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Für Ste�i, Linus und Ella.





There is a theory which states that if ever

anyone discovers exactly what the Universe

is for and why it is here, it will instantly

disappear and be replaced by something

even more bizarre and inexplicable.





There is another theory which states that

this has already happened.

Douglas Adams, The Restaurant at the

End of the Universe





Abstract

In this thesis, we study two random models with various applications in data analysis.

For our first model, we investigate subspaces spanned by biased random vectors. The

underlying randommodel is motivated by applications in computational biology, where

one aims at computing a low-rank matrix factorization involving a binary factor. In a

random model with adjustable expected sparsity of the binary factor, we show for a

large class of random binary factors that the corresponding factorization problem is

uniquely solvable with high probability. In data analysis, such uniqueness results are

of particular interest; ambiguous solutions o�en lack interpretability and do not give

an insight into the structure of the underlying data. For proving uniqueness in this

random model, small ball probability estimates are a key ingredient. Since to the best

of our knowledge, there are no such estimate suitable for our application, we prove an

extension of the famous Lemma of Littlewood and Offord. Hereby, we also discover

a connection between the matrix factorization problem at hand and the notion of Sper-

ner families.

In the second part of this thesis, we will investigate a model for randomized ultrasonic

data in nondestructive testing. Here, we aim at accelerating the data acquisition pro-

cess by superposing ultrasonic measurements with random time shi�s. To this end, we

will first study the e�ects of randomized ultrasonic measurements in the context of the

Synthetic Aperture Focusing Technique (SAFT), a widely used defect imaging method.

By adapting SAFT to our random data model, we will significantly improve its perform-

ance for randomized data. In this way, for sparse defects and with high probability, we

achieve be�er defect reconstructions as with SAFT applied to deterministic ultrasonic

data acquired in the same amount of time.
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Chapter I.

Subspaces Spanned by Biased Random Vectors

1. Introduction

The Span of Random Binary Matrices

Bernoulli random matrices have recently gained a lot of a�ention. Arguably, the most

prominent problem in this field is to estimate the probability that an n × n Bernoulli

random matrix is singular as n goes to infinity. There has been tremendous progress

in proving the conjecture that this probability is dominated by the probability that

two columns or rows coincide [KKS95, BVW10, TV07]. A closely related problem con-

cerns the investigation of the span of Bernoulli random matrices. Motivated by an

application in neural networks [KS87], this problem was first investigated by Odlyzko

in [Odl88]. He found that the probability that the linear span of the columns of a rect-

angular N ×n Bernoullimatrix does not contain any {±1}-vector besides its columns is

dominated by the probability of the corresponding event for just three of its columns.

Theorem 1.1 (Odlyzko [Odl88]). Let T be an N × n random matrix whose entries

are independent copies of a Bernoulli random variable ϵ with P[ϵ = 1] = 1/2 and

P[ϵ = −1] = 1/2. If

n ≤
(

1 − 10

log(N )

)

N ,

then the probability P that there exists a vector x ∈ Rn with at least two non-vanishing

entries such that Tx is a {±1}-vector can be bounded from above by

P ≤ 4

(

n

3

)

(

3

4

)N

+O *,
(

7

10

)N +- ,
as N goes to infinity.
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2 I. Subspaces Spanned by Biased Random Vectors

The result, however, only treats the case where all entries ofT are unbiased, i.e., they

a�ain the values ±1 with equal probability. Motivated by applications related to matrix

factorization (see below), we aim to transfer this result to the case of biased Bernoulli

random variables; that is, random variables where the values ±1 are a�ained with un-

equal probabilities. We will show that the asymptotic behavior, i.e., the dominance by

the probability that there exists a linear combination of three columns resulting in a

{±1}-vector, carries over to biased Bernoulli random matrices. The main result of this

chapter reads as follows:

Theorem 1.2. Let T be an N × n random matrix whose entries are independent copies of

a Bernoulli random variable ϵ with P[ϵ = 1] = p and P[ϵ = −1] = 1 − p. If there exists
δ ∈ (0, 1) with

min{p, 1 − p} ≥ N −(1−δ ) ,

then there exists an absolute constant C > 0 depending only on δ such that for

n ≤
(

1 − C

log(N )

)

N ,

the probability P that there exists a vector x ∈ Rn with at least two non-vanishing entries

such that Tx is a {±1}-vector can be bounded from above by

P ≤ 4

(

n

3

)

(1 − p(1 − p))N + o
(

(1 − p(1 − p))N
)

,

as N goes to infinity.

Note that for p = 1/2, we recover the asymptotic behavior of Theorem 1.1. Our result

also covers the observation that the probability that there exists a vector x with two or

more non-vanishing entries such that Tx ∈ {±1}N is dominated by the corresponding

event for just three columns of T . To see this, one can check that (1 − p(1 − p))N is

exactly the probability that Tx ∈ {±1}N for a vector x in Rn with the entries 1, 1 and −1
on its support of length 3. We will later see that for vectors x whose support set is of

cardinality larger than 4 or equal to 2, this probability is of higher order.

A New Littlewood-Offord-type Inequality

The proof of Theorem 1.1 relied on estimating small ball probabilities of the form

P


�����

n
∑

j=1

ϵjx j
����� = 1

 , (1.1)

David James



1. Introduction 3

where x is a vector of non-vanishing entries and n ≥ 2. In the unbiased case, the

probability in (1.1) can be treated via the Lemma of Littlewood and Offord, which

was proven by Erdős in [Erd45].

Theorem 1.3 (Littlewood-Offord [Erd45]). Let x ∈ R
n be a vector with

minj |x j | ≥ c > 0 and let ϵj , 1 ≤ j ≤ n be independent copies of a Bernoulli random

variable ϵ taking the values +1 and −1 with equal probability. Then for any open interval I

of length at most 2c, it holds that

P


n

∑

j=1

ϵjx j ∈ I
 ≤

(

n

⌊n/2⌋

)

2−n . (1.2)

In contrast to the original result of Littlewood and Offord [LO43], which was only

optimal up to a logarithmic factor, the estimate in (1.2) is sharp; one can easily verify

that the right hand side of (1.2) is indeed achieved. For that, choose all entries of x to

have the samemodulus c > 0 and I to be the open interval of length 2c centered aty = 0

for n even or y = ±c for n odd. Erdős’ proof is based on a connection between random

sums as in (1.2) and Sperner families in combination with Sperner’s Lemma [Spe28]. In

the case where all entries of x are positive, a generalization of the Lemma of Littlewood

andOfford to biased random variables can be proven using the LYM-inequality [Bol65,

Lub66, Meš63, Yam54] instead of Sperner’s Lemma. The LYM-inequality was proven by

Bollobás , Lubell, Meshalkin, and Yamamoto; it is named by the initials of the la�er

three.

Theorem 1.4 (Biased Littlewood-Offord [LL70]). Let x ∈ Rn be a real vector with

minj x j ≥ c > 0, let further ϵj , 1 ≤ j ≤ n be independent copies of a Bernoulli random

variable ϵ with P[ϵ = 1] = p and P[ϵ = −1] = 1 − p, and let I ⊂ R be an open interval of

length at most 2c. Then

P


n

∑

j=1

ϵjx j ∈ I
 ≤ max

0≤k≤n

(

n

k

)

pk (1 − p)n−k . (1.3)

As in Theorem 1.3, the estimate in (1.3) also is sharp for vectors x with constant entries,

but it is not applicable if one aims to bound a probability like the one in (1.1). This is due

to two reasons: While the assumption in Theorem 1.4 that all entries of x have a positive

sign can easily be dropped in the case of p = 1/2, the same is not true in the unbiased

David James



4 I. Subspaces Spanned by Biased Random Vectors

case. Additionally, the problem of estimating the absolute value of the sum in (1.1) can

be solved for p = 1/2 using Theorem 1.4 via a union bound, but the same method does

not give meaningful probability estimates when considering highly biased Bernoulli

random variables with p close to 0 or 1. In order to handle the first issue, the following

lemma was proven by Costello et al. in [CV08] using Chebyshev’s inequality.

Lemma 1.5 ([CV08]). Let x ∈ Rn be arbitrary with minj |x j | ≥ c > 0, let further ϵj ,

1 ≤ j ≤ n be independent copies of a Bernoulli random variable ϵ with P[ϵ = 1] = p and

P[ϵ = −1] = 1 − p and let I be an open interval of length at most 2c. Then there exists an

absolute constant C > 0 such that

P


n

∑

j=1

ϵjx j ∈ I
 ≤

C
√
nµ
,

where µ = min{p,q}.

In contrast to the Theorem 1.4, Lemma 1.5 also allows us to treat vectors x with varying

signs.

Note that this bound is not meaningful for small n or values of p which are close to 0

or 1, due to the constant factor C, which is not sharp. The following tighter variant of

Lemma 1.5 can be derived from Theorem 1.4.

Corollary 1.6. Let x ∈ Rn withminj |x j | ≥ c > 0 have exactly n+ strictly positive and n−
strictly negative entries and let ϵj , 1 ≤ j ≤ n be independent copies of a Bernoulli random

variable ϵ with P[ϵ = 1] = p and P[ϵ = −1] = 1 − p. Let I ⊂ R be an arbitrary open

interval of length at most 2c and let n̄ ≤ max{n−,n+}. Then

P


n

∑

j=1

ϵjx j ∈ I
 ≤ max

0≤k≤n̄

(

n̄

k

)

pk (1 − p)n̄−k .

Corollary 1.6 follows from Theorem 1.4 mainly by conditioning on the random vari-

ables whose coe�icients have the less frequent sign. Nevertheless, since we did not find

this bound in the literature, a proof will be provided in Section 5. Note that Theorem

1.6 still does not give meaningful results when used together with a union bound to

estimate (1.1) when p is close to 0 or 1. A main result of this chapter is the following

symmetric version of Corollary 1.6, which takes into account that, for biased Bernoulli

David James



1. Introduction 5

random variables, the sum in (1.1) typically does not a�ain the values ±1 with equal

probability. As we will see, the proof is considerably more involved than the proof of

Corollary 1.6.

Theorem 1.7. Let x ∈ Rn with minj |x j | ≥ c > 0 have n+ strictly positive and n− strictly
negative entries and let ϵj , 1 ≤ j ≤ n be independent copies of a Bernoulli random variable

ϵ with P[ϵ = 1] = p and P[ϵ = −1] = 1 − p. Let I ⊂ R be an open interval of length at

most 2c and let n̄ ≤ max{n−,n+}. Then

P


�����

n
∑

j=1

ϵjx j
����� ∈ I

 ≤ max
0≤k≤n̄

(

n̄

k

)

(

pk (1 − p)n̄−k + pn̄−k (1 − p)k
)

.

The inequality is tight, as equality is achieved for odd n and vectors x with constant

entries. While it is neither a strict inequality for even n nor for vectors x with varying

sign, it still gives meaningful estimates for these cases even when n is small or the

Bernoulli random variables ϵj are extremely biased.

Matrix Factorization with Binary Components

Low rank matrix factorization is an important tool in data analysis, which allows us

to represent data as linear combinations of a small number of building blocks, o�en

referred to as components. In matrix factorization with binary components, one aims to

factor a given datamatrixD ∈ RN×n into the productBA, whereB ∈ {0, 1}N×r is a binary
matrix, and A ∈ Rr×n is an arbitrary matrix whose rows sum to 1 and r ≪ min{N ,n}.
To be more precise, matrix factorization with binary components considers the problem

�nd B ∈ {0, 1}N×r and A ∈ Rr×n , AT 1r = 1n , such that D = BA, (1.4)

where 1r , 1n denote the vectors of length r , n, respectively, with all entries equal to

1. Motivated by numerous applications, such as blind source separation in wireless

communications with binary source signals [Vee97], network inference from gene ex-

pression data [LBY+03, TCX12], unmixing of cell mixtures from DNA methylation sig-

natures [HAK+12], or clustering with overlapping [BKG+05, SBK03], it gained a lot of

a�ention in recent years. Similar factorization problems involving binary matrices have

for example been studied in [SSU03, KB08, MGNR06, ZLDZ07, MMG+08]. Note that,

if we additionally demand that all entries of A are non-negative, the problem (1.4) is

an instance of the non-negative matrix factorization problem, see, e.g., [PT94, LS99].

David James



6 I. Subspaces Spanned by Biased Random Vectors

In [SHL13], Slawski, Hein and Lutsik proposed an algorithm to solve this problem by

computing the intersection of the a�ine hull of the data matrix D, i.e.,

a� (D) =

Dx
������x ∈ R

n ,

n
∑

j=1

x j = 1

 , (1.5)

with the set of vertices {0, 1}N . Their algorithm provably finds the solution to (1.4) if A

has full rank, the columns of B are a�inely independent, i.e., ∀x ∈ Rr ,
∑

j x j = 0, Bx = 0

implies that x = 0, and the uniqueness condition

a� (B) ∩ {0, 1}N =
{

B:,1, . . . ,B:,n
}

(1.6)

is satisfied. Here, B:,j , 1 ≤ j ≤ n denotes the jth column of B. By a direct calculation, we

can see that the union of both conditions on B is equivalent to

∄x ∈ Rr ,

r
∑

j=1

x j = 1, ‖x ‖0 ≥ 2 : Bx ∈ {0, 1}N , (1.7)

where ‖x ‖0 denotes the number of nonzero entries of x . Combining this observation

with properties of modulated symmetric Sperner-2 families, a notion that we will in-

troduce in Definition 2.14 below, allows us to prove the following result.

Theorem 1.8. Let B be an N × n random matrix whose entries are independent copies of

a Bernoulli random variable ϵ with P[ϵ = 0] = p and P[ϵ = 1] = 1 − p. If there exists
δ ∈ (0, 1) with

min{p, 1 − p} ≥ N −(1−δ ) ,

then there exists an absolute constant C > 0 depending only on δ such that for

n ≤
(

1 − C

log(N )

)

N ,

it holds that

P

∃x ∈ R
r ,

r
∑

j=1

x j = 1, ‖x ‖0 ≥ 2 : Bx ∈ {0, 1}N


≤ 4

(

n

3

)

(1 − p(1 − p))N + o
(

(1 − p(1 − p))N
)

, (1.8)

as N goes to infinity.

David James



1. Introduction 7

As we will see later, Theorem 1.8 is a direct consequence of Theorem 1.2. Together

with (1.7), it implies that the matrix factorization problem with binary components can

be solved for a large class of randommatrices. Note that the parameterp in Theorem 1.8

now also allows us to model sparse matrices B with just a few non-zero entries, which

o�en occur in practice in the matrix factorization problem (1.4).

Organization of the Chapter

In Section 2, we will first consider deterministic versions of Theorem 1.2 and Theorem

1.8, and show a deep relation between both problems and the notion of Sperner-k fam-

ilies, which we will also introduce in that section. In Section 3, we will pass on to the

random se�ing and consider Theorem 1.2 in terms of probabilities involving Sperner

families. A�erwards, we aim to bound these probabilities in Section 4 and Section 5,

which also contains the proofs of Theorem 1.6 and Theorem 1.7.

Notation

Throughout this chapter, [n] will denote the integers from 1 to n, and 2n will denote the

power set of [n]. The symmetric di�erence A∆B of two sets A,B ⊂ [n] is defined by

A∆B := (A \ B) ∪ (B \ A). For two sets A,B, we will write A ∪· B instead of the union

A ∪ B if the two sets are disjoint. Similarly, for N sets Ai ,
⋃· i∈[N ]Ai will denote the

the union of the sets Ai if they are pairwise disjoint. Subsets A ⊂ 2n will be referred

to as families and will be denoted by calligraphic capital le�ers. When dealing with

matrices, we denote, for an N × n matrix T and arbitrary sets R ⊂ [N ] and C ⊂ [n], by

TR,C the submatrix of T which arises by restricting T to the rows indexed by R and the

columns indexed byC. Furthermore, we will writeT:,C instead ofT[N ],C andTR,: instead

of TR,[n], and we will denote by Ti,j the entry of T with row index i ∈ [N ] and column

index j ∈ [n]. The restriction of an n-dimensional vector x to its entries indexed by a set

J ⊂ [n] will be denoted by x J . For an arbitrary n-dimensional vector x , we will denote

by supp(x ) ⊂ [n] the set containing all indices j ∈ [n] such that |x j | > 0 and refer to it

as the support of x . We call a vector x ∈ Rn s-sparse if | supp(x ) | = s; the ℓ0-norm of x

is defined via ‖x ‖0 := | supp(x ) |. The sign pa�ern sgn(x ) of an arbitrary x ∈ Rn with

non-vanishing entries will refer to the vector in {±1}n defined by

sgn(x )j =

1 x j > 0,

−1 x j < 0.

For two sequences (an )n∈N and (bn )n∈N , we write an = o(bn ) if an/bn → 0 as n →
∞. In order to to highlight that two random variables X ,Y have the same probability

distribution, we will write X ∼ Y .

David James



8 I. Subspaces Spanned by Biased Random Vectors

2. From the Span of Binary Matrices to Sperner Families

In this section, we will establish the connection between the deterministic version of

Theorem 1.2 for N × n matrices T with values in {±1} and a special class of families

A ⊂ 2n , which was first studied by Sperner in [Spe28]. Our result generalizes the con-

nection between Sperner families and random sums as in Theorem 1.3 and Theorem 1.4,

which was discovered by Erdős in [Erd45], in multiple ways. Later, our generalization

will allow us to prove our main results, Theorem 1.2 and Theorem 1.7, and also yields a

uniqueness condition for matrix factorization with binary components. We first recall

the definition of a Sperner-k family.

Definition 2.1 (Sperner-k family [Spe28]). We call any familyA ⊂ 2n a Sperner-k

family if there does not exist a chain of k + 1 sets A1, . . . ,Ak+1 ∈ A with

A1 ( A2 ( · · · ( Ak+1 . (2.1)

For notational brevity and historical reasons, Sperner-1 families will simply be called

Sperner families.

Example 2.2. The family A1 =

{
{1,2}, {2,3}, {1,3}

}
⊂ 23 is a Sperner family, since

no set contained in A1 is a proper subset of another set contained in A1. The family

A2 = A1 ∪
{
{1,2,3}

}
is not a Sperner family. It holds for instance that {1,2} ⊂ {1,2,3}.

A2 is however a Sperner-2 family, as the longest chain of inclusionsA1 ( · · · ( Ak with

sets A1, . . . ,Ak ∈ A2 is of length k = 2.

While Sperner only considered Sperner families for k = 1, Sperner-k families are well

known to connect to this basis case via the following lemma.

Lemma 2.3. A family A ⊂ 2n is a Sperner-k family if and only if it is the union of k

Sperner families.

Proof. If the family A is the union of k Sperner families but not a Sperner-k family,

there must exist a chain of k + 1 subsets A1, . . . ,Ak+1 ∈ A with

A1 ( A2 ( · · · ( Ak+1,

and the pigeonhole principle implies that at least two of them have to be contained in

the same Sperner-1 family, which yields a contradiction.

David James



2. From the Span of Binary Matrices to Sperner Families 9

For the reverse implication, let A = {A1, . . . ,Aℓ } be a Sperner-k family. Without loss

of generality we may assume that |Aj | ≤ |Aj+1 | for j ∈ [l − 1]. We will now construct

k Sperner-1 families in an iterative way. Let A0
1 , . . . ,A

0
k
be empty families. For each

j ∈ [ℓ] and each i ∈ [k] define iteratively

A
j
i =


A

j−1
i if

(

∃B ∈ A j−1
i s. th. B ( Aj

)

,

A
j−1
i ∪ {Aj } if

(

∄B ∈ A j−1
i s. th. B ( Aj

)

∧
(

Aj < A
j
i′ for 1 ≤ i ′ ≤ i − 1

)

.

By construction, each of the families Aℓ
i , i ∈ [k] is a Sperner-1 family. We now claim

thatA =
⋃k

i=1 A
ℓ
i . Suppose for contradiction that there exists a set Bk+1 ∈ A which is

not assigned to any familyAℓ
i , i ∈ [k]. Hence, there exists Bk ∈ Aℓ

k
such that Bk ( Bk+1 .

Since for arbitrary i ∈ [k], i , 1 and arbitrary Bi ∈ Aℓ
i , there must exist a set Bi−1 ∈ Aℓ

i−1
with Bi−1 ( Bi , we can therefore construct a chain of inclusions as in (2.1), contradicting

the assumption thatA is a Sperner-k family. This completes the proof.

Note that Lemma 2.3 also implies that every Sperner-k family also is a Sperner-ℓ family

for ℓ ≥ k . To establish the connection between Sperner families and binary matrices,

we will introduce the following operation.

Definition 2.4. For any A ⊂ [n] and any ξ ∈ {±1}n , define the modulation

Aξ
=

{
j |j ∈ A,ξ j = 1

}
∪
{
j |j < A,ξ j = −1

}
⊂ [n];

for any familyA ⊂ 2n ,A = {A1, . . . ,Am }, denote by Aξ the family given by

Aξ
=

{
A
ξ
1 , . . . ,A

ξ
m

}
.

Remark 2.5. By de�nition, it holds for arbitrary ξ ∈ {±1}n that

∅ξ = {j | ξ j = −1}.

Also note that for any A ⊂ [n], it holds that A−1 = Ac , where −1 denotes the n-

dimensional vector with constant entries equal to −1. For this reason, we will denote

by A−1 the family of all sets complementing the sets of A.

Remark 2.6. By definition, the operation (·)ξ for a sign-pa�ern ξ ∈ {±1}n is union

compatible, i.e., for two familiesA,B ⊂ 2n , it holds that

(A ∪ B)ξ = Aξ ∪ Bξ

David James



10 I. Subspaces Spanned by Biased Random Vectors

and

(A \ B)ξ = Aξ \ Bξ .

Example 2.7. For the family A1 ⊂ 23 as in Example 2.2 and ξ = (−1, 1,−1)T , it holds
that

A
ξ
1 =

{
{1,2}ξ , {2,3}ξ , {1,3}ξ

}
=

{
{2,3}, {1,2},∅

}
,

which is not a Sperner family, since ∅ ⊂ {1,2}.

We now present some useful properties of the operation defined in Definition 2.4.

Proposition 2.8. Let A ⊂ [n] and ξ ∈ {±1}n be arbitrary. Then

Aξ
= A∆{j |ξ j = −1}.

Consequently, for A,B ⊂ [n] and any ξ ∈ {±1}n , it holds that

Aξ∆Bξ = A∆B

and

(Aξ )ν = Aξ ν
= (Aν )ξ ,

where ξν ∈ {±1}n denotes the entrywise product of ξ and ν .

Remark 2.9. It is a direct consequence of Definition 2.4, that for arbitrary sign pa�ern

ξ ∈ {±1}n , all properties in Proposition 2.8 concerning a set A ⊂ [n] can be li�ed to

analogous properties of a familyA ⊂ 2n .

Proof of Proposition 2.8. First, we observe that, for any A ⊂ [n] and ξ ∈ {±1}n , the
set Aξ can be wri�en as

Aξ
=

{
j |j ∈ A,ξ j = 1

}
∪
{
j |j < A,ξ j = −1

}
= A \ {j |ξ j = −1} ∪ {j |ξ j = −1} \A
= A∆{j |ξ j = −1} = A∆Nξ ,

where

Nξ := {j |ξ j = −1}

for arbitrary ξ ∈ {±1}n . This establishes the first claim of the proposition. By the

associativity and commutativity of the symmetric di�erence, it follows for any A,B ⊂
[n] and ξ ∈ {±1}n that

Aξ∆Bξ = (A∆Nξ )∆(B∆Nξ ) = A∆B∆(Nξ∆Nξ ) = A∆B∆∅ = A∆B,

David James



2. From the Span of Binary Matrices to Sperner Families 11

which establishes the second claim of the proposition. Furthermore, we observe that

for any A ⊂ [n] and any ξ ,ν ∈ {±1}n it holds that

(Aξ )ν = (A∆Nξ )∆Nν = A∆(Nξ∆Nν )

= A∆{j | either ξ j = −1 or νj = −1} = A∆{j |(ξν )j = −1}
= A∆Nξ ν = Aξ ν .

Since the entrywise product is commutative, the last claim now follows by interchan-

ging the roles of ξ and ν . �

Based on the notion ofmodulation, we now introduce a variant of Sperner-k families,

which will play an essential role in the proof of our main results.

Definition 2.10 (Symmetric Sperner-k family). Let A ⊂ 2n be arbitrary. For even

k , we callA a symmetric Sperner-k family if A admits a decomposition of the form

A =

k/2
⋃

l=1

(

Al ∪A−1l
)

,

where Al ⊂ 2n is a Sperner family for each l ∈ [k/2].
For odd k , we callA a symmetric Sperner-k family if

A = A0 ∪
⌊k/2⌋
⋃

l=1

(

Al ∪A−1l
)

,

where Al ⊂ 2n is a Sperner family for each 0 ≤ l ≤ ⌊k/2⌋ and A0 additionally satisfies

thatA0 = A−10 .

Note that by Lemma 2.3, every symmetric Sperner-k family is indeed a Sperner-k

family.

Example 2.11. Considering again the family A1 =

{
{1,2}, {2,3}, {1,3}

}
⊂ 23 de�ned in

Example 2.2, it follows that

A3 = A1 ∪A−11 =

{
{1,2}, {2,3}, {1,3}

}
∪
{
{3}, {1}, {2}

}
is a symmetric Sperner-2 family.

The next lemma establishes a link between {±1}-valued matrices and Sperner families.

It generalizes the observations of Erdős in [Erd45].

David James



12 I. Subspaces Spanned by Biased Random Vectors

Lemma 2.12. LetT be an N ×n binary matrix with values in {±1} and x ∈ Rn ,minj |x j | ≥
c > 0 be a vector such that Tx ∈ V N , whereV is the union of k open intervals of length at

most 2c. Let A ⊂ 2n be the family containing the sets

Ai = {j |Ti,j = 1}, i ∈ [N ]. (2.2)

ThenAsgn(x ) is a Sperner-k family. IfV additionally is symmetric, i.e.,V = −V , it follows
that Asgn(x ) is a subfamily of a symmetric Sperner-k family.

Proof. Set ξ := sgn(x ). We may assume that k < N , since otherwise the first asser-

tion of the lemma is trivial. Suppose for contradiction that A = {Aξ
1 , . . . ,A

ξ
n } is not a

Sperner-k family. Then, a�er a possible permutation of the indices, it must hold that

A
ξ
1 ( A

ξ
2 ( · · · ( A

ξ

k+1
. We define for 1 ≤ i ≤ k + 1,

yi := (Tx )i =
*.,
∑

j ∈Ai

x j −
∑

j ∈Aci

x j
+/- ∈ V . (2.3)

Since all entries of x which make a positive contribution to this sum are contained in

A
ξ
i and all entries of x which make a negative contribution to this sum are contained in

(Ac
i )
ξ
= A

−ξ
i , one can write

yi =
*..,
∑

j ∈Aξ
i

|x j | −
∑

j ∈A−ξi

|x j |
+//-
∈ V .

Recall thatV is the union of k intervals of length at most 2c. Therefore, by the pigeon-

hole principle, there must be v < w such that yv ,yw are contained in the same interval.

This, in turn, implies that |yv − yw | < 2c. As A
ξ
v ( A

ξ
w , there exists a non-empty set

S ⊂ [n] \Aξ
v such that A

ξ
v ∪ S = A

ξ
w , and thus A

−ξ
w ∪ S = A

−ξ
v . It follows that

yw =
∑

j ∈Aξ
w

|x j | −
∑

j ∈A−ξw

|x j |

=

∑

j ∈Aξ
v

|x j | +
∑

j ∈S
|x j | −

∑

j ∈A−ξv

|x j | +
∑

j ∈S
|x j |

=

*..,
∑

j ∈Aξ
v

|x j | −
∑

j ∈A−ξv

|x j |
+//-
+ 2

∑

j ∈S
|x j |

= yv + 2
∑

j ∈S
|x j |,

David James



2. From the Span of Binary Matrices to Sperner Families 13

which translates to

yw − yv = 2
∑

j ∈S
|x j | ≥ 2|S |min

j
|x j | ≥ 2c,

contradicting our finding that |yv − yw | < 2c. The family Aξ therefore must be a

Sperner-k family, which proves the first part of the lemma.

It remains to show that, ifV is symmetric, thenAξ is contained in a symmetric Sperner-

k family. To see this, let Y = {y1, . . . ,yk } be the set of the centers of the k open intervals

of V . We can assume without loss of generality that they are distinct and that Y = −Y
is a symmetric set. Therefore, there exists a permutation π of [k] such that yi = −yπ (i )

and π has at most one fixpoint, i.e., a 1-cycle corresponding to yi = 0. All remaining

cycles have length 2. Hence, if k is even, one can write

V =

k/2
⋃

ℓ=1

Vℓ ∪ (−Vℓ ), (2.4)

where the sets Vℓ , ℓ ∈ [k/2] are open intervals of length at most 2c whose centers are

contained in the positive real axis. If k is odd, one can write

V = V0 ∪
⌊k/2⌋
⋃

ℓ=1

Vℓ ∪ (−Vℓ ), (2.5)

whereV0 is an open interval of length at most 2c centered at zero and the setsVℓ , ℓ ∈ [k]
are intervals of length at most 2c whose centers are contained in the positive real axis.

The same decomposition can now be applied to the matrix T , and for ℓ as in (2.4) or

(2.5), we denote by T (ℓ) the submatrix of T containing the maximum number of rows

t of T such that 〈t ,x〉 ∈ Vℓ . By permuting the rows of each of the matrices T (ℓ) and

possibly adding further rows, we may assume that T (ℓ)
= −T (−ℓ) . Denote by A (ℓ) the

family which arises by applying the construction described in (2.2) to the matrix T (ℓ) .

We now claim that −T (ℓ)
= T (−ℓ) also implies that A−ℓ = A−1

ℓ
. This directly follows

from the observation that, for arbitrary U ⊂ R and B ⊂ [n], multiplying

*.,
∑

j ∈B
x j −

∑

j ∈Bc
x j
+/- ∈ U ,

by (−1) corresponds to exchanging the roles of B and Bc = B−1.

The first part of the proof now implies thatA
ξ

ℓ
is a Sperner-1 family for each ℓ ∈ ⌊k/2⌋

and ξ = sgn(x ). Since we only applied row permutations or added further rows in

order to construct the matrices T (ℓ) from T , the decomposition in (2.4), (2.5) resp., now

David James



14 I. Subspaces Spanned by Biased Random Vectors

translates to

A ⊂
k/2
⋃

ℓ=1

Aℓ ∪ (A−ℓ ) =

k/2
⋃

ℓ=1

Aℓ ∪ (A−1ℓ ),

in the case where k is even, and

A ⊂ A0 ∪
⌊k/2⌋
⋃

ℓ=1

Aℓ ∪ (A−1
ℓ
),

in the case where k is odd. As the operation (·)ξ is union compatible, see Remark 2.6,

this completes the proof. �

The assertions of Lemma 2.12 can also be transferred to binary matrices with values

in {0, 1}.

Lemma 2.13. LetB be anN ×n binary matrix with values in {0, 1} and x ∈ Rn ,minj |x j | ≥
c > 0 be a vector such that Bx ∈ V N , whereV is the union of k open intervals of length at

most c. Let A ⊂ 2n be the family containing the sets

Ai =

{
j |Bi,j = 1

}
, i ∈ [N ]. (2.6)

Then Asgn(x ) is a Sperner-k family. If, in addition, the set

V ′ := V − 1

2

n
∑

j=1

x j (2.7)

is symmetric, it follows that Asgn(x ) is a subfamily of a symmetric Sperner-k family.

Proof. Let T be the N ×m matrix defined by

Ti,j :=

−1 Bi,j = 0,

1 Bi,j = 1.

Since, in matrix form,

B = 1
2 (1N×n +T ), (2.8)

where 1N×n is the N × n matrix where all entries are equal to 1, for arbitrary x ∈ Rn it

follows that

(Bx )i =
1

2
*.,

n
∑

j=1

x j +Ti,:x
+/- .

David James



2. From the Span of Binary Matrices to Sperner Families 15

With 2V := {2v |v ∈ V }, which is the union of k open intervals of length at most 2c, it

therefore holds for arbitrary i ∈ [N ] that

(Tx )i ∈ 2V ⇔ (Bx )i ∈ *.,V +
n

∑

j=1

x j
+/- . (2.9)

The result now directly follows from Lemma 2.12 by noting that 2V on the right hand

side of (2.9) is symmetric if and only if (2.7) holds. �

We will now introduce a second variant of Sperner families.

Definition 2.14. A familyA ⊂ 2n is amodulated Sperner-k family if there exist a sign

pa�ern ξ ∈ {±1}n and a Sperner-k familyB ⊂ 2n such thatA = Bξ . IfB is a symmetric

Sperner-k family, we call A a modulated symmetric Sperner-k family.

We will now prove a result which lays the foundation to the proof of Theorem 1.2. It

is based on the following definition.

Definition 2.15. For arbitrary A ⊂ 2n and J ⊂ [n], let A ⊓ J ⊂ 2J be defined as

A ⊓ J = {A ∩ J |A ∈ A} .

Corollary 2.16. Let T be an N × n binary matrix with values in {±1} and A ⊂ 2n be the

family defined in Lemma 2.12. If there exist an s-sparse vector x ∈ Rn with

min
j ∈supp(x )

|x j | ≥ c

and a set V ⊂ R which is the union of k open intervals of length at most 2c such that

Tx ∈ V n , then there exists a set J ⊂ [n], | J | = s such thatA ⊓ J is a modulated Sperner-k

family. IfV is symmetric, it follows thatA⊓ J is a modulated symmetric Sperner-k family.

Proof. Wewill present the proof only for the symmetric case; the general case is similar.

Suppose that there exist an s-sparse x ∈ Rn with

min
j ∈supp(x )

|x j | ≥ c

David James



16 I. Subspaces Spanned by Biased Random Vectors

and a symmetric set V ⊂ R which is the union of k open intervals of length at most 2c

such that Tx ∈ V n . Set J = supp(x ). Then T:, Jx J ∈ V N and Lemma 2.12 implies that

(A⊓ J )ξ J is a subfamily of a symmetric Sperner-k family. Since ((A⊓ J )sgn(x J ) )sgn(x J ) =

A⊓ J (Proposition 2.8), it follows thatA⊓ J is a modulated symmetric Sperner-k family.

�

Remark 2.17. Note that for arbitrary s-sparse x ∈ Rn , any discrete set V with |V | = k
is a subset of

⋃

y∈V
(y − c,y + c),

where c = minj |x j |. Therefore, the assertion of Corollary 2.16 also holds for s-sparse

x ∈ Rn and discrete sets V with |V | = k .

With Corollary 2.16, we are able to derive the following condition implying (1.7). It can

be read directly from the matrix B without considering the a�ine hull.

Theorem 2.18. Let B be an N × n binary matrix with values in {0, 1} and let A ⊂ 2n be

the family containing the sets

Ai =

{
j |Bi,j = 1

}
, i ∈ {1, . . . ,N }.

If none of the families

{A ⊓ J , | J ⊂ {1, . . . ,n},2 ≤ | J | ≤ n}

is a subfamily of a modulated symmetric Sperner-2 family, then

∄x ∈ Rr ,

r
∑

j=1

x j = 1, ‖x ‖0 ≥ 2 : Bx ∈ {0, 1}N . (2.10)

Proof. We can write the a�ine hull a� (B) as

a� (B) =

Bx
������x ∈ R

n ,

n
∑

j=1

x j = 1

 =
n

⋃

s=0

a�s (B),

where

a�s (B) =

Bx
������x ∈ R

n , ‖x ‖0 = s,
n

∑

j=1

x j = 1

 .
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3. The Span of Random Binary Matrices and the Lemma of Littlewood and Offord 17

In order to show (2.10), it su�ices to prove

a�s (B) ∩ {0, 1}N = ∅ for all s with 2 ≤ s ≤ n. (2.11)

Let s ≥ 2 be arbitrary, and let T ∈ {±1}N×n as in the proof of Lemma 2.13. Corollary

2.16 together with Remark 2.17 now implies that there do not exist an s-sparse vector

x ∈ Rn and a symmetric setV with |V | = 2 such that Tx ∈ V N . In particular,

∅ = {Tx |x ∈ Rn , ‖x ‖0 = s} ∩ {±1}N = a�s (B) ∩ {0, 1}N ;

the last equality holds by (2.9). As s was arbitrary, this now implies (2.11) and completes

the proof. �

Remark 2.19. From now on, we will only consider {±1}-valued binary matrices. By

Lemma 2.13, all results for {±1}-valued binary matrices carry over to {0, 1}-valued binary
matrices by adjusting the right hand sides accordingly.

3. The Span of Random Binary Matrices and the Lemma of

Littlewood and Offord

In this section, we pass from the se�ing of deterministic binary N × n matrices to

Bernoulli random matrices. Similarly as in the previous section, they induce random

sets, which we will call Bernoulli random sets.

Definition 3.1. • A Bernoulli random vector ϵ (n) of parameter p ∈ (0, 1) is a ran-

dom vector whose entries ϵj , j ∈ [n] are independent copies of a Bernoulli ran-
dom variable taking the values 1,−1 with probability p, (1 − p), respectively.

• A Bernoulli random matrix E(N ,n) of parameter p ∈ (0, 1) is an N × n random

matrix where each row is an independent copy of a Bernoulli random vector

ϵ (n) of parameter p.

• For any finite set J , the Bernoulli random set S ( J ) of parameter p ∈ (0, 1) is a

random subset of J , such that for any A ⊂ J ,

P

[
S ( J ) = A

]
= p |A | (1 − p) | J |− |A | . (3.1)

That is, each element is included with probability p.
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18 I. Subspaces Spanned by Biased Random Vectors

Remark 3.2. For all random variables described above, we will sometimes omit the

upper indices if they are clear from the context. Furthermore, we write q instead of 1−p
and S (n) instead of S ([n]) .

The connection between Bernoulli random vectors andmatrices and Bernoulli ran-

dom sets is evident from their definition.

Remark 3.3. Let ϵ (n) be a Bernoulli random vector with parameter p. Then the ran-

dom set

S (n) =
{
j |ϵj = 1

}
⊂ [n]

is a Bernoulli random set with the same parameter; we will call S (n) the Bernoulli

random set corresponding to ϵ (n) . Also note that, since for arbitrary �nite set J and a

Bernoulli random set S ( J ) of parameter p it holds that

∑

A∈2J
P

[
S ( J ) = A

]
=

| J |
∑

s=1

(

| J |
s

)

psq | J |−s = (p + q) | J | = 1,

it follows that (3.1) actually de�nes a probability distribution.

With the next lemmawe can transfer the problem of bounding small ball probabilities

as in (1.1) to the domain of Bernoulli random sets and (symmetric) Sperner-k families;

it generalizes the ideas used by Erdős to prove the Lemma of Littlewood and Offord

in [Erd45].

Lemma 3.4. Let ϵ (n) be a Bernoulli random vector with parameter p and let S (n) be the

corresponding Bernoulli random set. If V is the union of k open intervals of length at

most 2c and x ∈ Rn is an arbitrary vector with minj ∈[n] |x j | ≥ c > 0, then

P

[
〈ϵ (n) ,x〉 ∈ V

]
≤ max

A⊂2n
A Sperner-k

P

[
S (n) ∈ Asgn(x )

]
≤ Pk,n (p),

where we set

Pk,n (p) := max
ξ ∈{±1}n

max
A⊂2n

A Sperner-k

P

[
S (n) ∈ Aξ

]
.

If V is symmetric, we only need to consider symmetric Sperner-k families; we denote the

corresponding probability by P±,k,n (p).
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3. The Span of Random Binary Matrices and the Lemma of Littlewood and Offord 19

Proof. We will only prove the theorem in the case where V is symmetric; the general

case follows analogously. For x ∈ Rn withminj |x j | ≥ c, let E be the matrix whose rows

are all vectors e ∈ {±1}n with 〈e,x〉 ∈ V . For the family B = {Bi |i ∈ [N ]} with

Bi =
{
j |Ei,j = 1

}
⊂ [n],

Lemma 2.12 now implies that Bsgn(x ) is a subfamily of a symmetric Sperner-k family.

Since by construction, it holds that

〈e,x〉 ∈ V ⇔ e is a row of E ⇔ {j |ej = 1} ∈ B,

it follows with Remark 3.3 that

P

[
〈ϵ (n) ,x〉 ∈ V

]
= P

[
S (n) ∈ B

]
. (3.2)

Bearing in mind that the family Bsgn(x ) is a subfamily of a symmetric Sperner-k family

and that
(

Aξ
)ξ
= A for A ⊂ 2n and ξ ∈ {±1}n , we can bound (3.2) from above by

P

[
S (n) ∈ B

]
= P

[
S (n) ∈ (Bsgn(x ))sgn(x )

]
≤ max

A⊂2n
A symmetric Sperner-k

P

[
S (n) ∈ Asgn(x )

]

≤ max
ξ ∈{±1}n

max
A⊂2n

A symmetric Sperner-k

P

[
S (n) ∈ Aξ

]
.

This completes the proof. �

Remark 3.5. As in Remark 2.17, Lemma 3.4 implies for a Bernoulli random vector ϵ (n)

of parameter p, arbitrary s-sparse x ∈ Rn , and arbitrary discrete set V ⊂ R, |V | = k

that

P

[
〈ϵ (n) ,x〉 ∈ V

]
≤ max

A⊂2J
A Sperner-k

P

[
S ( J ) ∈ Asgn(x )

]
≤ Pk,s (p),

where J = supp(x ). If V is symmetric, we similarly obtain

P

[
〈ϵ (n) ,x〉 ∈ V

]
≤ max

A⊂2J
A symmetric Sperner-k

P

[
S ( J ) ∈ Asgn(x )

]
≤ P±,k,s (p).

The quantities Pk,n (p) and P±,k,n (p) will play an important role in the remainder of

the chapter. A key distinction between the general and the symmetric case is that for

the la�er case, the following basic montonicity property is no longer true in general, see

Remark 3.11 below.
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20 I. Subspaces Spanned by Biased Random Vectors

Lemma 3.6. For arbitrary integers k andm ≤ n and arbitrary p ∈ (0, 1), it holds that

Pk,m (p) ≥ Pk,n (p).

Proof. By induction, it is enough to prove the statement form = n − 1. For arbitrary

A ⊂ 2n , define

A0 = {A ⊂ [n − 1]|A ∈ A} ⊂ 2n−1 and A1 = {A ⊂ [n − 1]|A ∪ {n} ∈ A} ⊂ 2n−1 .

If A is a Sperner-k family, then bothA0 ⊂ 2n−1 andA1 ⊂ 2n−1 are Sperner-k families.

Now let S (n) and S (n−1) be Bernoulli random sets with parameter p, ξ ∈ {±1}n be a sign

pa�ern and ν ∈ {±1}n−1 the restriction of ξ to the first n − 1 entries. If ξn = 1, we have

P

[
S (n) ∈ Aξ

]
= q · P

[
S (n−1) ∈ Aν

0

]
+ p · P

[
Sn−1 ∈ Aν

1

]
≤ pPk,n−1 + qPk,n−1 = Pk,n−1 .

(3.3)

If ξn = −1, inequality (3.3) holds true with interchanged roles of p and q. This completes

the proof. �

The next definition is required in order to be able to transfer the ideas of Corollary

2.16 to the random matrix case.

Definition 3.7. Let Fk,n ⊂ 22
n
be the set of all maximal modulated Sperner-k families,

that is, the set of all modulated Sperner-k families A ⊂ 2n which are not a proper

subfamily of any other modulated Sperner-k family.

Furthermore, denote by F±,k,n ⊂ 22
n
the set of all maximal modulated symmetric

Sperner-k families.

Remark 3.8. De�nition 3.7 also enables us to rewrite the probability Pk,n (p) in terms

of the set Fk,n , since for a Bernoulli random set S (n) with parameter p it holds that

Pk,n (p) = max
ξ ∈{±1}n

max
A⊂2n

A Sperner-k

P

[
S (n) ∈ Aξ

]
= max

A∈Fk,n
P

[
S (n) ∈ A

]
,

and similarly for P±,k,n (p) andF±,k,n .

For arbitrary p ∈ (0, 1) we will now compute the probabilities P1,2 (p) and P±,2,2 (p),
which we will need later.
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3. The Span of Random Binary Matrices and the Lemma of Littlewood and Offord 21

Lemma 3.9. For arbitrary p ∈ (0, 1), it holds that

P±,2,2 (p) = P1,2 (p) = p
2
+ q2.

Proof. Let p ∈ (0, 1) be arbitrary and let F be the set of all Sperner families A ⊂ 22.

Then

F =
{
∅, {∅}, {{1}}, {{2}}, {{1,2}}, {{1}, {2}}

}
.

Direct calculations yield that the set of all modulated Sperner families of subsets of

{1,2} is given by

F
′
= F ∪

{
{∅, {1,2}}

}
.

Consequently, the set of all maximal modulated Sperner families is given by

F1,2 =
{
{{1}, {2}}, {∅, {1,2}}

}
.

Next, we will compute F±,2,2. By Definition 2.10, Definition 2.14 and Remark 2.6, every

modulated symmetric Sperner-2 family of subsets of [n] is of the form

(

A ∪A−1
)ξ
= Aξ ∪A−ξ ,

where A ⊂ 2n is a Sperner-1 family and ξ ∈ {±1}n is a sign pa�ern. Since for A ∈ F1,2,
one hasA = A−1 and hence

F±,2,2 =
{
A ∪A−1���A ∈ F1,2} = F1,2,

we can conclude that P±,2,2 (p) = P1,2 (p). It remains to show that P1,2 (p) = p2 + q2. For

that, note that

P1,2 (p) = max
A∈F1,2

P

[
S (2) ∈ A

]
= max

{
2pq,p2 + q2

}
= p2 + q2,

where the last equality is implied by

p2 + q2 − 2pq = (p − q)2 ≥ 0.

This completes the proof. �
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Lemma 3.10. We have

|F±,2,3 | = 4,

and for arbitrary p ∈ (0, 1), it holds that

P±,2,3 (p) = 1 − pq.

Remark 3.11. While the probabilitiesPk,n (p) are non-increasingwith respect ton (Lemma

3.6), the same does not necessarily hold true for P±,k,n (p). Lemma 3.9 and Lemma 3.10

imply for arbitrary p ∈ (0, 1) that

P±,2,3 (p) − P±,2,2 (p) = 1 − pq − (p2 + q2) = (p + q)2 − pq − (p2 + q2) = pq > 0.

Proof of Lemma 3.10. Since the families

A1 =

{
{1}, {2}, {3}

}
and A−11 =

{
{2,3}, {1,3}, {1,2}

}
are Sperner families, the set

F′ =
{
A

ξ
1 ∪A

−ξ
1

���ξ ∈ {±1}3}
consists of modulated symmetric Sperner-2 families. We claim that F′ = F±,2,3. To this
end, observe that by union compatibility, it holds for arbitrary ξ ∈ {±1}3 that

(

A1 ∪A−11

)ξ
=

(

23 \ {∅, {1,2,3}}
) ξ
= (23)ξ \ {∅, {1,2,3}}ξ = (23) \ {∅, {1,2,3}}ξ .

Since {∅ξ |ξ ∈ {±1}n } = 2n , it therefore follows that

F
′
=

{

23 \ {A,Ac }
�����A ∈ 23

}

=

{

23 \ {A,Ac }
�����A ∈ 23, |A| ≤ 1

}

, (3.4)

where the last equality holds by symmetry of the set {A,A−1}. Consequently, all the
modulated symmetric Sperner-2 families contained inF′ are maximal. Indeed, for any

A ∈ F′, adding some A ∈ 23 \ A results in a family which is not symmetric, and

adding both missing sets results in 23, which is not a modulated symmetric Sperner-2

family. The same arguments also show that there are nomodulated symmetric Sperner-

2 families of cardinality larger than 6. For a modulated symmetric Sperner-2 family

A ∈ 23 of cardinality smaller than 6, its complement must also be symmetric, which

shows that A is a subfamily of some A ′ ∈ F′. Hence, A cannot be maximal and one

has F±,2,3 = F
′. Since each A ∈ 23 with |A| ≤ 1 yields a di�erent set 23 \ {A,Ac }, (3.4)
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implies that |F±,2,3 | = |{A ⊂ 23 | |A| ≤ 1}| = 4. For the second part, a direct calculation

shows that

P±,2,3(p) = max
A∈F±,2,3

P

[
S (3) ∈ A

]
= 1 − min

A∈23
P

[
S (3) ∈ {A,A−1}

]
= 1 −min

{
p3 + q3,p2q + pq2

}
= max

{
1 − p3 − q3, 1 − pq

}
= 1 − pq,

as

(1 − pq) − (1 − (p3 + q3)) = p3 + q3 − pq = 4p2 − 4p + 1 = (2p − 1)2 > 0.

This completes the proof. �

The next lemma transfers the ideas of Corollary 2.16 to the random matrix case. It

will enable us to prove a more general version of Theorem 1.2 in terms of the quantities

Pk,n (p) and P±,k,n (p) for a constant number of columns.

Lemma 3.12. Let E(N ,n) be a Bernoulli random matrix with parameter p, let further V

be the union of k open intervals of length at most 2c, and let ℓ be an integer. Then with

probability P of at most

ℓ
∑

s=k

(

n

s

)

∑

A∈Fk,s

(

P

[
S (s ) ∈ A

] )N
, (3.5)

there exists a vector x ∈ Rn , k ≤ ‖x ‖0 ≤ ℓ with

min
j ∈supp(x )

|x j | ≥ c (3.6)

such that E(N ,n)x ∈ V N . If

s1 = argmax
k≤s≤ℓ

Pk,s (p) (3.7)

is unique, then the probability P is bounded by

|Fk,s1 |
(

n

s1

)

(

Pk,s1 (p)
)N
+ o

(

(

Pk,s1 (p)
)N

)

.

IfV is symmetric, we may replaceFk,s byF±,k,s and Pk,n by P±,k,n .
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Proof. We again only establish the lemma for the symmetric case, as the general case

is analogous. Note that each row of the random matrix E(N ,n) is an independent copy

of a Bernoulli random vector ϵ (n) . The family S (n) ⊂ 2n containing the sets

S
(n)
i =

{
j
���E(N ,n)
i,j = 1

}
, i ∈ [N ],

therefore is a random family of independent Bernoulli random sets with the same

parameter p as E(N ,n) . Recall that V is a union of k open intervals of length at most 2c

and symmetric. Now consider the families{
S (n) ⊓ J

���J ⊂ [N ],k ≤ | J | ≤ ℓ
}
. (3.8)

Applying a union bound over all J ⊂ [n] with k ≤ | J | ≤ ℓ, we can therefore estimate

the probability P that E(N ,n)x ∈ V n for some x with k ≤ ‖x ‖0 ≤ ℓ using Corollary 2.16

as

P ≤ P [

there exists a modulated symmetric Sperner-k family in (3.8)
]

≤
∑

J ⊂2s
k≤ | J | ≤ℓ

P

[{
S
(n)
i ⊓ J

���i ∈ [N ]
}
is a modulated symmetric Sperner-k family

]

≤
ℓ

∑

s=k

(

n

s

)

P

[{
S
(s )
i
���i ∈ [N ]

}
is a modulated symmetric Sperner-k family

]

≤
ℓ

∑

s=k

(

n

s

)

P

[
there exists a A ∈ F±,k,n such that

{
S
(s )
i
���i ∈ [N ]

}
⊂ A

]
.

The last inequality holds since every modulated symmetric Sperner-k family is a sub-

family of a maximal modulated symmetric Sperner-k family. By another union bound,

it follows that

P ≤
ℓ

∑

s=k

(

n

s

)

∑

A∈F±,k,s

P

[{
S
(s )
i
���i ∈ [N ]

}
⊂ A

]

=

ℓ
∑

s=k

(

n

s

)

∑

A∈F±,k,s

(

P

[
S (s ) ∈ A

] )N
, (3.9)

which establishes the first part of the lemma. For the second part, note that assumption

(3.7) implies that there exists Q < P±,k,s1 such that

max
k≤s≤ℓ
s,s1

P±,k,s ≤ Q .
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Recall from Remark 3.8 that

max
A∈F±,k,s

P

[
S (s ) ∈ A

]
= P±,k,s ,

and note that, for 0 ≤ s ≤ ℓ ≤ n ≤ N , it holds that

(

n

s

)

≤
(

2n

s

)

≤
(

2n

ℓ

)

≤
(

2eN

ℓ

)ℓ

,

where we used the well-known inequality

(

n

k

)

≤
(

en

k

)k

for all k ≤ n. (3.10)

Bounding |F±,k,s | by the size of the power set of 2s , which is its superset, we can there-

fore estimate (3.9) as

P ≤
ℓ

∑

s=k

(

n

s

)

|F±,k,s |PN±,k,s ≤
(

n

s1

)

|F±,k,s1 |P
N
±,k,s1 + ℓ

(

2eN

ℓ

)ℓ

22
ℓ

QN .

As Q < P±,k,s1 , and hence

ℓ

(

2eN

ℓ

)ℓ

22
ℓ

QN
= o

(

PN±,k,s1

)

as N →∞, this completes the proof. �

The next lemma allows us to prove a generalized version of Theorem 1.2 for vectors x

with ‖x ‖0 ≥ s0. In contrast to Lemma 3.12, it only considers discrete sets V , but allows

the number of columns n to tend to infinity. The proof is based on ideas by Odlyzko in

[Odl88].

Lemma 3.13. Let M ∼ E(N ,n) be a Bernoulli random matrix with parameter p ∈ (0, 1)

and assume there exists a constant δ ∈ (0, 1) with

µ := min{p,q} ≥ N −(1−δ ) . (3.11)

Furthermore, assume that for constant integers k , s0 there exists a Q with

Q ≥
√

p2 + q2, (3.12)

Q ≥
√

Pk,s (p) for all s ≥ s0. (3.13)
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Then there exists an absolute constantC > 0, depending only on k and δ , such that for any

set V of k distinct points, for

n ≤
(

1 − C

log(N )

)

N (3.14)

and for arbitrary Q̄ > Q , the probability P that there exists a vector x ∈ Rn with ‖x ‖0 ≥ s0
such that Mx ∈ V N satisfies

P = o
(

Q̄N
)

.

IfV is symmetric, we can replace Pk,s with P±,k,s in (3.13).

Remark 3.14. In the non-symmetric formulation of Lemma 3.13, we can replace as-

sumption (3.13) with Q ≥
√

Pk,s0 (p), as Pk,n (p) is monotone with respect to n, see

Lemma 3.6. This is not possible in the symmetric formulation, since, as noted in Re-

mark 3.11, P±,k,n (p) is not monotone with respect to n.

Remark 3.15. Note that the number of columns n in Lemma 3.13 is allowed to tend

to ∞, as long as (3.14) is satisfied. The lower bound on the minimum of p and q is not

an artifact of the proof, but it is necessary in order to ensure that the probability P in

Lemma 3.13 tends to 0 as N ,n → ∞. To see this, let E := E(N ,n) be a Bernoulli random

matrix of parameter p = c
N for some constant c > 0 independent of N . Considering

only s0 fixed columns of E, we have

P

[
Ei,j = −1 ∀i ∈ [N ], j ∈ [s0]

]
= qs0N =

(

1 − c
N

)s0N ≥ 1
2e
−cs0 , (3.15)

for N large enough. Suppose now that there exists an index ℓ ∈ [⌈n/s0⌉] such that

Ei,j = −1 for all i ∈ [N ] and j ∈ {s0ℓ + 1, . . . ,s0 (ℓ + 1)}, which happens by independence

and (3.15) with probability at least

1 −
(

1 − 1
2
e−cs0

) ⌈ ns0 ⌉ . (3.16)

Then, for arbitrary y ∈ R and the s0-sparse vector x ∈ Rn defined via

x j =

− y

s0
j ∈ {s0ℓ + 1, . . . ,s0 (ℓ + 1)},

0 else,

we have (Ex )i = y for all i ∈ [N ]. Therefore, the probability P in Lemma 3.13 must be

larger than (3.16), which tends to 1 for n → ∞.

Proof of Lemma 3.13. Again, we only establish the proof for symmetric V , the gen-

eral case is analogous by replacing all occurring symmetric Sperner-k families with

Sperner-k families. Throughout this proof, we will omit the argument p of P±,k,n . Let
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3. The Span of Random Binary Matrices and the Lemma of Littlewood and Offord 27

M ∼ E(N ,s ) be a random Bernoullimatrix with parameter p and letQ±,N ,s be the prob-

ability that there exists a vector x ∈ Rs with non-vanishing entries such thatMx ∈ V N .

We can now apply a union bound over the possible supports, to estimate

P ≤
n

∑

s=s0

(

n

s

)

Q±,N ,s ≤
⌈N ε ⌉
∑

s=s0

(

N

s

)

Q±,N ,s +

n
∑

s= ⌈N ε ⌉+1

(

N

s

)

Q±,N ,s =: S1 + S2, (3.17)

with ε = 1 − δ/2 > 1/2. To bound the terms in S1 corresponding to the sparsity level

s0 ≤ s ≤ ⌈N ε ⌉, we will decompose the matrix M into two parts. Let ℓ ∈ N with

ℓ ≤ N − s be arbitrary. The first matrix,M (1) ∼ E(s+ℓ,s ) consists of the first s + ℓ rows of

M and the second matrix, M (2) ∼ E(N−s−ℓ,s ) consists of the remaining rows. Let Qs+ℓ,s

be the probability that the matrix M (1) ∼ E(s+ℓ,s ) does not have full rank; we consider

this case separately. Suppose now that M (1) is injective. Then there exists R ⊂ [s + ℓ]

with |R | = s, such that the restriction M̃ (1) of M (1) to the rows indexed by R has full

rank. For each of the ks vectors y ∈ V s , there hence exists a unique vector x ∈ Rs

with M̃ (1)x = y. By invertibility of M̃ (1) , the case of x ∈ Rs with vanishing entries

does not contribute toQ±,N ,s , and we can assume that x only has nonvanishing entries.

By stochastic independence of the rows, we can therefore bound the probability that

M (2)x ∈ V (N−s−ℓ) from above by P̃
N−(s+ℓ)
±,k,s . Here, P̃±,k,s is the probability that for a

Bernoulli random vector ϵ (n) of parameter p, it holds that 〈e (n) ,x〉 ∈ V . By Remark 3.5,

P̃±,k,s can be estimated as

P̃±,k,s ≤ P±,k,s ≤ Q2; (3.18)

the last inequality holds by assumption (3.13). On the event that M (1) is injective, we

apply a union bound over all
(

s+ℓ
s

)

candidates for a subset R and all ks vectors y ∈ V N .

Combining this with the event thatM (1) is not injective we can therefore bound

Q±,N ,s ≤
(

s + ℓ

s

)

ks P̃
N−(s+ℓ)
±,k,s +Qs+ℓ,s . (3.19)

We will now bound Qs+ℓ,s using a union bound over all potential ranks of M (1) and an

approach similar to the one above. Suppose that M (1) has rank r with 1 ≤ r ≤ s − 1,

implying that there existsC ⊂ [s]with |C | = r , τ ∈ [s]\C and x ∈ Rr with rankM
(1)
:,C
= r

and

M
(1)
:,C
x = M

(1)
:,τ ⇔ M

(1)

:,C∪{τ } (x
T ,−1)T = 0, (3.20)

whereM
(1)

:,C∪{τ } is the matrix which arises by adding the columnM
(1)
:,τ on the right to the

matrix M
(1)
:,C . The vector x cannot have any vanishing entries, since this would imply

that M (1) had rank smaller than r . As M
(1)
:,C

has rank r , there exists R ⊂ [s + ℓ], |R | = r ,

such that M
(1)
R,C

is invertible; the vector x in (3.20) is therefore unique. Note that (3.20)

also implies

M
(1)

Rc ,C∪{τ } (x
T ,−1)T = 0. (3.21)
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Consequently,

P

[
M (1) not injective

]
≤

∑

1≤r ≤s−1
P

[
rank(M (1) ) = r

]
≤

∑

1≤r ≤s−1
P

[
∃C ⊂ [s], |C | = r : (rank(M (1)

:,C
) = r ) ∧ (∀τ ∈ [s] \C : rank(M

(1)

:,C∪{τ } )) = r
]

≤
∑

1≤r ≤s−1
P

[
∃C ⊂ [s],∃R ⊂ [s + ℓ], |C | = |R | = r ,∀τ ∈ [s] \C : (3.22)

(rank(M
(1)
R,C

) = r ) ∧ (rank(M
(1)

:,C∪{τ } ) = r )
]

≤
∑

1≤r ≤s−1

∑

C⊂[s]
|C |=r

∑

R⊂[s+ℓ]
|C |=r

P

[
(rank(M

(1)
R,C

) = r ) ∧ (rank(M
(1)

:,C∪{τ } ) = r )
]
,

the last line follows by a union bound over all choices ofC, R while always choosing the

smallest τ in [s] \C. Conditioning on M
(1)
R,C

, which is invertible, rank(M
(1)

:,C∪{τ } ) = r can

only hold true if the unique x in (3.20) also satisfies (3.21). By stochastic independence

of the rows of M
(1)
Rc ,C

, we therefore have

P

[
(rank(M

(1)
R,C

) = r ) ∧ (rank(M
(1)

:,C∪{τ } ) = r )
]

= E

[
P

[
(rank(M

(1)
R,C ) = r ) ∧ (rank(M

(1)

:,C∪{τ } ) = r ) |M
(1)
R,C

] ]
≤ P̃s+ℓ−r1,r+1 ,

(3.23)

where P̃1,r+1 is the maximal probability that for x as in (3.21), and a Bernoulli random

vector e (n) of the parameter p, it holds that 〈e (n) , (x ,−1)T 〉 = 0. By Remark 3.5, P̃1,r+1
can be estimated as

P̃1,r+1 ≤ P1,r+1 ≤ P1,2 = p
2
+ q2 ≤ Q2; (3.24)

the inequalities hold by Lemma 3.6, Lemma 3.9, and (3.12). Bringing (3.22) and (3.23)

together, we therefore arrive at

Qs+ℓ,s ≤
s−1
∑

r=1

(

s

r

) (

s + ℓ

r

)

P̃s+ℓ−r1,r+1 . (3.25)

For s ≤ N ε and N ≥ 2(1−ε )
−1
such that N ε ≤ N/2, we can therefore bound Qs+ℓ,s from

above by

Qs+ℓ,s ≤ s2s
(

N

s

)

Q2ℓ , (3.26)

since for 1 ≤ r ≤ s ≤ N ε ≤ N/2 and ℓ ≤ N − s, we have
(

s

r

)

≤ 2s ,

(

s + ℓ

r

)

≤
(

N

s

)

, P̃s+ℓ−k1,k+1 ≤ Q2(s+ℓ−r ) ≤ Q2ℓ .
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Applying (3.19) together with (3.18), (3.26), and n,s + ℓ ≤ N , it follows that

(

n

s

)

Q±,N ,s ≤
(

N

s

)2

ksQ2(N−(s+ℓ))
+ s2s

(

N

s

)2

Q2ℓ (3.27)

≤ s (2k )s
(

N

s

)2
(

Q2(N−(s+ℓ))
+Q2ℓ

)

. (3.28)

For N ≥ 2(1−ε )
−1
, we can now choose ℓ = N/2 and, using (3.27) and (3.10), bound S1 in

(3.17) as

S1 =

⌈N ε ⌉
∑

s=s0

(

n

s

)

Q±,N ,s

≤ N 2ε (2k )N
ε

(

N

N ε

)2
(

QN−2N ε

+QN
)

≤ N 2ε
(

2ke2N 2(1−ε )
)N ε (

QN−2N ε

+QN
)

≤ 2N 2ε
(

4ke2N 2(1−ε )
)N ε

QN
=: DN .

(3.29)

In last inequality, we used (3.12) to bound

Q−2N
ε ≤ (p2 + q2)−N

ε

= (1 − 2pq)−N ε ≤ (1/2)−N
ε

= 2N
ε

. (3.30)

Using monotonicity and inequality (3.30), we can now bound

log(S1) − log(Q̄N ) ≤ log(DN ) − log(Q̄N ) (3.31)

≤ log(2) + 2ε log(N ) + N ε
(

log(4ke2) + 2(1 − ε ) log(N )
)

+ N (log(Q ) − log(Q̄ )).

Recalling that Q̄ > Q and noting that N ε logN = o(N ), it follows that the right-hand

side of (3.31) tends to −∞ as N → ∞, which implies that S1 = o
(

Q̄N
)

.

To bound S2, we will again decompose the matrix M ∼ E(N ,n) into two parts, M (1) and

M (2) , consisting of the first n + ℓ rows of M , and the remaining rows, respectively, for

some ℓ ≤ N − n to be determined later. If M (1) is injective, so are all of its column

restricted submatrices. Hence, on the event that M (1) is injective (the complementing

event has probability at most Qn+ℓ,n ), we obtain a bound similar to (3.19) but without

Qs+ℓ,s . It follows that

S2 =

n
∑

s= ⌈N ε ⌉+1

(

n

s

)

Q±,N ,s ≤ Qn+ℓ,n +

n
∑

s= ⌈N ε ⌉+1

(

n

s

) (

s + ℓ

s

)

ks P̃
N−(s+ℓ)
±,k,s . (3.32)

Using Lemma 1.5 and a union bound over the k points in V , we can now bound

P̃±,k,s ≤ P̃k,s ≤
kC
√
µs
. (3.33)
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It follows from (3.32) that

S2 ≤ Qn+ℓ,n + N 8N
(

kC

µ 1/2N ε/2

)N−(n+ℓ)

≤ Qn+ℓ,n + 9
N

(

kC

µ 1/2N ε/2

)N−(s+ℓ)
,

provided N is large enough such that log(N )N −1 ≤ log(9/8), which is satisfied for N ≥
3 · 106. Applying (3.25) for s = n, it follows that

Qn+ℓ,n ≤
n−1
∑

r=1

(

n

r

)

(n − r )
(

n + ℓ

r

)

P̃n+ℓ−r1,r+1

=

⌈N ε ⌉
∑

r=1

(

n

r

)

(n − r )
(

n + ℓ

r

)

P̃n+ℓ−r1,r+1 +

n
∑

r= ⌈N ε ⌉+1

(

n

r

)

(n − r )
(

n + ℓ

r

)

P̃n+ℓ−r1,r+1

=: T1 +T2.

Applying again (3.33), we find that

T2 ≤ n24N
(

C

µ 1/2N ε/2

)ℓ

≤ 8N
(

C

µ 1/2N ε/2

)ℓ

,

provided N ≥ 4. Since n + ℓ ≤ N and P̃1,r+1 ≤ Q2 by (3.24), T1 can be bounded for large

enough N by

T1 ≤ N ε · N
(

N

N ε

)2

Q2(n+ℓ−N ε )

≤ N (1+ε )
(

eN (1−ε )
)2N ε

Q2(n+ℓ−N ε )

≤ N (1+ε )
(

2e2N 2(1−ε )
)N ε

Q2(n+ℓ) ,

where we used (3.10) in the second and (3.30) in the third inequality. If we choose ℓ such

that n + ℓ ≥ N/2, we obtain, with DN as in (3.29) and (3.31), that

T1 ≤ N (1+ε )
(

2e2N 2(1−ε )
)N ε

QN
=

DN

2N (2ε−1) (2k )N ε ≤ DN = o(Q̄
N ), (3.34)

as ε = 1 − δ/2 > 1/2. Combining all these results, we therefore obtain for any choice of ℓ

with n + ℓ ≥ N/2 that

S2 ≤ o
(

Q̄N
)

+ 9N
(

kC

µ 1/2N ε/2

)N−(n+ℓ)
+ 8N

(

C

µ 1/2N ε/2

)ℓ

. (3.35)
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If n ≤ N/2, we can choose ℓ = max {N/2 − n,N/4}, which implies via direct calculation

that n + ℓ ≥ N/2, ℓ ≥ N/4 and N − (n + ℓ) ≥ N/4. Together with (3.35), we therefore have

S2 ≤ o
(

Q̄N
)

+ 2 · 9N
(

kC

µ 1/2N ε/2

)N/4

= o
(

Q̄N
)

+ 2 ·
(

94kC

µ 1/2N ε/2

)N/4

.

With δ > 0 as in the assumption, ε = 1 − δ/2 > 1/2 now implies that µ1/2N ε/2 ≥ N δ /4

and hence S2 = o
(

Q̄N
)

in the case where n ≤ N/2. If n > N/2, we choose ℓ = N−n
2 , which

implies that

N − (n + ℓ) =
N − n
2
= ℓ.

Suppose for a moment that
(

kC

N δ/4

) ℓ/N

<
1

9
√
2
. (3.36)

Then, from (3.35), it follows that

S2 ≤ o
(

Q̄N
)

+ 9N
(

kC

µ 1/2N ε/2

)ℓ

+ 8N
(

C

µ 1/2N ε/2

)N−(n+ℓ)

≤ o
(

Q̄N
)

+ 2 · 9N
(

kC

N δ/4

)ℓ

= o
(

Q̄N
)

.

To complete the proof, note that by the monotonicity of the logarithm, (3.36) is equival-

ent to

ℓ >
log(9

√
2)N

δ/4 log(N ) − log(kC) ,

which, for N > (kC)
4/δ and a su�iciently large constant C̃ > 0 depending only on the

constants δ and k , is implied by

ℓ ≥ C̃N

2 log(N )
.

Since ℓ = N−n
2 , this inequality is equivalent to

n ≤
(

1 − C̃

logN

)

N . �

In this section, we reduced the problem of investigating the span of the columns of a

random Bernoullimatrix E(N ,n) to the problem of bounding the quantities Pk,n (p) and

P±,k,n (p), which we aim to bound in the remainder of the chapter. In Section 4, we will

bound P±,k,n (p) and P±,k,n (p) using cardinality estimates for Sperner-k families and a

greedy method. Since these bounds are only applicable for certain values of p and n, we
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will reduce the problem of bounding Pk,n (p) and P±,k,n (p) in Section 5 in a way that we

can apply the LYM-inequality, which we will also introduce in that section. Whereas

resulting bounds on P±,k,n (p) will be weaker than the bounds in Section 4, they will be

monotone with respect to n.

4. Bounding Pk,nPk,nPk,n and P±,k,nP±,k,nP±,k,n using Cardinality Estimates

In the case where k = 1, the problem of bounding the cardinality of a Sperner family

was first addressed by Sperner.

Lemma 4.1 (Sperner’s Lemma [Spe28]). Let A ⊂ 2n be a Sperner family, then

|A | ≤
(

n

⌊n/2⌋

)

.

In particular, if n is even, the largest Sperner family of [n] contains exactly the subsets of

cardinality n/2 of [n]. If n is odd, the largest two Sperner families of [n] are the families

containing all subsets of cardinality ⌊n/2⌋ of [n] or all subsets of cardinality ⌈n/2⌉ of [n].

Sperner’s Lemma can be generalized to Sperner-k families. The corresponding result

is considered folklore without known reference, see, e.g., [EFK05].

Lemma 4.2. Let A ⊂ 2n be a Sperner-k family. Then

|A | ≤
⌊(n+k−1)/2⌋

∑

i= ⌊(n−k+1)/2⌋

(

n

i

)

.

Equality holds if and only if A is the family of all sets A with |A| ∈ [⌊ (n−k+1)2 ⌋, ⌊ (n+k−1)2 ⌋]
or the family of all sets A with A ∈ [⌈ (n−k+1)2 ⌉, ⌈ (n+k−1)2 ⌉].

In order to be able to handle symmetric Sperner-2 families, a refinement of Sperner’s

Lemma will be useful. The following lemma, which is due toMilner, gives an estimate

for the cardinality of a special class of Sperner families.
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Lemma 4.3 (Milner [Mil68]). LetA ⊂ 2n be a Sperner family which does not contain

any complementing sets, i.e., sets A ∈ A with Ac ∈ A. Then

|A | ≤
(

n⌊
n−1
2

⌋) .

We can now use Lemma 4.3 to estimate the cardinality of symmetric Sperner-2 fam-

ilies.

Corollary 4.4. Let A ⊂ 2n be a symmetric Sperner-2 family. Then

|A | ≤ 2

(

n

⌊ (n−1)/2⌋

)

.

Proof. LetA ⊂ 2n be an arbitrary symmetric Sperner-2 family. By Definition 2.10, A

is of the form

A = B ∪ B−1,

where B ⊂ 2n is a Sperner family. We may assume that B does not contain any com-

plementing sets. Lemma 4.3 now implies that

|A | ≤ 2|B | ≤ 2

(

n

⌊ (n−1)/2⌋

)

.

This completes the proof. �

For Bernoulli random sets of parameter p = 1/2, we have the following:

Lemma 4.5. Let A ⊂ 2n be a family and S (n) a Bernoulli random set with parameter

p = 1/2. Then it holds for arbitrary sign pa�ern ξ ∈ {±1}n that

P

[
S (n) ∈ Aξ

]
=

|A |
2n
.
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Proof. A Bernoulli random set S (n) of parameter p = 1/2 a�ains each set A ∈ 2n with

the same probability 2−n . It follows that

P

[
S (n) ∈ Aξ

]
=

|Aξ |
2n
=

|A |
2n
,

since for any familyA ⊂ 2n and any sign pa�ern ξ ∈ {±1}n , we have |Aξ | = |A |. �

Together with the cardinality bounds above, it is now straightforward to estimate

the probabilities P±,k,n (p) and Pk,n (p) in the case of p = 1/2. Note that Theorem 1.3 was

proven by Erdős in [Erd45] using Sperner’s Lemma (Lemma 4.1) and the observation

of Lemma 4.5. While this will eventually give rise to generalized Littlewood-Offord-

type inequalities using Lemma 3.4, it also directly yields Theorem 1.2 for p = 1/2, which

basically is the case considered by Odlyzko (Theorem 1.1).

Proof of Theorem 1.2 for p = 1/2. Since p = 1/2 is fixed, we will omit the argument p

for P±,k,n and Pk,n . Note that {±1} is a symmetric set of two points. Lemma 3.9 and

Lemma 3.10 now yield

P±,2,2 = 1/2, P±,2,3 = 3/4.

For all s ≥ 4, Lemma 3.6 and Lemma 4.5 together with Lemma 4.2 imply

P±,2,s ≤ P2,s ≤ P2,4 ≤

((

4
1

)

+

(

4
2

))

24
= 5/8 < 3/4 = P±,2,3.

Similarly, it holds for all s ≥ 6 that

P±,2,s ≤ P2,6 ≤

((

6
2

)

+

(

6
3

))

26
= 35/64. (4.1)

Each of these bounds will now be used to bound one part of the probability. Denote

by P1 the probability that there exists a vector x ∈ Rn with 2 ≤ ‖x ‖0 ≤ 5 such that

M ∼ E(N ,n)x ∈ {±1}n and denote by P2 the probability that there exists a vector x ∈ Rn

with 6 ≤ ‖x ‖0 ≤ n. By the considerations above, it holds that

3 = argmax
2≤s≤5

P±,2,s (1/2),

and the maximizer is unique. Observing that |F±,2,3 | = 4 (Lemma 3.10), Lemma 3.12 now

implies that

P1 ≤ 4

(

N

3

)

(3/4)N + o
(

(3/4)N
)

.

On the other hand, applying Lemma 3.13 for s0 = 6 andQ = 7/10 yields

P2 = o
(

(3/4)N
)

. �
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In the proof of Theorem 1.2, we did not have to fully exploit the symmetry of the set

{±1}, since we used the upper bound P±,2,n (1/2) ≤ P2,n (1/2) for n ≥ 4. In order to be able

to prove Theorem 1.2 for arbitrary p ∈ (0, 1), the symmetry of the set {±1} will be crucial.

Lemma 4.6. Let S (n) be a Bernoulli random set with parameter p , 1/2 and let

A1,A2 ⊂ [n] be arbitrary subsets of cardinality k1,k2 resp. with k1,k2 ≤ n/2. Then

P

[
S (n) ∈ {A1,A

c
1 }
]
≥ P

[
S (n) ∈ {A2,A

c
2}
]

if and only if

k1 ≤ k2.

Proof. By the definition of the Bernoulli random set S (n) , it follows for j = 1,2 that

P

[
S ∈ {Aj ,A

c
j }
]
= pkjqn−kj + pn−kjqkj ; (4.2)

Without loss of generality, we may assume that p > q. Now consider the di�erence of

the respective probabilities,

P
[

S ∈ {A1,A
c
1 }

]

− P
[

S ∈ {A2,A
c
2}

]

= pk1qn−k1 + qk1pn−k1 − pk2qn−k2 − qk2pn−k2

=

(

pk2qn−k2
)

(

1 −
(

p

q

)n−k1−k2
) (

(

p

q

)k1−k2 − 1
)

.

(4.3)

The first factor on the right hand side of (4.3) is strictly positive. If k1 ≥ k2, then both

the second and the third factor in (4.3) are non-positive. If k2 < k1, the second factor is

negative (this follows from k1 ≤ n/2) and the third factor is positive. Consequently, the

le� hand side of (4.3) is non-negative if and only if k1 ≤ k2. This completes the proof. �

To translate this into an upper bound on P±,2,n (p), we need the following lemma.

Lemma 4.7. Letn ≥ 2,A ⊂ 2n be a symmetric Sperner-2 family and denote byLj ⊂ 2n ,

j ∈ [n], the family of all sets A ∈ 2n with |A| = j . Then

N := L0 ∪L1 ∪Ln−1 ∪Ln

is not a subfamily ofAξ for any sign pa�ern ξ ∈ {±1}n .
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Proof. Suppose that N is a subfamily of Aξ for an arbitrary ξ ∈ {±1}n , which, since
A is a symmetric Sperner-2 family, implies that there exists a subfamily B ⊂ Aξ with

B ∩ B−1 = ∅ such that

N = L0 ∪L1 ∪Ln−1 ∪Ln = B ∪ B−1. (4.4)

Using the identity (Aξ )ξ = A, we can conclude that Bξ and thus B−ξ are Sperner

families. We will now consider the two occurring cases in more detail. In the first case,

B orB−1 contains ∅ and at least one set of cardinality 1. If ∅ ∈ B and no set of cardinality

1 is contained in B, it follows that L1 ⊂ B−1, which also implies that L−11 = Ln−1 ⊂ B.

By interchanging the roles of B and B−1, it follows that the remaining second case is

the one where either B or B−1 is equal to L0 ∪ Ln−1 . By symmetry, it is in both cases

enough to only consider the family B. In the first case, suppose that there exists an

index i ∈ [n] such that {∅, {i}} ⊂ B. For the symmetric di�erence of the two sets,

Proposition 2.8 implies that

∅ξ∆{i}ξ = ∅∆{i} = {i},

i.e., it either must hold that ∅ξ = {i}ξ ∪· {i} or that {i}ξ = ∅ξ ∪· {i}. Any of the two cases

contradicts the fact that Bξ is a Sperner family, since {i}ξ ⊂ ∅ξ or ∅ξ ⊂ {i}ξ . We can

analogously handle the case where B−1 contains ∅ and one subset of cardinality 1. Next,
suppose thatB = L0∪Ln−1. Again by Proposition 2.8, it holds that for any set B ∈ Ln−1

|∅ξ∆Bξ | = |∅∆B | = |B | = n − 1.

Consequently, Bξ must contain |Ln−1 | = n distinct sets B with |∅ξ∆B | = n − 1, as (·)ξ is

a bijection of [n] onto itself. We claim that this already contradicts the assumption that

Bξ is a Sperner family. If ∅ξ is equal to ∅ or [n], Bξ with |Bξ | ≥ 2 cannot be a Sperner

family. So suppose that |∅ξ | = k with 1 ≤ k ≤ n − 1. Note that |∅ξ∆Bξ | = n − 1 either

implies that Bξ and ∅ξ are disjoint with |Bξ | = n−k− 1, or that Bξ is intersecting ∅ξ in a
single element and it holds that |Bξ | = n−k+ 1. In 2n , there exist n−k sets Bξ for which

the first assumption is satisfied and k sets Bξ for which the second one holds. Since Bξ

is a Sperner family, it cannot contain both a set B1 of the first type and a set B2 of the

second type, as this would imply that B1 ( (∅ξ )c ( B2. Therefore, it contains at most

max{k,n−k} subsets Bξ with |∅ξ∆Bξ | = n− 1. This yields the desired contradiction and

completes the proof. �

We can now finally derive a strong upper bound on P±,2,3(p) for all p ∈ (0, 1) and

small n using a greedy approach.
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Lemma 4.8. Let S (n) be a random Bernoulli set with parameterp and let furtherA ⊂ 2n

be a symmetric Sperner-2 family and let ξ ∈ {±1}n an arbitrary sign pa�ern. Then

P

[
S ∈ Aξ

]
≤ P [S ∈ B] , (4.5)

where B is the subfamily of 2n \ {{1}, {1}c } consisting of the
(

n
⌊(n−1)/2⌋

)

sets that are smallest

and largest in cardinality.

In particular, for n ∈ {2,4,5,6} and p ∈ (0, 1), it holds that

P±,2,n (p) < P±,2,3(p).

Proof. Let A ⊂ 2n be a symmetric Sperner-2 family. By Corollary 4.4, it follows that

|Aξ | ≤ 2

(

n

⌊ (n−1)/2⌋

)

.

If p = 1/2, the assertion of the lemma follows from Lemma 4.5; we may therefore assume

that p , 1/2. In addition to the cardinality constraint, Lemma 4.7 implies that, if n ≥ 2,

the family

N = L0 ∪L1 ∪Ln−1 ∪Ln

is not a subfamily of Aξ . Furthermore, since A is a symmetric Sperner-2 family, it

holds that A = A−1. Using these three observations, we can now obtain the upper

bound

P

[
S ∈ Aξ

]
≤ max

{

P [S ∈ B] : B ⊂ 2n , B = B−1, |B | ≤ 2

(

n

⌊ (n−1)/2⌋

)

, N 1 B

}

. (4.6)

Recall from Lemma 4.6 that for p , 1/2 and subsets A1,A2 ⊂ [n] of cardinality k1,k2,

resp., with k1,k2 ≤ n/2,

P
[

S ∈ {A1,A
c
1 }

]

≥ P
[

S ∈ {A2,A
c
2}

]

holds if and only if

k1 ≤ k2.

If we neglect the constraint N 1 B on the right hand side of (4.6) and only consider the

cardinality and symmetry constraints, we can therefore construct a maximizer C in a

greedy manner by selecting the
(

n
⌊(n−1)/2⌋

)

sets of smallest cardinality and their comple-

ments. However, forn ≥ 5, a family constructed in this waywill always be a superfamily

of N and will thus violate the subfamily constraint. Again by Lemma 4.6, the family of

largest probability which is symmetric and satisfies both the cardinality and the sub-

family constraint is the one where we replace one of the sets of cardinality 1 and its

complement contained in C with the subset of smallest cardinality k ≤ n/2 not yet con-
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tained in C together with its complement. The resulting family is then, up to indexing,

the family B as described in the first part of the lemma.

For the second part, recall from Remark 3.11 that

P±,2,2 (p) < P±,2,3(p)

for all p, and from Lemma 3.10 that P±,2,3(p) = 1 − pq. Now let S (n) ,n ∈ {4,5,6} be
Bernoulli random sets with parameter p. For the probability P±,2,4 and the family

B4 = {∅, {2}, {3}, {4}}, (4.5) reads

P±,2,4 (p) ≤ P
[
S (4) ∈ B4 ∪ B−14

]
= p4 + q4 + 3(p3q + pq3) = 1 − pq(1 + 4pq) < 1 − pq,

where the second equality uses that p + q = 1. We even have equality, since

B4 ∪ B−14 =
{
∅, {2}, {3}, {4}

}
∪
{
{1,2,3,4}, {1,3,4}, {1,2,4}, {1,2,3}

}
=

{
∅, {1,3,4}, {1,2,4}, {1,2,3}

}
∪
{
{1,2,3,4}, {2}, {3}, {4}

}
= C4 ∪ C−14 ,

where C4 = {{1}, {2,3}, {2,4}, {3,4}}(−1,1,1,1)
T
. Moving on to the casen = 5, inequality (4.5)

yields that

P±,2,5 (p) ≤ p5 + q5 + 4(p4q + pq4) + 5(p3q2 + q3p2) =: Q5(p).

Bearing in mind that q = 1−p, we can expand all terms in P±,2,3 (p) −Q5 (p) and end up

with a polynomial in p, namely

P±,2,3(p) −Q5(p) = 2p4 − 4p3 + 2p2 = 2p2 (p − 1)2,

which is strictly positive for all p ∈ (0, 1). This implies for all p ∈ (0, 1) that

P±,2,5 (p) ≤ Q5 (p) < P±,2,3(p) .

In the case where n = 6, we obtain from inequality (4.5) that

P±,2,6 (p) ≤ p6 + q6 + 5(p5q + pq5) + 9(p4q2 + p2q4) =: Q6 (p).

Proceeding in the same way as in the previous case, we can find that

P±,2,3 (p) −Q6 (p) = −10p6 + 30p5 − 28p4 + 6p3 + 2p2

= −p2 (p − 1)2 (p − 1/10(5 − 3
√
5))(p − 1/10(5 + 3

√
5)).

Since 1/10(5 − 3
√
5) < 0 and 1/10(5 + 3

√
5) > 1, P±,2,3(p) −Q6 (p) is strictly positive and

we therefore have that P±,2,6 (p) ≤ Q6(p) < P±,2,3 (p) for all p ∈ (0, 1). �
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To prove Theorem 1.2, it remains to develop a strong bound on P±,2,n (p) for n ≥ 7,

where Lemma 4.8 fails to produce a bound which is uniformly smaller than P±,2,3 (p),
e.g., for p = 3/4.

5. Bounding Pk,n and P±,k,n using the LYM-inequality

In this section, we will reduce the problem of bounding the quantities Pk,n and P±,k,n ,
which are defined in Lemma 3.4 in terms of modulated Sperner-k families, to a sim-

ilar problem involving only standard Sperner-k families. This will put us in a posi-

tion to use the LYM-inequality and generalizations thereof to bound Pk,n and P±,k,n .
The LYM-inequality was independently proven by Bollobás [Bol65], Lubell[Lub66],

Meshalkin[Meš63] and Yamamoto[Yam54].

Theorem 5.1 (LYM-Inequality [Bol65, Lub66, Meš63, Yam54]). Let A ⊂ 2n be a

Sperner-1 family and denote byAk ⊂ 2n the family of all A ∈ A with |A| = k . Then

n
∑

k=0

|Ak |
(

n
k

) ≤ 1. (5.1)

In the general case, an analogous inequality reads as follows:

Theorem 5.2 ([EFK05]). Let A be a Sperner-k family. Then

n
∑

i=0

|Ai |
(

n
i

) ≤ k .

Equality holds only if A = {A ⊂ [n] : |A| ∈ K } for some K ⊂ [n] with |K | = k .

In order to be able to apply Theorem 5.2 for modulated Sperner-k families, we intro-

duce the following notation.
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Definition 5.3. For anyA ⊂ 2n and any disjoint I , J ⊂ [n], letAI , J ⊂ 2J be the family

defined by

AI , J = {A ⊂ J |A ∪· I ∈ A} .

Similar to Definition 2.15, we now have the following definition.

Definition 5.4. Let the family B ⊔ I ⊂ 2n for I ⊂ [n] and B ⊂ 2n be given by

B ⊔ I = {B ∪ I |B ∈ B} .

When we want to stress that B ⊓ I contains only the empty set, we write B ⊔· I instead
of B ⊔ I .

Remark 5.5. As for A,B ⊂ 2n and disjoint I , J ⊂ [n], it holds that

(A ∪ B)I , J = {A ⊂ J |A ∪· I ∈ A ∪ B}
= {A ⊂ J |A ∪· I ∈ A} ∪ {A ⊂ J |A ∪· I ∈ B}
= AI , J ∪ BI , J ,

we say that (·)I , J is union compatible. We also have

(A−1)I , J =
{
A ⊂ J |A∪· I ∈ A−1

}
=

{

A ⊂ J |Ac ∪· J c \ I ∈ A}

= (AJ c \I , J )
−1.

In the following, for arbitrary ξ ∈ {±1}n and arbitrary J ⊂ [n], we will denote by

ξ J ∈ {±1} J the restriction of ξ to the coordinates indexed by J . This allows us to state

the following lemma:

Lemma 5.6. For A ⊂ 2n , ξ ∈ {±1}n and any disjoint J ⊂ [n], it holds that

Aξ
=

⋃·
I ⊂ J c

(AI , J )
ξ J ⊔· I ξ J c .

Furthermore, if Aξ ⊂ 2n is a Sperner-k family, then (AI , J )
ξ J ⊂ 2J is a Sperner-k family

for all I ⊂ J c .
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Proof. If every entry of ξ is equal to 1, the first part of Lemma 5.6 directly follows from

Definition 5.3. Now let ξ ∈ {±1}n be arbitrary. Recall that (·)ξ is union compatible. This

allows us to write

Aξ
=

⋃·
I ⊂ J c

(

AI , J ⊔· I
)ξ
,

which is also a disjoint union, since (·)ξ is a bijection of 2n onto itself. AsAI , J ⊂ 2J and

I ⊂ J c , we can rewrite this as

Aξ
=

⋃·
I ⊂ J c

(AI , J )
ξ J ⊔· I ξ J c .

Now letAξ ⊂ 2n be a Sperner-k family and suppose thatA
ξ J
I , J

is not a Sperner-k family

for some disjoint I , J ⊂ [n], meaning that there exist k + 1 sets B1,B2, . . . ,Bk+1 ∈ AI , J

such that

B
ξ J
1 ( B

ξ J
2 ( · · · ( B

ξ J
k+1
, (5.2)

and therefore also
(

B
ξ J
1 ∪· I

ξ J c
)

(

(

B
ξ J
2 ∪· I

ξ J c
)

( · · · (
(

B
ξ J
k+1
∪· I ξ J c

)

. (5.3)

By construction of AI , J , there must exist k + 1 sets A1,A2, . . . ,Ak+1 ∈ A such that

Aj = Bj ∪· I , j ∈ [k + 1],

which translates to

A
ξ
j = B

ξ J
j ∪· I

ξ J c , j ∈ [k + 1].

Together with the chain of inclusions (5.3), this now contradicts the assumption that

Aξ is a Sperner-k family and completes the proof. �

The following theorem now reduces probability estimates for a Bernoulli random

set S (n) to estimates of Bernoulli random sets S ( J ) for J ⊂ [n]. While the result

for Sperner-k families is straight-forward, the corresponding estimate for symmetric

Sperner-k families is more involved.

Theorem 5.7. LetA ⊂ 2n be a Sperner-k family, ξ ∈ {±1}n be an arbitrary sign pa�ern

and J ⊂ [n] be an arbitrary index set. Then, for the Bernoulli random sets S (n) and S ( J )

with parameter p, it holds that

P

[
S (n) ∈ Aξ

]
≤ max

B⊂2J
B Sperner-k

P

[
S ( J ) ∈ Bξ J

]
.
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IfA is symmetric, it holds that

P

[
S (n) ∈ Aξ

]
≤ max

B⊂2J
B Sperner- ⌈k/2⌉

(

P

[
S ( J ) ∈ Bξ J

]
+ P

[
S ( J ) ∈ B−ξ J

] )
. (5.4)

Proof. LetA ⊂ 2n and ξ ∈ {±1}n be arbitrary. By Lemma 5.6, we can representAξ by

the disjoint union

Aξ
=

⋃·
I ⊂ J c

(A
ξ J
I , J

) ⊔ I ξ J c .

This allows us to write

P

[
S (n) ∈ Aξ

]
=

∑

A∈A
P

[
S (n) = Aξ

]
=

∑

I ⊂ J c

∑

A∈AI , J

P

[
S (n) = Aξ J ∪· I ξ J c

]
. (5.5)

Since A ∈ Aξ J
I , J
⊂ 2J , it holds that for any subset I ⊂ J c

(Aξ J ∪· I ξ J c )c = (J \Aξ J ) ∪· (J c \ I ξ J c ).

We can now rewrite the terms on the right-hand side of (5.5) as

P

[
S (n) = Aξ J ∪· I ξ J c

]
= p |A

ξJ |+ |I ξJ c |qn−( |A
ξJ |+ |I ξJ c |)

= p |A
ξJ |q | J |− |A

ξJ |p |I
ξJ c |q | J

c |− |I ξJ c |

= P

[
S ( J ) = Aξ J

]
P

[
S ( J

c )
= I ξ J c

]
.

In (5.5), we therefore get

P

[
S (n) ∈ Aξ

]
=

∑

I ⊂ J c
P

[
S ( J

c )
= I ξ J c

] ∑

A∈AI , J

P

[
S ( J ) = Aξ J

]

=

∑

I ⊂ J c
P

[
S ( J

c )
= I ξ J c

]
P

[
S ( J ) ∈ Aξ J

I , J

]
.

(5.6)

Suppose now that A ⊂ 2n is a Sperner-k family. Then Lemma 5.6 with ξ = 1 implies

thatAI , J ⊂ 2J also is a Sperner-k family. With (5.6), it follows that

P

[
S (n) ∈ Aξ

]
≤
*..,

max
B⊂2J

B Sperner-k

P

[
S ( J ) ∈ Bξ J

]+//-
∑

I ⊂ J c
P

[
S ( J

c )
= I ξ J c

]

= max
B⊂2J

B Sperner-k

P

[
S ( J ) ∈ Bξ J

]
,
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since (·)ξ J c is a bijection of 2J
c
onto itself, and thus

∑

I ⊂ J c
P

[
S J

c

= I ξ J c
]
= 1.

For the second statement, we may assume that J , ∅. Letd ∈ J be arbitrary and assume

thatA ⊂ 2n is a symmetric Sperner-k family. If k is even, it is of the form

A =

k/2
⋃

i=1

Ai ∪A−1i ,

where Ai ⊂ 2n is a Sperner family for all i ∈ [k/2]. If k is odd, A is of the form

A = A0 ∪
⌊k/2⌋
⋃

i=1

Ai ∪A−1i ,

where the family Ai ⊂ 2n is a Sperner family for all 1 ≤ i ≤ ⌊k/2⌋ and it additionally

holds thatA0 = A−10 . LetA⌈k/2⌉ ⊂ 2n be the family of all sets contained inA0 which do

not contain the index d ∈ J . Note that as a subfamily of a Sperner family,A⌈k/2⌉ must

also be a Sperner family. In this way, A0 = A−10 implies that A⌈k/2⌉ ∪A−1⌈k/2⌉ = A0. It

follows that if k is even or odd, we can write the symmetric Sperner-k familyA as

A =

⌈k/2⌉
⋃

i=1

Ai ∪A−1i , (5.7)

where Ai ⊂ 2n is a Sperner family for all 1 ≤ i ≤ ⌈k/2⌉ and, if k is odd, it additionally

holds that A⌈k/2⌉ contains no sets A ⊂ [n] with d ∈ A. By possibly removing sets from

some of the families Ai , we may assume that all Ai ,A
−1
i , 1 ≤ i ≤ ⌈k/2⌉ are pairwise

disjoint. Let J ⊂ 2J
c
be a family with

J ∪· J−1 = 2J
c

.

Such a family always exists. For each I ∈ J, let pI , J be the probability

pI , J = P
[
S ( J

c )
= I ξ J c

]
P

[
S ( J ) ∈ Aξ J

I , J

]
+ P

[
S ( J

c )
= J c \ I ξ J c

]
P

[
S ( J ) ∈ Aξ J

J c \I , J

]
;

(5.8)

we can now rewrite (5.6) as

P

[
S (n) ∈ Aξ

]
=

∑

I ∈J
pI , J . (5.9)

By Remark 5.5, it holds that for I ⊂ J c , (·) is union compatible and one has (A−1)I , J =
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(

AJ c \I , J
)−1. Together with identity (5.7), it follows that

AI , J =

⌈k/2⌉
⋃

i=1

(Ai )I , J ∪
(

(Ai )J c \I , J
)−1
.

Now let I ∈ J be fixed. The familiesAI , J ⊂ 2J and AJ c \I , J ⊂ 2J can now be wri�en as

AI , J =

⌈k/2⌉
⋃

i=1

(

Bi,1 ∪ B−1i,2
)

and AJ c \I , J =
⌈k/2⌉
⋃

i=1

(

Bi,2 ∪ B−1i,1
)

. (5.10)

where for each i ⊂
[
⌈k/2⌉

]
, we set

Bi,1 = (Ai )I , J and Bi,2 = (Ai )J c \I , J .

Since Ai ⊂ 2n is a Sperner family for each 1 ≤ i ≤ ⌈k/2⌉, Lemma 5.6 implies that

for each i, the families Bi,1,Bi,2 ⊂ 2J and therefore also B−1i,1,B
−1
i,2 ⊂ 2J are Sperner

families. Bearing in mind that Ai ,A
−1
i , 1 ≤ i ≤ ⌈k/2⌉ are pairwise disjoint and that

(·)ν is a bijection of 2J onto itself for any sign pa�ern ν ∈ {±1} J , it must hold that

B
ξ J
i,1 ,B

−ξ J
i,2 ⊂ 2J , 1 ≤ i ≤ ⌈k/2⌉ are also pairwise disjoint. Analogously, the same must

also hold for B
ξ J
i,2,B

−ξ J
i,1 ⊂ 2J , 1 ≤ i ≤ ⌈k/2⌉. Because of this and since (·)ξ J is union

compatible, it follows with (5.10) and (5.11) for pI , J , I ∈ J defined in (5.8) and

aI , J := P
[
S ( J

c )
= I ξ J c

]
and bI , J := P

[
S ( J

c )
= J c \ I ξ J c

]
, (5.11)

that

pI , J = P
[
S ( J

c )
= I ξ J c

]
P

[
S ( J ) ∈ Aξ J

I , J

]
+ P

[
S ( J

c )
= J c \ I ξ J c

]
P

[
S ( J ) ∈ Aξ J

J c \I , J

]

= aI , J P

S
( J ) ∈

⌈k/2⌉
⋃·
i=1

(

B
ξ J
i,1 ∪· B

−ξ J
i,2

) + bI , J P
S

( J ) ∈
⌈k/2⌉
⋃·
i=1

(

B
ξ J
i,2 ∪· B

−ξ J
i,1

)
= aI , J

⌈k/2⌉
∑

i=1

(

P

[
S ( J ) ∈ Bξ J

i,1

]
+ P

[
S ( J ) ∈ B−ξ Ji,2

])
(5.12)

+ bI , J

⌈k/2⌉
∑

i=1

(

P

[
S ( J ) ∈ Bξ J

i,2

]
+ P

[
S ( J ) ∈ B−ξ Ji,1

])

= aI , J

⌈k/2⌉
∑

i=1

(Bi,1 + B̄i,2) + bI , J

⌈k/2⌉
∑

i=1

(Bi,2 + B̄i,1),
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where for each i ∈ ⌈k/2⌉, we set

Bi,1 := P
[
S ( J ) ∈ Bξ J

i,1

]
, B̄i,1 := P

[
S ( J ) ∈ B−ξ Ji,1

]
,

Bi,2 := P
[
S ( J ) ∈ Bξ J

i,2

]
, B̄i,2 := P

[
S ( J ) ∈ B−ξ Ji,2

]
.

(5.13)

We now aim to find an upper bound on pI , J which takes the structure of the appearing

families into account. To this end, we claim that there exists a partition P ∪· Q =
[
⌈k/2⌉

]
such that

pI , J ≤ (aI , J + bI , J )
*.,
∑

i∈P
(Bi,1 + B̄i,1) +

∑

i∈Q
(Bi,2 + B̄i,2)

+/- . (5.14)

Indeed, let P be the set of all indices i ∈
[
⌈k/2⌉

]
with

argmax
j ∈{1,2}

(

aI , J B̄i,j + bI , JBi,j
)

= 1,

and let Q be the set of all indices i ∈
[
⌈k/2⌉

]
with

argmax
j ∈{1,2}

(

aI , J B̄i,j + bI , JBi,j
)

= 2.

In this way, it follows for arbitrary i ∈ P that

aI , J (Bi,1 + B̄i,2) + bI , J (B̄i,1 + Bi,2) − (aI , J + bI , J )(Bi,1 + B̄i,1)

= aI , J (B̄i,2 − B̄i,1) + bI , J (Bi,2 − Bi,1)
= (aI , J B̄i,2 + bI , JBi,2) − (aI , J B̄i,1 + bI , JBi,1) ≤ 0,

which a�er rearranging reads

aI , J (Bi,1 + B̄i,2) + bI , J (B̄i,1 + Bi,2) ≤ (aI , J + bI , J )(Bi,1 + B̄i,1).

Analogously, it follows for each i ∈ Q that

aI , J (Bi,1 + B̄i,2) + bI , J (B̄i,1 + Bi,2) ≤ (aI , J + bI , J )(Bi,2 + B̄i,2).

Together, these inequalities imply (5.14), or equivalently

pI , J ≤ (aI , J + bI , J )*,
∑

i∈P

(

P

[
S ( J ) ∈ Bξ J

i,1

]
+ P

[
S ( J ) ∈ B−ξ Ji,1

] )

+

∑

i∈Q

(

P

[
S ( J ) ∈ Bξ J

i,2

]
+ P

[
S ( J ) ∈ B−ξ Ji,2

]) +-.
(5.15)
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where we inserted the definition (5.13) in the last step. Now define the family

C =
⋃

i∈P
Bi,1 ∪

⋃

i∈Q
B−1i,2 ⊂ 2J ,

which is a Sperner-⌈k/2⌉ family by Lemma 2.3. Using once again that B
ξ J
i,1 ,B

−ξ J
i,2 ⊂ 2J ,

1 ≤ i ≤ ⌈k/2⌉ and also B
ξ J
i,2,B

−ξ J
i,1 ⊂ 2J , 1 ≤ i ≤ ⌈k/2⌉ are pairwise disjoint and the fact

that (·)−ξ J is union compatible, inequality (5.15) can be rewri�en to

pI , J ≤ (aI , J + bI , J )
(

P

[
S ( J ) ∈ Cξ J

]
+ P

[
S ( J ) ∈ C−ξ J

] )
≤ (aI , J + bI , J ) max

B⊂2J
B Sperner-⌈k/2⌉

(

P

[
S ( J ) ∈ Bξ J

]
+ P

[
S ( J ) ∈ B−ξ J

] )
.

Combining this inequality with (5.9), we obtain

P

[
S (n) ∈ Aξ

]
=

∑

I ∈J
pI , J

≤
∑

I ∈J

(

aI , J + bI , J
)

max
B⊂2J

B Sperner- ⌈k/2⌉

(

P

[
S ( J ) ∈ Bξ J

]
+ P

[
S ( J ) ∈ B−ξ J

] )

= max
B⊂2J

B Sperner- ⌈k/2⌉

(

P

[
S ( J ) ∈ Bξ J

]
+ P

[
S ( J ) ∈ B−ξ J

] )
,

since
∑

I ∈J
(aI , J + bI , J ) =

∑

I ∈J

(

P

[
S ( J

c )
= I ξ J c

]
+ P

[
S ( J

c )
= J c \ I ξ J c

] )

=

∑

I ∈J

(

P

[
S ( J

c )
= I ξ J c

]
+ P

[
S ( J

c )
= (J c \ I )ξ J c

] )
= 1.

(5.16)

The first equality in (5.16) is implied by

J c \ I ξ J c = I−ξ J x = (J c \ I )ξ J c ;

the last equality follows by construction of the family J and the fact that (·)ξ J c is a

bijection of 2J
c
onto itself. This completes the proof. �

Remark 5.8. As a consequence of the construction made in (5.7), in order to come up

with a smaller upper bound in the case where k is odd, we may additionally require in

the maximum in (5.14) that one of the Sperner families Bℓ in the decomposition of the

Sperner-⌈k/2⌉ family B, does not contain any complementing sets.

Theorem 5.7 now puts us in a position where we are able to apply the LYM-inequality
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in order to bound P±,2,n (p) and P1,n (p).

Corollary 5.9. Let A ⊂ 2n be a Sperner family, ξ ∈ {±1}n be a sign pa�ern, J (ξ ) =

{j |ξ j = 1} and n̄ be an arbitrary integer with 0 ≤ n̄ ≤ max{| J (ξ ) |, | J (−ξ ) |}. Then for the

Bernoulli random set S (n) with parameter p, it holds that

P

[
S (n) ∈ Aξ

]
≤ max

0≤k≤n̄

(

n̄

k

)

pkqn̄−k . (5.17)

If the family A ⊂ 2n is a symmetric Sperner-2 family, we have

P

[
S (n) ∈ Aξ

]
≤ max

0≤k≤n̄

(

n̄

k

)

(

pkqn̄−k + pn̄−kqk
)

. (5.18)

Consequently, for 0 ≤ n̄ ≤ ⌈n/2⌉ and any p ∈ (0, 1), it holds that

P1,n (p) ≤ max
0≤k≤n̄

(

n̄

k

)

pkqn̄−k

and

P±,2,n (p) ≤ max
0≤k≤n̄

(

n̄

k

)

(

pkqn̄−k + pn̄−kqk
)

.

Proof. We will only prove (5.18), since the proof of (5.17) can be done analogously.

Let A ⊂ 2n be an arbitrary symmetric Sperner-2 family and ξ ∈ {±1}n be arbitrary.

Without loss of generality wemay assume that ξ hasmore positive than negative entries

and therefore max{| J (ξ ) |, | J (−ξ ) |} = | J (ξ ) |. Otherwise, we can rewrite Aξ
= (A−1)−ξ

and note that the property of A being a Sperner-k or symmetric Sperner-k family is

invariant under (·)−1. Applying Theorem 5.7 with J ⊂ J (ξ ) and | J | = n̄ implies that

P
[
S (n) ∈ Aξ

]
≤ max

B⊂2J
B Sperner

(

P

[
S ( J ) ∈ Bξ J

]
+ P

[
S ( J ) ∈ B−ξ J

] )

= max
B⊂2J

B Sperner

(

P

[
S ( J ) ∈ B

]
+ P

[
S ( J ) ∈ B−1

] )
,

(5.19)

since ξ J ∈ {±1} J is the constant 1 vector as J ⊂ J (ξ ). For a Sperner family C ⊂ 2J and

for 0 ≤ ℓ ≤ n, denote by Cℓ ⊂ C the family of all C ∈ C of cardinality ℓ, and note that

(C−1)ℓ = (Cn̄−ℓ )
−1. It follows that

P

[
S ( J ) ∈ B

]
+ P

[
S ( J ) ∈ B−1

]
=

n̄
∑

ℓ=0

|Bℓ |pℓqn̄−ℓ +
n̄

∑

ℓ=0

|(B−1)ℓ |pℓqn̄−ℓ
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=

n̄
∑

ℓ=0

|Bℓ |pℓqn̄−ℓ +
n̄

∑

ℓ=0

|Bℓ |pn̄−ℓqℓ =
n̄

∑

ℓ=0

|Bℓ |
(

pℓqn̄−ℓ + pn̄−ℓqℓ
)

=

n̄
∑

ℓ=0

|Bℓ |
(

n̄
ℓ

)

(

n̄

ℓ

)

(

pℓqn̄−ℓ + pn̄−ℓqℓ
)

≤ max
0≤ℓ≤n̄

(

n̄

ℓ

)

(

pℓqn̄−ℓ + pn̄−ℓqℓ
)

,

where the last step follows from the LYM-inequality (Theorem 5.1). With (5.19) this

yields (5.18). Since for arbitrary ξ ∈ {±1}n , we havemax{| J (ξ ) |, | J (−ξ ) |} = | J (ξ ) | ≥ ⌈n/2⌉
and (5.18) and (5.17) are independent of ξ , the last two claims of the corollary follow

from the definition of Pk,n and P±,k,n in Lemma 3.4. �

Next, we will prove Corollary 1.6 and Theorem 1.7.

Proof of Corollary 1.6 and Theorem 1.7. With Lemma 3.4, the assertions directly fol-

low from Corollary 5.9. �

With Corollary 5.9, we can now bound P±,2,n (p) for n ≥ 7.

Corollary 5.10. Let n ≥ 7 and p ∈ (0, 1), p , 1/2. Then

P±,2,n (p) < P±,2,3 (p). (5.20)

Furthermore, for n ≥ 15 and p ∈ (0, 1), one has

P±,2,n (p) <
(

P±,2,3 (p)
)2
. (5.21)

Proof. For n ≥ 7, we set n̄ = 4 ≤⌈ n/2 ⌉. Then, Corollary 5.9 implies that

P±,2,n (p) ≤ max
0≤k≤4

(

4

k

)

(

pkq4−k + p4−kqk
)

= max
0≤k≤2

Q4,k (p), (5.22)

where

Q4,k (p) =

(

4

k

)

(

pkq4−k + p4−kqk
)

,

and the last inequality is by symmetry. Note that P±,2,3 (p) = 1 − pq = p2 + q2 + pq by

Lemma 3.10, it clearly holds thatQ4,0 (p) = p
4
+q4 < p2 +q2 < P±,2,3(p) for all p ∈ (0, 1).

Next, we note that

Q4,1 (p) = 4(p3q + pq3) = 1 − (p4 + q4 + 6p2q2),
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and hence

P±,2,3 (p) −Q4,1 (p) = p
4
+ q4 + 6p2q2 − pq

= p4 + q4 + 6p2q2 − pq(p + q)2

= p2 (p + 1/2q)2 + q2 (q + 1/2p)2 + 7/2p2q2 > 0.

For k = 2, it holds that

P±,2,3(p) −Q4,2 (p) = 1 − pq − 12p2q2 = −12p4 + 24p3 − 11p2 − p + 1

= −12(p − 1/2)2
(

p − 1/6
(

3 −
√
21

)) (

p − 1/6
(

3 +
√
21

))

.

Since 1/6
(

3 −
√
21

)

< 0 and 1/6
(

3 +
√
21

)

> 1, it follows that Q4,2 (p) < P±,2,3(p) for all
p ∈ (0, 1) \ {1/2}. By (5.22), this proves the first part of the corollary. For the second part,

we also aim to use Corollary 5.9. Since (5.18) is invariant under interchanging p and q,

we may assume that 0 < p ≤ 1/2. In the case of n ≥ 15, (5.18) implies that

P±,2,n (p) ≤ max
0≤k≤8

(

8

k

)

(

pkq8−k + p8−kqk
)

= max
0≤k≤4

Q8,k (p),

where

Q8,k (p) :=

(

8

k

)

(

pkq8−k + p8−kqk
)

. (5.23)

We will now show that (5.23) is always smaller than
(

P±,2,3 (p)
) 2. First, considerQ8,0 (p).

For any p ∈ (0, 1), it holds that

Q8,0 (p) = p
8
+ q8 < p4 + q4 <

(

p2 + q2 + pq
)2
= (1 − pq)2 = (

P±,2,3 (p)
)2
.

For Q8,k with k ≥ 1, consider the derivative

d

dp
Q8,k (p) =

(

8

k

)

(

kpk−1q8−k − (8 − k )pkq8−k−1 + (8 − k )p8−k−1qk − kp8−kqk−1
)

=

(

8

k

)

(

pk−1q8−k−1 (k (1 − p) − (8 − k )p) + p8−k−1qk−1 ((8 − k )(1 − p) − kp)
)

=

(

8

k

)

(

pk−1q8−k−1 (k − 8p) + p8−k−1qk−1 ((8 − k ) − 8p)
)

,

which has the same zeros and the same sign as the function

f (p) = (k − 8p) + (p/q)8−2k ((8 − k ) − 8p). (5.24)

A dircet calculation shows that, for k = 3,4, (5.24) only vanishes for p = 1/2, where the

sign changes from positive to negative, implying that both andQ8,3 andQ8,4 a�ain their
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maximum at p = 1/2. As P±,2,3 = 1 − pq also a�ains its minimum at 1/2, the estimate

Q8,3 (1/2) = 58/128 < Q8,4 (1/2) = 70/128 < 9/16 =
(

P±,2,3(1/2)
)2

shows the result. For k = 1,2, note that (5.24) is positive for p ≤ k/8 and, for ε > 0,

se�ing p = k+ε
8 and therefore q = 8−k−ε

8 , (5.24) is negative if and only if

ε > (8 − 2k − ε )
(

k + ε

8 − k − ε

)8−2k
. (5.25)

For any ε that satisfies (5.25), the maximum of Q8,k is therefore a�ained in the interval

( k8 ,
k+ε
8 ), implying that

Q8,k ≤
(

8

k

) *,
(

k + ε

8

)k (

8 − k
8

)8−k
+

(

8 − k
8

)k (

k + ε

8

)8−k+- . (5.26)

Choosing ε = 0.06, which is a valid choice in (5.25) for k = 1,2, inequality (5.26) now

implies that Q8,1 (p) < 0.42 and Q8,2 (p) < 0.34 for all p ∈ (0, 1); both upper bounds are

clearly smaller than
(

P±,2,3 (p)
) 2 ≥ 9/16. This completes the proof. �

We have now everything at our disposal to prove Theorem 1.2 for p , 1/2.

Proof of Theorem 1.2 for p , 1/2. As in the case of p = 1/2, we aim to use Lemma 3.12

and Lemma 3.13. LetM ∼ E(N ,n) be a Bernoulli random matrix with parameter p , 1/2,

and note that V = {±1} is symmetric. Further, denote by P1 the probability that there

exists a vector x ∈ Rn with ‖x ‖0 = s, 2 ≤ s ≤ 14 such that Mx ∈ {±1}n and denote

by P2 the probability that there exists a vector x ∈ Rn with 15 ≤ ‖x ‖0 ≤ n such that

Mx ∈ {±1}n . Lemma 4.8 and the first part of Corollary 5.10 now imply that

3 = argmax
2≤s≤14

P±,2,s (p)

is the unique minimizer. Furthermore, it holds by Lemma 3.10 that |F±,2,3 | = 4 and

P±,2,3 (p) = 1 − p(1 − p). Lemma 3.12 therefore implies that

P1 ≤ 4

(

n

3

)

(1 − p(1 − p))N + o
(

(1 − p(1 − p))N
)

.

Applying now Lemma 3.13 for Q̄ = P±,2,3 = 1 − pq , we get

P2 = o
(

(1 − p(1 − p))N
)

.

Here, condition (3.12) follows as 1 − pq = p2 + q2 + pq and (3.13) has been established in

the second part of Corollary 5.10.

This completes the proof. �
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We can now also prove Theorem 1.8.

Proof of Theorem 1.8. Proceeding in the same way as in the proof of Lemma 2.13 in

(2.8), the assertion of the theorem directly follows from Theorem 1.2. �
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Chapter II.

Ultrasonic Nondestructive Testing with Random

Measurements

6. Introduction

Nondestructive testing (NDT) aims at discovering defects in materials such as metal

or concrete, without damaging them [McM82]. It is usually performed directly a�er

production of said material, in order to assure the demanding quality measures. There

are several methods of nondestructive testing, such as visual inspection [ANMM93],

radiography [Hal12], and electrical and magnetic testing such as Eddy current, see, e.g.,

[Bli12]. Here, we will focus on nondestructive testing using ultrasound [LMK12]. Ul-

trasonic nondestructive testing is a widely applied method for identifying defects in

metals such as steel or aluminum [KK90]. An important application for instance is the

inspection of weld seams [JC10], which are edges between two pieces of metal joined

together via a welding process. Especially in the case of steel pipes, where a metal

plate is bent into a cylinder and connected through welding, even small defects can

lead to a reduced lifespan. It is therefore necessary to reliably detect common defects

such as cracks, pores, and slag inclusions. To this end, the specimen gets insonified

using an ultrasonic pulse emi�ed by a transducer, and the sca�ered ultrasonic signal

then is recorded at another ultrasonic transducer [LMK12]. Performing several meas-

urements placing the transducers on di�erent locations then allows to identify defects

in the material, using for instance the Time-Of-Flight Di�raction Method (TOFD), or

the Synthetic Aperture Focusing Technique (SAFT), see, e.g., [SRD+12].

In recent years, phased array probes, where several ultrasonic transducers are built

into one physical component, became very popular in ultrasonic nondestructive test-

ing. Phased array probes, in contrast to single element probes, can steer the ultrasonic

pulse and hence focus it to di�erent regions of the specimen, see, e.g., [Tho96]. Another

approach of nondestructive testing using phased array probes is the Total Focusing

Method (TFM) [HDW04]. Without steering the pulse, the specimen here is sequen-

tially insonified by each of the individual ultrasonic transducers while the sca�ered

ultrasonic signal is recorded at every transducer. This data acquisition method is also
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54 II. Ultrasonic Nondestructive Testing with Random Measurements

known as full-matrix-capture (FMC). The ultrasonic data is then algorithmically pro-

cessed using the Synthetic Aperture Focusing Technique (cf.Section 8). TFM allows to

reliably detect many types of defects, see, e.g., [JC10], and is therefore o�en described

as the "gold standard" of ultrasonic nondestructive testing [Tho96]. One shortcoming

of TFM compared to other methods is the relatively high amount of time needed for

data acquisition. In many industrial se�ings, however, nondestructive testing usually

requires extensive preparations during which other operations possibly need to shut

down, see, e.g., [Caw01]. Therefore, there is a continuing e�ort to accelerate the data

acquisition process. In order to achieve this goal in the context of TFM, we will propose

to superpose ultrasonicmeasurements. To this end, each transducer of the phased array

probe will insonify the specimen at a time chosen in an interval, which is significantly

shorter than the time required for acquiring a full-matrix-capture. In this way, we can

acquire ultrasonic data similar to a full-matrix-capture, but we also have to deal with

overlapping measurements. By choosing the individual insonification times independ-

ent and uniformly distributed, and using an iterative version of SAFT, we will be able to

diminish the e�ect of overlapping measurements. We will show that, in this way, under

certain requirements on the sparsity of the defect and with high probability, one can

e�iciently usemore ultrasonic data for defect identification as with a partial full-matrix-

capture, acquired in the same amount of time. Note that the method of acquiring only

a partial full-matrix-capture in order to reduce the measurement time, also has been

considered by Schmitte et al. in [SNCO16].

Organization of the Chapter

In Section 7, starting from an analogous problem for point-like defects, we will first de-

velop a simplified model of the signals acquired in ultrasonic nondestructive testing.

This will give us the foundation for Section 8, where we discuss the Synthetic Aperture

Focusing Technique (SAFT). For both basic and superposed measurements, we will ana-

lyze the defect images computed via SAFT in terms of the defect location in the case of

point sca�erers. In Section 9, we will develop an iterative version of the SAFT algorithm,

which gives a significant improvement over the traditional SAFT algorithm for sparse

defects and superposed measurements. Numerical results will be presented in Section

10.

Notation

Throughout this chapter, R+ will denote the positive real axis including 0 and for an

integer n, [n] will denote the set of integers from 1 to n. For any D ⊂ R3, we denote by

B (D,R+) the set of bounded functions from D to R+. Furthermore, let L1 be the set of

all functions f from R to C with

‖ f ‖1 :=
∫

R

| f (t ) | d t < ∞.
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We say that f ∈ L1 has bounded support if there exists T ≥ 0 such that | f (t ) | = 0 for

t ≥ |T |. For any time-domain signal u ∈ L1, û will denote the Fourier transform of u

given by

F{u}(ω) = û (ω) =
∫

R

u (t ) exp(−iωt ) d t ,

and we denote the corresponding inverse Fourier transform by F−1{·}. If û ∈ L1, we

have F−1{û} = u, see, e.g., [Pin09]. For two functions f ,д ∈ L1, the convolution f ∗ д is

given by

( f ∗ д)(t ) =
∫

R

f (τ )д(t − τ ) dτ ,

and it holds that ( f ∗д) ∈ L1, see, e.g., [Pin09]. For a closed subsetD ⊂ R3, its boundary

will be denoted by ∂D ⊂ R3. If D1, . . . ,Ds ⊂ R3 are disjoint sets, we denote their union

by
⋃·
j ∈[s]

D j .

For any r > 0, Br (y) is the closed euclidean ball of radius r centered at y, i.e.,

Br (y) =
{
x ∈ R3���‖x − y‖2 ≤ r

}
.

For a subset Y ⊂ R3, we will also use the notation

Br (Y ) =
⋃

y∈Y
Br (Y ).

7. Model

In this section, we derive a model for sca�ered ultrasonic data arising a�er insonifying

a specimen with an ultrasonic pulse. The key goal of this model is to capture the de-

pendence of the observations on the location of the defect. In ultrasonic nondestructive

testing, the specimen usually is insonified with a new pulse not before the sca�ered ul-

trasonic wave was recorded at each of the receiving transducer elements. We will refer

to this data acquisition process as basic measurements, and derive a model for the cor-

responding ultrasonic data. Later, we will also discuss superposed measurements, where

the specimen gets insonified by a transducer even before all data of the previous inson-

ification was collected at the corresponding transducer. Here, the measured ultrasonic

data is a superposition of basic measurements. The advantage of acquiring superposed

measurements instead of basic measurements is a reduced measurement time. Basic
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56 II. Ultrasonic Nondestructive Testing with Random Measurements

ultrasonic measurements are characterized by the following definition.

Definition 7.1. Let q1, . . . ,qm ∈ R3 be the positions of the ultrasonic transducers and

p ∈ L1 be a �xed pulse. For each i, j ∈ [m], a basic measurement ui,j ∈ L1 is the ultrasonic
signal recorded at the transducer located at positionqj , after the specimenwas insoni�ed

by the pulse p emitted by a transducer located at qi .

Let I ⊂ [m]2 be the set containing all pairs (i, j ) where a basic measurement ui,j ∈ L1
was measured. If

I = [m]2 =: IFMC,

we say that a full-matrix-capture was acquired.

To express basic measurements in terms of the sca�ering defect, we will consider

two models. In a simpler first model, we will assume that the defect consists of a finite

number of point sca�erers. Subsequently, we expand this model to extended sca�er-

ers. For both cases, we will assume that the medium is homogeneous and isotropic. It

therefore holds that the speed of sound c is constant. We will also make the simplifying

assumption that the sca�ering properties of the defect D ⊂ R3 does not depend on the

wavelength ω of the incident ultrasonic wave.

Basic Measurements of Point Sca�erers

We will now study the sca�ering problem for point sca�erers. For simplicity, we will

neglect multiple sca�ering. This assumption will allow us to derive a linear model for

the basic measurements ui,j ,i, j ∈ [m]. To this end, suppose that the specimen gets

insonified by a time-harmonic spherical wave of frequency ω ∈ R, emi�ed by a trans-

ducer located at q ∈ R3. The corresponding ultrasonic wave is then given by the three

dimensional free-space Green’s function

Ĝ (ω,q,x ) =
1

(4π )‖x − q‖2
exp

(

iω
c
‖x − q‖2

)

,

where c denotes the speed of sound, see for instance [Eva10]. Suppose now that located

at y1, . . . ,ys ∈ R3, there are s point sca�erers with sca�ering magnitudes a(yk ) ∈ R+,
similar to the models used in [Bos13, FS12, AS13]. The spherical wave of frequency ω

emi�ed at location q hits each of the s sca�erers, which then acts as secondary source

and also emits a time harmonic spherical wave of the same frequency ω. Since we

neglect multiple sca�ering, the resulting sca�ered wave us (ω,x ) at position x ∈ R3 is
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the superposition of the echos of the s point sca�erers to the spherical wave. For any

x ∈ R3 \ {y1, . . . ,ys
}

, the frequency domain signal ûs (ω,x ) is now given by

ûs (ω,x ) =

s
∑

k=1

a(yk )Ĝ (ω,q,yk )Ĝ (ω,yk ,x )

=

s
∑

k=1

a(yk )

(4π )2‖q − yk ‖2‖yk − x ‖2
exp

(

iω
c
(‖q − yk ‖2 + ‖yk − x ‖2)

)

.

(7.1)

Now let the specimen be insonifed by a superposition of time-harmonic monochromatic

spherical waves, emi�ed from a transducer at the location qi ∈ R3. Suppose that, for

a function p̂ ∈ L1, each frequency ω ∈ R gets emi�ed with phase and magnitude p̂ (ω).

By linearity and (7.1), the basic measurement ûi,j recorded at the transducer at qj , a�er

the pulse p was emi�ed from qi , is given by

ûi,j (ω) = p̂ (ω)û
s (ω,qj ) = p̂ (ω)

s
∑

k=1

a(yk )

(4πc)2ti (yk )tj (yk )
exp

(

iω (ti,j (yk ))
)

, (7.2)

where the functions ti and ti,j are, for i, j ∈ [m] and x ∈ R3, defined as

ti (x ) :=
‖qi−x ‖2

c , ti,j (x ) = ti (x ) + tj (x ). (7.3)

Usually, ti,j (x ) ∈ R+ is referred to as time-of-flight of x with respect to i, j , see, e.g.,

[SRD+12]. With the inverse Fourier transform, we obtain

ui,j (t ) = F−1
p̂ (ω)

s
∑

k=1

a(yk )

(4πc)2ti (yk )tj (yk )
exp

(

iωti,j (yk )
) (t )

=

s
∑

k=1

a(yk )

(4πc)2ti (yk )tj (yk )
F−1

{
p̂ (ω) exp

(

iωti,j (yk )
)}

(t )

=

s
∑

k=1

a(yk )

(4πc)2ti (yk )tj (yk )
F−1{p̂ (ω)} ∗F−1

{
exp

(

iωti,j (yk )
)}

(t ) (7.4)

=

s
∑

k=1

a(yk )

(4πc)2ti (yk )tj (yk )

(

p ∗ δ
(

· + ti,j (yk )
))

(t )

=

s
∑

k=1

a(yk )

(4πc)2ti (yk )tj (yk )
p

(

t − ti,j (yk )
)

,

where δ is the Dirac delta distribution. Here, ui,j is also absolute integrable for all

i, j ∈ [m], as p ∈ L1. Similarly, if p ∈ L1 is compactly supported, then ui,j must be

compactly supported for arbitrary i, j ∈ [m] as ti,j < ∞. With the considerations above,

we formulate the following model assumption.
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Model Assumption 7.2. Let y1, . . . ,ys ∈ R3 be the locations of point sca�erers. Let

further qi ∈ R3 \ {

y1, . . . ,ys
}

, i ∈ [m] be arbitrary transducer locations. Let p ∈ L1 be the
pulse used to insonify the specimen. Then, the basic measurement ui,j ∈ L1 is for arbitrary
i, j ∈ [m] given by

ui,j (t ) =

s
∑

k=1

ai,j (yk )p(t − (ti,j (yk ))),

where ai,j (yk ) ∈ R+ for k ∈ [s].

InModel Assumption 7.2, we neglect the explicit dependence of the coe�icientsai,j (yk )

on the sca�ering magnitudes and the time-of-flight ti (xk ) and tj (xk ); the sca�ering

problem for point sca�ers only serves as a toy model for the corresponding problem

involving extended sca�erers. Here, it is considerably more involved to compute the

analogous density ai,j ∈ B (∂D,R+), i, j ∈ [m], where D ⊂ R3 is an extended defect

D ⊂ R3. Extended sca�erers are subject of the following section.

Basic Measurements of Extended Sca�erers

Before we start with our considerations, we will first give the following definition.

Definition 7.3 (Extended Sca�erers). A subset D ⊂ R3 is an extended sca�erer, if it

is closed, bounded and its complement Dc is connected. Furthermore, we say that D is

(s,r )-sparse, if there exists a set of points Y ⊂ R3 with |Y | ≤ s such that

D ⊂ Br (Y ).

Note that by the Heine-Borel theorem, every extended sca�erer D ⊂ R3 is also

compact. For every r > 0, extended sca�erers are therefore always (s,r )-sparse for

suitably chosen s ≥ 0. Now, let D ⊂ R3 be an extended sca�erer, which can be wri�en

as

D =
⋃·
k∈[s]

Dk ; (7.5)

Dk , k ∈ [s] are connected, but Dk1 ∪ Dk1 are not connected for k1 , k2 ∈ [s]. For

simplicity, we will also assume that no ultrasonic wave can penetrate the defect D, and

only the boundary ∂D of the defect has an impact on the measured ultrasonic signal.

Analogous to (7.5), we can write

∂D =
⋃·
k∈[s]
∂Dk .

David James



7. Model 59

As before, let q1, . . . ,qm ∈ R3 \ D, be the positions of them transducers. While, for k ∈
[s], we neglect multiple sca�ering by any point x ∈ ∂D \ ∂Dk , a�er the ultrasonic wave

was sca�ered by any point y ∈ ∂Dk , we cannot neglect multiple sca�ering caused by

pointsy ∈ ∂Dk within the same defect ∂Dk . Here, the geometry of the defect boundary

∂Dk has immense impact on the magnitude of the sca�ered wave, see, e.g., [LMK12,

KK90, Bos13]. In order to capture these dependencies without making restrictive model

assumptions, we will assume that the sca�ering magnitude at a given point y ∈ ∂D is

not only a function of the location of the sca�erer, but also depends on the locations

qi ,qj ∈ R3 of the corresponding transducers. To be more precise, we assume that for

arbitrary i, j ∈ [m], the sca�ering magnitudes are given by a bounded function ai,j ∈
B (∂D,R+). Proceeding similarly as in the case of point sca�erers in (7.4), it now follows

for pulse functions p ∈ L1 with Fourier transform p̂ ∈ L1 and ti (y),ti,j (y) as in (7.3) that

ui,j (t ) = F−1

p̂ (ω)

∫

∂D

ai,j (y)

(4πc)2ti (y)tj (y)
exp

(

iωti,j (y)
)

dy


=

∫

∂D

ai,j (y)

(4πc)2ti (y)tj (y)
F−1

{
p(ω) exp

(

iωti,j (y)
)}

dy

=

∫

∂D

ai,j (y)

(4πc)2ti (y)tj (y)

(

p ∗ δ (· + ti,j (y))
)

(t ) dy

=

∫

∂D

ai,j (y)

(4πc)2ti (y)tj (y)

(

p(· + ti,j (y))
)

(t ) dy

=

∫

∂D

ãi,j (y)p(t − ti,j (y)) dy,

(7.6)

where we set

ãi,j (y) =
ai,j (y)

(4πc)2ti (y)tj (y)
∈ B (∂D,R+).

Next, we will show that ui,j ∈ L1. Since ãi,j ∈ B (∂D,R+), there exists M < ∞ such that

for arbitrary i, j ∈ [m] and y ∈ ∂D, we have |ãi,j (y) | ≤ M . Therefore

‖ui,j ‖1 =
∫

R

���ui,j (t )��� d t =
∫

R

��������
∫

∂D

ãi,j (y)p(t − ti,j (y)) dy
��������
d t

≤ M

∫

R

∫

∂D

|p(t − ti,j (y)) | dy d t

= M

∫

∂D

∫

R

|p(t − ti,j (y)) | d t dy
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≤ M

∫

∂D

‖p‖1 dy < ∞,

since p ∈ L1 and D is bounded. Also, if p ∈ L1 is compactly supported, ui,j is also com-

pactly supported for arbitrary i, j ∈ [m]. We can summarize the above considerations

in the following model assumption.

Model Assumption 7.4. Let D ⊂ R3 be an extended sca�erer with boundary ∂D. Let

further qi ∈ R3 \D, i ∈ [m] be arbitrary transducer locations and p ∈ L1 be the pulse used
to insonify the specimen. Then, the basic measurement ui,j is, for arbitrary i, j ∈ [m], given

by

ui,j (t ) =

∫

∂D

ai,j (y)p(t − ti,j (y)), (7.7)

where ai,j ∈ B (∂D,R+).

Superposed Measurements

With the emerging availability of phased array probes, full-matrix-capture data aquis-

ition (Definition 7.1) became very popular, see, e.g., [JC10]. Using phased array probes,

for each i ∈ [m], them transducers allow to acquire all basic ultrasonic signals ui,j ∈ L1,
j ∈ [m] at the same time. Suppose that p ∈ L1 is compactly supported. Then, by

Model Assumption 7.2 and Model Assumption 7.4, the maximal time needed to collect

the sca�ered ultrasonic signals at each of the m receiver is bounded and we will de-

note it by T . By passing through i ∈ [m], a full-matrix-capture thus needs a total time

of at most mT . To further reduce measurements time, we will superpose basic meas-

urements. By insonifying the specimen with time-shi�ed versions of the same pulse

emi�ed from di�erent transducers, we are able to acquire ultrasonic data comparable

to a full-matrix-capture in a considerably shorter period of time.

Definition 7.5. Let q1, . . . ,qm ∈ R3 denote the positions of ultrasonic transducers,

T1, . . .Tm ∈ R be arbitrary shot times, and fix a pulse p ∈ L1. Let uj be the ultrasonic

signal recorded by a transducer located at qj a�er the specimen gets simultaneously

insonified by each transducer located at qi , i ∈ [m] with respective pulses p(· −Ti ) ∈ L1.
Then, for (i, j ) ∈ IFMC = [m]2, the function

ũi,j (t ) = uj (t +Ti )

is called superposed measurement.
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Bearing in mind that superposed measurements are sums of basic measurements

using time-shi�ed pulses, and that our derived models are linear, it is straightforward

to apply Model Assumptions 7.2, 7.4 to the case of superposed measurements.

Lemma 7.6. Let D ⊂ R3 be either a set of point sca�erers or an extended sca�erer, qi ∈
R

3 \ D,i ∈ [m] be arbitrary transducer locations and p ∈ L1 be a pulse. Let further

the specimen be simultaneously insonified by each transducer located at qi , i ∈ [m] with

respective pulses p(· − Ti ) ∈ L1 and shot times Ti ∈ R, i ∈ [m]. Then, for (i, j ) ∈ IFMC =

[m]2, the superposed ultrasonic measurement ũi,j ∈ L1 is given by

ũi,j (t ) = ui,j (t ) +
∑

i′∈[m]
i′,i

ui′,j (t +Ti −Ti′ ),

where for each i ′ ∈ [m], ui′,j ∈ L1 is the basic measurement as given in Model Assumption

7.2 or 7.4.

Proof. We will only prove the lemma in the point sca�erer case, since the extended

sca�erer case is similar. To this end, let y1, . . . ,ys be the locations of the point sca�erers.

Then, by Model Assumption 7.2 for fixed i ∈ [m], the basic measurement ui,j is for

arbitrary i, j ∈ [m] given by

ui,j (t ) =

s
∑

k=1

ai,j (yk )p(t − ti,j (yk ) −Ti ),

where ai,j (yk ) ∈ R+ for k ∈ [s]. By linearity, it holds for uj as in Definition 7.5 that

uj (t ) =
∑

i′∈[m]

s
∑

k=1

ai,j (yk )p(t − ti,j (yk ) −Ti′ ).

Since this implies

ũi,j (t ) = uj (t +Ti ) =
∑

i′∈[m]

s
∑

k=1

ai,j (yk )p(t − ti,j (yk ) +Ti −Ti′ ),

the proof is now complete. �

Let T andm as in the considerations which led to Definition 7.5. With Ti = (i − 1)T ,
i ∈ [m], basic measurements can be embedded into the framework of superposedmeas-
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urements. Indeed, by Lemma 7.6, we have for arbitrary (i, j ) ∈ IFMC = [m]2,

ũi,j (t ) = ui,j (t ) +
∑

i′∈[m]
i′,i

ui′,j (t + (i − i ′)T ). (7.8)

By definition of T , the sum over i ′ , i in (7.8) vanishes for t ∈ [0,T ); and it holds that

ũi,j (t ) = ui,j (t ).

Since the goal of superposed measurements is to diminish the time needed for full-

matrix-capture data acquisition, we will choose the shot times Ti , i ∈ [m] in an inter-

val [0,S] with S < ( |m | − 1)T . Doing so, the data aquisition only takes an amount of

time strictly less thanmT . In this case, however, the sum over i ′ , i in (7.8) does not

necessarily vanish; by the pigeonhole principle, there always exist indices i,i ′ ∈ [m]

such that |Ti − Ti′ | < T . Exploiting the structure of the basic measurements ui,j and

the dependence on the defect, we will nevertheless be able to reduce the amount of

noise caused by overlapping measurements. This will be achieved by a modification

of the Synthetic Aperture Focusing Technique, a standard defect imaging method in

ultrasonic nondestructive testing. We will also discuss di�erent methods of choosing

the shot times Ti ∈ [0,S], i ∈ [m] in Section 8. There, we will see that choosing Ti ,

i ∈ [m] independent and uniformly distributed in [0,S], in general leads to good defect

reconstructions.

8. Synthetic Aperture Focusing Technique

We will now introduce the Synthetic Aperture Focusing Technique (SAFT), which is a

widely used defect imaging algorithm in ultrasonic nondestructive testing. In related

fields such as radar and sonar, similar methods are known as Synthetic Aperture Radar

(SAR), and Synthetic Aperture Sonar (SAS) [Hov80, Han11].

SAFT for Basic Measurements

SAFT uses the intuitive but heuristic approach of backprojecting the measured ultra-

sonic signals to all possible sources according to the time-of-flight, see, e.g., [Sey82].

For basic measurements as introduced in Section 7, the Synthetic Aperture Focusing

Technique is given as follows.
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Definition 8.1. Let q1, . . . ,qm ∈ R3 be arbitrary transducer locations, and for I ⊂
[m]2, let ui,j ∈ L1, (i, j ) ∈ I be basic measurements. The SAFT backprojection for basic

measurements RI (x ) for arbitrary x ∈ R3, is then given by

RI (x ) =
∑

(i,j )∈I
ui,j (ti,j (x )). (8.1)

SAFT, as it is formulated here, is a basic version of a whole class of algorithms. By

using additional apodization weights in (8.1), it can for instance be adapted to charac-

teristics of the ultrasonic probe, see, e.g., [SKF+12, HDW08]. Using full-matrix-capture

measurements I = IFMC = [m]2 in (8.1), acquired by a phased array probe, is usually

called the Total Focusing Method (TFM) [HDW04, JC10]. We have to point out that the

SAFT backprojection is not a mathematically rigorous solution to the inverse problem

for the assumed forward model. It nevertheless is a widely used algorithm for imaging

defects in materials [SRD+12, Caw01]. Unlike more rigorous solutions of an corres-

ponding inverse problem, like for instance the the wavenumber algorithm [HDW08],

an important advantage of SAFT is its flexibility in terms of the arrangement of the

transducers. Furthermore, the SAFT backprojection only relies on the locations of the

transducers, the time-of-flight ti,j (x ) of a point x ∈ R and the measured data. There-

fore, it can be adopted to more realistic scenarios where the the speed of sound is not

constant. This is usually the case, as the transducers o�en are contained in a coupling

fluid such as water, see, e.g., [Caw01]. Additionally, the specimen itself can be aniso-

tropic with varying speed of sound in di�erent directions [SRD+12]. In both scenarios, it

is possible to achieve good defect reconstructions by adjusting the time-of-flight ti,j (x )

in (8.1) accordingly. Adjusted time-of-flights can for instance be computed via a fast

marching method (FMM) based on Fermat’s principle, see, e.g., [Set99]. In order to di-

gitally process the ultrasonic signals ui,j , they are sampled at a high sampling rate and

discretized using an analog-to-digital converter. Therefore, only equidistant discrete

samples of the ultrasonic signals are available for the SAFT backprojection. To account

for this, one rounds the time-of-flight ti,j (x ) appearing in (8.1) to the closest time t ∈ R
where the sampled ultrasonic signalui,j (t ) is available [LMK12]. For imaging reasons, a

discreteHilbert transform o�en is applied to the discretized ultrasonic signal; the SAFT

backprojection is then computed using the signals ūi,j + iH{ūi,j }, (i, j ) ∈ I, where ūi,j
is the discretized version of the signal ui,j and H{ūi,j } denotes the the discrete Hilbert
transform of ūi,j , see, e.g., [LMK12].

With the derived model for point sca�erers, we now aim to illustrate the heuristics

behind the SAFT backprojection. A more detailed description can be found,e.g., in

[LMK12]. For this purpose, we will use a raised cosine pN ,ω0
∈ L1 as a model for the

pulse p. The raised cosine, especially in the case N = 2, is a widely used pulse model in

ultrasonic nondestructive testing, see, e.g., [LMK12, Spi01].
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Definition 8.2 (Raised cosine [LMK12]). For arbitrary frequency ω0 ∈ R+ and posi-

tive integer N , the raised cosine pN ,ω0
∈ L1 is defined by

pN ,ω0
(t ) =


1
2

(

1 + cos ω0

N t
)

cosω0t if − Nπ
ω0
≤ t ≤ Nπ

ω0
,

0 else.
(8.2)

Let us now point out some properties of the raised cosine. Because of the window

function
(

1 + cos ω0

N t
)

, it holds that the absolute value |pN ,ω0
(t ) | a�ains its maximum

for t = 0. The window function is monotonically decreasing with |t | until |t | ≥ (Nπ )/ω0,

where it holds thatpN ,ω0
(t ) = 0. Obviously,pN ,ω0

is compactly supported. Furthermore,

due to the factor cosω0t , it is oscillating with frequency ω0.

Suppose now that, located at y ∈ R3, there is a single point sca�erer. Furthermore,

let q1, . . . ,qm ∈ R3 denote the locations of the ultrasonic transducers. For a positive

integer N and a frequency ω0 ∈ R+, let the specimen be insonified by a raised cosine

pN ,ω0
∈ L1, and let I ⊂ [m]2 be the set of acquired basic measurements. Then, byModel

Assumption 7.2, the basic measurements are given by

ui,j (t ) = ai,j (y)pN ,ω0
(t − ti,j (y)) (8.3)

for all (i, j ) ∈ I and t ∈ R. For the SAFT backprojection, as defined in Definition 8.1, we

have

|RI (y) | =
�������
∑

(i,j )∈I
ui,j (ti,j (y))

������� =
�������
∑

(i,j )∈I
ai,j (y)pN ,ω0

(0)

������� =
∑

(i,j )∈I
ai,j (y), (8.4)

where y is again the location of the sca�erer. On the other hand, for arbitrary x ∈ R3,

we have

|RI (x ) | =
�������
∑

(i,j )∈I
ui,j (ti,j (x ))

������� =
�������
∑

(i,j )∈I
ai,j (y)pN ,ω0

(ti,j (x ) − ti,j (y))
�������

≤
∑

(i,j )∈I
ai,j (y)

���pN ,ω0
(ti,j (x ) − ti,j (y))��� (8.5)

≤
∑

(i,j )∈I
ai,j (y) |pN ,ω0

(0) | = |RI (y) |,

since |pN ,ω0
(t ) | a�ains is maximum at t = 0. It follows for a single point sca�erer,

that the absolute value of the SAFT backprojection a�ains its maximum exactly at the

location of the sca�erer. Depending on x ∈ R3, x , y, |RI (x ) |may bemuch smaller than

|RI (y) |; this is due to two reasons. First, since pN ,ω0
(t ) = 0 for |t | ≥ Nπ/ω0, some of the

David James



8. Synthetic Aperture Focusing Technique 65

terms in (8.5) will be zero. In addition, the oscillating nature of pN ,ω0
(t ) for |t | < Nπ/ω0

leads to destructive interference. For points x ∈ R3 in a close neighborhood of the

sca�erer y, however, the modulus of the SAFT backprojection at x will be comparable

to the SAFT backprojection at y. The following two lemmas will allow us to capture this

phenomenon. For a more detailed resolution analysis, we refer to [Tho84].

Lemma 8.3. Let ω0 ∈ R+ be a frequency and N a positive integer. Then

3/4 ≤ pN ,ω0
(t ) ≤ 1,

provided

|t | ≤ 1/(
√
3ω0 ). (8.6)

Proof. The upper bound is obvious. For the lower bound, expanding cos(x ) in a power

series, see, e.g., [BHL+12], it follows that cos t ≥ 1 − 1
2t

2. For t as in (8.6), we therefore

get

pN ,ω0
(t ) = 1

2

(

1 + cos ω0

N t
)

cosω0t

≥ 1
2 (2 −

1
2 (

ω0t
N )2)(1 − 1

2 (ω0t )
2)

≥ 1
2 (2 −

1
2 (ω0t )

2)(1 − 1
2 (ω0t )

2)

≥ 1 − 3
4
(ω0t )

2 ≥ 3
4
.

(8.7)

This completes the proof. �

Lemma 8.4. For arbitrary transducer locations q1, . . . ,qm ∈ R3 and arbitrary x ,y,∈ R3,

it holds that

|ti,j (x ) − ti,j (y) | ≤ 2
c ‖x − y‖2,

where c is the speed of sound.

Proof. By triangle and reverse triangle inequality, we have

|ti,j (x ) − ti,j (y) | = 1
c | ‖qi − x ‖2 + ‖qj − x ‖2 − ‖qi − y‖2 − ‖qj − y‖2 |

=
1
c | ‖ (qi − y) + (y − x )‖2 + ‖ (qj − y) + (y − x )‖2 − ‖qi − y‖2 − ‖qj − y‖2 |
≤ 2

c
‖y − x ‖2. �

With the same se�ing which led to (8.3) and x ∈ R3 with ‖x−y‖2 ≤ c/(2
√
3ω0), Lemma

8.4 now implies for arbitrary (i, j ) ∈ I that

|ti,j (x ) − ti,j (y) | ≤ 2
c ‖x − y‖2 ≤ 1/(

√
3ω0 ).
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With Lemma 8.3, it therefore follows that

RI (x ) =
∑

(i,j )∈I
ui,j (ti,j (x ))

=

∑

(i,j )∈I
ai,j (y)pN ,ω0

(ti,j (x ) − ti,j (y))

≥ 3
4

∑

(i,j )∈I
ai,j (y)

=
3
4RI (y).

(8.8)

Hence, we can only expect to resolve a sca�erer using SAFT up to length scales of the

order c/ω0.

Wewill now consider the case ofmultiple point sca�erers instead of just one. Ify1, . . . ,ys
∈ R3 are the locations of s point sca�erers, Model Assumption 7.2 implies for arbitrary

(i, j ) ∈ I and arbitrary x ∈ R3 that

|RI (x ) | =
�������
∑

(i,j )∈I

∑

k∈[s]
ai,j (yk )pN ,ω0

(ti,j (x ) − ti,j (y))
������� . (8.9)

Now let ℓ ∈ [s] be arbitrary. At the location of the point sca�erer yℓ , we get in (8.9)

��RI (yl )�� =
������

∑

(i,j )∈I
ai,j (yl ) (8.10)

+

∑

(i,j )∈I

∑

k∈[s]
k,l

ai,j (yk )pN ,ω0
(ti,j (x ) − ti,j (y))

������. (8.11)

In contrast to the single sca�erer case, it is not obvious that yl , l ∈ [s] are local maxima

of |RI (x ) |. This is caused by the additional sum involving the remaining point scat-

terer in (8.11). Countless results in the ultrasonic nondestructive testing literature, for

appropriately chosen q1, . . . ,qm ∈ R3, show that one is nevertheless able to identify the

sca�erers, up to certain resolution limitations as described above, as local maxima of

|RI (x ) |. For this reason, we will use the performance of SAFT as a benchmark for the

performance analysis of our modified approach.

SAFT for Superposed Measurements

The flexibility of the SAFT algorithm now allows us to easily adopt the SAFT backpro-

jection to the case of superposed measurements.
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Definition 8.5. Let q1, . . . ,qm ∈ R3 be arbitrary transducer locations and I ⊂ [m]2.

Let furtherTi ∈ R, i ∈ [m] be arbitrary shot times and ũi,j , (i, j ) ∈ I be the correspond-

ing superposed measurements. The SAFT backprojection for superposed measurements

R̃I (x ) for arbitrary x ∈ R3, is then given by

R̃I (x ) =
∑

(i,j )∈I
ũi,j (ti,j (x )). (8.12)

We can now directly related the SAFT backprojection using superposed measure-

ments to the SAFT backprojection using the corresponding basic measurements.

Lemma 8.6. Let D ⊂ R3 be either a set of point sca�erers or an extended sca�erer. Let

further qi ∈ R3 \ D, i ∈ [m] be arbitrary transducer locations, I = IFMC = [m]2, and

p ∈ L1 be the pulse used to simultaneously insonify the specimen with corresponding shot

times Ti ∈ R, i ∈ [m]. Then,

R̃I (x ) = RI (x ) +
∑

(i,j )∈I

∑

i′∈[m]
i′,i

ui′,j (ti,j (x ) +Ti −Ti′ ), (8.13)

where ui′,j ∈ L1, (i, j ) ∈ I are the basic measurement as given in Model Assumption 7.2 or

7.4; RI (x ) is the SAFT backprojection for basic measurements as in Definition 8.1.

Proof. The result of the lemma directly follows from Lemma 7.6, as

R̃I (x ) =
∑

(i,j )∈I
ũi,j (ti,j (x ))

=

∑

(i,j )∈I

*,ui,j (ti,j (x )) +
∑

i′∈[m]
i′,i

ui,j (ti,j (x ) +Ti −Ti′ )+-
= RI (x ) +

∑

(i,j )∈I

∑

i′∈[m]
i′,i

ui,j (ti,j (x ) +Ti −Ti′ ). �

We refer to the sum on the right hand side of (8.13) as superposition noise, which we

will analyze in terms of the defect location and choice of shot timesTi ∈ R, i ∈ [m]. The

following lemma illustrates, why the superposition noise caused by superposing meas-
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urements using equidistant shot times can result in a highly ambiguous SAFT backpro-

jection.

Lemma 8.7. Let the transducers be arranged in an linear array, i.e., qi = ((i − 1)a,0,0)T
for some a > 0 and i ∈ [m]. Let further I = IFMC = [m]2, ω0 ∈ R+ be an arbitrary

frequency, N be a positive integer and, for ε ≤ c/(4
√
3ω0 ),

yε = (0,ε ,0)T and ỹε = (−1/2(cT + a),ε ,0)T . (8.14)

If, for a single point sca�erer located at yε and T ≥ Nπ/ω0 +
(4ε+a )/c , the specimen gets

insonified by a raised cosine pN ,ω0
∈ L1 and equidistant shot times

Ti = (i − 1)T ,

it follows that

R̃I (yε ) =
∑

(i,j )∈I
ai,j (yε ), (8.15)

and

R̃I (ỹε ) ≥ 3/4
∑

(i,j )∈I
i,1

ai+1,j (yε ), (8.16)

where ai,j (yε ) ∈ R+, i, j ∈ [m] are the sca�ering coe�icients of yε as in Model Assumption

7.2.

Proof. By Lemma 8.6, we have for arbitrary x ∈ R3

R̃I (x ) = RI (x ) +
∑

(i,j )∈I

∑

i′∈[m]
i′,i

ui′,j (ti,j (x ) +Ti −Ti′ )

= RI (x ) +
∑

(i,j )∈I

∑

i′∈[m]
i′,i

ai′,j (yε )pN ,ω0
(ti,j (x ) − ti′,j (yε ) +Ti −Ti′ ),

(8.17)

with ai,j (yε ) ∈ R+, (i, j ) ∈ I as in Model Assumption 7.2. By Definition 8.1, it further

holds that

RI (x ) =
∑

(i,j )∈I
ai,j (yε )pN ,ω0

(ti,j (x ) − ti,j (yε )). (8.18)

For x = yε in (8.18), we get

RI (yε ) =
∑

(i,j )∈I
ai,j (yε )pN ,ω0

(0) =
∑

(i,j )∈i
ai,j (yε ).
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To prove (8.15), it is therefore enough to show that the sum on the right hand side of

(8.17) vanishes. To this end, observe that for arbitrary i,i ′, j ∈ [m] with i ′ , i, we have

|ti,j (yε ) − ti′,j (yε ) +Ti −Ti′ | ≥ ���|ti,j (yε ) − ti,j (yε ) + (i − i ′)T | − |ti,j (yε ) − ti′,j (yε ) |���
=
���|(i − i ′) |T − |ti,j (yε ) − ti′,j (yε ) |��� . (8.19)

Analogously to (8.14), we define

y0 = (0,0,0)T and ỹ0 = (−1/2(cT + a),0,0)T .

Since ‖yε − y0‖2 = ε , Lemma 8.4 now implies that

|ti,j (yε ) − ti′,j (yε ) | ≤ |ti,j (y0) − ti′,j (y0) | + |ti,j (yε ) − ti,j (y0) | + |ti′,j (y0) − ti′,j (yε ) |
≤ | a

c
(i + j ) − a

c
(i ′ + j ) | + 4ε/c (8.20)

≤ a
c |i − i

′ | + 4ε/c .

With (8.20) and the assumption of the lemma, we now can bound (8.19) as follows

|i − i ′ |T − |ti,j (yε ) − ti′.j (yε ) | ≥ |i − i ′ |T −
(

a
c |i − i

′ | + 4ε/c
)

= |i − i ′ |(T − a
c ) − 4ε/c

≥ (T − a
c ) − 4ε/c ≥ Nπ

ω0
.

Since pN ,ω0
(t ) = 0 for |t | ≥ Nπ

ω0
, this now implyies (8.15). For (8.16), observe that for

arbitrary i, j,i ′ ∈ [m], we have

ti,j (ỹ0) − ti′,j (y0) +Ti −Ti′

=

(

(T + a/c ) + (i − 1) ac + (j − 1) ac
)

−
(

(i ′ − 1) ac + (j − 1) ac
)

+ (i − i ′)T
=(T + a/c )(i − i ′ + 1).

(8.21)

For i, j ∈ [m], i , 1, i ′ = i − 1, it therefore follows with Lemma 8.4 and ε ≤ c/(4
√
3ω0 ) that

|ti,j (ỹε ) − ti′,j (yε ) +Ti −Ti′ |
≤ |ti,j (ỹ0) − ti′,j (y0) +Ti −Ti′ | + |ti,j (ỹε ) − ti,j (ỹ0) | + |ti′,j (ỹ0) − ti′,j (ỹε ) |
≤ (4ε )/c ≤ 1/(

√
3ω0 ).

(8.22)

By Lemma 8.3, we therefore also have

pN ,ω0
(ti,j (ỹε ) − ti′,j (yε ) +Ti −Ti′ ) ≥ 3/4.

With (8.17) and (8.18) for x = ỹε , inequality (8.16) now follows by observing that, for

arbitrary i, j,i ′ ∈ [m] with i ′ , i − 1, we have |ti,j (ỹε ) − ti′,j (yε ) + Ti − Ti′ | ≥ (Nπ )/ω0.
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Indeed, the reverse triangle inequality and (8.21) now yield

|ti,j (ỹε ) − ti′,j (yε ) +Ti −Ti′ |
≥ ���|ti,j (ỹ0) − ti′,j (y0) +Ti −Ti′ | − |ti,j (ỹε ) − ti,j (ỹ0) + ti′,j (ỹ0) − ti′,j (ỹε ) |���
=
���|(T + a/c )(i − i ′ + 1) | − |ti,j (ỹε ) − ti,j (ỹ0) + ti′,j (ỹ0) − ti′,j (ỹε ) |��� .

(8.23)

Since by the assumption of the lemma

|(T + a/c )(i − i ′ + 1) | ≥ (T + a/c ) ≥ T ,

and

|ti,j (ỹε ) − ti,j (ỹ0) + ti′,j (ỹ0) − ti′,j (ỹε ) | ≤ |ti,j (ỹε ) − ti,j (ỹ0) | + |ti′,j (ỹ0) − ti′,j (ỹε ) | ≤ (4ε )/c,

it follows in (8.23) that

|ti,j (ỹε ) − ti′,j (yε ) +Ti −Ti′ | ≥ T − (4ε )/c ≥ (Nπ )/ω0. (8.24)

This completes the proof. �

Definition 8.8. Let q1, . . . ,qm ∈ R3 be arbitrary transducer locations, I ⊂ [m]2 be a

set of measurements andTi ∈ R, i ∈ [m] be arbitrary shot times. For arbitrary x ,y ∈ R3

and arbitrary τ ≥ 0, define

Ĩ(x ,y;τ ) =
{
(i, j ) ∈ I���∃i ′ ∈ [m], i ′ , i : |ti,j (x ) − ti′,j (y) +Ti′ −Ti | ≤ τ

}
.

For arbitrary X ,Y ⊂ R3, we set

Ĩ(X ,Y ;τ ) =
⋃

x ∈X

⋃

y∈Y
Ĩ(x ,y;τ ).

Furthermore, define

Ĩc (x ,y;τ ) = I \ Ĩ(x ,y;τ ),

and

Ĩc (X ,Y ;τ ) = I \ Ĩ(X ,Y ;τ ).

With Definition 8.8 at hand, we will now analyze the superposition noise in the case

of several point sca�erers. To this end, suppose that, with m ultrasonic transducers

located at q1, . . . ,qm ∈ R3, the specimen gets insonified by all m transducers with a

raised cosine pN ,ω0
(· −Ti ) for arbitrary positive integer N , frequency ω0 ∈ R+ and shot

times Ti ∈ R, i ∈ [m]. Further, suppose that the defect consists of s point sca�erers
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located at Y =
{

y1, . . . ,ys
}

. Applying Lemma 8.6 together with Model Assumption 7.2,

we now get

|R̃I (x ) | =
������RI (x ) +

∑

i′∈[m]
i′,i

ũi,j (ti,j (x ))

������
=

������RI (x ) +
∑

(i,j )∈I

∑

i′∈[m]
i′,i

∑

k∈[s]
ai′,j (yk )pN ,ω0

(ti,j (x ) − ti′,j (yk ) +Ti −Ti′ )
������,

(8.25)

with ai,j (yk ) ∈ R+ for k ∈ [s] and i, j ∈ [m]. The sum on the right hand side of

(8.25) is the superposition noise that we have already encountered in Lemma 8.6. With

τ = (Nπ )/ω0 in Definition 8.8, such that pN ,ω0
(t ) = 0 for |t | ≥ τ , we now have for all

(i, j ) ∈ Ĩc (x ,Y ; Nπ/ω0), i
′ ∈ [m] with i ′ , i, and y ∈ Y that

pN ,ω0
(ti,j (x ) − ti′,j (y) +Ti −Ti′ ) = 0.

We can therefore rewrite (8.25) to

|R̃I (x ) | =
������RI (x ) +

∑

(i,j )∈Ĩ(x,Y ;Nπ/ω0)

∑

i′∈[m]
i′,i

∑

k∈[s]
ai′,j (yk )pN ,ω0

(ti,j (x ) − ti′,j (yk ) +Ti −Ti′ )
������.

As we already have seen in Lemma 8.7, even in the case of a single point sca�erer,

the superposition noise can lead to ambiguities and artifacts. Here, most of the terms

corresponding to the superposition noise do not vanish. Indeed, by (8.22) and (8.24),

for τ ≥ 1/(
√
3)ω0, it holds that |I(ỹε ,yε ;τ ) | ≥ m(m − 1). If the defect is sparse, and we

choose the shot times Ti , i ∈ [m] independent and uniformly distributed, then the set

of measurements Ĩ(x ,Y ,τ ) ⊂ I responsible for the superposition noise at x , is small in

cardinality with high probability, as we will see in the following theorem.

Theorem 8.9. Let x ,q1, . . . ,qm ∈ R3, Y ⊂ R3 with |Y | ≤ s, and τ > 0 be arbitrary. Let

furtherTi , i ∈ [m] be independent and uniformly distributed on an interval I of lengthmL

for some L > 0 and I = IFMC = [m]2. Then, for ε ,δ > 0, it holds that

P

[
|Ĩ(x ,Y ;τ ) |

m2
≥ δ

]
≤ ε ,

provided

s ≤ εδL

2τ
.
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The proof of Theorem 8.9 makes use ofMarkov’s inequality, see, e.g., [Kle13].

Theorem 8.10 (Markov’s inequality). Let X be a non-negative random variable and

t > 0. Then

P [X ≥ t] ≤ E(x )
t
.

Proof of Theorem 8.9. For arbitrary J ⊂ [m]2 and (i, j ) ∈ [m]2, let 1J be the charac-

teristic function of J, defined by

1J (i, j ) =

1 (i, j ) ∈ J,
0 else.

We now aim to use Markov’s inequality, and write

E

[
|Ĩ(x ,Y ;τ ) |

]
= E


∑

(i,j )∈[m]2

1Ĩ(x,Y ;τ ) (i, j )

 =
∑

(i,j )∈[m]2

Pi,j , (8.26)

where we set

Pi,j := P[(i, j ) ∈ Ĩ(x ,Y ;τ )] = E[1Ĩ(x,Y ;τ ) (i, j )].

Conditioning on all the Ti′ , i
′
, i, we now have for arbitrary i, j ∈ [m],

Pi,j = P
[
∃y ∈ Y ,∃i ′ ∈ [m],i ′ , i : |ti,j (x ) − ti′,j (y) +Ti −Ti′ | ≤ τ

]
(8.27)

= E

[
P

[
∃y ∈ Y ,∃i ′ ∈ [m],i ′ , i : |ti,j (x ) − ti′,j (y) +Ti −Ti′ | ≤ τ

��� Ti′ , i ′ , i] ] .
Now observe that for i ∈ [m]

P

[
∃y ∈ Y ,∃i ′ ∈ [m],i ′ , i : |ti,j (x ) − ti′,j (y) +Ti −Ti′ | ≤ τ

��� Ti′ , i ′ , i
]

≤
∑

y∈Y

∑

i′∈[m]
i′,i

P

[
|ti,j (x ) − ti′,j (y) +Ti −Ti′ | ≤ τ

��� Ti′ , i ′ , i
]

≤ (2τ s )/L,

(8.28)

asTi is uniformly distributed on I with lengthmL and |Y | ≤ s. Consequently, (8.28) and

(8.27) imply

E

[
|Ĩ(x ,Y ;τ ) |

]
≤ 2τsm2

L
.
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Thus Markov’s inequality now yields

P

[
|Ĩ(x ,Y ;τ ) |

m2
≥ δ

]
≤
E

[
|Ĩ(x ,Y ;τ ) |

]
δm2

≤ 2τs

δL
,

which is bounded by ε provided

s ≤ εδL

2τ
.

This completes the proof. �

The observation of Theorem 8.9 will be the key ingredient for reducing the super-

position noise via an iterative SAFT algorithm, which we will present in the following

section.

9. Iterative Synthetic Aperture Focusing Technique

In order to reduce the superposition noise, we will now develop an iterative SAFT al-

gorithm for superposed measurements. Since the defects occurring in applications are

extended sca�erers, we will restrict our analysis to this case. The following lemma will

allow us to transfer the results of Section 8 to the case of extended sca�erers.

Lemma 9.1. Let q1, . . . ,qm ∈ R3 be arbitrary transducer locations and Ti ∈ R, i ∈ [m]

be arbitrary shot times. For an arbitrary set of measurements I ⊂ [m]2, X ,Y ⊂ R3, and

r1,r2,τ ≥ 0, we have

Ĩ(Br1 (X ),Br2 (Y );τ ) ⊂ Ĩ(X ,Y ;τ + 2(r1+r2 )/c ).

In particular, for arbitrary x ∈ R3, we have

Ĩ(x ,Br2 (Y );τ ) ⊂ Ĩ(x ,Y ;τ + (2r2)/c ).

Proof. Let y ∈ Y , x ∈ X be arbitrary and (i, j ) ∈ Ĩ(Br1 (x ),Br2 (y);τ ). Then, there exist

x ′ ∈ Br1 (x ) and y′ ∈ Br2 (y) such that (i, j ) ∈ Ĩ(x ′,y′;τ ). This, in turn, implies that there
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74 II. Ultrasonic Nondestructive Testing with Random Measurements

exists i ′ ∈ [m], i ′ , i with |ti,j (x ′) − ti′,j (y′) +Ti′ −Ti | ≤ τ . With Lemma 8.4, we get

|ti,j (x )−ti′,j (y) +Ti′ −Ti |
≤ |ti,j (x ′) − ti′,j (y′) +Ti′ −Ti | + |ti′,j (x ) − ti′,j (x ′) | + |ti′,j (y′) − ti′,j (y) |
≤ τ + |ti′,j (x ) − ti′,j (x ′) | + |ti′,j (y′) − ti′,j (y) |
≤ τ + 2(r1+r2 )/c .

(9.1)

Bearing in mind that (i, j ) ∈ Ĩ(Br1 (x ),Br2 (y);τ ) was arbitrary, we now have

Ĩ(Br1 (x ),Br2 (y);τ ) ⊂ Ĩ(x ,y;τ + 2(r1+r2)/c ). (9.2)

Applying now (9.2) to all x ∈ X , y ∈ Y , we finally get

Ĩ(Br1 (x ),Br2 (Y );τ ) =
⋃

x ∈X

⋃

y∈Y
Ĩ(Br1 (x ),Br2 (y);τ )

⊂
⋃

x ∈X

⋃

y∈Y
Ĩ(x ,y;τ + 2(r1+r2)/c )

= Ĩ(X ,Y ;τ + 2(r1+r2)/c ).

(9.3)

This establishes the first part of the lemma. The second part directly follows by se�ing

X = {x } and r1 = 0. �

Let now q1, . . . ,qm ∈ R3 be arbitrary transducer locations, I = [m]2 be the set of

measurements, and pN ,ω0
be a raised cosine for a frequency ω0 ∈ R and positive in-

teger N . Let the shot times Ti , i ∈ [m] be independent copies of a uniform random

variable on an interval I ⊂ R to be chosen below and D ⊂ R3 be an extended sca�erer.

Model Assumption 7.4 together with Lemma 8.6 now implies that there exist bounded

functions ai,j ∈ B (∂D,R+), (i, j ) ∈ [m]2, such that for arbitrary x ∈ R3, we have

|R̃I (x ) | =
������RI (x ) (9.4)

+

∑

(i,j )∈I

∑

i′∈[m]
i,i′

∫

∂D

ai′,j (y)pN ,ω0
(ti,j (x ) − ti′,j (y) +Ti′ −Ti ) dy

������. (9.5)

Consider the superposition noise in (9.5). With τ = (Nπ )/ω0 in Definition 8.8, for all

(i, j ) ∈ Ĩc (x , ∂D;τ ) and arbitrary i ′ ∈ [m], i ′ , i, we have pN ,ω0
(ti,j (x ) − ti′,j (y) + Ti′ −

Ti ) = 0. Therefore, only the terms with (i, j ) ∈ Ĩ(x , ∂D; (Nπ )/ω0) contribute to the su-

perposition noise in (9.5). We now propose an iterative SAFT algorithm, which adjusts

the index set I used in SAFT at all points, where we aim to compute the SAFT back-

projection. It is geared to reduce (9.5) by removing ultrasonic measurements indexed
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9. Iterative Synthetic Aperture Focusing Technique 75

by Ĩ(x ,S ;τ ) for some τ > 0, where S ⊂ R3 is a defect identified by SAFT in a greedy

manner.

Algorithm 1: Iterative SAFT

Data: Superposed measurements ũi,j , (i, j ) ∈ I = [m]2, shot times Ti ∈ R, i ∈ [m].

Input: Discretization of specimen X ⊂ R3,

Radius r > 0,

Time parameter τ > 0,

Maximum number of iterationsM ,

Threshold parameter θ ∈ [0, 1].
Variables: Maximum defect implication: yk ∈ X ,

Identified defect: Sk ∈ X ,
Removed measurements for x ∈ X : Jk (x ).

Result: Iterative SAFT backprojection (R̃ (M ) (x ))x ∈X .
1 Initialization: ∀x ∈ X : J0(x ) = ∅, R̃ (0) (x ) = 0 ; S0 = ∅.
2 begin

3 for k ∈ [M] do

4 for x ∈ Sk−1 do
5 R̃ (k ) (x ) = R̃ (k−1) (x )

6 for x ∈ X \ Sk−1 do
7 R̃ (k ) (x ) = |R̃I\Jk−1(x ) (x ) |
8 if k<M then

9 yk = argmaxx ∈X \Sk−1 |R̃
(k ) (x ) |

10 Sk = Sk−1 ∪
{
x ∈ Br (yk ) ∩ X ���|R̃ (k ) (x ) | ≥ θ |R̃ (k ) (yk ) |

}
11 for x ∈ X \ Sk do

12 Jk (x ) = Ĩ(x ,Sk ;τ )

We will now analyze the iterative SAFT backprojection in terms of the defect D. Let

x ∈ R3 be arbitrary and let k ∈ [M] be the largest k ′ with x < Sk−1 . It follows that

���R̃ (M ) (x )
��� = ���R̃ (k ) (x )

��� = ���R̃I\Jk−1 (x ) (x )
��� = ���R̃Ic (x,Sk−1;τ ) (x )

���
=

������RĨc (x,Sk−1;τ )
(x ) (9.6)

+

∑

(i,j )∈Ĩc (x,Sk−1;τ )

∑

i′∈[m]
i,i′

∫

∂D

ai′,j (y)pN ,ω0
(ti,j (x ) − ti′,j (y) +Ti′ −Ti ) dy

������. (9.7)

In contrast to the superposition noise in (9.5), we now have (9.7), and (9.6) instead of

the SAFT backprojection RI (x ). The greedy step in line 9 and line 10 of iteration k

was aiming at identifying possible defects as Sk−1 . It makes use of the heuristics be-
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76 II. Ultrasonic Nondestructive Testing with Random Measurements

hind the SAFT backprojection, which was discussed in Section 8. Now let τ = (Nπ )/ω0,

and suppose that, a�er (M − 1) iterations of Algorithm 1, we have SM−1 ⊃ D. This

would in particular imply that D is (M − 1,r )-sparse. Furthermore, with the definition

of Ĩ(x ,Sk−1;τ ) and since Sk−1 ⊂ SM−1, the superposition noise in (9.7) would vanish for

all x ∈ R3 \ SM−1.

For sparse defects, the idea of using superposed measurements for data aquisition

and iterative SAFT for imaging rather than acquiring basic measurements and using

SAFT, now is the following: Suppose that collecting basic measurements ui,j ∈ L1,

(i, j ) ∈ I = [m]2 takes an amount of time ofmT , whereT is the amount of time needed

to measure all basic measurements ui,j , j ∈ [m] for i ∈ [m] in parallel, using for instance

a phased array probe. Let ℓ ∈ [m], ℓ , 1 be arbitrary. Performing superposed meas-

urements with shot times Ti , i ∈ [m] chosen independent and uniformly distributed in

[0, (m − ℓ)T ], now allows us to acquire the same number of superposed measurements

ũi,j , (i, j ) ∈ I = [m]2 in a shorter period of time of at most (m−ℓ+1)T <mT . In the same

amount of time, we only can acquire (m − ℓ + 1)m basic measurements by sequentially

insonifying the specimen with (m − ℓ + 1) ≤ m ultrasonic transducers. While we can

measure more data using superposed measurements, this also comes with the cost of

superposition noise, which may cause ambiguities and artifacts as discussed in Section

8. To remove these artifacts, we use the iterative SAFT method instead of SAFT. For

x ∈ R3 and Sk−1 ⊂ R3 as above, a�er the superposition noise is removed, we only com-

pute the SAFT backprojection with respect to Ĩc (x ,Sk−1;τ ) in (9.6). This corresponds to

e�ectively more information as used in SAFT with basic measurements acquired in the

same amount of time, provided

|Ĩc (x ,SM−1;τ ) | > (m − ℓ + 1)m.

Under certain requirements, this condition is satisfied for all x ∈ X with high probabil-

ity.

Theorem 9.2. In Algorithm 1, let for arbitrary ℓ ∈ [m], ℓ , 1 and T > 0, the shot times

Ti , i ∈ [m] be chosen independent and uniformly distributed in [0, (m− ℓ)T ]. Suppose that
there exist z ∈ R3 and R > 0, such that X ⊂ BR (z). Then with probability at least (1 − ε ),
it holds that for all x ∈ X and [M] ∋ k = max{k ′ |x < Sk′−1}

|I \ Jk (x ) | = |Ĩc (x ,Sk−1;τ ) | > (m − ℓ + 1)m, (9.8)

provided

M ≤ (ℓ − 1)(m − ℓ)
m

εT

2(τ + 2(R+r )/c )
. (9.9)
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As SM−1 in Algorithm 1 is (M−1,r )-sparse, (9.9) also is a bound on themaximal sparsity

of the identified defect.

Proof of Theorem 9.2. Let x ∈ X be arbitrary and k ∈ [M] be the largest k ′ with
x < Sk′−1. Set Y = {y1, . . . ,yM−1} ⊂ R3 with yk , k ∈ [M − 1] as in line 9 of the algorithm.

Since Sk−1 ⊂ Br (Y ), it now follows with Lemma 9.1 that

|Jk (x ) | = |Ĩ(x ,Sk−1;τ ) | ≤ |Ĩ(BR (z),Br (Y );τ ) |
≤ |Ĩ(z,Y ;τ + 2(R+r )/c ).

(9.10)

Applying Theorem 8.9 for ε > 0 and δ = δl := (ℓ−1)/m, while bearing in mind that

|Y | ≤ M , we have with probability at most ε that

|Ĩ(z,Y ;τ + 2(R+r )/c ) | ≥ δlm
2
= (ℓ − 1)m, (9.11)

provided M satisfies (9.9). Inequality (9.11) together with (9.10) now implies

|I \ Jk (x ) | =m2 − |Jk (x ) | > (m − ℓ + 1)m,

which completes the proof. �

10. Numerical Results

The ultrasonic data for our experiments was provided by Salzgi�er Mannesmann For-

schung GmbH in Duisburg, Germany. It was also used in [SNCO16]. For our exper-

iments, we consider a steel pipe of radius 223mm and a thickness of 21mm; 8 drilled

holes of 1mm and 2mm diameter serve as model defects, see Figure 10.1(a). The full-

matrix-capture basic measurements were acquired using a 64 element 5MHz phased

array probe with a distance between consecutive transducers (pitch) of 0.6mm. As de-

picted in Figure 10.1(b), it is placed in a distance of 20mm above the specimen.

The corresponding time-of-flights were derived via Fermat’s principle, see [SNCO16].

Each basic measurement was measured in 3.2 × 10−5s with a sampling rate of 108Hz.

From these, we simulated the corresponding superposed measurements using Lemma

7.6. In three experiments, we choose the shot times Ti , i ∈ [64] independent and uni-

formly distributed in [0, (m − ℓk )T ], for T = 3.2 × 10−5s and

ℓ1 = 13, ℓ2 = 23, ℓ3 = 33.

In Figure 10.2, we exemplary show the basic measurement u1,32 and the corresponding

superposed measurements ũ1,32 in the case of ℓ1 = 13. Here, one can see that many of

the distinctive features in u1,32 are also visible in ũ1,32.
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(a)model defect: 8 side-drilled holes (b) schematic experiment setup

Figure 10.1.: experiment setup

(a) u1,32 (b) ũ1,32 for ℓ1 = 13

Figure 10.2.: corresponding basic (a) and superposed measurements (b)
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We use all superposed measurements indexed by I = IFMC = [m]2 in the corres-

ponding iterative SAFT backprojection. As a benchmark, we compute the SAFT back-

projection with I = Ik × [m], where Ik ⊂ [m] is evenly chosen with

|I1 | = 52, |I2 | = 42, |I3 | = 32.

In this way, we compare the performance of both methods with respect to ultrasonic

data, which was acquired in the same amount of time. As it is common practice in

nondestructive ultrasonic testing, we compute the discrete Hilbert transform of the

basic and superposed measurements and perform the algorithms using the respective

signals, see [LMK12] and the discussion of SAFT in Section 8. In all cases, we use a

300 × 375 pixel polar grid X ⊂ R3 to discretize the region of interest. It is bounded

by the blue frame in Figure 10.1(b). For the iterative SAFT backprojection, we choose

the parameters r = 2.5mm, τ = 0.1ns, and θ = 0.4. As the number M of iterations,

we choose 20. In figures 10.3, 10.4, and 10.5, we compare the SAFT backprojection with

the corresponding iterative SAFT backprojection restricted to the found defect S19 for

ℓk , k = 1,2,3. The 8 drilled holes as well as the backwall are recognizable in the SAFT

backprojections in Figures 10.3(a), 10.4(a), 10.5(a). As suggested by the colorbars, the

pixel values are nearly proportional to the number of basicmeasurements, and therefore

also to the amount of measurement time.

In Figures 10.3(b), 10.4(b), 10.5(b), we can see the iterative SAFT backprojections re-

stricted to the identified defect S19. Except for the last case, where we missed the two

holes in the upper right, the 8 drilled holes and the backwall are recognizable in the

three images. In all three cases, the maximum pixel value is almost the same; compar-

able high values are achieved at the backwall and the third hole in the second row; these

are the defects found in the first iterations of the iterative SAFT algorithm. All remain-

ing holes have smaller pixel values, as they are detected in later iterations and therefore

using less measurements. Next, we consider Figures 10.6, 10.7, and 10.8. Comparing the

first iteration with the last iteration of the iterative SAFT algorithm in the respective

cases, the reconstructions a�er 20 iterations are less noisy. In order to directly compare

the reconstructions of both methods, we investigate their di�erences in Figures 10.9,

10.10, 10.11. Consider 10.9(a), 10.10(a), and 10.11(a), where the di�erence between SAFT

and iterative SAFT a�er one iteration is computed. Here, we can recognize the 8 holes

and the backwall in red, indicating higher pixel values in the la�er method. We also see

the additional superposition noise in red. In Figures 10.9(b),10.10(b), and 10.11(b), we can

see that much of the superposition noise is removed a�er 20 iterations. This comes with

the cost of lower pixel values at the defects discovered in later iterations. But for sparse

defects such as one drilled hole, which can be identified in a small number of iterations,

iterative SAFT indeed gives be�er defect reconstructions, as suggested by third hole in

the second row; this matches the theoretical considerations of Theorem 9.2.
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(a) |RI1 (x ) |x ∈X

(b)
���R̃ (20)

I
(x )

���x ∈S19
Figure 10.3.: SAFT with |I1 | = 52 (a) and corresponding iterative SAFT re-

stricted to the found defect S19 for ℓ1 = 13 (b)
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(a) |RI2 (x ) |x ∈X

(b)
���R̃ (20)

I
(x )

���x ∈S19
Figure 10.4.: SAFT with |I2 | = 42 (a) and corresponding iterative SAFT

restricted to the found defect S19 for ℓ2 = 23 (b)
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(a) |RI3 (x ) |x ∈X

(b)
���R̃ (20)

I
(x )

���x ∈S19
Figure 10.5.: SAFT with |I3 | = 32 (a) and corresponding iterative SAFT

restricted to the found defect S19 for ℓ3 = 33 (b)
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(a)
���R̃ (1)

I
(x )

���x ∈X

(b)
���R̃ (20)

I
(x )

���x ∈X
Figure 10.6.: iterative SAFT a�er 1 (a) and 20 (b) iterations for ℓ1 = 13

David James



84 II. Ultrasonic Nondestructive Testing with Random Measurements

(a)
���R̃ (1)

I
(x )

���x ∈X

(b)
���R̃ (20)

I
(x )

���x ∈X
Figure 10.7.: iterative SAFT a�er 1 (a) and 20 (b) iterations for ℓ2 = 23
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(a)
���R̃ (1)

I
(x )

���x ∈X

(b)
���R̃ (20)

I
(x )

���x ∈X
Figure 10.8.: iterative SAFT a�er 1 (a) and 20 (b) iterations for ℓ3 = 33
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(a)
���R̃ (1)

I
(x )

���x ∈X − ���RI1 (x )
���x ∈X

(b)
���R̃ (20)

I
(x )

���x ∈X − ���RI1 (x )
���x ∈X

Figure 10.9.: di�erence of SAFT with |I1 | = 52 and iterative SAFT a�er 1

(a) and 20 (b) iterations for ℓ1 = 13
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(a)
���R̃ (1)

I
(x )

���x ∈X − ���RI2 (x )
���x ∈X

(b)
���R̃ (20)

I
(x )

���x ∈X − ���RI2 (x )
���x ∈X

Figure 10.10.: di�erence of SAFT with |I2 | = 42 and iterative SAFT a�er 1

(a) and 20 (b) iterations for ℓ2 = 23
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(a)
���R̃ (1)

I
(x )

���x ∈X − ���RI3 (x )
���x ∈X

(b)
���R̃ (20)

I
(x )

���x ∈X − ���RI3 (x )
���x ∈X

Figure 10.11.: di�erence of SAFT with |I3 | = 32 and iterative SAFT a�er 1

(a) and 20 (b) iterations for ℓ3 = 23
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