cur-
rent [19] only addresses the dependence of the distribution of bound and mobile ions on the
different protein states. To quantify this dependence we need a relation between polarization
and electric field that allows to identify the susceptibility, which is measured in the experiment.

The probability to find a mobile ion at position r at time t while a protein is in state k
is wk(r, t). We define ck to be the space-averaged charge density of mobile ions if all proteins
are in state k. The state-dependent dipole moment of the mobile ions is given by

Rk :=
∫

R3
d3r rwk(r, t) (8.1)

and the state-dependent electric polarization vector is

Pk := ckRk .
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A change in polarization induces a current

jk ≡ ∂tPk .

In the simplest setting there are only two protein states with corresponding sub-ensembles for
the mobile ions with mutually different mobilities µ1 and µ2. A protein molecule switches
back and forth between the two states with rate γ . From the underlying Master-Fokker-Planck
equation we obtain equations of motion for the dipole moments

∂tR1 = µ1E+ γR2− γR1 ,

∂tR2 = µ2E+ γR1− γR2

and polarization vectors

∂tP1 = c1µ1E+ c1γR2− c1γR1 ,

∂tP2 = c2µ2E+ c2γR1− c2γR2 .

To get insight into the influence of small changes in the concentration of mobile ions we define
the state-averaged polarization

P := P1 +P2

and its fluctuation

Q := P1−P2 .

The state-averaged conductivitiy and its fluctuation are

Σ := c1µ1 + c2µ2 ,

σ := c1µ1− c2µ2 .

As measure for changes in average ion concentrations we introduce

δ :=
c1− c2

c1
.

In case of small changes δ � 1 we get in linear order

c1 = c2(1+δ ) ,
c2 ≈ c1(1−δ ) ,

and the equations of motion for Pk lead to the corresponding ones for P and Q

∂tP = ΣE− γP+ c1γR2 + c2γR1

= ΣE−δγQ ,

∂tQ = σE− γQ− γ(c1R2− c2R1)
= σE−2γQ− γδP .
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Transforming from time to frequency domain, i.e. P(t) = Pwe−iwt , Q(t) = Qwe−iwt and E(t) =
Ewe−iwt we get a system of equations for the amplitudes

−iwPw = ΣEw−δγQw ,

−iwQw = σEw−2γQw− γδPw ,

Qw =
σEw− γδPw

−iw+2γ
.

After inserting the latter into the former

−iwPw = ΣEw−
δγσEw− γ2δ 2Pw

−iw+2γ

Pw =
i
w

(w2 +4γ2)Σ− (iw+2γ)δγσ

w2 +4γ2 Ew +O(δ 2)

=
i
w

(
Σ− 2δγ2σ

w2 +4γ2 − i
wδγσ

w2 +4γ2

)
Ew

we obtain an expression of the form Pw = χ(w)Ew which allows us to read off the frequency-
dependence of the complex susceptibility χ(w) = χ ′(w)+ iχ ′′(w) of which the imaginary part
represents the dielectric loss spectrum

χ
′′(w) =

1
w

(
Σ− 2δγ2σ

w2 +4γ2

)
.

In this preliminary form there would be no sign of a peak. To reveal the desired sub-β peak we
have to remove the pole at w = 0, i.e. the low frequency or direct current part

wχ
′′
sub-β = wχ

′′− lim
w→0

wχ
′′ (8.2)

=
(

Σ− 2δγ2σ

w2 +4γ2

)
−
(

Σ− 2δγ2σ

4γ2

)
(8.3)

which leads to

χ
′′
sub-β =

δσ

2
w

w2 +4γ2 (8.4)

with a peak at wsub-β = 2γ . The ratio of χ ′′sub-β and the DC contribution χDC = w/Σ at wsub-β is

χ ′′sub-β (wsub-β )

χDC(wsub-β )
(8.5)

=
δσ

4Σ
(8.6)

≈ δ

4

(
δ µ1

µ1 + µ2
+

µ1−µ2

µ1 + µ2
− δ (µ1−µ2)

(µ1 + µ2)2 +O(δ 2)
)

. (8.7)

The concentrations ck only measure the total densities of mobile ions irrespective of the details
of the chemical composition. Especially, if the protein has a state-dependent affinity to a par-
ticular species this should affect the overall mobilities, too. We assume that the mobilities vary



8.3. FINITE SYSTEM WITH SELECTED ION SPECIES RESOLVED 121

in a similar fashion as the concentrations w.r.t. the protein state so that µ1−µ2 = O(δ ). Thus,
the ratio of the susceptibilities should behave like

χ ′′sub-β (wsub-β )

χDC(wsub-β )
= O(δ 2) (8.8)

which can be compared to experiments [19, Fig. S3B]. From the observed ratio we deduce

δ = O(10−2) .

In a perfect experiment with ionic contributions solely due to the eigen-dissociation of water
the average concentration of mobile ions would be 10−7 M. In this case δ = O(10−2) corre-
sponds to a relative change in concentration of 10−9 M. In the experiment, the proteins them-
selves constitute a solute and typical concentrations are 10−3 M. Thus, it suffices if one out
of 106 protein particles absorbs one mobile ion for a period of time longer than the average
lifetime of the protein states.

8.3 Finite System with Selected Ion Species Resolved

The Fokker-Planck theory covers the salient features of the proposed mechanism. For a more
quantitative analysis we have to model the whole experiment including boundary effects in
order to get a notion of the interaction of the experimental setup with the modulation of the
density of mobile ions. This implies that we have to model the flux of current through the
impedance cell and especially how it is measured. We have to compute the distribution of ions
and the electrostatic potential. In the electro-diffusive picture this requires us to distinguish at
least between anions and cations and their respective densities.

We begin with the geometric properties of our model problem. We consider a globular
protein as a bounded region ΩP with surface Γ in a rectangular box or cylinder Ω of aqueous
solution (see Fig. 8.1 for the cylindrical setup). The solution fills the domain ΩS = Ω\ΩP.
The axes of the box coincide with the x,y,z axes of a laboratory cartesian frame. The lower
left corner is at (x,y,z) = (0,0,0) and the upper right at (Lx,Ly,H). The cylinder is of radius
R and height H. Its symmetry axis is aligned with the z-axis while its bottom lies in the x,y-
plane. The protein may fluctuate between two conformations (denoted 1 and 2), differing in the
distribution of internal charges ρ1(r) 6= ρ2(r), but not in shape. In our simulations the protein is
taken to be spherical which is sufficient for globular proteins. The cylindrical geometry with is
axial symmetry is designed for single-molecule studies. If several molecules have to simulated
(which is not the topic of this work) as in the supplementary material to [18] the box-shaped
geometry may be more favorable in case the molecules are arranged in a regular lattice.

The top and bottom boundaries of the cell Ω (denoted by ΓC and ΓA in Fig. 8.1) are metal
contacts a distance H apart and connected to a battery, which keeps them at constant potentials
ΦC (at the cathode C) and ΦA (at the anode A). The remaining part of the outer surface of Ω

is denoted as Γ0. In the following ∂n is the normal derivative at the boundary ΓS = ΓA ∪
ΓC ∪Γ0∪Γ which is not simply connected. If required by the context the normals of the sub-
boundaries are denoted as nA, nC, n0 and nPS. The normal derivative of a scalar function f at a
subset E of the boundary ΓS will be ∂n f

∣∣
E . Ultimately, we want to calculate the total electric

current between the electrodes as a function of potential difference ΦA−ΦC and extract the
corresponding conductivity σ .



122 CHAPTER 8. DIELECTRIC RELAXATION SPECTROSCOPY OF UBIQUITINGeometry
ΓC ΓA Γ0 Γ H R x y z

ΓC ΓA Γ0 Γ H R x y z

ΓC ΓA Γ0 Γ H R x y z

ΓC ΓA Γ0 Γ H R x y z

ΓC ΓA Γ0 Γ H R x y z

ΓC ΓA Γ0 Γ H R x y z

ΓC ΓA Γ0 Γ H R x y z

ΓC ΓA Γ0 Γ H R x y z

ΓC ΓA Γ0 Γ H R x y z

ΩP ΩS

ΩP ΩS

53Thursday, August 23, 2012Figure 8.1: Geometry for single-molecule dielectric relaxation spectroscopy. The molecule is
Ubiquitin shown as overlay of ribbon-model representation and and molecular surface.

For simplicity, we only consider a single type of cation (symbolically, I+ with charge q+ =
−ze, e < 0 denoting the elementary charge quantum) and a symmetric anion with q− = ze. The
particle densities of these ions are denoted by n±, respectively. At the metal electrodes, the
cations may be reduced in the redox reaction

I+ + electron↔ N (8.9)

and become neutral molecules N which are only subject to diffusion. The N particles may stay
in the solution, in which case we have to include their density n0 (q0 = 0) as a dynamical field
in the description. We assume that the electrodes are perfectly blocking for anions and neutral
molecules in order to avoid highly nonlinear model equations for the boundary conditions.

Within the exterior domain ΩS the densities of mobile ions obey continuity equations

∂tni =−∇ · ji (8.10)

and the current densities will be taken to be of the Nernst-Planck form (neglecting convective
fluxes due to solvent flow)

ji =−Di[∇ni +βqini∇Φ] (8.11)

where β = 1/kBT and kB is Boltzmann’s constant. The electric potential Φ is obtained from
Poisson’s equation

−∇ · (ε0εr(r)∇Φ) =−ze(n+−n−)χΩS +ρa (8.12)

where ε0 is the vacuum permittivity and εr is the relative permittivity. Another implication
by this approach is that accounting for cations and anions must be restricted to the solvent
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subdomain. During the modeling stage this is done by using the characteristic function χΩS .
The electrostatic properties of the model protein are assumed to be completely characterized
by a conformation-dependent charge density ρa and a homogeneous dielectric constant εP ≈ 2.
In the simplest case there are only two conformations, i.e. a ∈ {1,2}.

8.3.1 Experimental Objectives

To further simplify the problem we assume that all relaxation processes within the system of
ions are fast compared to the rate of change between the two protein conformations. Within this
approximation, we just need to calculate the steady state current of both conformations, I1, I2.
Then we can obtain the time dependence of the current from the simple stochastic two-state
dynamics of the conformations, i.e.

2I(t) = I1 + I2 +a(t)(I1− I2)

with a(t) ∈ {−1,+1} representing a two-state telegraph process with an exponential distribu-
tion of waiting times τ between transitions

p(τ)dτ = γe−γτdτ . (8.13)

From the boundary condition Eq.(8.19) the total current through the cathode can be calculated

I = KR

∫
ΓC

n+ dΓC. (8.14)

Once the currents are computed, their relative deviation

δI :=
|I1− I2|
|I1 + I2|

(8.15)

should explain the amplitude of the sub-β peak.

8.3.2 Boundary Conditions

The mathematical model is not complete without appropriate boundary conditions at the elec-
trodes and at the interface Γ between protein and solvent.

Electrodes

BCs including Thickness of Stern Layer: For the potential the boundary conditions at the
electrodes are rather intricate and there exists a considerable amount of literature adressing this
question. Usually, the redox reaction rates are described by Butler-Volmer kinetics, including
the Frumkin correction due to the presence of a Stern layer [115].

As already pointed out in [24] the boundary conditions for ”ideally polarizable” or ”com-
pletely blocking” electrodes can be simplified to a Robin-type condition

Φ
∣∣
ΓE

= ΦE +λL∂nΦ

∣∣∣
ΓE

, E ∈ {A,C} . (8.16)

The compact part of the double layer of width λL, which includes the Stern layer [120] on the
surface of the electrodes, can be considered as a very thin parallel plate capacitor Based on
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this capacitor model it is a reasonable assumption that the electric field is proportional to the
difference between the potential ΦE prescribed on the electrode and the resulting potential at
the interface to the diffusive layer Φ

∣∣
ΓE

in solution. When λL is much smaller than the smallest
length scale which is resolved in a model the Robin-type boundary condition degenerates to a
Dirichlet condition. Here we are not interested in details of diffuse-charge effects and neglect
the finite thickness of the Stern layer in Eq. (8.16). Furthermore, we adopt the simplified
Tafel kinetics [115], which neglects oxidation (reduction) processes at the cathode (anode)
completely. With these simplifications the boundary conditions for the electric potential are

Φ
∣∣
ΓC

= ΦC, Φ
∣∣
ΓA

= ΦA . (8.17)

For the current densities j− of anions we have the blocking condition

n · j−
∣∣
ΓA

= n · j−
∣∣
ΓC

= 0 . (8.18)

The redox reaction at the electrodes, Eq. (8.9), implies a balance of inward and outward fluxes
which makes the current transferring species obey at the cathode

n · j+
∣∣
ΓC

= KR n+
∣∣
ΓC

=−n · j0
∣∣
ΓC

. (8.19)

Cations are removed from the solvent and are transformed into neutral particles at the cathode
at a rate KR. Simultaneously, neutral particles are generated and enter the system which is
reflected by the fact that the corresponding currents are of opposite sign. At the anode neutral
particles leave and cations enter:

n · j0
∣∣
ΓA

= KO n0
∣∣
ΓA

=−n · j+
∣∣
ΓA

. (8.20)

The rates KR and KO are treated as fixed model parameters, in particular we neglect their de-
pendence on Φ. In the following we consider them as equal.

Protein Surface

We assume that the interior of the protein is free of solvent and ions, i.e. we get homogeneous
von-Neumann conditions for the electro-diffusive currents at the protein-solvent interface

−nP · ji = 0 on Γ. (8.21)

The electrostatic boundary conditions at Γ are of standard form for dielectric interfaces, i.e. the
total potential must be continuous

lim
a→0

Φ(x−anP) = lim
a→0

Φ(x+anP) ∀x ∈ Γ , (8.22a)

and the jump in the dielectric constant induces a jump in the normal derivative of the potential

[ε(x)nP ·∇Φ] = 0. (8.22b)

The square brackets denote the jump of the bracketed quantity across Γ and nP is the normal
from ΩP to ΩS. To correctly take into account the influence of the intramolecular charge distri-
bution and the difference in dielectric properties on the various subdomains we would have to
solve for Φ on the whole domain Ω. The correct jump of the normal component of the electric
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field at Γ should then be a result of the computation. Yet, to compute the dielectric currents it
suffices to know the potential on ΩS. We have to convert the interface condition, Eq. (8.22b),
into a boundary condition either for the values of Φ or its normal derivative at the interface Γ.
In the interior of the protein, i.e. εr = εP, we only have to solve a Poisson equation

− ε0εP∇
2
Φ = ρP ≡∑

k
qkδ (x−xk) (8.23)

where we model the intramolecular charge distribution as a collection of point charges qk at
fixed positions xk. Equation (8.23) is a linear partial differential equation (PDE) with constant
coefficients. Therefore, the PDE can be replaced by the corresponding boundary integral equa-
tion (BIE). The original interface problem on Ω is transformed into a boundary value problem
effectively restricting the computation of Φ to ΩS. To do this, we follow the discussion of
interior the BIE formulation for linear interior Neumann Boundary value and interface prob-
lems in [110]. From potential theory [79] we know that for sufficiently smooth surface Γ the
intramolecular potential ΦP = Φ|ΩP at a point x ∈ Γ has to fulfill

1
2

ΦP(x) +
∮
Γ

[
ΦP(x′)

∂Gx

∂n′P
(x′)−Gx(x′)

∂ΦP

∂n′P

]
dΓ(x′)

= +
1

ε0εP

∫
ΩP

Gx(x′)ρP(x′) (8.24)

where we have defined
Gx(y) :=

1
4π|x−y|

as the Green’s function for the Poisson equation in three dimensions and n′ is the outer normal
at x′ ∈ Γ w.r.t. ΩP. In potential theory the right-hand side is commonly known as Newton
potential. It collects the contributions due to the intramolecular charges

φ
C(x) =

1
ε0εP

∑
k

qkGxk(x) =
1

4πε0εP
∑
k

qk

|x−xk|
. (8.25)

For a more general formulation we introduce the normal component of the electric field

tP := ∂nPΦP , (8.26)

as auxiliary unkown. The integral formulation, Eq. (8.24), defines a Dirichlet-to-Neumann
(DtN) map which on Γ maps the values of ΦP to its normal derivative. The DtN map for the
normal derivative is

tP = SP
ΦP−V−1

φ
C (8.27)

where

SP := V−1
(

1
2

I +KP

)
(8.28)

is the non-symmetric form of the Steklov-Poincaré operator and I is the identity. The Steklov-
Poincaré operator is defined in terms of the single layer boundary integral operator

(VtP)(x) =
∮
Γ

Gx(x′)tP(x′)dΓ(x′) (8.29)
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and double layer boundary integral operator

(KPΦP)(x) =
∮
Γ

∂Gx

∂n′P
(x′)ΦP(x′)dΓ(x′) . (8.30)

The single layer boundary integral operator V : H−1/2(Γ)→H1/2(Γ) is bounded and H−1/2(Γ)-
elliptic and thus invertible. The sign of the double layer operator depends on the direction of
the normal. To indicate that we have chosen nP for the moment K gets an index P.

The DtN map enables us to incorporate the results from the BIE into the variational form of
the Poisson problem for the potential on ΩS as Neumann boundary data. Insertion of Eq. (8.27)
into Eq. (8.22b) gives the boundary condition on Γ which correctly models the dielectric inter-
face. In its final formulation

εS∂nΦ
∣∣
Γ

= −εPtP ≡ − εPSP
ΦP + εPV−1

φ
C . (8.31)

we have reversed the direction of the normal. We define n as the inward normal of ΩP, evidently
pointing from ΩS to ΩP. This also reverses the sign of the double layer operator which is
indicated by the loss of the index P. In practice we rather use the implicit version(

1
2

I−K
)

Φ
∣∣
Γ
+

εS

εP
V ∂nΦ

∣∣
Γ

= φ
C (8.32)

which avoids inverting integral operators and constitutes an additional equation Φ has to fulfill.

8.3.3 Dimensionless PNP-Model

The analysis of the model is simplified by introducing a set of properly rescaled equations.
First, let us choose ΦA = 0, so that Φ has to fulfill homogeneous Dirichlet boundary conditions
at the anode. We introduce the dimensionless potential

ϕ = βq+Φ (8.33)

and express densities in units of the fixed average anion density

n∗ =
1

Vol

∫
n− dV, ci = ni/n∗, i ∈ {+,0,−}. (8.34)

As control parameter we use the potential at the cathode

η := ϕ
∣∣
ΓC

. (8.35)

As unit of length we choose the distance between the electrodes, H. Assuming D+ = D− ≡
D time is measured in units of H2/D, i.e. t = H2τ/D and τ is the dimensionless time.
Then Eqs. (8.10) and (8.11) take on the dimensionless form

∂τc+ = ∇ · (∇c+ + c+∇ϕ) , (8.36)

∂τc0 = ∇
2c0 , (8.37)

∂τc− = ∇ · (∇c−− c−∇ϕ) . (8.38)
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We introduce a material-dependent Debye-Hückel length

λ
∗
r =

√
ε0εr

βq2
+n∗

, r ∈ {P,S} (8.39)

which is used to introduce the ratio of the squares of the Debye-Hückel length and inter-
electrode distance as dimensionless dielectric permittivity

εr :=
(

λ ∗r
H

)2

. (8.40)

Using ρ = ρ/(q+n∗) as dimensionless protein charge density the dimensionless potential fol-
lows from

−∇ · (εr(r)∇ϕ) = χΩS(c+− c−)+ρ . (8.41)

This equation explicitly keeps the spatial dependence of the permittivity εr which models the
protein implicitly by a local change of the dielectric properties of the bulk. The choice of
units implies that current densities are given in units of Dn∗/H, corresponding to the Nernst
diffusion limited current. In the boundary conditions for the current densities at the electrodes,
Eqs.(8.19) and (8.20), the rates KR and KO have to be rescaled as follows:

k f = K f L/D, f ∈ R,O. (8.42)

After rescaling the boundary conditions and restricting the computational domain to ΩS the
complete system is

∂tc+−∇
2c+−∇ · (c+∇ϕ) = 0 (8.43)

∂tc0−∇
2c0 = 0 (8.44)

∂tc−−∇
2c−+∇ · (c−∇ϕ) = 0 (8.45)

−∇ · (εr∇ϕ)− (c+− c−) = ρP . (8.46)

(∂nc j + jc j∂nϕ)
∣∣
Γ0

= 0 j ∈ {+,0,−} (8.47)

εr∂nϕ
∣∣
Γ0

= 0 (8.48)

−n · j+
∣∣
ΓA

= (∂nc+ + c+∂nϕ)
∣∣
ΓA

= +kOc0
∣∣
ΓA

(8.49)

∂nc0
∣∣
ΓA

= −kOc0
∣∣
ΓA

(8.50)

(∂nc−− c−∂nϕ)
∣∣
ΓA

= 0 (8.51)

ϕ
∣∣
ΓA

= 0 (8.52)

−n · j+
∣∣
ΓC

= (∂nc+ + c+∂nϕ)
∣∣
ΓC

= −kRc+
∣∣
ΓC

(8.53)

∂nc0
∣∣
ΓC

= +kRc+
∣∣
ΓC

(8.54)

(∂nc−− c−∂nϕ)
∣∣
ΓC

= 0 (8.55)

ϕ
∣∣
ΓC

= η . (8.56)
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The conditions at the protein-solvent boundary depend on the quantity we want to compute.
For the various ion densities we need blocking conditions for the fluxes

(∂nc j + jc j∂nϕ)
∣∣
Γ

= 0 j ∈ {+,0,−} . (8.57)

For the potential we have the non-local condition

εS∂nϕ
∣∣
Γ

= −εPtP (8.58)

which introduces tP as additional unknown.

8.4 Numerical Solution

The simulations are based on our deal.II-based finite element framework which allows for
higher order isoparametric elements in case of curved boundaries and adaptive mesh refine-
ment. Basically, there are two different options for a FEM-based simulation.

Standard continuous Galerkin methods lead to a straightforward implementation but re-
quire to explicitly enforce the conservation law for the anions. An additional difficulty is the
particularly low degree of structure in the stiffness matrix making an efficient parallel solution
of the linear algebraic equations more demanding.

Interior-penalty, discontinuous Galerkin (DG) methods [15, 14, 16] by design lead to a con-
servative discrete problem. They are particularly well suited to combining local mesh adaption
with geometric multigrid methods on meshes with hanging nodes [69] since the transfer oper-
ators can be constructed as local operation on the individual cell and do not need to work on
patches of cells. Compared to standard globally continuous Galerkin methods their disadvan-
tage is a larger number of DoFs per cell and more complex variational formulations because of
the explicit consideration of inter-cell fluxes.

Unlike for the continuous approach the FEM-BEM coupling for DG methods is still a topic
of current research [49, 48, 103]. The pioneering work for the continuous case has been done by
Johnson and Nédélec [67], Bielak and Macamy [27] and Costabel [35]. Convergence and sta-
bility of the Johnson-Nédélec coupling for polygonal surfaces has been proven by Sayas [114].

8.4.1 Weak Formulation

Prior to discretization we have to convert Eqs. (8.43 - 8.58) into the corresponding weak form.
We define (v,w)D :=

∫
D vw dD to be the L2 scalar product of two functions v, w defined on a

domain D, e.g. Ω or its surface Γ and dD is the corresponding measure. All equations are of
advection-diffusion-reaction type, i.e.

−∇ · (a(x)∇u)+∇ · (bu)+ cu = f (8.59)

where u denotes the scalar solution, a(x) a diffusion coefficient function, b some prescribed
flow field, c is a reaction rate and f some external stimulus. Multiplying with an arbitrary
scalar test function v from the left and integration by parts over a domain D with boundary ∂D
and normal derivative ∂n = n ·∇ gives the standard weak form

(∇v,a(x)∇u)D +(∇v,bu)D +(v,cu)D (8.60)

−(v,a(x)∂nu)∂D− (v,b ·n u)∂D = (v, f )D .
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Finite element methods (FEM) require to start with defining a suitable function space for the
solution. The Dirichlet boundary conditions for the potential on the electrodes are built into the
solution space

X := {(c+,c0,c−,ϕ) ∈ [H1(ΩS)]4 : ϕ|ΓA = 0, ϕ|ΓC = η}

so that Dirichlet boundary conditions are already incorporated. For later purposes we con-
sider X as a direct product of a space for the concentrations and a separate one for the potential

X = Xc×Xϕ ,

Xc := [H1(ΩS)]3 ,

Xϕ := {ϕ ∈ H1(ΩS) : ϕ|ΓA = 0, ϕ|ΓC = η} .

For the boundary conditions for ϕ on Γ we need a separate subspace Y := H−1/2(Γ) so that the
complete solution space is

V := X×Y . (8.61)

For the solution increments in the Newton iteration we need homogenized spaces

X0 := Xc×Xϕ

0 , (8.62)

Xϕ

0 := {ϕ ∈ H1(Ω) : ϕ|ΓA = 0, ϕ|ΓC = 0} , (8.63)

V0 := X0×Y . (8.64)

Using a vector-valued test function (s,u,v,w,ψ) ∈V0 we get as weak form

(∇s,∇c+)ΩS +(∇s,c+∇ϕ)ΩS

−(s,∂nc+ + c+∂nϕ)ΓS = 0 (8.65)

(∇u,∇c0)ΩS − (u,∂nc0)ΓS = 0 (8.66)

(∇v,∇c−)ΩS − (∇v,c−∇ϕ)ΩS

−(v,∂nc−− c−∂nϕ)ΓS = 0 (8.67)

(∇w,εS∇ϕ)ΩS − (w,c+− c−)ΩS

−(w,εS∂nϕ)ΓS = 0 . (8.68)
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Inserting the boundary conditions for the fluxes we get

(∇s,∇c+)ΩS +(∇s,c+∇ϕ)ΩS

−(s,+kOc0)ΓA− (s,−kRc+)ΓC = 0 (8.69)

(∇u,∇c0)ΩS

−(u,−kOc0)ΓA− (u,+kRc+)ΓC = 0 (8.70)

(∇v,∇c−)ΩS − (∇v,c−∇ϕ)ΩS = 0 (8.71)

(∇w,εS∇ϕ)ΩS − (w,c+− c−)ΩS

+(w,εPtP)Γ = 0 (8.72)

(
ψ,

(
1
2

I−K
)

ϕ

)
Γ

+
(

ψ,
εS

εP
VtP

)
Γ

=
(
ψ,φC)

Γ
. (8.73)

Note that in its Galerkin formulation the boundary condition for the electric field on the protein
surface introduces double surface integrals. This can be avoided by using collocation methods.
We abbreviate the FEM part of the solution as

u := (c+,c0,c−,ϕ)

and the corresponding test function as v := (s,u,v,w). Adding up Equations (8.69)-(8.72)
except for the interface term defines a semilinear form

a(·; ·) : X×X0→ R

which is nonlinear in its first argument. This allows us to write the variational problem in a
compact form:

Find (u, tP) ∈ X×Y s. t.

∀v ∈ X0 : (8.74)

a(u;v)+(w,εPtP)Γ = 0

∀ψ ∈ Y : (8.75)(
ψ,
( 1

2 I−K
)

ϕ
)

Γ
+
(

ψ, εS
εP

VtP
)

Γ

=
(
ψ,φC)

Γ
.

8.4.2 FEM Discretization

In case of the standard continuous Galerkin method with globally continuous Lagrange ele-
ments of polynomial order q discretization is straightforward by choosing a finite set of test
and ansatz functions {(s,u,v,w,ψ)} ⊂Vh from a finite-dimensional subspace Vh ⊂V of which
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Figure 8.2: Cut through the hexahedral mesh used as coarse mesh.

the dimension N := 4M + NP depends on the average mesh width h. The number of DoFs
per solution component in the FEM part is M and the number of DoFs on the dielectric in-
terface is NP. To obtain the discretized variational form the solution is considered as a linear
combination of the ansatz functions

cα,h = ∑
j

cα, jsα, j, α ∈ {+,0,−}, (8.76)

ϕh = ∑
j

ϕ jw j, (8.77)

tP,h = ∑
j

tP, jψ j. (8.78)

For a convenient treatment of the coupling between ΩP and ΩS we consider Xϕ

h as a direct sum
of two subspaces which single out the DoFs of ϕh on Γ (symbolized by white dots in Fig. 8.3):

Xϕ

h = Xϕ,ΩS
h ⊕Xϕ,Γ

h ,

Xϕ,ΩS
h := span

{
wi ∈ Xϕ

h : w
∣∣
Γ

= 0
}MS

i=1 ,

Xϕ,Γ
h := span

{
wi ∈ Xϕ

h : w
∣∣
Γ
6= 0
}M

i=MS+1 .

The number of DoFs for the potential on the interface is NP = M−MS. We use an analogous
decomposition for Xϕ

0,h, i.e. Xϕ

0,h = Xϕ,ΩS
0,h ⊕Xϕ,Γ

0,h . For the Galerkin discretization of the weak
forms of the boundary integral equation (8.73) we use the finite dimensional ansatz space

Yh := span{ψk}NP
k=1 ⊂ H−1/2(Γ) = Y .
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FEM-BEM

ΓC ΓA Γ0 Γ H R x y z

ΩP ΩS

ΩP ΩS

54Thursday, August 23, 2012

Figure 8.3: Red dots indicate interior degrees of freedom (DoFs) and white points those on the
protein-solvent interface Γ. The trial functions associated with interior DoFs are zero on Γ.

Solving the linear algebraic problem amounts to determine the coefficient vectors

cα := (cα,0, . . . ,cα,M−1), α ∈ {+,0,−},
ϕ

S
:= (ϕ0, . . . ,ϕMS−1)

ϕ
P

:= (ϕMS , . . . ,ϕMS+NP−1),
tP := (t0, . . . , tNP−1),
c := (c+,c0,c−).

We split ϕh into ϕS and ϕP. The latter is the link between the FEM and BEM discretization.
The various ionic concentrations can be treated by FE-only methods. Their contribution to the
overall solution is collectively abbreviated as c := (c+,h,c0,h,c−,h)∈Xc

h with corresponding test
function d ∈ Xc

h so that v = (d,w) ∈ X0,h. For the potential we have a part ϕS ∈ Xϕ,ΩS
h treated

by FEM and a contribution ϕP ∈ Xϕ,Γ
h defined solely on the protein surface. The discrete

variational problem is:

Find (c,ϕS,ϕP, tP,h) ∈ Xc
h × (Xϕ,ΩS

h ⊕Xϕ,Γ
h )×Yh s. t.:

∀v ∈ X0,h : (8.79)

a((c,ϕS);(d,w))+(w,εPtP,h)Γ = 0

∀ψ ∈ Yh : (8.80)(
ψ,
( 1

2 I−K
)

ϕP
)

Γ
+
(

ψ, εS
εP

VtP,h
)

Γ

=
(
ψ,φC)

Γ
.

The resulting (non-)linear 1 algebraic system has a 4×4 block structure
Ac Ac,ϕS Ac,ϕP

AϕS,c AϕS AϕS,ϕP

AϕP,c AϕP,ϕS AϕP −MT
h

1
2 Mh−Kh

εS
εP

Vh




c
ϕ

S
ϕ

P
tP

=


0
0
0

φ
C

 . (8.81)

1We postpone this issue to the discussion the solution of the equations.
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The individual matrix entries are computed as follows. The submatrix Ac contains the entries
of the subsystem of the concentrations of ions, i.e. their diffusion and the reactive boundaries:

∀ i, j = 0, . . . ,M−1 :

Bi j =


−(si,−kRs j)ΓC −(si,+kOu j)ΓA 0

−(ui,+kRs j)ΓC −(ui,−kOu j)ΓA 0

0 0 0



Ac
i j = Bi j +


(∇si,∇s j)ΩS

(∇ui,∇u j)ΩS

(∇vi,∇v j)ΩS

 .

The off-diagonal blocks Ac,ϕS and Ac,ϕP represent the drift of the ions because of the local
gradient of the electrostatic potential in the bulk (DoFs 0, . . . ,MS− 1) and on the dielectric
interface (DoFs MS, . . . ,M−1):

∀ i = 0, . . . ,M−1 :

(∇si,c+,h,∇w j)ΩS

0

−(∇vi,c−,h,∇w j)ΩS

0


=


Ac,ϕS j = 0, . . . ,MS−1

Ac,ϕP j = MS, . . . ,M−1

.

The off-diagonal blocks AϕS,c and AϕP,c represent the interactions of the bulk electrostatic po-
tential (DoFs 0, . . . ,MS−1) and on the dielectric interface (DoFs MS, . . . ,M−1) with the ions:

∀ j = 0, . . . ,M−1 :−(wi,s j)ΩS 0 (wi,v j)ΩS 0

 =


AϕS,c i = 0, . . . ,MS−1

AϕP,c i = MS, . . . ,M−1

.

The FEM part of the Poisson equation on the interface is

(∇wi,εS∇w j)ΩS =



AϕS i, j = 0, . . . ,MS−1

AϕP i, j = MS, . . . ,M−1

AϕS,ϕP i = 0, . . . ,MS−1, j = MS, . . . ,M−1

AϕP,ϕS i = MS, . . . ,M−1, j = 0, . . . ,MS−1

.
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The components of the Galerkin version of the BEM part on the dielectric interface are:

∀ i, j = MS, . . . ,M−1 :

−MT
h = (wi,ψ j)Γ ,

Kh =
(

ψi,

(
1
2
−K

)
w j

)
Γ

=
1
2
(ψi,w j)Γ−

ψi,
∮
Γ

∂n′Gx(x′)w j(x′)dΓ(x′)


Γ

=
1
2
(ψi,w j)Γ− (ψi,(∂n′Gx,w j)Γ)

Γ
,

Vh = (ψi,V ψ j)Γ

=

ψi,
∮
Γ

Gx(x′)ψ j(x′)dΓ(x′)


Γ

= (ψi,(Gx,ψ j)Γ)
Γ

.

For collocation we treat test and trial functions differently and use (ψi, ·)Γ = (δ (x−xi), ·)Γ in
the formulas for Vh and Kh, whereas MT

h is assembled as non-diagonal boundary mass matrix.

Discretization of Boundary Integral Equation

Using the ansatz for the potential, Eq. (8.77) and the interface DoFs as collocation points we can
immediately write down the discretization of the integral operators at the dielectric interface.
Let Si ⊂ Γ denote the support of the trace of ansatz function wi and E the part of the surface of
cell K which is part of the interface.Surface Integration

ΩP ΩS

ΩP ΩSΓC ΓA Γ0 Γ H R x y z
Si xi

E

EE

E

56Thursday, August 23, 2012

Figure 8.4: The red dot indicates support point xi on surface Γ. The support of the trace of a
trial function is Si (shaded area) which is the union of all cell surfaces containing xi.



8.4. NUMERICAL SOLUTION 135

For a given support point xi of a degree of freedom ϕi we have Si = ∪xi∈EE. Using the fact that
for continuous Galerkin methods wi(x j) = δi j we get for the interface mass matrix

Mh,i j = −(δ (x−xi),w j)Γ =−δi j . (8.82)

The single-layer operator becomes

Vh,i j = (δ (x−xi),V ψ j)Γ
= (Gxi ,ψ j)Γ (8.83)

=
∮

S j⊂Γ

Gxi(x
′)ψ j(x′)dΓ(x′) . (8.84)

Similarly, we get for the double-layer operator

Kh,i j =
1
2

δi j−
∮

S j⊂Γ

∂n′Gx(x′)w j(x′)dΓ(x′) . (8.85)

The right-hand side due to the Newton potential is

φ
C
i =

1
4πεP

∑
k

qk

|xi−xk|
. (8.86)

The final step is to replace integration by quadrature. In the following x′a is the ath quadrature
point. We introduce the abbreviations Hia := ∂Gxi

∂n′ (x
′
a), Gia := Gxi(x′a) and, following deal.II’s

notation, JxWa for the product of the Jacobian of the transformation to the reference element
and the quadrature weight at x′a. Due to the curvilinear boundary JxWa is a function of x′a. The
function values of the ansatz functions at the quadrature points are abbreviated as ψa j := ψ j(x′a)
and wa j := w j(x′a). The contributions of the single- and double-layer operator are then

Vh,i j = ∑
E⊂S j

∑
a∈E

Giaψa jJxWa , (8.87)

Kh,i j =
1
2

δi j− ∑
E⊂S j

∑
a∈E

Hiawa jJxWa . (8.88)

This shows that the assembly of the cell contributions to the global matrix elements is given by
matrix-matrix products which is one of the most optimized routines in computer science.

The factor 1/2 in Eq. (8.88) is valid only on continuously differentiable boundaries. In
case a polynomial approximation of the boundary is used 1/2 has to be replaced by a position-
dependent factor α(xi), xi ∈Γ which measures the fraction of the interior solid angle subtended
by the cell faces having xi as common boundary point.

Without further action BEM matrices are dense and the computational effort for assembly
and storage grows quadratically with the number of boundary DoFs. To save memory one could
employ the method of adaptive cross approximation with partial pivoting, for an introduction
see [110, Chapter 3] and references therein. In cases of practical interest this type of lossy
matrix compression allows to save roughly 50-80% of memory without sacrificing accuracy.
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8.4.3 Parallelization Strategy

Discretization of the FEM Part

For the assembly of the finite element part of the problem it is better to use a coarse-grained
parallelization based on pthreads or MPI (depending the problem size). This is largely due
to the fact that FEM matrices on general meshes have very unstructured sparsity pattern and
the final step of adding a cell’s contribution to the global stiffness matrix means a lot random
memory accesses which cannot be coalesced.

Discretization of the BEM Part

The assembly of the boundary integral equation is well-suited for parallelization by CUDA.
The fact that all combinations of collocation points and trial functions have to be considered
implies regular memory access patterns. To understand where exactly CUDA pays off let us be-
gin with a complexity analysis of the individual steps in the evaluation of Eqs. (8.87) and (8.88)
assembling the matrix repesentation of the single- and double layer operator, respectively.

Let nE be the number of DoFs and nE,q the number of quadrature points per surface ele-
ment E. In three dimensions typical values are nE = 4 (one DoF per corner; linear elements)
and nE,q = O(10s), s ∈ (1,2) for Gauss quadrature rules with four to eight quadrature points
per coordinate. To estimate the number of DoFs on the protein-solvent interface NP recall
that in the coarse grid the cavity is just a box with six faces which only becomes a sphere by
employing curvilinear boundary approximations. After the rth mesh refinement each coarse
grid face is subdivided into 4r faces. For instance, r = 6 gives 6144 surface elements and thus
NP = O(104). For typical orders of finite elements this can also be considered as the number
of surface elements on the protein-solvent interface Γ. On each cell the matrices Gia and Hia

have to be computed first. This is of order O(NPnE,q) per cell, i.e. O(N2
PnE,q) for the whole

interface. The amount of data needed for these interaction terms is only NP +nE,qO(NP) which
follows from the number collocation points, cells and quadrature points per cell. Similarly,
there are nE,qO(NP) function values of the trial functions at the quadrature points of all cells
and nE,qO(NP) associated Jacobian-weighted quadrature weights. Hence, the amount of data
to prepare for the assembly is O(NP).

To take advantage of CUDA we have to copy the quadrature points x′a, the corresponding
function values w j(x′a), ψ j(x′a) and the weights JxWa of each cell to the GPU. These data can be
copied in an incremental manner, concurrently to the computation of the contributions of other
cells to the global matrix which hides some of the latency of the PCIe-Bus. The collocation
points xi have to be copied only once. In a practice, on current GPUs this means that this data
is precomputed on the CPU by the deal.II-based part of the program. For the consequences of
this see the discussion in Sec. 4.3 and Fig. 4.2. For a hardware-independent software-design
we will end up with a class structure very similar to the one in Fig. 4.3. That is, we encounter
the same programming issues although from a physical point of view the computation of phase
holograms and the simulation of the Poisson-Nernst-Planck model are totally unrelated.

The evaluation of Eqs. (8.87) and (8.88) is of order O(N2
PnE,qNE). From an algorithmic

point of view the computation of Gia and Hia is an outer product as provided by the BLAS ger

function. For efficiency it is better to merge the preparation of Gia and Hia, the evaluation of
the integrands and their subsequent summation in Eqs. (8.87) and (8.88) in one CUDA-Kernel.
Like in the LU factorization in Sec. 2.1 we use the shared memory of an SMP as buffer for the
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values of Gia and Hia and other re-used intermediate results. Due to its limited size the global
matrices Vh and Kh will be tiled where each tile will be computed by a different SMP.

A high-level description of the assembly of Vh is shown in Fig. 8.5. Colored arrows in-
dicate the different stages of the computation which require synchronization in between. For
instance, Gia must have been computed before the values of the integrand Giaw jaJxWa can be
summed to get this cell’s contribution to Vh,i j. The ellipses indicate that input data needed for
the computation of the values of the integrand Giaw jaJxWa which can be done simultaneously.BIE Assembly-CUDA Strategy

Si xi E

wj(x′
a)

__shared__

JxWa

1
|x′

a − xi|

∑

a

Vh,ij
+

x′
a

Figure 8.5: Flow chart of assembly of single-layer operator Vh, i j, Eq. (8.87).

Solving the Fully Discretized Equations

Before one can make a decision on the parallel solution of Eq. (8.81) one has to select a lin-
earization strategy. The nonlinearities are given by the off-diagonal blocks Ac,ϕS , Ac,ϕP , AϕS,c

and AϕP,c describing the drift of an ion in the electric field. However, the linearization strategy
is not independent of the solution method and of the values of the model parameters, especially
the ratio between thermal energy and electrostatic energy, cf. Sec. 8.3.3. For biological systems
this ratio is typically of the order of one, i.e. neither the drift nor the diffusion terms dominate,
in contrast to flow problems where the dynamics often is dictated by the drift term. Due to
the very different conditioning of the FEM and BEM part of Eq. (8.81) a valid approach is to
decouple them and to let them iteratively improve each other.

If diffusion is non-negligible multigrid methods are always an attractive and efficient solu-
tion method. For nonlinear problems the non-linearity can be built into the smoother (Brandt’s
full approximation scheme). In most cases the main components of a multigrid scheme are
implemented as matrix-vector products of which we know how to parallelize them.

At the current level of algorithmic optimization the BEM part is described by a dense
matrix. Therefore, it is reasonable to solve the fully discretized equations either by means of a
LU-factorization of Vh or by solving the subproblem

VhtP =
εP

εS
φ

C− εP

εS

(
1
2

Mh−Kh

)
φ

P

iteratively by some Krylov method like GMRES, cf. Sec. 3.1. Either option is able to exploit
the full parallelization power of CUDA as we have shown in part I of this thesis.
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8.5 Results

A thorough analysis of the physical properties of the dielectric relaxation problem is unfortu-
nately beyond the scope of this thesis. The reported results on dependence of the DC current on
the protein conformation are preliminary and, for the sake of numerical simplicity, only for a
two-dimensional system in which the FEM-BEM coupling is reduced to the Newton potential.
Nevertheless, the postulated effect is observable in the simulations. The three-dimensional case
is severely hampered by the slow solving of the fully discretized, nonlinear problem and lags
behind the level achieved in the modeling process.

The technical part of the results summarizes the correctness of the FEM-BEM coupling
with focus on the convergence properties of the boundary element method. A correct imple-
mentation of the FEM-BEM coupling has been the most difficult subtask.

8.5.1 Proof of Concept for the Physical Model

Before we started the protein computations we verified that the simulation reproduces the lin-
ear, battery-like I-V curve one would expect in absence of a protein. As a first test we model
the protein as a sphere with a surface potential ΦPS = φD|Γ given by a dipole, cf. Fig. 8.6,
which allows us to restrict all equations to ΩS and measure the current IC as a function of ΦPS.
In this case the internal protein conformation is synonymous with the value of the surface po-
tential. Using a ubiquitin molecule centered at the origin as example we assume for the dipole
moment of the protein 240 D which corresponds to two elementary charges of opposite sign
5 nm apart. The different protein conformations are modeled by changing the distance of the
two charges. The charges are placed inside the protein at the positions p0 = (.125s,0) and
p1 = (−.125s,0). By changing parameter s ∈ [−.5,+.5] a continuum of protein conformations
is realized. The range of s is sampled in an equidistant manner in order to figure out whether
the DC current predictably depends on the protein conformation.
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Figure 8.6: Setup of the 2D test case. The mesh is colored according to the values of the
electrostatic potential in the surrounding solvent.
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The current IC through the cathode is computed from the relation given in Eq. (8.14). To check
global current conservation the current IA at the anode is computed in an analogous manner.
If the current is conserved the difference IC− IA should vanish. In a numerical simulation the
error should scale like some power of the mesh width with a degree which depends on the
approximation order of the chosen finite element. Figure 8.7 shows the behavior of IC as func-
tion of the dipole length scaling s and its dependence on the mesh refinement (Fig. 8.7a) and
the reduction rate (Fig. 8.7c). In all simulations we use cubic Lagrange elements, equal rates
kR = kO, the potential difference η = .5 and an average anion density n∗ = .1. The behavior
of the error in the current conservation behaves as expected, i.e. refining the mesh reduces the
error while the current saturates. The dependence of the current rate on the reduction is not a
surprise either: Increasing the reduction rate gives larger currents.

Under the assumption that the error estimate IC− IA for the violation of the global current
conservation is too pessimistic Fig. 8.7d shows that the bare effect of the protein conformation
is of the order of 10−6 which corresponds to roughly 1% of the measured current and 10%
of the estimated error which follows from Fig. 8.7c. The potential difference between the
electrodes induces a symmetry breaking thereby the dipole configurations for s should not be
the same as for −s and this should be reflected in the currents. Indeed, Fig. 8.7d shows that the
current values for s =−.5 is higher than the one for s = .5.
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Figure 8.7: Current at the cathode against surface potential of the protein for different mesh
refinements and reduction rates kR. The key ird indicates that the coarse mesh has been globally
refined d times.
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The effects of the changing dipole length should also be visible in the distribution of the cations
around the protein. The cation distributions for s =−.5, s = 0 and s = +.5 are shown in Fig. 8.8.
The electrodes are on the left and right, respectively. Reorienting the dipole swaps the position
of the local maximum and minimum of the cation distribution at the protein surface.

Figure 8.8: Distribution of cations for cubic Lagrange elements, kR = kO = .1, η = .5, n∗ = .1.
Top: s =−.5, middle: s = 0 (uncharged protein), bottom: s = +.5 (reversed dipole).

Let us end the discussion of the physical results with a word of caution on the physical
valididity of the two-dimensional case. The whole system of model equations, Eqs. (8.43)-
(8.58), is basically a set of Poisson equations coupled to each other via the drift terms. To
simplify the discussion ignore for a moment that the drift terms cannot be ignored. The crucial
point is that in 2D the long-range behavior of the fundamental solution of a Poisson equation is
very different from 3D. In 2D the solution decays logarithmically which is even slower than the
1/r behavior in 3D which leads to more extended boundary layers at electrochemical interfaces
and a less precise notion of the thickness of these layers. This, in turn, blurs the meaning of the
different length scales used in the dimension analysis in Sec. 8.3.3.

Nevertheless, the 2D test case hints already at all the physical features one might expect
although the setup is oversimplified in some aspects. The current depends on the conformation.
The symmetric change in the dipole length leads to an asymmetric dependence of the current.
The extrema of the cation distribution at the protein surface follow the surface potential of the
dummy molecule and vanish for zero dipole strength which can be considered as change in the
ability of the protein to temporarily store mobile ions in its hydration shell.
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8.5.2 Validation of the FEM-BEM Coupling

It should be clear by now, the cumbersome part in this project is the FEM-BEM coupling
at the dielectric interface. To verify that the implementation is correct we use a sequence
of test problems to assess the quality of the BEM part, the FEM part and finally the coupled
problem. For testing purposes the goal is to solve the Poisson problem, Eq. (8.23), in its integral
form, Eq. (8.24), on a refined version of the mesh from Fig. 8.2. The final results of the FEM-
BEM test for the two selected test functions (given below) are shown in Figs. 8.9 and 8.10. The
exact solution is depicted by iso-surfaces and the numerical solution as points. Since the points
are almost on the iso-surfaces the exact solution has been successfully recovered. Deviations of
the points from the iso-surfaces are partly due to further approximation errors in the iso-surface
computation during the visualization process.

Figure 8.9: Numerical solution of the dipole testcase (points), Eq. (8.89) vs. exact solution u
(isosurfaces). The solution is approximated by linear elements. The boundary is approximated
by quartic polynomials and matrices are assembled with 8-point Gauss quadrature rules.
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Test Cases

As reference functions we choose the bare dipole potential

uD =
1

4π|x−x0|
− 1

4π|x−x1|
, (8.89)

and the sum of the dipole potential and a harmonic function

uHD =
1

4π|x−x0|
− 1

4π|x−x1|
+

1
10

(2x+ y+ z)+
1

100
xyz . (8.90)

In case of the dipole potential reference solution and Newton potential are identical. The pa-
rameters for the dielectric constants and charges are chosen such that both uD and uHD solve

Find Φ : ΩS→ R s.t. :

−∇
2
Φ = δ (x−x0)−δ (x−x1) , (8.91)

x0 = (+.5,0,0)
x1 = (−.5,0,0)

(
α(x)I−K

)
Φ
∣∣
Γ
+V ∂nΦ

∣∣
Γ

= φ
C ≡ u (8.92)

Φ
∣∣
ΓA∪Γ0∪ΓC

= u
∣∣
ΓA∪Γ0∪ΓC

. (8.93)

BEM

To validate the BEM part we solve for u≡ uD and u≡ uHD, respectively, the two subproblems

Find Φ
∣∣
Γ

: Γ→ R s.t. :
(

α(x)I−K
)

Φ
∣∣
Γ

= u−V ∂nu
∣∣
Γ
, (8.94)

Find tP
∣∣
Γ

: Γ→ R s.t. : VtP
∣∣
Γ

= u−
(

α(x)I−K
)

u
∣∣
Γ
. (8.95)

The former should recover the Dirichlet values of the reference solution on the dielectric in-
terface Γ and the latter the Neumann values, i.e tP should, up to discretization errors, coincide
with the values of ∂nu at Γ. In contrast to the FEM part the BEM part involves possibly
singular integrals and therefore its convergence properties are not obvious. To solve the prob-
lems we discretize the solution with standard Lagrange finite elements of degree q as provided
by the dealii::FE_Q class. As numerical surface quadrature we use the tensor Gauss rules
provided by the class dealii::QGauss with p2 quadrature points. For the curvilinear approxi-
mation of polynomial order m of the dielectric interface Γ we use the dealii::MappingQ class.
Figs. 8.13(a) - 8.13(f) show that the most important parameters are the degree m of the bound-
ary approximation and the number p of quadrature points per space dimension. Higher order
finite elements do not pay off.
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Figure 8.10: Numerical solution of the dipole+harmonic contribution testcase (points),
Eq. (8.90) vs. exact solution u (isosurfaces). The solution is approximated by linear elements.
The boundary is approximated by quartic polynomials and matrices are assembled with 8-point
Gauss quadrature rules.

FEM-BEM

For the full problem in Eq. (8.91) the boundary integral is only a sub-dimensional problem and
the issue is whether its convergence properties influence the convergence behavior of the finite
element method. The convergence for linear elements and different boundary approximations
and quadrature rules is shown in Fig. 8.11. The L2-error shows the expected quadratic behavior
independent of m and p. This can be expected from the error behavior for linear elements,
Figs. 8.13(b) - 8.13(d), of the bare boundary integral problem. Depending on the particular test
case the convergence for quadratic elements, Fig. 8.12, strongly depends on the quality of the
boundary approximation and the of the quadrature rule. More importantly, the convergence is
worse than for linear elements. A detailed analysis of the convergence behavior with respect
to the various method parameters is not the purpose of this chapter. To investigate the physical
problem of the dependence of the DRS DC current on the protein conformation it suffices that
the numerical solution converges in a finite time so that the dependence of the solution on
the physical parameters can be studied. Nevertheless, with an improved understanding of the
physics the questions a simulation has to answer will be more demanding. Hence, at some
point we will have to come back to a detailed investigation of the convergence properties of the
FEM-BEM problem for higher order finite elements.
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Figure 8.11: Convergence of the coupled FEM-BEM test problem.
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Figure 8.12: Convergence of the coupled FEM-BEM dipole test problem for quadratic ele-
ments, quadrature rules of order 4, 6, 8 and boundary approximations of order 2 and 4.
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(a) q = 1, m = 1, p = 4
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(b) q = 1, m = 2, p = 4
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(c) q = 1, m = 4, p = 4
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(d) q = 1, m = 4, p = 12
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(e) q = 2, m = 4, p = 8
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(f) q = 3, m = 3, p = 8

Figure 8.13: Convergence behavior for different finite element degrees q, order of surface
quadrature rules p and polynomial orders m of the curvilinear boundary approximation.
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Conclusion and Outlook

Part I - Tools

In the first part of this thesis we have introduced SciPAL, a new C++-class library for rapid inte-
gration of GPGPU computing into existing applications. Currently, it mainly comprises classes
for linear algebra. SciPAL is going to be published under an open-source license. The extension
to CUDA-based finite elements and boundary elements is work in progress.

Benefits: The gain from the SciPAL library is a domain-specific embedded language for
matrix computations for stating the linear algebraic part of a problem in its intuitive mathemat-
ical notation. This is realized by providing properly overloaded operators with zero-overhead
and type-safe programming. As we have shown, the operator overloading does not incur any
run-time overhead and is realized by expression-templates which allow for very compact, self-
documenting code. To this end, matrix and vector classes consistent with deal.II [20, 21] have
been introduced and run-time errors are minimized by extensive compile-time checking due
to the template metaprogramming approach. The effort of porting to a new BLAS-flavor is
minimized to writing one header file with some inlined wrapper functions.

Software Engineering: SciPAL tries to fulfill many of the criteria for “good” software en-
gineering such as reusability, readability and portability, to name just a few. In particular, the
library is subject to extensive unit testing and continuous integration to ensure that modifica-
tions do not break existing programs or interactions between modifications have unwanted side
effects.

Easy integration of GPU-based computations: Following a current trend, SciPAL can del-
egate data-parallel computations to GPUs. In particular, CUBLAS is incorporated in a deal.II-
compatible way. A tremendous simplification for using CUDA is provided by the fact, that
the error-prone transfer between the different memory sections of the heterogeneous system
formed by CPU and GPU is hidden in assignment operators. In particular, it is left to the
compiler to pick the correct direction depending on the matrix or vector types. The assign-
ment opertors are the key feature for a seamless integration of CUDA-based computations into
modern, C++-based scientific libraries like deal.II.

Application-oriented examples: Last but not least, there is a continuously growing list of
example programs demonstrating the features of SciPAL and explaining in detail why things
have been implemented as they are.
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Part II - Applications

Phase Holograms

One of the most successful applications based on SciPAL is the computation of phase-only
holograms for photo-stimulation of individual sites in networks of living neurons. Mathemati-
cally, computing a phase-only holograms to create an optical stimulation pattern which selects
predetermined neurons constitutes is equivalent to wavefront reconstruction. Useful approxi-
mations of a phase mask for a given optical stimulation pattern can only be achieved by iterative
algorithms like the widely used Method of Alternating Projections. The results show that at
most 5 iterations suffice to compute a phase mask within less than 10ms, matching the dynam-
ics of neural activity. The generic programming approach led to a flexible framework for phase
retrieval problems which offers easy switching between the three parallelization techniques
tested: CUDA, OpenMP and pthreads. Only the presented CUDA-based implementation is
currently capable of the necessary frame rates for stimulating networks of optogenetically al-
tered neurons on their intrinsic timescale of several ms.

The high modularity of the simulation framework makes it easy to implement other re-
construction algorithms and to apply to other problems of wavefront reconstruction totally
unrelated to the presented test case from the field of optogenetics.

Preconditioning for Indoor Airflow Simulations

We considered CUDA-based parallel preconditioning for non-normal matrices as they arise
from fluid mechanics problems in engineering indoor airflow. A low-turbulent indoor airflow
case study served as testbed.

Our results show that a CUDA-based sparse approximate inverse or Block-Jacobi precon-
ditioner can outperform a CPU-based ILU preconditioner by almost an order of magnitude
despite a higher iteration count. Especially the Oseen problem which is the numerically most
expensive one can profit from CUDA-based the parallelization. Even in its accelerated version
the run-time to solve it is longer than the accumulated run-times for solving the turbulence
model, temperature equation and the equation for the air age. Therefore, the algebraic part of
turbulent indoor air flow simulations can be accelerated by almost an order of magnitude by
employing a hybrid strategy where one host solves the Oseen problem on the GPU and while a
second host thread solves the turbulence model, Fourier law and air age on the CPU.

Besides the nice gain in performance this project demonstrates that finding a good precon-
ditioner is not only related to the physical and mathematical properties of a particular problem
but also to the details of its implementation. Without fine-grained parallelization sparse ap-
proximate inverse or Block-Jacobi preconditioners would probably never outperform ILU.

The investigation and discussion in this thesis of parallel preconditioning strategies for tur-
bulent indoor airflow is certainly not exhaustive. The issues of the influence of combining the
various stabilization techniques with different finite element types and orders has not even been
mentioned. For a systematic investigation it is certainly worthwhile to apply the presented pre-
conditioning techniques to the long list of example programs provided by deal.II. They cover
the different fundamental types of partial differential equations (elliptic, advective, hyperbolic)
in their scalar or vector-value variants.
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Quantum Transport

During the past three decades, low-temperature quantum transport phenomena in mesoscopic
electron devices have been intensively studied. This thesis provides a well-tested, deal.II-
based simulation tool for the accurate prediction of the wave functions of scattering states in
semi-infinite systems with complex boundaries. The main contribution is an adaption of a re-
cently developed type of transparent boundary conditions for finite element methods for acous-
tic scattering to quantum transport computations in semi-open electron systems. This allows a
numerical study of caustic phenomena and branched electron flow, only recently discovered by
spatially resolved recordings of electron densities in two-dimensional electron gases.

The presented numerical results for the magneto-conductance of a particular device show
that subtle details in the shape of the geometry may have drastic effects on the transport prop-
erties of a device which definitely need a closer look. There are certainly other experiments
worthwhile an in-depth investigation of their transport properties. To do that, all one has to do
is to change the geometry of the computational domain.

The next step is to employ the programming techniques presented in the first part to enhance
the performance of the simulation framework. On the fully discretized level the Schrödinger
equation amounts to solving a system of equations with an indefinite matrix which is the most
time consuming part in the magneto-transport computations. In practice, sparse direct solvers
are the only ones which satisfactorily work for indefinite problems up to now. Yet their com-
plexity and especially the memory consumption do not scale favorably with problem size The
project on parallel preconditioning has shown that because of parallelization by CUDA algo-
rithms of inferior complexity might outperform algorithms previously considered as superior.
In this case the direct methods would have to be replaced by Krylov solvers with a precon-
ditioner capable of the indefinite case, for instance sparse approximate inverse techniques of
which we know that their application fits the CUDA programming paradigm well.

Quantum Time Propagation

Most systems in which wave-packet dynamics is studied are defined on unbounded domains.
The methods developed in Chapter 6 for an exact treatment of transparent boundaries can be
used to improve the wave-packet techniques used in quantum chemistry. A common applica-
tion of wave packet dynamics is the computation of chemical reaction rates.

We have shown that a propagation scheme on truncated Faber series is rather simple to
implement. Faber series are chosen because of their exponential convergence with respect to
the point of truncation and their near-best approximation property. Provided a matrix repre-
sentation of the Hamiltonian is given, the only non-trivial operation is a matrix-vector product.
Depending on the basis set in which the Hamiltonian is approximated either dense or sparse
matrix-vector products are needed. Therefore, the operator-based interface for linear algebra
operations provided by SciPAL should make implementing a time-propagation scheme based
on Faber polynomials particularly easy.

The polynomial preconditioning method presented in this thesis could improve such com-
putations by adding the non-convex inclusion sets known from the Arnoldi-Bratwurst-Faber
method by Liesen to the Faber-based time evolution methods already known in quantum chem-
istry and combine them with a more accurate treatment of transparent boundaries. The advan-
tages of these particular inclusion sets is that the exterior mapping function is known in a
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closed form, gives rise to a memory-efficient three-term recursion for the Faber polynomials
and because of their convexity reduce the number of terms needed in a truncated Faber series
to achieve a given error tolerance.

Dielectric Relaxation Spectroscopy

Recent dielectric spectroscopy studies of ubiquitin in solution have revealed the influence of
conformational sampling on the direct current contribution to the dielectric loss spectrum.
From these experimental findings it is deduced that, depending on its conformation, a ubiq-
uitin molecule may bind a varying number of ions in its hydration shell. This is supposed to
influence the density of mobile ions responsible for the direct current component. The sim-
plest model for the interaction between conformational dynamics and the direct current only
addresses the dependence of the distribution of bound and mobile ions on the different protein
states. Yet it is able to explain the salient features of the sub-β peak although boundary condi-
tions, excluded volume effects and the chemical traits of the ion species are ignored completely.

This thesis describes an improved model based on the Poisson-Nernst-Planck equations
for electro-diffusion to achieve a more quantitative description of dielectric relaxation spec-
troscopy of proteins in solution. First results on a simplified two-dimensional model show
similar alterations of the direct current.

The simulation of the three-dimensional case is severely hampered by the solution of the
fully discretized equations. The non-negligible ellipticity of the problem makes multigrid tech-
niques an attractive option to speedup the calculations. The solution of the FEM-BEM test case
is already based on multigrid methods and could not have been solved without it. Their the-
oretical complexity is optimal and all components (smoother, interpolation and prolongation)
are suitable for CUDA’s parallelization paradigm. Parallelization can be further simplified
by switching to discontinuous Galerkin methods which would solve the issues of conserva-
tion laws for the ion species. The partial differential equations describing the physical model
are sorted out by now. This is the main contribution of this thesis to this physical problem.
Obviously, during the modeling process programming issues are usually of less importance.
However, in order to go to the next stage of optimizing the implementation we definitely need
the tools from part one in order to quickly switch between different solution strategies for
discretized equations and accelerating the discretization process itself. Without an optimized
solver for the stationary case the extension to time-dependence does not even need to be consid-
ered. At the same time, the discretization of this problem offers a great testbed for employing
CUDA for more than just linear algebra. It simulates physical questions of current interest, yet
it is simpler than the indoor airflow problem and issues of parallelization can be studied more
easily. Thus, while optimizing the code one gains new physical insights almost for free.

From a physical point of view the simulation of the time-dependent version of dielectric
relaxation problem would be very much appreciated. A priori it is not obvious that the life
times of the internal states of a protein are sufficiently long for the direct current to reach
stationary value before the protein switches into another conformation. The next level of detail
in the model would be to take into account the true shape of a protein which eventually can be
enhanced by extracting the internal states from a molecular dynamics simulation.
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[32] M. Büttiker. Chemical potential oscillations near a barrier in the presence of transport.
Phys. Rev. B, 40:3409–3412, Aug 1989.

[33] T. F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, and C. H. Tong. A quasi-minimal
residual variant of the bi-cgstab algorithm for nonsymmetric systems. SIAM J. Sci.
Comput., 15:338–347, 1994.

[34] D. Colbert and W. Miller. A novel discrete variable representation for quantum mechan-
ical reactive scattering via the s-matrix kohn method. The Journal of chemical physics,
96(3):1982, 1992.

[35] M. Costabel. Symmetric methods for the coupling of finite elements and boundary
elements (invited contribution). In Boundary elements IX, Vol. 1 (Stuttgart, 1987), pages
411–420. Comput. Mech., Southampton, 1987.
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faces. SIAM Journal on Numerical Analysis, 47(5):3451–3463, 2009.

[115] W. Schmickler and E. Santos. Interfacial Electrochemistry. Springer, 2010.

[116] H. Schrobsdorff. Private communication. 2012.

[117] D. Y. Sharvin and Y. V. Sharvin. Magnetic-flux quantization in a cylindrical film of a
normal metal. Soviet Journal of Experimental and Theoretical Physics Letters, 34:272–
275, Sept. 1981.

[118] S. E. J. Shaw. Propagation in smooth random potentials. PhD thesis, Harvard University,
2002.

[119] T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada. Fast calculation of
computer-generated-hologram on AMD HD5000 series GPU and OpenCL. Opt. Ex-
press, 18(10):9955–9960, May 2010.

[120] O. Stern. Zur theorie der elektrolytischen doppelschicht. Z. Elektrochem. Angew. Phys.
Chem., 30:508, 1924.

[121] S. Strobl. Gpu-based rigid body dynamics. Master’s thesis, Institut für Informatik,
Universität Erlangen-Nürnberg, 2009.



BIBLIOGRAPHY 161

[122] B. Stroustrup. Die C++-Programmiersprache. Professionelle Programmierung.
Addison-Wesley, 2000.

[123] B. Stroustrup. Die C++-Programmiersprache. Programmer’s Choice. Addison Wesley
Verlag, 2010.

[124] J. W. Strutt. On the interference bands of approximately homogeneous light; in a letter
to Prof. A. Michelson. Phil.Mag., 34:407–411, 1892.

[125] J. Sylvester. Thoughts on inverse orthogonal matrices, simultaneous sign successions,
and tessellated pavements in two or more colours, with applications to Newton’s rule,
ornamental tile-work, and the theory of numbers. Philosophical Magazine, 34:461–475,
1867.

[126] M. A. Topinka, B. J. LeRoy, S. E. J. Shaw, E. J. Heller, R. M. Westervelt, K. D. Mara-
nowski, and A. C. Gossard. Imaging coherent electron flow from a quantum point con-
tact. Science, 289:2323–2326, September 2000.

[127] M. A. Topinka, B. J. LeRoy, R. M. Westervelt, S. E. J. Shaw, R. Fleischmann, E. J.
Heller, K. D. Maranowski, and A. C. Gossard. Coherent branched flow in a two-
dimensional electron gas. Nature, 410:183–186, Mar. 2001.

[128] B. van Wees. Quantized conductance of point contacts in a two-dimensional electron
gas. Phys. Rev. Lett., 60(9):848–850, 1988.

[129] D. Vandervoorde and N. M. Josuttis. C++ Templates: The Complete Guide. Addison-
Wesley, 2003.

[130] T. L. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, 1995.

[131] T. L. Veldhuizen. Blitz++: The library that thinks it is a compiler. In H. Langtangen,
A. Bruaset, and E. Quak, editors, Advances in Software Tools for Scientific Computing,
volume 10 of Lecture Notes in Computational Science and Engineering, pages 57–87.
Springer, 2000.

[132] T. L. Veldhuizen. C++ templates are turing complete. Technical report, Indiana Univer-
sity, 2003.

[133] J. von Neumann. Functional Operators, Vol II. The geometry of orthogonal spaces, vol-
ume 22 of Ann. Math Stud. Princeton University Press, 1950. Reprint of mimeographed
lecture notes first distributed in 1933.

[134] J. Walsh. Approximation by polynomials in the complex domain. Number v. 73 in
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