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Abstract

In this thesis, we applied tools of algebraic analysis and knowledge of
symplectic geometry and contact geometry to give a normal form of certain
class of microdifferential operators, and then studied analytic singularities
of solutions with the advantage of normal form. The microdifferential
operators are of real analytic coefficients, real principal symbols and
simple characteristics near radial points. We linearized the contact vector
fields with real analytic coefficients, classified the radial points and find an
exact normal form of our operators.

In the last two chapters, by restricting our discussion in the space of
Fourier hyperfunctions, first we fully studied the analytic singularities in
two dimensional case, and gave some estimates of singularities in higher
dimensional cases. Roughly, near an attracting (resp. repelling) generic
radial point, we can found solutions with minimal analytic singularity,
i.e. the radial direction. Furthermore, near a non-attracting (resp.
non-repelling) radial point, if the radial direction is contained in analytic
wavefront set of the solution, then either the intersection of analytic
wavefront set with stable manifold or with unstable manifold is non-empty.
Moreover we discussed solution with prescribed singularities and gave
a description of propagation of analytic singularities, especially in three
dimensional case.
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Chapter 1

Introduction

First we give a list of some important notations of the thesis in section [[.If Then
we provide a short introduction of algebraic analysis in section [I.2] with a general
example to reveal the motivation of using algebraic analysis to study systems of partial
differential equations. Later in section|l.3|we state our problem with some assumptions.
In section |1.4, we have a short review of previous work related to our problem. The
main results of the thesis are listed in section [I.5] At last we give a summary of each
chapter and show the relation among chapters.

1.1 List of notations

Notation | Description or definition Reference
A the sheaf of germs of real analytic functions Def. |2.2.3|
A. the space of rapid decreasing real analytic functions Def. |C.3.1|
A the space of slowly increasing real analytic functions Thm. |C.5.2|
B the sheaf of germs of hyperfunctions Def.[2.2.4]
B the sheaf of germs of hyperfunctions with compact support | Thm. |C.5. 1|
BnNils the sheaf of hyperfunctions in the Nilsson class Rmk. |B. 1.1 1|
PBJ{0}] | the sheaf of hyperfunctions with support at () Lem.|5.2.2]
B* the hyperfunction solutions space w. r. t. the operator P Thm. |B.1.6|
the sheaf of germs of microfunctions Def. |2244L
D the sheaf of rings of differential operators Section |1 .2|
D the compactification of R™: R" L S"! App. |C—5r
E the sheaf of microdifferential operators Def. |2.5.7|
& the sheaf of formal microdifferential operators Def.[2.5.13
£ the sheaf of micro-differential operators of infinite order Def.[2.5.14
F Sato’s space Def. [C.3.3|
F' Fourier hyperfunctions App. |C.3|
F(f), f | the Fourier transformation of f Def. |C.3.8|




CHAPTER 1 Introduction

Notation | Description or definition Reference

H, the Hamiltonian vector field associated to function p

M D-module Section 1.2]
o the sheaf of germs of holomorphic functions Def. |22—3[
Py the associated normal form of operator P

270 the sheaf of exponentially decreasing hyperfunctions Def.|C.3.8

2 the sheaf of slowly increasing hyperfunctions Def.|C.4.1

2, Sheaf of exponentially decreasing hyperfunctions of all types | App.|C.5|

R radial vector field Def.4.2.1

S.S.(e) | singular spectrum Def.[2.2.7

Thu the standard FBI transform of u App.|D.1|

WE,(e) | analytic wavefront set Def. |D. 1 .3|

Table 1.1: List of notations

1.2 Background

Algebraic analysis, as know as analysis using the algebraic methods of homological
algebra and sheaf theory to study analytic (system of) partial differential equations,
with the contribution of J. Bernstein, P. Schapira and other French mathematicians, has
been extensively developed in the late 1960s by the Kyoto school, M. Sato, T. Kawai,
M. Kashiwara and other Japanese mathematicians.

M. Sato published two papers on hyperfunction theory in 1959/60 [64], gave us
a new vision to study linear partial differential equations. By using sheaf theory and
complex analysis, he constructed the sheaf of germs of hyperfunctions. Then came
in 1971 the Master thesis of M. Kashiwara [36], in which he settled the foundations of
analytic D-module theory and gave plenty of basic results. It helped to deal with general
systems of linear partial differential equations. Two years later, in 1973, Sato created the
algebraic microlocal analysis to analyse objects of a manifold in the cotangent bundle,
with Kashiwara and Kawai, in their long and delicate paper [63]], quoted as [SKK]
nowadays everywhere. The phrase “microlocal analysis” refers to the approach to the
study of partial differential equations which moves the problem of singularities to the
characteristic variety that stays on the cotangent bundle. It is a well developed subject
and the classical approach for smooth manifolds can be found in the fundamental work
of Hormander [29], while another approach started from [SKK], so called “algebraic
microlocal analysis” |'| deals with the problem in a more algebraic way.

During those years the subject has grown steadily, numerous great results and
important theories are acquired in widespread fields of contemporary mathematics,
like microlocal analysis, singularities theory, D-module and its applications to
representation theory, mathematical physics and so on. For instance, Martinez had
shown the Edge-of-the-Wedge theorem, found by a theoretical physicist Bogolyubov in
1956, played an important role in the theory of hyperfunctions and microfunctions [S7].

! For detail, please check G. Kato and D. C. Struppa’s book [45].



1.2 Background

Study the analytic singularities of solutions is one of the most significant problems
in analysis of analytic partial differential equations. Kashiwara, Kawai and Kimura
followed Komatsu’s terminology “singularity spectrum” [°| in [KKK] [40] to describe
the analytic singularities of hyperfunction solutions, while Hérmander introduced the
notion of analytic wave-front set to analyze the singularity structure of distribution
solutions of linear differential equations. Moreover, Bros and Iagolnitzer also
introduced a similar notion “essential support” of a distribution motivated from some
physical problems, which can be well studied by the Fourier-Bros-Iagolnitzer (referred
to as FBI) Transformation. In the category of distributions, J. M. Bony [5] and some
other mathematicians, such as Bros and lagolnitzer, Kataoka, Nishiwada, and Hill
showed independently that those three concepts coincide in the middle of 1970s.

To unravel the powerful algebraic tools in studying systems of partial differential
equations, we start with a general example, which can be found in [31]], [43], [67].

Let U be an open subset of C" and z = (21, - , z,) be local coordinates of U. A
(complex analytic linear partial) differential operator on U is an operator of the form

P(z,0.) = Y aa(2)02,
la|<p

where a,(2) € O(U),a = (o, -+, ap) with |a| = oy +- - -+, and 02 = 921 - - - O2n.
The restriction of P defined on U to an open subset V' is the operator

P(z,0.)ly = Y aa(z)|v02.

la|<p

The above differential operators form a presheaf D¢ of rings on C”, and which actually
is a sheaf. Note that ¢~ has a natural structure of left D¢ -module. For an open subset
U of C", denote Dy, the restriction to U of the sheaf Dgn.

First consider a differential equation
Pu =0, (1.1)

where P is a differential operator defined in U and w is a single unknown function. The
set Homp (., 0') of D-linear homomorphism from .# to € gives

Homp(#, 0) = Homp(D/DP, 0)
~ {¢ € Homp(D, O)|p(P) = 0}

where .# = D/DP is the left D-module associated with the equation (1.1). That is
Homp(A,0) ~{f € O|Pf =0}.

Hence Homp (., 0') represents the group of the holomorphic solutions of the equation

(T1).

2 Sato, Kashiwara and Kawai called it “singular spectrum” in [SKK], originally provided by Boutet
de Monvel, where “spectrum” first meant the support of the Fourier transform of a function.
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Generally, a system of linear partial differential equations of n unknown functions
Uy, -+ , U, can be written as

Y Pju;=0, i=1,--,m (1.2)
=1
A Dy-linear morphism ¢ : DE™ — D™ with

0(Q1,- ,Qm) = (Z QiPi, - ,Z QiPi)
i=1 i=1

gives an exact sequence
D" — DE™ — Mp — 0,

where ./, is the cokernel of . Assume S is the sheaf of solution space, which can be
chosen as the space of C'*° functions, the space of Schwartz distributions, the space of
holomorphic functions, the space of hyperfunctions and so on. Acting the contravariant
functor s#omp,, (e, S) then we have the exact sequence

0 —— Homp, (Mp,S) — 8 —L gom

and hence #omp,, (Mp,S) ~ ST is the solution sheaf. That is, the Dy-module .#Zp
represents a homogeneous system of partial differential equations (|1.2)) naturally.

Assume wuq, -+ Uy U1, Uy € T(U,S) and
Y Piuj=wv;, i=1--,m. (1.3)
j=1
For any differential operator ()1, - - - , ),,, on U, we have

Z(Z QiPij)u; = Z Qivi,
j=1 i=1 i=1
If 7 Q:P;; = 0then >_)"  Q;u; = 0. The algebraic compatibility condition of the

system (1.3) is giving by (Q1, - - - , @.,). Define Ap = Ker(p) and Zp = Im(yp), then

we have
0 — Mp — D™ 2 Ip —— 0

0 —— Zp LDE‘?”—>.//ZP—>O
where ¢ = 3 o a. And we get two exact sequences
0 — Homp, (Mp,S) = S = Homp,(Zp,S) = Extp, (Mp,S) = 0

0 — Homp, (Ip,S) = S = Homp, (Np,S) = Extp, (Ip,S) — 0



1.3 The problem

The second exact sequence shows
Homp, (Ip,S) ={v e S : Qu=0,YQ € Np}

so Zp is a Dy-module which represents the system of algebraic compatibility conditions
of the system P. The first exact sequence shows, the elements of Exty, (.#p,S), are
the class of vectors v, of S)* satisfying the algebraic compatibility conditions modulo
those for which the system is truly compatible.

Moreover, for k > 1,

Eaty, (Ip,S) ~ Exty ™ (Mp,S).

In summary, the study of the system (I.3) is equivalent to the study of the
Dy-module .#p and all of its full solution complex R omp, (#p,S).

We will show a simple example to see the power of D-module. Similar examples
can be found in Hotta [30], Kashiwara [35], [SKK][63]. Assume A # 1, let us consider

two equations

d
2 Ny =
(:de Ju =0,

and p
— = A+ 1Dv=0.
(:de 1)

Even though the two equations look different, they are equivalent to each other by the

transformations u = ﬁ%v and v = xu. Actually we have the isomorphism

oL\ 241
Coker(D ——— D) ~ Coker(D ——— D).

1.3 The problem

Let M be an n dimensional real analytic manifold, let X be the complexification of
M. Let %) be the sheaf of germs of hyperfunctions with support in M, and let
/) be the sheaf of germs of real analytic functions with support in M. Let P be a
microdifferential operator defined on the cosphere bundle v/—1S5*M Pl We want to
study the analytic singularities of solution v € %y (M) of Pu € oy (M) for the
operator P with real analytic coefficients, real-valued principal symbol p, and simple
characteristics (i.e. p = 0,dp # 0on 7*X\0. Itis a non-degeneracy assumption.) near
radial points, where the Hamiltonian vector field H,, is nonzero multiple of the radial
vector field R in microlocal sense. Here, the non-degeneracy assumption of simple
characteristics implies that the radial points of P is microlocally isolated, i.e., there is
no other ray near the radial direction consists of radial points.

Even though we introduce the notion of a microdifferential operator and its

3 We follow the notation of [KKK][40] and [SKK][63], while the standard coordinates can be
choosing as (z, v/—1&dxoo).
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properties for a complex manifold X and the projective cotangent bundle P*X (or
the cosphere bundle S*X), as in Sato, Kashiwara and Kawai’s famous paper [SKK]
[63], we would like to follow [KKK] [40] for the notion of microdifferential operators
defined on v/—1S5*M for a real analytic manifold M to deal with our problem. In fact,
in [SKK] the theory is developed to define an operator on a real manifold by restriction,
which is more general but less intuitive. Although we have a less general definition of
a microdifferential operator then the one in [SKK], it is better to consider our problem
with it for the coefficients of our operators are real analytic. We will keep the notion in
real case in the following chapters unless a special elaborate.

According to Sato’s Fundamental theorem, outside the characteristic variety the
operator is invertible, in that case the answer of our problem is trivial, wherefore we
will concentrate on the characteristic variety Char(P), which is a closed subset of the
cotangent bundle 7™ M. I will use two equivalent notions freely, the singular spectrum
S.S.(e) and the analytic wavefront set WF,(e) to describe the analytic singularities,
while the former one stays in /—15*M and the latter one in 7% M \ 0.

1.4 Previous work

Algebraic microlocal analysis concentrates on the real analytic setting, while the
classical microlocal analysis usually works in the smooth setting, such as, smooth
manifold, smooth coefficients of operators and soon on. By considering the operator
near a point that is not radial, there are abundant of results of our problem.

Let X be an smooth (or real analytic) manifold. An operator P is of real principal
type if H, )t Ron T*X \ 0, where R = ), &0, is the radial vector field (also known
as Euler vector field) and p is the principal symbol of P. Roughly, a point where the
condition H), K R violates is called a radial poimﬂ of P, i.e., aradial point is one where
the Hamiltonian vector field /), is a multiple of the radial vector field R. Due to the
assumptions of our problem in section [I.3] we would like to outline the previous work
in Table[I.2]and introduce them as following.

Smooth setting Real-analytic setting
Operators of real principal type | L. Hormander M. Sato and others
Radial point Guillemin-Schaeffer | To be done

Table 1.2: Previous work

(I) Real principal case in the smooth setting.

Let X be a smooth manifold, let P € U™ (X)) be a pseudo-differential operator
defined on X, and let p,,(z,&) be the principal symbol of P. Assume p,, is
real-valued and assume p,,, = 0 implies dp,,, # 0. Such operators are well studied,

4 One can find the exact definition in section
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(1)

for instance in Chapter 26 of Hormander [28]], with the assumption that P is of
real principal type.

Definition 1.4.1. Let P ba a pseudo-differential operator that satisfies the above
conditions, say P is of principal type if V¢p,, # 0 on the characteristics set

Char(P) = {(z,£) € T"X \ 0lpim(z,£) = 0}
of P.

Remark 1.4.2. A operator P is of principal type if and only if dp,, and « are
linear independent on Char(P), where o = &dz is the canonical one-form on
T*X\ 0.

Hormander studied the global solvability of the equation Pu = f modulo C'*
and discussed the propagation of singularities.

Theorem 1.4.3. Let X be a smooth manifold and let P € V™ (X)) be properly
supported and have a real principal symbol p. If u € D' and Pu = f, then
WEF (u) \ WF(f) is contained in Char(P) and is invariant under the flow defined
there by the Hamilton vector field H,.

Theorem 1.4.4. Let P be of real principal type in the manifold X. Then the
following conditions are equivalent:

(@) P:D — D' /C®(X) is surjective.

(b) For every compact set K C X, there is another compact set K' C X such
that

ue &'(X), sing supp P*u C K = singsuppu C K'.

Here P* is the adjoint of P.

(¢) For every compact set K C X, there is another compact set K' C X such
that every bicharacteristic interval with respect to P having endpoint over
K mush lie entirely over K'.

Real principal case in the real analytic setting.

The case that the Hamiltonian vector field /, and Euler vector field R are not
collinear was well studied not only in smooth case but also in real analytic setting,
r.e. in [KKK] [40], Kato-Struppa [45], [SKK] [63] and so on, they studied the
structure of systems of microdifferential equations and obtained several normal
forms.

For microdifferential operator of principal type, Sato, Kashiwara and Kawai
obtained plenty of profound results in [SKK] [63]. Normal forms are given to
analyze the structures of some systems of microdifferential systems. Propagation
of analytic singularities have been studied with the advantage of normal forms.
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Theorem 1.4.5. ([KKK] [40], Chap. IV, §3, Theorem 4.3.2) Let P(z,D,)
be a microdifferential operator of order m defined in a neighborhood of

(20, vV —1&0) = (0,/=1(0,- -+ ,0,1)dzrco).

(a) In the case m = 1, assume the principal symbol o1(P) = &, then in a
neighborhood of (xy,/—1£,00), one has

EJEPXEED,.

(b) In the case m > 2, assume the principal symbol o,(P) = £, then in a
neighborhood of (xy,/—1£,00), one has
EXJEXP = E>/EXDT.
Example 1.4.6. Consider two linear differential equations
P(z,0,)u(x) = *u(x) =0
and
Q(y, 0y)v(z) = 821}(3/) — Oyv(y) = 0.

The principal symbols of P and () are the same, but the structure of solutions are
differential. However, there is an intrinsic connection between solutions of each
equation, since the above two equations are equivalent as left £°°-modules, i.e.,

EXJEXP = EX/EXQ.
In particular, the solution sheaves of hyperfunctions (resp., microfunctions) %%
and A (resp., €' and €'?) are isomorphic.

Theorem 1.4.7. ([KKK] [40]], Chap. 1V, §3, Theorem 4.3.1) Let .# be an
E-module defined in a neighborhood of (xo,&y) € T*X \ 0 be such that
(a) There is a left ideal T such that # = M |T.

(b) The zero set V(J) of J := Up{om(P)|P € (I) N E(m)} is a non-singular
manifold of codimension d in a neighborhood of (¢, &), and the canonical
one-form does not vanish on V (J).

(c) The zero set V (J) is real.

(d) The totality of £-homogeneous analytic functions which vanishes on V (J)
is J. Via a quantized contact transformation ./ can be transformed into

Remark 1.4.8. The system .4/ is sometimes called a de Rham system, or a partial
de Rham system.

Definition 1.4.9. Let V' be an involutive submanifold of S*R" satisfying (b) and
(c) in Theorem and suppose

V={(2,6) € 5°M: fi(z,6) =+ = falz,£) = 0},
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The bicharacteristic manifold B = B, ¢,) associated with V and passing through
(x0,&) € V is the d-dimensional integral manifold through (zy, &) of the d
Hamiltonian operators

n 8f] 3f](9f] o
3 (Gl ane) 9=t

Theorem 1.4.10. ( [45]], Chap. 6, §6.5, Theorem 6.5.6) Let .# be the £-module
as in Theorem Then in a neighborhood of (xy,&y) the microfunction
solution sheaf 7€ omg(# ,C) is supported in V and is locally constant along
each bicharacteristic manifold. Moreover, 7€ omg(# ,C) is a flabby sheaf in the
direction transversal to bicharacteristic manifolds, and £ xtfg (A ,C)=0forj # 0.

Remark 1.4.11. Say a sheaf .# is flabby in the direction transversal to
bicharacteristic manifolds, it means there is a manifold U’, a flabby sheaf .#’
on U’ and a smooth morphism ¢» : U NV — U’ such that the bicharacteristic
manifolds in U NV are the fibers of ¢ and .F |yny = 1.7,

From Theorem , we have the following two features. The flabbiness of the sheaf
of microfunction solutions is a restatement of the propagation of singularities
along bicharacteristic manifolds. The vanishing of the higher Ext functors shows
the system .# is locally solvable, by giving suitable algebraic compatibility
conditions.

Theorem 1.4.12. ([KKK] [40], Chap. IV, §3, Theorem 4.3.5) Let P be a
microdifferential operator of order m defined in a neighborhood of (xo,&) €
T*X \ 0 and p,(z, &) is the principal symbol. Assume {pp,, Pr} = 0, then the
equation Pu = 0 can be transformed into the following equation .V, defined in
a neighborhood of (y,/—1n) = (0;+/—=1(0', 1)) by an invertible real quantized

contact transformatlon.

f/V(a_yl—\/_yly) =0.

Remark 1.4.13. If we assume {pp,Ppm} = 0, then the corresponding normal
equation is

N (— +vV- yl ) =0
oy Y

in a neighborhood of (y,v/—1n) = (0;/—1(0/, 1)).

Remark 1.4.14. The condition {p,, p,,} # 0 implies dp,, }f « for the canonical

one-form «, which is coincide with the non-radial condition, or the operator is of

real principal type.

Remark 1.4.15. Under the assumption of Theorem [1.4.7, V' = {pn(z,{) = 0}

and V' = {p,, = 0} intersect transversally and oy, defines a contact structure

on VN V. When codim(V NV) =2and V NV has contact structure &, -, the

normal equation corresponding to Pu = 0 is given by

(0,, £ V—1y¥0,, )u = 0.
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Theorem 1.4.16. ([KKK] [40], Chap. IV, §3, Theorem 4.3.6) Let P(z, D,) =
Dy — \/=12.D,, and let Q(x,D,) = D, + /—1xz1D,. Then there is a
non-zero microlocal operator ¥ defined in a neighborhood of (¢, v/ —1&y00) =
(0;/=1(0',1)00) € v/—1S*R™ such that the sequence

A P

0 sy ¢ s ¢ ¢ ¢ s 0

s exact.

Hence, P is solvable in a neighborhood of (xg,\/ —1&y00), while Q) is not
solvable, and the image of () is characterized as the kernel of % .

Theorem 1.4.17. ([KKK] [40], Chap. IV, §3, Theorem 4.3.7) Let P(x, D,) be
a microdifferential operator of order m, which is defined in a neighborhood of

(xo; vV —1&p00) € V—15*M, and let p,,,(x,/—1&) be the principal symbol of P.
Then one has

() If pm(xo, v —1&0)=0 and {pm, Pm } (x0, V—1&) = 0, then P is epimorphic
in a neighborhood of (xo; /—1&y00) and Ker(P) is equal to the image of a
microlocal operator .

Q) If pm(z0,V—=1&)=0 and {pm,pm}(xo,vV/—1&) 5 0, then P is
monomorphic in a neighborhood of (zo; \/—1&y00) but not epimorphic, and
Im(P) is equal to the kernel of a microlocal operator % . That is, for the
equation Pu = g to be solvable, % g = 0 must hold.

There are systems have characteristic varieties which not satisfy the condition of
Theorem we will introduce two of them in the following statement.

Theorem 1.4.18. ( [45], Chap. 6, §6.5, Theorem 6.5.7) Let #4 = E/I be a
system of microdifferential equations in one unknown with simple characteristics.
Assume its characteristic variety V satisfies

(i) V NV is a non-singular involutive manifold;

(i) V NV intersect transversally;

(i) w|yp # 0,

where V is the complex conjugate of V, then the system .# is microlocally
equivalent to the partial Cauchy-Riemann system

9
+v/-1

8.1'2]',1 8.1'2]'

ou 1 0

)UZO, j:1,"',d,

where d is the codimension of V.

To state the propagation of regularity results for this systems, first we give an
extra definition.

Definition 1.4.19. Let M be a system of finite order microdifferential operators
whose codimension d characteristic variety V' satisfy all three conditions of
Theorem The 2d-dimensional bicharacteristic manifold of V' NV through
(w0, vV—1&y00) is called virtual bicharacteristic manifold of M.
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Remark 1.4.20. The bicharacteristic manifold is invariant under contact
transformation, and the virtual bicharacteristic manifold is invariant under real
contact transformations.

Remark 1.4.21. The virtual bicharacteristic manifold of the system .4 in
Theorem |1.4.18|through (¢, v/—1&y00) is given by

{(x,V=1éc0) s j = (z0); for j=2d+1, - m&=E}

Then we have

Theorem 1.4.22. Let # = £ /T be as in Theorem and let U be any open
subset in the virtual bicharacteristic manifold of /. Then every microfunction
solution of ./ which vanishes in U also vanishes everywhere in the virtual
bicharacteristic manifold.

In the year 1957, H. Levy [53] gave an equation

(500, +V=10,) = (1 + VE) e Ju =

without local solutions, which greatly promoted the solvability problems of linear
partial differential equations. The work of H. Lewy on solvability theory induced
the study of so called Lewy-Mizohata type systems.

Definition 1.4.23. ([SKK] [63], Chap. III, §2.3) Let M be a real manifold. Let
an involutive submanifold V' in a complex neighborhood of (z¢, v/ —1&ydzoco €
v —15*M be written as

{(z.V/=18dzo0)|ps (x, V=1€) = - = pa(, V=18 = 0}.

Then the generalized Levi form L(z,£) of V is the Hermitian matrix whose
coefficients are the Poisson brackets

{pj, Pr}i<jp<a

Remark 1.4.24. The signature of the generalized Levi form is independent of
the choice of the defining functions p;, and is also invariant under a real contact
transformation.

Theorem 1.4.25. ([SKK] [63], Chap. III, §2.3) Let .#4 = £ /I be an E-module
defined in a neighborhood of (o, /—1&y00) and which satisfies the conditions
(b) and (d) in Theorem [1.4.7] If the generalized Levi form of V(J) has p
positive eigenvalues and d — p negative eigenvalues at (zy,/—1&y00), then M
is microlocally equivalent to the (p,1 — p)-Lewy-Mizohata system

N = (axj—v—l%ﬁxn)u:o j=1,---,r

11
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(I10)

In the local theory of linear partial differential equations, with the above
discussion we have an elegant structure theorem for general systems:

Theorem 1.4.26. ([SKK] [63], Chap. 111, §2.4) Let .# be admissible and regular
system of micro-differential equations such that V NV is regular T.(V) N
T.(V) = T,(VNV) for any v € V, and such that its generalized Levi form
is of constant signature (p,q). Then .# is microlocally isomorphic to a direct
summand of the direct sum if a finite number of copies of the system A which, in
a suitable neighborhood, has the following form:

Oz, ju =0 =1, p
. (Dry oy + \/—_10xr+2k)u =0 k=1-,s

(Onrinery + V =12y 4960105, )u =0 [=1.- .q

Oz, 42000 — V=12 1250,)u =0 l=q+1,---,p+q

where r = 2 codim(V) — codim(V NV) and s = codim(V NV) — codim (V) —
(P +q)-

Radial case in the smooth setting.

However, in the radial point case we only have a few results in smooth setting,
such as [18], [22], [75]. In Guillemin and Schaeffer’s paper [22], they studied
the normal form of P in the non-resonant case, and had the result:

Theorem 1.4.27. ([GS] [22]) Let P : C*(X) — C>®(X) be a second order
pseudo-differential operator with real principal symbol on n dimensional smooth
manifold X. Let 1° = (x¢,&,) be a generic radial point E] of P. Then P can be
microlocally conjugated to a second order differential operator on R"™ of the form

Py = (A0, 0p) + (Ba',0,)0,, + (C, x’)@in + 'ya:nain +600,,. (1.4)

Here A, B, C are constant (n — 1) x (n — 1) matrices, A and C are symmetric,
x= (2" 2,),y€R\0and b € C.

With additional conditions on the generic radial points, the normal form Py
has simpler forms. More specifically, near a hyperbolic radial point (x¢, &),
a pseudo-differential operator P of first order is microlocally equivalent to

Pyp = (B, 0y) + 72,0, + 0. (1.5)

Here B is a constant (n — 1) x (n — 1) matrix.

Near an elliptic radial point (¢, &), a pseudo-differential operator P of seconder
order is microlocally equivalent to

Pye = £((A0,,0,) + (C2', )02 ) + 72,0y, + 00, (1.6)

5 See Definition A.2.8.

6 See Definition

12
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Here Aisa (n—1) x (n — 1) identity matrix, Cis a (n — 1) x (n — 1) diagonal
matrix with all non-vanishing entries larger than * /16.

Remark 1.4.28. Elliptic (resp. hyperbolic) radial poinﬂ are determined by the
eigenvalues of a linear symplectic mapping at the generic radial point.

Then they discussed the propagation of singularities by taking the advantage of
normal forms. At first they fully studied the propagation of singularities in two
dimensional case:

Theorem 1.4.29. Let P be a pseudo-differential operator in Theorem[1.4.27| and
let the dimensionn = 2, vy = (0,0;0,1), v = 1. Set R, vy = {(0;0',n)|n > 0}.
Then

(1) when the radial point v is elliptic, there is a solution of the equation Pu =
fwith f € C°°(X) such that the minimal wave front set is WF(u) = R, 1.

(11) when the radial point v is hyperbolic attractor/repellor, there is a solution
of the equation Pu = f with f € C*°(X) such that the minimal wave front
setis WF(u) = R, .

(iii) when the radial point vy is hyperbolic saddle, and if v° € WF (u), then one
of the four projected null bicharacteristic curves Fj which go asymptotically
to V° must intersect WF (u):

PITEE (x,y,&,m) = (e",0;0,1), t — —o0,
P (x,y,&,m) = (—€',0;0,1), t — —o0,
g (z,y,&,m) = (0,0; e~ 0+ 1), t — 400,
E4 : (33', Y, 57 77) = (07 O; _6_(1+>\)t7 1)7 t — +oo.

That is, there are 3 minimal wave front sets: 31 U R vy, X9 U R,vg and
23 U 24 U R+V0.

In high dimensional situation, they only had results in a special case, as know as
attracting (resp. repelling) case.

Theorem 1.4.30. Let P be a pseudo-differential operator in Theorem (1.4.27
and set the dimension of the smooth manifold satisfies n > 3. Then if the radial
point 0 is attracting/repelling ﬂ there is a solution of the equation Pu = f with
f € C(X) such that WF (u) consists of the minimal singularity, i.e., the radial
direction.

There are also some other results related, such as A. Hassell, R. Melrose and A.
Vasy[26] worked on scattering problem near radial point in smooth setting. And
J. R. S. Filho studied the propagation of singularities near radial points in smooth
setting.

(IV) Radial case in the real analytic setting.

7 See Definitions
8 See section [4.4|for detail.
9 See Definition

13
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Even though recently we have more and more research working on the behaviors
near radial points, all of them are done in smooth setting. For the radial case in
the real analytic setting, before this paper there is no research on it. In my paper,
I have extended Guillemin and Schaeffer’s results [22] in the smooth setting to
real analytic setting, and also discussed the non-attracting (resp. non-repelling)
case. The main results are listed in next section.

1.5 The main results

We list the main results in three parts.

(A) The normal form.

14

Theorem 1.5.1. Let .# and #' are two Ex-modules associated with two m-th
order micro-differential operators P and P', respectively, and let vy and v}, be
radial points of P and P', respectively. If .# near vy and MA' near v are
microlocally equivalent, via quantized contact transformation, then one has three
invariants:

A v (w) =vp W),
.. m—1 m—1
Qi) ol V(P = ol (P

sub sub

(ii1) There is a linear symplectic map W : E\go — El;,o such that
AT W) = WAL ()Wt

If vy and v, are generic, then these conditions are also sufficient, that is, the three
invariants imply that # and /' are microlocally equivalent.

As a corollary, we have

Corollary 1.5.2. Let P € £(2) be a second order micro-differential operator
on a real analytic manifold M. Let ./ be the £-module associated with P, i.e.,
M~ é. Furthermore if vy = (x0,&) is a generic radial point of P, then
near (xo,&), via quantized contact transformation, one can transform # into

the system

&
W—ﬁ,

and Py is the normal form of P of form
Py = (ADy,Dy) + (Ba',Dy)D,, + (Ca',2')D. +~x,D2 + 6D, .

Here A, B, C are constant (n — 1) x (n — 1) matrices, A and C' are symmetric,
x=(2',x,),y€ Rand 0§ € C.
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(B)

(©)

More specially, if vy is hyperbolic then near vy, M is microlocally equivalent to
the Egn-module N = 5— P - via quantized contact transformation, where

Pyy = (Ba', Dy + v, Dy, + 6.

Here B is a constant (n — 1) x (n — 1) matrix.

If vy is elliptic, then near vy, M is microlocally equivalent to the Ern-module

N = W via quantized contact transformation, where

Pye = (ADy, D) + (', ') D2 + y2,D? +0D,,.
Here Aisa (n — 1) x (n — 1) identity matrix, C = (¢;) isa (n — 1) x (n — 1)
diagonal matrix with all non-vanishing entries larger than ~*/16.

Analytic singularities in two dimensional case.

Theorem 1.5.3. Let P be a second order micro differential operator defined on
a two dimensional real analytic manifold M, with real-analytic coefficients, real
principal symbol p, and simple characteristics, and (xo,&y) is a generic radial
point of P. Consider the equation

PNU = f
in space of hyperfunctions, where f is a real analytic function.
(1) If (xo, &) is an elliptic radial point, then there exists a solution u € % such
that WF,(u) = {(0,0,0,7n)|n > 0}.

(2) If (z0,&0) is hyperbolic attracting/repelling radial point and 0 < \ < 1,
then there exist a solution u € % such that WF ,(u) = {(0,0,0,7n)|n > 0}.

3) If (x0,&) is hyperbolic saddle radial point and N\ ¢ 1[0,1], and if
{(0,0,0,n)|n > 0} C WF,(u), then at least one of the following projected
null bicharacteristics which go asymptotically to (0, 0,0, 1) ast — Foo :
(z,y,€,m) = (£e',0,0,1) and (z,y,&,1m) = (0,0, e~ N 1) will be
contained in WF,(u). Furthermore, if one of the later two projected null
bicharacteristics is contained in WF ,(u), so is the other.

Analytic singularities in higher dimensional case.
First, if the radial point is either attracting or repelling, we have:
Theorem 1.5.4. Let (x¢,&y) be a generic radial point which is either attracting

or repelling. Then there exist a hyperfunction u such that Pyu is real analytic
and WF ,(u) just consists of the minimal singularities, i.e., the radial direction.

If the radial point is neither attracting nor repelling, we have

15
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Theorem 1.5.5. Let u € A(R™) be a hyperfunction solution of Pyu € A(R")
such that the radial point (0;0',1) € WF,(u), then

WF,(u)NTy #0  or WF,(u) N Ty # 0.

where I'y and 'y are stable and unstable manifolds, respectively.

Moreover, we construct solutions with prescribed singularities for hyperbolic
non-attracting case, and we calculate the projected null bicharacteristics and
discuss the propagation of analytic singularities, especially in three dimensional
case.

1.6 Summary

We give a brief account of the content of the thesis.

In Chapter 2] we introduced the basic theory of algebraic analysis, i.e.,
some rudimentary knowledge in sheaf theory, homological algebra, the elementary
knowledge of hyperfunctions and microfunctions and related fundamental operations,
the microdifferential operators and so on.

In Chapter [3] we found the way to linearize a contact vector field with real analytic
coefficients near a hyperbolic equilibrium point, and analyzed the eigenvalues of
symplectic mappings associated with the linear contact vector field. To go though this
chapter, one may needs Appendix [A|for preparation.

Chapter []is concerned with the normal form of our operators near a generic radial
point. First we give the definition of subprincipal symbol with some properties, then
we clarify the classification of radial points and generic condition, thereafter we study
the normal form and finally set forth the projected null bicharacteristics.

In Chapter [5| we completely studied the analytic singularities of solutions in two
dimensional space. Near an elliptic radial point, our equations can be transformed
to the standard Euler’s hypergeometric equations, which has been well studied. Near
hyperbolic attracting radial points, we discussed problem in the category of Fourier
hyperfunctions, which can be found in Appendix [C|

In Chapter [6] we have studied the analytic singularities of solutions in higher
dimensional space. We have discussed the results for attractor/repeling radial points
and non-attracting/non-repelling radial points respectively. Furthermore, we discussed
solutions with prescribed singularities for hyperbolic radial points and discussed the
projected null bicharacteristics in three dimensional case. In additional, for elliptic
radial points, the equation can be transformed to a Schrodinger equation of a string
with uncoupled oscillators via Fourier transformation and coordinates transformation.
Solutions of such equation are Hermite functions introduced in Appendix [F

16



Chapter 2

Preliminary of algebraic analysis

In this chapter, we have a quick glance of the fundamental knowledge of algebraic
analysis. The main references are Kaneko [34], [KKK] [40], Kashiwara-Schapira [45]
and [SKK] [63].

2.1 Sheaf theory and homological algebra

First we have a short review of sheaf theory and homological algebra.

Definition 2.1.1. A presheaf F over a topological space X associates with each
open subset U of X an abelian group F'(U), such that there is an abelian group
homomorphism, which is known as the restriction map,

pvU - F(U) — F(V)
for open subsets U D V' with the following axioms:

(1) The map py is the identity map on F'(U),

(2) For three open subsets of X, U; C U, C Us, we have
PUL,U; © PULUs = PULUS3-

For s € F(U), denote py () as s|y for short.
The stalk of the presheaf F'at z € X is defined as
F, = hﬂ F(U),

zeU
where hAq denotes the inductive limit, for U running over all the neighborhood of x.

Definition 2.1.2. A presheaf .7 over X is said to be sheaf if the following axioms are
satisfied: it is given an open covering {U; };c; of U in X, U = |J,,; U; and [ is an index
set.
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(1) Lets € Z(U), if s|y, = 0 foreach i € I, then s = 0.

(2) Suppose that for each i € I there exists s; € .7 (U;) such that s|y,nv; = s;
for i, j € 1. Then there exists s € .%(U), such that s|y, foreach i € I.

UiﬁU]‘

Definition 2.1.3. Let F' be a presheaf over X. A sheaf .%# is said to be the sheaf
associated with the presheaf (or .F is the sheafification of F, or % is the induced
sheaf from the presheaf F') if for each open subset U of X the presheaf .# (U) (which
is a sheaf actually) associates all the maps

v FE

zelU

satisfying that for each = € U there is a neighborhood U’ of x and s’ € F'(U’) such that
s(z') = s/, is true for any 2’ € U'.

Definition 2.1.4. Let X and Y be topological spaces and let f : X — Y be a continuous
map. For a sheaf .7 over X, the direct image of .% under the continuous map f, denoted
by f.(.7), is a presheaf U — Z(f~'U) over Y, which is a sheaf indeed. Moreover,
for a sheaf ¢ on Y there can be define the presheaf ligvD ) ¢ (V') for an open subset

U of X. This presheaf is not a sheaf in general, and the associated sheaf is called the
inverse image of ¢ under f, denoted by f~1(9).

Definition 2.1.5. Let .# be a sheaf over a topological space X, and let U be an open
subset of X. Denote the support of s by

supps = {x € Uls, # 0 for s € F(U)}.

Definition 2.1.6. Let .7 be a sheaf over a topological space X and let S be a locally
closed subset of X. Then define

Is(X, 7)) :={se .Z(U)|supps C S},

where U is open in X and S'is closed in U.

In the case S = X, we denote I'g(X,.7) with ['( X, .%). In general we also denote
that .7 (U) with I'(U, .%) for an open set U in X.

Definition 2.1.7. A sheaf .% over a topological space X is said to be flabby if for an
arbitrary open subset U, the homomorphism

pU,X:y(X) —>9(U)

is an epimorphism. Therefore, for a flabby sheaf .7, any section of .% over U can be
extended to a section over X.

Definition 2.1.8. An exact sequence
0= F L' — ...

is said to be a flabby resolution of a sheaf .7 if each #7,j = 0,1,--- ,is a flabby sheaf.
We can find a canonical flabby resolution for arbitrary sheaf.

18
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Definition 2.1.9. Let X and Y be topological spaces, let f : X — Y be a continuous
map, and let . be a sheaf over X. Then denote

Tt proper(X, F) = {s € T(X, F)|flsupps is @ proper map}.

Given an open subset U of Y, let fi(.%#) be the sheaf over Y associated with the
presheaf T'y_proper(f 1 (U),-F). Furthermore, the sheaf R¥ fi(.#) over Y denotes the
sheaf associated with the presheaf H"(T'¢_poper(f~1(U), £*)), where 0 — F — £°
is a flabby resolution of .7 .

Definition 2.1.10. Let ./ be a sheaf of rings on a topological space X.

(1) An @/-module . is called of finite type (resp. of finite presentation) if for any
point z € X there is a neighborhood U and an exact sequence

0<—%|U(—ﬂm|(]

for some n € IN (resp. 0« A |y < A"y « ™|y for some n,m € IN).

(2) An @/-module .# is called pseudo-coherent, if any submodule of finite type
defined on an open subset is of finite presentation. If ./ is pseudo-coherent and
of finite type, then .# is called coherent.

(3) An o/-module .7 is called Noetherian if .# satisfies the following properties:

e ./ is coherent.

e For any x € X, ., is a Noetherian <7,-module, that is, any increasing
sequence of .27,)-submodules is stationary.

e For any open subset U, any increasing sequence of coherent
(& |y)-submodules of .#|; is locally stationary.

2.2 Hyperfunction and Microfunctions

Mikio Sato introduced the theory of hyperfunctions in [64] via two aspects of
motivation. On one hand, he believe that the real analytic setting is more natural
than the smooth setting as in Schwartz’s theory of distributions when we consider
the theory of differential equations. On the other hand, his background in theoretical
physics arouse him to analyze the boundary values of holomorphic functions, which
leads to hyperfunctions. It is much more intuitive to understand hyperfunction as sum
of boundary values of holomorphic functions, rather than the cohomological definition
of the sheaf of hyperfunctions. One can check Kaneko [34], Kato-Struppa [45] and
Morimoto [59] for details. We will give both the algebraic definition and the intuitive
definition.

Definition 2.2.1. Let M be an n-dimensional real analytic manifold. If X is a complex
manifold of dimension n containing M such that locally M = R" — C" = X, then X
is said to be a complexification of M. That is, there is a neighborhood €2 of each point
x € X and an injective map f : Q — C" such that Q N M = f~1(R").
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Definition 2.2.2. Let Z x be the constant sheaf on X such that each stalk is Z, with Z
be the ring of rational integers. The orientation sheaf w); over an n-dimensional real
analytic manifold M is defined as .77} (Zx).

Definition 2.2.3. Let M be a real analytic manifold and X be a complexification
of M. We denote the sheaf of germs of real analytic functions on M by A(M).
That is, for an open subset V' of M, it is the sheaf associated with the presheaf
A(V) = {real analytic functions defined on V'}. Moreover, we denote the sheaf of
germs of holomorphic functions on X by Ox. That is, for an open subset U of X, it is
the sheaf associated with the presheaf &'(U) = {holomorphic functions defined on U'}

Definition 2.2.4. We have the following definitions:
By = 737 (Ox) @z wy

Gy = %%S*M(W_lﬁx)a ® T,

where 7 : v/—1S*M — M is canonical projection and a : /—1S*M — /—1S5*M
maps (z, ) to (z, —&) is antipodal map. Especially we have %y, = %)/|p. And one
calls Gy (resp. Byy) the sheaf of microfunctions (resp., hyperfunctions) on M. The
sections of @) (resp., Ay) are called microfunctions (resp., hyperfunctions).

Both of the sheaf %), of hyperfunctions and the sheaf %), of microfunctions are
flabby sheaves. Proof of this can be seen from Kaneko [34]], [KKK] [40].

In contrast to the abstract definition, there is a intuitive way to define hyperfunctions,
and the latter is much useful in practical use, see Kaneko [34], Morimoto [39].

Definition 2.2.5. Let Fj(z) be a holomorphic function defined on an infinitesimal
wedge Q++/—1I'0(j = 1,---,N). The following commutative formal sum, as
know as boundary-value representation

N

fl@) =) Fi(x+v=1T,0)

j=1

is called a hyperfunction on Q. The functions {F}(z)}, is called a set of defining
functions of f(x). If I'; NT'; # 0, then

Fi(x + v/—1T;0) + Fp(z + v/ —1T,0) = (F; + F)(z + v/ —1T; N T0)

If F'(%) is holomorphic on the infinitesimal wedge €2 + /—1I";0, then the local
Bochner theoremgrantees that F'(z) is holomorphic on {2 + /—1I';0. Here I'; is the
convex hull of I';. Hence, we can assume each I'; in the above definition is convex.

One can show the above two definitions of hyperfunctions are equivalent via Cech
cohomology theory, see [34], [40], [59] and [63].

! Roughly, an infinitesimal wedge Q2+ +/—1I'0 € /—1SM is an open set which approaches a wedge
of the opening I' asymptotically in the vicinity of the edge 2. For accurate definition, see Kaneko [34],
Definition 2.2.9.

2 See [34], Page 82.
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Here are some examples of hyperfunctions and microfunctions.

Example 2.2.6. The space #((2) of hyperfunction on an open subset {2 C R can be
defined as
B(Q) = hgn oUu\Q)/oWU).
UoQ
We give some hyperfunctions of one variable.

(a) (Heaviside function) Y (x) = [%\% log(—2)],=, the holomorphic function in

brackets is the defining function. For a holomorphic function F(2), [F(z)],—: =

F(z ++/—10) — F(x — /—10).

(b) (Dirac’s delta function) §(z) = [— %hz]z:x. Moreover, the Dirac’s delta

function of several variables is of the form

n

R IR COR | (=l

1 sgn o

(—277\/—_1)” ; (x1 + \/—_1010) s (g F \/—_1010)'

(¢) (z++/—10)*, with defining function F, (z) = z*, F_(2) = 0.

(d) Forvery a € Z,

7% [ _(_Z)a :|
T L2y/~Tsinral=s’

N z
B [2\/—1 sinwa]zzz'

Definition 2.2.7. Let f € Z(R") be a hyperfunction defined on R", we say f is
micro-analytic at (x,v/—1£c0) € v/—1S*R™, i.e., at (z,£) € R" x S" ! if f admits a
representation as sum of boundary values

fl) =) Fi(z + V=1T;0)

with F; holomorphic functions defined on infinitesimal wedges R™ +<I";0 such that, for
any j=1,--- N,

8
I

DN {y € R : () < 0} #0.
The set of all points in R™ x /=157 (i.e., in /—15*R™) where f is not micro-analytic
is called the singular spectrum|of f and is denoted by S. S.(f).

Example 2.2.8. Let © = (21,29, -+ , x,) be local coordinate of R"™, we have

@ S.S.;0= = {z1 = 0} x {V/~1dx 00}, where \/~1Idz 00 is the vector

v/—1ldxoo corresponding to £ = (1,0,--- ,0).

3 In [KKK] [40], it is called singularity spectrum.
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() S.S.8(z) = {0} x §"1.

©) S.8S. 361*\1/*710902*\1/?10 - {1’1 = 0} X {—\/—_1dl’100} U {x2 = 0} X
{—+/—1dxy00}.

From the definition one has

Corollary 2.2.9. A hyperfunction g € B(R™) is micro-analytic in a neighborhood of
(20, vV —1&y00) if and only if we have an expression

flz) = Z Fj(x ++/—1T,0)
in a neighborhood of xo with I'j such that
[ Clg={yeR": (£y) <0}, j=1,--,N.

Definition 2.2.10. Let M be a real analytic manifold, and let X be a complexification
of M. A function f(x) on X is said to be of positive type if Ref(x) = 0 forz € M
implies Im f(x) > 0.

Assume f(x) is a complex-valued real analytic function of positive type such that
for zg € M, f(x¢) = 0 and df (z,) is a non-zero real vector. Then {f~(D.) — M} U
v/—1SM is a neighborhood of zy + v/—1v,0, where (v, df (x4)) > 0, € is an arbitrary
positive real number, and D, = {7 € C : Im7 + ¢|Rer| > 0}.

Example 2.2.11. We know
fla) =21 +vV=1(z3+ - +a7)

is a complex-valued real analytic function of positive type on R". Moreover, the
hyperfunction u(z) = (f(z) ++/—10)%,0# 0,1,2--- is not real analytic at the origin
and contains only one direction as its analytic singularity:

S.S.(u) = {(z,vV—1&dwoo)|z = 0,€ = (1,0,---,0)}.

2.3 Fundamental exact sequences

Definition 2.3.1. Let f be a hyperfunction on an open subset of R™. The singular
support of f, denoted by supp(f), is the complement in U of the largest open subset of
U on which f is real analytic.

Remark 2.3.2. Let A be the sheaf of germs of real analytic functions, let D’ be the sheaf
of germs of distributions, and let £, ;,. be the sheaf of locally integrable functions. We
have inclusions of sheaves

A= L110e = D' — B.
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2.3 Fundamental exact sequences

Moreover, the infinite sum

Z 0™, where ¢, € C, limsup Y/|c,,| =0,
m:() m—0o0

represents a hyperfunction with support at z = 0, but not a distribution unless it is a
finite linear combination of 6™,

Proposition 2.3.3. (Sato’s fundamental sequence) There is an exact sequence of
sheaves

0 s A s B Sp>7r*<5—>0

on real analytic manifold M.

One can use the above exact sequence to define the sheaf of microfunctions, see
Kaneko [34].

Apart from Definition here is another equivalent definition of analytic
singularity.

Definition 2.3.4. For u € Z(M), the image sp(u) € m.¢ = € (v/—15"M) is said to
be the spectrum of u. The support of sp(u), denote by S.S.(u), is called the singular
spectrum of u.

Definition 2.3.5. A subset Z of \/—1SM (resp. v/ —15* M) is said to be convex if each
fibre 77 (z) N Z of 7 : V/=1SM — M (resp. 7 : /—1S*M — M) is convex.

Definition 2.3.6. The polar set Z° of a subset Z C /—15M is defined as
Z° ={(x,vV/—1&00) € V=1S"M|{&,,v,) > 0}

for an arbitrary point x + /—1v,0 € Z. The polar set of a subset of /—15*M is
defined similarly.

Definition 2.3.7. Let D be an open set in X — M, the open set D is said to be a conoidal
neighborhood of oy + v/—1v0 (of U C /—15M) if D N y/—15M is a neighborhood
of o + v/—1v0 (of U). Denote the boundary value of ¢ € Ox (D) by bp(p).

We denote the hyperfunction corresponding to ¢ € ./Zl(U ) by by () provided that
each fibre of U is connected. We also write b(¢; D) and b(p; U) instead of bp(y) and
by () respectively, or even b(), when there is no fear of confusion.

Note that .

A(U): lgl ﬁX(D)u

DeN(U)

where 9(U) is the set of all conoidal neighborhoods of U.

Theorem 2.3.8. Let M, X and D be as before and U be an open set in \/—1S M such
that each fibre is connected. If D € M(U), then the boundary value of f(z) € Ox(D)
determines a hyperfunction f(x) € By (7(U)) uniquely and such that S.S.(f) C U°.
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CHAPTER 2 Preliminary of algebraic analysis

Conversely, if S. S.(u) of a hyperfunction u(z) on M is contained in a closed convex
set 7 C \/—18*M, then there exists a conoidal neighborhood D € 2(Z°) such that

u(z) = bp(f(2)) for some f(z) € Ox(D).
From the exact sequence

iy L, ¢ 0,

one has the sequence

0 — A s 7l -2y @ 0 2.1

is exact, where the sheaf A* on /—1SM is defined as A* = ker(m 1% — €). Then
u € Aa ooy SN0 be expressed as

u = Zb(%’),

where ; € I'(U;, A) and (2, /—1£00) ¢ Us.

Remark 2.3.9. Roughly speaking, one can define the sheaf of microfunctions € by
considering the quotient sheaf of %/ A.

Definition 2.3.10. In the above case, u is said to be micro-analytic at (x,+/—1£00).

Example 2.3.11. For the Euler operator

P=g— —
l’ax a,

consider the hyperfunction solutions v of Pu = 0. The dimension of space of
hyperfunction solutions is 2. Choose two linear dependent hyperfunction solutions
(x ++/—10)* and (z — /—10)*. When o # 0, 1,--- ,n,-- -, one has

S.S.(u) € {(0, £V —1dxoo) € vV—1S*R}.

Otherwise, S. S.(u) = (.

2.4 Fundamental operations

In this section we follow [KKK] [40] and introduce the fundamental operations
of hyperfunctions and microfunctions, such as production, restriction, substitution,
integration, convolution, etc.

Definition 2.4.1. Let u be a hyperfunction on a real analytic manifold M, then define

S.S.u ={(x,vV/—1¢) € V=1T*M|z € suppu and & =0}
U{(x,vV/=16) € V=IT*M|¢ #0 and (z,v/—1€00) € S.S.(u)}.
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2.4 Fundamental operations

Theorem 2.4.2. Let M, and M, be real analytic manifolds and let M = M, x M. Let
(\/ —1S*M)I =V —15"M — \% —1S*M1 X M2 — Ml X/ —1S*MQ,

and define two projections

p1:(VS*MY —v/—18* M,
((351,562),\/—_1(51,52)00) '—>($1,\/—_1§100)7

po (VS*M) —V/ 18" M,
(21, 22), V=1(&1,&2)00) > (w2, v/ —1&300).

For an open subset §); € /—15"M;,j = 1,2, let
DX Qy = {((xl,@), V—=1(&1,62)00)[67 465 # Oand (25, vV —1&;00) € Q; for j = 1,2}«

Then we have

(a) For two hyperfunctions u,(x1) € B(M) and us(z2) € B(Ms), one can define
canonically the product u(xy, x2) := uy(x1)us(x2) so that

—

§.S.(u) C S.S.(u1) x S.S.(us).
That is, there is a canonical sheaf homomorphism

‘%Ml X %Mg — %M

(b) For two microfunctions uy(x1) € G, (1) and uy(x2) € G, (€a), one can
define the product u(xy, xs) 1= uy(x1)uz(x2) € Cu(h QQZ). That is, there is a
canonical sheaf homomorphism

Py G, X Dy Gty — Gl (=15 ary-

Definition 2.4.3. Let N and M be real analytic manifolds, and let f : N — M be a
real analytic map. Fory € N and £ € T;(y)M , define a map
p:N Xy T°M —T*N
(. €) = (y, f7(£)).
The kernel of p, denoted by Ty, M, is the conormal bundle with supports in N.

Since N = {(y,§) € N xyy T*M|y € Nand{ = 0} € Ty M, we denote Sy M :=
(TxM — N)/RZ. Moreover, notice that v/—15x M is a closed set in N X, /—15*M,
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CHAPTER 2 Preliminary of algebraic analysis

we can define two maps as follows:

p=ps:NxXyVv-15M —~-1SyM —vV—=15"N

(y, V—1€00) = (y, V=11(§)o0),
w=w; N Xy V-1S*"M —/=1SxM —/—15*M
(y, vV—1€00) = (f(y), V-1€00).

Theorem 2.4.4. Let N be a submanifold of M, and 1 be the embedding N — M.

(a) (Restriction of a hyperfunction) Let u be a hyperfunction on M such that
S.S.(u) N /—=1SyM = 0. Then one can define the restriction of u to N,
u|y € By, such that

S.S.(uly) C p(N x 1 V—1T"M N S.S.(u)),

S.S.(u|ln) C p(N xpr V=1T*M N'S.S.(u)).

(b) (Restriction of a microfunction) There exists a sheaf homomorphism

p;w‘lCKM — CgN.

Example 2.4.5. (a) (21 — 22)|z,=0 = d(21).

(b) Let h and f be real-valued real analytic functions defined in an open subset
U C R, and let Q = {x € Ulh(z) = 0} be a non-singular hypersurface, i.e.,
dh # 0 on ). Moreover, assume V h(z) and V, f(x) are linear independent on
QN {f = 0}. Then the restriction of §(f(x)) to 2 is well defined as an element
of of B () so that (f|q)*(t) = d(f(x)|q). From the exact sequence

0 — T5U —— T"U xp Q@ —— T"Q —— 0,

a point on 77() can be described as a point on 7*U = U x R"™ module the set
13U, then
S.S.0(f(z)lg) =A module B,

where

A ={(x,vV/-1&) € U x V—-1R"|f(z) = h(z) =0 and
£ =c1Vuf(x) + coVih(x),c1,00 € R, ey # 0},
B ={(z,vV—1¢) € U x V=1R"|h(z) = 0 and ¢ = ¢V, h(z),c € R}.

Theorem 2.4.6. Let M be real analytic manifold, and let Ay, be the diagonal set of
M x M.

(a) (Product of hyperfunctions) Let u(x) and v(x) be hyperfunctions on M such that
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2.4 Fundamental operations

(b)

S.S.(u) N (S.S.(v)* = 0, where

aV/—1S*M  —/—-1S"M
(x, \/—_1500) —(x, —\/—_1500)

is the antipodal mapping and (S.S.(v))* denotes the image of S.S.(v) under a.
Then the product u(x)v(z) € B(M) exists, such that

—

S:S.(wv) € {(z, V=1(&+&)|(x, V=16) € S.S.u and (x,V=1&) € S.5.(v)},
S.S.(w) C {(:n, VL0 + (1 - 0)&)00)]
(2, V=1&100) € S.S.(u), (x, V—1&00) € S.S.(v) and 0 < 6 < 1}us. S.(u)US. S.(v).
(Product of microfunctions) We define
N = A Xarenr (V=18 (M x M)) — Ay Xarens (M x /=15*M)

—AM XMxM (\/ —15"M x M) -V —1S*<M X M)

For a point z = (x,2,/—1(&1,&)00) € N, where & # 0,6 # 0 and & +
& # 0, we let pi(z) = (z,v/=16100) € V=1S*M, py(2) = (x,/~1&00) €
V=1S5*M, and q(2) = (2,v/—1(& + &)o0) € /—18*M, then there is a sheaf
homomorphism

q(py v X p3 2 Crr) — G

Example 2.4.7. (a) Let f(z) and g(x) be real-valued real analytic functions defined

(b)

in U C R", satisfying that

o if f(z) =0, then V,f(z) # 0,

o if f(z) =0, then V,g(z) # 0,

e on the set {f(z) = g(x) = 0}, V. f(z) and V_g(x) are linear independent.
Then the product 6(f(z))d(g(x)) is well defined, and we have

S.S.(0(£)d(9)) c{(z,vV—1éx) € V—-1S*U|f(x) = g(x) =0 and
£ =aVuf(z) +e:Veg(2), (cr,c2) € R*\ 0}

The products

1 1 1
and ——+———

21+ /=10 2, — 22+ /=10 (1 + v/—10)2

are well defined. However, the products (x1)d(z; — x3) and §(z2)? are not well
defined.
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Theorem 2.4.8. Let N and M be real analytic manifolds, and let f : N — M be a
smooth real analytic map.

(a) (Substitution for hyperfunctions) There induced a sheaf homomorphism
f* : f_I@M — By

Furthermore, define

p N xo (V=IT*M) —/—1T*N

(y, V-1¢) =y, V=1£(9)),
& N X (V=1T*M) —/—1T*M
(y, V—1¢) = (f(y), V=18),

and p,w as before, then
S.S.(f*u) = p&v(S.S.(u))
S.S.(f*u) = pww (S.S.(u)).
(b) (Substitution for microfunctions) There is a sheaf homomorphism
f* oy — ‘%ﬂom?\/xMﬁs*M(gN‘

Example 2.4.9. Let f(z) be a real-valued real analytic function defined in an open

subset U C R™, assume that f(x) = 0 implies d, f(z) # 0. Then the substitution
f*(1/(t + v/—10)) is well defined, denoted by 1/(f(z) + v/—10), and

1
S.S.(———————) Cc{(x,v—-1 € vV—-15U =0and& = cV, ,c>0}.
(torvm) © (o VTeoc) € VETS IS (@) = Oand€ = Vo f (@), > 0}
Theorem 2.4.10. Let N and M be real analytic manifolds.

(a) (Integration of hyperfunction) Let f : M x N — N and 7 : M X
V—15*N — /—=15*N be the natural projections. If f|suppu iS a proper map
for a hyperfunction u(t,x) on M x N, then the integration of u(t, z) along the

fiber
v(x) = / u(t, x)dt
=)
can be defined. Moreover, one has
S.S.(v(x)) C 7(S.S.(u) N M x v/—1S*N),
That is, there exists a sheaf homomorphism
Si(Bruxn @ vn) — B,
where vy = Q% Qway, U4 is a sheaf of holomorphic differential forms of degree
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n on M of dimension m and w)y is the orientation sheaf on M.

(b) (Integration of microfunction) Let w be as before and let U be an open subset of
V—=1S*N. For u(t,z) € Crysxn(mHU)), if 7|suppu is a proper map, then the

integration
v(x) = / u(t, z)dt
71 (x)

is well-defined as a microfunction. There exists a sheaf homomorphism
T (Crrxn | pxy—isn @ Vi) — En.
Example 2.4.11.  (a) [, d(t)dt = 1.
(b) [ 0™ (z)dz =0forn > 1, where 6 (z) = L-5(x).
(c) f xyde =1for —\ € Z,.
(d) [Ro(t—a?)dx = t;l/z.

=1.

(C) 27r\/7f 7rcos€+\/70
7/ 2D (A1) ;A +n/2
® fR5(x%—|—~--—|—wi—t)’ldxl---dxn:m+n—(/;+1))t+ /2,

Definition 2.4.12. Let f(z) and g(x) be two hyperfunctions on R", at least one of the
which has compact support. The convolution of f and g is defined as

frg= . flz —y)g(y)dy. (2.2)

Proposition 2.4.13. The following equations hold.

f*xg=gx*[;
DY(f*g)=(Df)*g=f*(D%);
bxf=fxg=Ff

In addition, if h also has compact supported, then

(fxg)xh=[fx(g*h).
Besides, the following estimates are valid.
supp f * g C supp f +suppg.

sing supp f * g C singsupp f + singsupp g.

S.(f xg) C {(z + y; V—1&dxoo)|(z, V—1Edxoo) € S.S.(f),
(y, V—1&dzoo) € S.S.(g)}.
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Remark 2.4.14. The convolution f * g can be well defined as long as the integral
make sense as a hyperfunction in x, henceforth there are many other cases aside from
Definition 2.4.12]in which convolution is well defined. One can see[C.5.4]in Appendix
for another generalized definition.

2.5 Sheaf £y of microdifferential operators

For practical manipulation, we introduce the class of microdifferential operators in this
section, which is located between the class of microlocal operators and the class of
differential operators. Roughly, the class of microdifferential operators is a special case
of microlocal operators of which the inverse exist.

Definition 2.5.1. Let M and N be real analytic manifolds, and let Z be a locally closed
subset of /—1.5*(M x N) such that ZNM x+/—1S*N = Qand ZNy/—1S*M x N = ().
Furthermore, one define two projections

p1V—=1S* (M x N) —/=18*M x N — M x /=1S*N —/—-15*M
((z,y), V=1(& n)o0) (2, V—1£00),

P2 V=15 (M x N) —/=1S"M x N — M x v/—18*N —+/—15*M,
((z,y), V—1(&,m)o0) = (y, V=1100).

Assume p;(Z) is locally closed subset of v/—15*M, and denote the sheaf of volume
elements of NV by vy, then define an integral operator %~ as

K (u) = /N Kz, y)u(y)dy

for K(z,y) € Hy(v/—15*(M x N),€uxn @ vn), and u € €y. Hence one obtains a
sheaf homomorphism

A (pil2)h(pslz) " Cn — G,

where a is the antipodal map.

From the above definition, for an element
K(@,y)dy € H =g vxan (Carxar),

the integral operator % (u) = [ K(z,y)u(y)dy defines a sheaf homomorphism from
(gM to (gM

" 0
Definition 2.5.2. The sheaf ¢ VIS5, (Mx M)

microlocal operators and denoted by L.

Definition 2.5.3. Let P(z,0;) = }_,<,, @(z)0; be a linear differential operator
of order m, where 9% = 2 b g = (aq, - ) € (ZT U {0})" and

«
Oz L0z

(Crxm @ vpr) is said to be the sheaf of

4in [KKK] [40], it claims D, = ag and then the principal symbol is o (P)(x,/—1¢). I will follow

x
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2.5 Sheaf £x of microdifferential operators

aq(x) are holomorphic functions. It is clearly a microlocal operator with the kernel
function P(x,0,)0(xz — y)dy. The principal symbol o(P)(x,/—1¢) is defined as
o(P)(x.§) = 2 jaj=m ao(7)(v/—1€)® € Or-py. Tt does not depend on the choice of
the local coordinate systems.

Sato’s fundamental theorem is a consequence of the Cauchy-Kovalevsky theorem.

Theorem 2.5.4. (M. Sato) A linear differential operator of finite order P(x,0,) is left-
and right-invertible in the ring £\ over

{(z, V—1€00) € V=1S*M|o(P)(z, vV/—1€) # 0}.

Definition 2.5.5. A linear differential operator P(z, 0,.) is said to be an elliptic operator
at x if for an arbitrary £ € R™ — {0}, o(P)(x, vV —1&) # 0 holds.

Theorem 2.5.6. We have
(a) if hyperfunctions f(x) and u(x) satisfy P(x,0,)u(x) = f(x), then one has
S.S.(u) C {(m, V—1(¢, dx)yoo) € V—1S*M|o(P)(x,v/—1¢) = O} US.S.(f).

Specially, if P(x,0,) is elliptic at arbitrary point in M, then f(z) is real analytic
in M implies u(x) is also real analytic in M. More precisely, if we denote by
A the sheaf of real analytic functions on M and by B (resp. 9') the sheaf of
hyperfunctions (resp. distributions) on M, then P : /A — B/ A (resp. P :
D'|A— D'|A) is a sheaf isomorphism.

(b) If P(z,0,) is elliptic at xq, then P : B, — B, is an epimorphism, where B,
is the sheaf of hyperfunctions with support at x.

For f(x) € A(M), a solution u(z) of P(z,0,)u(x) = f(x) has the singular

spectrum in
{(z,V=1¢o0) € V=1S"M|o(P)(z,V/—1&) = 0},

and the zeros set is called characteristic variety. Study and analysis such set is
one of the most important goal in the theory of linear differential equations. The
central problem has been recognized in the case of equations with constant coefficients
(Ehrenpreis [17]). In the case of variable coefficients, Homander [29] and Mizohata
[60] had shown some results, and the theory of microfunctions is of great advantage to
consider this problem.

The class of micro-local operator £, is too general to manipulate the algebraic
properties. A desired class for algebraic consideration is the microdifferential operators.

Let X be an n-dimensional complex manifold and let 7y : 7T X — X be the
cotangent bundle of X. Take a local coordinate system (x1,---,x,) of X and the
associated coordinates (1, - -+ , 2, &1, -+, &) of T*X. Let { Pj(x, &)} and {Q;(z,€)}

their notation in this chapter. However, in the last two chapters, we follow the modern way of definition

—__1 90
D, = Vv—10x"
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be the total symbol of the differential operator P = ) P;(x,0) and Q = > Q;(z,0),
respectively. Set S = P + @ and R = P(), then the total symbols {.5;} and {R;} of R
and S are given by

S; =P+ Q; (2.3)

1
Ri= ) aeN'—(0P)@;Qu), (2.4)
I=j+k—|a| )

where 9¢ = (0/0&,)* - -+ (0/0&,)* and 9y = (0/0x1)* - -+ (0/0xn)*".

The total symbol { P;(x, &)} of a differential operator is a polynomial in £. We shall
define microdifferential operator by admitting F; to be holomorphic in §. The class of
microdifferential operators is between the class of microlocal operators and the class of
differential operators.

For A € C, let O7«x(\) be the sheaf of homogeneous holomorphic functions of
degree A on T* X, i.e., holomorphic functions f(z, &) satisfying

(S65e - ) fwo =0

Definition 2.5.7. For A € C we define the sheaf Ex () of microdifferential operators
of order equal or less then A on 7" X by

2 { (P 0:) ens Pros € (8 Orx(0 = )

and satisfies the following conditions (*)}

(*) for any compact subset K of (2, there exists a Cj, > 0 such that

sup |Py_;| < C7(j!) forall j > 0.
K

Remark 2.5.8. The growth condition (*) can be explained as follows. For a differential
operator P = ) P;(x,0), we have

P(.0)(2.€) +p) = 3 By ) ((a6) + pp.

(h—3j+1)
For P = P\_;(x,&) € £(\), by analogy we set

['(p)

o v (GRS il

P((l’,€> +p)ﬂ = ZPA*J'(:mg)F(

Then the growth condition (*) is simply the condition that the right hand side converges
when 0 < [(z,§) +p| < 1.

Proposition 2.5.9. For P € £(m) and Q € E(n), set
[PaQ] :PQ_QPE‘S'(m+n_1)>
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2.5 Sheaf £x of microdifferential operators

then

Omin-1([P, Q]) = {om(P), on(Q)}.
Proposition 2.5.10. ([SKK] [63], Chapter 2) We have
(1) Ex(A) contains Ex (A — m) as a subsheaf for m € IN.
(2) Ex(A) can be defined globally on T* X, by patching local pieces.
(3) Ex(A) is a sheaf of C-vector space on T*X.

(4) Use the formula (2.4), one can define a homomorphism

gx()\) XRe Ex(u) — 5_){()\ + [L).

(5) &x(0) and Ex = NpezEx(m) become sheaves of non commutative rings on
T* X with a unit.

We define the homomorphism

O gx()\) —)ﬁT*X()\)
(P)_j) l—)P)\.

Then o 1s well-defined on 7™ X (i.e., compatible with coordinate transformation) and
we have an exact sequence

0 — Ex(A—1) — Ex(\) 2= Op.x(\) —— 0.

Proposition 2.5.11. We have the following proposition, which says that the ring Ex is
a kind of localization of Dy.

(1) For P € &(N)and Q € E(p), we have 01, (PQ) = o\(P)o,(Q).

(2) (ISKK)]) If P € E(N) satisfies ox(P)(q) # 0 at ¢ € T*X, then there exists
Q € Ex(—A) such that PQ) = QP = 1.

Theorem 2.5.12. The relations between Ex and Dx are summarized as following:

(1) Ex contains 7~ Dx as a subring and isﬂatE]over 7 1Dx.

(2) &x

1y x = Dx, where T X is the zero section of T* X..

(3) For a coherent Dx-module #, the characteristic variety of # coincides with
the support of Ex @, 1p T M.

5> Let M be a R-module. For two R-modules A and B, if f : A — B is injective implies that
M ®r A — M ®pr B is injective, we say M is flat over R.
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Definition 2.5.13. The sheaf £x = Jim Ex/Ex(—m) is called the sheaf of formal

. meN L .
micro-differential operators. It is the sheaf similar to £ by dropping the growth
condition (*).

More specifically, let €2 be a subset of 7% X, denote by Ex(m)(R) the space of

formal series:
P= >

—oco<j<m

where p; is a section of &7+ x(j) on U. The correspondence
U — {Ex(m)(Q)}
defines a sheaf, denoted é\ x(m), and set

(E:\X = ng(m)

m

Definition 2.5.14. The sheaf £5° of micro-differential operators of infinite order can be
defined as

L(:8) = {()iezs Py € (9 Or-x())
satisfying the following conditions (a) and (b)}.
(a) For any compact subset K of (2, there is a Cx > 0 such that supy |p;| <
Cy(—j)! for j < 0.

(b) For any compact subset K" of {2 and any ¢ > 0, there exists a C',c > 0 such that
supg |p;| < CK,Q% for j > 1.

Remark 2.5.15. ([SKK] [63] Chap. 1I) We have
(1) EX C 5}}0 and SX C EXEI-

(2) &Y and 3 « are faithfully flat["| over £x, and £x is flat over 771Dy, where 7 :
T*X — X is the canonical projection.

(3) The sheaf £x, Ex(0) and EX are Noetherian rings on 7% X.

Proposition 2.5.16. Let X be a complex manifold, then we have

gXlT;}X = Dx.

6 In [SKK][63], &, & and £ are denoted by ¢, & and 2
7 A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence
if and only if the original sequence is exact.
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Chapter 3

Linearization of vector fields

In section [3.1 we introduce contact vector field and assign each real analytic function
a contact vector field. Then we study linearization of vector fields with real analytic
coefficients in section [3.2] Later in section [3.3] we discuss eigenvalues of symplectic
mappings and clarify the non-resonant condition on the eigenvalues to linearize the
contact vector field. At last, Birkhoff normal form is mentioned in section (3.4

3.1 Contact vector fields

Let X be a 2n + 1 dimensional manifold, let L be the line subbundle of 7™ X in section
and let L* be the dual bundle of L. Write A(L*) as the space of real analytic sections
of L*. Each f € A(L*) can be regarded as a real analytic function f on Z = L*\ 0
satisfying

f(x, aw) = af (x,w) 3.1)
fora € R\ 0 and w € L,. Conversely, every real analytic function on Z, which is
homogeneous of degree one in the sense of (3.1)), can be identified with a section of L*.

Let Z be a 2n + 2 dimensional symplectic manifold. Functions on Z form a Poisson
algebra under the Poisson bracket {-, -}. There is a Lie algebra homomorphism

A(Z) — symplectic vector fields
f — H f

mapping each real analytic function f on Z onto its Hamiltonian vector field H.

Assume Z sits in the symplectic manifold (7*X,w), and the restriction of the
symplectic form w on Z is also symplectic. The functions of homogeneous of degree
one form a Lie subalgebra of the Poisson algebra. Identify these functions as sections
of L*, then A(L*) has a canonical Lie algebra structure with Lie bracket [, -].

A real analytic function fonZis homogeneous of degree one, then its Hamiltonian
vector field H ; is homogeneous of degree zero, and it determines a real analytic vector
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field Vy on Z/(R — 0) = X. Then V} is a contact vector field and the mapping

A(L*) — Contact vector fields with real analytic coefficients
f= Vs

is a Lie algebra homomorphism.

Consider the above discussion in coordinates, take a global section
oa=dz+ lzn: (midyi — yidxi) 3.2)
2 i

of the line bundle L on R*"*!. Identify A(R?*"*') with A(L*) by f — f3, where 3 is
the dual section of the dual bundle L*.

Lemma 3.1.1. Let (x1,"+ ,Zp, Y1, ,Yn, 2) be local coordinates of R***1. Given
f € A(R?*"TY), then the associated contact vector field

Vf:z”:[(af v0f) 0 (0f | 0l a]

— dy; 2 0z’ O o0x; 2 0z Ay;
—~ z; 0f  y; Of 0

=1

Proof. Given the one form « defined by (3.2) and introduce (x,y, z,t) as coordinates
on Z = R**2, by assigning to ta at (z,y, z) the coordinates (z,¥, 2,t). Then the
symplectic two-form (2 is

n

|
O =dt Aa+tda = dt A (dz+ 52 (z:dy; —yidxi)> +43 " dei A dy.

Given f € A(R?"™!), the associated homogeneous function fon Zis just tf. Write
H 7 in the form
> (ai0s, + bidy, + 0. +70,),

)

where a;s, b;s, c and v are unknown functions to be determined. We solve the equation

H; Q=df

to obtain all the unknown coefficients and we have

&, 0f wdf\ 0 ,Of  ydf @
" o 0fd

x; 6’f Y af
X Qo t 29, f}a e

1=

The contact vector field V; can be acquired by projecting H; on (z,y, z) space. ]
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3.2 Linearization of vector fields

Corollary 3.1.2. Given f,g € A(R?*"™), we define their Lagrange bracket as

; (83/1 oz; a ox; 83/1) + (Z<§8xl + 58% - f))%

~ z; 09 ;i Oy of
_<Z(53$1 T3 2 Oy, g))a

Hint: Let f = tf and § = tg be the homogeneous functions on Z associated with
f and g. According to Lemma the Poisson bracket is H ;g. The Lagrange bracket
for two functions in contact space 1s induced from the formula in Lemma 3.1.1

3.2 Linearization of vector fields

Compare with Guillemin and Schaeffer’s methods of linearization in the paper [22]], we
study linearization of vector fields in real analytic setting instead of smooth setting, i.e.,
linearize a contact vector field with real analytic coefficients.

In section [A.4] we obtain Theorem[A.4.21and Remark [A.4.28| on linearizing a real
analytic vector field. By applying the techniques of proofs of Poincaré’s Theorem[A.4.7]
and Siegel Theorem[A.4.24] we have

Theorem 3.2.1. Let V' be a vector field on R™ with real analytic coefficients, and V' is
of the form
V=V+V,

where V is linear vector field and V' is the collection of nonlinear terms. Suppose the
radial point is hyperbolic equilibrium point with all the eigenvalues are distinct and
are not equal to zero. Moreover, all the eigenvalues satisfy the conditions in Theorems

A.4.21|or Theorem |A.4.24] Then there is a germ of analytic homeomorphism,
¢: (R™,0) = (R",0),

such that o,V = V.
Consider the contact structure on R?"*! defined by the contact form

1 n
dz + 5 > (widy; — yida;),

i=1

from the former discussion, one knows the linear contact vector fields are all of the form

)\z— Z ( +yz@yz> * Z (gjz 8?% - quz 80;)71)

and ¢ is an arbitrary quadratic form in z and y. The linear map of R?"*! associated with
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CHAPTER 3 Linearization of vector fields

it if of the form

(3.3)

A
A+ A

and A € sp(2n) is a symplectic matrix. is hyperbolic if none of the eigenvalues
of A have real part —%. In this case, the equilibrium point, i.e., the origin, is called
hyperbolic equilibrium point. It is well-known that Hartman—Grobman theorem says
the behavior of a dynamical system near a hyperbolic equilibrium point is qualitatively
the same as the behavior of its linearization near this equilibrium point.

Theorem 3.2.2. (Hartman—Grobman) Let f : R®™ — R" be a smooth map of a
dynamical system with differential equation Z—Z = f. Suppose the map has a hyperbolic
equilibrium point xo. Then there exists a neighborhood N of the equilibrium x and a
homeomorphism ¢ : N — R", such that p(x¢) = 0 and such that in the neighborhood
N, the flow of Z—Z = [ is topologically conjugate by the smooth map v = @(u) to the
flow of its linearization g—g = Av.

In general, even for infinitely differentiable maps f, the homeomorphism p need not
to be smooth, nor even locally Lipschitz. However, it turns out to be Holder continuous
with an exponent depending on the constant of hyperbolicity of A.

According to the discussion in §2 of Guillemin and Schaeffer [22], we have

Theorem 3.2.3. Let V be a real analytic contact vector field on R*"* of the form
V=V+V,

where V is linear contact vector field and V' is the collection of nonlinear terms.
Suppose the radial point is hyperbolic equilibrium point with all the eigenvalues are
distinct and are not equal to zero. Moreover, all the eigenvalues satisfy the conditions in
Theorems [A.4.2T|or Theorem[A.4.24] Then there is a germ of contact transformation,

Q: <R2n+1’ O) — (R2n+1’ O),

such that o,V = V.

To prove the above theory, we first give two lemmas.

Let (7,9, 2) € R" x R" x R be the coordinates of R?". Consider the polynomial
functions on (z,y) € R*" form a subalgebra of the Poisson algebra with respect to

af dg  Of dg
.9} =Hpg = Z (8%83@ a 8331‘61%')'

%

Furthermore, such subalgebra can be set as a graded algebra via decomposition of
spaces of homogeneous polynomials. Moreover, a real analytic function can be written
as summation of polynomial functions, so any real analytic vector field can be written
as a vector field with summations of polynomial functions as its coefficients. The set
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3.2 Linearization of vector fields

of polynomial functions on R?*"!, is a Lie subalgebra of A(R***!) with respect to the
Lagrange bracket in Corollary Denote such set by g, and set g’ to be the sum of all
polynomials z'h(z, ), where h(x,y) is a homogeneous polynomial in (x,y) of degree
k. Moreover we have 2] + k — 2 = 1. Then g = ®3°_,g" is a graded Lie algebra sum
and [g’, g’] C g"*/ (notice that ad.(g’) = [z, g'| = —+g’, and use the Jacobi’s identity).

However, the graded Poisson algebra in R?" can be recognized as the subalgebra
of polynomial functions in (z,y), which is contained in the graded Lie algebra g.
Moreover g° = sp(2n) + {cz}. For G € g, consider the centeralizer set

C(G) = {m|m € g,[m,G] = 0}.

Set the collection & of all elements G of g° satisfy C(G) C g°. Notice that & is of
second category. Apply the same discussion to the ring of formal power series in z, y
and z. The Lagrange bracket in Corollary also defines a Lie algebra g and

g= @(z')ifzgi‘

In additional, there is a subalgebra h of g, is the infinite sum h = &°g".

Given V € h, we have the formal sum

1 1
exp(adV) =T +adV + §(ad V)2 + g(ad VP4,
which is converges in the sense of formal power series. exp(}/) gives an automorphism
of g. Similar as the Theorem 1 in §2 of [22], we have

Lemma 3.24. Let V = Y ° Vi be in h. Assume Vy € g¢° of g satisfies Vy € &.
Moreover, all the eigenvalues associated with V satisfy the conditions in Theorems
[A.4.13] Then there is an formal automorphism ¢ of g such that pV =V,

Proof. With the above discussion, the bijective mapping ad V;, : g' — g! implies the
existence of V/ € g! such that [V/, Vy] = V;. Let ¢ = exp(ad V}), then ¢ (V) = Vo +
Wy where Wy € ©2°,g°. Write Wy = V5 + W3, where V; is the leading term of T, and
W3 € ®2,g", the bijective mapping ad V; : g — g? implies the existence of V; € g
such that [V, V1] = V5. Let o = exp(ad V), then s 0 1 (V') = Vj + W3. Repeat the
step and each time we eliminate the leading nonlinear term, then we formulate a formal
mapping
SOI}LI?O%O%AO'“O%

linearize the vector V. U
Consider any 2n + 1 dimensional contact manifold (X, L), and let V' be a contact
vector field on X with xy be its zero. The linear part of any real analytic vector field

gives a (2n 4+ 1) x (2n + 1) matrix (3.3). Treat 5 + A as the element of Az + A € g°,
then we have

Lemma 3.2.5. If \z + A satisfies that the center C(A) of A is contained in g° D then

! The non-resonance condition in section insure this condition is fulfilled.
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CHAPTER 3 Linearization of vector fields

there is a germ of formal contact transformation ¢ : (X, xo) — (X, xg) such that
eV =1

where V} is the linear contact vector field on X with \z + A € g°.
Now we are going to finish the proof of Theorem [3.2.3]

Proof. With the above Lemma [3.2.4] and Lemma [3.2] we already give a formal contact
transformation ¢ such that the push forward of ¢ linearizes the contact vector field V.
Now we want to prove the formal mapping ¢ is convergent to a real analytic mapping.

However, in Appendix we have show the convergence of the formal mapping
with some conditions of the eigenvalues of A. Write {+)\;,;4 = 1,---,n} as the
2n eigenvalues of A. Consider the matrix (4.14) induced from the normal form [} of
operators in our problem. On one hand, consider the attracting/repelling cases of our
operators, the 2n + 1 eigenvalues

{77%i>\17'“ 71

+ X
5 £ Ant

of the matrix (3.3) are of of Poincaré type E], which is fulfill the conditions of
Theorem [A.4.21] We use majorant series and construct contract mapping to prove the
convergence, see the proof of Theorem[A.4.21] for the construction.

On the other hand, for the non-attracting/non-repelling cases, the 2n+ 1 eigenvalues
{73 £ A1,--+, 3 £ A} are of Siegel type with additional condition such as some
Diophantine condition in Definition Such additional condition insure that the
inverse operator ad/_\1 Hwill not vanish to fast. Then by applying the Theorem
one can finish the proof by using corresponding technique from the classical KAM
theory, whose name is after A. Kolmogorov, V. Arnold and J. Moser, to deal with the
small denominator that does not vanish too fast. See Chapter 2 of [9] or Chapter I,
section 5E of [|32]] for introductions. O]

Remark 3.2.6. In Theorem 2 of [22], they obtained a contact transformation push
forward the contact vector field V' to a linear vector field V}, plus a term V,, vanishes
to infinite order at equilibrium point. However, in real analytic setting, we do not have
the latter term due to the property of real analytic coefficients. That is why Guillemin
and Schaeffer spent one section to cancel the term V,, but we only need to prove the
convergence of .

Remark 3.2.77. For the operators in our problem in section|1.3| we only need eigenvalues
of A satisfy the non-resonant condition E] and the eigenvalues are of Poincaré type or
to be Liouvillean (Siegel type satisfying some Diophantine condition). However, The

2 See sectionfor details.
3 See Definition Roughly, the convex hull of all eigenvalues does not contain the origin.
Otherwise, the eigenvalues are of Siegel type.

4 See Definition for the definition of the operator ad .

5 See section

40



3.3 Eigenvalues of symplectic mappings

latter one is not rigorous for our proof of the above lemma. For eigenvalues of Siegel
type, there are more cases available for our linearization theory, see Appendix[A.4]

3.3 [Eigenvalues of symplectic mappings

Let £ be a 2n dimensional vector space equipped with a linear symplectic form ().
Denote by sp(F) the set of linear mappings A : E — F such that

Q(Av,w) 4+ Qv, Aw) =0
for all v,w € E and by Sp(F) the group of linear mappings B : E — B such that
Q(Bv, Bw) = Q(v, w).

Henceforth Sp(E) is the symplectic group and sp(FE) its Lie algebra.

We only consider A € sp(F) is semi-simple, that is, diagnosable, and the
eigenvalues of A are distinct. The eigenvalues of A come in groups of three types:

(i) pairs A\, —\ of inverse real eigenvalues,
(ii) pairs A, \ of conjugate eigenvalues which are pure imaginary,

(iii) four tuplets A, \, —\, —\ of complex eigenvalues but not pure imaginary.

From the knowledge of symplectic geometry, we have

Lemma 3.3.1. The symplectic form ) restricted to each non-decomposable subspace
E* is non-degenerate. Furthermore, all the E™’s are mutually perpendicular with
respect to §2.

Definition 3.3.2. Say A is elliptic if all its eigenvalues are of type (ii), hyperbolic if
they are all of type (i), and loxodromic if they all come in quadruples (iii). Otherwise,
we call A is of mixed type.

Theorem 3.3.3. [22] If A € sp(F) is hyperbolic or loxodromic, then it is conjugate to

an element of sp(2n) of the form
B0
0 :

If A is elliptic, it is conjugate to an element of the form

0| —D
Dy 0 ’
where Dy and D4 are diagonal matrices. Moreover we can arrange that the diagonal

entries of Dy and +1's, and that the i-th diagonal entries of D, and D4 have the same
sign.
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CHAPTER 3 Linearization of vector fields

Equip R?"*! with contact form dz + 5 > (z;dy; — y;dz;), and let V be a linear
contact vector field of the form

Az_ Z( oz, Vi y<>+z<§iai_§;ai>’

7

where ¢ is an arbitrary quadratic form in « and y. Split V' into two parts as following,

Vy = )\z—+ Z( +yza>,

Dy
B d¢g 0 g 9
V=) (axi dy; Oy ax)'

Set S* be the space of homogenous polynomials of degree k in x and ¥, and set

Shl = L2, h € S*Y.
Denote an element of Aut(S*) b
Vi=V" sk gk,

One also has V;") € Aut(S*!) via S* = S¥! given by h — z'h.

The vector field V acts on S*! in two ways.
(a) V acts on S*! by means of the Lagrange bracket as:

2
(5 +1= DA+ v®. (3.4)

With respect to Lagrange bracket the first part V5 of V" acts as ( +1—1)AI, and
the second part V; act as Vl

(b) V act as a linear mapping on S*! by the rule for differentiating a homogeneous

function by a vector field:
(k

5 HDM + v (3.5)

We have the following generical conditions of eigenvalues:

(1) First to linearize an arbitrary formal contact vector field with linear part V', one
need (a) to be non-singular for (g + 1 —1) > 0 (see Remark , and see [22]],
§2 for details), that is
mA is not an eigenvalue of Vl ") form > 0.
(i) We will see in step (II) of the proof of Corollary 4.3.2] to obtain the normal form,
one has formula (3.3) in (b), we need

m)\

is not an eigenvalue of V1 for m’ > 0.
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3.4 Birkhoff normal form

(iii) Remember for the linearization we need the zero of the vector field is hyperbolic,
that is the matrix % -+ A has no imaginary eigenvalues.

Applying the above conditions we can define a generical radial pointﬂ

3.4 Birkhoff normal form

Next chapter we will give the normal form of our operators in section[I.3] it is worth to
mention some knowledge of Birkhoff normal form, the reference is [1].

Write the hamiltonian as H = %(Ax,x), where = = (p1,-* ,Pniq1, " ,qn) iS @
vector written in a symplectic basis and A is a symmetric linear operator. The canonical
equations have the form

. 0 —F
i =TAz, ]—(E 0 )

By eigenvalues of the hamiltonian we mean the eigenvalues of the linear
infinitesimally symplectic operator / A, and by a Jordan block we mean a Jordan block
of the operator 1 A.

The eigenvalues of the hamiltonian are of four types: real pairs (a, —a), purely
imaginary pairs (v/—1b, —/—1b), quadruples (+a + /—1b) and zero eigenvalues.
The Jordan blocks corresponding to the two members of a pair or four members of
a quadruple always have the same structure.

The complete list of normal forms follows:

(1) For a pair of Jordan blocks of order k£ with eigenvalues +-a, then hamiltonian is
k k—1
H=—a) pjgi+ Y pigin-
j=1 j=1

(2) For a quadruple of Jordan blocks of order k with eigenvalues +a 4 +/—1b the
hamiltonian is

2k k 2k—2
H=-a ijqj +b— GZ(ij—IQQj — P2jqaj—1) + Z Pj4j+2-
=1 j=1 j=1

(3) For a pair of Jordan blocks of order £ with eigenvalues zero the hamiltonian is

k—1
H=) piggn1  (for k=1H=0)
j=1

6 See Definition
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(4) For a Jordan blocks of order 2k with eigenvalues zero the hamiltonian is of one
of the following two inequivalent types:

k-1 k -1
1
= ig(;pj%j - jZ_;Qijjl> - ;ijjJrh

for k = 1, thisis H = :I:%q%.

(5) For a pair of Jordan blocks of order 2k + 1 with purely imaginary eigenvalues
++/—10 the hamiltonian is of one of the following two inequivalent types:

k

1 2
H=+= B [;(b P2jG2k—2j+2 + G2j02k—2j+2)
k+1
- Z(b2p2ijQ2kf2j+3 + Q2j71QQk72j+3>} - ijQj+17
j=1 =1

fork =0, H=+1(b?pi +¢}).

(6) For a pair of Jordan blocks of order 2k with eigenvalues 4-+/— 10 the hamiltonian
is of one of the following two inequivalent types:

L
[Z _QQQj—IQQk—Qj—i-l + G2jQ2k—2j+2)
7j=1

l\DI»—t
@

-1 2k 2k

(b D2j+192k—2j+1 + P2j+2q2k—2j+2) ] — b ZPQ; 1G25 + Zp2jq2j 1s
1 j=1 7j=1

e

.
Il

fork=1 H = j:%(b%qf + q%) — b*p1qa + P2

Theorem 3.4.1. (Williamson’s theorem) A real symplectic vector space with a given
quadratic form H can be decomposed into a direct sum of pairwise skew orthogonal
real symplectic subspaces so that the form H is represented as a sum of forms of the
types indicated above on these subspaces.

For our case, we only need to consider all the Jordan blocks are of first order, while
the individual hamiltonian in “general position” does not have multiple eigenvalues and
reduces to a simple form. Moreover, in our case, we consider the principal symbol as
the Hamiltonian of quadratic form in the variable (2’, ¢’).
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Chapter 4

The normal form

In this chapter we are going to simplify the microdifferential operator P near a generic
radial point. Basically first we introduce the subprincipal symbol in section 4.1 after
that we study analytic properties of radial points and clarify the generic conditions in
section 4.2] then obtain the normal form of the original operator P in section 4.3] We
discuss the projected null bicharacteristics at the end this chapter.

4.1 Subprincipal symbol

Let X be an n dimensional real analytic manifold, let P be a microdifferential operator
of order m defined on S*X, and Take a local coordinate system x = (z1,Z2, - ,Zy)
of X. By considering the adjoint operator P* of P = { P,(x,&)}x, we have

(P)(2,€) = P, =) = (=1)" Pon(a, €),
(Pnse:8) = Paal=9) = 3 e 5 ol )
=(—1)m(m1m€ 28 a& n(.6)).

Hence P — (—1)™P* € Ex(m — 1).

Definition 4.1.1. We set
1

ol (P) = §O'm—1(P —(=1)™Pr)
12 PP, “4.1)
2 7 8:6]-8@-

and call it the subprincipal symbol E] of P.

! Notice that if we write a pseudo-differential operator P(z, D) = Py(x) + > i, P (x, D) on IR”

with D = fﬁ the formula of its subprincipal symbol is like oy ' (P) := P, — 5 F > &LJ oE -
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The map 07" : Ex(m) — Op-x extends the principal symbol o, | : Ex(m —
1) — Op«x. However, unlike the principal symbol, it depends on the choices of
coordinate systems. Suppose P= (Pk (7, 5 )) be the associated operator of P in another
coordinated system & = (Z,---,#,). One has diP*di~' = dzP*dz~"', and let
&m—1(P) be the subprincipal symbol in 7, one has
1

55 (P) = 02 (P) — (P10 B0,

-1) —-1/2

Then one can define a first order differential operator 0%12’” acting on Op«x ®
by

"V (a/Vdx) = (H,,pya + ol (P)a) [V,

where 9}1/2 = (QI/Q)@) I and QY Y2 is an invertible sheaf such that (91/2)@2 = Qx,
and let v/dx denote a section of Q X/ such that (\/ dr)®? = dz, here dv = dxy A -+ A

dx, € Qx. By definition, (dx)2 .,% (da:)z is independent of the choice of local
coordinated system.

Proposition 4.1.2. For P € Ex(m) and Q) € Ex(n), one has

(1) oo™ HPQ) = 0m(P)ogy (Q) + 0luy  (P)on(Q) + 5{om(P), 0n(Q)},
2) ol ([P, Q) = {om(P), 05 (Q)} + {0ty ' (P), 0n(Q)},

(3) gjgn(;n 1 P Ln 1) +Qn —|-%[Pm,Qn],

4) "ZY];L_QS” 2 [g(m 1) gc(gn—l)}.

4.2 Classification of radial points

Let X be an n-dimensional manifold and let (z,&) = (x1, -+ ,x,, &1, -+, &,) be local
coordinates of 7" X. Let P be an m-th order microdifferential operator defined on 7™ X
with principal symbol p,,(z, §), the characteristic variety Char(P) of the operator P is
defined by

Char(P) := {(z,£) € T"X\ 0 | pm(2,£) = 0},
which is a closed subset of 7% X .

Definition 4.2.1. A point vy = (z0, &) in Char(P) is said to be a radial point of the
operator P if the Hamiltonian vector field H,, associated with the principal symbol
pm of P is a (necessarily nonzero) multiple of the radial vector field R = ¢ a%’ ie.,
H,, +~vR = 0holds at 1, for some v € R \ 0. Conversely, if H,, and R are linear
independent at »/°, then we say the operator P is of principal type at 1/°

Remark 4.2.2. There is an equivalent definition of radial point that dp,, and the
canonical 1-form o = &dz are collinear at (xg,&y). A point (z¢,&) is radial if and
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4.2 Classification of radial points

only if it solves the system

QdIJ_m:07 i=1,---,n,

Sy 5 , 4.2)
pm:g Dm Z:]_--- n—l

" dz; U Qxy ) ) .

If (x0,&o) is a radial point, then all points (txg,t&) (¢ # 0) in the direction are
radial, eventually we can consider problem on cotangent sphere bundle S*X. Here
we prefer to consider S* X instead of P* X, because it is more convenient to study the
singular spectrum.

Example 4.2.3. Consider a simple example of Euler operator
P=xD,—0, reR

where 6 € C. It has two radial points (0, +1) on S*R, and its subprincipal symbol is
v=l_p
5 .

A radial point v is isolated in microlocal sense if there is no other ray near R 14
consisting of radial points.

We will see later in next section that linearizing the contact vector field H,, + 7R
gives a matrix 21 + A, where A is a symplectic matrix. According to section
suppose the eigenvalues of the symplectic mapping A at the radial point (zo, &) are
distinct, and we can write them as

)\17 _>\17 >\27 _)‘27 Tty )\nv _>\n

Definition 4.2.4. (Non-resonant condition) A radial point (z¢,&y) is generic if the

equation
n
fy
has no integer solution (m,my, - -- ,m,) € Z""! with m # 0.

Definition 4.2.5. A generic radial point v is called to be elliptic (hyperbolic,
loxodromic or of mixed type, respectively) if the associated symplectic matrix A is
elliptic (hyperbolic, loxodromic or of mixed type, respectively).

Near a generic radial point, the microlocal equivalence of operators is classified by
three invariants [[75]]:

(i) The factor v € R\ 0, with H,,, +yR = 0 at the radial point 1. One can see 7y
is homogeneous in &, of order m — 1, i.e.,

vp(tre) =t (),

here we write y as Y (1p).
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(ii) The subprincipal symbol of P at (o, &)

1
U:fﬂ;l(P)(xofo) = Pm—1(x0, &) — 2—2 (0, &o)-

B agj

The subprincipal symbol is an invariant in the sense as following [[75]:

Lemma 4.2.6. Let P be an m-th order pseudo-differential operator and v, be a radial
point, and let U be an open neighborhood of vy in T* X \ 0. Let J be an elliptic Fourier
integral operator with associated canonical transformation ¢ : U — ¢ (U). Then

ohn (JPITH (L () = oy (P) (),
and J~V is the parametrix of J.

(iii) Conformal symplectic map 31 + A.

From the definition, at radial point (zo, ) we have
(H +7R)’ (z0,60) — =0,

where H, is symplectic vector field and v is conformal symplectic vector field with
constant conformal factor u. Extend H, + vR to a vector field H, + o(z,&)R with
(20, &o) as its zero. Here ¢ : T*X \ 0 — R is arbitrary real function homogeneous of
degree m — 1 with value 7 at (zg,&). Let V3 be the linear part of the vector field at
(x0, &), then it defines a conformal symplectic linear map

VPO : T(wo,éo)(T*X \ O) - T(xo,fo)(T*X \ O)'

of the form

where A is symplectic. Also we have tensor contraction (R,dp,,) = kdp,, and
(H,,.,dp,,) = 0, which imply that the transpose of V2

p

(VO T o) (T XN\ 0) = T ey (T X\ 0)

maps dp,, onto a multiple of itself, and alternatively, V2 maps the codimension one
subspace of 7,,,(7* X \ 0) defined by dp,, () = 0 into itself.

Moreover, it introduces two invariant spaces, one is spanned by H,, (xq,&p) (or
R)|(20.6,))> another is the kernel of dp,,(x,§) (or a) quotient the subspace spanned by
H,, (x,€) (or R), ie., Es := a* /R, R, where g is image of v, under the canonical
projection 7*X \ 0 — S*X. That is V2 induces a symplectic map Vp of the form
21 + A on Ejp,, which is also conformal, and is independent on the choice of ¢, where
A € sp(Ey,). We have
%I + A(vg) € csp(Ey, ).
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Since Ais a (n—1) x (n—1) matrix associated with the operator P, we write A = A7,

4.3 Normal form

Similar as Witt [75]], we have

Theorem 4.3.1. Let .# and .#' are two Ex-modules associated with two m-th order
micro-differential operators P and P', respectively, and let vy and v}, be radial points
of P and P', respectively. If # near vy and #' near v are microlocally equivalent,
via quantized contact transformation, then one has three invariants:

(i) g~ (v) = vp (),

(ii) o0V (P)]y = ol V(P

sub sub

1/63
~

(iii) There is a linear symplectic map W : Ey, — Eﬁfo such that
AR ) = WAR ()W,

If vy and V| are generic, then these conditions are also sufficient, that is, the three
invariants imply that # and .#' are microlocally equivalent.

Proof. Suppose that two Ex-modules .# near 1, and .#’ near v, are microlocally
equivalent. That is, P’ is equivalent to P via conjugating invertible microdifferential
operator of order zero. Let p = ¢™(P) and p’ = o™ (P’) be the principal symbol of P
and P’ respectively.

(1) Since H, + vg_lR = 0, and by assumption we know the principal
symbols are same near the radial points by conjugating a zeroth order elliptic
micro-differential operator J, i.e.,

o™ (P)(vy) = a™(J~ P J) (1)
= o*(J7) ()™ (P)(10)a’(J) (1)
= Um(P )(V 0)7

then (i) is true.

(i) If A € Ex(n) is a n-th order micro-differential operator, notice that from

Proposition f.1.2}

o (PA) = o™ (Pl (A) + ol (P)o"(4) + - {o™(P), a"(A)},

sub sub sub

oY AP) = 0"(A)o™ N (P) + 0" M (A)e™(P) + 2%_{0”(14), am(P)}.

sub sub sub

We know the principal symbol vanishes at radial point, then at the radial point we
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have

o PA) = o (P)o"(A)

sub sub

= o"(A)o™ 1(P)

sub

= g (AP).
Suppose A is elliptic, then at the radial point we have

omn (P)(vp) = oliy, (A7 PA) (1)

sub sub

= o (AATIP) (1)

sub

(iii) Assume we obtain two matrices 3 + A and 7 + A’ by linearizing the symplectic
vector fields H,+ R near v and H,, +yR near 1/, respectively. Since the zeroth
order microdifferential operator provided a morphism mapping p to p/, which
induced a symplectic transformation maps /), to H,,. Then the associated contact
transformation maps V,, to V,,. Moreover, we have two contact transformations
linearize V), and V}, respectively. Hence there exist a linear symplectic map V'
such that A’ = VAV 1,

The rest of the proof is similar to the proof of the following corollary. ]

Corollary 4.3.2. Let P € £(2) be a second order micro-differential operator on a
real analytic manifold M. Let .# be the £-module associated with P, i.e., # ~ £

~ 5.
Furthermore if vy = (x¢,&0) is a generic radial point of P, then near (x,&), via
quantized contact transformation, one can transform # into the system
&
N~ ——
EPN’

and Py is the normal form of P of form
Py = (ADy,Dy) + (Bx',Dy)D,, + (Ca',2')D> +~yz,D2 +6D,,.

Here A, B, C are constant (n — 1) x (n — 1) matrices, A and C are symmetric, D,, =

\/;_Ta%’ x= (2" 2,),7v € Rand 0 € C.

Proof. With slight modification of Guillemin and Schaeffer’s proof, the essential idea
works equally well here. Roughly, the steps are:

STEP I) One can conjugate P into a micro-differential operator having the same
principal symbol of the normal form Py.

By direct computation, the normal form Py has a radial point at vy’ = (xf, &)
where z;, = 0, ) = (0,---,0,1).

For technical reasons it is much easier to deal with first order operators, we consider
a micro-differential operator P € £x(1), the normal form Py can be looked as a first
order operator P’ by the action of a micro-differential operator (D, )~! € Ern(—1), it
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is elliptic near the radial point v/, then
P = (Dxn)*l(PN) € Ern(l). 4.3)

It is easy to see v, is also the radial point of P’.

Let p and p’ be the principal symbol of P and P’, which by assumption are both
homogeneous of degree one in §. Then /), and H,, are homogeneous of degree zero on
T*X and T*R", respectively. We can assign the Hamiltonian vector fields the related
contact vector fields V}, and V,y on on S*X and S*IR", respectively.

radial point Vo 1z
operator P P
I @] 1
principal symbol P P’
I ®] 1
Hamiltonian vector field | H, H,
I @] 1
Contact vector field Vp Vi
I @] 1
Linear part vy |

In the above table, (a) and (b) are self-evident, (c) is canonical projection and (d) is
the linearization of contact vector fields that we studied in chapter 3.

(S*X, V()) L> (S*X, 1/0) ‘/p L ‘/pO
ltﬂ lqﬁ and lw* Jm
(SR, 1)) —2— (SR, 1) vy =2 v

Choose suitable coefficients of Py such that there is a contact transformation ¢ such
that ¢, can conjugate Vpo to Vp(,), and one knows that the maps ¢ and ¢/, related to the
linearization ¢, and ¢/, of the contact vector fields V,, and V},, respectively, are also
contact transformations. A combination of mappings 1) = ¢ o ¢ o ¢/~ shows us, near
generical radial points, there is a contact transformations ¢ from S*X to S*R". The
related symplectic transformation 1& which maps 7* X \ 0 to T*R" \ 0, i.e.,

(2, €) = (y,1) < ¥(x,t&) = (y,tn),Vt €€ R\ 0. (4.4)

With the introduction of contact transformation and quantized contact
transformation in (A.3)), one knows the contact transformation ) : S*X — S*R” can
be expressed by composition of two contact transformations with generating functions.
To coincide with former introduction, we still use 1 to denote the associated contact
transformation from P*X to P*R".

Decompose 1) = m, o 7, - with a generating functions I'(z, 7). Here we only need
the existence of I" and we do not care what I is. Let A C X x R"™ be non-singular
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hypersurface defined by I'(z, ) = 0, that is,
V(M)F(m, 7“) 7'é 0

holds on A. Moreover, on A, one has

0 d,I’

det ( 4T dyd,T > 7 0.
And then

m o PY(X xR") —» P*X
and

o PY(X x R") — P*R"™.

Then we can lifting the contact transformation ¢ : P*X — P*R" to the sheaves of

germs of microdifferential operators £x — Egn, via quantized contact transformation.

From theorem [A.3.7] one can find an isomorphism between the two sheaves of
germs of micro-differential operators 75 o 7 *Ex and Egn, as well as m o m; *Ex(m)
and Egn(m), for any integer m. Moreover the isomorphism is unique up to an inner
automorphism by an invertible microdifferential operator of order zero.

At least we can claim that we can find an invertible microdifferential operator of
order zero, denote by £, such that

/ —1
{P_F PF+W, (4.5)

ord(W) < 1, o'(W)=0 near u.

STEP II) Deal with the lower order term.
Redefine the operator P by F~1PF, so far we have

o'(P)=p =¥ = o'(P)
We want to find an invertible micro-differential operator () of order zero, such that
Q'PQ~P (4.6)
That is the operator (Q~*P’(Q and P are microlocally equivalent in the sense of

Q_lplQ —Pe ﬂmezgx(m).

Now we are going to figure out (). Consider the principal symbol of the zero order
operator Q! P’ — P near v,. We have

'(Q'P'Q - P)=0"(Q7 ([P, Q|+ P~ P))
=a"(Q 7)o ([F,Q]) + 0" (P') — o"(P)

— {p7QO} +6 .
do

“.7)
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Here s is the zeroth order component of the total symbol of P, and ¢, the principal
symbol (), 6 is the arbitrary constant in the first order term of Py.

Write go(z,€) = exp(ao(z,€)), and both of go(z, £) and ao(z, £) are homogeneous
of order zero in £. Let the above equation be zero then

Hpa,(] =s—40 = bo (48)

Suppose can be solved, then choose () to be any micro-differential operator
of order zero with principal symbol ¢y, Q;'P'Qo — P will be of order —1 in a
neighborhood of 1.

Now again set P’ to be Q; ' P'Q, then P’ — P € Egrn(—1). Consider a zero order
operator (); = [ + A; with A; € Ex(—1), then the principal symbol of the operator
Q'P'Q, — Pis

(@ PQu = P) = o (X (- A)) P+ Ay) - P)

= ([P A]) +o (P - P)
={p,a1} — by,

4.9)

where a4 is the principal symbol of A; and b; is the principal symbol of P— P’. Suppose
{p, a1} — by vanishes, then a, satisfies the equation

Hpal = by,

repeat the above steps, after conjugating by a finite sequence of ()}s, the principal
symbol of Q; ' P'Qy — P is
{p,ar} — by, (4.10)

where ay, is the principal symbol of A, = Q, — [ € Ex(—k) and by, is the principal
symbol of P' — P near vy.

If the above equation vanishes, then
Hpak = bk

If it is satisfied, then we can construct () by combining all );’s, 7 = 0,1, ---.

Consider the above all those unsolved equations
Hpak:bk,k:(),l,~~ .

If those above equations are solvable, then we can finish the proof. ]

Now we try to solve

Hyayp=5s—10
Hpak = bk
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Since we have a diffeomorphism
S*X xRy =T"X\0,
we can treat a contact vector field V,, as a vector field on 7% X \ 0,
V, = Hy+ fR,

where f is a homogeneous function of order zero on T*X , and R is the radial vector
field. At radial point, f(0) = A. Let ¢, be the pull-back of ay, via

S*X - T"X\0,

Since ay, is homogenous of degree —k, Ra; = —kay, then it is equivalent to solve
the following equations.
V. =b
{ p€0 0 4.11)

V;,Ck + kak = bk
where f(0) = —~.
Replaying S* X by R?"~! with the contact structure

n—1

(yidx; — x;dy;),

i=1

dz +

by making a contact transformation and replay V), by some linear contract vector field
V2 on R*"~! of the form in section [3.3] Due to Guillemin and Schaeffer’s discussion in
[22]], we can solve it formally.

Roughly, let S° be the set of all polynomials in z,y and z which are linear
combinations of polynomials of the form z'h(x,y), where h is homogeneous in z,y
of order m and 2n + m = i. So the vector field V induces a linear map V' : S — S°.

Lemma 4.3.3. 7o be able to solve the above equations formally (in power series about
the origin), it is necessary and sufficient that —ku not be an eigenvalue of V* for i > 0
and for k > 0.

The lemma shows that (.1T]) can be solved up to error terms which vanish to order
infinite E] at the origin of R".

However, we do not need the argument as the smooth case, which need to discuss
the error terms vanishing to infinite order at the origin. In fact the real analytic setting
ensure that once we can solve the equations ({.T1]) formally, the problems have been
solved.

We could have simpler normal form with additional conditions.

2 A function u(z) vanishes to infinite order at z if for every positive integer N, lim,_, % =0
is true in a neighborhood of .

54



4.3 Normal form

Corollary 4.3.4. Let X be a n-dimensional real analytical manifold and # be a
Ex-module associated with a first order micro-differential operator P € Ex(1).
Let vy = (x0,&) be a generical radial point. If vy is hyperbolic, then near v,
A is microlocally equivalent to the Egn-module N = ﬁ via quantized contact
transformation, where

Py, = (B2, Dy) + y2, Dy, + 6. (4.12)
Here B is a constant (n — 1) x (n — 1) matrix.

Corollary 4.3.5. Let X be a n-dimensional real analytical manifold and # be a
Ex-module associated with a second order micro-differential operator P € Ex(2). Let
vy = (0, &0) be a generical radial point If vy is elliptic, then near vy A is microlocally
equivalent to the Egn-module N = Ty Via quantized contact transformation, where

Pyne = (ADy, D) + (é’x/, 2VD? +~z,D2 +0D,,. (4.13)

Here Aisa (n— 1) x (n — 1) identity matrix, C = (¢;) is a (n — 1) x (n — 1) diagonal
matrix with all non-vanishing entries larger than ~*/16.

Now we are going to prove the above corollaries. First we have:

Lemma 4.3.6. Let Py be the normal form of the operator P with radial point vy =
(0;0',1), and p is the principal symbol of Py. Then the linear part V;,O of related
symplectic vector field at the point vy is 31 + A, where

4= ( 2a;; [by+31 (19

with respect to the symplectic basis

e . .._9 9 . _9
8517 ’ agnfl’ 8I1’ ’ (9137;,71'

Proof. At the radial point (0;0', 1), one has dp || {dx and
0
H — = 0.

From the discussion in section |4.2] 4.2] the space dp = 0 divided by the space spanned by
H, (ie. El,o) can be identified with the space spanned by the -2 36 s and 57~ s 1,7 < n.
Then
p= Z (aij&fj + bl]xlfjén + Cijxixjgfz) + ’Yxnf?z
i,j<n

and we have

B Z ap 0 op 0 )
0& Ox;  Ow; O
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Hence we obtain a homogeneous symplectic vector field H, + vR. Denote by V), the

associated contact vector field on (xq,- -+ , 2, &1, -+, &n1):
7253 + Z 2azg§z +szxz a zyfz 2Czsz a ) Ty (415)
afj i,j<n ] 853 ag]
where the dots are quadratic terms in zq,--- ,2,-1,&1, - ,&,—1 and terms involved

with 0. Therefore the linear part V) of V, related to (', ¢’) is give by
(§wK1+AW%30,
which can be seen from the above formula. Here 2’ = (1, -+ ,x,-1), and ' =

(STRERY )l O

To prove the Corollary if P has the normal form Pj,, according to Lemma
4.3.6] the matrix A is given by
—2¢; > ( 1 2 )
v ) Or 9 _1
T2 )

(

The eigenvalues of A is purely imaginary if and only if the determinant of the matrix

[NORNTN

2
Y ~
—L 4 4¢
4+c

is greater than zero, or ¢; > 1’—; Conversely, every elliptic case can be obtained by this
way.

To prove the Corollary 4.3.4] if P is microlocally equivalent to the normal form

o 0 0? 0
Pnp, = Z bzyxza 8:1:n +7xn8_x%+98$n

7,7<n

near the radial point. According to Lemma the matrix A is given by

“b+3| 0
0 Jbiy;—3

Conversely, every hyperbolic case can be obtained by this way.

Go back to our normal form Py in Corollary 4.3.2}

Remark 4.3.77. Notice that Py is invariant invariant up to some constant x under the
coordinates transformation:

(@', 2,) = (k') K22,),

which will help to construct special form of solutions.
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Remark 4.3.8. The subprincipal symbol of Py is

)

(tr(B) + 27).

4.4 Projected null bicharacteristics

First we recall the definition of a bicharacteristic strip in the classical theory of partial
differential equations.

Definition 4.4.1. Let p,,(z, &) be the principal symbol of a linear differential operator
P(z, D,). An integral curve (z(t),£(t)) of

dxl dxn d£1 dfn
m  m _Om  Opm
0&1 On Oz OTn

with the property p,,,(z(t),£(t)) = 0is said to be a bicharacteristic strip of the equation
Pu = 0. The image {z(t)} of the projection of a bicharacteristic strip onto the base
space is call the bicharacteristic curve.

Let P be the microdifferential operator in our problem, p is the principal symbol of

P, and
B " /9p O dp 0

=1

is the Hamiltonian vector field. Consider the integral curves (x(s),&(s)) of the
Hamiltonian flow:

= — <97 <
Is 7€, 1<:<n
dg; dp .
LR 1<i<
ds ox;’ =0

passing through (2, £°), such that
p(x0750) =0, éo 7é 0,

that is, (2%, ¢°) € Char(P).

By calculation on the normal form we obtained in the section .3 we can set the
radial point to be (0;0', 1) F] We project these bicharacteristics into the plane {¢, = 1}
by

T*R"\ 0 — S*R"

&1 §n—1
(xla"'7xn;£17"'agn—lvgn)}_)(l‘h”'7xn;£_>”'a g- 71)
n n
3 For a point (z;&) € S*R", we have (z;&) = (w1, ,p;&1,-++ ,&n), and 2’ = (21, ;1)

and &' = (&1, ,&n—1)-
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Then the flow defined above satisfies

dx; dp .
=L 1<i<
ds _ 0¢, ==
En— 0 0
W) _ Zante+ b, 1<i<n-—1
ds £2 ’ -

passing through (2°, &%) # (0; 0/, 1), with p(z°, %) = 0.

Since 9
() @:0.1) =

by assumption that at (0;0’, 1) the Hamiltonian vector field is radial. A point in the
Characteristics should satisfies the equation

4

S

(0;0,1) #0,

p(x,§) =0,

then near the radial point we can determine the value of z,, in terms of x’s and /s for
1 <7 < n —1. In sum, the projected bicharacteristic flow has an isolated zero at

{(0;0/,1)} € S*R™

From section we assume the symplectic matrix A is semi-simple and for any
eigenvalue \ of A, from (3.3) we have

1

Moreover, we have generical assumption (non-resonant condition) for radial points
in Definition 4.2.4

The projected null bicharacteristics on {&,, = 1} play a significant role in analyzing
the propagation of singularities. In this section we give an explicit way to computer the
systems that determine the projected bicharacteristic manifold.

In two dimensional case, we have the normal form
Py = aDi +bxD, D, + cxzDz + ’nyZ +6D,,.
The principal symbol is
o (P) = a&? + bxén + cx’n® + yyn’.

By the radial map (z,y,&,n) — (z,y, &, 1), where £ = %, we project the
bicharacteristics into the plane 7 = 1. Along the projected null bicharacteristics we
have

y = —(a&® + bx€ + ca?),

hence the variable y can be determined from a knowledge of x and £ and we ignore this
variable. A simple computation shows the following systems governs the projected null
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4.4 Projected null bicharacteristics

(F)-(% ) (5)

Let v = 1, we have two eigenvalues of the above system

bicharacteristics:

1 \/1+40* —b—4ac)  1+/(2b—1)2 — 16ac)
B 2 B 2

At

Here b # % to make the matrix is hyperbolic (linearization). The behavior of the
projected null bicharacteristics change while the parameters a, b and ¢ change,

(a) (2b—1)2—1 < ac < (2b—1)2

% 5> two positive eigenvalues.

—1)2 . . ..
(b) ac> %, two conjugate complex with positive real part.

26—1)2—1 .. . .
() ac< %, one positive eigenvalue and one negative.

The flows of projected null bicharacteristics are of three types: the bifurcation
phenomenon is going to happen when the parameters are changing.

One can discuss the normal form more specifically, for the two dimensional elliptic
case, the normal form is

P =D:+ (y+ca®)D2 + 6D, c> —.

and we have the following system

T\ [0 =2 x
/) \ 2 —1 1
will govern the projected bicharacteristic manifolds. The eigenvalues of the matrix is
1++v/1=16c
SR

And for the hyperbolic saddle case, the operator is of normal form:
P =bxD, +~vyD,+0, where b<0 and b>1.

set v = 1, then we have the following system

T\ (b 0 T

) \0 1-0 £
that will govern the projected bicharacteristic manifolds. We see from the matrix that
the case b > 1 and b < 0 are equivalent, then we can consider the operator as

P=2xD, — A\yD, +«, where X\>0.
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(c) Hyperbolic saddle

Figure 4-1: Flows of projected null bicharacteristics in 2D

One has z(t) = Ce' and £(t) = Ce (V! from above. Then one have four
projected null bicharacteristics that go asymptotically to (0, 0,0, 1).

r=2xy=¢=0,n=1, as t— —oo,

x:y:o’gzie_(l—’—)\)t’n: 17 as t_>+oo
We will discuss the propagation of singularities in section [5.4]

Moreover, for three dimensional case, there are eight cases to be discussed (see
Chapter [6)), the normal form near a hyperbolic radial point can be written as

P = byxDy + biox Dy + ba1y Dy + by Dy +v2D, + 0,
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4.4 Projected null bicharacteristics

By choose suitable local coordinates, we have even simple one

P =bxD, +byyD, +~vzD, + 0,

Here b, and b, are eigenvalues of the matrix

bll
b21

b12
b22 '

The projected null bicharacteristic manifold is governed by the following system

g | [0 b O 0 y
E1 1 0 0 v=b 0 3
n 0 0 0 v — b2 n

One has x(t) = Ce"t, y(t) = Ceb?, £(t) = CeV "t and (t) = CeO %) from above.
When b, and b, take different values, one has the following 24 possible projected null
bicharacteristics that tend asymptotically to (0,0, 0,0, 0, 1). Type (i) and (ii) involve in

the case \; does not satisfy the the attracting/repelling condition (6.2), type (iii) and

(iv) involve in the case A\, does not satisfy the condition (6.2)), and the other four types
involve in the case both \; and )\, do not satisfy condition (6.2)).

type | X y |z £ n ¢
i +elT [0 |0 0 0 1
i 0 0 |0 et 0 1
iii 0 0 [0 0 +e(0—02)E [ ]
iv 0 | +e2t |0 0 0 1
% +ebrt | feb2t | 0 0 1
vi [ et 0 |0 0 +e(1-02)t [ ]
vii 0 | Leb2t [ 0] £t 0 1
viii 0 0 |0 £e0 Mt £e0-02)t | q

Table 4.1: List of projected null bicharacteristics

For three dimensional case of mixed type, we have normal form

P = +(D? + ca®*D?) + byD, D, + v2D? + 0D,,

2
where ¢ > %.

Without loss of generality, we consider

P = D2+ cx*D? + byD,D, +vzD? + 6D,,
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CHAPTER 4 The normal form

We have the following systems that determine the projected characteristics:

o O

x
Yy
3 _
U

=G
S
oo oo
o2 oW
oo o

xr
Y
3
v—0b n

b yE4/v2—16¢
, .

And the four eigenvalues are b, y 5

The qualitative behavior of the solutions of the above system depends on the value
of band ¢, set y = 1,

(@ for0 < b < 1l,¢c > 1—16 In this case, two of the four eigenvalues are
positive, and two are conjugated complex number with positive real part.The projected
bicharacteristics tending to the origin as ¢ — —oo and to infinity as £ — oo. Notice that

in (z, ) variables they are spirals;

(b) for b < 0 or b > 1(such two cases are equivalent, here we consider b < 0
without loss of generality), ¢ > %, two of the four eigenvalues are real and of opposite
sign, and two are conjugated complex number with positive real part. The projected
bicharacteristics have saddle point behavior in (y,7) near the origin, and in (z,¢)

variables they are spirals. Rewrite the system as:

i 0 20 0 T
¢l [ —2¢ ~j0o 0 3
g | 0 0[b O y
i 0 0[0 y—b n

We can study the system separately via subspaces in coordinated (z, &) and (y, n).

Remark 4.4.2. The above discussion inspires us to study the behaviors of sub-systems
to understand the original system.
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Chapter 5

Analytic singularities in two
dimensions

In this chapter we completely studied the analytic singularities of solutions of our
problem in two dimensional space. Near an elliptic radial point or a hyperbolic
attracting (resp. repelling) radial point, there are solutions with minimal analytic
singularity, i.e. the radial direction. Near a hyperbolic saddle radial point, if the radial
direction is contained in the analytic wavefront set of a solution, then at least one of the
projected null bicharacteristics running into the radial direction will be contained in the
analytic wavefront set of the solution.

5.1 Main results

Consider our problem in two dimensional case. Let vy = (1, x2, 1, &2) be an isolated
generic radial point of P. In a conical neighborhood of the ray

T = {(x1, 22,t&, t&) = t > 0}, 5.1
the operator P has the following normal form
Py = 8:%1 + b110y, 0, + (ca] + 7%2)822 +00,,. (5.2)
Here v € R\ 0 and # € C. The radial points of Py are

{(0,0,0,1)} € S*R2.

We want to study the analytic singularities of the solutions of Pu = f near radial
point vy, where f is a real analytic function. Equivalently, we will work on the normal
form Py for simplicity.

Definition 5.1.1. ([GS] [22]) Let V,, be the linear contact vector field associated with
the operater P and let 2, be the zero of V), corresponding to the radial point 1. Say v
is attracting (or repelling) if the flow of V), has source (or sink) at z.



CHAPTER 5 Analytic singularities in two dimensions

In our case, the flow of V,, depends on the value of  and the eigenvalues of A.

We are going to study the analytic singularities in two dimensional case in this
section. The eigenvalues of the symplectic matrix 7/ + A are of three types as in the

Figure [5-1}

—_—— —_——t——> >
(a) Hyperbolic (b) Hyperbolic (c) Elliptic
attracting/repelling saddle attracting/repelling

Figure 5-1: Classification of eigenvalues of A for 2D

(a) two real numbers with same sign, the radial point is hyperbolic attracting (resp.
repelling),

(b) two real numbers with different sign, the radial point is hyperbolic saddle,

(c) two pure imaginary numbers, the radial point is elliptic attracting (resp.
repelling).

Remark 5.1.2. In Figure [5-1] “e” means the position of a eigenvalue of A, and the
vertical lines mean the possible values of 7.

In the cases (a) and (c), the eigenvalues related to the linear part 3/ + A of the vector
field are in common that, they convex hull of the four eigenvalues does not contain zero.
That is, the eigenvalues are of Poincaré typeE], while the eigenvalues of the case (b) are
of Siegel type.

To continue our statement, without loss of generality, we set v = 1.

Lemma 5.1.3. Let P be a second order microdifferential operator defined on a two
dimensional real analytic manifold M, with real-analytic coefficients, real principal
symbol p, and simple characteristics. Near a generic radial point vy = (x¢, &), we
have

(i) if (xo,&o) is an elliptic radial point, then near vy, P has the normal form
1
Pre =02, + (29 + c23) 02, + 00,,, c> 6 0eC.

' See Definition
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5.1 Main results

(i) If (zo,&0) is a hyperbolic attracting (resp. repelling) radial point, then near v,
P has the normal form

PNh:b$18x1+$28x2+9, 0<b<1,9€@.

(iii) If (xo,&o) is a hyperbolic saddle radial point, then near vy, P has the normal

form
Py = 0210y, + 120,, + 0, b<0 or b>1, 0eC.
Remark 5.1.4. We use 0, instead of D, = F a for simplicity of the following
discussion..

By direct computation of the matrix A, one can see the two cases of b < 0 and
b > 1 in (iii) are equivalent. Instead of the normal form in (iii), we prefer to consider
the normal form

Pnp = 210, — Av20,, + 0, for X\ > 0.

Moreover, the radial point of our normal form is (0, 0;0,1) € S*R2.

Theorem 5.1.5. Let P be a microdifferential operator satisfies the conditions in Lemma
[5.1.3|and Py be its normal form. Consider the equation

Pyu=f (5.3)

in space of hyperfunctions, where f is a real analytic function. Suppose the dimension
n=2 vy=1(0,0;0,1) and v = 1. Set Ryvy = {(0;0',n)|n > 0}. Then

(i) when the radial point v, is elliptic, there is a solution of the equation (5.3) with
f € C=(X) such that the minimal wave front set is WF,(u) = R 1.

(i1) when the radial point vy is hyperbolic attractor/repellor, there is a solution of
the equation (5.3) with f € C*(X) such that the minimal wave front set is
WF,(u) = Rywp.

(iii) when the radial point vy is hyperbolic saddle, and if vy € WF (u), then one of the
four projected null bicharacteristic curves E] which go asymptotically to v° must

intersect WF,(u):

¥ (x,y,&,m) = (e",0;0,1), t — —o0,

Yy (z,9,&m) = (=€, 0;0, ) t— —0oq,

Mg : (z,y,&,m) = (0,0 ,e—<1 t1), t — 400,

Yy (z,y,&,m) = (0,0; —e~ (M 1) t — +o0.

That is, there are 3 mlmmal wave front sets: 31 U Ry, 2o U R,y and X3 U
24 U R+V0.

Let Py be the suitable normal form for P near the radial point 2/°, and let F' be a
microdifferential operator such that the quantized contact transformation satisfies

PF —FPy=E,

2 See section for detail.
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CHAPTER 5 Analytic singularities in two dimensions

where E has the property that vy ¢ WF,(Eu) for any u € Z(X). Suppose F
is the associated with the canonical contact transformation ). Choose two conical
neighborhoods N; and N, of (0,0, 0, 1) with N; C Ny, and arrange that

WF,(Fu) C ¢(Ny N WF,(u)) (5.4a)
WF,(Eu) C ¢((N2\ Ni) N WFq(u)). (5.4b)

That is, for a inhomogeneous equation Pu = f, we can consider the homogeneous
equation Pyu = 0. We will need it in next section.

5.2 Elliptic case

In this section, we are going show near an elliptic radial point, there is a hyperfunction
solution u of the equation (5.3) such that v has the minimal analytic singularity, i.e.,
WF,(u) = {(0,0,0,n)|n > 0}.

Theorem 5.2.1. Let M be a two dimensional real analytic manifold and let P(x, D) be
a differential operator defined on M and p is the principal symbol of P, let u and f be
hyperfunctions which satisfy

Pz, D)u(z) = f(x).
Then the following inclusion holds:
WEF,(u) C {(z,§) € T*M \ O|p(z, &) = 0} UWF,(f).

In particular, if P is elliptic at a point xo € M, then f is real analytic at x( implies w is
real analytic at x.

Before giving our theorem, first we have the following lemma:

Lemma 5.2.2. Suppose p € C and let u(x) € A(R?\ {0}) be homogeneous of degree
w under coordinates transformation u(cxy, *xy) = ctu(xy, x2) for all ¢ # 0. Provided
that i # —3,—4,—5,---, there is a unique hyperfunction u(zx) € %B(R?) with the
homogeneity property such that i(x) = u(z) on R*\ {0}.

Proof. In Guillemin-Schaeffer’s paper [22]], they already proved the existence and
uniqueness of a distribution @(z) € 2’(RR?) with the homogeneity property such that
w(x) = u(z) on R*\ {0}.

For our case, we only need to notice that a hyperfunction whose support is the origin
can be written as

B0} = { 3" end™ (@) € € limsup Y/mlle,] =0}
m=0 m—o0

If the above sum is a finite sum, then such a hyperfunction is a distribution. Moreover, to
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5.2 Elliptic case

satisfy the homogeneity condition, such hyperfunctions can not be written as an infinite
sum. [

Theorem 5.2.3. Let P be a microdifferential operator satisfies conditions in Lemma
[5.1.3] then near an elliptic radial point, there exist a hyperfunction solution u of the
equation Py.u = f such that u has minimal analytic singularity in radial direction.

Proof. Notice that a slight modification of Guillemin and Schaeffer [22]’s proof works
equally well for our case.

Let L be a normal form of P near radial point, first we consider the homogeneous
equation

Lu(z) = 02 u(z) + (z2 + cx})02 u(z) 4+ 00,,u(x) = 0, c> 1_16 (5.5)

is invariant up to some constant x under the coordinates transformation
2
(x1,22) = (Kx1, K 22), (5.6)

that is, if u(zy, x5) is a solution of (5.5)), then u(kx1, k*x7) is also a solution. Moreover,
let Kk = —1, then if u(xy,x2) is a solution, so does u(—x1, zs). Suppose u(z,xs) is
homogeneous of degree £ under the transformation (5.6)).

Denote y = ;—%1’ and set u(x) = z{v(y), plug into ID one has
2t {4y + y + " (y) + y[(6 — 4p)z + 0]'(y) + plu— oly) } =0, 57)

Denote by
2 Qu(y) =0,
where () is a second order ordinary differential operator. If v(y) is a solution of Qu(y) =
0, then u(x) = x{v(%)(resp., u(z) = (—xl)“v(i—%) ) defines a solution of in the

1

half plane {z; > 0} (resp. {z1 < 0}).

Take a sufficient large open subset {1 of R, Theorem shows that all
hyperfunction solutions v(y) of Qu(y) = 0 are real analytic functions. That is to say,
u(x1, x2) = ziv(y) = x{v(%3) is real analytic except the line z; = 0. Moreover, along
the line z; = 0, the operatorlP is elliptic if x5 > 0, according to Theorem [5.2.1] u is
real analytic on the half line {x; = 0,25 > 0} . Hence

WF,(u) C {((0,29,&,&) € T R? \ 0|zo < 0,67 + 2065 = 0}

We would like to discuss the behavior of the solution v of Pu = 0 along the half
line {x; = 0,22 < 0}. Itis equivalent to consider the behavior of the solution v(y) of

Qu(y) = 0 at —oo.
Regard Qu(y) = 0 as an equation in the complex plane, it has three regular

singular points, i.e., co and —1Ev1=16¢ V81*W. Then by affine transformation Qv = 0 can
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CHAPTER 5 Analytic singularities in two dimensions

be transformed into the standard Euler’s hypergeometric equationE]

y(1—y)"(y) + [r— (p+ g+ L)y’ (y) — pgu(y) = 0 (5.8)

with three regular singular points at 0, 1 and co. Here

p=-£
27
_ 1=
q_ 27
Ly L0 3 L
r=—— —_ _— I ——
oV T To16c " T T=16c 4% I-16e

As showed in [22], under certain conditions with the coefficients we can construct
analytic solutions of the hypergeometric equation. The roots of indicial equation (as
know as characteristic equation) of at oo are § and ;%1 Near the singular point
00, choose two linear independent solutions of (5.8) analytic in a neighborhood of the
real axis and normalized so that

wetk 1 B
uk(y) = (—y) M%% k=0,1

as y — —oo, where hy(z) is an analytic function near zero such that h;(0) = 1. Define

1Y 2
rivR(33), x1 >0
— 1
el ) { (D () on(2), 71 <0 69
1
for £k = 0, 1, then we obtain a solution of Pu = 0 in x; # 0 can be written as linear

composition of
2

p—k T
w1, o) = ¥ |29| 2 hk(x_l>7 k=0,1,

near the half line {x; = 0,25 < 0}. Since uy, is real analytic along this half line, uy, is
in fact a solution of Pu = 0 in the complement of the half line {z; = 0, 25 > 0}.

Write
u=tug+ suy, t,seR

since u is real analytic in the half line {(0, x2)|z2 > 0}, s must vanishes (otherwise u is
not real analytic there). That is, g is a solution of Pu = 0 on R*\{0}. Actually Lemma
5.2.2| shows that v are hyperfunction solutions of Pu = 0 on R? while provided some
restrictions on /.

To discuss the solutions of the hypergeometric equation (5.8), we need certain
conditions between the parameters p, ¢ and r. Guillemin and Schaeffer [22] had shown
us an ample supply of solutions of (5.5)) with suitable restrictions on those parameters

3 See Appendix E.
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5.3 Hyperbolic attracting case

p, ¢ and r. In fact it is sufficient that we have ¢ — a is an integer, where

1
1 —
( V1 —16¢

= a + 6 +
- 2y/1—16c /11— 16¢
_ 2u+40-3 3

441 —16c 4

There are infinite many 4’s to make ¢ — a to be integer.

3
B )

c—a

Choose suitable y and let u € %(IR?) be an associated solution of Lu = 0, then

WEF,(u) C {(0,0,0,&)) € T*R*\ 0}.

For a general operator P, let F' be a microdifferential operator induced a quantized
contact transformation between P and L, such that P — FLL = E, and let v = Fu.
Then Pv = Eu. implies WF,(Eu) is empty, so Eu € A(X). Finally, if N, does
not contain (0, 0,0, —1), then by

WEF,(v) C {¢(2) : 2 € WF,(u) and 2z € Ny}

consists of the single ray. ]

5.3 Hyperbolic attracting case

Theorem 5.3.1. Let P be a microdifferential operator satisfies conditions in Lemma
then near an hyperbolic attracting/repelling radial point, there exist a
hyperfunction solution u of the equation Pu = f € A(M) such that u has minimal
analytic singularity in radial direction.

Proof. Near the hyperbolic attracting (resp. repelling) radial point, we have a normal

form Py, of P:
Py, = bxlﬁzl + l’gamz —+ 6), 0<b<l.

The generic radial point of P is isolated implies P is microlocally of real principal type
near radial point v°, with the direction R, ¥ removed.

The principal symbol of Pyy, is
o (Pxp) = V—1(bx1£1 + 126).
Since 0., is elliptic near the radial point, we obtain the operator
Pyp = b0y, + 220,, + 0, 0<b<l.

from
b:z:laxl@m + 1’2852 + 9&02, 0<b< 1,
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CHAPTER 5 Analytic singularities in two dimensions

which indicates & # 0, and the characteristics
Char(Pyp) = {(21, 72,61, &) € TR\ 0]bx1&) + 2263 = 0}.
The radial point ° = (0,0, 0, &) (& > 0) is microlocally isolated implies that

V§Ul<PNh) 75 0 for (i[)l, .772,51, 62) € Char(P) \ {R+I/0}.

Consider the Fourier transformation of the equation Lu = f on both sides, we have
Lu = f, where

— 0 0 )
Lu_<—bgla—&—§28—§2+(9—x—1))u.
Denote that
—L=b¢ i+§ i+ﬁ
R T T

Here, [ is a constant of value —0 + b + 1.

At first fix a constant b € (0,1), letu € 2(ID?) be a slowly increasing hyperfunction
(which has been introduced by Sato [65] under the name of Fourier hyperfunctions)
whose Fourier transformation is well-defined as a slowly increasing hyperfunction,
which is given by the function

(&1, &) = (52)_B¢(%)X(52),

here ¢ € A, is a rapidly decreasing real analytic function, i.e., ¢(t) = e~ (1+) with a
enough large even integer ' satisfying (1 — b) > 1 and x € A is a slowly increasing

real analytic function, i.e., x(&) = —e &+ 41, Moreover, we have
2 IS
f(&1,8) = (&) %(5—2))('(52)7
2

Notice that &5 # 0 implies f is an rapidly decreasing real analytic function, Proposition
shows f is real analytic.

By computation supp_, @ is contained in proper cones containing the directions of
(0,+£1), so that
WEF,(u) C {(71,22,0,&) : & # 0}.

However, we have Lu € A(R?) and
WF,(u) C Char(L) UWF,(f),

then
WFa(“’) C {(xla 070752) : 52 7é 0}7

as the principal symbol of L vanishes on WF, (u).
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5.3 Hyperbolic attracting case

We have
u(xy, T2) :/ (&, &a)e “Hmbte) ge, ge,
R2

o) 00 181 .¢by
- [ da(gvee T [ agpe T ady)

_ / €2 (62) D€y ) eV T,

where ¢ is the one dimensional inverse Fourier transform of ¢. According to Proposition
¢ is exponentially decreasing, for any positive &, the above integral is analytic
for x; restricted to the set {|z1| > €}. Thus u(z,x9) is real analytic on {z; # 0}.
Moreover, the formula in the integral does not decreasing exponentially when {z; = 0},
then

WFG(U) = {(0,0,0,62) : 52 ?é 0}

In this case, we take suitable covering and write u as sum of boundary values of
holomorphic functions. Then it is easy to find another solution u'(x1, z2) such that

WF,(u') ={(0,0,0,&) : & > 0}.

For instance, substitute & with £ + 1/—10 in our assumption of .
O

Remark 5.3.2. Let n be the dimension of X. The characteristic variety of any
Dx-module is involutive. A coherent Dy-module .# is said to be holonomic (resp.
subholonomic) if the dimension of supp(.#) equals n (resp. n + 1).

There are plenty of results on holonomic systems and holonomic D-modules, one
can check Kashiwara [33]], [KKK] [40] and [SKK] [163] for more information. However,
if the equations (systems) are not holonomic, very few literatures can be found. For our
operator Py, the associated D-module is not holonomic, and only in two dimensional
case it is subholonomic. Actually, for n = 2, we have

dim(supp(Char(.#))) = 3,

then the associated D-module .# ~ D/D Py is subholonomic. There are a few results
on subholonomic D-module, i.e. [35], but here we do not plan to go further in the
direction.

Here is an interesting example involving real analytic functions of positive type for
our hyperbolic attractor case.

Example 5.3.3. For the normal form Py with special constant coefficient b, one can
construct hyperfunction solutions that the radial direction is the only singularity for
each case.

Consider the function in Example 2.2.11]in two dimensional case, set ¢ = —a, in
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CHAPTER 5 Analytic singularities in two dimensions

the special case of b = % , we know that

u(zy, 1) = (V—122 + 25 + v/ —10)2

is a hyperfunction solution of Pyj,u = 0 with single singularity. More specifically, it is
easy to check

1 0 0
(5.’1318—1.1 + x2a_x2 + Ck)(\/ —11'% + i) + V _10)—a = O

Furthermore we have
S. S(U) = {((Z‘l,l’g), V —1<€1,£2)dl’00>|.7)1 = T9 = 51 = 0,52 = 1} € S*RQ

Moreover, in the case 0 < b = § < 1,p,q € N, where § is an irreducible fraction
and q is even, the hyperfunctions

u(wy, o) = (V—1ta? + 29 ++/—10)"t >0,k € Z, —a #0,1,2- -

are solutions of Lu = 0 with a single singularity ((0,0), v/—1(0, 1)dxoo).

This can be generalized to higher dimensional cases by considering these
hyperfunctions

n—1
U’(xh'" ,I‘n):(v_lzl’g—FIn—i— V_10)970#071727"'7
=1

which is a hyperfunction solution of Lu = 0, where

0
ox,,

)+ @, + (—o0).

VL
- 2 18%1 nil@xn,l

Furthermore, w has single singularity, i.e.,

S.S.(u) = {(z, vV—1&dzoo)|z = 0,& = (0,0,--- ,1)}.

5.4 Hyperbolic saddle case

Near hyperbolic saddle radial point 1/ the operator P has the normal form

L= 9613:1:1 — )\l’gaxQ + 6, A > 0.

By microlocal arrangement, for the equation Pu = f with f € A(R"), one can
equivalently consider the equation Lv = 0 with WF,(v) C {(x1, z2,&1,&2)|& > 0}.

In section4.4] we have found there are precisely four projected null bicharacteristics
in the plane {n = 1} that go asymptotically to (0,0, 0, 1), namely
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5.4 Hyperbolic saddle case

Yiirm=e 1z =6=0,&=1, as t— —oo,
Yoixi=—e 1z =6=0,&=1, as t— —oo,
Ys:ix =a9=0& =e N & =1, as t — +oo,

Yyl =29 = 0,51 = —6_(1+>\)t,£2 = 1, as t— 4oo.

According to Remark generally, we consider a hyperfunction solution of
Lu = 0 in the half space { > 0} of the following form

u<x17 1‘2) = xfev(xiwg),
where v € Z(R).

Definition 5.4.1. A hyperfunction f(x) is said to contain x; as a real analytic parameter
in a neighborhood of z if (z,4++v/—1dx;00) ¢ S.S.(f). If there is no danger of
confusion, say f is real analytic in z; at x.

Proposition 5.4.2. Let P be a pseudo-differential operator with real analytic
coefficients of order m, and P is of real principle type, i.e., on the characteristic
set {(x,€) : pm(x,&) = 0} of P, one has V¢pp(x,§) # 0. Let u be solution
of Pu = f € A If (vo,&) satisfies pm(zo,&0) and (xo,&) ¢ WF4(u), then the
bicharacteristic ~y pass through (xq, &) satisfies that v N WF, (u) = 0.

The generic radial point is isolated implies: microlocally the operator P is of real
principal type near the radial point, with the radial direction removed.

If w is a solution of Lu = 0, each of the four projected null bicharacteristics must
either be entirely contained in WF, (u) or else be disjoint from WF, (u).

Theorem 5.4.3. Let P be a microdifferential operator satisfies the conditions in Lemma
[5.1.3| Near an hyperbolic saddle radial point, for any hyperfunction solution u of the
equation Pypu = f € A(M), if {(0,0,0,&)|& > 0} € WF,(u), then at least one of
the four projected null bicharacteristics ¥;,1 = 1,2, 3,4 must be contained in WF,(u).
That is, if all of the four curves do not intersect the singular spectrum of the solution
u, then (0,0,0,1) is not in WF,(u). Moreover, if one of ¥3 and ¥, is contained in
WF,(u), so is the other.

Proof. We will prove it by contradiction. Assume none of four projected null
bicharacteristics intersect with WF,(u). Taking a suitable conic neighborhood of
the radial direction {(0,0,0,&),& > 0}, and by assumption that >; does not meet
WF,(u), we have

{(21,0,0,£1) : 2y > 0} € WF,(u),

that is u contain x5 as a real analytic parameter in a neighborhood of {(zy,0)|x; > 0}.
Moreover, since ¢ : (x1,13) — (2}, 75) = (x1,2772) is a real analytic coordinate
transformation in the half space {z; > 0}, then

¢ (WFa(u)) = WFa (¢ ).
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CHAPTER 5 Analytic singularities in two dimensions

Hence w is real analytic in z, near {(z1,0) : z; > 0}. That is to say v is a real analytic
function near zero. Then
—0, (A
u(zy, o) = 7 v(2722)

defines a hyperfunction u, supported on z; > 0 such that © — u; = 0 on the half space
{z1 > 0}, ie. uy (21, 22) = 27 0v, (2}, 22). Similarly, near {(z;,0) : z; < 0}, one can
find a hyperfunction u_ € %(R?) supported on {z; < 0} such that u — u_ = 0 on
{Z’l < 0}

Consider a decomposition © = w4 + u_ + ug, where the hyperfunctions u,,u_ and
ug are supported on the set {x; > 0}, {z; < 0} and {z; = 0} respectively. Moreover,
we have WF(uy) C {z1 =0}, WF,(u_) C {z1 =0} and WF,(ug) C {z1 = 0}.

Now we want to show the radial direction {(0, 0,0, &), & > 0} does not belong to
the singular spectrum of any of the above terms.

According to our discussion, u(x) contains x2 as a real analytic parameter in a
neighborhood of {(z1,0)|z; # 0}. From the above construction we have

{(07 0,0, 62)'52 > 0} SZ WFa(u+),

and
{(0,0,0,&)|& > 0} & WF,(u_).

Moreover, WF,(u) N X, = () for k = 3 and 4. That is to say u contain x; and x5 as real
analytic parameters near (0, 0), and hence

{(0, 0, O, 62)‘52 > 0} g WFa(UQ),

contradiction. ]
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Chapter 6

Analytic singularities in higher
dimensions

In Chapter [5] we have studied the analytic singularities for two dimensional case
completely, the higher dimensional cases are much more complicate. Let us have a
look at three dimensional case first, take local coordinates x = (2, x3) = (21, 2, x3),
at first the normal form can be written as

Py = (ADy, Dy) + (B!, D) Dy, + (C2',2') D2, + ya3 D2, 4+ 60D,,.  (6.1)

Here A, B, C are constant 2 x 2 matrices, A and C' are symmetric, 7 € R \ {0} and
0 e C.
The radial point of Py is (0,0,0;0,0,1) € S*R?.

The matrix (3.2) indicates that the linear part of the related contact vector field V' to
Py in three dimensional case is of the form

where A is a 4 x 4 symplectic matrix of the the following form

—bi1 + 3 —b1o —2c11 —2¢p2
—by1  —bn+ 2| —2cn  —2cp
2a1, 2a19 b — % b12
2a9; 2az9 bay  bay— 3

with respect to the symplectic basis

9 9 0 0
851’0527 690178962‘



CHAPTER 6 Analytic singularities in higher dimensions

According to the previous analysis in section 3.3, the eigenvalues of the symplectic

matrix A will be of the follow cases:

(a) Hyperbolic
attracting/repelling

LN

(c) Hyperbolic

non-attracting/non-repelling

.

v

(e) Loxodromic

non-attracting/non-repelling

‘ [ ‘

(g) Mixed type

attracting/repelling

(b) Hyperbolic
non-attracting/non-repelling

I

v

(d) Loxodromic

attracting/repelling

(f) Elliptic

attracting/repelling

(h) Mixed type

non-attracting/non-repelling

Figure 6-1: Classification of eigenvalues of A for 3D
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6.1 Attracting case

(i) (6-Ta), (6-1b) and (6-Ic). A is hyperbolic and the eigenvalues are only of type (i),

i.e., four real numbers, A1, Ay = —A1, A3, Ay = — 3.

(ii) (6-1d) and (6-1¢). A is loxodromic and the eigenvalues are only of type (iii), i.e.,
four complex eigenvalues but not pure imaginary, A\, \o = —A1, A3 = A, \y =
A1

(iii) (6-Tf). A is elliptic and the eigenvalues are only of type (ii), i.e., four pure
imaginary eigenvalues, A\;, \o = A\; = — A1, A3, Ay = A3 = — 3.

(iv) (6-1g) and (6-Th). A is of mixed type and the eigenvalues are of mixed type
(i) and type (iii), i.e., two real and two pure imaginary eigenvalues, A;, Ay =
—A1, A3, A = A3 = —\s. The radial point is neither hyperbolic nor elliptic, i.e.,
of mixed type.

More specifically, consider the relation between the four eigenvalues and the values
of I, we have eight cases as showed in Figure the dots represent the possible
eigenvalues of A, and the (dotted) vertical lines in the pictures represent the possible

values of %

More specifically, in the four cases,(6-1a)), (6-1d), (6-1f) and (6-1g), the eigenvalues
related to the linear part I + A of the vector field are in common that, they convex hull

of the four eigenvalues does not contain zero. That is, the eigenvalues are of Poincaré

type, and the eigenvalues of the left four cases (6-1b)), (6-1¢), (6-1¢) and (6-1h) are of
Siegel type. Actually, according to Definition the radial point is attracting (or

repelling) in four cases (6-1a)), (6-1d), (6-If) and (6-Ig), and in the left four cases, the
radial point is neither attracting nor repelling.

6.1 Attracting case

Theorem 6.1.1. Let (x,&y) be a generic radial point which is either attracting or
repelling. Then there exist a hyperfunction u such that Pu is real analytic and WF ,(u)
just consists of the minimal singularity, i.e., the radial direction.

We will prove the theorem in three cases respectively, i.e., the radial point (zg, &)
is elliptic, hyperbolic and of mixed type.

6.1.1 Elliptic attracting case

Take local coordinates © = (y1,- - ,Yn_1,t), in the elliptic case, one has the normal
form o 2 o2 5
T X ) SO L.
{; o~ igp)) T e o

with ¢; > 'IY—Z fori =1,2,--- ,n—1. Here x = (y, t) and denote the dual ¢ = (), 7). Let

F be the operator of partial Fourier transformation in the ¢ variable. Let P¥ = FPF 1,
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CHAPTER 6 Analytic singularities in higher dimensions

then

0? 0
PF =3 " 4(- o2 + ciT )+\/—1’}/725+\/—1(9+2)7’.

<n
We will look for solutions of the equation P¥u = 0 where

u(r,y) = f(r, 3/\/7_')

and f(7,vy) is zero for 7 < 0, is homogeneous of degree « in 7 for 7 > 0 and for fixed
7 > 0 is an exponential decay real analytic function in y. Plugging into one has

P f(r,yv/T) —T{Zi +czy3 )+£72yza;

<n 1<n v

+ V=10 + 70+ 2>f}(f, ur).
Taking f = eV~ 19 g where Q(y) is the quadratic form
g 2
Qy) = g(Fyi £y £ +yp),

take suitable sign of y; such that Py = 0 is equivalent to

= 0
PFf:eﬁQ(y)<Zi(— —g+(0i

5 g) +V=10g) =0

16)

<n
_ Q
where ' = 0 + ya + sgnF — 2.

Since ¢; > 16, the operator on the left hand side is the Schrédinger operator for a

string of uncoupled harmonic oscillators. Its eigenfunctions are products of Hermite
functions|'|and hence lie in A, (R™1).

Therefore for a countable number of 6’ (#' totally imaginary) there exists a
exponential decreasing real analytic function i(y) such that such replacement of g with
h is satisfied.

Define .
f(r,y) = W ren(y),

where « is determined by 6.

Go back to Pyeu = 0, by construction,

-~ / f(ryv/r)etdr

is a well-defined hyperfunction solution.

1 See
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6.1 Attracting case

Lemma 6.1.2. We have

S.S.u(x) = ((0,0),v—1(0, 7)dzoo).
Proof. Notice that u(z) = u(y, t) contained y as a real analytic parameter, then
S.(u) C {(y,t,vV—1(0,7)dxoc0)}.
Moreover, S. S.(u) is contained in Char(Py.), we have

Ot + eyl +tr =0

<n

We have h(y\/t) is exponential decreasing in y (resp., t) for t # 0 (resp., y # 0).
That is for y # 0,7 > 0, f(7,y+/7) is in A, for both parameter y and 7. According to
Proposition [C.3.7] the partial Fourier transformation acting on ¢ is an isomorphism of
A., u(y,t) is exponential decreasing for y # 0 and ¢ # 0. And for (y,t) = (0,t), we
have u(y, t) is not real analytic at (0, 0).

That is to say

S.S.(u(y,t)) = {(0,0),v/—1(0, 7)dxoc}.

6.1.2 Hyperbolic attracting case

Consider the normal form

0
P:PNh meyz +t—+9

1,j<n

which has a radial point at (0;0’,1) € S*R". Let B = (b;;) and Ay, --- , A\,_1 be the
eigenvalues of B. Assume all the eigenvalues are real and we can write the normal form
as

0
PNh—Z)\lyl +t—+0

<n

Lemma 6.1.3. The radial point (0; 0, 1) is attracting (resp. repelling) if and only if

0 < Re)p < 1, forany k=1,--- ,n—1. (6.2)

Let F be the Fourier transformation and let P = FPF—!
0
Z )\ﬂh —|— 7'— +0,

where ' = trace B+ 0 + 1.
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CHAPTER 6 Analytic singularities in higher dimensions

Theorem 6.1.4. (Minimal singularities) In n dimensional hyperbolic attracting case,
near a generic radial point there is a hyperfunction solution v of the equation

Pv=0

contains the radial direction as the only analytic singularity.

Proof. Under the above discussion, we can reduce the initial problem

Pf=0,  f(Ln) = foln)

to the form 5 9
TEfJFZ)‘mi_nf:kf’ f(L,m) = fo(n),

<n 8 g

where 0 < \; < 1and fo(n) € A.(R™') is an exponential decay real analytic function.
For instance, assume max{\;} = )¢, and take a large enough even integer \|, satisfying

Ap(1 — Xg) > 1, and we can set fy(n) = e~ (11%0)

Consider the integral curve of the vector field 7'(% + ZZ <n /\mia% with suitable
parameters, we have the formula

f(T7 /R 77771—1) = ka[)(?’]lT_>q7 Cen 77771—17__)\”71).

Let p(7) € A be a slowly increasing real analytic function, i.e. e~ () 4 1, and set

g(n,7) = p(r)f(T,m).
Let
v(y,t) = / g(T,m)e’ T drdn,

then Pu is the inverse Fourier transformation of P*¢. We have PFg € A,, so Puv is
real analytic.

By computation supp_, ¥ is contained in proper cones containing the direction of
(0,+£1), so that
WFq(v) € {(y,£,0,7) : 7 # O}

However, we have Pu € A(R") and
WF,(v) C Char(P) U WF,(f),

then
WF,(v) C {(y,0,0,7) : 7 # 0},

as the principal symbol of P must vanish on WF,(v).
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6.1 Attracting case

We observe that
(y,t) = / g(n, 7)Yt dpdr
= [ ar(Poe [t e )
—00 IR"71

:/ TR R M () fo (T My, - Ty )eY T,

where f, is the inverse Fourier transform of f,. According to Proposition b is
exponentially decreasing, for any positive ¢, the above integral is analytic for y restricted
to the set {|y| > ¢}. Thus v(y, t) is real analytic on {y # 0}. Moreover, the formula in
the integral does not decreasing exponentially when {y = 0}, then

WF,(v) = {(0,0;0,7)|r # 0}.

In this case, we take suitable covering and write v as sum of boundary values of
holomorphic functions. Then it is easy to find another solution v'(y, t) such that

WF,(v") = {(0,0;0,7)|r > 0}.

6.1.3 Mixed type attracting case

Break the normal form into two parts, one is elliptic and another is hyperbolic attracting,
we have

n—r—1 82

»* 9
P= ) g ylc’aﬂ Zbﬂ’“% 5+t gy

i=1

where ¢; > -. Here © = (y,2,t) and its dual variables are { = (1,(, 7). Assume
A1, -+, A be the eigenvalues of the matrix (b,;), and satisfy the generical condition
in Definition 4.2.4] Moreover, the attracting (resp. repelling) condition indicates that

Re); € (0,1)for1 <j <.

Assume the eigenvalues \;’s are real and choose suitable coordinates of z such that
bij = \id;;. Let F be the Fourier transformation. Then p'" = F PF~! has the following
form

8

Zi(—m §2+m)+\/—7 ZMJ@C +9’), (6.3)

where @/ = 6 + 2. We look for a solution v of P¥v = 0 of the form
U(% C? 7—) = Taf( 1/2) (ClT 17 ) QTT_AT% (64)
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CHAPTER 6 Analytic singularities in higher dimensions

for 7 > 0, where f is a exponentially decay real analytic function in the 7 variable and
g a exponentially decay function in the ( variables. Plug (6.4) into (6.3), we have the
formula

0% f 1 of

a+1 A 2 A/ — L, — /

T (§ i[ czan?ntmfiQ\/ lmam}ﬁv 1(¢ +a)fg> (6.5)
takes value at (p7—V/2, (7™M - (M, T).

Similar as the technique in section [6.1.1] we can transform the operator in square
brackets to be Schrodinger operator for a string of uncoupled oscillators by taking

Qn) = %Zin?.

Then we can find a countable number of exponentially decay eigenfunctions f € A,.
Choose f to be such an eigenfunction and choose g to be a suitable exponentially decay
real analytic function in ¢ variables. Finally choose « to let (6.5)) vanishes identically.

Set
(&) =¥, ¢ 1) = p(r)v(n,(,7),

where p(7) € A.(R). By choosing suitable p(7) we can make sure that supp., v is
contained in any open proper cone containing the direction of 7 axis. Let

u= / B(E)eVToEde,

~

and then

Pu= [(Pro)@e e (6.6)

The integrand in (6.6) is in the space of A, so Pu is real analytic. By direct computation,
we conclude that the analytic wave front set of v has minimal singularities, which is
concentrated in the radial direction, i.e., {(y, z,¢;n,(,7) = (0,0,0;0,0,7)|r > 0}.

6.2 Non-attracting case

In this section, we are going to discuss the analytic singularities where the radial point
is neither attractor nor repellent. In non-attracting cases, one can define, invariantly,
two submanifolds of S*R", namely the attractor and the repellent submanifolds, which
we call stable and unstable manifolds associated with the non-attractor radial point, and
denote by I'; and I'; respectively.

In local coordinates the dimensions of stable and unstable manifolds are determined
by the number of eigenvalues of the symplectic matrix 3 I+ A with negative and positive
real part, respectively.
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6.2 Non-attracting case

Suppose the stable and unstable manifolds has following form in local coordinates

I ={(@,0)]z = (z1,- - ,25,) # 0}

and
F2 = {<O7 y)|y = (yk1+17 T 7y2n72> 7£ 0}

for some k.

Theorem 6.2.1. ([18]]) Let ) be a closed subset of S*R™ so that zy = {(0;0,1)} €
S*R™ is not an isolated point in §2. If ) is invariant under the projected bicharacteristics
in an open neighborhood of zy, then

erl#Q or QHFQ#@

Proof. If the behavior of the flow were described by

TkYr = Ci, 1<k<k
yr(t) = 0o ast — +oo, ky <k <2n-2
y(t) >0 ast— —oo, ki <k<2n-—2

then we define

(i) (z,y) € RegionLif z, > y for 1 < k < k; and y,, = 0 for k > ky,

(ii) (z,y) € RegionIIif (x,y) & Region L.

Consider a convergent sequence {¢;} in a neighborhood of z; in €2, such that¢; — z
as k — oo. Therefore there are at least one infinity subsequence {t, } belongs to Region
I or Region II. Assume it belongs to Region II. Since (2 is invariant under the projected
bicharacteristics in an open neighborhood of z,, the flowing out of the subsequence
{sk,} is in the interior of Region II, we have s;, — s and s € X. (2 is closed then
s € Q, thatis s € QN Xy. Similarly we have Q N Xy # 0 if {¢;, } belongs to Region L.

]

Remark 6.2.2. In two dimensional hyperbolic saddle case, the radial point is not an
isolated point in the analytic wavefront set.

6.2.1 Hyperbolic non-attracting case

In this case, the real part of the eigenvalues of A are non-zero. Suppose near the radial
point we have the normal form

L = Z wali+xni+9,

1igen 0% On
and consider the equation Lu = f for f € R"™.
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CHAPTER 6 Analytic singularities in higher dimensions

Theorem 6.2.3. Let u € A(R") such that (0;0,1) € WFE,(u), then
WF, ()T #0  or  WF,(u)N Ty %0,

where I'y and Iy are the stable and unstable manifolds.

Here we only discuss the case that all the eigenvalues are real, the general case can
be discussed later.

Assume

ox; oz,
where \; e Rfori=1,---,n—1and f € C.

n—1
L= inxii S}
i=1

Moreover, we have the following generic assumption

(A1) The equation
n—1
> tiditt, =
i=1
admits no integer solution (t1,- -+ ,t,_1,t,) € Z™ with ¢t # 0.

(A2) The non-attractor conditions says that there exists some j;,0 < jr < n —1
such that \;, < 0 or A;, > 1. We have studied the analytic singularities of solution
in the case n = 2 in the previous section. Here we assume that n > 3 and suppose
Jr > 2 by relabeling the variables. Moreover, we assume there is only one eigenvalue
Aj, satisfies the non-attractor condition.

By the Theorem [6.2.1] the aim Theorem[6.2.3|does not hold only if the radial point
(0;07,1) is an isolated point in the singular spectrum S. S.(u).

Our strategy of the proof is the following:
(1) we first prove that we can assume that v satisfies some regularity conditions,

(i1) secondly we prove that there exists a hyperfunction and a differential operator
satisfies the assumptions of the theorem and similar conditions to (Al) and (A2) in
(n — 1) dimensional case.

We use the induction method to prove it. The main idea is: assume in n dimensional
case, the radial direction is isolated in the analytic wavefront set for some solution, then
one can find solution of (n — 1) dimensional case with the radial direction isolated in
the analytic wavefront set. By induction, one can find solution to let the radial direction
be isolated in two dimensional case near hyperbolic saddle radial point, contradiction.

Lemma 6.2.4. There exists an elliptic microdifferential operator P near the radial point
(0;07,1) such that
u; = Pu,

WF,(ur) € {(0;0,&,)[& > 0},
7)1, aa—;ftl S Q(]Dn> N L2(Rn)
1
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6.2 Non-attracting case

and
(L— N)u; € A(R"™)

for some positive integer N.

Proof. Since the radial direction is isolated in S. S.(u), for elliptic P near radial point,
one has S.S.(u;) = S.S.(u), we can choose suitable elliptic microdifferential operator
P cut off the conic neighborhood of the radial direction. Moreover, since the radial

direction does not stay in WF,(Lu), in a conic neighborhood of the radial direction we
have (L — N)u; is real analytic. O

Taking vy = uy * u! and v; = (22uy) * (22u;)f, where * is the convolution product

and w(z) = w(—x) for w € %(R"). The convolution products are well defined. We
have the restriction of hyperfunctions

Wy = ”U()’zlzo and w1, = Ul‘xlzo'
The restrictions are well defined because of our hypothesis on WF, (u, ).

Theorem 6.2.5. The following statements are equivalent:

@ {(0;0,&)[& > 0} € WFo(w),
(b) {(0;0',&n)[&n > 0} € WF4(vo),

©) {(050",&,)|&n > 0} € WF,(wp) or {(0;07,£,)|6, > 0} € WF,(wy), where O/
and 0" are the origin in R"! and in R"? respectively. Moreover;

Liywy, € AR™), k=0,1,

where

0 0
L pr— — . .. [
k )\2£U2 ax2 + + x, al’n + Qk,

and 6, = —(2N + 1) = 3207, Aj + (—2k + 1)A; + 2Re 6.

Proof. (a<= b) From definition we have

2
80(©) = (O, () = | i), 67
o€

and u; € 2(D) and WF,(u;) C {(0;0,¢)|t > 0}, then

WF,(u}) = {(—z,9)|(z,£) € WF,(u)}, (6.8)

2 Such shift of N comes from the Fourier transformation, as one can see from the proof of Theorem
L’ and L are differential normal forms, PL' — LP = E for some elliptic operators P and E, as
we see from the end of section and here L' is another normal form and which is actually a shift of L
by some positive integer N.
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and _
WF(v0) C {(z + y:€)|(2;:) € WFq(w1), (y:€) € WF,(uf)}. (6.9)

(6.7) implies supp., @1(£)| and supp, 0o(§) belong to the same conic neighborhood,
by considering (6.8), and Theorem [C.5.8] our conclusion holds.

(c=> b) Apply Definition [2.4.3| and Theorem [2.4.4] to our restriction, one can
check that M = R*, N = R" ! and S.S.(vg) = (0;0/,1). To satisfy the condition
S.S.(vo) N/ —1SyM = (), we need

{(0,27;61,07)[61 # 0} N'S.S.(vg) = 0,

which is true under our hypothesis on the singular spectrum of vy, the restriction is well
defined.

That is, wy = vg|4,—o exists as an element of Z(R"!) and
WF,(wy) C {(x’;&')| 3 &, such that (0,2;&,&) C S.S.(vo)}

for vy € B(R").

We also can use FBI transformation to proof it directly.

sup Thvo(z1, 2, &1, E") > sup Thue(0, 27,0, &)
2 sup Thwo(z', &),

here 2 means the inequality is true up to some constant scaling.

(a= ¢) We have
| (1, tE")]

e~ V—lmit& L
‘/ /e‘/ju”" ’t“ul(:pl,x')dx"
1+ a2

—v—1lzit&1 e
i ‘ / ZE e /6\/1(x ’t5>u1(:c1,:c’)dx”
1+ 22

< (/(11—951 /|U1 1,1, -+, 16| d&

+‘/|(8_§%ﬁ1)(fbt§2,"‘ 1) "dés }

Then we have

a1 (t€)] < C(Jivo(t")| + [in (£")[2) (6.10)

for t > 0, some constant C' and for any &’. That is, if supp., u(x,t€) is contained
in a conic neighborhood of (0, 1), then at least one of supp,, w;(z’,t£'),i = 0,1 is
contained in a conic neighborhood of (0/, 1). Apply Theorem we have finished
to prove this step.
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6.2 Non-attracting case

Moreover, using inverse Fourier transformation, similar as the method in section
of computing the value of 3, we can use (inverse) Fourier transform to find 0.
Furthermore, it is easy to check wy and w; satisfy the equations in the theorem. ]

Remark 6.2.6. Notice that we have only proved the case there is one eigenvalue
violating the attractor/repellent condition (6.2). If there are more eigenvalues violating
(6.2), the conclusion is still true but the proof are much more complicate. In such
situation, when we use the induction method, we do not have a proved base case as in
two dimensional case. However, we can always use similar method as in section @] to
prove the base case first.

6.2.2 Mixed type non-attracting case

Here we will prove the case n = 3, and by using the induction method we can prove
the mixed type non-attracting case with one eigenvalue violating the attractor/repellent
condition (6.2)). Consider the normal form:

0? 0? 0? 0? 0

= = + b} A 0 6.11
03 * 1x18x§ AT 022013 s z3 * Oz3 .11

L

there is no integers (1, t2, t3, t) such that
t
bttty =g

for ¢t #£ 0.
Theorem 6.2.7. Let u € 2(D?) such that {(0;0,&3)|& > 0} C WF,(u), then

WFE, (u)NTy #0  or WF,(u) N Ty # 0.

Proof. The proof is similar to the proof of Theorem 6.2.3. First we construct u; = Pu
for an elliptic microdifferential operator P, such that

WFq(u1) € {(0;0,&3)[&5 > 0},
62
iy, a_gfal € 2(D°) N L*(R?),
(L — N)u; € A (R"),
and
supp iy C {§ > 1, [|€']| < &3}
O

Theorem 6.2.8. Let u; € 2(D3) N L?(R?) be a slowly increasing hyperfunction, and
let vy, vy, wo, wy be defined similarly as in section[6.2.1} then The following statements
are equivalent:

(@) {(0;0,&)|63 > 0} € WF, (1),

87



CHAPTER 6 Analytic singularities in higher dimensions

(b) {(0;0',&3)[& > 0} € WFo(vo),

(c) {(0;0",&)|& > 0} € WF,(wp) or {(0/;07,&,)|& > 0} € WF,(wy), where 0/
and 0" are the origin in R? and in R respectively. Moreover,

L2 ) € AR,

3x3
where 9 5 .
= ATy— + 23— + 2(Re ) — - — 2
$282+9€3ax3+ (Re 1 )-
Proof. The proof is almost the same as the proof of Theorem [6.2.5] O

Remark 6.2.9. Notice that we have not proved w; satisfies some differential equation.
Actually if (0';0”,1) & WF,(wg) and u; solves Lu; = fi, then we have (0;0”,1) &
WFa (wl)

More specially, consider the operator L in (6.11), and by taking Fourier
transformation in both sides of Lu; = f; for some f; € A,, we have

— . 2 — . _ 2i 28_2
Lu, = & 2\/_153 \/_153 DEs + 01&5 85%
+vV=1(0 — N)& — \/—_1)\5352%}@1 = fi.

Multiplying it by @, (¢) and integrating in &, we have

[ [16in@pda + € [150mPas)
< (10— N +2)l&] / (¢ d§1+|A||§2||§3|</ 2 ulrdflm/ i (€)der )

&[5 Pacot [P @ + ([ 1Pt [ 1P easo)t

Then if [ | 88;; 1 (€)|?d€, are exponentially decreasing for |(&2,&3)| — oo for j = 2,3

and m = 0,1, we have | |8“1 2d¢, is exponentially decreasing as |(&s,&3)] — oo.
Notice that 75t = —1 g, iin.

6.3 Solutions with prescribed singularities

Consider the operator

L= Z)\ml +xnai + 6,
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6.3 Solutions with prescribed singularities

suppose A\; < Oand \; > 0for2 <7 <n — 1. Write

L= =3 — — i 01, 6.12
! )\1 xlalj ZIMxH z+1+ ! ( )
where )
,ui——;\ﬂ for l<i<n-—2
1
1 0
ne] = —— d 0, = —.
Ao VI TN

We have p; > Oforl <n <n-—1.

Proposition 6.3.1. Let L, be as before and let u € AB(R™) such that Lyu = 0 and
WE,(u) C {(z,£)|x1 = 0}, then there is a decomposition

U =ug+ us +u_, ug, Uy, u_ € B(R")
such that
supp ug C {z|z; =0}
suppuy C {z|z; = 0}
suppu_ C {x|z; <0}
Lyug = Liuy = Liu_ = 0.
and (0;0,1) & WF,(us) UWF,(u_).

Proof. By the assumption on S. S.(u), the restrictions
UV=1ulp=1 and v = uly-_y

exist, and define two real analytic functions. Consider the Cauchy problem of
integrating v and v’ along the bicharacteristics of L, Cauchy-Kovalevsky theorem gives
the uniqueness of solution, we have

w(wy, - x) = a7 v(@ xy, - 2N ) for x>0
and
U(I’l,"' 7xn) _‘7“101 /(x/flx27 o x!lln 13771) fO’f‘ 1 <0.

we can define the hyperfunction u and u_ as

uy (1, 2) = 2 0y (B 2y, 2 y,)  for o >0
and
u_(xy, ) = a0 (a2 ,)  for @y < 0.

We have suppu; C {z; > 0}, suppu_ C {z; < 0} and set ug = u — u; — u_, then
we have suppug C {z1 = 0} and Luy = Lu_ = Lug = 0. Similar as in section[5.4]
the condition on singular spectrum holds due to our assumption on WF, (u). [
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Proposition 6.3.2. Let f € ZA(R™) such that supp f C {x|zy = 0}, then for each
xo € supp f, there is an open neighborhood §2 of x, such that

N2y Q,
P T
where f; € 2B(Q) are uniquely determined with (f;, ¢) = (f;, $(0,')), ¢ € A(Q).

Remark 6.3.3. Notice that %, (€)) can be regarded as the dual space of A(f2). Moreover,
in the case of a distribution f € 2'(R™) the sum is finite, and the test function space
is 2 instead of A. In fact, a hyperfunction supported in {z; = 0} can be written as

[ = (ZQ 0 ;09 (z1)) @ f('), where

lim sup {/j!|¢;| = 0 for ¢; € C.

]A)OO

Apply the proposition to uy, we have

L1u0 LI(Z ﬁ]%) =0

j
= 0

then

Z 8901

Fix an arbitrary function ¢, then f; is determined, we have

( Z ,uzxz+1

Z:uz H—l (0_9_1)).}6]

Tit1

(0_.7_ 1)>f] = O,Vj

Ti+1

If {(0;0,&,)]& > 0} € WF,(ug), then there is jo > 0, such that {(0;0',&,)[&, >
0} € WF,(f;,). Choose the larger j, satisfying the condition. Near (0;0’, 1), since
wug =Y (— 1)70 5! m] Jfo f;» we have
1

WF.(f,) = WFq(27°u0) € WF,(uo),

Identify f;, as a hyperfunction on R"~!. Let L; be as in Proposition [6.3.1] suppose
also
Wi > pp—1 forsomei, 1 <i<n—2, (6.13)

we have

Proposition 6.3.4. Let u be as in Proposition such that {(0;0',&,)&, > 0} C
WF,(u). Then
WF,(u) N Ty N (TR #£ 0,
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6.3 Solutions with prescribed singularities

where Iy is unstable manifold and v, is the push forward of

RN — R?
' — (0,2").

For instance, if {(2";£",&,)[&, > 0} € WF,(fj,) near {(0;0”,&,)|&, > 0}, then

{(0550", &) [, > 0} € WF,.(fj,) and  {(0,0750,£" &,)|& > 0} € WF,(u).

Remark 6.3.5. In Propositions [6.3.2and [6.3.4| we construct solutions v with WF,(u) N
I'; # (), and give an estimate of analytic singularities on unstable manifold T's.

In three dimensional hyperbolic case

0 0 0
L= — — —
)\1$1ax1 + Aoy Dy + x3 D2 +0,

to satisfy the condition in Proposition [6.3.4] we need A1, \» & [0, 1].
According to Table we have

type Ty T | T3 &1 &2 &3 note
() +eMt |0 0 0 0 1 [t— +
(ii) 0 0 0 | £el—M)t 0 1 [t— +0
(iii) 0 0 0 0 +eI=22)t [ 1 [ ¢ 5 +00
(iv) 0 |[xeM| 0 0 0 1 [t— +0
(v) | £ebt [ £eP2? [ 0 0 0 1 TBD
(vi) | xeMt] 0 0 0 +eI-22)E [ ] TBD
(vii) 0 | deM| 0| £l 0 1 TBD
(vii) | 0 0 0 | £e(-2)t | fel-22) | ] TBD

Table 6.1: List of projected null bicharacteristics, 3D hyperbolic case

Moreover, assume A\; < 0 and A\; > 1, and assume WF,(u) C {z; = 0},
then the stable manifold is I'y = {(x1,0,0,&)} and the unstable manifold is I'y =
{(0,x2,&1,0)}. Under those assumptions, the projected null bicharacteristics of type
(vii) will intersect WF, (u) if (0;0/,1) € WF,(u). It is easy to check Proposition [6.3.4]
holds.

Remark 6.3.6. In three dimensional hyperbolic non-attracting/non-repelling case

@D:
L=M\z —a +)\ T —a +x —a +49
141 91'1 242 9 ) 3 ax?’ )

where Ay ¢ [0,1] and 0 < Ay < 1.

Assume \; < 0, from Table 6.1/ we have: The stable manifold is {(z1,0,0,0)} and
the unstable manifold is {(0, 2, &1, &) }-
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type T T2 | T3 &1 &2 &3 note
(i) +eMt |0 0 0 0 1 | t— 400
(i) 0 0 0 | +el-M)t 0 1 |t— —
(vii) 0 | et | 0 [ £eld—M)t 0 1 |t— -
(viii) [ O 0 0 | e | L2001 1 T+ 5 —xo

Table 6.2: List of projected null bicharacteristics, 3D hyperbolic case (6-1b))

Apply theorem [5.3.1] and Proposition [6.3.1, we can construct a solution ug =
d(z1) ® w(xs, x3) supported in {x; = 0}, where w is a solution of equation

ow ow

Ao — —+ (-1 R?
2$282+$3ax3+( Jw € A(R?),
then ug satisfies Lug = 0 and WF,(u) = {(0,0,0;&,0,&3)[¢ 3 > 0}. Then near the
radial point ug has minimal analytic singularity with (0,0, 0;0,0,1) € WF,(ug), which

is of type (ii) in Table

Remark 6.3.7. In n dimensional case, if there is only one eigenvalues \; of B violates
the condition (6.2), assume A\; < 0 and \; > 0,1 < ¢ < n — 1, according to the
discussion in section [6.3] we have the normal form ([6.12])

L
Ly = - . T ‘97
1 )\1 ﬂf1ax1 ;M$+1 i + 01

where p; < p,—q for 1 < i < n — 2. Similarly, we can construct uy = 0(x;) ®
w(wg, -+, T,), Wwhere w is a solution of equation

Z ,uz-rz-‘rl

then uy satisfies Lyug = 0 and WF,(u) = {(0,0,0;&;,07,&,)|&, > 0}, near the radial
point uy has minimal analytic singularity with (0;0',1) € WF,(uo).

+60, — Dw € AR™ ),

Li+1

Remark 6.3.8. In three dimensional hyperbolic non-attractor case (6-1b), we are going
to construct solutions u such that WF,(u) N 'y # (), we consider the normal form
(6.12) with the condition (6.13). The stable manifold is {(z1,0,0,0)} and the unstable
manifold is {(0, z2, &, &2)}. From Table we know WF, (u)N (i) # (). Decompose
u = uy + up + u_, we have WF,(uy)N (i) # 0, i.e., we can construct a hyperfunction
solution

u(zy, - a3) = 2 o(@tay, 242 23)  for x>0

such that
WFG(“-F) N {xl 7é 0} = {(6A1t7 07 07 Oa §3)|€3 > 0}

Besides, there are at least two projected null bicharacteristics intersection the set
WF,(uy) N{z; = 0}.
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6.3 Solutions with prescribed singularities

In additional, we have

(a) If one of projected null bicharacteristics of type (ii) is contained in WF,(u), then
the other one should be contained in WF,(u) either.

(b) If one of projected null bicharacteristics of type (vii) is contained in WF, (u),
ie., (0, 0,e072) (0 1), then the other one (0,e*?!,0, —e(!*~*)t 0,1) should be
contained in WF, (u) either.

(c) If one of projected null bicharacteristics of type (viii) is contained in WF,(u),
then the other three should be contained in WF,(u) either.

Theorem 6.3.9. In three dimensional hyperbolic non-attracting/non-repelling case

(6-1¢):
0 0 0
L=XMNr;— + A\ + 0,
g o + 2lagy s +$3a s
where \i,\o & [0,1]. Without loss of generality, assume Ny < 0,\y > 1. If
(0;0,1) € WF,(u), then at least two of the following projected null bicharacteristics

will be contained in WF ,(u).

Proof. First from Table[6.1] we have:

type | 1 Ty | T3 &1 &2 &3 note
(vi) | £eMt 0 0 0 +e@=22t [ 1 [+ > 400
(vi) | 0 | xeMt | 0 | £l 0 1 |t— -0

Table 6.3: List of projected null bicharacteristics, 3D hyperbolic case 1|

There are 8 possible projected null bicharacteristics which go asymptotically to
(0,0,0;0,0,1), i.e., type (vi) and (vii), while the other types are impossible to show
up. The stable manifold is {(z1, 0,0, &;)} and the unstable manifold is {(0, z2,&;,0)}.

Since neither A\, nor ), satisfy the condition (6.2)), the projected null characteristics
show up in both subspaces (z1, ;) and (x4, &). The analytic wavefront set satisfies the
estimate in Proposition [6.3.4]

Besides we have the conclusion:

If one of projected null bicharacteristics of type (vi) (respectively, type

(vii)) is contained in WF,(u), ie., (eM*,0,0,0,e1722) 1) (respectively,
(0,2t 0, e(1=21)t (1)), then one of the others (e*?,0,0,0, —el~ xa)t , 1) (respectively,
(0,e*2t, 0, —e1=2)* 0, 1)) should be contained in WF,(u) either. O
Theorem 6.3.10. In three dimensional loxodromic non-attracting/non-repelling case
(6-1¢): 5 5 5
L=MNzx;— + X\ — 40,
195181‘1‘ 2352824—953&63—1‘

where A\, Ay are two conjugated complex with non-zero real part. Without loss of
generality, assume ReA; > 1. If (0;0',1) € WF,(u), then at least one of the following
projected null bicharacteristics will be contained in WF,(u).
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CHAPTER 6 Analytic singularities in higher dimensions

Proof. From Table[6.1] we have:

type | 13 To | X3 S &2 &3 note
v +ebit | £eb2t [ Q 0 0 1 |t— —0
viii 0 0 0 | £e-008 [ L0020 1 1 1+ & 400

Table 6.4: List of projected null bicharacteristics, 3D loxodromic case (6-1¢))

There are 8 possible projected null bicharacteristics which go asymptotically to
(0,0,0;0,0,1), i.e., type (v) and (viii), while the others are impossible to show up.
The stable manifold is {(0, 0, &y, &)} and the unstable manifold is {(x1, 2,0, 0)}.

Besides we have the conclusion:

If one of projected null bicharacteristics of type (viii) is contained in WF, (u), then
the other three should be contained in WF,(u) either.

]

Remark 6.3.11. In the beginning of this chapter, we have shown there are four
non-attractor cases (6-1b)), (6-1¢), (6-1€) and (6-1h). Aside from the above three cases,
we need to consider the mixed type non-attractor case (6-Th). However, Theorem[6.2.§]
showed us the analytic singularities of the case (6-1h) has a very strong correlation with
the two dimensional hyperbolic saddle case, and one can discuss about the propagation
of analytic singularities similarly.
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Appendix A

Symplectic geometry and contact
geometry

In sections [A.Tand [A.2] all the notions are standard, which can be found in plenty of
literatures, such as Arnold [1], Silva [69], Sternberg 73] and so on. The main references
of section[A.3]are [40], [63] and [66]. The content of section [A.4]are mainly from [32].

A.1 Symplectic geometry

Let V' be an m-dimensional vector space over R or C, andleto : V x V' — R be a
bilinear map. The map is skew-symmetric if o(u,v) = —o(u, v) for all u,v € V.

Theorem A.1.1. Let o be a skew-symmetric bilinear map on V. Then there is a basis

Uty 5 Cky €1, 7en7f1a"' 7fn OfVSI/tChthat
o(ui,v) =0, for alliand allv € V
o(ei,e;) =0=0a(fi, fj), for all, 7, and
o(ei, [) = 6ij, for all i, j.
Denote the space spanned by uy, - - - , ug by U, and choose a complementary space
WtoUinV,
V=UaW.

Let VV* be the dual space of V. The map ¢ : V' — V™" is the linear map defined by
g(v(u)) =o(v,u).
Definition A.1.2. A skew-symmetric bilinear map o is symplectic if o is bijective, i.e.,

U = 0. The map o is called a linear symplectic structure on V', and (V, o) is called a
symplectic vector space.

By Theorem|A.1.1} the dimension of a symplectic vector space is even, (V, o) has a
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symplectic basis ey, - - - ,e,, f1,- -, f, satisfying
O'(@i,fj) :51']‘ and a(ei,ej) = 0 = U(fiafj)'

If for each p € M, the map w, : T, M x T,M — IR is skew-symmetric bilinear and
wy, varies smoothly in p, then call the w a de Rham 2-form on M.

The 2-form w is symplectic if w is closed and w,, is symplectic for all p € M.

Definition A.1.3. A symplectic manifold is a pair (M, w) where M is a manifold and w
is a symplectic form.

For a symplectic vector space (E, o) of dimension 2n, a vector space W C V is
said to be isotropic (resp. Lagrangian, resp. involutive) if F' C F* (resp. F = F*,
resp. F'- C F). Thatis, W C V is isotropic (resp. Lagrangian, resp. involutive), then
dim W < n (resp. = n, resp. > n). Moreover W is Lagrangian if and only if dim W =n
and W is both isotropic and involutive.

A.2 Contact geometry

Now we start to introduce some notions in contact geometry. Let X be a 2n 4 1
dimensional manifold and let L be a line subbundle of the cotangent bundle 7™ X, let
L* be its dual bundle and L= its orthogonal complement.

One can define a multi-linear homomorphism of vector bundles
L' XL*xL—-CxX

by
(v1, Vg, dw) — (dw, vy A vg),

and this provides an alternating bilinear homomorphism
Lt x Lt — 197 (A.1)

Definition A.2.1. Say (X, L) is a contact manifold if the above map (A.l) is
non-degenerate.

Remark A.2.2. The above definition is equivalent to require the dimension of X is odd
and for a nowhere vanishing section « of L, the product

A (dw)"

never vanishes and does not dependent on the choice of w, which will be called a
fundamental 1-form, and under this definition we often write (X, w) rather than (X, L).

There is a strict relationship between symplectic and contact geometry. To be
specific, write X =1 \ X, then for s, a cross-section of X, define a 1-form ¥ on
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A.3 Contact geometry

X by setting s*(¢) = w. Then (d)" never vanishes and X is called the symplectic
manifold associated with (X, L), with canonical 1-form .

Example A.2.3. Let Y be an n-dimensional manifold Y, and X = P*Y the projective
cotangent bundle of Y. Then X =T \ Y. The Darboux theorem states for a local
coordinate system (xy,- - ,Zn,p1, - ,Pn—1) Of X, there is a canonical 1-form of the
form
w=dzr, — (prdx; + -+ + pp_1dr,_1).
And the associated symplectic manifold X has a local coordinate system
(X1, s Tp, M, -+, M) With p; = —% forj = 1,---,n — 1 and the symplectic
structure is given by
U =mdxy + - + npdr, = nw.

This example shows us that every contact manifold is locally isomorphic to a
projective cotangent bundle.

Definition A.2.4. Let f, g be functions on a 2n dimensional symplectic manifold X.
Their Poisson bracket is defined by

{f,9}(d9) = ndf A dg A (d0)" .

Take a local coordinate system (z,7) of X, then

_N~(0f 09 Of g
{f>9}—z<a—ma—%—a—%a—m>-

Jj=1

Definition A.2.5. Connecting with Poisson bracket, the Hamiltonian vector field is

defined as:
- af o aof o
oS (2L 9 98 9
f Z <877] a$]’ al'j 61’]]>

i=1

By definition one has
Hgpgy = [Hy, H).
Definition A.2.6. An analytic subset V' of 7*X is called involutive if f|, = gy =0
implies { f, g}|v = 0.

Theorem A.2.7. ([63], Chapter 2, theorem 5.3.2) For any coherent Ex-module
supp . is involutive.

That is to say, the support of a coherent £x-module has codimension less than or
equal to dim X.

Definition A.2.8. An involutive submanifold V' of (X, w) is regular if w never vanishes
onV.

An analytic subset A of 7" X is called Lagrangian if A is involutive and dim A =
dim X. A coherent £x-module is called holonomic (or maximally overdetermined) if
its support is Lagrangian.
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A.3 Quantized contact transformation

Definition A.3.1. Let (M,w)) and (N,wy) be two contact manifolds of the same
dimension, then a map f from X to Y is a contact transformation if f*wy is a
fundamental 1-form for X.

Contact transformation refers to homogeneous symplectic homomorphism.

Definition A.3.2. Let X and Y be two (real or complex) manifolds with the same
dimension, let U and V' be two open subsets in 7% X and 7*Y, and denote by ax
and ay the canonical 1-form on 7*X and 7™Y, respectively. A diffeomorphism (a
bi-holomorphic map in the complex case) ¢ : U — V 1is called a homogeneous
symplectic transformation if ¢ is homogeneous and ¢*ay = ay.

If ¢ is a homogeneous symplectic transformation, then ¢ is a local isomorphism
and is compatible with the action of C*. However, people works on algebraic analysis
prefer to use E] the term "contact transformation" instead of homogeneous symplectic
transformation.

Assume Y = C™ and let (1, -, Yn; M1, - -, n) be the coordinates of T*Y’, so that
ay = )i n;dy;. Setp; = n; o p and g; = y; o ¢, we have

A {pj.or}={g. @} =0, {pj,q} =6pforj,k=1,--- n.

(i1) p; is homogeneous of degree 1 and g; is homogeneous of degree 0 with respect
to the fiber coordinates.

In turn one can assume the function {q1,- - ,qn;p1, -+ ,pu} on U C T*X satisfy
the above conditions (i) and (ii), then the map

p:U —=TY
r ={q(x), - qu(x);p(), - pa(2)} € THY.

is a homogeneous symplectic transformation. And we call {q1, - ,¢u; D1, ,Pn} @
homogeneous symplectic coordinate system.

We give a rather abstract definition of contact transformation, there is another
intuitive way to construct contact transformations, which has been mentioned by Egorov
[16]], Hormander [29] and Maslov [58]], also can be found in Kashiwara [38]], [KKK]
[40], Kato-Struppa [435]], [SKK] [63] and so on.

Let M and N be two open subset of C", and let A be the non-singular hypersurface
of M x N defined by some holomorphic function I'(x, y) = 0, here non-singular means
V.,[(z,y) # 0 on A. Assume the determinate of the (n + 1) x (n + 1) matrix

0 d,T
AT dyd,T

! See Schapira [66]], Page 176.
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does not vanish on A. Then one can construct a contact transformation from P*M to
P*N via

PA(M % N) = {(2,5:6,m) € P*(M x N)[[(z,5) = 0
and (§,m) =cV,,(x,y) for c#0}.

The implicit function theorem implies that
m : PY(M x N)— P*M

and
7o PY(M x N) — P*N

are local isomorphisms.
Definition A.3.3. The local isomorphisms
momy': PN — P*M

and
myom i P*M — P*N

are called contact transformations having A\ as a generating function.

Classical results showed that every contact transformation can be expressed by
composition of two contact transformations with generating functions.

Theorem A.3.4. ([63] Chap. II §3.2) Let ¢ : T*X D U — T*Y be a homogeneous
symplectic transformation, let px be a point of U and set py = ¢(px). Then we have

(a) There exists an open neighborhood U’ of px and a C-algebra isomorphism ® :
0 ey |y — Ex|u (we call (o, ®) a quantized contact transformation).

(b) If D : 90;1 — Ex|u is a C-algebra isomorphism, then for any m, ® gives
an isomorphism o~ 'Ey(m) — Ex(m)|y. Moreover the following diagram
commutes:

ey (m) = Ex(mly

l Om l Om

cpflﬁT*y(m) L) ﬁT*y(m) |U

(c) Let ® and ®' be two C-algebra homomorphisms ¢~ 'Ey — Ex|y. Then there
exist i € C, a neighborhood U’ of px and P € T'(U; Ex(p)) such that o,(P) is
invertible and

P'(Q)=PO(Q)P™' and Q€ o '&p.

Moreover v is unique and P is unique up to a constant multiple.
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(d) Let P, e I'(U;Ex(1)) and Q; € T'(U; Ex(0))(1 < 5 < n) satisfy
[P]7Pk] :[Qj7Qk]:07 [Pjan]:éjk>

then there exists a unique quantized contact transformation (p, ®) such that

o(p) = (00(Q1)(P), -+, 00(@Qn)(p), a1 (P)(D), -+, 01(Po)(p)),

and ®(y;) = Q;,®(9,,) = P;. Wecall {Qy,---,Qn, P1,--- , P,} quantized
canonical coordinates.

We give some examples of quantized contact transformations. More examples can
be found in [38]], [40] and[45]].

Example A.3.5. ([38], Example 7.3.1) For instance, the quantized canonical
coordinates of a constant coefficient micro-differential operator P(x,0) of first order
is given by

Sp(p) = (xl + [P7'r1]7‘r2+ [P7x2]7"' y Ty + [P,xn],3x1,~~ 7836”)

Example A.3.6. The most classical contact transformation with generating function is
Legendre transformation. The generating function is

n—1

j=1
and we have a contact transformation ¢ : (z,£) — (y,n) with
& 28
&n &’

n; = —x;&  forj <n, and M = &n-

Yi = forj <n, and Yn =

The related quantized contact transformation is given by

Y = 3zj(8zn)_1 forj <mn, and Y = (x, Dy)(0p,) 7,
0y, = =20, forj <n, and Oy, = Oy,
Quantized contact transformations are the lifting of contact transformations from
the manifolds on which they act to the sheaves of differential (and microdifferential)
operators on related manifolds. Moreover, given a contact transformation ¢ from an
open set U € T*X to an open set U’ € T*X’, ¢ can be locally quantized, that is lifted
to an isomorphism ¢ of filtered rings from Ex |y to Ex/ |-

Theorem A.3.7. ([40] Page 221.) Let M and N be real analytic manifolds of dimension
n. Assume that a real-valued real analytic function I'(x,y) defined on M x N satisfies
the above conditions. Then, for an arbitrary micro-differential operator P(x,D,), a
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A.4 Linearization of real analytic vector field

micro-differential operator Q(y, D,)) is uniquely determined such that

/ P, Do)S(T () yuly)dy = / 5(T(z, 9))Qy, D, uly)dy

holds for any microfunction u(y). Conversely, if () is given, then P is uniquely
determined so that the above formula holds. Moreover, the order of () and P are equal.
That is, we have sheaf isomorphisms:

p e 2 q €N,

p'Enu(m) = g En(m)

and
p ' As o & g Asew,

where p is the map producing P by giving () and q is the map producing () by giving P.

Remark A.3.8. ([40] Page 226.) One notice that there are plenty of choices of kernel
functions instead of §(I'(z,y)). The isomorphism of above formula is unique up to an
inner automorphism by an invertible micro-differential operator of order zero. That
is, one can use any non-degenerate section of a simple holonomic system with its
characteristic variety being the conormal bundle of H, instead of 6(I'(z, y)).

A.4 Linearization of real analytic vector field

Suppose a real analytic vector field V' in R™ under the local coordinates z =
(21, ,x,) be of the following form:

- )

where all f;(x)’s are real analytic functions defined in some neighborhood of the origin
and f;(x) =0,Vi = 1,--- n. Actually, one can write V" in the form of

V = Z aijxia—xj + higher order terms,
ij=1

and let Ay, --- , A\, be the eigenvalues of the matrix (a;;). It is well known that all the
eigenvalues do not depend on the choice of coordinates.

That is, one can choice suitable local coordinates to make

fi(x) = \jz; + higher order terms.

For a single analytic vector field V' in C" vanishing at zero, Henri Poincaré [62]]
showed us:
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Theorem A.4.1. If one has the following conditions:

(i) The Jacobian matrix (gj: : |lz=0)ij is diagnoseable with eigenvalues {)\;}}_,,

(ii) there are no nonnegative integers solutions of the equation

A = zn: Y
j=1

for Z?:l kj > 1,

(iii) the convex hull of the family of all eigenvalues {\1, - - - , A, } does not contain the
origin, i.e., all the \.s lie in the same open half-plane about the origin,

then one can find an analytic change of coordinates
¢: (R",0) - (R",0),z—y

such that
- 0
oV = AilYi=—
; y;

Remark A.4.2. Condition (ii) is called the non-resonance condition, which guarantees
a formal Taylor’s series development for the linearizing map, and condition (iii)
guarantees the convergence of the formal series. Moreover, condition (ii) is required
in most of the related linearization theorems, which can be seen from an analysis in
Sternberg’s paper [72]]. Chen removed condition (i) entirely in [10], and both Sternberg
[72]] and Chen [10] provided the smooth versions of Poincaré’s theorem without the
restriction of (iii). However, it seems that we can only unwind but can not remove
the condition (iii) in (real) analytic case. That is one main difference between smooth
setting and real analytic setting for our problem.

Remark A.4.3. Indeed Henri Poincaré’s original work is about analytic vector field, for
a real analytic vector field vanishing at zero, the proof is similar. We have a sketch of
a proof of Poincaré’s result following from Y.Ilyashenko and S.Yakovenko [32] here to
give a clear idea to proof the linearization theory in real analytic settings, for detail, see
Poincaré[62]], Shalomo Sternberg|[/71].

Definition A.4.4. An ordered tuple of complex numbers A = (A, -+, \,) € C"is
called resonant, if there exist non-negative integers o = (o, - -+ , ) € Z7 such that
|a| > 1 and the resonance identity occurs,

)‘j = <k7 )‘>7 ’CY’ > 1.

Here (o, \) = a3 \; + - - - + a, A, The natural number |« is the order of the resonance.

A square matrix is resonant if the collection of its eigenvalues (with repetitions if
they are multiple) is resonant, otherwise it is non-resonant.
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Definition A.4.5. The Poincaré domain 3 C C" is the collection of all tuples A =
(A1, , An) such that the convex hull of the point set {\;,---,\,} C C does not
contain the origin inside or on the boundary. The Siegel domain G is the complement
to the Poincaré domain in C".

Remark A.4.6. Sometimes we call such tuples as being of Poincaré type.

Theorem A.4.7. (Poincaré) A non-resonant holomorphic vector field with the linear
part of Poincaré type can be linearized by a holomorphic transformation.

Remark A.4.8. Here, for the phase “ linear part of Poincaré type”, we mean eigenvalues
of the related Jacobean matrix of the linear part are of Poincaré (resp. Siegel) type.

Suppose an analytic vector field V' in C" under the local coordinates z =
(1, ,x,) be of the following form:

u 0
V= Zfl(x)@x’
i=1 ¢

where all f;(x)’s are analytic functions defined in some neighborhood of the origin and
filx) =0,Vi=1,--- ,n. Then

O fn)
i) = 30— o) + (e

Definition A.4.9. Two formal vector fields F, F” are formally equivalent, if there exists
an invertible formal automorphism A such that the

on
ox

Theorem A.4.10. A non-resonant formal vector field F(z) = Ax + --- is formally
equivalent to its linearization F'(x) = Ax.

H,-F(x) = F(H(z)), H,=(

Proof. Let F(z) = Az + Vi (x) + Vipga(z) + - -+, where Vi, i = m,m + 1,--- are
arbitrary homogeneous vector fields of degrees i, here m > 2.

First want to remove V,,,, and F' is formally equivalent to the formal field F'(z) =
A+ V) (x) +---

Choose H(x) = x+ P,,(x), where P,, is homogeneous vector polynomial of degree
m. The Jacobian matrix of H (z) is I + (2=).

Then the conjugacy H, one has H o I/ = F o H:

(I + %)(Aa; +Viu(z)+-)=Ax + P,(2) + V) (x + Pp(x)) + - .

The homogeneous term of order 1 on both side coincide. To meet the condition
V! =0, P, must satisfy

A, P] = =V, A(z) = Az
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where A = Ax is the linear vector field, the principal part of F', and the commutator

0P,
(A, P,| = (W) - Ax — AP(x).

Definition A.4.11. Let A(x) = Ax be a linear vector field and let P be a homogeneous
vector polynomial. Denote the operator ad 4 by

opr

ads : P — [A, P], (ady P)(x) = (8—)-Aa:—AP(x).
x

Lemma A.4.12. ([32], Lemma 4.5) If A is non-resonant, then the operator ad, is
invertible.

Proof. The assertion of the lemma is completely transparent when A is a diagonal

matrix A = diag{\1,---, A, }, then one knows ad, has n eigenvalues (A, ) — A\, k =
1,--- ,n, with corresponding eigenvectors Fy, = x*(0,---,1,---,0)7. In fact, we
have AF},, = M\, F},, and (%)Ax = (\, ) Fyq. O

Use the above lemma,
(A, P] = =V, A(z) = Az

is always solvable for arbitrary V,,.

Repeating this process inductively, one can construct an infinite sequence of
polynomial maps Hy, Hs,--- , H,,,--- and the formal fields Fy} = F, F5,--- , F,,---
such that

F,, = Ax + (terms of order larger or equal m)

and the transformation
H,, = id + (terms of order larger or equal m)

conjugates the F;,, with F},, .

Thus the composition H™ = H,, o --- o H; conjugates F} and F;,,; without
nonlinear terms up to order m.

The limit
H=H>*= lim H™

m—ro0

exists in the class of formal morphisms. By construction, H,F' cannot contain any
nonlinear terms and hence is linear as required. ]

We have shown the formal linearization for holomorphic vector field, similarly we
have the formal linearization for real analytic vector field:

Theorem A.4.13. ([54], Theorem 4) Let V' be a real analytic vector field on R" satisfies
the above conditions (i) and (ii) in Theorem then there exists a formal power
series for a linearizing map for V' about the origin.
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Remark A.4.14. Since we already construct formal linearization map for a non-resonant
real analytic vector field, the left question is whether the formal morphism is convergent
to a real analytic map with suitable condition. We would like to discuss it in two cases,
eigenvalues of Poicaré type and eigenvalues of Siegel type.

Proposition A.4.15. ([32]], Proposition 5.2) If A = (Ay - - - , \,,) is of Poicaré type, then
only finitely many denominators E| A — (o, N), 0 € 77, || > 2, may actually vanish.
Moreover, nonzero denominators are bounded away from the origin: the origin is an
isolated point of the set of all denominators {\; — (a,\),j =1,--- ,n,|a| > 2}

If )\ is of Siegel type, then either there are infinitely many vanishing denominators,
or the origin 0 is their accumulation point.

Proof. If the convex hull of {\;, -, \,} does not contain the origin, by the convex
separation theorem, there exists a real linear functional ¢ : C — R such that /()\;) <
—r < 0 for all \;, and hence ¢({«, \)) < —r|a|. Then

LN —(a, A)) > U(Nj) + |afr = o0 la] — oo.
Since ¢ is bounded on any small neighborhood of the origin, then the assertions are
proved.
For )\ of Siegel type, please check [32], Proposition 5.2 for detail. ]
Now we try to finish the proof of Poincaré’s Theorem for vector field with a
diagonal non-resonant linear part A = diag{\;,- -+ , A\, }.

The classical proof by Poincaré was achieved by the so called Majorant method, and
in modern language, it takes a more convenient form of the contracting map principle
in an appropriate functional space, the majorant space.

Definition A.4.16. The majorant operator is the nonlinear operator acting on formal
series by replacing all Taylor coefficients by their absolute values,

M: Z 2 Z |ex| 2.

kez kezt

The action of the majorant operator naturally extends on all formal objects, such as
vector formal series, formal vector fields, formal transformations, etc.

Definition A.4.17. The majorant p-norm is the functional on the space of formal power
series C[[z1, - - - , 2,]], defined as

£l = sup [M(f(2))] = M (p,-- -, p)| < +o0.

|z|<p

For a formal vector function ' = (Fy,--- , F,,), then

1Elp = [1Flp + -+ 1l

2 We call it denominator since it becomes the denominator part when we consider the inverse of the

operator ady, see Lemma|A.4.19
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The majorant space 91, is the space of formal vector functions from C[[z]] having finite
majorant p-norm.

Proposition A.4.18. The space M, with the majorant norm || - ||, is complete.

Lemma A.4.19. If A € M (n,C) is a non-resonant diagonal matrix of Poincaré type,
then the operator ady has a bounded inverse in the space of vector fields equipped with
the majorant norm.

Proof. The formal inverse operator adxl is diagonal,

ckax 0
adA Z Ckoﬂi '—> Z )\k Oé )\ 81Ek

Let F = (Fy,---,F,) € D(C",0) be a holomorphic vector function defined in
some polydisk near the origin. The operator of argument shift is the operator

Sp: h(z) — F(x + h(x)),

acting on holomorphic vector fields » € D(C", 0) without the free term, h(0) = 0.

Consider the one-parameter family of majorant Banach spaces B, indexed by the
real parameter p € (R, 0). We consider B, as a subspace in B, forall 0 < p < p/.

Let S be an operator defined on all of these spaces for all sufficiently small values
of p, as a family of operators S, : B, — B,.

Definition A.4.20. The operator S = {5, } is strongly contracting, if

(1) SO, = O(p?) and

(2) S'is Lipschitz on the ball Bp C B, of the majorant p-norm (with the same rho),
with the Lipschitz constant no greater than O(p) as p — 0.

Notice that any strongly contracting operator takes the balls ép strictly into
themselves, since the center of the ball is shifted by O(p?) and the diameter of the
image S(B,) does not exceed 2p0(p) = O(p?).

In the Poicaré domain the absolute values of all denominators are bounded from
below by a positive constant € > 0, therefore any majorant p-norm is increased by no
more than £~ 1: »

ladi* flo < (inf A, = (@ NI) < oo
[

Proof. Now we try to prove a holomorphic vector field with diagonal non-resonant
linearization matrix A of Poincaré type is holomorphically linearizable in a sufficiently
small neighborhood of the origin.
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A holomorphic transformation H = id + h conjugates the linear vector field Ax
with the initial nonlinear field Az + F'(x), if and only if

Ooh
— Az — A =F .
e x h(x) (x + h(x))
that is
adyh = Sph=Fo(id+h), ady=][A,". (A2)

And then if one can show the operator ad ' oSy restricted on the space 2, has a fixed
point A for sufficient small p, then one can finish the proof.

Consider this operator ad ' oS in the space 9N, with sufficient small p. Firstly the
operator ad;1 is bounded, its norm is the reciprocal to the smallest small divisor and
is independent of p. On the other hand, the shift operator Sy is strongly contracting
with the contraction rate (Lipschitz constant) going to zero with p as O(p). Thus
the composition will be contracting on the p-ball B, in the p-majorant norm with the
contraction rate O(1) - O(p) = O(p) — 0. By the contracting map principle, there
exists a unique fixed point of the operator equation

h = (ady" oSr)(h)

in the space 91, which is therefore a holomorphic vector function. The corresponding
map H linearizes the holomorphic vector field. [

Apply the above method to real analytic vector fields instead of holomorphic vector
fields, we can extend Theorem |A.4.13|to the following theorem.

Theorem A.4.21. Suppose a real analytic vector field V satisfies the conditions (i) and
(ii) in Theorem [A.4.1} moreover, assume that all the eigenvalues satisfy (iii), i.e., are
of Poincaré type, then the formal series of linearizing mapping convergent to a real
analytic mapping

p: (R",0) = (R",0),

such that ..V = V.

Remark A.4.22. Actually, consider our operator P, the eigenvalues are of Poincaré type
in attractor/repellent cases, it is not hard to have the linearization. For non-attractor
cases, the eigenvalues are of Siegel type, there is a linearization theory for such kind of
set of eigenvalues.

Now we are going to show some results about the linearization in the Siegel domain.
In Siegel domain the denominators A\; — (a, \) are not separated from the origin, then
the inverse aXm is unbounded. However, S is strongly contracting, equation
can be solved with respect to h by Newton-type iteration, while provided the small
denominators |\; — (&, A)| do not approach the origin as fast as || goes to infinite.
Such techniques is knowing as the KAM theory after A. Kolmogorov, V. Arnold and J.
Moser. See Chapter 2 of [9] for detail.

Definition A.4.23. A tuple of complex numbers A € C" from the Siegel domain S is
called Diophantine, if the small denominators decay no faster than polynomically with

109



CHAPTER A Symplectic geometry and contact geometry

a, 1.e.,
JC,N < +o00, suchthat Yo € 77, |\ — (a, \)|™" < ClalV.
Otherwise the tuple (vector, collection) is called Liouvillean.

Theorem A.4.24. (Siegel theorem). If the linearization matrix A of a holomorphic
vector field is non-resonant of Siegel type and has Diophantine spectrum, then the
vector field is holomorphically linearizable.

Definition A.4.25. A non-resonant collection A\ € C" is said to satisfy the Brjuno
condition, if the small denominators decrease sub-exponentially,

A — (N TE< e as ol — oo,
J
for some finite C' and positive £ > 0.

Theorem A.4.26. (Brjuno theorem). A holomorphic vector field with non-resonant
linearization matrix of Siegel type satisfying the Brjuno condition, is holomorphically
linearizable.

Remark A.4.27. If the denominators |\; — (o, A)| accumulate to zero too fast, e.g.,
super-exponentially, then the corresponding germs are in general non-linearizable.

Remark A.4.28. For the non-attractor case in our problem, the tuple of eigenvalues are
Diophantine. That is, the linearization theory in Theorem [A.4.21] are not only true for
attractor cases but also true for non-attractor cases.

Remark A.4.29. There are some linearization results for resonant vector fields [32], but
in this case our generic condition for radial point is violated.
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Appendix B

Ordinary differential equations

In this chapter we will have a review of Kamatsu’s results on hypoellipticity of ordinary
operators in space of hyperfunctions, which we will need in Chapter 5.

B.1 Hypoellipticity of ordinary differential operators

Let X be an open subset of C and P(z, d) an ordinary differential operator of order m.
Put .# = D/DP, and write

m

P(z,0) = ax(x)o".

k=0

Definition B.1.1. A point x( in X is said to be a singular point of equation Pu = 0
if a(x9) = 0. Moreover, if a,,(x¢) # 0, then z; is said to be an ordinary point of
Pu=0.

In a neighborhood of an ordinary point 7y in X, .# =~ O3 as D-modules,
and Pu = 0 has m linearly independent holomorphic solutions. However, in
a neighborhood of a singular point xy, the behavior of solutions are not easy to
manipulate. For instance, while L. = Homp, (#, Ox) is locally constant sheaf of
rank m on X \ {x¢}, a general algorithm for its monodromy is not known. But an
algorithm is well known in the case of differential equations with regular singularities
as follows.

Theorem B.1.2. A point x is called a regular singular point of Pu = 0 if the following
two conditions are equivalent:

(1) Let v = ord,—, an,(z). Then ord,—,,a;(x) > r — (m — j) for all j, where
ord,—,, f(z) denotes the order of zero of f(x) at x = (. We set ord,—,,0 = oc.

(2) The equation P(z,0)u = 0 has m linearly independent solutions of the form

(z — @) Z u; () (log(w — o))’
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for some s € Zsg and \ € C, where u;(x) are holomorphic on a neighborhood of
T = Xop.

Furthermore, a zero of a,,(x) not satisfying the above conditions is called an
irregular singular point.

We define a coherent filtration F'(.#) of

M =D/DP =Du (u=1 mod DP),

Fyt) = 3 Fu(D)(xd)u.

J=0

Theorem B.1.3. Say x is a regular singularity of # if and only if # admits a coherent
filtration satisfying

(x0)Fyp (M) C Fy( M) or z&Grl () =0,

where Gr!" is the grade algebra associated with the filtration F.

Definition B.1.4. Consider a linear homogeneous ordinary differential equation in
complex domain
d'u(z)

P(x,(?)u(x):Zai(x) =0,

with analytic coefficients. The equation Pu = 0 belongs to Fuchsian class if and only
all its singular points on the Riemann sphere are regular singular points.

Lemma B.1.5. Let T = zdiz, then

(1) We have

T = " + E SiZn_iW,WithSi € 7.
z
1

(i1) We have
n dn n - n—j :
A= " + E d; "7, withd; € Z.

j=1

Let €2 be an open set in R, consider a linear ordinary differential equation

where all the coefficients a;(z) are real analytic in 2 and a,,,(x) # 0.
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Theorem B.1.6. (Komatsu,[52]) Let 2 be an open subset in R, then

dim(#") =m + Z ord, a,,(x),

e

where ord, a,,(x) is the order of zero at x of the coefficient a,,(x).

Theorem B.1.7. (Komatsu,[52]]) Let 2 be an open subset in R, then the following three
conditions are equivalent:

(i) All hyperfunction solutions associated with the operator P are real analytic in ),
ie, BY(Q) C AQ),

(ii) The leading coefficient a,,(x) does not vanish for every x € €,

(iii) If f(x) is real analytic in Q, so does u(zx).

Theorem gives the condition for A-hypoellipticity of the operator P. Before
we discuss the D’-hypoellipticity of the operator P, first we give two lemmas.

Lemma B.1.8. Let Q) be an open subset of R, a hyperfunction f(x) € ZB(N2) belongs
to 2'(Q) if and only if a defining function F(z) of [ satisfies the following estimate:
for any compact set K C (), there are N € N,C > 0 and € > 0 such that for any
0 < |y| < €, one has

sup{|F(z 4+ 1y)|;z € K} < %
If the above condition is satisfied, the distribution in x, F(x + iy) and F(x — iy) for
y > 0, converge in the topology of 2'()) as y — 0. Then one has a distribution
identity:

f(z) = lim F(x + iy) — lim F(x — iy).
y—0 y—0

Komatsu [52]] also discussed the conditions of making a hyperfunction belongs to

(Q), ultradistribution 2'®) of class (s), and the local Besov space By 1 10¢(€2) for

Lp

loc

—oc0 <o <00,1<pqg<oo.

Lemma B.1.9. Let Q) be an open subset of R", a hyperfunction f(x) =€ () belongs
to 2'(Q) if and only if there is a representation of f,

fl@) =) _Fi(z),  Fi(z) € 0(Q+iT,0),j=1,--- ,k

satisfies the following estimate: for every compact set K C () and for every proper

subcone N; C T';, thereare N € N, C > 0 and € > 0 such that for eachj =1, --- |k,
one has
C .
sup{|Fj(2)];z € K} < P for ze K +i(A;N{ly|l <¢€})o.
Y
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Then for any fixed y € T, the real analytic function F;(x + iey) in x is convergent in
7' () as € — 0, the distribution f(x) obtained as the limit is nothing but

k

> F(x +1l0)

Jj=1

when regarded as a hyperfunction.

Theorem B.1.10. (Komatsu, [52]) Consider an ordinal differential equation in {2 C R

where all the coefficients a;(x),j = 0,--- ,m are real analytic. If all the singular
points in Q) are regular, and if | € 9'()), then the hyperfunction solutions u € P'(2).

Moreover, if there is an irregular singular point, then one can construct a
hyperfunction solution u that is not a distribution.

Proof. Without loss of generality, suppose the origin is the unique regular singular point
inQ. Andlet U(z) € V \ Q and F(z) € V \ § be the defining function of u and f
respectively, where V' € C is the complex neighborhood of €2. Then our equation can
be naturally written as

Use the Lemma[B.1.5] we have

TU(2)+by_ 1 (2)T" U (2)+by o (2)T" 72U (2)++ - -+b1 (2)TU (2)+bo(2)U (2) = F(2),

where by, k = 0,--- ,n — 1, are holomorphic on V. Let
d d.,, T
then J
(o= + BE)W(z) = F(2),
where
0 —1 O 0 0
0 0 -1 0 0
B= : ,
o o0 o --- -1 0
o o0 o0 --- 0 —1
bo bi by -0 by bpoy

which is a matrix whose elements are bounded near 0 (we can assume this by shrinking
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V) and F(z) satisfies

for some constants C' and V.

Choose t = log(%!) and the equation is transformed into

(c% +B())W(t) = F(t),

where c is a constant depending only on B(t), which does not vanish. And one times
% on both sides, still keeps the same notations, one has the inhomogeneous equation of
order one with variable coefficients

d - ~

(5 + BO)W (1) = F(@),

one have the solution of the form
V(t) = e 0 / F(t)etWdt + k),

where « is a constant of integration and

b(t) = /eB“)dt.

Since B (t) is bounded, then there exist two positive numbers b; and by such that b; <

V(t) = et / F)eDdt + k) < e <eb2 / F(t)dt + ,@),
And one can find the estimate

V(z+iy)| =

| /\

*bl

2)|dz + |/<;|)

/ Ot + |x])
(¢ [ m

B !y\N Ty~
for some constants C’ and N'.

Suppose o > 1 be the irregularity of the origin, i.e., the maximal gradient of the
highest convex polygon below the points (j, ord,—oa;(z)), j =0,--- ,m. Foro < 1,
the singularity is called determined singularity and for o > 1 the singularity is called
non-determined singularity.

Then one can find on each sector with angle less then —*7 and summit at 0, a
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holomorphic solution U(z) of P(z, £)U(z) = 0 which has the asymptotic expansion
U(z) ~ ez%ﬁ'"z"p(z,log z),

where A is non-zero constant and p is a polynomial on log z whose coefficients are
formal power series of 2" for some r > 0.

If one choose the sector in the upper or the lower half plane due to the argument of
A\, the solution satisfies the estimate
%)o’fl

sup |U (z + iy)| > Celi
zeK

on the half plane. [

Remark B.1.11. In Theorem [B.1.10} if we consider the homogeneous case Pu = 0 and
all the singular points of P are regular, then the collection of such solutions belongs to
Pris(U ), where Ay is the sheaf of hyperfunctions in the Nilsson class [61], which is
a subsheaf of Z. For more information of hyperfunctions in the Nilsson class, please
check part II of F. Pham [61]].

Example B.1.12. Consider the Euler operator

P=ag— _
T

one can fine the radial point (0,+1). The irregularity of P at the singular point x =

0 is 1, that is 0 is of determined singularity. The solution space is of 2 dimensions.

According to the Theorem|B.1.10} if Pu € &', then the hyperfunction solutions u € Z'.

In fact, one can choose the basis of solution space % as:

() a=0,1,2,---, choose =%, z¢,
(2) a=-1,-2,---,choose 61 pv.(z%),

(3) « ¢ Z, choose z*, z5.

Now we have another example of non-determined singularity in one dimension.

Example B.1.13.
d
P=z——
T
where c is some constant. The irregularity of P at x = 0 is 2. The solution space is of

3 dimensions.

Actually, one can choose the basis of solution space " as following. Define a

smooth function equal to e~ = when # 0 and equal to 0 when x = 0. And consider

two hyperfunctions which are not distributions e~ =0 and ¢~ #H0 — ¢~ 0,

That is, if Pu € &', then there might exists hyperfunction solutions « which are not
distributions.
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Fourier hyperfunctions

In this chapter we have a review of Fourier hyperfunctions. The main references are
Kaneko [34] and Graf [20]. The former is one of the best monograph to study the
hyperfunction theory, and the latter one gives a delicate and very detailed description
on the various integral transforms of hyperfunctions of one variable.

C.1 Fourier transformations

Proposition C.1.1. For o = (ay, -+ ,ap) € Z", let u(x) = 3, cyn g e>™V 1w,
where x € R". Suppose for any arbitrary ¢ > 0 there exists a constant C, such that
lao| < Ceelel holds for each a, where |a| = > i1 laj|. Then u(x) is a well-defined
hyperfunction. If |a,| < Cla|N for some N > 0 and C > 0, then u(z) is a distribution.
Proposition C.1.2. Ler f(y) be a locally Lebesgue integrable function on R"™ such
that for an arbitrary ¢ > 0 there exists C, with the property |f(y)| < CeeW almost
everywhere. Then the Fourier transform of f(y), u(x) = [g. f(y)e™=Hevdy is a
well-defined hyperfunction.

Now let us examine the singular spectrum of the hyperfunction
u(x) = | fly)e™Y vy,
R'L
supposing some additional information on supp f.

Definition C.1.3. For a subset G of R", define

Goo = {y € R" — {0} | for an arbitrary N > O and e > 0,

%—%‘<e}%@}.

Lemma C.1.4. Let G be a subset of R"™. Let 9 be the collection of

Gn{y|ly'| = Nand

{G" € R™ | G'is a cloesed cone such that G’ D G + a for some a}.
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Then Goo = (e G holds.

Proposition C.1.5. Let f(x) be the same as in previous proposition and let G = supp f.
Then the singular spectrum of the hyperfuction

u(@) = [ fly)e™ 0 dy,
R»

is contained in {(x,/—1£00)|€ € Goo}.
Proposition C.1.6. Denote

L9
\/—1 a(I)j7

assume ¥ be the action of Fourier transformation, we have

D* =D ...D D, =

(a) F(D*f) = £2F f. More generally, for a local operator J(D) with constant
coefficients, F(J(D)f) = J(D)Zf.

(b) F(a°f) = (~De).Z f.

ma-

(© F(flax+1b) =
F(flaz)) = 5 Z(f(§)), a

@) F(f+g)=Z(f)- F(g).
© Z(@) = ZU9). F((-2) = ZUE). That is, the Fourier

transformation of a real and even hyperfunction is a real hyperfunction.
The Fourier transformation of a real and odd hyperfunction is an imaginary
hyperfunction.

%I eVTat ﬁ’(g) in particular,
nd 7

F(f(=2)) = F(f

F(flx—a)) = eV 1“Ff,
(=

§))-

C.2 Fourier transformation of hyperfunctions with
compact support

Consider a hyperfunction f(x) on R™ with compact support K, then the integral

fO = [ et

is well-defined for every ( € C". That is the Fourier transformation of f(z) can be
regarded as a function of complex variables. More precisely, consider the boundary

values representation
N

fz) =Y Fj(x+il,0),

J=1
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and the Fourier transformation of f can be defined as

=3 [ =R

Here, D; denotes an integral path obtained by fixing the boundary of real neighborhood
D of K and deforming its interior into the inside of the infinitesimal wedge R" +
v/ —1T';0 which is the domain of analyticity of Fj(z).

Similar as Paley-Wiener theorem, we have

Theorem C.2.1. (Paley-Wiener-Ehrenpreis theorem) The Fourier transformation of a
hyperfunction f(x) with support contained in a compact set K is an entire function of
(¢, and for any ¢, there exists C. > 0 such that

|f(o| < CEBE|C|+HK(ImO.

Here,

Hy(n) = sup an
zeK

is called the supporting function of K. Conversely, an entire function which satisfies the
above conditions is necessarily the Fourier transformation of a unique hyperfunction
whose support is contained in the convex hull of K.

C.3 Fourier transformation of exponentially decreasing
hyperfunctions

Definition C.3.1. Let 6 be a positive constant and let R™ + i/ be a tubular domain. A
function F'(z) € O(R™ + iI) is said to decrease exponentially with type —4 (along the
real axis), if for every compact subset K € I and every positive ¢, there exists C'x . > 0
such that

|F(Z)| < CK,EG_((S_E)IRQZ'

uniformly for z € R” 4 i K. The set of all such functions is denoted by &~%(ID" + 41).
Here, D™ is the compactification R*US™ ! of R", where S™ ! is an (n—1)-dimensional
sphere at infinity. When z is a vector in R™ \ {0}, we denote by xoo the point on S™~*
which is represented by x, where we identify S"~! with R™ \ {0} /R, . The space D"
is given the natural topology, that is:

(1) If apoint z of D" belongs to R", a fundamental system of neighborhoods of z is
the set of all open balls containing the point .

(2) If a point z € D" belongs to S™ !, a fundamental system of neighborhoods of
x(= yoo) is given by the following family

Us.a(yoo) = {o € R™; ﬂ € &, |z] > A} U {aco;a € A},
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CHAPTER C  Fourier hyperfunctions

where A is a neighborhood of 7 in S" .

Also, define R
A, = lig lig 67°(D" +4I),
1350 60

and call it the space of rapidly decreasing real analytic functions.

The estimate obtained by setting § = 0 from above
’F(Z)’ < Ck’gedRez]

is called an infra-exponential type along the real axis, or simply slowly increasing, and
the totality of functions satisfying this estimate is denoted by &'(D" + iI).

Remark C.3.2. Notice that the notations are different from Schwartz distribution. Here
we follow Sato’s language to use the terms rapidly decreasing for exponential decay and
slowing increasing for infra-exponential growth, and keep the term exponential decay
if the exponential decay rate is globally fixed on the domain.

Use the multi-index notations || = a3 + ag + -+ + ay, 0% = O --- 9% for
a = (ag,---,a,) € INj, where INj is the set of nonnegative integers, we have

Definition C.3.3. A real valued function ¢ is in Sato’s space F if ¢ € C*(R") and if
there exist h, k > 0 satisfying

0%p(x
|80‘k,h = sup | SO( )lek|x| < 0.
ax  hlolal

Moreover, we have the following Pringsheim’s characterization of real analytic
functions:

Theorem C.3.4. A smooth function f on X is analytic if and only if for every compact
subset K € X there are positive constant C,r = % satisfying

[P F @107 )

. ol ax alhlel

< o0

The above definition of Sato’s space induced by D. Kim and others [11] is
isomorphic to the space A, introduced by Sato and Kawai. Denote by F' the strong
dual space of F and call its elements Fourier hyperfunctions.

Proposition C.3.5. ([11]) For the Sato’s space F, the following statements are
equivalent,

(1) g€ F.

(2) There exist constants h, k > 0 such that

sup [(z)[e"™l < 00, sup [p(€)]e"E! < oo
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C.4 Fourier transformation of slowly increasing hyperfunctions

Remark C.3.6. The Schwartz space consists of all locally integrable function ¢ such
that ¢ itself and its Fourier transform ¢ are both rapidly decreasing, while the Sato’s
space JF consists of all locally integrable function ¢ such that ¢ itself and its Fourier
transform ¢ are both exponentially decreasing.

Sato [64] introduced the notation of Fourier hyperfunctions that grow at infinity no
faster than any linear exponential. In [46] Kawai claimed that the space of Fourier
hyperfunctions on IR can be identified with the continuous dual of a suitable test
function space. Actually we can see from Proposition [C.3.5] that the Sato’s space
of Fourier hyperfunctions is coinciding with the Gelfand-Shilov space S1(R*). A.
G. Smirnov [/0] introduced a way to construct the Fourier transoframtion of general
hyperfunctions with no growth restrictions imposed.

Proposition C.3.7. We have the following properties,

(@) The image of the Fourier transformation of ﬁ*‘s(]D” +i{|y| < v}) coincides with
o (D" 4+ i{|y| < }).

(b) The Fourier transformation is a automorphism of A,.

Assume that the tubular domains R™ + ¢/; are also infinitesimal wedge of type
R™ + «I';0.
Definition C.3.8. A hyperfunction of representation f(z) = Zjvzl F;(z +I';0) with

defining functions Fj(z) € 0 ~9(ID™ + iI) is called Fourier hyperfunction decreasing
exponentially with type —d, or simply, an exponentially decreasing hyperfunction. The
set of all such hyperfunctions is denoted by .27°.

Proposition C.3.9. ([34], Theorem 8.2.6) The space 9279 of exponentially decreasing
hyperfunctions of type —9 and the space O(D" + i{|n| < 0}) of slowly increasing
holomorphic functions are in one-to-one correspondence via Fourier transformation.

C.4 Fourier transformation of slowly increasing
hyperfunctions

Definition C.4.1. A hyperfunction of representation f(z) = E;VZI Fi(z + iL';0)

with slowly increasing holomorphic functions Fj(z) € &‘D" + il;) on tubular
domains D" + ¢/; of type D" + ¢1';0 as defining functions,is called slowly increasing
Fourier hyperfunction, or simply, slowly increasing hyperfunction. The set of all such
hyperfunctions is denoted by 2.

Proposition C.4.2. ([34], Theorem 8.3.4) The Fourier transformation is an
automorphism of 2.

Proposition C.4.3. ([34], Proposition 8.3.2)Let F'(x + il';) be a slowly increasing
hyperfunction which decreases exponentially outside a closed convex proper cone A°.
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More precisely, there is a infinitesimal wedge R"™ + 11 of type R" + iI'0 such that when
restricting Rez outside any cone containing A° as a proper subcone, F(z) satisfies
the estimate, for a suitable § > 0

|[F(2)| = Ot

locally uniformly for y € 1. Set
G(¢) = / e F(2)dx
Imz=y

for any y € I. Then it converges locally uniformly in ¢ running over a tubular domain
R" — iJ of type R* — iA0, and G(¢) € O'D™ — iJ). Moreover, G(C) decreases
exponentially outside 1'°. Hence

F(F(z +1iT0)) = G(C — iA0)

is well defined as a slowly increasing hyperfunction, while % is a action of Fourier
transformation.

C.5 Embeddings, localization, topology and duality

Theorem C.5.1. One has the embedding
B, (R") — 270 — 2.

Here, B.(R™) is the space of hyperfunctions with compact support. In addition, the
definition of Fourier transformation for these spaces is consistent with embeddings.

Theorem C.5.2. One has the embedding
A= A— 2.

Here, A, is the space of rapidly decreasing real analytic functions, and A is the space
of slowly increasing real analytic functions

A =lim 6(D" + i{ly| < 6}).

6—0

Remark C.5.3. Notice that 2 can be naturally mapping into 4, and the mapping is
surjective. Moreover, the mapping .2° — Z(R") is also surjective.

Proposition C.5.4. For every slowly increasing hyperfunction f(x) and exponential
decreasing hyperfunction g(x), the convolution

frg=[ [fle—y)g(y)dy
]R’!’L
can be defined, and it is a slowly increasing hyperfunction. Further more, the product

122



C.5 Embeddings, localization, topology and duality

of a slowly increasing function and a slowly increasing real analytic function is well
defined as a slowly increasing hyperfunction. Moreover, we have the relation:

— -~

fxg=17-7

Proposition C.5.5. Every local operator J(D) = > b, D* with constant coefficients
acts on every Fourier hyperfunction f(z), i.e. J(D) : 2 — 2 (or 27° — 279).
Moreover,

J(D)f(x) = J(&)- T

holds. If g(x) is an exponentially decreasing hyperfunction, then

J(D)(f*g)=J(D)f xg=f=*J(D)g
also holds.

Now we are going to discuss the localizability of Fourier hyperfunctions. Fourier
hyperfunctions can also be defined cohomologically by using &'. One can recognize it
as a sheaf of a class of holomorphic functions with growth order as z — oo such as .

Consider the compactification of R"
D=R"USY!

by adding points at infinite at all directions.

Take a fundamental system of neighborhoods of a point at infinity aco as the
following family

Unalaco) = {z € R";z/|z| € A, |z| > A} U {zoo;x € A},

where A is a neighborhood of @ in S™. One has C is embedded into D" + iR". Denote
the closure of a set V' taken in D" or D™ 4 ¢R™ as V, and the one taken in R™ and C" is
V. Then D" + iR” can be written as C™.

The function space 0 can be naturally be regarded as the space of global sections
of a sheaf on D" 4 iR".

Proposition C.5.6. D" C D" +4R" is purely n-codimensional with respect to the sheaf
O |'l The derived sheaf 2 = ). (0) is called the sheaf of slowly increasing Fourier
hyperfunctions. Also 2|gn = A.

Proposition C.5.7. 2 is a flabby sheaf on D™.
One can define the sheaf consisting of exponentially decreasing hyperfunctions of

all types as
2. = lim 2°°.

LA closed set A in a topological space X is purely n-codimensional with respect to the sheaf .# over
X if H,(#) = 0 for j # n. For instance, the Euclidean space R" in C™ is purely n-codimensional with
respect to the sheaf .
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CHAPTER C  Fourier hyperfunctions

Since Z,|gn = 4, the quotient sheaf 2/2, may be regarded as the one extracting
only growth order from Fourier hyperfunctions.

For f(x) € 2(D"), define

supp,, f = supp{f(z) mod 2,}

and call it the essential support of f.

The relationship between growth order and singular spectrum is

Theorem C.5.8. For f(x) € 2(D"), then the following statements are equivalent:

(i) S.S. f(zx) C D" 4 iI*dzoc.

~

(ii) supp,, f(§) C I

Corollary C.5.9. A hyperfunction f(x) € B(R") is micro-analytic at (x, /—1&dwoo)
if and only there exist a conical neighborhood 1'° of & and a Fourier hyperfunction g
such that supp., §(&) NT° = () and that the difference f(z) — g(x) is real analytic on
a neighborhood of x.

Proposition C.5.10. ([34]], Chapter 8, Page 392) We have the embedding
B.(R") — 2 — B(R").

For any [ € B(R"), there exists a set of slowly increasing functions among defining
functions of f in the sense of hyperfunctions.

In Kaneko’s book [34], he introduce a topology into the hyperfunction space and
make it to be a Fréchet space (also a Montel space E]). By giving suitable topologies,
he shows that A, (D) and 2(ID™) are topologically dual to each other. Such duality can
be extended to the duality between the space A, (K) and the 2(K), while the former
is the space of all rapidly decreasing real analytic functions defined on a neighborhood
of compact subset K of D", and the latter is the the space of all slowly increasing
hyperfunctions with support contained in K. The above duality includes the duality
between #(K) and A(K). In Morimoto [59], we see the duality of (K ) and A(K),
while Z(K) is a Fréchet-Schwartz space, and A(K) is a dual Fréchet-Schwartz space.

2A Montel space is a barrelled topological vector space where every closed and bounded set is
compact.
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Appendix D

Fourier-Bros-Iagolnitzer transform

D.1 Fourier-Bros-Iagolnitzer transform

Definition D.1.1. The standard Fourier-Bros-lagolnitzer (abbr. FBI) transform is
defined as
T, : . (R") — .7 (R*") N C>®(R*™)

by
Tyu(x,€) =273 (xh) ™+ / e 0y () dy,

which can be interpreted as the Fourier transform modified by a Gaussian distribution.
The Gaussian distribution localize in position and the Fourier transform localize in
frequency, hence T}, u describes the microlocal property of w.

Proposition D.1.2. Here we list some rudimentary properties of the FBI transform:

(D) Ifu e & (R"™), then G%Thu(x, €) is a holomorphic function of z = v — \/—1&.
(2) Ifu € L*(R™), then Tu € L*(R™) and || Tu|| 12(rny = ||t L2(mrm).-
(3) Ifu € ' (R™), then hD,Tu = (£ + v/—1hD¢)Tu = T(—hD,u).
(4) We have v = T*Tu, where T™ is defined as
T*o(y) = 28nh ™ / — Y @ vE—mm @y (1 €)dade,
which can be interpreted as an oscillatory integral with respect to &.

The standard FBI transformation is easy to use, but it is not invariant under change
of variables. Introduce a general analytic phase function

o(B,x),8=(B:,B:) € R,z € R"
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satisfying the same microlocal properties as (8, — )8¢ — 5= (8. — ©)*:

=00, =+v—10,, for B, ==z

Imy > C|B, — z|?, forreal 3,z

and define the general FBI-transform as

nwmm:/aTa@ammmmm%

where « is an elliptic analytic symbol, x is a cut-off function.

If we just want to consider the microlocal property near (zo, &), then we only need
to define (5 and ¢ close to (xg, &y) and x = 1 near x.

Say u is of exponentially decay microlocally at (z, &) € T*R" if
To(w)(8) = O(e ™) ash — 0

for some ¢ > 0 uniformly in a neighborhood of (z(, ;). The definition is independent
on the choice of y, a and .

Definition D.1.3. The analytic wave front set WF,(u) of w is the set of all points
p = (x,&) € T*R™ \ 0 where u is not of exponentially decay microlocally.

Proposition D.1.4. We have WF,(u) C T*R™ \ 0. Moreover, Sato’s definition of
singular spectrum S. S.(u) equal to WF ,(u)/R.

Example D.1.5. For 7 > 1, consider the function

y— emar forzxz >0,
0 forx < 0.

We have WF (u) = 0, WF,(u) = {(0,¢) : £ # 0}.
Let us check the case 7 = 1. Since

(et = e da (-1l 4 0(a),

and the maximum of e~ =z~ is achieved at z = n+r1 In a neighborhood of the origin,
I(—)"e"=| = O(e ™" (n+1)""n!).

For FBI transform

D

Thu(0,€) = / e T T gy £ =+l
0
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D.1 Fourier-Bros-lagolnitzer transform

By scaling x = t\/ﬁ, we have
Thu(0,£1) = \/E/ e_ﬁ[%h/jltg—ké\/ﬁldt.
0

Heuristically, the critical point of the phase is at ¢t = eTiV~! and by method of

x _ V2
stationary phase, the leading term of Tju(0,41) will be vhe¥iV=Te™ Vi, It shows
that (0,&) € WF,(u).

Remark D.1.6. Usually, there are two ways to study analytic singularities. One is
introduced in this section using FBI transform to study analytic wavefront set, the other
is use Sato’s hyperfunctions and microfunctions to study the analytic spectrum. Those
two ways are in some sense equivalent, for instance the equivalence as showed in Bony
[S] in the category of distributions. We can choose a suitable way to deal with different
problems.
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Appendix E

Euler’s hypergeometric differential
equation

Every second order linear ordinary differential equation with three regular singular
points can be transformed into a standard form, i.e. the Euler’s hypergeometric
differential equation. Solutions of such equations gives the Gaussian hypergeometric
functions, which are special functions represented by the hypergeometric series. The
Gaussian hypergeometric functions includes many other special functions as specific or
limiting cases. For more information, one can check [14], [19], [76].

E.1 Euler’s hypergeometric differential equation

The Euler’s hypergeometric differential equation is an second order ordinary differential
equation of form

d*w(z)
dz?

dw(z)

z2(1—2) -

+lc—(a+b+1-2)]

—abw(z) =0, (E.1)

which has three regular points: 0, 1 and oo.

The Euler’s hypergeometric differential equation is a special case of Riemann’s
differential equation (also known as Papperitz equation), with three regular singular
points p, ¢, r on the Riemann sphere, rather than merely at 0, 1, and oo,

de(QZ) 1—a—a’+1—ﬁ—5’+1—7—7’}d_w+[Oéo/(p—Q)(p—?“)
dz Z—Dp zZ—q zZ—r dz zZ—0Dp
L B8a=rla=p)  3(r=p)r—q

z—q z=r ](z—p)(z—Q)(z—T)

=0.

The pairs of the exponents with respect to the singular points p; ¢; r are o, o’; 3, 85 v, '
respectively subject to the condition

at+d +p8+p+v++9 =1 (E.2)



The equation is completely determined by the position of the three singular points and
the pairs of exponents at each point, i.e., a total of eight complex parameters (not nine,
because of Formula (E.2)).

Theorem E.1.1. Any second order ordinary differential equation with three regular
singular points can be converted to Euler’s hypergeometric differential equation (E.1))
by a change of variables.

Proof. See [76], Chapter 15. O



Appendix F

Hermite functions

Hermite functions are solutions of Schrodinger equation for one harmonic oscillator in
quantum mechanics. We need them to study the analytic singularities in the cases of the
elliptic radial point and the mixed type radial point in sections[5.2] [6.1.1}and [6.1.3]

F.1 Hermite functions

Definition F.1.1. There are two different definitions of Hermite polynomials
the Hermite polynomials which has usually been used in probability theory:

2 d" 2

He,(xz) = (—1)e2 e

z_
2

€ )

and the other is the physicists’ Hermite polynomials:

dr
Hy(z) = (=1)e" —e .
(2) = (=1)e” — e

Each one of the Hermite polynomials is a re-scaling of the other.
).

T

H,(x) =23 He,(V2z), He,(z) :2—%Hn(\/§

Without loss of generality, we will follow the physicists’ definition of
polynomials.

The Hermite polynomials are given by the exponential generating function

. One is

Hermite
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Definition F.1.2. The Hermite functions are defined by

pa(z) = @IV he ™ Hy(2)
= (@A) e e

dx™

These functions satisfy

| enl@)ente)iz = bun

oo

and form an orthonormal basis of L?(R). Notice that the Hermite functions ¢, (z)
satisfy a Schrodinger equation for one harmonic oscillator in quantum mechanics:

on(@) + (20 + 1 — 2%)pn(z) = 0.

Proposition F.1.3. The Hermite functions are exponential decreasing real analytic
functions.

Proposition F.1.4. The Hermite functions o, (x) form an orthonormal basis of L*(R)
which diagonalizes the Fourier transform operator.

Proof. We have
——+2xt t2 Ze % n _‘

The Fourier transformation of the left hand s1de is given by

—2? oy 42 1 [T Cizk — T 42t
F(e > )(k) = (2m) "2 e e 2 dx

2
_ e 5 B —2ikt+t2

~Y e 2H il!f)”

The Fourier transformation of the right hand side is

PO e Halo)o) = (—iy'e™ 5 Ha (k).

n=0

Then we have , )

F(e™T Hy(z)) = (—i)"e™ = Hu(k).

The Proposition [F.1.4] gives an essential explanation of Proposition (b).
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