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Abstract

The aim of the present thesis is to determine radiation conditions for

higher-dimensional Schrödinger equations with periodic potentials. There

is well-known result for Helmholtz equations. However to my knowledge,

there have been only a few works on periodic Schrödinger equations.

We employ Floquet Bloch theory to study periodic Schrödinger op-

erators. The limiting absorption principal derives integral formulas for

solutions of periodic Schrödinger equations. Then, we use the analytic

perturbation theory and the stationary phase method to establish the radia-

tion conditions.
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1 Introduction

The stationary Schrödinger operator H = −∆+V(x) on L2(Rd) with a periodic potential

V has been intensively studied for many years by both mathematicians and physicists.

It plays an important role in solid state physics and has applications to photonic crys-

tal, metameterial, carbon nanostructure, and topological insulator. The main tool for

periodic operators, Floquet-Bloch-Gelfand transform, reduces the study of a periodic

operator on whole space Rd to the study of this operator on a bounded domain with

various boundary conditions. Perturbation theory exhibits the band gap structure of

the spectrum of the operator H. The main purpose of this thesis is to study radiation

conditions for the corresponding periodic Schrödinger equation

− ∆u(x) + V(x)u(x) − λu(x) = f (x), (1.1)

where V is a smooth real-valued function on Rd, periodic with respect to the integer

lattice Zd, f ∈ C∞c (Rd) and λ is the spectral parameter in the spectrum of H. Radia-

tion conditions model wave propagation in periodic media when the frequency is in the

spectrum.

The radiation conditions in homogeneous media are named after Sommerfeld [Som10,

Som12]. These conditions ensure the unique solvability of the Helmholtz equation. We

are interested in providing such conditions at infinity and prove the unique solvability of

the corresponding boundary value problem of (1.1). The outgoing (physical) solution

is derived by using the limiting absorption principle, i.e., one adds a small absorption

iǫ, ǫ , 0 to the spectral parameter and get the unique L2-solution of the equation

−∆uǫ(x) + V(x)uǫ(x) − (λ + iǫ)uǫ(x) = f (x).

The family of solutions (uǫ)ǫ>0 converges to a solution u of (1.1) as ǫ → +0 in a suitable

sense. This limit is called the outgoing or physical solution for the periodic Schrödinger

equation without absorption. The precise expression of the solution u allows to analyze



1 Introduction

the asymptotics at infinity and give an intrinsic characterization of the outgoing solution.

More generally, the result could be extended to linear second-order elliptic equations on

R
d with periodic coefficients and systems. Let us first look at known results:

1.1 The Sommerfeld radiation condition for homogeneous

media

In 1912, Sommerfeld introduced boundary conditions at infinity which ensure the unique

solvability of certain boundary value problems [Sch92]. He considered three dimen-

sional Helmholtz equation in exterior domain [Som10, Som12]


∆u + k2u = 0 in R

3 \ K,

u = u0 on ∂K,
(1.2)

where k > 0, K is a compact set in R3 and it is assumed that R3 \ K is connected. The

Helmholtz equation arises when one considers time harmonic wave equations. Because

the domain R3 \ K is unbounded, it implies that k2 is in the interior of the spectrum of

Laplace operator −∆ on L2(R3\K). Without any further conditions, the Helmholtz equa-

tion (1.2) is not uniquely solvable. Sommerfeld had found precise boundary conditions

at infinity that ensure the unique solvability of the Helmholtz equation (1.2)

u = O

(
1
r

)
,

∂u

∂r
− iku = o

(
1
r

)
as r → ∞, (1.3)

where r =
√

x2 + y2 + z2. The conditions (1.3) are called outgoing radiation condi-

tions which have physical meaning, i.e., waves propagate to infinity. Later on, Rellich

strengthened the result by removing the first condition in (1.3) and derived a radiation

condition for arbitrary dimension d [Rel43]

r(d−1)/2

(
∂u

∂r
− iku

)
= o(1) as r →∞. (1.4)

Remark 1.1. The case k = 0 can be done by a special treatment (see [Tay11, Section

9.1]). Conditions which ensure the existence and uniqueness are

u(x) = O

(
1
r

)
, ∂ru(x) = o

(
1
r

)
as r → ∞.
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1.2 The limiting absorption principle for periodic media

1.2 The limiting absorption principle for periodic media

There are many approaches to the limiting absorption principle. The classical result was

found by D.M. Èı̆d [Èı̆d69]. He established the limiting absorption for a class of elliptic

operators

H = −
d∑

k,l

∂

∂xk

(
akl(x)

∂

∂xl

)
+ V(x) on L2(Rd),

where akl(x) = δkl (δkl is the Kronecker) outside of some sphere and V(x) decays suf-

ficiently fast at infinity. He used the Green function for −∆ and some estimates in

weighted Sobolev spaces to derive the limiting absorption principle for operator H with

f (x) a sufficiently decaying function, λ in the interior of the spectrum σ(H). He also

got a radiation condition for three dimensional case

lim
r→∞

∫

S (0,r)

∣∣∣∣∣
∂u

∂r
− iku

∣∣∣∣∣
2

dσ = 0,

where S (0, r) is the sphere of radius r.

Recently, in [BA11] the author made use of the regularity of the projection-valued

measure associated with a self-adjoint operator H on a Hilbert space H to derive the

limiting absorption principle. The resolvent operator R(z) = (H − z)−1 is defined in the

upper (lower) half plane C± = {z : ± Imz > 0}.
Then, it is clear that R(z) is not convergent in the norm topology of L (H ), the

space of linear bounded operators from H to H , when z → λ for λ ∈ σ(H). But the

convergence can be achieved in a weaker topology.

Definition 1.2 ([BA11, Definition 3.1]). Let H be a separable Hilbert space and X be

another Hilbert space such that the embedding X ֒→H is continuous, X ∗ is anti-dual

of X . A self-adjoint operator H on H satisfies the limiting absorption principle in an

open set U ⊂ R if the limits

R±(λ) = lim
ε→+0

R(λ ± iε), ∀λ ∈ U

exit in the norm topology of L (X ,X ∗).

Ben-Artzi derived a general criteria for obtaining the limiting absorption principle:

Definition 1.3 ([BA11, Definition 3.3]). Let E(λ) be the projection-valued measure as-

sociated with a self-adjoint operator H, X ∗
H

be another Hilbert space so that the embed-

ding X ∗
H
֒→ X is continuous. Assume U ⊂ R is open and 0 < α ≤ 1. Then, H is of

the type (X ,X ∗
H , α,U) if

3



1 Introduction

i) λ 7→ E(λ) ∈ L (X ,X ∗), λ ∈ U is weakly differentiable with a locally Hölder

continuous derivative in L (X ,X ∗
H ), i.e.,

d

dλ
(E(λ)x, y) = 〈A(λ)x, y〉 for all x, y ∈X , λ ∈ U,

where A(λ) ∈ L (X ,X ∗
H

) is locally Hölder continuous.

ii) For every bounded open set J ⊂ U and a compact interval K ⊂ J, the operator-

valued function

z 7→
∫

U\J

A(λ)
λ − z

dλ, z ∈ C,Re z ∈ K, | Im z| ≤ 1

is Hölder continuous in L (X ,X ∗
H ) with exponent α.

Theorem 1.4 ([BA11, Theorem 3.6]). Let H be of the type (X ,X ∗
H
, α,U), where U ⊂ R

is open and 0 < α ≤ 1. Then, H satisfies the limiting absorption principle in U. More

precisely, the limits

R±(λ) = lim
ε→+0

R(λ ± iε)

exit in the norm topology of L (X ,X ∗
H

).

In [BY94], the authors proved that in a certain range of the spectrum the derivative of

the projection-valued measure associated with H is Höder continuous. This is fulfilled

for λ close enough to the bottom of the spectrum of a periodic Schrödinger operator.

As a consequence of Theorem 1.4, the limiting absorption principle holds for a small

interval near the bottom of the spectrum of the periodic Schrödinger operator. This

method can not be extended to large λ because the Hölder continuity of the projection-

valued measure is not satisfied in general.

The limiting absorption principle for a large class of periodic operators and a large

range of the spectral parameter was extended by Maria Radosz [Rad15]. The author

regarded the solution as a distribution of both λ and variable x. In her thesis [Rad10],

she considered the equation

Hu − λu = f , (1.5)

where operator H is elliptic and periodic with respect to some lattice Γ and satisfies some

properties for band functions and Bloch waves. More precisely, the periodic operator H

4



1.2 The limiting absorption principle for periodic media

can be written as a direct integral

H =

∫ ⊕

B

H(k) dk,

where B is the Brillouin zone for the periodic lattice Γ, and H(k) has the same formula as

H but acts on the space L2(W) (W is the fundamental region for Γ) with quasi-periodic

boundary conditions.

The operator H(k) has compact resolvent. Thus, it has the discrete spectrum enu-

merated with multiplicities

λ1(k) ≤ λ2(k) ≤ · · · ≤ λ j(k) ≤ · · · → ∞

Functions λ j(k), j ∈ N are continuous and called the band functions. The corresponding

eigenfunctions ψ j(x, k), j ∈ N are called Bloch waves. These eigenfunctions can be

chosen as measurable functions in k.

Definition 1.5 ([Rad10, Definition 2.1], distributional solution). A distribution u acting

on test functions φ(λ, x) ∈ C∞c (R × Rd) is called a distribution solution of (1.5) if it is

locally integrable in R × Rd and for all φ ∈ C∞c (R × Rd)

u
[
(H − λ)φ

]
=

∫

R

∫

Rd

f (λ, x)φ(λ, x)dxdλ

Definition 1.6 ([Rad15, Definition 2.1]). i) λ ∈ R is called a regular value of λ j, j ∈
N if for every k such that λ j(k) = λ, then ∇λ j(k) , 0. A value that is not regular is

called singular.

ii) The set of regular values is defined by

R =
{
λ ∈ R : λ is a regular value of λ j for all j ∈ N

}

Theorem 1.7 ([Rad15, Theorem 1.2]). For f ∈ L2(Rd) and λ is regular, the limit

u(λ, x) := lim
ε→+0

uǫ(λ, x) = lim
ε→+0

(H − λ − iε)−1 f

exists in L2
loc(R; L2(Rd, ω(x)dx)) for some weighted function ω(x).

She also obtained an explicit integral formula for the distribution u(λ, x) by using

the Floquet-Bloch-Gelfand transform.

The limiting absorption principle for periodic operators and the Sommerfeld radi-

ation conditions motivate to find similar radiation conditions for periodic Schrödinger

equations. Such conditions could have applications in solid state physics and photonic

crytal.

5



1 Introduction

1.3 The radiation condition for periodic waveguides

Periodic waveguide is a cylinder which is periodic in one direction and bounded in

other directions. In [Hoa11], the author contributed to semi-infinite waveguide problem

which is of the form


(H − λg) u = 0 in W+,

u = ϕ ∈ H
1
2 (Γ) on Γ, ∂u

∂ν
= 0 on ∂W+ \ Γ,

(1.6)

where H is a symmetric second-order elliptic operator with periodic coefficients, W+ =

(0,∞)×(0, 1), Γ = {0}×(0, 1), g(x, y) ∈ L∞(R+×(0, 1)) bounded from below by a positive

constant and periodic in x direction with the same period. By adding a small absorption

iǫ, ǫ > 0 to λ, there exists a unique L2-solution uǫ of the equation with absorption. He

obtained the limiting absorption principle:

Theorem 1.8 ([Hoa11, Theorem 1.1]). For any regular value λ0 in the sense of Defini-

tion 1.6, there exist a neighborhood N ⊂ R of λ0 and a finite subset Σ of N such that

for all λ ∈ N \ Σ the solution uǫ → u as ǫ → +0 in H1
loc(W

+).

The limit solution u has a nice property. It is a finite linear combination of the Bloch

waves plus a decaying function. He also proved this property is a radiation condition

which ensures the unique solvability.

Theorem 1.9 ([Hoa15, Theorem 1.1]). Let λ be regular, and Zλ be a space of all func-

tions u0+u1, where u0 ∈ H1(W+) and u1 is a finite linear combination of outgoing Bloch

waves. Then, for λ ∈ N r Σ, (1.6) has a unique solution u ∈ Zλ.

In [FJ16], the authors extended this result for periodic waveguide. Namely, they

considered the equation 
∆u − λgu = f in Ω
∂u
∂ν
= 0 on ∂Ω,

where Ω is a connected open set in R1+d which is periodic with period L in the first

variable and bounded in the others, i.e., (x1, xs) ∈ Ω ⇒ (x1 + L, xs) ∈ Ω. The function

g ∈ L∞ is bounded from below by a positive constant and periodic with the same period

as the waveguide in the first variable, i.e., g(x1 + L, xs) = g(x1, xs) for all (x1, xs) ∈ Ω.

If the right hand side f ∈ L2(Ω) has compact support, then the limiting absorption

principle holds for the regular value λ and the radiation condition is similar to the case of

6



1.4 Main results

semi-infinite waveguide, i.e., the unique solution can be characterized as a finite linear

combination of Bloch waves plus a decreasing function.

The above results are done only for domains periodic in one direction and bounded

in others. This motivates to study radiation conditions for periodic Schödinger equations

in higher dimensions. Many materials have structure of periodicity in two or higher

dimensions, and such results will have applications in wave propagation in periodic

background.

1.4 Main results

The radiation conditions obtained in [Hoa15] for periodic semi-infinite waveguide and

in [FJ16] for periodic waveguide can be extended for perfect periodic media which is

periodic in more than one direction. The proof in [Hoa15, FJ16] deeply relies on the

analytic perturbation theory [Rel43, Kat95] to get analyticity of the band functions and

Bloch waves and uses methods from complex analysis to analyze solutions. The cases of

periodicity in more than one direction, the analyticity is not true in general. In order to

overcome the difficulty, we firstly localize the integral representation of the solution near

the level set. Then, we assume some conditions on the band functions and Bloch waves

near the level set and use the stationary phase method to get an asymptotic expansion of

the solution.

In the thesis [Fli09], the author put a conjecture [Fli09, Conjecture 4.4.17] about

the asymptotic expansion of the outgoing solution in two dimension. She did not give

any further condition. The main result of this thesis is to generalize this asymptotic

expansion to higher dimensions and prove the unique solvability of the corresponding

equation under the radiation conditions.

In [MT06], authors considered a second-order elliptic operator with periodic coeffi-

cients

H = −
d∑

k,l=1

∂

∂xk

(
akl(x)

∂

∂xl

)
+ b(x) on L2(Rd),

where d ≥ 2, the coefficients are real-valued measurable and periodic with respect to

Z
d. Furthermore, the matrix a = (akl(x))d

k,l=1 is symmetric satisfying

c−1|ξ|2 ≤
d∑

k,l=1

akl(x)ξkξl ≤ c|ξ|2

7



1 Introduction

for some c > 0.

They derived an asymptotics of the Green function for operator (H − λ − i0) =

lim
ǫ→+0

(H − λ − iǫ)−1 with spectral parameter close and greater than the bottom of the

spectrum of operator H. Later on, in [KR12, KKR17] the authors extended the result

to the case spectral parameter in a gap near the edges and at edges of the spectrum

for generic periodic elliptic operators of second-order. Such asymptotics of the Green

functions can be used to characterize the solution of the corresponding equation.

We are interested in the stationary Schrödinger equation

− ∆u + V(x)u − λu = f (x), x ∈ Rd, (1.7)

where V is a smooth real-valued function on Rd, periodic with respect to the integer

latticeZd, f ∈ C∞c (Rd), λ ∈ R is the spectral parameter in the spectrum. Our results could

be generalized to periodic elliptic operators of second-order with periodic coefficients.

The corresponding operator H = −∆ + V on L2(Rd) is self-adjoint and has the band

gap spectral [Kuc93]. Namely, there are sequences of the band functions λ j(k) and the

corresponding Bloch waves ψ j(x, k), j ∈ N. To formulate the main results, define a set

J(λ) =
{

j ∈ N : ∃k ∈ B, λ j(k) = λ
}
,

and the level sets of λ

Γ j(λ) =
{
k ∈ [−π, π]d : λ j(k) = λ

}
for j ∈ J(λ).

For ω ∈ Sd−1, define

L j(ω) =
{
kω ∈ Γ j(λ) : ω = ∇λ j(kω)/|∇λ j(kω)|

}
for j ∈ J(λ).

The first main result in this thesis is to characterize the outgoing (physical) solu-

tion of (1.7) obtained by the limiting absorption principle in the distributional sense

[Rad10, Rad15]. The distribution solution for regular spectral parameter is adapted

to periodic Schrödinger equation with smooth coefficients by using elliptic regularity

[RS75, Fol95]. The Floquet-Bloch theory [Kuc93, RS78, Plu11] gives the integral rep-

resentation of the limiting solution. The analytic perturbation theory allows to localize

the integral representation of the solution near the level sets of λ. The stationary phase

method provides the asymptotic expansion of the solution. The assumption used in the

proof is the local analyticity of the band functions and Bloch waves near the level sets.

8



1.4 Main results

Theorem 1.10 (Outgoing radiation condition in higher dimensions). Let λ ∈ R be reg-

ular. Assume that there exists a system of locally smooth band functions λ j(k) and

Bloch waves ψ j(k, x) near level sets Γ j(λ), j ∈ J(λ); the number of points in L j(ω) is

finite for all j ∈ J(λ), ω ∈ Sd−1, and Gauss-Kronecker curvature of Γ j(λ) oriented by

−∇λ j(k)/|∇λ j(k)| at any point kω ∈ L j(ω), j ∈ J(λ) is non-zero. Then, there is an asymp-

totic expansion of solution u(x) = lim
ǫ→+0

uǫ(x) in L2
loc(Rd) of (1.7)

u(x + n) =
i

(2π)(d−1)/2

∑

j∈J(λ)

∑

kω∈L j(ω)

A j(x, λ, kω)

|n|(d−1)/2
ei|n|kω ·ω+

O

(
1

|n|(d+1)/2

)
as |n| → ∞,

(1.8)

uniformly in x ∈ [0, 1]d and in ω = n/|n| ∈ Sd−1. Here,

• A j(x, λ, kω) =

〈
U f (., kω), ψ j(., kω)

〉
e
−iπ
4 sgn(e′

l
·Hessλ j(kω)e′m)d

l,m=2

|∇λ j(kω)|
√
|K j(kω)|

ψ j(x, kω),

where (ω, e′2, ..., e
′
d
) is an orthonormal basic of Rd, and K j(kω) is the Gauss-

Kronecker curvature of Γ j(λ) at kω.

The second result is to prove the unique solvability under the radiation condition

(1.8). This is a direct consequence of spectral theorem.

Theorem 1.11 (Uniqueness for outgoing solution). Assume λ ∈ R is regular and the

assumption in Theorem 1.10 satisfies. Then, there is a unique solution to −∆u+V(x)u−
λu = f (x) satisfying the asymptotic expansion

u(x + n) =
i

(2π)(d−1)/2

∑

j∈J(λ)

∑

kω∈L j(ω)

A j(x, λ, kω)

|n|(d−1)/2
ei|n|kω ·ω + O

(
1

|n|(d+1)/2

)
as |n| → ∞,

uniformly in x ∈ [0, 1]d and in ω = n/|n| ∈ Sd−1.

If we take the limit of uǫ as ǫ → −0 instead of ǫ → +0, then we will get the incoming

solution. A incoming radiation condition is similar to the outgoing radiation condition.

Theorem 1.12 (Incoming radiation condition). Let λ ∈ R be regular. Assume that there

exists a system of locally smooth band functions λ j(k) and Bloch waves ψ j(k, x) near

level sets Γ j(λ), j ∈ J(λ); the number of points in L j(−ω) is finite for all j ∈ J(λ), ω ∈
S

d−1, and Gauss-Kronecker curvature of Γ j(λ) oriented by −∇λ j(k)/|∇λ j(k)| at any point

9



1 Introduction

kω ∈ L j(−ω), j ∈ J(λ) is non-zero. Then, there is an asymptotic expansion of solution

u(x) = lim
ǫ→−0

uǫ(x) in L2
loc(R

d) of (1.7)

u(x + n) =
−i

(2π)(d−1)/2

∑

j∈J(λ)

∑

kω∈L j(−ω)

A j(x, λ, kω)

|n|(d−1)/2
ei|n|kω ·ω+

O

(
1

|n|(d+1)/2

)
as |n| → ∞,

(1.9)

uniformly in x ∈ [0, 1]d and in ω = n/|n| ∈ Sd−1. Here,

• L j(−ω) =
{
kω ∈ Γ j(λ) : ω = −∇λ j(kω)/|∇λ j(kω)|

}
for j ∈ J(λ),

• A j(x, λ, kω) =

〈
U f (., kω), ψ j(., kω)

〉
e

iπ
4 sgn(e′

l
·Hess λ j(kω)e′m)d

l,m=2

|∇λ j(kω)|
√
|K j(kω)|

ψ j(x, kω),

where (ω, e′2, ..., e
′
d
) is an orthonormal basic of Rd, and K j(kω) is the Gauss-

Kronecker curvature of Γ j(λ) at kω.

We also obtain unique solvability under the incoming radiation condition (1.9).

Theorem 1.13 (Uniqueness for incoming solution). Assume λ ∈ R is regular and the

assumption in Theorem 1.12 satisfies. Then, there is a unique solution to −∆u+V(x)u−
λu = f (x) satisfying the asymptotic expansion

u(x+n) =
−i

(2π)(d−1)/2

∑

j∈J(λ)

∑

kω∈L j(−ω)

A j(x, λ, kω)

|n|(d−1)/2
exp(i|n|kω·ω)+O

(
1

|n|(d+1)/2

)
as |n| → ∞,

uniform in x ∈ [0, 1]d and in ω = n/|n| ∈ Sd−1.

1.5 Summary

My thesis contains five chapters:

1. In Chapter 1, we give an introduction and summary of results.

2. In Chapter 2, we recall Floquet-Bloch theory for periodic Schrödinger operators,

including the Floquet-Bloch-Gelfand transform, the direct integral, the band gap

structure of the spectrum, and Bloch waves. These are essential to study the

limiting absorption principle and radiation conditions for periodic equations.

10



1.5 Summary

3. Chapter 3 studies radiation conditions in one-dimensional case. The Floquet the-

ory is presented for Hill’s operator to derive band gap structure of spectrum. Then,

using Sturm-Liouville theory, we obtain nice radiation conditions.

4. Chapter 4 is devoted to study radiation conditions in higher-dimensional cases.

We recall the limiting absorption principle for distributional solution [Rad10,

Rad15]. Then, using analytic perturbation theory and the stationary phase method,

we will get radiation conditions for periodic Schrödinger equation. The unique

solvability is obtained under the radiation conditions by using spectral theorem.

5. The thesis ends with an Appendix, where we recall spectral theory of self-adjoint

operators, analytic perturbation theory and the stationary phase method.
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2 Floquet-Bloch theory for periodic

Schrödinger operators

In this chapter, we are going to recall Floquet-Bloch theory for periodic Schrödinger

operator H = −∆ + V(x) [MW66, Eas73, Kuc93, Kuc16, RS78, BES13]. This is one

of the most important operators in solid state physics. Section 2.1 is devoted to the

Floquet-Bloch-Gelfand transform which is the main analytic tool for periodic opera-

tors. In Section 2.2, the direct integral reduces the study of the spectrum of a periodic

Schödinger operator on Rd to the discrete spectrum of the same operator on the fun-

damental domain with various boundary conditions. Then, the analytic perturbation

theory gives the band gap structure of the spectrum. The notion of Bloch waves, the

eigenfunctions corresponding to discrete eigenvalues, are also introduced.

2.1 Floquet-Bloch-Gelfand transform

First, we recall some basic definitions concerning the lattice of periodic Schrödinger

operators. We follow [Kuc16].

Definition 2.1. A lattice Γ in Rd is the set of all integer linear combinations of d linearly

independent vectors a1, a2, ..., ad ∈ Rd

Γ =


d∑

j=1

m ja j : m j ∈ Z, j = 1, ..., d

 = Za1 ⊕ Za2 ⊕ · · · ⊕ Zad.

Definition 2.2. The Wigner-Seitz cell, a fundamental region W of the lattice Γ, is de-

fined by

W =


d∑

j=1

t ja j : 0 ≤ t j ≤ 1, j = 1, 2, ..., d

 .

13



2 Floquet-Bloch theory for periodic Schrödinger operators

Definition 2.3. i) The dual lattice is defined by

Γ∗ =


d∑

j=1

m jk j : m j ∈ Z, j = 1, ..., d

 = Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkd,

where k j, j = 1, ..., d are the dual lattice vectors satisfying the relation

k j · al = 2πδ jl for all j, l = 1, ..., d.

ii) The first Brillouin zone is a fundamental region of the dual lattice Γ∗ defined by

B =
{
k ∈ (Rd)∗ : |k| ≤ |k − b| for any b ∈ Γ∗

}
.

It is closure of the set of all points which are closer to the origin than any lattice

points of the dual lattice Γ∗.

We also introduce two tori that correspond to the two lattices

T = Rd/Γ and T∗ = Rd/Γ∗.

Example 2.4 (Integer lattice). The typical example of lattices is the integer lattice Zd.

In this case,

• the fundamental region is W = [0, 1]d,

• the dual lattice is Γ∗ = 2πZd,

• the Brillouin zone is B = [−π, π]d.

In this thesis, we only consider periodic Schrödinger operators with respect to the

integer lattice. But all results hold for any lattice.

Example 2.5 (Honeycomb lattice). Consider a lattice in R2

Γ = Za1 ⊕ Za2,

where a1 = (
√

3/2, 1/2), a2 = (
√

3/2,−1/2).

The dual lattice

Γ∗ = Zk1 ⊕ Zk2,

where k1 =
4π√

3
(1/2,

√
3/2), k2 =

4π√
3
(1/2,−

√
3/2).

The Brillouin zone is a hexagon in R2 which is invariant under a rotation 2π/3 about

the origin.

14



2.1 Floquet-Bloch-Gelfand transform

Remark 2.6. The idea for Floquet-Bloch-Gelfand transform comes from Fourier series

which identifies L2(T) with the l2 space on Γ∗ by

f (x) 7→
{

fk =

∫

T

f (x)e−ik·x dx

}

k∈Γ∗
.

The coefficients fk are called Fourier coefficients.

The Floquet-Bloch-Gelfand transform is firstly defined for f ∈ S (Rd), and then

extended to L2(Rd) by continuity.

Definition 2.7 ([Kuc16, Definition 4.1]). For f ∈ S (Rd), Floquet-Bloch-Gelfand trans-

formU f is defined by

U f (x, k) =
∑

γ∈Γ
eik.γ f (x − γ), (x, k) ∈ Rd × Rd.

Remark 2.8. A function on the torus T (T∗) can be identified with a periodic function

on Rd with respect to the lattice Γ (Γ∗).

Using the density of S (Rd) in L2(Rd), extendU to L2(Rd) by continuity.

Theorem 2.9 ([Kuc16, Theorem 4.2]). The map U is extended to a linear bounded

operator

U : L2(Rd)→ L2(T∗; L2(W)).

Moreover, ‖U‖ = 1 if the measure on B and W are normalized to to have total mass 1.

AndU is invertible withU−1 = U∗.

Proposition 2.10 ([Kuc16, Section 4]). For f ∈ L2(Rd),

i)

U f (x, k + k∗) = U f (x, k), k∗ ∈ Γ∗, (2.1)

ii)

U f (x + γ, k) = eik·γU f (x, k), γ ∈ Γ. (2.2)

Remark 2.11. The first property (2.1) shows that U f (x, k) is periodic in k with respect

to the dual lattice Γ∗. Property (2.2) is called quasi-periodic, cyclic or Floquet property

ofU f (x, k) with quasi-momentum k.

In Theorem 2.9, U f (x, ·) is defined for x ∈ W satisfying quasi-periodic condition

(2.2). If we extendU f (x, ·) from W to all Rd satisfying (2.2), then we get the inverse of

Floquet-Bloch-Gelfand transform.
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2 Floquet-Bloch theory for periodic Schrödinger operators

Theorem 2.12 ([Kuc16, Section 4]). The inverse of the Floquet-Bloch-Gelfand trans-

form has the formulas

f (x) =
1

(2π)d

∫

B

e−ik·γU f (x + γ, k) dk, γ ∈ Γ, x ∈ W − γ,

f (x) =
1

(2π)d

∫

B

U f (x, k) dk, x ∈ Rd.

The next theorem shows the relation between the decay of a function and the smooth-

ness of its Floquet-Bloch-Gelfand transform.

Theorem 2.13 ([Kuc16, Theorem 4.2]). Let g(x, k) be Γ∗-periodic in k and quasi-

periodic in x with quasi-momentum k. Then:

i) If g(x, k) is a smooth function in k ∈ Rd with values in L2(W), then the inverse

Floquet-Bloch-Gelfand transform f (x) := U−1g ∈ L2(Rd), and for any N > 0

‖ f ‖L2(W+γ) ≤ CN |γ|−N .

ii) If g(x, k) is an analytic function in k ∈ Rd with values in L2(W), then the inverse

Floquet-Bloch-Gelfand transform f (x) := U−1g ∈ L2(Rd), and there exists a

positive constant C1,C2 such that

‖ f ‖L2(W+γ) ≤ C1e−C2 |γ|.

Remark 2.14. The converse of Theorem 2.13 is also true, i.e., if the norm ‖ f ‖L2(W+γ)

decays when |γ| → ∞ faster than any power of |γ| (decays exponential fast), then

the Floquet-Bloch-Gelfand transform U f (x, k) is smooth (analytic) in k with values

in L2(W).

One usually deals with Sobolev spaces Hs(Rd), s ∈ R instead of L2(Rd). In this case,

the unitary property of Floquet-Bloch-Gelfand transform from Hs(Rd) into L2(T∗,Hs(W))

does not hold because surjectivity breaks down. We need a subspace of Hs(W) by adding

boundary conditions between two adjacent cells.

Definition 2.15 ([Kuc16, Definition 4.4]). For any k ∈ Rd, s ≥ 0, the space Hs
k
(W) is

defined as

Hs
k(W) =

{
f|W : f ∈ Hs

loc(R
d) such that f satisfies (2.2)

}
.

Proposition 2.16 ([Kuc16, Proposition 4.6]). Let s ≥ 0. Then, for any k

16



2.2 Spectral theory of periodic Schrödinger operators

i) Hs
k
(W) is a closed subspace of Hs(W),

ii) H0
k
(W) = L2(W),

iii) A function u belongs to Hs
k
(W) if and only if it can be represented as

u(x) = eik·xv(x),

where v(x) is Γ-periodic, i.e., v ∈ Hs(T),

iv) H s =
⋃

k∈Rd

Hs
k
(W) is an real analytic Banach vector subbundle of a trivial bundle

R
d × Hs(W) over Rd.

Theorem 2.17 ([Kuc16, Theorem 4.8]). For s ≥ 0,U is isometric from Hs(Rd) onto the

space L2(T∗,H s).

2.2 Spectral theory of periodic Schrödinger operators

In this section, we recall spectral theory of periodic Schrödinger operators. The direct

integral and analytic perturbation theory show the band gap structure of the spectrum.

Bloch waves, eigenfunctions corresponding to eigenvalues, and dispersion relation, the

important notion in physics, are also introduced. The main references are [RS78, Kuc93,

Kuc16].

Consider the stationary Schrödinger operator

H = −∆ + V(x), (2.3)

where V(x) ∈ L2
loc(R

d) is real-valued, periodic with respect to the lattice Γ, i.e.,

V(x) = V(x + γ), ∀x ∈ Rd, γ ∈ Γ.

2.2.1 Direct integral of periodic Schrödinger operators

Definition 2.18 ([RS78]). Let K be a separable Hilbert space with the inner product

〈·, ·〉 and (X, µ) a σ-finite measure space. Then, we call H � L2(X, dµ; K ) a constant

fiber direct integral and write

H =

∫ ⊕

X

K dµ(x). (2.4)

17



2 Floquet-Bloch theory for periodic Schrödinger operators

Proposition 2.19 ([RS78]). H is a Hilbert space with respect to the norm

f 7→
(∫

X

‖ f (x)‖2
K

dµ(x)

)1/2

.

Denote by L (K ) the space of linear bounded operators from K to K . A function

A : X → L (K ) is said to be measurable if x 7→ 〈A(x)φ, ψ〉 is measurable for all φ, ψ ∈
K .

Let L∞(X, dµ; L (K )) be the space of bounded and measurable functions from X to

L (K ). This is a Banach space with respect to the norm

‖A‖∞ ≡ ess sup ‖A(x)‖L (K )

Definition 2.20 ([RS78]). A bounded operator A on H =
∫ ⊕

X
K dµ is said to be de-

composable by the direct integral decomposition if and only if there is a function A(·) in

L∞(X, dµ; L (K )) so that for all ψ ∈H ,

(Aψ)(x) = A(x)ψ(x). (2.5)

The A(x) are called the fibers of A. One writes

A =

∫ ⊕

X

A(x) dµ(x).

From above definition, each decomposable operator is associated with some A(·)
on L∞(X, dµ; L (K )). There is also inverse statement which will give an isometric

isomorphism of L∞(X, dµ; L (K )) and decomposable operators.

Theorem 2.21 ([RS78, Theorem XIII.83]). If A(·) is in L∞(X, dµ; L (K )), then there is

a unique decomposable operator A ∈ L (H ) so that (2.5) holds. Moreover, ‖A‖L (H ) =

‖A(·)‖∞

Remark 2.22 ([RS78]). The spaces of decomposable operators and L∞(X, dµ; L (K ))

can be seen as algebras in the natural way. The space A is a subalgebra of L∞(X, dµ; L (K ))

which consists of all decomposable operators whose fibers are all multiplies of the iden-

tity.

Theorem 2.23 ([RS78, Theorem XIII.84]). Let H =
∫ ⊕

X
K dµ(x), where (X, µ) is a

σ-finite measure space and K is separable. Then, A ∈ L (H ) if and only if A com-

mutes with each operator in A .
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2.2 Spectral theory of periodic Schrödinger operators

Definition 2.24 ([RS78]). A function A(·) from the measure space X into self-adjoint

operators (not necessary bounded) on a Hilbert space K is called measurable if and

only if the function (A(·) + i)−1 is measurable. Given such a function, we define an

operator A on H =
∫ ⊕

X
K dµ(x) with domain

D(A) :=

{
ψ ∈H : ψ(x) ∈ D(A(x)) a.e,

∫

X

‖A(x)ψ(x)‖2
K

dx < ∞
}

by

(Aψ)(x) = A(x)ψ(x).

One writes A =
∫ ⊕

X
A(x)dµ(x).

We have the following properties:

Theorem 2.25 ([RS78, Theorem XIII.85]). Let A =
∫ ⊕

X
A(x)dµ(x), where A(·) is mesurable

and A(x) is self-adjoint for each x. Then:

1) The operator A is self-adjoint.

2) A self-adjoint opearator A on H has the form A =
∫ ⊕

X
A(x)dµ(x) if and only if

(A + i)−1 is a bounded decomposable operator.

3) For any Borel function F on R

F(A) =
∫ ⊕

X

F(A(x)) dµ(x).

4) λ ∈ σ(A) if and only if for any ǫ > 0,

µ
(
x : σ(A(x)) ∩ (λ − ǫ, λ + ǫ) , ∅

)
> 0.

5) λ is an eigenvalue of A if an only if

µ
(
x : λ is an eigenvalue of A(x)

)
> 0.

6) If each A(m) has purely absolutely continuous spectrum, then so does A.

7) Suppose that B =
∫ ⊕

X
B(x) dµ(x) with each self-adjoint operator B(x). If B is

A-bounded with A-bound a, then a.e. B(x) is A(x)-bounded with A(x)-bound

a(x) ≤ a. If a < 1, then

A + B =

∫ ⊕

X

(A(x) + B(x))dµ(x)

is self-adjoint on D(A).
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2 Floquet-Bloch theory for periodic Schrödinger operators

Remark 2.26. Part 6) of Theorem 2.25 shows a sufficient condition for purely absolute

continuity of the spectrum for the direct integral. For periodic Schrödinger operators,

each A(x) has purely discrete spectrum but A has purely absolutely continuous spectrum.

Theorem 2.27 ([RS78, Theorem XIII.86]). Let (X, dµ) be [0, 1] with Lebesque measure.

Let K be a fixed separable infinite dimensional space and let A =
∫ ⊕

[0,1]
A(x)dµ(x)

with each A(x) self-adjoint. Suppose K -valued functions {ψ j(·)}∞j=1 are real analytic

on (0, 1), continuous on [0, 1], and complex-valued functions E j(·) are analytic in a

neighborhood of [0, 1], so that:

i) No E j(·) is constant.

ii) A(x)ψn(x) = E j(x)ψ j(x) for all x ∈ [0, 1], j = 1, 2, ... .

iii) For each x ∈ X, the set {ψ j(·)}∞j=1 is a complete orthogonal basic for K .

Then, A has purely absolutely continuous spectrum.

Example 2.28 ([RS78, Kuc16]). Using the same notation as in Section 2.1, the follow-

ing direct integrals hold

L2(Rd) =
∫ ⊕

B

L2(W), Hs(Rd) =
∫ ⊕

B

Hs
k(W).

Using Floquet-Bloch-Gelfand transform and the direct integral of H2(Rd), the oper-

ator H = −∆ + V(x) can be represented by the direct integral as follow:

Theorem 2.29 ([RS78, Theorem XIII.97]). Suppose that V(x) is piecewise continuous

and periodic with respect to a lattice Γ which is generated by a basis {a1, a2, · · · , ad}.
Let W, B be the fundamental region and the Brillouin zone. Then, the operator H =

−∆ + V(x) has a direct integral

UHU−1 =

∫ ⊕

B

H(k)
dk

(2π)d
, (2.6)

where H(k) is the operator −∆+V(x) on W with the quasi-periodic boundary conditions

ψ(x + a j) = eika jψ(x),
∂ψ

∂a j

(x + a j) = eika j
∂ψ

∂a j

(x)

for all x such that x, x + a j ∈ W, i.e., x belongs to a suitable face of W.
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2.2 Spectral theory of periodic Schrödinger operators

Example 2.30 ([RS78], one dimensional example). Let V be a piecewise continuous

and periodic function with period 1. For k ∈ [0, 2π], define

H(k) =

(
− d2

dx2
+ V(x)

)

k

,

an operator on L2[0, 1] with the quasi-periodic boundary conditions

ψ(1) = eikψ(0), ψ′(1) = eikψ′(0).

Then,

U
(
− d2

dx2
+ V(x)

)
U−1 =

∫ ⊕

B

H(k)
dk

2π
.

The operator H(k) is self-adjoint and has purely discrete spectrum satisfying all con-

ditions in Theorem 2.27. Therefore, H = − d2

dx2 + V has purely absolutely continuous

spectrum.

2.2.2 Band gap structure of the spectrum

The Floquet-Bloch-Gelfand transform and the direct integral reduce the study of the

spectrum of the operator H on Rd to the study the spectrum of a self-adjoint elliptic

operator H(k) on the fundamental region W with the quasi-periodic boundary condi-

tion with quasi-momentum k. Using compact embedding H2(W) ֒→ L2(W), it implies

that the operator H(k) has compact resolvent. Thus, for each k ∈ B,H(k) has discrete

spectrum consisting of eigenvalues λ j(k), j ∈ N (counting multiplicities)

λ1(k) ≤ λ2(k) ≤ ...

and λ j(k) → ∞ as j → ∞. The functions λ j(k), j ∈ N are called band functions. The

next theorem follows from analytic perturbation theory (see Appendix A.2).

Theorem 2.31 ([Kuc93, Kuc16]). The band function λ j(k) is continuous and piecewise

analytic in B.

A consequence of Theorem 2.31, σ(H) is the countable union of compact intervals

σ(H) =
∞⋃

j=1

[min
k∈B

λ j(k),max
k∈B

λ j(k)]

There might have some spectral gaps if these intervals do not overlap and touch, i.e

max
k∈B

λ j(k) < min
k∈B

λ j+1(k)
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2 Floquet-Bloch theory for periodic Schrödinger operators

for some j ∈ N.

The next theorem shows the structure of the spectrum of periodic Schrödinger oper-

ator.

Theorem 2.32 ([Tho73]). Suppose V(x) ∈ L2
loc(R

d) is periodic with respect to some

lattice Γ. Then, the spectrum of −∆ + V(x) on L2(Rd) is purely absolutely continuous.

Remark 2.33 ([Kuc16]). There are many differences between the spectrum of periodic

operators in one and higher dimensions.

i) In one dimension,

• bands do not overlap, but they can touch,

• gaps exist for non-constant potentials and generically there are infinitely

many gaps (see [Sim76]).

ii) In higher dimensions,

• bands can (and mostly do) overlap,

• gaps might be non-existent (e.g., for small potentials),

• the number of gaps is finite (see [Par08, PS10]).

Remark 2.34 ([RS78]). In one dimension, if only finitely many gaps are present, then

V(x) is real analytic as a function on R.

In one dimension, the spectral bands of − d2

dx2 touch to cover the whole half-axis

[0,∞). But in higher dimensions, the spectral bands of −∆ overlap to cover [0,∞).

Theorem 2.35 ([Par08, PS10]). For d ≥ 2, spectral bands of Laplacian −∆ overlap,

and thus the spectrum has no gaps. Moreover, the length of the overlap tends to infinity

when one goes up along the spectrum.

Using perturbation theory, a consequence of Theorem 2.35 is

Theorem 2.36 ([Kuc16]). Let d ≥ 2. If the L∞(Rd)-norm of periodic potential V(x) is

sufficient small, then Schrödinger operator H = −∆ + V has no spectral gap.

Theorem 2.37 ([KS87]). The bottom of spectrum of periodic Schrödinger operator H =

−∆ + V(x) on Rd is attained by the non-degenerated minimum (i.e. non-degenerated

Hessian) at k = 0 of the lowest eigenvalue λ1(k) only.
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2.2 Spectral theory of periodic Schrödinger operators

2.2.3 Bloch waves

Definition 2.38 ([Kuc93]). The eigenfunctions ψ j(·, k) for j ∈ N of H(k) in L2(W)

extended to all Rd using the boundary condition ψ(x + a j, k) = eika jψ(x, k) are called

Bloch waves or Bloch functions with quasi-momentum k.

Theorem 2.39 ([Kuc93, Section 4.3]). Existence of a non-trivial bounded solution of

a periodic elliptic equation Hu = λu implies existence of a Bloch function with real

quasi-momentum, and thus λ ∈ σ(H).

Theorem 2.40 ([Kuc93, Kuc16]). The Bloch waves ψ j(x, k) of operator H(k) corre-

sponding to eigenvalue λ j(k) can be chosen such that

(i) They are measurable functions in k.

(ii) For fixed k, they form the orthonormal basis of L2(W).

Theorem 2.41 ([Koh59]). In one dimension, the band functions are analytic in k and

Bloch waves can be chosen as analytic functions in k.

Remark 2.42. In higher dimension, the structure of band functions and Bloch waves is

much more complicated because of crossing bands. But if there is no crossing, then it

follows from the standard theory of perturbation.

Lemma 2.43 ([Kat95, Kuc16]). Let j ∈ N, k ∈ B. If λ j(k∗) is a simple eigenvalue of

H(k∗), then λ j(k) is real analytic function of k for k near k∗.

This is local analyticity of band functions. If there is a bands crossing, then we do

not have the analyticity in general.

Theorem 2.44 ([RS78, Theorem XIII.98], eigenfunction expansion). For f ∈ S (Rd),

let

f̃ ( j, k) =
∫

Rd

f (x)ψ j(x, k) dx.

Then:

i)
∫
Rd | f (x)|2 dx = 1

(2π)d

∞∑
j=1

∫
B
| f̃ ( j, k)|2 dk.

ii) f (x) = 1
(2π)d

∞∑
j=1

∫
B

f̃ ( j, k)ψ j(x, k) dk.
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2 Floquet-Bloch theory for periodic Schrödinger operators

iii) Extend ˜ to L2(Rd) by continuity. Then,

H̃ f ( j, k) = λ j(k) f̃ ( j, k)

for all f ∈ D(H).

iv)˜ maps L2(Rd) onto
∞
⊕
j=1

L2(B).

2.2.4 Dispersion relation

Definition 2.45 ([Kuc93]). The real dispersion relation (or the real Bloch variety) BH

of the periodic Schrödinger operator H is the subset of Rd
k
× R defined as follow:

BH = {(k, λ) ∈ Rd+1 : Hu = λu admits a non-trivial

Bloch wave with quasi-momentum k}.

Remark 2.46. The complex dispersion (or complex Bloch variety) is defined analo-

gously by allowing k, λ to be complex. Then, BH,C ⊂ Cd+1.

Proposition 2.47 ([Kuc16]). i) The real dispersion relation is Γ∗-periodic with re-

spect to k. Therefore, it is enough to consider only over the Brillouin zone.

ii) The real dispersion relation is symmetric (even) with respect to the mapping k 7→
−k.

iii) The graph of the multi-valued mapping

k ∈ Rd(Cd) 7→ σ(H(k))

coincides with the (complex) Bloch variety BH (BH,C) of H.

Theorem 2.48 ([Kuc93, Theorem 4.4.2]). The complex dispersion BH,C is the set of all

zeros of an entire function of order d on Cd+1. Increasing the order to d + 1, one can

achieve Γ∗-periodicity of this functions with respect to k.

The notion of Fermi surface is one of the most important in solid state physics.

Definition 2.49 ([Kuc93, Kuc16]). The real Fermi surface FH,λ of periodic operator H

at a scalar value λ is the λ-level set of the real dispersion relation, i.e.,

FH,λ = {k ∈ Rd : (k, λ) ∈ BH}.
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2.2 Spectral theory of periodic Schrödinger operators

Similarly, the complex Fermi surface is defined

FH,C,λ = {k ∈ Cd : (k, λ) ∈ BH,C}.

Proposition 2.50 ([Kuc93, Kuc16]). i) The Fermi surface is Γ∗-periodic.

ii) FH,λ is the zero set of an entire function of the same exponential order as for BH

(see Theorem 2.48).

Theorem 2.51 ([Kuc16, Theorem 5.33]). Let V ∈ L∞(Rd) be periodic. Then, for any

energy level λ ∈ R, the real Fermi surface of operator H = −∆ + V has measure zero in

R
d.

Theorem 2.52 ([Bor46, Borg theorem]). Consider the Hill’s operator H = − d2

dx2 + V(x)

with periodic potential V(x). Then, the following are equivalent:

i) The potential is constant.

ii) There are no spectral gaps.

iii) There exists an entire function whose graph λ = f (k) belongs to the dispersion

relation.

Remark 2.53 ([Kuc16]). In higher dimensions, the equivalence of i) and ii) fails. In fact,

if the potential is sufficiently small and bounded, then the periodic Schrödinger operator

has no gap at all. The equivalence i) and iii) is proved in two dimension by Knörrer and

Trubowitz [KT90].
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3 The one-dimensional case

In this chapter, we recall Floquet theory for periodic differential operators [MW66,

Eas73]. A consequence is that the spectrum of such operators has the band gap structure.

Sturm-Liouville theory [Tit58, Tit62] gives the integral formula for the solution of Hill’s

equation. From this formula, we derive radiation conditions in the one-dimensional

case.

3.1 Floquet theory for Hill’s operator

We consider Hill’s operator

H = − d2

dx2
+ V(x) on L2(R), (3.1)

where V(x) is smooth real-valued and periodic with period 1, i.e., V(x) = V(x + 1) for

all x ∈ R.

3.1.1 The discriminant

The homogeneous Hill’s equation has the form

− u′′ + (V(x) − λ)u = 0, (3.2)

where λ is the spectral parameter.

Remark 3.1. In general, we can consider equation

{P(x)u′(x)}′ + Q(x)u(x) = 0, (3.3)

where P(x) and Q(x) are smooth real-valued and periodic with the same period 1, P(x)

is nowhere zero. After suitable transformations, equation (3.3) has the form of equation

(3.2).



3 The one-dimensional case

Definition 3.2 ([MW66]). Suppose u1, u2 are two solutions of the homogeneous Hill’s

equation (3.2). The Wronskian of u1, u2 is defined by

W(u1, u2) = det


u1 u2

u′1 u′2

 = u1u′2 − u2u′1.

Take the derivative with respect to x of the Wronskian, we get

d

dx
W(u1, u2) = u1u′′2 − u2u′′1 = 0.

Here, we use the equation (3.2) for u1 and u2. Therefore, the Wronskian is independent

of the variable x. It only depends on the spectral parameter λ.

Definition 3.3 ([MW66], fundamental system). A fundamental system u1(x, λ) and

u2(x, λ) of equation (3.2) is the system of solutions of (3.2) satisfying conditions

u1(0, λ) = 1, u′1(0, λ) = 0,

u2(0, λ) = 0, u′2(0, λ) = 1.

Remark 3.4. From the standard theory of ordinary differential equations (see [Tit58,

Tit62]), two solutions u1, u2 are analytic with respect to λ.

Definition 3.5 ([MW66]). i) The monodromy matrix is defined by

M(λ) =


u1(1, λ) u2(1, λ)

u′1(1, λ) u′2(1, λ)

 .

ii) The discriminant D(λ) of Hill’s equation (3.2) is defined as the trace of matrix

M(λ).

Remark 3.6. The determinant det M(λ) is the Wronskian of the fundamental system

u1, u2 at x = 1. Therefore, det M(λ) = 1 because the Wronskian is constant in x.

Definition 3.7 ([MW66]). i) The characteristic equation is

µ2 − D(λ)µ + 1 = 0 (3.4)

ii) The characteristic exponent k ∈ [0, 2π) satisfies

eik = µ1, e−ik = µ2,

where µ1, µ2 are roots of (3.4).
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3.1 Floquet theory for Hill’s operator

Theorem 3.8 ([MW66, Floquet theorem]). 1. If the roots µ1, µ2 of (3.4) are differ-

ent from each other, then Hill’s equation (3.2) has two linear independent solu-

tions

eikx p1(x), e−ikx p2(x),

where p1(x), p2(x) are periodic with period 1.

2. If µ1 = µ2, then (3.4) has a non-trivial solution which is periodic with period 1

(when µ1 = µ2 = 1) or 2 (when µ1 = µ2 = −1). Let p(x) denote such a periodic

solution and let u(x) be another solution linear independent of p(x). Then, there

exists a constant θ such that

u(x + 1) = µ1u(x) + θp(x).

Moreover, θ = 0 is equivalent to

D(λ) = ±2, u2(1, λ) = 0, u′1(1, λ) = 0.

Remark 3.9 ([Eas73, MW66]). i) If λ ∈ R and |D(λ)| < 2, then equation (3.4) has

two different real roots. Thus all solutions of Hill’s equation (3.2) are bounded.

ii) D(λ) = 2 corresponds to the existence of a non-trivial solution of the so-called

periodic eigenvalue problem


−u′′ + V(x)u = λu, 0 < x < 1,

u(0) = u(1), u′(0) = u′(1).

iii) D(λ) = −2 corresponds to the existence of a non-trivial solution of the so-called

anti-periodic eigenvalue problem


−u′′ + V(x)u = λu, 0 < x < 1,

u(0) = −u(1), u′(0) = −u′(1).

iv) If D(λ) > 2, then all non-trivial solutions of (3.2) are unbounded in R.

Theorem 3.10 ([Eas73, Theorem 1.3.3]). Let k be a positive integer. Then, equation

(3.2) has a non-trivial solution with period k if and only if there is an integer l such that

D(λ) = 2 cos(2lπ/k).
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3 The one-dimensional case

Theorem 3.11 ([Eas73, Theorem 1.3.4]). If V(x) is even, i.e., V(x) = V(−x), then (3.2)

has a non-trivial solution which is

• even and periodic with period 1 if and only if u′1(1/2) = 0,

• odd and periodic with period 1 if and only if u2(1/2) = 0,

• even and periodic with period 2 if and only if u1(1/2) = 0,

• odd and periodic with period 2 if and only if u′2(1/2) = 0.

3.1.2 Band gap structure of the spectrum

In this section, we recall the definition of stable solutions and stable intervals from

[MW66]. Using Floquet theory, the discriminant is analyzed and the band gap structure

of the spectrum is derived.

Definition 3.12 ([MW66]). If all solutions of Hill’s equation (3.2) are bounded, then

we say that they are stable. Otherwise, we say that they are unstable.

Remark (3.9) leads to criteria for the stability of the solutions of Hill’s equation.

i) If |D(λ)| > 2, then all solutions is unstable.

ii) If |D(λ)| < 2, λ ∈ R, then all solutions are stable.

iii) If |D(λ)| = 2, then in general the solutions are stable except the case the equation

D(λ) = ±2 has double solutions.

Floquet theory reduces the study of the spectrum of Hill’s operator (3.1) to the spectral

problem for k ∈ B = [−π, π]


−u′′ + V(x)u = λu, 0 < x < 1,

u(0) = eiku(1), u′(0) = eiku′(1).
(3.5)

Theorem 3.13 ([Eas73]). λ is an eigenvalue of (3.5) if and only if

D(λ) = 2 cos k.

As a consequence, one obtains
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3.1 Floquet theory for Hill’s operator

Theorem 3.14 ([Kuc16, Theorem 1.14]). The real (complex) dispersion relation is de-

scribed as the set of real (complex) solutions (k, λ) of the equation

D(λ) = 2 cos k.

Theorem 3.15 ([MW66, Theorem 2.2]). The discriminant D(λ) is an entire function of

complex variable λ. Its orders of growth for |λ| → ∞ is exactly 1/2. More precisely,

there exists a positive constant M such that

|D(λ)| exp
(
−M

√
|λ|

)

is bounded for all λ, and there exists a positive constant m such that λ real and λ→ −∞
implies

|D(λ)| exp
(
−m

√
|λ|

)
→∞.

As a consequence of Theorem 3.15, one has

Corollary 3.16 ([MW66]). D(λ) = 2 has infinitely many real roots

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < · · · ,

and the equation D(λ) = −2 has infinitely many real roots

µ0 ≤ µ1 < µ2 ≤ µ3 < · · · .

They satisfy inequalities

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < λ3 ≤ λ4 < · · · ,

and λn → ∞, µn → ∞ as n→ ∞.

Theorem 3.17 ([Eas73, MW66]). i) The spectrum of the operator H on L2(R) is the

union of closed intervals

[λ0, µ0], [µ1, λ1], [λ2, µ2], [µ3, λ3], · · · .

ii) There might have gaps between the spectrum of the operator H

(µ0, µ1), (λ1, λ2), (µ2, µ3), (λ3, λ4), · · · .

Gaps disappear if equation D(λ) = ±2 has double solutions at some points.
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3 The one-dimensional case

Remark 3.18 ([Eas73, MW66]). i) D(λ) decreases monotonically on (−∞, µ0) and

[λ j, µ j], and increases monotonically on [µ j, λ j], j ∈ N.

ii) If µ2 j , µ2 j+1, then D′(µ2 j) , 0,D′(µ2 j+1) , 0, j ∈ N. The same holds for

λ2 j−1 , λ2 j, j ∈ N∗. If µ2 j = µ2 j+1, j ∈ N or λ2 j−1 = λ2 j, j ∈ N∗, then D′(λ) = 0 at

these points, but D′′(λ) is not zero.

Theorem 3.19 ([Eas73, RS78]). The pure point and singular continuous spectrum of

Hill’s operator are empty. Therefore, the spectrum is purely absolutely continuous.

Definition 3.20 ([MW66], coexistence). If two linearly independent solutions of Hill’s

equation (3.2) are of period π or 2π, it is said to be an instance of coexistence.

Remark 3.21 ([MW66]). The coexistence of periodic solutions of period π or 2π is

equivalent respectively to the existence of a double root of equation D(λ) = 2 or D(λ) =

−2.

Example 3.22 ([MW66]). Consider Mathieu’s equation

−u′′(x) − (λ − 2α cos 2x)u(x) = 0, x ∈ R

with a non-zero real constant α. Then, there is no point λ ∈ R of coexistence.

Example 3.23 ([MW66]). Consider Whittaker-Hill’s equation

−u′′(x) − (λ + 4mq cos 2x + 2q2 cos 4x)u(x) = 0

with m is an integer and q is real. Then, there is coexistence.

3.2 Radiation conditions for Hill’s equation

Consider Hill’s equation

− u′′ + (V(x) − λ)u = f (x), (3.6)

where λ is in the spectrum of the operator H, not an edge of any band, i.e., λ , λ j, λ ,

µ j, j ∈ N, and f ∈ C∞c (R).

Because the domain is unbounded, we would like to find additional conditions at

infinity to make (3.6) well-posed. This can be done by using the limiting absorption
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3.2 Radiation conditions for Hill’s equation

principle. Namely, one adds a small absorption iǫ, ǫ > 0 to the spectral parameter λ,

then (3.6) becomes

− u′′ + (V(x) − λ − iǫ)u = f (x). (3.7)

The corresponding homogeneous Hill’s equation is

− u′′ + (V(x) − λ − iǫ)u = 0. (3.8)

From the spectral theory, equation (3.7) has a unique L2-solution. We want to find a

representation of this solution. We will use Floquet theorem 3.8 and Sturm-Liouville

theory [Tit62, Tit58] to get two independent solutions of the homogeneous Hill’s equa-

tion (3.8).

Let u1(x, λ+iǫ), u2(x, λ+iǫ) be a fundamental system of (3.8). Then, u1, u2 are entire

functions of λ. The discriminant D(λ+ iǫ) is also an entire function of order exactly 1/2.

From Floquet theorem 3.8, there exist the k ∈ C depending on λ and ǫ such that (3.8)

has two linear independent solutions eikx p1(x) and e−ikx p2(x), where p1, p2 are periodic

with period 1. If ǫ > 0, then the discriminant D(λ + iǫ) is non-real. Therefore, k is also

non-real. We could choose k such that Im k > 0. Sturm-Liouville theory derives two

linear independent solutions of (3.8).

Lemma 3.24. Let λ be in the spectrum of operator H, not an edge of any band. Then,

u2(1, λ) , 0. Consequently, for ǫ small enough, u2(1, λ + iǫ) , 0.

Proof. Assuming that u2(1, λ) = 0. The Wronskian of the fundamental system u1(x, λ),

u2(x, λ) is equal to 1. Therefore,

u1(1, λ)u′2(1, λ) − u′1(1, λ)u2(1, λ) = 1.

Using u2(1, λ) = 0, it implies

u1(1, λ)u′2(1, λ) = 1. (3.9)

Because λ ∈ σ(H) is not an edge of any band, it implies

|D(λ)| = |u1(1, λ) + u′2(1, λ)| < 2 (3.10)

From (3.9) and (3.10), we get a contradiction. Therefore, u2(1, λ) , 0. The last state-

ment follows from the analyticity of u2 with respect to λ. �

33



3 The one-dimensional case

The next theorem gives explicit formulas of two independent solutions of homo-

geneous equation which are used to derive a integral representation of a solution of

inhomogeneous equation.

Theorem 3.25 ([Tit58, Chapter XXI]). There exist two independent solutions of (3.8)

ψ1,ǫ(x, λ) = u1(x, λ + iǫ) + m1,ǫu2(x, λ + iǫ) = eikx p1(x) ∈ L2(0,∞),

ψ2,ǫ(x, λ) = u1(x, λ + iǫ) + m2,ǫu2(x, λ + iǫ) = e−ikx p2(x) ∈ L2(−∞, 0),

where

m1,ǫ =
u′2(1, λ + iǫ) − u1(1, λ + iǫ)

2u2(1, λ + iǫ)
−

√
D2(λ + iǫ) − 4

2u2(1, λ + iǫ)
,

m2,ǫ =
u′2(1, λ + iǫ) − u1(1, λ + iǫ)

2u2(1, λ + iǫ)
+

√
D2(λ + iǫ) − 4

2u2(1, λ + iǫ)
.

Here the branch of the square root is chosen from the condition
√

D2(λ) − 4 > 0 for

λ < λ0.

Remark 3.26. m1,ǫ,m2,ǫ have branch points of square root type at λ j, µ j for all j ∈ N.

They are analytic in the upper (lower) half plane. Therefore, we could take limit as

ǫ → +0 (ǫ → −0).

The next theorem gives an integral representation for unique L2-solution of (3.7).

Theorem 3.27. The unique L2-solution of (3.7) has the formula

uǫ(x, λ) =
ψ1,ǫ(x, λ)
ωǫ(λ)

∫ x

−∞
ψ2,ǫ(ξ, λ) f (ξ) dξ +

ψ2,ǫ(x, λ)
ωǫ(λ)

∫ ∞

x

ψ1,ǫ(ξ, λ) f (ξ) dξ, (3.11)

where ωǫ(λ) = m2,ǫ − m1,ǫ is equal to the Wronskian of ψ1,ǫ , ψ2,ǫ .

Proof. The proof is based on [Tit62, Chapter II] and [Tit58, Chapter XXI] except L2-

solution part.

First, we show that ωǫ(λ) = m2,ǫ − m1,ǫ = W(ψ1,ǫ , ψ2,ǫ). By direct computation,

W(ψ1,ǫ , ψ2,ǫ) = ψ1,ǫψ
′
2,ǫ − ψ′1,ǫψ2,ǫ

= (u1 + m1,ǫu2)(u′1 + m2,ǫu
′
2) − (u′1 + m1,ǫu

′
2)(u1 + m2,ǫu2)

= (m2,ǫ − m1,ǫ)(u1u′2 − u′1u2) = m2,ǫ − m1,ǫ .

In the last step, we use W(u1, u2) = 1.
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3.2 Radiation conditions for Hill’s equation

Differentiate (3.11) twice, we get

u′ǫ =
ψ′1,ǫ(x, λ)

ωǫ(λ)

∫ x

−∞
ψ2,ǫ(ξ, λ) f (ξ) dξ +

ψ′2,ǫ(x, λ)

ωǫ(λ)

∫ ∞

x

ψ1,ǫ(ξ, λ) f (ξ) dξ,

and

u′′ǫ =
ψ′′1,ǫ(x, λ)

ωǫ(λ)

∫ x

−∞
ψ2,ǫ(ξ, λ) f (ξ) dξ +

ψ′′2,ǫ(x, λ)

ωǫ(λ)

∫ ∞

x

ψ1,ǫ(ξ, λ) f (ξ) dξ+

+
ψ′1,ǫψ2,ǫ − ψ1,ǫψ

′
2,ǫ

ωǫ(λ)
f (x) = (V(x) − λ − iǫ)uǫ − f (x).

Therefore, uǫ satisfies (3.7).

Next, we prove that uǫ ∈ L2(R). Suppose supp f ⊆ [m, M]. Consider the first part of

(3.11), the second part is proved similarly. Let χ be the characteristic function. Then,

g(x) =
ψ1,ǫ(x, λ)
ωǫ(λ)

∫ x

−∞
ψ2,ǫ(ξ, λ) f (ξ) dξ = (χ[m,M](x) + χ(−∞,m)(x) + χ(M,∞)(x))g(x).

Because g(x) is smooth, it implies χ[m,M]g ∈ L2(R). Moreover, f (x) = 0 for x < m,

therefore χ(−∞,m)g = 0. The last term χ(M,∞)g is also in L2(R) because χ(M,∞)ψ1,ǫ ∈ L2(R)

and ∫ ∞

−∞
ψ2,ǫ(ξ, λ) f (ξ) dξ is finite.

It completes the proof of Theorem 3.27. �

Remark 3.28. The function
√

D2(λ) − 4 can be extended analytically to the two-sheet

Riemann surface Λ. This Riemann surface is obtained by gluing together two copies of

the C \ σ along the spectrum. Here, the upper side of the band gn of the first sheet is

glued to the lower side of the band gn and conversely.

The function k depending on λ is called the quasi-momentum. It is determined by

k(λ) = arcsin(i
√

D2(λ) − 4/2) (see [Fir75] for more details).

Recall Hill’s equation

− u′′ + (V(x) − λ)u = f (x), (3.12)

where f ∈ C∞c (R). The interesting problem is when λ is in the interior of the spectrum

of the operator H. Here, we want to find radiation conditions for (3.12). The method is

to use the limiting absorption principle.

Theorem 3.29 (Radiation condition for outgoing solution). Let λ be in the spectrum

of the operator H, not an edge of any band. Suppose supp f ⊆ [m, M], then the limit

u(x, λ) := lim
ǫ→+0

uǫ(x, λ) in L2
loc(R) exists, and u(x, λ) satisfies
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3 The one-dimensional case

• If x > M, then

u(x, λ) = C1eikx p1(x). (3.13)

• If x < m, then

u(x, λ) = C2e−ikx p2(x). (3.14)

Here k(λ + iǫ) → k as ǫ → +0, p1(x), p2(x) are periodic with period 1, and C1,C2 are

constant depending on λ. Due to periodicity, we can normalize such that k ∈ [0, 2π).

Proof. From the formula (3.11), we have

uǫ(x, λ) =
ψ1,ǫ(x, λ)

ωǫ(λ)

∫ x

−∞
ψ2,ǫ(ξ, λ) f (ξ) dξ +

ψ2,ǫ(x, λ)

ωǫ(λ)

∫ ∞

x

ψ1,ǫ(ξ, λ) f (ξ) dξ,

where ψ1,ǫ(x, λ) = eik(λ+iǫ)x p1,ǫ(x), ψ2,ǫ(x, λ) = e−ik(λ+iǫ)x p2,ǫ(x) for periodic functions

p1,ǫ(x), p2,ǫ(x) with period 1.

Because ψ1,ǫ(x, λ), ψ2,ǫ(x, λ) are analytic with respect to λ, it implies that ψ1,ǫ(x, λ)→
ψ1(x, λ), ψ2,ǫ(x, λ)→ ψ2(x, λ) as ǫ → +0 and {ψ1, ψ2} is the fundamental system of

− u′′ + (V(x) − λ)u = 0 (3.15)

Moreover, ωǫ(λ) → ω(λ) as ǫ → +0, where ω(λ) = W(ψ1, ψ2) , 0. The quasi-

momentum k(λ + iǫ) tends to k as ǫ → +0.

The limit u(x, λ) = lim
ǫ→+0

uǫ(x, λ) exists and has the formula

u(x, λ) =
ψ1(x, λ)
ω(λ)

∫ x

−∞
ψ2,ǫ(ξ, λ) f (ξ) dξ +

ψ2(x, λ)
ω(λ)

∫ ∞

x

ψ1(ξ, λ) f (ξ) dξ,

Furthermore, u(x, λ) is a smooth solution of (3.12).

• If x > M, then

u(x, λ) =
ψ1(x, λ)
ω(λ)

∫ x

−∞
ψ2(ξ, λ) f (ξ) dξ. (3.16)

Because λ is not an edge of any band, therefore the Wronskian ω(λ) , 0. The

integral in (3.16) does not depend on x because f (x) = 0 for x > M. It implies

u(x, λ) = C1eikx p1(x), x > M,

where k = k(λ + i0).

36



3.2 Radiation conditions for Hill’s equation

• Similarly, when x < m, the solution has the form

u(x, λ) =
ψ2(x, λ)
ω(λ)

∫ ∞

x

ψ1(ξ, λ) f (ξ) dξ,

and satisfies

u(x, λ) = C2e−ikx p2(x), x < m.

�

Remark 3.30. The conditions (3.13), (3.14) are called radiation conditions for the out-

going solution. Next, we prove the unique solvibility of Hill’s equation under these

radiation conditions.

Theorem 3.31 (Uniqueness for outgoing solution). Suppose λ is in the interior of the

spectrum σ(H) and not an edge of any band. Then, equation (3.12) with the radiation

conditions (3.13) and (3.14) has a unique solution in L2
loc(R).

Proof. Suppose equation (3.12) has two solutions u1(x), u2(x) satisfying the radiation

conditions (3.13) and (3.14). Then, u(x) = u1(x)−u2(x) is a solution of the homogeneous

equation −u′′ + (V(x) − λ)u = 0 and it also satisfies the radiation conditions. We will

prove that u(x) ≡ 0.

Indeed, suppose {eikxq1(x), e−ikxq2(x)}, where q1, q2 are periodic with period 1 is the

fundamental system of (3.15). Then, solution u(x) of the homogeneous equation (3.15)

has the form

u(x) = B1eikxq1(x) + B2e−ikxq2(x), (3.17)

where B1, B2 only depend on k.

For x > M, from condition (3.13) we have

u(x) = C1eikx p1(x), (3.18)

where p1(x) is periodic with period 1.

From (3.17) (3.18), it implies for x > M,

B1eikxq1(x) + B2e−ikxq2(x) = C1eikx p1(x).

Multiply both sides of this equation with eikx and subtract, we get

e2ikx{B1q1(x) − C1 p1(x)} + B2q2(x) = 0.
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3 The one-dimensional case

Replace x by x + 1 and using the periodicity, it implies

(e2ik − 1)B2 p1(x) = 0.

Because λ is not the end point of band, that means k , 0, k , π, it implies e2ik
, 1, and

therefore B2 = 0.

Similarly, for the case x < m, we obtain B1 = 0. That means u(x) ≡ 0. �

If we take the limit uǫ(x) as ǫ → −0 instead of ǫ → +0, then we get the incoming

solution. In this case, k(λ+ iǫ)→ −k as ǫ → −0. We obtain radiation conditions for the

incoming solution.

Theorem 3.32 (Radiation condition for incoming solution). Let λ be in the spectrum

of the operator H, not an edge of any band. Suppose supp f ⊆ [m, M], then the limit

u(x, λ) := lim
ǫ→−0

uǫ(x, λ) in L2
loc(R) exists, and u(x, λ) satisfies

• If x > M, then

u(x, λ) = C1e−ikx p1(x). (3.19)

• If x < m, then

u(x, λ) = C2eikx p2(x). (3.20)

Here, k(λ + iǫ) → −k as ǫ → −0, p1(x), p2(x) are periodic with period 1; C1,C2 are

constant depending on λ.

Proof. It is similar to Theorem 3.29. Note that lim
ε→−0

k(λ + iǫ) = −k. �

Remark 3.33. These two conditions (3.19) and (3.20) are called radiation conditions

for the incoming solution. We also get unique solvability for Hill’s equation satisfying

radiation conditions (3.19) and (3.20).

Theorem 3.34 (Uniqueness for incoming solution). Suppose λ is in the spectrum and

not an edge of any band. Then, equation (3.12) with radiation conditions (3.19) and

(3.20) has a unique solution in L2
loc(R)

Proof. Similar to Theorem 3.31. �
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4 The higher-dimensional case

In this chapter, we will adapt the results to the higher-dimensional case. The limiting

absorption principle in the distribution sense is recalled from [Rad15] and then adapted

to the case of the Schrödinger operator with a smooth periodic potential. Then, using

integral representation of solution (see Chapter 2), we will deal with oscillatory integrals

in higher dimensions. These integrals can be estimated by using analytic perturbation

theory (see Appendix A.2) and the stationary phase method (see Appendix A.3). The

main method comes from articles [MT06, KR12, KKR17]. We use the idea in [KR12,

KKR17] to decompose the resolvent of periodic Schrödinger operator, then use some

estimates from [MT06] to derive the asymptotic expansion of solutions to the periodic

Schrödinger equation.

4.1 The limiting absorption principal for periodic oper-

ators

In this section, we recall the limiting absorption principal from [Rad15]. Consider a

periodic operator H with respect to some lattice Γ on L2(Rd). The operator H can be

written as the direct integral

H =

∫ ⊕

B

H(k) dk,

where B is the Brillouin zone, H(k) is formally the same as H, but acts on L2(W) (W is

the fundamental region of Γ) with k-quasi-periodic condition (see Chapter 2). Moreover,

H(k) has compact resolvent. Thus, there are sequences of the band functions λ j(k) and

corresponding Bloch waves ψ j(x, k), j ∈ N satisfying

H(k)ψ j(·, k) = λ j(k)ψ j(·, k), j ∈ N, k ∈ B,

ψ j(x + n, k) = eik·nψ j(x, k), n ∈ Γ, x ∈ W.



4 The higher-dimensional case

In [Rad15], the author made the following general conditions on the band functions

and Bloch waves

i) λ j(k), j ∈ N are B-periodic (i.e., having the same values on opposite faces of B),

real-valued Lipschitz functions.

ii) k 7→ ψ j(k) ∈ L2(W) is measurable, and for each k ∈ B, {ψ j(·, k), j ∈ N} is an

orthonormal basis of L2(W).

Remark 4.1. These two above conditions are fulfilled for many operators in mathemat-

ical physics. Periodic Schrödinger operators satisfy all conditions (see Chapter 2).

The decomposition of H into the direct integral and the complete orthonormalψ j(·, k), j ∈
N for L2(W) imply the following integral representation:

Proposition 4.2 ([Rad15]). For u ∈ D(H),

Hu(x) =
1

(2π)d

∞∑

j=1

∫

B

λ j(k)
〈
Uu(., k), ψ j(., k)

〉
L2(W)

ψ j(x, k) dk,

where the series converges in L2(Rd).

Next, consider equation

Hu − λu = f , (4.1)

where f (x) ∈ L2(Rd).

Definition 4.3 ([Rad10, Distribution solution]). A distribution u acting on a test function

φ(λ, x) ∈ C∞c (R × Rd) is called a distribution solution of (4.1) if it is locally integrable

on R × Rd and for all φ ∈ C∞c (R × Rd),

u
[
(H − λ)φ

]
=

∫

R

∫

Rd

f (x)φ(λ, x) dxdλ.

Using the integral representation of the solution it can be shown that the limiting

absorption principle is valid for regular values which are defined as follow:

Definition 4.4 ([Rad15]). i) λ ∈ R is called a regular value of λs if for every k ∈ B

such that λs(k) = λ, then ∇λs(k) , 0.

ii) The set of all regular values is defined by

R = {
λ ∈ R : λ is a regular value of λs for all s

}
.
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4.2 Radiation conditions in higher dimensions

Let I0 ⊂ R be compact and I ⊂ I0 an open interval. Let

V =
{
k ∈ B : λ j(k) ∈ I0 for some j ∈ N

}
,

r = max{ j ∈ N : λ j(B) ∩ I0 , ∅}.

Theorem 4.5 ([Rad15, Theorem 2.13]). The limiting absorption principle holds for the

regular value λ, that means

u(λ, x) = lim
ε→+0

(H − λ − iε)−1 f

exists in L2(I; L2(Rd, ω(x)dx)) for some weighted function ω(x) and u is the distribution

solution of (4.1). Here,

u(x, λ) =
1
|B|

∑

j∈N

∫

B\V

〈
U f (., k), ψ j(., k)

〉
L2(W)

λ j(k) − λ ψ j(x, k) dk−

− π
∑

j∈N; j≤r

Hh j(λ, x) − ih j(λ, x),

(4.2)

where H is the Hilbert transform with respect to λ, and

h j(x, λ) =
1

(2πi)d

∫

Γ j(λ)

〈
U f (., k), ψ j(., k)

〉
L2(W)∣∣∣∇λ j(k)

∣∣∣
ψ j(x, k) dk

with Γ j(λ) = {k ∈ B : λ j(k) = λ}.

4.2 Radiation conditions in higher dimensions

In this section, we are interested in the Schrödinger equation in higher dimensions

− ∆u + V(x)u − λu = f (x), x ∈ Rd, (4.3)

where V is a smooth real-valued function, periodic with respect to the integer lattice Zd,

f ∈ C∞c (Rd).

The corresponding Schrödinger operator is

H = −∆ + V(x) on L2(Rd). (4.4)

Recall from Chapter 2 that the fundamental region W = [0, 1]d and the Brillouin zone

B = [−π, π]d. Using the direct integal, we have
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4 The higher-dimensional case

UHU−1 =

∫ ⊕

B

H(k)
dk

(2π)d
,

where H(k) is formally the same as H but acts on k-quasi-periodic functions on W.

The operator H(k) has compact resolvent. This implies that there are sequences of

eigenvalues λ j(k), j ∈ N called the band functions and the corresponding eigenfunctions

ψ j(x, k), j ∈ N called Bloch waves.

Here, we only consider the case spectral parameter is regular in the sense of Defini-

tion 4.4. If we add a small absorption iǫ, ǫ , 0, then (4.3) becomes

− ∆u + V(x)u − (λ + iǫ)u = f (x), x ∈ Rd. (4.5)

From spectral theorem, (4.5) has a unique solution uǫ ∈ L2(Rd). From the limiting ab-

sorption principle, uǫ tends to solution u of the Schrödinger equation without absorption

in suitable sense as ǫ → ±0. We want to characterize this solution.

We will adapt method in [Rad15] and use elliptic regularity to get a smooth solution.

Theorem 4.6 ([RS75, Theorem IX.26] [Fol95, Theorem 6.33] , elliptic regularity). Let

u be a distribution solution of equation (−∆+V)u = λu where V is a measurable function

and λ is a complex number. If V is a smooth function in open region Ω, then u is also

smooth in that region.

Recall Floquet-Bloch-Gelfand transform

U f (x) =
∑

n∈Zd

ein·k f (x − n).

The inverse has the formulae

U−1g(x + n) =
1

(2π)d

∫

B

eik·ng(x, k) dk.

Using the following theorem, it is easy to derive an integral formula for the solution

of (4.5) (for more details see [Plu11]).

Proposition 4.7 ([Plu11], completeness of Bloch waves). For g ∈ L2(Rd) and j ∈ N,

define

g j(x) :=
1

(2π)d

j∑

s=1

∫

B

〈Ug(·, k), ψs(·, k)〉L2(W)ψs(x, k) dk, x ∈ Rd. (4.6)

Then, g j → g as j→ ∞ in L2(Rd).
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4.2 Radiation conditions in higher dimensions

Theorem 4.8 ([Plu11, Theorem 3.6.2]). For ǫ , 0,

uǫ(x) = (H − (λ + iǫ))−1 f (x) =
1

(2π)d

∑

j∈N

∫

B

〈
U f (., k), ψ j(., k)

〉
L2(W)

λ j(k) − (λ + iǫ)
ψ j(x, k) dk. (4.7)

For simplicity, from now on we denote the inner product 〈·, ·〉L2(W) by 〈·, ·〉.

Remark 4.9. In [Plu11], the author gave a proof by using Proposition 4.7 and some

L2(W) estimates. Here, we give a simple proof by using the direct integral and spectral

theory. The proof follows the idea in [MT03, Proposition 2.3].

Proof of Theorem 4.8. Recall the direct integral of the operator H from Theorem 2.29

UHU−1 =

∫ ⊕

B

H(k)
dk

(2π)d
, (4.8)

where H(k) is the operator −∆ + V(x) on W with the k-quasi-periodic boundary condi-

tions. Therefore,

K := U(H − λ − iǫ)U−1 = UHU−1 − (λ + iǫ)I

=

∫ ⊕

B

H(k)
dk

(2π)d
− (λ + iǫ)I

=

∫ ⊕

B

(H(k) − λ − iǫ)
dk

(2π)d
.

For ǫ , 0, (H(k)−λ−iǫ) is invertiable and its inverse is analytic from B to L (L2(W)).

By Theorem 2.21, operator

P :=
∫ ⊕

B

(H(k) − λ − iǫ)−1 dk

(2π)d

is a bounded operator on L2(Rd) =
∫ ⊕

B
L2(W) dk. We will prove that P is the inverse of

K.

Indeed, for any φ(x) ∈ L2(Rd), put ϕ = P(φ). Then,

ϕ(k) = (H(k) − λ − iǫ)−1φ(k).

This implies (H(k) − λ − iǫ)ϕ(k) = φ(k). That means ϕ(k) ∈ D(H(k)) and ϕ ∈ D(K).

Hence, KP(φ) = φ, i.e., P is a right inverse of K.

Moreover, for any ϕ ∈ D(K) = H2(Rd), put φ = Kϕ. Then,

φ(k) = (H(k) − λ − iǫ)ϕ(k).
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4 The higher-dimensional case

Because H(k) is an operator on L2(W) with the domain H2
k
(W), it implies φ(k) ∈ L2(W).

Therefore φ ∈ L2(Rd) and PK(ϕ) = ϕ. That means P is a left inverse of K. Thus, P is

the inverse of K.

We have

H − λ − iǫ = U−1KU.

Take the inverse both sides of (??), it implies

(H − λ − iǫ)−1 = U−1LU. (4.9)

Applying both sides of (4.9) to f , we get

uǫ(x) = U−1LU f (x) = U−1

(∫ ⊕

B

(H(k) − λ − iǫ)−1 dk

(2π)d

)
U f (x).

Moreover, H(k) has sequences of eigenvalues λ j(k) and the corresponding eigenfunc-

tions ψ j(x, k), j ∈ N, called Bloch waves, which form an orthonormal basis of L2(W). It

implies

(H(k) − λ − iǫ)−1U f (x, k) = (H(k) − λ − iǫ)−1
∑

j∈N
〈U f (., k), ψ j(., k)〉ψ j(x, k)

=
∑

j∈N
〈U f (., k), ψ j(., k)〉(H(k) − λ − iǫ)−1ψ j(x, k)

=
∑ 〈U f (., k), ψ j(., k)〉

λ j(k) − (λ + iǫ)
ψ j(x, k).

Thus, we obtain (4.7). �

Definition 4.10. Define a set

J(λ) =
{

j ∈ N : ∃k ∈ B, λ j(k) = λ
}
,

and level sets of λ

Γ j(λ) =
{
k ∈ [−π, π]d : λ j(k) = λ

}
for j ∈ J(λ).

For ω ∈ Sd−1, define

L j(ω) =
{
kω ∈ Γ j(λ) : ω = ∇λ j(kω)/|∇λ j(kω)|

}
for j ∈ J(λ).

Remark 4.11. The set L j(ω) play an important role in the asymptotic expansion of the

outgoing solution. We will see that all points in this set are stationary points.
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4.2 Radiation conditions in higher dimensions

Lemma 4.12. The set J(λ) is finite.

Proof. For every k ∈ B, the band functions λ j(k) tend to infinity as j→ ∞. This implies

that the set J(λ) is finite. �

First, we have the following proposition which describes the limit of components in

(4.7) when j < J(λ):

Proposition 4.13. For j < J(λ),

U j,ǫ(x) =
1

(2π)d

∫

B

〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ − iǫ
ψ j(x, k) dk (4.10)

converges to U j(x) in L2(Rd) as ǫ → 0, where

U j(x) =
1

(2π)d

∫

B

〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ ψ j(x, k) dk. (4.11)

Proof. Floquet-Bloch-Gelfand transform is a unitary operator from L2(Rd) to L2(B; L2(W))

(see Theorem 2.9). Take L2−norm of difference U j,ǫ(x) −U j(x) and use above property,

we get

∥∥∥U j,ǫ − U j

∥∥∥2

L2(Rd)
=

∥∥∥∥∥∥∥∥
1

(2π)d

∫

B



〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ − iǫ
−

〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ

ψ j(x, k) dk

∥∥∥∥∥∥∥∥

2

L2(Rd)

=

∥∥∥∥∥∥∥∥
U−1





〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ − iǫ
−

〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ

ψ j(x, k)



∥∥∥∥∥∥∥∥

2

L2(Rd)

=

∥∥∥∥∥∥∥∥



〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ − iǫ
−

〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ

ψ j(x, k)

∥∥∥∥∥∥∥∥

2

L2(B;L2(W))

=

∫

B

∥∥∥∥∥∥∥∥



〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ − iǫ
−

〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ

ψ j(x, k)

∥∥∥∥∥∥∥∥

2

L2(W)

dk

=

∫

B

∣∣∣∣∣∣∣∣

〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ − iǫ
−

〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ

∣∣∣∣∣∣∣∣

2
∥∥∥ψ j(., k)

∥∥∥2

L2(W)
dk

=

∫

B

∣∣∣∣∣∣∣∣

〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ − iǫ
−

〈
U f (., k), ψ j(., k)

〉

λ j(k) − λ

∣∣∣∣∣∣∣∣

2

dk.

The last equality uses the complete orthonormal basis ψ j(., k), j ∈ N in L2(W) for any

fixed k ∈ B.
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4 The higher-dimensional case

Because j < J(λ), there exists a constant C such that |λ j(k)−λ− iǫ |−1 and |λ j(k)−λ|−1

are smaller than C. Combine this with Cauchy-Schwarz inequality, it implies

∥∥∥U j,ǫ − U j

∥∥∥2

L2(Rd)
≤ ǫ2C4

∫

B

‖U f (., k)‖L2(W) dk = ǫ2C4 ‖ f ‖L2(Rd) .

Therefore, U j,ǫ → U j in L2(Rd) as ǫ → 0. A consequence of this convergence is

U j(x) ∈ L2(Rd). �

Remark 4.14. Because the spectrum of H is purely absolutely continuous (see Chapter

2), we only need to get L2(Rd) reminder terms in the asymptotic expansion. Proposition

4.13 says that the main contribution to the asymptotic expansion of outgoing solution

comes from the integrals in (4.7) for j ∈ J(λ).

Proposition 4.15. For ǫ , 0,

uǫ(x) = (H − (λ + iǫ))−1 f = U−1R(k, λ + iǫ)U f , (4.12)

where R(k, λ + iǫ) = (H(k) − λ − iǫ)−1.

Proof. This proposition is a consequence of Theorem 4.8. We obtain the formula

uǫ(x) = U−1LU f (x) = U−1

(∫ ⊕

B

(H(k) − λ − iǫ)−1 dk

(2π)d

)
U f (x).

Using the direct integral property, it implies

(∫ ⊕

B

(H(k) − λ − iǫ)−1 dk

(2π)d

)
U f (x, k) = (H(k) − λ − iǫ)−1U f (x, k)

= (R(k, λ + iǫ))U f (x, k).

Therefore, we get (4.12). �

Lemma 4.16. For each j ∈ J(λ), there exists a small neighborhood D j(λ) of Γ j(λ) and

δ > 0 such that for k ∈ D j(λ),

σ(H(k)) ∩ {z ∈ C : |z − λ| < 2δ} = {λ j(k)}. (4.13)

Remark 4.17. The intersection (4.13) contains only one eigenvalue λ j(k). But it could

happen that it is degenerated, i.e., the multiplicity of eigenvalue is more than one.
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4.2 Radiation conditions in higher dimensions

Proof of Lemma 4.16. Firstly, note that λ j(k) is an isolated eigenvalue of finite multi-

plicity. Without loss of generality, we can assume λ j(k) is a non-degenerated eigenvalue.

Then, choose δ > 0 such that 2δ < min{λ j+1(k) − λ j(k), λ j(k) − λ j−1(k)}.
Moreover, λ j(k) is continuous. Therefore, there exists a small neighborhood D j(λ)

of Γ j(λ) such that |λ j(k) − λ| < δ for all k ∈ D j(λ).

It is easy to see that for k ∈ D j(λ), (4.13) satisfies. �

Proposition 4.18. For (k, z) ∈ ⋃
j∈J(λ)

D j(λ) × {z ∈ C : |z − λ| < δ}, where z , λ j(k) for all

j ∈ J(λ),

R(k, z) =
∑

j∈J(λ)

(λ j(k) − z)−1P j(k) + Q(k, z). (4.14)

Here, P j(k) are projections onto eigenspaces corresponding to eigenvalues λ j(k), Q(k, z)

is analytic with respect to k ∈ D j(λ) for {z ∈ C : |z − λ| < δ}.

Proof. The resolvent R(k, z) is a meromorphic function of z near λwith poles at λ j(k), j ∈
J(λ).

It is enough to show the order of the pole λ j(k) is one. Indeed, since H(k) is self-

adjoint, therefore H(k)− z is normal for all z ∈ C. This implies the above statement (see

[Kat95, Chapter 2, Theorem 1.10]). �

Remark 4.19. Even if λ j(k) is not simple, we still have (4.14).

Remark 4.20. The projection P j(k) are not analytic in general. It is fulfilled if λ j(k)

are simple. If λ j(k) is an eigenvalue of multiplicity m > 1, then only total projection

P =
∑
l≤m

P j,l(k) is analytic (see [Kat95]). In order to establish a radiation condition, we

need to assume the local smoothness of the eigenvalues λ j(k) and the eigen-projections

P j(k) near the level sets Γ j(λ), j ∈ J(λ).

The main contribution to the asymptotic expansion of the solution comes from in-

tegrals near the level set Γ j(λ). Therefore, we need to localize these integrals near the

level sets by using partition of unity.

Proposition 4.21 ([Hör83], partition of unity). Let X1, ..., Xm be open sets in Rd and K

a compact subset of
m⋃
1

X j. Then, one can find ρ j ∈ C∞c (X j) so that ρ j ≥ 0 and
m∑
1
ρ j ≤ 1

with equality in a neighborhood of K.

The reminder terms can be estimated by using the relation between the decreasing

of a function and the smoothness of its Floquet transform. This relation is similar to the

classical result for the Fourier transform.
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4 The higher-dimensional case

Theorem 4.22 (Paley-Wiener theorem). If f is a smooth function with compact support

in Rd, then its Fourier transform F(z) is an entire function in Cd and for any N > 0,

there exist CN ,R > 0 such that

|F(z)| ≤ CN(1 + |z|)−NeR|Im z|. (4.15)

Conversely, if an entire function F(z) satisfies the condition (4.15), then it is the Fourier

transform of a smooth function with compact support in Rd.

Remark 4.23. The Floquet-Bloch-Gelfand transform U f (x, k) of function f ∈ L2(Rd)

is periodic in k with respect to the dual lattice Γ∗ and quasi-periodic in x with quasi-

momentum k (see [Kuc93]). Therefore, there is no decaying of the Floquet-Bloch-

Gelfand transform of a smooth function with compact support as (4.15). But it is easy

to see thatU f (x, k) is an analytic function in k for f ∈ C∞c (Rd). Moreover, one has the

following theorem:

Theorem 4.24 ([Kuc16, KKR17]). Let s ≥ 0 and g(x, k) be periodic in k with respect

to the dual lattice Γ∗ and quasi-periodic in x with quasi-momentum k (see Proposition

2.10). Then:

i) If g(x, k) is smooth in k ∈ Rd with values in Hs
k
(W), then f := U−1g ∈ Hs(Rd) and

for any N > 0, γ ∈ Γ,
‖ f ‖Hs(W+γ) ≤ CN |γ|−N .

In particular, by Sobolev embedding theorem (see e.g. [Eva10, GT01]), if s > d/2,

then the pointwise estimation holds

| f (x)| ≤ CN(1 + |x|)−N .

ii) If g(x, k) is analytic in k ∈ Rd with values in Hs
k
(W), then f := U−1g ∈ Hs(Rd).

Moreover, there exist positive constants C1,C2 such that for any γ ∈ Γ,

‖ f ‖Hs(W+γ) ≤ C1e−C2 |γ|.

In particular, by Sobolev embedding theorem (see e.g. [Eva10, GT01]), if s > d/2,

then the pointwise estimation holds

| f (x)| ≤ C1e−C2 |x|.
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Consider a finite open cover of B which consists of Dp(λ), p ∈ J(λ) and Ul, l ∈ I(λ),

where I(λ) is a finite set such that Ul, l ∈ I(λ) contain no point on the level sets Γp(λ)

for all p ∈ J(λ). Let ρp(k), p ∈ J(λ), χl(k), l ∈ I(λ) be subordinate to the open cover

Dp(λ), p ∈ J(λ) and Ul, l ∈ I(λ), i.e., suppρp ⊂ D j(λ), suppχl ⊂ Ul and
∑

p∈J(λ)
ρp(k) +

∑
l∈I(λ)

χl(k) = 1. Then, using (4.14) we get

uǫ(x) =
∑

p∈J(λ)

U−1ρp(k)R(k, λ + iǫ)U f +
∑

l∈I(λ)

U−1χl(k)R(k, λ + iǫ)U f

=
∑

p∈J(λ)

∑

j∈J(λ)

U−1ρp(k)(λ j(k) − λ − iǫ)−1P j(k)U f+

+
∑

p∈J(λ)

U−1ρp(k)Q(k, λ + iǫ)U f +
∑

l∈I(λ)

U−1χl(k)R(k, λ + iǫ)U f .

(4.16)

Remark 4.25. We will prove that the main contribution to the asymptotic expansion

of solution u = lim
ǫ→+0

uǫ of the Schrödinger equation (4.3) comes from the first part of

(4.16). The reminder terms can be estimated by using Theorem 4.24.

Theorem 4.26. As ǫ → 0,

F(λ + iǫ) f (x) :=
∑

l∈I(λ)

U−1χl(k)R(k, λ + iǫ)U f

→ F(λ) f (x) :=
∑

l∈I(λ)

U−1χl(k)R(k, λ)U f in L2(Rd),

and for n ∈ Zd,N ∈ N,

F(λ) f (x + n) = O(|n|−N) as |n| → ∞. (4.17)

Proof. For k ∈ Ul, l ∈ I(λ), we have λ j(k) , λ for all j ∈ J(λ). Therefore, R(k, λ) is

well-defined for all k ∈ Ul. This implies R(k, λ + iǫ)→ R(k, λ) for all k ∈ Ul, l ∈ I(λ) as

ǫ → 0 in operator norm, and

F(λ + iǫ) f (x)→ F(λ) f (x) in L2(Rd) as ǫ → 0.

Because f (x) is a smooth function with compact support, this implies U f (x, k) is

analytic in k ∈ B (see Remark 4.23). Moreover, the resolvent R(k, λ) is analytic in

k ∈ Ul, l ∈ I(λ). Therefore, χl(k)R(k, λ)U f (x, k) is smooth in k ∈ Ul, l ∈ I(λ). This

implies the estimate (4.17) (see Theorem 4.24). �

Using the same argument, we obtain
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4 The higher-dimensional case

Proposition 4.27. As ǫ → 0,

G(λ + iǫ) f (x) :=
∑

p∈J(λ)

U−1ρp(k)Q(k, λ + iǫ)U f (x)

→ G(λ) f (x) :=
∑

p∈J(λ)

U−1ρp(k)Q(k, λ)U f (x) in L2(Rd),

and for n ∈ Zd and N ∈ N

G(λ) f (x + n) = O(|n|−N) as |n| → ∞. (4.18)

Proof. From Proposition 4.18, Q(k, λ) is well-defined and analytic in λ and in k ∈ D j(λ).

Therefore, it implies the convergence G(λ+ iǫ) f (x)→ G(λ) f (x) in L2(Rd) as ǫ → 0 and

the estimate (4.18) (see Theorem 4.24). �

Taking the limit uǫ as ǫ → +0, we get

u(x) = lim
ǫ→+0

uǫ(x) = F(λ) f (x) +G(λ) f (x) +
∑

p∈J(λ)

Kp(x),

where

Kp(x) = lim
ǫ→+0
U−1ρp(k)

∑

j∈J(λ)

P j(k)

λ j(k) − λ − iǫ
U f

= lim
ǫ→+0

1
(2π)d

∫

B

ρp(k)
∑

j∈J(λ)

〈
U f (., k), ψ j(., k)

〉

λ j(k) − (λ + iǫ)
ψ j(x, k) dk.

(4.19)

To analyze the integral (4.19), let ω ∈ Sd−1. Take functions φm(k) ∈ C∞c (Dp(λ)),m =

1, 2, 3, such that:

i) φ1(k) = 1 near Lp(ω) and ω · ∇λp > 0 on the support of φ1,

ii) φ2(k) = 1 near Lp(−ω) and ω · ∇λp < 0 on the support of φ2,

iii) φ3(k) = 1 near {k ∈ Γp(λ) : ω · ∇λp = 0},

iv)
3∑

m=1
φl = 1 near Γp(λ).

Therefore,

Kp(x) = K1p(x) + K2p(x) + K3p(x), (4.20)

where

Kmp(x) = lim
ǫ→+0

1
(2π)d

∫

B

φm(k)ρp(k)
∑

j∈J(λ)

〈
U f (., k), ψ j(., k)

〉

λ j(k) − (λ + iǫ)
ψ j(x, k) dk, m = 1, 2, 3.
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4.2 Radiation conditions in higher dimensions

First, consider K1p. We choose {e′2, ..., e′d} ⊂ Rd such that
{
ω, e′2, ..., e

′
d

}
is an or-

thonormal basis of Rd, and use the coordinate (k1, k
′) such that

k = k1ω + k′e′.

Changing of variables from (k1, k
′) to (ξ1, ξ

′) such that ξ1 = λ j(k) − λ, ξ′ = k′, we obtain

for p ∈ J(λ), j ∈ J(λ),

K1p jǫ (x) :=
1

(2π)d

∫

B

φ1(k)ρp(k)

〈
U f (., k), ψ j(., k)

〉

λ j(k) − (λ + iǫ)
ψ j(x, k) dk

=
1

(2π)d

∫

B′
φ1(k1(ξ)ω + ξ′e′)ρp(k1(ξ)ω + ξ′e′)·
〈
U f (., k1(ξ)ω + ξ′e′), ψ j(., k1(ξ)ω + ξ′e′))

〉

ξ1 − iǫ
ψ j(x, k1(ξ)ω + ξ′e′)

∣∣∣∣∣
∂k1

∂ξ1

∣∣∣∣∣ dξ,

where
∂k1

∂ξ1
=

(
∂ξ1

∂k1

)−1

= (ω · ∇λ j(k1(ξ)ω + ξ′e′))−1 > 0.

Using a basic inequality for φ ∈ C1
c (R) and ǫ > 0 (see e.g. [MT06])

∣∣∣∣∣∣

∫

R

[
1

t − iǫ
−

(
p.v.

1
t
+ iπδ(t)

)]
φ(t) dt

∣∣∣∣∣∣ ≤ Cǫ ||φ||C1 ,

and taking the limit as ǫ → +0, it implies

K1p j(x) := lim
ǫ→+0

K1p jǫ (x) =
1

(2π)d

∫

B′
φ1(k1(ξ)ω + ξ′e′)ρp(k1(ξ)ω + ξ′e′)

(
p.v.

1
ξ1
+ iπδ(ξ1)

)

〈
U f (., k1(ξ)ω + ξ′e′), ψ j(., k1(ξ)ω + ξ′e′))

〉

ω · ∇λ j(k1(ξ)ω + ξ′e′)
ψ j(x, k1(ξ)ω + ξ′e′) dξ.

Remark 4.28. The quantity ω · ∇λ j(k1(ξ)ω + ξ′e′) is related to the group velocity of

wave propagation in periodic media. If it is positive (negative), then the group velocity

is positive (negative).

Remark 4.29. By the defintion, all points in L j(ω) have positive group velocity. These

points will play important role in the asymptotic expansion of the solution of the peri-

odic Schrödinger equation.

We want to write the solution of the periodic Schrödinger equation without absorp-

tion as oscillatory integral and use the stationary phase method. First, we fix x ∈ W

and introduce a variable n ∈ Zd. Then, using quasi-periodic property of Bloch waves, it

implies

u(x + n) = F(λ) f (x + n) +G(λ) f (x + n) +
∑

p∈J(λ)

Kp(x + n),
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4 The higher-dimensional case

where

Kp(x + n) = lim
ǫ→+0

1
(2π)d

∫

B

ρp(k)
∑

j∈J(λ)

〈
U f (., k), ψ j(., k)

〉

λ j(k) − (λ + iǫ)
ψ j(x, k)eik·n dk. (4.21)

Using the same argument as before for (4.21) with ω = n/|n| ∈ Sn−1, we obtain

K1p j(x + n) =
1

(2π)d

∫

B′
φ1(k1(ξ)ω + ξ′e′)ρp(k1(ξ)ω + ξ′e′)

(
p.v.

1
ξ1
+ iπδ(ξ1)

)
ei(n1k1(ξ)+ξ′n′)

·

〈
U f (., k1(ξ)ω + ξ′e′), ψ j(., k1(ξ)ω + ξ′e′))

〉

ω · ∇λ j(k1(ξ)ω + ξ′e′)
ψ j(x, k1(ξ)ω + ξ′e′) dξ.

Next, we use the following estimate:

Lemma 4.30 ([MT06, Lemma 2.4]). Let g(t) ∈ C∞c (R), and φ(t) be a real-valued smooth

function. Assume φ′(t) > 0 on supp g, then for any N ∈ N,

p.v.
∫ ∞

−∞
eirφ(t)g(t)

1
t

dt = ±iπeirφ(0)g(0) + O(|r|−N) (4.22)

as r → ±∞.

Remark 4.31. We would like to apply the stationary phase method for integral K1p j.

Therefore, we need regularity on the band functions λ j(k) and Bloch waves ψ j(x, k), j ∈
J(λ).

Remark 4.32. In periodic waveguide [FJ16], it is allowed band crossing. The strong

result on analytic perturbation theory of Rellich [Rel69] gives raise the reordering band

functions which are real analytic. Here, we also accept band crossing with an assump-

tion on local smoothness of the band functions λ j(k) and Bloch waves ψ j(x, k) near the

level sets Γ j(λ), j ∈ J(λ).

Theorem 4.33. Assuming that there exists a system of the band functions λ j(k) and

Bloch waves ψ j(k, x) which is locally smooth near the level sets Γ j(λ), j ∈ J(λ), the

number of points in L j(ω) is finite for all j ∈ J(λ), ω ∈ Sd−1, and Gauss-Kronecker

curvature of Γ j(λ) oriented by −∇λ j(k)/|∇λ j(k)| at any point kω ∈ L j(ω), j ∈ J(λ) is

non-zero. Then, there is an asymptotic expansion

K1p(x + n) =
i

(2π)(d−1)/2

∑

j∈J(λ)

∑

kω∈L j(ω)

ρp(kω)
A j(x, λ, ω)

|n|(d−1)/2
ei|n|kω ·ω+

+ O

(
1

|n|(d+1)/2

)
as |n| → ∞.

(4.23)

Here,
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4.2 Radiation conditions in higher dimensions

• ω = n
|n| ,

• A j(x, λ, kω) =

〈
U f (., kω), ψ j(., kω)

〉
e
−iπ
4 sgn(e′

l
·Hessλ j(kω)e′m)d

l,m=2

|∇λ j(kω)|
√
|K j(kω)|

ψ j(x, kω),

where (ω, e′2, ..., e
′
d
) is an orthonormal basic of Rd, K j(kω) is the Gauss-Kronecker

curvature of Γ j(λ) at kω,

• L j(ω) =
{
kω ∈ Γ j(λ) : ω = ∇λ j(kω)/|∇λ j(kω)|

}
for j ∈ J(λ).

Proof. First, note that ω · ∇λ j(k) > 0 on the support of φ1 and n · k = |n|ω · k = |n|k1(ξ).

It implies
∂k1

∂ξ1
= (ω · ∇λ j(k))−1 > 0 on the support of φ1.

Next, applying Lemma 4.30 to K1p j with respect to variable ξ1, we obtain for |n| → ∞

K1p j(x + n) =
i

(2π)d−1

∫

C
φ1(k1(0, ξ′)ω + ξ′e′)ρp(k1(0, ξ′)ω + ξ′e′)ei|n|k1 (0,ξ′)·

·

〈
U f (., k1(0, ξ′)ω + ξ′e′), ψ j(., k1(0, ξ′)ω + ξ′e′))

〉

ω · ∇λ j(k1(0, ξ′) + ξ′e′)
·

· ψ j(x, k1(0, ξ′)ω + ξ′e′) dξ′ + O(1/|n|−N).

(4.24)

We apply the stationary phase method (see Appendix A.3) to the integral (4.24) with

respect to variable ξ′. The stationary points satisfy the equation ∂ξ′k1(0, ξ′) = 0 and

λ j(k1(0, ξ′)ω + ξ′e′) = λ if and only if ω is the direction of ∇λ j(k1(0, ξ′)ω + ξ′e′). The

set of all stationary points is L j(ω) =
{
kω ∈ Γ j(λ) : ω = ∇λ j(kω)/|∇λ j(kω)|

}
. By the defi-

nition, we have φ1(kω) = 1 for all kω ∈ L j(λ), j ∈ J(λ). It implies for |n| → ∞

K1p j(x + n) =
i

(2π)d−1

(2π)(d−1)/2

|n|(d−1)/2

∑

kω∈L j(ω)

ρp(kω)
e

iπ
4 sgn Hess k1(0,ξ′ω)

|∇λ j(kω)||det Hess k1(0, ξ′ω)|1/2 ·

·
〈
U f (., kω), ψ j(., kω)

〉
ψ j(x, kω)e(i|n|kω ·ω) + O(

1
|n|(d+1)/2

).

Lemma 4.34. For 2 ≤ l,m ≤ d, we have

(Hess k1(0, ξ′ω))lm = −|∇λ j(kω)|−1(e′l · Hess λ j(kω)e′m), (4.25)

|det (Hess k1(0, ξ′ω))| = |∇λ j(kω)|−(d−1)
∣∣∣∣det

(
e′l · Hess λ j(kω)e′m

)d

l,m=2

∣∣∣∣ , (4.26)

where ξ′ω is a stationary point for the integral (4.24).
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4 The higher-dimensional case

Proof. First, note that {ω, e2, ..., ed} is an orthonormal basis of Rd and

λ j(k1(0, ξ′ω)ω + ξ′ωe′) = λ. (4.27)

Differentiate (4.27) with respect to ξl, we obtain

∂λ j(k1(0, ξ′ω)ω + ξ′ωe′)

∂ξl

+
∂λ j(k1(0, ξ′ω)ω + ξ′ωe′))

∂ξ1

∂k1(0, ξ′ω)

∂ξl

= 0. (4.28)

Again, differentiate (4.28) with respect to ξm, it implies

∂2λ j(kω)

∂ξl∂ξm

+
∂2λ j(kω)

∂ξl∂ξ1

∂k1(0, ξ′ω)

∂ξm

+
∂λ j(kω)

∂ξ1

∂2k1(0, ξ′ω)

∂ξl∂ξm

+

+
∂k1(0, ξ′ω)

∂ξl

(
∂2λ j(kω)

∂ξ1∂ξm

+
∂2λ j(kω)

∂ξ2
1

∂k1(0, ξ′ω)

∂ξm

)
= 0.

(4.29)

Moreover,
∂λ j(kω)

∂ξ1
= ω · ∇λ j(kω) = |∇λ j(kω)|.

Therefore,

−|∇λ j(kω)|∂
2k1(0, ξ′ω)

∂ξl∂ξm

=
∂2λ j(kω)

∂ξl∂ξm

+
∂k1(0, ξ′ω)

∂ξl

∂2λ j(kω)

∂ξ1∂ξm

+

+
∂k1(0, ξ′ω)

∂ξl

∂k1(0, ξ′ω)

∂ξm

∂2λ j(kω)

∂ξ2
1

+
∂k1(0, ξ′ω)

∂ξm

∂2λ j(kω)

∂ξl∂ξ1
.

Since ξ′ω is a stationary point, we have

∂k1(0, ξ′ω)

∂ξl

= 0, ∀l = 2, ..., d.

This implies (4.25) and (4.26). �

Note that {e′2, ..., e′d} is an orthonormal basis of the tangent space of Γ j(λ) at kω.

Therefore, the Gauss-Kronecker curvature of Γ j(λ) at kω is

K j(kω) =
det (e′

l
· Hess λ j(kω)e′m)d

l,m=2

|∇λ j(kω)|d−1
.

Combine this with Lemma 4.34 and note that

sgn Hess k1(0, ξ′ω) = − sgn
(
e′l · Hess λ j(kω)e′m

)d

l,m=2
,

we obtain (4.23). �
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Remark 4.35. The stationary points live on the level sets Γ j(λ), j ∈ J(λ) satisfying

condition ω = ∇λ j(k1(0, ξ′)ω + ξ′e′)/|∇λ j(k1(0, ξ′)ω + ξ′e′)|. That means the group

velocity at these points is positive. It is compatible with the classical result for outgoing

solution. In a case of incoming solution we will get the conditionω = −∇λ j(k1(0, ξ′)ω+

ξ′e′)/|∇λ j(k1(0, ξ′)ω + ξ′e′)|, i.e., the group velocity is negative.

Next, consider the integral

K2p(x + n) = lim
ǫ→+0

1
(2π)d

∫

B

φ2(k)ρp(k)

〈
U f (., k), ψ j(., k)

〉

λ j(k) − (λ + iǫ)
ψ j(x, k)eik·n dk. (4.30)

Proposition 4.36. For any positive integer N,

K2p(x + n) = O(|n|−N). (4.31)

Proof. Similar to K1p(x + n), we obtain

K2p j(x + n) =
1

(2π)d

∫

B′
φ2(k1(ξ)ω + ξ′e′)ρp(k1(ξ)ω + ξ′e′)

(
p.v.

1
ξ1
+ iπδ(ξ1)

)
ei|n|k1(ξ)·

〈
U f (., k1(ξ)ω + ξ′e′), ψ j(., k1(ξ)ω + ξ′e′))

〉

ω · ∇λ j(k1(ξ)ω + ξ′e′)
ψ j(x, k1(ξ)ω + ξ′e′) dξ.

Apply Lemma 4.30 to K2p j(x + n) with respect to variable ξ1 and note that ∂k1/∂ξ1 =

ω · ∇λ j(k) < 0 on the support of φ2 . Therefore, the factor p.v 1
ξ1

will cancel the factor

iπδ(ξ1) and we only get the reminder term O(|n|−N) for any positive integer N. It implies

the estimate (4.31). �

For the last integral,

K3p(x + n) = lim
ǫ→+0

1
(2π)d

∫

B

φ3(k)ρp(k)
∑

j∈J(λ)

〈
U f (., k), ψ j(., k)

〉

λ j(k) − (λ + iǫ)
ψ j(x, k)eik·n dk. (4.32)

Using change of variables, it is easy to see that K3p(x + n) contributes nothing to the

asymptotic expansion.

Proposition 4.37. For any positive integer n ∈ N

K3p(x + n) = O(|n|−N).

Remark 4.38. The proof is similar to the proof of Lemma 2.7 in [MT06] with a slight

difference.
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4 The higher-dimensional case

Proof of Proposition 4.37. Using partition of unity, it is sufficient to prove for integral

over sufficiently small domain.

Let k0 ∈ Γ j(λ) ∩ suppφ3 and χ ∈ C∞c such that χ = 1 near a small neighborhood of

k0. Consider the integral

K3p j,ǫ,χ(x + n) :=
1

(2π)d

∫

B

χ(k)φ3(k)ρp(k)

〈
U f (., k), ψ j(., k)

〉

λ j(k) − (λ + iǫ)
ψ j(x, k)eik·n dk. (4.33)

Let θ be the outward unit normal vector to Γ j(λ) at k0, i.e., θ = ∇λ j(k0)/|∇λ j(k0)|. By

the definition of φ3(k), it implies that θ and ω are not parallel. Therefore, we choose

{e′3, e′4, ..., e′d} such that {θ, ω, e′3, ..., e′d} is a basis of Rd. Changing of variables from k to

η such that

k = η1θ + η2ω + η̃ · ẽ.

Denote p3(k) = χ(k)φ3(k)ρp(k)
〈
U f (., k), ψ j(., k)

〉
. We obtain

K3p j,ǫ,χ(x + n) =
1

(2π)d

∫

B′

p3(η1θ + η2ω + η̃ · ẽ)
λ j(η1θ + η2ω + η̃ · ẽ) − (λ + iǫ)

·

ψ j(x, η1θ + η2ω + η̃ · ẽ)ei(η1θ+η2ω+η̃·ẽ)·nD dη,

(4.34)

where D = | det(θ, ω, e′3, ..., e
′
d
)| is the Jacobian.

Again, changing of variables from η to ζ such that ζ1 = λ j(η1θ + η2ω+ η̃ · ẽ)− λ and

(ζ2, ζ̃) = (η2, η̃). Then,

K3p j,ǫ,χ(x + n) =
1

(2π)d

∫

B′

p3(η1(ζ)θ + ζ2ω + ζ̃ · ẽ)
ζ1 − iǫ

·

ψ j(x, η1(ζ)θ + ζ2ω + ζ̃ · ẽ)ei(η1(ζ)θ+ζ2ω+ζ̃ ·ẽ)·nD

∣∣∣∣∣
∂η1

∂ζ1

∣∣∣∣∣ dζ.

(4.35)

We will see that the integral (4.35) has no stationary point with respect to variable ζ2.

Indeed, ∂ζ1η1 = (θ · ∇λ j)−1 < ∞ because we only consider in a small neighborhood of

k0.

Since ζ1 = λ j(η1θ + η2ω + η̃ · ẽ) − λ, this implies

∂ζ2η1 = (ω · ∇λ j)/(θ · ∇λ j).

Thus,

t(ζ) := ∂ζ2((η1(ζ)θ + ζ2ω + ζ̃ · ẽ) · n) =
ω · ∇λ j

θ · ∇λ j

θ · n + ω · n. (4.36)

Because ω = n/|n|, it implies ω · n = 1. We choose a neighborhood of k0 small enough

such that ω · ∇λ j < 1/2 and θ · ∇λ j > 1/2. Therefore, it implies t(ζ) > 0.

Applying the stationary phase method with respect to variable ζ2, we obtain Proposition

4.37. �
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Theorem 4.39 (Radiation condition in higher dimensions). Let λ ∈ R be regular and

assumption in Theorem 4.33 satisfy. Then, there exists the limit u(x) = lim
ǫ→+0

uǫ(x) in

L2
loc(R

d), and u(x) is a solution of equation (4.3) which satisfies an asymptotic expansion

u(x + n) =
i

(2π)(d−1)/2

∑

j∈J(λ)

∑

kω∈L j(ω)

A j(x, λ, kω)

|n|(d−1)/2
ei|n|kω ·ω+

O

(
1

|n|(d+1)/2

)
as |n| → ∞,

(4.37)

uniformly in x ∈ [0, 1]d and in ω = n/|n| ∈ Sd−1. Here,

• J(λ) = { j ∈ N : ∃k ∈ [−π, π]d, λ j(k) = λ},

• L j(ω) =
{
kω ∈ Γ j(λ) : ω = ∇λ j(kω)/|∇λ j(kω)|

}
for j ∈ J(λ),

• A j(x, λ, kω) =

〈
U f (., kω), ψ j(., kω)

〉
e
−iπ
4 sgn(e′

l
·Hessλ j(kω)e′m)d

l,m=2

|∇λ j(kω)|
√
|K j(kω)|

ψ j(x, kω),

where (ω, e′2, ..., e
′
d
) is an orthonormal basic of Rd, and K j(kω) is the Gauss-

Kronecker curvature of Γ j(λ) at kω.

Proof. From Theorem 4.33 and Propositions 4.36 and 4.37, we get the asymptotis ex-

pansion (4.37) for solution u(x) of periodic Schrödinger equation (4.3).

The asymptotic expansion is uniform in x ∈ [0, 1]d because of Theorem 4.24.

By changing slightly the above proof, we see that forω ∈ Sd−1, there is a conic neigh-

borhood Vω of ω such that (4.37) holds for n ∈ Vω with O(1/|n|(d+1)/2) ≤ Cω|n|(d+1)/2. Be-

cause Sd−1 is compact, it implies the uniformity in ω ∈ Sd−1 (see also [MT06, Theorem

2.3] ). �

Remark 4.40. Let us discuss the first assumption in Proposition 4.33: the existence

of locally smooth band functions λ j(k) and Bloch waves ψ j(k, x) near the level sets

Γ j(λ), j ∈ J(λ). By analytic perturbation theory (see Appendix A.2), these functions are

separately analytic, i.e., analytic in each individual variable when others are fixed. But

they are not guaranteed to be jointly analytic or even smooth. The simple example is

Example 4.41.

f (x, y) =



xy

x2+y2 if (x, y) , (0, 0),

0 if (x, y) = (0, 0)

is separately analytic but not continuous at (0, 0).
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4 The higher-dimensional case

The next example shows that even separately analytic function is smooth. It is still

not jointly analytic.

Example 4.42. Consider

f (x, y) =


xy exp (− 1

x2+y2 ) if (x, y) , (0, 0),

0 if (x, y) = (0, 0).

Then f is

a) separately analytic on R2,

b) smooth on R2,

c) not jointly analytic at (0, 0).

This is in contradiction to complex analytic functions where separately analyticity

implies jointly analyticity by Hartogs’ Theorem (see [Hör90, Theorem 2.2.8]). But

under a condition on uniformly bounded of holomorphic extension into complex do-

main, a separately real analytic function is jointly analytic by the famous Bernstein’s

Theorem (see [Van97, Theorem 1]). The singular set of separately real analytic func-

tion, the set of all points the function is not jointly real analytic, is characterized in

[SR90, Sic90, Bło92]. It has Lebesgue measure zero and its projection into Rd−1 is

pluripolar. Our assumption only needs local analyticity of band functions and Bloch

waves near the level set Γ j(λ), j ∈ J(λ) which is not so strong. The assumptions on the

finite number of points in L j(ω), j ∈ J(λ) and non-zero Gauss-Kronecker curvature of

Γ j(λ) at any point kω ∈ L j(ω), j ∈ J(λ) are natural.

Remark 4.43. The asymptotic expansion (4.37) depends on the directionω = n/|n|. This

is compatible to the result in one-dimensional case where there are only two directions

x→ ±∞.

Remark 4.44. The stationary phase method can give the complete asymptotic expansion

of oscillatory integral, but we only need the leading term. It is enough to prove the

unique solvability.

Remark 4.45. Because we only need the leading term in asymptotic expansion, we can

use Theorem A.73 to weaken the smoothness of the band functions and Bloch waves.

They only need to satisfy the differentibility up to some order.
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Remark 4.46. The authors in [MT06] established asymptotics of Green functions for

elliptic operators with periodic coefficients for λ greater and close enough to the bottom

of the spectrum. In this case, all assumptions in Proposition 4.33 are satisfied. The

asymptotic expansion (4.37) becomes simple because the set J(λ) = {1} and L1(ω)

contains only one point for all ω ∈ Sd−1 (see also [Gho02]).

Theorem 4.47 ([MT06, Theorem 1.1]). Assume λ is greater and close enough to the

bottom of the spectrum of elliptic operator with periodic coefficients H. Then, the limit

(H− (λ+ i0))−1 f (x) := lim
ǫ→+0

(H−λ− iǫ)−1 f (x) in L2
loc(R

d) exists for f ∈ L2(Rd) with com-

pact support, and the integral kernel Gλ+i0(x, y) of (H − (λ + i0))−1 admits the following

asymptotics as |x − y| → ∞

Gλ+i0(x, y) =
eiπ(3−d)/4

(2π)(d−1)/2

ψ1(x, kω)ψ1(y, kω)ei(x−y)·kω

|x − y|(d−1)/2|∇λ j(kω)|
√
|K j(kω)|

+ O

(
1

|x − y|(d+1)/2

)
,

where kω ∈ Γ1(λ) is a unique point satisfying ω = ∇λ1(kω)/|∇λ1(kω)|.

In our case, we get a similar asymptotic expansion for the outgoing solution of the

periodic Schrödinger equation.

Proposition 4.48. Assume λ is greater and close enough to the bottom of the spectrum.

Then, the solution u(x) = lim
ǫ→+0

uǫ(x) of (4.3) has an asymptotic expansion as |n| → ∞

u(x + n) =
eiπ(3−d)/4

(2π)(d−1)/2

〈U f (., kω), ψ1(., kω)〉
|n|(d−1)/2|∇λ j(kω)|

√
|K j(kω)|

ψ1(x, kω)ei|n|kω ·ω+

O

(
1

|n|(d+1)/2

)
,

(4.38)

where kω ∈ Γ1(λ) is a unique point satisfying ω = ∇λ1(kω)/|∇λ1(kω)|.

Remark 4.49. In [KR12, KKR17], the authors considered the asymptotics of Green

function at spectral edge and spectral gap interior. They made assumptions on spectral

edge which is known as the conjecture for generic Schödinger operator (see also [Kuc16,

Conjecture 5.25]).

Conjecture 1. Generically, for a self-adjoint second-order elliptic operator with real

periodic coefficients on Rd, the spectral gap’s endpoints

i) are attained by a singer band,

ii) are isolated
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4 The higher-dimensional case

iii) are non-degenerated, i.e., have non-degenerate Hessian.

The condition i) holds for generic Schödinger operator [KR00]. The condition ii)

and iii) are usually assumed in both mathematics and physics but it is still unproved (for

more discussion see [Kuc16]).

The main idea to derive the asymptotic expansion of Green function in [KR12,

KKR17] is to use the analyticity of the band functions and Bloch waves. In our case,

under the assumptions in Conjecture 1, it is easy to derive the asymptotic expansion

of the solution when the spectral parameter is in the spectrum and close enough to the

spectral edge. The formula is similar to (4.38).

The next result is the unique solvability for solution of (4.3) under the radiation

condition in Theorem 4.39.

Theorem 4.50 (Uniqueness for outgoing solution). Let λ ∈ R be regular and the as-

sumption in Theorem 4.33 satisfy. Then, there is a unique solution to −∆u+V(x)u−λu =

f (x) satisfying the asymptotic expansion

u(x + n) =
i

(2π)(d−1)/2

∑

j∈J(λ)

∑

kω∈L j(ω)

A j(x, λ, kω)

|n|(d−1)/2
ei|n|kω ·ω+

O

(
1

|n|(d+1)/2

)
as |n| → ∞,

(4.39)

uniformly in x ∈ [0, 1]d and in ω = n/|n| ∈ Sd−1.

Here,

• J(λ) = { j ∈ N : ∃k ∈ [−π, π]d, λ j(k) = λ},

• L j(ω) =
{
kω ∈ Γ j(λ) : ω = ∇λ j(kω)/|∇λ j(kω)|

}
for j ∈ J(λ),

• A j(x, λ, kω) =

〈
U f (., kω), ψ j(., kω)

〉
e
−iπ
4 sgn(e′

l
·Hessλ j(kω)e′m)d

l,m=2

|∇λ j(kω)|
√
|K j(kω)|

ψ j(x, kω),

where (ω, e′2, ..., e
′
d
) is an orthonormal basic of Rd, and K j(kω) is the Gauss-

Kronecker curvature of Γ j(λ) at kω.

Proof. Suppose there are two solutions u(x), v(x) satisfying the asymptotic expansion

(4.39). Then, w(x) = u(x)−v(x) satisfies the homogeneous equation −∆u+V(x)u−λu =

0.

Using (4.39), it implies that w is in L2(Rd). Therefore, the spectral theorem implies

w(x) ≡ 0. That means u(x) ≡ v(x).

Thus, we get the unique solution satisfying the asymptotic expansion (4.39). �
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Remark 4.51. The asymptotic expansion (4.39) is called the outgoing radiation condi-

tion. If we take the limit uǫ as ǫ → −0 instead of ǫ → +0, then we will get incoming

solution. The incoming radiation condition can be derived by using the same argu-

ment as before. The stationary points for the incoming solution satisfy a condition

ω = −∇λ j(kω)/|∇λ j(kω)|.

Theorem 4.52 (Incoming radiation condition). Let λ ∈ R be regular. Assume that there

exists a system of locally smooth band functions λ j(k) and Bloch waves ψ j(k, x) near the

level sets Γ j(λ), j ∈ J(λ); the number of points in L j(−ω) is finite for all j ∈ J(λ), ω ∈
S

d−1, and Gauss-Kronecker curvature of Γ j(λ) oriented by −∇λ j(k)/|∇λ j(k)| at any point

kω ∈ L j(−ω), j ∈ J(λ) is non-zero. Then, the limit u(x) = lim
ǫ→−0

uǫ(x) exists in L2
loc(R

d)

and it is a solution to (4.3) which satisfies an asymptotic expansion

u(x + n) =
−i

(2π)(d−1)/2

∑

j∈J(λ)

∑

kω∈L j(−ω)

A j(x, λ, kω)

|n|(d−1)/2
ei|n|kω ·ω+

O

(
1

|n|(d+1)/2

)
as |n| → ∞,

(4.40)

uniformly in x ∈ [0, 1]d and in ω = n/|n| ∈ Sd−1.

Here,

• J(λ) = { j ∈ N : ∃k ∈ [−π, π]d, λ j(k) = λ},

• L j(−ω) =
{
kω ∈ Γ j(λ) : ω = −∇λ j(kω)/|∇λ j(kω)|

}
for j ∈ J(λ).

• A j(x, λ, kω) =

〈
U f (., kω), ψ j(., kω)

〉
e

iπ
4 sgn(e′

l
·Hess λ j(kω)e′m)d

l,m=2

|∇λ j(kω)|
√
|K j(kω)|

ψ j(x, kω),

where (ω, e′2, ..., e
′
d
) is an orthonormal basic of Rd, and K j(kω) is the Gauss-

Kronecker curvature of Γ j(λ) at kω.

We also get the unique solvability under the incoming radiation condition.

Theorem 4.53 (Uniqueness for incoming solution). Let λ ∈ R be regular and the as-

sumption in Theorem 4.52 satisfy. Then, there is a unique solution to −∆u+V(x)u−λu =

f (x) satisfying the asymptotic expansion

u(x + n) =
−i

(2π)(d−1)/2

∑

j∈J(λ)

∑

kω∈L j(−ω)

A j(x, λ, kω)

|n|(d−1)/2
ei|n|kω ·ω+

O

(
1

|n|(d+1)/2

)
as |n| → ∞,

(4.41)

uniformly in x ∈ [0, 1]d and in ω = n/|n| ∈ Sd−1.
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4 The higher-dimensional case

Remark 4.54. From (4.37), the structure of the outgoing solution is

u(x + n) =
1

|n|(d−1)/2

∑

j∈J(λ)

∑

kω∈L j(ω)

c j,kωψ j(x, kω)ei|n|kω ·ω+

+ O

(
1

|n|(d+1)/2

)
as |n| → ∞,

(4.42)

uniformly in x ∈ [0, 1]d and in ω = n/|n| ∈ Sd−1.

Here,

• J(λ) = { j ∈ N : ∃k ∈ [−π, π]d, λ j(k) = λ},

• L j(ω) =
{
kω ∈ Γ j(λ) : ω = ∇λ j(kω)/|∇λ j(kω)|

}
for j ∈ J(λ).

The sum above is a finite linear combination of Bloch waves with positive group

velocity. I conjecture that the condition (2) is a strong radiation condition for outgoing

solution. It is hard to prove the unique solvability of the periodic Schrödinger equation

−∆u + Vu − λu = f (x) under (2).

Conjecture 2. Let λ ∈ R be regular and the assumptions in Theorem 4.33 satisfy. Then,

there is a unique solution to −∆u+V(x)u−λu = f (x) satisfying the asymptotic expansion

u(x + n) =
1

|n|(d−1)/2

∑

j∈J(λ)

∑

kω∈L j(ω)

c j,kωψ j(x, kω)ei|n|kω ·ω + O

(
1

|n|(d+1)/2

)
as |n| → ∞,

uniformly in x ∈ [0, 1]d and in ω = n/|n| ∈ Sd−1.
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A Appendix

In the Appendix, we recall some results on spectral theory of self-adjoint operators

which are useful to the study of periodic Schrödinger operators; analytic perturbation

theory for analyzing the band functions and Bloch waves; and the stationary phase

method which we use to derive the asymptotic expansion for solutions of the periodic

Schrödinger equation.

A.1 Spectral theory of self-adjoint operators

Spectral theory of self-adjoint operators is a clasical topic and can be found in many

textbooks. Here we follow [RS80, HS96].

A.1.1 Self-adjoint operators

Let H be a Hilbert space with an inner product 〈., .〉 and H : D(H) → H a densely

defined linear operator, i.e., the closure D(H) =H .

Definition A.1. The graph of a linear transformation H is the set

Γ(H) = {(φ,Hφ) : φ ∈ D(H)} .

The graph of H is a subset of H ×H which is a Hilbert space with an inner product

〈(φ1, ψ1), (φ2, ψ2)〉H ×H = 〈φ1, φ2〉 + 〈ψ1, ψ2〉 .

The operator H is said to be closed if Γ(H) is the closed subset of H ×H .

Definition A.2. Let H1,H be operators on H . If Γ(H1) ⊇ Γ(H), then H1 is said to be an

extension of H and we write H1 ⊇ H. Equivalently, H1 ⊇ H if and only if D(H1) ⊇ D(H)

and H1φ = Hφ for all φ ∈ D(H).
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Definition A.3. An operator H is closable if it has a closed extension. Every closable

operator has a smallest closed extension, called its closure, which we denote by H.

Definition A.4. The adjoint of H, H∗, is defined on the domain

D(H∗) = {φ ∈H : ∃C > 0, |〈Hψ, φ〉| ≤ C‖ψ‖ for all ψ ∈ D(H)} .

By the Riesz representation theorem, for each φ ∈ D(H∗) there is a unique η ∈H such

that

(Hψ, φ) = (ψ, η) for all ψ ∈ D(H).

The adjoint H∗ : D(H∗)→H is given by

H∗φ = η.

Remark A.5. If the domain D(H) is not dense, then the adjoint is not uniquely defined

because the Riesz representation theorem is not applicable.

Proposition A.6. Let H be a densely defined operator on a Hilbert space H . Then,

i) H∗ is closed,

ii) H is closable if and only if D(H∗) is dense in which H = H∗∗,

iii) if H is closable, then
(
H

)∗
= H∗.

Definition A.7. A densely defined operator H on a Hilbert space H is called symmetric

(or Hermitian) if H ⊆ H∗, i.e., D(H) ⊆ D(H∗) and Hφ = H∗φ for all φ ∈ D(H).

Equivalently, H is symmetric if and only if

〈Hφ, ψ〉 = 〈φ,Hψ〉 for all φ, ψ ∈ D(H).

Definition A.8. i) H is called self-adjoint if H = H∗, i.e., H is symmetric and

D(H) = D(H∗).

ii) A symmetric operator H is called essentially self-adjoint if its closure H is self-

adjoint. If H is closed, a subset D ⊂ D(H) is called a core of H if H↾D = H.

Remark A.9. i) A symmetric operator is always closable and

H ⊆ H∗∗ ⊆ H∗.

64



A.1 Spectral theory of self-adjoint operators

ii) For closed symmetric operator

H = H∗∗ ⊆ H∗.

iii) For self-adjoint operator

H = H∗∗ = H∗.

Example A.10. Let H = L2([0, 1]) and let H1 be the operator H1 = −d/dx2 with a

domain

D(H1) = { f ∈H : f , f ′ is absolutely continuous in [0,1], f ′′ ∈ L2([0, 1]) and

u(k)(0) = u(k)(1) = 0 for k = 0, 1}.

It is easy to see that this operator is symmetric but not self-adjoint because

D(H∗1) =
{
g ∈H : g, g′ is absolutely continuous, g′′ ∈ L2([0, 1])

}

Example A.11. i) Let V ∈ L2
loc(R

d) and be bounded from below. Then, the Schrödinger

operator H = −∆ + V is essentially self-adjoint with a domain C∞c (Rd).

ii) The Laplacian −∆ on L2(Rd) is self-adjoint with the domain H2(Rd).

Theorem A.12 ([RS80], the basic criterion for self-adjointness). Let H be a symmetric

operator on a Hilbert space H . Then, the following three statements are equivalent

i) H is self-adjoint,

ii) H is closed and ker(H∗ ± i) = {0},

iii) ran(H ± i) =H .

Definition A.13 ([RS75]). Let H,H0 be densely defined operators on a Hilbert space

H . H0 is said to be H-bounded if D(H0) ⊇ D(H) and there exist a ≥ 0 and b ∈ R such

that

‖H0φ‖ ≤ a ‖Hφ‖ + b ‖φ‖ for all φ ∈ D(H).

The infimum of such a in above inequality is called the relative H-bound of H0.

Theorem A.14 (Kato-Rellich theorem). Let H be self-adjoint, and let H0 be symmetric,

and H-bounded with relative bound less than 1. Then, H + H0 is self-adjoint on D(H).
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Applying Kato-Rellich theorem for the Schrödinger operator with relatively bounded

potentials, the following theorems hold

Theorem A.15 ([HS96, Theorem 13.7]). A real potential V = L2(R3)+ L∞(R3) is (−∆)-

bounded with relative bound zero. Consequently, the Schrödinger operator H = −∆+V

defined on D(−∆) = H2(R3) is self-adjoint.

Theorem A.16 ([RS78, Theorem XIII.96]). Let p = 2 if d ≤ 3, p > 2 if d = 4 and

p > d/2 if n ≥ 5. Then, any real-valued function V on Rd that is uniformly locally Lp

is a (−∆)-bounded operator with relative bound zero. A consequence is that operator

−∆ + V(x) on L2(Rd) is self-adjoint with the domain H2(Rd).

A.1.2 The spectral theorem of self-adjoint operators

First, we recall the definition of the spectrum of a linear operator H on a Banach space

H .

Definition A.17. Let H be a linear operator on H with the domain D(H).

1) H is invertible if there is a bounded operator, called H−1, such that H−1 : H →
D(H),HH−1 = IX, and H−1H = ID(H).

2) The spectrum of H, σ(H), is the set of all points λ ∈ C for which H − λ is not

invertible.

3) The resolvent set of H, ρ(H), is the set of all points λ ∈ C for which H − λ is

invertible. If λ ∈ ρ(H), then the inverse of H − λ is called the resolvent of H at λ

and written as RH(λ) = (H − λ)−1.

Proposition A.18. The resolvent set ρ(H) is an open subset of C (and hence σ(H) is

closed), and RH(λ) is an analytic operator-valued function of λ on ρ(H). Moreover,

σ(H) ∪ ρ(H) = C, σ(H) ∩ ρ(H) = ∅.

Definition A.19. 1) If λ ∈ σ(H) satisfies ker(H − λ) , {0}, then λ is an eigenvalue

of H and any φ ∈ ker(H − λ) is called an eigenvector of H for λ. Moreover,

dim(ker(H − λ)) is called the geometric multiplicity of λ and ker(H − λ) is the

geometric eigenspace of H at λ.
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2) The discrete spectrum of H, σdisc(H), is the set of all eigenvalues of H with finite

algebraic multiplicity and which are isolated points of σ(H).

3) The essential spectrum is defined as the complement of σess(H) in σ(H), i.e.,

σess = σ(H) \ σdisc(H).

Remark A.20. The algebraic multiplicity of an isolated point λ ∈ σ(H) is the dimension

of Riesz projection Pλ = (2πi)−1
∮
Γ

RH(z)dz, where Γ is a simple closed contour around

λ such that the closure of the region bounded by Γ contains only λ in the spectrum.

The geometric multiplicity of an eigenvalue is always less than or equal to its alge-

braic multiplicity. For self-adjoint operators, they are equal.

If the operator H on the Hilbert space H is self-adjoint, then the spectrum can be

decomposed by using the projection-valued measure associated with H. Let B(R) be

the Borel σ-algebra of R.

Definition A.21 ([RS80]). A projection-valued measure is the family of operators {E(Ω),Ω ∈
B(R)} on the Hilbert space H such that

i) each E(Ω) is an orthogonal projection,

ii) E(∅) = 0, E((−∞,∞)) = I,

iii) if Ω =
∞⋃

k=1
Ωk with Ωk ∩ Ωl = ∅ for all k , l, then

E(Ω) = s-lim
N→∞

N∑

k=1

E(Ωk),

iv) E(Ω1)E(Ω2) = E(Ω1 ∩Ω2).

Denote E((−∞, λ]) by Eλ.

Proposition A.22 ([RS80]). Let {E(Ω),Ω ∈ B(R)} be a projection-valued measure.

Define a linear operator H : D(H) ⊆H →H by

D(H) =

{
φ ∈H :

∫ ∞

−∞
λ2 d 〈Eλφ, φ〉 < ∞

}
,

and for φ ∈ D(H),

〈Hφ, ψ〉 =
∫ ∞

−∞
λ d 〈Eλφ, ψ〉 ∀ψ ∈H .
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Then, H is self-adjoint.

{E(Ω),Ω ∈ B(R)} is called the projection-valued measure associated with the self-

adjoint operator H. One writes

H =

∫ ∞

−∞
λ dEλ.

Theorem A.23 ([RS80], functional calculus). Let H be a self-adjoint operator on a

Hilbert space H , {E(Ω),Ω ∈ B(R)} be the projection-valued measure associated with

H. Define Φ( f ) =
∫
σ(H)

f (λ) dEλ for a measurable function f : σ(H) → C with its

natural domain. Then,

• Φ( f ) is a normal operator.

– Φ( f ) is self-adjoint if f is real-valued.

– Φ( f ) is unitary if | f | = 1.

– Φ( f ) is bounded if f is bounded and then ‖Φ( f )‖L(H ) = ‖ f ‖L∞(σ(H))

• Φ(1) = I, Φ(λ) = H.

• Φ( f ) + Φ(g) = Φ( f + g) on D (Φ( f ))
⋂

D (Φ(g)).

• Φ( f )∗ = Φ
(

f
)
.

• Φ( f )Φ(g) = Φ( f g) on D (Φ( f g)).

We denote Φ( f ) by f (H).

Theorem A.24 ([RS80], spectral theorem – Projection-valued measure form). There

is one to one correspondence between the self-adjoint operator H and the projection-

valued measure {E(Ω),Ω ∈ B(R)} on H given by the map

E 7→ H =

∫ ∞

−∞
λ dEλ.

Remark A.25. dEλ is called the spectral measure of H.

The spectral measure can be used to get the spectral decomposition and classify the

spectrum of the self-adjoint operator H.

Proposition A.26 ([RS80]). Let H be a self-adjoint operator on H , dµφ = d 〈Eλφ, φ〉.
Then,

H =Hpp(H) ⊕Hac(H) ⊕Hsc(H),

where
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• Hpp(H) =
{
φ ∈H : dµφ is pure point

}
,

• Hac(H) =
{
φ ∈H : dµφ is absolutely continuous

}
,

• Hsc(H) =
{
φ ∈H : dµφ is singularly continuous

}
.

Each of these subspaces reduces H, i.e., H|Hpp has a complete set of eigenvectors, H|Hac

has only absolutely continuous spectral measure and H|Hsc has only singularly continu-

ous spectral measure.

Remark A.27. In physics, it holds Hsc(H) = {0} as a rule. Actually, it is fulfilled for

large class of Schrödinger operators (for more details see [RS78]).

Theorem A.28 ([RS80, Stone’s formula]). Let H be a bounded or unbounded self-

adjoint operator. Then,

s-lim
ǫ→+0

∫ b

a

[
(H − λ − iǫ)−1 − (H − λ + iǫ)−1

]
dλ =

1
2
[
E[a,b] + E(a,b)

]
.

Definition A.29.

σpp(H) = σ(H|Hpp(H))

σcont(H) = σ(H|Hcont(H)≡Hsc(H)⊕Has(H))

σac(H) = σ(H|Hac(H))

σsc(H) = σ(H|Hsc(H))

Remark A.30. σpp consists of all eigenvalues of the operator H and limit points of these

eigenvalues.

Proposition A.31 ([RS80, HS96]). Let H be self-adjoint on a Hilbert space H . Then

σ(H) ⊆ R and eigenfunctions corresponding to distinct eigenvalues are orthogonal.

Proposition A.32 ([RS80], spectral decomposition).

σcont(H) = σac(H) ∪ σsc(H).

σ(H) = σpp(H) ∪ σcont(H).

Remark A.33. The spectral decomposition above needs not be disjoint. An eigenvalue

λ which is in σac(H) is called an embedded eigenvalue into the absolutely continuous

spectrum.
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Definition A.34. An operator H on a Hilbert space is positive, H ≥ 0, if 〈u,Hu〉 ≥ 0 for

all u ∈ D(H).

Theorem A.35 ([HS96, Proposition 5.12]). Let H be a self-adjoint operator. Then,

A ≥ 0 if and only if σ(H) ⊆ [0,∞).

Example A.36. The Laplace operator −∆ on L2(Rd) is self-adjoint with the domain

H2(Rd). The spectrum σ(−∆) = [0,∞) is purely absolutely continuous.

Using the projection-valued measure {E(Ω),Ω ∈ B(R)}, the spectrum of self-adjoint

operator H can be realized as follow:

Proposition A.37 ([RS80]). Let λ be in the spectrum of a self-adjoint operator H on a

Hilbert space H . Then,

1) λ ∈ σess(H) if E
(
(λ − ǫ, λ + ǫ)

)
is infinite dimensional for all ǫ > 0,

2) λ ∈ σdisc(H) if E
(
(λ − ǫ, λ + ǫ)

)
is finite dimensional for some ǫ > 0.

Theorem A.38 ([RS80, Theorem VII.10, VII.11]). i) λ ∈ σdisc(H) if and only if both

the following statements hold

a) λ is an isolated point of σ(H), i.e., for some ǫ > 0, σ(H)∩(λ−ǫ, λ+ǫ) = {λ},

b) λ is an eigenvalue of finite multiplicity, i.e., {φ : Hφ = λφ} is finite dimen-

sional.

ii) λ ∈ σess(H) if and only if one of the following statements holds

a) λ ∈ σcont(H),

b) λ is a limit point of eigenvalues of H,

c) λ is an eigenvalue of infinite multiplicity.

Example A.39 ([HS96]). Assume that V is real and ∆-bounded with relative ∆-bound

less than 1, and V(x)→ 0 as |x| → ∞. Then, H = −∆ + V is self-adjoint on H2(Rd) and

σess(H) = σ(−∆) = [0,∞).

Theorem A.40 ([RS80]). Let H be a self-adjoint operator on a Hilbert space H . Then,

i) λ ∈ σ(H) if and only if there exists a sequence {ψ j} ⊂ D(A), ‖ψ j‖ = 1, such that

lim
n→∞
‖(A − λ)ψ j‖ = 0.
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ii) λ is an eigenvalue of A with finite multiplicity if and only if there exists only a

finite number of linear independent functions ψ j ∈ D(H) such that (A − λ)ψ j = 0.

iii) λ is an eigenvalue with infinite multiplicity if and only if there exists a sequence

of linearly independent functions {ψ j} j∈N ⊂ D(H) such that (A − λ)ψ j = 0.

Theorem A.41 (Weyl’s criterion). Let H be a self-adjoint operator on a Hilbert space

H . Then, λ ∈ σess(H) if and only if there exists a sequence {ψ j} ⊂ D(H) such that

‖ψ j‖ = 1, the weak limit ψ j

w→ 0 and strong limit (H − λ)ψ j

s→ 0 hold.

Next, we recall some properties and spectral theorem of compact operators.

Definition A.42 ([RS80]). A linear operator H on a Hilbert space H is called compact

if H maps a bounded set into a pre-compact set in H . Equivalently, H is compact if

and only if for every bounded sequence {xn} ⊂H , {Hxn} has a subsequence convergent

in H .

Theorem A.43 ([HS96], spectral theorem of compact operator). Let H be compact and

self-adjoint. Then, the spectrum of H consists of non-zero isolated eigenvalues of finite

multiplicity with the only accumulation point at zero. Moreover,

i) ‖H‖ = sup{|λ| : λ ∈ σ(H)}.

ii) Let {λ j} be the sequence of eigenvalues of H and

P j : H → ker(H − λ jI)

the orthogonal projections onto the corresponding eigenspaces. Then, P j is finite

dimensional and

P jP j = PiP j = δi jP j.

iii) The operator H can be written as a norm convergence sum

H =

∞∑

j=1

λ jP j.

iv) There is a complete orthonormal system {ψ j} ⊂ H of eigenfunctions of H such

that for all φ ∈ H :

Hφ =

∞∑

j=1

λ j

〈
φ, ψ j

〉
ψ j,

where ψ j is the eigenfunction corresponding to eigenvalue λ j.
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Example A.44. i) A finite rank operator is compact.

ii) The operator H : L2(X, dx)→ L2(Y, dy) defined by

H f (y) =
∫

Y

K(x, y) f (x) dx,

where K(x, y) ∈ L2(X × Y, dxdy), is a compact operator.

Theorem A.45 ([RS80, Analytic Fredholm theorem]). Let D be an open connected

subset of C. Let f : D→ L (H ) be an analytic operator-valued function such that f (z)

is compact for each z ∈ D. Then, either

i) (I − f (z))−1 exists for no z ∈ D.

ii) (I − f (z))−1 exists for all z ∈ D \ S where S is a discrete subset of D. In this case,

(I − f (z))−1 is meromorphic in D, analytic in D \ S , the residues at poles are finite

rank operators, and if z ∈ S then f (z)ψ = ψ has a non-zero solution in H .

Theorem A.46 ([HS96, Fredholm alternative]). Let H be a compact operator on H .

Then:

i) The equation ψ − Hψ = φ has a unique solution for every φ ∈ H if and only if

1 < σ(H).

ii) If 1 ∈ σ(H), then ψ−Hψ = φ has a unique solution if and only if φ ∈ [ker(I−H∗)]⊥.

Definition A.47. Let A be a closed operator with ρ(A) , ∅. An operator B is called

relatively A-compact if

i) D(B) ⊇ D(A),

ii) BRA(λ) is compact for some (and hence for all) λ ∈ ρ(A).

The next theorem shows that relative compactness is stronger than relative bounded.

Theorem A.48 ([HS96]). Suppose A is a self-adjoint operator and B is relatively A-

compact. Then, B is A-bounded with relative bound zero.

The essential spectrum σess is stable under relatively compact perturbation.

Theorem A.49 ([HS96, Weyl’s theorem]). Let A and B be self-adjoint operators, and

A − B be relatively A-compact. Then,

σess(A) = σess(B).
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One important class of potentials is Kato potential which is defined as follow:

Definition A.50. A potential V is called a Kato potential if V is real and V ∈ L2(Rd) +

L∞(Rd)ǫ , where the ǫ indicates that for any ǫ > 0, V can be written as a sum of V1 + V2

with V1 ∈ L2(Rd) and V2 ∈ L∞(Rd) with ‖V2‖∞ < ǫ.

Theorem A.51 ([HS96, Theorem 14.9]). If V is real Kato potential, then V is relatively

−∆-compact. Consequently,

σess(−∆ + V) = σess(−∆) = [0,∞).

Remark A.52. The spectrum of Schrödinger operator −∆ + V(x) deeply depends on the

behavior of the potential V . If V is Kato potential, then spectrum of −∆+V(x) consists of

the half-line [0,∞) and negative discrete eigenvalues. If the potential V tends to infinity,

then the spectrum is purely discrete.

Theorem A.53 ([RS78, Theorem XIII.67]). Let V ∈ L1
loc(R

d) be bounded from below

and suppose that V(x) → ∞ as |x| → ∞. Then, H = −∆ + V has compact resolvent. In

particular, H has purely discrete spectrum and a complete set of eigenfunctions.

A.2 Analytic perturbation theory

This section is to devote to recall some classical results on analytic perturbation theory

(For more details, see [Rel69, Kat95, RS78]).

First, we recall the definition of bounded regular operators.

Definition A.54 ([Rel69]). A family of linear bounded operators H(ζ) on a Hilbert space

H is said to be regular in a real (complex) neighborhood of ζ = 0 if for each f ∈ H ,

H(ζ) f is a power series in H .

Theorem A.55 ([Rel69]). A family of linear bounded operators H(ζ) on a Hilbert space

H is regular near ζ = 0 if and only if there exists a sequence of bounded operators

H0,H1, ... independent of ζ and a positive number c such that for each f ∈H ,

1) H(ζ) f = H0 f + ζH1 f + · · · is a convergent power series near ζ = 0,

2) ‖Hn f ‖ ≤ cn+1‖ f ‖, n = 1, 2, ... .
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The definition of the bounded regular operators can be extended to the unbounded

case.

Definition A.56 ([Rel69]). A family of linear operators H(ζ) on a Hilbert space H with

domains D(ζ) defined for each ζ in a real (complex) neighborhood of ζ = 0 is said to be

regular with respect to ζ if the following two conditions are satisfied in a real (complex)

neighborhood of ζ = 0:

i) There exist a bounded regular operator U(ζ) mapping the whole Hilbert space H

in a one-to-one way onto D(ζ).

ii) The element H(ζ)U(ζ) f is a regular element for each f ∈ H , that means there

exists a power series with respect to ζ.

Theorem A.57 ([Rel69, Chapter 2, Section 5, Theorem 3]). Suppose that H(ζ) with the

domain D(ζ) is Hermitian for real ζ and regular in a complex neighborhood of ζ = 0.

Suppose that H(0) on D(0) is self-adjoint. Suppose that λ is an eigenvalue of finite

multiplicity n of operator H(0), and suppose there are positive numbers h1, h2 such that

the spectrum of H(0) in an open interval (λ − h1, λ + h2) consists of exactly the point

eigenvalue λ. Then, there exist power series of

λ1(ζ), λ2(ζ), ..., λn(ζ),

and power series in the Hilbert space H of

ψ1(ζ), ψ2(ζ), ..., ψn(ζ),

all convergent in a neighborhood of ζ = 0, which satisfy the following conditions:

i) The element ψ j(ζ) is the eigenfunctions of H(ζ) on D(ζ) with respect to the eigen-

value λ j(ζ). Furthermore λ j(0) = λ, j = 1, ..., n, and for real ζ the eigenfunctions

form an orthonormal set.

ii) For each pair of positive numbers h′1, h
′
2 with h′1 < h1 and h′2 < h2, there exists a

positive number ρ such that the spectrum of H(ζ) on D(ζ) in [λ1(ζ)−h′1, λ1(ζ)+h′2]

for real ζ with |ζ | < ρ consists exactly of the points λ1(ζ), ..., λn(ζ).

We list here some criteria for regular family of operators:
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Theorem A.58 ([Rel69]). A family of operators H(ζ) on a Hilbert space H with do-

mains D(ζ) is regular if one of the following conditions holds

i) There exists a complex number γ independent of ζ such that in a neighborhood of

ζ = 0 the operators H(ζ)+ γ has a regular and bounded inverse with domain H .

ii) The operator H(ζ) on the domain D is Hermitian in a real neighborhood of ζ = 0

and that D is independent of ζ, H(0) is self-adjoint on D. And H(ζ) f is regular

for each f ∈ D.

One question is that the set of eigenfunctions is complete or not. This leads to the

following definition

Definition A.59 ([Rel69]). Let H(ζ) on D(ζ) be Hermitian operators for h1 < ζ < h2.

We say that they have regular discrete spectrum in this interval if functions λ1(ζ), λ2(ζ), ...

and ψ1(ζ), ψ2(ζ), ... on D(ζ) exist, all regular in a neighborhood of every ζ of this inter-

val, such that for every ζ ∈ (h1, h2) the following statements hold

i) H(ζ)ψn(ζ) = λn(ζ)ψn(ζ), n = 1, 2, ... ,

ii) ψ1(ζ), ψ2(ζ), ... is a complete orthonormal system,

iii) lim
n→∞
|λn(ζ)| = ∞.

Theorem A.60 ([Rel69, Chapter 2, Section 10, Theorem 1]). For real ζ near 0, let H(ζ)

be a Hermitian operator with a domain D which is independent of ζ. Suppose that

H(ζ) f is regular for every f ∈ D and small |ζ |. Suppose that H(0) with the domain D is

self-adjoint and has the discrete spectrum. Then, H(ζ) has a regular discrete spectrum

near ζ = 0.

Analytic perturbation theory was developed by Kato. Here, we recall some impor-

tant results in [RS78, Kat95].

Definition A.61 ([RS78, Kat95]). A family of operators H(ζ) on a complex domain D

is called an analytic family in the sense of Kato if and only if

i) For each ζ ∈ D, H(ζ) is closed and has a non-empty resolvent set.

ii) For every ζ∗ ∈ D, there is a λ∗ ∈ ρ(H(ζ∗)) so that λ∗ ∈ ρ(H(ζ)) for ζ close to ζ∗

and (H(ζ) − λ∗)−1 is an analytic operator-valued function for ζ near ζ∗.
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Theorem A.62 ([RS78, Kato-Rellich theorem]). Let H(ζ) be an analytic family in the

sense of Kato on the domain D. Let λ∗ be a non-degenerated (simple) discrete eigen-

value of H(ζ∗), ζ∗ ∈ D. Then, for ζ near ζ∗, there exists exactly one point λ(ζ) of σ(H(ζ))

near ζ∗ and this point is isolated and non-degenerated. Moreover, λ(ζ) is an analytic

function of ζ near ζ∗, and corresponding eigenvector ψ(ζ) can be chosen as an analytic

function of ζ near ζ∗. If H(ζ) is self-adjoint for ζ − ζ∗ real, then ψ(ζ) can be chosen to

be normalized for ζ − ζ∗ real.

Theorem A.63 ([RS78, Theorem XII.13]). Let H(ζ) be an analytic family in the sense of

Kato for ζ near 0 which is self-adjoint for ζ real. Let λ∗ be a discrete eigenvalue of mul-

tiplicity m of H(0). Then, there are m (not necessarily distinct) single-valued functions,

analytic near ζ = 0, λ1(ζ), λ2(ζ), ..., λm(ζ) with λk(0) = λ∗, so that λ1(ζ), λ2(ζ), ..., λm(ζ)

are eigenvalues of H(ζ) for ζ near 0. Further, these are the only eigenvalues near λ∗.

It is not convenient to check criteria in A.61. There is a simple criterion for analytic

family of operators.

Definition A.64 ([Kat95]). Let D be a connected domain in the complex plane and let

H(ζ) be a closed operator with non-empty resolvent set. H(ζ) is said to be an analytic

family of type (A) if and only if

i) The domain of H(ζ) is some set K independent of ζ ∈ D.

ii) For each φ ∈ K , H(ζ)φ is an analytic vector function of ζ.

Theorem A.65 ([RS78]). Every analytic family of type (A) is an analytic family in the

sense of Kato.

Theorem A.66 ([RS78, Theorem XII.9]). Let H0 be a closed operator with non-empty

resolvent set. Define H0 + ζV on D(H0) ∩ D(V). Then, H0 + ζV is an analytic family of

type (A) near ζ = 0 if and only if V is H0-bounded.

Theorem A.67 ([Kat95, Chapter 7, Theorem 2.4]). Let H(ζ) be a analytic family of

operators of type (A). Then, H(ζ) has compact resolvent either for all ζ or for no ζ.

Theorem A.68 ([Kat95, Chapter 7, Theorem 3.9]). Let H(ζ) be a self-adjoint analytic

family of type (A) defined for ζ in a neighborhood of an interval I0 of the real axis.

Furthermore, assume H(ζ) has compact resolvent. Then, all eigenvalues of H(ζ) can
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be represented by functions which are analytic on I0. More precisely, there is a se-

quence of repeated eigenvalues λ j(ζ) and eigenfunctions ψ j(ζ) of H(ζ), all analytic on

I0. Moreover, ψ j(ζ) form a complete orthonormal basis.

Remark A.69. This theorem is a different form of Theorem A.60.

A.3 The stationary phase method

This section is to recall some classical results on the stationary phase method. We refer

to [Coo82, Hör83, Won01, Zwo12] for more details.

Consider a oscillatory integral

I(λ) =
∫

Rd

eiλ f (x)g(x) dx. (A.1)

Definition A.70. The function f has a non-degenerated critical point at x0 if

f ′(x0) = 0, det f ′′(x0) , 0.

One gets the rapid decay when there is no critical point.

Theorem A.71. Let f ∈ C∞(Rd) be real-valued, and g ∈ C∞c (Rd). If f ′ , 0 on supp g,

then for arbitrary N > 0

I(λ) = O(λ−N) as λ→ +∞.

Denote sgn f ′′(x0) the number of positive eigenvalues of f ′′(x0) − the number of

negative eigenvalues of f ′′(x0). The next theorem shows the asymptotic expansion of

the oscillatory integral when there is only one non-degenerated critical point.

Theorem A.72 ( [Zwo12, Theorem 3.16], stationary phase asymptotics). Let f ∈ C∞(Rd)

be real-valued, and g ∈ C∞c (Rd). Suppose x0 ∈ K := supp f is a non-degenerated criti-

cal point, and f ′(x) , 0 on K \ {x0}. Then,

i) There exist for each k = 0, 1, ..., differential operators A2k(x,D) of order less than

or equal to 2k such that for all N

∣∣∣∣∣∣∣
I(λ) −


N−1∑

k=0

A2k(x,D)g(x0)λ−(k+ d
2 )

 eiλ f (x0)

∣∣∣∣∣∣∣
≤ CNλ

−(N+ d
2 )

∑

0≤m≤2N+d+1

sup
∣∣∣g(m)

∣∣∣ ,

where CN depends also on K.
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ii) In particular,

A0 = (2π)d/2| det f ′′(x0)|−1/2e
iπ
4 sgn f ′′(x0),

and consequently,

I(λ) =

(
2π
λ

)d/2

| det f ′′(x0)|−1/2e
iπ
4 sgn f ′′(x0)eiλ f (x0)g(x0) + O

(
1

λ
d+2

2

)

as λ→ +∞.

The smoothness of f , g in Theorem A.72 is a strong condition. It is necessary to

derive the full asymptotic expansion. If only finite part of the asymptotic expansion is

needed, then one gets the stationary phase method with less regularity.

Theorem A.73 ([Hör83, Theorem 7.7.5]). Let K ⊂ Rd be a compact set, X an open

neighborhood of K and k a positive integer. If g(x) ∈ C2k
c (K), f (x) ∈ C3k+1(X) and

Im f ≥ 0 in X, Im f (x0) = 0, f ′(x0) = 0, det f ′′(x0) , 0, f ′ , 0 in K \ {x0} then

∣∣∣∣∣∣∣

∫

K

g(x)eiλ f (x) dx − eiλ f (x0)(det(λ f ′′(x0)/2πi))−
1
2

∑

j<k

λ− jL jg

∣∣∣∣∣∣∣

≤ Cλ−k−d/2
∑

|α|≤2k

sup |Dαg|. (A.2)

Here C is bounded when f stays in a bounded set in C3k+1(X) and |x − x0|/| f ′(x)| has a

uniform bound. With

hx0(x) = g(x) − g(x0) − 〈g′′(x0)(x − x0), x − x0〉 /2

which vanishes of third order at x0, we have

L jg =
∑

ν−µ= j

∑

2ν≥3µ

i− j2−ν
〈

f ′′(x0)−1D,D
〉ν

(hµx0
g)(x0)/(µ!ν!).

This is a differential operator of order 2 j acting on g at x0. The coefficients are ra-

tional homogeneous functions of degree − j in f ′′(x0), ..., f 2 j+2(x0) with denominator

(det f ′′(x0))3 j. In every term the total number of derivatives of g and f ′′ is at most 2 j.

In particular, L0 = I and consequently

∫
g(x)eiλ f dx = eiλ f (x0)(det(λ f ′′(x0)/2πi))−

1
2 + O

(
λ−(d+2)/2

)
as λ→ +∞.
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