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Abstract

In this thesis, we applied tools of algebraic analysis and knowledge of
symplectic geometry and contact geometry to give a normal form of certain
class of microdifferential operators, and then studied analytic singularities
of solutions with the advantage of normal form. The microdifferential
operators are of real analytic coefficients, real principal symbols and
simple characteristics near radial points. We linearized the contact vector
fields with real analytic coefficients, classified the radial points and find an
exact normal form of our operators.

In the last two chapters, by restricting our discussion in the space of
Fourier hyperfunctions, first we fully studied the analytic singularities in
two dimensional case, and gave some estimates of singularities in higher
dimensional cases. Roughly, near an attracting (resp. repelling) generic
radial point, we can found solutions with minimal analytic singularity,
i.e. the radial direction. Furthermore, near a non-attracting (resp.
non-repelling) radial point, if the radial direction is contained in analytic
wavefront set of the solution, then either the intersection of analytic
wavefront set with stable manifold or with unstable manifold is non-empty.
Moreover we discussed solution with prescribed singularities and gave
a description of propagation of analytic singularities, especially in three
dimensional case.
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Chapter 1

Introduction

First we give a list of some important notations of the thesis in section 1.1. Then
we provide a short introduction of algebraic analysis in section 1.2, with a general
example to reveal the motivation of using algebraic analysis to study systems of partial
differential equations. Later in section 1.3 we state our problem with some assumptions.
In section 1.4, we have a short review of previous work related to our problem. The
main results of the thesis are listed in section 1.5. At last we give a summary of each
chapter and show the relation among chapters.

1.1 List of notations

Notation Description or definition Reference
A the sheaf of germs of real analytic functions Def. 2.2.3
A∗ the space of rapid decreasing real analytic functions Def. C.3.1
A the space of slowly increasing real analytic functions Thm. C.5.2
B the sheaf of germs of hyperfunctions Def. 2.2.4
B∗ the sheaf of germs of hyperfunctions with compact support Thm. C.5.1
BNils the sheaf of hyperfunctions in the Nilsson class Rmk. B.1.11
B[{0}] the sheaf of hyperfunctions with support at 0 Lem. 5.2.2
BP the hyperfunction solutions space w. r. t. the operator P Thm. B.1.6
C the sheaf of germs of microfunctions Def. 2.2.4
D the sheaf of rings of differential operators Section 1.2
D the compactification of Rn: Rn t Sn−1

∞ App. C.5
E the sheaf of microdifferential operators Def. 2.5.7
Ê the sheaf of formal microdifferential operators Def. 2.5.13
E∞ the sheaf of micro-differential operators of infinite order Def. 2.5.14
F Sato’s space Def. C.3.3
F ′ Fourier hyperfunctions App. C.3
F (f), f̂ the Fourier transformation of f Def. C.3.8
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Notation Description or definition Reference
Hp the Hamiltonian vector field associated to function p
M D-module Section 1.2
O the sheaf of germs of holomorphic functions Def. 2.2.3
PN the associated normal form of operator P
Q−δ the sheaf of exponentially decreasing hyperfunctions Def. C.3.8
Q the sheaf of slowly increasing hyperfunctions Def. C.4.1
Q∗ Sheaf of exponentially decreasing hyperfunctions of all types App. C.5
R radial vector field Def. 4.2.1
S. S.(•) singular spectrum Def. 2.2.7
Thu the standard FBI transform of u App. D.1
WFa(•) analytic wavefront set Def. D.1.3

Table 1.1: List of notations

1.2 Background

Algebraic analysis, as know as analysis using the algebraic methods of homological
algebra and sheaf theory to study analytic (system of) partial differential equations,
with the contribution of J. Bernstein, P. Schapira and other French mathematicians, has
been extensively developed in the late 1960s by the Kyoto school, M. Sato, T. Kawai,
M. Kashiwara and other Japanese mathematicians.

M. Sato published two papers on hyperfunction theory in 1959/60 [64], gave us
a new vision to study linear partial differential equations. By using sheaf theory and
complex analysis, he constructed the sheaf of germs of hyperfunctions. Then came
in 1971 the Master thesis of M. Kashiwara [36], in which he settled the foundations of
analyticD-module theory and gave plenty of basic results. It helped to deal with general
systems of linear partial differential equations. Two years later, in 1973, Sato created the
algebraic microlocal analysis to analyse objects of a manifold in the cotangent bundle,
with Kashiwara and Kawai, in their long and delicate paper [63], quoted as [SKK]
nowadays everywhere. The phrase “microlocal analysis” refers to the approach to the
study of partial differential equations which moves the problem of singularities to the
characteristic variety that stays on the cotangent bundle. It is a well developed subject
and the classical approach for smooth manifolds can be found in the fundamental work
of Hörmander [29], while another approach started from [SKK], so called “algebraic
microlocal analysis” 1, deals with the problem in a more algebraic way.

During those years the subject has grown steadily, numerous great results and
important theories are acquired in widespread fields of contemporary mathematics,
like microlocal analysis, singularities theory, D-module and its applications to
representation theory, mathematical physics and so on. For instance, Martinez had
shown the Edge-of-the-Wedge theorem, found by a theoretical physicist Bogolyubov in
1956, played an important role in the theory of hyperfunctions and microfunctions [57].

1 For detail, please check G. Kato and D. C. Struppa’s book [45].
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1.2 Background

Study the analytic singularities of solutions is one of the most significant problems
in analysis of analytic partial differential equations. Kashiwara, Kawai and Kimura
followed Komatsu’s terminology “singularity spectrum” 2 in [KKK] [40] to describe
the analytic singularities of hyperfunction solutions, while Hörmander introduced the
notion of analytic wave-front set to analyze the singularity structure of distribution
solutions of linear differential equations. Moreover, Bros and Iagolnitzer also
introduced a similar notion “essential support” of a distribution motivated from some
physical problems, which can be well studied by the Fourier-Bros-Iagolnitzer (referred
to as FBI) Transformation. In the category of distributions, J. M. Bony [5] and some
other mathematicians, such as Bros and Iagolnitzer, Kataoka, Nishiwada, and Hill
showed independently that those three concepts coincide in the middle of 1970s.

To unravel the powerful algebraic tools in studying systems of partial differential
equations, we start with a general example, which can be found in [31], [43], [67].

Let U be an open subset of Cn and z = (z1, · · · , zn) be local coordinates of U . A
(complex analytic linear partial) differential operator on U is an operator of the form

P (z, ∂z) =
∑
|α|≤p

aα(z)∂αz ,

where aα(z) ∈ O(U), α = (α1, · · · , αn) with |α| = α1+· · ·+αn and ∂αz = ∂α1
z1
· · · ∂αnzn .

The restriction of P defined on U to an open subset V is the operator

P (z, ∂z)|V =
∑
|α|≤p

aα(z)|V ∂αz .

The above differential operators form a presheafDCn of rings onCn, and which actually
is a sheaf. Note that OCn has a natural structure of leftDCn-module. For an open subset
U of Cn, denote DU the restriction to U of the sheaf DCn .

First consider a differential equation

Pu = 0, (1.1)

where P is a differential operator defined in U and u is a single unknown function. The
set HomD(M ,O) of D-linear homomorphism from M to O gives

HomD(M ,O) = HomD(D/DP,O)

' {ϕ ∈ HomD(D,O)|ϕ(P ) = 0}

where M = D/DP is the left D-module associated with the equation (1.1). That is

HomD(M ,O) ' {f ∈ O|Pf = 0}.

Hence HomD(M ,O) represents the group of the holomorphic solutions of the equation
(1.1).

2 Sato, Kashiwara and Kawai called it “singular spectrum” in [SKK], originally provided by Boutet
de Monvel, where “spectrum” first meant the support of the Fourier transform of a function.
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Generally, a system of linear partial differential equations of n unknown functions
u1, · · · , un can be written as

n∑
j=1

Pijuj = 0, i = 1, · · · ,m. (1.2)

A DU -linear morphism ϕ : D⊕mU → D⊕nU with

ϕ(Q1, · · · , Qm) = (
m∑
i=1

QiPi1, · · · ,
m∑
i=1

QiPin)

gives an exact sequence
D⊕mU → D⊕nU →MP → 0,

where Mp is the cokernel of ϕ. Assume S is the sheaf of solution space, which can be
chosen as the space of C∞ functions, the space of Schwartz distributions, the space of
holomorphic functions, the space of hyperfunctions and so on. Acting the contravariant
functor H omDU (•,S) then we have the exact sequence

0 −−−→ H omDU (MP ,S) −−−→ S⊕n P−−−→ S⊕m,

and hence H omDU (MP ,S) ' SP is the solution sheaf. That is, the DU -module MP

represents a homogeneous system of partial differential equations (1.2) naturally.

Assume u1, · · · , un; v1 · · · , vm ∈ Γ(U,S) and

n∑
j=1

Pijuj = vi, i = 1, · · · ,m. (1.3)

For any differential operator Q1, · · · , Qm on U , we have

n∑
j=1

(
m∑
i=1

QiPij)uj =
m∑
i=1

Qivi,

If
∑m

i=1QiPij = 0 then
∑m

i=1Qivi = 0. The algebraic compatibility condition of the
system (1.3) is giving by (Q1, · · · , Qm). Define NP = Ker(ϕ) and IP = Im(ϕ), then
we have

0 −−−→ NP −−−→ D⊕mU
α−−−→ IP −−−→ 0

0 −−−→ IP
β−−−→ D⊕nU −−−→ MP −−−→ 0

where ϕ = β ◦ α. And we get two exact sequences

0→H omDU (MP ,S)→ S⊕n →H omDU (IP ,S)→ Ext1DU (MP ,S)→ 0

0→H omDU (IP ,S)→ S⊕m →H omDU (NP ,S)→ Ext1DU (IP ,S)→ 0

4



1.3 The problem

The second exact sequence shows

H omDU (IP ,S) = {v ∈ S⊕m : Qv = 0,∀Q ∈ NP}

so IP is aDU -module which represents the system of algebraic compatibility conditions
of the system P . The first exact sequence shows, the elements of Ext1DU (MP ,S)x are
the class of vectors vx of Smx satisfying the algebraic compatibility conditions modulo
those for which the system is truly compatible.

Moreover, for k ≥ 1,

ExtkDU (IP ,S) ' Extk+1
DU (MP ,S).

In summary, the study of the system (1.3) is equivalent to the study of the
DU -module MP and all of its full solution complex RH omDU (MP ,S).

We will show a simple example to see the power of D-module. Similar examples
can be found in Hotta [30], Kashiwara [35], [SKK][63]. Assume λ 6= 1, let us consider
two equations

(x
d

dx
− λ)u = 0,

and
(x

d

dx
− λ+ 1)v = 0.

Even though the two equations look different, they are equivalent to each other by the
transformations u = 1

λ−1
d
dx
v and v = xu. Actually we have the isomorphism

Coker(D
x d
dx
−λ

−−−−→ D) ' Coker(D
x d
dx
−λ+1

−−−−−→ D).

1.3 The problem

Let M be an n dimensional real analytic manifold, let X be the complexification of
M . Let BM be the sheaf of germs of hyperfunctions with support in M , and let
AM be the sheaf of germs of real analytic functions with support in M . Let P be a
microdifferential operator defined on the cosphere bundle

√
−1S∗M 3. We want to

study the analytic singularities of solution u ∈ BM(M) of Pu ∈ AM(M) for the
operator P with real analytic coefficients, real-valued principal symbol p, and simple
characteristics (i.e. p = 0, dp 6= 0 on T ∗X\0. It is a non-degeneracy assumption.) near
radial points, where the Hamiltonian vector field Hp is nonzero multiple of the radial
vector field R in microlocal sense. Here, the non-degeneracy assumption of simple
characteristics implies that the radial points of P is microlocally isolated, i.e., there is
no other ray near the radial direction consists of radial points.

Even though we introduce the notion of a microdifferential operator and its

3 We follow the notation of [KKK][40] and [SKK][63], while the standard coordinates can be
choosing as (x,

√
−1ξdx∞).
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properties for a complex manifold X and the projective cotangent bundle P ∗X (or
the cosphere bundle S∗X), as in Sato, Kashiwara and Kawai’s famous paper [SKK]
[63], we would like to follow [KKK] [40] for the notion of microdifferential operators
defined on

√
−1S∗M for a real analytic manifold M to deal with our problem. In fact,

in [SKK] the theory is developed to define an operator on a real manifold by restriction,
which is more general but less intuitive. Although we have a less general definition of
a microdifferential operator then the one in [SKK], it is better to consider our problem
with it for the coefficients of our operators are real analytic. We will keep the notion in
real case in the following chapters unless a special elaborate.

According to Sato’s Fundamental theorem, outside the characteristic variety the
operator is invertible, in that case the answer of our problem is trivial, wherefore we
will concentrate on the characteristic variety Char(P ), which is a closed subset of the
cotangent bundle T ∗M . I will use two equivalent notions freely, the singular spectrum
S. S.(•) and the analytic wavefront set WFa(•) to describe the analytic singularities,
while the former one stays in

√
−1S∗M and the latter one in T ∗M \ 0.

1.4 Previous work

Algebraic microlocal analysis concentrates on the real analytic setting, while the
classical microlocal analysis usually works in the smooth setting, such as, smooth
manifold, smooth coefficients of operators and soon on. By considering the operator
near a point that is not radial, there are abundant of results of our problem.

Let X be an smooth (or real analytic) manifold. An operator P is of real principal
type if Hp ∦ R on T ∗X \ 0, where R =

∑
i ξi∂ξi is the radial vector field (also known

as Euler vector field) and p is the principal symbol of P . Roughly, a point where the
condition Hp ∦ R violates is called a radial point4 of P , i.e., a radial point is one where
the Hamiltonian vector field Hp is a multiple of the radial vector field R. Due to the
assumptions of our problem in section 1.3, we would like to outline the previous work
in Table 1.2 and introduce them as following.

Smooth setting Real-analytic setting
Operators of real principal type L. Hörmander M. Sato and others
Radial point Guillemin-Schaeffer To be done

Table 1.2: Previous work

(I) Real principal case in the smooth setting.

Let X be a smooth manifold, let P ∈ Ψm(X) be a pseudo-differential operator
defined on X , and let pm(x, ξ) be the principal symbol of P . Assume pm is
real-valued and assume pm = 0 implies dpm 6= 0. Such operators are well studied,

4 One can find the exact definition in section 4.2.
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1.4 Previous work

for instance in Chapter 26 of Hörmander [28], with the assumption that P is of
real principal type.

Definition 1.4.1. Let P ba a pseudo-differential operator that satisfies the above
conditions, say P is of principal type if ∇ξpm 6= 0 on the characteristics set

Char(P ) = {(x, ξ) ∈ T ∗X \ 0|pm(x, ξ) = 0}

of P .

Remark 1.4.2. A operator P is of principal type if and only if dpm and α are
linear independent on Char(P ), where α = ξdx is the canonical one-form on
T ∗X \ 0.

Hörmander studied the global solvability of the equation Pu = f modulo C∞

and discussed the propagation of singularities.

Theorem 1.4.3. Let X be a smooth manifold and let P ∈ Ψm(X) be properly
supported and have a real principal symbol p. If u ∈ D′ and Pu = f , then
WF(u) \WF(f) is contained in Char(P ) and is invariant under the flow defined
there by the Hamilton vector field Hp.

Theorem 1.4.4. Let P be of real principal type in the manifold X . Then the
following conditions are equivalent:

(a) P : D′ → D′/C∞(X) is surjective.

(b) For every compact set K ⊂ X , there is another compact set K ′ ⊂ X such
that

u ∈ E ′(X), sing suppP ∗u ⊂ K =⇒ sing suppu ⊂ K ′.

Here P ∗ is the adjoint of P .

(c) For every compact set K ⊂ X , there is another compact set K ′ ⊂ X such
that every bicharacteristic interval with respect to P having endpoint over
K mush lie entirely over K ′.

(II) Real principal case in the real analytic setting.

The case that the Hamiltonian vector field Hp and Euler vector field R are not
collinear was well studied not only in smooth case but also in real analytic setting,
i.e. in [KKK] [40], Kato-Struppa [45], [SKK] [63] and so on, they studied the
structure of systems of microdifferential equations and obtained several normal
forms.

For microdifferential operator of principal type, Sato, Kashiwara and Kawai
obtained plenty of profound results in [SKK] [63]. Normal forms are given to
analyze the structures of some systems of microdifferential systems. Propagation
of analytic singularities have been studied with the advantage of normal forms.

7
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Theorem 1.4.5. ([KKK] [40], Chap. IV, §3, Theorem 4.3.2) Let P (x,Dx)
be a microdifferential operator of order m defined in a neighborhood of
(x0,
√
−1ξ0∞) = (0,

√
−1(0, · · · , 0, 1)dx∞).

(a) In the case m = 1, assume the principal symbol σ1(P ) = ξ1, then in a
neighborhood of (x0,

√
−1ξ0∞), one has

E/EP ∼= E/ED1.

(b) In the case m ≥ 2, assume the principal symbol σ1(P ) = ξm1 , then in a
neighborhood of (x0,

√
−1ξ0∞), one has

E∞/E∞P ∼= E∞/E∞Dm
1 .

Example 1.4.6. Consider two linear differential equations

P (x, ∂x)u(x) = ∂2
xu(x) = 0

and
Q(y, ∂y)v(x) = ∂2

yv(y)− ∂yv(y) = 0.

The principal symbols of P and Q are the same, but the structure of solutions are
differential. However, there is an intrinsic connection between solutions of each
equation, since the above two equations are equivalent as left E∞-modules, i.e.,

E∞/E∞P ∼= E∞/E∞Q.

In particular, the solution sheaves of hyperfunctions (resp., microfunctions) BP

and BQ (resp., C P and C Q) are isomorphic.

Theorem 1.4.7. ([KKK] [40], Chap. IV, §3, Theorem 4.3.1) Let M be an
E-module defined in a neighborhood of (x0, ξ0) ∈ T ∗X \ 0 be such that

(a) There is a left ideal I such that M = M /I.

(b) The zero set V (J) of J := ∪m{σm(P )|P ∈ (I) ∩ E(m)} is a non-singular
manifold of codimension d in a neighborhood of (x0, ξ0), and the canonical
one-form does not vanish on V (J).

(c) The zero set V (J) is real.

(d) The totality of ξ-homogeneous analytic functions which vanishes on V (J)
is J . Via a quantized contact transformation M can be transformed into

N : E/(ED1 + ED2 + · · ·+ EDn).

Remark 1.4.8. The system N is sometimes called a de Rham system, or a partial
de Rham system.

Definition 1.4.9. Let V be an involutive submanifold of S∗Rn satisfying (b) and
(c) in Theorem 1.4.7, and suppose

V = {(x, ξ) ∈ S∗M : f1(x, ξ) = · · · = fd(x, ξ) = 0}.

8
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The bicharacteristic manifoldB = B(x0,ξ0) associated with V and passing through
(x0, ξ0) ∈ V is the d-dimensional integral manifold through (x0, ξ0) of the d
Hamiltonian operators

Hj :
n∑
k=1

(∂fj
∂ξk

∂

∂xk
− ∂fj
∂xk

∂fj
∂ξk

)
, j = 1, · · · , d.

Theorem 1.4.10. ( [45], Chap. 6, §6.5, Theorem 6.5.6) Let M be the E-module
as in Theorem 1.4.7. Then in a neighborhood of (x0, ξ0) the microfunction
solution sheaf H omE(M , C) is supported in V and is locally constant along
each bicharacteristic manifold. Moreover, H omE(M , C) is a flabby sheaf in the
direction transversal to bicharacteristic manifolds, and ExtjE(M , C)=0 for j 6= 0.

Remark 1.4.11. Say a sheaf F is flabby in the direction transversal to
bicharacteristic manifolds, it means there is a manifold U ′, a flabby sheaf F ′

on U ′ and a smooth morphism ψ : U ∩ V → U ′ such that the bicharacteristic
manifolds in U ∩ V are the fibers of ψ and F |U∩V ∼= ψ−1F ′.

From Theorem , we have the following two features. The flabbiness of the sheaf
of microfunction solutions is a restatement of the propagation of singularities
along bicharacteristic manifolds. The vanishing of the higher Ext functors shows
the system M is locally solvable, by giving suitable algebraic compatibility
conditions.

Theorem 1.4.12. ([KKK] [40], Chap. IV, §3, Theorem 4.3.5) Let P be a
microdifferential operator of order m defined in a neighborhood of (x0, ξ0) ∈
T ∗X \ 0 and pm(x, ξ) is the principal symbol. Assume {pm, p̄m} 	 0, then the
equation Pu = 0 can be transformed into the following equation N , defined in
a neighborhood of (y,

√
−1η) = (0;

√
−1(0′, 1)) by an invertible real quantized

contact transformation:

N : (
∂

∂y1

−
√
−1y1

∂

∂yn
)u = 0.

Remark 1.4.13. If we assume {pm, p̄m} � 0, then the corresponding normal
equation is

N : (
∂

∂y1

+
√
−1y1

∂

∂yn
)u = 0

in a neighborhood of (y,
√
−1η) = (0;

√
−1(0′, 1)).

Remark 1.4.14. The condition {pm, p̄m} 6= 0 implies dpm ∦ α for the canonical
one-form α, which is coincide with the non-radial condition, or the operator is of
real principal type.
Remark 1.4.15. Under the assumption of Theorem 1.4.7, V = {pm(x, ξ) = 0}
and V = {pm = 0} intersect transversally and α|V ∩V defines a contact structure
on V ∩ V . When codim(V ∩ V ) = 2 and V ∩ V has contact structure α|V ∩V , the
normal equation corresponding to Pu = 0 is given by

(∂y1 ±
√
−1yk1∂yn)u = 0.

9
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Theorem 1.4.16. ([KKK] [40], Chap. IV, §3, Theorem 4.3.6) Let P (x,Dx) =
D1 −

√
−1x1Dn, and let Q(x,Dx) = D1 +

√
−1x1Dn. Then there is a

non-zero microlocal operator K defined in a neighborhood of (x0,
√
−1ξ0∞) =

(0;
√
−1(0′, 1)∞) ∈

√
−1S∗Rn such that the sequence

0 −−−→ C
Q−−−→ C

K−−−→ C
P−−−→ C −−−→ 0

is exact.

Hence, P is solvable in a neighborhood of (x0,
√
−1ξ0∞), while Q is not

solvable, and the image of Q is characterized as the kernel of K .

Theorem 1.4.17. ([KKK] [40], Chap. IV, §3, Theorem 4.3.7) Let P (x,Dx) be
a microdifferential operator of order m, which is defined in a neighborhood of
(x0;
√
−1ξ0∞) ∈

√
−1S∗M , and let pm(x,

√
−1ξ) be the principal symbol of P .

Then one has

(i) If pm(x0,
√
−1ξ0)=0 and {pm, p̄m}(x0,

√
−1ξ0) 	 0, then P is epimorphic

in a neighborhood of (x0;
√
−1ξ0∞) and Ker(P ) is equal to the image of a

microlocal operator K .

(ii) If pm(x0,
√
−1ξ0)=0 and {pm, p̄m}(x0,

√
−1ξ0) � 0, then P is

monomorphic in a neighborhood of (x0;
√
−1ξ0∞) but not epimorphic, and

Im(P ) is equal to the kernel of a microlocal operator K . That is, for the
equation Pu = g to be solvable, K g = 0 must hold.

There are systems have characteristic varieties which not satisfy the condition of
Theorem 1.4.7, we will introduce two of them in the following statement.

Theorem 1.4.18. ( [45], Chap. 6, §6.5, Theorem 6.5.7) Let M = E/I be a
system of microdifferential equations in one unknown with simple characteristics.
Assume its characteristic variety V satisfies

(i) V ∩ V is a non-singular involutive manifold;

(ii) V ∩ V intersect transversally;

(iii) ω|V ∩V 6= 0,

where V is the complex conjugate of V , then the system M is microlocally
equivalent to the partial Cauchy-Riemann system

N :=
∂u

∂z̄j
:=

1

2
(

∂

∂x2j−1

+
√
−1

∂

∂x2j

)u = 0, j = 1, · · · , d,

where d is the codimension of V .

To state the propagation of regularity results for this systems, first we give an
extra definition.

Definition 1.4.19. Let M be a system of finite order microdifferential operators
whose codimension d characteristic variety V satisfy all three conditions of
Theorem 1.4.18. The 2d-dimensional bicharacteristic manifold of V ∩V through
(x0,
√
−1ξ0∞) is called virtual bicharacteristic manifold of M .

10
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Remark 1.4.20. The bicharacteristic manifold is invariant under contact
transformation, and the virtual bicharacteristic manifold is invariant under real
contact transformations.

Remark 1.4.21. The virtual bicharacteristic manifold of the system N in
Theorem 1.4.18 through (x0,

√
−1ξ0∞) is given by

{(x,
√
−1ξ∞) : xj = (x0)j for j = 2d+ 1, · · · , n; ξ = ξ0}.

Then we have

Theorem 1.4.22. Let M = E/I be as in Theorem 1.4.18 and let U be any open
subset in the virtual bicharacteristic manifold of M . Then every microfunction
solution of M which vanishes in U also vanishes everywhere in the virtual
bicharacteristic manifold.

In the year 1957, H. Levy [53] gave an equation(1

2
(∂x1 +

√
−1∂x2)− (x1 +

√
x2)∂x3

)
u = f

without local solutions, which greatly promoted the solvability problems of linear
partial differential equations. The work of H. Lewy on solvability theory induced
the study of so called Lewy-Mizohata type systems.

Definition 1.4.23. ([SKK] [63], Chap. III, §2.3) Let M be a real manifold. Let
an involutive submanifold V in a complex neighborhood of (x0,

√
−1ξ0dx∞ ∈√

−1S∗M be written as

{(x.
√
−1ξdx∞)|p1(x,

√
−1ξ) = · · · = pd(x,

√
−1ξ) = 0}.

Then the generalized Levi form L(x, ξ) of V is the Hermitian matrix whose
coefficients are the Poisson brackets

{pj, p̄k}1≤j,k≤d.

Remark 1.4.24. The signature of the generalized Levi form is independent of
the choice of the defining functions pj , and is also invariant under a real contact
transformation.

Theorem 1.4.25. ([SKK] [63], Chap. III, §2.3) Let M = E/I be an E-module
defined in a neighborhood of (x0,

√
−1ξ0∞) and which satisfies the conditions

(b) and (d) in Theorem 1.4.7. If the generalized Levi form of V (J) has p
positive eigenvalues and d − p negative eigenvalues at (x0,

√
−1ξ0∞), then M

is microlocally equivalent to the (p, 1− p)-Lewy-Mizohata system

Np :=

{
(∂xj −

√
−1xj∂xn)u = 0 j = 1, · · · , r

(∂xj +
√
−1xj∂xn)u = 0 j = p+ 1, · · · , d.

11
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In the local theory of linear partial differential equations, with the above
discussion we have an elegant structure theorem for general systems:

Theorem 1.4.26. ([SKK] [63], Chap. III, §2.4) Let M be admissible and regular
system of micro-differential equations such that V ∩ V is regular 5, Tx(V ) ∩
Tx(V ) = Tx(V ∩ V ) for any x ∈ V , and such that its generalized Levi form
is of constant signature (p, q). Then M is microlocally isomorphic to a direct
summand of the direct sum if a finite number of copies of the system N which, in
a suitable neighborhood, has the following form:

N :=


∂xjju = 0 j = 1, · · · , p
(∂xr+2k−1

+
√
−1∂xr+2k

)u = 0 k = 1, · · · , s
(∂xr+2s+l

+
√
−1xr+2s+l∂xn)u = 0 l = 1, · · · , q

(∂xr+2s+l
−
√
−1xr+2s−l∂xn)u = 0 l = q + 1, · · · , p+ q

where r = 2 codim(V )− codim(V ∩ V ) and s = codim(V ∩ V )− codim(V )−
(p+ q).

(III) Radial case in the smooth setting.

However, in the radial point case we only have a few results in smooth setting,
such as [18], [22], [75]. In Guillemin and Schaeffer’s paper [22], they studied
the normal form of P in the non-resonant case, and had the result:

Theorem 1.4.27. ([GS] [22]) Let P : C∞(X) → C∞(X) be a second order
pseudo-differential operator with real principal symbol on n dimensional smooth
manifold X . Let ν0 = (x0, ξ0) be a generic radial point 6 of P . Then P can be
microlocally conjugated to a second order differential operator onRn of the form

PN = 〈A∂x′ , ∂x′〉+ 〈Bx′, ∂x′〉∂xn + 〈Cx′, x′〉∂2
xn + γxn∂

2
xn + θ∂xn . (1.4)

Here A, B, C are constant (n− 1)× (n− 1) matrices, A and C are symmetric,
x = (x′, xn), γ ∈ R \ 0 and θ ∈ C.

With additional conditions on the generic radial points, the normal form PN
has simpler forms. More specifically, near a hyperbolic radial point (x0, ξ0),
a pseudo-differential operator P of first order is microlocally equivalent to

PNh = 〈B̃x′, ∂x′〉+ γxn∂xn + θ. (1.5)

Here B̃ is a constant (n− 1)× (n− 1) matrix.

Near an elliptic radial point (x0, ξ0), a pseudo-differential operatorP of seconder
order is microlocally equivalent to

PNe = ±
(
〈Ã∂x, ∂x〉+ 〈C̃x′, x′〉∂2

xn

)
+ γxn∂xn + θ∂xn . (1.6)

5 See Definition A.2.8.
6 See Definition 4.2.4.
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Here Ã is a (n− 1)× (n− 1) identity matrix, C̃ is a (n− 1)× (n− 1) diagonal
matrix with all non-vanishing entries larger than γ2/16.

Remark 1.4.28. Elliptic (resp. hyperbolic) radial point7 are determined by the
eigenvalues of a linear symplectic mapping at the generic radial point.

Then they discussed the propagation of singularities by taking the advantage of
normal forms. At first they fully studied the propagation of singularities in two
dimensional case:

Theorem 1.4.29. Let P be a pseudo-differential operator in Theorem 1.4.27, and
let the dimension n = 2, ν0 = (0, 0; 0, 1), γ = 1. Set R+ν0 = {(0; 0′, η)|η > 0}.
Then

(i) when the radial point ν0 is elliptic, there is a solution of the equation Pu =
f with f ∈ C∞(X) such that the minimal wave front set is WF(u) = R+ν0.

(ii) when the radial point ν0 is hyperbolic attractor/repellor, there is a solution
of the equation Pu = f with f ∈ C∞(X) such that the minimal wave front
set is WF(u) = R+ν0.

(iii) when the radial point ν0 is hyperbolic saddle, and if ν0 ∈WF(u), then one
of the four projected null bicharacteristic curves 8 which go asymptotically
to ν0 must intersect WF(u):
Σ1 : (x, y, ξ, η) = (et, 0; 0, 1), t→ −∞,
Σ2 : (x, y, ξ, η) = (−et, 0; 0, 1), t→ −∞,
Σ3 : (x, y, ξ, η) = (0, 0; e−(1+λ)t, 1), t→ +∞,
Σ4 : (x, y, ξ, η) = (0, 0;−e−(1+λ)t, 1), t→ +∞.
That is, there are 3 minimal wave front sets: Σ1 ∪ R+ν0, Σ2 ∪ R+ν0 and
Σ3 ∪ Σ4 ∪R+ν0.

In high dimensional situation, they only had results in a special case, as know as
attracting (resp. repelling) case.

Theorem 1.4.30. Let P be a pseudo-differential operator in Theorem 1.4.27,
and set the dimension of the smooth manifold satisfies n ≥ 3. Then if the radial
point ν0 is attracting/repelling 9, there is a solution of the equation Pu = f with
f ∈ C∞(X) such that WF(u) consists of the minimal singularity, i.e., the radial
direction.

There are also some other results related, such as A. Hassell, R. Melrose and A.
Vasy[26] worked on scattering problem near radial point in smooth setting. And
J. R. S. Filho studied the propagation of singularities near radial points in smooth
setting.

(IV) Radial case in the real analytic setting.

7 See Definitions 4.2.5.
8 See section 4.4 for detail.
9 See Definition 5.1.1.
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Even though recently we have more and more research working on the behaviors
near radial points, all of them are done in smooth setting. For the radial case in
the real analytic setting, before this paper there is no research on it. In my paper,
I have extended Guillemin and Schaeffer’s results [22] in the smooth setting to
real analytic setting, and also discussed the non-attracting (resp. non-repelling)
case. The main results are listed in next section.

1.5 The main results

We list the main results in three parts.

(A) The normal form.

Theorem 1.5.1. Let M and M ′ are two EX-modules associated with two m-th
order micro-differential operators P and P ′, respectively, and let ν0 and ν ′0 be
radial points of P and P ′, respectively. If M near ν0 and M ′ near ν ′0 are
microlocally equivalent, via quantized contact transformation, then one has three
invariants:

(i) γm−1
P (ν0) = γm−1

P ′ (ν ′0),

(ii) σ
(m−1)
sub (P )|ν0 = σ

(m−1)
sub (P ′)|ν′0 ,

(iii) There is a linear symplectic map W : Êν̂0 → Êν̂′0 such that

Am−1
P ′ (ν ′0) = WAm−1

P (ν0)W−1

If ν0 and ν ′0 are generic, then these conditions are also sufficient, that is, the three
invariants imply that M and M ′ are microlocally equivalent.

As a corollary, we have

Corollary 1.5.2. Let P ∈ E(2) be a second order micro-differential operator
on a real analytic manifold M . Let M be the E-module associated with P , i.e.,
M ' E

EP . Furthermore if ν0 = (x0, ξ0) is a generic radial point of P , then
near (x0, ξ0), via quantized contact transformation, one can transform M into
the system

N ' E
EPN

,

and PN is the normal form of P of form

PN = 〈ADx′ , Dx′〉+ 〈Bx′, Dx′〉Dxn + 〈Cx′, x′〉D2
xn + γxnD

2
xn + θDxn .

Here A, B, C are constant (n− 1)× (n− 1) matrices, A and C are symmetric,
x = (x′, xn), γ ∈ R and θ ∈ C.
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More specially, if ν0 is hyperbolic, then near ν0, M is microlocally equivalent to
the ERn-module N ∼= E

EPNh
via quantized contact transformation, where

PNh = 〈B̃x′, Dx′〉+ γxnDxn + θ.

Here B̃ is a constant (n− 1)× (n− 1) matrix.

If ν0 is elliptic, then near ν0, M is microlocally equivalent to the ERn-module
N ∼= E

EPNe
via quantized contact transformation, where

PNe = 〈ÃDx′ , Dx′〉+ 〈C̃x′, x′〉D2
xn + γxnD

2
xn + θDxn .

Here Ã is a (n − 1) × (n − 1) identity matrix, C̃ = (c̃i) is a (n − 1) × (n − 1)
diagonal matrix with all non-vanishing entries larger than γ2/16.

(B) Analytic singularities in two dimensional case.

Theorem 1.5.3. Let P be a second order micro differential operator defined on
a two dimensional real analytic manifold M , with real-analytic coefficients, real
principal symbol p, and simple characteristics, and (x0, ξ0) is a generic radial
point of P . Consider the equation

PNu = f

in space of hyperfunctions, where f is a real analytic function.

(1) If (x0, ξ0) is an elliptic radial point, then there exists a solution u ∈ B such
that WFa(u) = {(0, 0, 0, η)|η > 0}.

(2) If (x0, ξ0) is hyperbolic attracting/repelling radial point and 0 < λ < 1,
then there exist a solution u ∈ B such that WFa(u) = {(0, 0, 0, η)|η > 0}.

(3) If (x0, ξ0) is hyperbolic saddle radial point and λ 6∈ [0, 1], and if
{(0, 0, 0, η)|η > 0} ⊂WFa(u), then at least one of the following projected
null bicharacteristics which go asymptotically to (0, 0, 0, 1) as t → ∓∞ :
(x, y, ξ, η) = (±et, 0, 0, 1) and (x, y, ξ, η) = (0, 0,±e−(1+λ)t, 1) will be
contained in WFa(u). Furthermore, if one of the later two projected null
bicharacteristics is contained in WFa(u), so is the other.

(C) Analytic singularities in higher dimensional case.

First, if the radial point is either attracting or repelling, we have:

Theorem 1.5.4. Let (x0, ξ0) be a generic radial point which is either attracting
or repelling. Then there exist a hyperfunction u such that PNu is real analytic
and WFa(u) just consists of the minimal singularities, i.e., the radial direction.

If the radial point is neither attracting nor repelling, we have
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Theorem 1.5.5. Let u ∈ B(Rn) be a hyperfunction solution of PNu ∈ A(Rn)
such that the radial point (0; 0′, 1) ∈WFa(u), then

WFa(u) ∩ Γ1 6= ∅ or WFa(u) ∩ Γ2 6= ∅.

where Γ1 and Γ2 are stable and unstable manifolds, respectively.

Moreover, we construct solutions with prescribed singularities for hyperbolic
non-attracting case, and we calculate the projected null bicharacteristics and
discuss the propagation of analytic singularities, especially in three dimensional
case.

1.6 Summary

We give a brief account of the content of the thesis.

In Chapter 2 we introduced the basic theory of algebraic analysis, i.e.,
some rudimentary knowledge in sheaf theory, homological algebra, the elementary
knowledge of hyperfunctions and microfunctions and related fundamental operations,
the microdifferential operators and so on.

In Chapter 3 we found the way to linearize a contact vector field with real analytic
coefficients near a hyperbolic equilibrium point, and analyzed the eigenvalues of
symplectic mappings associated with the linear contact vector field. To go though this
chapter, one may needs Appendix A for preparation.

Chapter 4 is concerned with the normal form of our operators near a generic radial
point. First we give the definition of subprincipal symbol with some properties, then
we clarify the classification of radial points and generic condition, thereafter we study
the normal form and finally set forth the projected null bicharacteristics.

In Chapter 5 we completely studied the analytic singularities of solutions in two
dimensional space. Near an elliptic radial point, our equations can be transformed
to the standard Euler’s hypergeometric equations, which has been well studied. Near
hyperbolic attracting radial points, we discussed problem in the category of Fourier
hyperfunctions, which can be found in Appendix C.

In Chapter 6 we have studied the analytic singularities of solutions in higher
dimensional space. We have discussed the results for attractor/repeling radial points
and non-attracting/non-repelling radial points respectively. Furthermore, we discussed
solutions with prescribed singularities for hyperbolic radial points and discussed the
projected null bicharacteristics in three dimensional case. In additional, for elliptic
radial points, the equation can be transformed to a Schrödinger equation of a string
with uncoupled oscillators via Fourier transformation and coordinates transformation.
Solutions of such equation are Hermite functions introduced in Appendix F.
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Chapter 2

Preliminary of algebraic analysis

In this chapter, we have a quick glance of the fundamental knowledge of algebraic
analysis. The main references are Kaneko [34], [KKK] [40], Kashiwara-Schapira [45]
and [SKK] [63].

2.1 Sheaf theory and homological algebra

First we have a short review of sheaf theory and homological algebra.

Definition 2.1.1. A presheaf F over a topological space X associates with each
open subset U of X an abelian group F (U), such that there is an abelian group
homomorphism, which is known as the restriction map,

ρV,U : F (U)→ F (V )

for open subsets U ⊃ V with the following axioms:

(1) The map ρU,U is the identity map on F (U),

(2) For three open subsets of X , U1 ⊂ U2 ⊂ U3, we have

ρU1,U2 ◦ ρU2,U3 = ρU1,U3 .

For s ∈ F (U), denote ρV,U(s) as s|V for short.

The stalk of the presheaf F at x ∈ X is defined as

Fx = lim−→
x∈U

F (U),

where lim−→ denotes the inductive limit, for U running over all the neighborhood of x.

Definition 2.1.2. A presheaf F over X is said to be sheaf if the following axioms are
satisfied: it is given an open covering {Ui}i∈I of U inX , U =

⋃
i∈I Ui and I is an index

set.
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(1) Let s ∈ F (U), if s|Ui = 0 for each i ∈ I , then s = 0.

(2) Suppose that for each i ∈ I there exists si ∈ F (Ui) such that si|Ui∩Uj = sj|Ui∩Uj
for i, j ∈ I . Then there exists s ∈ F (U), such that s|Ui for each i ∈ I .

Definition 2.1.3. Let F be a presheaf over X . A sheaf F is said to be the sheaf
associated with the presheaf (or F is the sheafification of F , or F is the induced
sheaf from the presheaf F ) if for each open subset U of X the presheaf F (U) (which
is a sheaf actually) associates all the maps

U
s−→
⋃
x∈U

Fx,

satisfying that for each x ∈ U there is a neighborhood U ′ of x and s′ ∈ F (U ′) such that
s(x′) = s′x′ is true for any x′ ∈ U ′.

Definition 2.1.4. LetX and Y be topological spaces and let f : X → Y be a continuous
map. For a sheaf F overX , the direct image of F under the continuous map f , denoted
by f∗(F ), is a presheaf U → F (f−1U) over Y , which is a sheaf indeed. Moreover,
for a sheaf G on Y there can be define the presheaf lim−→V⊃f(U)

G (V ) for an open subset
U of X . This presheaf is not a sheaf in general, and the associated sheaf is called the
inverse image of G under f , denoted by f−1(G ).

Definition 2.1.5. Let F be a sheaf over a topological space X , and let U be an open
subset of X . Denote the support of s by

supp s := {x ∈ U |sx 6= 0 for s ∈ F (U)}.

Definition 2.1.6. Let F be a sheaf over a topological space X and let S be a locally
closed subset of X . Then define

ΓS(X,F ) := {s ∈ F (U)| supp s ⊂ S},

where U is open in X and S is closed in U .

In the case S = X , we denote ΓS(X,F ) with Γ(X,F ). In general we also denote
that F (U) with Γ(U,F ) for an open set U in X .

Definition 2.1.7. A sheaf F over a topological space X is said to be flabby if for an
arbitrary open subset U , the homomorphism

ρU,X : F (X)→ F (U)

is an epimorphism. Therefore, for a flabby sheaf F , any section of F over U can be
extended to a section over X .

Definition 2.1.8. An exact sequence

0→ F → L 0 → L 1 → · · ·

is said to be a flabby resolution of a sheaf F if each L j, j = 0, 1, · · · , is a flabby sheaf.
We can find a canonical flabby resolution for arbitrary sheaf.

18



2.2 Hyperfunction and Microfunctions

Definition 2.1.9. Let X and Y be topological spaces, let f : X → Y be a continuous
map, and let F be a sheaf over X . Then denote

Γf−proper(X,F ) = {s ∈ Γ(X,F )
∣∣f |supp s is a proper map}.

Given an open subset U of Y , let f!(F ) be the sheaf over Y associated with the
presheaf Γf−proper(f

−1(U),F ). Furthermore, the sheaf Rkf!(F ) over Y denotes the
sheaf associated with the presheaf Hk(Γf−proper(f

−1(U),L •)), where 0 → F → L •

is a flabby resolution of F .

Definition 2.1.10. Let A be a sheaf of rings on a topological space X .

(1) An A -module M is called of finite type (resp. of finite presentation) if for any
point x ∈ X there is a neighborhood U and an exact sequence

0←M |U ← A m|U

for some n ∈ N (resp. 0←M |U ← A n|U ← A m|U for some n,m ∈ N).

(2) An A -module M is called pseudo-coherent, if any submodule of finite type
defined on an open subset is of finite presentation. If M is pseudo-coherent and
of finite type, then M is called coherent.

(3) An A -module M is called Noetherian if M satisfies the following properties:

• M is coherent.
• For any x ∈ X , Mx is a Noetherian Ax-module, that is, any increasing

sequence of Ax)-submodules is stationary.
• For any open subset U , any increasing sequence of coherent

(A |U)-submodules of M |U is locally stationary.

2.2 Hyperfunction and Microfunctions

Mikio Sato introduced the theory of hyperfunctions in [64] via two aspects of
motivation. On one hand, he believe that the real analytic setting is more natural
than the smooth setting as in Schwartz’s theory of distributions when we consider
the theory of differential equations. On the other hand, his background in theoretical
physics arouse him to analyze the boundary values of holomorphic functions, which
leads to hyperfunctions. It is much more intuitive to understand hyperfunction as sum
of boundary values of holomorphic functions, rather than the cohomological definition
of the sheaf of hyperfunctions. One can check Kaneko [34], Kato-Struppa [45] and
Morimoto [59] for details. We will give both the algebraic definition and the intuitive
definition.

Definition 2.2.1. Let M be an n-dimensional real analytic manifold. If X is a complex
manifold of dimension n containing M such that locally M ∼= Rn ↪→ Cn ∼= X , then X
is said to be a complexification of M . That is, there is a neighborhood Ω of each point
x ∈ X and an injective map f : Ω→ Cn such that Ω ∩M = f−1(Rn).
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Definition 2.2.2. Let ZX be the constant sheaf on X such that each stalk is Z, with Z
be the ring of rational integers. The orientation sheaf ωM over an n-dimensional real
analytic manifold M is defined as H n

M(ZX).

Definition 2.2.3. Let M be a real analytic manifold and X be a complexification
of M . We denote the sheaf of germs of real analytic functions on M by A(M).
That is, for an open subset V of M , it is the sheaf associated with the presheaf
A(V ) = {real analytic functions defined on V }. Moreover, we denote the sheaf of
germs of holomorphic functions on X by OX . That is, for an open subset U of X , it is
the sheaf associated with the presheaf O(U) = {holomorphic functions defined on U}

Definition 2.2.4. We have the following definitions:

BM = H n
M(OX)⊗Z ωM

CM = H n√
−1S∗M

(
π−1OX

)a ⊗ π−1ωM ,

where π :
√
−1S∗M → M is canonical projection and a :

√
−1S∗M →

√
−1S∗M

maps (x, ξ) to (x,−ξ) is antipodal map. Especially we have BM = CM |M . And one
calls CM (resp. BM ) the sheaf of microfunctions (resp., hyperfunctions) on M . The
sections of CM (resp., BM ) are called microfunctions (resp., hyperfunctions).

Both of the sheaf BM of hyperfunctions and the sheaf CM of microfunctions are
flabby sheaves. Proof of this can be seen from Kaneko [34], [KKK] [40].

In contrast to the abstract definition, there is a intuitive way to define hyperfunctions,
and the latter is much useful in practical use, see Kaneko [34], Morimoto [59].

Definition 2.2.5. Let Fj(z) be a holomorphic function defined on an infinitesimal
wedge 1 Ω +

√
−1Γj0(j = 1, · · · , N). The following commutative formal sum, as

know as boundary-value representation

f(x) =
N∑
j=1

Fj(x+
√
−1Γj0)

is called a hyperfunction on Ω. The functions {Fj(z)}Nj=1 is called a set of defining
functions of f(x). If Γi ∩ Γj 6= 0, then

Fj(x+
√
−1Γj0) + Fk(x+

√
−1Γj0) = (Fj + Fk)(x+

√
−1Γj ∩ Γk0)

If F (z) is holomorphic on the infinitesimal wedge Ω +
√
−1Γj0, then the local

Bochner theorem 2 grantees that F (z) is holomorphic on Ω +
√
−1Γ̂j0. Here Γ̂j is the

convex hull of Γj . Hence, we can assume each Γj in the above definition is convex.

One can show the above two definitions of hyperfunctions are equivalent via Čech
cohomology theory, see [34], [40], [59] and [63].

1 Roughly, an infinitesimal wedge Ω+
√
−1Γ0 ∈

√
−1SM is an open set which approaches a wedge

of the opening Γ asymptotically in the vicinity of the edge Ω. For accurate definition, see Kaneko [34],
Definition 2.2.9.

2 See [34], Page 82.
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2.2 Hyperfunction and Microfunctions

Here are some examples of hyperfunctions and microfunctions.

Example 2.2.6. The space B(Ω) of hyperfunction on an open subset Ω ⊂ R can be
defined as

B(Ω) := lim−→
U⊃Ω

O(U \ Ω)/O(U).

We give some hyperfunctions of one variable.

(a) (Heaviside function) Y (x) = [ 1
2π
√
−1

log(−z)]z=x, the holomorphic function in
brackets is the defining function. For a holomorphic function F (z), [F (z)]z=x =
F (x+

√
−10)− F (x−

√
−10).

(b) (Dirac’s delta function) δ(x) = [− 1
2π
√
−1z

]z=x. Moreover, the Dirac’s delta
function of several variables is of the form

δ(x1, · · · , xn) = δ(x1) · · · δ(xn) =
n∏
i=1

[
− 1

2π
√
−1zi

]
zi=xi

=
1

(−2π
√
−1)n

∑
σ

sgn σ
(x1 +

√
−1σ10) · · · (x1 +

√
−1σ10)

.

(c) (x+
√
−10)λ, with defining function F+(z) = zλ, F−(z) = 0.

(d) For very α ∈ Z,

xα+ =
[ −(−z)α

2
√
−1 sinπα

]
z=x

,

xα− =
[ zα

2
√
−1 sinπα

]
z=x

.

Definition 2.2.7. Let f ∈ B(Rn) be a hyperfunction defined on Rn, we say f is
micro-analytic at (x,

√
−1ξ∞) ∈

√
−1S∗Rn, i.e., at (x, ξ) ∈ Rn × Sn−1 if f admits a

representation as sum of boundary values

f(x) =
∑

Fj(x+
√
−1Γj0)

with Fj holomorphic functions defined on infinitesimal wedgesRn+ iΓj0 such that, for
any j = 1, · · · , N ,

Γj ∩ {y ∈ Rn : 〈ξ, y〉 < 0} 6= ∅.

The set of all points inRn×
√
−1Sn−1

∞ (i.e., in
√
−1S∗Rn) where f is not micro-analytic

is called the singular spectrum 3 of f and is denoted by S. S.(f).

Example 2.2.8. Let x = (x1, x2, · · · , xn) be local coordinate of Rn, we have

(a) S. S. 1
x1+
√
−10

= {x1 = 0} × {
√
−1dx1∞}, where

√
−1dx1∞ is the vector√

−1dx∞ corresponding to ξ = (1, 0, · · · , 0).

3 In [KKK] [40], it is called singularity spectrum.
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(b) S. S. δ(x) = {0} × Sn−1.

(c) S. S. 1
x1−
√
−10

1
x2−
√
−10

= {x1 = 0} × {−
√
−1dx1∞} ∪ {x2 = 0} ×

{−
√
−1dx2∞}.

From the definition one has

Corollary 2.2.9. A hyperfunction g ∈ B(Rn) is micro-analytic in a neighborhood of
(x0,
√
−1ξ0∞) if and only if we have an expression

f(x) =
∑

Fj(x+
√
−1Γj0)

in a neighborhood of x0 with Γj such that

Γj ⊂ Γξ0 ≡ {y ∈ Rn : 〈ξ, y〉 < 0}, j = 1, · · · , N.

Definition 2.2.10. Let M be a real analytic manifold, and let X be a complexification
of M . A function f(x) on X is said to be of positive type if Ref(x) = 0 for x ∈ M
implies Imf(x) ≥ 0.

Assume f(x) is a complex-valued real analytic function of positive type such that
for x0 ∈ M , f(x0) = 0 and df(x0) is a non-zero real vector. Then {f−1(Dε)−M} ∪√
−1SM is a neighborhood of x0 +

√
−1v00, where 〈v0, df(x0)〉 > 0, ε is an arbitrary

positive real number, and Dε = {τ ∈ C : Imτ + ε|Reτ | > 0}.

Example 2.2.11. We know

f(x) = x1 +
√
−1(x2

2 + · · ·+ x2
n)

is a complex-valued real analytic function of positive type on Rn. Moreover, the
hyperfunction u(x) = (f(x) +

√
−10)%, % 6= 0, 1, 2 · · · is not real analytic at the origin

and contains only one direction as its analytic singularity:

S. S.(u) = {(x,
√
−1ξdx∞)|x = 0, ξ = (1, 0, · · · , 0)}.

2.3 Fundamental exact sequences

Definition 2.3.1. Let f be a hyperfunction on an open subset of Rn. The singular
support of f , denoted by supp(f), is the complement in U of the largest open subset of
U on which f is real analytic.

Remark 2.3.2. LetA be the sheaf of germs of real analytic functions, letD′ be the sheaf
of germs of distributions, and let L1,loc be the sheaf of locally integrable functions. We
have inclusions of sheaves

A ↪→ L1,loc ↪→ D′ ↪→ B.
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2.3 Fundamental exact sequences

Moreover, the infinite sum

∞∑
m=0

cmδ
(m), where cm ∈ C, lim sup

m→∞

m
√
|cm| = 0,

represents a hyperfunction with support at x = 0, but not a distribution unless it is a
finite linear combination of δ(m).

Proposition 2.3.3. (Sato’s fundamental sequence) There is an exact sequence of
sheaves

0 −−−→ A −−−→ B
sp−−−→ π∗C −−−→ 0

on real analytic manifold M .

One can use the above exact sequence to define the sheaf of microfunctions, see
Kaneko [34].

Apart from Definition 2.2.7, here is another equivalent definition of analytic
singularity.

Definition 2.3.4. For u ∈ B(M), the image sp(u) ∈ π∗C = C (
√
−1S∗M) is said to

be the spectrum of u. The support of sp(u), denote by S. S.(u), is called the singular
spectrum of u.

Definition 2.3.5. A subset Z of
√
−1SM (resp.

√
−1S∗M ) is said to be convex if each

fibre τ−1(x) ∩ Z of τ :
√
−1SM →M (resp. τ :

√
−1S∗M →M ) is convex.

Definition 2.3.6. The polar set Z◦ of a subset Z ⊂
√
−1SM is defined as

Z◦ = {(x,
√
−1ξx∞) ∈

√
−1S∗M |〈ξx, νx〉 > 0}

for an arbitrary point x +
√
−1νx0 ∈ Z. The polar set of a subset of

√
−1S∗M is

defined similarly.

Definition 2.3.7. LetD be an open set inX−M , the open setD is said to be a conoidal
neighborhood of x0 +

√
−1ν0 (of U ⊂

√
−1SM ) if D ∩

√
−1SM is a neighborhood

of x0 +
√
−1ν0 (of U ). Denote the boundary value of ϕ ∈ OX(D) by bD(ϕ).

We denote the hyperfunction corresponding to ϕ ∈ Ã(U) by bU(ϕ) provided that
each fibre of U is connected. We also write b(ϕ;D) and b(ϕ;U) instead of bD(ϕ) and
bU(ϕ) respectively, or even b(ϕ), when there is no fear of confusion.

Note that
Ã(U) = lim−→

D∈N(U)

OX(D),

where N(U) is the set of all conoidal neighborhoods of U .

Theorem 2.3.8. Let M,X and D be as before and U be an open set in
√
−1SM such

that each fibre is connected. If D ∈ N(U), then the boundary value of f(z) ∈ OX(D)
determines a hyperfunction f(x) ∈ BM(τ(U)) uniquely and such that S. S.(f) ⊂ U◦.
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Conversely, if S. S.(u) of a hyperfunction u(x) onM is contained in a closed convex
set Z ⊂

√
−1S∗M , then there exists a conoidal neighborhood D ∈ N(Z◦) such that

u(x) = bD(f(z)) for some f(z) ∈ OX(D).

From the exact sequence

π−1B
sp−−−→ C −−−→ 0,

one has the sequence

0 −−−→ A∗ b−−−→ π−1B
sp−−−→ C −−−→ 0 (2.1)

is exact, where the sheaf A∗ on
√
−1SM is defined as A∗ = ker(π−1B → C ). Then

u ∈ A∗
(x,
√
−1ξ∞)

can be expressed as

u =
∑
j

b(ϕj),

where ϕj ∈ Γ(Uj, Ã) and (x,
√
−1ξ∞) 6∈ U◦j .

Remark 2.3.9. Roughly speaking, one can define the sheaf of microfunctions C by
considering the quotient sheaf of B/A.

Definition 2.3.10. In the above case, u is said to be micro-analytic at (x,
√
−1ξ∞).

Example 2.3.11. For the Euler operator

P = x
∂

∂x
− α,

consider the hyperfunction solutions u of Pu = 0. The dimension of space of
hyperfunction solutions is 2. Choose two linear dependent hyperfunction solutions
(x+

√
−10)α and (x−

√
−10)α. When α 6= 0, 1, · · · , n, · · · , one has

S. S.(u) ⊂ {(0,±
√
−1dx∞) ∈

√
−1S∗R}.

Otherwise, S. S.(u) = ∅.

2.4 Fundamental operations

In this section we follow [KKK] [40] and introduce the fundamental operations
of hyperfunctions and microfunctions, such as production, restriction, substitution,
integration, convolution, etc.

Definition 2.4.1. Let u be a hyperfunction on a real analytic manifold M , then define

Ŝ. S.u :={(x,
√
−1ξ) ∈

√
−1T ∗M |x ∈ suppu and ξ = 0}

∪ {(x,
√
−1ξ) ∈

√
−1T ∗M |ξ 6= 0 and (x,

√
−1ξ∞) ∈ S. S.(u)}.
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2.4 Fundamental operations

Theorem 2.4.2. Let M1 and M2 be real analytic manifolds and let M = M1×M2. Let

(
√
−1S∗M)′ :=

√
−1S∗M −

√
−1S∗M1 ×M2 −M1 ×

√
−1S∗M2,

and define two projections

p1 :(
√
S∗M)′ →

√
−1S∗M1

((x1, x2),
√
−1(ξ1, ξ2)∞) 7→(x1,

√
−1ξ1∞),

p2 :(
√
S∗M)′ →

√
−1S∗M2

((x1, x2),
√
−1(ξ1, ξ2)∞) 7→(x2,

√
−1ξ2∞).

For an open subset Ωj ∈
√
−1S∗Mj, j = 1, 2, let

Ω1×̂Ω2 :=
{

((x1, x2),
√
−1(ξ1, ξ2)∞)|ξ2

1+ξ2
2 6= 0 and (xj,

√
−1ξj∞) ∈ Ωj for j = 1, 2

}
.

Then we have

(a) For two hyperfunctions u1(x1) ∈ B(M1) and u2(x2) ∈ B(M2), one can define
canonically the product u(x1, x2) := u1(x1)u2(x2) so that

Ŝ. S.(u) ⊂ Ŝ. S.(u1)× Ŝ. S.(u2).

That is, there is a canonical sheaf homomorphism

BM1 ×BM2 → BM .

(b) For two microfunctions u1(x1) ∈ CM1(Ω1) and u2(x2) ∈ CM2(Ω2), one can
define the product u(x1, x2) := u1(x1)u2(x2) ∈ CM(Ω1×̂Ω2). That is, there is a
canonical sheaf homomorphism

p−1
1 CM1 × p−2

2 CM2 → CM |(√−1S∗M)′ .

Definition 2.4.3. Let N and M be real analytic manifolds, and let f : N → M be a
real analytic map. For y ∈ N and ξ ∈ T ∗f(y)M , define a map

ρ̂ :N ×M T ∗M →T ∗N
(y, ξ) 7→(y, f ∗(ξ)).

The kernel of ρ̂, denoted by T ∗NM , is the conormal bundle with supports in N .

Since N = {(y, ξ) ∈ N ×M T ∗M |y ∈ N and ξ = 0} ∈ T ∗NM , we denote S∗NM :=
(T ∗NM −N)/R×+. Moreover, notice that

√
−1S∗NM is a closed set in N ×M

√
−1S∗M ,

25



CHAPTER 2 Preliminary of algebraic analysis

we can define two maps as follows:

ρ = ρf :N ×M
√
−1S∗M −

√
−1S∗NM →

√
−1S∗N

(y,
√
−1ξ∞) 7→(y,

√
−1f ∗(ξ)∞),

$ = $f :N ×M
√
−1S∗M −

√
−1S∗NM →

√
−1S∗M

(y,
√
−1ξ∞) 7→(f(y),

√
−1ξ∞).

Theorem 2.4.4. Let N be a submanifold of M , and ι be the embedding N ↪→M .

(a) (Restriction of a hyperfunction) Let u be a hyperfunction on M such that
S. S.(u) ∩

√
−1S∗NM = ∅. Then one can define the restriction of u to N ,

u|N ∈ BN , such that

Ŝ. S.(u|N) ⊂ ρ̂(N ×M
√
−1T ∗M ∩ Ŝ. S.(u)),

S. S.(u|N) ⊂ ρ(N ×M
√
−1T ∗M ∩ S. S.(u)).

(b) (Restriction of a microfunction) There exists a sheaf homomorphism

ρ!$
−1CM → CN .

Example 2.4.5. (a) δ(x1 − x2)|x2=0 = δ(x1).

(b) Let h and f be real-valued real analytic functions defined in an open subset
U ⊂ Rn, and let Ω = {x ∈ U |h(x) = 0} be a non-singular hypersurface, i.e.,
dh 6= 0 on Ω. Moreover, assume ∇xh(x) and ∇xf(x) are linear independent on
Ω ∩ {f = 0}. Then the restriction of δ(f(x)) to Ω is well defined as an element
of of BΩ(Ω) so that (f |Ω)∗δ(t) = δ(f(x)|Ω). From the exact sequence

0 −−−→ T ∗ΩU −−−→ T ∗U ×U Ω −−−→ T ∗Ω −−−→ 0,

a point on T ∗Ω can be described as a point on T ∗U ∼= U × Rn module the set
T ∗ΩU , then

S. S. δ(f(x)|Ω) = A module B,

where

A ={(x,
√
−1ξ) ∈ U ×

√
−1Rn|f(x) = h(x) = 0 and

ξ = c1∇xf(x) + c2∇xh(x), c1, c2 ∈ R, c1 6= 0},
B ={(x,

√
−1ξ) ∈ U ×

√
−1Rn|h(x) = 0 and ξ = c∇xh(x), c ∈ R}.

Theorem 2.4.6. Let M be real analytic manifold, and let ∆M be the diagonal set of
M ×M .

(a) (Product of hyperfunctions) Let u(x) and v(x) be hyperfunctions on M such that
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S. S.(u) ∩ (S. S.(v))a = ∅, where

a :
√
−1S∗M →

√
−1S∗M

(x,
√
−1ξ∞) 7→(x,−

√
−1ξ∞)

is the antipodal mapping and (S. S.(v))a denotes the image of S. S.(v) under a.
Then the product u(x)v(x) ∈ B(M) exists, such that

Ŝ. S.(uv) ⊂
{

(x,
√
−1(ξ1+ξ2))|(x,

√
−1ξ1) ∈ Ŝ.S.u and (x,

√
−1ξ2) ∈ Ŝ. S.(v)

}
,

S. S.(uv) ⊂
{

(x,
√
−1(θξ1 + (1− θ)ξ2)∞)

∣∣
(x,
√
−1ξ1∞) ∈ S. S.(u), (x,

√
−1ξ2∞) ∈ S. S.(v) and 0 ≤ θ ≤ 1

}
∪S. S.(u)∪S. S.(v).

(b) (Product of microfunctions) We define

N := ∆M ×M×M (
√
−1S∗(M ×M))−∆M ×M×M (M ×

√
−1S∗M)

−∆M ×M×M (
√
−1S∗M ×M)−

√
−1S∗(M ×M).

For a point z = (x, x,
√
−1(ξ1, ξ2)∞) ∈ N , where ξ1 6= 0, ξ2 6= 0 and ξ1 +

ξ2 6= 0, we let p1(z) = (x,
√
−1ξ1∞) ∈

√
−1S∗M , p2(z) = (x,

√
−1ξ2∞) ∈√

−1S∗M , and q(z) = (x,
√
−1(ξ1 + ξ2)∞) ∈

√
−1S∗M , then there is a sheaf

homomorphism
q!(p

−1
1 CM × p−2

2 CM)→ CM .

Example 2.4.7. (a) Let f(x) and g(x) be real-valued real analytic functions defined
in U ⊂ Rn, satisfying that

• if f(x) = 0, then∇xf(x) 6= 0,

• if f(x) = 0, then∇xg(x) 6= 0,

• on the set {f(x) = g(x) = 0}, ∇xf(x) and ∇xg(x) are linear independent.

Then the product δ(f(x))δ(g(x)) is well defined, and we have

S. S.(δ(f)δ(g)) ⊂{(x,
√
−1ξ∞) ∈

√
−1S∗U |f(x) = g(x) = 0 and

ξ = c1∇xf(x) + c2∇xg(x), (c1, c2) ∈ R2 \ 0}.

(b) The products

1

x1 +
√
−10

· 1

x1 − x2
2 +
√
−10

and
1

(x1 +
√
−10)2

are well defined. However, the products δ(x1)δ(x1 − x2
2) and δ(x2)2 are not well

defined.
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Theorem 2.4.8. Let N and M be real analytic manifolds, and let f : N → M be a
smooth real analytic map.

(a) (Substitution for hyperfunctions) There induced a sheaf homomorphism

f ∗ : f−1BM → BN .

Furthermore, define

ρ̂ :N ×M (
√
−1T ∗M) →

√
−1T ∗N

(y,
√
−1ξ) 7→(y,

√
−1f ∗(ξ)),

$̂ :N ×M (
√
−1T ∗M) →

√
−1T ∗M

(y,
√
−1ξ) 7→(f(y),

√
−1ξ),

and ρ,$ as before, then

Ŝ. S.(f ∗u) = ρ̂$̂−1(Ŝ. S.(u))

S. S.(f ∗u) = ρ$−1(S. S.(u)).

(b) (Substitution for microfunctions) There is a sheaf homomorphism

f ∗ : $−1CM →H om0
N×M

√
−1S∗MCN .

Example 2.4.9. Let f(x) be a real-valued real analytic function defined in an open
subset U ⊂ Rn, assume that f(x) = 0 implies dxf(x) 6= 0. Then the substitution
f ∗(1/(t+

√
−10)) is well defined, denoted by 1/(f(x) +

√
−10), and

S. S.
( 1

f(x+
√
−10)

)
⊂ {(x,

√
−1ξ∞) ∈

√
−1S∗U |f(x) = 0 and ξ = c∇xf(x), c > 0}.

Theorem 2.4.10. Let N and M be real analytic manifolds.

(a) (Integration of hyperfunction) Let f : M × N → N and π : M ×√
−1S∗N →

√
−1S∗N be the natural projections. If f |suppu is a proper map

for a hyperfunction u(t, x) on M × N , then the integration of u(t, x) along the
fiber

v(x) =

∫
f−1(x)

u(t, x)dt

can be defined. Moreover, one has

S. S.(v(x)) ⊂ π(S. S.(u) ∩M ×
√
−1S∗N),

That is, there exists a sheaf homomorphism

f!(BM×N ⊗ vM)→ BN ,

where vM = Ωn
M⊗ωM , Ωn

M is a sheaf of holomorphic differential forms of degree
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n on M of dimension m and ωM is the orientation sheaf on M .

(b) (Integration of microfunction) Let π be as before and let U be an open subset of√
−1S∗N . For u(t, x) ∈ CM×N(π−1(U)), if π|suppu is a proper map, then the

integration

v(x) =

∫
π−1(x)

u(t, x)dt

is well-defined as a microfunction. There exists a sheaf homomorphism

π! : (CM×N |M×√−1S∗N ⊗ vM)→ CN .

Example 2.4.11. (a)
∫
R
δ(t)dt = 1.

(b)
∫
R
δ(n)(x)dx = 0 for n ≥ 1, where δ(n)(x) = dn

dxn
δ(x).

(c)
∫ 1

−∞(λ+ 1)xλ+dx = 1 for −λ 6∈ Z+.

(d)
∫
R
δ(t− x2)dx = t

−1/2
+ .

(e) 1
2π
√
−1

∫ π
−π

dθ
cos θ+

√
−10

= 1.

(f)
∫
R
δ(x2

1 + · · ·+ x2
n − t)λ−dx1 · · · dxn = πn/2Γ(λ+1)

Γ(λ+n/2+1)
t
λ+n/2
+ .

Definition 2.4.12. Let f(x) and g(x) be two hyperfunctions on Rn, at least one of the
which has compact support. The convolution of f and g is defined as

f ∗ g =

∫
Rn
f(x− y)g(y)dy. (2.2)

Proposition 2.4.13. The following equations hold.

f ∗ g = g ∗ f ;

Dα(f ∗ g) = (Dαf) ∗ g = f ∗ (Dαg);

δ ∗ f = f ∗ g = f.

In addition, if h also has compact supported, then

(f ∗ g) ∗ h = f ∗ (g ∗ h).

Besides, the following estimates are valid.

supp f ∗ g ⊂ supp f + supp g.

sing supp f ∗ g ⊂ sing supp f + sing supp g.

S. S.(f ∗ g) ⊂ {(x+ y;
√
−1ξdx∞)|(x,

√
−1ξdx∞) ∈ S. S.(f),

(y,
√
−1ξdx∞) ∈ S. S.(g)}.
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CHAPTER 2 Preliminary of algebraic analysis

Remark 2.4.14. The convolution f ∗ g can be well defined as long as the integral (2.2)
make sense as a hyperfunction in x, henceforth there are many other cases aside from
Definition 2.4.12 in which convolution is well defined. One can see C.5.4 in Appendix
C for another generalized definition.

2.5 Sheaf EX of microdifferential operators

For practical manipulation, we introduce the class of microdifferential operators in this
section, which is located between the class of microlocal operators and the class of
differential operators. Roughly, the class of microdifferential operators is a special case
of microlocal operators of which the inverse exist.

Definition 2.5.1. Let M and N be real analytic manifolds, and let Z be a locally closed
subset of

√
−1S∗(M×N) such thatZ∩M×

√
−1S∗N = ∅ andZ∩

√
−1S∗M×N = ∅.

Furthermore, one define two projections

p1 :
√
−1S∗(M ×N)−

√
−1S∗M ×N −M ×

√
−1S∗N →

√
−1S∗M

((x, y),
√
−1(ξ, η)∞) 7→(x,

√
−1ξ∞),

p2 :
√
−1S∗(M ×N)−

√
−1S∗M ×N −M ×

√
−1S∗N →

√
−1S∗M2

((x, y),
√
−1(ξ, η)∞) 7→(y,

√
−1η∞).

Assume p1(Z) is locally closed subset of
√
−1S∗M , and denote the sheaf of volume

elements of N by vN , then define an integral operator K as

K (u) =

∫
N

K(x, y)u(y)dy

for K(x, y) ∈ H0
Z(
√
−1S∗(M ×N),CM×N ⊗ vN), and u ∈ CN . Hence one obtains a

sheaf homomorphism
K : (p1|Z)!(p

a
2|Z)−1CN → CM ,

where a is the antipodal map.

From the above definition, for an element

K(x, y)dy ∈H 0√
−1S∗M (M×M)(CM×M),

the integral operator K (u) =
∫
K(x, y)u(y)dy defines a sheaf homomorphism from

CM to CM .

Definition 2.5.2. The sheaf H 0√
−1S∗M (M×M)

(CM×M ⊗ vM) is said to be the sheaf of
microlocal operators and denoted by LM .

Definition 2.5.3. Let P (x, ∂x) =
∑
|α|≤m aα(x)∂αx be a linear differential operator

of order m, where ∂αx = ∂|α|

∂x
α1
1 ···∂x

αn
n

4 α = (α1, · · · , αn) ∈ (Z+ t {0})n and

4in [KKK] [40], it claims Dx = ∂
∂x , and then the principal symbol is σ(P )(x,

√
−1ξ). I will follow
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2.5 Sheaf EX of microdifferential operators

aα(x) are holomorphic functions. It is clearly a microlocal operator with the kernel
function P (x, ∂x)δ(x − y)dy. The principal symbol σ(P )(x,

√
−1ξ) is defined as

σ(P )(x, ξ) =
∑
|α|=m aα(x)(

√
−1ξ)α ∈ OT ∗M . It does not depend on the choice of

the local coordinate systems.

Sato’s fundamental theorem is a consequence of the Cauchy-Kovalevsky theorem.

Theorem 2.5.4. (M. Sato) A linear differential operator of finite order P (x, ∂x) is left-
and right-invertible in the ring LM over

{(x,
√
−1ξ∞) ∈

√
−1S∗M |σ(P )(x,

√
−1ξ) 6= 0}.

Definition 2.5.5. A linear differential operator P (x, ∂x) is said to be an elliptic operator
at x0 if for an arbitrary ξ ∈ Rn − {0}, σ(P )(x0,

√
−1ξ) 6= 0 holds.

Theorem 2.5.6. We have

(a) if hyperfunctions f(x) and u(x) satisfy P (x, ∂x)u(x) = f(x), then one has

S. S.(u) ⊂
{

(x,
√
−1〈ξ, dx〉∞) ∈

√
−1S∗M |σ(P )(x,

√
−1ξ) = 0

}
∪ S. S.(f).

Specially, if P (x, ∂x) is elliptic at arbitrary point in M , then f(x) is real analytic
in M implies u(x) is also real analytic in M . More precisely, if we denote by
A the sheaf of real analytic functions on M and by B (resp. D ′) the sheaf of
hyperfunctions (resp. distributions) on M , then P : B/A → B/A (resp. P :
D ′/A → D ′/A) is a sheaf isomorphism.

(b) If P (x, ∂x) is elliptic at x0, then P : Bx0 → Bx0 is an epimorphism, where Bx0

is the sheaf of hyperfunctions with support at x0.

For f(x) ∈ A(M), a solution u(x) of P (x, ∂x)u(x) = f(x) has the singular
spectrum in {

(x,
√
−1ξ∞) ∈

√
−1S∗M |σ(P )(x,

√
−1ξ) = 0

}
,

and the zeros set is called characteristic variety. Study and analysis such set is
one of the most important goal in the theory of linear differential equations. The
central problem has been recognized in the case of equations with constant coefficients
(Ehrenpreis [17]). In the case of variable coefficients, Hömander [29] and Mizohata
[60] had shown some results, and the theory of microfunctions is of great advantage to
consider this problem.

The class of micro-local operator LM is too general to manipulate the algebraic
properties. A desired class for algebraic consideration is the microdifferential operators.

Let X be an n-dimensional complex manifold and let πX : T ∗X → X be the
cotangent bundle of X . Take a local coordinate system (x1, · · · , xn) of X and the
associated coordinates (x1, · · · , xn; ξ1, · · · , ξn) of T ∗X . Let {Pj(x, ξ)} and {Qj(x, ξ)}

their notation in this chapter. However, in the last two chapters, we follow the modern way of definition
Dx = 1√

−1
∂
∂x .
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CHAPTER 2 Preliminary of algebraic analysis

be the total symbol of the differential operator P =
∑
Pj(x, ∂) and Q =

∑
Qj(x, ∂),

respectively. Set S = P +Q and R = PQ, then the total symbols {Sj} and {Rj} of R
and S are given by

Sj = Pj +Qj (2.3)

Rl =
∑

l=j+k−|α|

, α ∈ Nn 1

α!
(∂αξ Pj)(∂

α
xQk), (2.4)

where ∂αξ = (∂/∂ξ1)α1 · · · (∂/∂ξn)αn and ∂αx = (∂/∂x1)α1 · · · (∂/∂xn)αn .

The total symbol {Pj(x, ξ)} of a differential operator is a polynomial in ξ. We shall
define microdifferential operator by admitting Pj to be holomorphic in ξ. The class of
microdifferential operators is between the class of microlocal operators and the class of
differential operators.

For λ ∈ C, let OT ∗X(λ) be the sheaf of homogeneous holomorphic functions of
degree λ on T ∗X , i.e., holomorphic functions f(x, ξ) satisfying(∑

j

ξj
∂

∂ξj
− λ
)
f(x, ξ) = 0.

Definition 2.5.7. For λ ∈ C we define the sheaf EX(λ) of microdifferential operators
of order equal or less then λ on T ∗X by

Ω 7→
{(
Pλ−j(x, ξ)

)
j∈N; Pλ−j ∈ Γ

(
Ω; OT ∗X(λ− j)

)
and satisfies the following conditions (*)

}
(*) for any compact subset K of Ω, there exists a Ck > 0 such that

sup
K
|Pλ−j| ≤ C−jK (j!) for all j > 0.

Remark 2.5.8. The growth condition (*) can be explained as follows. For a differential
operator P =

∑
Pj(x, ∂), we have

P (x, ∂)(〈x, ξ〉+ p)µ =
∑

Pj(x, ξ)
Γ(µ)

Γ(µ− j + 1)
(〈x, ξ〉+ p)µ−j.

For P = Pλ−j(x, ξ) ∈ E(λ), by analogy we set

P (〈x, ξ〉+ p)µ =
∑
j

Pλ−j(x, ξ)
Γ(µ)

Γ(µ− λ+ j + 1)
(〈x, ξ〉+ p)µ−λ+j.

Then the growth condition (*) is simply the condition that the right hand side converges
when 0 < |〈x, ξ〉+ p| � 1.

Proposition 2.5.9. For P ∈ E(m) and Q ∈ E(n), set

[P,Q] = PQ−QP ∈ E(m+ n− 1),
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2.5 Sheaf EX of microdifferential operators

then
σm+n−1([P,Q]) = {σm(P ), σn(Q)}.

Proposition 2.5.10. ([SKK] [63], Chapter 2) We have

(1) EX(λ) contains EX(λ−m) as a subsheaf for m ∈ N.

(2) EX(λ) can be defined globally on T ∗X , by patching local pieces.

(3) EX(λ) is a sheaf of C-vector space on T ∗X .

(4) Use the formula (2.4), one can define a homomorphism

EX(λ)⊗C EX(µ)→ EX(λ+ µ).

(5) EX(0) and EX = ∩m∈ZEX(m) become sheaves of non commutative rings on
T ∗X with a unit.

We define the homomorphism

σλ :EX(λ) →OT ∗X(λ)

(Pλ−j) 7→Pλ.

Then σλ is well-defined on T ∗X (i.e., compatible with coordinate transformation) and
we have an exact sequence

0 −−−→ EX(λ− 1) −−−→ EX(λ)
σλ−−−→ OT ∗X(λ) −−−→ 0.

Proposition 2.5.11. We have the following proposition, which says that the ring EX is
a kind of localization of DX .

(1) For P ∈ E(λ) and Q ∈ E(µ), we have σλ+µ(PQ) = σλ(P )σµ(Q).

(2) ([SKK]) If P ∈ E(λ) satisfies σλ(P )(q) 6= 0 at q ∈ T ∗X , then there exists
Q ∈ EX(−λ) such that PQ = QP = 1.

Theorem 2.5.12. The relations between EX and DX are summarized as following:

(1) EX contains π−1DX as a subring and is flat 5 over π−1DX .

(2) EX |T ∗XX ' DX , where T ∗XX is the zero section of T ∗X .

(3) For a coherent DX-module M , the characteristic variety of M coincides with
the support of EX ⊗π−1

X DX
π−1
X M .

5 Let M be a R-module. For two R-modules A and B, if f : A → B is injective implies that
M ⊗R A→M ⊗R B is injective, we say M is flat over R.

33



CHAPTER 2 Preliminary of algebraic analysis

Definition 2.5.13. The sheaf ÊX = lim←−m∈N EX/EX(−m) is called the sheaf of formal
micro-differential operators. It is the sheaf similar to E by dropping the growth
condition (*).

More specifically, let Ω be a subset of T ∗X , denote by ÊX(m)(Ω) the space of
formal series:

P =
∑

−∞<j≤m

pj,

where pj is a section of OT ∗X(j) on U . The correspondence

U → {ÊX(m)(Ω)}

defines a sheaf, denoted ÊX(m), and set

ÊX =
⋃
m

ÊX(m).

Definition 2.5.14. The sheaf E∞X of micro-differential operators of infinite order can be
defined as

Γ(Ω; E∞) 7→
{

(pj)j∈Z; Pj ∈ Γ
(
Ω; OT ∗X(j)

)
satisfying the following conditions (a) and (b)

}
.

(a) For any compact subset K of Ω, there is a CK > 0 such that supK |pj| ≤
C−jK (−j)! for j < 0.

(b) For any compact subset K of Ω and any ε > 0, there exists a CK,ε > 0 such that
supK |pj| ≤ CK,ε

εj

j!
for j ≥ 1.

Remark 2.5.15. ([SKK] [63] Chap. II) We have

(1) EX ⊂ E∞X and EX ⊂ ÊX 6.

(2) E∞X and ÊX are faithfully flat 7 over EX , and EX is flat over π−1DX , where π :
T ∗X → X is the canonical projection.

(3) The sheaf EX , EX(0) and ÊX are Noetherian rings on T ∗X .

Proposition 2.5.16. Let X be a complex manifold, then we have

ÊX |T ∗XX ∼= DX .

6 In [SKK][63], E , Ê and E∞ are denoted by Pf , P̂ and P
7 A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence

if and only if the original sequence is exact.
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Chapter 3

Linearization of vector fields

In section 3.1 we introduce contact vector field and assign each real analytic function
a contact vector field. Then we study linearization of vector fields with real analytic
coefficients in section 3.2. Later in section 3.3, we discuss eigenvalues of symplectic
mappings and clarify the non-resonant condition on the eigenvalues to linearize the
contact vector field. At last, Birkhoff normal form is mentioned in section 3.4.

3.1 Contact vector fields

Let X be a 2n+ 1 dimensional manifold, let L be the line subbundle of T ∗X in section
A.2 and letL∗ be the dual bundle ofL. WriteA(L∗) as the space of real analytic sections
of L∗. Each f ∈ A(L∗) can be regarded as a real analytic function f̃ on Z = L∗ \ 0
satisfying

f̃(x, aw) = af(x,w) (3.1)

for a ∈ R \ 0 and w ∈ Lx. Conversely, every real analytic function on Z, which is
homogeneous of degree one in the sense of (3.1), can be identified with a section of L∗.

Let Z be a 2n+2 dimensional symplectic manifold. Functions on Z form a Poisson
algebra under the Poisson bracket {·, ·}. There is a Lie algebra homomorphism

A(Z)→ symplectic vector fields
f 7→ Hf

mapping each real analytic function f on Z onto its Hamiltonian vector field Hf .

Assume Z sits in the symplectic manifold (T ∗X,ω), and the restriction of the
symplectic form ω on Z is also symplectic. The functions of homogeneous of degree
one form a Lie subalgebra of the Poisson algebra. Identify these functions as sections
of L∗, then A(L∗) has a canonical Lie algebra structure with Lie bracket [·, ·].

A real analytic function f̃ on Z is homogeneous of degree one, then its Hamiltonian
vector field Hf̃ is homogeneous of degree zero, and it determines a real analytic vector
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field Vf on Z/(R− 0) = X . Then Vf is a contact vector field and the mapping

A(L∗)→ Contact vector fields with real analytic coefficients
f 7→ Vf

is a Lie algebra homomorphism.

Consider the above discussion in coordinates, take a global section

α = dz +
1

2

n∑
i

(
xidyi − yidxi

)
(3.2)

of the line bundle L on R2n+1. Identify A(R2n+1) with A(L∗) by f → fβ, where β is
the dual section of the dual bundle L∗.

Lemma 3.1.1. Let (x1, · · · , xn, y1, · · · , yn, z) be local coordinates of R2n+1. Given
f ∈ A(R2n+1), then the associated contact vector field

Vf =
n∑
i=1

[( ∂f
∂yi
− xi

2

∂f

∂z

) ∂
∂xi
−
( ∂f
∂xi

+
yi
2

∂f

∂z

) ∂
∂yi

]
+
[ n∑
i=1

(xi
2

∂f

∂xi
+
yi
2

∂f

∂yi

)
− f

] ∂
∂z
.

Proof. Given the one form α defined by (3.2) and introduce (x, y, z, t) as coordinates
on Z = R2n+2, by assigning to tα at (x, y, z) the coordinates (x, y, z, t). Then the
symplectic two-form Ω is

Ω = dt ∧ α + tdα = dt ∧
(
dz +

1

2

n∑
i

(
xidyi − yidxi

))
+ t
∑

dxi ∧ dyi.

Given f ∈ A(R2n+1), the associated homogeneous function f̃ on Z is just tf . Write
Hf̃ in the form ∑

i

(ai∂xi + bi∂yi + c∂z + γ∂t),

where a′is, b
′
is, c and γ are unknown functions to be determined. We solve the equation

Hf̃yΩ = df̃

to obtain all the unknown coefficients and we have

Hf̃ =
n∑
i=1

[( ∂f
∂yi
− xi

2

∂f

∂z

) ∂
∂xi
−
( ∂f
∂xi

+
yi
2

∂f

∂z

) ∂
∂yi

]
+
[ n∑
i=1

(xi
2

∂f

∂xi
+
yi
2

∂f

∂yi

)
− f

] ∂
∂z

+ t
∂f

∂z

∂

∂t
.

The contact vector field Vf can be acquired by projecting Hf̃ on (x, y, z) space.
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Corollary 3.1.2. Given f, g ∈ A(R2n+1), we define their Lagrange bracket as

n∑
i=1

( ∂f
∂yi

∂g

∂xi
− ∂f

∂xi

∂g

∂yi

)
+
( n∑

i

(
xi
2

∂f

∂xi
+
yi
2

∂f

∂yi
− f)

)∂g
∂z

−
( n∑

i

(
xi
2

∂g

∂xi
+
yi
2

∂g

∂yi
− g)

)∂f
∂z
.

Hint: Let f̃ = tf and g̃ = tg be the homogeneous functions on Z associated with
f and g. According to Lemma 3.1.1, the Poisson bracket is Hf̃ g̃. The Lagrange bracket
for two functions in contact space is induced from the formula in Lemma 3.1.1.

3.2 Linearization of vector fields

Compare with Guillemin and Schaeffer’s methods of linearization in the paper [22], we
study linearization of vector fields in real analytic setting instead of smooth setting, i.e.,
linearize a contact vector field with real analytic coefficients.

In section A.4, we obtain Theorem A.4.21 and Remark A.4.28 on linearizing a real
analytic vector field. By applying the techniques of proofs of Poincaré’s Theorem A.4.7
and Siegel Theorem A.4.24, we have

Theorem 3.2.1. Let V be a vector field on Rn with real analytic coefficients, and V is
of the form

V = V0 + V ′,

where V0 is linear vector field and V ′ is the collection of nonlinear terms. Suppose the
radial point is hyperbolic equilibrium point with all the eigenvalues are distinct and
are not equal to zero. Moreover, all the eigenvalues satisfy the conditions in Theorems
A.4.21 or Theorem A.4.24. Then there is a germ of analytic homeomorphism,

ϕ : (Rn, 0)→ (Rn, 0),

such that ϕ∗V = V0.

Consider the contact structure on R2n+1 defined by the contact form

dz +
1

2

n∑
i=1

(xidyi − yidxi),

from the former discussion, one knows the linear contact vector fields are all of the form

λz
∂

∂z
+
λ

2

∑(
xi

∂

∂xi
+ yi

∂

∂yi

)
+
∑( ∂q

∂xi

∂

∂yi
− ∂q

∂yi

∂

∂xi

)
and q is an arbitrary quadratic form in x and y. The linear map ofR2n+1 associated with
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it if of the form  λ 0 · · · 0
0

λ
2 + A

...
0

 (3.3)

and A ∈ sp(2n) is a symplectic matrix. (3.3) is hyperbolic if none of the eigenvalues
of A have real part −λ

2
. In this case, the equilibrium point, i.e., the origin, is called

hyperbolic equilibrium point. It is well-known that Hartman–Grobman theorem says
the behavior of a dynamical system near a hyperbolic equilibrium point is qualitatively
the same as the behavior of its linearization near this equilibrium point.

Theorem 3.2.2. (Hartman–Grobman) Let f : Rn → Rn be a smooth map of a
dynamical system with differential equation du

dx
= f . Suppose the map has a hyperbolic

equilibrium point x0. Then there exists a neighborhood N of the equilibrium x0 and a
homeomorphism ϕ : N → Rn, such that ϕ(x0) = 0 and such that in the neighborhood
N , the flow of du

dx
= f is topologically conjugate by the smooth map v = ϕ(u) to the

flow of its linearization dv
dx

= Av.

In general, even for infinitely differentiable maps f , the homeomorphism ϕ need not
to be smooth, nor even locally Lipschitz. However, it turns out to be Hölder continuous
with an exponent depending on the constant of hyperbolicity of A.

According to the discussion in §2 of Guillemin and Schaeffer [22], we have

Theorem 3.2.3. Let V be a real analytic contact vector field on R2n+1 of the form

V = V0 + V ′,

where V0 is linear contact vector field and V ′ is the collection of nonlinear terms.
Suppose the radial point is hyperbolic equilibrium point with all the eigenvalues are
distinct and are not equal to zero. Moreover, all the eigenvalues satisfy the conditions in
Theorems A.4.21 or Theorem A.4.24. Then there is a germ of contact transformation,

ϕ : (R2n+1, 0)→ (R2n+1, 0),

such that ϕ∗V = V0.

To prove the above theory, we first give two lemmas.

Let (x, y, z) ∈ Rn×Rn×R be the coordinates of R2n+1. Consider the polynomial
functions on (x, y) ∈ R2n form a subalgebra of the Poisson algebra with respect to

{f, g} = Hfg =
∑
i

( ∂f
∂yi

∂g

∂xi
− ∂f

∂xi

∂g

∂yi

)
.

Furthermore, such subalgebra can be set as a graded algebra via decomposition of
spaces of homogeneous polynomials. Moreover, a real analytic function can be written
as summation of polynomial functions, so any real analytic vector field can be written
as a vector field with summations of polynomial functions as its coefficients. The set
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of polynomial functions on R2n+1, is a Lie subalgebra of A(R2n+1) with respect to the
Lagrange bracket in Corollary 3.1.2. Denote such set by g, and set gi to be the sum of all
polynomials zlh(x, y), where h(x, y) is a homogeneous polynomial in (x, y) of degree
k. Moreover we have 2l + k − 2 = i. Then g = ⊕∞i=−2g

i is a graded Lie algebra sum
and [gi, gj] ⊂ gi+j (notice that adz(g

i) = [z, gi] = − i
2
gi, and use the Jacobi’s identity).

However, the graded Poisson algebra in R2n can be recognized as the subalgebra
of polynomial functions in (x, y), which is contained in the graded Lie algebra g.
Moreover g0 = sp(2n) + {cz}. For G ∈ g0, consider the centeralizer set

C(G) = {m|m ∈ g, [m,G] = 0}.

Set the collection G of all elements G of g0 satisfy C(G) ⊂ g0. Notice that G is of
second category. Apply the same discussion to the ring of formal power series in x, y
and z. The Lagrange bracket in Corollary 3.1.2 also defines a Lie algebra ḡ and

ḡ = ⊕∞i=−2g
i.

In additional, there is a subalgebra h of ḡ, is the infinite sum h = ⊕∞i=0g
i.

Given V ∈ h, we have the formal sum

exp(adV ) = I + adV +
1

2
(adV )2 +

1

3!
(adV )3 + · · · ,

which is converges in the sense of formal power series. exp(V ) gives an automorphism
of ḡ. Similar as the Theorem 1 in §2 of [22], we have

Lemma 3.2.4. Let V =
∑∞

i=0 Vi be in h. Assume V0 ∈ g0 of ḡ satisfies V0 ∈ G.
Moreover, all the eigenvalues associated with V0 satisfy the conditions in Theorems
A.4.13. Then there is an formal automorphism ϕ of ḡ such that ϕV = V0.

Proof. With the above discussion, the bijective mapping adV0 : g1 → g1 implies the
existence of V ′1 ∈ g1 such that [V ′1 , V0] = V1. Let ϕ1 = exp(adV ′1), then ϕ1(V ) = V0 +
W2 where W2 ∈ ⊕∞i=2g

i. Write W2 = V2 +W3, where V2 is the leading term of W2 and
W3 ∈ ⊕∞i=3g

i, the bijective mapping adV1 : g2 → g2 implies the existence of V ′2 ∈ g2

such that [V ′2 , V1] = V2. Let ϕ2 = exp(adV ′2), then ϕ2 ◦ϕ1(V ) = V0 +W3. Repeat the
step and each time we eliminate the leading nonlinear term, then we formulate a formal
mapping

ϕ = lim
i→∞

ϕi ◦ ϕi−1 ◦ · · · ◦ ϕ1

linearize the vector V .

Consider any 2n + 1 dimensional contact manifold (X,L), and let V be a contact
vector field on X with x0 be its zero. The linear part of any real analytic vector field
gives a (2n + 1)× (2n + 1) matrix (3.3). Treat λ

2
+ A as the element of λz + A ∈ g0,

then we have

Lemma 3.2.5. If λz + A satisfies that the center C(A) of A is contained in g0 1, then

1 The non-resonance condition in section 4.2 insure this condition is fulfilled.
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CHAPTER 3 Linearization of vector fields

there is a germ of formal contact transformation ϕ : (X, x0)→ (X, x0) such that

ϕ∗V = V0

where V0 is the linear contact vector field on X with λz + A ∈ g0.

Now we are going to finish the proof of Theorem 3.2.3.

Proof. With the above Lemma 3.2.4 and Lemma 3.2, we already give a formal contact
transformation ϕ such that the push forward of ϕ linearizes the contact vector field V .
Now we want to prove the formal mapping ϕ is convergent to a real analytic mapping.

However, in Appendix A.4, we have show the convergence of the formal mapping
with some conditions of the eigenvalues of A. Write {±λi, i = 1, · · · , n} as the
2n eigenvalues of A. Consider the matrix (4.14) induced from the normal form 2 of
operators in our problem. On one hand, consider the attracting/repelling cases of our
operators, the 2n+ 1 eigenvalues

{γ, γ
2
± λ1, · · · ,

γ

2
± λn}

of the matrix (3.3) are of of Poincaré type 3, which is fulfill the conditions of
Theorem A.4.21. We use majorant series and construct contract mapping to prove the
convergence, see the proof of Theorem A.4.21 for the construction.

On the other hand, for the non-attracting/non-repelling cases, the 2n+1 eigenvalues
{γ, γ

2
± λ1, · · · , γ2 ± λn} are of Siegel type with additional condition such as some

Diophantine condition in Definition A.4.23. Such additional condition insure that the
inverse operator ad−1

Λ
4 will not vanish to fast. Then by applying the Theorem A.4.24,

one can finish the proof by using corresponding technique from the classical KAM
theory, whose name is after A. Kolmogorov, V. Arnold and J. Moser, to deal with the
small denominator that does not vanish too fast. See Chapter 2 of [9] or Chapter I,
section 5E of [32] for introductions.

Remark 3.2.6. In Theorem 2 of [22], they obtained a contact transformation push
forward the contact vector field V to a linear vector field V0 plus a term V∞ vanishes
to infinite order at equilibrium point. However, in real analytic setting, we do not have
the latter term due to the property of real analytic coefficients. That is why Guillemin
and Schaeffer spent one section to cancel the term V∞ but we only need to prove the
convergence of ϕ.

Remark 3.2.7. For the operators in our problem in section 1.3, we only need eigenvalues
of A satisfy the non-resonant condition 5 and the eigenvalues are of Poincaré type or
to be Liouvillean (Siegel type satisfying some Diophantine condition). However, The

2 See section 4.3 for details.
3 See Definition A.4.5. Roughly, the convex hull of all eigenvalues does not contain the origin.

Otherwise, the eigenvalues are of Siegel type.
4 See Definition A.4.11 for the definition of the operator adΛ.
5 See section 4.2.
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3.3 Eigenvalues of symplectic mappings

latter one is not rigorous for our proof of the above lemma. For eigenvalues of Siegel
type, there are more cases available for our linearization theory, see Appendix A.4.

3.3 Eigenvalues of symplectic mappings

Let E be a 2n dimensional vector space equipped with a linear symplectic form Ω.
Denote by sp(E) the set of linear mappings A : E → E such that

Ω(Av,w) + Ω(v, Aw) = 0

for all v, w ∈ E and by Sp(E) the group of linear mappings B : E → B such that

Ω(Bv,Bw) = Ω(v, w).

Henceforth Sp(E) is the symplectic group and sp(E) its Lie algebra.

We only consider A ∈ sp(E) is semi-simple, that is, diagnosable, and the
eigenvalues of A are distinct. The eigenvalues of A come in groups of three types:

(i) pairs λ,−λ of inverse real eigenvalues,

(ii) pairs λ, λ̄ of conjugate eigenvalues which are pure imaginary,

(iii) four tuplets λ, λ̄,−λ,−λ̄ of complex eigenvalues but not pure imaginary.

From the knowledge of symplectic geometry, we have

Lemma 3.3.1. The symplectic form Ω restricted to each non-decomposable subspace
Eλ is non-degenerate. Furthermore, all the Eλ’s are mutually perpendicular with
respect to Ω.

Definition 3.3.2. Say A is elliptic if all its eigenvalues are of type (ii), hyperbolic if
they are all of type (i), and loxodromic if they all come in quadruples (iii). Otherwise,
we call A is of mixed type.

Theorem 3.3.3. [22] If A ∈ sp(E) is hyperbolic or loxodromic, then it is conjugate to
an element of sp(2n) of the form (

B 0
0 B

)
.

If A is elliptic, it is conjugate to an element of the form(
0 −D1

D2 0

)
,

where D1 and D2 are diagonal matrices. Moreover we can arrange that the diagonal
entries of D1 and ±1′s, and that the i-th diagonal entries of D1 and D2 have the same
sign.
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Equip R2n+1 with contact form dz + 1
2

∑
(xidyi − yidxi), and let V be a linear

contact vector field of the form

λz
∂

∂z
+
λ

2

∑(
xi

∂

∂xi
+ yi

∂

∂yi

)
+
∑( ∂q

∂xi

∂

∂yi
− ∂q

∂yi

∂

∂xi

)
,

where q is an arbitrary quadratic form in x and y. Split V into two parts as following,

V2 = λz
∂

∂z
+
λ

2

∑(
xi

∂

∂xi
+ yi

∂

∂yi

)
,

V1 =
∑( ∂q

∂xi

∂

∂yi
− ∂q

∂yi

∂

∂xi

)
.

Set Sk be the space of homogenous polynomials of degree k in x and y, and set

Sk,l = {zlh, h ∈ Sk}.

Denote an element of Aut(Sk) by

V1 = V
(k)

1 : Sk → Sk.

One also has V (k)
1 ∈ Aut(Sk,l) via Sk ∼= Sk,l given by h→ zlh.

The vector field V acts on Sk,l in two ways.

(a) V acts on Sk,l by means of the Lagrange bracket as:

(
k

2
+ l − 1)λI + V

(k)
1 . (3.4)

With respect to Lagrange bracket, the first part V2 of V acts as (k
2

+ l−1)λI , and
the second part V1 act as V (k)

1 .

(b) V act as a linear mapping on Sk,l by the rule for differentiating a homogeneous
function by a vector field:

(
k

2
+ l)λI + V

(k)
1 . (3.5)

We have the following generical conditions of eigenvalues:

(i) First to linearize an arbitrary formal contact vector field with linear part V , one
need (a) to be non-singular for (k

2
+ l − 1) > 0 (see Remark 3.2.6, and see [22],

§2 for details), that is

−mλ
2

is not an eigenvalue of V (k)
1 for m > 0.

(ii) We will see in step (II) of the proof of Corollary 4.3.2, to obtain the normal form,
one has formula (3.5) in (b), we need

−m′λ
2

is not an eigenvalue of V (k)
1 for m′ > 0.
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3.4 Birkhoff normal form

(iii) Remember for the linearization we need the zero of the vector field is hyperbolic,
that is the matrix λI

2
+ A has no imaginary eigenvalues.

Applying the above conditions we can define a generical radial point 6.

3.4 Birkhoff normal form

Next chapter we will give the normal form of our operators in section 1.3, it is worth to
mention some knowledge of Birkhoff normal form, the reference is [1].

Write the hamiltonian as H = 1
2
(Ax, x), where x = (p1, · · · , pn; q1, · · · , qn) is a

vector written in a symplectic basis andA is a symmetric linear operator. The canonical
equations have the form

ẋ = IAx, I =

(
0 −E
E 0

)
.

By eigenvalues of the hamiltonian we mean the eigenvalues of the linear
infinitesimally symplectic operator IA, and by a Jordan block we mean a Jordan block
of the operator IA.

The eigenvalues of the hamiltonian are of four types: real pairs (a,−a), purely
imaginary pairs (

√
−1b,−

√
−1b), quadruples (±a ±

√
−1b) and zero eigenvalues.

The Jordan blocks corresponding to the two members of a pair or four members of
a quadruple always have the same structure.

The complete list of normal forms follows:

(1) For a pair of Jordan blocks of order k with eigenvalues ±a, then hamiltonian is

H = −a
k∑
j=1

pjqj +
k−1∑
j=1

pjqj+1.

(2) For a quadruple of Jordan blocks of order k with eigenvalues ±a ±
√
−1b the

hamiltonian is

H = −a
2k∑
j=1

pjqj + b− a
k∑
j=1

(p2j−1q2j − p2jq2j−1) +
2k−2∑
j=1

pjqj+2.

(3) For a pair of Jordan blocks of order k with eigenvalues zero the hamiltonian is

H =
k−1∑
j=1

pjqj+1 (for k = 1, H = 0).

6 See Definition 4.2.4.
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(4) For a Jordan blocks of order 2k with eigenvalues zero the hamiltonian is of one
of the following two inequivalent types:

H = ±1

2

( k−1∑
j=1

pjqk−j −
k∑
j=1

qjqk−j−1

)
−

k−1∑
j=1

pjqj+1,

for k = 1, this is H = ±1
2
q2

1 .

(5) For a pair of Jordan blocks of order 2k + 1 with purely imaginary eigenvalues
±
√
−1b the hamiltonian is of one of the following two inequivalent types:

H =± 1

2

[ k∑
j=1

(b2p2jq2k−2j+2 + q2jq2k−2j+2)

−
k+1∑
j=1

(b2p2j−1q2k−2j+3 + q2j−1q2k−2j+3)
]
−

2k∑
j=1

pjqj+1,

for k = 0, H = ±1
2
(b2p2

1 + q2
1).

(6) For a pair of Jordan blocks of order 2k with eigenvalues±
√
−1b the hamiltonian

is of one of the following two inequivalent types:

H =± 1

2

[ k∑
j=1

(
1

b2
q2j−1q2k−2j+1 + q2jq2k−2j+2)

−
k−1∑
j=1

(b2p2j+1q2k−2j+1 + p2j+2q2k−2j+2)
]
− b2

2k∑
j=1

p2j−1q2j +
2k∑
j=1

p2jq2j−1,

for k = 1, H = ±1
2
( 1
b2
q2

1 + q2
2)− b2p1q2 + p2q1.

Theorem 3.4.1. (Williamson’s theorem) A real symplectic vector space with a given
quadratic form H can be decomposed into a direct sum of pairwise skew orthogonal
real symplectic subspaces so that the form H is represented as a sum of forms of the
types indicated above on these subspaces.

For our case, we only need to consider all the Jordan blocks are of first order, while
the individual hamiltonian in “general position” does not have multiple eigenvalues and
reduces to a simple form. Moreover, in our case, we consider the principal symbol as
the Hamiltonian of quadratic form in the variable (x′, ξ′).
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Chapter 4

The normal form

In this chapter we are going to simplify the microdifferential operator P near a generic
radial point. Basically first we introduce the subprincipal symbol in section 4.1, after
that we study analytic properties of radial points and clarify the generic conditions in
section 4.2, then obtain the normal form of the original operator P in section 4.3. We
discuss the projected null bicharacteristics at the end this chapter.

4.1 Subprincipal symbol

Let X be an n dimensional real analytic manifold, let P be a microdifferential operator
of order m defined on S∗X , and Take a local coordinate system x = (x1, x2, · · · , xn)
of X . By considering the adjoint operator P ∗ of P = {Pk(x, ξ)}k, we have

(P ∗)m(x, ξ) = Pm(x,−ξ) = (−1)mPm(x, ξ),

(P ∗)m−1(x, ξ) = Pm−1(x,−ξ)−
∑
j

∂2

∂xj∂ξj
Pm(x,−ξ)

= (−1)m
(
Pm−1(x, ξ)−

∑
j

∂2

∂xj∂ξj
Pm(x, ξ)

)
.

Hence P − (−1)mP ∗ ∈ EX(m− 1).

Definition 4.1.1. We set

σm−1
sub (P ) :=

1

2
σm−1(P − (−1)mP ∗)

= Pm−1 −
1

2

∑
j

∂2Pm
∂xj∂ξj

(4.1)

and call it the subprincipal symbol 1 of P .

1 Notice that if we write a pseudo-differential operator P (x,D) = P0(x) +
∑m
i=1 Pi(x,D) on Rn

withD = 1√
−1

∂
∂x , the formula of its subprincipal symbol is like σm−1

sub (P ) := Pm−1− 1
2
√
−1

∑
j
∂2Pm

∂xj∂ξj
.
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The map σm−1
sub : EX(m) → OT ∗X extends the principal symbol σm−1 : EX(m −

1) → OT ∗X . However, unlike the principal symbol, it depends on the choices of
coordinate systems. Suppose P̃ = (P̃k(x̃, ξ̃)) be the associated operator of P in another
coordinated system x̃ = (x̃1, · · · , x̃n). One has dx̃P̃ ∗dx̃−1 = dxP ∗dx−1, and let
σ̃m−1(P̃ ) be the subprincipal symbol in x̃, one has

σ̃m−1
sub (P̃ ) = σm−1

sub (P )− 1

2

{
σm(P ), log

d(x̃)

dx

}
.

Then one can define a first order differential operator L (m−1)
P acting on OT ∗X ⊗ Ω

−1/2
X

by
L (m−1)
P (a/

√
dx) :=

(
Hσm(P )a+ σm−1

sub (P )a
)
/
√
dx,

where Ω
−1/2
X = (Ω

1/2
X )⊗−1, and Ω

1/2
X is an invertible sheaf such that (Ω

1/2
X )⊗2 = ΩX ,

and let
√
dx denote a section of Ω

1/2
X such that (

√
dx)⊗2 = dx, here dx = dx1 ∧ · · · ∧

dxn ∈ ΩX . By definition, (dx)
1
2L (m−1)

P (dx)
1
2 is independent of the choice of local

coordinated system.

Proposition 4.1.2. For P ∈ EX(m) and Q ∈ EX(n), one has

(1) σm+n−1
sub (PQ) = σm(P )σn−1

sub (Q) + σm−1
sub (P )σn(Q) + 1

2

{
σm(P ), σn(Q)

}
,

(2) σm+n−2
sub ([P,Q]) = {σm(P ), σn−1

sub (Q)}+ {σm−1
sub (P ), σn(Q)},

(3) L m+n−1
PQ = PmL

(n−1)
Q +QnL

(m−1)
P + 1

2
[Pm, Qn],

(4) L m+n−2
[P,Q] = [L (m−1)

P ,L (n−1)
Q ].

4.2 Classification of radial points

Let X be an n-dimensional manifold and let (x, ξ) = (x1, · · · , xn, ξ1, · · · , ξn) be local
coordinates of T ∗X . Let P be an m-th order microdifferential operator defined on T ∗X
with principal symbol pm(x, ξ), the characteristic variety Char(P ) of the operator P is
defined by

Char(P ) := {(x, ξ) ∈ T ∗X \ 0 | pm(x, ξ) = 0},

which is a closed subset of T ∗X .

Definition 4.2.1. A point ν0 = (x0, ξ0) in Char(P ) is said to be a radial point of the
operator P if the Hamiltonian vector field Hpm associated with the principal symbol
pm of P is a (necessarily nonzero) multiple of the radial vector field R = ξ ∂

∂ξ
, i.e.,

Hpm + γR = 0 holds at ν0 for some γ ∈ R \ 0. Conversely, if Hpm and R are linear
independent at ν0, then we say the operator P is of principal type at ν0.

Remark 4.2.2. There is an equivalent definition of radial point that dpm and the
canonical 1-form α = ξdx are collinear at (x0, ξ0). A point (x0, ξ0) is radial if and
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4.2 Classification of radial points

only if it solves the system{
∂pm
∂ξi

= 0, i = 1, · · · , n,
ξn

∂pm
∂xi

= ξi
∂pm
∂xn

, i = 1, · · · , n− 1.
(4.2)

If (x0, ξ0) is a radial point, then all points (tx0, tξ0) (t 6= 0) in the direction are
radial, eventually we can consider problem on cotangent sphere bundle S∗X . Here
we prefer to consider S∗X instead of P ∗X , because it is more convenient to study the
singular spectrum.

Example 4.2.3. Consider a simple example of Euler operator

P = xDx − θ, x ∈ R

where θ ∈ C. It has two radial points (0,±1) on S∗R, and its subprincipal symbol is√
−1
2
− θ.

A radial point ν0 is isolated in microlocal sense if there is no other ray near R+ν0

consisting of radial points.

We will see later in next section that linearizing the contact vector field Hpm + γR
gives a matrix γ

2
I + A, where A is a symplectic matrix. According to section 3.3,

suppose the eigenvalues of the symplectic mapping A at the radial point (x0, ξ0) are
distinct, and we can write them as

λ1,−λ1, λ2,−λ2, · · · , λn,−λn.

Definition 4.2.4. (Non-resonant condition) A radial point (x0, ξ0) is generic if the
equation

m
γ

2
=

n∑
i=1

miReλi

has no integer solution (m,m1, · · · ,mn) ∈ Zn+1 with m 6= 0.

Definition 4.2.5. A generic radial point ν0 is called to be elliptic (hyperbolic,
loxodromic or of mixed type, respectively) if the associated symplectic matrix A is
elliptic (hyperbolic, loxodromic or of mixed type, respectively).

Near a generic radial point, the microlocal equivalence of operators is classified by
three invariants [75]:

(i) The factor γ ∈ R \ 0, with Hpm + γR = 0 at the radial point ν0. One can see γ
is homogeneous in ξ0 of order m− 1, i.e.,

γm−1
P (tν0) = tm−1γm−1

P (ν0),

here we write γ as γm−1
P (ν0).
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(ii) The subprincipal symbol of P at (x0, ξ0)

σm−1
sub (P )(x0, ξ0) = pm−1(x0, ξ0)− 1

2i

n∑
j=1

∂2pm
∂xj∂ξj

(x0, ξ0).

The subprincipal symbol is an invariant in the sense as following [75]:

Lemma 4.2.6. Let P be an m-th order pseudo-differential operator and ν0 be a radial
point, and let U be an open neighborhood of ν0 in T ∗X \ 0. Let J be an elliptic Fourier
integral operator with associated canonical transformation J : U →J (U). Then

σm−1
sub (JPJ−1)

(
J (ν0)

)
= σm−1

sub (P )(ν0)),

and J−1 is the parametrix of J .

(iii) Conformal symplectic map γ
2
I + A.

From the definition, at radial point (x0, ξ0) we have

(Hp + γR)|(x0,ξ0) = 0,

where Hp is symplectic vector field and γR is conformal symplectic vector field with
constant conformal factor u. Extend Hp + γR to a vector field Hpm + ϕ(x, ξ)R with
(x0, ξ0) as its zero. Here ϕ : T ∗X \ 0 → R is arbitrary real function homogeneous of
degree m − 1 with value γ at (x0, ξ0). Let V 0

P be the linear part of the vector field at
(x0, ξ0), then it defines a conformal symplectic linear map

V 0
P : T(x0,ξ0)(T

∗X \ 0)→ T(x0,ξ0)(T
∗X \ 0).

of the form  ϕ 0 · · · 0
0

ϕ
2 + A

...
0


where A is symplectic. Also we have tensor contraction 〈R, dpm〉 = kdpm and
〈Hpm , dpm〉 = 0, which imply that the transpose of V 0

P

(V 0
p )t : T ∗(x0,ξ0)(T

∗X \ 0)→ T ∗(x0,ξ0)(T
∗X \ 0)

maps dpm onto a multiple of itself, and alternatively, V 0
P maps the codimension one

subspace of Tν0(T
∗X \ 0) defined by dpm(ν0) = 0 into itself.

Moreover, it introduces two invariant spaces, one is spanned by Hpm(x0, ξ0) (or
R|(x0,ξ0)), another is the kernel of dpm(x, ξ) (or α) quotient the subspace spanned by
Hpm(x, ξ) (or R), i.e., Êν̂0 := α⊥/R+R, where ν̂0 is image of ν0 under the canonical
projection T ∗X \ 0 → S∗X . That is V 0

P induces a symplectic map VP of the form
ϕ
2
I + A on Êν̂0 , which is also conformal, and is independent on the choice of ϕ, where

A ∈ sp(Êν̂0). We have
γ

2
I + A(ν0) ∈ csp(Êν̂0).
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SinceA is a (n−1)×(n−1) matrix associated with the operatorP , we writeA = Am−1
P .

4.3 Normal form

Similar as Witt [75], we have

Theorem 4.3.1. Let M and M ′ are two EX-modules associated with two m-th order
micro-differential operators P and P ′, respectively, and let ν0 and ν ′0 be radial points
of P and P ′, respectively. If M near ν0 and M ′ near ν ′0 are microlocally equivalent,
via quantized contact transformation, then one has three invariants:
(i) γm−1

P (ν0) = γm−1
P ′ (ν ′0),

(ii) σ(m−1)
sub (P )|ν0 = σ

(m−1)
sub (P ′)|ν′0 ,

(iii) There is a linear symplectic map W : Êν̂0 → Êν̂′0 such that

Am−1
P ′ (ν ′0) = WAm−1

P (ν0)W−1.

If ν0 and ν ′0 are generic, then these conditions are also sufficient, that is, the three
invariants imply that M and M ′ are microlocally equivalent.

Proof. Suppose that two EX-modules M near ν0 and M ′ near ν ′0 are microlocally
equivalent. That is, P ′ is equivalent to P via conjugating invertible microdifferential
operator of order zero. Let p = σm(P ) and p′ = σm(P ′) be the principal symbol of P
and P ′ respectively.

(i) Since Hp + γm−1
P R = 0, and by assumption we know the principal

symbols are same near the radial points by conjugating a zeroth order elliptic
micro-differential operator J , i.e.,

σm(P ′)(ν ′0) = σm(J−1PJ)(ν0)

= σ0(J−1)(ν0)σm(P )(ν0)σ0(J)(ν0)

= σm(P )(ν0),

then (i) is true.

(ii) If A ∈ EX(n) is a n-th order micro-differential operator, notice that from
Proposition 4.1.2:

σm+n−1
sub (PA) = σm(P )σn−1

sub (A) + σm−1
sub (P )σn(A) +

1

2i

{
σm(P ), σn(A)

}
,

σm+n−1
sub (AP ) = σn(A)σm−1

sub (P ) + σn−1
sub (A)σm(P ) +

1

2i

{
σn(A), σm(P )

}
.

We know the principal symbol vanishes at radial point, then at the radial point we
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have

σm+n−1
sub (PA) = σm−1

sub (P )σn(A)

= σn(A)σm−1
sub (P )

= σm+n−1
sub (AP ).

Suppose A is elliptic, then at the radial point we have

σm−1
sub (P ′)(ν ′0) = σm−1

sub (A−1PA)(ν0)

= σm−1
sub (AA−1P )(ν0)

= σm−1
sub (P )(ν0).

(iii) Assume we obtain two matrices γ
2

+A and γ
2

+A′ by linearizing the symplectic
vector fieldsHp+γR near ν0 andHp′+γR near ν ′0, respectively. Since the zeroth
order microdifferential operator provided a morphism mapping p to p′, which
induced a symplectic transformation mapsHp toHp′ . Then the associated contact
transformation maps Vp to Vp′ . Moreover, we have two contact transformations
linearize Vp and Vp′ respectively. Hence there exist a linear symplectic map V
such that A′ = V AV −1.

The rest of the proof is similar to the proof of the following corollary.

Corollary 4.3.2. Let P ∈ E(2) be a second order micro-differential operator on a
real analytic manifold M . Let M be the E-module associated with P , i.e., M ' E

EP .
Furthermore if ν0 = (x0, ξ0) is a generic radial point of P , then near (x0, ξ0), via
quantized contact transformation, one can transform M into the system

N ' E
EPN

,

and PN is the normal form of P of form

PN = 〈ADx′ , Dx′〉+ 〈Bx′, Dx′〉Dxn + 〈Cx′, x′〉D2
xn + γxnD

2
xn + θDxn .

Here A, B, C are constant (n− 1)× (n− 1) matrices, A and C are symmetric, Dxi =
1√
−1

∂
∂xi

, x = (x′, xn), γ ∈ R and θ ∈ C.

Proof. With slight modification of Guillemin and Schaeffer’s proof, the essential idea
works equally well here. Roughly, the steps are:

STEP I) One can conjugate P into a micro-differential operator having the same
principal symbol of the normal form PN .

By direct computation, the normal form PN has a radial point at ν0
′ = (x′0, ξ

′
0)

where x′0 = 0, ξ′0 = (0, · · · , 0, 1).

For technical reasons it is much easier to deal with first order operators, we consider
a micro-differential operator P ∈ EX(1), the normal form PN can be looked as a first
order operator P ′ by the action of a micro-differential operator (Dxn)−1 ∈ ERn(−1), it
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4.3 Normal form

is elliptic near the radial point ν ′0, then

P ′ = (Dxn)−1(PN) ∈ ERn(1). (4.3)

It is easy to see ν ′0 is also the radial point of P ′.

Let p and p′ be the principal symbol of P and P ′, which by assumption are both
homogeneous of degree one in ξ. Then Hp andHp′ are homogeneous of degree zero on
T ∗X and T ∗Rn, respectively. We can assign the Hamiltonian vector fields the related
contact vector fields Vp and Vp′ on on S∗X and S∗Rn, respectively.

radial point ν0 ν ′0
operator P P ′

l (a) l
principal symbol p p′

l (b) l
Hamiltonian vector field Hp Hp′

l (c) l
Contact vector field Vp Vp′

l (d) l
Linear part V 0

p V 0
p′

In the above table, (a) and (b) are self-evident, (c) is canonical projection and (d) is
the linearization of contact vector fields that we studied in chapter 3.

(S∗X, ν0)
ϕ−−−→ (S∗X, ν0)yψ yφ

(S∗Rn, ν ′0)
ϕ′−−−→ (S∗Rn, ν ′0)

and

Vp
ϕ∗−−−→ V 0

pyψ∗ yφ∗
Vp′

ϕ′∗−−−→ V 0
p′

Choose suitable coefficients of PN such that there is a contact transformation φ such
that φ∗ can conjugate V 0

p to V 0
p′ , and one knows that the maps ϕ and ϕ′, related to the

linearization ϕ∗ and ϕ′∗ of the contact vector fields Vp and Vp′ , respectively, are also
contact transformations. A combination of mappings ψ , ϕ ◦ φ ◦ ϕ′−1 shows us, near
generical radial points, there is a contact transformations ψ from S∗X to S∗Rn. The
related symplectic transformation ψ̃ which maps T ∗X \ 0 to T ∗Rn \ 0, i.e.,

ψ(x, ξ) = (y, η)↔ ψ̃(x, tξ) = (y, tη),∀t ∈∈ R \ 0. (4.4)

With the introduction of contact transformation and quantized contact
transformation in (A.3), one knows the contact transformation ψ : S∗X → S∗Rn can
be expressed by composition of two contact transformations with generating functions.
To coincide with former introduction, we still use ψ to denote the associated contact
transformation from P ∗X to P ∗Rn.

Decompose ψ = π2 ◦ π−1
1 with a generating functions Γ(x, r). Here we only need

the existence of Γ and we do not care what Γ is. Let Λ ⊂ X × Rn be non-singular
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CHAPTER 4 The normal form

hypersurface defined by Γ(x, r) = 0, that is,

∇(x,r)Γ(x, r) 6= 0

holds on Λ. Moreover, on Λ, one has

det

(
0 dyΓ
dxΓ dxdyΓ

)
6= 0.

And then
π1 : P ∗Λ(X ×Rn)→ P ∗X

and
π2 : P ∗Λ(X ×Rn)→ P ∗Rn.

Then we can lifting the contact transformation ψ : P ∗X → P ∗Rn to the sheaves of
germs of microdifferential operators EX → ERn , via quantized contact transformation.

From theorem A.3.7, one can find an isomorphism between the two sheaves of
germs of micro-differential operators π2 ◦ π−1

1 EX and ERn , as well as π2 ◦ π−1
1 EX(m)

and ERn(m), for any integer m. Moreover the isomorphism is unique up to an inner
automorphism by an invertible microdifferential operator of order zero.

At least we can claim that we can find an invertible microdifferential operator of
order zero, denote by F , such that{

P ′ = F−1PF +W,
ord(W ) ≤ 1, σ1(W ) = 0 near ν0.

(4.5)

STEP II) Deal with the lower order term.

Redefine the operator P by F−1PF , so far we have

σ1(P ) = p = p′ = σ1(P ′)

We want to find an invertible micro-differential operator Q of order zero, such that

Q−1P ′Q ' P (4.6)

That is the operator Q−1P ′Q and P are microlocally equivalent in the sense of

Q−1P ′Q− P ∈ ∩m∈ZEX(m).

Now we are going to figure out Q. Consider the principal symbol of the zero order
operator Q−1P ′Q− P near ν0. We have

σ0(Q−1P ′Q− P ) = σ0
(
Q−1([P ′, Q] + P ′ − P )

)
= σ0(Q−1)σ0([P ′, Q]) + σ0(P ′)− σ0(P )

=
{p, q0}
q0

+ θ − s.
(4.7)
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4.3 Normal form

Here s is the zeroth order component of the total symbol of P , and q0 the principal
symbol Q, θ is the arbitrary constant in the first order term of PN .

Write q0(x, ξ) = exp
(
a0(x, ξ)

)
, and both of q0(x, ξ) and a0(x, ξ) are homogeneous

of order zero in ξ. Let the above equation be zero then

Hpa0 = s− θ , b0 (4.8)

Suppose (4.8) can be solved, then choose Q0 to be any micro-differential operator
of order zero with principal symbol q0, Q−1

0 P ′Q0 − P will be of order −1 in a
neighborhood of ν0.

Now again set P ′ to be Q−1
0 P ′Q0, then P ′ − P ∈ ERn(−1). Consider a zero order

operator Q1 = I + A1 with A1 ∈ EX(−1), then the principal symbol of the operator
Q−1

1 P ′Q1 − P is

σ−1(Q−1
1 P ′Q1 − P ) = σ−1

(
(
∑
k∈N

(−A1)k)P ′(I + A1)− P
)

= σ−1([P ′, A1]) + σ−1(P ′ − P )

= {p, a1} − b1,

(4.9)

where a1 is the principal symbol ofA1 and b1 is the principal symbol ofP−P ′. Suppose
{p, a1} − b1 vanishes, then a1 satisfies the equation

Hpa1 = b1,

repeat the above steps, after conjugating by a finite sequence of Q′is, the principal
symbol of Q−1

k P ′Qk − P is
{p, ak} − bk, (4.10)

where ak is the principal symbol of Ak = Qk − I ∈ EX(−k) and bk is the principal
symbol of P ′ − P near ν0.

If the above equation vanishes, then

Hpak = bk.

If it is satisfied, then we can construct Q by combining all Qi’s, i = 0, 1, · · · .
Consider the above all those unsolved equations

Hpak = bk, k = 0, 1, · · · .

If those above equations are solvable, then we can finish the proof.

Now we try to solve {
Hpa0 = s− θ
Hpak = bk
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CHAPTER 4 The normal form

Since we have a diffeomorphism

S∗X ×R+
∼= T ∗X \ 0,

we can treat a contact vector field Vp as a vector field on T ∗X \ 0,

Vp = Hp + fR,

where f is a homogeneous function of order zero on Ṫ ∗X , and R is the radial vector
field. At radial point, f(0) = λ. Let ck be the pull-back of ak via

S∗X → T ∗X \ 0,

Since ak is homogenous of degree −k, Rak = −kak, then it is equivalent to solve
the following equations. {

Vpc0 = b0

Vpck + kfck = bk
(4.11)

where f(0) = −γ.

Replaying S∗X by R2n−1 with the contact structure

dz +
1

2

n−1∑
i=1

(yidxi − xidyi),

by making a contact transformation and replay Vp by some linear contract vector field
V 0
P onR2n−1 of the form in section 3.3. Due to Guillemin and Schaeffer’s discussion in

[22], we can solve it formally.

Roughly, let Si be the set of all polynomials in x, y and z which are linear
combinations of polynomials of the form zlh(x, y), where h is homogeneous in x, y
of order m and 2n+m = i. So the vector field V induces a linear map V i : Si → Si.

Lemma 4.3.3. To be able to solve the above equations formally (in power series about
the origin), it is necessary and sufficient that −ku not be an eigenvalue of V i for i > 0
and for k > 0.

The lemma shows that (4.11) can be solved up to error terms which vanish to order
infinite 2 at the origin of Rn.

However, we do not need the argument as the smooth case, which need to discuss
the error terms vanishing to infinite order at the origin. In fact the real analytic setting
ensure that once we can solve the equations (4.11) formally, the problems have been
solved.

We could have simpler normal form with additional conditions.

2 A function u(x) vanishes to infinite order at x0 if for every positive integerN , limx→x0

u(x)
|x−x0|N = 0

is true in a neighborhood of x0.

54



4.3 Normal form

Corollary 4.3.4. Let X be a n-dimensional real analytical manifold and M be a
EX-module associated with a first order micro-differential operator P ∈ EX(1).
Let ν0 = (x0, ξ0) be a generical radial point. If ν0 is hyperbolic, then near ν0

M is microlocally equivalent to the ERn-module N ∼= E
EPNh

via quantized contact
transformation, where

PNh = 〈B̃x′, Dx′〉+ γxnDxn + θ. (4.12)

Here B̃ is a constant (n− 1)× (n− 1) matrix.

Corollary 4.3.5. Let X be a n-dimensional real analytical manifold and M be a
EX-module associated with a second order micro-differential operator P ∈ EX(2). Let
ν0 = (x0, ξ0) be a generical radial point. If ν0 is elliptic, then near ν0 M is microlocally
equivalent to the ERn-module N ∼= E

EPNe
via quantized contact transformation, where

PNe = 〈ÃDx′ , Dx′〉+ 〈C̃x′, x′〉D2
xn + γxnD

2
xn + θDxn . (4.13)

Here Ã is a (n− 1)× (n− 1) identity matrix, C̃ = (c̃i) is a (n− 1)× (n− 1) diagonal
matrix with all non-vanishing entries larger than γ2/16.

Now we are going to prove the above corollaries. First we have:

Lemma 4.3.6. Let PN be the normal form of the operator P with radial point ν0 =
(0; 0′, 1), and p is the principal symbol of PN . Then the linear part V 0

p of related
symplectic vector field at the point ν0 is γ

2
I + A, where

A =

(
−bij + γ

2
I −2cij

2aij bij + γ
2
I

)
(4.14)

with respect to the symplectic basis

∂

∂ξ1

, · · · , ∂

∂ξn−1

,
∂

∂x1

, · · · , ∂

∂xn−1

.

Proof. At the radial point (0; 0′, 1), one has dp ‖ ξdx and

Hp + γ
∂

∂ξn
= 0.

From the discussion in section 4.2, the space dp = 0 divided by the space spanned by
Hp (i.e. Êν̂0) can be identified with the space spanned by the ∂

∂ξi

′
s and ∂

∂xi

′
s, i, j < n.

Then
p =

∑
i,j<n

(aijξiξj + bijxiξjξn + cijxixjξ
2
n) + γxnξ

2
n

and we have
Hp =

∑
i

(
∂p

∂ξi

∂

∂xi
− ∂p

∂xi

∂

∂ξi
).
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CHAPTER 4 The normal form

Hence we obtain a homogeneous symplectic vector field Hp + γR. Denote by Vp the
associated contact vector field on (x1, · · · , xn, ξ1, · · · , ξn−1):

Vp = γ
∑
j

ξj
∂

∂ξj
+
∑
i,j<n

(2aijξi
∂

∂xj
+ bijxi

∂

∂xj
− bijξi

∂

∂ξj
−2cijxi

∂

∂ξj
) + · · · , (4.15)

where the dots are quadratic terms in x1, · · · , xn−1, ξ1, · · · , ξn−1 and terms involved
with ∂xn . Therefore the linear part V 0

p of Vp related to (x′, ξ′) is give by

(ξ′, x′)(
γ

2
I + A)(∂ξ′ , ∂x′)

T ,

which can be seen from the above formula. Here x′ = (x1, · · · , xn−1), and ξ′ =
(ξ1, · · · , ξn−1).

To prove the Corollary 4.3.5, if P has the normal form PNe, according to Lemma
4.3.6, the matrix A is given by(

γ
2
−2c̃i

2 −γ
2

)
or
(

γ
2

2c̃i
−2 −γ

2

)
The eigenvalues of A is purely imaginary if and only if the determinant of the matrix

−γ
2

4
+ 4c̃i

is greater than zero, or c̃i > γ2

16
. Conversely, every elliptic case can be obtained by this

way.

To prove the Corollary 4.3.4, if P is microlocally equivalent to the normal form

PNh =
∑
i,j<n

bijxi
∂

∂xj

∂

∂xn
+ γxn

∂2

∂x2
n

+ θ
∂

∂xn

near the radial point. According to Lemma 4.3.6, the matrix A is given by(
−bij + γ

2
0

0 bij − γ
2

)
Conversely, every hyperbolic case can be obtained by this way.

Go back to our normal form PN in Corollary 4.3.2:

Remark 4.3.7. Notice that PN is invariant invariant up to some constant κ under the
coordinates transformation:

(x′, xn) 7→ (κx′, κ2xn),

which will help to construct special form of solutions.
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4.4 Projected null bicharacteristics

Remark 4.3.8. The subprincipal symbol of PN is

σ1
sub(ν0) = θ +

√
−1

2
(tr(B) + 2γ).

4.4 Projected null bicharacteristics

First we recall the definition of a bicharacteristic strip in the classical theory of partial
differential equations.

Definition 4.4.1. Let pm(x, ξ) be the principal symbol of a linear differential operator
P (x,Dx). An integral curve (x(t), ξ(t)) of

dx1

∂pm
∂ξ1

= · · · = dxn
∂pm
∂ξn

=
dξ1

−∂pm
∂x1

= · · · = dξn
∂pm
∂xn

with the property pm(x(t), ξ(t)) = 0 is said to be a bicharacteristic strip of the equation
Pu = 0. The image {x(t)} of the projection of a bicharacteristic strip onto the base
space is call the bicharacteristic curve.

Let P be the microdifferential operator in our problem, p is the principal symbol of
P , and

Hp =
n∑
i=1

( ∂p
∂ξi

∂

∂xi
− ∂p

∂xi

∂

∂ξi

)
is the Hamiltonian vector field. Consider the integral curves (x(s), ξ(s)) of the
Hamiltonian flow: 

dxi
ds

=
∂p

∂ξi
, 1 ≤ i ≤ n

dξi
ds

= − ∂p

∂xi
, 1 ≤ i ≤ n

passing through (x0, ξ0), such that

p(x0, ξ0) = 0, ξ0 6= 0,

that is, (x0, ξ0) ∈ Char(P ).

By calculation on the normal form we obtained in the section 4.3, we can set the
radial point to be (0; 0′, 1) 3. We project these bicharacteristics into the plane {ξn = 1}
by

T ∗Rn \ 0→ S∗Rn

(x1, · · · , xn; ξ1, · · · , ξn−1, ξn) 7→ (x1, · · · , xn;
ξ1

ξn
, · · · , ξn−1

ξn
, 1).

3 For a point (x; ξ) ∈ S∗Rn, we have (x; ξ) = (x1, · · · , xn; ξ1, · · · , ξn), and x′ = (x1, · · · , xn−1)
and ξ′ = (ξ1, · · · , ξn−1).
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Then the flow defined above satisfies
dxi
ds

=
∂p

∂ξi
, 1 ≤ i < n

d
(
ξn−1

ξn

)
ds

=
− ∂p
∂xi
ξn + ξi

∂p
∂xn

ξ2
n

, 1 ≤ i ≤ n− 1

passing through (x0, ξ0) 6= (0; 0′, 1), with p(x0, ξ0) = 0.

Since ( ∂p
∂ξn

)
(0; 0′, 1) = −dξn

ds
(0; 0′, 1) 6= 0,

by assumption that at (0; 0′, 1) the Hamiltonian vector field is radial. A point in the
Characteristics should satisfies the equation

p(x, ξ) = 0,

then near the radial point we can determine the value of xn in terms of x′is and ξ′is for
1 ≤ i ≤ n − 1. In sum, the projected bicharacteristic flow has an isolated zero at
{(0; 0′, 1)} ∈ S∗Rn.

From section 3.3, we assume the symplectic matrix A is semi-simple and for any
eigenvalue λ of A, from (3.3) we have

Reλ 6= 1

2
.

Moreover, we have generical assumption (non-resonant condition) for radial points
in Definition 4.2.4.

The projected null bicharacteristics on {ξn = 1} play a significant role in analyzing
the propagation of singularities. In this section we give an explicit way to computer the
systems that determine the projected bicharacteristic manifold.

In two dimensional case, we have the normal form

PN = aD2
x + bxDxDy + cx2D2

y + γyD2
y + θDy.

The principal symbol is

σ(P ) = aξ2 + bxξη + cx2η2 + γyη2.

By the radial map (x, y, ξ, η) → (x, y, ξ̃, 1), where ξ̃ = ξ
η
, we project the

bicharacteristics into the plane η = 1. Along the projected null bicharacteristics we
have

y = −(aξ2 + bxξ + cx2),

hence the variable y can be determined from a knowledge of x and ξ and we ignore this
variable. A simple computation shows the following systems governs the projected null
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4.4 Projected null bicharacteristics

bicharacteristics: (
ẋ
˙̃ξ

)
=

(
b 2a
−2c γ − b

)(
x

ξ̃

)
Let γ = 1, we have two eigenvalues of the above system

λ± =
1±

√
1 + 4(b2 − b− 4ac)

2
=

1±
√

(2b− 1)2 − 16ac)

2
.

Here b 6= 1
2

to make the matrix is hyperbolic (linearization). The behavior of the
projected null bicharacteristics change while the parameters a, b and c change,

(a) (2b−1)2−1
16

< ac < (2b−1)2

16
, two positive eigenvalues.

(b) ac > (2b−1)2

16
, two conjugate complex with positive real part.

(c) ac < (2b−1)2−1
16

, one positive eigenvalue and one negative.

The flows of projected null bicharacteristics are of three types: the bifurcation
phenomenon is going to happen when the parameters are changing.

One can discuss the normal form more specifically, for the two dimensional elliptic
case, the normal form is

P = D2
x + (y + cx2)D2

y + θDy, c >
1

16
.

and we have the following system(
ẋ
˙̃ξ

)
=

(
0 −2
2c −1

)(
x

ξ̃

)
will govern the projected bicharacteristic manifolds. The eigenvalues of the matrix is
1±
√

1−16c
2

.

And for the hyperbolic saddle case, the operator is of normal form:

P = bxDx + γyDy + θ, where b < 0 and b > 1.

set γ = 1, then we have the following system(
ẋ
˙̃ξ

)
=

(
b 0
0 1− b

)(
x

ξ̃

)
that will govern the projected bicharacteristic manifolds. We see from the matrix that
the case b > 1 and b < 0 are equivalent, then we can consider the operator as

P = xDx − λyDy + α, where λ > 0.
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(a) Hyperbolic repelling

(b) Elliptic

(c) Hyperbolic saddle

Figure 4-1: Flows of projected null bicharacteristics in 2D

One has x(t) = Cet and ξ̃(t) = Ce−(1+λ)t from above. Then one have four
projected null bicharacteristics that go asymptotically to (0, 0, 0, 1).

x = ±et, y = ξ = 0, η = 1, as t→ −∞,

x = y = 0, ξ = ±e−(1+λ)t, η = 1, as t→ +∞.

We will discuss the propagation of singularities in section 5.4.

Moreover, for three dimensional case, there are eight cases to be discussed (see
Chapter 6), the normal form near a hyperbolic radial point can be written as

P = b11xDx + b12xDy + b21yDx + b22yDy + γzDz + θ,
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4.4 Projected null bicharacteristics

By choose suitable local coordinates, we have even simple one

P = b1xDx + b2yDy + γzDz + θ,

Here b1 and b2 are eigenvalues of the matrix(
b11 b12

b21 b22

)
.

The projected null bicharacteristic manifold is governed by the following system
ẋ
ẏ

ξ̇
η̇

 =


b1 0 0 0
0 b2 0 0
0 0 γ − b1 0
0 0 0 γ − b2




x
y
ξ
η


One has x(t) = Ceb1t, y(t) = Ceb2t, ξ(t) = Ce(γ−b1)t and η(t) = Ce(γ−b2)t from above.
When b1 and b2 take different values, one has the following 24 possible projected null
bicharacteristics that tend asymptotically to (0, 0, 0, 0, 0, 1). Type (i) and (ii) involve in
the case λ1 does not satisfy the the attracting/repelling condition (6.2), type (iii) and
(iv) involve in the case λ2 does not satisfy the condition (6.2), and the other four types
involve in the case both λ1 and λ2 do not satisfy condition (6.2).

type x y z ξ η ζ
i ±eb1t 0 0 0 0 1
ii 0 0 0 ±e(γ−b1)t 0 1
iii 0 0 0 0 ±e(γ−b2)t 1
iv 0 ±eb2t 0 0 0 1
v ±eb1t ±eb2t 0 0 0 1
vi ±eb1t 0 0 0 ±e(γ−b2)t 1
vii 0 ±eb2t 0 ±e(γ−b1)t 0 1
viii 0 0 0 ±e(γ−b1)t ±e(γ−b2)t 1

Table 4.1: List of projected null bicharacteristics

For three dimensional case of mixed type, we have normal form

P = ±(D2
x + cx2D2

z) + byDyDz + γzD2
z + θDz,

where c > γ2

16
.

Without loss of generality, we consider

P = D2
x + cx2D2

z + byDyDz + γzD2
z + θDz,
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We have the following systems that determine the projected characteristics:
ẋ
ẏ

ξ̇
η̇

 =


0 0 2 0
0 b 0 0
−2c 0 γ 0

0 0 0 γ − b




x
y
ξ
η


And the four eigenvalues are b, γ − b, γ±

√
γ2−16c

2
.

The qualitative behavior of the solutions of the above system depends on the value
of b and c, set γ = 1,

(a) for 0 < b < 1, c > 1
16

. In this case, two of the four eigenvalues are
positive, and two are conjugated complex number with positive real part.The projected
bicharacteristics tending to the origin as t→ −∞ and to infinity as t→∞. Notice that
in (x, ξ) variables they are spirals;

(b) for b < 0 or b > 1(such two cases are equivalent, here we consider b < 0
without loss of generality), c > 1

16
, two of the four eigenvalues are real and of opposite

sign, and two are conjugated complex number with positive real part. The projected
bicharacteristics have saddle point behavior in (y, η) near the origin, and in (x, ξ)
variables they are spirals. Rewrite the system as:

ẋ

ξ̇
ẏ
η̇

 =


0 2 0 0
−2c γ 0 0

0 0 b 0
0 0 0 γ − b




x
ξ
y
η


We can study the system separately via subspaces in coordinated (x, ξ) and (y, η).

Remark 4.4.2. The above discussion inspires us to study the behaviors of sub-systems
to understand the original system.
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Chapter 5

Analytic singularities in two
dimensions

In this chapter we completely studied the analytic singularities of solutions of our
problem in two dimensional space. Near an elliptic radial point or a hyperbolic
attracting (resp. repelling) radial point, there are solutions with minimal analytic
singularity, i.e. the radial direction. Near a hyperbolic saddle radial point, if the radial
direction is contained in the analytic wavefront set of a solution, then at least one of the
projected null bicharacteristics running into the radial direction will be contained in the
analytic wavefront set of the solution.

5.1 Main results

Consider our problem in two dimensional case. Let ν0 = (x1, x2, ξ1, ξ2) be an isolated
generic radial point of P . In a conical neighborhood of the ray

Υ = {(x1, x2, tξ1, tξ2) : t > 0}, (5.1)

the operator P has the following normal form

PN = ∂2
x1

+ bx1∂x1∂x2 + (cx2
1 + γx2)∂2

x2
+ θ∂x2 . (5.2)

Here γ ∈ R \ 0 and θ ∈ C. The radial points of PN are

{(0, 0, 0, 1)} ∈ S∗R2.

We want to study the analytic singularities of the solutions of Pu = f near radial
point ν0, where f is a real analytic function. Equivalently, we will work on the normal
form PN for simplicity.

Definition 5.1.1. ([GS] [22]) Let Vp be the linear contact vector field associated with
the operater P and let z0 be the zero of Vp corresponding to the radial point ν0. Say ν0

is attracting (or repelling) if the flow of Vp has source (or sink) at z0.
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In our case, the flow of Vp depends on the value of γ and the eigenvalues of A.

We are going to study the analytic singularities in two dimensional case in this
section. The eigenvalues of the symplectic matrix γ

2
I + A are of three types as in the

Figure 5-1:

(a) Hyperbolic
attracting/repelling

(b) Hyperbolic
saddle

(c) Elliptic
attracting/repelling

Figure 5-1: Classification of eigenvalues of A for 2D

(a) two real numbers with same sign, the radial point is hyperbolic attracting (resp.
repelling),

(b) two real numbers with different sign, the radial point is hyperbolic saddle,

(c) two pure imaginary numbers, the radial point is elliptic attracting (resp.
repelling).

Remark 5.1.2. In Figure 5-1, “•” means the position of a eigenvalue of A, and the
vertical lines mean the possible values of γ

2
.

In the cases (a) and (c), the eigenvalues related to the linear part γ
2
I+A of the vector

field are in common that, they convex hull of the four eigenvalues does not contain zero.
That is, the eigenvalues are of Poincaré type1, while the eigenvalues of the case (b) are
of Siegel type.

To continue our statement, without loss of generality, we set γ = 1.

Lemma 5.1.3. Let P be a second order microdifferential operator defined on a two
dimensional real analytic manifold M , with real-analytic coefficients, real principal
symbol p, and simple characteristics. Near a generic radial point ν0 = (x0, ξ0), we
have

(i) if (x0, ξ0) is an elliptic radial point, then near ν0, P has the normal form

PNe = ∂2
x1

+ (x2 + cx2
1)∂2

x2
+ θ∂x2 , c >

1

16
, θ ∈ C.

1 See Definition A.4.5.
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5.1 Main results

(ii) If (x0, ξ0) is a hyperbolic attracting (resp. repelling) radial point, then near ν0,
P has the normal form

PNh = bx1∂x1 + x2∂x2 + θ, 0 < b < 1, θ ∈ C.

(iii) If (x0, ξ0) is a hyperbolic saddle radial point, then near ν0, P has the normal
form

PNh = bx1∂x1 + x2∂x2 + θ, b < 0 or b > 1, θ ∈ C.
Remark 5.1.4. We use ∂x instead of Dx = 1√

−1
∂
∂x

for simplicity of the following
discussion..

By direct computation of the matrix A, one can see the two cases of b < 0 and
b > 1 in (iii) are equivalent. Instead of the normal form in (iii), we prefer to consider
the normal form

PNh = x1∂x1 − λx2∂x2 + θ, for λ > 0.

Moreover, the radial point of our normal form is (0, 0; 0, 1) ∈ S∗R2.

Theorem 5.1.5. LetP be a microdifferential operator satisfies the conditions in Lemma
5.1.3 and PN be its normal form. Consider the equation

PNu = f (5.3)

in space of hyperfunctions, where f is a real analytic function. Suppose the dimension
n = 2, ν0 = (0, 0; 0, 1) and γ = 1. Set R+ν0 = {(0; 0′, η)|η > 0}. Then

(i) when the radial point ν0 is elliptic, there is a solution of the equation (5.3) with
f ∈ C∞(X) such that the minimal wave front set is WFa(u) = R+ν0.

(ii) when the radial point ν0 is hyperbolic attractor/repellor, there is a solution of
the equation (5.3) with f ∈ C∞(X) such that the minimal wave front set is
WFa(u) = R+ν0.

(iii) when the radial point ν0 is hyperbolic saddle, and if ν0 ∈WF(u), then one of the
four projected null bicharacteristic curves 2 which go asymptotically to ν0 must
intersect WFa(u):
Σ1 : (x, y, ξ, η) = (et, 0; 0, 1), t→ −∞,
Σ2 : (x, y, ξ, η) = (−et, 0; 0, 1), t→ −∞,
Σ3 : (x, y, ξ, η) = (0, 0; e−(1+λ)t, 1), t→ +∞,
Σ4 : (x, y, ξ, η) = (0, 0;−e−(1+λ)t, 1), t→ +∞.
That is, there are 3 minimal wave front sets: Σ1 ∪ R+ν0, Σ2 ∪ R+ν0 and Σ3 ∪
Σ4 ∪R+ν0.

Let PN be the suitable normal form for P near the radial point ν0, and let F be a
microdifferential operator such that the quantized contact transformation satisfies

PF − FPN = E,

2 See section 4.4 for detail.
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CHAPTER 5 Analytic singularities in two dimensions

where E has the property that ν0 6∈ WFa(Eu) for any u ∈ B(X). Suppose F
is the associated with the canonical contact transformation ψ. Choose two conical
neighborhoods N1 and N2 of (0, 0, 0, 1) with N1 ⊂ N2, and arrange that

WFa(Fu) ⊂ ψ(N2 ∩WFa(u)) (5.4a)

WFa(Eu) ⊂ ψ
(
(N2 \N1) ∩WFa(u)

)
. (5.4b)

That is, for a inhomogeneous equation Pu = f , we can consider the homogeneous
equation PNu = 0. We will need it in next section.

5.2 Elliptic case

In this section, we are going show near an elliptic radial point, there is a hyperfunction
solution u of the equation (5.3) such that u has the minimal analytic singularity, i.e.,
WFa(u) = {(0, 0, 0, η)|η > 0}.

Theorem 5.2.1. Let M be a two dimensional real analytic manifold and let P (x,D) be
a differential operator defined on M and p is the principal symbol of P , let u and f be
hyperfunctions which satisfy

P (x,D)u(x) = f(x).

Then the following inclusion holds:

WFa(u) ⊂
{

(x, ξ) ∈ T ∗M \ 0|p(x, ξ) = 0
}
∪WFa(f).

In particular, if P is elliptic at a point x0 ∈M , then f is real analytic at x0 implies u is
real analytic at x0.

Before giving our theorem, first we have the following lemma:

Lemma 5.2.2. Suppose µ ∈ C and let u(x) ∈ A(R2 \ {0}) be homogeneous of degree
µ under coordinates transformation u(cx1, c

2x2) = cµu(x1, x2) for all c 6= 0. Provided
that µ 6= −3,−4,−5, · · · , there is a unique hyperfunction ũ(x) ∈ B(R2) with the
homogeneity property such that ũ(x) = u(x) on R2 \ {0}.

Proof. In Guillemin-Schaeffer’s paper [22], they already proved the existence and
uniqueness of a distribution ũ(x) ∈ D ′(R2) with the homogeneity property such that
ũ(x) = u(x) on R2 \ {0}.

For our case, we only need to notice that a hyperfunction whose support is the origin
can be written as

B[{0}] =
{ ∞∑
m=0

cmδ
(m)(x)

∣∣cm ∈ C, lim sup
m→∞

m
√
m!|cm| = 0

}
.

If the above sum is a finite sum, then such a hyperfunction is a distribution. Moreover, to
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5.2 Elliptic case

satisfy the homogeneity condition, such hyperfunctions can not be written as an infinite
sum.

Theorem 5.2.3. Let P be a microdifferential operator satisfies conditions in Lemma
5.1.3, then near an elliptic radial point, there exist a hyperfunction solution u of the
equation PNeu = f such that u has minimal analytic singularity in radial direction.

Proof. Notice that a slight modification of Guillemin and Schaeffer [22]’s proof works
equally well for our case.

Let L be a normal form of P near radial point, first we consider the homogeneous
equation

Lu(x) = ∂2
x1
u(x) + (x2 + cx2

1)∂2
x2
u(x) + θ∂x2u(x) = 0, c >

1

16
(5.5)

is invariant up to some constant κ under the coordinates transformation

(x1, x2)→ (κx1, κ
2x2), (5.6)

that is, if u(x1, x2) is a solution of (5.5), then u(κx1, κ
2x2) is also a solution. Moreover,

let κ = −1, then if u(x1, x2) is a solution, so does u(−x1, x2). Suppose u(x1, x2) is
homogeneous of degree µ under the transformation (5.6).

Denote y = x2
x21

and set u(x) = xµ1v(y), plug into (5.5), one has

xµ−2
1

{
(4y2 + y + c)v′′(y) + y

[
(6− 4µ)z + θ

]
v′(y) + µ(µ− 1)v(y)

}
= 0. (5.7)

Denote (5.7) by
xµ−2

1 Qv(y) = 0,

whereQ is a second order ordinary differential operator. If v(y) is a solution ofQv(y) =
0, then u(x) = xµ1v(x2

x21
)(resp., u(x) = (−x1)µv(x2

x21
) ) defines a solution of (5.5) in the

half plane {x1 > 0} (resp. {x1 < 0}).
Take a sufficient large open subset Ω of R, Theorem B.1.7 shows that all

hyperfunction solutions v(y) of Qv(y) = 0 are real analytic functions. That is to say,
u(x1, x2) = xµ1v(y) = xµ1v(x2

x21
) is real analytic except the line x1 = 0. Moreover, along

the line x1 = 0, the operator P is elliptic if x2 > 0, according to Theorem 5.2.1, u is
real analytic on the half line {x1 = 0, x2 > 0} . Hence

WFa(u) ⊂ {((0, x2, ξ1, ξ2) ∈ T ∗R2 \ 0|x2 ≤ 0, ξ2
1 + x2ξ

2
2 = 0}.

We would like to discuss the behavior of the solution u of Pu = 0 along the half
line {x1 = 0, x2 ≤ 0}. It is equivalent to consider the behavior of the solution v(y) of
Qv(y) = 0 at −∞.

Regard Qv(y) = 0 as an equation in the complex plane, it has three regular
singular points, i.e., ∞ and −1±

√
1−16c

8
. Then by affine transformation Qv = 0 can
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CHAPTER 5 Analytic singularities in two dimensions

be transformed into the standard Euler’s hypergeometric equation 3

y(1− y)v′′(y) + [r − (p+ q + 1)y]v′(y)− pqv(y) = 0 (5.8)

with three regular singular points at 0, 1 and∞. Here

p = −µ
2
,

q =
1− µ

2
,

r = −1

2
(1− 1√

1− 16c
)µ+

θ√
1− 16c

+
3

4
(1− 1√

1− 16c
).

As showed in [22], under certain conditions with the coefficients we can construct
analytic solutions of the hypergeometric equation. The roots of indicial equation (as
know as characteristic equation) of (5.8) at∞ are µ

2
and µ−1

2
. Near the singular point

∞, choose two linear independent solutions of (5.8) analytic in a neighborhood of the
real axis and normalized so that

vk(y) = (−y)
µ−k
2 hk(

1

y
), k = 0, 1

as y → −∞, where hk(z) is an analytic function near zero such that hk(0) = 1. Define

uk(x1, x2) =

{
xµ1vk(

x2
x21

), x1 > 0

(−1)k(−x1)µvk(
x2
x21

), x1 < 0
(5.9)

for k = 0, 1, then we obtain a solution of Pu = 0 in x1 6= 0 can be written as linear
composition of

uk(x1, x2) = xk1|x2|
µ−k
2 hk(

x2
1

x2

), k = 0, 1,

near the half line {x1 = 0, x2 < 0}. Since uk is real analytic along this half line, uk is
in fact a solution of Pu = 0 in the complement of the half line {x1 = 0, x2 ≥ 0}.

Write
u = tu0 + su1, t, s ∈ R

since u is real analytic in the half line {(0, x2)|x2 > 0}, s must vanishes (otherwise u is
not real analytic there). That is, u0 is a solution ofPu = 0 onR2\{0}. Actually Lemma
5.2.2 shows that u0 are hyperfunction solutions of Pu = 0 on R2 while provided some
restrictions on µ.

To discuss the solutions of the hypergeometric equation (5.8), we need certain
conditions between the parameters p, q and r. Guillemin and Schaeffer [22] had shown
us an ample supply of solutions of (5.5) with suitable restrictions on those parameters

3 See Appendix E.
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5.3 Hyperbolic attracting case

p, q and r. In fact it is sufficient that we have c− a is an integer, where

c− a =
µ

2
√

1− 16c
+

θ√
1− 16c

+
3

4
(1− 1√

1− 16c
)

=
2µ+ 4θ − 3

4
√

1− 16c
+

3

4
.

There are infinite many µ′s to make c− a to be integer.

Choose suitable µ and let u ∈ B(R2) be an associated solution of Lu = 0, then

WFa(u) ⊂ {(0, 0, 0, ξ2)) ∈ T ∗R2 \ 0}.

For a general operator P , let F be a microdifferential operator induced a quantized
contact transformation between P and L, such that PF − FL = E, and let v = Fu.
Then Pv = Eu. (5.4b) implies WFa(Eu) is empty, soEu ∈ A(X). Finally, ifN2 does
not contain (0, 0, 0,−1), then by (5.4a)

WFa(v) ⊂ {ψ(z) : z ∈WFa(u) and z ∈ N2}

consists of the single ray.

5.3 Hyperbolic attracting case

Theorem 5.3.1. Let P be a microdifferential operator satisfies conditions in Lemma
5.1.3, then near an hyperbolic attracting/repelling radial point, there exist a
hyperfunction solution u of the equation Pu = f ∈ A(M) such that u has minimal
analytic singularity in radial direction.

Proof. Near the hyperbolic attracting (resp. repelling) radial point, we have a normal
form PNh of P :

PNh = bx1∂x1 + x2∂x2 + θ, 0 < b < 1.

The generic radial point of P is isolated implies P is microlocally of real principal type
near radial point ν0, with the direction R+ν

0 removed.

The principal symbol of PNh is

σ1(PNh) =
√
−1(bx1ξ1 + x2ξ2).

Since ∂x2 is elliptic near the radial point, we obtain the operator

PNh = bx1∂x1 + x2∂x2 + θ, 0 < b < 1.

from
bx1∂x1∂x2 + x2∂

2
x2

+ θ∂x2 , 0 < b < 1,
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CHAPTER 5 Analytic singularities in two dimensions

which indicates ξ2 6= 0, and the characteristics

Char(PNh) = {(x1, x2, ξ1, ξ2) ∈ T ∗R2 \ 0|bx1ξ1 + x2ξ2 = 0}.

The radial point ν0 = (0, 0, 0, ξ2) ( ξ2 > 0) is microlocally isolated implies that

∇ξσ
1(PNh) 6= 0 for (x1, x2, ξ1, ξ2) ∈ Char(P ) \ {R+ν

0}.

Consider the Fourier transformation of the equation Lu = f on both sides, we have
L̂u = f̂ , where

L̂u =
(
− bξ1

∂

∂ξ1

− ξ2
∂

∂ξ2

+ (θ − λ− 1)
)
û.

Denote that
−L̂ = bξ1

∂

∂ξ1

+ ξ2
∂

∂ξ2

+ β.

Here, β is a constant of value −θ + b+ 1.

At first fix a constant b ∈ (0, 1), let u ∈ Q(D2) be a slowly increasing hyperfunction
(which has been introduced by Sato [65] under the name of Fourier hyperfunctions)
whose Fourier transformation is well-defined as a slowly increasing hyperfunction,
which is given by the function

û(ξ1, ξ2) = (ξ2)−βφ(
ξ1

ξb2
)χ(ξ2),

here φ ∈ A∗ is a rapidly decreasing real analytic function, i.e., φ(t) = e−(1+tb
′
) with a

enough large even integer b′ satisfying b′(1 − b) > 1 and χ ∈ Ā is a slowly increasing
real analytic function, i.e., χ(ξ2) = −e−(ξ22+1) + 1. Moreover, we have

f̂(ξ1, ξ2) = (ξ2)−βφ(
ξ1

ξb2
)χ′(ξ2),

Notice that ξ2 6= 0 implies f̂ is an rapidly decreasing real analytic function, Proposition
C.3.7 shows f is real analytic.

By computation supp∞ û is contained in proper cones containing the directions of
(0,±1), so that

WFa(u) ⊂ {(x1, x2, 0, ξ2) : ξ2 6= 0}.

However, we have Lu ∈ A(R2) and

WFa(u) ⊂ Char(L) ∪WFa(f),

then
WFa(u) ⊂ {(x1, 0, 0, ξ2) : ξ2 6= 0},

as the principal symbol of L vanishes on WFa(u).
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5.3 Hyperbolic attracting case

We have

u(x1, x2) =

∫
R2

û(ξ1, ξ2)e
√
−1(x1ξ1+x2ξ2)dξ1dξ2

=

∫ ∞
−∞

dξ2

(
ξb−β2 χ(ξ2)e

√
−1x2ξ2

∫ ∞
−∞

φ(
ξ1

ξb2
)e

√
−1

ξ1
ξb2

·ξb2x
d(
ξ1

ξb2
)
)

=

∫ ∞
−∞

ξb−β2 χ(ξ2)φ̌(ξb2x1)e
√
−1x2ξ2dξ2,

where φ̌ is the one dimensional inverse Fourier transform of φ. According to Proposition
C.3.7, φ̌ is exponentially decreasing, for any positive ε, the above integral is analytic
for x1 restricted to the set {|x1| ≥ ε}. Thus u(x1, x2) is real analytic on {x1 6= 0}.
Moreover, the formula in the integral does not decreasing exponentially when {x1 = 0},
then

WFa(u) = {(0, 0, 0, ξ2) : ξ2 6= 0}.

In this case, we take suitable covering and write u as sum of boundary values of
holomorphic functions. Then it is easy to find another solution u′(x1, x2) such that

WFa(u
′) = {(0, 0, 0, ξ2) : ξ2 > 0}.

For instance, substitute ξ2 with ξ2 +
√
−10 in our assumption of û.

Remark 5.3.2. Let n be the dimension of X . The characteristic variety of any
DX-module is involutive. A coherent DX-module M is said to be holonomic (resp.
subholonomic) if the dimension of supp(M ) equals n (resp. n+ 1).

There are plenty of results on holonomic systems and holonomic D-modules, one
can check Kashiwara [35], [KKK] [40] and [SKK] [63] for more information. However,
if the equations (systems) are not holonomic, very few literatures can be found. For our
operator PN , the associated D-module is not holonomic, and only in two dimensional
case it is subholonomic. Actually, for n = 2, we have

dim(supp(Char(M ))) = 3,

then the associated D-module M ' D/DPN is subholonomic. There are a few results
on subholonomic D-module, i.e. [35], but here we do not plan to go further in the
direction.

Here is an interesting example involving real analytic functions of positive type for
our hyperbolic attractor case.

Example 5.3.3. For the normal form PNh with special constant coefficient b, one can
construct hyperfunction solutions that the radial direction is the only singularity for
each case.

Consider the function in Example 2.2.11 in two dimensional case, set % = −α, in
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CHAPTER 5 Analytic singularities in two dimensions

the special case of b = 1
2

, we know that

u(x1, x2) = (
√
−1x2

1 + x2 +
√
−10)%

is a hyperfunction solution of PNhu = 0 with single singularity. More specifically, it is
easy to check (1

2
x1

∂

∂x1

+ x2
∂

∂x2

+ α
)
(
√
−1x2

1 + x2 +
√
−10)−α = 0.

Furthermore we have

S. S.(u) = {((x1, x2),
√
−1(ξ1, ξ2)dx∞)|x1 = x2 = ξ1 = 0, ξ2 = 1} ∈ S∗R2.

Moreover, in the case 0 < b = p
q
< 1, p, q ∈ N, where p

q
is an irreducible fraction

and q is even, the hyperfunctions

u(x1, x2) = (
√
−1tx

q
p

1 + x2 +
√
−10)−α, t > 0, k ∈ Z,−α 6= 0, 1, 2 · · · .

are solutions of Lu = 0 with a single singularity ((0, 0),
√
−1(0, 1)dx∞).

This can be generalized to higher dimensional cases by considering these
hyperfunctions

u(x1, · · · , xn) = (
√
−1

n−1∑
i=1

x2
i + xn +

√
−10)%, % 6= 0, 1, 2, · · · ,

which is a hyperfunction solution of Lu = 0, where

L =
1

2
(x1

∂

∂x1

+ · · ·+ xn−1
∂

∂xn−1

) + xn
∂

∂xn
+ (−%).

Furthermore, u has single singularity, i.e.,

S. S.(u) = {(x,
√
−1ξdx∞)|x = 0, ξ = (0, 0, · · · , 1)}.

5.4 Hyperbolic saddle case

Near hyperbolic saddle radial point ν0 the operator P has the normal form

L = x1∂x1 − λx2∂x2 + θ, λ > 0.

By microlocal arrangement, for the equation Pu = f with f ∈ A(Rn), one can
equivalently consider the equation Lv = 0 with WFa(v) ⊂ {(x1, x2, ξ1, ξ2)|ξ2 > 0}.

In section 4.4, we have found there are precisely four projected null bicharacteristics
in the plane {η = 1} that go asymptotically to (0, 0, 0, 1), namely
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5.4 Hyperbolic saddle case

Σ1 : x1 = et, x2 = ξ1 = 0, ξ2 = 1, as t→ −∞,

Σ2 : x1 = −et, x2 = ξ1 = 0, ξ2 = 1, as t→ −∞,

Σ3 : x1 = x2 = 0, ξ1 = e−(1+λ)t, ξ2 = 1, as t→ +∞,

Σ4 : x1 = x2 = 0, ξ1 = −e−(1+λ)t, ξ2 = 1, as t→ +∞.

According to Remark 4.3.7, generally, we consider a hyperfunction solution of
Lu = 0 in the half space {x > 0} of the following form

u(x1, x2) = x−θ1 v(xλ1x2),

where v ∈ B(R).

Definition 5.4.1. A hyperfunction f(x) is said to contain x1 as a real analytic parameter
in a neighborhood of x if (x,±

√
−1dx1∞) 6∈ S. S.(f). If there is no danger of

confusion, say f is real analytic in x1 at x.

Proposition 5.4.2. Let P be a pseudo-differential operator with real analytic
coefficients of order m, and P is of real principle type, i.e., on the characteristic
set {(x, ξ) : pm(x, ξ) = 0} of P , one has ∇ξpm(x, ξ) 6= 0. Let u be solution
of Pu = f ∈ A. If (x0, ξ0) satisfies pm(x0, ξ0) and (x0, ξ0) 6∈ WFa(u), then the
bicharacteristic γ pass through (x0, ξ0) satisfies that γ ∩WFa(u) = ∅.

The generic radial point is isolated implies: microlocally the operator P is of real
principal type near the radial point, with the radial direction removed.

If u is a solution of Lu = 0, each of the four projected null bicharacteristics must
either be entirely contained in WFa(u) or else be disjoint from WFa(u).

Theorem 5.4.3. LetP be a microdifferential operator satisfies the conditions in Lemma
5.1.3.Near an hyperbolic saddle radial point, for any hyperfunction solution u of the
equation PNhu = f ∈ A(M), if {(0, 0, 0, ξ2)|ξ2 > 0} ⊂ WFa(u), then at least one of
the four projected null bicharacteristics Σi, i = 1, 2, 3, 4 must be contained in WFa(u).
That is, if all of the four curves do not intersect the singular spectrum of the solution
u, then (0, 0, 0, 1) is not in WFa(u). Moreover, if one of Σ3 and Σ4 is contained in
WFa(u), so is the other.

Proof. We will prove it by contradiction. Assume none of four projected null
bicharacteristics intersect with WFa(u). Taking a suitable conic neighborhood of
the radial direction {(0, 0, 0, ξ2), ξ2 > 0}, and by assumption that Σ1 does not meet
WFa(u), we have

{(x1, 0, 0,±1) : x1 > 0} * WFa(u),

that is u contain x2 as a real analytic parameter in a neighborhood of {(x1, 0)|x1 > 0}.
Moreover, since ϕ : (x1, x2) 7→ (x′1, x

′
2) = (x1, x

λ
1x2) is a real analytic coordinate

transformation in the half space {x1 > 0}, then

ϕ∗(WFa(u)) = WFa(ϕ
∗u).
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CHAPTER 5 Analytic singularities in two dimensions

Hence u is real analytic in x′2 near {(x1, 0) : x1 > 0}. That is to say v is a real analytic
function near zero. Then

u(x1, x2) = x−θ1 v(xλ1x2)

defines a hyperfunction u+ supported on x1 ≥ 0 such that u−u+ = 0 on the half space
{x1 > 0}, i.e. u+(x1, x2) = x−θ1+v+(xλ1+x2). Similarly, near {(x1, 0) : x1 < 0}, one can
find a hyperfunction u− ∈ B(R2) supported on {x1 ≤ 0} such that u − u− = 0 on
{x1 < 0}.

Consider a decomposition u = u+ + u−+ u0, where the hyperfunctions u+, u− and
u0 are supported on the set {x1 ≥ 0}, {x1 ≤ 0} and {x1 = 0} respectively. Moreover,
we have WFa(u+) ⊂ {x1 = 0}, WFa(u−) ⊂ {x1 = 0} and WFa(u0) ⊂ {x1 = 0}.

Now we want to show the radial direction {(0, 0, 0, ξ2), ξ2 > 0} does not belong to
the singular spectrum of any of the above terms.

According to our discussion, u(x) contains x2 as a real analytic parameter in a
neighborhood of {(x1, 0)|x1 6= 0}. From the above construction we have

{(0, 0, 0, ξ2)|ξ2 > 0} * WFa(u+),

and
{(0, 0, 0, ξ2)|ξ2 > 0} * WFa(u−).

Moreover, WFa(u)∩Σk = ∅ for k = 3 and 4. That is to say u contain x1 and x2 as real
analytic parameters near (0, 0), and hence

{(0, 0, 0, ξ2)|ξ2 > 0} * WFa(u0),

contradiction.
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Chapter 6

Analytic singularities in higher
dimensions

In Chapter 5 we have studied the analytic singularities for two dimensional case
completely, the higher dimensional cases are much more complicate. Let us have a
look at three dimensional case first, take local coordinates x = (x′, x3) = (x1, x2, x3),
at first the normal form can be written as

PN = 〈ADx′ , Dx′〉+ 〈Bx′, Dx′〉Dx3 + 〈Cx′, x′〉D2
x3

+ γx3D
2
x3

+ θDx3 . (6.1)

Here A, B, C are constant 2 × 2 matrices, A and C are symmetric, γ ∈ R \ {0} and
θ ∈ C.

The radial point of PN is (0, 0, 0; 0, 0, 1) ∈ S∗R3.

The matrix (3.2) indicates that the linear part of the related contact vector field V to
PN in three dimensional case is of the form γ 0 · · · 0

0
γ
2I + A

...
0


where A is a 4× 4 symplectic matrix of the the following form

−b11 + γ
2

−b12 −2c11 −2c12

−b21 −b22 + γ
2
−2c21 −2c22

2a11 2a12 b11 − γ
2

b12

2a21 2a22 b21 b22 − γ
2


with respect to the symplectic basis

∂

∂ξ1
,
∂

∂ξ2
,
∂

∂x1
,
∂

∂x2
.



CHAPTER 6 Analytic singularities in higher dimensions

According to the previous analysis in section 3.3, the eigenvalues of the symplectic
matrix A will be of the follow cases:

(a) Hyperbolic
attracting/repelling

(b) Hyperbolic
non-attracting/non-repelling

(c) Hyperbolic
non-attracting/non-repelling

(d) Loxodromic
attracting/repelling

(e) Loxodromic
non-attracting/non-repelling

(f) Elliptic
attracting/repelling

(g) Mixed type
attracting/repelling

(h) Mixed type
non-attracting/non-repelling

Figure 6-1: Classification of eigenvalues of A for 3D
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6.1 Attracting case

(i) (6-1a), (6-1b) and (6-1c). A is hyperbolic and the eigenvalues are only of type (i),
i.e., four real numbers, λ1, λ2 = −λ1, λ3, λ4 = −λ3.

(ii) (6-1d) and (6-1e). A is loxodromic and the eigenvalues are only of type (iii), i.e.,
four complex eigenvalues but not pure imaginary, λ1, λ2 = −λ1, λ3 = λ̄1, λ4 =
−λ̄1.

(iii) (6-1f). A is elliptic and the eigenvalues are only of type (ii), i.e., four pure
imaginary eigenvalues, λ1, λ2 = λ̄1 = −λ1, λ3, λ4 = λ̄3 = −λ3.

(iv) (6-1g) and (6-1h). A is of mixed type and the eigenvalues are of mixed type
(i) and type (iii), i.e., two real and two pure imaginary eigenvalues, λ1, λ2 =
−λ1, λ3, λ4 = λ̄3 = −λ3. The radial point is neither hyperbolic nor elliptic, i.e.,
of mixed type.

More specifically, consider the relation between the four eigenvalues and the values
of γ

2
, we have eight cases as showed in Figure 6-1, the dots represent the possible

eigenvalues of A, and the (dotted) vertical lines in the pictures represent the possible
values of γ

2
.

More specifically, in the four cases,(6-1a), (6-1d), (6-1f) and (6-1g), the eigenvalues
related to the linear part γ

2
I+A of the vector field are in common that, they convex hull

of the four eigenvalues does not contain zero. That is, the eigenvalues are of Poincaré
type, and the eigenvalues of the left four cases (6-1b), (6-1c), (6-1e) and (6-1h) are of
Siegel type. Actually, according to Definition 5.1.1, the radial point is attracting (or
repelling) in four cases (6-1a), (6-1d), (6-1f) and (6-1g), and in the left four cases, the
radial point is neither attracting nor repelling.

6.1 Attracting case

Theorem 6.1.1. Let (x0, ξ0) be a generic radial point which is either attracting or
repelling. Then there exist a hyperfunction u such that Pu is real analytic and WFa(u)
just consists of the minimal singularity, i.e., the radial direction.

We will prove the theorem in three cases respectively, i.e., the radial point (x0, ξ0)
is elliptic, hyperbolic and of mixed type.

6.1.1 Elliptic attracting case

Take local coordinates x = (y1, · · · , yn−1, t), in the elliptic case, one has the normal
form {∑

i<n

±(− ∂2

∂y2
i

− ciy2
i

∂2

∂t2
)
}

+ γt
∂2

∂t2
+ θ

∂

∂t

with ci > γ2

16
for i = 1, 2, · · · , n−1. Here x = (y, t) and denote the dual ξ = (η, τ). Let

F be the operator of partial Fourier transformation in the t variable. Let P F = FPF−1,
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CHAPTER 6 Analytic singularities in higher dimensions

then

P F =
∑
i<n

±(− ∂2

∂y2
i

+ ciy
2
i τ

2) +
√
−1γτ 2 ∂

∂τ
+
√
−1(θ + 2)τ.

We will look for solutions of the equation P Fu = 0 where

u(τ, y) = f(τ, y
√
τ)

and f(τ, y) is zero for τ < 0, is homogeneous of degree α in τ for τ > 0 and for fixed
τ > 0 is an exponential decay real analytic function in y. Plugging into one has

P Ff(τ, y
√
τ) = τ

{∑
i<n

±(−∂
2f

∂y2
i

+ ciy
2
i f) +

√
−1

2
γ
∑
i<n

yi
∂f

∂yi

+
√
−1(θ + γα + 2)f

}
(τ, y
√
τ).

Taking f = e
√
−1Q(y)g where Q(y) is the quadratic form

Q(y) =
γ

8
(±y2

1 ± y2
2 ± · · · ± y2

n−1),

take suitable sign of yi such that P Fu = 0 is equivalent to

P Ff = e
√
−1Q(y)

(∑
i<n

±
(
− ∂2g

∂y2
i

+ (ci −
γ2

16
)y2
i g
)

+
√
−1θ′g

)
= 0

where θ′ = θ + γα + sgnQ
4
− 2.

Since ci > γ2

16
, the operator on the left hand side is the Schrödinger operator for a

string of uncoupled harmonic oscillators. Its eigenfunctions are products of Hermite
functions 1 and hence lie in A∗(Rn−1).

Therefore for a countable number of θ′ (θ′ totally imaginary) there exists a
exponential decreasing real analytic function h(y) such that such replacement of g with
h is satisfied.

Define
f(τ, y) = eiQ(y)τα+h(y),

where α is determined by θ′.

Go back to PNeu = 0, by construction,

u(x) =

∫
f(τ, y

√
τ)eitτdτ

is a well-defined hyperfunction solution.

1 See F.
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6.1 Attracting case

Lemma 6.1.2. We have

S. S. u(x) =
(
(0, 0),

√
−1(0, τ)dx∞

)
.

Proof. Notice that u(x) = u(y, t) contained y as a real analytic parameter, then

S. S.(u) ⊂ {(y, t,
√
−1(0, τ)dx∞)}.

Moreover, S. S.(u) is contained in Char(PNe), we have

{
∑
i<n

±(η2
i + ciy

2
i τ

2)}+ γtτ = 0

We have h(y
√
t) is exponential decreasing in y (resp., t) for t 6= 0 (resp., y 6= 0).

That is for y 6= 0, τ > 0, f(τ, y
√
τ) is in A∗ for both parameter y and τ . According to

Proposition C.3.7, the partial Fourier transformation acting on t is an isomorphism of
A∗, u(y, t) is exponential decreasing for y 6= 0 and t 6= 0. And for (y, t) = (0, t), we
have u(y, t) is not real analytic at (0, 0).

That is to say
S. S.(u(y, t)) = {(0, 0),

√
−1(0, τ)dx∞}.

6.1.2 Hyperbolic attracting case

Consider the normal form

P = PNh =
∑
i,j<n

bijyi
∂

∂yj
+ t

∂

∂t
+ θ,

which has a radial point at (0; 0′, 1) ∈ S∗Rn. Let B = (bij) and λ1, · · · , λn−1 be the
eigenvalues ofB. Assume all the eigenvalues are real and we can write the normal form
as

PNh =
∑
i<n

λiyi
∂

∂yi
+ t

∂

∂t
+ θ,

Lemma 6.1.3. The radial point (0; 0′, 1) is attracting (resp. repelling) if and only if

0 < Reλk < 1, for any k = 1, · · · , n− 1. (6.2)

Let F be the Fourier transformation and let P F = FPF−1, i.e.,

P F =
∑

λiηi
∂

∂ηi
+ τ

∂

∂τ
+ θ′,

where θ′ = traceB + θ + 1.
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CHAPTER 6 Analytic singularities in higher dimensions

Theorem 6.1.4. (Minimal singularities) In n dimensional hyperbolic attracting case,
near a generic radial point there is a hyperfunction solution v of the equation

Pv = 0

contains the radial direction as the only analytic singularity.

Proof. Under the above discussion, we can reduce the initial problem

P Ff = 0, f(1, η) = f0(η)

to the form
τ
∂

∂τ
f +

∑
i<n

λiηi
∂

∂ηi
f = kf, f(1, η) = f0(η),

where 0 < λi < 1 and f0(η) ∈ A∗(Rn−1) is an exponential decay real analytic function.
For instance, assume max{λi} = λ0, and take a large enough even integer λ′0 satisfying
λ′0(1− λ0) > 1, and we can set f0(η) = e−(1+ηλ

′
0 ).

Consider the integral curve of the vector field τ ∂
∂τ

+
∑

i<n λiηi
∂
∂ηi

with suitable
parameters, we have the formula

f(τ, η1, · · · , ηn−1) = τ kf0(η1τ
−λ1 , · · · , ηn−1τ

−λn−1).

Let ρ(τ) ∈ Ā be a slowly increasing real analytic function, i.e. e−(1+τ2) + 1, and set

g(η, τ) = ρ(τ)f(τ, η).

Let
v(y, t) =

∫
g(τ, η)ei(tτ+yη)dτdη,

then Pv is the inverse Fourier transformation of P Fg. We have P Fg ∈ A∗, so Pv is
real analytic.

By computation supp∞ v̂ is contained in proper cones containing the direction of
(0,±1), so that

WFa(v) ⊂ {(y, t, 0, τ) : τ 6= 0}.

However, we have Pu ∈ A(Rn) and

WFa(v) ⊂ Char(P ) ∪WFa(f),

then
WFa(v) ⊂ {(y, 0, 0, τ) : τ 6= 0},

as the principal symbol of P must vanish on WFa(v).
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6.1 Attracting case

We observe that

v(y, t) =

∫
Rn
g(η, τ)e

√
−1(yη+tτ)dηdτ

=

∫ ∞
−∞

dτ
(
τ kρ(τ)e

√
−1tτ

∫
Rn−1

f0(η1τ
−λ1 , · · · , ηn−1τ

−λn−1)e
√
−1yηd(η)

)
=

∫ ∞
−∞

τ k−
∑
i=1 λiρ(τ)f̌0(τλ1y1, · · · , τλn−1yn−1)e

√
−1tτdτ,

where f̌0 is the inverse Fourier transform of f0. According to Proposition C.3.7, φ̌ is
exponentially decreasing, for any positive ε, the above integral is analytic for y restricted
to the set {|y| ≥ ε}. Thus v(y, t) is real analytic on {y 6= 0}. Moreover, the formula in
the integral does not decreasing exponentially when {y = 0}, then

WFa(v) = {(0, 0; 0, τ)|τ 6= 0}.

In this case, we take suitable covering and write v as sum of boundary values of
holomorphic functions. Then it is easy to find another solution v′(y, t) such that

WFa(v
′) = {(0, 0; 0, τ)|τ > 0}.

6.1.3 Mixed type attracting case

Break the normal form into two parts, one is elliptic and another is hyperbolic attracting,
we have

P =
n−r−1∑
i=1

±(− ∂2

∂y2
i

− y2
i ci

∂2

∂t2
) +

r∑
j,k=1

bjkzj
∂

∂zk

∂

∂t
+ t

∂2

∂t2
+ θ

∂

∂t
,

where ci > 1
16

. Here x = (y, z, t) and its dual variables are ξ = (η, ζ, τ). Assume
λ1, · · · , λr be the eigenvalues of the matrix (bjk), and satisfy the generical condition
in Definition 4.2.4. Moreover, the attracting (resp. repelling) condition indicates that
Reλj ∈ (0, 1) for 1 ≤ j ≤ r.

Assume the eigenvalues λi’s are real and choose suitable coordinates of z such that
bij = λiδij . Let F be the Fourier transformation. Then pF = FPF−1 has the following
form ∑

i

±
(
− ciτ 2 ∂

2

∂η2
i

+ η2
i

)
+
√
−1τ

(∑
j

λjζj
∂

∂ζj
+ τ

∂

∂τ
+ θ′

)
, (6.3)

where θ′ = θ + 2. We look for a solution v of P Fv = 0 of the form

v(η, ζ, τ) = ταf(ητ−1/2)g(ζ1τ
−λ1 , · · · , ζrτ−λr), (6.4)
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CHAPTER 6 Analytic singularities in higher dimensions

for τ > 0, where f is a exponentially decay real analytic function in the η variable and
g a exponentially decay function in the ζ variables. Plug (6.4) into (6.3), we have the
formula

τα+1
(∑

±
[
− ci

∂2f

∂η2
i

+ η2
i f ±

1

2

√
−1ηi

∂f

∂ηi

]
g +
√
−1(θ′ + α)fg

)
(6.5)

takes value at (ητ−1/2, ζ1τ
−λ1 , · · · , ζrτ−λr , τ).

Similar as the technique in section 6.1.1, we can transform the operator in square
brackets to be Schrödinger operator for a string of uncoupled oscillators by taking

Q(η) =
1

8

∑
i

±η2
i .

Then we can find a countable number of exponentially decay eigenfunctions f ∈ A∗.
Choose f to be such an eigenfunction and choose g to be a suitable exponentially decay
real analytic function in ζ variables. Finally choose α to let (6.5) vanishes identically.

Set
ψ(ξ) = ψ(η, ζ, τ) = ρ(τ)v(η, ζ, τ),

where ρ(τ) ∈ A∗(R). By choosing suitable ρ(τ) we can make sure that supp∞ ψ̂ is
contained in any open proper cone containing the direction of τ axis. Let

u =

∫
ψ(ξ)e

√
−1xξdξ,

and then
Pu =

∫
(P Fψ)(ξ)e

√
−1xξdξ. (6.6)

The integrand in (6.6) is in the space ofA∗ soPu is real analytic. By direct computation,
we conclude that the analytic wave front set of u has minimal singularities, which is
concentrated in the radial direction, i.e., {(y, z, t; η, ζ, τ) = (0, 0, 0; 0, 0, τ)|τ > 0}.

6.2 Non-attracting case

In this section, we are going to discuss the analytic singularities where the radial point
is neither attractor nor repellent. In non-attracting cases, one can define, invariantly,
two submanifolds of S∗Rn, namely the attractor and the repellent submanifolds, which
we call stable and unstable manifolds associated with the non-attractor radial point, and
denote by Γ1 and Γ2 respectively.

In local coordinates the dimensions of stable and unstable manifolds are determined
by the number of eigenvalues of the symplectic matrix γ

2
I+Awith negative and positive

real part, respectively.
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6.2 Non-attracting case

Suppose the stable and unstable manifolds has following form in local coordinates

Γ1 = {(x, 0)|x = (x1, · · · , xk1) 6= 0}

and
Γ2 = {(0, y)|y = (yk1+1, · · · , y2n−2) 6= 0}

for some k.

Theorem 6.2.1. ([18]) Let Ω be a closed subset of S∗Rn so that z0 = {(0; 0, 1)} ∈
S∗Rn is not an isolated point in Ω. If Ω is invariant under the projected bicharacteristics
in an open neighborhood of z0, then

Ω ∩ Γ1 6= ∅ or Ω ∩ Γ2 6= ∅.

Proof. If the behavior of the flow were described by
xkyk = ci, 1 ≤ k ≤ k1

yk(t)→∞ as t→ +∞, k1 < k ≤ 2n− 2

yk(t)→ 0 as t→ −∞, k1 < k ≤ 2n− 2

then we define

(i) (x, y) ∈ Region I if xk > yk for 1 ≤ k ≤ k1 and yk = 0 for k > k1,

(ii) (x, y) ∈ Region II if (x, y) 6∈ Region I.

Consider a convergent sequence {tj} in a neighborhood of z0 in Ω, such that tj → z0

as k →∞. Therefore there are at least one infinity subsequence {tki} belongs to Region
I or Region II. Assume it belongs to Region II. Since Ω is invariant under the projected
bicharacteristics in an open neighborhood of z0, the flowing out of the subsequence
{ski} is in the interior of Region II, we have ski → s and s ∈ Σ2. Ω is closed then
s ∈ Ω, that is s ∈ Ω ∩ Σ2. Similarly we have Ω ∩ Σ1 6= ∅ if {tki} belongs to Region I.

Remark 6.2.2. In two dimensional hyperbolic saddle case, the radial point is not an
isolated point in the analytic wavefront set.

6.2.1 Hyperbolic non-attracting case

In this case, the real part of the eigenvalues of A are non-zero. Suppose near the radial
point we have the normal form

L =
∑

1≤i,j≤n−1

bijxi
∂

∂xj
+ xn

∂

∂xn
+ θ,

and consider the equation Lu = f for f ∈ Rn.
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CHAPTER 6 Analytic singularities in higher dimensions

Theorem 6.2.3. Let u ∈ B(Rn) such that (0; 0, 1) ∈WFa(u), then

WFa(u) ∩ Γ1 6= ∅ or WFa(u) ∩ Γ2 6= ∅,

where Γ1 and Γ2 are the stable and unstable manifolds.

Here we only discuss the case that all the eigenvalues are real, the general case can
be discussed later.

Assume

L =
n−1∑
i=1

λixi
∂

∂xi
+ xn

∂

∂xn
+ θ,

where λi ∈ R for i = 1, · · · , n− 1 and θ ∈ C.

Moreover, we have the following generic assumption

(A1) The equation
n−1∑
i=1

tiλi + tn =
t

2

admits no integer solution (t1, · · · , tn−1, tn) ∈ Zn with t 6= 0.

(A2) The non-attractor conditions says that there exists some jk, 0 ≤ jk ≤ n − 1
such that λjk < 0 or λjk > 1. We have studied the analytic singularities of solution
in the case n = 2 in the previous section. Here we assume that n ≥ 3 and suppose
jk ≥ 2 by relabeling the variables. Moreover, we assume there is only one eigenvalue
λjk satisfies the non-attractor condition.

By the Theorem 6.2.1, the aim Theorem 6.2.3 does not hold only if the radial point
(0; 0′, 1) is an isolated point in the singular spectrum S. S.(u).

Our strategy of the proof is the following:

(i) we first prove that we can assume that u satisfies some regularity conditions,

(ii) secondly we prove that there exists a hyperfunction and a differential operator
satisfies the assumptions of the theorem and similar conditions to (A1) and (A2) in
(n− 1) dimensional case.

We use the induction method to prove it. The main idea is: assume in n dimensional
case, the radial direction is isolated in the analytic wavefront set for some solution, then
one can find solution of (n − 1) dimensional case with the radial direction isolated in
the analytic wavefront set. By induction, one can find solution to let the radial direction
be isolated in two dimensional case near hyperbolic saddle radial point, contradiction.

Lemma 6.2.4. There exists an elliptic microdifferential operatorP near the radial point
(0; 0′, 1) such that

u1 = Pu,

WFa(u1) ⊂ {(0; 0′, ξn)|ξn > 0},

û1,
∂2

∂ξ2
1

û1 ∈ Q(Dn) ∩ L2(Rn).
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6.2 Non-attracting case

and
(L−N)u1 ∈ A(Rn)

for some positive integer N . 2.

Proof. Since the radial direction is isolated in S. S.(u), for elliptic P near radial point,
one has S. S.(u1) = S. S.(u), we can choose suitable elliptic microdifferential operator
P cut off the conic neighborhood of the radial direction. Moreover, since the radial
direction does not stay in WFa(Lu), in a conic neighborhood of the radial direction we
have (L−N)u1 is real analytic.

Taking v0 = u1 ∗ u]1 and v1 = (x2
1u1) ∗ (x2

1u1)], where ∗ is the convolution product
and w](x) = w(−x) for w ∈ B(Rn). The convolution products are well defined. We
have the restriction of hyperfunctions

w0 = v0|x1=0 and w1 = v1|x1=0.

The restrictions are well defined because of our hypothesis on WFa(u1).

Theorem 6.2.5. The following statements are equivalent:

(a) {(0; 0′, ξn)|ξn > 0} ⊂WFa(u1),

(b) {(0; 0′, ξn)|ξn > 0} ⊂WFa(v0),

(c) {(0′; 0′′, ξn)|ξn > 0} ⊂WFa(w0) or {(0′; 0′′, ξn)|ξn > 0} ⊂WFa(w1), where 0′

and 0′′ are the origin in Rn−1 and in Rn−2 respectively. Moreover,

Lkwk ∈ A(Rn−1), k = 0, 1,

where
Lk = λ2x2

∂

∂x2

+ · · ·+ xn
∂

∂xn
+ θk,

and θk = −(2N + 1)−
∑n−1

j=2 λj + (−2k + 1)λ1 + 2Re θ.

Proof. (a⇐⇒ b) From definition we have

v̂0(ξ) = |û1(ξ)|2, v̂1(ξ) = | ∂
2

∂ξ2
1

û1(ξ)|2, (6.7)

and u1 ∈ Q(D) and WFa(u1) ⊂ {(0; 0′, t)|t > 0}, then

WFa(u
]
1) = {(−x, ξ)|(x, ξ) ∈WFa(u)}, (6.8)

2 Such shift of N comes from the Fourier transformation, as one can see from the proof of Theorem
5.3.1. L′ and L are differential normal forms, PL′ − LP = E for some elliptic operators P and E, as
we see from the end of section 5.1, and here L′ is another normal form and which is actually a shift of L
by some positive integer N .
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CHAPTER 6 Analytic singularities in higher dimensions

and
WFa(v0) ⊂ {(x+ y; ξ)|(x; ξ) ∈WFa(u1), (y; ξ) ∈WFa(u

]
1)}. (6.9)

(6.7) implies supp∞ û1(ξ)| and supp∞ v̂0(ξ) belong to the same conic neighborhood,
by considering (6.8), (6.9) and Theorem C.5.8, our conclusion holds.

(c=⇒ b) Apply Definition 2.4.3 and Theorem 2.4.4 to our restriction, one can
check that M = Rn, N = Rn−1 and S. S.(v0) = (0; 0′, 1). To satisfy the condition
S. S.(v0) ∩

√
−1S∗NM = ∅, we need

{(0, x′; ξ1, 0
′)|ξ1 6= 0} ∩ S. S.(v0) = ∅,

which is true under our hypothesis on the singular spectrum of v0, the restriction is well
defined.

That is, w0 = v0|x1=0 exists as an element of B(Rn−1) and

WFa(w0) ⊂
{

(x′; ξ′)| ∃ ξ1, such that (0, x′; ξ1, ξ
′) ⊂ S. S.(v0)

}
for v0 ∈ B(Rn).

We also can use FBI transformation to proof it directly.

supThv0(x1, x
′, ξ1, ξ

′) ≥ supThv0(0, x′, 0, ξ′)

& supThw0(x′, ξ′),

here & means the inequality is true up to some constant scaling.

(a=⇒ c) We have

|û1(tξ1, tξ
′)|

≤
∣∣∣ ∫ e−

√
−1x1tξ1

1 + x2
1

∫
e
√
−1〈x′,tξ′〉u1(x1, x

′)dx′
∣∣∣

+
∣∣∣ ∫ x2

1e
−
√
−1x1tξ1

1 + x2
1

∫
e
√
−1〈x′,tξ′〉u1(x1, x

′)dx′
∣∣∣

≤
(∫ dx1

(1 + x2
1)2

) 1
2
{∣∣∣ ∫ |û1(ξ1, tξ2, · · · , tξn)|2dξ1

∣∣∣ 12
+
∣∣∣ ∫ |( ∂2

∂ξ2
1

û1)(ξ1, tξ2, · · · , tξn)|2dξ1

∣∣∣ 12}.
Then we have

|û1(tξ)| ≤ C
(
|ŵ0(tξ′)|

1
2 + |ŵ1(tξ′)|

1
2

)
(6.10)

for t � 0, some constant C and for any ξ′. That is, if supp∞ û1(x, tξ) is contained
in a conic neighborhood of (0, 1), then at least one of supp∞ ŵi(x

′, tξ′), i = 0, 1 is
contained in a conic neighborhood of (0′, 1). Apply Theorem C.5.8, we have finished
to prove this step.
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6.2 Non-attracting case

Moreover, using inverse Fourier transformation, similar as the method in section
5.3 of computing the value of β, we can use (inverse) Fourier transform to find θk.
Furthermore, it is easy to check w0 and w1 satisfy the equations in the theorem.

Remark 6.2.6. Notice that we have only proved the case there is one eigenvalue
violating the attractor/repellent condition (6.2). If there are more eigenvalues violating
(6.2), the conclusion is still true but the proof are much more complicate. In such
situation, when we use the induction method, we do not have a proved base case as in
two dimensional case. However, we can always use similar method as in section 5.4 to
prove the base case first.

6.2.2 Mixed type non-attracting case

Here we will prove the case n = 3, and by using the induction method we can prove
the mixed type non-attracting case with one eigenvalue violating the attractor/repellent
condition (6.2). Consider the normal form:

L =
∂2

∂x2
1

+ b1x
2
1

∂2

∂x2
3

+ λx2
∂2

∂x2∂x3

+ x3
∂2

∂x2
3

+ θ
∂

∂x3

(6.11)

there is no integers (t1, t2, t3, t) such that

t1 + t2λ+ t3 =
t

2

for t 6= 0.

Theorem 6.2.7. Let u ∈ Q(D3) such that {(0; 0′, ξ3)|ξ3 > 0} ⊂WFa(u), then

WFa(u) ∩ Γ1 6= ∅ or WFa(u) ∩ Γ2 6= ∅.

Proof. The proof is similar to the proof of Theorem 6.2.3. First we construct u1 = Pu
for an elliptic microdifferential operator P , such that

WFa(u1) ⊂ {(0; 0′, ξ3)|ξ3 > 0},

û1,
∂2

∂ξ2
1

û1 ∈ Q(D3) ∩ L2(R3),

(L−N)u1 ∈ A∗(Rn),

and
supp û1 ⊂ {ξ3 > 1, ‖ξ′‖ ≤ εξ3}.

Theorem 6.2.8. Let u1 ∈ Q(D3) ∩ L2(R3) be a slowly increasing hyperfunction, and
let v0, v1, w0, w1 be defined similarly as in section 6.2.1, then The following statements
are equivalent:

(a) {(0; 0′, ξ3)|ξ3 > 0} ⊂WFa(u1),
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CHAPTER 6 Analytic singularities in higher dimensions

(b) {(0; 0′, ξ3)|ξ3 > 0} ⊂WFa(v0),

(c) {(0′; 0′′, ξ3)|ξ3 > 0} ⊂ WFa(w0) or {(0′; 0′′, ξn)|ξn > 0} ⊂ WFa(w1), where 0′

and 0′′ are the origin in R2 and in R respectively. Moreover,

L1(
∂

∂x3

w0) ∈ A(Rn−1),

where
L1 = λx2

∂

∂x2

+ x3
∂

∂x3

+ 2(Re θ − 1

4
− 2).

Proof. The proof is almost the same as the proof of Theorem 6.2.5.

Remark 6.2.9. Notice that we have not proved w1 satisfies some differential equation.
Actually if (0′; 0′′, 1) 6∈ WFa(w0) and u1 solves Lu1 = f1, then we have (0′; 0′′, 1) 6∈
WFa(w1).

More specially, consider the operator L in (6.11), and by taking Fourier
transformation in both sides of Lu1 = f1 for some f1 ∈ A∗, we have

L̂u1 =
[
− ξ2

1 − 2
√
−1ξ3 −

√
−1ξ2

3

∂

∂ξ3

+ b1ξ
2
3

∂2

∂ξ2
1

+
√
−1(θ − λ)ξ3 −

√
−1λξ3ξ2

∂

∂x2

]
û1 = f̂1.

Multiplying it by û1(ξ) and integrating in ξ1, we have[ ∫
|ξ1û1(ξ)|2dξ1 + ξ2

3

∫
| ∂
∂ξ1

û1|2dξ1

]
≤ (|θ − λ|+ 2)|ξ3|

∫
|û1|2(ξ)dξ1 + |λ||ξ2||ξ3|(

∫
| ∂
∂ξ2

û1|2dξ1)
1
2 (

∫
|û1|2(ξ)dξ1)

1
2

+ ξ2
3(

∫
|∂û1

∂ξ3

|2dξ1)
1
2 (

∫
|û1|2(ξ)dξ1)

1
2 + (

∫
|f̂1|2(ξ)dξ1)

1
2 (

∫
|û1|2(ξ)dξ1)

1
2 .

Then if
∫
| ∂m
∂ξmj

û1(ξ)|2dξ1 are exponentially decreasing for |(ξ2, ξ3)| → ∞ for j = 2, 3

and m = 0, 1, we have
∫
|∂û1
∂ξ1
|2dξ1 is exponentially decreasing as |(ξ2, ξ3)| → ∞.

Notice that x̂ju1 = 1√
−1
∂ξj û1.

6.3 Solutions with prescribed singularities

Consider the operator

L =
n−1∑
λ=1

λixi
∂

∂xi
+ xn

∂

∂xn
+ θ,
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6.3 Solutions with prescribed singularities

suppose λ1 < 0 and λi > 0 for 2 < i ≤ n− 1. Write

L1 =
L

λ1

= x1
∂

∂x1

−
n−1∑
i=1

µixi+1
∂

∂xi+1

+ θ1, (6.12)

where
µi = −λi+1

λ1

for 1 < i ≤ n− 2,

µn−1 = − 1

λ1

and θ1 =
θ

λ1

.

We have µi > 0 for 1 ≤ n ≤ n− 1.

Proposition 6.3.1. Let L1 be as before and let u ∈ B(Rn) such that L1u = 0 and
WFa(u) ⊂ {(x, ξ)|x1 = 0}, then there is a decomposition

u = u0 + u+ + u−, u0, u+, u− ∈ B(Rn)

such that
suppu0 ⊂ {x|x1 = 0}

suppu+ ⊂ {x|x1 ≥ 0}

suppu− ⊂ {x|x1 ≤ 0}

L1u0 = L1u+ = L1u− = 0.

and (0; 0′, 1) 6∈WFa(u+) ∪WFa(u−).

Proof. By the assumption on S. S.(u), the restrictions

v = u|x1=1 and v′ = u|x1=−1

exist, and define two real analytic functions. Consider the Cauchy problem of
integrating v and v′ along the bicharacteristics ofL1, Cauchy-Kovalevsky theorem gives
the uniqueness of solution, we have

u(x1, · · · , xn) = x−θ11 v(xµ11 x2, · · · , xµn−1

1 xn) for x1 > 0

and
u(x1, · · · , xn) = x−θ11 v′(xµ11 x2, · · · , xµn−1

1 xn) for x1 < 0.

we can define the hyperfunction u+ and u− as

u+(x1, · · · , xn) = x−θ11+ v+(xµ11+x2, · · · , xµn−1

1+ xn) for x1 > 0

and
u−(x1, · · · , xn) = x−θ11− v

′
−(xµ11−x2, · · · , xµn−1

1− xn) for x1 < 0.

We have suppu+ ⊂ {x1 ≥ 0}, suppu− ⊂ {x1 ≤ 0} and set u0 = u− u+ − u−, then
we have suppu0 ⊂ {x1 = 0} and Lu+ = Lu− = Lu0 = 0. Similar as in section 5.4,
the condition on singular spectrum holds due to our assumption on WFa(u).
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CHAPTER 6 Analytic singularities in higher dimensions

Proposition 6.3.2. Let f ∈ B(Rn) such that supp f ⊂ {x|x1 = 0}, then for each
x0 ∈ supp f , there is an open neighborhood Ω of x0, such that

f =
∞∑
j=0

∂j

∂xj1
fj on Ω,

where fj ∈ B(Ω) are uniquely determined with 〈fj, φ〉 = 〈fj, φ(0, •′)〉, φ ∈ A(Ω).

Remark 6.3.3. Notice that B∗(Ω) can be regarded as the dual space ofA(Ω). Moreover,
in the case of a distribution f ∈ D ′(Rn) the sum is finite, and the test function space
is D instead of A. In fact, a hyperfunction supported in {x1 = 0} can be written as
f =

(∑∞
j=0 cjδ

(j)(x1)
)
⊗ f(x′), where

lim sup
j→∞

j

√
j!|cj| = 0 for cj ∈ C.

Apply the proposition to u0, we have

L1u0 = L1(
∞∑
j=0

∂j

∂xj1
fj) = 0

then
∞∑
j=0

∂j

∂xj1

∣∣∣(− n−1∑
i=1

µixi+1
∂

∂xi+1

+ (θ − j − 1)
)
fj

∣∣∣ = 0.

Fix an arbitrary function φ, then fj is determined, we have

(
−

n−1∑
i=1

µixi+1
∂

∂xi+1

+ (θ − j − 1)
)
fj = 0,∀j.

If {(0; 0′, ξn)|ξn > 0} ⊂ WFa(u0), then there is j0 ≥ 0, such that {(0; 0′, ξn)|ξn >
0} ⊂ WFa(fj0). Choose the larger j0 satisfying the condition. Near (0; 0′, 1), since
xj01 u0 =

∑∞
j=j0

(−1)j0j0! ∂
j−j0

∂x
j−j0
1

fj , we have

WFa(fj0) = WFa(x
j0
1 u0) ⊂WFa(u0),

Identify fj0 as a hyperfunction on Rn−1. Let L1 be as in Proposition 6.3.1, suppose
also

µi > µn−1 for some i, 1 ≤ i ≤ n− 2, (6.13)

we have

Proposition 6.3.4. Let u be as in Proposition 6.3.1 such that {(0; 0′, ξn)|ξn > 0} ⊂
WFa(u). Then

WFa(u) ∩ Γ2 ∩ ι∗(T ∗Rn−1) 6= ∅,
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6.3 Solutions with prescribed singularities

where Γ2 is unstable manifold and ι∗ is the push forward of

ι :Rn−1 → Rn

x′ → (0, x′).

For instance, if {(x′; ξ′′, ξn)|ξn > 0} ⊂WFa(fj0) near {(0′; 0′′, ξn)|ξn > 0}, then

{(0′; 0′′, ξn)|ξn > 0} ⊂WFa(fj0) and {(0, 0′; 0, ξ′′, ξn)|ξn > 0} ⊂WFa(u).

Remark 6.3.5. In Propositions 6.3.2 and 6.3.4 we construct solutions u with WFa(u)∩
Γ1 6= ∅, and give an estimate of analytic singularities on unstable manifold Γ2.

In three dimensional hyperbolic case

L = λ1x1
∂

∂x1

+ λ2x2
∂

∂x2

+ x3
∂

∂x3

+ θ,

to satisfy the condition in Proposition 6.3.4, we need λ1, λ2 6∈ [0, 1].

According to Table 4.1, we have

type x1 x2 x3 ξ1 ξ2 ξ3 note
(i) ±eλ1t 0 0 0 0 1 t→ ±∞
(ii) 0 0 0 ±e(1−λ1)t 0 1 t→ ±∞
(iii) 0 0 0 0 ±e(1−λ2)t 1 t→ ±∞
(iv) 0 ±eλ2t 0 0 0 1 t→ ±∞
(v) ±eb1t ±eb2t 0 0 0 1 TBD
(vi) ±eλ1t 0 0 0 ±e(1−λ2)t 1 TBD
(vii) 0 ±eλ2t 0 ±e(1−λ1)t 0 1 TBD
(viii) 0 0 0 ±e(1−λ1)t ±e(1−λ2)t 1 TBD

Table 6.1: List of projected null bicharacteristics, 3D hyperbolic case

Moreover, assume λ1 < 0 and λ2 > 1, and assume WFa(u) ⊂ {x1 = 0},
then the stable manifold is Γ1 = {(x1, 0, 0, ξ2)} and the unstable manifold is Γ2 =
{(0, x2, ξ1, 0)}. Under those assumptions, the projected null bicharacteristics of type
(vii) will intersect WFa(u) if (0; 0′, 1) ∈WFa(u). It is easy to check Proposition 6.3.4
holds.

Remark 6.3.6. In three dimensional hyperbolic non-attracting/non-repelling case
(6-1b):

L = λ1x1
∂

∂x1

+ λ2x2
∂

∂x2

+ x3
∂

∂x3

+ θ,

where λ1 6∈ [0, 1] and 0 < λ2 < 1.

Assume λ1 < 0, from Table 6.1 we have: The stable manifold is {(x1, 0, 0, 0)} and
the unstable manifold is {(0, x2, ξ1, ξ2)}.
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type x1 x2 x3 ξ1 ξ2 ξ3 note
(i) ±eλ1t 0 0 0 0 1 t→ +∞
(ii) 0 0 0 ±e(1−λ1)t 0 1 t→ −∞
(vii) 0 ±eλ2t 0 ±e(1−λ1)t 0 1 t→ −∞
(viii) 0 0 0 ±e(1−λ1)t ±e(1−λ2)t 1 t→ −∞

Table 6.2: List of projected null bicharacteristics, 3D hyperbolic case (6-1b)

Apply theorem 5.3.1 and Proposition 6.3.1, we can construct a solution u0 =
δ(x1)⊗ w(x2, x3) supported in {x1 = 0}, where w is a solution of equation

λ2x2
∂w

∂x2

+ x3
∂w

∂x3

+ (θ − 1)w ∈ A(R2),

then u0 satisfies Lu0 = 0 and WFa(u) = {(0, 0, 0; ξ1, 0, ξ3)|ξ3 > 0}. Then near the
radial point u0 has minimal analytic singularity with (0, 0, 0; 0, 0, 1) ∈WFa(u0), which
is of type (ii) in Table 6.2.

Remark 6.3.7. In n dimensional case, if there is only one eigenvalues λ1 of B violates
the condition (6.2), assume λ1 < 0 and λi > 0, 1 < i ≤ n − 1, according to the
discussion in section 6.3, we have the normal form ( 6.12)

L1 =
L

λ1

= x1
∂

∂x1

−
n−1∑
i=1

µixi+1
∂

∂xi+1

+ θ1,

where µi < µn−1 for 1 ≤ i ≤ n − 2. Similarly, we can construct u0 = δ(x1) ⊗
w(x2, · · · , xn), where w is a solution of equation

(−
n−1∑
i=1

µixi+1
∂

∂xi+1

+ θ1 − 1)w ∈ A(Rn−1),

then u0 satisfies L1u0 = 0 and WFa(u) = {(0, 0, 0; ξ1, 0
′′, ξn)|ξn > 0}, near the radial

point u0 has minimal analytic singularity with (0; 0′, 1) ∈WFa(u0).

Remark 6.3.8. In three dimensional hyperbolic non-attractor case (6-1b), we are going
to construct solutions u such that WFa(u) ∩ Γ1 6= ∅, we consider the normal form
(6.12) with the condition (6.13). The stable manifold is {(x1, 0, 0, 0)} and the unstable
manifold is {(0, x2, ξ1, ξ2)}. From Table 6.2, we know WFa(u)∩ (i) 6= ∅. Decompose
u = u+ + u0 + u−, we have WFa(u+)∩ (i) 6= ∅, i.e., we can construct a hyperfunction
solution

u+(x1, · · · , x3) = xθ11+v(xµ11+x2, x
µ2
1+x3) for x1 > 0

such that
WFa(u+) ∩ {x1 6= 0} = {(eλ1t, 0, 0, 0, ξ3)|ξ3 > 0}.

Besides, there are at least two projected null bicharacteristics intersection the set

WFa(u+) ∩ {x1 = 0}.
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6.3 Solutions with prescribed singularities

In additional, we have

(a) If one of projected null bicharacteristics of type (ii) is contained in WFa(u), then
the other one should be contained in WFa(u) either.

(b) If one of projected null bicharacteristics of type (vii) is contained in WFa(u),
i.e., (0, eλ2t, 0, e(1−λ1)t, 0, 1), then the other one (0, eλ2t, 0,−e(1−λ1)t, 0, 1) should be
contained in WFa(u) either.

(c) If one of projected null bicharacteristics of type (viii) is contained in WFa(u),
then the other three should be contained in WFa(u) either.

Theorem 6.3.9. In three dimensional hyperbolic non-attracting/non-repelling case
(6-1c):

L = λ1x1
∂

∂x1

+ λ2x2
∂

∂x2

+ x3
∂

∂x3

+ θ,

where λ1, λ2 6∈ [0, 1]. Without loss of generality, assume λ1 < 0, λ2 > 1. If
(0; 0′, 1) ∈ WFa(u), then at least two of the following projected null bicharacteristics
will be contained in WFa(u).

Proof. First from Table 6.1 we have:

type x1 x2 x3 ξ1 ξ2 ξ3 note
(vi) ±eλ1t 0 0 0 ±e(1−λ2)t 1 t→ +∞
(vii) 0 ±eλ2t 0 ±e(1−λ1)t 0 1 t→ −∞

Table 6.3: List of projected null bicharacteristics, 3D hyperbolic case (6-1c)

There are 8 possible projected null bicharacteristics which go asymptotically to
(0, 0, 0; 0, 0, 1), i.e., type (vi) and (vii), while the other types are impossible to show
up. The stable manifold is {(x1, 0, 0, ξ2)} and the unstable manifold is {(0, x2, ξ1, 0)}.

Since neither λ1 nor λ2 satisfy the condition (6.2), the projected null characteristics
show up in both subspaces (x1, ξ1) and (x2, ξ2). The analytic wavefront set satisfies the
estimate in Proposition 6.3.4.

Besides we have the conclusion:

If one of projected null bicharacteristics of type (vi) (respectively, type
(vii)) is contained in WFa(u), i.e., (eλ1t, 0, 0, 0, e(1−λ2)t, 1) (respectively,
(0, eλ2t, 0, e(1−λ1)t, 0, 1)), then one of the others (eλ1t, 0, 0, 0,−e(1−λ2)t, 1) (respectively,
(0, eλ2t, 0,−e(1−λ1)t, 0, 1)) should be contained in WFa(u) either.

Theorem 6.3.10. In three dimensional loxodromic non-attracting/non-repelling case
(6-1e):

L = λ1x1
∂

∂x1

+ λ2x2
∂

∂x2

+ x3
∂

∂x3

+ θ,

where λ1, λ2 are two conjugated complex with non-zero real part. Without loss of
generality, assume Reλ1 > 1. If (0; 0′, 1) ∈WFa(u), then at least one of the following
projected null bicharacteristics will be contained in WFa(u).
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Proof. From Table 6.1 we have:

type x1 x2 x3 ξ1 ξ2 ξ3 note
v ±eb1t ±eb2t 0 0 0 1 t→ −∞
viii 0 0 0 ±e(1−b1)t ±e(1−b2)t 1 t→ +∞

Table 6.4: List of projected null bicharacteristics, 3D loxodromic case (6-1e)

There are 8 possible projected null bicharacteristics which go asymptotically to
(0, 0, 0; 0, 0, 1), i.e., type (v) and (viii), while the others are impossible to show up.
The stable manifold is {(0, 0, ξ1, ξ2)} and the unstable manifold is {(x1, x2, 0, 0)}.

Besides we have the conclusion:

If one of projected null bicharacteristics of type (viii) is contained in WFa(u), then
the other three should be contained in WFa(u) either.

Remark 6.3.11. In the beginning of this chapter, we have shown there are four
non-attractor cases (6-1b), (6-1c), (6-1e) and (6-1h). Aside from the above three cases,
we need to consider the mixed type non-attractor case (6-1h). However, Theorem 6.2.8
showed us the analytic singularities of the case (6-1h) has a very strong correlation with
the two dimensional hyperbolic saddle case, and one can discuss about the propagation
of analytic singularities similarly.
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Appendix A

Symplectic geometry and contact
geometry

In sections A.1 and A.2, all the notions are standard, which can be found in plenty of
literatures, such as Arnold [1], Silva [69], Sternberg [73] and so on. The main references
of section A.3 are [40], [63] and [66]. The content of section A.4 are mainly from [32].

A.1 Symplectic geometry

Let V be an m-dimensional vector space over R or C, and let σ : V × V → R be a
bilinear map. The map is skew-symmetric if σ(u, v) = −σ(u, v) for all u, v ∈ V .

Theorem A.1.1. Let σ be a skew-symmetric bilinear map on V . Then there is a basis
u1, · · · , ck, e1, · · · , en, f1, · · · , fn of V such that

σ(ui, v) = 0, for all iand all v ∈ V,
σ(ei, ej) = 0 = σ(fi, fj), for all i, j, and
σ(ei, fj) = δij, for all i, j.

Denote the space spanned by u1, · · · , uk by U , and choose a complementary space
W to U in V ,

V = U ⊕W.

Let V ∗ be the dual space of V . The map σ̃ : V → V ∗ is the linear map defined by
σ̃(v(u)) = σ(v, u).

Definition A.1.2. A skew-symmetric bilinear map σ is symplectic if σ̃ is bijective, i.e.,
U = 0. The map σ is called a linear symplectic structure on V , and (V, σ) is called a
symplectic vector space.

By Theorem A.1.1, the dimension of a symplectic vector space is even, (V, σ) has a
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symplectic basis e1, · · · , en, f1, · · · , fn satisfying

σ(ei, fj) = δij and σ(ei, ej) = 0 = σ(fi, fj).

If for each p ∈M , the map ωp : TpM × TpM → R is skew-symmetric bilinear and
ωp varies smoothly in p, then call the ω a de Rham 2-form on M .

The 2-form ω is symplectic if ω is closed and ωp is symplectic for all p ∈M .

Definition A.1.3. A symplectic manifold is a pair (M,ω) where M is a manifold and ω
is a symplectic form.

For a symplectic vector space (E, σ) of dimension 2n, a vector space W ⊂ V is
said to be isotropic (resp. Lagrangian, resp. involutive) if F ⊂ F⊥ (resp. F = F⊥,
resp. F⊥ ⊂ F ). That is, W ⊂ V is isotropic (resp. Lagrangian, resp. involutive), then
dimW ≤ n (resp. = n, resp. ≥ n). MoreoverW is Lagrangian if and only if dimW=n
and W is both isotropic and involutive.

A.2 Contact geometry

Now we start to introduce some notions in contact geometry. Let X be a 2n + 1
dimensional manifold and let L be a line subbundle of the cotangent bundle T ∗X , let
L∗ be its dual bundle and L⊥ its orthogonal complement.

One can define a multi-linear homomorphism of vector bundles

L⊥ × L⊥ × L→ C×X

by
(v1, v2, dω)→ 〈dω, v1 ∧ v2〉,

and this provides an alternating bilinear homomorphism

L⊥ × L⊥ → L⊗−1. (A.1)

Definition A.2.1. Say (X,L) is a contact manifold if the above map (A.1) is
non-degenerate.

Remark A.2.2. The above definition is equivalent to require the dimension of X is odd
and for a nowhere vanishing section α of L, the product

ω ∧ (dω)n−1

never vanishes and does not dependent on the choice of ω, which will be called a
fundamental 1-form, and under this definition we often write (X,ω) rather than (X,L).

There is a strict relationship between symplectic and contact geometry. To be
specific, write X̂ = L∗ \ X , then for s, a cross-section of X̂ , define a 1-form ϑ on
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X̂ by setting s∗(ϑ) = ω. Then (dϑ)n never vanishes and X̂ is called the symplectic
manifold associated with (X,L), with canonical 1-form ϑ.

Example A.2.3. Let Y be an n-dimensional manifold Y , and X = P∗Y the projective
cotangent bundle of Y . Then X̂ = T ∗Y \ Y . The Darboux theorem states for a local
coordinate system (x1, · · · , xn, p1, · · · , pn−1) of X , there is a canonical 1-form of the
form

ω = dxn − (p1dx1 + · · ·+ pn−1dxn−1).

And the associated symplectic manifold X̂ has a local coordinate system
(x1, · · · , xn, η1, · · · , ηn) with pj = − ηj

ηn
for j = 1, · · · , n − 1 and the symplectic

structure is given by
ϑ = η1dx1 + · · ·+ ηndxn = ηnω.

This example shows us that every contact manifold is locally isomorphic to a
projective cotangent bundle.

Definition A.2.4. Let f, g be functions on a 2n dimensional symplectic manifold X̂ .
Their Poisson bracket is defined by

{f, g}(dϑ) , ndf ∧ dg ∧ (dϑ)n−1.

Take a local coordinate system (x, η) of X̂ , then

{f, g} =
n∑
j=1

( ∂f
∂ηj

∂g

∂xj
− ∂f

∂xj

∂g

∂ηj

)
.

Definition A.2.5. Connecting with Poisson bracket, the Hamiltonian vector field is
defined as:

Hf ,
n∑
j=1

( ∂f
∂ηj

∂

∂xj
− ∂f

∂xj

∂

∂ηj

)
.

By definition one has
H{f,g} = [Hf , Hg].

Definition A.2.6. An analytic subset V of T ∗X is called involutive if f |V = g|V = 0
implies {f, g}|V = 0.

Theorem A.2.7. ([63], Chapter 2, theorem 5.3.2) For any coherent EX-module M ,
supp M is involutive.

That is to say, the support of a coherent EX-module has codimension less than or
equal to dimX .

Definition A.2.8. An involutive submanifold V of (X,ω) is regular if ω never vanishes
on V .

An analytic subset A of T ∗X is called Lagrangian if A is involutive and dimA =
dimX . A coherent EX-module is called holonomic (or maximally overdetermined) if
its support is Lagrangian.
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A.3 Quantized contact transformation

Definition A.3.1. Let (M,ωM) and (N,ωN) be two contact manifolds of the same
dimension, then a map f from X to Y is a contact transformation if f ∗ωN is a
fundamental 1-form for X .

Contact transformation refers to homogeneous symplectic homomorphism.

Definition A.3.2. Let X and Y be two (real or complex) manifolds with the same
dimension, let U and V be two open subsets in T ∗X and T ∗Y , and denote by αX
and αY the canonical 1-form on T ∗X and T ∗Y , respectively. A diffeomorphism (a
bi-holomorphic map in the complex case) ϕ : U → V is called a homogeneous
symplectic transformation if ϕ is homogeneous and ϕ∗αY = αX .

If ϕ is a homogeneous symplectic transformation, then ϕ is a local isomorphism
and is compatible with the action of C∗. However, people works on algebraic analysis
prefer to use 1 the term "contact transformation" instead of homogeneous symplectic
transformation.

Assume Y = Cn and let (y1, · · · , yn; η1, · · · , ηn) be the coordinates of T ∗Y , so that
αY =

∑
j ηjdyj . Set pj = ηj ◦ ϕ and qj = yj ◦ ϕ, we have

(i) {pj, pk} = {qj, qk} = 0, {pj, qk} = δjk for j, k = 1, · · · , n.

(ii) pj is homogeneous of degree 1 and qj is homogeneous of degree 0 with respect
to the fiber coordinates.

In turn one can assume the function {q1, · · · , qn; p1, · · · , pn} on U ⊂ T ∗X satisfy
the above conditions (i) and (ii), then the map

ϕ :U →T ∗Y
x 7→{q1(x), · · · , qn(x); p1(x), · · · , pn(x)} ∈ T ∗Y.

is a homogeneous symplectic transformation. And we call {q1, · · · , qn; p1, · · · , pn} a
homogeneous symplectic coordinate system.

We give a rather abstract definition of contact transformation, there is another
intuitive way to construct contact transformations, which has been mentioned by Egorov
[16], Hörmander [29] and Maslov [58], also can be found in Kashiwara [38], [KKK]
[40], Kato-Struppa [45], [SKK] [63] and so on.

Let M and N be two open subset of Cn, and let Λ be the non-singular hypersurface
ofM×N defined by some holomorphic function Γ(x, y) = 0, here non-singular means
∇x,yΓ(x, y) 6= 0 on Λ. Assume the determinate of the (n+ 1)× (n+ 1) matrix(

0 dyΓ
dxΓ dxdyΓ

)
1 See Schapira [66], Page 176.
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does not vanish on Λ. Then one can construct a contact transformation from P ∗M to
P ∗N via

P ∗Λ(M ×N) = {(x, y; ξ, η) ∈ P ∗(M ×N)|Γ(x, y) = 0

and (ξ, η) = c∇x,yΓ(x, y) for c 6= 0}.

The implicit function theorem implies that

π1 : P ∗Λ(M ×N)→ P ∗M

and
π2 : P ∗Λ(M ×N)→ P ∗N

are local isomorphisms.

Definition A.3.3. The local isomorphisms

π1 ◦ π−1
2 : P ∗N → P ∗M

and
π2 ◦ π−1

1 : P ∗M → P ∗N

are called contact transformations having Λ as a generating function.

Classical results showed that every contact transformation can be expressed by
composition of two contact transformations with generating functions.

Theorem A.3.4. ([63] Chap. II §3.2) Let ϕ : T ∗X ⊃ U → T ∗Y be a homogeneous
symplectic transformation, let pX be a point of U and set pY = ϕ(pX). Then we have

(a) There exists an open neighborhood U ′ of pX and a C-algebra isomorphism Φ :
ϕ−1EY |U ′ → EX |U (we call (ϕ,Φ) a quantized contact transformation).

(b) If Φ : ϕ−1
Y → EX |U is a C-algebra isomorphism, then for any m, Φ gives

an isomorphism ϕ−1EY (m) → EX(m)|U . Moreover the following diagram
commutes:

ϕ−1EY (m)
Φ−−−→ EX(m)|Uyσm yσm

ϕ−1OT ∗Y (m)
ϕ′−−−→ OT ∗Y (m)|U

(c) Let Φ and Φ′ be two C-algebra homomorphisms ϕ−1EY → EX |U . Then there
exist µ ∈ C, a neighborhood U ′ of pX and P ∈ Γ(U ; EX(µ)) such that σµ(P ) is
invertible and

Φ′(Q) = PΦ(Q)P−1 and Q ∈ ϕ−1EY |U ′ .

Moreover µ is unique and P is unique up to a constant multiple.
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(d) Let Pj ∈ Γ(U ; EX(1)) and Qj ∈ Γ(U ; EX(0))(1 ≤ j ≤ n) satisfy

[Pj, Pk] = [Qj, Qk] = 0, [Pj, Qk] = δjk,

then there exists a unique quantized contact transformation (ϕ,Φ) such that

ϕ(p) =
(
σ0(Q1)(p), · · · , σ0(Qn)(p), σ1(P1)(p), · · · , σ1(Pn)(p)

)
,

and Φ(yj) = Qj,Φ(∂yj) = Pj . We call {Q1, · · · , Qn, P1, · · · , Pn} quantized
canonical coordinates.

We give some examples of quantized contact transformations. More examples can
be found in [38], [40] and[45].

Example A.3.5. ([38], Example 7.3.1) For instance, the quantized canonical
coordinates of a constant coefficient micro-differential operator P (x, ∂) of first order
is given by

ϕ(p) = (x1 + [P, x1], x2 + [P, x2], · · · , xn + [P, xn], ∂x1 , · · · , ∂xn).

Example A.3.6. The most classical contact transformation with generating function is
Legendre transformation. The generating function is

Ω(x, y) = xn − yn +
n−1∑
j=1

xjyj,

and we have a contact transformation ϕ : (x, ξ)→ (y, η) with yi =
ξj
ξn

for j < n, and yn =
xξ

ξn
,

ηj = −xjξn for j < n, and ηn = ξn.

The related quantized contact transformation is given by{
yi = ∂xj(∂xn)−1 for j < n, and yn = 〈x,Dx〉(∂xn)−1,

∂yj = −xj∂xn for j < n, and ∂yn = ∂xn .

Quantized contact transformations are the lifting of contact transformations from
the manifolds on which they act to the sheaves of differential (and microdifferential)
operators on related manifolds. Moreover, given a contact transformation ϕ from an
open set U ∈ T ∗X to an open set U ′ ∈ T ∗X ′, ϕ can be locally quantized, that is lifted
to an isomorphism ϕ̂ of filtered rings from EX |U to EX′|U ′ .

Theorem A.3.7. ([40] Page 221.) LetM andN be real analytic manifolds of dimension
n. Assume that a real-valued real analytic function Γ(x, y) defined on M ×N satisfies
the above conditions. Then, for an arbitrary micro-differential operator P (x,Dx), a
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micro-differential operator Q(y,Dy) is uniquely determined such that∫
P (x,Dx)δ(Γ(x, y))u(y)dy '

∫
δ(Γ(x, y))Q(y,Dy)u(y)dy

holds for any microfunction u(y). Conversely, if Q is given, then P is uniquely
determined so that the above formula holds. Moreover, the order of Q and P are equal.
That is, we have sheaf isomorphisms:

p−1EM ∼= q−1EN ,

p−1EM(m) ∼= q−1EN(m)

and
p−1AS∗M ∼= q−1AS∗N ,

where p is the map producing P by givingQ and q is the map producingQ by giving P .

Remark A.3.8. ([40] Page 226.) One notice that there are plenty of choices of kernel
functions instead of δ(Γ(x, y)). The isomorphism of above formula is unique up to an
inner automorphism by an invertible micro-differential operator of order zero. That
is, one can use any non-degenerate section of a simple holonomic system with its
characteristic variety being the conormal bundle of H , instead of δ(Γ(x, y)).

A.4 Linearization of real analytic vector field

Suppose a real analytic vector field V in Rn under the local coordinates x =
(x1, · · · , xn) be of the following form:

V =
n∑
i=1

fi(x)
∂

∂xi
,

where all fi(x)′s are real analytic functions defined in some neighborhood of the origin
and fi(x) = 0,∀i = 1, · · · , n. Actually, one can write V in the form of

V =
n∑

i,j=1

aijxi
∂

∂xj
+ higher order terms,

and let λ1, · · · , λn be the eigenvalues of the matrix (aij). It is well known that all the
eigenvalues do not depend on the choice of coordinates.

That is, one can choice suitable local coordinates to make

fi(x) = λixi + higher order terms.

For a single analytic vector field V in Cn vanishing at zero, Henri Poincaré [62]
showed us:
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Theorem A.4.1. If one has the following conditions:

(i) The Jacobian matrix ( ∂fi
∂xj
|x=0)i,j is diagnoseable with eigenvalues {λj}nj=1,

(ii) there are no nonnegative integers solutions of the equation

λi =
n∑
j=1

kjλj

for
∑n

j=1 kj > 1,

(iii) the convex hull of the family of all eigenvalues {λ1, · · · , λn} does not contain the
origin, i.e., all the λ′is lie in the same open half-plane about the origin,

then one can find an analytic change of coordinates

ϕ : (Rn, 0)→ (Rn, 0), x 7→ y

such that

ϕ∗V =
n∑
i=1

λiyi
∂

∂yj

Remark A.4.2. Condition (ii) is called the non-resonance condition, which guarantees
a formal Taylor’s series development for the linearizing map, and condition (iii)
guarantees the convergence of the formal series. Moreover, condition (ii) is required
in most of the related linearization theorems, which can be seen from an analysis in
Sternberg’s paper [72]. Chen removed condition (i) entirely in [10], and both Sternberg
[72] and Chen [10] provided the smooth versions of Poincaré’s theorem without the
restriction of (iii). However, it seems that we can only unwind but can not remove
the condition (iii) in (real) analytic case. That is one main difference between smooth
setting and real analytic setting for our problem.

Remark A.4.3. Indeed Henri Poincaré’s original work is about analytic vector field, for
a real analytic vector field vanishing at zero, the proof is similar. We have a sketch of
a proof of Poincaré’s result following from Y.Ilyashenko and S.Yakovenko [32] here to
give a clear idea to proof the linearization theory in real analytic settings, for detail, see
Poincaré[62], Shalomo Sternberg[71].

Definition A.4.4. An ordered tuple of complex numbers λ = (λ1, · · · , λn) ∈ Cn is
called resonant, if there exist non-negative integers α = (α1, · · · , αn) ∈ Zn+ such that
|α| > 1 and the resonance identity occurs,

λj = 〈k, λ〉, |α| > 1.

Here 〈α, λ〉 = α1λ1 + · · ·+αnλn. The natural number |α| is the order of the resonance.

A square matrix is resonant if the collection of its eigenvalues (with repetitions if
they are multiple) is resonant, otherwise it is non-resonant.
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Definition A.4.5. The Poincaré domain P ⊂ Cn is the collection of all tuples λ =
(λ1, · · · , λn) such that the convex hull of the point set {λ1, · · · , λn} ⊂ C does not
contain the origin inside or on the boundary. The Siegel domain S is the complement
to the Poincaré domain in Cn.

Remark A.4.6. Sometimes we call such tuples as being of Poincaré type.

Theorem A.4.7. (Poincaré) A non-resonant holomorphic vector field with the linear
part of Poincaré type can be linearized by a holomorphic transformation.

Remark A.4.8. Here, for the phase “ linear part of Poincaré type”, we mean eigenvalues
of the related Jacobean matrix of the linear part are of Poincaré (resp. Siegel) type.

Suppose an analytic vector field V in Cn under the local coordinates x =
(x1, · · · , xn) be of the following form:

V =
n∑
i=1

fi(x)
∂

∂xi
,

where all fi(x)′s are analytic functions defined in some neighborhood of the origin and
fi(x) = 0,∀i = 1, · · · , n. Then

fi(x) =
∞∑
n=0

f (n)(0)

n!
xn = f ′(0)x+O(|x|2)

Definition A.4.9. Two formal vector fields F, F ′ are formally equivalent, if there exists
an invertible formal automorphism H such that the

H∗ · F (x) = F (H(x)), H∗ = (
∂H

∂x
)

Theorem A.4.10. A non-resonant formal vector field F (x) = Ax + · · · is formally
equivalent to its linearization F ′(x) = Ax.

Proof. Let F (x) = Ax + Vm(x) + Vm+1(x) + · · · , where Vi, i = m,m + 1, · · · are
arbitrary homogeneous vector fields of degrees i, here m ≥ 2.

First want to remove Vm, and F is formally equivalent to the formal field F ′(x) =
Ax+ V ′m+1(x) + · · · .

ChooseH(x) = x+Pm(x), where Pm is homogeneous vector polynomial of degree
m. The Jacobian matrix of H(x) is I + (∂Pm

∂x
).

Then the conjugacy H , one has H ◦ F ′ = F ◦H:

(I +
∂Pm
∂x

)(Ax+ Vm(x) + · · · ) = A(x+ Pm(x)) + V ′m(x+ Pm(x)) + · · · .

The homogeneous term of order 1 on both side coincide. To meet the condition
V ′m = 0, Pm must satisfy

[A, Pm] = −Vm,A(x) = Ax

105



CHAPTER A Symplectic geometry and contact geometry

where A = Ax is the linear vector field, the principal part of F , and the commutator

[A, Pm] = (
∂Pm
∂x

) · Ax− AP (x).

Definition A.4.11. Let A(x) = Ax be a linear vector field and let P be a homogeneous
vector polynomial. Denote the operator adA by

adA : P → [A, P ], (adA P )(x) = (
∂P

∂x
) · Ax− AP (x).

Lemma A.4.12. ([32], Lemma 4.5) If A is non-resonant, then the operator adA is
invertible.

Proof. The assertion of the lemma is completely transparent when A is a diagonal
matrix Λ = diag{λ1, · · · , λn}, then one knows adΛ has n eigenvalues 〈λ, α〉 − λk, k =
1, · · · , n, with corresponding eigenvectors Fkα = xα(0, · · · , 1, · · · , 0)T . In fact, we
have ΛFkα = λkFkα and

(
∂Fkα
∂x

)
Λx = 〈λ, α〉Fkα.

Use the above lemma,

[A, Pm] = −Vm,A(x) = Ax

is always solvable for arbitrary Vm.

Repeating this process inductively, one can construct an infinite sequence of
polynomial maps H1, H2, · · · , Hm, · · · and the formal fields F1 = F, F2, · · · , Fm, · · ·
such that

Fm = Ax+ (terms of order larger or equal m)

and the transformation

Hm = id+ (terms of order larger or equal m)

conjugates the Fm with Fm+1.

Thus the composition Hm = Hm ◦ · · · ◦ H1 conjugates F1 and Fm+1 without
nonlinear terms up to order m.

The limit
H = H∞ = lim

m→∞
H(m)

exists in the class of formal morphisms. By construction, H∗F cannot contain any
nonlinear terms and hence is linear as required.

We have shown the formal linearization for holomorphic vector field, similarly we
have the formal linearization for real analytic vector field:

Theorem A.4.13. ([54], Theorem 4) Let V be a real analytic vector field onRn satisfies
the above conditions (i) and (ii) in Theorem A.4.1, then there exists a formal power
series for a linearizing map for V about the origin.
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Remark A.4.14. Since we already construct formal linearization map for a non-resonant
real analytic vector field, the left question is whether the formal morphism is convergent
to a real analytic map with suitable condition. We would like to discuss it in two cases,
eigenvalues of Poicaré type and eigenvalues of Siegel type.

Proposition A.4.15. ([32], Proposition 5.2) If λ = (λ1 · · · , λn) is of Poicaré type, then
only finitely many denominators 2 λj − 〈α, λ〉, α ∈ Zn+, |α| ≥ 2, may actually vanish.
Moreover, nonzero denominators are bounded away from the origin: the origin is an
isolated point of the set of all denominators {λj − 〈α, λ〉, j = 1, · · · , n, |α| ≥ 2}.

If λ is of Siegel type, then either there are infinitely many vanishing denominators,
or the origin 0 is their accumulation point.

Proof. If the convex hull of {λ1, · · · , λn} does not contain the origin, by the convex
separation theorem, there exists a real linear functional ` : C → R such that `(λj) ≤
−r < 0 for all λj , and hence `(〈α, λ〉) ≤ −r|α|. Then

`(λj − 〈α, λ〉) ≥ `(λj) + |α|r →∞ |α| → ∞.

Since ` is bounded on any small neighborhood of the origin, then the assertions are
proved.

For λ of Siegel type, please check [32], Proposition 5.2 for detail.

Now we try to finish the proof of Poincaré’s Theorem A.4.7 for vector field with a
diagonal non-resonant linear part Λ = diag{λ1, · · · , λn}.

The classical proof by Poincaré was achieved by the so called Majorant method, and
in modern language, it takes a more convenient form of the contracting map principle
in an appropriate functional space, the majorant space.

Definition A.4.16. The majorant operator is the nonlinear operator acting on formal
series by replacing all Taylor coefficients by their absolute values,

M :
∑
k∈Z+

n

ckz
k 7→

∑
k∈Z+

n

|ck|zk.

The action of the majorant operator naturally extends on all formal objects, such as
vector formal series, formal vector fields, formal transformations, etc.

Definition A.4.17. The majorant ρ-norm is the functional on the space of formal power
series C[[z1, · · · , zn]], defined as

‖f‖ρ = sup
|z|<ρ
|M(f(z))| = |Mf(ρ, · · · , ρ)| ≤ +∞.

For a formal vector function F = (F1, · · · , Fn), then

‖F‖ρ = ‖F1‖ρ + · · ·+ ‖Fn‖ρ.
2 We call it denominator since it becomes the denominator part when we consider the inverse of the

operator adΛ, see Lemma A.4.19.
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The majorant space Mρ is the space of formal vector functions fromC[[x]] having finite
majorant ρ-norm.

Proposition A.4.18. The space Mρ with the majorant norm ‖ · ‖ρ is complete.

Lemma A.4.19. If Λ ∈ M(n,C) is a non-resonant diagonal matrix of Poincaré type,
then the operator adΛ has a bounded inverse in the space of vector fields equipped with
the majorant norm.

Proof. The formal inverse operator ad−1
Λ is diagonal,

ad−1
Λ :

∑
k,α

ckαx
α ∂

∂xk
7→
∑
k,α

ckαx
α

λk − 〈α, λ〉
∂

∂xk

Let F = (F1, · · · , Fn) ∈ D(Cn, 0) be a holomorphic vector function defined in
some polydisk near the origin. The operator of argument shift is the operator

SF : h(x) 7→ F (x+ h(x)),

acting on holomorphic vector fields h ∈ D(Cn, 0) without the free term, h(0) = 0.

Consider the one-parameter family of majorant Banach spaces Bρ indexed by the
real parameter ρ ∈ (Rn

+, 0). We consider Bρ′ as a subspace in Bρ for all 0 < ρ < ρ′.

Let S be an operator defined on all of these spaces for all sufficiently small values
of ρ, as a family of operators Sρ : Bρ → Bρ.

Definition A.4.20. The operator S = {Sρ} is strongly contracting, if

(1) ‖S(0)‖ρ = O(ρ2) and

(2) S is Lipschitz on the ball B̃ρ ⊂ Bρ of the majorant ρ-norm (with the same rho),
with the Lipschitz constant no greater than O(ρ) as ρ→ 0.

Notice that any strongly contracting operator takes the balls B̃ρ strictly into
themselves, since the center of the ball is shifted by O(ρ2) and the diameter of the
image S(B̃ρ) does not exceed 2ρO(ρ) = O(ρ2).

In the Poicaré domain the absolute values of all denominators are bounded from
below by a positive constant ε > 0, therefore any majorant ρ-norm is increased by no
more than ε−1:

‖ ad−1
Λ ‖ρ ≤

(
inf
j,α
|λj − 〈α, λ〉|

)−1

< +∞

Proof. Now we try to prove a holomorphic vector field with diagonal non-resonant
linearization matrix Λ of Poincaré type is holomorphically linearizable in a sufficiently
small neighborhood of the origin.
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A holomorphic transformation H = id + h conjugates the linear vector field Λx
with the initial nonlinear field Λx+ F (x), if and only if

∂h

∂x
Λx− Λh(x) = F (x+ h(x)).

that is
adΛ h = SFh = F ◦ (id+ h), adΛ = [Λ, ·]. (A.2)

And then if one can show the operator ad−1
Λ ◦SF restricted on the space Mρ has a fixed

point h for sufficient small ρ, then one can finish the proof.

Consider this operator ad−1
Λ ◦SF in the space Mρ, with sufficient small ρ. Firstly the

operator ad−1
Λ is bounded, its norm is the reciprocal to the smallest small divisor and

is independent of ρ. On the other hand, the shift operator SF is strongly contracting
with the contraction rate (Lipschitz constant) going to zero with ρ as O(ρ). Thus
the composition will be contracting on the ρ-ball Bρ in the ρ-majorant norm with the
contraction rate O(1) · O(ρ) = O(ρ) → 0. By the contracting map principle, there
exists a unique fixed point of the operator equation

h = (ad−1
Λ ◦SF )(h)

in the space Mρ which is therefore a holomorphic vector function. The corresponding
map H linearizes the holomorphic vector field.

Apply the above method to real analytic vector fields instead of holomorphic vector
fields, we can extend Theorem A.4.13 to the following theorem.

Theorem A.4.21. Suppose a real analytic vector field V satisfies the conditions (i) and
(ii) in Theorem A.4.1, moreover, assume that all the eigenvalues satisfy (iii), i.e., are
of Poincaré type, then the formal series of linearizing mapping convergent to a real
analytic mapping

ϕ : (Rn, 0)→ (Rn, 0),

such that ϕ∗V = V0.

Remark A.4.22. Actually, consider our operator P , the eigenvalues are of Poincaré type
in attractor/repellent cases, it is not hard to have the linearization. For non-attractor
cases, the eigenvalues are of Siegel type, there is a linearization theory for such kind of
set of eigenvalues.

Now we are going to show some results about the linearization in the Siegel domain.
In Siegel domain the denominators λj − 〈α, λ〉 are not separated from the origin, then
the inverse ad−1

Λ is unbounded. However, SF is strongly contracting, equation A.2
can be solved with respect to h by Newton-type iteration, while provided the small
denominators |λj − 〈α, λ〉| do not approach the origin as fast as |α| goes to infinite.
Such techniques is knowing as the KAM theory after A. Kolmogorov, V. Arnold and J.
Moser. See Chapter 2 of [9] for detail.

Definition A.4.23. A tuple of complex numbers λ ∈ Cn from the Siegel domain S is
called Diophantine, if the small denominators decay no faster than polynomically with
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α, i.e.,

∃C,N < +∞, such that ∀α ∈ Zn+, |λj − 〈α, λ〉|−1 ≤ C|α|N .

Otherwise the tuple (vector, collection) is called Liouvillean.

Theorem A.4.24. (Siegel theorem). If the linearization matrix Λ of a holomorphic
vector field is non-resonant of Siegel type and has Diophantine spectrum, then the
vector field is holomorphically linearizable.

Definition A.4.25. A non-resonant collection λ ∈ Cn is said to satisfy the Brjuno
condition, if the small denominators decrease sub-exponentially,

|λj − 〈α, λ〉|−1 ≤ Ce|α|
1−ε
, as |α| → ∞,

for some finite C and positive ε > 0.

Theorem A.4.26. (Brjuno theorem). A holomorphic vector field with non-resonant
linearization matrix of Siegel type satisfying the Brjuno condition, is holomorphically
linearizable.

Remark A.4.27. If the denominators |λj − 〈α, λ〉| accumulate to zero too fast, e.g.,
super-exponentially, then the corresponding germs are in general non-linearizable.

Remark A.4.28. For the non-attractor case in our problem, the tuple of eigenvalues are
Diophantine. That is, the linearization theory in Theorem A.4.21 are not only true for
attractor cases but also true for non-attractor cases.

Remark A.4.29. There are some linearization results for resonant vector fields [32], but
in this case our generic condition for radial point is violated.
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Appendix B

Ordinary differential equations

In this chapter we will have a review of Kamatsu’s results on hypoellipticity of ordinary
operators in space of hyperfunctions, which we will need in Chapter 5.

B.1 Hypoellipticity of ordinary differential operators

Let X be an open subset of C and P (x, ∂) an ordinary differential operator of order m.
Put M = D/DP , and write

P (x, ∂) =
m∑
k=0

ak(x)∂k.

Definition B.1.1. A point x0 in X is said to be a singular point of equation Pu = 0
if am(x0) = 0. Moreover, if am(x0) 6= 0, then x0 is said to be an ordinary point of
Pu = 0.

In a neighborhood of an ordinary point x0 in X , M ' O⊕mX as D-modules,
and Pu = 0 has m linearly independent holomorphic solutions. However, in
a neighborhood of a singular point x0, the behavior of solutions are not easy to
manipulate. For instance, while L = HomDX (M ,OX) is locally constant sheaf of
rank m on X \ {x0}, a general algorithm for its monodromy is not known. But an
algorithm is well known in the case of differential equations with regular singularities
as follows.

Theorem B.1.2. A point x0 is called a regular singular point of Pu = 0 if the following
two conditions are equivalent:

(1) Let r = ordx=x0am(x). Then ordx=x0aj(x) ≥ r − (m − j) for all j, where
ordx=x0f(x) denotes the order of zero of f(x) at x = x0. We set ordx=x00 =∞.

(2) The equation P (x, ∂)u = 0 has m linearly independent solutions of the form

(x− x0)λ
s∑
j=0

uj(x)(log(x− x0))j
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for some s ∈ Z≥0 and λ ∈ C, where uj(x) are holomorphic on a neighborhood of
x = x0.

Furthermore, a zero of am(x) not satisfying the above conditions is called an
irregular singular point.

We define a coherent filtration F (M ) of

M = D/DP = Du (u = 1 mod DP ),

by

Fk(M ) =
m−1∑
j=0

Fk(D)(x∂)ju.

Theorem B.1.3. Say x is a regular singularity of M if and only if M admits a coherent
filtration satisfying

(x∂)Fk(M ) ⊂ Fk(M ) or xξGrF (M ) = 0,

where GrF is the grade algebra associated with the filtration F .

Definition B.1.4. Consider a linear homogeneous ordinary differential equation in
complex domain

P (x, ∂)u(x) =
m∑
i=0

ai(x)
diu(x)

dxi
= 0,

with analytic coefficients. The equation Pu = 0 belongs to Fuchsian class if and only
all its singular points on the Riemann sphere are regular singular points.

Lemma B.1.5. Let T = z d
dz

, then

(i) We have

T n = zn
dn

dzn
+

n∑
i=1

siz
n−i d

n−i

dzn−i
,with si ∈ Z.

(ii) We have

zn
dn

dzn
= T n +

n∑
j=1

djT
n−j,with di ∈ Z.

Let Ω be an open set in R, consider a linear ordinary differential equation

Pu(x) = f(x)

where f(x) ∈ B(Ω), and the operator P is of the form

P =
m∑
i=0

ai(x)
di

dxi
,

where all the coefficients aj(x) are real analytic in Ω and am(x) 6≡ 0.
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Theorem B.1.6. (Komatsu,[52]) Let Ω be an open subset in R, then

dim(BP ) = m+
∑
x∈Ω

ordx am(x),

where ordx am(x) is the order of zero at x of the coefficient am(x).

Theorem B.1.7. (Komatsu,[52]) Let Ω be an open subset inR, then the following three
conditions are equivalent:

(i) All hyperfunction solutions associated with the operator P are real analytic in Ω,
i.e., BP (Ω) ⊂ A(Ω),

(ii) The leading coefficient am(x) does not vanish for every x ∈ Ω,

(iii) If f(x) is real analytic in Ω, so does u(x).

Theorem B.1.7 gives the condition for A-hypoellipticity of the operator P . Before
we discuss the D′-hypoellipticity of the operator P , first we give two lemmas.

Lemma B.1.8. Let Ω be an open subset of R, a hyperfunction f(x) ∈ B(Ω) belongs
to D ′(Ω) if and only if a defining function F (z) of f satisfies the following estimate:
for any compact set K ⊂ Ω, there are N ∈ N, C > 0 and ε > 0 such that for any
0 < |y| < ε, one has

sup{|F (x+ iy)|;x ∈ K} ≤ C

|y|N
.

If the above condition is satisfied, the distribution in x, F (x + iy) and F (x − iy) for
y > 0, converge in the topology of D ′(Ω) as y → 0. Then one has a distribution
identity:

f(x) = lim
y→0

F (x+ iy)− lim
y→0

F (x− iy).

Komatsu [52] also discussed the conditions of making a hyperfunction belongs to
Lploc(Ω), ultradistribution D ′(s) of class (s), and the local Besov space Bσ

p,q,loc(Ω) for
−∞ < σ <∞, 1 ≤ p, q ≤ ∞.

Lemma B.1.9. Let Ω be an open subset ofRn, a hyperfunction f(x) =∈ B(Ω) belongs
to D ′(Ω) if and only if there is a representation of f ,

f(x) =
k∑
j=1

Fj(z), Fj(z) ∈ O(Ω + iΓj0), j = 1, · · · , k

satisfies the following estimate: for every compact set K ⊂ Ω and for every proper
subcone4j ⊂ Γj , there are N ∈ N, C > 0 and ε > 0 such that for each j = 1, · · · , k,
one has

sup{|Fj(z)|;x ∈ K} ≤ C

|y|N
for z ∈ K + i(4j ∩ {|y| < ε})0.
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Then for any fixed y ∈ Γ, the real analytic function Fj(x + iεy) in x is convergent in
D ′(Ω) as ε→ 0, the distribution f(x) obtained as the limit is nothing but

k∑
j=1

F (x+ iΓ0)

when regarded as a hyperfunction.

Theorem B.1.10. (Komatsu, [52]) Consider an ordinal differential equation in Ω ⊂ R

P (x,
d

dx
)u(x) =

m∑
j=0

aj(x)
dj

dxj
u(x) = f(x),

where all the coefficients aj(x), j = 0, · · · ,m are real analytic. If all the singular
points in Ω are regular, and if f ∈ D ′(Ω), then the hyperfunction solutions u ∈ D ′(Ω).

Moreover, if there is an irregular singular point, then one can construct a
hyperfunction solution u that is not a distribution.

Proof. Without loss of generality, suppose the origin is the unique regular singular point
in Ω. And let U(z) ∈ V \ Ω and F (z) ∈ V \ Ω be the defining function of u and f
respectively, where V ∈ C is the complex neighborhood of Ω. Then our equation can
be naturally written as

P (z,
d

dz
)U(z) =

m∑
j=0

aj(z)
dj

dzj
U(z) = F (z),

Use the Lemma B.1.5, we have

T nU(z)+bn−1(z)T n−1U(z)+bn−2(z)T n−2U(z)+· · ·+b1(z)TU(z)+b0(z)U(z) = F (z),

where bk, k = 0, · · · , n− 1, are holomorphic on V . Let

W (z) =
(
U(z), (z

d

dz
)U(z), · · · , (z d

dz
)m−1U(z)

)T
,

then
(z
d

dz
+B(z))W (z) = F (z),

where

B =



0 −1 0 · · · 0 0
0 0 −1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · −1 0
0 0 0 · · · 0 −1
b0 b1 b2 · · · bn−2 bn−1


,

which is a matrix whose elements are bounded near 0 (we can assume this by shrinking
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B.1 Hypoellipticity of ordinary differential operators

V ) and F (z) satisfies

|F (x+ iy)| ≤ C

|y|N
,

for some constants C and N .

Choose t = log(±i
z

) and the equation is transformed into

(
c
d

dt
+ B̃(t)

)
W̃ (t) = F̃ (t),

where c is a constant depending only on B̃(t), which does not vanish. And one times
1
c

on both sides, still keeps the same notations, one has the inhomogeneous equation of
order one with variable coefficients( d

dt
+ B̃(t)

)
W̃ (t) = F̃ (t),

one have the solution of the form

Ṽ (t) = e−b(t)(

∫
F̃ (t)eb(t)dt+ κ),

where κ is a constant of integration and

b(t) =

∫
eB̃(t)dt.

Since B̃(t) is bounded, then there exist two positive numbers b1 and b2 such that b1 <
b(t) < b2.

Ṽ (t) = e−b(t)(

∫
F̃ (t)eb(t)dt+ κ) < e−b1

(
eb2
∫
F̃ (t)dt+ κ

)
,

And one can find the estimate

|V (x+ iy)| = |W̃ (t)|

≤ e−b1
(
eb2
∫
|F̃ (t)|dt+ |κ|

)
= e−b1

(
eb2
∫
|F (z)|dz + |κ|

)
≤ C ′

|y|N ′

for some constants C ′ and N ′.

Suppose σ > 1 be the irregularity of the origin, i.e., the maximal gradient of the
highest convex polygon below the points (j, ordx=0aj(x)), j = 0, · · · ,m. For σ ≤ 1,
the singularity is called determined singularity and for σ > 1 the singularity is called
non-determined singularity.

Then one can find on each sector with angle less then π
σ−1

and summit at 0, a
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holomorphic solution U(z) of P (z, d
dz

)U(z) = 0 which has the asymptotic expansion

U(z) ∼ e
λ

zσ−1 +···zρp(z, log z),

where λ is non-zero constant and p is a polynomial on log z whose coefficients are
formal power series of zr for some r > 0.

If one choose the sector in the upper or the lower half plane due to the argument of
λ, the solution satisfies the estimate

sup
x∈K
|U(x+ iy)| ≥ Ce( L|y| )

σ−1

on the half plane.

Remark B.1.11. In Theorem B.1.10, if we consider the homogeneous case Pu = 0 and
all the singular points of P are regular, then the collection of such solutions belongs to
BNils(U), where BNils is the sheaf of hyperfunctions in the Nilsson class [61], which is
a subsheaf of B. For more information of hyperfunctions in the Nilsson class, please
check part II of F. Pham [61].

Example B.1.12. Consider the Euler operator

P = x
d

dx
− α,

one can fine the radial point (0,±1). The irregularity of P at the singular point x =
0 is 1, that is 0 is of determined singularity. The solution space is of 2 dimensions.
According to the Theorem B.1.10, ifPu ∈ D ′, then the hyperfunction solutions u ∈ D ′.

In fact, one can choose the basis of solution space BP as:

(1) α = 0, 1, 2, · · · , choose xα, xα+,

(2) α = −1,−2, · · · , choose δ−α−1, p.v.(xα),

(3) α /∈ Z, choose xα−, x
α
+.

Now we have another example of non-determined singularity in one dimension.

Example B.1.13.

P = x2 d

dx
− c,

where c is some constant. The irregularity of P at x = 0 is 2. The solution space is of
3 dimensions.

Actually, one can choose the basis of solution space BP as following. Define a
smooth function equal to e−

1
x when x 6= 0 and equal to 0 when x = 0. And consider

two hyperfunctions which are not distributions e−
1

x+i0 and e−
1

x+i0 − e−
1

x−i0 .

That is, if Pu ∈ D ′, then there might exists hyperfunction solutions u which are not
distributions.
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Fourier hyperfunctions

In this chapter we have a review of Fourier hyperfunctions. The main references are
Kaneko [34] and Graf [20]. The former is one of the best monograph to study the
hyperfunction theory, and the latter one gives a delicate and very detailed description
on the various integral transforms of hyperfunctions of one variable.

C.1 Fourier transformations

Proposition C.1.1. For α = (α1, · · · , αn) ∈ Zn, let u(x) =
∑

aα,α∈Zn aαe
2π
√
−1〈x,α〉,

where x ∈ Rn. Suppose for any arbitrary ε > 0 there exists a constant Cε such that
|aα| ≤ Cεe

ε|α| holds for each α, where |α| =
∑n

j=1 |aj|. Then u(x) is a well-defined
hyperfunction. If |aα| ≤ C|α|N for some N > 0 and C > 0, then u(x) is a distribution.

Proposition C.1.2. Let f(y) be a locally Lebesgue integrable function on Rn such
that for an arbitrary ε > 0 there exists Cε with the property |f(y)| ≤ Cεe

ε|y| almost
everywhere. Then the Fourier transform of f(y), u(x) =

∫
Rn
f(y)e2π

√
−1〈x,y〉dy is a

well-defined hyperfunction.

Now let us examine the singular spectrum of the hyperfunction

u(x) =

∫
Rn
f(y)e2π

√
−1〈x,y〉dy,

supposing some additional information on supp f .

Definition C.1.3. For a subset G of Rn, define

G∞ =
{
y ∈ Rn − {0} | for an arbitraryN > 0 and ε > 0,

G ∩
{
y′
∣∣|y′| ≥ N and

∣∣∣ y′|y′| − y

|y|

∣∣∣ < ε
}
6= ∅
}
.

Lemma C.1.4. Let G be a subset of Rn. Let G be the collection of

{G′ ⊂ Rn | G′ is a cloesed cone such thatG′ ⊃ G+ a for some a}.
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Then G∞ =
⋂
G′∈G G

′ holds.

Proposition C.1.5. Let f(x) be the same as in previous proposition and letG = supp f .
Then the singular spectrum of the hyperfuction

u(x) =

∫
Rn
f(y)e2π

√
−1〈x,y〉dy,

is contained in {(x,
√
−1ξ∞)|ξ ∈ G∞}.

Proposition C.1.6. Denote

Dα = Dα1
1 · · ·Dαn

n , Dj =
1√
−1

∂

∂xj
,

assume F be the action of Fourier transformation, we have

(a) F (Dαf) = ξαFf . More generally, for a local operator J(D) with constant
coefficients, F (J(D)f) = J(D)Ff .

(b) F (xαf) = (−Dξ)Ff .

(c) F (f(ax + b)) = 1
|a|e
√
−1 b

a
ξF ( ξ

a
), in particular, F (f(x − a)) = e−

√
−1aξFf ,

F (f(ax)) = 1
|a|F (f( ξ

a
)), and F (f(−x)) = F (f(−ξ)).

(d) F (f ∗ g) = F (f) ·F (g).

(e) F (f(x)) = F (f(−ξ)), F (f(−x)) = F (f(ξ)). That is, the Fourier
transformation of a real and even hyperfunction is a real hyperfunction.
The Fourier transformation of a real and odd hyperfunction is an imaginary
hyperfunction.

C.2 Fourier transformation of hyperfunctions with
compact support

Consider a hyperfunction f(x) on Rn with compact support K, then the integral

f̂(ζ) =

∫
Rn
e−ixζf(x)dx

is well-defined for every ζ ∈ Cn. That is the Fourier transformation of f(x) can be
regarded as a function of complex variables. More precisely, consider the boundary
values representation

f(x) =
N∑
j=1

Fj(x+ iΓj0),
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and the Fourier transformation of f can be defined as

f̂(ζ) =
N∑
j=1

∫
Dj

e−izζFj(z)dz

Here,Dj denotes an integral path obtained by fixing the boundary of real neighborhood
D of K and deforming its interior into the inside of the infinitesimal wedge Rn +√
−1Γj0 which is the domain of analyticity of Fj(z).

Similar as Paley-Wiener theorem, we have

Theorem C.2.1. (Paley-Wiener-Ehrenpreis theorem) The Fourier transformation of a
hyperfunction f(x) with support contained in a compact set K is an entire function of
ζ , and for any ε, there exists Cε > 0 such that

|f̂(ζ)| ≤ Cεe
ε|ζ|+HK(Imζ).

Here,
HK(η) = sup

x∈K
xη

is called the supporting function ofK. Conversely, an entire function which satisfies the
above conditions is necessarily the Fourier transformation of a unique hyperfunction
whose support is contained in the convex hull of K.

C.3 Fourier transformation of exponentially decreasing
hyperfunctions

Definition C.3.1. Let δ be a positive constant and let Rn + iI be a tubular domain. A
function F (z) ∈ O(Rn + iI) is said to decrease exponentially with type −δ (along the
real axis), if for every compact subsetK b I and every positive ε, there exists CK,ε > 0
such that

|F (z)| ≤ CK,εe
−(δ−ε)|Rez|

uniformly for z ∈ Rn + iK. The set of all such functions is denoted by Õ−δ(Dn + iI).
Here,Dn is the compactificationRn∪Sn−1

∞ ofRn, whereSn−1
∞ is an (n−1)-dimensional

sphere at infinity. When x is a vector in Rn \ {0}, we denote by x∞ the point on Sn−1

which is represented by x, where we identify Sn−1 with Rn \ {0}/R+. The space Dn

is given the natural topology, that is:

(1) If a point x of Dn belongs to Rn, a fundamental system of neighborhoods of x is
the set of all open balls containing the point x.

(2) If a point x ∈ Dn belongs to Sn−1
∞ , a fundamental system of neighborhoods of

x(= y∞) is given by the following family

UM̃,A(y∞) = {x ∈ Rn;
x

|x|
∈ M̃, |x| > A} ∪ {a∞; a ∈ M̃},
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where M̃ is a neighborhood of y in Sn−1.

Also, define
A∗ = lim−→

I30

lim−→
δ→0

Õ−δ(Dn + iI),

and call it the space of rapidly decreasing real analytic functions.

The estimate obtained by setting δ = 0 from above

|F (z)| ≤ Ck,εe
ε|Rez|

is called an infra-exponential type along the real axis, or simply slowly increasing, and
the totality of functions satisfying this estimate is denoted by Õ(Dn + iI).

Remark C.3.2. Notice that the notations are different from Schwartz distribution. Here
we follow Sato’s language to use the terms rapidly decreasing for exponential decay and
slowing increasing for infra-exponential growth, and keep the term exponential decay
if the exponential decay rate is globally fixed on the domain.

Use the multi-index notations |α| = α1 + α2 + · · · + αn, ∂α = ∂α1
1 · · · ∂αnn for

α = (α1, · · · , αn) ∈ Nn
0 , where N0 is the set of nonnegative integers, we have

Definition C.3.3. A real valued function ϕ is in Sato’s space F if ϕ ∈ C∞(Rn) and if
there exist h, k > 0 satisfying

|ϕ|k,h = sup
α,x

|∂αϕ(x)|
h|α|α!

ek|x| <∞.

Moreover, we have the following Pringsheim’s characterization of real analytic
functions:

Theorem C.3.4. A smooth function f on X is analytic if and only if for every compact
subset K b X there are positive constant C, r = 1

h
satisfying

sup
α,x

|∂αf(x)|rα

α!
= sup

α,x

|∂αf(x)|
α!h|α|

<∞.

The above definition of Sato’s space induced by D. Kim and others [11] is
isomorphic to the space A∗ introduced by Sato and Kawai. Denote by F ′ the strong
dual space of F and call its elements Fourier hyperfunctions.

Proposition C.3.5. ([11]) For the Sato’s space F , the following statements are
equivalent,

(1) ϕ ∈ F .

(2) There exist constants h, k > 0 such that

sup
x
|ϕ(x)|ek|x| <∞, sup

x
|ϕ̂(ξ)|eh|ξ| <∞.
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Remark C.3.6. The Schwartz space consists of all locally integrable function ϕ such
that ϕ itself and its Fourier transform ϕ̂ are both rapidly decreasing, while the Sato’s
space F consists of all locally integrable function ϕ such that ϕ itself and its Fourier
transform ϕ̂ are both exponentially decreasing.

Sato [64] introduced the notation of Fourier hyperfunctions that grow at infinity no
faster than any linear exponential. In [46] Kawai claimed that the space of Fourier
hyperfunctions on Rn can be identified with the continuous dual of a suitable test
function space. Actually we can see from Proposition C.3.5 that the Sato’s space
of Fourier hyperfunctions is coinciding with the Gelfand-Shilov space S1

1(Rk). A.
G. Smirnov [70] introduced a way to construct the Fourier transoframtion of general
hyperfunctions with no growth restrictions imposed.

Proposition C.3.7. We have the following properties,

(a) The image of the Fourier transformation of Õ−δ(Dn+ i{|y| < γ}) coincides with
Õ−γ(Dn + i{|y| < δ}).

(b) The Fourier transformation is a automorphism of A∗.

Assume that the tubular domains Rn + iIj are also infinitesimal wedge of type
Rn + iΓj0.

Definition C.3.8. A hyperfunction of representation f(x) =
∑N

j=1 Fj(x + iΓj0) with
defining functions Fj(z) ∈ Õ−δ(Dn + iI) is called Fourier hyperfunction decreasing
exponentially with type −δ, or simply, an exponentially decreasing hyperfunction. The
set of all such hyperfunctions is denoted by Q−δ.

Proposition C.3.9. ([34], Theorem 8.2.6) The space Q−δ of exponentially decreasing
hyperfunctions of type −δ and the space Õ(Dn + i{|η| < δ}) of slowly increasing
holomorphic functions are in one-to-one correspondence via Fourier transformation.

C.4 Fourier transformation of slowly increasing
hyperfunctions

Definition C.4.1. A hyperfunction of representation f(x) =
∑N

j=1 Fj(x + iΓj0)

with slowly increasing holomorphic functions Fj(z) ∈ Õ(Dn + iIj) on tubular
domains Dn + iIj of type Dn + iΓj0 as defining functions,is called slowly increasing
Fourier hyperfunction, or simply, slowly increasing hyperfunction. The set of all such
hyperfunctions is denoted by Q.

Proposition C.4.2. ([34], Theorem 8.3.4) The Fourier transformation is an
automorphism of Q.

Proposition C.4.3. ([34], Proposition 8.3.2)Let F (x + iΓj) be a slowly increasing
hyperfunction which decreases exponentially outside a closed convex proper cone ∆◦.
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More precisely, there is a infinitesimal wedge Rn + iI of type Rn + iΓ0 such that when
restricting Rez outside any cone containing ∆◦ as a proper subcone, F (z) satisfies
the estimate, for a suitable δ > 0

|F (z)| = O(e−δ|Rez|)

locally uniformly for y ∈ I . Set

G(ζ) =

∫
Imz=y

e−izζF (z)dx

for any y ∈ I . Then it converges locally uniformly in ζ running over a tubular domain
Rn − iJ of type Rn − i∆0, and G(ζ) ∈ Õ(Dn − iJ). Moreover, G(ζ) decreases
exponentially outside Γ◦. Hence

F (F (x+ iΓ0)) = G(ζ − i∆0)

is well defined as a slowly increasing hyperfunction, while F is a action of Fourier
transformation.

C.5 Embeddings, localization, topology and duality

Theorem C.5.1. One has the embedding

B∗(R
n) ↪→ Q−δ ↪→ Q.

Here, B∗(Rn) is the space of hyperfunctions with compact support. In addition, the
definition of Fourier transformation for these spaces is consistent with embeddings.

Theorem C.5.2. One has the embedding

A∗ ↪→ Ā ↪→ Q.

Here, A∗ is the space of rapidly decreasing real analytic functions, and Ā is the space
of slowly increasing real analytic functions

Ā = lim−→
δ→0

Õ(Dn + i{|y| < δ}).

Remark C.5.3. Notice that Q can be naturally mapping into B, and the mapping is
surjective. Moreover, the mapping Q−δ → B(Rn) is also surjective.

Proposition C.5.4. For every slowly increasing hyperfunction f(x) and exponential
decreasing hyperfunction g(x), the convolution

f ∗ g =

∫
Rn
f(x− y)g(y)dy

can be defined, and it is a slowly increasing hyperfunction. Further more, the product
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of a slowly increasing function and a slowly increasing real analytic function is well
defined as a slowly increasing hyperfunction. Moreover, we have the relation:

f̂ ∗ g = f̂ · ĝ.

Proposition C.5.5. Every local operator J(D) =
∑
bαD

α with constant coefficients
acts on every Fourier hyperfunction f(x), i.e. J(D) : Q → Q (or Q−δ → Q−δ).
Moreover,

̂J(D)f(x) = J(ξ) · f̂

holds. If g(x) is an exponentially decreasing hyperfunction, then

J(D)(f ∗ g) = J(D)f ∗ g = f ∗ J(D)g

also holds.

Now we are going to discuss the localizability of Fourier hyperfunctions. Fourier
hyperfunctions can also be defined cohomologically by using Õ . One can recognize it
as a sheaf of a class of holomorphic functions with growth order as x→∞ such as Õ .

Consider the compactification of Rn

D = Rn t Sn−1
∞

by adding points at infinite at all directions.

Take a fundamental system of neighborhoods of a point at infinity a∞ as the
following family

U∆,A(a∞) = {x ∈ Rn;x/|x| ∈ ∆, |x| > A} t {x∞;x ∈ A},

where ∆ is a neighborhood of a in Sn. One has C is embedded into Dn + iRn. Denote
the closure of a set V taken in Dn or Dn + iRn as V , and the one taken in Rn and Cn is
V̄ . Then Dn + iRn can be written as Cn.

The function space Õ can be naturally be regarded as the space of global sections
of a sheaf on Dn + iRn.

Proposition C.5.6. Dn ⊂ Dn+iRn is purely n-codimensional with respect to the sheaf
Õ 1. The derived sheaf Q = H n

Dn(Õ) is called the sheaf of slowly increasing Fourier
hyperfunctions. Also Q|Rn = B.

Proposition C.5.7. Q is a flabby sheaf on Dn.

One can define the sheaf consisting of exponentially decreasing hyperfunctions of
all types as

Q∗ , lim−→
δ→0

Q−δ.

1 A closed set A in a topological space X is purely n-codimensional with respect to the sheaf F over
X if Hj

A(F ) = 0 for j 6= n. For instance, the Euclidean spaceRn in Cn is purely n-codimensional with
respect to the sheaf O .
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Since Q∗|Rn = B, the quotient sheaf Q/Q∗ may be regarded as the one extracting
only growth order from Fourier hyperfunctions.

For f(x) ∈ Q(Dn), define

supp∞ f , supp{f(x) mod Q∗}

and call it the essential support of f .

The relationship between growth order and singular spectrum is

Theorem C.5.8. For f(x) ∈ Q(Dn), then the following statements are equivalent:

(i) S. S. f(x) ⊂ Dn + iΓ◦dx∞.

(ii) supp∞ f̂(ξ) ⊂ Γ◦.

Corollary C.5.9. A hyperfunction f(x) ∈ B(Rn) is micro-analytic at (x,
√
−1ξdx∞)

if and only there exist a conical neighborhood Γ◦ of ξ and a Fourier hyperfunction g
such that supp∞ ĝ(ξ) ∩ Γ◦ = ∅ and that the difference f(x) − g(x) is real analytic on
a neighborhood of x.

Proposition C.5.10. ([34], Chapter 8, Page 392) We have the embedding

B∗(R
n) ↪→ Q → B(Rn).

For any f ∈ B(Rn), there exists a set of slowly increasing functions among defining
functions of f in the sense of hyperfunctions.

In Kaneko’s book [34], he introduce a topology into the hyperfunction space and
make it to be a Fréchet space (also a Montel space 2 ). By giving suitable topologies,
he shows thatA∗(Dn) and Q(Dn) are topologically dual to each other. Such duality can
be extended to the duality between the space A∗(K) and the Q(K), while the former
is the space of all rapidly decreasing real analytic functions defined on a neighborhood
of compact subset K of Dn, and the latter is the the space of all slowly increasing
hyperfunctions with support contained in K. The above duality includes the duality
between B(K) and A(K). In Morimoto [59], we see the duality of B(K) and A(K),
while B(K) is a Fréchet-Schwartz space, and A(K) is a dual Fréchet-Schwartz space.

2A Montel space is a barrelled topological vector space where every closed and bounded set is
compact.
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Fourier-Bros-Iagolnitzer transform

D.1 Fourier-Bros-Iagolnitzer transform

Definition D.1.1. The standard Fourier-Bros-Iagolnitzer (abbr. FBI) transform is
defined as

Th : S ′(Rn)→ S ′(R2n) ∩ C∞(R2n)

by

Thu(x, ξ) = 2−
n
2 (πh)−

3n
4

∫
e
√
−1
h

(x−y)ξ− 1
2h

(x−y)2u(y)dy,

which can be interpreted as the Fourier transform modified by a Gaussian distribution.
The Gaussian distribution localize in position and the Fourier transform localize in
frequency, hence Thu describes the microlocal property of u.

Proposition D.1.2. Here we list some rudimentary properties of the FBI transform:

(1) If u ∈ S ′(Rn), then e
ξ2

h Thu(x, ξ) is a holomorphic function of z = x−
√
−1ξ.

(2) If u ∈ L2(Rn), then Tu ∈ L2(Rn) and ‖Tu‖L2(Rn) = ‖u‖L2(Rn).

(3) If u ∈ S ′(Rn), then hDxTu = (ξ +
√
−1hDξ)Tu = T (−hDyu).

(4) We have u = T ∗Tu, where T ∗ is defined as

T ∗v(y) = 2
n
2 πh−

3n
4

∫
e−
√
−1
h

(x−y)ξ− 1
2h

(x−y)2v(x, ξ)dxdξ,

which can be interpreted as an oscillatory integral with respect to ξ.

The standard FBI transformation is easy to use, but it is not invariant under change
of variables. Introduce a general analytic phase function

ϕ(β, x), β = (βx, βξ) ∈ R2n, x ∈ Rn
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satisfying the same microlocal properties as (βx − x)βξ − 1
2
√
−1

(βx − x)2:

ϕ = 0, ϕ′x =
√
−1βx, for βx = x

Imϕ ≥ C|βx − x|2, for real β, x

and define the general FBI-transform as

Tϕ,h(u)(β) =

∫
e
√
−1
h a(β, x, h)χ(x)u(x)dy,

where a is an elliptic analytic symbol, χ is a cut-off function.

If we just want to consider the microlocal property near (x0, ξ0), then we only need
to define β and ϕ close to (x0, ξ0) and χ = 1 near x0.

Say u is of exponentially decay microlocally at (x0, ξ0) ∈ T ∗Rn if

Tϕ,h(u)(β) = O(e−
c
h ), ash→ 0

for some c > 0 uniformly in a neighborhood of (x0, ξ0). The definition is independent
on the choice of χ, a and ϕ.

Definition D.1.3. The analytic wave front set WFa(u) of u is the set of all points
β = (x, ξ) ∈ T ∗Rn \ 0 where u is not of exponentially decay microlocally.

Proposition D.1.4. We have WFa(u) ⊂ T ∗Rn \ 0. Moreover, Sato’s definition of
singular spectrum S. S.(u) equal to WFa(u)/R+.

Example D.1.5. For τ ≥ 1, consider the function

u =

{
e−

1
xτ forx > 0,

0 forx ≤ 0.

We have WF(u) = 0, WFa(u) = {(0, ξ) : ξ 6= 0}.
Let us check the case τ = 1. Since

(
d

dx
)ne−

1
x = e−

1
xx−n−1[(−1)n+1n! +O(x)],

and the maximum of e−
1
xx−n−1 is achieved at x = 1

n+1
. In a neighborhood of the origin,

|( d
dx

)ne−
1
x | = O(e−n−1(n+ 1)n+1n!).

For FBI transform

Thu(0, ξ) =

∫ ∞
0

e−
1
x
−
√
−1
h
xξ− 1

2h
x2dx, ξ = ±1.
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By scaling x = t
√
h, we have

Thu(0,±1) =
√
h

∫ ∞
0

e
− 1√

h
[ 1
t
+
√
−1tξ+ t2

2

√
h]
dt.

Heuristically, the critical point of the phase is at t = e∓
π
4

√
−1 and by method of

stationary phase, the leading term of Thu(0,±1) will be
√
he∓

π
4

√
−1e
−
√
2√
h . It shows

that (0, ξ) ∈WFa(u).

Remark D.1.6. Usually, there are two ways to study analytic singularities. One is
introduced in this section using FBI transform to study analytic wavefront set, the other
is use Sato’s hyperfunctions and microfunctions to study the analytic spectrum. Those
two ways are in some sense equivalent, for instance the equivalence as showed in Bony
[5] in the category of distributions. We can choose a suitable way to deal with different
problems.
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Appendix E

Euler’s hypergeometric differential
equation

Every second order linear ordinary differential equation with three regular singular
points can be transformed into a standard form, i.e. the Euler’s hypergeometric
differential equation. Solutions of such equations gives the Gaussian hypergeometric
functions, which are special functions represented by the hypergeometric series. The
Gaussian hypergeometric functions includes many other special functions as specific or
limiting cases. For more information, one can check [14], [19], [76].

E.1 Euler’s hypergeometric differential equation

The Euler’s hypergeometric differential equation is an second order ordinary differential
equation of form

z(1− z)
d2w(z)

dz2
+ [c− (a+ b+ 1− z)]

dw(z)

dz
− abw(z) = 0, (E.1)

which has three regular points: 0, 1 and∞.

The Euler’s hypergeometric differential equation is a special case of Riemann’s
differential equation (also known as Papperitz equation), with three regular singular
points p, q, r on the Riemann sphere, rather than merely at 0, 1, and∞,

d2w(z)

dz2
+
[1− α− α′

z − p
+

1− β − β′

z − q
+

1− γ − γ′

z − r

]dw
dz

+
[αα′(p− q)(p− r)

z − p

+
ββ′(q − r)(q − p)

z − q
+
γγ′(r − p)(r − q)

z − r

] w

(z − p)(z − q)(z − r)
= 0.

The pairs of the exponents with respect to the singular points p; q; r are α, α′; β, β′; γ, γ′

respectively subject to the condition

α + α′ + β + β′ + γ + γ′ = 1. (E.2)



The equation is completely determined by the position of the three singular points and
the pairs of exponents at each point, i.e., a total of eight complex parameters (not nine,
because of Formula (E.2)).

Theorem E.1.1. Any second order ordinary differential equation with three regular
singular points can be converted to Euler’s hypergeometric differential equation (E.1)
by a change of variables.

Proof. See [76], Chapter 15.



Appendix F

Hermite functions

Hermite functions are solutions of Schrödinger equation for one harmonic oscillator in
quantum mechanics. We need them to study the analytic singularities in the cases of the
elliptic radial point and the mixed type radial point in sections 5.2, 6.1.1 and 6.1.3.

F.1 Hermite functions

Definition F.1.1. There are two different definitions of Hermite polynomials. One is
the Hermite polynomials which has usually been used in probability theory:

Hen(x) = (−1)e
x2

2
dn

dxn
e−

x2

2 ,

and the other is the physicists’ Hermite polynomials:

Hn(x) = (−1)ex
2 dn

dxn
e−x

2

.

Each one of the Hermite polynomials is a re-scaling of the other.

Hn(x) = 2
n
2Hen(

√
2x), Hen(x) = 2−

n
2Hn(

x√
2

).

Without loss of generality, we will follow the physicists’ definition of Hermite
polynomials.

The Hermite polynomials are given by the exponential generating function

e2xt−t2 =
∞∑
n=0

Hn(x)
tn

n!
.
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Definition F.1.2. The Hermite functions are defined by

ϕn(x) = (2nn!
√
π)−

1
2 e−

x2

2 Hn(x)

= (−1)n(2nn!
√
π)−

1
2 e−

x2

2
dn

dxn
e−x

2

.

These functions satisfy ∫ ∞
−∞

ϕn(x)ϕm(x)dx = δnm

and form an orthonormal basis of L2(R). Notice that the Hermite functions ϕn(x)
satisfy a Schrödinger equation for one harmonic oscillator in quantum mechanics:

ϕ′′n(x) + (2n+ 1− x2)ϕn(x) = 0.

Proposition F.1.3. The Hermite functions are exponential decreasing real analytic
functions.

Proposition F.1.4. The Hermite functions ϕn(x) form an orthonormal basis of L2(R)
which diagonalizes the Fourier transform operator.

Proof. We have

e−
x2

2
+2xt−t2 =

∞∑
n=0

e−
x2

2 Hn(x)
tn

n!
.

The Fourier transformation of the left hand side is given by

F (e−
x2

2
+2xt−t2)(k) = (2π)−

1
2

∫ ∞
−∞

e−ixke−
x2

2
+2xt−t2dx

= e−
k2

2
−2ikt+t2

=
∑

e−
k2

2 Hn(k)
(−it)n

n!

The Fourier transformation of the right hand side is

F (
∞∑
n=0

e−
x2

2 Hn(x)
tn

n!
) = (−i)ne−

k2

2 Hn(k).

Then we have
F (e−

x2

2 Hn(x)) = (−i)ne−
k2

2 Hn(k).

The Proposition F.1.4 gives an essential explanation of Proposition C.3.7 (b).
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