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Figure 0.1: Minimal surface spanning a septfoil knot, demonstrating spontaneous
symmetry breaking and nonuniqueness of the solutions to the least area
problem: While the boundary curve has sevenfold rotation symmetry,
the presented surface lacks this symmetry; rotation by integer multiples
of 27 produces further minimal surfaces.



Figure 0.2: Minimal surface spanning a figure-eight knot. (A 3D-print of the bound-
ary curve is part of the Gottingen Collection of Mathematical Models
and Instruments.)
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Introduction

This thesis is concerned with the convergence behavior of the solutions to parametric
variational problems. An emphasis is put on sequences of variational problems
that arise as discretizations of either infinite-dimensional optimization problems or
infinite-dimensional operator problems.

Apart from which is of purely preparatory nature, the present work
consists of essentially three parts, each of interest on its own but still depending on
each other:

The first part consists of Chapters[2]and[3] In particular, [Chapter 2]is the theoretical
backbone of the whole work. We discuss parametric minimization problems in their
most general form. In particular, the chapter can be read as a blueprint for conducting
convergence analysis in practice (and we will use it this way in the third part of
this work). We introduce a language that will sound familiar to workers in the area
of variational analysis as well as to those in the finite elements community. This
language is based on Strang’s second lemma and provides su cient conditions for
variational convergence of sequences of minimization problems. These conditions
are divided into three groups: consistency, proximity, and stability. Consistency
encodes the ability to approximate the values of the functionals being minimized;
proximity encodes the ability to approximate the solutions; and stability encodes
the growth rates of the objective functions away from their minimizers. Consistency
and proximity are closely related to epigraphical convergence. Often, they can be
verified by standard methods from approximation theory. However, stability is more
di cult to investigate. We introduce two notions of stability: the first, which we
term topological stability, implies Kuratowski convergence (and in certain cases also
Hausdor convergence) of minimizers and is tightly related to lower semi-continuity;
the second, quantitative stability, allows for convergence rates to be easily deduced,
but is not readily verifiable in concrete applications.

In we investigate the consequences of on parametric operator
problems. In particular, we obtain nonlinear generalizations of the main convergence
theorems in the theory of generalized Ritz-Galerkin schemes, namely Cea’s lemma

and the two lemmata of Strang (Section 3.3).
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We point out that this theory is capable of treating nonlinear variational problems
with nonunique solutions; it encompasses the existing convergence theory for convex
minimization problems and monotone operator problems, but it is not limited to
these cases; and it was particularly designed to be easily applicalma¢onforming
discretization schemes.

Although we focus on convergence of discretization schemes, the results of Chap-
ters[2 and 3 may also be applicable to other limiting problems such as thin shell
and rod limits in elasticity, continuum limits of particle systems, homogenization
problems or for analyzing regularization methods.

One of the hardest tasks in dealing with geometric variational problems is to
nd a de nition of a con guration space together with a technically feasible and
geometrically meaningful notion of distance: e.g., even in the classical, seemingly
simple, least area problem of surfaces, it is not obvious whatfaceshould be. The
second part of this thesis is devoted to this task. We develop a suitable con guration
space for the least area problem. It turns out that this con guration space is also of use
for problems in nonlinear elasticity. A central building block for this con guration
space and its metrics is a certain Riemannian metric on the space of inner products
on a nite-dimensional real vector space. This will be introduced in Chapter 4 where
we also investigate its invariance propertieq. In Chapter 5 we introduce a space of
Lipschitz immersions from an abstract, compact smooth manifoldRAtequipped
with metrics that are invariant under the action of theedimorphism group. Being
invariant, these metrics descend to metricsbape spacehe quotient of the space
of Lipschitz immersions by the group of ddomorphisms.

In the third and nal part we apply the theories of parametric optimization and
of Lipschitz immersions to two concrete examples: the approximation of minimal
surfaces (Chapter 7); and the approximation of static solutions of a full-dimensional,
nonlinear elasticity model (Chapter 8), both by nite element discretizations. The
con guration spaces of both problems consist of immersions of an abstract smooth
manifold into Euclidean space and we discretize these spaces by considering im-
mersed simplicial complexes, i.e., triangle meshes and tetrahedral meshes, as discrete
con gurations (Chapter 6). To some extent, the discretization can be described as
continuous, piecewise linear nite elements. As mentioned above, Chapter 2 will
serve us as a guideline in the proof of variational convergence of these discretizations:
Under certain assumptions on existence and regularity of solutions, we show con-
sistency, proximity and topological stability of the discretization schemes in terms
of the metrics introduced in Chapter 5. The theory developed in Chapter 2 then im-
plies Kuratowski convergence of discrétdmost-Jninimizers to smooth minimizers.

viii



The approximation theory needed for showing consistency and proximity will be
developed in Chapter 6.

The discretization and the detailed convergence analysis for minimal surfaces will
be treated in Chapter 7. While the used discretization has been successfully applied
several times in numerical computatiérisere has been no notable convergence
analysis for it so far.

We also discuss another discretization scheme for which a partial convergence
analysis was conducted in [20] (Section 7.3).

In Section 7.7 we brie y discuss two area decreasing ows on the con guration
space of immersion. Suitable discretizations of these ows can be used to numerically
approximate minimizers of the discrete area functional.

Chapter 8 is devoted to a nonlinear elastic energy which involves the Hencky
strain tensor. To our surprise, the Hencky strain tensor arose naturally as a certain
gradient vector eld on the space of inner products on a nite-dimensional vector
space (Section 4.4). Since we belief that this perspective is new, we spend some
e ort to outline the relationship between the Riemannian geometry of the space of
inner products on the one hand; and the role of the Hencky strain tensor in nonlinear
elasticity on the other hand (Sections 8.1 and 8.2). Afterwards, we discretize the
smooth elasticity model by using tetrahedral meshes immerse®¥rdad apply
it to the problem of nding static solutions of a material under the in uence of
a potential and under partial Dirichlet boundary conditions. Assuming existence
andW?! -regularity of solutions, we show consistency, proximity, and topological
stability with respect to thgv'! -norm, thus Kuratowski convergence of the discrete
solutions to the solutions of the smooth problem.

1The earliest account we could nd is by Wagner [37] and goes back to 1977.
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1 Preliminaries

In this text, the symbaC usually refers to a “generic constant” that may be increased
during the course of a proof. Sometimes, we mark the dependence on certain
guantities by attaching them in parentheses. For exar@ps depends on the entity

s. In this contextsis usually assumed to be xed as well.

1.1 Functional Analysis

If not otherwise stated, vector spaces are assumed to be over the reals. For normed
spacegX; kky), (Y: kky), we denote the space of continuous linear maps Xoim

Y by L(X;Y). ForA 2 L(X;Y), we denote bkAk the operator norm. The continuous

dual spacef X is denoted by<®and if not otherwise stateti; i refers to the bilinear
pairing

h:i: X° X! R; h: xi = (X):

The dual map o will be written asA® 2 L(Y% X9). Di erentiability is always meant
in the sense of Fréchet dérentiability.

1.2 Di erential Geometry

We will discuss smooth manifolds, smooth manifolds with boundary, and smooth
manifolds with corners. It belongs to the curiosities of mathematical language that
every smooth manifold is also a manifold with boundary; and that every manifold
with boundary is also a manifold with corners. In particular, even a smooth manifold
M without boundary (i.e., witl@M = ;) is a smooth manifold with boundary—and
even a smooth manifold with corners.

Let M, My be smooth manifolds with corners amd M ! My a di erentiable
map. We writeT M for thetangent bundl®f M andT°M for the cotangent bundle
(thecontinuoudinear forms onl M). Thetangent mapr (total) di erentialof f is
denoted byl f: TM! T M. Inthe case tha¥ly = Y is a Banach space, the tangent
bundleTMy, Y Yis trivial and we may writedf for the ber component of the
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tangent maf f. This leads to the identityxf = (f(x); d«f) for all x 2 M. More
generally, we usd for the exterior derivativeof di erential forms. IfM X is an
open subset of a Banach spatenve may writeTyf u= (f(x); Df(x)u), with x 2 U,
u2T,U X,andDf: U! L(X;Y) the total derivative (the Jacobi “matrix”).

In general, we denote thmillbackof tensors alond : M ! Mg by f# instead of
the often used notatioh . We will often writej, (read as “ak”) for point evaluation
atx, e.g., djx = dif, in particular, if other notation would be confusing.

Let : E! Mgbe a(locally trivial) ber bundle. We denote the spacesettions
by (Mg;E)B f' 2C°(Mog;E)j ' =idw,g For a continuous map: M! My,
we denote by

f'EB f(xe2M Ejf(x)= (&g

thepullback of the ber bundle E along.f
Let g andg, be Riemannian metrics di andMy, respectively. The induced inner
products for tensors okl are denoted bi; i, the induced inner product norm by
] jg» operator norms of tensors are simply denoted kyFor example, iM andM,
are nite dimensional and\ 2 L(TxM; TyMo) is an endomorphism of tangent spaces,
one may identiffL(TM; TMy) TMy T°M and consider both the operator norm
and the Frobenius norm
_ JA Ug, o Ny
KAk = sup — and jAjgq, = (tr(A oo A))z;
ui‘!’xoM ]ujg

whereA 9% denotes the adjoint ok with respect to the metriagy andgojy.

In this work, the symbot is used forcovariant derivativesexclusively, not
for gradients. Depending on context, tHessianHesg¢f) may refer torr f (if
f 2 (M;E) is the section of a vector bundle)df (if f: M ! X s a vector-
valued mapping) or T f (if f: (M;g) ! (Mo; o) is @ mapping between Riemannian
manifolds). In any case it is the second derivative with respect to the covariant
derivativer . We may writer 9, Hesg or r 9% Hes&% if they are meant with respect
to the Levi-Civita connections of the Riemannian metg@ndg,. For example,
let f: (M;g) ! (Mo;go) be a smooth mapping. Thénf can be interpreted as a
sectionT f 2 (M; L(T M; f#T My)). The Levi-Civita connections af andg, induce
a covariant derivative 9% on the vector bundle(T M; f¥TMg) ! M: For smooth
vector eldsu,v2 (M; f*T M) alongf, one has

HesS®(f)(u;v) = r ®T f(u;v) =r P(TFv) TFf(rdv):

Here,r % denotes the pullback connection alohg



1.3 SbolevSpaces

1.3 Sobolev Spaces

Letm k be positive integers and let be a compactk-dimensional smooth
manifold with corners. Fix a smooth Riemannian megion and denote the
Euclidean metric ofR™ by go. Forl 2 N[f Ogandl p 1 ,denote by\®( ; R™)

the Sobolev space bitimes weakly di erentiable mappings from to R™ with weak
derivatives up to orddrin L§. These vector spaces are independent of the choice
of g. However, their normg KNg;p dodepend ory:

p, R | :
kuk® ., B | o Jriufg, voly;  foru2WLP( ;R™,1 p<1;

P
]

_ TR 1, .pm
l‘(UKNé,l B izfrg;]g:)sjgesxgsugr Uixiggos foru2 Wy~ ( ; R™).

Here,r ' denotes-fold covariant di erentiation andlj;4, denotes the inner product
norm induced by, go on the tensor bundleE®  ::: T° U TR™

Moreover, we denote bgj ( ; R™) the vector space of smooth mappings R™
whose support is compact and contained in@ . Whenl 1, one may de ne

WE( ;R™) B WW; forl p<1,
Wie ( sR™ B fu2Wgt ( ;RMjfori=0;3:::50 1 (r'uje = 0g;
where the restriction mapping is given by
j@:Co( ;T :: TO UTRM! CY@;(T° ::: T° U TRMjp):
More generally, we write the trace operator as

j@: WEP( SR™ T W, HP(@; R™):

For later use, we note the Poincaré inequality (see [21, Section 5.6, Theorem 3]
for a proof) and an import implication of it:

Lemma 1.1 (Poincaré inequality)

Let(; g) be a connected, compact, smooth Riemannian manifold with non-empty
boundary. For eactp 2 [1;1 ] there is a constan€, 0 such that the following
holds:

kuk»  Cpkduk, forallu2 WyP( ;R™).
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TheHdalder conjugate opf p 2 [1;1 ] is de ned by

8

§1; p=1
q=§lt1; p21L1;

-1, p=1:

Lemma 1.2 Let( ; g) be a connected, compact, smooth Riemannian manifold with
non-empty boundary. Ldt< p 1 andletl g< 1 the Holder conjugate op.
Then the_aplacian
z
AT WeP(SR™ T (W3 ;R™)S w7l v7! hdu;dvig volg
is an isomorphism of Banach spaces and onelfadk (1 + Cp)(1+Cy).

Proof. Note that the mapping
Z

. .10 .10 0. P
DT O RM (LYCT® RM)S 7 T h; i volg

is an isometric isomorphism forall < p 1 . SincehA_\(u);vi = h (du); advi,

A'is well-de ned and continuous withkAk 1. From the Poincaré inequality
(Lemma 1.1), we obtain

kukyse  (1+Cp)kduk, — forallu2 WyP( ;R™),

kvkpaa  (1+ Co)kdvia;  forall v 2 Wor( s R™):

Now, we may estimate far 2 Wy( ; R"):

— h (du); dvi 1 h (du); dvi
KA(Wk,, a0 = SU su
( )k(wO dy VZW; kaNgl;q 1+C, vzwgg kdvkLg
v, 0,g vV, 0,9
-1 k (d S kd
= Tog, < Wk = T ks
1
(1+Cp)(1+Cy) Kk’

This shows thgp_\is a continuous, open, injective and linear map between Banach
spaces. Thus is an isomorphism and the operator norm of its inverse is readily
estimated by (% C,)(1 + Cy).



1.4 \Variational Analysis

1.4 Variational Analysis

Although hardly recognizable, most of the topics in this section are covered in
detail by chapters 4 and 7 of [34]. Our aim here is to give a brief summary without
introducing too much non-standard notation.

For a functionf: X! ]1 ;1], we de ne theepigraphas

epi(f)B f(x;t)2X 11 ;1]jt f(X¥o:
We use inff) = inf f f(x) j x 2 X gfor thein mal value of f and
argmin(f) B fx2 Xj8y2 X: f(x) f(y)g=1fx2Xjf(x)=inf(f)g

for the set ofminimizersof f. Moreover, we de ne for 2 [0;1 ] the set of
-minimizersby

argmin(f)B fx2Xj8y2X: f(x) f(y+ o

In particular, one has arg nfiff) = arg min(f) and

8
%X; =1;
)=§;; inf(f)= 1 and 2[0;1[, (1.1)

fx2Xjf(x) inf(f)+ g, inf(f)> 1 and 2[0;1].

arg min (f

When X is a topological space, a functioit X ! ]1 ;1] is calledlower
semi-continuousif all lower level setsf (] 1 ;t]),t 2]1 ;1] are closed or,
equivalently, if the epigrapbpi(f) X ]1 ;1]is aclosed set (with respect to
the product topology).

1.4.1 Metric spaces

Let (X;d) be a metric space. For 0 andx 2 X, we denote byB(x;r) B
fy2 Xjd(x;y) < r gtheopen balland byB(x;r) B fy2 Xjd(x;y) rgtheclosed
ball of radiusr aroundx.

ForasetA X, we write

dist(x; A) B inffd(x;a) ja2 Ag:
Moreover, we de ne th@pen and the closed r-thickeniofja setA X by

B(A;r) B fx2 Xjdistx A)<rg and B(A;r) B fx2XjdistA) rg:
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Remark 1.3 These de nitions seem to be quite simple. However, one has to keep
in mind some subtleties:

1. The closed balB(x; r) needs not to coincide with the closuBéx; r) of the open
ball B(x;r). As a counterexample, consider the discrete metric sfae¢0; 19
with d(x;y) = jx yjandr = 1. One hasB(0; 1) = f0; 1g but B(0; 1) = fOg
Since singletons are closed in metric spaces, on®f{@4) = fOg

2. While one has’ oaB(@;r) = B(A;r) andSalZA B(a;r) B(A;r), equality in
the latter does not hold in general. A counterexample is g'g/e)&i byR with
d(x;y) B jx yjandA=1]0;1]: One haB(A;1)=[ 1;2],but ,,B(ar) =
1 12].

3. With the conventiorinf(;) = 1, one hasB(;;r) = B(;;r) = ; for nite
r2[0;1[,butB(;;1)=;,B(;;1)=X

Let f: (X;dx) ! (Y.dy) be a Lipschitz continuous mapping between metric
spaces. We denote by

Lip(f) B sup dy(f(x0); f(x2))

xx2x  Ox(Xg; X2)
X1, X2

the optimal Lischitz constant df.

1.4.2 Hausdor convergence

De nition 1.4 Let (X;d) be a metric space aml, A, X subsets. We de ne the
Hausdor distancebetweenA; andA, by

dist(A¢; A)) B inffr>0jA;  B(Ax;r)andA;  B(ALr)g;
with the conventioninf = 1.

The subtleties mentioned in Remark 1.3 could cause one to believe that one has to
be very cautious with the de nition of Hausdodistance! Fortunately, this is not
the case. The following lemma lists frequently used de nitions of Hausddstance
and shows that they are equivalent:

Lemma 1.5 Let (X;d) be a metric space and |&%;, A, X be some sets. The
following numbers are all equal:

'For example, one could replace the closed thickening in the de nition by open thickenings.
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1. mBinffr 0jA; B(Axr)andA B(A;r)g
: . S — S —

2. mBinffr 0jA an, B(@r)and A an, B(@&r)g

3. mgBinffr 0jA; B(Axr)and A B(Ag;r)g

4

) B max supinf d(a; b); supinf d(a; b) .
My aZAE)bZAZ ( ) bZAEaZAl ( )

Proof. For each > 0 and an arbitrary s&& X, one has

B(A;r) [ B(ar) B(Ar) BATr+ )
a2A

thusmy m, mg mp+ .
my = max supdist(@; Ay); supdist(b; Aq)
( a2A b2A;

i 0 foralla2 A;: dist@ Ay) r
forall b2 Ay: dist(o; A;)

inffr 0jA, B(Ax;r)andA, B(A;r)g= my:

)

Remark 1.6 Note that two seté&;, A, X have Hausdor distance) if and only

if their closures coincideA; = A,. Moreover, the Hausdordistance betweeA,;
andA; may be in nite. Thus, the Hausdordistance is not a metric on the power set

P (X): In general it is only an extended semi-metric in the sense that it is a function
dist: P(X) P(X)! [0;1] with:

1. distA; A) = 0 for eachA 2 P (X).
2. dist(As; Ay) = dist(Ay; Ay) for all A, Ay 2 P(X).
3. dist(A; As)  dist(Ag; Ay) + dist(Ay; Ag) for all Aq, As, Az 2 P(X).

However, the restriction alistto the seB (X) of all non-empty, closed and bounded
sets leads to a metric.

De nition 1.7 Let (X;d) be a metric space ar&,, A X subsetsn 2 N. We say,
A, converges ta\ uniformlyor A, Hausdor converges td\, if for every” > 0O there
is ann 2 N such that for every integdr n:

A B(A¢") and A B(A"):
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Remark 1.8 Let A, , ; forin nitely many n 2 N. Then Hausdor convergence of
AstoAasn!1l impliesA, ;. Moreover, Hausdorconvergence of, to Ais
equivalent to liny; dist(A; A,) = O.

The metric spaceB(X); dist) inherits some nice properties fro; ¢):
Theorem 1.9 Let (X; d) be a metric space.

1. (B(X);dist)is complete if and only ifX; d) is complete.

2. (B(X);dist)is compact if and only ifX; d) is compact.

Follow the instructions in [28, p. 280] or see [23] for a proof. The second statement
is sometimes calleBlaschke selection theorefsee [3, § 18]).

1.4.3 Kuratowski convergence

De nition 1.10 Let X be a topological space and fo2 X, denote byJ(x) the set
of all open neighborhoods of For a sequence of s€i&,),y in X one de nes the
limit inferior orinner limit Li; A, and thelimit superioror outer limitLsy; An,
respectively, in the following way.

Li AyB fx2Xj8U2U(X)9n2N8k n: U\ A, ;0;

nll

I_lsAanXZXjSUZU(x)8n2N9k n: U\ A, ;g
n!

If AB Lsy; A, =Lins A, agree, one says thaf converges t@\ in the sense of
Kuratowskiand writes Lty A, = A.

Remark 1.11 Both the lower and the upper limit are closed sets and one has

Li A, nI|_lS Aq:

nil

One often refers ths,; A, as theset of cluster pointsincex is an element of
Lsn: A, ifand only if there is a sequence of elemeri A, that hasx as a cluster
point, i.e., there is a subsequengg XN that converges ta ask ! 1

A very useful identity which we use frequently is given by the following lemma.
Lemma 1.12 Let X be a topological space ang,f/A X, n2 N. Then one has
\
A

n2N k n

Ls A, =

nll
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Proof. “ ™ Fix x2 Lsy1 A, and letn 2 N be aggitrary. For eacbl 2 U(x) one
ndsak nwithU\ A, ;, Iéence one has2 | ,A«. Because this holds for
eachn 2 N, we obtainx 2 _.on  k n Ak

“ " Now, X X2 SNk » A« and letU 2 U(x) be arbitrary. For everyp 2 N,
@e intersectiolJ \ | , A« has to be nonempty becausdes in the closure of
« nAc. Thus, thereissome nwithU\ A, ;,whichshowsx2Ls,; A

The lower and upper limits are monotone:

Lemma 1.13 Let X be a topological space and &, B, X,n2 N. Then one
has

n!II' A, n!II' B, and r‘I!_ls A, nhs By
For later use, we point out that the Kuratowski limits are robust under metric
thickening:

Lemma 1.14 Let (X;d) be a metric space,, Owithlimy,; r,=0andA, X
Then one has

Li B(Anrn)= Li A, and Ls B(Anry) = Ls Ax:

ni1 nll nll nll
Proof. Monotonicity of the Kuratowski limits leads to

Li A, Li B(Ayr); and LsA, Ls B(Anrn):

ni1 ni1 nll nll

Fix arbitrarya 2 Lsy; I§(An; rn), "> 0, andN 2 N with ry < § forallk N.
By de nition of the Kuratowski limit superior, for each N thereis ak n
and anay 2 B(a; %)\ B(A«; r). Now, choosexc 2 Ac\ B(ax; 2ry) and observe
d(a x) d(a ax) + d(ag; x«) < %+ 2ry ". Thus, we havey 2 B(a; ")\ A¢, ; for
all suchk. This showsa 2 Lsy; A B

Analogously, one shows i A, Linz B(An;rn).

In metric spaces, Hausdoconvergence implies Kuratowski convergence:

Lemma 1.15 Let(X;d) be a metric space. L&, X be Hausdor convergent to
the set A X. Then A converges td\ in the sense of Kuratowski.
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Proof. Let (s))n2n be a sequence of non-negative real numbers gjjth 0 as
n!1l such that

A B(A's) and A B(Ays)

holds for eacm 2 N. Putr, B sup, ,s and observe, ! Oasn!1 . Now
monotonicity of the Kuratowski limits and Lemma 1.14 lead to

Ls A, LsB(Arr,)=A= Li B(Arr,) Li B(As2r) = Li Ay
nl'1 n'1 nil nil nil
For non-empty sets in compact metric spaces, the notions of Kuratowski conver-

gence and Hausdorconvergence coincide; in non-compact metric spaces, Hausdor
convergence is a stronger notion:

10
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Lemma 1.16 Let(X;d) be a metric space. The following are equivalent:
1. X is compact.

2. Every Kuratowski convergent sequeini#g)on of setsA, XwithLt,; Ay,
; Is also Hausdor convergent.

Proof. “1.) 2.: Let X be compact and I€iA,)on be a sequence of setsXwith
A=Ltyy A, ;.For"> 0andn 2 N de ne the sets

| E—
X- B XnB(A;") and Uy,B Xn A
k n
Observe thak- is compact and thgtJ,,)»x IS an increasing sequence of open sets.
Moreover, Un)n2n IS a covering olJ:

[ —
U,=Xn A= XnA XnB(A;") = X:
n2N n2N k n
Thus, there has to be a nite2 N with X.  U,. By construction oX.- andU,, we
haveA, B(A;")forallk n.

The next argument is by contradictioAssumehat there exists ah> 0 such
that for eacln 2 N there is &(n) nwith A1 B(An):"). Then we may choose
a pointx, 2 Awith d(x,; Axn) > " . Because\ is compact, there is a subsequence
(Nm)men @Nnd somex 2 Awith x,. ! xasm! 1 . Now, X is an element of the
lower limit, hence there is sonmé 2 N such thatd(x; A,) < 5 holds for alln  N.
Additionally, by increasindN if necessary, we may assumé; X, ) < E whenever
nm N. Forn, N, we havek(n,) nn N and the triangle inequality implies
the contradiction

"< A Adry) A0 )+ dOC Ay < 3+ 5
This shows for each> 0 that
A B(A;") and A, B(A")

hold for su ciently largen 2 N, which is Hausdor convergence.

“2. ) 1.: Let X be non-compact. We are going to show the existence of a
sequence of non-empty séfs,)on With non-empty Kuratowski limit but without
Hausdor limit. BecauseX is non-compact, there is a sequelixg,.n Without any
cluster points. In particular, there is sorhe 0 with d(x;;x,) " foralln 2 N.
Now de ne A, B fx;;x,g n 2 N. We haveA = Lty A, = X9, ;. If (An)nan
were Hausdor convergent, its limit would have to coincide withby Lemma 1.15.
But for alln > 1, one hasA, nB(A;") = fx, g, ;, thus(Ay)nen cannot Hausdor
converge.

11
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1.4.4 Gamma convergence

De nition 1.17 Let X be a metric space and IBt F,: X! ]1 ;1],n2 N be
some functions. One says, -converges td-, if the two following conditions are
ful lled:

1. liminf-condition: Everysequencexy)nan in X with X, Tl X satis es

F(X) Iirrplinf Frn(Xn):

2. lim sup-condition: For every 2 X thereexistsa sequence, T xwith

F(X) limsupF,(x,):

nll

Such a sequence&q)n,\ is called arecovery sequenasf F at x.

Some authors refer to-convergence aspi-convergencéecause of the following
lemma (see [34, 7.2 Proposition] for details).

Lemma 1.18 Let (X;d) be a metric space and, F,: X! ]1 ;1],n2 N some
functions. The following statements are equivalent:

1. R, -convergesto F.

2. epi(F,) converges t@pi(F) in the sense of Kuratowski.

As an immediate corollary, we see that the epigraph ofiait also is a Kura-
towski limit, thus closed. Hence we have the following necessary conditions for a
function to be a -limit:

Corollary 1.19 Let F, -converge toF. ThenF is lower semi-continuous. In
particular, arg min{) is closed.

A basic link between -convergence and convergence of minimizers is given by
the following lemma:

Lemma 1.20 Let F, -corllllerge toF, assumanf(F) < 1 and let(%)n be a
sequence iif0; 1 [ with % T 0. Then one has

limsupinf(F,) inf(F) and Lls argmir®(F,) argminf):
n!

nil

12
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Proof. For % >0, let x 2 argmirf{F) , ;. By thelim sup-condition, there is a
sequence, rl'l X with

inf(F)+% F(X) limsupF,(x,) limsupinf(F,):
ni1 nl'l
Becauséso >0 can be chosen arbitrarily, one obtains the rst statement.
Let x 2 Ls,z argmin®(F,). There is a sequencg, 2 argmirt(F,) with

11 . .
X T x By repeating elements of this sequence where necessary, we may construct

a sequencéx,)nan containing(xn )ken With X, Tl X. Now, thelim inf-condition
applies:

F(X) Iimlinf Frn(Xn) Iirlplinf Fn(X)
n! !
Iirkrlllinf (inf(Fn) + %,) = Iirkplinf inf(Fn,)

limsupinf(F,) limsupinf(F,) inf(F):
ki1 n'1

This impliesx 2 arg minF), thus Lg,;  arg min®(F,)  arg min).
In particular, the preceding lemma yields
Lls argminf,) argminf);
n!

thus the cluster points of minimizers (%,).n are minimizers of. This can be
further improved by the following result (see [11, Theorem 7.19] for details):

Theorem 1.21 Let F, -converge to F withl <infF < 1. Thenone has
\
Il_ls argminfF,) argminf) = Izi arg min{F,):
n! n!
%0

In nite dimensional Euclidean space= R™ (and presumably in all metric spaces
with the Heine-Borel property), this result can be strengthened to (see [34, Theorem
7.31] for a proof):

Theorem 1.22LetF, F,: R™! 11 ;1],n2 N such thatF, -converges td-
with 1 <infF <1 and assumargmin(F), ;. Then the following statements
are equivalent:

1. inf(F) T inf(F).
2. There is a monotonically decreasing seque¥ic& 0 such that

Lt arg mirt*(F,) = arg min):
n!

13
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1.4.5 Epigraph distances

A way to quantify -convergence is by measuring the Hausddistance of truncated
epigraphs. This idea was introduced in [1] and [2]. See also [34, Sections 7.1 and
7.J] for a detailed treatment.

De nition 1.23 Let X be some setand: X! ]1 ;1] some functions. For a set
K Xandanumber2[1 ;1] de ne thetruncated epigrapkepi (F) of F by

epic(F)B f(xt)2K 11 ;1]jF(x) t rg:
Note the identities egi (F) = ; andep(F)=K 11 ;1].
Using the box metric oX R given by
d (x9;(y;t) B max(ly x;jt g); forallx,y2X,st2R,
the central result of the theory of epigraph distances can be formulated as:

Theorem 1.24 Let (X; dy) be a metric space, IgE, G: X! ]1 ;1] be some
functions, K X some subset, and2R such that the following hold:

1 <inf(F) rand1 <inf(G) r.
; , argminfF) Kand; , argminG) K.
Then for each > 0 with
> dist epic(F);epic(G) and > r min(inf(F); inf(G));
one has:
1. jinf(F) inf(G)j dist epi(F);epk(G),
2. argminf) B(arg mirf (G); ),
3. argminG) B(argmirf (F); ).

Proof. Letpr,: X R! Xandprg: X R! Rbe the projections onto the factors.
One has for each> dist epi (F)); epi(G) :

linf(F)ir]  prz epk(F)  prz Blepk(G);") [inf(G) "r+"];

14
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thusinf(F) inf(G) ". Vice versa, one obtain:f(G);r] [inf(F) ";r+"]
andinf(G) inf(F) ", which leads to the rst statement. Similarly, one has for
each as above:

argminF) argmid "O(F) = pr, epi (F)
pry B(epi(G); )
B(arg mifd ™©* (G); )
B(arg mirf (G); );

which is the second statement. Analogously, one obtains the third statement.
If the functionsF andG are well-behaved andis small, therarg mirf (F) and

argmirf (G) are not too far away fronarg min(F) and arg min(G), respectively.
What “well-behaved” means will be made precise later in Section 2.3.3.

15






2 Parametric Optimization Problems

In this chapter we present the theoretical core of our considerations on the con-
vergence of nonconforming Ritz-Galerkin methods. The central aim is to break
the overwhelming task of convergence analysis into smaller, manageable subtasks:
showing consistency, proximity, and stability.

We keep the presentation as broad as possible. Concrete applications will be given
later in Section 3.3, Chapter 7, and Chapter 8.

Let C be a topological space and let C! R be a function. We denote the set
of minimizers by

M B argminF)=fx2CjF(x)=inf(F)g
and sets of -minimizers by
M B argmin(F)=fx2Cj82C: F(x) F (y+ g, for 2[0;1].

Moreover, let topological spac&s and functiond=,: C, ! R with minimizers
M , B argminF,) and -minimizersM , B arg min(F,) be given for eacim 2 N.
One may think o, as small perturbations & or—in the context of Ritz-Galerkin
methods—as a discretization 6f. We are interested in the behavior of the ddts
asn!1 .!ldeally,M ,should approximat® “in some way”. Therefore, we need
a method to relate these sets. A rather general way is leftengd C, communicate
with each other via some mappings

Sp: dom@, C!C , and R,: domR,) C,!C :

We are going to refer t&, as thesampling operatoand toR, as thereconstruc-
tion operator If one hasM,, domR,) andM dom(S,), the pairs of sets
(M;Ry(M ) and(M ; Sh(M)) lie in common space8 andC,, respectively. Thus,
they can be compared.

1we point out that this framework also covers the more general problem of analyming, M ,
where(F : C ! R), is a family of functions parameterized by a sequential topological
space . For the sake of brevity, we only discusss N[fl1g with the topologyT = f;g |
fuU N[flgjl2 Uandcard{)=1g.

17
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Example 2.1 In the nite element methodC, is often a nite-dimensional ane

subspace of a Banach spdCeR, is the canonical embedding afg is an interpola-
tion operator such th&®, S, is a projection onto the ansatz sp&&€C,). Then,
the Hausdor distance betweel! andR,(M ,) with respect talc yields a canonical
measure of approximation.

More generally, one may consider mappingsC ! X , ,: C,! X tosome
metric spac€X;dy) and analyze the Hausdodistance between the set{M )
and (M, therein. For example,, , could be embeddings into a spaxe
whose metric topology is weaker than thoseXpfC,. But , |, need not to be
injective at all, yielding only partial information: They could also represent restriction
or trace mappings, truncations in in nite decompositions (e.g. Fourier or modal
representations, projections on subspaces etc.), state variables in physical systems,
(locally) averaged quantities or even quotient mappings. We propose to viewy
as nonlinear variants a@ést functions

In practice, one might pro t considerably from using a priori information on mini-
mizers (such as higher regularity or energy bounds) in order to achieve quantitative
approximation results. We are going to incoorporate a priori information in the form
of subsetA C , A, C,suchthat (A\M ), (A,\M ) contain (M),

A(M ) respectively

We summarize the information given so far in the following (not necessarily
commutative) diagrams

A\M —IA~ Jdom@s,) ——{C
Sp

F

R; (1)
4 A
AnM A " JdomR,) —C,
A\M A Jdom@©,) —{c
Sn
X (22)
Ry /

AM A~ JdomR,) —C,

2In general, itis notrequired thtd A andM, A , are subsets. In the case thats a quotient
map, this is a crucial advantage (see e.g. Example 2.34 and our treatment of minimal surfaces in
Chapter 7).

18



2.1 Qonsistency

Assume for the moment, M A ,;, M, A .. If (2.1)were commutative,
one would have the following implications

1. Foreackx2 M andy 2 C;:
Si¥X=FX F R ny)=Fny); thus S,(M) M

2. Foreacly2 M ,andx 2 C:
F Ra)=Fn(y) Fn Sa(®=F(x); thus R(M,) M :

If, in addition, (2.2) were commutative, this would lead to
3. M)= , Sy(M) n(M ),
4. (M) = Rn(M) (M),

hence M)= (M )).

Alas, in practice, these diagrams rarely commute. But one may hope that they
almostcommute, i.e., they commute up to some errors that can be uniformly bounded,
at least on the sets of a priori information.

In Sections 2.1 and 2.2, we will name these non-commutativity errors and analyze
what information can be deduced if these errors arecéently small. Afterwards,
we will single out additional conditions that guarantee convergence of minimizers
(Section 2.3).

2.1 Consistency

2.1.1 General theory

We start with the rst diagran{2.1). For non-empty setd  dom(S,), A,
dom(y), there are two squares of interest:

/\ /\
\/ \/

Each square is equipped with its own non-cummutativity error:

(2.3)
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De nition 2.2 (Consistency) For non-empty setd  dom(S;), A, domR,),
de ne

1. thesampling consistency error

5B (F;FnSnA)B sup(Fn Su(@ F (@) (2.4)
a2A

2. thereconstruction consistency error

rFfB (F;FnRnyAp) B sup(F Ry(@ F n(a))+; (2.5)
a2An

3. thetotal consistency error

nB (FiFnSnRuAA)B S+ 1 (2.6)
wheret™ B maxt; Ogdenotes the non-negative parttd R. We say, the sequence
(Fn; Sn; Rn) nen IS consistent with respect © on (A; A,) nan, if its consistency
error (Sp;Rn;A;AL) convergestd forn! 1 . In that case, we also say that

(F ;Fn; Sh; Rn) nen is consistent on(A; Aq) non-

Remark 2.3 A stronger notion of (total) consistency error (but also one which would
be harder to verify) would be

supjFn Sn(@) F (a)j+ supjF Rn(@) F n(a)):
a2A a2A,

In light of the latter expression, our de nition of consistency error could be termed
upper consistency errorHowever, our de nition is su cient for our needs and
we omit “upper” for the sake of brevity. Of course, one may also de rheveer
consistency errgrwhich would be the notion of choice for maximization problems.

De nition 2.4 We callA C valid with respect to the paifF ;S,), if ; , A
dom(S,) andinf(F ) = inf(Fja) hold. Analogously, we calh,, C , valid with
respect to the pai(Fn; R,), if ; , A, dom(Ry) andinf(F,) = inf(Fpja,) hold. For
the sake of brevity, we will simply say that, A , arevalid whenevel(F ; S,) and
(Fn; Rn) can be deduced from the context.

This de nition is a bit subtle, but crucial: On the one hand, validity allows
us to consider sampling and reconstruction errors by demanding that valid sets are
contained in the domains of the respective operators. Hence, this part of the de nition
merely serves as a short-hand notation. On the other In&igd,) = inf(Fjs) and
inf(F,) = inf(Fnja,) are vital requirements for the following momentous lemma:
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Lemma2.5LetA C ,A, C,be validwith respecttdF ;S,) and (Fn; Ry),
respectively. Assume that both the sampling consistency €frand the reconstruc-
tion consistency errork are nite. Then one has

inf(F,) inf(F)+ > and inf(F) inf(F,)+ &
Hence, one has eithenf(F,) = inf(F) = 1 or bothinf(F,) andinf(F ) are nite
with
jinf(F,) inf(F)j max(3; R):

Proof. Choose a minimizing sequen€eg,)non in A for F and a minimizing se-
qguenceYm)men in A, for Fy, i.e.,

inf(F) = lim F (x») and infEn) = lim Fa(ym):
Then (2.4) and (2.5) imply

iNf(Fn) F o(Sa(Xm) F (x)+ ST inf(F)+ S
inf(F) F (Ruym)) F alym)+ BT inf(F)+ &

Knowing the total consistency error puts one into the position to comgare
minimizers:

Lemma 2.6 LetA C ,A, C ,bevalid sets. Denote by the total consistency
error. Then one has fdv2 [0; 1 ]

SiA\M % S ((A)\M " and R,(An\M ) R,(A)\M *

Proof. Case 1:%=1 or ,=1. The inclusions hold becauseldf?,/* "=M1!=

C,handM”®* =M1 =C,.3

Case 2:Both%and , are nite. Then, by Lemma 2.5, either baihf (F ) andinf(F,)

equal 1 or both of them are nite.

Case 2.ainf(F) = inf(Fy) = 1 . Allthe setsM % M % », M2 M % " are empty

such that the inclusions hold trivially.

Case 2.b:inf(F );inf(F,) > 1 . We discuss only the rstinclusion for the second

one follows analogously. In the case t#at M *is empty, nothing is to show.

Otherwise, lex 2 A\M % We apply (1.1) and Lemma 2.5 in order to estimate
Fo Sa(X) F (0+ 5 inf(F)+%+ > inf(F)+ R+%+

n

This leads t&5,(x) 2 M % n which shows the rst inclusion.

3Admittedly, this case is of little practical relevance.
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Remark 2.7 For the moment, it may appear as a super uous burden to drag along
Sh(A), Ry(A ) on the right hand side of the previous lemma’s conclusions. However,
this may be crucial when treating optimization problems witim-compactower

level sets as we will see in Corollary 2.30. The area functional of immersed surfaces
as discussed in Chapter 7 is such an example. For a demonstration of the non-
compactness of lower level sets see Figure 7.3.

Corollary2.8 LetA C ,A, C,bevald, letF: C ! R be lower semi-
continuous onthe s& B Ls,; R\(A,), and let (Fn;Sy; R,) non be consistent on
(A;Aq) nen- Then one has fdve2 [0;1 ]:

Ls Ry(An)\M % B\M *
n!

Proof. In the case thaio= 1, this is obviously true. Hence, let us assume fhat
is nite. Denote by , the total consistency errok,'B A,\M Xand let , B
supf ¢jk ng Observethat, & Oasn% 1 by consistency. By Lemma 2.6, we

have for allm,n2 N withm n:

ReK2 '\ mRdAY \M %
Taking closures and intersections leads to
L v A T E—rs
Re(K{) = Re(K .

n2N k n n2Nm nk m

\ \ \
Rk(Ak)\M%”: B\ M%n:

n2N mnk m n2N

BecauseB is closed andF jg is lower-semicontinuous, one has
B\ M%n=B\M %

. T ; g
Finally, oM % n=M %completes the proof.

Using%-= 0, this leads immediately to

Corollary 2.9 LetA M ,A, M ,be valid. Denote by, the total consistency
error. Then one has

Sy(M) S o(A)\M » and Ry(M,) R (A)\M

n

Assuming consistency dF ; Fn; Sn; Rn) non 0N (A A L) nov @and lower semi-con-
tinuity of F , cluster points of minimizers ¢F,)on are minimizers of in the sense
that

nI!_ls R(M,) M :
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Remark 2.10 Note that the preceding corollary can be used to prove the existence
of minimizers ofF if one manages to verify that cluster points of minimizers of
(Fn)non actually exist.

2.1.2 Coupling

Consistency errors behave well under coupling of several functionals. We simply
state the results as their proofs are straightforward.

Lemma 2.11 Let non-empty setd, B dom(S;), A,, B, domR,) and func-
tonsF,G:C! R F, G,:C,! Rbegiven. For, 2 [0;1] dene
HB F+ GandH,B F,+ G, IfA\B andA,\B ,are non-empty, one
has the following estimates for the consistency errors:

(H;Hn;Sn;A\B ) (F;FnSnA)+ (G Gy Sy; B);
(H;Hn Ry An\B 1) (F;FnRn A+ (G Gy Ry By):

Corollary 2.12 The set of sequence$- ; Fn; Sn; Rn) non @s in(2.3) that are consis-
tenton (A;A;) non IS @ convex cone.

Remark 2.13 In the same way, one could say that the set of lower and upper consis-
tent sequencesF ; Fn; Sn; Rn) nan IS @ vector space ovét (see also Remark 2.3).

2.2 Proximity

2.2.1 General theory

Corollary 2.9 is quite similar to the inclusidrs,; argminF,) arg minF) from
Theorem 1.21. We currently have no analogue for the inequatgynin(F)
Lings arg min{F,) for % >0, but only

Sa(A\M ) S o(A)\M

If R, S, were the identity or€ and assuming consistency, one would obtain for
given% >0 and for all su ciently largen:

A\M =R, S,(A\M ) A\R (M) A\R ,(M}:

This would yield the desired result
\
A\M A\ Li. Ry(M p):
%0 nil
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In the case that is an in nite-dimensional Banach space afiga nite-dimensional
Banach spac&,, S, = idc cannot occur. Even worse: In this contdRf, S , may
be a compact operator so it cannot converge uniformigdo Hence we have to
establish a suciently weak notion foR, S , being “su ciently close tad¢”, a
notion that does not imply uniform approximation.

We do this in a slightly more general way by discussing diagfa). At times,
it may be instructive for the reader to substitdtes C, =idcand ,= R,. Again,
for non-empty setd4 dom(S,), A, dom@,), there are two squares of interest:

/\ /\

Anp (2.7)

\/ N

C,

Note that for our purposes, we do not require , to be de ned on all ofC, C, but
atleastonthe se&&[R (A,), An[S n(A), respectively. Each of the two diagrams
has its own non-commutativity error:

De nition 2.14 (Proximity) For non-empty set&%  dom(S,), A, domR,),
de ne

1. thesampling proximity error

"SB"(; mSmA)B izli\de( n Sn(@; (@) (2.8)

2. thereconstruction proximity error

"5 B"(; mRnmAnB asél:p dx( Rn(a@); n(@); (2.9)

3. theproximity error

"B "(; nSmRnA;ALD)B max(s;"R: (2.10)

We say that the sequend&,; Rn) non IS proximate with respecttd ; ) nan ON
(A;Ap) nen, If its proximity error”,, convergesto O as! 1
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2.2 Roximity

Lemma2.15LetA C ,A, C ,bevalid. Denote by, the total consistency error.
Then one has fo¥a2 [0;1 ]

(A\M % B (Sn(A)\M % n);"S
a(An\M ) B (R(A)\M % )R

Proof. Forx 2 (A\M % (if existent), x ana 2 A\ M *with x = (a).
According to Lemma 2.6, we have tha§(a) 2 S,(A)\M % n_Now, the de nition
of the sampling proximity error implies

de( (@; n(Sa(@)) "n;

thus (@) 2B n(Sn(A)\M 2 m; "S : The proof of the second statement is now
straightforward.

Lemma 2.16 In addition to the previous lemma, assuBA) A , and proximity,
. 11
e, T° 0. Then one has

(A\M ) Li o(An\M 1)
Ls o(An\M 1) Ls  (Ry(An)\M 2ny:

Proof. By applying the previous lemma twice—once wWAts+ O, once with%= ,—
and by the triangle inequality, one has form N:

n(An\M )75
n(An\M )"
B (Ra(An)\M 77);"3+"1:

(A\M ) B
B

Because of the monotonicity propertieslofandLs, we may applyLi, Ls, Ls to the
three terms on the right hand side, respectively, without invalidating the inclusions.
The statement then follows from thickening robustness (Lemma 1.14).

Assume for a moment th&t, A , are sets of true a priori information, i.&, M
A, M . Lemma 2.15 tells us that—up to, ,—minimizers are at least close to
n-minimizers:

M) B (M. ):"S and (M, B (M");"R: (2.11)
If F, F,are “not too shallow”, one may expect existence of a (small) 0 with

(M) B( M)ry) and (M ") B( o(M);r): (2.12)
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Under these circumstances, the triangle inequality would yield:

M) B M)irn+"s and M,) B (M)r,+"R:

This idea will guide us in our attempt to deduce quantitative convergence rates
in section 2.3.3. The major task will be to nd a way to express what “not too
shallow” actually means. This approach will depend crucially on some very detailed
information onF , F,—information that may be prohibitively hard to obtain in
practice.

Therefore, we establish less restrictive conditions that allow us to deduce Kura-
towksi convergence (or even Hausdaonvergence) fron2.11)without giving a
precise convergence rat&his will be the focus of section 2.3.1, where Lemma 2.16
will be used.

For both approaches, we will have to transport variational informatioR of
forward toX along . This is why we introduce the (variational) pushforward rst.

2.2.2 Pushforward

De nition 2.17 LetF:Y! ]1 ;1]beafunctionand:Y! Xamappingto
a topological spacX. With the conventionnf(;) = 1, de ne the(variational)
pushforward of F along by

( «F)X) B inffF(y)jy2Y: (y)=xg= ﬂinI(X)F(y):

Example 2.18 For injections, the pushforward reduces to the well-known and fre-
guently used extension by in nity: Assumethat C! X and ,:C, !X are
injections. Then 4F and ( ,)zF, are given by

8
3F(x); x2 C.

8
( F)(X) = S 3Fa(x); x2 G,

, (( n)#Fn)(X) = _81 . else

This allows one to treat the optimization problemsFoandF,, on a common space.

We list some elementary properties of the pushforward:
Lemma2.19 LetF:Y! ]1 ;1]beafunctionwithnf(F)<1, :Y! Xsome
mapping ande2 [0; 1 [. Then one hasf( »F) = inf(F) and
\
(argmin{F)) argmin{ 4F)= (argmin (F)):
>%

Equality holds, e.qg., if for eack 2 arg min{ »F), the functionFj 1 attains its
in mum.
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2.2 Roximity

Proof. First, note tha{ 4F)( (y)) = infx 1 () F(@ F(y) holds for ally 2 Y.
This leads to inf(4F) inf(F) and

(argmin{F)) argmin{ 4F) forall %2 [0;1]: (2.13)

Because oinf( 4F) inf(F) <1, there exists a sequenfe)non With ( 2F)(X,) <
1 foralln2 N andliminfn; ( #F)(x)) = inf( 4F). For eachh 2 N, x, has to be
in the image of since( #F)(x,) is nite. So, we may choosg, 2  1(x,) with
F(yn) ( #F)(X,)+ 1. This leads to

inf(F) Iimlinf F(yn) Iirnplinf ( #F)(xn)+% =inf( 4F);

thus infF) = inf( 4F). The case inff) = 1 is also included.
From now on, le@a2 [0; 1 [ be nite. We are going to show

argmin{ 4F) (argmin (F)) foreach > %. (2.14)

Therefore, letx 2 argmint{ 4F). Since one haé sF)(X) inf( 4F)+ %= inf(F) +
% <1 , there is a minimizing sequencg )~ Of Fj 1y, i.€.,yn 2 *(X) and

Fyn) inf F(@+:=( 4F))+ 3
a2 (x)
inf( 4F) + %+ 1 = inf(F) + %+ i:

Forn > i% one hag, 2 argmin (F) andx= (y,) 2 (argmin (F)). This shows
argmin{ 4F) (argmin (F)) for each > %. Now, (2.13)and(2.14)together
yield
\ \
argmin{ 4F) (arg min (F)) argmin ( 4F) = argmin{ 4F):

>% >%

If for x 2 argmin{ 4F) the functionFj 1 attains its in mum, say ay 2 Y, one
hasF(y) = inf, 1 F(@) = ( 4«F)(X) %showingthak 2 (arg min{F)).

Remark 2.20 Asa curiosity with few practical value, we would like to mention that
Qg min{ 4+F) = ., (argmin (F)) also holds true fof6= 1 if one interprets
>y, @s an “intersection in the spa¥g, i.e. if one uses the de nition

\
(argmin (F))B fx2Xj8 >%: x2 (argmin (F))g:

>%

Sincetheset 2[1 ;1]j > 1gisempty, one has
\
(argmin (F)) = X = argmin ( 4F):

>1
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2 Parametric OptimizationProblems

Remark 2.21 Colloquially, the su cient condition for equality in the preceding
lemma can be restated as: Non-emptglices (x), x 2 X are “small” enough to
allow Fj 1, to be minimizable.

For example, this sucient condition is met if there is a topology &fsuch that
for each%2 [0; 1 [ and eactx 2 X, the intersectiomrg min{F)\  (x) is closed
and countably compact.

The pushforward allows us to draw a connection to epigraph distances of functions.
The following lemma may be seen as an epigraphical variant of Lemma 2.15.

Lemma2.22 LetA C ,A, C ,bevalidsetsandassug(A) A », Ry(A))
A,and 1 <inf(F);inf(Fp) <1.PutH B ( ja)«(Fja), Hn B ( nja,)s(Fnia,),
N%B argmirf{H), andN.°B argmirf{H,). Denote by', the proximity error
of (Sp;Ry) on(A;A ) and by 5, R the consistency errors ¢F ;Fp; Sp; R,)
on(A;A,). WithmB inf(H), m, B inf(H,), andr, B max",; ,g one has for
1> >% O

1. epi™f{H) B(ep™ * "(Hn):rm),
2. ep™fH,) Blep™ *r(H);r),
3. N% B(N,*"2"rp),

4. N B(N *2nr).

Proof. Claim1:Letl > >9% 0. If epi™*H ) is empty, we are done. Otherwise,
let (x;t) 2 epi™*{H). SinceH (X) t m+ % <1 is nite, there is ara 2 A with

(@ =xandF(@ H (X)+ % PutyB , Sn@2 ,(A,).Byconsistency,
one has

Hoy) Fo(Sh(@) F @+ 5 t+ %+ 5  + 5 (2.15)

n n?
thus(y;t+ 3)2epi™ * E(H n)- Using the de nition of the proximity error leads to
dx(xy) = dx( (@); n(Sn(@) "n
distc r (x1);ep™ " "(Hn) dx r (GO (y;t+ 3)  max’s ng=rn;

which shows the rst claim.

Claim 3: Becausé\, A , are valid, one has for the in mal values= inf(H) =
inf(F), my = inf(H,) = inf(F,) and by Lemma 2.5m m,j n. Denote by
pry: X ]1 ;1[!X thecanonical projection. With the box metric¥n] 1 ;1 [,
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2.3 Sability

one hapr, (B(U ;1)) B(pry(U);r)foranysety X 11 ;1[. Combining this
with Claim 1 and using Lemma 2.5 leads to

N*=P(epl™ (H)) P Bep™ *7(Hn);rn)
B P(ep™ * F(H)ir
=BN™™ *R:p BN, 2mr):
The proofs of Claims 2 and 4 are analogous.

Remark 2.23 In general, the sefs °, N? need not to coincide with (A\M ) and
n(An\M ). Moreover, handling both conditioi&,(A) A pandR,(A,) A at
once may be quite dicult in practice.

Remark 2.24 It is instructive to apply the preceding lemma in the setting of Exam-
ple 2.18 together with a priori informatign, M A and; , M, A . Thenone
hasepi{H ) = epi’(F ) andepi{H ) = epi’ (Fn) for %2 R. The rst two results of

the lemma can be simpli ed to

9 iy + 3 +9 iy + + R
epi™{F) Blepl” " "(Fn)r) and ep""{F.) B(epl™ T "(F);ry):
For %= 0, the third and fourth statements lead to

M  BM,2"r); and M, B(M *2"r,) forall > 0.

2.3 Stability

In order to deduce set convergence gf{M,) to (M) from Lemma 2.15 or
Lemma 2.16, one requires a reasonable interplay betweand (and probably an
analogous interplay betweé&n and ). We term the presence of such an interplay
asstability. First, we give a rather weak, purely qualitative condition and point out
its relation to the concept of lower semi-continuity. Afterwards, we will discuss
other conditions that are more suitable for quantitative results.

2.3.1 Topological stability

De nition 2.25 LetF: Y ! ]1 ;1] be afunction, : Y! X amapping to a
topological spac&, K X a closed set. We calt topologically stable along
over K, if \

K\ (argminf))= K\ (argmin{F)):

%0
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2 Parametric OptimizationProblems

The notion of topological stability is a generalization of lower semi-continuity in
the context of test mappings:

Example 2.26 Let X be a topological spac&k X a closed set, ané: X !
]1 ;1] lower semi-continuous oK, i.e., the lower level sets @fjx are closed irK
(and thus inX becaus« is closed). Therk is topologically stable alongly overK.

Example 2.27 Let X be a topological space; X a closed set, an&: Y !

]1 ;1] lower semi-continuous o¥i. Denote by : Y ! X the inclusion mapping.
Since 4F is the extension by in nity (see Example 2.18), itis lower semi-continuous,
thus topologically stable oX.

We arrive at the rst main theorem of this chapter.

Theorem 2.28 (Kuratowksi convergence of minimizers)
LetA C andA, C ,bevalidsetsandldl X be a closed set such that
(Rn(An)) K holds for all su ciently largen. Assume consistency and proximity,
11

i.e., n T 0 and", s 0, and topological stability oF . Then one has

Ls o(An\M ) K\ (M)
n!

If (M) (A\M )\K andS,(A) A ,hold forall su ciently largen, then
one has Kuratowski convergence

M)= Lt o(A\M ):

Proof. From the second statement of Lemma 2.15 With O, we have for su -
ciently largen 2 N:

Ls w(An\M ;) |_15|§ (Ry(A)\M )R
n! n!
Ls B(K\ (M n);"R):
n!

n

Using Lemma 1.14 wit#, B K\ (M ) andr, B "R, we obtain

_ \
Ls B(K\ (M ”);"§)=Il_lsK\ M= K\ (Mn):

n2N

Now, topological stability oF along overK leads to the rst statement. In the
same way, one shows

Ls (Ry(A)\M 21) Ls K\ (M2 K\ (M):
n! n!
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2.3 Sability

The conditionS,(A) A ,allows usto use Lemma 2.16, leading to
A\M ) LI o(An\M )
Ls n(An\M ) Ls  (Ry(An)\M Zny K\ (M):
n! n!

If both (A\M )andK contain all images of minimizers (M ), the above chain
of inclusions is closed. In particuldrt,; (A, \M ") exists and coincides with

M).

Remark 2.29 We point out that this theorem holds as well if 0 is any upper
bound for the consistency errors with Tl 0. Thus, this theorem does not only
show theexistenceof some% T 0with argmir(F) = Lt,, argmin®(F,), as
Theorem 1.22 does in the nite dimensional case, but it also tellsouwso obtain
such a sequence.

Finally, the equivalence of Kuratowski and Hausdaonvergence in compact
metric spaces (Lemma 1.16) yields:

Corollary 2.30 In addition to all the conditions in Theorem 2.28, assume that the
setsM andA,\M " are non-empty for all suciently largen and that the set
K X is compact. Then one has Hausd@onvergence, i.e.,

IHn disttk (M); (Ap\M M) =0

2.3.2 Examples

The notion of topological stability seems quite arti cial. Therefore, some further
examples are in order.

Lemma 2.31 LetY, X be topological spaces;: Y! ]1 ;1], :Y! X and
K Xaclosed set. Assuni&(F) < 1, K\ (argmin{F)) = K\ argmin{ 4F)
for all %2 [0; 1 [, and that F is lower semi-continuous on K.

Then F is topologically stable alongover K.

Proof. Note that the searg min{ 4F) is closed for alP62 [0; 1 [ because 4F is
lower semi-continuous. One has by Lemma 2.19
\
K\ (argminF)) = K\ argmin( 4F) = K\ arg min{ 4F)
\ %%
= K\ argmin{ sF)= K\ (argmin{F)):

%0 %0

31
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Example 2.32 Let X be a Banach spac¥,a re exive Banach space,: Y! Xa
compact linear map, arfe: Y! R alower semi-continuous map with convex and
bounded lower level sets. The lower level asg mir{F) is closed (Hahn-Banach
theorem) and sequentially compact (Banach-Alaoglu theorem) in the weak topology
of Y. Because is a compact operator, it mapsg mirf{F) onto a compact, thus
closed setirX. Moreover, for eactx 2 X, arg min{F)\  1(x) is closed and compact
in the weak topology. By Lemma 2.19, we havgarg min{F)) = argmin{ 4F),
which is why 4F is lower semi-continuous. Now, Lemma 2.31 implies thas
topologically stable along over X.

A prominent example is given ky the canonical embeddingVy?( ) ! L*( )
and the Dirichlet energ#(u) B 2 jdui®d , u 2 W;?( ) for a bounded domain

R,

Example 2.33 Let Y be a topological space, Y Y an equivalence relation
andF: Y ! Ra continuous function that is invariant on equivalence classes, i.e.,
y1 Y. impliesF(y;) = F(y2). Let X B Y= be the quotient space, equipped with
the quotient topology and denote by Y! X B Y= the quotient mapping. Then

+F is continuous anéF factors through the quotient:

Y IR:

Ve
X

Again, Lemma 2.31 shows thatis topologically stable along over X.

Example 2.34 In particular, the previous setting is powerful, ifis induced by the
orbits of an actioom: G Y'! Y of a non-compact topological grodpthat leaves
F invariant. Even if arg mirff) is non-compact, thenoduli space

arg min( »xF) = arg minfF)=G

may be compact. Thus; is stable along over every compact sé& containing
(argmin()) and there is a chance to put Corollary 2.30 to use.

For example, this setup may occur in gauge theory where the Lagrangian is invari-
ant under the action of the group of gauge transformations. Other examples can be
found in geometric optimization problems, where the objective function is invariant
under the isometry group or under some other subgroup of theodiorphisms of a
manifold—as will be the case in our treatment of minimal surfaces in Chapter 7.
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2.3 Sability

2.3.3 Quantitative stability

Still, the result of Theorem 2.28 is a bit dissatisfactory, because it does not provide
any answers to the following questions:

1. Arethere any cluster points of minimizers of thg at all, i.e.,
n!_ls AN M), ;7

Note that together with Claim 1 of Theorem 2.28, a positive answer would
provide a proof for the existence of minimizersFof

2. Do the discrete minimizexnvergdan the sense of Kuratowski, i.e.,

nllil (A n\ n(M n)) = nlﬁs (A n\ n(M n))’?

3. Canall smooth minimizers be approximated by discreti@imizersi.e.,

(M) = LE(An\ (M )?

4. If yes, do the discrete minimizers converge uniformly, i.e.,

lim dist  (M); (M) =0?

5. If so, what is the uniform convergence rate?

These questions can be addressed by appropriate notions of conditioning and
stability. The essential ideas are not new for they can be found, e.qg., in [2], [34], [5],
and [4]. We adapted them with small changes in order to make them applicable in
the presence of test functionals.

De nition 2.35 We call the pai(F; ) faithful, if the pushforward along does not
introduce “new” minimizers in the sense thatarg minE)) = arg min( 4F):

De nition 2.36 (Conditioning) Let f: [0;1]! [0;1] be a nondecreasing func-
tion with f(0) = 0, let (X; d) be a metric spacdj: X! ]1 ;1] be afunction, and
K Xaset. We sa¥l is f-conditioned orK if arg min(H) is non-empty and if one
has

H(x) inf(H) + f(dist(x;argmin@{))) forall x2 K.

For a functionF: Y ! ]1 ;1] and a mapping : Y ! X, we sayF is f-
conditioned along overK, if (F; ) is faithful and if 4F is f-conditioned on
K.
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Remark 2.37 Note that our notion of conditioning also includesll-posedness
the sense that, argmin( 4F) = (arg minf)).

The usefulness of conditioning lies in the properties of the quantile function:

Lemma2.38Letf: [0;1]! [O;1] be anondecreasing function wift{0) = O
andlets,2[0;1]. Then {t) simpliest fY(s), where

fY:[0;1]! [0;17]; s7''infft2[0;1]js f(H)g
is thequantile functiorof f.
Corollary 2.39 LetH: X! ]1 ;1] be f-conditioned on K X. Then one has
K\ argmirf{H) B(arg minH); f¥(%):
Corollary 2.40 LetF: Y ! ]1 ;1] be f-conditioned along : Y ! X over
K X. Then one haX \ (argminf{F))  B( (argmir(F)); f¥(%) for each
%2 [0; 1 [.
Proof. By Lemma 2.19 and Corollary 2.39, we have
K\ (argmin{F)) K\ argmin{ 4F) I§(arg min( xF); fY(%):

Using the faithfulness of; ) nishes the proof.

The second main theorem of this chapter is:

Theorem 2.41LetA C ,A,, C ,bevalidsetsandld, K, X be sets with

Rn(An) K and , S,(A) K . Letf, f,:[0;1]! [O;1]be nondecreasing
functions withf (0) = f,(0) = 0. Let , be the total consistency error afid, "R be
the sampling and reconstruction proximity errors, respectively. Then:

1. IfF is f-conditioned along overK, one has

F(ANM ) B( (M);rR) with rRB "R+ ()

2. If F,is f,-conditioned along , overK,, one has

(A\M ) B( o(M,);rd) with rSB "S+ /()
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2.3 Sability

If both conditions are satis ed and if one hag(A,\M ) (M, and (A\
M) (M), then the Hausdordistance between,(M ) and (M) is bounded
by max(s;rR):

Proof. Claim 1:By Lemma 2.15 and (R,(A,)) K ,we have
f(A\M ) BK\ (M )Ry
The conditioning oF allows us to use Corollary 2.40 in order to obtain
K\ (M) B( (M) (o)
Now, the triangle inequality leads to
n(An\M ) BB( M) PCai"R Bl (M):"R+ P/(n):

Claim 2: Analogously, we obtain from Lemma 2.15,(S,(A)) K ,, Corol-
lary 2.40, and the triangle inequality (in that order) that:

(A\M ) B( n Sa(A)\ oM );"S
B(Kn\ (M );"3

B B( n(M,); fY( n);"5
B( o(M,); £Y( o)+ "S):

Remark 2.42 Note that the previous theorem can also be applied to the functions
Fn andF, for largen, m 2 N as a technique to show that,(A,\M ) non iS @
Cauchy sequence (B (X); distx). Successfully applied, this can be used together
with Theorem 1.9 and Theorem 2.28 to shexistencef minimizers off .

In light of Theorem 2.41, it is desirable to consider a particular class of condition-
ing functions:

De nition 2.43 A nondecreasing functiofi: [0;1] ! [0;1] with f(0) = Ois

called amodulus of stabilityf its quantile function satis egY(s) " %0.

Notice that even if eack,, is f,-conditioned with modulus of stability;, this
|
does not guaranteg( ) ™ 0. Thisis why we introduce the following notion.

De nition 2.44 (Stability) LetK,K, X be sets. We calF ;F,) f-stable along
(; n)over(K;Ky), if there is a modulus of stability such that

35



2 Parametric OptimizationProblems

1. F is f-conditioned along overK.

2. Foreacm 2 N, F,, is f-conditioned along ,, overK,,.

We formulated our de nitions such that—under mild additional assumptions—
our results read much like the “fundamental theorem of numerical analysis”. This
becomes even clearerinthe case C, =idcand , = Ry:

Theorem 2.45Assume , M A ,;, M, A ,,Ry(An) K , (R, SW)A)
Knand", B supys dc(Ry Sa@:a) 'l o
Then consistenéyand f-stability imply convergence

Ra(M ) T
in Hausdor distance with respect tocdvith convergence rate, + fY( ).

Proof. Observe thatR = 0so", is precisely the proximity error dfS,; R,) with
respect to (id; R,) on (A ;A ). Hence, Theorem 2.41 is directly applicable.

2.3.4 Examples

In general, quantitative conditioning of a given function may be quite hard to show.
However, there are some straightforward and well-known examples:

Example 2.46 Coercivity of bilinear forms is related to conditioning:

Let (X;h; i) be a Hilbert spacei: X! X a (not necessarily continuous) self-
adjoint operator, ang 2 X. Consider the functiofr(x) B PAXx xi + hv;xi and
observe thaargminF) , ; holds if and only ifA is positive semi-de nite an¢
is contained inm(A) = ker(A)?. Assume thav 2 im(A) and thatA is positive
semi-de nite with positive spectral gap= inf( (A) nfog > 0, where (A) denotes
the spectrum oA. In this case, one hasg minF) = AYv + ker(A) with the Moore-
Penrose pseudoinversé of A. HenceF is f-conditioned withf(t) = t2.

One calls the bilinear forrh: (x;y) 7! hAX yi coercive with coercivity constant

, if and only if A is positive de nite with = inf( (A)) > 0. The Lax-Milgram
theorem implies thad is continuously invertible, thug 2 im(A) is readily ful lled.
This shows that the coercivity dfimplies thef-conditioning ofF.

4of (F ;Fn; Sn;Rn) on (A A )
Sof (F ;Fp) along (ict; Ry) over K ;K p)
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Example 2.47 Let (X;d) be a convex length space in the sense that every pair of
points can be joined by a length minimizing geodesic.EetX ! R be a uniformly
convex function in the sense

FC@®) @ HFCO)+tF( (1) td il (0) (1)) t2[01];

for an arbitrary length minimizing geodesic [0;1] ! X. Here,f: [0;1[! [0;1 [
is themodulus of convexitgf F, i.e., a nondecreasing function witt{0) = O.
Note thatarg min(F) is convex. AssumeargminF) , ;. For arbitraryx 2 X,
z2 argmin(F), let :[0;1] ! X be alength minimizing geodesic fromto x. Then
one has=( (t)) F( (0))forallt2[0;1], hence

F(X) = F( (1)) t;glp]% FC® @ 9FCO)+t1 1) f(d(x2)
sup ¢ tF( (0)+t(1 1) f(d(x2)

t2[0;1]
= inf(F) + f(d(x; 2):

ThusF is f-conditioned. See also [15, Chapter 1].

Both going over to a weaker metric and extension by in nity (see Example 2.18)
do not essentially destroy conditioning as the following lemma shows:

Lemma 2.48 Let(X;dx), (V; dy) be metric spaces, Iét: Y! R be f-conditioned
overY,and :Y! Xbe Lipschitz continuous such th@; ) is faithful. Then ,F
is h-conditioned along over X with tft) = f(Lip( ) 1t).

Proof. Note that arg mirft) is necessarily non-empty, hence
argmin( xF) = (argminf))

Is also non-empty by faithfulness. Fo2 X n (Y), one hag »F)(x) = 1. Hence,
we have to check conditioning for points irfY), only. Forx 2 (Y), one has

distk(x; (argminf))) Lip( )dist(y;argminF)) forally2 (x).
Together with faithfulness, this leads to
(P =inffFy)jy2 *(¥g
inf finf(F) + f(dist,(y;argminF)))jy2 (X9

inf(F) + f Lip( ) !disty(x; (argmin)))
= inf(F) + h distx(x; arg min( xF)) :
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2 Parametric OptimizationProblems

2.4 Constraints

To conclude this chapter, we brie y demonstrate how sampling and reconstruction
operators can be obtained in the presence of constraints.

LetC, C., Y, Y, be metric spaces and let the con guration spage€, be given
by constraints of the form

cBfx2Cj (\2Bg= %(B);
C.Bfx2C,j n(¥)2Bng= ,YBn);

where 2 C%C;Y), . 2 C%C,;Y,) are continuous mappings afd Y |,
B, Y ,are non-empty, closed subsets.

Moreover, assume that the domains of the mappihgs andF,, ,includeC
andC,, respectively. In practice, it may be deult to construct exact sampling and
reconstruction operators

S,:A!lC , and R,: A,!C

explicitly. But often, operatorén: Al én andlfen: Al € can be constructed
such that the following errors are “small”:

SB sup(Fn Si@ F (@) KB sup(F Ry@) F @)
o a2A . ) a2A, .
"5 B supdx( n Sn(@); n(@); "F B supdx(  Rn(@); n(@);
a2A . ~ a2A, _
B supdisty ( n Sn(@);B); R B supdist/( Rn(a);B):
a2A a2An

=]

S U

As for the convergence analysis, we need merelyettistenceof sampling and
reconstruction operators. Thus, an implicit argument for their existence in the
vicinities of S, andR, su ces. Such implicit arguments can be provided by suitable
“openness” conditions on and ,. We discuss the setting for reconstruction
operators; the approach for sampling operators is analogous.

De nition 2.49 Let (X;dx), (Y;dy) be metric spaces, > 0, > 0 be constants,
andU X aset. We call amappinf: X! Y (# )-openonU if B(f(a);")
f B(a; ") holdsforalla2U andall0 "<#.

For a more detailed treatment of openness and the related notion of metric regular-

ity conditions we refer to [34, Section 9.G]. At the moment, we are satis ed with the
following simple implications:
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2.4 Constraints

Lemma 2.50 Assumeff #, < # and that is(#; )-open onR.(A,). Then for
each 2 ; #io , there is a reconstruction operat®,: A, ! C with

Supdé(ﬁn(a); Rn(a)) E:
a2An

Proof. Forb 2 A, leta = Ifzn(b). Because one haiist, ( (a); B) ff #o,and
- R<#, thereisay2 Bwithy2B (a);- R . The (;# )-openness of implies
y2B (a);- R Ba- R = Ba R:

Hence, there is am 2 I§(§; ﬁ) with  (x) =y 2 B, thusx 2 C. Now de ne

Rn(b) B x and observelz R,(b); Ry(b) = dz(a; x) R

Corollary 2.51 In addition to the condition of the previous lemma, assume that
F and are Lipschitz continuous oB(R,(A ); #). Then one has the following
estimates for the consistency and proximity errdys"R:

R Rylip(F) & and "R "R+lLip( ) R

n
The situation that we actually have in mind is the following:

Lemma2.52LetR > 0andU  C be an open set witB(R.(A,);R) U .
Moreover, assume that there &2 0, > 0 such that the following conditions are
ful lled:

1. 2CY¥Y(U;Y)withLip(D ) C.
2. For eacha 2 ,(A,), there is a closed vector spa@e, € such that
C=kerD (@) Z pandkD (a)uky kuks holds for each & Z .

'R and = 2. Then is(# )-openonR,(A,).

Let# = > min o

Proof. Fixb2 A,and puta= ,(a). LetX B Z , be the aforementioned closed
vector space and &t O with " < # be arbitrary. Withr = 2" < min =;R and
UB (B(O;r)\Z ,) de ne the mapping

f-ul Y, f(x)B (a+X):

fok

For allx 2 U andu 2 X, one has
a+x2U and Df(xu=D (a+Xxu;

thus the conditiongDf(0)uk  kukandLip(Df) C of the quantitative implicit
function theorem (see Theorem 2.53 below) are ful lled; one obtains

B( (a@:")=B(f(0x") fB(0:2) = B@?):
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2 Parametric OptimizationProblems

Theorem 2.53 (Quantitative inverse mapping theorem)
Let X, Y be Banach spacell X be an open, convex set, aa@ U a point. Let
f 2 CYY(U;Y) such that there are C 0and > 0 with:

1. Forallv2 X: kDf(a)vk  kvk, and
2. Lip(Df) C.

Fix r < min(g; dist(a X nU)). Then the restrictiorf jg is aCll-diffeomorphism
onto its image and one has the inclusion

B(f(a);") f B(@2 ) foreach0 " r.

Proof. Let °B Cr>0. Forx2 I§(a; r) andv 2 X, Lipschitz continuity ofD f
yields

kKDf(x)vk kDf(a)vk K(Df(x) Df(a))vk
( Ckx akkk ( Cnkk= %k (2.16)

LetO< rl< EO r© rand B ° Cr°> 0. Forx,y2 B(a;r9, Taylor's theorem
implies

Kity) f(Ok KDF(X)(y XKk Sky xié
(% COky xk= %y xk

This shows thatjg,, is injective. From
kDf(a) 'Df(x) Idk kDf(a) 'kkDf(x) Df(a)k Skx ak<1

P : . :
andAl= ((Id A) Id) 1=~ ,(Id A)itfollows thatDf(x) is invertible for
all x 2 B(a; r). The inverse function theorem [40, Corollary 4.37, p. 172] states that

hB figan: Blar)! f Bar)
is aC1-di eomorphism. Furthermore, we have fora B(a;r)

kh(x) h(ak=kf(x) f(ak kDf(a)(x a)k %kx al®
( Snkx ak skx ak

Let" 2 ]0; 5r]. Sincehis a di eomorphism, the sei/ B h B(a; 2 "y and
U B B(h(a);")\ W are open. Moreover, we have for eacB @V that

ky h@k=kn(h'(y) h@k zkh'(y) ak=3"

2
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2.4 Constraints

HenceV B B(h(a);") nW = B(h(a);") nW is also an open set. Thud, V is an
open covering of the connected &h(a); ). SinceU containsh(a), V has to be
empty which leads t&(h(a);") h B(a;2 ") . Taking closures yields

B(f(a);") = B(h(a);") = B(h(a);") hB@2 )
=h B@2 ™) =hB@2 ') =fB@2 ™);

where we used th&(a; ) = I§(a; ) holds in Banach spaces for al¢ 0 and thath
Is a homeomorphism.
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3 Parametric Operator Problems

To some extent, the theory of parametric optimization can be directly applied to
operator problems. This shall be demonstrated in Section 3.1. We will be led
to a notion of conditioning for operators which we explore by discussing several
examples, including the classical notions of coercive linear operators and monotone
operators (Section 3.2). In particular, we focus our attention on those operators that
can be derived in a certain way from 1-forms (Section 3.2.2). We do this by having
in mind that virtually all theories of modern physics are based on the principle of
stationary action: The constituting equation of a physical systeth is F, where

L is the Lagrangian of the system aRdencodes non-conservative forces such as
friction. If the con guration space consists of elds (as in elasticity, electrodynamics,
or uid dynamics), the constituting equations are usually partiakdéntial equations

and generalized Ritz-Galerkin methods may be applied in order to approximate their
solutions. Therefore, we demonstrate the consequences of our considerations for
generalized Ritz-Galerkin methods in Section 3.3.

3.1 General Theory

From now on, letC be a topological space and E ! C a continuous, locally

trivial ber bundle of metric spaces with ber metride. Let , 2 (C;E) be given

sections, i.e., = = idc. We are going to consideras the “operator” and
as the “right-hand side” of theperator problem

Find thecutlocusN B fx2Cj (X)= (X)g (3.1)

Example 3.1 Di erential equations can be formulated as such operator problems
by consideringC as the function space and puttingx) = F  J'(x), whereJ" is the
r-jet of xandF is a morphism of ber bundles oveZ:

Jc F IE

S~

C
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3 Rarametric Operator Problems

Additionally, consider the family of operator problems
Find thecut locusN, B fx2 C,] n(X)= n(X)g (3.2)

with topological space€,, continuous, locally trivial ber bundles,: E,! C ,
with ber metrics ¢, , and sections,, ,2 (Cy Ey).

As before, we also assume the existence of communic&jordomS,) C!
C,andR,: domR,) C,! C andtestmappings:C!X , ,:C, !X
to some metric spadeX; dy). Approximation ofN by N, will be formulated by
Hausdor convergence of ,(N,) to (N) in the metric spaceX fx).

It is insightful to de ne the real-valued functions

G: C! R G(X B de( (¥; (¥);
n- Cn! R; Gn(x) B dEn( n(X); n(X));

since they allow us to use the theory of parametric optimizatio® andG, in order
to obtain convergence results fdr,. Note that ifN andN, are non-empty, they
coincide precisely with the global minimizers @fandG,, respectively. This leads
us to the following notions of consistency and conditioning.

De nition 3.2 (Consistency) LetA dom(S;),A, dom(R,) be non-empty sets.
By de nition, the consistency errors ¢f ,; ) with respecttq ; ) coincide with
the consistency errors @, with respect taG. More explicitly, we de ne:

1. thesampling consistency error

EB sup de,( n Sn(@; n Sn@) de( (a); @)
a2A

2. thereconstruction consistency error
"B sup deg( Rn(@); Rn(@) dg( n@); (@) ";
a2An
3. thetotal consistency error
"B S+ R

We say the sequencé¢ ,; n;Sn;Rn) non IS CONnsistent with respect tp; ) on
(A;Ap) non if its consistency error, convergesto O as! 1

De nition 3.3 Letg: [0;1]! [0;1] be a nondecreasing function wigk0) = O
and letKk X be some set. We say () is g-conditioned along overK if Gis.
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3.1 CGeneral Theory

The main theorem of this section is thus readily deduced from Theorem 2.41:

Theorem 3.4 Assume tha@\N , ; andA,\N ,, ;. LetK, K, X be sets
with RnAn) K and , S,(A) K ,andletg, g,:[0;1]! [0;1] be
nondecreasing witlg(0) = g,(0) = 0. Denote by'>, "R the proximity errors of
(; n)on(A;A,) andby >, Rthe consistency errors ¢f ,; ,) with respect to
(; )Yon(A;A,). Then:

1. If (; )is g-conditioned along overK, one has

AAn\N ) B( (N);rR) withrRB "R+ g/( R,

2. If ( n; n)Iis gy-conditioned along , overK,, one has
(A\N ) B( o(Najiry) withry B "3 +g’( 7).
If both conditions are ful lled and if one has(N) (A\N )and ,(N,)

(A, \ N ;) then the Hausdor distance between the set{N) and (N,) is
bounded bynax(3; ri):

Proof. The assumptiond\N , ; andA,\N ,, ; guarantee thah andA ,

are valid with respect t& and G, respectively. We could apply Theorem 2.41

directly in order to obtain essentially the same result. But since we have the further

informationinf(G) = inf(G,) = 0, we may improve that a little in the following way:
Letz2 A\N . One has

on(diste, (Sn(@;Nw) Gn Sh@=(Gy Sh@ G @) S
thus

diStX( (Z); n(Nn)) diStX( (Z); n(Sn(Z)))+diStX( n(Sn(Z)); n(Nn))

e

Analogously, one obtains digt ,(2); (N)) "R+g/( R)forallz2 A,\N .
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3 Rarametric Operator Problems

3.2 Examples

Theorem 3.4 would be of little value, if there were no reasonable examples of well-
conditioned operators. In the following, we present a collection of examples together
with some useful properties.

Example 3.51f : E!C happens to be a locally trivial bundle of normed vector
spaces, one may equivalently consitleB . ThenN coincides with the set of
zeroes of and one ha&(x) = kI (X)kg.

Example 3.6 WhenE C Y is a trivial vector bundle with the normed vector
spaceY as ber, one may writd as! (x) = (x;A(X)), x 2 C with a mapping
A: C! Y. Then one ha&(x) = kKA(X)ky, andN = fx 2 C jA(x) = 0gis the set of
zeroes ofA.

For simplicity, we assume from now on tHais a vector bundle.

3.2.1 Conditional cones

In view of Theorem 3.4, it is desirable th&}(A ) andR,(A ;) are contained in some
setsK,, K X on which the operators,, = | and! = are well-
conditioned. It is by no means necessary that theseksgts are neighborhoods
of L(N,), (N). In particular, this shifts the perspective from the questidn if
is well-conditioned (everywhere) to the questighereis it well-conditioned. We
demonstrate in the following th& may be, e.g., a union of conditional cones.

De nition 3.7 Let X andY be normed vector spaces and fet2 L(X;Y) be a
continuous linear operator. For 0, de ne the (not necessarily convespnditional
-cone of Aby

Cone(A)B fu2 XjkAuk  kukg:

Lemma 3.8 Let X, Y be Banach space4) X an open convex set, aml 2
CH(U;Y). Let > 0and0 < # < 1. Then for any two points x,% U with

y x2Cone(DA(x) and ky xk #—Lip%DA);

the following estimate holds

(1 #) ky xk KAQy) A(Xk
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3.2 Examples

Proof. By Taylor's theorem, one has

KAY) A(X) DAX)(y Xk 3Lip(DA)kx vk’
leading to

KA(y) Ak KkDAX)(Y Xk %Lip(DA)kx yie:
The cone condition ankiy  xk = #Zs% imply

KAY) Ak k< yk LLip(DAKx yi¢ (1 #) kx yk

Lemma 3.9 Let X, Y be Banach spacet] X an open convex set, and lat2
CY(U; Y) be a mapping witlC B Lip(DA)andN B fx2 U jA(X) = 0g, ;. Let
> QandO< #< 1. Then Ais f-conditioned alongy over the closure of the set

W B [ B(x; #Z)\ (x+ Cone (DA(X)));

x2N

with the function {t) = (1 #) t.

Proof. Let z 2 W. For an arbitrary' > 0 there exists & 2 B(z")\ W. By
the construction of the s&V, there is some 2 N such thatkky xk #% and
y X2 Cone(DA(X)). By Lemma 3.8, we obtain

KADk = kAZ) Ak
KAly) Ak kA2 Aly)k
(1 #) ky xk C"
(1 #) (e xk ke y C"
1 #) ke xk (1 # +C)
(1 #) dis@zN) (1 #) +C)-

Note that we used the Lipschitz continuity Afwith Lipschitz constan€C in order
to get from the second to the third line. Taking the supremum ovérall yields
KA(2k f(dist(z N)).

Example 3.10 Let X be a Hilbert space; : X! R, F(X) = jx* 2jxj* be a double
well potential. ConsideA: X! X°given by the di erential ofF:

PA(X); ui = HdFj,; ui = 4j°hx;ui - dhxui forallu 2 X,
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3 Rarametric Operator Problems

The setN of zeroes ofA consists of the origin and the unit sphere:
N =f0g[S, where SB fx2Xjjx=1g:
The di erentialDA: X! L(X; X% of A (and hence the Hessian BJ is given by
HDA(X) u;vi = 4jxj°hu; vi + 8hx; uihx;vi  4hu;vi forallu, v 2 X.

Identifying X° X by the Riesz isomorphism, we may trd2f as a mapping
DA: X! L(X; X). While DA(O) = 4idy is a well-conditioned linear operator in
the classical sense, we hak@(DA(x)) = x° , fOgfor all x2 S= N nfOg However,
we have at least 2 Cong(DA(X)) for eachx 2 S. Observe that

HD2A(X)(u; v); wi = 8hx; uihv; wi + 8hx; vihw; ui + 8hx; wihu; vi

leads toLip(DA(X))  24jxj. Thus, forr > 0 andU B B(0;1 + r), we have

C(r) B Lip(DAjy) 24(1+ r). Choosa such thatit fulllsr = #% = %. Now,

Lemma 3.9 tells us fo < # < 1and = 4thatA is f-conditioned orW with
f(t)=4(1 #)t, where

W=B(N;r)=BO;r)[ B(O;1+r)nB0;1 r):

Moreover, one readily veri es thdA(xX)k  4(1 #) min(kxk; jkxk 1j) holds for all
x 2 XnW. Hence Ais globally f-conditioned.

For applications, it may be very helpful to know that conditional cones have certain
continuity properties:

Lemma 3.11 Let X, Y be Banach spacesp> 0, andA, B2 L(X;Y)withkA Bk<
. Then one ha€one(A) Cone ya s(B).

Proof. Foru 2 Cone (A) one computes
kBuk kAuk k(B A)uk kuk kB Akkuk (kA BK) kuk;

which shows thati 2 Cone s gk(B).

3.2.2 Operators induced by di erential 1-forms

As explained in the introduction to this chapter, many important examples are covered
by the following situationC is a Banach manifoldl °C is the continuous cotangent
bundle, and 2 (C;TC)is a (not necessarily derentiable) dierential 1-form.
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3.2 Examples

Example 3.12 Let C = X be a Banach space. Then one may idenfif¢ with
X X%and 1-forms orC coincide with operatoré: X! X%via! (x) = (x; A(X)).

It is now tempting to apply Theorem 3.4 directly toby using the function
G(x) B K (X)kroc. But this may be suboptimal for stability considerations (see
Example 3.13 below). In the following, we outline a more promising approach.

Frequently, the linear functional(x): T,C ! Ris also continuous with respect
to a weaker nornkkz onT,C. Let (Ejx; kkg,) be the completion of ,C with respect
to kkg, and assume that the fami(§,).c gives rise to a locally trivial bundle

e: E ! C of Banach spaces. Lét(x) 2 EC be the unique continuous linear
extension off (x) 2 TIC and let «: T,C ! E 4 be the canonical inclusion. This
leads to vector bundle mappings

Tc—E E—— IT°C
\ / and \ / :
TC E £0 T0c
C C

Note that one hals = ° I and that the image of in E, is dense, thuéj IS injective.
Hence, the zeroes of and! coincide:

N=fx2Cj! (x)=0g=fx2Cjl'(x)=0g:

De ne the functionG: C! R, G(x) B K™ (X)kg. If x 7! k xkis uniformly bounded
by someC 0, one has

= — jH(x); uij JH(X); «Vij
G(x) = k' (X = suyp——— = sup————
) ( )kE(X] 2Ep kuke, vaxog K xVKe,

up NSV
V2T,C k Xk WkaC

v, 0

UZex
u, 0

C 1G(x):

This tells us that—up to a constanG-s never worse-conditioned th& Even
more,G may be much better conditioned th@&nas the following example shall
illustrate:

Example 3.13 Let (; g) be a compact, connected, smooth Riemannian manifold
with non-empty boundary. Fqy 2 [2; 1 ] and its HOlder conjugate 2 [1; 2], put

X = WyP( ;R™ andY = Wi7( ;R™). The canonical inclusiod: X | Y has
dense image iy, thusJis injective.
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3 Rarametric Operator Problems

Consider the LaplaciaA: X! X°given byhA(f);ui = RhJIf;duigvoIg. As it
turns out,A(f) is continuously extendable ont producing an elemem¥(f) 2 Y°.
We may writeA: X ! Yowith A= J%° A Let 2 Y°be arbitrary and de ne the
operatord (f) = (f;A(f) )and! (f) = (f;A(f) ). Letf; 2 N be a solution to
A(fo) = and letf 2 X be arbitrary. Together with Lemma 1.2, one obtains

K (f)kpo = K (f)  (fo)kpo = KA(f  fo)k
mkf fok\Né;;g W]mcq) dlStx(f, N ):

As a consequence, the operaltois g-conditioned (alongdy over X) with the linear
modulus of stabilityg(t) = m

Note that wherp > 2, the operatot : X! T, ! (f) B (f;A(f) ) cannot
beg-conditioned with dinear modulus of stability: Otherwised: X! X°would
be an isomorphism of Banach spaces and the continegumetridilinear form
b: X X! Rdenedbyb(u;v) B bA(u); Ju, u, v 2 X would be coercive, rendering

(WoP( s R™; b into a Hilbert space.

Remark 3.14 The reasoning of the preceding theorem shows that for a smooth
functionF: X! Ron a Banach spack, the Hessian oF, interpreted as a linear
operatorAj, B HesgF)jx: X ! X%can only be invertible iiX is a Hilbert space.
Hence, in general, the Newton method is not at disposal. Howewd, dan be
interpreted as a mappirdf=: X ! Y°with some Banach spa¢é X, there is a
chance thafj,: X! Y?is invertible and one obtains a Newton-like vector eld

A 1j,(dFj,). We will use the same idea in Section 7.7.2 in order to introduce a
gradient-like vector eld.

3.2.3 Monotone operators

An important class of operators with conditioning properties is given by monotone
operators:

De nition 3.15 Let X, Y be Banach spaced; X! Y be an injective, continuous
linear map with dense image, aAd X ! X°be an operator that factors through
J% i.e.,A=J° Awith some operatoA: X! Y° Moreover, let : X! Zbea
mapping to the metric spa¢g; d;), K Zsomesetandla: [0;1]! [0;1] bea
nondecreasing function wit(0) = O.

We sayA is g-monotone along; J) over Kif

PAC2)  A(x)iXxe X g(dz( (%); (%)) kIx Ixky
holds for allx;, x, 2 1(K).
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Example 3.16 WhenK = Z =Y = X,J= = idx andg(t) = ctis alinear function,
the notion ofg-monotonicity alondJ; ) overK reduces to the usual notion stfong
monotonicity

PA(X2) A(X1); % Xii ¢k x&  forall xg, X, 2 X.

Lemma 3.17 LetA: X! X°beg-monotone along; J) overK. LetG: X! R
be given byG(x) B kA(X)kyo. _

Assume thaN B fx2 XjA(x) = 0gis non-empty and thaiG; ) is faithful.
ThenA is g-conditioned along over K.

Proof. Observe that injectivity of®implies
fx2XjAX) =0g=fx2XjAX)=0g=N, ;:
One immediately deduces fag 2 N and arbitraryx 2~ (K):

KAKkyokd X Ixoky = KAX)  A(Xo)kyokdX  JIxoky
hAKX)  Ao);IX I
=hA(X)  A(X)X X
g(dz( (¥); (%)) kIx  Ixoky:

Division bykJx Jxoky and taking the in mum over alk, 2 N = arg mir(G_) yields
G(¥) = KA(ke g(dist( (x); (argmin@)))):

Because of faithfulness, one heag min #G_) = (arg mir(G_)). Letz?2 Z. Taking
the in mum over allx2  1(2), one obtains

( #6)@ g(distz arg min( 4G))):

3.2.4 Symmetric conditional cones

Let X, Y be normed spaces and B2 L(X;Y). ForA2 L(X; Y% and > Ode ne
thesymmetric conditional-cone

SymCone(A;J) B fu 2 X jjhAu; Juij kuky kJuk, g:

In particular, we have the Hessidn= HesgF)jx: X ! X°(and its induced
operatorA: X! Y9 of a twice di erentiable functiofF: X! R in mind (see also
Remark 3.14).
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3 Rarametric Operator Problems

Lemma 3.18 Let X, Y be normed spaces and &2 L(X;Y) be injective. Then one
hasSymCone(A;J) Cone(A)

Proof. Letu 2 SymCone(A;J),u, O.

kAU = SUIAML  gupltehd PRSI g
w2y k\Nk\( v2X kJVkY kJUky
w, 0 Jv, 0

The reason for introducingymCone(A; J) is thatCone (A) for arbitrary linear
operators does not behave well under restriction to linear subspaces:

Example 3.19 Let the linear operatoA 2 L(R?; R?) given by counter-clockwise
rotation about the origin. Obser@one (A) = R? for all 0 < 1. Letu2 R?nf0g
be an arbitrary vector and let Ru,! R? be the canonical inclusion. ThéfAl = 0
and thus Congl°Al) = fogfor all > 0.

In contrast, we have:

Lemma 3.20 Let X, Y, Z be normed spaces a2 L(X;Y%) ,B 2 L(Z;X), J 2
L(X;Y) continuous linear operators. With4 JB, one has for, > 0

Cone(B)\ B! SymCone (A:J) SymCone(AB;);
SymCone(AB;1) B! SymCone g (A;J) :

Proof. Foru 2 Z, one haghABuy luij = jpABu JBuj. Moreover, note that we only
have to consider the cage, 0.
On the one hand, ifi 2 Cone (B)\ B 1SymCone (A; J), one has

JPABU 1Uij = jPABU JBUj - kBukkIBuk,  kuksKluky;

henceu 2 SymCone(AB;I).
On the other hand, lat 2 SymCone(AB;1). ThenBu 2 SymCone g (A; J)
follows from the estimate

jpABy, JBUj = jPABU luij kukzKluky = kBukykJ Bk :
Corollary 3.21 LetX, Y be normed spaced,2 L(X;Y), X, X alinear subspace,

Yy B J(Xn), andJ, = Jjx,. LetA, 2 L(Xn; YO be theRitz-Galerkin discretizatioof
A given by

hALU; Jvi B PAU; Jvi forallu, v2 X,.
Then one has for each> O:

SymCone(Ay; Jn) = Xa\ SymCone(A; J):
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3.3 Application to GeneralizedRitz -Galerkin Methods

Proof. Apply the previous lemma witl = X, to the embeddin®: X,,! Xand
observe thaB is isometric.

Moreover, symmetric conditional cones have essentially the same continuity
properties as general conditional cones:

Lemma 3.22 Let X, Y be Banach spaced,2 L(X;Y), > 0, andA, B2 L(X;Y9
withkA Bk . Then one haSymCone(A;J) SymCone , g(B;J).

Proof. Letu 2 SymCone(A; J). Then one has
jBu; Juij  jPAY; Juij  JA(B  A)u; Juij
kukekJuk, kB AkkukgkJuk, (kB AK) kukykJuky;
showing thau 2 SymCone , g(B; J).

3.3 Application to Generalized Ritz-Galerkin
Methods

Besides demonstrating the applicability of the presented theory, this section has a
second motivation: Ritz-Galerkin methods formed the starting point of our consider-
ations. Cea's and Strang's lemmata were prototypical results to aim for. Moreover,
Strang's second lemma was the major motivation for introducing test mappings and
the notions of consistency and proximity errors. We would like to emphasize that in
this very situation, it really paid oto give symbols to inclusion mappings which are
often treated rather stepmotherly.

Within this section, leC = X = X be a separable Banach space and\leX ! X°
be an operator with non-empty set of zerdes f x 2 X j A(x) = 0g

3.3.1 Conforming Ritz-Galerkin method

De nition 3.23 A conforming Ritz-GaIerkin.FchegE a sequenceX,)non Of nite-
dimensional subspaces ¥fwith Lsy; Xn = on k n X0 = X LetRy: Xy ! X
be the canonical inclusion. The operator

Ani Xl X3 DA Ui B HA Rp)(3);Re(U)i %, u2 X,
Is theRitz-Galerkin discretizatioof the operatoA and one refers to
N,B fx2X,jA(X)=0g

as the set ofliscrete solutions
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3 Rarametric Operator Problems

Let (Xn)non be a conforming Ritz-Galerkin scheme andAgtbe the Ritz-Galerkin
discretization ofA: X ! X% Choose a continuous, linear and surjective mapping
Sh: X! X,suchthaR, S, isa projector. Moreover let =idy and , = R,.

WhenN is non-empty in the above setting, the sampling proximity error diver
is the classical approximation error:

HE =supk( » Sp)(@) (@)kx = supk(R, Sn)(@) akg
azN azN

= supinf kx aky = supdist(a; X,):
aZ2N

a2N X2Xn

Assuming that existence has already been shown, Theorem 3.4 leads to the follow-
ing generalization of Cea's lemma (see e.g., [6, Chapter I, Lemma 4.2]).

Lemma 3.24
Assume thaN and N, are non-empty, tha#, is g-conditioned, and thaA is
uniformly continuous with modulus of continuity h, i.e.,

kAL(X)k  g(distc(x;N)) forall x 2 Xp;
KA(X) Ak h(kx yK) forall x,y 2 X:

Thenone hadl  B(N;"S + g/(h("S))); where"S denotes the sampling proximity
erroronN.

Proof. The sampling consistency error dhcan be estimated by
2 = sup(kAy S y(@)k  KA@K"
=supkR.° A R, S.(@ R, A@k
azN
supkR.’XkA R, S.(@ A(ak
azN

suph(kR, S (@) ak) = h(">):
azN
Thus, the stated result follows from the second statement of Theorem 3.4.

Remark 3.25 Assume thalN = f xgandN, = f x, gboth consist of precisely one
element: Then Cea's lemma in the above form gives the convergence rate

< xak S+ g0

'Note that this is the case, e.qg., with strictly monotone operators.
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3.3 Application to GeneralizedRitz -Galerkin Methods

If Ais a strongly monotone operator thgft) = ctcan be chosen with sonte> 0,
(see Example 3.16 and Lemma 3.17)Alis additionally Lipschitz continuous (i.e.,
h(t) = Ctwith someC 0), one obtains a quasi-optimal convergence rate as in
Cea's lemma:

kx Xk 1+E ">
Remark 3.26 If solutions are not unique, one may additionally use the rst state-

ment of Theorem 3.4. Note that the reconstruction etfamn X, vanishes in this
setting:

"R=supk Rp(¥)  n(X)kx = SUPKR(X) R n(X)kx = O:
X2Xn X2Xn

Hence, the remaining ingredients would be estimates on the reconstruction consis-
tency error and on the conditioning Af

3.3.2 Strang's rstlemma

In practice, due to rounding errors, one has toajggroximationsi,: X, ! X?° of

A on X,. Moreover, one may reduce the computational costs by using numerical
methods (e.g. quadrature rules) whose accuracy is adjusted to the expected error
level: There is no point in performing expensive calculations with very high precision

if the discretization error is magnitudes higher. Classically, Strang's rst lemma
addresses these issues by giving estimates on the overall error of solutions of the
discretized problem. Theorem 3.4 induces a variant of Strang's rst lemma, alas
without existence and uniqueness statements:

Lemma 3.27
Assume thall andN,, are non-empty and that

KAN(X)kxo  g(distx,(x;Np)) forall x 2 Xy;
KA(X) A(Y)kewo h(kx yKk) forall x,y2 X:

Then one has
N B(Nmi"s +¢( n+ (D))
where"$ is the sampling proximity error oN and
nB sup kAy(b) (R’ A Rp)(bko:

b2Sn(N)
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3 Rarametric Operator Problems

Proof. The sampling consistency errat onN can be estimated by
7= SUp KA S @k KA@Ke
sup (KA Sn)@ke KA Rn Sp)(@ke " +KA Ry Sp)(@) A@kk
N
sup kAy(b)kee K (Ra® A Rp)(b)kxe * +suph(k(Ry Sn)(@) ak)
a2A

b2Sn(N)

sup KAy(b) (Ra® A Run)(b)kg+h("3) = n+h("3):

b2Sn(N)

We emphasize that we used here tha nondecreasing. Now, the statement follows
immediately from Theorem 3.4.

Example 3.28 Note that , measures in some way the deviation/ffrom the
Ritz-Galerkin discretization. This is traditionally termed consistency error. The
connection to Strang's rstlemma becomes even clearer when analyzing the classical
setting:

Let 2 X% , 2 X% be continuous linear forms and IBt X X ! R and
B.: X, X,! Rbe bilinear forms such thd& is continuous an@, is coercive, i.e.,
there are constan@ 0, c > 0 with

jB(U;V)j Ckukykvk, and By(w;w) ckwig forallu,v2 X, and allw 2 X,
Consider the operators

A: X1 X% PAX);ui B B(x;u) h;ui;
Ani Xn XS bAY);Vi B By(y;v) h i

By the Lax-Milgram theoremiN,, = f x, gis a singleton. Using the preceding
lemmawith the functiong(s) = ¢ sandh(s) = C s one obtains

kx xk 1+& " +1 . foreachx2N.

Note that ,, can be estimated by

jB(ow) Bn(bw)j , jh awij .
n SuUp sup m,k e

b2S,(N ) w2Xanfog X

This is exactly the consistency error of the classical Strang lemma (see [6, Chapter
[ll, Lemma 1.1]).
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3.3 Application to GeneralizedRitz -Galerkin Methods

3.3.3 Nonconforming Ritz-Galerkin method

Let a sequenc¥, of nite-dimensional Banach spaces and operagsX, ! X¢,
n 2 N be given. Note that from now on, we do not assume ¥ads a subspace
of X. The frequent setting is tha{, X, are continuously injected into a larger
Banach spac® B Y in a canonical way. Denote these injections by X || Y,

n Xn Y IlE (%) 1 (X), one call{X,; A,) anonconforming Ritz-Galerkin
schemeln practice, there are essentially two reasons why a Ritz-Galerkin scheme is
nonconforming:

1. The elements 0K, may violate certain constraints ofi In particular, bound-
ary conditions may be an issue: The elements of the function sfacay
satisfy boundary conditions only on a restricted class of boundary shapes, e.g.,
polygonal lines, simplicial manifolds, or spline surfaces.

2. The (di erential) operatoA: X! X°cannot be extended %, because the
elements ofX, fail to have the necessary smoothness, e.g., they are discontinu-
ous.

Traditionally, one calls the quantity
Sup infk (@ n(Whk
theapproximation error Note that the approximation error can be bounded by the
sampling proximity errot'S onN:

supinf k (@)  a(Wk, Supk (8) ( n Sw)(@k ="$
az2N n az2N

In contrast to the classical Strang lemma, we may circumvent the need to é&gtend
toY by usingA, S ,in order to de ne what is traditionally called thmnsistency
error:

2N W2Xn kwky N

Note that this is precisely the sampling consistency erf@n N :

a2N W2Xq k\Nk)(n

= supk(A, S )@k
= supk(Ar Sn@ A@ke= S
azN

It turns out that Theorem 3.4 implies the variant of Strang's second lemma that
Braess brie y mentions in a side remark (see [6, Chapter Ill, Remark 1.3]):
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Lemma 3.29 Assume thal andN,, are non-empty and that

gdisty( n(x); n(Nn)))  KAN(X)k, for all x 2 X,
KA(X) A(y)ky h(dist/( (x); (y))) forallx,y2X.

Then one has
(N)  B( o(Np);"s+ (5 +h("3)):

3.4 Openness, Existence, and Convergence

We conclude this chapter with a remark on the relationship between openness of the
operatordA, A, (see De nition 2.49) and the convergence behavior of their solution
sets.

Theorem 3.30 Let operatorsA: C! Y andA,: C,! Y, be given, wher€, C,
are metric spaces and, Y,, are normed vector spaces. For some non-empty sets
A C ,A, C,denotebybys, "R the proximity errorsof ; ,)on(A;A,) and
by S, Rthe consistency errors @, with respect toA on (A ;A ). Moreover, let#,
be positive real numbers.

1. Assume that,, is (#; )-open onS,(A\N )andthat > <#. IfA\N is

non-empty, then alsN, is non-empty and one has
(A\N ) B( o(Nn)ir3) withrg ="5+Lip( n)

S
n

2. Assume thaf\is (#; )-open orR,(A,\N ,)andthat R<#.If A \N ,is
non-empty, then alsN is non-empty and one has

AAN D) B( (N)rR) withrR="R+Lip( ) R

n
Proof. Letx2 A\N ,i.e.,G(X) = kA(X)k, = 0. One has
KA Sn(ky, =(Gn Sn)(¥) G(¥)+ §<#
Now, (#; )-opennessimplies
02B (A S & A BSh(X¥: )
Hence, there is @2 N, with dc,(Sn(X);Y) > and one obtains

dk( (9; a())  dk( (:( 0 Sn)(X¥)+dk(( n Sn)(X); )

Selp( o) S

which shows the rst claim. The proof of the second claim is analogous.
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3.4 OpennesExistence andConvergence

Note that in the setting of an operatdof classC'! between Banach spaces (or
more generally: Banach manifolds), opennes8 af x 2 C can be shown with the
guantitative inverse function theorem (Theorem 2.53), even in the cade A&t
has a kernel, as long as it has a siently transversal closed complement (see the
proof of Lemma 2.52).

InterpretingN , as the discrete problem, the second claim of Theorem 3.30 can be
used fora posterioriestimates: Having found 2 N, one may sometimes be able to
estimate the opennessAfat R,(X):

Example 3.31LetC, C,, Y, Y, be Banach spaces and let bétland A, be of class
CY, Letx 2 N,. Assume thaDA,(x) sati eskDA,(X)uk  kukfor allu 2 T,C,.
Moreover assume that one can shiA(Ry (X)) uk  kukfor all u 2 Tg,C with
some n C", > 0. Then again, the quantitative inverse function theorem
would imply a certain openness Afand Theorem 3.30 yields existence of a smooth
solution and an error estimate.
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4 The Space of Inner Products

In this chapter we summarize some facts about the Riemannian manifold of inner
product of a nite-dimensional real vector space, i.e., of symmetric, positive de nite
bilinear forms. This space and its Riemannian distance will be crucial in de ning
the metric space of Lipschitz immersions (see Chapter 5). The latter will be used
as con guration space in our treatment of discrete minimal surfaces (Chapter 7), as
well as in our discretization of Hencky elasticity (Chapter 8).

This space is traditionally discussed as the homogeneous &iafe)=0(k)
by di erential geometers. However, the representation as a quotient may not be
convenient if one aims at numerical computations. Fortunately, the manifold of
symmetric, positive de nite matrices and its Riemannian structures have recently
caught the attention of applied mathematicians so there is also a concise theory in
terms of matrices (see e.g., [27] and references therein). We try to be self-contained
and to give proofs for the relevant results, although these may be found elsewhere,
too.

In the course of this chapter, we will also be led in a natural way to a certain vector
eld (on the manifold of inner products), which reappears as the Hencky strain tensor
in elasticity theory.

4.1 Basic De nitions

LetV be ak-dimensional real vector space wkt2 N and letP(V) denote the space
of symmetric, positive de nite bilinear forms ovi. The groupGL(V) acts from the
right on P(V) via pullback:

GL(V) P(V)! P(V): (Ab)7! A'b=Db(A;A):

As an open set in the vector spa@gm(V) = VO VO V0 VOof symmetric bilinear
forms onV, the spacdé’(V) is a smooth manifold with tangent bundle given by
TyP(V) B Sym(V).

We equipP(V) with a Riemannian structuig given by

Orb(X;Y) B hX;Yi, forall X; Y 2 ToP(V) = Sym({),
whereh; i, denotes the inner product ! V°that is induced b.
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4 The Space oflnner Products

We use the so-callemhusical isomorphisms
[b:V! V% u7!b(u;)=(v7 b(uv) and ],B [,': V0! V
In nite-dimensional vector spaces, one may identify Bvig( V. V°and
idy J]p: Sym(V)!f A2End(V)jA*=Ag
identi es Sym() isometrically with theb-self-adjoint endomorphisms:
hX;Yip = (idy Jo)Xi(idv Jp)Y , =tr (idy ]o)X)°(idv ]p)Y ;

whereX, Y 2 Sym({).

Theoretically, one could deduce all the result of this chapter in terms of this
identi cation. However, it proves less cumbersome to perform computations in terms
of Gram matrices.

maps a bilinear form to its Gram matrix:
Ge: VO VO Mat ((R); X 7! (X(&;e))1 iy i

Remark 4.2 In terms of the Gram mapping, one has the following representation
that we will use throughout our discussion:

9p(X Y)ib = X Yip, = tr(Ge(b) 'Ge(X)"Ge(b) *Ge(Y)); (4.1)
whereb 2 P(V) andX, Y 2 T,P(V).

Remark 4.3 Wheneygr a basisof V is given, the dual basis= ( 1;:::; ) of V°
can be written as; = 'j‘zl(Ge(b) Bij [b€j- Abasis( ij)1 i j k for SymV) is induced
byevia j= ; j+ ; i. Moreover, sincés, is a chart, we have globally
de ned coordinate vector eld;; 2 X(P(V)) on P(V) by:

XipB it 5 i
Xk
= (Ge(d) Vi (Ge(b) D (b8 [be + o8 [b8):

;=1
Because the vector eldX; are coordinate vector elds, their commutators vanish:
[X ;X ]1=0 foralll ;;; K.

We even havei(Gp(Xi i)) = 0. Note that every smooth vector el 2 X(P(V)) can
be written asy = «' X with appropriately chosen 2 C! (P(V);R).
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4.2 ThelLeviCivita Connection

4.2 The Levi-Civita Connection

In order to compute distances, we are interested in the geodesiE$\M gp).
Therefore, we deduce a representation of the Levi-Civita connection in terms of its
covariant derivative

r: X(P(V)) X(PNV))! X(P\V)):

Lemma 4.4 Let X, Y 2 X(P(V)) be smooth vector elds and letbe a basis oV.
The Levi-Civita connection with respect tp gan be written as

Ge(r xYijp) = Md(Ge(Y))in; Xi Ge(X)Ge(b) 1Ge(Y) ;
where : Mak «(R)! Mat «(R), A 7! % A + AT denotes symmetrization.
Proof. According to Remark 4.3, there are vector elds;:::; Xy 2 X(P(V)),

m = lk(k + 1) with d(Ge¢(X )) = O for %I 1 m such that each vector
eld Y 2 X(P(V)) can be written a¥ =  ™,' X, with appropriately chosen
' 2 C(P(V);R). Note that this also implieX ;X ] =0forall1 ; m. The

Koszul formula (see e.g., [9, Chapter 2, Equation 9]) tells us:
Op(X ;T x X)=3 X gp(X ;X )+ X gp(X ;X) X gp(X;X):
AbbreviatingB B G¢(b) andX B Gg(X ), we have from (4.1) that
gp(X ;X )=tr BX B X
Using the well-known rules for dierentiating products and inverses, we obtain

X ge(X 5 X )io

= r B XBXB¥X trBXBXB1X
2r B! X B X B X
200 G5 XBIX Xjp:

Symmetry of all occurring matrices and conjugation invariance of the trace lead to
X gp(X ;X ) =X gp(X ;X)) =X gp(X; X);

henceta x X jp= G.,! X B!}X and
Ge(r x X jp) = G(X ); X i X B X

. . P
For arbitrary vector elds< andY, writeY = ™,' X . The statement now follows
from the Leibniz rule for covariant derentiation.
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4 The Space oflnner Products

Corollary 4.5 The vector eldZ 2 X(P(V)) given byZj, = bis covariantly constant.

Proof. Let X 2 X(P(V)) be an arbitrary vector eld andsome basis o¥. By the
preceding lemma, we may compute

Ge(r xZjp) = HdGe(b); Xi (Ge(X)Ge(b) 'Ge(h)) = Ge(X)  Ge(X) = 0:

4.3 Geodesics
Lemma 4.6 LetV be a nite-dimensional real vector spack,2 P(V), and X 2

ToP(V). The geodesic: ] ";"[! P(V) starting fromb in direction X 2 T,P(V)
with respect to the Riemannian metrigig given by

1) =G LTexptL "Ge(X)L * L
for everyL 2 Mat, (R) with LTL = Gg(b).

Proof. Let be the geodesic with(0) = band (0) = X. De ne B(t) B G¢( (t)).
SinceGg( (t)) = B(t), the geodesic equations can be written as

0=Ge(r )(t) =hGe( (1)); (V)i Ge( (1))Ge( (1)) *Ge( (1)
= B(t) B(t)B (t) B(t):

We use the ansa(t) = LT exp(t C)L with a matrixL 2 Mat «(R) and a symmetric
matrix C 2 Matk ¢(R). One computes

B(t) = L"CexptC)L and B(t) = L"CexptC)CL
and checks that substituting our ansatz solves the geodesic equation:

L'TCexptC)CL LTCexptC)LL lexp( tC)L "L'CexptC)L
=L"CexptC)CL L'CexptC)CL =0:

For satisfying the initial conditions, one has to hdandC such that
B(0)=L"L = Gg(b) and B(0)=L'CL = G¢(X)

hold. Note that by the uniqueness of the solutions for second-order Oegs
not depend on the actual choicelof
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Example 4.7 When choosind. = G¢(b)z, one has

Ge( () = Ge(b)? exp t Ge(b) Ge(X) Ge(b) 2 Ge(b)?:

Note that (t) exists for all timeg 2 R and that (t) is always positive de nite, which
leads us to:

Corollary 4.8 The Riemannian manifold(V); gr) is geodesically complete, i.e.,
for eachb 2 P(V) and eachX 2 T,P(V), there is a geodesic: R! P(V) with
(0)=band (0)= X.

For every pair of points in a geodesically complete space, there is always a length
minimizing geodesic connecting them. (IR(V); gp), there is exactly one geodesic
between any pair of points and this geodesic can be directly expressed in terms of
Gram matrices.

Lemma 4.9 For any two pointdhy, b; 2 (P(V);gp), there is auniquegeodesic
:[0;1] ! P(V)with (0)=bgand (1) = b;.

Proof. Let by, by 2 P(V). Choose a basisof V andL 2 Mat, «(R) such that
Ge(bg) = LL.

ExistenceOne easily veri es with Lemma 4.6 that the geodesitarting at, in
directionX = G, LTlog L TGe(by)L ! L satises (1) = b;.

Uniquenessiet :[0;1]! P(V)with (0)=bgand (1) = b;. PutXB (0).
ByLemma4.6,onehas = (1)=G.!LTexp L "Ge(X)L ! L . Since the matrix
exponential is a dieomorphism from the symmetric matrices onto the symmetric,
positive de nite matrices, this equation can be solvedXpdelivering the sam&
as in the existence proof. Note thadoes not depend on the particular choicé of
Any other choice can be written & with a orthonormal matrixJ 2 O(R"). By
the rules of the functional calculus of self-adjoint operators we nd:

(UL)"log (UL) TGe(by)(UL) * (UL)
=L"U"log UL TGe(by)L Ut UL
=LTUU log L TGe(by)L * U UL
=L"log L "Ge(b))L * L:
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4.4 The Hencky Field

Motivated by the preceding result and because of its central role in nonlinear elasticity
(see Chapter 8), we introduce the Hencky eld, a vector eldR{N):

De nition 4.10 Fix c 2 P(V). We de ne theHencky eld H 2 X(P(V)) by
Hejo B (id [1) log, (id ]o)C :
Here, log, is the logarithm of the functional calculus bfself-adjoint operators.

Remark 4.11 In terms of a basis of V and a matriXxX. 2 Maty ((R) with Ge(b) =
LL, one may write

Hep = G.* LTlog L "Ge(c)L * L :
Thus, by Lemma 4.9, the Hencky eld, always points ta@ in the sense that
exd (Heb) = ¢;
whereex: ToP(V) ! P(V) is the Riemannian exponential map with respedqo
Corollary 4.12 The geodesic distance @#(V); gp) is given by
do(01.0) = jHalolb = jog L TGe(@)L *j= %4log( 2 & b, c2 P(V).

Here,|j denotes the Frobenius norm of matrices2 Maty (V) is a matrix with

Proof. While ds(b; ¢) = j Hcjy J follows from the fact that geodesics have constant
speed, the second equality follows from (4.1):

jHabjp = tr (LTL) *Ge(Hdib)(L L) *Ge(Hcin)
=tr (LTL) 'LTlog L "Ge(6)L * L(LTL) 'LTlog L "Ge(c)L * L
=tr L Ylog L "Ge(c)L 1 2L =1tr log L "Ge(c)L *?2
=jlog L "Ge(c)L !}

a diagonal matrix. Wit = I, one obtains
. », P
jlog L TGe(oL * 2 =" i log( )

Corollary 4.13 Fix ¢ 2 P(V) and de nef.: P(V) ! R, f¢(b) = %dé(b; c). This
function is smooth and the downward gradient coincides with the Hencky eld:

grad” fo = Hc:
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4.5 Densities

4.5 Densities

We summarize some de nitions and facts about densities. For a more detailed
introduction to this topic see, e.g., [26, pp. 375-382].

De nition 4.64 Let V be ak-dimensional real vector space. densityonV is a

function% <X,V ! Rwiththe properties:

W Vil nV) =) 1 W AV s v):

We de ne (V) to be the space of densities Wn

The space (V) is a one-dimensional vector space oRReIA linear mapA: V! V
induces thepullback A:  (V)!  (V), alinear operator de ned by

One may de ne thebsolute value of the determinantAdby jdet(A)j %= A*%for
all %2 (V). Thus, densities have a transformation behavior under pullback that is
compatible with the transformation formula of integrals. This is why one can de ne
the integral of gggection of the density bundleé ) B, (Tx ), leadingto a
linear functional : ()! R.

A density%?2 (V) is calledpositive if %ey;:::;6) > 0 holds for all bases

that the multiplicative grougR.o; ) acts transitively oivol(V). For two densitie8o
and denote the unique positive numhet R.o with = t%by 5. We de ne the
distancedy by

dvoi(%; ) B jlog 5,j forall% 2 Vol(V).

vol, _ detGe(b))
voly  det(Ge(9))

and  doi(voly; volg) = jlog (detGe(b)))  log (detGe(9)))i;

67



4 The Space oflnner Products

for any two elementg, b 2 P(V) andanybasise of V. For an injective linear map
A: (V1;01) ! (V2;02) between nite-dimensional inner product spaces, we point
out the formula

VOl g, = jdet(d A)jE volg; (4.2)
whereA denotes the adjoint &k with respect tay; andgs.
Lemma 4.15 The mapping
vol: P(V) ! Vol(V); g7! volg

Is Lipschitz-continous with Lipschitz constaﬁm(\/)%.

1 k VOolg, thus

Xk _
do(volgvoly) = jog( + i jog( )i Ke(gb:  (43)

i=1

Remark 4.16 Note that wherdim(V) = 1, the mappingrol: P(V) ! Vol(V)is an
isometric di eomorphism. Hencé/ol(V) is also a Riemannian manifold and we
may denote the induced Riemannian metrighy. The diagram

TP(V) P P(V)
T vol vol

T Vol(V) 22 Aol(v)

is commutative because of the identiteeq(tr(X)) = defexp(X)) for X 2 Mat «(R)
and (T, vol)X = gp(b; X) voly, for X 2 TyP(V).
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4.6 Invariant Metrics

Here, we give a characterization of &L(V)-invariant Riemannian metrics d?(V)

which highlights the outstanding roles of the Riemannian meggcand gy, on

the one hand; and of the Hencky eld on the other. This also shows that Hencky's
elastic energy (see Chapter 8) is a quite natural deformation measure (at least, for
full-dimensional domains).

Lemma4.17 LetA: V! W be a linear isomorphism between two nite-dimen-
sional real vector spaces. Then the pullback aléngduces an isometric deomor-
phism

A (POW);ge) ! (P(V); gp); b7! b(A;A):

bases oV andW, respectively. Denote by the dual basis of and de ne the
matrix A 2 Mat «(R) by Aj; B hi;Aegi, 1 i;] k Now, letY 2 T.P(W) and
X = (TAHY 2 TpP(V) and writeY B G¢(Y) andX B G¢(X). The identities

Ge(b) = ATG;()A and X=ATYA
together with (4.1) lead to
gr(X; X)jp = tr Ge(b) X" Ge(b) *X
=tr (A 1G¢(c) A NATYTA)A G:(c) A H(ATYA)
=tr A YG¢(c) 'Y'Gt(c) tY)A
=tr G¢(c) 'YTGe(c) 'Y = gp(Y:Y)ic:

In particular, the grousL (V) acts smoothly from the right oR(V) via pullback
and we obtain:

Corollary 4.18 The metric g is invariant under the action d&L(V) on RA(V).

Theorem 4.19 EveryGL (V)-invariant Riemannian metric oR(V) can be written
as

9. XVibB 2 g% Vip+ (VoI gvot)(X; Y)jo;

with some parameters> 0and > c% Here, X, Y 2 T,P(V) are tangent
vectors atb 2 P(V) andvol: P(V) ! Vol(V) is the Riemannian density operator
(see Lemma 4.15).

69



4 The Space oflnner Products

Proof. Thatg. is GL(V)-invariant follows from Lemma 4.17. We show tigt is
positive de nite for > 0, > 2? wherek = dim(V):
For X 2 T,P(V) with gp(X; X)  0choose a basisof V such thatGe(b) = | is the

P P
f(X 200 %) B KX+ s Kix2

and observd ( q;:::; p) = %g; (X; X). Note thatf is a quadratic functional with
f(0;:::;0)=0,Df(0;:::;0)= 0 and its Hessian is given by
2 +
Hessg(f) = .
__________ 5 4

Them-th principal minor ofHessg(f) is(m +2 ) ¥ 1. Thus by Sylvester's criterion,
Hesg(f) is positive de nite (andf is strictly convex) if and only if > 0 and

> 2> 2> > Z Hencef(:::; ) Ois only possible for
1= = =0.ThisimpliesX = 0.

Now, letg be an arbitraryGL(V)-invariant metric orP(V). Fixb 2 P(V). Then
gjp has to be invariant under the stabilizefV; b) of b. Choose an orthonormal basis
e of V with respect td such thaiG(b) = | is the identity matrix. One has for all
symmetricX, Y 2 Mat «(R):

OPin(Ge ' (X); GH(Y)) = BX; Yigropy
In the same vein, de ne
G(X;Y) B gjn(G:'(X); GM(Y))

for all symmetricX, Y 2 Mat «(R). Sincegj, is O(V; b)-invariant, G is O(n)-
invariant. By diagonalizing the symmetric matdix one realizes thas(X; X) is a
symmetric quadratic polynomial in the eigenvalueXofThus, there are, 2R
with G(X; X) = 2 tr(XX) + tr(X) tr(X). The polarization formula implies

G(X;Y) =2 h>(;YiFrob"' hX; IiFrobH;YiFrob:
By pullback alongGe, we obtain

aXYib=2 gp(X; V)b + 9gr(X;b) ge(b;Y)
=2 gp(X;Vip+ (VoI gvor) X; Yo
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4.6 Invariant Metrics

The inequality > 2? follows from the fact thagj, is positive de nite and from
the considerations at the beginning of this proof.

Remark 4.20 As we will see in Remark 8.7, the parameters can be interpreted
as Lamé coe cients.

Lemma 4.21 The Levi-Civita connection of.g is given by that of g

Proof. Letr be the covariant derivative @gb. From Corollary 4.5 we have that the
vector eld W 2 X(P(V)), Wj, = bis covariantly constant. Fof, Y, Z 2 X(P(V)),
we compute

Xg: ('2) =2 Xge(YV;2) + X(ge(Y, W)gr(W Z))
=2 go(r x¥;2)+ gr(Yor x2)
+ (gp(r XY, W)gp(W, 2)) +  (9r(Y; W)Gp(Wi T xZ))
=g; (rxY.9)+g; (Vrx2):
This shows g. = 0, which su ces to prove the statement.

Corollary 4.22 The geodesics with respect te@nd g. coincide.

Lemma 4.23 Letb, ¢ 2 P(V). Denote the geodesic distance with resped.toby
d. . Then one has

& (b0)=2 2o+ d

o1 (VOlp; volg);

wherevoly, vol. denote the densities de ned by b, c respectively.

Proof. Let :[0;1]! P(V) be the unique geodesic frolnto c. According to
Remark 4.11, we have(0) = Hj, and

d? (0;¢) = jHejb2. =2 gp(Hejo; Helo) +  Gp(Hjb; b)*:

volc
voly

= log = dyoi (VOlp; vol,):
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5 Lipschitz Immersions

We need a suitable shape space of immersed manifolds for our applications to elastic-
ity theory and minimal surfaces theory. Therefore, we de ne a space of parameterized
(locally) Lipschitz immersions and equip it with a reparameterization-invariant dis-
tance. This distance is in terms of zeroth and rst derivatives of immersions. It
descends to a distance on 8tepe space.e., the quotient space of unparameterized,
immersed manifolds.

5.1 Basic De nitions

Throughout this chapter will be a compactk-dimensional smooth manifold with
boundary. Letg be a smooth Riemannian metric on With a slight abuse of
notation, we denote witkioly not only the Riemannian density induced dpybut
also the complete measure induced by it. De ne the locally trivial ber bundle

P! byPjiB P(Tx )forallx2 andequipthe bers with the distance
functiondp. De ne
( —_
P()B b: ! P volymeasurable. b=1id volg-a.e.,

esssup, dp(bjx; gix) < 1

with the equivalence relatiob, b, if b; = b, holdsvolg-almost everywhere
(volg-a. e.). We introduce the distande onP( ) by

dp(b]_; bz) B esg Supjp bljx; b2jx :
X

Note that neither the spa& ) nor the distancedr depend on the choice of

De nition 5.1 For f 2 WX ( ; R™), the derivativeT f exists at almost every point
x 2 and we obtain an almost everywhere de nE),. We use this construction to
de ne thespace of Lipschitz immersioas

Imm( ;RMB ff2W¥( ;RMjfg2P( )g

1Contrary to the meaning we associate to it, the term “shape space” is frequently used for certain
classes of subsets Bf modulo the action of the Euclidean group.
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5 Lipschitzimmersions

and equip it with the distance
d|mm(f1; f2) B kfl fszl + dp(fl Jo, fz#go) for f]_, f2 2 |mm( ,Rm)

Remark 5.2 Our notion of Lipschitz immersions may seem quite similar to the
one established by Riviére in [33]. Note however that Riviere's notion depends on
the boundedness @bl;:4 only, while ours depends on the boundedness of the full
distortion tensorf#g.

The distanceal involves only little rst order information about; and f; in the
casek < m. Even in the cask = m, this distance is insensitive to the orientation of
the tangent spaces. Hence we add a distance between oriented tangent ptanes of
and f,. Since we also would like to treat non-orientable manifolgsve use the
following construction:

Let™: " | be theorientation coveringpf  (see, e.g., [26, p. 330]). Note
that " is a double covering of soT,": T, ! Ty isa linear isomorphism.
Therefore, any Riemannian metdon  can be pulled pack to along”. The ber

“jx B "~ (fxg consists precisely of the two possible orientationdon. Thus,
is oriented in a canonical way: The orientationTgf T~ s pitself. Every
f 2 Imm( ; R™) can be pulled back alongléading to the isometric embedding

o (Imm( S R™; dinm) T (Imm(C 5 R™); dinm); f71f 7

Let Gr(R™) be the oriented Grassmannian, i.e., the smooth manifold of oriented
k-dimensional vector subspacesRff. Every f 2 Imm( ;R™) induces &Gauss map
(f)2 LY ( ;6n(RM) via

E(lm(dfjp) fip); dfj, exists and is injective
unde ned else

(i» B

leading to the mapping: Imm(~ ;R ! L ( ;6 (R™M). Here, f#p denotes the
orientation onm(dfjp) that makesjfjp (Tp; P! (|m(dfjp) f#p) orientation-
preserving. AnyGL(RM-invariant Riemannian metrigs, on Gri(R™) can be lifted
to a Riemannian metrige, on &r(R™), leading to a geodesic distandg. Via the

Gauss map, we may de ne the following augmented metfic on Imm( ; R™):

dpm(fis f2) B dimm(fy; f2) + esssuplg, (. ") (2 Mip s
p2

for everyfy, f, 2 Imm( ; R™M).
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5.2 DiffeomorphisnGroup

5.2 Di eomorphism Group

Let (; g) be a compact, smooth Riemannian manifold. We de ne the group of
Lipschitz di eomorphisméy

Di ()Bf" 2W;*( ; )j' isabi-Lipschitzhomeomorphisg
where the group structure is given by

:Di () Di ()P Di () Gyt
:Di ()! Di() 7'k

Note that the spacBi ( ) does not depend on the choice of the Riemannian
metricg. The existence of global Lipschitz constants foand' *implies' #g,

(" Y¥g2 P( ) for every Riemannian metrigon . To giveDi ( ) atopology, we

de ne the distance

doi ((1;'2)B esisumig "1(X): (X)) + esg sul ' ;1 (%);" M%)

X X

+de 7G50 + e (1)'Gi( .Y
forall';,"', 2 Di (). By construction,: (Di ( );dpi ) ! (Di ( );dpi )Iis
an isometric isomorphism, thus Lipschitz continuous. Thatlocally Lipschitz
continuous can be checked easily with the triangle inequality, the chain rule, and
the factkT' k1, KT(" YDk dpi (5 id )< 1. Thus,(Di ( );; )is atopological
group. Notethabi o( )B f' 2Di ( )]']je = idg gis aclosed normal subgroup

of Di ( ). The topological groui ( ) acts continuously from the right on
Imm( ; R™) via

L : Imm( ;R™! Imm( ;R™); f71f

forall' 2Di ().
For 2 Imm(@ ;R™), one may also de ne the space of immersions under bound-
ary conditions:

Imm ( ;RM)B ff2Imm( ;R")jfje = g

Note however, that for arbitrary 2 Imm( ; R™), the restrictionfjg need not be
Lipschitz continuous. The action &fi o( ) onlmm( ; R™) restricts to an action on
Imm ( ;R™).

Finally, we point out thaDi ( ) acts onimm( ;R™) through isometries with
respect to botld,,,, andd___—a fact that we utilize to analyze the quotient metric
of dynm andd

Imm

Imm-*
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5 Lipschitzimmersions

5.3 Quotient Space

One may consider the following quotient spaces
Imm( ;R™=Di ( ); Imm( ;RM=Di o( ); and Imm( ;RM)=Di o );

where 2 Imm(@ ;R™). Let (C;G) be one of the pairglmm( ;R™);Di ( )),
(Imm( ;R™);Di o )),or(Imm ( ;R™);Di o( )). Denote byX B C=G the quo-
tient space and by : C ! X the canonical map. The metridg,m, d, .. onC
descend to quotient semi-metridg, d, on the quotienX (see [8, p. 62] for a

de nition of the quotient semi-metric). In general, these quotient semi-metrics may
be quite cumbersome to work with. In our case, the gr@ugcts onC through
iIsometries, hence the quotient semi-metrics satisfy

dx( (f); (f2)) = _ig(fsdlmm(fl; f, ')and
dy( (f); (R2))= ,igédlmm(fl; f ")

wherefy, f, 2 C.

Lemma5.3 Let be a compact smooth manifold with boundary. Then ¥ty )
and(X;d,) are metric spaces.

Proof. It su ces to show thatly is a metric. Letf, h2 Candlet' , 2 Gbe a
sequence witlth,m(f;h ') ! 0. We have to show that there is a2 G with
f=""%h.
We start by choosing a smooth Riemannian mejim ~ such that the boundary
(if it exists) is totally geodesic. This way, for every pomf , every neighborhood
U of x contains a geodesically convex neighborhood.dduch a Riemannian metric
can be constructed, for example, by choosing a cylinder metric on a smooth collar of
and extending it smoothfy.
Observe thah, B h ', converges uniformly td. Moreover, being convergent,
hgo is a bounded sequencefn . Hence there is some, 0 with

kdh? kg kdhnkgs o:
The chain rule for weak derivatives of Lipschitz mappings yields

dhnjx = dhj o T n and
dhiy = dhe 19 Tl 02

2A smooth collarof  is a smooth embedding: [0;1] @ ! such that (0; x) = x holds for
all x 2 @ . Every paracompact smooth manifold with boundary has a smooth collar.
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5.4 Bmbeddingheorems

hence one obtaing,’' , = (dhj (y)’¢ dhyjy for almost allx 2 . Thus, there is a
0 with

KT nkiz k((l"’])yg|<|_£11 kdhnkLé and
KT n) 1kLé k (dhn)ygkLé kdhkq 2 ;

showing that the familie€ )2y and(' ,})n2n are equicontinuous. Becausés a
compact metric space, the familiés,)on and(’ ,,\Hnon are also pointwise relatively
compact. Thus, the Arzela-Ascoli theorem (see, e.g., [28, Theorem 47.1]) implies
the existence of a subsequence (which we also denofe,hyn) such that both
"»! "and ! ' 1converge in the compact-open topology®@f ; ).

Up to now, we know that : ! is @ homeomorphism (probably xing the
boundary) and that = h ' . We are left to show that bothare' ! are Lipschitz.

and geodesically convex sets. Choose a covadin)g: : ;U with some 2 N of
by open, relatively compact and geodesically convex sets such that 8aghs
contained in som¥;. Then one has for al, y 2 U;:

d (00" () dg(" ();" (X)) +dg(" n(¥;" n(¥)) + dg( n(¥):" V)
dg(* (¥);" n(¥) + KT nkiz dg(X;y) + dg(" n(Y);" (¥)):

Applying lim sup,; yieldskT" k; , hencé is Lipschitz continuous. The same
argument shows that  is Lipschitz continuous, too.

5.4 Embedding Theorems

Here we gather several technical lemmata for later use. Moreover, we analyze the
relationship between Imm¢R™ andW,™ ( ; R™).

Lemma 5.4 Fix b, g 2 P(V) and letX 2 TpP(V) = Sym(V) with jXj, < e %®9,
Then b+ X is also contained in &) and one has

dp(b; b+ X)  ®@jxj .
In particular, P(V) is open inSym(V).

Proof. Choose aj-orthonormal basige of V and de neB B Gg(b), X B G¢(X).
LetO< k be the eigenvalues &. Observe that

Y %

@ k== =expjogt) exp  jlog(L)p = &9

i=1
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5 Lipschitzimmersions

The estimate
kKB iXB tk kB 'kk<k kB kjXj e*®9 jxj <1

shows thaB + tX = BZ(l, + tB zXB 2)B: is invertible for allt 2 [0;1]. This
implies thatB + X and thusb + X are positive de nite. Now, we have

de(b;b+ X) = jlog (B ?(B+ X)B ?)j jlog(l+B :XB ?)]
B EXB 3=B'Xj jBYXj e*?jXj;
from which the stated estimate follows.

Lemma 5.5 Let(V;; gi) be nite-dimensional Euclidean spaces for 1, 2 and let
A, U 2 Hom(Vy; V,) with A injective and U ful lling

jUj91§92 < pe\ +te e\;
where' B dp(g:; A*gy). Then(A + U)#g, is also contained in B/1) and one has
de(A'gy; (A+ U)'g) (€ +e+  €) jUjgg,

Proof. We use the preceding lemma wiih= g;, b B A*g,, andX B (A+U)*g, b.
Chooseg;-orthonormal baseg of V; for i = 1, 2 and writeB B G, (A*g,) and
X B Gg(X). Let A andU be the matrix representations AfandU, respectively,
with respect to these chosen bases. SficeA™U + UTA + UTU one obtains
oo P— -
Xig= iXj 2kATAKZjUj+ U 2 e jUjgq + Ul
<(e+e + e€) Ujgg<e
- P—ov P—~ _
whenevejUjg ., < € +€ e . Finally, one has
p* p_\ . .
de(b;b+X) (€ +e+ €) Uy,
by Lemma 5.4.

Corollary 5.6 Letf 2 Imm( ;R™ andg 2 IB( ). Thenﬁhe balB(f;rg(f)) with
respect to the norrk kwé;l of radiusrg(f) B e +e~ e is also contained in
Imm( ;R™), where® B dp(g; f#go). In particular Imm( ;R™  Wj'( ;R™) is
open.
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5.4 Bmbeddingheorems

Corollary 5.7 Letg be a Riemannian metric on and Ietdwé;l be the distance
induced byk kwé;l . Then the identity mapping

id: (Imm( ;Rm);dwgl:l)! (Imm( ;R™);d

Imm)

is locally Lipschitz continuous.

Proof. Fix f 2 Imm( ;R™) and leth 2 Imm( ; R™) with kf hkwgl;l rq(f). By
Lemma 5.5, we have

Oo(ffaoihfa) (& e+ &) kdf dhk,; ;

showing the local Lipschitz continuity of id with respectd@n.
The local Lipschitz continuity oid with respect tal, . can be deduced from the

factthat (f)is alift of p(f) ~ along the canonical covering Gr(R™ ! Gr(R™)

Gr(R™)

-~ ‘

" _ 7~ g f)) "
== X0 G Rm;

| o

wherep(f) can be expressed as the orhtoprojector-valued mapping
p(f) = df(df «df) df o

The mapp: (Imm( ; R"); dyz1) ! LY ( ;Gr(R™M) is locally Lipschitz continuous
and is a Riemannian submersion. Thus, the nfigfd (f) is also locally Lipschitz
continuous.

De nition 5.8 LetB Lj( ;R™) be a Banach space. We sByis compactly em-
beddednto W3 ( ; R™), if the canonical embedding | L} ( ;R™) has its image
contained inVg"* ( ; R™ and the induced linear embeddingB | Wg™ ( ;R™) is
compact.

Lemmab5.9 Leti: B | Wg;l( ;R™ be a compactly embedded Banach space.
Then

ASB ff2Imm( ;RMW\Bj do(g; f7g0) s kfks sg
is a compact set iimm( ; R™);d

Imm)'
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Proof. Let f, 2 Asfor all n 2 N. By compactness df there is arf 2 W;™ ( ; R™)
and a subsequen¢é, )iy with f, ! fin W' ( ;R™asl!'1 . Letl 2 N be large
enough such that

ki, Thypa < IOe5+eS pES:

By Corollary 5.6 we havd 2 Imm( ;R™). Now, Corollary 5.7 implied, (W
with respect tal

Imm*

Lemma5.10 Leti: B ! ng;l ( ;R™M be a continuously embedded Banach space.
Then the spacenm( ; R™ \ B with the metric

dB(fl; f2) B dlmm(fl; fz) + kfl fsz for all f11 f2 2 |mm( ; Rm) \B

is complete.

5.5 Volume Functionals

The volume functionals on the space of Lipschitz immersions and on shape space
are essential for the treatment of least volume problems. In this section, we establish
their local Lipschitz continuity.

Throughout, let be a compack-dimensional smooth manifold with boundary.

Lemma 5.11 Thevolume functional
Z

J:(P( );dp)! R; g7! volg
P— —
has its modulus of continuity; (g;t) bounded byl (g) e *t IOkt, le.,
. . Pr o P—
Hb) I @i I (@e P "kde(g;b) forallg,b2P( ).
Proof. We abbreviate B %:Z From Lemma 4.15, we know that

. . . . P— . P_
Jlog( (X))J = Ovol (VOngX;VO|bJX) Kk dP(ng; be) de(g, b):

Together with the estimaje  1j j log(t)j€'°9®i for all t > 0, we obtain
Z

¥ M) J (@i= (vol, volg)
Y4

p_ _
i Lvoly J (g)e k+@d IOkdp(g;b):

80



5.5 VWolumeFunctionals

Corollary 5.12 Let! ¢ be the modulus of continuity %f telume functional

F:(mm( ;R™;dmm)! R; f 7! VOl :

- P
Thenone has ¢ (f;t) F (f)e k' kt.

Corollary 5.13 With the nomenclature of Section 5.3, lef~ : (X;dx)! R be the
pushforward o along . Its modulus of continuity . satis es

L () (#F)(x)ep“pkt:
Proof. Forx,y2 X andf 2 %(x),h2 1(y) observe
iC4F)) (F)Xi=infjF(h ") F (f)
inf F(f)ep“'mm(““') IOEotmm(f;h ")
= (F)e F0 PR )

Lemmab5.14Letk m, let V be ak-dimensional real vector space, and let
Hom(V; R™) be the open subset Biom(V; R™) consisting of the linear mappings
with full rank. The mapping

F: Hom(V;R™ I (V); AT7! VOl
is di erentiable with derivative given by
hdFja; Ui = PA; Ui arg, VOlarg,  for all A 2 Hom(V; R™), U 2 Hom(V; R™.

Proof. Choose an arbitrarp 2 P(V), a b-orthonormal basi® of V and age-
orthonormal basid of R™. With B = G¢(b), Aij = do(fi; Ag)), andU;; = go(fi; U €))
we haveF(A) = det(ATA)z vol, by (4.2), thus

hdFja; Ui = L detATA) £ ddetjara; ATU + UTA voly:
The derivative of the determinant det: @R¥) ! Ris given by
hd detjg; Xi = det@)tr(B "X) for all B 2 GL(R), X 2 Maty «(R).
Thus one may compute
hdFja; Ui = 1 detATA) % detATA)tr (ATA) T(ATU + UTA) vol,
= 1detATA): tr (ATA) TATU +tr (ATA) TUTA  vol,
It A(ATA) P TU +tr UATA) ' TA volayg,

= hA, Ui Afgo VOlA#go .
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Lemma5.15 Let (; g) be a compactk-dimensional Riemannian manifold with
boundary. The volume functiongl: (Imm( ;Rm);klg,\,gl;l) I Ris di erentiable
and its derivative is given by

Z

MFje;ui = hdf;dui eg, VOlgsg,  forall f 21Imm( ;R™), u2 WA ( ;R™.

Proof. Let f 2 Imm( ;R™). First, note thaF (f) = R F(df) with the bundle map

F: Hom(T ;R™! (T M) given berwise as in the previous lemma. Second,
one hagfj, 2 Hom(TxM; R™) for volg-almost allx 2 . Integration is linear and
Imm( ;R™)  Wg" ( ;R™)is an open set, hence the previous lemma yields the
claim.
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6 Approximation Theory for
Lipschitz Immersions

In Chapters 7 and 8 we will focus on the discretization of variational problems on the
space of Lipschitz immersions with xed topological type under Dirichlet boundary
conditions. The central tools for the discretization are simplicial submanifolds of
Euclidean space and smooth triangulations of smooth manifolds with boundary.

In the present chapter, we couch these tools in the language of Chapter 2 by
identifying:

the con guration space€§, C;;
meaningful a priori information sets, A ,; and
sampling and reconstruction operat&s Ry.

Moreover, we lay the foundation for proximity estimates.

6.1 Smooth Triangulations

Denote thestandard simpleky

Fq B fconvie,;:::;e,)j0 o< <ig kg;

whereconvdenotes the convex hull. For a smooth embedding ! ,de ne
thevertex set

V()BT (e):::; (&)g= (Fo):
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6 ApproximationTheory for Lipschitzimmersions

De nition 6.1 Let M be a smoothk-dimensional manifold with corners. #mooth
triangulationof is a family

T f : ¢! Mj isasmooth embeddirg

with the following properties:

S
1.M=" 5 (W

2. Foreachpair, 2T with ( )\ (&), ;,both ( ( )\ ( ) and
Y (W\ () ared-faces of (forsome0 d k 1andthe mapping

S L) I e )
isa ne.

3. Foreach 2T with ( )\ @, ;,theset ( ( )\ M)is ad-face of
«forsomeO0 d k 1.

We distinguish betweeboundary verticesindinterior vertices

V(T)B [ V() Vo(T)B V(T)\ @ and Vi(T)B V(T)nVy(T):

2T

A smooth triangulation is calledhite if its cardinality is nite.

De nition 6.2 LetT be a smooth triangulation ofkadimensional smooth manifold
M with boundary. The induces a smooth triangulatidng, of the boundaryaM
by:

TignBf jaj 2T,A2Fc10 (A) @19
Remark 6.3 Every smooth manifold with boundary admits a smooth triangulation
(see [38])).
6.2 Con guration Spaces and Sampling Operator

Let k andm be positive integers witk mand let be a compack-dimensional
smooth manifold with boundary. We abbrevia€B Imm( ;R™). For a xed
boundary condition 2 Imm(@ ; R™) we de ne the(smooth) con guration space
CB Imm ( ;R™). Note thatC Cis a closed set.
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6.2 Configuration Spaces an@amplingOperator

Let T be a smooth triangulation of. We de ne thediscrete con guration space
or space ofliscrete immersions

( - )
fivem) = Jve(T)s dwi
. | om A b meard{i(T)).
CGtB f:V(T)! R 8 2T: f(V( ))ingeneral position R '

While asampling operator
Sr:C Wy'( ;RM!IC 1; f 7! fivery:

is easily de ned, we need some moreaegt to obtain a reasonable reconstruction
operator. For eaclp 2 V(T) denote by ,: ! R the continuous, piecewise
smooth function de ned by:

1. ,(p)=1.
2. p(gq)=0forallq2V(T).

3. p . k! Risthe restriction of an ane function foreach 2 T.

This allows us to de ne a preliminary reconstruction operator

. . . X
Rr:G ! G Rr(f)(¥) B p(X) f(p):
p2v(T)

Note that for everyf 2 C;, the image oRr (f) in R™is a union of non-degenerate
k-dimensional Euclidean simplices. We de ne the piecewise smooth mapping
X
-@! RY T(X) B p(X) (P): (6.1)

P2Vp(T)

Observe that for each 2 Cr, the preliminary reconstructioRr (f) restricted to
@ is identical to 1. Moreover, the image of is a union of embeddek 1)-
dimensional simplices. In general, and need not to be equal which is why we
have to modifyRr later (see Section 6.4).
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6.3 Relative Approximation Errors

Throughout, we le ; g) be ak-dimensional Riemannian manifold with boundary
andT be a smooth triangulation of.

De nition 6.4 We de ne therelative approximation errorg8(T ), %(T) of the
smooth triangulatiod by

ki frku kdf  dfy ke
BT)B sup ———— and %(T)B sup ——;
vt (my KOTK vt (o KOTK
df, 0 df, 0

wheref; B (Rr S 1)(f).
De nition 6.5 For 2 T de ne its approximation characteristics
(d) 1 L - -
( YB KT ) kﬂé KT kfé+k|—|es§( kg ; d=0,1.
We de ne theapproximation characteristics af as @(T) B sup ,; @( ).

Approximation characteristics provide upper bounds on relative approximation
errors:

Lemma 6.6 Let( ; g) be ak-dimensional smooth Riemannian manifold with bound-
ary andT be a smooth triangulation of. Then the relative approximation errors
are bounded by:

UNT) (L+R) OT) and %(T) R¢ OT) where RB 2(k+ 1).

Proof. Let p= (&5 ::1;) 2 R“! be the barycenter ofy. Let f 2 Wi ( ;R™

and 2 T. We abbreviatdt B (I-ZQT St)(f),hB f ,andht B ft . Since
hr: ¢! R™isana ne map, we may write it as

hr(y) = h(ep) + Ay  €);

whereA: p° ! RMis the linear map de ned bA(e &) = h(g) h(ey) for
i=1::k Let (y)B h(y) h(p) dhjp(y p). By Taylor's theorem, we have for
eachy 2 :

=

kHessb)k: :

NI =
=~

| o
j O SkHesstikaly i 1
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6.3 Relative ApproximationErrors

Note that

Ale g) dhj(e e)

h(e) h(g) h(p) dhig(e p)+h(p)+dhis(e; p)
h(e) h(p) dhise p) h(g) h(p) dhi(e; p)
&) (&):

, . . . P
Letu2 p’. With ;=hg p;ui fori=1;:::;kone may writeu = !(:1 (e &)
and, together with the above, obtain:

JAu dhj,uj I(ESRY), lekHeSSh)ku j il

i=1 i=1

The linear map
L: p°! R u7! hey pui;:i:::he pru
has operator noriLk 1, 1 = Zklel 2, and because d&ik; (k+ 1)%juj, we obtain
kdhy  dhjpk= kA dhjk RckHessb)k. : (6.2)
This estimate leads to
kdfj g d(fr )i k= kdhiy dhrj) (T, )
RK(T ) kg kHesst)ku

and

ifC W) = Wi=ihy) h@i=ihly) h(e) Ay e)j
=j () (e)+(dhiply e) Aly e))j
J Wit (e)i+jdhily &) Ay e)j
1+ R¢ kHessh)k.: :

Fory2 andu,v2T, i, the chain and product rules imply

Hess(h)(u;v) = Hesg(f  )(u;v)
= HesS ,(f)(Ty uTy v)+d f Hes§( )(u;v);

which yields the estimate

kHesst)k:  kdfkya sup KT kfé + kHes$( )k
2T
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6 ApproximationTheory for Lipschitzimmersions

It is crucial for the convergence analysis of nite elements that there are smooth
triangulations of arbitrarily small relative approximation errors. Fortunatelyea
subdivision can be used to improve upon the approximation characteristics (and thus
upon the relative approximation errors):

De nition 6.7 Let be a smooth manifold with boundary and Tetbe a smooth
triangulation of . A subdivisionof T isafamily = ( ) ,r of smooth triangula-

tionsof (suchthat (T)Bf " j 2T;' 2 gisasmooth triangulation of
12

We call a subdivision a neif it consists of a ne mappings only, i.e., if each
"2 isa neforall 2T.

Lemma 6.8 Let( ; g) be ak-dimensional smooth Riemannian manifold with bound-
ary, T be a smooth triangulation of, and be an a ne subdivision o . Then
the approximation characteristics of(T ) can be estimated by:

OC @) Om s;JTp‘szuka' K
D)y O(T) S;JTp.SZ“ka' K k(T ) T
Proof. Let 2T and' 2 . Because is the restriction of an ane map to an
a ne subspace, we have Heéss€ 0. Thus one obtains
T( ')=T T and Hes¥ ')=Hess( )(T' ;T ):
This supplies us with the estimates

KT( kg KT kg KT K
KT(C ") ke k(T ) Yk KT ks
kHes§( ' )ky kHes§( kg KT' K ;

which imply the statement.

The previous lemma shows that the approximation characteristicsody be
decreased by choosing an ae subdivision with

B supsupkT' k

2T '2

INote that | itself is a smooth manifold with corners.
2This demand includes a certain compatibility between the triangulations for neighboring ,
2T,ie,forthose, 2T with ( W)\ (w, ;.
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6.4 Reconstruction Operator

small and

# B supsupk(T') kKT k

2T ' 2

bounded. While is related to the maximaiizeof the cells' ( ), the quantity# is
precisely the maximahicknessf the cells' ( ).

This also shows that many mesh re nement schemes that work for triangulations
of domains in Euclidean space can also applied here.

Example 6.9 In the casé& = 2, one may apply 4:1 subdivision: The simplexis

split into four by inserting a vertex on the midpoint of each edge. In that case, one
haskT' k= % andKT' 'k = 2 such that one obtains?( (T)) 22 ©@(T) for
d=0,1.

Of course, there may be many other ways to construct smooth triangulations
with arbitrarily small relative approximation error, e.g., Karcher coordinates (see
[12]). The relevant facts for our convergence analysis are condensed in the following
statement:

Corollary 6.10 Let( ; g) be a compact, smooth Riemannian manifold with bound-
ary. Then there are nite smooth triangulations with arbitrary small relative approx-
imation errors, i.e., for every > 0 there is a nite smooth triangulatiofi of

with

%T ) B maxt %(T); W(Tig); %U(T); W(Tie)g

6.4 Reconstruction Operator

For 2Imm(@;R™\ W21 (@;R™, f 2 Imm( ;R™\ W?1( ;R™, and T as
de ned in (6.1) we obtain the relative approximation errors:

k TKNé;l k d KNé;l %T), (63)
kf (Ry St)(fkys  kdfkys %T): (6.4)
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6 ApproximationTheory for Lipschitzimmersions

Letext: Wi* (@;R™) ! W™ (;R™) be a continuous, linear extension operator
and letur B ext( 7). Now, (6.3) provides us with the estimate

Kur KNé;l kextk k Tk\,\,gl;l kextk kd KNgl;l NT ): (6.5)
Forr > s> 0, de ne the sets
A°B ff2C\ WZ'( ;R™jde(g; fg) s, kdfkys  sg; (6.6)
AL B ff2Cr jdey(gRr(f)g0) 1 g; (6.7)
and the operator
Rr: AT W3 ( ;R™; f 7VRy(f) + ur:

As the nal result of this chapter, we show th&t is a reconstruction operator,
l.e.,Rr(AT) C, atleast for su ciently “ ne” triangulations. We also verify the
conditionSt(A®) A 1 of Theorem 2.28:

Lemma6.11 Letr > s> 0andc > 0. Then there i€ > 0 such that for every
smooth triangulatio with%T ) 9% the following hold:

ST(AS) A r; and RT(AEF) C:
Proof. Let f 2 Asand putf;y B (Rt S 1)(f). By (6.4), we havekf fr KNé;l

SUT) s%. Corollary 5.6 tells us how smélg has to be (depending @only) so
thatfr 2 Imm( ; R™) and thusSt (f) 2 C;. By Corollary 5.7, one has the inequality

de( )(@: 7o) de( )(9; F7Go) + de( y(F¥o; frgo) s+ C(9) %
which shows thaSy (f) 2 AL if % is su ciently small.

Now, let f 2 AT. We haveRr (f) 2 Imm( ; R™) andds( y(g; Rr (f)*go) r. By
(6.5), we obtain
KRy (f) F”zT(f)ngl;l = kurkys:  Chd Ky %:

Again, Corollary 5.6 tells us howg has to be chosen depending osuch that
Rt (f) 2 C. SinceRy () ful lls the boundary conditions by construction, we obtain
Rr(f)2C.

3Such an operator can be obtained, e.g., by choosing a smooth col@ [0;1[! U and
by using the function : [0;1][ ! R, g) = exp (%): Then

u ) 0 x2y;
extu)(x) B 30: X2 nu:

is the desired extension operator.
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7 Minimal Surfaces

As a rst extensive application of the theory developed in Chapter 2, in particular
of Theorem 2.28, we discuss a variant of theuglas-Courant problernor least
areavolume problemAmong the immerse#-dimensional surfaces iR™ with pre-
scribed topology and Dirichlet boundary conditions nd those of minikyablume.
Fork = 2, C2-minimizers are examples of minimal surfaces (see Lemmat7.6).

We discretize this problem by searching for volume-minimizers among immersed
k-dimensional simplicial meshes of xed combinatorics bounded by a given, closed
(k 1)-dimensional simplicial mesh. To some extent, this approach can be under-
stood as a nonconforming Ritz-Galerkin method with rst order Lagrange elements
(piecewise linear nite elements).

We primarily aim at a convergence analysis for discrete minimizers, but we also
discuss some numerical methods for obtaining them (Section 7.3 and Section 7.7).
The point we would like to make is this: Given a sciently well-posed Plateau
problem, i.e., the boundary conditions are such that volume minimizers within
a certain topological class exiahd have a certain uniform regularity, the set of
solutions can be approximated by solutions of a discrete Plateau problem.

We start our exposition by giving a precise de nition for minimal surfaces and by
stating both the Douglas-Courant problem, and the least area problem (Section 7.1).
After a brief overview of the classical theory of minimal surfaces (Section 7.2),
we compare some of the pre-existing numerical methods for computing minimal
surfaces (Section 7.3). Afterwards, we discretize the least area problem and identify
the relevant entities occurring in Theorem 2.28, namely the smooth and discrete
con guration spaces, functionals and test mappings, as well as the sampling and
reconstruction operators (Section 7.5). Our convergence result then follows from
an analysis of consistency and proximity errors (Section 7.6). Finally, we discuss a
certain gradient-like ow that was introduced in [30] and which is veryogent for
solving the discrete least area problem (Section 7.7).

it is an unparalleled obscurity that also non-minimizers are called “minimal”. Alas, this convention
has grown historically.
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7 Minimal Surfaces

7.1 General Theory

De nition 7.1 Let be a2-dimensional manifold with boundary and [&fly; go)
be a smooth Riemannian manifold of dimension 3. A mappingf 2 C°( ; M)\
C?( ;M) is called aminimal surfacéf there is a Riemannian metrggof classC?!
inthe interior B n@ and a functior®e2 C*( ;[0;1 [) with

9% f B tryHes§®(f)=0 and ffgo=%g in : (7.1)

Remark 7.2 The conditionf#gy = %g for some%2 C( ;[0;1 [) is often referred

to as the “conformality condition” in the literature. Note however that a conformal
map by de nition ful lls f#g, = %g, with anowherevanishing functior®p that is, a
conformal map is necessariggular.

TheDouglas-Courant problepalso called thélateau-Douglas problentan be
formulated as follows (see [17] or [10]):

Problem 7.3 (Douglas-Courant)
Let be a2-dimensional smooth manifold with boundary and l&t C°(@ ; M) be
an embedding. Find all minimal surfacéswith fjg = ' for some homeomor-

phism : @ ! @.

In the case that = D is the closed unit disk antfl, = R3, this is traditionally
referred to as th@lateau problem

The notion of minimal surfaces has its origin in the least area problem, the 2-
dimensional instance of the least volume problem. We give a formulation of this
problem in terms of Lipschitz Immersions:

Problem 7.4 (Least volume problem)Let be a compactk-dimensional smooth
manifold with boundary. LefMy; go) be a smoothm-dimensional Riemannian
manifold withm > kand let 2 Imm(@ ; My) be a Lipschitz immersion. Given
and , minimize the volume functional

Z

F(f)= Vol

on the spac€ B Imm ( ; My) of Lipschitz immersions that restrict on the boundary
to (see Chapter 5).

Remark 7.5 Note that by using Lipschitz immersions as con guration space, we
exclude “hairy” mappings (which is desired), but we also exclude continuously
di erentiable mappings with isolated branch points.
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7.1 General Theory

The Douglas-Courant problem and the least area problem are closely related:

Lemma 7.6 Let be a compact2-dimensional smooth manifold with boundary and
(Mo; go) @ smooth Riemannian manifold without boundary. L&t Imm(@ ; Mo) be
a topological embedding anti2 C\ C?( ; Mg) a Lipschitz immersion that is of
class C in the interior of .

Then f is a minimal surface if and only if it is a critical pointBfc.

Proof. Note that an argumentation analogous to the proof of Lemma 5.15 shows

that
Z

thJh ui = hr f;r Yoy f#go VOIf#go

forall f 2 Imm( ; Mo) and all vector eldsu2 ( ; f#T M) alongf of classwg™ .
Let f 2 C\ C?( ;Myp) be a critical point of jc. By partial integration, one has
for each vector eldu2 o ; f*T M) alongf of classC! with compact support:
Z Z

. . . #- .
0=hdFje;ui = HT f;1 ®Ui tag, VOlgsg, = h 9% f; Ui trg,q, VOIfig, :

Thusf is harmonic with respect to the Riemannian meffigy,. Moreover,

f:(; fg0) ! (Mo; Qo)
is a Riemannian isometry, hence a conformal map. Thisa minimal surface.

Let f 2C\ C?( ;Mp) be a minimal surface&a C( ;]0;1 [) a function, and
g a Riemannian metric of clag& on  with 9f = 0 and f¥g, = %g. Sincef is a
Lipschitz immersion an&ds continuous, one h&$ >0, hencef is conformal. By
Lemma 7.7 below, one has far2 o( ; f*T Mp) of classC*:
Z Z

. . H#Hey - . . .
0= h%°fuigy volg= h "9%f;uigg. Vol = Fjg; Ui

Lemma 7.7 In the case thatim( ) = 2, the Laplacian 9% transforms under
conformal changes gB € g of the metric with 2 C!( ;R) as follows:
Z Z

939 f- (ji - 9o £ ;i
h 0f,wgovolg— h 0f,wgovolg

forall f 2C?( ; Mo) and all smooth vector eldsi 2 o ; f#*T Mg) along f with
compact support.
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7 Minimal Surfaces

Proof. Note thatvol; = € voly and thath; iy =e?h; igforall , 2T? .
Testing withu2 o ; f#T M), one obtains
Z Z
h 9% f ui, voly = hr f;r %uiy o volg
Z V4
= e > T f;r ®uiy, € volg= h 9%f;ui  volg:

From now on, we exclusively discuss the cas®gf= R™ being the Euclidean
space andj, the Euclidean metric.

7.2 Existence Theorem for Disk-like Minimal
Surfaces

Let = D be the closed unit disk iR?> and x an embedding 2 C°D;R™).
By the Riemann mapping theorem, there is exactly one conformal structide on
Let g be the Euclidean metric oD. In light of Lemma 7.7, it is immediate that
f 2CO%D;R™\ C?(D ;RM is a minimal surface if and only if7.1)is ful lled for
the Euclidean metrigin D.
De ne theDirichlet functionalD by
Z

D(f)B % Dhjf;dfig volg forall f 2 W;?(D; R™):

Equip @ with some orientation and denote by the closure of the set of homeo-
morphismsd ! @ with mapping degre&in the topology of uniform convergence.
Elements oM are usually calledhonotonic Fix three distinct pointp,, p,, p3 2 @D.
De ne

M Bf 2Mj'(p)=p;i=123g
and the spaces afdmissible functions

CB ff2C%D;R™M\ W;*(D;RMj9 2M: fig= '
C B ff2CD;RM\ W;A(D;RMj9 2M :fig= g

The area functiondf is continuously extendable t@and one has

HEF (D= 1P () DD = jor D 72
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7.2 ExistenceTheorem forDisk-like Minimal Surfaces

This rst equality holds since is dense ifWY2( ; R™): since every continuous
homeomorphism : @ ! @ with mapping degred can be a extended to a
homeomorhisnD ! D which is of clas<C! in the interiof; and because of the
invariance properties df . The inequality in(7.2)follows from defA) %jAj2 for
all A 2 Mat, ,(R). The Dirichlet functional is invariant under conformal mappings
(see the proof of Lemma 7.7); every conformal mapdng D is uniquely and
well-de ned by prescribing its values on three distinct points. This implies the
second equality.

The main theorem in the theory of disk-like minimal surfaces is the following
existence theorem, proved by Douglas [16] and simpli ed later by Courant [10]. A
modern account can be found in [13, Chapter 4].

Theorem 7.8 (Existence of disk-like minimal surfaces)
The in mal value oD onC is attained and every such minimizer f ful lls:

1. £2C%D;R™\ C%(D ;RM.
2. fj@= " with ahomeomorphism: @ ! @.
3. % =0inD.
4. ffgy = %gin D with some¥2 CX(D ;[0;1 ).
5. F (f) = infoc F (h).
Thus, f is an area minimizing minimal surface.

Regularity theory for minimal surfaces can be found, e.g., in [14, Section 2.3,
Theorem 1]. For our exposition, the essential result can be be summarized by:

Theorem 7.9 (Regularity of minimal surfaces)
Assume that 2 C" (@;R™ withl 2 Nand0 < < 1. Then every minimal surface
f 2 Cis of class € . In particular, the boundary tracejg, is of class ¢ .

2Every homeomorphism of mapping degreés homotopic to the identity along a homotopy
H: @ [0;1]! @ thatcan be chosen to be smooth@ [0;1]. Via polar coordinates, the
homotopy can be interpreted as a homeomorphism from an annulus to itself. Gluing the identity
of a small disk to this mapping yields a homeomorphism of a disk that has the original mapping
as boundary conditions.
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7 Minimal Surfaces

7.3 Numerical Methods Derived from Douglas'
Existence Proof

Denote byP : C°(@;R™ ! C°%D;R™\ C?DD ;R™) the Poisson integral operator:

. .2
P(U)(X) B Zi LM \dz forallu2co@;R™andallx2D :
@

X
The classical theory on the Possion kernel shows that for'e&ckl , one has:
1. P( "j@= ',thusP( ')2C.
2.(¢ P) ')=0inD.
3. P( '")=argminfD(f)jf 2C%D;R™\ C*D ;RM with figg= ' g
De ne the Douglas functional
J:M ! R J()BMP) ')

Thus, an area minimizer 2 C \ C?(D ;R™) as in Theorem 7.8 can be obtained
by nding a minimizer' of J and puttingf = P( ' ). Whenever has a certain
regularity, say 2 C" (@;R™ with | 1, the regularity theorem above shows that
each minimizet = ! fjg hasthe same regularity. Thusgan be approximated
by closed, piecewise geodesic curvesSin= @ with mapping degree 1 with a
certain convergence rate. This makes it possible to discretize the lgpaaed the
Douglas functional . Having found a discrete minimizér,, one may obtain a
triangle meshf, = P,( ') by solving a discrete Poisson equation with boundary
condition ', (or rather a polygonal approximation of it) in the nite element space
of continuous piecewise-linear functions. These triangle megha® frequently
calleddiscrete minimal surfaces

Several authors follow this approach in order to compute numerical approxima-
tions of minimal surfaces, e.g., Wilson [39], Tsuchyia [36], Hinze [24], Dzuik and
Hutchinson [19], and Pozzi [31]. So far, it was the only approach for which conver-
gence analysis was available (see [20] and [32]). Translated into our notation, the

3Douglas actually used the integral representation

1700 C 0P

J()=
6% @ @ si? %Y

which can be deduced from Poisson's integral representation.
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7.3 NumericalMethodsDerived fromDouglas E xistenceProof

authors use the test mappingé ) B P( '), n('n) B Pn( ') and state for
thecritical pointsN B f* 2M jdJ =0g

(AS \N ) B( o(Nn):C(5) ') withrespectto th&V-?-norm

whereN, denotes the set of critical poinds, and , denotes the approximation
guality of the used triangle mesh. For 0, > 0 the set

AS BT 2M jjHess0)( )(uuj kK.

can be interpreted as a priori information. For the proof, the authors seem to use
a variant of the rst statement in Theorem 3.30 together with the implicit function
theorem (see also Example 3.31).

Albeit theoretically very elegant, this approach has some considerable drawbacks:

1. Because of the extensive use of conformal arguments, it is restricted to the
case dim() = 2.

2. For non-disk surfaces, one also has to vary the conformal structure of
This is cumbersome but not impossible as can be seen in the works of Pozzi
[31, 32] who treats the case thathas the topology of a cylinder.

3. The method does not apply when surface d&eis coupled to some other,
conformally non-invariant functional. For examples, this is of interest in the
physics of membranes, since surface area is proportional to surface tension
energy. Another situation where coupling is desired is when one attempts to
useF as aregularizer for another energy.

In contrary, the direct method of minimizing area among simplicial manifolds
is capable of treating any genus and orientability with a single algorithm (see e.g.
Figure 7.1) and coupling is available. It is even possible to treat non-manifold
examples with the same method.
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