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Introduction

A composite index is an aggregated variable comprising individual indicators and weights

that commonly represent the relative importance of each indicator (Nardo et al., 2005).

Composite indices are often used to measure latent phenomena or to summarize complex

information in a small number of variables. For example, the Corruption Perception

Index (CPI; Transparency International, 2013) quantifies the level of corruption in various

countries. Survey variables on various types of people with different foci of questions and

various expert opinions are aggregated to build this index. The CPI can be used to

generate a cross country ranking (Transparency International, 2013), or to research the

relationship between curruption and foreign direct investment (FDI; Habib and Zurawicki,

2002) or gender inequality (Branisa et al., 2013). The KOF Index of Globalization (Dreher,

2006) quantifies globalization across countries, which is composed of economic, social and

political globalization. Each facet of globalization is measured as a linear combination

of relevant correlates, e.g., trade in percent of GDP, number of McDonald’s restaurants

per capita and participation in the U.N. security council missions. This index is used to

generate a cross country ranking (KOF Swiss Economic Institute, 2013), or to study the

relationship between globalization and growth (Dreher, 2006; Rao et al., 2011) or human

rights (Potrafke, 2014).

It is crucial to choose correct weights for the variables that build a composite index.

There are several approaches to assign weights available in the literature. Apart from

subjective and non-data driven ways to assign weights, Principal Component Analysis
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(PCA; Filmer and Pritchett, 2001) is a popular approach, which determines weights, so

that the largest variations in variables are emphasized in the resulting composite index.

Factor Analysis (FA; Sahn and Stifel, 2000) and Multiple Correspondence Analysis (MCA;

Booysen et al., 2008) determine weights similarly. PCA may perform poorly if the largest

variations in variables are not informative, which occurs when observed variables contain

large measurement errors or variations coming from other latent variables. For example,

one may try to measure cross country corruption using survey variables. The value of

the survey variables may not only be influenced by corruption, but also the quality of

journalism, which report the corruption in the country to the public, or the attitude of

surveyees. To quantify the level of globalization, one may use the number of McDonald’s

restaurants in a country. But this variable is also influenced by the presence of competitors

such as Wendy’s Burger or Burger King. In some countries burger bread may not be

popular because of low quality wheat caused by climate and land conditions. If the

largest variations in variables come from such measurement errors or irrelevant latent

factors, PCA will measure something different than the concept that a composite index

is supposed to capture.

The main contribution of this work is applying Partial Least Squares (PLS; Wold, 1966b)

to assign weights in composite indices to avoid the aforementioned problem of PCA.

PLS assigns weights, so that variables showing high covariance with respect to particular

outcome variables are emphasized in the composite index. Consequently, PLS weights

draw information from the structural relationship between outcome variables and a la-

tent concept, which is manifested to observed variables. For example, if one expects that

globalization influences economic growth significantly, one can build a globalization index

with weights, which emphasize variables covarying with economic growth. If globaliza-

tion actually has significant influence on growth and the observed variables contain certain

amount of variations from globalization, PLS will measure globalization better than PCA,

especially when the largest variations in variables are not related to globalization. Using
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PLS has the following additional advantages. First, a composite index using PLS often

leads to a better prediction for a certain outcome variable than a composite index using

PCA. As a result, one can generate a composite index particularly relevant for the out-

come variable. This procedure is especially useful when the latent concept of interest is

multidimensional. For example, globalization may have several dimensions, each of them

relevant for economic growth, human rights and inequality. PLS can generate composite

indices, each tailored to one of these outcome variables. Second, a comparison between

PLS and PCA weights shows which variables are relevant for the prediction of a particular

outcome variables. On the other hand, PLS had a caveat that coefficients in a regression

analysis cannot be interpreted as causal relationship, because a composite index based on

PLS already contains information from the outcome variable.

In practice variables that enter a composite index are often non-metric (ordinal and nom-

inal). For example, the level of violence against women and the discrimination against

women in terms of access to loans are measured in ordinal scale, which are used to build

a composite index regarding gender inequality (Branisa et al., 2013). PCA and PLS

can be applied on non-metric variables only with a special treatment. As the second

contribution of this work, we review various PCA and PLS algorithms for non-metric

variables available in the literature, which have different motivations and assumptions

on data generating processes (DGPs). This study provides extensive simulation studies

to compare the performance of the methods under typical DGPs and make recommen-

dations for practitioners. In real data applications, we select appropriate methods for

non-metric variables based on model selection criteria. The methods under consideration

are dummy coding (Filmer and Pritchett, 2001), multiple correspondence analysis (MCA;

Greenacre, 2010), the aggregation method (Saisana and Tarantola, 2002), the regular sim-

plex method (Niitsuma and Okada, 2005), the optimal scaling method (Tenenhaus and

Young, 1985), non-metric partial least squares regression (NM-PLSR; Russolillo, 2009)

and categorical principal component analysis (CATPCA; Meulman, 2000). Additionally,
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we consider three methods from Kolenikov and Angeles (2009), the normal mean coding,

ordinal PCA/PLS and polychoric PCA, and modify polychoric PCA in a PLS context,

which we call polyserial PLSR.

This dissertation is composed of three essays, which are summarized in the followings.

Essay 1: Composite Indices Based on Partial Least Squares

This essay generates three composite indices, which are two wealth indices and a glob-

alization index, and compares and selects the treatment of non-metric variables in PCA

and PLS based on a simulation study and model selection criteria.

First, we compare composite indices based on PCA and PLS with various treatments of

non-metric variables in terms of prediction performance using simulation studies, when

we use composite indices to summarize variables. The results show that composite indices

based on PLS outperform composite indices based on PCA and dummy coding performs

satisfactorily compared to more sophisticated statistical procedures. We favor dummy

coding not only because it performs good, but also it is easy to implement and interpret.

We consider three applications. First, the Body Mass Index (BMI) of adult population

in Kenya is predicted by a wealth index. A wealth index measures household wealth

typically as a linear combination of household asset possessions. The BMI is expected to

be influenced by wealth (Wittenberg, 2013), while low wealth may lead to undernutrition

or overweight. Second, household expenditure in Indonesia is predicted by another wealth

index. A wealth index is often used to proxy household expenditures and the appropriate

weights for this task is an important question. Third, economic growth is predicted by the

KOF Index of Globalization (Dreher, 2006) with new weighting schemes. Globalization

influences economic growth (Dreher, 2006; Rao et al., 2011) and we try to find the weights

better predicting economic growth.
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Coherent with the simulation study, the results indicate that composite indices using

PLS show better prediction performance and fitting than composite indices using PCA.

Model selection statistics support the use of dummy coding as the treatment of non-metric

variables. PLS and PCA generate substantially different weights and coefficients, which

can be compared to find out the relevant variables in a composite index for the prediction

of a particular outcome variable. More wealth predicts higher BMI and more household

expenditure, while globalization predicts higher economic growth.

Essay 2: Treatments of Non-metric Variables in Partial Least Squares and

Principal Component Analysis

In this essay, the treatments of non-metric variables in PCA and PLS are reviewed in more

detail followed by extensive simulation studies to make recommendations under typical

DGPs and a wealth index application.

After reviewing the treatments of non-metric variables in PCA and PLS in detail, simula-

tion studies follow. The simulation design is changed, so that a composite index is used to

capture a latent variable. We compare the performance of PCA- and PLS-based compos-

ite indices with the treatments under various DGPs, which are selected considering typical

DGPs in practice. Based on the simulation results, we provide recommendations for the

treatments under various DGPs. Composite indices based on PLS are either superior or

as good as composite indices based on PCA. PLS with dummy coding is often attractive

when the variables building the composite index contain little variations from the latent

variable of interest. Other methods, such as NM-PLSR, PCA with normal mean coding,

ordinal PCA and PLS, show good performance in certain conditions.

As our application we revisit the wealth index to predict household expenditure in In-

donesia. We perform a model selection in terms of the number of scores, control variables
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and the treatments of non-metric variables at the same time to improve the prediction

performance. Model selection statistics suggest again that PLS outperforms PCA and

dummy coding is an attractive treatment for non-metric variables. Using two scores and

introducing control variables bring noteworthy gains, with which PLS and PCA show

even larger differences in terms of weights and coefficients. Wealth again predicts higher

expenditure.

Essay 3: An Application of Partial Least Squares to the Construction of the

Social Institutions and Gender Index (SIGI) and the Corruption Perception

Index (CPI)

This work focuses on measuring gender inequality and corruption using composite indices

based on PLS and PCA and studies the effects of gender inequality on female education,

child mortality, fertility and corruption.

Gender inequality is believed to have negative effects on the development of the society

(Sen, 1999) in addition to the deprivation of women from basic rights. Branisa et al.

(2013) have created the Social Institutions and Gender Index (SIGI) to measure social

institutional aspects of gender inequality. The SIGI is used to explain several gender

outcomes, i.e., female education, fertility, child mortality and corruption, measured by the

Corruption Perception Index (CPI; Transparency International, 2013). Branisa et al.’s

weighting scheme involves arbitrary judgements and could be improved to predict the

outcome variables better. Therefore, we change the weighting scheme of the SIGI to PCA

and PLS and redo the empirical exercises to explain the gender outcomes.

The results show that PLS and PCA again generate substantially different weights and

coefficients. For female education and child mortality, Partial Least Square Regres-

sion (PLSR) shows better prediction performance than Principal Component Regression
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(PCR) and we could find out the variables which particularly matter for the prediction of

the respective outcome variables. Both PCR and PLSR find that high gender inequality

leads to more fertility and high corruption, while for female education and child mortality

the PLSR find significant relationship, while the PCR doesn’t. The significant coefficient

estimates from the PLSR cannot be interpreted as a causal relationship because PLS

weights contain information from the outcome variable. But since PLSR is more robust

against measurement errors, we can suspect that the insignificant coefficient estimates

from the PCRs are caused by measurement errors. Dummy coding is selected as the

treatment of non-metric variables based on estimated prediction performance, because it

generally works well, albeit not always the best, and is easy to implement and interpret.

Additionally, we take a close look on the CPI. The CPI is a composite index using a

simple average as the weighting scheme. If all variables building the CPI are not equally

important, a simple average is not the best way of aggregating. Therefore, we use PCA

and PLS to generate weights for the CPI. We select the variables differently to drop low

quality data and not to emphasize certain variables without good reasons. With these

new CPIs we find again that gender inequality leads to more corruption.

Concluding Remarks

In this study, we use both PCA and PLS to generate composite indices, while giving a

special attention on the treatments of non-metric variables. We review the treatments

available in the literature and compare them by means of simulation studies. The simu-

lation studies suggest that composite indices based on PLS outperform composite indices

based on PCA. PLS with dummy coding is often attractive in terms of performance,

the ease of implementation and interpretation. Additionally, we check the performance

of the treatments in real data analyses using cross-validations. For the majority of our
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applications, PLS with dummy coding shows good performance and PLS-based compos-

ite indices outperformed PCA-based composite indices. Consequently, we could generate

composite indices tailored to particular outcome variables, and the comparison between

PLS and PCA weights and coefficients showed which variables in a composite index were

particularly relevant for a certain outcome variable.
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Chapter 1

Composite Indices Based on Partial

Least Squares

with Stephan Klasen, Axel Dreher and Tatyana Krivobokova

Abstract

In this paper, we compare Principal Component Analysis (PCA) and Partial Least Squares

(PLS) methods to generate weights for composite indices. In this context we also consider

various treatments of non-metric variables when constructing such composite indices. Us-

ing simulation studies we find that dummy coding for non-metric variables yields satisfac-

tory performance compared to more sophisticated statistical procedures. In our applications

we illustrate how PLS can generate weights that differ substantially from those obtained

with PCA, increasing the composite indices’ predictive performance for the outcome vari-

able considered.
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1.1 Introduction

Composite indices are often used in economics to summarize complex information into

a single number with the aim to simplify more complex phenomena or for comparative

and ranking purposes. A composite index is an aggregated variable comprising individual

indicators and weights that commonly represent the relative importance of each indicator

(Nardo et al., 2005). That is, a composite index is a special linear combination of several

variables, related to a certain concept. An example of a composite index aiming to

capture a latent variable is the wealth index commonly used to proxy for income in

Demographic and Health Surveys (Rutstein and Johnson, 2004), while composite indices

used for aggregation and ranking purposes include the Summary Innovation Index (DG

Enterprise, 2001). In regression models such indices lessen the multicollinearity problem

and can be easier to interpret than original variables.

Naturally, the quality of a composite index depends on the choice of weights, for which

the literature provides several possibilities. Apart from the researcher’s subjective choice,

weights based on the variance-covariance structure of variables are most widely used.

Principal Component Analysis (PCA; e.g. Filmer and Pritchett, 2001), Factor Analysis

(FA; e.g. Sahn and Stifel, 2000) and Multiple Correspondence Analysis (MCA; e.g. Booy-

sen et al., 2008) are popular methods to set weights in a composite index. All of these

techniques are meant to extract the largest variation in the variables building a composite

index. However, often the largest variation is not related to a response variable, which one

wishes to explain using the composite index. Therefore, we propose to apply Partial Least

Squares (PLS; Wold, 1966b) to build composite indices in order to find the weights for

the variables that are most relevant for a particular response variable. To put it simply,

while PCA and related methods find the weights which maximize the covariance of the

vector of independent variables, PLS weights maximize the covariance between covariates

and a certain response variable. In consequence, PLS extracts factors relevant to a partic-
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ular response variable, instead of build an ‘all-purpose’ index. Therefore, we see several

advantages in the application of PLS when constructing composite indices. First, using

PLS weights designed for a certain outcome variable should improve the prediction of this

variable via the resulting composite index. Such composite indices can be used for pre-

diction and as diagnostic tools that shows which indicators included in a composite index

are particularly important for the outcome variable, thus adjusting the composite index

to the particular problem at hand. Second, comparing PCA- and PLS-based weights, one

can infer which variables in the composite index are particularly important for a certain

response. Third, by definition one can expect PLS to be more robust than PCA in the

presence of measurement errors. On the other hand, a composite index based on PLS

has a caveat, that one cannot infer a causal relationship from regression analysis, since

the composite index already contains information from the response variable. It seems to

be possible to circumvent this problem using a simple two step procedure to make PLS

scores exogenous in a regression analysis, which is not the focus of this study.1

Similar to PLS, weighting schemes based on regression (Ravallion, 2012a,b) consider the

relationship between a particular response variable and covariates. But weighting based

on regression is vulnerable against multicollinearity of covariates, because it can involve

an inversion of a (nearly) singular matrix, whereas PLS doesn’t. PLS is a technique for

multicollinear data (Naes and Martens, 1985).

Many variables used to build composite indices, especially in economic applications, are

non-metric, which hinders direct application of PLS and PCA methods, because PLS and

PCA are primarily developed for continuous variables. Therefore, in this work we also

discuss and compare in simulations the prediction performance of various treatments of

non-metric variables in PCA and PLS available in the literature. It turns out that using

1Consider that we have two outcome variables, Ytrain and Ytest, whereby Ytest = Xβtest + εtest
and E(εtest|Ytrain, X) = 0. We build a PLS score using a relationship between Ytrain and X, so that
S1 = XXtYtrain/ ‖XtYtrain‖. Obviously, it follows that E(εtest|S1) = 0, so that a causal interpretation
of Ytest on S1 is possible.
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dummy coding typically provides very good predictions and is easy to interpret.

To illustrate the performance of PCA- and PLS-based composite indices we consider

wealth and globalization indices. A wealth index aims to describe household wealth

based on the possession of certain asset variables. This index is particularly attractive in

the context of developing countries, since conventional measurements such as income or

consumption expenditures are hard to obtain or of low quality (for other advantages of

wealth indices see Rutstein and Johnson, 2004). Therefore, in this work we build wealth

indices based on the Kenyan Demographic Health Survey of 2003 (Central Bureau of

Statistics (CBS) Kenya et al., 2004) and on the Indonesian Family Life Survey from the

year 2000 (Strauss et al., 2004). In the Kenyan example we choose the respondent’s BMI

to be the response variable that we seek to correlate with the wealth index. In the case

of Indonesia, we choose household expenditures as the response variable to assess which

weights of the wealth index provide a particularly good proxy for expenditures. The

globalization index we chose for our analysis is the KOF Index of Globalization (Dreher,

2006), which we relate to economic growth. The index aims to quantify the phenomenon

of globalization, which is defined as the process of creating connections between actors

at multicontinental distances, which are mediated through a variety of flows including

people, information and ideas, capital and goods (based on Clark, 2000; Norris, 2000;

Keohane and Nye, 2000). The data for this index come from Dreher (2006) and economic

growth is used as an outcome variable to create a version of the Globalization Index whose

weights are particularly closely related to growth.

The paper is organized as follows. In Section 1.2 we review basic principles of PLS

and PCA, various treatments of non-metric variables for these algorithms and conduct a

simulation study. Section 1.3 presents the analysis of the three data sets and the indices

we obtain, while we conclude in Section 1.4.
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1.2 PCA and PLS with Non-metric Variables

1.2.1 PCA and PLS algorithms

Let X be a n×k, k < n, centered matrix, which contains n observations of k-dimensional

vector of (metric) covariates. PCA is a natural way to reduce the covariate dimension k

and avoid collinearity problems in a linear regression model

Y = Xβ + ε, (1.1)

for Y = (y1, . . . , yn)t, β = (β1, . . . , βk)
t and ε = (ε1, . . . , εn)t, with E(ε) = 0n, cov(ε) =

σ2In. The first principal component equals to such a linear combination of covariates,

that has the maximum empirical covariance, that is P1 = Xu1, where

u1 = arg max
‖u‖=1

utX tXu

is the k-dimensional first eigenvector of X tX, which corresponds to the maximum eigen-

value. Further principle components are found from the same maximization problem

under the orthogonality constraint, that is

ui = arg max
‖u‖=1

utX tXu, subject to ui⊥ . . .⊥u1, i = 2, . . . , k,

which corresponds to the ith eigenvector of X tX.

The PLS algorithm follows a similar paradigm, except that the squared empirical covari-

ance between X and Y is maximized, that is S1 = Xω1 with

ω1 = arg max
‖ω‖=1

ωtX tY Y tXω ∝ X tY
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and further ωi solving the same optimization problem, again subject to mutual orthogo-

nality of all ωi, . . . , ω1.

Composite indices are typically built using only the first component, we therefore define a

PCA-based composite index as P = Xu1 and a PLS-based composite index by S = Xω1.

This makes the difference between both indices apparent: PCA-based indices use the first

eigenvector of X tX as weights, while PLS-based indices have weights X tY .

Finally we note, that PCA and PLS depend on the scaling of variables (Wold et al., 2001;

Keun et al., 2003). Autoscaling is commonly used which not only centers each variable,

but also scales it to unit variance.

1.2.2 Non-metric Variables in PCA and PLS

Composite indices often include non-metric variables. In the following we discuss several

approaches available in the literature to perform PCA and PLS in the presence of non-

metric variables. The outcome variable is always metric.

The first approach is to transform each category of a non-metric variable to a variable

and PCA or PLS is performed as usual. This approach is used in dummy coding

(Filmer and Pritchett, 2001), multiple correspondence analysis (MCA; Greenacre,

2010), the aggregation method (Saisana and Tarantola, 2002) and the regular sim-

plex method (Niitsuma and Okada, 2005). Dummy coding just translates each cat-

egory of a non-metric variable into a dummy variable. Consequently, each non-metric

variable is transformed to an indicator matrix, where one category may be omitted for

the ease of interpretation. MCA extends simple dummy coding in that the columns of

the obtained indicator matrix are weighted so that categories with many incidences and

categories with few incidences are equally important. An aggregation method can be

used for observations belonging to clusters, replacing each dummy variable in the indi-

cator matrix with the cluster level average. The regular simplex method transforms
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each unique category of a non-metric variable to the corresponding vertex coordinate of

a regular simplex. The dimension of the regular simplex is selected so that the number

of vertices and the number of unique categories are equal.

Another approach is to scale each unique category of non-metric variables. Afterwards,

scaled variables are considered to be metric and PCA or PLS are applied as usual. This

technique is used in the optimal scaling method (Tenenhaus and Young, 1985), non-

metric partial least squares regression (NM-PLSR; Russolillo, 2009) and categori-

cal principal component analysis (CATPCA; Meulman, 2000). These methods involve

an optimization with respect to category values. The optimal scaling method maxi-

mizes the sum of variances of the scaled variables. NM-PLSR maximizes the covariance

between the first PLS score and the outcome variable. CATPCA maximizes the sum of

variances of the PCA scores. The optimizations in all three methods require appropriate

constraints for a solution to exist.

We also mention polychoric PCA (Kolenikov and Angeles, 2009), which assumes that

each observed ordinal variable is generated by a normally distributed latent process, which

is discretized at unobserved thresholds. Polychoric PCA is performed on the variance-

covariance matrix of latent variables, obtained according to the assumed data generating

process. Autoscaling is applied to the variables building the scores. Normal mean

coding is a related method based on the same distributional assumption as polychoric

PCA from the same authors, which scales each category value of an ordinal variable as the

group mean of the latent process. There is an approach to use polychoric and polyserial

correlation in the context of PLS (Cantaluppi, 2012), but this paper restricts its attention

to a simple method in analogy to polychoric PCA, which is named as polyserial PLSR.

We apply autoscaling to regressand and regressors and calculate the polyserial or Pearson

correlation between them. The correlation vector is standardized to unit length, which is

used as the weight vector to extract the PLS score.
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Ordinal PLS or PCA treats ordinal variables as numerical variables and apply PLS or

PCA respectively. These methods are not recommended since the scaling of an ordinal

variable usually contains large errors, but it can serve as a reference for other methods.

In the following we compare various treatments of non-metric variables in PCA and PLS

in a simulation study in terms of prediction performance. In the i-th run out of M = 500

Monte Carlo runs, data are generated according to model (1.1)

Yi = Xiβ + εi, i = 1, . . . ,M,

where the number of observations is n = 5000 and the covariate dimension is k = 50.

Regressors are simulated from the standard multivariate normal distribution. The cor-

relation between each pair of variables is generated from the uniform distribution on

[−0.999, 0.999]. Each regressor is divided by its standard deviation, so that the variance

equals 1. We generate β once from the standard normal distribution, which does not

change over Monte Carlo simulations. The error term is generated from εi ∼ N (0n, 9In).

If a variable is set to be a non-metric variable, it is discretized. To have mj number of

unique categories for the j-th variable, mj − 1 thresholds are generated from the uniform

distribution on [0, 1]. Next, the empirical CDF of the variable is calculated and we

divide the quantiles to mj number of segments using the thresholds. The variable values

corresponding to the lowest segment to the highest segment receive integer values from

zero to mj − 1 respectively. The number of unique categories mj is generated once and

does not change over Monte Carlo runs. Thereby, mj is generated from the Poisson

distribution with mean λ and 2 is added to guarantee that each variable has at least two

unique values. For example, if the expected number of unique categories is set to be 2.5,

mj = m∗j + 2 where m∗j ∼ Poi(λ = 0.5). Most of the treatments imply particular scalings

for non-metric variables, which we do not change. But for dummy coding three types of

data scalings are considered: no scaling, auto scaling and block scaling. For block scaling,
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the sum of variances from the dummy variables from each non-metric variable is set to

be one.

We consider four scenarios:

Expected number of unique categories

2.5 10.5

Non-metric 10% Scenario 1 Scenario 3

variables 50% Scenario 2 Scenario 4

That is, under Scenario 1 matrix X contains 10% of non-metric variables and the number

of unique categories over all categorical variables is 2.5 in the mean and so on.

Prediction performance is measured by the average of the mean squared error of prediction

(MSEP) defined by

MSEP =
1

Mn

M∑
i=1

(Xiβi − Uiγ̂i)t(Xiβi − Uiγ̂i)

The columns of U include the intercept and the first score, that is, U = (1n, P ) for PCA

and U = (1n, S) for PLS, where 1n = (1, . . . , 1)t is a n-dimensional vector of ones and P

and S as defined in Section 1.2.2. The coefficient vector γ̂i is the OLS coefficient estimates

of Yi on Ui.

Table 1.1: Prediction performance in terms of MSEP

Scenario 1 Scenario 2 Scenario 3 Scenario 4
dummy PCR (autoscaling) 71.09 71.73 70.93 71.24
dummy PLSR (autoscaling) 10.72 11.66 11.49 14.99
polychoric PCR 70.91 71.09 73.25 73.89
polyserial PLSR 11.59 13.64 16.73 21.66
CATPCR 70.93 71.16 70.87 71.07
NM-PLSR 15.50 35.27 14.81 33.36
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Table 1.1 reports the simulations results. First, we observe that PLS-based methods

perform better than PCA-based ones in all settings. Furthermore, PCA-based methods

do not differ much from one to the other in terms of performance. Under PLS-based

methods dummy coding with autoscaling performs best followed by polyserial PLSR and

NM-PLSR. Second, the performance deteriorates with increases in the proportion of non-

metric variables, while NM-PLSR shows the largest deterioration. Third, increasing the

expected number of categories usually has little influence, except for polyserial PLSR and

dummy PLSR we see notable deterioration. For all scenarios we also ran simulations for

other methods discussed in Subsection 1.2.2 and found the following results. Principal

Component Regressions (PCRs) with all mentioned methods perform similarly to PCR

using dummy coding with autoscaling. When the proportion of non-metric variables is

low, PLS-based methods show relatively small differences. With a high proportion of

non-metric variables PLSR with the aggregation method, optimal scaling method, NM-

PLSR and normal mean method show larger deterioration than other PLS-based methods.

Ordinal PLSR is the worst PLS-based method when the expected number of categories

is high.

In general, dummy PLSR with autoscaling performs best in all settings. Furthermore,

dummy coding is easy to implement and interpret. Therefore, we focus on dummy coding

in the following sections.

1.3 Applications

In this section we consider three applications. The first two applications generate wealth

indices with two different responses and the third one uses the KOF Index of Globalization

to predict economic growth.
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1.3.1 Data

The first data set is the Demographic Health Survey (DHS, Central Bureau of Statistics

(CBS) Kenya et al., 2004) from Kenya 2003. DHS is a widely used survey instrument

to generate data on population, health and nutrition. Since the survey does not include

incomes, a wealth index is commonly used as a proxy for socioeconomic status. The

variables used to construct the wealth index describe possession of consumer durables,

the type of housing and access to services that are selected and coded following Rutstein

and Johnson (2004). There are in total 1 metric and 14 categorical variables, 10 of which

are binary. The Body Mass Index (BMI) for the adult population is taken as an outcome

variable, which is expected to be affected by household wealth (Wittenberg, 2013). A

low BMI points to problems of serious undernutrition which is substantial in Kenya,

while a high BMI points to overweight, which is also an emerging problem in the country

(Rischke et al., 2014). But it is not clear that the weights for the wealth index arrived at

by PCA will be the best predictor of the BMI, so that comparing the results with PLS is

instructive. The data set has complete observations on 6686 individuals.

The second data set is the Indonesian Family Life Survey (Strauss et al., 2004) from

the year 2000. Variables are selected and coded similarly to the DHS data. There are 11

categorical variables, with 8 of them being binary. As a dependent variable we consider log

real monthly household expenditure per capita. We do this to investigate which weights

best predict expenditures. A wealth index is often used to proxy for expenditures in many

applications (where expenditures are not available) and thus the choice of appropriate

weights is an important question. There are 10222 complete observations of households.

The third data set is from Dreher et al. (2008).2 It consists of panel data with 23 metric

variables capturing various facets of globalization. As an outcome variable, we focus on

economic growth, which is expected to increase with globalization. Economic growth

2We use the 2013 version of the KOF index.
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is measured as the annual growth rate of GDP per working age population. Since the

KOF Index is an ‘all-purpose’ index of globalization, it is again instructive to study

how the weights change if we condition them on a particular outcome variable. Clearly

growth is determined not only by globalization, but also by other variables. Therefore,

we include control variables following Bergh and Karlsson (2010) and Mankiw et al.

(1992). Our control variables are initial GDP per working age population (Y0), a country’s

investment as a share of GDP (INV), the growth rate of the average years of schooling

in the population (DHUM) and the growth rate of the working age population (DWAP).

Growth and the control variables are constructed using data from Feenstra et al. (2013),

the World Bank (2013) and Barro and Lee (2013). To smooth growth over the business

cycle, we take 4 year averages of all variables.3 We drop oil producing countries and

countries where data quality is low (indicated as D grade in Feenstra et al. (2013)), as we

suspected high measurement errors there. There are 575 complete observations including

63 countries and 10 time periods.

In our analysis we report the weights in both composite indices (PLS- and PCA-based)

u1 and w1 and the corresponding regression coefficients β̂PCR and β̂PLSR. More specifi-

cally, we proceed as follows. In the wealth index applications, all non-metric variables are

transformed using dummy coding and afterwards autoscaling is applied, that is we work

with X∗d = XdD
−1/2, where Xd ∈ RN×kd contains metric variables and the indicator ma-

trices from non-metric variables and D = diag[var(xd,1), ..., var(xd,kd)] with xd,j denoting

the j-th column of Xd. The weights u∗1 and w∗1 are derived from X∗d and Y and the least

squares estimator is obtained for Y , which can be expressed in terms of Xd. For example,

for PLSR we obtain

Ŷ = γ̂0 + Sγ̂1 = γ̂0 +XdD
−1/2w∗1γ̂1 = γ̂0 +Xdβ̂PLSR

3We use the geometric mean for growth rate variables and the arithmetic mean otherwise.
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Hence, the reported PCR and PLSR regression coefficients are given in terms of Xd for the

ease of interpretation. Analogously, weights are reported in terms of Xd, u1 = D−1/2u∗1

and w1 = D−1/2w∗1. Note that usually we cannot interpret β̂PCR and β̂PLSR as causal

determinants, but rather aim to learn which variables are important predictors to the

regressand.

In the globalization application there are no non-metric variables and all the variables

from Dreher et al. (2008) are already scaled for PCA or PLS. Therefore, no additional

scaling is applied and D = diag(1, 1, ..., 1).

Figure 1.1 shows the estimated prediction performance of various treatments on non-

metric variables in PLS and PCA via 10-fold cross-validation (Mevik and Cederkvist,

2004) from the Indonesian and Kenyan applications. In analogy to the simulation study,

PLSR using dummy coding performs excellently. It performs second best for the Indone-

sian data and best for the Kenyan data.

1.3.2 Wealth Index with BMI as the Outcome Variable

Table 1.2 shows the regression coefficients as well as the weights using PCA (left column)

and PLS (right columns). The Jackknife standard errors (Martens and Martens, 2000)

were used. The R2 and the estimated MSEP for PLS are moderately better than for

PCA (which is to be expected given that the correlation with the dependent variable is

considered when creating the weights). More interesting are the differences in the weights.

While the weights are quite similar for many indicator variables, they have the opposite

sign in the case of bicycle and piped water at a public standpipe, suggesting that in order

to predict the BMI, having a bicycle and access to a public standpipe both positively

influence wealth. In quite a few variables, the size of the weights (while going in the

same direction) differs substantially in magnitude. For example, using PLS, roofing is

generally a more important driver of wealth (when predicting BMI), as is water access.
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Figure 1.1: Estimated prediction performance of the various treatments of non-metric
variables

PCA-based methods are colored white and PLS-based methods light grey. The MSEP is estimated via
10-fold cross-validation.
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Table 1.2: PLS and PCA weights and the regressions with the outcome variable BMI in
Kenya

PCA PLS

β̂PCR (se) u1 β̂PLSR (se) w1

electricity 0.428∗∗∗ (0.018) 0.753 0.438∗∗∗ (0.020) 0.680
radio 0.188∗∗∗ (0.012) 0.331 0.313∗∗∗ (0.020) 0.486
television 0.369∗∗∗ (0.016) 0.649 0.426∗∗∗ (0.019) 0.662
refrigerators 0.524∗∗∗ (0.022) 0.921 0.434∗∗∗ (0.033) 0.673
bicycle −0.021∗∗∗ (0.007) −0.037 0.035∗ (0.019) 0.054
motorcycle 0.193∗∗∗ (0.045) 0.340 0.320∗∗ (0.144) 0.496
car 0.443∗∗∗ (0.021) 0.780 0.384∗∗∗ (0.033) 0.595
telephone 0.424∗∗∗ (0.017) 0.746 0.445∗∗∗ (0.022) 0.690
servant 0.467∗∗∗ (0.027) 0.821 0.307∗∗∗ (0.039) 0.477
farm land −0.160∗∗∗ (0.009) −0.282 −0.151∗∗∗ (0.018) −0.234
# hh member

per room
−0.043∗∗∗ (0.003) −0.076 −0.083∗∗∗ (0.005) −0.129

water: piped in res. 0.355∗∗∗ (0.016) 0.624 0.364∗∗∗ (0.019) 0.565
water: piped public −0.022∗∗∗ (0.007) −0.039 0.079∗∗∗ (0.029) 0.122
water: inside well 0.002 (0.009) 0.003 0.011 (0.033) 0.018
water: surface −0.235∗∗∗ (0.012) −0.414 −0.294∗∗∗ (0.016) −0.456
water: rain 0.015 (0.015) 0.026 0.255∗∗∗ (0.063) 0.395
water: well public −0.129∗∗∗ (0.010) −0.227 −0.150∗∗∗ (0.026) −0.233
toilet: own flush 0.505∗∗∗ (0.020) 0.889 0.382∗∗∗ (0.026) 0.592
toilet: shared flush 0.225∗∗∗ (0.022) 0.395 0.261∗∗∗ (0.043) 0.404
toilet: v.p. latrine 0.071∗∗∗ (0.012) 0.126 0.202∗∗∗ (0.037) 0.314
toilet: field −0.248∗∗∗ (0.016) −0.436 −0.490∗∗∗ (0.023) −0.760
floor: dirt −0.341∗∗∗ (0.016) −0.600 −0.409∗∗∗ (0.017) −0.635
floor: wood 0.378∗∗∗ (0.069) 0.666 0.131 (0.101) 0.203
floor: cement 0.237∗∗∗ (0.016) 0.417 0.359∗∗∗ (0.019) 0.557
floor: tile 0.472∗∗∗ (0.028) 0.830 0.289∗∗∗ (0.043) 0.449
roof: natur −0.257∗∗∗ (0.016) −0.451 −0.424∗∗∗ (0.020) −0.659
roof: iron 0.022∗ (0.013) 0.039 0.227∗∗∗ (0.020) 0.352
roof: tile 0.490∗∗∗ (0.022) 0.861 0.366∗∗∗ (0.032) 0.567

R2 0.112 0.135

M̂SEP 16.905 16.523

Note: *** p<0.01, ** p<0.05, * p<0.1, As base categories “water: other”, “toilet: other”, “floor: other”
and “roof: other” are excluded.
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The differences in the weights transfer to the differences in the coefficients as well. For

example, having a bicycle and access to a public standpipe predicts a low BMI in the

PCR, whereas in the PLSR the prediction goes in the opposite direction. Roofing and

water access are generally stronger predictors of BMI in the PLSR than the PCR.

Table 1.3: Correlations and prediction performance of PLS- and PCA-based wealth index
with respect to socio-economic variables for the Kenyan data

θ̂pca θ̂pls θ̂pca − θ̂pls
BS CI 95%

correlation
household size -0.1829 -0.2185 [0.0330; 0.0381]
# dead children -0.1782 -0.1852 [0.0047; 0.0093]
immunization (polyserial) -0.0707 -0.0923 [0.0181; 0.0252]

MSEP
household size 7.0895 6.9848 [0.0959; 0.1141]
# dead children 0.8867 0.8844 [0.0015; 0.0032]
immunization (logit) 0.2119 0.2115 [0.0003; 0.0005]

Note: Individual data with N=31282. Bootstrapping percentile confidence interval with 10000
iterations.

In Table 1.3 we show that the wealth index created using PLS (with BMI as the out-

come variable) also has a closer correlation to related health issues, such as whether child

deaths occurred in the household, children are immunized, and household size. We check

the prediction performance of the wealth indices to each variable using a simple linear

regression, with an appropriate link function added if necessary. The prediction perfor-

mance is again measured in terms of the estimated MSEP via 10-fold cross-validation.

It appears that conditioning the weights for the wealth index on the correlation with a

health-related outcome variable improves the predictive performance of the wealth index

for other socio-economic outcomes.
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Table 1.4: PLS and PCA weights and the regressions with outcome variable log household
expenditure in Indonesia

PCA PLS

β̂PCR (se) u1 β̂PLSR (se) w1

electricity 0.168∗∗∗ (0.006) 0.915 0.133∗∗∗ (0.007) 0.629
television 0.112∗∗∗ (0.003) 0.612 0.120∗∗∗ (0.004) 0.568
refrigerators 0.149∗∗∗ (0.006) 0.812 0.228∗∗∗ (0.007) 1.081
vehicle 0.059∗∗∗ (0.003) 0.323 0.054∗∗∗ (0.004) 0.256
own: house −0.065∗∗∗ (0.003) −0.357 −0.090∗∗∗ (0.005) −0.425
own: buildings 0.078∗∗∗ (0.005) 0.426 0.116∗∗∗ (0.008) 0.551
own: non-farm land 0.004 (0.004) 0.023 0.029∗∗∗ (0.006) 0.137
own: farm land −0.088∗∗∗ (0.003) −0.479 −0.045∗∗∗ (0.005) −0.215
water: piped 0.105∗∗∗ (0.004) 0.571 0.091∗∗∗ (0.005) 0.431
water: well −0.047∗∗∗ (0.004) −0.257 −0.066∗∗∗ (0.005) −0.314
water: surface −0.130∗∗∗ (0.007) −0.708 −0.096∗∗∗ (0.008) −0.455
water: rain −0.045∗∗∗ (0.017) −0.248 −0.029 (0.021) −0.139
water: basin −0.090∗∗∗ (0.016) −0.493 −0.068∗∗∗ (0.018) −0.321
water: mineral 0.100∗∗∗ (0.011) 0.547 0.248∗∗∗ (0.020) 1.177
toilet: septank 0.136∗∗∗ (0.003) 0.743 0.150∗∗∗ (0.004) 0.713
toilet: no septank −0.069∗∗∗ (0.004) −0.374 −0.054∗∗∗ (0.006) −0.257
toilet: communal −0.019∗∗∗ (0.005) −0.103 −0.004 (0.009) −0.019
toilet: public −0.009∗ (0.006) −0.050 −0.054∗∗∗ (0.011) −0.257
toilet: field −0.124∗∗∗ (0.004) −0.677 −0.150∗∗∗ (0.005) −0.708
cooking: electricity 0.035∗∗ (0.015) 0.190 0.200∗∗∗ (0.045) 0.948
cooking: gas 0.134∗∗∗ (0.007) 0.732 0.228∗∗∗ (0.008) 1.079
cooking: kerosene 0.076∗∗∗ (0.003) 0.413 0.019∗∗∗ (0.004) 0.092
cooking: wood, coal −0.154∗∗∗ (0.003) −0.838 −0.163∗∗∗ (0.004) −0.772
cooking: don’t cook 0.041∗∗∗ (0.007) 0.223 0.247∗∗∗ (0.021) 1.172
R2 0.211 0.260

M̂SEP 0.446 0.419

Note: *** p<0.01, ** p<0.05, * p<0.1, As base categories “water: other”, “toilet: other” and “cooking:
other” are excluded.
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1.3.3 Wealth Index with Expenditure as the Outcome Variable

In Table 1.4, we show the weights using PCA and PLS with expenditures as the outcome

variable using our Indonesian data set. As the wealth index is often used as a proxy for

expenditures, using PLS seems particularly appropriate to derive the weights for such

a wealth index. Several features are noteworthy. First, the R2 is somewhat improved

using PLS, more so than in our first application suggesting that much new information

is gained when the correlation with the outcome variable is considered. The PLSR again

outperforms the PCR in terms of the estimated MSEP. Clearly when one wants to use

the wealth index as a proxy for expenditures, it would be better to use the weights

generated by PLS. Second, while the signs of the weights do not differ between PLS and

PCA, the size of the weights differs substantially. For example, cooking materials and

ownership of a fridge is generally more important in the PLS, electricity seems to be

less important. In analogy to the weights, the PLSR and PCR coefficients show large

differences. In the PLSR owning non-farm land predicts large household expenditure and

using a public toilet predicts small household expenditure, whereas the PCR neglects

them. Using rainwater as drinking water and using a communal toilet are not important

predictors in the PLSR, but the PCR finds them to be significant. Cooking material and

refrigerators are generally strong predictors, while electricity less strong predictor in the

PLSR compared to the PCR.

Table 1.5 shows that using the PLS wealth index also generates slightly improved correla-

tions with socio-economic outcomes such as school attendance or days sick. Additionally,

the PLS wealth index predicts those variables slightly better.

1.3.4 Globalization Index with Growth as the Outcome Variable

Table 1.6 shows the results for the first stage regression, where we explain growth with its

initial level (Y0), investment (INV), human capital (DHUM), population growth (DWAP)
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Table 1.5: Correlations and prediction performance of PLS- and PCA-based wealth index
with respect to socio-economic variables for the Indonesian data

θ̂pca θ̂pls θ̂pca − θ̂pls
BS CI 95%

correlation
ever attended school (polyserial) 0.0496 0.0607 [-0.0158 ; -0.0065]
# days being sick last month -0.0219 -0.0288 [0.0035; 0.0104]

MSEP
ever attended school (logit) 0.2363 0.2362 [0.0001; 0.0003]
# days being sick last month 1.9413 1.9407 [0.0002; 0.0013]

Note: Individual child data with N=11668. Bootstraping percentile confidence interval with 10000
iterations.

Table 1.6: The first stage regression

ĉoef (se)
Y0 −0.598∗∗∗ (0.210)
INV 0.075∗∗∗ (0.027)
DHUM −0.157 (0.097)
DWAP 0.147 (0.234)

R2 0.137

Note: Country fixed effects are included. *** p<0.01, ** p<0.05, * p<0.1

and country fixed effects. The results are in line with the previous literature (e.g. Mankiw

et al., 1992). They show conditional convergence, at the one percent level of significance.

Also at the one percent level, growth increases with investment, while human capital and

population growth are not significant at conventional levels. We use the residuals from

the regression as the outcome variable for comparing the effect of globalization on growth

using PLSR and PCR, respectively, thereby holding these standard covariates constant.

In other words, we compare the effect of globalization on those parts of economic growth

that are not explained by its conventional determinants.

Both of the resulting indices (i.e. using PLS and PCA respectively) have positive and

significant effects on growth when these covariates were controlled for, a result which is

in line with the existing literature (e.g. Dreher, 2006; Rao et al., 2011). The result is not

reported, but available upon request.
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Table 1.7: PLS and PCA weights and the regressions with outcome variable growth

PCA PLS

β̂PCR × 106 (se×106) u β̂PLSR × 106 (se×106) w
trade 6.077∗∗∗ (2.063) 0.160 6.543 (6.319) 0.093
FDI 7.436∗∗∗ (2.537) 0.196 25.611∗∗∗ (7.233) 0.366
portfolio inv. 6.271∗∗∗ (2.150) 0.165 12.507∗∗ (5.785) 0.179
pay. foreigners. 6.805∗∗∗ (2.299) 0.180 12.422 (7.641) 0.177
hidden import

barriers
7.489∗∗∗ (2.514) 0.198 2.377 (7.064) 0.034

tariff rate 10.619∗∗∗ (3.482) 0.280 13.277∗ (6.850) 0.190
taxes on trade 8.110∗∗∗ (2.685) 0.214 1.726 (5.063) 0.025
CA restrict. 9.979∗∗∗ (3.352) 0.263 20.001∗∗∗ (6.424) 0.286
tele. traffic 9.021∗∗∗ (2.993) 0.238 12.773∗∗∗ (4.688) 0.182
transfers 1.901∗∗ (0.813) 0.050 15.720∗∗ (6.694) 0.225
tourism 8.142∗∗∗ (2.704) 0.215 5.791 (5.064) 0.083
foreign pop. 7.397∗∗∗ (2.404) 0.195 −0.695 (7.296) −0.010
Int’l letters 5.801∗∗∗ (1.974) 0.153 −4.401 (6.334) −0.063
internet 9.129∗∗∗ (3.076) 0.241 30.244∗∗∗ (6.640) 0.432
television 6.134∗∗∗ (2.020) 0.162 1.690 (4.247) 0.024
newspapers 7.548∗∗∗ (2.536) 0.199 5.924 (6.196) 0.085
McDonald 12.429∗∗∗ (4.156) 0.328 23.396∗∗∗ (8.894) 0.334
Ikea 12.383∗∗∗ (4.138) 0.327 7.563 (6.439) 0.108
books 5.471∗∗∗ (1.867) 0.144 4.803 (5.508) 0.069
embassies 2.445∗∗∗ (0.927) 0.065 5.715 (6.280) 0.082
Int’l org. 4.199∗∗∗ (1.527) 0.111 22.767∗∗ (8.924) 0.325
UNSC 10.895∗∗∗ (3.690) 0.288 20.636∗∗ (9.572) 0.295
Int’l treaties 5.103∗∗∗ (1.782) 0.135 16.855∗ (8.882) 0.241

R2 0.012 0.029

M̂SEP 0.000856 0.00085

Note: *** p<0.01, ** p<0.05, * p<0.1, Dashed lines divide economic, social and political globalization.
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We turn to our disaggregate analysis in Table 1.7. As can be seen at the bottom of the

table, the R2 of the PLSR is larger, while the estimated MSEP (using the Jackknife) is

slightly smaller, compared to those of the PCR. Overall, the PLS procedure gives weights

and a corresponding score which lead to better fit and prediction than the PCA. The

table also reports the coefficients of the components of the KOF index. As can be seen,

the results are in line with the previous literature, with most coefficients showing positive

and significant correlations with growth when determining the weights using PCA. The

table also shows the weights we obtain for the individual components.4 The results differ

substantially when we use PLS rather than PCA (right column of Table 1.7). Almost half

of the variables are no longer significant at conventional levels. It could be because PLS has

consumed more degrees of freedom compared to PCA (see Krämer and Sugiyama, 2011).

Regarding actual economic flows, we find that economic growth increases with a country’s

stock of FDI and portfolio investments (both in percent of GDP on the original scale5),

but not with its trade volume (also in percent of GDP). With respect to restrictions,

the absence of restrictions on the capital account and lower mean tariff rates associate

with growth positively, at the one and ten percent level of significance, respectively, while

hidden import barriers and taxes on trade are not significant at conventional levels.

Concerning social globalization, few of the 11 indicators are significant at conventional

levels. Specifically, economic growth increases with the amount of international telephone

traffic, transfers received and given without a quid pro quo, the number of internet users,

and the number of McDonalds restaurants in a country (as an indicator of cultural glob-

alization). Conversely, three out of four indicators of political globalization are positively

correlated with growth: the number of international organizations the country is a mem-

ber of, the participation in the United Nations Security Council missions, and the number

4Note that these weights differ from those of the original index, given that we apply the PCA to our
particular sample.

5Note that the KOF indices transform the original data on a percentile scale, so that they range
between 1 and 100, with higher values showing more globalization.
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of treaties signed.

Table 1.8: Correlations and prediction performance of PLS- and PCA-based globalization
index with respect to physical integrity and empowerment rights

θ̂pca θ̂pls θ̂pca − θ̂pls
BS CI 95%

correlation
physical integrity (polyserial) 0.6988 0.5545 [0.1281; 0.1606]
empowerment rights (polyserial) 0.5516 0.4993 [0.0334; 0.0714]

MSEP
physical integrity (ordered logistic) 4.1508 6.2692 [-2.8278; -1.4446]
empowerment rights (ordered logistic) 9.2684 9.9715 [-1.1132; -0.1039]

Note: Cross-country panel data with N=1581. Bootstraping percentile confidence interval with 10000
iterations.

Table 1.8 shows the correlations and MSEPs of the PLS- and PCA-based globaliza-

tion indices with respect to physical integrity and empowerment rights, taken from the

Cingranelli-Richards Human Rights Dataset (CIRI; Cingranelli and Richards, 2006). Ac-

cording to the recent survey on consequences of globalization in Potrafke (2014), im-

provements in human rights are among the important correlates of globalization. We rely

on two indices: Physical integrity rights measure the absence of torture, extrajudicial

killings, political imprisonments, and disappearances, on a scale of 0-8. Empowerment

rights comprise the freedom of movement, freedom of speech, workers’ rights, political

participation, and freedom of religion, ranging from 0-10. On both indices, higher values

represent better human rights practices.

The results of Table 1.8 show that both the PLS- and the PCS-based indices are positively

correlated with physical and empowerment rights, at the five percent level of significance.

For both indices, the PCA-based index performs “better,” showing higher correlations and

lower MSEPs. Given that the weights for the PLS-based index have been constructed to

explain growth rather than human rights, this is unsurprising. Still, the high correlation

with an established correlate of globalization is reassuring.
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1.4 Conclusions

In this paper, we use both PCA and PLS to generate composite indices. Various treat-

ments of non-metric variables in PCA and PLS are compared by means of a simulation

study and we find that PLS with dummy coding not only performs better than more

sophisticated statistical procedures, but is also easy to implement and interpret. This

finding also holds for the real data considered in this paper. In our applications, PLS

generates different weights and coefficients from PCA, which lead to better prediction

and model fit of PLSR compared to PCR. We have checked whether composite indices

based on PLS have a higher correlation or better prediction performance to different out-

come variables, which works for two out of our three applications. We argue that when

using statistical procedures to generate composite indices, it is not clear that the methods

currently most commonly used, i.e. those based on the correlation between the indicator

variables, are superior to derive weights. Often it may be more appropriate to create

composite indices with particular outcomes in mind and PLS is a useful way to do so.
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1.A Descriptions of Variables

Table 1.9: Variable names and variable labels of the Kenyan data

variable variable
names labels
electricity electricity
radio radio
television television
refrigerators refrigerators
bicycle bicycle
motorcycle motorcycle
car car
telephone telephone
servant domestic servant
farm land own farm land
# hh member per room number of household members per room
water: piped in res. piped water in residence
water: piped public piped water in public
water: inside well inside well water
water: surface surface water
water: rain rain water
water: well public public well water
toilet: own flush own flush toilet
toilet: shared flush shared flush toilet
toilet: v.p. latrine ventilated pit latrine toilet
toilet: field bush field toilet
floor: dirt dirt floor
floor: wood wood floor
floor: cement cement floor
floor: tile tile floor
roof: natur natural roof
roof: iron iron roof
roof: tile tile roof
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Table 1.10: Variable names and variable labels of the Indonesian data

variable variable
names labels
electricity electricity
television television
refrigerators refrigerators
vehicle vehicle
own: house own house
own: buildings own other buildings
own: non-farm land own non-farm land
own: farm land own farm land
water: piped piped water
water: well well water
water: surface surface water
water: rain rain water
water: basin basin water
water: mineral mineral water
toilet: septank toilet with septic tank
toilet: no septank toilet without septic tank
toilet: communal communal toilet
toilet: public public toilet
toilet: field field toilet
cooking: electricity electricity cooking
cooking: gas gas cooking
cooking: kerosene kerosene cooking
cooking: wood, coal wood or coal cooking
cooking: don’t cook don’t cook
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Table 1.11: Variable names and variable labels of the globalization data

variable variable
names labels
trade Trade (percent of GDP)
FDI Foreign Direct Investment, stocks (percent of GDP)
portfolio inv. Portfolio Investment (percent of GDP)
pay. foreigners. Income Payments to Foreign Nationals (percent of GDP)
hid. im. barriers Hidden Import Barriers
tariff rate Mean Tariff Rate
taxes on trade Taxes on International Trade (percent of current revenue)
CA restrict. Capital Account Restrictions
tele. traffic Telephone Traffic
transfers Transfers (percent of GDP)
tourism International Tourism
foreign pop. Foreign Population (percent of total population)
Int’l letters International letters (per capita)
internet Internet Users (per 1000 people)
television Television (per 1000 people)
newspapers Trade in Newspapers (percent of GDP)
McDonald Number of McDonald’s Restaurants (per capita)
Ikea Number of IKEA (per capita)
books Trade in books (percent of GDP)
embassies Embassies in Country
Int’l Org. Membership in International Organizations
UNSC Participation in U.N. Security Council Missions
Int’l treaties International Treaties
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Chapter 2

Treatments of Non-metric Variables

in Partial Least Squares and

Principal Component Analysis

with Tatyana Krivobokova

Abstract

This paper reviews various treatments of non-metric variables in Partial Least Squares

(PLS) and Principal Component Analysis (PCA) algorithms. The performance of differ-

ent treatments is compared in an extensive simulation study under several typical data

generating processes and associated recommendations are made. PLS-based methods are

to prefer in practice, since, independent of data generating process, PLS performs either

as good as PCA or significantly outperforms it. PLS with dummy coding and NM-PLSR

are often prefered treatments of non-metric variables. An application of PLS and PCA

algorithms with non-metric variables is considered, which generates wealth indices to pre-
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dict household expenditures. In analogy to the simulation studies, PLS outperforms PCA,

and model selection statistics support dummy coding.

2.1 Introduction

Principal Component Analysis (PCA, Hotelling, 1933) and Partial Least Squares (PLS,

Wold, 1966b) are popular dimension reduction techniques, which are typically applied

in case of multicollinear predictors and are also often used to build various composite

indices. Both PCA and PLS are developed for the analyses of metric variables. However,

in practice one often is faced with non-metric variables. Even though there is a large

number of approaches to treat non-metric variabels in PCA and PLS algorithms available

in the literature, it is not always clear under which assumptions about the data generating

process (DGP) these algorithms perform best. To the best of our knowledge, there is no

clear guideline for practitioners how to select the best treatment of non-metric variables

for data at hand. In this work we review various treatments of non-metric variables for

PCA and PLS algorithms. All together, we consider eleven methods grouped into three

main types. All treatments for non-metric variables are described in detail, together with

necessary assumptions, if appropriate. An extensive simulation study aims to compare the

performance of all methods under several typical data generating processes and to make

recommendations for practitioners. This simulation study differs from the simulation

study in Chapter 1 in that a latent variable of interest is explicitly assumed. PLS with

dummy coding shows generally good performance, especially when the latent variable of

interest account for only small variations in the regressor matrix.

As an application, we consider construction of wealth indices with PCA and PLS. Wealth

indices (Filmer and Pritchett, 2001; Rutstein and Johnson, 2004) are composite indices

that aim to measure household wealth based on the posession of certain assets. In general,
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a composite index is an aggregated variable comprising individual indicators and weights

that commonly represent the relative importance of each indicator (Nardo et al., 2005).

Other examples of such indices include the KOF index of Globalization (Dreher, 2006)

that quantifies globalization and the Social Institutions and Gender Index (SIGI; Branisa

et al., 2013) that measures social institutional aspects of gender inequality across countries.

The most crucial step in building an index is to determine appropriate weights, which is

typically done with PCA or PLS. Since in practice many variables that enter such indices

are non-metric, it is of great importance to apply appropriate methods for treating non-

metric variables for PCA and PLS. Our wealth index application illustrates the generation

and use of a composite index with non-metric variables. A wealth index is often used as

a proxy for household expenditures, so that it is important to quantify how well the

wealth index is able to predict household expenditures. Therefore, we perform regression

analyses, where household expenditures are explained by the wealth index and a set

of control variables. We perform a model selection with respect to the treatment of

non-metric variables and the set of control variables to improve estimated prediction

performance.

The rest of the paper is organized as follows. Section 2.2 recapitulates PCA and PLS

algorithms and reviews the treatments of non-metric variables in PCA and PLS in the

literature. In Section 2.3 the simulation study is presented, various treatments are com-

pared and recommendations under several typical DGPs are made. The analysis on the

wealth index is performed in Section 2.4, before we conclude in Section 2.5.

37



2.2 PCA and PLS with Non-metric variables

2.2.1 PCA and PLS Algorithms

First, we give a brief discription of standard PLS and PCA algorithms with metric vari-

ables. Let us consider the following regression model y = Xβ + ε, where y ∈ RN is a

regressand vector and X ∈ RN×K , K < N is a regressor matrix. Both y and X are

assumed to be centered. Regression coefficients are denoted by β ∈ RK and ε ∈ RN is

the error term, such that E(ε|X) = 0 and Cov(ε|X) = σ2In.

PCA and PLS scores are built as linear combinations of regressors, that is T = XW ,

where T = (t1, ..., tA) ∈ RN×A is the score matrix and W = (w1, ..., wA) ∈ RK×A is the

weight matrix with A ≤ K. Thereby, the weight matrices are different in PCA and PLS.

PCA weights wa are found from

wa = argmax
‖ω‖=1

ωTXTXω, subject to wa ⊥ ... ⊥ w1, a = 1, ..., A,

which is the a-th eigenvector of XTX. The first PLS weight vector w1 is given by

w1 = argmax
‖ω‖=1

(ωTXTy)2 =
XTy

‖XTy‖
,

while the later weights wa are found solving the same problem subject to the mutual

orthogonality wa ⊥ ... ⊥ w1. We refer to de Jong (1993) for more details.

2.2.2 Treatments of Non-metric Variables in PCA and PLS

Treatments of non-metric variables in PCA and PLS algorithms available in the literature

can be organized into three main categories. The first group of methods uses certain

transformations of each unique category of a non-metric variable into a variable. The
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second group of approaches applies various scalings of non-metric variables after which

these variables are treated as metric. The last group of treatments assumes a certain

continuous latent variable behind the observed non-metric variable and uses the variance-

covariance matrix of the latent variables to calculate PLS or PCA weights. In the following

a brief summary of these methods is given. Thereby, it is assumed that the first Kn

columns of regressor matrix X contain non-metric variables, the j-th non-metric variable

has mj unique values, which are integers xij ∈ {0, 1, ...,mj−1}, i = 1, . . . , N , j = 1, . . . , K

and the regressand y is always metric.

First, consider methods which transform each unique category of a non-metric variable

into a variable. These are dummy coding (Filmer and Pritchett, 2001), the aggre-

gation method (Saisana and Tarantola, 2002), regular simplex method (Niitsuma

and Okada, 2005) and multiple correspondence analysis (MCA; Greenacre, 2010).

All those methods require no particular distributional assumptions on variables in X.

Dummy coding transforms each unique value of a non-metric variable to a dummy

variable. In other words, one replaces xij with x̃ij = (I(xij = 0), I(xij = 1), ..., I(xij =

mj − 1)) ∈ R1×mj , where I denotes the indicator function. The first element may be

dropped for an easier interpretation. The aggregation method in this paper is defined

as a cluster level average. That is, it is assumed that each observation xij belongs to a clus-

ter c ∈ {1, ..., C} and it is replaced with x̃ij = (Ac,j(0), Ac,j(1), ..., Ac,j(mj − 1)) ∈ R1×mj ,

where Ac,j(u) =
(∑

i∈c I(xij = u)
) (∑

i∈c
∑mj−1

v=0 I(xij = v)
)−1

. The regular simplex

method transforms each value of a non-metric variable to a corresponding vertex co-

ordinate of a regular simplex, that is x̃ij = Vermj−1(xij) ∈ R1×mj , where Vermj−1(xij)

transforms xij to the (xij + 1)-th vertex coordinate in mj − 1 dimension. For all three

afore-mentioned methods non-metric variables after the treatment and metric variables

are concatenated, resulting in a row X̃i = (x̃i1, x̃i2, ..., x̃iKn , xiKn+1, ..., xiK) of matrix X̃.

Finally, usual PLS or PCA is applied on X̃. The last approach in this group, MCA,

first discretizes metric variables, so that the regressor matrix contains only non-metric

39



variables. Afterwards, the regressor matrix is transformed to an indicator matrix using

dummy coding without dropping the first column, which will be denoted by Z. Subse-

quently, Z is standardized as Zs = diag(r−1/2)(P−rcT )diag(c−1/2), where P = Z(1TZ1)−1,

r = P1, c = P T1 and 1 denotes a vector of 1s of the appropriate length. Finally, Singular

Vector Decomposition (SVD) is applied to Zs and the left singular vectors are used as

scores. This procedure can be interpreted as a PCA on discretized regressors with a spe-

cial dummy coding, where each column is scaled, so that categories with many incidences

are equally important as categories with fewer incidences.

Second group of approaches applies certain scaling to each unique value of non-metric

variables. These methods include the optimal scaling method (Tenenhaus and Young,

1985), non-metric partial least squares regression (NM-PLSR; Russolillo, 2009)

and categorical principal component analysis (CATPCA; Meulman, 2000). No

distributional assumptions on X are necessary. The optimal scaling method maximizes

the sum of variances of non-metric variables in terms of the scaling of unique categories.

First, an indicator matrix from non-metric variables Z is built and the eigenvector ν,

corresponding to the second largest eigenvalue of K−1diag(1TZ)−1ZTZ, is determined.

Finally, PCA or PLS is applied to X̃ = (Z1ν1, ..., ZKnνKn , xKn+1, ..., xK), where Zj ∈

RN×mj and νj ∈ Rmj denote the columns of Z and the components of ν corresponding

to variable j, j = 1, . . . , Kn. Next approach, NM-PLSR, maximizes the covariance

between the first score and regressand in term of the scaling of unique categories. The

quantification function is defined as Q(xj, y) = Zj(Z
T
j Zj)

−1ZT
j y/

∥∥Zj(ZT
j Zj)

−1ZT
j y
∥∥, if

xj is treated as nominal. The quantification function for ordinal xj is analogous, except

that it is constrainted to respect the order. If the quantification of a category does not

respect the order, another quantification is calculated after the category is merged to

an adjacent category. Now PLS is run with X̃ = (x̃1, ..., x̃Kn , xKn+1, ..., xK), where x̃j =

Q(xj, y), j = 1, ..., Kn. The quantification does not change for the later scores. The last

method in this group, CATPCA, maximizes the sum of the variances of scores in terms
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of the scaling of unique categories. CATPCA allows to select the number of scores to

be considered in the maximization, but in analogy to NM-PLSR, we opted for the case

with only one score considered during the quantification. In our simulation studies and

application CATPCA showed rather inferior performance. Therefore, we omit the details

of this lengthy algorithm and refer to IBM SPSS Statistics (2013) for more details.

Polychoric PCA (Kolenikov and Angeles, 2009) is based on the assumption that ob-

served ordinal variables are generated from a latent multivariate normal process dis-

cretized at some thresholds. Under this assumption, thresholds and variance-covariance

matrix are estimated and PCA is performed on centered and autoscaled regressors us-

ing the eigenvectors from the variance-covariance matrix as the weights. In the fol-

lowing Φ and Φ2 denote standard normal and bivariate standard normal cumulative

distribution function, respectively, and φ is standard normal density function. First,

one estimates the thresholds at which the latent normal variable is discretized. Let

αj = (αj(−1), αj0, ..., αjmj−1) ∈ Rmj+1 be a vector of thresholds for variable xj, where

αju = Φ−1
(
N−1(−0.5 +

∑N
i=1 I(xij ≤ u))

)
for u = 0, ...,mj − 2 and αj(−1) = −∞,

αjmj−1 = ∞. Second, the correlation between variables is estimated by maximizing

likelihood conditional on the thresholds, i.e., ρ = cor(Xj,Xj′ ) and ρ̂ = argmax
ρ

`(ρ),

where `(ρ) =
∑N

i=1 ln(L(xij, xij′ |ρ, α, α
′
))). If one estimates the correlation between

two ordinal variables, i.e., polychoric correlation, the likelihood for observation i is

L(xij, xij′ |ρ, α, α
′
) = Φ2(αjxij , αj′x

ij
′ |ρ) − Φ2(αjxij−1, αj′x

ij
′ |ρ) − Φ2(αjxij , αj′x

ij
′−1|ρ) +

Φ2(αjxij−1, αj′x
ij
′−1|ρ). The correlation between a metric variable and an ordinal variable

is called polyserial correlation. The likelihood for an observation with ordinal variable xij

and metric variable xij′ is L(xij, xij′ |ρ, α) = (Φ(αjxij − ρxij′ )−Φ(αjxij−1 − ρxij′ ))φ(xij′ ).

We adapt polychoric PCA in the the PLS context, which we call polyserial PLS. This

method applies autoscaling to regressors and outcome variable and finds the first PLS

weights, w1 = Cor(y,X)/ ‖Cor(y,X)‖, where Cor(y,X) is polyserial or Pearson corre-

lation depending on whether regressor is ordinal or numerical. Kolenikov and Angeles
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(2009) discuss also the normal mean coding, which is a scaling approach based on the

same distributional assumption as polychoric PCA. It scales each unique category of an

ordinal variable to the expected value of the latent normal variable of the group, to which

the category belongs. The scaling of xij is computed as E(x∗ij|xij) =
∫ αjxij

αjxij−1
zφ(z)dz =

φ(αjxij−1)− φ(αjxij), where x∗ij denotes the underlying latent variable.

Additionally to the described three groups of methods, we study ordinal PCA and

ordinal PLS, where ordinal variables are simply treated as if they were metric, see

Kolenikov and Angeles (2009).

2.3 Simulations

In this section we describe the results of the simulation study that compares various treat-

ments of non-metric variables for PCA and PLS algorithms under several data generating

processes.

2.3.1 Simulation Design

We adapt the simulation designs from Naes and Martens (1985) and Kolenikov and Ange-

les (2009) with some adjustments. All simulation designs rely on a latent variable model

(Muthén, 1984; Chin et al., 2003). A latent variable model explictly assumes latent vari-

ables, which are not directly observable, but manifested in other observable variables. For

example, in a wealth index application, one cannot observe household wealth directly, but

wealth is assumed to be manifested in household asset posessions, such as car, radio and

bicycle, which are observable. A latent variable model reconstructs the latent concept

based on the observed variables, which are manifested from the latent variable. To high-

light the difference in PCA and PLS algorithms we design two main DGPs as follows.

Under the first data generating process (DGP 1), covariates of the model contain only
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one latent factor, which is related to the response. In this setting both PCA and PLS

algorithms are expected to perform similarly and the main focus is on various methods

for non-metric variables. Under the second data generating process (DGP 2), covariates

of the model contain two latent factors: the first one is related to the regressand and the

second one is not. Thereby, the variance of the second latent factor, which is unrelated to

the response variable, is much larger than that of the first latent factor. Hence, the PLS

algorithm, which maximizes the covariance between the response and covariates, remains

unaffected by the unrelated latent factor with large variance and should perform much

better than PCA, which maximizes the covariance of covariates and, hence, is highly in-

fluenced by the “spurious” covariates related to the second latent factor. In this setting

we aim not only to demonstrate the performance of methods for non-metric variables,

but also to compare PCA and PLS methods. DGP 1 has a practical relevance, when the

largest variations in the observed variables come from the latent variable of interest, e.g.,

in a wealth index application, the posession of a car, house and so on could be largely

determined by household wealth. DGP 2 is relevant to the case, where the observed vari-

ables include only small variations from the latent variable of interest, while the observed

variables are influenced by other factors too. For example, one may try to measure glob-

alization by the number of IKEA shops in a country. But the number of IKEA shops

is not only determined by globalization, but also by local demand, competitors, regu-

lations, etceteras, which may account for the main variations in the observed variable.

Finally, DGP 1H and DGP 2H introduce heterogeneity of observations to DGP 1 and

DGP 2. These settings reflect practical situations with clusters in the data. For exam-

ple, African countries show different behaviors than other countries in terms of economic

growth (Barro, 1989; Sachs and Warner, 1997). When one studies a survey data such

as Demographic and Health Surveys (Central Bureau of Statistics (CBS) Kenya et al.,

2004), certain covariates may have different contributions for observations measured in

urban and rural areas or male and females.
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Formal definitions of all data generating process are as follows. DGP 1 corresponds to

the following model. Let

x∗ij = Ξi1λ1j + ∆ij, i = 1, . . . , N, j = 1, . . . , K.

Here λ1j = 1/
√
K, j = 1, . . . , K are loadings and Ξi1 is the common latent factor, which is

distributed either as Ξi1 ∼ N (0, 1) or Ξi1 ∼ lnN (−1.44, 1.55). The parameters of the log

normal distribution imply variance 1 and skewness 13. Error terms ∆i = (∆i1, ...,∆iK)

are the unique factors with ∆i ∼ NK (0K , IK/(9K)), such that the signal to noise ratio√∑K
j=1 Var(Ξi1λ1j)/

∑K
j=1 Var(∆ij) = 3. Row vector X∗i = (x∗i1, ..., x

∗
iK) denotes the i-th

observation in the regressor matrix and the superscript ∗ states that these are metric

variables before discretization. The latent factor is connected to the outcome variable yi

as

yi = Ξi1β1 + εi, i = 1, . . . , N, (2.1)

where β1 = 1 and the error term εi ∼ N (0, 0.01). Hence, the only latent factor is

connected to the outcome variable and in this setting one can expect both PCA and PLS

to perform equally well.

DGP 2 introduces an additional factor with large variance which does not influence the

response variable:

x∗ij = Ξi1λ1j + Ξi2λ2j + ∆ij,

where (Ξi1,Ξi2) ∼ N2

(
02,
(
1 0
0 5

))
or (Ξi1,Ξi2) ∼ lnN2

(
(−1.44,−0.63),

(
1.55 0
0 1.55

))
, so that

the parameters of the log normal distribution imply variances 1 and 5 for Ξi1 and Ξi2,

respectively, and skewness 13 for both. The loadings λ1j are as before, while λ2j are

chosen so that ‖λ1‖ = ‖λ2‖ = 1 and λ1 ⊥ λ2. The distribution of ∆i = (∆i1, ...,∆iK) is

the same as in DGP 1, but the signal to noise ratio increases to 3
√

6. The model for the

outcome variable remains unchanged, i.e., (2.1) still holds, so that Ξi2 does not have any
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influence on yi. In this setting PLS is expected to outperform PCA, since by defintion it

remains unaffected by the second latent factor with large variance, in contrast to PCA.

DGP 1H and DGP 2H introduce a Boolean variable which interacts with the first latent

factor of DGP 1 and 2, respectively, that is

yi = Ξi1β1 +Diβ2 + Ξi1 ◦Diβ3 + εi,

with Di ∼ Bin(1, 0.5), β2 = β3 = 1 and ◦ denoting the Hadamard product. This is a

simple example of heterogenous observations. In applications such heterogeneity appears,

if the regression coefficients differ among different clusters. Neglecting such heterogenous

observations should lead to a deterioration of the performance, which we would like to

quantify in our simulation study and determine which methods stay robust.

In the next step, we discretize some variables in X∗. The discretization of the j-th variable

x∗ij with mj number of unique categories is performed by the following function.

xij =



mj − 1, if τj,mj−1 < x∗ij

mj − 2, if τj,mj−2 < x∗ij ≤ τj,mj−1

...
...

1, if τj,1 < x∗ij ≤ τj,2

0, if x∗ij ≤ τj,1,

where τj = (τj,1, ..., τj,mj−1) are some thresholds for x∗ij. The thresholds are generated as

τj = (τj,1, ..., τj,mj−1) = (F−1(uj,1), ..., F
−1(uj,mj−1)), where F (·) is the empirical CDF of

the realizations of x∗ij and uj,1, ..., uj,mj−1 are generated from the uniform distribution on

[0,1] and sorted ascending.

To measure the performance of various non-metric PCA and PLS methods, the mean
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squares error of prediction (MSEP) is calculated from a Monte Carlo sample of 500 rep-

etitions. The MSEP in the l-th iteration is defined as

MSEPl =
1

N
(Ξ1lβ1 − Ulγ̂l)T (Ξ1lβ1 − Ulγ̂l)

for DGP 1 and 2 and for DGP 1H and 2H as

MSEPl =
1

N
(Ξ1lβ1 +Dlβ2 + Ξ1l ◦Dlβ3 − Ulγ̂l)T (Ξ1lβ1 +Dlβ2 + Ξ1l ◦Dlβ3 − Ulγ̂l),

where Ξ1l = (Ξ11l, ...,ΞN1l) and Dl = (D1l, ..., DNl). The matrix Ul = (1, t1l) ∈ RN×2

includes the intercept with the first PLS or PCA score and γ̂l is the OLS coefficients of

yl = (y1l, ..., yNl) on Ul. True values Ξ1lβ1 and Ξ1lβ1 +Dlβ2 + Ξ1l ◦Dlβ3 are scaled as unit

variance in all DGPs to make the MSEPs from different settings comparable.

We consider the following settings under each DGP. The sample size N is either 100 or

1000 and the number of regressors K is either 10 or 50. The proportion of non-metric

variables in the regressor matrix is 50% or 80%. The expected number of categories

of non-metric variables mj is either 3 or 7. Thereby mj is generated from the Poisson

distribution with mean λ = 1 or λ = 5 and we add 2 to mj to guarantee at least two

unique values in a variable.

PLS and PCA solutions are known to depend on the scaling of regressors (Wold et al.,

2001; Keun et al., 2003). Scaling approaches, as well as polychoric PCA and polyserial

PLS, by definition imply particular scalings of regressors. For dummy coding method we

compare three scaling approaches: no scaling, autoscaling and block scaling. Auto-scaling

centers and standardizes regressors to the unit variance, while block scaling sets the sum

of the variances of dummy variables from each non-metric variable to one.

Note that our model is restricted to just one latent component and only the first PCA

and PLS scores are estimated, implicitly assuming that the number of latent components
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is known. This allows us to exclude the variability due to the estimation of the number of

latent components, so that the comparison beween the methods is not influenced by an

extra variability. Moreover, in many applications only the first PCA or PLS components

is of interest and is estimated (e.g., Dreher, 2006; Filmer and Pritchett, 2001; Rutstein

and Johnson, 2004).

2.3.2 Simulation Results

The simulation results are reported via box plots, where means are marked with black

dots. We define Base setting 1 as DGP 1, normally distributed Ξ1, N = 1000, K = 50,

proportion of non-metric variables is 80% and expected number of categories is 7. Base

setting 2 is the same as Base setting 1, except that DGP 2 is used instead of DGP 1.

The reported methods in the box plots are PCA or PLS with dummy coding (dummy

PCR/PLSR), the aggregation method (aggregation PCR/PLSR), the regular simplex

method (RS-PCR/PLSR), the optimal scaling method (OS-PCR/PLSR), the ordinal

PCR/PLSR, the normal mean coding (normal mean PCR/PLSR), MCA (MCR), NM-

PLSR, CATPCR, polychoric PCR and polyserial PLSR. For dummy coding only the

results with no scaling are reported, because other scaling approaches perform similar or

worse for the selected settings. For similar reasons, both NM-PLSR and CATPCR only

with nominal quantification are reported.

Figure 2.1 focuses on the comparision of PCA and PLS under two data generating pro-

cesses. Note that the MSEP-scale of the left and right panel are different. Under DGP 1

both PCA and PLS perform similar, as expected. PLS methods show either little or no

advantages compared to PCA. In contrast, under DGP 2 we observe that PLS methods

show a clear and significant advantage compared to PCA. Also, under DGP 2 all ap-

proaches for treating non-metric variables perform similar for PCA and PLS, while under

DGP 1 several methods show better performance than the others, which we study in much
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Figure 2.1: MSEP under DGP 1 (left) and DGP 2 (right)

Base setting 1 and 2 are reported. PCA-based methods are colored white and PLS-based methods light
grey.

more detail in Figure 2.2.

Figure 2.2 shows the performance of various methods under DGP 1. Note that scales on

the left middle and right bottom plots are different from the other plots. We focus on Base

setting 1, shown again in the left top plot and vary one setting at each subsequent plot.

The changes of the means from the base setting are marked by red arrows. MCR, RS-

PCR, RS-PLSR, ordinal PCR, ordinal PLSR, CATPCA, Polychoric PCR and Polyserial

PLSR are not reported, since they performed much worse compared to other methods

when the latent variable is skewed and didn’t perform good either in other settings as

visible in Figure 2.1. The performance of all remaining methods deteriorates when the

true latent variable becomes skewed (right plot in the top row), when the number of

the variables decreases (left plot in the middle) and when heterogenous observations are

introduced (right plot in the bottom). When the proportion of non-metric variables

decreases (right plot in the middle), all methods improve, while the improvement is the

most salient for dummy PCR/PLSR. Changes in the expected number of categories (left

plot in the bottom) have little impact, except for dummy PCR/PLSR, which noticeably
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Figure 2.2: MSEP under DGP 1

Base setting 1 is used. Red arrows mark changes of the means from the base setting to the respective
setting. PCA-based methods are colored white and PLS-based methods light grey.
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Figure 2.3: MSEP under DGP 2

Base setting 2 is used. Red arrows marks changes of the means from the base setting to the respective
setting. PCA-based methods are colored white and PLS-based methods light grey.
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Figure 2.4: The absolute frequency of the best perfoming methods over different DGP
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improve with less expected number of categories.

The upper left panel of Figure 2.4 shows the absolute frequency of best performing (in

terms of the average MSEP over Monte Carlo runs) methods out of all 64 settings under

DGP 1 and DGP 1H. While some methods are not reported in Figure 2.2 to make the

comparison easier, all methods are considered in Figure 2.4. It is found that NM-PLSR

with nominal or ordinal quantification is most often best method followed by normal mean

PLSR and dummy PLSR with autoscaling. The lower left panel shows the frequency

of best performing PCA-based methods, with normal mean PCR always outperforming

other methods. Compared to other methods, dummy coding approach is very attractive in

applications due to its simple implementation and interpretation. Therefore, we perform

Welch’s t-tests to 5% significance level with Bonferroni adjustment (Yandell, 1997, p. 93)

to test if NM-PLSR with nominal quantification outperforms dummy PLSR significantly.

It turns out, NM-PLSR with nominal quantification is significantly better than dummy

PLSR with autoscaling in 59 out of 64 settings. The few settings, where no differences

were found, typically have heterogeneity among observations, skewed latent variable and

small number of observations. Similarly, normal mean PCR and dummy PCR are tested.

It is found that the normal mean PCR significantly outperforms dummy PCR in 62

settings. No differences were found for settings with heterogeneity among observations,

skewed latent variable, small sample, many variables and small proportion of non-metric

variable.

Figure 2.3 shows the performance of various methods under DGP 2. When the latent

variable is skewed (right top plot), the Monte Carlo variations become large and some

methods show deteriorations. With the number of variables decreasing (left plot in the

middle row), generally PLS-based methods deteriorate and PCA-based methods improve.

But for ordinal PCR/PLSR and polychoric PCR and polyserial PLSR the pattern is op-

posite. The improvement of ordinal PLSR is so large, that it becomes the best method in
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this setting. The proportion of non-metric variables (right middle plot) and the expected

number of categories (left bottom) do not cause much changes. All methods deteriorate

slightly with the heterogeneity among observations (right bottom plot).

The upper right panel of Figure 2.4 shows the absolute frequency of best performing

methods under DGP 2 and DGP 2H. Dummy PLSR with autoscaling and block scaling

perform best most frequently followed by ordinal PLSR. The lower right panel shows

that normal mean PCR performs most frequently the best among PCA-based methods

followed by ordinal PCR and dummy PCR with autoscaling. We performed again Welch’s

t-tests with Bonferroni corrections as above to test significant differences between methods

under all 64 settings. First, normal mean PCR significantly outperforms dummy PCR

with autoscaling in 33 settings. These settings typically have normal distributed latent

variable, small number of variables and high proportion of non-metric variables. Second,

ordinal PCR significantly outperforms dummy PCR in 20 settings, which typically have

normal distributed latent variable.

2.4 Applications

To demonstrate the performance of PCA and PLS algorithms with non-metric variables

on real data, we construct a wealth index, based on the Indonesian Family Life Survey

(Strauss et al., 2004) from the year 2000. A wealth index measures household wealth

based on the posession of assets and is often used as a proxy for household expenditure.

Therefore, we consider the logarithm of the real monthly household expenditure per capita

as an outcome variable and aim to find such weights in the wealth index, which provide

the best prediction of household expenditure. There are 11 categorical asset variables to

build a wealth index. The relationship between wealth and expenditure can differ across

observations due to different depreciation rates. Therefore, we consider province, region
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(kabupaten), destrict (kecamatan) and urban/rural variables to control for heterogeneity.

There are 10222 complete observations of households. We use the following empirical

model:

yi = 1iγ0 + Tiγ1 +Diγ2 + Ti ⊗Diγ3 + εi,

where 1i is the intercept, Ti=(t1i, ..., tAi) contains PCA or PLS scores, Di is the i-th row of

the indicator matrix built from the control variables, Ti⊗Di builds the interaction terms

between Ti and Di and γ0, γ1, γ2 and γ3 are coefficient vectors of appropriate length.

First, a model selection for the treatment of non-metric variables, the number of scores

and control variables is performed. For all treatments of non-metric variables mentioned

in Section 2.2.2, estimated MSEP via 10-fold cross-validation (Mevik and Cederkvist,

2004) is calculated for all possible combinations of the number of scores and control

variables. NM-PLSR with 2 scores and province, region and urban/rural variables to

control heterogeneity showed the lowest estimated MSEP, closely followed by the PLSR

with dummy coding, which we choose due to easier interpretation.

Since dummy coding with autoscaling is used, estimators for Tγ1 are given by T γ̂1 =

XS−
1
2W ∗γ̂1 = Xβ̂1, where S is a diagonal matrix containing the variance of each column

of X and W ∗ is the PCA or PLS weights in terms of autoscaled regressors. In the following

we report γ̂1, β̂1 and the weights W = S−
1
2W ∗.

Table 2.1 shows the coefficient estimates γ̂1 for PCA or PLS and model selection statistics.

We show not only our favored model, i.e., the model with two scores with the control

variables, but also models without the second score or the control variables. In this way

we can see which parts of the model contribute to the performance. The PLSRs show

better performance than the PCRs in terms of R2 and estimated MSEP. In other words,

composite indices based on PLS is better than PCA-based ones in terms of fitting and

prediction in our application. Adding an additional score and controlling heterogeneity

bring gains in terms of R2 and estimated MSEP to both PLSRs and PCRs, whereby the
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Table 2.1: Coefficient estimates in terms of composite indices and model selection criteria

γ̂1,PCR γ̂1,PCR γ̂1,PCR γ̂1,PCR
A = 1 A = 1, H A = 2 A = 2, H

t1 0.183∗∗∗ 0.187∗∗∗ 0.183∗∗∗ 0.179∗∗∗

t2 −0.055 −0.060
Adj.R2 0.211 0.233 0.222 0.245

M̂SEP 0.446 0.436 0.439 0.429

γ̂1,PLSR γ̂1,PLSR γ̂1,PLSR γ̂1,PLSR
A = 1 A = 1, H A = 2 A = 2, H

t1 0.211∗∗∗ 0.221∗∗∗ 0.211∗∗∗ 0.210∗∗∗

t2 0.103∗∗∗ 0.105∗∗∗

Adj.R2 0.260 0.281 0.286 0.306

M̂SEP 0.419 0.409 0.404 0.395

Note: *** p<0.01, ** p<0.05, * p<0.1. Jackknife standard errors. The number of scores A = 1 or 2. H
means that province, region and urban/rural heterogeneity are controlled, which are not reported.

M̂SEP is estimated via 10-fold cross-validation.

magnitude of the gains is larger by the PLSRs. The larger gains of the PLSRs compared

to the PCRs could be bacause of the quality of the second score, which are significant

in the PLSRs, but not in the PCRs. On the other hand the first scores are significant

in all regressions. Wealth, measured by the first and second PLS scores, predicts higher

houshold expenditures in the PLSR under the favored setting. The interpretation of the

PCR is analogous, except that the second score is not significant. The inference was based

on the Jackknife standard errors (Martens and Martens, 2000).

Table 2.2 shows the coefficient estimates in terms of the variables building the scores

and weights. The coefficient estimates of the PCR and PLSR under our favored setting,

i.e., with heterogeneity control and two scores, show strong differences, while the PLSR

coefficients are better in terms of prediction as shown in Table 2.1. The PCR and PLSR

coefficients of owning farm land and cooking with kerosene have opposite signs. The PLSR

emphasizes refrigerators, owning house and buildings, using mineral water as drinking

water, using public toilet and all variables related to cooking, while electricity, piped,

surface, rain, basin water, toilet without septank and communal toilet are less important
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compared to the PCR. Analogously, PLS and PCA weights show strong differences, with

the PLS weights better suited for the prediction of household expenditure. The first PLS

weights emphasize owning non-farm land, using mineral water as drinking water, public

toilet, cooking with electricity and don’t cook, while owning farm land, using communal

toilet and cooking with kerosine are less important compared to the first PCA weight. The

second PLS and PCA weights show more drastic differences, where more than half of the

variables having weights of opposite signs. A comparison of coefficient estimates between

one and two scores model shows the contribution of the elements in the second score

in the final prediction. Introducing the second score brings larger changes in coefficient

estimates in the PLSR compared to the PCR, which is not surprising given that the PCR

coefficient estimate in terms of the second score in Table 2.1 is not significant. We see

large differences between the PLSR with one and two scores in electricity, owning farm

land, using surface, basin and mineral water as drinking water, toilet without septank,

public toilet, cooking with electricity and kerosene and don’t cook. The PCR with one

and two score shows moderate differences in owning house and non-farm land, communal

and public toilet, cooking with kerosene and don’t cook.

2.5 Conclusions

We have reviewed various treatments of non-metric variables in PCA and PLS algorithms.

The results of the simulation study suggest the following. First, PLS-based methods

are to prefer in practice. PLS is particularly advantageous when informative variations

account for small variances in the variables in a composite index (DGP 2&2H). When

informative variations account for large variances (DGP 1&1H), PLS performs as good as

PCA. Second, under considered data generating processes, NM-PLSR performs best under

DGP 1&1H, while dummy PLSR is to prefer under DGP 2&2H. Ordinal PLSR shows good

performance in a few occasions under DGP 2&2H. Third, normal mean PCR showed most
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often the best performance among PCA based methods, followed by ordinal and dummy

PCR. Finally, ignoring heterogeneity among observations leads to a deterioration for all

methods and settings.

As an application wealth indices to predict household expenditure have been considered.

The number of scores and variables to control heterogeinity are selected simultaneously,

which bring gains in prediction performance and large changes to coefficients. The weights

and coefficients of PLSR and PCR differ drastically, while the weights and coefficients of

PLSR turn out to be better for the prediction.
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Chapter 3

An Application of Partial Least

Squares to the Construction of the

Social Institutions and Gender Index

(SIGI) and the Corruption

Perception Index (CPI)

with Stephan Klasen

Abstract

In this paper the Social Institutions and Gender Index (SIGI) is re-constructed using

weights generated by Principal Component Analysis (PCA) and Partial Least Squares

(PLS). Using the revised SIGI, we test the effects of social institutions related to gender

inequality on several development outcomes, such as female education, fertility and child
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mortality, controlling for relevant determinants. We also use the same procedure to study

the relationship between the SIGI and corruption measued by the Corruption Percetion

Index (CPI). Also for the CPI we consider alternative weighting procedures using PCA

and PLS. We find that gender inequality in social institutions has significant effect on

fertility and corruption regardless of the weighting procedure, while for female education

and child mortality only the SIGI based on PLS generates significant results.

3.1 Introduction

Gender inequlity not only deprives the women of basic freedom, but also hinders the

development of the society, e.g., it has been found to cause ill-health, low overall human

capital, bad governance, and lower economic growth (Branisa et al., 2013; Sen, 1999).

This study focuses on the social institutions related to gender inequality, which shape

societal practices and legal norms, ultimately producing gender inequality.

To measure a latent concept such as the social institutions related to gender inequal-

ity, a composite index is a natural approach. We build new composite indices besed on

the indicators included in the Social Institution and Gender Index (SIGI; Branisa et al.,

2013). The quality of a composite index depends on the weighting scheme. In Branisa

et al. (2013) weights of the SIGI are derived as a mixture of polychoric principal compo-

nent analysis (Kolenikov and Angeles, 2009) and the authors’ judgement, which can be

subjective. Therefore, we change the weighting scheme to Principal Component Analysis

(PCA; Hotelling, 1933). However, PCA works when the largest variations in the variables

building composite indices are informative, but in practice this is not always the case.

We additionally use Partial Least Squares (PLS; Wold, 1966b) to derive weights, which

considers the relationship between outcome variables and the variables building composite

indices. Consequently, PLS often works well even when informative variations in the vari-
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ables are small. When coefficient estimates from Principal Component Regression (PCR)

are insignificant and Partial Least Squares Regression (PLSR) show significant coefficient

estimates, we can suspect that PCA doesn’t work well due to large noise. On the other

hand, when both PCR and PLSR show insignificant coefficient estimates, we can be more

sure about no relationship. Using PLS to derive weights has the following additional ad-

vantages. First, PLS usually builds composite indices better for the prediction of outcome

variables compared to PCA when only few number of PCA or PLS scores are used (Naes

and Martens, 1985). Second, a comparison between PCA and PLS weights shows which

variables are particularly relevant for the prediction of a certain outcome variable.

The SIGI with new weights will be used to test the effects of social institutions related

to gender inequality on various gender outcomes. In analogy to Branisa et al. (2013), we

take female education, fertility, child mortality and corruption as the outcome variables.

Branisa et al. (2013) found that the SIGI as a whole did not have an impact on these

outcomes once control variables were included. They did, however, find that particular

sub-indices of the SIGI had a significant impact on these outcome variables. We want to

investigate here whether these results change if the SIGI is generated using PLS or PCA.

In particular, we would like to investigate whether the reweighted SIGI as a whole has

an impact on these outcomes. The weights of the SIGI that lead to such a significant

relationship would then also yield new insights about the components of social institutions

that are particularly relevant for different development outcomes. We perform a linear

regression analysis for each outcome variable, while relevant control variables are added

based on the literature. We check the non-linearity of the control variables and adjust

the empirical model accordingly based on model selection criteria. Additionally, most

indicators that are included in the SIGI are non-metric, for which special treatments are

necessary to apply PCA and PLS. We compare various treatments for non-metric variables

in terms of model selection criteria and choose dummy coding as the most appropriate

treatment.
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As we investigate the relationship between the SIGI and corruption, we use the Corruption

Perception Index (CPI; Transparency International, 2013) as a measure of corruption.

The CPI assigns weights via a simple average, which is appropriate when all variables are

equally important, but it is not clear whether this condition is satisfied. One can suspect

that many varaibles in the CPI have high measurement errors and some variables are

emphasized without clear reasons. We modify the CPI by preparing variables differently

and changing the weighting procedure to PCA and PLS and check the relationship between

the SIGI and corruption again.

The rest of this paper is organized as follows. Section 3.2 recapitulates PCA and PLS

algorithms. Section 3.3 discusses the data. Empirical analyses follow in Section 3.4. In

Section 3.5, we create new CPIs with different weighting schemes. Then we conclude.

3.2 PCA and PLS Algorithms

We recapitulate PLS and PCA algorithms in the following. Consider a regression model

Y = Xβ + ε, where Y ∈ RN×R, X ∈ RN×K , β ∈ RK , R, K ≤ N and ε ∈ RN with

E(ε|X) = 0 and cov(ε|X) = σ2In. Note that outcome variables can be multivariate. In

the following, we restrict our attention to the case where we have only a single interesting

score from X or Y respectively. It is common in practice to assume the unidimensionality

of a composite index, e.g., the KOF Index of Globalization (Dreher, 2006) and the wealth

index (Rutstein and Johnson, 2004; Kolenikov and Angeles, 2009). Alternatively one can

decide the number of scores based on model selection criteria (Wold et al., 1983; Zwick

and Velicer, 1986), which is not pursued here.

Both PCA and PLS build the first score as a linear combination of the columns of regressor

matrix and regressand matrix, that is t1 = Xw1 and u1 = Y c1. PCA builds the first score
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by maximizing the empirical variance of the score in terms of the weights.

w1 = argmax
‖ωX‖=1

t′1t1 = argmax
‖ωX‖=1

ω′XX
′XωX

c1 = argmax
‖ωY ‖=1

u′1u1 = argmax
‖ωY ‖=1

ω′Y Y
′Y ωY ,

where t1, u1 ∈ RN , w1 ∈ RK and c1 ∈ RR. The solution is the first eigenvector of X or Y

respectively (Maitra and Yan, 2008). The first PLS score is identified by the maximization

of the empirical covariance between the first score from X and Y .

{w1, c1} = argmax
‖ωX‖=‖ωY ‖=1

(t′1u1)
2 = argmax

‖ωX‖=‖ωY ‖=1

(ω′XX
′Y ωY )2.

There are several algorithms to calculate the PLS weights (de Jong, 1993). In composite

index applications weights are to be interpreted as the relative importance of the variables

building a composite index.

3.3 Data

In this section we explain the variables that build the SIGI, our outcome variables and

control variables. We take the concepts and data from Branisa et al. (2013) to build the

SIGI. The SIGI is composed of 12 variables, which are divided into five blocks, and each

block of variables builds a subindex. The subindices are generated by scaling the first poly-

choric PCA score (Kolenikov and Angeles, 2009) on domain [0, 1]. Then the subindices are

squared and averaged to build the SIGI. The data cover about 100 non-OECD countries

and the indicators are coded so that high value represents high gender inequality. The five

blocs or dimensions of social institutions considered in the SIGI are family code, civil

liberties, physical integrity, son preference and ownership rights. Family code
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is about the decision making power of women in the household, which is measured by the

prevalence of early marriage (Early marriage), the prevalence of polygamy (Polygamy),

whether women can become legal guardian of children or have custody right after divorce

(Parental authority) and whether women have the rights to inherit (Inheritance). Civil

liberties concern the freedom of social participation of women. They are measured by

whether women can move outside freely without having to be escorted by men (Freedom

of movements) and whether it is obligatory to wear a veil (Freedom of dress). Physical

integrity refers to the violence against women, which is measured by the existence of

legal protection for women againt rape, assault and sexual harrasment (Violence against

women) and the prevalence of female genital mutilation (Female genital mutilation). Son

preference measures the gender bias in mortality of girls compared with boys (Son pref-

erence), which is caused by sex selective abortion or inadequate care. Ownership rights

cover the rights of women to several types properties. They are measured by the access

to land (Womens’ access to land), credit (Womens’ access to credit) and properties other

than land (Womens’ access to property other than land). Early marriage and female

genital mutilation are numerical variables and other indicators are ordinal variables.

We aim to test whether female education, fertility, child mortality and corruption are af-

fected by the SIGI using the same hypotheses and measurements as Branisa et al. (2013).

According to the hypotheses made in that paper, more gender inequality reduces female

education, increases fertility, child mortality and corruption. Female education is mea-

sured by female gross secondary school enrollment rates (World Bank, 2008), which is

the number of children in school divided by the population who are supposed to be in

school by age in percent scale. Fertility is measured by total fertility rates (World Bank,

2009), which is the average number of birth to a woman in her lifetime. Child mortality

is measured by child mortality rates (World Bank, 2008), that is under five mortality per

1000 live births. We take the Corruption Perception Index (CPI, Transparency Interna-

tional, 2013) as a measure of corruption, which is scaled from 0 to 10 with higher value
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indicating less corruption.

The control variables are taken from representative models from Branisa et al. (2013). All

regressions control for the level of economic development, religion, region and the political

system in a country. The level of economic development is measured by the log per capital

GDP in constant price (log GDP, US$, PPP, base year 2005). Religion is measured

by a Muslim majority dummy (Muslim) and a Christian majority dummy (Christian).

Region dummies include East Asia and Pacific (EAC), South Asia (SA), Middle East and

North Africa (MENA), Latin America and Caribean (LAC) and Europe and Central Asia

(ECA). Sub-Saharan Africa (SSA) is the left out category. Political system is captured by

the Electoral Democracy Index (Electoral democ.) and the Civil Liberties index (FH civil

liberties) from Freedom House (2008), but for the corruption regression the Civil Liberties

index is substituted by Polity 2 (Polity 2, Monty G. Marshall, 2013). The Civil Liberties

index is coded in a way that high value means better analogous to other two variables.

For the corruption regression, several additional control variables are added. Women’s

representation is controlled, which are measured by the proportion of female legislator

(Parliament), the female share in professional, technical, admistrative and managerial

positions (Managers) and women’s share of labor force (Labor force), where all three

variables are taken from World Bank (2008). We add ethnic fractionalization (Ethnic

frac., Alesina et al., 2003), literacy rates (Literacy pop., United Nations Development

Programme, 1995), trade openness (Openness, World Bank, 2008), a dummy indicating

that a country has never been a colony and a British colony (Not colony, British colony,

Correlates of War 2 Project., 2003).

Following Branisa et al. (2013), we take the average over five or six years (2000 or 2001-

2005) for the regressands. The average over 10 years (1996-2005) is taken for the control

variables.

We take the complete observations from a total of 124 of non-OECD countries for the
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regression analysis, which results in the number of observations for the female education

regression as 91, the fertility regression as 97, the child mortality regression as 97 and

the corruption regression as 85. We have checked whether there is a sample selection

problem from the regressands regarding the dropped and kept observations by comparing

the means using t-tests and the distributions using kernel density estimations and didn’t

find any suggestion of sample selection problem.

3.4 Empirical Analysis

Our empirical analysis proceeds with three steps. First, we formulate an empirical model.

Second, we choose an appropriate treatments for non-metric variables in the SIGI when

PCA or PLS are performed considering model selection statistics. We take the possible

non-linearity between regressands and control variables into account during the selection.

Third, we interpret the results from the selected models.

Our empirical analysis uses a simple linear model in analogy to Branisa et al. (2013).

u = γ0 + SIGIγSIGI + ZγZ + ε,

where u is a regressand. The SIGI is the composite index and Z is a matrix containing

control variables. γ0, γSIGI and γZ are coefficient vectors of appropriate length and ε

denotes an error term. We denote γPCR = (γ0, γSIGI , γZ) when the SIGI is calculated via

PCA and γPLSR is analogously defined for the SIGI being calculated via PLS.

Next, we perform a model selection in terms of various treatments of non-metric variables

for PCA and PLS available in the literature. The prediction performance measured by the

estimated mean squared error of prediction (MSEP; Mevik and Cederkvist, 2004) via the

Jackknife is considered as the model selection criterion. We focus on dummy coding with
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autoscaling because it performs usually good, albeit not always the best, and it is easy

to implement and interpret compared with competing methods. The following methods

are considered during the model selection, whereby a detailed summary of these methods

is available in Chapter 2. Note that the abbreviation in the parenthesis corresponds to

Figure 3.1. Dummy coding (dummy PCR/PLSR; Filmer and Pritchett, 2001), multi-

ple correspondence analysis (MCR; Greenacre, 2010) and regular simplex method

(RS-PCR/PLSR; Niitsuma and Okada, 2005) transform each unique category of a non-

metric variable to a variable. Optimal scaling method (OS-PCR/PLSR; Tenenhaus

and Young, 1985), non-metric partial least squares regression (NM-PLSR; Russo-

lillo, 2009), categorical principal component analysis (CATPCR; Meulman, 2000)

and normal mean coding (normal mean PCR/PLSR; Kolenikov and Angeles, 2009)

scale each unique value of non-metric variables. Polychoric PCR (Kolenikov and An-

geles, 2009) assumes that observed ordinal variables are generated from discretizations of

multivariate normal latent variables. The variance-covariance matrix of the multivariate

normal latent variables is estimated and used to calculate the weights of PCA. Polyse-

rial PLSR is analogous to polychoric PCR, except that the weights are based on the

polyserial correlation between outcome variable and ordinal variables. Ordinal PCR

and PLSR consider ordinal variables as if they were numerical variables. The approach

from Branisa et al. (SIP.FGT; 2013) as explained above is considered as a reference.

Next, we checked for non-linearity of control variables. The data suggested that log GDP

has a non-linear effect on each outcome variable. We model the non-linearity by including

linear, square and cubic term of log GDP, since more complicated non-parametric fits were

not superior. In general, selected non-linear terms improved the estimated MSEP. The

female education regression includes the linear term of log GDP, the fertility regression the

linear and cubic terms, the child mortality regression the linear, square and cubic terms

and the corruption regression the linear and cubic terms. In Figure 3.1, the performance

of the various treatments in terms of the estimated MSEP under the selected non-linear
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terms are reported.

We report not only the coefficient estimates in terms of the SIGI, but also in terms of the

variables building the SIGI. The coefficient estimates in terms of PCA or PLS score can

be straightforwardly transformed back in terms of regressors.

u = γ̂0 + SIGIγ̂SIGI + Zγ̂Z + ε̂

= γ̂0 +XS−
1
2w∗1γ̂SIGI + Zγ̂Z + ε̂

= γ̂0 +Xβ̂SIGI + Zγ̂Z + ε̂,

where X contains the variables building the SIGI after dummy coding and S is a scaling

matrix, which is diagonal and containing the variance of each column of X. We report

β̂PCR = β̂SIGI and wPCA = S−
1
2w∗1 when the SIGI is calculated by PCA. When the PLS

score is used for the SIGI, β̂PLSR and wPLS are reported, which are analogously defined.

Table 3.1 shows the results of the linear regressions for the outcome variables on the

SIGIs built by PCA and PLS. The PLSRs fit data better than the PCRs for all outcome

variables, which is visible through the higher R2 of the PLSRs than the PCRs. The

estimated MSEP of the PLSR is lower than the PCR for the female education and the

child mortality regression, i.e., for those models PLS is beneficial to improve prediction.

The inferences in the followings are based on the Jackknife standard errors (Martens and

Martens, 2000). The SIGIs based on PCA have no significant effect on female education

and child mortality, but the SIGIs based on PLS are significant at 5% and 1% level.

It suggests that the weights generated by PCA generate SIGIs that have no significant

impact on these outcomes, while the SIGIs generated by PLS have significant impact,

where more gender inequality predicts lower female education and more child mortality.

Considering PLS works often better than PCA when important latent variable has small

variations in indicators, we can suspect large measurement errors are problemetic in the
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Figure 3.1: Estimated MSEP of the various treatments for non-metric variables

MSEP is estimated via the Jackknife. PCA-based methods are colored white, PLS-based methods light
grey and arbitrary methods black. Ascending ranks in the parenthesis.
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Table 3.2: Weights and coefficients in terms of the variables building the SIGI for female
education

β̂PCR wPCA β̂PLSR wPLS
Parental authority 1 −0.62 0.232 −2.19∗ 0.409
Parental authority 2 −1.98 0.746 −1.78 0.332
Inheritance 1 −1.26 0.475 −2.20∗ 0.412
Inheritance 2 −1.48 0.560 −3.53∗∗ 0.660
Early marriage −4.35 1.642 −16.63∗∗ 3.109
Polygamy 1 0.13 −0.050 −0.95 0.178
Polygamy 2 −2.02 0.762 −4.29∗∗ 0.802
Freedom of movement 1 −1.61 0.606 −0.79 0.147
Freedom of movement 2 −3.63 1.368 −3.19 0.596
Freedom of dress 1 −1.35 0.510 0.55 −0.104
Freedom of dress 2 −2.88 1.087 −1.48 0.277
Violence 1 0.92 −0.345 0.77 −0.143
Violence 2 1.11 −0.417 1.81 −0.339
Violence 3 0.44 −0.164 1.90 −0.355
Violence 4 1.22 −0.462 2.69 −0.503
Violence 5 −0.32 0.122 −1.14 0.213
Violence 6 0.88 −0.333 0.70 −0.132
Violence 7 0.81 −0.307 0.58 −0.109
Violence 8 −1.15 0.434 −1.80∗ 0.337
Violence 9 −1.48 0.558 −2.03 0.379
Female genital mutilation −2.11 0.794 −6.10∗∗ 1.141
Son preference 1 0.07 −0.028 −0.24 0.044
Son preference 2 −1.62 0.611 1.45 −0.271
Son preference 3 −0.85 0.321 −2.46 0.460
Son preference 4 1.92 −0.724 1.01 −0.189
Womens’ access to land 1 −1.29 0.486 −2.24∗ 0.420
Womens’ access to land 2 −1.44 0.541 −4.43∗∗ 0.829
Womens’ access to loan 1 −1.41 0.530 −3.64∗∗ 0.680
Womens’ access to loan 2 −1.57 0.593 −5.00∗∗ 0.934
Womens’ access to property other than land 1 −1.44 0.542 −2.23∗ 0.417
Womens’ access to property other than land 2 −1.90 0.715 −3.97∗∗ 0.742

Note: *** p<0.01, ** p<0.05, * p<0.1. Jackknife standard errors. For all variables transformed by
dummy coding, base category has value 0. Higher value means more gender inequality.
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Table 3.3: Weights and coefficients in terms of the variables building the SIGI for child
mortality

β̂PCR wPCA β̂PLSR wPLS
Parental authority 1 1.09 0.211 5.75∗∗ 0.422
Parental authority 2 3.72 0.723 5.16∗ 0.379
Inheritance 1 2.46 0.478 5.04∗ 0.370
Inheritance 2 2.89 0.563 9.27∗∗ 0.680
Early marriage 8.75 1.702 40.91∗∗∗ 3.003
Polygamy 1 −0.11 −0.021 2.46 0.181
Polygamy 2 3.77 0.733 9.51∗∗ 0.698
Freedom of movement 1 3.13 0.608 1.52 0.112
Freedom of movement 2 6.71 1.304 1.42 0.105
Freedom of dress 1 2.53 0.492 −2.20 −0.161
Freedom of dress 2 5.51 1.072 −0.34 −0.025
Violence 1 −1.93 −0.375 −4.62 −0.339
Violence 2 −1.80 −0.351 −4.24 −0.311
Violence 3 −0.98 −0.190 −5.52∗ −0.406
Violence 4 −2.57 −0.500 −5.21∗ −0.382
Violence 5 0.53 0.102 −0.11 −0.008
Violence 6 −1.86 −0.362 −2.64 −0.194
Violence 7 −1.75 −0.341 −4.52 −0.332
Violence 8 2.04 0.397 5.17∗∗ 0.379
Violence 9 3.03 0.590 10.16 0.746
Female genital mutilation 4.14 0.805 15.66∗∗∗ 1.150
Son preference 1 −0.21 −0.040 1.53 0.112
Son preference 2 3.05 0.592 −5.50∗ −0.403
Son preference 3 1.31 0.255 0.75 0.055
Son preference 4 −4.05 −0.788 −6.59 −0.484
Womens’ access to land 1 2.67 0.520 5.67∗∗ 0.416
Womens’ access to land 2 2.65 0.515 11.43∗∗ 0.839
Womens’ access to loan 1 2.88 0.560 10.13∗∗∗ 0.744
Womens’ access to loan 2 2.86 0.557 9.76∗ 0.716
Womens’ access to property other than land 1 2.92 0.567 5.56∗∗ 0.408
Womens’ access to property other than land 2 2.88 0.561 10.38 0.762

Note: *** p<0.01, ** p<0.05, * p<0.1. Jackknife standard errors. For all variables transformed by
dummy coding, base category has value 0. Higher value means more gender inequality.
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PCA-based SIGI. On the other hand, both SIGIs based on PCA and PLS are significant in

the fertility and corruption regression at 5% or 1% level. More gender inequality increases

fertility and corruption.

Table 3.2 shows the PCR/PLSR coefficients in terms of the variables building the SIGI

from the female education regression and the weights. No variable has a significant effect

in the PCR. On the other hand, high inequality in inheritance, early marriage, high

prevalence of polygamy, female genital mutilation, high inequality in women’s access to

land and properties other than land and high and medium inequality in women’s access

to loan have significant negative effects on female education in the PLSR. These variables

are particularly relevant for the prediction for female education, considering the better

prediction performance of the PLSR. A comparison of the PLS weights vis-à-vis the PCA

weights show which variables are important to build a composite index relevant to female

education. Early marriage and a moderate level of violence against women (Violence 3)

are emphasized by the PLS weights, while high level of inequality in parental authority,

freedom of movement, freedom of dress, some parts of violence against women (Violence

1, 6 and 7) and stong son preference (Son preference 4) are understated. For medium

prevalence of polygamy, medium level of inequality in freedom of dress and low level of

son preference (Son preference 1 and 2), the PLS and PCA weights have opposite signs.

Table 3.3 is from the child mortality regression. We do not see any significant variables

in the PCR, whereas medium inequality in parental authority, high inequality in inheri-

tance, early marriage, high prevalence of polygamy, high level of violence against women

(Violence 8), female genital mutilation, medium and high inequality in womens’ access

to land and medium inequality in women’s access to loan and property other than land

are significant in the PLSR. These variables can be considered to be important for the

prediction for child mortality. The PLS weights emphasize medium level of inequality in

parental authority, early marriage and a part of violence against women (Violence 3) and
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understates freedom of movements and medium high level of son preference (Son prefer-

ence 3) campared to the PCA weights. For medium prevalence of polygamy, medium and

high level of inequality in freedom of dress, a part of violence against women (Violence 5)

and low level of son preference (Son preference 1 and 2), the PLS and PCA weights have

opposite signs.

For fertility and corruption regressions, the PLSRs and the PCRs show similar predic-

tion performance, while the PCRs show slightly smaller estimated MSEP. PLSR usually

outperforms PCR, because PLS algorithm draws information from outcome variable to

enhance prediction. However, too many control variables in fertility and corruption regres-

sions could have caused overfitting. Without the control variables, the PLSR outperforms

the PCR for both outcomes. Given the similar performance of the PLSRs and PCRs for

these outcome variables, a comparison between the PLSRs and PCRs seems to be not

informative. Hence, we do not report the coefficients and weights here, but in Appendix

3.A.

3.5 CPI

In this section we consider the relationship between gender inequality and social institu-

tions and the level of corruption as measured by the CPI. Contuing with our approach,

we will use PLS and PCA to assign weights to both the SIGI as well as the CPI. The

PLS will consider the relationship between the indicators included in the SIGI and the

indicators included in the CPI when deriving the weights. This way we can build a CPI

and a SIGI that emphasize particularly the relationship between gender inequality and

corruption.

We generate new CPIs for the following reasons. First, Transparency International (2013)

uses an average to assign equal weights to the indicators in the CPI. Unless all the indica-
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tors are equally informative, such a weighting procedure will deteriorate the quality of the

composite index. Therefore, we use PCA and PLS to assign weights, which work either

when the largest variations in the variables capture corruption, or when gender inequality

is actually related to corruption, which has some variations in the variables in the CPI.

Second, many indicators included in the CPI have high proportion of missing values. Too

many missing values will introduce unacceptable errors to the composite index and cause

failures to imputation. We will drop the variables with high proportion of missing values

and work with the remaining. Third, Branisa et al. (2013) take the average of the CPIs

from several subsequent years as the outcome variable, which we follow in Section 3.4.

The CPIs from subsequent years typically include some same indicators. An average over

years will generate a composite index emphasizing the indicators appearing often over

years, which are not necessarily informative. For that reasons, each variable is used not

more than once as we create the CPI. Fourth, the CPI has two sources, surveys and expert

opinions. The CPI puts more weight on surveys than expert opinions by letting survey

variables to appear more often in the data matrix compared to expert opinion variables,

while it is not clear that the former is more informative. We prepare the data differently,

so that surveys and expert opinions are more equally treated. All in all, we use different

and arguably improved procedures and also use PLS and PCA to generate weights.

We prepare the data to build the CPI as follows. We work with the variables included

in the CPI as scaled by Transparency International (2013). The variables are based

on surveys on various types of people with different foci of questions or various expert

opinions. The variables are of ordinal nature and transformed to numerical variables. The

transformation begins with calculating the ranks of available observations from a variable.

The subsample of the CPI from the previous year with the same available observations as

the variable are selected, sorted in descending order according to the ranks, and replace

the variable. For example, if a variable this year has three observations with a ascending

ranking of Germany, France and Italy and the CPI from those countries from the last
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year are 8, 9.5 and 5, the observations are scaled as 9.5 for Germany, 8 for France and

5 for Italy. The CPI from the previous year takes a value between 0 and 10 with high

value meaning less corruption. At the end, the transformed variable again takes a similar

scaling as the CPI from the last year. We pool all variables building the CPIs from 2002

to 2005, because we are interested in the level of corruption similar to the time periods

of the corruption regression in Section 3.4. Overlapping variables are dropped during

the pooling, so that variables appearing more often across years do not get too much

emphasis. The CPI from a certain year contains not only variables from the current

year, but also lagged variables up to 3 years. The CPI allows lags only for the variables

from surveys, but not from the variables from expert opinion. Consequently, the survey

variables appear more often than the expert opinion variables in the regressor matrix.

When a composite index is built as a linear combination of the columns of the regressor

matrix, the survey variables are emphasized simply because they appear more often in

the regressor matrix, while it is not clear whether they are more informative than the

expert opinion variables. Therefore, when we drop variables during the pooling, we do

not distinguish variables from surveys or country experts contrary to the Transparency

International (2013). With this procedure, the expert opinion variables are treated more

equally important as the survey variables. The pooling approach has a caveat that the

variables from different years have slightly different scaling schemes, because the scaling

scheme of a year depends on the CPI of the previous year. However, since the distribution

of the CPI does not show high volatility for the considered time periods, the pooling will

not introduce large changes. At the end we have 90 observations for a regression analysis,

which are complete for the variables building the SIGI and control variables. The variables

building the CPI have a lot of missing values, which can be seen on the upper part of

Figure 3.2. Obviously, imputation is an important issue for this data set.

Transparency International (2013) aggregates the scaled variables to build the CPI, which

involves a selection of observations, imputation and weights. Observations which have less
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than three observed variables are dropped. When there are only small number of indica-

tors available, the quality of the resulting composite index is expected to be low. Then

the average over all available columns is taken to build the CPI score. Averaging requires

that all indicators are equally important. However, one can expect that the quality of the

indicators in the CPI to vary because of the various sources and the different foci of ques-

tions. Taking available columns implies an imputation, which requires the assumption

that unobserved values are missing at random. This assumption means that the proba-

bility for an observation to be missing may depend on observed values, but not missing

ones (Schafer, 1999). The CPI data might not satisfy the assumption for the following

reasons. Some variables in the CPI data have certain structures in the probability that

an observation is missing. For example, the data from Information International cover

largely Middle Eastern countries and the data from United Nations Economic Commission

for Africa include only African countries. It is questionable whether observed variables

contain sufficient information on such structures. Furthermore, the lower part of Figure

3.2 shows the relationship between log GDP and the number of NA of each observation

by means of a scatter plot and a fitted line from a simple linear regression. The slope is

about -2 and significant at 1% level, which shows that with decreasing GDP, there are

more missing values. Considering that many poor countries have high corruption, one

can suspect structured missing data pattern.

Transparency International (2013) stretches the distribution of the CPI, so that the vari-

ances of the CPI remain similar across different years, which is not relevant for our

cross-sectional analysis.

We take the selection of the observations and the imputation method similar to Trans-

parency International (2013), but drop low quality variables and change the weighting

procedure to PCA or PLS. We drop variables containing more than 40% of NA, because

they can introduce large errors during an imputation. The 15 kept variables are summa-
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Figure 3.2: Missing value patterns in the CPI data
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Table 3.4: Linear regressions with the SIGI built by PCA and PLS on the CPI

CPI
γ̂PCR γ̂PLSR

SIGI −0.92∗∗ −1.06∗

log GDP 0.98 1.30∗

Parliament 0.09 0.10
Managers 0.11 0.09
Labor force −0.01 −0.00
Electoral democ. −0.12 0.61
Polity2 0.13 0.06
SA −0.77 −0.87
ECA −6.53∗∗ −4.53
LAC −5.00∗∗∗ −2.29
MENA 0.73 1.78
EAP −3.29 −1.77
Muslim 0.02 −0.29
Christian 0.02 0.31
Ethnic frac. −1.04 0.24
Literacy pop. −4.36 −3.76
Openness 5.90∗ 2.98
Not colony 1.40 1.32
British colony 0.61 1.37
(Intercept) −6.22 −11.17
R2 0.44 0.57

M̂SEP 13.460 13.302
N 90 90

Note: *** p<0.01, ** p<0.05, * p<0.1. Jackknife standard errors.

rized in Table 3.7. Then we keep observations which have at least 3 available observations

following Transparency International (2013), while no observation is dropped from this

procedure. We take the weighted average of all available columns to build the CPI score,

where the weights are determined by PCA or PLS (NIPALS, Wold, 1966a; Puwakkatiya-

Kankanamage et al., 2014). Under this procedure, the SIGI based on PLS is identified by

the maximization of the covariance between the SIGI score and the CPI score built by

the NIPALS algorithm. The SIGI based on PCA is not influenced by the NIPALS algo-

rithm, i.e., the solution is same as the usual PCA. Our choice of the NIPALS imputation

is motivated by the similarity to the original CPI procedure, one taking a weighted aver-
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Table 3.5: Weights and coefficients in terms of variables building the SIGI for the new
CPI

β̂PCR wPCA β̂PLSR wPLS
Parental authority 1 −0.21 0.232 0.26 −0.245
Parental authority 2 −0.66∗ 0.717 −0.65 0.612
Inheritance 1 −0.42 0.458 −0.44 0.418
Inheritance 2 −0.54∗ 0.588 −0.06 0.056
Early marriage −1.58∗∗ 1.714 −3.15∗ 2.957
Polygamy 1 −0.00 0.004 0.31 −0.287
Polygamy 2 −0.67∗∗ 0.726 −0.85 0.798
Freedom of movement 1 −0.53 0.575 −0.07 0.070
Freedom of movement 2 −1.26 1.362 −0.80 0.752
Freedom of dress 1 −0.46 0.496 −0.10 0.096
Freedom of dress 2 −1.05 1.132 −0.38 0.356
Violence 1 0.34 −0.369 −0.25 0.239
Violence 2 0.45 −0.488 0.27 −0.255
Violence 3 0.17 −0.189 1.26 −1.188
Violence 4 0.43 −0.468 0.66 −0.618
Violence 5 −0.10 0.109 −0.13 0.119
Violence 6 0.33 −0.356 −0.04 0.037
Violence 7 0.31 −0.339 0.13 −0.121
Violence 8 −0.37∗ 0.404 −0.56 0.525
Violence 9 −0.55 0.601 −0.21 0.200
Female genital mutilation −0.77∗ 0.832 −1.17∗ 1.100
Son preference 1 −0.06 0.067 0.60 −0.564
Son preference 2 −0.56 0.608 0.24 −0.226
Son preference 3 −0.23 0.248 0.24 −0.223
Son preference 4 0.72 −0.782 0.40 −0.380
Womens’ access to land 1 −0.46 0.501 −0.29 0.271
Womens’ access to land 2 −0.50 0.544 −0.57 0.538
Womens’ access to loan 1 −0.52∗ 0.562 −0.47 0.440
Womens’ access to loan 2 −0.54 0.585 −1.31 1.232
Womens’ access to property other than land 1 −0.52∗ 0.564 −0.11 0.100
Womens’ access to property other than land 2 −0.54 0.586 −0.82 0.768

Note: *** p<0.01, ** p<0.05, * p<0.1. Jackknife standard errors. For all variables transformed by
dummy coding, base category has value 0. Higher value means more gender inequality.
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Table 3.6: Weights of the new CPI

cPCA cPLS
CU1999 0.617 0.487
CU2003 0.479 0.449
EIU2002 −0.211 0.286
EIU2004 −0.204 0.097
EIU2005 −0.147 −0.238
GI2002 0.008 0.058
MIG2004 −0.325 −0.013
MIG2005 −0.177 −0.188
WEF2000 0.193 0.210
WEF2002 0.141 0.297
WEF2003 0.139 0.277
WEF2004 0.136 0.245
WEF2005 0.133 0.217
WMRC2004 −0.129 −0.155
WMRC2005 −0.123 −0.187

age, another a simple average of the available columns. However, the NIPALS algorithm

has the similar weakness that it is not appropriate when the missing data pattern is not

random (p18, Nelson, 2002). A deeper investigation on the imputation strategies for the

CPI data seems to be fruitable, but we do not pursue it further here.

Table 3.4 shows the model fits using the new CPIs. Both SIGIs have negative effect on

the CPIs. The coefficient from the PCR is significant at 5% level, but the coefficient

from the PLSR is only marginally significant. It could be that the PLSR has consumed

more degrees of freedom (see, Krämer and Sugiyama, 2011), which is followed by an

overfitting problem. Nevertheless, even with the different definitions of the CPIs, we find

that with more gender inequality, there is more corruption. We note that the R2 and

the estimated MSEP from the PLSR and PCR are not comparable, because the outcome

variables are constructed differently. The outcome variables are composite indices with

different weights.

Table 3.5 shows the coefficients in terms of the variables in the SIGI and the weights

used in the corruption regression with the new CPIs. Since the prediction performance of
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the PCR and PLSR is not comparable, the PLSR coefficients cannot be considered to be

better than PCR coefficients in prediction and a comparison in weights is not informative

in building the SIGI relevant to corruption. Therefore, we will focus on the interpretation

of each column instead of comparing. Early marriage and high prevalence of polygamy are

significant predictors in the PCR and the PCA weights emphasize early marriage, strong

restrictions in the freedom of movements and dress. The PLSR shows only marginally

significant coefficient estimates and the PLS weights emphasize early marriage, moderate

violence (Violence 3), female genital mutilation and high inequality in womens’ access to

land.

Table 3.6 shows the weights of the CPIs. PCA emphasizes the surveys from Columbia

University (CU1999, CU2003) and one expert opinion from Merchant International Group

(MIG2004), which shows a counter intuitive negative weight. The surveys from Columbia

University are important in PLS as well.

3.6 Conclusions

In this paper, we have built SIGIs using both PLS and PCA to determine the weights and

tested whether gender inequality has effects on female education, fertility, child mortality

and corruption. A model selection is performed to select the treatment of non-metric

variables and also non-linear terms of control variables. Our empirical model supports that

with more gender inequality, there is higher fertility and more corruption. On the other

hand, for female education and child mortality, we have have different results depending

on whether we use PCA or PLS.

For the female education and child mortality regressions, PLS brings benefits in terms of

prediction compared to PCA. We could see which variables are particularly relevant for

the prediction of those outcome variables by comparing the PLSR and PCR coefficients
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in terms of the variables building the SIGI and weights.

We have created new CPIs with PCA and PLS weights instead of using an average as

Transparency International (2013), because it is arguable whether all variables in the CPI

are equally important. Additionally, variables are prepared differently to drop variables

with large errors and to emphasize each source of variables more equally. We have found

a significant effect of the SIGI on the new CPI based on PCA, while for the new CPI

based on PLS the effect is only marginally significant. One empirical model supports

that with more gender inequality, there is more corruption. The NIPALS imputation was

employed because it is similar to the imputation procedure of the original CPI, but it is

questionable whether the NIPALS algorithm is the best way of imputation for the CPI

data. Other imputation approaches can be investigated in the future.
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3.A Weights and coefficients from the fertility and

CPI regressions

Table 3.8: Weights and coefficients in terms of the variables building the SIGI for fertility

β̂PCR wPCA β̂PLSR wPLS
Parental authority 1 0.04 0.211 0.13∗∗ 0.435
Parental authority 2 0.14∗∗ 0.723 0.11∗ 0.386
Inheritance 1 0.09 0.478 0.11∗ 0.383
Inheritance 2 0.11∗ 0.563 0.19∗∗ 0.658
Early marriage 0.34∗∗ 1.702 0.88∗∗∗ 3.027
Polygamy 1 −0.00 −0.021 0.03 0.090
Polygamy 2 0.14∗∗ 0.733 0.21∗∗ 0.721
Freedom of movement 1 0.12∗ 0.608 0.03 0.098
Freedom of movement 2 0.26 1.304 0.12 0.400
Freedom of dress 1 0.10 0.492 −0.03 −0.092
Freedom of dress 2 0.21 1.072 0.07 0.239
Violence 1 −0.07 −0.375 −0.01 −0.042
Violence 2 −0.07 −0.351 −0.09 −0.321
Violence 3 −0.04 −0.190 −0.15∗ −0.527
Violence 4 −0.10∗ −0.500 −0.12∗ −0.402
Violence 5 0.02 0.102 0.03 0.096
Violence 6 −0.07 −0.362 −0.08 −0.285
Violence 7 −0.07 −0.341 −0.06 −0.201
Violence 8 0.08∗∗ 0.397 0.10∗∗ 0.353
Violence 9 0.12 0.590 0.18 0.603
Female genital mutilation 0.16∗∗ 0.805 0.35∗∗∗ 1.208
Son preference 1 −0.01 −0.040 −0.04 −0.139
Son preference 2 0.12∗ 0.592 −0.05 −0.166
Son preference 3 0.05 0.255 −0.01 −0.037
Son preference 4 −0.16 −0.788 −0.19 −0.650
Womens’ access to land 1 0.10∗ 0.520 0.14∗∗ 0.482
Womens’ access to land 2 0.10 0.515 0.24∗∗ 0.829
Womens’ access to loan 1 0.11∗ 0.560 0.20∗∗ 0.699
Womens’ access to loan 2 0.11 0.557 0.23∗ 0.792
Womens’ access to property other than land 1 0.11∗ 0.567 0.14∗∗ 0.464
Womens’ access to property other than land 2 0.11 0.561 0.20∗ 0.678

Note: *** p<0.01, ** p<0.05, * p<0.1. Jackknife standard errors. For all variables transformed by
dummy coding, base category has value 0. Higher value means more gender inequality.
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Table 3.9: Weights and coefficients in terms of the variables building the SIGI for the CPI

β̂PCR wPCA β̂PLSR wPLS
Parental authority 1 −0.05 0.233 −0.04 0.130
Parental authority 2 −0.17∗ 0.730 −0.07 0.222
Inheritance 1 −0.10 0.444 −0.07 0.222
Inheritance 2 −0.14∗ 0.607 −0.07 0.217
Early marriage −0.38∗∗ 1.622 −1.23∗∗ 3.666
Polygamy 1 −0.00 0.018 0.03 −0.093
Polygamy 2 −0.17∗∗ 0.736 −0.17 0.500
Freedom of movement 1 −0.15 0.661 −0.06 0.192
Freedom of movement 2 −0.32 1.355 −0.32 0.939
Freedom of dress 1 −0.12 0.533 −0.00 0.002
Freedom of dress 2 −0.27 1.137 −0.19 0.576
Violence 1 0.08 −0.350 −0.22 0.650
Violence 2 0.11 −0.460 0.02 −0.055
Violence 3 0.04 −0.152 0.34 −1.014
Violence 4 0.10 −0.440 0.26 −0.781
Violence 5 −0.01 0.042 0.15 −0.446
Violence 6 0.08 −0.328 −0.05 0.145
Violence 7 0.07 −0.308 −0.16 0.484
Violence 8 −0.09∗ 0.403 −0.14 0.423
Violence 9 −0.14 0.611 −0.19 0.566
Female genital mutilation −0.18∗ 0.780 −0.26∗∗ 0.761
Son preference 1 −0.02 0.088 0.11 −0.339
Son preference 2 −0.15 0.630 0.15 −0.449
Son preference 3 −0.12 0.507 −0.23 0.675
Son preference 4 0.17 −0.734 0.09 −0.270
Womens’ access to land 1 −0.11 0.492 −0.07 0.203
Womens’ access to land 2 −0.13 0.557 −0.26∗ 0.774
Womens’ access to loan 1 −0.13 0.538 −0.20∗ 0.596
Womens’ access to loan 2 −0.14 0.581 −0.35∗ 1.029
Womens’ access to property other than land 1 −0.13 0.555 −0.01 0.044
Womens’ access to property other than land 2 −0.14 0.601 −0.34∗∗ 0.997

Note: *** p<0.01, ** p<0.05, * p<0.1. Jackknife standard errors. For all variables transformed by
dummy coding, base category has value 0. Higher value means more gender inequality.
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