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Preface

Hidden Markov models provide a powerful class of regression models in situations, where the

dynamics of a Markov process cannot be observed directly. Its area of applications range from

economics, over weather forecasting to biophysiological experiments. One particular example

is the study of ion channel gating under a constant environment. In the parametric case, the

estimation of the involved parameters is a classical problem in time series analysis and widely

investigated.

Ion channel recordings under a changing environment are hardly analyzed and are the main

cause for the new model class we introduce. This thesis mainly concerns hidden Markov models

with a homogeneous hidden Markov chain and an inhomogeneous observation law, varying

in time, but converging to a distribution. The main contribution of this thesis concerns the

asymptotic behavior of a quasi-maximum likelihood estimator. In particular, strong consistency

and asymptotic normality of this estimator are proven. To this end, we combine asymptotic results

of maximum likelihood estimation in homogeneous hidden Markov models with ergodic theory

in asymptotic mean stationary processes. The quasi-maximum likelihood estimator is obtained by

maximizing the likelihood of the homogeneous process, which can be seen as the limiting process

of the observations. It is remarkable that the estimator is computed without any knowledge of the

inhomogeneity of the observation law. Therefore, the estimator can be computed straightforward.

The model and general methodology are described in Section 2. There we also state the main

results of this thesis concerning consistency and asymptotic normality of the quasi-maximum

likelihood estimator. Applications of our results can be found in Section 3. We apply the results

to a Poisson and a linear Gaussian model. The main steps of the proofs are given in Section

4, whereas technical proofs can be found in the Appendix A. In Section 5 we describe the

implementation of likelihood based estimators in hidden Markov models. Especially, we treat the

case, when the data is filtered. Simulations and application to ion channel recordings can be found

in Section 6. We show statistically significant differences for the interaction of the antibiotic

ampicillin with the wild type and with the mutant G103K of the outer membrane channel PorB.

These results improve the understanding of potential sources for bacterial resistance and might

help to develop new drugs against it to alleviate the severe consequences of multidrug-resistant

bacteria.
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Section 1

Introduction

A (homogeneous) hidden Markov model (HMM) is a bivariate stochastic process (Xn,Yn)n∈N.

Here (Xn)n∈N is a Markov chain with state space S , and (Yn)n∈N is, conditioned on (Xn)n∈N, an

independent sequence of random variables mapping to a space G, such that the distribution of

Yn depends only on Xn. In a HMM, the Markov chain (Xn)n∈N is not observable (hidden), but

observations of (Yn)n∈N are available. HMMs are widely used in different applications of pattern

recognition including speech processing, neurophysiology, biology, economy and many more.

For readers not familiar with finite state Markov chains, we refer to Appendix B.2 for a short

introduction.

In this thesis we model ion channel recordings with a hidden Markov model. Since ion

channels are responsible for the flow of ions across cell membranes, it is of particular interest to

understand under which circumstances the channel opens and closes. HMMs are with justification

well established for analyzing ion channel recordings under stable exogenous conditions, see Ball

and Rice (1992), Venkataramanan et al. (2000), Qin et al. (2000), Siekmann et al. (2011) among

many others. We stress that for this purpose, there also exist many non-parametric methods, for

example Basseville and Benveniste (1983), Colquhoun and Hawkes (1987), Sakmann and Neher

(2010), Hotz et al. (2013), Pein et al. (2017b). It is unknown whether the gating behavior of ion

channels remains the same if the environment is changing in time, other ion channels do not

gate in a stable environment at all, see Yellen (1982), Demo and Yellen (1992), Yellen (1998)

and del Camino et al. (2000). In order to stimulate the gating mechanism, experiments with

varying voltage have been carried out. Figure 1.1 shows a representative recording of current flow

measured under a constantly increasing voltage and a short blockage event of an ion channel. In

the case where the applied voltage is linearly increasing Ohm’s law suggests that the measured

current increases also linearly. Therefore, the quantity of interest is the conductivity of the ion

channel. Figure 1.2 shows the conductance level recordings, obtained by dividing the current by

the applied voltage.

A natural way to model the ion channel conductance level with a HMM is to assume that

the channel attains K states, K ∈ N. Each state defines whether the channel is closed, open,

semi-closed etc. and the corresponding conductance level. Further, it is assumed that the change

between the states behaves Markovian. The measurements are a noisy version of each state caused
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Figure 1.1: Representative current flow of PorB mutant driven by a voltage ramp from 30mV-
90mV (top) and blockage of a PorB mutant protein caused by Ampicillin (bottom).

by errors due to the measuring procedure. From a mathematical point of view the quantities of

interest are the corresponding conductance levels, the variance of the noise and the transition rates

between the states. In Figure 1.2 it is easily seen that the variance of the measurements changes

in time and therefore the conductance levels can not be modeled with a time-homogeneous HMM,

rather a time-inhomogeneous modeling seems to be necessary.
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Figure 1.2: Conductivity of a PorB mutant protein. The variance of the measurements decreases
in time.

The conditional independence implies that the law of a HMM is determined if the distribution

of the underlying Markov chain (Xn)n∈N and the distribution of Yn conditioned on Xn are given

for all n ∈ N. In parametric HMMs these distributions are determined by a parameter θ ∈ Θ,

where Θ ⊂ Rd, d ∈ N. In classical HMMs the stochastic process is assumed to be homogeneous,



3 SECTION 1. INTRODUCTION

i.e., the conditional distributions are equal for all n and it is assumed that the observations are

driven by the unknown “true” parameter θ∗ ∈ Θ.

The problem of parameter estimation in HMMs has a long history in statistics and related

fields, dating back to the 1960’s, see Baum and Petrie (1966) and Baum and Eagon (1967). For

a profound introduction we refer the reader to the books of Cappé et al. (2007), Zucchini and

Macdonald (2009) and Elliott et al. (2008).

In contrast to the classical setting, we consider an inhomogeneous HMM, namely a bivariate

stochastic process (Xn,Zn)n∈N, where conditioned on (Xn)n∈N it is assumed that (Zn)n∈N is a

sequence of independent random variables on the space G, such that the distribution of Zn

depends not only on the value of Xn, but also changes in n. The additional dependence on n

implies that the Markov chain (Xn,Zn)n∈N is inhomogeneous.

This motivates us to introduce an extended HMM, a trivariate stochastic process (Xn,Yn,Zn)n∈N

with the following properties. The sequence (Xn,Yn)n∈N is a homogeneous HMM and (Xn,Zn)n∈N

is an inhomogeneous HMM, such that, given Xn, the distribution of Zn is getting “closer” to the

distribution of Yn for increasing n. A crucial point here is that (Zn)n∈N is observable whereas

(Yn)n∈N is not. However, Zn can be considered as “close” to Yn.

We illustrate this by modeling the conductance level of ion channel data with varying voltage:

Here S = {0, 1}, G = R, µ = (µ(1), µ(2)) ∈ R2 and σ = (σ(1), σ(2)) ∈ (0,∞)2. Assume that (Vn)n∈N

is a real-valued sequence of iid random variables with V1 ∼ N(0, 1). Further, let (εn)n∈N be an

independent sequence of random variables with εn ∼ N(0, β2
n), where (β2

n)n∈N ⊂ (0,∞) with

limn→∞ β
2
n = 0. Define

Yn := µ(Xn) + σ(Xn)Vn,

Zn := Yn + εn,

where (Zn)n∈N is considered as the observations of the channel’s conductivity. This extended

HMM describes the observed conductance level of ion channel recordings with linearly increasing

voltage. Intuitively, here one can already see that for sufficiently large n the influence of εn

should be negligible and observations of Zn are “close” to Yn. Unfortunately none of the

theoretic justifications provided in the homogeneous HMM setting are applicable because of the

inhomogeneous nature of the noise.

1.1 Main results

The main results of this thesis concern asymptotic properties of the maximum likelihood estimator

(MLE) in the described model. Assume that we have a parametrized extended HMM with compact

parameter space Θ ⊆ Rd. For θ ∈ Θ let qνθ be the likelihood function of the homogeneous HMM

and pνθ be the likelihood function of the inhomogeneous HMM. Here ν is the initial distribution of

the underlying Markov chain. Given observations z1, . . . , zn of Z1, . . . ,Zn the goal is to estimate
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the “true” parameter θ∗ ∈ Θ. The maximum likelihood estimator θML
ν,n , given by

θML
ν,n = argmax

θ∈Θ
log pνθ(z1, . . . , zn),

is the canonical estimator for approaching this problem for the homogeneous case, see Baum and

Petrie (1966), Leroux (1992), Douc et al. (2004), Douc et al. (2011). However, the computation

of θML
ν,n requires specific knowledge of the inhomogeneity, in particular of the time-dependent

component of the noise. That is the reason for us to introduce a quasi-maximum likelihood

estimator, given by

θQML
ν,n = argmax

θ∈Θ
log qνθ(z1, . . . , zn).

This is not a maximum likelihood estimator, since the observations are generated from the

inhomogeneous model, whereas qνθ is the likelihood function of the homogeneous model.

Roughly, we assume the following:

• The transition matrix of the hidden finite state space Markov chain is irreducible and

aperiodic and satisfies a continuity condition w.r.t. the parameters (see (P1) and (P1’)).

• The observable and non-observable random variables (Zn)n∈N and (Yn)n∈N are “close” to

each other in a suitable sense (see (C1) – (C3)).

• The homogeneous HMM is well behaving, such that observations of (Yn)n∈N would lead to

a consistent estimator (see (H1) – (H4)).

• The conditional density of Yn given Xn is continuously differentiable and integrable w.r.t.

to the density of Zn given Xn (see (CLT1) and (UC1)).

In particular, under the suitable closeness of Zn to Yn the estimator θQML
ν,n provides, at least

intuitively, a reasonable way for approximating the true parameter θ∗. If the model satisfies the

conditions, stated precisely in Section 2.2, then Theorem 2.6, states that almost surely

θQML
ν,n → θ∗

as n→ ∞. Hence, the quasi-maximum likelihood estimator is consistent. As a consequence we

obtain under an additional assumption that also θML
ν,n → θ∗ almost surely as n→ ∞.

The asymptotic normality of θML
ν,n is an application of Theorem 1 in Jensen (2011a) and stated

in Corollary 2.11. Additionally, we find that θQML
ν,n is asymptotically normally distributed, see

Theorem 2.12. This theorem requires the additional condition (2.16), which in general is difficult

to verify.
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1.2 Related work

Maximum likelihood estimation in classical HMMs and related model classes has a long history

in statistics and goes back to Baum and Petrie (1966) and the extensions in Baum and Eagon

(1967) and Baum et al. (1970). These authors considered finite state spaces for the Markov

chain and finite observation spaces as well. They proved strong consistency of the MLE under

the additional assumption that all transition probabilities are greater than zero. Leroux (1992)

generalized the observation state spaces and relaxed the assumption on the transition matrix for

the Markov chain to irreducibility. These consistency results uses ergodic theory for stationary

processes which is not applicable in our setting since the process we observe is not stationary.

For the first time asymptotic normality of the MLE was addressed by Bickel et al. (1998) who put

again the positivity assumption on the transition matrix. Asymptotic properties in more general

HMMs have subsequently been investigated in a series of contributions, see Gland and Mevel

(2000a), Gland and Mevel (2000b), Douc and Matias (2001), Douc et al. (2004) and Genon-

Catalot and Laredo (2006). They used similar ideas and assumed rather restrictive assumptions.

The principal idea in proving asymptotic normality uses a central limit theorem for martingales,

which is not applicable in the inhomogeneous case.

A breakthrough was achieved by Douc et al. (2011) who proved strong consistency of the MLE

for HMMs with general state spaces for the underlying Markov chain. They used the concept of

exponential separability to prove directly that the entropy for any θ / θ∗, even the supremum of a

closed ball around θ, is strictly smaller than the entropy of θ∗. The equivalence relation ∼ on Θ is

introduced in Section 2. We will use some of their results for our consistency proof. However, we

work with an inhomogeneous model. We stress that the consistency result of Douc et al. (2011)

hold for more general state spaces than our consistency result.

There is some literature which studies asymptotic properties of maximum likelihood esti-

mation of inhomogeneous HMMs, see Ailliot and Pene (2013), Pouzo et al. (2016) and Jensen

(2011a). Note that in the setting of homogeneous HMMs the transition probabilities as well as the

emission probabilities do not vary over time. In Ailliot and Pene (2013) and Pouzo et al. (2016)

asymptotic properties of the maximum likelihood estimator in inhomogeneous Markov switching

models are considered. Here the transition probabilities are also influenced by the observations,

but the inhomogeneity is different from the time-dependent inhomogeneity considered in our

work.

Jensen (2011a) considered the asymptotic normality of M-estimators in the case where the

transition probabilities and the emission probabilities vary over time, which is more general

than our setting. We apply his result to prove the asymptotic normality of the MLE. However,

the quasi-MLE does not satisfy the assumptions stated, but we will use his ideas to show the

asymptotic normality of θQML
ν,n . To this end, we introduce the additional condition (2.16) that

ensures that the limiting distribution is centered. We stress that, as far as we know, there are no

asymptotic results available, if the inhomogenity cannot be modeled.
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1.3 Ion channel recordings

The spread of multidrug-resistant bacteria threatens modern medical treatment for infectious

diseases causing a large number of fatalities in hospitals. To be able to develop new agents that

can combat bacterial infections, the mechanism that contributes to drug resistance needs to be

understood. An effective strategy used by Gram-negative bacteria to evade drug treatment is to

inhibit the access of antibiotics across the outer membrane, see Delcour (2009). For the influx of

antibiotics and other hydrophilic substances through the outer bacterial membrane, ion channels

play an important role. They act as filters and select charges and size for a certain range of

substrate, see Delcour (2003) and Tanabe et al. (2010).

Ion channels are pore-forming membrane proteins that allow ions to pass through the channel

pore. They are present in the membranes of all cells and control the flow of ions across secretory

and epithelial cells. They have a significant meaning in the regulation of the osmotic activity and

acid-base balance as well as in the saltatory conduction in nerve and muscle cells. For a detailed

introduction, we refer to the books of Hille (2001) and Triggle (2006).

The investigation of proteins in artificial membrane systems allows to determine and vary the

composition of lipids and proteins and external conditions depending on the biophysical interest.

The investigation of electrical properties of cells goes back to first voltage clamp experiments by

Cole (1949). Further development of those techniques in Sakmann and Neher (1984) resulting in

the so called patch clamp technique enables the scientist to measure the conductivity of isolated

ion channels. In 1991, Neher and Sakmann were awarded the Nobel Prize for this work. Very

roughly described, a single ion channel is inserted in the (often artificial) membrane surrounded

by an electrolyte with an electrode to measure the current while a constant voltage is applied.

Figure 1.3 shows a schematic patch clamp configuration. For a more detailed explanation of its

various configurations see Sakmann and Neher (2010) and the references therein.

In this thesis, we analyze recordings of the porin PorB of Neisseria meningitidis (Nme)

performed in the Steinem lab (Institute of Organic and Biomolecular Chemistry, University

of Göttingen). Nme is closely related to Neisseria gonorrhoeae (Ngo), which is resistant to

penicillin and tetracycline. The patch clamp measurements were performed using planar black

lipid membranes (BLMs), where “black lipid membrane” refers to the appearance of the prepared

planar bilayer. Due to destructive interference of light reflected from both sides of this few

nanometer thin bilayer, the membrane appears black. Physical properties such as membrane

resistance or membrane capacity can be observed. For a detailed explanation see Winterhalter

(2000) or Tien and Ottova (2001). After protein insertion, ampicillin was added from a stock

solution (25 mM in 1 M KCI, 10 mM HEPES, pH 7.5 and pH 6.0, respectively) to both sides of

the BLM. For control experiments, ampicillin was added only to the trans side. Current traces

were recorded at a sampling rate of 50 kHz and filtered with an analogue, four-pole Bessel

low-pass filter at 5 kHz.

The very short blockage times and the huge amount of observations and events require an

automatic analysis of these recordings with high precision on small temporal scales. In Section 6
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Figure 1.3: Scheme for a patch clamp configuration: a fraction of a membrane is patched by a
micropipette and the ion transport across ion channels in the patched membrane part is monitored
using two electrodes

we introduce a forward algorithm to explore the interaction of the antibiotic ampicillin with the

outermembrane porin PorB under constant voltage. We use this algorithm to compute the maxi-

mum likelihood estimator under constant voltage and the quasi-maximum likelihood estimator in

experiments with varying voltage. Douc and Matias (2001) proved that the maximum likelihood

estimator for filtered data is consistent as well. This implies that the transition probability and the

dwell-time distributions can be estimated correctly as the number of observations goes to infinity.

The asymptotic normality of the maximum likelihood estimator enables us to provide asymptotic

confidence intervals for the parameters as well.

We found that the average residence time of ampicillin is statistically significantly longer for the

PorB mutant G103K than for the wild type. In conjuncture with other findings this suggests that

ampicillin passes the mutant less likely which explains that bacteria with this mutation have an

increased resistance against antibiotics. Furthermore, this results match with the results we found

for ion channel recordings with varying voltage. Such explorations help to develop new drugs

against resistant bacteria.



Section 2

Assumptions and main results

2.1 Setup and notation

For K ∈ N we only consider the case where S = {1, . . . ,K} is a finite set and S denotes the power

set of S . Let (G,m) be a Polish space with metric m and corresponding Borel σ-algebra B(G).

The measurable space (G,B(G)) is equipped with a σ-finite reference measure λ. Assume that

there is a parametrized family of extended HMMs with compact parameter space Θ ⊂ Rd. For

each parameter θ the distribution of (Xn,Yn,Zn) is specified by

• an initial distribution ν on S and a K×K transition matrix Pθ = (Pθ(s, t))s,t∈S of the Markov

chain (Xn)n∈N, such that

Pθ(Xn = s) = νPn−1
θ (s), s ∈ S ,

where νP0
θ = ν and for n > 1,

νPn−1
θ (s) =

∑
s1,...,sn−1∈S

Pθ(sn−1, s)
n−2∏
i=1

Pθ(si, si+1)ν(s1), s ∈ S ;

(Here and elsewhere we use the convention that
∏0

i=1 ai = 1 for any sequence (ai)i∈N ⊂ R.)

• and by the conditional distribution Qθ,n of (Yn,Zn) given Xn = s, that is,

Pθ((Yn,Zn) ∈ C | Xn = s) = Qθ,n(s,C), C ∈ B(G2)

which satisfies that there are conditional density functions fθ, fθ,n : S ×G → [0,∞) w.r.t. λ,

such that

Pθ(Yn ∈ A | Xn = s) = Qθ,n(s, A ×G) =

∫
A

fθ(s, y)λ(dy), A ∈ B(G),

Pθ(Zn ∈ B | Xn = s) = Qθ,n(s,G × B) =

∫
B

fθ,n(s, z)λ(dz), B ∈ B(G).

Here the distribution of Yn given Xn = s is independent of n, whereas the distribution of Zn
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given Xn = s depends through fθ,n also on n.

We need some further notation and definitions. By P(S ) we denote the set of probability

measures on S . To indicate the dependence on the initial distribution, say ν ∈ P(S ), we write Pνθ
instead of just Pθ. To shorten the notation, let X = (Xn)n∈N, Y = (Yn)n∈N and Z = (Zn)n∈N. Further,

let Pν,Yθ and Pν,Zθ be the distributions of Y and Z on (GN,B(GN)), respectively.

Remark 2.1. The sequence (Xn,Yn)n∈N is a homogeneous Markov chain on (S ×G,S × B(G))

with initial distribution

Pνθ((X1,Y1) ∈ C) =
∑
t∈S

∫
G
1C(t, y) fθ(t, y)λ(dy)ν(t), C ∈ S × B(G),

and transition kernel

Tθ ((s, y),C) B
∑
t∈S

∫
G
1C(t, y′)Pθ(s, t) fθ(t, y′)λ(dy′).

In contrast to that, the sequence (Xn,Zn)n∈N is an inhomogeneous Markov chain on (S ×G,S ×

B(G)) with initial distribution

Pνθ((X1,Z1) ∈ C) =
∑
t∈S

∫
G
1C(t, z) fθ,1(t, z)λ(dz)ν(t),

and

Pνθ((Xn,Zn) ∈ C | Xn−1 = s,Zn−1 = z) = Tθ,n((s, z),C),

with time-dependent transition kernel

Tθ,n ((s, z),C) B
∑
t∈S

∫
G
1C(t, z′)Pθ(s, t) fθ,n(t, z′)λ(dz′), n ≥ 2.

In our consideration there is a “true” parameter θ∗ ∈ Θ and we assume that the transition

matrix Pθ∗ posseses a unique stationary distribution π ∈ P(S ). We have access to a finite length

observation of Z. Then, the problem is to find a consistent estimate of θ∗ on the basis of the

observations without observing (Xn,Yn)n∈N. Consistency of the estimator of θ∗ is limited up to

equivalence classes in the following sense. Two parameters θ1, θ2 ∈ Θ are equivalent, written as

θ1 ∼ θ2, iff there exist two stationary distributions µ1, µ2 ∈ P(S ) for Pθ1 , Pθ2 , respectively, such

that Pµ1,Y
θ1

= P
µ2,Y
θ2

. We illustrate the equivalence relation in the following example.

Example 2.2. Let (Yn)n∈N be a sequence of independent, identically distributed random variables,

which is also independent of the underlying Markov chain (Xn)n∈N. Then, any two parameters

describing the distribution of Y1 identically are equivalent, although they might lead to a different

distribution of (Xn)n∈N.

For the rest of the work assume that each θ ∈ Θ represents its equivalence class.
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For an arbitrary finite measure ν on (S ,S), t ∈ N, xt+1 ∈ S and z1, . . . , zt ∈ G define

pνθ(xt+1; z1, . . . , zt) B
∑

x1,...,xt∈S

ν(x1)
t∏

i=1

fθ,i(xi, zi)Pθ(xi, xi+1),

pνθ(z1, . . . , zt) B
∑

xt+1∈S

pνθ(xt+1; z1, . . . , zt).

If ν is a probability measure, then pνθ(z1, . . . , zn) is the likelihood of the observations (Z1, . . . ,Zn) =

(z1, . . . , zn) ∈ Gn for the inhomogeneous HMM (Xn,Zn)n∈N with parameter θ ∈ Θ and X1 ∼ ν.

Although there are no observations of Y available, we define similar quantities for (Y1, . . . ,Yn) =

(y1, . . . , yn) ∈ Gn by

qνθ(xt+1, y1, . . . , yt) B
∑

x1,...,xt∈S

ν(x1)
t∏

i=1

fθ(xi, yi)Pθ(xi, xi+1),

qνθ(y1, . . . , yt) B
∑

xt+1∈S

qνθ(xt+1, y1, . . . , yt).

Assume for a moment that observations y1, . . . , yn of Y1, . . . ,Yn are available. Then the

log-likelihood function of qνθ, with initial distribution ν ∈ P(S ), is given by

log qνθ(y1, . . . , yn)

and one can easily consider the maximum likelihood estimator for θ∗. In our setting we do not

have access to observations of Y , but have access to observations z1, . . . , zn of Z1, . . . ,Zn. We take

this trajectory of observations and define a quasi-log-likelihood function

`Q
ν,n(θ) := log qνθ(z1, . . . , zn).

Now, we approximate θ∗ by a quasi-maximum likelihood estimator θQML
ν,n , that is,

θQML
ν,n := argmax

θ∈Θ
`Q
ν,n(θ). (2.1)

On the other hand, we are interested on the maximum likelihood estimator of a realization

z1, . . . , zn of Z1, . . . ,Zn. For this define the log-likelihood function

`ν,n(θ) := log pνθ(z1, . . . , zn),

which leads to the maximum likelihood estimator θML
ν,n given by

θML
ν,n := argmax

θ∈Θ
`ν,n(θ). (2.2)

Definition 2.3. For θ ∈ Θ and δ > 0 let B(θ, δ) be the Euclidean ball of radius δ centered at θ.

For any i ∈ N, let ai : Θ× S × S ×G → R be a function. We say that the sequence (ai)i∈N belongs
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to the class Ck, k ∈ N, if there exist constants δ0 > 0,K < ∞, such that for all i ∈ N and for all

z ∈ G there exists a function a0
i : G → R+ with

sup
s1,s2∈S ,θ∈B(θ∗,δ0)

|ai(θ, s1, s2, z)| ≤ a0
i (z) and Eπθ∗

[
a0

i (Zi)k
]
≤ K.

Furthermore, for k, l ∈ N the sequence (ai)i∈N belongs to the class Ck,l, if (ai)i∈N belongs to Ck and

there exist constants δ0 > 0,K < ∞, such that for all i ∈ N there exists a function āi : G → R+

with ∣∣∣ai(θ, s1, s2, z) − ai(θ∗, s1, s2, z)
∣∣∣ ≤ ∣∣∣θ − θ∗∣∣∣ āi(z) and Eπθ∗

[
ā(Zi)l

]
≤ K

for all θ ∈ B(θ∗, δ0) and all s1, s2 ∈ S , z ∈ G.

The following notation is used to express the derivatives of `Q
ν,n and `ν,n as sums of conditional

expectations. Define the function ψ : Θ × S × S ×G → Rd, ψ = (ψ(1), . . . , ψ(d)) by

ψ(r)(θ, s1, s2, z) B
∂

∂θ(r)

(
log (Pθ(s1, s2) fθ(s2, z))

)
, r = 1, . . . , d. (2.3)

For i ∈ N, we define ψi : Θ × S × S ×G → Rd, ψi = (ψ(1)
i , . . . , ψ(d)

i ) by

ψ(r)
i (θ, s1, s2, z) B

∂

∂θ(r)

(
log

(
Pθ(s1, s2) fθ,i(s2, z)

))
, r = 1, . . . , d. (2.4)

Let n be an integer and I1 be a finite set with |I1| = m and I1 = {i1, . . . , im} ⊂ {1, . . . , n}. We say I1

is ordered if for all l, r ∈ N with l < r ≤ m we have il < ir. Let z = (z1, . . . , zn) ∈ Gn. For a finite

and ordered set I1 = (i1, . . . , im) ⊂ {1, . . . , n} we write z|I1 for the projection of z onto the subset

Gm indexed by I1, i.e.,

z|I1 = (zi1 , . . . , zim) ∈ Gm.

Similarly, for s ∈ S n we define the projection s|I1 . Furthermore, for two finite and ordered sets

I1, I2 with I2 ⊂ I1 ⊂ {1, . . . , n} and s ∈ S I2 and z ∈ GI2 we define

pν,I1
θ,I2

(s | z) B

∫
y=(y1,...,yn)∈Gn:

y|I1 =z

∑
x=(x1,...,xn)∈S n:

x|I2 =s

ν(x1) fθ,1(x1, y1)
n∏

i=2
Pθ(xi−1, xi) fθ,i(xi, yi)λn(y)

∫
y=(y1,...,yn)∈Gn:

y|I1 =z

∑
x=(x1,...,xn)∈S n

ν(x1) fθ,1(x1, y1)
n∏

i=2
Pθ(xi−1, xi) fθ,i(xi, yi)λn(y)

and

qν,I1
θ,I2

(s | z) B

∫
y=(y1,...,yn)∈Gn:

y|I1 =z

∑
y=(y1,...,yn)∈Gn:

y|I1 =z

ν(x1) fθ(x1, y1)
n∏

i=2
Pθ(xi−1, xi) fθ(xi, yi)λn(y)

∫
y=(y1,...,yn)∈Gn:

y|I1 =z

∑
x=(x1,...,xn)∈S n

ν(x1) fθ(x1, y1)
n∏

i=2
Pθ(xi−1, xi) fθ(xi, yi)λn(y)

. (2.5)
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We write pν,r:i
θ,a:b(sr, . . . , si | za, . . . , zb) for pν,{r,...,i}

θ,{a,...,b}(sr, . . . , si | za, . . . , zb) for the rest of this thesis.

Note that for i, r, a, b ∈ N with b ≥ i ≥ r ≥ a the conditional density of Xr = sr, . . . , Xi = si

conditioned on Za = za, . . . ,Zb = zb is given by pν,{r,...,i}
θ,{a,...,b}(sr, . . . , si | za, . . . , zb).

Finally, we define the estimation sums by

S n,QML(θ) B
n∑

i=2

Eνθ

ψ(θ, Xi−1, Xi,Zi)
qν,1:n
θ,(i−1):i(Xi−1, Xi | Z1, . . . ,Zn)

pν,1:n
θ,(i−1):i(Xi−1, Xi | Z1, . . . ,Zn)

| Z1, . . . ,Zn

 , (2.6)

and

S n,ML(θ) B
n∑

i=2

Eνθ
[
ψi(θ, Xi−1, Xi,Zi) | Z1, . . . ,Zn

]
. (2.7)

A standard argument in hidden Markov models, see Section 4 in Bickel et al. (1998), shows that

∇`ν,n(θ) = S n,ML(θ) + Eνθ
[
∇ log

(
ν(X1) fθ,1(X1,Z1)

)
| Z1, . . . ,Zn

]
. (2.8)

and

∇`Q
ν,n(θ) = S n,QML(θ) + Eνθ

∇ log (ν(X1) fθ(X1,Z1))
qν,1:n
θ,1:1(X1 | Z1, . . . ,Zn)

pν,1:n
θ,1:1(X1 | Z1, . . . ,Zn)

| Z1, . . . ,Zn

 . (2.9)

2.2 Structural conditions for the consistency result

We prove consistency of the quasi-maximum likelihood estimator θQML
ν,n and the maximum

likelihood estimator θML
ν,n under a number of structural assumptions:

Irreducibility and continuity of X

(P1) The transition matrix Pθ∗ is irreducible.

(P2) The mapping θ 7→ Pθ is continuous w.r.t. some metric induced by a matrix norm.

Closeness of Y and Z

(C1) There exists a number p > 1 such that for any s ∈ S and ε > 0 we have

Pθ∗ (m(Zn,Yn) ≥ ε | Xn = s) = O(n−p).

(C2) There exists an integer k ∈ N such that

Pπθ∗

k−1∏
i=1

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)

< ∞

 = 1 (2.10)

Eπθ∗

[
max
s′∈S

fθ∗,n(s′,Zn)
fθ∗(s′,Zn)

| Xn = s
]
< ∞, ∀s ∈ S , n ≥ k. (2.11)



13 SECTION 2. ASSUMPTIONS AND MAIN RESULTS

and

lim sup
n→∞

(
Eπθ∗

[
max
s′∈S

fθ∗,n(s′,Zn)
fθ∗(s′,Zn)

| Xn = s
])
≤ 1, ∀s ∈ S . (2.12)

(C3) For every θ ∈ Θ with θ / θ∗, there exists a neighborhood Eθ of θ such that there exists an

integer k ∈ N with

Pπθ∗

k−1∏
i=1

sup
θ′∈Eθ

max
s∈S

fθ′,i(s,Zi)
fθ′(s,Zi)

< ∞

 = 1 (2.13)

Eπθ∗

 sup
θ′∈Eθ

max
s′∈S

fθ′,n(s′,Zn)
fθ′(s′,Zn)

| Xn = s
 < ∞, ∀s ∈ S , n ≥ k. (2.14)

and

lim
n→∞

Eπθ∗  sup
θ′∈Eθ

max
s′∈S

fθ′,n(s′,Zn)
fθ′(s′,Zn)

| Xn = s
 = 1, ∀s ∈ S . (2.15)

Remark 2.4. The conditions (C1) and (C2) describe a suitable “closeness” of Zn and Yn. We will

see that (C1) guarantees that m(Zn,Yn) converges Pθ∗-a.s. to zero whereas (C2) ensures that the

ratio of pνθ∗(z1, . . . , zn) and qνθ∗(z1, . . . , zn) does not diverge exponentially or faster. Assumption

(C3) ensures that for all θ / θ∗ the ratio of pνθ(z1, . . . , zn) and qνθ(z1, . . . , zn) does not diverge

exponentially or faster uniformly in Eθ.

Well behaving HMM

It is plausible that we are only able to prove consistency in the case where observations of Y

would lead to a consistent estimator of θ∗. To guarantee that this is indeed the case we assume:

(H1) For all s ∈ S let Eπθ∗
[∣∣∣log fθ∗(s,Y1)

∣∣∣] < ∞.

(H2) For every θ ∈ Θ with θ / θ∗, there exists a neighborhoodUθ of θ such that

Eπθ∗

 sup
θ′∈Uθ

(log fθ′(s,Y1))+

 < ∞ for all s ∈ S .

(H3) The mapping θ 7→ fθ(s, y) is continuous for any s ∈ S , y ∈ G.

(H4) For all s ∈ S and n ∈ N let Eπθ∗
[∣∣∣log fθ∗,n(s,Zn)

∣∣∣] < ∞.

Remark 2.5. The conditions (H1) – (H3) coincide with the assumptions in Douc et al. (2011) for

finite state models and guarantee that the MLE for θ∗ based on observations of Y is consistent.

The condition (H4) is an additional regularity assumption in the inhomogeneous setting.
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2.3 Consistency theorem

Under the structural assumptions from above we prove the consistency of the quasi-maximum

likelihood estimator (2.1) and the maximum likelihood estimator (2.2).

Theorem 2.6. Assume that the irreducibility and continuity conditions (P1), (P2), the closeness

conditions (C1), (C2) and the well behaving HMM conditions (H1) – (H4) are satisfied. Further,

let the initial distribution ν ∈ P(S ) be strictly positive if and only if π is strictly positive. Then

θQML
ν,n → θ∗, Pπθ∗-a.s.

as n→ ∞.

Corollary 2.7. Assume that the conditions of Theorem 2.6 are satisfied. Further, assume that

condition (C3) hold. Let the initial distribution ν ∈ P(S ) be strictly positive if and only if π is

strictly positive. Then

θML
ν,n → θ∗, Pπθ∗-a.s.

as n→ ∞.

2.4 Structural conditions for the asymptotic normality result

Asymptotic normality for M-estimators in inhomogeneous hidden Markov models was shown

in Jensen (2011a). Therefore the assumptions for θML
ν,n coincide with the assumptions of Jensen

(2011a).

Positivity of Pθ∗

(P1’) We assume that there exist constants p0, δ0 > 0 such that

sup
θ∈B(θ∗,δ0)

Pθ(s1, s2) ≥ p0 ∀s1, s2 ∈ S .

Remark 2.8. Assumption (P1’) is a classical condition in asymptotic theory in hidden Markov

models. It guarantees a strong mixing property for the hidden Markov chain. Therefore, the initial

probability distribution does not effect the asymptotic behavior of the MLE and the quasi-MLE.

Further, the strong mixing of the underlying Markov chain implies a strong mixing property for

the conditional Markov chain (Xn)n∈N, conditioned on the observed process (Zn)n∈N (see Lemma

4.12).
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Central limit theorem condition

(CLT1) For r = 1, . . . , d we assume that

lim
n→∞

1
√

n
Eπθ∗

[
S (r)

n,QML(θ∗)
]

= 0 (2.16)

and that the constant function sequence (ψ(r))i∈N belongs to the class C3. Furthermore,

we assume that there exists a constant c0 > 0 and an integer n0 such that for any

n ≥ n0, n ∈ N, we have

λmin
(
n−1Varπθ∗(S n,QML(θ∗))

)
≥ c0.

Recall that ψ and S n,QML are given in (2.3) and (2.6), respectively.

(CLT2) For r = 1, . . . , d we assume that the function sequence (ψ(r)
i )i∈N belongs to the class C3.

Furthermore, we assume there exists a constant c0 > 0 and an integer n0 such that for

any n ≥ n0, n ∈ N, we have

λmin
(
n−1Varπθ∗(S n,ML(θ∗))

)
≥ c0.

Recall that ψi and S n,ML are given in (2.4) and (2.7), respectively.

Remark 2.9. Assumption (CLT2) coincides with Assumption 1 in Jensen (2011a) and guarantees

a central limit theorem for S n,ML. Assumption (CLT1) is in the same spirit, but has the additional

condition (2.16). This condition guarantees that the limiting distribution of S n,QML has mean

zero, which is automatically satisfied for S n,ML. In general it is very difficult to verify (2.16). For

the case S = {s} the condition (2.16) holds if and only if

Eπθ∗

[
∂

∂(θ∗)(r) log ( fθ∗(s,Zn))
]

= O(n−p) ∀r = 1, . . . , d,

with p > 1/2.

Uniform convergence condition

(UC1) For n ∈ N we define the Fisher matrix with respect to qνθ∗ by

Fn,QML B
1
n
Eπθ∗

[
−∇

(
S n,QML(θ∗)

)T
]
. (2.17)

We assume that there exists a constant c0 > 0 and an integer n0 such that for n ≥ n0, n ∈ N,

we have

λmin
(
Fn,QML

)
≥ c0.

Furthermore, for r, s = 1, . . . , d we assume that the constant function sequence (ψ(r)
i )∈N

belongs to the class C4+δ for some δ > 0 and that (∂ψ(r)/∂θ(s))i∈N belongs to the class
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C3,2.

(UC2) For n ∈ N we define the Fisher matrix with respect to pνθ∗ by

Fn,ML B
1
n
Eπθ∗

[
−∇

(
S n,ML(θ∗)

)T
]
.

We assume that there exists a constant c0 > 0 and an integer n0 such that for n ≥ n0, n ∈ N,

we have

λmin
(
Fn,ML

)
≥ c0.

Furthermore, for r, s = 1, . . . , d we assume that the function sequence (ψ(r)
i )i∈N belongs to

the class C4+δ for some δ > 0 and that (∂ψ(r)
i /∂θ(s))i∈N belongs to the class C3,2.

Remark 2.10. Condition (UC2) slightly differs from Assumption 2 in Jensen (2011a). In As-

sumption 2 in Jensen (2011a) the authors assumed that (ψ(r)
i )i∈N belongs to the class C4. We

think that the proof of Lemma 5 in Jensen (2011a) is not valid without the additional δ from

our assumption. Further, the authors assumed that (∂ψ(r)/∂θ(s))i∈N belongs to the class C2,1. We

think the stronger conditions C3,2 is needed in the proof of their Lemma 3. Assumption (UC1) is

adapted to the quasi-maximum likelihood estimator. These assumptions are used in proving an

uniform convergence results for the Fisher information matrices Fn,ML and Fn,QML.

2.5 Asymptotic normality theorem

Under the structural assumption that prove the consistency of the quasi-maximum likelihood

estimator (2.1) and the maximum likelihood estimator (2.2) and the conditions (P1’), (CLT1),

(CLT2), (UC1) and (UC2) we can prove the asymptotic normality of the estimators.

Proposition 2.11. Assume that the positivity condition (P1’), the central limit theorem condition

(CLT2) and the uniform convergence condition (UC2) are satisfied. Let I be the d-dimensional

identity matrix and for n ∈ N define Gn,ML B
1
n Varπθ∗

(
S n,ML(θ∗)

)
. Then for any ν ∈ P(S ) we have

√
nG−1/2

n,MLFn,ML(θML
ν.n − θ

∗)
D
→ Z,

as n→ ∞, where Z ∼ N(0, I) and G1/2
n,MLG1/2

n,ML = Gn,ML.

Theorem 2.12. Assume that the positivity and continuity conditions (P1’), (P2), the closeness

conditions (C1), (C2) and the well behaving HMM conditions (H1) – (H4), the central limit

theorem condition (CLT1) and the uniform convergence condition (UC1) are satisfied. Let I be

the d-dimensional identity matrix and for n ∈ N define Gn,QML B
1
n Varπθ∗

(
S n,QML(θ∗)

)
. Then for

any ν ∈ P(S )
√

nG−1/2
n,QMLFn,QML(θQML

ν,n − θ∗)
D
→ Z,

as n→ ∞, where Z ∼ N(0, I) and G1/2
n,QMLG1/2

n,QML = Gn,QML.



Section 3

Application

We consider two models where we verify the structural assumptions from Section 2.2 and

Section 2.4 . The Poisson model, see Section 3.1, illustrates a simple example with countable

observation space. The linear Gaussian model, see Section 3.2, is an extension of the model

which describes the conductivity of ion channels. Here we have multiple and possibly correlated

observations.

3.1 Poisson model

Let X = (Xn)n∈N be a finite state Markov chain on S = {1, . . . ,K} induced by an irreducible

stochastic matrix Pθ∗ with stationary distribution π. For i = 1, . . . ,K let λ(i)
θ∗ > 0 and define the

vector λθ∗ = (λ(1)
θ∗ , . . . , λ

(K)
θ∗ ). For simplicity, we assume that

θ = (Pθ(1, 1), . . . , Pθ(1,K − 1), Pθ(2, 1), . . . , Pθ(K − 1,K − 1), λ(1)
θ , . . . , λ(K)

θ )T ,

so Θ ⊂ R(K−1)2+K . Conditioned on X the non-observed homogeneous sequence Y = (Yn)n∈N is

an independent sequence of Poisson-distributed random variables with parameter λ(Xn)
θ∗ . In other

words, given Xn we have Yn ∼ Poi(λ(Xn)
θ∗ ). The observed sequence Z = (Zn)n∈N is determined by

Zn = Yn + εn,

where (εn)n∈N is an independent sequence of random variables with εn ∼ Poi(βn). Here (βn)n∈N is

a sequence of positive real numbers such that there exists a p > 1 with

βn = O(n−p). (3.1)

We also assume that (εn)n∈N is independent of Y . Note that the observation space is given by

G = N ∪ {0} equipped with the counting measure denoted by λ.

To obtain consistency of the two maximum likelihood estimators we need to check the

conditions (P1), (P2), (C1) – (C3) and (H1) – (H4):

To (P1) and (P2): By the assumptions in this scenario those conditions are satisfied.
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To (H1) – (H4): For θ ∈ Θ, s ∈ S and y ∈ G we have

∣∣∣log fθ(s, y)
∣∣∣ = − log


(
λ(s)
θ

)y

y!
exp(−λ(s)

θ )

 = −y log(λ(s)
θ ) + log(y!) + λ(s)

θ

≤ −y log(λ(s)
θ ) + y2 + λ(s)

θ .

Hence

Eπθ∗
[∣∣∣log fθ∗(s,Y1)

∣∣∣] ≤ − log(λ(s)
θ∗ )

K∑
s=1

π(s)λ(s)
θ∗ +

K∑
s=1

π(s)
((
λ(s)
θ∗

)2
+ λ(s)

θ∗

)
+ λ(s)

θ∗ < ∞

and (H1) is verified. A similar calculation leads to the fact that (H4) holds. Condition (H2) follows

simply by (log fθ(s, y))+ = 0. Condition (H3) follows by the continuity in the parameter of the

probability function of the Poisson distribution and the continuity of the mapping θ 7→ (Pθ, λθ).

To (C1) – (C3): For any δ > 0 and any s ∈ S we have

Pπθ (|Zn − Yn| ≥ δ | Xn = s) = Pπθ (εn ≥ δ) ≤ 1 − Pπθ (εn = 0) = 1 − exp(−βn).

For p and C as in (3.1) it follows that

lim sup
n→∞

1 − exp(−βn)
n−p ≤ C,

which proves (C1). Observe that for any s ∈ S , z ∈ G we have

max
s∈S

fθ∗,n(s, z)
fθ∗(s, z)

= max
s∈S

(
βn + λ(s)

θ∗

)z(
λ(s)
θ∗

)z exp(−βn) = (an)z exp(−βn),

with an = max
s∈S

βn+λ(s)
θ∗

λ(s)
θ∗

. Now we verify (C2) with k = 1. We have

Eπθ∗

[
max
s′∈S

fθ∗,n(s′,Zn)
fθ∗(s′,Zn)

| Xn = s
]

= Eπθ∗
[
aZn

n exp(−βn) | Xn = s
]

= exp
(
λ(s)
θ∗ (an − 1) − βn

)
< ∞ ∀n ∈ N, s ∈ S .

Fix s ∈ S , and note that

lim sup
n→∞

(
Eπθ∗

[
max
s′∈S

fθ∗,n(s′,Zn)
fθ∗(s′,Zn)

| Xn = s
])

= lim sup
n→∞

exp
(
λ(s)
θ∗ (an − 1) − βn

)
= 1.

The last equality follows by the fact that limn→∞ an = 1 and limn→∞ βn = 0. Condition (C3)

follows by similar arguments.

The application of Theorem 2.6 and Corollary 2.7 leads to the following result.
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Corollary 3.1. For any initial distribution ν ∈ P(S ) which is strictly positive if and only if π is

strictly positive, we have in the setting of the Poisson model that

θQML
ν,n → θ∗, Pπθ∗-a.s.

and

θML
ν,n → θ∗, Pπθ∗-a.s.

as n→ ∞.

In order to apply Proposition 2.11 and Theorem 2.12, we have to make additional assumptions.

We assume that Pθ∗ is positive. Further, we assume that condition (2.16) holds and that there

exists a constant c0 and an integer n0 such that for all n ≥ n0, n ∈ N, we have

λmin
(
n−1Varπθ∗(S n,QML(θ∗))

)
≥ c0, λmin

(
n−1Varπθ∗(S n,ML(θ∗))

)
≥ c0

and

λmin
(
Fn,QML

)
≥ c0, λmin

(
Fn,ML

)
≥ c0.

Now, we check the conditions (P1’), (CLT1), (CLT2), (UC1) and (UC2):

To (P1’): By the additional assumptions in this scenario this condition is satisfied.

To (CLT1) and (CLT2):
Condition (2.16) is satisfied by assumption. Unfortunately, we cannot verify this condition

analytically. Simulations reveal that (2.16) holds, if

βn = O(n−1/2).

We refer to Section 6 for more details. Recall that

ψ(θ, s1, s2, z) =
∂

∂θ
log(Pθ(s1, s2) fθ(s2, z)), θ ∈ Θ, s1, s2 ∈ S , z ∈ G.

Now, fix an integer r ∈ {1, . . . , d}. If θ(r) = Pθ( j, k) for some j, k ∈ S , then

∂

∂θ(r) log(Pθ(s1, s2) fθ(s2, z)) =
1{ j}(s1)1{k}(s2)

Pθ( j, k)
.

Clearly the constant function sequence
(
1{ j}(s1)1{k}(s2)

Pθ( j,k)

)
i∈N

belongs to the class C3 by assumption

(P1’). If θ(r) = λ
( j)
θ for some j ∈ S , we have

∂

∂θ(r) log(Pθ(s1, s2) fθ(s2, z)) =

 z

λ
( j)
θ

− 1

1{ j}(s2).

Since for any i ∈ N, Zi is a mixture of Poisson distributed random variables, it follows that

(ψ(r))i∈N belongs to the class C3.

The last condition of (CLT1) is satisfied by assumption. This condition concerns positive
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definiteness and is classical in HMMs. The condition usually is difficult to verify, see Theorem 1

in Bickel et al. (1998). Assumption (CLT2) is satisfied by similar arguments.

To (UC1) and (UC2): Note that the first condition of assumption (UC1) again concerns positive

definiteness. This condition is satisfied by assumption.

Similarly as above, one can show for r, s = 1, . . . , d that (ψ(r))i∈N belongs to the class C5 and that

(∂ψ(r)/∂θ(s))i∈N belongs to the class C3.

Now, we fix two integers r, s ∈ {1, . . . , d}. Assume θ(r) = Pθ( j, k) for some j, k ∈ S . It follows

that ∂ψ(r)/∂θ(s) = 0 whenever s , r. For s = r, we have

∂

∂θ(s)ψ
(r)(θ, s1, s2, z) =

−1{ j}(s1)1{k}(s2)
(Pθ( j, k))2 .

It follows that ∂ψ(r)/∂θ(s) belongs to the class C3,2 with

ψ̄i(z) = sup
θ∈B(θ∗,δ0)

2
(Pθ(s1, s2))3 .

Assume now that θ(r) = λ
( j)
θ for some j ∈ S . It follows that ∂ψ(r)/∂θ(s) = 0 whenever s , r. For

s = r, we have
∂

∂θ(s)ψ
(r)(θ, s1, s2, z) =

−z1{ j}(s2)(
λ(r)
θ

)2 .

It follows that ∂ψ(r)/∂θ(s) belongs to the class C3,2 with

ψ̄i(z) = sup
θ∈B(θ∗,δ0)

z(
λ(r)
θ

)3 .

Assumption (UC2) follows by similar arguments.

The application of Theorem 2.12 and Proposition 2.11 leads to the following result.

Corollary 3.2. For any initial distribution ν ∈ P(S ), we have in the setting of the Poisson model

that
√

nG−1/2
n,QMLFn,QML(θQML

ν,n − θ∗)
D
→ Z,

and

lim
n→∞

√
nG−1/2

n,MLFn,ML(θML
ν,n − θ

∗)
D
→ Z

as n→ ∞, where Z ∼ N(0, I), G1/2
n,QMLG1/2

n,QML = Gn,QML and G1/2
n,MLG1/2

n,ML = Gn,ML.

3.2 Linear Gaussian model

Let (Xn)n∈N be a finite state Markov chain on S = {1, . . . ,K} induced by an irreducible stochastic

matrix Pθ∗ with stationary distribution π. For i = 1, . . . ,K let µ(i)
θ∗ ∈ R

M, Σ
(i)
θ∗ ∈ R

M×M with full

rank, where M ∈ N. We set µθ∗ = (µ(1)
θ∗ , . . . , µ

(K)
θ∗ ) and Σθ∗ = (Σ(1)

θ∗ , . . . ,Σ
(K)
θ∗ ). The sequences
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Y = (Yn)n∈N and Z = (Zn)n∈N are defined by

Yn = µ(Xn)
θ∗ + Σ

(Xn)
θ∗ Vn

Zn = Yn + εn.

Here (Vn)n∈N is an iid sequence of random vectors with Vn ∼ N(0, I), where I ∈ RM×M denotes

the identity matrix, and (εn)n∈N is a sequence of independent random vectors with εn ∼ N(0, β2
nI),

where (βn)n∈N is a sequence of positive real numbers such that there is a number q > 0 such that

βn = O(n−q). (3.2)

For simplicity, we assume that

θ =
(
Pθ(1, 1), . . . , Pθ(1,K − 1), . . . , Pθ(K − 1,K − 1), (µ(1)

θ )T , . . . , (µ(K)
θ )T ,

Σ
(1)
θ

(
Σ

(1)
θ

)T
(1, 1), . . . ,Σ(K)

θ

(
Σ

(K)
θ

)T
(M,M)

)T
,

so Θ ⊂ R(K−1)2+MK+M2K . Furthermore, note that G = RM and λ is the M-dimensional Lebesgue

measure.

To obtain consistency of the two maximum likelihood estimators we need to check the

conditions (P1), (P2), (C1) – (C3) and (H1) – (H4):

To (P1) and (P2): By definition of the model this conditions are satisfied.

To (H1) – (H4): For a matrix A ∈ RM×M denote A2 = AAT and A−2 = (A2)−1. Note that for

s ∈ S , θ ∈ Θ and y, z ∈ G we have

fθ(s, y) =
(2π)−M/2

det
((

Σ
(s)
θ

)2
)1/2 exp

(
−

1
2

(y − µ(s)
θ )T

(
Σ

(s)
θ

)−2
(y − µ(s)

θ )
)
,

fθ,n(s, z) =
(2π)−M/2

det
((

Σ
(s)
θ

)2
+ β2

nI
)1/2 exp

(
−

1
2

(z − µ(s)
θ )T

((
Σ

(s)
θ

)2
+ β2

nI
)−1

(z − µ(s)
θ )

)
.

Further, observe that det
((

Σ
(s)
θ

)2
)
> 0 for all s ∈ S . For some constant C1 > 0 we have

Eπθ∗
[∣∣∣log fθ(s,Y1)

∣∣∣] ≤ C1 + Eπθ∗

[
1
2

(Y1 − µ
(s)
θ )T

(
Σ

(s)
θ

)−2
(Y1 − µ

(s)
θ )

]
< ∞,

since for each i, j ∈ {1, . . . ,M} we have Eπθ∗
[
Y (i)

1 Y ( j)
1

]
< ∞ for Y1 = (Y (1)

1 , . . . ,Y (M)
1 ). By this

estimate (H1) and (H2) follows easily. Condition (H4) follows by similar arguments. More

detailed, we have that β2
n is finite and converges to zero as well as that there exists a constant
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C2 > 0 such that

Eπθ∗
[∣∣∣log fθ∗,n(s,Zn)

∣∣∣] ≤ C2 + Eπθ∗

[
1
2

(Zn − µs)T
((

Σ
(s)
θ

)2
+ β2

nI
)−1

(Zn − µs)
]
.

For all n ∈ N the right-hand side of the previous inequality is finite, since for each i, j ∈ {1, . . . ,M}

we have Eπθ∗[Z
(i)
n Z( j)

n ] < ∞, with Zn = (Z(1)
n , . . . ,Z(M)

n ). Finally condition (H3) is satisfied by the

continuity of the conditional density and the continuity of the mapping θ 7→ (Pθ, µθ,Σθ).

To (C1) – (C3): Here m is the Euclidean metric in RM such that |εn| = m(Yn,Zn). Fix some p > 1

and observe that for any δ > 0 and s ∈ S we have

Pπθ∗ (m(Yn,Zn) > δ | Xn = s) = Pπθ∗ (|εn| > δ) = Pπθ∗
(
β2

nχ
2
M > δ2

)
≤
Eπθ∗

[
(χ2

M)p/q
]
β

2p/q
n

δ2p/q ,

where χ2
M is a chi-squared distributed random variable with M degrees of freedom. By the fact

that Eπθ∗
[
(χ2

M)p/q
]
< ∞ and (3.2) we obtain that condition (C1) is satisfied with p > 1.

The requirement of (2.10) of (C2) holds for any k ∈ N, since the density of normally

distributed random vectors is strictly positive and finite. Observe that

max
s∈S

fθ,n(s,Zn)
fθ(s,Zn)

≤ Cn max
s∈S

exp
(
−

1
2

(Zn − µ
(s)
θ )T

(
((Σ(s)

θ )2 + βnI)−1 − (Σ(s)
θ )−2

)
(Zn − µ

(s)
θ )

)
,

with

Cn := max
s∈S

(
det

((
Σ

(s)
θ

)2
))1/2

(
det

((
Σ

(s)
θ

)2
+ β2

nI
))1/2 .

Note that limn→∞Cn = 1. Since for an invertible matrix A ∈ RM×M, A 7→ A−1 is continuous and

Σs
θ∗ has full rank, it follows that

lim
n→∞

((
Σ

(s)
θ

)2
+ β2

nI
)−1

=
(
Σ

(s)
θ

)−2
.

Set (Σ(s)
θ )2

n := (Σ(s)
θ )2 + β2

nI and define Bn = Bn,s := (Σ(s)
θ )−2 − (Σ(s)

θ )−2
n . Note that the entries of

Bn converge to zero when n goes to infinity. Further, by the fact that (Bn)n∈N is a sequence of

symmetric, positive definite matrices there exist sequences of orthogonal matrices (Un)n∈N ⊂

RM×M and diagonal matrices (Dn)n∈N ⊂ R
M×M such that

Bn = UT
n D1/2

n D1/2
n Un.

Of course, Un and Dn depend on s. We define a sequence of random vectors (Wn,s)n∈N by setting

Wn,s := UnD1/2
n (Zn − µ

(s)
θ ), such that

(Zn − µ
(s)
θ )T

(
(Σ(s)

θ )−2 − ((Σ(s)
θ )2 + βnI)−1

)
(Zn − µ

(s)
θ )

= (Zn − µ
(s)
θ )T Bn(Zn − µ

(s)
θ ) = WT

n,sWn,s.
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The random variable Zi conditioned on Xi = x is normally distributed with mean µ(x)
θ and

covariance matrix (Σ(x)
θ )2

n. Hence Wi,s, conditioned on Xi = x, satisfies

Wi,s ∼ N(µ̃i, Ai),

with

µ̃i = UT
i D1/2

i (µ(x)
θ − µ

(s)
θ )

and

Ai = UT
i D1/2

i (Σ(x)
θ )2

i (UT
i D1/2

i )T .

Since Ai is symmetric and positive definite, we find sequences of orthogonal matrices (U′n)n∈N

and diagonal matrices (D′n)n∈N depending on x and s such that

Ai = U′i D′1/2i D′1/2i U′Ti .

Let (Ni)i∈N be an iid sequence random vectors with Ni ∼ N(0, I) and denote Ni = (N(1)
i , . . . ,N(M)

i ).

Then

WT
i,sWi,s =

∣∣∣Wi,s
∣∣∣2 D= ∣∣∣∣U′i D′1/2i (Ni + D′−1/2

i U′Ti µ̃i)
∣∣∣∣2

=
∣∣∣∣D′1/2i (Ni + D′−1/2

i U′Ti µ̃i)
∣∣∣∣2 =

M∑
j=1

D′i( j, j)
(
N( j)

i + (D′−1/2
i U′Ti µ̃i)( j)

)2
.

For any t < min j=1,...,M D′i( j, j)−1 the moment generating function of a chi-squared distributed

random variable with one degree of freedom and non-centrality parameter (D′−1/2
i U′Ti µ̃i)( j) is

well-defined and we obtain

Eπθ∗

[
exp

( t
2

WT
i,s′Wi,s′

)
| Xi = s

]
=

M∏
j=1

(1 − 2(
t
2

)D′i( j, j))−1/2 exp

 (D′−1/2
i U′Ti µ̃i)( j)( t

2 )D′i( j, j)

1 − 2( t
2 )D′i( j, j)


=

M∏
j=1

(1 − tD′i( j, j))−1/2 exp

 (D′−1/2
i U′Ti µ̃i)( j)( t

2 )D′i( j, j)
1 − tD′i( j, j)

→ 1

as i → ∞, since lim
i→∞

D′i( j, j) = 0 for all j = 1, . . . ,M. We can choose k sufficiently large, such

that K < min j=1,...,M D′i( j, j)−1 for all i ≥ k. We find that

Eπθ∗

[
max
s′∈S

exp
(
1
2

WT
k,s′Wk,s′

)
| Xk = s

]
≤ Eπθ∗

∑
s′∈S

exp
(
1
2

WT
k,s′Wk,s′

)
| Xk = s


≤

∏
s′∈S

(
Eπθ∗

[
exp

(K
2

WT
k,s′Wk,s′

)
| Xk = s

])1/K
,

where we used the generalized Hölder inequality in the last estimate. Then, by taking the limit
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superior we obtain that the right-hand side of the previous inequality goes to one for k → ∞ such

that (C2) holds. Condition (C3) can be verified similarly.

Corollary 3.3. For any initial distribution ν ∈ P(S ) which is strictly positive if and only if π is

strictly positive, we have in the setting of the linear Gaussian model that

θQML
ν,n → θ∗, Pπθ∗-a.s.

and

θML
ν,n → θ∗, Pπθ∗-a.s.

as n→ ∞.

In order to apply Proposition 2.11 and Theorem 2.12, we have to make additional assumptions

as in the Poisson model. We assume that Pθ∗ is positive. Further, we assume that condition (2.16)

holds and that there exists a constant c0 and an integer n0 such that for all n ≥ n0, n ∈ N, we have

λmin
(
n−1Varπθ∗(S n,QML(θ∗))

)
≥ c0, λmin

(
n−1Varπθ∗(S n,ML(θ∗))

)
≥ c0

and

λmin
(
Fn,QML

)
≥ c0, λmin

(
Fn,ML

)
≥ c0.

To (P1’): The condition is satisfied by the additional model assumptions.

To (CLT1) and (CLT2): Condition (2.16) is satisfied by assumption. As in the Poisson model,

we cannot verify this condition analytically, but simulations reveal that (2.16) holds, if

βn = O(n−1/2).

We refer to Section 6 for more details.

For simplicity, we will assume in the following that M = 1. The case M > 1 can be shown

similarly by replacing the one-dimensional Gaussian density function with the M-dimensional

Gaussian density function. For j ∈ {1, . . . , d}, we use the notation Σ
( j)
θ = σ

( j)
θ . Recall that

ψ(θ, s1, s2, z) =
∂

∂θ
log(Pθ(s1, s2) fθ(s2, z))

Fix an integer r ∈ {1, . . . , d}. Assume that θ(r) = Pθ( j, k) for some j, k ∈ S . Then

∂

∂θ(r) log(Pθ(s1, s2) fθ(s2, z)) =
1{ j}(s1)1{k}(s2)

Pθ( j, k)
.

Clearly, for such an r, we have that the sequence (ψ(r))i∈N belongs to the class C3 by assumption
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(P1’). Now, assume that θ(r) = µ
( j)
θ for some j ∈ S , then

∂

∂θ(r) log(Pθ(s1, s2) fθ(s2, z)) =
(z − µ( j)

θ )1{ j}(s2)(
σ2
θ

)( j) .

Since for any i ∈ N, Zi is mixture of normally distributed random variables, it follows that

(ψ(r))i∈N belongs to the class C3. Assume now that θ(r) =
(
σ2
θ

)( j)
for some j ∈ S . we have that

∂

∂θ(r) log(Pθ(s1, s2) fθ(s2, z)) =
1{ j}(s2)

2


(
z − µ( j)

θ

)2(
σ4
θ

)( j) −
1(

σ2
θ

)( j)

 .
Again, since for any i ∈ N, Zi is mixture of normally distributed random variables, it follows that

(ψ(r))i∈N belongs to the class C3. Assumption (CLT2) can be verified by similar arguments.

To (UC1) and (UC2): Note that the first condition of assumption (UC1) is satisfied by assumption.

For j ∈ {1, . . . , d}, we use again the notation Σ
( j)
θ = σ

( j)
θ . Similarly as above one can show that for

r, s = 1, . . . , d we have (ψ(r))i∈N belongs to the class C5 and that (∂ψ(r)/∂θ(s))i∈N belongs to the

class C3.

Now, we fix two integers r, s ∈ {1, . . . , d}. Assume that θ(r) = Pθ( j, k) for some j, k ∈ S . For s , r,

we have ∂ψ(r)
i /∂θ(s) = 0. For s = r, it follows that

∂

∂θ(s)ψ
(r)(θ, s1, s2, z) =

−1{ j}(s1)1{k}(s2)
(Pθ( j, k))2 .

It follows that (∂ψ(r)/∂θ(s))i∈N belongs to the class C3,2 with

ψ̄(z) = sup
θ∈B(θ∗,δ0)

2
(Pθ(s1, s2))3 .

Assume now that θ(r) = µ
( j)
θ for some j ∈ S . Then ∂ψ(r)/∂θ(s) = 0 whenever s , r or θ(s) = σ

( j)
θ .

For s = r we have
∂

∂θ(s)ψ
(r)(θ, s1, s2, z) =

−1{ j}(s2)(
σ2
θ

)( j) .

It follows that (∂ψ(r)/∂θ(s))i∈N belongs to the class C3,2 with

ψ̄(z) = sup
θ∈B(θ∗,δ0)

1(
σ4
θ

)( j) .

The other cases can be treated similarly. Assumption (UC2) follows by similar arguments.

The application of Theorem 2.12 and Proposition 2.11 leads to the following result.

Corollary 3.4. For any initial distribution ν ∈ P(S ), we have in the setting of the linear Gaussian
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model that
√

nG−1/2
n,QMLFn,QML(θQML

ν,n − θ∗)
D
→ Z,

and

lim
n→∞

√
nG−1/2

n,MLFn,ML(θML
ν,n − θ

∗)
D
→ Z

as n→ ∞, where Z ∼ N(0, I), G1/2
n,QMLG1/2

n,QML = Gn,QML and G1/2
n,MLG1/2

n,ML = Gn,ML.

3.3 Discussion

Here we want to illustrate a hybrid model, i.e., the non-observed sequence Y is Poisson distributed

and the inhomogeneous noise is normally distributed.

More precise, let (Xn)n∈N be a Markov chain with irreducible transition matrix Pθ∗ and

stationary measure π. Assume that X1 ∼ π and for i = 1, . . . ,K let λ(i)
θ∗ > 0. Further, define

the vector λθ∗ = (λ(1)
θ∗ , . . . , λ

(K)
θ∗ ). Conditioned on X the non-observed homogeneous sequence

Y = (Yn)n∈N is an independent sequence of Poisson-distributed random variables with parameter

λ(Xn)
θ∗ . Hence, given Xn we have Yn ∼ Poi(λ(Xn)

θ∗ ). The observed sequence Z = (Zn)n∈N is determined

by

Zn = Yn + εn,

where (εn)n∈N is an independent sequence of random variables with εn ∼ N(0, β2
n) and a sequence

(βn)n∈N is a sequence of positive and real-valued numbers, which converges sufficiently fast to

zero.

The main issue here is that the observed sequence Z takes values in R whereas Y takes values

in N. Set G = R equipped with the reference measure

λ(A) = L(A) +

∞∑
i=0

δi(A), A ∈ B(R).

Here L(·) denotes the Lebesgue measure and δi(·) the Dirac-measure at point i ∈ N. The

conditional density fθ,n(s, z) with respect to λ is given by

fθ,n(s, z) =


∑∞

j=0
λ(s)
θ∗

j! exp(−λ(s)
θ∗ ) 1

(2πβ2
n)1/2 exp

(
−

(z− j)2

2β2
n

)
z ∈ R\N

0 z ∈ N.

It is straightforward to show that (C2) is not satisfied in this scenario. Assumption (C2) is difficult

to handle, whenever the support of fθ is strictly “smaller” than the support of fθ,n.

We just want to mention a possible strategy to resolve this problem. First, transform the

observed sequence Z to a sequence Z̃ such that the support of the conditional density f̃θ,n is the

same as the support of fθ. In the illustrating Poisson model with Gaussian noise one can project

the sequence to the natural numbers. Next, prove for this new model that the quasi-likelihood

estimator θ̃QML
ν,n for Z̃ is consistent, for example by verifying the structural conditions above.
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Finally prove that

θQML
ν,n − θ̃QML

ν,n → 0 Pπθ∗a.s.

as n→ ∞. A similar strategy can be used to prove strong consistency for the maximum likelihood

estimator.



Section 4

Proofs of asymptotic results

In this section we will provide the strategy of the proofs of our main results. We relate the

strategies to other proofs of asymptotic results for maximum likelihood estimation in HMMs and

sketch the main steps. Details of technical proofs can be found in Appendix A.

4.1 Proof of Theorem 2.6

The general strategy of the proof is similar to the study of consistency of the MLE in homogeneous

HMMs, see Baum and Petrie (1966), Leroux (1992) and Douc et al. (2011). It is based on the

ideas in Wald (1949), i.e., we want to prove that for any closed set C ⊂ Θ with θ∗ < C

Pπθ∗

 lim
n→∞

sup
θ∈C

qνθ(Z1, . . . ,Zn)

qνθ∗(Z1, . . . ,Zn)
= 0

 = 1. (4.1)

Recall that

θQML
ν,n = argmax

θ∈Θ
log

(
qνθ(z1, . . . , zn)

)
.

It follows that
qν
θQML
ν,n

(z1, . . . , zn)

qνθ∗(z1, . . . , zn)
≥ 1 ∀n ∈ N. (4.2)

Given (4.1) and (4.2), Theorem B.1 shows the strong consistency of θQML
n . In order to show (4.1),

Lemma B.2 implies that it is sufficient to prove that

lim sup
n→∞

sup
θ∈C

1
n
`Q
ν,n(θ) < lim

n→∞

1
n
`Q
ν,n(θ∗), Pπθ∗-a.s., (4.3)

provided the limit on the right side exists, which will be shown in Theorem 4.5. The basic idea to

show (4.3) is to prove that the process Z is asymptotically mean stationary (a.m.s.) with stationary

mean Pπ,Yθ∗ . We refer to Definition 4.2 for a precise definition. The a.m.s. property enables us

to use ergodic theory for the process Z. This in combination with results in the homogeneous

case are the key tools. In Douc et al. (2011) the consistency of the MLE in homogeneous HMMs

is verified under weak conditions. We use the following result of them, which verifies that the
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relative entropy rate exists.

Theorem 4.1. (Douc et al., 2011, Theorem 9) Assume that conditions (P1) and (H1) are satisfied.

Then, there exists an `(θ∗) ∈ R, such that

`(θ∗) = lim
n→∞
Eπθ∗

[
n−1 log qπθ∗(Y1, . . . ,Yn)

]
(4.4)

and

`(θ∗) = lim
n→∞

n−1 log qνθ∗(Y1, . . . ,Yn), Pπθ∗-a.s. (4.5)

for any probability measure ν ∈ P(S ) which is strictly positive if and only if π is strictly positive.

In the proof of the previous result one essentially uses the generalized Shannon-McMillan-

Breiman theorem for stationary processes proven by Barron (1985). Additionally, we also use a

version of the generalized Shannon-McMillan-Breiman theorem for asymptotic mean stationary

processes, also proven in Barron (1985). In the following we provide basic definitions to apply

this result, for a detailed survey let us refer to Gray (2009).

Definition 4.2. Let (Ω,F ) be a measurable space equipped with a probability measure Q and let

T : Ω→ Ω be a measurable mapping. Then

• Q is ergodic, if for every A ∈ I either Q(A) = 0 or Q(A) = 1. Here I denotes the σ-algebra

of the invariant sets, that are, the sets A ∈ F satisfying T−1(A) = A.

• Q is called asymptotically mean stationary (a.m.s.) if there is a probability measure Q̄ on

(Ω,F ), such that for all A ∈ F we have

1
n

n∑
j=1

Q
(
T− jA

)
→ Q̄ (A) ,

as n→ ∞. We call Q̄ stationary mean of Q.

• a probability measure Q̂ on (Ω,F ) asymptotically dominates Q if for all A ∈ F with

Q̂(A) = 0 holds

lim
n→∞
Q

(
T−nA

)
= 0.

We need the following equivalence from Rechard (1956). The result follows also by virtue of

Theorem 2, Theorem 3 and the remark after Theorem 3 in Gray and Kieffer (1980).

Lemma 4.3. Let (Ω,F ,Q) be a probability space and T : Ω → Ω be a measurable mapping.

Then, the following statements are equivalent:

(i) The probability measure Q is a.m.s. with stationary mean Q̄.

(ii) There is a stationary probability measure Q̂, which asymptotically dominates Q.
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In our inhomogeneous HMM situation (Ω,F ) is the space GN generated by the one-sided se-

quence Z = (Z1,Z2, . . .) equipped with the product σ-field B =
⊗

i∈NB(G). The transformation

T : GN → GN is the left time shift, that is, for A ∈ B and i ∈ N we have

T−i(A) =
{
(z1, z2, . . .) ∈ GN : (z1+i, z2+i, . . .) ∈ A

}
. (4.6)

Finally Q = Pπ,Zθ∗ . In this setting we have the following result:

Theorem 4.4. Let us assume that condition (C1) is satisfied. Then Pπ,Zθ∗ is a.m.s. with stationary

mean Pπ,Yθ∗ .

Proof. See Appendix A. �

Theorem 4.5. Assume that the conditions (P1), (H1), (H4), (C1) and (C2) are satisfied. Then

lim
n→∞

n−1 log qνθ∗(Z1, . . . ,Zn) = `(θ∗) Pπθ∗-a.s.

for any probability measure ν ∈ P(S ) which is strictly positive if and only if π is strictly positive.

Proof. See Appendix A. �

While most of the previous work consider the relative entropy `(θ) (here `(θ) is defined

analogously to `(θ∗)), for each θ ∈ Θ and prove that the relative distance `(θ∗) − `(θ) is bounded

away from 0, Douc et al. (2011) considered a more direct approach which does not involve the

convergence of the relative entropy for each θ ∈ Θ. Now, we provide a lemma which is essentially

used and proven in Douc et al. (2011). In our setting the formulation and the statement slightly

simplifies compared their result, since we only consider finite state spaces.

Lemma 4.6. Let δ be the counting measure on S . Assume that the conditions (P1), (P2) and

(H1) – (H3) are satisfied. Then, for any θ ∈ Θ with θ / θ∗, there exists a natural number nθ and a

real number ηθ > 0 such that B(θ, ηθ) ⊆ Uθ and

1
nθ
Eπθ∗

 sup
θ′∈B(θ,ηθ)

log qδθ′(Y1, . . . ,Ynθ)
 < `(θ∗). (4.7)

Here B(θ, η) ⊆ Θ is the Euclidean ball of radius η > 0 centered at θ ∈ Θ.

Proof. The result follows straightforward from Theorem 12 and the arguments in the proof of

Lemma 13 in Douc et al. (2011). �

With Theorem 4.4, Theorem 4.5 and Lemma 4.6, we can finally show the strong consistency

result.

Theorem 4.7. Assume that the irreducibility and continuity conditions (P1), (P2), the closeness

conditions (C1), (C2) and the well behaving HMM conditions (H1) – (H4) are satisfied. Further,

let the initial distribution ν ∈ P(S ) be strictly positive if and only if π is strictly positive. Then

lim sup
n→∞

sup
θ∈C

1
n
`Q
ν,n(θ) < `(θ∗), Pπθ∗-a.s.,
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Proof. See Appendix A. �

4.2 Proof of Corollary 2.7

In this section we will show that under the assumptions of Theorem 2.6 and condition (C3) the

relative entropy for each θ ∈ Θ with respect to pνθ is ”close” to the relative entropy with respect to

qνθ for any ν ∈ P(S ). Using the same strategy from the previous section this implies the strong

consistency of θML
n,ν whenever θQML

n,ν is strongly consistent.

Proof of Corollary 2.7. We use the same strategy as in the proof of Theorem 2.6. By Theorem

A.7 it follows that

lim
n→∞

n−1 log pπθ∗(Z1, . . . ,Zn) = `(θ∗) Pπθ∗-a.s.

For θ / θ∗, we chose κθ ≤ ηθ, where ηθ is defined in Lemma 4.6, such that B(θ, κθ) ⊂ Eθ. As

explained in the proof of Theorem 2.6, it is sufficient to verify that for any closed set C ⊆ Θ with

θ∗ < C we have

lim sup
n→∞

sup
θ′∈B(θ,κθ)∩C

n−1 log pνθ′(Z1, . . . ,Zn) < `(θ∗) Pπθ -a.s. (4.8)

With k ∈ N from condition (C3) we obtain by using (2.13) that

lim sup
n→∞

sup
θ′∈B(θ,κθ)∩C

n−1 log
(

pνθ′(Z1, . . . ,Zn)
qνθ′(Z1, . . . ,Zn)

)
≤ lim sup

n→∞
sup

θ′∈B(θ,κθ)∩C
n−1 log

 n∏
i=1

max
s∈S

fθ′,i(s,Zi)
fθ′(s,Zi)


= lim sup

n→∞
sup

θ′∈B(θ,κθ)∩C
n−1 log

 n∏
i=k

max
s∈S

fθ′,i(s,Zi)
fθ′(s,Zi)


≤ lim sup

n→∞
n−1 log

 n∏
i=k

sup
θ′∈B(θ,κθ)∩C

max
s∈S

fθ′,i(s,Zi)
fθ′(s,Zi)

 .
By the same arguments as for proving (A.8) in the proof of Theorem 4.5 we get that

Pπθ∗

n−1 log

 n∏
i=k

sup
θ′∈B(θ,κθ)∩C

max
s∈S

fθ′,i(s,Zi)
fθ′(s,Zi)

 ≥ ε
 ≤ exp (n(cn − ε)) ,

with

cn := lim sup
n→∞

n−1 log

Eπθ∗
 n∏

i=k

sup
θ′∈B(θ,κθ)∩C

max
s∈S

fθ′,i(s,Zi)
fθ′(s,Zi)


 .

Corollary A.9 and the Borel Cantelli lemma imply that

Pπθ∗

lim sup
n→∞

sup
θ′∈B(θ,κθ)∩C

n−1 log
(

pνθ′(Z1, . . . ,Zn)
qνθ′(Z1, . . . ,Zn)

)
≤ 0

 = 1.
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Similarly, it follows that

Pπθ∗

lim sup
n→∞

sup
θ′∈B(θ,κθ)∩C

n−1 log
(

qνθ′(Z1, . . . ,Zn)
pνθ′(Z1, . . . ,Zn)

)
≤ 0

 = 1,

which implies that

lim sup
n→∞

sup
θ′∈B(θ,κθ)∩C

n−1 log pνθ′(Z1, . . . ,Zn) = lim sup
n→∞

sup
θ′∈B(θ,κθ)∩C

n−1 log qνθ′(Z1, . . . ,Zn).

Finally, the assertion follows from (A.11). �

4.3 Proof of Theorem 2.12

In this section we will sketch the main steps of the proof of Theorem 2.12. The proof is closely

related to the proof of Theorem 1 in Jensen (2011a) and consists of two steps. First, in Theorem

4.8 a central limit theorem for the S n,QML(θ∗) is proven. Second, Theorem 4.9 shows that the

derivative of S n,QML(θ∗) converges to a non-random limit. A Taylor expansion then yields the

asymptotic normality of any strongly consistent estimator. This strategy is widely used in proving

asymptotic normality of the MLE in homogeneous HMMs, see Bickel et al. (1998), Douc and

Matias (2001) and Douc et al. (2004).

Theorem 4.8. Suppose that (P1’) and (CLT1) hold. Then

Varπθ∗
(
S n,QML(θ∗)

)−1/2 S n,QML(θ∗)
D
→ Z,

as n→ ∞, where Z ∼ N(0, I).

Theorem 4.9. Recall the definition of Fn,QML from (2.17). Suppose that (P1’) and (UC1) hold.

Let Jn(θ) = −∇S n,QML(θ). Then

lim
n→∞

sup
θ∈B(θ∗,δn)

∣∣∣Jn(θ)/n − Fn,QML
∣∣∣ Pπθ∗−−→ 0,

as n→ ∞ for any real-valued sequence (δn)n∈N with limn→∞ δn = 0.

Given Theorem 4.8 and Theorem 4.9 the proof of Theorem 2.12 is straightforward. Let

a, b, n ∈ N with a ≤ b. For legibility reasons we occasionally write wa:b instead of wa, . . . ,wb for

arbitrary sequences. In the following let ∇ and ∇2 take derivatives w.r.t. θ ∈ Θ. Equation (2.9)
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implies that for some sequence (θ̄n)n∈N in Θ with θ̄n → θ∗ Pπθ∗-a.s. as n→ ∞ we have

0 = ∇ log qν
θQML
ν,n

(Z1, . . . ,Zn)

= ∇ log qνθ∗(Z1, . . . ,Zn) + ∇2 log qν
θ̄n

(Z1, . . . ,Zn)(θQML
ν,n − θ∗)

= S n,QML(θ∗) − Jn(θ̄n)(θQML
ν,n − θ∗)

+ Eνθ∗

∇ log (ν(X1) fθ∗(X1,Z1))
qν,1:n
θ∗,1:1(X1 | Z1:n)

pν,1:n
θ∗,1:1(X1 | Z1:n)

| Z1:n


+ ∇Eνθ∗

∇ log (ν(X1) fθ∗(X1,Z1))
qν,1:n
θ∗,1:1(X1 | Z1:n)

pν,1:n
θ∗,1 (X1 | Z1:n)

| Z1:n

 (θQML
ν,n − θ∗).

Note that∣∣∣∣∣∣∣
Eνθ∗

∇ log (ν(X1) fθ∗(X1,Z1))
qν,1:n
θ∗,1:1(X1 | Z1:n)

pν,1:n
θ∗,1:1(X1 | Z1:n)

| Z1:n



∣∣∣∣∣∣∣ ≤ max

s∈S

∣∣∣∇ log fθ∗(s,Z1)
∣∣∣ < ∞,

and∥∥∥∥∥∥∥∇
Eνθ∗

∇ log (ν(X1) fθ∗(X1,Z1))
qν,1:n
θ∗,1:1(X1 | Z1:n)

pν,1:n
θ∗,1:1(X1 | Z1:n)

| Z1:n



∥∥∥∥∥∥∥

2

≤ max
s∈S

∣∣∣∇2 log fθ∗(s,Z1)
∣∣∣ < ∞,

by assumption (CLT1). Furtermore, assumption (CLT1) implies that

λmin
(
Varπθ∗(S n,QML)(θ∗)

)
≥ nc0

for some constant c0 > 0. It follows that

Varπθ∗(S n,QML(θ∗))−1/2

Eνθ∗
∇ log (ν(X1) fθ∗(X1,Z1))

qν,1:n
θ∗,1:1(X1 | Z1:n)

pν,1:n
θ∗,1:1(X1 | Z1:n)

| Z1:n


 Pπθ∗−−→ 0

and

Varπθ∗(S n,QML(θ∗))−1/2∇

Eνθ∗
∇ log (ν(X1) fθ∗(X1,Z1))

qν,1:n
θ∗,1:1(X1 | Z1:n)

pν,1:n
θ∗,1:1(X1 | Z1:n)

| Z1:n


 Pπθ∗−−→ 0,

as n→ ∞. This together with Theorem 4.8 imply that

Varπθ∗
(
S n,QML(θ∗)

)−1/2 Jn(θ̄n)(θQML
ν,n − θ∗)→ Z,
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where Z ∼ N(0, I) as n→ ∞. Finally, note that

√
nG−1/2

n,QMLFn,QML(θQML
ν,n − θ∗)

= nVarπθ∗
(
S n,QML(θ∗)

)−1/2 Jn(θ̄n)/n
(
Jn(θ̄n)/n

)−1
Fn,QML(θQML

ν,n − θ∗)

= Varπθ∗
(
S n,QML(θ∗)

)−1/2 Jn(θ̄n)
(
Jn(θ̄n)/n

)−1
Fn,QML(θQML

ν,n − θ∗)
D
−→ N(0, Id)

as n→ ∞ by Theorem 4.9 and Slutsky’s theorem.

The main difficulty in proving Theorem 4.8 and Theorem 4.9 arises by replacing the condi-

tional density fθ,i with fθ, since the expected value of S n,QML(θ∗) is not zero.

4.3.1 A central limit theorem

In order to derive a central limit theorem (CLT) for S n,QML(θ∗) we will use a CLT for sums of

weakly dependent random variables developed by Jensen (2011b).

Theorem 4.10 (Theorem 1 in Jensen (2011b)). Let (Ω,F ,P) be a probability space and let

(Wi)i∈N be random vectors in Rd, d ∈ N and S n =
∑n

i=1 Wi. Let (D j) j∈N be a set of σ-algebras.

For an index set I1 ⊂ N let σ(Di, i ∈ I1) be the smallest σ-algebra that contains all sets

A ∈ Di, i ∈ I1. For two index sets I1, I2 with I1, I2 ⊂ N, define the strong mixing coefficient by

α(k, l, r) = sup
Ai∈σ(D j: j∈Ii), i=1,2

|I2 |≤k, |I1 |≤l, dist(I1,I2)≥r

|P(A1 ∩ A2) − P(A1)P(A2)| .

Here

dist(I1, I2) = min
i∈I1, j∈I2

|i − j| .

Assume that there exist constants δ0, ε0 > 0, constants δ1, δ2 ≥ 0, a constant β with β >

δ1 + δ2 + max{(2 + δ0)/δ0, 1 + δ2, 2} and constants c0, c1, c2 such that the following holds:

(1) For all i ∈ N we have E [Wi] = 0 and E
[
|Wi|

2+δ0
]
≤ c0. Further, assume that there exists

an integer n0 such that for all n ≥ n0, n ∈ N, we have

Var(aT S n,QML) ≥ ε0n |a| ∀a ∈ Rd,

(2) For k, l, r ∈ N we have α(k, l, r) ≤ c1kδ1 lδ2 max{1, r}−β.

(3) For all r ∈ N there exists a random variable Wr
j which is measurable w.r.t. σ(Dk : |k − j| ≤

r) and E
[∣∣∣∣W j −Wr

j

∣∣∣∣] ≤ c2r−β.

Then we have

Var(S n)−1/2S n
d
−→ Z,

where Z ∼ N(0, I) as n→ ∞.
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In order to apply Theorem 4.10 we need a strong mixing result for the observation sequence

Z.

Lemma 4.11 (Corollary 1 in Jensen (2011a)). Assume condition (P1’) holds with constants δ0

and p0 and set ρ = 1 − p2
0. For any integers r, t with r < t, any θ ∈ B(θ∗, δ0) and any B ∈ S we

have

sup
s′∈S
Pπθ

(
Xt ∈ B | Xr = s′,Z1, . . . ,Zn

)
− inf

s′∈S
Pπθ

(
Xt ∈ B | Xr = s′,Z1, . . . ,Zn

)
≤ ρt−r.

Furthermore, for any integers r, l, t1, t2 with r < t1 and t2 < l, any θ ∈ B(θ∗, δ0) and any

B ∈ St2−t1+1 we have

sup
sl,sr∈S

Pπθ
(
(Xt1 , . . . , Xt2) ∈ B | Xr = sr, Xl = sl,Z1, . . . ,Zn

)
− inf

sl,sr∈S
Pπθ

(
(Xt1 , . . . , Xt2) ∈ B | Xr = sr, Xl = sl,Z1, . . . ,Zn

)
≤ ρt1−r + ρl−t2 .

Recall the definition of qν,I1
θ,I2

in (2.5). Now, we define a similar function which includes

conditioning on the underlying Markov chain as well. To this end let n ∈ N and I1, I2, I3 be finite

ordered sets with I2, I3 ⊂ I1 ⊂ {1, . . . , n}. Further let s ∈ S I2 , u ∈ S I3 and z ∈ GI1 . We set

qν,I1
θ,I2 |I3

(s | u, z) =

∫
y=(y1,...,yn)∈Gn:

y|I1 =z

∑
x=(x1,...,xn)∈S n:

x|I2 =s,x|I3 =u

ν(x1) fθ(x1, y1)
n∏

i=2
Pθ(xi−1, xi) fθ(xi, yi)λn(y)

∫
y=(y1,...,yn)∈Gn:

y|I1 =z

∑
x=(x1,...,xn)∈S n:

x|I3 =u

ν(x1) fθ(x1, y1)
n∏

i=2
Pθ(xi−1, xi) fθ(xi, yi)λn(y)

.

For a, r, l, b, i, j ∈ N with a ≤ i ≤ j ≤ b and a ≤ r ≤ l ≤ b we write qν,a:b
θ,i: j|r:l for qν,{a,...,b}

θ,{i,..., j}|{r,...,l}. The

following corollary can be shown similarly to Lemma 4.11 by replacing the conditional density

fθ,i with fθ.

Corollary 4.12. Assume condition (P1’) holds with constants δ0 and p0 and set ρ = 1 − p2
0. For

any integers r, t with r < t, any θ ∈ B(θ∗, δ0) and any B ∈ S we have

sup
s′∈S

∑
x∈B

qν,1:n
θ,t:t|r:r(x | s′,Z1, . . . ,Zn) − inf

s′∈S

∑
x∈B

qν,1:n
θ,t:t|r:r(x | s′,Z1, . . . ,Zn) ≤ ρt−r.

Furthermore, for any integers r, l, t1, t2 with r < t1 and t2 < l, any θ ∈ B(θ∗, δ0) and any



36 SECTION 4. PROOFS OF ASYMPTOTIC RESULTS

B ∈ St2−t1+1 we have

sup
sl,sr∈S

∑
(xt1 ,...,xt2 )∈B

qν,1:n
θ,t1:t2 |{r,l}

(xt1 , . . . , xt2 | sr, sl,Z1, . . . ,Zn)

− inf
sl,sr∈S

∑
(xt1 ,...,xt2 )∈B

qν,1:n
θ,t1:t2 |{r,l}

(xt1 , . . . , xt2 | sr, sl,Z1, . . . ,Zn)

≤ ρt1−r + ρl−t2 .

Lemma 4.13 (Corollary 2 in Jensen (2011a)). Assume condition (P1’) holds with constants δ0

and p0 and set ρ = 1 − p2
0. For any integers r, s, t with r < s < t, any θ ∈ B(θ∗, δ0) and any

B ∈ B(G) we have

sup
zr ,zt∈G

Pπθ (Zs ∈ B | Zr = zr,Zt = zt) − inf
zr ,zt∈G

Pπθ (Zs ∈ B | Zr = zr,Zt = zt) ≤ ρs−r + ρt−s.

Corollary 4.14. Assume condition (P1’) holds with constants δ0 and p0 and set ρ = 1 − p2
0. Let

ν1, ν2 ∈ P(S ) be two probability measures on S . For any integers n, r, l, i, with n ≥ l ≥ i ≥ r ≥ 1

with and any θ ∈ B(θ∗, δ0) it holds that∑
si−1,si∈S

∑
sr ,st∈S

∣∣∣qν,r:l
θ,(i−1):i|{r,l}(si−1, si | sr, sl,Zr, . . .Zl)

×
(
qν,r:l
θ,(i−1):i(si−1, si | Zr, . . . ,Zl) − qν,1:n

θ,(i−1):i(si−1, si | Z1, . . . ,Zn)
) ∣∣∣

≤ 2(ρi−r + ρl−i).

Proof. We refer to Appendix A. �

Proof of Theorem 4.8. Note that for any integer n with n ≥ n0 we have

S n,QML(θ∗) =

n∑
i=2

Eνθ∗

ψ(θ∗, Xi−1, Xi,Zi)
qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n


=

n∑
i=2

Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n


− Eπθ∗

Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n





+

n∑
i=2

Eπθ∗

Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n


 .
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Observe that∥∥∥∥∥∥∥∥Varπθ∗(S n,QML(θ∗))−1/2
n∑

i=2

Eπθ∗

Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n



∥∥∥∥∥∥∥∥

1

=

∥∥∥∥∥∥∥∥Varπθ∗
(
S n,QML(θ∗)

n

)−1/2 1
√

n

n∑
i=2

Eπθ∗

Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n



∥∥∥∥∥∥∥∥

1

≤

∥∥∥∥∥∥∥Varπθ∗
(
S n,QML(θ∗)

n

)−1/2
∥∥∥∥∥∥∥

1

×
1
√

n

∥∥∥∥∥∥∥∥
n∑

i=2

Eπθ∗

Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n



∥∥∥∥∥∥∥∥

1

≤
√

d

∥∥∥∥∥∥∥Varπθ∗
(
S n,QML(θ∗)

n

)−1/2
∥∥∥∥∥∥∥

2

×
1
√

n

∣∣∣∣∣∣∣∣
n∑

i=2

Eπθ∗

Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n



∣∣∣∣∣∣∣∣
1

≤

√
d
√

c0

1
√

n

∥∥∥∥∥∥∥∥
n∑

i=2

Eπθ∗

Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n



∥∥∥∥∥∥∥∥

1

,

where we used Lemma B.25, the second part of assumption (CLT1) and the fact that for A ∈ Rd×d

it holds that

‖A‖1 ≤
√

d ‖A‖2 .

Note that condition (2.16) in assumption (CLT1) implies that

Varπθ∗(S n,QML(θ∗))−1/2
n∑

i=1

Eπθ∗

Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n


 D
−→ 0,

as n→ ∞.

Now, we apply Theorem 4.10. For j, i ∈ N, let D j be the σ-algebra generated by G. It follows

that the strong mixing condition (2) is satisfied with δ1 = δ2 = 0 and replacing dist(I1, I2)−β by

ρdist(I1,I2) by Lemma 4.13 . We set

Wi = Eνθ∗

ψ(θ∗, Xi−1, Xi,Zi)
qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n


− Eπθ∗

Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n


 .

Let δ0 and p0 be the constants from assumption (P1’) and set ρ = 1 − p2
0. Further, condition
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(CLT1) implies that for r ∈ {1, . . . , d} we have that (ψ(r))i∈N belongs to the class C3 and therefore

Eπθ [Wi] = 0 and Eπθ
[
|Wi|

3
]
< ∞,

Now, we check the condition (3) of Theorem 4.10. Let i, l ∈ N such that i − l ≥ 1 and i + l ≤ n.

Corollary 4.14 implies that

∣∣∣∣Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z(i−l):(i+l)


− Eνθ∗

ψ(θ∗, Xi−1, Xi,Zi)
qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n

 ∣∣∣∣
=

∣∣∣∣Eνθ∗
Eνθ∗

ψ(θ∗, Xi−1, Xi,Zi)
qν,(i−l):(i+l)
θ∗,(i−1):i (Xi−1, Xi | Z(i−l):(i+l))

pν,(i−l):(i+l)
θ∗,(i−1):i (Xi−1, Xi | Z(i−l):(i+l))

| Xi−l, Xi+l,Z(i−l):(i+l)

 | Z(i−l):(i+l)


− Eνθ∗

Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Xi−l, Xi+l,Z1:n

 | Z1:n

 ∣∣∣∣
=

∣∣∣∣Eνθ∗
Eνθ∗

ψ(θ∗, Xi−1, Xi,Zi)
qν,(i−l):(i+l)
θ∗,(i−1):i (Xi−1, Xi | Z(i−l):(i+l))

pν,(i−l):(i+l)
θ∗,(i−1):i (Xi−1, Xi | Z(i−l):(i+l))

| Xi−l, Xi+l,Z(i−l):(i+l)

 | Z(i−l):(i+l)


− Eνθ∗

Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z(i−l):(i+l))

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z(i−l):(i+l))

| Xi−l, Xi+l,Z(i−l):(i+l)

 | Z1:n

 ∣∣∣∣
=

∣∣∣∣ ∑
si−l,si+l

∑
si−1,si

ψ(θ∗, si−1, si,Zi)q
ν,(i−l):(i+l)
θ,(i−1):i|{i−l,i+l}(si−1, si | si−l, si+l,Zi−l, . . . ,Zi+l)

×
(
qν,(i−l):(i+l)
θ,(i−1):i (si−l, si+l | Zi−l, . . . ,Zi+l) − qν,1:n

θ,(i−1):i(si−l, si+l | Z1, . . . ,Zn)
) ∣∣∣∣

≤ ψ0(Zi)
∑

si−1,si

∑
si−l,si+l

∣∣∣qν,(i−l):(i+l)
θ,(i−1):i|{i−l,i+l}(si−1, si | si−l, si+l,Zi−l, . . . ,Zi+l)

×
(
qν,(i−l):(i+l)
θ,(i−1):i (si−l, si+l | Zi−l, . . . ,Zi+l) − qν,1:n

θ,(i−1):i(si−l, si+l | Z1, . . . ,Zn)
) ∣∣∣

≤ ψ0(Zi)2
(
ρl + ρl

)
= 4ψ0(Zi)ρl, (4.9)

where ψ0 : G → Rd and (ψ0)(r) is the bound of ψ(r) from Definition 2.3 for r = 1, . . . , d. Taking

the expected value it follows from assumption (CLT1) that

Eπθ∗

∣∣∣∣Eνθ∗
ψ(θ∗, Xi−1, Xi,Zi)

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z(i−l):(i+l)


−Eνθ∗

ψ(θ∗, Xi−1, Xi,Zi)
qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n

 ∣∣∣∣
 ≤ 4ρlK1/3

where K is an upper bound on the third moment of (ψ0)(r)(Zi) for all i ∈ N and all r = 1, . . . , d.

The cases i − l < 1 and i + l > n can be treated similarly using one-sided mixing.

�
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4.3.2 A uniform convergence of the observed information

In this section we will prove Theorem 4.9. The proofs are almost identical to the proofs of Section

5 in Jensen (2011a).

Recall that Jn(θ) = −∇S n,QML(θ). Using formula (3.2) in Louis (1982) we find that

Jn(θ)

= −Eνθ∗

 n∑
i=2

∂

∂θ
(ψ(θ, Xi−1, Xi,Zi))

qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n


− Varνθ∗

 n∑
i=2

∂

∂θ

ψ(θ, Xi−1, Xi,Zi)
qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1:n)

| Z1:n


 .

We will treat the expectation and the covariance matrix separately. For the next lemma, we define

the function h : G → R+ by

h(z) = sup
si,s2∈S

θ∈B(θ∗,δ0),u∈{1,...,d}

∣∣∣ψ(u)(θ, s1, s2, z)
∣∣∣ . (4.10)

Recall that for l, k ∈ N with l ≥ k, we use the abbreviation wk:l = wk, . . . ,wl.

Lemma 4.15. Assume condition (P1’) holds with constants δ0 and p0 and let b : S t−r+1 ×

Gt−r+1 → R be a function such that there is a function b0 : Gt−r+1 → R+ with

sup
sr ,...,st

b(sr:t, zr:t) ≤ b0(zr:t).

Then for any θ ∈ B(θ∗, δ0) and any integer k > 0, we have∣∣∣∣∣∣∣Eπθ
b(Xr:t,Zr:t)

qν,1:n
θ,r:t (Xr:t | Z1:n)

pν,1:n
θ,r:t (Xr:t | Z1:n)

| Z1:n

 − Eπθ∗
b(Xr:t,Zr:t)

qν,1:n
θ∗,r:t(Xr:t | Z1:n)

pν,1,nθ∗,r.t(Xr:t | Z1:n)
| Z1:n


∣∣∣∣∣∣∣

≤ 2b0(Zr:t)

ρ ∣∣∣θ − θ∗∣∣∣ t+k∑
i=r−k+1

h(Zi) + 8ρk


Proof. We refer to Appendix A. �

Proposition 4.16 and Proposition 4.17 are essential in proving a uniform convergence result.

Their proofs are based on Lemma 4.15.

Proposition 4.16. Assume condition (P1’) holds with constants δ0 and p0 and for i ∈ N let

ai : Θ×S ×S ×G → R be a function and let (ai)i∈N belongs to C2,1. Further let h be defined as in

(4.10) and assume that there exists a constant K such that for all i ∈ N we have Eπθ∗
[
|h(Zi)|2

]
< K.
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Then, for any sequence δn → 0 as n→ ∞, we have

lim
n→∞
Eπθ∗

 sup
θ∈B(θ∗,δn)

∣∣∣∣1n
n∑

i=1

Eπθ
ai(θ, X(i−1):i,Zi)

qν,1:n
θ,(i−1):i(X(i−1):i | Z1:n)

pν,1:n
θ,(i−1):i(X(i−1):i | Z1:n)

| Z1:n


−Eπθ∗

ai(θ∗, X(i−1):i,Zi)
qν,1:n
θ∗,(i−1):i(X(i−1):i | Z1:n)

pν,1:n
θ∗,(i−1):i(X(i−1):i | Z1:n)

| Z1:n


 ∣∣∣∣

 = 0. (4.11)

Proof. See Appendix A. �

Proposition 4.17. Assume condition (P1’) holds with constants δ0 and p0 and for i ∈ N let

ai, bi : Θ × S × S × G → R be functions and let (ai)i∈N and (bi)i∈N belong to the class C3,2.

Further, let (δn)n∈N be a sequence such that δn → 0 as n→ ∞. Then

Eπθ∗

 sup
|θ−θ∗ |≤δn

∣∣∣∣1n
n∑

u,v=1

Covνθ

au(θ)
qν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

, bv(θ)
qν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

pν,1,n
θ,(v−1):v(X(v−1):v | Z1:n)

| Z1:n


− Covνθ∗

au(θ∗)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

, bv(θ∗)
qν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n



→ 0,

as n→ ∞.

Proof. We refer to Appendix A. �

Corollary 4.18. Suppose that assumptions (P1’) and (UC1) hold. Further, let (δn)n∈N be a

sequence such that δn → 0 as n→ ∞. Then we have

lim
n→∞

sup
|θ−θ∗ |>δn

∣∣∣∣∣1n (
Jn(θ) − Jn(θ∗)

)∣∣∣∣∣ = 0.

Now, we show that there exists a non-random matrix Fn,QML ∈ R
d×d such that the difference

of 1
n Jn(θ∗) and Fn,QML converges to zero.

Lemma 4.19. Assume condition (P1’) holds with constants δ0 and p0 and for i ∈ N let ai :

Θ × S × S ×G → R be a function and let (ai)i∈N belongs to C3. Then

lim
n→∞

Varπθ∗

 lim
n→∞

1
n

n∑
i=1

Eπθ∗

ai(θ∗, X(i−1):i,Zi)
qν,1:n
θ∗,(i−1):i(X(i−1):i | Z1:n)

pν,1:n
θ∗,(i−1):i(X(i−1):i | Z1:n)

| Z1:n


 = 0.

Proof. We refer to Appendix A. �

Lemma 4.20. Assume condition (P1’) holds with constants δ0 and p0 and for i ∈ N let ai, bi :

Θ × S × S ×G → R be functions and let (ai)i∈N and (bi)i∈N belong to the class C4+δ, for some
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δ > 0. Then

Varπθ∗

1
n

n∑
u=1

n∑
v=1

Covπθ∗

au(θ∗)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

, bv(θ∗)
qν,1,n
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n




→ 0,

as n→ ∞.

Proof. See Appendix A. �

Corollary 4.21. Suppose that assumptions (P1’) and (UC1) hold. Then we have

lim
n→∞

∣∣∣Fn,QML − n−1Jn(θ∗)
∣∣∣ = 0.

4.4 Proof of Proposition 2.11

The assertion is a direct apllication of Theorem 1 in Jensen (2011a) and follows from assumptions

(P1’), (CLT2) and (UC2).



Section 5

Inference in hidden Markov models

In this section we provide an algorithm for calculating of the likelihood function and finding

the MLE efficiently in HMMS. Given the setting described from Section 2.1 and observations

z1, . . . , zn ∈ G for n ∈ N three basic problems are of interest:

(1) Given θ ∈ Θ and an initial distribution ν for X1, how can we compute the likelihood

functions pνθ(z1, . . . , zn) and qνθ(z1, . . . , zn)?

(2) For which θ ∈ Θ is θ 7→ pνθ(z1, . . . , zn) and θ 7→ qνθ(z1, . . . , zn) maximal?

(3) Given θ ∈ Θ, what is the most likely corresponding sequence s1, . . . sn ∈ S of underlying

states?

Remark 5.1. Problem (1) – (3) were first handled by the work of Baum et al. (1970) and

Viterbi (1967). Roughly described their idea is to use an iterative expectation-maximization

(EM) algorithm which updates the parameter in each step and guarantees that the log-likelihood

function `νθ is non-decreasing with respect to the updates of the parameter. After the iterative

procedures is converged, the limiting value θ̂ ∈ Θ can be used to determine the most likely

underlying sequence for θ̂ beginning at Xn and going backwards. The methods of Baum and

Viterbi were extended and specialized by various authors, e.g., Hsiao et al. (2009) and Gerber

et al. (2011).

Another approach solving the problems (2)-(3) are Markov chain Monte Carlo methods,

especially Gibbs sampling. For a comparison of both methods we refer to Ryden (2008).

5.1 Computation of the likelihood function

In the following we will focus on the computation of pνθ(z1, . . . , zn). The computation of

qνθ(z1, . . . , zn) can be treated similarly by replacing the time dependent conditional density fθ,i
with the time independent conditional density fθ for i = 1, . . . , n. Recall that the likelihood

function can be computed via

pνθ(z1, . . . , zn) =
∑

s1:n∈S n

ν(s1) fθ,1(s, z1)
n∏

i=2

Pθ(si−1, si) fθ,i(s, z1). (5.1)
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We see that a direct computation of (5.1) has computational cost nKn and is therefore not suitable

for applications. The forward-backward algorithm, developed by (Baum and Eagon, 1967) has

computational cost O(nK2) and is presented in the following.

The forward-backward algorithm

In this section we fix a parameter θ ∈ Θ and an initial distribution ν ∈ P(S ) of the hidden Markov

chain. First, we define the forward variables αi and backward variables βi, i = 1, . . . , n. They can

be computed recursively (see Proposition 5.3 below). We will suppress the dependency of αi and

βi on θ and ν.

Definition 5.2. Let be α1(s) = π(s) fθ,1(s, z1) and βn(s) = 1 ∀s ∈ S . Furthermore, for i ∈ {2, . . . , n}

define

αi(s) B pνθ(Xi = s, z1, . . . , zi),

βi−1(s) B pθ(zi, . . . , zn | Xi−1 = s),

where

pνθ(Xi = s, z1, . . . , zi) =
∑

s1:(i−1)∈S i−1

ν(s1) fθ,1(s1, z1)
i−1∏
j=2

(Pθ(s j−1, s j) fθ, j(s j, z j))Pθ(si−1, s) fθ,i(s, zi)

and

pνθ(zi, . . . , zn | Xi−1 = s) =
∑

si:n∈S n−i+1

Pθ(s, si) fθ,i(si, zi)
n∏

j=i+1

Pθ(s j−1, s j) fθ, j(s j, z j).

Proposition 5.3. For i ∈ {2, . . . , n} and s ∈ S the forward and backward variables can be

computed recursively via

αi(s) =

K∑
j=1

αi−1( j)Pθ( j, s) fθ,i(s, zi), (5.2)

and

βi−1(s) =

K∑
j=1

βi( j)Pθ(s, j) fθ,i( j, zi). (5.3)

Proof. See Appendix A. �

Now, we can rewrite the likelihood function.

Proposition 5.4. Given θ ∈ Θ and ν ∈ P(S ), we have

pνθ(z1, . . . , zn) =

K∑
k=1

K∑
j=1

αi(k)Pθ(k, j) fθ,i+1( j, zi+1)βi+1( j), i ∈ {1, . . . , n − 1}.
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Proof. Let be i ∈ {1, . . . , n − 1}. Using the definitions of the forward and backward variables it

follows that

pνθ(z1, . . . , zn)

=
∑

s1:n∈S n

ν(s1) fθ,1(s1, z1)
n∏

t=2

Pθ(st−1, st) fθ,t(st, zt)

=
∑
si∈S

∑
si+1∈S

∑
s1:i−1∈S i−1

∑
si+2:n∈S n−i−1

ν(s1) fθ,1(s1, z1)
i−1∏
t=2

Pθ(st−1, st) fθ,t(st, zt)Pθ(si−1, si) fθ,i(si, zi)

Pθ(si, si+1) fθ,i+1(si+1, zi+1)
n∏

t=i+2

Pθ(st−1, st) fθ,t(st, zt)

=

K∑
k=1

K∑
j=1

∑
s1:i−1∈S i−1

ν(s1) fθ,1(s1, z1)
i−1∏
t=2

Pθ(st−1, st) fθ,t(st, zt)Pθ(si−1, k) fθ,i(k, zi)

Pθ(k, j) fθ,i+1( j, zi+1)
∑

si+2:n∈S n−i−1

n∏
t=i+2

Pθ(st−1, st) fθ,t(st, zt)

=

K∑
k=1

K∑
j=1

αi(k)Pθ(k, j) fθ,i+1( j, zi+1)βi+1( j)

�

Remark 5.5. The forward and backward variables can be computed with computational cost of

O(nK2).

5.2 Parameter estimation using dynamic programming

In this section we will approximate the MLE using an algorithm developed by Baum and Eagon

(1967). In the HMM literature the algorithm is usually called Baum-Welch algorithm. It is an

instance of the more general EM algorithm introduced by Dempster et al. (1977).

The expectation maximization algorithm

The EM algorithm is a general approach to the iterative computation of maximum likelihood

estimates when the observations can be viewed as incomplete data. Hence, let X ,Y be two

sample spaces and let H : X → Y be a surjective mapping. Let X : (Ω,F ,P)→ (X ,B(X ))

and Y : (Ω,F ,P) → (Y ,B(Y )) be two random variables mapping from a probability space

(Ω,F ,P) into X ,Y , respectively. The observed data Y = y ∈ Y corresponds to a least one

x ∈X via H, whereas X = x is not observed. Additionally, assume that (Θ,m) is a Polish space

and for θ ∈ Θ the random variable X has a parametrized density function pθ with respect to a
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σ-finite λ measure on X . Then, Y has a density function gθ(·), given by

gθ(y) =

∫
{x:H(x)=y}

pθ(x)λ(dx).

with respect to λ|Y , where λ|Y is the restriction of λ onto Y . We assume that there exists a “true”

parameter θ∗ ∈ Θ and let θ1 ∈ Θ be an arbitrary parameter. The general idea is to maximize pθ
instead of gθ. Since the complete data is not given, the expected value under the previous estimate

θk, k ∈ N of the complete likelihood function given the observations Y = y is maximized. For

k ∈ N and θk ∈ Θ the iteration of the EM algorithm is therefore given by

θk+1 ∈ argmax
θ∈Θ

Q(θ | θk),

where

Q(θ | θk) B Eθk

[
log(pθ(X)) | Y = y

]
. (5.4)

Note that the starting parameter θ0 ∈ Θ can be chosen arbitrarily. Here, the expectation is taken

with respect to the conditional density of X given Y , i.e.,

Eθk

[
X | Y = y

]
=

∫
x∈X

x
pθk (x)
gθk (y)

dx.

We distinguish two steps:

E-step: Given θk ∈ Θ, determine Q(θ | θk).

M-step: Choose θk+1 ∈ Θ to be any value in set argmax
θ∈Θ

Q(θ | θk).

The following Proposition verifies the idea.

Proposition 5.6. Let `(·) be the log-likelihood function of Y and (θk)k∈N be an instance of the

EM algorithm. Then, for all k ∈ N we have

`(θk+1) ≥ `(θk).

Proof. Let θ, θ′ ∈ Θ. Then

`(θ′) = log gθ′(y)

= Eθ
[
log(gθ′(Y)) | Y = y

]
= Eθ

[
log(pθ′(X)) | Y = y

]
− Eθ

[
log(pθ′(X)) | Y = y

]
+ Eθ

[
log(gθ′(Y)) | Y = y

]
= Q(θ′ | θ) − H(θ′ | θ)
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where

H(θ′ | θ) = Eθ

[
log

(
pθ′(X)
gθ′(Y)

)
| Y = y

]
.

Jensen’s inequality implies that

H(θ | θk) ≤ H(θn | θk), ∀θ ∈ Θ, (5.5)

which completes the proof. �

Remark 5.7. Since (5.5) holds, it follows that the log-likelihood increases in each step at least by

Q(θn+1 | θn) − Q(θn | θn).

Despite the property that we do not decrease the value of the likelihood function in any

iteration, there is no guarantee that the EM-algorithm will converge to a global maximum. This is

due to the fact that the likelihood function in general is multimodal. In fact, we have to make

additional assumptions to ensure convergence to a local maximum of the likelihood. We define

M to be the set of local maxima of ` and S as the set of saddle points of ` in the interior of Θ.

Theorem 5.8. (Wu, 1983, Theorem 3) Suppose that Θ is compact and Q(· | ·) is continuous in

both arguments, where Q is defined as in (5.4). If

max
θ∈Θ

Q(θ | θ′) > Q(θ′ | θ′), for any θ′ ∈ S \M (5.6)

Then all limit points of (θk)k≥1 of the EM algorithm are local maxima of ` and `(θk)→ `(θ0) as

k → ∞ for some local maximum θ0 ∈M .

Remark 5.9. Condition 5.6 is satisfied for any density pθ belonging to the class of standard

exponential families.

The Baum-Welch algorithm

The estimation of the parameters of the inhomogeneous hidden Markov model (Xn,Zn)n∈N can

be regarded as a missing data problem. The incomplete data is the observation sequence Z1 =

z1, . . . ,Zn = zn, while the complete data is the joint Markov chain (X1 = x1,Z1 = z1), . . . , (Xn =

xn,Zn = zn). For t ∈ N and i, j ∈ S let ξt(i, j) = Pνθ(Xt = i, Xt+1 = j | Z1 = z1, . . . ,Zn = zn) be the

conditional probability of the states i and j at time t and t + 1 respectively conditioned on the

observed sequence z1, . . . , zn. The following proposition relates the conditional probabilities with

the forward and backward variables.
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Proposition 5.10. Fix θ ∈ Θ and ν ∈ P(S ). For any i, j ∈ S and t ∈ {1, . . . , n − 1} it holds that

ξt(i, j) =
αt(i)Pθ(i, j) fθ,t+1( j, zt+1)βt+1( j)

K∑
s1=1

K∑
s2=1

αt(s1)Pθ(s1, s2) fθ,t+1(s2, zt+1)βt+1(s2)

Proof. See Appendix A. �

For θ ∈ Θ and ν ∈ P(S ) denote by pν,X,Zθ (x1, z1, . . . , xn, zn) the likelihood of the complete data

(x1, z1), . . . , (xn, zn). Note that

pθ(x1, z1, . . . , xn, zn)ν,X,Z = ν(x1) fθ,1(x1, z1)
n∏

i=2

Pθ(xi−1, xi) fθ,i(xi, zi).

Hence, for θ, θ′ ∈ Θ, the E-step reduces to

Q(θ′ | θ)

= Eνθ
[
log

(
pν,X,Zθ′ (X1,Z1, . . . , Xn,Zn)

)
| Z1 = z1, . . . ,Zn = zn

]
=

∑
s1:n∈S n

log
(
pν,X,Zθ′ (s1, z1, . . . , sn, zn)

)
Pνθ (X1 = s1, . . . , Xn = sn | Z1 = z1, . . . ,Zn = zn)

=
∑

s1:n∈S n

log (ν(s1)) +

n−1∑
i=1

log (Pθ′(si, si+1)) +

n∑
i=1

log
(
fθ′,i(si, zi)

)Pνθ (X1:n = s1:n | Z1:n = z1:n)

=

K∑
i=1

log(ν(i))γ1(i) +

K∑
i=1

K∑
j=1

n−1∑
t=1

log (Pθ′(i, j)) ξt(i, j) +

K∑
i=1

n∑
t=1

log
(
fθ′,t(i, zt)

)
γt(i), (5.7)

where

γt(i) = Pνθ (Xt = i | Z1 = z1, . . . ,Zn = zn) =

K∑
j=1

ξt(i, j), i ∈ S , t ∈ {1, . . . , n}.

Let be k ∈ N and θk ∈ Θ ⊂ Rd. For d1, d2 ∈ N with d1 + d2K = d assume that we

can decompose θk = (ρk, φ
(1)
k , . . . , φ(K)

k ) into a parameter ρk ∈ Θ1 ⊂ R
d1 and K parameters

φ(1)
k , . . . , φ(K)

k with φ(i)
k ∈ Θ2 ⊂ R

d2 , i = 1, . . . ,K. Furthermore, assume that Pθk is determined

by ρk and fθk ,i(s, z) is determined by φ(s)
k , where i ∈ N, s ∈ S , z ∈ G. Then the M-step can be

decomposed into several separate maximization problems:

ρk+1 ∈ argmax
ρk∈Θ1

n−1∑
t=1

K∑
i=1

K∑
j=1

log
(
Pθk (i, j)

)
ξn(i, j), (5.8)

φ(i)
k+1 ∈ argmax

φ(i)
k ∈Θ2

n∑
t=1

log
(
fθk ,t(i, zt)

)
γt(i), i = 1, . . . ,K. (5.9)

Furthermore, if ρk =
((

Pθk (1, 1)
)
, . . . ,

(
Pθk (K − 1,K − 1)

))T the solution of the maximization
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problem (5.8) is given by

(
Pθk+1(i, j)

)
=

n−1∑
t=1

εt(i, j)

n−1∑
t=1

γt( j)
, i, j ∈ S .

The maximization in (5.9) depends on the density function fθk ,t. In general, a closed-form solution

is not guaranteed.

A forward algorithm for filtered Gaussian models

In this section we will neglect the additional inhomogeneous noise and propose a forward

algorithm for filtered data. Assume that the conductance level recordings of an ion channel

follows a Gaussian HMM, i.e., there exists an underlying Markov chain X = (Xn)n∈N on a finite

state space S = {1, . . . ,K} governed by an irreducible transition matrix Pθ. The conductance level

recordings (Ỹn)n∈N are given by

Ỹn = µ(Xn)
θ + σ(Xn)

θ Vn,

where µ ∈ RK , σ ∈ RK
+ and (Vi)i∈N are iid random variables with V1 ∼ N(0, 1). Further we

assume that θ ∈ R(K−1)2+2K and

θ = (Pθ(1, 1), . . . , Pθ(K − 1,K − 1), µ(1)
θ , . . . , µ(K)

θ , (σ(1)
θ )2, . . . , (σ(K)

θ )2)T .

Ion channel recordings are usually filtered, which averages the conductance levels according

to the filter coefficients, see Sigworth (1986). We will focus on the case where the filter B =

(B(0), . . . , B(b−1)) is discrete with finite length b such that

b−1∑
j=0

B( j) = 1.

Then the observed sequence (Yn)n∈N is modeled by

Yn =

b−1∑
j=0

B( j)Ỹn− j.

For n ∈ N with n ≥ 2b − 1 we write yn−1 = (yn−1, . . . , yn−b+1) and xn = (xn, . . . , xn−2b+2)

and similarly for Xn and Yn−1. Observe that conditioned on Xn = xn, we have that (Yn,Yn−1) is

multivariate normally distributed with mean

µ̄ = (µ̄(1), . . . , µ̄(b)),
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where

µ̄(i) =

b−1∑
j=0

B( j)µ(x(i+ j)
n ), i = 1, . . . , b

and covariance matrix

Σ2 =

Σ2
1,1 Σ2

1,2

Σ2
2,1 Σ2

2,2

 ,
with Σ2

1,1 ∈ R+, Σ2
2,1 ∈ R

b−1, Σ2
1,2 = (Σ2

2,1)T and Σ2
2,2 ∈ R

b−1×b−1. The covariance matrix Σ2 is

symmetric and the lower triangular entries are given by

(Σ2)i,k =

b−1−(i−k)∑
j=0

B( j)B( j+(i−k))
(
σ(x( j+i+(i−k))

n )
)2
, 1 ≤ k ≤ i with i ≤ b.

It follows that

Yn | Yn−1 = y,Xn = xn ∼ N
(
µ̄(1) + Σ1,2Σ−1

2,2(y − (µ̄(2), . . . , µ̄(n))),Σ1,1 − Σ1,2Σ−1
2,2Σ2,1

)
. (5.10)

We see that the computation of the conditional likelihood of Yn involves the 2b − 1 previous

states of the underlying Markov chain. This leads to computational costs in the E-step of nK4b−2.

Although there are procedures for filtered ion channel data, see for example Venkataramanan

et al. (2000), Qin et al. (2000) or de Gunst and Schouten (2005), unfortunately none of these

methods can be computed in suitable time. First, the number of data points is usually higher than

107. Second, the filter we deal with has at least 6 significant components.

Therefore we propose a modified forward algorithm which has computation cost in the E-step

of nK2b−1. The idea is based on the following observations in ion channel recordings. The

filter coefficients decrease in time, i.e., B(i) > B( j) for i < j. This implies that for any integer

n,m with n ≥ m, the influence of Xm and Ym on Yn decreases, if n − m increases. Further, we

observe that the probability that Xn , Xn−1 is smaller than 0.5. The basic idea is to replace

xn = (xn, . . . , xn−b+1, . . . , xn−2b+2) ∈ S 2b−1 by x̃n = (xn, . . . , xn−b+1, . . . , xn−b+1) ∈ S 2b−1. Instead

of using (5.10), we propose to use

Yn | Yn−1 = y,Xn = xn ∼ N
(
µ̃(1) + Σ̃1,2Σ̃−1

2,2(yn−1 − (µ̃(2), . . . , µ̃(n))), Σ̃1,1 − Σ̃1,2Σ̃−1
2,2Σ̃2,1

)
(5.11)

to compute the forward variables, where

µ̃(i) =

b−1−i∑
j=0

B( j)µ(x(i+ j)
n ) +

1 − b−1−i∑
j=0

B( j)

 µ(x(b)
n ), i = 1, . . . , b

and

(Σ̃2)i,k =

b−1−(i−k)−i∑
j=0

B( j)B( j+(i−k))
(
σ(x( j+i+(i−k))

n )
)2

+

b−1−(i−k)∑
j=b−1−(i−k)−i+1

B( j)B( j+(i−k))
(
σ(x(b)

n )
)2
.
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Remark 5.11. If for all s ∈ S we have

P(s, s)b > max
s1,...,sb

P(s, s1)
b−1∏
i=2

P(si−1, si−2,

then we replace xn ∈ S 2b−1 in the proposed algorithm with the most likely sequence of states

x̃n ∈ S 2b−1 such that the last b entries of x̃n are equal. A backward algorithm based on this idea

seems inappropriate, due to the replacing procedure. Therefore we use the computed forward

variables to estimate the parameter.



Section 6

Simulations and data analysis

In this section we will perform simulation of the models introduced in Section 3. We will perform

maximum likelihood estimation and quasi-maximum likelihood estimation with the algorithms

described in Section 5. Furthermore, we will analyze a data set from PorB recordings.

6.1 Poisson model

Recall the model from Section 3.1. First, we want to illustrate that the Baum-Welch algorithm

as described in Section 5 can be used to obtain approximates of the MLE. To this end we set

βn = 0 for n ∈ N and therefore Zn = Yn for all n ∈ N. We will denote the resulting parameter of

the BW-algorithm by θML
ν,n . Note that in this homogeneous HMM

Pπθ∗

(
lim
n→∞

∣∣∣θML
ν,n − θ

∗
∣∣∣) = 1,

lim
n→∞

n1/2(θML
ν,n − θ

∗)→ N(0, F−1), (6.1)

where

F = lim
n→∞

1
n

Eπθ

( ∂

∂θ∗
log qπθ∗(Y1, . . . ,Yn)

) (
∂

∂θ∗
log qπθ∗(Y1, . . . ,Yn)

)T  .
We refer to F as the Fisher Information. Unfortunately, there exists no closed-form formula to

compute F. Therefore we use a Monte Carlo simulation with t = 103 trials and n = 105 observa-

tions to compute F. We simulate under the following setting. Let K = 2, θ∗ = (0.6, 0.2, 10, 25),

Pθ∗(1, 1) = 0.6, Pθ∗(1, 1) = 0.2 and λ = (10, 25). Figure 6.1 shows a representative trajectory of

(Yn)n∈N.

The Monte-Carlo simulation leads to

F =


1.21 0.22 −0.015 0

0.22 3.76 0.03 −0.02

−0.01 −0.03 0.03 0

0 −0.02 0 0.03


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Figure 6.1: Exemplary trajectory of model 3.1 with 103 observations and K = 2, θ∗ =

(0.6, 0.2, 10, 25), Pθ∗(1, 1) = 0.6, Pθ∗(2, 1) = 0.2, λ = (10, 25), ν = (1/2, 1/2) and βn = 0
for n ∈ N.

and

F−1 =


0.84 −0.05 0.44 0.04

−0.05 0.27 0.34 0.26

0.44 0.34 41.45 8.29

0.04 0.26 8.29 41.32


.

For j ∈ {1, . . . , t} denote by θML
ν,n ( j) the ML estimator of θ∗ in the j-th trial computed by the

Baum-Welch algorithm. Further, for k ∈ {1, . . . , 4} let µML(k) be the sample mean and σML(k) be

the sample variance of the k-th component of the scaled estimators, i.e.,

µML(k) = t−1
t∑

j=1

n−1/2
(
(θML
ν,n ( j))(k) − θ∗

)
and

σML(k) = (t − 1)−1
t∑

j=1

n−1/2
(
(θML
ν,n ( j))(k) − µML(k)

)2
.

For k = 1, . . . , 4 Table 6.1 compares µML(k) and σML(k) with the theoretical values from

equation (6.1). We observe that the BW-algorithm performs very well in the sense that it reaches

the theoretical boundaries of the MLE.

Parameter component
∣∣∣µML(k)

∣∣∣ F−1(k, k)
∣∣∣F−1(k, k) − σML(k)

∣∣∣
Pθ∗(1, 1) 0.02 0.84 0.13
Pθ∗(2, 1) 0.01 0.27 0
λ(1)
θ∗ 0.12 41.45 1.02
λ(2)
θ∗ 0.15 41.32 2.56

Table 6.1: Component-wise comparison of the theoretical mean and theoretical variance of
limn→∞ n1/2(θML

ν,n − θ
∗) obtained by Monte Carlo simulation with the sample mean µML and

sample variance σML in the Poisson model.
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Now we consider an inhomogeneous HMM with inhomogeneous intensity βn = 10n−1.1, n ∈

N. We leave the other parameters unchanged and compare the performance of θML
ν,n and θQML

ν,n in

Figure 6.2. We see that both estimators converge to θ∗. Naturally, θML
ν,n outperforms θQML

ν,n , since

the inhomogenity is explicitly modeled.
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Figure 6.2: Euclidean distance between θQML
ν,n and θ∗ and between θML

ν,n and θ∗ in the above
described Poisson model with βn = 10n−1.1, n ∈ N.

In the following we analyze the asymptotic behavior of n1/2(θML
ν,n −θ

∗) and n1/2(θQML
ν,n −θ∗). To

this end we generate t = 103 trajectories of the above described model with n = 105 observations.

Figure 6.3 and Figure 6.4 show representative sequences of estimates for Pθ∗(1, 1) and λ(1)
θ∗ ,

respectively. We observe that the absolute values of both estimators are almost equal.
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Figure 6.3: Exemplary sequence of PθQML(1, 1) (top) and PθML(1, 1) (bottom) in the inhomoge-
neous Poisson model with 103 trajectories.

Recall the definitions of Gn,QML, Gn,ML FQML and Fn,ML from Section 2. We compute Gn,QML,

Gn,ML Fn,QML and Fn,ML numerically via a Monte Carlo simulation and observe that all quantities

converges to F. It follows that the θML
ν,n and θQML

ν,n in the inhomogeneous model have the same

Cramér-Rao bound as maximum likelihood estimator in the homogeneous case. For k ∈ {1, . . . , 4}

define µQML(k) and σQML(k) analogously to µML(k) and σML(k). For k ∈ {1, . . . , 4} we compute

the empirical means µML(k), µQML(k) and the empirical variances σML(k), σQML(k) and compare

them with F−1(k, k). Table 6.2 illustrates that θQML
ν,n and θML

ν,n are asymptotically optimal in the
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Figure 6.4: Exemplary sequence of λ(1)
θQML (top) and λ(1)

θML (bottom) in the inhomogeneous Poisson
model with 103 trajectories.

sense that they reach the variance boundaries from the homogeneous case.

Parameter component
∣∣∣µQML(k)

∣∣∣ ∣∣∣µML(k)
∣∣∣ ∣∣∣σQML(k) − F−1(k, k

∣∣∣ ∣∣∣σML(k) − F−1(k, k)
∣∣∣

Pθ∗(1, 1) 0.02 0.02 0.05 0.05
Pθ∗(2, 1) 0 0 0.01 0.01
λ(1)
θ∗ 0.30 0.27 0.87 0.91
λ(2)
θ∗ 0.09 0.01 2.40 2.46

Table 6.2: Component-wise comparison of the theoretical mean and theoretical variance of
limn→∞ n1/2(θML

ν,n − θ
∗) obtained by Monte Carlo simulation with the sample means µML, µQML

and sample variances σML, σQML in the Poisson model with βn = 10n−1.1, n ∈ N.

6.2 Gaussian model

Recall the model from Section 3.2. Again, we use the Baum-Welch algorithm as described in

Section 5 to compute the MLE. Similarly to the previous section we set βn = 0 for all n ∈ N

for the moment. Furthermore we choose M = 1, K = 2, n = 105, θ∗ = (0.1, 0.5, 10, 20, 5, 5),

Pθ∗(1, 1) = 0.1, Pθ∗(2, 1) = 0.5, µθ∗ = (10, 20) and σ2
θ∗ = (5, 5). The Fisher information F in the

homogeneous model has been computed numerically via Monte Carlo simulation with t = 103

trials. The inverse of F is given by

F−1 =



0.28 0.02 0.21 0.03 0.76 −0.46

0.02 0.46 0.33 0.18 1.08 −0.60

0.21 0.33 16.85 1.74 11.98 −5.85

0.03 0.18 1.74 9.57 6.31 −3.37

0.76 1.08 11.98 6.31 191.59 −21.97

−0.46 −0.60 −5.85 −3.37 −21.97 91.59


.
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For j ∈ {1, . . . , t} denote by θML
ν,n ( j) the ML estimator of θ∗ in the j-th trial computed by the

Baum-Welch algorithm. Similarly to Section 6.1 we define the sample mean and the sample

variance of a sequence of estimators. For k ∈ {1, . . . , 6} let µML(k) be the sample mean and

σML(k) be the sample variance of the k-th component of the scaled estimators, i.e.,

µML(k) = t−1
t∑

j=1

n−1/2
(
(θML
ν,n ( j))(k) − θ∗

)
and

σML(k) = (t − 1)−1
t∑

j=1

n−1/2
(
(θML
ν,n ( j))(k) − µML(k)

)2
.

For k = 1, . . . , 6 Table 6.3 compares µML(k) and σML(k) with the theoretical mean and

variance of limn→∞(θML − θ∗). Similarly to the Poisson model in the previous section, the

performance of θML is very close the theoretical boundaries.

Parameter component
∣∣∣µML(k)

∣∣∣ F−1(k, k)
∣∣∣σML(k) − F−1(k, k)

∣∣∣
Pθ∗(1, 1) 0.02 0.28 0.02
Pθ∗(2, 1) 0 0.46 0.06
µ(1)
θ∗ 0.16 16.85 0.31
µ(2)
θ∗ 0.02 9.57 1.64

(σ2
θ∗)

(2) 0.15 191.59 8.93
(σ2

θ∗)
(2) 0.19 91.59 14.90

Table 6.3: Component-wise comparison of the theoretical mean and theoretical variance of
limn→∞ n1/2(θML

ν,n − θ
∗) obtained by Monte Carlo simulation with the sample mean µML and

sample variance σML in the linear Gaussian model.

In the following we will focus on the inhomogeneous case by setting β2
n = 40n−1 for n ∈ N.

Figures 6.5 shows an representative trajectory of the inhomogeneous model.
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Figure 6.5: Exemplary trajectory of 103 observations of the inhomogeneous normal with M = 1,
K = 2, n = 105, θ∗ = (0.1, 0.5, 10, 20, 5, 5), Pθ∗(1, 1) = 0.1, Pθ∗(2, 1) = 0.5, µθ∗ = (10, 20),
σ2
θ∗ = (5, 5) and βi = 40i−1, ∈∈ N.
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In Figure 6.6 we compare the performance of θML
ν,n and θQML

ν,n . Surprisingly, the performance

of θQML
ν,n seems to be slightly better for small n ∈ N. One reason for this could be that in the

M-step for θML
ν,n , no closed-form solution for the variance is available. Therefore we use an

approximate maximal value.
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Figure 6.6: Euclidean distance between θQML
ν,n and θ∗ and Euclidean distance between θML

ν,n and θ∗

in the normal model.

The asymptotic behavior of n1/2(θML
ν,n − θ

∗) and n1/2(θQML
ν,n − θ∗) is similar to the Poisson

model, since again Gn,QML, Gn,ML Fn,QML and Fn,ML converges to F. Note that for i ∈ {1, . . . , 6}

an asymptotic confidence interval for (θ∗)(i) with error rate α ∈ (0, 1) is given by(θML)(i) −
z1− α2√

nF−1
n,ML(i, i)

, (θML)(i) +
z1− α2√

nF−1
n,ML(i, i)


or (θQML)(i) −

z1− α2√
nF−1

n,QML(i, i)
, (θQML)(i) +

z1− α2√
nF−1

n,QML(i, i)

 ,
where zq is the q-quantile of a standard normal distribution.

6.2.1 Slowly decreasing inhomogeneous noise

In this Section we investigate the effects on the asymptotic behavior of the MLE and the quasi-

MLE in the Gaussian linear model from Section 3.2, if the inhomogeneous noise is slowly

decreasing. To be precise, let β2
n = τn−1/2, τ ∈ R+, n ∈ N. Furthermore, we chose M = 1, K = 1,

θ∗ = (0, 1), µθ∗ = 0 and σθ∗ = 1. Since K = 1, we have that (Zn)n∈N is a sequence of independent,

normally distributed random variables with mean zero and variance 1 + β2
n. In the following we
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will suppress the first argument of fθ∗ . Note that

S n,QML(θ) =

n∑
i=2

∂

∂θ
log fθ(Zi)

=

 n∑
i=2

Zi − µθ

2σ2
θ

,

n∑
i=2

(Zi − µθ)2

2(σ2
θ)

2
−

1
2σ2

θ

T

.

It follows that assumption (CLT1) is fulfilled if

lim
n→∞

n−1/2
n∑

i=1

β2
i = 0.

However, we have

lim
n→∞

n−1/2
n∑

i=1

β2
i = 2τ.

Remark 6.1. A similar calculation shows for the Poisson model from Section 3.1 with K = 1 and

inhomogeneous intensity βi for i ∈ N that condition (2.16) holds whenever

βn = O(n−1/2).

We can still find an asymptotic law for n1/2(θQML
n − θ). To this end note that

lim
n→∞

Fn,QML = lim
n→∞

n−1Eθ∗

[
−
∂

∂θ
S n,QML(θ∗)

]

= lim
n→∞

n−1Eθ∗


n∑

i=2

1
2σ2

θ∗

n∑
=2

Zi−µ

2(σ2
θ∗

)2

n∑
i=2

Zi−µ

2(σ2
θ∗

)2

n∑
i=2

(Zi−µ)2

(σ2
θ∗

)3 −
1

2(σ2
θ∗

)2


=


1

2σ2
θ∗

0

0 1
2(σθ∗ )2 + lim

n→∞
n−1

n∑
i=2

βi

(σ2
θ∗

)3


=


1

2σ2
θ∗

0

0 1
2(σ2

θ∗
)2


and similarly

lim
n→∞

Gn,QML = lim
n→∞

n−1Varθ∗(S n,QML(θ∗))

=


1
σ2
θ∗

0

0 1
2(σ2

θ∗
)2

 .
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It follows that

n1/2(θQML
ν,n − θ)

D
−→ N


 0

2τ

 ,
2σ2

θ∗ 0

0 2(σ2
θ∗)

2


 ,

as n → ∞. We want to stress, that θQML
ν,n is still strongly consistency. Figure 6.7 illustrates an

exemplary trajectory of
∣∣∣∣θQML
ν,n − θ∗

∣∣∣∣.
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Figure 6.7: Representative trajectory of
∣∣∣∣θQML
ν,n − θ∗

∣∣∣∣ with τ = 10.

An asymptotic confidence interval for (θ∗)(2) is given by

Iτ,σ2,n =

(θQML
ν,n )(2) −

2τ + z1− α2

(θQML
ν,n )(2)

√
2n
, (θQML

ν,n )(2) +
2τ − z1− α2

(θQML
ν,n )(2)

√
2n

 .
We want to compare the quality of Iτ,σ2,n and the naive confidence interval Iσ2,n, where

Iσ2,n =

(θQML
ν,n )(2) −

z1− α2

(θQML
ν,n )(2)

√
2n
, (θQML

ν,n )(2) +
z1− α2

(θQML
ν,n )(2)

√
2n

 .
To this end, we define the success rate sσ2

θ∗
(I) of an interval I = [a, b], a, b ∈ R to be the relative

frequency of successes, where a success is the event σ2
θ∗ ∈ I. Figure 6.8 shows the success rates

of Iτ,σ2,n and Iσ2,n with 103 trials as a function of the number observations for τ = 1.

6.2.2 Filtered Gaussian model

In this section we want to simulate from the scenario we find in ion channel recordings. Note that

the current recordings are filtered by a 4-pole Bessel filter Bcont with sampling rate 104 and cutoff

frequency 103. Figures 6.9 shows its kernel function k. Therefore, for a time-continuous signal

(Yt)t∈R the filtered signal (Wt)t∈R is given by the convolution of Wt and Bcont, i.e.,

Wt = Yt ∗ Bcont B

∞∫
−∞

Yt−sk(s)d(s) =

∞∫
0

Yt−sk(s)d(s).
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Figure 6.8: Success rate of Iτ,σ2,n (blue) and Iσ2,n (red) for βn = n−1/2, n ∈ N.
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Figure 6.9: Kernel function k of a 4-pole Bessel filter with sampling rate 104 and cutoff frequency
103.

Since we observe a time-discrete process (Wn)n∈N, we approximate the filtered data by

Wn ≈

b−1∑
i=0

Yn−ibi,

where b = 8,

b0 =

0.5∫
0

k(s)d(s)

and

bi =

i+0.5∫
i−0.5

k(s)d(s), i = 1, . . . , 7.

The resulting discrete filter is given by B = (0.002, 0.067, 0.21, 0.276, 0.232, 0.140, 0.060, 0.015)T .

Assume now we are in the setting of the linear Gaussian model from Section 3.2 with M = 1 and

K = 2, but instead of

Zn = Yn + εn,
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we observe

Zn = Wn + εn,

where

Wn =

b−1∑
i=0

Yn−ibi.

Furthermore, µθ∗ ∈ R2 and σ2
θ∗ ∈ R

2
+ are assumed to be known. This is a reasonable assumption

in ion channel recordings, since due to the long-term persistence in each state these parameters

can be estimated very well in advance. For the simulation study we assume that θ∗ = (0.99, 0.4),

Pθ∗(1, 1) = 0.99, Pθ∗(2, 1) = 0.4 and βn = 0.2n−1 for n ∈ N. Furthermore we set µθ∗ = (2, 1) and

σ2
θ∗ = (0.1, 0.1). Figure 6.10 illustrates an exemplary trajectory of (Zn)n∈N together with a typical

blockage event. We simulate t = 103 trajectories of n = 106 observations and estimated θ∗ using
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Figure 6.10: Exemplary trajectory of (Zn)n∈N (top) and blockage event (bottom).

the forward algorithm described in Section 5.2. The averaged estimated parameter θQML
av is given

by θQML
av = (0.989, 0.398). This shows that the forward performs well.

6.3 Ion channel recordings

In this section we apply to the forward algorithm from Section 5.2 to ion channel recordings and

present our results. The results concerning experiments with constant voltage can be found in

Bartsch et al. (2017).

Against the background of multidrug-resistant bacteria we explored together with the Steinem

lab (Institute of Organic and Biomolecular Chemistry, University of Göttingen) and other exter-

nal collaborators the interaction of the antibiotic ampicillin with ion channels of the bacterial

porin PorB. The broad-spectrum antibiotic irreversibly binds to and inhibits the activity of the

transpeptidase enzyme, which occurs exclusively in bacteria. This inhibits the cell division of

the bacteria and eventually leads to bactericide, see Acred et al. (1962). A potential source of

antibiotic resistance is preventing the antibiotic to pass trough the outer bacterial membrane, see
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Delcour (2009).

We studied the outer membrane porin PorB from Neisseria meningitidis, a pathogenic bacterium

in the human nose and throat region. Two types of porins have been compared, a wild type and

the mutant G103K. Cells with this mutation are suspected to be more likely resistant to antibiotics,

see Oppenheim (1997) ansOlesky et al. (2002)).

Patch-clamp experiments were performed for a quantitative characterization of the interaction

of the two types with ampicillin. The measurements are performed in the Steinem lab and use

planar black lipid membranes (BLMs). When an ampicillin molecule binds to the pore it blocks

the ion flow temporarily and, hence, this event can be detected by a conductance loss. Note that it

cannot be decided whether an ampicillin molecule really passes trough the channel or only enters

the channels but leaves to the same side. Single channel recordings using solvent-free bilayers at

the Port-a-Patch were used to explore the conductivity of the wild type and the mutant without

presence of ampicillin. We refer to Bartsch et al. (2017) for a deeper insight in the biological and

medical background, as well as for the interpretations of the results.

6.3.1 Ion channel recordings with constant voltage

Ion channel recording can be sampled at frequencies ranging from 1 to 100 kHz. The gating

events occur usually on much smaller times scales, ranging from 1 ns to 100 ns. Hence, channel

recordings have the appearance of abrupt random changes, see Hamill et al. (1981). Consequently,

the conductance level of a channel is modeled by a piecewise constant signal

Yt =

K∑
j=1

µ( j)1{ j}(Xt),

where t > 0 denotes the physical time. The unknown state of the channel is denoted by

(Xt)t∈R+
, Xt ∈ {1, . . . ,K}. The unknown conductance levels are denoted by µ(1), . . . , µ(K), where

each level corresponds to one state. We assume that (Xt)t∈R is a time-homogeneous Markov chain.

The very small conductance of a single channel, typically in the range of picosiemens up to

few nanosiemens, requires sophisticated electronic recordings devices, including one or several

amplifiers, see Devices (2008). To stay in the transmission range of the amplifier, high frequent

noise components, e.g., caused by shot noise, are attenuated by convolving the recordings with

an analogue lowpass filter. Typically, a four, six or eight pole lowpass Bessel filter is integrated in

the hardware of the technical measurement device. Finally, the recorded currents are digitized

equidistantly with sample rate fs and divided by the applied constant voltage. Additionally, we

assume that the signal (Yt)t∈R+
is perturbed by Gaussian white noise (νt)t∈R+

. Thus, the recorded

observations W1, . . . ,Wn are the filtered perturbed conductivity levels at equidistant time points

ti = i/ fs for i = 1, . . . , n with an analogue lowpass filter having the kernel function k, k : R→ R+,
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of the Bessel filter, i.e.,

Wi = (k ∗ (s + σν))) (ti) =

∫ ∞

−∞

k(ti − u)(Yu + σνu)du, i = 1, . . . , n. (6.2)

Here, σ > 0 denotes the standard deviation of the states and is assumed to be equal for all states.

All of these measurements are recorded at sampling rate 50 kHz and were filtered with a four-pole

Bessel lowpass filter with cutoff frequency 5 kHz, resulting in a normalized cutoff frequency of

0.1. As described in Section 6.2.2, we approximate the convolved observation by

Wn ≈

b−1∑
i=0

Yn−ibi,

where

b0 =

0.5∫
0

k(s)d(s)

and

bi =

i+0.5∫
i−0.5

k(s)d(s), i = 1, . . . , 7.

Furthermore, we assume that (Xn)n∈N is a Markov chain with irreducible transition kernel Pθ∗ .

For the wild type as well as for the mutant G103K four measurements with 1 mM ampicillin

concentration and at different applied voltage levels of 40, 60, 80, 100 and 120 mV were recorded.

Additionally, for both proteins the ampicillin was added in steps to obtain measurements with

different ampicillin concentrations of 0.1, 0.2, 0.4, 0.6, 0.8 and 1 mM at 80 mV. In each measure-

ment the recordings last at least five minutes and, hence, at least 3 million were available. Figure

6.11 shows a representative recording of the wild type.

Before we estimated the transition probabilities with the forward-algorithm, we do several
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Figure 6.11: Observations of a representative conductance time series of 2 seconds of PorB wild
type with 1 mM ampicillin recorded by the patch clamp technique using BLMs at 80 mV.

pre-processing steps. Data cleansing was necessary due to base line fluctuation and the presence
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of outliers. To this end, we used the JULES procedure (Pein et al. (2017a)) to detect outliers and

changes in the conductivity caused by the apparatus. In another preprocessing step we estimated

the amplitudes of a blockage event. The estimated amplitudes are on average 1.19 nS for the wild

type and 0.81 nS for the mutant. The estimated transition probabilities were used to determine

the most likely sequence of states by the Viterbi algorithm, see Viterbi (1967). Then we used the

idealization to compute the average blockage frequency and average residence time. In Figure

6.12 and 6.13 we compare our results with the findings of JULES. We stress that the averaged

residence times and frequencies are very close to each other for all measurements.
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Figure 6.12: Residence times and blockage frequencies at increasing ampicillin concentrations
for PorB wild type and PorB G103K. The recordings were performed at 80 mV. For both proteins,
the frequencies increase linearly in the ampicillin concentration.

We summarize our findings, a short interpretation is given below, for more details we refer to

Bartsch et al. (2017):

• The blockage frequencies increase linearly with the ampicillin concentration.

• The residence time do not dependent significantly on the concentration level of ampicillin.

• The residence times of the mutant are statistically significant larger than the residence times

of the wild type. We confirmed this statement by the two-sample Wilcoxon signed-rank

test at error level 0.05.

• The blockage frequencies depend linearly on the voltage. However, while for the mutant

the frequency is increasing, it is decreasing for the wild type.

• The residence times show a parabolic dependency on the voltage.

Highly simplified, the ampicillin molecules diffuse through the solution and enter the pore if

they are close to it and have the necessary orientation. If the number molecules in the solution

increases, the time until a blockage occurs decreases. This totally agrees with the linear increase
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Figure 6.13: Voltage-dependent residence times and blockage frequencies of ampicillin for
PorB wild type and PorB G103K in the presence of 1 mM ampicillin. Four measurements were
averaged for each protein. For both proteins, the frequencies increase linearly in the applied
voltage.

of the blockage frequencies with the ampicillin concentration.

We found no significant dependency of the residence times on the concentration. This confirms

the conjecture that a higher concentration of ampicillin molecules in the solution does not effect

the single molecule in the pore.

Molecular dynamics (MD) simulations revealed that during the passage through the pore an

ampicillin molecule binds in the constriction zone to the channel protein. The binding is similar

for the wild-type and the mutant, but the mutant G103K has one additional contact for ampicillin

on the extracellular side of the constriction zone, see Figure 9 in Bartsch et al. (2017). This serves

as an explanation for the longer residence times of G103K we found as well.

The differences of the porins concerning the dependency between blockage frequency and applied

voltage could be caused by multiple reasons. One explanation is that changes in the voltage leads

to changes the orientation of the ampicillin molecule in a more favorable or unfavorable way. We

refer to Bartsch et al. (2017) for more details.

In general, the membrane of G103K seems to be more resistant concerning the passage of ampi-

cillin molecules, which can explain an antibiotic resistance for cells with the G103K mutation.

6.3.2 Ion channel recordings with varying voltage

The model for ion channel recordings with varying voltage is very similar to the model we

developed in Section 6.3.1. The only difference that instead of (6.2), we assume that

Wi = (k ∗ (s + (σ + βi)ν))) (ti) =

∫ ∞

−∞

k(ti − u)(Yu + σνu)du, (6.3)
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where βi → 0 as n→ ∞. We stress that we implicitly assumed that the transition probabilities

between the states does not depend on the applied voltage, which is doubtful with respect to the

findings of Section 6.3.1 concerning the mutant G103K. For the wild type one measurement 67

traces with 1 mM ampicillin concentration and a voltage ramp from 30 mV to 110 mV were

recorded. Each trace has 5 · 105 observations. We estimated a blockage frequency of 4.89 Hz and

a residence time of 0.033 ms. This totally agrees with the results from Section 6.3.1.



Section 7

Conclusion and outlook

7.1 Conclusion

Motivated by ion channel recordings with varying voltage we introduce an extended hidden

Markov model in this thesis. This trivariate stochastic process (Xn,Yn,Zn)n∈N is characterized by

a non-observed homogeneous hidden Markov model (Xn,Yn)n∈N and an observed process (Zn)n∈N.

The observation process is inhomogeneous, but the distribution of Zn is getting “closer” to the

distribution of Yn for increasing n. In Section 2 we give a precise definition and interpretation for

this property. We introduce a quasi-maximum likelihood estimator θQML
ν,n which can be computed

without any knowledge about the inhomogenity of the observation process.

The major contribution of this work is Theorem 2.6 and Theorem 2.12 in Section 2. Theorem

2.6 establish the strong consistency of θQML
ν,n , whereas Theorem 2.12 concern the asymptotic

normality of θQML
ν,n . Additionally, we prove the same asymptotic results for the maximum

likelihood estimator θML
ν,n in Corollary 2.7 and Proposition 2.11.

The proof of the asymptotic theory involves a combination of results about maximum likelihood

estimation in homogeneous HMMs with results about asymptotic mean stationary processes. In

particular, we show that the observed sequence is asymptotically mean stationary (see Theorem

4.4). This results enables us to use the Birkhoff ergodic theorem for (Zn)n∈N.

Further, we used the Baum-Welch algorithm to compute the quasi-maximum likelihood estimator

and showed in a simulation study that this algorithm reaches the asymptotic boundaries of the

maximum likelihood estimator. Additionally we developed a forward algorithm for estimation

and idealization in filtered data and applied this algorithm to ion channel recordings. We showed

a significant difference in the resistance time of ampicillin blockage between the wild type

porin PorB and its mutant G103K. These results improve the understanding of potential sources

for bacterial resistance and might help to develop new drugs against it to alleviate the severe

consequences of multidrug-resistant bacteria.
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7.2 Outlook

7.2.1 Model extensions

In our consideration the state space of the underlying Markov chain is finite. Possibly extensions

to general state space are of particular interest. For example let for n, r, l ∈ N and S = Rr, G = Rl

the dynamics of an extended HMM be given by

Xn+1 = AθXn + RθUn,

Yn = BθXn + S θVn,

Zn = Yn + βnεn,

where (Un,Vn, εn) is an iid sequence of Gaussian vectors with zero mean and identity covariance

matrix. We assume that the matrices and random vectors have the appropriate dimensions. If the

matrices Aθ, Bθ,Rθ and S θ satisfy further rank conditions, Douc et al. (2011) proved the strong

consistency of the homogeneous model.

Another way to extend our hidden Markov model is to allow time-dependent changes of transition

matrix of the underlying Markov chain as in Jensen (2011a) . This might be of particular interest

in analyzing ion channel data.

Recall that ion channel recordings are filtered by a Bessel filter. This implies that given the

underlying sequence of states, the observations are not independent. Therefore, extensions of our

results to so called autoregressive models with Markov regime are mandatory for the analysis of

ion channel recordings. Note that Douc et al. (2004) proved consistency and asymptotic normality

of the MLE in the homogeneous case.

7.2.2 Condition (2.16)

Recall the Gaussian linear model from Section 3.2 and condition (2.16) from Assumption (CLT1):

lim
n→∞

1
√

n
Eπθ∗

[
S (r)

n,QML(θ∗)
]

= 0, r = 1, . . . , d. (7.1)

In Section 6 we showed that for independent normally distributed random variables this condition

is verified, if

β2
n = O(n−p),

for some p > 1/2. However, this condition is difficult to verify when K > 1. In the following

we outline a strategy for simplifying (2.16). For n ∈ N, ν ∈ P(S ) and θ ∈ Θ let pν
θ|n denote the

prediction filter of Xn given the observation Z1, . . . ,Zn, i.e.,

pνθ|n(s) = Pνθ (Xn = s | Z1, . . . ,Zn) , s ∈ S .
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Further, let Pν
θ|n be the row vector of the prediction filter values, i.e., Pν

θ|n = (pν
θ|n(1), . . . , pν

θ|n(K))

and let (Fθ,n)n∈N be a sequence of diagonal matrix with Fθ,n ∈ R
K×K
+ for all n ∈ N. The diagonal

of Fθ,n is given by

diag(Fθ,n) = ( fθ,n(1,Zn), . . . , fθ,n(K,Zn))T .

Then for any n ∈ N we have

Pνθ|n =

νT
n∏

i=1
PθFθ,i

K∑
j=1

(
νT

n∏
i=1

PθFθ,i

)( j) .

Similarly for n ∈ N we define

Qν
θ|n =

νT
n∏

i=1
PθF̃θ,i

K∑
j=1

(
νT

n∏
i=1

PθF̃θ,i

)( j) ,

where F̃θ,n a K-dimensional diagonal matrix with diagonal

diag(F̃θ,n) = ( fθ(1,Zn), . . . , fθ(K,Zn)).

Suppose now that

max
j∈S

∣∣∣∣∣∣∣ (Q
ν
θ∗ |n)( j)

(Pν
θ∗ |n)( j) − 1

∣∣∣∣∣∣∣ = OPπ
θ∗

(αn) (7.2)

for some real-valued sequence (αn)n∈N with αn → 0 as n→ ∞. Additionally, assume that for any

i, n ∈ N and r ∈ {1, . . . , d} we have that

ψ(r)(θ∗, Xi−1, Xi,Zi)
qν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1, . . . ,Zn)

pν,1:n
θ∗,(i−1):i(Xi−1, Xi | Z1, . . . ,Zn)

is uniformly integrable w.r.t. Pπθ∗ . Then, one can show that

Eπ
θ∗

ψ(r)(θ∗, Xi−1, Xi,Zi)
qνθ∗,i(Xi−1, Xi | Z1, . . . ,Zn)

pνθ∗,i(Xi−1, Xi | Z1, . . . ,Zn)

 = O(max(β2
n, αn))

and condition 2.16 is satisfied if

max(β2
n, αn) = O(n−p)

for some p > 1/2.



Appendix A

Technical proofs

First, we prove a result that specify the “closeness” of Y and Z.

Lemma A.1. Under the assumption formulated in (C1), we have

Pνθ

(
lim
n→∞

m(Zn,Yn) = 0
)

= 1. (A.1)

for any θ ∈ Θ and ν ∈ P(S ).

Proof. By (C1) we obtain for any ε > 0 that

∞∑
n=1

Pνθ (m(Zn,Yn) ≥ ε) =

∞∑
n=1

K∑
k=1

Pνθ (m(Zn,Yn) ≥ ε, Xn = k)

=

∞∑
n=1

K∑
k=1

Pνθ (Xn = k)Pθ (m(Zn,Yn) ≥ ε | Xn = k)

≤

∞∑
n=1

max
k∈S
Pθ (m(Zn,Yn) ≥ ε | Xn = k) < ∞

By the Borel-Cantelli lemma we obtain the desired almost sure convergence of m(Zn,Yn) to

zero. �

Proof of Theorem 4.4. An intersection-stable generating system of the σ-algebra B is the union

over any finite index set J ⊂ N of cylindrical set systems

ZJ :=
{
ρ−1

J (A1 × · · · × A|J|) | A j ∈ B(G) open
}
,

where ρJ : GN → G|J| is the canonical projection to J, that is, ρJ((ai)i∈N) = (a j) j∈J . By the

uniqueness theorem of finite measures it is sufficient to prove for an arbitrary finite index set

J ⊂ N that for any B ∈ ZJ we have

lim
n→∞

1
n

n∑
i=1

Pπ,Zθ∗ (T−i(B)) = Pπ,Yθ∗ (B). (A.2)
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Fix a finite index set J = { j1, . . . , jk} ⊂ N and note that (G|J|,mJ), with the metric

mJ(a, b) =

|J|∑
j=1

m(a j, b j), a = (a1, . . . , a|J|), b = (b1, . . . , b|J|) ∈ G|J|,

is a metric space. Here it is worth to mention that the σ-algebra
⊗

j∈J B(G) coincides with the

σ-algebra generated by the open sets w.r.t. mJ . By Lemma A.1 we obtain

Pπθ∗

(
lim
i→∞

mJ
(
(Yi+ j1 , . . . ,Yi+ jk ), (Zi+ j1 , . . . ,Zi+ jk )

)
= 0

)
= 1. (A.3)

Let h : G|J| → R be a bounded, uniformly continuous function, i.e., for any ε > 0 there is δ > 0

such that for all a, b ∈ G|J| with mJ(a, b) < δ we have |h(a) − h(b)| < ε. Then, by the stationarity

of Y , the boundedness of h and Fatou’s lemma, we have

0 ≤ lim inf
i→∞

Eπθ∗[
∣∣∣h(Zi+ j1 , . . . ,Zi+ jk ) − h(Y j1 , . . . ,Y jk )

∣∣∣]
≤ lim sup

i→∞
Eπθ∗[

∣∣∣h(Zi+ j1 , . . . ,Zi+ jk ) − h(Yi+ j1 , . . . ,Yi+ jk )
∣∣∣]

≤ Eπθ∗

[
lim sup

i→∞

∣∣∣h(Zi+ j1 , . . . ,Zi+ jk ) − h(Yi+ j1 , . . . ,Yi+ jk )
∣∣∣] . (A.4)

By the uniform continuity of h we obtain

lim
i→∞

∣∣∣h(zi+ j1 , . . . , zi+ jk ) − h(yi+ j1 , . . . , yi+ jk )
∣∣∣ = 0

for all sequences ((zi+ j1 , . . . , zi+ jk ))i∈N, ((yi+ j1 , . . . , yi+ jk ))i∈N ⊂ G|J| which satisfy

lim
i→∞

mJ((zi+ j1 , . . . , zi+ jk ), (yi+ j1 , . . . , yi+ jk )) = 0.

Then, by using (A.3) we obtain

Eπθ∗

[
lim sup

i→∞

∣∣∣h(Zi+ j1 , . . . ,Zi+ jk ) − h(Yi+ j1 , . . . ,Yi+ jk )
∣∣∣] ≤ 0,

such that (by (A.4)) we have

lim
n→∞

1
n

n∑
i=1

Eπθ∗
[
h(Zi+ j1 , . . . ,Zi+ jk )

]
= Eπθ∗

[
h(Y j1 , . . . ,Y jk )

]
.

Finally, by Theorem 1.2 in Billingsley (1999) we have for any A ∈
⊗

j∈J B(G),

lim
n→∞

1
n

n∑
i=1

Pπθ∗
(
(Zi+ j1 , . . . ,Zi+ jk ) ∈ A

)
= Pπθ∗

(
(Y j1 , . . . ,Y jk ) ∈ A

)
,

which implies (A.2) for any B ∈ ZJ . �
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Apart of the fact that we need the previous result to apply Theorem 3 of Barron (1985) it has

also the following two useful consequences.

Corollary A.2. Assume that condition (C1) is satisfied. Then Pπ,Zθ∗ is ergodic.

Proof. From Lemma 1 in Leroux (1992) it follows that Pπ,Yθ∗ is ergodic. Then, the assertion is

implied by Theorem 4.4 and by Lemma 7.13 of Gray (2009), which essentially states that Pπ,Yθ∗ is

ergodic if and only if Pπ,Zθ∗ is ergodic. �

Corollary A.3. Assume that condition (C1) is satisfied and let k ∈ N. Then, for any g : Gk → R

with Eπθ∗[|g(Y1, . . . ,Yk)|] < ∞ we have

lim
n→∞

1
n

n∑
j=1

g(Z j+1, . . . ,Z j+k) = Eπθ∗[g(Y1, . . . ,Yk)], Pπθ∗-a.s.

Proof. By the a.m.s. property and the ergodicity of Pπ,Zθ∗ the assertion is implied by Theorem 8.1

in Gray (2009). �

For z = (zi)i∈N ∈ GN and k,m ∈ N with k < m we use zk:m to denote a segment of z.

Specifically, let zk:m = (zk, . . . , zm).

Let λk =
⊗k

i=1 λ be the product measure of λ with itself, i.e., the measurable space

(Gk,
⊗k

i=1B(G)) is equipped with reference measure λk. Now define

pπθ∗(z1:k | zk+1:m) :=
pπθ∗(z1:m)∫

Gk pπθ∗(z1:m)λk(dz1:k)
.

We aim to apply Theorem 3 of Barron (1985). For this we need the concept of conditional

mutual information.

Definition A.4. For k,m, n ∈ N define the (k,m, n)-conditional mutual information of Z by

IZ
k,m(n) B Eπθ∗

[
log

(
pπθ∗(Z1:k | Zk+1:k+m+n)
pπθ∗(Z1:k | Zk+1:k+m)

)]
.

Remark A.5. Observe that the (k,m, n)-conditional mutual information of Z coincides with

the definition of the conditional mutual information of Zk+m+1:k+m+n and Z1:k given Zk+1:k+m

in page 1296 of Barron (1985). Note that by Lemma 3 of Barron (1985) it is known that

IZ
k,m := limn→∞ IZ

k,m(n) exists.

Lemma A.6. Assume that condition (H4) is satisfied. Then, for every k,m ∈ N we have

IZ
k,m := limn→∞ IZ

k,m(n) < ∞.

Proof. For n ∈ N we obtain

IZ
k,m(n) ≤ Eπθ∗

[∣∣∣log pπθ∗(Z1:k | Zk+1:k+m)
∣∣∣]

+ Eπθ∗
[∣∣∣log pπθ∗(Z1:k | Zk+1:k+m+n)

∣∣∣] .



72 APPENDIX A. TECHNICAL PROOFS

For 1 ≤ k < j we have by inserting
∫

Gk

∏k
i=1 fθ∗,i(si, zi)λk(dz1:k) = 1 that

pπθ∗(Z1: j) =
∑

s1,...,sk∈S

π(s1)
k∏

i=1

fθ∗,i(si,Zi)
k−1∏
i=1

Pθ∗(si, si+1)

×
∑

sk+1,...,s j+1∈S

Pθ∗(sk, sk+1)
j∏

`=k+1

fθ∗,`(s`,Z`)Pθ∗(s`, s`+1)

≤ max
x1,...,xk∈S

k∏
i=1

fθ∗,i(xi,Zi)
∫
Gk

pπθ∗(z1:k,Zk+1: j)λk(dz1:k).

By (H4) this leads to

Eπθ∗

[∣∣∣∣log pπθ∗,k| j(Z1:k | Zk+1: j)
∣∣∣∣] ≤ max

x1,...,xk∈S

k∑
i=1

Eπθ∗
[∣∣∣log

(
fθ∗,i(xi,Zi)

)∣∣∣] < ∞,
which gives IZ

k,m(n) < ∞ for any n ∈ N and implies the assertion. �

Theorem A.7. Assume that the conditions (P1), (H1), (H4) and (C1) are satisfied. Then

lim
n→∞

n−1 log pπθ∗(Z1, . . . ,Zn) = `(θ∗) Pπθ∗-a.s.

(Recall that `(θ∗) is given by (4.4).)

Proof. Theorem 4.4 shows that Pπ,Zθ∗ is a.m.s. with stationary mean Pπ,Yθ∗ . Theorem 4.1 yields

lim
n→∞

n−1 log pπθ∗(Y1, . . . ,Yn) = `(θ∗) Pπθ∗-a.s.

Lemma A.6 guarantees that IZ
k,m < ∞ for all k,m ∈ N. Then, the statement follows by Theorem 3

of Barron (1985). �

The following lemma ensures that the ratio of pνθ∗(z1, . . . , zn) and qνθ∗(z1, . . . , zn) does not

diverge exponentially or faster.

Lemma A.8. Assume that condition (C2) is satisfied. Then

lim sup
n→∞

n−1 log

Eπθ∗
 n∏

i=k

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)


 < 0,

where k is as in assumption (C2).
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Proof. The proof is straightforward and follows from the following estimation:

lim sup
n→∞

n−1 log

Eπθ∗
 n∏

i=k

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)




= lim sup
n→∞

n−1 log

Eπθ∗
Eπθ∗

 n∏
i=k

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)

| Xk, . . . , Xn





= lim sup
n→∞

n−1 log

Eπθ∗
 n∏

i=k

Eπθ∗

[
max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)

| Xi

]


≤ lim sup
n→∞

n−1 log

Eπθ∗
 n∏

i=k

max
s′∈S
Eπθ∗

[
max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)

| Xi = s′
]


= lim sup
n→∞

n−1
n∑

i=k

max
s′∈S

log
(
Eπθ∗

[
max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)

| Xi = s′
])
≤ 0,

where the last line follows from assumption (C2), especially (2.12). �

Corollary A.9. Assume that condition (C3) is satisfied. Then

lim
n→∞

n−1 log

Eπθ∗
 n∏

i=k

sup
θ′∈Eθ

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)


 = 0,

where k and Eθ are as in (C3).

Proof of Theorem 4.5. From Theorem A.7 it follows that

lim
n→∞

n−1 log pπθ∗(Z1, . . . ,Zn) = `(θ∗) Pπθ∗-a.s. (A.5)

and by using (C2) we first show

lim
n→∞

n−1 log qπθ∗(Z1, . . . ,Zn) = `(θ∗) Pπθ∗-a.s. (A.6)

For any ε > 0 we obtain by Markov’s inequality that

Pπθ∗

(
n−1 log

(
qπθ∗(Z1, . . . ,Zn)
pπθ∗(Z1, . . . ,Zn)

)
≥ ε

)
= Pπθ∗

(
qπθ∗(Z1, . . . ,Zn)
pπθ∗(Z1, . . . ,Zn)

≥ exp(nε)
)

≤ exp(−nε) · Eπθ∗
[

qπθ∗(Z1, . . . ,Zn)
pπθ∗(Z1, . . . ,Zn)

]
.

By the fact that Eπθ∗
[

qπ
θ∗

(Z1,...,Zn)
pπ
θ∗

(Z1,...,Zn)

]
= 1, the Borel-Cantelli Lemma implies

lim sup
n→∞

n−1 log
(

qπθ∗(Z1, . . . ,Zn)
pπθ∗(Z1, . . . ,Zn)

)
≤ 0 Pπθ∗-a.s.
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This leads by (A.5) to

lim sup
n→∞

n−1 log qπθ∗(Z1, . . . ,Zn) ≤ `(θ∗) Pπθ∗-a.s. (A.7)

Observe that
pπθ∗(Z1, . . . ,Zn)
qπθ∗(Z1, . . . ,Zn)

≤

n∏
i=1

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)

.

Then, with the k ∈ N from (C2), in particular (2.10), it follows that

lim sup
n→∞

n−1 log
(

pπθ∗(Z1, . . . ,Zn)
qπθ∗(Z1, . . . ,Zn)

)
≤ lim sup

n→∞
n−1 log

 n∏
i=1

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)


= lim sup

n→∞
n−1

log

k−1∏
i=1

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)

 + log

 n∏
i=k

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)




= lim sup
n→∞

n−1 log

 n∏
i=k

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)

 Pπθ -a.s.

Again, for any ε > 0 we obtain by Markov’s inequality that

Pπθ∗

n−1 log

 n∏
i=k

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)

 ≥ ε


= Pπθ∗

 n∏
i=k

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)

≥ exp(nε)

 ≤ E
π
θ∗

[
n∏

i=k
max
s∈S

fθ∗ ,i(s,Zi)
fθ∗ (s,Zi)

]
exp(nε)

= exp

n
n−1 log

Eπθ∗
 n∏

i=k

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)


 − ε


 .

By Lemma A.8, the Borel-Cantelli Lemma yields

lim sup
n→∞

n−1 log

 n∏
i=k

max
s∈S

fθ∗,i(s,Zi)
fθ∗(s,Zi)

 ≤ 0 Pπθ∗-a.s.

which leads to

lim sup
n→∞

n−1 log
(

pπθ∗(Z1, . . . ,Zn)
qπθ∗(Z1, . . . ,Zn)

)
≤ 0 Pπθ∗-a.s.

This implies

lim inf
n→∞

n−1 log
(

qπθ∗(Z1, . . . ,Zn)
pπθ∗(Z1, . . . ,Zn)

)
≥ 0 Pπθ∗-a.s. (A.8)

By (A.7) and (A.8) we obtain (A.6).
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Next we prove the statement of the theorem using (A.6). For any n ∈ N observe that

qπθ∗(Z1, . . . ,Zn)
qνθ∗(Z1, . . . ,Zn)

=

∑
s1,...,sn+1∈S

ν(s1)π(s1)
ν(s1)

n∏
i=1

fθ∗(si,Zi)Pθ∗(si, si+1)

∑
s1,...,sn+1∈S

ν(s1)
n∏

i=1
fθ∗(si,Zi)Pθ∗(si, si+1)

(A.9)

≤ max
s∈S

π(s)
ν(s)

< ∞,

where the finiteness follows by the fact that ν is strictly positive if and only if π is strictly positive.

By using (A.9) we also obtain

qπθ∗(Z1, . . . ,Zn)
qνθ∗(Z1, . . . ,Zn)

≥ min
s∈S

π(s)
ν(s)

> 0. (A.10)

Then

lim sup
n→∞

n−1 log qνθ∗(Z1, . . . ,Zn)

= lim sup
n→∞

n−1
(
log

(
qνθ∗(Z1, . . . ,Zn)
qπθ∗(Z1, . . . ,Zn)

)
+ log qπθ∗(Z1, . . . ,Zn)

)
≤ lim sup

n→∞
n−1

(
max
s∈S

π(s)
ν(s)

+ log qπθ∗(Z1, . . . ,Zn)
)

= `(θ∗)

and by (A.10) we similarly have

lim inf
n→∞

n−1 log qνθ∗(Z1, . . . ,Zn) ≥ `(θ∗).

By the previous two inequalities the assertion follows.

�

Proof of Theorem 4.7. By the standard approach to prove consistency, see Lemma B.2 and

Theorem B.1, Theorem 4.5 and the fact that

qν
θ̂n

(Z1, . . . ,Zn) ≥ qνθ∗(Z1, . . . ,Zn) ∀n ∈ N

it is sufficient to prove for any closed set C ⊆ Θ with θ∗ < C that

lim sup
n→∞

sup
θ′∈C

n−1 log qνθ′(Z1, . . . ,Zn) < `(θ∗) Pπθ -a.s.

Note that, with ηθ defined in Lemma 4.6, the set {B(θ, ηθ), θ ∈ C} is a cover of C. As Θ is compact,

C is also compact and thus admits a finite subcover {B(θi, ηθi), θi ∈ C, i = 1, . . . ,N}. Hence it is

enough to verify

lim sup
n→∞

sup
θ′∈B(θ,ηθ)∩C

n−1 log qνθ′(Z1, . . . ,Zn) < `(θ∗) Pπθ -a.s. (A.11)
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for any θ , θ∗.

Let us fix θ , θ∗ and let ηθ as well as nθ as in Lemma 4.6. Observe that for any θ′ ∈ Θ and

any 1 ≤ m ≤ n we have

qνθ′(z1, . . . , zn) ≤ qνθ′(z1, . . . , zm−1) qδθ′(zm, . . . , zn), (A.12)

qδθ′(z1, . . . , zn) ≤ qδθ′(z1, . . . , zm−1)qδθ′(zm, . . . , zn), (A.13)

and define g∗θ′,m,n(zm, . . . , zn) :=
∏n

i=m maxs∈S fθ′(s, zi) as well as i(n) := bn/nθc.

By using those definitions, and by (A.12) and (A.13) we obtain for sufficiently large n ∈ N

that

`ν,n(θ′) ≤
1
nθ

nθ∑
r=1

`ν,r(θ′) + log qδθ′(Zr+1, . . . ,Zn)

≤
1
nθ

nθ∑
r=1

log g∗θ′,1,r(Z1, . . . ,Zr)

+
1
nθ

nθ∑
r=1

i(n)−1∑
k=1

log qδθ′(Znθ(k−1)+r+1, . . . ,Znθk+r)

+
1
nθ

nθ∑
r=1

log g∗θ′,nθ(i(n)−1)+r+1,n(Znθ(i(n)−1)+r+1, . . . ,Zn)

=
1
nθ

nθ∑
r=1

log g∗θ′,1,r(Z1, . . . ,Zr)

+
1
nθ

nθ(i(n)−1)∑
r=1

log qδθ′(Zr+1, . . . ,Znθ+r)

+
1
nθ

nθ∑
r=1

n∑
k=nθ(i(n)−1)+r+1

sup
s∈S

log fθ′(s,Zk).

Observe that for 1 ≤ r ≤ nθ holds nθ(i(n) − 1) + r ≥ n − 2nθ. Hence we can further estimate the

last average and obtain

sup
θ′∈B(θ,ηθ)∩C

`ν,n(θ′) ≤
1
nθ

nθ∑
r=1

sup
θ′∈B(θ,ηθ)∩C

log g∗θ′,1,r(Z1, . . . ,Zr)

+
1
nθ

nθ(i(n)−1)∑
r=1

sup
θ′∈B(θ,ηθ)∩C

log qδθ′(Zr+1, . . . ,Znθ+r)

+

n∑
k=n−2nθ+1

sup
θ′∈B(θ,ηθ)∩C

max
s∈S

log ( fθ′(s,Zk))+ .

We multiply both sides of the previous inequality by n−1 and consider the limit n→ ∞ of each

sum on the right-hand side. In particular we show that this is smaller than `(θ∗) which verifies

(A.11).
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To the first sum: By the fact that
∫

G fθ′(s, z)λ(dz) = 1, for any s ∈ S we conclude

λ({z ∈ G : fθ(s, z) = ∞}) = 0.

Hence

Pπθ∗ ( fθ′(s,Zi) = ∞) = 0,

and (H3) implies

Pπθ∗

 sup
θ′∈B(θ,ηθ)∩C

log g∗θ′,1,r(Z1, . . . ,Zr) = ∞

 = 0 ∀r ∈ N.

This leads to

lim
n→∞

1
n

1
nθ

nθ∑
r=1

sup
θ′∈B(θ,ηθ)∩C

log g∗θ′,1,r(Z1, . . . ,Zr) = 0 Pπθ∗-a.s.

To the second sum: By the fact that i(n)/n→ n−1
θ as n→ ∞, Lemma 4.6 and Corollary A.2

we obtain

lim
n→∞

1
n

1
nθ

nθ(i(n)−1)∑
r=1

sup
θ′∈B(θ,ηθ)∩C

log qδθ′(Zr+1, . . . ,Znθ+r)

=
1
nθ
Eπθ∗

 sup
θ′∈B(θ,ηθ)∩C

log pδθ′(Y1, . . . ,Ynθ)
 < `(θ∗).

To the third sum: By assumption (H2) it follows that

Eπθ∗

 sup
θ′∈Uθ

max
s∈S

(
log fθ(s,Y1)

)+ ≤∑
s∈S

Eπθ∗

 sup
θ′∈Uθ

(
log fθ(s,Y1)

)+ < ∞.
and by Corollary A.2 we have

lim
n→∞

1
n

n∑
k=1

sup
θ′∈B(θ,ηθ)

max
s∈S

log( fθ′(s,Zk))+ = Eπθ∗

 sup
θ′∈B(θ,ηθ)

max
s∈S

(
log fθ(s,Y1)

)+ .
Hence

lim
n→∞

1
n

n∑
k=n−2nθ+1

sup
θ′∈B(θ,ηθ)

max
s∈S

log( fθ′(s,Zk))+ = 0 Pπθ∗-a.s.

and the proof is complete . �

The following proofs concern Theorem 2.12.
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Proof of Corollary 4.14. Note that∣∣∣∣ ∑
si−1,si∈S

∑
sr ,st∈S

∣∣∣qν,r:l
θ,(i−1):i|{r,l}(si−1, si | sr, sl,Zr, . . .Zl)

×
(
qν,r:l
θ,{r,l}(sr, sl | Zr, . . . ,Zl) − qν,1:n

θ,{r:l}(sr, sl | Z1, . . . ,Zn)
) ∣∣∣

= 2 sup
B∈S2

∣∣∣∣ ∑
sr ,sl∈S

∑
s∈B

qν,r:l
θ,(i−1):i|{r,l}(s | sr, sl,Zr, . . .Zl)q

ν,r:l
θ,{r,l}(sr, sl | Zr, . . . ,Zl)

−
∑

sr ,st∈S

∑
s∈B

qν,r:l
θ,(i−1):i|{r,l}(s | sr, sl,Zr, . . .Zl)q

ν,1:n
θ,{r,l}(sr, sl | Z1, . . . ,Zn)

∣∣∣∣
≤ 2 sup

B∈S2

 sup
sr ,sl∈S

∑
s∈B

qν,r:l
θ,r:l|{r,l}(s | sr, sl,Zr, . . .Zl) − inf

sr ,sl∈S

∑
s∈B

qν,r:l
θ,r:l|{r,l}(s | sr, sl,Zr, . . .Zl)


≤ 2 sup

B∈S2

 sup
sr ,sl∈S

∑
s∈B

qν,r:l
θ,(i−1):i|{r,l}(s | sr, sl,Z1, . . .Zn) − inf

sr ,sl∈S

∑
s∈B

qν,r:l
θ,(i−1):i|{r,l}(s | sr, sl,Z1, . . .Zn)

 .
The assertion follows from Corollary 4.12.

�

Proof of Lemma 4.15. Let θ ∈ B(θ∗, δ0). Similarly to (4.9) one can show that

∣∣∣∣Eπθ
b(Xr:t,Zr:t)

qν,1:n
θ,r:t (Xr:t | Z1:n)

pν,1:n
θ,r:t (Xr:t | Z1:n)

| Z1:n


− Eπθ

b(Xr:t,Zr:t)
qν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

pν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

| Xr−k, Xt+k,Z(r−k):(t+k)

 ∣∣∣∣
≤ b0(Zr:t)4ρk

and

∣∣∣∣Eπθ∗
b(Xr:t,Zr:t)

qν,1:n
θ∗,r:t(Xr:t | Z1:n)

pν,1:n
θ∗,r:t(Xr:t | Z1:n)

| Z1:n


− Eπθ∗

b(Xr:t,Zr:t)
qν,(r−k):(t+k)
θ∗,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

pν,(r−k):(t+k)
θ∗,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

| Xr−k, Xt+k,Z(r−k):(t+k)

 ∣∣∣∣
≤ b0(Zr:t)4ρk
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Therefore∣∣∣∣∣∣∣Eπθ
b(Xr:t,Zr:t)

qν,1:n
θ,r:t (Xr:t | Z1:n)

pν,1:n
θ,r:t (Xr:t | Z1:n)

| Z1:n

 − Eπθ∗
b(Xr:t,Zr:t)

qν,1:n
θ∗,r:t(Xr:t | Z1:n)

pν,1:n
θ∗,r:t(Xr:t | Z1:n)

| Z1:n


∣∣∣∣∣∣∣

≤

∣∣∣∣Eπθ
b(Xr:t,Zr:t)

qν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

pν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

| Xr−k, Xt+k,Z(r−k):(t+k)


− Eπθ∗

b(Xr:t,Zr:t)
qν,(r−k):(t+k)
θ∗,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

pν,(r−k):(t+k)
θ∗,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

| Xr−k, Xt+k,Z(r−k):(t+k)

 ∣∣∣∣
+ b0(Zr:t)8ρk

To complete the proof, we will show that

∣∣∣∣Eπθ
b(Xr:t,Zr:t)

qν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

pν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

| Xr−k, Xt+k,Z(r−k):(t+k)


− Eπθ∗

b(Xr:t,Zr:t)
qν,(r−k):(t+k)
θ∗,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

pν,(r−k):(t+k)
θ∗,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+kZ(r−k):(t+k))

| Xr−k, Xt+k,Z(r−k):(t+k)

 ∣∣∣∣
≤ b0(Zr:t)2ρ

∣∣∣θ − θ∗∣∣∣ t+k∑
i=r−k

h(Zi).

Note that

Eπθ

b(Xr:t,Zr:t)
qν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

pν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

| Xr−k, Xt+k,Z(r−k):(t+k)


=

∑
sr ,...,st∈S

b(sr:t,Zr:t)q
ν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(sr, . . . , st | Xr−k, Xt+k,Z(r−k):(t+k)),

which can be used to show that for any u ∈ {1, . . . , d} we have∣∣∣∣∣∣∣∣ ∂

∂θ(u)E
π
θ

b(Xr:t,Zr:t)
qν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

pν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

| Xr−k, Xt+k,Z(r−k):(t+k)


∣∣∣∣∣∣∣∣

≤ 2b0(Zr, . . . ,Zt)
t+k∑

i=r−k

hi(Zi).
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Finally, note that

Eπθ

b(Xr:t,Zr:t)
qν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

pν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

| Xr−k, Xt+k,Z(r−k):(t+k)


− Eπθ∗

b(Xr:t,Zr:t)
qν,(r−k):(t+k)
θ∗,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

pν,(r−k):(t+k)
θ∗,r:t|{r−k,t+k}(Xr:t | Xr−k, Xt+k,Z(r−k):(t+k))

| Xr−k, Xt+k,Z(r−k):(t+k)


=

1∫
0

∂

∂u
Eπθ∗+u(θ−θ∗)

b(Xr:t,Zr:t)
qν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t|Xr−k, Xt+k,Z(r−k):(t+k))

pν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t|Xr−k, Xt+k,Z(r−k):(t+k))

|Xr−k, Xt+k,Z(r−k):(t+k)

 du

= (θ − θ∗)

1∫
0

∂

∂θ
Eπθ

b(Xr:t,Zr:t)
qν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t|Xr−k, Xt+k,Z(r−k):(t+k))

pν,(r−k):(t+k)
θ,r:t|{r−k,t+k}(Xr:t|Xr−k, Xt+k,Z(r−k):(t+k))

|Xr−k, Xt+k,Z(r−k):(t+k)

 du

�

Proof of Proposition 4.16. Fix an integer i ∈ N. For n ∈ N and δ ∈ B(θ∗, δn) we find that

∣∣∣∣Eπθ
ai(θ, X(i−1):i,Zi)

qν,1:n
θ,(i−1):i(X(i−1):i | Z1:n)

pν,1,:n
θ,(i−1):i(X(i−1):i | Z1:n)

| Z1:n


− Eπθ

ai(θ∗, X(i−1):i,Zi)
qν,1:n
θ,(i−1):i(X(i−1):i | Z1:n)

pν,1:n
θ,(i−1):i(X(i−1):i | Z1:n)

| Z1:n

 ∣∣∣∣
≤ δnāi(Zi). (A.14)

With Lemma 4.15 it follows that for any l ∈ N with i − l > 0 and i + l < n we have

∣∣∣∣Eπθ
ai(θ∗, X(i−1):i,Zi)

qν,1:n
θ,(i−1):i(X(i−1):i | Z1:n)

pν,1:n
θ,(i−1):i(X(i−1):i | Z1:n)

| Z1:n


− Eπθ∗

ai(θ∗, X(i−1):i,Zi)
qν
θ,(i−1):i(X(i−1):i | Z1:n)

pν
θ,(i−1):i(X(i−1):i | Z1:n)

| Z1:n

 ∣∣∣∣
≤ a0

i (Zi)

2ρδn

i+l∑
m=i−l

h(Zi) + 8ρl

 . (A.15)

The estimates (A.14) and (A.15) imply that

lim
n→∞
Eπθ∗

 sup
θ∈B(θ∗,δn)

∣∣∣∣1n
n∑

i=1

Eπθ
ai(θ, X(i−1):i,Zi)

qν,1:n
θ,(i−1):i(X(i−1):i | Z1:n)

pν
θ,(i−1):i(X(i−1):i | Z1:n)

| Z1:n


−Eπθ∗

ai(θ∗, X(i−1):i,Zi)
qν,1:n
θ∗,(i−1):i(X(i−1):i | Z1:n)

pν,1:n
θ∗,(i−1):i(X(i−1):i | Z1:n)

| Z1:n


 ∣∣∣∣


≤ lim

n→∞
Eπθ∗

1
n

n∑
i=1

δnāi(Zi) + a0
i (Zi)

2ρδn

i+l∑
m=i−l

h(Zi) + 8ρl


 (A.16)
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The Cauchy-Schwartz inequality implies that there exists a constant K such that for all i ∈ N we

have Eπθ∗ [āi(Zi)] < K, Eπθ∗
[
a0

i (Zi)
]
< K and Eπθ∗

[
a0

i (Zi)hu(Zu)
]
< K. Finally, we can bound (A.16)

by

δnK + 2ρδn2(l + 1)K + 8ρlK.

Choosing l = bδ−1/2
n c gives the desired result as n→ ∞. �

For i ∈ N let ai, bi : Θ × S × S ×G → R be functions, we write ai(θ) = ai(θ, Xi−1, Xi,Zi) and

bi(θ) = bi(θ, Xi−1, Xi,Zi) in the following.

Lemma A.10. For i ∈ N let ai, bi : Θ × S × S ×G → R be functions and let (ai)i∈N and (bi)i∈N

belong to the class C3,1. Further, let the functions (h)i∈N belong to the class C3, where h is defined

in (4.10). Then there exist constants q2 and q3 such that for δ > 0 and any integer l, v, u with

u − l ≥ 1 and v + l ≤ n and u ≤ v, we have

Eπθ∗

 sup
|θ−θ∗ |≤δ

∣∣∣∣Covνθ

au(θ)
qν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

pν
θ,(u−1):u(X(u−1):u | Z1:n)

, bv(θ)
qν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

| Z1:n


−Covνθ∗

au(θ∗)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

, bv(θ∗)
qν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n

 ∣∣∣∣


≤ δ (2q2 + 2ρq3 [|v − u| + 6(l + 1)]) + 24q2ρ
l.

Proof. Note that for any random variables W1,W2 : (Ω,F ,P) → (R,B(R)) with finite second

moment it holds that

Cov (W1,W2) ≤ (Var (W1))1/2 (Var (W2))1/2 .

This and the triangular inequality imply that

∣∣∣∣Covνθ

au(θ)
qν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

, bv(θ)
qν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

| Z1:n


− Covνθ

au(θ∗)
qν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

, bv(θ∗)
qν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

| Z1:n

 ∣∣∣∣
≤ δ(āu(Zu)b0

v(Zv) + a0
u(Zu)b̄v(Zv)).

It follows that

Eπθ∗

∣∣∣∣Covνθ

au(θ)
qνθ,u(Xu−1:u | Z1:n)

pνθ,u(Xu−1:u | Z1:n)
, bv(θ)

qνθ,v(Xv−1:v | Z1:n)

pνθ,v(Xv−1:v | Z1:n)
| Z1:n


− Covνθ

au(θ∗)
qνθ,u(Xu−1:u | Z1:n)

pνθ,u(Xu−1:u | Z1:n)
, bv(θ∗)

qνθ,v(Xv−1:v | Z1:n)

pνθ,v(Xv−1:v | Z1:n)
| Z1:n

 ∣∣∣∣
≤ 2δq2,

where q2 is an upper bound on the second moments of āu(Zu), b0
v(Zv), a0

u(Zu) and b̄v(Zv) for all
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u, v ∈ N. Lemma 4.15 implies that for any l ∈ N with u − l ≥ 1 and v + l ≤ n we can bound

∣∣∣∣Eπθ
au(θ∗)bv(θ∗)

qν,1:n
θ,(u−1):v(X(u−1):v | Z1:n)

pν,1:n
θ,(u−1):v(X(u−1):v | Z1:n)

| Z1:n


− Eπθ∗

au(θ∗)bv(θ∗)
qν,1:n
θ∗,(u−1):v(Xu−1:v | Z1:n)

pν,1:n
θ∗,(u−1):v(X(u−1):v | Z1:n)

| Z1:n

 ∣∣∣∣
by

a0
u(Zu)b0

v(Zv)

2ρδ v+l∑
i=u−l

h(Zi) + 8ρl

 . (A.17)

Again Lemma 4.15 and the triangular inequality show that

∣∣∣∣Eπθ
au(θ∗)

qν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

| Z1:n

Eπθ
bv(θ∗)

qν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

| Z1:n


− Eπθ∗

au(θ∗)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

| Z1:n

Eπθ∗
bv(θ∗)

qν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n

 ∣∣∣∣
≤ au(Zu)0b0

v(Zv)

2ρδ
 u+l∑

i=u−l

h(Zi) +

v+l∑
i=v−l

h(Zi)

 + 16ρl

 (A.18)

for any integer l with u − l ≥ 1 and v + l ≤ n. Combining (A.17) and (A.18) we have that

∣∣∣∣Covνθ

au(θ∗)
qν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

, bv(θ∗)
qν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

| Z1:n


−

∣∣∣∣Covνθ∗

au(θ∗)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

, bv(θ∗)
qν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n


≤ a0

u(Zu)b0
v(Zv)

2ρδ
 v+l∑

i=u−l

hi(Zi) +

u+l∑
i=u−l

hi(Zi) +

v+l∑
i=v−l

hi(Zi)

 + 24ρl

 . (A.19)

Hölder’s inequality implies that the mean of (A.19) is bounded by

2ρδq3 (|v − l| + 6(l + 1)) + 24q2ρ
l,

where q3 is a bound on the third moments of h(Zi), a0
u(Zu), b0

v(Zv) for all i, u, v ∈ N. The triangular

inequality proves the Lemma. �

Proof of Proposition 4.17. Similarly to Theorem 17.2.1 in Ibragimov and Linnik (1971) one can

show with Corollary 4.12 that for any θ ∈ B(θ, δ0) we have∣∣∣∣∣∣∣∣Covνθ

au(θ)
qν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

, bv(θ)
qν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

pν,1:v
θ,(v−1):v(X(v−1):v | Z1:n)

| Z1:n


∣∣∣∣∣∣∣∣ ≤ 4a0

ub0
vρ
|v−u|−3

(A.20)
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and therefore

Eπθ∗


∣∣∣∣∣∣∣∣Covνθ

au(θ)
qν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

, bv(θ)
qν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

| Z1:n


∣∣∣∣∣∣∣∣
 ≤ 4q2ρ

|v−u|−3,

where q2 is defined as in Lemma A.10. For l ∈ N we get that

Eπθ∗

 sup
|θ−θ∗ |≤δn

∣∣∣∣1n
n∑

u,v=1

Covνθ

au(θ)
qν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ,(u−1):u(X(u−1):u | Z1:n)

, bv(θ)
qν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ,(v−1):v(X(v−1):v | Z1:n)

| Z1:n


− Covνθ∗

au(θ∗)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

, bv(θ∗)
qν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n





≤
1
n

n∑
u=1

∑
v∈{1,...,n}:
|v−u|>l

Eπθ∗

 sup
|θ−θ∗ |≤δn

∣∣∣∣ Covνθ

au(θ)
qν,1:n
θ,(u−1):u(X(u−1):u|Z1:n)

pν,1:n
θ,(u−1):u(X(u−1):u|Z1:n)

, bv(θ)
qν,1:n
θ,(v−1):v(X(v−1):v|Z1:n)

pν
θ,(v−1):v(X(v−1):v|Z1:n)

|Z1:n


− Covνθ∗

au(θ∗)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

, bv(θ∗)
qν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n


 ∣∣∣∣


+

∑
v∈{1,...,n}:
|v−u|≤l

Eπθ∗

 sup
|θ−θ∗ |≤δn

∣∣∣∣ Covνθ

au(θ)
qν,1:n
θ,(u−1):u(X(u−1):u|Z1:n)

pν,1:n
θ,(u−1):u(X(u−1):u|Z1:n)

, bv(θ)
qν,1:n
θ,(v−1):v(X(v−1):v|Z1:n)

pν,1:n
θ,(v−1):v(X(v−1):v|Z1:n)

|Z1:n


− Covνθ∗

au(θ∗)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

, bv(θ∗)
qν,1:n
θ∗,(v−1):v(X(v−1):v|Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n


 ∣∣∣∣


≤

1
n

n∑
u=1

∑
v∈{1,...,n}:
|v−u|>l

8q2ρ
|v−u|−3

+
∑

v∈{1,...,n}:
|v−u|≤l

δn
(
2q2 + 2ρq3(|v − u| + 6(l + 1) + 24q2ρ

l)
)

≤
1
n

n∑
u=1

8q2
ρl−3

1 − ρ
+ (2l + 1)δn

(
2q2 + 2ρq3(|v − u| + 6(l + 1) + 24q2ρ

l)
)

= 8q2
ρl−3

1 − ρ
+ (2l + 1)δn

(
2q2 + 2ρq3(|v − u| + 6(l + 1) + 24q2ρ

l)
)

Choosing l = bδ−1/4
n c completes the proof. �

Proof of Lemma 4.19. Let u, l, n ∈ N with u − l ≥ 1 and u + l ≤ n. From the argument we used
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in Corollary 4.14 we have that

∣∣∣∣Eπθ∗
au(θ∗, X(u−1):u,Zu)

qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

| Z1:n


− Eπθ∗

au(θ∗, X(u−1):u,Zu)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z(u−l):(u+l))

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z(u−l):(u+l))

| Z(u−l):(u+l)

 ∣∣∣∣
≤ 4a0

u(Zu).

It follows that

Covπθ∗

Eπθ∗
au(θ∗, X(u−1):u,Zu)

qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

| Z1:n

 ,
Eπθ∗

av(θ∗, X(v−1):v,Zv)
qν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n




= Covπθ∗

Eπθ∗
au(θ∗, X(u−1):u,Zu)

qν,1:n
θ∗,(u−1):u(X(u−1):u | Z(u−l):(u+l))

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z(u−l):(u+l))

| Z(u−l):(u+l)

 ,
Eπ
θ∗

av(θ∗, X(v−1):v,Zv)
qν,1:n
θ∗,(v−1):v(X(v−1):v | Z(v−l):(v+l))

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z(v−l):(v+l))

| Z(v−l):(v+l)


 + O(q2ρ

l),

where q2 is again an upper bound for the second moment of a0
u(Zu) for all u ∈ N. Using the

mixing of the observed process proven in Lemma 4.13 we can show as in Theorem 17.2.2 in

Ibragimov and Linnik (1971) that

Covπθ∗

Eπθ∗
au(θ∗, X(u−1):u,Zu)

qν,1:n
θ∗,(u−1):u(X(u−1):u | Z(u−l):(u+l))

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z(u−l):(u+l))

| Z(u−l):(u+l)

 ,
Eπ
θ∗

av(θ∗, X(v−1):v,Zv)
qν,1:n
θ∗,(v−1):v(X(v−1):v | Z(v−l):(v+l))

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z(v−l):(v+l))

| Z(v−l):(v+l)




= O(q3ρ
max(0,|v−u|−2l)

3 ),

where q3 is an upper bound on the third moment of a0
u(Zu) for all u ∈ N. Taking l = |(v − u)/4|,
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we find that

Varπθ∗

 n∑
u=1

Eπθ∗

ai(θ∗, X(i−1):i,Zi)
qν,1:n
θ∗,(i−1):i(X(i−1):i | Z1:n)

pν,1:n
θ∗,(i−1):i(X(i−1):i | Z1:n)

| Z1:n




= Covπθ∗

 n∑
u=1

Eπθ∗

au(θ∗, X(u−1):u,Zu)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

| Z1:n

 ,
n∑

v=1

Eπθ∗

av(θ∗, X(v−1):v,Zv)
qν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n




=

n∑
u=1

n∑
v=1

Covπθ∗

Eπθ∗
au(θ∗, X(u−1):u,Zu)

qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

| Z1:n

 ,
Eπθ∗

av(θ∗, X(v−1):v,Zv)
qν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n




=

n∑
u=1

n∑
v=1

O
(
q3ρ

|v−u|/6 + q2ρ
|v−u|/4

)
= O(n)

�

Proof of Lemma 4.20. The proof is similar to the proof Lemma 4.19. For i ∈ N we write ai for

ai(θ∗, Xi−1, Xi,Zi). Let u, v, z, l ∈ N with u − l ≥ 1 and u + l ≤ n. Further let

ξu =

n∑
v=1

Covνθ∗

au(θ∗)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

, bv(θ∗)
qν
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n


and

ξl
u =

u+l∑
v=u−l

Covνθ∗

au(θ∗)
qν
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

, bv(θ∗)
qν
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n

 .
In the following we use the abbreviation

Covνθ∗(au, bv | Z1:n)

= Covν,1:n
θ∗

au(θ∗)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z1:n)

pν
θ∗,(u−1):u(X(u−1):u | Z1:n)

, bv(θ∗)
qν
θ∗,(v−1):v(X(v−1):v | Z1:n)

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z1:n)

| Z1:n

 .
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Note that

Covπθ∗ (ξu, ξz) − Covπθ∗
(
ξl

u, ξ
l
z

)
=

n∑
v=1

n∑
w=1

Covπθ∗
(
Covνθ∗(au, bv | Z1:n),Covνθ∗(az, bw | Z1:n)

)
−

u+l∑
v=u+−l

z+l∑
w=z−l

Covπθ∗
(
Covνθ∗(au, bv | Z1:n),Covνθ∗(az, bw | Z1:n)

)
=

u+l∑
v=u−l

∑
w∈{1,...,n}
|w−z|>l

Covπθ∗
(
Covνθ∗(au, bv | Z1:n),Covνθ∗(az, bw | Z1:n)

)

+
∑

v∈{1,...,n}
|v−u|>l

z+l∑
w=z−l

Covπθ∗
(
Covνθ∗(au, bv | Z1:n),Covνθ∗(az, bw | Z1:n)

)
+

∑
v∈{1,...,n}
|v−u|>l

∑
w∈{1,...,n}
|w−z|>l

Covπθ∗
(
Covνθ∗(au, bv | Z1:n),Covνθ∗(az, bw | Z1:n)

)
.

We use again (A.20) and the Cauchy-Schwartz inequality and observe that

=

u+l∑
v=u−l

∑
w∈{1,...,n}
|w−z|>l

Covπθ∗
(
Covνθ∗(au, bv | Z1:n),Covνθ∗(az, bw | Z1:n)

)

≤

u+l∑
v=u−l

∑
w∈{1,...,n}
|w−z|>l

(
Eπθ∗

[(
Covνθ∗(au, bv | Z1:n)

)2
])1/2 (

Eπθ∗

[(
Covνθ∗(az, bw | Z1:n)

)2
])1/2

≤

u+l∑
v=u−l

∑
w∈{1,...,n}
|w−z|>l

(
Eπθ∗

[(
4a0

u(Zu)b0
v(Zv)ρ|v−u|−3

)2
])1/2 (

Eπθ∗

[(
4a0

z (Zz)b0
w(Zw)ρ|w−z|−3

)2
])1/2

≤ C
u+l∑

v=u−l

(
Eπθ∗

[(
a0

u(Zu)b0
v(Zv)

)2
])1/2

ρl
∞∑

w=1

(
Eπθ∗

[(
a0

z (Zz)b0
w(Zw)ρw

)2
])1/2

≤ C′
u+l∑

v=u−l

(
Eπθ∗

[(
a0

u(Zu)b0
v(Zv)

)2
])1/2

ρlq1/2
4

∞∑
w=1

ρw

≤ C′′q4(l + 1)ρl,

where C,C′,C′′ ∈ R are constants and q4 is a bound on the fourth moment of a0
u and b0

v for all

u, v ∈ N. Similarly, one can show that

∑
v∈{1,...,n}
|v−u|>l

z+l∑
w=z−l

Covπθ∗
(
Covνθ∗(au, bv | Z1:n),Covνθ∗(az, bw | Z1:n)

)
= O

(
q4(l + 1)ρl

)
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Furthermore, note that

∑
v∈{1,...,n}
|v−u|>l

∑
w∈{1,...,n}
|w−z|>l

Covπθ∗
(
Covνθ(au, bv | Z1:n),Covνθ(az, bw | Z1:n)

)
≤ Cρ2lq4

∞∑
v=1

ρv
∞∑

w=1

ρw

≤ C′ρ2lq4

for some constants C,C′ ∈ R. In total we can estimate

Covπθ∗ (ξu, ξz) − Covπθ∗
(
ξl

u, ξ
l
z

)
= O

(
q4(l + 1)ρl

)
(A.21)

Next for u, v ∈ N, set

Covνθ∗(au, bv | Z(u−l):(v+l)) = Covνθ∗

au(θ∗)
qν,1:n
θ∗,(u−1):u(X(u−1):u | Z(u−l):(v+l))

pν,1:n
θ∗,(u−1):u(X(u−1):u | Z(u−l):(v+l))

,

bv(θ∗)
qν,1:n
θ∗,(v−1):v(X(v−1):v | Z(u−l):(v+l))

pν,1:n
θ∗,(v−1):v(X(v−1):v | Z(u−l):(v+l))

| Z(u−l):(v+l)

 .
and

ξ̃l
u =

u+l∑
v=u−l

Covνθ∗(au, bv | Z(u−l):(v+l)).

Similarly to (4.9) one can show that∣∣∣Covνθ∗(au, bv | Z1:n) − Covνθ∗(au, bv | Zu−l:v+l)
∣∣∣ = O

(
a0

u(Zu)b0
v(Zv)ρl

)
.

It follows that∣∣∣∣Covπθ∗ (ξu, ξz) − Covπθ∗
(
ξl

u, ξ
l
z

)∣∣∣∣
≤

∣∣∣∣Covπθ∗ (ξu, ξz) − Covπθ∗
(
ξl

u, ξz
)∣∣∣∣ +

∣∣∣∣Covπθ∗
(
ξl

u, ξz
)
− Covπθ∗

(
ξl

u, ξ
l
z

)∣∣∣∣
=

∣∣∣∣Covπθ∗
(
ξu − ξ

l
u, ξz

)∣∣∣∣ +
∣∣∣∣Covπθ∗

(
ξl

u, ξz − ξ
l
z

)∣∣∣∣
≤

u+l∑
v=u−l

z+l∑
w=z−l

∣∣∣∣Covπθ∗
(
Covνθ∗(au, bv | Z1:n) − Covνθ∗(au, bv | Zu−l:v+l),Covνθ∗(az, bw | Z1:n)

) ∣∣∣∣
+

u+l∑
v=u−l

z+l∑
w=z−l

∣∣∣∣Covπθ∗
(
Covνθ∗(az, bw | Z1:n) − Covνθ∗(az, bw | Zz−l,v+l),Covνθ∗(au, bv | Zu−l,v+l)

) ∣∣∣∣
≤

u+l∑
v=u−l

z+l∑
w=z−l

Eπθ∗

[(
Covνθ∗(au, bv|Z1:n)) − Covνθ∗(au, bv|Zu−l:v+l)

)2
]1/2
Eπθ∗

[(
Covνθ(az, bw|Z1:n)

)2
]1/2

+

u+l∑
v=u−l

z+l∑
w=z−l

∣∣∣∣Covπθ∗
(
Covνθ∗(az, bw | Z1:n)) − Covνθ∗(az, bw | Zu−l:v+l)),Covνθ∗(au, bv | Zu−l:v+l))

) ∣∣∣∣
= O(q4(l + 1)2ρl) (A.22)



88 APPENDIX A. TECHNICAL PROOFS

Again (A.20) leads to

ξl
u ≤ a0

u(Zu)
u+l∑

v=u−l

b0
v(Zv)ρ|v−u|

and further the Hölder inequality implies that for κ = δ/2

Eπθ∗
[
(ξl

u)2+κ
]

= O(q4+δl3),

where q4+δ is an upper bounud on the (4 + δ)th moment of au and bv for all u, v ∈ N. Finally, we

use Theorem 17.2.2 in Ibragimov and Linnik (1971) to bound the covariance of (ξl
u, ξ

l
z) by

Covπθ
(
ξl

u, ξ
l
z

)
= O

(
q4l3(ρ1/3)max(0,|z−u|−4l)

)
(A.23)

Combining (A.21), (A.22) and (A.23), we find that

Varπθ∗

 n∑
u,v=1

Covπθ∗(au, bv | 1, n)


= Covπθ∗

 n∑
u,v=1

Covπθ∗(au, bv | 1, n),
n∑

z,w=1

Covπθ∗(au, bv | 1, n)


=

n∑
u=1

n∑
z=1

Covπθ∗ (ξu, ξz)

=

n∑
u=1

n∑
z=1

O(q4l3ρ
max(0,|u−z|−4l)

3 ) + O(q4(l + 1)2ρl) + O(q4(l + 1)ρl)

Choosing l = b|u − z| /8c we obtain that Varπθ∗

(
n∑

u,v=1
Covπθ∗(au, bv | 1, n)

)
is of order n. �

Proof of Proposition 5.3. From the definition of α and β it follows that

αi(s) =
∑

s1:i−1∈S i−1

ν(s1) fθ,1(s1, z1)
i−1∏
j=2

(Pθ(s j−1, s j) fθ, j(s j, z j))Pθ(si−1, s) fθ,i(s, zi)

=

K∑
k=1

∑
s1:(i−2)∈S i−2

ν(s1) fθ,1(s1, z1)
i−2∏
j=2

(Pθ(s j−1, s j) fθ, j(s j, z j))

× Pθ(si−2, k) fθ,i(k, zi)Pθ( j, s) fθ,i(s, zi)

=

K∑
j=1

αi−1( j)Pθ( j, s) fθ,i(s, zi)
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and

βi−1(s) =
∑

si:n∈S n−i+1

Pθ(s, si) fθ,i(si, zi)
n∏

j=i+1

Pθ(s j−1, s j) fθ, j(s j, z j)

=

K∑
j=1

∑
s(i+1):n∈S n−i

Pθ(s, j) fθ,i( j, zi)Pθ( j, si+1) fθ,i(si+1, zi+1)
n∏

j=i+2

Pθ(s j−1, s j) fθ, j(s j, z j)

=

K∑
j=1

Pθ(s, j) fθ,i( j, zi)
∑

s(i+1):n∈S n−i

Pθ( j, si+1) fθ,i(si+1, zi+1)
n∏

j=i+2

Pθ(s j−1, s j) fθ, j(s j, z j)

=

K∑
j=1

βi( j)Pθ(s, j) fθ,i( j, zi)

�

Proof of Proposition 5.10. Using Proposition 5.4 we find that

ξt(i, j)

= Pνθ (Xt = i, Xt+1 = j | Z1 = z1, . . . ,Zn = zn)

=

 ∑
s1:(t−1)∈S t−1

∑
s(t+2):n∈S n−t−1

ν(s1) fθ,1(s1, z1)
t−1∏
j=2

Pθ(s j−1, s j) fθ, j(s j, z j)Pθ(st−1, i) fθ,t(i, zt)

Pθ(i, j) fθ,t+1( j, zt+1)Pθ( j, st+2) fθ,t+2(st+2, zt+2)
n∏

j=t+3

Pθ(s j−1, s j) fθ, j(s j, z j)

 /pνθ(z1, . . . , zn)

=

 ∑
s1:(t−1)∈S t−1

ν(s1) fθ,1(s1, z1)
t−1∏
j=2

Pθ(s j−1, s j) fθ, j(s j, z j)Pθ(st−1, i) fθ,t(i, zt)Pθ(i, j) fθ,t+1( j, zt+1)

∑
s(t+2):n∈S n−t−1

Pθ( j, st+2) fθ,t+2(st+2, zt+2)
n∏

j=t+3

Pθ(s j−1, s j) fθ, j(s j, z j)

 /pνθ(z1, . . . , zn)

=
αt(i)Pθ(i, j) fθ,t+1( j, zt+1)βt+1( j)

K∑
i=1

K∑
j=1
αt(i)Pθ(i, j) fθ,t+1( j, zt+1)βt+1( j)

�



Appendix B

Markov chains and Auxiliary results

B.1 A strategy to prove strong consistency of estimators

For maximum likelihood estimation the approach of Wald, see Wald (1949), to prove consistency

is straightforward. Here we consider a quasi-likelihood estimator but we see that the approach

also works straightforward in this slightly different setting. Let (Ω,F ,P) be a probability space

and (G,G ) be a measurable space. Assume that Θ ⊆ Rd and let |·| be the d-dimensional Euclidean

norm.

Theorem B.1 (Strong consistency). Let (Wn)n∈N be a sequence of random variables mapping

from (Ω,F ,P) to (G,G ). For any n ∈ N let hn : Θ × Gn → [0,∞) be a measurable function.

Assume that there exists an element θ∗ ∈ Θ such that for any closed C ⊂ Θ with θ∗ < C and all

n ∈ N, we have

lim
n→∞

sup
θ∈C

hn(θ,W1, . . . ,Wn)
hn(θ∗,W1, . . . ,Wn)

= 0 P-a.s. (B.1)

Let (θ̂n)n∈N be a sequence of random variables mapping from (Ω,F ,P) to Θ such that

∃c > 0 & n0 ∈ N ∀ n ≥ n0 :
hn(θ̂n,W1, . . . ,Wn)
hn(θ∗,W1, . . . ,Wn)

≥ c, P-a.s. (B.2)

Then

lim
n→∞

∣∣∣θ̂n − θ
∗
∣∣∣ = 0 P-a.s.

Proof. For arbitrary ε > 0 define

A(1)
ε :=

{
ω ∈ Ω : lim sup

n→∞

∣∣∣θ̂n(ω) − θ∗
∣∣∣ > ε} ,

A(2)
ε :=

ω ∈ Ω : lim sup
n→∞

sup
θ: |θ−θ∗ |≥ε

hn(θ,W1(ω), . . . ,Wn(ω))
hn(θ̂n(ω),W1(ω), . . . ,Wn(ω))

≥ 1
 ,

A(3)
ε :=

ω ∈ Ω : lim sup
n→∞

sup
θ: |θ−θ∗ |≥ε

hn(θ,W1(ω), . . . ,Wn(ω))
hn(θ∗,W1(ω), . . . ,Wn(ω))

≥ c
 .

Note that A(1)
ε ⊆ A(2)

ε ⊆ A(3)
ε , where the last inclusion follows by (B.2). Hence, by (B.1) we have
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P(A(3)
ε ) = 0 so that

P(A(1)
ε ) = P

(
lim sup

n→∞

∣∣∣θ̂n − θ
∗
∣∣∣ > ε) = 0,

which implies the assertion. �

The following lemma is useful to verify condition (B.1).

Lemma B.2. Let (Wn)n∈N be a sequence of random variables mapping from (Ω,F ,P) to (G,G )

and, as in Theorem B.1, for any n ∈ N let hn : Θ×Gn → [0,∞) be a measurable function. Assume

that there is an element θ∗ ∈ Θ such that for any closed C ⊂ Θ with θ∗ < C we have

lim sup
n→∞

sup
θ∈C

1
n

log hn(θ,W1, . . . ,Wn) < lim
n→∞

1
n

log hn(θ∗,W1, . . . ,Wn) P-a.s. (B.3)

provided that the limit on the right hand-side exists. Then condition (B.1) is satisfied.

Proof. Obviously (B.3) implies

log

lim sup
n→∞

sup
θ∈C

[
hn(θ,W1, . . . ,Wn)
hn(θ∗,W1, . . . ,Wn)

]1/n < 0.

This leads to

lim sup
n→∞

sup
θ∈C

[
hn(θ,W1, . . . ,Wn)
hn(θ∗,W1, . . . ,Wn)

]1/n

< 1

from which (B.1) follows. �

B.2 Introduction into Markov Models

In this section we give a short introduction into Markov models. For a detailed survey we refer

to Grimmett and Stirzaker (1992). The term ’Markov Model’ or ’Markov chain’, named after

Andrey Markov, originally referred to stochastic models where the probability of a future state

only depends on its current state. This property is known as ’Markovian property’. In this section

we restrict ourselves to the case where the sample space S is finite and observations are drawn

in discrete time. For analogue definitions in general state spaces we refer to Meyn and Tweedie

(1992).

Definition B.3. A sequence of random variables (Xn)n∈N with Xn : (Ω,F ,P) → (S ,S) is a

Markov chain if it satisfies the Markov property, i.e., for all n,m ∈ N with n > m and all

xm, . . . , xn ∈ S we have

pm,n(xn−1, xn) = P(Xn = xn | Xn−1 = xn−1),

where

pm,n(xn−1, xn) B P(Xn = xn | Xm = xm, . . . , Xn−1 = xn−1)
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The sequence of matrices (Pn)n∈N generated by

Pn(i, j) = pn−1,n(i, j), n ∈ N

is called transition matrices or transition kernels. A Markov chain (Xn)n∈N is homogeneous if

Pn = Pn+1 ∀n > 1.

The following theorem provides a connection between the transition matrices at different

sample times.

Theorem B.4. (Chapman-Kolmogorov Equation) Lel (Xn)n∈N be a Markov chain with transition

kernels (Pn)n∈N. For all n,m ∈ N with n > m and all i, j ∈ S it holds that

P (Xn = j | Xm = i) =

 n∏
k=m+1

Pk

 (i, j) n > m ≥ 1, i, j ∈ S .

Proof. The case n − m = 1 is trivial. Assume that n − m > 1. By Bayes’s rule and the Markov

property we have

P(Xn = j | Xm = i) =
∑

sm+1,...,sn−1∈S

P(Xm+1 = sm+1, . . . , Xn−1 = sn−1, Xn = j | Xm = i)

=
∑

sm+1,...,sn−1∈S

Pm+1( j, sm+1)
n−1∏

k=m+2

Pm+1(sk−1, sk)Pm+1(sn−1, i)

=

 n∏
k=m+1

Pk

 (i, j)

�

Definition B.5. Let (Xn)n∈N be a homogeneous Markov chain with transition matrix P. A state

i ∈ S is called recurrent if the probability that the Markov chain eventually returns to i is 1, i.e.,

P(Xn = 1 for some n > 1 | X1 = i) = 1.

If i is not recurrent, it is called transient. If all states are recurrent, the Markov chain is called

recurrent.

For n ∈ N with n > 1 and i, j ∈ S let fi, j(n) be the probability of the first passage from i to j,

i.e.,

fi, j(n) = P(Xn = j, Xn−1 , j, Xn−2 , j, . . . , X2 , j | X1 = i)

and define

fi, j B
∞∑

n=2

fi, j(n).
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We have that j is recurrent if and only if f j, j = 1. The following corollary is useful to determine

whether a state is recurrent or not.

Corollary B.6. Let (Xn)n∈N be a homogeneous Markov chain with transition kernel P and i, j ∈ S .

Then it holds that

i) State j is recurrent if and only if
∑

n Pn( j, j) = ∞ and if this holds
∑

n Pn(i, i) = ∞ for all i

with fi, j > 0.

ii) State j is transient if and only if
∑

n Pn( j, j) < ∞ and if this holds
∑

n Pn(i, j) < ∞ for all i.

Proof. See page 221 in Grimmett and Stirzaker (1992). �

Remark B.7. It follows immediately that Pn(i, j)→ 0, i, j ∈ S as n→ ∞ if j is transient.

We define T j B min{n ≥ 1 : Xn = j} to be the time of the first visit to j with the convention

that T j = ∞ if j is transient and divide the class of recurrent Markov chains into two subclasses.

Definition B.8. Let (Xn)n∈N be a homogeneous Markov chain with transition kernel P. A

recurrent state i ∈ S is called positive if the mean recurrence time defined as

µi B E[Ti|X1 = i] =

∞∑
n=1

fi,i(n)n

is finite. Otherwise i is called null. Let d(i) = gcd{n ∈ N : Pn(i, i) > 0} be the period of i. Here

gcd(A) is the greatest common divisor of A where A ⊂ NN. A state i ∈ s is called aperiodic if

d(i) = 1. A Markov chain is aperiodic if all states are aperiodic.

Further for i, j ∈ S we say i communicates with j if there is a positive probability that the

chain reaches j starting from i. Then, we write i → j. If also j → i we say states i and j

intercommunicate and write i ↔ j. A set A ∈ S is called irreducible if for all i, j ∈ A we have

i↔ j. A Markov chain is irreducible if S is irreducible.

Lemma B.9. For a Markov chain (Xn)n∈N with transition matrix P at least on state is recurrent.

Proof. Assume all states are transient. Then by corollary B.6 we have Pn(i, i)→ ∞ as n→ ∞.

This yields to a contradiction since

1 =

K∑
j=1

pi j(0, n)→ 0,

as n→ ∞. �

Definition B.10. A distribution π = (π(1), . . . , π(K)) ∈ P(S ) is called invariant distribution for a

Markov chain (Xn)n∈N with transition matrix P if

π( j) =
∑
i∈S

π(i)P(i, j), ∀ j ∈ S .
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Corollary B.11. Let (Xn)n∈N be a Markov chain with transition matrix P and i, j ∈ S such that

i↔ j. Then

i) i is transient if and only if j is transient

ii) i is positive recurrent if and only if j is positive recurrent

iii) i and j have the same period

Proof. We refer to Grimmett and Stirzaker (1992). �

Theorem B.12. An irreducible Markov chain (Xn)n∈N with transition matrix P has an invariant

distribution π, π ∈ P(S ), if and only if all states are positive recurrent. In this case π is given by

π(i) =
1
µi
, i ∈ S ,

where µi is the mean recurrence time of state i.

Proof. Sees Grimmett and Stirzaker (1992). �

Remark B.13. It follows that every irreducible Markov chain with finite state space has an

invariant distribution. A homogeneous Markov chain is irreducible if and only if its transition

matrix P is irreducible.

Theorem B.14. Suppose that P is the transition matrix of an aperiodic, irreducible Markov

chain (Xn)n∈N with invariant distribution π and let ρ be an arbitrary distribution on S . Then with

probability one it follows that

lim
n→∞

sup
A∈S

∣∣∣ρPn(A) − π(A)
∣∣∣ = 0. (B.4)

Proof. We refer to Grimmett and Stirzaker (1992). �

Definition B.15. Let (Xn)n∈N be a Markov chain with transition matrix P and i ∈ S . The sojourn

time S (i) of a state i is the number of times steps the Markov chain stays in i, if X1 = i.

Proposition B.16. (distribution of the sojourn time) Let (Xn)n∈N be a Markov chain with transition

matrix P and i ∈ S . The sojourn time of state S (i) of i is geometrically distributed with parameter

P(i, i).

Proof. By the Markov property it follows that

P(S (i) = k − 1) = P(Xk , i, Xk−1 = i, . . . , X2 = i | X1 = i)

= P(Xk , i | Xk−1 = i)P(Xk−1 = i, Xk−2 = i, . . . , X2 = i | X1 = i)

= (1 − P(i, i))P(Xk−1 = i | Xk−2 = i)P(Xk−2 = i, Xk−3 = i, . . . , X2 = i | X1 = i)

= (1 − P(i, i))P(i, i)P(Xk−2 = i, Xk−3 = i, . . . , X2 = i | X1 = i)

= (1 − P(i, i))P(i, i)k−1,
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where the last line follows from repeating the argument. �

Definition B.17. A sequence of random variables (Xn)n∈N is stationary if the distribution of

Xn1 , . . . , Xnk is equal to the distribution of Xn1+r, . . . , Xnk+r for all k, r, n1, . . . , nk ∈ N.

Proposition B.18. A homogeneous Markov chain (Xn)n∈N with invariant distribution π and

transition probability P is a stationary process if X1 ∼ π.

Proof. Let n1 < n2 . . . < nk. We use the Markov property and X1 ∼ π to obtain

P
(
Xn1+r = xn1 , . . . , Xnk+r = xnk

)
=P

(
Xn1+r = xn1

)
P
(
Xn2+r = xn2 , . . . , Xnk+r = xnk | Xn1+r = xn1

)
=π(xn1)P

(
Xn2+r = xn2 | Xn1+r = xn1

)
P
(
Xn3+r = xn3 , . . . , Xnk+r = xnk | Xn2+r = xn2

)
=π(xn1)Pn2−n1(xn1 , xn2)P

(
Xn3+r = xn3 , . . . , Xnk+r = xnk | Xn2+r = xn2

)
=π(xn1)

k∏
i=2

Pni−ni−1(xni−1 , xni)

=P
(
Xn1 = xn1 , . . . , Xnk = xnk

)
.

�

B.3 Auxiliary results

Definition B.19. Let G be a set. A collection of subsetsA ⊂ P(G) is a π-system, ifA , ∅ and if

A, B ∈ A it follows that A ∩ B ∈ A.

Theorem B.20 (Uniqueness theorem for finite measures). Let (G,F ) a measurable space and µ, ν

finite measures on (G,F ) satisfying µ(G) = ν(G). Suppose that for some π-systemA generating

F it holds that µ = ν onA. Then µ = ν on F .

Theorem B.21. Let I be an index set and for every i ∈ I let Ei ⊂ Ai be a generating system of

Ai. Then

⊗
i∈I
Ai = σ

(
ZE,R

)
,

where

ZE,R =
⋃

J⊂I,|J|<∞

Z
E,R
J

andZE,RJ is the set of all rectangular cylinders with basis J.

Proof. See Theorem 14.12 in Klenke (2013). �

Theorem B.22. Let (G,m) a metric space with its Borel-σ-field F . Two probability measures Q1

and Q2 on F coincide if ∫
G

hd(Q1) =

∫
G

hd(Q2)
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for all bounded, uniformly continuous function h : G → R.

Proof. See Theorem 1.2 in Billingsley (1999). �

Definition B.23. Let (G,m) be a metric space with its Borel-σ-field F and µ, µn, n ∈ N finite

measures on (G,F ). We say µn converges weakly to µ if for any bounded, continuous function

f : G → R

lim
n→∞

∫
G

f d(µn) =

∫
G

f d(µ)

holds.

Lemma B.24. Let W be a non-central chi-squared distributed random variable with degree of

freedom 1 and non-centrality parameter λ. The moment-generating function m(t) is given by

m(t) = E
[
exp(tW)

]
= (1 − 2t)−1/2 exp

(
λt

1 − 2t

)
Lemma B.25. For d ∈ N let A ∈ Rd×d be a symmetric and positive definite matrix with eigenval-

ues λi, i = 1, . . . d. Then

(i) The eigenvalues of the inverse matrix A−1 are given by λ−1
i , i = 1, . . . d.

(ii) The eigenvalues of AT A are given by λ2
i , i = 1, . . . d.

(iii) There exists a symmetric, positive definite matrix A1/2 such that

A1/2A1/2 = A.

(iv) The inverse matrix A−1 is symmetric and positive definite.

Proof. For i ∈ N let vi an eigenvector of λi. It follows that

(i)

Avi = λivi ⇒ A−1Avi = A−1λivi ⇒ λ−1
i vi = A−1vi,

(ii)

AT Avi = ATλivi = λiAvi = λ2
i vi.

(iii) Since A is symmetric there exists an orthogonal matrix U ∈ Rd×d such that

A = UDUT ,

where D is a diagonal matrix having the eigenvalues on the diagonal. Let D1/2 ∈ Rd×d be the

diagonal matrix with diagonal (λ1/2
1 , . . . , λ1/2

d )T . It holds that

A = UDUT = UD1/2D1/2UT = UD1/2UT UD1/2UT .
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Set A1/2 = UD1/2UT .

(iv) Let D−1 ∈ Rd×d denote the diagonal matrix with diagonal (λ−1
1 , . . . , λ−1

d ). Observe that

UD−1UT UDUT = Iq.

It follows that A−1 = UD−1UT . �
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