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Abstract

Let K denote a p-adic field and F1, . . . , Fr ∈ K[x1, . . . , xn] be forms
with respective degrees d1, . . . , dr. A contemporary version of a con-
jecture attributed to E. Artin states that F1, . . . , Fr have a common
non-trivial zero whenever

n > d21 + · · ·+ d2r.

We prove this for a single quintic form (i.e. r = 1, d1 = 5), provided
that the cardinality of the residue class field exceeds 9. We also verify
the conjecture for a system comprising a cubic and a quadratic form
(i.e. r = 2, d1 = 3, d2 = 2), whenever the residue class field is of
characteristic at least 13 and has more than 37 elements.
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Zusammenfassung

Seien K ein p-adischer Körper und F1, . . . , Fr ∈ K[x1, . . . , xn] Formen
mit dazugehörigen Graden d1, . . . , dr. Eine Vermutung, die auf E. Artin
zurückgeführt wird, besagt in moderner Fassung, dass F1, . . . , Fr eine
nicht triviale gemeinsame Nullstelle besitzen falls

n > d21 + · · ·+ d2r.

Wir beweisen dies im Falle einer einzelnen quintischen Form, voraus-
gesetzt die Kardinalität des Restklassenkörpers ist größer als 9. Zu-
dem verifizieren wir die Vermutung für ein System bestehend aus einer
kubischen und einer quadratischen Form, falls der Restklassenkörper
mindestens Charakteristik 13 und mehr als 37 Elemente hat.
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1. Introduction

LetK be a finite extension of the fieldQp and F1, . . . , Fr ∈ K[x1, . . . , xn]
be forms with respective degrees d1, . . . , dr. A modern version of an old
conjecture attributed to E. Artin states that F1, . . . , Fr have a common
non-trivial zero whenever

n > d21 + · · ·+ d2r.

Unfortunately, this has only been confirmed for a single quadratic form
(Hasse [13]), a single cubic form (Lewis [19]) and a system comprising
two quadratic forms (Dem′yanov [9] and independently Birch, Lewis
and Murphy [4]). In fact counterexamples are known for many degrees
d1, . . . , dr. The first counterexample was given by Terjanian [22]. He
has found the explicit form

G(x1, x2, x3) +G(x4, x5, x6) +G(x7, x8, x9)

+ 4G(x10, x11, x12) + 4G(x13, x14, x15) + 4G(x16, x17, x18)

where

G(x1, x2, x3) =
3
∑

i=1

x4
i −

∑

0≤i<j≤3

x2
ix

2
j − x1x2x3(x1 + x2 + x3)

that does not have a non-trivial zero over the 2-adic numbers.
Although false in general the conjecture has been partially verified by
Ax and Kochen [1]. They showed that for every tuple (d1, . . . , dr)
and degree η of the field extension K/Qp there exists a positive inte-
ger q0(d1, . . . , dr, η), such that Artin’s Conjecture for forms of degrees
d1, . . . , dr holds whenever the cardinality q of the residue class field ex-
ceeds q0(d1, . . . , dr, η). However, little is known about the actual values
of q0(d1, . . . , dr, η). For a single form of degree d Brown [6] has given a
huge, but explicit bound. If we write a ↑ b for ab it can be stated as

q0(d, 1) ≤ 2 ↑ (2 ↑ (2 ↑ (2 ↑ (2 ↑ (d ↑ (11 ↑ (4d))))))).(1)

This was intended as a neat rather than best possible expression, but
optimising the argument is expected to lead to similar magnitudes.
If d is neither composite nor a sum of composite numbers, better bounds
are available. Since these hold independently of [K : Qp] we shall omit η
in our notion of q0. Besides the classical result q0(2) = 1 and q0(3) = 1
this concerns in fact d = 5, 7, 11 only. All other degrees are composite
or a sum of composite numbers. Leep and Yeomans [18] have shown
q0(5) ≤ 43 and later this has been improved by Heath-Brown [14]. He
proved that a quintic form over Qp possesses a non-trivial zero, pro-
vided p ≥ 17. For septic and undecic forms bounds q0(7) ≤ 883 and
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q0(11) ≤ 8053 are due to Wooley [24].
These results use a p-adic minimisation procedure which has been de-
veloped by Lewis [19], Birch and Lewis [2] and Laxton and Lewis [16]
and ultimately rely on lifting a non-singular zero via Hensel’s Lemma.

In this thesis we shall establish the result q0(5) ≤ 9. In order to ease
notation, we will from now on call a finite extension of the field Qp a
p-adic field.

Theorem 1. Let F (x1, . . . , xn) be a quintic form with at least n ≥ 26
variables over a p-adic field K with residue class field of cardinality

q > 9. Then there exists a non-zero vector x ∈ Kn with F (x) = 0.

As we are interested in a zero, we may assume that F is defined over
the ring of integers OK. The proof is based on a p-adic minimisation
procedure which has been developed by Schmidt [20] and generalised
by Zahid [25]. By applying their technique we may assume that the
reduction of F over the residue class field, denoted by θ(F ), is a non-
degenerate form with at least 6 + s variables, where s is the maximal
affine dimension of a vector space on which θ(F ) vanishes.1 If θ(F )
possesses a non-singular zero, it can be lifted by Hensel’s Lemma to a
non-trivial zero of F . We recall that a non-singular zero is one which
is not a simultaneous zero of the partial derivatives.
We shall use certain properties of quintic forms to choose a suitable
subspace and show that it contains a non-singular zero. For q =
11, 13, 16, 25, 27, 32 this is accomplished with the help of computer cal-
culations.2 The author was able to carry those out on his personal
notebook. This, together with the previously mentioned results of Leep
and Yeomans and Heath-Brown, yields Theorem 1.
There is numerical evidence to suggest that the imposed constraint on
q can be further reduced. Given the current state of technology, it
certainly seems doubtful to expect an answer for all q at this stage.

On the other hand there are a number of results in the same vein
concerning systems of forms. E. Schuur [21], improving on work of
Birch and Lewis [3], has shown that three quadratic forms have a com-
mon non-trivial zero if the cardinality of the residue class field exceeds
9. Heath-Brown [15] has established Artin’s Conjecture for a system
of r quadratic forms, provided q > (2r)r. Recently Zahid [26] has been

1Precise definitions of “s” and “non-degenerate” can be found at the beginning
of Chapter 3.

2For q = 25, 27 and 32 a false attempt of proof was made in Theorem 7 of the
author’s master’s thesis.
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the first addressing forms of differing degrees by proving q0(3, 2) ≤ 293.

We shall establish the following improvement, provided the charac-
teristic of the residue class field is at least 13.

Theorem 2. Let C(x1, . . . , xn) be a cubic and Q(x1, . . . , xn) a qua-

dratic form with at least n ≥ 14 variables over a p-adic field K with

residue class field of cardinality q > 37 and characteristic at least 13.
Then there exists a non-zero vector x ∈ Kn with C(x) = Q(x) = 0.

In order to prove Theorem 2 we follow the path laid by Zahid. By
exploiting Schmidt’s minimisation procedure Zahid extracts informa-
tion on the reduction of the system over the residue class field. He
then shows that θ(C) and θ(Q) have a common non-singular zero, pro-
vided a certain absolutely irreducible quartic form H ∈ Fq[x2, . . . , xn]
possesses a non-singular and q > 5. Recall that a polynomial over a
field is absolutely irreducible if it is irreducible over the algebraic clo-
sure of the field. Also note that a common non-singular zero of forms
f1, . . . , fr over Fq is a zero x such that ∇f1(x), . . . ,∇fr(x) are linearly
independent. By a slicing argument there exists a vector ξ ∈ F3n−5

q

such that

H|ξ(X, Y ) := H(ξ1 +X, ξ2 + ξnX + ξ2n−4Y, . . . , ξn−1 + ξ2n−3X + ξ3n−5Y )

remains absolutely irreducible, provided q > 296. Using the Lang-Weil
Bound he concludes that H|ξ, and hence H, has a non-singular zero.
The improvement in Theorem 2 is due to a more effective slicing pro-
cess. Using a quantitative Bertini theorem by Lecerf [17] we obtain ξ
as above yet require a much weaker condition on the cardinality of the
residue class field, videlicet q > 37.

An alternative approach towards Artin’s Conjecture is to ask for the
minimal number of variables needed to ensure the existence of a non-
trivial zero. Brauer [5] has shown that there is a finite non-negative
integer v(d1, . . . , dr) such that F1, . . . , Fr possess a common non-trivial
zero whenever

n ≥ v(d1, . . . , dr).

His proof reduces the problem to diagonal forms, which have been stud-
ied extensively (see in particular [8]). Refined subsequent results use
quasi-diagonalisation techniques. The best general bound is due to
Wooley [23]. For a system comprising r forms of degree d over Qp he
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showed that n > (rd2)2
d−1

suffices.3

For a number of degrees better bounds are available. Firstly, we can
extract better estimates from Wooley’s proof for specific d. Secondly,
Heath-Brown [14] considerably improved the bound for a single quartic
form by establishing vQp

(4) ≤ 4222. Here we write vQp
to indicate the

restriction to forms over Qp. His proof has been adapted by Zahid [25]
to show vQp

(5) ≤ 4562912.
Heath-Brown’s method provides better results if the involved degrees
are not multiples of p. The author has developed a variant yielding
improved bounds if p does divide the degree (see [11]). As an example,
he proves that vQp

(3, 3) ≤ 132 and vQp
(4) ≤ 3192. To prove these

bounds the author has by successively choosing and recycling vectors
constructed a subspace on which the forms involved are of a special
shape. It transpires that this can be done if systems comprising a
certain number of quadratic and linear forms have a non-trivial zero.
Finally, a version of Hensel’s Lemma can be applied.
This method would enormously benefit from better results on systems
of quadratics. In contrast, it is not hard to see that v(2, 2, 2, 2) ≤ v(4).

This thesis is organised as follows. Chapter 2 gives an account of
Schmidt’s minimisation procedure on which all our results are based.
In Chapter 3 a proof of Theorem 1 on a single quintic is presented. The
case of a cubic and a quadratic form is discussed in Chapter 4. The
final Chapter 5 provides some of the source code as used in the proof of
Theorem 1. Extracts from this thesis have been made available online
at [10] and [11]4.

3Wooley also gives bounds for the more general situation of forms over p-adic
fields.

4 In [11], this only concerns the introduction.
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2. Schmidt’s Minimisation Argument

In this chapter we shall introduce a powerful minimisation argument
by Schmidt [20]. We will, however, follow a more recent and gener-
alised account by Zahid [26]. His version is the first that extends to
systems comprising forms of differing degrees, which allows us to dis-
cuss common zeros of a cubic and a quadratic form in Chapter 4. The
reader familiar with this argument or chiefly interested in the new ideas
involved in the proof of Theorem 1 or Theorem 2 is referred to Chapter
3 or Chapter 4, respectively.

2.1. Statement of the main theorem. Let K denote a p-adic field
with residue class field Fq and ring of integers OK. We shall write π for
a uniformiser of OK. Recall that every non-zero a ∈ K can be uniquely
written as a = uπl, where u ∈ OK is a unit and l ≥ 0, and that its nor-
malised valuation is given by ν(a) = l. Also, note that every non-zero
a ∈ K has norm |a| = p−ν(a).
Let F = (F1, . . . , Fr) be a system of forms over K in n variables com-
prising r forms of degree d1 ≥ · · · ≥ dr. As we are interested in a zero,
we may assume from now on that F1, . . . , Fr are defined over OK.
Before we can state the main theorem we need to introduce a few defini-
tions. Let A be an n×n-matrix over OK and B be an upper-triangular
r × r-matrix with entries

(B)ij = π−ciGij(2)

where ci is a non-negative integer, Gii = 1 and otherwiseGij ∈ OK[x1, . . . , xn]
any form such that

deg(Gij) = deg(Fi)− deg(Fj).

We say that F and another system F̂ of r forms overOK with n variables
are equivalent if there exist A,B as described above, but ci = 0 for all
1 ≤ i ≤ r, such that

F(x) = BF̂(Ax) and ν(det(A)) = 0.

We are now relaxing the last condition and allowing any non-negative
integer values for ci for all 1 ≤ i ≤ r. For F, F̂ and a vector Ω =
(ω1, . . . , ωr) with positive rational5 components we write

F ≻
Ω

F̂(3)

5In [26], it is not mentioned that Ω is required to be a vector of rational numbers.
This, however, is crucial for the proof of Lemma 1.
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if there are A and B as in (2) such that

F(x) = BF̂(Ax) and
r
∑

i=1

ciωi − ν(det(A)) > 0.

If this holds, F possesses a non-trivial zero if and only if F̂ does. With
this key definition at hand we declare a system F to be Ω-bottomless
if there exists an infinite sequence of systems (Fi)i such that

F ≻
Ω

F1 ≻
Ω

F2 ≻
Ω

F3 . . . .

A system that is not Ω-bottomless is said to be Ω-bottomed. An Ω-
bottomed system F is called Ω-reduced if there does not exist a system
F̂ such that

F ≻
Ω

F̂.

For any finite set of positive integers S = {d1, . . . , ds} we set

v(S) := v(d1, . . . , ds).

As defined in the introduction, this is the least integer such that any
system comprising forms of degree d1, . . . , ds has a non-trivial zero. We
are now in the position to state the main result of the minimisation
procedure as proved by Zahid.

Theorem 3 (Theorem 2.1, [26]). Let S ⊂ {d1, . . . , dr} denote any

subset of cardinality r−1 with indexing set I such that v(S) is maximal.

Also let d ∈ {d1, . . . , dr} − S. Then, provided that

n ≥ v(S) + d2,(4)

there exists some Ω = (ω1, . . . , ωr) ∈ Qr
>0 such that ωi > di for each

1 ≤ i ≤ r and such that every Ω-bottomless system F defined over OK

has a p-adic zero.

2.2. Proof of Theorem 3. Zahid’s proof relies on the fact that every
Ω-bottomless system is equivalent to a so-called Ω-special system. It
is then shown that any Ω-special system possesses a non-trivial zero.
We will follow his account [26] closely.

In order to introduce the notion of an Ω-bottomless system, we asso-
ciate with a form Fi a unique symmetric multilinear formMFi

(x1, . . . ,xdi)
such that

Fi(x) = MFi
(x, . . . ,x).
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As K is of characteristic zero, there always exists such a unique form.
F is called Ω-special if there are non-negative integers a1, . . . , an and
b1, . . . , br satisfying the relation

a1 + · · ·+ an < ω1b1 + · · ·+ ωrbr(5)

such that for each tuple of standard basis vectors ej1 , . . . , ejdi one has

MFi
(ej1 , . . . , ejdi ) = 0(6)

whenever 1 ≤ i ≤ r and

aj1 + · · ·+ ajdi < bi.(7)

Theorem 4 (Theorem 3.1, [26]). Every Ω-bottomless system is equiv-

alent to an Ω-special system.

Instead of proving Theorem 4 now, we shall postpone this for a short
while and deduce Theorem 3 first.

2.2.1. Deriving Theorem 3 from Theorem 4. Suppose that F is an Ω-
bottomless system. By Theorem 4 we may assume that F is Ω-special.
Let a1, . . . , an and b1, . . . , br be as defined in (5)-(7). For convenience
we shall assume that

a1 ≤ · · · ≤ an and
b1
d1

≤ · · · ≤ br
dr
.(8)

Note that one might have to rearrange the ordering of d1, . . . , dr. Let
I ⊆ {1, . . . , r} be a set indexing {Fi}i∈I and S ⊂ {d1, . . . , dr} the
corresponding set of degrees. If there exists I such that

diav(S) < bi(9)

for all i /∈ I, then relation (7) holds and, consequently, (6) yields

MFi
(ej1 , . . . , ejdi ) = 0

for every i /∈ I and 1 ≤ j1, . . . , jdi ≤ v(S). Thus, {Fi}i/∈I vanishes on a
vector space of dimension v(S). By definition {Fi}i∈I has a non-trivial
zero in this vector space. We conclude that F possesses a non-trivial
zero.
Otherwise, we show that there exists a suitable Ω such that F is not
Ω-special. If (9) fails for all I, then there must for every I be a certain
i ∈ I such that

diav(S) ≥ bi.(10)

If we write S0 = ∅ and Si = {d1, . . . , di} for all 1 ≤ i ≤ r− 1, then (10)
yields

diav(Si−1) ≥ bi for all 1 ≤ i ≤ r.(11)
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If both a system comprising forms F1, . . . , Fi−1 in v(Si−1) − 1 vari-
ables and a single form Fi in v(di) − 1 variables, distinct from those
of F1, . . . , Fi−1, do not possess a non-trivial zero, then neither does the
system F1, . . . , Fi. In other words

v(Si)− v(Si−1) ≥ v(di)− 1.

Since v(di) ≥ d2i + 1 (see 6) we have

v(Si)− v(Si−1) ≥ d2i .(12)

Also note that assumption (4) implies

n > d21 + · · ·+ d2r.(13)

By (12), the assumed ordering (8) and (13), we have

a1 + · · ·+ an ≥ a1 + · · ·+ ad2
1
+ · · ·+ ad2r + an

≥ av(S0)d
2
1 + · · ·+ av(Sr−1)d

2
r + an.

Since an ≥ (a1 + · · ·+ ar)/r this is greater than or equal to
(

d21 +
1

r

)

av(S0) +

(

d22 +
1

r

)

av(S1) + · · ·+
(

d2r +
1

r

)

av(Sr−1)

≥
(

d1 +
1

rmax1≤i≤r di

)

b1 + · · ·+
(

dr +
1

rmax1≤i≤r di

)

br

where the last inequality follows from equation (11). By setting

ωi := di + 1/r max
1≤i≤r

(di),

we have a suitable Ω such that F is not Ω-special.
Thus we conclude that there is a suitable Ω such that F has a non-
trivial p-adic zero, provided F is Ω-bottomless.

2.2.2. Preparations for the proof of Theorem 4. Suppose that F and F̂

are systems comprising r forms over OK. For a vector Ω = (ω1, . . . , ωr)
with positive rational components and an integer k ≥ 1 we write

F
k≻
Ω

F̂,

if there are A and B as described in (2) such that

F(x) = BF̂(Ax) and
r
∑

i=1

ciωi − ν(det(A)) ≥ k.(14)

6 Note that for every positive integer d there exists a form of degree d with d2

variables which does not have a non-trivial zero. This follows, for instance, from
the existence of a central simple division algebra of rank d2.
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This strengthens the definition of “≻
Ω
” as given in (3). We say that a

system of forms F is Ω-high if for every integer k ≥ 1 there exists a
system F̂ such that

F
k≻
Ω

F̂.

Lemma 1 (Lemma 3.2, [26]). If F is an Ω-bottomless system, then it

is Ω-high.

Proof. Suppose that F1 is an Ω-bottomless system. Consequently, there
exists an infinite sequence (Fi)i≥2 of systems such that

F1 ≻
Ω

F2 ≻
Ω

F3 ≻
Ω

F4 ≻
Ω
. . . .

By definition there exist for each m ≥ 1 matrices Am and Bm as in (2)
such that

Fm(x) = BmFm+1(Amx) and
r
∑

i=1

ci,mωi − ν(det(Am)) > 0.(15)

Let k be an arbitrary positive integer. By (15) and since Ω ∈ Qr
>0 there

exists a non-negative integer Q such that
r
∑

i=1

ci,mωi − ν(det(Am)) ≥
1

Q

for all 1 ≤ m ≤ kQ. By setting

A :=

kQ
∏

m=1

Am, B :=

kQ
∏

m=1

Bm and ci :=

kQ
∑

m=1

ci,m

we have

F1(x) = BFkQ(Ax)

and
r
∑

i=1

ciωi − (ν(det(A)) + k) =

kQ
∑

m=1

(

r
∑

i=1

ci,mωi − ν(det(Am))

)

− k ≥ 0.

Thus we conclude that

F1

k≻
Ω

FkQ.

�

We shall need two additional and slightly technical lemmas to finish
the proof of Theorem 4, but skip their proofs. The reader interested in
these is referred to lemmas 8 and 10 as found in [20].
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Lemma 2 (Lemma 3.3, [26]). Let C1, . . . , Cl and D1, . . . , Dm be linear

forms with integer coefficients in OK in the vector x = (x1, . . . , xn).
Further, let x1,x2, . . . be a sequence of vectors such that for all 1 ≤
i ≤ l and k ≥ 1

Ci(xk) ≥ 0.

Then there exists a subsequence, y1,y2, . . . say, a constant D and an

integer vector a with

Ci(a) ≥ 0

for all 1 ≤ i ≤ l such that

lim
k 7→∞

Dj(yk) = +∞ for j with Dj(a) > 0

and

Dj(yk) ≤ D for j with Dj(a) ≤ 0.

For the next lemma, we recall the notion of a lattice. Let a1, . . . , as ∈
Kn be linearly independent vectors, then

Λ = {λ1a1 + · · ·+ λsas | (λ1, . . . , λs) ∈ Os
K}

is called a lattice with basis a1, . . . , as. We say that a lattice Λ̂ is a
sub-lattice of Λ if Λ̂ ⊆ Λ.

Lemma 3 (Lemma 3.4, [26]). Suppose that M is a sub-lattice of Λ.
Then there exists a basis u1, . . . ,us of Λ and a basis of m1, . . . ,ms of

M such that

m1 = πu1u1, . . . ,ms = πusus,

for some non-negative integers u1, . . . , us.

2.2.3. Proof of Theorem 4. Suppose that F is an Ω-bottomless system
overOK comprising r forms in n variables. By Lemma 1 we may assume
that F is Ω-high. By definition this means that for every k ≥ 1 there
is an n × n-matrix Ak over OK and an upper-triangular r × r-matrix
Bk with entries

(Bk)ij = π−ci,kGij,k

where ci,k ≥ 0, Gii,k = 1 and otherwise Gij,k ∈ OK[x1, . . . , xn] any form
with

deg(Gij,k) = deg(Fi)− deg(Fj),
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and a system Fk such that

F(x) = BkFk(Akx) and

r
∑

i=1

ci,kωi − ν(det(Ak)) ≥ k.(16)

By defining a sequence of forms and taking the limit on a subsequence,
we will construct an Ω-special system equivalent to F. For 1 ≤ i ≤ r
set

Ri,k(x) :=
r
∑

j=i

Gij,k(x)Fj(x).

Clearly, we have

π−ci,kRi,k(x) ∈ OK(17)

for any x ∈ AkOn
K and all 1 ≤ i ≤ r. Note that On

K is a lattice with
sub-lattice AkOn

K. Thus, we can apply Lemma 3 and obtain a basis
m1, . . . ,mn of AkOn

K and basis u1, . . . ,un of On
K such that

m1 = πu1u1, . . . ,mn = πunun(18)

for some non-negative integers u1, . . . , un. As K is of characteristic
zero, there exists for every 1 ≤ i ≤ r a unique multilinear form MRi,k

associated with Ri,k. Unfortunately, it does not necessarily follow from
(17) that MRi,k

(x1, . . . ,xdi) ∈ OK for x1, . . . ,xdi ∈ On
K and 1 ≤ i ≤ r.

As Ri,k is defined over OK, there exists, however, γ ∈ N0, depending
on d1, . . . , dr, such that

πγMRi,k
(x1, . . . ,xdi) ∈ OK

for all x1, . . . ,xdi ∈ On
K and 1 ≤ i ≤ r. Using the basis vectors

m1, . . . ,mn from (18) we have

π−ci,kMRi,k
(πuj1uj1 , . . . , π

ujdiujdi
) ∈ π−γOK

and hence

|MRi,k
(uj1 , . . . ,ujdi

)| ≤ p
γ−(ci,k−uj1

−...−ujdi
)

(19)

for every tuple j1, . . . , jdi such that 1 ≤ j1, . . . , jdi ≤ n. We stress that
ui, ui are dependent on k and that (19) holds for all k. Recall that
u1, . . . ,un form a basis of the lattice On

K. Since On
K is compact, there

exists a convergent subsequence of (u1, . . . ,un)k with limit (a1, . . . , an).
Note that a1, . . . , an form again a basis of On

K. Moreover, R1,k, . . . , Rr,k

converge, on a subsequence again, to forms R1, . . . , Rr, say. There is a
linear map σ over OK, such that

σei = ai
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for all 1 ≤ i ≤ n. In order to apply Lemma 2 we set for each k in our
subsequence

(C1, . . . , Cn+r)k := (u1, . . . , un, c1,k, . . . , cr,k).

Moreover we put, also for each k,

D(k) :=
r
∑

i=1

ci,kωi −
n
∑

i=1

ui

and write

Di(k) = ci,k − (uj1 + · · ·+ ujdi
)

where 1 ≤ j1, . . . , jdi ≤ n and 1 ≤ i ≤ r. As

ν(det(Ak)) =
n
∑

i=1

ui

we have by (16)

k
∑

i=1

ci,kωi −
n
∑

i=1

ui ≥ k

and therefore

lim
k→+∞

D(k) = +∞.

It then follows from Lemma 2 that there is

a = (a1, . . . , an, b1, . . . , br)

with ai for 1 ≤ i ≤ n and bi for 1 ≤ i ≤ r non-negative integers such
that

a1 + · · ·+ an < ω1b1 + · · ·+ ωrbr.

Moreover Lemma 2 states there is a subsequence such that Di(k) tends
to +∞ for all indices i and j1, . . . , jdi , which satisfy

aj1 + · · ·+ ajdi < bi.

By letting k in equation (19) tend to +∞, we observe that for the same
range of indices holds

MRi
(aj1 , . . . , ajdi

) = 0.

Thus, we obtain with F̂(x) := F(σx) an Ω-special system that is equiv-
alent to F. This completes the proof of Theorem 4 and ends our expo-
sition of Zahid’s account.
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3. Zeros of Quintic Forms

In this chapter we shall give a proof of Theorem 1. Firstly, we
discuss some preliminary manoeuvres involving the minimisation pro-
cedure from Chapter 2, the Chevalley-Warning Theorem and a version
of Hensel’s Lemma.

3.1. Preliminary manoeuvres. We say that two forms f and g ∈
Fq[x1, . . . , xn] are equivalent if there exist a non-zero a ∈ Fq and A ∈
GLn(Fq) such that

g(x) = af(Ax).

If f and g are equivalent, then f has a non-singular zero if and only if
g possesses one. A form f over Fq is said to be non-degenerate if the
number of variables explicit in f is minimal among all forms equivalent
to f .
Recall that K denotes a p-adic field with residue class field Fq and ring
of integers OK. As previously mentioned, we write π for a uniformiser
of OK.
Let F be a quintic form with at least 26 variables over K. As we are
interested in a zero, we may assume from now on that F is defined over
OK.
We use Schmidt’s minimisation procedure to derive some geometric
information on the reduction of F over the residue class field. Recall
that the reduction of F is denoted by θ(F ). The next lemma extends
Proposition 4.3 of [18] in the case of quintic forms. Note that there
always exists a non-degenerate form equivalent to θ(F ). In order to
ease notation we assume without loss of generality that θ(F ) is non-
degenerate.

Lemma 4. Let F be a quintic form in at least 26 variables over OK

that does not have a non-trivial zero. Suppose that θ(F ) is a non-

degenerate form with m variables x1, . . . , xm explicit in θ(F ). Let s ≥ 0
be an integer such that the form θ(F ) vanishes on an affine s-dimension

linear plane contained in the subspace

{(x1, . . . , xn) ∈ Fn
q | xi = 0 for all i > m}.

Then θ(F ) must be a non-degenerate form in at least 6 + s variables.

Proof. If F is bottomless we conclude by Theorem 3 that F has a non-
trivial zero. Thus, F must be Ω-bottomed and consequently we may
assume that F is ω-reduced for some ω > 5.
Suppose that θ(F ) is non-degenerate with variables x1, . . . , xm explicit
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in θ(F ) and m ≤ 5 + s. After a change of variables we may assume
that θ(F ) vanishes on the subspace

{(x1, . . . , xn) ∈ Fn
q | xi = 0 for all 1 ≤ i ≤ 5}.

If θ(F ) vanishes on this space, but is not the zero polynomial, then it
has a non-singular zero. Consequently, θ(F ) has a non-trivial zero by
Hensel’s Lemma (see Lemma 6 below).
Otherwise, every monomial of θ(F ) has at least one of x1, . . . , x5 as a
factor. Let A ∈ On×n

K be such that

(A)ij =











π for 1 ≤ i ≤ 5 and i = j

1 for 6 ≤ i ≤ n and i = j

0 for i 6= j.

Then π−1F (Ax) has coefficients in OK and we conclude

F ≻ π−1F (Ax).

�

Note that for every degree larger than five there are non-zero forms
which are vanishing everywhere, but do not possess a non-singular zero.
An example is the form

(x1x
3
2 + x3

1x2)x1x2 · · · xl ∈ F2[x1, . . . , xl].

The next lemma shows in particular that s ≥ 1. For a system com-
prising forms f1, . . . , fr over Fq we shall denote the set of its projective
zeros by Z(f1, . . . , fr).

Lemma 5 (Chevalley-Warning Theorem). Let f1, . . . , fr be forms of

degree d1, . . . , dr over Fq in n variables. If n > d1 + · · ·+ dr we have

|Z(f1, . . . , fr)| ≥
qn−d1−···−dr − 1

q − 1
.

A proof of this classical result can be found in [7]. Lemmas 4 and 5
yield the following consequence.

Corollary 1. Let F be a quintic form in at least 26 variables over OK

that does not have a non-trivial zero. Let s be as defined in Lemma 4.

We then have

|Z(θ(F ))| ≥ qs+1 − 1

q − 1
.

A zero of θ(F ) is not sufficient for a non-trivial zero of F , instead
we require a non-singular zero. Once we have found one, we can apply
the version of Hensel’s Lemma given below.
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Lemma 6 (Hensel’s Lemma). Let F ∈ OK[x1, . . . , xn]. If θ(F ) has a

non-singular zero, then F has a non-trivial zero in Kn.

For a discussion of Hensel’s Lemma see [12], for example.

3.2. Proof of Theorem 1. Suppose that F is a quintic form with
n ≥ 26 variables over a p-adic field K with residue class field of
cardinality q > 9. We denote the linear span of vectors v1, . . . ,vl ∈ Fn

q

by 〈v1, . . . ,vl〉.
By Lemma 4 we may assume that θ(F ) is a non-degenerate form in
at least 6 + s variables, where s is the maximal affine dimension of a
linear subspace of Z(f). More precisely, s is the maximal non-negative
integer among those defined in Lemma 4. For ease of notation we shall
write f for the reduction θ(F ).
Suppose that f does not have a non-singular zero. We show that there
are at least four linearly independent zeros

z1, z2, z3, z4 ∈ Z(f) such that 〈zi, zj〉 * Z(f)

for all 1 ≤ i < j ≤ 4. Hence the form

g(x1, x2, x3, x4) := f(x1z1 + x2z2 + x3z3 + x4z4)

must be of a certain shape. In particular, certain coefficients of g do not
vanish. We then prove the existence of a non-singular zero of g, con-
trary to our assumption. This is achieved by considering successively
larger subspaces of 〈z1, z2, z3, z4〉 and sieving out forms possessing non-
singular zeros.
As a first step, we prove that there are five distinct non-zero vectors

z1, . . . , z5 ∈ Z(f)

such that z1, z2, z3 are linearly independent and f does not vanish on
any plane spanned by two vectors of one of the quadruples

{z1, z2, z3, zi} where i = 4, 5.

In order to establish this, we begin by showing that there are three
distinct subspaces V1, V2, V3 ⊆ Z(f) of maximal dimension and two
zeros z1, z2 ∈ Z(f) such that

z1, z2 /∈
3
⋃

i=1

Vi and 〈z1, z2〉 * Z(f).

Secondly, we prove the existence of a third zero z3 ∈ V3\(V1 ∪ V2) such
that z1, z2, z3 are linearly independent. Thirdly, we show that there is
a fourth zero z4 ∈ V2\V1 completing the first quadruple and finally, we
will choose a fifth zero z5 ∈ V1 completing the second quadruple.
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For convenience, we first state a basic lemma and give the details of
the argument outlined afterwards.

Lemma 7 ([18, Lemma 5.1]). Let f be a quintic form over Fq pos-

sessing two distinct non-trivial zeros z1 and z2. Then f either has a

non-singular zero or

f(x1z1 + x2z2) = c12x
3
1x

2
2 + c21x

3
2x

2
1

and c12c21 = 0. If, in addition, |〈z1, z2〉∩Z(f)| ≥ 3, then f(x1z1+x2z2)
either possesses a non-singular zero or is the zero polynomial.

Proof. We write

f(x1z1 + x2z2) = a1x
5
1 + b12x

4
1x2 + c12x

3
1x

2
2 + c21x

3
2x

2
1 + b21x

4
2x1 + a2x

5
2.

We may assume that z1 and z2 are singular zeros and hence

f(x1z1 + x2z2) = (c12x1 + c21x2)x
2
1x

2
2.

If c12c21 6= 0 then (−c21, c12) is a non-singular zero and otherwise
〈z1, z2〉 ∩ Z(f) = {z1, z2} or 〈z1, z2〉 ⊆ Z(f). �

Since f has at least 6 variables, Lemma 5 yields a non-trivial zero
and thus we may assume s ≥ 1. By Corollary 1 we have

|Z(f)| > 4(qs − 1)

q − 1
,(20)

provided q ≥ 4. Thus we can pick four distinct subspaces

V1, V2, V3, V4 ⊆ Z(f)

such that Vi is of maximal dimension for 1 ≤ i ≤ 4. By equation
(20) we can choose an additional zero z1 ∈ Z(f)\⋃4

i=1 Vi. We set

S3 :=
⋃3

i=1 Vi and show that there exists a vector z2 ∈ V4\S3 such that
〈z1, z2〉 * Z(f). Suppose by the contrary that

for all z ∈ V4\S3 we have 〈z1, z〉 ⊆ Z(f).(21)

If V4∩S3 = {0}, then (21) contradicts the maximality of V4 and other-
wise we shall argue as follows. Let s ∈ V4∩S3 be arbitrary. As V4 is dis-
tinct from S3 we can choose a non-zero vector v ∈ V4\S3 and consider
the projective line Ls := 〈v, s〉. Since v /∈ S3, the projective line Ls can
not contain two vectors of Vi for each 1 ≤ i ≤ 3. Thus the intersection
Ls ∩ S3 contains at most three non-zero points. On the other hand,
since q ≥ 5, there are at least three points p1,p2,p3 ∈ Ls not contained
in S3. It follows from our assumption (21) that 〈z1,pi〉 ⊆ Z(f) for all
1 ≤ i ≤ 3.
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Lemma 8. Let f be a quintic form over Fq without a non-singular zero,

L a projective line, z a non-zero point not on L and p1,p2,p3 ∈ L three

distinct non-zero points. Assume that

〈pi, z〉 ⊆ Z(f) for all 1 ≤ i ≤ 3.

Then 〈L, z〉 ⊆ Z(f).

Proof. Let x ∈ 〈L, z〉 and x /∈ ⋃3
i=1〈pi, z〉. There exists a projective

line H in 〈L, z〉 through x that does not contain z. Since we have
assumed that x /∈ 〈pi, z〉 and 〈pi, z〉 has co-dimension 1 in 〈L, z〉, the
line H intersects 〈pi, z〉 in exactly one point si, say, for each 1 ≤ i ≤ 3.
Since

⋂3
i=1〈pi, z〉 = z and z /∈ H, we conclude that there are at least

three distinct points, namely si for 1 ≤ i ≤ 3, in H that are contained
in Z(f). By Lemma 7 we have H ⊆ Z(f) and hence x ∈ Z(f). We
conclude that 〈L, z〉 ⊆ Z(f). �

By applying Lemma 8 we have 〈z1, V4〉 ⊆ Z(f), contrary to the
maximality of the dimension of V4. We conclude that there are three
non-identical subspaces V1, V2, V3 ⊆ Z(f) of maximal dimension and
two zeros z1, z2 /∈ ⋃3

i=1 Vi such that

〈z1, z2〉 ∩ Z(f) = {z1, z2}.
As mentioned above we shall proceed by proving the existence of a
third vector z3 ∈ V3\(V1 ∪ V2) with the property 〈zi, zj〉 * Z(f) for all
1 ≤ i < j ≤ 3. Suppose by the contrary that for every z ∈ V3\(V1∪V2)
at least one of the following holds

〈z, z1〉 ⊆ Z(f) or 〈z, z2〉 ⊆ Z(f).(22)

We set S2 := V1 ∪ V2 for shorter notation and shall argue that we may
assume S2∩V3 = {0}. Suppose there exists at least one non-zero vector
s ∈ S2∩V3. We then pick a vector v ∈ V3\S2 and define for any vector
s ∈ S2 ∩ V3 the projective line Ls := 〈s,v〉. We show that

〈Ls, z1〉 ⊆ Z(f) or 〈Ls, z2〉 ⊆ Z(f).(23)

Since v /∈ S2, neither two vectors of the subspace V1 nor two of the
subspace V2 can be contained in Ls. Thus there are at least 5 projective
points in Ls\S2, provided q ≥ 6. By our assumption (22) there are
three points p1,p2,p3 among them such that 〈pi, zk〉 ⊆ Z(f) for all
1 ≤ i ≤ 3 and a certain 1 ≤ k ≤ 2. Equation (23) then follows from
Lemma 8 and thus, we have that for every z ∈ V3 at least one of the
following holds

〈z, z1〉 ⊆ Z(f) or 〈z, z2〉 ⊆ Z(f).(24)
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Lemma 9. Let f be a quintic form over Fq without a non-singular

zero, V ⊆ Z(f) an m-dimensional subspace where m ≥ 2 and z1, . . . , zk
non-trivial zeros not contained in V . We assume q ≥ 2k and that there

exists for any projective plane W ⊆ V of co-dimension 1 an index

i ∈ {1, . . . , k} such that 〈W, zi〉 ⊆ Z(f). Then there exists an index

i ∈ {1, . . . , k} such that

〈V, zi〉 ⊆ Z(f).

Proof. We write [x1 : · · · : xm] for a projective point in V . Since m ≥ 2
we can define the following subspaces

W(a,b) := {[x1 : · · · : axm−1 : bxm−1] | xi ∈ Fq for 1 ≤ i ≤ m}
for (a, b) ∈ ({1} × Fq) ∪ {(0, 1)}.
Since q ≥ 2k there are at least 2k + 1 subspaces W(a,b). Thus we may
assume that there are at least three subspaces, W1, W2, W3 say, among
these and a zero z ∈ {z1, . . . , zk} such that

〈Wi, z〉 ⊆ Z(f) for 1 ≤ i ≤ 3.

We shall complete the proof of this lemma by following Leep and Yeo-
mans [[18], Lemma 5.3]. For W1,W2,W3 as above, we have

〈Wi, z〉 ∩ 〈Wj, z〉 = 〈Wi ∩Wj, z〉,(25)

〈Wi, z〉 ∩ 〈Wj, z〉 =
3
⋂

i=1

〈Wi, z〉(26)

for any 1 ≤ i < j ≤ 3. We notice that for equation (25) we have for each
pair i 6= j with 〈Wi, z〉 and 〈Wj, z〉 two non-identical m-dimensional
planes and that 〈Wi ∩Wj, z〉 is an m− 1 dimensional plane. Equation
(26) follows from (25) and the fact that

Wi ∩Wj =
3
⋂

i=1

Wi for distinct i, j.

Let x be a point in 〈V, z〉\⋃3
i=1〈Wi, z〉. We observe that

⋂3
i=1 Wi has co-

dimension 2 in V . Thus, we conclude by (25) and (26) that
⋂3

i=1〈Wi, z〉
has co-dimension 2 in 〈V, z〉. Hence we can choose a projective line H
through the point x that does not intersect with

⋂3
i=1〈Wi, z〉. Since

x /∈ 〈Wi, z〉 and 〈Wi, z〉 has co-dimension 1 in 〈V, z〉, we conclude that
there exists for each i a point pi ∈ 〈Wi, z〉 ∩ H. Since 〈Wi, z〉 ⊆
Z(f) and H does not intersect

⋂3
i=1〈Wi, z〉 there are at least three

distinct non-trivial zeros of f on H. Thus we conclude by Lemma 7
that 〈V, z〉 ⊆ Z(f). �
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We apply Lemma 9 to (24) and thus, we have

〈V3, z1〉 ⊆ Z(f) or 〈V3, z2〉 ⊆ Z(f).

However, this contradicts the maximality of the dimension of V3. More-
over, the vectors z1, z2, z3 are linearly independent, since by Lemma 7
there are at most two zeros on the projective line 〈z1, z2〉. Thus we
have found three linearly independent vectors z1, z2, z3 such that

〈zi, zj〉 * Z(f) for all 1 ≤ i < j ≤ 3.

We show that there exists a fourth vector z4 ∈ V2\V1 such that

〈zi, zj〉 * Z(f) for all 1 ≤ i < j ≤ 4.

Suppose by the contrary that for all z ∈ V2\V1 at least one of the
following holds

〈z, z1〉 ⊆ Z(f), 〈z, z2〉 ⊆ Z(f) or 〈z, z3〉 ⊆ Z(f).(27)

We shall argue that there is no loss of generality if we assume V1∩V2 =
{0}. As there exists a point v ∈ V2\V1 we consider for any vector
s ∈ V2 ∩ V1 the plane Ls := 〈s,v〉. We show that

〈Ls, z1〉 ⊆ Z(f), 〈Ls, z2〉 ⊆ Z(f) or 〈Ls, z3〉 ⊆ Z(f).

Since q ≥ 7 there are at least 7 projective points in Ls not contained
in V1. Thus, by (27) there are three points p1,p2,p3 among them such
that 〈pi, zk〉 ⊆ Z(f) for all 1 ≤ i ≤ 3 and a certain 1 ≤ k ≤ 3. By
Lemma 8, we have that for every z ∈ V2 at least one of the following
holds

〈z, z1〉 ⊆ Z(f), 〈z, z2〉 ⊆ Z(f) or 〈z, z3〉 ⊆ Z(f).(28)

It then follows in conjunction with Lemma 9 that

〈V2, z1〉 ⊆ Z(f), 〈V2, z2〉 ⊆ Z(f) or 〈V2, z3〉 ⊆ Z(f).

However, any of those contradicts the maximality of the dimension of
V2 and hence we may assume the existence of a vector z4 ∈ V2\V1 such
that

〈zi, zj〉 * Z(f) for all 1 ≤ i < j ≤ 4.

We show that there exists a fifth vector z5 ∈ V1 such that

〈zi, z5〉 * Z(f) for all 1 ≤ i ≤ 3.

Suppose by the contrary that for all z ∈ V1 at least one of the conditions
in equation (27) holds. By Lemma 9 this implies

〈V1, z1〉 ⊆ Z(f), 〈V1, z2〉 ⊆ Z(f) or 〈V1, z3〉 ⊆ Z(f).
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However, any of these contradicts the maximality of the dimension of
V1 and thus we conclude that there is a vector z5 ∈ V1 such that

〈zi, z5〉 * Z(f) for all 1 ≤ i ≤ 3.

In summary, we have shown that there are two quadruples of zeros,

z1, z2, z3, z4 and z1, z2, z3, z5,

such that f does not vanish on any two-dimensional plane spanned
by two zeros of one quadruple. Moreover, we know that z1, z2, z3 are
linearly independent. We will now estimate the number of zeros of f
in 〈z1, z2, z3〉.
Lemma 10. Let f be a quintic form over Fq with three linearly in-

dependent zeros z1, z2, z3 ∈ Z(f) such that 〈zi, zj〉 * Z(f) for all

1 ≤ i < j ≤ 3. Then the following holds.

If q ≥ 17, then f has a non-singular zero. If 11 ≤ q < 17, it possesses
a non-singular zero or |〈z1, z2, z3〉 ∩ Z(f)| = 3 holds. If q < 11 it has

a non-singular zero or |〈z1, z2, z3〉 ∩ Z(f)| ≤ 4 holds.

The last inequality is sharp. For instance,

2x3
1x

2
2 + 2x3

1x
2
3 + 4x3

2x
2
3 + x1x2x3(5x

2
1 + 6x2

2 + 2x2
3 + x1x2 + x1x3 + x2x3)

is a form over F7 possessing exactly four singular zeros, namely

〈(1, 0, 0)〉, 〈(0, 1, 0)〉, 〈(0, 0, 1)〉, 〈(1, 6, 2)〉.
Proof. Suppose that f does not have a non-singular zero. Thus we can
write f(x1z1 + x2z2 + x3z3) as

x1x2x3Q(x1, x2, x3) +
∑

1≤i<j≤3

cijx
3
ix

2
j + cjix

3
jx

2
i

where Q(x1, x2, x3) is a quadratic form. By applying Lemma 7 to any
two variables of f(x1z1+x2z2+x3z3) we have cijcji = 0 for all 1 ≤ i <
j ≤ 3. Since f does not vanish on any of the projective lines 〈zi, zj〉
with 1 ≤ i < j ≤ 3, we have either

cij 6= 0 or cji 6= 0 for all 1 ≤ i < j ≤ 3.

Hence, we see after permuting the variables that f(x1z1 + x2z2 + x3z3)
takes one of the following shapes

t1(x1, x2, x3) = c12x
3
1x

2
2 + c13x

3
1x

2
3 + c23x

3
2x

2
3 + x1x2x3Q(x1, x2, x3),

t2(x1, x2, x3) = c12x
3
1x

2
2 + c31x

3
3x

2
1 + c23x

3
2x

2
3 + x1x2x3Q(x1, x2, x3),

where Q(x1, x2, x3) is a quadratic form and c12, c13, c23 and c31 are all
non-zero coefficients.
It has been proved by Leep and Yeomans [18] using the Lang-Weil
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Bound that f(x1z1 + x2z2 + x3z3) has always a non-singular zero, pro-
vided q ≥ 43. Heath-Brown [14] has extended this to prime values of
q ≥ 17.
Similarly, we show by computer calculations that f has a non-singular
zero for q = 25, 27, 32. In each case there are, after an appropriate
rescaling of both, the forms t1, t2 and the variables, just 6 degrees
of freedom. A computer program can verify the existence of a non-
singular zero for each form t1, respectively each form t2, by successively
testing points in F3

q.
If q < 17 it can be checked by an analogous computer calculation
that t1 and t2 either possess a non-singular zero or that the bound on
|〈z1, z2, z3〉 ∩ Z(f)| holds. �

Lemma 10 establishes Theorem 1, provided q ≥ 17. Moreover, it
shows that not both quadruples z1, z2, z3, z4 and z1, z2, z3, z5 can con-
sist of linearly dependent vectors. Thus we may assume, after renam-
ing, that we have linearly independent vectors z1, z2, z3, z4 such that

〈zi, zj〉 * Z(f) for all 1 ≤ i < j ≤ 4.

We write f(x1z1 + x2z2 + x3z3 + x4z4) as

∑

i6=j

aijx
3
ix

2
j +

∑

k 6=i,j
i<j

bijkxixjx
3
k +

∑

i6=j,k
j<k

cijkxix
2
jx

2
k +

∑

l 6=i,j,k
i<j<k

dijklxixjxkx
2
l ,

(29)

where 1 ≤ i, j, k ≤ 4. By applying Lemma 7 and since f does not
vanish on any of the projective lines 〈zi, zj〉, we conclude that for each
pair (i, j) with i 6= j exactly one of aij and aji is zero. It then follows
that, after a permutation of the variables, the form (29) can take only
four different shapes. If we write h for

a23x
3
2x

2
3 + a24x

3
2x

2
4 + a34x

3
3x

2
4+

∑

k 6=i,j
i<j

bijkxixjx
3
k +

∑

i6=j,k
j<k

cijkxix
2
jx

2
k +

∑

l 6=i,j,k
i<j<k

dijklxixjxkx
2
l

those are

g1 := a12x
3
1x

2
2 + a13x

3
1x

2
3 + a14x

3
1x

2
4 + h,

g2 := a12x
3
1x

2
2 + a31x

3
3x

2
1 + a14x

3
1x

2
4 + h,

g3 := a12x
3
1x

2
2 + a13x

3
1x

2
3 + a41x

3
4x

2
1 + h,

g4 := a21x
3
2x

2
1 + a13x

3
1x

2
3 + a41x

3
4x

2
1 + h.
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As indicated it has been checked on a computer that each of those forms
has a non-singular zero, provided 9 < q ≤ 16. We briefly describe the
assembling process.
Along the way, we have already excluded, via Lemma 7, all forms that
have a non-singular zero on one of the projective lines 〈zi, zj〉 for some
1 ≤ i < j ≤ 4. Furthermore, we know from the proof of Lemma 10 all
forms which do not have a non-singular zero in one of the subspaces

〈zi, zj , zk〉 for some 1 ≤ i < j < k ≤ 4.

Note that g1, g2, g3 and g4 restricted to such a subspace are, after per-
muting the variables, equal to t1 or t2 as stated in the proof of Lemma
10. The computer programs for g1, g2, g3 and g4 are analogous. Suppose
gs for some 1 ≤ s ≤ 4 is one of these cases. We save the rearranged
coefficients of those forms of shape t1, respectively t2, without a non-
singular zero in four multidimensional arrays

Aijk[⋆, ⋆] where 1 ≤ i < j < k ≤ 4

such that they represent the coefficients of gs restricted to the subspace
〈zi, zj , zk〉. Thus, every set of coefficients of the form gs|〈zi,zj ,zk〉 with-
out a non-singular zero corresponds to a line Aijk[r, ⋆].
We use these data to construct all remaining forms by combining data
in these arrays and four additional degrees of freedom. Let rijk denote
the rijk-th line of Aijk[⋆, ⋆] for 1 ≤ i < j < k ≤ 4. The non-negative
integers r123, r124, r134, r234, provided the corresponding lines are com-
patible with respect to the coefficients they share, determine a form

C(r123, r124, r134, r234)

in four variables, x1, x2, x3, x4 say, with each monomial in at most three
variables. Thus any relevant form of shape gs can be written as

C(r123, r124, r134, r234; a, b, c, d)

= C(r123, r124, r134, r234) + x1x2x3x4(ax1 + bx2 + cx3 + dx4).

For all admissible r123, r124, r134, r234 and for all a, b, c, d ∈ Fq we then
search for a non-singular zero (x1, x2, x3, x4) ∈ F4

q of

C(r123, r124, r134, r234; a, b, c, d)

by trying points successively. To do this efficiently, one can rescale
both the forms and variables. For instance, rescale g1, g2, g3 such that

a12 = 1, a23 = 1, a34 = 1

and g4 such that

a21 = 1, a23 = 1, a34 = 1.
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It is easier to choose a rescaling that is compatible with the one used
in Lemma 10 (and hence with the data in the arrays Aijk[⋆, ⋆]). Be-
sides these considerations, we put a general effort on implementing the
algorithm efficiently.
The source code of the C++ program may be found in the appendix.
The data and the source code used in the assembling process are avail-
able at [10]. This completes the proof of Theorem 1.

Note that apart from the computer checks we have not used any
assumption other than q > 5. For q = 8, 9 it is likely that one can
also find by a computer search a non-singular zero of every form of the
shapes g1, g2, g3 and g4. Whereas the case q = 7 seems more doubtful
than q = 8, 9, one can easily find counterexamples, for instance of shape
g1, for q = 5 using the same algorithm.
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4. Systems comprising a Cubic and a Quadratic Form

We give a condensed account of Zahid’s work [26] and incorporate a
slicing result by Lecerf to prove Theorem 2.

Recall that K denotes a p-adic field with residue class field Fq and
ring of integers OK. As previously mentioned, we write π for a uni-
formiser ofOK. The h-invariant of a system comprising forms F1, . . . , Fr ∈
OK[x], denoted by h(F1, . . . , Fr), is the smallest non-negative integer h
such that we can write

Fi(x) = L1H1,i(x) + · · ·+ LhHh,i(x) (mod π)

where L1, . . . , Lh are linear and H1,i, . . . , Hh,i suitable forms over Fq

and this holds for all 1 ≤ i ≤ r.

Suppose that q > 37 and Fq has characteristic at least 13. Let
C(x1, . . . , xn) be a cubic and Q(x1, . . . , xn) a quadratic form over K
with n ≥ 14 variables. As we are interested in a zero, we may assume
from now on that C and Q are defined over OK.

By Schmidt’s minimisation procedure (see Theorem 3) we may as-
sume that the system comprising C and Q is (ω1, ω2)-reduced for some
ω1 > 3 and ω2 > 2. Zahid then shows that

h(Q) > 2, h(C − LQ) > 3 and h(C − LQ,Q) > 5(30)

for all linear forms L(x) ∈ OK[x]. These inequalities can be proved
similarly to Lemma 4.

We denote by f and g the reduction of C and Q, respectively, over
the residue class field. Using the Chevalley-Warning Theorem (Lemma
5) and the Lang-Weil Bound (Lemma 12 below) he then shows that
there exists a non-zero vector e ∈ Fn

q such that

f(e) = g(e) = 0 and ∇g(e) 6= 0.

Thus we may consider instead the equivalent system

f(x) = x1f2(x3) + f3(x2)

g(x) = x1x2 + g2(x3)

where xl = (xl, xl+1, . . . , xn).
Following Zahid we show that there exists x2 ∈ Fn−1

q such that x2 6= 0

and (−x−1
2 g2(x3),x2) is a common non-singular zero of f and g. Recall

that a common non-singular zero of f and g is a zero x such that∇f(x)
and ∇g(x) are linearly independent. By applying the following variant
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of Hensel’s Lemma we then find a common non-trivial zero of C and
Q.

Lemma 11 (Hensel’s Lemma for systems of forms). Let F1, . . . , Fr

be a system of forms over OK. Suppose that θ(F1), . . . , θ(Fr) possess a
common non-singular zero. Then F1, . . . , Fr have a common non-trivial

zero.

Suppose first that f2 = 0. It is enough to show that there exists a
non-singular zero x2 ∈ Fn−1

q of f3 such that x2 6= 0. If degx2
f3(x2) < 3,

this is relatively straightforward, provided q > 5. If degx2
f3(x2) = 3, it

is straightforward to find a non-singular zero a ∈ Fn−1
q of f3. If a2 = 0,

then Zahid sets e3 := a and chooses an additional vector e4 ∈ Fn−1
q

such that

f3(Xe2 + Y e3 + Ze4) := cX3 + Y 2u(X,Z) + Y v(X,Z) + w(X,Z) + dZ3

where c, d 6= 0, u(X, 1) 6= 0 and degX w ≤ 2, provided q > 5. If
this form is absolutely irreducible he uses the following variant of the
Lang-Weil Bound to obtain a non-singular zero of f3 such that x2 6= 0,
provided q > 3.

Lemma 12 (Lemma 5.3, [26]). Let N be the number of non-singular

zeros of an absolutely irreducible polynomial of degree d with two vari-

ables, defined over Fq. Then N satisfies

N ≥ q + 1− 1

2
(d− 1)(d− 2)⌊2√q⌋.

If f3(Xe2 + Y e3 + Ze4) is not absolutely irreducible, it must factor
as a product of a linear form over Fq and a quadratic form. It then
follows from a short argument that we can find x2 as claimed.

Consequently, we may assume that f2 6= 0. Zahid then defines

H(x2) = x2f3(x2)− (f2g2)(x3)

and by exploiting (30) establishes that H is absolutely irreducible.
Moreover, he shows that (−x−1

2 g2(x3),x2) is a common non-singular
zero of f and g, provided that x2 is a non-singular zero of H such that
x2 6= 0. For ξ ∈ F3n−5

q we define the sliced polynomial

H|ξ(X, Y ) := H(ξ1 +X, ξ2 + ξnX + ξ2n−4Y, . . . , ξn−1 + ξ2n−3X + ξ3n−5Y ).

We use the following variant of a result of Lecerf (see Corollary 8, [17])
to show that there exists a slice such that H|ξ is absolutely irreducible.
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Lemma 13. Let F ∈ Fq[x2, . . . , xn] be an absolutely irreducible polyno-

mial of degree d. Assume that Fq has characteristic at least d(d−1)+1
and q > 3d(d − 1) + 1. Then there exists a slice ξ ∈ F3n−5

q such that

the sliced polynomial F |ξ is absolutely irreducible.

By Lemma 13 there exists a slice ξ ∈ F3n−5
q such that H|ξ is abso-

lutely irreducible, provided Fq has characteristic at least 13 and q > 37.
The x2-component of H|ξ can not be identically zero, as this would con-
tradict the fact that H|ξ is absolutely irreducible. Finally, we apply
the Lang-Weil Bound as stated in Lemma 12 to show that there exists
a non-singular zero of H such that x2 6= 0. This completes the proof.

Given there exists a suitable slice, the Lang-Weil Bound, as stated
in Lemma 12, yields a non-singular zero as long as q ≥ 37. If one
could make sure that the sliced polynomial has one or more singular
zeros, then its genus would decrease and the condition on q could be
weakened.
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5. Appendix

The following C++ program serves as an example for the computer
programs used in Chapter 3. For improved readability much of the
data in the arrays A123, A124 and A134 has been removed. The data
as well as the program source code can be accessed at [10].

///////////////////////////////////////////////////////

//

// This program verifies that all forms of shape g_1

// have a non-singular zero, provided p=13.

//

// Note:

// i) g_1 restricted to three variables is

// always equal to t_1.

//

// ii) Programs for g_2,g_3,g_4 are analogous.

// Necessary data is available from

// data_for_p13_shape_t_1.txt and

// data_for_p13_shape_t_2.txt at the location

// mentioned above.

//

// iii) p=11 is analogous and data is provided

// in data_for_p11_shape_t_1.txt,

// data_for_p11_shape_t_2.txt at the location

// mentioned above. Notice that for p=11 it is

// recommended to optimise the computations below

// with regard to speed. This is not included here

// as it would make this source file more

// difficult to read.

//

// iv) q=16 this case has very few forms of the

// shape t_1 and t_2 that do not possess a non-

// singular zero. Thus, one can verify this case

// easily by using e.g. pari/gp

// (http://pari.math.u-bordeaux.fr).

//

///////////////////////////////////////////////////////

#include <iostream>

#include <fstream>

using namespace std;

int const p=13;

//sets array length needed to store data



28

int const r123=48;

int const r124=576;

int const r134=576;

//log-file

ofstream cfile;

// Returns for coefficients (A[i][0],A[i][1],A[i][2],

//A[i][3],A[i][4],A[i][5],A[i][6],A[i][7],A[i][8],

//A[j][1],A[j][2],A[j][3],A[j][4],A[j][5],A[j][6],

//A[j][7],A[j][8],A[k][1],A[k][3],A[k][4],A[k][5],

//A[k][6],A[k][7],A[k][8],A[l][3],A[l][4],A[l][5],

//A[l][6],A[l][7],A[l][8],d_1,d_2,d_3,d_4) the

//value 1 if (x_1,x_2,x_3,x_4) is a non-singular zero

// and 0 otherwise.

int nonsingular(int A123_i_0,int A123_i_1,int A123_i_2,

int A123_i_3,int A123_i_4,int A123_i_5,int A123_i_6,

int A123_i_7,int A123_i_8,int A123_j_1,int A123_j_2,

int A123_j_3,int A123_j_4,int A123_j_5,int A123_j_6,

int A123_j_7,int A123_j_8,int A134_k_1,int A134_k_3,

int A134_k_4,int A134_k_5,int A134_k_6,int A134_k_7,

int A134_k_8,int A124_l_3,int A124_l_4,int A124_l_5,

int A124_l_6,int A124_l_7,int A124_l_8,int d_1,int d_2,

int d_3,int d_4,int x_1,int x_2,int x_3,int x_4)

{

//first partial derivative

int A=3*A123_i_0*x_1*x_1*x_2*x_2+3*A123_i_1*x_1*x_1*x_3*x_3

+x_2*x_3*(x_1*x_1*A123_i_3+x_1*x_2*A123_i_6+

x_1*x_3*A123_i_7+x_2*x_2*A123_i_4+x_2*x_3*A123_i_8+

x_3*x_3*A123_i_5)+x_1*x_2*x_3*(2*x_1*A123_i_3+x_2*A123_i_6

+x_3*A123_i_7)+3*A134_k_1*x_1*x_1*x_4*x_4+

x_3*x_4*(x_1*x_1*A134_k_3+x_1*x_3*A134_k_6+x_1*x_4*A134_k_7

+x_3*x_3*A134_k_4+x_3*x_4*A134_k_8+x_4*x_4*A134_k_5)+

x_1*x_3*x_4*(2*x_1*A134_k_3+x_3*A134_k_6+x_4*A134_k_7)+

x_2*x_4*(x_1*x_1*A124_l_3+x_1*x_2*A124_l_6+x_1*x_4*A124_l_7

+x_2*x_2*A124_l_4+x_2*x_4*A124_l_8+x_4*x_4*A124_l_5)+

x_1*x_2*x_4*(2*x_1*A124_l_3+x_2*A124_l_6+x_4*A124_l_7)+

d_1*x_1*x_2*x_3*x_4+

(d_1*x_1+d_2*x_2+d_3*x_3+d_4*x_4)*x_2*x_3*x_4;

//second partial derivative

int B=2*A123_i_0*x_1*x_1*x_1*x_2+3*A123_i_2*x_2*x_2*x_3*x_3

+x_1*x_3*(x_1*x_1*A123_i_3+x_1*x_2*A123_i_6+
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x_1*x_3*A123_i_7+x_2*x_2*A123_i_4+x_2*x_3*A123_i_8+

x_3*x_3*A123_i_5)+x_1*x_2*x_3*(x_1*A123_i_6+2*x_2*A123_i_4+

x_3*A123_i_8)+3*A123_j_1*x_2*x_2*x_4*x_4+

x_3*x_4*(x_2*x_2*A123_j_3+x_2*x_3*A123_j_6+x_2*x_4*A123_j_7

+x_3*x_3*A123_j_4+x_3*x_4*A123_j_8+x_4*x_4*A123_j_5)+

x_2*x_3*x_4*(2*x_2*A123_j_3+x_3*A123_j_6+x_4*A123_j_7)+

x_1*x_4*(x_1*x_1*A124_l_3+x_1*x_2*A124_l_6+x_1*x_4*A124_l_7

+x_2*x_2*A124_l_4+x_2*x_4*A124_l_8+x_4*x_4*A124_l_5)+

x_1*x_2*x_4*(x_1*A124_l_6+2*x_2*A124_l_4+x_4*A124_l_8)+

d_2*x_1*x_2*x_3*x_4+

(d_1*x_1+d_2*x_2+d_3*x_3+d_4*x_4)*x_1*x_3*x_4;

//third partial derivative

int C=2*A123_i_1*x_1*x_1*x_1*x_3+2*A123_i_2*x_2*x_2*x_2*x_3

+x_1*x_2*(x_1*x_1*A123_i_3+x_1*x_2*A123_i_6+

x_1*x_3*A123_i_7+x_2*x_2*A123_i_4+x_2*x_3*A123_i_8+

x_3*x_3*A123_i_5)+x_1*x_2*x_3*(x_1*A123_i_7+x_2*A123_i_8+

2*x_3*A123_i_5)+3*A123_j_2*x_3*x_3*x_4*x_4+

x_2*x_4*(x_2*x_2*A123_j_3+x_2*x_3*A123_j_6+

x_2*x_4*A123_j_7+x_3*x_3*A123_j_4+x_3*x_4*A123_j_8+

x_4*x_4*A123_j_5)+x_2*x_3*x_4*(x_2*A123_j_6+2*x_3*A123_j_4+

x_4*A123_j_8)+x_1*x_4*(x_1*x_1*A134_k_3+x_1*x_3*A134_k_6+

x_1*x_4*A134_k_7+x_3*x_3*A134_k_4+x_3*x_4*A134_k_8+

x_4*x_4*A134_k_5)+x_1*x_3*x_4*(x_1*A134_k_6+2*x_3*A134_k_4+

x_4*A134_k_8)+d_3*x_1*x_2*x_3*x_4+

(d_1*x_1+d_2*x_2+d_3*x_3+d_4*x_4)*x_1*x_2*x_4;

//fourth partial derivative

int D=2*A123_j_1*x_2*x_2*x_2*x_4+2*A123_j_2*x_3*x_3*x_3*x_4

+x_2*x_3*(x_2*x_2*A123_j_3+x_2*x_3*A123_j_6+

x_2*x_4*A123_j_7+x_3*x_3*A123_j_4+x_3*x_4*A123_j_8+

x_4*x_4*A123_j_5)+x_2*x_3*x_4*(x_2*A123_j_7+x_3*A123_j_8+

2*x_4*A123_j_5)+2*A134_k_1*x_1*x_1*x_1*x_4+

x_1*x_3*(x_1*x_1*A134_k_3+x_1*x_3*A134_k_6+

x_1*x_4*A134_k_7+x_3*x_3*A134_k_4+x_3*x_4*A134_k_8+

x_4*x_4*A134_k_5)+x_1*x_3*x_4*(x_1*A134_k_7+x_3*A134_k_8+

2*x_4*A134_k_5)+x_1*x_2*(x_1*x_1*A124_l_3+x_1*x_2*A124_l_6+

x_1*x_4*A124_l_7+x_2*x_2*A124_l_4+x_2*x_4*A124_l_8+

x_4*x_4*A124_l_5)+x_1*x_2*x_4*(x_1*A124_l_7+x_2*A124_l_8+

2*x_4*A124_l_5)+d_4*x_1*x_2*x_3*x_4

+(d_1*x_1+d_2*x_2+d_3*x_3+d_4*x_4)*x_1*x_2*x_3;

if ((A)%p!=0 ){return 1;};

if ((B)%p!=0 ){return 1;};

if ((C)%p!=0 ){return 1;};
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if ((D)%p!=0 ){return 1;};

return 0;

}

int main () {

// file would have saved the message that counterexamples

//have been found

cfile.open ("shape_g_1.txt");

//We rescale those coefficient in front

//of x_1^3x_2^2, x_2^3x_3^2, x_3^3x_4^2 in g_1.

//Lines in array represent g_1|_{y_1,y_2,y_3}

//without a non-singular zero.

//We use the compatible rescaling

//ie. 1x_1^3x_2^2, 1x_2^3x_3^2 in t_1

int A123[r123][9]={

{1,1,1,2,7,11,2,2,5},

...

};

//We use the compatible rescaling ie. 1x_1^3x_2^2 in t_1

int A124[r124][9]={

{1,1,1,2,7,11,2,2,5},

...

};

//We use the compatible rescaling ie. 1x_2^3x_3^2 in t_1

int A134[r134][9]={

{1,1,1,2,7,11,2,2,5},

...

};

//Note that A234 = A123.

//indicates whether a non-singular zero has been found

int found=0;

//Loops used in the assembling process:
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for (int i = 0; i < r123; i++)

{

//note: "123=234"

for (int j = 0; j < r123; j++)

{

//compatibility condition for shared coefficients

if(A123[i][2]==A123[j][0]){

// gives some indication about waiting time

cout << i<<"," <<j <<"\n";

for (int k = 0; k < r134; k++)

{

//compatibility condition

if(A123[j][2]==A134[k][2] && A123[i][1]==A134[k][0]){

for (int l = 0; l < r124; l++)

{

//compatibility condition

if(A123[i][0]==A124[l][0] && A124[l][1]==A134[k][1]

&& A124[l][2]==A123[j][1] ){

//Additional degrees of freedom:

for (int d_1 = 0; d_1 < p; d_1++)

{

for (int d_2 = 0; d_2 < p; d_2++)

{

for (int d_3 = 0; d_3 < p; d_3++)

{

for (int d_4 = 0; d_4 < p; d_4++)

{

found=0;

//running through all points in {1}x(F_q-0)^3:

for (int x_1 = 1; x_1 < 2; x_1++)

{

for (int x_2 = 1; x_2 < p; x_2++)

{

for (int x_3 = 1; x_3 < p; x_3++)

{

for (int x_4 = 1; x_4 < p; x_4++)

{

//tests form for a zero

if((A123[i][0]*x_1*x_1*x_1*x_2*x_2+

A123[i][1]*x_1*x_1*x_1*x_3*x_3+

A123[i][2]*x_2*x_2*x_2*x_3*x_3+

x_1*x_2*x_3*(A123[i][3]*x_1*x_1+A123[i][4]*x_2*x_2+

A123[i][5]*x_3*x_3+A123[i][6]*x_1*x_2+A123[i][7]*x_1*x_3+



32

A123[i][8]*x_2*x_3) //123

+A123[j][1]*x_2*x_2*x_2*x_4*x_4+A123[j][2]*x_3*x_3*x_3*x_4*x_4+

x_2*x_3*x_4*(A123[j][3]*x_2*x_2+A123[j][4]*x_3*x_3+

A123[j][5]*x_4*x_4+A123[j][6]*x_2*x_3+A123[j][7]*x_2*x_4+

A123[j][8]*x_3*x_4) //234

+A134[k][1]*x_1*x_1*x_1*x_4*x_4+x_1*x_3*x_4*(A134[k][3]*x_1*x_1+

A134[k][4]*x_3*x_3+A134[k][5]*x_4*x_4+A134[k][6]*x_1*x_3+

A134[k][7]*x_1*x_4+A134[k][8]*x_3*x_4) //134

+x_1*x_2*x_4*(A124[l][3]*x_1*x_1+A124[l][4]*x_2*x_2+

A124[l][5]*x_4*x_4+A124[l][6]*x_1*x_2+A124[l][7]*x_1*x_4+

A124[l][8]*x_2*x_4) //124

+(d_1*x_1 +d_2*x_2 +d_3*x_3 +d_4*x_4)*x_1*x_2*x_3*x_4)%p==0){

//test whether this zero is non-singular

if (nonsingular(A123[i][0],A123[i][1],A123[i][2],A123[i][3],

A123[i][4],A123[i][5],A123[i][6],A123[i][7],A123[i][8],

A123[j][1],A123[j][2],A123[j][3],A123[j][4],A123[j][5],

A123[j][6],A123[j][7],A123[j][8],A134[k][1],A134[k][3],

A134[k][4],A134[k][5],A134[k][6],A134[k][7],A134[k][8],

A124[l][3],A124[l][4],A124[l][5],A124[l][6],A124[l][7],

A124[l][8],d_1,d_2,d_3,d_4,x_1,x_2,x_3,x_4)==1)

{

found=1;x_1=p-1; x_2=p-1;x_3=p-1;x_4=p-1;

}

}}}}

//If a counterexample had occurred, this event would

have been logged in shapeg_1.txt

if (found==0)

{

cfile <<"A counterexample has been found.";

cfile.flush();

return 0;

}

}}}}

}}}}}}}

cfile.close();

return 0;

}
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