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Preface

Wasserstein distances or, more generally, distances that quantify the optimal

transport between probability measures on metric spaces have long been es-

tablished as an important tool in probability theory. More recently, it has

found its way into statistical theory, applications and machine learning - not

only as a theoretical tool but also as a quantity of interest in its own right.

Examples include goodness-of-fit, two-sample and equivalence testing, clas-

sification and clustering, exploratory data analysis using Fréchet means and

geodesics in the Wasserstein metric.

This advent of the Wasserstein distance as a statistical tool manifests two

major challenges. First, knowledge on the theoretical properties of empirical,

i.e. sample-based, Wasserstein distances remains incomplete, in particular as

far as distributional limits on spaces other than the real line are concerned.

Second, any application of the Wasserstein distance invokes massive compu-

tational challenges, leaving many practically interesting problems outside of

the scope of available algorithms.

The main thesis of this work is that restricting ourselves to the Wasser-

stein distance on finite spaces offers a perspective that is able to solve or

at least avoid these problems and is still general enough to include many

practical problems. Indeed, this work will present comprehensive distribu-

tional limits for empirical Wasserstein distances on finite spaces, strategies to

apply these limits with controllable computational burden in large-scale in-

ference and a fast probabilistic approximation scheme for optimal transport

distances.
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Previous publications and joint work Large parts of this work have

previously been published in Sommerfeld and Munk (2017). In fact, all of

Chapter 2, except for the sections on normal limits under the alternative and

the limiting distribution as a Wasserstein distance as well as the introductory

part concerning distributional limits in Chapter 1 are taken from Sommerfeld

and Munk (2017) with only few modifications.

The ideas and results of Chapter 3 have been published in the preprint

Tameling et al. (2017).

The application to single-marker switching microscopy in Section 3.3 is

joint work with Carla Tameling. The author of this dissertation and Carla

Tameling contributed equally to design, implementation and evaluation of

the application.

The numerical experiments on the performance of the probabilistic ap-

proximation scheme in Section 4.3 are joint work with Jörn Schrieber. The

author of this dissertation and Jörn Schrieber contributed equally to design,

implementation and evaluation of the experiments.
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Chapter 1

Introduction

1.1 Distributional limits

The Wasserstein distance (Vasershtein, 1969), also known as Mallows dis-

tance (Mallows, 1972), Monge-Kantorovich-Rubinstein distance in the phys-

ical sciences (Kantorovich and Rubinstein, 1958; Rachev, 1985; Jordan et al.,

1998), earth-mover’s distance in computer science (Rubner et al., 2000) or

optimal transport distance in optimization (Ambrosio, 2003), is one of the

most fundamental metrics on the space of probability measures. Besides its

prominence in probability (e.g. Dobrushin (1970); Gray (1988)) and finance

(e.g. Rachev and Rüschendorf (1998)) it has deep connections to the asymp-

totic theory of PDEs of diffusion type (Otto (2001), Villani (2003, 2008)

and references therein). In a statistical setting it has mainly been used as

a tool to prove weak convergence in the context of limit laws (e.g. Bickel

and Freedman (1981); Shorack and Wellner (1986); Johnson and Samworth

(2005); Dümbgen et al. (2011); Dorea and Ferreira (2012)) as it metrizes weak

convergence together with convergence of moments. However, recently the

empirical (i.e. estimated from data) Wasserstein distance has also been rec-

ognized as a central quantity itself in many applications, among them clinical

trials (Munk and Czado, 1998; Freitag et al., 2007), metagenomics (Evans

and Matsen, 2012), medical imaging (Ruttenberg et al., 2013), goodness-

of-fit testing (Freitag and Munk, 2005; Del Barrio et al., 1999), biomedical

3



4 CHAPTER 1. INTRODUCTION

engineering (Oudre et al., 2012), computer vision (Gangbo and McCann,

2000; Ni et al., 2009), cell biology (Orlova et al., 2016) and model valida-

tion (Halder and Bhattacharya, 2011). The barycenter with respect to the

Wasserstein metric (Agueh and Carlier, 2011) has been shown to elicit im-

portant structure from complex data and to be a promising tool, for example

in deformable models (Boissard et al., 2015; Agulló-Antoĺın et al., 2015).

It has also been used in large-scale Bayesian inference to combine posterior

distributions from subsets of the data (Srivastava et al., 2015).

Generally speaking three characteristics of the Wasserstein distance make

it particularly attractive for various applications. First, it incorporates a

ground distance on the space in question. This often makes it more ade-

quate than competing metrics such as total-variation or χ2-metrics which

are oblivious to any metric or similarity structure on the ground space. As

an example, the success of the Wasserstein distance in metagenomics appli-

cations can largely be attributed to this fact (see Evans and Matsen (2012)

and also our application in Section 2.9.3).

Second, it has a clear and intuitive interpretation as the amount of ’work’

required to transform one probability distribution into another and the re-

sulting transport can be visualized (see Section 2.9.2). This is also interesting

in applications where probability distributions are used to represent actual

physical mass and spatio-temporal changes have to be tracked.

Third, it is well-established (Rubner et al., 2000) that the Wasserstein

distance performs exceptionally well at capturing human perception of simi-

larity. This motivates its popularity in computer vision and related fields.

Despite these advantages, the use of the empirical Wasserstein distance in

a statistically rigorous way is severely hampered by a lack of inferential tools.

We argue that this issue stems from considering too large classes of candidate

distributions (e.g. those which are absolutely continuous with respect to the

Lebesgue measure if the ground space has dimension ≥ 2). In this paper, we

therefore discuss the Wasserstein distance on finite spaces, which allows to

solve this issue. We argue that the restriction to finite spaces is not merely an

approximation to the truth, but rather that this setting is sufficient for many

practical situations as measures often already come naturally discretized (e.g.
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two- or three-dimensional images - see also our applications in Section 2.9).

We remark that from our methodology further inferential procedures can

be derived, e.g. a (M)ANOVA type of analysis and multiple comparisons

of Wasserstein distances based on their p-values (see e.g. Benjamini and

Hochberg (1995)). Our techniques also extend immediately to dependent

samples (Xi, Yi) with marginals r and s.

Wasserstein distance Let (X , d) be a complete metric space with metric

d : X ×X → R≥0. The Wasserstein distance of order p (p ≥ 1) between two

Borel probability measures µ1 and µ2 on X is defined as

Wp(µ1, µ2) =

{
inf

ν∈Π(µ1,µ2)

∫
X×X

dp(x, x′)ν(dx, dx′)

}1/p

,

where Π(µ1, µ2) is the set of all Borel probability measures on X × X with

marginals µ1 and µ2, respectively.

Wasserstein distance on finite spaces If we restrict in the above def-

inition X = {x1, . . . , xN} to be a finite space, every probability measure on

X is given by a vector r in PX =
{
r = (rx)x∈X ∈ RX>0 :

∑
x∈X rx = 1

}
, via

Pr({x}) = rx. We will not distinguish between the vector r and the mea-

sure it defines. The Wasserstein distance of order p between two finitely

supported probability measures r, s ∈ PX then becomes

(1.1) Wp(r, s) =

{
min

w∈Π(r,s)

∑
x,x′∈X

dp(x, x′)wx,x′

}1/p

,

where Π(r, s) is the set of all probability measures on X ×X with marginal

distributions r and s, respectively. All our methods and results concern this

Wasserstein distance on finite spaces.

1.1.1 Overview of main results

Distributional limits The basis for inferential procedures for the Wasser-

stein distance on finite spaces is a limit theorem for its empirical version
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Wp(r̂n, ŝm). Here, the empirical measure generated by independent ran-

dom variables X1, . . . , Xn ∼ r is given by r̂n = (r̂n,x)x∈X , where r̂n,x =
1
n
# {k : Xk = x}. Let ŝm be generated from i.i.d. Y1, . . . , Ym ∼ s in the

same fashion. Under the null hypothesis r = s we prove that

(1.2)

(
nm

n+m

) 1
2p

Wp(r̂n, ŝm)⇒
{

max
u∈Φ∗p
〈G,u〉

} 1
p

, n,m→∞.

Here, ’⇒’ means convergence in distribution, G is a mean zero Gaussian

random vector with covariance depending on r = s and Φ∗p is the convex

set of dual solutions to the Wasserstein problem depending on the metric d

only (see Theorem 1). In Section 2.9.2 we use this result to assess the statis-

tical significance of the differences between real and synthetically generated

fingerprints in the Fingerprint Verification Competition (Maio et al., 2002).

We give analogous results under the alternative r 6= s. This extends the

scope of our results beyond the classical two-sample (or goodness-of-fit test)

as it allows for confidence statements on Wp(r, s) when the null hypothesis

of equality is likely or even known to be false. An example for this is given

by our application to metagenomics (Section 2.9.3) where samples from the

same person taken at different times are typically statistically different but

our asymptotic results allow us to assert with statistical significance that

inter-personal distances are larger that intra-personal ones.

Proof strategy We prove these results by showing that the Wasserstein

distance is directionally Hadamard differentiable (Shapiro, 1990) and the

right hand side of (1.2) is its derivative evaluated at the Gaussian limit of

the empirical multinomial process (see Theorem 4). This notion generalizes

Hadamard differentiability by allowing non-linear derivatives but still allows

for a refined delta-method (Römisch (2004) and Theorem 3). Notably, the

Wasserstein distance is not Hadamard differentiable in the usual sense.

Explicit limiting distribution for tree metrics When the space X
are the vertices of a tree and the metric d is given by path length we give

an explicit expression for the limiting distribution in (1.2) (see Theorem
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5). In contrast to the general case, this explicit formula allows for fast and

direct simulation of the limiting distribution. This extends a previous result

of Samworth and Johnson (2004) who considered a finite number of point

masses on the real line. The Wasserstein distance on trees has, to the best of

our knowledge, only been considered in two papers: Kloeckner (2013) studies

the geometric properties of the Wasserstein space of measures on a tree and

Evans and Matsen (2012) use the Wasserstein distance on phylogenetic trees

to compare microbial communities.

The bootstrap Directional Hadamard differentiability is not enough to

guarantee the consistency of the naive (n out of n) bootstrap (Dümbgen,

1993; Fang and Santos, 2014) - in contrast to the usual notion of Hadamard

differentiability. This implies that the bootstrap is not consistent for the

Wasserstein distance (1.1)(see Theorem 9). In contrast, the m-out-of-n boot-

strap for m/n→ 0 is known to be consistent in this setting (Dümbgen, 1993)

and can be applied to the Wasserstein distance. Under the null hypothesis

r = s, however, there is a more direct way of obtaining an approximation

of the limiting distribution. In the appendix, we discuss this alternative re-

sampling scheme based on ideas of Fang and Santos (2014), that essentially

consists of plugging in a bootstrap version of the underlying empirical process

in the derivative. We show that this scheme, which we will call directional

bootstrap, is consistent for the Wasserstein distance (see Theorem 9, Section

2.7).

1.1.2 Related work

Empirical Wasserstein distances In very general terms, we study a

particular case (finite spaces) of the following question and its two-sample

analog: Given the empirical measure µn based on n i.i.d. random variables

taking variables in a metric space with law µ. What can be inferred about

Wp(µn, µ0) for a reference measure µ0 which may be equal to µ?

It is a well-known and straightforward consequence of the strong law of

large numbers that if the p-th moments are finite for µ and µ0 then Wp(µn, µ0)
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converges to Wp(µ, µ0), almost surely, as the sample size n approaches infinity

(Villani, 2008, Cor. 6.11). Determining the exact rate of this convergence

is the subject of an impressive body of literature developed over the last

decades starting with the seminal work of Ajtai et al. (1984) considering for

µ0 the uniform distribution on the unit square, followed by Talagrand (1992,

1994) for the uniform distribution in higher dimensions and Horowitz and

Karandikar (1994) giving bounds on mean rates of convergence. Boissard and

Gouic (2014); Fournier and Guillin (2014) gave general deviation inequalities

for the empirical Wasserstein distance on metric spaces. For a discussion in

the light of our distributional limit results see Section 2.10.

Distributional limits give a natural perspective for practicable inference,

but despite considerable interest in the topic have remained elusive to a large

extent. For measures on X = R a rather complete theory is available (see

Munk and Czado (1998); Freitag et al. (2007); Freitag and Munk (2005) for

µ0 6= µ and e.g. Del Barrio et al. (1999); Samworth and Johnson (2005);

Del Barrio et al. (2005) for µ0 = µ as well as Mason (2016); Bobkov and

Ledoux (2014) for recent surveys). However, for X = Rd, d ≥ 2 there are

only two distributional results known to us. The first is due to Rippl et al.

(2015) for specific multivariate (elliptic) parametric classes of distributions,

when the empirical measure is replaced by a parametric estimate. The second

is the very recent work of Del Barrio and Loubes (2017), which considers the

case of different underlying measures on Rd (in the case of equal measures the

limiting distribution becomes degenerate) with positive Lebesgue density on

their convex support. They prove their result using a Stein identity. In the

context of deformable models distributional results are proven (Del Barrio

et al., 2015) for specific multidimensional parametric models which factor

into one-dimensional parts.

The simple reason why the Wasserstein distance is so much easier to

handle in the one-dimensional case is that in this case the optimal coupling

attaining the infimum in (1.1) is known explicitly. In fact, the Wasserstein

distance of order p between two measures on R then becomes the Lp norm

of the difference of their quantile functions (see Mallows (1972) for an early

reference) and the analysis of empirical Wasserstein distances can be based



1.1. DISTRIBUTIONAL LIMITS 9

on quantile process theory. Beyond this case, explicit coupling results are

only known for multivariate Gaussians and elliptic distributions (Gelbrich,

1990). A classical result of Ajtai et al. (1984) for the uniform distribution

on X = [0, 1]2 suggests that, even in this simple case, distributional limits

will have a complicated form if they exist at all. We will elaborate on this

thought in the discussion, in Section 2.10.

The Wasserstein distance on finite spaces has been considered recently by

Gozlan et al. (2013) to derive entropy inequalities on graphs and by Erbar

and Maas (2012) to define Ricci curvature for Markov chains on discrete

spaces. To the best of our knowledge, empirical Wasserstein distances on

finite spaces have only been considered by Samworth and Johnson (2004) in

the special case of measures supported on R. We will show (Section 2.4) that

our results extend theirs.

Directional Hadamard differentiability We prove our distributional

limit theorems using the theory of parametric programming (Bonnans and

Shapiro, 2013) which investigates how the optimal value and the optimal

solutions of an optimization problem change when the objective function

and the constraints are changed. While differentiability properties of optimal

values of linear programs are extremely well studied such results have, to the

best of our knowledge, not yet been applied to the statistical analysis of

Wasserstein distances.

It is well-known that under certain conditions the optimal value of a

mathematical program is differentiable with respect to the constraints of

the problem (Rockafellar, 1984; Gal et al., 1997). However, the derivative

will typically be non-linear. The appropriate concept for this is directional

Hadamard differentiability (Shapiro, 1990). The derivative of the optimal

value of a mathematical program is typically again given as an extremal

value.

Although the delta-method for directional Hadamard derivatives has been

known for a long time (Shapiro, 1991; Dümbgen, 1993), this notion scarcely

appears in the statistical context (with some exceptions, such as Römisch

(2004), see also Donoho and Liu (1988)). Recently, an interest in the topic has
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evolved in econometrics (see Fang and Santos (2014) and references therein).

1.2 Strategies for inference in large-scale prob-

lems

When the size N of the underlying space X becomes large, both the Wasser-

stein distance itself and the limiting distributions described above pose se-

rious computational challenges. Frequently, the application of the distribu-

tional results to a practical problem will become computationally infeasible.

In Chapter 4 we propose an algorithm to efficiently approximate the Wasser-

stein distance. However, this approach is often inappropriate when rigorous

statistical inference is the goal as it does not provide useful statistical guar-

antees for the approximation error.

As an alternative approach we propose to combine a lower bound for the

Wasserstein distance (based on thresholding the ground distance (Pele and

Werman, 2009)) with a stochastic upper bound for the limiting distribution

(based on the explicit expression for the limiting distribution for trees, Sec-

tion 2.4) to obtain a conservative but fast to compute two-sample test. The

lower bound can typically be computed in super-quadratic (in N) runtime,

compared to super-cubic runtimes for the exact Wasserstein distance. One

realization of the stochastic upper bound only even requires linear time, while

a sample from the exact limiting distribution would essentially require the

same computational effort as the Wasserstein distance itself.

We apply this method to validate drift correction in stochastic sub-diffraction

microscopy.

1.3 Fast probabilistic approximation

The outstanding theoretical and practical performance of optimal transport

distances is contrasted by its excessive computational cost. For example,

optimal transport distances can be computed with an auction algorithm

(Bertsekas, 1992). For two probability measures supported on N points this
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algorithm has a worst case run time of O(N3 logN). Other methods like the

transportation simplex have sub-cubic empirical average runtime (compare

Gottschlich and Schuhmacher (2014)), but exponential worst case runtimes.

Many attempts have therefore been made to improve upon these run

times. Ling and Okada (2007) proposed a specialized algorithm for L1-

ground distance and X a regular grid and report an empirical runtime of

O(N2). Gottschlich and Schuhmacher (2014) improved existing general pur-

pose algorithms by initializing with a greedy heuristic. Their Shortlist algo-

rithm achieves an empirical average runtime of the order O(N5/2). Schmitzer

(2016) solves the optimal transport problem by solving a sequence of sparse

problems.

Despite these efforts, many practically relevant problems remain well out-

side the scope of available algorithms (see Schrieber et al. (2016) for a com-

parison of state-of-the-art algorithms). This is true in particular for two or

three dimensional images and spatio temporal imaging, which constitute an

important area of potential applications. Here, N is the number of pixels or

voxels and is typically very large. Naturally, this problem is aggravated when

many distances have to be computed as is the case for Wasserstein barycen-

ters (Agueh and Carlier, 2011; Cuturi and Doucet, 2014), which have become

an important use case.

To bypass the computational bottleneck, many surrogates for optimal

transport distances that are more amenable to fast computation have been

proposed. Shirdhonkar and Jacobs (2008) proposed to use an equivalent dis-

tance based on wavelets that can be computed in linear time but cannot be

calibrated to approximate the Wasserstein distance with arbitrary accuracy.

Pele and Werman (2009) threshold the ground distance to reduce the com-

plexity of the underlying linear program, obtaining a lower bound for the

exact distance. Cuturi (2013) altered the optimization problem by adding

an entropic penalty term in order to use faster and more stable algorithms.

Bonneel et al. (2015) consider the 1-D Wasserstein distances of radial pro-

jections of the original measures, exploiting the fact that, in one dimension,

computing the Wasserstein distance amounts to sorting the point masses and

hence has quasi-linear computation time.
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1.3.1 Contribution

We do not propose a new algorithm to solve the optimal transport problem.

Instead, we propose a probabilistic scheme as a meta-algorithm that can use

any algorithm (e.g. those mentioned above) as a black-box back-end and

gives a random but fast approximation of the exact distance. This scheme

a) is extremely easy to implement and to tune towards higher accuracy or

shorter computation time as desired;

b) can be used with any algorithm for transportation problems as a back-end,

including general LP solvers, specialized network solvers and algorithms

using entropic penalization (Cuturi, 2013);

c) comes with theoretical non-asymptotic guarantees for the approximation

error - in particular, this error is independent of the size of the original

problem in many important cases, including images;

d) works well in practice. For example, the Wasserstein distance between

two 1282-pixel images can typically be approximated with a relative error

of less than 5% in only 1% of the time required for exact computation.

1.4 Organization of the work

This work is organized in three Chapters containing the results on distribu-

tional limits, strategies for inference in large-scale problems and probabilistic

approximation of the Wasserstein distance with exact solvers, respectively.

Each chapter begins with a brief overview of the results presented followed

by the main body of text. The first and third chapter conclude with a dis-

cussion of the presented results and possible directions for further research.

Most proofs are given in a designated section within the respective chapter.



Chapter 2

Distributional limits

This chapter gives distributional limits for empirical Wasserstein distances on

finite spaces. In the first section, the main result is presented, followed by two

sections outlining the notions and results required for its proof. The fourth,

fifth and sixth section consider cases in which the limiting distribution has an

easier form. In particular, the fourth section gives an explicit expression for

the limiting distribution when the underlying metric is generated by a tree.

The fifth section demonstrates that the limiting distribution under the null

hypothesis of equal measures can be written as a Wasserstein distance. The

sixth section gives conditions on the underlying measures under which the

limiting distribution under the alternative (the true measures being different)

is normal. The seventh section discussed failure of the naive bootstrap under

the null hypothesis and possible alternatives. The eigth section gives an al-

ternative, numerically more stable representation of the limiting distribution

for different measures. Finally, the eighth section contains simulations as-

sessing the speed of convergence to the limiting distribution and applications

under the null hypothesis as well as the alternative.

The chapter is concluded with a discussion section and a section contain-

ing the proofs of the presented results.

13
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2.1 Main result

In this section we give a comprehensive result on distributional limits for the

Wasserstein distance when the underlying population measures are supported

on finitely many points X = {x1, . . . , xN}. We denote the inner product on

the vector space RX by 〈u,u′〉 =
∑

x∈X uxu
′
x for u,u′ ∈ RX .

Theorem 1. Let p ≥ 1, r, s ∈ PX and r̂n, ŝm generated by i.i.d. samples

X1, . . . , Xn ∼ r and Y1, . . . , Ym ∼ s, respectively. We define the convex sets

Φ∗p =
{
u ∈ RX : ux − ux′ ≤ dp(x, x′), x, x′ ∈ X

}
Φ∗p(r, s) =

{
(u,v) ∈ RX × RX :

〈u, r〉+ 〈v, s〉 = W p
p (r, s),

ux + vx′ ≤ dp(x, x′), x, x′ ∈ X

}
(2.1)

and the multinomial covariance matrix

(2.2) Σ(r) =


rx1(1− rx1) −rx1rx2 · · · −rx1rxN
−rx2rx1 rx2(1− rx2) · · · −rx2rxN

...
. . .

...

−rxN rx1 −rxN rx2 · · · rxN (1− rxN )


such that with independent Gaussian random variables G ∼ N (0,Σ(r)) and

H ∼ N (0,Σ(s)) we have the following.

a) (One sample - Null hypothesis) With the sample size n approaching

infinity, we have the weak convergence

(2.3) n
1
2pWp(r̂n, r)⇒

{
max
u∈Φ∗p
〈G,u〉

} 1
p

.

b) (One sample - Alternative) With n approaching infinity we have

(2.4) n
1
2 (Wp(r̂n, s)−Wp(r, s))⇒ 1

p
W 1−p
p (r, s)

{
max

(u,v)∈Φ∗p(r,s)
〈G,u〉

}
.

c) (Two samples - Null hypothesis) Let ρn,m = (nm/(n+m))1/2. If

r = s and n and m are approaching infinity such that n ∧m → ∞ and
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m/(n+m)→ λ ∈ (0, 1) we have

(2.5) ρ1/p
n,mWp(r̂n, ŝm)⇒

{
max
u∈Φ∗p
〈G,u〉

} 1
p

.

d) (Two samples - Alternative) With n and m approaching infinity such

that n ∧m→∞ and m/(n+m)→ λ ∈ [0, 1]

ρn,m (Wp(r̂n, ŝm)−Wp(r, s))⇒
1

p
W 1−p
p (r, s)

{
max

(u,v)∈Φ∗p(r,s)

√
λ〈G,u〉+

√
1− λ〈H ,v〉

}
.

(2.6)

The sets Φ∗p and Φ∗p(r, s) are (derived from) the dual solutions to the

Wasserstein linear program (see Theorem 4 below). This result is valid for

all probability measures with finite support, regardless of the (dimension of

the) underlying space. In particular, it generalizes a result of Samworth and

Johnson (2004), who considered a finite collection of point masses on the real

line and p = 2. We will re-obtain their result as a special case in Section 2.4

when we give explicit expressions for the limit distribution when the metric

d, which enters the limit law via the dual solutions Φ∗p or Φ∗p(r, s), is given

by a tree.

Remark 1. In our numerical experiments (see Section 2.9 we have found

the representation (2.6) to be numerically unstable when used to simulate

from the limiting distribution under the alternative. We therefore give an

alternative representation (2.27) in the supplementary material as a one-

dimensional optimization problem of a non-linear function (in contrast to a

high-dimensional linear program shown here). Note that the limiting distri-

bution under the null does not suffer from this problem and can be simulated

from directly using a linear program solver.

The scaling rate in Theorem 1 depends solely on p and is completely

independent of the underlying space X . This contrasts known bounds on

the rate of convergence in the continuous case. We will elaborate on the

differences in the discussion. Typical choices are p = 1, 2. The faster scaling
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rate can be a reason to favor p = 1. In our numerical experiments however,

this advantage was frequently outweighed by larger quantiles of the limiting

distribution.

Dümbgen (1993) showed that the naive n-out-of-n bootstrap is inconsis-

tent for functionals with a non-linear Hadamard derivative, but resampling

fewer than n observations leads to a consistent bootstrap. Since we will

show in the following that the Wasserstein distance belongs to this class

of functionals, it is a direct consequence that the naive bootstrap fails for

the Wasserstein distance (see Section 2.7 in the supplementary material for

details) and that the following holds.

Theorem 2. Let r̂∗n and ŝ∗m be bootstrap versions of r̂n and ŝm that are

obtained via re-sampling k observations with k/n→ 0 and k/m→ 0. Then,

the plug-in bootstrap with r̂∗n and ŝ∗m is consistent, that is

sup
f∈BL1(R)

E
[
f(φp(

√
k {(r̂∗∗n , ŝ∗∗m )− (r̂n, ŝm)}))|X1, . . . , Xn, Y1, . . . , Ym

]
−E

[
f
(
ρn,m

{
W p
p (r̂n, ŝm)−W p

p (r, s)
})]

converges to zero in probability.

In the following we will prove our main Theorem 1 by

i) introducing Hadamard directional differentiability, which does not re-

quire the derivative to be linear but still allows for a delta-method;

ii) showing that the map (r, s) 7→ Wp(r, s) is differentiable in this sense.

2.2 Hadamard directional derivatives

In this section we follow Römisch (2004). A map f defined on a subset

Df ⊂ Rd with values in R is called Hadamard directionally differentiable at

u ∈ Rd if there exists a map f ′u : Rd → R such that

(2.7) lim
n→∞

f(u+ tnhn)− f(u)

tn
= f ′u(h)
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for any h ∈ Rd and for arbitrary sequences tn converging to zero from above

and hn converging to h such that u + tnhn ∈ Df for all n ∈ N. Note that

in contrast to the usual notion of Hadamard differentiability (e.g. Van der

Vaart and Wellner (1996)) the derivative h 7→ f ′u(h) is not required to be

linear. A prototypical example is the absolute value f : R→ R, t 7→ |t| which

is not in the usual sense Hadamard differentiable at t = 0 but directionally

differentiable with the non-linear derivative t 7→ |t|.

Theorem 3 (Römisch, 2004, Theorem 1). Let f be a function defined on a

subset F of Rd with values in R, such that

1. f is Hadamard directionally differentiable at u ∈ F with derivative

f ′u : F → R and

2. there is a sequence of Rd-valued random variables Xn and a sequence

of non-negative numbers ρn →∞ such that ρn(Xn−u)⇒ X for some

random variable X taking values in F .

Then, ρn(f(Xn)− f(u))⇒ f ′u(X).

2.3 Directional derivative of the Wasserstein

distance

In this section we show that the functional (r, s) 7→ W p
p (r, s) is Hadamard

directionally differentiable and give a formula for the derivative.

The dual program (cf. (Luenberger and Ye, 2008, Ch. 4), also Kan-

torovich and Rubinstein (1958)) of the linear program defining the Wasser-

stein distance (1.1) is given by

max
(u,v)∈RX×RX

〈u, r〉+ 〈s,v〉

s.t. ux + vx′ ≤ dp(x, x′) ∀x, x′ ∈ X .
(2.8)

As noted above, the optimal value of the primal problem is W p
p (r, s) and by

standard duality theory of linear programs (e.g. Luenberger and Ye (2008))
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this is also the optimal value of the dual problem. Therefore, the set of

optimal solutions to the dual problem is given by Φ∗p(r, s) as defined in (2.1).

Theorem 4. The functional (r, s) 7→ W p
p (r, s) is directionally Hadamard

differentiable at all (r, s) ∈ PX × PX with derivative

(2.9) (h1,h2) 7→ max
(u,v)∈Φ∗p(r,s)

−(〈u,h1〉+ 〈v,h2〉).

We can give a more explicit expression for the set Φ∗p(r, s) in the case

r = s, when the optimal value of the primal and the dual problem is 0.

Then, the condition W p
p (r, s) = 〈r,u〉+ 〈s,v〉 becomes 〈r,u+v〉 = 0. Since

ux + vx′ ≤ dp(x, x′) for all x, x′ ∈ X implies u + v ≤ 0 this yields u = −v.

This gives

Φ∗p(r, r) =
{

(u,−u) ∈ RX × RX : ux − ux′ ≤ dp(x, x′), x, x′ ∈ X
}

and the following more compact representation of the dual solutions in the

case r = s, independent of r:

(2.10) Φ∗p(r, r) = Φ∗p ×
(
−Φ∗p

)
.

2.4 Explicit limiting distribution for tree met-

rics

Assume that the metric structure on X is given by a weighted tree, that

is, an undirected connected graph T = (X , E) with vertices X and edges

E ⊂ X ×X that contains no cycles. We assume the edges to be weighted by

a function w : E → R>0. For x, x′ ∈ X let e1, . . . , el ∈ E be the unique path

in T joining x and x′, then the length of this path, dT (x, x′) =
∑l

j=1 w(ej)

defines a metric dT on X . Without imposing any further restriction on T ,

we assume it to be rooted at root(T ) ∈ X , say. Then, for x ∈ X and

x 6= root(T ) we may define par(x) ∈ X as the immediate neighbor of x in

the unique path connecting x and root(T ). We set par(root(T )) = root(T ).
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We also define children(x) as the set of vertices x′ ∈ X such that there exists

a sequence x′ = x1, . . . , xl = x ∈ X with par(xj) = xj+1 for j = 1, . . . , l − 1.

Note that with this definition x ∈ children(x). Additionally, define the linear

operator ST : RX → RX

(2.11) (ST u)x =
∑

x′∈children(x)

ux′ .

Theorem 5. Let p ≥ 1, r ∈ PX , defining a probability distribution on X and

let the empirical measures r̂n and ŝm be generated by independent random

variables X1, . . . , Xn and Y1, . . . Ym, respectively, all drawn from r = s.

Then, with a Gaussian vector G ∼ N (0,Σ(r)) as defined in (2.2) we have

the following.

a) (One sample) As n→∞,

(2.12) n
1
2pWp(r̂n, r)⇒

{∑
x∈X

|(STG)x|dT (x, par(x))p

} 1
p

b) (Two samples) If n ∧m→∞ and n/(n+m)→ λ ∈ (0, 1) we have

(2.13)

(
nm

n+m

) 1
2p

Wp(r̂n, ŝm)⇒

{∑
x∈X

|(STG)x|dT (x, par(x))p

} 1
p

.

The proof of Theorem 5 is given in the supplementary material. The

theorem includes the special case of a discrete measure on the real line, that

is X ⊂ R, since in this case, X can be regarded as a simple rooted tree

consisting of only one branch.

Corollary 1 (Samworth and Johnson, 2004, Theorem 2.6). Let X = {x1 <

· · · < xN} ∈ R, r ∈ PX and r̂n the empirical measure generated by i.i.d.

random variables X1, . . . , Xn ∼ r. With r̄j =
∑j

i=1 rxi, for j = 1, . . . N and
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B a standard Brownian bridge, we have as n→∞,

(2.14) n
1
4W2(r̂n, r)⇒

{
N−1∑
j=1

|B(r̄j)|(xj+1 − xj)2

} 1
2

.

2.5 The limiting distribution as a Wasserstein

distance

The limiting distribution (2.5) under the null hypothesis can be written as

a transport distance between random measures. Besides its theoretical ap-

peal, this result has practical implications. Any solver for the Wasserstein

problem can also be directly used for Monte Carlo simulation of the limiting

distribution.

For the sake of brevity we will in this section use the notation W p
p (r, s)

also for vectors r, s ∈ RX≥0 which are not probability measures but satisfy∑
x rx =

∑
x sx. One may read this as

W p
p (r, s) =

(∑
x

rx

)
×W p

p

(
r∑
x rx

,
s∑
x sx

)
.

Theorem 6. Let G ∼ N (0,Σ(r)) as in (2.2) and define G+ ∈ RX

G+ =

Gx if Gx > 0

0 else,

as well as G− = G−G+, such that G± have only non-negative entries and

G = G+ −G−. Further, let 1 ∈ RX be the vector of ones, that is 1x = 1 for

all x ∈ X . Then,

(2.15) max
u∈Φ∗
〈G,u〉 = W p

p (G+ + c1,G− + c1)

for all c > (minx,x′∈X d
p(x, x′))−1W p

p (G+,G−).

Remark 2. The constant (minx,x′∈X d
p(x, x′))−1W p

p (G+,G−) may be upper
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bounded by (
min
x,x′∈X

dp(x, x′)

)−1

( diam(X ))p
∑
x

G+
x

which can easily be computed for any given G. It may become very large

(e.g. when X is a regular grid in dimension D it will be of order N1/D) but

this has no influence on the computational burden of the right hand side in

(2.15), since the size of the transport problem remains unaltered.

We suspect, that the statement of the theorem remains valid if only c > 1,

but it appears that this is more difficult to prove.

Proof. Recall that

max
u∈Φ∗p
〈G,u〉 = max〈G,u〉

s.t. ux − ux′ ≤ dp(x, x′)∀x, x′ ∈ X .

By introducing the new variable v = −u we can rewrite this as

max 〈G+,u〉+ 〈G−,v〉

s.t. ux − vx′ ≤ dp(x, x′)∀x, x′ ∈ X

u+ v = 0.

The linear programming dual (Luenberger and Ye, 2008, Ch. 4) of this is

min
∑
x,x′∈X

wx,x′d
p(x, x′)

s.t. w ≥ 0, z ∈ RX∑
x′

wx,x′ − zx = G+
x∑

x

wx,x′ − zx′ = G−x′ .

(2.16)

First, we note that any feasible solution must satisfy z ≥ 0. To see this,

assume that zx < 0 for some x ∈ X . By definition, at least one of G+
x

and G−x is zero. Without loss of generality, assume G+
x = 0, yielding 0 <∑

x′ wx,x′ − zx = 0, a contradiction.
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Evidently, when z ≥ 0 the optimum of the last linear program is

min
z∈RX≥0

W p
p (G+ + z,G− + z).

We will now consider the function z 7→ W p
p (G+ + z,G− + z). To this end,

for u ∈ RX define diag(u) ∈ RX×X as

(diag(u))x,x′ =

ux if x = x′,

0 else.

Note that diag(u) plugged into the objective function of (2.16) gives zero for

all u ∈ RX .

Assume that z1 ≤ z2 (component-wise) and let w∗ the optimal coupling

of G+ + z1 and G−+ z1. Then, w∗+ diag(z2− z1) is a coupling of G+ + z2

and G− + z2 with cost W p
p (G+ + z1,G

− + z1). Hence,

W p
p (G+ + z2,G

− + z2) ≤ W p
p (G+ + z1,G

− + z1).

Now, let c0 = (minx,x′∈X d
p(x, x′))−1W p

p (G+,G−) and assume that z ≥ co1.

Then, with w∗ the optimal coupling of G+ + z and G−+ z we have that for

any x ∈ X

w∗x,x = G+
x + zx −

∑
x′∈X ,x′ 6=x

w∗x,x′

≥ zx −
∑

x′∈X ,x′ 6=x

w∗x,x′

≥ zx −
(

min
x,x′∈X

dp(x, x′)

)−1
(∑
x,x′

w∗x,x′d
p(x, x′)

)

≥ zx −
(

min
x,x′∈X

dp(x, x′)

)−1

W p
p (G+,G−)

≥ zx − c0.

Hence,

w∗ + diag(c0 − z)
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has only non-negative entries and is therefore a coupling of G+ + c01 and

G− + c01 with cost W p
p (G+ + z,G− + z). Therefore,

W p
p (G+ + c01,G

− + c01) ≤ W p
p (G+ + z,G− + z).

It follows that the function z 7→ W p
p (G+ + z,G− + z) assumes its minimum

at every point z ≥ c01.

2.6 Normal limits under the alternative

Under certain conditions, the limiting distribution under the alternative r =

s is normal. We say that two measures r, s ∈ PX satisfy the non-degenracy

condition if

(2.17)
∑
x∈A

rx 6=
∑
x′∈B

sx′ for all proper subsets A $ X and B $ X .

Theorem 7 (Theorem and Definition). If r, s ∈ PX satisfy the non-degeneracy

condition (2.17) and u∗,v∗ is a solution to the dual transportation problem

(2.8), then any other solution is of the form u∗ + c, v∗ − c for some c ∈ R.

Hence, the following are independent of the choice of a solution u∗, v∗

σ2
1(r, s) =

∑
x∈X

(u∗x)
2rx −

(∑
x∈X

u∗xrx

)2

σ2
2(r, s) =

∑
x∈X

(v∗x)
2sx −

(∑
x∈X

v∗xsx

)2

.

(2.18)

If r, s do not satisfy the non-degeneracy condition, we define u∗,v∗ to be the

lexicographically smallest dual solution and define σ2
1,2(r, s) as above.

Proof. If the condition (2.17) is satisfied, then the transport simplex{
w ∈ PX×X :

∑
x′

wx,x′ = rx and
∑
x

wx,x′ = sx′

}
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is non-degenerate in the sense of linear programming. That is, every vertex

of the above transport simplex has exactly 2N −1 non-zero entries. We refer

to (Luenberger and Ye, 2008, Ch.3) for a definition of non-degeneracy in the

context of linear programming and to (Klee and Witzgall, 1968, Cor. 3) and

Hung et al. (1986) for the fact that in the case of a transportation problem,

non-degeneracy is equivalent to (2.17).

Therefore any primal solution to the transportation problem (and such

a solution always exists) will be non-degenerate (after deleting one linear

constraint to make them linearly independent) and therefore the dual trans-

portation problem has a unique solution up to an additive constant (since

deleting one constraint in the primal corresponds to fixing one coordinate of

the solution in the dual) (Sierksma, 2001, Thm. 4.5). Note that this ad-

ditive constant will not change the value of the limiting distribution since∑
xGx = 0 whenever G ∼ Σ(r).

Theorem 8. Let r, s ∈ PX be measures that satisfy the non-degeneracy

condition (2.17) and r̂n and ŝm empirical versions as in Theorem 1. Further,

let G and H be independent Gaussian random vectors with mean zero and

covariance Σ(r) and Σ(s) as defined in (2.2), respectively, then

a) (One sample) with n approaching infinity we have

(2.19)
n

1
2 (Wp(r̂n, s)−Wp(r, s))
1
p
W 1−p
p (r̂n, s)σ1(r̂n, s)

⇒ N (0, 1).

b) (Two sample) with n and m approaching infinity such that n∧m→∞
and m/(n+m)→ λ ∈ [0, 1],

(2.20)
ρn,m (Wp(r̂n, ŝm)−Wp(r, s))

1
p
W 1−p
p (r̂n, ŝm)

√
λσ2

1(r̂n, ŝm) + (1− λ)σ2
2(r̂n, ŝm)

⇒ N (0, 1).

Proof. We only prove the two sample case, the one sample case follows anal-
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ogously. From Theorems 1 and 7 we know that

ρn,m (Wp(r̂n, ŝm)−Wp(r, s))⇒
1

p
W 1−p
p (r, s)

{√
λ〈G,u∗〉+

√
1− λ〈H ,v∗〉

}
,

(2.21)

with the unique dual solutions u∗,v∗. Note that

var [〈G,u∗〉] =
∑
x,x′∈X

(Σ(r))x,x′u
∗
xu
∗
x′

= −
∑
x 6=x′

u∗xu
∗
x′rxrx′ +

∑
x

(u∗x)
2rx(1− rx)

=
∑
x

(u∗x)
2rx −

∑
x,x′

u∗xu
∗
x′rxrx′

= σ2
1(r, s).

Hence, the limit in (2.21) is a mean zero normal distribution with standard

deviation
1

p
W 1−p
p (r, s)

√
λσ2

1(r, s) + (1− λ)σ2
2(r, s).

The statement will follow from Slutzky’s Theorem if we show that this is the

limit (in probability) of the empirical version of this term

1

p
W 1−p
p (r̂n, ŝm)

√
λσ2

1(r̂n, ŝm) + (1− λ)σ2
2(r̂n, ŝm).

It is clear that Wp(r̂n, ŝm) → Wp(r, s) in probability. Hence, it remains

to show that σ2
j (r̂n, ŝm) → σ2

j (r, s) in probability. The latter will follow

from the continuous mapping theorem if we can show that the dual solu-

tions (u∗,v∗) are stable in the following sense: if (rk, sk) is a (deterministic)

sequence of measures converging to (r, s) we need to show that the cor-

responding sequence (u∗k,v
∗
k) of dual solutions converges to (u∗,v∗). This

stability follows, for example, from Theorem 1 of Robinson (1977), noting

that the set of primal and dual solutions of the transportation problem are

bounded if r, s satisfy the non-degeneracy condition. This concludes the

proof.
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2.6.1 The non-degeneracy condition

In this section we study in more detail the non-degeneracy condition (2.17).

In particular, we address how restrictive the condition is.

Remark 3. The problem of determining whether a given pair of measures

(r, s) ∈ PX×X satisfies the non-degeneracy condition is NP-complete (Chan-

drasekaran et al., 1982).

It seems to be well-known in mathematical programming that a small

perturbation can usually remove non-degeneracy from a linear program. In

the following result we give some formal statements with regard to this, in

particular, with a view towards our statistical application.

Proposition 1. a) For fixed N ∈ N the set of pairs of measures (r, s) ∈
PX×X that satisfy the non-degeneracy condition is open and dense in

PX×X .

b) If (r, s) satisfy the non-degeneracy condition and (r̂n, ŝm) are consistent

estimators then

P [(r̂n, ŝm) satisfy the non-degeneracy condition]→ 1 (n,m→∞).

In particular, the dual solutions to the transport problem with marginals

(r̂n, ŝm) will be unique with probability tending to one.

c) If (r, s) are drawn randomly from some distribution on PX×X which is

absolutely continuous with respect to the Lebesgue measure, then

P [(r, s) satisfy the non-degeneracy condition] = 1.

Proof. The set of measures satisfying the non-degeneracy condition can be

written as

(2.22)
⋂

A,B$X

{
(r, s) ∈ PX×X :

∑
x∈A

rx 6=
∑
x′∈B

sx′

}
.
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This is the intersection of the complements of{
(r, s) ∈ PX×X :

∑
x∈A

rx =
∑
x′∈B

sx′

}

which are closed subsets of dimension one and hence Lebesgue zero-sets.

Consequently, (2.22) is open and dense as the intersection of finitely many

open sets with co-dimension 1 and it has measure one with respect to any

measure that has a Lebesgue density. This proves the first and third part.

For the second part let ε > 0 such that every (r′, s′) with ||(r′, s′) −
(r, s)|| ≤ ε satisfies the non-degeneracy condition.

P [(r̂n, ŝm) satisfy the non-degeneracy condition]

≥ P [||(r′, s′)− (r, s)|| ≤ ε]→ 1.

2.7 Bootstrap

In this section we discuss the bootstrap for the Wasserstein distance under the

null hypothesis r = s. In addressing the usual measurability issues that arise

in the formulation of consistency for the bootstrap, we follow Van der Vaart

and Wellner (1996). We denote by r̂∗n and ŝ∗m some bootstrapped versions of

r̂n and ŝm. More precisely, let r̂∗n a measurable function of X1, . . . , Xn and

random weights W1, . . . ,Wn, independent of the data and analogously for

ŝ∗m. This setting is general enough to include many common bootstrapping

schemes. We say that, with the assumptions and notation of Theorem 1, the

bootstrap is consistent if the limiting distribution of

ρn,m {(r̂n, ŝm)− (r, s)} ⇒ (
√
λG,
√

1− λH)

is consistently estimated by the law of

ρn,m {(r̂∗n, ŝ∗m)− (r̂n, ŝm)} .
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To make this precise, we define for A ⊂ Rd, with d ∈ N, the set of bounded

Lipschitz-1 functions

BL1(A) =

{
f : A→ R : sup

x∈A
|f(x)| ≤ 1, |f(x1)− f(x2)| ≤ ||x1 − x2||

}
,

where ||·|| is the Euclidean norm. We say that the bootstrap versions (r̂∗n, ŝ
∗
m)

are consistent if

sup
f∈BL1(RX×RX )

|E [f(ρn,m {(r̂∗n, ŝ∗m)− (r̂n, ŝm)})|X1, . . . , Xn, Y1, . . . , Ym]

−E
[
f((
√
λG,
√

1− λH))
]
|

(2.23)

converges to zero in probability.

Bootstrap for directionally differentiable functions The most straight-

forward way to bootstrap W p
p (r̂n, ŝm) is to simply plug-in r̂∗n and ŝ∗m. That

is, trying to approximate the limiting distribution of ρn,mW
p
p (r̂n, ŝm) by the

law of

(2.24) ρn,m
{
W p
p (r̂∗n, ŝ

∗
m)−W p

p (r̂n, r̂m)
}

conditional on the data. While for functions that are Hadamard differentiable

this approach yields a consistent bootstrap (e.g. Gill et al. (1989); Van der

Vaart and Wellner (1996)), it has been pointed out by Dümbgen (1993) and

more recently by Fang and Santos (2014) that this is in general not true for

functions that are only directionally Hadamard differentiable. In particular

the plug-in approach fails for the Wasserstein distance.

For the Wasserstein distance there are two alternatives. First, Dümbgen

(1993) already pointed out that re-sampling fewer than n (or m, respec-

tively) observations yield a consistent bootstrap. Second, Fang and Santos

(2014) propose to plug-in ρn,m {(r̂∗n, ŝ∗m)− (r̂n, ŝm)} into the derivative of the

function.
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Recall from Section 2.3 that

(2.25) φp : RN × RN → R, φp(h1,h2) = max
u∈Φ∗p
〈u,h2 − h1〉

is the directional Hadamard derivative of (r, s) 7→ W p
p (r, s) at r = s. With

this notation, the following Theorem summarizes the implications of the

results of Dümbgen (1993) and Fang and Santos (2014) for the Wasserstein

distance.

Theorem 9 (Prop. 2 of Dümbgen (1993) and Thms. 3.2 and 3.3 of Fang

and Santos (2014)). Under the assumptions of Theorem 1 let r̂∗n and ŝ∗m be

consistent bootstrap versions of r̂n and ŝm, that is, (2.23) converges to zero

in probability. Then,

1. the plug-in bootstrap (2.24) is not consistent, that is,

sup
f∈BL1(R)

E
[
f(ρn,m

{
W p
p (r̂∗n, ŝ

∗
m)−W p

p (r̂n, ŝm)
}

)|X1, . . . Xn, Y1, . . . , Ym
]

−E[f(ρn,mW
p
p (r̂n, ŝm))]

does not converge to zero in probability.

2. Under the null hypothesis r = s, the derivative plug-in

(2.26) φp(ρn,m {(r̂∗n, ŝ∗m)− (r̂n, ŝm)})

is consistent, that is

sup
f∈BL1(R)

E [f(φp(ρn,m {(r̂∗n, ŝ∗m)− (r̂n, ŝm)}))|X1, . . . , Xn, Y1, . . . , Ym]

−E
[
f
(
ρn,mW

p
p (r̂n, ŝm)

)]
converges to zero in probability.
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2.8 An alternative representation of the lim-

iting distribution

We give a second representation of the limiting distribution under the alter-

native r 6= s. The random part of the limiting distribution (2.6) is the linear

program

max
(u,v)∈Φ∗p(r,s)

√
λ〈G,u〉+

√
1− λ〈H ,v〉.

With the representation (2.1) of Φ∗p(r, s) we obtain the dual linear program

min zW p
p (r, s) +

∑
x,x′∈X

wx,x′d
p(x, x′)

s.t. w ≥ 0, z ∈ R∑
x′∈X

wx,x′ + zrx = Gx∑
x∈X

wx,x′ + zsx = Hx

Note that the constraints can only be satisfied if both
√
λG−zr and

√
1− λH−

zs have only non-negative entries and z ≤ 0. In this case the second term

in the objective function is clearly minimized by −zw∗, with w∗ an optimal

transport plan between these two measures r−
√
λG/z and s−

√
1− λH/z

and the second term of the objective function is equal to−zW p
p (r−

√
λG/z, s−

√
1− λH/z).

To write this more compactly let us slightly extend our notation. For

r, s ∈ RX with
∑

x rx =
∑

x sx = 1 let

W̃ p
p (r, s) =

W p
p (r, s) if r, s ≥ 0;

∞ else.

With this we can thus write the random variable in the limiting distribution
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(2.6) as the one-dimensional non-linear optimization problem

(2.27)
1

p
W 1−p
p (r, s) min

z≥0
z
{
W̃ p
p (r +

√
λG/z, s+

√
1− λH/z)−W p

p (r, s)
}
.

2.9 Simulations and applications

The following numerical experiments were performed using R (R Core Team,

2016). All computations of Wasserstein distances and optimal transport

plans as well as their visualizations were performed with the R-package

transport (Schuhmacher et al., 2014; Gottschlich and Schuhmacher, 2014).

The code used for the computation of the limiting distributions is available

as an R-package otinference (Sommerfeld, 2017).

2.9.1 Speed of convergence

We investigate the speed of convergence to the limiting distribution in The-

orem 1 in the one-sample case under the null hypothesis. To this end, we

consider as ground space X a regular two-dimensional L × L grid with the

euclidean distance as the metric d and L = 3, 5, 10. We generate five ran-

dom measures r on X as realizations of a Dirichlet random variable with

concentration parameter α = (α, . . . , α) ∈ RL×L for α = 1, 5, 10. Note,

that α = 1 corresponds to a uniform distribution on the probability sim-

plex. For each measure, we generate 20, 000 realizations of n1/2pWp(r̂n, r)

with nr̂n ∼ Multinom(r) for n = 10, 1000, 1000 and of the theoretical lim-

iting distribution given in Theorem 1. The Kolmogorov-Smirnov distance

(that is, the maximum absolute difference between their cdfs) between these

two samples (averaged over the five measures) is shown in Figure 2.1. The

experiment shows that the limiting distribution is a good approximation of

the finite sample version even for small sample sizes. For the considered pa-

rameters the size of the ground space N = L2 seems to slow the convergence

only marginally. Similarly, the underlying measure seems to have no size-

able effect on the convergence speed as the dependence on the concentration

parameter α demonstrates.
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Figure 2.1: Comparison of the finite sample distribution and the theoretical
limiting distribution on a regular grid of length L for different sample sizes.
The two top rows show Q-Q-plots and kernel density estimates (bandwidth:
Silverman’s rule of thumb (Silverman, 1986), solid line: finite sample, dotted
line: limiting distribution) for L = 10. Last row shows the KS statistic
between the two distributions as a function of the sample size for different L
and for different concentration parameters α.
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2.9.2 Testing the null: real and synthetic fingerprints

The generation and recognition of synthetic fingerprints is a topic of great

interest in forensic science and current state-of-the-art methods (Cappelli

et al., 2000) produce synthetic fingerprints that even human experts fail to

recognize as such (Maltoni et al., 2009, p. 292ff). Recently, Gottschlich and

Huckemann (2014) presented a method using the Wasserstein distance that is

able to distinguish synthetic from real fingerprints with high accuracy. Their

method is probabilistic in nature, since it is based on a hypothesized unknown

distribution of certain features of the fingerprint. We use our distributional

limits to assess the statistical significance of the differences.

Minutiae histograms The basis for the comparison of fingerprints are so

called minutiae which are key qualities in biometric identification based on

fingerprints (Jain, 2007). They are certain characteristic features such as

bifurcations of the line patterns of the fingerprint. Each of the minutiae have

a location in the fingerprint and a direction such that it can be characterized

by two real numbers and an angle. Figure 2.3 shows a real and a synthetic

fingerprint with their minutiae.

The recognition method of Gottschlich and Huckemann (2014) considers

pairs of minutiae and records their distance and the difference between their

angles. Based on these two values each minutiae pair is put in one of 100

bins arranged in a regular grid (10 directional by 10 distance bins) to ob-

tain a so called minutiae histogram (MH). Based on the bin-wise mean of

MHs for several fingerprints to construct a typical MH, they found that the

proximity in Wasserstein distance to these references is a good classifier for

distinguishing real and synthetic fingerprints.

In order to assess the statistical significance of the difference in minutiae

pair distributions, we consider fingerprints from the databases 1 and 4 of

the Fingerprint Verification Competition of 2002 (Maio et al., 2002), con-

taining 110 real and synthetic fingerprints, respectively. From each database

the minutiae were obtained by automatic procedure using a commercial off-

the-shelf program. For each fingerprint we chose disjoint minutiae pairs at
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Figure 2.2: The optimal transport plan between the MHs of real and fake
fingerprints. The grey values indicate the magnitude of the difference of the
two MHs. The arrows show the transport. The amount of mass transported
is encoded in the color and thickness of the arrows.

random to avoid the issue of pairs being dependent yielding a total of 1917

and 1437 minutiae pairs from real and synthetic fingerprints, respectively.

While two-sample tests for univariate data are abundant and well stud-

ied there are no multivariate methods that could be considered standard in

this setting. Therefore, we report on the findings of several tests from the

literature for comparison with the Wasserstein based method from (2.5). We

tested the null hypothesis of the underlying distributions being equal for the

un-centered, the centered and the centered and scaled (to variance 1) data to

assess effects beyond first moments using the following methods: 1) compar-

ing the empirical Wasserstein distance W1 after binning on a regular 10× 10

grid with the limiting distribution from Theorem 1; 2) a permutation test; 3)

the crossmatch test proposed by (Rosenbaum, 2005) and 4) the kernel based

test (Anderson et al., 1994) implemented in the R package ks.
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Table 2.1: Results of different two-sample tests for difference in the distri-
bution of MHs of real and fake fingerprints.

Wasserstein Crossmatch Permutation KDE
Raw 0.00E+00 2.99E-01 1.00E-03 1.12E-08

Centered 4.00E-04 4.48E-05 1.00E-03 2.60E-21
Centered & Scaled 2.54E-02 1.01E-02 1.71E-01 1.79E-14

Table 2.1 shows the resulting empirical distributions on a 10 × 10 grid

and the p-values for the different tests. The differences are highly significant

according to all tests, except the permutation test for the centered and scaled

data. In this particular example at least, the Wasserstein based test seems

to be able to pick up differences in distributions (in the first moment and

beyond) at least as good as current state-of-the-art methods.

In addition to testing, the Wasserstein method provides us with an opti-

mal transport plan, transforming one measure into the other. For the minu-

tiae histograms under consideration this is illustrated in Figure 2.2. This

transport plan gives information beyond a simple test for equality as it high-

lights structural changes in the distribution. In this specific application it

reveals how in the minutiae histogram of synthetic fingerprints compared to

the one of real fingerprints mass has been shifted from large and intermedi-

ate directional differences to smaller ones. In particular to small and large

distances, and only to a lesser extent to intermediate distances. In conclu-

sion one may say that synthetic fingerprints show smaller differences in the

directions of minutiae and stronger clustering of minutiae distances around

small and large values. Insight of this sort may lead to improved generation

or detection of synthetic fingerprints.

2.9.3 Asymptotic under the alternative: metagenomics

Metagenomics studies microbial communities by analyzing genetic material

in an environmental sample such as a stool sample of a human. High-

throughput sequencing techniques no longer require cultivated cloned mi-

crobial cultures to perform sequencing. Instead, a sample with potentially

many different species can be analyzed directly and the abundance of each
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Figure 2.3: Top row: Minutiae of a real (left) and a synthetic (right) finger-
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Figure 2.4: Relative abundances of the 30 first OTUs in the 12 samples (left)
and Wasserstein distances of the microbial communities (right). Here, ij is
the j-th sample of the i-th person.
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species in the sample can be recovered. The applications of this technique are

countless and constantly growing. In particular, the composition of microbial

communities in the human gut has been associated with obesity, inflamma-

tory bowel disease and others (Turnbaugh et al., 2007).

The analysis of a sample with high-throughput sequencing techniques

yields several thousands to many hundreds of thousands sequences. After

elaborate pre-processing, these sequences are aligned to a reference database

and clustered in operational taxonomic units (OTUs). These OTUs can be

thought of (albeit omitting some biological detail) as the different species

present in the sample. For each OTU this analysis yields the number of

sequences associated with it, that is how often this particular OTU was de-

tected in the sample. Further, comparing the genetic sequences associated

with an OTU yields a biologically meaningful measure of similarity between

OTUs - and hence a distance. A metagenomic sample can therefore be re-

garded as a sample in a discrete metric space with OTUs being the points

of the space. Comparing such samples representing microbial communities

is of great interest (Kuczynski et al., 2010). The Wasserstein distance has

been recognized to provide valuable insight and to facilitate tests for equal-

ity of two communities (Evans and Matsen, 2012). This previous application

however, relies on a phylogenetic tree that is build on the OTUs and the

distance is then measured in the tree. This additional pre-processing step

involves many parameter choices and is unnecessary with our method.

A further drawback of the method of Evans and Matsen (2012) is that it

only allows for testing the null hypothesis of two communities being equal.

In practice, one frequently finds that natural variation is so high that even

two samples from the same source taken at different times will be recognized

as different. This raises the question whether variation within samples from

the same source is smaller than the difference to samples of another source.

Statistically speaking we are looking for confidence sets for differences which

are assumed to be different from zero. This requires asymptotics under the

alternative r 6= s, which is provided by Theorem 1.
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Data analysis We consider part of the data of Costello et al. (2009).

Four stool samples were taken from each of three persons at different times.

We used the preparation of this data by P. Schloss available at https://

www.mothur.org/w/images/d/d8/CostelloData.zip. The reads were pre-

processed with the program mothur (Schloss et al., 2009) using the procedure

outlined in Schloss et al. (2011) and Schloss (2015). The relative abundances

of the 30 most frequent OTUs and the Wasserstein-2 distances of the micro-

bial communities are shown in Figure 2.4. In this and all other figures we

use i− j to denote sample j of person i. Note that it is typical for this data

that most of the mass is concentrated on a few OTUs.

The Wasserstein-2 distances for all 66 pairs and their 99% confidence

intervals were computed using the asymptotic distribution in Theorem 1. The

results are shown in Figure 2.5. The entire analysis took less than a minute

on a standard laptop. The confidence intervals show that intra-personal

distances are in fact significantly smaller than inter-personal distances.

https://www.mothur.org/w/images/d/d8/CostelloData.zip
https://www.mothur.org/w/images/d/d8/CostelloData.zip
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2.10 Discussion

We discuss limitations, possible extensions of the presented work and promis-

ing directions for future research.

Beyond finite spaces I: rates in the finite and the continuous setting

(d = 1) The scaling rate in Theorem 1 depends solely on p and is completely

independent of the underlying space X . This contrasts known bounds on the

rate of convergence in the continuous case (see references in the Introduction),

which exhibit a strong dependence on the dimension of the space and the

moments of the distribution.

Under the null hypothesis (that is, the two underlying population mea-

sures are equal) and when X = R and p = 2, the scaling rate for a continuous

distribution is known to be n1/2, at least under additional tail conditions (see

e.g. Del Barrio et al. (2005)). This means that in this case the scaling rate

for a discrete distribution is slower (namely n1/4). Under the alternative

(different population measures) the scaling rate is n1/2 and coincide in the

discrete and the continuous case (see Munk and Czado (1998)).

Beyond finite spaces II: higher dimensions (d ≥ 2) For a continuous

measure µ the Wasserstein distance is the solution of an infinite-dimensional

optimization problem. Although differentiability results also exist for such

problems (e.g. Shapiro (1992)), there are strong indications that the argu-

ment presented here cannot carry over to the this case for d ≥ 2. This is

most easily seen from the classical results of Ajtai et al. (1984). We consider

the uniform distribution on the unit square. For two samples of size n inde-

pendently drawn from this distribution, Ajtai et al. (1984) showed that there

exist constants C1, C2 such that the 1-Wasserstein distance Ŵ
(n)
1 between

them satisfies

C1n
−1/2(log n)1/2 ≤ Ŵ

(n)
1 ≤ C2n

−1/2(log n)1/2

with probability 1− o(1). Hence, for cnŴ
(n)
1 to have a non-degenerate limit,

we need cn =
√
n/ log n. However, a common property of all delta-methods
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is that they preserve the rate of convergence, which is not satisfied here.

Transport distances on trees Complementing our Theorem 5 a further

result on transport distances on trees was proven by Evans and Matsen

(2012) in the context of phylogenetic trees for the comparison of metage-

nomic samples (see also our application in Section 2.9). They point out that

the Wasserstein-1 distance on trees is equal to the so-called weighted uni-

frac distance which is very popular in genetics. Inspired by this distance

they give a formal generalization mimicking a cost exponent p > 1 and con-

sider its asymptotic behavior. However, as they remark, these generalized

expressions are no longer related (beyond a formal resemblance) to Wasser-

stein distances with cost exponent p > 1. Comparing the performance of

their ad-hoc metric and the true Wasserstein distance on trees that is under

consideration here is an interesting topic for further research.

Bootstrap We showed that while the naive n-out-of-n bootstrap fails for

the Wasserstein distance (Section 2.7), the m-out-of-n bootstrap is consis-

tent. An interesting and challenging question is how m should be chosen.

Wasserstein barycenters Barycenters in the Wasserstein space (Agueh

and Carlier, 2011) have recently received much attention (Cuturi and Doucet,

2014; Del Barrio et al., 2015). We expect that the techniques developed here

can be of use in providing a rigorous statistical theory (e.g. distributional

limits). The same applies to geodesic principal component analysis in the

Wasserstein space (Bigot et al., 2013; Seguy and Cuturi, 2015).

Alternative cost matrices and transport distances Theorem 1 holds

in very large generality for arbitrary cost matrices, including in particular

the case of a cost matrix derived from a metric but using a cost exponent

p < 1.

Beyond this obvious modification it seems worthwhile to extend the method-

ology of directional differentiability in conjunction with a delta-method to

other functionals related to optimal transport, e.g. entropically regularized
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(Cuturi, 2013) or sliced Wasserstein distances (Bonneel et al., 2015). This

would require a careful investigation of the analytical properties of these

quantities similar to classical results for the Wasserstein distance.

2.11 Proofs

2.11.1 Proof of Theorem 1

a) With the notation introduced in Theorem 1, nr̂n is a sample of size n from

a multinomial distribution with probabilities r. Therefore,
√
n(r̂n−r)⇒

G as n → ∞ (Wasserman, 2011, Thm. 14.6). The Hadamard derivative

of the map (r, s) 7→ W p
p (r, s) as given in Theorem 4 can now be used

in the delta-method from Theorem 3. Together with the representation

(2.10) of the set of dual solutions Φ∗p(r, s), this yields

√
nW p

p (r̂n, r)⇒ max
(u,v)∈Φ∗p(r,r)

−〈u,G〉 D∼ max
u∈Φ∗p
〈u,G〉.

Here and in the following Z1
D∼ Z2 means the distributional equality of the

random variables Z1 and Z2. Applying to this the Continuous Mapping

Theorem with the map t 7→ t1/p gives the assertion.

b) Consider the map (r, s) 7→ Wp(r, s) = (W p
p (r, s))1/p. By Theorem 4 and

the chain rule for Hadamard directional derivatives (Shapiro, 1990, Prop.

3.6), the Hadamard derivative of this map at (r, s) is given by

(2.28) (h1,h2) 7→ p−1W 1−p
p (r, s)

{
max

(u,v)∈Φ∗p(r,s)
−(〈u,h1〉+ 〈v,h2〉)

}
.

An application of the delta-method of Theorem 3 concludes this part.

c) and d). Note that under the assumptions of the Theorem

(2.29)

√
nm

n+m
((r̂n, ŝm)− (r, s))⇒ (

√
λG,
√

1− λH).

Part d) follows with the delta-method from (2.28) and (2.29).



42 CHAPTER 2. DISTRIBUTIONAL LIMITS

For part c) we use, as we did for a), the derivative given in Theorem 4

and the Continuous Mapping Theorem. The limit distribution is{
max

(u,v)∈Φ∗p(r,s)
(
√
λ〈G,u〉+

√
1− λ〈H ,v〉)

}1/p

.

Note that if r = s we have (u,v) ∈ Φ∗p(r, s) if and only if u ∈ Φ∗p and

v = −u, by (2.10) and (2.1). Hence, with G
D∼H we conclude

max
(u,v)∈Φ∗p(r,s)

(
√
λ〈G,u〉+

√
1− λ〈H ,v〉) D∼ max

u∈Φ∗p
(
√
λ〈G,u〉 −

√
1− λ〈H ,u〉)

D∼ max
u∈Φ∗p

√
λ+ (1− λ)〈G,u〉

= max
u∈Φ∗p
〈G,u〉.

2.11.2 Proof of Theorem 4

By (Gal et al., 1997, Ch. 3, Thm. 3.1) the function (r, s) 7→ W p
p (r, s)

is directionally differentiable with derivative (2.9) in the sense of Gâteaux,

that is, the limit (2.7) exists for a fixed h and not a sequence hn → h (see

e.g. Shapiro (1990)). To see that this is also a directional derivative in the

Hadamard sense (2.7) it suffices (Shapiro, 1990, Prop. 3.5) to show that

(r, s) 7→ W p
p (r, s) is locally Lipschitz. That is, we need to show that for

r, r′, s, s′ ∈ PX

|W p
p (r, s)−W p

p (r′, s′)| ≤ C||(r, s)− (r′, s′)||,

for some constant C > 0 and some (and hence all) norm || · || on RN × RN .

Exploiting symmetry, it suffices to show that

W p
p (r, s)−W p

p (r, s′) ≤ C||s− s′||

for some constant C > 0 and some norm || · ||. To this end, we employ

an argument similar to that used to prove the triangle inequality for the

Wasserstein distance (see e.g. (Villani, 2008, p. 94)). Indeed, by the gluing
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Lemma (Villani, 2008, Ch. 1) there exist random variables X1, X2, X3 with

marginal distributions r, s and s′, respectively, such that E[dp(X1, X3)] =

W p
p (r, s′) and E[d(X2, X3)] = W1(s, s′). Then, since (X1, X2) has marginals

r and s, we have

W p
p (r, s)−W p

p (r, s′) ≤ E [dp(X1, X2)− dp(X1, X3)]

≤ p diam(X )p−1E [|d(X1, X2)− d(X1, X3)|]

≤ p diam(X )p−1E [d(X2, X3)] = p diam(X )p−1W1(s, s′)

≤ p diam(X )p||s− s′||1,

where the last inequality follows from (Villani, 2008, Thm. 6.15). This

completes the proof.

2.11.3 Proof of Theorem 5

Simplify the set of dual solutions Φ∗p As a first step, we rewrite the set

of dual solutions Φ∗p given in (2.1) in our tree notation as

(2.30) Φ∗p =
{
u ∈ RX : ux − ux′ ≤ dT (x, x′)p, x, x′ ∈ X

}
.

The key observation is that in the condition ux − ux′ ≤ dT (x, x′)p we do

not need to consider all pairs of vertices x, x′ ∈ X , but only those which

are joined by an edge. To see this, assume that only the latter condition

holds. Let x, x′ ∈ X arbitrary and x = x1, . . . , xl = x′ the sequence of

vertices defining the unique path joining x and x′, such that (xj, xj+1) ∈ E
for j = 1, . . . , n− 1. Then

ux − ux′ =
n−1∑
j=1

(uxj − uxj+1
) ≤

n−1∑
j=1

dT (xj, xj+1)p ≤ dT (x, x′)p,

such that the condition is satisfied for all x, x′ ∈ X . Noting that if two

vertices are joined by an edge than one has to be the parent of the other, we
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can write the set of dual solutions as

(2.31) Φ∗p =
{
u ∈ RX : |ux − upar(x)| ≤ dT (x, par(x))p, x ∈ X

}
.

Rewrite the target function We define linear operators ST , DT : RX →
RX by

(DT v)x =

vx − vpar(x) x 6= root(T )

vroot(T ) x = root(T ).
, (ST u)x =

∑
x′∈children(x)

ux′ .

Lemma 1. For u,v ∈ RX we have 〈u,v〉 = 〈ST u, DT v〉.

Proof. We compute

〈ST u, DT v〉 =
∑
x∈X

(ST u)x(DT v)x

=
∑

x∈X\{root(T )}

∑
x′∈children(x)

(vx − vpar(x))ux′

+
∑

x′∈children(root(T ))

vroot(T )ux′

=
∑
x∈X

∑
x′∈children(x)

vxux′

−
∑

x∈X\{root(T )}

∑
x′∈children(x)

vpar(x)ux′

=
∑
x∈X

uxvx,

which proves the Lemma. To see how the last line follows let children1(x) be

the set of immediate predecessors of x, that is children of x that are connected

to x by an edge. Then we can write the second term in the second to last

line above as∑
x∈X\{root(T )}

∑
x′∈children(x)

vpar(x)ux′ =
∑
y∈X

∑
x∈children1(y)

∑
x′∈children(x)

vyux′

=
∑
y∈X

∑
x′∈children(y)\{y}

vyux′
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and the claim follows.

If u ∈ Φ∗p, as given in (2.31), we have for x 6= root(T ) that

|(DT u)x| = |ux − upar(x)| ≤ dT (x, par(x))p.

With these two observations and Lemma 1, we get for G ∼ N (0,Σ(r)) and

u ∈ Φ∗p that

(2.32) 〈G,u〉 = 〈STG, DT u〉 ≤
∑

root(T )6=x∈X

|(STG)x|dT (x, par(x))p.

Therefore, maxu∈Φ∗p〈G,u〉 is bounded by
∑

root(T )6=x∈X |(STG)x|dT (x, par(x))p.

Since DT is an isomorphism, we can define a vector v ∈ RX by

(DT v)x = sgn ((STG)x)dT (x, par(x))p.

From (2.31) we see that v ∈ Φ∗p and Lemma 1 shows that 〈G,v〉 attains the

upper bound in (2.32). This concludes the proof.

2.11.4 Proof of Corollary 1

In order to use Theorem 5 we define the tree T with vertices {x1, . . . , xN},
edges E = {(xj, xj+1), j = 1, . . . , N − 1} and root(T ) = xN . Then, if G ∼
N (0,Σ(r)), we have that {(STG)j}j=1,...,N is a Gaussian vector such that for

i ≤ j

cov((STG)i, (STG)j) =
∑
k≤i
l≤j

E [GkGl] =
∑
k≤i

rk(1− rk)−
∑
k≤i
l≤j
k 6=l

rkrl

= r̄i −
∑
k≤i
l≤i

rkrl −
∑
k≤i
i<l≤j

rkrl = r̄i − r̄2
i − r̄i(r̄j − r̄i)) = r̄i − r̄ir̄j.

Therefore, we have that for a standard Brownian bridge B

STG ∼ (B(r̄1), . . . , B(r̄N)).
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Together with d(xj, par(xj)) = (xj+1−xj)2, and (2.12) this proves the Corol-

lary.



Chapter 3

Strategies for inference in

large-scale problems

This chapter proposes a strategy to apply the distributional limits presented

in the previous chapter for two-sample testing in the case of very large prob-

lems, that is, when the number of support points of the measures makes

exact computation of the involved quanities computationally infeasible.

The first section shows how thresholding the ground distance yields a

lower bound for the Wasserstein distance, while the second section gives

a stochastic upper bound for the limiting distribution by using the explicit

expression for tree metrics. These results are combined to yield a conservative

but fast two-sample test which is applied to microscopy data in the third

section.

3.1 Thresholded Wasserstein distance

As outlined in the introduction, a lower bound on Wp(r̂n, ŝm) is enough to

test the null hypothesis r = s with pre-specified significance level. To this

end, we use an idea of Pele and Werman (2009) who showed that one can

obtain such a lower bound by thresholding the ground distance and that

this reduces computation time and memory requirements by one polynomial

order.

47
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Thresholded ground distance For a thresholding parameter t ≥ 0 define

the thresholded metric

(3.1) dt(x, x
′) = min {d(x, x′), t} .

Then, dt is again a metric. Let W (t)(r, s) be the Wasserstein distance with

respect to dt. Since dt(x, x
′) ≤ d(x, x′) for all x, x′ ∈ X we have that

W
(t)
p (r, s) ≤ Wp(r, s) for all r, s ∈ PX and all t ≥ 0.

Computing the thresholded Wasserstein distance The thresholded

distance W
(t)
p is often much faster to compute than the exact Wasserstein

distance. The reason for this is that many of N2 distances between points

in X have length t. Since the transport problem (1.1) can be written as a

network-flow problem (Luenberger and Ye, 2008), we can leverage this fact to

redirect all edges with length t through a virtual node and thus dramatically

reduce the number of edges. The resulting network-flow problem can be

tackled with existing efficient solvers (see e.g. (Bertsekas, 1992); in practice,

we achieved the best results with the network solver of the CPLEX (www.

ibm.com/software/commerce/optimization/cplex-optimizer/)).

For details we refer to the original source Pele and Werman (2009).

Among other things, they show that if each point in X has O(1) neigh-

bors with distance at most t, the thresholded distance can be computed in

O(N2 logN) time with O(N) memory requirement. This is a considerable

reduction compared to the exact distance, which requires O(N3 logN) time

and O(N2) memory.

In practice this difference proves to be very meaningful as we demonstrate

in Section 3.3 where we use the thresholded Wasserstein distance for inference

on a large grid.

We remark at this point that it is entirely possible to use dt as ground

distance on X and Theorem 1 will give the exact limiting distribution also

in this case. Since this entails changing the given structure on X we do not

pursue this approach any further in this work.

www.ibm.com/software/commerce/optimization/cplex-optimizer/
www.ibm.com/software/commerce/optimization/cplex-optimizer/
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3.2 Stochastically bounding the limiting dis-

tribution

In order to use the distributional limits from Section 2.1 when N is large, we

need to compute the limiting distribution. When N is large, however, the

limiting distribution in Theorem 1 is a linear program with essentially the

same number of constraints and variables as the dual of the Wasserstein prob-

lem. Therefore, computing the limiting distribution is essentially as hard as

computing the Wasserstein distance itself. This renders a naive Monte-Carlo

approach to obtain quantiles infeasible. But we can use the explicit formula

for the case of tree metrics to stochastically bound the limiting distribution.

This is based on the following simple observation: Let T a spanning tree of

X and dT the tree metric generated by T and the weights (x, x′) 7→ d(x, x′) as

described in Section 2.4. Then for any x, x′ ∈ X we have d(x, x′) ≤ dT (x, x′).

Let Φ∗p,T denote the set defined in (2.1) with the metric dT instead of d. Then

Φ∗p ⊂ Φ∗p,T and hence

max
u∈Φ∗p
〈v,u〉 ≤ max

u∈Φ∗p,T

〈v,u〉

for all v ∈ RN . In view of formula (2.12) define

(3.2) ZT ,p(u) =

{∑
x∈X

|(ST u)x|dT (x, par(x))p

} 1
p

for u ∈ RN . It follows that

max
u∈Φ∗p
〈v,u〉 ≤ ZT ,p(v).

for all v ∈ RN and this proves the following main result of this section.

Theorem 10. Let r, s ∈ PX and r̂n ŝm be generated by i.i.d. X1, . . . , Xn ∼ r
and Y1, . . . , Ym ∼ s, respectively. Let further T be a spanning tree of X .

Then, under the null hypothesis r = s we have as n and m approach infinity
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such that n ∧m→∞ and n/(n+m)→ λ ∈ [0, 1] that

lim sup
n,m→∞

P

[(
nm

n+m

)1/2p

W (t)
p (r̂n, ŝm) ≥ z

]
≤ P [ZT ,p(G) ≥ z] ,(3.3)

where G ∼ N (0,Σ(r)) with Σ(r) as defined in (2.2).

In (3.3) the important parameter is the threshold t. While the stochastic

bound of the limiting distribution ZT ,p is very fast to compute, the thresh-

olded Wasserstein distance W
(t)
p (r̂n, ŝm) is a computational bottleneck. A

large threshold t will result in a better approximation of the true Wasser-

stein distance and hence a higher power of the test but also requires a longer

computation time.

Regular Grids

When X is a regular grid a spanning tree can be constructed from a dyadic

partition. Let D be a positive integer, L a power of two and X the regular

grid of LD points in the unit hypercube [0, 1]D. For 0 ≤ l ≤ lmax with

lmax = log2 L

let Pl be the natural partition of X into 2Dl squares of each LD/2Dl points.

We define X ′ by adding to X all center-points of sets in Pl for 0 ≤ l < lmax.

We identify center points of Plmax with the points in X . A tree with vertices

X ′ can now be build using the inclusion relation of the sets {Pl}0≤l≤lmax
as

ancestry relation. More precisely, the leaves of the tree are the points of X
and the parent of the center point of F ∈ Pl is the center point of the unique

set in Pl−1 that contains F .

If we use the Euclidean metric to define the distance between neighboring

vertices we get

dT (x, par(x)) =

√
D2−l

2
,

if x ∈ Pl.
A measure r on X naturally extends to a measure on X ′ if we give zero
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mass to all inner vertices. We also denote this measure by r. Then, if x ∈ X ′

is the center point of the set F ∈ Pl for some 0 ≤ l ≤ lmax, we have that

(ST r)x = SFr where SFr =
∑

x∈F rx. Therefore, we have in (3.3)

ZT ,p(u) =

{
lmax∑
l=0

Dp/22−p(l+1)
∑
F∈Pl

|SFu|

}1/p

.

This expression can be evaluated efficiently and used with Theorem 10 to

obtain a two-sample test.

3.3 Application: single-marker switching mi-

croscopy

Single Marker Switching (SMS) Microscopy (Betzig et al., 2006; Rust et al.,

2006; Egner et al., 2007; Heilemann et al., 2008; Fölling et al., 2008) is a living

cell fluorescence microscopy technique in which fluorescent markers which

are tagged to a protein structure in the probe are stochastically switched

from a no-signal giving (off) state into a signal-giving (on) state. A marker

in the on state emits a bunch of photons some of which are detected on

a detector before it is either switched off or bleached. From the photons

registered on the detector, the position of the marker (and hence of the

protein) can be determined. The final image is assembled from all observed

individual positions recorded in a sequence of time intervals (frames) in a

position histogram, typically a pixel grid.

SMS microscopy is based the principle that at any given time only a very

small number of markers are in the on state. As the probability of switching

from the off to the on state is small for each individual marker and they

remain in the on state only for a very short time (1-100ms). This allows

SMS microscopy to resolve features below the diffraction barrier that limits

conventional far-field microscopy (see Hell (2007) for a survey) because with

overwhelming probability at most one marker within a diffraction limited
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spot is in the on state. At the same time this property requires much long

acquisition times (1min-1h) to guarantee sufficient sampling of the probe. As

a consequence, if the probe moves during the acquisition, the final image will

be blurred.

Correcting for this drift and thus improving image quality is an area of

active research (Geisler et al., 2012; Deschout et al., 2014; Hartmann et al.,

2014; Aspelmeier et al., 2015). In order to investigate the validity of such

a drift correction method we introduce a test of the Wasserstein distance

between the image obtained from the fist half of the recording time and the

second half. This test is based on the distributional upper bound of the

limiting distribution which was developed in Section 3.2 in combination with

a lower bound of the Wasserstein distance (Pele and Werman, 2009). In fact,

there is no standard method for problems of this kind and we argue that the

(thresholded) Wasserstein distance is particular useful in such a situation as

the specimen moves between the frames without loss of mass, hence the drift

induces a transport structure between successive frames. In the following we

compare the distribution from the first half of frames with the distribution

from the second half scaled with the sample sizes (as in (2.12)). We reject the

hypothesis that the distributions from the first and the second half are the

same, if our test statistic is larger than the 1−α quantile of the distributional

bound of the limiting distribution in (3.3). If we have statistical evidence that

the tresholded Wasserstein distance is not zero, we can also conclude that

there is a significant difference in the Wasserstein distance.

Statistical Model It is common to assume the bursts of photons regis-

tered on the detector as independent realizations of a random variable with

a density that is proportional to the density of markers in the probe (As-

pelmeier et al., 2015). As it is expected that the probe drifts during the

acquisition this density will vary over time. In particular, the locations reg-

istered at the beginning of the observation will follow a different distribution

than those observed at the end.
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Figure 3.1: Left: Aggregated samples of the first (first row) and the last
(second row) 50% of the observation time as heat maps of relative frequency
without correction for the drift of the probe. Magnifications of a small area
are shown to highlight the blurring of the picture. Right: Empirical distri-
bution function of a sample from the upper bound (tree approximation) of
the limiting distribution. The red dot (line) indicates the scaled thresholded
Wasserstein distance for t = 6/256.

Data and Results We consider an SMS image of a tubulin structure pre-

sented in Hartmann et al. (2014) to assess their drift correction method. This

image is recorded in 40.000 single frames over a total recording time of 10

minutes (i.e., 15 ms per frame). We compare the aggregated sample collected

during the first 50% (=̂ 20.000 frames) of the total observation time with the

aggregated sample obtained in the last 50% on a 256 × 256 grid for both

the original uncorrected values and for the values where the drift correction

of Hartmann et al. (2014) was applied. Heat maps of these four samples

are shown in the left hand side of Figure 3.1 (no correction) and Figure 3.2

(corrected), respectively.

The question we will address is: ”To what extend has the drift being prop-

erly removed by the drift correction?” From the application of the thresholded
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Figure 3.2: Left: Aggregated samples of the first (first row) and the last
(second row) 50% of the observation time as heat maps of relative frequency
with correction for the drift of the probe. Magnifications of a small area are
shown to highlight the drift correction of the picture. Right: Empirical dis-
tribution function of a sample from the upper bound (tree approximation) of
the limiting distribution. The red dot (line) indicates the scaled thresholded
Wasserstein distance after drift correction for t = 6/256. The difference
between the fist and the second 50% is no longer significant.
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Wasserstein distance for different thresholds we expect to obtain detailed un-

derstanding of which scales the drift has been removed. As Hartmann et al.

(2014) have corrected with a global drift function one might expect that on

small spatial scales not all effects have been removed.

We compute the thresholded Wasserstein distance W
(t)
1 between the two

pairs of samples as described in Section 3.1 with different thresholds t ∈
{2, 3, . . . , 14}/256. We compare these values with a sample from the stochas-

tic upper bound for the limiting distribution on regular grids obtained as de-

scribed in Section 3.2. This allows us to obtain a test for the null hypothesis

’no difference’ from Theorem 10. To visualize the outcomes of theses tests for

different thresholds t we have plotted the corresponding p-values in Figure

3.3. The red line indicates the magnitude of the drift over the total recording

time. As the magnitude is approximately 6/256, we plot in the right hand

side of Figure 3.1 and Figure 3.2 the empirical distribution functions of the

upper bound (3.3) and indicate the value of the test-statistic for t = 6/256

with a red dot for the data before the correction and after the correction,

respectively.

As shown in Figure 3.3 the differences caused by the drift of the probe

are recognized as highly statistically significant (p ≤ 0.05) for thresholds

larger than t = 4/256. After the drift correction method is applied, the

difference is no longer significant for thresholds smaller than t = 14/256.

The estimated shift during the first and the second 50% of the observations

is three pixels in x-direction and one pixel in y-direction. That shows that

the significant difference that is detected when comparing the images without

drift correction for t ∈ {5, 6, 7, 8, 9, 10}/256 is caused in fact by the drift. The

fact that there is still a significant difference for large thresholds (t ≥ 14) in

the corrected pictures suggests further intrinsic and local inhomogeneous

motion of the specimen or non-polynomial drift that is not captured by the

drift model and bleaching effects of fluorescent markers.

In summary, this example demonstrates that our strategy of combining

a lower bound for the Wasserstein distance with a stochastic bound of the

limiting distribution is capable of detecting subtle differences in a large N

setting.
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Figure 3.3: P-values for the null hypothesis ’no difference’ for different thresh-
olds t before and after the drift correction. The red line indicates the mag-
nitude of the total dirft.



Chapter 4

Probabilistic approximation via

exact solvers

This chapter proposes a scheme which utilizes an arbitrary exact solver for

the Wasserstein (or any other transport) distance in order to obtain a fast

probabilistic approximation.

The first section presents the algorithm. The second section gives theo-

retical results on the approximation quality, in particular, assessing the de-

pendence of the quality on the size of the underlying space. The third section

contains numerical experiments to demonstrate the practical performance of

the algorithm.

The chapter is concluded with a discussion section and a section contain-

ing the proofs of the presented results.

4.1 Problem and algorithm

Although our meta-algorithm is applicable to any optimal transport distance

between probability measures, the theory concerns the Wasserstein distance.

The idea of the proposed algorithm is to replace a probability measure r ∈
P(X ) with the empirical measure r̂S based on i.i.d. picks X1, . . . , XS ∼ r for

some natural number S. Likewise, replace s with ŝS. Then, use Wp(r̂S, ŝS)

as a random approximation of Wp(r, s).

57
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Algorithm 1 Statistical approximation of Wp(r, s)

1: Input: Probability measures r, s ∈ PX , sample size S and number of

repetitions B

2: for i = 1 . . . B do

3: Sample i.i.d. X1, . . . , XS ∼ r and Y1, . . . , YS ∼ s
4: r̂S,x ← # {k : Xk = x} /S for all x ∈ X
5: ŝS,x ← # {k : Yk = x} /S for all x ∈ X
6: Compute Ŵ (i) ← Wp(r̂S, ŝS)

7: end for

8: Return: Ŵ
(S)
p (r, s)← B−1

∑B
i=1 Ŵ

(i)

In each of the B iterations in Algorithm 1, the Wasserstein distance be-

tween two sets of S point masses has to be computed. For the exact Wasser-

stein distance, two measures on N points need to be compared. If we take

the super-cubic runtime of the auction algorithm as a basis, Algorithm 1 has

runtime

O(BS3 logS)

compared to O(N3 logN) for the exact distance. This means a dramatic

reduction of computation time if S is small compared to N .

The application of Algorithm 1 to other optimal transport distances is

straightforward. One can simply replace Wp(r̂S, ŝS) with the desired dis-

tance, e.g. the Sinkhorn distance ((Cuturi, 2013), see also our numerical

experiments below).

4.2 Theoretical results

In this chapter, we give general non-asymptotic guarantees for the quality

of the approximation Ŵ
(S)
p (r, s). To this end, we first give non-asymptotic

bounds for the expected L1-error made by the approximation. That is, we

look for bounds of the form

(4.1) E
[∣∣∣Ŵ (S)

p (r, s)−Wp(r, s)
∣∣∣] ≤ g(S,X , p),



4.2. THEORETICAL RESULTS 59

for some function g. We are particularly interested in the dependence of the

bound on the size N of the space X and on the sample size S as this deter-

mines how the number of sampling points S (and hence the computational

burden of Algorithm 1 must be increased for increasing problem size N in

order to retain (on average) a certain approximation quality.

In a second step, in Subsection 4.2.2 we use bounds of the form (4.1)

to obtain deviation inequalities for Ŵ (S)(r, s) via concentration of measure

techniques.

Comparison with results for general measures The question of the

convergence of empirical measures to the true measure in expected Wasser-

stein distance has been considered in detail by Boissard and Gouic (2014)

and Fournier and Guillin (2014). The case of the underlying measures being

different (that is, the convergence of EWp(r̂S, ŝS) to Wp(r, s) when r 6= s)

has not been considered to the best of our knowledge. Theorem 11 is very

similar to the main result of Boissard and Gouic (2014). However, we give

a result here, which is explicitly tailored to finite spaces and makes explicit

the dependence of the constants on the size N of the underlying space X .

In fact, when we consider finite spaces X which are subsets of RD later in

Theorem 13, we will see that in contrast to the results of Boissard and Gouic

(2014), the rate of convergence (in S) does not change when the dimension

gets large, but rather the dependence of the constants on N changes. This

is a valuable insight as our main concern here is how the subsample size S

(driving the computational cost) must be chosen when N grows in order to

retain a certain approximation quality.

4.2.1 Expected absolute error

For δ > 0 the covering number N (X , δ) of X is defined as the minimal

number of closed balls with radius δ and center in X that is needed to cover

all of X . Note that in contrast to continuous spaces, N (X , δ) is bounded by

N for all δ > 0. With this, we have the following
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Theorem 11. Let r̂S be the empirical measure obtained from i.i.d. samples

X1, . . . , XS ∼ r, then

(4.2) E
[
W p
p (r̂S, r)

]
≤ Eq/

√
S

for every 2 ≤ q ∈ N and

Eq := Eq(X , p)

:= 2p−1q2p( diam(X ))p

(
q−(lmax+1)p

√
N +

lmax∑
l=0

q−lp
√
N (X , q−l diam(X ))

)
(4.3)

with lmax ∈ N a parameter that can be chosen freely to minimize the upper

bound.

Based on Theorem 11, we can formulate a bound for the mean approxi-

mation of Algorithm 1.

Theorem 12. If r 6= s and Ŵ
(S)
p (r, s) is obtained from Algorithm 1 then

for every natural q ≥ 2

(4.4) E
[∣∣∣Ŵ (S)

p (r, s)−Wp(r, s)
∣∣∣] ≤ 2E1/p

q S−1/(2p).

Note that the upper bound in Theorem 12 behaves as O(1/S1/(2p)) for

large S, which does not reflect the
√
n scaling rate under the alternative in

the distributional limits of Theorem 1. This issue is discussed in more detail

in Section 4.4.

Regular Grids While the constant Eq in Theorem 11 may be difficult to

compute or estimate in general, we can give explicit bounds in the case when

X is a finite set of points in Euclidean space. They exhibit the dependence

of the approximation error on the size of the space N .

In particular, it comprises the case when the measures represent images

(two- or more dimensional).
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Theorem 13. Let X ⊂ [0, L]D a subset of Euclidean space with L > 0 and

let the metric d on X be the usual Euclidean metric. Then,

Eq ≤ 2pq2p+2( diam(X ))p
(

4D

diam(X )

)D/2
CD,p(N)

where

CD,p(N) =


1 if D/2− p < 0,

1 + 1
p

logqN if D/2− p = 0,

1 +N
1
2

(1− 2p
D

) if D/2− p > 0.

This result gives control over the error made by the approximation Ŵ
(S)
p (r, s)

of Wp(r, s). Of particular interest is the behavior of this error for high res-

olution images, that is N → ∞. We distinguish three cases. In the low-

dimensional case p′ = D/2− p < 0, we have CD,p(N) = O(1). Hence, in this

case, the approximation error isO(S−
1
2p ) independent of the size of the image.

In the critical case p′ = 0 the approximation error is no longer independent

of N but is of order O
(

log(N)S−
1
2p

)
. Finally, in the high-dimensional case

the dependence on N becomes stronger with an approximation error of order

O

(N (1− 2p
D

)

S

) 1
2p

 .

In all cases one can choose S = o(N) while still guaranteeing vanishing

approximation error for N → ∞. In practice, this means that for large

images, S can typically be chosen (much) smaller than N to obtain a good

approximation of the Wasserstein distance.

4.2.2 Concentration bounds

Based on the bounds for the expected approximation error we now give non-

asymptotic guarantees for the approximation error in the form of deviation

bounds using standard concentration of measure techniques.
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Theorem 14. If Ŵ
(S)
p (r, s) is obtained from Algorithm 1, then for every

z ≥ 0

(4.5) P

[
|Ŵ (S)

p (r, s)−Wp(r, s)| ≥ z +
2E1/p

q

S1/2p

]
≤ 2 exp

(
− SBz2p

8 diam(X )2p

)
.

Note that while the mean approximation quality 2E1/p
q /S1/(2p) only de-

pends on the subsample size S, the stochastic variability (see the right hand

side term in (4.5)) depends on the product SB. This means that the repe-

tition number B cannot decrease the expected error but it can decrease the

probability of large deviations from it.

4.3 Simulations

In this section we report the performance of Algorithm 1 in numerical exper-

iments.

4.3.1 Setup

We compute optimal transport distances exactly, that is, solving the full

problem, as well as approximately with Algorithm 1 for all possible combi-

nations of the following parameters:

• three different solvers computing the Wasserstein distance. These are 1)

CPLEX 1 using the network solver; 2) the transportation simplex and

the 3) shortlist method, both are described in Gottschlich and Schuh-

macher (2014) and implemented in the R-package transport (Schuh-

macher et al., 2014), which we use.

Additionally, we compute the Sinkhorn distance (Cuturi, 2013), that is

an entropically regularized optimal transport distance. For this we use

the implementation in the R-package barycenter (Klatt, 2016) of the

algorithm presented in Cuturi (2013).

1www.ibm.com/software/commerce/optimization/cplex-optimizer/

www.ibm.com/software/commerce/optimization/cplex-optimizer/
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• nine pairs of 2-D images (using the normalized grayscale values as the

probability mass). The images are taken from the benchmark database

DOTmark (Schrieber et al., 2016) and consist of one pair of images from

each of the three classes “White Noise”, “Cauchy Density” and “Classic

Images”, where each pair is considered in the resolutions 32×32, 64×64

and 128× 128.

• the ground distance (that is, d in our notation) is always the euclidean

distance between pixels in the image, where the pixels are assumed to

be equally spaced in the unit square [0, 1]2. For the cost exponent we

take p ∈ {1, 2, 3}.

For the approximate computation with Algorithm 1 we use all combinations

of the following parameters:

• the subsample size S runs through the values {100, 500, 1000, 2000, 4000}.

• the number of repetitions B runs through the values {1, 2, 5}.

Each approximate combination was repeated 5 times for every possible com-

bination of the above parameters. All calculations were run on one core of

a Linux server (AMD Opteron Processor 6140 from 2011 with 2.6 GHz) and

the result as well as the computation time were recorded.

4.3.2 Results

Overall performance In order to assess the performance of the algorithm

and relate the approximation quality to the reduction in computation time,

we report the mean absolute error made by the Algorithm 1 and the ratio of

the runtime of the approximation and the runtime for the exact computation

on the same instance.

Figure 4.1 plots the relative errors against the relative runtimes, averaging

over all different solvers, image classes and choices of parameters S and B.

Figure 4.2 shows the same results but separated for each parameter pair S,B,

in order to assess their influence.
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Figure 4.1: Relative error and relative runtime compared to the exact compu-
tation of the proposed scheme. Optimal transport distances and its approx-
imations were computed between images of different sizes (32× 32, 64× 64,
128× 128). Each point represents a specific parameter choice in the scheme
and is a mean over different problem instances, solvers and cost exponents.
For the relative runtimes the geometric mean is reported. For details on the
parameters see Figure 4.2.

32x32 64x64 128x128

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

1%

10%

100%

10−5 10−4 10−3 10−2 10−1 100 10−5 10−4 10−3 10−2 10−1 100 10−5 10−4 10−3 10−2 10−1 100

Relative Runtime

R
el

at
iv

e 
E

rr
or B ● 1 2 5

S ●

●

●

●

●100
500

1000
2000

4000

Figure 4.2: Relative errors vs. relative runtimes relative to the exact com-
putation for different parameters S and B and different problem sizes. Both
axes are on log-scale.
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• The main driving factor of the approximation quality and the reduc-

tion in runtime is the subsample size S. Relatively low subsample sizes

S yield good approximations and (depending on the resolution) con-

siderable reductions in computation time. For example, S = 4000 on

a 128 × 128 image yields (on average) an approximation error of 3%

while reducing the computation time by a factor of 100.

• The repetition number B has hardly any effect on the approximation

quality, while increasing the computation time of the algorithm linearly.

• The resolution has little effect on the approximation quality, as sug-

gested by the theoretical bounds in Section 4.1. However, it greatly

influences the relative runtime, as the runtime of the exact algorithms

scales with the resolution while the runtime of Algorithm 1 only scales

in S and B.

Figure 4.3 shows a scatter plot of the relative error of the approximation

as S varies. Each point in the scatter plot corresponds to a different set

of parameters or a different trial. The experiments are distinguished by

the image class and the target quantity (Wasserstein or Sinkhorn distance),

respectively.

• The approximation error appears to decay polynomially in S in all

cases.

• The class of images considered has a considerable influence on the ap-

proximation quality. Specifically, the Algorithm 1 performs best for

images generated from a Cauchy density, somewhat worse but still

comparable for classic images and much worse for white noise images.

This could lead to the interpretation that the proposed approximation

performs better, the more structure the images have.

• The algorithm performs equally well for the Wasserstein and the Sinkhorn

distance, with the latter showing a marginally but consistently better

approximation error.
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Figure 4.3: A comparison of the relative errors for different image classes
(left) and between the approximations of the Wasserstein and Sinkhorn dis-
tances (right).

Figure 4.4 shows the signed relative error of the approximation relative to

S. Its distribution is strongly skewed for smaller values of S while this skew

vanishes almost completely for S ≥ 2000. This means that the approximation

generated by Algorithm 1 will often overestimate the true transportation

distance when S is small.

4.4 Discussion

As our simulations demonstrate, subsampling is a simple, yet powerful tool

to obtain good approximations to Wasserstein distances with only a small

fraction of the runtime and memory required for exact computation. It is

especially remarkable that for a fixed amount of subsampled points, and

therefore a fixed amount of time and memory, the relative error is indepen-

dent of the resolution of the images. Based on these results, we expect the

subsampling algorithm to return similarly precise results with even higher

resolutions of the images it is applied to, while the effort to obtain them

stays the same.

The numerical results (Figure 4.2) show a inverse polynomial decrease of
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Figure 4.4: The signed relative approximation error(
Ŵ

(S)
p (r, s)−Wp(r, s)

)
/Wp(r, s) showing that the approximation over-

estimates the exact distance for small S but the bias vanishes for larger
S.

the approximation error with S, in accordance with the theoretical results.

As we see little dependence on the cost exponent p we suspect that the rate

O(S−1/2p) might be improved upon. In fact, recent work on asymptotics of

empirical Wasserstein distances would suggest an O(S−1/2) rate (Sommerfeld

and Munk, 2016).

When applying the algorithm, it is important to note that the quality of

the returned values depend on the structure of the data. In very irregular

instances it might be necessary to increase the sample size in order to obtain

similarly precise results, while in regular structures a small sample size might

suffice.

Our scheme allows the parameters to be easily tuned towards faster run-

times or more precise results, as desired. Increases and decreases of the

sample size S are recommended to influence the performance in either direc-

tion, while the parameter B should only be increased, if a particularly low

variability of the estimate is required or if the repetitions can be computed in

parallel. Otherwise, the higher runtime should be spent with a higher sample

size (compare Figure 4.2).
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The scheme presented here can readily be applied to other optimal trans-

port distances, as long as an exact solver is available, as we demonstrated with

the Sinkhorn distance (Cuturi, 2013). Empirically, we can report good perfor-

mance in this case, suggesting that entropically regularized distances might

be even more amenable to subsampling approximation than the Wasserstein

distance itself. Extending the theoretical results to this case would require an

analysis of the mean speed of convergence of empirical Sinkhorn distances.

All in all, subsampling proves to be a very powerful and versatile tool

that can be used with virtually any optimal transport solver as back-end

and has both theoretical approximation error guarantees, and a convincing

performance in practice.

4.5 Proofs

4.5.1 Proof of Theorem 11

Proof strategy The method used in this proof has been employed before

to bound the mean rate of convergence of the empirical Wasserstein distance

(in Boissard and Gouic (2014); Fournier and Guillin (2014)). In essence, it

constructs on the space X a tree and bounds the Wasserstein distance with

some transport metric in the tree, which can either be computed explicitly

or bounded easily.

More precisely, in our case of finite spaces, let T be a spanning tree of X
and dT the metric on X defined by path length in the tree. Clearly, the tree

metric dT dominates the original metric on X and henceWp(r, s) ≤ W T
p (r, s)

for all r, s ∈ P(X ), where W T
p denotes the Wasserstein distance evaluated

with respect to the tree metric. The goal is now to bound E
[
(W T

p (r̂S, r))p
]
.

Building the tree We build a q-ary tree on X . In the following we set

lmax = dlogqNe. For l ∈ {0, . . . , lmax} we let Ql ⊂ X be the center points of

a q−l diam(X ) covering of X , that is⋃
x∈Ql

B(x, q−l diam(X )) = X , and |Ql| = N (X , q−l diam(X )),
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where B(x, ε) = {x′ ∈ X : d(x, x′) ≤ ε}. Additionally set Qlmax+1 = X .

Now define Q̃l = Ql×{l} and we will build a tree structure on ∪lmax+1
l=0 Q̃l.

Since we must have |Q̃0| = 1 we can take this element as the root. Assume

now that the tree already contains all elements of ∪lj=0Q̃j Then, we add to

the tree all elements of Q̃l+1 by choosing for (x, l + 1) ∈ Q̃l+1 (exactly one)

parent element (x′, l) ∈ Q̃l such that d(x, x′) ≤ q−ldiam(X ). This is possible,

since Ql is a q−l diam(X ) covering of X . We set the length of the connecting

edge to q−l diam(X ).

In this fashion we obtain a spanning tree T of ∪lmax+1
l=0 Q̃l and a partition

{Q̃l}l=0,...,lmax+1. About this tree we know that

• it is in fact a tree. First, it is connected, because the construction

starts with one connected component and in every subsequent step all

additional vertices are connected to it. Second, it contains no cycles.

To see this let ((x1, l1), . . . , (xK , lK)) a cycle in T . Without loss of

generality we may assume l1 = min{l1, . . . , lK}. Then, (x1, l1) must

have at least two edges connecting it to vertices in a Q̃l with l ≥ l1

which is impossible by construction.

• |Q̃l| = N (X , q−l diam(X )) for 0 ≤ l ≤ lmax.

• d(x, par(x)) = q−l+1 diam(X ) whenever x ∈ Q̃l.

• d(x, x′) ≤ dT ((x, lmax + 1), (x′, lmax + 1)).

Since the leafs of T can be identified with X a measure r ∈ P(X ) canonically

defines a probability measure rT ∈ P(T ) for which rT(x,lmax+1) = rx and

rT(x,l) = 0 for l ≤ lmax. In slight abuse of notation we will denote the measure

rT simply by r. With this notation, we have Wp(r, s) ≤ W T
p (r, s) for all

r, s ∈ P(X ).

Wasserstein distance on trees Note also that T is ultra-metric that

is, all its leaves are at the same distance from the root. For trees of this

type, we can define a height function h : X → [0,∞) such that h(x) = 0 if

x ∈ X is a leaf and h(par(x))−h(x) = dT (x, par(x)) for all x ∈ X \ root(X ).
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There is an explicit formula for the Wasserstein distance on ultra-metric trees

(Kloeckner, 2013). Indeed, if r, s ∈ P(X ) then

(4.6) (W T
p (r, s))p = 2p−1

∑
x∈X

(h(par(x))p − h(x)p) |(ST r)x − (ST s)x| .

with the operator ST as defined in (2.11). For the tree T constructed above

and x ∈ Q̃l with l = 0, . . . , lmax we have

h(x) =
lmax∑
j=l

q−j diam(X ).

and therefore

diam(X )q−l ≤ h(x) ≤ 2 diam(X )q−l.

This yields

(h(par(x))p − (h(x))p) ≤ ( diam(X ))pq−(l−2)p.

The formula (4.6) thus yields

E
[
W p
p (r̂S, r)

]
≤ 2p−1q2p( diam(X ))p

lmax+1∑
l=0

q−lp
∑
x∈Q̃l

E|(ST r̂S)x − (ST r)x|.

Since (ST r̂S)x is the mean of S i.i.d. Bernoulli variables with expectation

(ST r)x we have

∑
x∈Q̃l

E|(ST r̂S)x − (ST r)x| ≤
∑
x∈Q̃l

√
(ST r)x(1− (ST r)x)

S

≤ 1√
S

∑
x∈Q̃l

(ST r)x

1/2∑
x∈Q̃l

(1− (ST r)x)

1/2

≤
√
|Q̃l|/S,
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using Hölder’s inequality and the fact that
∑

x∈Q̃l
(ST r)x = 1 for all l =

0, . . . , lmax + 1.

This finally yields

E
[
W p
p (r̂S, r)

]
≤ 2p−1q2p( diam(X ))p

(
q−(lmax+1)p

√
N +

lmax∑
l=0

q−lp
√
N (X , q−l diam(X ))

)
/
√
S

≤ Eq(X , p)/
√
S,

using in the last inequality that lmax = dlogqNe.

4.5.2 Proof of Theorem 12

The statement of the theorem is an immediate consequence of the reverse

triangle inequality for the Wasserstein distance, Jensen’s inequality and The-

orem 11,

E
[∣∣∣Ŵ (S)

p (r, s)−Wp(r, s)
∣∣∣] ≤ E [Wp(r̂S, r) +Wp(ŝS, s)]

≤ E
[
W p
p (r̂S, r)

]1/p
+ E

[
W p
p (ŝS, s)

]1/p
≤ 2E1/p

q /S1/(2p).

4.5.3 Proof of Theorem 13

We want to use (4.3). First, note that (Shalev-Shwartz and Ben-David, 2014,

Example 27.1)

N ([0, L]D, ε) ≤ 2DDDε−D.

Therefore,

N (X , q−l diam(X )) ≤ N ([0, L]D, q−l diam(X )/2) ≤
(

4D

diam(X )

)D
qlD.
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This yields

lmax∑
l=0

q−lp
√
N (X , q−l diam(X ))

≤
(

4D

diam(X )

)D/2 lmax∑
l=0

ql(D/2−p)

≤ q

(
4D

diam(X )

)D/2
×

1 + qlmax(D/2−p) if D/2− p 6= 0,

lmax if D/2− p = 0.

Setting lmax = dβ logqNe for some β > 0 to be specified yields (using (4.3))

Eq ≤ 2p−1q2p+2( diam(X ))p
(

4D

diam(X )

)D/2
×

1 +N−βp+1/2 +Nβ(D/2−p) if D/2− p 6= 0

1 +N−βp+1/2 + β logqN if D/2− p = 0.

If D/2 − p < 0 we can choose β large enough such that 1 + N−βp+1/2 +

Nβ(D/2−p) ≤ 2. If D/2− p > 0 we choose β = 1/D such that 1 +N−βp+1/2 +

Nβ(D/2−p) ≤ 1 +N
1
2

(1−2p/D). Finally, for D/2− p = 0 we set β = 1/(2p) such

that 1 +N−βp+1/2 + β logqN ≤ 2 + 1
p

logqN . This concludes the proof.

4.5.4 Proof of Theorem 14

We introduce some additional notation. For (x, y), (x′, y′) ∈ X 2 we set

dX 2((x, y), (x′, y′)) = {dp(x, x′) + dp(y, y′)}1/p

We further define the function Z : (X 2)SB → R via

((x11, y11), . . . , (xSB, ySB))

7→ 1

B

B∑
i=1

[
Wp

(
1

S

S∑
j=1

δxji ,
1

S

S∑
j=1

δyji

)
−Wp(r, s)

]
.
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Since W p
p (·, ·) is jointly convex (Villani, 2008, Thm.4.8), we have

Wp

(
1

S

S∑
j=1

δxj ,
1

S

S∑
j=1

δyj

)
≤

{
1

S

S∑
j=1

W p
p (δxj , δyj)

}1/p

= S−1/p

{
S∑
j=1

dp(xj, yj)

}1/p

.

Our first goal is to show that Z is Lipschitz continuous. To this end, let

((x11, y11), . . . , (xSB, ySB)) and ((x′11, y
′
11), . . . , (x′SB, y

′
SB)) arbitrary elements

of (X 2)SB. Then, using the reverse triangle inequality and the relations above

|Z((x11, y11), . . . , (xSB, ySB))− Z((x′11, y
′
11), . . . , (x′SB, y

′
SB))|

≤ 1

B

B∑
i=1

∣∣∣∣Wp

(
1

S

S∑
j=1

δxji ,
1

S

S∑
j=1

δyji

)
−Wp

(
1

S

S∑
j=1

δx′ji ,
1

S

S∑
j=1

δy′ji

)∣∣∣∣
≤ 1

B

B∑
i=1

[
Wp

(
1

S

S∑
j=1

δxji ,
1

S

S∑
j=1

δx′ji

)
+Wp

(
1

S

S∑
j=1

δyji ,
1

S

S∑
j=1

δy′ji

)]

≤ S−1/p

B

B∑
i=1

[{ S∑
j=1

dp(xji, x
′
ji)

}1/p

+

{
S∑
j=1

dp(yji, y
′
ji)

}1/p ]

≤ S−1/p

B
(2B)

p−1
p

{∑
i,j

dpX 2((xji, yji), (x
′
ji, y

′
ji))

}1/p

Hence, Z/2 is Lipschitz continuous with constant (SB)−1/p relative to the

p-metric generated by dX 2 on (X 2)SB.

For r̃ ∈ P(X 2) let H(· | r̃) denote the relative entropy with respect to

r̃. Since X 2 has dX 2-diameter 21/p diam(X ), we have by (Bolley and Villani,

2005, Particular case 5) that for every s̃

(4.7) Wp(r̃, s̃) ≤
(
8 diam(X )2pH(r̃ | s̃)

)1/2p
.

If X11, . . . , XSB ∼ r and Y11, . . . , YSB ∼ s are all independent, we have

Z((X11, Y11), . . . , (XSB, YSB)) ∼ Ŵ (S)
p (r, s)−Wp(r, s).
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The Lipschitz continuity of Z and the transportation inequality (4.7) yields

a concentration result for this random variable. In fact, by (Gozlan and

Léonard, 2007, Lemma 6) we have

P

[
Ŵ (S)
p (r, s)−Wp(r, s) ≥ E

[
Ŵ (S)
p (r, s)−Wp(r, s)

]
+ z

]
≤ exp

(
−SBz2p

8 diam(X )2p

)
.

for all z ≥ 0. Note that −Z is Lipschitz continuous as well and hence, by

the union bound,

P

[ ∣∣∣Ŵ (S)
p (r, s)−Wp(r, s)

∣∣∣ ≥ E

[∣∣∣Ŵ (S)
p (r, s)−Wp(r, s)

∣∣∣ ]+ z

]
≤ 2 exp

(
−SBz2p

8 diam(X )2p

)
.

Now, with the reverse triangle inequality, Jensen’s inequality and Theorem

11,

E
[∣∣∣Ŵ (S)

p (r, s)−Wp(r, s)
∣∣∣] ≤ E [Wp(r̂S, r) +Wp(ŝS, s)]

E
[
W p
p (r̂S, r)

]1/p
+
[
W p
p (ŝS, s)

]1/p
≤ 2E1/p

q /S1/(2p).

Together with the last concentration inequality above, this concludes the

proof of Theorem 14.
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