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\The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,

And I mu follow, if I can,
Pursuing it with eager feet,

Until it joins some larger way
Where many paths and errands meet.

And wither then? I cannot say."

J. R. R. Tolkien, The Fellowship of the Ring, Book I, Chapter 1.
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Notation

Number systems and spaces:

C complex numbers

Cn space of complex column vectors of length n (n ∈ N)

Cm×n space of m-by-n matrices with entries from C, i.e. complex
matrices with m rows and n columns (m,n ∈ N)

C0(Rd) space of continuous functions f : Rd → C vanishing at infinity

C∞c see C∞c (R)

C∞c (Rd) space of infinitely differentiable functions f : Rd → C with
compact support in Rd

L1(Rd) space of absolutely integrable functions f : Rd → C

N natural numbers (excluding 0)

N0 natural numbers including 0

R real numbers

Rd space of real column vectors of length d (d ∈ N)

S see S(R)

S(Rd) space of infinitely differentiable functions f : Rd → C which
are, together with all their derivatives, rapidly decreasing; so-
called Schwartz space

Z integer numbers

Mathematical constants:

π constant pi

e Euler’s number, base of the natural exponential function

i imaginary unit



x Notation

Variables:

ανη , λ, λ` coefficients

αj , α̃j , βj , β̃j , γj components of points in the real plane

η, ν index variables from N

ϑ parameter for angles that are given in radians

θ, %, ψ angles

µ distribution

ϕ function

ξ1, ξ2, ω, ω1, ω2 real arguments of functions or components of real vectors

aj coefficient or polynomial

ãj , aαj , aj,k, a
′
j,k, bj , b̃j ,

bβj , cj , cγj , c̃j , c
i
j ,

cr1,r2j,k , dνm

coefficients (i ∈ N0)

f, g functions

h, h1, h2 step sizes with h, h1, h2 ∈ R and h, h1, h2 > 0

j, k, k′, `,m,mi, n, r, ri index variables from N (i = 1, 2)

lj parameterization of Lj or line through the origin in the plane

l, l⊥, l̃, l̃j lines through the origin in the plane

mj slope

ñ outward pointing unit normal field

t, ti, x, xi real arguments of functions (i = 1, 2)

z complex argument of a function

zj zero of a polynomial

Λ,Φ functions

C, T real constants

D polygonal domain

Fk falling factorial (polynomial)

G, G̃,K, S̃2, V1, V2, Ṽi sets (i ∈ N)

Lj edge of a polygon

M,N,N1, N2, R,Rj natural numbers

P,Q functions



Notation xi

Sk set, knot, or shift value

Tj frequency in an exponential sum, knot, or shift value

Vectors and matrices:

0 zero vector, i.e. column vector with zeros as entries

α = (α1, α2, . . . , αd) multi-index, i.e. d-tuple of non-negative integers

λ,λ′, ξ,ω,fj , t,u,u
⊥,

ũ,uj ,x
column vectors

ek unit vector in Rd, d ∈ N, such that (ek)k = 1

nj , ñj normal vector / unit normal vector (column vectors)

p,pnew,pl,min,pl,max points in the real plane or in Rd (column vectors)

v,vj , ṽj ,w shift vector or vertex of a polygon (column vectors)

A,B,D,G,U matrices

D%,Dψ rotation matrices

HN+1,TN+1 (N + 1)-by-(N + 1) Hankel / Toeplitz matrix

VN,N+1 N -by-(N + 1) Vandermonde-type matrix

Functions and operators:

1[a,b) characteristic function on the interval [a, b)

〈ω,x〉 standard inner product of real vectors ω and x: 〈ω,x〉 = ωTx〈
µ, ϕ

〉
evaluation of distribution µ with argument ϕ

|α| the sum
∑d

j=1 αj for the multi-index α = (α1, α2, . . . , αd)

|x|, |z| absolute value of the real number x / the complex number z

|S| cardinality of the set S

‖ξ‖2 euclidean norm of the vector ξ

ωα the product
∏d
j=1 ω

αj
j for ω ∈ Rd and the multi-index α

f ′ first derivative of the univariate function f

f (k) kth derivative of the univariate function f

f̂ Fourier transform of the function f

z complex conjugate of z (z: number, vector, matrix, function)

xT,AT transpose of the vector x and the matrix A respectively

A∗,A−1 conjugate transpose / inverse of the matrix A



xii Notation

�m

�ωm g higher-order partial derivative of g with respect to ω

�D boundary of the domain D

δ Dirac delta distribution

τa, τa,b translation operators with a ∈ R and (a, b) ∈ R2 respectively

µ(g) distribution, identified with the function g

Bm
j B-spline of order m determined by the knots Tj , . . . , Tj+m

divx divergence operator (with respect to x)

Dν function, see p. 37

Dµ distributional derivative of µ

Dk µ kth distributional derivative of µ

D(r1,r2) µ distributional derivative of µ ((r1, r2): multi-index)

Dα f mixed-partial derivative of the function f : Rd → C (p. 140)

diag(d1, . . . , dN ) diagonal matrix with d1, d2, . . . , dN as main diagonal entries

exp natural exponential function

F{f}, F{µ} Fourier transform of the function f / the distribution µ

gradx gradient operator (with respect to x)

Im(z) imaginary part of the complex number z

ln principal branch of the complex logarithm

min{a, b} minimum of the two expressions a and b

Nm centred cardinal B-Spline

Plk(p) orthogonal projection of the point p onto the line lk

rank(A) rank of the matrix A

sin, cos, tan, cot trigonometric functions sine, cosine, tangent, and cotangent

Miscellanea:

·, ·1, ·2 place-holder for a variable, as in f(·) or f(·1, ·2), for example

(Tj)
N
j=1 column vector (T1, T2, . . . , TN )T or sequence (T1, T2, . . . , TN )

(aj,k)
N
j=n1,k=n2

(N − n1 + 1)-by-(N − n2 + 1) matrix with entries aj,k

(xj)k, xj,k notations for the kth component of a vector xj (k ∈ N)

c∗j , v
∗
j,k, T

∗
j numerically reconstructed values
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1. Introduction

In several scientific areas, such as radio astronomy, computed tomography, and mag-
netic resonance imaging, [9], the reconstruction of structured functions from the know-
ledge of samples of their Fourier transform is a common problem. For the analysis of
the examined object, it is important to reconstruct the underlying original signal as
exactly as possible. In this dissertation, we aim to uniquely recover specially structured
functions from a smallest possible set of Fourier data.

Frequently, special properties or structures of the functions to be reconstructed are
exploited in order to reconstruct the functions from only a small set of sampling values.
These can be function values or samples of a transformed version of the function, such
as the Fourier transform.

Normally, one seeks to recover functions which possess sparse representations in a
given basis or frame using only a small set of sampling values. In particular, there has
been significant research activity in the area of Compressed Sensing, [18].

For instance, Candès et al. have shown in [14] that a discrete-time signal f ∈ Cn
with s� n non-zero entries can be recovered, under certain conditions, from a set of
Fourier coefficients of size O(s log(n)). In [59], it has been shown that a trigonometric
polynomial of degree N where only s � N coefficients are non-zero can be recon-
structed with probability at least 1 − ε from O(s log((2N + 1)/ε)) randomly chosen
sampling points.

Usually, the reconstruction algorithms used in the framework of compressed sensing
are based on l1-minimization methods, and exact recovery is only attained with a
certain probability.

In contrast to those minimization methods where the result is only guaranteed with a
certain probability, also deterministic methods for the recovery of sparse trigonometric
functions are available, which are based upon the Prony method, [33, pp. 457–462], or
the annihilating filter method, [19, 65].

Within the past few years, the Prony method has been increasingly applied in the
field of parameter estimation. It enables the determination of specific parameters of
functions using only few sampling values if the functions to be recovered belong to the
class of exponential sums.

Several numerically stable variants of the original Prony method, which is over
200 years old, [17], and suffers from numerical instabilities, have been derived. Potts
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and Tasche have developed the Approximate Prony method in [55, 56], which works
not only in the noiseless case but also in the case of noisy measurements. Another
stabilization of the Prony method is proposed in [23], where the possibly perturbed
sampling values are not used directly, but a windowed average of their autocorrelation
sequence is used instead. This approach is motivated by the application of operators
of the form

∑N
k=0 g

(
k
N

)
f̂(k) exp(i k·) with a suitable filter g in [45] and [46], where

such operators have been applied in order to detect singularities of piecewise smooth
functions f .

Recently, the reconstruction of piecewise smooth functions and shifts of several
signals has also been studied in [4–6]. In these papers, the robustness of the involved
Prony type systems is investigated too, see also [3].

There are also well-known parameter identification methods in signal processing,
such as the ESPRIT method, [61], the Matrix pencil method, [36], and the MUSIC
method, [62]. In [58], it has been pointed out that these methods are equivalent
to the Prony method such that they can be seen as so-called Prony-like methods,
see [48, Chapter 3].

The Prony method has also been generalized to the problem of reconstructing sparse
Legendre expansions, [50], and, as the so-called generalized Prony method, to the
problem of reconstructing sparse sums of eigenfunctions of linear operators, see [49]
and the dissertation [48] of Thomas Peter.

Further, the Prony method is equivalent to the annihilating filter method. In [65],
Vetterli et al. have introduced the concept of signals with finite rate of innovation.
Such signals have a finite number of degrees of freedom per unit of time. Using
the annihilating filter method, Vetterli at al. have shown that one can completely
reconstruct signals of finite length which have a finite rate of innovation by applying a
generalized Shannon sampling theorem although the signals considered are not band-
limited.

In the dissertation on hand, we use the Prony method as key instrument in order
to uniquely reconstruct structured, real-valued functions from sparse Fourier samples.
We derive algorithms for unique recovery by means of a smallest possible set of Fourier
data. First, we consider the univariate case, where we propose reconstruction methods
for B-spline functions with non-uniform knots and linear combinations of non-uniform
translates of a known low-pass filter function.

We can transfer the reconstruction results given in the univariate case to the bivari-
ate case in a similar way if we consider separable functions such as tensor-products of
non-uniform spline functions and non-uniform translates.

In case of non-separable functions, the problem gets more involved. We want to
recover the unknown functions from only a small amount of Fourier samples taken
on few distinct lines through the origin. In [44], a linear combination of N bivariate
Diracs is recovered from O(N2) samples of the signal by considering the Fourier series
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coefficients of the signal and using the so-called algebraic coupling of matrix pencils
(ACMP) algorithm, [64].

We will study linear combinations of non-uniform shifts of bivariate functions Φ
of the form f(x1, x2) :=

∑N
j=1 cjΦ(x1 − vj,1, x2 − vj,2) where we seek to recover the

unknown parameters cj , vj,1, and vj,2 from sparse Fourier data. As we will show, it is
possible to uniquely recover these parameters by using only 3N+1 Fourier samples on
three lines through the origin. We consider two predetermined lines, while the third
sampling line is chosen dependently on the results obtained by employing the samples
from the first two lines. Moreover, if we want to use only predetermined sampling
lines, we will show that N + 1 lines and O(N2) Fourier samples are required to ensure
unique recovery.

Further, we propose a generalization to d dimensions with d > 2, where we need
d+1 sampling lines for unique function reconstruction. Similarly to the bivariate case,
we use d predetermined lines, and the (d+ 1)st line is chosen suitably.

Moreover, we examine the reconstruction of polygonal shapes in the real plane.
In the shape from moments problem, [21, 27, 47], integral moments of the analytic
power function f(z) = zk over the characteristic function of a polygonal domain D
are taken, and the vertices of D are computed by applying Prony-like methods to
these moments. We, on the other hand, will take a similar approach as in the case of
bivariate non-uniform translates such that we are able to reconstruct concave polygonal
domains D with N vertices by taking 3N samples of the Fourier transform of the
characteristic function 1D. Here, we use again two predetermined sampling lines and
an appropriately chosen third line.

This dissertation is organized as follows: Chapter 2 provides an overview of the
Prony method in such a formulation as we need later on for our proposed reconstruc-
tion methods in Chapters 3–6, where the focus lies on using as few Fourier samples as
possible in order to uniquely recover functions of different classes. In Chapter 3, we
discuss the one-dimensional case of reconstruction of structured functions from sparse
Fourier data, that is, we consider univariate functions such as step functions, non-
uniform spline functions, and non-uniform translates of low-pass filter functions. We
transfer the results found in Chapter 3 to the two-dimensional setting in Chapter 4,
where we deal with the reconstruction of tensor-products of non-uniform spline func-
tions and non-uniform translates from sparse Fourier data. Further, we also consider
non-uniform translates of bivariate functions where the variables are not separable.
The results for the last mentioned case are then generalized to d dimensions with
d > 2 in Chapter 5. Finally, in Chapter 6, we discuss the reconstruction of polygonal
shapes in the real plane from sparse Fourier data. Some parts of this work have already
been published in [54] and [67].

In several cases, we illustrate our reconstruction results with numerical experiments.
All examples considered in the sections about numerical results have been computed
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using MATLAB 7.11 with double precision arithmetic. For the computation of eigen-
vectors, roots of polynomials, and least squares solutions to linear systems of equations,
internal MATLAB routines have been used.

At the end, we collect some properties of the Fourier transform, which we use
throughout this work, in Appendix A. Further, Appendix B contains the proofs of
some lemmas for non-uniform spline representations which are needed for the recon-
struction of non-uniform spline functions in Section 3.2. Some required lemmas for
integration, needed in Appendix B, are given in Appendix C. The last chapter, Ap-
pendix D, consists of the proofs of lemmas required for non-uniform tensor-product
spline representations in Subsection 4.1.1.



2. Prony method

The Prony method is a method for the identification of parameters in exponential
sums, that is, the Prony method can be used in order to determine frequencies Tj and
corresponding coefficients cj of a function f of the form

f(ω) = c1 eωT1 +c2 eωT2 + . . .+ cN eωTN

where function values of f are given on a set of at least 2N equispaced points, e.g.
see [33, pp. 457–462]. This method dates back to 1795, when Gaspard Riche de
Prony introduced it in [17] for solving an approximation problem about expansion
characteristics of gases.

The Prony method consists of two separate steps. In the first step, the frequencies
Tj are computed. Afterwards, using the knowledge of the found frequencies, the
corresponding coefficients are determined. We employ the Prony method as a key
instrument for our proposed approaches for the reconstruction of structured functions
from sparse Fourier data in Chapters 3–6.

In the following two sections, we give an overview of the classical Prony method,
which works in the case of exact data. We use a slightly different notation and formu-
lation of the problem than in the literature about the Prony method and its variants
from the past few years, e.g. [8, 23, 48, 51, 55–58], such that we can directly apply the
method as described in Sections 2.1 and 2.2 to the problems dealt with in Chapters
3–6, that is, we already adjust the formulation of the Prony method in the following
two sections to the settings considered later.

In the first of the two steps of the Prony method, an appropriate eigenvalue problem
is solved, which yields the coefficients of a so-called Prony polynomial. By computing
the roots of the Prony polynomial, we then obtain the frequencies Tj . In the second
step, a linear system of equations is solved in order to determine the corresponding
coefficients cj .

The original Prony method is numerically unstable with respect to inexact meas-
urements of the function values, see [42, pp. 275–280] for an example. Recently there
have been made various efforts in order to derive stable variants of the Prony method
such that it works also for noisy input data. A stable algorithm, the Approximate
Prony method, has been derived in [51,55,56], based upon an approach from [8].

Moreover, as Potts and Tasche have pointed out in [58], there exist several Prony-
like methods, that is, methods which solve the same kind of parameter estimation
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problem as the original Prony method, such as the ESPRIT method, [61], and the
Matrix pencil method, [36]. In [48], it is shown that also the MUSIC method, [62], is
a Prony-like method. A nice overview and comparison of these methods can be found
in [48, Chapter 3].

In [23], Filbir et al. have proposed a stabilization of the Prony method where, instead
of using the (perturbed) function samples, a windowed average of their autocorrelation
sequence is applied.

The performance of the Prony-like methods can be greatly improved if a larger
number of sampling values of the function that has to be reconstructed is available, see
[23,51,55], for example, where also error estimates in the case of noisy measurements
are given. In order to obtain certain error estimates, the number M of measurements
has to fulfil the condition M > 2π2

q where q is the minimal separation distance between
two frequencies. But this is only a theoretical result. Actually, the required number of
function values is often considerably smaller, see [48, Section 3.4]. It is also concluded
that the different Prony-like methods yield comparable reconstruction results, and
that stable variants of the Prony method are given by them, see [48, Chapter 3].

Further, note that the Prony method is also equivalent to the annihilating filter
method used in signal processing, see [19,65], for instance. The relation between these
two methods is shown in [53, Remark 2.4].

In the following, we concentrate on the classical Prony method for the noiseless case
in order to understand the concept of this method, and we present it in an adjusted
formulation such that we can apply the method as described in the following two
sections to our reconstruction problems considered later.

2.1. Prony method for exponential sums with complex-valued
coefficients

Consider a trigonometric function P : R→ C of the special form

P (ω) =
N∑
j=1

cj e− iωTj (2.1)

with N ∈ N, non-zero coefficients cj ∈ C, and real-valued frequencies Tj in ascending
order, i.e. −∞ < T1 < T2 < . . . < TN <∞.

We want to compute the frequencies T1, . . . , TN , and all coefficients c1, . . . , cN from
the sampling values P (`h) for ` = 0, . . . , 2N where h is assumed to be a positive
constant with hTj ∈ (−π,π] for all j ∈ {1, . . . , N}. For this purpose, the Prony
method can be applied as follows.
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Let us consider the complex polynomial Λ : C→ C defined by

Λ(z) :=

N∏
j=1

(
z − e− ihTj

)
=

N∑
k=0

λkz
k. (2.2)

This polynomial, the so-called Prony polynomial, exactly possesses the values e− ihTj ,
j = 1, . . . , N , with the unknown frequencies Tj from (2.1) as zeros. Here, λk are the
coefficients of Λ in the monomial basis. Particularly, we have λN = 1 by definition of
the Prony polynomial Λ.

Then we observe for m = 0, . . . , N that

N∑
k=0

λkP
(
h(k +m)

)
=

N∑
k=0

λk

N∑
j=1

cj e− ih(k+m)Tj =

N∑
j=1

cj e− ihmTj

N∑
k=0

λk e− ihkTj

=
N∑
j=1

cj e− ihmTj Λ(e− ihTj )
(2.2)
= 0.

(2.3)

Hence, the coefficient vector λ :=(λ0, . . . , λN )T with λN = 1 is the solution of the
linear system

HN+1λ = 0 (2.4)

with the Hankel matrix1

HN+1 :=
(
P
(
h(k +m)

))N
m,k=0

∈ C(N+1)×(N+1),

which is given by the known sampling values P (`h), ` = 0, . . . , 2N .
We can write this Hankel matrix as a product of two Vandermonde-type matrices

and a diagonal matrix, which enables us to compute the rank of HN+1. We find

HN+1 =
(
P
(
h(k +m)

))N
m,k=0

=

(
N∑
j=1

cj exp(− ih(k +m)Tj)

)N
m,k=0

=

(
N∑
j=1

cj exp(− ihmTj) · exp(− ihkTj)

)N
m,k=0

=
(
cj exp(− ihmTj)

)N
m=0,j=1

·
(
exp(− ihkTj)

)N
j=1,k=0

=
(
exp(− ihmTj)

)N
m=0,j=1

· diag(c1, c2, . . . , cN ) ·
(
exp(− ihkTj)

)N
j=1,k=0

= V T
N,N+1 ·D · VN,N+1

1A Hankel matrix is a matrix where the entries are constant along the diagonals parallel to the
antidiagonal, see [34, pp. 27–28].
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where VN,N+1 is a Vandermonde-type matrix and D a diagonal matrix with

VN,N+1 :=
(
exp(− ihkTj)

)N
j=1,k=0

and D := diag(c1, c2, . . . , cN ).

Further, we know

rank
(
VN,N+1

)
= rank

(
V T
N,N+1

)
= rank(D) = N (2.5)

since VN,N+1 and V T
N,N+1 are Vandermonde-type matrices where Tj 6= Tk for j 6= k,

and since D is a diagonal matrix with non-zero main diagonal entries2.
In order to compute the rank ofHN+1, we need some rank properties. The following

lemma collects rank properties which are taken from [34, p. 13].

Lemma 2.1.

(a) For a matrix A ∈ Cm×n and a non-singular matrix B ∈ Cn×n, one has the rank
equality

rank(A) = rank(AB). (2.6)

(b) Let the matrices A ∈ Cm×k and B ∈ Ck×n be given. Then one has the rank
inequality(

rank(A) + rank(B)
)
− k ≤ rank(A ·B) ≤ min

{
rank(A), rank(B)

}
. (2.7)

Using Lemma 2.1, we can now compute the rank of HN+1. Remember that we have

V T
N,N+1 ∈ CN+1×N and D ∈ CN×N with rank(D)

(2.5)
= N.

First, we observe that

rank
(
V T
N,N+1 ·D

) (2.6)
= rank

(
V T
N,N+1

) (2.5)
= N. (2.8)

Secondly, define A :=V T
N,N+1 · D ∈ CN+1×N and B :=VN,N+1 ∈ CN×N+1. Then,

using the equalities (2.5) and (2.8), we get the following by (2.7):

rank(A) + rank(B)−N ≤ rank(A ·B) ≤ min
{

rank(A), rank(B)
}

⇔ N +N −N ≤ rank(A ·B) ≤ min{N,N}
⇔ N ≤ rank(A ·B) ≤ N.

Therefore, we have

rank(A ·B) = rank
(
V T
N,N+1 ·D · VN,N+1

)
= rank

(
HN+1

)
= N.

2See [34, p. 29] and [34, p. 23] respectively.
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Since rank(HN+1) = N , the dimension of the eigenspace of HN+1 corresponding to
the eigenvalue 0 is equal to one3. Thus, the eigenvector λ of HN+1 corresponding to
the eigenvalue 0 is uniquely determined by (2.4) and λN = 1.

Knowing λ, which is the coefficient vector of the polynomial Λ in (2.2), we can
compute the zeros zj := e− ihTj , j = 1, . . . , N , of that polynomial Λ. Hence, using the
assumptions about h (see also Remarks 2.3, 1.), we get the frequencies T1, . . . , TN by
the computation

Tj =
− Im

(
ln(zj)

)
h

, j = 1, . . . , N,

where we consider the principal branch of the complex logarithm4, i.e. ln(z) = i θ for
z = ei θ with θ ∈ (−π,π].

Finally, the coefficients cj , j = 1, . . . , N , are obtained from the linear, overde-
termined Vandermonde-type system

P (`h) =
N∑
j=1

cj e− i `hTj , ` = 0, . . . , 2N. (2.9)

We summarize the algorithm to determine the frequencies and the coefficients in
(2.1) as follows.

Algorithm 2.2 (Prony method for complex-valued coefficients).

• Input:

– P (`h), ` = 0, . . . , 2N ;

– step size h with hTj ∈ (−π,π] for all j ∈ {1, . . . , N}.

• Computation:

1. Construct the Hankel matrix

HN+1 :=
(
P
(
h(`−m)

))N
m,`=0

.

2. Solve the system HN+1λ = 0 where λ = (λ0, λ1, . . . , λN )T with λN = 1.

3. Consider the polynomial

Λ(z) :=
N∑
`=0

λ`z
`,

and compute all its zeros zj := e− ihTj , j = 1, . . . , N .

3Cf. [24, p. 317].
4See [68, p. 559], for example.
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4. For Tj =
− Im(ln(zj))

h , j = 1, . . . , N , compute the corresponding coefficients
cj , j = 1, . . . , N , as least squares solution to the Vandermonde-type system

N∑
j=1

cj e− i `hTj = P (`h), ` = 0, . . . , 2N.

(Here, ln is the principal branch of the complex logarithm.)

• Output: Frequencies Tj , j = 1, . . . , N , and coefficients cj , j = 1, . . . , N , de-
termining P in (2.1).

Remarks 2.3.

1. In order to compute the frequencies Tj for j = 1, . . . , N uniquely, we need to
ensure that hTj ∈ (−π,π] since the function ω 7→ e− iω is 2π-periodic. Otherwise,
we will not be able to extract the values Tj from the zeros zj = e− ihTj of Λ on
the unit circle uniquely.

2. While the frequencies Tj are not known, we only need to find a suitable upper
bound for |Tj | in order to fix a suitable step size h.

3. In applications, also the number N of terms in (2.1) is usually unknown. Having
given at least an upper bound M ≥ N and 2M + 1 sampling values P (`h) for
` = 0, . . . , 2M , we can also apply the above procedure (replacing N by M) and
obtain N by examining the rank of HM+1 numerically. In this case, (2.4) cannot
longer be solved uniquely, but each eigenvector corresponding to the eigenvalue
0 will serve for the determination of the zeros of Λ on the unit circle and hence
of Tj , j = 1, . . . , N , see [55], for example.

4. The sampling values taken here are the values P (`h) for ` = 0, . . . , 2N . This
is not the only possible choice. Observe that the equations in (2.3) are valid
for all integers m. Thus, we can take also the 2N + 1 sampling values P (`h),
` = k, . . . , 2N + k for some k ∈ Z.

Remark 2.4.
Observe that we consider an eigenvalue problem in (2.4); i.e., we want to compute the
eigenvector λ of the Hankel matrix HN+1 which corresponds to the eigenvalue 0. We
know that this eigenvector is uniquely determined since we have rank(HN+1) = N and
λN = 1. Moreover, this eigenvalue problem determines the number of sampling values
of the trigonometric function P we need because the Hankel matrix HN+1 contains
the function values P (`h) for ` = 0, 1, . . . , 2N as entries. But by taking a closer look
at the system (2.4), we notice that we can change this eigenvalue problem into a linear
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system of equations where we have to find N unknowns such that we need only 2N
function values of P .

First, remember that the vector λ is the coefficient vector of the polynomial Λ in
(2.2), and that we have λN = 1 due to the definition of Λ. Thus, we actually have
N unknowns in the linear system (2.3), namely λ0, . . . , λN−1. By rearranging the
equations in (2.3), we obtain the linear system

N−1∑
k=0

λkP
(
h(k +m)

)
= −λNP

(
h(N +m)

)
= −P

(
h(N +m)

)
, m ∈ Z.

Since we have to determine the N unknown parameters λ0, . . . , λN−1, it suffices
to take N equations, e.g. the equations for m = 0, . . . , N − 1. Therefore, we need
the function values P (`h), ` = 0, 1, . . . , 2N − 1, such that 2N sampling values of P
are enough in order to determine the frequencies and coefficients of the trigonometric
function P in (2.1).

2.2. Prony method for exponential sums with real-valued
coefficients

Let us now consider an exponential sum where the coefficients are real numbers, i.e. a
trigonometric function P : R→ C of the form

P (ω) =

N∑
j=1

cj e− iωTj (2.10)

with N ∈ N, non-zero coefficients cj ∈ R, and real-valued frequencies Tj in ascending
order, i.e. −∞ < T1 < T2 < . . . < TN <∞.

In the present case, observe that we do not have complex-valued coefficients as in the
exponential sum considered in (2.1) in the previous section but real-valued coefficients.
Therefore, the function P in (2.10) has a conjugate symmetry, i.e.

P (−ω) =
N∑
j=1

cj eiωTj = P (ω). (2.11)

This enables us to identify the parameters of P , namely the frequencies Tj and the
coefficients cj (j = 1, . . . , N), using fewer sampling values than in the case where the
coefficients are complex-valued.

We still need 2N + 1 function values of P for the actual computations. While we
have taken the sampling values P (`h) for ` = 0, . . . , 2N in the previous section, we
can also take the function values P (`h) for ` = −N, . . . ,−1, 0, 1, . . . , N as explained
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in Remarks 2.3, 4. By using the conjugate symmetry (2.11), we can compute the
values P (`h) for ` = −N, . . . ,−1 from the values P (0), . . . , P (Nh) such that the N+1
sampling values P (`h) for ` = 0, . . . , N suffice for the determination of the parameters
of the exponential sum P .

Here, h is again assumed to be a positive constant satisfying hTj ∈ (−π,π] for
all j ∈ {1, . . . , N}. In detail, the Prony method applied to exponential sums with
real-valued coefficients works as follows.

First, we again consider the Prony polynomial Λ : C→ C defined in (2.2), i.e.

Λ(z) :=
N∏
j=1

(
z − e− ihTj

)
=

N∑
`=0

λ`z
`, (2.12)

which possesses the values e− ihTj for j = 1, . . . , N with the unknown frequencies Tj
from (2.10) as zeros. The leading coefficient of Λ in the monomial representation on
the right-hand side of (2.12) is given as λN = 1 by definition of Λ.

As already mentioned, the equations in (2.3) hold for all integers m. Thus, we
obtain the following for m = 0, . . . , N :

N∑
`=0

λ`P
(
h(`−m)

)
=

N∑
`=0

λ`

N∑
j=1

cj e− ih(`−m)Tj =
N∑
j=1

cj eihmTj

N∑
`=0

λ` e− ih`Tj

=
N∑
j=1

cj eihmTj Λ(e− ihTj )
(2.12)

= 0,

(2.13)

which means that the coefficient vector λ :=(λ0, . . . , λN )T is the solution of the linear
system

TN+1λ = 0 (2.14)

with the matrix

TN+1 :=
(
P
(
h(`−m)

))N
m,`=0

∈ C(N+1)×(N+1).

Note that this matrix is no longer a Hankel matrix as in (2.4) but a Toeplitz matrix5.
All (N2 + 2N + 1) entries of TN+1 are given by the 2N + 1 function values P (`h),

` = −N, . . . ,−1, 0, 1, . . . , N . Since

P (−`h) = P (`h), ` = 1, . . . , N, (2.15)

by the conjugate symmetry (2.11), the Toeplitz matrix TN+1 is completely determined
by the sampling values P (`h), ` = 0, . . . , N .

5A Toeplitz matrix is a matrix with constant entries along the diagonals which are parallel to the
main diagonal, see [34, p. 27].
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The further approach is based on the calculations in the previous section. First, we
can write the Toeplitz matrix TN+1 as a product of two Vandermonde-type matrices
and a diagonal matrix. Using the definitions

VN,N+1 :=
(
exp(− ihkTj)

)N
j=1,k=0

, D := diag(c1, c2, . . . , cN ),

we find

TN+1 =
(
P
(
h(`−m)

))N
m,`=0

=

(
N∑
j=1

cj exp(− ih(`−m)Tj)

)N
m,`=0

=

(
N∑
j=1

cj exp(ihmTj) · exp(− ih`Tj)

)N
m,`=0

=
(
cj exp(ihkTj)

)N
k=0,j=1

·
(
exp(− ihkTj)

)N
j=1,k=0

=
(
exp(ihkTj)

)N
k=0,j=1

· diag(c1, c2, . . . , cN ) ·
(
exp(− ihkTj)

)N
j=1,k=0

= V ∗N,N+1 ·D · VN,N+1.

Similarly to (2.5), we have the equalities

rank(VN,N+1) = rank(V ∗N,N+1) = rank(D) = N. (2.16)

Thus, in complete analogy to the steps following Lemma 2.1, we obtain

rank(TN+1) = N,

and the eigenvector λ of TN+1 corresponding to the eigenvalue 0 is uniquely determined
by (2.14) and λN = 1.

The next step consists of the computation of the zeros zj := e− ihTj , j = 1, . . . , N ,
of the polynomial Λ, which is possible since we have determined the coefficient vector
λ of Λ in the previous step. Then, using the assumptions about h (see also Remarks
2.3, 1.) and the principal branch of the complex logarithm, we get the frequencies
T1, . . . , TN by the evaluation

Tj =
− Im

(
ln(zj)

)
h

, j = 1, . . . , N.

Finally, we obtain the coefficients cj , j = 1, . . . , N , from the linear Vandermonde-
type system

P (`h) =

N∑
j=1

cj e− i `hTj , ` = 0, . . . , N.
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Observe here that this system consists only of N+1 equations, whereas we have 2N+1
equations in the case of complex-valued coefficients, see (2.9).

In Summary, we have the following algorithm for the determination of the frequen-
cies and coefficients in (2.10):

Algorithm 2.5 (Prony method for real-valued coefficients).

• Input:

– P (`h), ` = 0, . . . , N ;

– step size h with hTj ∈ (−π,π] for all j ∈ {1, . . . , N}.

• Computation:

1. Compute P (−`h), ` = 1, . . . , N , using (2.15).

2. Construct the Toeplitz matrix

TN+1 :=
(
P
(
h(`−m)

))N
m,`=0

.

3. Solve the system TN+1λ = 0 where λ = (λ0, λ1, . . . , λN )T with λN = 1.

4. Consider the polynomial

Λ(z) :=
N∑
`=0

λ`z
`,

and compute all its zeros zj := e− ihTj , j = 1, . . . , N .

5. Determine the frequencies T1, . . . , TN by

Tj =
− Im

(
ln(zj)

)
h

, j = 1, . . . , N.

(Here, ln is the principal branch of the complex logarithm.)

6. For the frequencies Tj , j = 1, . . . , N , compute the corresponding coeffi-
cients cj , j = 1, . . . , N , as least squares solution to the Vandermonde-type
system

N∑
j=1

cj e− i `hTj = P (`h), ` = 0, . . . , N.

• Output: Sequences (Tj)
N
j=1 and (cj)

N
j=1, determining P in (2.10).
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Remark 2.6.
In the present case of the Prony method applied to exponential sums with real-valued
coefficients, we obtain a Toeplitz matrix in Step 2 of Algorithm 2.5, while we have a
Hankel matrix in the case of complex-valued coefficients.

The different matrix structure in these two cases is due to the differences in the
systems of equations (2.3) and (2.13). The latter system results from (2.3) by using
the indices m = −N, . . . , 0 instead of the values m = 0, . . . , N , and by reversing the
order of the equations.

Hence, the Hankel matrix in (2.4) turns into a Toeplitz matrix, and a further con-
sequence of the reversed order of equations is that the rank of the Toeplitz matrix is
also equal to N , which we have shown above in detail.

Remark 2.7.
In analogy to Remark 2.4, we can transfer the eigenvalue problem in (2.14) into a
linear system of equations. But, in contrast to the situation described in Remark 2.4,
this does not enable us to take fewer sampling values of the trigonometric function P ,
which is due to the different matrix structure in (2.13) compared to (2.3).





3. Recovery of special univariate functions
from sparse Fourier samples

In this first chapter of the main part, we will discuss the reconstruction of structured,
real-valued functions from sparse Fourier samples where the considered functions are
univariate. For different cases, we want to answer the question of the number of needed
Fourier samples in order to uniquely recover the original function.

The key instrument for the reconstruction will be the Prony method, which has been
described in Chapter 2. The focus lies on using as few Fourier samples as possible
where we use clean data. Further, for the Fourier transform f̂ : R → C of a function
f ∈ L1(R) we use the definition

f̂(ω) :=

∫
R

f(x) e− iωx dx.

Some important properties of the Fourier transform which we need throughout this
work are collected in Appendix A.

The chapter on hand is organized as follows: In the first section, we will consider
step functions. Afterwards, we will extend the theory from the first section to the
reconstruction of non-uniform spline functions of higher order. The third section will
deal with non-uniform translates of low-pass filter functions. In order to show the
applicability of the presented approaches, we will conclude the chapter with a section
in which we will conduct numerical experiments.

3.1. Step functions

Let us consider a step function with compact support of the form

f : R→ R, f(x) :=

N∑
j=1

c0
j 1[Tj ,Tj+1)(x) (3.1)

where c0
j , j = 1, . . . , N , are real coefficients with c0

j 6= c0
j+1 for all j ∈ {1, . . . , N − 1}.

Further, Tj , j = 1, . . . , N + 1, are knots satisfying −∞ < T1 < T2 < . . . < TN+1 <∞.
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Here, 1[a,b) denotes the characteristic function of the interval [a, b), i.e.

1[a,b)(x) =

{
1 if x ∈ [a, b);

0 else.

We aim to recover the function f from sparse Fourier samples, that is, we want
to recover f from as few Fourier samples as possible. The function f is completely
determined by the N coefficients c0

1, . . . , c
0
N , and the knot sequence (Tj)

N+1
j=1 .

f(x)

x−12 −10 −8 −6 −4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

Figure 3.1. Example for a function f of form (3.1), completely determined by the knot
sequence (−11.5, −11.2, −9, −5.4, −1.3, 1, 4) and the coefficients −2, 3, 1.2, 1.1, −4, 2.

In order to recover f , we need to know these 2N + 1 function parameters. The
following theorem shows that N+1 Fourier samples suffice to compute all parameters.

Theorem 3.1 (Reconstruction of step functions).
Suppose that f has compact support, and that f is piecewise constant, that is, there
exists a sequence (Tj)

N+1
j=1 of knots with

−∞ < T1 < T2 < . . . < TN+1 <∞,

and there exist real values c0
j for j = 1, . . . , N such that

f : R→ R, f(x) =

N∑
j=1

c0
j 1[Tj ,Tj+1)(x). (3.2)

The expression (3.2) is supposed to be in its most simplified form, i.e. c0
j 6= c0

j+1 for

j = 1, . . . , N−1, and c0
j 6= 0 for j = 1, N . Further, we assume that the constant h > 0

satisfies hTj ∈ (−π,π] for j = 1, . . . , N + 1. Then f can be completely recovered from

the N + 1 Fourier samples f̂(`h), ` = 1, . . . , N + 1.
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Proof. We observe from (3.2) that the following holds for ω 6= 0:

f̂(ω)
A.1
=

∫
R

f(x) e− iωx dx

=

N∑
j=1

c0
j

∫
R

1[Tj ,Tj+1)(x) e− iωx dx

=

N∑
j=1

c0
j

Tj+1∫
Tj

e− iωx dx

=
1

iω

N∑
j=1

c0
j

(
e− iωTj − e− iωTj+1

)
=

1

iω

[
N∑
j=1

c0
j e− iωTj −

N∑
j=1

c0
j e− iωTj+1

]

=
1

iω

[
N∑
j=1

c0
j e− iωTj −

N+1∑
j=2

c0
j−1 e− iωTj

]

=
N+1∑
j=1

c1
j

iω
e− iωTj

(3.3)

with

c1
j := c0

j − c0
j−1, j = 1, . . . , N + 1, (3.4)

and with the convention that

c0
0 = c0

N+1 = 0. (3.5)

Observe that c1
j 6= 0 for j = 1, . . . , N + 1 by assumption. Otherwise, f in (3.2) can be

simplified.
Since f is real-valued, i.e. f(x) = f(x), we have

f̂(−ω) = f̂(ω) for all ω ∈ R (3.6)

by Proposition A.2. Further, Equation (3.3) yields

g(ω) :=(iω)f̂(ω) =
N+1∑
j=1

c1
j e− iωTj , (3.7)
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and this equation is also true for ω = 0 since we have

f̂(0) =
N∑
j=1

c0
j

Tj+1∫
Tj

1 dx <∞ (3.8)

and

N+1∑
j=1

c1
j e− i ·0·Tj =

N+1∑
j=1

c0
j − c0

j−1 = c0
N+1 − c0

0 = 0. (3.9)

Remember that c1
j 6= 0 for j = 1, . . . , N + 1. Moreover, for h > 0 we have the

assumption hTj ∈ (−π,π] for j = 1, . . . , N + 1. Thus, the requirements for using
the Prony method are fulfilled, and we can apply the Prony method as described in
Section 2.2 to the function g, where we use the known values

g(`h) = (i `h) · f̂(`h), ` = 1, . . . , N + 1, sampled Fourier data;

g(−`h) = g(`h), ` = 1, . . . , N + 1, by (3.7) and (3.6);

g(0) = 0, by (3.7), (3.8), and (3.9).

In this way, we uniquely determine the knots Tj and the corresponding coefficients
c1
j for j = 1, . . . , N + 1 in (3.7). Finally, the coefficients c0

j , j = 1, . . . , N + 1, are
obtained using the recursion

c0
1 = c1

1,

c0
j = c0

j−1 + c1
j , j = 2, . . . , N,

which is due to the definition of the coefficients c1
j in (3.4) and (3.5). �

The algorithm to compute the knot sequence and the corresponding coefficients in
(3.2) from Fourier samples is based on Algorithm 2.5.

Algorithm 3.2 (Reconstruction of step functions).

• Input:

– Step size h > 0 with hTj ∈ (−π,π] for j = 1, . . . , N + 1;

– Fourier samples f̂(`h), ` = 1, . . . , N + 1.

• Computation:

1. Compute f̂(−`h), ` = 1, . . . , N + 1, using (3.6).
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2. Construct the Toeplitz matrix

G :=
(
g
(
h(`−m)

))N+1

m,`=0

where g(ω) = (iω)f̂(ω) and g(0) = 0.

3. Solve the system Gλ = 0 where λ = (λ0, λ1, . . . , λN+1)T with λN+1 = 1.

4. Consider the polynomial

ΛN+1(z) :=
N+1∑
k=0

λkz
k,

and compute all its zeros zj := e− ihTj , j = 1, . . . , N + 1.

5. For Tj =
− Im(ln(zj))

h , j = 1, . . . , N + 1, compute the corresponding coeffi-
cients c1

j , j = 1, . . . , N + 1, as least squares solution to the Vandermonde-
type system

N+1∑
j=1

c1
j e− i `hTj = g(`h), ` = 1, . . . , N + 1.

(Here, ln is the principal branch of the complex logarithm.)

6. Compute c0
j for j = 1, . . . , N using the recursion

c0
1 = c1

1,

c0
j = c0

j−1 + c1
j , j = 2, . . . , N.

• Output: Knot sequence (Tj)
N+1
j=1 and coefficients c0

j , j = 1, . . . , N , determining
f in (3.2).

Remark 3.3.
The case described here is a special variant of non-uniform spline functions, which are
dealt with in the following section. If the order m of the B-splines considered there
is set to one, then we have a linear combination of characteristic functions, i.e. a step
function as examined in the section on hand.
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3.2. Non-uniform spline functions

In this section, we extend the theory from the previous section to the reconstruction of
non-uniform spline functions of higher order. For this purpose, consider non-uniform
spline functions f : R→ R of the form

f(x) :=
N∑
j=1

c0
jB

m
j (x) (3.10)

with non-zero, real-valued coefficients c0
j for j = 1, . . . , N . Here, Bm

j is the B-spline of
order m ∈ N determined by the knots Tj , . . . , Tj+m ∈ R. These knots do not have to
be equispaced. The aim is to reconstruct functions f of the form (3.10) from sparse
Fourier data. In order to use Fourier data for the determination of the parameters of
f , we have to know a representation of the Fourier transform f̂ . Then we can derive
an algorithm to determine the parameters of f , namely the coefficients c0

1, . . . , c
0
N , and

the knots T1, . . . , TN+m.

−8 −6 −4 −2 0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3.2. Example for a function of the
form (3.1) with N = 5,m = 5; determined
by (Tj)

10
j=1 and (c0j )5j=1 given in Table 3.1.

j Tj c0
j

1 -6 -3.2

2 -5.8 3.1

3 -4 -0.8

4 -2.25 1.5

5 -0.6 -3

6 0
7 1.3
8 2.73
9 3.5
10 4.2

Table 3.1. Knots Tj and coefficients c0j
of the function displayed in Figure 3.2.

First, we will take a look at some properties of the B-splines Bm
j . The B-spline B1

j

is defined as the characteristic function of the interval [Tj , Tj+1), i.e.

B1
j := 1[Tj ,Tj+1). (3.11)

B-splines of higher order m for m > 1 are obtained through the recurrence relation

Bm
j (x) =

x− Tj
Tj+m−1 − Tj

Bm−1
j (x) +

Tj+m − x
Tj+m − Tj+1

Bm−1
j+1 (x), x ∈ R, (3.12)

see [16, pp. 89-90]. From (3.11) and (3.12) it follows directly that the B-splines are
piecewise polynomial functions of degree m− 1 with the compact support [Tj , Tj+m].
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The smoothness of the function Bm
j is determined by the multiplicity of the knots

Tj , . . . , Tj+m, see [16, pp. 91, 99].
In the present case, we have B-splines of order m with simple knots, i.e. knots with

multiplicity 1. This means that the splines are (m−2)-times continuously differentiable
at the knots for m ≥ 3, and for m = 2 the splines are only continuous at the knots
but not differentiable; see [16, p. 99]. By definition, the splines of order one are only
continuous from the right.

For m ≥ 3, we can compute the first derivative of Bm
j and obtain (see [16, p. 115])

(Bm
j )′(x) = (m− 1) ·

(
Bm−1
j (x)

Tj+m−1 − Tj
−

Bm−1
j+1 (x)

Tj+m − Tj+1

)
. (3.13)

Using this relation, we acquire the following lemma, see also [16, p. 117].

Lemma 3.4.
For a non-uniform spline function f of the form (3.10) with m ≥ 3, we can compute
the kth derivative f (k) for k = 1, . . . ,m− 2 by

f (k)(x) =

N+k∑
j=1

ckjB
m−k
j (x). (3.14)

Here, the coefficients ckj for j = 1, . . . , N + k are recursively defined by

ckj :=

(
m− k

Tj+m−k − Tj

)
·
(
ck−1
j − ck−1

j−1

)
(3.15)

with the convention

ck−1
0 = ck−1

N+k = 0. (3.16)

Note that ckj does not denote the kth power of cj but the coefficient corresponding

to the B-spline Bm−k
j of order m− k in the linear combination (3.14).

Proof of Lemma 3.4. We will prove the statement by induction.

(BC) Base case: Using (3.13), we get the following for the first derivative of f :

f ′(x) =

N∑
j=1

c0
j (B

m
j )′(x) =

N∑
j=1

c0
j

[
m− 1

Tj+m−1 − Tj
Bm−1
j (x)− m− 1

Tj+m − Tj+1
Bm−1
j+1 (x)

]

=

N∑
j=1

c0
j ·

m− 1

Tj+m−1 − Tj
Bm−1
j (x)−

N∑
j=1

c0
j ·

m− 1

Tj+m − Tj+1
Bm−1
j+1 (x)
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=
N∑
j=1

c0
j ·

m− 1

Tj+m−1 − Tj
Bm−1
j (x)−

N+1∑
j=2

c0
j−1 ·

m− 1

Tj+m−1 − Tj
Bm−1
j (x)

=
N+1∑
j=1

(
c0
j − c0

j−1

)
· m− 1

Tj+m−1 − Tj
Bm−1
j (x)

where we use the convention that c0
0 = c0

N+1 = 0. Finally, we have

f ′(x) =

N+1∑
j=1

c1
jB

m−1
j (x)

with

c1
j :=

(
c0
j − c0

j−1

)
· m− 1

Tj+m−1 − Tj
for j = 1, . . . , N + 1.

(IH) Induction hypothesis: The following is true for some k ∈ N with k ≥ 2:

f (k−1)(x) =

N+(k−1)∑
j=1

ck−1
j B

m−(k−1)
j (x)

with

ck−1
j =

(
ck−2
j − ck−2

j−1

)
· m− (k − 1)

Tj+m−(k−1) − Tj
, ck−2

0 = ck−2
N+k−1 = 0.

(IS) Inductive step: (k − 1)→ k ≤ m− 1

f (k)(x) =
N+k−1∑
j=1

ck−1
j ·

(
B
m−(k−1)
j

)′
(x) by (IH)

=
N+k∑
j=1

(
ck−1
j − ck−1

j−1

)
· m− (k − 1)− 1

Tj+m−(k−1)−1 − Tj
B
m−(k−1)−1
j (x) by (BC)

where we use the convention that ck−1
0 = ck−1

N+k = 0.
�

In the case k = m − 2, the kth derivative f (k) of the spline function f is a linear
combination of B-splines of order two, i.e. piecewise linear funtions. These splines are
not differentiable at the knots. Therefore, we will consider distributions and gener-
alized functions in order to be able to compute derivatives of B-splines of order two
and one. This is discussed in detail in Appendix B.1 and leads to the following two
lemmas.
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Lemma 3.5.
Consider a generalized function f of the form (3.10) with m ≥ 2. The (m − 1)-th
distributional derivative Dm−1µ(f) is given by the generalized function

f (m−1) : R 3 x 7→
N+m−1∑
j=1

cm−1
j B1

j (x) ∈ R

where the coefficients cm−1
j for j = 1, . . . , N +m− 1 are recursively defined by

cm−1
j :=

1

Tj+1 − Tj
· (cm−2

j − cm−2
j−1 ) (3.17)

with the convention

cm−2
0 = cm−2

N+m−1 = 0. (3.18)

The proof of Lemma 3.5 is given in Section B.2. In Section B.3, we will prove
Lemma 3.6.

Lemma 3.6.
The m-th distributional derivative Dmµ(f) of the generalized function f of the form
(3.10) with m ≥ 1 is a linear combination of translated Dirac delta distributions, that
is, it is given by the distribution

f (m) := Dm µ(f) =
N+m∑
j=1

cmj
(
τTjδ

)
.

Here, δ denotes the Dirac delta distribution1, and τTjδ denotes the translation of it2 for
the definition of the translate of a distribution. The coefficients cmj for j = 1, . . . , N+m
are recursively defined by

cmj := cm−1
j − cm−1

j−1 (3.19)

with the convention

cm−1
0 = cm−1

N+m = 0. (3.20)

1The definition of the Dirac delta distribution is given in (B.12) on p. 146.
2See (B.14) on p. 147.
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We want to have a representation of the Fourier transform of the function f in (3.10)
in order to derive an algorithm for determining the function’s parameters from sparse
Fourier samples. Since the function f is not often enough differentiable in the classical
sense, we had to introduce distributions and generalized functions. Therefore, we need
the definition of the Fourier transform of a distribution, see Appendix B.4. Together
with Lemma 3.6, this yields the following lemma which is proved in Section B.4.

Lemma 3.7.
The Fourier transform f̂ of the function f in (3.10) can be represented by

(iω)mf̂(ω) =

N+m∑
j=1

cmj e− iωTj , ω ∈ R,

where the coefficients cmj are defined by (3.19) and (3.20).

Theorem 3.8 (Reconstruction of non-uniform spline functions).
Let N and m be natural numbers. Suppose that there exist a knot sequence (Tj)

N+m
j=1 ,

i.e. −∞ < T1 < T2 < . . . < TN+m < ∞, and non-zero, real values cj ∈ R for
j = 1, . . . , N such that

f(x) =
N∑
j=1

c0
jB

m
j (x) (3.21)

is a linear combination of B-splines of order m. The B-splines Bm
j are defined by

(3.11) and (3.12). Assume that the constant h > 0 satisfies hTj ∈ (−π,π] for all
j ∈ {1, . . . , N +m}. Then the spline function f in (3.21) can be completely recovered
from the N +m Fourier samples

f̂(`h), ` = 1, . . . , N +m.

Proof. Due to Lemma 3.7, we obtain the representation

g(ω) :=(iω)mf̂(ω) =
N+m∑
j=1

cmj e− iωTj , ω ∈ R, (3.22)

where f̂ is the Fourier transform of the function f of the form (3.21). Considering
the assumptions about f and the constant h, we can uniquely compute the knots Tj
and the coefficients cmj for j = 1, . . . ,m by applying the Prony method for exponential
sums with real-valued coefficients, see Section 2.2, to the function g.

For this purpose, we need the function values

g(`h), ` = −(N +m), . . . ,−1, 0, 1, . . . , N +m.
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Observe that the values g(`h) for ` = 1, . . . , N + m are given by the Fourier samples
f̂(`h), ` = 1, . . . , N +m, and the step size h.

These Fourier samples also provide the values g(`h) for ` = −(N+m), . . . ,−1. Since
we have

f̂(−ω) = f̂(ω) for all ω ∈ R

by Proposition A.2, the values g(`h) for ` = −(N + m), . . . ,−1 can be computed by
using the Fourier samples and the relation

g(−ω) = (− iω)mf̂(−ω) =
(
(iω)mf̂(ω)

)
= g(ω). (3.23)

The last remaining value of g which we need is given as

g(0) = 0. (3.24)

This can be seen as follows: The left-hand side of (3.22), i.e. g(ω) = (iω)mf̂(ω), yields
the value zero for ω = 0 since

∣∣f̂(0)
∣∣ =

∣∣∣∣∣
∫
R

f(x) e− i ·0·x dx

∣∣∣∣∣ <∞
due to f being an almost everywhere continuous function with compact support. Fur-
ther, the right-hand side of (3.22) also equals to zero for ω = 0:

N+m∑
j=1

cmj e− i ·0·Tj =
N+m∑
j=1

(
cm−1
j −cm−1

j−1

)
=

N+m∑
j=1

cm−1
j −

N+m−1∑
j=0

cm−1
j = cm−1

N+m−c
m−1
0 = 0,

where we have used the definition of the coefficients cmj in (3.19) and (3.20). Thus,
the representation (3.22) is also valid for ω = 0, and the equality (3.24) holds.

The coefficients c0
j are computed by a recursion formula which is derived from the

definitions of the coefficients ckj in Lemmas 3.4–3.6. Using (3.15)–(3.20), we obtain

ck−1
j =


cm1 for k = m, j = 1,

cmj + cm−1
j−1 for k = m, j = 2, . . . , N +m− 1,(

T1+m−k−T1
m−k

)
ck1 for k = m− 1, . . . , 1, j = 1,(

Tj+m−k−Tj
m−k

)
ckj + ck−1

j−1 for k = m− 1, . . . , 1, j = 2, . . . , N + k − 1.

�
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Remarks 3.9.

1. The proof of Theorem 3.8 which is given above is constructive. In particular, if
N is not known, but we have an upper bound M ≥ N , then we will also find the
correct knots Tj and the corresponding coefficients cmj by applying the Prony
method to M + m Fourier samples, cf. Remarks 2.3, 3. Observe that we need
fewer sampling values than stated in the mentioned remarks since the present
case deals with exponential sums with real-valued coefficients, cf. Section 2.2.
By this way, the numerical procedure will also be more stable, see [23,51,55].

2. In the above proof, we rely upon the fact that cmj 6= 0 for j = 1, . . . , N + m. If
we have the situation that cmj0 = 0 for an index j0 ∈ {1, . . . , N +m}, then we will
not be able to reconstruct the knot Tj0 . But this situation will only occur if the
representation of f in (3.21) is redundant, that is to say, if f in (3.21) can be
represented by less than N summands. Therefore, we will still be able to exactly
recover the function f . Observe that the above procedure always results in the
simplest representation of f such that the reconstructed representation of f of
the form (3.21) does not possess redundant terms.

3. Considering the non-linear problem to approximate a continuous univariate func-
tion g from given samples by a spline function with free knots, we want to find
optimal knots as well as optimal coefficients of the B-spline expansion f in (3.21)
such that g − f is small in a given norm. This problem is very challenging but
of high interest for sparse signal approximation. While the above Theorem 3.8
yields a reconstruction of spline functions with free knots from Fourier samples,
it would be highly desirable to have a method that, using sampling values of g
itself, yields a non-linear approximation of g by constructing optimal knots and
optimal coefficients of a spline function.

The algorithm to determine the knots Tj and the coefficients c0
j in (3.21) is similar

to Algorithm 3.2 and based on Algorithm 2.5.

Algorithm 3.10 (Reconstruction of non-uniform spline functions).

• Input:

– Step size h > 0 with hTj ∈ (−π,π] for j = 1, . . . , N +m;

– Fourier samples f̂(`h), ` = 1, . . . , N +m.

• Computation:

1. Compute f̂(−`h), ` = 1, . . . , N + 1, using (3.23).
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2. Construct the Toeplitz matrix

G :=
(
g
(
h(`− k)

))N+m

k,`=0

where g(ω) = (iω)f̂(ω) and g(0) = 0.

3. Solve the system Gλ = 0 where λ = (λ0, λ1, . . . , λN+m)T with λN+m = 1.

4. Consider the polynomial

ΛN+m(z) :=
N+m∑
k=0

λkz
k,

and compute all its zeros zj := e− ihTj , j = 1, . . . , N +m.

5. For Tj =
− Im(ln(zj))

h , j = 1, . . . , N + m, compute the corresponding coeffi-
cients cmj , j = 1, . . . , N +m, as least squares solution to the Vandermonde-
type system

N+m∑
j=1

cmj e− i `hTj = g(`h), ` = 1, . . . , N +m.

(Here, ln is the principal branch of the complex logarithm.)

6. Compute c0
j for j = 1, . . . , N using the recursion

ck−1
j =


cm1 for k = m, j = 1,

cmj + cm−1
j−1 for k = m, j = 2, . . . , N +m− 1,(

T1+m−k−T1
m−k

)
ck1 for k = m− 1, . . . , 1, j = 1,(

Tj+m−k−Tj
m−k

)
ckj + ck−1

j−1 for k = m− 1, . . . , 1, j = 2, . . . , N + k − 1.

• Output: Sequence (Tj)
N+m
j=1 and coefficients c0

1, . . . , c
0
N determining f in (3.21).

3.3. Non-uniform translates

As the last univariate case, we will examine functions f : R → R that have a sparse
representation of the form

f(x) :=

N∑
j=1

cjΦ(x− Tj) (3.25)
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with cj ∈ R \ {0} for j = 1, . . . , N , and a shift sequence −∞ < T1 < . . . < TN < ∞.
Further, we assume that Φ ∈ L1(R) is a real low-pass filter function with a Fourier
transform that is bounded away from zero, i.e. |Φ̂(ω)| > C for ω ∈ (−T, T ) for some
constants C > 0 and T > 0. For example, as a low-pass filter function Φ we can take

• the centred cardinal B-spline of order m, Φ = Nm, with

N̂m(ω) =
(

sinc
(ω

2

))m
6= 0 for all ω ∈ (−2π, 2π);

• the Gaussian function, Φ(x) = exp
(
−x2

σ2

)
, σ > 0, with

Φ̂(ω) =
√
π · σ · exp

(
−σ

2ω2

4

)
> 0 for all ω ∈ R;

• the Meyer window Φ, see [15, p. 137], which is defined by the Fourier transform

Φ̂(ω) =


1 for |ω| ≤ 1

3 ,

cos
(
π
2 (3|ω| − 1

)
for 1

3 < |ω| ≤
2
3 ,

0 otherwise;

• a real-valued Gabor function Φ(x) = e−αx
2

cos(βx), α > 0, β > 0, with

Φ̂(ω) =
1

2

√
π

α

(
exp

(
−(β − ω)2

4α

)
+ exp

(
−(ω + β)2

4α

))
> 0 for all ω ∈ R.

The Fourier transform of f is given by (cf. Definition A.1 and Proposition A.3)

f̂(ω) =

(
N∑
j=1

cj e− iωTj

)
Φ̂(ω), ω ∈ R. (3.26)

Theorem 3.11 (Reconstruction of non-uniform translates I).
Let −∞ < T1 < . . . < TN < ∞ be a real sequence and cj ∈ R \ {0} for j = 1, . . . , N .

Further, let Φ ∈ L1(R) be a given real-valued function with |Φ̂(ω)| > C for ω ∈ (−T, T )
for some constants C > 0 and T > 0. Assume that the constant h > 0 satisfies
hTj ∈ (−π,π] for j = 1, . . . , N and h < T

N . Then the function f of the form (3.25)

can be uniquely recovered from the Fourier samples f̂(`h), ` = 0, . . . , N .

Proof. Equation (3.26) yields the following for ω ∈ (−T, T ):

g(ω) :=
f̂(ω)

Φ̂(ω)
=

N∑
j=1

cj e− iωTj . (3.27)
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Since Φ̂(`h) 6= 0 for ` = 0, . . . , N , and hTj ∈ (−π,π] for j = 1, . . . , N by the as-
sumptions about h, we can apply the Prony method as described in Section 2.2 to the
function g, where we use the known function values

g(`h) =
f̂(`h)

Φ̂(`h)
, ` = 0, . . . , N.

But we still need the function values g(`h) for ` = −N, . . . ,−1 in order to compute all
shift values Tj and all coefficients cj in (3.27) by applying the Prony method. These
values can be computed using the already known function values g(`h) for ` = 1, . . . , N
because we have

g(−ω) =
f̂(−ω)

Φ̂(−ω)
=

f̂(ω)

Φ̂(ω)
= g(ω)

by Proposition A.2 since f and Φ are real-valued. �

The above idea can be generalized to functions f : R→ R of the form

f(x) :=
N∑
j=1

R−1∑
r=0

cj,rΦ
(r)(x− Tj) (3.28)

where cj,r are real-valued coefficients with cj,R−1 6= 0 for all j ∈ {1, . . . , N}, and where
(Tj)

N
j=1 is again a real sequence of shift values. Further, we assume that the given real-

valued low-pass filter function Φ ∈ L1(R) is (R − 1)-times differentiable for R ∈ N.
For r = 0, . . . , R − 1, the r-th derivative of Φ is denoted by Φ(r) where we suppose
that Φ(r) ∈ L1(R) for r = 1, . . . , R − 1. Using the propositions A.1, A.3, and A.4, we
obtain the following representation of the Fourier transform of f :

f̂(ω) =

(
N∑
j=1

R−1∑
r=0

cj,r(iω)r e− iωTj

)
Φ̂(ω), ω ∈ R. (3.29)

Theorem 3.12 (Reconstruction of non-uniform translates II).
Let −∞ < T1 < . . . < TN <∞ be a real sequence and cj,r ∈ R for j ∈ {1, . . . , N} and
r ∈ {0, . . . , R − 1} where we assume that cj,R−1 6= 0 for all j ∈ {1, . . . , N}. Further,
let Φ ∈ L1(R) be a given real-valued function which is (R−1)-times differentiable with
Φ(r) ∈ L1(R) for r = 1, . . . , R − 1, and which fulfils |Φ̂(ω)| > C for all ω ∈ (−T, T )
for some constants C > 0 and T > 0. Assume that the constant h > 0 satisfies
hTj ∈ (−π,π] for j = 1, . . . , N and h < T

N . Then the function f in (3.28) can be

uniquely recovered from the Fourier samples f̂(`h), ` = 0, . . . , NR.

Proof. Using (3.29) and the assumptions about Φ̂, we get

Q(ω) :=
f̂(ω)

Φ̂(ω)
=

N∑
j=1

R−1∑
r=0

cj,r(iω)r e− iωTj (3.30)
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for ω ∈ (−T, T ). In order to compute the shift values Tj and the coefficients cj,r, we
want to apply the Prony method to the function Q. Note that the structure of Q is
different from the function structure in (2.10). Functions Q of the form in (3.30) are
called extended exponential sums, see [10, p. 169].

We consider now the polynomial

Λ(z) :=

N∏
j=1

(
z − e− ihTj

)R
=

NR∑
`=0

λ`z
` (3.31)

where T1, . . . , TN are the unknown shift values in (3.28). Then we observe that the
following holds for m = 0, . . . , NR:

NR∑
`=0

λ`Q(h(`−m)) =

NR∑
`=0

λ`

N∑
j=1

R−1∑
r=0

cj,r(ih(`−m))r e− ih(`−m)Tj

=
N∑
j=1

R−1∑
r=0

cj,r eihmTj

NR∑
`=0

λ` (ih(`−m))r e− ih`Tj

=

N∑
j=1

R−1∑
r=0

cj,r eihmTj (ih)r
r∑

ν=0

(
r

ν

)
(−m)r−ν

NR∑
`=0

λ` `
ν e− ih`Tj

=
N∑
j=1

R−1∑
r=0

cj,r eihmTj (ih)r
r∑

ν=0

(
r

ν

)
(−m)r−νSν (3.32)

where we have used the binomial theorem3 and

Sν :=
NR∑
`=0

λ` `
ν e− ih`Tj .

The derivatives of the polynomial Λ are computed as

Λ(η)(z) =
NR∑
`=η

λ`

(
η−1∏
k=0

(`− k)

)
z`−η, η ∈ N0.

We will show later, in Lemma 3.17, that Sν can be written as a linear combination
of the derivatives Λ(η), η = 0, . . . , ν, that is, there exist coefficients ανη ∈ N0 such that

Sν =

ν∑
η=0

ανηΛ
(η)(e− ihTj ) e− i ηhTj . (3.33)

3See [31, p. 57, Satz 7.4], for instance.
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By definition of Λ in (3.31), we get

Λ(η)(e− ihTj ) = 0 for η = 0, . . . , R− 1.

Plugged into (3.33), this yields

Sν = 0 for ν = 0, . . . , R− 1. (3.34)

Combining (3.32) and (3.34), we finally get

NR∑
`=0

λ`Q(h(`−m)) = 0.

Hence, the coefficient vector λ = (λ0, . . . , λNR)T with λNR = 1 is the solution of
the linear system

TNR+1λ = 0 (3.35)

where TNR+1 is the Toeplitz matrix defined by

TNR+1 :=
(
Q
(
h(`−m)

))NR
m,`=0

∈ C(NR+1)×(NR+1).

Note that we have the property

rank(TNR+1) = NR

due to the assumptions about the coefficients cj,r and the values hTj . This is shown
in detail in Lemma 3.13. Hence, the eigenvector λ of TNR+1 corresponding to the
eigenvalue 0 is uniquely determined by (3.35) and λNR = 1.

Since f and Φ are real-valued, we have

Q(−ω) =
f̂(−ω)

Φ̂(−ω)
=

f̂(ω)

Φ̂(ω)
= Q(ω)

by Proposition A.2. Thus, all entries of TNR+1 are given by the NR + 1 sampling
values f̂(`h) for ` = 0, . . . , NR.

The solution λ of (3.35) is the coefficient vector of Λ in (3.31). Therefore, we can
compute all roots of Λ, which are given by the values zj := e− ihTj , j = 1, . . . , N . Note
that all these roots are roots of multiplicity R. From the roots zj we get the shift
values Tj by

Tj =
− Im

(
ln(zj)

)
h

, j = 1, . . . , N.
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As the last step, we compute the coefficients cj,r for j = 1, . . . , N , r = 0, . . . , R − 1
as least squares solution to the linear system

N∑
j=1

R−1∑
r=0

cj,r(i `h)r e− i `hTj = Q(`h), ` = 0, . . . , NR.

�

We now want to show that the rank of the data matrix TNR+1 considered in the
proof of Theorem 3.12 is equal to NR such that the dimension of the eigenspace
corresponding to the eigenvalue 0 is equal to one.

Lemma 3.13.
Let the assumptions from Theorem 3.12 be fulfilled. Then the rank of the matrix
TNR+1 in (3.35) is equal to NR such that the solution λ to the eigenvalue problem
(3.35) is uniquely determined by the normalization λNR = 1.

Proof. Consider the linear system

NR∑
`=0

λ`Q
(
h(`−m)

)
= 0, m = 0, . . . , NR.

An equivalent formulation for this system is

TNR+1λ = 0

with the Toeplitz matrix

TNR+1 =
(
Q
(
h(`−m)

))NR
m,`=0

∈ C(NR+1)×(NR+1)

and the coefficient vector λ = (λ0, . . . , λNR)T with λNR = 1.
Reversing the order of the equations, we obtain the linear system

HNR+1λ
′ = 0

with the Hankel matrix

HNR+1 :=
(
Q
(
h(−NR+m+ `)

))NR
m,`=0

∈ C(NR+1)×(NR+1)

and the coefficient vector λ′ :=(λNR, . . . , λ0)T with λNR = 1.
The data matrix HNR+1 consists of sampling values of the signal

Q(ω) =

N∑
j=1

R−1∑
r=0

cj,r(iω)r e− iωTj =

N∑
j=1

R−1∑
r=0

cj,r(iω)r e− i ω
h

(hTj) =

N∑
j=1

aj(ω)z
ω
h
j (3.36)
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where we use the definitions

zj := e− ihTj and aj(ω) :=

R−1∑
r=0

cj,r(iω)r.

The coefficients aj(ω) in the sum in (3.36) are complex-valued polynomials of degree
less than or equal to R− 1. Each of these polynomials can be represented as a linear
combination of falling factorials. Using

Fk(x) :=


0 if k < 0,

1 if k = 0,∏k−1
k′=0(x− k′) if k > 0,

we get

aj(x) =
R−1∑
k=0

a′j,kFk(x), j = 1, . . . , N,

with coefficients a′j,k ∈ C, j = 1, . . . , N , k = 0, . . . , R − 1, see [2, II. A. and II. B.].
Thus, the signal Q can be represented by

Q(ω) =

N∑
j=1

R−1∑
k=0

a′j,kFk(ω)z
ω
h
j .

For the sampling locations ht ∈ {−NRh, . . . ,−h, 0, h, . . . , NRh}, we have

Q(ht) =
N∑
j=1

R−1∑
k=0

a′j,kFk(ht)z
t
j

=
N∑
j=1

R−1∑
k=0

aj,kFk(ht)z
t−k
j (3.37)

with the falling factorials

Fk(ht) = ht · (ht− 1) · . . . · (ht− k + 1)

and the coefficients aj,k := a′j,kz
k
j , cf. [2, [II. A. and II. B.] and [7, Eq. (1.5)].

Using the representation (3.37), the data matrix HNR+1 can now be factorized as
follows:

HNR+1 = UBUT

with a so-called confluent Vandermonde matrix U of size (NR + 1) × NR and an
NR × NR block diagonal matrix B := diag(B1, . . . ,BN ) where each block Bj for
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j = 1, . . . , N of size R×R is an upper antitriangular matrix such that (Bj)k,` = 0 for
` > k, see [2, Proposition III.7] and [7, Lemma 2.6].

Further, we have

rank(U) = NR

since the values zj = e− ihTj , j = 1, . . . , N , are pairwise different by assumption,
cf. [2, Proposition III.6] and [7, Eq. (2.4)].

The block diagonal matrix B is non-singular if and only if

aj,R−1 6= 0 for all j ∈ {1, . . . , N},

cf. [2, Corollary III.8] and [7, Theorem 2.7], which means that each polynomial aj(·)
is of exact degree R − 1. This is fulfilled by the assumption that cj,R−1 6= 0 for all
j ∈ {1, . . . , N}.

Then we have (compare the explanations following Lemma 2.1)

rank(HNR+1) = NR

such that the eigenvector corresponding to the eigenvalue 0, i.e. the solution vector
λ′ = (λNR, . . . , λ0)T, is uniquely determined by the normalization λNR = 1.

Since the system

HNR+1λ
′ = 0

is obtained by reversing the order of the equations in the system

TNR+1λ = 0,

also the vector λ = (λ0, . . . , λNR)T with λNR = 1 is uniquely determined. This
completes the proof. �

Remarks 3.14.

1. Observe that the described reconstruction method still works if the highest orders
of the derivatives Φ(r)(· − Tj) in (3.28) for j ∈ {1, . . . , N} are different, that is,
if we consider

f(x) =

N∑
j=1

Rj−1∑
r=0

cj,rΦ
(r)(x− Tj).

Then we need R + 1 Fourier samples where R :=
∑N

j=1Rj . In this case, see [2]
and [7] for the factorization of the data matrix occurring in a problem similar to
(3.28).
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2. Similarly as in (3.28), we can also generalize the method to sums of B-splines
and their derivatives, that is to say, we can consider non-uniform translates of
B-splines of different order as follows:

f(x) =

N∑
j=1

m∑
r=1

cj,r B
r
j (x).

Then f(x) can be recovered from the Fourier samples f̂(`h), ` = 1, . . . , (N+m)m.

3. The special functions f regarded in Sections 3.1 – 3.3 can also be seen as functions
of finite rate of innovation as introduced in [65], that is, functions with a finite
number of degrees of freedom per unit of time.

It still remains to show that the representation of Sν in (3.33) is valid. In order to
prove this, we need some further statements.

Lemma 3.15.
Define for ν ∈ N with ν ≥ 2 the function Dν : N0 → N by

Dν(`) := `ν −
ν−1∏
k=0

(`− k) = `ν − `(`− 1) · . . . · (`− ν + 1)

=

{
`ν , ` < ν,

`ν − `!
(`−ν)! , ν ≤ `.

(3.38)

Then the following is true:

1) Dν(`) =
ν−1∑
m=1

(−1)m+1dνν−m`
ν−m

with d2
1 = 1,

dν1 = dν−1
1 · (ν − 1), ν ≥ 3,

dνν−m = dν−1
ν−m · (ν − 1) + dν−1

ν−m−1, m = 2, . . . , ν − 2, ν ≥ 4,

dνν−1 = dν−1
ν−2 + (ν − 1), ν ≥ 3.

2)
ν−1∑
m=1

(−1)m+1dνν−m = 1, ν ≥ 2.

3) dνν−1 =

ν−1∑
j=1

j =
(ν − 1)ν

2
, ν ≥ 3.
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Proof. We will prove the statements by induction.

1) (BC) Base case:

D2(`) = `2 − `(`− 1) = `,

D3(`) = `3 − `(`− 1)(`− 2) = `3 − `(`2 − 3`+ 2) = 3`2 − 2`,

D4(`) = `4 − `(`− 1)(`− 2)(`− 3) = 6`3 − 11`2 + 6`.

⇒ d2
1 = 1;

⇒ d3
1 = 2 = d2

1 · 2, d3
2 = 3 = d2

1 + 2;

⇒ d4
1 = 6 = d3

1 · 3, d4
2 = 11 = d3

2 · 3 + d3
1, d4

3 = 6 = d3
2 + 3.

(IH) Induction hypothesis: The claim holds for some ν ∈ N with ν ≥ 4.

(IS) Inductive step: 4 ≤ ν → ν + 1

Dν+1(`) = `ν+1 −
ν∏
k=0

(`− k) = `ν+1 − (`− ν) ·
ν−1∏
k=0

(`− k)

= ` ·
[
`ν −

ν−1∏
k=0

(`− k)

]
+ ν ·

ν−1∏
k=0

(`− k)

= ` ·
[
Dν(`)

]
+ ν ·

[
`ν −

(
`ν −

ν−1∏
k=0

(`− k)

)]

= ` ·
[
Dν(`)

]
+ ν ·

[
`ν −Dν(`)

]
(IH)
= ` ·

ν−1∑
m=1

(−1)m+1dνν−m`
ν−m + ν ·

[
`ν −

ν−1∑
m=1

(−1)m+1dνν−m`
ν−m

]

= ν`ν +

ν−1∑
m=1

(−1)m+1dνν−m`
(ν+1)−m +

ν−1∑
m=1

(−1)m+2dνν−m · ν`ν−m

= (dνν−1 + ν) · `ν +

ν−1∑
m=2

(−1)m+1dνν−m`
(ν+1)−m

+

ν−2∑
m=1

[
(−1)m+2dνν−m · ν`ν−m

]
+ (−1)ν−1+2(dν1 · ν) · `

= (dνν−1 + ν) · `ν +

ν−1∑
m=2

(−1)m+1dνν−m`
(ν+1)−m

+

ν−1∑
m=2

[
(−1)m+1dνν−(m−1) · ν`

ν−(m−1)
]

+ (−1)ν+1(dν1 · ν) · `
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= (dνν−1 + ν) · `ν +
ν−1∑
m=2

(−1)m+1
[
dνν+1−m · ν + dνν−m

]
· `(ν+1)−m

+ (−1)ν+1(dν1 · ν) · `.

Hence, we have

dν+1
1 = dν1 · ν,

dν+1
ν+1−m = dνν+1−m · ν + dνν−m, m = 2, . . . , ν − 1,

dν+1
ν = dνν−1 + ν.

2) (BC) We know from part 1) that

d2
1 = 1 and d3

1 = 2, d3
2 = 3.

Therefore, we compute

ν−1∑
m=1

(−1)m+1dνν−m = 1 for ν = 2 and ν = 3.

(IH) The claim holds for some ν ∈ N with ν ≥ 3.

(IS) 3 ≤ ν → ν + 1

ν∑
m=1

(−1)m+1dν+1
ν+1−m = dν+1

ν +

ν−1∑
m=2

[
(−1)m+1dν+1

ν+1−m
]

+ (−1)ν+1dν+1
1

1)
= (dνν−1 + ν) +

ν−1∑
m=2

[
(−1)m+1

(
dνν+1−m · ν + dνν−m

)]
+ (−1)ν+1dν1 · ν

= (−1)ν+1dν1 · ν +
ν−1∑
m=2

[
(−1)m+1dνν+1−m · ν

]
+

ν−1∑
m=2

[
(−1)m+1dνν−m

]
+ (dνν−1 + ν)

=

ν∑
m=2

[
(−1)m+1dνν+1−m · ν

]
+

ν−1∑
m=1

[
(−1)m+1dνν−m

]
+ ν

=

ν−1∑
m=1

[
(−1)m+2dνν−m · ν

]
+

ν−1∑
m=1

[
(−1)m+1dνν−m

]
+ ν

= (−ν) ·
ν−1∑
m=1

[
(−1)m+1dνν−m

]
+

ν−1∑
m=1

[
(−1)m+1dνν−m

]
+ ν

(IH)
= (−ν) · 1 + 1 + ν = 1.



40 3. Recovery of special univariate functions from sparse Fourier samples

3) (BC) We know from part 1) that d3
2 = 3. Therefore, we compute

d3
2 = 3 =

2∑
j=1

j =
2 · 3

2
.

(IH) The claim holds for some ν ∈ N with ν ≥ 3.

(IS) 3 ≤ ν → ν + 1

dν+1
ν

1)
= dνν−1 + ν

(IH)
=

(
ν−1∑
j=1

j

)
+ ν =

ν∑
j=1

j =
ν(ν + 1)

2

by Gauss’s formula for sums of consecutive integers4.
�

Remark 3.16.
Observe that the coefficients dνν−m in Lemma 3.15, 1) are the Stirling numbers of the
first kind5. This can be seen as follows:

The Stirling numbers of the first kind are denoted by
[
ν
k

]
. With the help of these

numbers, we can write the factorial power `(`−1)·. . .·(`−ν+1) as a linear combination
of ordinary powers:

Dν(`) = `ν − `(`− 1) · . . . · (`− ν + 1)

= `ν −
ν∑
k=0

(−1)ν−k
[
ν

k

]
`k, (3.39)

see [40, p. 67, Eq. (44)]. Since we have
[
ν
ν

]
= 1 and

[
ν
0

]
= 0, see [40, p. 67, Eq. (48)]

and [40, p. 68, Eq. (50)] respectively, (3.39) leads to

Dν(`) = `ν − 1 · `ν −
ν−1∑
k=0

(−1)ν−k
[
ν

k

]
`k =

ν−1∑
k=0

(−1)ν−k+1

[
ν

k

]
`k

= (−1)ν+1 · 0 +
ν−1∑
k=1

(−1)ν−k+1

[
ν

k

]
`k

=
ν−1∑
m=1

(−1)m+1
[

ν
ν−m

]
`ν−m.

4For example, see [31, p. 59, 7.7].
5For the definition of the Stirling numbers of the first kind, see [1, p. 88] or [40, pp. 66–68], for

instance.
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The last equality is due to reversing the order of summation. Hence, dνν−m =
[

ν
ν−m

]
,

that is, the coefficients dνν−m of Dν in Lemma 3.15, 1) are the Stirling numbers of the
first kind.

Now we have all required statements to validate (3.33).

Lemma 3.17.
Consider

Sν :=

NR∑
`=0

λ` `
ν e− ih`Tj , ν = 0, . . . , R− 1,

where λ`, ` = 0, . . . , NR, are the coefficients of the polynomial Λ which is defined in
(3.31). The values Tj are the unknown shifts in (3.28). Then we can express the sum
Sν , ν = 0, . . . , R− 1, by

Sν =
ν∑
η=0

ανηΛ
(η)(e− ihTj ) e− i ηhTj (3.40)

with coefficients ανη ∈ N0, η = 0, . . . , ν, which fulfil the following conditions:

α0
0 = 1,

αν0 = 0, ν ≥ 1,

αν1 = ανν = 1, ν ≥ 1,

ανν−1 =
ν−1∑
j=1

j =
(ν − 1)ν

2
, ν ≥ 2,

ανη = αν−1
η−1 + η · αν−1

η , η = 2, . . . , ν − 2 (ν ≥ 4).

Moreover, the coefficients ανη have the recursive representation

ανη =

ν−η∑
m=1

(−1)m+1dνν−mα
ν−m
η , η = 1, . . . , ν − 1 (ν ≥ 1),

where dνν−m are the coefficients of Dν , see Lemma 3.15.

Proof. We will prove the claim of Lemma 3.17 by induction. First, remember that

Sν =
NR∑
`=0

λ` `
ν e− ih`Tj , Λ(z) =

NR∑
`=0

λ`z
`, Λ(η)(z) =

NR∑
`=η

λ`

(
η−1∏
k=0

(`− k)

)
z`−η, η ∈ N0.
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(BC)

S0 =
NR∑
`=0

λ` e− ih`Tj = Λ
(
e− ihTj

)

S1 =
NR∑
`=0

λ`` e− ih`Tj = e− ihTj

NR∑
`=0

λ`` e− ih(`−1)Tj

= e− ihTj

NR∑
`=1

λ`` e− ih(`−1)Tj = e− ihTj Λ(1)
(
e− ihTj

)

S2 =
NR∑
`=0

λ``
2 e− ih`Tj =

NR∑
`=0

λ`[`(`− 1) + `] e− ih`Tj

= e−2 ihTj

NR∑
`=2

λ``(`− 1) e− ih(`−2)Tj + e− ihTj

NR∑
`=1

λ`` e− ih(`−1)Tj

= e−2 ihTj Λ(2)
(
e− ihTj

)
+ e− ihTj Λ(1)

(
e− ihTj

)

S3 =

NR∑
`=0

λ``
3 e− ih`Tj =

NR∑
`=0

λ`[`(`− 1)(`− 2) + 3`2 − 2`] e− ih`Tj

= e−3 ihTj

NR∑
`=3

λ``(`− 1)(`− 2) e− ih(`−3)Tj +3
NR∑
`=0

λ``
2 e− ihTj −2

NR∑
`=0

λ`` e− ihTj

= e−3 ihTj Λ(3)
(
e− ihTj

)
+ 3S2 − 2S1

= e−3 ihTj Λ(3)
(
e− ihTj

)
+ 3 e−2 ihTj Λ(2)

(
e− ihTj

)
+ 3 e− ihTj Λ(1)

(
e− ihTj

)
− 2 e− ihTj Λ(1)

(
e− ihTj

)
= e−3 ihTj Λ(3)

(
e− ihTj

)
+ 3 e−2 ihTj Λ(2)

(
e− ihTj

)
+ e− ihTj Λ(1)

(
e− ihTj

)

S4 =
NR∑
`=0

λ``
4 e− ih`Tj =

NR∑
`=0

λ`[`(`− 1)(`− 2)(`− 3) + 6`3 − 11`2 + 6`] e− ih`Tj

= e−4 ihTj

NR∑
`=4

λ``(`− 1)(`− 2)(`− 3) e− ih(`−4)Tj +6

NR∑
`=0

λ`λ
3 e− ihTj

− 11
NR∑
`=0

λ``
2 e− ihTj +6

NR∑
`=0

λ`` e− ihTj
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= e−4 ihTj Λ(4)
(
e− ihTj

)
+ 6S3 − 11S2 + 6S1

= e−4 ihTj Λ(4)
(
e− ihTj

)
+ 6 e−3 ihTj Λ(3)

(
e− ihTj

)
+ 18 e−2 ihTj Λ(2)

(
e− ihTj

)
+ 6 e− ihTj Λ(1)

(
e− ihTj

)
− 11 e−2 ihTj Λ(2)

(
e− ihTj

)
− 11 e− ihTj Λ(1)

(
e− ihTj

)
+ 6 e− ihTj Λ(1)

(
e− ihTj

)
= e−4 ihTj Λ(4)

(
e− ihTj

)
+ 6 e−3 ihTj Λ(3)

(
e− ihTj

)
+ 7 e−2 ihTj Λ(2)

(
e− ihTj

)
+ e− ihTj Λ(1)

(
e− ihTj

)
The above computations yield the expression

Sν =
ν∑
η=0

ανηΛ
(η)(e− ihTj ) e− i ηhTj

for ν = 0, 1, 2, 3, 4 with the following coefficients:

α0
0 = 1;

α1
0 = 0, α1

1 = 1;

α2
0 = 0, α2

1 = 1 =

1∑
j=1

j, α2
2 = 1;

α3
0 = 0, α3

1 = 1, α3
2 = 3 =

2∑
j=1

j, α3
3 = 1;

α4
0 = 0, α4

1 = 1, α4
2 = 7 = α3

2 · 2 + α3
1, α4

3 = 6 =

3∑
j=1

j, α4
4 = 1.

We know from Lemma 3.15 that

d2
1 = 1, d3

1 = 2, d4
1 = 6,

d3
2 = 3, d4

2 = 11,

d4
3 = 6.

Therefore, we compute the following:

α2
1 = 1 = 1 · 1 = d2

1 · α1
1 =

1∑
m=1

(−1)m+1d2
2−mα

2−m
1 .
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α3
1 = 1 = 3 · 1− 2 · 1 = d3

2α
2
1 − d3

1α
1
1 =

2∑
m=1

(−1)m+1d3
3−mα

3−m
1 ,

α3
2 = 3 = 3 · 1 = d3

2α
2
2 =

1∑
m=1

(−1)m+1d3
3−mα

3−m
2 .

α4
1 = 1 = 6 · 1− 11 · 1 + 6 · 1 = d4

3α
3
1 − d4

2α
2
1 + d4

1α
1
1 =

3∑
m=1

(−1)m+1d4
4−mα

4−m
1 ,

α4
2 = 7 = 6 · 3− 11 · 1 = d4

3α
3
2 − d4

2α
2
2 =

2∑
m=1

(−1)m+1d4
4−mα

4−m
2 ,

α4
3 = 6 = 6 · 1 = d4

3α
3
3 =

1∑
m=1

(−1)m+1d4
4−mα

4−m
3 .

⇒ ανη =

ν−η∑
m=1

(−1)m+1dνν−mα
ν−m
η for η = 1, . . . , ν − 1, and ν = 2, 3, 4.

(IH) The claim holds for some ν ∈ N with ν ≥ 4.

(IS) 4 ≤ ν → ν + 1

Sν+1 =
NR∑
`=0

λ``
ν+1 e− ih`Tj

=
NR∑
`=0

λ`

(
ν∏
k=0

(`− k)

)
e− ih`Tj +

NR∑
`=0

λ`

[
`ν+1 −

(
ν∏
k=0

(`− k)

)]
e− ih`Tj

(3.38)
= e−(ν+1) ihTj

NR∑
`=ν+1

λ`

(
ν∏
k=0

(`− k)

)
e− ih(`−ν−1)Tj +

NR∑
`=0

λ`Dν+1(`) e− ih`Tj

3.15
= e−(ν+1) ihTj Λ(ν+1)

(
e− ihTj

)
+

NR∑
`=0

λ`

(
ν∑

m=1

(−1)m+1dν+1
ν+1−m`

ν+1−m

)
e− ih`Tj

= e−(ν+1) ihTj Λ(ν+1)
(
e− ihTj

)
+

ν∑
m=1

(−1)m+1dν+1
ν+1−m

(
NR∑
`=0

λ``
ν+1−m e− ih`Tj

)
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= e−(ν+1) ihTj Λ(ν+1)
(
e− ihTj

)
+

ν∑
m=1

(−1)m+1dν+1
ν+1−mSν+1−m

(IH)
= e−(ν+1) ihTj Λ(ν+1)

(
e− ihTj

)
+

ν∑
m=1

(−1)m+1dν+1
ν+1−m

(
ν+1−m∑
η=0

αν+1−m
η Λ(η)

(
e− ihTj

)
e− i ηhTj

)
.

Since ν + 1 − m ∈ {1, . . . , ν} for the index m with m = 1, . . . , ν, we have
αν+1−m

0 = 0 for m = 1, . . . , ν by the induction hypothesis. Therefore, we find
the expression

Sν+1 = e−(ν+1) ihTj Λ(ν+1)
(
e− ihTj

)
+

ν∑
m=1

(−1)m+1dν+1
ν+1−m

(
ν+1−m∑
η=1

αν+1−m
η Λ(η)

(
e− ihTj

)
e− i ηhTj

)
= e−(ν+1) ihTj Λ(ν+1)

(
e− ihTj

)
+

ν∑
η=1

(
ν+1−η∑
m=1

(−1)m+1dν+1
ν+1−mα

ν+1−m
η

)
Λ(η)

(
e− ihTj

)
e− i ηhTj .

(3.41)

Note that the last equality is due to the fact that

ν∑
m=1

ν+1−m∑
η=1

am,η =

ν∑
η=1

ν+1−η∑
m=1

am,η for am,η ∈ C.

Equation (3.41) now yields

αν+1
0 = 0, αν+1

ν+1 = 1,

and

αν+1
η =

ν+1−η∑
m=1

(−1)m+1dν+1
ν+1−mα

ν+1−m
η , η = 1, . . . , ν. (3.42)

For the coefficients αν+1
1 and αν+1

ν , we find the following from (3.42):

αν+1
1 =

ν∑
m=1

(−1)m+1dν+1
ν+1−mα

ν+1−m
1

(IH)
=

ν∑
m=1

(−1)m+1dν+1
ν+1−m

3.15
=
2)

1,

αν+1
ν =

1∑
m=1

(−1)m+1dν+1
ν+1−mα

ν+1−m
ν = dν+1

ν ανν
(IH)
= dν+1

ν
3.15
=
3)

ν∑
j=1

j =
ν(ν + 1)

2
.
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Hence, it remains to prove the equality

αν+1
η =

ν+1−η∑
m=1

(−1)m+1dν+1
ν+1−mα

ν+1−m
η = ανη · η + ανη−1

for η = 2, . . . , ν − 1. First, we will examine the cases η = ν − 2 and η = ν − 1
for ν + 1 ≥ 5.

αν+1
ν−2 =

3∑
m=1

(−1)m+1dν+1
ν+1−mα

ν+1−m
η

= dν+1
ν ανν−2 − dν+1

ν−1α
ν−1
ν−2 + dν+1

ν−2α
ν−2
ν−2

=
(
dνν−1 + ν

)
ανν−2 −

[
dνν−1 · ν + dνν−2

]
αν−1
ν−2 +

[
dνν−2 · ν + dνν−3

]
αν−2
ν−2

by using part 1) of Lemma 3.15. The induction hypothesis about ανν−2 now
yields

αν+1
ν−2 = dνν−1 ·

[
αν−1
ν−2 · (ν − 2) + αν−1

ν−3

]
+ νανν−2 −

[
dνν−1 · ν + dνν−2

]
αν−1
ν−2

+
[
dνν−2 · ν + dνν−3

]
αν−2
ν−2

= (ν − 2)dνν−1α
ν−1
ν−2 + νανν−2 + dνν−1α

ν−1
ν−3 − νd

ν
ν−1α

ν−1
ν−2 − d

ν
ν−2α

ν−1
ν−2

+ νdνν−2α
ν−2
ν−2 + dνν−3α

ν−2
ν−2

= (ν − 2)

(
1∑

m=1

(−1)m+1dνν−mα
ν−m
ν−2

)
+ νανν−2 +

(
1∑

m=1

(−1)m+1dνν−mα
ν−m
ν−3

)
− dνν−2α

ν−1
ν−2 + dνν−3α

ν−2
ν−2 − ν

(
dνν−1α

ν−1
ν−2 − d

ν
ν−2α

ν−2
ν−2

)
.

Since αν−2
ν−2 = 1 = αν−3

ν−3 and αν−1
ν−2 = (ν−2)(ν−1)

2 by the induction hypothesis, we
get

αν+1
ν−2 = (ν − 2)

(
1∑

m=1

(−1)m+1dνν−mα
ν−m
ν−2

)
+ νανν−2 +

(
1∑

m=1

(−1)m+1dνν−mα
ν−m
ν−3

)

− dνν−2

(ν − 2)(ν − 1)

2
+ dνν−3α

ν−3
ν−3 − ν

(
2∑

m=1

(−1)m+1dνν−mα
ν−m
ν−2

)
︸ ︷︷ ︸

=ανν−2 by (IH)

= (ν − 2)

(
1∑

m=1

(−1)m+1dνν−mα
ν−m
ν−2

)
+

(
1∑

m=1

(−1)m+1dνν−mα
ν−m
ν−3

)

− dνν−2

(ν − 2)(ν − 1)

2
+ dνν−3α

ν−3
ν−3.

(3.43)
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Further, we have

dνν−2

(ν − 2)(ν − 1)

2
= dνν−2

[
(ν − 3)(ν − 2)

2
+ (ν − 2)

]
= (ν − 2)dνν−2 · 1 + dνν−2

(ν − 3)(ν − 2)

2
(IH)
= (ν − 2)dνν−2α

ν−2
ν−2 + dνν−2α

ν−2
ν−3.

Together with (3.43), this yields

αν+1
ν−2 = (ν − 2)

(
1∑

m=1

(−1)m+1dνν−mα
ν−m
ν−2

)
− (ν − 2)dνν−2α

ν−2
ν−2

+

(
1∑

m=1

(−1)m+1dνν−mα
ν−m
ν−3

)
− dνν−2α

ν−2
ν−3 + dνν−3α

ν−3
ν−3

= (ν − 2)

(
2∑

m=1

(−1)m+1dνν−mα
ν−m
ν−2

)
+

(
3∑

m=1

(−1)m+1dνν−mα
ν−m
ν−3

)
.

Incorporating the induction hypothesis, we finally get

αν+1
ν−2 = (ν − 2)ανν−2 + ανν−3.

The proof of the case η = ν − 1 for ν + 1 ≥ 5 also makes use of Lemma 3.15 and
the induction hypothesis.

αν+1
ν−1 =

2∑
m=1

(−1)m+1dν+1
ν+1−mα

ν+1−m
ν−1

= dν+1
ν ανν−1 − dν+1

ν−1α
ν−1
ν−1

=
[
dνν−1 + ν

]
ανν−1 −

[
dνν−1 · ν + dνν−2

]
αν−1
ν−1 by 3.15, 1)

= (ν − 1 + 1)ανν−1 +
[
dνν−1α

ν
ν−1 − νdνν−1α

ν−1
ν−1

]
− dνν−1α

ν−1
ν−1

= (ν − 1)ανν−1 +
[
ανν−1 + dνν−1α

ν
ν−1 − νdνν−1

]
− dνν−2α

ν−2
ν−2 (3.44)

since we have the following by the induction hypothesis:

αν−1
ν−1 = 1 = αν−2

ν−2.

We denote the middle term in (3.44) by A, i.e.

A :=ανν−1 + dνν−1α
ν
ν−1 − νdνν−1.
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For the expression A, we have the following:

A =
(ν − 1)ν

2
+

[
(ν − 1)ν

2

]2

− ν · (ν − 1)ν

2
by (IH) and 3.15, 1)

=

[
1− ν +

(ν − 1)ν

2

]
(ν − 1)ν

2

=
ν2 − 3ν + 2

2
· (ν − 1)ν

2

=
(ν − 2)(ν − 1)

2
· dνν−1 by 3.15, 3)

= αν−1
ν−2d

ν
ν−1 by (IH).

Putting this into (3.44), we find

αν+1
ν−1 = (ν − 1)ανν−1 + dνν−1α

ν−1
ν−2 − d

ν
ν−2α

ν−2
ν−2

= (ν − 1)ανν−1 +
2∑

m=1

(−1)m+1dνν−mα
ν−m
ν−2

= (ν − 1)ανν−1 + ανν−2 by (IH).

The last remaining case is the case η = 2, . . . , ν − 3 for ν + 1 ≥ 6. In this case,
we have the following for the coefficients αν+1

η :

αν+1
η =

ν+1−η∑
m=1

(−1)m+1dν+1
ν+1−mα

ν+1−m
η , η = 2, . . . , ν − 3 (ν ≥ 5),

= dν+1
ν ανη +

(
ν−η−1∑
m=2

(−1)m+1dν+1
ν+1−mα

ν+1−m
η

)
+ (−1)ν+1−ηdν+1

η+1α
η+1
η + (−1)ν+2−ηdν+1

η αηη

3.15
=
[
dνν−1 + ν

]
ανη +

(
ν−η−1∑
m=2

(−1)m+1
[
dνν+1−m · ν + dνν−m

]
αν+1−m
η

)
+ (−1)ν+1−η[dνη+1 · ν + dνη

]
αη+1
η + (−1)ν+2−η[dνη · ν + dνη−1

]
αηη

(IH)
= dνν−1

[
αν−1
η · η + αν−1

η−1

]
+ νανη + ν

(
ν−η−1∑
m=2

(−1)m+1dνν+1−mα
ν+1−m
η

)

+

(
ν−η−1∑
m=2

(−1)m+1dνν−m
[
αν−mη · η + αν−mη−1

])
+ (−1)ν+1−η[dνη+1 · ν + dνη

]
αη+1
η + (−1)ν+2−η[dνη · ν + dνη−1

]
αηη
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= νανη + ν

(
ν−η−1∑
m=2

(−1)m+1dνν+1−mα
ν+1−m
η

)
+ dνν−1

[
αν−1
η · η + αν−1

η−1

]
+

(
ν−η−1∑
m=2

(−1)m+1dνν−m
[
αν−mη · η + αν−mη−1

])
+ (−1)ν+1−η[dνη+1 · ν + dνη

]
αη+1
η + (−1)ν+2−η[dνη · ν + dνη−1

]
αηη.

In the first sum, we use an index transformation, and we can add the term
dνν−1

[
αν−1
η · η + αν−1

η−1

]
to the second sum. Thus, we obtain

αν+1
η = νανη + ν

(
ν−η−2∑
m=1

(−1)m+2dνν−mα
ν−m
η

)

+

(
ν−η−1∑
m=1

(−1)m+1dνν−m
[
αν−mη · η + αν−mη−1

])
+ (−1)ν+1−η[dνη+1 · ν + dνη

]
αη+1
η + (−1)ν+2−η[dνη · ν + dνη−1

]
αηη.

The terms (−1)ν+1−ηdνη+1 · ν · α
η+1
η and (−1)ν+2−ηdνη · ν · α

η
η can be fit into the

first sum. Further, we split the second sum into two sums. This results in

αν+1
η = νανη − ν

(
ν−η∑
m=1

(−1)m+1dνν−mα
ν−m
η

)
+ η

(
ν−η−1∑
m=1

(−1)m+1dνν−mα
ν−m
η

)

+

(
ν−η−1∑
m=1

(−1)m+1dνν−mα
ν−m
η−1

)
+ (−1)ν+1−η[dνηαη+1

η − dνη−1α
η
η

]
.

Using the induction hypothesis, we find that(
ν−η∑
m=1

(−1)m+1dνν−mα
ν−m
η

)
= ανη

and

αη+1
η =

η(η + 1)

2
, αηη = αη−1

η−1.

Hence, we get

αν+1
η

(IH)
= νανη − νανη + η

(
ν−η−1∑
m=1

(−1)m+1dνν−mα
ν−m
η

)

+

(
ν−η−1∑
m=1

(−1)m+1dνν−mα
ν−m
η−1

)
+ (−1)ν+1−ηdνη

η(η + 1)

2

+ (−1)ν+2−ηdνη−1α
η−1
η−1.

(3.45)
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By the induction hypothesis, we find

η(η + 1)

2
= η · 1 +

(η − 1)η

2
= ηαηη + αηη−1.

Thus, it follows from (3.45) that

αν+1
η = η

(
ν−η−1∑
m=1

(−1)m+1dνν−mα
ν−m
η

)
+ η · (−1)ν+1−ηdνηα

η
η

+

(
ν−η−1∑
m=1

(−1)m+1dνν−mα
ν−m
η−1

)
+ (−1)ν+1−ηdνηα

η
η−1

+ (−1)ν+2−ηdνη−1α
η−1
η−1.

By adding the term η · (−1)ν+1−ηdνηα
η
η to the first sum, and by fitting the terms

(−1)ν+1−ηdνηα
η
η−1 and (−1)ν+2−ηdνη−1α

η−1
η−1 into the second sum, we obtain

αν+1
η = η

(
ν−η∑
m=1

(−1)m+1dνν−mα
ν−m
η

)
+

(
ν−η+1∑
m=1

(−1)m+1dνν−mα
ν−m
η−1

)
= ηανη + ανη−1

where the last equality is due to the induction hypothesis.
�

Remark 3.18.
Note that the coefficients ανη in Lemma 3.17 fulfil the initial conditions and the recur-
rence relation for the Stirling numbers of the second kind; for instance, see [1, p. 89]
or [40, pp. 66–68]. Thus, the coefficients used in the representation (3.40) are Stirling
numbers of the second kind.

3.4. Numerical results

In this section, we want to apply the described reconstruction methods to examples
of step functions and non-uniform spline functions using simulated Fourier data.

First, Figure 3.3 presents a step function consisting of eight steps, i.e. seven jumps
inside its support, that is determined by the knot sequence (Tj)

9
j=1 and the coefficient

sequence (c0
j )

8
j=1 given in Table 3.2. Note that this is actually a special case of non-

uniform spline functions where the order of the B-splines is set to one. Further, observe
that the considered example includes several difficulties. On the one hand, some knots
are very close to each other, namely T1 and T2, T6 and T7, and the last two knots
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T8 and T9, such that these jumps are barely visible. On the other hand, there are
some successive coefficients with a rather small difference, namely c0

3 and c0
4, and c0

7

and c0
8. In order to show the exactness of the reconstruction, we give the absolute

reconstruction errors |Tj −T ∗j | and |c0
j − c∗j |, see Table 3.2. Here, T ∗j and c∗j denote the

reconstructed knots and coefficients respectively.

f(x)

x−12 −10 −8 −6 −4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

Figure 3.3. Original function of the form (3.1), determined by the knot sequence (Tj)
9
j=1 and

the coefficient sequence (c0j )8j=1 given in Table 3.2.

j Tj |Tj − T ∗j | c0
j |c0

j − c∗j |
1 -11.5 7.052 · 10−13 -2 3.962 · 10−11

2 -11.43 2.753 · 10−13 3 1.776 · 10−14

3 -9 3.553 · 10−15 1.2 1.998 · 10−14

4 -5.37 6.217 · 10−15 1.1 2.043 · 10−14

5 -1.3 4.885 · 10−15 -4 6.661 · 10−15

6 1 7.172 · 10−9 0 5.73 · 10−5

7 1.001 1.43 · 10−8 2 1.559 · 10−13

8 4 3.622 · 10−11 2.005 1.828 · 10−12

9 4.1 5.329 · 10−15

Table 3.2. Parameters of the original function in Figure 3.3 and approximate reconstruction
errors. The sampling step size used is h = 0.27.

In the next two examples, see Figure 3.4 and 3.5, we consider the recovery of non-
uniform spline functions of higher order, namely of order m = 2 and m = 5. The
original parameters Tj and c0

j are listed in Tables 3.3 and 3.4, and we also compare
them with the reconstructed values T ∗j and c∗j .
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f(x)

x
0 1 2 3 4

−3

−2

−1

0

1

2

3

4

Figure 3.4. Original function f of the
form (3.10) where m = 2, determined by
(Tj)

6
j=1 and (c0j )4j=1 given in Table 3.3.

−8 −6 −4 −2 0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3.5. Original function f of the
form (3.10) where m = 5, determined by
(Tj)

10
j=1 and (c0j )5j=1 given in Table 3.4.

j Tj |Tj − T ∗j | c0
j |c0

j − c∗j |
1 0 0 1 3.504 · 10−12

2 1 3.55 · 10−12 2 3.064 · 10−12

3 1.8 2.971 · 10−13 -3 1.06 · 10−12

4 2.5 2.132 · 10−13 4 1.678 · 10−12

5 3 2.665 · 10−15

6 3.7 1.821 · 10−14

Table 3.3. Parameters of the original
function f in Figure 3.4 and approximate
reconstruction errors (h = 0.8).

j Tj |Tj − T ∗j | c0
j |c0

j − c∗j |
1 -6 0 -3.2 8.66 · 10−14

2 -5.8 3.553 · 10−15 3.1 2.576 · 10−14

3 -4 8.882 · 10−16 -0.8 7.996 · 10−13

4 -2.25 1.332 · 10−15 1.5 2.783 · 10−12

5 -0.6 2.887 · 10−15 -3 5.799 · 10−12

6 0 1.337 · 10−15

7 1.3 3.109 · 10−15

8 2.73 4.441 · 10−16

9 3.5 4.441 · 10−15

10 4.2 4.441 · 10−15

Table 3.4. Parameters of the original
function f in Figure 3.5 and approximate
reconstruction errors (h = 0.5).

As we have mentioned in Remarks 3.9, 2., the reconstruction procedure for a non-
uniform spline function f always results in the simplest representation of f such that
the reconstructed representation of f of the form (3.21) does not possess redundant
terms. We want to illustrate this by the next example.

Consider the non-uniform spline function f of order m = 2 given by

f(x) :=
4∑
j=1

corig
j B2

j , x ∈ R, (3.46)

which is determined by the coefficients

corig
1 := 1, corig

2 := 2, corig
3 := 3, corig

4 := 4, (3.47)

and the knots

T orig
1 := 1, T orig

2 := 2, T orig
3 := 3, T orig

4 := 4.5, T orig
5 := 5, T orig

6 := 6. (3.48)



3.4. Numerical results 53

The representation in (3.46) with the coefficients and knots given in (3.47) and
(3.48) is redundant. Using the definition of the B-splines and the recurrence relation,
i.e. (3.11) and (3.12), we conclude that the function f considered above is the same
as the function given in Figure 3.6, which is determined by the knot sequence (Tj)

5
j=1

and the coefficient sequence (cj)
3
j=1 with

T1 := 1, T2 := 3, T3 := 4.5, T4 := 5, T5 := 6, (3.49)

and
c1 := 2, c2 := 3, c3 := 4. (3.50)

These parameters are approximately obtained by applying the reconstruction scheme
for non-uniform spline functions, i.e. Algorithm 3.10, to sampling values of the Fourier
transform of the function f in (3.46), see Table 3.5.

f(x)

x
1 2 3 4 5 6

1

2

3

4

Figure 3.6. Original function f of the
form (3.10) where m = 2, determined by
the knot sequence (Tj)

5
j=1 in (3.49) and the

coefficient sequence (c0j )4j=1 in (3.50).

j |Tj − T ∗j | |cj − c∗j |
1 9.548 · 10−15 1.51 · 10−14

2 4.974 · 10−14 1.021 · 10−13

3 1.67 · 10−13 5.818 · 10−14

4 5.329 · 10−14

5 4.441 · 10−15

Table 3.5. Reconstruction results for f
in (3.46). Note that the reconstruction of
f does not possess redundant terms. The
errors are obtained by comparison with the
parameters in (3.49) and (3.50).





4. Recovery of special bivariate functions
from sparse Fourier samples

In this chapter, we want to extend the theory from the previous chapter to the bivariate
case. On the one hand, we generalize the results for the reconstruction of non-uniform
spline functions and non-uniform translates in the univariate case to tensor-products
of such functions. On the other hand, we consider linear combinations of non-uniform
translates of bivariate functions where the variables are not separable.

4.1. Tensor-products

4.1.1. Tensor-products of non-uniform spline functions

The first case of tensor-products where we want to give reconstruction results are
non-uniform tensor-product spline representations of the form

f : R2 → R, f(x1, x2) :=

N1∑
j=1

N2∑
k=1

c0,0
j,kB

m1
j (x1)Bm2

k (x2) (4.1)

with real-valued coefficients c0,0
j,k 6= 0 for j = 1, . . . , N1, and k = 1, . . . , N2. As in-

troduced in Section 3.2, Bm1
j and Bm2

k are B-splines of order m1 and m2 which are
determined by the knot sequences (Tj , . . . , Tj+m1) and (Sk, . . . , Sk+m2) respectively.

As done similarly in the univariate case of non-uniform spline functions, we want
to recover functions f of the form (4.1) from sparse Fourier samples, i.e. from as
few Fourier samples as possible. Therefore, we need a representation of the Fourier
transform of f . The approach to compute f̂ follows similar lines as the calculations in
Section 3.2.

First, we can consider f(·, x2) for all x2 ∈ R as a univariate non-uniform spline
function. In the case m1 ≥ 3, Lemma 3.4 yields

�r1

�xr11

f(x1, x2) =

N1+r1∑
j=1

N2∑
k=1

cr1,0j,k B
m1−r1
j (x1)Bm2

k (x2)
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for r1 = 1, . . . ,m1 − 2. The coefficients cr1,0j,k are defined by

cr1,0j,k :=

(
m1 − r1

Tj+m1−r1 − Tj

)
·
(
cr1−1,0
j,k − cr1−1,0

j−1,k

)
,

j = 1, . . . , N1 + r1,

k = 1, . . . , N2,
(4.2)

with the convention

cr1−1,0
0,k = cr1−1,0

N1+r1,k
= 0, k = 1, . . . , N2. (4.3)

Secondly, �m1−2

�x
m1−2
1

f(x1, ·) is a univariate non-uniform spline function for all x1 ∈ R.

Therefore, we get the following for m2 ≥ 3 and r2 = 1, . . . ,m2 − 2 by Lemma 3.4:

�r2

�xr22

(
�m1−2

�xm1−2
1

f(x1, x2)

)
=

N1+m1−2∑
j=1

N2+r2∑
k=1

cm1−2,r2
j,k B2

j (x1)Bm2−r2
k (x2)

with the coefficients

cm1−2,r2
j,k :=

(
m2 − r2

Sk+m2−r2 − Sk

)
·
(
cm1−2,r2−1
j,k − cm1−2,r2−1

j,k−1

)
(4.4)

for k = 1, . . . , N2 + r2, and j = 1, . . . , N1 +m1 − 2 where we have

cm1−2,r2−1
j,0 = cm1−2,r2−1

j,N2+r2
= 0, j = 1, . . . , N1 +m1 − 2. (4.5)

As an analogue to the univariate case, we have to work with distributions, gener-
alized functions, and the Fourier transform of a distribution if m1,m2 < 3. For this
purpose, the approach from the univariate case transfers to the bivariate case, which
is explained in Appendix D and results in the following three lemmas.

Lemma 4.1.
Consider a generalized function f of the form (4.1) with m1,m2 ≥ 2. The distribu-
tional derivative D(m1−1,m2−1) µ(f), where (m1 − 1,m2 − 1) denotes a multi-index, is
given by the generalized function

f (m1−1,m2−1) : R2 3 (x1, x2)T 7→
N1+m1−1∑

j=1

N2+m2−1∑
k=1

cm1−1,m2−1
j,k B1

j (x1)B1
k(x2) ∈ R.

The coefficients cm1−1,m2−1
j,k are defined by the following formulae:

cm1−1,m2−2
j,k :=

cm1−2,m2−2
j,k − cm1−2,m2−2

j−1,k

Tj+1 − Tj
,

j = 1, . . . , N1 +m1 − 1,

k = 1, . . . , N2 +m2 − 2,
(4.6)
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and

cm1−1,m2−1
j,k :=

cm1−1,m2−2
j,k − cm1−1,m2−2

j,k−1

Sk+1 − Sk
,

k = 1, . . . , N2 +m2 − 1,

j = 1, . . . , N1 +m1 − 1,
(4.7)

where we use the conventions

cm1−2,m2−2
0,k = cm1−2,m2−2

N1−m1−1,k = 0, k = 1, . . . , N2 +m2 − 2, (4.8)

cm1−1,m2−2
j,0 = cm1−1,m2−2

j,N2+m2−1 = 0, j = 1, . . . , N1 +m1 − 1. (4.9)

Lemma 4.2.
The distributional derivative D(m1,m2) µ(f) of the generalized function f of the form
(4.1) with m1,m2 ≥ 1 is a linear combination of translated Dirac delta distributions.
This means that D(m1,m2) µ(f) is given by the distribution

f (m1,m2) := D(m1,m2) µ(f) =

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k

(
τTj ,Skδ

)
where τTj ,Skδ denotes the translation of the bivariate Dirac delta distribution1. The
coefficients cm1,m2

j,k are defined by the following formulae:

cm1,m2−1
j,k := cm1−1,m2−1

j,k − cm1−1,m2−1
j−1,k ,

j = 1, . . . , N1 +m1,

k = 1, . . . , N2 +m2 − 1,
(4.10)

where we use

cm1−1,m2−1
0,k = cm1−1,m2−1

N1+m1,k
= 0, k = 1, . . . , N2 +m2 − 1; (4.11)

and

cm1,m2

j,k := cm1,m2−1
j,k − cm1,m2−1

j,k−1 ,
k = 1, . . . , N2 +m2,

j = 1, . . . , N1 +m1,
(4.12)

with the convention

cm1,m2−1
j,0 = cm1,m2−1

j,N2+m2
= 0, j = 1, . . . , N1 +m1. (4.13)

1See (D.15) and (D.14) for the definitions of the bivariate Dirac delta distribution and the translate
of a distribution in the bivariate case respectively.
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Having given the distributional derivative D(m1,m2) µ(f) of the function f considered

in (4.1), we can apply the Fourier transform in order to get a representation of f̂ .

Lemma 4.3.
The Fourier transform f̂ of the function f in (4.1) is represented by

(iω1)m1(iω2)m2 f̂(ω1, ω2) =

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k e− i ·(ω1Tj+ω2Sk)

for ω :=(ω1, ω2)T ∈ R2 where the coefficients cm1,m2

j,k are defined by (4.10)–(4.13).

Knowing the structure of the Fourier transform of the non-uniform tensor-product
spline representation in (4.1), we can now derive a theory for the reconstruction of
such tensor-products from very few Fourier samples.

Theorem 4.4 (Reconstruction of tensor-product spline functions).
Let m1,m2 ∈ N be given natural numbers, and let f be a real-valued, bivariate spline
function of the form (4.1) with knot sequences −∞ < T1 < . . . < TN1+m1 < ∞ and
−∞ < S1 < . . . < SN2+m2 < ∞, and real coefficients c0,0

j,k 6= 0 for j = 1, . . . , N1, and
k = 1, . . . , N2. Further, let h1 and h2 be two positive constants, and assume that they
satisfy h1Tj , h2Sk ∈ (−π,π] for all j ∈ {1, . . . , N1 + m1} and k ∈ {1, . . . , N2 + m2}
respectively. Then f can be uniquely recovered from the 2(N1 +m1) ·(N2 +m2) Fourier
samples f̂(ηh1, νh2) where η = 1, . . . , 2(N1 +m1) and ν = 1, . . . , N2 +m2.

Proof. Lemma 4.3 provides the following representation of the Fourier transform f̂ :

(iω1)m1(iω2)m2 f̂(ω1, ω2) =

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k e− i ·(ω1Tj+ω2Sk)

=

N1+m1∑
j=1

(
N2+m2∑
k=1

cm1,m2

j,k e− iω2Sk

)
e− iω1Tj (4.14)

where the coefficients cm1,m2

j,k are defined by (4.10)–(4.13).
We have here an exponential sum. But we cannot directly apply the Prony method

from Chapter 2 to this exponential sum since it as a bivariate one. In order to use the
Prony method, we need a univariate function structure. Thus, in a first step, we restrict
the function in (4.14) to the variable ω1 in order to obtain the knots T1, . . . , TN1+m1 .
Then we fix the variable ω1 such that we get a univariate problem with respect to
the variable ω2. In this way, we can determine the knots S1, . . . , SN2+m2 , and all
coefficients cm1,m2

j,k in (4.14). In the last step, we compute the original coefficients c0,0
j,k ,

j = 1, . . . , N1, k = 1, . . . , N2, by using recursion formulae.
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Part 1: First, we set

pj(ω2) :=

N2+m2∑
k=1

cm1,m2

j,k e− iω2Sk for j = 1, . . . , N1 +m1. (4.15)

Then the equality (4.14) reads as

(iω1)m1(iω2)m2 f̂(ω1, ω2) =

N1+m1∑
j=1

pj(ω2) e− iω1Tj . (4.16)

We fix ω2 :=h2 and hence obtain a univariate function P with respect to the variable
ω1 which is defined by

P (ω1) :=(iω1)m1(ih2)m2 f̂(ω1, h2) =

N1+m1∑
j=1

pj(h2) e− iω1Tj . (4.17)

In this univariate exponential sum, the coefficients pj(h2) are complex-valued, see the
definition of pj(h2) in (4.15). Therefore, we apply the Prony method which is presented

in Section 2.1 to the function P where we use the Fourier samples f̂(ηh1, h2) for
η = 1, . . . , 2(N1 +m1). Using these sampling values of f̂ , we can compute the function
values P (ηh1) for η = 1, . . . , 2(N1 + m1), which we actually need for the application
of the Prony method, by

P (ηh1) = (i ηh1)m1(ih2)m2 f̂(ηh1, h2) for η = 1, . . . , 2(N1 +m1).

Observe that the still needed function value P (0) is given by this computation too,
i.e. P (0) = 0, since the equation (4.17) also holds for ω = 0. This can be seen as
follows: First, the left-hand side of (4.17), namely P (ω1) = (iω1)m1(ih2)m2 f̂(ω1, h2),
equals to zero for ω1 = 0 because we have

∣∣f̂(0, h2)
∣∣ <∞ by definition of f as an almost

everywhere continuous function with compact support. Secondly, also the right-hand
side of (4.17) yields the value 0 if ω1 is set to zero:

N1+m1∑
j=1

pj(h2) e− i ·0·Tj =

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k e− iω2Sk

=

N2+m2∑
k=1

(
N1+m1∑
j=1

cm1,m2

j,k

)
e− iω2Sk

(4.12)
=

N2+m2∑
k=1

(
N1+m1∑
j=1

(
cm1,m2−1
j,k − cm1,m2−1

j,k−1

))
e− iω2Sk
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(4.13)
=

N2+m2−1∑
k=1

(
N1+m1∑
j=1

cm1,m2−1
j,k

)
e− iω2Sk

−
N2+m2∑
k=2

(
N1+m1∑
j=1

cm1,m2−1
j,k−1

)
e− iω2Sk

=

N2+m2−1∑
k=1

(
N1+m1∑
j=1

cm1,m2−1
j,k

)
e− iω2Sk

−
N2+m2−1∑

k=1

(
N1+m1∑
j=1

cm1,m2−1
j,k

)
e− iω2Sk+1

=

N2+m2−1∑
k=1

(
N1+m1∑
j=1

cm1,m2−1
j,k

)[
e− iω2Sk − e− iω2Sk+1

]
. (4.18)

Further, we have

N1+m1∑
j=1

cm1,m2−1
j,k

(4.10)
=

N1+m1∑
j=1

[
cm1−1,m2−1
j,k − cm1−1,m2−1

j−1,k

]
= cm1−1,m2−1

N1+m1,k
− cm1−1,m2−1

0,k

(4.11)
= 0.

We insert this result into (4.18), which leads to

N1+m1∑
j=1

pj(h2) e− i ·0·Tj = 0.

Thus, we obtain the knot sequence (T1, . . . , TN1+m1) as well as the coefficients pj(h2),

j = 1, . . . , N1 +m1, by using the Fourier samples f̂(ηh1, h2) for η = 1, . . . , 2(N1 +m1).

In the unlucky case that not all values pj(h2) for j ∈ {1, . . . , N1 +m1} are non-zero,
we will not find all parameters Tj of the exponential sum in (4.17) by this procedure.
Hence, we may have to repeat the method for additional fixed values ω2 = 2h2, 3h2

etc. in order to complete the knot sequence (T1, . . . , TN1+m1). But it is always possible
to complete the sequence in this way, see Remark 4.5.

Part 2: Next, knowing the knots (T1, . . . , TN1+m1), we can compute the further coeffi-
cients pj(νh2) for all j ∈ {1, . . . , N1 +m1} and ν ∈ {2, . . . , N2 +m2} from the overde-

termined linear system of equations in (4.16) using the Fourier samples f̂(ηh1, νh2),
η = 1, . . . , 2(N1 +m1), ν = 1, . . . , N2 +m2.



4.1. Tensor-products 61

Part 3: Up to now, we know the knot sequence (T1, . . . , TN1+m1) and the values

pj(νh2) for j = 1, . . . , N1 +m1, and ν = 1, . . . , N2 +m2. (4.19)

We still need to compute the knot sequence (S1, . . . , SN2+m2) and the original coeffi-
cients of the function f , i.e. c0,0

j,k for j = 1, . . . , N1, k = 1, . . . , N2. This will be done by
a further application of the Prony method and a recursion formula afterwards.

Consider the univariate exponential sum

p1(ω2) =

N2+m2∑
k=1

cm1,m2

1,k e− iω2Sk .

We know the values
p1(νh2), ν = 1, . . . , N2 +m2,

see (4.19), and p1 is now an exponential sum with real-valued coefficients. Thus, we
can use the Prony method as described in Section 2.2 in order to compute the knot
sequence (S1, . . . , SN2+m2) and the coefficients cm1,m2

1,k , k = 1, . . . , N2 + m2. Observe
that the function value p1(0) is again given as zero since we have the following:

p1(0) =

N2+m2∑
k=1

cm1,m2

1,k e− i ·0·Sk =

N2+m2∑
k=1

cm1,m2

1,k

(4.12)
=

N2+m2∑
k=1

[
cm1,m2−1

1,k − cm1,m2−1
1,k−1

]
= cm1,m2−1

1,N2+m2
− cm1,m2−1

1,0

(4.13)
= 0.

In case that cm1,m2

1,k = 0 for some k ∈ {1, . . . , N2 + m2}, we do not obtain all knots
Sk and need to apply the Prony method also to pj(ω2) for j = 2, 3 etc. in order to
complete the knot sequence (S1, . . . , SN2+m2), cf. Remark 4.5.

Part 4: All further coefficients of the exponential sums in (4.15), i.e. cm1,m2

j,k for the
indices j = 2, . . . , N1 + m1, and k = 1, . . . , N2 + m2, are determined from the linear
systems

pj(νh2) =

N2+m2∑
k=1

cm1,m2

j,k e− i νh2Sk , ν = 1, . . . , N2 +m2,

for each j ∈ {2, 3, . . . , N1 +m1}.
Part 5: Finally, we use recursion formulae in order to evaluate the original coefficients
c0,0
j,k of the function f in (4.1) from the coefficients cm1,m2

j,k , which we have just ob-
tained. The definitions (4.2)–(4.13) result in the following recursions, which have to
be executed one after the other:
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• j = 1, . . . , N1 +m1:

cm1,m2−1
j,k =

{
cm1,m2
j,1 for k = 1,

cm1,m2

j,k + cm1,m2−1
j,k−1 for k = 2, . . . , N2 +m2 − 1;

• k = 1, . . . , N2 +m2 − 1:

cm1−1,m2−1
j,k =

{
cm1,m2−1

1,k for j = 1,

cm1,m2−1
j,k + cm1−1,m2−1

j−1,k for j = 2, . . . , N1 +m1 − 1;

• j = 1, . . . , N1 +m1 − 1:

cm1−1,m2−2
j,k =

{
(S2 − S1)cm1−1,m2−1

j,1 , k = 1,

(Sk+1 − Sk)cm1−1,m2−1
j,k + cm1−1,m2−2

j,k−1 , k = 2, . . . , N2 +m2 − 2;

• k = 1, . . . , N2 +m2 − 2:

cm1−2,m2−2
j,k =

{
(T2 − T1)cm1−1,m2−2

1,k , j = 1,

(Tj+1 − Tj)cm1−1,m2−2
j,k + cm1−2,m2−2

j−1,k , j = 2, . . . , N1 +m1 − 2;

• r2 = m2 − 2, . . . , 1, and j = 1, . . . , N1 +m1 − 2:

cm1−2,r2−1
j,k =


(
S1+m2−r2−S1

m2−r2

)
cm1−2,r2
j,1 , k = 1,(

Sk+m2−r2−Sk
m2−r2

)
cm1−2,r2
j,k + cm1−2,r2−1

j,k−1 , k = 2, . . . , N2 + r2 − 1;

• r2 = m1 − 2, . . . , 1, and k = 1, . . . , N2:

cr1−1,0
j,k =


(
T1+m1−r1−T1

m1−r1

)
cr1,01,k , j = 1,(

Tj+m1−r1−Tj
m1−r1

)
cr1,0j,k + cr1−1,0

j−1,k , j = 2, . . . , N1 + r1 − 1.

The last iteration of the last recursion formula now provides the coefficients c0,0
j,k

for j = 1, . . . , N1, and k = 1, . . . , N2.
�

Remark 4.5.
Observe that we usually need to apply the Prony method only twice in order to obtain
the two knot sequences (T1, . . . , TN1+m1) and (S1, . . . , SN2+m2). All coefficients c0,0

j,k

can be computed afterwards from linear systems of equations.
At the end of Part 1 of the proof of Theorem 4.4, we have encountered the problem

that maybe not all values pj(h2) for j ∈ {1, . . . , N1+m1} are non-zero such that we are
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not able to find all parameters Tj . If this is the case, we repeat the method described
in that part of the proof for additional values ω2 = 2h2, 3h2 etc., that is, we consider
pj(2h2), pj(3h2) etc. in order to complete the knot sequence (T1, . . . , TN1+m1).

In this manner, we can always complete the knot sequence, which can be seen as
follows:

Assume that the parameter Tj0 for some index j0 ∈ {1, . . . , N1 +m1} is never found,
i.e.

pj0(νh2) =

N2+m2∑
k=1

cm1,m2

j0,k

(
e− ih2Sk

)ν
= 0 for ν = 1, . . . , N2 +m2.

Thus, we have the linear system e− ih2S1 . . . e− ih2SN2+m2

...
...(

e− ih2S1
)N2+m2 . . .

(
e− ih2SN2+m2

)N2+m2

 ·
 cm1,m2

j0,1
...

cm1,m2

j0,N2+m2

 =

0
...
0

 , (4.20)

where we denote the system matrix by V . Using simple rules for calculating deter-
minants2, we obtain

det(V ) =

(
N2+m2∏
k=1

(
e− ih2Sk

))
· det

(
Ṽ
)

(4.21)

with

Ṽ :=


1 . . . 1

e− ih2S1 . . . e− ih2SN2+m2

...
...(

e− ih2S1
)N2+m2−1

. . .
(
e− ih2SN2+m2

)N2+m2−1

 .

Since |e− ihSk | = 1 for k = 1, . . . , N2 +m2, the product
∏N2+m2
k=1

(
e− ih2Sk

)
in (4.21)

is unequal to zero. Further, the parameters Sk, k = 1, . . . , N2 + m2, are pairwise
different, and we have h2Sk ∈ (−π,π] for k = 1, . . . , N2 + m2. Thus, the values
e− ih2Sk , k = 1, . . . , N2 + m2, are pairwise different such that the determinant of the
Vandermonde-type matrix Ṽ is also unequal to zero3.

Hence, the matrix V is invertible, and the solution to the system in (4.20) is given
by

cm1,m2
j0,1

= . . . = cm1,m2

j0,N2+m2
= 0.

This means that the parameter Tj0 does not occur in the representation (4.14). There-
fore, if a parameter Tj0 is necessary for the representation of f in (4.1), we will always
be able to find it by using the approach described in the proof of Theorem 4.4.

2See [43, pp. 79–81, Lemma 7.11, (4) + Lemma 7.14, (1)], for example.
3Cf. [34, p. 29].
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Remark 4.6.
As in the univariate case, see Remarks 3.9, 2., the problem of vanishing coefficients
cm1,m2

j,k only occurs if the function f in (4.1) contains local redundancies. Then the
approach presented above will result in the simplest representation of f , that is, the
reconstructed representation of f will not possess redundant terms.

4.1.2. Tensor-products of non-uniform translates

In this subsection, we want to extend the theorem for the reconstruction of non-uniform
translates of low-pass filter functions, i.e. Theorem 3.11, to the case of tensor-products
in the bivariate case. Thus, we consider sparse tensor-product representations of the
form

f : R2 → R, f(x1, x2) :=

N1∑
j=1

N2∑
k=1

cj,kΦ1(x1 − Tj)Φ2(x2 − Sk) (4.22)

with two low-pass filter functions Φ1 and Φ2 as introduced in Section 3.3; i.e., the
functions Φν ∈ L1(R), ν = 1, 2, satisfy the condition |Φ̂ν(ω)| > C for ω ∈ (−T, T )
for some constants C0 and T > 0 (ν = 1, 2). Further, we have non-zero, real-valued
coefficients cj,k for j = 1, . . . , N1, k = 1, . . . , N2, and the two real shift sequences
−∞ < T1 < . . . < TN1 <∞ and −∞ < S1 < . . . < SN2 <∞.

Application of the Fourier transform yields4

f̂(ω1, ω2) =

(
N1∑
j=1

N2∑
k=1

cj,k e− iω1Tj e− iω2Sk

)
Φ̂1(ω1)Φ̂2(ω2), ω :=(ω1, ω2)T ∈ R2. (4.23)

Theorem 4.7 (Reconstruction of tensor-product non-uniform translates).
Let −∞ < T1 < . . . < TN1 < ∞ and −∞ < S1 < . . . < SN2 < ∞ be real sequences,
and cj,k ∈ R \ {0} for j = 1, . . . , N1, k = 1, . . . , N2. Further, let Φ1, Φ2 ∈ L1(R2)

be given real-valued functions satisfying |Φ̂`(ω)| > C for ω ∈ (−T, T ) for some con-
stants C > 0 and T > 0 (` = 1, 2). Assume that the positive constants h1 and h2

satisfy h1Tj , h2Sk ∈ (−π,π] for all j ∈ {1, . . . , N1} and k ∈ {1, . . . , N2}, and as-
sume that h1 < T

N1
and h2 < T

N2
. Then the function f of the form (4.22) can be

uniquely recovered from the (2N1 + 1) · (N2 + 1) Fourier samples f̂(ηh1, νh2) where
η = 0, 1, . . . , 2N1 and ν = 0, 1, . . . , N2.

Proof. The proof follows the same lines as the proof of Theorem 4.4. It consists of
two major parts. First, we fix the variable ω2 in the frequency domain such that we
get a univariate problem to which we can apply the Prony method in order to obtain

4Note that we have used Definition and Proposition A.1, Proposition A.3, and Fubini’s theorem,
see [22, pp. 175–176, 2.1c)], in order to compute the Fourier transform.
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the shift values T1, . . . , TN1 . In the second part, we use a univariate problem with
respect to the variable ω2 and determine the shift values S1, . . . , SN2 , and the original
coefficients cj,k, j = 1, . . . , N1, k = 1, . . . , N2.

Part 1: Considering (4.23), we obtain

f̂(ω1, ω2)

Φ̂1(ω1)Φ̂2(ω2)
=

N1∑
j=1

N2∑
k=1

cj,k e− iω1Tj e− iω2Sk =

N1∑
j=1

(
N2∑
k=1

cj,k e− iω2Sk

)
e− iω1Tj

for ω1, ω2 ∈ (−T, T ). Secondly, we set

pj(ω2) :=

N2∑
k=1

cj,k e− iω2Sk for j = 1, . . . , N1 (4.24)

such that we get

f̂(ω1, ω2)

Φ̂1(ω1)Φ̂2(ω2)
=

N1∑
j=1

pj(ω2) e− iω1Tj . (4.25)

We fix ω2 :=h2 in order to obtain a univariate exponential sum with respect to the
variable ω1. Define

P (ω1) :=
f̂(ω1, h2)

Φ̂1(ω1)Φ̂2(h2)
=

N1∑
j=1

pj(h2) e− iω1Tj . (4.26)

The coefficients pj(h2) are complex-valued due to their definition in (4.24). Observe

that we have Φ̂1(ηh) 6= 0 for η = 0, . . . , 2N1, hTj ∈ (−π,π] for j = 1, . . . , N1, and

Φ̂2(h2) 6= 0 by the assumptions about h1 and h2. Therefore, using the Fourier samples
f̂(ηh1, h2) for η = 0, . . . , 2N1, we can apply the Prony method as presented in Section
2.1 to the function P . For this purpose, we need the function values P (ηh1) for
η = 0, . . . , 2N1, which we can compute by

P (ηh1) =
f̂(ηh1, h2)

Φ̂1(ηh1)Φ̂2(h2)
for η = 0, . . . , 2N1.

Using this approach, we obtain the shift sequence (T1, . . . , TN1) and the coefficients
pj(h2), j = 1, . . . , N1.

If it happens that not all values pj(h2), j = 1, . . . , N1, are non-zero, we will not find
all shift values Tj in (4.26) by using the Prony method. Thus, we my have to repeat
the method for additional fixed values ω2 = 2h2, 3h2 etc. such that we can complete
the shift sequence (T1, . . . , TN1), cf. Remark 4.5.

Employing the found shift values T1, . . . , TN1 , we can compute the coefficients pj(0)
and pj(νh2) for j = 1, . . . , N1, ν = 2, . . . , N2 from the linear system of equations
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that we obtain from (4.26) using the Fourier samples f̂(ηh1, νh2), η = 0, . . . , 2N1,
ν = 0, . . . , N2.

Part 2: Let us recall that we have computed the shift sequence (T1, . . . , TN1) and the
values

pj(νh2) j = 1, . . . , N1, ν = 0, . . . , N2. (4.27)

It remains to determine the shift sequence (S1, . . . , SN2) and the original coefficients
of the function f , i.e. cj,k for j = 1, . . . , N1, k = 1, . . . , N2.

Consider the univariate exponential sum

p1(ω2) =

N2∑
k=1

c1,k e− iω2Sk ,

where we know the values

p1(νh2), ν = 0, . . . , N2,

see (4.27). Note that p1 is an exponential sum with real-valued coefficients. Hence,
by applying the Prony method from Section 2.2, we compute the shift sequence
(S1, . . . , SN2) and the coefficients c1,k, k = 1, . . . , N2.

As the last step, we have to compute the remaining original coefficients in (4.22),
i.e. cj,k for the indices j = 2, . . . , N1, and k = 1, . . . , N2. They are determined by the
linear systems

pj(νh2) =

N2∑
k=1

cj,k e− i νh2Sk , ν = 1, . . . , N2,

for each j ∈ {2, 3, . . . , N1}. This completes the proof. �

Remark 4.8.
Most of the time, we need only two applications of the Prony method in order to
establish the shift sequences (T1, . . . , TN1) and (S1, . . . , SN2), cf. Remark 4.5. The
coefficients cj,k are determined from linear systems of equations.

4.2. Non-uniform translates of bivariate functions

In the previous subsection, we have generalized the results from Section 3.3 for the
reconstruction of non-uniform translates to the bivariate case, namely to the case of
tensor-products of low-pass filter functions. Now we want to consider a more general
setting for non-uniform translates in the bivariate case.

Therefore, we assume the given bivariate function Φ ∈ L1(R2) to have a bounded
Fourier transform Φ̂ which satisfies |Φ̂(ω)| > C > 0 for ‖ω‖2 < T for some constant
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T > 0, and we examine functions f : R2 → R that have the sparse representation

f(x) :=
N∑
j=1

cjΦ(x− vj) (4.28)

where cj and vj for j = 1, . . . , N are non-zero, real-valued coefficients and real shift
vectors respectively.

Note that such a function Φ can, for example, be constructed with the help of a
univariate low-pass filter function Φ̃ as given in Section 3.3 with

Φ(x) := Φ̃
(
‖x‖2

)
.

Further, observe that we can also take radial basis functions such as polynomials, thin
plate splines, Gaussians, Multiquadrics or inverse Multiquadrics5 as the given function
Φ. See Remark 4.10 for more details.

As before, we would like to answer the question of the number of needed Fourier
samples in order to recover the function f if Φ and N are known. Additionally,
we want to establish a reconstruction scheme for computing the real shift vectors
vj :=(vj,1, vj,2)T and the real-valued coefficients cj (j = 1, . . . , N) from these samples.
Observe that this problem is completely different from the separable case considered
in Subsection 4.1.2.

Application of the Fourier transform to the function f in (4.28) leads to

f̂(ω) =

(
N∑
j=1

cj e− i〈ω,vj〉

)
Φ̂(ω), ω ∈ R2, (4.29)

cf. Definition A.1 and Proposition A.3.
We will see later that there can be cancellation effects in the reconstruction scheme

if the non-zero coefficients cj are not restricted to having the same sign for all indices
j ∈ {1, . . . , N}. Thus, we only consider the cases where all coefficients c1, . . . , cN have
the same sign. Without loss of generality, we assume cj > 0 for all j ∈ {1, . . . , N}.

In the following, we will distinguish between adaptive sampling and sampling on
predetermined lines. Adaptive sampling means that we use Fourier samples from the
horizontal and vertical axis of the frequency domain and choose a third sampling line
through the origin in the frequency domain where the choice of this third line is based
upon the results we have obtained by using the data from the first two sampling lines.
In the case of sampling on predetermined lines, we decide on N +1 arbitrary sampling
lines through the origin in the frequency domain, and we will show that fewer lines do
not suffice in general. This may be of great interest for practical purposes, but we will
need N2 − 2N samples more than we need by applying adaptive sampling in order to
recover the N shift vectors and corresponding coefficients in the representation (4.28)
if N ≥ 2.
5For the definitions of these functions, see [37, p. 1], for example.
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4.2.1. Adaptive sampling

Considering the assumptions mentioned at the beginning of the section on hand, the
following theorem shows that 3N + 1 Fourier samples suffice to uniquely reconstruct
the function f in (4.28) if we use adaptive sampling.

Theorem 4.9 (Reconstruction of bivariate non-uniform translates).
Let Φ ∈ L1(R2) be a given bivariate function with a Fourier transform satisfying
|Φ̂(ω)| > C for ‖ω‖2 < T for some constants C > 0 and T > 0. Further, let f be a
bivariate function with the sparse representation (4.28) where cj and vj = (vj,1, vj,2)T

for j = 1, . . . , N are positive real-valued coefficients and real shift vectors respectively.
Assume that the constant h > 0 fulfils the conditions h‖vj‖2 < π for all j ∈ {1, . . . , N}
and h < T

N . Then we get the following reconstruction result:

The function f can be uniquely recovered from the 3N +1 Fourier samples
which are given by the set{

f̂
(
0, 0
)
, f̂
(
`h, 0

)
, f̂
(
0, `h

)
, f̂
(
cos(ϑπ)`h, sin(ϑπ)`h

)
| ` = 1, . . . , N

}
where ϑ ∈ (0, 1) \ {1

2} needs to be chosen suitably.

Proof. Considering the assumption about the Fourier transform of the given function
Φ, the equation (4.29) yields

g(ω) :=
f̂(ω)

Φ̂(ω)
=

N∑
j=1

cj e− i〈ω,vj〉 (4.30)

for ω :=(ω1, ω2)T ∈ R2 with ‖ω‖2 =
(
ω2

1 + ω2
2

)2
< T .

In order to recover the original function f from samples of its Fourier transform, we
have to reconstruct the parameters in the exponential sum on the right-hand side of
(4.30), namely the shift vectors vj and the coefficients cj . We cannot directly apply
the Prony method from Chapter 2 since we have here a bivariate exponential sum.
Therefore, we will restrict the function g to different lines through the origin in the
frequency domain such that we obtain univariate exponential sums in each case.

Part 1: First, we restrict g to the ω1-axis, that is, we set ω2 to be zero. This produces

g(ω1, 0) =
N∑
j=1

cj e− iω1vj,1 .

However, we are faced with the problem that two or more shift vectors vj may
possess the same first coordinate vj,1. Let us assume that the set {v1,1, . . . , vN,1} of
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the true first coordinates contains N1 ≤ N distinct values ṽ1,1 < ṽ2,1 < . . . < ṽN1,1.
Then we find

g(ω1, 0) =

N1∑
j=1

c1
j e− iω1ṽj,1 (4.31)

where c1
j is the sum of all coefficients belonging to shift vectors with the same first

coordinate ṽj,1, i.e.

c1
j :=

∑
k: vk,1=ṽj,1

ck, j = 1, . . . , N1. (4.32)

If we would allow the coefficients c1, . . . , cN to have different signs, it may happen
that c1

j = 0 for some indices j ∈ {1, . . . , N1}. But this would mean that the terms

e− iω1ṽj,1 for these indices j do not occur in the exponential sum in (4.31) such that
we would not be able to recover the coordinate ṽj,1. Thus, we restrict the coefficients
c1, . . . , cN to having the same sign and assume cj > 0 for all j ∈ {1, . . . , N} without
loss of generality. Hence, we have c1

j > 0 for j = 1, . . . , N1.

Observe that the coefficients c1
j for j = 1, . . . , N1 are real-valued. Further, we have

h|ṽj,1| ≤ h‖ṽj‖2 < π for all j ∈ {1, . . . , N1} by assumption. Hence, we can apply the
Prony method as described in Section 2.2, see Algorithm 2.5. For this purpose, we
need the function values

g(`h, 0), ` = 0, . . . , N,

which are given by the definition of g in (4.30) and the N + 1 Fourier samples

f̂(`h, 0), ` = 0, . . . , N.

Observe that the fractions

g(0, 0) =
f̂(0, 0)

Φ̂(0, 0)
, g(h, 0) =

f̂(h, 0)

Φ̂(h, 0)
, . . . , g(Nh, 0) =

f̂(Nh, 0)

Φ̂(Nh, 0)

are well defined since the assumptions h < T
N and |Φ̂(ω)| > C > 0 for ‖ω‖2 < T ensure

that Φ̂(`h, 0) 6= 0 for all ` ∈ {0, . . . , N}.
The application of the Prony method then provides the set

Ṽ1 :={ṽ1,1, . . . , ṽN1,1}

and corresponding coefficients c1
j , j = 1, . . . , N1. Note that these coefficients are not

the coefficients that we need for the reconstruction of f in (4.28) if N1 < N . Those
coefficients have to be determined later.

Actually, it would suffice to use the N1 + 1 Fourier samples f̂(`h, 0), ` = 0, . . . , N1.
But since we do not know the value N1, we have to assume that the coordinate values
v1,1, . . . , vN,1 are distinct and hence take N + 1 Fourier samples.
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Part 2: Now we restrict g to the ω2-axis and apply the above-described procedure to
the univariate function g(0, ·) defined by

g(0, ω2) =
N∑
j=1

cj e− iω2vj,2 .

We assume that the set {v1,2, . . . , vN,2} of the true second coordinates contains N2

distinct values ṽ1,2 < ṽ2,2 < . . . < ṽN2,2. Setting

c2
j :=

∑
k: vk,2=ṽj,2

ck, j = 1, . . . , N2,

where we have c2
j > 0 for j = 1, . . . , N2 by the assumption about the coefficients cj

(j = 1, . . . , N), we get

g(0, ω2) =

N2∑
j=1

c2
j e− iω2ṽj,2 . (4.33)

Using the Fourier samples f̂(0, `h) where ` = 0, . . . , N , we apply the Prony method
in form of Algorithm 2.5 to the function g in (4.33). As a result, we obtain the set

Ṽ2 :={ṽ1,2, . . . , ṽN2,2}

and corresponding coefficients c2
j , j = 1, . . . , N2. Like in the first univariate problem,

these coefficients are not the coefficients of f in (4.28) if N2 < N .

Part 3: So far, we know the first coordinates ṽ1,1, . . . , ṽN1,1, and the second coordinates
ṽ1,2, . . . , ṽN2,2 of the true shift vectors vj , j = 1, . . . , N . Thus, the true shift vectors
have to be elements of the set

K :=
{
v :=(v1, v2)T | v1 ∈ Ṽ1, v2 ∈ Ṽ2

}
, (4.34)

which contains N1N2 ≤ N2 candidate vectors for the true shift vectors.
In order to determine the N true shift vectors in the set K, we use a third univariate

problem to which we apply the Prony method. This means that we need further Fourier
samples from a third sampling line.

For this purpose, we choose a parameter ϑ ∈ (0, 1) \ {1
2} such that the orthogonal

projections of all candidate vectors in K onto the line x2 = tan(ϑπ)x1 are pairwise
different, that is to say that the values

(
cos(ϑπ)v1+sin(ϑπ)v2

)
where v = (v1, v2)T ∈ K

are distinct, see Figure 4.1. Such a line can always be found since we consider linear
combinations with a finite number of summands in (4.28). Thus, the candidate set K
contains finitely many points.

The parameter ϑ is then used to determine the third sampling line in the fre-
quency domain. The angle between the positive ω1-axis and the part of the line
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ω2 = tan(ϑπ)ω1 which lies in the upper half space is given by the value ϑπ rad. We
use equispaced sampling locations on this third sampling line ω2 = tan(ϑπ)ω1 with
step size h, see Figure 4.1, and take the N Fourier samples

f̂
(
cos(ϑπ)`h, sin(ϑπ)`h

)
, ` = 1, . . . , N.

x2

x1

x2 = tan(ϑπ)x1

v3

ϑπ rad

v

ω2

ω1

ω2 = tan(ϑπ)ω1

h

ϑπ rad

sin(ϑπ)`h

cos(ϑπ)`h

: original shift vectors : further candidates in K v :=(v1, v2)T v3 = cos(ϑπ)v1 + sin(ϑπ)v2

Figure 4.1. Left: Determination of the parameter ϑ in the time domain. Right: Third
sampling line in the frequency domain with sampling locations (displayed example: ` = 5).

Part 4: Now we consider the univariate function g
(
cos(ϑπ)·, sin(ϑπ)·

)
given by

g
(
cos(ϑπ)ω1, sin(ϑπ)ω1

)
=

N∑
j=1

cj e− iω1[cos(ϑπ)vj,1+sin(ϑπ)vj,2] =
N∑
j=1

cj e− iω1vj,3 (4.35)

with

vj,3 := cos(ϑπ)vj,1 + sin(ϑπ)vj,2, j = 1, . . . , N.

Observe that the values v1,3, . . . , vN,3 are coordinate values of the true shift vectors with
respect to the line x2 = tan(ϑπ)x1, and that these values are distinct since all possible
shift vectors in K yield different orthogonal projections onto the line x2 = tan(ϑπ)x1,
which is due to the choice of ϑ. This also means that there are no summation effects for
the coefficients such that the coefficients c1, . . . , cN in (4.35) are the true coefficients,
which we seek to recover.
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Let us order the coordinate values vj,3 such that we obtain

g
(
cos(ϑπ)ω1, sin(ϑπ)ω1

)
=
f̂
(
cos(ϑπ)ω1, sin(ϑπ)ω1

)
Φ̂
(
cos(ϑπ)ω1, sin(ϑπ)ω1

)
=

N∑
j=1

c3
j e− iω1ṽj,3

(4.36)

with ṽ1,3 < ṽ2,3 < . . . < ṽN,3 and corresponding coefficients c3
1, . . . , c

3
N where the set

{ṽ1,3, . . . , ṽN,3} is a permuted version of {v1,3, . . . , vN,3}, and the same permutation
maps {c1, . . . , cN} onto {c3

1, . . . , c
3
N}.

We now apply the Prony method as described in Section 2.2 to the function g in
(4.36) where we use the Fourier samples f̂

(
cos(ϑπ)`h, sin(ϑπ)`h

)
for ` = 0, . . . , N .

For this purpose, note that all coefficients c3
j are real-valued, and that we have the

assumption h‖vj‖2 < π for all j ∈ {1, . . . , N}. The rotated vectors(
cos(ϑπ) sin(ϑπ)
− sin(ϑπ) cos(ϑπ)

)
vj , j = 1, . . . , N,

fulfil the same norm condition. Thus, we obtain

h|vj,3| = h
∣∣cos(ϑπ)vj,1 + sin(ϑπ)vj,2

∣∣ = h

√(
cos(ϑπ)vj,1 + sin(ϑπ)vj,2

)2
≤ h

√(
cos(ϑπ)vj,1 + sin(ϑπ)vj,2

)2
+
(
− sin(ϑπ)vj,1 + cos(ϑπ)vj,2

)2
=

∥∥∥∥( cos(ϑπ) sin(ϑπ)
− sin(ϑπ) cos(ϑπ)

)
vj

∥∥∥∥
2

< π

for j = 1, . . . , N . This means that h|ṽj,3| < π holds for all j ∈ {1, . . . , N}. Further,
we have∥∥∥(cos(ϑπ)`h, sin(ϑπ)`h

)T∥∥∥
2

=
((

cos2(ϑπ) + sin2(ϑπ)
)
`2h2

) 1
2

= |`h| < T

for all ` ∈ {0, . . . , N} by using the assumption h < T
N . This ensures, together with

the assumption about Φ̃, that the fractions in (4.36) are well defined for ω1 = `h,
` = 0, . . . , N .

The application of the Prony method then produces the set

Ṽ3 :={ṽ1,3, . . . , ṽN,3}

and corresponding coefficients c3
j , j = 1, . . . , N .

Part 5: Now, as the final step, we can compute the true shift vectors in the set K of
candidate shift vectors by comparison of the set K with the set Ṽ3. For this purpose, we
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determine all vectors (v1, v2)T in the set K for which there exist indices j ∈ {1, . . . , N}
such that cos(ϑπ)v1 + sin(ϑπ)v2 = ṽj,3. Then the set

G :=
{
v = (v1, v2)T | v1 ∈ Ṽ1, v2 ∈ Ṽ2, cos(ϑπ)v1 + sin(ϑπ)v2 ∈ Ṽ3

}
contains only the N true shift vectors v1, . . . ,vN , and each of the vectors v ∈ G is
uniquely associated with a coefficient c3

j for j ∈ {1, . . . , N}. Thus, we have

G = {v1,v2, . . . ,vN} (4.37)

with corresponding coefficients

c1, c2, . . . , cN . (4.38)

The parameters of the function f in (4.28), which we wanted to recover, are now
given by the elements of G in (4.37) and the corresponding coefficients in (4.38). �

Remark 4.10.
We can also take radial basis functions such as polynomials, thin plate splines, Gaus-
sians, Multiquadrics or inverse Multiquadrics as the given function Φ. Observe that
only the Gaussians and the inverse Multiquadrics have Fourier transforms in the clas-
sical sense. In all other cases, we have to consider the generalized Fourier transform.
The generalized Fourier transform of the mentioned radial basis functions is positive
on R2 \ {0} and has at most a pole at the origin, see [37, pp. 17–19]. Thus, we cannot
take the function value Φ̂(0) in all cases, which means that we will not be able to con-
sider the function value of g in (4.30) for ω = 0. Hence, we cannot apply the Prony
method from Section 2.2 to the three univariate problems (4.31), (4.33), and (4.36)
because the function value g(0) is essential in order to use the conjugate symmetry
of g, being an exponential sum with real-valued coefficients. Instead, we can consider
2N + 1 sampling values of f̂ on each sampling line, e.g. on the right-hand side of the
origin, in such cases where we cannot take the value Φ̂(0) and apply the Prony method
from Section 2.1 to each of the three univariate problems.

Remark 4.11.
The reconstruction scheme given above uses three univariate problems, (4.31), (4.33),
and (4.36), in order to recover the shift vectors and the coefficients in the original
bivariate problem (4.30). Each of these three problems is solved by using the Prony
method from Section 2.2, which yields coordinate values of the shift vectors and corres-
ponding coefficients. But, as we have seen in the proof of Theorem 4.9, we do not need
the coefficients which are results of the application of the Prony method to the first
two problems (4.31) and (4.33). Thus, we do not need to compute those coefficients,
that is, we only need the computation steps 1–5 in Algorithm 2.5.
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We summarize the scheme for the reconstruction of non-uniform translates of bivari-
ate functions in the following algorithm where we assume that the real-valued coeffi-
cients cj , j = 1, . . . , N , in the representation (4.28) are positive.

Algorithm 4.12 (Reconstruction of bivariate non-uniform translates).

• Input:

– Φ ∈ L1(R2) with |Φ̂(ω)| > C for ‖ω‖2 < T for some C > 0 and T > 0;

– step size h > 0 with h‖vj‖2 < π for j = 1, . . . , N and h < T
N ;

– 3N + 1 Fourier samples, given by the set{
f̂
(
0, 0
)
, f̂
(
`h, 0

)
, f̂
(
0, `h

)
, f̂
(
cos(ϑπ)`h, sin(ϑπ)`h

)
| ` = 1, . . . , N

}
where ϑ ∈ (0, 1) \ {1

2} needs to be chosen suitably, see Step 6 of the com-
putation.

• Computation:

1. Compute

g(`h, 0) =
f̂(`h, 0)

Φ̂(`h, 0)
, ` = 0, . . . , N.

2. Use Algorithm 2.5, Steps 1–5 in order to compute the coordinate values
ṽj,1, j = 1, . . . , N1, in (4.31).

3. Compute

g(0, `h) =
f̂(0, `h)

Φ̂(0, `h)
, ` = 1, . . . , N.

4. Use Algorithm 2.5, Steps 1–5 in order to compute the coordinate values
ṽj,2, j = 1, . . . , N2, in (4.33).

5. Compute the Cartesian product of the two sets Ṽ1 = {ṽ1,1 . . . , ṽN1,1} and

Ṽ2 = {ṽ1,2, . . . , ṽN2,2} as the set of possible candidates for the true shift
vectors, i.e.

K :=
{
v :=(v1, v2)T | v1 ∈ Ṽ1, v2 ∈ Ṽ2

}
.

6. Choose a parameter ϑ ∈ (0, 1) \ {1
2} such that the orthogonal projections

of all candidate vectors in K onto the line x2 = tan(ϑπ)x1 are distinct.

7. Acquire the N Fourier samples f̂
(
cos(ϑπ)`h, sin(ϑπ)`h

)
, ` = 1, . . . , N .

Then compute

g
(
cos(ϑπ)`h, sin(ϑπ)`h

)
=
f̂
(
cos(ϑπ)`h, sin(ϑπ)`h

)
Φ̂
(
cos(ϑπ)`h, sin(ϑπ)`h

) , ` = 1, . . . , N.



4.2. Non-uniform translates of bivariate functions 75

8. Use Algorithm 2.5 in order to compute the coordinate values ṽj,3 and the
corresponding coefficients c3

j , j = 1, . . . , N , in (4.36).

9. Determine the true shift vectors v1, . . . ,vN in K by comparison with the set
Ṽ3 = {ṽ1,3, . . . , ṽN,3}, that is, determine all vectors (v1, v2)T in K for which
there exist indices j ∈ {1, . . . , N} such that cos(ϑπ)v1 + sin(ϑπ)v2 = ṽj,3.

Thus, we obtain the set

G = {v1,v2, . . . ,vN}

with corresponding coefficients c1, c2, . . . , cN .

• Output: Shift vectors v1, . . . ,vN with corresponding coefficients c1, c2, . . . , cN
determining f in (4.28).

The above-given reconstruction scheme relies upon the assumption that all coef-
ficients c1, . . . , cN in the representation (4.28) have the same sign. Otherwise, there
may occur cancellation effects such that we would not be able to recover all coordinate
values of the shift vectors vj , j = 1 . . . , N .

Example 4.13 (Possible cancellation effects).
Let us consider the following example:

f(x) :=
4∑
j=1

cjΦ(x− vj), x ∈ R2,

with

v1 :=(1, 1)T, v2 :=(−1, 1)T, v3 :=(−1,−1)T, v4 :=(1,−1)T;

c1 :=−1, c2 := 1, c3 :=−1, c4 := 1,

see Figure 4.2.
Now assume that the Fourier transform Φ̂(ω) does not vanish for ‖ω‖2 < T for some

constant T > 0. Then the application of the Fourier transform yields

g(ω) :=
f̂(ω)

Φ̂(ω)
=

4∑
j=1

cj e− i〈ω,vj〉, ω :=(ω1, ω2)T ∈ R2,

cf. (4.29). First, by restricting the function g to the ω1-axis, we have

g(ω1, 0) = c1 e− iω1 +c2 eiω1 +c3 eiω1 +c4 e− iω1

= (c1 + c4) e− iω1 +(c2 + c3) eiω1

= 0.

(4.39)
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Secondly, restriction to the ω2-axis results in

g(0, ω2) = c1 e− iω2 +c2 e− iω2 +c3 eiω2 +c4 eiω2

= (c1 + c2) e− iω2 +(c3 + c4) eiω2

= 0.

(4.40)

Thus, we are not able to recover anything by applying the Prony method to the two
univariate problems (4.39) and (4.40), meaning that we are not able to determine a
candidate set in order to choose a third sampling line appropriately. This means that
we have to choose two new, different sampling lines. But it can still happen that these
new sampling lines are chosen inappropriately such that there are again cancellation
effects.

x2

x1−1

1

−1

1

c1 = 1c2 = −1

c3 = 1 c4 = −1

Figure 4.2. Illustration of the original shift vectors with corresponding coefficients considered
in Example 4.13. Red, dashed lines indicate that the connected vectors yield the same projec-
tions onto the lines x2 = 0 or x1 = 0.

Remark 4.14.
We will generalize the proposed approach for the determination of the shift vectors and
the corresponding coefficients of a linear combination of translates of a given function
to d > 2 dimensions in the following chapter.

In [12], Buhmann and Pinkus consider a similar problem of determining the shift
vectors and the corresponding coefficients of a function f of the form (4.28) in Rd.
But they assume that the function f is completely known such that they can compute
the Fourier transform of f , i.e. a function g of the form (4.29). In contrast, we take
only a small number of sampling values of the Fourier transform f̂ .

Buhmann and Pinkus then use a differential operator and values of higher-order
directional derivatives of g in order to determine the shift vectors and the correspond-
ing coefficients. But they are also faced with the problem that they only know the
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projections of the shift vectors onto lines given by vectors that determine the direc-
tion of the derivatives, and that those projections have to be distinct for the unique
determination of the shift vectors. In order to obtain always distinct projections, they
consider altogether values of 1

2N(N − 1)(d− 1) + d directional derivatives of g.

By transferring this approach to our setting of sampling the Fourier transform of f ,
we would need sampling values on 1

2N(N − 1)(d− 1) + d lines. But, as we will show
in the following chapter, it suffices to consider d+ 1 sampling lines by generalizing our
approach of adaptive sampling to d dimensions.

4.2.2. Sampling on predetermined lines

In the reconstruction scheme given in Theorem 4.9, the third sampling line in the
frequency domain is chosen dependently on the set K in (4.34), i.e. dependently on
the candidates for shift vectors in K which are found using Fourier data from the first
two sampling lines. For practical purposes, it would be of great interest to compute
the true shift vectors and coefficients in (4.28) from Fourier samples taken beforehand
independently from the shift vectors.

Using three sampling lines, each of the candidates in K has not only three co-
ordinate values but also three corresponding coefficients. These coordinate values and
corresponding coefficients are the results from the Prony method applied to the three
univariate problems (4.31), (4.33), and (4.36), which are associated with the Fourier
data from the three sampling lines.

The proof of Theorem 4.9 shows that we do not need the coefficients obtained by
applying the Prony method to the problems (4.31) and (4.33), see also Remark 4.11.
Thus, the computation of those coefficients is not part of Algorithm 4.12.

Now the question arises if the function f in (4.28) can by uniquely reconstructed by
taking three predetermined lines where we also exploit the knowledge of the corres-
ponding coefficients from all three univariate problems (4.31), (4.33), and (4.36). Is it
possible to employ all these corresponding coefficients, namely c1

j , c
2
j , and c3

j , in order
to acquire conditions of the form (4.32) (or similar conditions) such that we can find
the true shift vectors in K by using these conditions? First, let us consider the

Example 4.15 (Using a linear system to determine the coefficients).
Consider the linear combination of non-uniform translates given by

f(x) :=
4∑
j=1

cjΦ(x− vj), x ∈ R2,

with

v1 :=(1, 1)T, v2 :=(−1, 1)T, v3 :=(−1,−1)T, v4 :=(1,−1)T,
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x2

x1−1

1

−1

1

c1 = 1c2 = 1

c3 = 1 c4 = 1

x2 = x1

Figure 4.3. Illustration of the original shift vectors with corresponding coefficients. Red,
dashed lines indicate that the connected vectors yield the same projections onto the lines x2 = 0,
x1 = 0, or x2 = x1.

and corresponding coefficients c1, c2, c3, and c4 as given in Figure 4.3. Actually, this
is an adjusted version of Example 4.13 such that there are no cancellation effects.

Again, we assume that the Fourier transform Φ̂(ω) does not vanish for ‖ω‖2 < T
for some constant T > 0. Then we have

g(ω) :=
f̂(ω)

Φ̂(ω)
=

4∑
j=1

cj e− i〈ω,vj〉, ω :=(ω1, ω2)T ∈ R2.

We consider the ω1-axis, the ω2-axis, and the line ω2 = ω1 (i.e. the parameter ϑ for
the third sampling line as introduced in the previous subsection is ϑ = π

4 ) as sampling
lines in the frequency domain. Restriction of g to the ω1-axis yields

g(ω1, 0) = (c1 + c4) e− iω1 +(c2 + c3) eiω1

= 2 · e− iω1 +2 · eiω1 ,
(4.41)

and by restricting g to the ω2-axis, we obtain

g(0, ω2) = (c1 + c2) e− iω2 +(c3 + c4) eiω2

= 2 · e− iω2 +2 · eiω2 .
(4.42)

Next, we restrict g to the line ω2 = ω1 and get

g
(
cos(ϑπ)ω1, sin(ϑπ)ω1

)
=

4∑
j=1

cj e
− iω1· 1√

2
·(vj,1+vj,2)

(4.43)
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since it is well known6 that

cos
(π

4

)
=

1√
2

and sin
(π

4

)
=

1√
2
.

Equation (4.43) now leads to

g
(
cos(ϑπ)ω1, sin(ϑπ)ω1

)
= c1 e

− iω1· 2√
2 +(c2 + c4) e

− iω1· 1√
2
·0

+c3 e
− iω1· (−2)√

2

= 1 · e− iω1· 2√
2 +2 · e− iω1· 1√

2
·0

+1 · e− iω1· (−2)√
2 .

Using Fourier samples from the three lines ω2 = 0, ω1 = 0, ω2 = ω1, and by applying
the Prony method to the three univariate problems (4.41), (4.42), and (4.43), we obtain
the candidate vectors

ṽ1 :=(1, 1)T, ṽ2 :=(−1, 1)T, ṽ3 :=(−1,−1)T, ṽ4 :=(1,−1)T,

which have to fulfil the following system of linear equations for the corresponding
coefficients c̃1, c̃2, c̃3, and c̃4:

c̃1 + c̃2 = 2, c̃1 + c̃4 = 2, c̃1 = 1,

c̃3 + c̃4 = 2, c̃2 + c̃3 = 2, c̃2 + c̃4 = 2,

c̃3 = 1.

This system is uniquely solvable such that we have the corresponding coefficients

c̃1 = c̃2 = c̃3 = c̃4 = 1,

associated with ṽ1, ṽ2, ṽ3, and ṽ4 respectively.

Example 4.15 illustrates the approach of using conditions on the coefficients asso-
ciated with the shift vectors in order to determine the coefficients by using a linear
system of equations. Unfortunately, such an approach is not always successful since
we can always find counterexamples of sets of shift vectors with special symmetry
properties where a complete reconstruction of f is not possible if we only use three
predetermined sampling lines, see Example 4.17. We will show that for N shifts to be
recovered N+1 predetermined sampling lines are always sufficient in order to uniquely
recover the N shift vectors and corresponding coefficients in (4.28).

During the reconstruction process, we compute coordinate values of the true shift
vectors with respect to certain lines through the origin in the time domain. If we
consider Fourier samples from the horizontal or vertical axis of the frequency domain,

6See [68, p. 59], for example.



80 4. Recovery of special bivariate functions from sparse Fourier samples

we obtain coordinate values with respect to the horizontal and vertical axis of the
time domain respectively. On the other hand, if we use Fourier samples from the line
ω2 = tan(ϑπ)ω1 with ϑ ∈ (0, 1) \ {1

2} in the frequency domain, this yields coordinate
values with respect to the line x2 = tan(ϑπ)x1 in the time domain, see also the proof
of Theorem 4.9.

Actually, by considering Fourier samples from the three lines ω2 = 0, ω1 = 0, and
ω2 = tan(ϑπ)ω1, we obtain the orthogonal projections of the true shift vectors onto
the lines x2 = 0, x1 = 0, and x2 = tan(ϑπ)x1 respectively, see Figure 4.4. Thus, the
question of the number of the needed predetermined sampling lines in the frequency
domain can be reduced to the question of the number of needed lines in the time
domain on which we have to know the orthogonal projections of a set of vectors in
order to uniquely determine this set of vectors.

x2

x1

ω2 = tan(ϑπ)ω1

ω2 = 0

ω1 = 0

ϑπ rad

x2

x2 = 0 x1

x1 = 0 x2

x1

x2 = tan(ϑπ)x1

Figure 4.4. Top left: Original shift vectors in the time domain. Top right: Sampling lines
in the frequency domain. Bottom left: Using Fourier samples from the line ω2 = 0, we obtain
the orthogonal projections of the shift vectors onto the line x2 = 0. Bottom middle: By using
Fourier samples from the line ω1 = 0, we find the orthogonal projections of the shift vectors
onto the line x1 = 0. Bottom right: Using Fourier samples from the line ω2 = tan(ϑπ)ω1, we
get the orthogonal projections of the shift vectors onto the line x2 = tan(ϑπ)x1.

These considerations lead us to the article [60] by A. Rényi. In the second chapter
of that article, discrete mass distributions on the real plane which consist of N mass
points with positive masses are examined, and Theorem 3 of that work states that
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such distributions are uniquely determined if the orthogonal projections of all mass
points onto N + 1 lines through the origin are known. By transferring this theorem to
our setting, Theorem 3 of [60] reads as follows:

Proposition 4.16 (Determination of a set of vectors by projections).
A set G of N vectors v1, . . . ,vN is uniquely determined if the orthogonal projections
of all vectors in G onto N + 1 distinct lines through the origin are known.

Since we have to understand the procedure of determining the vectors using the
known projections in order to come up with a reconstruction scheme for our case of
shift vectors and corresponding coefficients, we will prove this proposition by relying
on the proof from [60, Chapter 2, Proof of Theorem 3].

Throughout this proof, we will use the following terminology (see also Figure 4.5):

• Projection: One projection onto a straight line through the origin consists of the
N orthogonal projections of the vectors in G onto this line.

• Projecting line: A projecting line is a line which is perpendicular to a line on
which the orthogonal projections of all vectors in G are taken, and which goes
through at least one vector v ∈ G.

• Extreme points: For each of the N+1 projections, we consider two specific points
which are called extreme points of the projection: Let l :={λu |λ ∈ R} be one
of the lines on which the orthogonal projections are considered. Further, let the
orthogonal projection of an element v ∈ G onto this line l be denoted by Pl(v).
Then take the two points

pl,min := argmin
p∈{Pl(v1),...,Pl(vN )}

〈p,u〉 and pl,max := argmax
p∈{Pl(v1),...,Pl(vN )}

〈p,u〉.

These points are defined as the extreme points of the projection considered on
the line l.

• Extreme projecting lines: For each projection, consider the projecting lines which
go through the two extreme points of this projection. These two lines are called
extreme projecting lines.

Proof of Proposition 4.16. For N = 1, the assertion is obviously true since
the projections of v1 onto two distinct lines through the origin define v1 uniquely.
Consider now the case N ≥ 2.

Assume that we know N+1 projections of the set G. We obtain two extreme points
for at least N projections. Only for one projection it is possible that the projection
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x2

x1

: shift vector

: extreme point

: projecting line

: extreme projecting line

Figure 4.5. Illustration of the used concepts in the proof of Proposition 4.16.

consists of one point, which is the case if all vectors v ∈ G lie on the same projecting
line. Thus, at least 2N + 1 extreme projecting lines are given.

Further, we observe that each extreme projecting line passes through at least one
vector v ∈ G. We have N vectors and at least 2N + 1 extreme projecting lines. Thus,
there is at least one vector v ∈ G through which three or more extreme projecting
lines are passing.

All vectors v ∈ G are located in one of the two closed half-planes which are deter-
mined by every extreme projecting line. Consider now the case that r ≥ 3 extreme
projecting lines pass through a point p of the plane. The before mentioned obser-
vations yield that the plane is divided into 2r angular domains by these r extreme
projecting lines, see Figure 4.6 for an illustration. This can be seen by mathemat-
ical induction: every additional extreme projecting line through p divides two of the
already existing angular domains where each of these two domains is divided in two
parts. Thus the number of domains increases by 2.

Moreover, all vectors v ∈ G must lie in the interior or on the boundary of one of
these angular domains. Let us denote this domain by D. The boundary of D is formed
by two extreme projecting lines. This means that the other r − 2 extreme projecting
lines which are passing through p can only have the point p in common with the set
G. Since r ≥ 3, at least one such extreme projecting line is given. But we know that
every extreme projecting line passes through at least one vector v ∈ G. Thus, we
deduce that p is an element of G.

Summarizing this, we have shown the following: On the one hand, there exists
at least one vector v ∈ G through which three or more extreme projecting lines are



4.2. Non-uniform translates of bivariate functions 83

passing. On the other hand, every point of the plane which is common to at least three
extreme projecting lines is an element of G. Thus, we can find at least one element of
G by considering only the extreme projecting lines.

Now we omit the orthogonal projections of the vector which we have just found.
Hence, we know the orthogonal projections of the remaining N − 1 vectors onto N + 1
lines, and we apply the described procedure again to these projections. In this manner,
we find step by step all vectors v ∈ G. �

x2

x1

p p

Figure 4.6. Left: Set G of two points in the plane (black dots) and three lines on which the
orthogonal projections of these points are taken (solid, coloured lines). The point p is common
to three extreme projecting lines (dashed lines). Right: These extreme projecting lines divide
the plane into six angular domains (grey domains and the green domain, in which all points
of G are located).

Example 4.17 (Non-unique recovery of shift vectors and coefficients).
Let us consider the set of original shift vectors given in Figure 4.7, i.e.

v1 :=

(
1
1

)
, v2 :=

(
3
2 − 2 tan(π6 )
1− cos(π6 )

)
, v3 :=

(
3
2
−1

)
.

Further, we assume that the corresponding coefficients c1, c2, c3 for the representation
(4.28) are all equal to two.

We will show that this set of vectors with corresponding coefficients is not uniquely
recoverable by using Fourier samples from the three predetermined sampling lines
ω2 = 0, ω1 = 0, and ω2 = tan(π6 )ω1.

Using Fourier samples from these three lines in the frequency domain and apply-
ing the Prony method to the problems (4.31), (4.33), and (4.36), we obtain the or-
thogonal projections of the original shift vectors onto the lines x2 = 0, x1 = 0, and
x2 = tan(π6 )x1 in the time domain. The orthogonal projections are coordinate values of
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the original shift vectors with respect to the these three lines. Combination of these co-
ordinate values to points in the plane produces the candidate set {ṽ1, ṽ2, ṽ3, ṽ4, ṽ5, ṽ6}
with

ṽ1 :=v1, ṽ2 :=v2, ṽ3 :=v3,

ṽ4 :=

(
3
2

1− cos(π6 )

)
, ṽ5 :=

(
3
2 − 2 tan(π6 )

1

)
, ṽ6 :=

(
1
−1

)
since the vectors ṽ4, ṽ5, and ṽ6 yield the same orthogonal projections onto the lines
x2 = 0, x1 = 0, and x2 = tan(π6 )x1 as the vectors ṽ1, ṽ2, and ṽ3, see Figure 4.7. Note
that each point of the candidate set is an intersection point of three projection lines.

Now we have to determine the true shift vectors in this candidate set. But also
considering the corresponding coefficients which we can compute for the problems
(4.31), (4.33), and (4.36) does not lead to a unique solution. In particular, the unknown
corresponding coefficients c̃j , j = 1, . . . , 6, must solve the following linear system of
equations:

c̃1 + c̃6 = 2, c̃2 + c̃5 = 2, c̃3 + c̃4 = 2,

c̃1 + c̃5 = 2, c̃2 + c̃4 = 2, c̃3 + c̃6 = 2,

c̃1 + c̃4 = 2, c̃2 + c̃6 = 2, c̃3 + c̃5 = 2,

which is given by conditions of the form (4.32). This system has infinitely many solu-
tions. For all α ∈ [0, 2], the set {ṽ1, ṽ2, ṽ3, ṽ4, ṽ5, ṽ6} with corresponding coefficients

c̃1 = c̃2 = c̃3 = α and c̃4 = c̃5 = c̃6 = 2− α

is a possible solution. Special cases are

• the set {ṽ1, ṽ2, ṽ3, ṽ4, ṽ5, ṽ6} where all corresponding coefficients c̃j (j = 1, . . . , 6)
are equal to one (i.e. α = 1);

• the set {ṽ1, ṽ2, ṽ3} with corresponding coefficients c̃1 = c̃2 = c̃3 = 2 (i.e. α = 2);

• the set {ṽ4, ṽ5, ṽ6} with corresponding coefficients c̃4 = c̃5 = c̃6 = 2 (i.e. α = 0).

Example 4.17 illustrates for N = 3 that N lines on which the orthogonal projections
of a set of N vectors are taken do not always suffice to uniquely determine this set
of vectors. As Rényi states in [60], such examples can always be constructed in the
following way:
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x2

x1

v1

v2

v3

v1

v2

v3

x2 = tan(π
6

)x1

x2 = 0

x1 = 0

v4

v5

v6

Figure 4.7. Left: Original shift vectors in time domain. Right: The set {v1,v2,v3} yields
the same orthogonal projections onto the lines x2 = 0, x1 = 0, and x2 = tan(π

6 )x1 as the set
{v4,v5,v6}.

Procedure 4.18. (Construction of a set of N vectors being not uniquely
determined by orthogonal projections onto N lines — according to [60]).

Consider a convex polygon of 2N sides with anticlockwise numbered vertices vj for
j = 1, . . . , 2N such that the following condition is satisfied:

The line through the vertices vj and vk is parallel to the line through the
vertices v` and vm in the case

j + k ≡ 1 (mod 2) and j + k ≡ `+m (mod 2N). (4.44)

There are N distinct sets of such parallel lines, see Figure 4.8. Denote these sets by
Sj , j = 1, . . . , N . Further, denote the line through the origin which is perpendicular
to the lines in Sj by lj , and take the sets

V1 :=
{
v2j+1 | j ∈ {0, 1, 2, . . . , N − 1}

}
and V2 :=

{
v2j | j ∈ {1, 2, . . . , N}

}
.

Then the orthogonal projections of the elements in V1 onto the lines l1, . . . , lN are the
same as the orthogonal projections of the vectors in V2.

Thus, in order to be always able to uniquely recover a set of N vectors from given
orthogonal projections of these vectors onto predetermined lines through the origin,
we need N + 1 lines through the origin. In our reconstruction scheme, we obtain these
orthogonal projections by using Fourier samples from corresponding N + 1 lines in
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Figure 4.8. Left: Starting with an arbitrary vertex of the grey polygon, and connecting it with
its successor (here, starting with v1), we obtain a set of N parallel lines (here, N = 4) fulfilling
(4.44). Right: Moving in anticlockwise direction, we find further N − 1 sets of parallel lines
(blue, brown, and green lines) fulfilling (4.44).

the frequency domain where we take N + 1 samples on each line. Remember that the
origin is always taken as a sampling location. Hence, we need

(N + 1) · (N + 1)−N = N · (N + 1) + 1 = N2 +N + 1

Fourier samples. This means that we need N2 − 2N sampling values more than we
need in the case of adaptive sampling, where we only need 3N + 1 Fourier samples.

Let us turn back to our original problem, i.e. the recovery of shift vectors and cor-
responding positive coefficients of a function of the form (4.28) using Fourier samples
from predetermined lines through the origin in the frequency domain.

First, we take N+1 arbitrary distinct lines l̃j , j = 1, . . . , N+1, through the origin in
the frequency domain such that we obtain N + 1 univariate problems similar to (4.31)
and (4.35). On each line, we use equispaced sampling locations with step size h where
we always take the origin as a sampling location. Each of the lines l̃j corresponds to a
line lj through the origin in the time domain (j = 1, . . . , N + 1). Applying the Prony
method, see Algorithm 2.5, to each of the N + 1 univariate problems, we obtain the
orthogonal projections of all shift vectors onto the lines l1, . . . , lN+1 with corresponding
coefficients.

Secondly, the proof of Proposition 4.16 now provides a reconstruction scheme to
recover the original shift vectors from these known orthogonal projections. Further,
we have to compute the original corresponding coefficients. Remember that the cor-
responding coefficients which we obtain by applying the Prony method may be sums
of coefficients that correspond to original shift vectors with same coordinate values.
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Assume that the coefficients c1, . . . , cN in (4.28) are positive, and that we have
given the orthogonal projections of the original shift vectors v1, . . . ,vN onto the lines
l1, . . . , lN+1, i.e. vj,k for j ∈ {1, . . . , N} and k ∈ {1, . . . , N+1} with corresponding coef-
ficients. Then we can compute the original shift vectors and the original corresponding
coefficients by using the following algorithm:

Algorithm 4.19. (Reconstruction of shift vectors and corresponding coef-
ficients using sampling on predetermined lines).

• Input:

Orthogonal projections of the original shift vectors v1, . . . ,vN onto the
lines l1, . . . , lN+1 with corresponding coefficients. Thus, for each line lk
(k ∈ {1, . . . , N + 1}) the distinct coordinate values of the original shift
vectors with respect to the lines l1, . . . , lN+1 are given by

Ṽk :=
{
ṽ1,k, ṽ2,k, . . . , ṽNk,k

}
with corresponding coefficients

ckj :=
∑

`: v`,k=ṽj,k

c`, j = 1, . . . , Nk.

• Computation:

1. Compute the set K of the original shift vectors, i.e.

K :=
{
v | Plk(v) ∈ Ṽk for k = 1, . . . , N + 1

}
.

2. For each of the lines l1, . . . , lN+1, consider the associated extreme projecting
lines.

3. Determine a point p which is common to r ≥ 3 extreme projecting lines
and set

v1 :=p.

(We know from the proof of Proposition 4.16 that there exists at least one such point.)

4. Among these r extreme projecting lines, find the line which goes only
through v1 but not through other points in K. This line is perpendicu-
lar to a line lk0 for an index k0 ∈ {1, . . . , N + 1}. Determine the index
j0 ∈ {1, . . . , Nk} such that Plk0 (v1) = ṽj0,k0 . Then set

c1 := ck0j0 .

(There exists at least one extreme projecting line which goes only through v1, see the proof of
Proposition 4.16. Since we have found an extreme projecting line which goes only through v1,

there are no summation effects such that ck0j0 is the original corresponding coefficient.)
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5. Update the set K, the sets Ṽk, k = 1, . . . , N + 1, and the corresponding
coefficients ckj as follows:

a) Set K :=K \ {v1}.
b) Set Ṽk0 := Ṽk0 \ {ṽj0,k0}.

c) For each k ∈ {1, . . . , N + 1} \ {k0}, consider the set Ṽk:

– Determine the index jk ∈ {1, . . . , Nk} such that Plk(v1) = ṽjk,k.

– If the projecting line which is associated with the line lk and v1

contains no other point from K, then set

Ṽk := Ṽk \ {ṽjk,k}.

Otherwise, update the coefficient ckjk corresponding to ṽjk,k by

ckjk := ckjk − c1.

6. Repeat the computation steps 1–5 until K is an empty set.

• Output: Shift vectors v1, . . . ,vN with corresponding coefficients c1, c2, . . . , cN
determining f in (4.28).

Remark 4.20.
In many practical cases, it is sufficient to take fewer than N + 1 sampling lines in
order to uniquely determine the N shift vectors and the corresponding coefficients
since the cases where N sampling lines do not suffice are sets of vectors with a very
special structure, compare Procedure 4.18. Such an approach is used in [57], where
in the case of parameter estimation for bivariate exponential sums at most N + 1
sampling lines are considered for the estimation of the frequency vectors fj and the
corresponding coefficients cj in an exponential sum of the form

g(x) :=

N∑
j=1

cj ei〈fj ,x〉, x ∈ R2.

First, the axes in the real plane are used as sampling lines. With regard to these
two lines, two problems of parameter estimation for univariate exponential sums are
obtained. The solutions to these two problems yield a set of feasible frequency vectors
similar to the candidate set K we consider in Step 5 of Algorithm 4.12.

Then further sampling lines are considered in order to test if a feasible frequency vec-
tor is an actual frequency vector of g. But it is not directly clear if a third line suffices,
or if a fourth, fifth, sixth line and so on is needed. This is only found out in the last
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step of the computation of the coefficients, which is done by an overdetermined linear
system. If the rank of the involved data matrix is not equal to the number of feasible
frequency vectors, another sampling line is needed. This may happen repeatedly such
that up to at most N + 1 sampling lines are needed.

Hence, also the method presented in [57] uses an adaptive sampling scheme in the
sense that, due to the solvability of a linear system, it is decided if further sampling
lines are needed. Those additional sampling lines are not chosen dependently on the
already found set of feasible frequency vectors. Therefore, it may well happen that
much more sampling values are needed than in our proposed reconstruction scheme in
Subsection 4.2.1, where we choose the third sampling line dependently on the results
obtained by using the sampling values from the first two lines. In this way, it is
ensured that we do not need more than a third sampling line. Instead, a third line
always suffices regardless of the structure of the set of the actual frequency or shift
vectors.

4.3. Numerical results

Now we want to apply the reconstruction method using adaptive sampling from Sub-
section 4.2.1 in order to recover non-uniform translates of bivariate functions, i.e.
functions f of the form (4.28), where we want to uniquely determine the shift vectors
v1, . . . ,vN , and the coefficients c1, . . . , cN .

First, remember Algorithm 4.12. In the first four steps of this algorithm, we restrict
the function g defined in (4.30), which we consider for the reconstruction of f , to
the ω1- and the ω2-axis in the frequency domain. Thus, we obtain two univariate
problems. We apply the Prony method as described in Section 2.2 to these problems
in order to obtain the sets Ṽ1 = {ṽ1,1, . . . , ṽN1,1} and Ṽ2 = {ṽ1,2, . . . , ṽN2,2} of the first
and second coordinates of the true shift vectors respectively. Then we know that the
true shift vectors are contained in the candidate set

K =
{
v :=(v1, v2)T | v1 ∈ Ṽ1, v2 ∈ Ṽ2

}
,

and we determine a line x2 = tan(ϑπ)x1 with ϑ ∈ (0, 1)\{1
2} such that the orthogonal

projections of all candidate vectors in K onto this line are distinct. We denote this
line by l, and we have

l = {λu | λ ∈ R}
with the normalized direction vector

u :=

(
cos(ϑπ)
sin(ϑπ)

)
.

The parameter ϑ also determines the third sampling line in the frequency domain,
i.e. ω2 = tan(ϑπ)ω1, to which we restrict the function g in the next step such that we
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get a third univariate problem. Applying again the Prony method, we finally find the
true shift vectors by comparing the results from the third problem with the candidate
set, and we also compute the corresponding coefficients.

In order to improve the robustness of the reconstruction method, the parameter ϑ
of the line l should be chosen in such a way that the minimal distance between two
orthogonal projections of candidate vectors from K onto the line l is maximized. The
orthogonal projection Pl(v) of v ∈ K onto the line l is given by7

Pl(v) = 〈v,u〉u =
(
cos(ϑπ)v1 + sin(ϑπ)v2

)
u,

and the distance between two projections Pl(v) and Pl(w), v,w ∈ K, v 6= w is given
by ‖Pl(v)− Pl(w)‖2, for which we have

‖Pl(v)− Pl(w)‖22 =
∥∥〈v,u〉u− 〈w,u〉u∥∥2

2
=
∥∥〈v −w,u〉u∥∥2

2

=
(
〈v −w,u〉

)2‖u‖22
=
(
〈v −w,u〉

)2
since ‖u‖2 = 1. Thus, in order to choose ϑ as mentioned, we need to maximize the
minimal distance between two projections with respect to ϑ, that is, we have to solve
the max-min problem

max
ϑ∈(0,1)\{ 1

2
}

min
v,w∈K
v 6=w

(
〈v −w,u〉

)2
. (4.45)

In the following numerical examples, this is done by considering a discrete set of
values ϑπ rad for the angle between the positive ω1-axis and the part of the line
ω2 = tan(ϑπ)ω1 which lies in the upper half space. In particular, we consider the
parameter ϑ for

1

18
≤ ϑ ≤ 4

9
and

5

9
≤ ϑ ≤ 17

18
(4.46)

in increments of 1
720 , that is, we consider angles from 10◦ to 80◦ and from 100◦ to 170◦

in 0.25◦ increments.

Now we have to take Fourier samples from the third sampling line. Note that we
use clean data by simulating the Fourier data of the function f which we want to
reconstruct by using Fourier samples. Since we use a discrete grid setting of size
128 × 128 such that we have given function values on all grid points, and since we
use the discrete Fourier transform in order to obtain the simulated Fourier data, we
are able to take Fourier samples on the lines ω2 = 0 and ω1 = 0 in the frequency
domain. But, using this approach, we do not exactly have the Fourier data on the
third sampling line ω2 = tan(ϑπ)ω1, where we want to consider equispaced sampling

7Cf. [39, p. 118, (1.88)], for example.
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locations with step size h. Therefore, we use another approach to simulate the Fourier
data of the third sampling line.

First, consider the case of a continuous function argument. The rotation around the
fixed origin is a linear transformation. It is given by the rotation matrix

Dψ :=

(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

)
where ψ is the angle of the rotation, and the rotation is an orthogonal transformation
(note DT = D−1 and hence the preservation of the inner product, cf. [63, p. 134]).
Thus, we can interchange the application of the Fourier transform and the rotation,
see [63, p. 135, Theorem 1.1].

Let us turn back to the discrete setting. We consider the values of the function f on
a square grid of size 128× 128 where the values of the first and the second coordinate
are ranging from −64 to 63 and from −63 to 64 respectively. Actually, we consider a
matrix of size 128× 128 such that the entries of the matrix are the function values of
f at the grid points. Here, the first coordinate corresponds to the column index of the
matrix, and the second coordinate corresponds to the row index. The origin of the
coordinate system then corresponds with the matrix entry in the 65th row and 65th
column of the matrix.

Aside from the horizontal and vertical axis in the frequency domain, the Fourier
transform f̂ has to be sampled on a third, radial line. Since we also use a discrete
setting in the frequency domain, we are not able to consider exact radial lines. In order
to obtain exactly the data from the radial line ω2 = tan(ϑπ)ω1, we rotate the original
function f , and afterwards we apply the Fourier transform. Actually, we use a so-called
passive rotation in the time domain, meaning that we rotate the coordinate system
anticlockwise such that the line x2 = tan(ϑπ)x1 in the original Cartesian coordinate
system becomes the horizontal axis in the rotated coordinate system. By applying the
Fourier transform afterwards, we can take Fourier samples on the horizontal axis in
the frequency domain (i.e. 65th row in the discrete setting in the frequency domain) in
order to obtain the Fourier data from the original third sampling line ω2 = tan(ϑπ)ω1.

We have explained that this is possible in the case of a continuous function argu-
ment. Now we use this approach in the discrete setting. For this purpose, we use the
restriction that the shift vectors of the original function f are only lying in the disc
determined by the incircle of the discrete grid. By this circle, we mean the incircle of
the square domain which is the convex hull of the discrete grid.

For the following examples, we have taken the radial function

Φ(x1, x2) := exp
(
−α · (x2

1 + x2
2)
)

with α := 0.05. The original parameters are always denoted by vj,1, vj,2, and cj for
the coordinates of the shift vectors and the corresponding coefficients respectively.
Parameters with the superscript ∗ denote reconstructed parameters.
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First, we have taken an original function which consists only of four summands, but
where three shift vectors are lying closely to each other on the same vertical line, see
Figure 4.9. Visually, one can only make out two shift vectors. The determining para-
meters for the displayed original function are listed in Table 4.1. In addition, also the
absolute reconstruction errors between the original parameters and the reconstructed
parameters are given in Table 4.1. We have used these parameters to evaluate the re-
constructed function on the discrete grid and to compare it with the original function
on this grid. In this way, we find a maximal absolute error between the original and
reconstructed function of approximately 1.175 · 10−8.
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Figure 4.9. Original function of form (4.28), determined by (vj)
4
j=1, (cj)

4
j=1 in Table 4.1.

j vj,1 |vj,1 − v∗j,1| vj,2 |vj,2 − v∗j,2| cj |cj − c∗j |
1 34 0 5 1.194 · 10−11 3 1.862 · 10−10

2 -34 0 5 1.194 · 10−11 4 1.408 · 10−12

3 34 0 10 1.779 · 10−8 2 5.141 · 10−7

4 34 0 10.25 7.993 · 10−9 4 5.143 · 10−7

Table 4.1. Parameters of the original function in Figure 4.9 and approximate reconstruction
errors. The measure of the angle between the first sampling line and the adaptively determined
third sampling line is 80◦, i.e. ϑ = 4

9 .

Secondly, we consider a linear combination of seven translates of Φ, see Figure 4.10.
Again, some shift vectors are only slightly different, see Table 4.2, such that one can
identify only five shift vectors visually. Evaluation of the reconstructed function on
the grid yields a maximal absolute error of approximately 1.152 · 10−7.

In the last example, see Figure 4.11, we have a function which has an 8-fold rotation
symmetry if we only consider the shift vectors but not the coefficients. Thus, it is
important to use adaptive sampling. By comparing the original function and the
reconstructed function on the grid, we find a maximal absolute reconstruction error
of approximately 3.338 · 10−10.
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Figure 4.10. Original function of the
form (4.28), determined by (vj)

7
j=1 and

(cj)
7
j=1 given in Table 4.2.
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Figure 4.11. Original function of the
form (4.28), determined by (vj)

8
j=1 and

(cj)
8
j=1 given in Table 4.3.

j vj,1 |vj,1 − v∗j,1| vj,2 |vj,2 − v∗j,2| cj |cj − c∗j |
1 -25 3.908 · 10−14 8 0 2 9.952 · 10−13

2 -10.2 2.959 · 10−12 -19.9 9.366 · 10−11 1 2.717 · 10−6

3 -10 1.847 · 10−13 -20 1.416 · 10−11 2 2.717 · 10−6

4 -10 1.847 · 10−13 8 0 2 5.64 · 10−11

5 15 5.329 · 10−15 -20 1.416 · 10−11 5 5.033 · 10−11

6 15 5.329 · 10−15 39.25 1.421 · 10−12 3 8.635 · 10−11

7 15 5.329 · 10−15 40 8.05 · 10−12 0.5 8.635 · 10−11

Table 4.2. Parameters of the original function in Figure 4.10 and approximate reconstruction
errors. The measure of the angle between the first sampling line and the adaptively determined
third sampling line is 45◦, i.e. ϑ = 1

4 .

j vj,1 |vj,1 − v∗j,1| vj,2 |vj,2 − v∗j,2| cj |cj − c∗j |
1 -10 1.776 · 10−15 20 1.776 · 10−14 1 2.847 · 10−10

2 10 1.954 · 10−14 10 1.776 · 10−14 2 1.004 · 10−10

3 20 1.066 · 10−14 10 1.03 · 10−13 3 3.338 · 10−10

4 20 1.066 · 10−14 -10 5.329 · 10−15 1 8.909 · 10−12

5 10 1.954 · 10−14 -20 2.842 · 10−14 1 8.074 · 10−11

6 -10 1.776 · 10−15 -20 2.842 · 10−14 2 5.079 · 10−11

7 -20 3.553 · 10−15 -10 5.329 · 10−15 3 1.29 · 10−10

8 -20 3.553 · 10−15 10 1.03 · 10−13 1 4.498 · 10−11

Table 4.3. Parameters of the original function in Figure 4.11 and approximate reconstruction
errors. The measure of the angle between the first sampling line and the adaptively determined
third sampling line is 78.75◦, i.e. ϑ = 0.4375.





5. Generalization to d-variate functions
with d > 2

Now we want to generalize the theory of the reconstruction of non-uniform translates
of bivariate functions to the d-variate case for d ∈ N with d > 2. In particular, we
extend the approach from Subsection 4.2.1 to the d-dimensional setting, that is, we
use adaptive sampling on d + 1 lines through the origin in the frequency domain in
order to uniquely determine the shift vectors and coefficients of linear combinations
of non-uniform translates. Here, adaptive sampling on d+ 1 lines means that we use
Fourier samples from the d axes in the frequency domain and from one further line
which is chosen dependently on the results obtained by using the Fourier samples from
the d axes.

Note that we could also generalize the sampling approach from Subsection 4.2.2, that
is, we could use sampling on the d axes in the frequency domain and on some further
predetermined lines. Suppose that we have a linear combination of N non-uniform
translates. Then, by using the approach where the further sampling lines are not
chosen dependently on the results obtained before, one may need up to N−1 additional
sampling lines for each dimension r = 2, . . . , d, see Remark 4.20 and [57, Section 6].
Using the method of adaptive sampling instead, we only need d + 1 sampling lines
altogether as shown in the following section.

5.1. Reconstruction of non-uniform translates of d-variate
functions using adaptive sampling

We consider functions f : Rd → R which have a sparse representation

f(x) :=

N∑
j=1

cjΦ(x− vj) (5.1)

with non-zero, real-valued coefficients cj and real shift vectors vj (j = 1, . . . , N). Fur-
ther, we assume that the given d-variate function Φ ∈ L1(Rd) has a Fourier transform
satisfying the condition |Φ̂(ω)| > C > 0 for ‖ω‖2 < T for some positive constant T .



96 Generalization to d-variate functions with d > 2

By applying the Fourier transform, we obtain

f̂(ω) =

(
N∑
j=1

cj e− i〈ω,vj〉

)
Φ̂(ω), ω ∈ Rd. (5.2)

Using an analogous approach as in Subsection 4.2.1, we will show that we are able
to uniquely determine the shift vectors vj :=(vj,k)

d
k=1 as well as the coefficients cj

(j = 1, . . . , N) from (d+ 1)N + 1 Fourier samples. These samples are taken on d+ 1
lines through the origin in the frequency domain where we use the d axes of the
Cartesian coordinate system and one further sampling line. This (d + 1)st sampling
line is computed dependently on the results which are obtained by using the Fourier
samples from the d axes.

Like in the bivariate case, we assume that the coefficients c1, . . . , cN have the same
sign such that we avoid the problem of cancellation effects. We suppose that cj > 0
for all j ∈ {1, . . . , N}.

Theorem 5.1 (Reconstruction of d-variate non-uniform translates).
Let Φ ∈ L1(Rd) be a given d-variate function with a Fourier transform satisfying
|Φ̂(ω)| > C for ‖ω‖2 < T for some constants C > 0 and T > 0. Further, let f
be a function with the sparse representation (5.1) where cj and vj = (vj,k)

d
k=1 for

j = 1, . . . , N are positive real-valued coefficients and real shift vectors respectively.
Assume that the constant h > 0 fulfils the conditions h‖vj‖2 < π for all j ∈ {1, . . . , N}
and h < T

N . Then we get the following reconstruction result:

The function f can be uniquely recovered from the (d + 1)N + 1 Fourier
samples which are given by the set{

f̂
(
0
)
, f̂
(
`he1

)
, . . . , f̂

(
`hed

)
, f̂
(
`hu

)
| ` = 1, . . . , N

}
where u is the normalized direction vector of a line through the origin in
the frequency domain which has to be chosen suitably.

Here, ek, k = 1, . . . , d, denote the kth unit vectors such that (ek)k = 1.

Proof. By considering (5.2) and the assumption about Φ̂, we obtain

g(ω) :=
f̂(ω)

Φ̂(ω)
=

N∑
j=1

cj e− i〈ω,vj〉

for ω :=(ωk)
d
k=1 ∈ Rd with ‖ω‖2 < T .

In the first part of the proof, we restrict the function g to each of the axes of the
Cartesian coordinate system. Thus, we get d univariate problems to which we can
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apply the Prony method. Then, based on the results obtained by the application of
the Prony method to these d problems, we choose another sampling line such that
we have another univariate problem by restricting g to the (d + 1)st sampling line.
Finally, we can compute the original shift vectors and coefficients by using Fourier
samples from this adaptively determined sampling line.

Part 1: For each k ∈ {1, . . . , d}, consider the univariate function gk : R → C defined
by

gk(ωk) :=
f̂
(
ωkek

)
Φ̂
(
ωkek

) =

N∑
j=1

cj e− iωkvj,k , ωk ∈ R,

where ek denotes the kth unit vector such that (ek)k = 1.
Assume that the set {v1,k, . . . , vN,k} of true shift coordinates contains Nk ≤ N

distinct values ṽ1,k < ṽ2,k < . . . < ṽNk,k (k = 1, . . . , d). This leads to

gk(ωk) =

Nk∑
j=1

ckj e− iωk ṽj,k for k = 1, . . . , d (5.3)

where we use the following definition for k = 1, . . . , d:

ckj :=
∑

`: v`,k=ṽj,k

c`, j = 1, . . . , Nk.

Since the coefficients ckj , j = 1, . . . , Nk, in each of the d problems in (5.3) are real-
valued, we can apply the Prony method from Section 2.2, in particular the steps 1–5
in Algorithm 2.5, to each of these problems in order to obtain the sets

Ṽk :={ṽ1,k, . . . , ṽNk,k}, k = 1, . . . , d,

of the original shift coordinates. For this purpose, we use the sets{
f̂(`hek) | ` = 0, . . . , N

}
, k = 1, . . . , d,

of Fourier samples from which we can compute the function values

gk(0), gk(h), gk(2h), . . . , gk(Nh)

for k = 1, . . . , d.
Observe that the condition for the application of the Prony method is fulfilled for

all k ∈ {1, . . . , d} since we have h|ṽj,k| ≤ h‖ṽj‖2 < π for all j ∈ {1, . . . , Nk} by
assumption. Further, the fractions

gk(`h) =
f̂(`hek)

Φ̂(`hek)
, ` = 0, . . . , N,
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are well defined for all k ∈ {1, . . . , d} since we have Φ̂(`hek) 6= 0 for ` = 0, . . . , N by
the assumptions h < T

N and |Φ̂(ω)| > C > 0 for ‖ω‖2 < T .

Part 2: Knowing the sets {ṽ1,k, . . . , ṽNk,k}, k = 1, . . . , d, of shift coordinates, we can
compute the Cartesian product

K :=
{
v :=(vk)

d
k=1 | vk ∈ Ṽk, k = 1, . . . , d

}
, (5.4)

which contains all true shift vectors and altogether
∏d
k=1Nk ≤ Nd candidate vectors

for the true shift vectors.
In the next part of the proof, we want to determine the true shift vectors in this

candidate set and the corresponding coefficients. For this purpose, we choose a line in
the time domain, denoted by l :={λu |λ ∈ R} with u ∈ Rd where ‖u‖2 = 1, such that
the orthogonal projections of all candidate vectors in K onto this line l are pairwise
different, see Figure 5.1. Then the direction vector u determines the (d+1)st sampling
line in the frequency domain, that is, we take the Fourier samples

f̂(`hu), ` = 0, 1, . . . , N.

Part 3: Now we consider the univariate function gd+1 : R→ C defined by

gd+1(ω) :=
f̂(ωu)

Φ̂(ωu)
=

N∑
j=1

cj e− iω〈u,vj〉 =

N∑
j=1

cj e− iωvj,d+1 , ω ∈ R,

with
vj,d+1 :=〈u,vj〉, j = 1, . . . , N.

Note that these values are coordinate values of the true shift vectors with respect to the
line l = {λu |λ ∈ R}, and that these values are pairwise different because all possible
shift vectors in K yield, due to the choice of u, different orthogonal projections onto
the line l. Thus, there are no summation effects for the coefficients.

Let us order the coordinate values vj,d+1 such that we obtain

gd+1(ωu) =

N∑
j=1

cd+1
j e− iωṽj,d+1 (5.5)

with
ṽ1,d+1 < ṽ2,d+1 < . . . < ṽN,d+1

and corresponding coefficients cd+1
1 , . . . , cd+1

N where {ṽ1,d+1, . . . , ṽN,d+1} is a permuted
version of {v1,d+1, . . . , vN,d+1}, and the same permutation maps {c1, . . . , cN} onto
{cd+1

1 , . . . , cd+1
N }.
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Figure 5.1. Example for the determination of the line l = {λu |λ ∈ R} (black, solid line)
in the time domain (displayed example: space R3, i.e. d = 3). The points v1 :=(3, 3, 3)T,
v2 :=(−3,−3, 3)T, and v3 :=(3,−3,−3)T are original shift vectors, while the other points (black
dots) are further candidates in K. The direction vector u then determines the (d+1)st sampling
line in the frequency domain.

Then, by applying of the Prony method as described in Section 2.2 to the function
gd+1, we find the set

Ṽd+1 :={ṽ1,d+1, . . . , ṽN,d+1}

and corresponding coefficients cd+1
j , j = 1, . . . , N . Observe here that the conditions

for the Prony method are fulfilled analogously to Part 1 of the proof on hand.

Part 4: Now we have to find the true shift vectors in the candidate set K in (5.4). This

can be done by comparison of the set K with the set Ṽd+1. We determine all vectors
v = (vk)

d
k=1 in K for which there exist indices j ∈ {1, . . . , N} such that 〈u,v〉 = ṽj,d+1.

Then the set

G :=
{
v = (vk)

d
k=1 | vk ∈ Ṽk for k = 1, . . . , d, 〈u,v〉 ∈ Ṽd+1

}
contains only the N true shift vectors v1, . . . ,vN , and each of the vectors v ∈ G is
uniquely associated with a coefficient cd+1

j for j ∈ {1, . . . , N}. Thus, we have

G = {v1,v2, . . . ,vN} (5.6)
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with corresponding coefficients

c1, c2, . . . , cN . (5.7)

The parameters of the function f in (5.1), which we wanted to recover, are now
given by the elements of G in (5.6) and the corresponding coefficients in (5.7). �

Summarizing the steps in the above proof, we obtain, as a generalization of Al-
gorithm 4.12, the following algorithm for the reconstruction of non-uniform translates
of d-variate functions where we assume that the coefficients cj , j = 1, . . . , N , in (5.1)
are positive.

Algorithm 5.2 (Reconstruction of d-variate non-uniform translates).

• Input:

– Φ ∈ L1(Rd) with |Φ̂(ω)| > C for ‖ω‖2 < T for some C > 0 and T > 0;

– step size h > 0 with h‖vj‖2 < π for j = 1, . . . , N and h < T
N ;

– (d+ 1)N + 1 Fourier samples, given by the set{
f̂
(
0
)
, f̂
(
`he1

)
, . . . , f̂

(
`hed

)
, f̂
(
`hu

)
| ` = 1, . . . , N

}
where u is the normalized direction vector of a line through the origin in
the frequency domain which has to be chosen suitably, see Step 4 of the
computation.

• Computation:

1. Compute the function values

gk(0), gk(h), gk(2h), . . . , gk(Nh)

for each k ∈ {1, . . . , d}.
2. Use Algorithm 2.5, Steps 1–5 in order to compute the coordinate values
ṽj,k, j = 1, . . . , Nk, in each of the problems in (5.3).

3. Compute the Cartesian product of the sets Ṽk = {ṽ1,k . . . , ṽNk,k} where
k = 1, . . . , d, as the set of possible candidates for the true shift vectors, i.e.

K :=
{
v :=(vk)

d
k=1 | vk ∈ Ṽk, k = 1, . . . , d

}
.

4. Choose a normalized direction vector u ∈ Rd such that the orthogonal
projections of all candidate vectors in K onto the line l = {λu |λ ∈ R} are
distinct.
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5. Acquire the N Fourier samples f̂(`hu), ` = 1, . . . , N . Then compute

g(`hu) =
f̂(`hu)

Φ̂(`hu)
, ` = 1, . . . , N.

6. Use Algorithm 2.5 in order to compute the coordinate values ṽj,d+1 and
the corresponding coefficients cd+1

j , j = 1, . . . , N , in (5.5).

7. Determine the true shift vectors v1, . . . ,vN in K by comparison with the
set Ṽd+1 = {ṽ1,d+1, . . . , ṽN,d+1}, that is, determine all vectors v = (vk)

d
k=1

in K for which there exist indices j ∈ {1, . . . , N} such that 〈u,v〉 = ṽj,d+1.

Thus, we obtain the set G = {v1,v2, . . . ,vN} with corresponding coeffi-
cients c1, c2, . . . , cN .

• Output: Shift vectors v1, . . . ,vN with corresponding coefficients c1, c2, . . . , cN
determining f in (5.1).

5.2. Numerical results

In analogy to the bivariate case, we want to show some numerical examples for the
recovery of non-uniform translates of d-variate functions where we consider the case
d = 3, that is, we consider functions f of the form (5.1), and we aim to uniquely deter-
mine the shift vectors v1, . . . ,vN , and the coefficients c1, . . . , cN in a three-dimensional
setting. The Fourier data are simulated using an approach similar to the one used in
the bivariate case.

Remember that we use Fourier samples from the ω1-, ω2-, and ω3-axis in the fre-
quency domain in order to obtain sets of distinct values for the coordinates of the true
shift vectors. By considering the Cartesian product of these sets, we construct a set K
of candidates for the true shift vectors. Then the fourth sampling line l̃ :={λu |λ ∈ R}
in the frequency domain is chosen in such a way that the minimal distance between
two orthogonal projections of candidate vectors onto the line l :={λu |λ ∈ R} in the
time domain is maximized. As we have seen in the bivariate case, see Section 4.3, this
leads to the problem of maximizing

min
v,w∈K
v 6=w

(
〈v −w,u〉

)2
.

Here, the direction vector u is given by

u :=
(
cos(ψ) sin(θ), sin(ψ) sin(θ), cos(θ)

)T
(5.8)
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with
(ψ, θ) ∈

([
−π

2 ,
π
2

]
× (0,π)

)
\
{(

0, π2
)
,
(
π
2 ,

π
2

)}
=:S.

Observe that u is given in spherical coordinates, and the restrictions for the angles ψ
and θ are, on the one hand, due to the convention that the direction vector u should
have a non-negative first coordinate. On the other hand, the fourth sampling line
should be really a fourth line and not one of the axes of the coordinate system, which
are already considered as sampling lines. Thus, we obtain the max-min problem

max
(ψ,θ)∈S

min
v,w∈K
v 6=w

(
〈v −w,u〉

)2
for the determination of the fourth sampling line.

Since we use a discrete grid setting of size 128×128×128 for our numerical examples,
we are not able to exactly sample on radial lines in the frequency domain. Therefore, in
order to obtain exactly the Fourier data from the fourth sampling line l̃ = {λu |λ ∈ R},
we rotate the coordinate system in the time domain such that the line l = {λu |λ ∈ R}
in the original coordinate system becomes the x1-axis in the rotated coordinate system.
After applying the Fourier transform, we can take Fourier samples on the ω1-axis in
the frequency domain in order to acquire the Fourier data from the original fourth
sampling line l̃.

We use the following approach for the rotation of the coordinate system in the time
domain:

• Using the cross product, determine the unit vector v which is orthogonal to the
plane spanned by e1 and u. The direction of v is then given by the right-hand
rule1. Remember the convention that the first coordinate of u is non-negative.
In particular, we compute

u⊥ := e1 × u =

 0
−u3

u2


and

ũ :=
u⊥

‖u⊥‖2
.

• Determine the angle between the vectors2 u and e1, i.e.

% := arccos(u1) ∈
(
0, π2

]
.

1See [43, pp. 167–168], for example.
2See [43, p. 158, Definition 12.7, (1)], for example.
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• Rotate the original coordinate system around the line l⊥ :={λũ |λ ∈ R} by the
angle %, and hence obtain a new coordinate system where the x1-axis is now the
line l = {λu |λ ∈ R} from the original coordinate system. Each point pnew of
the rotated system is given by

pnew = D%p

where p is the corresponding point in the original system. Further, D% denotes
the rotation matrix for the described rotation and is given by3

D% :=
(
D%,1 D%,2 D%,3

)
with

D%,1 :=

 ũ2
1

(
1− cos(%)

)
+ cos(%)

ũ2ũ1

(
1− cos(%)

)
+ ũ3 sin(%)

ũ3ũ1

(
1− cos(%)

)
− ũ2 sin(%)

 ,

D%,2 :=

ũ1ũ2

(
1− cos(%)

)
− ũ3 sin(%)

ũ2
2

(
1− cos(%)

)
+ cos(%)

ũ3ũ2

(
1− cos(%)

)
+ ũ1 sin(%)

 ,

and

D%,3 :=

ũ1ũ3

(
1− cos(%)

)
+ ũ2 sin(%)

ũ2ũ3

(
1− cos(%)

)
− ũ1 sin(%)

ũ2
3

(
1− cos(%)

)
+ cos(%)

 .

In analogy to the bivariate case, we consider linear combinations of translates of the
radial function

Φ(x, y, z) := exp
(
−α · (x2 + y2 + z2)

)
with α := 0.05. The original parameters are denoted by vj,1, vj,2, vj,3, and cj for the
coordinates of the shift vectors and the corresponding coefficients respectively, while
parameters with the superscript ∗ denote reconstructed parameters. We evaluate the
reconstructed function on the discrete grid such that we can compute a maximal
absolute reconstruction error by comparison with the original function on the grid.
Observe that in the second and third example we consider functions where some shift
vectors are lying closely to each other.

3Cf. [39, pp. 447–448].
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Figure 5.2. Original function of the form (5.1), determined by (vj)
6
j=1 and (cj)

6
j=1 given in

Table 5.1.

j vj,1 vj,2 vj,3 cj |vj,1 − v∗j,1| |vj,2 − v∗j,2| |vj,3 − v∗j,3| |cj − c∗j |
1 10 -20 0 3 1.954 · 10−14 1.066 · 10−14 4.533 · 10−15 1.023 · 10−11

2 10 20 0 4 1.954 · 10−14 3.553 · 10−15 4.533 · 10−15 5.085 · 10−12

3 -10 -20 0 2 5.329 · 10−15 1.066 · 10−14 4.533 · 10−15 9.700 · 10−12

4 -10 20 0 5 5.329 · 10−15 3.553 · 10−15 4.533 · 10−15 5.600 · 10−12

5 -10 0 30 1 5.329 · 10−15 2.072 · 10−14 7.105 · 10−15 5.818 · 10−14

6 10 0 -30 4 1.954 · 10−14 2.072 · 10−14 3.553 · 10−15 7.416 · 10−14

Table 5.1. Parameters of the original function in Figure 5.2 and approximate reconstruction
errors. Maximal absolute reconstruction error: 1.023 ·10−11. The fourth sampling line is given
by the direction vector u of form (5.8) where the measure of the angle ψ is −64◦, and the
measure of the angle θ is 29◦.

Figure 5.3. Original function of the form (5.1), determined by (vj)
4
j=1 and (cj)

4
j=1 given in

Table 5.2.
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j vj,1 vj,2 vj,3 cj |vj,1 − v∗j,1| |vj,2 − v∗j,2| |vj,3 − v∗j,3| |cj − c∗j |
1 45 0 0 4 1.269 · 10−11 7.208 · 10−9 1.16 · 10−11 6.838 · 10−6

2 45 0.25 -0.5 3 1.269 · 10−11 9.806 · 10−9 3.882 · 10−11 7.222 · 10−6

3 45 10 15 5 1.269 · 10−11 1.737 · 10−12 3.908 · 10−14 1.558 · 10−7

4 -15 -15 0 7 5.511 · 10−11 1.954 · 10−13 1.16 · 10−11 2.284 · 10−7

Table 5.2. Parameters of the original function in Figure 5.3 and approximate reconstruction
errors. Maximal absolute reconstruction error: 9.866 · 10−7. The fourth sampling line is given
by the direction vector u of form (5.8) where the measure of the angle ψ is 79◦, and the measure
of the angle θ is 44◦.

Figure 5.4. Original function of the form (5.1), determined by (vj)
5
j=1 and (cj)

5
j=1 given in

Table 5.3.

j vj,1 vj,2 vj,3 cj |vj,1 − v∗j,1| |vj,2 − v∗j,2| |vj,3 − v∗j,3| |cj − c∗j |
1 20 0 10 3 3.553 · 10−15 1.852 · 10−14 1.421 · 10−14 7.389 · 10−10

2 20 30 0 2 3.553 · 10−15 2.487 · 10−14 2.328 · 10−14 5.677 · 10−12

3 -15 20 30 5 5.347 · 10−13 2.842 · 10−14 3.553 · 10−15 6.188 · 10−12

4 -15 -20 0 4 5.347 · 10−13 1.776 · 10−14 2.328 · 10−14 1.318 · 10−7

5 -14 -20 0 4 8.207 · 10−13 1.776 · 10−14 2.328 · 10−14 1.311 · 10−7

Table 5.3. Parameters of the original function in Figure 5.4 and approximate reconstruction
errors. Maximal absolute reconstruction error: 2.515 · 10−8. The fourth sampling line is given
by the direction vector u of form (5.8) where the measure of the angle ψ is −58◦, and the
measure of the angle θ is 78◦.





6. Reconstruction of polygonal shapes
from sparse Fourier samples

In this last chapter of the main part, we want to consider a further reconstruction
problem in two dimensions which is completely different from the two-dimensional
problems dealt with in Chapter 4. Here, we want to reconstruct polygonal shapes in
the real plane from as few Fourier samples as possible, that is, we want to recover
an original polygonal domain D with N vertices by using sparse sampling values of
the Fourier transform of the characteristic function of the polygonal domain. We only
consider simply-connected polygons, i.e. polygons with non-intersecting edges. For this
purpose, we need to reconstruct the vertices of the polygon, and we need to know
what the interior of the polygon looks like, that is, we have to reconstruct the order
of the vertices in order to know which vertices are connected by line segments. This
is a very important step, especially in the case of non-convex polygons.

Considering convex polygons, it is sufficient to know the vertices in order to obtain
a reconstruction of the polygon. But in the case of concave polygons with at least
four vertices, there are always several distinct polygons which have the same vertices.
Thus, we use an approach consisting of two steps. First, we compute the vertices by
applying the Prony method from Section 2.2 to Fourier samples taken on three lines
through the origin in the frequency domain. Here, we use, similarly to the approach in
Subsection 4.2.1, adaptive sampling. This means that the third sampling line is chosen
dependently on the resulting candidate set obtained from processing the Fourier data
from the first two sampling lines. The application of the Prony method does not only
yield the vertices but also corresponding coefficients which we use in the second step
of our approach to determine the order of the vertices.

A similar problem of reconstructing polygons from some given data has been exam-
ined in [21,27,47]. In these papers, the given data are complex moments, i.e. integral
moments of the analytic power function f(z) = zk over the characteristic function of
the polygonal domain D with z = x+ i y, x, y ∈ R. The given data are of the form

k(k − 1)

∫
D

zk−2 d(x, y) =

N∑
j=1

ajz
k
j , k = 0, . . . , 2N − 1, (6.1)

where zj are the vertices of the polygon in the complex plane, and Prony-like methods
are employed in order to determine the vertices. In [27, 47], it is discussed that, even
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if besides the vertices also the coefficients aj in (6.1) are given, there are some cases
such that the interior of the polygon is not uniquely determined. Also in cases of
a unique solution, the step of ordering the vertices to determine the interior of the
polygon yields the problem of deciding on the right configuration of up to at most
2N−1 possible scenarios for the sides of the polygon, see [27, Subsection 3.2], that is,
it leads to a problem in computational geometry and graph theory, see [20].

In the following subsection, we will show that our proposed approach for the re-
construction of polygons from sparse Fourier samples always leads to the unique de-
termination of the polygon by using adaptive sampling on three lines in the frequency
domain, that is, we need 3N Fourier samples in order to determine the N vertices and
their right order.

6.1. Reconstruction of polygonal shapes in the space R2

Consider a function f : R2 → R of the special form

f(x) := 1D(x), x ∈ R2, (6.2)

where 1D is the characteristic function of the domain D ⊂ R2. Here, D is a polygonal
domain determined by the N vertices vj ∈ R2, j = 1, . . . , N , which are numbered
anticlockwise. In the following, we will refer to the function f as unit-height polygon.

x2

x1
0 1 2 3 4

0

1

2

3

4

Figure 6.1. Example for a function of the form (6.2) with 5 vertices.

We gain to reconstruct the domain D from sparse Fourier samples. The Fourier
transform of f is given by

f̂(ξ) =

∫
R2

1D(x) e− i〈ξ,x〉 dx =

∫
D

e− i〈ξ,x〉 dx, ξ ∈ R2. (6.3)
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In order to reconstruct the polygonal domain from Fourier samples, we have to
extract information about D from these samples. Therefore, we need a representation
of f̂ where the vertices vj occur because the vertices and the order of the vertices, that
is the information which vertices are connected by line segments, are the important
data which we need for the reconstruction of D.

Such a formula has been derived by Komrska in [41]. There, the Fraunhofer dif-
fraction at polygonal apertures is examined, which is described by an integral similar
to the one in (6.3). Komrska then evaluates that integral by showing that it is a lin-
ear combination of exponential terms corresponding to the vertices of the polygonal
aperture. We can transfer this approach to our setting and hence obtain

Proposition 6.1 (Fourier transform of a unit-height polygon).
Let D be a polygonal domain in R2 with the N vertices vj = (vj,1, vj,2)T, j = 1, . . . , N ,
which are numbered anticlockwise with vN+1 :=v1. For ξ 6= 0, the Fourier transform
of the function f : R2 3 x 7→ 1D(x) is given by

f̂(ξ) =

∫
D

e− i〈ξ,x〉 dx =
1

‖ξ‖22

N∑
j=1

〈ξ,nj〉
〈ξ,vj+1 − vj〉

(
e− i〈ξ,vj〉− e− i〈ξ,vj+1〉

)
(6.4)

with

nj :=

(
0 1
−1 0

)
(vj+1 − vj), j = 1, . . . , N,

and the convention

〈ξ,nj〉
〈ξ,vj+1 − vj〉

(
e− i〈ξ,vj〉− e− i〈ξ,vj+1〉

)
= i〈ξ,nj〉 e− i〈ξ,vj〉

if 〈ξ,vj+1 − vj〉 = 0 for some j ∈ {1, . . . , N}.

The proof which we will give here is based on the approach employed in [41].

Proof of Proposition 6.1. According to (6.3), the Fourier transform of f is given
by

f̂(ξ) =

∫
D

e− i〈ξ,x〉 dx, ξ ∈ R2. (6.5)

The integrand exp
(
− i〈ξ,x〉

)
satisfies the following property:

divx

(
gradx

(
e− i〈ξ,x〉

))
=

�2

�x2
1

e− i(ξ1x1+ξ2x2) +
�2

�x2
2

e− i(ξ1x1+ξ2x2)

=
[
(− i ξ1)2 + (− i ξ2)2

]
e− i〈ξ,x〉

= −‖ξ‖22 e− i〈ξ,x〉
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with ξ :=(ξ1, ξ2)T, x :=(x1, x2)T. Together with (6.5), this yields

f̂(ξ) = − 1

‖ξ‖22

∫
D

divx

(
gradx

(
e− i〈ξ,x〉

))
dx for ξ 6= 0. (6.6)

The polygonal domain D is a compact subset of R2 and has a piecewise smooth
boundary �D. Further, the vector field gradx

(
e− i〈ξ,x〉) is continuously differentiable.

Let ñ be the outward pointing unit normal field of S := �D. Application of the diver-
gence theorem1 to the integral in (6.6) results in

f̂(ξ) = − 1

‖ξ‖22

∫
�D

〈
gradx

(
e− i〈ξ,x〉), ñ(x)

〉
dS(x), ξ 6= 0, (6.7)

where we have

gradx

(
e− i〈ξ,x〉

)
=

(
�

�x1
e− i(ξ1x1+ξ2x2)

�
�x2

e− i(ξ1x1+ξ2x2)

)
=

(
− i ξ1 · e− i(ξ1x1+ξ2x2)

− i ξ2 · e− i(ξ1x1+ξ2x2)

)
= − i

(
ξ1

ξ2

)
· e− i〈ξ,x〉 = − i ξ e− i〈ξ,x〉 .

(6.8)

Since the domain D has a polygonal form, we get

�D =

N⋃
i=1

Lj (6.9)

where L1, . . . , LN are the edges of the polygon, with the parameterizations

lj(t) :=vj + t(vj+1 − vj), t ∈ [0, 1], (6.10)

for j = 1, . . . , N . Remember that we number the vertices vj anticlockwise, and that
we use the convention vN+1 = v1. Then the outward pointing unit normal vector ñj
to the edge Lj of the polygon D is given by

ñj =

(
0 1
−1 0

)
· vj+1 − vj
‖vj+1 − vj‖2

=
1

‖vj+1 − vj‖2
·
(

vj+1,2 − vj,2
−[vj+1,1 − vj,1]

)
(6.11)

such that ñj is normalized and perpendicular to (vj+1 − vj):

〈ñj ,vj+1 − vj〉 =
(vj+1,2 − vj,2) · (vj+1,1 − vj,1)− (vj+1,1 − vj,1) · (vj+1,2 − vj,2)

‖vj+1 − vj‖2
= 0.

We still need to verify that the direction of ñj is correct. Note that the vertices of
the polygon D are numbered anticlockwise, and that ñj , being the unit normal vector
to the edge Lj which is pointing outward with respect to the polygon, needs to point
to the right-hand side of the direction vector vj+1 − vj . By considering the following
cases, we show that the direction of ñj as given in (6.11) is always correct.

1See [25, pp. 182–183, Satz 3].
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• (vj+1 − vj)1 ≥ 0, (vj+1 − vj)2 ≥ 0:

vj+1 − vj

ñj

·

⇒ (ñj)1 ≥ 0, (ñj)2 ≤ 0.

• (vj+1 − vj)1 ≤ 0, (vj+1 − vj)2 < 0:

vj+1 − vj

ñj

·

⇒ (ñj)1 < 0, (ñj)2 ≥ 0.

• (vj+1 − vj)1 < 0, (vj+1 − vj)2 ≥ 0:

vj+1 − vj

ñj

·

⇒ (ñj)1 ≥ 0, (ñj)2 > 0.

• (vj+1 − vj)1 > 0, (vj+1 − vj)2 < 0:

vj+1 − vj

ñj

·

⇒ (ñj)1 < 0, (ñj)2 < 0.

Taking (6.8)–(6.11) into consideration, we evaluate the line integral2 in (6.7) for
ξ 6= 0 as follows:

f̂(ξ) = − 1

‖ξ‖22

N∑
j=1

1∫
0

(− i)〈ξ, ñj〉 e− i〈ξ,lj(t)〉
∥∥∥∥ �
�t
lj(t)

∥∥∥∥
2

dt

=
1

‖ξ‖22

N∑
j=1

1∫
0

i〈ξ, ñj〉 e− i〈ξ,lj(t)〉‖vj+1 − vj‖2 dt

=
1

‖ξ‖22

N∑
j=1

1∫
0

i〈ξ,nj〉 e− i〈ξ,vj+t(vj+1−vj)〉 dt (6.12)

with

nj :=

(
0 1
−1 0

)
· (vj+1 − vj). (6.13)

2See [32, pp. 376–377, Satz 180.6] and [32, p. 391, Satz 184.1] for the computation rules used for the
evaluation of the line integral.
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In the case 〈ξ,vj+1 − vj〉 6= 0 for all j ∈ {1, . . . , N}, we compute

f̂(ξ) =
1

‖ξ‖22

N∑
j=1

1∫
0

i〈ξ,nj〉 e− i〈ξ,vj+t(vj+1−vj)〉 dt

=
1

‖ξ‖22

N∑
j=1

i〈ξ,nj〉

[
e− i〈ξ,vj+t(vj+1−vj)〉

(− i)〈ξ,vj+1 − vj〉

]1

0

=
1

‖ξ‖22

N∑
j=1

〈ξ,nj〉
〈ξ,vj+1 − vj〉

(
e− i〈ξ,vj〉− e− i〈ξ,vj+1〉

)
, ξ 6= 0.

If 〈ξ,vj+1 − vj〉 = 0 for some j ∈ {1, . . . , N}, we have to take again a look at the
integral in (6.12). Then we have

1∫
0

i〈ξ,nj〉 e− i〈ξ,vj+t(vj+1−vj)〉 dt =

1∫
0

i〈ξ,nj〉 e− i〈ξ,vj〉 dt = i〈ξ,nj〉 e− i〈ξ,vj〉 .

Altogether, we obtain

f̂(ξ) =
1

‖ξ‖22

N∑
j=1

〈ξ,nj〉
〈ξ,vj+1 − vj〉

(
e− i〈ξ,vj〉− e− i〈ξ,vj+1〉

)
, ξ 6= 0,

with the convention

〈ξ,nj〉
〈ξ,vj+1 − vj〉

(
e− i〈ξ,vj〉− e− i〈ξ,vj+1〉

)
= i〈ξ,nj〉 e− i〈ξ,vj〉

if 〈ξ,vj+1 − vj〉 = 0 for some j ∈ {1, . . . , N}. This completes the proof. �

Now we have a representation of the Fourier transform of the unit-height polygon
where the vertices of the polygon occur. We aim to derive a theory for the reconstruc-
tion of the polygonal domain D from sparse Fourier samples.

First, we make the assumption that no edge of the polygon D is parallel to the
x1-axis or the x2-axis in the plane. Then it holds that

〈ξ,vj+1 − vj〉 6= 0 for all j ∈ {1, . . . , N}

for vectors ξ of the form

ξ = (ξ1, 0)T or ξ = (0, ξ2)T with ξ1, ξ2 6= 0,
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and we can use the expression in (6.4), which we can rephrase by taking the assumption
into consideration. Then we obtain

f̂(ξ) =
1

‖ξ‖22

N∑
j=1

〈ξ,nj〉
〈ξ,vj+1 − vj〉

(
e− i〈ξ,vj〉− e− i〈ξ,vj+1〉

)

=
1

‖ξ‖22

[
N∑
j=1

〈ξ,nj〉
〈ξ,vj+1 − vj〉

e− i〈ξ,vj〉−
N+1∑
j=2

〈ξ,nj−1〉
〈ξ,vj − vj−1〉

e− i〈ξ,vj〉

]

=
1

‖ξ‖22

[
N∑
j=1

〈ξ,nj〉
〈ξ,vj+1 − vj〉

e− i〈ξ,vj〉−
N∑
j=2

〈ξ,nj−1〉
〈ξ,vj − vj−1〉

e− i〈ξ,vj〉

− 〈ξ,nN 〉
〈ξ,vN+1 − vN 〉

e− i〈ξ,vN+1〉

]
.

Remember that vN+1 = v1. The additional conventions

v0 :=vN and n0 :=nN

yield

f̂(ξ) =
1

‖ξ‖22

N∑
j=1

(
〈ξ,nj〉

〈ξ,vj+1 − vj〉
− 〈ξ,nj−1〉
〈ξ,vj − vj−1〉

)
e− i〈ξ,vj〉 (6.14)

for vectors ξ of the form ξ = (ξ1, 0)T or ξ = (0, ξ2)T with ξ1, ξ2 6= 0 (under the
assumption that no edge of the polygon is parallel to the x1- or x2-axis).

By considering the function

g(ξ) :=‖ξ‖22f̂(ξ), (6.15)

we get a bivariate exponential sum with the vertices vj of the polygon D as exponents.
Making the further assumptions that the vertex coordinates vj,1, j = 1, . . . , N , as well
as the coordinates vj,2, j = 1, . . . , N , are pairwise different, and using a similar idea
as in the bivariate case of non-uniform translates, cf. Subsection 4.2.1, we are able to
compute the vertices by applying the Prony method to sampling values from three
straight lines through the origin where the third line is determined adaptively.

The assumption that the vertex components vj,1 and vj,2 are distinct in the x1- and
x2-direction of the Cartesian coordinate system respectively also ensures that no edge
of the polygon is parallel to the x1- or x2-axis.

However, it does not suffice to only know the vertices, see Figure 6.2, since the
polygon can be concave. Thus, we have to establish the true order of the vertices.
This means that we need to determine which vertices have to be connected by line
segments in order to reconstruct the original polygonal domain.
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Figure 6.2. Example for two different unit-height polygons with the same 5 vertices.

The ordering of the computed vertices can be done with the help of the coefficients
which are obtained by applying the Prony method to three univariate problems, i.e.
to the sampling values from three straight lines in the plane.

We will collect the above observations in the following theorem, where the proof
is constructive. Note that the considered polygons are always assumed to be non-
degenerated such that three neighbouring vertices do not lie on the same line.

Theorem 6.2 (Reconstruction of polygonal domains).
Let f be a unit-height polygon as defined in (6.2), i.e. f : R2 → R with

f(x) := 1D(x), x ∈ R2,

where D is a polygon in R2 with the N vertices vj = (vj,1, vj,2)T for j = 1, . . . , N ,
which are numbered anticlockwise. Additionally, the vertex components vj,1 and vj,2
are distinct in the x1- and x2-direction of the Cartesian coordinate system respectively.
Further, assume that the constant h > 0 satisfies the condition h‖vj‖2 < π for all
j ∈ {1, . . . , N}. Then we get the following reconstruction result:

The polygon D can be uniquely recovered from the 3N Fourier samples
f̂(ξ) for

ξT ∈
{(
`h, 0

)
,
(
0, `h

)
,
(
cos(ϑπ)`h, sin(ϑπ)`h

)
| ` = 1, . . . , N

}
where ϑ ∈ (0, 1) \ {1

2} needs to be chosen suitably.

Proof. The proof consists of five major parts. In the first two parts, we use the
Prony method (applied to sampling values of f̂ from two straight lines in the fre-



6.1. Reconstruction of polygonal shapes in the space R2 115

quency domain) in order to compute the coordinate values vj,1 and vj,2 of the vertices
v1, . . . ,vN .

But we are faced with the problem of combining these coordinate values to points
in the plane which are the original vertices. Thus, in the next part, we determine a
candiate set of points that are possible vertices. Dependently on this candidate set, we
decide on a third sampling line such that we can use the results of the Prony method
applied to sampling values from this third line in order to uniquely determine the
original vertices in the fourth part of the proof.

In the fifth and last part, we establish the right order of the computed vertices, for
which we use the coefficients that we have obtained by the application of the Prony
method.

Part 1:
Due to the assumption that the vertex coordinates vj,1, j = 1, . . . , N , as well as the
coordinates vj,2, j = 1, . . . , N , are pairwise different, it is not possible that any edge
of the polygon D is parallel to the x1- or x2-axis of the Cartesian coordinate system.
Therefore, we can consider the function g defined in (6.15). The representation of the
Fourier transform of f in (6.14) then yields

g(ξ) =
N∑
j=1

(
〈ξ,nj〉

〈ξ,vj+1 − vj〉
− 〈ξ,nj−1〉
〈ξ,vj − vj−1〉

)
e− i〈ξ,vj〉 (6.16)

with the conventions

vN+1 = v1, v0 = vN , n0 = nN . (6.17)

Taking vectors ξ of the form ξ = (ξ1, 0)T, ξ1 6= 0, we obtain

g(ξ1, 0) =
N∑
j=1

(
ξ1nj,1

ξ1(vj+1,1 − vj,1)
− ξ1nj−1,1

ξ1(vj,1 − vj−1,1)

)
e− i ξ1vj,1 ,

where
nj,1 = vj+1,2 − vj,2, j = 0, . . . , N,

see (6.13). Thus, we have the univariate exponential sum

g(ξ1, 0) =
N∑
j=1

aj e− i ξ1vj,1 (6.18)

with the coefficients

aj :=
vj+1,2 − vj,2
vj+1,1 − vj,1

− vj,2 − vj−1,2

vj,1 − vj−1,1
, j = 1, . . . , N. (6.19)
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Observe that the coefficient aj for j ∈ {1, . . . , N} is the difference of the slopes of
the two line segments connecting the vertex vj with vj−1 and vj+1. Since we have
made the assumption that the polygon D is non-degenerated, aj is non-zero. Further,
the value aj is well defined because no edge of the polygon is parallel to the x2-axis.
Hence, the values of the slopes of the edges are finite.

In order to obtain the vertex coordinates vj,1 and the corresponding coefficients aj ,
j = 1, . . . , N , we apply the Prony method to the univariate function g(·, 0) in (6.18).
Note that we have

g(0, 0) =

N∑
j=1

aj =

N∑
j=1

(
vj+1,2 − vj,2
vj+1,1 − vj,1

− vj,2 − vj−1,2

vj,1 − vj−1,1

)
=
vN+1,2 − vN,2
vN+1,1 − vN,1

− v1,2 − v0,2

v1,1 − v0,1
= 0

(6.20)

by (6.17). Further, the coefficients aj are real-valued, and we have h|vj,1| ≤ h‖vj‖2 < π

for all j ∈ {1, . . . , N} by assumption. Hence, we can use the Prony method as described
in Section 2.2. For this purpose, we need the function values

g(`h, 0), ` = 0, . . . , N,

which are given by (6.20), the definition of g in (6.15), i.e.

g(`h, 0) = |`h|2f̂(`h, 0), ` = 1, . . . , N,

and the N Fourier samples

f̂(`h, 0), ` = 1, . . . , N.

The application of the Prony method then yields frequency values

α1 < α2 < . . . < αN

and corresponding coefficients aα,1, . . . , aα,N as a result where the set {α1, . . . , αN}
contains all vertex coordinates v1,1, . . . , vN,1, and the set {aα,1, . . . , aα,N} consists of
all coefficients a1, . . . , aN . But we do not know the order of these coordinate values
and coefficients; that is, the permutation which maps (α1, . . . , αN ) onto (v1,1, . . . , vN,1)
and (aα,1, . . . , aα,N ) onto (a1, . . . , aN ) is unknown. This has to be determined later.

Part 2:
In an analogous way, we compute a set of values containing all vertex coordinates vj,2
and corresponding coefficients.

By considering vectors ξ of the form ξ = (0, ξ2)T, ξ2 6= 0, the representation (6.16)
results in

g(0, ξ2) =

N∑
j=1

(
ξ2nj,2

ξ2(vj+1,2 − vj,2)
− ξ2nj−1,2

ξ2(vj,2 − vj−1,2)

)
e− i ξ2vj,2
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where the components nj,2 of the normal vectors are given by (6.13), i.e.

nj,2 = vj,1 − vj+1,1, j = 0, . . . , N.

Hence, the univariate function g(0, ·) is given by

g(0, ξ2) =
N∑
j=1

bj e− i ξ2vj,2 (6.21)

where the coefficients bj are defined as follows:

bj :=
vj,1 − vj+1,1

vj+1,2 − vj,2
− vj−1,1 − vj,1
vj,2 − vj−1,2

, j = 1, . . . , N. (6.22)

The value bj is the difference of slopes of two neighbouring line segments where the
parameterizations of the line segments are considered as functions of x2. Similarly to
the case of the coefficients aj , see Part 1 of this proof, we conclude that the coefficients
bj , j = 1, . . . , N , are well defined and non-zero.

Observe that h|vj,2| ≤ h‖vj‖2 < π for all j ∈ {1, . . . , N} by assumption, and that
all coefficients bj are real-valued such that we can use the Prony method from Section
2.2 in order to determine the values vj,2 and the coefficients bj for all j ∈ {1, . . . , N}
in (6.21). The required function values

g(0, `h), ` = 0, . . . , N,

are computed by using the N Fourier samples

f̂(0, `h), ` = 1, . . . , N,

and
g(0, `h) = |`h|2f̂(0, `h), ` = 1, . . . , N,

which is due to the definition of g in (6.15). Moreover, the function value g(0, 0) is
equal to zero since (6.21) and (6.17) yield

g(0, 0) =

N∑
j=1

bj =

N∑
j=1

(
vj,1 − vj+1,1

vj+1,2 − vj,2
− vj−1,1 − vj,1
vj,2 − vj−1,2

)
=
vN,1 − vN+1,1

vN+1,2 − vN,2
− v0,1 − v1,1

v1,2 − v0,2
= 0.

Using the approach described above, we obtain values

β1 < β2 < . . . < βN

with corresponding coefficients bβ,1, . . . , bβ,N where we have

{β1, . . . , βN} = {v1,2, . . . , vN,2} and {bβ,1, . . . , bβ,N} = {b1, . . . , bN}.
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Comparably to the case of the vertex coordinates vj,1 and the coefficients aj , we do not
yet know the permutation which maps the sequences (β1, . . . , βN ) and (bβ,1, . . . , bβ,N )
onto (v1,2, . . . , vN,2) and (b1, . . . , bN ) respectively.

Part 3:
Now we have to compute the original vertices v1, . . . ,vN . In the previous steps, we
have obtained the values of the vertex coordinates vj,1 and vj,2 for j = 1, . . . , N . But
we do not know their order such that we do not know how to combine these coordinates
to points in the plane which are the original vertices. Thus, we can only consider the
Cartesian product of the sets {α1, . . . , αN} and {β1, . . . , βN} as a set of candidate
points for the original vertices. Let us denote this set by K:

K :=
{

(αk, β`)
T : k = 1, . . . , N, ` = 1, . . . , N

}
.

In order to determine the N original vertices in the set K of N2 candidate points,
we use a third univariate problem to which we apply the Prony method. This means
that we need further Fourier data, namely Fourier samples from a third sampling line.

For this purpose, we choose a parameter ϑ ∈ (0, 1) \ {1
2} such that the orthogonal

projections of all candidate points in K onto the line x2 = tan(ϑπ)x1 are pairwise
different, see Figure 6.3. This parameter ϑ is then used to determine the third sampling
line in the frequency domain. The angle between the positive ω1-axis and the part of
the line ω2 = tan(ϑπ)ω1 which lies in the upper half space is given by the value ϑπ rad.
We use equispaced sampling locations on this third sampling line ω2 = tan(ϑπ)ω1 with
step size h, see Figure 6.3, and take the N Fourier samples

f̂
(
cos(ϑπ)`h, sin(ϑπ)`h

)
, ` = 1, . . . , N.

Since the orthogonal projections of all points in K onto the line x2 = tan(ϑπ)x1

are distinct, no possible edge of the polygon D, i.e. possible connection between two
points in K, is perpendicular to the line x2 = tan(ϑπ)x1. Thus, we have

〈ξ,vj+1 − vj〉 6= 0 for all j ∈ {1, . . . , N} (6.23)

for vectors ξ =
(
cos(ϑπ)ξ1, sin(ϑπ)ξ1

)T
with ξ1 6= 0, and we can use the representation

of f̂ in (6.14) and the function g in (6.15). Hence, we obtain the following for ξ1 6= 0:

g
(
cos(ϑπ)ξ1, sin(ϑπ)ξ1

)
=

N∑
j=1

[
ξ1

(
cos(ϑπ)nj,1 + sin(ϑπ)nj,2

)
ξ1

(
cos(ϑπ)(vj+1,1 − vj,1) + sin(ϑπ)(vj+1,2 − vj,2)

)
−

ξ1

(
cos(ϑπ)nj−1,1 + sin(ϑπ)nj−1,2

)
ξ1

(
cos(ϑπ)(vj,1 − vj−1,1) + sin(ϑπ)(vj,2 − vj−1,2)

)] e− i ξ1[cos(ϑπ)vj,1+sin(ϑπ)vj,2]
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Figure 6.3. Left: Determination of the parameter ϑ in the time domain. Right: Third
sampling line in the frequency domain with sampling locations (displayed example: ` = 3).

where the components nj,1 and nj,2 of the normal vectors are given by (6.13), i.e.

nj,1 = vj+1,2 − vj,2,
nj,2 = vj,1 − vj+1,1,

j = 0, . . . , N.

This leads to the univariate function g
(
cos(ϑπ)·, sin(ϑπ)·

)
defined by

g
(
cos(ϑπ)ξ1, sin(ϑπ)ξ1

)
=

N∑
j=1

cj e− i ξ1
(

cos(ϑπ)vj,1+sin(ϑπ)vj,2

)
(6.24)

with the coefficients

cj :=
cos(ϑπ)(vj+1,2 − vj,2) + sin(ϑπ)(vj,1 − vj+1,1)

cos(ϑπ)(vj+1,1 − vj,1) + sin(ϑπ)(vj+1,2 − vj,2)

− cos(ϑπ)(vj,2 − vj−1,2) + sin(ϑπ)(vj−1,1 − vj,1)

cos(ϑπ)(vj,1 − vj−1,1) + sin(ϑπ)(vj,2 − vj−1,2)
, j = 1, . . . , N.

(6.25)

Note that these coefficients are not only well defined due to (6.23), but they are also
non-zero. This can be seen similarly as in the cases of the coefficients aj and bj
in Parts 1 and 2 of this proof since the coefficient cj for j ∈ {1, . . . , N} is also a
difference of slopes of two neighbouring line segments. Here, the parameterizations
of the line segments are considered as functions with respect to a rotated coordinate
system which results from the rotation of the original Cartesian coordinate system by
the angle ϑπ rad.
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In order to determine the values cos(ϑπ)vj,1+sin(ϑπ)vj,2 and the coefficients cj for all
j ∈ {1, . . . , N} in (6.24), we apply the Prony method. First, note that all coefficients
cj are real-valued. Secondly, the assumption that h‖vj‖2 < π for all j ∈ {1, . . . , N} is
satisfied. The rotated vectors(

cos(ϑπ) sin(ϑπ)
− sin(ϑπ) cos(ϑπ)

)
vj , j = 1, . . . , N,

fulfil the same norm condition. Thus, we have

h
∣∣cos(ϑπ)vj,1 + sin(ϑπ)vj,2

∣∣
= h

√(
cos(ϑπ)vj,1 + sin(ϑπ)vj,2

)2
≤ h

√(
cos(ϑπ)vj,1 + sin(ϑπ)vj,2

)2
+
(
− sin(ϑπ)vj,1 + cos(ϑπ)vj,2

)2
=

∥∥∥∥( cos(ϑπ) sin(ϑπ)
− sin(ϑπ) cos(ϑπ)

)
vj

∥∥∥∥
2

< π

for j = 1, . . . , N . Hence, we can apply the Prony method as described in Section 2.2,
where we use the function values

g
(
cos(ϑπ)`h, sin(ϑπ)`h

)
, ` = 0, . . . , N.

In the case of ` = 1, . . . , N , these values are given by the N Fourier samples

f̂
(
cos(ϑπ)`h, sin(ϑπ)`h

)
, ` = 1, . . . , N,

and the definition of g in (6.15), i.e.

g
(
cos(ϑπ)`h, sin(ϑπ)`h

)
= |`h|2f̂

(
cos(ϑπ)`h, sin(ϑπ)`h

)
, ` = 1, . . . , N.

Further, we have g(0, 0) = 0 since (6.24) and (6.17) produce

g(0, 0) =

N∑
j=1

cj =

N∑
j=1

(
cos(ϑπ)(vj+1,2 − vj,2) + sin(ϑπ)(vj,1 − vj+1,1)

cos(ϑπ)(vj+1,1 − vj,1) + sin(ϑπ)(vj+1,2 − vj,2)

− cos(ϑπ)(vj,2 − vj−1,2) + sin(ϑπ)(vj−1,1 − vj,1)

cos(ϑπ)(vj,1 − vj−1,1) + sin(ϑπ)(vj,2 − vj−1,2)

)

=
cos(ϑπ)(vN+1,2 − vN,2) + sin(ϑπ)(vN,1 − vN+1,1)

cos(ϑπ)(vN+1,1 − vN,1) + sin(ϑπ)(vN+1,2 − vN,2)

− cos(ϑπ)(v1,2 − v0,2) + sin(ϑπ)(v0,1 − v1,1)

cos(ϑπ)(v1,1 − v0,1) + sin(ϑπ)(v1,2 − v0,2)

)
= 0.
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Application of the Prony method then results in frequency values

γ1 < γ2 < . . . < γN

with corresponding coefficients cγ,1, . . . , cγ,N . Similarly to the previous two univariate
problems, we have the set relations

{γ1, . . . , γN} =
{(

cos(ϑπ)v1,1 + sin(ϑπ)v1,2

)
, . . . ,

(
cos(ϑπ)vN,1 + sin(ϑπ)vN,2

)}
and

{cγ,1, . . . , cγ,N} = {c1, . . . , cN},

cf. (6.24), where
(
cos(ϑπ)vj,1 + sin(ϑπ)vj,2

)
for j = 1, . . . , N are the coordinate values

of the original vertices with respect to the line x2 = tan(ϑπ)x1.

Part 4:
The previous results now enable us to compute the original vertices vj , j = 1, . . . , N ,
by comparison of the set K of candidate points with the set {γ1, . . . , γN}. For this
purpose, we determine all points (αk, β`)

T in the set K for which there exist indices
j ∈ {1, . . . , N} such that cos(ϑπ)αk + sin(ϑπ)β` = γj . Then the set

G̃ :=
{

(αk, β`)
T ∈ K | ∃ j ∈ {1, . . . , N} : cos(ϑπ)αk + sin(ϑπ)β` = γj

}
contains all N original vertices vj , j = 1, . . . , N , of the polygon D and it holds that∣∣G̃∣∣ = N ;

that is, the set G̃ contains only the vertices vj and no other elements. We can sort

the elements of G̃ in an arbitrary order such that we have

G̃ =
{
ṽ1, . . . , ṽN

}
with ṽj =

(
α̃j , β̃j

)T
for j = 1, . . . , N.

Further, each element ṽj of G̃ has three corresponding coefficient values

ãj , b̃j , and c̃j ,

which are the coefficients obtained by applying the Prony method to the three problems
(6.18), (6.21), and (6.24). These coefficients are corresponding to the orthogonal
projections of the vertex ṽj onto the x1-axis, x2-axis, and the line x2 = tan(ϑπ)x1

respectively. With the help of these coefficient values, we can determine the correct
order of the vertices of D, or equivalently, which elements of G̃ have to be connected
by line segments such that we can uniquely reconstruct the polygonal domain D.
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Part 5:
In this part, we establish the right order of the vertices as mentioned above. Using
the coefficient values ãj , b̃j , and c̃j , we can compute the slopes of the polygon’s edges
such that we are able to determine a predecessor and a successor for each vertex in
the set G̃.

Part 5a: First, let us take a look at the original edges L1, . . . , LN of the polygon D
in order to understand how we can compute the slopes of the polygon’s edges. Define

mj :=
vj+1,2 − vj,2
vj+1,1 − vj,1

, j = 1, . . . , N.

This value describes the slope of the line which contains the line segment Lj . Observe
that mj is well defined since the vertex coordinates vj,1, j = 1, . . . , N are distinct.
Moreover, we have

mj 6= 0 for all j ∈ {1, . . . , N}

because we have made the assumption that no edge of the polygon is parallel to the
x1-axis. Using this definition of mj , the coefficients aj , bj , and cj , see (6.19), (6.22),
and (6.25) respectively, which correspond to the vertex vj for j = 1, . . . , N , can be
written as follows:

aj =
vj+1,2 − vj,2
vj+1,1 − vj,1

− vj,2 − vj−1,2

vj,1 − vj−1,1
= mj −mj−1, (6.26)

bj =
vj,1 − vj+1,1

vj+1,2 − vj,2
− vj−1,1 − vj,1
vj,2 − vj−1,2

= −
(
vj+1,1 − vj,1
vj+1,2 − vj,2

)
+
vj,1 − vj−1,1

vj,2 − vj−1,2
= − 1

mj
+

1

mj−1
, (6.27)

cj =
cos(ϑπ)(vj+1,2 − vj,2) + sin(ϑπ)(vj,1 − vj+1,1)

cos(ϑπ)(vj+1,1 − vj,1) + sin(ϑπ)(vj+1,2 − vj,2)

− cos(ϑπ)(vj,2 − vj−1,2) + sin(ϑπ)(vj−1,1 − vj,1)

cos(ϑπ)(vj,1 − vj−1,1) + sin(ϑπ)(vj,2 − vj−1,2)
.

Using the definitions

c
(N1)
j := cos(ϑπ)(vj+1,2 − vj,2) + sin(ϑπ)(vj,1 − vj+1,1),

c
(D1)
j := cos(ϑπ)(vj+1,1 − vj,1) + sin(ϑπ)(vj+1,2 − vj,2),

c
(N2)
j := cos(ϑπ)(vj,2 − vj−1,2) + sin(ϑπ)(vj−1,1 − vj,1),

c
(D2)
j := cos(ϑπ)(vj,1 − vj−1,1) + sin(ϑπ)(vj,2 − vj−1,2),
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we obtain

cj =
c

(N1)
j · c(D2)

j − c(N2)
j · c(D1)

j

c
(D1)
j · c(D2)

j

. (6.28)

Simplification of the numerator in (6.28) leads to

c
(N1)
j · c(D2)

j − c(N2)
j · c(D1)

j

= cos2(ϑπ) · (vj+1,2 − vj,2)(vj,1 − vj−1,1) + sin2(ϑπ) · (vj,1 − vj+1,1)(vj,2 − vj−1,2)

+ sin(ϑπ) cos(ϑπ)
[
(vj+1,2 − vj,2)(vj,2 − vj−1,2) + (vj,1 − vj+1,1)(vj,1 − vj−1,1)

]
− cos2(ϑπ) · (vj+1,1 − vj,1)(vj,2 − vj−1,2)− sin2(ϑπ) · (vj−1,1 − vj,1)(vj+1,2 − vj,2)

− sin(ϑπ) cos(ϑπ)
[
(vj−1,1 − vj,1)(vj+1,1 − vj,1) + (vj,2 − vj−1,2)(vj+1,2 − vj,2)

]
= cos2(ϑπ) ·

[
(vj+1,2 − vj,2)(vj,1 − vj−1,1)− (vj+1,1 − vj,1)(vj,2 − vj−1,2)

]
+ sin2(ϑπ) ·

[
(vj,1 − vj−1,1)(vj+1,2 − vj,2)− (vj+1,1 − vj,1)(vj,2 − vj−1,2)

]
= (vj+1,2 − vj,2)(vj,1 − vj−1,1)− (vj+1,1 − vj,1)(vj,2 − vj−1,2),

where we use the well-known Pythagorean trigonometric identity3.
The denominator in (6.28) can be expressed as

c
(D1)
j · c(D2)

j =
[
cos(ϑπ)(vj+1,1 − vj,1) + sin(ϑπ)(vj+1,2 − vj,2)

]
·
[
cos(ϑπ)(vj,1 − vj−1,1) + sin(ϑπ)(vj,2 − vj−1,2)

]
= (vj+1,1 − vj,1)

[
cos(ϑπ) + sin(ϑπ)

(vj+1,2 − vj,2)

(vj+1,1 − vj,1)

]
· (vj,1 − vj−1,1)

[
cos(ϑπ) + sin(ϑπ)

(vj,2 − vj−1,2)

(vj,1 − vj−1,1)

]
= (vj+1,1 − vj,1) [cos(ϑπ) + sin(ϑπ)mj ]

· (vj,1 − vj−1,1) [cos(ϑπ) + sin(ϑπ)mj−1] .

We insert the expressions which we have just computed into (6.28). This results in

cj =
(vj+1,2 − vj,2)(vj,1 − vj−1,1)− (vj+1,1 − vj,1)(vj,2 − vj−1,2)

(vj+1,1 − vj,1) [cos(ϑπ) + sin(ϑπ)mj ] · (vj,1 − vj−1,1) [cos(ϑπ) + sin(ϑπ)mj−1]

=

(vj+1,2 − vj,2)

(vj+1,1 − vj,1)
−

(vj,2 − vj−1,2)

(vj,1 − vj−1,1)

[cos(ϑπ) + sin(ϑπ)mj ] · [cos(ϑπ) + sin(ϑπ)mj−1]

=
mj −mj−1

[cos(ϑπ) + sin(ϑπ)mj ] · [cos(ϑπ) + sin(ϑπ)mj−1]
. (6.29)

3See [31, p. 276, (48.20)], for example.
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The representations (6.26), (6.27), and (6.29) can now be used to compute the slope
mj if the coefficients aj , bj , and cj are known. For this purpose, we obtain the following
system of equations:

aj = mj −mj−1 (6.30)

bj = − 1

mj
+

1

mj−1
(6.31)

cj =
mj −mj−1

[cos(ϑπ) + sin(ϑπ)mj ] · [cos(ϑπ) + sin(ϑπ)mj−1]
. (6.32)

Multiplication of (6.31) with mjmj−1, and multiplication of (6.32) with the denomin-
ator on the right-hand side and division by cj results in

mj −mj−1 = aj (6.33)

mjmj−1bj = mj −mj−1 (6.34)

mj −mj−1

cj
= cos2(ϑπ) + (mj +mj−1) sin(ϑπ) cos(ϑπ) +mjmj−1 sin2(ϑπ). (6.35)

Using (6.33) in (6.34) as well as (6.33) and (6.34) in the third equation (6.35), we get

mj −mj−1 = aj (6.36)

mjmj−1 =
aj
bj

(6.37)

aj
cj

= cos2(ϑπ) + (mj +mj−1) sin(ϑπ) cos(ϑπ) +
aj
bj

sin2(ϑπ). (6.38)

Here, the first equation (6.36) yields

mj = aj +mj−1 and mj−1 = mj − aj ,

which, together with the third equation (6.38) of the system given above, produces

aj
cj

= cos2(ϑπ) + (aj +mj−1 +mj−1) sin(ϑπ) cos(ϑπ) +
aj
bj

sin2(ϑπ)

⇔ 2mj−1 sin(ϑπ) cos(ϑπ) =
aj
cj
− aj
bj

sin2(ϑπ)− aj sin(ϑπ) cos(ϑπ)− cos2(ϑπ)

and

aj
cj

= cos2(ϑπ) + (mj +mj − aj) sin(ϑπ) cos(ϑπ) +
aj
bj

sin2(ϑπ)

⇔ 2mj sin(ϑπ) cos(ϑπ) =
aj
cj
− aj
bj

sin2(ϑπ) + aj sin(ϑπ) cos(ϑπ)− cos2(ϑπ).



6.1. Reconstruction of polygonal shapes in the space R2 125

Finally, we get

mj−1 =
aj

2cj sin(ϑπ) cos(ϑπ)
− aj

2bj
tan(ϑπ)− aj

2
− cot(ϑπ) (6.39)

and

mj =
aj

2cj sin(ϑπ) cos(ϑπ)
− aj

2bj
tan(ϑπ) +

aj
2
− cot(ϑπ). (6.40)

Observe that the slopes mj−1 and mj , i.e. the slopes of the line segments connecting
vj with its predecessor and successor respectively, can be computed by using only the
coefficient values corresponding to the considered vertex vj .

Further, note that the computation of mj−1 and mj in (6.39) and (6.40) is well
defined since the values bj and cj are non-zero, see Parts 2 and 3 of this proof. There
we have seen that we have the equivalences

bj = 0 ⇔ mj = mj−1

and

cj = 0 ⇔ mj = mj−1.

But the case mj = mj−1 would mean that the edges Lj and Lj−1, i.e. the line segments
connecting the vertex vj with vj−1 and vj+1, are line segments on the same line such
that we would have a degenerate case, that is, vj would actually not be a vertex of
the polygon D. But such a degenerate case has been excluded. Thus, the coefficients
bj and cj are not equal to zero.

Moreover, observe that we have sin(ϑπ) 6= 0 and cos(ϑπ) 6= 0 since ϑ ∈ (0, 1) \ {1
2}.

Therefore, also tan(ϑπ) and cot(ϑπ) are well defined.

Part 5b: Let us turn back to the set

G̃ =
{
ṽ1, . . . , ṽN

}
(6.41)

of the vertices of the polygonal domain D, where we have to establish which elements
have to be connected by line segments in order to uniquely reconstruct D. Since we
have three corresponding values ãj , b̃j , and c̃j for each element ṽj in G̃, we can use
the formulae (6.39) and (6.40) in order to determine a predecessor and a successor for
each vertex. Again, we use the usual conventions

ṽ0 = ṽN and ṽN+1 = ṽ1,

and the same applies to the coefficients ãj , b̃j , and c̃j , i.e.

ã0 = ãN , ãN+1 = ã1, b̃0 = b̃N , b̃N+1 = b̃1, c̃0 = c̃N , c̃N+1 = c̃1.
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We start with a vertex of the convex hull of G̃. Without loss of generality, let this
be ṽ1. Then initialize the set G of ordered vertices of D to

G = {v1} with v1 := ṽ1.

Further, we update the set G̃ of the not yet ordered vertices, that is to say, we set

G̃ := G̃ \ {v1} =
{
ṽ2, . . . , ṽN

}
.

Using (6.40), we compute the slope m1 of the line which contains the line segment
that connects the vertex v1 with its successor v2 by

m1 =
ã1

2c̃1 sin(ϑπ) cos(ϑπ)
− ã1

2b̃1
tan(ϑπ) +

ã1

2
− cot(ϑπ).

The line containing the edge between v1 and v2 is then given by the equation

x2 = m1 ·
(
x1 − v1,1

)
+ v1,2.

Thus, we determine all points ṽj = (ṽj,1, ṽj,2)T in G which fulfil

ṽj,2 = m1 ·
(
ṽj,1 − v1,1

)
+ v1,2 (6.42)

and hence obtain the set

S1 :=
{
ṽj ∈ G̃ | ṽj fulfils (6.42)

}
of possible successors of v1. Now we have to establish which point in S1 is actually
the successor v2. For this purpose, we have to consider the following cases:

(1a) |S1| = 1: If S1 contains only one element, i.e.

S1 =
{
ṽj1
}

for some j1 ∈ {2, . . . , N},

then the successor v2 is given by ṽj1 , and we set

G = {v1,v2} with v2 := ṽj1

and
G̃ := G̃ \ {v2}.

(1b) |S1| ≥ 2: Remember that v1 is a vertex of the convex hull of G̃. Thus, if
S1 contains at least two elements, all these elements can only lie in the same
direction from v1, and only the point in S1 which is nearest to v1 is a possible
choice for v2, see Figure 6.4. Otherwise, we would have a degenerate case, but
such a case is excluded by assumption. Having given the only possible choice for
the successor v2, we proceed as described in the case (1a).
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Figure 6.4. Left: Original unit-height polygon. Right: Determination of the order of the
computed vertices. Start with v1 :=(1, 1)T. Computation of m1 accordingly to (6.40) leads to
(2, 2)T and (4, 4)T as candidates for v2. Choice of (4, 4)T would lead to a degenerate case.
Hence, v2 = (2, 2)T.

Now we repeat the approach explained above in order to determine the successor
v3 of the vertex v2. Then the line which contains the edge connecting v2 and v3 is
described by

x2 = m2 ·
(
x1 − v2,1

)
+ v2,2 (6.43)

where the slope m2 is computed using (6.40). The set of possible successors of v2 is
given by

S2 :=
{
ṽj ∈ G̃ | ṽj fulfils (6.43)

}
.

The first case which we have to consider now is similar to the case (1a).

(2a) |S2| = 1: If S2 contains only one element, i.e.

S2 =
{
ṽj2
}

for some j2 ∈ {2, . . . , N} \ {j1},

then ṽj2 is the successor of v2, and we set

G = {v1,v2,v3} with v3 := ṽj2

and

G̃ := G̃ \ {v3}.

The case |S2| ≥ 2 is a bit different from the case (1b).
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(2b) |S2| ≥ 2: Note that we only know the line containing the edge between v2 and
v3, but we do not know in which direction we have to go on this line, starting
at v2, in order to reach the successor v3. For each of the both directions, only
the point in S2 which is nearest to v2 is a possible choice for v3. Otherwise, we
would have a degenerate case. Thus, we obtain a new set S̃2 which contains at
most two points that fulfil (6.43) and hence are possible choices for the successor
v3. If

∣∣S̃2

∣∣ = 1, then we follow the lines in the case (2a).

Consider now the case
∣∣S̃2

∣∣ = 2, i.e.

S̃2 =
{
ṽj2 , ṽj3

}
for some j2, j3 ∈ {2, . . . , N} \ {j1}.

For each candidate point v3,c,j in S̃2 (j = j2, j3), we can compute the slope
m3−1,c,j of the line containing the edge between this point and its predecessor
by using formula (6.39). The successor v3 is now given by the point v3,c,j for
which we have

m2 = m3−1,c,j , (6.44)

see also Figure 6.5, and we proceed as described in the case (2a).
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Figure 6.5. Left: Original unit-height polygon. Right: Determination of the order of the com-
puted vertices. Starting with v1 :=(5, 5)T leads to v2 = (3, 3)T. Computation of m2 accordingly
to (6.40) leads to (2, 4)T and (4, 2)T as candidates for v3 (blue, dashed line). Equation (6.39)
yields that the predecessor of (2, 4)T lies on the blue, dashed line, and that the predeccessor of
(4, 2)T lies on the red, dashed line. Thus, v3 = (2, 4)T.

We use this approach iteratively in order to determine the order of the remaining
vertices until we have computed a successor for every element in the set given in (6.41)
such that the successor of the last considered vertex is the vertex v1, with which we
have started.
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If (6.44) holds for both candidate points at some stage of the iteration, we have to
choose arbitrarily one of those points as the next successor vertex. If this choice is the
wrong one, the algorithm will also terminate when a computed successor is equal to
the first considered vertex v1. But in this case we will not have determined a successor
for all elements in the set G̃ in (6.41) such that we have to turn back to the stage of
the iteration where we had to choose a successor arbitrarily and continue the iteration
by choosing the other candidate point. See also Example 6.3 for more details.

In this manner, we will uniquely reconstruct the polygonal domain D. This con-
cludes the proof. �
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Figure 6.6. Left: Original unit-height polygon. Right: Example for a situation where an
arbitrary choice between two candidates for a successor vertex is necessary. Here, v3 has to be
chosen.

Example 6.3 (Necessity for an arbitrary choice of a successor vertex).
Consider the unit-height polygon given in Figure 6.6, and assume that the vertices,
which we have computed as described in the proof of Theorem 6.2, are numbered as
follows:

ṽ1 :=

(
3.5
2.5

)
, ṽ2 :=

(
4
4

)
, ṽ3 :=

(
5
5

)
, ṽ4 :=

(
2.5
6

)
, ṽ5 :=

(
1
1

)
, ṽ6 :=

(
2
2

)
.

By starting with v1 := ṽ1, we find that the successor of the vertex v1 is the point ṽ2

such that v2 = ṽ2.
The computation of the slope of the line containing the edge between v2 and its

successor v3 yields that v3 has to lie on the line x2 = x1. Hence, ṽ3 and ṽ6 are
candidates for the vertex v3.



130 6. Reconstruction of polygonal shapes from sparse Fourier samples

We compute the slopes of the lines containing the edges between ṽj and its prede-
cessor for j = 3 and j = 6 in order to check if both points are still possible candidates.
Since this is the case, that is, also the predecessors of ṽ3 and ṽ6 lie on the line x2 = x1,
we cannot finally decide which candidate point is actually the successor vertex v3 such
that we have to make an arbitrary choice, see Figure 6.6.

Suppose that we choose v3 := ṽ6. Determination of the successor of v3 then leads to
v4 = v1. Hence, the algorithm terminates, but we do not have computed successors
for all vertices ṽj , j = 1, . . . , 6. Especially, the vertex ṽ3, which we have not chosen as
v3, has not been used in the terminated algorithm, see Figure 6.7. This tells us that
the choice of v3 has been the wrong one such that we have to take v3 := ṽ3 and erase
the edge between v2 and ṽ6. The other information which we have already acquired,
i.e. the information that ṽ6 and v1 are connected by an edge, can still be used. In the
next step, we consider the vertex v3 and determine its successor.

We apply this procedure to each next successor until we have considered every vertex
ṽj . Then we have established the right order of them, see also Figure 6.7.
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Figure 6.7. Left: Wrong choice of successor v3 (cf. Figure 6.6) leads to early termination
of the algorithm for construction of all edges of the polygon. Some vertices have no successor
or predecessor; i.e., they are not connected with other vertices by line segments. Right: Edge
between (4, 4)T and (2, 2)T has to be erased, and (5, 5)T has to be taken as successor v3.

Remarks 6.4.

1. It may happen that an incorrect, arbitrary choice as illustrated with the example
given above is not discovered instantly as being wrong, but it is possible that
other arbitrary choices have to be made until the algorithm terminates without
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determining successors for all vertices. In this case, one has to go back to the
stages of the iteration where an arbitrary choice has been made, and where the at
that time not considered candidate has not been used as a successor afterwards.
The edges constructed there have to be erased, and one has to proceed with the
unused candidates.

2. In order to avoid the problems mentioned in the first remark, one can determine
sets of possible successors and sets of possible predecessors for each vertex ṽj
in the set G̃ given in (6.41). Starting with sets which contain only one possible
successor or predecessor, one can construct all edges of the polygon step by
step. For this purpose, one has to update the sets of possible successors and
predecessors every time when an edge is constructed.

Note that at least each of the vertices of the convex hull of G̃ has only one
possible successor and one possible predecessor, see the case (1b) in the proof of
Theorem 6.2.

3. The scheme for the reconstruction of polygonal domains from sparse Fourier data
as proposed in Theorem 6.2 can also be used if the number N of the vertices of
the polygon D is not known. In that case, we need an upper bound M ≥ N and
3M sampling values of the Fourier transform of 1D, compare Remarks 2.3, 3.

We summarize the proposed reconstruction scheme in the following algorithm:

Algorithm 6.5 (Reconstruction of polygonal domains).

• Input:

– Step size h > 0 with h‖vj‖2 < π for j = 1, . . . , N ;

– Fourier samples f̂(ξ) for

ξT ∈
{(
`h, 0

)
,
(
0, `h

)
,
(
cos(ϑπ)`h, sin(ϑπ)`h

)}
, ` = 1, . . . , N,

where ϑ ∈ (0, 1) \ {1
2} needs to be chosen suitably, see Step 6 of the com-

putation.

• Computation:

1. Compute
g(`h, 0) = |`h|2f̂(`h, 0) for ` = 1, . . . , N

and set g(0, 0) = 0.

2. Use Algorithm 2.5 in order to compute the parameters vj,1 and aj of g in
(6.18).



132 6. Reconstruction of polygonal shapes from sparse Fourier samples

3. Compute
g(0, `h) = |`h|2f̂(0, `h) for ` = 1, . . . , N,

and set g(0, 0) = 0.

4. Use Algorithm 2.5 in order to compute the parameters vj,2 and bj of g in
(6.21).

5. Compute the Cartesian product of {v1,1 . . . , vN,1} and {v1,2, . . . , vN,2} as
the set of possible candidates for the true vertices, i.e.

K :=
{

(vk,1, v`,2)T : k = 1, . . . , N, ` = 1, . . . , N
}
.

6. Choose a parameter ϑ ∈ (0, 1) \ {1
2} such that the orthogonal projections

of all candidate points in K onto the line x2 = tan(ϑπ)x1 are pairwise
different.

7. Acquire the N Fourier samples f̂
(
cos(ϑπ)`h, sin(ϑπ)`h

)
, ` = 1, . . . , N .

Then compute

g
(
cos(ϑπ)`h, sin(ϑπ)`h

)
= |`h|2f̂

(
cos(ϑπ)`h, sin(ϑπ)`h

)
, ` = 1, . . . , N,

and set g(0, 0) = 0.

8. Use Algorithm 2.5 in order to compute the parameters of g in (6.24), namely
γj =

(
cos(ϑπ)vj,1 + sin(ϑπ)vj,2

)
and cj .

9. Determine the true vertices v1, . . . ,vN by comparison of K with the set
{γ1, . . . , γN}; that is, determine all points (αk, β`)

T in the set K for which
there exist indices j ∈ {1, . . . , N} such that

cos(ϑπ)αk + sin(ϑπ)β` = γj .

This results in the set G̃ of all true vertices, but here they are ordered
arbitrarily.

10. Establish the right order of the elements in G̃ by computing successors and
predecessors for each vertex. For this purpose, consider the explanations
following (6.41), Example 6.3, and Remarks 6.4, 1. and 2.

• Output:

Set G = {v1, . . . ,vN} of ordered vertices; that is, the boundary �D of
the polygon D is determined by the closed polygonal chain

[v1—v2—v3—. . .—vN−1—vN—v1].
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Remark 6.6.
In the proof of Theorem 6.2 and in the above algorithm, we rely upon the assumption
that the coordinates of the vertices of the polygons to be reconstructed are pairwise
different in both dimensions.

Our reconstruction method uses the orthogonal projections of the vertices onto the
x1- and the x2-axis in the time domain, which are computed by using Fourier samples
from corresponding sampling lines in the frequency domain, i.e. the ω1- and the ω2-
axis.

The assumption that the vertex coordinates vj,1, j = 1, . . . , N , as well as the coordin-
ates vj,2, j = 1, . . . , N , are pairwise different is needed since the computed orthogonal
projections onto the x1- and the x2-axis have to be distinct such that we can use the
formula (6.14) for the Fourier transform of the unit-height polygons.

Unless we have a formula for the Fourier transform of unit-height polygons where
this restriction is not necessary, we can reconstruct general polygons, i.e. polygons
without any restrictions on the vertex coordinates, only if we use much more Fourier
samples.

By using Fourier data sampled on distinct lines l̃k :={λuk |λ ∈ R}, k = 1, . . . , r, in
the frequency domain where uk are unit vectors, we obtain the orthogonal projections
of the vertices onto the distinct lines lk :={λuk |λ ∈ R}, k = 1, . . . , r, in the time
domain. For all k ∈ {1, . . . , r}, these orthogonal projections are given by4

〈uk,vj〉uk, j = 1, . . . , N.

Thus, we have to ensure that we have always two distinct lines on which the projections
are pairwise different. For this purpose, we need N(N−1)

2 + 2 pairwise different lines lk

and l̃k in the time domain and the frequency domain respectively, see [12, §3], where
Buhmann and Pinkus use this approach for a similar problem.

We take the usual coordinate axes and consider the vertical and horizontal axes of
N(N−1)

2 rotated versions of the usual Cartesian coordinate system as further sampling
lines. Let us assume that the orthogonal projections of the vertices are pairwise
different onto the lines l1 and l2. Then we can use the Fourier samples from the lines l̃1
and l̃2 as initializations for Algorithm 6.5. Observe that we have to use an appropriate
coordinate transformation, corresponding to the coordinate system spanned by l1 and
l2, in order to continue with Algorithm 6.5.

Altogether, we need Fourier samples from N(N−1)
2 + 3 sampling lines. But we will

only use the Fourier data from three lines. Therefore, it would be of high interest
to have an approach similar to our proposed reconstruction method where only three
sampling lines are needed. This means that another representation for the Fourier
transform of a unit-height polygon is required.

4See [39, p. 118, (1.88)], for instance.
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6.2. Numerical results

This section concludes the chapter about the reconstruction of polygonal shapes with a
few numerical examples. We use simulated Fourier data on the x1-axis, on the x2-axis,
and on a third, adaptively chosen sampling line, which is determined accordingly to
the explanations in Section 4.3, that is, we solve a max-min problem similar to (4.45)
in order to decide on the third sampling line.

Observe in the following examples that some vertices have nearly the same first or
second coordinate. But nevertheless we are able to recover the original vertices and
the maximal reconstruction error for the vertex coordinates has an order of magnitude
equal to −7.

Further, note that concave polygons are considered in the second, third, and fourth
example such that the step of determining the order of the computed vertices is a very
important step in order to recover the original shape.
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Figure 6.8. Unit-height polygon determined by (vj)
4
j=1 given in Table 6.1.

j vj,1 |vj,1 − v∗j,1| vj,2 |vj,2 − v∗j,2|
1 -1 8.882 · 10−16 1 7.649 · 10−14

2 1 1.91 · 10−14 3 4.441 · 10−16

3 3 2.665 · 10−15 0.9 8.737 · 10−14

4 0.9 8.626 · 10−14 -1 2.22 · 10−16

Table 6.1. Vertices of the unit-height polygon displayed in Figure 6.8 and approximate recon-
struction errors. The sampling step size is h = 0.7, and the measure of the angle between the
first and the third sampling line is 64◦.
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Figure 6.9. Unit-height polygon determined by (vj)
4
j=1 given in Table 6.2.

j vj,1 |vj,1 − v∗j,1| vj,2 |vj,2 − v∗j,2|
1 0.05 2.732 · 10−12 0 9.992 · 10−16

2 0 2.273 · 10−12 4 3.109 · 10−15

3 0.5 2.224 · 10−12 3 2.665 · 10−15

4 2 1.776 · 10−15 2.4 0

Table 6.2. Vertices of the unit-height polygon displayed in Figure 6.9 and approximate recon-
struction errors. The sampling step size is h = 0.7, and the measure of the angle between the
first and the third sampling line is 10◦.
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Figure 6.10. Unit-height polygon determined by (vj)
5
j=1 given in Table 6.3.
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j vj,1 |vj,1 − v∗j,1| vj,2 |vj,2 − v∗j,2|
1 1 1.601 · 10−9 3 2.792 · 10−7

2 1.95 2.677 · 10−7 2 5.788 · 10−12

3 1.1 5.524 · 10−9 0.4 1.197 · 10−13

4 4 1.403 · 10−13 3.005 1.68 · 10−7

5 1.96 4.96 · 10−7 4 7.994 · 10−13

Table 6.3. Vertices of the unit-height polygon displayed in Figure 6.10 and approximate
reconstruction errors. The sampling step size is h = 0.4, and the measure of the angle between
the first and the third sampling line is 45◦.
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Figure 6.11. Unit-height polygon with 12 vertices. The approximate reconstruction errors
are given in Table 6.4.

j |vj,1 − v∗j,1| |vj,2 − v∗j,2|
1 1.014 · 10−11 1.11 · 10−14

2 1.399 · 10−10 2.132 · 10−14

3 8.304 · 10−14 2.887 · 10−15

4 4.441 · 10−16 9.992 · 10−16

5 3.161 · 10−10 8.882 · 10−16

6 3.238 · 10−11 9.326 · 10−16

j |vj,1 − v∗j,1| |vj,2 − v∗j,2|
7 1.94 · 10−12 2.665 · 10−15

8 3.758 · 10−11 9.77 · 10−15

9 1.052 · 10−13 0
10 8.882 · 10−16 1.11 · 10−16

11 8.695 · 10−11 4.885 · 10−15

12 6.564 · 10−12 3.197 · 10−14

Table 6.4. Vertices of the unit-height polygon displayed in Figure 6.11 and reconstruction
errors. The sampling step size is h = 0.7, and the measure of the angle between the first and
the third sampling line is 56.75◦.
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In this dissertation, we have asked how to reconstruct structured functions by means of
a smallest possible set of Fourier data. Answering this question, we have derived novel
algorithms for the unique reconstruction of different classes of structured functions,
based upon the Prony method.

In particular, we have derived reconstruction methods for step functions, linear com-
binations of non-uniform B-splines, and linear combinations of non-uniform translates
of low-pass filter functions in the one-dimensional case using sparse Fourier samples,
and we have generalized these results to the tensor-product case in two dimensions.

Furthermore, we have considered the reconstruction of linear combinations of non-
uniform translates of multivariate functions where the variables are not separable. We
have developed reconstruction methods using adaptive sampling and have shown that
we are able to uniquely recover such functions from only a small number of Fourier
samples taken on some lines through the origin in the frequency domain. The adaptive
sampling scheme is essential in order to obtain unique reconstructions by means of a
smallest possible set of Fourier data. In the two-dimensional case, we have shown
that one needs only O(N) Fourier samples to uniquely recover linear combinations of
N non-uniform translates if one uses the adaptive sampling scheme. Contrarily, one
needs O(N2) sampling values if a deterministic sampling approach is applied.

We have also shown that polygonal shapes in the real plane can be uniquely recon-
structed by using a similar approach of adaptive sampling such that O(N) Fourier
samples suffice to recover polygons with N vertices where we have emphasized that
the polygons do not have to be convex but can also be concave.

In several cases, we have illustrated our proposed reconstruction methods with nu-
merical experiments where we use exact (simulated) Fourier data. However, in the
case of noisy measurements, the performance of the reconstruction can be greatly im-
proved if a larger number of Fourier data is available, see [23, 51, 55]. In particular,
for small data sets we recommend the preprocessing step of data filtering presented
in [23].

Recently, in [13], Candès and Fernandez-Granda have proposed the reconstruction of
functions of the form (2.1) using a total variation minimization formulation. In order
to tackle this minimization problem, a semi-definite program is applied to solve the
dual problem in a first step. The obtained result is used to define a special polynomial
whose zeros on the unit circle are related to the wanted parameters Tj . The exact
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connections between that minimization approach in the context of super-resolution
and the direct algorithms for the Prony method are not yet established.

It would also be of great interest to generalize, and maybe combine, the approaches
for the reconstruction of non-uniform translates in Section 4.2 and the reconstruction
of polygonal shapes in Chapter 6 such that more general functions and shapes can be
considered. For example, the shape from moments problem, see [21,27,47], is extended
from polygons to algebraic curves in [29].

In this context, the question arises if the approach from Chapter 5 for a d-dimen-
sional setting with d > 2 can be combined with the reconstruction of polygonal shapes
in Chapter 6 such that we can transfer it to the reconstruction of polytopes. This
is, for example, treated in [28], where integral moments of a d-dimensional polytope
are used, together with the Prony method, in order to reconstruct the polytope. But
there are considered only convex polytopes. Thus, it would be interesting to extend
the theory developed in this dissertation.



A. Basic properties of the Fourier
transform

The thesis on hand deals with the reconstruction of functions from sparse Fourier
data. Therefore, the Fourier transform is an essential mathematical instrument. We
give here an overview of the definition and basic properties of the Fourier transform
which we need throughout this work. The following definitions and properties are
collected from [11, pp. 103–109], [30, pp. 38–41], [52, pp. 89–97], and [63, pp. 1–5].

Definition and Proposition A.1 (Fourier transform on L1).
Let f ∈ L1(Rd). The Fourier transform f̂ : Rd → C is defined by

F{f}(ω) := f̂(ω) :=

∫
Rd

f(x) e− i〈ω,x〉 dx, ω ∈ Rd.

The mapping F : f 7→ f̂ is a linear transformation from L1(Rd) into C0(Rd). This
transformation is called Fourier transform. The domain of the original function f is
regarded as the spatial domain (or time domain), and the domain of the transformed
function f̂ is considered as the frequency domain (or Fourier domain).

In the following propositions, we assume f ∈ L1(Rd).

Proposition A.2 (Conjugate symmetry).
If the function f is real-valued, then we have the relation

f̂(−ω) = f̂(ω) for all ω ∈ Rd.

Proposition A.3 (Translation in the spatial domain).
The Fourier transform of the translated function f(·− a) for a ∈ Rd is given by

F{f(·− a)}(ω) = e− i〈ω,a〉F{f}(ω), ω ∈ Rd.
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Proposition A.4 (Differentiation in the spatial domain).
If the mixed partial derivative Dα f exists and Dα f ∈ L1(Rd) holds, then the Fourier
transform of this derivative is given by

F{Dα f}(ω) = i|α|ωαF{f}(ω), ω ∈ Rd.

Here, α denotes a multi-index, i.e. a d-tuple α :=(α1, α2, . . . , αd) of non-negative
integers, and Dα is the corresponding differential operator. The derivative Dα f is
then given by

Dα f(ω) :=
�α1+α2+...+αd

�ωα1
1 �ωα2

2 · · · �ω
αd
d

f(ω) for ω :=(ω1, ω2, . . . , ωd)
T ∈ Rd.

Further, we have

|α| :=
d∑
j=1

αj and ωα :=

d∏
j=1

ω
αj
j .

Proposition A.5 (Differentiation in the frequency domain).
If the function Rd 3 x 7→ g(x) :=xαf(x) is an element of L1(Rd), then we have

Dα
(
F{f}

)
(ω) = (− i)|α|F{g}(ω) for all ω ∈ Rd.

The Fourier transform can also be defined on the Schwartz space S(Rd).

Definition and Proposition A.6 (Fourier transform on S(Rd)).
Consider f ∈ S(Rd). Then the Fourier transform F : f 7→ f̂ is a linear transformation
from S(Rd) onto S(Rd).

Remark A.7.
The statements from Propositions A.2–A.5 are also valid if we replace the space L1(Rd)
by the Schwartz space S(Rd). Note that the conditions in Propositions A.4 and A.5
are always fulfilled for functions f ∈ S(Rd), cf. [66, pp. 211-212].

In the special case that ϕ ∈ S = S(R), the m-th derivative of the Fourier transform
is computed as follows.

Proposition A.8.
Let ϕ ∈ S. Then we have

�m

�ωm
F{ϕ}(ω) = F

{
(− i ·)mϕ(·)

}
(ω) for all ω ∈ R.
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Proof. We have

�m

�ωm
F{ϕ}(ω) =

�m

�ωm
ϕ̂(ω) =

�m

�ωm

∞∫
−∞

ϕ(x) e− iωx dx. (A.1)

For k = 0, . . . ,m− 1, define the function gk : R×R→ C by

gk(ω, x) :=ϕ(x)(− ix)k e− iωx .

Since the function Φk : R 3 x 7→ xkϕ(x) ∈ C is absolutely integrable by Lemma C.1,
gk fulfils the following conditions:

• gk(ω, ·) is absolutely integrable for all ω ∈ R.

• gk is differentiable with respect to the first argument, that is, �
�ωgk(ω0, x) exists

for all x ∈ R for a given ω0.

• For k = 0, . . . ,m− 1, and for all ω ∈ R, we have∣∣∣ �
�ω
gk(ω, x)

∣∣∣ =
∣∣(− ix)k+1ϕ(x) e− iωx

∣∣ = |xk+1ϕ(x)| = |Φk+1|

where Φk+1 is absolutely integrable.

Hence, we can apply the theorem of differentiation under the integral sign1 in (A.1)
m times. This yields

�m

�ωm
ϕ̂(ω) =

�m

�ωm

∞∫
−∞

ϕ(x) e− iωx dx

=

∞∫
−∞

�m

�ωm
ϕ(x) e− iωx dx

=

∞∫
−∞

(− ix)mϕ(x) e− iωx dx,

which proves the claim. �

Remark A.9 (Fourier transform of distributions).
Since the concept of distributions in the univariate case and in the bivariate case is
introduced in Appendix B and D respectively, the reader is referred to Sections B.4
and D.3 for the definition of the Fourier transform of distributions.

1See [22, pp. 147 f., 5.7].





B. Proofs for non-uniform spline
representations

In Section 3.2, we compute the derivatives of a non-uniform spline function f of the
form (3.10). This works with the concept of ordinary functions as long as the order
of the B-splines is greater than or equal to three. B-splines of order two and one are
piecewise linear functions and step functions respectively. These functions are not
differentiable at their knots. In order to be able to compute derivatives in these cases,
we have to work with distributions and generalized functions.

B.1. Distributions and generalized functions

Let g : R→ C be a locally integrable function. Then a regular distribution1 µ(g) will
be defined by the functional

C∞c 3 ϕ 7→
〈
µ(g), ϕ

〉
:=

+∞∫
−∞

ϕ(x)g(x) dx, (B.1)

see [35, p. 11]. The distribution µ(g) can be identified with the function g, which will
then be called generalized function.

The derivative of the distribution µ(g) is the distribution Dµ(g) which is defined by〈
Dµ(g), ϕ

〉
=
〈
µ(g),−ϕ′

〉
(B.2)

for all ϕ ∈ C∞c , see [35, p. 37]. Since ϕ ∈ C∞c , this means that µ(g) is infinitely

differentiable. The kth derivative (in this distributional sense) is denoted by Dk µ(g).
If the generalized function g is continuously differentiable, the distributional deriva-

tive Dµ(g) is the distribution defined by g′ and (B.1). For all ϕ ∈ C∞c , we have〈
Dµ(g), ϕ

〉
=
〈
µ(g),−ϕ′

〉
= −

∞∫
−∞

ϕ′(x)g(x) dx = −
{[
ϕ(x)g(x)

]∞
−∞ −

∞∫
−∞

ϕ(x)g′(x) dx

}
, (B.3)

1This work deals with the concept of distributions and generalized functions only as detailed as
necessary. For more information about distributions, the reader is referred to books on the subject,
e.g. [26, 30,35].
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see [35, p. 37]. The function ϕ has compact support. Further, g is locally integrable,
which yields lim|x|→∞|g(x)| < ∞. Thus, the first term on the right side of (B.3)
vanishes, and we get

〈
Dµ(g), ϕ

〉
=

∞∫
−∞

ϕ(x)g′(x) dx =
〈
µ(g′), ϕ

〉
. (B.4)

B.2. Proof of Lemma 3.5

Note that the function f from (3.10) is locally integrable. If we apply (B.4) k times
to f and the distribution µ(f), defined accordingly to (B.1), we get the following for
m ≥ 3 and k = 1, . . . ,m− 2:

〈
Dk µ(f), ϕ

〉 (B.4)
=
〈
µ(f (k)), ϕ

〉 Lemma
=
3.4

∞∫
−∞

(
N+k∑
j=1

ckjB
m−k
j (x)

)
ϕ(x) dx (B.5)

for all ϕ ∈ C∞c where the coefficients ckj , j = 1, . . . , N + k, are defined in Lemma 3.4.

In the case k = m − 2, the generalized function f (m−2) is a linear combination of
B-splines of order two. These B-splines are piecewise linear. Previously, when we
examined ordinary functions, we could not differentiate the function f (m−2). Since we
are now working with distributions, we can also compute the derivative Dm−1 µ(f) of
the distribution µ(f) in the case m ≥ 2. For all ϕ ∈ C∞c , we have〈

Dm−1 µ(f), ϕ
〉

=
〈
D
(
Dm−2 µ(f)

)
, ϕ
〉

=
〈
Dm−2 µ(f),−ϕ′

〉
by (B.2)

=
〈
µ(f (m−2)),−ϕ

′〉 by (B.5)

= −
∞∫
−∞

(
N+m−2∑
j=1

cm−2
j B2

j (x)

)
ϕ′(x) dx by Lemma 3.4

=
N+m−2∑
j=1

cm−2
j · (−1)

∞∫
−∞

B2
j (x)ϕ′(x) dx. (B.6)

We denote the integral in (B.6) by I, and we use integration by parts to compute it.
The function B2

j does not have a derivative in the classical sense everywhere, that is

to say, it is not differentiable at the knots Tj , Tj+1, and Tj+2. Further, B2
j and ϕ are

compactly supported. Therefore, we get

−I = (−1)

∞∫
−∞

B2
j (x)ϕ′(x) dx = −

{[
B2
j (x)ϕ(x)

]∞
−∞ −

∞∫
−∞

(B2
j )′(x)ϕ(x) dx

}
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= lim
a↘Tj

lim
b↗Tj+1

b∫
a

(
x− Tj

Tj+1 − Tj

)′
ϕ(x) dx

+ lim
c↘Tj+1

lim
d↗Tj+2

d∫
c

(
Tj+2 − x

Tj+2 − Tj+1

)′
ϕ(x) dx by (3.11), (3.12)

= lim
a↘Tj

lim
b↗Tj+1

b∫
a

1

Tj+1 − Tj
ϕ(x) dx+ lim

c↘Tj+1

lim
d↗Tj+2

d∫
c

−1

Tj+2 − Tj+1
ϕ(x) dx

=

∞∫
−∞

(
1

Tj+1 − Tj
1[Tj ,Tj+1)(x)− 1

Tj+2 − Tj+1
1[Tj+1,Tj+2)(x)

)
ϕ(x) dx. (B.7)

Plugging this into (B.6) yields for all ϕ ∈ C∞c

〈
Dm−1 µ(f), ϕ

〉
=

N+m−2∑
j=1

cm−2
j

∞∫
−∞

(
1

Tj+1 − Tj
1[Tj ,Tj+1)(x)

− 1

Tj+2 − Tj+1
1[Tj+1,Tj+2)(x)

)
ϕ(x) dx

=

∞∫
−∞

(
N+m−2∑
j=1

1

Tj+1 − Tj
cm−2
j 1[Tj ,Tj+1)(x)

−
N+m−2∑
j=1

1

Tj+2 − Tj+1
cm−2
j 1[Tj+1,Tj+2)(x)

)
ϕ(x) dx

=

∞∫
−∞

(
N+m−2∑
j=1

1

Tj+1 − Tj
cm−2
j 1[Tj ,Tj+1)(x)

−
N+m−1∑
j=2

1

Tj+1 − Tj
cm−2
j−1 1[Tj ,Tj+1)(x)

)
ϕ(x) dx

=

∞∫
−∞

N+m−1∑
j=1

cm−1
j B1

j (x)ϕ(x) dx (B.8)

with

cm−1
j :=

1

Tj+1 − Tj
·
(
cm−2
j − cm−2

j−1

)
, j = 1, . . . , N +m− 1,

and the convention cm−2
0 = cm−2

N+m−1 = 0.
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Equation (B.8) means that the derivative Dm−1 µ(f) (m ≥ 2) is the distribution
µ(f (m−1)) defined by (B.1) and the generalized function

f (m−1) : R 3 x 7→
N+m−1∑
j=1

cm−1
j B1

j (x) ∈ R. (B.9)

This proves Lemma 3.5. Observe that denoting this generalized function by f (m−1)

means an abuse of notation since f (m−1) does not denote a derivative in the classical
sense. �

B.3. Proof of Lemma 3.6

In the next step, we want to compute the m-th distributional derivative Dm µ(f) for

m ≥ 1. Note that f (m−1) given in (B.9) is locally integrable. For ϕ ∈ C∞c , we have〈
Dm µ(f), ϕ

〉
=
〈
D
(
Dm−1 µ(f)

)
, ϕ
〉

=
〈
Dm−1 µ(f),−ϕ′

〉
by (B.2)

= −
∞∫
−∞

f (m−1)(x)ϕ′(x) dx by (B.8), (B.9)

= −
N+m−1∑
j=1

cm−1
j

∞∫
−∞

B1
j (x)ϕ′(x) dx

= −
N+m−1∑
j=1

cm−1
j

Tj+1∫
Tj

ϕ′(x) dx

=
N+m−1∑
j=1

cm−1
j

(
ϕ(Tj)− ϕ(Tj+1)

)
(B.10)

=

N+m−1∑
j=1

cm−1
j

(
(τ−Tjϕ)(0)− (τ−Tj+1ϕ)(0)

)
where τa is the translation operator which is defined for a ∈ R and an ordinary function
ϕ by

τaϕ(x) :=ϕ(x− a). (B.11)

The Dirac delta distribution2 δ is defined by the functional

C∞c 3 ϕ 7→
〈
δ, ϕ

〉
:=ϕ(0). (B.12)

2The Dirac delta distribution is not a regular distribution, that is, it cannot be defined by a locally
integrable function as in (B.1).
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Using this definition, we get the following for ϕ ∈ C∞c :

〈
Dm µ(f), ϕ

〉
=

N+m−1∑
j=1

cm−1
j

(〈
δ, τ−Tjϕ

〉
−
〈
δ, τ−Tj+1ϕ

〉)

=

N+m−1∑
j=1

cm−1
j

(〈
τTjδ, ϕ

〉
−
〈
τTj+1δ, ϕ

〉)
.

(B.13)

Here, τaµ denotes the translate of a distribution µ and is defined for a ∈ R by〈
τaµ, ϕ

〉
=
〈
µ, τ−aϕ

〉
for all ϕ ∈ C∞c , (B.14)

see [35, p. 37]. From (B.13) we compute

〈
Dm µ(f), ϕ

〉
=

N+m−1∑
j=1

cm−1
j

〈
τTjδ, ϕ

〉
−
N+m−1∑
j=1

cm−1
j

〈
τTj+1δ, ϕ

〉
=

N+m−1∑
j=1

cm−1
j

〈
τTjδ, ϕ

〉
−
N+m∑
j=2

cm−1
j−1

〈
τTjδ, ϕ

〉
=

N+m∑
j=1

cmj
〈
τTjδ, ϕ

〉
where the coefficients cmj for j = 1, . . . , N +m are defined by

cmj := cm−1
j − cm−1

j−1 (B.15)

with the usual convention cm−1
0 = cm−1

N+m = 0. For addition and scalar multiplication
of distributions, the same rules as for general functionals apply, see [35, p. 36]. Hence,

〈
Dm µ(f), ϕ

〉
=
〈N+m∑
j=1

cmj
(
τTjδ

)
, ϕ
〉

for all ϕ ∈ C∞c ,

and the m-th distributional derivative of the generalized function f is a linear com-
bination of translated Dirac delta distributions. We will denote this distribution by
f (m), i.e.

f (m) := Dm µ(f) =

N+m∑
j=1

cmj
(
τTjδ

)
. (B.16)

Thus, the proof of Lemma 3.6 is completed. Observe that f (m) does not denote a
derivative in the classical sense. �
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B.4. Proof of Lemma 3.7

As a last step, we have to introduce the definition of the Fourier transform of a
distribution in order to get a representation of the Fourier transform of f in (3.10).

Let µ be one of the examined distributions above. Then the Fourier transform F{µ}
is defined on the linear space S as the linear functional which fulfils3〈

F{µ}, ϕ
〉

=
〈
µ, ϕ̂

〉
for all ϕ ∈ S, (B.17)

see [35, pp. 108-110]. Here, ϕ̂ denotes the ordinary Fourier transform of ϕ. The space
S :=S(R) consists of all complex-valued functions defined on the real axis which are
infinitely differentiable and, together with all their derivatives, rapidly decreasing as
the absolute value of the argument tends to infinity4. Note that S ⊂ Lp(R) for all
p ≥ 1, see [66, pp. 211-212]. The elements of S are called Schwartz functions.

Now we have all needed concepts to compute the Fourier transform of the distribu-
tion f (m). For all ϕ ∈ S, we get

〈
F
{
f (m)

}
, ϕ
〉 (B.16)

=
N+m∑
j=1

cmj
〈
F
{(

τTjδ
)}
, ϕ
〉 (B.17)

=
N+m∑
j=1

cmj
〈
τTjδ, ϕ̂

〉
(B.14)

=

N+m∑
j=1

cmj
〈
δ, τ−Tj ϕ̂

〉
(B.11)

=
(B.12)

N+m∑
j=1

cmj ϕ̂(Tj)

=

N+m∑
j=1

cmj

∞∫
−∞

ϕ(ω) e− iωTj dω

=

∞∫
−∞

(
N+m∑
j=1

cmj e− iωTj

)
ϕ(ω) dω

=
〈
µ(F ), ϕ

〉

(B.18)

3Actually, one has to introduce the concept of tempered distributions in order to define the Fourier
transform of a distribution, but in this work only the necessary concepts are introduced. For the
examined distributions, the Fourier transform is well defined as one can see in [35, p. 108-109].

4 A function g of rapid decrease as the absolute value of the argument tends to infinity is defined by
the property

lim
|x|→∞

|xng(x)| = 0 for all n ∈ N0,

see [35, p. 102].
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with the generalized function

F : R 3 ω 7→
N+m∑
j=1

cmj e− iωTj ∈ C. (B.19)

Note that F is locally integrable. Hence, the distribution µ(F ) is well-defined by (B.1).

Since f (m) = Dm µ(f), we also have the following for all ϕ ∈ S by applying (B.2) m
times:〈

F
{
f (m)

}
, ϕ
〉

=
〈
F
{

Dm µ(f)

}
, ϕ
〉

=
〈
Dm µ(f), ϕ̂

〉
=
〈
µ(f), (−1)mϕ̂(m)

〉
. (B.20)

The m-th derivative of the Fourier transform ϕ̂ can be computed as follows:

(−1)mϕ̂(m)(ω) = (−1)m
∞∫
−∞

(− ix)mϕ(x) e− iωx dx by Proposition A.8

=

∞∫
−∞

(ix)mϕ(x) e− iωx dx.

Inserting this into (B.20), we obtain〈
F
{
f (m)

}
, ϕ
〉

=
〈
µ(f),F

{
(i ·)mϕ(·)

}〉
.

Further, we have〈
F
{
f (m)

}
, ϕ
〉

=
〈
µ(f),F

{
(i ·)mϕ(·)

}〉
=

∞∫
−∞

f(t)

 ∞∫
−∞

(ix)mϕ(x) e− i tx dx

 dt

=

∞∫
−∞

(ix)mϕ(x)

 ∞∫
−∞

f(t) e− i tx dt

 dx

=

∞∫
−∞

(ix)mf̂(x)ϕ(x) dx =
〈
µ(

(i ·)mf̂
), ϕ〉

(B.21)

for all ϕ ∈ S. Exchanging the order of integration is possible due to Lemma C.2.
From (B.18) and (B.21) we conclude〈

µ(F ), ϕ
〉

=
〈
µ(

(i ·)mf̂
), ϕ〉 for all ϕ ∈ S
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with the generalized function F from (B.19). Therefore, we can use the following
representation of the Fourier transform of the function f in (3.10):

(iω)mf̂(ω) =
N+m∑
j=1

cmj e− iωTj

for ω ∈ R where the coefficients cmj are defined by (B.15).
This proves Lemma 3.7. Observe that the equations and definitions from the previ-

ous sections which we have used here are also valid for ϕ ∈ S. �



C. Lemmas for integration

In the previous chapter of the Appendix, we have given a short introduction to the
theory of distributions, including derivatives and the Fourier transform, in order to
explain the computation of the Fourier transform of a non-uniform spline function in
Section 3.2. In the process of discussing the concept of distributions, we have used
properties of Schwartz functions which we will now prove in the following lemmas.

Lemma C.1.
Let ϕ ∈ S. The function Φm defined by (C.1) is absolutely integrable for all m ∈ N0.

Φm : R 3 x 7→ xmϕ(x) ∈ C (C.1)

Proof. By definition of S, the function ϕ is of rapid decrease1. Before we prove the
claim, we need the following equivalent statements for the property of rapid decrease2:

ϕ is of rapid decrease

⇔ sup
x∈R
|xnϕ(x)| <∞ for all n ∈ N0

⇔ ∀ (n ∈ N0) ∃ (C ≥ 0) ∀ (x ∈ R) : |ϕ(x)| ≤ C

1 + x2n
.

(C.2)

By the definition of the property of rapid decrease, also the function Φm is rapidly
decreasing for all m ∈ N0. Since ϕ is infinitely differentiable, Φm is infinitely differ-
entiable too. This means that Φm ∈ S. Therefore, we can apply (C.2) and find a
constant C ≥ 0 with

|Φm(x)| = |xmϕ(x)| ≤ C

1 + x2
for all x ∈ R.

This yields Φm ∈ L1(R) for all m ∈ N0 by the direct comparison test3 since∫
R

1

1 + x2
dx = lim

R→∞

(
arctan(R)− arctan(−R)

)
= π <∞.

�
1The property of rapid decrease is defined in Section B.4, footnote 4 on p. 148.
2These equivalences are taken from [38].
3See [22, p. 130, 3.3a),e)].
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Lemma C.2.
Let f be defined as in (3.10) and ϕ ∈ S. Then we have

∞∫
−∞

f(t)

 ∞∫
−∞

(ix)mϕ(x) e− i tx dx

 dt =

∞∫
−∞

(ix)mϕ(x)

 ∞∫
−∞

f(t) e− i tx dt

 dx.

Proof. Let us denote the integral on the left side of the equation to prove by I. If we
take the absolute value of the integrand in I, we get the following:

∞∫
−∞

∞∫
−∞

∣∣f(t)(ix)mϕ(x) e− i tx
∣∣ dt dx =

∞∫
−∞

|xmϕ(x)|

 ∞∫
−∞

|f(t)|dt

 dx

=

∞∫
−∞

|xmϕ(x)| · C dx

with a constant C < ∞ since f ∈ L1(R) by definition of f as an almost everywhere
continuous function with compact support. Further, we have

∞∫
−∞

|xmϕ(x)| dx <∞

by Lemma C.1. Hence,

∞∫
−∞

∞∫
−∞

∣∣f(t) ixmϕ(x) e− i tx
∣∣ dt dx <∞,

and the conditions for Fubini’s theorem4 are fulfilled. Therefore, we can exchange the
order of integration in I, which yields the claim. �

4See [22, pp. 175–176, 2.1c)].



D. Proofs for non-uniform tensor-product
spline representations

In Subection 4.1.1, we have given results for the reconstruction of non-uniform tensor-
product spline representations from sparse Fourier samples. Those results are due
to the structure of the Fourier transform of tensor-products f of the form (4.1). In
order to get the representation of the Fourier transform f̂ , we have to compute the
derivatives of f , where we have to work with distributions and generalized functions.
This approach is similar to the univariate case, see Section B.1. We still need to prove
the statements from Lemmas 4.1–4.3, which will be done in the following sections.

D.1. Proof of Lemma 4.1

In Section B.1, we have introduced the concept of distributions and generalized func-
tions. There, we have only considered the univariate case. That concept easily trans-
fers to the multidimensional setting, cf. [30, Chapter 2].

Let us consider a locally integrable function g : R2 → C. Then the functional

C∞c (R2) 3 ϕ 7→
〈
µ(g), ϕ

〉
:=

∫
R2

ϕ(x)g(x) dx (D.1)

defines a regular distribution µ(g), see [30, p. 30]. We identify this distribution with
the so-called generalized function g.

Note that the function f of the form (4.1) is locally integrable. Further, observe
that the partial derivatives of f with respect to the first and second variable are
continuously differentiable up to order m1 − 3 and m2 − 3 respectively (in the case
m1,m2 ≥ 3). Thus, we have

D(m1−2,m2−2) µ(f) = µ(
�m2−2

�·m2−2
2

�m1−2

�·m1−2
1

f(·1,·2)

),
cf. [30, pp. 32–33], where the right-hand side of the equation given above is defined
accordingly to (D.1). Here, (m1 − 2,m2 − 2) denotes a multi-index.



154 D. Proofs for non-uniform tensor-product spline representations

At the beginning of Subsection 4.1.1, we have seen that the following holds for the
case m1,m2 ≥ 3:

�m2−2

�xm2−2
2

(
�m1−2

�xm1−2
1

f(x1, x2)

)
=

N1+m1−2∑
j=1

N2+m2−2∑
k=1

cm1−2,m2−2
j,k B2

j (x1)B2
k(x2)

where the coefficients cm1−2,m2−2
j,k are defined in (4.2)–(4.5). Therefore, the derivative

D(m1−2,m2−2) µ(f) is the distribution µ(f (m1−2,m2−2)) defined by (D.1) and the general-
ized function

f (m1−2,m2−2) : R2 3 (x1, x2)T 7→
N1+m1−2∑

j=1

N2+m2−2∑
k=1

cm1−2,m2−2
j,k B2

j (x1)B2
k(x2) ∈ R.

In the following part, we consider the case m1,m2 ≥ 2. For all ϕ ∈ C∞c (R2), we
have1〈

D(m1−1,m2−1) µ(f), ϕ
〉

=
〈
D(1,1)

(
D(m1−2,m2−2) µ(f)

)
, ϕ
〉

=
〈(

D(m1−2,m2−2) µ(f)

)
, (−1)|(1,1)| �

�·1
�
�·2

ϕ(·1, ·2)
〉

=
〈
µ(f (m1−2,m2−2)),

�
�·1

�
�·2

ϕ(·1, ·2)
〉

=

∫
R2

N1+m1−2∑
j=1

N2+m2−2∑
k=1

cm1−2,m2−2
j,k B2

j (x1)B2
k(x2)

�
�x1

�
�x2

ϕ(x1, x2) dx.

Since B2
j and B2

k are continuous functions with compact support and ϕ ∈ C∞c (R2),

the conditions for Fubini’s theorem2 are fulfilled. Thus, we get

〈
D(m1−1,m2−1) µ(f), ϕ

〉
=

∞∫
−∞

N1+m1−2∑
j=1

N2+m2−2∑
k=1

cm1−2,m2−2
j,k B2

k(x2)I1(x2) dx2 (D.2)

where we use the notation

I1(x2) :=

∞∫
−∞

B2
j (x1)

�
�x1

(
�

�x2
ϕ(x1, x2)

)
dx1.

1See [30, pp. 32-33] for the first two equalities.
2See [22, pp. 175 f., 2.1c)].
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Using the same steps as in (B.7), we find

I1(x2) = −
∞∫
−∞

(
1

Tj+1 − Tj
1[Tj ,Tj+1)(x1)− 1

Tj+2 − Tj+1
1[Tj+1,Tj+2)(x1)

)
�

�x2
ϕ(x1, x2) dx1.

Next, we insert this into (D.2) and obtain〈
D(m1−1,m2−1) µ(f), ϕ

〉
= −

∞∫
−∞

N2+m2−2∑
k=1

B2
k(x2)

∞∫
−∞

(
N1+m1−2∑

j=1

1

Tj+1 − Tj
cm1−2,m2−2
j,k 1[Tj ,Tj+1)(x1)

−
N1+m1−2∑

j=1

1

Tj+2 − Tj+1
cm1−2,m2−2
j,k 1[Tj+1,Tj+2)(x1)

)
�

�x2
ϕ(x1, x2) dx1 dx2

= −
∞∫
−∞

N2+m2−2∑
k=1

B2
k(x2)

∞∫
−∞

(
N1+m1−2∑

j=1

1

Tj+1 − Tj
cm1−2,m2−2
j,k 1[Tj ,Tj+1)(x1)

−
N1+m1−1∑

j=2

1

Tj+1 − Tj
cm1−2,m2−2
j−1,k 1[Tj ,Tj+1)(x1)

)
�

�x2
ϕ(x1, x2) dx1 dx2

= −
∞∫
−∞

N2+m2−2∑
k=1

B2
k(x2)

∞∫
−∞

N1+m1−1∑
j=1

cm1−1,m2−2
j,k B1

j (x1)
�

�x2
ϕ(x1, x2) dx1 dx2

where

cm1−1,m2−2
j,k :=

cm1−2,m2−2
j,k − cm1−2,m2−2

j−1,k

Tj+1 − Tj
,

j = 1, . . . , N1 +m1 − 1,

k = 1, . . . , N2 +m2 − 2,

and

cm1−2,m2−2
0,k = cm1−2,m2−2

N1+m1−1,k = 0, k = 1, . . . , N2 +m2 − 2.

Since we can exchange the order of integration in the last equation by Fubini’s theorem,
we get

〈
D(m1−1,m2−1) µ(f), ϕ

〉
= −

∞∫
−∞

N1+m1−1∑
j=1

B1
j (x1)

N2+m2−2∑
k=1

cm1−1,m2−2
j,k I2(x1) dx1.

where we define I2(x1) by

I2(x1) :=

∞∫
−∞

B2
k(x2)

�
�x2

ϕ(x1, x2) dx2.
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In order to simplify the integral I2(x1), we use the same approach as in (B.7). Hence,
we obtain

I2(x1) = −
∞∫
−∞

(
1

Sk+1 − Sk
1[Sk,Sk+1)(x2)− 1

Sk+2 − Sk+1
1[Sk+1,Sk+2)(x2)

)
ϕ(x1, x2) dx2.

Putting the last two equations together, we get〈
D(m1−1,m2−1) µ(f), ϕ

〉
=

∞∫
−∞

N1+m1−1∑
j=1

B1
j (x1)

∞∫
−∞

(
N2+m2−2∑

k=1

1

Sk+1 − Sk
cm1−1,m2−2
j,k 1[Sk,Sk+1)(x2)

−
N2+m2−2∑

k=1

1

Sk+2 − Sk+1
cm1−1,m2−2
j,k 1[Sk+1,Sk+2)(x2)

)
ϕ(x1, x2) dx2 dx1

=

∞∫
−∞

N1+m1−1∑
j=1

B1
j (x1)

∞∫
−∞

(
N2+m2−2∑

k=1

1

Sk+1 − Sk
cm1−1,m2−2
j,k 1[Sk,Sk+1)(x2)

−
N2+m2−1∑

k=2

1

Sk+1 − Sk
cm1−1,m2−2
j,k−1 1[Sk,Sk+1)(x2)

)
ϕ(x1, x2) dx2 dx1

=

∞∫
−∞

∞∫
−∞

N1+m1−1∑
j=1

N2+m2−1∑
k=1

cm1−1,m2−1
j,k B1

j (x1)B1
k(x2)ϕ(x1, x2) dx2 dx1

where the coefficients are defined by

cm1−1,m2−1
j,k :=

cm1−1,m2−2
j,k − cm1−1,m2−2

j,k−1

Sk+1 − Sk
,

k = 1, . . . , N2 +m2 − 1,

j = 1, . . . , N1 +m1 − 1,

with the convention

cm1−1,m2−2
j,0 = cm1−1,m2−2

j,N2+m2−1 = 0, j = 1, . . . , N1 +m1 − 1.

Again, we use Fubini’s theorem in the last double integral (B1
j and B1

k are continuous

functions with compact support, and ϕ ∈ C∞c (R2)), which finally results in

〈
D(m1−1,m2−1) µ(f), ϕ

〉
=

∫
R2

(
N1+m1−1∑

j=1

N2+m2−1∑
k=1

cm1−1,m2−1
j,k B1

j (x1)B2
k(x2)

)
ϕ(x1, x2) dx.
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According to (D.1), this means that D(m1−1,m2−1) µ(f) for m1,m2 ≥ 2 is the distribu-
tion generated by the generalized function

f (m1−1,m2−1) : R2 3 (x1, x2)T 7→
N1+m1−1∑

j=1

N2+m2−1∑
k=1

cm1−1,m2−1
j,k B1

j (x1)B1
k(x2) ∈ R. (D.3)

This proves Lemma 4.1. �

D.2. Proof of Lemma 4.2

In order to prove Lemma 4.2, we have to compute the derivative D(1,1) µ(f (m1−1,m2−1))

in the case m1,m2 ≥ 1 where f (m1−1,m2−1) is the generalized function defined in (D.3).
Observe that f (m1−1,m2−1) is locally integrable. Therefore, we have the following for
ϕ ∈ C∞c (R2):〈

D(m1,m2) µ(f), ϕ
〉

=
〈
D(1,1)

(
D(m1−1,m2−1) µ(f)

)
, ϕ
〉

=
〈(

D(m1−1,m2−1) µ(f)

)
, (−1)|(1,1)| �

�·1
�
�·2

ϕ(·1, ·2)
〉

=
〈
µ(f (m1−1,m2−1)),

�
�·1

�
�·2

ϕ(·1, ·2)
〉

=

∫
R2

N1+m1−1∑
j=1

N2+m2−1∑
k=1

cm1−1,m2−1
j,k B1

j (x1)B1
k(x2)

�
�x1

�
�x2

ϕ(x1, x2) dx, (D.4)

where we have applied (D.3). In the first two equalities, we have used propoerties of
derivatives of distributions, cf. [30, pp. 32-33]. We can apply Fubini’s theorem to the
double integral in (D.4) since B1

j and B1
k are almost everywhere continuous functions

with compact support and ϕ ∈ C∞c (R2). Then we have

〈
D(m1,m2) µ(f), ϕ

〉
=

∞∫
−∞

N1+m1−1∑
j=1

N2+m2−1∑
k=1

cm1−1,m2−1
j,k B1

k(x2)L1(x2) dx2 (D.5)

with the integral

L1(x2) :=

∞∫
−∞

B1
j (x1)

�
�x1

(
�

�x2
ϕ(x1, x2)

)
dx1.

Using the same steps as in (B.10) for the computation of L1(x2), we obtain

L1(x2) = −
(

�
�x2

ϕ(Tj , x2)− �
�x2

ϕ(Tj+1, x2)

)
. (D.6)
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Combination of (D.5) and (D.6) produces the result〈
D(m1,m2) µ(f), ϕ

〉
= −

∞∫
−∞

N2+m2−1∑
k=1

B1
k(x2)

(
N1+m1−1∑

j=1

cm1−1,m2−1
j,k

�
�x2

ϕ(Tj , x2)

−
N1+m1−1∑

j=1

cm1−1,m2−1
j,k

�
�x2

ϕ(Tj , x2)

)
dx2

= −
∞∫
−∞

N2+m2−1∑
k=1

B1
k(x2)

(
N1+m1−1∑

j=1

cm1−1,m2−1
j,k

�
�x2

ϕ(Tj , x2)

−
N1+m1∑
j=2

cm1−1,m2−1
j−1,k

�
�x2

ϕ(Tj , x2)

)
dx2

= −
N2+m2−1∑

k=1

∞∫
−∞

B1
k(x2)

N1+m1∑
j=1

cm1,m2−1
j,k

�
�x2

ϕ(Tj , x2) dx2 (D.7)

with coefficients cm1,m2−1
j,k defined by

cm1,m2−1
j,k = cm1−1,m2−1

j,k − cm1−1,m2−1
j−1,k ,

j = 1, . . . , N1 +m1,

k = 1, . . . , N2 +m2 − 1,
(D.8)

where we use the usual convention

cm1−1,m2−1
0,k = cm1−1,m2−1

N1+m1,k
= 0, k = 1, . . . , N2 +m2 − 1. (D.9)

Due to
∞∫
−∞

B1
k(x2)

�
�x2

ϕ(Tj , x2) dx2 = −
[
ϕ(Tj , Sk)− ϕ(Tj , Sk+1)

]
(cf. the computational steps in (B.10)), (D.7) yields

〈
D(m1,m2) µ(f), ϕ

〉
=

N1+m1∑
j=1

N2+m2−1∑
k=1

cm1,m2−1
j,k

[
ϕ(Tj , Sk)− ϕ(Tj , Sk+1)

]
=

N1+m1∑
j=1

(
N2+m2−1∑

k=1

cm1,m2−1
j,k ϕ(Tj , Sk)−

N2+m2∑
k=2

cm1,m2−1
j,k−1 ϕ(Tj , Sk)

)

=

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k ϕ(Tj , Sk). (D.10)
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Here, we use the definition

cm1,m2

j,k := cm1,m2−1
j,k − cm1,m2−1

j,k−1 ,
k = 1, . . . , N2 +m2,

j = 1, . . . , N1 +m1,
(D.11)

with the convention

cm1,m2−1
j,0 = cm1,m2−1

j,N2+m2
= 0, j = 1, . . . , N1 +m1. (D.12)

In order to express the right-hand side in (D.10) in terms of distributions, we have
to use the definitions of the translation operator and the Dirac delta distribution,
which we have only introduced for the univariate case so far. In the case of ordinary
functions, the translation operator τa,b for (a, b)T ∈ R2 is given by

τa,bϕ(x1, x2) :=ϕ(x1 − a, x2 − b). (D.13)

The translate τa,bµ of a distribution µ is defined for (a, b)T ∈ R2 by〈
τa,bµ, ϕ

〉
=
〈
µ, τ−a,−bϕ

〉
for all ϕ ∈ C∞c (R2), (D.14)

cf. [26, p. 9]. Further, the rule

C∞c (R2) 3 ϕ 7→ 〈δ, ϕ〉 :=ϕ(0, 0) (D.15)

defines the Dirac delta distribution δ, see [30, p. 31].

Incorporating these definitions, we get the following from (D.10):

〈
D(m1,m2) µ(f), ϕ

〉
=

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k ϕ(Tj , Sk)

=

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k τ−Tj ,−Skϕ(0, 0)

=

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k

〈
δ, τ−Tj ,−Skϕ

〉
=

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k

〈
τTj ,Skδ, ϕ

〉
=
〈N1+m1∑

j=1

N2+m2∑
k=1

cm1,m2

j,k

(
τTj ,Skδ

)
, ϕ
〉
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for all ϕ ∈ C∞c (R2). Hence, the distributional derivative D(m1,m2) µ(f) of the gener-
alized function f in the case m1,m2 ≥ 1 is a linear combination of translated Dirac
delta distributions, which we denote by f (m1,m2), i.e.

f (m1,m2) :=

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k

(
τTj ,Skδ

)
(D.16)

where the coefficients cm1,m2

j,k are defined by (D.8), (D.9), (D.11), and (D.12).
This completes the proof of Lemma 4.2. �

D.3. Proof of Lemma 4.3

The statement from Lemma 4.3 provides a representation of the Fourier transform f̂
of the function f which is considered in (4.1). That representation is used in Theorem
4.4 in order to derive a theory for the reconstruction of such functions f from sparse
Fourier data.

In the section on hand, we want to prove the claim of Lemma 4.3. This will be done
by computing the Fourier transform of the generalized function f (m1,m2) which we
have determined in the previous section, see (D.16). Therefore, we need the definition
of the Fourier transform of a distribution. Let µ be one of the examined distributions
in the previous sections. The Fourier transform F{µ} is defined analogously as in the
univariate case (see p. 148). It is the linear functional on the space S(R2) which fulfils〈

F{µ}, ϕ
〉

=
〈
µ, ϕ̂

〉
for all ϕ ∈ S(R2), (D.17)

cf. [30, p. 47]. The notation ϕ̂ indicates the ordinary Fourier transform of ϕ. Fur-
ther, S(R2) denotes the Schwartz space of rapidly decreasing, infinitely differentiable
functions in R2.

Consider ϕ ∈ S(R2). Then we have

〈
F{f (m1,m2)}, ϕ

〉 (D.16)
=

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k

〈
F{(τTj ,Skδ)}, ϕ

〉
(D.17)

=

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k

〈
τTj ,Skδ, ϕ̂

〉
(D.14)

=

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k

〈
δ, τ−Tj ,−Sk ϕ̂

〉
(D.15)

=

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k τ−Tj ,−Sk ϕ̂(0, 0)
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(D.13)
=

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k ϕ̂(Tj , Sk)

=

∫
R2

(
N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k e− i ·(ω1Tj+ω2Sk)

)
ϕ(ω1, ω2) dω

=
〈
µ(F ), ϕ

〉
(D.18)

where the generalized function F is given by

F : R2 3 (ω1, ω2)T 7→
N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k e− i ·(ω1Tj+ω2Sk) ∈ C. (D.19)

Since F is locally integrable, µ(F ) is well-defined by (D.1). This means that the Fourier

transform F{f (m1,m2)} of the distribution f (m1,m2) is identified with the generalized
function F .

We still need a representation of the Fourier transform f̂ . Using the relation
f (m1,m2) = D(m1,m2)µ(f), we also have the following for ϕ ∈ S(R2):

〈
F{f (m1,m2)}, ϕ

〉 (D.17)
=

〈
D(m1,m2)µ(f), ϕ̂

〉
=

〈
µ(f), (−1)|(m1,m2)| �

m1

�·m1
1

�m2

�·m2
2

ϕ̂

〉
. (D.20)

The last equality is due to properties of derivatives of distributions, cf. [30, p. 46].
Moreover, the mixed partial derivative of ϕ̂ in (D.20) is given by

(−1)|(m1,m2)| �
m1

�ωm1
1

�m2

�ωm2
2

ϕ̂(ω1, ω2) =

∫
R2

(ix1)m1(ix2)m2ϕ(x1, x2) e− i ·(ω1x1+ω2x2) dx

= F
{

(i ·1)m1(i ·2)m2ϕ(·1, ·2)
}

(ω1, ω2),

see Proposition A.5. Thus, we have〈
F{f (m1,m2)}, ϕ

〉
=
〈
µ(f),F

{
(i ·1)m1(i ·2)m2ϕ(·1, ·2)

}〉
=

∫
R2

f(t1, t2)

( ∫
R2

(ix1)m1(ix2)m2ϕ(x1, x2) e− i ·(t1x1+t2x2) dx

)
dt.

Observe that R2 3 (x1, x2)T 7→ xm1
1 xm2

2 ϕ(x1, x2) ∈ R is also a Schwartz function
by definition of S(R2), cf. [66, p. 211], and recall that S(R2) ⊂ Lp(R) for all p ≥ 1,
see [66, pp. 211-212]. Further, we have f ∈ L1(R2) since f is an almost everywhere con-
tinuous function with compact support. These properties ensure that the conditions
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for Fubini’s theorem are fulfilled such that we can exchange the order of integration
in the multiple integral above. Then we get

〈
F{f (m1,m2)}, ϕ

〉
=

∫
R2

f(t1, t2)

( ∫
R2

(ix1)m1(ix2)m2ϕ(x1, x2) e− i ·(t1x1+t2x2) dx

)
dt

=

∫
R2

(ix1)m1(ix2)m2ϕ(x1, x2)

( ∫
R2

f(t1, t2) e− i ·(t1x1+t2x2) dt

)
dx

=

∫
R2

(ix1)m1(ix2)m2 f̂(x1, x2)ϕ(x1, x2) dx

=
〈
µ

((i ·1)m1 (i ·2)m2 f̂)
, ϕ
〉
. (D.21)

From (D.18) and (D.21) we deduce〈
µ(F ), ϕ

〉
=
〈
µ

((i ·1)m1 (i ·2)m2 f̂)
, ϕ
〉

for all ϕ ∈ S(R2),

where the generalized function F is defined in (D.19). Hence, the Fourier transform f̂
of the function f considered in (4.1) can be represented by

(iω1)m1(iω2)m2 f̂(ω1, ω2) =

N1+m1∑
j=1

N2+m2∑
k=1

cm1,m2

j,k e− i ·(ω1Tj+ω2Sk), (ω1, ω2)T ∈ R2.

The coefficients cm1,m2

j,k are defined accordingly to (D.8), (D.9), (D.11), and (D.12).
Thus, the proof of Lemma 4.3 is completed. In the computations above, we have

used some definitions and equations from the previous sections. Note that they also
hold for ϕ ∈ S(R2). �
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