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Figure 0.1: Minimal surface spanning a septfoil knot, demonstrating spontaneous
symmetry breaking and nonuniqueness of the solutions to the least area
problem: While the boundary curve has sevenfold rotation symmetry,
the presented surface lacks this symmetry; rotation by integer multiples
of 2�

7 produces further minimal surfaces.
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Figure 0.2: Minimal surface spanning a figure-eight knot. (A 3D-print of the bound-
ary curve is part of the Göttingen Collection of Mathematical Models
and Instruments.)
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Introduction

This thesis is concerned with the convergence behavior of the solutions to parametric
variational problems. An emphasis is put on sequences of variational problems
that arise as discretizations of either infinite-dimensional optimization problems or
infinite-dimensional operator problems.

Apart from Chapter 1, which is of purely preparatory nature, the present work
consists of essentially three parts, each of interest on its own but still depending on
each other:

The first part consists of Chapters 2 and 3. In particular, Chapter 2 is the theoretical
backbone of the whole work. We discuss parametric minimization problems in their
most general form. In particular, the chapter can be read as a blueprint for conducting
convergence analysis in practice (and we will use it this way in the third part of
this work). We introduce a language that will sound familiar to workers in the area
of variational analysis as well as to those in the finite elements community. This
language is based on Strang’s second lemma and provides su�cient conditions for
variational convergence of sequences of minimization problems. These conditions
are divided into three groups: consistency, proximity, and stability. Consistency
encodes the ability to approximate the values of the functionals being minimized;
proximity encodes the ability to approximate the solutions; and stability encodes
the growth rates of the objective functions away from their minimizers. Consistency
and proximity are closely related to epigraphical convergence. Often, they can be
verified by standard methods from approximation theory. However, stability is more
di�cult to investigate. We introduce two notions of stability: the first, which we
term topological stability, implies Kuratowski convergence (and in certain cases also
Hausdor� convergence) of minimizers and is tightly related to lower semi-continuity;
the second, quantitative stability, allows for convergence rates to be easily deduced,
but is not readily verifiable in concrete applications.

In Chapter 3 we investigate the consequences of Chapter 2 on parametric operator
problems. In particular, we obtain nonlinear generalizations of the main convergence
theorems in the theory of generalized Ritz-Galerkin schemes, namely Cea’s lemma
and the two lemmata of Strang (Section 3.3).
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We point out that this theory is capable of treating nonlinear variational problems
with nonunique solutions; it encompasses the existing convergence theory for convex
minimization problems and monotone operator problems, but it is not limited to
these cases; and it was particularly designed to be easily applicable tononconforming
discretization schemes.

Although we focus on convergence of discretization schemes, the results of Chap-
ters 2 and 3 may also be applicable to other limiting problems such as thin shell
and rod limits in elasticity, continuum limits of particle systems, homogenization
problems or for analyzing regularization methods.

One of the hardest tasks in dealing with geometric variational problems is to
�nd a de�nition of a con�guration space together with a technically feasible and
geometrically meaningful notion of distance: e.g., even in the classical, seemingly
simple, least area problem of surfaces, it is not obvious what asurfaceshould be. The
second part of this thesis is devoted to this task. We develop a suitable con�guration
space for the least area problem. It turns out that this con�guration space is also of use
for problems in nonlinear elasticity. A central building block for this con�guration
space and its metrics is a certain Riemannian metric on the space of inner products
on a �nite-dimensional real vector space. This will be introduced in Chapter 4 where
we also investigate its invariance properties. In Chapter 5 we introduce a space of
Lipschitz immersions from an abstract, compact smooth manifold intoRm, equipped
with metrics that are invariant under the action of the di� eomorphism group. Being
invariant, these metrics descend to metrics onshape space, the quotient of the space
of Lipschitz immersions by the group of di� eomorphisms.

In the third and �nal part we apply the theories of parametric optimization and
of Lipschitz immersions to two concrete examples: the approximation of minimal
surfaces (Chapter 7); and the approximation of static solutions of a full-dimensional,
nonlinear elasticity model (Chapter 8), both by �nite element discretizations. The
con�guration spaces of both problems consist of immersions of an abstract smooth
manifold into Euclidean space and we discretize these spaces by considering im-
mersed simplicial complexes, i.e., triangle meshes and tetrahedral meshes, as discrete
con�gurations (Chapter 6). To some extent, the discretization can be described as
continuous, piecewise linear �nite elements. As mentioned above, Chapter 2 will
serve us as a guideline in the proof of variational convergence of these discretizations:
Under certain assumptions on existence and regularity of solutions, we show con-
sistency, proximity and topological stability of the discretization schemes in terms
of the metrics introduced in Chapter 5. The theory developed in Chapter 2 then im-
plies Kuratowski convergence of discrete(almost-)minimizers to smooth minimizers.
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The approximation theory needed for showing consistency and proximity will be
developed in Chapter 6.

The discretization and the detailed convergence analysis for minimal surfaces will
be treated in Chapter 7. While the used discretization has been successfully applied
several times in numerical computations1 there has been no notable convergence
analysis for it so far.

We also discuss another discretization scheme for which a partial convergence
analysis was conducted in [20] (Section 7.3).

In Section 7.7 we brie�y discuss two area decreasing �ows on the con�guration
space of immersion. Suitable discretizations of these �ows can be used to numerically
approximate minimizers of the discrete area functional.

Chapter 8 is devoted to a nonlinear elastic energy which involves the Hencky
strain tensor. To our surprise, the Hencky strain tensor arose naturally as a certain
gradient vector �eld on the space of inner products on a �nite-dimensional vector
space (Section 4.4). Since we belief that this perspective is new, we spend some
e� ort to outline the relationship between the Riemannian geometry of the space of
inner products on the one hand; and the role of the Hencky strain tensor in nonlinear
elasticity on the other hand (Sections 8.1 and 8.2). Afterwards, we discretize the
smooth elasticity model by using tetrahedral meshes immersed intoR3 and apply
it to the problem of �nding static solutions of a material under the in�uence of
a potential and under partial Dirichlet boundary conditions. Assuming existence
andW2;1 -regularity of solutions, we show consistency, proximity, and topological
stability with respect to theW1;1 -norm, thus Kuratowski convergence of the discrete
solutions to the solutions of the smooth problem.

1The earliest account we could �nd is by Wagner [37] and goes back to 1977.
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1 Preliminaries

In this text, the symbolC usually refers to a “generic constant” that may be increased
during the course of a proof. Sometimes, we mark the dependence on certain
quantities by attaching them in parentheses. For example,C(s) depends on the entity
s. In this context,s is usually assumed to be �xed as well.

1.1 Functional Analysis

If not otherwise stated, vector spaces are assumed to be over the reals. For normed
spaces(X; k�kX), (Y; k�kX), we denote the space of continuous linear maps fromX to
Y by L(X; Y). ForA 2 L(X; Y), we denote bykAk the operator norm. The continuous
dual spaceof X is denoted byX0 and if not otherwise stated,h�; �i refers to the bilinear
pairing

h�; �i : X0 � X ! R; h�; xi = � (x):

The dual map ofA will be written asA0 2 L(Y0; X0). Di� erentiability is always meant
in the sense of Fréchet di� erentiability.

1.2 Di� erential Geometry

We will discuss smooth manifolds, smooth manifolds with boundary, and smooth
manifolds with corners. It belongs to the curiosities of mathematical language that
every smooth manifold is also a manifold with boundary; and that every manifold
with boundary is also a manifold with corners. In particular, even a smooth manifold
M without boundary (i.e., with@M = ; ) is a smooth manifold with boundary—and
even a smooth manifold with corners.

Let M, M0 be smooth manifolds with corners andf : M ! M0 a di� erentiable
map. We writeT M for thetangent bundleof M andT0M for thecotangent bundle
(thecontinuouslinear forms onT M). Thetangent mapor (total) di� erentialof f is
denoted byT f : T M ! T M0. In the case thatM0 = Y is a Banach space, the tangent
bundleT M0 � Y � Y is trivial and we may writedf for the �ber component of the
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1 Preliminaries

tangent mapT f. This leads to the identityTx f = ( f (x); dx f ) for all x 2 M. More
generally, we used for theexterior derivativeof di� erential forms. IfM � X is an
open subset of a Banach spaceX, we may writeTx f u = ( f (x); D f (x) u), with x 2 U,
u 2 TxU � X, andD f : U ! L(X; Y) the total derivative (the Jacobi “matrix”).

In general, we denote thepullbackof tensors alongf : M ! M0 by f # instead of
the often used notationf � . We will often writejx (read as “atx”) for point evaluation
at x, e.g., df jx = dx f , in particular, if other notation would be confusing.

Let � : E ! M0 be a (locally trivial) �ber bundle. We denote the space ofsections
by � (M0; E) B f ' 2 C0(M0; E) j � � ' = idM0 g. For a continuous mapf : M ! M0,
we denote by

f #E B f (x; e) 2 M � E j f (x) = � (e) g

thepullback of the �ber bundle E along f.
Let g andg0 be Riemannian metrics onM andM0, respectively. The induced inner

products for tensors onM are denoted byh�; �i g, the induced inner product norm by
j�jg; operator norms of tensors are simply denoted byk�k. For example, ifM andM0

are �nite dimensional andA 2 L(TxM; TyM0) is an endomorphism of tangent spaces,
one may identifyL(T M; T M0) � T M0 
 T0M and consider both the operator norm
and the Frobenius norm

kAk = sup
u2TxM

u, 0

jA ujg0

jujg
and jAjg;g0

= (tr(A� g;g0 A))
1
2 ;

whereA� g;g0 denotes the adjoint ofA with respect to the metricsgjx andg0jy.

In this work, the symbolr is used forcovariant derivativesexclusively, not
for gradients. Depending on context, theHessianHess( f ) may refer torr f (if
f 2 � (M; E) is the section of a vector bundle),r df (if f : M ! X is a vector-
valued mapping) orr T f (if f : (M;g) ! (M0; g0) is a mapping between Riemannian
manifolds). In any case it is the second derivative with respect to the covariant
derivativer . We may writer g, Hessg or r g;g0, Hessg;g0 if they are meant with respect
to the Levi-Civita connections of the Riemannian metricsg andg0. For example,
let f : (M;g) ! (M0; g0) be a smooth mapping. ThenT f can be interpreted as a
sectionT f 2 � (M; L(T M; f #T M0)). The Levi-Civita connections ofg andg0 induce
a covariant derivativer g;g0 on the vector bundleL(T M; f #T M0) ! M: For smooth
vector �eldsu, v 2 � (M; f #T M0) along f , one has

Hessg;g0( f )(u; v) = r g0T f(u; v) = r g0
u (T f v) � T f (r g

uv):

Here,r g0 denotes the pullback connection alongf .
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1.3 SobolevSpaces

1.3 Sobolev Spaces

Let m � k be positive integers and let� be a compact,k-dimensional smooth
manifold with corners. Fix a smooth Riemannian metricg on � and denote the
Euclidean metric onRm by g0. For l 2 N [ f 0gand1 � p � 1 , denote byWl;p

g (� ; Rm)
the Sobolev space ofl-times weakly di� erentiable mappings from� to Rm with weak
derivatives up to orderl in Lp

g. These vector spaces are independent of the choice
of g. However, their normsk�kWl;p

g
dodepend ong:

kukp

Wl;p
g

B
P l

i=0

R
�
jr iujpg;g0 volg; for u 2 Wl;p

g (� ; Rm), 1 � p < 1 ;

kukWl;1
g

B max
i2f0;1;:::;lg

ess sup
x2�

jr iujxjg;g0; for u 2 Wl;1
g (� ; Rm).

Here,r i denotesi-fold covariant di� erentiation andj�jg;g0 denotes the inner product
norm induced byg, g0 on the tensor bundlesT0� 
 : : : 
 T0� 
 u#TRm.

Moreover, we denote byC1
0 (� ; Rm) the vector space of smooth mappings� ! Rm

whose support is compact and contained in� n@�. Whenl � 1, one may de�ne

Wl;p
0;g(� ; Rm) B C1

0 (� ; Rm)
Wl;p

g ; for 1 � p < 1 ,
Wl;1

0;g (� ; Rm) B f u 2 Wl;1
g (� ; Rm) j for i = 0;1; : : : ;l � 1 : (r iu)j@� = 0g;

where the restriction mapping is given by

j@� : C0(� ; T0� 
 : : : 
 T0� 
 u#TRm) ! C0(@�; (T0� 
 : : : 
 T0� 
 u#TRm)j@�):

More generally, we write the trace operator as

j@� : Wl;p
g (� ; Rm) ! Wl� 1;p

g (@�; Rm):

For later use, we note the Poincaré inequality (see [21, Section 5.6, Theorem 3]
for a proof) and an import implication of it:

Lemma 1.1 (Poincaré inequality)
Let (�; g) be a connected, compact, smooth Riemannian manifold with non-empty
boundary. For eachp 2 [1;1 ] there is a constantCp � 0 such that the following
holds:

kukLp � CpkdukLp for all u 2 W1;p
0;g (� ; Rm).

3



1 Preliminaries

TheHölder conjugate qof p 2 [1;1 ] is de�ned by

q =

8
>>>>><
>>>>>:

1 ; p = 1;
1

1� p� 1 ; p 2 ]1;1 [;

1; p = 1 :

Lemma 1.2 Let (�; g) be a connected, compact, smooth Riemannian manifold with
non-empty boundary. Let1 < p � 1 and let1 � q < 1 the Hölder conjugate ofp.
Then theLaplacian

Ā: W1;p
0;g (� ; Rm) ! (W1;q

0;g(� ; Rm))0; u 7!
�
v 7!

Z

�
hdu;dvi g volg

�

is an isomorphism of Banach spaces and one haskĀ� 1k � (1 + Cp)(1 + Cq).

Proof . Note that the mapping

� : Lp
g(� ; T0� 
 Rm) ! (Lq

g(� ; T0� 
 Rm))0; � 7!
�
� 7!

Z

�
h�; � i g volg

�

is an isometric isomorphism for all1 < p � 1 . SincehĀ(u); vi = h� (du); dvi ,
Ā is well-de�ned and continuous withkĀk � 1. From the Poincaré inequality
(Lemma 1.1), we obtain

kukW1;p � (1 + Cp)kdukLp for all u 2 W1;p
0;g (� ; Rm),

kvkW1;q � (1 + Cq)kdvkLq; for all v 2 W1;q
0;g(� ; Rm):

Now, we may estimate foru 2 W1;p
0;g (� ; Rm):

kĀ(u)k(W1;q
0;g)0 = sup

v2W1;q
0;g

v, 0

h� (du); dvi
kvkW1;q

g

�
1

1 + Cq
sup

v2W1;q
0;g

v, 0

h� (du); dvi
kdvkLq

g

=
1

1 + Cq
k� (du)k(Lq

g)0 =
1

1 + Cq
kdukLp

g

�
1

(1 + Cp)(1 + Cq)
kukW1;p

0;g
:

This shows that̄A is a continuous, open, injective and linear map between Banach
spaces. Thus̄A is an isomorphism and the operator norm of its inverse is readily
estimated by (1+ Cp)(1 + Cq). �
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1.4 Variational Analysis

1.4 Variational Analysis

Although hardly recognizable, most of the topics in this section are covered in
detail by chapters 4 and 7 of [34]. Our aim here is to give a brief summary without
introducing too much non-standard notation.

For a functionf : X ! ]�1 ; 1 ], we de�ne theepigraphas

epi(f ) B f (x; t) 2 X � ]�1 ; 1 ] j t � f (x) g:

We use inf(f ) = inf f f (x) j x 2 X gfor thein�mal value of f and

arg min(f ) B f x 2 X j 8y 2 X: f (x) � f (y) g= f x 2 X j f (x) = inf( f ) g

for the set ofminimizersof f . Moreover, we de�ne for� 2 [0; 1 ] the set of
� -minimizersby

arg min� ( f ) B f x 2 X j 8y 2 X: f (x) � f (y) + � g:

In particular, one has arg min0( f ) = arg min(f ) and

arg min� ( f ) =

8
>>>>><
>>>>>:

X; � = 1 ;

; ; inf( f ) = �1 and� 2 [0;1 [,

f x 2 X j f (x) � inf( f ) + � g; inf( f ) > �1 and� 2 [0;1 [.

(1.1)

When X is a topological space, a functionf : X ! ]�1 ; 1 ] is calledlower
semi-continuous, if all lower level setsf � 1(]�1 ; t]), t 2 ]�1 ; 1 ] are closed or,
equivalently, if the epigraphepi( f ) � X � ]�1 ; 1 ] is a closed set (with respect to
the product topology).

1.4.1 Metric spaces

Let (X;d) be a metric space. Forr � 0 and x 2 X, we denote byB(x; r) B
f y 2 X j d(x; y) < r gtheopen balland byB̄(x; r) B f y 2 X j d(x; y) � r gtheclosed
ball of radiusr aroundx.

For a setA � X, we write

dist(x; A) B inf f d(x; a) j a 2 Ag:

Moreover, we de�ne theopen and the closed r-thickeningof a setA � X by

B(A; r) B f x 2 X j dist(x; A) < r g and B̄(A; r) B f x 2 X j dist(x; A) � r g:

5



1 Preliminaries

Remark 1.3 These de�nitions seem to be quite simple. However, one has to keep
in mind some subtleties:

1. The closed ball̄B(x; r) needs not to coincide with the closureB(x; r) of the open
ball B(x; r). As a counterexample, consider the discrete metric spaceX = f0; 1g
with d(x; y) = jx � yj andr = 1: One hasB̄(0;1) = f0;1g, but B(0;1) = f0g.
Since singletons are closed in metric spaces, one hasB(0;1) = f0g.

2. While one has
S

a2A B(a; r) = B(A; r) and
S

a2A B̄(a; r) � B̄(A; r), equality in
the latter does not hold in general. A counterexample is given byX = R with
d(x; y) B jx � yj andA = ]0;1]: One hasB̄(A; 1) = [� 1; 2], but

S
a2A B̄(a; r) =

]� 1; 2].

3. With the conventioninf(; ) = 1 , one hasB(; ; r) = B̄(; ; r) = ; for �nite
r 2 [0;1 [, but B(; ; 1 ) = ; , B̄(; ; 1 ) = X.

Let f : (X;dX) ! (Y;dY) be a Lipschitz continuous mapping between metric
spaces. We denote by

Lip( f ) B sup
x1; x22X
x1, x2

dY( f (x1); f (x2))
dX(x1; x2)

the optimal Lischitz constant off .

1.4.2 Hausdor� convergence

De�nition 1.4 Let (X;d) be a metric space andA1, A2 � X subsets. We de�ne the
Hausdor� distancebetweenA1 andA2 by

dist(A1; A2) B inf f r > 0 j A1 � B̄(A2; r) andA2 � B̄(A1; r) g;

with the convention inf; = 1 .

The subtleties mentioned in Remark 1.3 could cause one to believe that one has to
be very cautious with the de�nition of Hausdor� distance.1 Fortunately, this is not
the case. The following lemma lists frequently used de�nitions of Hausdor� distance
and shows that they are equivalent:

Lemma 1.5 Let (X;d) be a metric space and letA1, A2 � X be some sets. The
following numbers are all equal:

1For example, one could replace the closed thickening in the de�nition by open thickenings.
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1.4 Variational Analysis

1. m1 B inf f r � 0 j A1 � B̄(A2; r) and A2 � B̄(A1; r) g.

2. m2 B inf f r � 0 j A1 �
S

a2A2
B̄(a; r) and A2 �

S
a2A1

B̄(a; r) g.

3. m3 B inf f r � 0 j A1 � B(A2; r) and A2 � B(A1; r) g.

4. m4 B max
�
sup
a2A1

inf
b2A2

d(a;b); sup
b2A2

inf
a2A1

d(a;b)
�
.

Proof . For each� > 0 and an arbitrary setA � X, one has

B(A; r) �
[

a2A

B̄(a; r) � B̄(A; r) � B(A; r + � );

thusm1 � m2 � m3 � m1 + � .

m4 = max
�
sup
a2A1

dist(a; A2); sup
b2A2

dist(b; A1)
�

= inf
(

r � 0

������
for all a 2 A1: dist(a; A2) � r
for all b 2 A2: dist(b; A1) � r

)

= inf f r � 0 j A1 � B̄(A2; r) andA2 � B̄(A1; r) g= m1: �

Remark 1.6 Note that two setsA1, A2 � X have Hausdor� distance0 if and only
if their closures coincide:A1 = A2. Moreover, the Hausdor� distance betweenA1

andA2 may be in�nite. Thus, the Hausdor� distance is not a metric on the power set
P(X): In general it is only an extended semi-metric in the sense that it is a function
dist : P(X) � P(X) ! [0; 1 ] with:

1. dist(A; A) = 0 for eachA 2 P(X).

2. dist(A1; A2) = dist(A2; A1) for all A1, A2 2 P(X).

3. dist(A1; A3) � dist(A1; A2) + dist(A2; A3) for all A1, A2, A3 2 P(X).

However, the restriction ofdist to the setB(X) of all non-empty, closed and bounded
sets leads to a metric.

De�nition 1.7 Let (X;d) be a metric space andAn, A � X subsets,n 2 N. We say,
An converges toA uniformlyor An Hausdor� converges toA, if for every" > 0 there
is ann 2 N such that for every integerk � n:

A � B̄(Ak; " ) and Ak � B̄(A; "):

7



1 Preliminaries

Remark 1.8 Let An , ; for in�nitely many n 2 N. Then Hausdor� convergence of
An to A asn ! 1 impliesA , ; . Moreover, Hausdor� convergence ofAn to A is
equivalent to limn!1 dist(A; An) = 0.

The metric space (B(X); dist) inherits some nice properties from (X;d):

Theorem 1.9 Let (X;d) be a metric space.

1. (B(X); dist) is complete if and only if(X;d) is complete.

2. (B(X); dist) is compact if and only if(X;d) is compact.

Follow the instructions in [28, p. 280] or see [23] for a proof. The second statement
is sometimes calledBlaschke selection theorem(see [3, § 18]).

1.4.3 Kuratowski convergence

De�nition 1.10 Let X be a topological space and forx 2 X, denote byU(x) the set
of all open neighborhoods ofx. For a sequence of sets(An)n2N in X one de�nes the
limit inferior or inner limit Lin!1 An and thelimit superioror outer limit Lsn!1 An,
respectively, in the following way.

Li
n!1

An B f x 2 X j 8U 2 U(x) 9n 2 N 8k � n: U \ Ak , ; g ;

Ls
n!1

An B f x 2 X j 8U 2 U(x) 8n 2 N 9k � n: U \ Ak , ; g

If A B Lsn!1 An = Lin!1 An agree, one says thatAn converges toA in the sense of
Kuratowskiand writes Ltn!1 An = A.

Remark 1.11 Both the lower and the upper limit are closed sets and one has

Li
n!1

An � Ls
n!1

An:

One often refers toLsn!1 An as theset of cluster pointssincex is an element of
Lsn!1 An if and only if there is a sequence of elementsxn 2 An that hasx as a cluster
point, i.e., there is a subsequence (xnk)k2N that converges tox ask ! 1 .

A very useful identity which we use frequently is given by the following lemma.

Lemma 1.12 Let X be a topological space and An, A � X, n2 N. Then one has

Ls
n!1

An =
\

n2N

[

k� n

Ak:

8



1.4 Variational Analysis

Proof . “ � ”: Fix x 2 Lsn!1 An and letn 2 N be arbitrary. For eachU 2 U(x) one
�nds a k � n with U \ Ak , ; , hence one hasx 2

S
k� n Ak. Because this holds for

eachn 2 N, we obtainx 2
T

n2N
S

k� n Ak.
“ � ”: Now, �x x 2

T
n2N

S
k� n Ak and letU 2 U(x) be arbitrary. For everyn 2 N,

the intersectionU \
S

k� n Ak has to be nonempty becausex lies in the closure ofS
k� n Ak. Thus, there is somek � n with U \ Ak , ; , which showsx 2 Lsn!1 An. �

The lower and upper limits are monotone:

Lemma 1.13 Let X be a topological space and letAn � Bn � X, n 2 N. Then one
has

Li
n!1

An � Li
n!1

Bn and Ls
n!1

An � Ls
n!1

Bn:

For later use, we point out that the Kuratowski limits are robust under metric
thickening:

Lemma 1.14 Let (X;d) be a metric space,rn � 0 with limn!1 rn = 0 andAn � X.
Then one has

Li
n!1

B̄(An; rn) = Li
n!1

An and Ls
n!1

B̄(An; rn) = Ls
n!1

An:

Proof . Monotonicity of the Kuratowski limits leads to

Li
n!1

An � Li
n!1

B̄(An; rn); and Ls
n!1

An � Ls
n!1

B̄(An; rn):

Fix arbitrarya 2 Lsn!1 B̄(An; rn), " > 0, andN 2 N with rk < "
3 for all k � N.

By de�nition of the Kuratowski limit superior, for eachn � N there is ak � n
and anak 2 B(a; "

3) \ B̄(Ak; rk). Now, choosexk 2 Ak \ B(ak; 2rk) and observe
d(a; xk) � d(a;ak) + d(ak; xk) < "

3 + 2rk � " . Thus, we havexk 2 B(a; ") \ Ak , ; for
all suchk. This showsa 2 Lsn!1 An.

Analogously, one shows Lin!1 An � Lin!1 B̄(An; rn). �

In metric spaces, Hausdor� convergence implies Kuratowski convergence:

Lemma 1.15 Let (X;d) be a metric space. LetAn � X be Hausdor� convergent to
the set A� X. Then An converges tōA in the sense of Kuratowski.

9



1 Preliminaries

Proof . Let (sn)n2N be a sequence of non-negative real numbers withsn ! 0 as
n ! 1 such that

An � B̄(A; sn) and A � B̄(An; sn)

holds for eachn 2 N. Put rn B supk� n sk and observern ! 0 asn ! 1 . Now
monotonicity of the Kuratowski limits and Lemma 1.14 lead to

Ls
n!1

An � Ls
n!1

B̄(A; rn) = Ā = Li
n!1

B̄(A; rn) � Li
n!1

B̄(An; 2rn) = Li
n!1

An: �

For non-empty sets in compact metric spaces, the notions of Kuratowski conver-
gence and Hausdor� convergence coincide; in non-compact metric spaces, Hausdor�
convergence is a stronger notion:

10



1.4 Variational Analysis

Lemma 1.16 Let (X;d) be a metric space. The following are equivalent:

1. X is compact.

2. Every Kuratowski convergent sequence(An)n2N of setsAn � X with Ltn!1 An ,
; is also Hausdor� convergent.

Proof . “1. ) 2.”: Let X be compact and let(An)n2N be a sequence of sets inX with
A = Ltn!1 An , ; . For" > 0 andn 2 N de�ne the sets

X" B X n B(A; ") and Un B X n
[

k� n

Ak:

Observe thatX" is compact and that(Un)n2N is an increasing sequence of open sets.
Moreover, (Un)n2N is a covering ofU:

[

n2N

Un = X n

0
BBBBB@
\

n2N

[

k� n

Ak

1
CCCCCA= X nA � X n B(A; ") = X" :

Thus, there has to be a �niten 2 N with X" � Un. By construction ofX" andUn, we
haveAk � B(A; ") for all k � n.

The next argument is by contradiction:Assumethat there exists an" > 0 such
that for eachn 2 N there is ak(n) � n with A 1 B(Ak(n); "). Then we may choose
a pointxn 2 A with d(xn; Ak(n)) > " . BecauseA is compact, there is a subsequence
(nm)m2N and somex 2 A with xnm ! x asm ! 1 . Now, x is an element of the
lower limit, hence there is someN 2 N such thatd(x; An) < "

2 holds for alln � N.
Additionally, by increasingN if necessary, we may assumed(x; xnm) < "

2 whenever
nm � N. Fornm � N, we havek(nm) � nm � N and the triangle inequality implies
thecontradiction

" < d(xnm; Ak(nm)) � d(xnm; x) + d(x; Ak(nm)) < "
2 + "

2 � ":

This shows for each" > 0 that

A � B(An; " ) and An � B(A; ")

hold for su� ciently largen 2 N, which is Hausdor� convergence.
“2. ) 1.”: Let X be non-compact. We are going to show the existence of a

sequence of non-empty sets(An)n2N with non-empty Kuratowski limit but without
Hausdor� limit. BecauseX is non-compact, there is a sequence(xn)n2N without any
cluster points. In particular, there is some" > 0 with d(x1; xn) � " for all n 2 N.
Now de�ne An B fx1; xng, n 2 N. We haveA = Ltn!1 An = fx1g , ; . If (An)n2N

were Hausdor� convergent, its limit would have to coincide withA by Lemma 1.15.
But for all n > 1, one hasAn n B̄(A; ") = f xn g, ; , thus(An)n2N cannot Hausdor�
converge. �

11



1 Preliminaries

1.4.4 Gamma convergence

De�nition 1.17 Let X be a metric space and letF, Fn : X ! ]�1 ; 1 ], n 2 N be
some functions. One says,Fn � -converges toF, if the two following conditions are
ful�lled:

1. lim inf-condition:Everysequence (xn)n2N in X with xn
n!1
�! x satis�es

F(x) � lim inf
n!1

Fn(xn):

2. lim sup-condition: For everyx 2 X thereexistsa sequencexn
n!1
�! x with

F(x) � lim sup
n!1

Fn(xn):

Such a sequence (xn)n2N is called arecovery sequenceof F at x.

Some authors refer to� -convergence asepi-convergencebecause of the following
lemma (see [34, 7.2 Proposition] for details).

Lemma 1.18 Let (X;d) be a metric space andF, Fn : X ! ]�1 ; 1 ], n 2 N some
functions. The following statements are equivalent:

1. Fn � -converges to F.

2. epi(Fn) converges toepi(F) in the sense of Kuratowski.

As an immediate corollary, we see that the epigraph of a� -limit also is a Kura-
towski limit, thus closed. Hence we have the following necessary conditions for a
function to be a� -limit:

Corollary 1.19 Let Fn � -converge toF. ThenF is lower semi-continuous. In
particular, arg min(F) is closed.

A basic link between� -convergence and convergence of minimizers is given by
the following lemma:

Lemma 1.20 Let Fn � -converge toF, assumeinf(F) < 1 and let (%n)n2N be a
sequence in[0;1 [ with %n

n!1
�! 0. Then one has

lim sup
n!1

inf(Fn) � inf(F) and Ls
n!1

arg min%n(Fn) � arg min(F):

12



1.4 Variational Analysis

Proof . For % >0, let x 2 arg min%(F) , ; . By the lim sup-condition, there is a
sequencexn

n!1
�! x with

inf(F) + %� F(x) � lim sup
n!1

Fn(xn) � lim sup
n!1

inf(Fn):

Because% >0 can be chosen arbitrarily, one obtains the �rst statement.
Let x 2 Lsn!1 arg min%n(Fn). There is a sequencexnk 2 arg min%nk (Fnk) with

xnk

k!1
�! x. By repeating elements of this sequence where necessary, we may construct

a sequence(xn)n2N containing(xnk)k2N with xn
n!1
�! x. Now, thelim inf -condition

applies:

F(x) � lim inf
n!1

Fn(xn) � lim inf
k!1

Fnk(xnk)

� lim inf
k!1

(inf(Fnk) + %nk) = lim inf
k!1

inf(Fnk)

� lim sup
k!1

inf(Fnk) � lim sup
n!1

inf(Fn) � inf(F):

This impliesx 2 arg min(F), thus Lsn!1 arg min%n(Fn) � arg min(F). �

In particular, the preceding lemma yields

Ls
n!1

arg min(Fn) � arg min(F);

thus the cluster points of minimizers of(Fn)n2N are minimizers ofF. This can be
further improved by the following result (see [11, Theorem 7.19] for details):

Theorem 1.21 Let Fn � -converge to F with�1 < inf F < 1 . Then one has

Ls
n!1

arg min(Fn) � arg min(F) =
\

%>0

Li
n!1

arg min%(Fn):

In �nite dimensional Euclidean spaceX = Rm (and presumably in all metric spaces
with the Heine-Borel property), this result can be strengthened to (see [34, Theorem
7.31] for a proof):

Theorem 1.22 Let F, Fn : Rm ! ]�1 ; 1 ], n 2 N such thatFn � -converges toF
with �1 < inf F < 1 and assumearg min(F) , ; . Then the following statements
are equivalent:

1. inf(Fn)
n!1
�! inf(F).

2. There is a monotonically decreasing sequence%n & 0 such that

Lt
n!1

arg min%n(Fn) = arg min(F):

13
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1.4.5 Epigraph distances

A way to quantify� -convergence is by measuring the Hausdor� distance of truncated
epigraphs. This idea was introduced in [1] and [2]. See also [34, Sections 7.I and
7.J] for a detailed treatment.

De�nition 1.23 Let X be some set andF : X ! ]�1 ; 1 ] some functions. For a set
K � X and a numberr 2 [�1 ; 1 ] de�ne thetruncated epigraphepirK(F) of F by

epirK(F) B f (x; t) 2 K � ]�1 ; 1 ] j F(x) � t � r g:

Note the identities epi�1
K (F) = ; and epi1K (F) = K � ]�1 ; 1 ].

Using the box metric onX � R given by

d
�
(x; s); (y; t)

�
B max(jy � xj; jt � sj); for all x, y 2 X, s, t 2 R,

the central result of the theory of epigraph distances can be formulated as:

Theorem 1.24 Let (X;dX) be a metric space, letF, G: X ! ]�1 ; 1 ] be some
functions, K� X some subset, and r2 R such that the following hold:

� �1 < inf(F) � r and �1 < inf(G) � r.

� ; , arg min(F) � K and; , arg min(G) � K.

Then for each� > 0 with

� > dist
�
epirK(F); epirK(G)

�
and � > r � min(inf(F); inf(G));

one has:

1. jinf(F) � inf(G)j � dist
�
epirK(F); epirK(G)

�
,

2. arg min(F) � B̄(arg min2� (G); � ),

3. arg min(G) � B̄(arg min2� (F); � ).

Proof . Let prX : X � R ! X andprR : X � R ! R be the projections onto the factors.
One has for each" > dist

�
epirK(F)); epirK(G)

�
:

]inf(F); r] � prR
�
epirK(F)

�
� prR

�
B̄(epirK(G); ")

�
� [inf(G) � "; r + " ];
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thusinf(F) � inf (G) � " . Vice versa, one obtains]inf(G); r] � [inf(F) � "; r + " ]
andinf(G) � inf (F) � " , which leads to the �rst statement. Similarly, one has for
each� as above:

arg min(F) � arg minr� inf(F)(F) = prX
�
epirK(F)

�

� prX
�
B̄(epirK(G); � )

�

� B̄(arg minr� inf(G)+� (G); � )

� B̄(arg min2� (G); � );

which is the second statement. Analogously, one obtains the third statement.�

If the functionsF andG are well-behaved and� is small, thenarg min2� (F) and
arg min2� (G) are not too far away fromarg min(F) andarg min(G), respectively.
What “well-behaved” means will be made precise later in Section 2.3.3.
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2 Parametric Optimization Problems

In this chapter we present the theoretical core of our considerations on the con-
vergence of nonconforming Ritz-Galerkin methods. The central aim is to break
the overwhelming task of convergence analysis into smaller, manageable subtasks:
showing consistency, proximity, and stability.

We keep the presentation as broad as possible. Concrete applications will be given
later in Section 3.3, Chapter 7, and Chapter 8.

Let C be a topological space and letF : C ! R be a function. We denote the set
of minimizers by

M B arg min(F ) = f x 2 C j F(x) = inf(F ) g

and sets of� -minimizers by

M � B arg min� (F ) = f x 2 C j 8y 2 C: F (x) � F (y) + � g; for � 2 [0; 1 ].

Moreover, let topological spacesCn and functionsFn : Cn ! R with minimizers
M n B arg min(Fn) and� -minimizersM �

n B arg min� (Fn) be given for eachn 2 N.
One may think ofFn as small perturbations ofF or—in the context of Ritz-Galerkin
methods—as a discretization ofF . We are interested in the behavior of the setsM n
asn ! 1 .1 Ideally,M n should approximateM “in some way”. Therefore, we need
a method to relate these sets. A rather general way is lettingC andCn communicate
with each other via some mappings

Sn : dom(Sn) � C ! C n and Rn : dom(Rn) � C n ! C :

We are going to refer toSn as thesampling operatorand toRn as thereconstruc-
tion operator. If one hasM n � dom(Rn) andM � dom(Sn), the pairs of sets
(M ;Rn(M n)) and(M n;Sn(M )) lie in common spacesC andCn, respectively. Thus,
they can be compared.

1We point out that this framework also covers the more general problem of analyzinglim � ! � 1 M � ,
where(F � : C� ! R)� 2� is a family of functions parameterized by a sequential topological
space� . For the sake of brevity, we only discuss� = N [ f 1 g with the topologyT = f ; g [
f U � N [ f 1 g j 1 2 U and card(U) = 1 g.
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Example 2.1 In the �nite element method,Cn is often a �nite-dimensional a� ne
subspace of a Banach spaceC, Rn is the canonical embedding andSn is an interpola-
tion operator such thatRn � S n is a projection onto the ansatz spaceRn(Cn). Then,
the Hausdor� distance betweenM andRn(M n) with respect todC yields a canonical
measure of approximation.

More generally, one may consider mappings	 : C ! X , 	 n : Cn ! X to some
metric space(X;dX) and analyze the Hausdor� distance between the sets	 (M )
and 	 n(M n) therein. For example,	 , 	 n could be embeddings into a spaceX
whose metric topology is weaker than those ofC, Cn. But 	 , 	 n need not to be
injective at all, yielding only partial information: They could also represent restriction
or trace mappings, truncations in in�nite decompositions (e.g. Fourier or modal
representations, projections on subspaces etc.), state variables in physical systems,
(locally) averaged quantities or even quotient mappings. We propose to view	 , 	 n

as nonlinear variants oftest functions.
In practice, one might pro�t considerably from using a priori information on mini-

mizers (such as higher regularity or energy bounds) in order to achieve quantitative
approximation results. We are going to incoorporate a priori information in the form
of subsetsA � C , A n � C n such that	 (A \ M ), 	 n(A n \ M n) contain	 (M ),
	 n(M n) respectively.2

We summarize the information given so far in the following (not necessarily
commutative) diagrams

A \ M �• //A �• //dom(Sn)
�• //

Sn

  

C
F

��
R

A n \ M n
�• //A n

�• //dom(Rn)
�• //

Rn

>>

Cn

Fn

?? ; (2.1)

A \ M �• //A �• //dom(Sn)
�• //

Sn

  

C
	

��
X

A n \ M n
�• //A n

�• //dom(Rn)
�• //

Rn

>>

Cn

	 n

?? : (2.2)

2In general, it is not required thatM � A andM n � A n are subsets. In the case that	 is a quotient
map, this is a crucial advantage (see e.g. Example 2.34 and our treatment of minimal surfaces in
Chapter 7).
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2.1 Consistency

Assume for the moment; , M � A , ; , M n � A n. If (2.1)were commutative,
one would have the following implications

1. For eachx 2 M andy 2 Cn:

Fn � S n(x) = F (x) � F � R n(y) = Fn(y); thus Sn(M ) � M n:

2. For eachy 2 M n andx 2 C:

F � R n(y) = Fn(y) � F n � S n(x) = F (x); thus Rn(M n) � M :

If, in addition, (2.2) were commutative, this would lead to

3. 	 (M ) = 	 n � S n(M ) � 	 n(M n),

4. 	 n(M n) = 	 � R n(M n) � 	 (M ),

hence	 (M ) = 	 n(M n).
Alas, in practice, these diagrams rarely commute. But one may hope that they

almostcommute, i.e., they commute up to some errors that can be uniformly bounded,
at least on the sets of a priori information.

In Sections 2.1 and 2.2, we will name these non-commutativity errors and analyze
what information can be deduced if these errors are su� ciently small. Afterwards,
we will single out additional conditions that guarantee convergence of minimizers
(Section 2.3).

2.1 Consistency

2.1.1 General theory

We start with the �rst diagram(2.1). For non-empty setsA � dom(Sn), A n �
dom(Rn), there are two squares of interest:

C
F

  
A

.�

>>

Sn   

R

Cn

Fn

?? ;

C
F

��
A n �p

  

Rn

==

R

Cn

Fn

?? : (2.3)

Each square is equipped with its own non-cummutativity error:
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2 Parametric OptimizationProblems

De�nition 2.2 (Consistency) For non-empty setsA � dom(Sn), A n � dom(Rn),
de�ne

1. thesampling consistency error

� S
n B � (F ;Fn;Sn;A ) B sup

a2A
(Fn � S n(a) � F (a))+; (2.4)

2. thereconstruction consistency error

� R
n B � (F ;Fn;Rn;A n) B sup

a2A n

(F � R n(a) � F n(a))+; (2.5)

3. thetotal consistency error

� n B � (F ;Fn;Sn;Rn;A ;A n) B � S
n + � R

n ; (2.6)

wheret+ B maxft; 0gdenotes the non-negative part oft 2 R. We say, the sequence�
(Fn;Sn;Rn)

�
n2N is consistent with respect toF on

�
(A ;A n)

�
n2N, if its consistency

error � (Sn;Rn;A ;A n) converges to0 for n ! 1 . In that case, we also say that�
(F ;Fn;Sn;Rn)

�
n2N is consistent on

�
(A ;A n)

�
n2N.

Remark 2.3 A stronger notion of (total) consistency error (but also one which would
be harder to verify) would be

sup
a2A

jFn � S n(a) � F (a)j + sup
a2A n

jF � R n(a) � F n(a)j:

In light of the latter expression, our de�nition of consistency error could be termed
upper consistency error. However, our de�nition is su� cient for our needs and
we omit “upper” for the sake of brevity. Of course, one may also de�ne alower
consistency error, which would be the notion of choice for maximization problems.

De�nition 2.4 We callA � C valid with respect to the pair(F ;Sn), if ; , A �
dom(Sn) andinf(F ) = inf(F jA ) hold. Analogously, we callA n � C n valid with
respect to the pair(Fn;Rn), if ; , A n � dom(Rn) andinf (Fn) = inf (FnjA n) hold. For
the sake of brevity, we will simply say thatA , A n arevalid whenever(F ;Sn) and
(Fn;Rn) can be deduced from the context.

This de�nition is a bit subtle, but crucial: On the one hand, validity allows
us to consider sampling and reconstruction errors by demanding that valid sets are
contained in the domains of the respective operators. Hence, this part of the de�nition
merely serves as a short-hand notation. On the other hand,inf (F ) = inf(F jA ) and
inf(Fn) = inf(FnjA n) are vital requirements for the following momentous lemma:
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2.1 Consistency

Lemma 2.5 Let A � C , A n � C n be valid with respect to(F ;Sn) and (Fn;Rn),
respectively. Assume that both the sampling consistency error� S

n and the reconstruc-
tion consistency error� R

n are �nite. Then one has

inf(Fn) � inf(F ) + � S
n and inf(F ) � inf(Fn) + � R

n :

Hence, one has eitherinf (Fn) = inf (F ) = �1 or bothinf(Fn) andinf(F ) are �nite
with

jinf(Fn) � inf(F )j � max (� S
n ; � R

n ):

Proof . Choose a minimizing sequence(xm)m2N in A for F and a minimizing se-
quence (ym)m2N in A n for Fn, i.e.,

inf(F ) = lim
m!1

F (xm) and inf(Fn) = lim
m!1

Fn(ym):

Then (2.4) and (2.5) imply

inf(Fn) � F n(Sn(xm)) � F (xm) + � S
n

m!1
�! inf(F ) + � S

n ;

inf(F ) � F (Rn(ym)) � F n(ym) + � R
n

m!1
�! inf(Fn) + � R

n : �

Knowing the total consistency error puts one into the position to compare%-
minimizers:

Lemma 2.6 LetA � C , A n � C n be valid sets. Denote by� n the total consistency
error. Then one has for%2 [0;1 ]

Sn(A \ M %) � S n(A ) \ M %+� n
n and Rn(A n \ M %

n) � R n(A n) \ M %+� n:

Proof . Case 1:%= 1 or � n = 1 . The inclusions hold because ofM %+� n
n = M 1

n =
Cn andM %+� n = M 1 = Cn.3

Case 2:Both%and� n are �nite. Then, by Lemma 2.5, either bothinf (F ) andinf (Fn)
equal�1 or both of them are �nite.
Case 2.a:inf (F ) = inf(Fn) = �1 . All the setsM %, M %+� n, M %

n, M %+� n
n are empty

such that the inclusions hold trivially.
Case 2.b:inf (F ); inf (Fn) > �1 . We discuss only the �rst inclusion for the second
one follows analogously. In the case thatA \ M % is empty, nothing is to show.
Otherwise, letx 2 A \ M %. We apply (1.1) and Lemma 2.5 in order to estimate

Fn � S n(x) � F (x) + � S
n � inf(F ) + %+ � S

n � inf(Fn) + � R
n + %+ � S

n

This leads toSn(x) 2 M %+� n
n which shows the �rst inclusion. �

3Admittedly, this case is of little practical relevance.
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2 Parametric OptimizationProblems

Remark 2.7 For the moment, it may appear as a super�uous burden to drag along
Sn(A ), Rn(A n) on the right hand side of the previous lemma's conclusions. However,
this may be crucial when treating optimization problems withnon-compactlower
level sets as we will see in Corollary 2.30. The area functional of immersed surfaces
as discussed in Chapter 7 is such an example. For a demonstration of the non-
compactness of lower level sets see Figure 7.3.

Corollary 2.8 Let A � C , A n � C n be valid, letF : C ! R be lower semi-
continuous on the setB B Lsn!1 Rn(A n), and let

�
(Fn;Sn;Rn)

�
n2N be consistent on�

(A ;A n)
�
n2N. Then one has for%2 [0;1 ]:

Ls
n!1

�
Rn(A n) \ M %

n
�

� B \ M %:

Proof . In the case that%= 1 , this is obviously true. Hence, let us assume that%
is �nite. Denote by� n the total consistency error,K %

n B A n \ M %
n and let� n B

supf � k j k � ng. Observe that� n & 0 asn % 1 by consistency. By Lemma 2.6, we
have for allm, n 2 N with m � n:

Rm(K %
m) �

�S
k� m Rk(A k)

�
\ M %+� n:

Taking closures and intersections leads to
\

n2N

[

k� n

Rk(K
%
k ) =

\

n2N

\

m� n

[

k� m

Rk(K
%
k )

�
\

n2N

� � \

m� n

[

k� m

Rk(A k)
�

\ M %+� n

�
=

\

n2N

�
B \ M %+� n

�
:

BecauseB is closed andF jB is lower-semicontinuous, one has

B \ M %+� n = B \ M %+� n:

Finally,
T

n2N M %+� n = M %completes the proof. �

Using%= 0, this leads immediately to

Corollary 2.9 LetA � M , A n � M n be valid. Denote by� n the total consistency
error. Then one has

Sn(M ) � S n(A ) \ M � n
n and Rn(M n) � R n(A n) \ M � n:

Assuming consistency of
�
(F ;Fn;Sn;Rn)

�
n2N on

�
(A ;A n)

�
n2N and lower semi-con-

tinuity of F , cluster points of minimizers of(Fn)n2N are minimizers ofF in the sense
that

Ls
n!1

Rn(M n) � M :
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2.2 Proximity

Remark 2.10 Note that the preceding corollary can be used to prove the existence
of minimizers ofF if one manages to verify that cluster points of minimizers of
(Fn)n2N actually exist.

2.1.2 Coupling

Consistency errors behave well under coupling of several functionals. We simply
state the results as their proofs are straightforward.

Lemma 2.11 Let non-empty setsA , B � dom(Sn), A n, Bn � dom(Rn) and func-
tions F , G: C ! R, Fn, Gn : Cn ! R be given. For� , � 2 [0; 1 [ de�ne
H B � F + � G andH n B � Fn + � Gn. If A \ B andA n \ B n are non-empty, one
has the following estimates for the consistency errors:

� (H ;H n;Sn;A \ B ) � � � (F ;Fn;Sn;A ) + � � (G;Gn;Sn;B);

� (H ;H n;Rn;A n \ B n) � � � (F ;Fn;Rn;A n) + � � (G;Gn;Rn;Bn):

Corollary 2.12 The set of sequences
�
(F ;Fn;Sn;Rn)

�
n2N as in(2.3) that are consis-

tent on
�
(A ;A n)

�
n2N is a convex cone.

Remark 2.13 In the same way, one could say that the set of lower and upper consis-
tent sequences

�
(F ;Fn;Sn;Rn)

�
n2N is a vector space overR (see also Remark 2.3).

2.2 Proximity

2.2.1 General theory

Corollary 2.9 is quite similar to the inclusionLsn!1 arg min(Fn) � arg min(F) from
Theorem 1.21. We currently have no analogue for the inequalityarg min(F) �
Lin!1 arg min%(Fn) for % >0, but only

Sn(A \ M ) � S n(A ) \ M � n
n :

If Rn � S n were the identity onC and assuming consistency, one would obtain for
given% >0 and for all su� ciently largen:

A \ M = Rn � S n(A \ M ) � A \ R n(M � n
n ) � A \ R n(M %

n):

This would yield the desired result

A \ M � A \
\

%>0

Li
n!1

Rn(M %
n):
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2 Parametric OptimizationProblems

In the case thatC is an in�nite-dimensional Banach space andCn a �nite-dimensional
Banach space,Rn � S n = idC cannot occur. Even worse: In this context,Rn � S n may
be a compact operator so it cannot converge uniformly toidC. Hence we have to
establish a su� ciently weak notion forRn � S n being “su� ciently close toidC”, a
notion that does not imply uniform approximation.

We do this in a slightly more general way by discussing diagram(2.2). At times,
it may be instructive for the reader to substituteX = C, 	 = idC and	 n = Rn. Again,
for non-empty setsA � dom(Sn), A n � dom(Rn), there are two squares of interest:

C
	

  
A

.�

>>

Sn   

X

Cn

	 n

>> ;

C
	

  
A n �p

  

Rn

==

X

Cn

	 n

?? : (2.7)

Note that for our purposes, we do not require	 , 	 n to be de�ned on all ofC, Cn but
at least on the setsA [ R n(A n), A n [ S n(A ), respectively. Each of the two diagrams
has its own non-commutativity error:

De�nition 2.14 (Proximity) For non-empty setsA � dom(Sn), A n � dom(Rn),
de�ne

1. thesampling proximity error

" S
n B "(	; 	 n;Sn;A ) B sup

a2A
dX(	 n � S n(a); 	 (a)); (2.8)

2. thereconstruction proximity error

" R
n B "(	; 	 n;Rn;A n) B sup

a2A n

dX(	 � R n(a); 	 n(a)); (2.9)

3. theproximity error

" n B "(	; 	 n;Sn;Rn;A ;A n) B max (" S
n ; "R

n ): (2.10)

We say that the sequence
�
(Sn;Rn)

�
n2N is proximate with respect to

�
(	; 	 n)

�
n2N on�

(A ;A n)
�
n2N, if its proximity error" n converges to 0 asn ! 1 .
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2.2 Proximity

Lemma 2.15 LetA � C , A n � C n be valid. Denote by� n the total consistency error.
Then one has for%2 [0;1 ]

	 (A \ M %) � B̄
�
	 n(Sn(A ) \ M %+� n

n ); "S
n
�
;

	 n(A n \ M %
n) � B̄

�
	 (Rn(A n) \ M %+� n); "R

n
�
:

Proof . For x 2 	 (A \ M %) (if existent), �x an a 2 A \ M % with x = 	 (a).
According to Lemma 2.6, we have thatSn(a) 2 Sn(A ) \ M %+� n

n . Now, the de�nition
of the sampling proximity error implies

dX(	 (a); 	 n(Sn(a))) � " S
n ;

thus	 (a) 2 B̄
�
	 n(Sn(A ) \ M %+� n

n ); "S
n
�
: The proof of the second statement is now

straightforward. �

Lemma 2.16 In addition to the previous lemma, assumeSn(A ) � A n and proximity,
i.e., " n

n!1
�! 0. Then one has

	 (A \ M ) � Li
n!1

	 n(A n \ M � n
n )

� Ls
n!1

	 n(A n \ M � n
n ) � Ls

n!1
	 (Rn(A n) \ M 2� n):

Proof . By applying the previous lemma twice—once with%= 0, once with%= � n—
and by the triangle inequality, one has for alln 2 N:

	 (A \ M ) � B̄
�
	 n(A n \ M � n

n ); "S
n
�

� B̄
�
	 n(A n \ M � n

n ); "S
n
�

� B̄
�
	 (Rn(A n) \ M 2� n

n ); "S
n + " R

n
�
:

Because of the monotonicity properties ofLi andLs, we may applyLi , Ls, Ls to the
three terms on the right hand side, respectively, without invalidating the inclusions.
The statement then follows from thickening robustness (Lemma 1.14). �

Assume for a moment thatA , A n are sets of true a priori information, i.e.,A � M ,
A n � M n. Lemma 2.15 tells us that—up to	 , 	 n—minimizers are at least close to
� n-minimizers:

	 (M ) � B̄
�
	 n(M � n

n ); "S
n
�

and 	 n(M n) � B̄
�
	 (M � n); "R

n
�
: (2.11)

If F , Fn are “not too shallow”, one may expect existence of a (small)rn � 0 with

	 n(M � n
n ) � B̄(	 (M ); rn) and 	 (M � n) � B̄(	 n(M n); rn): (2.12)
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2 Parametric OptimizationProblems

Under these circumstances, the triangle inequality would yield:

	 (M ) � B̄
�
	 n(M n); rn + " S

n
�

and 	 n(M n) � B̄
�
	 (M ); rn + " R

n
�
:

This idea will guide us in our attempt to deduce quantitative convergence rates
in section 2.3.3. The major task will be to �nd a way to express what “not too
shallow” actually means. This approach will depend crucially on some very detailed
information onF , Fn—information that may be prohibitively hard to obtain in
practice.

Therefore, we establish less restrictive conditions that allow us to deduce Kura-
towksi convergence (or even Hausdor� convergence) from(2.11)without giving a
precise convergence rate. This will be the focus of section 2.3.1, where Lemma 2.16
will be used.

For both approaches, we will have to transport variational information ofF
forward toX along	 . This is why we introduce the (variational) pushforward �rst.

2.2.2 Pushforward

De�nition 2.17 Let F : Y ! ]�1 ; 1 ] be a function and : Y ! X a mapping to
a topological spaceX. With the conventioninf(; ) = 1 , de�ne the(variational)
pushforward of F along by

( #F)(x) B inf f F(y) j y 2 Y:  (y) = xg= inf
y2 � 1(x)

F(y):

Example 2.18 For injections, the pushforward reduces to the well-known and fre-
quently used extension by in�nity: Assume that	 : C ,! X and	 n : Cn ,! X are
injections. Then	 #F and (	 n)#Fn are given by

(	 #F )(x) =

8
>><
>>:
F (x); x 2 C

1 ; else
; ((	 n)#Fn)(x) =

8
>><
>>:
Fn(x); x 2 Cn

1 ; else
:

This allows one to treat the optimization problems forF andFn on a common space.

We list some elementary properties of the pushforward:

Lemma 2.19 Let F : Y ! ]�1 ; 1 ] be a function withinf (F) < 1 ,  : Y ! X some
mapping and%2 [0;1 [. Then one hasinf( #F) = inf(F) and

 (arg min%(F)) � arg min%( #F) =
\

�>%

 (arg min� (F)):

Equality holds, e.g., if for eachx 2 arg min%( #F), the functionFj � 1(x) attains its
in�mum.
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2.2 Proximity

Proof . First, note that( #F)( (y)) = infa2 � 1( (y)) F(a) � F(y) holds for ally 2 Y.
This leads to inf( #F) � inf(F) and

 (arg min%(F)) � arg min%( #F) for all %2 [0;1 ]: (2.13)

Because ofinf ( #F) � inf (F) < 1 , there exists a sequence(xn)n2N with ( #F)(xn) <
1 for all n 2 N andlim inf n!1 ( #F)(xn) = inf( #F). For eachn 2 N, xn has to be
in the image of since( #F)(xn) is �nite. So, we may chooseyn 2  � 1(xn) with
F(yn) � ( #F)(xn) + 1

n. This leads to

inf(F) � lim inf
n!1

F(yn) � lim inf
n!1

�
( #F)(xn) + 1

n

�
= inf( #F);

thus inf(F) = inf( #F). The case inf(F) = �1 is also included.
From now on, let%2 [0;1 [ be �nite. We are going to show

arg min%( #F) �  (arg min� (F)) for each� > %. (2.14)

Therefore, letx 2 arg min%( #F). Since one has( #F)(x) � inf ( #F) + %= inf(F) +
% <1 , there is a minimizing sequence (yn)n2N of Fj � 1(x), i.e.,yn 2  � 1(x) and

F(yn) � inf
a2 � 1(x)

F(a) + 1
n = ( #F)(x) + 1

n

� inf( #F) + %+ 1
n = inf(F) + %+ 1

n:

For n > 1
� � %, one hasyn 2 arg min� (F) andx =  (yn) 2  (arg min� (F)). This shows

arg min%( #F) �  (arg min� (F)) for each� > %. Now, (2.13)and(2.14)together
yield

arg min%( #F) �
\

�>%

 (arg min� (F)) �
\

�>%

arg min� ( #F) = arg min%( #F):

If for x 2 arg min%( #F) the functionFj � 1(x) attains its in�mum, say aty 2 Y, one
hasF(y) = infa2 � 1(x) F(a) = ( #F)(x) � %, showing thatx 2  (arg min%(F)). �

Remark 2.20 As a curiosity with few practical value, we would like to mention that
arg min%( #F) =

T
�>%  (arg min� (F)) also holds true for%= 1 if one interpretsT

�>% as an “intersection in the spaceX”, i.e. if one uses the de�nition
\

�>%

 (arg min� (F)) B f x 2 X j 8� > % : x 2  (arg min� (F)) g:

Since the setf � 2 [�1 ; 1 ] j � > 1 g is empty, one has
\

�> 1

 (arg min� (F)) = X = arg min1 ( #F):
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2 Parametric OptimizationProblems

Remark 2.21 Colloquially, the su� cient condition for equality in the preceding
lemma can be restated as: Non-empty -slices � 1(x), x 2 X are “small” enough to
allow Fj � 1(x) to be minimizable.

For example, this su� cient condition is met if there is a topology onY such that
for each%2 [0;1 [ and eachx 2 X, the intersectionarg min%(F) \  � 1(x) is closed
and countably compact.

The pushforward allows us to draw a connection to epigraph distances of functions.
The following lemma may be seen as an epigraphical variant of Lemma 2.15.

Lemma 2.22 LetA � C , A n � C n be valid sets and assumeSn(A ) � A n, Rn(A n) �
A , and�1 < inf(F ); inf (Fn) < 1 . PutH B (	 jA )#(F jA ), H n B (	 njA n)#(FnjA n),
N % B arg min%(H ), andN %

n B arg min%(H n). Denote by" n the proximity error
of (Sn;Rn) on (A ;A n) and by� S

n , � R
n , � n the consistency errors of(F ;Fn;Sn;Rn)

on (A ;A n). With m B inf(H ), mn B inf(H n), andrn B maxf" n; � ng, one has for
1 > � > % � 0:

1. epim+%(H ) � B̄(epim+� +� S
n (H n); rn) ,

2. epimn+%(H n) � B̄(epimn+� +� R
n (H ); rn) ,

3. N %� B̄(N � +2� n
n ; rn),

4. N %
n � B̄(N � +2� n; rn).

Proof . Claim 1: Let 1 > � > % � 0. If epim+%(H ) is empty, we are done. Otherwise,
let (x; t) 2 epim+%(H ). SinceH (x) � t � m+ % <1 is �nite, there is ana 2 A with
	 (a) = x andF (a) � H (x) + � � %. Puty B 	 n � S n(a) 2 	 n(A n). By consistency,
one has

H n(y) � F n(Sn(a)) � F (a) + � S
n � t + � � %+ � S

n � � + � S
n ; (2.15)

thus(y; t + � S
n ) 2 epim+� +� S

n (H n). Using the de�nition of the proximity error leads to

dX(x; y) = dX(	 (a); 	 n(Sn(a)) � " n;

distX� R
�
(x; t); epim+� +� n(H n)

�
� dX� R

�
(x; t); (y; t + � S

n )
�

� maxf" n; � ng= rn;

which shows the �rst claim.
Claim 3: BecauseA , A n are valid, one has for the in�mal valuesm = inf(H ) =

inf(F ), mn = inf(H n) = inf(Fn) and by Lemma 2.5jm� mnj � � n. Denote by
prX : X� ]�1 ; 1 [ ! X the canonical projection. With the box metric onX� ]�1 ; 1 [,
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2.3 Stability

one hasprX(B̄(U ; r)) � B̄(prX(U ); r) for any setU � X � ]�1 ; 1 [. Combining this
with Claim 1 and using Lemma 2.5 leads to

N %= P(epim+� (H )) � P
�
B̄(epim+� +� S

n (H n); rn)
�

� B̄
�
P(epim+� +� S

n (H n)); rn

�

= B̄
�
N m� mn+� +� S

n ; rn

�
� B̄(N � +2� n

n ; rn):

The proofs of Claims 2 and 4 are analogous. �

Remark 2.23 In general, the setsN 0, N 0
n need not to coincide with	 (A \ M ) and

	 n(A n \ M n). Moreover, handling both conditionsSn(A ) � A n andRn(A n) � A at
once may be quite di� cult in practice.

Remark 2.24 It is instructive to apply the preceding lemma in the setting of Exam-
ple 2.18 together with a priori information; , M � A and; , M n � A n. Then one
hasepi%(H ) = epi%A (F ) andepi%(H n) = epi%A n

(Fn) for %2 R. The �rst two results of
the lemma can be simpli�ed to

epim+%
A (F ) � B̄(epim+� +� S

n
A n

(Fn); rn) and epimn+%
A n

(Fn) � B̄(epimn+� +� R
n

A (F ); rn):

For%= 0, the third and fourth statements lead to

M � B̄(M � +2� n
n ; rn); and M n � B̄(M � +2� n; rn) for all � > 0.

2.3 Stability

In order to deduce set convergence of	 n(M n) to 	 (M ) from Lemma 2.15 or
Lemma 2.16, one requires a reasonable interplay betweenF and	 (and probably an
analogous interplay betweenFn and	 n). We term the presence of such an interplay
asstability. First, we give a rather weak, purely qualitative condition and point out
its relation to the concept of lower semi-continuity. Afterwards, we will discuss
other conditions that are more suitable for quantitative results.

2.3.1 Topological stability

De�nition 2.25 Let F : Y ! ]�1 ; 1 ] be a function, : Y ! X a mapping to a
topological spaceX, K � X a closed set. We callF topologically stable along 
over K, if

K \  (arg min(F)) =
\

%>0

K \  (arg min%(F)):
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The notion of topological stability is a generalization of lower semi-continuity in
the context of test mappings:

Example 2.26 Let X be a topological space,K � X a closed set, andF : X !
]�1 ; 1 ] lower semi-continuous onK, i.e., the lower level sets ofFjK are closed inK
(and thus inX becauseK is closed). ThenF is topologically stable alongidX overK.

Example 2.27 Let X be a topological space,Y � X a closed set, andF : Y !
]�1 ; 1 ] lower semi-continuous onY. Denote by : Y ,! X the inclusion mapping.
Since #F is the extension by in�nity (see Example 2.18), it is lower semi-continuous,
thus topologically stable onX.

We arrive at the �rst main theorem of this chapter.

Theorem 2.28 (Kuratowksi convergence of minimizers)
Let A � C and A n � C n be valid sets and letK � X be a closed set such that
	 (Rn(A n)) � K holds for all su� ciently largen. Assume consistency and proximity,
i.e., � n

n!1
�! 0 and" n

n!1
�! 0, and topological stability ofF . Then one has

Ls
n!1

	 n(A n \ M n) � K \ 	 (M ):

If 	 (M ) � 	 (A \ M ) \ K andSn(A ) � A n hold for all su� ciently largen, then
one has Kuratowski convergence

	 (M ) = Lt
n!1

	 n(A n \ M � n
n ):

Proof . From the second statement of Lemma 2.15 with%= 0, we have for su� -
ciently largen 2 N:

Ls
n!1

	 n(A n \ M n) � Ls
n!1

B̄
�
	 (Rn(A n) \ M � n); "R

n
�

� Ls
n!1

B̄(K \ 	 (M � n); "R
n ):

Using Lemma 1.14 withAn B K \ 	 (M � n) andrn B " R
n , we obtain

Ls
n!1

B̄(K \ 	 (M � n); "R
n ) = Ls

n!1
K \ 	 (M � n) =

\

n2N

K \ 	 (M � n):

Now, topological stability ofF along	 overK leads to the �rst statement. In the
same way, one shows

Ls
n!1

	 (Rn(A n) \ M 2� n) � Ls
n!1

K \ 	 (M 2� n) � K \ 	 (M ):
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2.3 Stability

The conditionSn(A ) � A n allows us to use Lemma 2.16, leading to

	 (A \ M ) � Li
n!1

	 n(A n \ M � n
n )

� Ls
n!1

	 n(A n \ M � n
n ) � Ls

n!1
	 (Rn(A n) \ M 2� n) � K \ 	 (M ):

If both 	 (A \ M ) andK contain all images of minimizers	 (M ), the above chain
of inclusions is closed. In particular,Ltn!1 	 n(A n \ M � n

n ) exists and coincides with
	 (M ). �

Remark 2.29 We point out that this theorem holds as well if� n � 0 is any upper
bound for the consistency errors with� n

n!1
�! 0. Thus, this theorem does not only

show theexistenceof some%n
n!1
�! 0 with arg min(F ) = Ltn!1 arg min%n(Fn), as

Theorem 1.22 does in the �nite dimensional case, but it also tells ushowto obtain
such a sequence.

Finally, the equivalence of Kuratowski and Hausdor� convergence in compact
metric spaces (Lemma 1.16) yields:

Corollary 2.30 In addition to all the conditions in Theorem 2.28, assume that the
setsM and A n \ M � n

n are non-empty for all su� ciently largen and that the set
K � X is compact. Then one has Hausdor� convergence, i.e.,

lim
n!1

distX
�
	 (M ); 	 n(A n \ M � n

n )
�

= 0:

2.3.2 Examples

The notion of topological stability seems quite arti�cial. Therefore, some further
examples are in order.

Lemma 2.31 Let Y, X be topological spaces,F : Y ! ]�1 ; 1 ],  : Y ! X, and
K � X a closed set. Assumeinf(F) < 1 , K \  (arg min%(F)) = K \ arg min%( #F)
for all %2 [0;1 [, and that #F is lower semi-continuous on K.

Then F is topologically stable along over K.

Proof . Note that the setarg min%( #F) is closed for all%2 [0;1 [ because #F is
lower semi-continuous. One has by Lemma 2.19

K \  (arg min(F)) = K \ arg min( #F) =
\

%>0

K \ arg min%( #F)

=
\

%>0

K \ arg min%( #F) =
\

%>0

K \  (arg min%(F)): �
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Example 2.32 Let X be a Banach space,Y a re�exive Banach space, : Y ! X a
compact linear map, andF : Y ! R a lower semi-continuous map with convex and
bounded lower level sets. The lower level setarg min%(F) is closed (Hahn-Banach
theorem) and sequentially compact (Banach-Alaoglu theorem) in the weak topology
of Y. Because is a compact operator, it mapsarg min%(F) onto a compact, thus
closed set inX. Moreover, for eachx 2 X, arg min%(F)\  � 1(x) is closed and compact
in the weak topology. By Lemma 2.19, we have (arg min%(F)) = arg min%( #F),
which is why #F is lower semi-continuous. Now, Lemma 2.31 implies thatF is
topologically stable along overX.

A prominent example is given by the canonical embedding : W1;2
0 (
 ) ! L2(
 )

and the Dirichlet energyF(u) B 1
2

R


jduj2 d� , u 2 W1;2

0 (
 ) for a bounded domain

 � Rd.

Example 2.33 Let Y be a topological space,� � Y � Y an equivalence relation
andF : Y ! R a continuous function that is invariant on equivalence classes, i.e.,
y1 � y2 impliesF(y1) = F(y2). Let X B Y= � be the quotient space, equipped with
the quotient topology and denote by : Y ! X B Y= � the quotient mapping. Then
 #F is continuous andF factors through the quotient:

Y F //

 
��

R

X
 #F

?? :

Again, Lemma 2.31 shows thatF is topologically stable along overX.

Example 2.34 In particular, the previous setting is powerful, if� is induced by the
orbits of an actionm: G � Y ! Y of a non-compact topological groupG that leaves
F invariant. Even if arg min(F) is non-compact, themoduli space

arg min( #F) = arg min(F)=G

may be compact. Thus,F is stable along over every compact setK containing
 (arg min(F)) and there is a chance to put Corollary 2.30 to use.

For example, this setup may occur in gauge theory where the Lagrangian is invari-
ant under the action of the group of gauge transformations. Other examples can be
found in geometric optimization problems, where the objective function is invariant
under the isometry group or under some other subgroup of the di� eomorphisms of a
manifold—as will be the case in our treatment of minimal surfaces in Chapter 7.

32



2.3 Stability

2.3.3 Quantitative stability

Still, the result of Theorem 2.28 is a bit dissatisfactory, because it does not provide
any answers to the following questions:

1. Are there any cluster points of minimizers of theFn at all, i.e.,

Ls
n!1

(A n \ 	 n(M n)) , ; ?

Note that together with Claim 1 of Theorem 2.28, a positive answer would
provide a proof for the existence of minimizers ofF .

2. Do the discrete minimizersconvergein the sense of Kuratowski, i.e.,

Li
n!1

(A n \ 	 n(M n)) = Ls
n!1

(A n \ 	 n(M n))?

3. Canall smooth minimizers be approximated by discreteminimizers, i.e.,

	 (M ) = Lt
n!1

(A n \ 	 n(M n))?

4. If yes, do the discrete minimizers converge uniformly, i.e.,

lim
n!1

dist
�
	 (M ); 	 n(M n)

�
= 0?

5. If so, what is the uniform convergence rate?

These questions can be addressed by appropriate notions of conditioning and
stability. The essential ideas are not new for they can be found, e.g., in [2], [34], [5],
and [4]. We adapted them with small changes in order to make them applicable in
the presence of test functionals.

De�nition 2.35 We call the pair(F;  ) faithful, if the pushforward along does not
introduce “new” minimizers in the sense that (arg min(F)) = arg min( #F):

De�nition 2.36 (Conditioning) Let f : [0; 1 ] ! [0; 1 ] be a nondecreasing func-
tion with f (0) = 0, let (X;d) be a metric space,H : X ! ]�1 ; 1 ] be a function, and
K � X a set. We sayH is f -conditioned onK if arg min(H) is non-empty and if one
has

H(x) � inf(H) + f (dist(x; arg min(H))) for all x 2 K.

For a functionF : Y ! ]�1 ; 1 ] and a mapping : Y ! X, we sayF is f -
conditioned along over K, if (F;  ) is faithful and if  #F is f -conditioned on
K.
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Remark 2.37 Note that our notion of conditioning also includeswell-posednessin
the sense that; , arg min( #F) =  (arg min(F)).

The usefulness of conditioning lies in the properties of the quantile function:

Lemma 2.38 Let f : [0; 1 ] ! [0; 1 ] be a nondecreasing function withf (0) = 0
and let s, t2 [0; 1 ]. Then f(t) � s implies t� f y(s), where

f y : [0; 1 ] ! [0; 1 ]; s 7! inf f t 2 [0; 1 ] j s � f (t) g

is thequantile functionof f .

Corollary 2.39 Let H: X ! ]�1 ; 1 ] be f -conditioned on K� X. Then one has

K \ arg min%(H) � B̄(arg min(H); f y(%)):

Corollary 2.40 Let F : Y ! ]�1 ; 1 ] be f -conditioned along : Y ! X over
K � X. Then one hasK \  (arg min%(F)) � B̄( (arg min(F)); f y(%)) for each
%2 [0;1 [.

Proof . By Lemma 2.19 and Corollary 2.39, we have

K \  (arg min%(F)) � K \ arg min%( #F) � B̄(arg min( #F); f y(%)):

Using the faithfulness of (F;  ) �nishes the proof. �

The second main theorem of this chapter is:

Theorem 2.41 Let A � C , A n � C n be valid sets and letK , K n � X be sets with
	 �R n(A n) � K and	 n �S n(A ) � K n. Let f , fn : [0; 1 ] ! [0; 1 ] be nondecreasing
functions withf (0) = fn(0) = 0. Let � n be the total consistency error and" S

n , " R
n be

the sampling and reconstruction proximity errors, respectively. Then:

1. If F is f -conditioned along	 overK , one has

	 n(A n \ M n) � B̄(	 (M ); rR
n ) with rR

n B " R
n + f y(� n):

2. If Fn is fn-conditioned along	 n overK n, one has

	 (A \ M ) � B̄(	 n(M n); r
S
n ) with rS

n B " S
n + f y

n (� n):
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2.3 Stability

If both conditions are satis�ed and if one has	 n(A n \ M n) � 	 n(M n) and	 (A \
M ) � 	 (M ), then the Hausdor� distance between	 n(M n) and	 (M ) is bounded
bymax(rS

n ; rR
n ):

Proof . Claim 1: By Lemma 2.15 and	 (Rn(A n)) � K , we have

	 n(A n \ M n) � B̄(K \ 	 (M � n); "R
n ):

The conditioning ofF allows us to use Corollary 2.40 in order to obtain

K \ 	 (M � n) � B̄(	 (M ); f y(� n)):

Now, the triangle inequality leads to

	 n(A n \ M n) � B̄
�
B̄(	 (M ); f y(� n)); "R

n
�

� B̄(	 (M ); "R
n + f y(� n)):

Claim 2: Analogously, we obtain from Lemma 2.15,	 n(Sn(A )) � K n, Corol-
lary 2.40, and the triangle inequality (in that order) that:

	 (A \ M ) � B̄(	 n � S n(A ) \ 	 n(M � n
n ); "S

n )

� B̄(K n \ 	 n(M � n
n ); "S

n )

� B̄
�
B̄(	 n(M n); f y

n (� n)); "S
n
�

� B̄(	 n(M n); f y
n (� n) + " S

n ): �

Remark 2.42 Note that the previous theorem can also be applied to the functions
Fn andFm for largen, m 2 N as a technique to show that

�
	 n(A n \ M n)

�
n2N is a

Cauchy sequence in(B(X); distX). Successfully applied, this can be used together
with Theorem 1.9 and Theorem 2.28 to showexistenceof minimizers ofF .

In light of Theorem 2.41, it is desirable to consider a particular class of condition-
ing functions:

De�nition 2.43 A nondecreasing functionf : [0; 1 ] ! [0; 1 ] with f (0) = 0 is

called amodulus of stabilityif its quantile function satis�esf y(s)
s! 0
�! 0.

Notice that even if eachFn is fn-conditioned with modulus of stabilityfn, this
does not guaranteef y

n (� n)
n!1
�! 0. This is why we introduce the following notion.

De�nition 2.44 (Stability) Let K , K n � X be sets. We call(F ;Fn) f -stable along
(	; 	 n) over(K ;K n), if there is a modulus of stabilityf such that
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1. F is f -conditioned along	 overK .

2. For eachn 2 N, Fn is f -conditioned along	 n overK n.

We formulated our de�nitions such that—under mild additional assumptions—
our results read much like the “fundamental theorem of numerical analysis”. This
becomes even clearer in the caseX = C, 	 = idC and	 n = Rn:

Theorem 2.45 Assume; , M � A , ; , M n � A n, Rn(A n) � K , (Rn � S n)(A ) �
K n and" n B supa2A dC(Rn � S n(a); a)

n!1
�! 0:

Then consistency4 and f -stability5 imply convergence

Rn(M n)
n!1
�! M

in Hausdor� distance with respect to dC with convergence rate" n + f y(� n).

Proof . Observe that" R
n = 0 so" n is precisely the proximity error of(Sn;Rn) with

respect to (idC;Rn) on (A ;A n). Hence, Theorem 2.41 is directly applicable. �

2.3.4 Examples

In general, quantitative conditioning of a given function may be quite hard to show.
However, there are some straightforward and well-known examples:

Example 2.46 Coercivity of bilinear forms is related to conditioning:
Let (X;h�; �i ) be a Hilbert space,A: X ! X a (not necessarily continuous) self-

adjoint operator, andv 2 X. Consider the functionF(x) B hA x; xi + hv; xi and
observe thatarg min(F) , ; holds if and only ifA is positive semi-de�nite andv
is contained inim(A) = ker(A)? . Assume thatv 2 im(A) and thatA is positive
semi-de�nite with positive spectral gap� = inf (� (A) n f0g) > 0, where� (A) denotes
the spectrum ofA. In this case, one hasarg min(F) = Ayv + ker(A) with the Moore-
Penrose pseudoinverseAy of A. HenceF is f -conditioned withf (t) = � t2.

One calls the bilinear formb: (x; y) 7! hAx; yi coercive with coercivity constant
� , if and only if A is positive de�nite with� = inf(� (A)) > 0. The Lax-Milgram
theorem implies thatA is continuously invertible, thusv 2 im(A) is readily ful�lled.
This shows that the coercivity ofb implies thef -conditioning ofF.

4of (F ;Fn;Sn;Rn) on (A ;A n)
5of (F ;Fn) along (idC;Rn) over (K ;K n)

36
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Example 2.47 Let (X;d) be a convex length space in the sense that every pair of
points can be joined by a length minimizing geodesic. LetF : X ! R be a uniformly
convex function in the sense

F(
 (t)) � (1 � t)F(
 (0)) + t F(
 (1)) � t(1 � t) f (d(
 (0); 
 (1))); t 2 [0; 1];

for an arbitrary length minimizing geodesic
 : [0; 1] ! X. Here,f : [0; 1 [ ! [0; 1 [
is themodulus of convexityof F, i.e., a nondecreasing function withf (0) = 0.
Note thatarg min(F) is convex. Assumearg min(F) , ; . For arbitraryx 2 X,
z 2 arg min(F), let 
 : [0; 1] ! X be a length minimizing geodesic fromz to x. Then
one hasF(
 (t)) � F(
 (0)) for all t 2 [0; 1], hence

F(x) = F(
 (1))) � sup
t2[0;1]

1
t

�
F(
 (t)) � (1 � t) F(
 (0)) + t(1 � t) f (d(x; z))

�

� sup
t2[0;1]

1
t

�
t F(
 (0)) + t(1 � t) f (d(x; z))

�

= inf(F) + f (d(x; z)):

ThusF is f -conditioned. See also [15, Chapter 1].

Both going over to a weaker metric and extension by in�nity (see Example 2.18)
do not essentially destroy conditioning as the following lemma shows:

Lemma 2.48 Let (X;dX), (Y;dY) be metric spaces, letF : Y ! R be f -conditioned
overY, and : Y ! X be Lipschitz continuous such that(F;  ) is faithful. Then #F
is h-conditioned along over X with h(t) = f (Lip( )� 1 t).

Proof . Note that arg min(F) is necessarily non-empty, hence

arg min( #F) =  (arg min(F))

is also non-empty by faithfulness. Forx 2 X n (Y), one has( #F)(x) = 1 . Hence,
we have to check conditioning for points in (Y), only. Forx 2  (Y), one has

distX(x;  (arg min(F))) � Lip( ) distY(y; arg min(F)) for all y 2  � 1(x).

Together with faithfulness, this leads to

( #F)(x) = inf f F(y) j y 2  � 1(x) g

� inf f inf(F) + f (distY(y; arg min(F))) j y 2  � 1(x) g

� inf(F) + f
�
Lip( )� 1 distX(x;  (arg min(F)))

�

= inf(F) + h
�
distX(x; arg min( #F))

�
: �
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2.4 Constraints

To conclude this chapter, we brie�y demonstrate how sampling and reconstruction
operators can be obtained in the presence of constraints.

Let C̃, C̃n, Y , Y n be metric spaces and let the con�guration spacesC, Cn be given
by constraints of the form

C B f x 2 C̃ j � (x) 2 B g= � � 1(B);

Cn B f x 2 C̃n j � n(x) 2 Bn g= � � 1
n (Bn);

where� 2 C0(C̃; Y ), � n 2 C0(C̃n; Y n) are continuous mappings andB � Y ,
Bn � Y n are non-empty, closed subsets.

Moreover, assume that the domains of the mappingsF , 	 andFn, 	 n includeC̃
andC̃n, respectively. In practice, it may be di� cult to construct exact sampling and
reconstruction operators

Sn : A ! C n and Rn : A n ! C

explicitly. But often, operators̃Sn : A ! C̃n andR̃n : A n ! C̃ can be constructed
such that the following errors are “small”:

� S̃
n B sup

a2A
(Fn � S̃n(a) � F (a))+; � R̃

n B sup
a2A n

(F � R̃n(a) � F n(a))+;

" S̃
n B sup

a2A
dX(	 n � S̃n(a); 	 n(a)); " R̃

n B sup
a2A n

dX(	 � R̃n(a); 	 n(a));

� S̃
n B sup

a2A
distY n(� n � S̃n(a);B); � R̃

n B sup
a2A n

distY (� � R̃n(a);B):

As for the convergence analysis, we need merely theexistenceof sampling and
reconstruction operators. Thus, an implicit argument for their existence in the
vicinities of S̃n andR̃n su� ces. Such implicit arguments can be provided by suitable
“openness” conditions on� and � n. We discuss the setting for reconstruction
operators; the approach for sampling operators is analogous.

De�nition 2.49 Let (X;dX), (Y;dY) be metric spaces,r > 0, � > 0 be constants,
andU � X a set. We call a mappingf : X ! Y (#; � )-open onU if B̄( f (a); ") �
f
�
B̄(a; � " )

�
holds for alla 2 U and all 0� " < # .

For a more detailed treatment of openness and the related notion of metric regular-
ity conditions we refer to [34, Section 9.G]. At the moment, we are satis�ed with the
following simple implications:
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Lemma 2.50 Assume� R̃
n � #0 < # and that� is (#; � )-open onR̃n(A n). Then for

each� 2
�
�; #

#0
�

�
, there is a reconstruction operatorRn : A n ! C with

sup
a2A n

dC̃(R̃n(a);Rn(a)) � � � R̃
n :

Proof . For b 2 A n let a = R̃n(b). Because one hasdistY (� (a);B) � � R̃
n � #0 and

�
� � R̃

n < #, there is ay 2 B with y 2 B̄
�
� (a); �

� � R̃
n
�
. The (�; # )-openness of� implies

y 2 B̄
�
� (a); �

� � R̃
n
�

� �
�
B̄

�
a; �

� � � R̃
n
��

= �
�
B̄

�
a; � � R̃

n
��

:

Hence, there is anx 2 B̄(a; � � R̃
n ) with � (x) = y 2 B, thusx 2 C. Now de�ne

Rn(b) B x and observedC̃
�
R̃n(b);Rn(b)

�
= dC̃(a; x) � � � R̃

n . �

Corollary 2.51 In addition to the condition of the previous lemma, assume that
F and	 are Lipschitz continuous on̄B(R̃n(A n); � # ). Then one has the following
estimates for the consistency and proximity errors� R

n , " R
n :

� R
n � � R̃

n + Lip(F ) � � R̃
n ; and " R � " R̃ + Lip(	 ) � � R̃

n

The situation that we actually have in mind is the following:

Lemma 2.52 Let R > 0 and U � C̃ be an open set with̄B(R̃n(A n);R) � U .
Moreover, assume that there areC � 0, � > 0 such that the following conditions are
ful�lled:

1. � 2 C1;1(U ; Y ) with Lip(D� ) � C.

2. For eacha 2 	 n(A n), there is a closed vector spaceZ a � C̃ such that
C̃ = ker(D� (a)) � Z a andkD� (a) ukY � � kukC̃ holds for each u2 Z .

Let# = �
2 min

� �
C ;R

�
and� = 2

� . Then� is (#; � )-open onR̃n(A n).

Proof . Fix b 2 A n and puta = 	 n(a). Let X B Z a be the aforementioned closed
vector space and let" � 0 with " < # be arbitrary. Withr = 2

� " < min
� �

C ;R
�

and
U B (B̄(0; r) \ Z a) de�ne the mapping

f : U ! Y; f (x) B � (a + x):

For all x 2 U andu 2 X, one has

a + x 2 U and D f (x) u = D� (a + x) u;

thus the conditionskD f (0)uk � � kuk andLip(D f ) � C of the quantitative implicit
function theorem (see Theorem 2.53 below) are ful�lled; one obtains

B̄(� (a); ") = B̄( f (0); ") � f
�
B̄(0; 2

� " )
�

= �
�
B̄(a; 2

� " )
�
: �
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Theorem 2.53 (Quantitative inverse mapping theorem)
Let X, Y be Banach spaces,U � X be an open, convex set, anda 2 U a point. Let
f 2 C1;1(U; Y) such that there are C� 0 and� > 0 with:

1. For all v 2 X: kD f (a) vk � � kvk, and

2. Lip(D f ) � C.

Fix r < min( �
C ; dist(a; X nU)). Then the restrictionf jB̄(a;r) is aC1;1-diffeomorphism

onto its image and one has the inclusion

B̄( f (a); ") � f
�
B̄(a; 2� � 1" )

�
for each0 � " � �

2 r.

Proof . Let � 0 B � � Cr > 0. For x 2 B̄(a; r) andv 2 X, Lipschitz continuity ofD f
yields

kD f (x) vk � kD f (a) vk � k(D f (x) � D f (a)) vk

� (� � Ckx � ak)kvk � (� � Cr)kvk = � 0kvk: (2.16)

Let 0 < r0 < � 0

C , r0 � r and� 00B � 0 � Cr0 > 0. For x, y 2 B̄(a; r0), Taylor's theorem
implies

kf (y) � f (x)k � kD f (x) (y � x)k � C
2 ky � xk2

� (� 0 � Cr0)ky � xk = � 00ky � xk:

This shows thatf jB̄(a;r) is injective. From

kD f (a)� 1D f (x) � Idk � k D f (a)� 1k kD f (x) � D f (a)k � C
� kx � ak < 1

andA� 1 = � ((Id � A) � Id)� 1 = �
P 1

k=0(Id � A)k it follows thatD f (x) is invertible for
all x 2 B̄(a; r). The inverse function theorem [40, Corollary 4.37, p. 172] states that

h B f jB̄(a;r) : B̄(a; r) ! f
�
B̄(a; r)

�

is aC1;1-di� eomorphism. Furthermore, we have for allx 2 B̄(a; r)

kh(x) � h(a)k = kf (x) � f (a)k � kD f (a) (x � a)k � C
2 kx � ak2

� (� � C
2 r)kx � ak � �

2kx � ak:

Let " 2 ]0; �
2 r]. Sinceh is a di� eomorphism, the setsW B h

�
B(a;2� � 1" )

�
and

U B B(h(a); ") \ W are open. Moreover, we have for eachy 2 @W that

ky � h(a)k = kh(h� 1(y)) � h(a)k � �
2kh� 1(y) � ak = �

2 ":
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2.4 Constraints

HenceV B B(h(a); ") nW = B(h(a); ") nW is also an open set. Thus,U, V is an
open covering of the connected setB(h(a); "). SinceU containsh(a), V has to be
empty which leads toB(h(a); ") � h

�
B(a;2� � 1" )

�
. Taking closures yields

B̄( f (a); ") = B̄(h(a); ") = B(h(a); ") � h
�
B(a;2� � 1" )

�

= h
�
B(a;2� � 1" )

�
= h

�
B̄(a; 2� � 1" )

�
= f

�
B̄(a; 2� � 1" )

�
;

where we used thatB(a; � ) = B̄(a; � ) holds in Banach spaces for all� > 0 and thath
is a homeomorphism. �
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3 Parametric Operator Problems

To some extent, the theory of parametric optimization can be directly applied to
operator problems. This shall be demonstrated in Section 3.1. We will be led
to a notion of conditioning for operators which we explore by discussing several
examples, including the classical notions of coercive linear operators and monotone
operators (Section 3.2). In particular, we focus our attention on those operators that
can be derived in a certain way from 1-forms (Section 3.2.2). We do this by having
in mind that virtually all theories of modern physics are based on the principle of
stationary action: The constituting equation of a physical system isdL = F, where
L is the Lagrangian of the system andF encodes non-conservative forces such as
friction. If the con�guration space consists of �elds (as in elasticity, electrodynamics,
or �uid dynamics), the constituting equations are usually partial di� erential equations
and generalized Ritz-Galerkin methods may be applied in order to approximate their
solutions. Therefore, we demonstrate the consequences of our considerations for
generalized Ritz-Galerkin methods in Section 3.3.

3.1 General Theory

From now on, letC be a topological space and� : E ! C a continuous, locally
trivial �ber bundle of metric spaces with �ber metricdE. Let � , � 2 � (C; E) be given
sections, i.e.,� � � = � � � = idC. We are going to consider� as the “operator” and
� as the “right-hand side” of theoperator problem:

Find thecut locusN B f x 2 C j � (x) = � (x) g. (3.1)

Example 3.1 Di� erential equations can be formulated as such operator problems
by consideringC as the function space and putting� (x) = F � Jr(x), whereJr is the
r-jet of x andF is a morphism of �ber bundles overC:

JrC F //

� Jr
""

E

�
||

C

:
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3 Parametric Operator Problems

Additionally, consider the family of operator problems

Find thecut locusNn B f x 2 Cn j � n(x) = � n(x) g, (3.2)

with topological spacesCn, continuous, locally trivial �ber bundles� n : En ! C n

with �ber metrics dEn, and sections� n, � n 2 � (Cn;En).
As before, we also assume the existence of communicationSn : dom(Sn) � C !

Cn andRn : dom(Rn) � C n ! C and test mappings	 : C ! X , 	 n : Cn ! X
to some metric space(X;dX). Approximation ofN by Nn will be formulated by
Hausdor� convergence of	 n(Nn) to 	 (N ) in the metric space (X; fX).

It is insightful to de�ne the real-valued functions

G: C ! R; G(x) B dE(� (x); � (x));
Gn : Cn ! R; Gn(x) B dEn(� n(x); � n(x));

since they allow us to use the theory of parametric optimization onG andGn in order
to obtain convergence results forNn. Note that ifN andNn are non-empty, they
coincide precisely with the global minimizers ofG andGn, respectively. This leads
us to the following notions of consistency and conditioning.

De�nition 3.2 (Consistency) Let A � dom(Sn), A n � dom(Rn) be non-empty sets.
By de�nition, the consistency errors of(� n; � n) with respect to(�; � ) coincide with
the consistency errors ofGn with respect toG. More explicitly, we de�ne:

1. thesampling consistency error

� S
n B sup

a2A

�
dEn(� n � S n(a); � n � S n(a)) � dE(� (a); � (a))

�+;

2. thereconstruction consistency error

� R
n B sup

a2A n

�
dE(� � R n(a); � � R n(a)) � dEn(� n(a); � n(a))

�+;

3. thetotal consistency error

� n B � S
n + � R

n :

We say the sequence
�
(� n; � n;Sn;Rn)

�
n2N is consistent with respect to(�; � ) on�

(A ;A n)
�
n2N if its consistency error� n converges to 0 asn ! 1 .

De�nition 3.3 Let g: [0; 1 ] ! [0; 1 ] be a nondecreasing function withg(0) = 0
and letK � X be some set. We say (�; � ) is g-conditioned along	 overK if G is.
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3.1 General Theory

The main theorem of this section is thus readily deduced from Theorem 2.41:

Theorem 3.4 Assume thatA \ N , ; andA n \ N n , ; . LetK , K n � X be sets
with 	 � R n(A n) � K and 	 n � S n(A ) � K n and letg, gn : [0; 1 ] ! [0; 1 ] be
nondecreasing withg(0) = gn(0) = 0. Denote by" S

n , " R
n the proximity errors of

(	; 	 n) on (A ;A n) and by� S
n , � R

n the consistency errors of(� n; � n) with respect to
(�; � ) on (A ;A n). Then:

1. If (�; � ) is g-conditioned along	 overK , one has

	 n(A n \ N n) � B̄(	 (N ); rR
n ) with rR

n B " R
n + gy

n(�
R
n ).

2. If (� n; � n) is gn-conditioned along	 n overK n, one has

	 (A \ N ) � B̄(	 n(Nn); rS
n ) with rS

n B " S
n + gy(� S

n ).

If both conditions are ful�lled and if one has	 (N ) � 	 (A \ N ) and 	 n(Nn) �
	 n(A n \ N n) then the Hausdor� distance between the sets	 (N ) and 	 (Nn) is
bounded bymax(rS

n ; rR
n ):

Proof . The assumptionsA \ N , ; andA n \ N n , ; guarantee thatA andA n

are valid with respect toG andGn, respectively. We could apply Theorem 2.41
directly in order to obtain essentially the same result. But since we have the further
informationinf (G) = inf (Gn) = 0, we may improve that a little in the following way:

Let z 2 A \ N . One has

gn(distCn(Sn(z);Nn)) � G n � S n(z) = (Gn � S n(z) � G (z))+ � � S
n ;

thus

distX(	 (z); 	 n(Nn)) � distX(	 (z); 	 n(Sn(z))) + distX(	 n(Sn(z)); 	 n(Nn))

� " S
n + gy

n(�
S
n ):

Analogously, one obtains distX(	 n(z); 	 (N )) � " R
n + gy(� R

n ) for all z 2 A n \ N n. �
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3 Parametric Operator Problems

3.2 Examples

Theorem 3.4 would be of little value, if there were no reasonable examples of well-
conditioned operators. In the following, we present a collection of examples together
with some useful properties.

Example 3.5 If � : E ! C happens to be a locally trivial bundle of normed vector
spaces, one may equivalently consider! B � � � . ThenN coincides with the set of
zeroes of! and one hasG(x) = k! (x)kE.

Example 3.6 WhenE � C � Y is a trivial vector bundle with the normed vector
spaceY as �ber, one may write! as ! (x) = (x; A(x)), x 2 C with a mapping
A: C ! Y. Then one hasG(x) = kA(x)kY andN = f x 2 C j A(x) = 0gis the set of
zeroes ofA.

For simplicity, we assume from now on thatE is a vector bundle.

3.2.1 Conditional cones

In view of Theorem 3.4, it is desirable thatSn(A ) andRn(A n) are contained in some
setsK n, K � X on which the operators! n = � n � � n and! = � � � are well-
conditioned. It is by no means necessary that these setsK n, K are neighborhoods
of 	 n(Nn), 	 (N ). In particular, this shifts the perspective from the question if!
is well-conditioned (everywhere) to the questionwhereis it well-conditioned. We
demonstrate in the following thatK may be, e.g., a union of conditional cones.

De�nition 3.7 Let X and Y be normed vector spaces and letA 2 L(X; Y) be a
continuous linear operator. For� > 0, de�ne the (not necessarily convex)conditional
� -cone of Aby

Cone� (A) B f u 2 X j kAuk � � kukg:

Lemma 3.8 Let X, Y be Banach spaces,U � X an open convex set, andA 2
C1;1(U; Y). Let � > 0 and0 < # < 1. Then for any two points x, y2 U with

y � x 2 Cone� (DA(x)) and ky � xk � # 2�
Lip(DA) ;

the following estimate holds

(1 � #)� ky � xk � kA(y) � A(x)k:
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3.2 Examples

Proof . By Taylor's theorem, one has

kA(y) � A(x) � DA(x)(y � x)k � 1
2 Lip(DA) kx � yk2;

leading to

kA(y) � A(x)k � kDA(x)(y � x)k � 1
2 Lip(DA)kx � yk2:

The cone condition andky � xk � # 2�
Lip(DA) imply

kA(y) � A(x)k � � kx � yk � 1
2 Lip(DA)kx � yk2 � (1 � #)� kx � yk: �

Lemma 3.9 Let X, Y be Banach spaces,U � X an open convex set, and letA 2
C1;1(U; Y) be a mapping withC B Lip(DA) andN B f x 2 U j A(x) = 0g, ; . Let
� > 0 and0 < # < 1. Then A is f -conditioned alongidU over the closure of the set

W B
[

x2N

B̄(x; #2�
C ) \ (x + Cone� (DA(x)));

with the function f(t) = (1 � #)� t.

Proof . Let z 2 W. For an arbitrary" > 0 there exists ay 2 B(z; ") \ W. By
the construction of the setW, there is somex 2 N such thatky � xk � # 2�

C and
y � x 2 Cone� (DA(x)). By Lemma 3.8, we obtain

kA(z)k = kA(z) � A(x)k

� kA(y) � A(x)k � kA(z) � A(y)k

� (1 � #)� ky � xk � C"

� (1 � #)� (kz � xk � kz � yk) � C"

� (1 � #)� kz � xk � ((1 � #)� + C)"

� (1 � #)� distX(z;N ) � ((1 � #)� + C)":

Note that we used the Lipschitz continuity ofA with Lipschitz constantC in order
to get from the second to the third line. Taking the supremum over all" > 0 yields
kA(z)k � f (distX(z;N )). �

Example 3.10 Let X be a Hilbert space,F : X ! R, F(x) = jxj4 � 2jxj2 be a double
well potential. ConsiderA: X ! X0 given by the di� erential ofF:

hA(x); ui = hdFjx; ui = 4jxj2hx;ui � 4hx;ui for all u 2 X.
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3 Parametric Operator Problems

The setN of zeroes ofA consists of the origin and the unit sphere:

N = f0g [ S; where S B f x 2 X j jxj = 1g:

The di� erentialDA: X ! L(X; X0) of A (and hence the Hessian ofF) is given by

hDA(x) u; vi = 4jxj2hu; vi + 8hx;uihx; vi � 4hu; vi for all u, v 2 X.

Identifying X0 � X by the Riesz isomorphism, we may treatDA as a mapping
DA: X ! L(X; X). While DA(0) = � 4 idX is a well-conditioned linear operator in
the classical sense, we haveker(DA(x)) = x? , f0gfor all x 2 S = N n f0g. However,
we have at leastx 2 Cone8(DA(x)) for eachx 2 S. Observe that

hD2A(x)(u; v);wi = 8hx;uihv;wi + 8hx; vihw;ui + 8hx;wihu; vi

leads toLip(DA(x)) � 24jxj. Thus, forr > 0 and U B B(0;1 + r), we have
C(r) B Lip(DAjU) � 24(1+ r). Chooser such that it ful�lls r = # 2�

C(r) = #
3(1+r) . Now,

Lemma 3.9 tells us for0 < # < 1 and� = 4 that A is f -conditioned onW with
f (t) = 4(1� #) t, where

W = B̄(N ; r) = B̄(0; r) [ B̄(0; 1 + r) n B̄(0;1 � r):

Moreover, one readily veri�es thatkA(x)k � 4(1� #) min(kxk; jkxk � 1j) holds for all
x 2 X nW. Hence,A is globally f -conditioned.

For applications, it may be very helpful to know that conditional cones have certain
continuity properties:

Lemma 3.11 Let X, Y be Banach spaces,� > 0, andA, B 2 L(X; Y) with kA � Bk <
� . Then one hasCone� (A) � Cone� � kA� Bk(B).

Proof . Foru 2 Cone� (A) one computes

kBuk � kAuk � k(B � A)uk � � kuk � kB � Ak kuk � (� � kA � Bk) kuk;

which shows thatu 2 Cone� � kA� Bk(B). �

3.2.2 Operators induced by di� erential 1-forms

As explained in the introduction to this chapter, many important examples are covered
by the following situation:C is a Banach manifold,T0C is the continuous cotangent
bundle, and! 2 � (C; T0C) is a (not necessarily di� erentiable) di� erential 1-form.
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3.2 Examples

Example 3.12 Let C = X be a Banach space. Then one may identifyT0C with
X � X0 and 1-forms onC coincide with operatorsA: X ! X0 via ! (x) = (x; A(x)).

It is now tempting to apply Theorem 3.4 directly to! by using the function
G(x) B k! (x)kT0

xC. But this may be suboptimal for stability considerations (see
Example 3.13 below). In the following, we outline a more promising approach.

Frequently, the linear functional! (x) : TxC ! R is also continuous with respect
to a weaker normk�kEx

onTxC. Let (Ejx; k�kEx
) be the completion ofTxC with respect

to k�kEx
and assume that the family(Ex)x2C gives rise to a locally trivial bundle

� E : E ! C of Banach spaces. Let̄! (x) 2 E0
x be the unique continuous linear

extension of! (x) 2 T0
xC and let�x : TxC ,! E x be the canonical inclusion. This

leads to vector bundle mappings

TC

� TC   

� //E

� E••
C

and
E0

� E0 ��

�0 //T0C

� T0C}}
C

:

Note that one has! = �0� !̄ and that the image of�x in Ex is dense, thus�0x is injective.
Hence, the zeroes of! and ¯! coincide:

N = f x 2 C j ! (x) = 0g= f x 2 C j !̄ (x) = 0g:

De�ne the functionḠ: C ! R, Ḡ(x) B k!̄ (x)kE0
x
. If x 7! k�xk is uniformly bounded

by someC � 0, one has

Ḡ(x) = k!̄ (x)kE0
x

= sup
u2Ex
u, 0

jh!̄ (x); uij
kukEx

= sup
v2TxC
v, 0

jh!̄ (x); �xvij
k�xvkEx

� sup
v2TxC
v, 0

jh�0x!̄ (x); vij
k�xk kvkTxC

� C� 1 G(x):

This tells us that—up to a constant—̄G is never worse-conditioned thanG. Even
more,Ḡ may be much better conditioned thanG, as the following example shall
illustrate:

Example 3.13 Let (�; g) be a compact, connected, smooth Riemannian manifold
with non-empty boundary. Forp 2 [2;1 ] and its Hölder conjugateq 2 [1;2], put
X = W1;p

0;g (� ; Rm) andY = W1;q
0;g(� ; Rm). The canonical inclusionJ: X ,! Y has

dense image inY, thusJ0 is injective.
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3 Parametric Operator Problems

Consider the LaplacianA: X ! X0 given byhA( f ); ui =
R

�
hdf; dui g volg. As it

turns out,A( f ) is continuously extendable ontoY, producing an element̄A( f ) 2 Y0.
We may writeĀ: X ! Y0 with A = J0 � Ā. Let � 2 Y0 be arbitrary and de�ne the
operators! ( f ) = ( f; A( f ) � � ) and!̄ ( f ) = ( f; Ā( f ) � � ). Let f0 2 N be a solution to
A( f0) = � and let f 2 X be arbitrary. Together with Lemma 1.2, one obtains

k!̄ ( f )kY0 = k!̄ ( f ) � !̄ ( f0)kY0 = kĀ( f � f0)k

� 1
(1+Cp)(1+Cq)kf � f0kW1;p

0;g
� 1

(1+Cp)(1+Cq) distX( f ;N ):

As a consequence, the operator!̄ is g-conditioned (alongidX overX) with the linear
modulus of stabilityg(t) = t

(1+Cp)(1+Cq) .
Note that whenp > 2, the operator! : X ! T0X, ! ( f ) B ( f; A( f ) � � ) cannot

beg-conditioned with alinear modulus of stability: Otherwise,A: X ! X0 would
be an isomorphism of Banach spaces and the continuoussymmetricbilinear form
b: X� X ! R de�ned byb(u; v) B hA(u); Jvi , u, v 2 X would be coercive, rendering
(W1;p

0;g (� ; Rm); b) into a Hilbert space.

Remark 3.14 The reasoning of the preceding theorem shows that for a smooth
functionF : X ! R on a Banach spaceX, the Hessian ofF, interpreted as a linear
operatorAjx B Hess(F)jx : X ! X0 can only be invertible ifX is a Hilbert space.
Hence, in general, the Newton method is not at disposal. However, ifdF can be
interpreted as a mappingdF : X ! Y0 with some Banach spaceY � X, there is a
chance that̄Ajx : X ! Y0 is invertible and one obtains a Newton-like vector �eld
� Ā� 1jx(dFjx). We will use the same idea in Section 7.7.2 in order to introduce a
gradient-like vector �eld.

3.2.3 Monotone operators

An important class of operators with conditioning properties is given by monotone
operators:

De�nition 3.15 Let X, Y be Banach spaces,J: X ,! Y be an injective, continuous
linear map with dense image, andA: X ! X0 be an operator that factors through
J0, i.e.,A = J0 � Ā with some operator̄A: X ! Y0. Moreover, let : X ! Z be a
mapping to the metric space(Z;dZ), K � Z some set and letg: [0; 1 ] ! [0; 1 ] be a
nondecreasing function withg(0) = 0.

We sayA is g-monotone along( ; J) over K if

hA(x2) � A(x1); x2 � x1i � g(dZ( (x2);  (x1))) � kJx2 � Jx1kY

holds for allx1, x2 2  � 1(K).

50



3.2 Examples

Example 3.16 WhenK = Z = Y = X, J =  = idX andg(t) = c t is a linear function,
the notion ofg-monotonicity along(J;  ) overK reduces to the usual notion ofstrong
monotonicity:

hA(x2) � A(x1); x2 � x1i � ckx2 � x1k2
X for all x1, x2 2 X.

Lemma 3.17 Let A: X ! X0 beg-monotone along( ; J) overK. LetḠ: X ! R
be given byḠ(x) B kĀ(x)kY0.

Assume thatN B f x 2 X j A(x) = 0g is non-empty and that(Ḡ;  ) is faithful.
ThenĀ is g-conditioned along over K.

Proof . Observe that injectivity ofJ0 implies

f x 2 X j Ā(x) = 0g= f x 2 X j A(x) = 0g= N , ; :

One immediately deduces forx0 2 N and arbitraryx 2  � 1(K):

kĀ(x)kY0kJx � Jx0kY = kĀ(x) � Ā(x0)kY0kJx � Jx0kY

� h Ā(x) � Ā(x0); Jx � Jx0i

= hA(x) � A(x0); x � x0i

� g(dZ( (x);  (x0))) � kJx � Jx0kY:

Division bykJx � Jx0kY and taking the in�mum over allx0 2 N = arg min(Ḡ) yields

Ḡ(x) = kĀ(x)kY0 � g(distZ( (x);  (arg min(Ḡ)))):

Because of faithfulness, one hasarg min( #Ḡ) =  (arg min(Ḡ)). Let z 2 Z. Taking
the in�mum over allx 2  � 1(z), one obtains

( #Ḡ)(z) � g(dist(z; arg min( #Ḡ))): �

3.2.4 Symmetric conditional cones

Let X, Y be normed spaces and letJ 2 L(X; Y). ForA 2 L(X; Y0) and� > 0 de�ne
thesymmetric conditional� -cone

SymCone� (A; J) B f u 2 X j jhAu; Juij � � kukXkJukY g:

In particular, we have the HessianA = Hess(F)jx : X ! X0 (and its induced
operatorĀ: X ! Y0) of a twice di� erentiable functionF : X ! R in mind (see also
Remark 3.14).
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Lemma 3.18 Let X, Y be normed spaces and letJ 2 L(X; Y) be injective. Then one
hasSymCone� (A; J) � Cone� (A)

Proof . Let u 2 SymCone� (A; J), u , 0.

kAukY0 = sup
w2Y
w, 0

jhAu;wij
kwkY

� sup
v2X
Jv, 0

jhAu;Jvij
kJvkY

� jhAu;Juij
kJukY

� � kukX: �

The reason for introducingSymCone� (A; J) is thatCone� (A) for arbitrary linear
operators does not behave well under restriction to linear subspaces:

Example 3.19 Let the linear operatorA 2 L(R2; R2) given by counter-clockwise
rotation about the origin. ObserveCone� (A) = R2 for all 0 < � � 1. Let u 2 R2 n f0g
be an arbitrary vector and letI : Ru ,! R2 be the canonical inclusion. ThenI0AI = 0
and thus Cone� (I0AI) = f0gfor all � > 0.

In contrast, we have:

Lemma 3.20 Let X, Y, Z be normed spaces andA 2 L(X; Y0) , B 2 L(Z; X), J 2
L(X; Y) continuous linear operators. With I= JB, one has for� , � > 0

Cone� (B) \ B� 1� SymCone�=� (A; J)
�

� SymCone� (AB; I );

SymCone� (AB; I ) � B� 1� SymCone�=kBk(A; J)
�
:

Proof . Foru 2 Z, one hasjhABu; Iuij = jhABu; JBuij . Moreover, note that we only
have to consider the caseB , 0.

On the one hand, ifu 2 Cone� (B) \ B� 1 SymCone�=� (A; J), one has

jhABu; Iuij = jhABu; JBuij � �
� kBukXkJBukY � � kukZkIukY;

henceu 2 SymCone� (AB; I ).
On the other hand, letu 2 SymCone� (AB; I ). ThenBu 2 SymCone�=kBk(A; J)

follows from the estimate

jhABu; JBuij = jhABu; Iuij � � kukZkIukY � �
kBkkBukXkJBukY: �

Corollary 3.21 Let X, Y be normed spaces,J 2 L(X; Y), Xn � X a linear subspace,
Yn B J(Xn), andJn = JjXn. LetAn 2 L(Xn; Y0

n) be theRitz-Galerkin discretizationof
A given by

hAnu; Jnvi B hAu; Jvi for all u, v 2 Xn.

Then one has for each� > 0:

SymCone� (An; Jn) = Xn \ SymCone� (A; J):
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3.3 Application to GeneralizedRitz -Galerkin Methods

Proof . Apply the previous lemma withZ = Xn to the embeddingB: Xn ,! X and
observe thatB is isometric. �

Moreover, symmetric conditional cones have essentially the same continuity
properties as general conditional cones:

Lemma 3.22 Let X, Y be Banach spaces,J 2 L(X; Y), � > 0, andA, B 2 L(X; Y0)
with kA � Bk � � . Then one hasSymCone� (A; J) � SymCone� � kA� Bk(B; J).

Proof . Let u 2 SymCone� (A; J). Then one has

jhBu; Juij � jhAu; Juij � jh(B � A)u; Juij

� � kukXkJukY � kB � Ak kukXkJukY � (� � kB � Ak) kukXkJukY;

showing thatu 2 SymCone� � kA� Bk(B; J). �

3.3 Application to Generalized Ritz-Galerkin
Methods

Besides demonstrating the applicability of the presented theory, this section has a
second motivation: Ritz-Galerkin methods formed the starting point of our consider-
ations. Cea's and Strang's lemmata were prototypical results to aim for. Moreover,
Strang's second lemma was the major motivation for introducing test mappings and
the notions of consistency and proximity errors. We would like to emphasize that in
this very situation, it really paid o� to give symbols to inclusion mappings which are
often treated rather stepmotherly.

Within this section, letC = X = X be a separable Banach space and letA: X ! X0

be an operator with non-empty set of zeroesN = f x 2 X j A(x) = 0g.

3.3.1 Conforming Ritz-Galerkin method

De�nition 3.23 A conforming Ritz-Galerkin schemeis a sequence(Xn)n2N of �nite-
dimensional subspaces ofX with Lsn!1 Xn =

T
n2N

S
k� n Xn = X. Let Rn : Xn ,! X

be the canonical inclusion. The operator

An : Xn ! X0
n; hAn(x); ui B h(A � R n)(x);Rn(u)i x, u 2 Xn

is theRitz-Galerkin discretizationof the operatorA and one refers to

Nn B f x 2 Xn j An(x) = 0g

as the set ofdiscrete solutions.
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3 Parametric Operator Problems

Let (Xn)n2N be a conforming Ritz-Galerkin scheme and letAn be the Ritz-Galerkin
discretization ofA: X ! X0. Choose a continuous, linear and surjective mapping
Sn : X ! Xn such thatRn � S n is a projector. Moreover let	 = idX and	 n = Rn.

WhenN is non-empty in the above setting, the sampling proximity error overN
is the classical approximation error:

" S
n = sup

a2N
k(	 n � S n)(a) � 	 (a)kX = sup

a2N
k(Rn � S n)(a) � akX

= sup
a2N

inf
x2Xn

kx � akX = sup
a2N

dist(a; Xn):

Assuming that existence has already been shown, Theorem 3.4 leads to the follow-
ing generalization of Cea's lemma (see e.g., [6, Chapter II, Lemma 4.2]).

Lemma 3.24
Assume thatN and Nn are non-empty, thatAn is g-conditioned, and thatA is
uniformly continuous with modulus of continuity h, i.e.,

kAn(x)k � g(distX(x;N )) for all x 2 Xn;
kA(x) � A(y)k � h(kx � yk) for all x, y 2 X:

Then one hasN � B̄(Nn; "S
n + gy(h(" S

n ))); where" S
n denotes the sampling proximity

error onN .

Proof . The sampling consistency error onN can be estimated by

� S
n = sup

a2N
(kAn � S n(a)k � � � ��kA(a)k)+

= sup
a2N

kRn
0 � A � R n � S n(a) � R n

0 � � � �A(a)k

� sup
a2N

kRn
0kkA � R n � S n(a) � A(a)k

� sup
a2N

h(kRn � S n(a) � ak) = h(" S
n ):

Thus, the stated result follows from the second statement of Theorem 3.4. �

Remark 3.25 Assume thatN = f xgandNn = f xn gboth consist of precisely one
element.1 Then Cea's lemma in the above form gives the convergence rate

kx � xnk � " S
n + gy(h(" S

n )):

1Note that this is the case, e.g., with strictly monotone operators.
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3.3 Application to GeneralizedRitz -Galerkin Methods

If A is a strongly monotone operator theng(t) = c t can be chosen with somec > 0,
(see Example 3.16 and Lemma 3.17). IfA is additionally Lipschitz continuous (i.e.,
h(t) = C t with someC � 0), one obtains a quasi-optimal convergence rate as in
Cea's lemma:

kx � xnk �
�
1 + C

c

�
" S

n :

Remark 3.26 If solutions are not unique, one may additionally use the �rst state-
ment of Theorem 3.4. Note that the reconstruction error" R

n on Xn vanishes in this
setting:

" R
n = sup

x2Xn

k	 � R n(x) � 	 n(x)kX = sup
x2Xn

kRn(x) � R n(x)kX = 0:

Hence, the remaining ingredients would be estimates on the reconstruction consis-
tency error and on the conditioning ofA.

3.3.2 Strang's �rst lemma

In practice, due to rounding errors, one has to useapproximationsAn : Xn ! X0
n of

A on Xn. Moreover, one may reduce the computational costs by using numerical
methods (e.g. quadrature rules) whose accuracy is adjusted to the expected error
level: There is no point in performing expensive calculations with very high precision
if the discretization error is magnitudes higher. Classically, Strang's �rst lemma
addresses these issues by giving estimates on the overall error of solutions of the
discretized problem. Theorem 3.4 induces a variant of Strang's �rst lemma, alas
without existence and uniqueness statements:

Lemma 3.27
Assume thatN andNn are non-empty and that

kAn(x)kX0
n

� g(distXn(x;Nn)) for all x 2 Xn;
kA(x) � A(y)kX0 � h(kx � yk) for all x, y 2 X:

Then one has

N � B̄(Nn; "S
n + gy(� n + h(" S

n )));

where" S
n is the sampling proximity error onN and

� n B sup
b2Sn(N )

kAn(b) � (Rn
0 � A � R n)(b)kX0

n:
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3 Parametric Operator Problems

Proof . The sampling consistency error� S
n onN can be estimated by

� S
n = sup

a2N

�
k(An � S n)(a)kX0

n
� kA(a)kX0

�+

� sup
a2N

� �
(kAn � S n)(a)kX0

n
� k(A � R n � S n)(a)kX0

�+ + k(A � R n � S n)(a) � A(a)kX0

�

� sup
b2Sn(N )

�
kAn(b)kX0

n
� k (Rn

0 � A � R n)(b)kX0
n

�+ + sup
a2A

h(k(Rn � S n)(a) � akX)

� sup
b2Sn(N )

kAn(b) � (Rn
0 � A � R n)(b)kX0

n + h(" S
n ) = � n + h(" S

n ):

We emphasize that we used here thath is nondecreasing. Now, the statement follows
immediately from Theorem 3.4. �

Example 3.28 Note that� n measures in some way the deviation ofAn from the
Ritz-Galerkin discretization. This is traditionally termed consistency error. The
connection to Strang's �rst lemma becomes even clearer when analyzing the classical
setting:

Let � 2 X0, � n 2 X0
n be continuous linear forms and letB: X � X ! R and

Bn : Xn � Xn ! R be bilinear forms such thatB is continuous andBn is coercive, i.e.,
there are constantsC � 0, c > 0 with

jB(u; v)j � CkukXkvkX and Bn(w;w) � ckwk2
X for all u, v 2 X, and allw 2 Xn.

Consider the operators

A: X ! X0; hA(x); ui B B(x;u) � h �; ui ;
An : Xn ! X0

n; hAn(y); vi B Bn(y; v) � h � n; vi :

By the Lax-Milgram theorem,Nn = f xn gis a singleton. Using the preceding
lemmawith the functionsg(s) = c sandh(s) = C s, one obtains

kx � xnk �
�
1 + C

c

�
" n + 1

c � n for eachx 2 N .

Note that� n can be estimated by

� n � sup
b2Sn(N )

sup
w2Xnnf0g

�
jB(b;w)� Bn(b;w)j

kwkX
+ jh� � � n;wi j

kwkX

�
:

This is exactly the consistency error of the classical Strang lemma (see [6, Chapter
III, Lemma 1.1]).
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3.3.3 Nonconforming Ritz-Galerkin method

Let a sequenceXn of �nite-dimensional Banach spaces and operatorsAn : Xn ! X0
n,

n 2 N be given. Note that from now on, we do not assume thatXn is a subspace
of X. The frequent setting is thatX, Xn are continuously injected into a larger
Banach spaceX B Y in a canonical way. Denote these injections by	 : X ,! Y,
	 n : Xn ,! Y. If 	 n(Xn) 1 	 (X), one calls(Xn; An) anonconforming Ritz-Galerkin
scheme. In practice, there are essentially two reasons why a Ritz-Galerkin scheme is
nonconforming:

1. The elements ofXn may violate certain constraints onX. In particular, bound-
ary conditions may be an issue: The elements of the function spaceXn may
satisfy boundary conditions only on a restricted class of boundary shapes, e.g.,
polygonal lines, simplicial manifolds, or spline surfaces.

2. The (di� erential) operatorA: X ! X0 cannot be extended toXn because the
elements ofXn fail to have the necessary smoothness, e.g., they are discontinu-
ous.

Traditionally, one calls the quantity

sup
a2N

inf
w2Xn

k	 (a) � 	 n(w)kY;

theapproximation error. Note that the approximation error can be bounded by the
sampling proximity error" S

n onN :

sup
a2N

inf
w2Xn

k	 (a) � 	 n(w)kY � sup
a2N

k	 (a) � (	 n � S n)(a)kY = " S
n

In contrast to the classical Strang lemma, we may circumvent the need to extendAn

to Y by usingAn � S n in order to de�ne what is traditionally called theconsistency
error:

sup
a2N

inf
w2Xn

jh(An � S n)(a);wi j
kwkXn

:

Note that this is precisely the sampling consistency error� S
n onN :

sup
a2N

inf
w2Xn

jh(An � S n)(a);wi j
kwkXn

= sup
a2N

k(An � S n)(a)kX0
n

= sup
a2N

k(An � S n)(a) � A(a)kX0
n = � S

n :

It turns out that Theorem 3.4 implies the variant of Strang's second lemma that
Braess brie�y mentions in a side remark (see [6, Chapter III, Remark 1.3]):
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Lemma 3.29 Assume thatN andNn are non-empty and that

g(distY(	 n(x); 	 n(Nn))) � kAn(x)kXn
for all x 2 Xn,

kA(x) � A(y)kX � h(distY(	 (x); 	 (y))) for all x, y 2 X.

Then one has

	 (N ) � B̄(	 n(Nn); "S
n + gy(� S

n + h(" S
n ))):

3.4 Openness, Existence, and Convergence

We conclude this chapter with a remark on the relationship between openness of the
operatorsA, An (see De�nition 2.49) and the convergence behavior of their solution
sets.

Theorem 3.30 Let operatorsA: C ! Y andAn : Cn ! Yn be given, whereC, Cn

are metric spaces andY, Yn are normed vector spaces. For some non-empty sets
A � C , A n � C n denote by by" S

n , " R
n the proximity errors of(	 ; 	 n) on (A ;A n) and

by � S
n , � R

n the consistency errors ofAn with respect toA on (A ;A n). Moreover, let#,
� be positive real numbers.

1. Assume thatAn is (#; � )-open onSn(A \ N ) and that� S
n < #. If A \ N is

non-empty, then alsoNn is non-empty and one has

	 (A \ N ) � B̄(	 n(Nn); rS
n ) with rS

n = " S
n + Lip(	 n) � � S

n .

2. Assume thatA is (#; � )-open onRn(A n \ N n) and that� R
n < #. If A n \ N n is

non-empty, then alsoN is non-empty and one has

	 n(A n \ N n) � B̄(	 (N ); rR
n ) with rR

n = " R
n + Lip(	 ) � � R

n .

Proof . Let x 2 A \ N , i.e.,G(x) = kA(x)kY = 0. One has

k(A � S n)(x)kYn
= (Gn � S n)(x) � G (x) + � S

n < #:

Now, (#; � )-openness implies

0 2 B̄
�
(An � S n)(x); � S

n
�

� An
�
B̄(Sn(x); � � S

n )
�
:

Hence, there is ay 2 Nn with dCn(Sn(x); y) � � � S
n and one obtains

dX(	 (x); 	 n(y)) � dX(	 (x); (	 n � S n)(x)) + dX((	 n � S n)(x); 	 n(y))

� " S
n + Lip(	 n) � � S

n = rS
n ;

which shows the �rst claim. The proof of the second claim is analogous. �
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Note that in the setting of an operatorA of classC1;1 between Banach spaces (or
more generally: Banach manifolds), openness ofA at x 2 C can be shown with the
quantitative inverse function theorem (Theorem 2.53), even in the case thatDA(x)
has a kernel, as long as it has a su� ciently transversal closed complement (see the
proof of Lemma 2.52).

InterpretingNn as the discrete problem, the second claim of Theorem 3.30 can be
used fora posterioriestimates: Having foundx 2 Nn one may sometimes be able to
estimate the openness ofA atRn(x):

Example 3.31 Let C, Cn, Y, Yn be Banach spaces and let bothA andAn be of class
C1;1. Let x 2 Nn. Assume thatDAn(x) sati�es kDAn(x) uk � � nkuk for all u 2 TxCn.
Moreover assume that one can showkDA(Rn(x)) uk � � kuk for all u 2 TRn(x)C with
some� � � n � c " n > 0. Then again, the quantitative inverse function theorem
would imply a certain openness ofA and Theorem 3.30 yields existence of a smooth
solution and an error estimate.
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4 The Space of Inner Products

In this chapter we summarize some facts about the Riemannian manifold of inner
product of a �nite-dimensional real vector space, i.e., of symmetric, positive de�nite
bilinear forms. This space and its Riemannian distance will be crucial in de�ning
the metric space of Lipschitz immersions (see Chapter 5). The latter will be used
as con�guration space in our treatment of discrete minimal surfaces (Chapter 7), as
well as in our discretization of Hencky elasticity (Chapter 8).

This space is traditionally discussed as the homogeneous spaceGLk(R)=O(k)
by di� erential geometers. However, the representation as a quotient may not be
convenient if one aims at numerical computations. Fortunately, the manifold of
symmetric, positive de�nite matrices and its Riemannian structures have recently
caught the attention of applied mathematicians so there is also a concise theory in
terms of matrices (see e.g., [27] and references therein). We try to be self-contained
and to give proofs for the relevant results, although these may be found elsewhere,
too.

In the course of this chapter, we will also be led in a natural way to a certain vector
�eld (on the manifold of inner products), which reappears as the Hencky strain tensor
in elasticity theory.

4.1 Basic De�nitions

Let V be ak-dimensional real vector space withk 2 N and letP(V) denote the space
of symmetric, positive de�nite bilinear forms onV. The groupGL(V) acts from the
right onP(V) via pullback:

GL(V) � P(V) ! P(V); (A;b) 7! A#b = b(A�; A�):

As an open set in the vector spaceSym(V) = V0� V0 � V0
 V0 of symmetric bilinear
forms onV, the spaceP(V) is a smooth manifold with tangent bundle given by
TbP(V) B Sym(V).

We equipP(V) with a Riemannian structuregP given by

gPjb(X;Y) B hX;Yi b for all X; Y 2 TbP(V) = Sym(V),

whereh�; �i b denotes the inner product onV0 
 V0 that is induced byb.
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4 TheSpace ofInner Products

We use the so-calledmusical isomorphisms

[ b : V ! V0; u 7! b(u; �) = (v 7! b(u; v)) and ] b B [ � 1
b : V0 ! V:

In �nite-dimensional vector spaces, one may identify End(V) � V 
 V0 and

idV 
 ] b : Sym(V) ! f A 2 End(V) j A� b = Ag

identi�es Sym(V) isometrically with theb-self-adjoint endomorphisms:

hX;Yi b =


(idV 
 ] b)X; (idV 
 ] b)Y

�
b = tr

�
(idV 
 ] b)X)� b (idV 
 ] b)Y

�
;

whereX, Y 2 Sym(V).
Theoretically, one could deduce all the result of this chapter in terms of this

identi�cation. However, it proves less cumbersome to perform computations in terms
of Gram matrices.

De�nition 4.1 For a basise = (e1; : : : ;ek) of V, de�ne theGram mappingwhich
maps a bilinear form to its Gram matrix:

Ge: V0 
 V0 ! Matk� k(R); X 7! (X(ei; ej))1� i; j� k:

Remark 4.2 In terms of the Gram mapping, one has the following representation
that we will use throughout our discussion:

gP(X;Y)jb = hX;Yi b = tr(Ge(b)� 1Ge(X)TGe(b)� 1Ge(Y)); (4.1)

whereb 2 P(V) andX, Y 2 TbP(V).

Remark 4.3 Whenever a basiseof V is given, the dual basis� = (� 1; : : : ; � k) of V0

can be written as� i =
P k

j=1(Ge(b)� 1)i j [ bej. A basis(� i j )1� i� j� k for Sym(V) is induced
by e via � i j = � i 
 � j + � j 
 � i. Moreover, sinceGe is a chart, we have globally
de�ned coordinate vector �eldsXi j 2 X(P(V)) on P(V) by:

Xi j jb B � i 
 � j + � j 
 � i

=
kX

�;� =1

(Ge(b)� 1)i� (Ge(b)� 1) j� ([ bei 
 [ bej + [ bej 
 [ bei):

Because the vector �eldsXi j are coordinate vector �elds, their commutators vanish:

[X�� ; X
� ] = 0 for all 1 � �; �; 
; � � k.

We even haved(Ge(Xi j )) = 0. Note that every smooth vector �eldY 2 X(P(V)) can
be written asY =

P
1� � � � � k ' �� X�� with appropriately chosen' �� 2 C1 (P(V); R).
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4.2 The Levi-Civita Connection

In order to compute distances, we are interested in the geodesics in(P(V); gP).
Therefore, we deduce a representation of the Levi-Civita connection in terms of its
covariant derivative

r : X(P(V)) � X(P(V)) ! X(P(V)):

Lemma 4.4 Let X, Y 2 X(P(V)) be smooth vector �elds and lete be a basis ofV.
The Levi-Civita connection with respect to gP can be written as

Ge(r XYjb) = hd(Ge(Y))jb; Xi � �
�
Ge(X)Ge(b)� 1Ge(Y)

�
;

where� : Matk� k(R) ! Matk� k(R), A 7! 1
2

�
A + AT�

denotes symmetrization.

Proof . According to Remark 4.3, there are vector �eldsX1; : : : ;Xm 2 X(P(V)),
m = 1

2k(k + 1) with d(Ge(X� )) = 0 for all 1 � � � m such that each vector
�eld Y 2 X(P(V)) can be written asY =

P m
� =1 ' � X� , with appropriately chosen

' � 2 C1 (P(V); R). Note that this also implies[X� ; X� ] = 0 for all 1 � �; � � m. The
Koszul formula (see e.g., [9, Chapter 2, Equation 9]) tells us:

gP(X� ; r X� X
 ) = 1
2

�
X� gP(X
 ; X� ) + X
 gP(X� ; X� ) � X� gP(X� ; X
 )

�
:

AbbreviatingB B Ge(b) andX � B Ge(X� ), we have from (4.1) that

gP(X
 ; X� ) = tr
�
B� 1X 
 B� 1X �

�
:

Using the well-known rules for di� erentiating products and inverses, we obtain

X� gP(X
 ; X� )jb
= � tr

�
B� 1X � B� 1X 
 B� 1X �

�
� tr

�
B� 1X 
 B� 1X � B� 1X �

�

= � 2 tr
�
B� 1�

�
X � B� 1X 


�
B� 1X �

�

= � 2gP

�
G� 1

e
�
�

�
X � B� 1X 


��
; X� jb

�
:

Symmetry of all occurring matrices and conjugation invariance of the trace lead to

X� gP(X
 ; X� ) = X
 gP(X� ; X� ) = X� gP(X� ; X
 );

hence tor X� X
 jb = � G� 1
e

�
�

�
X � B� 1X 


��
and

Ge(r X� X
 jb) = hdGe(X� ); X
 i � �
�
X � B� 1X 


�
:

For arbitrary vector �eldsX andY, write Y =
P m

� =1 ' � X� . The statement now follows
from the Leibniz rule for covariant di� erentiation. �
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Corollary 4.5 The vector �eldZ 2 X(P(V)) given byZjb = b is covariantly constant.

Proof . Let X 2 X(P(V)) be an arbitrary vector �eld andesome basis ofV. By the
preceding lemma, we may compute

Ge(r XZjb) = hdGe(b); Xi � � (Ge(X)Ge(b)� 1Ge(b)) = Ge(X) � Ge(X) = 0: �

4.3 Geodesics

Lemma 4.6 Let V be a �nite-dimensional real vector space,b 2 P(V), andX 2
TbP(V). The geodesic
 : ]� "; " [ ! P(V) starting fromb in directionX 2 TbP(V)
with respect to the Riemannian metric gP is given by


 (t) = G� 1
e

�
LT exp

�
t L � TGe(X)L � 1� L

�

for everyL 2 Matk� k(R) with LTL = Ge(b).

Proof . Let 
 be the geodesic with
 (0) = b and �
 (0) = X. De�ne B(t) B Ge(
 (t)).
SinceGe( �
 (t)) = �B(t), the geodesic equations can be written as

0 = Ge(r �
 �
 )(t) = hdGe( �
 (t)); �
 (t)i � �
�
Ge( �
 (t))Ge(
 (t))� 1Ge( �
 (t))

�

= B̈(t) � �B(t) B� 1(t) �B(t):

We use the ansatzB(t) = LT exp(t C)L with a matrixL 2 Matk� k(R) and a symmetric
matrix C 2 Matk� k(R). One computes

�B(t) = LTC exp(t C) L and B̈(t) = LTC exp(t C) CL

and checks that substituting our ansatz solves the geodesic equation:

LTC exp(t C) CL � LTC exp(t C) LL � 1 exp(� t C)L � TLTC exp(t C) L

= LTC exp(t C) CL � LTC exp(t C) CL = 0:

For satisfying the initial conditions, one has to �ndL andC such that

B(0) = LTL = Ge(b) and �B(0) = LTCL = Ge(X)

hold. Note that by the uniqueness of the solutions for second-order ODEs,
 does
not depend on the actual choice ofL. �
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Example 4.7 When choosingL = Ge(b)
1
2 , one has

Ge(
 (t)) = Ge(b)
1
2 exp

�
t � Ge(b)� 1

2 Ge(X) Ge(b)� 1
2

�
Ge(b)

1
2 :

Note that
 (t) exists for all timest 2 R and that
 (t) is always positive de�nite, which
leads us to:

Corollary 4.8 The Riemannian manifold(P(V); gP) is geodesically complete, i.e.,
for eachb 2 P(V) and eachX 2 TbP(V), there is a geodesic
 : R ! P(V) with

 (0) = b and �
 (0) = X.

For every pair of points in a geodesically complete space, there is always a length
minimizing geodesic connecting them. In(P(V); gP), there is exactly one geodesic
between any pair of points and this geodesic can be directly expressed in terms of
Gram matrices.

Lemma 4.9 For any two pointsb0, b1 2 (P(V); gP), there is auniquegeodesic

 : [0; 1] ! P(V) with 
 (0) = b0 and
 (1) = b1.

Proof . Let b0, b1 2 P(V). Choose a basise of V andL 2 Matk� k(R) such that
Ge(b0) = LTL.

Existence:One easily veri�es with Lemma 4.6 that the geodesic
 starting atb0 in
directionX = G� 1

e
�
LT log

�
L � TGe(b1)L � 1� L

�
satis�es
 (1) = b1.

Uniqueness:Let 
 : [0; 1] ! P(V) with 
 (0) = b0 and
 (1) = b1. PutX B �
 (0).
By Lemma 4.6, one hasb1 = 
 (1) = G� 1

e
�
LT exp

�
L � TGe(X)L � 1� L

�
. Since the matrix

exponential is a di� eomorphism from the symmetric matrices onto the symmetric,
positive de�nite matrices, this equation can be solved forX, delivering the sameX
as in the existence proof. Note thatX does not depend on the particular choice ofL:
Any other choice can be written asUL with a orthonormal matrixU 2 O(Rn). By
the rules of the functional calculus of self-adjoint operators we �nd:

(UL)T log
�
(UL)� TGe(b1)(UL)� 1� (UL)

= LT UT log
�
U L � TGe(b1)L � 1U� 1� U L

= LT UTU log
�
L � TGe(b1)L � 1� U� 1U L

= LT log
�
L � TGe(b1)L � 1� L : �
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4.4 The Hencky Field

Motivated by the preceding result and because of its central role in nonlinear elasticity
(see Chapter 8), we introduce the Hencky �eld, a vector �eld onP(V):

De�nition 4.10 Fix c 2 P(V). We de�ne theHencky �eld Hc 2 X(P(V)) by

Hcjb B (id 
 [ b)
�
logb

�
(id 
 ] b)c

��
:

Here, logb is the logarithm of the functional calculus ofb-self-adjoint operators.

Remark 4.11 In terms of a basise of V and a matrixL 2 Matk� k(R) with Ge(b) =
LTL, one may write

Hcjb = G� 1
e

�
LT log

�
L � TGe(c)L � 1� L

�
:

Thus, by Lemma 4.9, the Hencky �eldXc always points toc in the sense that

expP
b (Hcjb) = c;

whereexpP
b : TbP(V) ! P(V) is the Riemannian exponential map with respect togP.

Corollary 4.12 The geodesic distance of(P(V); gP) is given by

dP(b; c) = j Hcjb jb = jlog
�
L � TGe(c)L � 1� j =

�P k
i=1 log(� i)2

� 1
2 ; b, c2 P(V).

Here, j�j denotes the Frobenius norm of matrices,L 2 Matk� k(V) is a matrix with
LTL = Ge(b), and� 1; : : : ; � k are the eigenvalues ofGe(g) with respect toGe(b).

Proof . While dP(b; c) = j Hcjb jb follows from the fact that geodesics have constant
speed, the second equality follows from (4.1):

j Hcjb j2b = tr
�
(LTL)� 1Ge(Hcjb)(LTL)� 1Ge(Hcjb)

�

= tr
�
(LTL)� 1LT log

�
L � TGe(c)L � 1� L (LTL)� 1LT log

�
L � TGe(c)L � 1� L

�

= tr
�
L � 1 log

�
L � TGe(c)L � 1�2 L

�
= tr

�
log

�
L � TGe(c)L � 1�2�

= jlog
�
L � TGe(c)L � 1� j2:

One may chooseeas an orthonormal basis ofb such thatGe(c) = diag(� 1; : : : ; � k) is
a diagonal matrix. WithL = I , one obtains

jlog
�
L � TGe(c)L � 1� j2 =

P k
i=1 log(� i)2: �

Corollary 4.13 Fix c 2 P(V) and de�ne fc : P(V) ! R, fc(b) = 1
2d2

P(b; c). This
function is smooth and the downward gradient coincides with the Hencky �eld:

gradgP fc = � Hc:
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4.5 Densities

We summarize some de�nitions and facts about densities. For a more detailed
introduction to this topic see, e.g., [26, pp. 375–382].

De�nition 4.14 Let V be ak-dimensional real vector space. Adensityon V is a
function%:

Q k
i=1 V ! R with the properties:

1. For allv1; : : : ;vk 2 V and all� 1; : : : ; � k 2 R the following holds:

%(� 1 v1 : : : ; � n vk) = j� 1 � � � � kj %(v1 : : : ;vk):

2. For allv1; : : : ;vk 2 V, � 2 R andi , j the following holds:

%(v1 : : : ;vi� 1; vi + � vj; vi+1; : : : ;vk) = %(v1 : : : ;vi� 1; vi; vi+1; : : : ;vk):

We de�ne
 (V) to be the space of densities onV.

The space
 (V) is a one-dimensional vector space overR. A linear mapA: V ! V
induces thepullback A# : 
 (V) ! 
 (V), a linear operator de�ned by

(A#%)(v1; : : : ;vk) = %(A v1; : : : ;A vk) for v1; : : : ;vk 2 V.

One may de�ne theabsolute value of the determinant ofA by jdet(A)j %= A#%for
all %2 
 (V). Thus, densities have a transformation behavior under pullback that is
compatible with the transformation formula of integrals. This is why one can de�ne
the integral of a section of the density bundle
 (� ) B

`
x2� 
 (Tx� ), leading to a

linear functional
R

�
: 
 (� ) ! R.

A density%2 
 (V) is calledpositive, if %(e1; : : : ;ek) > 0 holds for all bases
e = (e1; : : : ;ek) of V. Denote the space of positive densities onV by Vol(V). Note
that the multiplicative group(R>0; �) acts transitively onVol(V). For two densities%
and� denote the unique positive numbert 2 R>0 with � = t %by �

%. We de�ne the
distancedVol by

dVol(%; �) B jlog
� �

%

�
j for all %, � 2 Vol(V).

Everyg 2 P(V) induces a unique densityvolg on V ful�lling volg(e1; : : : ;ek) = 1 for
anyg-orthonormal basise1; : : : ;ek of V. Thus, one has

volb
volg

=
det(Ge(b))
det(Ge(g))

and dVol(volb; volg) = jlog (det(Ge(b))) � log (det(Ge(g)))j;
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4 TheSpace ofInner Products

for any two elementsg, b 2 P(V) andanybasiseof V. For an injective linear map
A: (V1; g1) ! (V2; g2) between �nite-dimensional inner product spaces, we point
out the formula

volA#g2 = jdet(A� A)j
1
2 volg1; (4.2)

whereA� denotes the adjoint ofA with respect tog1 andg2.

Lemma 4.15 The mapping

vol : P(V) ! Vol(V); g 7! volg

is Lipschitz-continous with Lipschitz constantdim(V)
1
2 .

Proof . Let g, b 2 P(V) and choose an orthonormal basise = (e1; : : : ;ek) of g that
diagonalizesGe(b). Let � 1; : : : ; � k be the eigenvalues ofGe(b). One hasvolb =
� 1 � � � � k volg, thus

dVol(volg; volb) = jlog(� 1 � � � � k)j �
kX

i=1

jlog(� i)j �
p

k dP(g; b): (4.3)
�

Remark 4.16 Note that whendim(V) = 1, the mappingvol : P(V) ! Vol(V) is an
isometric di� eomorphism. Hence,Vol(V) is also a Riemannian manifold and we
may denote the induced Riemannian metric bygVol. The diagram

T P(V)
expP

//

T vol
��

P(V)

vol
��

T Vol(V)
expVol

//Vol(V)

is commutative because of the identitiesexp(tr(X)) = det(exp(X)) for X 2 Matk� k(R)
and (Tb vol)X = gP(b; X) volb for X 2 TbP(V).
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4.6 Invariant Metrics

Here, we give a characterization of allGL(V)-invariant Riemannian metrics onP(V)
which highlights the outstanding roles of the Riemannian metricsgP andgVol on
the one hand; and of the Hencky �eld on the other. This also shows that Hencky's
elastic energy (see Chapter 8) is a quite natural deformation measure (at least, for
full-dimensional domains).

Lemma 4.17 Let A: V ! W be a linear isomorphism between two �nite-dimen-
sional real vector spaces. Then the pullback alongA induces an isometric di� eomor-
phism

A# : (P(W);gP) ! (P(V); gP); b 7! b(A�; A�):

Proof . Fix c 2 P(W) andb = A#c. Let e = (e1; : : : ;ek) and f = ( f1; : : : ; fk) be
bases ofV andW, respectively. Denote by� the dual basis off and de�ne the
matrix A 2 Matk� k(R) by A i j B h� i; A ej i , 1 � i; j � k. Now, letY 2 TcP(W) and
X = (TcA#) Y 2 TbP(V) and writeY B G f (Y) andX B Ge(X). The identities

Ge(b) = ATG f (c) A and X = ATY A

together with (4.1) lead to

gP(X; X)jb = tr
�
Ge(b)� 1XT Ge(b)� 1X

�

= tr
�
(A � 1G f (c)� 1A � T)(ATYT A)(A � 1G f (c)� 1A � T)(ATY A)

�

= tr
�
A � 1(G f (c)� 1YTG f (c)� 1Y) A

�

= tr
�
G f (c)� 1YTG f (c)� 1Y

�
= gP(Y;Y)jc: �

In particular, the groupGL(V) acts smoothly from the right onP(V) via pullback
and we obtain:

Corollary 4.18 The metric gP is invariant under the action ofGL(V) on P(V).

Theorem 4.19 EveryGL(V)-invariant Riemannian metric onP(V) can be written
as

g�;� (X;Y)jb B 2� gP(X;Y)jb + � (vol# gVol)(X;Y)jb;

with some parameters� > 0 and � > � 2�
dim(V) . Here,X, Y 2 TbP(V) are tangent

vectors atb 2 P(V) andvol : P(V) ! Vol(V) is the Riemannian density operator
(see Lemma 4.15).
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4 TheSpace ofInner Products

Proof . Thatg�;� is GL(V)-invariant follows from Lemma 4.17. We show thatg�;� is
positive de�nite for� > 0, � > � 2�

k , wherek = dim(V):
For X 2 TbP(V) with gP(X; X) � 0 choose a basiseof V such thatGe(b) = I is the

identity matrix andGe(X) = diag(� 1; : : : ; � k) is diagonal. Then de�ne the function
f : Rk ! R by

f (x1; : : : ;xn) B �
P k

i=1 x2
i + �

2

�P k
i=1 xi

�
2

and observef (� 1; : : : ; � n) = 1
2g�;� (X; X). Note thatf is a quadratic functional with

f (0; : : : ;0) = 0, D f (0; : : : ;0) = 0 and its Hessian is given by

Hess0( f ) =

0
BBBBBBBBBBBBBBBBBBB@

2� + � � �

� �

� � 2� + �

1
CCCCCCCCCCCCCCCCCCCA

:

Them-th principal minor ofHess0( f ) is (m� + 2� )� k� 1. Thus by Sylvester's criterion,
Hess0( f ) is positive de�nite (andf is strictly convex) if and only if� > 0 and
� > � 2�

k > � 2�
k� 1 > � � � > � 2�

1 . Hence f (� 1; : : : ; � n) � 0 is only possible for
� 1 = � � � = � k = 0. This impliesX = 0.

Now, letg be an arbitraryGL(V)-invariant metric onP(V). Fix b 2 P(V). Then
gjb has to be invariant under the stabilizerO(V;b) of b. Choose an orthonormal basis
e of V with respect tob such thatGe(b) = I is the identity matrix. One has for all
symmetricX, Y 2 Matk� k(R):

gPjb(G� 1
e (X);G� 1

e (Y)) = hX;Yi Frob:

In the same vein, de�ne

G(X;Y) B gjb(G� 1
e (X);G� 1

e (Y))

for all symmetricX, Y 2 Matk� k(R). Sincegjb is O(V;b)-invariant,G is O(n)-
invariant. By diagonalizing the symmetric matrixX, one realizes thatG(X;X) is a
symmetric quadratic polynomial in the eigenvalues ofX. Thus, there are� , � 2 R
with G(X;X) = 2� tr(XX) + � tr(X) tr(X). The polarization formula implies

G(X;Y) = 2� hX;Yi Frob + � hX; I i FrobhI ;Yi Frob:

By pullback alongGe, we obtain

g(X;Y)jb = 2� gP(X;Y)jb + � gP(X;b) gP(b;Y)

= 2� gP(X;Y)jb + � (vol# gVol)(X;Y)jb
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The inequality� > � 2�
k follows from the fact thatgjb is positive de�nite and from

the considerations at the beginning of this proof. �

Remark 4.20 As we will see in Remark 8.7, the parameters� , � can be interpreted
as Lamé coe� cients.

Lemma 4.21 The Levi-Civita connection of g�;� is given by that of gP.

Proof . Let r be the covariant derivative ofgP. From Corollary 4.5 we have that the
vector �eld W 2 X(P(V)), Wjb = b is covariantly constant. ForX, Y, Z 2 X(P(V)),
we compute

Xg�;� (Y;Z) = 2� XgP(Y;Z) + � X(gP(Y;W)gP(W;Z))

= 2� gP(r XY;Z) + � gP(Y; r XZ)

+ � (gP(r XY;W)gP(W;Z)) + � (gP(Y;W)gP(W; r XZ))

= g�;� (r XY;Z) + g�;� (Y; r XZ):

This showsr g�;� = 0, which su� ces to prove the statement. �

Corollary 4.22 The geodesics with respect to gP and g�;� coincide.

Lemma 4.23 Letb, c 2 P(V). Denote the geodesic distance with respect tog�;� by
d�;� . Then one has

d2
�;� (b; c) = 2� d2

P(b; c) + � d2
Vol(volb; volg);

wherevolb, volc denote the densities de�ned by b, c respectively.

Proof . Let 
 : [0; 1] ! P(V) be the unique geodesic fromb to c. According to
Remark 4.11, we have �
 (0) = � Hcjb and

d2
�;� (b; c) = jHcjbj2g�;�

= 2� gP(Hcjb; Hcjb) + � gP(Hcjb; b)2:

Choosing ab-orthonormal basiseof V with Ge(c) = diag(� 1; : : : ; � k), one obtains

jgP(Hcjb; b)j = jtr log(diag(� 1; : : : ; � k))j = jlog(detdiag(� 1; : : : ; � k))j

=
���log

� volc
volb

� ��� = dVol(volb; volc): �
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5 Lipschitz Immersions

We need a suitable shape space of immersed manifolds for our applications to elastic-
ity theory and minimal surfaces theory. Therefore, we de�ne a space of parameterized
(locally) Lipschitz immersions and equip it with a reparameterization-invariant dis-
tance. This distance is in terms of zeroth and �rst derivatives of immersions. It
descends to a distance on theshape space, i.e., the quotient space of unparameterized,
immersed manifolds.1

5.1 Basic De�nitions

Throughout this chapter� will be a compact,k-dimensional smooth manifold with
boundary. Letg be a smooth Riemannian metric on� . With a slight abuse of
notation, we denote withvolg not only the Riemannian density induced byg, but
also the complete measure induced by it. De�ne the locally trivial �ber bundle
� : P� ! � by P� jx B P(Tx� ) for all x 2 � and equip the �bers with the distance
functiondP. De�ne

P(� ) B
(

b: � ! P� volg-measurable.

������
� � b = id� volg-a. e.,

ess supx2� dP(bjx; gjx) < 1

)
= �

with the equivalence relationb1 � b2 if b1 = b2 holdsvolg-almost everywhere
(volg-a. e.). We introduce the distancedP onP(� ) by

dP(b1; b2) B ess sup
x2�

dP
�
b1jx; b2jx

�
:

Note that neither the spaceP(� ) nor the distancedP depend on the choice ofg.

De�nition 5.1 For f 2 W1;1 (� ; Rm), the derivativeT f exists at almost every point
x 2 � and we obtain an almost everywhere de�nedf #g0. We use this construction to
de�ne thespace of Lipschitz immersionsas

Imm(� ; Rm) B f f 2 W1;1 (� ; Rm) j f #g0 2 P(� ) g

1Contrary to the meaning we associate to it, the term “shape space” is frequently used for certain
classes of subsets ofR3 modulo the action of the Euclidean group.
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5 LipschitzImmersions

and equip it with the distance

dImm( f1; f2) B kf1 � f2kL1 + dP( f #
1 g0; f #

2 g0) for f1, f2 2 Imm(� ; Rm):

Remark 5.2 Our notion of Lipschitz immersions may seem quite similar to the
one established by Rivière in [33]. Note however that Rivière's notion depends on
the boundedness ofvol f #g only, while ours depends on the boundedness of the full
distortion tensorf #g.

The distancedP involves only little �rst order information aboutf1 and f2 in the
casek < m. Even in the casek = m, this distance is insensitive to the orientation of
the tangent spaces. Hence we add a distance between oriented tangent planes off1
and f2. Since we also would like to treat non-orientable manifolds� , we use the
following construction:

Let �̂ : �̂ ! � be theorientation coveringof � (see, e.g., [26, p. 330]). Note
that �̂ is a double covering of� so Tx�̂ : Tx�̂ ! T�̂ (x)� is a linear isomorphism.
Therefore, any Riemannian metricg on � can be pulled pack tô� along�̂ . The �ber
�̂ jx B �̂ � 1(fxg) consists precisely of the two possible orientations onTx� . Thus,�̂
is oriented in a canonical way: The orientation ofTp�̂ � T�̂ (p)� is p itself. Every
f 2 Imm(� ; Rm) can be pulled back along ˆ� leading to the isometric embedding

�̂ # : (Imm(� ; Rm); dImm) ! (Imm(�̂ ; Rm); dImm); f 7! f � �̂:

Let cGrk(Rm) be the oriented Grassmannian, i.e., the smooth manifold of oriented
k-dimensional vector subspaces inRm. Every f̂ 2 Imm(�̂ ; Rm) induces aGauss map
� ( f̂ ) 2 L1 (�̂ ; cGrk(Rm)) via

� ( f̂ )jp B

8
>><
>>:
(im(df̂ jp); f̂#p); d f̂ jp exists and is injective;

unde�ned; else;

leading to the mapping� : Imm(�̂ ; Rm) ! L1 (�̂ ; cGrk(Rm)). Here, f̂#p denotes the
orientation onim(df̂ jp) that makesdf̂ jp : (Tp�̂ ; p) ! (im(df̂ jp); f̂#p) orientation-
preserving. AnyGL(Rm)-invariant Riemannian metricgGr onGrk(Rm) can be lifted
to a Riemannian metricgcGr on cGrk(Rm), leading to a geodesic distancedcGr. Via the
Gauss map, we may de�ne the following augmented metricd�

Imm on Imm(� ; Rm):

d�
Imm( f1; f2) B dImm( f1; f2) + ess sup

p2�̂

dcGr

�
� ( f1 � �̂ )jp; � ( f2 � �̂ )jp

�
;

for every f1, f2 2 Imm(� ; Rm).
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5.2 Di� eomorphism Group

Let (�; g) be a compact, smooth Riemannian manifold. We de�ne the group of
Lipschitz di� eomorphismsby

Di� (� ) B f ' 2 W1;1
g (� ; � ) j ' is a bi-Lipschitz homeomorphismg;

where the group structure is given by

� : Di� (� ) � Di� (� ) ! Di� (� ); (';  ) 7! ' �  ;

� : Di� (� ) ! Di� (� ); ' 7! ' � 1:

Note that the spaceDi� (� ) does not depend on the choice of the Riemannian
metric g. The existence of global Lipschitz constants for' and' � 1 implies ' #g,
(' � 1)#g 2 P(� ) for every Riemannian metricg on � . To giveDi� (� ) a topology, we
de�ne the distance

dDi� (' 1; ' 2) B ess sup
x2�

dg
�
' 1(x); ' 2(x)

�
+ ess sup

x2�
dg

�
' � 1

1 (x); ' � 1
2 (x)

�

+ dP
�
' #

1g; ' #
2g

�
+ dP

�
(' � 1

1 )#g; (' � 1
2 )#g

�

for all ' 1, ' 2 2 Di� (� ). By construction,� : (Di� (� ); dDi� ) ! (Di� (� ); dDi� ) is
an isometric isomorphism, thus Lipschitz continuous. That� is locally Lipschitz
continuous can be checked easily with the triangle inequality, the chain rule, and
the factkT' kL1 , kT(' � 1)kL1 � dDi� ('; id� ) < 1 . Thus,(Di� (� ); �; � ) is a topological
group. Note thatDi� 0(� ) B f ' 2 Di� (� ) j ' j@� = id@� gis a closed normal subgroup
of Di� (� ). The topological groupDi� (� ) acts continuously from the right on
Imm(� ; Rm) via

L' : Imm(� ; Rm) ! Imm(� ; Rm); f 7! f � ';

for all ' 2 Di� (� ).
For 
 2 Imm(@�; Rm), one may also de�ne the space of immersions under bound-

ary conditions:

Imm
 (� ; Rm) B f f 2 Imm(� ; Rm) j f j@� = 
 g:

Note however, that for arbitraryf 2 Imm(� ; Rm), the restrictionf j@� need not be
Lipschitz continuous. The action ofDi� 0(� ) on Imm(� ; Rm) restricts to an action on
Imm
 (� ; Rm).

Finally, we point out thatDi� (� ) acts onImm(� ; Rm) through isometries with
respect to bothdImm andd�

Imm—a fact that we utilize to analyze the quotient metric
of dImm andd�

Imm.
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5.3 Quotient Space

One may consider the following quotient spaces

Imm(� ; Rm)=Di� (� ); Imm(� ; Rm)=Di� 0(� ); and Imm
 (� ; Rm)=Di� 0(� );

where
 2 Imm(@�; Rm). Let (C;G) be one of the pairs(Imm(� ; Rm);Di� (� )),
(Imm(� ; Rm);Di� 0(� )), or (Imm
 (� ; Rm);Di� 0(� )). Denote byX B C=G the quo-
tient space and by� : C ! X the canonical map. The metricsdImm, d�

Imm on C
descend to quotient semi-metricsdX , d�

X on the quotientX (see [8, p. 62] for a
de�nition of the quotient semi-metric). In general, these quotient semi-metrics may
be quite cumbersome to work with. In our case, the groupG acts onC through
isometries, hence the quotient semi-metrics satisfy

dX(� ( f1); � ( f2)) = inf
' 2G

dImm( f1; f2 � ' ) and

d�
X(� ( f1); � ( f2)) = inf

' 2G
d�

Imm( f1; f2 � ' );

where f1, f2 2 C.

Lemma 5.3 Let � be a compact smooth manifold with boundary. Then both(X;dX)
and(X;d�

X) are metric spaces.

Proof . It su� ces to show thatdX is a metric. Letf , h 2 C and let' n 2 G be a
sequence withdImm( f ; h � ' n) ! 0. We have to show that there is a' 2 G with
f = ' #h.

We start by choosing a smooth Riemannian metricg on � such that the boundary
(if it exists) is totally geodesic. This way, for every pointx 2 � , every neighborhood
U of x contains a geodesically convex neighborhood ofx. Such a Riemannian metric
can be constructed, for example, by choosing a cylinder metric on a smooth collar of
� and extending it smoothly.2

Observe thathn B h � ' n converges uniformly tof . Moreover, being convergent,
h#

ng0 is a bounded sequence inP� . Hence there is some� 0 � 0 with

kdhyg
n kL1

g ; kdhnkL1
g

� � 0:

The chain rule for weak derivatives of Lipschitz mappings yields

dhnjx = dhj' n(x) � Tx' n and

dhjx = dhnj' � 1
n (x) � Tx(' � 1

n );

2A smooth collarof � is a smooth embedding� : [0; 1[ � @� ! � such that� (0; x) = x holds for
all x 2 @�. Every paracompact smooth manifold with boundary has a smooth collar.
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hence one obtainsTx' n = (dhj' n(x))yg � dhnjx for almost allx 2 � . Thus, there is a
� � 0 with

kT' nkL1
g � k (dh)ygkL1

g � kdhnkL1
g

� � and

k(T' n)� 1kL1
g � k (dhn)ygkL1

g � kdhkL1
g � �;

showing that the families(' n)n2N and(' � 1
n )n2N are equicontinuous. Because� is a

compact metric space, the families(' n)n2N and(' � 1
n )n2N are also pointwise relatively

compact. Thus, the Arzelà-Ascoli theorem (see, e.g., [28, Theorem 47.1]) implies
the existence of a subsequence (which we also denote by(' n)n2N) such that both
' n ! ' and' � 1

n ! ' � 1 converge in the compact-open topology onC(� ; � ).
Up to now, we know that' : � ! � is a homeomorphism (probably �xing the

boundary) and thatf = h � ' . We are left to show that both' are' � 1 are Lipschitz.
Let V1; : : : ;V� with some� 2 N be a covering of� by open, relatively compact,

and geodesically convex sets. Choose a coveringU1; : : : ;U� with some� 2 N of �
by open, relatively compact and geodesically convex sets such that each' (Ui) is
contained in someVj. Then one has for allx, y 2 Ui:

d� (' (x); ' (y)) � dg(' (x); ' n(x)) + dg(' n(x); ' n(y)) + dg(' n(y); ' (y))

� dg(' (x); ' n(x)) + kT' nkL1
g

dg(x; y) + dg(' n(y); ' (y)):

Applying lim supn!1 yieldskT' kL1
g

� � , hence' is Lipschitz continuous. The same
argument shows that' � 1 is Lipschitz continuous, too. �

5.4 Embedding Theorems

Here we gather several technical lemmata for later use. Moreover, we analyze the
relationship between Imm(� ; Rm) andW1;1

g (� ; Rm).

Lemma 5.4 Fix b, g 2 P(V) and letX 2 TbP(V) = Sym(V) with jXjg < e� dP(b;g).
Then b+ X is also contained in P(V) and one has

dP(b; b + X) � edP(g;b) jXjg:

In particular, P(V) is open inSym(V).

Proof . Choose ag-orthonormal basise of V and de�neB B Ge(b), X B Ge(X).
Let 0 < � 1 � � � � � � k be the eigenvalues ofB. Observe that

kB� 1k =
1
� 1

= exp
�
jlog( 1

� 1
)j
�

� exp

vt
kX

i=1

jlog( 1
� 1

)j2 = edP(b;g):
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5 LipschitzImmersions

The estimate

kB� 1
2 XB � 1

2 k � k B� 1k kXk � k B� 1k jXj � edP(b;g) � jXjg < 1

shows thatB + t X = B
1
2 (In + t B� 1

2 XB � 1
2 )B

1
2 is invertible for all t 2 [0; 1]. This

implies thatB + X and thusb + X are positive de�nite. Now, we have

dP(b; b + X) = jlog (B� 1
2 (B + X)B� 1

2 )j � j log (I k + B� 1
2 XB � 1

2 )j

� j B� 1
2 XB � 1

2 j = jB� 1Xj � j B� 1j jXj � edP(g;b) jXjg;

from which the stated estimate follows. �

Lemma 5.5 Let (Vi; gi) be �nite-dimensional Euclidean spaces fori = 1, 2 and let
A, U 2 Hom(V1;V2) with A injective and U ful�lling

jUjg1;g2
<

p
è + e� ` �

p
è ;

where` B dP(g1; A#g2). Then(A + U)#g2 is also contained in P(V1) and one has

dP(A#g2; (A + U)#g2) � (
p

e3` + è +
p

e3` ) � jUjg1;g2
:

Proof . We use the preceding lemma withg = g1, b B A#g2, andX B (A+ U)#g2 � b.
Choosegi-orthonormal basesei of Vi for i = 1, 2 and writeB B Ge1(A

#g2) and
X B Ge1(X). Let A andU be the matrix representations ofA andU, respectively,
with respect to these chosen bases. SinceX = ATU + UTA + UTU one obtains

jXjg = jXj � 2kATAk
1
2 jUj + jUj2 � 2

p
è � jUjg1;g2

+ jUj2g1;g2

< (
p

è + e� ` +
p

è ) � jUjg1;g2
< e� ` ;

wheneverjUjg1;g2
<

p
è + e� ` �

p
è . Finally, one has

dP(b; b + X) � (
p

e3` + è +
p

e3` ) � jUjg1;g2

by Lemma 5.4. �

Corollary 5.6 Let f 2 Imm(� ; Rm) andg 2 P(� ). Then the ballB( f; rg( f )) with
respect to the normk�kW1;1

g
of radiusrg( f ) B

p
è + e� ` �

p
è is also contained in

Imm(� ; Rm), where` B dP(g; f #g0). In particular Imm(� ; Rm) � W1;1
g (� ; Rm) is

open.
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5.4 EmbeddingTheorems

Corollary 5.7 Let g be a Riemannian metric on� and letdW1;1
g

be the distance
induced byk�kW1;1

g
. Then the identity mapping

id: (Imm(� ; Rm); dW1;1
g

) ! (Imm(� ; Rm); d�
Imm)

is locally Lipschitz continuous.

Proof . Fix f 2 Imm(� ; Rm) and leth 2 Imm(� ; Rm) with kf � hkW1;1
g

� rg( f ). By
Lemma 5.5, we have

dP( f #g0; h#g0) � (
p

e3` + è +
p

e3` ) � kdf � dhkL1
g
;

showing the local Lipschitz continuity of id with respect todImm.
The local Lipschitz continuity ofid with respect tod�

Imm can be deduced from the
fact that� ( f ) is a lift of p( f ) � �̂ along the canonical covering� : cGrk(Rm) ! Grk(Rm)

cGrk(Rm)

�

��
�̂

p( f )� �̂ //

�̂
��

� ( f )
77

Grk(Rm);

�

p( f )
77

wherep( f ) can be expressed as the orhtoprojector-valued mapping

p( f ) = df (df � gdf )� 1df � g:

The mapp: (Imm(� ; Rm); dW1;1
g

) ! L1 (� ; Grk(Rm)) is locally Lipschitz continuous
and� is a Riemannian submersion. Thus, the mapf 7! � ( f ) is also locally Lipschitz
continuous. �

De�nition 5.8 Let B � L1
g (� ; Rm) be a Banach space. We say,B is compactly em-

beddedinto W1;1
g (� ; Rm), if the canonical embeddingB ,! L1

g (� ; Rm) has its image
contained inW1;1

g (� ; Rm) and the induced linear embeddingi : B ,! W1;1
g (� ; Rm) is

compact.

Lemma 5.9 Let i : B ,! W1;1
g (� ; Rm) be a compactly embedded Banach space.

Then

A s B f f 2 Imm(� ; Rm) \ B j dP(g; f #g0) � s; kf kB � sg

is a compact set in(Imm(� ; Rm); d�
Imm).
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5 LipschitzImmersions

Proof . Let fn 2 A s for all n 2 N. By compactness ofi, there is anf 2 W1;1
g (� ; Rm)

and a subsequence( fnl )l2N with fnl ! f in W1;1
g (� ; Rm) asl ! 1 . Let l 2 N be large

enough such that

kfnl � f kW1;1
g

<
p

es + e� s �
p

es:

By Corollary 5.6 we havef 2 Imm(� ; Rm). Now, Corollary 5.7 impliesfnl

l!1
�! f

with respect tod�
Imm. �

Lemma 5.10 Let i : B ,! W1;1
g (� ; Rm) be a continuously embedded Banach space.

Then the spaceImm(� ; Rm) \ B with the metric

dB( f1; f2) B d�
Imm( f1; f2) + kf1 � f2kB for all f1, f2 2 Imm(� ; Rm) \ B

is complete.

5.5 Volume Functionals

The volume functionals on the space of Lipschitz immersions and on shape space
are essential for the treatment of least volume problems. In this section, we establish
their local Lipschitz continuity.

Throughout, let� be a compact,k-dimensional smooth manifold with boundary.

Lemma 5.11 Thevolume functional

J : (P(� ); dP) ! R; g 7!
Z

�
volg

has its modulus of continuity! J (g; t) bounded byJ (g) e
p

k t
p

k t, i.e.,

jJ (b) � J (g)j � J (g) e
p

k dP(g;b)
p

k dP(g; b) for all g, b 2 P(� ).

Proof . We abbreviate� B volb
volg

. From Lemma 4.15, we know that

jlog(� (x))j = dVol(volg jx; volb jx) �
p

k dP(gjx; bjx) �
p

k dP(g; b):

Together with the estimatejt � 1j � j log(t)j ejlog(t)j for all t > 0, we obtain

jJ (b) � J (g)j =
���
Z

�
(volb � volg)

���

�
Z

�
j� � 1j volg � J (g) e

p
k dP(g;b)

p
k dP(g; b): �
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5.5 VolumeFunctionals

Corollary 5.12 Let ! F be the modulus of continuity of thevolume functional

F : (Imm(� ; Rm); dImm) ! R; f 7!
Z

�
vol f #g0 :

Then one has! F ( f ; t) � F ( f ) e
p

k t
p

k t.

Corollary 5.13 With the nomenclature of Section 5.3, let� #F : (X;dX) ! R be the
pushforward ofF along� . Its modulus of continuity! � #F satis�es

! � #F (x; t) � (� #F )(x) e
p

k t
p

k t:

Proof . For x, y 2 X and f 2 � � 1(x), h 2 � � 1(y) observe

j(� #F )(y) � (� #F )(x)j = inf
' 2G

jF (h � ' ) � F ( f )j

� inf
' 2G

F ( f ) e
p

k dImm( f ;h� ' )
p

k dImm( f ; h � ' )

= (� #F )(x) e
p

k dX (x;y)
p

k dX(x; y): �

Lemma 5.14 Let k � m, let V be a k-dimensional real vector space, and let
Homk(V; Rm) be the open subset ofHom(V; Rm) consisting of the linear mappings
with full rank. The mapping

F : Homk(V; Rm) ! 
 (V); A 7! volA#g0

is di� erentiable with derivative given by

hdFjA;Ui = hA;Ui A#g0 volA#g0 for all A 2 Homk(V; Rm), U 2 Hom(V; Rm).

Proof . Choose an arbitraryb 2 P(V), a b-orthonormal basise of V and ag0-
orthonormal basisf of Rm. With B = Ge(b), A i j = g0( fi; A ej), andUi j = g0( fi;U ej)
we haveF(A) = det(ATA)

1
2 volb by (4.2), thus

hdFjA;Ui = 1
2 det(ATA)� 1

2


d detjATA;ATU + UTA

�
volb :

The derivative of the determinant det : GLk(Rk) ! R is given by

hd detjB;Xi = det(B) tr(B� TX) for all B 2 GLk(R), X 2 Matk� k(R).

Thus one may compute

hdFjA;Ui = 1
2 det(ATA)� 1

2 det(ATA) tr
�
(ATA)� T(ATU + UTA)

�
volb

= 1
2 det(ATA)

1
2

�
tr

�
(ATA)� TATU

�
+ tr

�
(ATA)� TUTA

��
volb

= 1
2

�
tr

��
A(ATA)� 1�TU

�
+ tr

��
U(ATA)� 1�TA

��
volA#g0

= hA;Ui A#g0 volA#g0 : �
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5 LipschitzImmersions

Lemma 5.15 Let (�; g) be a compact,k-dimensional Riemannian manifold with
boundary. The volume functionalF : (Imm(� ; Rm); k�kW1;1

g
) ! R is di� erentiable

and its derivative is given by

hdF j f ; ui =
Z

�
hdf; dui f #g0 vol f #g0 for all f 2 Imm(� ; Rm), u 2 W1;1

g (� ; Rm).

Proof . Let f 2 Imm(� ; Rm). First, note thatF ( f ) =
R

�
F(df ) with the bundle map

F : Homk(T� ; Rm) ! 
 (T M) given �berwise as in the previous lemma. Second,
one hasdf jx 2 Homk(TxM; Rm) for volg-almost allx 2 � . Integration is linear and
Imm(� ; Rm) � W1;1

g (� ; Rm) is an open set, hence the previous lemma yields the
claim. �
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6 Approximation Theory for
Lipschitz Immersions

In Chapters 7 and 8 we will focus on the discretization of variational problems on the
space of Lipschitz immersions with �xed topological type under Dirichlet boundary
conditions. The central tools for the discretization are simplicial submanifolds of
Euclidean space and smooth triangulations of smooth manifolds with boundary.

In the present chapter, we couch these tools in the language of Chapter 2 by
identifying:

� the con�guration spacesC, Cn;

� meaningful a priori information setsA , A n; and

� sampling and reconstruction operatorsSn, Rn.

Moreover, we lay the foundation for proximity estimates.

6.1 Smooth Triangulations

Denote thestandard simplexby

� k B
n

y = (y0; : : : ;yk) 2 [0;1]k+1
���
P k

i=0 yi = 1
o
:

Denote bye0; : : : ;ek the standard basis ofRk+1 and de�ne the set ofd-faces

Fd B f conv(ei0; : : : ;eid) j 0 � i0 < � � � < id � kg;

whereconvdenotes the convex hull. For a smooth embedding� : � k ! � , de�ne
thevertex set

V(� ) B f � (e0); : : : ; � (ek) g= � (F0):
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6 ApproximationTheory for LipschitzImmersions

De�nition 6.1 Let M be a smooth,k-dimensional manifold with corners. Asmooth
triangulationof � is a family

T � f � : � k ! M j � is a smooth embeddingg

with the following properties:

1. M =
S

� 2T � (� k).

2. For each pair� , � 2 T with � (� k) \ � (� k) , ; , both� � 1(� (� k) \ � (� k)) and
� � 1(� (� k) \ � (� k)) ared-faces of� k for some0 � d � k � 1 and the mapping

� � 1 � � : � � 1(� (� k) \ � (� k)) ! � � 1(� (� k) \ � (� k))

is a� ne.

3. For each� 2 T with � (� k) \ @M , ; , the set� � 1(� (� k) \ M) is ad-face of
� k for some 0� d � k � 1.

We distinguish betweenboundary verticesandinterior vertices:

V(T ) B
[

� 2T

V(� ); Vb(T ) B V(T ) \ @M and Vi(T ) B V(T ) nVb(T ):

A smooth triangulation is called�nite if its cardinality is �nite.

De�nition 6.2 Let T be a smooth triangulation of ak-dimensional smooth manifold
M with boundary. ThenT induces a smooth triangulationT j@M of the boundary@M
by:

T j@M B f� jA j � 2 T , A 2 Fk� 1: � (A) � @Mg

Remark 6.3 Every smooth manifold with boundary admits a smooth triangulation
(see [38]).

6.2 Con�guration Spaces and Sampling Operator

Let k andmbe positive integers withk � mand let� be a compact,k-dimensional
smooth manifold with boundary. We abbreviatedC̃ B Imm(� ; Rm). For a �xed
boundary condition
 2 Imm(@�; Rm) we de�ne the(smooth) con�guration space
C B Imm
 (� ; Rm). Note thatC � C̃ is a closed set.
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6.2 Configuration Spaces andSamplingOperator

Let T be a smooth triangulation of� . We de�ne thediscrete con�guration space
or space ofdiscrete immersions:

CT B
(

f : V(T ) ! Rm

������
f jVb(T ) = 
 jVb(T );

8� 2 T : f (V(� )) in general position

)
� Rmcard(Vi (T )):

While asampling operator

ST : C � W1;1
g (� ; Rm) ! C T ; f 7! f jV(T );

is easily de�ned, we need some more e� ort to obtain a reasonable reconstruction
operator. For eachp 2 V(T ) denote by� p : � ! R the continuous, piecewise
smooth function de�ned by:

1. � p(p) = 1.

2. � p(q) = 0 for all q 2 V(T ).

3. � p � � : � k ! R is the restriction of an a� ne function for each� 2 T .

This allows us to de�ne a preliminary reconstruction operator

R̃T : CT ! C̃; R̃T ( f )(x) B
X

p2V(T )

� p(x) f (p):

Note that for everyf 2 CT , the image of̃RT ( f ) in Rm is a union of non-degenerate
k-dimensional Euclidean simplices. We de�ne the piecewise smooth mapping


 T : @� ! Rm; 
 T (x) B
X

p2Vb(T )

� p(x) 
 (p): (6.1)

Observe that for eachf 2 CT , the preliminary reconstructioñRT ( f ) restricted to
@� is identical to
 T . Moreover, the image of
 T is a union of embedded(k � 1)-
dimensional simplices. In general,
 T and
 need not to be equal which is why we
have to modifyR̃T later (see Section 6.4).

85



6 ApproximationTheory for LipschitzImmersions

6.3 Relative Approximation Errors

Throughout, we let(�; g) be ak-dimensional Riemannian manifold with boundary
andT be a smooth triangulation of� .

De�nition 6.4 We de�ne therelative approximation errors%0(T ), %1(T ) of the
smooth triangulationT by

%0(T ) B sup
f 2W2;1

g (� ;Rm)
df , 0

kf � fT kL1
g

kdf kW1;1
g

and %1(T ) B sup
f 2W2;1

g (� ;Rm)
df , 0

kdf � dfT kL1
g

kdf kW1;1
g

;

where fT B (R̃T � S T )( f ).

De�nition 6.5 For � 2 T de�ne its approximation characteristics

� (d)(� ) B k(T� )� 1kd
L1

g

�
kT� k2

L1
g

+ kHessg(� )kL1
g

�
; d = 0, 1.

We de�ne theapproximation characteristics ofT as� (d)(T ) B sup� 2T � (d)(� ).

Approximation characteristics provide upper bounds on relative approximation
errors:

Lemma 6.6 Let (�; g) be ak-dimensional smooth Riemannian manifold with bound-
ary andT be a smooth triangulation of� . Then the relative approximation errors
are bounded by:

%(0)(T ) � (1 + Rk) � (0)(T ) and %(1)(T ) � Rk � (1)(T ) where Rk B 2 (k + 1)
1
2 .

Proof . Let p = ( 1
k+1; : : : ; 1

k+1) 2 Rk+1 be the barycenter of� k. Let f 2 W2;1
g (� ; Rm)

and� 2 T . We abbreviatefT B (R̃T � S T )( f ), h B f � � , andhT B fT � � . Since
hT : � k ! Rm is an a� ne map, we may write it as

hT (y) = h(e0) + A(y � e0);

whereA: p? ! Rm is the linear map de�ned byA(ei � e0) = h(ei) � h(e0) for
i = 1; : : : ;k. Let � (y) B h(y) � h(p) � dhjp(y � p). By Taylor's theorem, we have for
eachy 2 � k:

j� (y)j �
1
2

kHess(h)kL1 jy � pj2 �
1
2

k
k + 1

kHess(h)kL1 :
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6.3 Relative ApproximationErrors

Note that

A(ei � ej) � dhjp(ei � ej)

= h(ei) � h(ej) � h(p) � dhjp(ei � p) + h(p) + dhjp(ej � p)

=
�
h(ei) � h(p) � dhjp(ei � p)

�
�

�
h(ej) � h(p) � dhjp(ej � p)

�

= � (ei) � � (ej):

Let u 2 p? . With � i = hei � p; ui for i = 1; : : : ;k one may writeu =
P k

i=1 � i(ei � e0)
and, together with the above, obtain:

jA u� dhjp uj �
kX

i=1

j� i j(j� i j + j� 0j) �
k

k + 1
kHess(h)kL1

kX

i=1

j� i j:

The linear map

L: p? ! Rk; u 7!
�
he1 � p; ui ; : : : ;hek � p; ui

�

has operator normkLk̀ 1! `1 = 2k� 1
k+1 � 2, and because ofkuk1 � (k + 1)

1
2 juj, we obtain

kdhT � dhjpk = kA � dhjpk � Rk kHess(h)kL1 : (6.2)

This estimate leads to

kdf j� (y) � d(fT � � )j� (y)k = k(dhjy � dhT jy) (Ty� )� 1k

� Rk k(T� )� 1kL1
g kHess(h)kL1

and

j f (� (y)) � fT (� (y))j = jh(y) � hT (y)j = jh(y) � h(e0) � A(y � ei)j

= j� (y) � � (e0) + (dhjp(y � ei) � A(y � ei))j

� j � (y)j + j� (e0)j + j dhjp(y � ei) � A(y � ei) j

�
�
1 + Rk

�
kHess(h)kL1 :

For y 2 � k andu, v 2 Ty� k, the chain and product rules imply

Hessy(h)(u; v) = Hessy( f � � )(u; v)

= Hessg� (y)( f )(Ty� u;Ty� v) + d� (y) f Hessgy(� )(u; v);

which yields the estimate

kHess(h)kL1 � kdf kW1;1
g

sup
� 2T

�
kT� k2

L1
g

+ kHessg(� )kL1
g

�
�
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6 ApproximationTheory for LipschitzImmersions

It is crucial for the convergence analysis of �nite elements that there are smooth
triangulations of arbitrarily small relative approximation errors. Fortunately, a� ne
subdivision can be used to improve upon the approximation characteristics (and thus
upon the relative approximation errors):

De�nition 6.7 Let � be a smooth manifold with boundary and letT be a smooth
triangulation of� . A subdivisionof T is a family� = (� � )� 2T of smooth triangula-
tions of� k such that� (T ) B f � � ' j � 2 T ; ' 2 � � gis a smooth triangulation of
� .12

We call a subdivision� a� neif it consists of a� ne mappings only, i.e., if each
' 2 � � is a� ne for all � 2 T .

Lemma 6.8 Let (�; g) be ak-dimensional smooth Riemannian manifold with bound-
ary, T be a smooth triangulation of� , and� be an a� ne subdivision ofT . Then
the approximation characteristics of� (T ) can be estimated by:

� (0)(� (T )) � � (0)(T ) sup
� 2T

sup
' 2� �

kT' k2
L1 ;

� (1)(� (T )) � � (1)(T ) sup
� 2T

sup
' 2� �

kT' k2
L1 k(T' )� 1kL1 :

Proof . Let � 2 T and' 2 � � . Because' is the restriction of an a� ne map to an
a� ne subspace, we have Hess(' ) = 0. Thus one obtains

T(� � ' ) = T� T' and Hessg(� � ' ) = Hessg(� )(T' �; T' �):

This supplies us with the estimates

kT(� � ' )kL1
g

� kT� kL1
g

kT' kL1 ;

k(T(� � ' ))� 1kL1
g � k (T� )� 1kL1

g k(T' )� 1kL1 ;

kHessg(� � ' )kL1
g � k Hessg(� )kL1

g kT' k2
L1 ;

which imply the statement. �

The previous lemma shows that the approximation characteristics ofT may be
decreased by choosing an a� ne subdivision� with

� B sup
� 2T

sup
' 2� �

kT' k

1Note that� k itself is a smooth manifold with corners.
2This demand includes a certain compatibility between the triangulations� � , � � for neighboring� ,

� 2 T , i.e., for those� , � 2 T with � (� k) \ � (� k) , ; .
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6.4 ReconstructionOperator

small and

# B sup
� 2T

sup
' 2� �

k(T' )� 1k kT' k

bounded. While� is related to the maximalsizeof the cells' (� k), the quantity# is
precisely the maximalthicknessof the cells' (� k).

This also shows that many mesh re�nement schemes that work for triangulations
of domains in Euclidean space can also applied here.

Example 6.9 In the casek = 2, one may apply 4:1 subdivision: The simplex� 2 is
split into four by inserting a vertex on the midpoint of each edge. In that case, one
haskT' k = 1

2 andkT' � 1k = 2 such that one obtains� (d)(� (T )) � 2d� 2� (d)(T ) for
d = 0, 1.

Of course, there may be many other ways to construct smooth triangulations
with arbitrarily small relative approximation error, e.g., Karcher coordinates (see
[12]). The relevant facts for our convergence analysis are condensed in the following
statement:

Corollary 6.10 Let (�; g) be a compact, smooth Riemannian manifold with bound-
ary. Then there are �nite smooth triangulations with arbitrary small relative approx-
imation errors, i.e., for every" > 0 there is a �nite smooth triangulationT of �
with

%(T ) B maxf %(0)(T ); %(0)(T j@�); %(1)(T ); %(1)(T j@�) g � ":

6.4 Reconstruction Operator

For 
 2 Imm(@�; Rm) \ W2;1 (@�; Rm), f 2 Imm(� ; Rm) \ W2;1 (� ; Rm), and
 T as
de�ned in (6.1) we obtain the relative approximation errors:

k
 � 
 T kW1;1
g

� k d
 kW1;1
g

%(T ); (6.3)

kf � (R̃T � S T )( f )kW1;1
g

� k df kW1;1
g

%(T ): (6.4)
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6 ApproximationTheory for LipschitzImmersions

Let ext : W1;1
gj@�

(@�; Rm) ! W1;1
g (� ; Rm) be a continuous, linear extension operator3

and letuT B ext(
 � 
 T ). Now, (6.3) provides us with the estimate

kuT kW1;1
g

� kextk k
 � 
 T kW1;1
g

� kextkkd
 kW1;1
g

%(T ): (6.5)

For r > s > 0, de�ne the sets

A s B f f 2 C \ W2;1
g (� ; Rm) j dP(g; f #g0) � s, kdf kW1;1

g
� sg; (6.6)

A r
T B f f 2 CT j dP(� )(g; R̃T ( f )#g0) � r g; (6.7)

and the operator

RT : A r
T ! W1;1

g (� ; Rm); f 7! RT ( f ) + uT :

As the �nal result of this chapter, we show thatRT is a reconstruction operator,
i.e.,RT (A r

T ) � C , at least for su� ciently “�ne” triangulations. We also verify the
conditionST (A s) � A r

T of Theorem 2.28:

Lemma 6.11 Let r > s > 0 andc > 0. Then there is%0 > 0 such that for every
smooth triangulationT with %(T ) � %0 the following hold:

ST (A s) � A r
T ; and RT (A r

T ) � C :

Proof . Let f 2 A s and putfT B (R̃T � S T )( f ). By (6.4), we havekf � fT kW1;1
g

�
s%(T ) � s%0. Corollary 5.6 tells us how small%0 has to be (depending onsonly) so
that fT 2 Imm(� ; Rm) and thusST ( f ) 2 CT . By Corollary 5.7, one has the inequality

dP(� )(g; f #
T g0) � dP(� )(g; f #g0) + dP(� )( f #g0; f #

T g0) � s+ C(s) %0

which shows thatST ( f ) 2 A r
T if %0 is su� ciently small.

Now, let f 2 A r
T . We haveR̃T ( f ) 2 Imm(� ; Rm) anddP(� )(g; R̃T ( f )#g0) � r. By

(6.5), we obtain

kRT ( f ) � R̃T ( f )kW1;1
g

= kuT kW1;1
g

� C kd
 kW1;1
g

%0:

Again, Corollary 5.6 tells us how%0 has to be chosen depending onr such that
RT ( f ) 2 C̃. SinceRT ( f ) ful�lls the boundary conditions by construction, we obtain
RT ( f ) 2 C. �

3Such an operator can be obtained, e.g., by choosing a smooth collar� : @� � [0; 1[
�
! U � � and

by using the function� : [0; 1[ ! R, � (t) = exp ( t2

t2� t ): Then

ext(u)(x) B

8
>><
>>:
(u 
 � ) � � � 1(x); x 2 U;
0; x 2 � nU:

is the desired extension operator.
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7 Minimal Surfaces

As a �rst extensive application of the theory developed in Chapter 2, in particular
of Theorem 2.28, we discuss a variant of theDouglas-Courant problemor least
area/volume problem: Among the immersedk-dimensional surfaces inRm with pre-
scribed topology and Dirichlet boundary conditions �nd those of minimalk-volume.
For k = 2, C2-minimizers are examples of minimal surfaces (see Lemma 7.6).1

We discretize this problem by searching for volume-minimizers among immersed
k-dimensional simplicial meshes of �xed combinatorics bounded by a given, closed
(k � 1)-dimensional simplicial mesh. To some extent, this approach can be under-
stood as a nonconforming Ritz-Galerkin method with �rst order Lagrange elements
(piecewise linear �nite elements).

We primarily aim at a convergence analysis for discrete minimizers, but we also
discuss some numerical methods for obtaining them (Section 7.3 and Section 7.7).
The point we would like to make is this: Given a su� ciently well-posed Plateau
problem, i.e., the boundary conditions are such that volume minimizers within
a certain topological class existand have a certain uniform regularity, the set of
solutions can be approximated by solutions of a discrete Plateau problem.

We start our exposition by giving a precise de�nition for minimal surfaces and by
stating both the Douglas-Courant problem, and the least area problem (Section 7.1).
After a brief overview of the classical theory of minimal surfaces (Section 7.2),
we compare some of the pre-existing numerical methods for computing minimal
surfaces (Section 7.3). Afterwards, we discretize the least area problem and identify
the relevant entities occurring in Theorem 2.28, namely the smooth and discrete
con�guration spaces, functionals and test mappings, as well as the sampling and
reconstruction operators (Section 7.5). Our convergence result then follows from
an analysis of consistency and proximity errors (Section 7.6). Finally, we discuss a
certain gradient-like �ow that was introduced in [30] and which is very e� cient for
solving the discrete least area problem (Section 7.7).

1It is an unparalleled obscurity that also non-minimizers are called “minimal”. Alas, this convention
has grown historically.
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7 MinimalSurfaces

7.1 General Theory

De�nition 7.1 Let � be a2-dimensional manifold with boundary and let(M0; g0)
be a smooth Riemannian manifold of dimensionm � 3. A mappingf 2 C0(� ; M0) \
C2(� � ; M0) is called aminimal surfaceif there is a Riemannian metricg of classC1

in the interior� � B � n@� and a function%2 C1(� � ; [0; 1 [) with

� g;g0 f B trg Hessg;g0( f ) = 0 and f #g0 = %g in � � : (7.1)

Remark 7.2 The conditionf #g0 = %g for some%2 C1(� � ; [0; 1 [) is often referred
to as the “conformality condition” in the literature. Note however that a conformal
map by de�nition ful�lls f #g0 = %g, with anowherevanishing function%, that is, a
conformal map is necessarilyregular.

TheDouglas-Courant problem, also called thePlateau-Douglas problem, can be
formulated as follows (see [17] or [10]):

Problem 7.3 (Douglas-Courant)
Let � be a2-dimensional smooth manifold with boundary and let
 2 C0(@�; M0) be
an embedding. Find all minimal surfacesf with f j@� = 
 � ' for some homeomor-
phism' : @� ! @�.

In the case that� = D is the closed unit disk andM0 = R3, this is traditionally
referred to as thePlateau problem.

The notion of minimal surfaces has its origin in the least area problem, the 2-
dimensional instance of the least volume problem. We give a formulation of this
problem in terms of Lipschitz Immersions:

Problem 7.4 (Least volume problem)Let � be a compact,k-dimensional smooth
manifold with boundary. Let(M0; g0) be a smooth,m-dimensional Riemannian
manifold withm > k and let
 2 Imm(@�; M0) be a Lipschitz immersion. Given�
and
 , minimize the volume functional

F ( f ) =
Z

�
vol f #g0

on the spaceC B Imm
 (� ; M0) of Lipschitz immersions that restrict on the boundary
to 
 (see Chapter 5).

Remark 7.5 Note that by using Lipschitz immersions as con�guration space, we
exclude “hairy” mappings (which is desired), but we also exclude continuously
di� erentiable mappings with isolated branch points.
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7.1 General Theory

The Douglas-Courant problem and the least area problem are closely related:

Lemma 7.6 Let � be a compact,2-dimensional smooth manifold with boundary and
(M0; g0) a smooth Riemannian manifold without boundary. Let
 2 Imm(@�; M0) be
a topological embedding andf 2 C \ C2(� � ; M0) a Lipschitz immersion that is of
class C2 in the interior of� .

Then f is a minimal surface if and only if it is a critical point ofF jC.

Proof . Note that an argumentation analogous to the proof of Lemma 5.15 shows
that

hdF j f ; ui =
Z

�
hT f; r g0ui f #g0 vol f #g0

for all f 2 Imm(� ; M0) and all vector �eldsu 2 � (� ; f #T M0) along f of classW1;1
g .

Let f 2 C \ C2(� � ; M0) be a critical point ofF jC. By partial integration, one has
for each vector �eldu 2 � 0(� � ; f #T M0) along f of classC1 with compact support:

0 = hdF j f ; ui =
Z

�
hT f; r g0ui f #g0 vol f #g0 = �

Z

�
h� f #g;g0 f ; ui f #g0;g0 vol f #g0 :

Thus f is harmonic with respect to the Riemannian metricf #g0. Moreover,

f : (�; f #g0) ! (M0; g0)

is a Riemannian isometry, hence a conformal map. Thus,f is a minimal surface.

Let f 2 C \ C2(� � ; M0) be a minimal surface,%2 C1(� � ; ]0; 1 [) a function, and
g a Riemannian metric of classC1 on � � with � g f = 0 and f #g0 = %g. Sincef is a
Lipschitz immersion and%is continuous, one has% >0, hencef is conformal. By
Lemma 7.7 below, one has foru 2 � 0(� � ; f #T M0) of classC1:

0 = �
Z

�
h� g;g0 f ; ui g;g0 volg = �

Z

�
h� f #g0;g0 f ; ui f #g;g0 vol f #g0 = hdF j f ; ui : �

Lemma 7.7 In the case thatdim(� ) = 2, the Laplacian� g;g0 transforms under
conformal changes g� B e2� g of the metric with� 2 C1(� � ; R) as follows:

Z

� �
h� g� ;g0 f ; ui g0

volg� =
Z

� �
h� g;g0 f ; ui g0

volg

for all f 2 C2(� � ; M0) and all smooth vector �eldsu 2 � 0(� � ; f #T M0) along f with
compact support.
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7 MinimalSurfaces

Proof . Note thatvolg� = e2� volg and thath�; � i g� = e� 2� h�; � i g for all � , � 2 T0
x� .

Testing withu 2 � 0(� � ; f #T M0), one obtains
Z

� �
h� g� ;g0 f ; ui g0

volg� = �
Z

� �
hT f; r g0ui g� ;g0

volg�

= �
Z

� �
e� 2� hT f; r g0ui g;g0

e2� volg =
Z

� �
h� g;g0 f ; ui g0

volg :�

From now on, we exclusively discuss the case ofM0 = Rm being the Euclidean
space andg0 the Euclidean metric.

7.2 Existence Theorem for Disk-like Minimal
Surfaces

Let � = D be the closed unit disk inR2 and �x an embedding
 2 C0(D; Rm).
By the Riemann mapping theorem, there is exactly one conformal structure onD.
Let g be the Euclidean metric onD. In light of Lemma 7.7, it is immediate that
f 2 C0(D; Rm) \ C2(D� ; Rm) is a minimal surface if and only if(7.1) is ful�lled for
the Euclidean metricg in D.

De�ne theDirichlet functionalD by

D( f ) B
1
2

Z

D
hdf; df i g volg for all f 2 W1;2

g (D; Rm):

Equip@D with some orientation and denote byM the closure of the set of homeo-
morphisms@D ! @D with mapping degree1 in the topology of uniform convergence.
Elements ofM are usually calledmonotonic. Fix three distinct pointsp1, p2, p3 2 @D.
De�ne

M � B f ' 2 M j ' (pi) = pi; i = 1;2;3g

and the spaces ofadmissible functions

C B f f 2 C0(D; Rm) \ W1;2
g (D; Rm) j 9' 2 M : f j@D = 
 � ' g;

C� B f f 2 C0(D; Rm) \ W1;2
g (D; Rm) j 9' 2 M � : f j@D = 
 � ' g:

The area functionalF is continuously extendable toC and one has

inf
f 2C

F ( f ) = inf
f 2C

F ( f ) � inf
f 2C

D( f ) = inf
f 2C�

D( f ): (7.2)
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7.2 ExistenceTheorem forDisk-like MinimalSurfaces

This �rst equality holds sinceC̃ is dense inW1;2(� ; Rm); since every continuous
homeomorphism' : @D ! @D with mapping degree1 can be a extended to a
homeomorhismD ! D which is of classC1 in the interior2; and because of the
invariance properties ofF . The inequality in(7.2) follows fromdet(A) � 1

2jAj2 for
all A 2 Mat2� 2(R). The Dirichlet functional is invariant under conformal mappings
(see the proof of Lemma 7.7); every conformal mappingD ! D is uniquely and
well-de�ned by prescribing its values on three distinct points. This implies the
second equality.

The main theorem in the theory of disk-like minimal surfaces is the following
existence theorem, proved by Douglas [16] and simpli�ed later by Courant [10]. A
modern account can be found in [13, Chapter 4].

Theorem 7.8 (Existence of disk-like minimal surfaces)
The in�mal value ofD onC� is attained and every such minimizer f ful�lls:

1. f 2 C0(D; Rm) \ C2(D� ; Rm).

2. fj@D = 
 � ' with ahomeomorphism' : @D ! @D.

3. � g f = 0 in D� .

4. f#g0 = %g in D� with some%2 C1(D� ; [0; 1 [).

5. F ( f ) = infh2C F (h).

Thus, f is an area minimizing minimal surface.

Regularity theory for minimal surfaces can be found, e.g., in [14, Section 2.3,
Theorem 1]. For our exposition, the essential result can be be summarized by:

Theorem 7.9 (Regularity of minimal surfaces)
Assume that
 2 Cl;� (@D; Rm) with l 2 N and0 < � < 1. Then every minimal surface
f 2 C is of class Cl;� . In particular, the boundary trace fj@D is of class Cl;� .

2Every homeomorphism of mapping degree1 is homotopic to the identity along a homotopy
H : @D � [0;1] ! @D that can be chosen to be smooth on@D � [0;1[. Via polar coordinates, the
homotopy can be interpreted as a homeomorphism from an annulus to itself. Gluing the identity
of a small disk to this mapping yields a homeomorphism of a disk that has the original mapping
as boundary conditions.
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7 MinimalSurfaces

7.3 Numerical Methods Derived from Douglas'
Existence Proof

Denote byP : C0(@D; Rm) ! C0(D; Rm) \ C2(D� ; Rm) the Poisson integral operator:

P(u)(x) B
1

2�

Z

@D

1 � jxj2

jz � xj2
u(z) dz for all u 2 C0(@D; Rm) and allx 2 D� :

The classical theory on the Possion kernel shows that for each' 2 M � , one has:

1. P(
 � ' )j@D = 
 � ' , thusP(
 � ' ) 2 C� .

2. (� g � P )(
 � ' ) = 0 in D� .

3. P(
 � ' ) = arg minf D ( f ) j f 2 C0(D; Rm) \ C2(D� ; Rm) with f j@D = 
 � ' g.

De�ne theDouglas functional3

J : M � ! R; J (' ) B (D � P )(
 � ' ):

Thus, an area minimizerf 2 C� \ C2(D� ; Rm) as in Theorem 7.8 can be obtained
by �nding a minimizer' of J and puttingf = P(
 � ' ). Whenever
 has a certain
regularity, say
 2 Cl;� (@D; Rm) with l � 1, the regularity theorem above shows that
each minimizer' = 
 � 1 � f j@D has the same regularity. Thus,' can be approximated
by closed, piecewise geodesic curves inS1 = @D with mapping degree 1 with a
certain convergence rate. This makes it possible to discretize the spaceM � and the
Douglas functionalJ . Having found a discrete minimizer' n, one may obtain a
triangle meshfn = Pn(
 � ' n) by solving a discrete Poisson equation with boundary
condition
 � ' n (or rather a polygonal approximation of it) in the �nite element space
of continuous piecewise-linear functions. These triangle meshesfn are frequently
calleddiscrete minimal surfaces.

Several authors follow this approach in order to compute numerical approxima-
tions of minimal surfaces, e.g., Wilson [39], Tsuchyia [36], Hinze [24], Dzuik and
Hutchinson [19], and Pozzi [31]. So far, it was the only approach for which conver-
gence analysis was available (see [20] and [32]). Translated into our notation, the

3Douglas actually used the integral representation

J (' ) =
1

16� 2

Z

@D

Z

@D

j(
 � ' )(x) � (
 � ' )(y)j2

sin2
�

x� y
2

� dxdy;

which can be deduced from Poisson's integral representation.
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7.3 NumericalMethodsDerived fromDouglas' ExistenceProof

authors use the test mappings	 (' ) B P(
 � ' ), 	 n(' n) B Pn(
 � ' n) and state for
thecritical pointsN B f ' 2 M � j dJ = 0g:

	 (As;� \ N ) � B̄(	 n(Nn);C(s) � � 1� n) with respect to theW1;2-norm;

whereNn denotes the set of critical pointsJ n and� n denotes the approximation
quality of the used triangle mesh. Fors � 0, � > 0 the set

As;� B f ' 2 M � j jHess(J )(' )(u; u)j � � kuk2

W
1
2 ;2

g

can be interpreted as a priori information. For the proof, the authors seem to use
a variant of the �rst statement in Theorem 3.30 together with the implicit function
theorem (see also Example 3.31).

Albeit theoretically very elegant, this approach has some considerable drawbacks:

1. Because of the extensive use of conformal arguments, it is restricted to the
case dim(� ) = 2.

2. For non-disk surfaces� , one also has to vary the conformal structure of� .
This is cumbersome but not impossible as can be seen in the works of Pozzi
[31, 32] who treats the case that� has the topology of a cylinder.

3. The method does not apply when surface areaF is coupled to some other,
conformally non-invariant functional. For examples, this is of interest in the
physics of membranes, since surface area is proportional to surface tension
energy. Another situation where coupling is desired is when one attempts to
useF as a regularizer for another energy.

In contrary, the direct method of minimizing area among simplicial manifolds
is capable of treating any genus and orientability with a single algorithm (see e.g.
Figure 7.1) and coupling is available. It is even possible to treat non-manifold
examples with the same method.
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