
Real-time MRI and Model-based
Reconstruction Techniques for Parameter

Mapping of Spin-lattice Relaxation

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen

Doktorgrades

"Doctor rerum naturalium"

der Georg-August-Universität Göttingen

im Promotionsprogramm ProPhys

der Georg-August University School of Science (GAUSS)

vorgelegt von

Xiaoqing Wang

aus Jiangsu, China

Göttingen 2016



2

Betreuungsausschuss

Prof. Dr. Jens Frahm Biomedizinische NMR Forschungs GmbH

Max-Planck-Institut für biophysikalische Chemie

(MPIBPC)

Prof. Dr. Hans Hofsäss II. Physikalisches Institut (Atom- und Kernphysik)

Georg-August-Universität Göttingen

Mitglieder der Prüfungskommission

Referent/in: Prof. Dr. Jens Frahm

Biomedizinische NMR Forschungs GmbH

Max-Planck-Institut für biophysikalische Chemie

(MPIBPC)

Korreferent/in: Prof. Dr. Hans Hofsäss

II. Physikalisches Institut (Atom- und Kernphysik)

Georg-August-Universität Göttingen

Weitere Mitglieder der Prüfungskommission

Prof. Dr. Thorsten Hohage Institut für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen

Prof. Dr. Stefan Luther Biomedizinische Physik

Max-Planck-Institut für Dynamik und Selbstorganisa-

tion (MPIDS)

Prof. Dr. Annette Zippelius Institut für Theoretische Physik

Georg-August-Universität Göttingen

apl. Prof. Dr. Ulrich Parlitz Biomedizinische Physik

Max-Planck-Institut für Dynamik und Selbstorganisa-

tion (MPIDS)

Tag der mündlichen Prüfung:



To my family, for their endless love and support.

i





Contents

1 Introduction 1

2 Magnetic Resonance Imaging 5
2.1 Nuclear Spins and Magnetization . . . . . . . . . . . . . . . . . . . 5

2.1.1 Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Signal Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Slice Selection . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Frequency Encoding . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Pulse Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Free Induction Decay . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Gradient Echo . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Spin Echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Inversion Recovery . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 𝑘-space Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Sampling Requirements . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 Gridding and FFT . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.2 Iterative Reconstruction . . . . . . . . . . . . . . . . . . . . 18

2.7 Parallel Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 MRI System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Real-time MRI 23
3.1 Undersampled Radial FLASH . . . . . . . . . . . . . . . . . . . . . 23

3.2 Parallel Imaging as Nonlinear Inverse Problem . . . . . . . . . . . . 25

3.2.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Introduction to Quantitative T1 Mapping Techniques 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Inversion Recovery T1 mapping . . . . . . . . . . . . . . . . . . . . 29

4.3 Inversion Recovery Look-Locker T1 mapping . . . . . . . . . . . . . 31

iii



iv Contents

4.4 Variable Flip Angle T1 mapping . . . . . . . . . . . . . . . . . . . . 32

5 Single-shot Inversion-recovery Look-Locker T1 Mapping by Real-time
MRI 35
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Single-shot IR LL Radial FLASH . . . . . . . . . . . . . . . . 36

5.2.2 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . 37

5.2.3 T1 Quantitation . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . 38

5.2.5 MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . 39

5.3.2 in vitro Studies . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.3 in vivo Studies . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4.1 Modified Non-local Means (NLM) Filter . . . . . . . . . . . 48

5.4.2 Single-shot Multi-slice T1 mapping . . . . . . . . . . . . . . 50

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Single-shot Myocardial T1 Mapping by Real-time MRI 59
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.1 MRI Acquisition and Reconstruction . . . . . . . . . . . . . 60

6.2.2 T1 Quantitation . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Model-based Reconstruction for Single-shot Inversion-recovery Look-
Locker T1 Mapping with Sparsity Constraints 73
7.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1.1 Signal Equation . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1.2 Model-based Reconstruction . . . . . . . . . . . . . . . . . . 74

7.1.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2.2 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . 78



Contents v

7.2.3 MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2.4 Parameter Choice for Reconstruction . . . . . . . . . . . . . 79

7.2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.1 Validation Studies . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.2 Human Studies . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.6.1 Derivative and adjoint derivatives of the operators . . . . . 94

8 Summary and Outlook 97
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Appendix 101

Bibliography 103

Acronyms 119

List of Publications 121

Acknowledgements 123





1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive technique widely used for

imaging of humans and animals. It came into existence based on several fun-

damental inventions made in the 1970s. Since then, MRI has evolved into one

of the leading tools in biomedical research and clinical diagnostics. Compared

to other medical imaging modalities such as X-ray computed tomography (CT)

or positron emission tomography (PET), MRI uses neither ionizing radiation nor

radioactive materials and offers a rich set of image contrasts based on signal re-

laxation times 𝑇1 and 𝑇2, spin diffusion or more complex quantities such as tissue

perfusion. Moreover, the acquisition of images with multiple contrasts in the same

anatomical region enables the capability to obtain quantitative maps of the under-

lying relaxation parameters, which renders the MRI scanner not only a camera,

but also a scientific measuring instrument. This thesis specifically addresses the

quantitative mapping of 𝑇1 relaxation times.

Quantitative 𝑇1 mapping normally consists of a suitable magnetization prepa-

ration (e.g., inversion), followed by the acquisition of a predefined number of

images of the relaxation process. After data acquisition and image reconstruction,

the relaxation model is then fit to the images to obtain the parameter maps. How-

ever, the acquisition of multiple images with a spatial and temporal resolution that

is sufficient for clinical use with only one preparation may be difficult or even im-

possible in presence of short relaxation times. One way to overcome this problem

is a segmentation of the data acquisition process. By acquiring complementary

data subsets at different segmentations, the temporal resolution can be highly im-

proved. For segmented acquisitions with preparation by inversion, a sufficient de-

lay time is required between the end of one segment and a following inversion for

the next acquisition. This delay period largely prolongs the total data acquisition

time and restricts the in vivo applications of 𝑇1 mapping techniques. Therefore,

novel ways that allow for the reconstruction of accurate high-resolution 𝑇1 maps

with less data sampled than required by the Nyquist criterion, known as under-
sampling, would be highly desirable.

In the last two decades, several techniques have been proposed to address the

general problem of the long MRI acquisition times which are caused by the point-

by-point data acquisition scheme in Fourier space. One approach is parallel imag-
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2 Chapter 1. Introduction

ing which uses multiple receive coils to acquire data in parallel. By exploiting

complementary spatial information from these spatially distinct receiver coils, par-

allel imaging typically allows for a moderate reduction of spatial encoding steps

(i.e., acceleration) by a factor of 2-4. Another effort to improve imaging speed

is the development of non-Cartesian MRI. Especially the adoption of radial sam-
pling has gained a lot of interest as it is inherently robust to motion and at least

partly tolerant to undersampling. More specifically, the combination of highly un-

dersampled radial fast low angle shot (FLASH) acquisitions, parallel imaging and

image reconstruction by nonlinear inversion (NLINV) which jointly estimates the

image and all coil sensitivity maps has achieved real-time MRI at millisecond res-

olution. Moreover, when calculating quantitative maps of relaxation parameters,

a lot of redundancy may be found in the data of image series with different con-

trasts. Model-based reconstruction techniques promise to exploit such redundancies

by directly reconstructing parameter maps from raw data. Although this approach

comes at a cost of increased complexity and computational demand, it has been

successfully demonstrated in preliminary applications to 𝑇2 mapping.

The main focus of this thesis is to develop new methods for fast and accurate

𝑇1 mapping at high spatial resolution by taking advantage of both the above men-

tioned real-time MRI developments and the concept of a model-based reconstruc-

tion. The former method reconstructs images from highly undersampled radially

encoded datasets, which then may be followed by a pixel-wise fitting to obtain

parameter maps. The latter, on the other hand, bypasses the intermediate steps of

image reconstruction and pixel-wise fitting by estimating parameter maps directly

from the undersampled raw data with use of a known signal model.

As far as organization of this thesis is concerned, Chapter 2 discusses the ba-

sic principles of MRI, while Chapter 3 briefly explains undersampled radial FLASH

acquisitions and NLINV reconstruction algorithms as the main components of real-

time MRI. Chapter 4 introduces the three most commonly used experimental ap-

proaches to quantitatively measure the 𝑇1 relaxation process. The main achieve-

ments of this thesis are presented in Chapters 5 to 7.

Chapter 5 deals with the development of a single-shot high-resolution 𝑇1 map-

ping technique based on real-time MRI. Apart from the adaptation of the highly

undersampled radial FLASH data acquisition technique, the image reconstruction

involved a modified NLINV-based algorithm. After optimization of acquisition and

reconstruction parameters, the single-shot 𝑇1 mapping method could be further

developed to a simultaneous multi-slice technique which yields 𝑇1 maps of mul-

tiple slices within a single experiment, i.e., within a few seconds as needed for a

single inversion-recovery experiment.

Chapter 6 presents a clinically relevant extension of the above method to single-
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shot diastolic myocardial 𝑇1 mapping where systolic images are automatically

masked out prior to pixel-wise fitting. Robustness and reproducibility of this and

the previous method have been validated with use of a numerical phantom, and

experimental phantom and human subjects in vivo.

Chapter 7 introduces and evaluates the proposed model-based reconstruction

technique which estimates the parametric maps of a suitable signal model and all

coil sensitivities directly from the undersampled raw data. A golden-angle data

acquisition scheme together with random RF spoiling was applied to efficiently

sample the data. The joint estimation of unknowns is formulated as a nonlinear

inverse problem where a priori information (i.e., sparsity constraints) of the pa-

rameter maps is incorporated into the reconstruction process to improve 𝑇1 preci-

sion. Validations again included numerical simulations, an experimental phantom

and in vivo studies of healthy human subjects. A comparison of the model-based

reconstruction to the method introduced in Chapter 5 is also presented.





2 Magnetic Resonance Imaging

This chapter introduces the basic principles of nuclear magnetic resonance (NMR)

and magnetic resonance imaging (MRI). It briefly covers the generation of MR

signals, signal types, spatial encoding, image reconstruction and parallel imag-

ing. For comprehensive information about MRI, it is recommended to refer to the

textbooks by Haacke et al. [1], Liang et al. [2] and Bernstein et al. [3].

2.1 Nuclear Spins and Magnetization

The NMR phenomenon was first described and measured by Isidor Rabi in 1938

[4] and then expanded by Felix Bloch and Edward Mills Purcell in 1946 [5, 6]. A

fundamental property of nuclei is that those with odd atomic weights and/or odd

atomic numbers, such as 1H, 13C and 23Na, poss an angular momentum 𝐽 , which

is often called spin. Like any spinning charged object, a nucleus with a nonzero

spin creates a magnetic field around it. It is represented by a vector quantity 𝜇

and is called the nuclear magnetic dipole moment or magnetic moment. The spin

angular momentum and the magnetic moment are related by:

𝜇 = 𝛾𝐽 (2.1)

where 𝛾 is the gyromagnetic ratio. Although the magnitude of 𝜇 is certain, its

direction is completely random due to thermal random motion. This will result

in a zero net magnetization around a macroscopic object at thermal equilibrium.

In the presence of an external magnetic field 𝐵0, the nuclear spins experience

the Zeeman splitting phenomenon. For hydrogen protons, they are aligned in two

energy states with energy values proportional to the external magnetic field:

𝐸↑ = −𝛾
~
2𝐵0 𝐸↓ = 𝛾

~
2𝐵0 (2.2)

where ~ is the Planck’s constant divided by 2𝜋. The states correspond to a parallel

(↑) or anti-parallel (↓) alignment of the magnetic moments 𝜇 with the external

5



6 Chapter 2. Magnetic Resonance Imaging

magnetic field 𝐵0. The energy difference between the two spin states is given by

Δ𝐸 = 𝐸↓ − 𝐸↑ = 𝛾~𝐵0. (2.3)

According to the Boltzmann relationship, the spin population difference between

these two states yields:
𝑁↑

𝑁↓
= exp

(︂ Δ𝐸

𝐾𝑏𝑇

)︂
(2.4)

where 𝐾𝑏 and 𝑇 are the Boltzmann constant and temperature respectively. Al-

though it is small, the population difference generates an observable macroscopic

magnetization �⃗� from the spin system. The resulting bulk magnetization vector

�⃗� points exactly along the positive direction of the external field. Its magnitude

is given by:

𝑀0 = |�⃗� | = 𝛾2~2𝑁𝑠

4𝐾𝑏𝑇
𝐵0. (2.5)

The above equation (2.5) indicates that the magnitude of �⃗� is proportional to the

external magnetic field 𝐵0 as well as to the number of spins 𝑁𝑠.

In addition, there are two important properties about nuclear precession, one is

the angular frequency of nuclear precession:

𝜔0 = 𝛾𝐵0 (2.6)

which is known as the Larmor frequency. Second, precession of 𝜇 around 𝐵0 is

clockwise if observed against the direction of the magnetic field.

2.1.1 Excitation

The bulk magnetization vector �⃗� experiences a torque with the application of a

magnetic field �⃗�1 according to the classical equation of motion:

𝑑�⃗�

𝑑𝑡
= 𝛾�⃗� × �⃗�1. (2.7)

In pulsed NMR experiments (Figure 2.1), a radio frequency (RF) field �⃗�1 with

frequency 𝜔0 is used to excite the spins. �⃗�1 is oriented perpendicular to 𝑧, the

resulting torque is perpendicular to �⃗� . During the excitation, the magnetization

vector �⃗� is tilted towards the xy-plane where it precesses with 𝜔0. The flip angle

𝛼 is proportional to integral over the envelope 𝐵1(𝑡) of the pulse:

𝛼 = 𝛾
∫︁ 𝑇rf

0
𝐵1(𝑡)𝑑𝑡 (2.8)
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with 𝑇rf the rf-pulse duration. A pulse which rotates the magnetization vector by

a certain flip angle 𝛼 is often referred to as an 𝛼-pulse.

After the application of the 𝛼-pulse, a 𝑀𝑥𝑦 component of the magnetization

precesses around the 𝑧-axis. The time varying magnetic field induces an oscillating

signal in a suitable positioned nearby receiver coil. This is the NMR signal used

for detection and quantification of the proton spin-density in MRI.

Figure 2.1: Representation of the pulsed NMR experiment: In equilibrium, the
magnetic moments align themselves along the static magnetic field 𝐵0.
After excitation with a RF pulse the spins are tilted into the xy-plane
and precess with the Larmor frequency.

2.1.2 Relaxation

After RF excitation, the signal detected declines rapidly due to spins proceeding

towards the thermal equilibrium state. This process can be expressed by the equa-

tion expanded from (2.7) by Bloch in 1946 [5]:

𝑑

𝑑𝑡
�⃗� = 𝛾�⃗� × �⃗� +

⎛⎜⎜⎜⎝
− 1

𝑇2
𝑀𝑥

− 1
𝑇2

𝑀𝑦

𝑀eq−𝑀𝑧

𝑇1

⎞⎟⎟⎟⎠ . (2.9)

The constant 𝑇1 is the spin-lattice relaxation time which describes the relaxation

of the longitudinal magnetization caused by energy exchange between the protons

and the surrounding environment. The constant 𝑇2 is called spin-spin relaxation

time and describes the loss of transversal magnetization. Since the decrease in

transversal magnetization is not only caused by the exchange of energy with the

environment but also by energy changes between spins, 𝑇2 is smaller than 𝑇1.

To simplify the analysis, the two components of the transversal magnetization

𝑀𝑥 and 𝑀𝑦 are usually combined into one single complex vector

𝑀⊥(𝑡) = 𝑀𝑥(𝑡) + 𝑖𝑀𝑦(𝑡). (2.10)
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In the absence of 𝐵1 field, equation (2.9) with regard to 𝑀⊥ and 𝑀𝑧 is given by:

𝑀⊥(𝑡) = 𝑀⊥(0)𝑒−𝑡/𝑇2 (2.11)

𝑀𝑧(𝑡) = 𝑀eq + (𝑀𝑧(0)−𝑀eq)𝑒−𝑡/𝑇1 (2.12)

where 𝑀⊥(0) and 𝑀𝑧(0) are the transversal and longitudinal magnetization di-

rectly after RF excitation respectively. The influence of the relaxation constants

can be controlled by the parameters of the NMR or MRI experiment. Therefore

signals with different contrast can be generated. Because of their dependence

on the individual sample material, 𝑇1 and 𝑇2 offer a powerful tool to distinguish

human tissues in clinical MRI.

2.2 Signal Localization

So far the detected MRI signal is proportional to the density of all excited pro-

ton spins within the reception range of the RF coil. To allow for two- or three-

dimensional imaging, it is necessary to distinguish them from different spatial

locations. Spatial encoding is therefore introduced. There are two basic meth-

ods/principles for spatial encoding in MRI. One is slice selection, where only one

slice is excited. The other one is Fourier encoding, which can be used to encode

the signal of the excited spins. In 2D imaging, a slice is selected and the remaining

2D plane is Fourier encoded. In 3D imaging, Fourier encoding is employed for all

three dimensions.

The spatial encoding is achieved with the use of additional gradient coils along

with main magnetic field 𝐵0 as introduced by Lauterbur in 1973 [7]. These gra-

dient coils create gradient fields in 𝑥, 𝑦 and 𝑧 directions. By switching them either

separately or in combination with each other, a spatial dependent magnetic field

can be created:

�⃗�(�⃗�, 𝑡) = �⃗�0 + 𝐺(𝑡) · �⃗� =

⎛⎜⎜⎜⎝
0
0

𝐵0

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
𝐺𝑥

𝐺𝑦

𝐺𝑧

⎞⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎝

𝑥

𝑦

𝑧

⎞⎟⎟⎟⎠ (2.13)

with the gradient fields 𝐺𝑥, 𝐺𝑦, 𝐺𝑧 in three spatial directions respectively.

2.2.1 Slice Selection

To excite only a slice of the sample, an external field gradient is switched on

during the excitation pulse. According to the Larmor equation (2.6), the resonance



2.2. Signal Localization 9

frequency then varies linearly along the gradient direction, e.g., 𝑧 direction,

𝜔(𝑧) = 𝛾𝐵(𝑧) = 𝛾(𝐵0 + 𝐺𝑧 · 𝑧). (2.14)

With the application of the excitation pulse (Figure 2.2) which carries a bandwidth

of frequencies Δ𝜔, only spins with the corresponding resonance frequencies will

be excited. This reduces the image plane from 3D to 2D. In addition, to excite

a rectangular-shaped slice in the spatial frequency domain, a sinc shape pulse

needs to be used in the time domain, In practice, because the sinc function has

an unlimited support, a truncated sinc function is used instead with additional

filtering to achieve finite length.

Figure 2.2: Slice selection: A slice selection gradient 𝐺𝑧 leads to a linearly vary-
ing resonance frequency of the spins along 𝑧 direction. A sinc RF
pulse then ideally excites a slice with rectangular profile. ℱ represents
Fourier transform.

2.2.2 Frequency Encoding

Two field gradients (e.g., 𝐺𝑥 and 𝐺𝑦) are used to encode signals from the same

slice. Similar to equation (2.14), the resonance frequency depends on the position

of the spin:

𝜔⊥ = 𝛾�⃗� · �⃗� = 𝛾(𝐺𝑥𝑥 + 𝐺𝑦𝑦). (2.15)

An additional phase term is generated on the transverse magnetization with the

application of above gradient fields:

𝑀⊥(�⃗�, 𝑡) = 𝑀0(�⃗�) · 𝑒−𝑖(𝜔0𝑡+𝜙(�⃗�,𝑡)) (2.16)
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where the phase evolution 𝜙 depends on the time integral over the gradients:

𝜙(�⃗�, 𝑡) = 𝛾
∫︁ 𝑡

0
�⃗�(𝜏)𝑑𝜏 · �⃗� = 2𝜋�⃗� · �⃗� (2.17)

and �⃗�(𝑡) is the 𝑘-space trajectory:

�⃗�(𝑡) := 𝛾

2𝜋

∫︁ 𝑡

0
�⃗�(𝜏)𝑑𝜏. (2.18)

The real-valued signal detected by a large surrounding coil can be calculated by

integrating the transverse magnetization over the complete volume:

R
∫︁

𝑀⊥(�⃗�, 𝑡)𝑑�⃗� = R
∫︁

𝑀⊥(�⃗�, 0)𝑒−2𝜋𝑖�⃗�·�⃗�𝑒−𝑖𝜔0𝑡𝑑�⃗�. (2.19)

The high frequency phase 𝑒−𝑖𝜔0𝑡 is then removed by quadrature demodulation.

Assuming the initial magnetization 𝑀⊥(�⃗�, 0) is proportional to the spin density

𝜌(�⃗�), the signal received from the MRI scanner reads:

𝑠(𝑡) = 𝑎 ·
∫︁

𝜌(�⃗�)𝑒−2𝜋𝑖�⃗�(𝑡)·�⃗�𝑑�⃗�. (2.20)

Here 𝑎 is a spatially invariant constant. The above equation reveals that the MRI

signal corresponds to the Fourier transform of the proton density 𝜌(�⃗�).

2.3 Pulse Sequence

A pulse sequence is used for generation of a useful MR signal for detection. The

most important sequences are described in the following sections.

2.3.1 Free Induction Decay

After RF excitation, the excited spins send out a signal with Larmor frequency.

Because local field inhomogeneities also contribute to the dephasing of spins, the

signal decays exponentially with an effective spin-spin relaxation time 𝑇 *
2 (Figure

2.3), which is smaller than 𝑇2:

1
𝑇 *

2
= 1

𝑇2
+ 𝛾Δ𝐻

2 (2.21)

with Δ𝐻 describing both the static field inhomogeneity and the effect of the mag-

netic field gradients [8].
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Figure 2.3: Free induction decay (FID): The signal send out from the excited spins
decays according to 𝑇 *

2 relaxation.

2.3.2 Gradient Echo

The gradient echo sequence consists of two gradients with opposite polarity namely

prephasing and readout gradient. The spins are initially dephased by the prephas-

ing gradient and then are rephased with a readout gradient to generate an echo

(Figure 2.4). Because spins are partially rephased due to a combined effect of field

inhomogeneity and 𝑇2 relaxation, the signal strength depends on the echo time TE

according to exp(−TE/𝑇 *
2 ). The gradient echo is the base of the FLASH imaging

sequence [9].

Figure 2.4: Gradient echo (GRE): After dephasing of the spins with a gradient, an
echo can be created by rephasing with a gradient of opposite polarity.

2.3.3 Spin Echo

The spin echo sequence was introduced by Hahn in 1950 [10]. The basic pulse

sequence consists of the application of two RF pulses with different flip angles 90∘

and 180∘ (Figure 2.5). Similar to gradient echo, the magnetization is flipped by the
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Figure 2.5: Spin echo (SE): Dephased spins are rephased with a 180∘ pulse which
rotates all spins by 180∘ around the x-axis. The phase of the transversal
magnetization is then exactly inverted.

90∘ pulse to the transverse plane and dephases with time. With the application of

the 180∘ pulse, the accumulated phase differences between different spins subject

to different magnetic fields are inverted. After the same time the spins are again

exactly in phase and a spin echo is generated. The spin echo phase differences

created by the gradient as well as by local field distortions are compensated by

this process. Therefore, the signal amplitude depends on the 𝑇2 relaxation time

instead of 𝑇 *
2 .

2.3.4 Inversion Recovery

Inversion recovery pulse sequences are used to manipulate signal contrast due to

variations in 𝑇1 relaxation time. An inversion recovery pulse sequence consists

of two parts (Figure 2.6). The inversion pulse first nutates the equilibrium mag-

netization vector from the +z axis to the -z axis. After a waiting time (known

as inversion time, denoted by TI) of 𝑇1 relaxation, the second part is played out,

which is typically self-contained pulse sequence such as RF spin-echo or gradient

echo introduced above.

The inversion of magnetization is normally accomplished by employing an adi-

abatic inversion pulse [11–14]. Adiabatic inversion pulses operate under the adi-

abatic passage principle, which states that a magnetization vector initially parallel

to the effective magnetic field follows the direction of the effective magnetic field,

provided the effective field does not change its direction much during one rota-

tional period of the magnetization about the effective field. To satisfy the above

condition, the amplitude and frequency of the RF pulse are modulated to ensure
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Figure 2.6: A generic inversion recovery (IR) pulse sequence consisting of an IR
module and a host sequence, separated by inversion time TI. A selec-
tive inversion pulse is shown, but a nonselective pulse can also be used.
The host sequence can be RF spin-echo, gradient echo, or others.

a relatively long pulse width and a rather high 𝐵1 amplitude. The resulting mag-

netization vector becomes immune to the 𝐵1 field variations, leading to a spatially

uniform inversion of the magnetization. For more details of adiabatic pulses, see

chapter 6 in [3]. The generic adiabatic inversion process is demonstrated in Figure

2.7.

Figure 2.7: The inversion process in an adiabatic pulse. (a) Beginning of the adia-
batic inversion pulse; (b) during the application of the adiabatic pulse.
The magnetization �⃗� precesses in a tight cone about the effect field
�⃗�𝑒𝑓𝑓 ; (c) at the end of the adiabatic pulse.

2.4 𝑘-space Trajectories

In principle, any 𝑘-space trajectory can be generated by switching gradients along

time according to equation (2.18). Figure 2.8 depicts the most common used

ones. Figure 2.8(a) is the conventional Cartesian sampling scheme, in which 𝑘-

space is sampled line-by-line. Since every sample is located on the Cartesian grid,
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Figure 2.8: Schematic representation of four typical sampling patterns used in MRI
studies: (a) Cartesian (b) Radial (c) Spiral (d) Random.
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this allows for simple reconstruction with a Fast Fourier Transformation (FFT).

Moreover, this sampling scheme is insensitive to gradient imperfections. Due to

these advantages, the Cartesian sampling scheme is still the most widely used in

todays’ clinical routine. A Cartesian FLASH sequence is demonstrated in Figure

2.9.

The radial trajectory is demonstrated in Figure 2.8(b), this sampling scheme is

originally proposed by Lauterbur in 1973, it is accomplished by setting the 𝑥- and

𝑦-gradient according to:

𝐺𝑥 = 𝐺max · cos(𝜃) 𝐺𝑦 = 𝐺max · sin(𝜃) (2.22)

where 𝐺max denotes the amplitude required for sampling the central 𝑘-space row,

𝜃 is the desired angle of the 𝑘-space line (spoke). The radial sampling scheme

requires a more precise gradient switching scheme which was a major limitation

due to hardware imperfections in the early days of MRI. Nowadays it is becom-

ing more and more popular because it combines the advantages of line-by-line

scanning with better undersampling behavior and is more robust to motion. More

discussions see [15].

Spiral sampling trajectory is illustrated in Figure 2.8(c), this method is also

attractive because of its imaging speed. However, the use of long trajectory is

problematic because the 𝑇2 relaxation and off-resonance effects caused by field

inhomogenities will lead to blurring and phase variations in the reconstructed

images. For more details see [16].

Random sampling in Figure 2.8(d) is another sampling trajectory which be-

comes more popular in the MRI society due to the arise of the compressed sensing

(CS) [17] theory. It is employed in order to meet the incoherence criterion which

is one of the prerequisites to successfully apply the CS theory for fast MRI [18].

Since the random sampling in 2D is inefficient in MRI, 3D sampling is more com-

monly used. In the later case, one direction of gradient (e.g., 𝐺𝑧) is used as a

readout gradient, the other two gradients (𝐺𝑥 and 𝐺𝑦) are switched randomly to

meet the criterion of incoherent sampling.

2.5 Sampling Requirements

In practice, the continuous 𝑘-space signal needs to be cut off and sampled dis-

cretely at a certain sampling rate. The sampling process can be seen as a multipli-

cation of the continuous 𝑘-space signal of the object with a Dirac comb function.

According to the convolution multiplication property [19], multiplication with a

Dirac comb function in image space corresponds to a convolution with the Fourier
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Figure 2.9: (Left) Timing diagram of a generic FLASH MRI sequence and (right)
the respective sampling trajectory (dashed line corresponds to one cy-
cle of the sequence). (a) Slice-selection, (b) rewinder gradient, (c)
prephasing, (d) readout, (e) spoiler.

transformation of the Dirac comb-function which is another comb-function with

reciprocal interval width in Fourier space. Hence, the discrete sampling leads to

occurrence of periodic object copies, where the distance between the copies is re-

ciprocal to the sample distance in 𝑘-space. In order to avoid image overlap, or

so-called aliasing artifact, the maximum distance of samples in 𝑘-space Δ𝑘 and

the desired Field of View (FOV) of the object should satisfy:

Δ𝑘 ≤ 1
FOV . (2.23)

The theory of the above sampling process follows the Nyquist-Shannnon theorem

[20].

Additionally, according to equation (2.18), expression of Δ𝑘 for a constant read-

out gradient is given by:

Δ𝑘 = 𝛾𝐺Δ𝑡

2𝜋
(2.24)

where Δ𝑡 is the sampling interval (dwell time) along the gradient direction. The

reciprocal of Δ𝑡 is called receiver bandwidth (BW):

BW = 1
Δ𝑡

. (2.25)

Equation (2.24) indicates that the sample distance can be reduced either by in-

crease sampling rate or by lower gradient strength. While the latter prolongs the

total duration of the sampling, it will increase the signal-to-noise ratio (SNR).

Therefore, a high value of the bandwidth corresponds to a short acquisition with

low SNR, while a low value indicates a long readout time with high SNR [15, 21].
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2.6 Image Reconstruction

2.6.1 Gridding and FFT

As mentioned above, for Cartesian sampling, all sampled 𝑘-space points lie in the

Cartesian grid, the object image is then obtained by a direct application of FFT. In

the case of non-Cartesian sampling (e.g., radial, spiral), the sampling points not

necessarily lie on the Cartesian grid. Therefore, direct FFT does not apply. Non-

uniform FFT (NUFFT) is employed instead to reconstruct images. This technique

is also known as gridding and FFT in MRI. It contains the following steps:

∙ Density compensation. Since the sampling density is nonuniform in non-

Cartesian sampled 𝑘-space, a density compensation filter (DCF) is necessary

to be employed. The DCF can be estimated by computing a Voronoi diagram

or Dirichlet tessellation of the specific trajectory [22]. For radial sampling, a

Ram-Lak Filter can be used:

𝐷RL(𝑘) =

⎧⎪⎨⎪⎩|⃗𝑘|/𝑛𝑠 |⃗𝑘| ≠ 0

1/2𝑛𝑠 |⃗𝑘| = 0
. (2.26)

∙ Convolution and Inverse FFT. After density compensation, the resampling

onto the Cartesian grid is achieved by the convolution of measured sam-

ples with the interpolation kernel. The ideal interpolation kernel is a proper

scaled sinc function. Due to its unlimited support, the sinc kernel is not used

in practice. Instead a radial Kaiser-Bessel kernel is usually employed

𝐾KB(𝑑) =

⎧⎪⎨⎪⎩
1
𝐿

𝐼0(𝛽
√︁

1− (2𝑑/𝐿)2) |𝑑| ≤ 𝐿
2

0 |𝑑| > 0
. (2.27)

An inverse FFT is then applied on the interpolated 𝑘-space to get the image.

∙ Roll-off correction. Due to the convolution with a finite interpolation kernel,

the obtained image exhibits a modulation with the Fourier transformation of

the kernel, which is called roll-off effect. This can be removed by dividing

the image with the Fourier transformation of the kernel. This process is

referred to as roll-off correction. To compensate the second effect which

is aliasing artifact in the image caused by the finite interpolation and roll-

off correction, a two-times oversampling is usually employed. This helps to

move the aliased side lobes away from the object. Image crop operation is

then done in the end to get the final object image.
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2.6.2 Iterative Reconstruction

Image reconstruction can be also formulated as inverse problem. The equation

for signal from one idealized single receiver coil (2.20) can be understood as the

forward problem of MR image reconstruction:

𝑦(�⃗�) = 𝑃𝑘ℱ𝑥(�⃗�) (2.28)

where 𝑥 is the unknown image, 𝑦 is the measured data, ℱ is the continuous Fourier

transform and 𝑃𝑘 is the trajectory defined by the restriction onto the measured k-

space positions. After discretization, image 𝑥 and measured data 𝑦 can be replaced

by a vector of image pixels 𝑥 and signal samples 𝑦 respectively. ℱ then reduces

to a matrix of Fourier coefficients ℱ from a 2D Discrete Fourier Transformation

(DFT). 𝑃𝑘 also can be represented by a matrix 𝑃 , which is diagonal in the case of

Cartesian sampling. Combing all the linear operators, we have

𝑦 = 𝐴𝑥 with 𝐴 = 𝑃 ℱ (2.29)

representing the forward system matrix. For fully sampled Cartesian data, 𝐴 is

simply the matrix that applies the DFT to vector 𝑥. In general, the equation cannot

be inverted directly. Instead, the solution of the above formula can be defined as

the minimizer of a functional, i.e.,

�̂� := argmin
𝑥
‖𝐴𝑥− 𝑦‖2

2 + 𝜆 ·𝑅(𝑥). (2.30)

The functional is composed of a least-squares data fidelity term as well as an ad-

ditional regularization term 𝑅 and can then be solved iteratively by employing

a number of numerical methods [23]. The formulation of reconstruction as in-

verse problem has several advantages in general: First, arbitrary sampling schemes

(Cartesian or non-Cartesian) can easily be used. Second, the regularization term

allows an incorporation of a prior knowledge of the unknowns. The above two

properties enable the image being recovered from an incoherently undersampled

dataset with proper sparsity regularizations (e.g., Wavelet or Total Variation (TV))

according to the compressed sensing theory [17, 18]. Finally, this formulation is

easy to combine with multiple coils (i.e., parallel imaging).

2.7 Parallel Imaging

One limitation of MRI is the long acquisition time. Parallel imaging is a general

technique to accelerate MRI using multiple phase-array coils [24] placed around
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the object (as seen in Figure 2.10). By exploiting additional spatial information

from the coil sensitivity profiles, it is possible to compensate the missing 𝑘-space

data due to undersampling. Methods for parallel imaging can be divided into two

categories, i.e., image space and 𝑘-space based methods respectively. The clinical

applications of parallel imaging starts from SMASH (simultaneous acquisition of

spatial harmonics) [25] and SENSE (sensitivity encoding) [26] algorithms intro-

duced in late 1990s. SMASH is a kind of 𝑘-space based method, while SENSE

belongs to the image-space based methods. Since then, both classes of method

have been further improved to utilize the 𝑘-space data more efficiently [27–31].

A comparison of different approaches can be found in [32–34].

Figure 2.10: Four individual images each calculated from the signal of its respec-
tive receive coil exhibit different spatial sensitivity profiles.

The MRI signal obtained from multiple receiver coils is given by:

𝑠𝑗(𝑡) =
∫︁

𝜌(�⃗�)𝑐𝑗(�⃗�)𝑒−𝑖2𝜋�⃗�(𝑡)·�⃗�𝑑�⃗� + 𝑛(𝑡) 𝑗 = 1, . . . , 𝑁, (2.31)

where 𝜌 is the proton density, 𝑐𝑗 is the complex-valued spatial sensitivity profile

of individual receive coil, and �⃗�(𝑡) is the chosen trajectory. Signal 𝑠𝑗 is disturbed

by noise 𝑛. After discretization, this process can be considered mathematically as

mapping 𝜌 and 𝑐𝑗 to the sampled 𝑘-space data 𝑦 with an operator 𝐹 :

𝑦 = 𝐹 (𝑥) with 𝐹 : 𝑥 ↦→

⎛⎜⎜⎜⎝
𝑃𝑘ℱ(𝜌 · 𝑐1)

...

𝑃𝑘ℱ(𝜌 · 𝑐𝑁)

⎞⎟⎟⎟⎠ (2.32)

where 𝑃𝑘 is the projection onto the trajectory, ℱ is Fourier transformation, 𝑥 is the

unknown variable. The availability of prior knowledge also determines whether

the reconstruction problem will become linear of nonlinear. The forward and

inversion model is demonstrated in Figure 2.11.

In SENSE based algorithms, the coil sensitivities are precalculated, mostly using

the autocalibration signal (ACS) line methods. For ACS based methods, a small

region in the center of 𝑘-space is sampled at full Nyquist rate. The fully sampled
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Figure 2.11: Scheme illustration of forward and inverse model in parallel imag-
ing. The forward model maps the Fourier transform (ℱ) of the dot
product of image 𝜌 and coil sensitivities 𝑐𝑗 evaluated on the sampling
trajectory to the 𝑘-space data 𝑦𝑗 (with two fold Cartesian undersam-
pling). The inverse model is then to estimate image and/or coil sen-
sitivities from the undersampled data.

regions are then filtered and inversely Fourier transformed to create low-resolution

images for each coil element. Coil profiles are then taken from low-order polyno-

mials, fitted to the individual images [35]. After estimation of coil sensitivities, the

reconstruction of proton density image can be considered as an inverse problem,

which can be solved by minimizing the following cost function:

𝜌 := argmin
𝜌

𝑁∑︁
𝑗=1
‖𝑃𝑘ℱ(𝜌 · 𝑐𝑗)− 𝑦𝑗‖2

2 + 𝜆 ·𝑅(𝜌) (2.33)

with 𝑅(𝜌) the regularization term for the proton density image. 𝜆 is the regular-

ization parameter controlling the balance of noise reduction and the preservation

of image details. The above formula (2.33) is an extension of equation (2.30) with

multiple coils. When a quadratic regularization is used, this problem can then be

solved with very efficient algorithms such as the conjugate gradient (CG) method

which is known as CG-SENSE. Other non-smooth regularizations such as TV or

Wavelet can also be employed. With proper incoherent sampling scheme (e.g.,

variable-density Poisson-disc sampling or radial trajectories), the combination of

parallel imaging and compressed sensing can achieve a higher acceleration factor

than individually using CS or parallel imaging [18, 36–38].

On the other hand, 𝑘-space based parallel imaging algorithms, like SMASH and

GRAPPA (generalized autocalibrating partially parallel acquisitions) [29], try to
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complete the missing data in 𝑘-space before reconstructing the image using FFT.

These algorithms are all based on the 𝑘-space locality principle [39], which as-

sumes that points nearby in 𝑘-space are strongly correlated. Therefore, missing

samples can be approximated as a linear combination of nearby 𝑘-space samples

from all coils. After recovery of missing data from each channel, the coil image

can be reconstructed by FFT and followed by employing coil combination methods

such as the root of sum of squares (RSS) method. More information about 𝑘-space

based parallel imaging see [34].

There are several ways to combine data from different coils in order to obtain

a single reconstructed image. The best unbiased estimation for the image is given

by [24, 40]:

𝜌est = 1∑︀
𝑗 |𝑐𝑗|2

∑︁
𝑗

𝑐*
𝑗𝑠𝑗 (2.34)

with an assumption that the signal noise is independently and identically dis-

tributed (i.i.d) Gaussian white noise. Here 𝑐*
𝑗 is the complex conjugate of the

coil sensitivities and 𝑠𝑗 is the image for each individual coil. Since the knowledge

of coil sensitivities is required, a RSS operation is often used instead:

𝜌rss =
√︃∑︁

𝑗

|𝑠𝑗|2. (2.35)

The above equation (2.35) is an approximation of formula (2.34), where the sen-

sitivity is approximated by 𝑐*
𝑗 = 𝑠*

𝑗 . Noteworthy, this assumption is only valid for

locations with high signal. In the region of low signal intensity, a bias will be intro-

duced [41, 42]. Alternatively, a usage of the more complicated phase-preserving

method introduced in [40] will help to avoid this problem.

2.8 MRI System

All studies in this work were conducted on a Siemens Prisma whole body human

scanner (Siemens AG, Erlangen, Germany) with the main magnetic field 𝐵0 =
2.89 Tesla (T) and two build-in body coils for RF excitation and signal receiving.

The gradient system has a maximum gradient strength of 80 mT m−1. The raster

time for gradient switching is 10 𝜇s and the maximal slew rate is 200 mT m−1

ms−1. Several receiver coils are provided by the system for signal detection, i.e.,

a 64-channel head coil, a 18-element thorax coil and the 32-element spine coil.

Additionally, a commercial reference phantom (Diagnostic Sonar LTD, Scotland,

UK) consisting of 6 compartments with defined 𝑇1 values surrounded by water is

used for quantitative validations in this study (Figure 2.12).
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Figure 2.12: (Top) MRI system, (bottom left) 64-channel head coil, (bottom mid-
dle) 18-element thorax coil and (bottom right) a commercial 𝑇1 phan-
tom used in this thesis.



3 Real-time MRI

Real-time MR imaging refers to continuous monitoring of moving objects, such as

the human cardiovascular system in real time. To achieve this, specific strategies

for image acquisition and reconstruction have to be employed. Earlier applica-

tions are based on so-called single-shot gradient-echo sequences, such as echo-

planar imaging [43] and spiral imaging [44]. Since they usually require a long

readout, images are prone to artifacts caused by off-resonance effects. Instead,

a recent developed MRI technique which employs radial MRI and regularized

nonlinear inversion does not have this problem and can achieve a much higher

spatial-temporal resolution. The chapter introduces the general acquisition and

reconstruction methods for this technique.

3.1 Undersampled Radial FLASH

The FLASH pulse sequence is a gradient-echo sequence with low flip angle RF

pulses and short repetition time [9, 45]. Because low flip angle excitation is used

instead of 90∘ pulse in spin echo sequences, most of the longitudinal magnetiza-

tion is remained and an immediate next excitation is then allowed. With a rapid

repetition of this sequence, fast imaging is therefore possible. Depending on the

response of the transverse magnetization in steady state, there are three types of

sequences in the generic FLASH technique, i.e., spoiled, refocused FLASH and bal-

anced steady state free precession (bSSFP). The radial FLASH sequence diagram

is shown in Figure 3.1(a). Spoiled FLASH employs RF spoiling or gradient spoil-

ing to destroy the transverse magnetization. For radial spoiled FLASH, besides RF

spoiling with random phase increment, no additional spoiler gradient is necessary

as the gradient spoiling is achieved through the applications of varying readout

gradients from TR to TR. Spoiled FLASH produces images with 𝑇1 contrast and

has been used primarily for real-time MRI applications ranging from speaking,

cardiovascular function to quantitative phase-contrast MRI. On the contrary, in re-

focused FLASH a gradient of the same length but of opposite polarity is applied

after readout to keep the residual transverse magnetization. The net phase per TR

is constant. Refocused FLASH offers a 𝑇2/𝑇1 contrast and has been used for the

study of temporomandibular joint (TMJ) dysfunctions. Further, to realize a bal-

23
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Figure 3.1: Undersampled radial FLASH sequences. (a) Sequence diagram of
spoiled, refocused and balanced radial FLASH techniques. (b) An ex-
ample of undersampled radial spoke distribution in real-time MRI (i.e.,
3 spokes per frame with 5 sequential turns).

anced condition which has zero net phase per TR, a dephasing gradient along the

slice selection direction with the same strength and direction as the slice selection

refocusing gradient is applied before each excitation. The bSSFP sequence offers

excellent 𝑇2/𝑇1 contrast between flowing blood and heart muscle (myocardium),

therefore it is widely used in cardiovascular magnetic resonance imaging (CMR)

studies. One main drawback of the bSSFP sequence is that it is prone to banding

artifacts due to off-resonance effects.

Radial sampling was proposed in the beginning of MRI and regained a lot of

interest in the last decade. Radial trajectories offer several advantages over the

traditional Cartesian scheme. First, due to the absence of phase encoding and

oversampling of 𝑘-space center, radial is less sensitive to motion which often in-

duces ghosting artifacts in Cartesian sampling. Second, radial sampling is quite

tolerant to undersampling. Most object information remains visible even for sig-

nificant undersampling factors. This is due to the fact that the center of 𝑘-space is

always densely sampled and most of the energy is still kept in the case of under-

sampling. Third, a readout oversampling which enlarges the circular-supported

FOV and therefore helps to remove the aliasing effects can be easily employed

without increasing acquisition time. Finally, each spoke carries an equal amount

of low and high spatial frequencies, offering a more homogeneous image update

in dynamic MRI. As a result of these properties, radial sampling is favorable for
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real-time MRI applications [21].

Radial spokes are acquired in a certain view order to fill the 𝑘-space. In real-

time MRI, the spokes are uniformly distributed in one image (turn) and then are

sequentially rotated between consecutive images (turns). The sequential reorder-

ing scheme is repeated every 𝑁𝑇 (e.g., 𝑁𝑇 = 5) images (turns) as shown in Figure

3.1 (b). Both 𝑁𝑇 and the number of spokes per frame (𝑁𝑠) is chosen to be odd

integers as a consequence of the total angle coverage set to be 2𝜋 [21]. Therefore,

the angle increment between two successive spokes 𝜃𝑠 is

𝜃𝑠 = 2𝜋

𝑁𝑠

(3.1)

and the angular increment between two consecutive turns 𝜃𝑇 is

𝜃𝑇 = 2𝜋

(𝑁𝑠 ·𝑁𝑇 ) . (3.2)

3.2 Parallel Imaging as Nonlinear Inverse Problem

As mentioned in chapter 2, reconstruction methods for autocalibrated parallel

imaging typically consist of two steps: determination of coil sensitivities from ref-

erence lines followed by linear reconstruction of image content. This process is

suboptimal because only a subset of data is used to determine the coil profiles

[34]. Therefore, methods that jointly estimate image content and coil sensitivities

from the whole available data have been proposed. The first method of this kind

is joint SENSE (JSENSE) [46]. With the help of alternating minimization method,

image content and coil sensitivities are updated alternatively, both of them are

optimized until a joint solution is found. By extending this idea, a more general

framework for solving this problem was introduced by formulating parallel imag-

ing as a nonlinear inverse problem [47].

3.2.1 Algorithms

The MRI signal equation is understood as a nonlinear operator equation with an

operator 𝐹 which maps image content 𝜌 and coil sensitivity profiles (𝑐1, . . . , 𝑐𝑁)𝑇

to the measured data 𝑦:

𝑦 = 𝐹 (𝑥) with 𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌

𝑐1
...

𝑐𝑁

⎞⎟⎟⎟⎟⎟⎟⎠ and 𝐹 : 𝑥 ↦→

⎛⎜⎜⎜⎝
𝑃𝑘ℱ(𝜌 · 𝑐1)

...

𝑃𝑘ℱ(𝜌 · 𝑐𝑁)

⎞⎟⎟⎟⎠ (3.3)
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where ℱ is the Fourier transformation, 𝑃𝑘 is the projection onto the trajectory.

The above nonlinear equation is then solved by the iteratively regularized Gauss-

Newton method (IRGNM), for more details see [48]. In general, this method first

linearizes 𝐹 (𝑥) at 𝑥𝑛 with 𝐹 (𝑥𝑛 + 𝑑𝑥) ≈ 𝐷𝐹 (𝑥𝑛)𝑑𝑥 + 𝐹 (𝑥𝑛), where 𝑛 is the 𝑛th

Gauss-Newton step. 𝑑𝑥 is then updated by minimizing the following regularized

problem:

‖𝐷𝐹 (𝑥𝑛)𝑑𝑥− (𝑦 − 𝐹 (𝑥𝑛))‖2
2 + 𝛼𝑛‖𝑥𝑛 + 𝑑𝑥− 𝑥0‖2

2 (3.4)

where the regularization parameter 𝛼𝑛 is chosen to be of the form 𝛼𝑛 = 𝛼0𝑞
𝑛 with

𝑞 ∈ (0, 1). The update 𝑑𝑥 has an explicit expression:

𝑑𝑥 =
(︁
𝐷𝐹 (𝑥𝑛)𝐻𝐷𝐹 (𝑥𝑛) + 𝛼𝑛𝐼

)︁−1(︁
𝐷𝐹 (𝑥𝑛)𝐻(𝑦 − 𝐹 (𝑥𝑛)) + 𝛼𝑛(𝑥𝑛 − 𝑥0)

)︁
(3.5)

which can be solved using very efficient methods, such as the CG algorithm. Under

certain conditions the iterative updates of 𝑥𝑛+1 = 𝑥𝑛 + 𝑑𝑥 converge to a solution.

However, a direct application of IRGNM to the above nonlinear problem would

yield an unrealistic solution because the equation is highly underdetermined even

for the fully sampled case. This problem is overcome by adding an additional reg-

ularization term, which penalizes high frequencies in the spectrum of the coil pro-

files in order to enforce the intrinsic smoothness of coils. Therefore, the operator

and the representation of the coil profiles are transformed with a preconditioning

matrix 𝑊 which contains weighted Fourier coefficients of the coil profiles:

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌

𝑐1
...

𝑐𝑁

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐼

(1 + 𝑠‖�⃗�‖2)𝑙/2ℱ
. . .

(1 + 𝑠‖�⃗�‖2)𝑙/2ℱ

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌

𝑐1
...

𝑐𝑁

⎞⎟⎟⎟⎟⎟⎟⎠ (3.6)

with 𝐼 the identity, ‖�⃗�‖ the distance to 𝑘-space center, and 𝑠 and 𝑙 empirically

chosen weighting parameters. The IRGNM is then applied to the transformed but

equivalent system of equations:

�̂� = 𝑊 −1𝑥 (3.7)

𝐺�̂� = 𝐹𝑊�̂� = 𝑦 (3.8)

such that the unknown 𝑐𝑗 is defined in the frequency domain. The above nonlinear

inversion (NLINV) method was proposed for Cartesian MRI initially. To allow for

real-time MRI, NLINV is extended to radial sampling by choosing 𝑃𝑘 to be the

projection onto a radial trajectory.

Further, to exploit the prior knowledge that adjacent images have similar con-
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tent, the algorithm is modified to include the temporal regularization with respect

to the previous frame:

𝛼𝑛‖𝑥𝑛 + 𝑑𝑥− 𝛽 · 𝑥prev‖2
2 (3.9)

where 𝑥prev is the previously reconstructed image and 𝛽 is the damping factor

which is chosen between 0.7 and 0.9 depending on application [49].

To achieve reasonable reconstruction times, the above iterative algorithms are

implemented on multiple graphic processing units (GPUs) [50, 51] and fully inte-

grated into the reconstruction pipeline of the MRI system.

3.2.2 Preprocessing

Prior to NLINV reconstruction, the raw data from multiple coils is firstly corrected

for gradient delay errors [52] and then compressed to 10 virtual channels us-

ing principle component analysis (PCA). For radial encoding, a convolution based

gridding [53] without density compensation is used to move the interpolation into

the Cartesian grid. The interpolated data is then normalized such that the 𝐿2 norm

of the data matrix is 100.

3.2.3 Postprocessing

After completion of the reconstruction process, a temporal median filter with a

length of the number of turns can be used to remove the residual reconstruction

artifacts (streaking) that differ from frame to frame. Further, a modified non-local

means denoising algorithm has been developed for spatial filtering [54]. Note-

worthy, for quantitative 𝑇1 mapping, no median filter is used to avoid corruption

of the recovery curve which would otherwise result in incorrect 𝑇1 values.





4 Introduction to Quantitative T1
Mapping Techniques

4.1 Introduction

Rapid mapping of the spin-lattice relaxation process with quantitative evaluations

of 𝑇1 relaxation times is of utmost interest in many clinical applications. 𝑇1 values

of myocardial tissue before and after contrast uptake can be used to detect and ac-

cess various cardiomyopathies. Further, pathology in brain tissue is well reflected

in abnormal 𝑇1 maps, for more applications see [55]. Several methods have been

proposed for 𝑇1 mapping in MRI studies [56, 57]. The following chapter reviews

the three most commonly used methods, namely inversion recovery (IR), IR Look-

Locker (LL) and variable flip angle (VFA) based methods. A sequence diagram for

the three methods is given in Figure 4.1.

4.2 Inversion Recovery T1 mapping

The IR method is referred to as the gold standard method. This technique origi-

nates from the NMR experiments performed in the late 1940s [58, 59]. It com-

prises inverting the longitudinal magnetization 𝑀𝑧 and sampling it as it recovers

towards equilibrium. The process is described by the Bloch equation

𝑑𝑀𝑧(𝑡)
𝑑𝑡

= 𝑀0 −𝑀𝑧(𝑡)
𝑇1

. (4.1)

There are two main RF pulses in this sequence. First, a 180∘ inversion pulse inverts

the initial magnetization. 𝑀𝑧 will then recover to the equilibrium longitudinal

magnetization 𝑀0 with relaxation time 𝑇1. After an inversion time TI, the second

pulse tips the recovered longitudinal magnetization into the transverse plane for

measurement. The transversal signal equation of this process at different TI can

then be expressed as

𝑆(TI) = 𝑆0(1− 2 exp(−TI/𝑇1)) (4.2)

29
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with 𝑆0 a complex signal acquired from the equilibrium longitudinal magnetiza-

tion 𝑀0. A nonlinear least squares fitting can then be performed to get 𝑇1 values.

The above equation (4.2) assumes a perfect inversion pulse which is rarely the

case in practice and TR ≫ 𝑇1 is also needed. This can be overcome by fitting the

signal to a more general model proposed in [60]

𝑆(TI) = 𝑎 + 𝑏 exp(−TI/𝑇1) (4.3)

where both 𝑎 and 𝑏 are complex variables. This model takes both inversion effi-

ciency and insufficient recovery into consideration. Therefore, it is more accurate

and the waiting for the magnetization to full recovery within one TR is not neces-

sary. However, as the number of unknown parameters for fitting is increased, the

SNR of the final 𝑇1 map will then be compromised [61].

The general limitation of the IR method is that it is really inefficient because

only one line of 𝑘-space data is sampled during inversion recovery, the next in-

version pulse is applied only after a long longitudinal recovery period. Although

methods like [60] explained above have been proposed to shorten the waiting

time, the total data acquisition time is still extremely long. One way to overcome

this problem is to sample the longitudinal magnetization continuously during the

recovery period, which leads to the Look-Locker based method.

Figure 4.1: 𝑇1 mapping sequence diagram. (a) Inversion Recovery (b) Inversion
Recovery Look-Locker (c) Variable Flip Angle.
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4.3 Inversion Recovery Look-Locker T1 mapping

The Look-Locker sequence [62] comprises a magnetization preparation pulse, i.e.,

inversion or saturation pulse, followed by a series of low flip angle RF excitations

with spoiled gradient echo (FLASH) readout (Figure 4.2). By continuously sam-

pling multiple time points along the recovery curve, the Look-Locker method is the

most time efficient method for 𝑇1 mapping [63]. The longitudinal magnetization

of this process can be described by

𝑀(𝑡) = 𝑀ss − (𝑀0 + 𝑀ss) exp(−𝑡/𝑇 *
1 ) (4.4)

with 𝑀ss the steady state magnetization, 𝑀0 the equilibrium magnetization and

𝑇 *
1 the effective relaxation time given by

1
𝑇 *

1
= 1

𝑇1
− ln[cos(𝛼)]

TR (4.5)

where TR is the repetition time and 𝛼 is the flip angle. Since knowing the exact flip

angle 𝛼 is impossible, the direct computation of 𝑇1 from equation (4.5) is difficult.

Instead, with the three parameters 𝑀ss, 𝑀0, 𝑇 *
1 obtained from equation (4.4) and

the assumption TR ≪ 𝑇 *
1 , 𝑇1, the desired 𝑇1 then can be calculated according to

𝑇1 = 𝑀0

𝑀ss
· 𝑇 *

1 . (4.6)

Noteworthy, the above formula holds true only for small flip angles 𝛼 in FLASH

readout. Otherwise, the recovery curve will be more disturbed and therefore the

contrast by 𝑇1 difference will vanish for higher flip angles. In addition, the spoiling

of the transverse magnetization will become more difficult. It is recommended that

the flip angle should be less or equal than 10∘ [64].

Although the signal model is derived for spoiled gradient echo readout, other

readouts have also been proposed in combination with Look-Locker concept for

fast 𝑇1 mapping, such as EPI [65] and TrueFISP [66]. The main advantage of EPI

readout is its speed, a whole image is produced from a single readout train. On the

other hand, the EPI readout is very sensitive to field inhomogeneities which will

cause image distortions in the final 𝑇1 maps. For TrueFISP readout, the recovery

curve is less perturbed, provided the tissue does not have a short 𝑇2. Then the

relaxation rate 𝑇1 can be approximated by 𝑇 *
1 . The problem of this method is that

it is very sensitive to the off-resonance effect, which will introduce typical banding

artifacts in the final 𝑇1 maps especially at high field strength (e.g., 3T or higher).

To avoid these artifacts, the main focus of this thesis is to develop fast IR LL 𝑇1

mapping methods based on FLASH readout.
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Figure 4.2: The longitudinal magnetization curve of IR (dashed line) and that of
IR LL sequence with FLASH readout (solid line). 𝑀0 is the equilibrium
magnetization, 𝑀𝑧 is the longitudinal magnetization.

4.4 Variable Flip Angle T1 mapping

The VFA method is another fast 𝑇1 mapping technique which allows to acquire 3D

𝑇1 maps in clinically feasible times [67, 68]. This requires an acquisition of two or

more spoiled gradient-echo measurements with constant TR, TE but different flip

angles. The steady state signal of a FLASH sequence as a function of the flip angle

𝛼 is given by:

𝑆(𝛼) = 𝑀0 sin(𝛼) 1− 𝑒−TR/𝑇1

1− cos(𝛼)𝑒−TR/𝑇1
𝑒−TE/𝑇 *

2 . (4.7)

Since TR, TE are fixed, both proton density 𝑀0 and 𝑇1 can be determined from

the signals measured at multiple flip angles by performing a nonlinear least-square

fit to the measured values of 𝑆(𝛼) as a function of 𝛼.

By reordering equation. (4.7), an easier-to-implement expression can be de-

rived, i.e.,
𝑆(𝛼)
sin(𝛼) = 𝑆(𝛼)

tan(𝛼)𝑒−TR/𝑇1 + 𝑀0(1− 𝑒−TR/𝑇1)𝑒−TE/𝑇 *
2 . (4.8)

The above equation can be considered as a transformation of the points (𝛼, 𝑆(𝛼))
into a plane where the coordinate pairs are

(𝑥(𝛼), 𝑦(𝛼)) =
(︂

𝑆(𝛼)
tan(𝛼) ,

𝑆(𝛼)
sin(𝛼)

)︂
(4.9)

with slope 𝑒−TR/𝑇1 and ordinate intercept 𝑀0(1−𝑒−TR/𝑇1)𝑒−TE/𝑇 *
2 . The slope of the

straight line and with it 𝑇1 can be estimated by the linear least squares method.

Figure 4.3 demonstrates 𝑇1 estimation curve by equation (4.7) and equation (4.8)

of simulated FLASH signals acquired with 10 different flip angles at a fixed TR of
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5 ms [69].

Figure 4.3: 𝑇1 estimation by two different models in VFA method using ten flip
angles [69]. (Left) The result of the original signal fitted to equation
(4.7), (right) the fitting result of the transformed signal to the linear
equation (4.8). The flip angles are assumed to be perfectly known.

In principle, two images from different flip angle readouts will be enough to

determine the 𝑇1 values, which makes the VFA method very attractive. However,

this method normally requires an exact knowledge of the flip angle 𝛼 for every

voxel in the FOV. In practice, the 𝐵1 pulse amplitude varies across FOV, which will

result in artifacts as spatial variations in the final 𝑇1 maps. This problem is more

dominant at field strength of 3T or higher. Therefore, a flip angle (𝐵1) mapping

is essential. Several 𝐵1 mapping techniques can be employed [70–72]. However,

this additional step limits the practical applications of VFA method.





5 Single-shot Inversion-recovery
Look-Locker T1 Mapping by
Real-time MRI

5.1 Introduction

The inversion-recovery Look-Locker method (see chapter 4) is the most time effi-

cient technique for 𝑇1 mapping [63]. However, to achieve a spatial and temporal

resolution that is sufficient for clinical use, segmented acquisitions instead of a sin-

gle inversion preparation are usually required. To overcome the problem of long

data acquisition time caused by the segmented acquisitions, several techniques

have been developed. One efficient way for acceleration is parallel imaging. By

taking complementary information from multi-coil arrays, acceleration factors of

2-4 could be achieved. Radial sampling is another way for speed-up [73, 74].

With a combination of sliding-window based image reconstruction [75], multiple

images with different contrasts can be generated within one single inversion recov-

ery and single-shot 𝑇1 mapping is allowed. However, with increasing spatial reso-

lution, larger window sizes are needed for reconstruction which will compromise

the temporal resolution and affect the 𝑇1 accuracy. Additionally, a model-based

approach which estimates parameter maps directly from undersampled 𝑘-space

data has been proposed [76]. These kind of methods bypass the two steps of im-

age reconstruction and pixel-wise fitting and do not need to compromise between

image quality and temporal resolution. However, only a limited spatial resolution

has been achieved so far [76].

In this chapter, a single-shot high-resolution IR LL 𝑇1 mapping method is pro-

posed by taking advantage of the real-time MRI techniques based on highly un-

dersampled radial FLASH acquisitions and iterative image reconstruction. The

proposed approach covers the spin-lattice relaxation process after (nonselective)

inversion of the longitudinal magnetization by a series of images reconstructed

from highly undersampled data. Several acquisition and reconstruction parame-

ters of the proposed method are optimized and validated on numerical simulation,

experimental phantom and in vivo studies. A recent proposed non-local means

35
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(NLM) filter is further applied to the reconstructed images prior to pixel-wise fit-

ting for precision improvement. Finally, an extension of the proposed method to

single-shot multi-slice 𝑇1 mapping is presented.

5.2 Materials and Methods

5.2.1 Single-shot IR LL Radial FLASH

The single-shot IR LL radial FLASH sequence comprises an initial IR module which

consists of a nonselective adiabatic 180∘ RF pulse with a spoiler gradient and fol-

lowed by a continuous slice-selective radial FLASH readout that monitors the 𝑇1

relaxation recovery with complementary sets of spokes each covering 360∘. Typ-

ically, 5 sequential frames of the same slice are acquired with spatially distinct

radial spokes which interleave spokes of preceding sets as previously described

[77]. Spoiling of residual transverse magnetizations are accomplished by random

RF phases [78]. The diagram of this sequence is shown in Figure 5.1 and the

distribution of the spokes can be found in Figure 3.1(b).

Figure 5.1: Schematic diagram for single-shot inversion recovery Look-Locker ra-
dial FLASH MRI. The acquisition part is repeated during inversion re-
covery. Gradient amplitudes vary for different repetitions (gray lines).
(a) Spoiler, (b) slice-selection, (c) rephasing, (d,f) prephasing, (g,e)
readout. The 180∘ pulse is a non-selective adiabatic inversion pulse
(Hyperbolic secant pulse).
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5.2.2 Image Reconstruction

The image reconstruction part is based on the NLINV algorithm as introduced in

chapter 3. For 𝑇1 mapping, the reconstruction has been modified and separated

into two steps. First, the coil sensitivities are estimated by NLINV from a few

frames starting from the relaxation process close to full recovery and proceed-

ing toward the initial inversion. Because this strategy starts with only very mild

changes from frame to frame, it helps to achieve high-quality reconstruction of im-

ages and coil profiles. In fact, coil sensitivities are estimated from 10 last frames

corresponding to 2 times 5 frames with complementary radial encodings. Subse-

quently, the estimated coil sensitivities are fixed and used for reconstruction of the

entire data set. The reconstruction of the individual image then becomes a linear

problem:

�̂� = argmin
𝑥
‖𝐹 (𝑥)− 𝑦‖2

2 + 𝛼‖𝑥− 𝛽 · 𝑥prev‖2
2. (5.1)

The linear forward operator 𝐹 is given by:

𝐹 : 𝑥 ↦→

⎛⎜⎜⎜⎝
𝑃ℱ{𝑐1 · 𝑥}

...

𝑃ℱ{𝑐𝑁 · 𝑥}

⎞⎟⎟⎟⎠ , (5.2)

where ℱ is the Fourier transformation, 𝑃 is the orthogonal projection onto the

trajectory, 𝑐𝑗 is the estimated 𝑗th coil sensitivity and 𝑥 is the current image to be

estimated, 𝑥prev is the previously reconstructed frame used for temporal regular-

ization as in real-time MRI, 𝛼 is the regularization parameter and 𝛽 is the damping

factor which controls information from previous frames in the 𝐿2 regularization

term. The above linear problem is then solved by the linear version of the NLINV

algorithm [47] in a time-reversed order. For the choice of parameters, the regu-

larization parameter 𝛼 is initialized with 1 and reduced by a factor of 2 in each

Newton step. The number of Newton steps and the damping factor 𝛽 were deter-

mined empirically with respect to the influence on accuracy and precision of the

obtained 𝑇1 values.

5.2.3 T1 Quantitation

After image reconstruction, 𝑇1 quantitation was performed by fitting the following

model pixel-wise to the magnitude images:

𝑀(𝑡) = 𝑀𝑠𝑠 − (𝑀0 + 𝑀𝑠𝑠) · exp(−𝑡/𝑇 *
1 ) (5.3)
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where 𝑀𝑠𝑠 is the steady state magnetization, 𝑀0 is the equilibrium magnetization

and 𝑇 *
1 is the effective relaxation time. After fitting, with the assumption TR ≪

𝑇 *
1 , 𝑇1, the desired 𝑇1 was then calculated according to [64]:

𝑇1 = 𝑀0

𝑀𝑠𝑠

· 𝑇 *
1 . (5.4)

A pixelwise estimation of the parameters 𝑀0, 𝑀𝑠𝑠 and 𝑇 *
1 has been achieved by

minimizing the cost function

𝜑(𝑥) =
∑︁

𝑡

‖𝑀𝑡(𝑥)− 𝑦𝑡‖2
2, with 𝑥 =

⎛⎜⎜⎜⎝
𝑀𝑠𝑠

𝑀0

𝑇 *
1

⎞⎟⎟⎟⎠ (5.5)

where 𝑡 is the time index for each frame and 𝑦𝑡 is the corresponding signal in-

tensity. Numerical computations employed a Levenberg-Marquardt algorithm in

MATLAB R2013a (MathWorks, Natick, MA) and successful minimization was de-

fined by reaching a maximum number of 3000 iterations, a relative change in the

norm of the parameter update of less than 10−4, or a stepwise relative difference

for the objective function value of less than 10−7. The ROI analyses were accom-

plished using the arrayShow tool [79] in MATLAB.

5.2.4 Numerical Simulations

To evaluate several acquisition and reconstruction parameters of the proposed

method, a numerical phantom which composes of three circular objects in a circu-

lar background was built. The 𝑘-space data of this phantom was derived from the

analytical Fourier space representation of an ellipse. Three different 𝑇1 relaxation

times (300 ms, 800 ms, 1500 ms) with a background of 2000 ms were simulated.

An array of 4 circular receiver coils was assumed, surrounding the phantom with-

out overlap. The complex sensitivities of these coils were calculated based on the

Biot-Savart’s law and sinusoidal fitting [80]. Complex white Gaussian noise with a

standard deviation of 0.1 was added to the simulated 𝑘-space data. The inversion

recovery Look-Locker radial FLASH sequence was then used to sample the simu-

lated 𝑘-space data with a base resolution of 192 pixels covering a FOV of 128 mm,

TR/TE = 2.93/2.01 ms, FA = 4∘, total acquisition time 6 s.

5.2.5 MRI

All MRI studies were performed at 3T (Magnetom Prisma, Siemens Healthcare,

Erlangen, Germany). Young volunteers (age range 21 - 29 years) without known
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illness were recruited for studies during technical development as well as for pre-

liminary testing and final acquisitions. Written informed consent, according to the

recommendations of the local ethics committee, was obtained from all subjects

prior to MRI. A commercial reference phantom as described in chapter 2 was em-

ployed for validation before subject studies. Phantom and brain studies employed

the standard 64-channel head coil, while abdominal scans relied on an 18-element

thorax coil in conjunction with 18 elements of the spine coil. Abdominal measure-

ments were performed during a brief breath hold.

Fully sampled reference data sets for phantom and brain studies at 0.75 ×
0.75 mm2 spatial resolution were acquired by combing 21 sequential single-shot

inversion recovery Look-Locker acquired data sets. The radial view-order for each

individual inversion recovery acquisition was varied to yield a uniform distribu-

tion of 441 spokes per time point after combination. Image reconstruction was

then performed by density compensation, gridding, and inverse FFT of the respec-

tive raw data. Individual coil images were combined by a matched filter based

technique [40] prior to pixel-wise fitting.

5.3 Results

5.3.1 Numerical Simulations

Number of Spokes

For image-space based 𝑇1 mapping, the choice of number of spokes per frame

not only determines the quality of the reconstructed image but also influences the

temporal resolution of inversion recovery. The latter is crucial for determination of

short 𝑇1 values. A proper choice then helps to ensure the reconstructed image to

be artifact-free while keeping the temporal resolution. To demonstrate this effect,

Figure 5.2 (a) shows 𝑇1 maps estimated from undersampled data ranging from 5

spokes (undersampling factor 60) to 29 spokes per frame (undersampling factor

10) with a step size of 8. Streaking artifacts are observed when the binning size

is reduced to be 13 and become more severe in the extreme case of 5 spokes.

𝑇1 maps from 21 and 29 spokes are free of streaking artifacts. Figure 5.2 (b)

plots the quantitative values of 𝑇1 maps for the binning size ranging from 13 to

117. Estimated 𝑇1 values are consistent with the ground truth when the number

of spokes is chosen from 13 to 61. A tendency of overestimation is observed for

larger binning sizes, indicating that lower temporal resolution can cause bias in 𝑇1

estimation. In order to balance image quality and temporal resolution, 13 to 45

spokes per frame are recommended for the purpose of 𝑇1 mapping.



40 Chapter 5. 𝑇1 Mapping by Real-time MRI

Figure 5.2: (a) 𝑇1 maps with four different binning sizes. (b) Quantitative ROI
analyses of 𝑇1 maps using binning sizes from 13 to 117 spokes with
the proposed method. Dashed lines and error bar represent ground
truth and standard deviation respectively.

Reconstruction Parameters

The two main reconstruction parameters (number of iterations and temporal damp-

ing factor) of the proposed method were investigated using the simulated phan-

tom. The number of spokes was set to be 21 per frame. Figure 5.3 shows quanti-

tative 𝑇1 values at different iterations and variable damping factors. With a lower

damping factor, more iterations are needed for the reconstruction to converge to

the true solution, i.e., to have a good 𝑇1 accuracy. A high damping factor acceler-

ates the convergence but at a cost of increasing the standard deviation. In order

to accelerate the convergence while keeping a good precision, a damping factor of

0.9 was then chosen for all studies. After fixing the damping factor to be 0.9, 6 or

7 Newton steps should be employed.

Finally, Figure 5.4 shows validated results on the numerical phantom using 21

spokes per frame and reconstructed with a damping factor 0.9 and 7 Newton steps.

Figure 5.4 (Left) are four images at different inversion times reconstructed by the

proposed method. Fitting curves of three representative pixels are plotted in the

middle. The three estimated parameter maps together with the corresponding 𝑇1

map are presented on the right after pixel-wise fitting. The quantitative results of

the corresponding 𝑇1 map are shown in Table 5.1, which confirm the accuracy of
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Figure 5.3: Effects of damping factors and Newton steps of the proposed method
on the quantitative results for a numerical phantom. Dashed lines and
error bar represent ground truth and standard deviation, respectively.
Connecting solid lines are drawn to guide the eye.
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Figure 5.4: Validation of the proposed method in a numerical phantom study.
(Left) Four representative images during inversion recovery recon-
structed by the proposed method. (Middle) Signal intensity time
courses and respective fitting results of the simulated phantom with
𝑇1 = 300 ms (blue), 800 ms (red) and 1500 ms (black). (Right) The
pixel-wise fitted three parameter maps and the corresponding 𝑇1 map.
The quantitative ROI evaluations of the 𝑇1 map are shown in Table 5.1.
Images during inversion recovery were reconstructed using 7 Newton
steps with a damping factor of 0.9.
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Table 5.1: Quantitative ROI analysis of
simulated 𝑇1 maps shown in
Figure 5.4.

ROI True 𝑇1 Value NLINV1

1 300 300± 16
2 800 804± 34
3 1500 1499± 54

Background 2000 1992± 69
1 Results represent mean values ±

standard deviations.

the proposed method when compared to the ground truth.

5.3.2 in vitro Studies

Reconstruction Parameters

The number of iterations was investigated on the experimental phantom after fix-

ing the damping factor to be 0.9. Figure 5.5 shows phantom 𝑇1 maps and the cor-

responding quantitative 𝑇1 values along Newton steps. High number of iterations

induces more noise in the maps which is reflected as higher standard deviation

in the quantitative results. 6 or 7 Newton steps provides a good balance between

accuracy and precision. Generally in this study, 6 Newton steps has been used for

the study of in-plane resolution lower or equal than 1 × 1 mm2. For applications

with submillimeter in-plane resolution, 7 Newton steps was employed to ensure

the convergence.

Comparison to Fully-sampled Data

𝑇1 map by the proposed method was then compared to the corresponding map

from the fully sampled data set as shown in Figure 5.6. Visual inspection reveals

that 𝑇1 map by the proposed method is in a good agreement with the reference

but exhibits a slightly increased noise level. Despite the higher standard deviation,

the quantitative results in Table 5.2 confirm the accuracy of the proposed method

when compared to the fully sampled measurement.

5.3.3 in vivo Studies

Number of Spokes

The binning size was also validated on brain studies. Figure 5.7 shows brain 𝑇1

maps using different number of spokes ranging from 11 to 21, which are com-
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Figure 5.5: Phantom 𝑇1 maps (a) and the corresponding quantitative ROI evalu-
ations (b) along with Newton steps (6 to 10). Connecting solid lines
in (b) are drawn to guide the eye. Measurement parameters: spa-
tial resolution 0.75 × 0.75 × 5 mm3, TR/TE/𝛼 = 2.93/2.01 ms/4∘, 21
spokes/frame.
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Figure 5.6: Comparison of phantom 𝑇1 map estimated from a fully sampled data
set and that from a single-shot data set by the proposed method.
The corresponding 𝑇1 difference map (× 10) is shown in the right.
Measurement parameters: spatial resolution 0.75 × 0.75 × 5 mm3,
TR/TE/𝛼 = 2.93/2.01 ms/4∘, 21 spokes/frame.

Table 5.2: Quantitative 𝑇1 values (ms) 1 of
the experimental phantom and
brain 𝑇1 maps 2.

Tube Fully-sampled NLINV

Phantom

1 308± 17 299± 25
2 462± 20 456± 36
3 638± 25 628± 33
4 810± 27 800± 44
5 1160± 31 1152± 57
6 1445± 35 1428± 62

Brain
WM 751± 42 752± 82
GM 1308± 58 1288± 92

1 Results represent mean values± standard
deviations.

2 Regions-of-interest are indicated in Fig-
ure 5.5 (phantom) and Figure 5.8
(brain).
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Table 5.3: Quantitative ROI analysis of the brain 𝑇1 maps (ms) shown in Figure
5.7.

11 13 15 17 19 21

WM 707± 60 711± 71 709± 66 710± 70 711± 68 711± 72
GM 1362± 98 1373± 94 1376± 116 1358± 92 1360± 99 1349± 92

monly employed in real-time MRI applications. There is no visible difference

among the 𝑇1 maps. The quantitative ROI analyzed results of white matter (WM)

and gray matter (GM) of all the six maps are presented in Table 5.3, which confirm

the consistency among 𝑇1 maps acquired from the chosen number of spokes. Both

the qualitative and quantitative results reveal that the proposed method is tolerant

to high undersampling factors (11 spokes corresponds to an undersampling factor

of 36) and therefore allows a relative freedom of choice of spokes. Noteworthy,

a higher undersampling factor has been achieved in the brain studies than in the

simulation studies. This is mainly because there are more physical coils placed

around the object which allows a further acceleration.

Figure 5.7: Brain 𝑇1 maps acquired using different number of spokes (11 to
21). White arrows indicate selected regions-of-interest for quantita-
tive analyses of white matter (WM) and gray matter (GM) respec-
tively. Measurement parameters: spatial resolution 0.75×0.75×5 mm3,
TR/TE/𝛼 = 2.57/1.68 ms/4∘.
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Reconstruction Parameters

Figure 5.8 shows brain 𝑇1 maps and the corresponding quantitative evaluations at

different Newton steps. Similar to experimental phantom results, high number of

iterations introduces more noise in the maps which is then reflected as a higher

standard deviation in the quantitative results. 7 Newton steps provides a good

balance between 𝑇1 accuracy and precision for this submillimeter application.

Figure 5.8: Human brain 𝑇1 maps (a) and the corresponding quantitative results
(b) along with Newton steps (6 to 10). White arrows in (a) indicate
selected regions-of-interest for quantitative analyses of white matter
(WM) and gray matter (GM) respectively. Connecting lines in (b) are
drawn to guide the eye. Measurement parameters: spatial resolution
0.75× 0.75× 5 mm3, TR/TE/𝛼 = 2.93/2.01 ms/4∘, 21 spokes/frame.
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Comparison to Fully-sampled Data

A comparison of brain 𝑇1 map estimated from the fully sampled data set and that

from a single-shot data set by the proposed method is presented in Figure 5.9. In

line with the phantom results, the 𝑇1 map by the proposed method is in a good

agreement with that from the fully sampled data set but exhibits a slight higher

noise level. Again, despite the higher standard deviation, the quantitative results

of white matter and gray matter shown in Table 5.2 confirm the general accuracy

of the proposed method on brain studies.

Figure 5.9: Comparison of a brain 𝑇1 map estimated from a fully sampled data
set and that from a single-shot data set by the proposed method.
The corresponding 𝑇1 difference map (× 10) is shown in the right.
Measurement parameters: spatial resolution 0.75 × 0.75 × 5 mm3,
TR/TE/𝛼 = 2.93/2.01 ms/4∘, 21 spokes/frame.

5.4 Extensions

5.4.1 Modified Non-local Means (NLM) Filter

To improve the precision of 𝑇1 maps, a recently proposed modified non-local

means (NLM) filter [54] was further employed to denoise the reconstructed im-

ages prior to pixel-wise fitting. The filter preserves small isolated details and ef-

ficiently removes background noise (corresponding to a 60% SNR improvement)

without introducing blur, smearing or patch artifacts. This is accomplished by

extending the conventional non-local means algorithm to adapt the influence of

the original pixel value according to a simple measure for patch regularity. Detail

preservation is improved by a compactly supported weighting kernel which closely

approximates the commonly used exponential weight [54]. An example of the de-

noising effect on reconstructed images and 𝑇1 map is shown in Figure 5.10. A

clear SNR improvement is observed in both images and 𝑇1 maps. Moreover, when
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Figure 5.10: Reconstructed images with different contrasts (enlarged, rows 1-4)
during inversion recovery together with 𝑇1 maps (row 5) before
and after the application of the denoising filter. The enlarged 𝑇1
difference maps (× 10) are shown in the last row. Measurement
parameters: spatial resolution 0.75 × 0.75 × 5 mm3, TR/TE/𝛼 =
2.93/2.01 ms/4∘, 21 spokes/frame.
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Table 5.4: Acquisition parameters for single-slice and multi-slice 𝑇1 mapping.

Brain/Phantom Abdomen

1-slice Multi-slice 1-slice Multi-slice

Field-of-view / mm2 192× 192 192× 192 320× 320 320× 320
Image matrix size 384× 384 256× 256 320× 320 212× 212
Resolution /mm2 0.5× 0.5 0.75× 0.75 1.0× 1.0 1.5× 1.5
Slice thickness / mm 5 5 8 8
Repetition time (TR) / ms 3.37 2.64 2.25 1.93
Echo time (TE) / ms 2.25 1.76 1.47 1.25
Bandwidth / Hz pixel−1 720 1090 1420 1970
Flip angle / degree 4 4 4 4
Spokes per frame 19 15 15 11
Time per frame / ms 64.0 39.6 33.8 21.2

compared to the 𝑇1 map from the fully sampled case, the 𝑇1 map after denoising

results in less residual errors.

5.4.2 Single-shot Multi-slice T1 mapping

Another extension of the above method is the simultaneous multi-slice 𝑇1 mapping

within one single-shot. There are two main spoke distribution schemes for multi-

slice data acquisition after a single non-selective inversion pulse, i.e., sequential

and interleaved modes as depicted in Figure 5.11. The sequential multi-slice ac-

quisition scheme is favored because it is advantageous to keep the temporal foot-

print of a single frame as small as possible to maintain temporal fidelity. Unlike

the interleaved mode where the signal relaxation follows the same model as for

the single-slice case (equation (5.3)) with a larger time spacing, i.e., the product

of the number of slices and the repetition time, a particular slice in the sequential

based data acquisition mode experiences periods of free relaxation governed by

pure 𝑇1 relaxation and interleaved with periods governed by 𝑇 *
1 . Therefore, the

signal relaxation is not compatible with the previous model in equation (5.3). An

analytical expression for this process was then derived in [81] based on a similar

structure of multi-slice spin locking [82]. As only (𝑀0, 𝑀𝑠𝑠, 𝑅*
1) are unknowns in

the relaxation formula [81], 𝑇1 can be calculated according to equation (5.4) after

a three parameter pixel-wise fitting. The accuracy of multi-slice 𝑇1 mapping was

then validated by comparison of the estimated 𝑇1 maps to those obtained from

single-slice acquisitions for experimental phantom, human brain and abdomen

studies. Further, a long-TR IR fast spin-echo (FSE) sequence with 13 logarithmi-

cally spaced inversion times between 50 and 2300 ms served as a gold standard for
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Figure 5.11: Acquisition schemes for spoke-interleaved (top) and spoke-sequential
(bottom) three-slice measurements after a non-selective adiabatic in-
version pulse.
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Table 5.5: 𝑇1 relaxation times 1 of a reference phantom
obtained by single-slice and multi-slice 𝑇1 map-
ping.

ROI2 1 Slice 3 Slices 5 Slices IR-FSE3

1 0.32± 0.03 0.31± 0.03 0.30± 0.03 0.33± 0.01
2 0.48± 0.04 0.46± 0.04 0.46± 0.04 0.50± 0.01
3 0.66± 0.06 0.65± 0.05 0.64± 0.06 0.68± 0.01
4 0.83± 0.07 0.82± 0.06 0.80± 0.07 0.86± 0.01
5 1.22± 0.07 1.22± 0.06 1.20± 0.07 1.25± 0.01
6 1.49± 0.09 1.48± 0.08 1.47± 0.10 1.50± 0.01

1 All values (mean ± SD) are given in s. Multi-slice data
refer to the same section.

2 Region-of-interest as indicated in Figure 5.12.
3 Reference data obtained by a long-TR (7.2 s) inversion

recovery fast spin-echo MRI sequence.

𝑇1 determination (TR = 7.2 s, TE = 12 ms, 6 echoes, measuring time = 50 min) of

the experimental phantom study. The acquisition parameters for single-slice and

multi-slice acquisitions are summarized in Table 5.4.

Figure 5.12 shows proton density and 𝑇1 maps for a 𝑇1 reference phantom. The

results were obtained for a single-slice acquisition at 0.5 mm in-plane resolution

as well as for a 3-slice and 5-slice acquisition at 0.75 mm in-plane resolution.

In all cases the maps correspond to the same section. Visual inspection reveals

almost identical image quality and color-coded 𝑇1 values apart from a slightly

enhanced noise level for 5-slice acquisitions. Corresponding single-pixel intensity

time courses and fitting results are shown in Figure 5.13 for three selected tubes

with 𝑇1 values of 0.33 s, 0.68 s and 1.25 s (tubes 1, 3 and 5 in Figure 5.12). The

numerical results summarized in Table 5.5 reveal accurate 𝑇1 determinations for

both small and large 𝑇1 values when compared to a reference measurement using

an IR fast spin-echo (FSE) MRI sequence at long TR (7.2 s). Multi-slice acquisitions

show a mild tendency towards lower 𝑇1 relaxation times with increasing number

of sections, while all values remain within one standard deviation.

In close analogy to the phantom data, Figure 5.14 shows proton density and 𝑇1

maps for a single-slice (0.5 mm in-plane resolution), 3-slice and 5-slice acquisition

(0.75 mm, same section selected) of the human brain. Apart from minor increased

noise level for a larger number of slices, all maps are of similar quality. This

finding is confirmed by the numerical results in Table 5.6 for brain (frontal and

occipital white and gray matter), liver, and kidney (cortex and medulla) studies.

The present results are then compared to some most recent literature findings

[83–85]. As it turned out, all 𝑇1 values are close to published data. Finally, Figure

5.15 shows all simultaneously acquired 𝑇1 maps of a transverse 5-slice acquisition
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Figure 5.12: Single-shot proton density and 𝑇1 maps obtained for a 𝑇1 reference
phantom. (Top) Single-slice acquisition at 0.5 mm in-plane resolu-
tion, (middle) 3-slice and (bottom) 5-slice acquisition at 0.75 mm
in-plane resolution (same section). For experimental details see Ta-
ble 5.4, numerical results for tubes 1 to 6 are given in Table 5.5.
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Table 5.6: 𝑇1 relaxation times of the human brain, liver and kidney obtained
by single-slice and multi-slice 𝑇1 mapping.

Tissue 1 Slice 3 Slices 5 Slices Literature

Frontal WM 0.73± 0.11 0.73± 0.10 0.74± 0.12 0.80− 0.88[83]
Occipital WM 0.78± 0.08 0.78± 0.09 0.78± 0.08
Frontal GM 1.36± 0.14 1.39± 0.10 1.38± 0.13 1.35− 1.50[83]
Occipital GM 1.49± 0.12 1.48± 0.11 1.48± 0.07
Liver 0.68± 0.05 0.68± 0.05 0.67± 0.04 0.76± 0.15 [84]
Kidney cortex 1.30± 0.08 1.26± 0.07 1.27± 0.08 1.38± 0.10 [85]
Kidney medulla 1.75± 0.09 1.75± 0.08 1.77± 0.05 1.65± 0.09 [85]

All values (mean ± SD) are given in s. Multi-slice data refer to the same
section.

of the liver at 1.5 mm in-plane resolution.

5.5 Discussion

A reliable and robust single-shot 𝑇1 mapping technique based on radial undersam-

pling and iterative image reconstruction has been developed. Different acquisition

parameters and the choice of reconstruction parameters have been validated on

simulation, experimental phantom, human brain and abdomen studies. The pro-

posed method can achieve a pronounced high undersampling factor and offers a

relative freedom of user-selective choices of spatial and temporal resolution. The

benefit of a high temporal resolution also enables an extension for simultaneous

multi-slice 𝑇1 mapping up to 5 sections. Further, a modified non-local means

(NLM) filter recently developed for real-time MRI can be used for the improve-

ment of 𝑇1 precision. Accuracy of the proposed method has been confirmed by

comparisons to ground truth for simulation studies, to 𝑇1 maps from fully-sampled

and the IR FSE sampled data sets for phantom studies and to 𝑇1 maps from fully-

sampled data set for brain studies respectively. Preliminary in vivo applications to

human brain, liver and kidney are in agreement with literature values.

Although a number of approaches have been described using undersampled ra-

dial acquisition schemes in conjunction with sliding-window and parallel imaging

reconstructions [73, 74, 86] or model-based approaches [76, 87], so far they only

allow for single-slice applications. Moreover, respective studies of a phantom or

human brain resulted in much lower spatial resolution of 1× 1× 8 mm3 = 8 mm3

[73], 1.8× 1.8× 5 mm3 = 16.2 mm3 [86], 1.56× 1.56× 10 mm3 = 24.3 mm3 [74]

and 1.56 × 1.56 × 4 mm3 = 9.75 mm3 [87] than achieved here for 𝑇1 mapping at

voxel sizes of 0.5×0.5×5 mm3 = 1.25 mm3 (single-slice) and 0.75×0.75×5 mm3 =
2.81 mm3 (multi-slice).
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Figure 5.13: Normalized MRI signal intensity time courses and respective fitting
results for single pixels of the 𝑇1 reference phantom (tubes 1, 3 and
5 in Figure 5.12 with 𝑇1 = 0.33 s (blue), 0.68 s (red), and 1.25 s
(black). (Top) Single-slice acquisition at 0.5 mm in-plane resolution,
(middle) 3-slice and (bottom) 5-slice acquisition at 0.75 mm in-plane
resolution (same section).
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Figure 5.14: Single-shot proton density and 𝑇1 maps obtained for human brain
(healthy subject). (Left) Single-slice acquisition at 0.5 mm in-plane
resolution, (middle) 3-slice and (Right) 5-slice acquisition at 0.75
mm in-plane resolution (same section). For experimental details see
Table 5.4.

Figure 5.15: (Top left) Single-shot proton density (first section) and (top middle
to bottom right) simultaneous multi-slice 𝑇1 maps at 1.5 mm in-plane
resolution obtained for human abdomen studies. For experimental
details see Table 5.4.
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5.6 Summary

In summary, a novel single-shot Look-Locker 𝑇1 mapping technique based on radial

undersampling and NLINV based image reconstruction is proposed. The applica-

tion to different organ systems demonstrates considerable potential, but certainly

awaits larger clinical trials. Moreover, the entire 𝑇1 mapping procedure includ-

ing image reconstruction together with denoising and pixel-wise fitting has been

integrated into the pipeline of a commercial MRI system. The technical solution

allows fast evaluations of 𝑇1 maps with a minimal delay of several seconds after

acquisition and is an important step towards routine clinical applications.





6 Single-shot Myocardial T1
Mapping by Real-time MRI

6.1 Introduction

Tissue characterization by native myocardial 𝑇1 mapping as well as quantitation

of perfusion and extracellular volume after contrast administration are essential

ingredients of CMR investigations and commonly performed by inversion-recovery

(IR) methods using FLASH [64, 88], EPI [89] or SSFP [66] according to the

Look-Locker technique [62]. To date, respective applications commonly rely on

a modified Look-Locker inversion (MOLLI) experiment [90] or manifold deriva-

tives therefrom – for a recent review of possibilities and limitations see [91]. In

fact, despite widespread usage, most approaches still suffer from practical restric-

tions such as limited spatial resolution and/or compromised 𝑇1 accuracy, so that

further technical improvements are warranted.

Following the recommendations of the 𝑇1 mapping Consensus Statement of the

Society for Cardiovascular Magnetic Resonance and CMR Working Group of the

European Society of Cardiology [92], the basic requirements and clinical needs

for cardiac 𝑇1 mapping comprise (i) speed, i.e., single-shot applications with mea-

suring times of a few seconds only, (ii) 𝑇1 accuracy, i.e., validated 𝑇1 values with

small standard deviations and without dependency on heart rate, (iii) sufficiently

high spatial resolution, i.e., about 1 mm in-plane resolution, and (iv) practical

robustness, i.e., no motion sensitivity and no image artifacts due to susceptibility

problems, SSFP bandings or radial streakings.

This chapter extends the basic 𝑇1 mapping approach presented in chapter 5. It

is based on a single-slice acquisition during a brief breathhold (typically 3 s only)

which combines a single-shot IR-FLASH technique with pronounced radial un-

dersampling of individual frames, iterative reconstruction as previously described

[81, 93], and fitting of a diastolic 𝑇1 map after deletion of systolic (i.e., motion-

affected) frames. The entire procedure is fully automatic and only requires trig-

gering of the initial inversion pulse to early diastole. The results comprise both

an image series representing the entire IR experiment and a color-coded 𝑇1 map

where pixel intensities directly refer to 𝑇1 values in millisecond. The proposed

59
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𝑇1 mapping method complements previous real-time MRI acquisitions of cardiac

function and flow [49, 77, 94–96] which together bear the potential to develop a

comprehensive real-time CMR examination.

6.2 Methods

All measurements were performed on a human MRI system operating at 3 T (Mag-

netom Prisma fit, Siemens Healthcare, Erlangen, Germany). Phantom measure-

ments employed the 64-channel head coil, while human heart studies were per-

formed with use of the 18-element thorax coil in combination with 12 elements of

the 32-element spine coil. Six young subjects (2 female, 4 male, age range 24 to

27 years) with no known illness (heart rate about 50 to 55 bpm) were recruited

among the students of the local university. Written informed consent, according to

the recommendations of the local ethics committee, was obtained from all subjects

prior to MRI.

According to the 𝑇1 mapping Consensus Statement [92] experimental valida-

tions of the proposed technique were performed at different simulated heart rates

with use of a commercial reference phantom (Diagnostic Sonar LTD, Scotland,

UK) consisting of 6 compartments with defined 𝑇1 values surrounded by water.

As suggested a long-TR IR fast spin-echo (FSE) sequence with 13 logarithmically

spaced inversion times between 50 and 2300 ms served for 𝑇1 determination (TR

= 7.2 s, TE = 12 ms, 6 echoes, measuring time = 50 min).

The procedures for myocardial 𝑇1 mapping described below (i.e., data acquisi-

tion, image reconstruction and 𝑇1 fitting) were implemented as an easy-to-use pro-

tocol on the MRI system by taking advantage of a bypass computer (sysGen/TYAN

Octuple-GPU, Sysgen, Bremen, Germany) previously developed for real-time MRI

[49] and equipped with 8 graphical processing units (GeForce GTX, TITAN, NVIDIA,

Santa Clara, CA). This bypass computer could be fully integrated into the recon-

struction pipeline of the commercial MRI system (Magnetom Prisma fit, Siemens

Healthcare, Erlangen, Germany) by a single network connection. If the system

software is compatible the implementation takes less than an hour including in-

stallation of ready-to-use measuring protocols for cardiac 𝑇1 mapping and other

real-time CMR applications.

6.2.1 MRI Acquisition and Reconstruction

The chosen acquisition scheme for myocardial 𝑇1 mapping is illustrated in Fig-

ure 6.1. In order to achieve maximum robustness and 𝑇1 accuracy, a previously

developed IR FLASH sequence [81] was applied as a single-slice technique us-
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Figure 6.1: Myocardial 𝑇1 mapping using single-shot IR-FLASH with radial under-
sampling. Finger pulse trigger = black bar.

ing a non-selective adiabatic 180∘ inversion pulse triggered to early diastole. The

present study employed a simple and robust finger pulse trigger and a 100 ms de-

lay to inversion. Although the method yields similar accuracy for a slice-selective

inversion pulse when applied to stationary tissue (data not shown), myocardial 𝑇1

mapping exclusively used a nonselective inversion pulse to minimize the effects of

through-plane motion and myocardial perfusion.

Continuous image readout after inversion was based on a radial FLASH se-

quence with pronounced undersampling. Time-efficient spoiling of residual trans-

verse magnetizations was accomplished by random RF phases [78]. Myocardial

𝑇1 maps were then acquired at a nominal in-plane resolution of 1.0× 1.0 mm2 and

6 mm section thickness using a FOV = 256× 256 mm2 in combination with a reso-

lution of 512 complex data points per radial spoke (using twofold oversampling).

All spokes were homogeneously distributed over 360∘, while 5 successive frames

used complementary sets of spokes in interleaved order. Other parameters were

TR = 2.26 ms, TE = 1.47 ms, and flip angle 4∘. The number of spokes per frame

varied from 27 to 23 and finally 19 spokes yielding a temporal resolution of 61

ms, 52 ms and 43 ms, respectively. The total acquisition time was initially chosen

to be 8 s, but later reduced to 4 s and 3 s.

Image reconstruction has previously been described for the case of non-cardiac

𝑇1 mapping [81, 93] and employs the same iteratively regularized NLINV algo-

rithm as developed for real-time MRI, for details see [49]. Apart from an advanced

gradient-delay correction [95] and data compression to 10 virtual channels based

on a principal component analysis, the method takes advantage of some degree
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of spatial smoothness of coil sensitivities as well as of temporal regularization to

the preceding frame. However, this latter term of the underlying cost function is

downsized relative to the data consistency term by a factor of two during each

iteration. The reconstruction ensures high temporal fidelity as demonstrated for

a motion phantom rotating at defined speed [97] and therefore does not compro-

mise the resolution of contrast changes during inversion recovery.

The actual reconstruction process started immediately after the end of data ac-

quisition, first by a reverse NLINV reconstruction [49] of the last 10 frames to

obtain high-quality coil sensitivity maps using 6 Newton steps. Subsequently, the

entire image series was reconstructed in reverse order by fixing the coil sensitivi-

ties to those obtained by NLINV. The resulting linear inverse problem was solved

by the iteratively regularized conjugate gradient method.

Prior to 𝑇1 fitting the images were spatially filtered by a recently developed

modified non-local means algorithm [54] which has been briefly introduced in

section 5.4.1 for precision improvement.

Temporal median filtering was applied pixelwise and only used for the purpose

of displaying image series, whereas no temporal filter was used for 𝑇1 mapping.

The median filter extended over 5 frames to match the number of frames with dif-

ferent sets of spokes, e.g. see [49, 97]. As illustrated in Figure 6.1, the influence of

systolic motion on the fitting of a diastolic 𝑇1 map was minimized by automatically

deleting images over a period of 500 ms starting from 400 ms prior to each finger

pulse trigger signal.

6.2.2 T1 Quantitation

After reconstruction, spatial filtering and systolic deletion the remaining complex

images were fitted to the complex signal model

𝑀(𝑡) = 𝑀0(𝛾 − (1 + 𝛾)𝑒−𝑡/𝑇 *
1 ) (6.1)

where 𝑀0 is the initial complex signal after inversion, t is the central time point

(i.e., radial spoke) of each frame during inversion recovery, 𝛾 is the ratio between

the steady-state signal 𝑀𝑠𝑠 and 𝑀0, and 𝑇 *
1 is the shortened apparent 𝑇1 due to

multiple low flip-angle RF excitations. The same phase is assumed for 𝑀𝑠𝑠 and 𝑀0,

which leads to four unknown real-valued parameters: ℜ{𝑀0}, ℑ{𝑀0}, 𝛾 and 𝑇 *
1 .

A pixelwise estimation was performed using the Trust-Region algorithm (Chapter

4.1 and 4.3 in [23]) based on the Dlib C++ library [98]. The algorithm performs
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an unconstrained minimization of the cost function defined by

1
2

∑︁
𝑡

(︂
ℜ{𝑀(𝑡)− 𝑦(𝑡)}2 + ℑ{𝑀(𝑡)− 𝑦(𝑡)}2

)︂
(6.2)

where 𝑦(𝑡) is the corresponding pixel intensity at time 𝑡 during inversion recovery.

The iterative optimization was stopped if the relative difference of the objective

function values between successive iterations was less than 10−5. 𝑇1 was then

calculated by [99]:

𝑇1 = 𝑇 *
1 /𝛾 + 2𝛿𝑡 (6.3)

with 𝛿𝑡 the delay time between the center of inversion pulse and the start of data

acquisition. In the present implementation this period covered half of the inver-

sion pulse (5 ms) and a following spoiler gradient (10 ms). For the assessment

of myocardial 𝑇1 values in the septal wall, the regions of interest were carefully

selected to exclude the blood pool. These analyses were accomplished using the

arrayShow tool [79] in MATLAB (MathWorks, Natik, MA).

Table 6.1: 𝑇1 relaxation times for a reference phantom and simulated heart rates.1

𝑇1 / ms 2 331± 11 494± 22 676± 19 857± 25 1225± 20 1501± 23
𝑇2 / ms 3 101± 2 46± 2 81± 2 132± 5 138± 5 166± 5

Heart rate 4

0 315± 13 476± 18 660± 25 850± 28 1227± 34 1511± 42
40 315± 13 475± 18 659± 26 850± 28 1226± 34 1513± 43
60 314± 13 475± 18 661± 27 852± 30 1230± 36 1513± 44
80 316± 13 476± 20 663± 29 853± 30 1230± 37 1516± 46
100 317± 16 479± 23 665± 31 853± 35 1236± 38 1517± 50

1 Single-shot IR FLASH was performed at 43 ms resolution (19 spokes) for a duration
of 3 s.

2 𝑇1 values for a long-TR IR-FSE sequence.
3 𝑇2 values according to Ref. [28].
4 Simulated heart rates (in beats per minute) correspond to the deletion of a 500 ms

period ("systole") in each cardiac cycle. No images are deleted for zero heart rate.

6.3 Results

Table 6.1 summarizes 𝑇1 relaxation times for a reference phantom. The data were

acquired with the radial IR-FLASH method proposed for myocardial 𝑇1 mapping

(43 ms resolution, 3 s duration) at different simulated heart rates ranging from

40 to 100 bpm. Zero heart rate refers to 𝑇1 fitting without deletion of any frames.

A comparison with 𝑇1 relaxation times obtained by a long-TR IR-FSE technique
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reveals excellent agreement for most (long) values, while two tubes with shorter

values are slightly underestimated (maximum deviation 5%). Figures 6.2 and 6.3

demonstrate myocardial 𝑇1 maps for different numbers of spokes per frame, i.e.

different temporal resolution, and different durations of the IR-FLASH measure-

ment, respectively. In all cases, visual inspection reveals no detectable difference.

This qualitative finding is confirmed by the quantitative analysis in Table 6.3. The

effect of filtering prior to 𝑇1 fitting is demonstrated in Figure 6.4 comparing raw

images and 𝑇1 maps with and without application of a spatial filter. Figure 6.5

shows three 𝑇1 maps for a single subject in a basal, mid-ventricular and apical

short-axis section, while Figure 6.6 summarizes the mid-ventricular 𝑇1 maps of

all 6 subjects. The quantitative results for all 6 subjects are summarized in Table

6.3 (septal 𝑇1 values in a basal, mid-ventricular and apical section) and Table 6.4

(segmental 𝑇1 values in a mid-ventricular section), respectively.

Figure 6.2: Myocardial 𝑇1 maps for different temporal resolutions. Single-shot IR-
FLASH was performed with 27, 23 and 19 spokes per frame (i.e., ac-
quisition times of 63, 52 and 43 ms) for a duration of 8 s.

Figure 6.3: Myocardial 𝑇1 maps for different measurement durations. Single-shot
IR-FLASH was performed at 43 ms temporal resolution (19 spokes) for
durations of 8 s, 4 s, and 3 s.
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Table 6.2: Mean 𝑇1 values1 of the mid-ventricular septal
wall for different temporal resolutions2 and
durations3.

Spokes per frame 27 23 19
Resolution / ms 61 52 43

IR FLASH

8 s 1253± 29 1254± 29 1253± 31
4 s 1252± 30 1254± 30 1253± 31
3 s 1254± 32 1257± 33 1256± 33

1 Averaged across subjects (mean ± SD, n=6).
2 Number of spokes and acquisition time per frame.
3 Measuring time of single-shot IR-FLASH.

Table 6.3: 𝑇1 relaxation times of the septal wall.

Subject Basal Mid-ventricular Apical
𝑇1/♯Frames 1 𝑇1/♯Frames 𝑇1/♯Frames

1 1250± 69 / 48 1256± 64 / 48 1298± 72 / 38
2 1237± 60 / 48 1263± 54 / 47 1291± 58 / 47
3 1270± 74 / 35 1287± 69 / 35 1332± 60 / 38
4 1277± 71 / 47 1295± 61 / 49 1298± 50 / 47
5 1215± 68 / 49 1209± 51 / 47 1256± 48 / 47
6 1227± 66 / 49 1227± 51 / 47 1253± 46 / 48

Mean 2 1246± 24 1256± 33 1288± 30
Ref.[100] 1157 1159 1181
Ref.[101] 1315
Ref.[102] 1286

1 𝑇1 (in ms, mean ± SD in a ROI covering most of the sep-
tal wall) for single-shot IR-FLASH at 43 ms resolution (19
spokes) and 3 s duration. ♯Frames refers to the number of
images retained after deletion of systolic frames.

2 Mean ± SD across subjects.
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Figure 6.4: Cardiac images (a-c) and 𝑇1 maps (d) (left) without and (right) with
spatial filtering. Single-shot IR-FLASH was performed at 43 ms tempo-
ral resolution (19 spokes) for a duration of 3 s. The images (magnified
views) refer to an early time point after inversion (a), nulling of my-
ocardial tissue (b), and nulling of blood signal (c), respectively.
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Figure 6.5: Myocardial 𝑇1 maps of a basal, mid-ventricular and apical section.
Single-shot IR-FLASH was performed at 43 ms resolution (19 spokes)
for a duration of 3 s.

Table 6.4: Regional myocardial 𝑇1 relaxation times1.

Subject Anterior Septal Inferior Lateral

1 1295± 70 1261± 70 1223± 95 1218± 70
2 1191± 60 1259± 56 1245± 91 1157± 64
3 1212± 62 1291± 68 1270± 89 1238± 69
4 1224± 64 1304± 64 1230± 92 1217± 68
5 1169± 56 1206± 59 1155± 79 1166± 57
6 1173± 56 1234± 58 1171± 66 1156± 69

Mean 2 1211± 47 1259± 36 1288± 30 1192± 36

1 𝑇1 (in ms, mean ± SD per standardized ROI in a mid-
ventricular section) for single-shot IR-FLASH at 43 ms
resolution (19 spokes) and 3 s duration.

2 Mean ± SD across subjects.
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Figure 6.6: Myocardial 𝑇1 maps of all 6 subjects (mid-ventricular section, magni-
fied view). Single-shot IR-FLASH was performed at 43 ms resolution
(19 spokes) for a duration of 3 s.
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6.4 Discussion

This chapter describes a novel method for myocardial 𝑇1 mapping which offers

accuracy, high spatial resolution, practical robustness and speed. The results in-

dicate that myocardial 𝑇1 mapping may be performed at a nominal resolution of

1.0 mm with a temporal resolution of 43 ms per frame using a short IR-FLASH

measurement of only 3 s.

𝑇1 accuracy was confirmed in a phantom study providing reference 𝑇1 values

for a long-TR IR-FSE sequence. A slight underestimation of 𝑇1 relaxation times

for two tubes with values of about 500 and 675 ms coincides with the occurrence

of the shortest 𝑇2 relaxation times of 46 and 81 ms, respectively (compare Table

6.1). The slight deviation of 𝑇1 values may therefore be due to a partial failure

of the “reference” IR-FSE acquisition which extends to a maximum echo time of

72 ms and thus may affect the image definition of signal contributions with short

𝑇2 relaxation times. Similar effects are to be expected for IR methods with a

SSFP readout module, because such sequences require relatively long 𝑇2 relaxation

times to build up sufficiently strong transverse coherences.

Apart from 𝑇1 accuracy, the results in Table 6.1 confirm the independence of

𝑇1 quantitation on the heart rate up to 100 bpm which effectively refers to the

independence of 𝑇1 on the number of fitted images after elimination of “systolic”

frames. This advantageous behavior reflects the fact that the highly undersampled

radial FLASH readout ensures a sufficiently large number of frames for a proper

sampling of the IR signal time course. 𝑇1 precision was also demonstrated to be

high both in vitro and in vivo by small SD values of 3−5% of the mean for phantom

measurements and 4 − 8% for septal 𝑇1 values (compare Tables 6.1 to 6.4). In

addition, the comparison in Figure 6.4 indicates that the achieved 𝑇1 mapping

quality not necessarily depends on the use of filtering. Nevertheless, while high-

quality 𝑇1 maps may be obtained by fitting unfiltered images, the use of a newly

modified non-local means filter [54] further improves the SNR of 𝑇1 maps without

the expense of blurring.

Although myocardial 𝑇1 relaxation times found here were in general agreement

with literature values, comparisons to previous results are compromised by nu-

merous technical differences or even inadequacies. As an example, the current

values (1246− 1288 ms) are in the range of those reported in [102] (1286 ms), but

slightly higher than in [100] (1157− 1181 ms) and lower than in [101](1315 ms),

who all used similar MOLLI sequences. Of course, all techniques including the one

proposed here suffer from some general limitations of the Lock-Locker approach

which often are due to the presence of residual motion both in plane and through

plane. For example, diastolic circulation of blood within the ventricles leads to im-
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age intensities which violate the expected IR signal model and preclude a reliable

fitting of blood 𝑇1 relaxation times. Even myocardial movements may play a role

during early diastolic phases. However, this mainly becomes a problem for motion-

sensitive 𝑇1 such as SSFP sequences, whereas short-TE FLASH sequences as used

here and recently proposed by others [103, 104] are much less affected. This is

because SSFP sequences inherently rely on the establishment of phase coherence

over multiple repetition intervals which is commonly precluded (i.e., spoiled) in

the presence of motion, whereas FLASH sequences interrogate a pool of longitu-

dinal magnetization with independent low-flip angle excitations that give rise to

spin-density weighted images. In fact, when exploiting the additional motion ro-

bustness of radial encodings in the present implementation, preliminary trials of

myocardial 𝑇1 mapping during free breathing showed little if any qualitative and

quantitative difference to breathhold scans (data not shown). Thus, the proposed

method seems to be robust enough to even work in patients who are unable to

perform any breathing protocol.

Another factor contributing to myocardial 𝑇1 values is the different access to

high spatial resolution and the concomitant consideration of partial volume ef-

fects. Such problems have been reported for thin myocardial walls [91] including

the assessment of fibrosis in the peri-infarct zone as well as for the right ventri-

cle [105]. These 𝑇1 mapping studies using MOLLI techniques were performed at

1.4× 1.9× 8.0 mm3 for low heart rates and 1.9× 2.3× 8.0 mm3 at high heart rates

[91]. A higher resolution of 1.2 × 1.2 × 4 mm3 was only achieved with the use of

a segmented readout module after inversion which therefore required repetitive

acquisitions and very long measuring times of 2.5 min per 𝑇1 map [105]. Another

recent work using IR-FLASH employed a sliding-window reconstruction [104] at

1.17 × 1.17 × 8 mm3 resolution, which was achieved by twofold zero-padding,

i.e. an interpolation of the acquired resolution. To the best of our knowledge,

the method proposed here is the first technique for myocardial 𝑇1 mapping which

offers 1.0× 1.0× 6.0 mm3 resolution within a measuring time of only 3 s.

The most important limitation of this study is the small sample size. This is

because the work represents a new technical development which requires basic

validation with use of a 𝑇1 reference phantom and a group of normal subjects.

Obviously, this precedes any evaluation of the clinical utility of the proposed 𝑇1

mapping in a large cohort of patients. Moreover, at this stage, widespread clinical

applications are hampered by the fact that the technical solution requires dedi-

cated software and hardware which so far is only available for MRI systems of the

same manufacturer as used here. A remaining temporary restriction is the compu-

tational time needed for image reconstruction and 𝑇1 fitting which currently takes

about 13 s per 𝑇1 map. Nevertheless, this may not necessarily block the clinical
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workflow, because a delayed reconstruction does not interfere with continuous

acquisitions.

6.5 Summary

Myocardial 𝑇1 mapping based on single-shot IR-FLASH with radial undersampling

and iterative reconstruction as well as 𝑇1 fitting with automated deletion of systolic

frames meets most current clinical challenges. The proposed method warrants

extensive clinical trials as it promises significant advantages for CMR studies which

rely on native or post-contrast 𝑇1 quantitation.





7 Model-based Reconstruction for
Single-shot Inversion-recovery
Look-Locker T1 Mapping with
Sparsity Constraints

Apart from techniques introduced in chapter 5 for acceleration of inversion-recovery

Look-Locker 𝑇1 mapping, other methods making use of model information have

also been proposed for speed-up of parameter mapping in general. One way is to

include the underlying model into the image reconstruction process explicitly with

some constraints (e.g., sparsity, low-rank or joint sparsity and low-rank) in the pa-

rameter dimension [106–111]. After images with different contrasts being recon-

structed, a pixelwise fitting is then followed to obtain parameter maps. The other

way is to estimate parameter maps directly from undersampled 𝑘-space data by

model-based reconstruction, bypassing the image reconstruction step completely

[112–117]. Specifically with respect to single-shot Look-Locker based parame-

ter mapping, it has been proposed to iteratively fit the parameters of the mono-

exponential model to undersampled radial 𝑘-space data [76, 87] or to jointly esti-

mate three parameter maps as a solution of a nonlinear inverse problem [? ].

In the following chapter, the general concept in [47, 113] is expanded by for-

mulating the direct parameter estimation from 𝑘-space as a solution of a nonlinear

inversion problem. Both parameter maps and coil sensitivities are simultaneously

estimated from the whole inversion recovery radially acquired data. Sparsity con-

straints are applied to the parameter maps to improve the conditioning of the

inverse problem [115]. The above nonlinear inversion problem is then solved

by the iteratively regularized Gauss-Newton method (IRGNM) within which the

fast iterative shrinkage-thresholding algorithm (FISTA) is employed to solve the

ℓ1 regularized subproblem. The accuracy of the proposed 𝑇1 mapping method is

determined for simulated data and experimentally validated in phantom, human

brain and abdomen studies. A comparison to the method presented in chapter 5

is also given.

73
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7.1 Theory

7.1.1 Signal Equation

The inversion recovery Look-Locker based sequence consists of a magnetization

preparation pulse, i.e., inversion pulse, followed by a series of low flip angle RF

excitations with spoiled gradient echo readout. The MRI signal during this process

obtained from multiple receiver coils can be described by

𝑠𝑗(𝑡) =
∫︁

𝑀(�⃗�)𝑐𝑗(�⃗�)𝑒−𝑖�⃗�·⃗𝑘(𝑡)𝑑�⃗� (7.1)

with 𝑐𝑗(�⃗�) the 𝑗th coil, �⃗� the position in image space, �⃗�(𝑡) the chosen 𝑘-space

trajectory and 𝑀(�⃗�) the magnetization signal at time 𝑡𝑘 after inversion [62, 64]:

𝑀𝑡𝑘
(�⃗�) = 𝑀𝑠𝑠(�⃗�)−

(︁
𝑀𝑠𝑠(�⃗�) + 𝑀0(�⃗�)

)︁
· 𝑒−𝑡𝑘·𝑅*

1(�⃗�) (7.2)

where 𝑀𝑠𝑠 represents the steady-state magnetization, 𝑀0 is the equilibrium mag-

netization, 𝑡𝑘 the inversion time and 𝑅*
1 the effective relaxation rate (i.e., 𝑅*

1 =
1/𝑇 *

1 ). With an estimation of three parameters 𝑀𝑠𝑠, 𝑀0, 𝑅*
1 from equation (7.2)

and an assumption TR ≪ 𝑇 *
1 , 𝑇1, the desired 𝑇1 can be calculated according to

[62]:

𝑇1 = 𝑀0

𝑀𝑠𝑠 ·𝑅*
1
. (7.3)

7.1.2 Model-based Reconstruction

Here, the estimation of both parameter maps and coil sensitivities from 𝑘-space

is formulated as a nonlinear inverse problem, i.e., signal equation (7.1) is un-

derstood as a nonlinear equation with an operator 𝐹 which maps parameters

(𝑀𝑠𝑠, 𝑀0, 𝑅*
1)𝑇 and coil sensitivity profiles (𝑐1 . . . 𝑐𝑁)𝑇 to the measured 𝑘-space data

𝑦:

𝐹 (𝑥) = 𝑦 with 𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑀𝑠𝑠

𝑀0

𝑅*
1

𝑐1
...

𝑐𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.4)
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and the forward operator 𝐹 given by:

𝐹 : 𝑥 ↦→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑃1ℱ{𝑐1 ·𝑀(𝑀𝑠𝑠, 𝑀0, 𝑅*
1, 𝑡1)}

...

𝑃1ℱ{𝑐𝑁 ·𝑀(𝑀𝑠𝑠, 𝑀0, 𝑅*
1, 𝑡1)}

𝑃2ℱ{𝑐1 ·𝑀(𝑀𝑠𝑠, 𝑀0, 𝑅*
1, 𝑡2)}

...

𝑃𝑛ℱ{𝑐𝑁 ·𝑀(𝑀𝑠𝑠, 𝑀0, 𝑅*
1, 𝑡𝑛)}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.5)

where ℱ is the Fourier transformation, 𝑃 is the orthogonal projection onto the

trajectory, 𝑀 is the model prescribed in equation (7.2) and 𝑛 is the number of

𝑘-space frames during inversion recovery. Because the joint reconstruction of pa-

rameter maps and coil sensitivities is an ill-posed problem, an optimization of the

least square residual ‖𝐹 (𝑥) − 𝑦‖2
2 would yield an unrealistic solution. To over-

come this, additional a priori information (i.e., regularization terms) needs to be

incorporated leading to the following optimization problem:

�̂� = argmin
𝑥
‖𝐹 (𝑥)− 𝑦‖2

2 + 𝛼𝑅(𝑥p) + 𝛽𝑄(𝑥𝑐). (7.6)

Here, 𝑥p represents the three parameter maps, i.e., 𝑥p = (𝑀𝑠𝑠, 𝑀0, 𝑅*
1)𝑇 , 𝑥𝑐 rep-

resents the coils, i.e., 𝑥𝑐 = (𝑐1, . . . , 𝑐𝑁)𝑇 . 𝑅(·) and 𝑄(·) are regularizations on

parameter maps and coil sensitivities respectively. 𝛼 and 𝛽 are regularization pa-

rameters. Equation (7.6) is then solved by iteratively regularized Gauss-Newton

method (IRGNM)[48, 118], which has been previously introduced for NLINV [47].

The IRGNM iteratively updates an estimate of the solution based on the lineariza-

tion of the above nonlinear problem:

𝑥𝑛+1 = argmin
𝑥
‖𝐷𝐹 (𝑥𝑛)(𝑥 − 𝑥𝑛) + 𝐹 (𝑥𝑛) − 𝑦‖2

2 + 𝛼𝑛𝑅(𝑥p) + 𝛽𝑛𝑄(𝑥𝑐) (7.7)

where 𝐷𝐹 (𝑥𝑛) is the 𝐹𝑟𝑒𝑐ℎ𝑒𝑡 derivative (or Jacobian) of 𝐹 at the point 𝑥𝑛 and

regularization parameters 𝛼𝑛, 𝛽𝑛 are reduced in each iteration step, i.e., 𝛼𝑛 = 𝛼0·𝑞𝑛
𝛼

and 𝛽𝑛 = 𝛽0 · 𝑞𝑛
𝛽 with 𝑞𝛼, 𝑞𝛽 ∈ (0, 1). Under certain conditions the iterative updates

of 𝑥𝑛+1 will converge to a solution.

7.1.3 Regularization

The model-based reconstruction adopts the 𝐿2-norm of weighted Fourier coeffi-

cients of sensitivities in [47] to enforce the intrinsic smoothness of coil sensitiv-

ities. For the parameter maps Tikhonov regularizations can be employed with

which very efficient optimization algorithms such as the CG method can be used.
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However, as 𝛼𝑛 is decreasing during the iterations, the problem in equation (7.7)

will become increasingly ill-conditioned. This leads to noise amplification in the

later Gauss-Newton steps, which can be counteracted by replacing the 𝐿2 penalty

with other regularizations, e.g., total variation (TV) or total generalized variation

(TGV) [119]. One drawback of this type of regularization is that it usually entails

staircase artifacts which is not favorable to the clinicians. Hence a wavelet-based

ℓ1 regularization is used instead to penalize the parameter maps. By defining 𝑤𝑟𝑝

the wavelet coefficient of the 𝑝th parameter map at the spatial position 𝑟, the ℓ1

regularization term can be expressed as:

𝛼𝑛𝑅(𝑥p) =
∑︁

𝑝

𝛼𝑛,𝑝

∑︁
𝑟

|𝑤𝑟𝑝| =
∑︁

𝑝

∑︁
𝑟

√︁
|𝛼𝑛,𝑝𝑤𝑟𝑝|2, (7.8)

with 𝛼𝑛,𝑝 the regularization parameter for the 𝑝th parameter map at the 𝑛th Gauss-

Newton step. Further, because the three parameter maps share the same object,

it is very likely that edges in the three maps appear in the same spatial position,

which means the wavelet coefficients have a similar distribution. Therefore, a joint

sparsity model [120] is employed, i.e.,

𝛼𝑛𝑅(𝑥p) = 𝛼𝑛

∑︁
𝑟

√︃∑︁
𝑝

|𝑤𝑟𝑝|2. (7.9)

By doing so, small coefficients in one map will be protected from being suppressed

by nonlinear thresholding if a large coefficient is present in one of the other maps

at the same position. In order to apply joint thresholding, all the parameters need

to have a similar scaling which is achieved by normalizing each map with respect

to its 𝐿2 norm prior to wavelet transformation.

In addition, as the radial trajectory does not sample the 𝑘-space corners, a 𝑘-

space filter [27] is added to the sampling pattern 𝑃 to penalize signals in the

undefined corners of 𝑘-space.

7.1.4 Optimization

Combining the regularization terms with equation (7.7), the subproblem we want

to minimize in each Gauss-Newton step reads:

𝑥𝑛+1 = argmin
𝑥
‖𝐷𝐹 (𝑥𝑛)(𝑥−𝑥𝑛) + 𝐹 (𝑥𝑛)−𝑦‖2

2 + 𝛽𝑛

𝑁∑︁
𝑗=1
‖𝑐𝑗‖2

2 + 𝛼𝑛

∑︁
𝑟

√︃∑︁
𝑝

|𝑤𝑟𝑝|2

(7.10)

where 𝑐𝑗 is the weighted Fourier coefficients of the 𝑗th coil [47], i.e., 𝑐𝑗 = (1 +
𝑠‖�⃗�‖2)𝑙/2ℱ𝑐𝑗 with 𝑠, 𝑙 scalar constants. The first two terms of the above equa-
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tion are a smooth and convex function of 𝑥, the ℓ1 regularization term is a non-

smooth but convex function. Equation (7.10) is solved using the fast iterative

shrinkage-thresholding algorithm (FISTA) [121]. Bound constraints for the physi-

cal parameters (i.e., 𝑅*
1 > 0) are employed within FISTA. The pseudo-codes of the

algorithms are shown in Algorithms 1 and 2. To apply the above algorithms to the

model-based reconstruction the derivative of the operator and the adjoint of the

derivative are also needed to be implemented, both of which are provided in the

appendix.

Algorithm 1 IRGNM
while ‖𝐹 (𝑥𝑛)− 𝑦‖2 ≥ 𝜖 do

Solve with FISTA:
𝑥𝑛+1 = argmin𝑥 ‖𝐷𝐹 (𝑥𝑛)(𝑥 − 𝑥𝑛) + 𝐹 (𝑥𝑛) − 𝑦‖2

2 + 𝛽𝑛

𝑁∑︀
𝑗=1
‖𝑐𝑗‖2

2 +

𝛼𝑛
∑︀

𝑟

√︁∑︀
𝑝 |𝑤𝑟𝑝|2

𝛼𝑛+1 = max(𝛼min,
(︁

1
3

)︁𝑛
𝛼0)

𝛽𝑛+1 =
(︁

1
3

)︁𝑛
𝛽0

𝑛 = 𝑛 + 1
end while

By setting

𝑔(𝑥) = ‖𝐷𝐹 (𝑥𝑛)(𝑥− 𝑥𝑛) + 𝐹 (𝑥𝑛)− 𝑦‖2
2 + 𝛽𝑛

𝑁∑︁
𝑗=1
‖𝑐𝑗‖2

2 and

ℎ(𝑥) = 𝛼𝑛

∑︁
𝑟

√︃∑︁
𝑝

|𝑤𝑟𝑝|2

Algorithm 2 FISTA for the Subproblem
Initialization: 𝐿 - A Lipschitz constant of ∇𝑔(𝑥), 𝑡0 = 1, 𝑢0 = 𝑥0

𝑛 = 𝑥𝑛;
for 𝑘 ← 0, (𝐾 − 1) do ◁ 𝐾 = min(400, 10 · 2𝑛−1)

𝑧𝑘 = 𝑢𝑘 − 1
𝐿
· ∇𝑔(𝑢𝑘)

𝑧𝑘 = 𝑊 −1JointSoftThresh(𝑊𝑧𝑘, 𝛼𝑛/𝐿)
𝑡𝑘+1 = 1+

√
(1+4𝑡2

𝑘
)

2
𝑥𝑘+1

𝑛 = argmin{𝑔(𝑥) + ℎ(𝑥) : 𝑥 = 𝑧𝑘, 𝑥𝑘
𝑛}

𝑢𝑘+1 = 𝑥𝑘+1
𝑛 +

(︁
𝑡𝑘

𝑡𝑘+1

)︁
(𝑧𝑘 − 𝑥𝑘+1

𝑛 ) +
(︁

𝑡𝑘−1
𝑡𝑘+1

)︁
(𝑥𝑘+1

𝑛 − 𝑥𝑘
𝑛)

end for
return 𝑢𝑘+1
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7.2 Materials and Methods

7.2.1 Data Acquisition

A small golden-angle (∼68.75∘) sampling scheme is employed here to sample the

data continuously during inversion recovery. Spoiling of residual transverse mag-

netizations was accomplished by random RF phases [78]. Golden-angle based

sampling strategy covers the entire 𝑘-space without repeating any angles and al-

lows for arbitrary binnings of spokes to form one 𝑘-space frame [73]. Although

no intermediate image is needed to be reconstructed using model-based recon-

structions, binning spokes from neighborhoods with a proper size helps to reduce

the computation time as long as the temporal fidelity is not compromised [64].

Therefore, a small number of spokes (e.g. 21 to 25) is binned together to form

one 𝑘-space frame. The sequence diagram is given in Figure 7.1.

Figure 7.1: Data acquisition scheme of a single-shot IR LL sequence with a small
golden-angle readout. 𝑡1, 𝑡2, 𝑡3 are the first three inversion times.

7.2.2 Numerical Simulations

To evaluate the accuracy of the proposed approach, a numerical phantom com-

posed of three circular objects and one circular background was used. The 𝑘-space

data was derived from the analytical Fourier space representation of an ellipse.

Three different 𝑇1 relaxation times (300 ms, 800 ms, 1500 ms) with a background
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compartment of 2000 ms were simulated for the phantom. An array of 4 circu-

lar receiver coils was assumed, surrounding the phantom without overlap. The

complex sensitivities of these coils were calculated based on Biot-Savart’s law and

sinusoidal fitting [80]. Complex white Gaussian noise with a standard deviation of

0.1 was added to the simulated 𝑘-space data. The inversion recovery Look-Locker

radial FLASH sequence employing the small golden-angle readout was then used

to sample the simulated 𝑘-space data with a base resolution of 192 pixels covering

a FOV of 128 mm, TR/TE = 2.93/2.01 ms, FA = 4∘, total acquisition time 4 s.

7.2.3 MRI

All MRI measurements were performed on a human MRI system operating at 3T

(Magnetom Prisma fit, Siemens Healthcare, Erlangen, Germany). Phantom and

brain studies were conducted with a standard 64-channel head coil, while abdom-

inal scans were performed with an 18-element thorax coil in conjunction with 18

elements of the 32-element spine coil. Subjects without known illness were re-

cruited among the students of the local university and written informed consent,

according to the recommendations of the local ethics committee, was obtained

from all subjects prior to MRI. The proposed method was validated experimen-

tally with a commercial reference phantom (Diagnostic Sonar LTD, Scotland, UK)

consisting of 6 compartments with defined 𝑇1 values surrounded by water. The

sequence protocols for phantom, brain and abdomen studies are summarized in

Table 7.1. Abdominal measurements were performed during a brief breath hold.

Fully sampled reference data sets for phantom and brain studies were acquired

by combining 21 sequential single-shot IR LL acquired data sets. The radial view-

order for each individual inversion recovery acquisition was varied to yield a uni-

form distribution of 441 spokes per time point after combination.

7.2.4 Parameter Choice for Reconstruction

Scaling

The convergence speed of the proposed method depends largely on the relative

scaling of partial derivatives of the cost function with respect to each component

in 𝑥. The scaling also influences the choice of regularization parameters. In this

problem, after normalizing the raw data with respect to the norm of the data

acquired at the first inversion time, two additional scalars 𝐿𝑀0 and 𝐿𝑅*
1

were in-
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Table 7.1: MRI parameters for phantom, human brain and
abdomen acquisitions.

Phantom/Brain Abdomen

Field-of-view / mm2 192× 192 320× 320
Image matrix size 256× 256 320× 320
Resolution / mm2 0.75× 0.75 1× 1
Slice thickness / mm 5 6
Repetition time (TR) / ms 2.93 2.4
Echo time (TE) / ms 2.01 1.62
Bandwidth / Hz pixel−1 1030 1420
Flip angle / degree 4 4
Spokes per (𝑘-space) frame 21 25
Total acquisition time / s 4 4

troduced to balance the partial derivatives of the three parameters:

𝑀0 = 𝐿𝑀0 · �̂�0 (7.11)

𝑅*
1 = 𝐿𝑅*

1
·𝑅*

1 (7.12)

with �̂�0 and 𝑅*
1 the parameters actually optimized during reconstruction. 𝐿𝑀0 , 𝐿𝑅*

1

should be calculated to satisfy ‖𝑑�̂�0‖ ≈ ‖𝑑𝑀𝑠𝑠‖ ≈ ‖𝑑𝑅*
1‖. Practically, a choice of

𝐿𝑀0 = 2 and 𝐿𝑅*
1

= 1 roughly kept the partial derivatives of the parameters bal-

anced after normalizing the raw data. 𝐿𝑀0 and 𝐿𝑅*
1

were then set to be 2 and 1

respectively for all the reconstructions in this work.

Initialization

For Newton-type algorithms, initialization is very important for convergence. In

practice this seems to be no problem in the proposed method. With a reasonable

choice of 𝑅*
1 with 1.5, 𝑀𝑠𝑠 and �̂�0 with 1 and all coils 0 initially, good convergence

were observed in all tested cases.

Regularization Parameters

Regularization parameters need to be tuned in order to balance the preservation

of fine details and the residual noise. In this study, both 𝛼0 and 𝛽0 were chosen

to be 1 and reduced by a factor of 3 (i.e., 𝑞𝛼 = 𝑞𝛽 = 3) in each Gauss-Newton

step. Similar to [119], a minimum value of 𝛼 was introduced to further control

the noise in the later Gauss-Newton steps, i.e., 𝛼𝑛+1 = max(𝛼min, 𝑞𝛼𝛼𝑛). 𝛼min

was tuned from 0.001 to 0.004 (step size 0.001). An optimal value for 𝛼min was

determined by experienced radiologists to get good SNR without compromising
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the quantitative accuracy meanwhile. The parameters 𝑠 and 𝑙 were chosen to be

440 mm2 and 16 respectively.

7.2.5 Implementation

All data processing was done offline. The entire dataset from multiple coils was

first corrected for gradient delay errors [52] and then compressed to 10 virtual

channels using principle component analysis. A convolution based gridding [53]

without density compensation was used to interpolate the radial samples onto

a Cartesian grid on which all successive iterative computations were performed.

The preprocessing steps were done using MATLAB (MathWorks, Natik, MA) and

the main iterative optimization part was implemented in C/CUDA (GeForce GTX

TITAN, NVIDIA, Santa Clara, CA). The wavelet transform (Daubechies 4) from

the BART toolbox [122] was used for the sparsity regularization. A randomized

shifting [123] was employed to reduce the blocky artifacts caused by the lack of

translation invariance properties of orthogonal wavelets. The number of inner

iterations was initialized with 𝑁0 = 10 and increased to 𝑁𝑘+1 = min(400, 2𝑁𝑘)
in the (𝑘 + 1)th Gauss-Newton step. The Lipschitz constant used in FISTA was

calculated using the power method with 30 iterations.

7.3 Results

7.3.1 Validation Studies

Figure 7.2 shows parameter maps 𝑀𝑠𝑠, 𝑀0 and 𝑅*
1 together with the correspond-

ing 𝑇1 maps for the numerical phantom estimated by model-based reconstruction

with 𝐿2 and ℓ1 regularizations as well as NLINV plus pixel-wise fitting respectively

(rows 1-4). The bottom row shows corresponding line profiles of the 𝑅1 maps.

When compared to the other two methods, the ℓ1 regularized model-based re-

construction produces parameter maps with a significant reduction of noise. The

flat line profile on the 𝑅1 map reveals that the 𝑇1 map by ℓ1 regularized model-

based reconstruction is closest to the true solution. In addition, the model-based

reconstruction methods, in accordance with the ground truth, provide a more ho-

mogeneous 𝑀0 map than NLINV (second row in Figure 7.2). A ROI analysis of the

𝑇1 maps is shown in Table 7.2. Both proposed model-based reconstructions and

NLINV have a good 𝑇1 accuracy when compared to the ground truth. The best

precision is achieved by the ℓ1 regularized model-based reconstruction.

Figure 7.3 shows experimental phantom 𝑇1 maps from a fully-sampled dataset

with a single virtual coil and multiple virtual coils using gridding plus inverse FFT,
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Figure 7.2: Validation of the proposed method in a numerical phantom study.
Rows 1-3 show the parameter maps 𝑀𝑠𝑠, 𝑀0, and 𝑅*

1 obtained by
model-based reconstruction with 𝐿2, ℓ1 regularization and NLINV re-
construction plus pixel-wise fitting. Row 4 shows the corresponding 𝑇1
maps. Line profiles of the 𝑅1 maps are shown in the last Row. Model-
based reconstruction methods provide more homogeneous 𝑀0 maps
than NLINV (arrows). The regularization parameter for the ℓ1 regular-
ized reconstruction was 𝛼min = 0.003.
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Figure 7.3: Phantom 𝑇1 maps estimated by different methods from a fully-sampled
dataset with a single virtual coil (left) and multiple virtual coils (right).
The visible color change in the color-coded 𝑇1 map of the first row
indicates a bias caused by the RSS operation. The other three methods
do not have this problem.
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Figure 7.4: Validation of the proposed method in an experimental phantom study.
(Left) Parameter maps 𝑀𝑠𝑠, 𝑀0, 𝑅*

1 and 𝑇1 from a fully sampled data
set by 𝐿2 regularized model-based reconstruction. (Second column
to right) Parameter maps from a single-shot IR LL sampled data by
𝐿2, ℓ1 regularized model-based reconstruction and NLINV respectively.
The corresponding 𝑇1 differences (× 10) to the fully-sampled case are
shown in the fifth row. The regularization parameter for the ℓ1 regu-
larized reconstruction was 𝛼min = 0.003. For measurement details see
Table 7.1.
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Table 7.2: Quantitative evaluations of the 𝑇1 maps (ms) for the
numerical phantom shown in Figure 7.2.

True Model-based Model-based NLINV
𝑇1 (𝐿2) (ℓ1)

Tube 1 300 300± 19 301± 6 300± 18
Tube 2 800 802± 47 800± 6 804± 35
Tube 3 1500 1500± 77 1498± 17 1498± 58

Background 2000 1997± 101 2000± 25 1989± 74

Results represent mean values ± standard deviations.

Table 7.3: Quantitative evaluations of the experimental phantom 𝑇1 maps (Val-
ues given in ms).

Tube Fully-1 Model-based diff 2 Model-based diff NLINV diff
sampled (𝐿2) (%) (ℓ1) (%) (%)

1 311± 8 309± 30 0.6 309± 9 0.6 295± 27 5.1
2 458± 12 454± 47 0.9 451± 12 1.5 445± 39 2.8
3 633± 10 629± 45 0.6 625± 15 1.3 621± 35 1.9
4 805± 14 798± 56 0.9 793± 20 1.5 791± 43 1.7
5 1158± 21 1152± 81 0.5 1146± 45 1.0 1146± 64 1.0
6 1441± 37 1432± 80 0.6 1430± 46 0.8 1428± 63 0.9
1 Fully-sampled 𝑇1 map is obtained by 𝐿2 regularized model-based recon-

struction.
2 Given is the relative difference of mean values to the fully sampled data.

NLINV and 𝐿2 regularized model-based reconstruction, respectively. Images from

different coils after gridding are combined using Root of Sum of Squares (RSS) and

a matched filter based technique [40] prior to pixel-wise fitting. The visible color

change in the color-coded 𝑇1 maps from single coil to multiple coils in the first

row indicates a bias caused by the RSS operation. The other three methods do not

have this problem. Results from the ℓ1 regularized model-based reconstruction are

not presented as it is not necessary to apply ℓ1 regularization in the reconstruction

of fully-sampled data.

Figure 7.4 shows a comparison of different methods for an experimental phan-

tom study. Reference is taken from the 𝐿2 regularized model-based reconstruction

of the fully sampled dataset. Noise increases significantly on the parameter maps

when the data set is reduced from fully-sampled to single-shot (undersampling

factor 21) in 𝐿2 regularized model-based reconstruction as well as in the NLINV

based method. This is largely overcome by the ℓ1 regularized model-based recon-

struction. Consequently, the corresponding 𝑇1 map of the ℓ1 regularized model-

based reconstruction has a smallest residual error with respect to the reference.

The quantitative ROI analyses of the 𝑇1 maps in Table 7.3 confirm the accuracy of
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the proposed model-based reconstructions and NLINV. In general, model-based re-

constructions have a better accuracy (maximum relative difference rate 1.5%, 0.9%
for ℓ1 and 𝐿2 respectively) than NLINV (maximum relative difference rate 5.1%).

For all tubes the standard deviations in the 𝑇1 maps produced by ℓ1 regularized

model-based reconstruction are much smaller than the other two methods.

7.3.2 Human Studies

Comparison of Different Regularization Parameters

Figure 7.5 shows in vivo 𝑇1 maps by model-based reconstruction with ℓ1 regular-

ization for four representative sparsity regularization parameters. Low values of

𝛼min result in noisy 𝑇1 maps while high values introduce blurring. A 𝛼min of 0.003
in brain and 0.002 in liver provide a good trade-off between noise reduction and

detail preservation.

Brain and Abdomen Studies

Figure 7.6 compares brain parameter maps together with 𝑇1 maps by different

methods. The reference is again estimated from the fully sampled dataset by 𝐿2

regularized model-based reconstruction. In line with the results for the experimen-

tal phantom study, noise in the 𝑇1 maps reconstructed by 𝐿2 regularized model-

based reconstruction as well as by NLINV is much higher than in the fully sampled

data set. The suppression of noise is again most successful in the ℓ1 regularized

model-based reconstruction. Estimated 𝑇1 map by ℓ1 regularized model-based re-

construction is also closest to the reference. Comparing to the fully-sampled case,

the ℓ1 regularized model-based reconstructed maps suffer from blurring and re-

duced image contrast. This is mainly due to the high undersampling factor which

is similar to compressed sensing artifact and is not because of the reconstruction

parameter selection (as seen in the Figure 7.5). In addition, parameter maps esti-

mated by NLINV are more blurry than those by the model-based reconstructions.

One possible reason may be that the images reconstructed by NLINV at such a high

undersampling factor are normally noisy and not artifact free, a pixel-wise fitting

will reduce the noise and artifacts but at a cost of blurring the final results.

Figure 7.7 shows estimated coil sensitivities after PCA by NLINV and ℓ1 regular-

ized model-based reconstruction, respectively. No significant visual difference is

observed, indicating that the proposed method estimates coil sensitivities well.

Figure 7.8 shows a comparison of the three parameters 𝑀𝑠𝑠, 𝑀0 and 𝑅*
1 together

with the 𝑇1 maps by model-based reconstructions and NLINV in the abdominal

study. Again, compared to the other two methods, both noise reduction and spatial
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Figure 7.5: Model-based reconstructed 𝑇1 maps with sparsity constraints using
four representative regularization parameters (𝛼min) in brain and ab-
domen studies. Low values of 𝛼min resulted in noisy 𝑇1 maps while
high values introduced blurring. A 𝛼min of 0.003 in brain and 0.002
in liver provided a good trade-off between noise reduction and detail
preservation.
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Figure 7.6: (Left, rows 1-4) Brain parameter maps 𝑀𝑠𝑠, 𝑀0, 𝑅*
1 and 𝑇1 maps from

a fully sampled data by 𝐿2 regularized model-based reconstruction.
(Second column to right, rows 1-4) Parameter maps from a single-shot
IR LL sampled data by 𝐿2, ℓ1 regularized model-based reconstruction
and NLINV respectively. The corresponding 𝑇1 differences (× 10) to
the fully-sampled case are shown in the fifth row. The sixth row shows
a magnified view of the 𝑇1 maps. For measurement details see Table
7.1.
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Figure 7.7: Estimated complex coil sensitivities (after PCA) by NLINV (top) and
sparsity constrained model-based reconstruction (bottom) for a brain
study.
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definition of image details have been significantly improved by the ℓ1 regularized

model-based reconstruction. Noteworthy, in contrast to brain studies, a compari-

son to a fully-sampled dataset is infeasible as the data acquisition takes more than

7 minutes which precludes a single breath-hold.

Figure 7.8: Abdomen parameter maps and 𝑇1 maps estimated by model-based re-
constructions and NLINV from single-shot IR LL sampled data with a
brief breath-hold. For measurement details see Table 7.1.

Comparison to NLINV with Denoising

For NLINV based methods, a recently proposed modified non-local means filter

[54] can be used as a post-processing step on the NLINV reconstructed images

prior to pixel-wise fitting. It helps to improve the precision of the resulting 𝑇1

maps. Figure 7.9(a) shows a comparison of brain 𝑇1 maps by ℓ1 regularized
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Figure 7.9: Comparison of brain and abdomen 𝑇1 maps estimated by ℓ1 regular-
ized model-based reconstruction and NLINV with a denoising filter ap-
plied to the reconstructed images prior to pixel-wise fitting. The fully-
sampled brain 𝑇1 map and the abdominal 𝑇1 map by NLINV are pre-
sented for comparisons. White arrows indicate blurring effects caused
by the denoising filter.
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model-based reconstruction and NLINV with denoising to the reference. Figure

7.9(b) compares 𝑇1 maps of abdomen by ℓ1 regularized model-based reconstruc-

tion, NLINV and NLINV with denoising respectively. The denoising filter applied to

the images before fitting helps to remove noise in the corresponding 𝑇1 maps while

it also introduces blurring effects especially in the edge regions (e.g., blood ves-

sel borders) indicated by the white arrows. In contrast, the ℓ1 regularized model-

based reconstruction has a better balance between noise removal and preservation

of details.

7.4 Discussion

This work presents a model-based reconstruction method which jointly estimates

parameter maps and coil sensitivities from single-shot IR Look-Locker radially ac-

quired data. A Wavelet-based ℓ1 regularization is applied on the parameter maps

to improve the performance. Accuracy of the proposed method is confirmed on

results from simulation, experimental phantom and brain studies. A pronounced

improvement of precision by the sparsity constraints have been observed in all

studies. The proposed method allows for a fast high resolution 𝑇1 mapping within

4 seconds.

Comparing to an existing single-shot Look-Locker 𝑇1 mapping method based on

NLINV [81], the proposed model-based reconstruction bypasses the intermediate

image reconstruction step and therefore allows for an arbitrary choice of spoke

binning and does not need to compromise between temporal resolution and im-

age quality. Further, model-based reconstruction allows for a direct application of

regularization on the parameter maps during reconstruction, which is important

for high acceleration factors. The ℓ1 regularized model-based reconstruction pro-

duced 𝑇1 maps with a much higher precision, more spatial defined information

and is closer to the map estimated from the fully-sampled dataset than NLINV. In

comparison to the method by NLINV plus denoising before pixel-wise fitting, the

ℓ1 regularized model-based reconstruction can achieve a better balance between

noise reduction and detail preservation. In addition, phantom results demon-

strates a slightly increased accuracy of the proposed model-based reconstructions

than the NLINV based method.

Another model-based approach (MAP) [76, 87] has been proposed for single-

shot Look-Locker parameter mapping at a relatively low resolution (1.6 × 1.6 ×
4 mm3). The MAP method iteratively fits the parameters of the mono-exponential

model to the undersampled radial 𝑘-space data. In contrast, the proposed method

formulates the estimation of unknowns as a nonlinear inverse problem, which of-

fers a greater flexibility for incorporation of additional nonlinear constraints and
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regularization terms. Such options are very important for high acceleration factors

necessary in fast high resolution 𝑇1 mapping. Another critical point for MAP is that

it uses the RSS operation to combine different coil images during its iteration. The

RSS combination assumes that the coil sensitivities can be approximated by the

image itself in the regions of high signal. For inversion recovery based imaging,

images around the null point usually have a very low signal intensity, which vio-

lates the assumption. Therefore, the combined image will be biased, which will in

consequence bias the final 𝑇1 map. This phenomenon has been observed even for

a fully-sampled dataset as shown in Figure 7.3. This operation is not needed for

the proposed method.

Another potential advantage of the proposed method is the joint estimation of

parameter maps and coil sensitivities from the whole data. When combined with

parallel imaging, most model-based reconstructions rely on the coil information

pre-estimated by methods such as NLINV or ESPIRiT [31] from a subset of data.

The separation of coil calibration and parameter estimation reduces the complex-

ity of the whole problem. However, calibration of coil sensitivities from a subset

of data is suboptimal and any inaccuracy in the first step will bring errors to the

later step of parameter estimation. The proposed method on the other hand re-

constructs parameter maps and coil sensitivities simultaneously using all available

data. Similar to autocalibrated parallel imaging method [46, 47], this could po-

tentially improve the calibration of coil sensitivities and in consequence improve

the performance of model-based reconstructions.

At this moment, the most relevant limitation of the proposed method is the need

for a time consuming offline calculation. Comparing to image-space based meth-

ods such as NLINV, model-based reconstructions occupy more memory because

all data acquired during inversion recovery is needed in one operation during it-

eration and therefore are computationally more expensive. Although the main

optimization part has been transformed into a C/CUDA implementation, part of

the implementation still relies on the CPU version (e.g., wavelet transform), the

communication between CPU and GPU then largely prolongs the whole compu-

tation time. So far it takes 10 to 20 minutes depending on the matrix size for

reconstruction of a dataset used in this work. Further optimization of the imple-

mentation could yield an acceleration factor of at least 2–5.

The proposed method might proof as a useful tool for high resolution myocardial

𝑇1 mapping. Its combination of very short acquisition times, which are critically re-

quired in myocardial parameter mapping, with good accuracy and precision makes

the proposed method an attractive alternative to existing methods [91].
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7.5 Summary

In summary, a model-based reconstruction method which jointly estimates pa-

rameter maps and coil sensitivities is proposed to accelerate high resolution 𝑇1

mapping using single-shot IR Look-Locker radial 𝑘-space data. Sparsity regular-

ization serves as a stabilization term against noise amplification, which otherwise

limits the acceleration factor for high resolution 𝑇1 mapping. With this method,

a high-resolution 𝑇1 map can be generated from data acquired within 4 seconds.

Compared to other existing methods, the proposed method is more accurate and

has a better precision.

7.6 Appendix

7.6.1 Derivative and adjoint derivatives of the operators

Due to the linearity of the Fourier transformation and the product rule of deriva-

tives, the derivate of the operator can be calculated as

𝐷𝐹 (𝑥)
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, (7.13)

and the adjoint can then be derived as
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with partial derivatives

𝜕𝑀(𝑡𝑘)
𝜕𝑀𝑠𝑠

= 1− 𝑒−𝑅*
1 ·𝑡𝑘 ,

𝜕𝑀(𝑡𝑘)
𝜕𝑀0

= 𝑒−𝑅*
1 ·𝑡𝑘 ,

𝜕𝑀(𝑡𝑘)
𝜕𝑅*

1
= 𝑡𝑘 · (𝑀𝑠𝑠 −𝑀0) · 𝑒−𝑅*

1 ·𝑡𝑘

where * denotes pointwise complex conjugation.





8 Summary and Outlook

8.1 Summary

The major goal of this thesis was the development of advanced single-shot 𝑇1 map-

ping techniques offering experimental robustness, accuracy and precision, and

high spatial resolution. Based on the inversion recovery Look-Locker sequence,

this goal could be achieved by two complementary developments using either

a modified real-time MRI technique with subsequent 𝑇1 fitting or an advanced

model-based reconstruction technique for direct 𝑇1 mapping with even more flex-

ible data acquisition schemes.

The first method relies on highly undersampled radial FLASH acquisitions and

an image reconstruction involving two separate steps, i.e., nonlinear inverse es-

timation of optimal coil sensitivities from the steady-state signals using NLINV

and subsequent image reconstruction using an iteratively regularized linear re-

construction method based on the CG algorithm. The proposed method offers

substantial freedom of user-selective choices of spatial and temporal resolution.

Moreover, it has been extended towards multi-slice 𝑇1 mapping yielding simulta-

neous 𝑇1 maps for up to 5 sections. Further, as 𝑇1 values of the myocardium are

of utmost clinical interest, a single-slice version of the above method was adapted

for single-shot diastolic myocardial 𝑇1 mapping where images from systolic phases

are automatically deleted prior to pixel-wise fitting. In contrast to other existing

methods such as MOLLI, the proposed method demonstrates better accuracy and

higher spatial resolution within a much shorter acquisition time.

The second methodological contribution is the development of a model-based

reconstruction technique which directly estimates parameter maps and coil sen-

sitivities from the raw data. The algorithm can be considered as an extension of

NLINV as the inversion-recovery signal model contains more parameters than re-

quired for parallel imaging (i.e., image content and coil sensitivities). With use

of IRGNM for solving the nonlinear problem, the algorithm for the linearized sub-

problem was modified from CG to FISTA to incorporate a joint sparsity regulariza-

tion for improving the precision of the parameter maps. Further, in order to deal

with the high computational demand, a parallelized implementation of the above

algorithms in C/CUDA has been accomplished. Numerical as well as experimental
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results indicate a significant noise suppression when replacing the Tikhonov regu-

larization with the sparsity constraints in the model-based reconstruction. When

compared to the image-space method based on real-time MRI, the sparsity regular-

ized model-based reconstruction reveals a better balance between noise reduction

and preservation of details.

In summary, both methods developed in this thesis allow for fast and accurate

𝑇1 mapping using data from only a single inversion recovery experiment. Applica-

tions of the first method could successfully be extended from static to moving tis-

sues, i.e., achieving single-shot myocardial 𝑇1 mapping. Simulations as well as first

results for an experimental phantom and human subjects (brain, abdomen) sug-

gest superiority of the second method, i.e., a model-based reconstruction. How-

ever, further optimizations and more extensive validations are still needed.

8.2 Future Work

A major drawback of the model-based reconstruction is the increased computation

time. Although the main optimization part has been implemented in C/CUDA, the

communication between CPU and GPU still largely prolongs the computation. Fur-

ther optimization of the parallelized implementation could yield an acceleration

factor of at least 2–5. In addition, the possibility of algorithmic improvements

should be further investigated, e.g., it is possible to build a preconditioner dynam-

ically during IRGNM iterations to speed up the algorithm [124]. There are also

several ways to avoid the expensive computation of Lipschitz constants used in

FISTA [125].

Other physical measures could be the investigation of a more accurate modeling

of the inversion-recovery process such as the incorporation of inversion efficiency

and partial volume effects. So far, masking of systolic images in myocardial 𝑇1

mapping relies on the signal from the finger pulse. A data-driven automatic sorting

of systolic/diastolic data based on the information implicitly contained in the raw

data may be developed to make this technique an even more robust clinical tool.

The application of the model-based reconstruction technique in single-shot my-

ocardial mapping is another open question. The combination of a very short ac-

quisition time, high accuracy and precision and the lack of postprocessing render

this method an attractive alternative to existing methods [91]. Further, the algo-

rithms developed for the sparsity regularization in the model-based reconstruction

can also easily be adopted in other applications based on the IRGNM algorithm.

Possible examples comprise diffusion imaging using NLINV or model-based recon-

structions for parameters such as flow velocity or 𝑇2 to improve the conditioning

of corresponding inverse problems.
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Finally, after further optimizations as discussed above, it will be necessary to

evaluate the methods based on image space (i.e., real-time MRI with pixelwise

fitting) and data space (i.e., model-based reconstructions) more extensively in

clinical settings such as 𝑇1 mapping of abnormal tissues or myocardial 𝑇1 mapping

before and after contrast agent in order to appraise their values for diagnostic

procedures.





Appendix

Formulation of IR Look-Locker Signal Model

Suppose the longitudinal magnetization is 𝑚𝑖 before each 𝛼 pulse. After the 𝛼

pulse, it becomes 𝑚𝑖 cos(𝛼), during the readout, the longitudinal magnetization

will regrow according to 𝑚(𝑡) = 1 + [𝑚(0)− 1] exp(−𝑡/𝑇1). Therefore, the longitu-

dinal magnetization before the next pulse is

𝑚𝑖+1 = 1 + [𝑚𝑖 cos(𝛼)− 1] exp(−TR/𝑇1). (.1)

When an inversion pulse is applied, i.e., 𝑚(0) = −1, by relating 𝑚𝑖 to 𝑚0 with

induction, equation (.1) has an explicit expression:

𝑚𝑖 = 𝑚∞ − (1 + 𝑚∞)[cos(𝛼) exp(−TR/𝑇1)]𝑖 (.2)

with

𝑚∞ = 1− exp(−TR/𝑇1)
1− cos(𝛼) exp(−TR/𝑇1)

(.3)

and 𝑖 the index of the 𝑖th 𝛼 pulse. Because 𝑡 = 𝑖TR, by substituting 𝑖 = 𝑡/TR and

reformulation, equation (.2) will become

𝑚(𝑡) = 𝑚∞ − (1 + 𝑚∞) exp(−𝑡/𝑇 *
1 ) (.4)

with an effective relaxation time 𝑇 *
1 given by

1
𝑇 *

1
= 1

𝑇1
− 1

TR ln[cos(𝛼)] (.5)

and

𝑚∞ = 1− exp(−TR/𝑇1)
1− exp(−TR/𝑇 *

1 ) . (.6)

Since normally TR ≪ 𝑇 *
1 , 𝑇1, 𝑚∞ can be approximated by

𝑚∞ ≈
𝑇 *

1
𝑇1

. (.7)
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Therefore, the signal equation of the Look-Locker sequence can be described by

𝑀(𝑡) = 𝑀𝑠𝑠 − (𝑀0 + 𝑀𝑠𝑠) exp(−𝑡/𝑇 *
1 ). (.8)

Analytical Fourier Transform for Phantom Simulations

Simulations of MRI samples have achieved by constructing phantoms from a com-

position of primitives, from which the continuous Fourier transform (FT) is known

analytically. The FT of a rect function is known to be a sinc function. Accordingly,

the 𝑘-space of a two-dimensional rectangle can be calculated from:

𝑓rect(𝑘𝑥, 𝑘𝑦) = 2𝜋 · 𝑎𝑥 · 𝑎𝑦 · sinc(𝑎𝑥 · 𝑘𝑥) · sinc(𝑎𝑦 · 𝑘𝑦) (.9)

where 𝑎𝑥, 𝑎𝑦 denote the size of the rectangle in 𝑥- and 𝑦- direction. Similarly, the

2D FT of an ellipse can also be expressed analytically. This expression allows to

simulate samples from numerical phantoms with elliptical primitives. The respec-

tive 𝑘-space samples can be calculated by:

𝑓circ(𝑘𝑥, 𝑘𝑦) =
𝑎 · 𝐽1

(︁
𝑏 ·

√︁
(𝑎/𝑏 · 𝑘𝑥)2 + 𝑘2

𝑦

)︁
√︁

(𝑎/𝑏 · 𝑘𝑥)2 + 𝑘2
𝑦

(.10)

with 𝐽1(·) the first-order Bessel function of the first kind and a, b are the axes of the

ellipse [126]. Due to the linearity of the Fourier transformation, an analytical FT of

any composition of rectangles and ellipses can be derived by superposition of these

functions, where a displacement of a single element can be realized with a linear

phase modulation. Therefore, arbitrary numerical phantoms can be constructed

for the simulations [15].
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Acronyms

𝑇1 spin-lattice relaxation time.

𝑇2 spin-spin relaxation time.

𝑇 *
2 effective spin-spin relaxation time.

ACS AutoCalibration Signal.

bSSFP balanced Steady State Free Precession.

CG Conjugate Gradient.

CG-SENSE Conjugate Gradient SENSE.

CMR Cardiovascular Magnetic Resonance.

CS Compressed Sensing.

CT Computed Tomography.

CUDA Compute Unified Device Architecture.

DCF Density Compensation Filter.

DFT Discrete Fourier Transformation.

EPI Echo Planner Imaging.

FFT Fast Fourier Transformation.

FID Free Induction Decay.

FISTA Fast Iterative Shrinkage-Thresholding Algorithm.

FLASH Fast Low Angle SHot.

FOV Field Of View.

FSE Fast Spin Echo.
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FT Fourier Transform.

GM Gray Matter.

GPU Graphic Processing Unit.

GRAPPA GeneRalized Autocalibrating Partially Parallel Acquisitions.

GRE Gradient Echo.

IR Inversion Recovery.

IRGNM Iteratively Regularized Gauss-Newton Method.

JSENSE Joint SENSE.

LL Look-Locker.

MOLLI Modified Look-Locker Inversion.

MRI Magnetic Resonance Imaging.

NLINV NonLinear INVersion.

NMR Nuclear Magnetic Resonance.

NUFFT Non-Uniform FFT.

PCA Principle Component Analysis.

PET Positron Emission Tomography.

RF Radio Frequency.

ROI Region Of Interest.

RSS Root of Sum of Squares.

SE Spin Echo.

SENSE SENSitivity Encoding.

SMASH SiMultaneous Acquisition of Spatial Harmonics.

SNR Signal-to-Noise Ratio.

SSFP Steady-State Free Precession.
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TE Echo Time.

TGV Total Generalized Variation.

TI Inversion Time.

TR Repetition Time.

TV Total Variation.

VFA Variable Flip Angle.

WM White Matter.
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