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Introduction

In the 1950s, K. Iwasawa initiated the study of Zp-extensions, which became
an area of extensive research. We will briefly sketch the basic notions of classical
Iwasawa theory, thus describing the setting for the investigations done in this
thesis. For details, we refer to the rigorous introduction to the subject given in
Chapter 1.

Let p denote a fixed prime number. Let K be a number field, i.e., a finite
algebraic extension of the field Q of rational numbers. We consider a sequence
of field extensions

K0 := K ⊆ K1 ⊆ K2 ⊆ . . .

such that for every n ∈ N, Kn/K is a cyclic extension of degree pn. Then
K :=

⋃
n≥0

Kn is called a Zp-extension of K. One can show that the Kn ⊆ K,

n ∈ N, are the only intermediate fields in the extension K/K. The name
‘Zp-extension’ is based on the fact that

Gal(K/K) ∼= lim←−Z/p
nZ ∼= Zp .

Here Zp denotes the additive group of p-adic integers.
The most basic example of a Zp-extension of a fixed number field K arises if

we consider the algebraic extension L of K that is generated by all p-power roots
of unity. L contains the so-called cyclotomic Zp-extension of K. In particular,
every number field has at least one Zp-extension. Typically there exist infinitely
many Zp-extensions of K; in fact the set of Zp-extensions of K can be finite
only is K is totally real.

A basic problem in algebraic number theory is the investigation of the ideal
class groups of given number fields. In general, it is a highly non-trivial task to
actually determine the structure of these groups, in particular if the degree of
the number field becomes large.

Iwasawa showed that in the case of a Zp-extension, the orders of the p-
Sylow subgroups An of the ideal class groups of the intermediate fields Kn

grow very uniformly. The following famous theorem actually gives a complete
asymptotic description of the growth of these groups and therefore contains
information about the class numbers of a sequence of number fields having
unbounded degrees.

Theorem 0.1 (Iwasawa). There exist integers µ, λ and ν such that µ, λ ≥ 0
and such that for every sufficiently large n, |An| = pen with

en = µ · pn + λ · n+ ν .

i
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This remarkable result describes the information about the class-numbers
pen in terms of the so-called Iwasawa invariants µ, λ and ν of K/K.

We are therefore naturally lead to the problem of determining, for a given
Zp-extension K/K, the corresponding Iwasawa invariants. After more than
50 years of research, only very few general properties of these invariants are
known. For example, Iwasawa conjectured that the µ-invariant of a cyclotomic
Zp-extension K/K always vanishes. This has been proved for abelian ground
fields K, and has also been checked numerically for many other fields, but the
general problem is still open.

The present work contains a new approach to the investigation of Iwasawa’s
invariants. We will be concerned with the study of Iwasawa invariants attached
to Zp-extensions of a fixed number field K. If E(K) denotes the set of Zp-
extensions of K, then to each K ∈ E(K) is attached a tuple of invariants. We
will thus regard the Iwasawa invariants as maps

µ, λ, ν : E(K) // Z ,

and we want to study properties of these maps.

In his Ph.D. thesis, R. Greenberg defined a topology on the set E(K) with
respect to which E(K) becomes a compact topological space. This induced new
kinds of questions. For example, suppose that K,L ∈ E(K) are two elements
which are ‘close’ with respect to Greenberg’s topology. Does this imply that
the values of K and L under µ, λ and ν are also close in Z? Greenberg proved
some first results in this direction.

Theorem 0.2 (Greenberg). Let K/K denote a Zp-extension such that only
finitely many primes of K divide p. Then µ is locally bounded around K, i.e.,
there exist a constant C ∈ N and a neighbourhood U of K such that µ(L/K) ≤ C
for each L ∈ U .
If moreover µ(K/K) = 0, then there exists a neighbourhood U of K such that
µ = 0 on U and such that λ is bounded on U .

In this thesis, we will improve on these results, using a completely different
approach. We will define a finer topology that takes care of ramification, and we
will be able to prove that with respect to this topology, the following theorem
holds.

Theorem 0.3. Let K/K denote any Zp-extension.

(i) There exists a neighbourhood U of K such that µ is locally maximal on
U , i.e., µ(L/K) ≤ µ(K/K) for every L ∈ U .

(ii) There exists a neighbourhood U of K such that λ(L/K) ≤ λ(K/K) for
every L ∈ U satisfying µ(L/K) = µ(K/K).

(iii) There exists a neighbourhood U of K such that ν(L/K) = ν(K/K) for
every L ∈ U satisfying µ(L/K) = µ(K/K) and λ(L/K) = λ(K/K).

This nicely reflects the hierarchy of Iwasawa’s invariants: The µ-invariant
describes the dominating part of the growth of the |An|, whereas the ν-invariants
contains the finer information. It is one of the main advantages of our method
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that we are able to obtain results about λ- and ν-invariants also in the case
where the µ-invariant does not vanish.

Based on Greenberg’s results, V.A. Babăıcev equipped the set E(K) with
the structure of a projective variety, and he used geometric arguments in order
to prove that µ is in fact globally bounded on E(K). This was also proved
independently by P. Monsky . It is unknown whether the same is true for λ-
invariants. We will enhance the methods of Monsky and Babăıcev and develop
necessary and sufficient criteria for the λ-invariants to be globally bounded.

Finally, we consider, more generally, Zip-extensions of K, i ∈ N, and we
show how to generalise the approach used for the study of Iwasawa invariants
to this higher-dimensional setting.

We will now briefly give an outline of the contents of the individual chapters
of this work.

0.1 Structure of the thesis

Chapter 1. In the first chapter, we will introduce the basic notions and collect
some facts concerning Zp-extensions. In particular, we will point out the main
ingredients that are used in the proof of Iwasawa’s famous Theorem 0.1. This
will include an overview of the theory of finitely generated Zp[[T ]]-modules
because the action of the ring Zp[[T ]] on the ideal class groups is of fundamental
importance in this context.

Chapter 2. We will define more structure on the set E(K) of Zp-extensions
of K. On the one hand, we will describe Greenberg’s topology on E(K). On the
other hand, we will depict several ways to turn E(K) into a projective variety;
this contains work of Babăıcev.

Finally, Chapter 2 also prepares for the study of multiple Zp-extensions in
later chapters. Analogously to the one-dimensional case, the action of power
series rings Zp[[T1, . . . , Ti]] in a suitable number of variables is of particular
interest for these investigations. We will therefore collect basic facts about the
rings Zp[[T1, . . . , Ti]] and about modules over these rings.

Chapter 3. Chapter 3 contains the heart of our work, namely, a new
approach to the study of Iwasawa’s invariants. This method is based on a
generalisation of a theorem of T. Fukuda concerning the stabilisation of certain
ranks. We will be able to obtain information about Iwasawa invariants from
the values of these ranks. Therefore bounding the Iwasawa invariants reduces
to bounding the ranks. While Fukuda’s original theorem considers only p-ranks
(i.e., uses group-theoretic information), we will extensively exploit the action
of Zp[[T ]] on the class groups and consider also ranks attached to elements of
Zp[[T ]] \Zp. This essentially strengthens the power of the approach and is one
reason why our method works also in the case of non-vanishing µ-invariants (if
µ 6= 0, then the corresponding p-ranks get arbitrarily large and therefore are
not suitable for the extraction of information about Iwasawa invariants).

Our approach makes it necessary to refine Greenberg’s topology in order to
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obtain control on ramification. We will therefore study possible configurations
of ramification in multiple Zp-extensions.

We will also study connections between Iwasawa invariants and the phe-
nomenon of capitulation. This is closely related to the investigation of certain
cohomology groups of global units.

Chapter 4. In contrast to the method used in Chapter 3, we will describe
the approach that has been developed by Greenberg and Babăıcev, leading to a
proof that µ is globally bounded on E(K) (the method of Chapter 3 in general
is not suitable for attacking this kind of question).

We then apply an adapted version of Greenberg’s approach to the task of
studying λ-invariants, and we develop a criterion for the λ-invariants to be
globally bounded. A special case of this criterion was known to P. Monsky,
who considered Zp-extensions contained in a fixed Z2

p-extension of K.

Chapter 5. In Chapter 5, we turn to the consideration of multiple Zp-
extensions, i.e., we study Zip-extensions of a number field K, i ∈ N. A. Cuoco
and P. Monsky proved a generalisation of Iwasawa’s Theorem 0.1 for multiple
Zp-extensions, introducing generalised Iwasawa invariants, which are usually
denoted by m0 and l0. If i = 1, then these invariants reduce to the classical µ-
and λ-invariant, respectively (there seems to be no canonical generalisation of
Iwasawa’s ν-invariant).

Analogously to the investigations in Chapter 3, we study the local behaviour
of these generalised Iwasawa invariants. We first show how to use Greenberg’s
and Babăıcev’s approach, described in Chapter 4, in order to reduce the i-
dimensional problem to a one-dimensional problem, which then can be studied
with the help of the results proved in Chapter 3. This will yield local bound-
edness results for m0 and l0.

In order to obtain stronger results, we then generalise the method used
in Chapter 3 to the higher-dimensional setting in order to apply this method
directly to Zip-extensions of K. It turns out that this is considerably more
difficult than the one-dimensional case. Particularly, the handling of suitable
ranks needs much more effort.

We conclude the chapter with some results concerning the special situation
of a Z2

p-extension, culminating in a new proof of Greenberg’s Generalised Con-
jecture for imaginary quadratic number fields whose class number is coprime to
p and in which the rational prime p does not split.

0.2 Notation

We will now introduce some notation that will be used throughout the thesis.

Let M be a finite set. Then we denote by |M | the cardinality of M , i.e., the
number of elements contained in M .

N = {1, 2, 3, . . . , } denotes the set of natural numbers, and N0 := N ∪ {0}.
Z denotes the ring of integers. Q, R and C denote the fields of rational, real,
and complex numbers, respectively.

Throughout the thesis, p will denote a fixed rational prime number (we will
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sometimes assume that p 6= 2). Fp denotes the finite field with p elements, and
Zp, respectively, Qp, denote the ring, respectively, the field, of p-adic integers.

If G denotes a finite abelian p-group, then the p-rank of G,

rankp(G) := dimFp(G/(p ·G)) ,

is defined to be the dimension of the Fp-vector space G/(p · G). This is the
number r of cyclic groups Z/pnZ in the canonical representation

G ∼= Z/pn1Z × . . . ×Z/pnrZ

of G. We could also write rankp(G) = vp(|G/(p · G)|), where vp denotes the
usual p-adic valuation on Z (i.e., if n = pv · n′ ∈ Z, p - n′, then vp(n) = v).

Moreover, the exponent of a finite abelian p-group G, written exp(G), de-
notes the smallest power pn, n ∈ N0, that annihilates G.

G is called p-elementary if exp(G) = p.

Our rings will always be commutative, and we assume that they contain a
multiplicative unit element.

If R is a ring, and if n,m ∈ N, then Mat(n,m,R) denotes the set of n×m-
matrices over R. GLn(R) denotes the subset of invertible n × n-matrices. If
A ∈ Mat(n,m,R) has entries aij ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then the
transposed matrix of A is the matrix B = AT ∈ Mat(m,n,R) having entries
bij := aji, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Let R be a ring, and let M denote an R-module. Then the rank rankR(M)
of M over R denotes the supremum of the natural numbers n such that there
exist n R-linearly independent elements in M .

We will be mainly concerned with number fields, i.e., finite algebraic exten-
sions K of Q. For each number field K, we denote by OK the ring of integral
elements of K. The ideal class group of K will be denoted by Cl(K).

We will usually assume that we have fixed an algebraic closure K of K. An
important subfield of K is the Hilbert class field of K, i.e., the maximal abelian
unramified extension of K. Since we are mainly interested in the p-divisibility
of class numbers, we will usually consider the maximal unramified p-abelian
extension H(K) of K.

We will often denote by I = {p1, . . . , pt} the set of primes of the number
field K that divide our fixed rational prime p.

Fix a number field K. If we consider embeddings ϕ : K ↪→ C of K into
the field C of complex numbers, then we may distinguish between embeddings
mapping K into R ⊆ C and those mapping K onto a proper imaginary field.
Then r1(K) will denote the number of real embeddings of K, and r2(K) denotes
the number of pairs of complex conjugate embeddings.

A CM-field is a totally imaginary quadratic extension K of a totally real
number field K+. This means that r2(K+) = r1(K) = 0 and [K : K+] = 2.
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Chapter 1

Iwasawa’s theory of
Zp-extensions

In this first chapter, we will introduce the basic objects that are dealt with in
classical Iwasawa theory. This subfield of algebraic number theory is concerned
with the study of so-called Zp-extensions of number fields, which will be defined
below. The first section collects, in addition to some examples, basic properties
of Zp-extensions that will be used throughout this thesis.

Typical objects of interest will be the ideal class groups of the number fields
contained in a given Zp-extension. Iwasawa discovered that one can obtain
deep insight on the growth of these class groups by taking into account the
additional structure arising from the action of certain group rings. Therefore
the second section will be devoted to a structure theory of groups admitting an
action of such group rings.

This general structure theory may be used to obtain a proof of Iwasawa’s
famous class number formula (Theorem 1.32). In the third section, we will
describe the main ideas used in the proof of this result. In particular, we will
discuss several versions of Nakayama’s Lemma, which will be an indispensable
tool for many proofs derived in this work.

1.1 Basic properties of Zp-extensions

Let K be a number field and let p be a fixed rational prime. A Zp-extension of
K is a Galois extension K∞ of K such that the Galois group Γ := Gal(K∞/K)
is topologically isomorphic to the additive group Zp of p-adic integers. In this
section we summarise some basic facts about such extensions. For proofs and
more details see [Wa 97], Chapter 13.

Proposition 1.1. For every n ∈ N, there is a unique field Kn ⊆ K∞ such that
Gal(Kn/K) ∼= Z/pnZ. These are the only intermediate fields in K∞/K.

This just follows from infinite Galois theory (see [Neu 92], Thm. IV.1.2):
the intermediate fields correspond to the closed subgroups of Γ ∼= Zp, and the
only non-trivial closed subgroups of Zp are the groups pnZp, n ∈ N.

1



2 CHAPTER 1. IWASAWA’S THEORY OF Zp-EXTENSIONS

This means that we can think of the extension K∞/K as the chain of cyclic
field extensions of p-power degree

K = K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kn ⊆ . . . ⊆ K∞ =
⋃

n∈N0

Kn .

Lemma 1.2. A Zp-extension K∞/K is unramified outside the primes of K ly-
ing above p. In particular, K∞/K is unramified at infinity, i.e., a Zp-extension
of a totally real field is totally real.

Proof. see [Wa 97], Proposition 13.2.

However, the extension K∞/K cannot be completely unramified, because
otherwise the field K∞ would be contained in the Hilbert class field H of K.
But class field theory (see [Neu 92], Theorem VI.6.9) implies that the Galois
group Gal(H/K) is isomorphic to the ideal class group of K, which is finite,
and therefore K∞ would have to be a finite extension of K, which gives a
contradiction.

More precisely, we have the following proposition:

Proposition 1.3. Let K∞/K be a Zp-extension. Then at least one prime
ramifies in K∞/K. Moreover, there exists some integer e ≥ 0 such that every
prime which ramifies in K∞/Ke is totally ramified.

Proof. see [Wa 97], Lemma 13.3.

It is, however, possible to have Kn/K unramified for some n (see Example
1.6 below).

Up to now, we have described some properties of Zp-extensions without
having shown yet that such extensions do exist. We will now show that every
number field K has at least one Zp-extension. For that purpose, we first review
the following easy group-theoretic result.

Lemma 1.4.
(i) If p 6= 2 is a prime and e ∈ N, then the group (Z/peZ)∗ of multiplicatively

invertible elements of the ring Z/peZ is cyclic, and

(Z/peZ)∗ ∼= Z/pe−1Z × Z/(p− 1)Z .

(ii) If e ∈ N, then (Z/2eZ)∗ is cyclic if and only if e ∈ {1, 2}. For e ≥ 3 we
have (Z/2eZ)∗ ∼= Z/2e−2Z × Z/2Z.

Proof. See [Rib 01], 3.(J) and 3.(K).

Example 1.5. Let p be an odd prime, let ζp be a primitive p-th root of unity,
and consider the field K = K0 := Q(ζp). The fields Kn := Q(ζpn+1), n ∈ N,
(where ζpn+1 denotes a primitive pn+1-th root of unity contained in a fixed

algebraic closure K of K, respectively) are cyclic over Q with Galois groups
Gal(Kn/Q) ∼= (Z/pn+1Z)∗. Moreover, each Kn is abelian over K = K0, and
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Gal(Kn/K) ∼= Z/pnZ is cyclic of order pn for all n (compare Lemma 1.4, (i)).
Therefore

K∞ :=
⋃
n≥ 1

Kn =
⋃
n≥ 1

Q(ζpn+1)

is a Zp-extension of K = Q(ζp). We call it the cyclotomic Zp-extension of
K.
Now let K be an arbitrary number field; let p be a prime, let

q :=

{
p : p is odd

4 : p = 2 .

For any n ∈ N (in the case p = 2, we have to assume that n > 1), there is
a unique subfield Bn of Q(ζqpn) which is cyclic of degree pn over Q (using the
isomorphism from Lemma 1.4, (i), respectively, (ii), define Bn to be the subfield
of Q(ζqpn) fixed by the Z/(p − 1)Z-part, respectively, the Z/2Z-part, of the
Galois group Gal(Q(ζqpn)/Q)). We define B∞ :=

⋃
n≥ 1

Bn and K∞ := K · B∞.

Then K∞/K is a Zp-extension. Indeed, let L := K ∩ B∞. Then [L : Q] is a
finite power of p, and L is cyclic over Q. Therefore L = Be for some e ≥ 0 by
the uniqueness of the Bn. (We have to pay attention to the case p = 2: There
are three cyclic extensions Q1, Q2 and Q3 of degree 2 over Q that are contained
in Q(ζ8) (see Example 1.6 below), and exactly one of them serves as the first
step in our Zp-extension).
Moreover, there are group isomorphisms

Gal(K∞/K) = Gal(K ·B∞/K) ∼= Gal(B∞/(K ∩ B∞ = Be))
∼= peZp ∼= Zp .

K∞ is called the cyclotomic Zp-extension of K.

Example 1.6. We will now show that it is possible that in a Zp-extension
K∞/K, Kn/K is unramified for some n (compare Proposition 1.3); the following
example is put as an exercise in [Wa 97]. Let p = 2. There are exactly three
quadratic subfields of Q(ζ8), namely Q(

√
2), Q(i) and Q(i

√
2). Since Q(i)/Q

and Q(i
√

2)/Q are ramified at infinity, Lemma 1.2 shows that Q(
√

2) is the first
step of the cyclotomic Z2-extension of Q. More generally, if K is a number field
and

√
2 /∈ K, then K(

√
2)/K is the first step of the cyclotomic Z2-extension

of K. Now consider K := Q(
√
−6). We show that K1 := Q(

√
−6,
√

2) is
unramified over K. In order to see this we consider the following diagram of
fields.

Q(
√
−3,
√

2) = Q(
√
−6,
√

2)

Q(
√
−3)

(III)

Q(
√
−6)

(I)

Q(
√

2)

(II)

Q
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We have the following ramification indices in the labelled subextensions (here
we denote by ep = ep(M/L) the ramification index of the prime p of L in the
extension M/L):

(I) e2 = e3 = 2, all p /∈ {2, 3} are unramified
(II) e2 = 2, all odd primes are unramified
(III) e3 = 2, all primes p 6= 3 are unramified.

We see this by computing the discriminants of these quadratic subfields (a
rational prime p ∈ Q ramifies in a number field if and only if it divides the
absolute discriminant of that field): δQ(

√
2) = 4·2 = 8, δQ(

√
−6) = 4·(−6) = −24

and δQ(
√
−3) = −3 (note that −3 ≡ 1 mod 4).

By looking at (III), we see that

e2(K1/Q) ≤ 2
(I)
= e2(K/Q) ,

and therefore ep2(K1/K) = 1 for the unique prime p2 of K lying above 2.
Analogously,

e3(K1/Q)
(II)

≤ 2
(I)
= e3(K/Q) ,

and so ep3(K1/K) = 1 for the unique prime p3 of K lying above 3. This shows
that K1/K is unramified, since obviously no prime different from 2 and 3 is
ramified in K1/Q.

Every number field K has at least one Zp-extension, namely the cyclotomic
one, as defined above. We will now give an estimate for the number of Zp-
extensions of K. Two Zp-extensions L1/K and L2/K are called independent
if L1 ∩ L2 = K.

First, we introduce some notation. Let E denote the group of units of (the
ring of integers OK of) K. Let I := {p ⊆ OK : p | (p)} be the set of primes
of K lying above p. Define E1 := {ε ∈ E | ε ≡ 1 mod p ∀ p ∈ I}. For every
p ∈ I we consider the completion Kp of K with respect to the non-archimedean
absolute value induced by the prime p. Let U1,p ⊆ Kp denote the local units
congruent to 1 modulo p. Then we have a diagonal embedding

E1 −→ U1 :=
∏
p∈I

U1,p , ε 7→ (ε, . . . , ε) .

If N(p) denotes the norm of the prime p, i.e., the number of elements in the
residue class field OK/p, then εN(p)−1 ∈ U1,p for any ε ∈ E. Therefore E1 is a
subgroup of E of finite index, and thus a free abelian group of rank r = r1+r2−1,
where r1 denotes the number of real embeddings of the number field K and r2

denotes the number of pairs of complex conjugate embeddings (by Dirichlet’s
Unit Theorem).

Let E1 be the closure of E1 ↪→ U1 with respect to the product topology on
U1. U1 is a Zp-module via x · u := ux (x ∈ Zp, u ∈ U1), and so the closure E1

is also a Zp-module. It has rank r1 + r2− 1− δ for some δ = δ(K) ≥ 0 which is
called the Leopoldt defect of K. Leopoldt’s Conjecture predicts that δ = 0
for every number field K, which has been proved by A. Brumer in [Br 67] for



1.2. GROUP RINGS AND Λ-MODULES 5

abelian number fields (so the Leopoldt defect measures the extent to which the
conjecture fails).

The following theorem gives an estimate for the number of independent
Zp-extensions of K:

Theorem 1.7. With the above notation, let d denote the number of independent
Zp-extensions of K. Then d = r2 + 1 + δ. Therefore

r2 + 1 ≤ d ≤ 2r2 + r1 = [K : Q] .

The proof via class field theory (cf. [Wa 97], pp. 266-269) also shows the
following result ([Wa 97], Corollary 13.6):

Lemma 1.8. Let H be the Hilbert class field of K and let F be the maximal
abelian extension of K which is unramified outside primes lying above p. Then
there exists a group homomorphism

Gal(F/H) ' (
∏
p∈I

Up)/E

with finite kernel and cokernel, where Up denotes the unit group of the com-
pletion Kp, respectively, and E is the closure of the group of global units E
(embedded in (

∏
p∈I Up) diagonally).

In Chapter 3, we will prove a generalisation of this lemma (compare Lemma
3.28).

1.2 Group rings and Λ-modules

Group rings play an important role in the study of algebraic number fields.
For example, suppose that we are interested in the ideal class group Cl(K) of
a number field K which is galois over Q. The group G := Gal(K/Q) acts on
Cl(K). If we take R to be an appropriate coefficient ring which, too, operates
on Cl(K) (e.g., R = Z), then the group ring R[G] acts on Cl(K). Now if
we have knowledge about the structure of R[G]-modules in general, then these
results in particular hold for Cl(K) (viewed as a R[G]-module). This approach
sometimes delivers a deeper insight into the structure of Cl(K) or other objects
related to K which can be equipped with the structure of a R[G]-module.

In our situation, we will usually have R = Zp. More generally, let R = O
denote a unique factorisation domain that is a local ring with unique maximal
ideal p. Assume further that O is complete with respect to the p-adic topology
(note that Zp fills into this pattern, by [Neu 92], Theorems II.2.3 and II.2.4).
Let K be a number field, let K∞/K be a Zp-extension with Galois group
Γ ∼= Zp, and let γ ∈ Γ be a fixed topological generator, i.e., the cyclic subgroup
generated by γ is dense in Γ with regard to the topology on Γ induced by the
p-adic topology on Zp. This will be the case if, for example, γ corresponds
to 1 ∈ Zp under the above isomorphism. We will write Γ multiplicatively.
Since the only nontrivial closed subgroups of Zp are of the form pnZp for some
n ∈ N0, the nontrivial closed subgroups of Γ are given by Γp

n
, n ∈ N0. If we
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define Γn := Γ/Γp
n
, then Γn is a cyclic group of order pn generated by the coset

γ of γ modulo Γp
n
. It corresponds to the Galois group of the subextension

Kn/K (compare Proposition 1.1).
We consider the group rings O[Γn], n ≥ 0. If, for example, O = Zp, then

O[Γn] acts on the p-Sylow parts of the class groups Cl(Kn), respectively. We
would like to define an analogous group ring which acts on arithmetic objects
attached to the extension K∞ itself. It turns out that instead of using the group
ring O[Γ] it is much better to consider the so-called profinite group ring or
completed group ring O[[Γ]] of Γ which is kind of a compactification of O[Γ]
and will be defined now.

If m ≥ n ≥ 0 then Γp
m ⊆ Γp

n
, so there is a canonical surjection Γm � Γn

which induces a map φm,n : O[Γm] −→ O[Γn]. We define O[[Γ]] to be the
inverse limit of the group rings O[Γn] with respect to the maps φm,n. Since any
element α ∈ O[Γ] canonically induces a sequence of elements αn ∈ O[Γn] such
that φm,n(αm) = αn ∀m ≥ n ≥ 0, we have an embedding O[Γ] ↪→ O[[Γ]]. Note
that O[[Γ]] is somewhat ‘bigger’ than O[Γ] (it contains certain ‘infinite’ sums
of elements of Γ). O[[Γ]] is a compact O-module with respect to the topology
induced by the projective limit of the topologies on the O[Γn].

At any finite level n we have an isomorphism

O[Γn] ∼= O[T ]/((1 + T )p
n − 1)

induced by
γ mod Γp

n 7→ 1 + T mod ((1 + T )p
n − 1)

(since γpn 7→ 1, this map is well-defined; one can easily see that it is onto and
one-to-one). If m ≥ n ≥ 0, then (1+T )p

n−1 divides (1+T )p
m−1, so there is a

natural map θm,n : O[T ]/((1+T )p
m−1) −→ O[T ]/((1+T )p

n−1) corresponding
to the map φm,n : O[Γm] −→ O[Γn] defined above. We obtain

O[[Γ]] ∼= lim←−
n

O[T ]/((1 + T )p
n − 1) ,

where the inverse limit on the right-hand side is taken with respect to the maps
θm,n.

The following theorem is fundamental for the understanding of the profinite
group ring O[[Γ]].

Theorem 1.9. Let O[[T ]] denote the ring of formal power series in one variable
with coefficients in O. Then O[[Γ]] ∼= O[[T ]] as O-algebras, the isomorphism
being induced by γ 7→ 1 + T .

The proof (see, for example, [Wa 97], pp. 114-117) is based on the following
auxiliary results which are important on their own.

Lemma 1.10 (Division Lemma). Let O be a local ring with maximal ideal p
that is Hausdorff and complete with regard to the p-adic topology. Let

f =

∞∑
i=0

aiTi ∈ O[[T ]] ,
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and assume that n := inf({i | ai 6∈ p}) is finite (n is called the reduced degree
of f). Then every g ∈ O[[T ]] may be uniquely written as

g = qf + r ,

with q ∈ O[[T ]], and where r ∈ O[T ] is a polynomial of degree at most n− 1.
In particular, O[[T ]]/(f) is a free O-module of rank n having basis

{T i mod f | 0 ≤ i ≤ n− 1} .

Proof. See [Bou 89], Chapter 7, §3, Proposition 5.

We will now define an important class of elements in O[T ] to which we can
apply the Division Lemma.

Definition 1.11. Let O be a local ring with maximal ideal p. A polynomial
F ∈ O[T ] is called distinguished (or a Weierstraß polynomial) if it is of
the form F (T ) = Tn + an−1T

n−1 + . . .+ a0 with ai ∈ p for all 0 ≤ i ≤ n− 1.

Remarks 1.12.
(1) In particular, a distinguished polynomial F (T ) is not constant (since n ≥ 1).

If O is a principal ideal domain, then F (T ) is almost an Eisenstein poly-
nomial: if a0 6∈ p2, then F (T ) will be irreducible.

(2) The polynomials ωn(T ) := (1+T )p
n−1, n ≥ 0, which played an important

role above (and will do later on), are distinguished in Zp[T ].

Lemma 1.13. Let O be as in Lemma 1.10, let F (T ) ∈ O[T ] be a distinguished
polynomial. Then we have an O-module isomorphism

O[T ]/(F (T ) · O[T ])
∼ // O[[T ]]/(F (T ) · O[[T ]]) .

Proof. The injection O[T ] ↪→ O[[T ]] induces a well-defined map

ϕ : O[T ]/(F (T ) · O[T ]) // O[[T ]]/(F (T ) · O[[T ]]) .

Let n be the degree of F (T ) (which is the same as the reduced degree because
F (T ) is distinguished). By the Division Lemma, each coset of the quotient on
the right hand side may be uniquely represented by an element r ∈ O[T ] of
degree less than n. Therefore the map ϕ actually has to be a bijection.

Finally, we come to the main result used in the proof of Theorem 1.9.

Theorem 1.14 (Weierstraß Preparation Theorem). Let O denote a local
ring with maximal ideal p, and assume that O is Hausdorff and complete with
respect to the p-adic topology. Let furthermore f = a0 + a1T + . . . ∈ O[[T ]] be
a series such that there exists a coefficient of f that is not contained in p (in
particular, f 6= 0). Let s denote the reduced degree of f , as defined in Lemma
1.10.
Then we may uniquely write

f = U · F ,
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where U ∈ (O[[T ]])∗ is a unit, and where F = F (T ) ∈ O[T ] is a distinguished
polynomial of degree s, as in Definition 1.11. (If s = 0, then f = U is a unit.)
In particular, if O is a principal ideal domain, then we may choose a generator
π of p, and every non-zero element f ∈ O[[T ]] may be uniquely written as

f(T ) = πµ · U(T ) · F (T ) ,

where 0 ≤ µ ∈ Z denotes the largest integer such that πµ divides f , and with U
and F as above.

Proof. See [Bou 89], Chapter 7, §3, Proposition 6.

We now specialise to the case O = Zp. Let Λ := Zp[[T ]].

Definition 1.15. The profinite group ring Zp[[Γ]] ∼= Λ is called the Iwasawa
algebra. Every compact Λ-module is called an Iwasawa module.

The isomorphism Zp[[Γ]] ∼= Λ given in Theorem 1.9 depends on the choice
of the topological generator γ of Γ. In the following we will identify Zp[[Γ]]
with Λ, using a fixed topological generator γ.

We will now state some basic properties of the ring Λ which build the
foundation of a couple of results concerning the structure of finitely generated Λ-
modules. This culminates in an important structure theorem which afterwards
will be applied to some specific Λ-modules which are of arithmetic interest.

Proposition 1.16. Λ is a unique factorisation domain whose irreducible ele-
ments are the rational prime p and the irreducible distinguished polynomials.
The units of Λ are the power series with constant term in Z∗p.

Proof. The first statement is a consequence of Theorem 1.14. The last assertion
follows from a general fact: if R is any domain, then the units in R[[T ]] are those
power series whose constant term is a unit in R (see [Rib 01], pp. 345f.).

Lemma 1.17.
(i) Let f, g ∈ Λ be relatively prime. Then the ideal (f, g) is of finite index in

Λ.
(ii) Let f ∈ Λ with f 6∈ Λ∗. Then Λ/(f) is infinite.

Proof. See [Wa 97], Lemmas 13.7 and 13.10.

Proposition 1.18.
(i) The prime ideals of Λ are (0), (p), (p, T ) and the ideals (F (T )) generated

by irreducible distinguished polynomials F (T ).
(ii) Λ is a local ring with unique maximal ideal m = (p, T ).
(iii) Λ is a Noetherian ring.

Proof. See [Wa 97], Proposition 13.9 for (i) and (ii). For (iii), we can use
Chapter 4, Corollary 9.6 in [La 93] which states that if A is a Noetherian ring,
then the ring A[[T ]] is Noetherian, too (inductively, this is also true for the ring
of power series in more than one variable).
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We will now describe the above-mentioned structure theorem for (finitely
generated) Λ-modules. We will classify these modules up to pseudo-isomor-
phism.

Definition 1.19. Two Λ-modules M and M ′ are called pseudo-isomorphic
(written M ∼ M ′) if there exists a Λ-module homomorphism ϕ : M −→ M ′

with finite kernel and cokernel. In other words, M ∼ M ′ if there is an exact
sequence of Λ-modules

0 // A //M
ϕ
//M ′ // B // 0

with A and B finite.

Remarks 1.20.

(1) In general, M ∼ M ′ does not imply M ′ ∼ M . For example, (p, T ) ∼ Λ,
because the inclusion (p, T ) ↪→ Λ has finite cokernel by Lemma 1.17, (i).
On the other hand, we cannot have Λ ∼ (p, T ) (the following argument is
due to [Wa 97], p. 272): Suppose that ϕ : Λ −→ (p, T ) is a Λ-module-
homomorphism. Let f(T ) ∈ (p, T ) be the image of 1 ∈ Λ. Then

ϕ(Λ) ⊆ (f(T )) ⊆ (p, T ) .

But Λ/(f(T )) is infinite (Lemma 1.17, (ii)), whereas Λ/(p, T ) is finite, again
by Lemma 1.17, (i). Therefore the cokernel of ϕ has to be infinite.

(2) It can be shown (compare Remarks 2.22, (1)) that if M and M ′ are finitely
generated over Λ and Λ-torsion, then

M ∼M ′ ⇐⇒ M ′ ∼M .

(3) The composition of two pseudo-isomorphisms is again a pseudo-isomor-
phism. Indeed, let f : M −→ M ′ and g : M ′ −→ M ′′ denote pseudo-
isomorphisms. Then | ker(g ◦ f)| ≤ | ker(g)| · | ker(f)|, since f and g are
homomorphisms.
Furthermore, it is easy to see that |coker(g ◦ f)| ≤ |coker(f)| · |coker(g)|.
Therefore g ◦ f is a pseudo-isomorphism.

Example 1.21. Let f, g ∈ Λ be relatively prime. Then

Λ/(fg) ∼ Λ/(f)⊕ Λ/(g) and Λ/(f)⊕ Λ/(g) ∼ Λ/(fg) .

Proof. See [Wa 97], Lemma 13.8. We will generalise this result in Chapter 5
(compare Proposition 5.43).

Remark 1.22. If f and g are relatively prime non-units, then there cannot
exist a Λ-module isomorphism

ϕ : Λ/(f)⊕ Λ/(g)
∼ // Λ/(fg) .
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Proof. We assume that

ϕ : Λ/(f)⊕ Λ/(g) // Λ/(fg)

denotes a Λ-module homomorphism, and we will show that ϕ cannot be an iso-
morphism. Indeed, let a1, a2 ∈ Λ denote representatives of the classes ϕ((1, 0)),
respectively, ϕ((0, 1)) in Λ/(fg). Since

f · ϕ((1, 0)) = ϕ((f, 0)) = ϕ((0, 0)) = 0

and
g · ϕ((0, 1)) = ϕ((0, g)) = ϕ((0, 0)) = 0 ,

it follows that f · a1 ∈ (fg) and g · a2 ∈ (fg). Since Λ is a unique factorisation
domain, we may conclude that g divides a1 and that f divides a2.

This means that every image

ϕ((x, y)) = x · ϕ((1, 0)) + y · ϕ((0, 1)) , x, y ∈ Λ ,

is the coset in Λ/(fg) of an element contained in the ideal (f, g). But 1 6∈ (f, g),
since f and g are non-units and therefore are contained in the maximal ideal
m = (p, T ) of Λ. We therefore see that ϕ cannot be surjective.

Definition 1.23. A Λ-module E is called elementary if E is of the form

E = Λr ⊕

(
s⊕

i= 1

Λ/(pni)

)
⊕

 t⊕
j= 1

Λ/(fj(T )lj )

 ,

where r, s, t ∈ N0, ni, lj ∈ N for all i, j, and where the fj(T ) are irreducible
distinguished polynomials in Zp[T ].

Theorem 1.24 (Structure theorem for finitely generated Λ-modules).
Let M be a finitely generated Λ-module. Then M is pseudo-isomorphic to an
elementary Λ-module E. E is uniquely determined by X (up to permutation of
the summands).

Proof. See [Wa 97], Theorem 13.12 and Corollary 15.19.

Corollary 1.25. Let X,Y denote finitely generated Λ-modules.
(i) If Y is pseudo-isomorphic to X, then the elementary Λ-modules EX and

EY attached to X and Y are equal (up to permutation of the summands).
(ii) If Y ⊆ X denotes a submodule such that X/Y is finite, then the same

conclusion holds.

Proof. (i) Suppose that ϕX : X −→ EX , ϕY : Y −→ EY and ψ : Y −→ X are
pseudo-isomorphisms. Then ϕX ◦ ψ : Y −→ EX is a pseudo-isomorphism
(compare Remarks 1.20, (3)). Therefore EX = EY by the uniqueness
statement of Theorem 1.24.

(ii) This is a special case of (i), since under the assumptions stated in the
corollary, the embedding ψ : Y ↪→ X is a pseudo-isomorphism.
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In this thesis, we will be mainly concerned with elementary torsion Λ-
modules; we will sometimes simply speak of elementary Λ-modules.

For each n ∈ N0, consider the distinguished polynomial

νn(T ) :=
(1 + T )p

n − 1

T
=

ωn(T )

T

(see Remarks 1.12, (2)) which via the isomorphism described in Theorem 1.9
corresponds to the element 1 + γ + γ2 + . . .+ γp

n−1 ∈ Zp[[Γ]].
For integers n, e ∈ N0 with n ≥ e, we define

ν(n,e) :=
νn
νe

=
(1 + T )p

n − 1

(1 + T )pe − 1
= 1 + (1 + T )p

e
+ (1 + T )2pe + . . .+ (1 + T )p

n−pe .

Lemma 1.26. The polynomials ν(n,e)(T ) ∈ Zp[T ] are distinguished whenever
n > e (and ν(e,e) = 1).

This follows from the following useful properties of distinguished polynomi-
als:

Proposition 1.27.
(i) The product of two distinguished polynomials is again distinguished.
(ii) Suppose that f(T ) ∈ Zp[T ] denotes a distinguished polynomial, let g ∈ Λ

be arbitrary. If f divides g in Λ, then in fact g
f ∈ Zp[T ].

(iii) If the quotient of two distinguished polynomials is a polynomial, then it is
distinguished or the constant polynomial 1.

(iv) Let f(T ) ∈ Zp[T ] ⊆ Λ be a distinguished polynomial. Then f(T ) is irre-
ducible in Zp[T ] if and only if it is irreducible in Λ.

Proof. (i) This is obvious from the definitions.
(ii) This may be deduced from the Weierstraß Preparation Theorem 1.14 (see

[Wa 97], Lemma 7.5).
(iii) Let f, g, h denote polynomials with f · g = h, and suppose that g and

h are distinguished. Then f(T ) has leading coefficient 1. Therefore if f
is not constant and not distinguished, then f(T ) = u(T ) · f̃(T ) with a
distinguished polynomial f̃(T ) and a unit u(T ) ∈ Λ∗, by Theorem 1.14.
But then h(T ) = g(T ) · f̃(T ) · u(T ) with g(T ) · f̃(T ) distinguished by (i).
Therefore u = 1 by the uniqueness in 1.14, i.e., f = f̃ .
Note that if f(T ) = h(T )

g(T ) is constant, then it has to equal 1, since g(T )

and h(T ) have leading coefficients 1.
(iv) Let us first assume that f was reducible in Λ. Then f = g · h for suitable

g, h ∈ Λ \ Λ∗. Using the Weierstraß Preparation Theorem 1.14, we may
write

g = pn1 · g̃ · u1 and h = hn2 · h̃ · u2

with u1, u2 ∈ Λ∗ and g̃(T ), h̃(T ) ∈ Zp[T ] distinguished; note that in fact
n1 = n2 = 0, since f is distinguished and therefore its leading coefficient is
equal to 1. Now u1 = g

g̃ and u2 = h
h̃

are polynomials (see (ii)), and in fact

u1 · u2 = f

g̃·h̃ = 1 by (iii), since it is contained in Λ∗ and therefore cannot
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be distinguished. So f(T ) = g̃(T )·h̃(T ). Since g, h 6∈ Λ∗, we may conclude
that g̃, h̃ 6= 1, and therefore g̃, h̃ 6∈ (Zp[T ])∗ = Z∗p, as being distinguished
polynomials. Thus f is reducible in Zp[T ].
Assume now to the contrary that there exist polynomials g(T ), h(T ) in
Zp[T ] \ Z∗p such that f(T ) = g(T ) · h(T ). Since Zp[T ] ⊆ Λ, it will be
sufficient to show that g(T ) and h(T ) both are not contained in Λ∗. It is
easy to see that they cannot simultaneously lie in Λ∗, since the product
of their constant coefficients (which belong to Z∗p if and only if g(T ) or
h(T ) are invertible in Λ, respectively) has to yield the constant coefficient
of f(T ), which is divisible by p, since f is distinguished. Moreover, the
product of their leading terms equals 1, and therefore we may assume that

g(T ) = T k+ck−1 ·T k−1 + . . .+c0 and h(T ) = T l+al−1 ·T l−1 + . . .+a0

with

p | a0 and p - c0 .

Now

g(T ) · h(T ) = a0c0 + T · (a0c1 + a1c0) + T 2 · (a0c2 + a1c1 + a2c0) + . . .

= f(T ) ≡ T l+k mod p ,

and therefore

0 ≡ a0c1 + a1c0 ≡ a1c0 mod p ,

so p | a1, since p - c0. Then, considering the coefficients of T 2, we get

0 ≡ a0c2 + a1c1 + a2c0 ≡ a2c0 mod p ,

so p | a2, and so on. Inductively, we obtain that h(T ) ∈ Zp[T ] is dis-
tinguished. But as we have seen in (iii), this means that the quotient

g(T ) = f(T )
h(T ) either is distinguished (contradicting the fact that p - c0)

or equals 1 (and therefore is contained in Z∗p, again contrary to our as-
sumptions). This shows that g(T ), h(T ) 6∈ Λ∗, so f(T ) is reducible in
Λ.

The following proposition will become very important in the next section.

Proposition 1.28. Let

E = Λr ⊕

(
s⊕

i= 1

Λ/(pni)

)
⊕

 t⊕
j= 1

Λ/(fj(T )lj )


be an elementary Λ-module as defined in Definition 1.23.

Let µ :=
s∑
i=1

ni and λ :=
t∑

j=1
lj · deg(fj).
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(i) If E/(ν(n,e) · E) is finite for some fixed e ≥ 0 and all n ≥ e, then r = 0
and there exist constants n0 and ν (which depend on E and e, but are
independent of n) such that

|E/(ν(n,e) · E)| = pµ·p
n+λ·n+ν for all n > n0 .

(ii) Assume that r = 0. Then µ = 0 ⇐⇒ the p-rank of (E/(ν(n,e) · E)) is
bounded as n→∞.

Proof. See [Wa 97], Proposition 13.19 and Lemma 13.20.

Definition 1.29. Let X be a finitely generated torsion Λ-module. By Theorem
1.24 and Proposition 1.28 we can attach to X (via the corresponding elementary
Λ-module E) two integers λ = λ(X) and µ = µ(X) and a polynomial

FX :=
t∏

j=1

fj(T )lj ,

the product of the polynomials occurring in the representation of E.
Then λ = deg(FX) and µ are called the Iwasawa invariants of the Λ-module
X and FX is called the characteristic polynomial of X (it will be explained
below where this name comes from; see Proposition 1.31, (ii)).

Remark 1.30. If X is a Zp[[Γ]]-module and therefore bears a Λ-module struc-
ture via Theorem 1.9, then the characteristic polynomial of X depends on the
choice of the topological generator γ of Γ which induces the isomorphism in
1.9. However, the invariants λ and µ are independent of γ (compare [NSW 08],
Remark 1 on p. 292).

We will conclude our discussion of Λ-modules by describing some of the
properties of the Iwasawa invariants.

Let X be a finitely generated torsion Λ-module. For every n ∈ N0, we let

X[pn] := {x ∈ X | pn · x = 0} ,

and we define

X◦ :=
⋃
n≥ 0

X[pn]

to be the Zp-torsion submodule of X. Then the quotient module X/X◦ is a
finitely generated torsion Λ-module which by construction is torsion-free as a
Zp-module.

Let f(T ) ∈ Λ denote a non-zero annihilator of X. We write f = pr · g
for some g ∈ Λ coprime to p. Then g annihilates X/X◦. By the Weierstraß
Preparation Theorem 1.14, g is associated to a distinguished polynomial g̃ ∈
Zp[T ]. Then Λ/(g) is isomorphic to a free Zp-module of rank deg(g̃), by the
Division Lemma 1.10 (compare Lemma 1.13). If X/X◦ is generated as a Λ-
module by s elements, then X/X◦ is isomorphic to a quotient of (Λ/(g))s.
Therefore X/X◦ is a free Zp-module of finite rank.
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Recall that

X ∼
s⊕

i= 1

Λ/(pni) ⊕
t⊕

j= 1

Λ/(fj(T )lj )

with irreducible distinguished polynomials fj(T ) ∈ Zp[T ].

If we let

V := X ⊗Zp Qp ,

then it is easy to see that

V ∼=
t⊕

j= 1

Qp[T ]/(fj(T )lj )

as Qp-vector spaces: First, we have

Zp[[T ]]/(fj(T )lj ) ∼= Zp[T ]/(fj(T )lj )

for every j (see Lemma 1.13). Moreover, Zp[T ] ⊗Zp Qp ∼= Qp[T ]. Finally, the
tensoring · ⊗Zp Qp eliminates the Zp-torsion part.

Note that

dimQp(V ) = λ(X) ,

since the dimension of Qp[T ]/(fj(T )lj ) is equal to lj · deg(fj), respectively.

Multiplication by T induces an endomorphism on the Qp-vector space

Qp[T ]/(fj(T )lj )

with characteristic polynomial fj(T )lj , respectively. Therefore the character-
istic polynomial FX of X as defined via Theorem 1.24 and Proposition 1.28
is the characteristic polynomial for the operation of T on the Qp-vector space
V = X ⊗Zp Qp.

We summarise our results, together with some facts about the Iwasawa
invariant µ(X) which are immediately clear from the definitions:

Proposition 1.31. Let X be a finitely generated torsion Λ-module with Iwa-
sawa invariants λ(X) and µ(X), and let FX be the characteristic polynomial
of X, as introduced in Definition 1.29. Let X◦ be the Zp-torsion submodule of
X.

(i) X◦ is a Λ-submodule of X. There is a finite integer t ∈ N0 such that
pt ·X◦ = {0}. X/X◦ is a free Zp-module of finite rank.

(ii) V := X ⊗Zp Qp is a Qp-vector space of dimension λ(X). FX is the char-
acteristic polynomial of the endomorphism on V induced by multiplication
by T .

(iii) X is finitely generated as a Zp-module if and only if µ(X) = 0. Moreover,
we have

µ(X) = 0 ⇐⇒ X◦ is finite ⇐⇒ X/pX is finite .

(iv) λ(X) = 0 ⇐⇒ ps ·X = {0} for some s ≥ 0.



1.3. IWASAWA’S CLASS NUMBER THEOREM 15

Proof. Most of the assertions are clear from the above.
(i) If x ∈ X is a Zp-torsion element and f ∈ Λ, then clearly also f · x is

annihilated by the same element of Zp (because Λ ⊇ Zp is commutative),
and so X◦ is a Λ-module. Since Λ is Noetherian, X◦ has to be finitely
generated, and therefore there exists a t ≥ 0 such that X◦ = X[pt].

(ii) This has been explained above.
(iii) First, X◦ is finite if and only if E◦ is finite, where E denotes the elementary

Λ-module attached to X. Now E◦ is finite if and only if µ(X) = 0 (recall
that Λ/(fj(T )lj ) is Zp-free for each j by Lemma 1.10).
Moreover, X is finitely generated as a Zp-module if and only if E is finitely
generated as Zp-module, which is the case if and only if µ(X) = 0 (note
that Λ/(p) ∼= (Z/pZ)[[T ]] is not finitely generated over Zp). Finally, X is
finitely generated as Zp-module if and only if X/pX is finite.

(iv) Let ϕ : X
∼−→ E denote a pseudo-isomorphism. Then the kernel of ϕ is

finite, and therefore ker(ϕ) ⊆ X◦. If λ(X) = 0, then there exists a finite
integer s with ps ·X = {0} (e.g., choose s = µ(X) + t, where t has been
defined in (i)). But if λ(X) 6= 0, then E contains a nontrivial Zp-free
submodule by the Division Lemma 1.10. Since the cokernel of ϕ is finite,
this proves the proposition.

1.3 Iwasawa’s Theorem on the asymptotic growth
of class numbers in Zp-extensions

In this section we will show how to use the general theory developed above for
the study of arithmetic properties of Zp-extensions. The main result will be
the following fundamental theorem due to K. Iwasawa.

Theorem 1.32. Let K∞/K be a Zp-extension of the number field K. Let
An denote the p-Sylow part of the ideal class group of the intermediate field
Kn, respectively. Let pen be the exact power of p dividing the class number of
Kn, i.e., |An| = pen. Then there exist rational integers λ ≥ 0, µ ≥ 0 and ν,
independent of n, and an integer n0 = n0(K∞/K) ∈ N such that for every
n ≥ n0, we have

en = µpn + λn+ ν .

The constants µ, λ and ν are called the Iwasawa invariants of K∞/K.

Therefore, for sufficiently large n, the growth of the p-primary parts of the
class numbers of the fields Kn splits into a linear part (described by λ), a portion
proportional to the degree pn of the subextension Kn/K, with factor µ, and a
constant part, described by ν.

The detailed proof of the theorem is given, for example, in [Wa 97], pp. 277-
285. We will describe here the main ideas the proof is based on; this will give us
the opportunity to introduce some objects and notions that will be important
in later chapters.

Let Gal(K∞/K) =: Γ ∼= Zp, and let γ be a fixed topological generator
of Γ. For every n ≥ 0, let Ln = H(Kn) be the maximal unramified abelian
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p-extension of Kn (i.e., Ln is the ‘p-part’ of the Hilbert class field of Kn).
Then, by class field theory, Xn := Gal(Ln/Kn) is isomorphic to the p-Sylow
group An ⊆ Cl(Kn). Let L :=

⋃
n≥ 0 Ln and X := Gal(L/K∞); note that

K∞ =
⋃
n≥ 0 Kn ⊆ L, since Kn ⊆ Ln for every n.

Ln is galois over K for each n. Indeed, suppose that

σ : Ln −→ σ(Ln) ⊆ C

is a homomorphism that fixes K. Since Kn is galois over K, it follows that
σ(Kn) = Kn, and

Gal(σ(Ln)/Kn) ∼= Gal(Ln/Kn)

is an abelian p-group. Now σ(Ln)/Kn is unramified because Ln/Kn is unram-
ified, and therefore σ(Ln) ⊆ Ln by the maximality of Ln. Since this holds for
every such homomorphism (in particular, it holds for σ−1), we have σ(Ln) = Ln,
i.e., Ln is galois over K for each n.

Therefore L/K is galois, too, because L =
⋃
n≥0 Ln. Let G := Gal(L/K).

Then we have the following diagram:

K∞
X

L

Kn
Xn

Ln

K

G

Q

Proposition 1.33. L =
⋃
n≥ 0 Ln is the maximal p-abelian unramified exten-

sion of K∞.

Proof. Let H be the maximal p-abelian unramified extension of K∞. We want
to show that L = H.

We will apply the following general fact.

Proposition 1.34. Let K2/K1 be a p-abelian field extension, let L1 and L2

denote the maximal p-abelian unramified extensions of K1 and K2, respectively.
Then L1 ⊆ L2.

Proof. Suppose that L1 6⊆ L2. Then there exists an element x ∈ L1 such that
x 6∈ L2 and [K2(x) : K2] = p. Since K2(x)/K2 is p-abelian, there exists a prime
P of K2 that ramifies in K2(x). Let p := P∩K1, and let p̃ be a prime of K1(x)
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lying above p. We have the following diagram of fields:

K2(x)

ram.

L1

P ⊆ K2 K1(x) ⊇ p̃

unram.

K1 ⊇ p

If I ⊆ Gal(K2/K1) denotes the inertia subgroup of the prime p, then we
let K ′1 := KI

2 denote the subfield fixed by I. p is unramified in K ′1 and in
K1(x) ⊆ L1, and therefore p is unramified in K ′1(x) = K ′1 ·K1(x).

Let p′ := P∩K ′1. Then p′ is totally ramified in K2/K
′
1. Therefore P is the

unique prime of K2 dividing p′, and there exists a unique prime P of K2(x)
lying above p′. Moreover, the residue class fields OK2(x)/P and OK2/P both
are isomorphic to OK′1/p

′.
But this means that p′ has to ramify in the extension K ′1(x)/K ′1, since it

cannot be split or inert (note that OK2(x)/P ∼= OK′1/p
′ is a field extension of

OK′1(x)/p̃
′, where p̃′ denotes the corresponding prime in K ′1(x)).

This contradicts the fact that p′ is unramified in K ′1(x).

Now we return to the proof of Proposition 1.33. Proposition 1.34 implies
that L =

⋃
n≥0 Ln is contained in H, because each Kn is a subfield of K∞.

Suppose that L $ H, and let x ∈ H, x 6∈ L, generate an extension of degree
p over K∞. Then x 6∈ Ln for every n ∈ N0. Proposition 1.3 shows that there
exists an integer e ≥ 0 such that all primes which ramify in K∞/Ke are totally
ramified. Fix some m ≥ e. We have the following diagram of fields.

K∞ K∞(x)

Km Km(x)

Since Km(x) is a finite extension of Km, the intersection K∞ ∩ Km(x) is equal
to Km+k for some k ∈ N0. Replacing m by m+ k, we may assume that in fact
Km(x) ∩ K∞ = Km, so that Gal(Km(x)/Km) ∼= Gal(K∞(x)/K∞) is cyclic of
order p.

By assumption, there exists a prime p of Km ramifying in Km(x)/Km,
whereas the extension K∞(x)/K∞ is unramified. If p was unramified also in
K∞/Km, it would have to be unramified in K∞(x)/Km. Since m ≥ e, we may
therefore assume that p is totally ramified in K∞/Km.

Now we consider the extension K∞(x)/Km(x). Since K∞ ∩ Km(x) = Km,
we have

Gal(K∞(x)/Km(x)) ∼= Gal(K∞/Km) ∼= Zp .

If p̃ ⊆ Km(x) denotes the prime above p, then there exists some k ∈ N such that
p̃ is unramified in Km+k(x)/Km(x), and totally ramified in K∞(x)/Km+k(x).
Since [K∞(x) : K∞] = p, we actually have k = 1.
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Since this holds for every prime p of Km ramifying in Km(x), we may
conclude that the extension Km+1(x)/Km+1 is unramified, and thus x ∈ Lm+1.
Indeed, if some prime P of Km+1 was ramified in Km+1(x), we would again
conclude that P was ramified in K∞, and thus already ramified in Km+1/Km.
But then p := P ∩ Km was totally ramified in Km+1(x)/Km, and therefore also
in Km(x)/Km. By the above, the prime P̃ of Km+1(x) dividing P was totally
ramified in K∞(x)/Km+1(x), and unramified in Km+1(x)/Km(x), yielding a
contradiction.

We want to provide X = Gal(L/K∞) with the structure of a Γ-module,
hence of a Λ-module, in order to apply the results of the last section. Let us
first assume that the following condition is satisfied:

Assumption 1.35. All primes which ramify in K∞/K are totally ramified.

By Proposition 1.3, there exists an integer e ≥ 0 such that this may be
arranged by replacing K by Ke. Under the assumption, Kn+1 ∩ Ln = Kn for
every n (since Ln/Kn is unramified), and therefore

Xn = Gal(Ln/Kn) ∼= Gal(LnKn+1/Kn+1) .

Since Ln ·Kn+1 ⊆ Ln+1, we obtain a surjective map

Gal(Ln+1/Kn+1) = Xn+1
// // Xn

induced by restriction (one can show that this map corresponds to the norm
map An+1 −→ An on the corresponding ideal class groups, see page 400 of
[Wa 97] or [Neu 92], Theorem IV.6.4). Since Xn

∼= Gal(LnK∞/K∞) for every
n, because K∞ ∩ Ln = Kn, it follows that

X = Gal(L/K∞) ∼= lim←−
n

Gal(LnK∞/K∞) ∼= lim←−Xn
∼= lim←−An =: A .

Now we make eachXn into aZp[Γn]-module, respectively, where Γn = Γ/Γp
n

can be identified with Gal(Kn/K). Let x ∈ Xn, and extend a given α ∈ Γn to
α̃ ∈ Gal(Ln/K) (recall that Ln is galois over K, as mentioned above). Then
we define

α · x := α̃ ◦ x ◦ α̃−1 ,

where ◦ denotes composition in Gal(Ln/K). Since Gal(Ln/Kn) is abelian, α ·x
is well-defined, i.e., does not depend on the choice of the extension α̃ of α.
Using this construction, we can define a Zp[Γn]-module structure on Xn. By
considering an element x ∈ X ∼= lim←−Xn as a sequence (x0, x1, . . .) of elements
xi ∈ Xi, it can be shown that X becomes a module over lim←−Zp[Γn] ∼= Λ, letting
Zp[Γn] act on the n-th component, respectively.

In order to be able to apply Theorem 1.24, we want to show now that the
Λ-module X is finitely generated. For this purpose we define some important
submodules of X – still under the above assumption. By Lemma 1.2, there
are only finitely many prime ideals p1, . . . , ps which ramify in K∞/K. For
i = 1, . . . , s, let p̃i be a fixed prime of L lying above pi, and let

Ii ⊆ G = Gal(L/K)
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be its inertia group, respectively.

Since L/K∞ is unramified by definition of L, Ii ∩ X = {1} for all i. There-
fore we have an injection

Ii
� � // G/X ∼= Γ = Gal(K∞/K) .

Since pi ramifies totally in K∞/K by our assumption, the map Ii ↪→ Γ has to
be also surjective and therefore is a bijection. The pre-image σi ∈ Ii of the fixed
topological generator γ of Γ then yields a topological generator of Ii. Moreover,
using the exact sequence of groups

0 −→ X −→ G −→ G/X −→ 0 ,

the isomorphism G/X ∼= I1 implies that G is isomorphic to the semi-direct
product X o I1. It follows that Ii ⊆ G = X o I1, and therefore σi = ai · σ1 for
some ai ∈ X, i = 1, . . . , s (note that we can take a1 = 1).

G = Gal(L/K) forms a profinite topological group with respect to the Krull
topology, see [Neu 92], § IV.1. The action of Λ on X ⊆ G as defined above is
continuous, and X ⊆ G forms a closed subgroup. In fact, X is compact as being
the inverse limit of finite groups (compare [Neu 92], Theorem IV.2.3), because
the topology induced by the inverse limit coincides with the Krull topology on
X ⊆ G. This means that X is an Iwasawa module in the sense of Definition
1.15.

Lemma 1.36. Under the above assumption, the following hold:

(i) If G′ denotes the closure of the commutator subgroup of G, then G′ = T ·X.
(ii) Let Y0 be the Zp-submodule of X generated by {ai | 2 ≤ i ≤ s} and by

T ·X. For each n ∈ N, let Yn = νn · Y0 (νn ∈ Zp[T ] is defined in Section
1.2). Then Xn

∼= X/Yn for every n ≥ 0.

Proof. See Lemmas 13.14 and 13.15 in [Wa 97].

Note that Y0 in fact is a Λ-module, since T · Y0 ⊆ T · X ⊆ Y0. Therefore
each Yn denotes a Λ-submodule of X.

Recalling that X = Gal(L/K∞) = lim←−Gal(K∞ ·Ln/K∞), we will now prove
the following important characterisation of the Yn ⊆ X:

Lemma 1.37. For each n ∈ N0, we let X̃n := Gal(K∞ ·Ln/K∞). Then, under
Assumption 1.35,

Yn = ker(prn : X −→ X̃n)

for each n ≥ 0.

Proof. We let Ỹn := ker(prn : X −→ X̃n), and we will show that Ỹn = Yn for
each n. The proof will occupy three steps.

1. Let n ≥ 0 be arbitrary, but fixed. Then an element y ∈ X = Gal(L/K∞) is
contained in Ỹn if and only if y|(K∞·Ln) = 1.
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Proof. Since L =
⋃
n≥0 Ln =

⋃
n K∞ · Ln and X̃n = Gal((K∞ · Ln)/K∞),

we have, as mentioned above, X = lim←− X̃n. Therefore we can represent each
element y ∈ X by a coherent sequence (y0, y1, . . .) with

pri(y) = y|(K∞·Li) = yi ∈ X̃i

for all i and yi|(K∞·Lj) = yj for i ≥ j. The statement now is obvious.

2. We have Ỹ0 = Y0.

Proof. By Lemma 1.2, there are only finitely many prime ideals p1, . . . , ps
which ramify in K∞/K. For i = 1, . . . , s, let p̃i be a fixed prime of L lying
above pi, and let Ii ⊆ G = Gal(L/K) be its inertia group, respectively. We
have seen above that each Ii is isomorphic to Γ. Let σi be a topological
generator of Ii, respectively. Then we have chosen elements a2, . . . , as ∈ X
such that σi = ai · σ1 ∈ X · I1 = G, i = 2, . . . , s.
Since L0 by definition is the maximal abelian unramified p-extension of K,
and since L/K is a pro-p-extension, it follows that L0 is the maximal abelian
unramified subextension of L/K. Therefore Gal(L/L0) ⊆ Gal(L/K) = G is
the closed subgroup generated by the commutator subgroup of G together
with all the inertia subgroups Ii, 1 ≤ i ≤ s.
This means that Gal(L/L0) is the closure of the subgroup of G generated by
G′, I1 and the elements a2, . . . , as. Therefore

Gal(L0/K) ∼= Gal(L/K)/Gal(L/L0) = G/Gal(L/L0)

= X · I1 /<G′, I1, a2, . . . , as> ∼= X/<T ·X, a2, . . . , as>Zp ,

since Lemma 1.36, (i) implies that G′ = T · X. But X = Gal(L/K∞), so
that we may conclude that

X/Gal(L/(K∞ · L0)) ∼= Gal(K∞ · L0)/K∞)
∼= Gal(L0/K)
∼= X/<T ·X, a2, . . . , as>Zp .

The second isomorphism uses the fact that K∞ ∩ L0 = K, which follows
from Assumption 1.35.
Therefore the elements of X fixing K∞ · L0 are those contained in

Y0 = <T ·X, a2, . . . , as>Zp .

By the first part of the proof, it follows that Ỹ0 = Y0, as claimed.

3. Now consider an arbitrary n ≥ 0. Then Ỹn = Yn.

Proof. This can be proved analogously to the second step. Simply replace
the ground field K by Kn. Then Ln corresponds to the fields L0, and the
topological generators σi, i = 1, . . . , s, of the inertia groups are replaced by
their pn-th powers. Note that the replacement does not change L and X.
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In [Wa 97], p. 280, it is shown that σp
n

i = (ν(n,0) · ai) · σ
pn

1 (i.e., the ai are
replaced by ν(n,0) · ai, respectively), and that T · X has to be replaced by
(ν(n,0) ·T ) ·X. But therefore, by the argument used in step 2, ν(n,0) ·Y0 = Yn
is the subgroup of X fixing K∞ · Ln, and so Ỹn = Yn by step 1.

Remark 1.38. In order to get rid of Assumption 1.35, we recall that for an
arbitrary Zp-extension K∞/K, Proposition 1.3 shows that there exists an inte-
ger e ≥ 0 such that the above lemmas apply to the Zp-extension K∞/Ke. Note
that X = Gal(L/K∞) does not depend on the ground field K. In particular, if
we let Ye be the analogue of Y0 for the base field K replaced by Ke, then the
results of Lemmas 1.36 and 1.37 may be transferred to the general case, being
valid for all n ≥ e.

Lemma 1.39. Let K∞/K be an arbitrary Zp-extension. Then X = Gal(L/K∞)
is a finitely generated Λ-module which is sometimes called the Greenberg
module of K∞/K, and there exist an integer e ≥ 0 and a Λ-submodule Ye ⊆ X,
such that

Xn
∼= X/(ν(n,e) · Ye) for all n ≥ e,

where the ν(n,e) are defined in Section 1.2. In particular, by Proposition 1.28,
(i), X is a torsion Λ-module.

Proof. See [Wa 97], Lemmas 13.17 and 13.18. As in Remark 1.38, we let Ye
be the analogue of Y0 for the base field Ke instead of K. Since ν(n,e) = νn

νe
by definition and therefore ν(n,e) · Ye = Yn, the lemma follows because the
replacement νn 7→ ν(n,e) corresponds to the change of the ground fields K 7→ Ke

(see [Wa 97] for details).

An important ingredient in the proof of the first assertion of Lemma 1.39
(Lemma 13.17 in [Wa 97]) is Nakayama’s Lemma. Since it is a very useful tool,
we give several versions of this statement:

Lemma 1.40 (Nakayama’s Lemma I). Let A be a ring. Let A ⊆ A be an ideal
which is contained in every maximal ideal of A, and let E be a finitely generated
A-module.
If A · E = E, then E = {0}.

Proof. See [La 93], Chapter X, Lemma 4.1.

Now we consider local rings.

Lemma 1.41 (Nakayama’s Lemma II). Let A be a local ring with maximal
ideal m, let E be a finitely generated A-module, and let F be a submodule of E.
If E = F + m · E, then E = F .

Proof. See [La 93], Chapter X, Lemma 4.2.

The next version shows how to replace the condition that E is finitely gen-
erated over A by a topological assumption on E.
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Lemma 1.42 (Nakayama’s Lemma III). Let A be a local ring with maximal
ideal m. Suppose that A is complete with respect to the m-adic topology. Let E
be a compact A-module.

(i) If m · E = E, then E = {0}.
(ii) Suppose that A is compact. Let x1, . . . , xn ∈ E be elements such that

x1, . . . , xn generate E/mE over A/mA. Then x1, . . . , xn generate E as an
A-module.

Proof. See [La 90], page 126.

We conclude with a special case of Nakayama’s Lemma which will be the
version that we will apply most frequently.

Corollary 1.43 (Nakayama’s Lemma for Λ-modules). Let X be a compact
Λ-module. Let m := (p, T ) ⊆ Λ. Then

X is finitely generated over Λ ⇐⇒ X/(m ·X) is finite .

If x1, . . . , xn are generators of X/(m · X) over Λ/m ∼= Z/pZ, then any set of
lifts x1, . . . , xn ∈ X generates X as a Λ-module. In particular,

X/(m ·X) = {0} ⇐⇒ X = {0} .

Proof. This follows from Lemmas 1.42 and 1.17, (i) together with Proposition
1.18, (ii) (see [Wa 97], Lemma 13.16). Note that Λ = Zp[[T ]] is complete with
respect to the m-adic topology and compact (compare Proposition 2.17, (i) and
(iii)).

We can now finish the sketch of the proof of Theorem 1.32. We have shown
that

X ∼= lim←−
n

Xn
∼= lim←−

n

An =: A

is a finitely generated torsion Λ-module, and that X/(ν(n,e) · Ye) ∼= Xn is finite
for all n ≥ e. By Theorem 1.24, we have an exact sequence

0 //M1
// X // E //M2

// 0

where M1 and M2 are finite Λ-modules and E is as in Proposition 1.28, and
similarly for Ye (since X/Ye ∼= Xe is finite, we have Ye ∼ X in view of Corollary
1.25, (ii)). The theorem now follows from a topological argument which relates
the orders |E/(ν(n,e) ·E)| and |Xn| = |X/Ye| · |Ye/(ν(n,e) · Ye)| (see [Wa 97], pp.
284-285), together with an explicit computation of |E/(ν(n,e) · E)| (compare
Proposition 1.28, (i)).

The following observation, proved in a special case by J. Sands in [Sa 91],
will be used in Chapter 3.
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Proposition 1.44. Let K∞/K be a Zp-extension. For every pair of integers
(n,m) with n > m, we consider the distinguished polynomial

ν(n,m) =
(T + 1)p

n − 1

(T + 1)pm − 1
∈ Zp[T ] .

If n > m ≥ e = e(K∞/K), then ν(n,m) is coprime to the characteristic polyno-
mial FX(T ) of X.

Proof. Assume that we are given an integer n > e. Fix a topological generator
γ of Gal(K∞/K) and an isomorphism Zp[[Gal(K∞/K)]] ∼= Zp[[T ]] = Λ. Then
we have a pseudo-isomorphism of Λ-modules EX

∼−→ X for some suitable ele-
mentary Λ-module EX . Let FX(T ) denote the characteristic polynomial of X
(compare Definition 1.29). FX(T ) depends on the coice of γ, but the following
proof will work for every choice of γ.

We give an adaption of (part of) the proof of Lemma 2.1 in [Sa 91], where
e = 0 is assumed. We will show that for every n > e, FX(T ) is coprime to the
polynomial ν(n,e). This obviously proves the proposition, since ν(n,m) | ν(n,e) for
n > m ≥ e.

Recall that there exist Λ-submodules Yn ⊆ X, n ≥ e, such that we have
Yn = ν(n,e) · Ye and

Xn
∼= X/(ν(n,e) · Ye)

for every n ≥ e (see Lemma 1.39). In particular, X/Ye ∼= Xe is finite, and
therefore the elementary Λ-modules attached to the finitely generated torsion Λ-
modules X and Ye are equal, i.e., we also have a pseudo-isomorphism EX

∼−→ Ye
(compare Corollary 1.25, (ii)).

Since EX does not contain any non-trivial finite Λ-submodules, this map
actually is an injection, i.e., we have an exact sequence

0 −→ EX −→ Ye −→M1 −→ 0

of Λ-modules, with M1 finite. We obtain the following commutative diagram.

EX [ν(n,e)]

��

Ye[ν(n,e)]

��

M1[ν(n,e)]

��

0 // EX

· ν(n,e)
��

// Ye

· ν(n,e)
��

//M1

· ν(n,e)
��

// 0

0 // EX

��

// Ye

��

//M1

��

// 0

EX/(ν(n,e) · EX)

��

Ye/(ν(n,e) · Ye)

��

M1/(ν(n,e) ·M1)

��

0 0 0
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Here, for any Λ-module N , we define N [ν(n,e)] := {n ∈ N | ν(n,e) · n = 0}. The
Snake Lemma yields a long exact sequence

0 // EX [ν(n,e)] // Ye[ν(n,e)] //M1[ν(n,e)]

// EX/(ν(n,e) · EX) // Ye/(ν(n,e) · Ye) //M1/(ν(n,e) ·M1) // 0 .

Since both Ye/(ν(n,e) · Ye) ⊆ X/(ν(n,e) · Ye) = X/Yn ∼= Xn and M1[ν(n,e)] ⊆ M1

are finite, it follows that EX/(ν(n,e) ·EX) is finite, and therefore ν(n,e) is coprime
to FX(T ), using Lemma 1.17, (i) and (ii).

We will conclude the chapter by mentioning some well-known properties of
the Iwasawa invariants µ and λ attached to a given Zp-extension.

Proposition 1.45. Let K∞/K be a Zp-extension with Iwasawa invariants λ,
µ and ν. Let A = lim←−An be defined as above.
(i) µ = 0 ⇐⇒ rankp(An) is bounded as n→∞.
(ii) Suppose that µ = 0. Then A ∼= Zλp ⊕ F as Zp-modules, where F is a

finite p-group (this is not an isomorphism of Λ-modules).

Proof. This follows from Proposition 1.28, (ii) and Proposition 1.31; see [Wa 97],
Propositions 13.23 and 13.25, respectively.



Chapter 2

Multiple Zp-extensions

In the first chapter, we introduced the notion of Zp-extensions, together with
the related arithmetic objects that we want to study. We have seen in Sections
1.2 and 1.3 that these objects admit a natural action of the ring Λ := Zp[[T ]]
of formal power series in one variable over Zp.

In the following chapters, we will pursue two aims:

• find relations between the arithmetic invariants of distinct Zp-extensions
which are in some sense ‘similar’ (this will be the main subject in Chapters
3 and 4), and

• generalise the theory developed so far to the study of Zip-extensions of a
number field K, i ∈ N (to be performed in Chapter 5).

The current chapter wants to prepare in both directions:

• In the first, respectively, the third section, we define more algebraic struc-
ture on the set E(K) of all Zp-extensions of K. More precisely, in the first
section, we show how to view E(K) as a projective variety. This will be
used in Chapter 4. In the third section, we define Greenberg’s topology on
E(K), which will be fundamental throughout this work.

• The second section is devoted to a study of general profinite group rings
that will naturally come up in the study of multiple Zp-extensions. It will
be shown that these are closely connected to rings Λi := Zp[[T1, . . . , Ti]]
of formal power series in several variables over Zp. In particular, we
describe a theory of finitely generated Λi-modules, which can be seen as
a generalisation of the study of Λ-modules in Section 1.2.

2.1 An approach using projective geometry

Let K be a number field. If d denotes the number of independent Zp-extensions
of K, then r2(K) + 1 ≤ d ≤ [K : Q] (see Theorem 1.7). In this chapter, we
want to study the composite K of these d Zp-extensions. Note that K contains
every Zp-extension of K: If L/K was a Zp-extension not contained in K, then
L ∩K = Ln for some n ∈ N, where Ln denotes the n-th intermediate field of
L/K, i.e., [Ln : K] = pn. Therefore [L : (L ∩K)] =∞. Now let Mp(K) denote
the maximal p-abelian p-ramified (i.e., unramified outside p) extension of K.

25
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Using class field theory, one can show that we have a homomorphism

f : Gal(Mp(K)/K) −→ Zdp

having finite kernel and cokernel, see [La 90], Chapter 5, Theorems 5.1 and 5.2
(this is based on Lemma 1.8). It follows that [Mp(K) : K] < ∞ (recall that
K ⊆Mp(K) by Lemma 1.2). But since, again by Lemma 1.2, L ⊆Mp(K), it is
then impossible to have [L : (L ∩K)] =∞.

For the rest of this chapter (and the following parts of the text) we will
usually assume that d ≥ 2. Otherwise there would exist only one single Zp-
extension of K, and this would have to be the cyclotomic one as defined in
Section 1 of Chapter 1. Note that d ≥ 2 if K is not totally real.

K is a Galois extension of K, and we have G := Gal(K/K) ∼= Zdp. Let
σ1, σ2, . . . , σd be fixed topological generators of G. We let E(K) denote the set
of all Zp-extensions of K. More generally, we define E i(K), 1 ≤ i ≤ d, to be the
sets consisting of all Zip-extensions of K, respectively. Then E(K) = E1(K).
By viewing the fields contained in E i(K) as fixed fields of K under appropriate
subgroups of G = Gal(K/K), we will be able to give E(K) the structure of a
certain projective variety. The underlying projective space is defined as follows.

Definition 2.1. For n ∈ N0 define

Pn(Zp) := {(a0, . . . , an)T ∈ Zn+1
p | not all ai are divisible by p}/ ∼ ,

where (a0, a1, . . . , an)T ∼ (b0, b1, . . . , bn)T :⇐⇒ ∃ t ∈ Z∗p : bi = t · ai for every
i = 0, . . . , n.

We usually write elements of Pn(Zp) as (a0 : . . . : an).

Remark 2.2. Pn(Zp) ∼= Pn(Qp), where the latter is the usual n-dimensional
projective space over the field Qp.

Proof. Every 0 6= x ∈ Qp can be written as x = p−k · y with k ∈ N0 and
y ∈ Zp. Since 1

p ∈ Q
∗
p = Qp \ {0}, we can uniquely represent every tuple

(x0, . . . , xn)T ∈ Qn+1
p \ {(0)} by an element (y0, . . . yn)T ∈ Zn+1

p such that p - yi
for at least one i: just define yi = t · xi, where t = pk is an appropriate power
of p.

Furthermore, the equivalence relations on Pn(Zp) and Pn(Qp) coincide: Let
us first assume that we have (a0, . . . , an)T ∼ (b0, . . . , bn)T in Pn(Qp). This
means that bi = t · ai for all i with an element t ∈ Q∗p. Now we choose rep-

resentatives of (a0, . . . , an)T and (b0, . . . , bn)T in the way described above: For
the indices i with ai 6= 0 (at least one such i does exist) write ai = pli · ui
with ui ∈ Z∗p and li ∈ Z. Let l := mini(li) and consider a′i := p−l · ai. Then

(a0, . . . , an)T ∼ (a′0, . . . , a
′
n)T in Pn(Qp), a

′
i ∈ Zp for all i and a′i ∈ Z∗p for all i

with l = li, so we get an element in Pn(Zp) which under the equivalence relation
in Pn(Qp) corresponds to our given tuple (a0, . . . , an)T . We analogously choose
a representative (b′0, . . . , b

′
n)T ∼ (b0, . . . , bn)T .

If t ∈ Q∗p denotes an element such that b′i = t · a′i for all i, then t cannot
be divisible by p because of our choice of the a′i and b′i (at least one b′i is not
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divisible by p). Since a′i = t−1 · b′i, it also follows that t cannot be divisible by
p−1, and therefore t ∈ Z∗p.

If, on the other hand, the classes of (a0, . . . , an)T , (b0, . . . , bn)T ∈ Qn+1
p

are equivalent in Pn(Zp), represented by (a′0, . . . , a
′
n)T , (b′0, . . . , b

′
n)T ∈ Zn+1

p ,
then a′i = t · b′i for some t ∈ Z∗p ⊆ Q∗p and every i = 0, . . . , n, and therefore
ai = ps · t · bi for some s ∈ Z and every i. Since ps · t ∈ Q∗p, we may conclude

that (a0, . . . , an)T ∼ (b0, . . . , bn)T in Pn(Qp).

Proposition 2.3. There is a bijection Ed−1(K)←→ Pd−1(Zp). In particular,
if d = 2, then E(K)

∼−→ P(Zp).

Proof. Let G = Gal(K/K) = < σ1, . . . , σd >Zp , as above. By infinite Galois
theory, there is a bijective correspondence between the subfields L ⊆ K having
Gal(K/L) ∼= Zp and the (closed) subgroups H of G isomorphic to Zp, mapping
H to its fixed field L = KH . Since G is abelian, each such L is galois over K
and

Gal(L/K) ∼= G/H ∼= Zd−1
p ⊕ finite torsion ,

using the fact that the ring Zp is a principal ideal domain. If the topological
generator g := σa11 · . . . · σ

ad
d ∈ G of H satisfies g = yp for some element y ∈ G,

then G/H contains an element y of finite order p.
If, on the other hand, g has been chosen such that g 6∈ Gp, then G/H ∼= Zd−1

p

is torsion-free because of the Principal Divisor Theorem.
This shows that every element (a1 : . . . : ad) ∈ Pd−1(Zp) defines a Zd−1

p -
extension of K by considering the field fixed by the subgroup

H := <σa11 · . . . · σ
ad
d >Zp ⊆ G .

If we take a unit u ∈ Z∗p and consider the group H ′ generated by the element
σua11 · . . . · σuadd , then certainly H = H ′. This means that the group H is
independent of the choice of the representative of (a1 : . . . : ad) ∈ Pd−1(Zp),
and so we obtain a well-defined and obviously injective map

ψ : Pd−1(Zp) −→ Ed−1(K) .

If, on the other hand, L/K is a Zd−1
p -extension, then Gal(K/L) ∼= Zp, which

can be seen as follows. First, Gal(K/L) has to be a closed subgroup of Zdp and

therefore is isomorphic to
d′∏
i=1

pniZp, d
′ ≤ d, ni ∈ N0 for every i. The rank of

the quotient
Gal(L/K) ∼= Gal(K/K)/Gal(K/L)

then is equal to d− d′, and therefore d′ = 1. Moreover, Zp/p
niZp ∼= Z/pniZ is

finite and non-trivial for every ni > 0, and thus n1 = 0, because Gal(L/K) has
to be torsion-free.

But then Gal(K/L) = < g >Zp is generated topologically by an element
g = aσ11 · . . . · σ

ad
d , and p - ai for at least one i, by the above. This means that

L is the image of (a1, . . . , ad) ∈ Pd−1(Zp) under the above map ψ, which is
therefore seen to be surjective.
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Now consider Zd−2
p -extensions of K:

K

G ⊇ H ∼= Z2
p

L

G/H ∼= Zd−2
p

K

Then the subgroup H ⊆ G corresponding to Gal(K/L) ∼= Z2
p is topologically

generated by two elements g = σa11 · . . . · σ
ad
d and g2 = σb11 · . . . · σ

bd
d . The above

proof of the proposition shows that the tuples (a1, . . . , ad) and (b1, . . . , bd) give
rise to elements in Pd−1(Zp). We will identify the tuples with their classes in
Pd−1(Zp). Since < g >

Zp
6= < g2 >Zp , we have (a1 : . . . : ad) 6= (b1 : . . . : bd) in

Pd−1(Zp).
The situation here is more involved. First note that the subgroup H ⊆ G

may also be generated by, for example, g and g ·g2 (corresponding to the classes
(a1 : . . . : ad) and (a1 + b1 : . . . : ad + bd) in Pd−1(Zp)), and therefore we will
not get a well-defined map

Ed−2(K) −→ {subsets M ⊆ Pd−1(Zp) with |M | = 2} ,

since the subset M corresponding to H is not unique.
Moreover, not every subset M ⊆ Pd−1(Zp) of order 2 yields a subgroup

H ⊆ G such that G/H ∼= Zd−2
p is Zp-free.

We would like to more generally obtain a description of Ed−i(K) for arbitrary
1 ≤ i ≤ d − 1. This needs even more work because not every subset M of
Pd−1(K) of order i gives rise to a subgroup of G isomorphic to Zip.

Each element x ∈ Pd−1(K) is represented by a tuple (a1, . . . , ad)
T ∈ Zdp

such that at least one ai is not divisible by p. If we consider the map

ψ̃ : Pd−1(Zp) −→ { subgroups H ⊆ G isomorphic to Zp } ,

defined by ψ̃(x) = <σa11 · . . . · σ
ad
d >Zp , then we have seen in the proof of

Proposition 2.3 that ψ̃ is well-defined and injective.
Now let y1, . . . , yi ∈ Qdp denote Qp-linearly independent elements. For every

yj , j = 1, . . . , i, there exists a unique power pnj of p such that pnj · yj ∈ Zdp has
at least one entry which is not divisible by p. Let xj := pnj · yj , j = 1, . . . , i,
so that each xj gives rise to a class in Pd−1(Zp). Let H := < g1, . . . , gi >Zp be

the subgroup of G generated by the elements gj := σ
(xj)1
1 · . . . · σ(xj)d

d . We want
to show that H ∼= Zip. Assume that H 6∼= Zip, i.e., suppose that there exists a

relation between the gj . Then we have an equation of the form
∏
j g

ej
j =

∏
k g

fk
k

for suitable elements ej , fk ∈ Zp, 1 ≤ j, k ≤ i. This can be rewritten as
1 =

∏
j g

zj
j (setting zj = fj − ej ∈ Zp). But this means that

1 =
i∏

j=1

(σ
(xj)1
1 · . . . · σ(xj)d

d )zj =
d∏

k=1

σ
∑
j zj ·(xj)k

k ,
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and since the σk are multiplicatively independent, it follows that

0 =
i∑

j=1

zj · (xj)k

for every 1 ≤ k ≤ d, and therefore the elements xj = ((xj)1, . . . , (xj)d)
T are

linearly dependent over Zp, so that y1, . . . , yi are linearly dependent over Qp,
yielding a contradiction.

This proves that every set {y1, . . . , yi} ⊆ Qip of linearly independent elements

defines a subset M = {x1, . . . , xi} ⊆ Pd−1(Zp) that corresponds to a subgroup
H ∼= Zip of G.

Now consider a set M ⊆ Pd−1(Zp) of order i that consists of projectively
independent elements x1, . . . , xi, i.e., one and therefore every set of representa-
tives

x1, . . . , xi ∈ Zdp ⊆ Qdp
of x1, . . . , xi is Qp-linearly independent. By the above, M defines a subgroup
H ⊆ G isomorphic to Zip.

If x′1, . . . , x
′
i ∈ Zdp are representatives of certain classes x′1, . . . , x

′
i in Pd−1(Zp)

such that x1, . . . , xi can be transformed into x′1, . . . , x
′
i by a linear transforma-

tion in GLi(Zp), then the corresponding subgroups H and H ′ of G are equal:

Let us write x′j =
i∑

k=1

akj · xk for every j = 1, . . . , i and suitable elements

akj ∈ Zp such that the matrix A = (akj) is contained in GLi(Zp). Then the
image of each x′j ∈ Pd−1(Zp) under ψ̃ is a subgroup of H. On the other hand,
every xj is a Zp-linear combination of the x′k, and therefore also H ⊆ H ′.

It is easy to see that the converse is also true: If the elements x1, . . . , xi
and x′1, . . . , x

′
i ∈ Zdp define the same subgroup H = H ′ of G, then every xj is a

Zp-linear combination of the x′k, and vice versa.

This proves that for every 1 ≤ i ≤ d− 1, we obtain a well-defined map

Ψi : M̃ i(Pd−1(Zp)) // { subgroups H ⊆ G isomorphic to Zip } ,

where

M̃ i(Pd−1(Zp)) :=
{
M = {x1, . . . , xi} ⊆ Pd−1(Zp) | x1, . . . , xi are

projectively independent
}

/ ∼ ,

with {x1, . . . , xi} ∼ {x′1, . . . , x′i} if and only if two (arbitrarily chosen) sets
of representatives differ by a transformation in GLi(Zp). Moreover, we have
already seen above that the maps Ψi are injective. Let Ji denote the image of
Ψi, respectively.

Proposition 2.4. For every 1 ≤ i ≤ d− 1, we have an injection

Ed−i(K) �
�

// Ji .
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Proof. Let L ∈ Ed−i(K) denote an arbitrary Zd−ip -extension of K. Then L ⊆ K
is the fixed field of a subgroup H ⊆ G = Gal(K/K) isomorphic to Zip. We will
show that H ⊆ Ji. Let g1, . . . , gi denote topological generators of H. Having

fixed a set of generators σ1, . . . , σd of G, we write gj = σ
(xj)1
1 · . . . · σ(xj)d

d ,
j = 1, . . . , i, with elements xj = ((xj)1, . . . , (xj)d)

T ∈ Zdp, respectively. Since
G/H ∼= Gal(L/K) is torsion-free, each xj contains at least one entry that is not
divisible by p, and <gj>Zp = ψ̃(xj), where xj ∈ Pd−1(Zp) denotes the class of
xj , respectively.

We claim that x1, . . . , xi ∈ Zdp ⊆ Qdp span a Qp-vector space of dimension
i. Assume, to the contrary, that they are Qp-linearly dependent. Then there
exist elements z1, . . . , zi ∈ Qp such that

0 =

i∑
j=1

zj · (xj)k

for every 1 ≤ k ≤ d. By multiplying these equations by an appropriate power
of p, we may in fact assume that the zj are contained in Zp. But then

1 =
d∏

k=1

σ
∑
j zj ·(xj)k

k =
i∏

j=1

(σ
(xj)1
1 · . . . · σ(xj)d

d )zj =
i∏

j=1

g
zj
j ,

contradicting the fact that g1, . . . , gi form a basis of H ∼= Zip and therefore must
be multiplicatively independent.

This shows that the span V ⊆ Qdp of x1, . . . , xi has dimension i, and therefore
x1, . . . , xi are projectively independent. Thus, the unique subgroup H ⊆ G
corresponding to L is contained in Ji.

We may therefore embed Ed−i(K) into M̃ i(Pd−1(Zp)), which can be re-
garded as a projective variety.

In the above, we described Zjp-extensions of K in terms of the subgroups of
Gal(K/K) fixing them. As we have seen, this description in general gets rather
complicated. In Chapter 4, we will use a more practicable way to regard the
sets Ej(K) as projective varieties, which has been used by V.A. Babăıcev in
course of his study of µ-invariants (see [Ba 81] and [Ba 82]).

The basic idea is to describe the elements L ∈ Ej(K) via the restriction
maps

Gal(K/K) −→ Gal(L/K) .

We will start with the most important case, j = 1. Let

ε(Zdp) := {π : Zdp � Zp}

denote the set of all surjective Zp-module homomorphisms (i.e., continuous
group homomorphisms) from Zdp to Zp.

Proposition 2.5 (Babăıcev). There is a bijection

ϕ : ε(Zdp)
∼ // Pd−1(Zp) .
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Proof. The map ϕ is defined as follows: Let γ1, . . . , γd denote a fixed system
of topological generators of Zdp, and let δ be a generator of Zp. Then every

element π ∈ ε(Zdp) is uniquely determined by the values

π(γi) = δai , ai ∈ Zp , 1 ≤ i ≤ d ,

i.e., π is uniquely characterised by the tuple (a1, . . . , ad)
T ∈ Zdp.

Furthermore, since each π ∈ ε(Zdp) is surjective, at least one of the ai has to
be contained in Z∗p, which means that p does not divide ai. Now if δ′ denotes
a different generator of Zp, then

δ′ = δu , u ∈ Z∗p ,

and therefore, when considered with regard to the new generator δ′, π is de-
scribed by the tuple (a1 ·u, . . . , ad ·u)T ∈ Zdp, which is equivalent to (a1, . . . , ad)

T

in Pd−1(Zp). Therefore the equivalence relation in Pd−1(Zp) corresponds to the
possibility of choosing a different topological generator of Zp; if we fix a gen-
erator δ of Zp, then there is a unique representative (a1, . . . , ad)

T ∈ Zdp of the

class in Pd−1(Zp) corresponding to the homomorphism π.
It is then obvious that the map

ϕ : π 7→ (a1 : . . . : ad)

defines a well-defined bijection between ε(Zdp) and Pd−1(Zp), since for fixed

topological generator δ of Zp, the tuples (a1, . . . , ad)
T and (a′1, . . . , a

′
d)
T repre-

senting two classes in Pd−1(Zp) that correspond to homomorphisms

π, π′ : Zdp −→ Zp ,

respectively, are equal if and only if π = π′.
Furthermore, it is obvious that every tuple (a1, . . . , ad)

T ∈ Zdp with p - ai
for at least one index i ∈ {1, . . . , d} gives rise to a surjective homomorphism
π : Zdp −→ Zp.

Remarks 2.6.
(1) One may ask for the reason of considering this bijection to Pd−1(Zp) instead

of simply fixing a topological generator of Zp and looking at the induced
map

ε(Zdp) −→ {(a1, . . . , ad)
T ∈ Zdp | p - ai for at least one i } .

It will turn out to be important to have the freedom of changing the gen-
erator of Zp, as we will see in the next lemma.

(2) We introduce a topology on ε(Zdp) by using the canonical topology on

Pd−1(Zp), induced by the p-adic topology on Zp: A basis of the neighbour-
hoods of an element (a1, . . . , ad)

T ∈ Zdp representing a class in Pd−1(Zp) is
given by the sets of the form

U(n1,...,nd)(a1, . . . , ad) = {(b1, . . . , bd)T ∈ Zdp | ai − bi ∈ (p)ni , i = 1, . . . , d}

with (n1, . . . , nd)
T ∈ Nd. Note that p - bi if p - ai and ai − bi ∈ (p)ni ,

ni ∈ N.
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Using the isomorphism Gal(K/K) ∼= Zdp, we may identify ε(Zdp) and

ε(Gal(K/K)) := {π : Gal(K/K) � Zp} .

Lemma 2.7. There exists a bijection

E(K)
∼−→ ε(Gal(K/K)) .

Proof. We define two maps

ϕ1 : E(K) −→ ε(Gal(K/K)) and ϕ2 : ε(Gal(K/K)) −→ E(K)

and show that they are inverse to each other.
• Let L ∈ E(K). We define ϕ1(L) : Zdp −→ Zp to be the surjective homo-

morphism induced by the canonical restriction map, identifying Gal(L/K)
with Zp. The class of π in ε(Gal(K/K))

∼−→ Pd−1(Zp) does not depend
on the choice of a topological generator of the quotient Gal(L/K). This is
important for getting a well-defined map, since there is no distinguished
generator of Gal(L/K) (compare Remarks 2.6, (1)).

• Let π : Zdp � Zp be a Zp-module homomorphism, let

H := ker(π) ⊆ G := Zdp
∼= Gal(K/K) .

Then H is a free Zp-module of rank d− 1, and G/H ∼= Zp is torsion-free,
so the fixed field ϕ2(π) := KH is a Zp-extension of K (note that H ⊆ G
is a closed subgroup, since π is a continuous homomorphism).

• We now want to prove that ϕ1 and ϕ2 are inverse to each other.
• ϕ2(ϕ1(L)) = L: By definition, ϕ1(L)(σ) = σ|L for every σ ∈ Gal(K/K).

In particular, ϕ1(L)(σ) = 1 if and only if σ|L = 1, i.e., if and only if
σ ∈ Gal(K/L). This shows that the fixed field ϕ2(ϕ1(L)) is equal to L.

• ϕ1(ϕ2(π)) = π: ϕ2(π) is the subfield of K fixed by the kernel of π. For
every σ ∈ Gal(K/K) ∼= Zdp, ϕ1(ϕ2(π)) = σ|ϕ2(π) is the restriction of σ to

ϕ2(π). Choose generators γ1, . . . , γd of Zdp such that γ1, . . . , γd−1 generate
the kernel of π (compare Remark 4.8 in Chapter 4; note that this is
allowed because the definitions of ϕ1 and ϕ2 do not depend on the choice
of generators of Gal(K/K) ∼= Zdp). Then ϕ2(π) is fixed by γ1, . . . , γd−1,
so that in particular,

ϕ1(ϕ2(π))(γi) = γi|ϕ2(π) = 1 1 ≤ i ≤ d− 1 .

Furthermore, γd has to generate Gal(ϕ2(π)/K) ∼= Zp, because the re-
striction map Gal(K/K) � Gal(ϕ2(π)/K) is surjective. If δ denotes any
topological generator of Gal(ϕ2(π)/K), then we have

ϕ1(ϕ2(π))(γd) = γd|ϕ2(π) = δa

for some a ∈ Z∗p . This means that ϕ1(ϕ2(π)) = π in ε(Gal(K/K)),

since every tuple (0, . . . , 0, a)T , a ∈ Z∗p, is equivalent to (0, . . . , 0, 1)T in

Pd−1(Zp) ∼= ε(Zdp).
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Remark 2.8. In Proposition 2.3, we have seen that there is a bijection

Pd−1(Zp)
∼−→ Ed−1(K) ,

where Ed−1(K) denotes the set of Zd−1
p -extensions of K. We obtained a Zd−1

p -

extension M of K corresponding to the element (a1 : . . . : ad) ∈ Pd−1(Zp) by
considering the subfield of K that is fixed by <γa11 · . . . · γ

ad
d >∼= Zp.

On the other hand, each (a1 : . . . : ad) ∈ Pd−1(Zp) corresponds to some ho-
momorphism π ∈ ε(Gal(K/K)), by Proposition 2.5, and therefore yields a
Zp-extension L of K via Lemma 2.7.
This yields a bijective correspondence

E(K)
∼−→ Ed−1(K) .

The pairs
(L,M) ∈ E(K)× Ed−1(K)

defined by this bijection are kind of dual pairs of extensions of K:
Suppose that a pair (L,M) is given; let π : Zdp −→ Zp denote the homo-
morphism that induces this pair. If we choose the topological generators of
Gal(K/K) ∼= Zdp such that the tuple (a1, . . . , ad) describing the corresponding
homomorphism π has the form (0, . . . , 0, 1) (this is always possible, compare
Remark 4.8, and does not affect the pair (L,M)), then M ⊆ K is the fixed
field of <γd>, and the Zp-extension L/K is the unique extension such that
the restriction map Gal(K/K) � Gal(L/K) is given by the homomorphism π
that maps γi 7→ 1 for i < d, while γd is mapped to a generator of Gal(L/K).
Therefore, L is fixed by the subgroup of Gal(K/K) generated by γ1, . . . , γd−1.
But this means that we have

L ∩M = K and L ·M = K .

More generally, for every n ∈ N and 0 ≤ m ≤ n − 1, we let εmn denote the
set of all surjective Zp-module homomorphisms

π : Zn+1
p

// // Zm+1
p .

In particular, ε0
d−1 = ε(Zdp) is the set that we have studied above.

Let us fix n and m. Choose topological generators γ0, . . . , γn of Zn+1
p and

δ0, . . . , δm of Zm+1
p , respectively. Then every π ∈ εmn is uniquely determined by

the values

π(γi) =

m∏
j=0

δ
aij
j , 0 ≤ i ≤ n , with aij ∈ Zp for every i and j .

If we define A := (aij) ∈ Mat(n+1)×(m+1)(Zp), then we may write this as

π((γ)) = A · (δ), where (γ) = (γ0, . . . , γn)T and (δ) = (δ0, . . . , δm)T are col-
umn vectors. Choosing a different set of topological generators of Zm+1

p corre-
sponds to multiplying A from the right by a matrix in GLm+1(Zp). Therefore
π determines A only up to multiplication by a matrix in GLm+1(Zp).
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Let A0, . . . , AN−1, N =
(
n+1
m+1

)
, denote the minors of A of order m+1. Using

the map
ψ : A 7→ (A0 : · · · : AN−1) ,

we may embed εmn into the projective space PN (Zp): First note that this is well-
defined. Indeed, if we change A to A ·B, with B ∈ GLm+1(Zp), corresponding
to a different choice of topological generators of Zm+1

p , then (A0 : · · · : AN−1)
changes to (A0 · det(B) : · · · : AN−1 · det(B)), which is the same element in
PN (Zp).

Moreover, the map ψ is injective, which can be seen as follows. Suppose
that two matrices A,B ∈ Mat(n+1)×(m+1)(Zp) are mapped to the same element

(c0 : . . . : cN−1) ∈ PN−1(Zp). Then there exists some t ∈ Z∗p such that Ai = t·Bi
for every 0 ≤ i ≤ N − 1, where B0, . . . , BN−1 denote the corresponding minors
of B.

Suppose that the generators γ0, . . . , γn of Zn+1
p have been chosen such that

A corresponds to the map

π : γi 7→

{
δi : i ≤ m
1 : i > m .

Then ψ(A) = (1 : 0 : . . . : 0), ψ(B) = (t−1 : 0 : . . . : 0), and therefore B
describes the same homomorphism π with regard to the basis {δt0, δ1, . . . , δm}
of Zm+1

p . This shows that ψ : εmn −→ PN (Zp) is injective.
Moreover, since m < n and therefore det(A) = 0, the image of ψ forms

a subvariety of PN (Zp) (i.e., closed with respect to the Zariski topology). In
particular, by identifying εmn with its image, we can view εmn as a compact
projective variety.

The Grassmanian varieties εmn will be used in Section 4.2.2.

2.2 Group rings and power series

As we have seen in Chapter 1, the complete group ring Zp[[Γ]] ∼= Λ plays a
fundamental role in the study of the arithmetic properties of Zp-extensions
K∞/K. We want to generalise the construction given in Section 1.2 in order to
be able to apply it to multiple Zp-extensions. Therefore we give the following
very general definition.

Definition 2.9. Let G be a profinite group, i.e., a compact Hausdorff topo-
logical group such that there exists a system of neighbourhoods of the neutral
element containing only normal subgroups. Let O be a local ring with unique
maximal ideal p that is Hausdorff and complete with respect to the p-adic topol-
ogy. We furthermore assume that O is compact. Then we define the completed
group ring of G over O to be the topological inverse limit

O[[G]] := lim←−
U

O[G/U ]

of the group ringsO[G/U ], where U runs through all the open normal subgroups
of G.



2.2. GROUP RINGS AND POWER SERIES 35

Remarks 2.10.

(1) Let U ⊆ G be an open subgroup. Then we can write G as the union of
pairwise disjoint cosets modulo U , i.e. G =

⋃
i σi ·U , where σi runs through

a system of representatives of G/U . Since G is compact and all the σi · U
are open, we can conclude that U is of finite index in G. Therefore every
O[G/U ] is the group ring of a finite group over O.

(2) For any profinite topological group G, we have an isomorphism (alge-
braically and topologically) G ∼= lim←−G/U , where U runs through the open
normal subgroups of G (see [Neu 92], Theorem IV.2.8).
Here the projective limit is taken according to the canonical projection
mappings induced by inclusions (i.e., the open normal subgroups of G are
ordered partially by inclusion; if Ui ⊇ Uj , then we consider the maps

fi,j : G/Uj −→ G/Ui

between finite groups). This projective system also induces the inverse limit
lim←−O[G/U ].

(3) The open normal subgroups of Zp are exactly the groups pnZp with n ∈ N0

({0} is not open since Zp/(0) has infinite order). Therefore Definition 2.9
is a direct generalisation of the definition of O[[Γ]] given in Section 1.2.

In the following, we will prove a generalisation of Theorem 1.9 for multiple
Zp-extensions. We therefore will have to deal with rings of formal power series
in several variables and coefficients in O. Before stating the theorem, we will
collect some properties of such rings. This makes use of the following concepts.

In what follows, let O denote an arbitrary ring. For any prime ideal p ⊆ O,
we can consider the localisation Op. If O is a domain, then each Op is a subring
of the quotient field of O.

Definition 2.11. The height of p is defined to be ht(p) := dim(Op), where
dim means the Krull dimension of the ring Op, i.e., the maximal length n of
a chain of prime ideals

p0 $ p1 $ . . . $ pn

in Op. This corresponds to the maximal length of a chain of prime ideals in O
descending from p.
Be aware of the numbering which takes care of the trivial ideal {0}, which is
prime if Op is a domain.
Let P(O) denote the set of prime ideals p ⊆ O of height 1.

Definition 2.12. Let now O be a local ring with maximal ideal m.

(1) Let I ⊆ O be an ideal. Then we call I an ideal of definition of O if there
exists an integer ν > 0 such that mν ⊆ I ⊆ m.

(2) Let d be the Krull dimension of O as defined in Definition 2.11. If I is an
ideal of definition of O that is generated by d elements x1, . . . , xd, then we
say that {x1, . . . , xd} is a system of parameters of O.

(3) If there is a system of parameters that generates the maximal ideal m, then
we say that O is a regular local ring.
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(4) An arbitrary (not necessarily local) Noetherian ring O is called regular if
for every prime ideal p ⊆ O, the localisation Op is a regular local ring.

Definition 2.13. Let O be a domain with quotient field K. Then O is called
completely integrally closed if the following condition holds:
If x ∈ K is such that there exists a finitely generated O-submodule of K
containing every power xn, n ∈ N, then x ∈ O.

Proposition 2.14. Let O be a domain.

(i) If O is completely integrally closed, then O is integrally closed.
(ii) If O is Noetherian, then the converse of (i) holds.
(iii) If O is completely integrally closed, then O[X] and O[[X]] are completely

integrally closed.

Proof. (i) and (ii): See [Bou 89], Chapter V, §1, no. 1 and no. 4..
(iii): See [Bou 89], Chapter V, §1, no.4, Proposition 14.

Lemma 2.15. Let O denote a regular factorial local ring with maximal ideal m.
Suppose that O is Hausdorff and complete with respect to the m-adic topology,
and that the residue field O/m is finite. Let d ∈ N. Then the rings of formal
power series in d variables over O have the following properties:

(i) O[[T1, . . . , Td]] is a local ring with maximal ideal

Md = m + (T1, . . . , Td) .

It is Hausdorff and complete with respect to the Md-adic topology.
(ii) O[[T1, . . . , Td]] is a compact topological group.
(iii) O[[T1, . . . , Td]] is a unique factorisation domain.
(iv) If O is Noetherian, then also O[[T1, . . . , Td]] is Noetherian.
(v) If O is Noetherian and integrally closed, then also O[[T1, . . . , Td]] is inte-

grally closed.
(vi) If O is Noetherian and integrally closed, then we have

O[[T1, . . . , Td]] =
⋂

p∈P(O[[T1,...,Td]])

((O[[T1, . . . , Td]])p) .

Proof. (i) It is a general fact that for a local ring A, the ring A[[T1, . . . , Td]]
of formal power series in a finite number of variables is local, too (see
[Bou 89], Chapter II, §3, no. 1). Furthermore, using the corollary of Prop-
osition 6 in [Bou 89], Chapter III, §2, no. 6, we inductively obtain that
the maximal ideal Md of O[[T1, . . . , Td]] is generated by m and T1, . . . , Td,
and that O[[T1, . . . , Td]] is Hausdorff and complete with respect to the
Md-adic topology.

(ii) Since O[[T1, . . . , Td]] is Hausdorff and complete with respect to the Md-
adic topology, O[[T1, . . . , Td]] may be canonically identified with the in-
verse limit of the finite discrete quotients (O[[T1, . . . , Td]])/M

i
d, i ∈ N,

see [Bou 89], Chapter III, §2, no. 6. This limit is compact (see [Neu 92],
Theorem IV.2.3).



2.2. GROUP RINGS AND POWER SERIES 37

(iii) Since O is a regular local ring, Theorem 19.5 of [Mat 86] implies that
O[[T1, . . . , Td]] is regular, too. By a theorem of Auslander and Buchs-
baum (see Theorem 20.3 in [Mat 86]), every regular local ring is a unique
factorisation domain.

(iv) If A denotes any Noetherian domain, then also A[[T1, . . . , Td]] is Noethe-
rian, see [Bou 89], Chapter III, §2, no. 10, Corollary 6.

(v) Since O is Noetherian and integrally closed, it is completely integrally
closed by Proposition 2.14, (ii). The assertion follows inductively by using
(iii) and, finally, (i) of the same proposition.

(vi) This is an immediate consequence of (iv) and (v), which together imply
that O[[T1, . . . , Td]] is a so-called Krull domain, see [Bou 89], Corollary 1
to Lemma 1 in Chapter VII, §1, no. 3. The statement then follows from
Theorem 4 in [Bou 89], Chapter VII, §1, no. 6.

We now specialise to the case O = Zp (this will be enough for our purposes).

Definition 2.16. For any d ∈ N let Λd := Zp[[T1, . . . , Td]] denote the ring
of formal power series in d variables having coefficients in Zp. In particular,
Λ1 = Λ is the ring studied in Chapter 1.

Lemma 2.15 yields the following properties of the rings Λd.

Proposition 2.17.
(i) Λd is a local ring with unique maximal ideal given by Md = (p, T1, . . . , Td).

It is Hausdorff and complete with respect to the Md-adic topology.
(ii) Λd is regular with Krull dimension equal to d+ 1.
(iii) Λd is a compact topological group.
(iv) Λd is a unique factorisation domain.
(v) Λd is Noetherian and integrally closed.
(vi) We have

Λd =
⋂

p∈P(Λd)

((Λd)p) .

Proof. Everything except (ii) follows immediately from Lemma 2.15. Since the
ring Zp is a Dedekind domain and therefore any prime ideal p 6= (0) is maximal,
the Krull dimension of Zp is equal to 1. Since m = (p) is the maximal ideal of
the local ring Zp, we know that {p} is a system of parameters of Zp. Therefore
Zp is a regular local ring (compare Definition 2.12, (3)). By Theorem 19.5 of
[Mat 86], the ring of formal power series over a regular ring again is regular.
Using Theorem 15.4 in [Mat 86], we can compute the Krull dimension of Λd as
follows:

dim(Zp[[T1, . . . , Td]]) = dimZp + d = d+ 1 .

We now come to the generalisation of Theorem 1.9 announced above. Let
K and K be as in Section 2.1, and write G = Gal(K/K) =< σ1, . . . , σd >Zp
with fixed topological generators σ1, . . . , σd.
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Theorem 2.18. Zp[[G]] ∼= Λd, the isomorphism of Zp-algebras (and homeo-
morphism of topological groups) being induced by σi 7→ 1 + Ti, i = 1, . . . , d.

Proof. The case d = 1 is covered by Theorem 1.9. We now let d ∈ N be
arbitrary.

For every integer n ∈ N0, we consider the subgroup Gp
n ⊆ G generated by

the elements σp
n

1 , . . . , σp
n

d , and we let Gn denote the quotient group

G/Gp
n ∼= (Z/pnZ)d ,

respectively. Then it is easy to see that Zp[[G]] is algebraically and topologically
isomorphic to the projective limit lim←−Zp[Gn], where the limit is taken with
respect to the projections πn,m : Gn −→ Gm, n ≥ m, that are induced by the
inclusions Gp

n ⊆ Gpm , respectively:

Indeed, by [Neu 92], Theorem IV.2.8, G is isomorphic to the projective limit
lim←−G/U , where U runs over the open normal subgroups of G; since G ∼= Zdp,

these are isomorphic to
d∏
j=1

pnjZp, nj ∈ N0 for every j = 1, . . . , d, and therefore

every such U contains some Gp
n
. But then we have lim←−G/U

∼= lim←−Gn and
Zp[[G]] ∼= lim←−Zp[Gn].

For every fixed integer n, there exists an isomorphism

Zp[Gn]
∼−→ Zp[T1, . . . , Td]/In ,

where the ideal In ⊆ Zp[T1, . . . , Td] is generated by the elements (T1 + 1)p
n − 1,

. . ., (Td+1)p
n−1. Here the isomorphism is induced by mapping each generator

σi ∈ Gn = G/Gp
n ∼= (Z/pnZ)d to the polynomial (Ti + 1)p

n − 1, respectively.

We therefore have to show that

Zp[[T1, . . . , Td]] ∼= lim←−Zp[T1, . . . , Td]/
(
(T1 + 1)p

n − 1, . . . , (Td + 1)p
n − 1

)
.

By Proposition 2.17, (iii), Λd = Zp[[T1, . . . , Td]] is a compact topological
group. The canonical projections Λd −→ Λd/In, n ∈ N, define a continuous
homomorphism ϕ : Λd −→ lim←−Λd/In. Let Md := (p, T1, . . . , Td) denote the
maximal ideal of Λd. Since⋂

n≥0

In ⊆
⋂
n≥0

Mn
d = {0} ,

the map ϕ is injective.

Let (fn)n≥0 ∈ lim←−Λd/In denote an arbitrary element; we will show that
there exists a pre-image f ∈ Λd under ϕ: For each n, we choose a representative
fn ∈ Λd of fn ∈ Λd/In. Since Λd is complete with respect to the Md-adic
topology (see Proposition 2.17, (i)), and since In ⊆Mn

d for every n, there exists
an element f ∈ Λd such that f ∈

⋂
n≥0

fn =
⋂
n≥0

fn · In (note that for every

j ≥ i, we have fj ≡ fi mod Ii). But then ϕ(f) = (fn)n, and therefore ϕ is an
isomorphism.
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Furthermore, every quotient

Λd/In ∼= Zp[T1, . . . , Td]/In ∼= Zd·p
n

p

is profinite, and therefore also the limit lim←−Λd/In is a profinite group (compare
Lemma 1.2.6, (c) in [FJ 08]), and in particular Hausdorff. Since Λd is compact,
it follows that ϕ : Λd −→ lim←−Λd/In is a homeomorphism (see [Os 92], Corollary
2.4.9).

We will conclude this section by giving an overview of the theory of Λd-
modules (analogously to the theory of Λ-modules described in Section 1.2, which
culminated in the Structure Theorem 1.24 – see Theorem 2.23 below).

Definition 2.19. A finitely generated Λd-module M is called pseudo-null if
Mp = {0} for all prime ideals p ⊆ Λd of height ≤ 1.

Remarks 2.20.
(1) A pseudo-null Λd-module M is Λd-torsion.
(2) M is pseudo-null if and only if it satisfies the following equivalent condition:

If p is a prime ideal with Ann(M) ⊆ p, then ht(p) ≥ 2. Here

Ann(M) = {x ∈ Λd | x ·M = {0}}

denotes the annihilator ideal of M .
(3) If M is pseudo-null, then (2) implies that M is annihilated by two relatively

prime elements of Λd.
In fact, if J := Ann(M), and if 0 6= g ∈ J is arbitrary, then there exists an
element h ∈ J coprime to g:

Let 0 6= g ∈ J be arbitrary, and write g =
r∏
i=1

peii , with irreducible elements

pi in the unique factorisation domain Λd (compare Proposition 2.17, (iv)).
For every i = 1, . . . , r, there exists an element hi ∈ J such that pi - hi, since
otherwise, J would be contained in the prime ideal (pi) ⊆ Λd of height one.
Without loss of generality, we may assume that pj | hi for every j 6= i.
Then g is coprime to h := h1 + . . .+ hr ∈ J .

(4) A Λ1 = Λ-module is pseudo-null if and only if it is finite.

Proof. See the remarks after Definition 5.1.4 in [NSW 08]; for (4) we use that
Λ1 = Λ is a 2-dimensional, Noetherian, integrally closed local domain with
finite residue field Zp[[T ]]/(p, T ) ∼= Z/pZ; compare Proposition 2.17, (i), (iv)
and (v).

Definition 2.21. A homomorphism f : M −→ N of finitely generated Λd-
modules is called a pseudo-isomorphism if the kernel and cokernel of f are
pseudo-null Λd-modules. Equivalently, this is the case if we have an exact
sequence

0 −→M1 −→M
f−→ N −→M2 −→ 0

with pseudo-null Λd-modules M1 and M2. We write M ∼ N if there is such a
pseudo-isomorphism.
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Remarks 2.22.
(1) In general, M ∼ N does not imply N ∼ M (compare Remarks 1.20, (1)

for an example in the case d = 1). But if M and N are finitely generated
torsion Λd-modules, then M ∼ N if and only if N ∼ M , see the remarks
on page 271 of [NSW 08].

(2) In view of Remarks 2.20, (4), the notion of pseudo-isomorphic Λ1-modules
introduced here coincides with the definition given in Chapter 1 (see Defi-
nition 1.19).

Theorem 2.23 (Structure Theorem). Let M be a finitely generated Λd-
module. Then there exist an integer s ∈ N0, finitely many prime ideals p1, . . . , ps
of Λd of height one, integers ni ∈ N, i = 1, . . . , s, and a pseudo-isomorphism

f : M −→ FΛd(M) ⊕
s⊕

i= 1

Λd/p
ni
i ,

where FΛd(M) denotes the maximal torsion-free quotient of M . The prime
ideals pi and the numbers ni are uniquely determined by M .
For d = 1, we can replace the module FΛd(M) by a free Λ-module, i.e., there
exists an integer r ∈ N0 such that we have a pseudo-isomorphism

f : M −→ Λr ⊕
s⊕

i= 1

Λd/p
ni
i .

Proof. By [NSW 08], Proposition 5.1.7, we have a pseudo-isomorphism

f : M −→ FΛd(M) ⊕
s⊕

i= 1

Λd/p
ni
i .

For d = 1, compare Theorem 1.24 or see [NSW 08], Propositions 5.1.8 and
5.1.9.

Definition 2.24. A Λd-module of the form E =
s⊕

i= 1
Λd/p

ni
i is called an ele-

mentary (torsion) Λd-module.

Remarks 2.25.
(1) The prime ideals pi ⊆ Λd of height one are principal ideals pi = (gi) gen-

erated by irreducible elements gi ∈ Λd, respectively. Indeed, let 0 6= x be
contained in a prime ideal p ⊆ Λd of height one. We write x as a product
of irreducible elements in the unique factorisation domain Λd. Since p is a
prime ideal, at least one irreducible divisor g of x has to be contained in p.
But then (g) ⊆ Λd is a prime ideal contained in p, and therefore (g) = p,
because p is of height one.

(2) If E denotes an elementary Λd-module, then E does not contain any non-
trivial pseudo-null submodules.

Proof. Write E =
s⊕
i=1

Λd/(g
ni
i ), where the gi ∈ Λd denote suitable irre-

ducible elements. If 0 6= x = x1 + . . . + xs ∈ E, then an element h ∈ Λd
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annihilates x if and only if
∏s
i=1 g

ki
i divides h, where ki ≤ ni denotes the

smallest integer such that gkii ·xi = 0 in Λd/(g
ni
i ), respectively. Here we are

using the fact that Λd is a unique factorisation domain. In particular, the
annihilator ideal of x is contained in the principal ideal (

∏
gkii ).

Now suppose that N ⊆ E denotes a non-trivial submodule. Since Λd is
Noetherian (see Proposition 2.17, (v)), N is finitely generated over Λd.
The annihilator ideal of each of the generators b1, . . . , bl of N is, by the

above, contained in a principal ideal (
∏
g
k
(j)
i
i ), 1 ≤ j ≤ l. If

mi := max
j
k

(j)
i ≤ ni , 1 ≤ i ≤ s ,

then the annihilator ideal of N is contained in the intersection (
∏
gmii ) ⊆ Λd

of the annihilators of the bj . Note that mi > 0 for at least one i, since N
is non-trivial. The claim now follows from Remarks 2.20, (2).

(3) Let A denote a finitely generated torsion Λd-module with corresponding
elementary Λd-module EA, let ϕ : A −→ EA denote a pseudo-isomorphism.
If M1, respectively, M2, denote the pseudo-null kernel and cokernel of ϕ,
then we have an exact sequence

0 −→M1 −→ A −→ EA −→M2 −→ 0 .

In this situation, M1 may be seen as the maximal pseudo-null submodule
of A. Indeed, if x ∈ A generates a pseudo-null submodule of A, i.e., the
annihilator ideal of x contains two relatively prime elements, then also the
annihilator ideal of the submodule of EA generated by ϕ(x) contains two
relatively prime elements. By (2), it follows that x ∈M1 = ker(ϕ). On the
other hand, M1 is pseudo-null by definition.

2.3 Greenberg’s topology

As above, let K be a number field. In his article [Gr 73], R. Greenberg
introduced a topology on the set E(K) of Zp-extensions of K, in the following
way. For L ∈ E(K) and n ∈ N0, define

E(L, n) := {L′ ∈ E(K) | [L ∩ L′ : K] ≥ pn} .

This means that E(L, n) consists of all Zp-extensions of K which coincide with
L up to level n. If we denote by Mk the k-th intermediate field of an element
M ∈ E(K), respectively, then

E(L, n) = {L′ ∈ E(K) | (L′)n = Ln} .

It is possible to take the sets E(L, n), n ∈ N0, as a base of neighbourhoods of
L ∈ E(K) (getting smaller while n grows), inducing a topology on E(K): We
have to show that the intersection of two such sets again is of the same shape.
So let L1, L2 be two Zp-extensions of K, and let n1, n2 ∈ N. Without loss of
generality, we may assume that n1 ≤ n2. Now there are two cases to consider.
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If L1 ∩ L2 6⊇ (L1)n1 , i.e., L2 6∈ E(L1, n1), then E(L1, n1) ∩ E(L2, n2) = ∅. But
otherwise E(L1, n1) ∩ E(L2, n2) = E(L2, n2), since then (L1)n1 = (L2)n1 .

We also immediately see that with respect to this topology, E(K) is Haus-
dorff.

Lemma 2.26. With regard to Greenberg’s topology, E(K) is compact.

Proof. Greenberg’s proof given in [Gr 73] uses the sets E(n) containing all cyclic
extensions of degree pn over K which are contained in some Zp-extension of K.
These sets are finite by Theorem 1.7 (we will give a detailed and elementary
proof below). For m ≥ n, there is a map

ϕm,n : E(m) −→ E(n)

defined by mapping each element of E(m) to its unique subfield of degree pn

over K.
We consider the inverse limit lim←−E(n) with respect to the maps ϕm,n. The

finite sets E(n) are equipped with the discrete topology. Then E(K) ∼= lim←−E(n)
algebraically and topologically, which follows from the definition of Greenberg’s
topology. In particular, E(K) is compact (see [Neu 92], Theorem IV.2.3).

We want to give a more detailed proof which seems to be more descriptive.
The main idea is to use the fact that a metric space X is compact if and only if
every sequence (xn)n∈N in X contains a convergent subsequence (see [Os 92],
Theorem 2.4.5). In order to make E(K) into a metric space, we define, for two
arbitrary Zp-extensions L1, L2 ∈ E(K),

d(L1, L2) :=

{
0 : L1 = L2

p−n(L1,L2) : otherwise ,

where n(L1, L2) is defined to be the greatest integer m ∈ N such that we have
L1 ∈ E(L2,m); n(L1, L2) is a finite number whenever L1 6= L2. One easily
checks that the function

d : E(K)× E(K) −→ R≥ 0

defines a metric on E(K).
Now suppose that we have a sequence (L(n))n∈N of Zp-extensions of K. For

the purpose of illustration, let us first assume that d = 2, i.e., that there exist
exactly two independent Zp-extensions M1 and M2 of K. Consider the field
extension L(1)/K and set L := L(1).

By Proposition 1.1, for every i ≥ 0 there exists a unique subfield Li ⊆ L
which is cyclic of degree pi over K. We want to prove the following fact: If
i ≥ 0 and Li are given, then there exist exactly p + 1 possible choices for the
level Li+1 contained in a Zp-extension L ⊆ K = M1 ·M2 of K.

Since Gal((M1 · M2)/K) ∼= Z2
p is torsion-free, it suffices to count cyclic

extensions of degree pi+1 over K that contain Li.
Suppose first that i = 0. Then Li+1 = L1 is contained in the composite

(M1)1 · (M2)1. Note that G1 := Gal(((M1)1 · (M2)1)/K) ∼= (Z/pZ)2, and
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that we are counting the number of subgroups of order p. If σ ∈ G1 and
a ∈ {1, . . . , p − 1}, then σ and σa generate the same subgroup of G1. We
therefore in fact look for a set of representatives for certain distinct orbits of
the action of (Z/pZ)∗ on G1 given by (a, σ) 7→ σa.

If σ1, σ2 ∈ G1 denote generators of the rank two abelian group G1, then a
set of representatives for the elements of order p is given by the elements

σ1 , σ1 · σ2 , σ1 · σ2
2 , . . . , σ1 · σ(p−1)

2 , σ2 ,

proving that there exist exactly p+ 1 subgroups of G1 of order p.
Now let i ≥ 0 be arbitrary, and let

Gi+1 := Gal(((M1)i+1 · (M2)i+1)/K) ∼= (Z/pi+1Z)2

be generated by elements σ1 and σ2. Since Li+1 ⊆ (M1)i+1 · (M2)i+1, we are
now looking for cyclic subgroups H of Gi+1 of order pi+1, because these are
exactly the subgroups of Gi+1 such that the quotient Gi+1/H is cyclic of order
pi+1. Moreover, the image of H under the canonical projection

π : Gi+1 −→ Gi+1/(Gi+1)p
i

shall be equal to a given cyclic subgroup H̃ of order pi. This latter condition
encodes the fact that Li+1 shall contain the given field Li ⊆ (M1)i · (M2)i,
using the fact that

Gi+1/(Gi+1)p
i ∼= Gal(((M1)i · (M2)i)/K) .

If σ ∈ Gi+1 denotes a generator of H, then this means that we want the
image π(σ) to be a generator σ̃ of H̃. Any other pre-image of σ̃ differs from σ
by an element τ ∈ (Gi+1)p

i
. If a ∈ (Z/pi+1Z)∗, then στ and σaτa generate the

same subgroup of Gi+1. Therefore the distinct cyclic subgroups H ⊆ Gi+1 of
order pi+1 which are mapped to H̃ are generated by elements στ , where τ is
one of the elements

σp
i

1 , σp
i

1 · σ
pi

2 , σp
i

1 · σ
2pi

2 , . . . , σp
i

1 · σ
(p−1)pi

2 , σp
i

2 .

Again, this yields exactly p+ 1 distinct possibilities.
Now let us return to the general case of arbitrary d ≥ 2. As above, we can

think of L(1) = L =
⋃
i≥0 Li as being build up step by step. Analogously to the

case d = 2 one can show that, for any fixed i ≥ 0, there are only finitely many
possible fields contained in K that can be taken into consideration for the field
Li+1 as an extension of Li of degree p.

Indeed, let us fix a set of pairwise independent Zp-extensions M1, . . . ,Md

of K. For every i ≥ 0, we have

Li+1 ⊆ (M1)i+1 · . . . · (Md)i+1 ,

and therefore we are looking for the number of certain subgroups H of

Gi+1 := Gal(((M1)i+1 · . . . · (Md)i+1)/K) ∼= (Z/pi+1Z)d
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of rank d − 1 and order (pi+1)d−1, since these are the subgroups H yielding
quotients Gi+1/H which are cyclic of order pi+1.

Moreover, we want the image of H under the projection

π : Gi+1 −→ Gi+1/(Gi+1)p
i

to equal a given rank d− 1 subgroup

H̃ ⊆ Gi+1/(Gi+1)p
i ∼= Gal((M1)i · . . . · (Md)i)

of order (pi)d−1, since Li+1 shall contain the field Li ⊆ (M1)i · . . . · (Md)i.
If g1, . . . , gd−1 generate such a subgroup H, and if τ1, . . . , τd−1 ∈ (Gi+1)p

i

are arbitrary, then also the subgroup of Gi+1 generated by g1τ1, . . . , gd−1τd−1

is a solution to our problem. Moreover, if a1, . . . , ad−1 ∈ (Z/pi+1Z)∗, then we
have an equality of (multiplicatively written) subgroups

<g1τ1, . . . , gd−1τd−1> = <ga11 τa11 , . . . , g
ad−1

d−1 τ
ad−1

d−1 > .

Let σ1, . . . , σd denote fixed generators of Gi+1. Then the above shows that the
distinct subgroups H of Gi+1 we are looking for are parameterised by tuples
(τ1, . . . , τd−1), where each τi is contained in the set of elements of the form

σu1·p
i

1 · . . . · σud·p
i

d ,

where (u1, . . . , ud) ∈ (Z/pZ)d are considered modulo the action of (Z/pZ)∗

defined by a · (u1, . . . , ud) := (au1, . . . , aud).
This shows that there exists a bound rd < ∞ for the number of possible

choices for H which is independent of i (e.g., rd < pd(d−1)).
Now we fix generators γ1, . . . , γd of Gal(K/K). On each level i, this induces

a set of generators of Gi+1 (namely, the restrictions of γ1, . . . , γd, respectively),
and thus an ordering of the set of subgroups H ⊆ Gi+1 we are looking for.
Indeed, on each level we choose the subgroup H ⊆ Gi+1 which solves our
problem and comes first concerning a lexicographical order of the exponents
(a1, . . . , ad) of the elements g = γa11 · . . . · γ

ad
d generating H. Then we order the

subgroups H ⊆ Gi+1 of interest via the corresponding tuples (τ1, . . . , τd−1).
Therefore we can describe the process of building up Li out of L0 = K in

terms of a sequence {a1, . . . , ai} of integers satisfying 1 ≤ aj ≤ rd for all j. This
means that the field L(1) = L is uniquely represented by the sequence {aj}j∈N of
integers. One can easily see that this gives a bijective correspondence between
the Zp-extensions of K and the sequences {aj}j∈N with aj ∈ {1, . . . , rd} for all
j.

Therefore our given sequence (L(n))n∈N of Zp-extensions can be represented

by a sequence of sequences {{a(n)
j }j∈N}n∈N with 1 ≤ a(n)

j ≤ rd for every j and n.

Consider the sequence {a(n)
1 }n∈N of the first terms of these sequences (represent-

ing the subfields L
(n)
1 of degree p over K of the fields in our sequence (L(n))n∈N,

repectively). Since rd is finite, there has to be an integer k1 ∈ {1, . . . , rd} such

that a
(n)
1 = k1 for infinitely many n. By restricting to a subsequence we may as-

sume that a
(n)
1 = k1 for all n. Now consider the second terms {a(n)

2 }n∈N. By the
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same argument, there has to be a k2 ∈ {1, . . . , rd} such that a
(n)
2 = k2 infinitely

often. Via induction, for any N ∈ N we obtain a subsequence {(a(n,N)
j )j∈N}n∈N

such that there exist integers (kj)j≤N , kj ∈ {1, . . . , rd} for every j, such that

a
(n,N)
j = kj for all n and 1 ≤ j ≤ N . Letting N → ∞, we obtain a sequence

(kj)j∈N which defines a Zp-extension L̃ of K, using the above bijective corre-
spondence.

By definition of Greenberg’s topology on E(K), a sequence (L(n))n∈N of
elements in E(K) converges to some M ∈ E(K) if and only if the sequence
of numbers mn := max{i ∈ N : L(n) ∈ E(M, i)} tends to infinity. But by
construction of L̃ we have shown that for any N ∈ N we are able to choose
a subsequence (L(n,N))n∈N of (L(n))n such that for every n, L(n,N) ∈ E(L̃, N).
This exactly means that we inductively get a subsequence of (L(n))n converging
to L̃, proving that E(K) is compact.

Having defined Greenberg’s topology on the set E(K), some natural ques-
tions arise. For example, by Theorem 1.32, every Zp-extension L of K is at-
tached its Iwasawa invariants λ, µ and ν ∈ Z. Now suppose that we are given
a Zp-extension L′ ∈ E(K) which is ‘close’ to L in the sense that L′ ∈ E(L, n)
for some large n. Is there then a connection between the Iwasawa invariants of
L and L′, i.e., are they related and perhaps also close together?

In his article [Gr 73], Greenberg proved some first results in this direction.
Roughly speaking, under some assumptions which he had to put on the Zp-
extension L/K whose neighbourhood is studied, Greenberg proved that µ is
locally bounded and that λ is locally bounded on the subset of all Zp-extensions
of K having µ = 0:

Theorem 2.27. Let L be a Zp-extension of K such that only finitely many
prime ideals of L lie above p. Then there exist integers n0 and c ∈ N such that
µ(L′/K) < c for any L′ ∈ E(L, n0), i.e., µ is locally bounded.

Theorem 2.28. Let L be a Zp-extension of K such that only finitely many
primes of L lie above p. Assume further that µ(L/K) = 0. Then there exist
n0, c ∈ N such that µ(L′/K) = 0 and λ(L′/K) < c for any L′ ∈ E(L, n0), i.e.,
λ is locally bounded.

As an application, Greenberg deduced some global boundedness results:

Theorem 2.29. Let K be a number field which contains only one prime dividing
p. Then there exists a constant c such that µ(L/K) < c for any Zp-extension
of K.

Theorem 2.30. Let K be a number field which contains only one prime dividing
p. Assume that µ(L/K) = 0 for every L ∈ E(K). Then there exists a constant
c such that λ(L/K) < c for any Zp-extension of K.

Proof. These four theorems are Theorems 4-7 in [Gr 73].

In the next chapter, we will further investigate local properties of Iwasawa’s
invariants, obtaining finer results.
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Chapter 3

Local behaviour of Iwasawa
invariants

Let K be a fixed number field. In this chapter, we will study the local behaviour
of the Iwasawa invariants attached to Zp-extensions of K. This means that we
will regard these invariants as functions on the topological space E(K) of all Zp-
extensions of K, and we will ask whether the invariants related to Zp-extensions
of K that are close in the sense of Greenberg’s topology (see Section 2.3) are
also close together.

We will obtain finer results than the theorems proved by Greenberg in
[Gr 73] (compare Theorems 2.27-2.30), using a theory of stabilisation of cer-
tain ranks. Starting point of our method is a theorem of T. Fukuda. The
first section extracts and formalises the main ingredients of this theorem. This
will be used in order to generalise Fukuda’s method, making it applicable in
a much broader context. In fact, while Fukuda’s original theorem mainly uses
group-theoretic arguments, we will focus on the action of Λ = Zp[[T ]] on the
arithemtic objects of interest.

It turns out that the main obstruction to the application of our method is
the need to control the ramification in the corresponding Zp-extensions. In the
second section, we will introduce a modified topology on the set E(K) which
will be adequate for our method.

Section 3.3 presents the main results of this chapter, improving Greenberg’s
theorems. Theorem 3.57 may be regarded as our most important result con-
cerning Iwasawa invariants of Zp-extensions.

In Sections 3.4 and 3.5, we use a different approach to obtain results about
Iwasawa’s invariants. More precisely, we introduce the concept of capitulation
and link it to the study of Iwasawa invariants. The capitulation is strongly
connected with cohomology groups of units, as will be described in the last
section. This will yield a new proof of a part of Theorem 3.57.

3.1 Fukuda’s Theorem and Fukuda modules

Our main method is based on a theorem of T. Fukuda (see Theorem 3.1
below). In this section, we will define a general class of objects which share the

47
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necessary properties to make an analogon of Fukuda’s Theorem hold for them.
We will give examples of classes of natural objects satisfying these properties.
In particular, this will enable us to apply an analogon of Fukuda’s Theorem in
a very general setting.

If L/K denotes a Zp-extension, then we denote by Ln, n ∈ N0, the interme-

diate field of degree pn over K, respectively, and we let A
(L)
n denote the p-Sylow

subgroup of the ideal class group of Ln, respectively.
In his article [Fu 94], Fukuda proves the following theorem, which will be

our starting point for the comparison of Iwasawa invariants of elements of E(K):

Theorem 3.1 (Fukuda). Let L/K be a Zp-extension. For any n ≥ 0, let

An := A
(L)
n . Let e = e(L/K) ≥ 0 be defined as in Proposition 1.3: Any prime

of K which ramifies in L/K is totally ramified in L/Le. Then the following
holds:
(i) If there exists an integer n ≥ e such that |An+1| = |An|, i.e., An+1 and

An are p-groups of the same cardinality, then |Am| = |An| for all m ≥ n.
In particular, we then have µ(L/K) = 0 and λ(L/K) = 0.

(ii) If there exists an integer n ≥ e such that rankp(An) = rankp(An+1),
then rankp(Am) = rankp(An) for all m ≥ n. In particular, µ(L/K) = 0
(compare Proposition 1.45, (i)).

We want to immediately give a quick hint on how to obtain results concern-
ing the local behaviour of Iwasawa invariants by applying Fukuda’s Theorem.

Theorem 3.2. Assume that there exists only one prime of K lying above p.
(i) The subset of E(K) consisting of all Zp-extensions L of K with Iwasawa

invariants µ(L/K) = λ(L/K) = 0 is open with respect to Greenberg’s
topology. The invariant ν is locally constant on that subset.

(ii) The subset of E(K) consisting of all Zp-extensions L of K for which
µ(L/K) = 0 is open.

Proof. (i) Let L/K be a Zp-extension with λ(L/K) = µ(L/K) = 0. Then
there exists an integer n0 ∈ N such that

|A(L)
m | = |A(L)

n0
| = pν(L/K) < ∞

for every m ≥ n0 (see Theorem 1.32). We may assume that n0 > e,
where e = e(L/K) is the integer defined in Proposition 1.3. Since, by
assumption, there is exactly one prime P of K lying above p, and since
the maximal abelian unramified extension of K is of finite degree over K,
Lemma 1.2 shows that every Zp-extension M/K is ramified at the prime
P, and unramified outside P. Now define

U := E(L, n0 + 1) = {M ∈ E(K) | [M ∩ L : K] ≥ pn0+1} .

Let M ∈ U . We know that P ramifies in Le+1/Le and therefore in
Me+1/Me, since n0 > e. Now assume that P is not totally ramified in
the abelian extension M/Me, and let Mj denote its inertia subfield. Then
Mj 6= Me, and in particular Me+1 ⊆ Mj , since this is the unique subfield
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of M of degree p over Me. But this contradicts the fact that P is ramified
in Me+1/Me, proving that P is totally ramified in M/Me. In particular,

e(M/K) = e(L/K) < n0 .

Furthermore, for M ∈ U we have |A(M)
n0+1| = |A(L)

n0+1| = |A(L)
n0 | = |A(M)

n0 |,
where A

(M)
m denotes the p-Sylow subgroup of the ideal class group of the

intermediate field Mm ⊆ M , respectively. Using Fukuda’s Theorem 3.1,

(i), we conclude that |A(M)
m | = |A(M)

n0 | for any m ≥ n0, i.e.,

µ(M/K) = λ(M/K) = 0 .

Furthermore, if we consider n large enough to make the formula in Theo-

rem 1.32 be valid for |A(L)
n | and |A(M)

n |, respectively, then we see that

pν(M/K) = |A(M)
n | = |A(L)

n | = pν(L/K) ,

which means that ν is locally constant on U .
(ii) Let L/K be a Zp-extension satisfying µ(L/K) = 0. Then there exists

an integer r ∈ N such that rankp(A
(L)
n ) ≤ r < ∞ for every n ≥ 0 (see

Proposition 1.45, (i)).
Using class field theory, one can show that the norm maps

Nm,n : A(L)
m −→ A(L)

n

induced by the algebraic norms between the fields Lm and Ln are surjective
for m ≥ n ≥ e = e(L/K) (see the Lemma in Chapter 3, §4, of [La 90];
compare also the proof of Corollary 3.9). Actually, class field theory shows
that the norm maps Nm,n : Cl(Lm) −→ Cl(Ln) between the full class
groups of Lm and Ln are surjective, but this immediately carries over to
the restrictions on the p-Sylow subgroups. In particular we have

rankp(A
(L)
m ) ≥ rankp(A

(L)
n )

whenever m ≥ n ≥ e. Therefore the p-ranks have to stabilise, i.e., there

exists an integer n0 ∈ N such that rankp(A
(L)
n0+1) = rankp(A

(L)
n0 ).

We may assume that n0 > e. Now we define U := E(L, n0 + 1), and the
assertion follows analogously to the proof of (i), using Fukuda’s Theorem
3.1, (ii).

There are some natural questions arising from this theorem. For example,
are the invariants λ or ν locally constant on the subset of E(K) defined in (ii)?
Can we get rid of the assumption that only one prime of K divides p?

We will study two different approaches to strengthen Theorem 3.2: The
restriction to fields K with exactly one prime lying above p arose from the
fact that the statements of Fukuda’s Theorem 3.1 require the indices n to be
greater than the number e = e(L/K) attached to the Zp-extension L/K under
consideration. This means that we could not simply apply Theorem 3.1 to the
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Zp-extensions contained in a fixed neighbourhood U of L without having control
on the respective e’s. If, for example, the e(M/K), M ∈ U , were unbounded,
then Theorem 3.1 would not apply to those M ∈ U having ‘too large’ e (e.g.,
U = E(L, n) and e(M/K) > n). We are therefore looking for conditions that
help us to locally bound the e(M/K). As we have seen in the proof of Theo-
rem 3.2, the assumption that only one prime of K lies above p is sufficient to
ensure that e even is locally constant. We will deal with the problem of finding
appropriate conditions in the case of arbitrary K in the next section. As one
can imagine in view of the definition of e, this subject is closely related to the
study of ramification inside Greenberg neighbourhoods.

In the current section, we want to further investigate Fukuda’s Theorem.
We will try to determine the key properties of the groups An that make the
theorem work in order to get able to apply it in more general settings – with
the hope of getting further results concerning the local behaviour of µ, λ and
ν-invariants.

In Chapter 1, we have studied A = lim←−An, where the projective limit is
taken with respect to the norm maps induced by the algebraic norms

Nm,n : Lm −→ Ln, m ≥ n .

We have seen that A can in a natural way be equipped with the structure of a
Λ-module, where Λ = Zp[[T ]]. We now want to define a class of Λ-modules for
which the analogue of Fukuda’s Theorem holds.

For this purpose, we review the basic notions concerning projective limits
that will occur in our investigations (compare [Neu 92], §IV.2). Suppose that
we are given a family of Λ-modules (Bn)n∈N0 together with Λ-module homo-
morphisms fij : Bi −→ Bj , i ≥ j, satisfying fii = idBi for all i and fik = fjk◦fij
whenever i ≥ j ≥ k (a so-called projective system). Then we let

B := {(bi)i∈N0 : fij(bi) = bj ∀ i ≥ j} ⊆
∏
i∈N0

Bi .

B = lim←−nBn is a projective limit of the Bn. By definition, the fij commutate
with the canonical projections prn : B −→ Bn, i.e., fij ◦ pri = prj for all i ≥ j,
and so all the diagrams

B
pri

  

prj

��

Bi

fij~~

Bj

are commutative.

Definition 3.3. Let B = lim←−Bn be a projective limit of Λ-modules. We
assume that each Bn is a finite abelian p-group, n ∈ N0.
Suppose that B further has the following properties. Assume that there exists
an integer e ≥ 0 such that:
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(1) For every n ≥ e, the n-th projection prn is surjective. In particular, for any
i ≥ j ≥ e, the maps fij : Bi −→ Bj are surjective.

(2) For n ∈ N0 we define Yn := Ker{prn : B −→ Bn}. Then for every n ≥ e,
there exists an element ν(n+1,n) contained in the maximal ideal m = (p, T )
of Λ = Zp[[T ]] such that

Yn+1 = ν(n+1,n) · Yn

(note that Yn is a Λ-submodule of B as being the kernel of the Λ-module
homomorphism prn). In particular, we have

Ym = ν(m,n) · Yn (F)

for anym > n ≥ e, with ν(m,n) := ν(m,m−1)·ν(m−1,m−2)·. . .·ν(n+1,n) ∈ mm−n.
If all these properties are satisfied, then we say that B is a Fukuda module,
and we call e the index barrier of B.

Remark 3.4. In Chapter 5, we will study Iwasawa invariants of multiple
Zp-extensions. The ideal class groups of the corresponding intermediate fields
admit actions of power series rings Λd = Zp[[T1, . . . , Td]] in several variables.
In particular, we will need a notion of Fukuda-Λd-modules. Actually, we will
develop a theory of Fukuda modules over a broad class of local rings, compare
Definition 5.24.

Proposition 3.5. Every Fukuda module is finitely generated as a Λ-module.

Proof. Since Bn is finite for any n ≥ 0, and therefore compact with regard to
the discrete topology, B = lim←−Bn is compact (see [Neu 92], Theorem IV.2.3).
Therefore, by Nakayama’s Lemma (Corollary 1.43), B is finitely generated as
a Λ-module if and only if B/(m · B) is finite, where m = (p, T ) denotes the
maximal ideal of Λ.

Let e denote the index barrier of B. Since B/Ye ∼= Be is finite, it suffices
to show that Ye is finitely generated, i.e., that Ye/(m · Ye) is finite (note that
Ye again is compact because it is the kernel of the continuous homomorphism
pre). Using the Property (F), we see that

|Ye /(m · Ye)| ≤ |Ye /(ν(e+1,e)︸ ︷︷ ︸
∈ m

·Ye)|
(F)
= |Ye/Ye+1| ≤ |B/Ye+1| = |Be+1|

is finite, as claimed.

We will now see that an analogon of Fukuda’s Theorem 3.1 holds for arbi-
trary Fukuda modules.

Theorem 3.6. Let B = lim←−Bn be a Fukuda module with index barrier e.
(i) If there exists an integer n ≥ e such that |Bn+1| = |Bn|, then |Bm| = |Bn|

for every m ≥ n and in fact |B| = |Bn| <∞.
(ii) If there exists an integer n ≥ e such that rankp(Bn+1) = rankp(Bn), then

rankp(Bm) = rankp(Bn) = rankp(B) for every m ≥ n.
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Proof. We can repeat literally Fukuda’s proof of Theorem 3.1 (see [Fu 94]).

(i) Since n ≥ e, the map fn+1,n : Bn+1 −→ Bn is surjective. The assumption
|Bn| = |Bn+1| then implies that fn+1,n is in fact a bijection. Therefore,
by looking at the diagram

Bn+1

fn+1,n

��

∼ // B/Yn+1

Bn
∼ // B/Yn

and using the fact that B/Yn+1 = B/ν(n+1,n) ·Yn for some ν(n+1,n) ∈ (p, T )
by the Fukuda property (F), we see that there is a bijection

B/ν(n+1,n) · Yn
∼−→ B/Yn .

Now ν(n+1,n) · Yn ⊆ Yn, since Yn is a Λ-module. Since both quotients are
finite, we can conclude that ν(n+1,n) · Yn = Yn.
We want to apply Nakayama’s Lemma (Corollary 1.43). B = lim←−Bn is
compact as being the inverse limit of finite groups (see [Neu 92], Theorem
IV.2.3). This shows that the kernel Yn of the continuous map

prn : B −→ Bn

also is a compact Λ-module. Therefore Nakayama’s Lemma implies that
Yn/(m·Yn) = {0} if and only if Yn = {0}. Since ν(n+1,n) ∈ m, the equality
ν(n+1,n) · Yn = Yn shows that |Yn/(m · Yn)| ≤ |Yn/(ν(n+1,n) · Yn)| = 1,
and thus Yn = {0}.
Therefore Ym = ν(m,n) · Yn = {0} for every m ≥ n, where we let

ν(m,n) := ν(m,m−1) · ν(m−1,m−2) · . . . · ν(n+1,n) ∈ (p, T ) ⊆ Λ ,

m > n, and ν(m,m) := 1. This means that

|Bm| = |B/Ym| = |B| = |B/Yn| = |Bn|

for every m ≥ n.
(ii) If rankp(Bn+1) = rankp(Bn), then Bn/p · Bn and Bn+1/p · Bn+1 are Fp-

vector spaces of the same dimension and therefore are isomorphic (as
vector spaces). Therefore, the Λ-module isomorphisms

Bn+1
∼= B/Yn+1

(F)
= B/(ν(n+1,n) · Yn)

and Bn ∼= B/Yn imply that

B/(Yn + pB) ∼= B/(ν(n+1,n) · Yn + pB) ,

as Fp-vector spaces. Since ν(n+1,n) · Yn + pB ⊆ Yn + pB, and as both
quotients are finite, it follows that ν(n+1,n) · Yn + pB = Yn + pB.
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Now define Z := (Yn+pB)/pB. Since ν(n+1,n) ·pB = p ·ν(n+1,n)B ⊆ pB,
we can conclude that

ν(n+1,n) · Z = (ν(n+1,n) · Yn + pB)/pB = Z ,

by the above. Z is a compact Λ-module, and so Nakayama’s Lemma shows
that Z = {0}, i.e., Yn ⊆ p ·B. Letting ν(m,n) be defined as in (i) and using
Property (F), we obtain

Ym = ν(m,n) · Yn ⊆ νm,n · pB ⊆ pB (?)

for every m ≥ n, and therefore, for these m,

rankp(Bm) = rankp(B/Ym) = dimFp(B/(Ym + pB))

(?)
= dimFp(B/pB) = rankp(B) .

Consider a Zp-extension K∞/K with intermediate fields Kn, n ≥ 0, and p-
Sylow class groups An, respectively. Fukuda’s Theorem 3.1 shows that Theorem
3.6 holds for the projective limit A = lim←−An. We will now prove that indeed A
is a Fukuda module. In particular, this implies that Theorem 3.1 is a special
case of Theorem 3.6.

Recall the notion of the Greenberg module X = Gal(L/K∞) attached to
K∞/K, where L denotes the maximal p-abelian unramified extension of K∞
(compare Proposition 1.33 and Lemma 1.39).

Proposition 3.7. The Greenberg module X attached to K∞/K is a Fukuda
module with index barrier e = e(K∞/K) (the integer defined in Proposition
1.3).

Proof. If Ln denotes the maximal unramified p-abelian extension of Kn, n ∈ N0,
then

X = lim←−Gal((Ln ·K∞)/K∞)︸ ︷︷ ︸
=: X̃n

,

where the projective limit is taken with respect to the restriction maps.

Since at least one prime is totally ramified in the extension K∞/Ke, we see
that the restrictions X̃m −→ X̃n are surjective for each m ≥ n ≥ e, because

Gal((Ln ·K∞)/K∞) ∼= Gal(Ln/Kn)

and Km ∩ Ln = Kn for each m ≥ n ≥ e. By the same reasons, the projections
prn : X −→ X̃n are surjective for n ≥ e.

It therefore remains to show that X = lim←− X̃n satisfies Property (F). Letting

Yn := Ker{prn : X −→ X̃n}, n ∈ N0, this means that we have to show that
Yn+1 = ν(n+1,n) · Yn for each n ≥ e and suitable elements ν(n+1,n) ∈ m = (p, T ),
respectively.
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We will in fact see that this property holds with respect to the polynomials
ν(n+1,n)(T ) ∈ Zp[T ] defined in Section 1.2:

ν(n+1,n) =
(1 + T )p

n+1 − 1

(1 + T )pn − 1
= (1 + T )p

n+1−pn + . . .+ (1 + T )p
n

+ 1 .

Note that Proposition 1.27, (iii) implies that the ν(n+1,n)(T ) are distinguished
polynomials for every n ≥ 0, and therefore ν(n+1,n)(T ) ∈ (p, T ).

Now we recall that we have seen in Lemma 1.37 an equivalent charac-
terisation of the Yn. Namely, Ye is generated by T · X and the Zp-span of
certain elements a2, . . . , as describing the ramification in K∞/Ke. Moreover,
Yn = ν(n,e) · Ye for every n ≥ e.

Note that Lemma 1.37 was proved only in the case e = 0. However, we may
treat the case of arbitrary e(K∞/K) by replacing K by Ke (this does not affect
lim←− X̃n = X = Gal(L/K∞)), compare Remark 1.38 and Lemma 1.39.

We may obtain the desired statement via induction: First of all, we have
Ye+1 = ν(e+1,e) ·Ye. Suppose now that Yn+1 = ν(n+1,n) ·Yn holds for every n ≤ k,
for some fixed k ≥ e. Then

Yk+2 = ν(k+2,e) · Ye
= ν(k+2,k+1) · ν(k+1,e) · Ye
= ν(k+2,k+1) · Yk+1 ,

using the induction hypothesis and the fact that ν(k+2,e) = ν(k+2,k+1) · ν(k+1,e).

Lemma 3.8 (Isomorphisms of Fukuda modules). Let A = lim←−An be a Fukuda
module with index barrier e = e(A), let ϕ : A −→ B be a Λ-module isomor-
phism, B = lim←−Bn. Assume that ϕ is induced by Λ-module isomorphisms

ϕn : An
∼−→ Bn such that the diagrams

A
ϕ
//

prn
��

B

prn
��

An
ϕn
// Bn

(?)

are commutative for all n ≥ e.
Then B = ϕ(A) is a Fukuda module with index barrier e.

Proof. First of all, B is an inverse limit B = lim←−Bn, taken with respect to the
maps

fBij : Bi // Bj , xi
� // ϕj(fij(ϕ

−1
i (xi))) , i ≥ j ,

where fij : Ai −→ Aj denote the maps corresponding to the projective system
of A = lim←−An. The fBij are well-defined because ϕi and ϕj are isomorphisms,
and they are surjective Λ-module homomorphisms for j ≥ e as being the com-
position of surjective homomorphisms.
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If a = (an)n ∈ A = lim←−An, then b := (ϕn(an))n ∈ lim←−Bn, because

fBij (bi) = fBij (ϕi(ai)) = ϕj(fij(ai)) = ϕj(aj) = bj .

Because of the assumptions (?), the projections prn : B −→ Bn are surjective
whenever n ≥ e.

It therefore remains to show that B has the Fukuda Property (F). Let Y A
n ,

respectively, Y B
n , denote the kernels of the projections prn : A −→ An and

prn : B −→ Bn, respectively. Then we know that for every n ≥ e, there exists
an element ν(n+1,n) ∈ (p, T ) ⊆ Λ such that Y A

n+1 = ν(n+1,n) · Y A
n .

We will show that

Y B
n = ϕ(Y A

n )

for every n ≥ e. Let a ∈ Y A
n , b := ϕ(a). Then 0 = prn(a) and therefore

0 = ϕn(prn(a))
(?)
= prn(ϕ(a)) = prn(b) .

If, on the other hand, b ∈ Y B
n , then we choose a pre-image a ∈ A of b under

the isomorphism ϕ. Then

0 = prn(b) = prn(ϕ(a))
(?)
= ϕn(prn(a)) ,

and thus 0 = prn(a), since ϕn is an isomorphism, by assumption. This shows
that a ∈ Y A

n and b ∈ ϕ(Y A
n ).

It is now obvious that

Y B
n+1 = ϕ(Y A

n+1) = ϕ(ν(n+1,n) · Y A
n )

= ν(n+1,n) · ϕ(Y A
n ) = ν(n+1,n) · Y B

n

for every n ≥ e.

Corollary 3.9. Let K∞/K be a Zp-extension. Then A = lim←−An is a Fukuda
module with index barrier e = e(K∞/K).

Proof. Proposition 3.7 implies that X = lim←− Gal((Ln ·K∞)/K∞)︸ ︷︷ ︸
=: X̃n

is a Fukuda

module with index barrier e. We now proceed in two steps:

First, we use Lemma 3.8 in order to transfer the Fukuda property from X
to

lim←− Gal(Ln/Kn)︸ ︷︷ ︸
=:Xn

.

Then we apply Lemma 3.8 again in order to prove the statement.

The isomorphisms ψn : X̃n
∼−→ Xn, n ≥ e, satisfy the (?)-condition from

Lemma 3.8, since both the ψn and the prn are in fact induced by restriction
maps. Therefore Lemma 3.8 implies that lim←−n≥0

Xn is a Fukuda module with

index barrier e.
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Now we come to the second step. For any finite level Kn/K, we have the
Artin isomorphism ϕn : An −→ Xn from class field theory (see, for example,
[Neu 92], Theorem VI.6.9). On the level of ideals, ϕn satisfies the following
property. If I is an ideal of the ring of integers O(Kn) of Kn, then for any
σ ∈ Gal(Kn/K) we have ϕn(σ(I)) = σ · ϕn(I) · σ−1 (see [Rib 01], 25.(B)). But
this exactly means that ϕn : An −→ Xn is a Λ-module homomorphism, since
the action of Zp[[Gal(K∞/K)]] ∼= Λ on Xn is given by conjugation, see Section
1.3.

Class field theory furthermore implies that for any i ≥ j ≥ 0, we have a
commutative diagram

Ai
ϕi //

fij
��

Xi

gij

��

Aj
ϕj
// Xj

where the fij are induced by the algebraic normsNKi|Kj , and the gij are given by
restriction (see [Neu 92], Theorem IV.6.4). This shows that the ϕn : An −→ Xn

induce a Λ-module isomorphism ϕ : A −→ X such that the diagrams (?) in
Lemma 3.8 are commutative for all n. Therefore the assertion follows from
Lemma 3.8, using the inverse isomorphism ϕ−1 : X −→ A.

The following lemma is a very useful tool for the construction of new Fukuda
modules.

Lemma 3.10 (Quotients of Fukuda modules). Let A = lim←−An be a Fukuda
module with index barrier e = e(A), let M = lim←−Mn ⊆ A be a submodule, i.e.,
we have Λ-submodules Mn ⊆ An, n ≥ 0, and the inverse limit is taken with
respect to the mappings fij : Ai −→ Aj, i ≥ j, restricted to Mi.
In particular, we assume that the projections prn : M −→Mn are surjective for
every n ≥ e (and so fij(Mi) = Mj, j ≥ e).

Then the Λ-module A/M := lim←−An/Mn (i.e., we take quotients component-
wise) is a Fukuda module with index barrier e.

Proof. The factor groups An/Mn are finite abelian p-groups and Λ-modules.
The maps fij : Ai −→ Aj induce mappings

f ij : Ai/Mi −→ Aj/Mj , xi = xi +Mi 7→ fij(xi) +Mj , i ≥ j .

These are well-defined because fij(Mi) ⊆ Mj , and they are easily seen to be
surjective for j ≥ e. Indeed, let xj ∈ (A/M)j = Aj/Mj be arbitrary. Choose a
representative xj ∈ Aj . By the surjectivity of fij , there is an element xi ∈ Ai
with fij(xi) = xj . But then f ij(xi) = xj .

Moreover, ((An/Mn)n, f ij) is a projective system, and we can consider a
corresponding inverse limit A/M = lim←−An/Mn ⊆

∏
nAn/Mn.

We want to show now that the so-defined Λ-module satisfies Property (F).
Along the way, we will obtain the surjectivity of the projections of A/M . For

every n ≥ 0, let us denote by Y A
n , respectively, Y

A/M
n , the kernel of the n-th
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projection prn : A −→ An, respectively, prn : A/M −→ (A/M)n = An/Mn.
By assumption, we know that for every n ≥ e, Y A

n+1 = ν(n+1,n) · Y A
n for some

element ν(n+1,n) ∈ (p, T ) ⊆ Λ. We will show that Y
A/M
n+1 = ν(n+1,n) · Y

A/M
n . In

order to do so, we fix n ≥ e, and we consider the following diagram:

YM
n

i //

��

Y A
n

π //

��

Y
A/M
n

��

δ //

0 //M
i //

prn
��

A
π //

prn
��

A/M //

prn
��

0

0 //Mn
in //

��

An
πn //

��

(A/M)n //

��

0

0 0 0

First of all, the two rows in the middle obviously are exact. Furthermore, the
corresponding two rectangles are commutative. In particular, the projections
prn : A/M −→ (A/M)n have to be surjective for n ≥ e. But then also the two
upper rectangles do commutate: It is obvious that i(YM

n ) ⊆ Y A
n . Moreover, if

x ∈ Y A
n ⊆ A, then by the above

prn(π(x)) = πn(prn(x)) = πn(0) = 0 ,

and therefore π(Y A
n ) ⊆ Y A/M

n .
We are now in the position to apply the Snake Lemma (see, for example,

[Os 92], Lemma 5.28) which tells us that there is a Λ-module homomorphism,
as suggested in the above picture,

δ : Y
A/M
n

// Coker(prn : M −→Mn) = {0} ,

such that Y A
n

π−→ Y
A/M
n

δ−→ 0 is exact. This means that, for any n ≥ e, we
have

π(Y A
n ) = Y A/M

n . (?)

But then

Y
A/M
n+1

(?)
= π(Y A

n+1)
(F)
= π(ν(n+1,n) ·Y A

n ) = ν(n+1,n) ·π(Y A
n )

(?)
= ν(n+1,n) ·Y A/M

n

for any n ≥ e.

Example 3.11.
(1) Let K∞/K be a Zp-extension with Galois group Γ ∼= Zp; let γ be a topo-

logical generator of Γ. Assume that every prime of K dividing p ramifies
in K∞/K (this condition is satisfied, for example, by the cyclotomic Zp-
extension of K, as we will prove in Lemma 3.18, (ii)). For every n ≥ 0,
let An be the p-Sylow subgroup of the ideal class group of Kn, and let
Dn ⊆ An denote the subgroup generated by the classes that contain an
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ideal all of whose prime factors lie above p. Using Lemma 1.2, we see that
Dn in particular contains all classes of ramified ideals. Each Dn actually
is a Λ-submodule of An, respectively. Indeed, if I is an ideal of Kn all of
whose prime factors lie above p, then this is certainly also true for γ(I),
i.e., γ(Dn) ⊆ Dn and therefore Λ ·Dn ⊆ Dn.
Take the projective limit A = lim←−An with respect to the norm maps

fij : Ai −→ Aj , i ≥ j .

Then fij(Di) = Dj whenever i ≥ j ≥ e = e(K∞/K):
On the one hand, it is clear that fij(Di) ⊆ Dj , since the norms map ideals
above p to ideals above p. On the other hand, let x ∈ Dj , and let J be an

ideal of the class x such that J =
r∏

k= 1

Pek
k with ek ∈ Z and Pk | (p) for

every k. Since every prime dividing p ramifies in Ki/Kj , i ≥ j ≥ e, we have
fij(Qk) = Pk for every k = 1, . . . , r, where Qk denotes the unique prime of

Ki dividing Pk, respectively (i.e., Pk ·OKi = Qpi−j

k ). Letting I :=
r∏

k=1

Qek
k ,

we may conclude that the class y of I belongs to Di, and fij(y) = x.
Now we consider the projective limit D = lim←−Dn with respect to the fij .
Let A′n := An/Dn, n ≥ 0. Using Corollary 3.9 and Lemma 3.10, we con-
clude that A′ := lim←−A

′
n = A/D is a Fukuda module. In particular, The-

orem 3.6 holds for A′, a fact which has been proved for the cyclotomic
Zp-extension K∞ of K by Mizusawa in [Miz 10], Proposition 3.
Note that for every n ≥ 0, A′n

∼= Gal(H ′(Kn)/Kn), where H ′(Kn) denotes
the maximal p-abelian unramified extension of Kn in which every prime
ideal of Kn lying above p splits completely. This is the subfield of H(Kn)
fixed by the image ϕ(Dn) ⊆ Gal(H(Kn)/Kn), where ϕ denotes the Artin
isomorphism; it is a general fact that unramified primes P split completely
in H(Kn) if and only if ϕ(P) is trivial, see [Rib 01], 25.(A).

(2) More generally, let S = {p1, . . . , ps} denote a finite set of primes of K.
Let S′ ⊇ S denote the union of S with the set of primes of K dividing p.
Suppose that K∞/K denotes a Zp-extension such that every prime p ∈ S′
is only finitely decomposed in K∞/K, i.e., for each p ∈ S′, there exist only
finitely many primes of K∞ lying above p. Note that this is equivalent
to the decomposition group Zp(K∞/K) of p in K∞/K being non-trivial,
because every non-trivial closed subgroup of Gal(K∞/K) ∼= Zp will be of
finite index. Therefore Zp(K∞/K) = Gal(K∞/Knp) for some np ∈ N, re-
spectively. Let n0 := maxp∈S′ np.
For example, it is known that no prime of K splits completely in the cyclo-
tomic Zp-extension of K (see [Wa 97], Exercise 13.2, (a)).
For every n ≥ n0, we let DS

n ⊆ An denote the subgroup generated by
the prime ideals of Kn lying above some pi ∈ S, respectively. Then
ASn := An/D

S
n is called the (p-primary subgroup of the) S-class group of

Kn, respectively. We let AS := lim←−A
S
n , where the projective limit is taken

with respect to the norm maps fij : Ai −→ Aj , which satisfy fij(D
S
i ) ⊆ DS

j

for every i ≥ j.
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In [Fe 86], L. Federer proved that AS is a Fukuda module (compare The-
orems 3.2, 3.5 and 4.7 in [Fe 86]). We therefore can apply Theorem 3.6 in
order to deduce information about the Iwasawa invariants that are attached
to this finitely generated Λ-torsion module via Proposition 1.28. (In fact,
Federer only considered the case of the cylotomic Zp-extension of K. Her
proofs, however, are valid for any Zp-extension of K in which every prime
p ∈ S′ is finitely decomposed.)
Note that under Artin’s isomorphism, ASn corresponds to the Galois group
of the maximal p-abelian unramified extension of Kn in which every prime
of Kn dividing some pi ∈ S is completely decomposed.

(3) Even more generally, the work of Federer in [Fe 86] shows that under the
assumptions of (2), we could consider R-generalised S-class groups RASn ,
where R denotes a set of primes of K, containing all the infinite primes,
such that R ∩ S′ = ∅. Here RASn , n ≥ n0, is defined as follows: Let RAn
denote the p-primary subgroup of the ray class group of Kn with modulus∏

p∈R p =: m, respectively. This means that we consider the group of
fractional ideals of Kn that are coprime to m, and we divide out principal
ideals (α) such that α ≡ 1 mod m. At the infinite primes, this means that
α has to be totally positive, i.e., for every real infinite prime p of Kn, α > 0
in (Kn)p ∼= R.
We then let RDS

n denote the subgroup of RAn generated by the primes
dividing some pi ∈ S, and we define RASn := RAn/

RDS
n . By Artin’s map,

RASn is isomorphic to the Galois group Gal(Nn/Kn), where Nn denotes the
maximal abelian p-extension of Kn which is unramified outside R and in
which every prime of S is completely decomposed.
Federer proved in [Fe 86] that RAS := lim←−

RASn is a Fukuda module, where
the limit is taken with respect to the induced norm maps.

(4) Using Federer’s approach, one has to assume that no prime of S′ (and in
particular no prime dividing p) is totally split in K∞/K. Using instead the
method of (1) (i.e., Corollary 3.9 and Lemma 3.10), we may consider sets S
of primes such that every p ∈ S is either ramified or completely decomposed
in the Zp-extension K∞/K, because this condition is equivalent to the fact
that for some fixed e ∈ N0, arbitrary i ≥ j ≥ e and every prime Pj of Kj

dividing some of the primes of S, there exists a prime Qi of Ki such that
fij(Qi) = Pj .
(Note that Corollary 3.9 may be generalised in order to prove that for every
Zp-extension K∞/K and for a set R of primes which does not contain any
prime ideal dividing p, RA = lim←−

RAn is a Fukuda module.)

Lemma 3.12 (Complementable Fukuda-submodules). Let A = lim←−An be a
Fukuda module with index barrier e = e(A). Let B = lim←−Bn be a Λ-submodule
that is a direct summand of A (sometimes also called Λ-complement of A),
i.e. assume that for any n ∈ N0, Bn ⊆ An is a Λ-submodule such that there
exists a Λ-submodule Cn of An with Bn ⊕Cn = An and such that fij(Bi) ⊆ Bj
and fij(Ci) ⊆ Cj for every i ≥ j, where fij, as usual, are the maps in the
projective limit A = lim←−An.

Then B and C are Fukuda modules with index barrier e.
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Proof. Let j ≥ e. By assumption, we have fij(Bi) ⊆ Bj and fij(Ci) ⊆ Cj
for any i ≥ j. But then fij : Bi −→ Bj and fij : Ci −→ Cj have to be
surjective, because fij : Ai −→ Aj is surjective. Furthermore, prn(B) = Bn and
prn(C) = Cn for every n ≥ e by construction, since prn(A) = An = Bn ⊕ Cn
(direct sum) for those n.

As in the proof of Lemma 3.10, we denote by Y B
n the kernel of the n-th

projection prn : B −→ Bn, in contrast to Y A
n , Y C

n , etc. It remains to show that
Y B
n+1 = ν(n+1,n) · Y B

n for some ν(n+1,n) ∈ (p, T ) ⊆ Λ, n ≥ e.
Let n ≥ e be arbitrary, but fixed. We know by assumption that we have

Y A
n+1 = ν(n+1,n) · Y A

n for some ν(n+1,n) ∈ (p, T ). But Y B
m = Y A

m ∩B for every m
and therefore

ν(n+1,n) · Y B
n ⊆ ν(n+1,n) · Y A

n ∩B = Y A
n+1 ∩B = Y B

n+1

for every n (this argument works for any submodule of A). It therefore suffices
to prove the other inclusion. Let x ∈ Y B

n+1 = Y A
n+1 ∩ B, x = ν(n+1,n) · y for

some y ∈ Y A
n , i.e., x = (xi)i∈N0 and y = (yi)i∈N0 satisfy ν(n+1,n) · yi = xi ∈ Bi

for every i ≥ 0. Since Bi and Ci are Λ-modules, it follows that yi = y
(1)
i + y

(2)
i

with y
(1)
i ∈ Bi, y(2)

i ∈ Ci and ν(n+1,n) · y
(2)
i = 0 for every i. But then we can

replace yi by y
(1)
i for every i, since fij(y

(1)
i ) = y

(1)
j for each i ≥ j. We obtain an

element ỹ ∈ B ∩ Y A
n = Y B

n such that x = ν(n+1,n) · ỹ ∈ ν(n+1,n) ·Y B
n . This shows

that B is a Fukuda module with index barrier e = e(A). By interchanging the
roles of B and C, one can show analogously that C is a Fukuda submodule of
A.

Remarks 3.13.
(1) The following example shows that arbitrary, not Λ-complementable, sub-

modules of Fukuda modules in general will not inherit the Fukuda property
with the same index barrier:
Let A = lim←−An be a Fukuda module with index barrier e, and let k ∈ N0

be such that |Ae+1| = pk. We consider the submodule B := pk · A ⊆ A,
i.e., we let Bn := pk · An for each n. Then we have Be+1 = {0}, since pk

annihilates Ae+1, and therefore we conclude that Be = fe+1,e({0}) = {0}.
Now assume that B is a Fukuda module with index barrier e. Then The-
orem 3.6 implies that Bm = {0} for every m ≥ e. But this means that pk

annihilates Ai for every i ≥ e. Now there are certainly Fukuda modules
that are not Zp-torsion modules. For example, Proposition 3.7 shows that
for any Zp-extension K∞/K, the Greenberg module X = Gal(L/K∞) is a
Fukuda module. But there exist Zp-extensions whose λ-invariant (see The-
orem 1.32) is different from zero, and this exactly means that we cannot
have pk ·X = 0 for any k ∈ N0 (see Proposition 1.31, (iv)). For example, if
p splits completely in K/Q and if K∞ denotes the cyclotomic Zp-extension
of K, then λ(K∞/K) ≥ r2(K) (compare [Gr 76], p. 266).
We will see in Example 3.15 a Fukuda submodule of the limit A = lim←−An
of class groups in a Zp-extension.

(2) Since the map A 7−→ pk ·A is a Λ-module homomorphism, the above exam-
ple also shows that, in general, homomorphic images of Fukuda modules will



3.1. FUKUDA’S THEOREM AND FUKUDA MODULES 61

not necessarily be Fukuda modules again. The inheritance of the Fukuda
property is not even true for isomorphisms, as we will see in Example 3.14,
(2). We therefore have to put additional assumptions on the isomorphism,
as in Lemma 3.8.

Example 3.14.
(1) Let L/K be a Zp-extension. Assume that k ⊆ K is a subfield such that K/k

is normal with finite abelian Galois group ∆ = Gal(K/k). Let furthermore
Γ = Gal(L/K) ∼= Zp, and assume that L is galois over k with Galois group
Gal(L/k) ∼= Γ×∆. Let us further assume that |∆| is coprime to p.
Let H(L) denote the maximal p-abelian unramified extension of L. Then
∆ acts on the Greenberg module X = Gal(H(L)/L), as in Section 1.3 (in
fact, Gal(L/k) acts on X). Since X ∼= A = lim←−An via Artin’s isomorphism,
this defines an action of ∆ on A.
Let ∆̂ denote the group of characters χ : ∆ −→ Q

∗
p into a fixed algebraic

closure of Qp. For each χ ∈ ∆̂, one defines the idempotent

εχ :=
1

|∆|
·
∑
σ ∈∆

χ(σ) · σ−1 ∈ Op[∆] .

Here we note that 1
|∆| ∈ Zp, since we assume that p - |∆|, and the values

χ(σ) are contained in the ring Op := Zp(ζf ) of integral elements of a cyclo-
tomic extension Qp(ζf ) ⊆ Qp, f = |∆| (note that Zp only contains roots of
unity of order dividing p− 1). The idempotents satisfy the relations

εχ · εψ =

{
εχ : χ = ψ

0 : χ 6= ψ
,

∑
χ∈ ∆̂

εχ = 1 and εχ · σ = χ(σ) · εχ

for every σ ∈ ∆ (compare [Wa 97], p. 100).
Now let χ ∈ ∆̂ denote any fixed character. For every

g ∈ Gf := Gal(Qp(ζf )/Qp) ,

the map χg defined by χg(σ) := g(χ(σ)) is also a homomorphism from ∆
to Op; in other words, Gf acts on ∆̂. If Gf · χ denotes the orbit of χ ∈ ∆̂
under the action of Gf , then ∑

τ ∈Gf ·χ
τ(σ) ∈ Zp

for every σ ∈ ∆ (note that we are actually taking the trace to Qp here).
Let ∆̂1, . . . , ∆̂s denote the distinct orbits of the action of Gf on ∆̂.
The elements

εi :=
1

|∆|
∑
σ ∈∆

 ∑
χ∈ ∆̂i

χ(σ)

 · σ−1 ∈ Zp[∆] , 1 ≤ i ≤ s ,

denote the orthogonal idempotents of the group ringZp[∆] (compare [Wa 97],
p. 339).
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Since A is a Zp[∆]-module, and as the sum over the pairwise different idem-
potents ε1, . . . , εs is still equal to 1, we have a canonical decomposition

A =

s⊕
i=1

εi ·A

of Λ-modules, coming from a decomposition into eigenspaces (the action of
each σ ∈ ∆ yields a Zp-linear map on A, and εi · A is the eigenspace with
eigenvalue TrQp(ζf )/Qp(χ(σ)), χ ∈ ∆i arbitrary).
Every module εi·A is a finitely generated torsion Λ-module, and Proposition
1.28 yields invariants µi, λi, νi ∈ Z attached to εi · A, respectively. In
particular, the Iwasawa invariants µ, λ, ν of L/K satisfy

µ =

s∑
i=1

µi , λ =

s∑
i=1

λi and ν =

s∑
i=1

νi .

In this situation, Lemma 3.12 implies that each εi · A is a Fukuda module
having the same index barrier as A. Indeed, it suffices to show that the
decomposition

A =
s⊕

k=1

εk ·A

is compatible with the norm maps fij : Ai −→ Aj for every i ≥ j, i.e., that
fij(εk ·Ai) ⊆ εk ·Aj .
Now an application of the norm fij on Ai may be identified with the action
of the element

∑
σ∈Gal(Li/Lj)

σ of the group ring Zp[Gal(Li/Lj)], respectively.

Since Gal(L/k) ∼= Gal(L/K) × ∆ is abelian by assumption, we see that
Gal(Li/k) ∼= Gal(Li/K) × ∆ for every i, and therefore the group ring
elements fij ∈ Zp[Gal(Li/Lj)] ⊆ Zp[Gal(Li/K)] and εk ∈ Zp[∆] commute,
i.e.,

fij(εk ·Ai) = εk · fij(Ai) ⊆ εk ·Aj
for every k ∈ {1, . . . , s}, i ≥ j ≥ 0. This shows that we may apply Lemma
3.12.

(2) For the sake of simplicity, we will for the moment assume that p 6= 2. Let K
denote a CM-field, i.e., a totally imaginary quadratic extension of a totally
real number field k := K+. If L denotes the cyclotomic Zp-extension of K,
then L, K and k satisfy the condition from example (1), i.e.,

Gal(L/k) ∼= Γ×∆ ,

where ∆ := Gal(K/K+) is generated by the complex conjugation map j.
According to the above general example, we have a canonical decomposition

A = A+ ⊕A−

of Λ-modules, where A = lim←−A
(L)
n ,

A+ = εχ0 ·A = (
1

2
(1 + j)) ·A
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corresponds to the trivial character χ0 ∈ ∆̂, and

A− = εχ− ·A = (
1

2
(1− j)) ·A

corresponds to the nontrivial character of ∆̂.
Proposition 13.28 in [Wa 97] shows that the Fukuda module A− does not
contain any non-trivial finite Λ-submodules. Now suppose that K/Q is
abelian, and that every prime of k = K+ dividing p is split in K/k. It is
known that in this case,
• µ(L/K) = 0 (compare [FW 79]), and
• λ−(L/K) := λ(A−) ≥ g, where g ≥ 1 denotes the number of primes

of K+ dividing p (see Section 2 of [Gr 73(2)]).
Since µ−(L/K) := µ(A−) ≤ µ(L/K) = 0, and as A− does not contain any
non-trivial finite submodules, Proposition 1.31, (i) and (iii) imply that A−

is a finitely generated free Zp-module. In particular, multiplication by p is
an injective Λ-module homomorphism on A−.
Moreover, if e = e(L/K) denotes the index barrier of A, and if k ∈ N0 is
large enough to ensure that pk · A−e+1 = {0}, then the isomorphic image
pk · A− of A− cannot be a Fukuda module with index barrier e, because
λ(A−) ≥ 1 and therefore pk ·A− 6= {0} (see Remarks 3.13, (1)). This shows
that isomorphic images of Fukuda modules will not automatically inherit
the Fukuda property (compare Remarks 3.13, (2)).

We will conclude the current section with an important example of a Fukuda

submodule of the projective limit of ideal class groups A = lim←−A
(L)
n attached

to a Zp-extension L/K.

Example 3.15. Let L/K denote a Zp-extension, let A = lim←−A
(L)
n be defined

as usual. Since A is a finitely generated torsion Λ-module, Theorem 1.24 implies
that there exists an exact sequence

0 −→M1 −→ A
ϕ−→ EA −→M2 −→ 0

of Λ-modules, where EA denotes an elementary Λ-module in the sense of Defi-
nition 1.23, and where M1 and M2 are finite Λ-modules. In other words, there
exists a Λ-pseudo-isomorphism ϕ : A −→ EA with kernel M1 and cokernel M2.
We want to show that M1 ⊆ A is a Fukuda submodule with index barrier
e := e(A) = e(L/K).

For each n ∈ N0, we define (M1)n := prn(M1), where prn : A −→ A
(L)
n de-

note the canonical projections. Then each (M1)n ⊆ A
(L)
n is a Λ-submodule. If

fij : A
(L)
i −→ A

(L)
j , i ≥ j, denote the norm maps, then fij((M1)i) = (M1)j for

each i ≥ j, since fij ◦ pri = prj for every i ≥ j.
It therefore remains to prove Property (F). Let n ≥ e be arbitrary, let YM1

n ,
respectively, Y A

n , denote the kernels of the projections prn : M1 −→ (M1)n,
respectively, prn : A −→ An.
Then YM1

n = Y A
n ∩ M1 and therefore

ν(n+1,n) · YM1
n ⊆ ν(n+1,n) · Y A

n ∩ M1 = Y A
n+1 ∩ M1 = YM1

n+1 .
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We want to prove the converse.
Let x ∈ YM1

n+1 be arbitrary. Since

YM1
n+1 = Y A

n+1 ∩ M1 = ν(n+1,n) · Y A
n ∩ M1 ,

we may write x = ν(n+1,n) · y for some element y ∈ Y A
n , and we want to prove

that y ∈M1 = ker(ϕ). Since x ∈M1, we have

0 = ϕ(x) = ϕ(ν(n+1,n) · y) = ν(n+1,n) · ϕ(y) .

If X denotes the Greenberg module attached to the Zp-extension L/K, then
we have shown in Proposition 1.44 that ν(n+1,n) is coprime to the characteristic
polynomial of X for every n ≥ e. But X ∼= A, and therefore the elementary
Λ-modules attached to X and A are equal by Corollary 1.25, (i), implying
that multiplication by ν(n+1,n) is injective on EA (recall that Λ is a unique
factorisation domain). Therefore 0 = ϕ(y), i.e., y ∈M1, as claimed.

3.2 Ramification and Greenberg’s topology

In this section, we want to investigate an important drawback which limits the
strength of Fukuda’s Theorem 3.1 and of its generalisation, Theorem 3.6: The
statements of these theorems only hold for n being large enough, i.e., greater
than the index barrier e, which in the classical case of ideal class groups in Zp-
extensions (Theorem 3.1) is given by the ramification describing integer defined
in Proposition 1.3.

We therefore want to study the local behaviour of the function

e : E(K) −→ N0 , L 7→ e(L/K) ,

where K is a fixed number field. More precisely, we will investigate the values
e(L/K), where L ranges over certain open or closed neighbourhoods in the sense
of Greenberg’s topology (compare Section 2.3). In particular, we will look for
subsets of E(K) restricted to which the e invariant remains bounded.

It turns out that one can modify Greenberg’s topology in order to obtain
a topology with respect to which e is locally bounded. This topology will take
care of ramification. At the end of the section, we will study in some detail
which sets of primes of K typically occur as ramification sets of Zp-extensions
of K, looking at the example of a CM-field K in which p is totally split.

We start with the following already known facts.

Lemma 3.16. Let L/K be a Zp-extension.
(i) Let e = e(L/K), and let L′ ∈ E(K) be such that L ∩ L′ ⊇ Le+1. Then

every prime of K that ramifies in L also ramifies in L′.
(ii) If there is only one prime of K lying above p, then e is locally constant,

i.e., for any L ∈ E(K) there exists an open neighbourhood L ∈ U ⊆ E(K)
such that e(L′/K) = e(L/K) for every L′ ∈ U .

Proof. We have shown these two statements in course of the proof of Theorem
3.2, (i).
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We introduce some notation.

Definition 3.17. Let I := {p1, . . . , pt} be the set of all prime ideals of K
lying above p. For any Zp-extension L of K, let P(L) denote the subset of I
consisting of the primes that ramify in L/K. Define EI(K) to be the set of
all Zp-extensions L of K satisfying P(L) = I. For any subset ∅ 6= I $ I, let
EI(K) := {L ∈ E(K) | P(L) = I}, and let ẼI(K) ⊆ E(K) denote the set of all
L ∈ E(K) satisfying P(L) ⊆ I.

Now we are able to generalise the above lemma:

Lemma 3.18. The following assertions are stated with respect to Greenberg’s
topology on E(K).
(i) EI(K) ⊆ E(K) is open. e|EI(K) is locally constant.
(ii) Let K∞/K denote the cyclotomic Zp-extension of K (see Example 1.5).

Then K∞ ∈ EI(K). In particular, EI(K) 6= ∅ for every number field K.
(iii) The set EI(K) is dense in E(K). The sets ẼI(K) and EI(K), I 6= I,

contain no nontrivial open subsets.
(iv) Fix some I ⊆ I. Then e is bounded on every closed subset V ⊆ EI(K).
(v) Let ∅ 6= I ⊆ I be fixed. The set ẼI(K) is closed and therefore compact.

The set EI(K) is closed if and only if EI(K) = ∅ or ẼI(K) \ EI(K) = ∅.
(vi) For any L ∈ E(K) there exists an open neighbourhood U of L such that e

is constant on U ∩ ẼP(L)(K).
Fix some ∅ 6= I ⊆ I.
If ẼI(K) \ EI(K) = ∅, then e|EI(K) = e|ẼI(K) is globally bounded.

If ẼI(K) \ EI(K) 6= ∅ (and EI(K) 6= ∅), then e|EI(K) and therefore also
e|ẼI(K) is unbounded and e|ẼI(K) in general is not locally constant: For

L ∈ ẼI(K), the existence of an open neighbourhood U of L such that
e|U ∩ ẼI(K) is constant is equivalent to the condition that P(L) = I.

Proof. (i) Let L ∈ EI(K). Then every prime ideal of K lying above p ramifies
in L. Let U := E(L, e(L/K) + 1). Then P(M) = I for every M ∈ U by
Lemma 3.16, (i). Therefore U ⊆ EI(K), i.e., EI(K) is open. Furthermore,
e(M/K) = e(L/K) for every M ∈ U (compare the proof of Theorem 3.2,
(i)), and therefore e|U is constant, proving (i). Note that this generalises
the statement of Lemma 3.16, (ii), and will be strengthened further in
(vi).

(ii) Let K∞ be the cyclotomic Zp-extension of K. We want to show that
every prime ideal of K dividing p ramifies in K∞/K. By definition of K∞
(see Example 1.5), we have K∞ =

⋃
n≥ 0Kn with Kn = K · Bf+n. Here

Bf = K ∩ B∞, where B∞ denotes the union of the unique cyclic subfields
Bm ⊆ Q(ζpm+1) of degree pm over Q, respectively (with slight modifica-
tions in the case p = 2), as described in Example 1.5. In particular, p is
totally ramified in Bm/Q for every m.
Now choose any m ∈ N such that [Bm : Q] = pm > [K : Q]. Let p be
a prime of K lying above p, and consider the field Bm · K, which is a
non-trivial Galois extension of K with cyclic Galois group

Gal((Bm ·K)/K) ∼= Gal(Bm/Bf ) .
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We have the following diagram of fields.

Bm K ·Bm

Q K

Now we choose a prime P in K · Bm lying above p; let p′ := P ∩ OBm .
Since p is totally ramified in Bm/Q, the ramification index ep(Bm/Q)
equals pm. In particular, (p′)p

m
divides (p) in the ring of integers of Bm,

and therefore at least Ppm divides (p) in the ring of integers of K · Bm.
But since ep|p(K/Q) ≤ [K : Q] < pm, it then follows that p has to ramify
in (K ·Bm)/K. Since p was arbitrary, the assertion follows.

(iii) Let L ∈ E(K) be such that P(L) $ I. The idea is to show that there exist
Zp-extensions of K contained in the composite of L with the cyclotomic
Zp-extension K∞ of K that are arbitrarily close to L and belong to EI(K).
For this purpose, let n ∈ N be arbitrary, and consider

E(L, n) = {M ∈ E(K) |M ∩ L ⊇ Ln} .

We make use of the following basic lemma:
Lemma 3.19. Let L1, L2 be different Zp-extensions of K, and let us
write I1 := P(L1) and I2 := P(L2). Let M := L1 · L2.
(i) Suppose that L1 ∩ L2 = K. Let σ1, σ2 denote topological generators

of Gal(M/K) such that Gal(Li/K) is generated topologically by the
restriction σi|Li, respectively. Then we consider Zp-extensions M̃ of
K contained in M :

L1

<σ1|L1>

<σ2>
M

<σ1>

<σa1 ·σb2>

M̃

K
<σ2|L2>

L2

We can write Gal(M̃/K) ∼= Gal(M/K)/ < σa1 · σb2 > for suitable
elements a, b ∈ Zp, and we know that one of them is a p-adic unit
(see Proposition 2.3). In this situation, the following holds:
If pk ‖ a and pl ‖ b, then M̃ ∩ L1 = (L1)k and M̃ ∩ L2 = (L2)l.
Here (Li)j, as usual, denotes the j-th intermediate field of Li/K,
respectively.

(ii) P(M̃) = I1 ∪ I2 for all but at most |I1∩I2| Zp-extensions M̃ ⊆M . In
the exceptional Zp-extensions, we could have p unramified for some
p ∈ I1 ∩ I2; for every such p, at most one such Zp-extension exists.

Proof. (i) Define k and l by the properties pk ‖ a (i.e., pk | a and pk+1 - a
in Zp) and pl ‖ b, respectively. Since Gal(M̃/K) ∼= Zp contains no



3.2. RAMIFICATION AND GREENBERG’S TOPOLOGY 67

p-torsion elements, k = 0 or l = 0 (compare the proof of Proposition
2.3). Without loss of generality, we may assume that l = 0. Write
a = pk · u, u ∈ Z∗p. Then

<σa1 · σb2>Zp = <σp
k

1 · σ
u−1b
2 >

Zp
,

and therefore, letting b′ := u−1 · b ∈ Z∗p,

Gal(M̃/K) ∼= <σ1, σ2> / <σp
k

1 · σ
b′
2 > ,

i.e., σp
k

1 = σ−b
′

2 in Gal(M̃/K).
The intersection M̃ ∩ L1 is uniquely determined by the subgroup H
of Gal(M/K) fixing it. Since

H = <σp
k

1 · σ
b′
2 , σ2> = <σp

k

1 , σ2> ,

it follows that M̃ ∩ L1 = (L1)k.
Furthermore, b ∈ Z∗p because l = 0, and thus we can write

<σa1 · σb2>Zp = <σab
−1

1 · σ2>Zp .

Therefore σ−ab
−1

1 = σ2 in Gal(M̃/K), which implies that σ2 acts
trivially on M̃ ∩ L2, and therefore M̃ ∩ L2 ⊆ M<σ2 , σ1> = K.

(ii) Let us first consider a prime p ∈ I such that p ∈ I1, p 6∈ I2, i.e., p
ramifies in L1, but not in L2. Let

T := Tp(M/K) ⊆ Gal(M/K) ∼= Z2
p

denote the inertia subgroup of p in M/K. Then the Zp-rank of T is
greater or equal to 1, since p is totally ramified in L1/(L1)e(L1/K).
Indeed, if rankZp(T ) was zero, then T would have to be trivial, since
it is a closed subgroup of Gal(M/K), and the only finite closed sub-
group of Z2

p is {0}; but then p was unramified in M/K.

On the other hand, p 6∈ P(L2) implies that L2 ⊆MT , and therefore
rankZp(T ) ≤ 1, i.e., rankZp(T ) = 1.

Now let M̃ ⊆M denote a Zp-extension ofK such that L1 6= M̃ 6= L2.
Then p cannot be unramified in M̃ , since otherwise M̃ · L2 ⊆ MT ,
and as Gal(M̃ ·L2/K) is isomorphic to (a subgroup of finite index in)
Z2
p, we would conclude that rankZp(T ) = 0, yielding a contradiction.

Therefore p ∈ P(M̃).
By a symmetric argument, it follows that p ∈ P(M̃) for every prime
p ∈ I2 \ I1. Let us look now at the primes p ∈ I1 ∩ I2. If p 6∈ P(M̃),
then M̃ ⊆MT . Therefore, for any such p, at most one Zp-extension
M̃ with p 6∈ P(M̃) does exist, since otherwise, its inertia group
would satisfy rankZp(T ) = 0, which would contradict the fact that p
is ramified in L1 and L2. The assertion follows.
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Now we return to the proof of (iii). We apply the above lemma with
L1 := L and L2 := K∞, the cyclotomic Zp-extension of K. Let n ∈ N
be arbitrary. Since there exist only finitely many Zp-extensions M̃ of
K contained in L · K∞ that satisfy P(M̃) $ I = P(L) ∪ P(K∞), by
Lemma 3.19, (ii), we can choose M̃ ∈ E(L, n) such that P(M̃) = I, i.e.,
M̃ ∈ EI(K).
Now assume that U ⊆ EI(K) or U ⊆ ẼI(K), I $ I, is non-trivial and
open. Let L ∈ U be a Zp-extension of K such that E(L, n) ∈ U for some
n ∈ N. Since E(L, n) ∩ EI(K) 6= ∅, because EI(K) ⊆ E(K) is dense, this
gives a contradiction because EI(K) and EI(K) (respectively, EI(K) and
ẼI(K)) are disjoint by definition.

(iv) If e|V was unbounded, we could choose a sequence (M (n))n∈N0 of elements
in V ⊆ EI(K) with unbounded e(M (n)/K). Since V is closed and therefore
compact, the sequence (M (n))n≥ 0 would contain a subsequence converging
to a field M ∈ V ⊆ EI(K). Without loss of generality, we may assume
that the M (n) themselves converge to M and that (M (n) ∩ M) ⊇Mn for
every n ≥ 0. But then, for every n ≥ e(M/K) + 1, each prime of I would
ramify in (M (n))e(M/K)+1/K, and in particular,

e(M (n)/K) = e(M/K) < ∞

for these n. This contradicts the unboundedness of the e(M (n)/K).
(v) Let ∅ 6= I ⊆ I, and consider a sequence (M (i))i≥0 of elements in ẼI(K).

Since E(K) is compact, there exists a convergent subsequenceMn(i) −→M
for a suitable M ∈ E(K). Without loss of generality, we may assume that
the M (i) themselves converge to M . We want to show that M ∈ ẼI(K),
i.e., that P(M) ⊆ I.
Since M (i) −→M , we may assume that (M (i) ∩M) ⊇Mi for every i ≥ 0.
But then, for i ≥ e(M/K) + 1, every element of P(M) has to ramify in
M (i)/K, i.e.,

P(M) ⊆ P(M (i)) ⊆ I ,

and therefore M ∈ ẼI(K).
Now consider the set EI(K). Without loss of generality, we may assume
that it is not empty. If ẼI(K) \ EI(K) = ∅, then EI(K) = ẼI(K) is closed
by the above.
Now assume that there exists a Zp-extension N of K such that P(N) $ I.
Then we can construct a sequence N (i) −→ N such that P(N (i)) = I for
every i by considering appropriate Zp-extensions of K contained in the
composite of N with an element M ∈ EI(K), and using Lemma 3.19, as
in the proof of (iii). Thus N (i) ∈ EI(K) for every i, but N 6∈ EI(K).
Therefore EI(K) is not closed in this case.

(vi) Let L be an arbitrary Zp-extension of K. Then Lemma 3.16 implies that
P(M) = P(L) and e(M/K) = e(L/K) for every

M ∈ E(L, e(L/K) + 1) ∩ ẼP(L)(K) .

We fix a subset ∅ 6= I ⊆ I. If ẼI(K) \ EI(K) = ∅, then EI(K) = ẼI(K) is
closed by (v). It follows that e|EI(K) is globally bounded, using (iv).
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Now let L ∈ ẼI(K) be a Zp-extension of K such that P(L) $ I. Assume
that there exists an integer n ∈ N such that e is bounded by a constant
E ∈ N on E(L, n) ∩ ẼI(K). Define m′ := max(n,E + 1). Then we
choose M ∈ EI(K) and make use of Lemma 3.19, applied to L1 := L
and L2 := M , in order to obtain a Zp-extension M̃ of K contained in
L ·M such that M̃ ∈ E(L,m′) and P(M̃) = P(L) ∪ P(M) = P(M) = I.
In particular, since P(L) $ I and (M̃)i = Li for every i ≤ E + 1, we
must have e(M̃/K) ≥ E + 1. But M̃ ∈ E(L, n) ∩ ẼI(K), proving that e
cannot be locally bounded, and in particular cannot be locally constant.
Moreover, this shows that e|EI(K) is unbounded if ẼI(K) \ EI(K) 6= ∅ and

EI(K) 6= ∅.
If, on the other hand, L ∈ ẼI(K) satisfies P(L) = I, then we have seen
above that e|ẼI(K) is locally constant around L.

Remarks 3.20.
(1) There are two general principles which can be learned from the proofs of

the preceding lemmas:

• If we consider a sequence (M (n))n≥0 of Zp-extensions converging to
an extension M , then the set of primes ramifying in the limit M can
be strictly smaller than the P(M (n)) (compare the proofs of Lemma
3.18, (iii) and (v)). On the other hand, every p ∈ P(M) has to ramify
also in the M (n) for n being large enough.

• If we consider a Greenberg open neighbourhood E(L, n) of a Zp-exten-
sion L of K, then the set of primes ramifying in an arbitrary extension
M ∈ E(L, n) can be larger than P(L), since in general, it is possible
that e(M/K) > n, so that there can exist primes that have not yet
started ramifying in Mn = Ln.
If n > e(L/K), then we have at least P(L) ⊆ P(M) by Lemma 3.16,
(i), whereas for n ≤ e(L/K), we can only say that the pi ∈ P(L) that
have already started ramifying in Ln/K will also belong to P(M) (it
is plausible that for small n we do not have much information about
M , since then E(L, n) is quite coarse).

(2) Both cases mentioned in Lemma 3.18, (vi) do occur: Consider the special
case I = I. First of all, it is clear that EI(K) = E(K) if there is only one
prime of K lying above p. But there are also a lot of fields K such that
there exist Zp-extensions L/K in which some of the primes pi ∈ I above p
are unramified. We will now give an example.

Example 3.21. Consider a number field K. Then

[K : Q] =
∑
p | (p)

[Kp : Qp]

(see [Neu 92], Corollary II.8.4), where Kp denotes the completion of K with
respect to the non-archimedean absolute value induced by the prime p, respec-
tively. For any finite extension Kp of Qp, we have

K∗p
∼= Z ⊕ Z/(p− 1)Z ⊕ Z/paZ ⊕ Zdp ,
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where d = [Kp : Qp], and where a ≥ 0 is the greatest integer k such that Kp

contains a primitive pk-th root of unity (compare [Neu 92], Theorem II.5.7).
Now let us assume that p splits completely in K/Q. Then the above degree
formula implies that [Kp : Qp] = 1 for every p dividing p. This means that
Kp = Qp for all p. Therefore, we have d = 1 and a = 0 in the decomposition of
K∗p , since Qp does not contain any p-power root of unity (see [Gou 97], Prop.
3.4.2). This means that for every p | p,

K∗p
∼= Z ⊕ Z/(p− 1)Z ⊕ Zp ∼= Z ⊕ U(Kp) ,

where U(Kp) := {x ∈ Kp : |x|p ≤ 1}. Here | . |p denotes the absolute value
induced by p. We have thus shown that the Zp-rank of (the pro-p-part of)
U(Kp) is equal to 1 for every p | p.
Now let L/K be a Zdp-extension, d ≥ 1. For every prime p | p of K, we consider
the abelian extension Lp/Kp, where Kp, as above, denotes the completion of K
with respect to the absolute value induced by p, p is any prime of L lying above
p and Lp =

⋃
i Li,pi is the union of the completions of the finite subextensions

Li ⊆ L of K with respect to the primes pi := p ∩ Li, respectively.
If Tp|p(L/K) denotes the inertia subgroup of p over K, then we have an isomor-
phism Tp|p(L/K) ∼= T(Lp/Kp) (see [Neu 92], Theorem II.9.6). Here T(Lp/Kp)
denotes the inertia group of the Galois extension Lp/Kp of the local field Kp in
the sense of valuation theory: Let vp denote the normalised valuation induced
by p, i.e., if x ∈ K∗ and (x) = pi · A with i ∈ Z and A 6⊆ p, then vp(x) = i.
Then Kp is complete with regard to vp, and there exists a unique extension w
of vp to Lp. We define the decomposition group

Z(Lp/Kp) := {σ ∈ Gal(Lp/Kp) | w ◦ σ = w}

and the inertia subgroup

T(Lp/Kp) := {σ ∈ Z(Lp/Kp) | σ(x) ≡ x mod p ∀x ∈ Lp with w(x) ≥ 0 } .

Now local class field theory (see [Wa 97], p. 403) implies that T(Lp/Kp) is
isomorphic to a quotient of U(Kp) (we have to divide out the intersection of
the norms NLi,pi/Kp

(U(Li,pi)) of all finite subextensions of Lp/Kp). By the
choice of K, the Zp-rank of U(Kp) is equal to 1, and so rankZp(Tp|p(L/K)) ≤ 1
for every p | p.
In particular, if L/K denotes the composite of all Zp-extensions of K (see
Section 2.1), then Gal(L/K) ∼= Zdp with d ≥ r2(K) + 1 (see Theorem 1.7). If
we assume that r2(K) ≥ 1, i.e., that K is not totally real, then d ≥ 2.
For every prime pi of K lying above p, the Zp-rank of the inertia group

Ti := Tpi|pi(L/K)

of any prime pi of L dividing pi is less than or equal to 1, by the above. There-
fore, letting M̃ (i) := LTi be the corresponding fixed field, we conclude that
rankZp(Gal(M̃ (i)/K)) ≥ d−1 ≥ 1. This proves that there exists a Zp-extension

M (i) ⊆ M̃ (i) of K in which pi is unramified.
To summarise, we have shown that if K is a number field, not totally real, in
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which p splits completely, then for every prime pi of K dividing p (i.e., pi ∈ I in
the notation of Definition 3.17), there exists a Zp-extension M (i)/K such that
pi is unramified in M (i) and therefore M (i) ∈ E(K) \ EI(K).
Furthermore, if r2(K) ≥ 2, then for every pair (pi, pj) of primes lying above p,
there exists a Zp-extension M of K such that pi and pj are unramified in M ,
i.e., M ∈ ẼI\{pi,pj}(K). Indeed, the Zp-rank of the subgroup Ti,j of Gal(L/K)
generated by Ti and Tj is less or equal to 2, and therefore

rankZp(Gal(LTi,j/K)) ≥ d− 2 ≥ r2(K) + 1− 2 ≥ 1 .

More generally, this shows that there exist number fields K and Zp-extensions
of K in which arbitrarily many primes lying above p are unramified.

Lemma 3.18 enables us to prove the following generalisation of Theorem
3.2:

Corollary 3.22. Let L/K be a Zp-extension. We define, for any n ∈ N0,

U(L, n) := E(L, n) ∩ ẼP(L)(K) ,

where E(L, n) = {M ∈ E(K) | [(M ∩ L) : K] ≥ pn}, as usual.
If n ≥ e(L/K) + 1, then e is locally constant on U(L, n). Moreover,
(i) If µ(L/K) = λ(L/K) = 0, then there exists an integer n0 ≥ e(L/K) + 1

such that µ(M/K) = λ(M/K) = 0 and ν(M/K) = ν(L/K) for every
M ∈ U(L, n0). In other words, the Iwasawa invariants are constant on
U(L, n0).

(ii) If µ(L/K) = 0, then there exists an integer n0 ≥ e(L/K) + 1 such that
µ(M/K) = 0 for every M ∈ U(L, n0), i.e., µ is constant on U(L, n0).

Proof. The first statement is obvious, since Lemma 3.16, (i) implies that we
have P(M) = P(L) for every M ∈ U(L, n), provided that n ≥ e(L/K) + 1.
Now we can copy the proof of Theorem 3.2:

For (i), note that µ(L/K) = λ(L/K) = 0 implies that there exists an integer

n0 ≥ e(L/K) + 1 such that |A(L)
m | = |A(L)

n0 | for every m ≥ n0 (see Theorem

1.32). Then we can use Fukuda’s Theorem to deduce |A(M)
m | = |A(L)

n0 | for every
M ∈ U(L, n0 + 1) and m ≥ n0, and therefore µ(M/K) = λ(M/K) = 0 and

pν(M/K) = |A(M)
n0 | = |A

(L)
n0 | = pν(L/K) for every M ∈ U(L, n0 + 1).

In order to prove (ii), we use the fact that µ(L/K) = 0 if and only if the

p-ranks of the A
(L)
n remain bounded as n tends to ∞, which again is equivalent

to saying that there exists an integer n0 ∈ N such that rankp(Am) = rankp(An0)
for every m ≥ n0, as we have shown in the proof of Theorem 3.2, (ii). Now we
can use the second statement of Fukuda’s Theorem 3.1 and continue as in the
proof of (i).

Remarks 3.23.
(1) Of course the statements of the corollary are non-trivial only for Zp-exten-

sions L/K such that ẼP(L)(K) is infinite. Note that for any set I ⊆ I,
the condition that EI(K) is finite is equivalent to saying that |EI(K)| ≤ 1.
Indeed, if there exist at least two different Zp-extensions L and M with
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P(L) = I = P(M), then we can consider the composite L ·M , and Lemma
3.19, (ii) yields the existence of infinitely many elements of EI(K) being
contained in L ·M .

(2) If P(L) = I, then U(L, n) = E(L, n) for every n ≥ e(L/K) + 1. One draw-
back of Corollary 3.22 is the fact that for P(L) $ I, we make a prediction
on the M ∈ U(L, n), but not on the larger and canonical set E(L, n).

(3) If there is only one prime of K lying above p, then E(K) = EI(K), and so
we obtain Theorem 3.2 as a special case of the above corollary.
If |I| = 2, i.e., there are exactly two primes p1 and p2 of K which divide p,
then we have a decomposition

E(K) = E{p1}(K)
.⋃
E{p2}(K)

.⋃
EI(K)

into disjoint sets. If the first two sets are empty (which does happen, see
Lemma 3.30, (i) below), then EI(K) = E(K), and U(L, n) = E(L, n) for
each L ∈ E(K) and every n ∈ N0.
If one of the first two sets is infinite, we can apply Corollary 3.22 in order
to obtain information about the corresponding Zp-extensions L/K with
P(L) = {pi} which is not covered by Theorem 3.2.

(4) If L/K denotes a Zp-extensions with |P(L)| = 1, then there is an effective
upper bound on e(L/K), given by the exponent of the Galois group of the
Hilbert class field of K over K.

(5) Note that for L 6∈ EI(K), the sets U(L, n) will not be open in the sense of
Greenberg’s topology (compare Lemma 3.18, (iii)), and therefore Corollary
3.22 does not imply that the sets

{L ∈ E(K) | µ(L/K) = λ(L/K) = 0}

or
{L ∈ E(K) | µ(L/K) = 0}

are Greenberg open, as was the statement of Theorem 3.2 in the case
|I| = 1. We will now define a modified topology on E(K) that allows
us to get a result analogous to Theorem 3.2.

Definition 3.24. For every Zp-extension L of K and any n ∈ N0, we let

U(L, n) := E(L, n) ∩ ẼP(L)(K)

= {M ∈ E(K) | [(M ∩ L) : K] ≥ pn and P(M) ⊆ P(L)} ,

as in Corollary 3.22. Then the U(L, n) generate a topology on E(K) (see Lemma
3.25 below), which we call the Greenberg-R-topology.

Using this terminology, Corollary 3.22 can be restated as follows:

Corollary 3.22.’ The sets

{L ∈ E(K) | µ(L/K) = λ(L/K) = 0}

and
{L ∈ E(K) | µ(L/K) = 0}

are open with regard to the Greenberg-R-topology.
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Lemma 3.25.
(i) The sets U(L, n), with L ∈ E(K) and n ∈ N0, generate a topology on

E(K).
(ii) For every L and n, U(L, n) is closed with respect to Greenberg’s topology.

It is Greenberg open if and only if P(L) = I.
(iii) e is constant on U(L, n) if n ≥ e(L/K) + 1.
(iv) The set E(K) of all Zp-extensions of K is compact with respect to the

Greenberg-R-topology if and only if E(K) = EI(K).

Proof. (i) First of all, E(K) = U(K∞, 0), where K∞ denotes the cyclotomic
Zp-extension of K. We will show now that for any L,M ∈ E(K) and
arbitrary n,m ∈ N0, the set U(L, n)∩U(M,m) is a (possibly empty) finite
union of sets U(Ni, ni). Then {U(L, n) | L ∈ E(K), n ∈ N0} generate a
topology on E(K).
We may assume that n ≥ m. IfM 6∈ E(L,m), then U(L, n)∩U(M,m) = ∅.
Otherwise, we have

U(L, n) ∩ U(M,m) = E(L, n) ∩ ẼP(L)(K) ∩ ẼP(M)(K)

= E(L, n) ∩ ẼP(L)∩P(M)(K) .

If there does not exist any Zp-extension N ∈ E(L, n) satisfying

P(N) ⊆ P(L) ∩ P(M) ,

then again U(L, n) ∩ U(M,m) = ∅. Otherwise, we choose sets

I1, . . . , Ir ⊆ P(L) ∩ P(M)

such that
• for every i = 1, . . . , r, there exists an element Ni ∈ E(L, n) with

P(Ni) = Ii, and
• for every N ∈ E(L, n) with P(N) ⊆ P(L) ∩ P(M), there exists an

i ∈ {1, . . . , r} such that P(N) ⊆ Ii.
Then it is easy to see that U(L, n) ∩ U(M,m) =

r⋃
i=1

U(Ni, n).

(ii) Since U(L, n) = E(L, n) ∩ ẼP(L)(K), the assertions follow from Lemma
3.18, (i), (iii) and (v).

(iii) Compare the proof of Corollary 3.22.
(iv) We obviously have

E(K) ⊆
⋃

L∈E(K)
n≥ e(L/K)+1

U(L, n) ,

and by (iii), e is constant on every U(L, n) occurring on the right hand
side. This means that e would be globally bounded on E(K) if this set
was compact with respect to the Greenberg-R-topology, since in this case,
it could be covered by finitely many of the U(L, n). But we have seen in
Lemma 3.18, (vi) that e is unbounded if E(K) 6= EI(K).
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If, on the other hand, E(K) = EI(K), then U(L, n) = E(L, n) for every
Zp-extension L of K and every n ∈ N0, respectively, i.e., the Greenberg-
R-topology and the Greenberg topology coincide, and E(K) is compact
by Lemma 2.26.

Remarks 3.26.

(1) The proof of the last part of Lemma 3.25 shows that whenever we have
E(K) % EI(K), i.e., the classical theorem of Fukuda does not apply in gen-
eral, and whenever T is a topology on E(K) such that e is locally constant
(or even only locally bounded) with respect to T – which implies that we
can nevertheless use Fukuda-like arguments to study the local behaviour
of Iwasawa’s invariants –, then E(K) cannot be compact with regard to
the topology T , and so we cannot gather global information such as the
boundedness of some invariant on the whole set E(K).
More briefly: there seems to be no topology on E(K) that allows dealing
with local and global properties of Iwasawa invariants simultaneously.

(2) If K/K denotes a Zkp-extension, k ∈ N, and if E⊆K(K) consists of the Zp-

extensions of K contained in K, then E⊆K(K) is compact with respect to
the Greenberg-R-topology if and only if every M ∈ E⊆K(K) has the same
ramification set P(M) = P , P ⊆ I fixed. This can be proved analogously
to Lemma 3.25, (iv) by using Lemma 3.18, (vi) and noting that Greenberg’s
Lemma 2.26 actually remains valid in this more general situation, i.e., the
set E⊆K(K) is compact with respect to Greenberg’s topology.

(3) For every L,M ∈ E(K) and each n ∈ N, we know that L ∈ E(M,n) if
and only if M ∈ E(L, n). This is not longer the case if we consider the
U(L, n), at least if E(K) 6= EI(K). This missing symmetry, resulting from
the ramification condition in the definition of the U(L, n), shows that there
will not be a metric on E(K) lying behind the Greenberg-R-topology. Note
that on the contrary the classical Greenberg topology is induced by

d(L,M) :=

{
0 : L = M

p−n(L,M) : L 6= M ,

where n(L,M) is determined by [(L∩M) : K] = pn(L,M), compare Section
2.3.

We want to study which subsets of I typically appear as ramification sets of
Zp-extensions of K. We will show that in general, it is likely to have EI(K) = ∅
for at least some subsets I ⊆ I = {p1, . . . , pt}.

Lemma 3.27. Let K be a number field, let K denote the composite of the
Zp-extensions of K. Then K/K is a Zdp-extension, for some d ∈ N.

(i) Let us denote by ai the rank of E{pi}(K), i = 1, . . . , t, i.e., the maxi-
mal number of pairwise independent Zp-extensions M ∈ E{pi}(K). Then
t∑
i=1

ai ≤ d. In particular, at most d of the sets E{pi}(K) are non-empty.
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(ii) More generally, if I1, . . . , Ik ⊆ I denote subsets such that Ij∩(
⋃
i 6=j Ii) = ∅

for each 1 ≤ j ≤ k, then
k∑
i=1

rank(EIi(K)) ≤ d, where rank(EIi(K)) de-

notes the maximal number of pairwise independent M ∈ EIi(K), respec-
tively.

(iii) For every pi ∈ I, we let Pi be any fixed prime of K lying above pi. Let
Ti := TPi|pi(K/K) denote the inertia subgroup of Pi in K/K, 1 ≤ i ≤ t.

If Ti = {0}, then E{pi}(K) = ∅.
More generally, if rank(E{pi}(K)) = ai ∈ N0, then rankZp(Ti) ≥ ai.

Proof. (i) This is a special case of (ii).
(ii) Let I1, I2 ⊆ I denote subsets such that I1 ∩ I2 = ∅. Let L(i) denote the

composite of all Zp-extensions of K contained in EIi(K), i = 1, 2. Then
L(1) ∩ L(2) is a finite extension of K, since every Zp-extension M of K
contained in L(i) satisfies P(M) ⊆ Ii, respectively. Therefore

Gal((L(1) · L(2))/K) ∼= Zr1+r2
p ,

where ri = rank(EIi(K)), respectively, i.e., Gal(L(i)/K) ∼= Zrip , i = 1, 2.
Inductively, if k ∈ N, I1, . . . , Ik ⊆ I denote subsets such that

Ij ∩ (
⋃
i 6=j

Ii) = ∅

for each 1 ≤ j ≤ k, and if L(i) denotes the composite of the Zp-extensions
of K contained in EIi(K), 1 ≤ i ≤ k, then

Gal((L(1) · . . . · L(k))/K) ∼= Zr1+...+rk
p ,

where ri = rank(EIi(K)), 1 ≤ i ≤ k.
Indeed, suppose that the statement is true for k−1. Then L(1)·. . .·L(k−1) is
a Z

r1+...+rk−1
p -extension of K. Since Ik ∩ (

⋃k−1
i=1 Ii) = ∅, each prime p ∈ Ik

is unramified in (L(1) ·. . .·L(k−1))/K, and therefore L(k) ∩ (L(1) ·. . .·L(k−1))
is finite over K. In other words,

Gal((L(1) · . . . · L(k))/K) ∼= Zr1+...+rk
p ,

proving our claim. Assertion (ii) follows because (L(1) · . . . · L(k)) ⊆ K.
(iii) We first note that the subfield

K̃ := K

t∏
i=1

Ti

of K fixed by the smallest subgroup of Gal(K/K) generated by all the
inertia subgroups Ti (which is simply

∏
i Ti, since Gal(K/K) is abelian)

has to be a finite extension of K, since every prime of I is unramified in
K̃, and therefore

[K̃ : K] ≤ [H(K) : K] < ∞ ,

where H(K) denotes the maximal unramified p-abelian extension of K.
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Therefore rankZp(
∏t
i=1 Ti) = d. But this implies that we have, for any

fixed i ∈ {1, . . . , t},

Ti = {0} ⇐⇒ rankZp(Ti) = 0

=⇒ rankZp(
∏
j 6=i

Tj) = d

⇐⇒ L(i) := K

∏
j 6=i

Tj
is a finite extension of K

⇐⇒ E{pi}(K) = ∅ ,

noting that a Zp-extension M of K is contained in L(i) if and only if
M ∈ E{pi}(K).
More generally, rankZp(E{pi}(K)) = ai implies that there exists a Zaip -

extension M (i) of K such that M (i) ⊆ K
∏
j 6=i

Tj
. This is equivalent to the

fact that
rankZp(

∏
j 6=i

Tj) ≤ d− ai .

Since rankZp(
∏
i Ti) = d, by the above, this implies that rankZp(Ti) ≥ ai.

Note that the reverse conclusion of this last step in general will not be true,
since the subgroups Ti ⊆ Gal(K/K) might have non-trivial intersection.

In particular, if K denotes a number field such that |I| > d, then Lemma
3.27, (i) implies that E{pi}(K) = ∅ for at least some of the pi ∈ I. Using class
field theory, we will be able to get much more precise information about the sets
EI(K) and ẼI(K). Starting point will be the following lemma, which is a direct
generalisation of [La 90], Chapter 5, Theorem 5.1, and [Wa 97], Corollary 13.6
(compare Lemma 1.8):

Lemma 3.28. Let K denote the composite of all Zp-extensions of K. Let I ⊆ I
be a set of primes of K dividing p. Assume that L/K denotes the maximal p-
abelian extension of K which is contained in K and unramified outside I. Then

Gal(L/K) ∼ p-part of (
∏
p∈I

Up) /ψI(E)

∼= (
∏
p∈I

U
(1)
p ) / (ψI(E) ∩

∏
p∈I

U
(1)
p ) ,

where the first map is a pseudo-isomorphism, i.e., a homomorphism with finite
kernel and cokernel (compare Definition 1.19). Here E denotes the set of units

of K, Up and U
(1)
p are the sets of units, respectively, 1-units, in the completion

Kp of K, and ψI(E) denotes the closure (with respect to the product topology
on
∏

p∈I Up) of E under the diagonal embedding ψI : E ↪→
∏

p∈I Up mapping
ε 7→ (ε, . . . , ε).
Moreover, if k ⊆ K denotes a subfield of K such that K/k is galois, and if
σ(I) ⊆ I for every σ ∈ Gal(K/k), then the above pseudo-isomorphism actually
is a homomorphism of Zp[Gal(K/k)]-modules.
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Proof. The proof is analogous to the proofs of the above-mentioned theorems
(which deal with the special case I = I). First of all, since L/K is an abelian
p-extension, class field theory implies that

Gal(L/K) ∼= CK/HL ,

where CK denotes the group of idèle classes of K and HL ⊆ CK is a closed sub-
group associated to L/K (compare, for example, Theorem 14 in the appendix
of [Wa 97]). Moreover, a prime q of K is unramified in L/K if and only if
Uq ·K∗/K∗ ⊆ HL (by the same theorem).

Since K/K is of finite index in the maximal p-abelian p-ramified extension
of K (compare [Wa 97], p. 269), the definition of L implies that Gal(L/K) is
pseudo-isomorphic to (the p-part of) JK/((

∏
p6∈I Up) · K∗), where JK denotes

the group of idèles of K (i.e., CK = JK/K
∗). Here the product runs over all

(finite and infinite) primes p of K that are not contained in I and therefore are
unramified in L/K.

Now we consider the inclusions

JK ⊇ (
∏
p∈I

Up ·
∏
p6∈I

Up) ·K∗ ⊇ (
∏
p6∈I

Up) ·K∗ ,

where the closure is taken with respect to the canonical topology on JK . Note
that (

∏
p Up) · K∗ is a closed subgroup of JK . The quotient of the first two

groups JK/
∏

p∈I Up ·
∏

p6∈I Up ·K∗ is isomorphic to the ideal class group of K
and is therefore finite (see [Neu 92], Theorem VI.1.3). The quotient group of
the last two groups is∏

p∈I
Up ·

∏
p6∈I

Up ·K∗ /
∏
p6∈I

Up ·K∗ ∼=
∏
p∈I

Up / (
∏
p∈I

Up ∩
∏
p6∈I

Up ·K∗) .

In the next lemma, which is the analogon of Lemma 13.5 in [Wa 97], we will
show that ∏

p∈I
Up ∩

∏
p6∈I

Up ·K∗ = ψI(E) ,

where ψI is defined in the statement of Lemma 3.28. This proves the existence
of the desired pseudo-isomorphism.

Moreover, if k ⊆ K is a subfield such that K/k is galois, then also L/k
is galois, by the maximality of L. Since L/K is abelian, Gal(K/k) acts on
Gal(L/K) by conjugation, as in Section 1.3.

Now we describe the action of Gal(K/k) on

UI :=
∏
p∈I

Up ⊆
∏
p∈I

Kp =: KI .

We define an absolute value on KI by letting d(x) := max
p

(|xp|p) for every

x = (xp)p∈I ∈ KI .
By the Approximation Theorem (see [Neu 92], Theorem II.3.4), K ⊆ KI ,

embedded diagonally, is dense with respect to the above absolute value. There-
fore, every element x = (xp)p∈I ∈ KI can be viewed as the limit x = limn xn of a
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sequence of elements xn ∈ K. Let now σ ∈ Gal(K/k). Then σ(x) := limn σ(xn).
We will now show that this is well-defined.

Since every component Kp of KI is complete with respect to the absolute
value | . |p, respectively, we immediately see that KI is complete with respect
to the absolute value d. In particular, a sequence in KI converges with respect
to d if and only if it satisfies the Cauchy condition. The convergence xn −→ x
in KI implies that for every N ∈ N, there exists an integer M ∈ N such that
d(xn − xm) < p−N for every n,m ≥M , i.e.,

xn − xm ∈ pN for each p ∈ I .

But then
σ(xn)− σ(xm) ∈ σ(p)N for each p ∈ I ,

and therefore σ(xn) − σ(xm) ∈ pN for every p ∈ I, since σ(I) ⊆ I for every
σ ∈ Gal(K/k) and therefore in fact σ(I) = I for each σ. This shows that
(σ(xn)) forms a Cauchy sequence with respect to d and therefore converges to
an element σ(x) ∈ KI . Moreover, the limit σ(x) does not depend on the choice
of the sequence xn −→ x, and therefore σ(x) is well-defined.

It is easy to see that this defines a Gal(K/k)-module structure on the
quotient (

∏
p∈I Up)/ψI(E); it suffices to note that ψI(E) ⊆ UI are Gal(K/k)-

submodules of KI .
If q denotes a prime of K and if σ ∈ Gal(K/k), then the Frobenius homo-

morphism of σ(q) is the conjugate of the Frobenius homomorphism of q by a
lift of σ to Gal(L/k) (compare [Rib 01], 25.(B)). Therefore the above pseudo-
isomorphism

Gal(L/K) ∼ p-part of (
∏
p∈I

Up)/ψI(E)

translates the conjugation operation of Gal(K/k) on Gal(L/K) into the action
on (

∏
p∈I Up)/ψI(E), because Artin’s correspondence identifies an idèle

x = (xp)p∈I ∈
∏

p∈I Up
� � // JK

with the ideal
∏

p∈I p
vp(xp) of K (compare [Neu 92], p. 375). Therefore the

pseudo-isomorphism actually is a Zp[Gal(K/k)]-module homomorphism.
It remains to prove the following lemma.

Lemma 3.29. With the above notation, we have∏
p∈I

Up ∩
∏
p6∈I

Up ·K∗ = ψI(E) .

Proof. We modify the proof of Lemma 13.5 in [Wa 97] in order to deal with our
more general situation.

‘⊇’ : By definition, we have ψI(E) ⊆
∏

p∈I Up. We can regard ψI(E) as a
subgroup of U :=

∏
all p

Up in the following sense:

E 3 ε 7→ (ψI(ε)) =

{
ε ∈ Up : p ∈ I
1 ∈ Up : p 6∈ I

}
∈ U .
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Using this identification, we can write

ψI(ε) = (ε) · (ψI(ε)
ε

) ∈ K∗ ·
∏
p6∈I

Up ,

since ψI(ε)
ε has component 1 at all p ∈ I. Taking the closures in

∏
p∈I Up, we

obtain ψI(E) ⊆ K∗ ·
∏

p6∈I Up ∩
∏

p∈I Up.

‘⊆’ : The sets U
(n)
p := {x ∈ Up | x ≡ 1 mod pn} of n-units, n ∈ N,

form a basis of neighbourhoods of the unit element in Up, respectively. Letting

U
(n)
I :=

∏
p∈I U

(n)
p , and denoting by U (n) the image of U

(n)
I in U , respectively

(i.e., putting 1 in all components Up, p 6∈ I), we conclude that

K∗ ·
∏
p6∈I

Up =
⋂
n≥1

(K∗ ·
∏
p6∈I

Up · U (n))

and ψI(E) =
⋂
n≥1

(ψI(E) · U (n)).

It therefore suffices to show that∏
p∈I

Up ∩ (K∗ ·
∏
p6∈I

Up · U (n)) ⊆ ψI(E) · U (n)

for every n ≥ 1. Let x ∈ K∗, u′ ∈
∏

p6∈I Up and u ∈ U (n) be elements such

that x · u′ · u ∈
∏

p∈I Up =: UI . Then we have x · u′ ∈ UI , since u ∈ U (n), and
therefore x · u′ has component 1 at all p 6∈ I. Since u′ ∈

∏
p6∈I Up is a unit at

these places, it follows that x ∈ K∗ is a local unit at every p 6∈ I.
On the other hand, u′ has component 1 at all p ∈ I, and therefore x ·u′ ∈ UI

implies that x is also a unit at the places in I, i.e., x is a local unit at every
place of K and therefore has to be a global unit (see [Neu 92], p.72). But then
x · u′ ∈ ψI(E), since it has component 1 at all p 6∈ I, and since the component
at each p ∈ I is given by the unit x, because u′ ∈

∏
p6∈I Up.

Returning to the proof of Lemma 3.28, we see that it remains to deal with
the second isomorphism. But this canonical isomorphism simply arises from

the fact that for every prime p ∈ I, we have Up
∼= U

(1)
p × Cp, where Cp is a

finite group which does not contribute to the p-part (see [Neu 92], Theorem
II.5.3).

Using the previous results, we will now determine, in some cases, the struc-
ture of the sets EI(K). We will consider number fields K/Q in which the
rational prime p is completely decomposed. In this case it will be rather easy
to obtain information about the size of the sets EI(K) for small I.

Lemma 3.30. Let K be a number field such that the fixed rational prime p
splits completely in K.
(i) If K 6= Q is not imaginary quadratic, then E{pi}(K) = ∅, i = 1, . . . , t.
(ii) If K is imaginary quadratic, then E{pi}(K) contains exactly one element,

i = 1, 2.



80 CHAPTER 3. LOCAL BEHAVIOUR OF IWASAWA INVARIANTS

(iii) Let I ⊆ I be a set such that |I| = 2. Then, under the assumptions of (i),
we have |EI(K)| ≤ 1.

Note that if K is imaginary quadratic and I = I = {p, p}, then of course
|EI(K)| =∞, by (ii) and Lemma 3.18, (iii), since in fact |E(K) \ EI(K)| = 2.

Proof. (i) Let i ∈ {1, . . . , t} be arbitrary, but fixed. Let L(i) ⊆ K be the
maximal p-abelian extension of K that is unramified outside the prime pi.
By Lemma 3.28, we have

Gal(L(i)/K) ∼ p-part of Upi/ψi(E) ∼= U
(1)
pi /(U

(1)
pi ∩ ψi(E)) ,

where we let ψi := ψ{pi} for simplification. Since p is totally decomposed in

K/Q, we have rankZp(U
(1)
pi ) = 1 (see Example 3.21 and [Neu 92], Theorem

II.5.7). Since K 6= Q is not imaginary quadratic, the Z-rank of the set E of
global units ofK equals r1(K)+r2(K)−1 ≥ 1 by Dirichlet’s Unit Theorem,
i.e., E is an infinite set. Therefore also ψi(E) and ψi(E) are infinite, i.e.,

rankZp(ψi(E)) ≥ 1. Since ψi(E) ∩ U
(1)
pi ⊆ U

(1)
pi is a closed subgroup, it

follows that it is of finite index in U
(1)
pi , and therefore Gal(L(i)/K) is finite,

which implies that E{pi}(K) = ∅.
(ii) If K is an imaginary quadratic field, then the arguments used for the

proof of (i) remain valid, except that now the group E is finite. But then

also the ψi(E) are finite sets, and since U
(1)
pi is a Hausdorff space (see

[Neu 92], p. 377), it follows that ψi(E) = ψi(E) has Zp-rank equal to
0. Therefore Gal(L(i)/K) is pseudo-isomorphic to Zp, which proves that
|E{pi}(K)| = 1, i = 1, 2.

(iii) Assume that |EI(K)| ≥ 2 for some ramification set I = {pi, pj}. Let L1

and L2 be two different Zp-extensions of K such that P(L1) = I = P(L2).
Let M := L1 · L2, and consider the inertia subgroup T ⊆ Gal(M/K) of
any prime Pi of M lying above the prime pi ∈ I. By class field theory,
this inertia subgroup T = TPi|pi(M/K) is isomorphic to a quotient of
Upi (compare Example 3.21), which has Zp-rank equal to 1 since p is
totally decomposed in K/Q. Therefore rankZp(T ) ≤ 1, which means that

there exists a Zp-extension M̃ ⊆ M of K contained in the fixed field
MT . In particular, pi is not ramified in M̃/K, and since M̃/K cannot be
unramified, we would conclude that P(M̃) = {pj}, in contradiction to the
fact that E{pj}(K) = ∅, by (i).

We will from now on assume that K is a CM-field.

Lemma 3.31. Let K be a number field, and let p be an odd rational prime that
splits completely in K. Assume that K is a CM-field, and that [K : Q] ≥ 4.

(i) Let I ⊆ I be such that |I| = 2. Then |EI(K)| ≤ 1. In fact, |EI(K)| = 1
for the sets I = {pi, pi} consisting of a pair of complex conjugate primes
of K.
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(ii) More generally, if I ⊆ I is any subset that contains a number of nI ∈ N0

pairs of complex conjugate primes {pi, pi} of K, then rank(ẼI(K)) ≥ nI .
Here the rank is defined to be the Zp-rank of the Galois group Gal(L/K),
where L ⊆ K denotes the maximal p-abelian extension of K such that
P(L) ⊆ I, as in Lemma 3.27.

(iii) If |I| > 2 and nI ≥ 1, then EI(K) 6= ∅ ⇐⇒ |EI(K)| =∞.
(iv) For every I, we have EI(K) 6= ∅ if and only if there exist rI := rank(ẼI(K))

many pairwise independent Zp-extensions in EI(K).

Proof. (i) We have shown in Lemma 3.30, (iii) that |EI(K)| ≤ 1 whenever
|I| = 2. Let now I = {pi, pi}, let K+ denote the maximal real subfield
of K, and let j be a generator of Gal(K/K+) ∼= Z/2Z, i.e., j is induced
by the complex conjugation on C. The automorphism j acts on the unit
group E of K. If E+ denotes the group of units of K+, and if furthermore
E− := {ε ∈ E | j(ε) = ε−1}, then E+ · E− ⊆ E is a subgroup of finite
index, because for each unit ε ∈ E, we have ε2 = ε1+j · ε1−j ∈ E+ · E−.
Since K is a CM-field, we actually know that [E : (W ·E+)] ≤ 2 is finite,
where W denotes the group of roots of unity contained in K (see [Wa 97],
Theorem 4.13). But then also E+ is of finite index in E, since W is a finite
set. Using the notation from Lemma 3.28, this means that also ψI(E

+) is
of finite index in ψI(E).
Recall that we have an action of j on

UI :=
∏
p∈I

Up ⊆
∏
p∈I

Kp =: KI ,

where Kp denotes, as usual, the completion of K with respect to the prime
p. We define an absolute value on KI by letting d(x) := max

p
(|xp|p) for

every x = (xp)p∈I ∈ KI .
Since K/K+ is normal and j(I) = I, we may proceed as in the proof
of Lemma 3.28: Every element x = (xp)p∈I ∈ KI can be viewed as the
limit x = limn xn of a sequence of elements xn ∈ K. We then define
j(x) = jI(x) := limn j(xn).
It is easy to see that the map x 7→ j(x) yields an involution on KI , i.e.,
j(j(x)) = x, j(x+y) = j(x)+j(y) and j(x·y) = j(x)·j(y) for all x, y ∈ KI ,
with component-wise addition and multiplication.
We recall from the proof of Lemma 3.28 that the same construction of a
conjugation isomorphism works for an arbitrary set I ⊆ I which is closed
under conjugation (this means that for every prime p ∈ I, we also have
p ∈ I). This will be used in the proof of (ii) below.
Returning to the case I = {pi, pi}, we look at an element

x = (u, v) ∈ UI = Upi × Upi .

We choose a sequence (xn)n ⊆ K such that x = limn xn. Then we have

xn
| . |pi // u (convergence in Kpi)
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and

xn
| . |pi // v (convergence in Kpi)

simultaneously, by definition of the absolute value d on KI . This implies
that

j(xn)
| . |pi // jpi(u) (convergence in Kpi)

and

j(xn)
| . |pi // jpi(v) (convergence in Kpi)

for elements jpi(v) ∈ Kpi and jpi(u) ∈ Kpi , so jI((u, v)) = (jpi(v), jpi(u)).
In particular, letting

U+
I := {x ∈ UI | jI(x) = x} and U−I := {x ∈ UI | jI(x) = x−1} ,

we see that

U+
I := {x ∈ UI | x = (u, jpi(u))} and U−I := {x ∈ UI | x = (u,

1

jpi(u)
)} ,

since jpi(jpi(u)) = u by construction.
For ε ∈ E+, i.e., j(ε) = ε, we obviously have jI(ψI(ε)) = ψI(ε), since
ψI(ε) ∈ UI ⊆ KI can be represented by the constant sequence (ε). There-
fore ψI(E

+) ⊆ U+
I , and analogously ψI(E

−) ⊆ U−I . In view of Lemma

3.28, we are interested in the Zp-rank of (the p-part of) (Upi×Upi) /ψI(E).
Since p is totally decomposed in K/Q, we know that the Zp-ranks of Upi

and Upi both are equal to 1, and therefore rankZp(Upi × Upi) = 2.
We will explain below that

rankZp(UI /ψI(E))
(?)

≥ rankZp(U
−
I / (ψI(E) ∩ U−I ))

(??)
= rankZp(U

−
I / (ψI(E−) ∩ U−I )) .

Since E− and therefore also ψI(E−) ⊆ U−I are finite, this latter rank is
equal to 1 because (Upi × Upi)

− ∼= Upi via the map (u, 1
jpi (u)) 7→ u. This

proves the existence of a Zp-extension M of K such that P(M) = I, using
Lemma 3.28 and noting that ẼI(K) = EI(K) by Lemma 3.30, (i).
The inequality (?) is obvious in view of the surjective homomorphism

ϕ : UI /ψI(E) −→ U−I / (ψI(E) ∩ U−I )

induced by the inclusion U−I ⊆ UI . Finally, the equality of ranks (??)

results from the fact that ψI(E+) ∩ U−I ⊆ U+
I ∩ U

−
I is finite.

(ii) This is proved analogously. We consider (the p-part of) UI/ψI(E), with

I = {p1, p1, . . . , pnI , pnI︸ ︷︷ ︸
=: Ĩ

, pnI+1, . . . , ps}
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and

UI =

nI∏
i=1

Upi × Upi︸ ︷︷ ︸
=: UĨ

·
s∏

i=nI+1

Upi ⊆ KI =
∏
p∈I

Kp .

The absolute value d(x) := maxp∈I |xp|p, x = (xp)p∈I ∈ KI , induces an
absolute value on KĨ . Then we consider the conjugation map jĨ on the

subgroup UĨ ⊆ UI , which may be defined as in (i), since Ĩ is closed under
complex conjugation.
We define

U+
Ĩ

:= {x ∈ UĨ | jI(x) = x}

and

U−
Ĩ

:= {x ∈ UĨ | jI(x) = x−1} .

Since multiplication is defined component-wise, the equation jI(x) = x±1

is equivalent to the system of corresponding equations in the components
Upi×Upi , i = 1, . . . , nI . These conditions in turn are equivalent to (xpi , xpi)
being of the form (xpi , jpi(xpi)), respectively,(xpi ,

1
jpi (xpi )

), as shown in the

proof of (i).

In particular, U−
Ĩ
∼=

nI∏
i=1

Upi via the isomorphism ϕĨ mapping

(xp1 ,
1

jp1(xp1)
, xp2 ,

1

jp2(xp2)
, . . . , xpnI ,

1

jpnI (xpnI )
) ∈ U−

Ĩ

to the element (xp1 , . . . , xpnI ).
Using similar arguments as in the proof of (i), we obtain

rankZp(UI /ψI(E))
(1)

≥ rankZp(UĨ /ψĨ(E))

(2)

≥ rankZp(U
−
Ĩ
/ (ψĨ(E) ∩ U−

Ĩ
))

(3)
= rankZp(U

−
Ĩ
/ (ψĨ(E

−) ∩ U−
Ĩ

))

(4)
= rankZp(U

−
Ĩ

)
(5)
= nI ,

where the inequalities (1) and (2) are based on the surjections

UI /ψI(E) −→ UĨ /ψĨ(E) −→ U−
Ĩ
/ (ψĨ(E

−) ∩ U−
Ĩ

) ,

and the rank identities hold since
(3) ψĨ(E

+) ⊆ U+
Ĩ

, U+
Ĩ
⊆ UĨ is closed, and U+

Ĩ
∩ U−

Ĩ
is finite,

(4) ψĨ(E
−) is finite because E− is finite, and

(5) we have the isomorphism ϕĨ : U−
Ĩ
−→

nI∏
i=1

Upi , and each of the groups

Upi has Zp-rank equal to 1, since p is totally decomposed in K/Q.
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(iii) Let I ⊆ I be such that |I| > 2, nI ≥ 1 and EI(K) 6= ∅. Let {pi, pi}
denote a pair of complex conjugate primes contained in I, and consider
Zp-extensions L1 ∈ EI(K) and L2 ∈ E{pi,pi}, the latter being non-empty
by (i). Using Lemma 3.19, (ii), we find infinitely many Zp-extensions M̃
of K contained in L1 · L2 such that P(M̃) = I ∪ {pi, pi} = I.

(iv) Let M ∈ EI(K). Let L2, . . . , LrI ∈ ẼI(K) be such that M,L2, . . . , LrI are
pairwise independent Zp-extensions of K. Then Li 6⊆

∏
j 6=i L

j for every

1 ≤ i ≤ rI , where we let L1 := M .
Using Lemma 3.19, (ii), we see that P(N) = I for almost every Zp-
extension N contained in M · L2. Therefore, L2 may be replaced by an
extension L̃2 satisfying P(L̃2) = I such that L̃2 ·M ⊆ L2 ·M is of finite
index. Inductively, we may replace L3, . . . , LrI by independent elements
of EI(K).

We will conclude the present section by putting some emphasis on the special
role of the cyclotomic Zp-extension. Assume that K denotes a CM-field for
which Leopoldt’s Conjecture is true (e.g., assume that K/Q is abelian). In
this case, there exist exactly d = r2(K) + 1 pairwise linearly independent Zp-
extensions of K (compare Theorem 1.7). Let us assume that [K : Q] ≥ 4. As
before, p is assumed to be totally split in K/Q; for the sake of simplicity, we
will assume that p 6= 2.

We write I = {p1, p1, . . . , pt, pt}, t = [K:Q]
2 = r2(K). Lemma 3.31, (i) shows

that for every i ∈ {1, . . . , t}, there exists exactly one Zp-extension M i ∈ E(K)
with P(M i) = {pi, pi}. Let Ω−(K) := M1 ·. . .·M t denote the composite of these

Zp-extensions of K. Then Gal(Ω−(K)/K) ∼= Z
r2(K)
p , since the M i are pairwise

linearly independent because of their disjoint ramification sets. We will now
show that in Ω−(K), complex conjugate primes always ramify simultaneously:

Lemma 3.32. Assume that L ⊆ Ω−(K) is a Zp-extension of K. If some prime
ideal pi ∈ I ramifies in L/K, then also pi ramifies in L/K.

Proof. Assume that pi ∈ P(L), but pi 6∈ P(L). The composite M := L ·
∏
k 6=i

Mk

satisfies Gal(M/K) ∼= Z
r2(K)
p , since L cannot be contained in

∏
k 6=i

Mk because

pi ∈ P(L). Moreover, as pi ramifies in M i/K and at the same time is unramified
in M = L ·

∏
k 6=i

Mk, it follows that M i 6⊆M . Since M i ·M ⊆ Ω−(K), we obtain

the contradiction Gal(Ω−(K)/K) ∼= Z
r2(K)+1
p .

Lemma 3.33. The cyclotomic Zp-extension K∞ of K satisfies

K∞ ∩ Ω−(K) = K .

Proof. As usual, we denote by K the composite of all Zp-extensions of K. Then
K/K is abelian with Galois group G = Gal(K/K) ∼= Zdp. By infinite Galois
theory, K∞ ⊆ K and Ω−(K) ⊆ K uniquely determine two closed subgroups
H1, H2 ⊆ G fixing them, respectively.
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Embedding the algebraic extension K/K into the algebraic closure C of K,
we may consider the restriction to K of the complex conjugation map j. If
L ⊆ K denotes a Zp-extension of K, then j(L) is a Zp-extension of j(K) = K,
and thus j(L) ⊆ K. This shows that j(K) ⊆ K.

j acts on G by conjugation, since K is a CM-field and therefore j(K) = K.
Let G+ := {g ∈ G | j(g) = g} and G− := {g ∈ G | j(g) = g−1}. Then
G = G+ ⊕G−, since p 6= 2.

We will show that G− is contained in the subgroup H1 of G fixing K∞. If
this was not true, then there would exist an element ϕ ∈ Gal(K∞/K) = G/H1

such that ϕ 6= id and j ◦ ϕ ◦ j−1 = ϕ−1, where j here means the restriction to
K∞. Let l ∈ N0 be the largest integer such that K contains a primitive pl-th
root of unity ζpl .

If l ≥ 1, then K∞ =
⋃
n≥0Kn with Kn = K(ζpl+n), and ϕ ∈ Gal(K∞/K) is

uniquely determined through its values ϕ(ζpl+n) = ζun
pl+n

with un ∈ (Z/pl+nZ)∗

satisfying un ≡ 1 mod pl, respectively. But (j ◦ ϕ ◦ j−1)(ζpl+n) = ϕ(ζpl+n) for
every n, and therefore j ◦ ϕ ◦ j−1 = ϕ. Therefore ϕ−1 = ϕ, i.e., ϕ2 = id, and
thus ϕ = id, because −1 6≡ 1 mod pl, recalling that p 6= 2.

If l = 0, then [K(ζpn+1) : Kn] = [K(ζp) : K] for every n ∈ N, and
Gal(Kn/K) is a quotient of the cyclic group Gal(K(ζpn+1)/K), respectively.
Every τn ∈ Gal(K(ζpn+1)/K) satisfies j ◦ τn ◦ j−1 = τn by the above, so that
j ◦ ϕn ◦ j−1 = ϕn for every ϕn ∈ Gal(Kn/K). Since K∞ =

⋃
n≥0Kn, it follows

that j ◦ϕ ◦ j−1 = ϕ for every ϕ ∈ Gal(K∞/K), and we may continue as before.

We have therefore shown that H1 contains G−. On the other hand,

Gal(Ω−(K)/K) ∼ (p-part of) U−I /ΨI(E−) ,

by construction of the fields M i in Lemma 3.31, (i). Therefore j ◦ϕ◦j−1 = ϕ−1

for every ϕ ∈ Gal(Ω−(K)/K), since the pseudo-homomorphism is compatible
with j ∈ Gal(K/K+), by Lemma 3.28. This proves that G+ is contained in the
subgroup H2 of G fixing Ω−(K).

In particular, since G+⊕G− = G, it follows that H1+H2 = G, and therefore
K∞ ∩ Ω−(K) = K.

Corollary 3.34. Using the notation from the above proof, we have

K = K∞ · Ω−(K) = K∞ ·M1 · . . . ·M t .

In particular, K∞ = KH1 = KG− and Ω−(K) = KH2 = KG+
.

Proof. By definition, K is the composite of all Zp-extensions of K. Since we
assume that Leopoldt’s Conjecture holds for K, we know that Gal(K/K) ∼= Zdp
with d = r2(K) + 1 (compare Theorem 1.7). Therefore the corollary follows

from Lemma 3.33 and the fact that Gal(Ω−(K)/K) ∼= Z
r2(K)
p .

Indeed, if K∞ ·Ω−(K) $ K, then the closed subgroup H1∩H2 ⊆ Gal(K/K)
was non-trivial, and therefore rankZp(H1 ∩H2) ≥ 1. But then

rankZp(Gal((K∞ · Ω−(K))/K)) = rankZp(G/(H1 ∩H2)) ≤ r2(K) .
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On the other hand, K∞ ∩ Ω−(K) = K by Lemma 3.33, and therefore

Gal((K∞ · Ω−(K))/K) ∼= Zr2(K)+1
p ,

yielding a contradiction.

Theorem 3.35. Suppose that K denotes a CM-field, [K : Q] ≥ 4, and that p
splits completely in K/Q. We assume that Leopoldt’s Conjecture is valid for K.
For each I ⊆ I, we let r(I) denote the number of primes p ∈ I such that p 6∈ I,
and we let n(I) be the number of pairs {p, p} contained in I.
(i) Suppose that M ∈ E(K) satisfies M 6⊆ Ω−(K) and r(P(M)) = 0. Then

P(M) = I. In other words, if r(P(M)) = 0 and P(M) 6= I, then
M ⊆ Ω−(K).

(ii) EI(K) 6= ∅ for every I ⊆ I with |I| = |I| − 1. In particular, we have
rank(ẼI(K)) = r2(K) for such I.

(iii) rank(ẼI(K)) = nI for every ∅ 6= I $ I with r(I) = 0.
(iv) Let ∅ 6= I ⊆ I satisfy r(I) > 0. Then EI(K) 6= ∅ if and only if

|I| = |I| − r(I).

Proof. (i) Let I := P(M), let M I denote the composite of all Zp-extensions of
K contained in ẼI(K). We assume that I 6= I. Let H ⊆ G = Gal(K/K)
denote the subgroup fixing M I . Since M 6⊆ Ω−(K), the intersection
G+ ∩ H is finite (note that rankZp(G

+) = 1, because δ(K) = 0). Since

G ∼= Z
r2(K)+1
p does not contain any element of finite order, we may in fact

assume that G+ ∩ H = {1}.
On the other hand, the assumption that I 6= I implies that K∞ 6⊆M I , so
that H is not contained in G−. This means that there exists an element

g = x · y ∈ H ⊆ G = G+ ⊕G−

such that x ∈ G+, x 6∈ H, and y ∈ G−, y 6∈ H.
Now we consider the cosets [x], [y] of x and y in Gal(M I/K) ∼= G/H.
Since [x ·y] = [1], it follows that [x−1] = [y] in Gal(M I/K). If L ∈ ẼI(K),
then j(L) is a Zp-extension of j(K) = K with P(j(L)) ⊆ I, using the fact
that r(I) = 0. Therefore M I is invariant under complex conjugation, so
that j acts on Gal(M I/K). Moreover,

[y]−1 = j([y]) = j([x−1]) = [x−1] = [y] ,

and therefore [y]2 = [1]. But then [y] = [1], since Gal(M I/K) is a free Zp-
module of rank equal to rank(ẼI(K)), and therefore y ∈ H, contradiction.
This shows that either H ⊆ G− (so that K∞ ⊆ M I and I = I), or
M ⊆ Ω−(K).

(ii) Assume that |I| = |I| − 1, and let p ∈ I, p 6∈ I. By Lemma 3.31, (i),
there exists a Zp-extension M of K such that P(M) = {p, p}. Now we
consider the composite K∞ ·M with the cyclotomic Zp-extension K∞ of
K. Since p is totally decomposed in K/Q, there exists N ⊆ K∞ ·M such
that p 6∈ P(N) (compare Lemma 3.19, (ii)). Moreover, q ∈ P(N) for every
q 6∈ {p, p} by the same lemma, since P(K∞) = I.
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If p was not contained in P(N), then r(P(N)) = 0. However, N 6⊆ Ω−(K),
since M ⊆ Ω−(K) and K∞ ∩ Ω−(K) = K, and therefore (i) would imply
that P(N) = I, contradiction. Therefore p ∈ P(N), i.e., P(N) = I.
We will now prove that rank(ẼI(K)) = r2(K). We first note that

rank(ẼI(K)) ≥ r2(K)− 1 ,

by Lemma 3.31, (ii). Since we have shown that EI(K) 6= ∅, we actually
know that rank(ẼI(K)) ≥ r2(K). But

r2(K) + 1 = rank(ẼI(K)) ≥ rank(ẼI(K)) + 1 ,

because the cyclotomic Zp-extension of K is ramified at p and therefore
is not contained in ẼI(K).

(iii) Suppose first that r(I) = 0 and nI = r2(K)− 1. Then |I| = |I| − 2, and
I = I ∪ {p, p} for a suitable prime p. By (ii), we have

rank(ẼI∪{p}(K)) = r2(K)

and
rank(ẼI(K)) < rank(ẼI∪{p}(K)) ,

since EI∪{p}(K) 6= ∅. Therefore rank(ẼI(K)) ≤ r2(K) − 1. On the other
hand, rank(ẼI(K)) ≥ r2(K)− 1 = nI , by Lemma 3.31, (ii).
Let now I ⊆ I denote an arbitrary subset satisfying r(I) = 0. We may
assume that nI < r2(K)− 1. Let I ′ ⊇ I denote any subset of I satisfying
r(I ′) = 0 and |I ′| = |I| − 2. On the one hand, rank(ẼI(K)) ≥ nI by
Lemma 3.31, (ii). On the other hand,

rank(ẼI(K)) ≤ rank(ẼI′(K))− (r2(K)− 1− nI) ,

since every ‘new’ pair {p, p} raises the rank by one, using Lemma 3.31, (i).
The statement now follows from the fact that rank(ẼI′(K)) = r2(K)− 1.

(iv) Let us first assume that EI(K) 6= ∅, but |I| < |I|−r(I). Then there exists
at least one pair {p, p} ⊆ I such that both p and p are not contained in
I. We may assume that there exists in fact exactly one such pair:
If {p1, p1}, . . . , {ps, ps} denote all the pairs in I \ I, then we consider
I ′ := I ∪ {p2, p2, . . . , ps, ps}. Then EI′(K) 6= ∅, which can be proved
inductively using Lemma 3.31, (i). Moreover, |I ′| < |I| − r(I ′), because
of {p1, p1}. It would therefore be sufficient to derive a contradiction for I ′

instead of I.
Since EI(K) 6= ∅, by assumption, we know that rank(ẼI(K)) ≥ nI + 1,
because r(I) > 0. If pnI+1, pnI+2, . . . , pnI+r ∈ I, r = r(I), denote the
primes whose complex conjugates pnI+j , 1 ≤ j ≤ r, are not contained in
I, respectively, then we may inductively conclude that

rank(ẼI∪{pnI+1,...,pnI+j}(K)) ≥ nI + 1 + j

for every j, by using the existence of suitable MnI+j ∈ E{pnI+j ,pnI+j}(K),
guaranteed by Lemma 3.31, (i), respectively. In particular, if we define
I ′ := I ∪ {pnI+1, . . . , pnI+r}, then

rank(ẼI′(K)) ≥ nI + 1 + r = nI′ + 1 ,
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in contradition to (iii) (note that I ′ 6= I, since p and p are missing).
Let us now assume that |I| = |I| − r, r = r(I). We will prove the
statement via induction on r. If r = 1, then EI(K) 6= ∅ by (ii). Let us
assume that the statement is true for some r′ ≥ 1. If r(I) = r′ + 1 and
|I| = |I| − (r′ + 1), then we choose any prime p ∈ I such that p 6∈ I, and
we define I ′ := I ∪ {p}. Since r(I ′) = (r′ + 1)− 1 > 0 and |I ′| = |I| − r′,
the induction hypothesis implies that EI′(K) 6= ∅.
We now consider the composite of some M ∈ EI′(K) with an extension
M ′ ∈ E{p,p}(K), which exists by Lemma 3.31, (i). Then there exists a
Zp-extension N ⊆M ·M ′ of K such that P(N) ⊆ I = I ′ \ {p}. Moreover,
I ′ \ {p, p} ⊆ P(N), since M ′ is unramified outside {p, p}.
If P(N) = I ′ \ {p, p}, then r(P(N)) = r′ ≥ 1, but

|P(N)| = |I ′| − 2 = |I| − r′ − 2 ,

so that we obtain a contradiction to the first part of (iv). Therefore

P(N) = I ′ \ {p} = I ,

i.e., EI(K) 6= ∅.

Remarks 3.36.

(1) The last part of Theorem 3.35 shows that in a given Zp-extension of K, for
every pair {p, p}, at least one of the two primes ramifies.

(2) A special case of Theorem 3.35, (iv) is the following: If pi 6= pj ∈ I are not
complex conjugates, then E{pi,pj}(K) = ∅ as soon as [K : Q] > 4. Moreover,
Theorem 3.35, (iv) also generalises the first two statements of Lemma 3.30.

(3) If Leopoldt’s Conjecture is not true for K, then K/K is a Z
r2(K)+1+δ(K)
p -

extension, with δ(K) > 0. We let K̃ := K∞ · Ω−(K), where, as usual, K∞
denotes the cyclotomic Zp-extension of K.
Ω−(K) is the composite of Zp-extensions M1, . . . ,M r2(K) of K such that
P(M i) = {pi, pi}, respectively, as defined in Lemma 3.31. In particular,
j(M i) = M i for every i, because rank(Ẽ{pi,pi}(K)) ≤ 1 by Lemma 3.31, (i).
Therefore j(Ω−(K)) = Ω−(K) and j(K∞) = K∞, i.e., j(K̃) = K̃.
G+ ⊆ G = Gal(K/K) still equals the subgroup fixing Ω−(K) ⊆ K̃, but we
now have rank(G+) = δ(K) + 1. Moreover, G− now is properly contained
in the subgroup of G fixing K∞.
If we define G̃ := Gal(K/K̃) ⊆ G, then j acts on Gal(K̃/K) ∼= G/G̃, since
j(G̃) = G̃, and

G/G̃ ∼= (G/G̃)+ ⊕ (G/G̃)− .

Note that K̃ is a Z
r2(K)+1
p -extension of K which is an analogue of K/K for

the case of δ(K) > 0. If we replace rank(ẼI(K)) by rank(ẼI,⊆ K̃(K)) in
Theorem 3.35 (i.e., we only consider Zp-extensions of K that are contained
in K̃), then the statements of the theorem carry over to this more general
situation.
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(4) In the setting of (3), we define K+ := KG− , so that

Gal(K+/K) ∼ (p-part of) (UI/ψI(E))+ ,

using the notation introduced in the proofs of Lemma 3.28 and Lemma 3.31.
If δ(K) > 0, and if I ⊆ I satisfies r(I) = 0 and nI > r2(K) − 1 − δ(K),
then

rankZp(U
+
I /(ψI(E) ∩ U+

I )) ≥ 1

and in fact

rank(ẼI,⊆K+
(K)) ≥ nI − (r2(K)− 1− δ(K))

(compare the proof of Lemma 3.31, (ii)).
(5) Suppose that I ⊆ I satisfies r(I) = |I| = r2(K) − 1. Then we have

rank(ẼI(K)) = δ(K).

Proof. Since |I| + r(I) < |I| = 2 · r2(K), Theorem 3.35, (iv) implies that

EI,⊆ K̃(K) = ∅ (K̃ has been defined in (3)). Moreover, this is also true for
every subset ∅ 6= I ′ ⊆ I, since |I ′| = r(I ′) > 0 and

|I ′|+ r(I ′) ≤ |I|+ r(I) < |I|

for every such I ′. This means that rank(ẼI,⊆ K̃(K)) = 0, and therefore
rank(ẼI(K)) ≤ δ(K).

On the other hand, rank(ẼI(K)) = rankZp(U
(1)
I /(ψI(E)∩U (1)

I )), by Lemma

3.28. Here U
(1)
I :=

∏
p∈I U

(1)
p . But

rankZp(ψI(E) ∩ U (1)
I ) ≤ rankZp(ψI(E)) ≤ r2(K)− 1− δ(K)

and rankZp(U
(1)
I ) = |I|, so that

rank(ẼI(K)) ≥ |I| − r2(K) + δ(K) + 1 = δ(K) .

(6) If [K : Q] ≥ 4, then the Leopoldt defect δ(K) is strictly smaller than
r2(K)−1: Otherwise, rankZp(ψI(E)) = 0, in contradiction to the fact that
E ↪→ ψI(E) is infinite.

(7) If δ(K) = r2(K)− 2, then rank(ẼI(K)) = |I| − 1 for every subset I ⊆ I.

Proof. As we have seen in the proof of (5), we have rank(ẼI(K)) ≥ |I| − 1
for each I. In view of Lemma 3.30, (i), this means that in particular,
EI(K) 6= ∅ for every I with |I| = 2. But this implies that

2 · r2(K)− 1 = r2(K) + 1 + δ(K)

= rank(ẼI(K))

≥ rank(ẼI(K)) + (|I| − |I|)

for every I with |I| ≥ 2: Let p̃ ∈ I, let p ∈ I denote any prime ideal
that is not contained in I. The fact that E{p,p̃}(K) 6= ∅ then implies that
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rank(ẼI∪{p}(K)) ≥ rank(ẼI(K)) + 1. Inductively, we obtain the stated
inequality. This implies that

rank(ẼI(K)) ≤ 2 · r2(K)− 1− |I|+ |I|
= 2 · r2(K)− 1− 2 · r2(K) + |I| = |I| − 1 .

3.3 Local boundedness results

We have started the investigations of the local behaviour of Iwasawa invariants,
at the beginning of the current chapter, with a discussion of the following result
(see Theorem 3.2). If K contains only one prime dividing p, and if L/K is a
Zp-extension, then the following holds:
• If µ(L/K) = 0, then the µ-invariant vanishes on a whole neighbourhood

of L.
• If µ(L/K) = λ(L/K) = 0, then all the three Iwasawa invariants are

constant in any sufficiently small neighbourhood of L.
These statements are formulated with respect to Greenberg’s topology, which
has been introduced in Section 2.3.

In the current section, we will prove our main results concerning local prop-
erties of Iwasawa’s invariants, with respect to the Greenberg-R-topology intro-
duced in the preceding section. We will use our generalisation 3.6 of Fukuda’s
Theorem.

We will first consider two problems:
Let L/K be any Zp-extension.

Question 1. Is µ locally bounded, i.e., is there a neighbourhood U ⊆ E(K)
of L such that µ(M/K) ≤ C <∞ for some fixed constant C and every M ∈ U?

Question 2. Suppose that µ(L/K) = 0. Is λ locally bounded, i.e., is there
a neighbourhood U ⊆ E(K) of L such that λ(M/K) ≤ C < ∞ for some fixed
constant C and every M ∈ U?

These questions have been answered partially by R. Greenberg for a spe-
cial subset of Zp-extensions, with respect to the Greenberg topology (compare
Theorems 2.27-2.30).

Our method of proof, using Theorem 3.6, will be completely different from
Greenberg’s approach.

At the end of his article [Gr 73], Greenberg supposed that maybe, under
appropriate assumptions, µ, respectively, λ, are not only locally bounded, but
in fact locally maximal. We will be able to prove these statements (compare
Theorem 3.57 below). We will also prove a result bounding the p-adic valuation
of the constant coefficients of characteristic polynomials.

3.3.1 µ = 0 =⇒ λ is locally bounded

We will start with Question 2, because it is more easy to answer. We first recall

some notation. For every n ≥ 0, we let An = A
(L)
n be the p-Sylow subgroup



3.3. LOCAL BOUNDEDNESS RESULTS 91

of the ideal class group of the unique subfield Ln ⊆ L of degree pn over K,
respectively. Let A = lim←−An. We have shown in Section 1.3 that A is a finitely
generated torsion Λ-module.

Therefore we have a pseudo-isomorphism

ϕ : A
∼−→ EA :=

(
s⊕

i= 1

Λ/(pni)

)
⊕

 t⊕
j= 1

Λ/(fj(T )lj )


with distinguished irreducible polynomials fj(T ) ∈ Zp[T ], j = 1, . . . , t, by The-
orem 1.24, and there is also a pseudo-isomorphism ψ : EA

∼−→ A, since both
modules are finitely generated and Λ-torsion (compare Remarks 1.20, (2)). Fur-
thermore, we have µ(L/K) =

∑s
i=1 ni and λ(L/K) =

∑t
j=1 lj ·deg(fj(T )); see

Proposition 1.28.
Now assume that µ(L/K) = 0.

Lemma 3.37. Let K be a number field, let L/K be a Zp-extension such that
µ(L/K) = 0. Then there exists an integer n ∈ N such that λ is bounded on
U(L, n), i.e., λ(M/K) ≤ C for some fixed constant C <∞ and every element
M ∈ U(L, n).
Here U(L, n) = {M ∈ E(L, n) | P(M) ⊆ P(L)}, as in Section 3.2.

Proof. Since µ(L/K) = 0, there are pseudo-isomorphisms

ϕ : A
∼−→ EA :=

t⊕
j=1

Λ/(fj(T )lj )

and ψ : EA
∼−→ A. Since EA does not contain any non-trivial finite sub-

modules (compare Remarks 2.25, (2)), the map ψ actually is an injection hav-
ing finite cokernel, so that A ∼= M1 ⊕ Zrp as Zp-module, with M1 finite and
r = rankZp(EA) (compare Proposition 1.45, (ii)). In particular,

rankp(EA) = dimFp(EA/(p · EA)) = dimFp(
t⊕

j=1

Λ/(p, fj(T )lj ))

= dimFp(
t⊕

j=1

Λ/(p, T deg(fj(T ))·lj )) ,

since we have an equality

|Λ/(p, fj(T )lj )| = |Λ/(p, T deg(fj(T ))·lj )| ,

which results from the fact that the fj(T )lj are distinguished polynomials, see
Definition 1.11. Therefore

rankp(EA) =

t∑
j=1

deg(fj(T )) · lj = λ(L/K)

is bounded by rankp(A). This rank is finite, since we assumed that µ(L/K) = 0.
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Now we choose an integer n ≥ e(L/K) such that rankp(A
(L)
n ) = rankp(A

(L)
n+1).

Then µ(M/K) = 0 and

rankp(A
(M)) = rankp(A

(L)) < ∞

for every M ∈ U(L, n + 1), by Theorem 3.6, (ii), since e(M/K) = e(L/K) for
these M by Corollary 3.22. In particular,

λ(M/K) ≤ rankp(A
(M)) = rankp(A

(L)) < ∞

for every M ∈ U(L, n).

Corollary 3.38. Let L/K be a Zp-extension such that µ(L/K) = 0. Assume

that the Λ-module A(L) = lim←−A
(L)
n does not contain any nontrivial finite Λ-

submodule. Then there exists an integer n ∈ N such that λ(M/K) ≤ λ(L/K)
for every M ∈ U(L, n) (i.e., λ is locally maximal).

Proof. By assumption onA(L), the Λ-module homomorphism ϕ : A(L) −→ EA(L)

has to be an injection. In particular, rankp(A
(L)) = rankp(EA(L)), since we al-

ready know that rankp(EA(L)) ≤ rankp(A
(L)) (compare the proof of Lemma

3.37). Choose n as in the previous lemma. Then

λ(M/K) ≤ rankp(A
(M)) = rankp(A

(L)) = rankp(EA(L)) = λ(L/K)

for every M ∈ U(L, n).

Remark 3.39. The assumption that A(L) does not contain any nontrivial finite
Λ-submodule is equivalent to the condition that rankp(A

(L)) = rankp(EA(L)).
In Section 3.3.3, we will prove the result of the corollary for arbitrary Zp-
extensions L/K with µ(L/K) = 0. In Section 3.5, we will give another proof
of this result.

3.3.2 µ is locally bounded

We will now consider the µ-invariant and study the first of the two questions
raised at the beginning of this section.

Let L/K be a Zp-extension. We will first consider the case λ(L/K) = 0.
Then

EA =
s⊕

i= 1

Λ/(pni) ∼=
s⊕
i=1

(Zp/p
niZp)[[T ]] ∼=

s⊕
i=1

(Z/pniZ)[[T ]] .

The idea is to look at the module A/(T ·A), since

EA/(T · EA) =
s⊕

i= 1

Λ/(T, pni) ∼=
s⊕
i=1

Zp/p
niZp ∼=

s⊕
i=1

Z/pniZ

is a finite abelian group of order pµ(L/K). If N denotes any Λ-module, then we
define

rankT (N) := vp(|N/(T ·N)|) ,
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provided that the right hand side is finite. Here vp denotes the usual p-adic
valuation (i.e., vp(p) = 1). Then

rankT (EA) = µ(L/K) .

Let M1 denote the kernel of the pseudo-isomorphism ϕ : A −→ EA, which
is a finite abelian p-group. Then ϕ(A/M1) =: ẼA ⊆ EA is a submodule of finite
index.

We will show below (compare Proposition 3.41) that

rankT (ẼA) = rankT (EA)

and that
rankT (ẼA) = rankT (A/M1) ≤ rankT (A) .

This means that µ(L/K) = rankT (EA) is bounded by rankT (A). We will
use our generalisation of Fukuda’s Theorem (Theorem 3.6) and the Quotient
Lemma 3.10 in order to find a neighbourhood U(L, n) such that rankT (A(M))
is bounded in U(L, n). This will then also bound the µ-invariants µ(M/K),
M ∈ U(L, n).

In the case of non-vanishing λ(L/K), we have

EA =

(
s⊕

i= 1

Λ/(pni)

)
⊕

 t⊕
j= 1

Λ/(fj(T )lj )

 .

Again, A/M1 is isomorphic to some submodule ẼA ⊆ EA of finite index. How-
ever, EA/(T ·EA) will only be finite if T does not divide the characteristic poly-
nomial

∏t
j=1 fj(T )lj of A. In order to nevertheless bound µ(L/K) in terms of

an invariant attached to the Λ-module A, we have to more generally consider
suitably chosen distinguished polynomials f(T ), coprime to the characteristic
polynomial of A, instead of T . This motivates the following

Definition 3.40. Let f(T ) ∈ Λ denote a distinguished polynomial; define the
f-rank of a Λ-module A to be

rankf (A) := vp(|A/(f(T ) ·A)|) ,

whenever this is finite. Otherwise, we let rankf (A) :=∞.

Proposition 3.41. Let f(T ) ∈ Λ denote a distinguished polynomial. Then the
following statements hold:
(i) Suppose that p ∈ Λ denotes an irreducible element that is coprime to f(T ).

If Ĉ ⊆ Λ/(pn), n ∈ N, denotes a Λ-submodule of finite index, then

rankf (Ĉ) = rankf (Λ/(pn)) < ∞ .

(ii) More generally, let E :=
s⊕
i=1

Λ/(pnii ) be an elementary torsion Λ-module

such that pn1
1 · . . . ·pnss is coprime to f(T ), and let Ẽ ⊆ E be a Λ-submodule

of finite index. Then

rankf (Ẽ) = rankf (E) < ∞ .
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(iii) Let A,B denote Λ-modules such that at least one of the ranks rankf (A),
rankf (B) is finite. Assume that there exists a Λ-module isomorphism

ϕ : A
∼−→ B .

Then both rankf (A) and rankf (B) are finite, and

rankf (A) = rankf (B) .

(iv) Let A denote a Λ-module such that rankf (A) is finite. Then

rankf (A/M) ≤ rankf (A)

for every Λ-submodule M of A.
(v) If a Λ-module A ∼= B1 ⊕ B2 is isomorphic to the direct sum of two

Λ-modules B1 and B2, and if rankf (B1) and rankf (B2) are finite, then
rankf (A) is also finite, and

rankf (A) = rankf (B1) + rankf (B2) .

Proof. We will give an abstract proof using the following notation (which ge-
neralises Exercise 13.12 in [Wa 97]):

Definition 3.42. Let λ ∈ Λ. For any Λ-module N , we let

N [λ] := {x ∈ N | λ · x = 0} ,

and we define Qλ(N) := |N [λ]|
|N/(λ·N)| , whenever both orders are finite.

Proposition 3.43.

(i) If N is finite, then Qλ(N) = 1.
(ii) If

0 −→ N1 −→ N2 −→ N3 −→ 0

is an exact sequence of Λ-modules, then Qλ(N2) = Qλ(N1) ·Qλ(N3), i.e.,
whenever two of the Qf (Ni) are finite, then so is the third, and then
equality holds.

Proof. (i) It is easy to see that the action of λ ∈ Λ on N induces a Λ-module
isomorphism N/N [λ] ∼= λ ·N . Therefore, since N is finite,

|N/(λ ·N)| = |N [λ]| .
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(ii) We apply the Snake Lemma to the commutative diagram

N1[λ]

��

N2[λ]

��

N3[λ]

��

0 // N1

·λ
��

// N2

·λ
��

// N3

·λ
��

// 0

0 // N1

��

// N2

��

// N3

��

// 0

N1/(λ ·N1)

��

N2/(λ ·N2)

��

N3/(λ ·N3)

��

0 0 0

and obtain a long exact sequence

0 // N1[λ] // N2[λ] // N3[λ]

// N1/(λ ·N1) // N2/(λ ·N2) // N3/(λ ·N3) // 0 .

If at least two of the factors Qλ(Ni) are defined, then the corresponding
four modules in the long exact sequence are finite. In each of the three
possible cases, this implies that in fact all six abelian groups occurring in
the exact sequence are finite. Moreover, we may conclude that

1 =
|N1[λ]|
|N2[λ]|

· |N3[λ]|
|N1/λN1|

· |N2/λN2|
|N3/λN3|

=
Qλ(N1) ·Qλ(N3)

Qλ(N2) .

We will now start with the proof of Proposition 3.41.

(i) It is easy to see that rankf (Ĉ) and rankf (Λ/(pn)) are finite (this will be

justified more generally in (ii)). Since Ĉ ⊆ Λ/(pn) is of finite index, we
have an exact sequence

0 // Ĉ // Λ/(pn) // (Λ/(pn))/Ĉ // 0 ,

and N := (Λ/(pn))/Ĉ is finite. Then Qf (Ĉ) = Qf (Λ/(pn)), using Propo-
sition 3.43, (i) and (ii).
But (Λ/(pn))[f ] = {0}, because p and f(T ) are coprime elements in the
unique factorisation domain Λ. Moreover, Ĉ ⊆ Λ/(pn), and therefore also
Ĉ[f ] = {0}. But this means that

Qf (Ĉ) = p−rankf (Ĉ) and Qf (Λ/(pn)) = p−rankf (Λ/(pn)) .
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(ii) We first note that rankf (E) and rankf (Ẽ) are finite, since f(T ) is coprime
to each pi. Indeed, rankf (Λ/(pnii )) is finite for every i ∈ {1, . . . , s}, by
Lemma 1.17, (i). Therefore

rankf (E) =
s∑
i=1

rankf (Λ/(pnii ))

is also finite, making use of (v) below. Moreover, Λ/(f, pn1
1 · . . . · pnss ) is

finite, again by Lemma 1.17, (i). Since f and pn1
1 · . . . · pnss both annihilate

the quotient Ẽ/(f · Ẽ), and since Ẽ is finitely generated as a Λ-module,
it follows that rankf (Ẽ) <∞.
Now we apply Proposition 3.43 to the exact sequence

0 // Ẽ // E // E/Ẽ // 0 .

This implies that Qf (Ẽ) = Qf (E). But E[f ] = {0} and therefore also
Ẽ[f ] = {0}, as in the proof of (i).

(iii) ϕ induces a Λ-module homomorphism ϕ : A/(f(T ) ·A) −→ B/(f(T ) ·B),
sending the class [a] of an element a ∈ A to the class [ϕ(a)]; this is well-
defined since ϕ(f(T ) ·A) = f(T ) ·ϕ(A) = f(T ) ·B. One easily checks that
ϕ is an isomorphism, using the fact that ϕ is bijective.

(iv) For any Λ-submodule M of A, the order of

(A/M)/(f(T ) ·A/M) = A/(M + f(T ) ·A)

is less than or equal to the order of A/(f(T ) ·A), proving (iv).
(v) Using (iii), we may assume that in fact A = B1 ⊕B2. But then

A/(f(T ) ·A) = B1/(f(T ) ·B1)⊕B2/(f(T ) ·B2) .

This concludes the proof of the proposition.

We choose a distinguished polynomial f(T ) which is coprime to the char-
acteristic polynomial of A = A(L). We would like to bound µ-invariants by
rankf (A) <∞ in a certain neighbourhood U of L. The following lemma shows
that we may indeed find a neighbourhood U of L such that for every M ∈ U ,
f(T ) is coprime to the characteristic polynomial of A(M), respectively, and
therefore rankf (A(M)) <∞.

Lemma 3.44. Let L/K be a Zp-extension, and let γ(L) denote a fixed topolog-
ical generator of the Galois group Gal(L/K) ∼= Zp. Let

FA(L) := FA(L),γ(L) =

t∏
j=1

fj(T )lj ∈ Zp[T ]

denote the characteristic polynomial of A(L) = lim←−A
(L)
n with respect to the given

generator γ(L) (compare Remark 1.30).
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Let f(T ) ∈ Zp[T ] denote a distinguished polynomial that is coprime to FA(L).
Then there exists an integer n ∈ N such that f is coprime to FA(M),γ(M) for every

M ∈ U(L, n), where γ(M) denotes a generator of Gal(M/K) that coincides with
γ(L) on Mn = Ln. More precisely, with these choices of generators, we have
rankf (A(M)) = rankf (A(L)) <∞ for M ∈ U(L, n).

Proof. For every choice of a topological generator γ(L) of Gal(L/K) ∼= Zp, we
obtain an isomorphism Zp[[Gal(L/K)]] ∼= Zp[[T

(L)]], induced by

γ(L) 7→ 1 + T (L) ;

we identifyZp[[Gal(L/K)]] with the ring of formal power series Λ(L) = Zp[[T
(L)]]

for some fixed indeterminate T := T (L). Choosing another topological genera-
tor of Gal(L/K) therefore corresponds to a change of variables: If γ̃ = γa with
a ∈ Z∗p is the new topological generator, then the new indeterminate T̃ = T̃ (L)

is given by T̃ = (1 + T )a − 1. In particular, the characteristic polynomial
of A(L) depends on the choice of γ(L) (compare Remark 1.30). This becomes
crucial when we try to compare the characteristic polynomials of different Zp-
extensions. Fix some γ(L).

Choose a pseudo-isomorphism ϕ : A(L) −→ EA(L) . Let M
(L)
1 denote the

finite kernel of ϕ. Since f is coprime to FA(L) by assumption, we know that
rankf (EA(L)) is finite. Indeed,

EA(L) =
s⊕

i= 1

Λ/(pni) ⊕
t⊕

j= 1

Λ/(fj(T )lj )

and therefore rankf (EA(L)) =
∑

rankf (Λ/(pni)) +
∑

rankf (Λ/(fj(T )lj )) is fi-
nite, because f(T ) and p, respectively, f(T ) and the fj(T ), are pairwise coprime
in Λ (compare Lemma 1.17, (i)).

Then also

rankf (A(L)) ≤ rankf (A(L)/M
(L)
1 ) + vp(|M (L)

1 |)

= rankf (EA(L)) + vp(|M (L)
1 |)

is finite, using Proposition 3.41, (ii) and (iii).

For every m ≥ n ≥ e = e(L/K), the norm maps A
(L)
m −→ A

(L)
n induce

surjective maps

A(L)/(f(T ) ·A(L)) � A(L)
m /(f(T ) ·A(L)

m ) � A(L)
n /(f(T ) ·A(L)

n ) .

These are well-defined since the norm maps are Λ-module homomorphisms.

In particular, rankf (A(L)) ≥ rankf (A
(L)
m ) ≥ rankf (A

(L)
n ) for all integers

m ≥ n ≥ e(L/K). This proves that there exists an integer n0 ≥ e(L/K) + 1
such that

rankf (A(L)
n0

) = rankf (A
(L)
n0+1) = rankf (A(L)) .

We have e(M/K) = e(L/K) for every M ∈ U(L, n0 + 1), by Corollary

3.22. We want to compare the orders of the quotients A
(L)
n /(f(T (L)) · A(L)

n )
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and A
(M)
n /(f(T (M)) · A(M)

n ). It is important to note that, as mentioned above,
in fact two different rings Λ(L) = Zp[[T

(L)]] and Λ(M) = Zp[[T
(M)]] act on

A(L), respectively, A(M), arising from the different Galois groups Gal(L/K)
and Gal(M/K). This means that for M ∈ U(L, n), we will have Ln = Mn and

A
(L)
n = A

(M)
n , but this will not immediately imply that

|A(L)
n /(f(T (L)) ·A(L)

n )| = |A(M)
n /(f(T (M)) ·A(M)

n )| .

However, if we choose a topological generator γ(M) of Gal(M/K) such that
γ(M) coincides with the fixed generator γ(L) of Gal(L/K) on Mn0+1 = Ln0+1,
then

T (L) ·A(L)
n0

= (γ(L)|Ln0 − 1) ·A(L)
n0

= (γ(M)|Mn0
− 1) ·A(M)

n0
= T (M) ·A(M)

n0

and T (L) ·A(L)
n0+1 = T (M) ·A(M)

n0+1. Then we have a chain of equalities

rankf (A
(M)
n0+1) = rankf (A

(L)
n0+1) = rankf (A(L)

n0
) = rankf (A(M)

n0
) ,

which implies that rankf (A(M)) = rankf (A(L)) <∞ for every such M . Indeed,

A(M) = lim←−A
(M)
n is a Fukuda module with index barrier e(M/K), by Corollary

3.9. Therefore also A(M)/(f(T (M)) ·A(M)) is a Fukuda module, by the Quotient
Lemma 3.10. This means that we can apply Theorem 3.6, (i).

In particular, f is coprime to FA(M),γ(M) : Otherwise EA(M)/(f(T ) · EA(M))
would contain a factor Λ/(f), which is infinite by Lemma 1.17, (ii). But since
rankf (A(M)) <∞, we have

rankf (EA(M)) ≤ rankf (ẼA(M)) + vp(|EA(M)/ẼA(M) |)

= rankf (A(M)/M
(M)
1 ) + vp(|EA(M)/ẼA(M) |)

≤ rankf (A(M)) + vp(|EA(M)/ẼA(M) |) < ∞ ,

using Proposition 3.41, (iii) and (iv).

Remarks 3.45.
(1) In the following, we will usually study sets of Zp-extensions contained in a

small neighbourhood U(L, n) of a fixed Zp-extension L/K. We will from
now on suppress the dependence of the indeterminate T ∈ Λ on the cor-
responding Zp-extension from our notation. This means that we will sim-
ply write T · A(M) for each M ∈ U(L, n), instead of using the notation
T (M) · A(M). We keep in mind that this may be justified by choosing the
corresponding topological generators of the galois groups Gal(M/K) prop-
erly.

(2) Let f(T ) ∈ Λ denote a distinguished polynomial. Let L/K denote a Zp-

extension, A = lim←−A
(L)
n , and let EA denote the elementary Λ-module at-

tached to A. Then we have shown in the proof of Lemma 3.44, using
Proposition 3.41, that

rankf (A) <∞ ⇐⇒ rankf (EA) <∞ .

Note that the same proof works for any finitely generated torsion Λ-module
X with corresponding elementary Λ-module EX .
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Using arguments similar to those applied in the proof of Lemma 3.44, we
may actually also prove the following boundedness result:

Corollary 3.46. Assume that L/K is a Zp-extension such that T does not
divide the characteristic polynomial FA(L). Then there exists an integer n ∈ N
such that for every M ∈ U(L, n), T does not divide the characteristic polyno-
mial FA(M). Moreover, the p-adic valuation of the constant coefficients of the
polynomials FA(M) is bounded on U(L, n).
In particular, this bounds the number of distinguished factors of FA(M)(T ), since
each of them raises the valuation of the constant coefficient.

Proof. Lemma 3.44 yields a neighbourhood U(L, n) of L such that T - FA(M)

for every M ∈ U(L, n). Moreover, we know that

rankT (EA(M)) ≤ rankT (A(M)) = rankT (A(L)) < ∞

for M ∈ U(L, n), using Proposition 3.41, (ii), (iii) and (iv). Now

EA(M)/(T · EA(M)) =

s⊕
i=1

Λ/(T, pni) ⊕
t⊕

j=1

Λ/(T, fj(T )lj )

∼=
s⊕
i=1

Z/pniZ ⊕
t⊕

j=1

Z/pmjZ ,

where mj denotes the p-adic valuation of the (non-zero!) constant coefficient of
the distinguished polynomial fj(T )lj , respectively. Therefore

s∑
i=1

ni +

t∑
j=1

mj ≤ rankT (A(L)) < ∞

is bounded on U(L, n), and this is exactly the sum of µ(M/K) and the p-adic
valuation of the constant coefficient of FA(M)(T ) =

∏t
j=1 fj(T )lj .

Remarks 3.47.

(1) Note that the proof of Corollary 3.46 shows that the µ-invariant is locally
bounded in a neighbourhood of L/K, provided that T does not divide the
characteristic polynomial FA(L)(T ).

(2) Let M/K denote a Zp-extension. We will now prove that T - FA(M)(T ) if

and only if the order |(A(M)
n )Gal(Mn/K)| of elements in A

(M)
n that are fixed

by Gal(Mn/K) ∼= Z/pnZ is bounded for all n.
Indeed, we already know that T - FA(M)(T ) if and only if rankT (A(M)) <∞
(compare Remarks 3.45, (2)). Since

rankT (A(M)
m ) ≥ rankT (A(M)

n )

for every m ≥ n ≥ e(M/K), this is equivalent to the fact that rankT (A
(M)
n )

remains bounded as n→∞.
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For each n ∈ N, we let A
(M)
n [T ] denote the submodule of elements of A

(M)
n

that are annihilated by T . Then the exact sequences

0 // A
(M)
n [T ] // A

(M)
n

·T // T ·A(M)
n

// 0

imply that |A(M)
n /(T ·A(M)

n )| = |A(M)
n [T ]| for every n (compare Proposition

3.43, (i)).

But |A(M)
n [T ]| = |(A(M)

n )Gal(Mn/K)|, because T acts on A
(M)
n as γ(M) − 1,

where γ(M) denotes a topological generator of Gal(M/K) and therefore
γ(M)|Mn generates Gal(Mn/K). This shows that rankT (A(M)) is finite if

and only if |(A(M)
n )Gal(Mn/K)| is bounded as n→∞.

(3) J. Carroll and H. Kisilevsky proved that |(A(M)
n )Gal(Mn/K)| is bounded

as n → ∞ if exactly one prime p of K ramifies in M/K (see Lemma 4 in
[CK 81]). The proof is based on Chevalley’s Theorem (compare [La 90],
Lemma 13.4.1):

|(A(M)
n )Gal(Mn/K)| =

h(K) · e(Mn/K)

[Mn : K] · (EK : NMn/K(M?
n ) ∩ EK)

≤ h(K) · pn

pn · (EK : NMn/K(M?
n ) ∩ EK)

≤ h(K) < ∞

for every n, where h(K) denotes the class number of K, e(Mn/K) is defined
to be the product of the ramification indices eP|p(Mn/K) of all the (finite
or infinite) primes p of K, and EK denotes the group of units of K; in
particular, e(Mn/K) divides [Mn : K] = pn here, by assumption on M/K.
This shows that Corollary 3.46 can be applied to every Zp-extension M/K
satisfying |P(M)| = 1 (of course, the statement of the corollary is non-
trivial only if the set EP(M)(K) is infinite).

Lemma 3.48. Let L/K be a Zp-extension, and let FA(L)(T ) denote the charac-
teristic polynomial of A(L). Suppose that f(T ) ∈ Zp[T ] denotes a distinguished
polynomial that is coprime to FA(L).
Let U = U(L, n) be a neighbourhood of L as constructed in Lemma 3.44, i.e.,

rankf (A
(L)
n ) = rankf (A

(L)
n−1) and thus rankf (A(M)) = rankf (A(L)) for every

M ∈ U(L, n).
Then there exists an integer k ∈ N such that

rankg(A
(M)) = rankf (A(M))

for every M ∈ U(L, n) and every g ∈ Λ satisfying

g ≡ f mod (p, T )k .

Proof. By construction of U in the proof of Lemma 3.44, we have

rankf (A(L)
n ) = rankf (A

(L)
n−1) ,
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and n = n0(f) + 1 is the smallest integer with this property, i.e.,

rankf (A(L)
m ) > rankf (A

(L)
m−1)

for every m < n.

A
(M)
n
∼= A

(L)
n is a finite compact Λ-module for every M ∈ U . Now we apply

the following observation.

Remark 3.49. Let A denote a finite Λ-module which is a p-group. Then there
exists an integer k ∈ N such that

T k ·A = pk ·A = {0} .

Moreover, we may in fact achieve that gk ·A = {0} for every non-unit g ∈ Λ\Λ∗.
For example, it is sufficient to take k large enough to ensure that pk > |A|.

Proof. We may assume that A 6= {0}. Then multiplication by T on A cannot be
injective, since otherwise it would also be surjective, and thus A = T ·A. Using
Nakayama’s Lemma 1.43, it would then follow that A = {0}, in contradiction
to our assumption.
In particular, |T · A| ≤ 1

p |A|. Now T · A is again a finite Λ-module of p-power

order, and we analogously see that |T 2 ·A| ≤ 1
p |T ·A|. An induction proves that

T k ·A = {0} if k is sufficiently large.
The same argument in fact works for every element g ∈ Λ \ Λ∗ = (p, T ).

Choosing k ∈ N such that hk · A(L)
n = {0} for every h ∈ (p, T ), we may

conclude that

g ·A(L)
n = f ·A(L)

n

for every g ∈ Λ that is congruent to f modulo (p, T )k. Therefore

rankg(A
(L)
n ) = rankf (A(L)

n )

and analogously rankg(A
(L)
n−1) = rankf (A

(L)
n−1) for each such g. Moreover, the

same argument works for every M ∈ U(L, n), since hk · A(M)
n = {0} for every

h ∈ (p, T ) and every M ∈ U . Now the statement follows from the Quotient
Lemma 3.10 and Theorem 3.6, (i).

Iterating the argument of Lemma 3.48, we obtain neighbourhoods U of L
such that the characteristic polynomials FA(M) for M ∈ U are coprime to the
polynomials contained in a finite union of residue classes modulo (p, T )l, where
l denotes the maximum of the corresponding k’s. This leads to the following
question:

Is it possible to bound the integers k = k(f) attached to polynomials
f ∈ Zp[T ] coprime to FA(L)(T )? If this is not the case, then an iteration of
the above process is not very reasonable.

Note that the proofs of Lemma 3.44 and Lemma 3.48 imply that the k(f)
are bounded if and only if the stabilisation indices n0 = n0(f) are bounded.
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Lemma 3.50. Let L/K be a fixed Zp-extension. For simplicity, we assume
that e(L/K) = 0. Let ML ⊆ Zp[T ] denote an arbitrary subset of distinguished
polynomials coprime to FA(L)(T ). Then the set of stabilisation indices

S1 := {n0(f) | f ∈ML, n0 minimal such that rankf (A
(L)
n0+1) = rankf (A(L)

n0
)}

is bounded if and only if the set

S2 := {rankf (A(L)) | f ∈ML}

is bounded.

Proof. Suppose first that S2 is bounded. It is a general fact that

rankf (A(L)) ≥ n0(f) ,

since rankf (A
(L)
n+1) > rankf (A

(L)
n ) for each n < n0 = n0(f), using Theorem 3.6

and the minimality of n0. Therefore also the set S1 is bounded.
Suppose now that the stabilisation indices are bounded by some integer

N ∈ N. Then rankf (A(L)) ≤ vp(|A(L)
N+1|) for every f ∈ ML, by Theorem

3.6.

Corollary 3.51. Using the above notation, we let ML denote the set of all
distinguished polynomials coprime to FA(L)(T ). Then the following statements
are equivalent:

(i) S1 := {n0(f) | f ∈ML, n0 minimal with rankf (A
(L)
n0+1) = rankf (A

(L)
n0 )} is

bounded.
(ii) S2 := {rankf (A(L)) | f ∈ML} is bounded.
(iii) A(L) is finite.

Proof. We have seen in the previous lemma that statements (i) and (ii) are
equivalent.
‘(i) =⇒ (iii)’: Let N ∈ N denote a bound for S1. Then

rankf (A
(L)
N+1) = rankf (A

(L)
N )

for every f ∈ML. This means that the kernel YN of the projection map

prN : A(L) −→ A
(L)
N is contained in f · A(L) for every f ∈ ML (compare

the proof of Theorem 3.6, (ii)).
Note that for each n ∈ N, there exists a distinguished polynomial

f ∈ mn = (p, T )n

such that f is coprime to FA(L) .
Therefore

YN ⊆
⋂

f ∈ML

(f ·A(L)) ⊆
⋂
n≥0

(mn ·A(L)) = {0} .

But this means that |A(L)| = |A(L)
N | is finite.
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‘(iii) =⇒ (ii)’: If, on the other hand, A(L) is finite, then of course

rankf (A(L)) ≤ vp(|A(L)|)

for every f ∈ML, and thus S2 is bounded.

We will now prove our first result bounding µ-invariants:

Lemma 3.52. Let K be a number field, let L/K be a Zp-extension. Then there
exists an integer n ∈ N such that µ is bounded on U(L, n), i.e., µ(M/K) ≤ C
for some fixed constant C <∞ and every M ∈ U(L, n).

Proof. Let L/K be any given Zp-extension. In view of Corollary 3.46 (com-
pare Remarks 3.47, (1)), it remains to consider the case where T divides the
characteristic polynomial of A(L). We let

f(T ) := T k + p ,

where we choose k ∈ N minimal such that f(T ) is different from the irreducible
distinguished factors f1(T ), . . . , ft(T ) dividing the characteristic polynomial of
A(L). f(T ) is irreducible in Zp[T ] and therefore in Λ (compare Proposition 1.27,
(iv)) by Eisenstein’s Irreducibility Criterion. This means that f(T ) and fj(T )
are coprime for j = 1, . . . , t, and therefore Λ/(fj(T )lj , f(T )) is finite for every
j (compare Lemma 1.17, (i)). In particular,

EA(L)/(f(T ) · EA(L)) ∼=
s⊕
i=1

Λ/(pni , f(T )) ⊕
t⊕

j=1

Λ/(fj(T )lj , f(T ))︸ ︷︷ ︸
=: C

=

s⊕
i=1

Λ/(pni , T k + p) ⊕ C ,

where C is a finite abelian p-group. The order of each quotient Λ/(pni , T k + p)
is equal to pni·k, respectively, by the Division Lemma 1.10.

We have thus shown that

rankf (EA(L)) = k · µ(L/K) + vp(|C|) < ∞ .

In particular, rankf (A(L)) < ∞ (compare Remarks 3.45, (2)), and therefore
rankf (A(M)) <∞ for every M ∈ U(L, n), if n is large enough. This means that
f is coprime to the characteristic polynomial of A(M) for each M ∈ U(L, n).
Analogously to the above, this implies that

rankf (EA(M)) = k · µ(M/K) + vp(|C(M)|) ,

respectively.
Using Proposition 3.41, we obtain inequalities

k · µ(M/K) ≤ rankf (EA(M)) ≤ rankf (A(M)) = rankf (A(L)) ,

which are valid for every M ∈ U(L, n).
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Remarks 3.53.
(1) In his article [Gr 73], Greenberg proved that µ is bounded on E(L, n)

for n ∈ N being large enough, provided that only finitely many primes of
L lie above p (compare Theorem 2.27). This is the case, for example, if
P(L) = I, and this case is covered by Lemma 3.52. In particular, if only
one prime of K divides p, i.e., |I| = 1, then µ is globally bounded on the
compact set EI(K) = E(K) (compare Greenberg’s Theorem 2.29).
Furthermore, Greenberg proved that the subset E ′(K) consisting of every
Zp-extension of K in which no prime dividing p splits completely is open
and dense in E(K); see Proposition 4 in [Gr 73]. Therefore Lemma 3.52
has already been proved by Greenberg for ‘almost every’ L ∈ E(K), using
completely different arguments (compare Section 4.1). In addition, Green-
berg’s formulation is stronger in general because it shows boundedness on
the set E(L, n), which is stricly larger than U(L, n) if P(L) $ I.

(2) At the end of his article, Greenberg supposed that probably µ is not only
locally bounded but actually locally maximal. We are able to prove this,
first under quite restrictive assumptions:

Corollary 3.54. Suppose that L/K is a Zp-extension with λ(L/K) = 0, such

that the Λ-module A(L) = lim←−A
(L)
n does not contain any nontrivial finite Λ-

submodule. Then there exists an integer n ∈ N such that µ(M/K) ≤ µ(L/K)
for every M ∈ U(L, n) (i.e., µ is locally maximal).

Proof. By assumption on A(L), the pseudo-isomorphism ϕ : A(L) −→ EA(L)

has to be an injection. ϕ induces an isomorphism A(L) ∼−→ ẼA(L) , where
ẼA(L) ⊆ EA(L) is of finite index. In particular, using Proposition 3.41, (ii)
and (iii), we have

rankT (A(L)) = rankT (ẼA(L)) = rankT (EA(L)) ,

noting that rankT (E
(L)
A ) <∞, since λ(L/K) = 0 by assumption. Furthermore,

we may choose an integer n ∈ N such that rankT (A(M)) = rankT (A(L)) for
every M ∈ U(L, n), as in Corollary 3.46. But then

µ(M/K) ≤ rankT (EA(M))

≤ rankT (A(M)) = rankT (A(L))

= rankT (EA(L)) = µ(L/K)

for every M ∈ U(L, n), where the last equality arises from the fact that
λ(L/K) = 0.

Remark 3.55. The assumption that A(L) does not contain any nontrivial
finite Λ-submodule is equivalent to the condition rankT (A(L)) = rankT (EA(L)),
provided that these ranks are finite. Indeed, we will show in Proposition 3.58
that

rankT (A(L)) = rankT (A(L)/M
(L)
1 ) + rankT (M

(L)
1 )

= rankT (EA(L)) + rankT (M
(L)
1 ) ,
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where M
(L)
1 denotes the kernel of the pseudo-isomorphism ϕ : A −→ EA, i.e.,

the maximal finite Λ-submodule of A (see Remarks 2.25, (3)). Furthermore,

rankT (M
(L)
1 ) = 0 if and only if M

(L)
1 = {0}, by Nakayama’s Lemma 1.43.

Actually, we may completely remove the assumptions made in Corollary 3.54,
by choosing a ‘good’ polynomial f(T ) instead of using T , as we will show now.

Lemma 3.56. Let L/K denote any Zp-extension. Then µ(L/K) is locally
maximal.

Proof. Fix a pseudo-isomorphism A(L) ∼−→ EA(L) , and let M
(L)
1 denote the

finite kernel of this map, i.e., A(L)/M
(L)
1
∼= ẼA(L) ⊆ EA(L) is of finite index.

Write |M (L)
1 | = pm, m ∈ N0. We define

f(T ) := Tm+1 · FA(L)(T ) + p .

Then f(T ) is a distinguished polynomial, and irreducible by Eisenstein’s Crite-
rion. Moreover, f(T ) is coprime to FA(L)(T ), so that rankf (EA(L)) and therefore
rankf (A(L)) are finite. If d ∈ N denotes the degree of FA(L)(T ), then the degree
of f(T ) is equal to m+ d+ 1.

Now we choose a neighbourhood U(L, n) of L ∈ E(K) such that we have
rankf (A(M)) = rankf (A(L)) <∞ for every M ∈ U(L, n). Then

(m+ d+ 1) · µ(M/K) ≤ rankf (A(M)) = rankf (A(L))

≤ vp(|M (L)
1 |) + rankf (ẼA(L))

3.41
= m + rankf (EA(L))

≤ m+ d + (m+ d+ 1) · µ(L/K)

for each M ∈ U(L, n), where the first inequality has been shown in the proof
of Lemma 3.52. The last inequality furthermore makes use of the fact that for
every divisor fj(T )lj of FA(L)(T ), we have

|Λ/(f(T ), fj(T )lj )| ≤ plj ·deg(fj(T )) ,

since p ∈ (f(T ), fj(T )lj ), by definition of f(T ).
Since µ(L/K) and µ(M/K) are integers, it follows that µ(M/K) ≤ µ(L/K).

3.3.3 Local maximality

We will now prove our main theorem. This result will not only contain a new
proof of Lemma 3.56, but also improves our results concerning the λ-invariant
(i.e., Lemma 3.37 and Corollary 3.38). Furthermore, our method will even be
fine enough to obtain information about ν-invariants. The key idea is to use,
as in the study of the µ-invariant, modules of the form

A/(f(T ) ·A) ,

for some suitable distinguished polynomial f(T ). We will in fact choose a
sequence of polynomials and consider the corresponding ranks.

The following theorem is the most important result of Chapter 3.
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Theorem 3.57. Let L/K be a Zp-extension. Let µ := µ(L/K), λ := λ(L/K).
Then the following holds.
(i) µ(L/K) is locally maximal, i.e., there exists an integer n ∈ N such that

for every M ∈ U(L, n), we have

µ(M/K) ≤ µ(L/K) .

(ii) If µ = 0, then λ(L/K) is locally maximal, i.e., there exists some
n ∈ N such that for each M ∈ U(L, n), we have µ(M/K) = 0 and
λ(M/K) ≤ λ(L/K).

(iii) More generally, if µ := µ(L/K) ∈ N0 is arbitrary, then λ(L/K) is locally
maximal on the set Eµ(K) of Zp-extensions M/K satisfying µ(M/K) = µ,
i.e., there exists an integer n ∈ N such that

λ(M/K) ≤ λ(L/K)

for every M ∈ U(L, n) ∩ Eµ(K).
(iv) If Eµ,λ(K) denotes the set of Zp-extensions M/K satisfying µ(M/K) = µ

and λ(M/K) = λ, then there exists an integer n ∈ N such that

|M (M)
1 | = |M (L)

1 | and ν(M/K) = ν(L/K)

for every M ∈ U(L, n) ∩ Eµ,λ(K), i.e., the ν-invariant is locally con-

stant in this set. Here M
(M)
1 denotes the maximal finite Λ-submodule of

the projective limit A(M) = lim←−A
(M)
n , respectively.

Proof. (i) Let n > m ≥ e(L/K). We make use of the distinguished polyno-

mials ν(n,m)(T ) introduced in Section 1.2. Since ν(n,m) = (T+1)p
n−1

(T+1)pm−1
, the

roots of ν(n,m) in an algebraic closure Qp of Qp are of the form ζ−1, where

ζp
n

= 1, ζp
m 6= 1, i.e., ζ = ζpl is a primitive pl-th root of unity, m < l ≤ n.

We note that

vp(ζpl − 1) =
1

pl−1(p− 1)
<

1

pm−1(p− 1)

for every l > m, where vp denotes the extension of the usual p-adic val-
uation to Qp(ζpl) (i.e., vp(p) = 1). The degree of FA(L)(T ) is equal to

λ = λ(L/K). We choose m large enough to ensure that λ
pm−1(p−1)

< 1.

Then, since FA(L)(T ) is a distinguished polynomial, we have

vp(FA(L)(ζpl − 1)) =
λ

pl−1(p− 1)
< 1 (3.1)

for every l > m. For every l, there exist exactly pl−1(p−1) primitive pl-th
roots of unity. We may conclude that

|Λ/(FA(L) , ν(n,m))| =
∏

m<l≤n ,
ζp
l
= 1

pvp(F
A(L) (ζ−1))

=
∏

m<l≤n
(p

λ

pl−1(p−1) )p
l−1(p−1) = (pλ)n−m ,
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where the first product runs over the primitive pl-th roots of unity, re-
spectively. Indeed, Z := Λ/(ν(n,m)) is isomorphic to a free Zp-module of
rank deg(ν(n,m)) = pn − pm, by the Division Lemma 1.10. Multiplication
by T is a Zp-linear map T : Z −→ Z with eigenvalues ζpl − 1, m < l ≤ n.
Λ/(FA(L) , ν(n,m)) is the cokernel of the linear map on Z given by multipli-
cation by FA(L)(T ). This map has eigenvalues FA(L)(ζpl − 1), m < l ≤ n,
and the order of the cokernel equals the p-valuation of the determinant,
which is the product of the eigenvalues. Note that ν(n,m) is coprime to
FA(L)(T ) for every n ≥ m ≥ e(L/K), by Proposition 1.44, and therefore
FA(L)(ζpl − 1) 6= 0 for each m < l ≤ n, i.e., |Λ/(FA(L) , ν(n,m))| < ∞ and

rankν(n,m)
(A(L)) <∞.

More generally, for every divisor fj(T )lj of FA(L)(T ) arising in the decom-
position of EA(L) , we have |Λ/(ν(n,m), fj(T )lj )| = p(n−m)·lj ·deg(fj(T )).
In particular,

rankν(n,m)
(A(L)) ≤ rankν(n,m)

(ẼA(L)) + vp(|M (L)
1 |)︸ ︷︷ ︸

=:C

= rankν(n,m)
(EA(L)) + C (3.2)

= (pn − pm) · µ+ (n−m) · λ + C .

Now we choose a neighbourhood U(L,w0) of L such that

rankν(n,m)
(A(M)) = rankν(n,m)

(A(L)) < ∞

for every M ∈ U(L,w0), using Lemma 3.44. Then

rankν(n,m)
(EA(M)) = rankν(n,m)

(ẼA(M)) = rankν(n,m)
(A(M)/M

(M)
1 )

≤ rankν(n,m)
(A(M)) = rankν(n,m)

(A(L)) (3.3)

for these M .
Let M ∈ U(L,w0) be arbitrary, but fixed. We will develop a formula that
will be useful to bound µ- and λ-invariants. The latter means bounding
the degree λ(M) := λ(M/K) of the characteristic polynomial FA(M)(T ).

For arbitrary l ∈ {m+ 1, . . . , n}, it is not clear whether λ(M)

pl−1(p−1)
< 1, i.e.,

whether (3.1) holds for FA(M)(T ).
We therefore let l1, . . . , lr ∈ {m+1, . . . , n} denote the values of l for which
(3.1) fails. Then li = m + i, 1 ≤ i ≤ r. Thus, vp(FA(M)(ζpl − 1)) ≥ 1 for

l ≤ m + r, and vp(FA(M)(ζpl − 1)) = λ(M)

pl−1(p−1)
< 1 for l > m + r. Note

that at the moment, we have not said anything about r (so r = n−m is
possible) and therefore have not bounded λ(M) yet.
However, we know that

rankν(n,m)
(EA(M)) = (pn − pm) · µ(M/K) + |Λ/(FA(M)(T ), ν(n,m))|

(3.3)

≤ rankν(n,m)
(A(L))

(3.2)

≤ (pn − pm) · µ+ (n−m) · λ+ C ,



108 CHAPTER 3. LOCAL BEHAVIOUR OF IWASAWA INVARIANTS

where C = vp(|M (L)
1 |) has been defined above, and therefore

(pn − pm)µ(M/K) + pm(p− 1) + pm+1(p− 1) + . . .+ pm+r−1(p− 1)

+ (n−m− r) · λ(M)

= pm(pn−m − 1)µ(M/K) + pm(pr − 1) + (n−m− r) · λ(M) (3.4)

≤ pm(pn−m − 1)µ+ (n−m) · λ+ C .

For every pair of integers n > m ≥ e(L/K), we have found a neighbour-
hood U(L,w0), w0 = w0(n,m), such that for every M ∈ U(L,w0), (3.4)
holds with a suitable integer

r = r(n,m,M) ∈ {0, . . . , n−m} .

We will now choose special values for n and m, namely sequences (ni)i≥0,
(mi)i≥0 defined by ni := 2i and mi := i for every i ≥ 0. If i1 ≥ e(L/K) is
large enough to ensure that λ

pi1−1(p−1)
< 1 and

pmi1 (pi1 − 1) = pi1(pi1 − 1) > i1 · λ+ C = (ni1 −mi1) · λ+ C ,

then (3.4) implies that µ(M/K) ≤ µ = µ(L/K).
(ii) If µ(L/K) = 0, then Corollary 3.22, (ii) implies that there exists some

w̃0 ≥ w0 such that µ(M/K) = 0 for each M ∈ U(L, w̃0). In particular,
for these M , (3.4) reduces to

pm(pr − 1) + (n−m− r) · λ(M) ≤ (n−m) · λ+ C .

If i2 ≥ i1 is large enough to ensure that

pmi2 = pi2 > i2 · λ+ C = (ni2 −mi2) · λ+ C ,

then (3.4) implies that r(ni,mi,M) = 0 for every i ≥ i2 and every M
contained in the neighbourhood U(L,wi) ⊆ U(L, w̃0) corresponding to
the pair (ni,mi).
Therefore, (3.4) yields

i · λ(M) = (ni −mi) · λ(M) ≤ i · λ+ C (3.5)

for every i ≥ i2. Let now i ≥ max(i2, C + 1). If λ(M) > λ, then

(C + 1) · (λ(M) − λ) ≤ i · (λ(M) − λ) ≤ C ,

contradiction. Therefore λ(M) ≤ λ for every M ∈ U(L,wi).
(iii) If M satisfies µ(M/K) = µ, then we may subtract µ · (pn − pm) on both

sides of the inequality (3.4) and obtain the same inequality as in the proof
of (ii); we then may proceed as above.
Note that (3.4) in general does not yield bounds for the λ-invariants of
Zp-extensions M/K with µ(M/K) ≤ µ−1, since r ≤ n−m and therefore
in this case, the inequality

pm · (pr − 1) ≤ (µ− µ(M/K))︸ ︷︷ ︸
≥ 1

· pm · (pn−m − 1)
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is always true, for every choice of n and m. We will have to put further
technical restrictions on the characteristic polynomials FA(M)(T ) in order
to obtain results concerning such Zp-extensions (compare Lemma 3.62
below).

(iv) In the proof of the preceding statements, we have used the inequality

rankν(n,m)
(A(M)/M

(M)
1 ) ≤ rankν(n,m)

(A(M)) (compare (3.3)). We can make
this more precise, using the following

Proposition 3.58. Let λ ∈ Λ denote either a distinguished polynomial,
or λ = p. Let M/K denote a Zp-extension, and assume that λ is coprime
to the characteristic polynomial FA(M)(T ) of A(M) (this means that we
want λ 6= p if µ(M/K) 6= 0). Then

rankλ(A(M)) = rankλ(A(M)/M
(M)
1 ) + rankλ(M

(M)
1 )

= rankλ(A(M)/M
(M)
1 ) + vp(|M (M)

1 /(λ ·M (M)
1 )|) .

Proof. We will make use of Proposition 3.43. Recall that for every element
λ ∈ Λ and every Λ-module N , we defined N [λ] := {x ∈ N | λ ·x = 0} and

Qλ(N) := |N [λ]|
|N/(λ·N)| , whenever both orders are finite (compare Definition

3.42).
In our situation, Proposition 3.43, (ii), applied to the exact sequence

0 −→M
(M)
1 −→ A(M) −→ A(M)/M

(M)
1 −→ 0 ,

implies that Qλ(A(M)) = Qλ(A(M)/M
(M)
1 ) · Qλ(M

(M)
1 ). Since M

(M)
1 is

finite, we have Qλ(M
(M)
1 ) = 1, by Proposition 3.43, (i).

Furthermore, λ acts injectively on A(M)/M
(M)
1

∼= EA(M) , using our as-
sumption that λ is coprime to the characteristic polynomial of A(M).

ThereforeA(M)[λ] ⊆M (M)
1 [λ], andQλ(A(M)/M

(M)
1 ) = p−rankλ(A(M)/M

(M)
1 ).

It follows that

p−rankλ(A(M)/M
(M)
1 ) = Qλ(A(M)) =

|A(M)[λ]|
|A(M)/(λ ·A(M))|

=
|M (M)

1 [λ]|
prankλ(A(M))

= prankλ(M
(M)
1 )−rankλ(A(M)) ,

proving Proposition 3.58.

We therefore may replace inequality (3.3) by the equality

rankν(n,m)
(A(M)/M

(M)
1 ) + rankν(n,m)

(M
(M)
1 ) = rankν(n,m)

(A(M)) .

Now

|M (M)
1 /(ν(n,m) ·M

(M)
1 )| =

n−1∏
i=m

|(ν(i,m) ·M
(M)
1 )/(ν(i+1,m) ·M

(M)
1 )| .



110 CHAPTER 3. LOCAL BEHAVIOUR OF IWASAWA INVARIANTS

Applying Nakayama’s Lemma 1.43 to the compact Λ-module M
(M)
1 , we

see that

either M
(M)
1 = {0} or ν(m+1,m) ·M

(M)
1 6= M

(M)
1 ,

i.e., |M (M)
1 /(ν(m+1,m) ·M

(M)
1 )| ≥ p. Analogously,

either ν(m+1,m) ·M
(M)
1 = {0} or ν(m+2,m) ·M

(M)
1 6= ν(m+1,m) ·M

(M)
1 ,

i.e., |(ν(m+1,m) ·M
(M)
1 )/(ν(m+2,m) ·M

(M)
1 )| ≥ p and therefore

rankν(n,m)
(M

(M)
1 ) ≥ 2 .

Inductively, we obtain that rankν(n,m)
(M

(M)
1 ) ≥ n−m as long as we don’t

have ν(n,m) ·M
(M)
1 = {0}. But in the latter case, M

(M)
1 [ν(n,m)] = M

(M)
1 ,

and therefore rankν(n,m)
(M

(M)
1 ) = vp(|M (M)

1 |). We have thus shown that

rankν(n,m)
(M

(M)
1 ) ≥ n−m whenever |M (M)

1 | ≥ pn−m .

More generally, this argument shows that for every j ≤ n−m, we have

rankν(n,m)
(M

(M)
1 ) ≥ j whenever |M (M)

1 | ≥ pj .

Choosing ni = 2i and mi = i with i ≥ max(i2, C+1), as in the proof of (ii),
the inequality (3.5) from that proof yields that for every j ≤ i = ni −mi

and every M ∈ U(L,wi) satisfying µ(M/K) = µ(L/K),

either |M (M)
1 | < pj or i · λ(M) + j ≤ i · λ+ C .

In particular, if M ∈ U(L,wi) also satisfies λ(M) = λ, then

either |M (M)
1 | < pj or j ≤ C

for every j ≤ i. Letting j = C + 1, we may conclude that

|M (M)
1 | < pC+1 = p · |M (L)

1 | ,

using the definition of C, and therefore

|M (M)
1 | ≤ |M (L)

1 | .

Remark 3.59. Note that actually we have proved a bit more: If we apply
Proposition 3.58 to both A(M) and A(L), then we can turn the inequality
(3.2) into an equality and replace the right-hand side i · λ+C of (3.5) by

the better upper bound i · λ+ |M (L)
1 [ν(ni,mi)]|. This means that

|M (M)
1 [ν(ni,mi)]| = |M (L)

1 [ν(ni,mi)]|
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for every M ∈ U(L,wi) satisfying λ(M) = λ, provided that i ≥ i2. In

particular, if i ≥ vp(|M (L)
1 |) ≥ vp(|M

(M)
1 |), then

M
(L)
1 [ν(ni,mi)] = M

(L)
1 and M

(M)
1 [ν(ni,mi)] = M

(M)
1

for every M ∈ U(L,wi) satisfying µ(M/K) = µ and λ(M/K) = λ, and
thus

|M (M)
1 | = |M (L)

1 |

for these M . We will give another proof of this fact in Corollary 3.75,
under the assumption that µ(L/K) = 0.

Now fix i as in Remark 3.59. For M ∈ U(L,wi), we let Y
(M)
i denote

the kernel of the i-th projection map A(M) −→ A
(M)
i , respectively. Then

A
(M)
n
∼= A(M)/(ν(n,i) · Y

(M)
i ) for every n ≥ i. Moreover,

|A(M)
n | = |A(M)/(ν(n,i) ·A(M))| · |(ν(n,i) ·A(M))/(ν(n,i) · Y

(M)
i )|

= p
rankν(n,i) (A(M)) · |A(M)

i | ·
|Y (M)
i ∩M (M)

1 |
|M (M)

1 |

for every n ≥ 2i, because the map

φ(n,i) : A(M)/Y
(M)
i

// (ν(n,i) ·A(M))/(ν(n,i) · Y
(M)
i )

given by multiplication by ν(n,i) is a surjective homomorphism having

kernel (Y
(M)
i + M

(M)
1 )/Y

(M)
i (apply Proposition 1.44 and use the fact

that ν(n,i) annihilates M
(M)
1 if n− i ≥ i).

In particular, if U ⊆ U(L,wi) is a sufficiently small neighbourhood, then

|Y (M)
i ∩ M (M)

1 | = |Y (L)
i ∩ M (L)

1 |

for every M ∈ U . Since Y
(M)
i ∩ M (M)

1 is the maximal finite Λ-submodule

of Y
(M)
i ⊆ A(M), respectively, Proposition 3.58 implies that

rankν(n,m)
(Y

(M)
i ) = rankν(n,m)

(Y
(L)
i )

for every M ∈ U and for all pairs n > m ≥ i satisfying n−m = m.
But then

|A(M)
n | = |A(M)

i | · |Y (M)
i /(ν(n,i) · Y

(M)
i )| = |A(L)

n |

for arbitrarily large n, proving that ν(M/K) = ν(L/K) for every M ∈ U .

Corollary 3.60. Suppose that K/K is a Zkp-extension, k ∈ N. Let E⊆K(K)
denote the set of Zp-extensions of K contained in K. If there exist an inte-
ger 0 ≤ µ ∈ Z and a set P ⊆ I of prime ideals of K dividing p such that
µ(M/K) = µ and P(M) = P for every M ∈ E⊆K(K), then λ(M/K) is glob-
ally bounded on the set E⊆K(K).
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Proof. Since µ(M/K) = µ for every M ∈ E⊆K(K), λ is locally maximal,
and in particular locally bounded, in appropriate neighbourhoods of every
M ∈ E⊆K(K). Moreover, since P(M) = P for every M , the set E⊆K(K) is
compact with respect to the Greenberg-R-topology (compare Remarks 3.26,
(2)). This proves the corollary.

Remark 3.61. Note that this corollary generalises Greenberg’s Theorem 2.30,
which is the case µ = 0 and P = I = {p}.

We cannot say much in the case of a ‘jump’ of the µ-invariant, i.e., if
µ(M/K) < µ(L/K) for some M ∈ U(L, n). In order to obtain boundedness
results in this situation, we have to put technical assumptions on the involved
characteristic polynomials, as in the following lemma. In fact, it seems likely
that the λ-invariant can be unbounded in the neighbourhood of a Zp-extension
L whose µ-invariant is ‘isolated’, i.e., if µ(L/K) > µ(M/K) for infinitely many
M contained in some small neighbourhood of L (compare Theorem 4.43).

Lemma 3.62. Let L/K be a Zp-extension. Write µ := µ(L/K). Let further
y ∈ N0. As in Theorem 3.57, we define the set Ey(K) to consist of those
Zp-extensions M/K satisfying µ(M/K) = y. For every x ∈ N, we let Ex(K)
denote the set of Zp-extensions M ∈ E(K) such that every coefficient of the
characteristic polynomial FA(M)(T ), besides the leading coefficient, is divisible
by px, respectively. Then there exists an integer w ∈ N such that the following
holds:
For 0 ≤ x ≤ µ, λ is bounded in each of the sets Eµ−x(K)∩ Ex+1(K)∩U(L,w),
respectively.

Proof. We will use the notation introduced in the proof of Theorem 3.57. If
FA(M)(T ) is a distinguished polynomial such that every coefficient, besides the
leading one, is divisible by px+1, then either

vp(FA(M)(ζpl − 1)) =
λ(M)

pl−1(p− 1)
< x+ 1 ,

or vp(FA(M)(ζpl − 1)) ≥ x + 1. This means that the inequality (3.4) from the
proof of Theorem 3.57 may be strengthened to

(pn − pm) · µ(M/K) + (x+ 1) · pm(pr − 1) + (n−m− r) · λ(M)

≤ (pn − pm) · µ + (n−m) · λ + C .

Choosing the sequences mi := i→∞, ni := mi + i, i ≥ 0, this implies that for
i large enough to ensure that λ

pi−1(p−1)
< 1, we have

pmi(pi − 1) · µ(M/K) + (x+ 1) · pmi(pri − 1) + (i− ri) · λ(M)

≤ pmi(pi − 1) · µ + λ + C .

Choosing i1 ∈ N such that pmi1 (pi1 − 1) > λ+C, we may conclude that ri < i
for every pair (ni,mi) with i ≥ i1 and every M contained in the neighbour-
hood U(L,wi) ∩ Ex+1(K) ∩ Eµ−x(K) of L. In particular, by definition of ri,
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λ(M)

pl−1(p−1)
< x+ 1 for l = mi1 + i1 = ni1 , and therefore

λ(M) < (x+ 1) · p2i1−1(p− 1)

is bounded in this (restricted) neighbourhood of L.

3.3.4 Further generalisations

Let L/K denote a Zp-extension. So far, we have only worked with the Fukuda

module A(L) = lim←−A
(L)
n . However, the general results concerning Fukuda mod-

ules developed in Section 3.1, in particular the Quotient Lemma 3.10 and the
study of Λ-complementable submodules in Lemma 3.12, yield several more gen-
eral classes of Fukuda modules that may be studied analogously. In the follow-
ing theorem, we summarise the corresponding results for two main classes of
Fukuda modules related to A(L) that have been introduced in Examples 3.11
and 3.14, respectively.

Theorem 3.63. Let L/K and A(L) = lim←−A
(L)
n be as above.

(1) Let S = {p1, . . . , ps} denote a finite set of primes of K. Let S′ := S ∪ I
denote the union of S with the set of primes dividing p. Assume that
every prime p ∈ S′ is finitely decomposed in L/K. We define the mod-

ule (A(L))S := lim←−
n
A

(L)
n /(D

(L)
n )S, as in Example 3.11, (2). Let µS(L/K),

λS(L/K) and νS(L/K) denote the corresponding Iwasawa invariants. Then

(i) µS(L/K) is locally maximal, i.e., there exists an integer n ∈ N such
that µS(M/K) ≤ µS(L/K) for every M ∈ U(L, n).

(ii) Assume that µS(L/K) = 0. Then λS is locally maximal. If, more gen-
erally, µS(L/K) > 0, then λS(L/K) is locally maximal if we restrict
to the subset of Zp-extensions M/K with µS(M/K) = µS(L/K).

(iii) If µS(L/K) = λS(L/K) = 0, then there exists some n ∈ N such
that µS(M/K) = λS(M/K) = 0 and νS(M/K) = νS(L/K) for every
M ∈ U(L, n). More generally, νS(L/K) is locally constant if we re-
strict to the subset of Zp-extensions M of K that satisfy
µS(M/K) = µS(L/K) and λS(M/K) = λS(L/K).

(2) In the situation of (1), we may even more generally consider R-generalised
S-class groups, as defined in Example 3.11, (3).

(3) Assume that k ⊆ K is a subfield such that K/k is abelian of degree prime
to p. Let ∆ := Gal(K/k), and denote by E(K|k) ⊆ E(K) the subset of
Zp-extensions L of K that are galois over k with Galois group

Gal(L/k) ∼= Gal(L/K)×∆ .

Assume that L ∈ E(K|k). Then we have a decomposition of Zp[∆]-modules

A(L) =

s⊕
i=1

εi ·A(L) ,
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where ε1, . . . , εs denote the idempotents introduced in Example 3.14, (1).
Each module εi ·A(L) is a finitely generated torsion Λ-module. Let µi(L/K),
λi(L/K) and νi(L/K) denote the corresponding Iwasawa invariants, respec-
tively.
Then for every i ∈ {1, . . . , s}, statements analogous to (1), (i), (ii) and
(iii) hold when restricted to E(K|k). For example, for each i ∈ {1, . . . , s},
(i) µi(L/K) is locally maximal in U(L, n) ∩ E(K|k) for suitable n ∈ N.

Proof. (1) Since every prime p ∈ S′ is finitely decomposed in L/K, we know

that (A(L))S = lim←−(A
(L)
n )S is a Fukuda module, where we let

(A(L)
n )S := A(L)

n /(D(L)
n )S , n ∈ N0

(compare Example 3.11, (2)). Moreover, there exists an integer n0 ∈ N
such that the number of primes of Ln dividing some prime p ∈ S′ stabilises
for n ≥ n0. We may assume that n0 ≥ e(L/K). Then we consider an
arbitrary Zp-extension M ∈ E(L, n0 + 1). Since for every prime p ∈ S′,
the corresponding primes in Ln0 = Mn0 are either ramified or inert in
Ln0+1 = Mn0+1, it follows that each p ∈ S′ is ramified or inert in M
(using the uniqueness of the intermediate fields in the abelian extension
M/K; compare the proof of Theorem 3.2, (i)). In particular, each p ∈ S′

is finitely decomposed in M/K, so that (A(M))S = lim←−(A
(M)
n )S is defined.

If M ∈ U(L, n) with n > n0 ≥ e(L/K), then e(M/K) = e(L/K) and

furthermore (A
(M)
i )S = (A

(L)
i )S for every i ≤ n. Therefore, the statements

(i), (ii) and (iii) can be proved by using the same arguments as in Lemma
3.56, respectively, Theorem 3.57, respectively, Corollary 3.22, replacing the
Fukuda module A by the Fukuda module AS .

(2) This can be proved analogously to (1).
(3) Lemma 3.12 implies that each factor εk ·A(L) in the decomposition of A(L)

is a Fukuda module (compare Example 3.14, (1)).
Now we may copy the proof of (1), applying our results to every component
εi ·A(L), respectively.

Note for (1): The case of the cyclotomic Zp-extension of K and S = I has
been studied before by Y. Mizusawa in [Miz 10], obtaining part of (ii) and
(iii).

Remark 3.64. Note that the condition in (3) to be a Zp-extension contained
in E(K|k) ⊆ E(K) is restrictive: in general, an arbitrarily chosen Zp-extension
L of K will not satisfy this condition. However, at least r2(k) independent
Zp-extensions of K with these properties do exist: For every Zp-extension l
of k, we may take L := l · K, since p - [K : k] and therefore K ∩ l = k, i.e.,
Gal(L/k) ∼= Gal(l/k)×Gal(K/k), as desired.
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3.4 Stabilisation of Capitulation kernels and the λ-
invariant

In the current section, we will introduce the concept of capitulation and describe
the relations to Iwasawa invariants. More precisely, we will study the growth of
the capitulation kernels in a Zp-extension L/K. These are defined as follows.
If we denote by

in := in,n+1 : An // An+1

the ideal lift map between the p-Sylow subgroups of the ideal class groups of the
intermediate fields Ln and Ln+1, n ≥ 0, then the kernel of in is called the n-th
capitulation kernel. It consists of all ideal classes C ∈ An that capitulate
in An+1. If C ∈ An, and if an ideal I of OLn denotes any representative of C,
then C capitulates in An+1 if and only if the lift I · OLn+1 becomes a principal
ideal.

We will establish a connection between the p-ranks of these capitulation
kernels for large n on the one side and Iwasawa’s λ-invariant on the other
side. Moreover, we will show that the capitulation kernels in a natural way
correspond to the finite torsion submodule of A = lim←−An.

We start with an algebraic analysis of the structure of the groups An for
large n.

Lemma 3.65 (Mihăilescu). Let G and H be two finite abelian p-groups (written
additively), and let N : H −→ G and i : G −→ H be two group homomorphisms
such that:
(i) N is surjective.
(ii) rankp(G) = rankp(H).
(iii) N(i(x)) = p · x for every x ∈ G.
(iv) subexp(G) := min{ord(x) | x ∈ G \ p ·G} > p.
Then i(G) = p ·H.

Proof. See [Be 12], Theorem 4.2.1.

We will show now how to apply this result to the ideal class groups of the
intermediate fields in a Zp-extension.

Lemma 3.66. Let L/K be a Zp-extension satisfying µ(L/K) = 0. We denote
by in : An −→ An+1 the ideal lift map, n ≥ 0. Then there exists an integer
N1 ∈ N0 such that

in(An) = p ·An+1

for every n ≥ N1.

Proof. We will check the conditions from Lemma 3.65. Let n ∈ N0 be arbitrary;
step by step, we will choose it large enough in order to make things work. Define
G := An, H := An+1, i := in, and let

N := Nn+1,n : An+1 −→ An

be the norm map. Then it follows from class field theory that N is surjective if
n ≥ e(L/K) =: e (see [Wa 97], Theorem 10.1).
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Furthermore, it is a well-known fact that Nn+1,n(in(x)) = p · x for every
n ≥ 0 and any x ∈ An. Since the Norm maps Nn+1,n : An+1 −→ An are
surjective for n ≥ e, it follows that rankp(An+1) ≥ rankp(An) for such n. But
µ(L/K) = 0, and therefore rankp(An) is bounded for n→∞. Therefore there
exists an integer n0 ∈ N, n0 > e, such that rankp(Am) = rankp(An0) for every
m ≥ n0.

It remains to show that the subexp-assumption of Lemma 3.65 is satisfied
for large n. In order to deal with this problem, we will study the algebraic
structure of the An for n > n0. Since An is a finite abelian p-group, we may
write

An ∼= Z/pen,1Z ⊕ Z/pen,2Z ⊕ . . . ⊕ Z/pen,knZ ⊕ Z/pZ ⊕ . . . ⊕ Z/pZ︸ ︷︷ ︸
αn factors

with integers αn, kn ∈ N0, en,i ∈ N, i ∈ {1, . . . , kn}, such that

en,1 ≥ en,2 ≥ . . . ≥ en,kn > 1 .

We write An = Bn ⊕ A′n, where A′n corresponds to the p-elementary subgroup
in the above decomposition, and where Bn corresponds to the ‘well-behaved’
part satisfying the subexp > p-condition.

Note that αn := rankp(A
′
n) is independent from the choice of the specific

maximal p-elementary subgroup A′n of An.

Proposition 3.67. With the above notation, αm ≤ αn whenever m ≥ n ≥ n0.

Proof. It suffices to prove this for m = n+ 1. Consider the decompositions

An+1
∼= Z/pen+1,1Z ⊕ . . . ⊕ Z/pen+1,kn+1Z ⊕ Z/pZ ⊕ . . . ⊕ Z/pZ︸ ︷︷ ︸

αn+1 factors

An ∼= Z/pen,1Z ⊕ . . . ⊕ Z/pen,knZ ⊕ Z/pZ ⊕ . . . ⊕ Z/pZ︸ ︷︷ ︸
αn factors

and the norm map N := Nn+1,n : An+1 −→ An. For i = 1, . . . , kn+1 + αn+1,

choose generators x
(n+1)
i ∈ An+1 of the cyclic factors contained in An+1 which

under a fixed isomorphism correspond to the Z/pen+1,iZ-factor, respectively. In

particular, x
(n+1)
kn+1+1, . . . , x

(n+1)
kn+1+αn+1

generate a p-elementary subgroup A′n+1 of
An+1.

Since n ≥ n0, we have

kn+1 + αn+1 = rankp(An+1) = rankp(An) = kn + αn .

Since the Norm map is surjective, there is a decomposition of An into cyclic

groups such that every generator x
(n+1)
i ∈ An+1 yields a generator

x
(n)
i := N(x

(n+1)
i ) ∈ An .

If 0 6= x
(n+1)
i ∈ A′n+1, then p · x(n+1)

i = 0 and therefore

p · x(n)
i = p ·N(x

(n+1)
i ) = N(p · x(n+1)

i ) = 0 .
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By the above, N(x
(n+1)
i ) 6= 0 because otherwise the p-rank of An = N(An+1)

would be smaller than the p-rank of An+1. In fact, this rank equality implies
that the kernel of N has to be contained in p · An+1 (compare the proof of
Proposition 3.68, (iv) below).

Therefore x
(n)
i generates a cyclic subgroup of order p. Since x

(n)
i = N(x

(n+1)
i )

cannot be contained in p · An, by the surjectivity of N , we conclude that x
(n)
i

generates a cyclic factor of A′n. This shows that

αn = rankp(A
′
n) ≥ rankp(A

′
n+1) = αn+1 ,

since the images x
(n)
i = N(x

(n+1)
i ), i ∈ {kn+1 + 1, . . . , kn+1 + αn+1}, generate a

p-elementary subgroup of An of rank αn+1.

Note that αn can be strictly larger than αn+1 since the norm map in general
is not injective.

Now we look at the sequence (αi)i≥n0 . Since αj ≤ αi for j ≥ i and as

αi ≤ rankp(Ai) ≤ rankp(A) < ∞

for every i, there exists an integer N1 ≥ n0 such that αn = αN1 =: α for all
n ≥ N1, i.e. the p-rank of A′n stabilises. Then also

rankp(Bn) = rankp(BN1)

for every n ≥ N1. Now let n ≥ N1 be arbitrary. Look at the decomposition
An+1 = Bn+1 ⊕A′n+1 induced by

An+1
∼= Z/pen+1,1Z ⊕ . . . ⊕ Z/pen+1,kn+1Z ⊕ Z/pZ ⊕ . . . ⊕ Z/pZ .

Proposition 3.68. With the above notation, we have:

(i) N |A′n+1
: A′n+1 −→ An is injective.

(ii) N(A′n+1) = A′n is a p-elementary subgroup of An of p-rank equal to αn.
(iii) Letting Bn := N(Bn+1), we have Bn ∩A′n = {0} and An = Bn ⊕A′n.
(iv) We have i(Bn) ⊆ Bn+1 and i(A′n) ⊆ p ·Bn+1.

Proof. (i) If 0 6= y ∈ A′n+1 was such that N(y) = 0, then we would have

rankp(An) = rankp(N(An+1)) = rankp(N(An+1/< y >))

≤ rankp(An+1/< y >) ≤ rankp(An+1)− 1 ,

since every proper quotient of a p-elementary group has strictly smaller
rank. But for n ≥ N1, we have rankp(An) = rankp(An+1).

(ii) We have already seen above that the groupN(A′n+1) has to be p-elementary.
Since αn = αn+1 for n ≥ N1, the order of A′n is equal to

|N(A′n+1)| (i)
= |A′n+1| = pαn+1 = pαn .
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(iii) Since N : An+1 −→ An is surjective, we have

An = N(An+1) = N(Bn+1 ⊕A′n+1) ⊆ N(Bn+1) +N(A′n+1)

and therefore An = Bn +A′n. If Bn ∩A′n 6= {0}, then we would have

rankp(An) = rankp(Bn +A′n) < rankp(Bn) + rankp(A
′
n)

≤ rankp(An+1) ,

since A′n ∩Bn ⊆ A′n is p-elementary. This again gives a contradiction.
(iv) Let x ∈ Bn. Assume that i(x) = y+z with y ∈ Bn+1 and z ∈ A′n+1. Then

Bn 3 p · x = N(i(x)) = N(y + z) = N(y)︸ ︷︷ ︸
∈Bn

+N(z)︸ ︷︷ ︸
∈A′n

.

Therefore N(z) = p · x − N(y) ∈ Bn ∩ A′n = {0}. Using (i), we see that
z = 0, i.e., i(x) = y ∈ Bn+1.
Now let x ∈ A′n. Write i(x) = y + z with y ∈ Bn+1 and z ∈ A′n+1. Then
we have

0 = p · x = N(i(x)) = N(y) +N(z)

and therefore N(y) = −N(z) ∈ Bn ∩ A′n = {0}. In particular, N(z) = 0
and therefore z = 0 by (i). This means that i(x) = y ∈ Bn+1 ∩ Ker(N).
Now consider the map

N : An+1/p ·An+1 −→ An/p ·An

induced by N . N is well-defined because N(p · An+1) = p · An, and
surjective because N is surjective. Since rankp(An) = rankp(An+1) for
n ≥ n0, N is also injective as being a map between finite sets of the same
cardinality. But this shows that the kernel of N is contained in p · An+1.
In particular, y ∈ p ·An+1, and so i(x) ∈ Bn+1 ∩ p ·An+1 = p ·Bn+1.

Now we return to the proof of Lemma 3.66. Consider an arbitrary n ≥ N1

and look at the decomposition An+1 = Bn+1 ⊕A′n+1 which, as decribed above,
induces a decomposition An = Bn ⊕ A′n. Then we can apply Lemma 3.65 to
the groups G := Bn and H := Bn+1, which satisfy all the conditions in 3.65,
by Proposition 3.68. Therefore i(Bn) = p ·Bn+1.

But this means that

i(An) = i(Bn ⊕A′n) = p ·Bn+1 = p ·An+1 ,

using Proposition 3.68, (iii) and (iv), Lemma 3.65 and the fact p ·A′n+1 = {0},
respectively.

Remarks 3.69.

(1) Using the notation from the preceding proof, let n ≥ n0, i.e., assume that
rankp(An) = rankp(An+1). Then in(Bn) = p·Bn+1 if and only if αn = αn+1.
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Proof. ‘⇐=’ : See the proof of Lemma 3.66.
‘=⇒’ : We have αn+1 ≤ αn, by Proposition 3.67. Suppose that αn+1 < αn.
Then

rankp(in(Bn)) = rankp(p ·Bn+1) = rankp(Bn+1)

> rankp(Bn) ≥ rankp(in(Bn)) ,

which gives a contradiction.

Note that each of the two statements implies that in(An) = p ·An+1 (com-
pare the end of the proof of Lemma 3.66).

(2) The statement of Lemma 3.66 has been proved by M. Grandet and J.-
F. Jaulent in [GJ 85], using the Λ-module structure of the An (compare
Theorem 3.73 below).

The following theorem establishes the connection between the preceding
algebraic structure theory and the study of Iwasawa’s λ-invariant.

Theorem 3.70. Let L/K be a Zp-extension satisfying µ(L/K) = 0. As usual,
we let A = lim←−An.
Then there exists an integer N ∈ N0 such that λ(L/K) = r − r′n for every
n ≥ N , where r = rankp(A) < ∞ and where r′n denotes the p-rank of the
capitulation kernel Ker(in : An −→ An+1), respectively.

Proof. By Iwasawa’s Theorem 1.32, there exists an integer N2 ∈ N0 such that
for every n ≥ N2, |An| = pµp

n+λn+ν where µ, λ and ν denote the Iwasawa
invariants of L/K. Let N1 be the integer defined in Lemma 3.66, and let
N := max{N2, N1}. Let n ≥ N be arbitrary, but fixed.

Since n ≥ N2, we have |An+1|
|An| = pλ, using our assumption that µ(L/K) = 0.

The map in : An −→ An+1 is a homomorphism between the finite groups An
and An+1, and

|An| = |Im(in)| · |Ker(in)| .

If x ∈ Ker(in), then p · x = N(i(x)) = N(0) = 0. This shows that Ker(in) is
a p-elementary group. Therefore |Ker(in)| = pr

′
n with r′n := rankp(Ker(in)). If

n ≥ N1, then rn := rankp(An) = rankp(A) by definition of N1 (compare the
proof of Lemma 3.66), and in(An) = p ·An+1. We conclude that

pλ =
|An+1|
|An|

=
|An+1|

|Im(in)| · pr′n
=
|An+1|
|pAn+1|

· p−r′n = prn−r
′
n = pr−r

′
n

for n ≥ N .

Corollary 3.71. With the above notation, the p-ranks of the capitulation ker-
nels Ker(in : An −→ An+1) stabilise, i.e., there exists an integer N ∈ N such
that rankp(Ker(in)) = rankp(Ker(iN )) for every n ≥ N .
Conversely, if the p-ranks of the capitulation kernels and the p-ranks of the An
have stabilised at N ∈ N, and if N is larger than the integer N1 from Lemma
3.66, then also the quotients |An+1|

|An| have stabilised and therefore |An| = pλn+ν

for n ≥ N .
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An important improvement of Lemma 3.66 is given by the following result,
which yields an effective upper bound on the integer N1 that will be very useful
later:

Lemma 3.72. Suppose that p is an odd rational prime. Let L/K denote a
Zp-extension satisfying µ(L/K) = 0. Choose an integer N0 ≥ e(L/K) such
that

rankp(AN0) = rankp(AN0+1) = rankp(A) =: r .

Let N1 ≥ N0 be such that
pN1 > r .

Then in(An) = p ·An+1 for every n ≥ N1.

Proof. This proof is essentially due to P. Mihăilescu. We have already seen
in the proof of Proposition 3.68, (iv) that in(An) ⊆ p · An+1 for every n ≥ N0.
Indeed, Nn+1,n(in(x)) = p · x for every x ∈ An, and therefore the induced map

Nn+1,n ◦ in : An/pAn −→ An/pAn

is the zero map. But Nn+1,n : An+1/pAn+1 −→ An/pAn is an isomorphism,
because n ≥ N0, proving that in : An/pAn −→ An+1/pAn+1 is the zero map.

We will prove that also p ·An+1 ⊆ in(An) if n is taken large enough.
Suppose that n ≥ N1, and let b := bn+1 ∈ An+1. If γ denotes a topological

generator of Gal(L/K) ∼= Zp, then Gal(Ln+1/Ln) ∼= <σ>/<σp>, where we let
σ := γp

n
.

We consider the submodule M := Λ · b of the Λ-module An+1, and we let
M := M/pM , which in a natural way bears a Fp-vector space structure. Since
M ⊆ An+1 is a subgroup, we can conclude that

dimFp(M) = rankp(M) ≤ rankp(An+1) = r .

If b denotes the coset of b ∈M in M , then this means that the elements

b, T · b, . . . , T pn−1 · b

have to be linearly dependent. Therefore we can write some T i · b, i ≤ pn − 1,
as a linear combination of the other powers T j · b. Lifting the relation to M ,
we obtain a polynomial

f(T ) = c0 · T p
n−1 + c1T

pn−2 + . . .+ cpn−1 ∈ Zp[T ]

such that f(T ) ·b = p ·x ·b for some element x ∈ Λ and such that at least one of
the coefficients may be assumed to equal 1. In fact, we may assume that f(T )
is a distinguished polynomial in Zp[T ] (see Definition 1.11). Indeed, using the
Weierstraß Preparation Theorem 1.14, we can write

f(T ) = f̃(T ) · U(T )

for some distinguished polynomial f̃(T ) of degree at most pn − 1 and a unit
U(T ) ∈ Λ∗. Then

f̃(T ) · b = p · x · U(T )−1 · b = p · x′ · b
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with x′ := x · U(T )−1 ∈ Λ.
Actually, we may also assume that x ∈ Zp[T ] is a polynomial. Indeed, Re-

mark 3.49 implies that there exists an integer k ∈ N such that T k ·An+1 = {0}.
In particular, T k annihilates b, so that we may think of x as being a polynomial
of degree less then k.

Now we use Theorem 1.9 and identify s := σ − 1 = γp
n − 1 with the

distinguished polynomial

(T + 1)p
n − 1 =: T p

n
+ p · h(T ) ,

h(T ) ∈ Zp[T ] appropriate. Since f(T ) is monic, division with remainder in
Zp[T ] yields the existence of two polynomials q(T ), r(T ) ∈ Zp[T ] such that

s = f(T )q(T ) + r(T )

and such that the degree of r(T ) is smaller than pn−1, which is a bound for the
degree of f(T ) (this includes the case r(T ) = 0). Moreover, every coefficient
of r(T ) is divisible by p because the monic leading terms of s and f(T ) cancel
(note that q(T ) 6= 0, since deg(f(T )) ≤ pn − 1 < deg(s)). Using the equality
f(T ) · b = p · x · b obtained above, we have therefore shown that

s · b = (p · g(T )) · b

for some polynomial g(T ) ∈ Zp[T ].
Then

s2 · b = s · s · b = s · (p · g(T )) · b = (p · g(T )) · s · b = (p · g(T ))2 · b ,

and inductively, we obtain

sk · b = (p · g(T ))k · b (?)

for every k ∈ N.
Now we use the fact that the norm

N = Nn+1,n = 1 + σ + . . .+ σp−1 =
σp − 1

σ − 1
=

(s+ 1)p − 1

s

may be written as
N = sp−1 + p · u(T ) ,

where

u(T ) = 1 +
p− 1

2
· s+ . . . ∈ Λ∗

is a unit, since s = s(T ) is distinguished. Letting bn := N(b) ∈ An, we may
conclude that

in(bn) = in(N(b)) = (sp−1 + p · u(T )) · b
(?)
= p · u(T ) · (1 + u(T )−1 · pp−2 · g(T )p−1) · b .

Since v(T ) := 1 + u(T )−1 · pp−2 · g(T )p−1 ∈ Λ∗ (recall that p 6= 2), it follows
that

p · b = (u(T )−1 · v(T )−1) · in(bn) ∈ in(An) ,

using the fact that in(An) is a Λ-module since in : An −→ An+1 is a Λ-module
homomorphism.
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Consider a Zp-extension L/K satisfying µ(L/K) = 0, and let A = lim←−An,
in : An −→ An+1, etc. be defined as above. Let

T := A[p] := {a ∈ A | p · a = 0} .

Then T ⊆ A is a Λ-submodule of A, and we can write T = lim←−Tn, where
we let Tn := prn(T ) denote the images of T under the n-th projection map
prn : A −→ An, respectively.

We will desribe now an important connection between T = lim←−Tn and the
capitulation kernels Ker(in), proved by M. Grandet and J.-F. Jaulent. The
following theorem is part of the main result of their article [GJ 85].

Theorem 3.73 (Grandet, Jaulent). Under the above assumptions, let T denote
the Zp-torsion submodule of A, i.e., A ∼= Zλp ⊕ T, with λ = λ(L/K) (compare
Proposition 1.45, (ii)).
Then there exist integers N ∈ N, a1, . . . , aλ ∈ Z and aλ+1, . . . , ar ∈ N, where
r = rankp(A), such that for any n ≥ N , the following statements hold.
(i) Tn ⊆ An is isomorphic to the kernel of the ideal lift map in,∞ : An −→ A,

which contains all classes of An that capitulate in some Lm, m ≥ n.
(ii) More precisely, there is a bijection between the elements in Tn of order pk

and the kernel of the map in,n+k : An −→ An+k.
In particular, we have |Tn| = |Ker(in = in,n+1 : An −→ An+1)|.

(iii)

An ∼=

(
λ⊕

i= 1

Z/pn+aiZ

)
⊕

(
r⊕

i=λ+1

Z/paiZ

)
.

Here the right sum corresponds to the torsion, i.e., by the above, mea-
sures the capitulation. In particular, the subexp of the left group tends to
infinity.

Proof. See [GJ 85].

Remarks 3.74.
(1) If M1 ⊆ A denotes the maximal finite Λ-submodule (compare Remarks

2.25, (3)), then T = M1. Indeed, T is obviously a finite Λ-submodule of A,
since A is finitely generated as a Zp-module by Proposition 1.31, (iii). If,
on the other hand, x ∈ A generates a finite Λ-submodule, then in particular
pk · x = 0 for some k ∈ N.

(2) The decomposition of the An in Theorem 3.73, (iii) in general differs from
our decomposition An = Bn⊕A′n: We have seen above that the A′n stabilise
for n ≥ N1; for such n, the norm maps N : A′n+1 −→ A′n are bijections
by Proposition 3.68. This shows that the projective limit of the A′n yields
a p-elementary Zp-torsion submodule of A. Therefore the A′n for large n
correspond to the factors of exponent p occurring in the right sum of the
theorem. Note that in general there exist also torsion elements of higher
order, i.e., T 6= T .

We will conclude the present section by giving another proof of Remark
3.59 (‘|M1| is locally constant’). We will see that, in the case of vanishing



3.4. CAPITULATION KERNELS AND THE λ-INVARIANT 123

µ-invariants, a local boundedness result concerning the orders of the torsion
subgroups is enough to prove that in fact λ and ν are locally constant.

Corollary 3.75. Let L/K denote a Zp-extension satisfying µ(L/K) = 0.
(i) Let U denote a neighbourhood of L (with respect to the Greenberg-R-

topology) such that µ(M/K) = 0 and λ(M/K) ≤ λ(L/K) for every
M ∈ U . Then there exists a neighbourhood U(L, n) ⊆ U such that
ν(M/K) = ν(L/K) for every M ∈ U(L, n) satisfying λ(M/K) = λ(L/K).

(ii) Let t ∈ N. Then there exists a neighbourhood U(L, n) of L such that
µ(M/K) = 0, λ(M/K) = λ(L/K) and ν(M/K) = ν(L/K) for every

M ∈ U(L, n) satisfying vp(|M (M)
1 )| ≤ t.

Proof. (i) First we note that a neighbourhood U as in the statement of the
corollary exists by Theorem 3.57, (ii). Using Theorem 3.57, (iv), we may

choose a neighbourhood U(L, n) ⊆ U such that vp(|M (M)
1 |) ≤ vp(|M (L)

1 |)
for every M ∈ U(L, n) satisfying λ(M/K) = λ(L/K).
We may assume that rankp(A

(M)) = rankp(A
(L)) for every M ∈ U(L, n).

Then
rankp(T

(M)) = rankp(T
(L))

for everyM ∈ U(L, n) satisfying λ(M/K) = λ(L/K), where T(M) = M
(M)
1

denotes the Zp-torsion submodule of A(M).

Now we assume that n ≥ e(L/K) + vp(|M (L)
1 |). Since M

(L)
1 = T(L) is a

Fukuda module by Example 3.15, it follows that

|T(L)
n | = |T(L)| .

Analogously, since e(M/K) = e(L/K) and vp(|M (M)
1 |) ≤ vp(|M (L)

1 |) for
the M ∈ U(L, n) under consideration, we have

|T(M)
m | = |T(M)|

for every m ≥ n.

Now we assume that n, moreover, is larger than N+vp(|M (L)
1 |)+1, where

N denotes the integer attached to L/K by Theorem 3.73. Then Theorem
3.73, (iii) implies that the exponent of each cyclic subgroup of the ‘left

term’ in the decomposition of A
(L)
n , corresponding to the ‘λ-part’, is at

least vp(|M (L)
1 |)+1. Therefore none of the corresponding cyclic subgroups

in A
(M)
n
∼= A

(L)
n can contribute to the torsion subgroup T

(M)
n of M/K,

because vp(|M (M)
1 |) ≤ vp(|M (L)

1 |).
In view of the equality

rankp(T
(L)
n ) = rankp(T

(L)) = rankp(T
(M)) = rankp(T

(M)
n ) ,

we therefore have in fact

|T(M)| = |T(M)
n | = |T(L)

n | = |T(L)| .

As we have seen in the proof of Theorem 3.57, (iv), this implies that
ν(M/K) = ν(L/K) for every M ∈ U(L, n), provided that n is sufficiently
large.
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(ii) Conversely, let t ∈ N, and denote by M the subset of M ∈ E(K) satisfying

vp(|M (M)
1 |) ≤ t. Since µ(L/K) = 0, we know that EA(L)/(pt+1 · EA(L)) is

finite, and therefore

rankpt+1(A(L)) := vp(|A(L)/(pt+1 ·A(L))|) < ∞ .

Moreover, A(L)/(pt+1 ·A(L)) is a Fukuda module by the Quotient Lemma
3.10. This means that we may choose a neighbourhood U(L, n) of L such
that

rankpt+1(A(M)
n ) = rankpt+1(A(M)) = rankpt+1(A(L)) = rankpt+1(A(L)

n )

for each M ∈ U(L, n). In particular, we then have

rankp(A
(M)) = rankp(A

(L)) < ∞ ,

i.e., µ(M/K) = 0 for M ∈ U(L, n).
We assume that n is large enough to ensure that in the decomposition of

A
(L)
n according to Theorem 3.73, (iii), each cyclic subgroup corresponding

to the ‘λ-part’ has exponent larger than t. If M ∈M ∩ U(L, n+ 1), then

none of these cyclic subgroups in A
(L)
n
∼= A

(M)
n contributes to M

(M)
1 , and

therefore λ(M/K) ≥ λ(L/K) and rankp(M
(M)
1 ) ≤ rankp(M

(L)
1 ).

On the other hand, we have rankpt+1(A(M)) = rankpt+1(A(L)) for each
M ∈ U(L, n). In particular, if N(M) denotes the integer of Theorem 3.73
for M (note that a priori, N(M) could be much larger than N(L)), and
if m ≥ max(n,N(M)), then

rankpt+1(A
(M)
m+1) = rankpt+1(A(M)

m ) = rankpt+1(A(M)
n ) .

This means that none of the cyclic subgroups of A
(M)
n
∼= A

(L)
n of expo-

nent smaller than t+ 1 can contribute to the λ-part of M , and therefore

λ(M/K) = λ(L/K), rankp(M
(M)
1 ) = rankp(M

(L)
1 ) and |M (M)

1 | = |M (L)
1 |.

3.5 Capitulation kernels and units

In the preceding section, we have shown that the Iwasawa λ-invariant is closely
related to the asymptotic growth of capitulation kernels. This motivates the
study of this arithmetic phenomenon in the present section. We will establish a
link between the orders of capitulation kernels on the one side and the orders of
suitable cohomology groups of units on the other side. This will then be used
in order to obtain a new proof of the fact that λ is locally maximal if µ vanishes
(compare Theorem 3.57, (ii)).

Starting point of the well-known theory linking capitulation kernels and
units was the following observation of K. Iwasawa: In [Iw 73], Iwasawa con-
structed isomorphisms between capitulation kernels of quotients of the ideal
class groups and the cohomology groups of p-units. If A = lim←−An denotes
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the projective limit of the ideal class groups attached to a Zp-extension L/K,
respectively, then we let A′n := An/Bn, n ≥ 0, where Bn ⊆ An is the sub-
group generated by ideal classes which contain an ideal all of whose prime
factors are ramified in Ln+1/Ln, respectively (compare Example 3.11). For ev-
ery m ≥ n ≥ 0, we denote by i′n,m : A′n −→ A′m the ideal lift map. Furthermore,
we define E′ :=

⋃
n≥0 E

′
n, where E′n denotes the group of p-units in Ln, i.e.,

the units of the ring OLn [1
p ] of p-integers in Ln, respectively.

We briefly recall some basic definitions concerning cohomology theory of
finite groups: Let G denote a finite cyclic group generated by an element σ.
Let A be a G-module, i.e., an abelian group on which G operates. Let n denote
the order of G, and consider the elements s := 1−σ and N := 1+σ+ . . .+σn−1

in the group ring Z[G] acting on A. Then im(N) ⊆ ker(s) and im(s) ⊆ ker(N)
because of the formal identities N · s = s ·N = 0 in Z[G]. One defines

H0(G,A) :=
ker(s : A −→ A)

N(A)
and H−1(G,A) :=

ker(N : A −→ A)

s(A) .

Note that s(A) = {τa − a | τ ∈ G, a ∈ A}. Indeed, if τ = σk ∈ G, then
τa− a = −s · (σk−1 + σk−2 + . . .+ 1) · a ∈ s(A) for each a ∈ A.

Remark 3.76. There exists a much more general theory, defining cohomology
groups Hn(G,A) for arbitrary n ∈ Z. For finite cyclic groups G, we have
Hn(G,A) ∼= H−1(G,A) for every odd integer n and Hn(G,A) ∼= H0(G,A) for
every even n (the isomorphisms being induced by the cup product, compare
[NSW 08], Prop. 1.7.1). In the literature, the cohomology group H−1(G,A)
sometimes is denoted by H1(G,A).

Theorem 3.77 (Iwasawa). There are isomorphisms

ϕ′n,m : ker(i′n,m : A′n −→ A′m)
∼−→ H−1(Gal(Lm/Ln), E′m)

for every m ≥ n ≥ 0, and also

ϕn : ker(i′n,∞ : A′n −→ lim−→
m

A′m)
∼−→ H−1(Gal(L/Ln), E′) ,

where the direct limit lim−→A′m is taken with respect to the ideal lift maps.

Proof. This is Theorem 12 in [Iw 73]. Iwasawa explicitly defines ϕ′n,m, as fol-
lows.

Fix a generator σ of Gal(Lm/Ln). For c ∈ ker(i′n,m) and a representative

A ∈ c, we know that A · OLm [1
p ] = (α) becomes principal, and we may assume

that α 6= 0. Then
ε := ασ−1

is a p-unit in E′m, since Aσ = A because A ⊆ OLn [1
p ] ⊆ Ln. Furthermore,

NLm/Ln(ε) = 1, since NLm/Ln · (σ − 1) = 0 in Z[Gal(Lm/Ln)]. Therefore, ε is

the representative of a class ε ∈ H−1(Gal(Lm/Ln), E′m). Iwasawa shows that
the map

ϕ′n,m : ker(i′n,m) −→ H−1(Gal(Lm/Ln), E′m), c 7→ ε,

is a well-defined homomorphism, and in fact a bijection.
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Remark 3.78. There exist similar canonical homomorphisms

ϕn,m : ker(in,m : An −→ Am) −→ H−1(Gal(Lm/Ln), Em) , m ≥ n ,

and

ϕn : ker(in,∞ : An −→ lim−→Am) −→ H−1(Gal(L/Ln), E) ,

with En = O∗Ln and E =
⋃
n≥0 En. Iwasawa remarks in [Iw 73] that these

maps are injective, but usually not surjective.

Proof. Let c ∈ An be such that in,m(c) = 0. If A ∈ c, then A · OLm = (α) is a
principal ideal, and ϕn,m(c) = ασ−1, where σ generates Gal(Lm/Ln).

Now suppose that

ε := ασ−1

is contained in the trivial class of H−1(Gal(Lm/Ln), Em). Then ε = δσ−1

for some δ ∈ Em. Therefore ασ−1 = δσ−1, i.e., (α/δ)σ−1 = 1 and therefore
α/δ =: x ∈ Ln. But then (α) = (δ · x) = (x), and therefore A = (x) is principal
already in Ln. This proves that ϕn,m is injective.

If c ∈ An satisfies in,∞(c) = 0, then there exists some m ≥ n such that
in,m(c) = 0. Therefore also ϕn is injective, n ∈ N0.

Now let (α) ∈ OLm denote a ramified principal prime ideal (for example, if
L/K is the cyclotomic Zp-extension, then we can take α = ζpk−1 for a suitable
k ∈ N). Then (α)σ = (α) and therefore ε := ασ−1 ∈ Em.

We claim that the class of ε in H−1(Gal(Lm/Ln), Em) cannot lie in the
image of ϕm−1,m. Indeed, otherwise there exists an ideal A of Lm−1 such that
A · OLm = (α). But (α) is ramified in Lm/Lm−1 and therefore does not lie in
the image of the ideal lift map im−1,m.

Note that the absence of an isomorphism ϕ analogous to Theorem 3.77 is not
very obstructive to our purposes, since we are mainly interested in the order of
the capitulation kernels ker(in,m), rather than in their specific group structure.
In fact, the following theorem will yield enough information for us.

Theorem 3.79. Let L/K be a cyclic extension with Galois group G =<σ>.
Then there exists an isomorphism

ϕ = ϕL/K : PGL /iK,L(PK)
∼−→ H−1(G,EL) ,

where PK and PL denote the groups of principal fractional ideals of K and L,
respectively, and where

PGL = {(γ) ∈ PL : (γ)τ = (γ) ∀ τ ∈ G} = {(γ) ∈ PL : (γ)σ = (γ)} .

ϕ is the analogon of the maps from Theorem 3.77: For γ ∈ L∗, the coset
(γ) · iK,L(PK) is mapped to the class ε ∈ H−1(G,EL) of ε := γσ−1.

Proof. See Satz 2 and p. 47 in [Sc 85].
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Remarks 3.80.

(1) In the article [Sc 85], Theorem 3.79 is actually proved for arbitrary Galois
extensions L/K.

(2) If L/K is unramified, then every ideal A in PGL is the image iK,L(A′) of
some ideal A′ of K (see Theorem 93 in [Hi 97]). Therefore

PGL /iK,L(PK) ∼= ker(iK,L) ,

i.e., the analogon of Theorem 3.77 is valid in this case. Since a Zp-extension
cannot be unramified, this situation is only possible for intermediate exten-
sions Lm/Ln with small values of n and m.

(3) We have already seen in Remark 3.78 that the existence of ramified primes
in L/K implies that the map from Theorem 3.79 will not be an isomor-
phism. In fact, in general we cannot hope for having an isomorphism, as
we will see now by relating the orders of H−1(G,EL) and ker(iK,L); compare
Corollary 3.81 below.

If Gal(L/K) = < σ > is cyclic, then (α) ∈ PGL if and only if (α)σ = (α).
Moreover, Hilbert’s Theorem 93 implies that each such (α) may be written as
(α) = B ·C for two ideals B and C of L (possibly trivial) such that every prime
factor of B ramifies in L/K and such that C = iK,L(C′) for some ideal C′ of K.

In particular, if [L : K] = p, then

|PGL / iK,L(PK)| = psL · | ker(iK,L)| ,

where psL denotes the number of ideals B of L such that every prime factor of
B ramifies in L/K and occurs in B with exponent in {1, . . . , p− 1}, and such
that there exists an ideal C′ of K such that B ·iK,L(C′) = (α) is a principal ideal
in L. For the moment, we will call these ramified ideals of L ‘pseudo-principal’.

Indeed, we have

|PGL / iK,L(PK)| = |PGL / (iK,L(IK) ∩ PGL )| · |(iK,L(IK) ∩ PGL ) / iK,L(PK)|
= |PGL / (iK,L(IK) ∩ PGL )| · | ker(iK,L)| ,

where IK denotes the group of fractional ideals of K.

Moreover,

PGL / (iK,L(IK) ∩ PGL ) ∼= (PGL · iK,L(IK)) / iK,L(IK) .

The class of (α) = B · iK,L(C′) in this quotient equals the class of B. We are
therefore counting classes of ramified pseudo-principal ideals B of L, modulo
iK,L(K). Note that the number of these classes is a power of p, because each
class B 6= 1 has order p in (PGL · iK,L(IK)) / iK,L(IK), since Bp ∈ iK,L(IK).

We have thus proved the following result.
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Corollary 3.81.
(i) Let L/K be a cyclic extension of degree p. Then

|H−1(Gal(L/K), EL)| = psL · | ker(iK,L)| ,

where psL denotes the number of pseudo-principal ramified ideals of L, as
defined above.

(ii) In particular, if L/K is unramified, then

| ker(iK,L)| = |H−1(Gal(L/K), EL)| ,

and in fact the map ϕ from Theorem 3.79 yields an isomorphism between
the two groups.

Now we are reduced to studying orders of cohomology groups. The following
lemma will be a crucial ingredient in our proof that λ is locally maximal.

Lemma 3.82. Let p denote an odd prime, let L/K denote a Zp-extension such
that µ(L/K) = 0. If N1(L/K) denotes the integer defined in Lemma 3.72, then
µ(M/K) = 0 and

|H0(Gal(Mn+1/Mn), E
(M)
n+1)| ≤ |H0(Gal(Mn+2/Mn+1), E

(M)
n+2)|

for every n ≥ N1 and every M ∈ U(L, n). Here Mn and E
(M)
n denote the

unique subfield of M of degree pn over K and its group of units, respectively.

Proof. Since µ(L/K) = 0, rankp(An) is bounded as n → ∞ (see Proposition
1.45, (i)), and there exists an integer N0 ≥ e(L/K) such that

rankp(An) = rankp(AN0) = rankp(A)

for every n ≥ N0. In particular, µ(M/K) = 0 and rankp(A
(M)) = rankp(A

(L))
for each M ∈ U(L,N0 + 1).

Let n ≥ N0 + 1 be arbitrary, but fixed.

Assume that |H0(Gal(Mn+1/Mn), E
(M)
n+1)| > |H0(Gal(Mn+2/Mn+1), E

(M)
n+2)|

for some M ∈ U(L, n).

Then there exists a unit ε ∈ E(M)
n ⊆ E

(M)
n+1 such that ε 6∈ Nn+1,n(E

(M)
n+1), i.e.,

ε 6= 1 in H0(Gal(Mn+1/Mn), E
(M)
n+1), but such that ε = Nn+2,n+1(e) for some

e ∈ E(M)
n+2. We want to show that this cannot be the case if n is chosen large

enough.

If γ denotes a topological generator of Gal(M/K) ∼= Zp, then we know that

Gal(M/Mi) = <γp
i
> for every i ∈ N. Therefore, letting σ := γp

n
, we conclude

that Gal(Mn+1/Mn) = <σ> / <σp> and Gal(Mn+2/Mn+1) = <σp>/<σp
2
>.

In order to simplify the notation, we will for the moment write the action of
these Galois groups multiplicatively.

Since ε ∈Mn, it follows that σ(ε) = ε, and therefore

1 = εσ−1 = (Nn+2,n+1(e))σ−1 = Nn+2,n+1(eσ−1) ,
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using the fact that Gal(Mn+2/Mn) = <σ>/<σp
2
> is abelian. Hilbert’s The-

orem 90, applied to the cyclic extension Mn+2/Mn+1, implies that there exists
an element δ ∈Mn+2 such that

eσ−1 = δσ
p−1 = (δNn+1,n)σ−1 .

Here we use the formal identity (σ − 1) · Nn+1,n = σp − 1 in the group ring
Z[Gal(Mn+2/Mn)]. Therefore (e/δNn+1,n)σ−1 = 1, i.e.,

e = δNn+1,n · d (?)

for some element d ∈Mn. But then

ε = Nn+2,n+1(e)
(?)
= Nn+2,n+1(δNn+1,n · d)

= δNn+2,n+1·Nn+1,n · dp = δNn+1,n·Nn+2,n+1 · dp (??)

= Nn+1,n(δNn+2,n+1 · d) ,

since d ∈Mn and because Z[Gal(Mn+2/Mn)] is abelian.
Now we consider the ideal (δ) of Mn+2. Since

(δσ
p−1) = (eσ−1) = (1) ,

it follows that (δ)σ
p

= (δ), and therefore Hilbert’s Theorem 93 (compare [Hi 97]
and [Neu 92], Corollary III.2.12) implies that

(δ) = in+1,n+2(D) · A

with ideals D of Mn+1 and A of Mn+2 such that every prime ideal dividing A
is ramified in Mn+2/Mn+1 .

We first show that we may actually choose A = (1), i.e., (δ) = in+1,n+2(D),
if n is large enough. In order to prove this, let us assume that A has been
chosen minimal, i.e., A =

∏k
j=1 P

ej
2,j with 0 ≤ ej < p for every j = 1, . . . , k;

note that for each j, Pp
2,j equals in+1,n+2(P1,j) for some prime P1,j of Mn+1

and therefore may be absorbed into in+1,n+2(D).
Since n > e(L/K) = e(M/K), every prime P2,j is totally ramified in

Mn+2/Mn. For each j = 1, . . . , k, let P1,j , respectively, P0,j , denote the unique
primes of Mn+1, respectively, Mn that are divisible by P2,j .

For any fixed j ∈ {1, . . . , k}, we consider the normalised valuation v := vP2,j

induced by the prime P2,j , i.e.,

v(P1,j · OMn+2) = p and v(P0,j · OMn+2) = p2 .

Then

0 = v((e))
(?)
= v((δNn+1,n)) + v((d))

= v((δNn+1,n)) + p2 · c ,

where c ∈ Z is the exponent of P0,j in (d) ⊆ Mn, i.e., c = vP0,j ((d)). Moreover,

v((δNn+1,n)) = p · v((δ)) ,
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because the extension Mn+2/Mn is galois and therefore

v((σ(δ))) = v((δ)) .

But if 0 = p ·v((δ))+p2 ·c, then we must have v((δ)) ≡ 0 mod p, i.e., ej = 0
in the above decomposition of A into prime factors. Since this holds for every
j = 1, . . . , k, we may conclude that we can choose D with (δ) = in+1,n+2(D),
i.e., A = (1).

Now we will deal with the ideal D of Mn+1. We claim that

Nn+1,n(D) = (d−1) .

Indeed, since in+1,n+2(D) = (δ), the class of D in the group A
(M)
n+1 has order at

most p, because ker(in+1,n+2) is p-elementary. This means that Dp = (β) for
some β ∈ Mn+1. Therefore in+1,n+2((β)) = (δ)p, i.e., β = δp · e2 for some unit

e2 ∈ E(M)
n+2. But then

Nn+1,n(D)p = (βNn+1,n) = βNn+1,n · OMn

= (βNn+1,n · OMn+2) ∩ Mn

= ((δp · e2)Nn+1,n · OMn+2) ∩ Mn

= ((δp)Nn+1,n · OMn+2) ∩ Mn

= ((d−1)p · OMn+2) ∩ Mn

= (d−1)p · OMn ,

because δNn+1,n · d = e ∈ E(M)
n+2 by (?). This implies that Nn+1,n(D) = (d−1),

as claimed, since the group of fractional ideals of Mn is Z-free.
Furthermore, the ideal D of Mn+1 cannot be a principal ideal. Indeed, if

D = (α) for some element α ∈Mn+1, then

in+1,n+2(D) = (α) = (δ) ,

and therefore δ = α · e2 with some unit e2 ∈ E(M)
n+2. But then

eσ−1 = δσ
p−1 = (α · e2)σ

p−1 = eσ
p−1

2 ,

since α ∈ Mn+1. Using e2 instead of δ, (?) and (??) then would imply that

ε ∈ Nn+1,n(E
(M)
n+1), in contradiction to our assumptions on ε.

Therefore, 1 6= D ∈ A(M)
n+1 and Nn+1,n(D) = 1, since Nn+1,n(D) = (d−1) is

a principal ideal. Recall that n ≥ N0 and thus rankp(A
(M)
n+1) = rankp(A

(M)
n ),

implying that ker(Nn+1,n) ⊆ p ·A(M)
n+1, because the induced map

Nn+1,n : A
(M)
n+1/pA

(M)
n+1 −→ A(M)

n /pA(M)
n

is an isomorphism (compare the proof of Proposition 3.68, (iv)).
Now let N1 ≥ N0 denote the integer attached to L/K in Lemma 3.72. This

means that N1 is large enough to ensure that pN1 > rankp(A
(L)). Note that the
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same integer N1 works for every M ∈ U(L, n), since rankp(A
(M)) = rankp(A

(L))
for these M .

We now assume that n ≥ N1. Returning to our fixed M ∈ U(L, n), Lemma

3.72 implies that p · A(M)
n+1 ⊆ in,n+1(A

(M)
n ). Therefore D · (α1) = in,n+1(A) for

some element α1 ∈Mn+1 and an ideal A of Mn. But

(δ · α1)σ
p−1 = δσ

p−1 (?)
= eσ−1 ,

so that we may replace δ by δ · α1 and also D by D · (α1). This means that we
may without loss of generality assume that D = in,n+1(A) and (δ) = in,n+2(A).
Therefore, in the ring of integers of Mn+1,

(δNn+2,n+1 · d) = (δNn+2,n+1) · in,n+1((d))

= Nn+2,n+1(in,n+2(A)) · in,n+1(Nn+1,n(in,n+1(A)))−1

= in,n+1(A)p · in,n+1(A)−p = (1) ,

so that (??) implies that ε ∈ Nn+1,n(E
(M)
n+1), contrary to our assumptions.

This shows that the inclusion E
(M)
n ⊆ E(M)

n+1 induces an injective map

H0(Gal(Mn+1/Mn), E
(M)
n+1) �

�
// H0(Gal(Mn+2/Mn+1), E

(M)
n+2) .

Since M ∈ U(L, n) was chosen arbitrary, this proves the lemma.

Corollary 3.83. Let p be an odd prime number, and let L/K denote a Zp-
extension such that µ(L/K) = 0. Then there exists an integer N1 ∈ N such
that µ(M/K) = 0, rankp(A

(M)) = rankp(A
(L)) and

| ker(i
(M)
n,n+1 : A(M)

n −→ A
(M)
n+1)| ≤ | ker(i

(M)
n+1,n+2 : A

(M)
n+1 −→ A

(M)
n+2)|

for every n ≥ N1 and every M ∈ U(L, n).

Proof. Using Corollary 3.81 and Lemma 3.82, we already know that for suitable
N1 ∈ N,

psMn+1 · | ker(i
(M)
n,n+1)| = |H−1(Gal(Mn+1/Mn), E

(M)
n+1)|

= p · |H0(Gal(Mn+1/Mn), E
(M)
n+1)|

≤ p · |H0(Gal(Mn+2/Mn+1), E
(M)
n+2)|

= |H−1(Gal(Mn+2/Mn+1), E
(M)
n+2)|

= psMn+2 · | ker(i
(M)
n+1,n+2)|

for every M ∈ U(L,N1). Here we have also used the fact that

|H−1(Gal(F/G), EF )| = p · |H0(Gal(F/G), EF )|

for every cyclic extension F/G of degree p that is unramified at infinity (see
[Ja 73], Theorem V.2.4).
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In particular, | ker(i
(M)
n,n+1)| ≤ psMn+2

−sMn+1 · | ker(i
(M)
n+1,n+2)|. We will show

now that sMn+2 ≤ sMn+1 if n ≥ N1. Recall that psMn+2 (respectively, psMn+1 )
denotes the number of ‘pseudo-principal’ ramified ideals of Mn+2 (respectively,
Mn+1).

Let Bn+2 be such an ideal of Mn+2, i.e., assume that every prime divisor
of Bn+2 is ramified in Mn+2/Mn+1 and occurs with exponent in {1, . . . , p− 1},
and that there exists an ideal Cn+1 of Mn+1 such that

Bn+2 · in+1,n+2(Cn+1) = (α)

is a principal ideal in OMn+2 .
We apply the norm map N := Nn+2,n+1. Then each prime factor of

Bn+1 := N(Bn+2) ⊆Mn+1

is ramified in Mn+1/Mn, since n ≥ e(M/K), and divides Bn+1 with exponent
in {1, . . . , p− 1}. Moreover,

Bn+1 · Cpn+1 = (N(α)) ,

since N(in+1,n+2(Cn+1)) = Cpn+1. But p ·A(M)
n+1 ⊆ in,n+1(A

(M)
n ) for n ≥ N1, and

therefore Cpn+1 = in,n+1(Cn) ·(β) for some ideal Cn of Mn and a suitable element
β ∈Mn+1. This means that

Bn+1 · in,n+1(Cn) = (N(α) · β−1)

is principal, and therefore sMn+2 ≤ sMn+1 .

Now we are ready to prove the main result of this section, which corresponds
to Theorem 3.57, (ii).

Theorem 3.84. Let p be an odd prime number, and let L/K be a Zp-extension
such that µ(L/K) = 0. Then the Iwasawa λ-invariant is locally maximal with
respect to the Greenberg-R-topology, i.e., there exists an integer N ∈ N such
that λ(M/K) ≤ λ(L/K) for every M ∈ U(L, n).

Proof. We choose N1 ∈ N as in Corollary 3.83, and we let N2 = N2(L/K) be
the integer N defined in Theorem 3.70. This means that

λ(L/K) = r − rn

for every n ≥ N2, where r := rankp(A
(L)) and

rn := rankp(ker(in := in,n+1 : A(L)
n −→ A

(L)
n+1)) .

Now we defineN := max(N1, N2)+1 and consider a Zp-extensionM ∈ U(L,N).
Since N ≥ N1, we know that the statement of Corollary 3.83 is valid for M .

In particular, µ(M/K) = 0 and

r(M) := rankp(A
(M)) = rankp(A

(L)) = r .
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If N2(M/K) ≤ N − 1, then

rankp(ker(i
(M)
N2(M/K),N2(M/K)+1)) = rankp(ker(i

(L)
N2(M/K),N2(M/K)+1)) ,

and therefore λ(M/K) = λ(L/K), using Theorem 3.70.
Now N2(M/K) might be strictly larger than N − 1. But then Corollary

3.83 implies that

r
(M)
N2(M/K) := rankp(ker(i

(M)
N2(M/K),N2(M/K)+1))

≥ rankp(ker(i
(M)
N−1,N ))

= rankp(ker(i
(L)
N−1,N )) ,

since the capitulation kernels ker(i
(M)
k,k+1) are p-elementary and therefore

| ker(i
(M)
k,k+1)| = prankp(ker(i

(M)
k,k+1))

for every k ∈ N0.
This means that in any case, we may conclude that

λ(M/K) = r(M) − r(M)
N2(M/K) = r − r(M)

N2(M/K) ≤ r − rN−1 = λ(L/K) ,

proving that λ(L/K) is locally maximal.
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Chapter 4

The global approach

In this chapter, we want to briefly describe a different approach to the study of
Iwasawa’s invariants which originates in Greenberg’s article [Gr 73] and which
is more capable if one wants to deduce global results. In the first two sections,
we will describe work of R. Greenberg and V. Babăicev, who proved that
the set {µ(L/K) | L ∈ E(K)} is bounded for every number field K. In Section
4.3, we will turn to λ-invariants. The analogous question, i.e., whether the
set {λ(L/K) | L ∈ E(K)} is bounded for an arbitrary number field K, is still
open. In fact, no example of unbounded λ-invariants is known. We will derive
a sufficient criterion for the existence of such an example, using the theory
developed in the first two sections.

4.1 Greenberg’s boundedness results

Let p denote a fixed rational prime, let K denote a number field such that
there exist infinitely many Zp-extensions of K. Let K be the composite of all
Zp-extensions of K, i.e., Gal(K/K) ∼= Zdp with d ≥ 2. In the article [Gr 73],
R. Greenberg introduced the Greenberg topology on the set E(K) of Zp-
extensions of K, and he proved the following results (compare Theorems 2.27-
2.30):

Theorem 4.1 (Greenberg).
(i) Let L be a Zp-extension of K such that only finitely many prime ideals of L

lie over p. Then there exist integers n0 and c ∈ N such that µ(M/K) < c
for any M ∈ E(L, n0).

(ii) Let L be a Zp-extension of K such that only finitely many primes of L lie
over p. Assume further that µ(L/K) = 0. Then there exist integers n0

and c ∈ N such that µ(M/K) = 0 and λ(M/K) < c for any M ∈ E(L, n0).
(iii) Let K be a number field which contains only one prime dividing p. Then

there exists a constant c such that µ(L/K) < c for every Zp-extension of
K.

(iv) Let K be a number field which contains only one prime dividing p. Assume
that µ(L/K) = 0 for every L ∈ E(K). Then there exists a constant c such
that λ(L/K) < c for every Zp-extension of K.

135
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Note that the assumptions made in Theorem 4.1 imply that no prime of K
dividing p splits completely in L/K.

We will now briefly describe Greenberg’s method of proof, which is quite
different from our approach used in Chapter 3. In particular, we will see the
motivation for assuming that no prime of K lying above p splits completely in
L/K; using our local method, we are free to allow infinitely split primes. On
the other hand, we have to put assumptions on the ramification, being coded
into the Greenberg-R-topology (see Definition 3.24).

In [Gr 73], Greenberg started with a fixed Zp-extension L/K, and he con-
sidered the canonical restriction map which is a surjective homomorphism

Gal(K/K) // // Gal(L/K) .

This map induces a surjective ring homomorphism

πL : ΛK := Zp[[Gal(K/K)]] // // ΛL := Zp[[Gal(L/K)]]

of the corresponding completed group rings (see Definition 2.9). Note that

ΛL ∼= Zp[[T ]] = Λ and ΛK ∼= Zp[[T1, . . . , Td]] = Λd ,

using Theorems 1.9 and 2.18, respectively.
Now let AL denote the kernel of πL; then AL ⊆ ΛK is an ideal. If Y denotes

a noetherian torsion ΛK-module, then

YL := Y/(AL · Y )

can be regarded as a module over ΛK/AL ∼= ΛL. Indeed, if λ ∈ ΛL, then we
choose a pre-image λ under the surjective homomorphism πL, and we define
λ · y := λ · y, y ∈ Y/(AL · Y ). This is well-defined since any other lift λ + a,
a ∈ AL, yields the same element λ · y ∈ YL = Y/(AL · Y ).

YL becomes a noetherian ΛL-module, but it is not necessarily a torsion
module. Greenberg defined, for fixed K and Y , E(Y ) = E(Y,K) ⊆ E(K) to
be the set of all Zp-extensions L of K such that YL is a torsion ΛL-module.
E(Y ) bears the subspace topology induced by the Greenberg topology on E(K).
For each L ∈ E(Y ), the Iwasawa invariants of the module YL are defined via
Proposition 1.28, using the isomorphism ΛL ∼= Λ.

Lemma 4.2 (Greenberg). Let Y denote a fixed noetherian torsion ΛK-module,
and let E(Y ) be defined as above.
(i) L ∈ E(Y ) if and only if the annihilator ideal of Y in ΛK is not contained

in the kernel AL of πL. If L ∈ E(Y ), then we may choose an annihilator
f of Y such that f ≡ ±ht (mod AL), where h ∈ ΛK denotes the lift of
an annihilator of YL, and t is the minimal number of generators of Y , as
ΛK-module.

(ii) The invariant µ(YL) is locally bounded on E(Y ).
(iii) If µ(YL) = 0 for some L ∈ E(Y ), then then there exist an open neigh-

bourhood U ⊆ E(Y ) of L and a constant c ∈ N such that µ(YM ) = 0 and
λ(YM ) ≤ c for every M ∈ U .
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Proof. For the proof of (i), see p. 208 in [Gr 73]: If g ∈ ΛK, g 6∈ AL, annihilates
Y , then 0 6= πL(g) ∈ ΛL satisfies πL(g) · YL = {0}. If, on the other hand, YL is
ΛL-torsion, then we may choose an element h ∈ ΛK such that h · Y ⊆ AL · Y
and h 6∈ AL. If y1, . . . , yt denote generators of the ΛK-module Y , then

h · yi =

t∑
j=1

cij · yj , 1 ≤ i ≤ t ,

with cij ∈ AL for every i and j, so

t∑
j=1

(cij − δijh) · yj = 0

for every 1 ≤ i ≤ t, where

δij =

{
1 : i = j

0 : i 6= j .

Let f := det((cij − δijh)i,j) ∈ ΛK. Then f · Y = 0 and f ≡ ±ht (mod AL), and
in particular f 6∈ AL, since πL(f) = πL(±ht) = ±πL(h)t 6= 0.

For (ii) and (iii), compare Theorems 2 and 3 in [Gr 73]. We will sketch the
proof in the case of an elementary ΛK-module Y = ΛK/(f), f ∈ ΛK.

The connection to Greenberg’s topology is given by the observation that

AM ⊆ AL + mn+1 for every M ∈ E(L, n), (?)

where m denotes the maximal ideal of the local ring ΛK (i.e., m corresponds to
(p, T1, . . . , Td) ⊆ Zp[[T1, . . . , Td]] ∼= ΛK, compare Proposition 2.17, (i)).

For Y = ΛK/(f), µ(YL) is given by the exponent of the largest power of p
dividing

f := πL(f) = f + AL ∈ ΛK/AL ∼= ΛL .

If mL denotes the maximal ideal of ΛL ∼= Λ, then

∞⋂
n=0

mn
L = {0} .

Moreover, πL(m) = mL, because πL is a surjective ring homomorphism. We
may conclude that for sufficiently large s ∈ N, we have

f 6∈ (pµ(YL)+1) + AL + ms .

It follows that for every M ∈ E(L, s), we have f 6∈ (pµ(YL)+1) + AM , using (?)
above.

Analogously, if µ(YL) = 0 for some L ∈ E(Y ), then λ(YL) is equal to the
smallest index j such that the coefficient aj in the expansion

πL(f) = f = a0 + a1 · T + a2 · T 2 + . . . ∈ Λ ∼= ΛL

is a p-adic unit (compare the Weierstraß Preparation Theorem 1.14). Now (iii)
may be proved similarly to part (ii).
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Greenberg applied this theory to X := Gal(H(K)/K), the Galois group of
the maximal unramified p-abelian extension of K. X is a finitely generated
torsion ΛK-module (see Theorem 1 in [Gr 73]) and therefore may be used in
position of Y . If L/K is a Zp-extension such that only finitely many primes of
L divide p, then L ∈ E(X):

In order to prove that X/(AL · X) is a torsion ΛL-module, Greenberg
considered the Galois group G := Gal(H(K)/L), together with its topologi-
cal commutator subgroup G′. He showed that G′ contains AL · X, and that
D := G′/(AL ·X) is a finitely generated Zp-module of rank at most (d−1)(d−2)

2
and a ΛL-torsion module (this generalises Lemma 1.36, (i)).

In order to prove that also G/G′ is ΛL-torsion, Greenberg considered the
finitely many primes p1, . . . , ps of L dividing p, and he defined T := T1 · . . . ·Ts,
where Tj denotes the inertia subgroup of pj in the maximal abelian exten-
sion of L contained in H(K), respectively. Then T ⊆ G/G′, and each Tj
is isomorphic to a subgroup of Gal(K/L) ∼= Zd−1

p , since Tj ∩ X/G′ = {1},
j = 1, . . . , s. Therefore T is finitely generated over Zp and thus ΛL-torsion. Fi-
nally, (G/G′)/T ∼= Gal(H(L)/L), where H(L) denotes the maximal unramified
p-abelian extension of L, and this is a torsion ΛL-module by Lemma 1.39. This
shows that G/G′ and therefore also X/G′ are ΛL-torsion, proving the claim
that L ∈ E(K).

In the following lemma, we will slightly generalise Greenberg’s approach.

Lemma 4.3.
(i) Assume that only finitely many primes of L divide p. Then L ∈ E(X) and

µ(L/K) = µ(XL). In particular, if µ(L/K) = 0 in this case, then XL is
a finitely generated Zp-module.

(ii) More generally, let K/K denote a Zip-extension, i ∈ N, and let E⊆K(K)
denote the set of Zp-extensions L/K such that L ⊆ K (compare Remarks
3.26, (2)). Fix some L ∈ E⊆K(K). Let H(K) denote the maximal p-
abelian unramified extension of K, and let X := Gal(H(K)/K) denote the
Greenberg module of K/K. If

πL : ΛK := Zp[[Gal(K/K)]] // // ΛL := Zp[[Gal(L/K)]]

denotes the ring homomorphism induced by the restriction map, then the
quotient XL := X/(ker(πL) ·X) becomes a ΛL-module.
If no prime of L ramifying in K is completely decomposed in L/K, then
XL is a finitely generated torsion ΛL-module, and µ(XL) = µ(L/K).
Moreover,

λ(XL) ≤ λ(L/K) +
(i− 1)(i− 2)

2
+ j(K/L)

and
λ(L/K) ≤ λ(XL) + i− 1 ,

where j(K/L) denotes the sum of the Zp-ranks of the finitely many inertia
subgroups of Gal(H(K)ab/L). Here H(K)ab denotes the maximal abelian
extension of L contained in H(K).
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Proof. (i) We will make use of the notation introduced above. We already
mentioned that L ∈ E(X) if only finitely many primes of L divide p. If
µ(L/K) = 0, then the torsion ΛL-module Gal(H(L)/L) ∼= (G/G′)/T is
finitely generated over Zp (compare Proposition 1.45, (ii)). Since also
D = G′/(AL ·X) and T are finitely generated Zp-modules, it follows that
XL = X/(AL ·X), too, is finitely generated. More generally, for arbitrary
µ(L/K), it follows that

µ(L/K) = µ(Gal(H(L)/L)) = µ(XL) ,

see p. 213 in [Gr 73].
(ii) In the proof of (i), we have not used the fact that K is the composite

of all Zp-extensions of K. Therefore the above arguments remain valid
for an arbitrary Zip-extension K/K, i ≤ d. It is sufficient to note that
only finitely many primes of L ramify in H(K)/L, since the primes that
split in L/K by assumption will be unramified in K/L and in H(K)/K.
Therefore the product T of all the inertia subgroups of Gal(H(K)ab/L) will
be a finitely generated Zp-module whose Zp-rank is bounded by j(K/L),
and therefore it will not have impact on µ-invariants, as in the proof of
(i). Moreover,

rankZp(D) ≤ (i− 1)(i− 2)

2 ,

proving that

λ(XL) ≤ λ(L/K) +
(i− 1)(i− 2)

2
+ j(K/L)

(compare the proof of Proposition 2 in [Gr 73] and p. 232 in [Mo 81]).
We will now prove the last inequality; this inequality actually holds for
every L ∈ E⊆K(K) ∩ E(X). Indeed, let πL, ΛL be defined as above, and
let AL := ker(πL). By definition,

µ(L/K) = µ(Gal(H(L)/L)) and λ(L/K) = λ(Gal(H(L)/L)) .

The inclusion H(L) ·K ⊆ H(K) induces a surjective homomorphism

X = Gal(H(K)/K) // // Gal(H(L) ·K/K) .

Since AL = {σ − 1 | σ ∈ Gal(K/L)} by definition, we have

AL · Gal((H(L) ·K)/K) = {1} ,

because

τσ−1 = στσ−1τ−1 = ττ−1 = 1

for every τ ∈ Gal((H(L) ·K)/K) and every σ ∈ Gal(K/L). Therefore the
above map induces a surjective ΛL-module homomorphism

XL = X/(AL ·X) // // Gal((H(L) ·K)/K) ∼= Gal(H(L)/(K ∩H(L))) .
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In particular,

λ(Gal(H(L)/(K ∩H(L)))) ≤ λ(XL) .

Now

λ(L/K) = λ(Gal(H(L)/L))

≤ λ(Gal(H(L)/(K ∩H(L)))) + λ(Gal((K ∩H(L))/L))

≤ λ(XL) + λ(Gal(K/L)) ≤ λ(XL) + i− 1 ,

since Gal(K/L) ∼= Zi−1
p .

Remark 4.4. Let E ′(K) denote the set of Zp-extensions L/K such that only
finitely many primes of L divide p. Then E ′(K) ⊆ E(K) is open and dense with
respect to Greenberg’s topology.

Proof. See Proposition 3 in [Gr 73]. Note that the fact that E ′(K) ⊆ E(K) is
dense also follows from Lemma 3.18, (iii).

We conclude the section by restricting to the special case of the composite
K of all Zp-extensions of K, returning to Greenberg’s proof of Theorem 4.1.

Corollary 4.5 (Greenberg). Let K denote the composite of all Zp-extensions
of K, let X = Gal(H(K)/K), L ∈ E(X) and let XL = X/(AL ·X) be defined
as above. Then

(i) λ(L/K) ≤ λ(XL) + d− 1, and
(ii) µ(L/K) ≤ µ(XL). If no prime dividing p splits completely in L/K, then

µ(L/K) = µ(XL) (compare Lemma 4.3).

Proof. (i) is a special case of the last inequality obtained in Lemma 4.3, (ii). In
course of the proof of this lemma, we have shown that there exists a surjective
ΛL-module homomorphism

XL = X/(AL ·X) // // Gal((H(L) ·K)/K) ∼= Gal(H(L)/(K ∩H(L))) .

Therefore

µ(L/K) ≤ µ(Gal(H(L)/(K ∩H(L)))) + µ(Gal((K ∩H(L))/L)

≤ µ(XL) + µ(Gal(K/L)) = µ(XL) ,

since Gal(K/L) is a finitely generated Zp-module and thus µ(Gal(K/L)) = 0
(compare Proposition 1.31, (iii)).

Theorem 4.1 now immediately follows from Lemma 4.2.
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4.2 Projective varieties and the µ-invariant

In a series of articles (see [Ba 76], [Ba 81] and [Ba 82]), V. A. Babăicev has
proved several global boundedness results concerning the Iwaswa invariant µ,
regarded as a function on the set E(K) of Zp-extensions of a fixed number
field K. These results build on Greenberg’s work in [Gr 73] (and in particu-
lar generalise Theorem 4.1, (iii)). In order to obtain these results, Babăıcev
considered the sets Eµ>c(K) consisting of all Zp-extensions L of K satisfying
µ(L/K) > c, c ∈ N0, and he showed how to equip them with the structure of a
projective variety, respectively. The most important special case will be c = 0,
the study of which will show that Zp-extensions L/K with µ(L/K) > 0 usually
are supposed to be somewhat ‘rare’ (see, for example, Theorem 4.15 below).

In this section, we will describe in detail Babăıcev’s approach to study global
properties of Iwasawa invariants, which is a refinement of Greenberg’s method
that has been introduced in the last section. We will take the opportunity to
state several auxiliary results that will become important in later parts of our
work. Although some of these results have been proved by Babăıcev, we will
usually include full proofs whenever these make use of methods or notions that
will be useful later.

4.2.1 Introduction

Let K denote the composite of all Zp-extensions of K, i.e., Gal(K/K) ∼= Zdp for
some d ∈ N, and suppose that d ≥ 2. In the preceding section, we considered
homomorphisms

πL : Zp[[Gal(K/K)]] // // Zp[[Gal(L/K)]]

for any fixed Zp-extension L of K. Babăıcev more generally studied the set of
all surjective homomorphisms

π : Λd // // Λ ,

where Λ = Λ1 = Zp[[T ]] and Λd = Zp[[T1, . . . , Td]] (see Definition 2.16).
Let Γd, respectively, Γ, denote free abelian pro-p-groups of rank d, respec-

tively, of rank 1. Then we have topological isomorphisms Γd ∼= Zdp and Γ ∼= Zp.
We will use some notation introduced in Section 2.1. Let

ε(Γd) := {π : Γd // // Γ}

denote the set of all surjective Zp-module homomorphisms (i.e., continuous
group homomorphisms) from Γd into Γ. In what follows, we will usually write
the groups Γd and Γ multiplicatively, since in our applications, these groups
will come up as Galois groups. Using the isomorphisms Γd ∼= Zdp and Γ ∼= Zp,

we will identify ε(Γd) with the set

ε(Zdp) := {π : Zdp // // Zp}

that has been studied in Section 2.1.
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We will identify two homomorphisms π1, π2 : Zdp −→ Zp if π1 = πu2 for some
u ∈ Z∗p. This will be important for the application to Zp-extensions (compare
Remarks 2.6, (1) and Lemma 2.7), and makes it possible to obtain an isomor-
phism between ε(Zdp) and the (d − 1)-dimensional projective space Pd−1(Zp)

over Zp introduced in Definition 2.1 (compare Proposition 2.5). Therefore ε(Γd)
may be seen as a projective variety.

Using the isomorphism Gal(K/K) ∼= Zdp, we may furthermore identify ε(Zdp)
and

ε(Gal(K/K)) := {π : Gal(K/K) // // Zp} .

This has been used in Lemma 2.7 in order to obtain a bijection

E(K)
∼−→ ε(Gal(K/K)) ;

roughly speaking, each L ∈ E(K) corresponds to the restriction map

πL : Gal(K/K) � Gal(L/K) ,

respectively.

Now let Γ and Γd be as above. Note that each homomorphism π ∈ ε(Γd)
defines a homomorphism

π : Zp[[Γ
d]] // // Zp[[Γ]]

of the corresponding completed group rings. Let γ1, . . . , γd denote topological
generators of Γd. Then Theorem 2.18 implies that there exists an isomorphism

ϕ : Zp[[Γ
d]]

∼ // Λd = Zp[[T1, . . . , Td]]

induced by the map γi 7→ 1 + Ti, 1 ≤ i ≤ d.
If γ′1, . . . , γ

′
d is another system of topological generators of Γd, then

γ′j =
d∏
i=1

γ
ai,j
i , 1 ≤ j ≤ d ,

and A := (ai,j)i,j ∈ GLd(Zp) is an invertible matrix over Zp. The map induced
by γ′j 7→ 1 + Tj , 1 ≤ j ≤ d, yields another isomorphism

ϕ′ : Zp[[Γ
d]]

∼ // Λd ,

again using Theorem 2.18. The commutative diagram

Λd

α

��

Zp[[Γ
d]]

ϕ
;;

ϕ′
##

Λd
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defines an automorphism α : Λd
∼−→ Λd, given by the substitution

Tj 7→ T ′j :=

d∏
i=1

(1 + Ti)
ai,j − 1 , 1 ≤ j ≤ d .

Definition 4.6. A change of variables in Λd of the above shape is called
admissible.

Lemma 4.7 (Babăıcev). Let f(T1, . . . , Td) be a formal power series different
from zero having coefficients in a commutative ring E of characteristic p 6= 0.
Then there exists an admissible change of variables of the form

X1 = (1 + T1)(1 + Td)
a1 − 1 ,

...

Xd−1 = (1 + Td−1)(1 + Td)
ad−1 − 1 ,

Xd = Td ,

with a1, . . . , ad−1 ∈ N, under which f is carried to a series g(X1, . . . , Xd) such
that g(0, . . . , 0, Xd) 6= 0. Actually, a1, . . . , ad−1 may be chosen as

a1 = . . . = ad−1 = pl ,

with l ∈ N sufficiently large.

Proof. See [Ba 76], Lemma 1. The proof given there in fact is an adaption of
Lemmas 2 and 3 in [Bou 89], Chapter 7, §3, with the additional property that
we want the changes of variables to be admissible.

Let π ∈ ε(Γd). If the topological generators of Γd are chosen such that the
kernel of π : Γd −→ Γ is generated by γ1, . . . , γd−1, and if δ := π(γd), then δ is
a topological generator of Γ. The induced homomorphism π : Λd −→ Λ is then
given by

π(Ti) = π(γi − 1) = π(γi)− π(1) = 1− 1 = 0

for every 1 ≤ i ≤ d− 1, and

π(Td) = π(γd)− 1 = δ − 1 = T .

If f ∈ Zp[[Γd]] ∼= Zp[[T1, . . . , Td]], then we simply have π(f) = f(0, . . . , 0, T ).
We will now see that for a given π, we may always choose topological gen-

erators of Γd such that π obtains this canonical form.

Remark 4.8. For every π ∈ ε(Γd), we may choose topological generators
γ1, . . . , γd of Γd such that the kernel of π : Γd −→ Γ is generated by γ1, . . . , γd−1.

Proof. The kernel of π : Γd −→ Γ is a Zp-submodule of Γd and therefore is
Zp-free. Its rank has to be strictly smaller than d, since π is surjective, and in
fact, ker(π) has Zp-rank equal to d− 1, since π induces an exact sequence

0 // Z
rank(ker(π))
p

// Zdp
// Zp // 0 .
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By the Principal Divisor Theorem (see [JS 06], Thm. VII.8.2), there exists a
basis γ1, . . . , γd of Γd (i.e., a set of topological generators of this multiplicatively
written group) such that ker(π) is generated topologically by γa11 , . . . , γ

ad−1

d−1 ,

with a1, . . . , ad−1 ∈ Zp and a1 | a2 | . . . | ad−1. Let z := γ
ad−1

d−1 ∈ ker(π).
Now assume that p | ad−1 in Zp. Then we can write z = yp for some element
y ∈ Γd that does not lie in the kernel of π (since the γaii form a basis of ker(π),
they are linearly independent). But then x := π(y) ∈ Zp is different from 1,
and xp = (π(y))p = π(yp) = π(z) = 1, which contradicts the fact that Γ is
torsion-free (as being a free Zp-module). Therefore p does not divide ad−1, i.e.,
a1, . . . , ad−1 ∈ Z∗p, and ker(π) is generated by γ1, . . . , γd−1.

Definition 4.9. An element f ∈ Λd = Zp[[T1, . . . , Td]] is in Weierstraß
normal form with respect to Td if

f = U · pm · (T kd + ak−1T
k−1
d + . . .+ a0) ,

where m ∈ N0, k ∈ N, U ∈ Λ∗d is a unit and a0, . . . , ak−1 ∈ (p, T1, . . . , Td−1) are
contained in the maximal ideal of the local ring Zp[[T1, . . . , Td−1]]. f is called
regular in Td if f is in Weierstraß normal form with respect to Td and m = 0
in the corresponding representation.

Remarks 4.10.

(1) If f is in Weierstraß normal form with respect to Td, then f = U ·pm · f̃(Td)
with a distinguished polynomial

f̃(Td) ∈ (Zp[[T1, . . . , Td−1]])[Td]

in the sense of Definition 1.11.
(2) If π ∈ ε(Γd) is a homomorphism such that ker(π) is generated topologically

by γ1, . . . , γd−1, then δ := π(γd) generates Γ. If f ∈ Λd is in Weierstraß nor-
mal form with respect to Td in the variables T1, . . . , Td induced by γ1, . . . , γd,
then we can simply write

π(f) = π(U) · pm · (T k + ak−1 · T k−1 + . . .+ a0) ,

with ai = π(ai) = ai(0, . . . , 0) ∈ p · Zp, 0 ≤ i ≤ d − 1. In particular,
π(f) 6= 0, and p | π(f) if and only if m > 0, i.e., if and only if p | f .

(3) We may apply the Weierstraß Preparation Theorem 1.14 in the ring of
power series

Zp[[T1, . . . , Td]] ∼= (Zp[[T1, . . . , Td−1]])[[Td]] ,

since Zp[[T1, . . . , Td−1]] is a local ring with maximal ideal

Md−1 = (p, T1, . . . , Td−1)

which is complete with respect to the Md−1-adic topology; compare Propo-
sition 2.17, (i). This implies that an element f ∈ Λd is regular with respect
to Td if and only if f 6∈ (p, T1, . . . , Td−1) ⊆ Λd.
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Lemma 4.11 (Babăıcev). Let f ∈ Zp[[Γd]] be non-zero. Let U ⊆ ε(Γd) denote
the set of homomorphisms π : Γd −→ Γ such that
(1) we can choose topological generators γ1, . . . , γd of Γd such that ker(π) is

generated by γ1, . . . , γd−1, and
(2) f is in Weierstraß normal form with respect to Td in the variables induced

by γ1, . . . , γd via the map γi 7→ 1 + Ti, 1 ≤ i ≤ d.
Then U ⊆ ε(Γd) is open and dense in the topology defined on ε(Γd) via the
bijection ε(Γd)

∼−→ ε(Zdp)
∼−→ Pd−1(Zp) (compare Remarks 2.6, (2)).

Proof. This is basically an application of Lemma 4.7 and Remark 4.8, see Propo-
sition 1 in [Ba 76] for details.

Definition 4.12. Let M denote a finitely generated Λd-module. For every
surjective homomorphism π : Λd � Λ, we define Mπ := M/(ker(π) ·M); this is
a Λ-module, where we identify Λ = Λd/ ker(π).

Note that this corresponds to the notion XL used by Greenberg (compare
the preceding section).

Theorem 4.13 (Babăıcev).
(i) Let M denote a finitely generated Λd-module, and let m := rankΛd(M).

Then the subset

U := {π ∈ ε(Γd) | rankΛ(Mπ) = m} ⊆ ε(Γd)

is open and dense in ε(Γd).
(ii) Let M denote a finitely generated Λd-module, and assume that there exists

a homomorphism π0 ∈ ε(Γd) such that Mπ0 is a finitely generated Zp-
module. Then the set U ⊆ ε(Γd) containing all π such that Mπ is finitely
generated over Zp is open and dense in ε(Γd).

We recall that the Λd-rank of a finitely generated Λd-module N may be
defined via

rankΛd(N) := dimQ(N ⊗Λd Q) ,

where Q denotes the quotient field of Λd, and dimQ means the dimension as
Q-vector space.

Proof. (i) This is Theorem 1 in [Ba 76]. Since Babăıcev only gives a very
brief proof, we will include here a proof giving full details.
Since M is a finitely generated Λd-module, there exists a surjection

F // M // 0

for some free Λd-module F with basis f1, . . . , fl. Let R ⊆ F denote the
kernel of this map. Then R is finitely generated over Λd, since F is
Noetherian as being finitely generated over the Noetherian ring Λd, and
rankΛd(M) = m if and only if rankΛd(R) = l −m. Indeed, the sequence

0 // R // F // M // 0
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of Λd-modules is exact by construction, and therefore the following se-
quence of Q-vector spaces also is exact:

0 // (R⊗Q) // (F ⊗Q) // (M ⊗Q) // 0 . (?)

Note that in general, tensoring a sequence of Λd-modules with a Λd-module
N will be only right-exact (see [JS 06], p. 184 for an example over the
ring Z). A Λd-module N is called flat if tensoring with N is exact on both
sides. In our situation, N = Q = Quot(Λd) is equal to the quotient field of
Λd, and therefore flat by Corollary 3.6 in [AM 69], proving the exactness
of the sequence (?). But the dimension of vector spaces is additive on
exact sequences, and therefore

rankΛd(R) + rankΛd(M) = dimQ(R⊗Q) + dimQ(M ⊗Q)

= dimQ(F ⊗Q)

= rankΛd(F ) = l ,

proving that rankΛd(M) = m if and only if rankΛd(R) = l −m.
Let r1, . . . , rq denote generators of R ⊆ F . There exist elements ai,j ∈ Λd
such that

ri =
l∑

j=1

aijfj , 1 ≤ i ≤ q .

Now the condition rankΛd(R) = l−m is equivalent to the fact that there
exists a non-vanishing minor of the matrix (aij)i,j of order l−m, whereas
every minor of order greater than l−m is zero. Let f ∈ Λd denote the non-
trivial minor of (aij)i,j . By Lemma 4.11, there exists an open and dense
subset U ⊆ ε(Γd) such that for every π ∈ U , π(f) is in Weierstraß normal
form, and in particular non-zero. We will show that rankΛd(Mπ) = m for
π ∈ U , proving (i).
We have a surjection

Fπ = F/(ker(π) · F )
ψ
// Mπ = M/(ker(π) ·M) // 0

induced by the surjective Λd-module homomorphism F
ψ−→ M −→ 0,

which maps ker(π) · F into ker(π) ·M . The map Rπ
ϕ−→ Fπ induced by

0 −→ R
ϕ−→ F perhaps is not injective, so we divide out the kernel Xπ

and define a Λ-module R̃π := Rπ/Xπ. Then the sequence

0 // R̃π
ϕ̃
// Fπ

ψ
// Mπ

// 0 (??)

is exact, where the induced injective map ϕ̃ : R̃π −→ Fπ is defined via
r + ker(ϕ) 7→ ϕ(r).
Indeed, it remains to show that ker(ψ) ⊆ im(ϕ̃). Let f ∈ F be such that
ψ(f + ker(π) · F ) ∈ ker(π) ·M . Write

ψ(f) =
∑
i

αi ·mi
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with elements αi ∈ ker(π), mi ∈ M . For every i, we choose a pre-image
fi ∈ F such that ψ(fi) = mi. Then ψ(f −

∑
i αi · fi) = 0, so that

f −
∑
i

αi · fi = ϕ(r)

for some r ∈ R. But then ϕ̃(r) = f −
∑

i αi · fi = f , i.e., f ∈ im(ϕ̃).
The exact sequence (??) implies that

rankΛ(R̃π) + rankΛ(Mπ) = rankΛ(Fπ) = rankΛd(F ) = l .

Here we use the fact that F ∼= Λld, and therefore Fπ ∼= Λl as Λ-modules.
It therefore suffices to prove that rankΛ(R̃π) = rankΛd(R) =: r for π ∈ U .
We know from the first part of the proof that there exists a non-vanishing
minor f ∈ Λd of the matrix (aij)i,j of order r. The set U ⊆ ε(Γd) has been
chosen such that π(f) 6= 0 in Λ = Λd/(ker(π)) for every π ∈ U . Fixing an
arbitrary π ∈ U , we know that Rπ is generated by the cosets

r1, . . . , rq ∈ Rπ = R/(ker(π) ·R)

of the generators r1, . . . , rq of R. Furthermore, since ri =
∑

j aij · fj ,
1 ≤ i ≤ q, we obtain relations

ϕ(ri) =
l∑

j=1

aij · f j , 1 ≤ i ≤ q ,

with f j being the coset of fj in Fπ = F/(ker(π) · F ), respectively.
Consider the matrix (aij)i,j , with aij = π(aij) ∈ Λ for every i and j. Since
π(f) 6= 0, this matrix has a non-vanishing minor of order r, proving that
rankΛ(Rπ) ≥ rankΛ(ϕ(Rπ)) ≥ r. Let J ⊆ {1, . . . , q} denote the set of
indices corresponding to the submatrix of (aij) whose determinant is the
minor f .
Now assume that rankΛ(R̃π) < r ≤ rankΛ(Rπ), Then, by definition of R̃π,∑

i∈I
λi · ri ∈ ker(ϕ)

and therefore ∑
i∈I

l∑
j=1

λi · aij · f j = 0 ∈ Fπ

for each subset I ⊆ {1, . . . , q} of order r and coefficients λi ∈ Λ such that
λi 6= 0 for some i ∈ I, respectively. We will show that this cannot hold
for the special set I 6= J of order r.
Choose lifts λi ∈ Λd of λi, respectively. Since {fj : 1 ≤ j ≤ l} is a basis of
F , we may conclude that

∑
i∈I

l∑
j=1

λi · aij · fj =

l∑
j=1

βj · fj
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with βj ∈ ker(π) ⊆ Λd, j = 1, . . . , l. But then

0 =

l∑
j=1

(
∑
i∈I

λiaij − βj) · fj

and therefore
∑

i∈I λiaij = βj ∈ ker(π) for all 1 ≤ j ≤ l, recalling that the
fj are Λd-linear independent.
If I was equal to J , then we would obtain a non-trivial vanishing linear
combination of the rows of (aij)i,j∈J in Λ = Λd/ ker(π). But this would
contradict the fact that

π(f) = det((aij)i,j∈J) 6= 0 .

Therefore, rankΛ(R̃π) ≥ |J | = r.
On the other hand, if rankΛ(R̃π) was strictly larger than r, then there
would exist a non-vanishing minor g of the matrix (aij) of order greater
than r, since R̃π is generated by the cosets of r1, . . . , rq. Since π : Λd −→ Λ
is surjective, we could lift g to a non-vanishing minor of (aij) of order
greater than r, in contradiction to the fact that rankΛd(R) = r.

(ii) Now suppose that Mπ0 is a finitely generated Zp-module. Then Mπ0 is a
torsion Λ-module. Greenberg has shown that this happens only if there
exists an annihilator f ∈ Λd of M such that f 6∈ ker(π0) (see Lemma 4.2,
(i)). Furthermore, we may assume that f is not divisible by p. Indeed,
µ(Mπ0) = 0 by Proposition 1.31, (iii). Therefore the characteristic poly-
nomial g(T ) ∈ Zp[T ] ⊆ Λ of Mπ0 is not divisible by p. g(T ) annihilates
the elementary Λ-module EMπ0

. Since the finite kernel of the pseudo-

isomorphism Mπ0
∼−→ EMπ0

may be annihilated by an appropriate power
of T , by Nakayama’s Lemma (compare Remark 3.49), we may augment g
in order to obtain an annihilator g of Mπ0 that is still not divisible by p.
Using the arguments from the proof of Lemma 4.2, (i), it follows that M
is a torsion Λd-module, and that there exists an annihilator f ∈ Λd of M
such that

f ≡ gl mod (ker(π0)) ,

where l denotes the number of generators of the finitely generated Λd-
module M . In particular, p - f .
Since there exists a surjective homomorphism (Λd/(f))l −→ M , it will
suffice to prove assertion (ii) for the module N := Λd/(f). By Lemma 4.11
and Remarks 4.10, (2), there exists an open and dense subset U ⊆ ε(Γd)
such that for every π ∈ U , the image π(f) = u · f̃ is the product of a unit
u ∈ Zp[[T ]]∗ = Λ∗ and a distinguished polynomial f̃ ∈ Zp[T ]. Therefore

Nπ = Λ/(π(f)) = Λ/(f̃) ∼= Zdeg(f̃)
p

is finitely generated over Zp for every π ∈ U .

Using this theorem, Babăıcev proved his first result concerning the Iwasawa
µ-invariant in Zp-extensions of K. In order to apply the theory developed so
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far, we let Γ = Γ1 := Zp and Γd := Gal(K/K) ∼= Zdp, where K denotes the
composite of all Zp-extensions of K, as usual. Then the study of surjective Zp-
module homomorphisms π ∈ ε(Γd) corresponds to the study of Zp-extensions
of K (compare Lemma 2.7).

Definition 4.14. Let c ∈ N0. Define Eµ>c(K) to be the set of Zp-extensions
L/K satisfying µ(L/K) > c. Furthermore, let E0(K) denote the set of Zp-
extensions L/K such that µ(L/K) = 0.

Theorem 4.15 (Babăıcev). If there exists a Zp-extension L ∈ E0(K) such that
only finitely many primes of L lie over p, then the subset E0(K) of E(K) is open
and dense.

Proof. This is Theorem 4 in [Ba 76]. Whereas the proof given there uses coho-
mology theory, we will use more elementary arguments. Let Y := Gal(H(K)/K)
denote the Galois group of the maximal p-abelian unramified extension of
K. Then Y is a finitely generated torsion Λd-module (compare Theorem 1
in [Gr 73]). Furthermore, if π denotes the surjective homomorphism corre-
sponding to L/K via Lemma 2.7, then our assumptions on L imply that
Yπ := Y/(ker(π) · Y ) is a finitely generated Zp-module (compare Lemma 4.3,
(i)).

Theorem 4.13, (ii) implies that there exists an open and dense subset U of
ε(Gal(K/K)) such that Yπ is a finitely generated Zp-module for every π ∈ U .

We will now make use of the following fact.

Lemma 4.16. For every Zp-extension L/K, and corresponding homomorphism
π ∈ ε(Gal(K/K)), we have an exact sequence

Yπ // Xπ
// Gal((H(L) ∩K)/L)

of Λ-modules, where Xπ := Gal(H(L)/L) denotes the Galois group of the max-
imal p-abelian unramified extension H(L) of L, and Yπ is defined as above.

Proof. Let F denote the subfield of H(K) fixed by ker(π) · Y ⊆ Y . Thus,
Gal(H(K)/F ) = ker(π) ·Y and Gal(F/K) ∼= Yπ = Y/(ker(π) ·Y ). Assume that
we have chosen a set of topological generators γ1, . . . , γd of Gal(K/K) such that
the kernel of π ∈ ε(Gal(K/K)) is generated by γ1, . . . , γd−1.

Claim 4.17. The maximal p-abelian unramified extension H(L) of L is con-
tained in F .

Proof. Since ker(π) ⊆ Λd is generated by T1, . . . , Td−1, the subfield F of H(K)
is fixed by <T1, . . . , Td−1> · Y .

Note that H(K) actually is Galois over L. Since

<T1, . . . , Td−1> · Y ⊆ Gal(H(K)/L)

is a closed subgroup, it follows that F ⊆ H(K) is also Galois over L. We claim
that F is the maximal subextension that is abelian over L; this relies on the fact
that <T1, . . . , Td−1> · Y corresponds to the topological commutator subgroup
of Gal(H(K)/L), as we will see in Chapter 5 (compare Lemma 5.19).
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Indeed, Gal(K/L) acts on Gal(H(K)/K) = Y via conjugation. Since

γi · σ · γ−1
i · σ

−1(x) = ((γi − 1) · σ)(x) = (Ti · σ)(x) = x

for every σ ∈ Y , x ∈ F , i = 1, . . . , d− 1, it follows that γi ·σ · γ−1
i (x) = σ(x) for

each σ ∈ Y , x ∈ F , i.e., γi · σ · γ−1
i = σ for every σ ∈ Gal(F/K), proving that

F/L is abelian.
Conversely, if M ⊆ H(K) is abelian over L, then γi · σ · γ−1

i = σ for every
σ ∈ Gal(M/K) and every i ∈ {1, . . . , d − 1}, since Gal(K/L) is generated by
γ1, . . . , γd−1. But then M ⊆ H(K)<T1,...,Td−1>·Y = F .

Since H(L) is abelian over L, and H(L) ⊆ H(K) (compare Proposition
1.34), it is now immediate that H(L) ⊆ F .

Now let Xπ := Gal(H(L)/L). Then H(L) := H(L) · K ⊆ F . We let
Xπ := Gal(H(L)/K) and summarise our situation in the following diagram:

H(K)

F

ker(π)·Y

K

Y

Yπ

Xπ
H(L)

L
Xπ

H(L)

K

Since it is possible that K ∩ H(L) % L, we may not conclude that Xπ
∼= Xπ.

However, since H(L) ⊆ F , we have a surjective map

Yπ // // Xπ , σ � // σ + Gal(F/H(L)) =: σ .

Furthermore, since Xπ = Gal(H(L)/K) ∼= Gal(H(L)/(K ∩ H(L))), we obtain
a map Xπ −→ Xπ, induced by restriction to H(L). Note that this latter map
will not be surjective whenever H(L)∩K 6= L. However, the cokernel will yield
us the desired exact sequence:

First note that the composite

i : Yπ // Xπ
// Xπ , σ � // σ � // σ|H(L) ,

is well-defined since every element in Gal(F/H(L)) fixes H(L) ⊆ H(L). Let

j : Xπ = Gal(H(L)/L) // Gal((H(L) ∩K)/L) , τ � // τ |(H(L)∩K) ,
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denote the canonical restriction map. Then the sequence

Yπ
i // Xπ

j
// Gal((H(L) ∩K)/L)

is exact. First of all, it is clear that the image of i is contained in ker(j),
since σ|(H(L)∩K) = id ∈ Gal((H(L) ∩K)/L) for every σ ∈ Gal(H(L)/K). On
the other hand, if τ |(H(L)∩K) = id for some τ ∈ Xπ = Gal(H(L)/L), then
τ ∈ Gal(H(L)/(H(L) ∩K)), and therefore τ is the restriction to H(L) of some
element in Gal(H(L)/K) = Xπ. Since Yπ � Xπ is surjective, we obtain that
τ = i(σ) for a suitable σ.

This shows that Xπ is a finitely generated Zp-module if Yπ is finitely gen-
erated over Zp, since rankZp(Gal((K ∩ H(L))/L)) ≤ d − 1. In particular,
Xπ is finitely generated over Zp and therefore Λ-torsion for every π ∈ U , i.e.,
U ⊆ E(X) in the notation of Section 4.1. The assertion of Theorem 4.15 now
follows from Corollary 4.5, (ii) and Proposition 1.31, (iii).

4.2.2 µ is globally bounded

In [Ba 81] and [Ba 82], Babăıcev showed that Theorem 4.1, (iii), proved by
Greenberg only in the case of ground fields K containing one single prime
above p, actually holds in general: For any number field K, there exists a
constant C = C(K) such that µ(L/K) ≤ C for every L ∈ E(K). The main step
in Babăıcev’s proof is built up of giving the sets Eµ>c(K) the structure of a
projective variety. For this purpose, Babăıcev considered, for every n ∈ N and
0 ≤ m ≤ n− 1, the Grassmannian varieties εmn which we introduced in Section
2.1.

We recall some notation. For every integer k > 0, let Γk ∼= Zkp denote a
fixed free abelian pro-p-group with k generators. We let εmn be the set of all

surjective continuous group homomorphisms π : Γn+1 // // Γm+1 . In partic-
ular, ε0

d−1 = ε(Γd) is the set we have studied in the preceding subsection. We
have shown in Section 2.1 that each set εmn in a natural way bears the structure
of a compact projective variety.

Let us fix n and m. We choose topological generators γ0, . . . , γn of Γn+1

and δ0, . . . , δm of Γm+1, respectively. Each π ∈ εmn extends to a surjective
homomorphism of the corresponding group rings, which may be regarded as a
map

π : Zp[[X0, . . . , Xn]] −→ Zp[[T0, . . . , Tm]] ,

using the isomorphisms

Zp[[Γ
n+1]]

∼−→ Λn+1 := Zp[[X0, . . . , Xn]]

and

Zp[[Γ
m+1]]

∼−→ Λm+1 := Zp[[T0, . . . , Tm]]

(compare Theorem 2.18).
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For every f ∈ Λn+1, let vp(π(f)) denote the largest power of p dividing π(f)
in the unique factorisation domain Λm+1. For every c ≥ 0, we define

V m(f ; c) := {π ∈ εmn | vp(π(f)) ≥ c} .

We will now prove several auxiliary results, some of which are used in
[Ba 81], that will be used several times in the next section and also in the
next chapter.

For any k,N ∈ N such that k ≤ p2N , the p-adic valuation of the binomial

coefficient
(
p2N

k

)
is given by 2N−vp(k) (see, for example, Lemma 1.1 in [Ba 81]).

In particular, for k < pN , we have vp(
(
p2N

k

)
) ≥ N . Therefore the following

congruence holds in the ring Zp[[T ]] of formal power series in one variable:

(1 + T )p
2N − 1 ≡ 0 mod (pN , T p

N
) . (4.1)

Now we consider a fixed element π0 ∈ εmn . We write a standard neighbourhood
of π0 as U = U((Ni,j)0≤i≤n,0≤j≤m)(π0), consisting of every surjective homomor-
phism π̃ : Γn+1 −→ Γm+1 such that

π̃(γi) = π0(γi) ·
m∏
j=0

δ
ai,j
j , vp(ai,j) ≥ Ni,j , 0 ≤ i ≤ n , 0 ≤ j ≤ m .

Proposition 4.18. Let U = U((2Ni,j)i,j)(π0) be a neighbourhood of π0 ∈ εmn
(note the doubled precision 2Ni,j), let f ∈ Λn+1 be arbitrary. Then

π(f) ≡ π0(f) mod (pN , T p
N0

0 , . . . , T p
Nm

m )

for every π ∈ U , where Nj := mini Ni,j, 0 ≤ j ≤ m, and N := minj Nj.

Proof. Using (4.1), we obtain

π(Xi) = π(γi)− 1 = π0(Xi + 1) ·
m∏
j=0

δ
p2Ni,j ·ui,j
j − 1 , ui,j ∈ Zp ,

= (π0(Xi) + 1) ·
m∏
j=0

(Tj + 1)p
2Ni,j ·ui,j − 1

(4.1)
≡ (π0(Xi) + 1) · 1− 1 = π0(Xi) mod (pN , T p

Ni,0

0 , . . . , T p
Ni,m

m )

for every 0 ≤ i ≤ n and every π ∈ U . Expanding f ∈ Λn+1 = Zp[[X0, . . . , Xn]],
and using the fact that every π ∈ εmn is a ring homomorphism, the assertion
follows (note that we have to consider at most pN0 · . . . ·pNm terms of the power
series f).

Proposition 4.18 will be used in the proofs of the following two results.

Lemma 4.19 (Babăıcev). Let f ∈ Λn+1. For every integer c ≥ 0, the set
V m(f ; c) = {π ∈ εmn | vp(π(f)) ≥ c} is closed.
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Proof. This is Proposition 1.1 in [Ba 82]. We will show that εmn \ V m(f ; c) is
open. Let π0 ∈ εmn be such that vp(π0(f)) < c. Then there exists a term

ak0,...,km · T
k0
0 · . . . · T kmm of π0(f) ∈ Zp[[T0, . . . , Tm]] such that

vp(ak0,...,km · T
k0
0 · . . . · T

km
m ) < c .

We will use the notation introduced in Proposition 4.18. Choosing a neigh-
bourhood U = U((2Ni,j)i,j)(π0) such that pNj > kj , 0 ≤ j ≤ m, and such that

N ≥ c, Proposition 4.18 shows that π(f) ≡ π0(f) mod (pc, T k0+1
0 , . . . , T km+1

m ),
and therefore vp(π(f)) < c, for every π ∈ U .

We will now consider the special case m = n− 1.

Lemma 4.20 (Babăıcev). If f ∈ Λn+1 satisfies p - f , then there exist only
finitely many elements π ∈ εn−1

n such that p | π(f), i.e., the set V n−1(f ; 1) is
finite.

Proof. This is Proposition 1.2 in [Ba 82]. Since εn−1
n is compact (see Section

2.1), and since the set V n−1(f ; 1) is closed by Lemma 4.19, it suffices to prove
that this set is discrete in εn−1

n .

Let π0 ∈ V n−1(f ; 1) be an arbitrary element. We may choose topological
generators of Γn+1 such that π0(Xn) = 0 (using the same arguments as in the
proof of Remark 4.8). Furthermore, we may choose generators δ0, . . . , δm of
Γm+1 = Γn such that

π0(Xi) = Ti , 0 ≤ i ≤ n− 1 .

Note that this choice of variables does not affect the property vp(π0(f)) > 0.

Writing f ∈ Λn+1 as f = a0(X0, . . . , Xn−1) +
∑∞

i=k ai(X0, . . . , Xn−1) · Xi
n

for some k > 0, we obtain π0(f) = a0(T0, . . . , Tn−1). Since p | π0(f), we have
p | a0(X0, . . . , Xn−1). Now p - f , by assumption, and therefore we can write

f = g +
∞∑
i=k′

ai(X0, . . . , Xn−1) ·Xi
n ,

with k′ > 0, p | g ∈ Λn+1 and p - ak′(X0, . . . , Xn−1). The last property implies
that there exists a tuple (b0, . . . , bn−1) of non-negative integers such that p does

not divide the coefficient c of Xb0
0 · . . . ·X

bn−1

n−1 in ak′(X0, . . . , Xn−1).

Let M ∈ N be a power of p that is larger than the maximum of the bi.
Using Proposition 4.18, we may choose a neighbourhood U = U((2Ni,j)i,j)(π0)
such that

π(ak′(X0, . . . , Xn−1)) ≡ π0(ak′(X0, . . . , Xn−1))

= ak′(T0, . . . , Tn−1) mod (p, TM0 , . . . , TMn−1)

for every π ∈ U . In particular, p - π(ak′(X0, . . . , Xn−1)) for these π, since by

definition of M , the coefficient of T b00 · . . . · T
bn−1

n−1 in π(ak′(X0, . . . , Xn−1)) will
be congruent to c modulo p.
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Let π ∈ U be fixed. Then there exists a power series h ∈ Zp[[T0, . . . , Tn−1]]
such that

π(ak′(X0, . . . , Xn−1)) ≡ ak′(T0, . . . , Tn−1) + TM0 · h mod (p, TM1 , . . . , TMn−1) .

Now we note that p - π(Xn), since π0(Xn) = 0 by our choice of topological
generators. Indeed,

π(Xn) = (π0(Xn) + 1)︸ ︷︷ ︸
= 1

·
n−1∏
j=0

(Tj + 1)p
2Nn,j ·un,j − 1

≡
∑

∅ 6=S⊆{0,...,n−1}

∏
j∈S

T
p2Nn,j ·un,j
j mod p ,

for suitable elements un,j ∈ Zp, 0 ≤ j ≤ n − 1. Therefore π(Xn) 6≡ 0 mod p,

because p -
n−1∏
j=0

T
p2Nn,j ·un,j
j in Λn.

Since p | g, and as π is a ring homomorphism, we may conclude that

π(f) ≡ π(Xn)k
′ · ak′(T0, . . . , Tn−1)︸ ︷︷ ︸
6≡ 0 mod p

+ π(Xn)k
′ · TM0 · h

+

∞∑
i= k′+1

π(ai(X0, . . . , Xn−1)) · π(Xn)i mod (p, TM1 , . . . , TMn−1)

≡ T
k′·p2Nn,0 ·un,0
0 · ak′(T0, . . . , Tn−1) + T

k′·p2Nn,0 ·un,0
0 · TM0 · h

+

∞∑
i= k′+1

π(ai(X0, . . . , Xn−1)) · T i·p
2Nn,0 ·un,0

0 mod (p, TM1 , . . . , TMn−1)

= T
k′·p2Nn,0 ·un,0
0 · F mod (p, TM1 , . . . , TMn−1) ,

where

F := ak′(T0, . . . , Tn−1) + TM0 h+

∞∑
i= k′+1

π(ai(X0, . . . , Xn−1))T
(i−k′)·p2Nn,0 ·un,0
0 .

Now ak′(T0, . . . , Tn−1) contains the term c · T b00 · . . . · T
bn−1

n−1 6≡ 0 mod p. Since

pNn,0 ≥M > b0, the coefficient of T b00 · . . . · T
bn−1

n−1 in F in fact equals c, proving
that p - F and thus p - π(f). Since π ∈ U was arbitrary, this shows that
V n−1(f ; 1) is discrete in εn−1

n .

Corollary 4.21 (Babăıcev). Let f ∈ Λn+1. For every c ≥ 0, the set V n−1(f ; c)
is either finite or equal to εn−1

n .

Proof. If pc | f , then pc | π(f) for every π ∈ εn−1
n , i.e., V n−1(f ; c) = εn−1

n . If
pc - f , then we denote by pi the maximal power of p dividing f , and we define
g := f

pi
. Then V n−1(f ; c) = V n−1(g; c − i) ⊆ V n−1(g; 1) is finite by Lemma

4.20.
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We will now interrupt the study of µ-invariants for a short remark that will
be used in the next section for the investigation of λ-invariants.

Definition 4.22. Let f ∈ Λ = Zp[[T ]] denote an element such that p - f .
Then the reduced degree degp(f) of f is the smallest value k ∈ N0 such that

p does not divide the coefficient of T k in f (compare Lemma 1.10).

Lemma 4.23. Let n ∈ N, let f ∈ Λn+1 be such that p - f . If π0 ∈ ε0
n satisfies

p | π0(f), and if C ∈ N is arbitrary, there exists a neighbourhood U = UC of π0

such that degp(π(f)) > C for every π0 6= π ∈ U . This means that the reduced
degree degp(π(f)) is unbounded around π0.

Proof. Suppose first that n = 1, i.e., f ∈ Λ2 and π0 ∈ ε0
1. Analogously to the

proof of Lemma 4.20, we may choose a basis {γ0, γ1} of Γ2 such that π0(γ0) = 1,
whereas π0(γ1) = δ generates Γ, i.e., π0(X0) = 0 and π0(X1) = T . Then the
assumption that

f(0, T ) = π0(f) ≡ 0 mod p

is equivalent to the fact that f is contained in the ideal (p,X0) ⊆ Λ2.
We will consider the neighbourhood U = U((2Ni,0)0≤i≤1) of π0 withN1,0 = 0

and N0,0 = M , where M denotes an integer that has been chosen large enough
to ensure that pM > C and such that p - π(f) for every π0 6= π ∈ U (compare
Lemma 4.20). Then degp(π(f)) is defined for every π0 6= π ∈ U .

Moreover, π(f) ≡ 0 mod (p, T p
M

) for every π ∈ U , since f ∈ (p,X0). In
particular, degp(π(f)) ≥ pM > C for every π0 6= π ∈ U .

Let now n ∈ N be arbitrary, let f ∈ Λn+1 and π0 ∈ ε0
n be as in the

assertion. By choosing appropriate topological generators of Γn+1, respectively,
Γ, we may assume that π0 : Λn+1 = Zp[[X0, . . . , Xn]] −→ Zp[[T ]] satisfies
π0(X0) = . . . = π0(Xn−1) = 0 and π0(Xn) = T .

The fact that

f(0, . . . , 0, T ) = π0(f) ≡ 0 mod p

implies that f is contained in the ideal (p,X0, . . . , Xn−1) ⊆ Λn+1. If

f := f mod p

denotes the reduction of f modulo p, i.e., f ∈ Λn+1 := Λn+1/pΛn+1, then f 6= 0,
because p - f by assumption. Lemma 4.7 implies that we can alter the basis
γ0, . . . , γn of Γn+1 in order to obtain a set of generators γ̃0, . . . , γ̃n such that
with respect to the corresponding variables

X̃0, . . . , X̃n−2, X̃n−1 = Xn−1, X̃n

(compare Lemma 4.7), we have

f(0, . . . , 0, X̃n−1, 0) 6= 0 ,

i.e., f 6≡ 0 mod (p, X̃0, . . . , X̃n−2, X̃n) and in particular

f 6≡ 0 mod (p, X̃0, . . . , X̃n−2) .
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Note that this admissible change of variables does not affect the property that
π0(X̃0) = . . . = π0(X̃n−1) = 0 and π0(X̃n) = T , since γn−1 ∈ ker(π0). We will
therefore call these new variables X0, . . . , Xn again.

Consider now the epimorphism π̃ ∈ ε1
n defined by π̃ : Γn+1 −→ Γ2,

π̃(γ0) = . . . = π̃(γn−2) = 1 , π̃(γn−1) = δ0 and π̃(γn) = δ1 ,

where {δ0, δ1} forms a basis of Γ2. Writing T0 = δ0 − 1 and T1 = δ1 − 1, this
means that

π̃(X0) = . . . = π̃(Xn−2) = 0 , π̃(Xn−1) = T0 and π̃(Xn) = T1 .

If π1 ∈ ε0
1 is defined by π1(δ0) = 1 and π1(δ1) = δ, i.e., π1(T0) = 0 and

π1(T1) = T , then
π0 = π1 ◦ π̃ .

Now the fact that f 6≡ 0 mod (p,X0, . . . , Xn−2) implies that

Λ2 3 g := π̃(f) = f(0, . . . , 0, T1, T2) 6≡ 0 mod p ,

whereas π1(g) = π0(f) ≡ 0 mod p, by assumption. Let C ∈ N be given.
Then the proof of the above special case yields a neighbourhood U1 ⊆ ε0

1 of π1

such that for every π1 6= π̃1 ∈ U1, the reduced degree of π̃1(g) is defined and
degp(π̃1(g)) > C. We consider the neighbourhood U = U((2Ni,0)0≤i≤n) of π0

with Ni,0 = pM if i = n− 1, and Ni,0 = 0 otherwise, where M is large enough
to ensure that U consists of homomorphisms π = π̃1 ◦ π̃ with π̃1 ∈ U1. Then

degp(π(f)) = degp(π̃1(g)) > C

for every π0 6= π ∈ U .

Now we return to the study of µ-invariants. In [Ba 81], Babăıcev used the
above Lemmas 4.19 and 4.20, together with a geometric study of the projective
varieties εmn , m ≤ n− 1, for the proof of the following result.

Theorem 4.24 (Babăıcev). Let 0 6= f ∈ Λn+1. Then

sup{vp(π(f)) | π ∈ εmn , π(f) 6= 0} < ∞ .

Proof. This is Theorem 2.1 in [Ba 81].

We will now prove a module-theoretic version of Theorem 4.24 which then
may be applied to Iwasawa theory.

Let M denote a finitely generated torsion Λn+1-module. For every homo-
morphism π ∈ ε0

n,
π : Λn+1 −→ Λ1 = Λ ,

the quotient Mπ := M/(ker(π) ·M) is a finitely generated Λ-module, as in the
preceding sections.

Define V (M) := {π ∈ ε0
n | rankΛ(Mπ) > 0}. For every π ∈ ε0

n \ V (M), Mπ

is a torsion Λ-module, and therefore its Iwasawa invariant µ(Mπ) is defined.
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Theorem 4.25 (Babăıcev). For every finitely generated torsion Λn+1-module
M , we have

sup{µ(Mπ) | π ∈ ε0
n \ V (M)} < ∞ .

Proof. Consider a presentation of the finitely generated Λn+1-module M by
generators and relations:

M =
〈
b1, . . . , bl |

l∑
j=1

aijbj = 0 , 1 ≤ i ≤ q
〉
,

with suitable elements aij ∈ Λn+1. Since M is Λn+1-torsion, we have q ≥ l. Let
A = (aij), 1 ≤ i ≤ q, 1 ≤ j ≤ l.

Lemma 4.26. For every π ∈ ε0
n \V (M), µ(Mπ) is equal to the exponent of the

largest power of p dividing every minor of order l of the matrix π(A).

Proof. This is Lemma 1.2 in [Ba 82]. We first note that

Mπ = M/(ker(π) ·M) =
〈
b1, . . . , bl |

l∑
j=1

π(aij)bj = 0 , 1 ≤ i ≤ q
〉
.

Indeed, it is obvious that Mπ is generated by the cosets of b1, . . . , bl. Moreover,
suppose that we have a relation

0 =
l∑

j=1

dj · bj

with given elements dj ∈ Λ, 1 ≤ j ≤ l. Since π is surjective, we may choose
pre-images cj ∈ Λd of dj , respectively. Then

l∑
j=1

cjbj ∈ ker(π) ·M .

Thus
∑
cjbj =

∑
λjbj for suitable λj ∈ ker(π) ⊆ Λd. But then

l∑
j=1

(cj − λj) · bj = 0 ,

i.e., this relation is an appropriate linear combination of the equations∑
j

aij · bj = 0 , 1 ≤ i ≤ q ,

and therefore the relation
l∑

j=1
dj ·bj = 0 in Mπ is a linear combination of relations

l∑
j=1

π(aij) · bj = 0 ,
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because π(cj − λj) = π(cj) = dj , respectively.
Now we consider the localisation Λ(p) of Λ at p, which is a discrete valuation

ring with maximal ideal (p). Since Mπ is a finitely generated torsion Λ-module,
there exists an exact sequence

0 −→M1 −→Mπ −→ E :=
s⊕
i=1

Λ/(pni)⊕
t⊕

j=1

Λ/(fj(T )lj ) −→M2 −→ 0

of Λ-modules, with M1 and M2 finite, which we now localise. The localised
sequence remains exact, since N(p)

∼= N ⊗Λ Λ(p) for every Λ-module N , and
because Λ(p) is a flat Λ-module (see [Ei 95], Lemma 2.4 and Proposition 2.5;
the notion of flatness has been introduced in the proof of Theorem 4.13). There
exists a power of T that annihilates the finite Λ-modules M1 and M2 (compare
Remark 3.49). But T ∈ Λ(p) is a unit, so that we may conclude that

(M1)(p)
∼= Λ(p) ⊗Λ M1 = {0} and (M2)(p)

∼= Λ(p) ⊗M2 = {0} .

This shows that we have an isomorphism

(Mπ)(p)
∼=

l⊕
i=1

Λ(p)/(gi) ,

with gi = pni , respectively, gi = fi(T )li . Therefore µ(Mπ) =
∑

i vp(gi) is equal
to the sum of the exponents of p dividing the elementary divisors gi of the
module (Mπ)(p).

Now we use the following general fact (see, for example, Theorem 2.9.6 in
[Bo 03]).

Lemma 4.27. Let N denote a finitely generated torsion module over a principal
ideal domain R, with matrix of relations B. Then for every m ≤ rank(B), the
product of the first m elementary divisors of N is equal to the greatest common
divisor of the minors of order m of B.

Using this with R = Λ(p), N = (Mπ)(p), m = l, and with B corresponding
to the matrix over Λ(p) defined by the entries of π(A) proves Lemma 4.26.

Lemma 4.26 implies that µ(Mπ) ≥ c if and only if every minor of order l of
the matrix π(A) is divisible by pc. Let f1, . . . , fN denote the minors of order
l of the matrix A. Thus, µ(Mπ) ≥ c if and only if vp(π(fj)) ≥ c for every
j = 1, . . . , N . Moreover, if π 6∈ V (M), then Mπ is a torsion Λ-module, and
therefore at least one of the fj is non-zero, by Lemma 4.2, (i). Theorem 4.24
implies that

min
1≤j≤N

vp(π(fj))

is bounded on ε0
n \ V (M), yielding an upper bound for µ(Mπ).

Now we will apply the above results to the set E(K) of Zp-extensions of a
fixed number field K, proving Babăıcevs main theorem. As we have seen in
Lemma 2.7, we have an isomorphism E(K) ∼= ε0

d−1. Using this isomorphism,
we identify E(K) and ε0

d−1, making E(K) into a projective variety.
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Theorem 4.28 (Babăıcev). Let K be a number field. Then the invariant µ is
bounded on E(K).

Proof. This is Theorem 3.1 in [Ba 81]. If M denotes a Zip-extension of K, i ≤ d,

then we denote by E⊆M (K) the set of Zp-extensions of K contained in M . We
will prove that µ is bounded on every set E⊆M (K), using induction on i. The
statement is true in the case of a single Zp-extension of K (i = 1), and we
assume that there exists an integer n ∈ N, n ≥ 2, such that µ is bounded on
E⊆M (K) for every Zip-extension M of K with i < n.

Let K/K denote an arbitrary Znp -extension, and let X := Gal(H(K)/K) be
the Galois group of the maximal unramified p-abelian extension ofK. Then X is
a finitely generated torsion Λn-module (see Theorem 1 in [Gr 73] or Proposition
3.1 in [Ba 81]). Let L ∈ E⊆K(K).

We first assume that only finitely many primes of L ramify in K/L. Let
π ∈ ε0

n−1 correspond to L via Lemma 2.7. Then Lemma 4.3, (ii) shows that
π 6∈ V (X) and µ(L/K) = µ(Xπ). Theorem 4.25 implies that µ(Xπ) ≤ c0 for
every π ∈ ε0

n−1 \ V (X) and some c0 ∈ N. It therefore remains to look at those
Zp-extensions L ∈ E⊆K(K) such that at least one prime p̃ of L ramifying in K
splits completely in L/K.

Let P̃ := {p̃1, . . . , p̃s} denote the set of primes of L that ramify in K. For
each p̃j ∈ P̃, we let pj denote the unique prime of K divisible by p̃j , respec-
tively. If Zpj ⊆ Gal(K/K) ∼= Znp denotes the decomposition group of pj in

K/K, respectively, then pj is split in L if and only if L ⊆ KZpj . Moreover,

Gal(KZpj /K) ∼= Z
nj
p for some nj < n, since p̃j ramifies in K/L and therefore

pj cannot be totally split in K/K. Therefore the induction hypothesis im-

plies that µ(L/K) ≤ cj for every Zp-extension L ⊆ KZpj and some constant
cj ∈ N, respectively. Letting M := max({c0, c1, . . . , cs}), we may conclude that
µ(L/K) ≤M for every Zp-extension L ∈ E⊆K(K).

4.3 Boundedness of λ-invariants

In the last section, we studied µ-invariants of Zp-extensions L/K of a fixed
number field K, and we discussed in detail Babăıcev’s proof that µ is globally
bounded on E(K). It is unknown whether the λ-invariants of the Zp-extensions
L ∈ E(K) are bounded in general. In the current section, we will develop
a sufficient criterion for the existence of a sequence (M (n))n ⊆ E(K) having
unbounded λ-invariants. This will make use of the results obtained in the last
sections.

In [Mo 81], P. Monsky proved some results in the case d = 2 (i.e., he
considered Zp-extensions L of K contained in some fixed Z2

p-extension K/K).
Monsky obtained a criterion that is related to ours (compare Proposition 4.40
below). In order to briefly describe Monsky’s result, we have to introduce some
notation.

Let K/K be a fixed Zdp-extension, d ∈ N, let X := Gal(H(K)/K), where
H(K) denotes the maximal p-abelian unramified extension of K. Then X is a
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finitely generated torsion Λd-module, where

Λd = Zp[[X1, . . . , Xd]] ∼= Zp[[Gal(K/K)]]

(compare Proposition 3.1 in [Ba 81]). By the Structure Theorem 2.23, X is

pseudo-isomorphic to an elementary torsion module
s⊕
i=1

Λd/p
ni
i , where s ∈ N0,

ni ∈ N for i = 1, . . . , s, and with suitable principal prime ideals pi = (gi) ⊆ Λd

(compare Remarks 2.25, (1)). Then f :=
s∏
i=1

gnii ∈ Λd is called the character-

istic power series of X.

There are different possible descriptions of f . For example, the Λd-module
X can be described via generators and relations, as in the proof of Theorem
4.25:

X =
〈
b1, . . . , bl |

l∑
j=1

aijbj = 0 , 1 ≤ i ≤ q , aij ∈ Λd

〉
.

Since X is Λd-torsion, q ≥ l. Let A = (aij), 1 ≤ i ≤ q, 1 ≤ j ≤ l. If f1, . . . , fr
denote the minors of the matrix A of order l, then one can show that the
characteristic power series f of X is (up to multiplication by a unit) equal to
the greatest common divisor of the fi (compare the proof of Lemma 4.26).

Definition 4.29.

(1) We will also call f ∈ Λd the characteristic power series of the Zdp-
extension K/K. It is unique up to multiplication by a unit.

(2) The ideal F(X) generated by the minors f1, . . . , fr is called the (zeroth)
Fitting ideal of X.

Remarks 4.30.

(i) F(X) does not depend on the chosen representation of X (see Corollary
20.4 in [Ei 95]).

(ii) We may write F(X) = (f) · J , where the ideal J ⊆ Λd is not contained
in any non-trivial principal ideal (i.e., ideal of height one) of Λd.

(iii) If X can be generated over Λd by l elements, then

Ann(X)l ⊆ F(X) ⊆ Ann(X) ,

where Ann(X) ⊆ Λd denotes the annihilator ideal of X (compare Propo-
sition 20.7 in [Ei 95]). In particular, F(X) 6= (0), since X is Λd-torsion.

(iv) If d = 1, then the Weierstraß Preparation Theorem 1.14 implies that the
characteristic power series f ∈ Λ1 of X may be written as f = U · pm · f̃ ,
where U ∈ Λ∗ is a unit, m = µ(X) ∈ N0, and where f̃ ∈ Zp[X] is a dis-
tinguished polynomial. Actually f̃ = FX is the characteristic polynomial
of X introduced in Definition 1.29.

Definition 4.31. Let d ∈ N and 0 6= f ∈ Λd ∼= Zp[[Γ
d]], with Γd ∼= Zdp. Write

f = pµ · g with p - g. Then m0(f) := µ.
Let further g denote the reduction of g modulo p, i.e., g ∈ Λd := Λd/pΛd. Then
we define l0(f) :=

∑
vP(g), where the sum is taken over all prime ideals of
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Λd of the form P = (γ − 1), with γ ∈ Γd \ (Γd)p. Here vP denotes the P-adic
valuation, respectively. Note that the sum

∑
vP(g) is always finite, because Λd

is a unique factorisation domain.

Let E⊆K(K) be the set of Zp-extensions L/K such that L ⊆ K. Monsky
proved the following criterion for the global boundedness of λ-invariants (in the
case of d = 2):

Theorem 4.32 (Monsky). Let K/K denote a Z2
p-extension with characteristic

power series f ∈ Λ2. Then the λ-invariants λ(L/K), L ∈ E⊆K(K), are bounded
if and only if l0(f) = 0.

Proof. See Theorem IV in [Mo 81].

We will prove the following result:

Theorem 4.33. Let d ∈ N, let K/K be a Zdp-extension, X = Gal(H(K)/K),
and let f ∈ Λd denote the characteristic power series of K/K.
We write f = pm0 · g, with p - g.
(i) λ is unbounded on the set E⊆K(K) if there exists a Zp-extension M ⊆ K

of K such that only finitely many primes of M ramify in K and such that
p | πM (g), where πM corresponds to M via Lemma 2.7.

(ii) λ is bounded on E⊆K(K) if for every π ∈ ε0
d−1, the quotient module

Xπ = X/(ker(π) ·X) is Λπ = Λd/(kerπ)-torsion and satisfies µ(Xπ) = m0.
(iii) If d = 2, then λ is unbounded if and only if p | π(g) for some π ∈ ε0

d−1.

Before starting with the proof, we state a fact which will be useful several
times.

Proposition 4.34.
(i) Suppose that π ∈ ε0

d−1 \ V (X), let f ∈ Λd. Then m0(π(f)) ≤ µ(Xπ).
(ii) If π(f) = px · h with x ∈ N0 and p - h, then degp(h) ≤ λ(Xπ).

Proof. (i) We will use the notation from the proofs of Theorem 4.25 and
Lemma 4.26 (with M = X). If f1, . . . , fr ∈ Λd denote the minors of order
l of the matrix A, then f = ggT(f1, . . . , fr) and therefore

m0(π(f)) = m0(π(ggT(f1, . . . , fr)))

≤ m0(ggT(π(f1), . . . , π(fr)))
4.26
= µ(Xπ) ,

since π(ggT(f1, . . . , fr)) divides ggT(π(f1), . . . , π(fr)), because π is a ho-
momorphism.

(ii) Suppose first that µ(Xπ) = 0. Analogously to (i), we have

degp(π(f)) ≤ degp(ggT(π(f1), . . . , π(fr))) = λ(Xπ) ,

where the last equality may be proved similarly to Lemma 4.26 by consid-
ering modules over localisations Λ/(gi) for the irreducible divisors of the
characteristic polynomial of the Λ-module Xπ.
In the general case, we extract suitable powers of p and concentrate on
the remaining distinguished polynomials in Λπ = Λd/(ker(π)).
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We now start with the proof of Theorem 4.33.

Proof. (i) We assume that for some π ∈ ε0
d−1, we have p | π(g) (note that this

includes the possibility that π(f) = 0). Then Lemma 4.23 implies that
for any given integer C ∈ N, we may choose a neighbourhood U = U(C)
of π such that for every π 6= π̃ ∈ U , we have p - π̃(g) and degp(π̃(g)) > C.

Via Lemma 2.7, this yields a neighbourhood Ũ of the Zp-extension M of
K corresponding to π.
Let E ′(K) denote the set of Zp-extensions N of K such that only finitely
many primes of N divide p (i.e., no prime of K dividing p is completely
split in N). The set E ′(K) is dense in E(K) (compare Remark 4.4).
We therefore may choose a sequence of Zp-extensions M (n) ∈ E ′(K) ∩ Ũ
such that for the corresponding homomorphisms πn of M (n), we have
degp(πn(g)) ≥ n, respectively. Moreover, we may assume that

[(M (n) ∩M) : K] ≥ pn

for every n.
For M (n) ∈ E ′(K), the module Xπn is a torsion ΛM(n)-module, by Lemma
4.3. Proposition 4.34, (ii) therefore implies that λ(Xπn) ≥ n for each n.
Now

λ(Xπn) ≤ λ(M (n)/K) +
(d− 1)(d− 2)

2
+ j(K/M (n)) ,

where j(K/M (n)) denotes the sum of the Zp-ranks of the inertia subgroups

of Gal(H(K)ab(n)
/M (n)), by Lemma 4.3, (ii). Here H(K)ab(n)

denotes the
maximal subextension of H(K) that is abelian over M (n), respectively.
For every n ∈ N0, we let Mn denote the intermediate field of M/K that
has degree pn over K. Let sn denote the number of primes of Mn that
are divisible by some prime of M ramifying in K/M . Since only finitely
many primes of M are ramified in K/M , by assumption, we may conclude
that there exists an integer m ∈ N such that sn = sm for every n ≥ m.
We assume that m ≥ e(M/K) + 1. Let tm denote the number of primes
of Mm that are ramified in Mm+1.
By construction, M (n) ∩ M ⊇ Mn for every n ∈ N0. If p denotes a
prime of M (n) that ramifies in K/M (n), and if p := p ∩Mn, then either
p ramifies in M/Mn, or p is divisible by some prime of M ramifying in

K/M . If n > m, then p is the unique prime of Mn ⊆ M (n) dividing the
prime p ∩Mn−1, respectively, and therefore p is the unique prime of Mn

dividing p. This shows that the number of primes p of M (n) ramifying in
K/M (n) is bounded by C := sm + tm for every n > m.
Since H(K)/K is unramified, the Zp-rank of each inertia subgroup of

Gal(H(K)ab(n)
/M (n)) is at most d− 1 = rankZp(Gal(K/M (n)). Therefore

we have proved the bound

j(K/M (n)) ≤ C · (d− 1) ,

which holds for every n ≥ m.
This implies that the λ(M (n)/K) are unbounded.
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(ii) Now we assume that for every π ∈ ε0
d−1, Xπ is a torsion Λπ-module sat-

isfying µ(Xπ) = m0. Let π be arbitrary, let M ∈ E⊆K(K) correspond to
π. Let F(X) denote the Fitting ideal of X (compare Definition 4.29, (2)).
We write F(X) = (f) · J , as in Remarks 4.30, (2).

Lemma 4.35. π(F(X)) = F(Xπ).

Proof. Let r denote the number of generators of the Λd-module X. By
definition, F(X) is the ideal generated by the r × r-minors of the matrix
A describing the presentation of X. Since π(A) describes a presentation
of the Λ-module Xπ = X/(kerπ ·X) (compare the proof of Lemma 4.26),
we see that F(Xπ) = π(F(X)).

Since µ(Xπ) = m0 by assumption, Lemma 4.35 implies that there exists an
element h = f · j ∈ F(X) such that π(h) 6≡ 0 mod pm0+1. More precisely,
if h = pm0 · h̃ with h̃ = g · j, then π(h̃) 6≡ 0 mod p. This means that
we can choose a neighbourhood Uπ of π such that for every π̃ ∈ Uπ, we
have π̃(h̃) 6≡ 0 mod p and moreover degp(π̃(h̃)) = degp(π(h̃)) (compare
Proposition 4.18).
Let Cπ := degp(π(h̃)) <∞. Since π̃(h) ∈ F(Xπ̃), we have

λ(Xπ̃) ≤ Cπ <∞

for every π̃ ∈ Uπ. Since ε0
d−1 is compact and therefore can be covered

by finitely many neighbourhoods Uπ, we may conclude that there exists a
constant C <∞ such that λ(Xπ) ≤ C for every π ∈ ε0

d−1.

If M ∈ E⊆K(K) corresponds to π ∈ ε0
d−1, then Lemma 4.3, (ii) implies

that

λ(M/K) ≤ λ(Xπ) + d− 1

(note that this inequality holds for every M ∈ E⊆K(K) ∩ E(X), as we have
seen in the proof of Lemma 4.3, (ii); moreover, we have E⊆K(K) = E(X),
by assumption). This shows that

λ(M/K) ≤ C + d− 1

for every M ∈ E⊆K(K).
(iii) Finally, let us assume that d = 2. In this case, λ is unbounded whenever

there exists some π ∈ ε0
d−1 = ε0

1 such that p | π(g), i.e., we do not
need to ensure that the corresponding Zp-extension M of K satisfies the
additional condition from (i). Indeed, in the proof of (i), the condition
that only finitely many primes of M ramify in K was only needed in order
to bound the number of primes that could possibly ramify in K/M (n),
where M (n) runs through a sequence of Zp-extensions of K contained in
a suitable neighbourhood E ′(K) ∩ Ũ of M .
In [Mo 81], Monsky proved that in the case d = 2, there exists actually a
global constant C such that for every N ∈ E ′(K) ∩ E⊆K(K), the number
of primes ramifying in K/N is smaller than or equal to C. Namely, let
p1, . . . , pr denote the primes of K that ramify in K and that are divisible
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by only finitely many primes of K, respectively. Let ci denote this finite
number, 1 ≤ i ≤ r, and let C :=

∑r
i=1 ci.

Let now N ∈ E ′(K) ∩ E⊆K(K) be arbitrary. If p denotes a prime of
N ramifying in K, then only finitely many primes of K divide p, since
Gal(K/N) ∼= Zp. Moreover, p is only finitely decomposed inN/K, because
N ∈ E ′(K). Therefore p ∩K ∈ {p1, . . . , pr}, proving that the number of
primes ramifying in K/N is bounded by C.
In the notation from (i), this means that j(K/M (n)) ≤ C ·(d−1) for every
n ∈ N0. Therefore λ is unbounded if p | π(g) for any π ∈ ε0

1.
It remains to show that λ is bounded on E⊆K(K) if p - π(g) for every
π ∈ ε0

1.
Let F(X) = (f) · J be the Fitting ideal of X. Fix some π ∈ ε0

1. We will
use the following fact.

Lemma 4.36. There exists an element H ∈ Λ2 such that π(H) 6≡ 0 mod p
and ps ·H ∈ J for some s ∈ N0.

Proof. The proof follows an idea of Monsky (compare the proof of Theo-
rem 3.3 in [Mo 81]). We consider the ideal

J∗ := {z ∈ Λ2 | ps · z ∈ J for some s ∈ N0} .

Then multiplication by p is an injective operation on the quotient module
Λ2/J

∗. We will now use the following terminology:

Definition 4.37. Let R denote a Noetherian ring, let M be a finitely
generated R-module. Then a prime ideal p ⊆ R is called associated to
M if and only if p is equal to the annihilator ideal of some element x ∈M .

Lemma 4.38. Let R denote a Noetherian ring, let M 6= {0} be a finitely
generated R-module.
(i) Let a ∈ R. The map ma : M −→ M , m 7→ a ·m, is injective if and

only if a is not contained in any associated prime ideal of M .
(ii) Assume that p is a prime ideal of R that contains the annihilator

ideal of M and is minimal concerning inclusion with this property.
Then p is associated to M .

Proof. (i) See [La 93], Chapter X, Proposition 2.9.
(ii) See [Ei 95], Theorem 3.1, a.

If we apply Lemma 4.38 to the finitely generated Λ2-module Λ2/J
∗, then

we may conclude that p is not contained in any prime ideal containing J∗

and being minimal with this property.
Choose generators γ1, γ2, respectively, δ, of Γ2 = Gal(K/K), respectively,
Γ = Gal(M/K) such that with respect to the corresponding variables
Xi = γi − 1 and T = δ − 1, we have π(X1) = 0, whereas π(X2) = T .

Lemma 4.39. Fix i ∈ {1, 2}. There does not exist a prime ideal p such
that J∗ ⊆ p ⊆ (p,Xi). In particular, J∗ 6⊆ (p,Xi).
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Proof. Assume that there exists a prime ideal p such that J∗ ⊆ p ⊆ (p,Xi),
and that p is minimal with respect to inclusion. We will show that in this
situation, p will necessarily be equal to (p,Xi). But p 6∈ p, by the above,
yielding a contradiction.
Since Λ2 is a Noetherian ring (compare Proposition 2.17, (v)), a maximal
descending chain of prime ideals

(p,Xi) =: pr % pr−1 % . . . % p0 = (0)

has length r = 2 (see Corollary 10.3 in [Ei 95]).
Since J ⊆ J∗ is not contained in any prime ideal of Λ2 of height one, we
may conclude that the minimal number of elements generating p ⊇ J∗ is
at least two, i.e., p is not principal.
Since (0) 6= J ⊆ p, there exists an element 0 6= g ∈ p. We may assume that
g is irreducible, using the fact that p is a prime ideal (g has a decomposition
into irreducible elements in the unique factorisation domain Λ2). But
then the principal ideal (g) is prime, again using the fact that Λ2 is a
unique factorisation domain. Moreover, (g) 6= p, since p is not principal.
Therefore

(p,Xi) ⊇ p % (g) % (0) ,

so that the above descending chain condition implies that we must have
(p,Xi) = p, yielding the desired contradiction.

But this means that we may choose an element H ∈ J∗ ⊆ Λ2 such that
π(H) = H(0, T ) 6≡ 0 mod p, proving Lemma 4.36.

Now we may finish the proof of Theorem 4.33, (iii). We may simply copy
the proof of the boundedness of λ for arbitrary d, given in (ii), replacing
the element h̃ used there by f ·H. Indeed, p - π(f ·H), by assumption,
and 0 6= ps · π(f ·H) ∈ F(Xπ) for some s ∈ N, implying that each Xπ is
a torsion Λπ-module, respectively (compare Lemma 4.2, (i)). Moreover,
λ(Xπ̃) ≤ degp(f ·H) for every π̃ contained in a suitable neighbourhood of
π, respectively, as in the proof of (ii).

If d = 2, then the conditions in our criterion (Theorem 4.33) and Monsky’s
Theorem 4.32 are equivalent, so that our theorem generalises Monsky’s result
to the case of arbitrary d ≥ 2:

Proposition 4.40. Let 2 ≤ d ∈ N. Assume that g ∈ Λd satisfies p - g. If
l0(g) 6= 0, then there exists a homomorphism π ∈ ε0

d−1 such that p | π(g).
If, on the other hand, there exists π ∈ ε0

d−1 with p | π(g), then we can choose

generators γ1, . . . , γd of Γd such that with respect to the corresponding variables
Xj = γj − 1, 1 ≤ j ≤ d, we have g ≡ 0 mod (p,X1, . . . , Xd−1). In particular,
if d = 2, then l0(g) > 0.

Proof. Assume that l0(g) 6= 0. Then there exists an element γ ∈ Γd \ (Γd)p such
that g is divisible by γ − 1 in Λd. Letting X := γ − 1 ∈ Λd, we may conclude
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that g ∈ (p,X). Since γ 6∈ (Γd)p, we may extend γ to a basis {γ, γ2, . . . , γd}
of Γd. Now define π : Γd −→ Γ by π(γd) := δ (a generator of Γ), π(γi) = 1
for every i < d. Let T := δ − 1. Then π(g) = g(0, . . . , 0, T ) ≡ 0 mod p, by
construction.

If, on the other hand, a homomorphism π ∈ ε0
d−1 is given such that p | π(g),

then we choose generators γ1, . . . , γd and δ of Γd and Γ, respectively, such that
π(γi) = 1 for i < d and π(γd) = δ. Then p | π(g) = g(0, . . . , 0, T ), and
therefore g is contained in the ideal of Λd generated by the elements γi − 1,
i = 1, . . . , d− 1.

It seems natural to conjecture that our condition that π(g) ≡ 0 mod p, i.e.,
π(f) ≡ 0 mod pm0(K/K)+1, for some π ∈ ε0

d−1 is tightly connected to the fact

that µ(M/K) > m0(K/K) for some M ∈ E⊆K(K). We are able to make this
precise for d = 2 if the Fitting ideal F(X) of X = Gal(H(K)/K) satisfies the
following technical condition.

Definition 4.41. LetK/K denote a Z2
p-extension, and let X = Gal(H(K)/K).

We write the Fitting ideal of X in the form F(X) = (f) ·J , as in Remarks 4.30,
(2).
We call K/K regular if there exist elements g, h ∈ J such that the greatest
common divisor G of their reductions g, h ∈ Λ2 = Λ2/pΛ2 is the reduction
modulo p of a series G ∈ Λ2 with l0(G) = 0, and G 6= 0.
Note that this is the case, for example, if there exists an element h ∈ J such
that p - h and l0(h) = 0. This is equivalent to saying that for any choice of
generators γ1, γ2 ∈ Γ2, h ∈ J is regular with respect to the variables X1 = γ1−1
and X2 = γ2 − 1 of Λ2 in the sense of Definition 4.9 (compare Remarks 4.10,
(3) and the proof of Proposition 4.40).

Remarks 4.42.

(1) Note that not every irreducible element of Λd is of the form γ − 1 for some
γ ∈ Γd \ (Γd)p. Therefore an element h ∈ J with p - h and l0(h) = 0 will
not have to be a unit.
Indeed, assume that p 6= 2, and let X1 = γ1 − 1 and X2 = γ2 − 1 for two
multiplicatively independent elements γ1, γ2 ∈ Γ2 \ (Γ2)p. We consider the
element X1 +X2 ∈ Λ2, and we will show that l0(X1 +X2) = 0. Note that,
on the contrary, l0(X1 −X2) > 0, because

X1 −X2 = (X2 + 1) · ((X1 + 1)(X2 + 1)α − 1) ,

where α ∈ Zp is chosen such that α+ 1 = 0.
By Proposition 4.40, l0(X1 +X2) > 0 if and only if there exists a homomor-
phism π ∈ ε0

1 such that π(X1 +X2) ≡ 0 mod p. We will show that such a
homomorphism cannot exist (note that, on the contrary, π(X1 −X2) = 0
for π : X1 7→ T , X2 7→ T ).
We know that

π(X1) = (T + 1)a1 − 1 , π(X2) = (T + 1)a2 − 1
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for suitable a1, a2 ∈ Zp. Since π : Zp[[X1, X2]] −→ Zp[[T ]] is surjective,
we may assume that a1 6≡ 0 mod p. Since π is a homomorphism, π maps
X1 +X2 to

(T + 1)a1 − 1 + (T + 1)a2 − 1 ≡ a1T + 1− 1 + a2T + 1− 1 mod (p, T 2) ,

using Lemma 2 of [Ba 76]. If π(X1+X2) ≡ 0 mod p, then we may conclude
that a1 + a2 ≡ 0 mod p.
Now we consider the coefficient of T 2, obtaining((

a1

2

)
+

(
a2

2

))
· T 2 =

[
a1(a1 − 1)

2
+
a2(a2 − 1)

2

]
· T 2 .

Since p 6= 2, this term is congruent to zero modulo p if and only if

a1(a1 − 1) + a2(a2 − 1) ≡ 0 mod p .

Inserting a2 ≡ −a1 mod p, this yields

a2
1 − a1 + a2

1 + a1 ≡ 0 mod p ,

i.e., a1 ≡ 0 mod p. But this contradicts our choice a1 6≡ 0 mod p.
(2) Since J is not contained in any prime ideal of Λd of height one, there do

always exist two coprime elements g, h ∈ J . In fact, if 0 6= g ∈ J is arbitrary,
then there exists an element h ∈ J coprime to g (compare Remarks 2.20,
(3)).
Moreover, we may assume that p - g · h. Indeed, since J 6⊆ (p), we may
choose some g ∈ J such that p - g. Then we choose an element h ∈ J
coprime to p · g ∈ J .
However, it is well possible that g and h are not longer coprime. For
example, if g = X1 and h = X1 + pX2, then g = h.

(3) In order to motivate our definition of regularity, we consider the following
example. Suppose that J = (X1 + p,X2

1 ). Then K/K is not regular, since
X1 = γ1 − 1 divides every residue class h, h ∈ J . We make the following
observation. If π ∈ ε0

1 satisfies π(X1) = 0, then π(J) ⊆ (p), and therefore

µ(Xπ) > m0(π(f))

(compare the proof of Proposition 4.34). This is exactly the phenomenon
we want to get rid of by our regularity constraint (see the proof of Theorem
4.43 below).

Theorem 4.43. Let K/K denote a regular Z2
p-extension. If there exists some

M ∈ E⊆K(K) such that µ(M/K) > m0 := m0(K/K), then λ is unbounded on
E⊆K(K).

Proof. We will first prove a general result which shows that we may assume that
for every π ∈ ε0

1, the module Xπ = X/(ker(π) · X) is a torsion ΛMπ -module,
with Mπ ∈ E⊆K(K) corresponding to π via Lemma 2.7.
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Lemma 4.44. Let K/K denote a Z2
p-extension with corresponding Greenberg-

module X = Gal(H(K)/K). If there exists a homomorphism π ∈ ε0
1, with

corresponding field Mπ ∈ E⊆K(K), such that Xπ = X/(ker(π) ·X) is no torsion
ΛMπ -module, then λ is unbounded on E⊆K(K).

Proof. Let f ∈ Λd denote the characteristic power series of X. Write f = pm0 ·g,
p - g, with m0 = m0(K/K). Let π ∈ ε0

1 be such that Xπ is no torsion ΛMπ -
module. Then π(g) = 0. Indeed, we may use Lemma 4.36 in order to find an
element H ∈ Λ2 such that π(H) 6≡ 0 mod p and such that ps · f ·H ∈ F(X) for
some s ∈ N0. But then

ps · π(f) · π(H) = ps+m0 · π(g) · π(H) ∈ F(Xπ) ,

and this element is different from zero if π(g) 6= 0. Lemma 4.2, (i) then would
imply that Xπ was ΛMπ -torsion.

We therefore assume that π(g) = 0. Then Lemma 4.23 implies that for
every C ∈ N we may find a neighbourhood UC of π such that π̃(g) 6≡ 0 mod p
and degp(π̃)(g) > C for every π 6= π̃ ∈ UC .

Let E ′(K) denote the set of Zp-extensions of K in which no prime dividing
p splits into infinitely many primes. We have shown in Lemma 4.3, (i) that the
module XπM̃

is ΛM̃ -torsion for every homomorphism πM̃ ∈ ε
0
1 corresponding to

some M̃ ∈ E ′(K). E ′(K) is dense in E⊆K(K), see Remark 4.4. Moreover, there
exists a constant C1 ∈ N such that for every M̃ ∈ E ′(K) and corresponding
πM̃ , we have

λ(XπM̃
) ≤ λ(M̃/K) + C1

(compare the proof of Theorem 4.33, (iii)).

Now assume that λ is bounded on E⊆K(K), i.e., let X ∈ N be such that
λ(N/K) ≤ X for every N ∈ E⊆K(K). Let C := X + C1. Choose some
M̃ ∈ E ′(K) ∩ UC . The corresponding homomorphism π̃ ∈ ε0

1 then satisfies
π̃(g) 6≡ 0 mod p and degp(π̃(g)) > X+C1. Since degp(π̃(g)) ≤ λ(Xπ̃) (compare
Proposition 4.34, (ii)), it follows that

λ(M̃/K) ≥ λ(Xπ̃)− C1 > X ,

yielding a contradiction.

Now we return to the proof of Theorem 4.43. Let π ∈ ε0
1 correspond to the

element M ∈ E⊆K(K) with µ(M/K) > m0. In view of Lemma 4.44, we may
assume that Xπ is a torsion ΛM -module. Then

µ(Xπ) ≥ µ(M/K) > m0 ,

by Corollary 4.5.

We have seen in Proposition 4.34, (i) that m0(π(f)) ≤ µ(Xπ) whenever
π ∈ E(X). We will prove now that the assumed regularity of K/K implies that
we actually have m0(π(f)) = µ(Xπ) for every π (compare Remarks 4.42, (3)):



4.3. BOUNDEDNESS OF λ-INVARIANTS 169

Proof. Suppose first that there exists h ∈ J such that p - h and l0(h) = 0. Then
π(h) 6≡ 0 mod p for every π ∈ ε0

1, by Proposition 4.40. But π(f) · π(h) ∈ F(Xπ)
for each π, implying that

µ(Xπ) ≤ m0(π(f)) +m0(π(h)) = m0(π(f)) .

Let now g, h ∈ J denote two elements such that the greatest common divisor G
of their reductions g and h modulo p is not divisible by any irreducible element
of the form γ − 1, γ ∈ Γ2 \ (Γ2)p.

We may assume that p - g · h (otherwise our condition on G implies that
l0(g) = 0 or l0(h) = 0, and we are done because of the special case discussed
above).

If π ∈ ε0
1 satisfies m0(π(f)) < µ(Xπ), then π(H) ≡ 0 mod p for every

H ∈ J . In particular, π(g) ≡ 0 mod p and π(h) ≡ 0 mod p. If γ1, γ2 denote
topological generators of Γ2 such that π(γ1) = 1 and such that π(γ2) = δ
generates the image Γ = π(Γ2), then this means that the reductions g and
h of g and h are divisible by γ1 − 1 in Λd (compare the proof of Proposition
4.40). But then γ1 − 1 divides the greatest common divisor G of g and h, in
contradiction to our regularity constraints.

This shows that for every π ∈ ε0
1, we have either π(g) 6≡ 0 mod p or

π(h) 6≡ 0 mod p, proving that m0(π(f)) = µ(Xπ).

But this implies that for the homomorphism π ∈ ε0
1 corresponding to our

fixed M ∈ E⊆K(K), we have m0(π(f)) = µ(Xπ) > m0, i.e., f = pm0 · g
and p | π(g). Therefore Theorem 4.33, (iii) implies that λ is unbounded on
E⊆K(K).

Definition 4.45. Let d ∈ N, let f ∈ Λd = Zp[[Γ
d]], f 6= 0. We write

f = pm0 · g, with p - g. Then we define δ0(f) to be the number of pairwise
coprime irreducible elements γ − 1, γ ∈ Γd \ (Γd)p dividing g in Λd = Λd/pΛd.
In particular, δ0(f) = 0 if and only if l0(f) = 0.

Corollary 4.46. Let K/K denote a Z2
p-extension. Let F(X) = (f) · J , let

m := min({δ0(h) | h ∈ J, p - h}) .

If there exist at least m + 1 different Zp-extensions M1, . . . ,Mm+1 ∈ E⊆K(K)
such that µ(Mi/K) > m0(K/K) for every i ∈ {1, . . . ,m + 1}, then λ is un-
bounded on E⊆K(K).

Proof. First note that m is well-defined, since not every element of J can be
divisible by p. Let h ∈ J , p - h, be an element such that δ0(h) = m. For every
π ∈ ε0

1, we have π(h) ≡ 0 mod p if and only if π(γi) = 1 for some γi ∈ Γ2 \ (Γ2)p

satisfying γi − 1 | h (compare the proof of Proposition 4.40). This means that
there exist exactly m homomorphisms π1, . . . , πm such that πj(h) ≡ 0 mod p,
because every π ∈ ε0

1 is uniquely determined by its (rank one) kernel. Indeed, if
the kernel of π is generated by γ ∈ Γ2\(Γ2)p, then we extend γ to a basis {γ, γ2}
of Γ2, and π has to map γ2 to a generator of Γ. Since we do not distinguish
between the homomorphisms π and πu, u ∈ Z∗p, in ε0

1, γ uniquely determines
π.
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This means that π(h) 6≡ 0 mod p and therefore m0(π(f)) = µ(Xπ) for
every π different from π1, . . . , πm. Write f = pm0(K/K) · g. If there exist more
than m Zp-extensions whose µ-invariant is greater than m0(K/K), then there
exists π ∈ ε0

1 such that p | π(g), and therefore λ is unbounded.

Corollary 4.47. Suppose that K is an abelian number field. Let K/K denote
a Z2

p-extension containing the cyclotomic Zp-extension K∞ of K. We write
F(X) = (f) · J . Let

m := min({δ0(h) | h ∈ J, p - h}) .

If there exist at least m + 1 different Zp-extensions M1, . . . ,Mm+1 ∈ E⊆K(K)
such that µ(Mi/K) > 0 for every i ∈ {1, . . . ,m + 1}, then λ is unbounded on
E⊆K(K).

Proof. If K is an abelian extension of Q and if K∞ denotes the cyclotomic
Zp-extension of K, then it is known that µ(K∞/K) = 0 (compare [FW 79]).
Moreover, every prime ofK dividing p ramifies inK∞/K (compare Lemma 3.18,
(ii)), and therefore K∞ ∈ E ′(K) and µ(Xπ) = µ(K∞/K) for the corresponding
homomorphism π ∈ ε0

1. Since µ(Xπ) ≥ m0(K/K) (see Proposition 4.34, (i)), it
follows that m0(K/K) = 0. Now apply the previous corollary.

Remarks 4.48.

(1) If m = 0 in Corollary 4.46, then we are in the special case of regularity
mentioned in Definition 4.41, and therefore the statement of the corollary
follows from Theorem 4.43.

(2) We already know that the existence of some

L ∈ E⊆K(K) ∩ E ′(K)

with µ(L/K) = 0 implies that the Zp-extensions M ⊆ K of K satisfying
µ(M/K) = 0 are dense in E⊆K(K) (compare Theorem 4.15).
In the case of d = 2, there can exist only finitely many Zp-extensions
M1, . . . ,Mr ⊆ K of K such that µ(Mi/K) 6= m0(K/K) (compare Theorem
5 in [Ba 76] and Lemma 5.10 below). In this notation, the Corollaries 4.46
and 4.47 show that r ≤ m.

(3) The proof of Theorem 4.43 may be used in order to prove the following
generalisation. Let d ∈ N, d ≥ 2.
Let K/K be a Zdp-extension having a Fitting ideal F(X) = (f) · J such that
J contains an element h with the following property: For every choice of
topological generators of Gal(K/K), h is regular with respect to each of the
variables Xi = γi−1 of Λd in the sense of Definition 4.9 (this generalises the
special case of regularity mentioned in Definition 4.41). Let M ∈ E⊆K(K)
be such that every prime of K that ramifies in K is also ramified in M . If
µ(M/K) > m0(K/K), then λ is unbounded on E⊆K(K).
Indeed, the existence of h implies that

m0(π(f)) = µ(Xπ) > m0(K/K)
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for the homomorphism π ∈ ε0
d−1 corresponding to M (compare Remarks

4.10, (3) and the proof of Proposition 4.40). Moreover, the ramification
condition ensures that for some C1 ∈ N, we have

λ(XπM̃
) ≤ λ(M̃/K) + C1

for each M̃ contained in a suitable neighbourhood U(M,n) of M , for some
n ≥ e(M/K) + 1 (compare the proof of Theorem 4.33).

Corollary 4.49. Let K be an abelian number field, let K/K denote a regular
Z2
p-extension containing the cyclotomic Zp-extension of K. Assume that K

contains only one prime dividing p. Then λ is unbounded on E⊆K(K) if and
only if there exists M ∈ E⊆K(K) such that µ(M/K) > 0.

Proof. If µ(M/K) > 0 for someM ∈ E⊆K(K), then λ is unbounded by Theorem
4.43 (compare the proof of Corollary 4.47). If, on the other hand, µ(M/K) = 0
for every M ∈ E⊆K(K), then λ is bounded by Corollary 3.60. Note that this
has been reproved in Theorem 4.33, (iii), since µ(M/K) = µ(Xπ) for every M ,
because each M is ramified at the single prime p of K dividing p (compare
Corollary 4.5).

Remark 4.50. Note that instead of assuming that K contains only one prime
dividing p, it would be sufficient if every M ∈ E⊆K(K) had the same ramifica-
tion set (compare Corollary 3.60).
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Chapter 5

Local behaviour of generalised
Iwasawa invariants

Let K denote a fixed number field. In Chapter 3, we studied the local behaviour
of Iwasawa invariants on the set E(K) of Zp-extensions of K, with respect
to suitable topologies. We will now, more generally, consider the sets of Zdp-

extensions Ed(K) of K, d ∈ N. Note that Ed(K) = ∅ if d is too large (compare
Theorem 1.7).

In analogy with the theory developed in Chapter 3, we will study the local
behaviour of so-called generalised Iwasawa invariants, which are natural ana-
logues of Iwasawa’s classical µ- and λ-invariants. In the first section, we will
define the Greenberg- and Greenberg-R-topologies on the sets Ed(K). Then
we start the investigation of local properties of generalised Iwasawa invariants,
using a descent-ascent method and applying our one-dimensional results from
Chapter 3.

In order to obtain stronger results, we will then work out a generalisation
of our method to the higher-dimensional setting. In Section 5.4, we introduce a
suitable concept of Fukuda modules and prove some basic properties. Section
5.5 is devoted to a study of ramification. As in the one-dimensional case, a good
understanding of ramification is fundamental for our method. We will see that,
although sufficient for the study of Zp-extensions, the Greenberg-R-topology
has to be refined further in order to control the ramification in neighbourhoods
of Zdp-extensions.

In Section 5.6, we introduce a notion of ranks of Λd-modules generalising
the f -ranks, f ∈ Λ, studied in Chapter 3. In comparison to the one-dimensional
case, it is much more difficult to handle pseudo-isomorphisms of Λd-modules,
because for d > 1 the kernels and cokernels of these maps in general will not be
finite. In fact, we typically only know an upper bound for their Krull dimension,
and therefore it is usually a difficult task to relate the ranks of two pseudo-
isomorphic Λd-modules.

The main theorem is stated in Section 5.7. We have to make several technical
assumptions in order to be able to apply our method. In particular, we have to
presume the validity of a certain inequality concerning the ranks of cyclic torsion
Λd-modules. Under these assumptions, we are able to prove a generalisation of
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Theorem 3.57 (the main result of Chapter 3).
Section 5.8 is dedicated to a proof of a technical lemma that has been used

in the proof of the main theorem. In Section 5.9, we prove the rank inequality
needed for Section 5.7 in certain special cases.

Finally, Section 5.10 contains some results concerning the special case of a
Z2
p-extension K/K of a number field K which contains only one prime above p.

We will use the results of the preceding chapters in order to obtain a criterion
for the Greenberg module of K/K to be pseudo-null.

5.1 Introduction

In generalisation of Iwasawa’s Theorem 1.32, A. Cuoco and P. Monsky
proved the following result (compare Theorem I in [CM 81]):

Theorem 5.1 (Cuoco, Monsky). Let K/K denote a Zdp-extension, let further

Γd := Gal(K/K) ∼= Zdp. For every n ∈ N0, we let Kn ⊆ K denote the subfield

that is fixed by (Γd)p
n

, and we let An denote the p-primary part of the ideal
class group of Kn, respectively.
Then there exist integers m0, l0 ∈ N0 such that for every n ∈ N0, we have
|An| = pen with

en = (m0p
n + l0n+O(1))p(d−1)n .

We call m0 and l0 the generalised Iwasawa invariants of K/K.

Remark 5.2. If d = 1, then this result gives a weak version of Theorem 1.32
(compare also Theorem 5.3 below); while Theorem 1.32 gives an explicit formula
for the en (for n sufficiently large), Theorem 5.1 only includes an upper bound
for the ‘constant contribution’. Cuoco and Monsky conjectured that Theorem
5.1 in general cannot be improved in order to obtain an explicit polynomial

(m0p
n + l0n+ n0) · p(d−1)n

for some n0 ∈ Z, and they gave module-theoretic evidence for their conjecture
(compare Section 7 in [CM 81]).

In [CM 81], Cuoco and Monsky also proved that m0 and l0 only depend on
K/K, in the following sense.

In Section 4.3, we introduced the notion of the characteristic power series
f ∈ Λd = Zp[[T1, . . . , Td]] of a given Zdp-extension K/K (compare Definition
4.29, (1)): If H(K) denotes the maximal p-abelian unramified extension of K,
then one can show that X := Gal(H(K)/K) is a finitely generated torsion Λd-
module, using the isomorphism Λd ∼= Zp[[Gal(K/K)]]. By the Structure Theo-

rem 2.23, X is pseudo-isomorphic to an elementary torsion module
s⊕
j=1

Λd/p
nj
j ,

with pj = (fj) and fj ∈ Λd irreducible for every j. Then f :=
s∏
j=1

f
nj
j .

Moreover, f is equal to the greatest common divisor of the generators of the
Fitting ideal F(X) of X (compare Definition 4.29, (2)). We refer to Remarks
4.30 for some basic properties of F(X).
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In Definition 4.31, we defined integers m0(f) and l0(f) attached to the power
series 0 6= f ∈ Λd.

Theorem 5.3 (Cuoco, Monsky). Let K/K denote a Zdp-extension with gene-
ralised Iwasawa invariants m0 and l0. Then m0 = m0(f) and l0 = l0(f), where
f ∈ Λd denotes the characteristic power series of K/K. In particular, if d = 1,
then m0 = µ and l0 = λ coincide with Iwasawa’s classical invariants.

Proof. Compare the proof of Theorem I in [CM 81].

We will now define two topologies on the sets Ed(K) of Zdp-extensions of K,
d ∈ N.

Definition 5.4. Let d ∈ N, and assume that the set Ed(K) is non-empty. Let
K ∈ Ed(K). For every n ∈ N0, we let

E(K, n) := {L ∈ Ed(K) | Ln = Kn} .

Here Ln, respectively, Kn, denote the subfield of L fixed by Gal(L/K)p
n
, re-

spectively, the subfield of K fixed by Gal(K/K)p
n
.

Note that this generalises Greenberg’s topology on E(K) = E1(K) (compare
Section 2.3). We will therefore speak of the Greenberg topology on Ed(K).

Remark 5.5. The sets E(K, n), together with ∅, generate a topology on Ed(K)
with regard to which Ed(K) is compact.

Proof. It is easy to see that the intersection of two sets E(K, n1) and E(K̃, n2)
is either empty or equal to one of the two sets. Therefore the E(K, n), n ∈ N0,
and ∅, can be taken as a basis of neighbourhoods of K ∈ Ed(K), respectively.
The compactness may be proved analogously to Greenberg’s proof for d = 1
(compare [Gr 73], p. 208): For each m, let Em denote the set of abelian ex-
tensions of K of degree pdm which are the m-th intermediate field for some
K ∈ Ed(K) (i.e., equal to the subfield of K fixed by Gal(K/K)p

m
). Then every

Em is a finite set because each L ∈ Em is the composite of d cyclic extensions
of degree pm over K contained in some Zp-extension of K, respectively; it is
well-known that there exist only finitely many cyclic extensions of this shape.
Moreover, Ed(K) ∼= lim←−Em, where the inverse limit is taken with respect to the
following maps: if m′ ≥ m, then an element L ∈ Em′ is mapped to the unique
subfield that is fixed by Gal(L/K)p

m
(which is an element of Em). Since every

set Em is finite and therefore a discrete compact topological space, it follows
that Ed(K) is compact.

Definition 5.6. Let K/K denote a Zdp-extension, d ∈ N.
Then we denote by P(K) the ramification set of K, i.e., the set of primes of
K that ramify in K/K. Note that P(K) is a subset of the set I of primes of K
dividing p.

The following lemma will be used below.
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Lemma 5.7. Let K/K denote a Zdp-extension.
(i) The set of Zp-extensions L ⊆ K of K satisfying P(L) = P(K) is dense in

E⊆K(K) ⊆ E(K) with respect to Greenberg’s topology.
(ii) More generally, for i ≤ d, we denote by E i,⊆K(K) the set of Zip-extensions

L ⊆ K of K. Then the set of Zip-extensions L ⊆ K of K satisfying

P(L) = P(K) is dense in E i,⊆K(K) ⊆ E i(K) with respect to Greenberg’s
topology on E i(K), as introduced in Definition 5.4.

Proof. (i) Write P(K) = {p1, . . . , ps}. For every pi ∈ P(K), there exists a
Zp-extension Li ∈ E⊆K(K) such that pi ∈ P(Li), because a prime pi
that is unramified in every Li ∈ E⊆K(K) will also be unramified in their
composite K. Therefore, we may choose suitable L1, . . . , Ls ∈ E⊆K(K)
such that

P(L1) ∪ · · · ∪ P(Ls) = P(K) .

Note that we have P(L̃) = P(L1) ∪ P(L2) for almost every Zp-extension

L̃ ⊆ L1 · L2 ⊆ K

of K (i.e., there exist only finitely many L̃ contained in this composite
such that P(L̃) $ P(L1) ∪ P(L2)), by Lemma 3.19, (ii). We choose
an extension L̃ ∈ E⊆K(K) with P(L̃) = P(L1) ∪ P(L2) and continue
with L̃ and L3. Inductively, we obtain some L ∈ E⊆K(K) satisfying
P(L) = P(K).
Now let M ∈ E⊆K(K) be arbitrary. Then P(L̃) = P(K) for almost
every L̃ ⊆ L · M , again using Lemma 3.19, (ii). In particular, every
neighbourhood U of M contains an element L̃ with the desired property.

(ii) Suppose that L ⊆ K is a Zip-extension of K; let L1, . . . , Li denote Zp-
extensions of K such that L = L1 · . . . · Li. We may assume that

Lk ∩
∏
j 6=k

Lj = K

for every k ∈ {1, . . . , i}.
Let n ∈ N0 be given. We will construct an element L̃ ∈ E(L, n) such that
P(L̃) = P(K).
If P(L) $ P(K), then P(Lj) $ P(K) for every j. By (i), there exists a
Zp-extension L̃1 ⊆ K of K contained in E(L1, n) such that P(L̃1) = P(K).
We let L̃ := L̃1 · L2 · . . . · Li. Then L̃ ⊆ K is a Zip-extension of K (note

that L̃1 ∩
∏
j 6=1

Lj = K, since the n-th intermediate field (L̃1)n of L̃1/K

is contained in L1), and P(L̃) = P(K). Moreover, L̃ ∈ E(L, n), because
(L̃1)n = (L1)n and therefore

L̃n = (L̃1)n · (L2)n · . . . · (Li)n = (L1)n · . . . · (Li)n = Ln .

In Chapter 3, we observed that the use of Fukuda’s Theorem and its gene-
ralisations make it necessary to take care of the ramification of primes in the
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corresponding Zp-extensions. We therefore introduced a new topology on E(K),
which we called the Greenberg-R-topology, and which we want to define on
arbitrary Ed(K) now.

Definition 5.8. Let K/K denote a Zdp-extension, d ∈ N. For every n ∈ N0,
we define

U(K, n) := {L ∈ E(K, n) | P(L) ⊆ P(K)} .

Remark 5.9. The U(K, n), together with ∅, generate a topology on Ed(K).

Proof. The intersection of two sets U(K, n1) and U(K̃, n2) is a finite union of
sets of this type, or empty (compare the proof of Lemma 3.25, (i)):

Without loss of generality, we may assume that n1 ≥ n2. Then

U(K, n1) ∩ U(K̃, n2) = {L ∈ E(K, n1) | P(L) ⊆ P(K) ∩ P(K̃)} .

This set might be empty. Otherwise, we choose sets I1, . . . , Ir ⊆ P(K) ∩ P(K̃)
such that
• for every i = 1, . . . , r, there exists an element Li ∈ E(K, n1) such that

P(Li) = Ii, and
• for every M ∈ E(K, n1) with P(M) ⊆ P(K) ∩ P(K̃), we have P(M) ⊆ Ii

for some i ∈ {1, . . . , r}.
Then

U(K, n1) ∩ U(K̃, n2) =
r⋃
i=1

U(Li, n1) .

We will see in Section 5.5 that, in contrast to the one-dimensional case,
a full use of Fukuda theory for Zdp-extensions requires a finer control on the
ramification than is provided by the Greenberg-R-topology. In fact, it will
not be enough to simply control which primes of K do ramify at all. We will
moreover have to fix the rank of the maximal ‘torsion’ unramified subextension
of our Zdp-extension (compare Definition 5.38 for details).

The Greenberg-R-topology, however, is fine enough in order to allow the
application of the one-dimensional Fukuda method developed in Chapter 3 to
suitable Zp-extensions of K that are contained in our Zdp-extensions. This will
be exploited in the next two sections, yielding the first results concerning the
local behaviour of generalised Iwasawa invariants.

5.2 m0 is locally maximal

We will now start to study the local behaviour of generalised Iwasawa invariants
with respect to the topologies introduced above. Before formulating the first
result, we prove a technical lemma.

Lemma 5.10. Let d ∈ N, d ≥ 2. Let K/K denote a Zdp-extension, and let

m0 := m0(K/K) ∈ N0. Then there exist only finitely many Zd−1
p -extensions

M ⊆ K of K such that
m0(M/K) > m0 .
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If d = 2, then there exist only finitely many Zp-extensions M ⊆ K of K such
that µ(M/K) 6= m0(K/K).

Proof. We first note that there exist only finitely many Zd−1
p -extensions M ⊆ K

of K such that P(M) $ P(K). Indeed, each such M has to be contained in
the inertia subfield of a prime of K ramifying in K whose inertia group is a
subgroup of Gal(K/K) of Zp-rank 1.

Therefore, we will from now on assume that P(M) = P(K).

Let f ∈ Λd denote the characteristic power series of K/K, and let us write
f = pm0 · g, with p - g. Consider the Fitting ideal (0) 6= F(X) = (pm0g) · J
of X := Gal(H(K)/K), where H(K) denotes the maximal unramified p-abelian
extension of K. Suppose that 0 6= h ∈ J is not divisible by p (such an element
exists because J is not contained in the prime ideal (p) ⊆ Λd of height one).

By Lemma 4.20, the subset C ⊂ εd−2
d−1 of homomorphisms π such that either

π(g) ≡ 0 mod p or π(h) ≡ 0 mod p is finite. For every π ∈ εd−2
d−1\C, the module

Xπ = X/(ker(π) ·X) is a finitely generated torsion Λd−1-module (annihilated,
for example, by pm0 · π(g · h) 6= 0), and

pm0 · π(g · h) ∈ F(Xπ)

(compare Lemma 4.35). Therefore

m0(Xπ) = m0 .

If d = 2, then Lemma 4.3, (ii) implies that µ(M/K) = m0(Xπ) for the
Zp-extension M/K that corresponds to π, provided that P(M) = P(K).

In order to handle the case d > 2, we generalise Lemma 4.3, (ii) and show
that m0(M/K) ≤ m0(Xπ) if M corresponds to some π ∈ εd−2

d−1 \ C.

Proposition 5.11. Let j, r ∈ N, 2 ≤ j ≤ r − 1. Let K/K denote a Zrp-

extension, and let M ∈ Ej,⊆K(K) denote a Zjp-extension of K contained in K.
Let X := Gal(H(K)/K), and suppose that π ∈ εj−1

r−1 corresponds to the restric-
tion map Gal(K/K) � Gal(M/K). We assume that Xπ := X/(ker(π) ·X) is
a torsion Λj-module. Then

m0(M/K) ≤ m0(Xπ) and l0(M/K) ≤ l0(Xπ) .

If only finitely many primes of M ramify in K, then we have equalities.

Proof. We adapt the proof of Lemma 4.3, (ii). If H(M) denotes the maximal
unramified p-abelian extension of M , then m0(M/K) = m0(Gal(H(M)/M)),
by definition. The inclusion H(M)·K ⊆ H(K) implies that we have a surjective
homomorphism

X = Gal(H(K)/K) // // Gal((H(M) ·K)/K) .

Note that kerπ = {σ − 1 | σ ∈ Gal(K/M)}. Since

(σ − 1) · τ = σ̃ ◦ τ ◦ σ̃−1 ◦ τ−1 = τ ◦ τ−1 = 1
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for every τ ∈ Gal((H(M) · K)/K) and every σ ∈ Gal(K/M), it follows that
ker(π) ·Gal((H(M) ·K)/K) = {1} (here σ̃ ∈ Gal((H(M) ·K)/M) denotes any
lift of σ, respectively). We therefore obtain a surjective Zp[[Gal(M/K)]] ∼= Λj-
module homomorphism

Xπ = X/(ker(π) ·X) // // Gal((H(M) ·K)/K) ∼= Gal(H(M)/(H(M) ∩K)) .

In particular,

m0(Gal(H(M)/(H(M) ∩K))) ≤ m0(Xπ)

and

l0(Gal(H(M)/(H(M) ∩K))) ≤ l0(Xπ) .

We will show that the Λj-module Gal(H(M)/(H(M) ∩ K)) is pseudo-iso-
morphic to Gal(H(M)/M) and therefore

m0(Gal(H(M)/(H(M) ∩K))) = m0(M/K)

and

l0(Gal(H(M)/(H(M) ∩K))) = l0(M/K) .

The reason for this is the fact that

Gal(H(M)/M) /Gal(H(M)/(H(M) ∩K)) ∼= Gal((H(M) ∩K)/M)

is a finitely generated Zp-module and therefore is pseudo-null as a Λj-module.
Indeed, we may assume that Z := Gal((H(M) ∩ K)/M) is in fact Zp-free,
because the torsion subgroup of Z is finite. We write Λj = Zp[[T1, . . . , Tj ]].
Recall that j ≥ 2, by assumption. There exist distinguished polynomials in
Zp[T1] as well as in Zp[T2] that annihilate the finitely generated Zp-module Z,
using the Weierstraß Preparation Theorem 1.14 and the assumption that Z is
torsion-free. In particular, these two polynomials are coprime when regarded
as elements of Λj , and therefore Z is Λj-pseudo-null.

Now suppose that only finitely many primes of M ramify in K. Then the
proof of the first inequality of Lemma 4.3, (ii) shows that

m0(Xπ) ≤ m0(M/K) and l0(Xπ) ≤ l0(M/K) .

Indeed, if the Zp-extension L of K in Greenberg’s original approach is replaced

by the Zjp-extension M/K, then the proof goes through without changes. In
particular, the two groups D and T remain finitely generated over Zp. By the
above, D and T therefore are pseudo-null as Λj-modules.

This also concludes the proof of Lemma 5.10.

We are now ready to state the main result of this section.

Theorem 5.12. Let K/K denote a Zdp-extension. Then m0 := m0(K/K) is
locally maximal with respect to the Greenberg-R-topology, i.e., there exists an
integer n ∈ N0 such that m0(L/K) ≤ m0(K/K) for every L ∈ U(K, n).
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Proof. If d = 1, then the statement has been proved in Lemma 3.56 (recall that
in this case, m0(K/K) = µ(K/K), by Theorem 5.3).

Let us now assume that d = 2. Then there exist only finitely many Zp-
extensions M ⊆ K of K with µ(M/K) 6= m0(K/K), by Lemma 5.10. In view of
Lemma 5.7, (i), we may choose M ∈ E⊆K(K) such that µ(M/K) = m0(K/K)
and P(M) = P(K). Let n ∈ N be large enough to ensure that in the one-
dimensional neighbourhood U(M,n) of M ∈ E(K), µ(M/K) is locally maximal.
We may assume that every prime ramifying in the Zp-extension M/K has
already started ramifying in the n-th intermediate field Mn.

Now consider the neighbourhood U := U(K, n) of K ∈ Ed(K). Let K̃ ∈ U .
Then Mn ⊆ Kn = K̃n ⊆ K̃, where K̃n denotes the subfield of K̃ that is fixed
by Gal(K̃/K)p

n
. Since Gal(K̃/K) ∼= Zdp is torsion-free, we may choose a Zp-

extension M̃ ⊆ K̃ of K containing Mn. In view of Lemma 5.7, (i), we may
assume that P(M̃) = P(K̃). Then M̃ ∈ U(M,n) ⊆ E(K), because

P(M̃) = P(K̃) ⊆ P(K) = P(M) .

Therefore µ(M̃/K) ≤ µ(M/K).
We let X̃ := Gal(H(K̃)/K̃). Let f̃ ∈ Λ2 denote the characteristic power

series of K̃/K, and let π̃ ∈ ε0
1 denote the homomorphism corresponding to

M̃ ⊆ K̃ via Lemma 2.7. Then

µ(M̃/K) = µ(X̃π̃) <∞ ,

by Lemma 4.3, (ii), and µ(X̃π̃) ≥ m0(π̃(f̃)), by Proposition 4.34, (i). But then

m0(K̃/K) = m0(f̃) ≤ µ(M̃/K) ≤ µ(M/K) = m0(K/K) .

Assume now that 3 ≤ d is arbitrary. First note that all but finitely many
Zd−1
p -extensions K(d−1) ⊆ K of K satisfy P(K(d−1)) = P(K) (compare the

proof of Lemma 5.10). Moreover, Lemma 5.10 implies that we may choose
K(d−1) such that m0(K(d−1)/K) ≤ m0(K/K).

Inductively, we obtain a Zp-extension M ⊆ K of K such that

µ(M/K) ≤ m0(K/K) and P(M) = P(K) .

Let n ∈ N be large enough to ensure that in the one-dimensional neighbourhood
U(M,n) of M ∈ E(K), µ(M/K) is locally maximal, and such that every prime
ramifying in M/K has already started ramifying in the n-th intermediate field
Mn of M/K.

Let U := U(K, n) ⊆ Ed(K). Suppose that K̃ ∈ U . As in the proof of d = 2,
we can choose a Zp-extension

M̃ ∈ U(M,n) ∩ E⊆K̃(K)

such that P(M̃) = P(K̃). Again, Lemma 4.3, (ii) implies that

m0(K̃/K) ≤ µ(M̃/K) ≤ µ(M/K) ≤ m0(K/K) .
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We may draw some conclusions from this theorem.

Corollary 5.13. Suppose that K/K denotes a Zdp-extension such that every
prime of K dividing p ramifies in K/K (this is the case, for example, if K
contains the cyclotomic Zp-extension of K). Then m0 := m0(K/K) is locally
maximal with respect to Greenberg’s topology, i.e., there exists some n ∈ N0

such that m0(L/K) ≤ m0 for every L ∈ E(K, n).

Proof. If every prime of K dividing p ramifies in K/K, then there exists an
integer e ∈ N such that every such prime is ramified in the e-th intermediate
fieldKe, sinceK =

⋃
n≥0 Kn. Therefore E(K, n) = U(K, n) for every n ≥ e.

Corollary 5.14. Suppose that K/K denotes a Zdp-extension. If m0(K/K) = 0,
then there exists some integer n ∈ N0 such that m0(L/K) = 0 for every
L ∈ U(K, n).

Proof. This is obvious from Theorem 5.12.

5.3 l0 is locally bounded

We will now turn to the consideration of l0 invariants. We will see below that
these are more difficult to handle, so that several arguments used in the proof of
Theorem 5.12 will have to be made more precise. The statement that we obtain
by a more or less direct adaption of the above proof will therefore be weaker,
namely, we will only prove local boundedness instead of local maximality.

Theorem 5.15. Let K/K denote a Zdp-extension, let m0 := m0(K/K) ∈ N0.

In the following, we restrict to Zdp-extensions L/K satisfying m0(L/K) = m0.
Then l0 is locally bounded with respect to the Greenberg-R-topology, i.e.,
there exist an integer n ∈ N0 and a fixed constant C <∞ such that l0(L/K) ≤ C
for every L ∈ U(K, n) satisfying m0(L/K) = m0.

Proof. As in the proof of Theorem 5.12, there exists a Zp-extension M ⊆ K
of K such that µ(M/K) ≤ m0(K/K) and P(M) = P(K). By Theorem 3.57,
there exists an integer n ∈ N such that for every element M̃ contained in the
neighbourhood U(M,n) of the Zp-extension M ∈ E(K), we have

µ(M̃/K) ≤ µ(M/K) ,

and
λ(M̃/K) ≤ λ(M/K)

if µ(M̃/K) = µ(M/K).
We assume that n is large enough to make the statement of Theorem 5.12

hold for U(K, n) ⊆ Ed(K). Let U := U(K, n), and suppose that K̃ ∈ U . Using
Lemma 5.7, (i), we may choose some

M̃ ∈ E⊆K̃(K) ∩ E(M,n)

such that P(M̃) = P(K̃) ⊆ P(K). Then M̃ ∈ U(M,n). Moreover, Lemma
4.3, (ii) implies that for the homomorphism π̃ ∈ ε0

d−1 corresponding to M̃ ⊆ K̃,
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the quotient X̃π̃ = X̃/(ker(π̃) · X̃) of X̃ = Gal(H(K̃)/K̃) is a finitely generated
torsion Λ-module, and µ(X̃π̃) = µ(M̃/K).

We have a chain of inequalitites

m0(K̃/K) ≤ µ(M̃/K) ≤ µ(M/K) ≤ m0 ,

as in the proof of Theorem 5.12.
We will now assume that m0(K̃/K) = m0. Then the above actually is a

chain of equalities. In particular, we have µ(M̃/K) = µ(M/K) and therefore
λ(M̃/K) ≤ λ(M/K).

Moreover, if f̃ ∈ Λd denotes the characteristic polynomial of K̃/K, then

m0(f̃) = m0(K̃/K)

= µ(M̃/K)

= µ(X̃π̃)

≥ m0(π̃(f̃)) ,

using Proposition 4.34, (i). Therefore

m0(f̃) = m0(π̃(f̃)) .

We will now apply the following fact:

Lemma 5.16. Let d ∈ N, let 0 6= f ∈ Λd ∼= Zp[[Γ
d]], with Γd ∼= Zdp. Suppose

that π ∈ ε0
d−1 satisfies m0(π(f)) = m0(f). Then

l0(π(f)) ≥ l0(f) .

Proof. Write f = pm0(f) · g, p - g. Suppose that in Λd = Λd/pΛd, we have

g = (γ1 − 1) · . . . · (γl0 − 1) · h ,

with l0 := l0(f), γ1, . . . , γl0 ∈ Γd \ (Γd)p, and l0(h) = 0 (note that the γj will
not necessarily be pairwise independent). Then π(h) 6= 0 and π(γj − 1) 6= 0 for
every j, because m0(π(f)) = m0(f) by assumption.

Fix j ∈ {1, . . . , l0}. If δ denotes a topological generator of Γ := π(Γd) ∼= Zp,
then

π(γj − 1) = ((δ − 1) + 1)xj − 1

for some xj ∈ Zp. Moreover, xj 6= 0, because π(γj − 1) 6= 0. But

0 6= π(γj − 1) ≡ 0 mod (δ − 1) ,

i.e., l0(π(γj − 1)) ≥ 1. This shows that l0(π(f)) ≥ l0(f).

Using this lemma, we may conclude that

l0(K̃/K) = l0(f̃) ≤ l0(π̃(f̃)) ≤ λ(X̃π̃) ,

where the last inequality follows from Proposition 4.34, (ii). Moreover, there
exist constants C1, C2 ∈ N such that

λ(X̃π̃) ≤ λ(M̃/K) + C1 and λ(M̃/K) ≤ λ(X̃π̃) + C2
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for every M̃ ∈ E⊆K̃(K) ∩ E(M,n), provided that n ≥ e(M/K) + 1 (compare
Lemma 4.3, (ii)). Note that analogous inequalities (containing the same con-
stants) are also valid for the invariants of the Λ-torsion module Xπ attached to
our fixed M ∈ E⊆K(K). Therefore

l0(K̃/K) ≤ λ(M̃/K) + C1

≤ λ(M/K) + C1

≤ λ(Xπ) + C1 + C2

= l0(f) + C1 + C2 + (λ(Xπ)− l0(f)) =: l0(K/K) + C

for every K̃ ∈ U , where f denotes the characteristic power series of K/K, and
where C := C1 +C2 +λ(Xπ)− l0(f) <∞; note that λ(Xπ)− l0(f) only depends
on the fixed Zp-extension M ⊆ K of K.

5.4 Generalised Fukuda theory

In Chapter 3, we studied the classical Iwasawa invariants of Zp-extensions,
and we proved that the λ-invariants actually are not only locally bounded, but
in fact locally maximal. In order to obtain results which are stronger than
Theorem 5.15, we will now start to work out a generalisation of the method
that we have used in Chapter 3. The first step will be to prove a generalisation
of Fukuda’s Theorem in the higher-dimensional setting. We therefore look for a
Fukuda module containing the necessary information about the class numbers
of the intermediate fields in a given Zdp-extension. In particular, we will have
to find a suitable index barrier attached to this module. In fact, we will see
that a slight generalisation of the notion of Fukuda modules used in Chapter 3
(compare Definitions 3.3 and 5.24) will be appropriate for obtaining a variant of
Fukuda’s Theorem. This will take into account the fact that we are not longer
dealing with Λ-modules, but with modules over Λd for some d ∈ N.

Suppose that K/K denotes a Zdp-extension, d ∈ N, and let Γ := Gal(K/K).

Then K is the union of the finite field extensions Kn := KΓp
n

of K, n ≥ 0,
and each Kn is galois over K with Gal(Kn/K) ∼= (Z/pnZ)d. For each n, we

let An = A
(K)
n denote the p-Sylow subgroup of the ideal class group of Kn,

respectively, and we define A := lim←−An, where the projective limit is taken
with respect to the norm maps.

From now on, we will make the following assumption:

Assumption 5.17. There exists a prime p of K that is totally ramified in
K/K.

Of course the prime p has to divide p. Assumption 5.17 implies that the
norm maps Nm,n : Am −→ An are surjective for every m ≥ n ≥ 0 (compare
[Wa 97], Theorem 10.1).

Let H(K) denote the maximal p-abelian unramified extension of K. Then
X := Gal(H(K)/K) is isomorphic to A, via Artin’s isomorphism from class
field theory (this can be proved as in the case d = 1 – compare Section 1.3). X
is called the Greenberg module attached to the Zdp-extension K/K.
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Note that because of its maximality property, H(K) is in fact a Galois
extension of K. We let G := Gal(H(K)/K). Suppose that p1, . . . , ps denote the
primes of K ramifying in H(K)/K. Then {p1, . . . , ps} = P(K). Assume that
p1 is totally ramified in K/K. For each j ∈ {1, . . . , s}, we choose a prime Pj

of H(K) dividing pj , respectively, and we denote by Ij = IPj/pj (H(K)/K) ⊆ G
the inertia group of Pj over pj in the extension H(K)/K.

Since H(K)/K is unramified, we have Ij ∩X = {1} for every j. Moreover,
since p1 is totally ramified in K/K, the induced injection I1 ↪→ G/X ∼= Γ
is surjective, so that G is isomorphic to the semi-direct product X o I1. In
particular, identifying G with X o I1, we may conclude that

Ij ⊆ X o I1

for every j ∈ {2, . . . , s}.
Since each Ij bijectively maps to a submodule of the (multiplicative) free

Zp-module

G/X ∼= Γ ,

we see that every Ij is a finitely generated free Zp-module of rank smaller or
equal to d. We denote this rank by rj , and we choose topological generators
σj,1, . . . , σj,rj of Ij , respectively.

Definition 5.18. There exist elements a2,1, . . . , a2,r2 , . . . , as,1, . . . , as,rs ∈ X
such that

σj,k = aj,k · σ
(1)
j,k

for suitable elements σ
(1)
j,k ∈ I1, 2 ≤ j ≤ s, 1 ≤ k ≤ rj , respectively.

Let us fix a set of topological generators γ1, . . . , γd of Γ. Analogously to the
classical one-dimensional case which has been described in Section 1.3, Γ acts
on X by conjugation: For x ∈ X, γ ∈ Γ = Gal(K/K), we let

γ · x := γ̃ ◦ x ◦ γ̃−1 ,

where γ̃ denotes any lift of γ to G = Gal(H(K)/K). This is well-defined (i.e.,
independent of the choice of γ̃) because Gal(H(K)/K) is abelian. Moreover,
we may identify I1 and Γ, using the bijection mentioned above, in order to ‘fix’
the lifts.

Letting Tj := γj − 1, 1 ≤ j ≤ d, we obtain an action of the module

Λd = Zp[[T1, . . . , Td]] ∼= Zp[[Γ]]

on X.

Lemma 5.19. Let G′ denote the closure of the commutator subgroup of G.
Then G′ = (T1, . . . , Td) ·X, where (T1, . . . , Td) is considered as an ideal of Λd.

Proof. This can be proved analogously to the case of d = 1, see Lemma 13.14
in [Wa 97]. In order to clarify the notation, we will for the moment write the
action of Γ on X multiplicatively. In what follows, we will identify I1 with Γ.
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Let a, b ∈ G. Since the map

X × I1
// X × I1 , (x, γ) � // (xγ , γ) ,

is a bijection, we have an equality of sets G = X · I1 = I1 ·X. We thus write
a = αx, b = βy, with α, β ∈ Γ = I1 and x, y ∈ X. It is shown in the proof of
Lemma 13.14 in [Wa 97] that

aba−1b−1 = (xα)1−β · (yβ)α−1 .

Indeed, we have

aba−1b−1 = αxβyx−1α−1y−1β−1

= xααβyx−1α−1y−1β−1

= xα(yx−1)αβ αβα−1︸ ︷︷ ︸
=β

y−1β−1

= xα(yx−1)αβ(y−1)β

= xα(x−1y)αβ(y−1)β

= xα−αβ · yαβ−β ,

using the commutativity of X and Γ, respectively.

In particular, letting β = 1 and α ∈ {γ1, . . . , γd}, we see that yγi−1 ∈ G′ for
every y ∈ X and each i ∈ {1, . . . , d}, so that (T1, . . . , Td) ·X ⊆ G′.

On the other hand, an arbitrary element β ∈ Γ may be written in the form
β = γc11 · . . . · γ

cd
d , with c1, . . . , cd ∈ Zp. Then

1− β = 1− (T1 + 1)c1 · . . . · (Td + 1)cd

= 1−

( ∞∑
n=0

(
c1

n

)
· Tn1

)
· . . . ·

( ∞∑
n=0

(
cd
n

)
· Tnd

)
∈ (T1, . . . , Td) · Λd ,

and therefore (xα)1−β ∈ (T1, . . . , Td) · X for every x ∈ X and α, β ∈ Γ. Ana-
logously, (yβ)1−α ∈ (T1, . . . , Td) · X for every y ∈ X and α, β ∈ Γ. Therefore
G′ ⊆ (T1, . . . , Td) · X, because (T1, . . . , Td) · X is closed as being the image of
the compact set Xd under the continuous map

φ : Xd −→ X , (x1, . . . , xd) 7→ T1 · x1 + . . .+ Td · xd .

Now we return to the study of A = lim←−An. In order to define a suitable
index barrier for a Fukuda module structure on A, we will use the following
invariant introduced by A. Cuoco and P. Monsky in [CM 81]:

Definition 5.20. For every j ∈ {1, . . . , s}, we denote by Ij the image of Ij in
G/X ∼= Γ. Then we let e(K/K) ∈ N0 denote the smallest integer k such that
pk annihilates the torsion subgroup of every quotient Γ/Ij , 1 ≤ j ≤ s.
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In particular, if d = 1, then e(K/K) coincides with the integer defined in
Proposition 1.3.

We will show below that e(K/K) may indeed serve as a kind of index barrier
for A. The first step in this direction is the next lemma. For each n ∈ N0, we

let G(n) := Gal(H(K)/Kn) ⊆ G, and we define I
(n)
j := Ij ∩G(n), respectively.

Lemma 5.21. I
(n+1)
j = (I

(n)
j )p for every n ≥ e(K/K) and each j ∈ {1, . . . , s}.

Proof. This is Lemma 5.1 in [CM 81].

Definition 5.22.

(1) We first assume that e(K/K) = 0. We define Y0 to be the submodule of
X generated by (T1, . . . , Td) · X and by the Zp-span of the elements aj,k,
2 ≤ j ≤ s, 1 ≤ k ≤ rj , introduced in Definition 5.18.

(2) More generally, let n ∈ N. Let ν(n,0)(T ) ∈ Zp[T ] denote the distinguished
polynomial

ν(n,0)(T ) =
(T + 1)p

n − 1

(T + 1)p0 − 1
= (T + 1)p

n−1 + . . .+ (T + 1)1 + 1 .

Then we define Yn ⊆ X to be the submodule generated by

(ν(n,0)(T1) · T1, . . . , ν(n,0)(Td) · Td) ·X

and by the Zp-span of the elements ν(n,0)(Tj,k) · aj,k, where

Tj,k = σ
(1)
j,k − 1 ∈ Λd ∼= Zp[[Γ]] , 2 ≤ j ≤ s , 1 ≤ k ≤ rj ,

respectively. Here we use the notation introduced in Definition 5.18, and
we recall that Γ has been identified with I1.

(3) Finally, suppose that e = e(K/K) ∈ N0 is arbitrary. Then K/Ke is a
Zdp-extension satisfying e(K/Ke) = 0, and we let Ye denote the module ‘Y0

attached to K/Ke’, as defined in (1). Note that X = Gal(H(K)/K) re-
mains the same if we replace K by Ke. Moreover, Gal(K/Ke) is generated
topologically by γp

e

1 , . . . , γ
pe

d . Therefore Ye ⊆ X is the submodule generated
by (ν(e,0)(T1) · T1, . . . , ν(e,0)(Td) · Td) · X and by the Zp-span of the corre-
sponding elements aj,k attached to the inertia subgroups in Gal(K/Ke).
For n ≥ e, we define Yn ⊆ X to be the submodule generated by

(ν(n,e)(T1) · ν(e,0)(T1) · T1, . . . , ν(n,e)(Td) · ν(e,0)(Td) · Td) ·X

and by the Zp-span of the elements ν(n,e)(Tj,k)·aj,k, where ν(n,e)(T ) ∈ Zp[T ]
denotes the distinguished polynomial

ν(n,e)(T ) =
(T + 1)p

n − 1

(T + 1)pe − 1
= (T + 1)p

n−pe + . . .+ (T + 1)p
e

+ 1 ,

respectively.
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Let n ∈ N0. Then An ∼= Gal(Hn/Kn) by Artin’s isomorphism, where
Hn := H(Kn) denotes the maximal unramified p-abelian extension of Kn. Since
p1 is totally ramified in K/K, we have K ∩Hn = Kn, and thus

Gal(Hn/Kn) ∼= Gal((K ·Hn)/K) =: Xn .

Letting Hn := K ·Hn, we conclude that

X = lim←−Gal(Hn/K) ,

using the fact that H(K) =
∞⋃
n=0

Hn =
∞⋃
n=0

Hn, which may be proved analogously

to Proposition 1.33. Let ϕ : A
∼−→ X denote the isomorphism induced by

Artin’s maps ϕn : An
∼−→ Xn, n ∈ N0.

Lemma 5.23. For each integer n ∈ N0, we define Y X
n to be the kernel of the

projection prn : X = lim←−Xn −→ Xn (this map is induced by the restriction

from H(K) to Hn). Then Y X
n = Yn for every n ≥ 0.

Proof. Let us first assume that e(K/K) = 0. We will adapt the proof of Lemma
1.37, which is divided into three steps.
1. Let n ∈ N0 be arbitrary, but fixed. Then Y X

n is the set of y ∈ X satisfying
y|Hn = 1.

Proof. X = lim←−Gal(Hn/K). Therefore y ∈ Y X
n if and only if y|Hn = 1.

2. We have Y0 = Y X
0 .

Proof. Since H0 by definition is the maximal abelian unramified p-extension
of K0 = K, and since H(K)/K is a pro-p-extension, it follows that H0 is the
maximal abelian unramified subextension of H(K)/K. Therefore

Gal(H(K)/H0) ⊆ Gal(H(K)/K) = G

is the closed subgroup generated by the commutator subgroup of G together
with all the inertia subgroups Ij , 1 ≤ j ≤ s.
This means that Gal(H(K)/H0) is the closure of the subgroup of G generated
by G′, I1 and the elements aj,k, 2 ≤ j ≤ s, 1 ≤ k ≤ rj , respectively.
Therefore

Gal(H0/K) ∼= Gal(H(K)/K)/Gal(H(K)/H0) = G/Gal(H(K)/H0)

= X · I1 /<G′, I1, {aj,k}>
∼= X/<(T1, . . . , Td) ·X, {aj,k}>Zp ,

since Lemma 5.19 implies thatG′ = (T1, . . . , Td)·X. ButX = Gal(H(K)/K),
so that

X/Gal(H(K)/H0) ∼= Gal(H0/K) ∼= Gal(H0/K) ,

and therefore the subset of elements of X fixing H0 is exactly

Y0 = <(T1, . . . , Td) ·X, {aj,k}>Zp .

By the first part of the proof, it follows that Y0 = Y X
0 , as claimed.
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3. Now consider an arbitrary n ∈ N0. Then Yn = Y X
n .

Proof. This can be proved analogously to the second step. Simply replace
the ground field K by Kn. Then Hn and Hn correspond to the fields H0

and H0 in step 2, and the topological generators σj,k, 2 ≤ j ≤ s, 1 ≤ k ≤ rj ,
are replaced by their pn-th powers, respectively (note that Gal(K/K) / Ij is
torsion-free for every j, since e(K/K) = 0). Now

σp
n

j,k = (aj,k · σ
(1)
j,k )p

n

= aj,k · σ
(1)
j,k · aj,k · (σ

(1)
j,k )−1(σ

(1)
j,k )2 · . . . · aj,k · (σ

(1)
j,k )−(pn−1)(σ

(1)
j,k )p

n

= (1 + σ
(1)
j,k + . . .+ (σ

(1)
j,k )p

n−1) · aj,k · (σ
(1)
j,k )p

n

= ν(n,0)(Tj,k) · aj,k · (σ
(1)
j,k )p

n
,

compare p. 280 in [Wa 97]. Therefore each aj,k ∈ X has to be replaced by
ν(n,0)(Tj,k) · aj,k, respectively. Moreover, (T1, . . . , Td) ·X has to be replaced
by (ν(n,0)(T1) · T1, . . . , ν(n,0)(Td) · Td) ·X, because

γp
n

j − 1 = ν(n,0)(Tj) · (γj − 1)

for every j = 1, . . . , d, respectively.
By the argument used in step 2, and in view of Definition 5.22, Yn ⊆ X is
the subgroup fixing Hn, and so Yn = Y X

n by step 1.

If e(K/K) ∈ N0 is arbitrary, then K/Ke is a Zdp-extension with e(K/Ke) = 0.
By definition, Ye is ‘Y0 for K/Ke’ and Xn corresponds to ‘Xn−e for K/Ke’,
n ≥ e. Therefore Y X

e corresponds to ‘Y X
0 for K/Ke’, so that Y X

e = Ye, by step
2.

The proof of Y X
n = Yn for arbitrary n ≥ e is now analogous to step 3 above,

replacing the distinguished polynomial ν(n,0) by ν(n,e) (compare Definition 5.22).

This lemma shows that we will have to modify the notion of Fukuda modules
introduced in the third chapter. The following definition introduces a concept
of Fukuda modules that will be sufficient for our purposes.

Definition 5.24. Let R denote a local domain with maximal ideal m. Suppose
that R is Hausdorff and complete with respect to the m-adic topology, and that
the residue field R/m is finite.
Let B = lim←−Bn denote the projective limit of finite R-modules Bn, n ∈ N0,
each of which we assume to be an abelian p-group.
Furthermore, we assume that B = lim←−Bn satisfies the following two properties:
Suppose that there exists an integer e ≥ 0 such that:

(1) For every n ≥ e, the n-th projection prn : B −→ Bn is surjective.
(2) If Yn := ker(prn), n ∈ N0, then Yn+1 ⊆ m · Yn for every n ≥ e.
Then B is called a Fukuda-R-module (or simply Fukuda module) with
index barrier e.
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Proposition 5.25. Every Fukuda-R-module B is finitely generated over R.

Proof. Since B/Ye ∼= Be is finite, B is finitely generated over R if and only
if Ye is finitely generated. Our assumptions on R imply that R is a compact
topological ring (compare the proof of Lemma 2.15, (ii)). Using Nakayama’s
Lemma 1.42, (ii), it will be sufficient to prove that Ye/(m ·Ye) is finite, because
B = lim←−Bn and therefore also Ye = ker(pre) ⊆ B are compact R-modules. But

|Ye/(m · Ye)| ≤ |Ye/Ye+1| ≤ |B/Ye+1| = |Be+1| .

Corollary 5.26. Let K/K denote a Zdp-extension, and let e := e(K/K), as in
Definition 5.20. Then the Greenberg-module X = Gal(H(K)/K) is a Fukuda-
Λd-module with index barrier e.

Proof. First note that Λd satisfies the properties of the ring R in Definition
5.24, by Proposition 2.17.

Recall that X = lim←−Xn with Xn = Gal((K · Hn)/K). Since p1 is totally
ramified in K/K by Assumption 5.17, Xn

∼= Gal(Hn/Kn) ∼= An for every
n, using Artin’s isomorphism. Therefore each Xn is a finite abelian p-group.
Moreover, Hn ⊆ H(K) for every n, by Proposition 1.34, and therefore the
restriction maps

X = Gal(H(K)/K) // // Gal((Hn ·K)/K) ∼= Xn

are surjective for each n ≥ e.
Let Y X

n denote the kernel of the projection map prn : X −→ Xn, respec-
tively. Then we have shown in Lemma 5.23 that Y X

n = Yn for every n ≥ e, with
the modules Yn ⊆ X that have been introduced in Definition 5.22. But this
means that Y X

n+1 ⊆ I ·Y X
n for every such n, where the ideal I ⊆ Λd is generated

by a finite set of elements ν(n+1,n)(Tj,k) =
ν(n+1,e)(Tj,k)

ν(n,e)(Tj,k) , with certain Tj,k ∈ Λd

satisfying Tj,k ∈ (T1, . . . , Td). In particular, I ⊆ (p, T1, . . . , Td) = m.

Lemma 5.27 (Isomorphisms of Fukuda-modules). Let A = lim←−An be a Fukuda-
R-module, let ϕ : A −→ B be an R-module isomorphism, B = lim←−Bn. Assume
that ϕ is induced by R-module isomorphisms ϕn : An −→ Bn such that the
diagrams

A
ϕ
//

prn
��

B

prn
��

An
ϕn
// Bn

(?)

are commutative for all n ≥ e, where e := e(A) denotes the index barrier of A.
Then B = ϕ(A) is a Fukuda-R-module with index barrier e.

Proof. This may be proved analogously to Lemma 3.8: The commutativity of
the diagrams (?) implies that Y B

n = ϕ(Y A
n ) for every n ≥ e, and therefore

Y B
n+1 = ϕ(Y A

n+1) ⊆ ϕ(m · Y A
n ) = m · Y B

n

for every n ≥ e.
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Corollary 5.28. Let K/K denote a Zdp-extension, e := e(K/K). Recall that
we assume that there exists a prime p1 of K that is totally ramified in K/K.
Then A = lim←−An is a Fukuda-Λd-module with index barrier e.

Proof. Use Artin’s isomorphisms ϕ : Xn
∼−→ An from class field theory, and

apply Corollary 5.26 and Lemma 5.27 (compare the proof of Corollary 3.9).

Lemma 5.29 (Quotients of Fukuda modules). Let A = lim←−An denote a Fukuda-
R-module with index barrier e. Let M ⊆ A be a submodule, i.e., M = lim←−Mn

with R-submodules Mn ⊆ An, n ≥ 0. We assume that the projection maps
prn : M −→Mn are surjective for every n ≥ e.

Then A/M := lim←−An/Mn is a Fukuda-R-module with index barrier e.

Proof. This can be proved analogously to Lemma 3.10 by showing that the

canonical projection π : A −→ A/M maps Y A
n onto Y

A/M
n for every n ≥ e.

We will now prove a generalisation of Fukuda’s Theorem that will be fun-
damental for our method.

Theorem 5.30. Let A = lim←−An denote a Fukuda-R-module with index barrier
e.

(i) If there exists an integer n ≥ e such that |An+1| = |An|, then
|Am| = |An| for every m ≥ n, and therefore |An| = |A|.

(ii) Let j ∈ N, let f1, . . . , fj ∈ R. If there exists an integer n ≥ e such that

|An+1/((f1, . . . , fj) ·An+1)| = |An/((f1, . . . , fj) ·An)| ,

then |Am/((f1, . . . , fj) · Am)| = |An/((f1, . . . , fj) · An)| for every m ≥ n,
and in fact |An/((f1, . . . , fj) ·An)| = |A/((f1, . . . , fj) ·A)|.

Proof. (i) Since n ≥ e, the projections prn : A −→ An, prn+1 : A −→ An+1

and the map fn+1,n : An+1 −→ An are surjective (the latter is part of the
projective system corresponding to the inverse limit A = lim←−An, compare
the introduction to inverse limits given prior to Definition 3.3). Note that
prn = fn+1,n ◦ prn+1, by definition.
Since |An+1| = |An| by assumption, the map fn+1,n actually is an isomor-
phism, so that

A/Yn+1
∼= An+1

∼= An ∼= A/Yn .

Since Yn+1 ⊆ m ·Yn ⊆ Yn, and as both quotients A/Yn+1 and A/Yn are fi-
nite, it follows that Yn+1 = Yn. In particular, Yn = m·Yn, and Nakayama’s
Lemma 1.41 (with E = Yn and F = {0}) implies that Yn = {0}. Therefore
Ym ⊆ mm−n · Yn = {0} for every m ≥ n, so that |Am| = |An| for each
m ≥ n.

(ii) Letting M := lim←−Mn with Mn := (f1, . . . , fj) · An, n ≥ 0, the quotient
module A/M = lim←−An/Mn is a Fukuda-R-module with index barrier e,
by Lemma 5.29. Now apply (i).
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5.5 Ramification and the index barrier

Let K/K denote a Zdp-extension. We have seen in the last section that the
inverse limit A = lim←−An is a Fukuda-Λd-module with index barrier e(K/K).
The generalised Iwasawa invariants attached to K/K describe the asymptotic
growth of the class groups An, n ∈ N0. In order to study the local behaviour
of these invariants, we therefore want to transform information about the An,
coded into the finiteness of certain quotients (the details will be given in the

next section), into information about the class groups A
(L)
n attached to Zdp-

extensions L/K that are contained in some neighbourhood of K. The main
tool for performing this transfer will be Theorem 5.30. Since the statements in
this theorem are only valid for integers n ≥ e, respectively, it is necessary to

obtain control on the index barriers of the modules A(L) = lim←−A
(L)
n .

In Chapter 3, we have seen that Greenberg’s topology is not suitable for
this purpose, since the index barriers e(L/K), L ∈ E(K), in general will not
be locally bounded with respect to this topology (compare Lemma 3.18, (vi)).
We therefore introduced the Greenberg-R-topology, with respect to which the
e(L/K) in fact even are locally constant (see Corollary 3.22).

In the present section, we will define a topology on the set Ed(K) of Zdp-
extensions of K that will be sufficient for our purposes. In Section 5.1, we
introduced the Greenberg-R-topology on Ed(K). A typical neighbourhood of
an element K ∈ Ed(K) with respect to this topology is given by

U(K, n) = {L ∈ E(K, n) | P(L) ⊆ P(K)} .

Therefore this topology – in contrast to Greenberg’s topology – depends on
the set of primes of K ramifying in K. In the case d = 1, this was enough.
However, we will now see that it might not be sufficient if d > 1. We first seek
for a better understanding of the invariant e(K/K).

Proposition 5.31. Let K/K denote a Zdp-extension, let e := e(K/K). We

consider the set E⊆K(K) of Zp-extensions of K that are contained in K. If
P(K) = {p1, . . . , ps}, then

max
pj∈P(K)

inf
L∈E⊆K(K)
pj∈P(L)

ej(L/K) ≤ e ≤ sup
L∈E⊆K(K)

e(L/K) .

Here ej(L/K) denotes the largest integer k ∈ N0 such that pj is unramified in
the k-th intermediate field Lk of L/K, respectively.

Remarks 5.32.
(1) The supremum of the e(L/K) is finite if and only if P(L) = P for some fixed

set P ⊆ I of primes and every L ∈ E⊆K(K) (compare Lemma 3.18). In view
of Lemma 5.7, (i), this is equivalent to the condition that P(L) = P(K) for
every L ∈ E⊆K(K). Therefore the upper bound for e given in Proposition
5.31 is non-trivial only in this special case.

(2) In general, the first inequality will be strict. Suppose, for example, that
P(K) = {p} contains only one element, and let I ⊆ Gal(K/K) denote the
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inertia subgroup of p in K/K. Then Γ/ I is a finite group, since the prime
p has to ramify in each Zp-extension L ⊆ K of K. We assume that the
torsion group Γ/ I is not cyclic, i.e.,

Γ/ I ∼=
s⊕
i=1

Z/pniZ

with s > 1. Assume further that not all the ni are equal. Then

e = max
i
ni > min

i
ni ≥ inf

L∈E⊆K(K)
e(L/K) .

Here the last inequality follows from Proposition 5.33, (i) below.

We now turn to the proof of Proposition 5.31.

Proof. For every 1 ≤ j ≤ s, we let Hj denote the subfield of K that is fixed
by Ij ⊆ Γ (compare Definition 5.20), i.e., Hj is the maximal subextension of K
that is unramified at pj . Let Tj denote the Zp-torsion subgroup of Gal(Hj/K),
and let furthermore

Bj ⊆ Gal(Hj/K) ∼= Γ / Ij

denote some torsion-free submodule such that Gal(Hj/K) = Bj ⊕ Tj . Finally,
let Fj ⊆ Hj be the subfield fixed by Bj , respectively. Then Fj is a finite
abelian extension of K, and Gal(Fj/K) is isomorphic to the torsion subgroup
Tj of the Zp-module Gal(Hj/K). Note that the ‘maximal free subgroup’ Bj of
Gal(Hj/K) and therefore the field Fj are not unique; but Gal(Fj/K) is unique
up to isomorphism. Every cyclic subextension M/K of Fj is contained in some
Zp-extension of K that ramifies at pj (note that every finite subfield of K,
cyclic over K, is contained in some Zp-extension of K). Moreover, we have the
following fact.

Proposition 5.33.
(i) Let k ∈ N. If M ⊆ Fj is maximal cyclic of degree pk over K and if

L ∈ E⊆K(K) contains M , then pj ramifies in Lk+1/Lk = M .
(ii) If M ⊆ Fj denotes any cyclic extension of K, M 6= K, and if some

L ∈ E⊆K(K) contains M , then pj ramifies in Le+1/K, where e = e(K/K).

Proof. (i) If pj was unramified in Lk+1, then Lk+1 ⊆ Hj . Fj is the subfield
of Hj fixed by some torsion-free subgroup Bj ⊆ Gal(Hj/K). Write the
torsion subgroup of Gal(Hj/K) as

Tj =

t⊕
i=1

Vi , Vi ∼= Z/pniZ ,

for suitable ni ∈ N, respectively. Then ni = k for some i, because of our
assumptions on M ⊆ Fj . We may without loss of generality assume that
n1 = k, and that M ⊆ Fj is the subfield of Hj fixed by Bj ⊕V2⊕ · · · ⊕Vt.
If M ⊆ Lk+1 ⊆ Hj , then the subgroup of Gal(Hj/K) fixing Lk+1 has to
be a proper subgroup of Bj ⊕ V2 ⊕ · · · ⊕ Vt of index p. But then

Gal(Lk+1/K) ∼= Gal(Hj/K) /Gal(Hj/Lk+1)

cannot be cyclic, yielding a contradiction.
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(ii) If M ⊆ Fj denotes any subextension that is cyclic over K, then we may
choose the Vi ⊆ Tj such that the subgroup Fix(M) ⊆ Gal(Hj/K) fixing
M is given by

Fix(M) = Bj ⊕ Ṽ1 ⊕ V2 ⊕ · · · ⊕ Vt ,

where Ṽ1 ⊆ V1 is a subgroup of index [M : K]. Assume that pj is un-
ramified in Le+1/K for some Zp-extension L ∈ E⊆K(K) containing M .
Then M ⊆ Le+1 ⊆ Hj , and therefore Fix(Le+1) ⊆ Fix(M). Moreover,
Fix(Le+1) + Tj 6= Gal(Hj/K), since otherwise, Fix(Le+1) would have to
contain a torsion-free subgroup Cj such that Cj + Tj = Gal(Hj/K); but

then Le+1 would be contained in the fixed field F̃j := H
Cj
j . Since the ex-

ponent of Gal(F̃j/K) ∼= Tj would be bounded by e, this would contradict
the fact that Le+1/K is cyclic of degree pe+1.
We therefore may choose an element g ∈ Gal(Hj/K) such that

g 6∈ Fix(Le+1) + Tj .

Moreover, g ∈ Gal(Hj/K) \ Tj has infinite order, and we may assume
that g is contained in the fixed torsion-free subgroup Bj ⊆ Gal(Hj/K)
satisfying Bj + Tj = Gal(Hj/K) (indeed, if g = g̃ + t with g̃ ∈ Bj and
t ∈ Tj , then we may replace g by g̃ 6∈ Fix(Le+1) + Tj .) Let further
v ∈ V1 \ Ṽ1 denote any fixed element. Then the cosets of g and v in

Gal(Le+1/K) ∼= Gal(Hj/K) /Fix(Le+1)

are non-trivial. Moreover, we claim that these cosets in fact generate a
group having p-rank two. This contradicts the fact that Le+1/K is cyclic,
proving the proposition.
Indeed, assume that g = λ · v + z, with λ ∈ Zp and z ∈ Fix(Le+1).
Then g ∈ Fix(Le+1) +Tj , contradiction. Assume, on the other hand, that
v = λ ·g+z, with λ and z as above. Then v−λ ·g ∈ Fix(Le+1) ⊆ Fix(M),
and therefore v ∈ Fix(M), because Bj ⊆ Fix(M) and g ∈ Bj , by our
choice of g. This again yields a contradiction.

Now we return to the proof of Proposition 5.31. Fix j ∈ {1, . . . , s}. Then
e ≥ exp(Γ/Ij) = exp(Gal(Fj/K)), by definition. We let k ≤ e denote the
largest integer such that there exists an extension M ⊆ Fj that is cyclic of
degree pk over K. By the above, there exists some L ∈ E⊆K(K) such that
M ⊆ L and such that pj ramifies in Lk+1/Lk. Therefore k = ej(L/K), and
thus

inf
L∈E⊆K(K)
pj∈P(L)

ej(L/K) ≤ e .

Since this holds for every j ∈ {1, . . . , s}, the first inequality of Proposition 5.31
follows.

Now suppose that P(L) = P for some P ⊆ I and every L ∈ E⊆K(K). Let
C ∈ N be the smallest integer such that e(L/K) ≤ C for each L ∈ E⊆K(K)
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(compare Remarks 5.32, (1)). If e > C, then there exists j ∈ {1, . . . , s} such
that the exponent of the Galois group Gal(Fj/K) is strictly larger than C.
But this means that there exists an extension M ⊆ K, cyclic of degree pC+1

over K, such that pj is unramified in M , and such that M is contained in
some L ∈ E⊆K(K) with pj ∈ P(L). Therefore e(L/K) ≥ C + 1, yielding a
contradiction.

Lemma 5.34. Let e := e(K/K), let L ∈ U(K, e+ 1). Then

(i) P(L) = P(K), and
(ii) e(L/K) ≥ e(K/K).

Proof. (i) We have P(L) ⊆ P(K) by definition of U(K, e + 1). If p ∈ P(K),
then there exists some M ∈ E⊆K(K) such that p ∈ P(M). Let ep(M/K)
denote the largest integer k ∈ N0 such that p is unramified in the interme-
diate field Mk/K. We may assume that M/K has been chosen such that
ep(M/K) is minimal among the Zp-extensions in E⊆K(K) which ramify
at p. Then ep(M/K) ≤ e, by Proposition 5.31, and p ramifies in

Mep(M/K)+1 ⊆ Ke+1 = Le+1 ⊆ L .

Therefore p ∈ P(L).
(ii) Write P(L) = P(K) = {p1, . . . , ps}, and fix some j ∈ {1, . . . , s}. Let

Hj denote the subfield of K fixed by Ij , and let Fj ⊆ Hj denote the
field fixed by some free subgroup Bj of Gal(Hj/K) ∼= Γ / Ij satisfying
Bj ⊕ Tj = Gal(Hj/K), as in the proof of Proposition 5.31. We will

denote by H
(L)
j , respectively, F

(L)
j , subfields of L that are obtained in

an analogous way (again, we remark that Fj and F
(L)
j in general are not

unique).

Then Fj ⊆ Ke = Le ⊆ L, and in fact F
(L)
j can be chosen such that

Fj ⊆ F
(L)
j . This will be shown below (compare Proposition 5.35 and

Corollary 5.36). Before stating these results, we will finish the proof of
Lemma 5.34:
Note that there exists some j ∈ {1, . . . , s} such that e = exp(Gal(Fj/K))
(for every choice of Fj). IfN ⊆ Fj denotes a cyclic extension ofK of degree

pe, then N ⊆ Fj ⊆ F (L)
j , by the results announced above. Therefore

e(L/K) = max
j

exp(Gal(F
(L)
j /K)) ≥ exp(Gal(N/K)) = e .

Proposition 5.35. Let K 6= M ⊆ Hj. Then M is contained in Fj for
some choice of Bj if and only if no subfield N 6= K of M , cyclic over K,
is contained in a Zp-extension L ∈ E⊆K(K) that is unramified at pj.

Proof. Let H̃j ⊆ Hj denote the subfield fixed by the torsion subgroup Tj
of G := Gal(Hj/K). Then Gal(H̃j/K) is torsion-free, and every finite
cyclic subextension of H̃j is contained in some Zp-extension of K that
is unramified at pj . Moreover, every Zp-extension L ∈ E⊆K(K) that is
unramified at pj is contained in H̃j , since H̃j ⊆ Hj is of finite index |Tj |.



5.5. RAMIFICATION AND THE INDEX BARRIER 195

This shows that the latter condition in the lemma is satisfied if and only
if M ∩ H̃j = K.
Let now N := M ∩ H̃j . Then the subgroup Fix(N) ⊆ G fixing N contains
the torsion group Tj = Fix(H̃j). Moreover, if M is contained in some Fj ,
then also N ⊆ Fj , and Fix(N) contains the Zp-free group Bj fixing Fj .
Since Bj ⊕ Tj = G, we conclude that N = K.
If, on the other hand, M ∩ H̃j = K, then

Fix(M) + Tj = G = Gal(Hj/K) .

Since Fix(M) ⊆ G is of finite index, there exists a torsion-free subgroup
C ⊆ Fix(M) such that rankZp(C) = rankZp(G/Tj) and Fix(M) ⊆ C+Tj .
Then C + Tj = G, and therefore M is contained in the subfield Fj := HC

j

of Hj that is fixed by C.

Corollary 5.36. Suppose that L ∈ U(K, e(K/K) + 1). For every choice

of Fj ⊆ K, we have Fj ⊆ F (L)
j for some choice of F

(L)
j ⊆ L.

Proof. Let e := e(K/K). We will apply the previous proposition to
M = Fj . Suppose that K 6= N denotes any subfield of M . We will
show that there cannot exist a Zp-extension W ∈ E⊆L(K) that contains
N and at the same time is unramified at pj . Otherwise, the intermediate
field We+1 ⊆ Le+1 = Ke+1 was unramified at pj . But then there would
exist a Zp-extension in E⊆K(K) containing We+1 ⊇ N , in contradiction
to Proposition 5.33, (ii).
Now Proposition 5.35 implies that M = Fj is contained in some choice

of F
(L)
j . This concludes the proof of Corollary 5.36, and also the proof of

Lemma 5.34.

Note that it is well possible that e(L/K) > e(K/K): This will happen if
the rank of the torsion submodule of the quotient of Gal(L/K) by the inertia
subgroup of some pj ∈ P(L) is strictly larger than the rank of the corresponding

quotient of Gal(K/K) by the inertia subgroup Ij
(K) ⊆ Gal(K/K), by the next

result.
For any Zp-module M , we will denote by M◦ the torsion submodule of M .

Lemma 5.37. Let K/K denote a Zdp-extension, let U := U(K, e(K/K) + 1).
For L ∈ U and pj ∈ I =: {p1, . . . , pt}, we denote by

Ij
(L) ⊆ Γ(L) := Gal(L/K)

the inertia subgroup of pj in L/K, and we let G
(L)
j := Γ(L)/ Ij

(L)
, 1 ≤ j ≤ t.

In particular, G
(L)
j = Γ(L) if pj 6∈ P(L) = P(K).

(i) Then rankp((G
(L)
j )◦) ≥ rankp((G

(K)
j )◦) for every j ∈ {1, . . . , t}.

(ii) If rankp((G
(L)
j )◦) = rankp((G

(K)
j )◦) for every j ∈ {1, . . . , t}, then

e(L/K) = e(K/K).
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(iii) If on the other hand rankp((G
(L)
j )◦) > rankp((G

(K)
j )◦) for some j, then

e(L/K) > e(K/K).
More generally, if U = U(K, n + 1) for any n ≥ e(K/K), L ∈ U and if

rankp((G
(L)
j )◦) > rankp((G

(K)
j )◦) for some j, then e(L/K) > n.

Proof. (i) Let pj ∈ P(K) = P(L). Let Hj and Fj , respectively, H
(L)
j and

F
(L)
j , denote the fields introduced in the proofs of Proposition 5.31 and

Lemma 5.34, (ii). Then

rankp((G
(K)
j )◦) = rankp(Gal(Fj/K)) ,

since Gal(Fj/K) is isomorphic to the torsion subgroup of the finitely ge-

nerated Zp-module Gal(Hj/K) ∼= G
(K)
j . Analogously,

rankp((G
(L)
j )◦) = rankp(Gal(F

(L)
j /K)) .

Since we have shown in Corollary 5.36 that Fj ⊆ F (L)
j for a suitably chosen

F
(L)
j , it follows that

rankp((G
(L)
j )◦) ≥ rankp((G

(K)
j )◦) ,

proving (i).

(ii) If rankp((G
(L)
j )◦) = rankp((G

(K)
j )◦), then

rankp(Gal(F
(L)
j /K)) = rankp(Gal(Fj/K)) .

But Fj ⊆ F
(L)
j , and each maximal cyclic subextension of Fj of degree pk

over K is contained in some Zp-extension M that ramifies in Nk+1/Nk

(compare Proposition 5.33, (i)). Therefore Fj = F
(L)
j , since otherwise,

there would exist a maximal cyclic subextension M of Fj that is contained

in some extension M (L) ⊆ F (L)
j of degree p over M . If [M : K] = pk, then

k ≤ e := e(K/K), and therefore M (L) ⊆ Le+1 = Ke+1. Then there
exists a Zp-extension N ∈ E⊆K(K) of K such that M ⊆ M (L) ⊆ N and
such that pj is unramified in M (L) = Nk+1, in contradiction to Proposition
5.33.

(iii) Suppose that U = U(K, n+ 1) for some n ≥ e(K/K), and that

rankp(Gal(F
(L)
j /K)) = rankp((G

(L)
j )◦)

> rankp((G
(K)
j )◦) = rankp(Gal(Fj/K))

for some L ∈ U and some j ∈ {1, . . . , t}.
Since n ≥ e(K/K), we have P(L) = P(K), by Lemma 5.34, (i). Therefore
K ∈ U(L, n+ 1). If e(L/K) ≤ n, then (i) implies that

rankp((G
(K)
j )◦) ≥ rankp((G

(L)
j )◦) ,

yielding a contradiction. This shows that e(L/K) > n.
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Definition 5.38. Let d ∈ N. Let Ed(K) denote the set of Zdp-extensions of

K, and let K ∈ Ed(K). We use the notation introduced in the previous lemma,

i.e., we write I = {p1, . . . , pt} and G
(K)
j := Γ(K)/ Ij

(K)
, 1 ≤ j ≤ t.

For n ∈ N, we define

U(K, n) :=
{
L ∈ E(K, n) | rankp((G

(L)
j )◦) ≤ rankp((G

(K)
j )◦) , 1 ≤ j ≤ t

}
.

Then the U(K, n) define a topology on Ed(K) (see Proposition 5.39 below),
which we call the R-topology on Ed(K).

Proposition 5.39. U(K, n) ⊆ U(K, n) for every K ∈ Ed(K) and every n ∈ N.
The U(K, n), together with ∅ and Ed(K), generate a topology on Ed(K). e(L/K)
is locally constant with respect to this topology.

Proof. If L ∈ U(K, n) and pj ∈ I is unramified in K/K, then

rankp((G
(L)
j )◦) ≤ rankp((G

(K)
j )◦) = 0 .

If pj was ramified in L/K, then L would have to contain a Zp-extension M of K

such that pj ∈ P(M). Since rankp((G
(L)
j )◦) = 0, the Galois group Gal(H

(L)
j /K)

of the maximal subextension H
(L)
j ⊆ L which is unramified at pj (compare the

proof of Proposition 5.31) is Zp-free of rank dj ≤ d. If pj ∈ P(L), then dj < d.

This means that M could be chosen such that M ∩H(L)
j = K, i.e., such that pj

was totally ramified in M/K. However, since Mn ⊆ Ln = Kn, pj cannot ramify
in Mn/K, yielding a contradiction. Therefore P(L) ⊆ P(K), i.e., L ∈ U(K, n).

The intersection of two sets U(K, n1) and U(K̃, n2) is a finite union of sets
of this type (compare the proof of Lemma 3.25, (i), and the proof of Remark
5.9). Indeed, we may assume that n1 ≥ n2. Then U(K, n1) ∩ U(K̃, n2) is the
set of Zp-extensions L ∈ E(K, n1) satisfying

rankp((G
(L)
j )◦) ≤ mj := min({rankp((G

(K)
j )◦), rankp((G

(K̃)
j )◦)})

for every j ∈ {1, . . . , t}. This set might be empty. Otherwise, we can choose a
set I ⊆ Nt

0 of tuples (n1, . . . , nt) such that nj ≤ mj for every 1 ≤ j ≤ t, and
such that
• for every (n) = (n1, . . . , nt) ∈ I, there exists some L(n) ∈ E(K, n1) such

that rankp((G
(L(n))
j )◦) = nj , 1 ≤ j ≤ t, and

• for every M ∈ U(K, n1) ∩ U(K̃, n2), there exists some tuple

(n) = (n1, . . . , nt) ∈ I

such that rankp((G
(M)
j )◦) ≤ nj , 1 ≤ j ≤ t.

Note that |I| ≤
t∏

j=1
(mj + 1) < ∞.

Then U(K, n1) ∩ U(K̃, n2) =
⋃

(n)∈ I
U(L(n), n1).

Finally, the last statement follows from Lemma 5.37, (i) and (ii).



198 CHAPTER 5. GENERALISED IWASAWA INVARIANTS

Since e(L/K) is locally constant with respect to the R-topology, this topol-
ogy allows a full use of Theorem 5.30 and therefore is suitable for our Fukuda-
theoretic method. We will conclude the present section by pointing out one
disadvantage of the R-topology. Namely, the space Ed(K) usually will not be
compact with respect to this topology.

Lemma 5.40. Let d, i ∈ N, and suppose that d ≥ 2i. For every Zdp-extension

L of K, we let E i,⊆L(K) denote the subset of Zip-extensions of K contained in
L.
Then E i,⊆L(K) is compact with respect to the R-topology if and only if there
exists a set P of primes of K such that P(M) = P for every Zp-extension
M ⊆ L of K.

Proof. Let us first assume that P(M) = P for a suitable set P and every
M ∈ E⊆L(K). We will show that in this case, the Greenberg, Greenberg-R and
R-topologies on E i,⊆L(K) coincide.

Indeed, it is obvious that the assumption implies that E(K, n) = U(K, n) for
each K ∈ E i,⊆L(K) and every n ∈ N0. Moreover, Proposition 5.35 implies that
U(K, n) = U(K, n) for each K ∈ E i,⊆L(K) and every n ≥ e(K/K) + 1, since
either every K̃ ∈ U(K, n) = E(K, n) is unramified at pj , or pj ∈ P(K) = P and

H
(K̃)
j = F

(K̃)
j = F

(K)
j = H

(K)
j

for every K̃ ∈ U(K, n).
Therefore, under this assumption, E i,⊆L(K) is compact by Remark 5.5 (note

that the proof of this remark goes through for E i,⊆L(K) instead of E i(K)).
Now we assume that there exist two Zp-extensions M,N ⊆ L of K such

that P(M) 6= P(N). In view of Lemma 5.7, (i), we may assume that

P(M) = P(L) =: P and P(N) $ P .

We will show that in this case, e(M/K) is unbounded on E i,⊆L(K). Since
e(M/K) is locally constant with respect to the R-topology, this will show that
E i,⊆L(K) cannot be compact with regard to this topology.

We will make use of the following result.

Proposition 5.41. Suppose that L/K denotes a Zdp-extension, let i < d. Let

pj ∈ P(L). Let K ∈ E i,⊆L(K) be such that pj is unramified in K (so that in

particular, rankp((G
(K)
j )◦) = 0, where G

(K)
j = Γ(K)/ Ij

(K)
, as above).

If nj ∈ N0 denotes the largest integer such that there exists some K̃ ∈ E i,⊆L(K)

satisfying rankp((G
(K̃)
j )◦) = nj, then nj > 0. Moreover, define

Anjj := {K̃ ∈ E i,⊆L(K) | rankp((G
(K̃)
j )◦) = nj} .

Then for every n ∈ N, there exists some K̃ ∈ E(K, n) ∩ Anjj .

Proof. Let L̃ ⊆ L denote the composite of all Zp-extensions in E⊆L(K) that are
unramified at pj . If L̃/K is a Ztp-extension, then nj ≤ min(i, d− t). Note that



5.5. RAMIFICATION AND THE INDEX BARRIER 199

every M ∈ E⊆L(K) unramified at pj is contained in L̃. In particular, K ⊆ L̃,
by assumption.

We choose Zp-extensions M1, . . . ,M i ∈ E⊆L(K) such that K = M1 ·. . .·M i.
We may assume that M l ∩

∏
k 6=lM

k = K for each l, respectively.

Let n ∈ N be arbitrary. We consider the composite M i · L, where L ⊆ L
denotes any Zp-extension of K that is ramified at pj . Every Zp-extension
V ⊆ M i · L of K, V 6= M i, is ramified at pj (compare Lemma 3.19, (ii)). We
choose some V ⊆M i · L such that V ∈ E(M i, n). Then

V := M1 · . . . ·M i−1 · V

is a Zip-extension of K contained in E(K, n), and rankp((G
(V)
j )◦) = 1. In par-

ticular, this shows that nj ≥ 1.
Inductively, suppose that we have obtained a Zip-extension

K̃ = M1 · . . . ·M i−r · V i−r+1 · . . . · V i ∈ E(K, n)

such that rankp((G
(K̃)
j )◦) = r ≥ 1, (M1 · . . . ·M i−r)∩(V i−r+1 · . . . ·V i) = K, and

such that (V i−r+1 · . . . · V i) ∩ L̃ is finite over K. Recall that pj is unramified
in M1 · . . . ·M i−r.

If r < nj ≤ d − t, then we may choose some L ∈ E⊆L(K), ramified at pj ,
such that

(L ·M i−r) ∩ (M1 · . . . ·M i−r−1 · V i−r+1 · . . . · V i) = K

and such that
(M i−r · L · V i−r+1 · . . . · V i) ∩ L̃

is a finite extension of M i−r.
Let M i−r 6= V ⊆ M i−r · L denote any Zp-extension of K contained in

E(M i−r, n). Then (V ·V i−r+1 · . . . ·V i) does not contain any Zp-extension of K
which is unramified at pj . Therefore Proposition 5.35 implies that the Galois
group of the maximal abelian extension of K contained in V · V i−r+1 · . . . · V i

and unramified at pj is finite of rank r+1, by our induction hypothesis and the
choice of V .

Therefore

V := M1 · . . . ·M i−r−1 · V · V i−r+1 · . . . · V i ∈ E(K̃, n) = E(K, n)

satisfies rankp((G
(V)
j )◦) = r + 1.

Inductively, we construct a Zip-extension W ∈ E(K, n) such that

rankp((G
(W)
j )◦) = nj .

We will now conclude the proof of Lemma 5.40. Fix a prime pj ∈ P(L) such
that there exists some N ∈ E⊆L(K) unramified at pj . We want to show that
e(M/K) is unbounded on E i,⊆L(K).
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Suppose that d ≥ 2i. As in the proof of Proposition 5.41, we let

L̃ := L1 · . . . · Lt ⊆ L

denote the composite of all Zp-extensions in E⊆L(K) that are unramified at pj .
We distinguish two cases.

If t ≥ i, then we may apply Proposition 5.41 to K := L1 ·. . .·Li ⊆ L. Lemma
5.37, (iii) then implies that e(M/K) is unbounded in any neighbourhood of K.

If 1 ≤ t < i, then we let K ∈ E i,⊆L(K) denote any Zip-extension of K
which contains the Zp-extension N of K that is unramified at pj . We claim
that in every given neighbourhood E(K, n), n ≥ e(K/K) + 1, we find some
W ∈ E i,⊆L(K) such that

rankp((G
(W)
j )◦) > rankp((G

(K)
j )◦) =: mj .

Indeed, we write K = M1 · . . . ·M i, with M1, . . . ,M r ramified at pj for some
r ∈ N, r ≥ mj , and with M r+1 · . . . · M i unramified at pj . Suppose that
(M1 · . . . ·Mmj ) ∩ L̃ is a finite extension of K.

We proceed as in the proof of Proposition 5.41: Since d− t > i, there exists
a Zp-extension L ⊆ L of K, ramified at pj , such that

(L ·M i) ∩ (M1 · . . . ·M i−1) = K

and such that

(M1 · . . . ·Mmj · L ·M i) ∩ L̃

is a finite extension of M i.

Let V ⊆ L ·M i, V 6= M i, denote a Zp-extension of K contained in E(M i, n).
Then V · M1 · . . . · Mmj does not contain any Zp-extension of K which is
unramified at pj .

Letting

W := V ·M1 · . . . ·M i−1 ,

we may conclude that W ∈ E(K, n) satisfies rankp((G
(W)
j )◦) > mj , as in the

proof of Proposition 5.41.

Therefore e(W/K) ≥ n + 1, by Lemma 5.37, (iii). Since n ≥ e(K/K) + 1
was arbitrary, the statement follows.

Remark 5.42. Lemma 5.40 shows that, as in the case d = 1, we will usually
not be able to gather global information (such as global boundedness on Ed(K))
about the generalised Iwasawa invariants (compare Remarks 3.26, (1)).

5.6 Finiteness of ranks

In our approach for the study of classical Iwasawa invariants, developed in the
third chapter, the following observation provided a link between characteristic
polynomials of Greenberg modules and the f -ranks which then could be studied
via Fukuda’s Theorem:
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Let L/K denote a Zp-extension, A = lim←−A
(L)
n , and let FA(T ) ∈ Zp[T ] de-

note the characteristic polynomial of A (compare Definition 1.29). Then FA(T )
has degree λ(L/K). If f(T ) ∈ Zp[T ] denotes any irreducible distinguished
polynomial, then

rankf (A) := vp(|A/(f ·A)|) < ∞ ⇐⇒ f - FA .

This property of f -ranks is based on the following two facts:

(1) rankf (A) < ∞ ⇐⇒ rankf (EA) < ∞, where

EA =
s⊕
i=1

Λ/(pni) ⊕
t⊕

j=1

Λ/(fj(T )lj )

denotes the elementary Λ-module attached to A (this follows from Propo-
sition 3.41).

(2) If f ∈ Λ is irreducible, then |Λ/(f)| = ∞. If g, h ∈ Λ are coprime, then
|Λ/(g, h)| <∞ (compare Lemma 1.17).

In order to adapt our method for the case of d > 1, we will have to study
whether our ranks of Λd-modules (to be defined below) satisfy analogous prop-
erties.

We immediately see that it will not be sufficient to simply consider, for
some element f ∈ Λd = Zp[[T1, . . . , Td]] and a given finitely generated torsion
Λd-module A, the quotient A/(f ·A). Indeed, this quotient will in general be an
infinite group. Suppose, for example, that A = Λd/(T1). If d ≥ 2, then T2 ∈ Λd
is an irreducible element coprime to the characteristic power series T1 of A, but

A/(T2 ·A) = Λd/(T1, T2) ∼= Zp[[T3, . . . , Td]]

is infinite.

This example already hints at how to define an appropriate rank: the quo-
tient

A/((T2, . . . , Td, p) ·A) ∼= Zp/pZp ∼= Z/pZ ,

for example, is finite. The ranks that we will introduce below will be the orders
of quotients A/(I ·A), where I ⊆ Λd denotes an ideal having d suitably chosen
generators. Note that this obviously generalises the case d = 1.

If A denotes an arbitrary finitely generated torsion Λd-module, then Theo-
rem 2.23 implies that A is pseudo-isomorphic to some elementary Λd-module

EA =
s⊕
i=1

Λd/p
ni
i ,

where p1, . . . , ps denote prime ideals of Λd of height one, i.e., principal prime

ideals pi = (gi), respectively. FA :=
s∏
i=1

gnii is called the characteristic power

series of A (compare Section 4.3).

We start with several technical results.
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Proposition 5.43. Let d ∈ N, and suppose that g, h ∈ Λd are relatively prime.
Then there exist pseudo-isomorphisms

ϕ : Λd/(gh)
∼ // Λd/(g) ⊕ Λd/(h)

and
ψ : Λd/(g) ⊕ Λd/(h)

∼ // Λd/(gh) .

Proof. This generalises Example 1.21. We give an adaption of the corresponding
proof given in [Wa 97], Lemma 13.8.

Let
ϕ : Λd/(gh) // Λd/(g) ⊕ Λd/(h)

be the Λd-module homomorphism mapping the coset of an element x ∈ Λd in
Λd/(gh) to the tuple (x, x) of the corresponding cosets in the quotients Λd/(g)
and Λd/(h), respectively. This is well-defined, and moreover injective because
Λd is a unique factorisation domain by Proposition 2.17, (iv).

Let (a, b) ∈ Λd/(g) ⊕ Λd/(h) be arbitrary, but fixed. We choose representa-
tives a, b ∈ Λd of a and b, respectively. If a− b ∈ (g, h), then a− b = α · g+β ·h
for suitable elements α, β ∈ Λd. Let

c := a− α · g = b+ β · h .

Then we may conclude that

(a, b) = ϕ(c) ∈ Im(ϕ) .

If (a, b) ∈ Λd/(g) ⊕ Λd/(h) is arbitrary, then λ · (a, b) = (λa, λb) ∈ Im(ϕ)
for every λ ∈ (g, h), by the above. But this means that the cokernel of ϕ
is annihilated by every element λ ∈ (g, h). Since g and h are relatively prime,
Remarks 2.20, (2) and (3) imply that coker(ϕ) is a pseudo-null Λd-module. Since
also ker(ϕ) = {0} is pseudo-null, this proves that ϕ is a pseudo-isomorphism.

Since both Λd/(gh) and Λd/(g) ⊕ Λd/(h) are finitely generated torsion Λd-
modules, the existence of ϕ implies that there exists also a pseudo-isomorphism

ψ : Λd/(g) ⊕ Λd/(h)
∼ // Λd/(gh)

(compare Remarks 2.22, (1)). This fact may also easily be proved directly:
By the above, Λd/(gh) is isomorphic to a submodule M ⊆ Λd/(g)⊕Λd/(h)

such that the quotient
(Λd/(g)⊕ Λd/(h)) /M

is a pseudo-null Λd-module. This means that there exists an element P ∈ Λd,
coprime to g · h, such that P · (x, y) ∈ M for each (x, y) ∈ Λd/(g) ⊕ Λd/(h)
(compare Remarks 2.20, (3)).

Moreover, if
P · (x, y) = (Px, Py) = (0, 0)

in Λd/(g)⊕Λd/(h), then (x, y) = (0, 0) since Λd is a unique factorisation domain
and P is coprime to g · h. This shows that the composite map

ψ : Λd/(g)⊕ Λd/(h)
·P // M

ϕ−1
// Λd/(gh)
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induced by multiplication by P is injective.

Moreover, the image of Λd/(g)⊕ Λd/(h) under this map contains

ϕ−1(P · (1, 1)) = ϕ−1(P , P ) = P .

Since Λd/(gh, P ) is pseudo-null, this proves that the cokernel of ψ is pseudo-
null, and therefore ψ is a pseudo-isomorphism.

Proposition 5.44. If ϕ1 : A
∼−→ EA and ϕ2 : B

∼−→ EB denote two pseudo-
isomorphisms of Λd-modules, then

ϕ : A⊕B // EA ⊕ EB , (a, b) � // (ϕ1(a), ϕ2(b)) ,

is a pseudo-isomorphism. In particular, the direct sum of two pseudo-null Λd-
modules is pseudo-null.

Proof. The map ϕ obviously is a Λd-module homomorphism. We have to show
that the kernel and the cokernel of ϕ are pseudo-null Λd-modules. Recall that
a finitely generated Λd-module M is called pseudo-null if and only if the local-
isation Mp is trivial for every prime ideal p ⊆ Λd of height at most one. Now
ker(ϕ) = ker(ϕ1)⊕ ker(ϕ2) and

coker(ϕ) = (EA ⊕ EB)/(im(ϕ1)⊕ im(ϕ2)) ∼= EA/im(ϕ1)⊕ EB/im(ϕ2) .

Therefore both ker(ϕ) and coker(ϕ) are finitely generated over Λd, and the
statement follows from the general fact that for a Λd-module M = M1 ⊕M2

and a prime p ⊆ Λd, we have Mp
∼= (M1)p ⊕ (M2)p. This can be proved by

using, for example, Lemma 2.4 in [Ei 95].

In particular, if A and B are pseudo-null, then

(A⊕B)p ∼= Ap ⊕Bp = {0}

for every prime p ⊆ Λd of height ≤ 1.

Proposition 5.45. Let A be a finitely generated torsion Λd-module, let

EA =

s⊕
i=1

Λd/(g
ni
i )

be the elementary Λd-module of A, and let FA ∈ Λd denote the characteristic
power series attached to A. Suppose that f ∈ Λd is irreducible.
Then f is coprime to FA if and only if EA/(f ·EA) is a pseudo-null Λd-module.

Proof. A finitely generated Λd-module M is pseudo-null if and only if it is
annihilated by two relatively prime elements of Λd (compare Remarks 2.20, (2)
and (3)). EA/(f · EA) is pseudo-null if and only if each summand Λd/(g

ni
i , f)

is pseudo-null, by the previous proposition. This completes the proof.
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This result proves part of an analogon of the property mentioned at the
beginning of the current section. The main difference when compared to the
one-dimensional case concerns the observation that a Λ1-module is pseudo-null
if and only if it is finite (compare Remarks 2.20, (4)). Since this is not longer
true if d > 1, our method gets much more involved in the higher-dimensional
setting.

More precisely, whereas in the one-dimensional case, EA/(f · EA) will be
finite for every f ∈ Λ coprime to FA, it is in general a non-trivial task to find
elements f1, . . . , fd ∈ Λd such that, as in the above example,

EA/((f1, . . . , fd) · EA)

is finite, even if some f ∈ Λd coprime to FA is already known (of course we want
to exclude the trivial case where one of the fj is a unit, i.e., (f1, . . . , fd) = Λd).

The following lemma shows that this is (at least in principle) always possible.
Therefore this result is one of the main motivations for our method.

Lemma 5.46. Let EA denote an elementary Λd-module with characteristic
power series FA. Then we may choose f1, . . . , fd ∈ Λd such that
• (f1, . . . , fd) does not contain a unit of Λd,
• EA/((f1, . . . , fd) · EA) is finite, and
• Λd/(f1, . . . , fd) is isomorphic to a finitely generated free Zp-module.

Proof. Let FA = pn1
1 · . . . · pnss denote the characteristic power series of A, with

irreducible elements p1, . . . , ps ∈ Λd. If f ∈ Λd denotes an irreducible element,
then f is coprime to FA if and only if the image of each pj in Λd/(f) is different
from zero.

We will use an inductive argument. First choose f1 ∈ Zp[T1] distinguished
with respect to T1 (which is the same as being regular in Zp[[T1]] with respect
to T1 in the sense of Definition 4.9), and coprime to FA. This is possible since
there exist only finitely many irreducible divisors pj of FA, whereas there exist
infinitely many irreducible distinguished polynomials in Zp[T1].

Now we choose f2 ∈ Zp[T2] distinguished with respect to T2, and such that
the image of each pj in Λd/(f1, f2) is different from zero. Inductively, choose
f3, . . . , fd ∈ Λd such that fi ∈ Zp[Ti] is regular with respect to Ti, and such
that the residue classes pj of pj are non-trivial in Λd/(f1, . . . , fi), 3 ≤ i ≤ d.
Again, this is possible since Zp[Ti] contains infinitely many prime elements and
since f1, . . . , fi−1 do not affect the variable Ti, respectively.

Then
Λd/(f1, . . . , fd) ∼= Zp[T1, . . . , Td]/(f1, . . . , fd)

is isomorphic to Zrp, with r being the sum of the degrees of the fi with respect
to Ti, respectively.

Indeed, we will prove that for every i ≤ d, the quotient ring

Zp[[T1, . . . , Ti]]/(f1, . . . , fi) ,

with fi ∈ Zp[Ti] distinguished, respectively, is Zp-free of rank equal to the sum
of the degrees of the fi. This is certainly true for i = 1, since we can divide with
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remainder by the monic polynomial f1 in the ring Zp[[T1]] (compare Lemma
1.10). Inductively, assume that

R := Zp[[T1, . . . , Ti]]/(f1, . . . , fi)

is isomorphic to Z
deg(f1) + ...+ deg(fi)
p .

The isomorphism

Zp[[T1, . . . , Ti+1]] ∼= (Zp[[T1, . . . , Ti]])[[Ti+1]]

induces an isomorphism between Zp[[T1, . . . , Ti+1]]/(f1, . . . , fi+1) and

((Zp[[T1, . . . , Ti]]/(f1, . . . , fi))[[Ti+1]])/(fi+1) = (R[[Ti+1]])/(fi+1) .

Again, since fi+1 ∈ Zp[Ti+1] ⊆ R[[Ti+1]] is monic, we may divide with
remainder by fi+1 in this ring. Therefore R[[Ti+1]]/(fi+1) is isomorphic to
Rdeg(fi+1) as Zp-module (note that division with remainder in R[[Ti+1]] is ‘R-
linear’). Using our induction hypothesis, the claim follows.

Remarks 5.47.
(1) The same proof works if each fi is a monic polynomial in Ti with coefficients

in Zp[[T1, . . . , Ti−1]], respectively.
(2) In the case fi ∈ Zp[Ti], 1 ≤ i ≤ d, a basis of the free Zp-module

Q := Λd/(f1. . . . , fd)

is given by the residue classes of the elements

T s11 · . . . · T
sd
d , 0 ≤ si < deg(fi) , 1 ≤ i ≤ d .

Indeed, it is obvious that these elements generate Q. Moreover, the corre-
sponding residue classes are Zp-linearly independent: Suppose that there
exist elements

λ(s1,...,sd) ∈ Zp , 0 ≤ si < deg(fi) , 1 ≤ i ≤ d ,

such that
∑
λ(s1,...,sd) · T s11 · . . . · T

sd
d yields the zero class in Q. Since Q is

Zp-torsionfree, we may assume that at least one λ(s1,...,sd) is not divisible
by p. Then this coefficient is a unit in Zp, and therefore

T s11 · . . . · T
sd
d =

∑
(t1,...,td) 6= (s1,...,sd)

λ̃(t1,...,td) · T t11 · . . . · T
td
d +

d∑
j=1

µjfj

for suitable elements λ̃(t1,...,td) ∈ Zp, µj ∈ Λd, respectively. We consider
the coefficient of T s11 · . . . · T

sd
d on the right hand side. The fact that the

fj ∈ Zp[Tj ] are distinguished polynomials of degree deg(fj) > tj , respec-
tively, implies that this coefficient is divisible by p, yielding a contradiction.

We will now prove that f1, . . . , fd may be chosen such that furthermore,

EA/((f1, . . . , fd) · EA)

is finite. We will make use of the following fact.
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Proposition 5.48. Let f1, . . . , fd ∈ Λd be such that Q := Λd/(f1, . . . , fd) is iso-
morphic to a finitely generated free Zp-module. Let p ∈ Λd. Then the following
statements are equivalent:
(i) Λd/(f1, . . . , fd, p

n) is finite for some n ∈ N,
(ii) the residue class of pn is no zero divisor in Q for some n ∈ N,
(iii) multiplication by (the residue class of) p is injective on Q.

Proof. We first note that statements (ii) and (iii) are obviously equivalent: If
pn · x = 0 for some x ∈ Q, then p · pn−1x = 0, so that either (iii) is false or
pn−1x = 0. Inductively, we see that (iii) implies (ii). If, on the other hand,
multiplication by p is not injective on Q, then this also holds for multiplication
by pn, implying that (ii) is not true.

We will now show that (i) implies (iii). To this purpose, suppose that x ∈ Q
denotes an element such that p ·x = 0. Then the annihilator ideal Ann(x) ⊆ Λd
of x contains p, f1, . . . , fd. Since |Λd/(f1, . . . , fd, p

n)| is finite, by (i), the ideal
(f1, . . . , fd, p

n) ⊆ Λd is of finite index. Then also |Λd/(f1, . . . , fd, p)| is finite.
This means that there exists an integer r ∈ N such that mr ⊆ Ann(x), where
m = (p, T1, . . . , Td) denotes the maximal ideal of Λd. In particular, this implies
that pr ·x = 0. However, Q is Zp-torsionfree, and therefore x = 0, proving (iii).

Finally, we will show that (iii) implies (i). We let x := pn. Then x 6= 0 in
Q. Moreover, multiplication by x is a Zp-linear map Q −→ Q, and this map is
injective by (iii). This means that the image x ·Q ⊆ Q is a Zp-module of rank
equal to rankZp(Q), and therefore the quotient

Q/(x) ∼= Λd/(f1, . . . , fd, p
n)

is finite.

We return to the proof of Lemma 5.46. We want to show that the polyno-
mials f1, . . . , fd may be chosen such that Λd/(f1, . . . , fd, p

ni
i ) is finite for every

i ∈ {1, . . . , s}, where FA = pn1
1 · . . . · pnss . This will follow from the following

fact.

Claim 5.49. f1, . . . , fd ∈ Λd as above may be chosen such that

(f1, . . . , fd) ⊆ Λd

is a prime ideal.

If we have shown this claim, then the lemma will follow at once, since by
construction of the fj , p

ni
i 6∈ (f1, . . . , fd) for every i. This implies that none of

the pi is a zero divisor in the domain Q, and therefore each Λd/(f1, . . . , fd, p
ni
i )

is finite, by the preceding proposition.
In order to prove Claim 5.49, we assume that the fj ∈ Zp[Tj ] have been

chosen in the special form
fj = Tj + pkj ,

with suitable integers kj ∈ N0, 1 ≤ j ≤ d. Note that this is possible since on
the one hand, the family {Tj +pkj | kj ∈ N0} ⊆ Zp[Tj ] contains infinitely many
pairwise coprime irreducible elements, yielding infinitely many different residue
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classes in Λd/(f1, . . . , fj−1), respectively. On the other hand, we only have to

exclude that fj divides one of the finitely many residue classes pn1
1 , . . . , pnss in

Λd/(f1, . . . , fj−1).

It is now easy to see that the ideal (f1, . . . , fj) ⊆ Λd is a prime ideal for
every 1 ≤ j ≤ d. Indeed, the ring isomorphism

Λd/(f1, . . . , fj) // Zp[[Tj+1, . . . , Td]]

mapping Ti to −pki , 1 ≤ i ≤ j, is a bijection between Λd/(f1, . . . , fj) and
the domain Zp[[Tj+1, . . . , Td]]. This may be seen via induction on j, using the
isomorphism

Λd/(f1, . . . , fj) ∼= R/(fj) ,

where R := Λd/(f1, . . . , fj−1) ∼= Zp[[Tj , . . . , Td]] is a domain because of the
induction hypothesis.

This concludes the proof of Lemma 5.46.

The following result considers, more generally, arbitrary finitely generated
torsion Λd-modules. It moreover proves the plausible fact that for a pseudo-
null Λd-module A, d − 1 suitably chosen fj are enough in order to make
A/((f1, . . . , fd−1) ·A) finite. We want to exclude the trivial solution of choosing
fj to be a unit in Λd for some j. Therefore we assume that each fj is contained
in the maximal ideal m = (p, T1, . . . , Td) of the local ring Λd, respectively.

Proposition 5.50. Let A denote a finitely generated torsion Λd-module.

(i) There exist elements f1, . . . , fd ∈ m such that A/((f1, . . . , fd) ·A) is finite.
(ii) If A is pseudo-null, then we may find d−1 elements f1, . . . , fd−1 ∈ m such

that A/((f1, . . . , fd−1) ·A) is finite.
(iii) More generally, if s ∈ N, and if A1, . . . , As denote pseudo-null Λd-modules,

then there exist d− 1 elements f1, . . . , fd−1 ∈ m such that

Ai/((f1, . . . , fd−1) ·Ai)

is finite for every 1 ≤ i ≤ s.

Proof. (i) Let fA ∈ Λd denote a non-trivial annihilator of the torsion-module
A. The proof of Lemma 5.46 implies that we may choose f1, . . . , fd ∈ m
such that Λd/(fA, f1, . . . , fd) is finite.
If c1, . . . , cr denote generators of A over Λd, then

A/((f1, . . . , fd) ·A) = A/((fA, f1, . . . , fd) ·A)

may be imbedded into

Λd/(fA, f1, . . . , fd) · c1 + . . . + Λd/(fA, f1, . . . , fd) · cr ,

and therefore is finite.
(ii) This is a special case of (iii).
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(iii) M := A1 ⊕ . . . ⊕ As is a pseudo-null Λd-module (compare Proposition
5.44). This means that the annihilator ideal I := Ann(M) ⊆ Λd of M is
not contained in any prime ideal of Λd of height one.
We claim that the Krull dimension (compare Definition 2.11) of R := Λd/I
is at most d− 1.
Indeed, suppose that dim(R) ≥ d. Then there exists a chain of prime
ideals

pd % pd−1 % . . . % p0

in R. This yields a chain of primes

pd % pd−1 % . . . % p0 ⊇ I

in Λd. Since we have seen in Proposition 2.17, (ii) that the Krull dimension
of Λd is equal to d+ 1, it follows that the height of p0 is at most one. But
this contradicts the fact thatM is pseudo-null. Therefore we may conclude
that dim(R) ≤ d− 1.
Let now m denote the maximal ideal of the local ring R = Λd/I. Then
Corollary 10.7 in [Ei 95] implies that there exist d− 1 ≥ dim(R) elements
f1, . . . , fd−1 ∈ m such that

mn ⊆ (f1, . . . , fd−1)

for sufficiently large n. If f1, . . . , fd−1 ∈ m denote lifts of f1, . . . , fd−1,
respectively, then this means that there exists an integer n0 ∈ N such
that

mn ⊆ I + (f1, . . . , fd−1)

for every n ≥ n0, and therefore

|Λd/(I + (f1, . . . , fd−1))| ≤ |Λd/mn0 | = pdn0 < ∞ .

Since M is finitely generated over Λd, this means that also

M/((f1, . . . , fd−1) ·M) = M/((I + (f1, . . . , fd−1)) ·M)

is finite, as in the proof of (i). This proves (iii).

Definition 5.51. Let A denote a finitely generated torsion Λd-module. Sup-
pose that f1, . . . , fd ∈ Λd. Then we define

rank(f1,...,fd)(A) := vp(|A/((f1, . . . , fd) ·A)|) ,

whenever this is finite. Otherwise, we let rank(f1,...,fd)(A) :=∞.

This generalises the f -rank of Λ-modules introduced in Chapter 3 (compare
Definition 3.40). We would like to carry over the properties of the f -rank (in
particular Proposition 3.41 and the property (1) mentioned at the beginning of
the current section) to this multi-dimensional version. In particular, we want
to relate the rank of a finitely generated torsion Λd-module A to the rank of
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the corresponding elementary Λd-module EA. We will, however, see that not
all of the results from Chapter 3 remain valid if d > 1.

We will start with the proof of some easy properties of the ranks introduced
in Definition 5.51 (compare Proposition 3.41):

Proposition 5.52. Let f1, . . . , fd ∈ Λd.
(i) Suppose that A denotes a finitely generated torsion Λd-module. Let Ã ⊆ A

be a Λd-submodule. If rank(f1,...,fd)(Ã) and rank(f1,...,fd)(A/Ã) are finite,
then so is rank(f1,...,fd)(A), and in fact

rank(f1,...,fd)(A) ≤ rank(f1,...,fd)(Ã) + rank(f1,...,fd)(A/Ã) .

(ii) Let A,B denote Λd-modules such that at least one of the ranks
rank(f1,...,fd)(A), rank(f1,...,fd)(B) is defined. Assume that there exists a
Λd-module isomorphism

ϕ : A
∼ // B .

Then both rank(f1,...,fd)(A) and rank(f1,...,fd)(B) are defined, and

rank(f1,...,fd)(A) = rank(f1,...,fd)(B) .

(iii) Let A denote a Λd-module such that rank(f1,...,fd)(A) is finite. Then

rank(f1,...,fd)(A/M) ≤ rank(f1,...,fd)(A)

for every Λd-submodule M of A.
(iv) If a Λd-module A is isomorphic to the direct sum of two Λd-modules

B1 and B2, and if rank(f1,...,fd)(B1) and rank(f1,...,fd)(B2) are finite, then
rank(f1,...,fd)(A) is also finite, and

rank(f1,...,fd)(A) = rank(f1,...,fd)(B1) + rank(f1,...,fd)(B2) .

Proof. (i) Fix some set M of representatives for A/Ã. Then every element
a ∈ A may in a unique way be written as a = b+α with b ∈ Ã and α ∈M .
Since

(f1, . . . , fd) · Ã ⊆ (f1, . . . , fd) ·A ∩ Ã ,

the assertion follows.
(ii) Since

ϕ((f1, . . . , fd) ·A) = (f1, . . . , fd) · ϕ(A) = (f1, . . . , fd) ·B ,

we obtain a well-defined Λd-module isomophism

ϕ : A/((f1, . . . , fd) ·A)
∼ // B/((f1, . . . , fd) ·B) .

(iii) For every submodule M of A, the order of

(A/M)/((f1, . . . , fd) · (A/M)) = A/(M + (f1, . . . , fd) ·A)

is less or equal to the order of A/((f1, . . . , fd) ·A).
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(iv) Using (ii), we may assume that A = B1 ⊕B2. Then

A/((f1, . . . , fd) ·A) ∼= B1/((f1, . . . , fd) ·B1) ⊕ B2/((f1, . . . , fd) ·B2) .

In Proposition 3.41, (i), we proved the following statement, which is con-
siderably stronger than assertion (i) above: If A = Λ/(pn) for some irreducible
element p ∈ Λ and some n ∈ N, and if Ã ⊆ A is a submodule of finite index
(i.e., A/Ã is a pseudo-null Λ-module), then rankf (A) = rankf (Ã) for every
distinguished polynomial f ∈ Λ that is coprime to p.

The proof was based on properties of a cohomological invariant Qf (A) which

is defined as Qf (A) = |A[f ]|
|A/(f ·A)| , whenever both orders are finite. Here A[f ]

denotes the submodule of A that is annihilated by the element f ∈ Λ. In
Proposition 3.43, we proved that Qf is ‘multiplicative in short exact sequences’,
and that Qf (M) = 1 for a pseudo-null (i.e., finite) Λ-module M .

Let f1, . . . , fd ∈ Λd, let A denote a finitely generated torsion Λd-module.
We will now see that the canonical generalisation

Q(f1,...,fd)(A) :=
|A[f1] ∩ . . . ∩ A[fd]|
|A/((f1, . . . , fd) ·A)|

of the above invariant in general does not share analogous properties.

Example 5.53.
(1) Let d = 2. Then A := Λ2/(T1, p) is a pseudo-null Λ2-module. However, we

will see that Q(T1,T2)(A) 6= 1:
First, A[T1] ∩ A[T2] = A[T2] = {0}, since A = Λ2/(T1, p) ∼= (Z/pZ)[[T2]] is
a domain and T2 6∈ (T1, p). Moreover,

A/((T1, T2) ·A) = Λ2/(p, T1, T2) ∼= Z/pZ

contains p elements, and therefore Q(T1,T2)(A) = 1
p .

(2) Let d = 2, A = Λ2/(T1), and let Ã := (T1, T2)/(T1), so that Ã is a Λ2-
submodule of A. Then we have a short exact sequence

0 // Ã // A // A/Ã // 0 .

We will see that Q(p,T2)(A) 6= Q(p,T2)(Ã) ·Q(p,T2)(A/Ã). Indeed, on the one
hand,

A[p] = Ã[p] = (A/Ã)[p] = {0} ,

using the fact that A/Ã ∼= Λ2/(T1, T2) ∼= Zp is Zp-torsionfree.
On the other hand, A/((p, T2) ·A) ∼= Z/pZ,

Ã/((p, T2) · Ã) ∼= T2 · Λ2/(pT2, T
2
2 , T2 · T1) ∼= Z/pZ

and (A/Ã)/((p, T2) · (A/Ã)) ∼= Z/pZ. Thus

Q(p,T2)(A) =
1

p
6= 1

p
· 1

p
= Q(p,T2)(Ã) ·Q(p,T2)(A/Ã) .
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Remark 5.54. Although the above examples show that the quantity
Q(f1,...,fd)(A) is not a suitable generalisation of the invariant Qf (A) defined
in the third chapter, one might hope that nevertheless

rank(f1,...,fd)(A) = rank(f1,...,fd)(Ã)

for submodules Ã ⊆ A such that A/Ã is pseudo-null – at least in the case
where A = E is elementary, as in Proposition 3.41, (i) and (ii). The next
example shows, however, that this in general is not even true for cyclic torsion
Λd-modules.

Example 5.55. Let d = 3, E := Λ3/(p), and Ẽ := (T1, T2, p)/(p) ⊆ E. Then
E/Ẽ ∼= Λ3/(T1, T2, p) is pseudo-null. Moreover, rank(T1,T2,T3)(E) = 1. But

rank(T1,T2,T3)(Ẽ) = vp(|Ẽ/((T1, T2, T3) · Ẽ)|)
= vp(|<T1, T2> / <pT1, pT2, T

2
1 , T1T2, T

2
2 , T1T3, T2T3> |)

= 2 > 1 .

Every submodule Ẽ of a cyclic Λd-module E = Λd/(g), where g ∈ Λd
denotes an arbitrary non-unit, is of the form Ẽ = C/(g), where C ⊆ Λd is an
ideal containing g. Since Λd is Noetherian, C is finitely generated. We choose
generators c1, . . . , ck of C such that c1 is a divisor of g in Λd. We may assume
that k has been chosen as small as possible.

Lemma 5.56. Let E = Λd/(g) and Ẽ = C/(g) be as above. We assume that
k = 2. Let first g = pr be a power of an irreducible element p ∈ Λd.
Suppose that rank(f1,...,fd)(E) < ∞ for suitable elements f1, . . . , fd ∈ Λd, and
that Λd/(f1, . . . , fd) is a finitely generated free Zp-module.
Then also rank(f1,...,fd)(Ẽ) <∞. Moreover,

rank(f1,...,fd)(Ẽ) = rank(f1,...,fd)(E)

if and only if the two generators of C are coprime. Note that this is the case if
and only if E/Ẽ is pseudo-null.
More generally, if f1, . . . , fd ∈ Λd are as above, g ∈ Λd is an arbitrary non-unit,
and if E/Ẽ is pseudo-null, then

rank(f1,...,fd)(Ẽ) = rank(f1,...,fd)(E) .

Proof. We will make use of the following property of ranks of elementary Λd-
modules:

Proposition 5.57. Let p ∈ Λd. Suppose that we have chosen f1, . . . , fd ∈ Λd
such that Q := Λd/(f1, . . . , fd) is a finitely generated free Zp-module, and such
that R := rank(f1,...,fd)(Λd/(p)) <∞. Then

(i) multiplication by p is an injective operation on Q,
(ii) we have an equality of ideals (f1, . . . , fd) ∩ (p) = (p) · (f1, . . . , fd), and
(iii) rank(f1,...,fd)(Λd/(p

i)) = i ·R for every i ∈ N.
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(iv) More generally, suppose that p = p1 · p2 in Λd.
Then both rank(f1,...,fd)(Λd/(p1)) and rank(f1,...,fd)(Λd/(p2)) are finite, and

rank(f1,...,fd)(Λd/(p)) = rank(f1,...,fd)(Λd/(p1)) + rank(f1,...,fd)(Λd/(p2)) .

Proof. (i) This follows from Proposition 5.48.
(ii) It is clear that (p) · (f1, . . . , fd) ⊆ (p) ∩ (f1, . . . , fd). Suppose now that

x ∈ (f1, . . . , fd) ∩ (p). Then x = p · y in Λd, and we want to prove that
y ∈ (f1, . . . , fd). Otherwise, y 6= 0 in Q = Λd/(f1, . . . , fd), and p · y = 0.
But this contradicts (i).

(iii) We first note that multiplication by pj , j ∈ N, induces a Λd-module
isomorphism

Q/(p ·Q) ∼= (pj ·Q)/(pj+1 ·Q) (?)

(here the injectivity follows from (i)). In particular,

|(pj ·Q)/(pj+1 ·Q)| = |Q/(p ·Q)| = pR

for every j ∈ N.
Let now i ∈ N be given. Then the isomorphisms (?) imply that

|Q/(pi ·Q)| = |Q/(p ·Q)| · |(p ·Q)/(p2 ·Q)| · . . . · |(pi−1 ·Q)/(pi ·Q)|
= |Q/(p ·Q)|i ,

and therefore rank(f1,...,fd)(Λd/(p
i)) = i ·R.

(iv) Since (f1, . . . , fd, p) is contained in each of the ideals (f1, . . . , fd, p1) and
(f1, . . . , fd, p2), it follows that both

rank(f1,...,fd)(Λd/(p1)) and rank(f1,...,fd)(Λd/(p2))

are bounded by R. Therefore multiplication by p1 and by p2 on Q is
injective by (i). In particular, multiplication by p1 induces a Λd-module
isomorphism

Q/(p2 ·Q) ∼= (p1 ·Q)/(p ·Q) ,

since p = p1 · p2.
This means that

|Q/(p ·Q)| = |Q/(p1 ·Q)| · |(p1 ·Q)/(p ·Q)|
= |Q/(p1 ·Q)| · |Q/(p2 ·Q)| .

We return to the proof of Lemma 5.56. Suppose first that g = pr, where
p ∈ Λd is irreducible. Write C = < c1, c2 >Λd , with c1 = ps, s ≤ r, and with
c2 =: pt · p̃, where p̃ is coprime to p.

Since rank(f1,...,fd)(E) < ∞ by assumption, the ideal (pr, f1, . . . , fd) ⊆ Λd
is of finite index, and therefore also (p, f1, . . . , fd) ⊆ Λd is of finite index, i.e.,
R := rank(f1,...,fd)(Λd/(p)) <∞.

In Lemma 5.59 below, we will give a general proof for the finiteness of
rank(f1,...,fd)(Ẽ). In what follows, we will actually compute this value explicitely.
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Suppose first that t = 0. We have Ẽ/((f1, . . . , fd) · Ẽ) = <ps, p̃>/N , with

N = <pr, psf1, . . . , p
sfd, p̃f1, . . . , p̃fd> .

Suppose that λ1, λ2 ∈ Λd are elements such that λ1 · ps + λ2 · p̃ ∈ N . Then

λ1 · ps + λ2 · p̃ = µ0 · pr + µ1 · ps + µ2 · p̃

with suitable elements µ0 ∈ Λd and µ1, µ2 ∈ (f1, . . . , fd).
In particular, (λ2 − µ2) · p̃ ∈ (ps), and therefore λ2 − µ2 ∈ (ps), since p

and p̃ are coprime. This means that λ2 ∈ (ps, f1, . . . , fd). In other words,
λ1 · ps + λ2 · p̃ 6∈ N whenever λ2 6= 0 in Λd/(p

s, f1, . . . , fd).
This holds for every λ1 ∈ Λd. We will now determine the elements λ′1 which

yield the same class λ′1 · ps + λ2 · p̃ = λ1 · ps + λ2 · p̃ modulo N . Let therefore λ2

be fixed. Without loss of generality, we may assume that λ2 = 0. If λ′1 ·ps ∈ N ,
then

λ′1 · ps = µ0 · pr + µ1 · ps + µ2 · p̃ ,
as above. Since p̃ is coprime to ps, we may conclude that µ2 ≡ 0 mod ps.
Proposition 5.57, (ii) then implies that µ2 = ps · µ̃2 for some µ̃2 ∈ (f1, . . . , fd).
Dividing by ps in the unique factorisation domain Λd, we therefore see that an
equation as above is equivalent to the fact that λ′1 ∈ (pr−s, f1, . . . , fd).

Summarising, for each λ2 ∈ Λd \ (ps, f1, . . . , fd), we obtain exactly

|Λd/(pr−s, f1, . . . , fd)|

many pairwise distinct equivalence classes λ1 · ps + λ2 · p̃ in the quotient module
Ẽ/((f1, . . . , fd) · Ẽ).

Suppose now that λ2 ∈ (ps, f1, . . . , fd). Then we write

λ2 = x · ps + µ ,

with x ∈ Λd and µ ∈ (f1, . . . , fd). Considering congruence classes in

<ps, p̃>/N ,

we may conclude that

λ1 · ps + λ2 · p̃ = λ1 · ps + x · psp̃ = ps(λ1 + xp̃) .

As we have seen above, this yields

|Λd/(pr−s, f1, . . . , fd)|

many pairwise distinct equivalence classes.
We may conclude that

rank(f1,...,fd)(Ẽ) = rank(f1,...,fd)(Λd/(p
s)) + rank(f1,...,fd)(Λd/(p

r−s)) .

Now we apply Proposition 5.57, (iii). It follows that

rank(f1,...,fd)(Ẽ) = rank(f1,...,fd)(Λd/(p
s)) + rank(f1,...,fd)(Λd/(p

r−s))

= s ·R + (r − s) ·R = r ·R
= rank(f1,...,fd)(Λd/(p

r)) = rank(f1,...,fd)(E) .
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If t > 0, then

Ẽ = <ps, pt · p̃> / <pr> ∼= <ps−t, p̃> / <pr−t> ,

where we note that t < s ≤ r, since we assume that C is not a principal ideal
(k = 2). Now the first part of the proof implies that

rank(f1,...,fd)(Ẽ) = rank(f1,...,fd)(Λd/(p
s−t)) + rank(f1,...,fd)(Λd/(p

(r−t)−(s−t)))

= rank(f1,...,fd)(Λd/(p
r−t))

< rank(f1,...,fd)(Λd/(p
r))

= rank(f1,...,fd)(E) .

Finally, let g ∈ Λd be arbitrary. By our assumptions, the ideal C has
generators c1 =: p1 dividing g and c2 = p̃ coprime to g. Then the proof of the
case ‘t = 0’ above goes through literally. Indeed,

λ1 · p1 + λ2 · p̃ ∈ N := <g, p1f1, . . . , p1fd, p̃f1, . . . , p̃fd>

only if λ2 ∈ (p1, f1, . . . , fd), since p1 and p̃ are coprime.
Moreover, since

rank(f1,...,fd)(Λd/(p1)) ≤ rank(f1,...,fd)(Λd/(p)) < ∞ ,

Proposition 5.57, (ii) implies that λ1 ·p1 ∈ N if and only if λ1 ∈ (p2, f1, . . . , fd),
where p2 := g

p1
. Finally, Proposition 5.57, (iv) implies that

rank(f1,...,fd)(Ẽ) = rank(f1,...,fd)(Λd/(p1)) + rank(f1,...,fd)(Λd/(p2))

= rank(f1,...,fd)(E) .

Remark 5.58. If E = Λd/(p
r), p irreducible, and if C =<ps> is a principal

ideal for some s ≥ 1, then

rank(f1,...,fd)(Ẽ) = (r − s) · rank(f1,...,fd)(Λd/(p))

< r · rank(f1,...,fd)(Λd/(p)) = rank(f1,...,fd)(E) .

In this case, E/Ẽ is not pseudo-null, of course.

Lemma 5.59. Let p ∈ Λd be a not necessarily irreducible element. Suppose that
E = Λd/(p), and let Ẽ denote a Λd-submodule of E. If rank(f1,...,fd)(E) < ∞
for suitable elements f1, . . . , fd ∈ Λd, then rank(f1,...,fd)(Ẽ) <∞.

If E/Ẽ is pseudo-null, then the converse also holds.

Proof. As above, Ẽ = C/(p), where C ⊆ Λd denotes an ideal containing p.
Since Λd is Noetherian, C can be generated over Λd by a finite set {c1, . . . , ck}.

Let M := Λd/(p, f1, . . . , fd), and let R := rank(f1,...,fd)(E) < ∞. Then

|M | = pR. Moreover,

|Ẽ/((f1, . . . , fd) · Ẽ)| ≤ | <c1>M | · . . . · | <ck>M | ,

and therefore rank(f1,...,fd)(Ẽ) ≤ k ·R < ∞.

Now suppose, to the contrary, that rank(f1,...,fd)(Ẽ) <∞, and assume that

E/Ẽ is pseudo-null. We will make use of the following concepts.
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Definition 5.60.
(1) If R is a ring and M is an R-module, then the length of M over R denotes

the least length of a maximal chain of submodules decreasing from M – or
infinity, if there exists no finite maximal chain.

(2) Let R denote a local ring with maximal ideal m. Suppose that M is a
finitely generated R-module, and let I ⊆ m be an ideal of R. Then we
say that I is an ideal of finite colength on M if the quotient module
M/(I ·M) has finite length.

Proposition 5.61. If R is a local ring with maximal ideal m, then an ideal
I ⊆ m has finite colength on a finitely generated R-module M if and only if

mn ⊆ I + Ann(M)

for every sufficiently large n ∈ N. Here Ann(M) ⊆ R denotes the annihilator
ideal of M , i.e., Ann(M) = {0} if M is not R-torsion.

Proof. See Proposition 10.8.a in [Ei 95].

We return to the proof of Lemma 5.59. Since rank(f1,...,fd)(Ẽ) < ∞, the

length of Ẽ/((f1, . . . , fd) · Ẽ) is finite. Proposition 5.61 therefore implies that

mn ⊆ (f1, . . . , fd) + Ann(Ẽ) ,

provided that n ∈ N is sufficiently large.
Since Ẽ ⊆ E is a Λd-submodule and E/Ẽ is pseudo-null, we have a pseudo-

isomorphism ϕ : Ẽ
∼−→ E. Moreover, since both E and Ẽ are finitely

generated and Λd-torsion, there exists also a pseudo-isomorphism ψ : E
∼−→ Ẽ

(compare Remarks 2.22, (1)). ψ is actually an injection, because the cyclic Λd-
module E = Λd/(p) does not contain any non-trivial pseudo-null submodules
(this may be proved analogously to Remarks 2.25, (2)).

But then the annihilator ideal Ann(E) of E contains Ann(Ẽ), and therefore

mn ⊆ (f1, . . . , fd) + Ann(E)

for every sufficiently large n ∈ N. Since Ann(E) = (p), this means that

Λd/(f1, . . . , fd, p)

is finite, i.e., rank(f1,...,fd)(E) <∞.

Corollary 5.62. Let A be a finitely generated torsion Λd-module, let EA de-
note the elementary Λd-module attached to A, and let CA := Λd/(FA), where
FA denotes the characteristic power series of A. Suppose that f1, . . . , fd ∈ Λd.
If rank(f1,...,fd)(A) <∞, then rank(f1,...,fd)(CA) <∞ and rank(f1,...,fd)(EA) <∞.

Proof. Let ϕ : A −→ EA denote a pseudo-isomorphism, let M1 := ker(ϕ). Then
ϕ induces an isomorphism A/M1

∼= ẼA ⊆ EA, and the cokernel M2 := EA/ẼA
is pseudo-null. Proposition 5.43 implies that there exists a pseudo-isomorphism
ϕ2 : EA −→ CA, which is in fact injective in view of Remarks 2.25, (2). Let
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ψ : A −→ CA be the pseudo-isomorphism ψ := ϕ2 ◦ϕ. Then ker(ψ) = M1, and
im(ψ) =: C̃A ⊆ CA is a submodule such that CA/C̃A is pseudo-null.

Proposition 5.52, (ii) and (iii) therefore imply that

rank(f1,...,fd)(C̃A) = rank(f1,...,fd)(A/M1)

≤ rank(f1,...,fd)(A) < ∞ .

Therefore rank(f1,...,fd)(CA) < ∞, by Lemma 5.59. Now consider the injective
pseudo-isomorphism ϕ2 : EA −→ CA. Since the cokernel of ϕ2 is pseudo-null,
Lemma 5.59 implies that rank(f1,...,fd)(ϕ2(EA)) <∞. But

rank(f1,...,fd)(ϕ2(EA)) = rank(f1,...,fd)(EA) ,

by Proposition 5.52, (ii).

Remarks 5.63.
(1) The assumption in the second part of Lemma 5.59 that E/Ẽ is pseudo-

null is necessary, which follows from Example 5.64, (2) below. Moreover,
Example 5.64, (1) will show that an analogous result is wrong in general
for non-elementary torsion Λd-modules.

(2) At the beginning of the current section, we mentioned two facts that have
been fundamental prerequisites for the one-dimensional Fukuda method.
The first statement was that rankf (A) <∞ if and only if rankf (EA) <∞,
where f ∈ Λ, and where EA denotes the elementary Λ-module attached to a
finitely generated torsion Λ-module A. In Corollary 5.62, we proved one di-
rection of an analogous statement for finitely generated torsion Λd-modules.
The following example, however, shows that the reverse implication will not
be true in general for arbitrary d > 1.

Example 5.64.
(1) Suppose that d = 3. Let A := Λ3/(T1, T2). Then A is a pseudo-null Λ3-

module, and therefore EA = {0}. If we consider f1 = T1, f2 = T2 and
f3 = T3, then rank(f1,f2,f3)(A) = |Λ3/(T1, T2, T3)| = ∞. But of course

rank(f1,f2,f3)(EA) = 0 < ∞. Note that Ã := {0} ⊆ A is a submodule such

that A/Ã is pseudo-null.
(2) Suppose now that E = Λ2/(T1), so that E is a Λ2-elementary module. Then

rank(T1,T2)(E) =∞, but of course rank(T1,T2)({0}) <∞, where Ẽ := {0} is

a submodule of E such that E/Ẽ is not pseudo-null.

As we pointed out in Remark 5.54, one could hope that

rank(f1,...,fd)(Ẽ) = rank(f1,...,fd)(E)

for every submodule of an elementary torsion Λd-module E such that E/Ẽ
is pseudo-null, provided that the two ranks are finite. However, Example
5.55 showed that in this situation, rank(f1,...,fd)(Ẽ) can be strictly larger than
rank(f1,...,fd)(E).

In what follows, we will consider cyclic Λd-modules in place of elementary
Λd-modules, using the pseudo-isomorphisms from Proposition 5.43: Instead
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of considering a pseudo-isomorphism between a finitely generated torsion Λd-
module A and the corresponding elementary Λd-module, we will from now on
usually consider the induced map from A to Λd/(FA), where FA ∈ Λd denotes
the characteristic power series of A. This will make it easier to relate informa-
tion about FA to the size of suitable ranks of A.

In view of Example 5.55, we state the following conjecture.

Conjecture 5.65 (Rank inequality). Suppose that E = Λd/(p) denotes a cyclic
torsion Λd-module, with p ∈ Λd \ Λ∗d arbitrary, and let Ẽ ⊆ E be a submod-
ule such that M := E/Ẽ is pseudo-null. Let f1, . . . , fd ∈ Λd be such that
rank(f1,...,fd)(E) and rank(f1,...,fd)(Ẽ) are finite. Then

rank(f1,...,fd)(Ẽ) ≥ rank(f1,...,fd)(E) .

Remarks 5.66.
(1) We have shown in Lemma 5.59 that under the assumptions of the conjec-

ture, rank(f1,...,fd)(E) is finite if and only if rank(f1,...,fd)(Ẽ) is finite.

(2) It follows from Lemma 5.56 that Conjecture 5.65 holds if Ẽ can be gen-
erated by the residue classes of exactly two elements of Λd, provided that
Λd/(f1, . . . , fd) is a finitely generated free Zp-module.

(3) Let A be a finitely generated torsion Λd-module, and let EA := Λd/(FA),
where FA ∈ Λd denotes the characteristic power series of A.
If the Rank Inequality Conjecture 5.65 holds for f1, . . . , fd ∈ Λd and EA,
and if rank(f1,...,fd)(A) <∞, then

rank(f1,...,fd)(EA) ≤ rank(f1,...,fd)(A) .

Proof. We have seen in the proof of Corollary 5.62 that

rank(f1,...,fd)(ẼA) ≤ rank(f1,...,fd)(A) ,

where ẼA ⊆ EA denotes a submodule such that EA/ẼA is pseudo-null.
Therefore the statement follows from Lemma 5.59 and from the validity of
the conjecture.

We have not found any example violating Conjecture 5.65, but we also have
not been able to prove this conjecture in general. In Section 5.9, we will state
several results proving the conjecture in some special cases.

We will conclude the present section by giving an important example of a
situation where finite ranks naturally occur.

Lemma 5.67. Let K/K denote a Zdp-extension, let e := e(K/K). We consider
the Greenberg module X := Gal(H(K)/K). For every n > m and 1 ≤ i ≤ d,
we let ν(n,m)(Ti) ∈ Zp[Ti] denote the distinguished polynomial

ν(n,m)(Ti) :=
(Ti + 1)p

n − 1

(Ti + 1)pm − 1

(compare Definition 5.22). Then

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(X) <∞
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for each pair of tuples (n1, . . . , nd), (m1, . . . ,md) ∈ Nd
0 such that nj > mj ≥ e

for every j = 1, . . . , d.

Proof. We will first consider the case n1 = . . . = nd > m1 = . . . = md.
For every n ≥ 0, we let Yn ⊆ X denote the kernel of the projection map

prn : X = lim←−Xn −→ Xn, with Xn = Gal(Hn/Kn), as in Section 5.4. Then
X/Yn ∼= Xn is finite for every n ≥ 0.

Let us first assume that there exists only one prime of K that ramifies in
K. We have shown in the proof of Lemma 5.23 that

Yn ⊆ (ν(n,m)(T1), . . . , ν(n,m)(Td)) · Ym

for every n > m ≥ e. Indeed, our assumption implies that

Ym = (ν(m,e)(T1) · ν(e,0)(T1) · T1, . . . , ν(m,e)(Td) · ν(e,0)(Td) · Td) ·X

for every m ≥ e (compare Definition 5.22); further note that

ν(n,e)(Ti) = ν(n,m)(Ti) · ν(m,e)(Ti)

for every 1 ≤ i ≤ d and every n > m ≥ e.
Since Ym/Yn ⊆ X/Yn ∼= Xn is finite, it follows that

Ym/((ν(n,m)(T1), . . . , ν(n,m)(Td)) · Ym)

is finite, i.e., rank(ν(n,m)(T1),...,ν(n,m)(Td))(Ym) < ∞. But Ym ⊆ X is of finite
index, and therefore

rank(ν(n,m)(T1),...,ν(n,m)(Td))(X) ≤ rank(ν(n,m)(T1),...,ν(n,m)(Td))(Ym)

+ rank(ν(n,m)(T1),...,ν(n,m)(Td))(X/Ym)

≤ rank(ν(n,m)(T1),...,ν(n,m)(Td))(Ym) + |X/Ym|
< ∞ ,

using Proposition 5.52, (i).
Now we drop the assumption that only one prime ramifies in K/K. In the

general case, Lemma 5.23 shows that for every n > m ≥ e,

Yn ⊆ (ν(n,m)(T1), . . . , ν(n,m)(Td), {ν(n,m)(Tj,k)j,k})︸ ︷︷ ︸
=: In,m

·Ym ,

where {Tj,k}j,k denotes a certain set of elements in (T1, . . . , Td) ⊆ Λd such that

for each j and k, Tj,k+1 is a product
d∏
i=1

(Ti+1)bi with suitable elements bi ∈ Zp
(compare the Definitions 5.18 and 5.22).

We want to show that (ν(n,m)(T1), . . . , ν(n,m)(Td)) ⊆ In,m is of finite index.
Since Ym ⊆ X is a finitely generated Λd-module (recall that Λd is Noetherian),
this will imply that

Ym/((ν(n,m)(T1), . . . , ν(n,m)(Td)) · Ym)
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is finite if and only if Ym/(In,m · Ym) is finite. Since Yn ⊆ In,m · Ym, and as
Ym/Yn ⊆ X/Yn is finite, it will then follow that

rank(ν(n,m)(T1),...,ν(n,m)(Td))(Ym) <∞ ,

and therefore rank(ν(n,m)(T1),...,ν(n,m)(Td))(X) <∞, as in the above special case.

In order to prove our claim, we observe that Λd/(ν(n,m)(T1), . . . , ν(n,m)(Td))
is a finitely generated free Zp-module (compare the proof of Lemma 5.46).

Moreover, the rank of the free Zp-module Λd/(ν(n,m)(T1), . . . , ν(n,m)(Td))

is equal to (pn − pm)d, because every ν(n,m)(Ti) has degree pn − pm in Ti,
respectively. It therefore will suffice to show that the Zp-rank of Λd/In,m is
equal to (pn − pm)d. To this purpose, we will show that the residue classes
in Λd/In,m of the elements T s11 · . . . · T

sd
d ∈ Λd, 0 ≤ s1, . . . , sd < pn − pm, are

Zp-linearly independent. The proof will be a variant of an argument used in
the proof of Remarks 5.47, (2).

Assume, to the contrary, that there exist elements

λ(s1,...,sd) ∈ Zp , 0 ≤ s1, . . . , sd < pn − pm ,

not all of which equal zero, such that
∑
λ(s1,...,sd) ·T s11 · . . . ·T

sd
d ∈ In,m. Since we

do not care about torsion elements in the Zp-module Λd/In,m, we may assume
that at least one of the λ(s1,...,sd) is not divisible by p. Then this coefficient is a
unit in Zp, so we may assume that there exists a tuple (s1, . . . , sd) such that

T s11 · . . . ·T
sd
d =

∑
(t1,...,td) 6= (s1,...,sd)

λ̃(t1,...,td)T
t1
1 · . . . ·T

td
d +

∑
1≤j≤d
1≤k≤rj

µj,k ·ν(n,m)(Tj,k)

for suitable elements λ̃(t1,...,td) ∈ Zp and µj,k ∈ Λd, where r2, . . . , rd have been
introduced in Definition 5.18, and where we let r1 := d and T1,k := Tk, respec-
tively.

Now reduce modulo (T p
n−pm

1 , . . . , T p
n−pm

d ). The degree of each ν(n,m)(Tj,k),
with respect to a single variable Ti that occurs in Tj,k (i.e., bi 6= 0 in the
above representation of Tj,k + 1), is at least equal to deg(ν(n,m)(Ti)) = pn− pm.
Since ν(n,m)(Ti) ∈ Zp[Ti] is distinguished with respect to the variable Ti, we
may conclude that the latter sum is congruent to some multiple of p modulo
(T p

n−pm
1 , . . . , T p

n−pm
d ). But the first sum does not contain a term T s11 · . . . ·T

sd
d .

Comparing coefficients of T s11 · . . . · T
sd
d on both sides of the equation therefore

yields the contradiction 1 ≡ 0 mod p.

This shows that (ν(n,m)(T1), . . . , ν(n,m)(Td)) ⊆ In,m is of finite index, and
concludes the proof of the lemma in the case where we have n1 = . . . = nd and
m1 = . . . = md.

Finally, if (n1, . . . , nd) and (m1, . . . ,md) ∈ Nd
0 denote any tuples such that

ni > mi ≥ e for every 1 ≤ i ≤ d, then we define n := max(n1, . . . , nd) and
m := min(m1, . . . ,md). Then each ν(ni,mi)(Ti) divides ν(n,m)(Ti), respectively,
and therefore

(ν(n,m)(T1), . . . , ν(n,m)(Td)) ⊆ (ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) .
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This proves that

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(X) ≤ rank(ν(n,m)(T1),...,ν(n,m)(Td))(X) <∞ .

Corollary 5.68. In the situation of the previous lemma, we consider the Λd-

module A = lim←−A
(K)
n . Then

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(A) < ∞

for each pair of tuples (n1, . . . , nd), (m1, . . . ,md) ∈ Nd
0 such that nj > mj ≥ e

for every j = 1, . . . , d.

Corollary 5.69. Let EA := Λd/(FA), where FA denotes the characteristic
power series of A. Then

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(EA) < ∞

for each pair of tuples (n1, . . . , nd), (m1, . . . ,md) ∈ Nd
0 such that nj > mj ≥ e

for every j = 1, . . . , d.
Moreover, if the Rank Inequality Conjecture 5.65 holds for the tuple

(ν(n1,m1)(T1), . . . , ν(nd,md)(Td))

and the module EA, then

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(EA) ≤ rank(ν(n1,m1)

(T1),...,ν(nd,md)(Td))(A) .

Proof. This follows from Lemma 5.67 together with Corollary 5.62 and Remarks
5.66, (3), respectively.

5.7 Local maximality of l0

In this section, we want to use the methods developed in the preceding para-
graphs in order to obtain results concerning l0 invariants. We want to do better
than Theorem 5.15 (i.e., local boundedness of l0). In order to prove local max-
imality, we will have to put a technical assumption on the power series FA
attached to the Fukuda module A under consideration. We want to motivate
this by the following observation.

If L/K denotes a Zp-extension, A = lim←−A
(L)
n and FA ∈ Λ = Zp[[T ]] are

defined as usual, then λ(L/K) equals the degree of the distinguished polyno-
mial FA(T ). However, there is no direct analogon of this fact in the higher-
dimensional setting:

Suppose that K/K denotes a Zdp-extension, d > 1. Then we may write the

characteristic power series FA ∈ Λd of A(K) = lim←−A
(K)
n as FA = pm0(K/K) · f ,

with f ∈ Λd = Zp[[T1, . . . , Td]] being coprime to p. Suppose that f 6∈ Λ∗d. Then
Lemma 4.7 implies that we may choose elements γ̃1, . . . , γ̃d−1 ∈ Γ = Gal(K/K)
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such that Γ is generated by γ̃1, . . . , γ̃d−1 and γd = Td + 1, and such that (up to
multiplication by a unit)

f = T kd + hk−1 · T k−1
d + . . .+ h0 , (?)

where k ∈ N, h0, . . . , hk−1 ∈ (p, T̃1, . . . , T̃d−1) and T̃i = γ̃i − 1, respectively.

Lemma 5.70. l0(f) ≤ k.

Proof. Suppose that f = g · h in the quotient Λd = Λd/pΛd. Then

g · h ≡ Td
k

mod (T1, . . . , Td−1) ,

where T1, . . . , Td−1 denote the residue classes of T̃1, . . . , T̃d−1 in Λd, respectively.
Since Λd/(p, T̃1, . . . , T̃d−1) ∼= (Z/pZ)[[Td]] is a unique factorisation domain,

it follows that g ≡ Td
i

mod (T1, . . . , Td−1) for some i ∈ {0, . . . , k}. If i = 0 or
i = k, then g, respectively, h, will be a unit in Λd. This shows that f can have
at most k irreducible divisors in the unique factorisation domain Λd.

More generally, if γ ∈ Γ = Gal(K/K), γ 6∈ (Γ)p, is arbitrary, then we may
choose a set {γ1, . . . , γd−1, γ} of topological generators of Γ containing γ (if
{b1, . . . , bd} denotes any Zp-basis of Γ, and if γ = bλ11 · . . . · b

λd
d , then at least

one of the coefficients λi ∈ Zp is not divisible by p; we then may replace the
corresponding bi by γ).

Moreover, Lemma 4.7 implies that we may change this basis into a basis
{γ̃1, . . . , γ̃d−1, γ} of Γ such that f has a representation as in (?) with respect to
Td := γ − 1, and with T̃i := γ̃i − 1 for 1 ≤ i ≤ d− 1.

An inequality analogous to that of Lemma 5.70 then holds for every integer
k = k(Td) attached to some variable Td with respect to which a representation
of f as in (?) is valid.

Remark 5.71. It is possible that l0(f) < k. Consider, for example, the
element f = T1 +T2 ∈ Λ2. Then f = T1 +T 0

1 ·T2 = T2 +T 0
2 ·T1 is represented

as in (?), with k = 1 in both variants. However, we have seen in Remarks 4.42,
(1) that l0(f) = 0.

In what follows, we will sometimes not consider f , but in fact an appro-
priate multiple of f which will be constructed now. Let EA := Λd/(FA) de-
note the cyclic Λd-module attached to the finitely generated torsion Λd-module

A := lim←−A
(K)
n . Let further ϕ : EA −→ A denote a pseudo-isomorphism. If

Ã ⊆ A denotes the image of ϕ, then the cokernel M := A/Ã of ϕ is a pseudo-
null Λd-module. This means that there exists an annihilator h ∈ Λd of M such
that h is not divisible by p, since otherwise the annihilator ideal of M was
contained in the height one prime ideal (p) ⊆ Λd (compare Remarks 2.20).

In fact, it is possible to choose h as a multiple of f because we may simply
replace h by the least common multiple g of h and f in the unique factorisation
domain Λd. Then g is still coprime to p, and we can choose generators of Γ
in order to obtain a representation of g as in (?). Summarising, we obtain the
following result:
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Lemma 5.72. We may choose a set of generators of Γ = Gal(K/K) (corre-
sponding to variables T1, . . . , Td of Λd) such that there exists an element g ∈ Λd
which has the following properties:

(1) g is divisible by f = fA,
(2) g annihilates M := A/Ã (where Ã has been defined above), and
(3) we have a representation of g as in (?), so that in particular p - g.

Remark 5.73. In the situation of Lemma 5.72, f automatically has also
a representation as in (?) with respect to these variables T1, . . . , Td. Indeed,
otherwise f was not regular with respect to Td, i.e., f ∈ (p, T1, . . . , Td−1) (com-
pare Remarks 4.10, (3)). But then also the multiple g of f was contained in
(p, T1, . . . , Td−1), in contradiction to (?).

From now on, we will make the following assumption:

Assumption 5.74. We may choose a set of variables T1, . . . , Td of Λd such
that l0(f) = k, where k is defined by the corresponding representation of f as
in (?).

Remark 5.75. In particular, the special case l0(K/K) = l0(f) = 0 has to be
treated separately, since k ≥ 1 in our representations of f .

We will prove our main result by considering (f1, . . . , fd)-ranks with

fi = ν(ni,mi)(Ti) , 1 ≤ i ≤ d ,

where the tuples (n1, . . . , nd), (m1, . . . ,md) ∈ Nd
0 have been chosen such that

nj > mj ≥ e = e(K/K) for every j. Then the Corollaries 5.68 and 5.69 imply
that rank(f1,...,fd)(A) <∞ and rank(f1,...,fd)(EA) <∞.

We will now prove an explicit formula for rank(f1,...,fd)(EA) that will give us
a link to the generalised Iwasawa invariants of A. This connection will then be
used in order to bound these invariants in terms of our ranks. The following
result is the generalisation of an argument used in the proof of Theorem 3.57.

Lemma 5.76. Let f ∈ Λd, f 6= 0, let E = Λd/(f). We assume that (n1, . . . , nd)
and (m1, . . . ,md) denote tuples of integers such that

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(E) <∞ .

Then f(ζpl1 − 1, . . . , ζpld − 1) 6= 0 for every tuple (l1, . . . , ld) ∈ Nd such that

mj < lj ≤ nj, 1 ≤ j ≤ d. Here ζ
plj

denotes a primitive plj -th root of unity
contained in a fixed algebraic closure of Qp, respectively.
Moreover,

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(E) =

∑
vp(f(ζpl1 − 1, . . . , ζpld − 1)) ,

where the sum is taken over the same set of tuples (l1, . . . , ld).
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Proof. X := Λd/(ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) is a free Zp-module of rank
(pn1−pm1)·. . .·(pnd−pmd) (compare the proof of Lemma 5.46). A basis over Zp
is given by the products T s11 · . . . · T

sd
d , with sj < deg(ν(nj ,mj)(Tj)) = pnj − pmj ,

respectively.

Multiplication by T1 in Λd induces a Zp-linear map T1 : X −→ X. The ma-
trix corresponding to this map with regard to the above basis, ordered properly,
is a block matrix 

A1 0 · · · · · · 0

0 A1
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 A1


,

where

A1 =


0 · · · · · · 0 −c0

1 0 · · · 0 −c1

1
. . .

...
...

. . . 0 −cpn1−pm1−2

1 −cpn1−pm1−1


is the companion matrix of

ν(n1,m1)(T1) = T p
n1−pm1

1 + cpn1−pm1−1 + . . .+ c0 .

The number of blocks is equal to (pn2 − pm2) · . . . · (pnd − pmd). In particular,
the characteristic polynomial of the linear map T1 is equal to

ν(n1,m1)(T1)(pn2−pm2 )·...·(pnd−pmd ) .

This shows that the eigenvalues of this map are exactly the roots

ζpl1 − 1 , m1 < l1 ≤ n1 ,

of ν(n1,m1)(T1).

Analogously, the eigenvalues of the Zp-linear maps on X induced by multi-
plication by Ti, 2 ≤ i ≤ d, are equal to the roots of ν(ni,mi)(Ti), respectively.

Consider a direct sum decomposition of the free Zp-module X into submod-
ules corresponding to the block decomposition of the matrix representing the
map T1. The representation matrix of the restriction of T1 to one of the corre-
sponding submodules is equal to A1, and therefore the characteristic polynomial
is given by ν(n1,m1)(T1), respectively. Since this polynomial has pairwise differ-
ent roots, we may conclude that T1 is diagonalisable on X (over an algebraic
extension of Qp containing the eigenvalues).

The same is true for the maps T2, . . . , Td. Moreover, since Λd is a commuta-
tive ring, these maps actually are simultaneously diagonalisable. We fix a basis
of X with respect to which T1, . . . , Td are diagonalised.
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Now we consider the given element f ∈ Λd such that

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(Λd/(f)) <∞ .

Since X = Λd/(ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) is isomorphic to

Zp[T1, . . . , Td]/(ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) ,

we may conclude that

E/((ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) ·E) = Λd/(f, ν(n1,m1)(T1), . . . , ν(nd,md)(Td))

is isomorphic to X/(f ·X), where f ∈ Zp[T1, . . . , Td] denotes a representative
of the residue class of f in Zp[T1, . . . , Td]/(ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) which
has degree less than pni − pmi in Ti, respectively.

Now we observe that X/(f · X) is the cokernel of the map on X given by
multiplication by f . By the above, the eigenvalues of this map are equal to

f(ζpl1 − 1, . . . , ζpld − 1) ,

where (l1, . . . , ld) ∈ Nd runs through the tuples such that mj < lj ≤ nj for
every 1 ≤ j ≤ d.

Moreover, if 0 is an eigenvalue of the Zp-linear map f : X −→ X (equiv-
alently, if f(ζpl1 − 1, . . . , ζpld − 1) = 0 for some choice of (l1, . . . , ld)), then

X/(f ·X) is infinite, since X is a free Zp-module. Therefore our assumption that
rank(ν(n1,m1)

(T1),...,ν(nd,md)(Td))(E) <∞ implies that f(ζpl1 − 1, . . . , ζpld − 1) 6= 0

for each tuple (l1, . . . , ld).

Finally, if X/(f ·X) is finite, then its order is equal to pvp(det(f)), and the
determinant of f is given by the product of the eigenvalues. Therefore

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(E) = vp(|X/(f ·X)|)

=
∑

vp(f(ζpl1 − 1, . . . , ζpld − 1))

=
∑

vp(f(ζpl1 − 1, . . . , ζpld − 1)) ,

as claimed.
Note that the sum always runs over all tuples (l1, . . . , ld) ∈ Nd such that

mi < li ≤ ni for every i. This means that if, for example, Td does not occur in
f (i.e., if f ∈ Zp[[T1, . . . , Td−1]]), then each eigenvalue f(ζpl1 − 1, . . . , ζ

pld−1 − 1)

will be counted with multiplicity pnd − pmd (overall, the sum has

(pn1 − pm1) · . . . · (pnd − pmd) = rankZp(X)

terms).

We now may formulate our main result.

Theorem 5.77. Let K/K denote a Zdp-extension, and let moreover A = A(K)

and EA := Λd/(FA) be defined as above. We assume that
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• there exists a prime of K that is totally ramified in K/K, and
• Conjecture 5.65 holds for the tuples

(ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) , nj > mj ≥ e(K/K) for each j ,

for the cyclic modules EA(L) = Λd/(FA(L)) attached to the Zdp-extensions
L/K contained in a suitable neighbourhood U(K, r0) of K, with respect to
the R-topology (compare Definition 5.38).

Then
(i) there exists a neighbourhood Ũ = U(K, r) of K such that

m0(L/K) ≤ m0(K/K)

for each L ∈ Ũ , and
(ii) there exist a neighbourhood U(K, r2) =: U ⊆ Ũ and an integer k ∈ N such

that
l0(L/K) ≤ k

for every L ∈ U satisfying m0(L/K) = m0(K/K).
If Assumption 5.74 holds for K/K, i.e., if we may choose variables T1, . . . , Td
of Λd (corresponding to generators of Gal(K/K)) such that l0(f) = k in the
representation (?) derived at the beginning of the current section, then there
exists a neighbourhood U = U(K, r2) ⊆ Ũ such that

l0(L/K) ≤ l0(K/K)

for every L ∈ U satisfying m0(L/K) = m0(K/K).

Proof. • Let p1 denote a prime of K that is totally ramified in K/K. If
Ũ = U(K, n0) denotes some neighbourhood of K and if n0 > 0, then p1 is
totally ramified in every Zdp-extension L/K, L ∈ Ũ , since there does not
exist an extension of K of degree p that is contained in L (and therefore
also in K) and unramified at p1.

• We will consider the modules A(L) = lim←−A
(L)
n for Zdp-extensions L ∈ Ũ .

These are Fukuda modules with index barrier e(L/K), respectively, by
Corollary 5.28.

• Let e := e(K/K). Corollary 5.68 implies that for every pair of tuples
(n1, . . . , nd), (m1, . . . ,md) ∈ Nd

0 such that nj > mj ≥ e, 1 ≤ j ≤ d, we
have

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(A

(K)) <∞ .

• We fix tuples (n1, . . . , nd) and (m1, . . . ,md) with the above properties.
Theorem 5.30 implies that there exists a neighbourhood U(K, r) such
that

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(A

(L)) = rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(A

(K))

is finite for every L ∈ U(K, r): just choose r ≥ e + 1 large enough to
ensure that

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(A

(K)
r−1)
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is equal to

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(A

(K)
r ) .

Note that such a stabilisation index exists because we have surjective
maps

A
(K)
j /((ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) ·A

(K)
j )

��

A
(K)
i /((ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) ·A

(K)
i )

for every j ≥ i ≥ e, induced by the norm maps, and therefore the rank of

A
(K)
i increases for i ≥ e. Note that Lemma 5.37, (i) and (ii) imply that

e(L/K) = e for every L ∈ U(K, r), since r ≥ e + 1. Therefore Theorem
5.30 indeed applies to L ∈ U(K, r).

• In what follows, the rank of a module M will always denote

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(M) .

Suppose that r ≥ r0, and let L ∈ U(K, r). If EA(L) = Λd/(FA(L)) denotes
the cyclic Λd-module corresponding to A(L), then

rank(EA(L)) ≤ rank(A(L)) = rank(A(K)) ,

by Corollary 5.69, since we assume that Conjecture 5.65 holds for EA(L)

and (ν(n1,m1)(T1), . . . , ν(nd,md)(Td)).

On the other hand, we let ϕ : EA(K) −→ A(K) = A denote a pseudo-
isomorphism. Then ϕ is an injection because the Λd-module EA(K) does
not contain any non-trivial pseudo-null submodules (this may be proved
analogous to Remarks 2.25, (2)).
Writing Ã := im(ϕ), we may conclude that rank(EA(K)) = rank(Ã), using
Proposition 5.52, (ii). Moreover, Proposition 5.52, (i) implies that

rank(A) ≤ rank(Ã) + rank(A/Ã) .

This shows that

rank(EA(L)) ≤ rank(EA(K)) + rank(A/Ã) (5.1)

for every L ∈ U(K, r).
• The following result shows that rank(ν(n1,m1)

(T1),...,ν(nd,md)(Td))(A/Ã) may

be bounded linearly with respect to the (difference of the) two indices nd
and md.
We will assume from now on that

m1 = . . . = md−1 =: m and n1 = . . . = nd−1 =: n ,

and that md > n (this will be sufficient for our applications). Moreover,
m ≥ e will be thought of as being fixed.
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Lemma 5.78. There exists a constant C ∈ N such that for each tuple
(n, n, . . . , n, nd) ∈ Nd and every md ∈ N such that n > m ≥ e and
nd > md > n, we have

rank(f1,...,fd)(A/Ã) ≤ C · [(pn − pm)d−1 + (nd −md)(p
n − pm)d−2] ,

where fj := ν(n,m)(Tj), 1 ≤ j ≤ d− 1, and fd := ν(nd,md)(Td).

Proof. As we have shown in Lemma 5.72, there exists an annihilator
g ∈ Λd of the pseudo-null Λd-module M := A/Ã such that g is regu-
lar with respect to Td, i.e., such that

T ld ≡ 0 mod (p, T1, . . . , Td−1, g)

for some integer l ∈ N.
We let Ann(M) ⊆ Λd denote the annihilator ideal of M , and we define
M := M/pM and R := Λd/(pΛd + Ann(M)). Then R is a local ring,
and the Krull dimension of R is at most d − 1, since M is pseudo-null
(compare the proof of Proposition 5.50, (iii)).
If m denotes the maximal ideal of R and if T1, . . . , Td−1 denote the residue
classes of T1, . . . , Td−1, respectively, then

ml ⊆ (T1, . . . , Td−1) ,

because g ∈ Ann(M) and therefore T ld ∈ (T1, . . . , Td−1) + Ann(M). This
means that

ml(d−1)(pn−pm) ⊆ (ν(n,m)(T1), . . . , ν(n,m)(Td−1)) .

Therefore

rank(ν(n,m)(T1),...,ν(nd,md)(Td))(M) ≤ vp(|M/(ml(d−1)(pn−pm) ·M)|) .

Now we apply the theory of Hilbert polynomials (compare Section 12.1 in
[Ei 95]). Recall the notions introduced in Definition 5.60.

Lemma 5.79 (Hilbert polynomials).
(i) Let R be a Noetherian ring, let M be a finitely generated R-module.

Suppose that I ⊆ R is an ideal of finite colength on M . If

HI,M (n) := length of (In ·M)/(In−1 ·M) ,

n ∈ N, then there exists a polynomial PI,M ∈ Z[T ] of degree smaller
than the number of generators of I such that

PI,M (n) = HI,M (n)

for every sufficiently large n.
(ii) If LI,M (n) := length of M/(In ·M), n ∈ N, then there exists a

polynomial P̃I,M of degree at most 1 + degPI,M such that

P̃I,M (n) = LI,M (n)

for every sufficiently large n.
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(iii) If R is a local ring, then P̃I,M may be chosen of degree at most
equal to the Krull dimension of R/Ann(M), where Ann(M) ⊆ R
denotes the annihilator ideal of M (i.e., Ann(M) = {0} if M is not
R-torsion).

Proof. (i) Compare Proposition 11.2 of [Ei 95].
(ii) See page 277 in [Ei 95].
(iii) Compare Theorem 12.4 in [Ei 95].

We apply Lemma 5.79, (iii) to R = Λd/(pΛd + Ann(M)) and I = m.
Since

R/m ∼= Λd/m ∼= Z/pZ ,

the length of (mk ·M/(mk+1 ·M) corresponds to the dimension over the
field R/m for every k ∈ N. Since the Krull dimension of R/Ann(M) is
smaller than or equal to the Krull dimension of R, which is at most d− 1
by the above, we may conclude that

vp(|M/(ml(d−1)(pn−pm) ·M)|) = O(l(d−1)(d− 1)d−1 · (pn − pm)(d−1))

= O((pn − pm)(d−1)) .

Letting N := M/((ν(n,m)(T1), . . . , ν(nd,md)(Td)) · M), we may conclude
that

rankp(N) = vp(|M/((ν(n,m)(T1), . . . , ν(nd,md)(Td)) ·M)|)

≤ vp(|M/(ml(d−1)(pn−pm) ·M)|)
= O((pn − pm)(d−1)) ,

and it remains to estimate the exponent of N . To this purpose, we refer
to results of A. Cuoco and P. Monsky. The idea is as follows (compare
the proof of Theorem 3.2 in [CM 81]).
We define M ′ := {x ∈M | pj · x = 0 for some j ∈ N} and M ′′ := M/M ′.
Then there exists a fixed integer j, depending only on M , such that
pj · M ′ = 0 (recall that M is finitely generated over Λd and therefore
Noetherian). Using the above approach, we obtain

rank(ν(n,m)(T1),...,ν(nd,md)(Td))(M
′) = O((pn − pm)(d−1)) .

It will therefore be enough to bound rank(ν(n,m)(T1),...,ν(nd,md)(Td))(M
′′),

since
rank(M) ≤ rank(M ′) + rank(M ′′)

by Proposition 5.52, (i). We will first show that we can actually find a
better bound for the p-rank of M ′′.
If J := Ann(M ′′) ⊆ Λd denotes the annihilator ideal of M ′′, then we let J
denote the image of J in Λd := Λd/pΛd. Note that p is not a zero divisor
on M ′′, by definition. Since M and therefore also M ′′ are pseudo-null
Λd-modules, the quotient ring Λd/J has Krull dimension at most d − 2
(compare the proof of Lemma 3.1 in [CM 81]).
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Let m denote the maximal ideal of the local ring Λd/J . IfM ′′ := M ′′/pM ′′,
then

m l(d−1)(pn−pm) ·M ′′ ⊆ (ν(n,m)(T1), . . . , ν(nd,md)(Td)) ·M ′′

because

T ld ·M ′′ ⊆ (p, T1, . . . , Td−1, g) ·M ′′ = (T1, . . . , Td−1) ·M ′′ ,

as in the case of M .
Therefore

rankp(M
′′/((ν(n,m)(T1), . . . , ν(nd,md)(Td)) ·M ′′)) = O((pn − pm)d−2) ,

using Lemma 5.79, (iii) and the fact that the Krull dimension of Λd/J is
at most d− 2.
Finally, we use the following bound on the exponent of M ′′:

Lemma 5.80. Let N denote a finitely generated Λd-module. Then there
exists a constant c = c(N) such that

pn1+...+nd−1+(nd−md)+c

annihilates the torsion subgroup of

N/((ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) ·N)

for each pair (n1, . . . , nd), (m1, . . . ,md) ∈ Nd satisfying ni > mi for every
i and md > max(n1, . . . , nd−1).

Proof. This is a modification of Theorem 2.8 in [CM 81]; in that article,
the result is proved with ν(ni,mi)(Ti) replaced by ν(ni,0)(Ti)·Ti, respectively,
and assuming that all the ni are equal. We will give a proof of a slightly
more general version of this lemma in the next section.

Summarising, we obtain that

rank(M ′′) = O([(d− 1) · n+ (nd −md) + c] · (pn − pm)d−2)

= O(n(pn − pm)d−2 + (nd −md)(p
n − pm)d−2) ,

and therefore

rank(M) = O((pn − pm)d−1 + (nd −md)(p
n − pm)d−2) ,

since n ≤ pn − pm = pm(pn−m − 1) for large n.

Remark 5.81. We want to stress the fact that the bound in Lemma
5.78 is linear in nd and md. This will be one main ingredient making our
proof work.



230 CHAPTER 5. GENERALISED IWASAWA INVARIANTS

• We will now compute rank(EA(K)). Let FA = pm0(K/K) ·f ∈ Λd denote the
characteristic power series of A = A(K), so that EA(K) = Λd/(FA). Recall
that rank(EA(K)) < ∞, by our choice of (n1, . . . , nd) and (m1, . . . ,md).
Therefore Lemma 5.76 implies that

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(EA) =

∑
vp(FA(ζpl1 − 1, . . . , ζpld − 1)) ,

where the sum is taken over all tuples (l1, . . . , ld) ∈ Nd such that we have
mj < lj ≤ nj , 1 ≤ j ≤ d. Here FA ∈ Zp[T1, . . . , Td] denotes, without loss
of generality, a representative of the class of FA in

Λd/(ν(n1,m1)(T1), . . . , ν(nd,md)(Td))

having degree less than pni − pmi in each variable Ti, respectively.
Consider the representation

FA = pm0 · (T kd + hk−1 · T k−1
d + . . .+ h0) , (?)

with m0 = m0(K/K). Suppose that

n = n1 = . . . = nd−1 > m = m1 = . . . = md−1 ≥ e

are fixed, and that md > n has been chosen large enough to ensure that

k

pmd(p− 1)
<

1

pn(p− 1) .
(5.2)

Then

vp(FA(ζpl1 − 1, . . . , ζpld − 1)) = m0 +
k

pld−1(p− 1)

for every tuple (l1, . . . , ld). Indeed, h0, . . . , hk−1 ∈ (p, T1, . . . , Td−1) and
therefore

vp(hi(ζpl1 − 1, . . . , ζpld − 1)) ≥ 1

pn−1(p− 1)

for every i, provided that hi(ζpl1 − 1, . . . , ζpld − 1) 6= 0. But this implies
that

vp(ζ
k
pld

) =
k

pld−1(p− 1)

<
k

pmd−1(p− 1)

< vp(ζ
i
pld
· hi(ζpl1 − 1, . . . , ζpld − 1))

for every 0 ≤ i ≤ d− 1 such that hi(ζpl1 − 1, . . . , ζpld − 1) 6= 0. Note that

vanishing hi do not contribute to vp(FA(ζpl1 − 1, . . . , ζpld − 1).
This shows that

rank(EA(K)) = m0 · (pn − pm)d−1 · (pnd − pmd) (5.3)

+ (nd −md) · k · (pn − pm)d−1 .

We will now study rank(EA(L)) for arbitrary L ∈ U(K, r) (the neigh-
bourhood corresponding to the tuples (n, . . . , n, nd) and (m, . . . ,m,md),
respectively, as defined at the beginning of the proof), turning to the
proofs of (i) and (ii).
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(i) Let FA(L) denote the characteristic power series of A(L). Then pm0(L/K)

divides FA(L) , and therefore Lemma 5.76 implies that

rank(EA(L)) ≥ m0(L/K) · (pn − pm)d−1 · (pnd − pmd) .

Choose an integer i ∈ N such that

pi > i · (k + C) + C , (5.4)

where C denotes the constant defined in Lemma 5.78. Now suppose that
md > n + i is large enough to make (5.2) valid. Furthermore, we define
nd := md + i.
If U(K, r) denotes a neighbourhood of K such that

rank(ν(n,m)(T1),...,ν(nd,md)(Td))(A
(L)) = rank(ν(n,m)(T1),...,ν(nd,md)(Td))(A

(K))

for every L ∈ U(K, r), then (5.1) and (5.3) imply that m0(L/K) ≤ m0 for
every such L.

(ii) From now on, we will restrict to those L ∈ U(K, r) satisfying

m0(L/K) = m0(K/K) .

We will bound l0 invariants by using (5.1) and (5.3). First we subtract
m0(K/K) · (pn − pm)d−1 · (pnd − pmd) on both sides of the inequality
(5.1). This means that we may without loss of generality assume that
m0(L/K) = m0(K/K) = 0.
By Lemma 5.76, we have

rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td))(EA(L)) =

∑
vp(f

(L)(ζpl1 −1, . . . , ζpld −1)) ,

where f (L) = FA(L) denotes the characteristic power series of A(L), and
where the sum is taken over all (l1, . . . , ld) ∈ Nd such that mj < lj ≤ nj ,
1 ≤ j ≤ d.
We will now estimate vp(f

(L)(ζpl1 − 1, . . . , ζpld − 1)). Choose generators
γ′1, . . . , γ

′
d of Γ′ := Gal(L/K) such that each γ′i coincides with the generator

γi ∈ Γ = Gal(K/K) on K ∩ L, respectively. Let T ′i := γ′i − 1, 1 ≤ i ≤ d,
so that f (L) ∈ Λ′d = Zp[[T

′
1, . . . , T

′
d]].

We want to show that f (L) is regular with respect to the variable T ′d in
the sense of Definition 4.9. Then we can write (after multiplication by a
suitable unit of Λ′d)

f (L) = T ′k
′

d + T ′k
′−1

d · h′k′−1 + . . .+ h′0 ,

with k′ ∈ N and h′0, . . . , h
′
k′−1 ∈ (p, T ′1, . . . , T

′
d−1) ⊆ Λ′d. Note that

vp(f
(L)(ζpl1 − 1, . . . , ζpld − 1)) = vp(f (L)(ζpl1 − 1, . . . , ζpld − 1)) ,

where, as usual, f (L) ∈ Zp[T
′
1, . . . , T

′
d] denotes a representative of the

residue class of f (L) in Λ′d/(ν(n1,m1)(T
′
1), . . . , ν(nd,md)(T

′
d)) having degree



232 CHAPTER 5. GENERALISED IWASAWA INVARIANTS

less than pni − pmi in each variable T ′i , respectively. We therefore may
assume that each h′i is of finite total degree.

Since rank(EA(L)) < ∞, we know that f (L)(ζpl1 − 1, . . . , ζpld − 1) 6= 0 for
every choice of (l1, . . . , ld), by Lemma 5.76.
If f (L) is not regular with respect to T ′d, then f (L) ∈ (p, T ′1, . . . , T

′
d−1) and

vp(f (L)(ζpl1 − 1, . . . , ζpld − 1)) ≥ 1

pn−1(p− 1)

for each tuple (l1, . . . , ld). If f (L) is regular in T ′d, but k′

pld−1(p−1)
≥ 1

pn−1(p−1)

for some md < ld ≤ nd, then the same estimate holds for every l1, . . . , ld−1

(for this fixed ld). Otherwise,

vp(f (L)(ζpl1 − 1, . . . , ζpld − 1)) =
k′

pld−1(p− 1) .

If k1, . . . , ks denote the values of ld for which only the ‘bad’ estimate
vp(f (L)(ζpl1 − 1, . . . , ζpld − 1)) ≥ 1

pn−1(p−1)
holds, then

{k1, . . . , ks} = {md + 1, . . . ,md + s} ,

since k′

pld−1(p−1)
becomes smaller for growing ld and therefore the ‘bad’ ld

are the small ones, as in the proof of Theorem 3.57. Note that up to
now, we have not excluded the possibility that md + s = nd (and this will
happen, for example, if f (L) is not regular in T ′d).
Summarising, we obtain that

1

pn−1(p− 1)
· (pn − pm)d−1 · (pmd+s − pmd)

+ k′ · (pn − pm)d−1 · (nd −md − s)
≤ rank(EA(L)) (5.5)

≤ k · (pn − pm)d−1 · (nd −md) + C · (pn − pm)d−1

+ C · (nd −md) · (pn − pm)d−2 ,

using (5.1), (5.3) and Lemma 5.78.
Recall that md > n + i is large enough in order to make (5.2) valid, and
that nd = md + i, where pi > i · (k + C) + C by (5.4). In particular,

(pmd+s − pmd) · 1

pn−1(p− 1)
= pmd · (ps − 1) · 1

pn−1(p− 1)

> pmd−n

> pi

> (nd −md) · (k + C) + C

whenever s > 0. Since this contradicts (5.5), we may conclude that s = 0
in U(K, r). In particular, this shows that every L ∈ U(K, r) satisfying
m0(L/K) = m0(K/K) has (up to powers of p) a characteristic power
series which is regular with respect to the variable T ′d, respectively.
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Therefore (5.5) reduces to

k′(pn − pm)d−1(nd −md) ≤ k(pn − pm)d−1(nd −md) + C(pn − pm)d−1

+C(nd −md)(p
n − pm)d−2 ,

or equivalently

k′(nd−md)(p
n−pm) ≤ k(nd−md)(p

n−pm)+C(pn−pm)+C(nd−md) .

Now we assume that n−m (which still is a free parameter) is greater than
or equal to logp(i+ 1), i = nd−md. Letting i −→∞ (this does not affect
C!), we may conclude that there exists a neighbourhood U = U(K, r) of
K such that

k′ ≤ k

for every L ∈ U satisfying m0(L/K) = m0(K/K). In particular,

l0(f (L)) ≤ k′ ≤ k

for each L ∈ U , by Lemma 5.70.
Finally, if Assumption 5.74 holds for K/K, then

l0(L/K) = l0(f (L)) ≤ k = l0(f) = l0(K/K)

for all such L.

As we have already observed earlier (compare Remark 5.75), the case of
l0(K/K) = 0 has to be treated seperately.

Theorem 5.82. Let K/K denote a Zdp-extension such that there exists a prime
p of K that is totally ramified in K/K. Suppose that Conjecture 5.65 holds for
the tuples

(ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) , nj > mj ≥ e(K/K) for each j ,

for the cyclic modules EA(L) = Λd/(FA(L)) attached to the Zdp-extensions L/K
contained in a suitable neighbourhood U(K, r0) of K.
If the characteristic power series f (K) of K/K is associated to a power of p (so
that in particular l0(K/K) = 0), then there exists a neighbourhood U = U(K, r)
of K such that

l0(L/K) = 0

for every L ∈ U satisfying m0(L/K) = m0(K/K). In fact, f (L) = pm0(K/K) for
L ∈ U .

Proof. We will use the notation from the proof of Theorem 5.77, in particular
applying the inequalities (5.1) and (5.5).

As in the proof of Theorem 5.77, (ii), we subtract on both sides of the
inequality (5.1) the term m0(K/K) · (pn − pm)d−1 · (pnd − pmd) and therefore
may assume that, without loss of generality, m0(K/K) = 0.
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Then the fact that f (K) = 1 implies that EA(K) = {0}. Therefore (5.1)
implies that

rank(EA(L)) ≤ rank(A/Ã) ≤ C · [(pn − pm)d−1 + (nd −md)(p
n − pm)d−2]

for some constant C ∈ N and every L ∈ U(K, r), provided that r is large
enough.

If f (L) 6= 1, then vp(f (L)(ζpl1 − 1, . . . , ζpld − 1)) ≥ 1
pld−1(p−1)

for each of the

corresponding tuples of p-power roots of unity (recall that ld > md > n+ i for
some large integer i ∈ N).

But then rank(EA(L)) ≥ (nd−md)·(pn−pm)d−1, which is strictly larger than
C · [(pn − pm)d−1 + (nd −md)(p

n − pm)d−2] if the parameters are large enough.
This proves that f (L) = 1 and therefore l0(L/K) = 0 for every L ∈ U .

Corollary 5.83. Let K/K denote a Zdp-extension such that there exists a prime
p of K that is totally ramified in K/K. Suppose that Conjecture 5.65 holds for
the tuples

(ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) , nj > mj ≥ e(K/K) for each j ,

for the cyclic modules EA(L) = Λd/(FA(L)) attached to the Zdp-extensions L/K
contained in a suitable neighbourhood U(K, r0) of K.
If A(K) is pseudo-null, then there exists a neighbourhood U = U(K, r) of K such
that A(L) is pseudo-null for every L ∈ U .

Proof. If A(K) is pseudo-null, then m0(K/K) = 0 and f (K) = 1. Since m0 is
locally maximal by Theorem 5.12 (note that U(K, r) ⊆ U(K, r) for every r ∈ N,
by Proposition 5.39), the claim follows from the previous theorem.

Remarks 5.84.

(1) Let K/K denote a Zdp-extension such that there exists a prime of K that
is totally ramified in K/K. Then the statements of Theorem 5.77, respec-
tively, Theorem 5.82 and Corollary 5.83, hold for all Zdp-extensions L of K
that are contained in a suitable neighbourhood U(K, r) of K and satisfy
the following condition:

The module A(L) = lim←−A
(L)
n is generated over Λd by at most two elements.

Proof. If L ∈ U(K, r) satisfies the above condition, then the image

ẼA(L) := ϕ(L)(A(L)) ⊆ EA(L) := Λd/(FA(L))

under the corresponding pseudo-isomorphism ϕ(L) : A(L) ∼−→ EA(L) is
generated by at most two elements.
We have to show that this implies that inequality (5.1) holds, since this is
the only step of the proof of Theorem 5.77 which depends on Conjecture
5.65.
In other words, it suffices to show that

rank(EA(L)) ≤ rank(A(L))
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for these L, where rank always denotes rank(ν(n1,m1)
(T1),...,ν(nd,md)(Td)), and

where nj > mj ≥ e(K/K) for every j ∈ {1, . . . , d}.
If A(L) and therefore also ẼA(L) = ϕ(L)(A(L)) are cyclic Λd-modules (i.e.,
generated by a single element), then we have in fact

A(L) ∼= EA(L) = Λd/(FA(L)) ,

and therefore

rank(EA(L)) = rank(A(L)) .

Now suppose that ẼA(L) ⊆ EA(L) is generated by exactly two elements.
Since Λd/(ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) is isomorphic to a finitely gener-
ated free Zp-module, Lemma 5.56 and Proposition 5.52, (ii) and (iii) imply
that

rank(EA(L)) = rank(ẼA(L)) = rank(A(L)/M
(L)
1 )

≤ rank(A(L)) ,

where M
(L)
1 ⊆ A(L) denotes the kernel of the pseudo-isomorphism ϕ(L),

respectively.

(2) In Section 5.9, we will prove Conjecture 5.65 in several further special cases,
thus obtaining more unconditional variants of Theorem 5.77.

5.8 Bounding the exponents of torsion modules

This section is devoted to a proof of Lemma 5.80, which has been used in
the proof of Theorem 5.77. We will actually prove a slightly more general
statement which will be needed in the next section. In order to state this result
in an elegant way, we introduce some ad hoc notation.

For every i ∈ {1, . . . , d} and each n ∈ N0, we define

ν(0,−1)(Ti) := Ti

and

ν(n,−1)(Ti) := ν(n,0)(Ti) · ν(0,−1)(Ti) = Ti · ν(n,0)(Ti) .

Lemma 5.80. Let N denote a finitely generated Λd-module. Then there exists
a constant c = c(N) such that

pn1+...+nd−1+(nd−md)+c

annihilates the Zp-torsion subgroup of

N/((ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) ·N)

for each pair (n1, . . . , nd), (m1, . . . ,md) ∈ Zd satisfying nj > mj ≥ −1 for every
1 ≤ j ≤ d, provided that md > max(n1, . . . , nd−1).
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Our proof is a slight modification of the proof of Theorem 2.8 in [CM 81].
This theorem bounds the exponent of the torsion submodule of

N/((T1·ν(n,0)(T1), . . . , Td·ν(n,0)(Td))·N) = N/((ν(n,−1)(T1), . . . , ν(n,−1)(Td))·N)

for n ∈ N.

Let I := (ν(n1,m1)(T1), . . . , ν(nd,md)(Td)) ⊆ Λd. The first step will be to
construct an embedding of Λd/I into a direct sum of cyclotomic rings Zp[ζ]

generated by suitable pl-th roots of unity.

More precisely, we consider the set W of tuples ζ = (ζpl1 , . . . , ζpld ) of primi-

tive plj -th roots of unity, contained in a fixed algebraic closure Qp of Qp, where
mj < lj ≤ nj , respectively. Here 1 is the only primitive p0-th root of unity.
Note that ζ

plj
− 1 is a root of ν(nj ,mj)(Tj) for every mj < lj ≤ nj , respectively.

Each cyclotomic ring Zp[ζ] is a free Zp-module of rank ϕ(pli), where

li = max(l1, . . . , ld) .

Two tuples ζ and ζ ′ are called conjugate if and only if there exists an automor-

phism ψ ∈ AutQp(Qp) such that ψ(ζ) = ζ ′, where we let ψ act component-
wise. Note that this is the case if and only if ζ ′ = ζu for some integer

u ∈ {1, . . . , pmax(l1,...,ld)} coprime to p, i.e., if ζ and ζ ′ generate the same cyclo-
tomic ring.

We choose one ζ of each conjugacy class of W , and we consider the direct
sum

Z :=
⊕

Zp[ζ]

over this set of representatives.

Suppose that k ∈ {0, . . . , d} is chosen such that m1 = . . . = mk = −1 and
mi ≥ 0 for every i > k (if necessary, we permute some of the indices). Then Z
is a free Zp-module of rank

pn1 · . . . · pnk · (pnk+1 − pmk+1) · . . . · (pnd − pmd) .

Moreover, we obtain a surjective map

ϕ = ϕ(n1,...,nd),(m1,...,md) : Λd/I // // Z ,

induced by the maps

Λd/I // // Zp[ζ] , f � // f(ζpl1 − 1, . . . , ζpld − 1) ,

where ζ = (ζpl1 , . . . , ζpld ) ∈ W (this is well-defined since g(ζ) = 0 for every
g ∈ I).

Lemma 5.85. Suppose that md > max(n1, . . . , nd−1). Then the cokernel of the
map ϕ is annihilated by pn1+...+nd−1+(nd−md).
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Proof. This is an adaption of Lemma 2.1 in [CM 81]. In course of the proof of
that lemma, the authors observe that the polynomials defined by

Gn0 (T ) :=

pn∑
j=1

T j ∈ Zp[T ]

and Gns (T ) := Gn0 (T p
s
) − Gn0 (T p

s−1
) for 0 < s ≤ n have the property that

Gns (ζ) = pn whenever ζ is a primitive ps-th root of unity, and Gns (ζ) = 0 if
ζp

n
= 1, but ζ is no primitive ps-th root of unity.

Letting H
(n,m)
0 (T ) := Gn−m0 (T p

m
), we may conclude that H

(n,m)
0 (ζ) = pn−m

whenever ζ is a pm-th root of unity, and H
(n,m)
0 (ζ) = 0 if ζp

n
= 1, ζp

m 6= 1.
More generally, for m ≥ 0 and n−m ≥ s > 0, we define

H(n,m)
s (T ) := H

(n,m)
0 (T p

s
)−H(n,m)

0 (T p
s−1

) .

Then H
(n,m)
s (ζ) = 0 if ζp

n
= 1, but ζ is no primitive pm+s-th root of unity, and

H
(n,m)
s (ζ) = pn−m otherwise.

Finally, let ζ = (ζpl1 , . . . , ζpld ) ∈W , i.e., mi < li ≤ ni for each i ∈ {1, . . . , d}.
Since md > max(n1, . . . , nd−1) by assumption, we have ld = max(l1, . . . , ld). We
therefore may choose integers a1, . . . , ad−1 such that ζ

aj

pld
= ζ

plj
, respectively.

We let

Hζ(T1, . . . , Td) := H
(nd,md)
ld−md (Td) ·

d−1∏
j=1

G
nj
0 (T

aj
d · Tj) .

Then Hζ(ζ
′) = 0 for every ζ ′ = (ζ ′

pl
′
1
, . . . , ζ ′

p
l′
d
) ∈ W , unless l′d = ld and

(ζ ′
p
l′
d
)aj · ζ ′

p
l′
j

= 1 for every 1 ≤ j ≤ d − 1, i.e., unless ζ ′ is conjugate to ζ.

Note that Hζ(ζ
′) = pn1+...+nd−1+nd−md for every ζ ′ conjugate to ζ.

If ζ ′ denotes an element conjugate to ζ, and if z ∈ pn1+...+nd−1+nd−md ·Zp[ζ ′]
denotes an arbitrary given element, then we can find a polynomial

g ∈ Zp[T1, . . . , Td] ⊆ Λ

such that (g ·Hζ)(ζ
′) = z. Moreover, g ·Hζ vanishes at all ζ ′′ ∈W that are not

conjugate to ζ. This proves the lemma.

Corollary 5.86. Under the above assumptions,

ϕ : Λd/I −→ Z =
⊕

Zp[ζ]

is injective with finite cokernel annihilated by pn1+...+nd−1+nd−md.

Proof. Choose k ∈ {0, . . . , d} such that m1 = . . . = mk = −1 and mi ≥ 0 for
every i > k. Then both Λd/I and Z are free Zp-modules of rank

pn1 · . . . · pnk · (pnk+1 − pmk+1) · . . . · (pnd − pmd)

(compare the proof of Lemma 5.46). Since the cokernel of ϕ is annihilated by
pn1+...+nd−1+nd−md , by the previous lemma, we may conclude that the image of
ϕ has full rank. Therefore ϕ has to be injective.
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Remark 5.87. In the proof of the above corollary, there is no need to use
Lemma 5.46, since Lemma 5.85 actually reproves the fact that Λd/I is a free
Zp-module of rank pn1 · . . . · pnk · (pnk+1 − pmk+1) · . . . · (pnd − pmd): Obviously
this quotient is generated as a Zp-module by the elements T s11 · . . . · T

sd
d with

0 ≤ si < deg(ν(ni,mi)(Ti)), respectively. Since the number of these elements is
equal to the Zp-rank of Z, and since the cokernel of ϕ is finite by the above
lemma, it follows that Λd/I in fact is Zp-free.

We will now use the map ϕ for the study of finitely generated Λd-modules.
Let N denote such a module. For every ζ = (ζpl1 , . . . , ζpld ) ∈ W , we define a
finitely generated Zp[ζ]-module

Nζ := N / (Iζ ·N) ,

where Iζ ⊆ Λd denotes the kernel of the map

πζ : Λd // Zp[ζ] , f � // f(ζpl1 − 1, . . . , ζpld − 1) .

Nζ is a Zp[ζ]-module via z · n := yn, where y ∈ Λd denotes any element
such that πζ(y) = z.

Lemma 5.88. There exists a fixed integer c = c(N) such that pc annihilates
the Zp-torsion submodule of the finitely generated Zp[ζ]-module Nζ for every
ζ ∈W .

Proof. This is Lemma 2.6 in [CM 81] (in fact this result does not only hold for
the ζ ∈W , but for every tuple of p-power roots of unity).

The projections N −→ Nζ canonically induce a map ϕ : N −→
⊕
Nζ ,

where the sum is taken over a set of representatives of the conjugacy classes of
the ζ ∈W .

Lemma 5.89. Suppose that md > max(n1, . . . , nd−1). Then both the kernel
and the cokernel of the induced map

Φ : N/(I ·N) //
⊕
Nζ

are annihilated by pn1+...+nd−1+(nd−md).

Proof. First note that the map Φ is well-defined, since for each ζ ∈ W , the
ideal I is contained in the kernel Iζ of πζ , respectively.

If g1, . . . , gr are generators of the Λd/I-module N/(I ·N), then the images
Φ(g1), . . . ,Φ(gr) generate

⊕
Nζ over Z =

⊕
Zp[ζ] (acting component-wise).

Since the image of Φ contains every linear combination of Φ(g1), . . . ,Φ(gr) with
coefficients in Λd/I (instead of Z), the statement for the cokernel follows from
Lemma 5.85.

The result for the kernel may be proved analogously to Lemma 2.7 in
[CM 81]: Since N is finitely generated over Λd, there exist a finitely generated
free Λd/I-module F and a surjective homomorphism F � N/(I · N). Choose
generators u1, . . . , uk ∈ F of the kernel of this homomorphism.
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Let x ∈ ker(Φ). Choose some x ∈ F that is mapped to x. We consider the
map F −→ Fζ for some fixed ζ ∈W . Note that the kernel of the map

F −→ Fζ = F/(Iζ · F ) −→ N/(Iζ ·N)

is equal to Iζ · F + <u1, . . . , uk>. We may conclude that

x =

k∑
i=1

ai,ζ · ui mod (Iζ · F )

for suitable ai,ζ ∈ Zp[ζ], since the image of x in Nζ is trivial.

Lemma 5.85 implies that for every i ∈ {1, . . . , k}, there exists an element
ai ∈ Λd such that ϕ(ai) ∈ Z has component pn1+...+nd−1+nd−md · ai,ζ in every
Zp[ζ], respectively. Therefore

ϕ(pn1+...+nd−1+nd−md · x−
k∑
i=1

aiui) = 0

vanishes in every Fζ , and thus pn1+...+nd−1+nd−md · x =
∑
aiui, since F is free

over Λd/I and

ϕ : Λd/I // Z =
⊕
Zp[ζ]

is injective by Corollary 5.86. But this means that x ∈ ker(Φ) satisfies

pn1+...+nd−1+nd−md · x = 0 .

Now we are ready for the proof of Lemma 5.80 :

Proof. We consider the map Φ : N/(I ·N) −→
⊕
Nζ of the previous lemma.

If x is contained in the Zp-torsion subgroup of N/(I ·N), then Φ(x) represents
a Zp-torsion element in each of the Nζ .

Therefore pc(N) · x ∈ ker(Φ), where c(N) denotes the constant defined in
Lemma 5.88. But then

pn1+...+nd−1+(nd−md)+c(N) · x = 0 ,

by Lemma 5.89.

5.9 The rank inequality

In this section, we will prove the Rank Inequality Conjecture 5.65 in some
special cases. This yields weak unconditional versions of Theorem 5.77. We
will state basically three main results.
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Theorem 5.90. Write E = Λd/(p) for some p ∈ Λd.
(i) Suppose that rank(T1,...,Td)(E) < ∞ for a choice of variables of Λd. Then

rank(T̃1,...,T̃d)(E) < ∞ for every set of variables arising from {T1, . . . , Td}
by an admissible change of variables in the sense of Definition 4.6.

(ii) If T1, . . . , Td can be chosen such that moreover, there exists some index
i ∈ {1, . . . , d} such that the residue class of p in

Λd/(T1, . . . , Ti−1, Ti+1, . . . , Td) ∼= Zp[[Ti]]

is coprime to every polynomial ν(n,0)(Ti) ∈ Zp[Ti], n ∈ N, then the Rank

Inequality Conjecture 5.65 holds for every tuple {T̃1, . . . , T̃d}.

Proof. (i) We first note that whenever T̃1, . . . , T̃d are obtained from T1, . . . , Td
by an admissible change of variables, then we have an equality of ideals

(T1, . . . , Td) = (T̃1, . . . , T̃d) .

Indeed,

T̃i =
d∏
j=1

(Tj + 1)aij − 1

for each 1 ≤ i ≤ d, where aij ∈ Zp denote suitable elements, respectively.
Therefore T̃i ∈ (T1, . . . , Td) for every i.
Conversely, the set {T1, . . . , Td} arises as an admissible change of variables
of {T̃1, . . . , T̃d}, and therefore also Ti ∈ (T̃1, . . . , T̃d) for every i.
This means that

rank(T1,...,Td)(N) = rank(T̃1,...,T̃d)(N)

for every Λd-module N , proving the first statement of the theorem. Note
that rank(T1,...,Td)(Λd/(p)) < ∞ if and only if p 6∈ (T1, . . . , Td), which
means that p has a ‘non-trivial constant coefficient’.
We will now turn to the proof of (ii). We write Λd = Zp[[Γ

d]], where
Γd ∼= Zdp is generated topologically by the elements

γ1 := T1 + 1, . . . , γd := Td + 1 .

By the above, we are free to choose a different set of generators of Γd and
prove the conjecture for the corresponding variables.

(ii) After renumbering the variables T1, . . . , Td, we may assume that the residue
class of p in Zp[[T1, . . . , Td−2, Td]] ∼= Zp[[Td−1]] is coprime to the polyno-
mials ν(n,0)(Td−1), n ∈ N. This condition is equivalent to saying that

rank(T1,...,Td−2,ν(n,0)(Td−1),Td)(E) < ∞

for every n ∈ N (compare Lemma 1.17).
Let Ẽ ⊆ E denote a submodule such that M := E/Ẽ is a pseudo-null
Λd-module. Let h̃ ∈ Λd be an annihilator of M which is coprime to p
(compare Remarks 2.20, (3)). We write p = pm0 · g and h̃ = pn0 · h with
p - g · h in Λd (so that m0 = 0 or n0 = 0).
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After an admissible change of variables, we may assume that g and h are
regular with respect to Td in the sense of Definition 4.9 (compare Lemma
4.7). Note that such a change of variables does not destroy the property
that rank(T1,...,Td−2,ν(n,0)(Td−1),Td)(E) < ∞ for every n ∈ N. Indeed, the
new variables X1, . . . , Xd are obtained from T1, . . . , Td by the rule

X1 = (T1 + 1)(Td + 1)a1 − 1 ,

...

Xd−1 = (Td−1 + 1)(Td + 1)ad−1 − 1 ,

Xd = Td ,

where a1, . . . , ad−1 ∈ Zp are suitable powers of p. But then

Xi ≡ Ti mod Td

for every 1 ≤ i ≤ d− 1, and therefore

rank(X1,...,Xd−2,ν(n,0)(Xd−1),Xd)(E) = rank(T1,...,Td−2,ν(n,0)(Td−1),Td)(E)

for every n ∈ N.
We now apply the following result of J. Minardi.

Lemma 5.91 (Minardi). Suppose that d ≥ 3, and let g, h ∈ Zp[[T1, . . . , Td]]
be relatively prime and both regular with respect to Td. Then for all
but finitely many subgroups < σ > ⊆ H := < γ1, . . . , γd−1 > satisfying
H/<σ> ∼= Zd−2

p , the residue classes of g and h in Λd/< σ − 1 > are
relatively prime.

Proof. See Proposition 4.C in [Min 86].

Inductively, we see that the generators γ1, . . . , γd of Γd may be chosen
such that the images of g and h in

Λ2 := Zp[[Td−1, Td]] ∼= Λd/(T1, . . . , Td−2)

still are relatively prime.
After multiplication of g by a unit in Λd, we may assume that g equals a
monic polynomial in (Zp[[T1, . . . , Td−1]])[Td]. We therefore may choose a
representative of the residue class of g in Λ2 of the form

f0(Td−1) + f1(Td−1) · Td + . . .+ fk−1(Td−1) · T k−1
d + T kd ,

k ∈ N, where f0, . . . , fk−1 ∈ Zp[[Td−1]]. Then f0(0) 6= 0, since we assume
that rank(T1,...,Td)(E) is finite and therefore p = pm0 · g 6∈ (T1, . . . , Td).
Now we apply another result of Minardi.

Lemma 5.92 (Minardi). Suppose that g, h ∈ Λ2 are relatively prime, and
that we can write

g = f0(Td−1) + f1(Td−1) · Td + . . .+ fk−1(Td−1) · T k−1
d + T kd .
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We assume that f0(Td−1) is relatively prime to p and to each of the poly-
nomials ν(n,0)(Td−1) ·Td−1 = (Td−1 + 1)p

n −1, n ∈ N. Then the following
holds.
For every l ∈ N, there exists an element α ∈ pl · Zp such that the residue
classes of g and h in Λ2/(Tα) are relatively prime, where

Tα := (Td + 1)(Td−1 + 1)−α − 1 .

Proof. See Lemma 4.2 in [Min 86]; we will give a sketch of the proof in
course of the proof of the next lemma.

We may actually modify this result, obtaining the following lemma.

Lemma 5.93. Suppose that p, h̃ ∈ Λ2 are relatively prime, and that we
can write

p = pm0 · (f0(Td−1) + f1(Td−1) · Td + . . .+ fk−1(Td−1) · T k−1
d + T kd )

for some m0 ∈ N0. We assume that f0(Td−1) is coprime to each of the
polynomials ν(n,0)(Td−1) · Td−1, n ∈ N.
Then l0 ∈ N can be chosen large enough such that for every l > l0, there
exists an element α ∈ pl · Zp such that the residue classes of p and h̃ in
Λ2/(Tα) are relatively prime.

Proof. We will first describe the strategy behind Minardi’s proof of Lemma
5.92. Let thus g, h ∈ Λ2 be as in the statement of that lemma. For α ∈ Zp,
we define

gα(Td−1) := f0(Td−1)+f1(Td−1)((Td−1+1)α−1)+. . .+((Td−1+1)α−1)k .

Then g ≡ gα mod Tα. Note that Tα - gα, since f0(Td−1) is coprime to
Td−1 and therefore g 6∈ (T1, . . . , Td−1, Td) = (T1, . . . , Td−1, Tα). Moreover,
if α is divisible by a sufficiently large power of p, then p - gα, since f0(Td−1)
is coprime to p. Indeed, f0(Td−1) is associated to a distinguished poly-
nomial f̃0 ∈ Zp[Td−1]. Let l̃ := deg(f̃0), and choose l ∈ N large enough
to ensure that pl−1 > l̃. Let α ∈ pl · Zp, and let ζ denote a primitive
pl-th root of unity contained in a suitable algebraic extension K of Qp. If
p | gα, then gα(ζ−1) ≡ 0 mod p in the ring of integral elements of K. But
((ζ−1) + 1)α−1 = 0, because α ∈ pl ·Zp. Therefore gα(ζ−1) = f0(ζ−1)
is associated to f̃0(ζ − 1). Since

deg(f̃0) = l̃ < p(l−1)(p− 1) ,

we may conclude that vp(f̃0(ζ − 1)) < 1, proving that p - gα(ζ − 1).
For every α, Minardi chose an irreducible distinguished polynomial factor
Pα(Td−1) of gα(Td−1) ∈ Zp[[Td−1]], respectively, and he proved that the
set of prime ideals

{Aα = (Tα, Pα(Td−1)) | α ∈ pl ·Zp}
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of Λ2 is infinite for every l ∈ N. This step of the proof needs the assump-
tion that f0(Td−1) is coprime to every polynomial ν(n,0)(Td−1) · Td−1 in
Zp[[Td−1]].
Minardi then explained that ⋂

α∈ pl·Zp

Aα

is contained in a prime ideal (R) ⊆ Λ2 of height one.
Now suppose that the images of g and h in Λ2/(Tα) are not relatively
prime. Then we can choose some Pα(Td−1) dividing both g and h modulo
Tα, and therefore

g, h ∈ Aα = (Tα, Pα(Td−1))

for this choice of Pα. If the statement of the lemma was wrong, we could
therefore conclude that

g, h ∈
⋂

α∈ pl·Zp

Aα ⊆ (R) ,

in contradiction to the assumption that g, h ∈ Λ2 are relatively prime.

Now we start with the proof of Lemma 5.93. Suppose first that m0 = 0,
but that p divides f0(Td−1). We have to exclude the possibility that the
residue classes of p = g and h̃ in Λ2/(Tα) both are divisible by p. Then
each irreducible common factor will be associated to some distinguished
polynomial Pα(Td−1), and Minardi’s proof will go through.
Since l0(p) < ∞, there exists an integer l ∈ N such that γα − 1 does not
divide p ∈ Λ2/(p) for every 0 6= α ∈ pl ·Zp, where

γα := γd · γ−αd−1 = Tα + 1 .

Here we use the fact that the irreducible elements γα − 1 ∈ Λ2/(p), α ∈ Zp,
are pairwise coprime since the elements γα ∈ Γd \ (Γd)p generate different
subgroups of Γd, respectively.
But this means that p 6∈ (p, Tα) ∈ Λ2 for every 0 6= α ∈ pl · Zp, and thus
the image of p in Λ2/(Tα) is coprime to the residue class of p for these α.
Finally, suppose that m0 > 0. Then p divides the image of p in Λ2/(Tα)
for each α ∈ Zp. However, p - h̃, since p and h̃ are coprime in Λ2. If l ∈ N
is large enough to ensure that γα − 1 does not divide the residue class of h̃
in Λ2/(p) for every 0 6= α ∈ pl ·Zp, then the residue class of h̃ in Λ2/(Tα) is
coprime to p. Therefore, for these α, each possible common factor of the
classes of p and h̃ in Λ2/(Tα) is divisible by some distinguished polynomial
Pα(Td−1).

For every α ∈ Zp, the set {γ1, . . . , γd−2, γd−1, γα = γd · γ−αd−1} topologically

generates the group Γd. We have therefore proved the following fact.

Proposition 5.94. Under the assumptions of Theorem 5.90, (ii), we may
choose variables T1, . . . , Td of Λd such that

M/((T1, . . . , Td−2, Td) ·M)
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is finite.

Proof. This follows from Lemmas 5.91 and 5.93. Indeed, Lemma 5.91
implies that we may choose variables T1, . . . , Td such that the images of g
and h in Λ2 are coprime. Since both g and h are regular with respect to Td,
the corresponding residue classes both are also coprime to p. Therefore at
most one of the images of the elements p and h̃ in the unique factorisation
domain Λ2 is divisible by p.
In order to be able to apply Lemma 5.93, it therefore remains to prove that
f0(Td−1) in the representation of g is coprime to ν(n,0)(Td−1)·Td−1 for every
n ∈ N. First, f0(Td−1) is coprime to Td−1, since g 6∈ (T1, . . . , Td−2, Td−1, Td)
by assumption.
Moreover, we also assume that the residue class of p = pm0 · g in the
quotient Λd/(T1, . . . , Td−2, Td) is coprime to each ν(n,0)(Td−1). Since the
element pm0 · f0(Td−1) is contained in this residue class, the conditions of
Lemma 5.82 are fulfilled.
Lemma 5.93 implies that the images of p and h̃ in

Λd/(T1, . . . , Td−2, Td) ∼= Zp[[Td−1]]

are coprime for a suitable choice of Td (let Td := Tα in the notation
from Lemma 5.93). Therefore Λd/(T1, . . . , Td−2, Td, p, h̃) is finite. But
this means that also M/((T1, . . . , Td−2, Td) ·M) is finite.

The next step of the proof may be formulated in a more general setting.

Proposition 5.95. Let f1, . . . , fd ∈ Λd be such that rank(f1,...,fd)(E) is
finite, and suppose that there exists some index i ∈ {1, . . . , d} such that
Λd/(f1, . . . , fi−1, fi+1, . . . , fd) is a unique factorisation domain. Then mul-
tiplication by fi on E/((f1, . . . , fi−1, fi+1, . . . , fd) · E) is injective.

Proof. The local ring

Q := Λd/(f1, . . . , fi−1, fi+1, . . . , fd)

has Krull dimension at least two by Proposition 2.17, (ii) and Corollary
10.9 in [Ei 95].
Suppose that multiplication by fi on

E/((f1, . . . , fi−1, fi+1, . . . , fd) · E) = Q/(p ·Q)

is not injective. Since Q is a unique factorisation domain, this means
that the residue classes of fi and p in Q are not coprime. If d denotes an
irreducible common divisor, then the classes of both fi and p are contained
in the principal ideal of Q generated by d. In particular,

|E/((f1, . . . , fd) · E)| = |Q/((fi, p) ·Q)| ≥ |Q/(d)| .

This contradicts the assumption that rank(f1,...,fd)(E) <∞, because Q/(d)
is a local domain having Krull dimension at least equal to

dim(Q)− 1 ≥ 1
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by Corollary 10.9 in [Ei 95], and therefore Q/(d) is infinite, using Corollary
10.7 of [Ei 95].

Lemma 5.96. Let E, Ẽ and M = E/Ẽ be defined as above, let further
f1, . . . , fd ∈ Λd be elements as in Proposition 5.95. Suppose that addition-
ally,

M/((f1, . . . , fi−1, fi+1, . . . , fd) ·M)

is finite for the index i ∈ {1, . . . , d} from Proposition 5.95.
Then rank(f1,...,fd)(Ẽ) ≥ rank(f1,...,fd)(E).

Proof. Let I ⊆ Λd be the ideal generated by f1, . . . , fi−1, fi+1, . . . , fd. The
exact sequence

0 // Ẽ // E // M // 0

induces an exact sequence

0 // Ẽ/Ñ︸ ︷︷ ︸
=: N1

// E/(I · E)︸ ︷︷ ︸
=: N2

// M/(I ·M)︸ ︷︷ ︸
=: N3

// 0 ,

where Ñ := I · E ∩ Ẽ.
We let Nj [fi] := {x ∈ Nj | fi · x = 0}, j ∈ {1, 2, 3}. As in the proof of
Proposition 3.43, (ii), we can apply the Snake Lemma to the commutative
diagram

N1[fi]

��

N2[fi]

��

N3[fi]

��

0 // N1

· fi
��

// N2

· fi
��

// N3

· fi
��

// 0

0 // N1

��

// N2

��

// N3

��

// 0

N1/(fi ·N1)

��

N2/(fi ·N2)

��

N3/(fi ·N3)

��

0 0 0

and obtain a long exact sequence

0 // N1[fi] // N2[fi] // N3[fi]

// N1/(fi ·N1) // N2/(fi ·N2) // N3/(fi ·N3) // 0 .

Since Proposition 5.95 implies that

N2[fi] = (E/(I · E))[fi] = {0} ,
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we obtain an exact sequence

0 // (M/(I ·M))[fi] // Ẽ/(Ñ + (f1, . . . , fd) · Ẽ)

// E/((f1, . . . , fd) · E) // M/((f1, . . . , fd) ·M) // 0 .

Since E/((f1, . . . , fd) ·E) is finite and therefore also Ẽ/((f1, . . . , fd) · Ẽ) is
finite by Lemma 5.59, in fact all the four quotients occurring in this exact
sequence are finite.
Moreover,

|(M/(I ·M))[fi]|
|Ẽ/(Ñ + (f1, . . . , fd) · Ẽ)|

· |E/((f1, . . . , fd) · E)|
|M/((f1, . . . , fd) ·M)|

= 1 ,

i.e.,

vp(|(M/(I ·M))[fi]|) + rank(E) = vp(|Ẽ/(Ñ + (f1, . . . , fd) · Ẽ)|)
+ rank(M)

≤ rank(Ẽ) + rank(M) ,

where rank always denotes rank(f1,...,fd). Therefore

rank(f1,...,fd)(Ẽ) ≥ rank(f1,...,fd)(E) + C ,

where C := vp(|(M/(I ·M))[fi]|) − rank(f1,...,fd)(M). Since the quotient
M/(I ·M) is finite by assumption, it is easy to see that

vp(|(M/(I ·M))[fi]|) = rank(f1,...,fd)(M) ,

and therefore C = 0 (compare the proof of Proposition 3.43, (i)).

Theorem 5.90 now immediately follows from Proposition 5.94, Proposition
5.95 and Lemma 5.96 (apply Proposition 5.95 to the elements fj = Tj ,
1 ≤ j ≤ d, and let i = d− 1).

Remarks 5.97.
(1) The assumption in Theorem 5.90, (ii) that the residue class of p in

Λd/(T1, . . . , Td−2, Td)

is coprime to the polynomials ν(n,0)(Td−1), n ∈ N, is not as restrictive as it
might seem at first glance. In fact, each ν(n+1,n)(Td−1), n ∈ N, is irreducible
of degree pn(p−1). If g ∈ Zp[[Td−1]] denotes a representative of the residue
class of p, and if

g = pr · u · g̃

for some unit u ∈ (Zp[[Td−1]])∗ and a suitable distinguished polynomial
g̃ ∈ Zp[Td−1] of degree t, then the above conditions are fulfilled if g̃ is
coprime to the finitely many ν(n+1,n) of the n ∈ N satisfying pn(p− 1) ≤ t.
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(2) Minardi proved that the conditions are satisfied in the following example:
If K denotes the Z2

p-extension of K := Q(
√
−31), K∞/K denotes the cyclo-

tomic Zp-extension, and if the restriction of γ1 ∈ Gal(K/K) to K∞ topo-
logically generates Gal(K∞/K), then the residue class of the characteristic
power series p ∈ Λ2 of K/K in Zp[[Gal(K∞/K)]] ∼= Zp[[T1]], T1 := γ1 − 1,
is coprime to the polynomials ν(n,0)(T1) for every n ∈ N (compare p. 27 in
[Min 86]).
We will formalise and generalise this example by using the following result.

Let K/K be a Zdp-extension of a number field K, d ∈ N, and let L be a

Zd−1
p -extension of K which is contained in K. Let H(K), respectively, H(L),

denote the maximal p-abelian unramified extensions of K, respectively, of L.
Let further X := Gal(H(K)/K).

If γ denotes a topological generator of Gal(K/L) ∼= Zp, and if T := γ − 1,
then the completed group ring Zp[[T ]] ∼= Zp[[Gal(K/L)]] acts on X via conju-
gation, as in Section 1.3.

Lemma 5.98. Let K and L be as above. We assume that exactly one prime
ramifies in K/L. Then there exists a Zp[[Gal(L/K)]]-module homomorphism

X/(T ·X) // Gal(H(L)/L)

whose kernel and cokernel are annihilated by pe(K/L). Here e(K/L) is defined
as in Proposition 1.3.
More generally, if K/L is a Zip-extension, i ∈ N, such that exactly one prime is
ramified in K/L, if this prime is totally ramified, and if Gal(K/L) is generated
topologically by γ1, . . . , γi, then there exists a bijective Zp[[Gal(L/K)]]-module
homomorphism

X/((T1, . . . , Ti) ·X) // Gal(H(L)/L) ,

where T1 = γ1 − 1, . . . , Ti = γi − 1.

Proof. We will first assume that the prime of L ramifying in K is totally rami-
fied. Then K ∩H(L) = L.

Moreover, Proposition 1.34 implies that H(L) ⊆ H(K). As in the proof of
Lemma 4.3, (ii), we may conclude that there exists a canonical Zp[[Gal(K/K)]]-
module homomorphism

X = Gal(H(K)/K) // // Gal((K ·H(L))/K) ∼= Gal(H(L)/L)

with kernel Y0 := Gal(H(K)/(K ·H(L))). We will show that our assumptions
imply that Y0 = (T1, . . . , Ti) ·X; this in particular proves the lemma in the case
where K/L is a Zp-extension satisfying e(K/L) = 0.

First note that the topological commutator subgroup of G := Gal(H(K)/L)
is equal to (T1, . . . , Ti) ·X, by Lemma 5.19.

Moreover, since H(K)/L is a pro-p-extension, H(L) ⊆ H(K) is the max-
imal subextension which is unramified and abelian over L. This means that
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Gal(H(K)/H(L)) is the closed subgroup of G = Gal(H(K)/L) which is gener-
ated by the topological commutator subgroup of G and by the inertia subgroup
I of some prime P of H(K) dividing the prime p of L that ramifies in H(K).

Recall that p is totally ramified in K/L. Since H(K)/K is unramified, we
may conclude that I ∩X = {1} and I ∼= G/X, i.e., G ∼= X o I, as in Section
1.3. This implies that

Gal((K ·H(L))/K) ∼= Gal(H(L)/L)
∼= G/Gal(H(K)/H(L))
∼= (X o I) / <(T1, . . . , Ti) ·X, I>
∼= X/((T1, . . . , Ti) ·X)

(compare the proofs of Lemma 1.37 and Lemma 5.23).
But then

Y0 = Gal(H(K)/(K ·H(L))) ∼= (T1, . . . , Ti) ·X ,

proving that we have in fact equality because (T1, . . . , Ti) ·X ⊆ Y0, since

G/Y0
∼= Gal((K ·H(L))/L)

is abelian.
Now suppose that K/L is a Zp-extension such that e := e(K/L) > 0.

We denote by Ke ⊆ K the unique subfield which is cyclic of degree pe over
L. Then H(L) ∩ K = Ke. As in the first case, we consider the surjective
Zp[[Gal(K/K)]]-module homomorphism

X // // Gal((K ·H(L))/K) ∼= Gal(H(L)/Ke)

with kernel Y0 := Gal(H(K)/(K ·H(L))). If σ ∈ Gal(H(L)/L), then the order
of σ|Ke is bounded by pe. This means that σp

e ∈ Gal(H(L)/Ke), proving that
the cokernel of the induced homomorphism

X // // Gal(H(L)/Ke)
� � // Gal(H(L)/L)

is annihilated by pe.
Let p be the unique prime of L which ramifies in K, and let

I ⊆ G = Gal(H(K)/L)

denote the inertia subgroup of some prime of H(K) dividing p.
We note that the closure of the commutator subgroup of G is equal to

T ·X. This has been proved by Greenberg (compare the proof of Proposition 2
in [Gr 73]).

Since H(L) ⊆ H(K) is the maximal subextension which is unramified and
abelian over L, it follows that Gal(H(K)/H(L)) is generated by T ·X and I,
as in the first case.

The exact sequence

1 // X // G // G/X // 1
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and the fact that G/X ∼= Gal(K/L) is Zp-free imply that G is isomorphic to
the semidirect product X oG/X. If e(K/L) > 0, then the injection I ↪→ G/X
will not be surjective, and in fact pe · (G/X) ∼= I. If

g = x · γ ∈ X oG/X ,

then
pe · g = (ν(e,0) · x) · γpe

(compare p. 280 in [Wa 97]). Therefore

pe ·G ∼= (ν(e,0) ·X) o I .

This implies that we have isomorphisms

pe ·Gal(H(L)/L) ∼= pe · (G/Gal(H(K)/H(L)))
∼= pe · (G/<T ·X, I>)
∼= ν(e,0) · (X/(T ·X)) .

We have already mentioned above that

pe ·Gal(H(L)/L) ⊆ Gal(H(L)/Ke) .

The above isomorphisms therefore induce an injection

ν(e,0) · (X/(T ·X)) �
�

// Gal(H(L)/Ke) .

But Gal(H(L)/Ke) ∼= X/Y0 by definition of Y0, and therefore we obtain an
injective map

ν(e,0) · (X/(T ·X)) �
�

// X/Y0 .

This means that ν(e,0) · Y0 ⊆ T ·X. Since Y0 ⊆ X and therefore T · Y0 ⊆ T ·X,
it follows that

pe · Y0 ⊆ T ·X ,

proving Lemma 5.98.

Corollary 5.99. Let K/K be a Zdp-extension of a number field K such that
exactly one prime of K ramifies in K/K, and such that this prime is totally
ramified.
(i) Then T - FA(M)(T ) for every Zp-extension M ⊆ K of K.
(ii) If M ⊆ K is an arbitrary Zp-extension of K, and if T1, . . . , Td are variables

of Λd = Zp[[Gal(K/K)]] such that γd−1 = Td−1 + 1 topologically generates
Gal(M/K), then

rank(T1,...,Td)(A
(K)) < ∞ and rank(T1,...,Td−2,ν(n,0)(Td−1),Td)(A

(K)) < ∞

for every n ∈ N. In particular, this means that the image of the charac-
teristic power series FA(K) of A(K) in Λd/(T1, . . . , Td−2, Td) is coprime to
Td−1 and to each ν(n,0)(Td−1), n ∈ N.
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Proof. (i) We apply Lemma 5.98 with L = K. For every M ∈ E(K), this
yields a Zp-module homomorphism

ϕ(M) : A(M)/(T (M) ·A(M)) // Gal(H(K)/K) ,

where T (M) = γ(M) − 1 for some topological generator γ(M) of the group
Gal(M/K) ∼= Zp, respectively. Moreover, if M ⊆ K, then this map actu-
ally is a bijection, because e(M/K) = 0 for every M ⊆ K.

(ii) Let M ⊆ K be fixed, let X := Gal(H(K)/K). Lemma 5.98 implies that
we have a bijective Zp[[Td−1]]-module homomorphism

X/((T1, . . . , Td−2, Td) ·X) // Gal(H(M)/M) ∼= A(M) .

Since Td−1 - FA(M)(Td−1), by (i), it follows that

|X/((T1, . . . , Td−2, Td−1, Td) ·X)| = |A(M)/(Td−1 ·A(M))|

is finite.
Analogously,

X/((T1, . . . , Td−2, ν(n,0)(Td−1), Td) ·X)

is finite because the characteristic polynomial of A(M) is coprime to every
ν(n,0)(Td−1), n ∈ N, since e(M/K) = 0 (compare Proposition 1.44).
Corollary 5.62 implies that

rank(T1,...,Td−2,Td−1,Td)(EA(K)) < ∞

and
rank(T1,...,Td−2,ν(n,0)(Td−1),Td)(EA(K)) < ∞

for every n ∈ N, where EA(K) = Λd/(FA(K)).
If the residue class of FA(K) in Λd/(T1, . . . , Td−2, Td) was not coprime to
Td−1, then the Krull dimension of

EA(K)/((T1, . . . , Td−2, Td−1, Td) · EA(K)) = Λd/(FA(K) , T1, . . . , Td)

was greater or equal to 1, in contradiction to the fact that

rank(T1,...,Td)(EA(K)) < ∞

(compare the proof of Proposition 5.95).
Analogously, we see that FA(K) is coprime to each ν(n,0)(Td−1), respectively.

Remark 5.100. Corollary 5.99, (i) may be generalised as follows: If M/K
denotes any Zp-extension of a number field K such that exactly one prime
ramifies in M/K, then T - FA(M)(T ) (compare also Remarks 3.47, (3)).
Indeed, Lemma 5.98 implies that there exists a Zp-module homomorphism

ϕ(M) : A(M)/(T ·A(M)) // Gal(H(K)/K)
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such that the kernel of ϕ(M) is annihilated by pe(M/K). But

ker(ϕ(M)) ⊆ A(M)/(T ·A(M))

is finitely generated over Zp and therefore finite, proving that A(M)/(T ·A(M))
is finite.

As an application, we obtain the following result.

Theorem 5.101. Suppose that K/K denotes a Zdp-extension. We assume that
there exists a unique prime p of K ramifying in K, and that p is totally ramified
in K/K.
Then m0 is locally bounded near K, i.e., there exist a neighbourhood U = U(K, r)
of K and an integer k ∈ N such that

m0(L/K) ≤ k

for every L ∈ U .

Proof. Indeed, let n ≥ e(K/K) + 1 be an integer. Then every L ∈ U(K, n) is
totally ramified at the prime p, and unramified outside p by Proposition 5.39.
Moreover, Corollary 5.99, (ii) implies that the conditions from Theorem 5.90,
(ii) are satisfied for each L ∈ U(K, n) and every choice of variables T1, . . . , Td,
respectively.

Therefore inequality (5.1) from the proof of Theorem 5.77 holds for the tuple
(T1, . . . , Td) and for each L ∈ U(K, r), provided that r ≥ n is large enough. In
other words,

rank(T1,...,Td)(EA(L)) ≤ rank(T1,...,Td)(A
(K)) =: C

for every such L. But

rank(T1,...,Td)(EA(L)) = m0(L/K) + vp(|FA(L)(0, . . . , 0)|) .

We now come to the second one of the three results announced at the be-
ginning of the current section. Let E = Λd/(p) and M = E/Ẽ be as above.

Theorem 5.102. Under the assumptions of Theorem 5.90, (ii), suppose that
additionally, p ∈ Λd is regular with respect to the variable Ti in the sense of
Definition 4.9. Then the Rank Inequality Conjecture also holds for the tuple

(T1, . . . , Ti−1, Ti+1, . . . , Td, p)

and for every tuple

(T1, . . . , Ti−1, ν(n,m)(Ti), Ti+1, . . . , Td) ,

n,m ∈ N with n > m, for a suitable choice of T1, . . . , Ti−1, Ti+1, . . . , Td.
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Proof. As in the proof of Theorem 5.90, we may assume that i = d − 1. We
first note that the additional assumption on p ensures that

rank(T1,...,Td−2,Td,p)(E)

is finite. Indeed, p is (up to multiplication by a unit) associated to a distin-
guished polynomial in

(Zp[[T1, . . . , Td−2, Td]])[Td−1] ,

and therefore

Q := Λd/(T1, . . . , Td−2, Td, p)

is isomorphic to a finitely generated free Zp-module (compare Remarks 5.47,
(1)). But then E/((T1, . . . , Td−2, Td, p) · E) = Q/(p ·Q) is finite.

Moreover, if n,m ∈ N, then the residue classes of p and ν(n,m)(Td−1) in
Λd/(T1, . . . , Td−2, Td) ∼= Zp[[Td−1]] are coprime by assumption, and therefore
the ideal of Zp[[Td−1]] generated by these two residue classes contains the class
of some power of p, by Lemma 1.17, (i). This proves that also

E/((T1, . . . , Td−2, ν(n,m)(Td−1), Td) · E)

is finite for every n > m.

The proof of Theorem 5.90 implies that we may choose variables T1, . . . , Td
such that M/((T1, . . . , Td−2, Td)·M) is finite (compare Proposition 5.94). More-
over, the admissible changes of variables which are used in course of this proof
do not destroy the property that p is regular with respect to the variable Td−1.

Now we apply Proposition 5.95 with i = d − 1, fi = p, respectively, with
fi = ν(n,m)(Td−1), and with fj = Tj , j 6= i. This implies that multiplication
by p, respectively, ν(n,m)(Td−1), is injective on E/((T1, . . . , Td−2, Td) · E). The
claim now follows from Lemma 5.96.

The above theorem may be used for a proof of the following variant of
Theorem 5.77 which does not presume the validity of Conjecture 5.65.

Theorem 5.103. Let K/K be a Zdp-extension. Suppose that there exists a
prime of K that is totally ramified in K/K, and that this is the only prime
ramifying in K/K. We assume that m0(K/K) = 0.
Then there exist a neighbourhood U = U(K, r) of K and an integer k ∈ N such
that

l0(L/K) ≤ k

for every L ∈ U .

Proof. Let A = A(K), and let N := A/Ã be defined as in Section 5.7. Since
m0(K/K) = 0, we may choose variables T1, . . . , Td of Λd such that there exists
an annihilator g ∈ Λd of N such that g is divisible by the characteristic power
series FA of A, and regular with respect to Td−1 (compare the proof of Lemma
5.72).
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This means that

EA/((T1, . . . , Td−2, Td, p) · EA) = Λd/(FA, T1, . . . , Td−2, Td, p)

andN/((T1, . . . , Td−2, Td, p)·N) are finite (compare the proof of Theorem 5.102).
Proposition 5.52, (i) implies that

rank(T1,...,Td−2,Td,p)(A) ≤ rank(T1,...,Td−2,Td,p)(EA) + rank(T1,...,Td−2,Td,p)(N)

is also finite. We therefore may choose an integer r0 ∈ N, r0 ≥ e(K/K) + 1,
such that

rank(T1,...,Td−2,Td,p)(A
(L)) = rank(T1,...,Td−2,Td,p)(A) < ∞

for every L ∈ U(K, r0).
In particular, Corollary 5.62 implies that rank(T1,...,Td−2,Td,p)(EA(L)) <∞ for

each L ∈ U(K, r0), proving that for these L, the characteristic power series
FA(L) is regular with respect to Td−1, respectively. Indeed, otherwise we have
FA(L) ∈ (p, T1, . . . , Td−2, Td) for some L. But then

EA(L)/((T1, . . . , Td−2, Td, p) · EA(L)) = Λd/(T1, . . . , Td−2, Td, p)

was infinite, yielding a contradiction.
If L ∈ U(K, r0), then P(L) = P(K) by Lemma 5.34, (i), and therefore the

conditions from Corollary 5.99 are satisfied for every L ∈ U(K, r0), proving that
we may apply Theorem 5.102 to every L ∈ U(K, r0).

For every n,m ∈ N, n > m, we may find a neighbourhood Un,m ⊆ U(K, r0)
of K such that

rank(T1,...,Td−2,ν(n,m)(Td−1),Td)(A
(L)) = rank(T1,...,Td−2,ν(n,m)(Td−1),Td)(A)

for every L ∈ Un,m. Moreover, the analogon of inequality (5.1) holds for
(T1, . . . , Td−2, ν(n,m)(Td−1), Td) and every L ∈ Un,m, by Theorem 5.102.

The proof of Lemma 5.78 shows that there exists a constant C ∈ N such
that

rank(T1,...,Td−2,ν(n,m)(Td−1),Td)(A/Ã) ≤ C · (n−m)

for every n > m ≥ e(K/K). In fact, the p-rank of

(A/Ã)/((T1, . . . , Td−2, ν(n,m)(Td−1), Td) · (A/Ã))

is bounded, and the main term comes from Lemma 5.80; compare Section 5.8.
As in the proof of Theorem 5.77, n and m may be taken large enough to

ensure that
l0(L/K) ≤ l0(K/K) + C

for each L ∈ Un,m (note that m0(L/K) = 0 for every L, since FA(L) is regular
with respect to Td−1, respectively).

The last result to be discussed in this section provides some evidence for our
conjecture that the Rank Inequality not only holds in the special cases stated
above, but in fact is valid for more general elements f1, . . . , fd ∈ Λd. We will
make use of the following fact from commutative algebra.
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Lemma 5.104 (Artin-Rees). Let R be a Noetherian ring, let I ⊆ R be an
ideal. Suppose that M is a finitely generated R-module, and let N ⊆ M be a
submodule. Then there exists an integer k ≥ 1 such that

In ·M ∩ N = In−k · ((Ik ·M) ∩ N) ⊆ In−k ·N

for every n ≥ k.

Proof. This follows from Lemma 5.1 in [Ei 95].

Corollary 5.105. Let E = Λd/(p) be a cyclic Λd-module, let Ẽ ⊆ E be a
submodule such that M := E/Ẽ is pseudo-null. Moreover, let f1, . . . , fd ∈ Λd
be elements such that rank(f1,...,fd)(E) <∞. We write I := (f1, . . . , fd).
Then there exists an integer k ≥ 1 such that

rankIn(Ẽ) ≥ rankIn−k(E) and rankIn(E) ≥ rankIn−k(Ẽ)

for every n > k, where we let rankIm(N) := vp(|N/(Im ·N)|) for every m ∈ N
and every Λd-module N , respectively, whenever this is finite.

Proof. We apply the Artin-Rees Lemma to M = Ẽ and N = E. Let k ∈ N be
the integer attached to I, and fix some n > k.

Since M = E/Ẽ is pseudo-null, inclusion of Ẽ in E yields a pseudo-
isomorphism ϕ : Ẽ −→ E. Since both E and Ẽ are finitely generated and
Λd-torsion, there exists also a pseudo-isomorphism ψ : E −→ Ẽ (compare
Remarks 2.22, (1)). ψ actually is an injection, because the cyclic Λd-module
E = Λd/(p) does not contain any non-trivial pseudo-null submodules. We
therefore obtain an exact sequence

0 // E
ψ
// Ẽ // Ẽ/E︸ ︷︷ ︸

=: M̃

// 0 .

As in the proof of Lemma 5.96, this induces an exact sequence

0 // E/D // Ẽ/(In · Ẽ) // M̃/(In · M̃) // 0 ,

where D := In · Ẽ ∩ E.
The Artin-Rees Lemma now implies that

D ⊆ In−k · E .

Therefore

rankIn(Ẽ) = rankIn(M̃) + vp(|E/D|)
≥ rankIn(M̃) + rankIn−k(E)

≥ rankIn−k(E) .

Interchanging the roles of E and Ẽ, and using the pseudo-isomorphism
ϕ : Ẽ −→ E (which is an injection since Ẽ ⊆ E does not contain any non-
trivial pseudo-null submodules), we obtain the second inequality.
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Remarks 5.106.

(1) The Artin-Rees number k from Lemma 5.104 depends on the ideal I and
on the modules M and N . There exist uniform versions of this lemma,
providing an integer that works for every ideal I of R (compare [Hu 92]).
However, the corresponding integer still depends on the modules M and N .

(2) Since Λd is a regular local ring, it seems reasonable to believe that the
uniform Artin-Rees numbers occurring in (1) can be bounded in terms of
the Krull dimension of Λd (compare Remark 4.14 in [Hu 92]). In fact, the
connections to the so-called Briançon-Skoda Theorem (compare [LS 81])
suggest that dim(Λd)–1 = d may serve as such a bound.
Using this estimate, we could conclude that

rankI(E) ≤ rankId(Ẽ) and rankI(Ẽ) ≤ rankId(E) ,

whenever these ranks are finite. In particular, if d = 1, then we recover the
statement rankI(E) = rankI(Ẽ) of Proposition 3.41, (i).
Suppose that K/K is a Zdp-extension such that some prime of K is totally
ramified in K. If we replace inequality (5.1) in the proof of Theorem 5.77
by the inequality

rankI(EA(L)) ≤ rankId(EA(K)) + rankId(A/Ã) ,

I := (ν(n1,m1)(T1), . . . , ν(nd,md)(Td)), then we obtain new proofs of the local
boundedness of m0- and l0-invariants.

5.10 Pseudo-null Λ2-modules

In this section, let K be a number field such that exactly one prime of K divides
p, and let K/K be a Z2

p-extension. We will develop a method that bounds the
l0-invariant of K in terms of the λ-invariants of Zp-extensions of K contained
in K. In some situations, this approach may be used in order to show that the
Greenberg module of K/K is pseudo-null.

Lemma 5.107. Let K be a number field containing exactly one prime divid-
ing p. Let A(K) ⊆ E(K) denote the subset of Zp-extensions L/K satisfying
e(L/K) = 0. Then A(K) is open in E(K) with respect to Greenberg’s topology.
Moreover, if K denotes a Z2

p-extension of K, m0 := m0(K/K) and

Am0(K) := {L ∈ A(K) | µ(L/K) = m0} ,

then L ∈ Am0(K) for all but finitely many L ∈ A(K) ∩ E⊆K(K), and

l0(K/K) ≤ min({λ(L/K) | L ∈ Am0(K) ∩ E⊆K(K)}) .

Proof. If L ∈ A(K) and n ∈ N, then e(M/K) = 0 for every M ∈ E(L, n),
proving that A(K) ⊆ E(K) is open.

If K/K denotes any Z2
p-extension, then Lemma 5.10 implies that there exist

only finitely many Zp-extensions L ⊆ K of K such that µ(L/K) 6= m0.
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Let now L ∈ Am0(K) ∩ E⊆K(K) be arbitrary, but fixed. Let furthermore
Γ := Gal(K/K) ∼= Z2

p. We choose topological generators γ1, γ2 of Γ such that γ1

generates Gal(K/L) and such that γ2|L is a topological generator of Gal(L/K).
Let T1 = γ1 − 1, T2 = γ2 − 1 denote the corresponding variables.

Then the homomorphism

πL : Λ2 = Zp[[T1, T2]] // // Λ = Zp[[T ]]

induced by the restriction map

Gal(K/K) // // Gal(L/K)

satisfies πL(T1) = 0 and πL(T2) = T .

Now consider the characteristic power series FA(K) ∈ Λ2 of K/K. We write
FA(K) = pm0 · g, with p - g. Let X = Gal(H(K)/K). Since Lemma 4.3, (i)
implies that µ(L/K) = µ(XπL), the condition µ(L/K) = m0 is equivalent to
saying that p - πL(g).

Replacing γ1 by γ̃1 := γ1 ·γp
n

2 for a suitable n ∈ N, we may assume that g is
regular with respect to T2 (compare Definition 4.9 and Lemma 4.7). Moreover,
we may assume that n has been chosen large enough to ensure that

µ(M/K) = µ(L/K) and λ(M/K) ≤ λ(L/K)

for every M ∈ E(L, n). Indeed, this is possible because of Theorem 3.57, since

µ(M/K) ≥ m0 = µ(L/K)

for every M ∈ E⊆K(K) (note that E(L, n) = U(L, n) for every n ∈ N, because
K contains only one prime dividing p).

We write

g = T k2 + T k−1
2 · hk−1 + . . .+ h0 ,

with k ∈ N and h0, . . . , hk−1 ∈ (p, T̃1), where

T̃1 = γ̃1 − 1 = (T1 + 1)(T2 + 1)p
n − 1 .

Let M ∈ E⊆K(K) be the subfield of K that is fixed by γ̃1. Then M ∈ E(L, n)
by Lemma 3.19, (i). Moreover, the corresponding homomorphism

πM : Λ2
// // Λ

satisfies πM (T̃1) = 0 and πM (T2) = T .

This means that the reduced degree of πM (g) ∈ Zp[[T ]] is equal to k. We
want to show that k ≤ λ(M/K). In view of Lemma 5.70, this will yield a chain
of inequalities

l0(K/K) = l0(f) ≤ k ≤ λ(M/K) ≤ λ(L/K) ,

concluding the proof of the lemma.
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Lemma 5.98 implies that there exists a Zp[[Gal(M/K)]]-module homomor-
phism

XπM = X/(T̃1 ·X) // A(M)

whose kernel and cokernel are annihilated by a power of p. In particular, mod-
ulo possible powers of p, the characteristic polynomial fXπM of XπM divides
FA(M)(T ). But fXπM is divisible by πM (FA(K)) and therefore by πM (g), proving
that k ≤ λ(M/K).

Lemma 5.108. Let K be a number field containing exactly one prime dividing
p. Let K/K denote a Z2

p-extension.
If there exists a Zp-extension L ⊆ K of K such that

µ(L/K) = m0(K/K) =: m0 and e(L/K) = λ(L/K) = 0 ,

then the characteristic power series FA(K) of K/K is associated to a power of
p.

Proof. We will use the notation from the preceding lemma. Since our assump-
tions ensure that L ∈ Am0(K), this lemma implies that l0(K/K) = 0. Actually
the proof of Lemma 5.107 shows more:

If FA(K) = pm0 · g for some non-unit g ∈ Λ2 coprime to p, then

πL(g) ∈ Zp[[T ]]

is coprime to p and therefore is associated to a distinguished polynomial. Since
e(L/K) = 0, Lemma 5.98 implies that, modulo possible powers of p, πL(g)
divides FA(L)(T ). But FA(L)(T ) = 1, because λ(L/K) = 0, yielding a contra-
diction.

Corollary 5.109. Let K be a number field containing exactly one prime divid-
ing p. Let K/K denote a Z2

p-extension.
If there exists a Zp-extension L ⊆ K of K such that

µ(L/K) = λ(L/K) = e(L/K) = 0 ,

then the Λ2-module X = Gal(H(K)/K) is pseudo-null.

Proof. Lemma 4.3, (i) and Proposition 4.34, (i) imply that

m0(K/K) ≤ µ(L/K) = 0 .

Moreover, Lemma 5.108 implies that the characteristic power series of K/K is
not divisible by any irreducible element coprime to p.

Corollary 5.110. Let K be an imaginary quadratic number field. Suppose that
the rational prime p is inert or ramified in K. Let K denote the composite of
all Zp-extensions of K.
If p does not divide the class number hK := |Cl(K)| of K, then Gal(H(K)/K)
is pseudo-null.
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Proof. Since K/Q is abelian, Leopoldt’s Conjecture is valid for K, i.e., the field
K is a Z2

p-extension of K by Theorem 1.7. Moreover, the assumption that p - hK
implies that each Zp-extension of K is totally ramified at the unique prime of K
dividing p. Finally, this assumption also implies that µ(L/K) = λ(L/K) = 0 for
every L ∈ E(K) (compare Proposition 13.22 of [Wa 97]). Now apply Corollary
5.109.

Remarks 5.111.
(1) Greenberg’s Generalised Conjecture predicts that for every number field K,

the Greenberg module attached to the composite K of all Zp-extensions of
K is pseudo-null as a Λd-module, where d = rankZp(Gal(K/K)), respec-
tively. The above corollary proves a special case of this conjecture.

(2) In his Ph.D. thesis, J. Minardi studied pseudo-null Λd-modules in great
detail. Minardi observed that the Greenberg module X of a Zdp-extension is
pseudo-null if there exists a choice of variables of Λd such that, for example,
X/(T1 ·X) is pseudo-null as a module over Λd−1 = Zp[[T2, . . . , Td]] (see, for
example, Section 4.B of [Min 86]). In particular, the Corollaries 5.109 and
5.110 were known to Minardi (compare Proposition 3.A of [Min 86]).
We believe that Lemmas 5.107 and 5.108 are slight, but nevertheless im-
portant generalisations of Minardi’s results, fitting into the pattern of one
of the main innovations of this thesis, namely, the possibility to obtain re-
sults concerning λ- (or, more generally, l0-) invariants even in the case of
non-vanishing µ- (respectively, m0-) invariants.

(3) There is not known any concrete example of a Zdp-extension, d > 1, whose
characteristic power series is not associated to a power pn, n ∈ N0, of p
(while there do exist examples constructing Zdp-extensions having a non-
trivial m0-invariant).

(4) Let K/K be as in Lemma 5.108. The results of Chapter 3 provide a tool
to explicitly test whether a given Zp-extension L/K contained K satis-
fies the conditions from Lemma 5.108. Namely, suppose that L ⊆ K sat-
isfies e(L/K) = 0, and assume that m0 := m0(K/K) is known. Then
µ(L/K) = m0 and λ(L/K) = 0 if there exist integers n,m ∈ N0, n > m,
such that

rankν(n,m)
(A(L)) < m0 · (pn − pm) +D , (?)

where D := min(n − m, pm(p − 1)). Moreover, in this case, we have
ν(L/K) < n−m.
Indeed, if EA(L) denotes the elementary Λ-module attached to A(L), then
the proof of Theorem 3.57 shows that

rankν(n,m)
(EA(L)) ≥ µ(L/K) · (pn − pm) + λ(L/K) · (n−m)

if m ∈ N is large enough to ensure that λ(L/K) < pm−1(p−1). Otherwise,

rankν(n,m)
(EA(L)) ≥ µ(L/K) · (pn − pm) + pm(p− 1)

(corresponding to the case r ≥ 1 in equation (3.4)).
Since Lemma 4.3, (i) and Proposition 4.34, (i) imply that µ(L/K) ≥ m0,
(?) implies that µ(L/K) = m0 and λ(L/K) = 0.
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Note that rankν(n,m)
(A(L)) can be determined with the help of Theorem 3.6

by computing the ranks of the first layers A
(L)
n , until the first stabilisation

occurs.
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