Experimentelle Untersuchung zur Auswirkung für Kopf-Hals-Tumoren relevanter Strahlendosen auf das Randschlussverhalten von Amalgam- und Kunststoff-Füllungen

INAUGURAL – DISSERTATION

zur Erlangung des Doktorgrades für Zahnheilkunde der Medizinischen Fakultät der Georg-August-Universität zu Göttingen

vorgelegt von

Anne Carolin Gräb

aus

Göttingen

Göttingen 2016
Dekan: Prof. Dr. rer. nat H. K. Kroemer

I. Berichterstatterin: PD Dr. med. dent. S. Sennhenn-Kirchner

II. Berichterstatter/in: PD Dr. Hendrik Wolff

III. Berichterstatter/in:

Inhaltsverzeichnis

Inhaltsverzeichnis .. I
Abbildungsverzeichnis .. III
Tabellenverzeichnis .. IV
Abkürzungsverzeichnis ... IV
1 Einleitung .. 1
2 Literaturübersicht .. 3
 2.1 Grundlagen der Strahlentherapie .. 3
 2.2 Komplikationen und Nebenwirkungen bei Strahlentherapie im Mund-Kiefer-Gesichtsbereich .. 4
 2.2.1 Mukositis .. 4
 2.2.2 Strahlenkaries ... 5
 2.2.3 Verlust des Geschmackssinns .. 7
 2.2.4 Kieferklemme .. 7
 2.2.5 Osteoradionekrose .. 8
 2.3 Umgang und Therapie mit strahlentherapeutischen Patienten in der Zahnarztpraxis 9
 2.4 Zahnärztliche Füllungsmaterialien .. 11
 2.4.1 Amalgam .. 11
 2.4.1.1 Amalgamfüllungen bei Radiotherapiepatienten .. 12
 2.4.2 Komposit .. 13
 2.4.2.1 Adhäsivsysteme .. 14
 2.4.2.2 Kompositfüllungen bei Radiotherapiepatienten .. 15
 2.5 Rückstreueffekte von zahnärztlichen Materialien während der Radiotherapie 16
 2.6 Auswirkung von Strahlentherapie auf die Zahnharzsubstanz .. 18
 2.7 Untersuchungsmethoden von Randspalten an Füllungsmaterialien 19
 2.7.1 Klinisch mit Sonde und Spiegel .. 19
 2.7.2 Lichtmikroskopie ... 19
 2.7.3 Raster-Elektronen-Mikroskopie ... 19
 2.8 Fragestellung .. 20
3 Versuchsplan ... 21
4 Material und Methoden .. 23
 4.1 Material ... 23
 4.1.1 Rinderzähne ... 23
 4.1.2 Künstlicher Speichel .. 23
 4.1.3 Verwendete Materialien und Geräte ... 25
Abbildungsverzeichnis

Abbildung 1: Speichelsubstanz und die Analysenwaage, mit der sie abgemessen wurde 24
Abbildung 2: Vorversuche- Gruppe 1: Objektträger mit Harvardzement bestrichen: Bild vor Bestrahlung .. 27
Abbildung 5: Vorversuche - Gruppe 4: Kavitäten mit Amalgam und Komposit in Rinderzähnen im Silikonblock ... 28
Abbildung 6: Probeblock mit Schmelzrissen im Raster-Elektronen-Mikroskop 29
Abbildung 7: Säuberung der Zähne von Verfärbungen mittels eines Scalers 30
Abbildung 8: Kunststoff Paladur®, Anrührbecher, Gießform und Schraubzwinge 30
Abbildung 9: Rinderzähne eingebettet in Kunststoffblöcke .. 31
Abbildung 10: Markierung der Bohrlöcher im Abstand von 5 mm ... 33
Abbildung 11: Block unter der Bohrmaschine Metabo liegend, Markierung des Diamantbohrers in Höhe von 5 mm zu erkennen .. 33
Abbildung 12 Betätigung des Hebels und standardisierter Bohrvorgang 33
Abbildung 13: Gezielte Versenkung des Diamantbohrers bis zu der Markierung 34
Abbildung 14: Materialien zur Applizierung der Kompositfüllungen 35
Abbildung 15: Amalgamtriturator Silamat® mit Amalgamkapsel Amalcap Plus® zur Applizierung der Amalgamfüllungen .. 36
Abbildung 16: Bildschirm der experimentellen Röntgenstrahlanlage mit Bestrahlungszeit, Röhrenspannung, Stromstärke, Filter und Tischhöhe ... 36
Abbildung 17: Bestrahlungsindikator zur Anwendung in der Strahlenkammer 37
Abbildung 18: Unbestrahlter Bestrahlungsindikator ... 37
Abbildung 19: Bestrahlter Bestrahlungsindikator nach Bestrahlung unserer Proben mit 60 Gy ... 37
Abbildung 20: Klinische Untersuchung mit zahnärztlicher Sonde .. 38
Abbildung 21: Probe mit zahnärztlicher Sonde am zu untersuchenden markierten Abschnitt 39
Abbildung 22: Auflichtmikroskop Zeiss Stemi SV11 mit Probe .. 40
Abbildung 23: Objektträger mit Zement vor und nach Bestrahlung .. 41
Abbildung 24: Phantommetallplättchen unbehandelte/polierter Seite vor und nach Bestrahlung 42
Abbildung 25: Nickel-Titan-Schlaufe auf Zement befestigt vor und nach Bestrahlung 42
Abbildung 26: Amalgamfüllung (AgF) in Rinderzahn vor und nach Bestrahlung 42
Abbildung 27: Kompositfüllung in Rinderzahn vor und nach Bestrahlung 43
Abbildung 28: Gruppe 1 Amalgamfüllungen (AgF) mit 60 Gray bestrahlt vor und nach Bestrahlung ... 44
Abbildung 29: Gruppe 2 Amalgamfüllungen mit 90 Gray bestrahlt vor und nach Bestrahlung 46
Abbildung 30: Gruppe 3 Kompositfüllungen (KoF) mit 60 Gray bestrahlt vor und nach Bestrahlung ... 47
Abbildung 31: Gruppe 4 Kompositfüllungen mit 90 Gray bestrahlt vor und nach Bestrahlung...... 48

Tabellenverzeichnis

Tabelle 1: Schematische Darstellung des Versuchsablaufes...22
Tabelle 2: Zusammensetzung des künstlichen Speichels...24
Tabelle 3: Zuordnung der Füllungsmaterialien und unterschiedlichen Bestrahlungsdosen in vier
Gruppen..32
Tabelle 4: Anzahl der bei der klinischen Untersuchung nach der Bestrahlung aufgetretenen
Veränderungen..49

Abkürzungsverzeichnis

Gy= Gray
KoF= Kompositfüllung
AgF= Amalgamfüllung
GiZ= Glasionomerzement
REM= Raster-Elektronen-Mikroskop
1 Einleitung

Maligne Tumorerkrankungen stellen in Deutschland die zweithäufigste Todesursache dar. Dabei sind weltweit ca. 2 % aller malignen Tumoren im Bereich der Mundhöhle, der Lippen und des Oropharynx lokalisiert (Ferlay et al. 2010). Hauptsächlich handelt es sich um Plattenepithelkarzinome.

Die Bestrahlung von Tumoren im Kopf-Hals-Bereich hat schädliche Auswirkungen auf die Speicheldrüsen, die Schleimhaut, den Knochen, die Kiefermuskulatur, das Kiefergelenk,
2 Literaturübersicht

2.1 Grundlagen der Strahlentherapie

Ziel der Strahlenbehandlung von bösartigen Tumoren ist die Zerstörung der Tumorzenlen bei gleichzeitiger Schonung von gesunden Geweben und Organen. Energiereiche Strahlen wie Röntgenstrahlen werden zur Behandlung dieser malignen Tumoren eingesetzt.

In der Einheit Gray (=Gy) wird die Energiedosis, die von radioaktiven Stoffen ausgehende Strahlung, ionisierende Strahlung genannt, angegeben.

Die ionisierende Strahlung wirkt auf die sich teilenden Zellen. In der Regel reagieren Tumoren, die eine hohe Zellteilungsrate besitzen, hoch sensibel auf diese Strahlung. So wirkt sich die Strahlung auf Tumorzenlen, weil sich die Zellteilung bei ihnen meist beschleunigt vollzieht, stärker aus als auf das benachbarte gesunde Gewebe, dessen Zellteilung im Vergleich häufig geringer ausfällt (Schwenzer und Ehrenfeld 2011). Die intelligente Bestrahlungsplanung hinsichtlich der zeitlichen Dosisverteilung ist, da die Proliferationskinetik der Tumorzenlen stark variiert, eine der wichtigsten Aufgaben der klinischen Radiotherapie. Für Plattenepithelkarzinome im Kopf-Hals-Bereich liegt die Zeit, in der sich die Zellen verdoppeln, bei nur 3-5 Tagen. Die Fraktionierung, also die zeitliche Verteilung der Gesamtdosis auf kleine Einzeldosen, muss deshalb auf diese Proliferation der Tumorzenlen abgestimmt sein. Die konventionelle Fraktionierung und übliche Vorgehensweise in der Radiotherapie bei Patienten mit Tumoren im Kopf-Hals-Bereich beinhaltet Einzeldosen von 1,8-2 Gy, die 5-mal wöchentlich appliziert werden. Dies ergibt eine Wochendosis von 9-10 Gy und eine Gesamtbehandlungszeit von 5-6 Wochen für 45-50 Gy bzw. 6-7 Wochen für 54-60 Gy (Kauffmann et al. 2001).

Durch diese zeitliche Verteilung können Reparaturmechanismen im gesunden Gewebe in Gang gebracht werden, während dagegen die Tumorzenlen in der Regel eine schlechtere Reparaturfähigkeit hinsichtlich der DNA-Schäden besitzen.

Je höher die Dosis ist, umso größer ist die Chance auf eine bessere Wirkung. Die kurative Strahlendosis für die Plattenepithelkarzinome (1-3 cm großer Tumor) liegt bei 60-70 Gy (Kauffmann et al. 2001).

Meist handelt es sich heute um eine perkutane Bestrahlungsart.
Häufig wird die Strahlentherapie im Rahmen eines multimodalen Therapiekonzepts als prä- oder postoperative Maßnahme durchgeführt.

2.2 Komplikationen und Nebenwirkungen bei Strahlentherapie im Mund-Kiefer-Gesichtsbereich

Aufgrund von anatomischen und klinischen Gegebenheiten wird bei jeder Strahlentherapie das Normalgewebe in das Bestrahlungsfeld mit einbezogen. Vor allem die Therapie von Tumoren im Kopf-Hals-Bereich bedeutet für die betroffenen Patienten, dass sie mit riskanten Nebenwirkungen rechnen müssen.

Ebenfalls muss bei Patienten, die an einem Plattenepithelkarzinom erkrankt sind und behandelt wurden, das hohe Risiko von einem Auftreten maligner Zweittumore beachtet werden (Wolff et al. 2013).

2.2.1 Mukositis

Eine Mukositis, die durch Strahlentherapie (unter Umständen in Verbindung mit einer Chemotherapie) ausgelöst wurde, ist gekennzeichnet durch Rötungen und Schwellungen sowie durch später auftretende pseudomembranöse Erosionen. Heilen diese ab, entsteht
eine fibrotische und atrophische Schleimhaut. Tritt zudem eine Xerostomie auf, ist die Gefahr der Sekundärinfektion mit Candida albicans besonders hoch (Reichart 2002).

Hinzuweisen ist in unserem Zusammenhang auch darauf, dass die orale Mukositis bereits durch die rückwärtigen Streustrahlen, die von metallischen Materialien ausgehen, entstehen kann (Farahani et al. 1993; Gibbs et al. 1976; Mail et al. 2013; Reitemeier et al. 2002).

Die negativen Folgen, die mit einer oralen Mukositis einhergehen, führen zu einer verzögerten Behandlung, zu einer geringeren einsetzbaren - und damit weit weniger kurativen - Strahlendosis, zu einem veränderten Ernährungsverhalten, zu Dehydrierung und starken Schmerzen (Farrington et al. 2010).

2.2.2 Xerostomie und Speicheldrüsenfehlfunktion

Tatsächlich erleiden bis zu 64 % der Patienten, die eine Radiatio im Kopf-Hals-Bereich bekommen haben, einen mittelschweren bis schweren Grad der Xerostomie, - wenn man sie bis zu 22 Jahre danach untersucht (Wijers et al. 2002).

2.2.3 Strahlenkaries

Um die Ursachen der Strahlenkaries genau zu verstehen, müssen die verschiedenen Einflüsse der Radiotherapie, wie sie hier zum Teil jetzt schon angesprochen wurden, auf die orale Mukosa, die Speicheldrüsen und eben auch die Zähne betrachtet werden (Kielbassa
Die radiogene Karies kann ganz plötzlich entstehen und dabei zum Passungsverlust von Kronen oder auch zu völlinem Zahnverlust führen.

Das klinische Erscheinungsbild der Strahlenkaries kann in vier Klassen unterteilt werden:

1.) generalisierte oberflächliche Defekte bis zur Frakturierung und Ablösung des Schmelzes,
2.) der Wechsel der Zahnfarbe zu braun-schwarz,
3.) langsames “Abschmelzen“ der Schneidekanten und okklusalen Flächen,
4.) oberflächliche Zerstörung der Zahnhälfte (Thiel 1989b).

Die Strahlenkaries gilt als eine lebenslange Bedrohung für die Patienten, die eine Strahlentherapie bekommen haben. Diese müssen lebenslang eine adäquate Mundhygiene und regelmäßige Fluoridapplikation betreiben (Vissink et al. 2003a).

Hyposalivation und Strahlenkaries sind aus zahnärztlicher Sicht die Hauptspätkomplikationen. Die Dokumentation und Erhebung der späten Strahlenfolgen an den Zahnhartge-
weben wie Initialläsionen an Prädilektionsstellen sind, im Gegensatz zu ihren frühen Strahlenwirkungen, sehr bedeutend für die rechtzeitige Therapieeinleitung (Grötz et al. 2001).

2.2.4 Verlust des Geschmackssinns

Die Veränderung der Geschmacksempfindung taucht als ein Resultat des direkten Effekts der Radiatio auf die Geschmacksknospen und die Veränderung der Speichelflüssigkeit auf (Spielman 1998; Mossman 1986).

Schon eine leichte Verminderung des Speichelflusses führt zu einer Verminderung der Anzahl der Geschmacksknospen. Wahrscheinlich ist die Hyposalivation auch so für eine Veränderung der Form und Funktion der restlichen Geschmacksknospen verantwortlich (Henkin et al. 1972).

In den meisten Fällen ist der Geschmacksverlust nur temporär und kehrt innerhalb eines Jahres nach der Radiatio auf ein gering vermindertes oder sogar völlig normales Niveau zurück (Tomita und Osaki 1990).

2.2.5 Kieferklemme

Die Kieferklemme kann während der Radiatio, vor allem bei einer Tumorinfiltration in die Muskulatur und der mit ihr verbundenen Operation, als eine einschränkende Nebenwirkung auftreten. Einer der entscheidendsten Faktoren beim Auftreten einer Kieferklemme ist wohl die Miteinbeziehung des M.pterygoideus medialis in das Bestrahlungsfeld (Goldstein et al. 1999).

Schon vor Beginn der Radiotherapie sollte daher die Mundöffnung gemessen werden. Falls sich während der Behandlung geringere Werte ergeben, sollten den Patienten Übungen gezeigt werden, mit denen sie die Muskulatur trainieren, damit sich die Mundöffnung nicht weiter vermindert (Engelmeier und King 1983).

In schweren Fällen können eine Einschränkung der Nahrungsaufnahme und eine Verschlechterung der Mundhygiene die Folgen sein.
2.2.6 Osteoradionekrose

Die Strahlentherapie hat eine starke Beeinträchtigung des Knochenstoffwechsels im betroffenen Gebiet zur Folge (Kielbassa 2004).

Die Osteoradionekrose tritt fast ausschließlich im Unterkiefer auf (Beumer und Brady 1978), denn in der Mandibula erfolgt die Versorgung in Gestalt einer funktionellen Endarterie durch die A. alveolaris inferior. Im Unterschied zum Oberkiefer fehlen hier größere Gefäßanastomosen.

Ausgewählte Extraktionen vor der Radiotherapie steigerten die Fälle der Osteoradionekrose, während Zahnerhaltungsmaßnahmen das Auftreten der Osteoradionekrosen ver-
minderten. Häufigeres Auftreten war bei Tumoren zu beobachten, die sich nahe des Kno-
chens befanden (Bedwinek at al. 1976).
In fortgeschrittenen oder beständigen Fällen von Osteoradionekrosen bleibt die chirurgi-
sche Behandlung die einzige Option, eingeschlossen mikrovaskulärer rekonstruktiver
Techniken für Knochen und Weichgewebe (Rice et al. 2015).

2.3 Umgang und Therapie mit strahlentherapeutischen Patienten in der Zahnarztpraxis

Der Umgang mit und die Betreuung von bestrahlten Patienten mit Tumoren im Kopf-Hals-
Bereich ist eine besondere Herausforderung für die interdisziplinäre Zusammenarbeit von
Zahn- und Humanmedizin (Koga et al. 2008; Sennhenn-Kirchner et al. 2009). Zusätzlich zur
engen Kooperation zwischen den Chirurgen und Zahnärzten sollte die Konsultation eines
Radiotherapeuten gehören (Reitemeier et al. 2002).
Der Zahnarzt spielt eine entscheidende Rolle bereits bei der Prävention (Moore et al.
2012). Zu den präventiven Maßnahmen gehören u.a. das Scaling und die Politur sowie
Mundhygieneinstruktionen von der regelmäßigen und richtigen Zahnputztechnik über die
Nutzung von Zahnseide bis hin zu Ernährungsempfehlungen wie z.B. der Reduktion der
Zuckerzufuhr (Andrews und Griffiths 2001b). Auch sollten die Patienten in jeder Behand-
lung einer eingehenden systematischen Weichgewebsuntersuchung unterzogen werden
(Moore et al. 2012). Auf alle Fälle sollte der Zahnarzt hinzugezogen werden, sobald eine
Tumordiagnose im Kopf-, Halsbereich gestellt wurde (Mealey et al. 1994), um z.B. poten-
zielle Herde für Infektionen noch vor Beginn der Radiatio zu eliminieren. Während der
Strahlentherapie sollte der Zahnmediziner für die Vorbeugung und Linderung der aufge-
retenen Symptome wie Mukositis, orale Candidiasis oder zur Vorbeugung von Trismus
verfügbar sein. Auch im Anschluss an die Radiatio sollte der Zahnarzt regelmäßige Recalls
einführen, um den Schweregrad der Strahlenkaries und Xerostomie beobachten und
eventuell auftretende Post-Osteoradionekrosen entdecken zu können (Murdoch-Kinch
und Zwetchkenbaum 2011; Moore et al. 2012).
In der heutigen Zeit sucht auch fast jeder Patient eine Zahnklinik vor seiner Strahlenthе-
rapie auf und erfährt eine individuelle Therapie. Im Vergleich zu früher bekommt heute
acht auch z.B. jeder Patient Fluoridierungsschienen angefertigt. Es wurden jedoch nur 53 % der
Patienten auch nach einer Radiotherapie noch ausreichend zahnärztlich betreut (Sennhenn-Kirchner et al. 2009).

Patienten, die eine Radiotherapie bekommen haben, haben die höchsten DMFT-Indizes (Abkürzung für defekte bleibende Zähne: Decayed Missing Filled Teeth) verglichen mit den Patienten, die sich einer Chemotherapie unterziehen mussten (Hong et al. 2010). Dies fand die Arbeitsgruppe um Hong et al. (2010) in ihrem Review heraus, wobei sie ebenfalls feststellten, dass die höchste Kariesprävalenz bei Patienten in der Post-Chemotherapie bestand. Dies führten sie u.a. auf die umfangreichen und teilweise „aggressiven“ Sanierungsmaßnahmen bei Strahlentherapiepatienten zurück.

Die Nutzung von Fluoriden und Chlorhexidin (CHX) sind von stark positivem Nutzen bei Patienten in der Post-Radiotherapie (Sennhenn-Kirchner et al. 2009). Sie reduzieren die Kariesaktivität und Plaqueindizes (Hong et al. 2010).

Durch das hohe Vorkommen an Zweittumoren sollten zusätzlich zu den Routine-Nachsorgen auch Computertomographien des Thorax stattfinden, um bei den Patienten Zweittumore erkennbar zu machen. 86 % der untersuchten Patienten, bei denen sich ein Zweittumor bestätigt hat, konnten kurativ behandelt werden (Wolff et al. 2013).

Dies sind durchaus weniger radikale Ansichten, als sie von Herzog et al. (1986) geäußert wurden, nach denen die „Indikation zur radikal chirurgischen Zahnsanierung bei Mali-
gnomen im Kopf-Hals-Bereich umso großzügier gestellt werden sollte“ und eine konservative Behandlung nur in den seltensten Fällen in Erwägung zu ziehen sei.

Es sollte aber auf alle Fälle bei stattgefundenener Extraktion ein sorgfältiger Wundverschluss der Extraktionsalveolen vollzogen werden, wobei idealerweise bis zum Beginn der Radiotherapie 10-14 Tage vergeben sollten (Regezi et al. 1976). Nach der Arbeitsgruppe um Regezi et al. (1976) wurde auf Grund solcher Maßnahmen im Zusammenhang von 311 Extrakationen bei 49 Patienten, die sich unmittelbar vor einer Radiotherapie befanden, nur bei einem Patienten anschließend eine Osteoradionekrose entwickelt.

2.4 Zahnärztliche Füllungsmaterialien

2.4.1 Amalgam

Alle ästhetisch vorteilhafteren Alternativen zu Amalgam erfordern ein komplexeres Prozedere und bedeutend mehr Zeitaufwand. Außerdem ist Amalgam immer noch das ge-
eignetste Material für Restaurationen im Molarenbereich, wenn Kosten einen Gesichtspunkt darstellen (Mitchell et al. 2007; Roulet 1997).

Auch wenn die Verwendung von Amalgam deutlich zurück gegangen ist, ist es in großen Teilen der Welt das meist verwendete direkte Restaurationsmaterial für die kaukrafttragenden Molaren (Mitchell et al. 2007; Rasines Alcaraz et al. 2014).

An Amalgam, das zu etwa 50 % aus Quecksilber mit der Ordnungszahl 80 besteht, kann eine Streustrahlung entstehen, die einer überwiegend aus Gold bestehenden Legierung mit der Ordnungszahl 69 annähernd äquivalent ist.

2.4.1.1 Amalgamfüllungen bei Radiotherapiepatienten

Auch sind schwere Schleimreaktionen neben metallischen Füllungsmaterialien während der Radiotherapie zu beobachten (Mail et al. 2013).
2.4.2 Komposit

Komposit von lateinisch "compositium" = "zusammengestellt" bedeutet dem Wortsinn nach zusammengestellte Werkstoffe.

„In der Zahnmedizin werden unter Kompositen zahnfarbene, plastische Füllungswerkstoffe verstanden, die nach Einbringen in eine Kavität chemisch oder durch Energiezufuhr aushärten." (Hellwig et al. 2009)

Die drei Hauptbestandteile der modernen Komposite bestehen aus der organischen Matrix, der dispersen Phase (Füller) und der Verbundphase (Silane, Kopolymere). Diese beeinflussen die materialspezifischen Eigenschaften. Im nicht ausgehärteten Zustand sind der Matrix zusätzlich Stabilisatoren, Inhibitoren, Initiatoren, Pigmente und weitere Additive hinzugefügt. Die Radioopazität wird außerdem durch Zugabe von Füllkörpern mit Schwermetallen wie Barium oder Strontium erzielt.

Die heute allgemein bekannten Einteilungsmöglichkeiten beziehen sich auf die Konsistenz, die enthaltenen Füller und die Basischemie (Matrix). Die Art und die Größe der zusätzlichen Füllkörper grenzen die klassischen Kompositmaterialien voneinander ab.

Klassische Kompositmaterialien

1.) Makrofüllerkomposite

Die konventionellen Komposite enthalten Makrofüller Keramik, Glas oder Quarz zwischen einer Größe von 1-100 µm. Sie weisen jedoch wegen ihres hohen Füllstoffanteils (bis 80 Gew.-%) eine schlechte Polierbarkeit und schlechte optische Eigenschaften auf.

2.) Mikrofüllerkomposite

Sie enthalten Füllstoffe, deren Größe unter 1 µm liegt. Als Füllkörper dienen feine Kieselsäuren (Siliziumdioxid). Da sie nur 50 Gew.-% Füllkörperanteil besitzen, kommt es zu schlechteren physikalischen Eigenschaften wie z.B. zu einer erhöhten Polymerationsschrumpfung und geringeren Biegefestigkeit.

3.) Hybridkomposite

2.4.2.1 Adhäsivsysteme

Der Schmelz wird vor Applikation dieser Adhäsivsysteme und des Komposites mit einer Ansträgung versehen, um die Ätzwirkung und so die Benetbarkeit des Schmelzes zu verbessern. Die Mikro-Zugfestigkeit an quer/parallel (ca. 45 Grad) angeschliffenen Schmelzprismen ist höher als an senkrecht zur Prisemlängsachse geschnittenen Schmelzprismen (Ikeda et al. 2002).

Die Adhäsivtechnik reduziert, aber beseitigt nicht vollständig das marginal Leakage (Kóhalmi et al. 1999).

Die unterschiedlichsten wissenschaftlichen Beweise, die heute zu finden sind, vertreten die Auffassung, dass die Wahl zwischen Etch-and-rinse und Self-etch-Systemen oft eine Sache der persönlichen Präferenz sei (Ozer und Blatz 2013).

2.4.2.2 Kompositfüllungen bei Radiotherapiepatienten

Es existieren kontroverse Meinungen darüber, ob weniger Sekundärkaries an Glasionomerzementfüllungen auszumachen ist als bei anderen Materialien. Hierzu wurde von McComb und Mitarbeitern (McComb et al. 2002) das Auftreten von Sekundärkaries bei verschiedenen Füllungsmaterialien bei Xerostomie-Patienten, die sich einer Radiotherapie unterziehen mussten, untersucht. Auch in dieser Studie wurde festgestellt, dass die Patienten, die eine schlechte Compliance in der Fluoridnutzung bewiesen, materialabhängig eine höhere Rate an Kariesrezidiven entwickelten. Die Gruppe der Patienten, die kein Fluorid nutzen, zeigten statistisch signifikante Unterschiede auf, indem bei ihren GIZ-Füllungen weit weniger Sekundärkaries zu beobachten war als bei den Patienten der gleichen Gruppe, die mit Kompositen versorgt wurden. Die Kariesrezidive wurden bei den GIZ-Füllungen im Vergleich zu den Kompositfüllungen um bis zu 80 % reduziert (McComb et al. 2002).

In der Studie von De Moor et al. (2011) wurde das klinische Erscheinungsbild von adhäsiven Füllungsmaterialien bei Patienten mit Xerostomie und hohem Kariesrisiko nach Strahlentherapie untersucht. Diese Patienten sollten ebenfalls täglich ein neutrales 1 % Natriumfluoridgel auf ihre Zähne auftragen. Nach 6, 12, 18 und 24 Monaten wurden die Füllungen erneut auf Materialbeständigkeit bzw. -verlust, marginale Adaption und Karies untersucht. Das GIZ stellte erneut eine klinische Karieshemmung bereit, wurde aber leicht abradiert. Das Komposit dagegen gewährleistete die größere strukturelle Integrität (De Moor et al. 2011).

Die Arbeitsgruppe um Biscaro (Biscaro et al. 2009) dagegen zeigte, dass die Bestrahlung einen dosisabhängigen nachteiligen Effekt auf den Verbund von Kompositrestaurationen zum Dentin verursacht.

Ganz unabhängig von der Radiotherapie sind die Bondinghaftkräfte zum Schmelz deutlich höher als zum Dentin (Naves et al. 2012). Nach Naves et al. hat die Strahlentherapie, die bei den Patienten stattfand bevor restaurative Maßnahmen ergriffen wurden, ebenfalls deutlich die Klebehaftung auf beiden Substraten herabgesetzt.

Die Röntgenstrahlen hatten folglich einen deutlich nachteiligen Effekt auf die Haftfestigkeit von Füllungsmaterialien zu Schmelz und Dentin, sofern die adhäsiven Restaurationen nach der Radiotherapie angefertigt wurden (Naves et al. 2012).

2.5 Rückstreueffekte von zahnärztlichen Materialien während der Radiotherapie

wählten zahnärztlichen Materialien wie Amalgam oder Nickel-Titan auf. Sie stellten fest, dass die Absorption weit weniger relevant ist als die rückwärtige Streustrahlung.

Fazit der Studie von der Arbeitsgruppe um Reitemeier (Reitemeier et al. 2002) war, dass der herausgefunde beträchtliche Anstieg von 170 % es verlangt, die Weichgewebe um die zahnärztlichen Materialien vor Strahlung zu schützen. Die Rückstreueffekte deuten darauf hin, dass das Weichgewebe effektiv mit einem 3 mm starken Weichgewebsretraktor abgeschirmt werden sollte (Chin et al. 2009; Farahani et al. 1993; Reitemeier et al. 2002).

Die Angaben zur lokalen Dosiserhöhung variieren jedoch abhängig vom verwendetem Werkstoff und Versuchsaufbau.

Gibbs et al. (1976) gaben die lokale Dosiszunahme an Amalgamfüllungen mit 109 %-118 % an, während Thilmann und seine Arbeitsgruppe (Thilmann et al. 1995) sogar Dosiserhöhungen von 161 % für Amalgam nachwiesen.
2.6 Auswirkung von Strahlentherapie auf die Zahnhartsubstanz

Kielbassa et al. (2002) folgerten, dass die Demineralisationsprozesse im bestrahlten Dentin durch regelmäßige Anwendung eines Fluoridgels erschwert werden können.

Eine fortschreitende Störung der Schmelz- und Dentinmorphologie wurde mit steigender Strahlendosis beobachtet (de Siqueira Mellara et al. 2014).
2.7 Untersuchungsmethoden von Randspalten an Füllungsmaterialien

2.7.1 Klinisch mit Sonde und Spiegel

2.7.2 Lichtmikroskopie

2.7.3 Raster-Elektronen-Mikroskopie

Mit dem Raster-Elektronen-Mikroskop ist es mit großem apparativem und vorzubereitendem Aufwand möglich, Bilder mit hoher Tiefenschärfe und guter räumlicher Darstellung anzufertigen. Um diese Bildaufnahme möglich zu machen, wird die zu Beginn in einem Sputter mit Kohle oder Metallen besputterte Probe durch einen gebündelten Primärelektronenstrahl zeilenförmig in einem auf die Probe gezogenen Hochvakuum abgefahren. Auf der Probe entstehen während dieses Prozesses Sekundärelektronen, welche das oberflächentopographische Bild ergeben.

In der quantitativen Randanalyse wird diese Methode heute häufig in Kombination mit der Replikatechnik angewandt. Die zu untersuchende Probe wird abgeformt und die Modellherstellung ist aus verschiedenen Materialien möglich. Sehr beliebt und als die beste Detailwiedergabe erreichend gelten Silikonabformmaterialien (z.B. Xantonpre Blau) (Ku-
2.8 Fragestellung

Unsere Untersuchung will evaluieren, ob an der Grenzfläche zwischen Zahnhartsubstanz und den Füllungsmaterialien Amalgam und Komposit bei der für Tumorpatienten im Kopf-Hals-Bereich genutzten Strahlengesamtdosis von 60 Gy oder einer experimentellen Überschussdosis von 90 Gy Veränderungen auftreten, die unter dem Auflichtmikroskop bei 66-facher Vergrößerung sichtbar werden.
3 Versuchsplan

Es soll wie folgt vorgegangen werden:
10 Füllungen aus Amalgam und 10 Füllungen aus Komposit werden mit einer Dosis von 60 Gy, die anderen 20 Füllungen (10 Amalgamfüllungen; 10 Kompositfüllungen) werden mit einer Dosis von 90 Gy bestrahlt.
Diese Aufnahmen werden stets zwischen zwei Markierungsstrichen auf der Höhe zwischen zwei und drei Uhr angefertigt.
Tabelle 1: Schematische Darstellung des Versuchsablaufes

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach Bestrahlung: Visuelle Beurteilung und Fotografie aller 40 Kavitäten an derselben Position mit dem Auflichtmikroskop; Bei der klinischen Untersuchung wurde mit einer Sonde die Grenzfläche Zahn-Füllung an der selben Position abgefahren.</td>
<td></td>
</tr>
<tr>
<td>Vor Bestrahlung: Visuelle Beurteilung und Fotografie aller 40 Kavitäten und ihres Randspaltes an der Position zwischen zwei und drei Uhr mit Auflichtmikroskop bei 66-facher Vergrößerung; Klinische Untersuchung mit Sonde der Grenzfläche Zahn-Füllung an der Position zwischen sechs und sieben Uhr.</td>
<td></td>
</tr>
<tr>
<td>Bestrahlung von 10 Füllungen mit Komposit und 10 Füllungen mit Amalgam mit 60 Gy</td>
<td>Bestrahlung von 10 Füllungen mit Komposit und 10 Füllungen mit Amalgam mit 90 Gy</td>
</tr>
<tr>
<td>20 Kavitäten werden mit Komposit befüllt</td>
<td>20 Kavitäten werden mit Amalgam befüllt</td>
</tr>
<tr>
<td>in Bohrmaschine eingespannte Diamantbohrer werden in standardisiertem Bohrvorgang in definierter Tiefe versenkt.</td>
<td>Bukkale und linguale Flächen werden nach oben im Kaltpolymerisat Paladur ausgerichtet und eingebettet.</td>
</tr>
<tr>
<td>Ca.30 aus Unterkiefern von Rindern extrahierte Zähne werden von Gewebestücken und Verunreinigungen gereinigt.</td>
<td></td>
</tr>
</tbody>
</table>
4 Material und Methoden

4.1 Material

4.1.1 Rinderzähne

Aus diesem Grund stellen bovine Zähne mittlerweile eine gute und verbreitet genutzte Alternative zu humanen Zähnen in In-vitro-Untersuchungen dar (Yassen et al. 2011).

Im Vergleich zu Rinderzähnen zeigen Schweinezähne dagegen eine sehr unterschiedliche Konfiguration der Schmelzmorphologie auf (Reis et al. 2004).

Auch der Kalziumgehalt wies nach Davidson et al. (1973) Ähnlichkeiten bei Rinder- und Menschenzähnen auf.

Neben der chemischen Zusammensetzung zeigen auch die mechanischen Eigenschaften wie Härte und Dichte eine gute Übereinstimmung mit menschlichen Zähnen (Davidson et al. 1973).

4.1.2 Künstlicher Speichel

Während der vorbereitenden Maßnahmen und im weiteren Versuchsverlauf wurden die Zähne in künstlicher Speichellösung, die alle sieben Tage erneuert wurde, gelagert.
Die Herstellung des künstlichen Speichels erfolgte nach einer Rezeptur von Klimek et al. (1982):

Tabelle 2: Zusammensetzung des künstlichen Speichels

<table>
<thead>
<tr>
<th>Chemikalien</th>
<th>Anzahl in Gramm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascorbinsäure¹</td>
<td>0,006</td>
</tr>
<tr>
<td>Glucose¹</td>
<td>0,090</td>
</tr>
<tr>
<td>Natriumchlorid¹</td>
<td>1,740</td>
</tr>
<tr>
<td>Kalziumchlorid²</td>
<td>0,675</td>
</tr>
<tr>
<td>Ammoniumchlorid¹</td>
<td>0,480</td>
</tr>
<tr>
<td>Kalziumchlorid²</td>
<td>3,810</td>
</tr>
<tr>
<td>Natriumrhodanid³</td>
<td>0,480</td>
</tr>
<tr>
<td>Kalziumhydrogenphosphat¹</td>
<td>0,990</td>
</tr>
<tr>
<td>Harnstoff¹</td>
<td>0,600</td>
</tr>
<tr>
<td>Di-Natriumhydrogenphosphat¹</td>
<td>1,020</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>3 Liter</td>
</tr>
</tbody>
</table>

¹ = Roth GmbH, Karlsruhe, D
² = Merck KG, Darmstadt, D
³ = Fluka Chemie GmbH, Buchs, CH

Abbildung 1: Speichelsubstanz und die Analysenwaage, mit der sie abgemessen wurde
Die aufgeführten Substanzen wurden auf einer Analysenwaage abgewogen (Abb. 1), danach vermischt und jeweils in einem mit destilliertem Wasser gereinigten Behälter mit 3 l Aqua dest aufgefüllt. Anschließend wurden sie mit einem Magnetrührer ca. vier Std verrührt, bis sich alle Bestandteile gelöst hatten.

4.1.3 Verwendete Materialien und Geräte

- Rinderzähne, Schlachterei Sebert’s, Göttingen-Geismar, Deutschland
- Künstlicher Speichel, Substanzen, siehe Tabelle 2
- Analysenwaage Sartorius Research, Sartorius, Göttingen, Deutschland
- EXAKT Trennsystem Standard, Apparatebau, Norderstedt, Deutschland
- Gießform, Sonderanfertigung, wissenschaftliche Werkstatt des Universitätsklinikums Göttingen, Deutschland
- Schraubzwinger
- Paladur®, Heraeus-Kulzer, Hanau, Deutschland
- Peripheriwachs, Sigma, Heraeus-Kulzer, Hanau, D
- Anmischbecher, Anrührspatel
- Bohrmaschine der Firma Metabo (T6 elektronic), Nürtingen, D
- Diamantbohrer, Komet, Lemgo, D
- Amalgamkapseln Amalcap Plus® von Ivoclar Vivadent dental, Ellwangen, D
- Amalgampistole, Hu-Friedy, Rotterdam, NL
- Kugelstopfer und Planstopfer, Hu-Friedy, Rotterdam, NL
- Amalgam-Rüttler Silamat®, Ivoclar Vivadent dental, Ellwangen, D
- Greenie, Brownie, Arkansas, Komet, Lemgo, D
- Komposit Venus A3, Heraeus- Kulzer, Hanau, D (Exp. date 2016-06)
- Prime&Bond Optibond® FL, Kerr, Rastatt, D
- Micro Brush, 3M Espe, D
- 35% Phosphorsäure Ultra-Etch® Ultradent Products Inc., Utah, USA
- Lichthärtegerät, B.A. Optima 10, Hamburg, D
- Experimentelle Röntgenstrahlanlage der Firma Gulmay RS 225, Byfleet, Surrey, UK
- Auflichtmikroskop Zeiss Stemi SV11, Jena, D
- Moticam 2300 3.0 M
4.1.4 Verwendete Füllungswerkstoffe

Die Versuchsreihen wurden mit zwei verschiedenen Füllungswerkstoffen durchgeführt, die in der restaurativen Zahnmedizin häufig Anwendung finden.

Die chemische Zusammensetzung wurde den Herstellerangaben entnommen:

- **Amalcap Plus® von Ivoclar Vivadent dental**
 - Non-Gamma-2-freies, gamma-2-freies sphärisches Silberamalgam

 Zusammensetzung:

<table>
<thead>
<tr>
<th>Material</th>
<th>Gew.-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quecksilber</td>
<td>48,8</td>
</tr>
<tr>
<td>Silber</td>
<td>35,8</td>
</tr>
<tr>
<td>Zinn</td>
<td>9,3</td>
</tr>
<tr>
<td>Kupfer</td>
<td>6,1</td>
</tr>
</tbody>
</table>

- **Komposit Venus A3 von Heraeus- Kulzer**
 - Lichthärtendes Universalkomposit auf Feinstpartikel-Hybridbasis

4.2 Methoden

4.2.1 Vorversuche

4.2.1.1 Auswirkungen von Strahlentherapie auf Harvardzement, Füllungsmaterialien, Phantommetall, Nickel-Titan-Schlaufen

Abbildung 2: Vorversuche- Gruppe 1: Objektträger mit Harvardzement bestrichen: Bild vor Bestrahlung

Abbildung 5: Vorversuche- Gruppe 4: Kavitäten mit Amalgam und Komposit in Rinderzähnen im Silikonblock

4.2.1.2 Bestrahlung der Proben und Mikroskopie

4.2.1.3 Versuch der Mikroskopie mittels des Raster-Elektronen-Mikroskops

In Rinderzähne angelegte Kavitäten in Probeblöcken wurden mittels des Raster-Elektronen-Mikroskops (REM) untersucht.

Abbildung 6: Probeblock mit Schmelzrissen im Raster-Elektronen-Mikroskop

4.2.2 Hauptversuche

4.2.2.1 Herstellung und Vorbereitung der Rinderzahnproben

Zähne als optimale Kavitätenflächen ausgewählt und die Zähne unter Wasserkühlung in eine passende Form gesägt. So war es möglich, sie in eine angefertigte Form mit Kunststoff einbetten zu können.

Die Kronen wurden gründlich auf kariöse Läsionen und Schmelzdefekte untersucht. Die Rinderzähne, die derartige Auffälligkeiten zeigten, wurden aussortiert.

Abbildung 7: Säuberung der Zähne von Verfärbungen mittels eines Scalers

4.2.2.2 Einbettung der Rinderzähne mit Paladur in einer Gießform

In einer Gießform der Größe 20x50 mm, einer Sonderanfertigung der wissenschaftlichen Werkstatt der UMG, wurden die Zähne mit Sigma Peripheriwachs mittig platziert. Die Seiten der Gießform wurden mit Vaseline ausgestrichen und zwei der vier Seiten der Gießform mittels einer Schraubzwinge adaptiert.

Abbildung 8: Kunststoff Paladur®, Anrührbecher, Gießform und Schraubzwinge
In einem Silikonanmischbecher wurden 13 g Pulver und 7,2 ml Flüssigkeit Paladur® mit einem Kunststoffanrührspatel verrührt. Sobald die Konsistenz eine leichte Zähflüssigkeit erreicht hat, wurde die genau für einen Block benötigte Kunststoffmasse langsam in die Gießform bis zum Rand eingefüllt. Die Zähne waren nun gleichmäßig von Kunststoff umgeben, und die Schmelzoberfläche ragte ebenmäßig aus dem Kunststoff heraus.

Abbildung 9: Rinderzähne eingebettet in Kunststoffblöcke

4.2.2.3 Kavitätenpräparation und Applikation der Füllungsmaterialien Amalgam und Komposit

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Füllungsmaterial</th>
<th>Kunststoffblock</th>
<th>Kavitätenanzahl</th>
<th>Bestrahlungsdois in Gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amalgam</td>
<td>Block A₁</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Amalgam</td>
<td>BlockB₁+B₂</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>Kunststoff</td>
<td>BlockC₁+C₂</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Kunststoff</td>
<td>BlockD₁+D₂</td>
<td>10</td>
<td>90</td>
</tr>
</tbody>
</table>

Die Kavitäten der einzelnen Gruppen wurden randomisiert angelegt.
Die für das jeweilige Füllungsmaterial empfohlenen Diamantbohrer sind nacheinander in die Bohröffnung der Bohrmaschine der Firma Metabo (T6 Elektronik) eingespannt worden. Per Hebel konnten die Diamantbohrer gezielt 0,5 mm im Zahn versenkt werden. Um bei jeder Füllung die gleiche Tiefe zu garantieren, wurden die Diamantbohrer mit einer Markierung in Höhe von 5 mm zirkulär versehen. Bis zu dieser Markierung wurden die eingespannten Diamantbohrer versenkt.

Für die Anlegung der Kavitäten für das Material Komposit wurden ebenfalls zwei unterschiedliche Diamantbohrer verwendet.

Um die Ansträgung der Schmelzprismen zu gewährleisten, wurde ein Diamantbohrer von Komet “Kugel rund Größe 010” eingesetzt, nachdem die Kavität mit dem Diamantbohrer von Komet “Zylinder kurz Größe 021” angelegt worden war.

Alle Kavitäten sind mit ausreichend Wasserkühlung und neuen Bohrern angefertigt worden.
Abbildung 10: Markierung der Bohrlöcher im Abstand von 5 mm

Abbildung 11: Block unter der Bohrmaschine Metabo liegend, Markierung des Diamantbohrers in Höhe von 5 mm zu erkennen

Abbildung 12 Betätigung des Hebels und standardisierter Bohrvorgang
Nach Anlegung, gründlicher Säuberung und Trocknung der Kavitäten wurden die Füllungsmaterialien in die Kavitäten appliziert.

Mit einem Brownie und Greenie von Komet sind mit 3200 Umdrehungen/Minute für jeweils 10 Sekunden die applizierten Füllungen noch einmal poliert worden. Mit der zahnärztlichen Sonde wurden die Ränder auf Überschüsse oder Spalten untersucht.
Die Oberflächen der Amalgamfüllungen sind mit einem Kugelstopfer für 20 Sekunden/Kavität brüniert worden.
Die endgültige Politur mit Brownie und Greenie fand, ebenfalls wie vom Hersteller empfohlen, 24 Stunden nach Applizierung der Füllungen mit 3200 Umdrehungen/Minute bei ständiger und ausreichender Spraykühlung und Absaugung statt.
4.2.2.4 Bestrahlung

Diese setzte sich aus zwei Bestrahlungszeiten von 2x9 Minuten zusammen, mit dazwischen liegenden 15 Minuten Pause, um die Röntgenröhre abkühlen zu lassen.

Beide Blöcke des jeweiligen Füllungsmaterials fanden auf dem inneren Ring des Tellers in der Röntgenstrahlanlage Platz und die Tischhöhe betrug 205 mm.

Abbildung 17: Bestrahlungsindikator zur Anwendung in der Strahlenkammer

Abbildung 18: Unbestrahlter Bestrahlungsindikator

Abbildung 19: Bestrahlter Bestrahlungsindikator nach Bestrahlung unserer Proben mit 60 Gy
4.2.2.5 Klinische Sondierung und Vergrößerung

Mittels einer zahnärztlichen Sonde wurde jede Füllung vor und nach der Bestrahlung in der Röntgenstrahlanlage untersucht, um eventuell durch die Strahlung aufgetrete Veränderungen festzustellen.

Die klinische Untersuchung wurde dieses Mal an der Grenzfläche Füllung-Zahn zwischen der sechs und sieben Uhr-Position durchgeführt, um die unter dem Mikroskop zu untersuchende Stelle zwischen zwei und drei Uhr nicht vor der Bestrahlung verändert und behandelt zu haben.

Abbildung 20: Klinische Untersuchung mit zahnärztlicher Sonde

4.2.2.6 Mikroskopie

Abbildung 22: Auflichtmikroskop Zeiss Stemi SV11 mit Probe
5 Ergebnisse

5.1 Ergebnisse der Vorversuche

Abbildung 23: Objektträger mit Zement vor und nach Bestrahlung
Abbildung 24: Phantommetallplättchen unbehandelte/polierte Seite vor und nach Bestrahlung

Abb. 24: Phantommetallplättchen
Unbehandelte/polierte Seite, vor Bestrahlung

Abb. 24a: Phantommetallplättchen unbehandelte/polierte Seite, nach Bestrahlung

Abbildung 25: Nickel-Titan-Schlaufe auf Zement befestigt vor und nach Bestrahlung

Abb. 25: Nickel-Titan-Schlaufe auf
Zement befestigt mit Markierung,
vor Bestrahlung

Abb. 25a: Nickel-Titan-Schlaufe auf Zement befestigt
mit Markierung, nach Bestrahlung

Abbildung 26: Amalgamfüllung (AgF) in Rinderzahn vor und nach Bestrahlung

Abb. 26: Amalgamfüllung in Rinderzahn
im Kunststoffblock vor Bestrahlung

Abb. 26a: AgF in Rinderzahn nach Bestrahlung
5.2 Ergebnisse der Hauptversuche

5.2.2 Ergebnisse der Untersuchungen unter dem Auflichtmikroskop

An einer Amalgamfüllung aus der Gruppe 1 konnte ein Spalt vermessen werden:
Abbildung 28: Gruppe 1 Amalgamfüllungen (AgF) mit 60 Gray bestrahlt vor und nach Bestrahlung

Abb. 28: Gruppe 1 AgF vor Bestrahlung
Abb.28a: Gruppe 1 AgF nach Bestrahlung-
Spalt von 127,4 µm

Auf allen weiteren Bildern waren keine Veränderungen zwischen dem Zustand vor und nach der Bestrahlung zu erkennen:

Abb.28b1: Gruppe 1 Amalgamfüllung vor B.
Abb.28b2: Gruppe 1 AgF nach Bestrahlung
Abb. 28c1. Gruppe 1 AgF vor Bestrahlung

Abb. 28c2: Gruppe 1 AgF nach Bestrahlung

Abb. 28d1: Gruppe 1 AgF vor Bestrahlung

Abb. 28d2: Gruppe 1 AgF nach Bestrahlung
Abbildung 29: Gruppe 2 Amalgamfüllungen mit 90 Gray bestrahlt vor und nach Bestrahlung

Abb.29: Gruppe 2 AgF vor Bestrahlung

Abb.29a: Gruppe 2 AgF nach Bestrahlung

Abb.29b1: Gruppe 2 AgF vor Bestrahlung

Abb.29b2: Gruppe 2 AgF nach Bestrahlung

Abb.29c1: Gruppe 2 AgF vor Bestrahlung

Abb.29c2: Gruppe 2 AgF nach Bestrahlung
Abbildung 30: Gruppe 3 Kompositfüllungen (KoF) mit 60 Gray bestrahlt vor und nach Bestrahlung

Abb. 30: Kompositfüllung Gruppe 3 vor B.

Abb. 30a: KoF Gruppe 3 nach Bestrahlung

Abb. 30b1: Gruppe 3 KoF vor Bestrahlung

Abb. 30b2: Gruppe 3 KoF nach Bestrahlung

Abb. 30c1: KoF Gruppe 3 vor B.

Abb. 30c2: KoF Gruppe 3 nach B.
Abbildung 31: Gruppe 4 Kompositfüllungen mit 90 Gray bestrahlt vor und nach Bestrahlung

Abb.31: Gruppe 4 KoF vor Bestrahlung

Abb.31a: Gruppe 4 KoF nach Bestrahlung

Abb.31b1: Gruppe 4 KoF vor Bestrahlung

Abb.31b2: Gruppe 4 KoF nach Bestrahlung

Abb.31c1: Gruppe 4 KoF vor Bestrahlung

Abb.31c2: Gruppe 4 KoF nach Bestrahlung
5.2.3 Ergebnisse der klinischen Untersuchung

Für eine subjektive klinische Überprüfung wurde mit einer zahnärztlichen Sonde die Grenzfläche Füllung-Zahn abgetastet und vor und nach der Bestrahlung auf einen Spalt untersucht. Auch sollte überprüft werden, ob eine Veränderung zwischen der klinisch verwendeten 60 Gy-Dosis und einer experimentellen Überdosis von 90 Gy auszumachen ist.

Es konnten bei den Amalgamfüllungen nur bei drei Füllungen der Gruppe 1 und bei einer Füllung der Gruppe 2 nach der Bestrahlung eine Veränderung durch Haken der Sonde festgestellt werden.

Bei den Kompositfüllungen waren es in Gruppe 3 und 4 jeweils vier Füllungen, bei denen ein Unterschied zu vor der Bestrahlung an der zu untersuchten Position zwischen sechs und sieben Uhr zu verzeichnen war (siehe Tabelle 3). Trotz einer Veränderung des Sondierungsbefundes an einigen Füllungsständen, konnten alle Füllungen in unserer Arbeit nach den Ryge-Kriterien mit einem “alpha” bewertet werden, da die Sonde zwar hakte, visuell jedoch mit Lupenbrille und 2-facher Vergrößerung keine Stufe oder kein Spalt zu erkennen war.

Tabelle 4: Anzahl der bei der klinischen Untersuchung nach der Bestrahlung aufgetretenen Veränderungen

<table>
<thead>
<tr>
<th>Material</th>
<th>Gruppe</th>
<th>Dosis</th>
<th>Veränderung: Ja</th>
<th>Veränderung: Nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amalgam</td>
<td>0 Gray</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>60 Gray</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>90 Gray</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Komposit</td>
<td>0 Gray</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>60 Gray</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>90 Gray</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Statistisch wurde dies mit dem Fisher Exact-Test mit der freien Statistiksoftware R überprüft. Der exakte Fisher-Test betrachtet eine Kontingenztafel, die zeigt, ob aus unterschiedlichen Behandlungen auch unterschiedliche Ergebnisse resultieren. Er stellt keine Voraussetzungen an den Stichprobenumfang und liefert, auch bei wenigen Beobachtungen wie in dieser Studie, zuverlässige Resultate. Seine Nullhypothese sagt aus, dass der
Einfluss auf das Endergebnis „Verschlechterung ja/nein“ unabhängig von der Behandlung ist. Als Signifikanzniveau wurde 5 % gewählt. Bei \(p < 0,05 \) kann die Nullhypothese also verworfen werden.

Die statistisch angenommene Nullhypothese besagt, dass es keine Auswirkung auf die Qualität des Randspaltes zwischen Füllung und Zahn bezüglich einer Verschlechterung ja/nein hat, ob eine Probe unbestrahlt ist oder mit einer 60 Gy-Dosis bzw. einer 90 Gy-Dosis bestrahlt wird.

Eine weitere Nullhypothese besagt, dass es keine Auswirkung auf die Qualität des Randspaltes zwischen Füllung und Zahn bezüglich einer Verschlechterung ja/nein hat, ob eine Probe mit einer 60 Gy-Dosis oder einer 90 Gy-Dosis bestrahlt wird.

Bei allen Vergleichen ist ein \(p \)-Wert größer als 0,05 errechnet worden. Bei einem \(p \)-Wert kleiner als 0,05 hätte man statistisch einen signifikanten Unterschied zwischen den unbehandelten Proben und den mit der jeweiligen Dosis bestrahlten Proben bezüglich einer Verschlechterung ja/nein gezeigt. Auch wäre im zweiten Fall bei einem \(p \)-Wert unter 0,05 ein signifikanter Unterschied zwischen der Dosis von 60 und 90 Gy bezüglich einer Verschlechterung ja/nein deutlich gemacht worden.

Trotz einer Veränderung des Sondierungsbe fundes an einigen Füllungsrändern (Tab. 3) konnte eine statistische Signifikanz (Fisher's Exact-Test) nicht gezeigt werden. Die Nullhyp othesen werden somit aufrechterhalten.
6 Diskussion

Es liegen bereits zahlreiche Studien vor, die sich mit der rückwärtigen Streustrahlung von Metallen und den Auswirkungen der daraus resultierenden lokal, d.h. in der Mundhöhle, an Implantaten, Rekonstruktionsplatten und anderen zahnärztlichen Materialien auftretenden Dosiserhöhung beschäftigt haben (Chin et al. 2009; Farahani et al. 1993; Gagnon und Cundiff 1980; Gibbs et al. 1976; Reitemeier et al. 2002; Thilmann et al. 1995; Wang et al. 1996).

Die Forschung konzentrierte sich dabei jedoch hauptsächlich auf die Wirkung der Strahlung auf die oralen Weichgewebe oder auf die Verursachung von Sekundärkaries mit und ohne Fluoridnutzung.

6.1 Material

6.1.1 Rinderzähne

Wir gehen aufgrund der aktuellen Studienlage von der Ähnlichkeit zwischen Rinder- und Menschenzähnen aus. Es ließen sich des Weiteren keine Unterschiede bezüglich des Klebeverbundes oder der Randadaptionen erkennen.
Die Wahl unseres Probenmaterials durfte sich daher mit der Erwartung verbinden, dass das Ergebnis unserer Studie, also das, was sich unter dem Auflichtmikroskop an den Randspalten zeigen sollte, die Übertragung auf die Bestrahlung menschlicher Zähne erlaubt.

6.1.2 Künstlicher Speichel

Um die Füllungen und die Rinderzähne in einer möglichst naturgetreuen Lösung zu lagern, nutzten wir die von Klimek et al. für künstlichen Speichel zusammengestellten Substanzen (Klimek et al. 1982).

6.2 Methoden

6.2.1 Vorversuche

In den Vorversuchen wurde überprüft, ob die Bestrahlung Reaktionen an den einzelnen untersuchten zahnärztlichen Materialien hervorruft.
Füllungen entwickelt worden, damit diese ebenmäßigere Oberflächen aufwiesen als es in den Vorversuchen der Fall war.

Vom Raster-Elektronen-Mikroskop nahmen wir – aus den bereits in Abschnitt 4.2.1.3 genannten Gründen – Abstand. Wir verzichteten auf die Replikatechnik, da ein weniger aufwendigeres und kostengünstigeres Verfahren in den Vorversuchen angewendet werden sollte. So brauchte sowohl der kühle Sputter wie auch das REM mehrere Stunden, um das benötigte Vakuum zu erlangen. Es wäre jedoch empfehlenswert gewesen, die zu untersuchende Probe mit einem bewährten Silikon abzuformen und die Modelherstellung aus z.B. einem Epoxidharz anzuwenden, um der Zerstörung der Proben durch das REM vorzubeugen und die höhere Vergrößerung des REM nutzen zu können.

6.2.2 Hauptversuche

6.2.2.1 Herstellung der Proben

Die Rinderzähne sind gründlich mit Skalpellen, scharfen Löffeln und Scalern von Gewebestücken und oberflächlichen Verunreinigungen befreit worden. Dieses Vorgehen wäre vermutlich mit einem Pulverstrahlgerät stark vereinfacht worden, jedoch hätten hierbei
Oberflächenveränderungen die Folge sein können. Somit entschieden wir uns zur Säuberung der Rinderzähne für die Handinstrumente.

Auch war es uns bei dieser Studie sehr wichtig, standardisierte Verhältnisse zu schaffen. Denn die Standardisierung der Versuchsbedingungen bleibt ein entscheidendes Kriterium, um die gewonnenen Ergebnisse gut miteinander vergleichen zu können. Damit eine definierte Tiefe und Breite der Kavitäten gewährleistet war und mögliche von Hand verursachte Fehler vermieden werden konnten, wurden die verwendeten Diamantbohrer in eine einheitlich funktionierende Bohrmaschine eingespannt. Die Ausdehnung der Kavitäten konnte so bei allen Proben genau gleich gestaltet werden.

6.2.2.2 Auswahl und Verarbeitung der Füllungsmaterialien

al. 2012; Reitemeier et al. 2002). Dieser Stand der Wissenschaft legte uns die Auswahl der beiden Materialien nahe.

Amalgam

Amalgam gehört in der Zahnmedizin seit über einem Jahrhundert zu den metallischen Füllungsmaterialien der Wahl (Rasines Alcaraz et al. 2014) und ist trotz stetigem Rückgang weltweit immer noch das am meisten verwendete Restaurationsmaterial für die Molaren (Mitchell et al. 2007).

Die Applikation der Amalgamfüllungen erfolgte in der nach Herstellerangaben vorgeschriebenen Vorgehensweise. Die Misch- und Verarbeitungszeit von 10 Sekunden bzw. 3 Minuten wurde eingehalten. Die abschließende Brünierung und Politur der Amalgamfüll-
lungen wurde ebenfalls sehr sorgfältig und nach Richtlinien der Hersteller durchgeführt, da die gründliche Beendigung einer Amalgamfüllung - im Vergleich zu den Oberflächen unpolierter Amalgamfüllungen - marginale Diskrepanzen, die möglicherweise auftreten, stark vermindert (Wöstmann und Lütke-Notarp 1991). Die achtsame Verarbeitung und sorgfältige Applizierung der Füllungsmaterialien in die Kavitäten ist von großer Bedeutung, da durch falsche Arbeitsvorgänge oder Materialüberschüsse ungenügende Randadaptionen der Materialien an die Hartsubstanzen die Folge sein können, was letztendlich zu einer geringeren Lebensdauer der Füllungen führt (Palotie und Vehkalahti 2002). Auch hätte sich sonst die Frage stellen können, ob die auftretenden Randspalten auf die Bestrahlung oder die unsaubere Verarbeitung der Materialien zurückzuführen sind. Eine mögliche Kritik an der Verarbeitung der Füllungsmaterialien sollte von vornherein ausgeschlossen werden. An diesem Punkt muss ebenfalls angemerkt werden, dass der Standard der applizierten Amalgamfüllungen in vivo natürlich häufig geringer ausfällt und wir somit nicht wissen, ob nicht mindere Qualitäten von Amalgamfüllungen ganz anders auf die Strahlen reagieren.

Komposit

Das in unserer Studie verwendete Optibond FL® als Adhäsivsystem und Haftvermittler zwischen der hydrophilen Zahnharzsubstanz und dem hydrophoben Komposit ist ein Zwei-Komponenten-Adhäsivsystem. Der oberflächenkonditionierende Primer basiert auf Wasser-Alkohol-Komponenten. Optibond FL® wird mittlerweile als “Goldstandard” be-

Frankenberger et al. (2007) stellten auch fest, dass die Randadaption bei klebenden Restaurationen in In-vitro-Studien sehr zuverlässig prognostizierbar ist, wenn eine gute Simulation der In-vivo-Umstände stattfindet. Dennoch fallen die Beurteilungen der Randqualitäten bei direkten Restaurationen in vitro schlechter aus als die in vivo noch als klinisch akzeptabel beurteilten Fälle. Auch wenn in unserer Studie den In-vivo-Begebenheiten noch genauer hätte entsprochen werden können, ist bei unserer mikroskopischen Auswertung der Randspalten die zu strenge Bewertung in vitro nicht eigens zu diskutieren, da fast alle Füllungen lichtmikroskopisch eine gute Adaption aufzeigten.

Auch die Verarbeitung des Kompositmaterials erfolgte nach Herstellerangaben. Obendrein wurde die vielseitig beschriebene Inkrementtechnik angewendet, um den Polymerationsschrumpfungen des Materials vorzubeugen. Zu verweisen ist diesbezüglich auf Studien, die behaupten, dass die Schichttechnik nur bei größeren Kavitäten diese Vorteile erbringen würde (He et al. 2008), sie folglich bei unseren kleinen Kavitäten gar nicht notwendig gewesen wäre.

In diesem Zusammenhang ist zudem darauf hinzuweisen, dass die Füllungen in unserer Studie unter optimalen Bedingungen gelegt worden sind. Dies kann, wie schon angesprochen, unter demgegenüber erschwerten klinischen Bedingungen in vivo und bei Patienten mit den unterschiedlichsten Mundhygienegewohnheiten und kariesaktiven Gebissen nicht immer der Fall sein.

Dahin gehend ist es durchaus möglich, dass klinisch die Situation sich doch etwas anders und gegebenenfalls weniger positiv darstellt.

Erweiterung der Methode

Crim und Mattingly (1981) haben darauf hingewiesen, dass In-vitro-Studien die oralen Begebenheiten so ähnlich wie möglich simulieren sollten.

Das beschriebene Füllungsmaterial erlangte in vielen Studien eine positive Resonanz, insbesondere wenn die Patienten während und nach ihrer Strahlentherapie Nachlässigkeit in der regelmäßigen Fluoridgelnutzung zeigten (De Moor et al. 2011; Haveman et al. 2003; McComb et al. 2002). Da die GIZ eine geringere Abrasivität und strukturelle Integrität aufweisen als andere Materialien (De Moor et al. 2011) wäre es interessant, in einer weiteren Studie auch seine Beständigkeit und Randqualität vor und nach Bestrahlung zu untersuchen.

6.2.2.3 Mikroskopie und Messung der Proben

Um die Randqualität der Komposit- und Amalgamfüllungen vor und nach der Bestrahlung mit 60 und 90 Gy und dem Auftreten eventueller strahlenbedingter Veränderungen zu untersuchen, beurteilten wir in dieser Studie die Grenzfläche Zahn-Füllung unter dem Auflichtmikroskop bei 66-facher Vergrößerung.

Zur Auswertung und Beurteilung der Randqualität von zahnärztlichen Restaurationen stehen funktionelle und morphologische Untersuchungsmethoden zur Verfügung, wobei die
Letzteren noch einmal in direkte und indirekte morphologische Methoden unterteilt werden.

Die morphologischen Verfahren haben den Vorteil, dass sie keinen alterierenden Behandlungen unterzogen werden. So eignen sich diese Untersuchungsmethoden sowohl für In-vivo- als auch für In-vitro-Studien. Außerdem sind Verlaufsuntersuchungen mit den morphologischen Methoden möglich, weshalb in der vorliegenden Arbeit ausschließlich die morphologischen Untersuchungsmethoden gewählt wurden.

Klinisch mit Sonde und Spiegel

Bei Kreulen et al. (1993) wurden die Methoden zur Randpassung in direkte, mit Sonde und Spiegel, und indirekte Methoden, die Fotografien der Impressionen der Ränder in Replikamodellen einschließen, unterteilt.

Die indirekte Methode der Replikatechnik, mit einem zusätzlich vorliegenden Mess balken im REM, wurde als aussagekräftiger eingestuft, besonders wenn nur geringe Unterschiede des marginalen Spaltes zu erwarten sind (Kreulen et al. 1993).

Da heute die Füllungsmaterialien so weit entwickelt sind, dass allenfalls noch geringe Randspalten auftreten, war in dieser Studie davon auszugehen, dass idealerweise mit den einfachen klinischen Instrumenten keine signifikanten Unterschiede erkennbar sein sollten.

Lichtmikroskopie

Die Lichtmikroskopie, die in dieser Studie eingesetzt wurde, gehört zu den morphologischen direkten Verfahren. Sie zählt ebenfalls zu den einfacheren Methoden, da bei ihr u.a. keinerlei Vorbehandlung der Proben und kein großer apparativer Aufwand notwendig

61

Abb.30: Beispiele für die reflektierten, zu hell oder zu dunkel dargestellten Abschnitte bei den Komposit- und Amalgamfüllungen

Auch einige andere Autoren verwendeten die Lichtmikroskopie in Randspaltstudien, so z.B. Duncalf und Wilson (2001), die die Lichtmikroskopie mit einer 30-fachen Vergrößerung nutzten, um die marginale Adaption von Amalgam- und Kompositfüllungsmaterialien in Klasse-II-Restaurationsen zu vergleichen. Asmussen und Jorgensen (1972) untersuchten mit dem Lichtmikroskop in ihrer Studie Füllungsadaptationen an Kavitätenwänden. Wöst-

Farbstoffpenetrationstest

Raster-Elektronen-Mikroskopie

einfach für Langzeitstudien zu archivieren ist. Dies kann für weitere, auf der unseren aufbauenden Studien ebenfalls ein wichtiger Hinweis sein.

Um eine gleichbleibende Qualität der Beurteilung zu erlangen und so Artefakte, z.B. durch die Präparation, richtig zu erkennen ist jedoch eine sachkundige und qualifizierte Auswertung durch einen Experten sehr wichtig (van Meerbeek et al. 2000).

Sehr kritisch beurteilt Heintze (2007) die quantitativen Randanalysen in vitro und fordert, dass die Forschung sich auf weitere Tests konzentrieren sollte, die sich dazu eignen, das klinische Verhalten noch zufriedenstellender vorauszusagen.

6.2.2.4 Klinische Untersuchung

6.2.2.5 Bestrahlung

Die Bestrahlung mittels der experimentellen Röntgenstrahlanlage vollzog sich in der für klinische Zwecke genutzten üblichen Gesamtdosis von 60 Gy und in einer experimentellen Dosis von 90 Gy. Die experimentelle Überdosis wurde zusätzlich gewählt, um zu beobachten, ob eventuell bei höheren Bestrahlungsdosen Veränderungen auftreten.

Die Fraktionierung in der Strahlentherapie bei Patienten mit Tumoren im Kopf-Hals-Bereich geschieht hauptsächlich deshalb, weil dadurch Reparaturprozesse ablaufen können, wobei sich das gesunde Gewebe schneller regeneriert als das kranke Tumorgewebe.
In Übereinstimmung mit Experten entschieden wir in dieser Untersuchung, da ausschließlich mit avitalen Rinderzahnproben gearbeitet wurde, dass eine Einfachdosis ausreichend und sinnvoll ist.

6.3 Ergebnisse

Dieses aussagekräftige Ergebnis konnte sowohl aufgrund unserer sorgfältigen Voruntersuchungen wie vor allem durch einen soliden Versuchsaufbau im zentralen Experiment erreicht werden.

Bezüglich der Voruntersuchungen ist zunächst noch einmal zu erwähnen, dass sie uns dazu führten, die Anlegung der Kavitäten zu perfektionieren. Folglich waren alle Kavitäten identisch in ihrer Ausdehnung im Schmelz und oberflächlichen Dentin. Sodann haben wir uns für die am häufigsten verwendeten Restaurationsmaterialien in der konservierenden Zahnheilkunde entschieden. Diese Füllungsmaterialien wurden streng nach Maßgabe der Hersteller appliziert. Vor allem aber gewährleisteten die Markierungen, dass immer die gleichen Flächen evaluiert und so eine optimale Vergleichbarkeit der einzelnen Füllungen geschaffen wurde.

Dennoch ist anzumerken, dass die in unserer Studie standardisierten Vorgehensweisen zu Ergebnissen geführt haben, die sich bei In-vivo-Studien an den Restaurationsmaterialien gegebenenfalls nicht hätten zeigen lassen.

Festzuhalten bleibt desungetachtet als bemerkenswert positives Ergebnis unserer Studie, dass, unter den in den Voruntersuchungen getesteten und schließlich für die Hauptuntersuchung festgelegten Versuchsbedingungen, die Röntgenstrahlen den Füllungsmaterialien
Kunststoff und Amalgam keine für die Tumorpatienten nachteiligen Veränderungen zufügen können.

Zur differenzierteren Erläuterung der Ergebnisse unseres Experiments ist hier noch Folgendes hinzugefügt:

In unserer Studie zeigte sich, dass bis auf eine Amalgamfüllung aus der Gruppe 1 an allen anderen 39 Füllungen weder vor noch nach der Bestrahlung eine Veränderung zu erkennen war. Die Veränderung an dieser einen Füllung dürfte auf eine durch Zufall entstandene Bruchstelle zurückzuführen sein, vermutlich auf die von Hand durchgeführte Füllungstechnik.

7 Zusammenfassung

8 Literaturverzeichnis

Hurst D (2014): Amalgam or composite fillings—which material lasts longer? Evid Based Dent 15(2), 50–51

Kielbassa AM (Hrsg.): Strahlentherapie im Kopf- und Halsbereich: Implikationen für Zahnärzte, HNO-Ärzte und Radiotherapeuten; Schlütersche, Hannover 2004

Klimek J, Hellwig E, Ahrens G (1982): Fluoride taken up by plaque, by the underlying enamel and by clean enamel from three fluoride compounds in vitro. Caries Res 16(2), 156–161

Reichart PA: Curriculum Zahn-, Mund- und Kieferkrankheiten: Diagnostik, spezifische Entzündungen, Herderkrankungen, Zysten, Erkrankungen der Kiefer, der Kieferhöhle, der Mundschleimhaut der Speicheldrüsen und der Kiefergelenke, Tumoren (Curriculum Chirurgie Band 2); Quintessenz-Verlag, Berlin 2002

Danksagung

Zuallererst danke ich ganz besonders Frau PD Dr. Sabine Sennhenn-Kirchner, dass sie mir das Thema der Dissertation überlassen hat und mir in allen Phasen der Promotion stets mit einer sehr persönlichen Betreuung und viel Herzlichkeit zur Seite stand.

Auch die gute und freundschaftliche Zusammenarbeit mit meiner Doktorandenkollegin Frau Katja Schellenberger soll an dieser Stelle nicht unerwähnt bleiben.

Nicht zuletzt bedanke ich mich bei der Fleischerei Sebert’s in Göttingen-Geismar, die uns freundlicherweise die Rinderzähne als Probenmaterial zur Verfügung stellte.