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Introduction
“Grenander [1993] has often emphasized that when we want to model
some collections of patterns, it is very important to consider the sym-
metries of the situation – whether there is an underlying group.”

– Mumford and Desolneux [2010]

What this is all about

In this thesis, we model data stemming from biomechanical gait analysis of the
knee joint and analyze these models in order to answer questions about human
gait. Our aim is, that all developed methodologies and procedures are tailored to
the specific challenges arising from the analysis of real gait data and involve only
canonical choices. Interestingly, taking this approach seriously, naturally requires
methods from different branches of mathematics, for example, functional data
analysis and Lie groups.

Indeed, knee joint data are curves in the group of 3×3 rotations. Therefore, we
introduce Gaussian perturbation of a center curve models, which are functional
models for random curves of rotations exhibiting perturbation consistency (i.e.,
their center curve can be consistently estimated). The latter is not, eo ipso,
true for all perturbation models. For example, perturbation models for shapes in
Euclidean spaces introduced in Goodall [1991] do not always have this property
(see Lele [1993], Kent and Mardia [1997], Le [1998] and Huckemann et al. [2011]).

In the spirit of Grenander [1993] and his pattern theory marker placements and
self-selected walking speeds are identified as the underlying symmetries of center
curves of the data at hand. These symmetries can be modeled as a specific Lie
group S. Therefore, in order to do inference on two center curves, we remove
the effect of S between these center curves using Procrustes methods, which give
strongly consistent estimators. Here removing means estimating a group element
from S making the center curves similar.

In order to do inference, we provide different statistical tools to analyze biome-
chanical gait data and visualize differences between center curves, for example,
permutation tests and under the concentrated error assumption (i.e., the pertur-
bations are with high probability close to the center curve) simultaneous confi-
dence sets for the center curve.

These methods are applied to real gait data from an experiment studying re-
liable identification of volunteers and the effect of short kneeling. An additional
challenge due to the design of such biomechanical experiments are small sample
sizes.

Since our setup, as mentioned above, naturally arises from our application, we
first have to understand the experiment in more detail.
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Motivation from Biomechanics

This thesis is primarily motivated by a specific data set collected in an experiment,
designed and carried out by Michael Pierrynowski and Jodi Gallant, McMaster
University, Canada. In this experiment, data consisting of relative rotations
between the lower and upper leg of different volunteers were collected by tracking
the 3D motion of markers placed on specific skin locations of the lower extremities.

The intention of this study was mainly to answer the following two questions.
Firstly, can we reliably identify and distinguish volunteers? Intuitively, this holds
true, since often it is even possible to identify or distinguish individuals just by
the sound of their footsteps. Secondly, is it possible to detect and maybe locate
changes in the relative rotations of the lower and upper leg due to degenerative
processes (e.g., early onset of osteoarthritis) or specific tasks carried out directly
before recording data?

To this end, healthy volunteers of this study were asked to kneel for 15 minutes
prior to recording some parts of the data. This specific posture was chosen, since
epidemiological studies identified repetitive, prolonged and deep kneeling as an
occupational risk factor for tibiofemoral (knee) osteoarthritis (see Baker et al.
[2002], Knoop et al. [2011], Gaudreault et al. [2013] and Kajaks and Costigan
[2015]). This association is thought to be caused by overly lax knee ligaments,
which are unable to stabilize the motion of the knee joint during activity (see
Solomonow [2004]).

The challenges here are that changes in joint motion are usually small compared
to the much larger functional joint motion and at the same time the sample sizes
are small (N < 15). However, small sample sizes are natural from a biomechanical
perspective, since it is likely that the influence of the kneeling task fades away
after a while.

Within the scope of the analyzed study the answer to the two raised questions
will turn out to be: yes, we can. The statistical tools developed in this thesis are
able to reliably distinguish and identify volunteers and, moreover, detect changes
in the gait pattern of many volunteers after kneeling.

Data and its Acquisition

Unless invasive and expensive methods are used (e.g., X-ray imaging), the typi-
cal practice in biomechanical gait analysis of the knee joint is to collect data of
locomotion using photogrammetry (i.e., obtaining data from (moving) images of
a camera system). In the experiment underlying this thesis, this was done as
follows: first anthropometric data of a volunteer (e.g., leg length, knee circumfer-
ence) was collected. Afterwards reflective markers were placed by an experienced
technician on anatomically defined and identifiable skin locations of the right
and left lower extremities according to a standard protocol. While the volunteer
walked a straight line across the laboratory, the spatial positions of these mark-
ers were tracked by a camera system. From the spatial positions together with
the anthropometric data a proprietary software (a black box for this thesis) con-
structed a link-segment model of the lower extremities. It consisted of estimated
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knee joint centers and orthonormal coordinate frames (ONFs) of the lower and
upper leg, which approximated ONFs of the underlying bones – tibia (main bone
in the shank) and femur (bone in the thigh). The relative movements of the bones
with

Figure 1: Schematically illustrated data collection process using a photogrammatic
measurement device.
respect to the laboratory coordinate system were represented by the relative rota-
tions between these frames. The proprietary software of the measurement device
provided these relative rotations as a time series of Euler angles (see Appendix
A.2), which are specific charts of the group of rotations

SO(3) =
{
R ∈ R3×3 | RTR = I3×3 and det(R) = 1

}
. (1)

In the biomechanical context the three Euler angles describe flexion-extension,
abduction-adduction and internal-external rotation of the knee joint.

Schematically, this data collection process is shown in Figure 1. Data recorded
using such a protocol exhibit different sources of errors:

I. natural variations in the kinematics of human motor tasks, if specific
motion patterns are repeated several times by a volunteer.

II. instrumental errors affecting photogrammetric measurements, resulting
in an error on observed marker coordinates.

In Chiari et al. [2005] the instrumental errors are further divided into two general
types

IIa) instrumental systematic error (ISE), for example, camera calibration.

IIb) instrumental random error (IRE), for example, electronic noise.

Moreover, Chiari et al. [2005] provide a survey of solutions to these errors, which
are still considered state of the art. Usually, ISEs are correctable either by apply-
ing an appropriate preprocessing to recorded marker positions before analyzing
them or by optimization of the measurement devices. In contrast natural vari-
ability in human kinematics and IREs should be subject to statistical modeling.

However, this is not the complete story. There is another type of stochastic
errors one has to take into account. We will call them

III. experimental effects.
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They are systematic differences in the data stemming from unwanted variability
between two experiments, since they are not carried out under perfectly iden-
tical conditions. An example can be found in Della Croce et al. [2005]. They
discuss and survey the findings of the biomechanics community on precision of
marker placements and its effect on variability and reliability of photogrammetric
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Figure 2: Example of Euler angle curves of gait
cycles (MF-MF) of the same volunteer before
(red) and after (blue) marker replacement. In
the blue session the volunteer in average walks
slower.

measurements. In the litera-
ture, numerous methods have
been proposed to reduce this
error in the pre-data record-
ing phase (e.g., Noehren et al.
[2010] for a review and an ex-
ample). In contrast the lit-
erature on corrections during
the post-data recording phase is
sparse; to the best of our knowl-
edge these methods are cov-
ered by Woltring [1994], Rivest
[2005], Ball and Greiner [2012]
and Baudet et al. [2014] and
all of them have limitations
as we will discuss in Section
3.2. Therefore, we will present
in Chapter 3 a new post-data
recording solution to this effect.
A second example of an exper-
imental effect stems from the
common practice in the biome-
chanical community to record
gait data at self-selected walking speeds and not for example on a treadmill (for
a comparison of these procedures see Sloot et al. [2014]). This introduces addi-
tional variability of the data and is known in the statistics community as time
warping effects. Statistical methods reducing this effect (e.g., Kneip and Gasser
[1992], Wang et al. [1997] and Ramsay and Li [1998]) have been also applied in
the biomechanical literature (e.g., Sadeghi et al. [2003]). Since both effects are
visible in the data set analyzed in this thesis, our main focus is to establish a sta-
tistical sound procedure dealing with them, which thereafter allows for inferential
methods. Exemplarily, Figure 2 shows two samples from our data set belonging
to the same volunteer. Between recording of the two samples the markers were
replaced by an experienced technician, resulting in offsets visible especially in the
x- and z-angle.

Gait cycles and sessions. A gait cycle for a specific leg in biomechanics is
usually defined as the time period during locomotion from the first contact with
the ground of one foot – called heel contact (HC) – to the next heel contact of the
same foot. It is divided into the stance phase, where the foot has contact with the
ground, and the swing phase where the foot is in the air. Special events during
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a gait cycle while walking include mid stance (MS), which roughly corresponds
to the minimum flexion (i.e., a local minimum of the y-Euler angle) within the
stance phase, toe off (TO) the transition between stance and swing phase and
maximal flexion (MF) corresponding to the global maximal flexion. In Figure 3,
we show an example of a gait cycle together with its special events.

An attentive reader may recognize that Figure 2 tacitly includes a different
definition of gait cycles. For robustness reasons explained in Chapter 6 a gait
cycle in this thesis is the time period between two successive maximal flexion
events.
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Figure 3: from left to right, heel contact (red, solid), mid stance (violet, dotted),
toe off (green, dash), maximal flexion (blue, twodash)

Furthermore, a session (e.g., Marin et al. [2003]) within a biomechanical ex-
periment is a random sample of walking trials of a volunteer collected under the
same experimental conditions, in particular the same marker placements.

Short Overview, Mathematical Challenges and Re-
lated Work

Chapter 1

Data space. The first step in the development of a statistical methodology, is
to define the data space. We will argue in Chapter 1 that the correct model space
of the data at hand is given by the space X of continuously differentiable curves
with values in the Lie group SO(3) of 3× 3 rotation matrices. To the best of our
knowledge, this is a novel approach in the analysis of biomechanical gait data.
Indeed, the commonly used approach is performing statistical analysis directly
in Euler angle charts. Here, since gait cycles are approximately periodic, it is
often assumed that the curves can be represented by finite Fourier series. Based
on this assumption, simultaneous confidence bands of the mean or the difference
of means computed using the bootstrap are proposed in Olshen et al. [1989],
Johansen and Johnstone [1990] and Lenhoff et al. [1999]. Herein the coordinates
are often assumed to be independent. Until now simultaneous confidence bands of
Euler angle curves and tests for scalar observables (e.g. step length, force at heel
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contact) seem to be the standard methods used in the biomechanics community
(among others, see Duhamel et al. [2004], McGinley et al. [2009], Pierrynowski
et al. [2010], and Cutti et al. [2014]). Recently, Pataky [2010] and Pataky et al.
[2013, 2015] point out that ignoring the correlation between coordinates may
result in an improper statistical analysis. However, they still apply multivariate
test statistics directly to the Euler angles, for example, pointwise Hotelling T 2

tests with uniform critical values computed using the Gaussian kinematic formula
(Cao et al. [1999]).

Considering SO(3) as the data space in biomechanics rather than functional
data analysis using the Euler angles is done in Rancourt et al. [2000]. However,
they only consider point clouds in SO(3) and develop tests for equality of means of
different groups. Rivest [2001] analyzes a SO(3)-valued model with fixed rotation
axis and applies it to elbow motions with the conclusion that this model does not
describe elbow motions well, since the rotation axis varies in time. The articles
Haddou et al. [2010] and Rivest et al. [2012] propose SO(3) methods to estimate
rotation axis of ankle joints, but they do not model it as functional data.

Even the statistical literature considering curves or functional data with val-
ues in manifolds is sparse. Brillinger and Stewart [1998] model elephant-seal
movements using diffusions on S2. Ball et al. [2008] uses Brownian motion and
Ornstein-Uhlenbeck processes on the planar shape space with applications to cell
shape modeling. In Su et al. [2014] a time warping procedure for curves in man-
ifolds is introduced and used to reduce the temporal variation in bird migration
and hurricane track data, which are described as curves in the unit sphere S2.
They also apply it to classification of vehicle trajectories. Kendall [2015] seeks to
employ barycenter techniques developed in Kendall et al. [2011], to investigate
temporal association between successive hurricane tracks.

Experimental effects. The second step is to model the experimental effects:
marker placement and self-selected walking speeds. It turns out that these ef-
fects can be described as a Lie group action on the data space X of the Lie
group S = I0

(
SO(3)

)
× Diff+[0, 1] the Cartesian product of a certain subgroup

I0

(
SO(3)

)
of the isometry group of SO(3) (see Definition 1.1.4) with the group of

monotone increasing diffeomorphisms Diff+[0, 1] (see Formula (1.6)). Although
time warping is currently used in biomechanics and the marker placement effect
is known as correctable by multiplying rotation matrices from each side to the
observed curves (e.g., Rivest [2005] and Ball and Greiner [2012]) there exists no
clear exposure, and the connection to isometries of SO(3) (see Theorem 1.1.7) was
not known. In consequence, the reliability of gait analysis data is still discussed
in the literature. Further informations on this topic will be given in Section 3.2.

The fact that the experimental effects are realized by a Lie group action on X ,
naturally implies that we are within the setting of shape analysis (see among many
others Huckemann et al. [2010, 2011] and Celledoni and Eslitzbichler [2015]).
Therefore we aim to incorporate the effects of marker placements and self-selected
walking speeds into the statistical analysis, using approaches from shape analysis.
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Gaussian pertubation models. In Section 1.3 we define right Gaussian per-
turbations (rGP) models describing random curves γ in SO(3) by

γ(t) = γ0(t)Exp(At) ,

where γ0 ∈ X is a deterministic center curve, Exp : so(3) → SO(3) the Lie
exponential and a Gaussian process A with almost surely differential sample paths
having values in the Lie algebra so(3) ∼= R3 of SO(3) (see Definition 1.3.3).
Here we call A the generating Gaussian process of the rGP. These models are
generalizations to functional data of the models given in Rancourt et al. [2000],
who himself builds on Downs [1972]. Similar models are also used in Fletcher
[2013] for linear regression on manifolds. The important property of these models
for biomechanics is that rGPs form a statistical group model i.e., they are S-
invariant, meaning that, if g ∈ S and γ follows an rGP model, then also g.γ
(the action of g on γ) follows an rGP model (see Theorem 1.3.5). This especially
implies the independence of the coordinate system demanded in Pataky et al.
[2013]. In contrast, the Euler angle curves of g.γ and γ cannot be assumed
to be both stemming from Gaussian processes as implicitly assumed in Pataky
et al. [2013, 2015], since the combination of Euler charts and the action of g is a
nonlinear transformation.

Since SO(3) is non-commutative, thus in general Exp(X)Exp(Y ) 6= Exp(X +
Y ) for X, Y ∈ so(3), multiplying the error process from the right to the center
curve is not a canonical choice. Other reasonable and canonical models are

γ(t) = Exp(Bt)γ0(t) and γ(t) = Exp(Ct)γ0(t)Exp(Dt)

with Gaussian processes B,C,D having almost surely differential sample paths.
In Theorem 1.3.7 and 1.3.8 we show that it suffices for our data to consider rGPs
only.

Chapter 2

Perturbation consistency. Section 2.1 analyzes some properties of rGP mod-
els. Especially, properties of the pointwise extrinsic (population) mean (PEM)
and the pointwise extrinsic sample mean (PESM) are studied. These novel de-
scriptors are a combination of the pointwise or cross-sectional population and
sample mean from functional data analysis (see Ramsay [2006, Chapter 2.3]) and
the extrinsic population and sample means from non-Euclidean statistics (see
Bhattacharya and Patrangenaru [2003]).

In Theorem 2.1.7, we prove that for rGP models the PEM is identical with
the center curve. Hence, pointwise application of the strong consistency result
Theorem 3.4. in Bhattacharya and Patrangenaru [2003] yields that the PESM
is pointwise a strongly consistent estimator of the center curve of rGP models.
Theorem 2.1.10 extends this result to uniform convergence under additional mild
regularity assumptions on the derivative of the generating Gaussian process which
are reasonable for the data at hand. Among other ingredients, the proof is based
on showing that a derived process is stochastically equicontinuous such that stan-
dard uniform stochastic limit theorems (e.g., Newey [1991], Andrews [1992]) can
be applied (see also Appendix B).
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This result has mainly two important consequences for the rest of the thesis.
Firstly, it can be used to establish that the PESM of an rGP is with high prob-
ability a differentiable curve (see Corollary 2.1.11), which we need especially for
the application of time warping procedures. Secondly, it ensures that our esti-
mator, which can be used to remove the effect of different marker placements, is
strongly consistent.

Simultaneous confidence sets. Under further reasonable assumptions on the
generating Gaussian process A of an rGP model γ we provide in Sections 2.2 and
2.3 simultaneous confidence sets for its center curve. To this end a pointwise
analogue {H̃γ

t }t∈[0,1] of the one sample Hotelling T 2 statistic in R3 is defined and
its maximum over t ∈ I = [0, 1] is considered. The idea is inspired by Rancourt
et al. [2000], where an analogue of the Hotelling T 2 statistic and concentrated
error assumptions are used to produce approximate confidence sets for a mean
rotation. The main challenges in our approach is to estimate for given β ∈ (0, 1)
the critical value

h̃γ,β = inf

{
h ∈ R≥0

∣∣∣ P(sup
t∈I

H̃γ
t ≤ h

)
≥ 1− β

}
.

Since Theorem 2.2.5 shows that H̃γ is approximately the Hotelling T 2 process of
A under the assumption that the variance of the process A is small, we propose
to use the Gaussian kinematic formula (see Cao et al. [1999], Taylor [2006] and
Taylor and Worsley [2008]) to obtain an estimator for h̃γ,β. Note that the use of
the Gaussian kinematic formula is similar to its use in Pataky et al. [2013, 2015],
but we take the geometry of SO(3) into account. Especially, we emphasize that
Theorem 2.2.4 shows that our simultaneous confidence sets are equivariant and
hence compatible with marker replacements and different walking speeds.

Chapter 3

Removing self-selected walking speeds. In Su et al. [2014] a method for
time warping of manifold valued curves is presented, which is a generalization of
the time warping procedure introduced in Srivastava et al. [2011a] and Srivastava
et al. [2011b] for RD-valued curves, D ∈ N. Despite its elegancy, this method
requires two (infinite dimensional) non-canonical choices, as will be discussed in
more detail in Section 3.1. Therefore we introduce a time warping procedures ap-
plicable to curves with values in compact Lie groups, based on our novel intrinsic
length losses (ILLs, see Definition 3.1.1), requiring only canonical choices. These
losses are generalizations of the total variation loss of curves in RD to curves in
SO(3). We then show that these procedures satisfy the inverse alignment prop-
erty (see Definition 3.0.3), which is also discussed in Srivastava et al. [2011a,b]
and Vantini [2012].

Removing the marker placement effect. Section 3.2 explains our approach
of spatial alignment of two curves γ, η ∈ X in order to remove the effect of different
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marker placements. As discussed in Section 1.1, we have that if γ, η ∈ X differ
only by marker placements, then there are P,Q ∈ SO(3) such that

η(t) = Pγ(t)QT

for all t ∈ [0, 1]. Estimating P,Q could be done based on least squares estimation
using the Frobenius norm (see Prentice [1989], Chang and Rivest [2001] and Rivest
and Chang [2006]). But the estimators for P and Q are numerically difficult to
compute.

Our approach builds on Theorem 3.2.4. It states that choosing continuous lifts
γ̃ and P̃ γQT of curves γ and PγQT having values in the group of unit quaternions
S3, a double cover of SO(3), implies that there is a unique R ∈ SO(4), the group
of 4× 4 rotation matrices, such that

˜Pγ(t)QT = Rγ̃(t)

for all t ∈ [0, 1]. Using this observation and inspired by solutions to spherical
(linear) regression (see Chang [1986]), we define a numerically easy to compute
(see Theorem 3.2.11) and independent of the particular choice of the lifts (see
Theorem 3.2.8) estimator (3.29) for P and Q. Moreover, in Section 3.2.2 we also
prove that this estimator is strongly consistent, assuming we have samples from
rGP models.

Chapter 4

This chapter introduces different two sample test for equality of PEMs. We
introduce the overlapping of simultaneous confidence sets test (OCST) for rGP
models, which is based on the simultaneous confidence sets constructed in Chapter
2. At this point this method is more of exploratory value, since the significance
level cannot be tuned a priori as discussed for real valued Gaussian random
variables in Schenker and Gentleman [2001] and Payton et al. [2003]. However, it
can be used to visualize at which time points significant differences between the
PEMs might appear.

The second test we introduce is a simultaneous Hotelling T 2 test for rGP mod-
els. Like the simultaneous confidence sets for rGP models, this test is based on
the concentrated error assumption and again uses the Gaussian kinematic for-
mula to estimate the critical value. An Euclidean version of this test based on
Cao et al. [1999] and Taylor and Worsley [2008] was applied to muscle force curves
in Pataky et al. [2013].

A third test proposed is a permutation test (ILLPerm). It is based on permut-
ing an ILL of PESMs of two samples. Its advantage is that it is nonparametric.
However, in contrast to the OCST and the Hotelling T 2 test, it cannot localize
significant differences.

All of the above methods require spatial alignment and temporal registration of
two sessions before testing, if the considered sessions are recorded with different
marker placements and walking speeds. This is done using the procedures intro-
duced in Chapter 3. Since these procedures build on estimators, which themselves
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are random variables, this may influence the type I and II errors of these tests.
Therefore, we propose a modified version of ILLPerm (viz., MILLPerm), which
incorporates the estimation of the spatial alignment and temporal registration
between the samples in the permutation scheme in order to take the variance of
these estimators into account.



Introduction 11

Chapter 5

Simultaneous confidence sets. The first part of this chapter (Section 5.1.1)
compares using simulations the small sample size performance (N ≤ 50) of three
different methods for constructing simultaneous confidence bands of the mean
curve in functional data. The compared methods are a bootstrap described in
Degras [2011], a version of the multiplier bootstrap following Chernozhukov et al.
[2013] and the Gaussian kinematic formula for t processes (see Taylor and Wors-
ley [2007]). In our simulations only the Gaussian kinematic formula approach
achieves the correct covering rates while for example the bootstrap method of
Degras [2011] produces too conservative confidence bands for small sample sizes,
which is compatible with the simulation results in Degras [2011]. The intention
of these simulations is to justify the use of the Gaussian kinematic formula for
computing simultaneous confidence sets for the PEM in rGP models for small
sample sizes. However, this study is interesting itself, since most of the developed
procedures for simultaneous confidence bands are asymptotic and therefore often
only sample sizes N ≥ 30 are simulated (among others, Krivobokova et al. [2012]
and Cao et al. [2012]). In applications, however, it is not unusual to face small
sample sizes.

Section 5.1.2 provides a simulation study of our simultaneous confidence sets
for the PEM in rGP models. We show that under the small variance assumption
our method produces confidence sets with the correct covering rate for different
rGP models.

Type I and II errors. The second part of this chapter (Section 5.2) assesses
the type I and II errors of the tests described in Chapter 4 using simulations.
While the OCST turns out to be a conservative test, all the other tests achieve
the given nominal significance level, if no marker placement and self-selected
walking speed effects are present. If we include different marker placements and
correct it using the methods described in Chapter 3, the type I error of the
OCST and the simultaneous Hotelling T 2 test decreases dramatically, whereas
ILLPerm becomes a slightly conservative test. Only MILLPerm still holds the
given nominal significance level.

Including both experimental effects in our simulations yields that also the
type I error of the ILLPerm and MILLPerm decreases slightly. However, due
to computational complexity of the time warping procedure, we used a version
of MILLPerm which takes only the variance of the marker placement into ac-
count. We believe that the complete MILLPerm would hold the given nominal
significance level.
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Chapter 6

This chapter explains the biomechanical experiment underlying this thesis in more
detail and the previously developed statistical tools are applied to the data at
hand.

Identification of volunteers. We show in Section 6.3.1.1 that temporal reg-
istration and spatial alignment is necessary in order to identify and distinguish
volunteers. Indeed, using MILLPerm, we can identify all eight volunteers and
distinguish between them for two different self-selected speeds called walk and
fast walk.

Detecting changes due to kneeling. MILLPerm detects for many volunteers
significant differences (p-value ≤ 0.05) between the control session and the ses-
sions after a kneeling task. These differences can often be located near the gait
events heel contact and toe off using the OCST. However, note that in our sim-
ulations, the type I error of OCST was unstable, if different marker placements
and time warping effects were included. Hence, these localizations have to be
taken with care. Kneeling effects are less visible in the fast walk data. This can
be explained by the fact that the fast walk data was recorded directly after the
walk data and hence the influence of kneeling started to fade away.

Different walking speeds. Interestingly, the individual gait pattern depends
on the chosen walking speed. MILLPerm detects also significant differences be-
tween fast and walk data of the same volunteer for all volunteers. This is also
visible in the the Euler angle curves. Here, OCST suggest that fast walk speed
usually includes more flexion around mid stance, which is anatomical reasonable.

Bad marker placements. We also examined the effect of on purpose badly
placed markers. We are rarely able to identify volunteers with these placements.
However, each sample had only 5-9 valid gait cycles and it is not evident, how
the chosen placements, which were not according to the protocol of the measure-
ment device, influence the output of the proprietary software. Due to the chosen
positioning of the markers, another possible explanation for the high rejection
rate is the so called soft tissue effect (i.e., additional stochastic errors due to the
movement of muscles or fat tissue beneath the markers). It is known that this
reduces the reproducibility of gait patterns (among others, see Leardini et al.
[2005] and Taylor et al. [2005b]).



Chapter 1

Statistical Modeling of
Biomechanical Gait Data

In the introduction we briefly explained the process of recording biomechanical
data of the knee joint by photogrammetry. Thereby we identified two effects –
marker placement and different walking speeds – corrupting the data. In order to
do statistical inference on this type of data it is necessary to include these effects
into modeling.

Hence the next step is to provide spaces modeling these effects and statistical
models compatible with them. Since it turns out (see Section 1.1) that marker
placement and different walking speeds can be modeled by groups acting on a
data space describing similarity transformations of the data space, we will call
these effects gait similarities.

Hereinafter, we always assume to have an underlying probability space (Ω,B,P)
and all topological spaces are endowed with its Borel σ-algebra.

1.1 Model Spaces and Gait Similarities

Recall from the introduction that from spatial observations of markers glued to
the leg of a volunteer at each measurement time point 0 = t1 ≤ t2 ≤ ... ≤ tK ,
K ∈ N, positively oriented orthogonal coordinate frames (ONFs) of the tibia and
the femur fixed at an estimated knee joint center are constructed by the software
of the measurement device. The number K of measurement time points of the
observed time series of a gait cycle (≈ 1 second for usual walk) is typically large
(≈ 100) and depends on the data collection rate of the measurement device.
We assume that this data stems from an unobserved continuous time process
(i.e., ideally data would be observable at any point t ∈ [0, tK ]). Moreover, since
the data collection rate of a measurement device is constant, but the walking
speeds of volunteers may differ, we assume tK = 1 to guarantee comparability of
different gait cycles. The latter can always be achieved by linear scaling of the
time domain.

Let us denote the orthogonal unit vectors of the constructed ONF at time t of
the tibia with e1(t), e2(t), e3(t) and with f1(t), f2(t), f3(t) the corresponding unit
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vectors of the femur. They define matrices

E(t) = (e1(t), e2(t), e3(t)) ∈ SO(3) and F (t) = (f1(t), f2(t), f3(t)) ∈ SO(3) .
(1.1)

Due to the observation that human gait is a continuous motion, which in principle
could be modeled by Newton’s law of motion1 using a second order differential
equation, it is reasonable to assume that the movements of markers in space
without measuring noise are continuously differentiable, giving a continuously
differentiable curve

γ : [0, 1]→ SO(3) , t 7→ γ(t) = F (t)E(t)T (1.2)

of relative rotations between the coordinate frames of the bones with respect to
the laboratory coordinate system. This assumption is in accordance with the
appearance of the data (e.g., Figure 1.1). Therefore we define our data space as
follows.

Definition 1.1.1. We denote with X the space of parametrized curves of contin-
uously differentiable SO(3)-valued paths i.e., X = C1

(
[0, 1], SO(3)

)
.

Remark 1.1.2. Later on, the assumption of differentiability is necessary to apply
the Gaussian kinematic formula (see Section 2.3) and for removing the influence
of different walking speeds. For the latter, absolute continuity of the curves suf-
fices, but in order to have a unified presentation we keep the stronger assumption
throughout this thesis.

The effects of marker placements (MPs). Although in experimental prac-
tice trained technicians strive to place markers on approximately the same stan-
dard skin locations for each session and volunteer, marker placement causes vary-
ing ONFs (see Figure 2). Thus, we say that two trials γA, γB ∈ X from differ-
ent sessions are equivalent up to MP, if there exist time independent rotations
Q,P ∈ SO(3) such that

QE(t) = Ẽ(t) and PF (t) = F̃ (t) for all t ∈ [0, 1] , (1.3)

where E(t), F (t) ∈ SO(3) are the coordinate frames of the tibia and femur be-
longing to the original marker placement to obtain curve γA computed as in (1.2),
similarly Ẽ(t), F̃ (t) ∈ SO(3) are computed after MP to obtain curve γB. The
rotation matrices P,Q reflect the fact that computed ONFs may differ due to
changes in marker placement. They are assumed time independent since the rel-
ative positions of the markers with respect to each other except for measurement
noise do not change. Moreover, here we assume that soft tissue effects, which are
errors due to the non rigid structure of muscles and skin on which the markers
are attached, can be neglected or considered as measurement noise.

Using (1.2) in conjunction with (1.3) yields

γB(t) = F̃ (t)Ẽ(t)T = PF (t)E(t)TQT = PγA(t)QT (1.4)

relating the curves γA and γB in case of MP.
1More precisely, Euler’s laws of motion, since the movement of the bones is modeled as

movement of rigid bodies in space.
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Remark 1.1.3. In case that the MP of two trials is identical, but the volunteer
moves into a different direction with respect to the recording camera system in
each of the trials, an analogous argument shows that the trials are also related by
(1.4), now with the only difference that P = Q. Moreover, note that in contrast
to MP this could introduce trial by trial rotations within a session. However,
under laboratory conditions underlying the data of this thesis, this effect should be
negligible, because the volunteers have been asked to move on a prescribed marked
straight pathway.

Modeling of marker placements. Recall that a group action of a group G
on a space X is given by a map G × X → X : (g, x) 7→ g.x satisfying e.x = x,
where e is the neutral element of G, and g1.(g2.x) = (g1g2).x for all x ∈ X and
all g1, g2 ∈ G.

Therefore Equation (1.4) suggests that MP can be written as a group action
of the Lie group SO(3)× SO(3) on the space X given by

SO(3)× SO(3)×X → X ,
(
(P,Q), γ

)
7→ (P,Q).γ = PγQT (1.5)

Indeed, this demonstrates that the data objects we are interested in do not belong
to the data space X , if MP has to be accounted for, but rather are naturally
elements of the shape space

X0 = X/(SO(3)× SO(3)) ,

where the equivalence classes are formed with respect to the group action (1.5).
We used the term data objects here. It was introduced and discussed in the

articles Wang et al. [2007] and Marron and Alonso [2014]. The aim of those
articles is quite different, but the author of this thesis believes that the distinction
between data spaces and data object spaces offers an interesting philosophical
point of view and is crucial in modeling specific practical problems.

Briefly, the distinction is the following: the data space is formed by the observed
quantities and therefore randomness due to the measurement device and random
variations of the population should be modeled in this space, whereas statistical
descriptors or inference should be defined on the data object space, which is
usually a quotient space, since descriptors or statistics of data sets are often
considered equal under some similarity transformations. Note that the use of
the notion similarity transformation here is unusual in the sense that we simply
mean transformations describing, which elements of the data space should be
considered to be similar or identical to each other despite their original disparity.

This point of view will be developed further and formalized in Section 1.2 using
the equivariance principle.

Isometries of Riemannian manifolds. We now want to show that the rela-
tion (1.4) between curves with different MP can also be described as the action of
the identity component of the isometry group of SO(3) on the data space X . In
particular, this will demonstrate that the space X0 is a natural generalization of
a shape space of curves in RD (see Srivastava et al. [2011a]) to curves in SO(3).
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To make this more precise we recall some basic notations and results from dif-
ferential geometry. Recommendable introductions to Lie groups and differential
geometry are Helgason [1962], do Carmo Valero [1992], Hilgert and Neeb [2011]
and Lee [2013].

Definition 1.1.4. Let M be a C1-Riemannian manifold with 〈·, ·〉 : Γ(TM) ×
Γ(TM)→ C1(M,R) its C1-Riemannian metric a differentiable map f :M→M
is called isometry, if

〈dpf(X), dpf(Y )〉f(p) = 〈Xf(p), Yf(p)〉f(p)

for all differentiable vector fields X, Y ∈ Γ(TM) onM and all p ∈M.
The space of all isometries I(M) is called the isometry space of the Riemannian

manifold M. Its connected component including the identity map idM : p 7→ p
for p ∈M is denoted with I0(M).

Recall that any connected Riemannian manifold M can be given the struc-
ture of a metric space (M, d) (e.g., Lee [2013, Theorem 13.29, p.339]). Then
one obtains that the set of isometries I(M) is identical with the set of dis-
tance preserving mappings, since f : M → M is an isometry if and only if
d(f(p), f(q)) = d(p, q) for all p, q ∈M (see Helgason [1962, p. 60, §11]).

Example 1.1.5. The Euclidean space RD, D ∈ N, endowed with the Euclidean
scalar product on its tangent space forms a Riemannian manifold. Its isometry
group

I
(
RD
)

=
{
T : RD → RD | ‖T (x)− T (y)‖ = ‖x− y‖ for all x, y ∈ RD

}
,

where ‖ · ‖ denotes the Euclidean norm, is equal to the Euclidean motion group

E(D) = O(D)nRD

i.e., the semi-direct product of the orthogonal group O(D) and RD. As a group
this semi-direct product is given by the set O(D)× RD with group multiplication

(R1, a1)(R2, a2) = (R1R2, R2a1 + a2)

for R1, R2 ∈ O(D) and a1, a2 ∈ RD. The identity component of I
(
RD
)
is given

by the special Euclidean motion group

I0

(
RD
)

= SE(D) = SO(D)nRD .

Of course, there is a natural action of SE(D) on C1
(
[0, 1],RD

)
given by the point-

wise application of g = (R, a) ∈ SE(D) to γ ∈ C1
(
[0, 1],RD

)
i.e.,

(g.γ)(t) = Rγ(t) + a

for all t ∈ [0, 1].

Moreover, note that the set of isometries of a Riemannian manifolds has a
useful structure:



1.1 Model Spaces and Gait Similarities 17

Theorem 1.1.6 (Myers and Steenrod [1939]). LetM be a Riemannian manifold.
Then I(M) is a Lie group.

By the closed subgroup theorem (see Lee [2013, p. 523, Theorem 20.12]) and
the above theorem the closed subgroup I0(M) is also a Lie group with the Lie
group structure induced by I(M).

In this work the Lie group SO(3) will always be endowed with its unique (up to
a scalar) bi-invariant Riemannian metric (see Gilkey et al. [2015, Lemma 6.24, p.
76]). The identity component I0

(
SO(3)

)
with respect to this Riemannian metric

has a surprisingly simple structure as can be deduced using a more general result
by Helgason [1962, p. 207 Theorem 4.1]:

Theorem 1.1.7. I0

(
SO(3)

) ∼= SO(3)× SO(3) as Lie groups.

Proof. Using Helgason [1962, Theorem 4.1 (i) on p. 207], we have to assert
that G := SO(3) × SO(3) and K := diag(SO(3) × SO(3)) form a Riemannian
symmetric pair where G is semisimple and acts effectively on G/K = {[g, h] :
g, h ∈ SO(3)}, [g, h] = {(gk, hk) : k ∈ SO(3)}. Here the action is given by
(g′, h′) : [g, h] 7→ [g′g, h′h]. The fact that (G,K) is a Riemannian symmetric pair
is asserted in Helgason [1962, p. 207], SO(3) is simple, hence semisimple and the
effective action follows from the fact G has no trivial normal divisors N ⊂ K (see
Helgason [1962, p. 110]). For if {(e, e)} 6= N ⊂ K would be a normal divisor of
G then there would be a subgroup {e} 6= H of SO(3) with the property that for
every h ∈ H, g, k ∈ SO(3), in particular for g 6= k, there would be h′ ∈ H such
that

(g, k)(h, h)(g−1, h−1) = (h′, h′) ,

i.e. k−1g would be in the center of SO(3), which, however, is trivial because
SO(3) is non commutative and simple. Hence g = k, a contradiction.

Note that by the definition of a bi-invariant metric the maps R 7→ PRQT

are isometries of SO(3) and therefore the action (1.5) is an action of isometries.
However, the last Proposition additionally implies that this action coincides with
the action of the group I0

(
SO(3)

)
on X pointwise given by (ψ.γ)(t) = ψ

(
γ(t)

)
for all γ ∈ X and all ψ ∈ I0

(
SO(3)

)
i.e., for each ψ ∈ I0

(
SO(3)

)
there is a

unique (Pψ, Qψ) ∈ SO(3)× SO(3) such that

ψ.γ = (Pψ, Qψ).γ = Pψγ Q
T
ψ

for all γ ∈ X and vice versa.
These considerations establish that our data object space X0 can equivalently

be defined as the space
X0 = X/I0

(
SO(3)

)
,

revealing that it is simply a generalization of the shape space

C1
(
[0, 1],RD

)
/SE(D) = C1

(
[0, 1],RD

)
/I0

(
RD
)

of curves without size and reflections in RD to the Lie group SO(3) (compare
Example 1.1.5 and Srivastava et al. [2011a]).
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Different walking speeds. If one observes processes in continuous time, they
are often happening at different speeds introducing variability in the time domain
of the process (also called phase variability). Children’s growth, for example, is
such a process, since it is a consequence of a complex sequence of hormonal events
not happening at the same rate at the same age for every child. Nevertheless,
there are patterns as the pubertal growth phase which are identifiable in all
childrens (see Ramsay et al. [1995]). In fact, problems of this type are arising
frequently in the analysis of functional data. Therefore it is often necessary to
implement procedures such as time warping (also called curve registration or
temporal registration) to reduce the variability in the time domain before any
further analysis of the data is carried out (see e.g., Wang et al. [1997], Ramsay
[2006, Chapter 7], Kneip and Ramsay [2008], Kutzner et al. [2010] and Su et al.
[2014]).

In our application, variability in the time domain of the space X can be modeled
as the action of the Lie group of monotonically increasing diffeomorphisms of [0, 1]
on the data space X i.e.,

Diff+[0, 1] =
{
φ ∈ C∞

(
[0, 1], [0, 1]

) ∣∣ φ′(t) > 0 for all t ∈ (0, 1)
}

(1.6)

with group multiplication given by composition. Here the action is given by

Diff+[0, 1]×X → X , (φ, γ) 7→ φ.γ = γ ◦ φ .

Figure 1.1 demonstrates this effect using an example of the data set motivating
this work. The only preprocessing done in this figure is a linear scaling of time as
explained earlier such that the time domain of each trial is [0, 1]. Apart from the
visible spatial discrepancy due to MP, this figure suggests that the data could be
corrupted by time warping effects in two different ways:

Let us denote the trials of a session with γ1, ...γN , N ∈ N. Moreover, assume
that γ∗1 , ..., γ∗N are i.i.d. samples of a random curve γ ∈ X . Then the influences
of time variability (see e.g., Figure 1.1) can be modeled by

1. individual time warping (ITW) i.e., γn = φn.γ
∗
n with unknown individual

φn ∈ Diff+[0, 1] for each n ∈ {1, ..., N} and/or

2. sessionwise time warping (STW) i.e., γn = φ.γ∗n for all n ∈ {1, ..., N} with
a common unknown φ ∈ Diff+[0, 1].

The latter is interesting, if different sessions need to be compared, since it models
that the average speed could vary between different sessions (even if they are sam-
ples from the same random curve). The right hand side of Figure 1.1 illustrates
this point by showing mean curves of two sessions.

In this work we will only focus on STW for modeling and inference, since it
turns out in Section 6.3.1.1 that STW is necessary for comparison of different
sessions, whereas ITW actually should not be modeled, which will be detailed in
Section 6.3.1.1 using the data underlying this thesis.
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Figure 1.1: left, ten gait cycles of two sessions (red and blue) of the same volunteer
with different marker placement. Right, mean curves of these sessions. Around
20% of the gait cycle STW is visible, since extrema are not aligned.

The group modeling gait similarities. We may now define the Lie group S
modeling gait similarities between sessions as

S = I0

(
SO(3)

)
×Diff+[0, 1] .

Since the actions of I0

(
SO(3)

)
and Diff+[0, 1] on X commute, the action of S on

X is given by

S × X → X ,
(
(ψ, φ), γ

)
7→ (ψ, φ).γ = ψ. (φ.γ) = φ. (ψ.γ) = ψ ◦ γ ◦ φ

From the foregoing exposition it is evident that, if we want to compare different
sessions, we cannot simply compute a descriptor of a session and compare it with
the same descriptor computed from a different session, since the data may be
corrupted by an unknown element of the group S. Thus, we clearly have to make
good for this unknown group element acting on the data, if we compare different
sessions.

This leads to the idea that any useful descriptor of this data itself should be
compatible with the action of the group S. The next section will be devoted to
the formal meaning of compatibility (i.e., equivariance) and thus to a class of
meaningful statistical models and descriptors under the presence of groups acting
on the data space.

1.2 Statistical Models and Equivariance

The previous section established that a reasonable model space for our data is
the space X of differentiable curves taking values in the Lie group of rotations
SO(3), endowed with an action of the Lie group I0

(
SO(3)

)
×Diff+[0, 1].
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In order to properly include this group action into our statistical model, we will
use the equivariance principle and group invariant models, which in more detail
are discussed for example in Lehmann and Casella [1998], and combine it later
on (see Chapter 3) with ideas from shape analysis, especially Procrustes analysis
(e.g., Dryden and Mardia [1998, Chapter 5]).

We discuss this setup in an abstract fashion such that these considerations can
also be applied to other practical problems involving similar group actions on a
data space. Most of the following results and definitions are stated in Lehmann
and Casella [1998] or can be deduced from his writings. For convenience, we
restructure it differently and provide some of the proofs Lehmann omits.

Group invariant statistical models. Assume we have a space X and a group
G acting on X, i.e. there is a map G× X→ X : (g, x) 7→ g.x satisfying e.x = x,
where e is the neutral element of G, and g1.(g2.x) = (g1g2).x for all x ∈ X and
all g1, g2 ∈ G.

We want to endow the space X with a family of probability distributions com-
patible with the action of G. Therefore let us recall the definition of a G-invariant
statistical family (see Lehmann and Casella [1998, Def. 2.1]).

Definition 1.2.1. Let G be a group acting on X. Let Θ be a set. We call a
statistical model (X, {Pθ}θ∈Θ) G-invariant, if for every θ ∈ Θ and every g ∈ G
there exists θ′ = θ′(θ, g) ∈ Θ such that g.X ∼ Pθ′, whenever X ∼ Pθ. Here g.X
denotes the random variable taking the value g.x whenever X has the value x.

Additionally, we call the family identifiable if θ′ 6= θ implies Pθ′ 6= Pθ.
In any G-invariant, identifiable statistical model the group G induces a trans-

formation group Ḡ given by the transformations θ 7→ ḡθ = θ′(θ, g) of Θ. Note
that given g ∈ G and θ ∈ Θ the ḡθ is unique due to the identifiability, implying
that the map θ 7→ ḡθ is well-defined.

Lemma 1.2.2. Let (X, {Pθ}θ∈Θ) G-invariant and identifiable. Then the set of
transformations

Ḡ = {θ 7→ ḡθ | g ∈ G}
form a group acting on Θ. Moreover, each ḡ ∈ Ḡ is bijective.

Proof. Define a multiplication on Ḡ by

(ḡ1ḡ2)θ = g1g2θ

for all θ ∈ Θ. Now, it follows at once that ē is the neutral element, ḡ−1 = g−1

and the multiplication is associative.
To obtain the surjectivity of the transformations. Let θ′ ∈ Θ be arbitrary and

X ∼ Pθ′ . Then g.(g−1.X) ∼ Pθ′ and there is a θ ∈ Θ such that g−1.X ∼ Pθ. Thus
by definition ḡθ = θ′.

For the injectivity assume ḡθ1 = ḡθ2 for a g ∈ G. Then there exist random
variables X1 ∼ Pθ1 and X2 ∼ Pθ2 and

X1 ∼ g−1.(g.X1) ∼ g−1.(g.X2) ∼ X2

due to ḡθ1 = ḡθ2. This shows that Pθ1 = Pθ2 and hence identifiability implies
θ1 = θ2.
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Remark 1.2.3. Note that in general G � Ḡ as groups even in identifiable statis-
tical models, since the map π : g 7→ ḡ is only a surjective group homomorphism.
However, of course Ḡ ∼= G/ker(π).

Example 1.2.4. 1.) Let X = RD and G = {A ∈ RD×D| A = diag(λ1, ..., λD) , λd >
0 for all d = 1, ..., D} the group of invertible diagonal D ×D matrices. The ac-
tion of G on RD is given by matrix multiplication, i.e. A.x = Ax for all A ∈ G
and all x ∈ RD.

Let X ∼ N (0,Σ) for Σ ∈ G. The random variable A.X, for A ∈ G, is
distributed according to N (0, AΣA). Since G forms a group we have that AΣA ∈
G. Thus,

(
RD, {N (0,Σ)}Σ∈G

)
is an identifiable G-invariant statistical model.

But Ḡ � G, since for any R ∈ G ∩ O(D), say R = −ID×D, we have that
R.X ∼ X ∼ PΣ for all Σ ∈ G.

2.) Let X = C1([0, 1],R2) and G = SE(2). Then g = (R, a) ∈ SE(2) acts on
X by

(g.γ)(t) = Rγ(t) + a

for all t ∈ [0, 1] and for any γ ∈ C1([0, 1],R2). We endow X with a family of
probability measures in the following way:

Let Z denote a mean zero Gaussian process with index set [0, 1] and values in
R2, which has a continuously differentiable version. The set of all these processes
is denoted with G. We define the set Θ = C1([0, 1],R2) × G. For any γ0 ∈ X the
random variable

γ = γ0 + Z

induces a distribution Pθ = Pγ0,Z on X. Note that (X, {Pθ}θ∈Θ) is an identifiable
SE(2)-invariant statistical model and that the induced action of SE(2) on Θ is
given by

g̃θ = (Rγ0 + a,RZ) .

For G-invariant statistical models on X it is reasonable to restrict the class
of statistics to those compatible with the group action in the following sense: a
statistic of a random variable g.X should be computable only by the knowledge
of the corresponding statistic of X and the group element g ∈ G. Heuristically,
this expresses the requirement that a statistical procedure should be independent
of experimental effects. Mathematically, this is formalized using the notion of
equivariance.

Definition 1.2.5. Let Y be a measure space. A statistic T : X→ Y (measurable
map) is called G-equivariant, if there exists a map F : G × Y → Y such that
F (g, T (X)) = T (g.X) for all X ∈ X and all g ∈ G.

Proposition 1.2.6. If T is an G-equivariant statistic, then the map F induces
a group action of G on T (X) given by g.T (X) = F (g, T (X)) for all g ∈ G and
X ∈ X.

Proof. First, note that the action is well-defined on T (X), since

g.T (X) = F (g, T (X)) = T (g.X) ∈ T (X) , (1.7)
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for all g ∈ G and all X ∈ X and, indeed, this defines a group action, since
application of equation (1.7) yields e.T (X) = T (e.X) = T (X) and

(g1g2).T (X) = T ((g1g2). X) = T (g1.(g2.X)) = g1.T (g2.X) = g1. (g2.T (X)) ,

for all g1, g2 ∈ G and all X ∈ X.
Remark 1.2.7. Note that vice versa, if the space Y admits a group action of the
group G there is a canonical choice of F given by F (g, y) = g.y for all y ∈ Y and
all g ∈ G. In this case a statistic T : X→ Y is equivariant, if T (g.X) = g.T (X)
for all g ∈ G and all random variables X ∈ X.
Example 1.2.8. In Example 1.2.4 2.) let γ ∼ Pγ0,Z be a random variable. Then
the pointwise mean curve E[γ] and the pointwise variance curve Var[γ] given by

E[γ](t) = E[γ(t)] and Var[γ](t) = E
[
(γ(t)− E[γ(t)])(γ(t)− E[γ(t)])T

]
for all t ∈ [0, 1] are equivariant statistics, since they satisfy

E[(R, a).γ] = RE[γ] + a , Var[(R, a).γ] = RVar[γ]RT ,

for all (R, a) ∈ SE(2), due to the linearity of the expectation.

Testing in the data object space. So far we introduced G-invariant statis-
tical models on a data space X. We now want to elaborate at which point shape
analysis will come into play to form together with a G-invariant statistical model
an adequate statistical framework for comparison of samples possibly corrupted
by elements of a similarity transformation group G. This is exactly the challenge
we face, if we want to compare sessions from our gait data, since any session is
collected with a slightly different marker placement and a different mean walk-
ing speed. By our discussion in Section 1.1 this results in an application of an
unknown element (ψ, φ) of the gait similarity group S on all sample curves of a
session, which prohibits that we can compare sessions directly.

Definition 1.2.9. Let X be a data space and G a group acting on X. We define
the space of samples as

S(X) =
{

(x1, . . . , xN) ∈ XN | N ∈ N
}

=
⋃
N∈N

XN ,

on which the group G acts canonical by g.χ = (g.x1, . . . , g.xN) ∈ S for all χ ∈ S
and all g ∈ G.

In order to endow the space S(X) with a G-invariant family of distributions
note that any G-invariant family of distributions Pθ on X induces a G-invariant
family of distributions on S(X) by

(X1, . . . , XN) ∼ Pθ ⊗ · · · ⊗ Pθ
i.e., on each XN we have the N -fold product measure of Pθ. This invariant family
of distributions on S(X) models the case where a sample χ ∈ S(X) consists of i.i.d.
realizations from the distribution Pθ, which is the situation occurring most often
in applications. In accordance with the notion from biomechanical experiments
we define the following.
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Definition 1.2.10. We call a sample χ = (x1, . . . , xN) ∈ S(X), N ∈ N, with
x1, ..., xN i.i.d. a session. A single realization xn ∈ X, n ∈ {1, ..., N}, belonging
to a session χ will be called a trial.

Assume a session χ1 ∈ S(X) consisting of realizations from a distribution Pθ
and a session χ2 ∈ S(X) consisting of realizations from a distribution Pθ′ are given.
One possibility is then to test whether there exists a g ∈ G such that θ′ = ḡθ.
Note that this is related to the idea of deformable models (see Del Barrio et al.
[2015]) and references therein.

However, we are not necessarily interested in comparing the distributions, but
comparing only descriptors of them. Therefore assume T : X → Y is a G-
equivariant statistic. Our goal is to test the hypothesis

H0 : ∃g ∈ G : T (X) = T (g.Y ) versus H1 : ∀g ∈ G : T (X) 6= T (g.Y ) ,

where X ∼ Pθ and Y ∼ Pθ′ using the sessions χ1 and χ2. By the G-equivariance
of our statistic we may rewrite this into

H0 : [T (X)]G = [T (Y )]G versus H1 : [T (X)]G 6= [T (Y )]G ,

where the equivalence classes [T (X)]G = {Y ∈ Y | ∃g ∈ G : T (g.X) = Y } are
formed with respect to the group action of G on Y induced by T (see Proposition
1.2.6). Therefore we are left with a testing problem in the shape space T (X)/G.

In order to illustrate this point we close this paragraph with an example:

Example 1.2.11. Assume we are in the setting of Example 1.2.4 2.) and let
χ1 = (γ1, .., γN) a session of realizations from γ ∼ Pγ0,Z and χ2 = (η1, .., ηM)
a session of realizations from η ∼ Pη0,Z′. Recall from Example 1.2.8 that the
pointwise mean is a SE(2)-equivariant statistic.

Since the action of SE(2) could be present for example due to coordinate changes
between the sessions χ1 and χ2, we could be interested in testing the hypothesis

H0 : ∃(R, a) ∈ SE(2) : E[η] = E[Rγ + a]

versus H1 : ∀(R, a) ∈ SE(2) : E[η] 6= E[Rγ + a] ,

which is equivalent to testing whether

H0 :
[
E[η]

]
SE(2)

=
[
E[γ]

]
SE(2)

versus H1 :
[
E[η]

]
SE(2)

6=
[
E[γ]

]
SE(2)

,

where the equivalence classes belong to the space C1
(
I,R2

)
/SE(2) given by the

pointwise action of SE(2) on C1
(
[0, 1],R2

)
. Tests for these hypothesis could for

example be based on the pointwise sample mean curves of the sessions χ1 and χ2,
which are SE(2)-equivariant statistics on S(X).

1.3 Gaussian Models for Gait Data
After we introduced in the previous section desirable properties of a statistical
model in order to deal properly with shape effects, we will now discuss a model
possessing these properties, which we will use in our statistical analysis of biome-
chanical gait data.
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Definition 1.3.1. A R3-valued stochastic process A = {At}t∈I (i.e., a family
of R3-valued random variables on Ω indexed by I = [0, 1]) is called Gaussian
process, if for any K ∈ N and real numbers 0 ≤ t1 < ... < tK ≤ 1 the random
vector

(
At1 , ..., AtK

)
has a (possibly degenerate) joint Gaussian distribution.

We say that the Gaussian process A has a C1-version, if there is a Gaussian
process Ã satisfying t 7→ Ãt(ω) ∈ C1

(
I,R3

)
for almost all ω ∈ Ω and Ã is a

version of A i.e.,
P
(
At = Ãt

)
= 1

for all t ∈ I.

Remark 1.3.2. (i): Any R3-valued Gaussian process A is up to versions com-
pletely determined by its mean function E[At], t ∈ I, and its covariance function

Σs,t = E
[
(As − E[As])

T (At − E[At])
]
,

as shown for example in Karatzas and Shreve [1988, p.103].
(ii): A general sufficient condition for the existence of a C1-version can be

found in Adler and Taylor [2009, Theorem 1.4.2., p. 23].

The way we define our statistical model on X is to define a family of stochastic
process on SO(3), which, in fact, are constructed from stochastic process on R3.
Therefore recall that the Lie algebra so(3) is isomorphic to R3 by the isomorphism
ι : R3 → so(3) explicitly given in (A.2). Moreover, recall that the Lie exponential
Exp : so(3) → SO(3) (see Definition A.3) is surjective. The processes are then
constructed as follows.

Definition 1.3.3. We say that a random curve γ ∈ X follows a right Gaussian
perturbation (rGP) of a center curve γ0 ∈ X , if there is a zero-mean Gaussian
processes {At}t∈I with values in R3 having almost surely continuously differen-
tiable sample paths such that

γ(t) = γ0(t) Exp(ι ◦ At) , (1.8)

for all t ∈ I. The Gaussian process {At}t∈I will be called the generating Gaussian
process.

Remark 1.3.4. Note that γ indeed defines an element in X , since the Lie group
multiplication and the Lie exponential of SO(3) are analytic.

These processes have the favorable property that the pointwise action of an
element of S on the sample paths of such a process, will produce sample paths also
belonging to a rGP process. Hence the property of being a Gaussian perturbation
model is preserved under the group action of S and therefore these processes will
define a S-invariant family as will be shown now.

Theorem 1.3.5 (Gaussian Perturbation Equivariance). Let (ψ, φ) ∈ S and let
the random curve γ ∈ X follow a rGP of γ0 ∈ X . Then (ψ, φ).γ follows a rGP
of the center curve (ψ, φ).γ0.



1.3 Gaussian Models for Gait Data 25

Proof. Let (ψ, φ) ∈ S be arbitrary. Applying Proposition 1.1.7 we have that
for any ψ ∈ I0

(
SO(3)

)
there are Pψ, Qψ ∈ SO(3) with ψ(R) = PψRQ

T
ψ for all

R ∈ SO(3). Hence

(ψ, φ).γ(t) = Pψγ0

(
φ(t)

)
Exp

(
ι ◦ Aφ(t)

)
QT
ψ

= Pψγ0

(
φ(t)

)
QT
ψ

∞∑
j=1

(
Qψ ι

(
Aφ(t)

)
QT
ψ

)j
j!

=
(
(ψ, φ).γ0

)
(t) Exp

(
ι
(
QψAφ(t)

) )
is a Gaussian perturbation model with center curve (ψ, φ).γ0 and zero-mean,
continuously differentiable Gaussian process

{
QψAφ(t)

}
t∈I . The third equality is

due to Proposition A.1.2.

Corollary 1.3.6. The measures Pθ with θ = (γ0,Σ) on X induced by random
variables γ following rGP models together with the set Θ = X × Ξ form an
identifiable S-invariant statistical model on X , where Ξ denotes the set of all
covariance functions Σ belonging to an Rd-valued Gaussian process indexed by I
and having a C1-version.

Moreover, the induced action of S on the set Θ is given by

S ×Θ→ Θ ,
(
(ψ, φ), (γ0,Σ)

)
7→
(
(ψ, φ).γ0, Q

T
ψΣQψ

)
.

Alternative Gaussian perturbation models. The non-commutativity of the
Lie group SO(3) suggests that one could also consider perturbation models in-
volving a Gaussian process from the left or even from both sides i.e.,

η(t) = Exp
(
ι ◦Bt

)
η0(t) (1.9)

δ(t) = Exp
(
ι ◦ Ct

)
δ0(t) Exp

(
ι ◦Dt

)
(1.10)

for all t ∈ I and Gaussian processes {Bt}t∈I , {Ct}t∈I and {Dt}t∈I having almost
surely continuously differentiable sample paths.

It turns out that (1.8) and (1.9) are equivalent, whereas (1.10) is approximately
equivalent to (1.8) and (1.9) up to first order, if the curves are assumed to be
concentrated near zero. As our inferential statistics later on will rely on con-
centration asymptotics as well, these results show that our restriction to right
Gaussian perturbations is reasonable and similar methods can be applied to the
models (1.9) and (1.10).

Theorem 1.3.7. Any right Gaussian model (1.8) can be rewritten into a left
Gaussian model (1.9) with the same center curve γ0 ∈ X i.e., for any continuously
differentiable Gaussian process {At}t∈I there exists a continuously differentiable
Gaussian process {Bt}t∈I such that

γ0(t)Exp
(
ι ◦ At

)
= Exp

(
ι ◦Bt

)
γ0(t)

and vice versa.
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Proof. Using Proposition (A.4) (i.e., the naturality of the Lie exponential) and
again Proposition A.1.2 we obtain at once

γ(t) = γ0(t)Exp
(
ι ◦ At

)
= γ0(t)Exp

(
ι ◦ At

)
γ0(t)Tγ0(t)

= Exp
(
γ0(t)ι(At)γ0(t)T

)
γ0(t)

= Exp
(
ι
(
γ0(t)At

))
γ0(t) .

The claim follows now from the fact that {γ0(t)At}t∈I is a Gaussian process with
almost surely differentiable sample paths, whenever {At}t∈I is one. The other
way around follows by a similar calculation.

Theorem 1.3.8. Let σ → 0 be a concentration parameter. Consider a both-sided
Gaussian perturbation of a center curve δ0 given by

δ(t) = Exp(ι ◦ Ct) δ0(t) Exp(ι ◦Dt)

with maxt∈I ‖Ct‖ = Op(σ) and maxt∈I ‖Dt‖ = Op(σ) for all t ∈ I.
Then δ(t) can be rewritten into a right Gaussian perturbation i.e.,

δ(t) = δ0(t) Exp
(
ι ◦ At + ι ◦ Ãt

)
(1.11)

with a zero-mean Gaussian process At = δ0(t)TCt +Dt and a suitable zero-mean
process Ãt satisfying maxt∈I

∥∥Ãt∥∥ = Op
(
σ2
)
.

Proof. Note that the notation maxt∈I ‖Ct‖ = Op(σ) and σ → 0 means that for
all sequences N 3 l 7→ σl > 0 with σl → 0 as l →∞ and a sequence of processes
C l
t we have that for for all ε > 0 there exists a M > 0 such that

P
(
σ−2
l max

t∈I

∥∥C l
t

∥∥ > M
)
< ε

for all l ∈ N.
Therefore in the following we assume that σl → 0 and consider a sequence

of Gaussian perturbation models with Gaussian processes
{
C l
t

}
t∈I and

{
Dl
t

}
t∈I

such that maxt∈I
∥∥C l

t

∥∥ = Op(σl) = maxt∈I
∥∥Dl

t

∥∥.
First observe that the proof of Theorem 1.3.7 shows that

δ0(t)TExp
(
ι ◦ C l

t

)
δ0(t) Exp

(
ι ◦Dl

t

)
= Exp

(
ι ◦
(
δ0(t)TC l

t

))
Exp

(
ι ◦Dl

t

)
.

Thus, since maxt∈I
∥∥δ0(t)TC l

t

∥∥ = maxt∈I
∥∥C l

t

∥∥ = Op(σl), we may w.l.o.g. set
δ0(t) = I3×3 for all t ∈ I.

Furthermore, we have C l, Dl P−→ 0 for n → ∞ with respect to the maximums
norm. This can be seen as follows:

By maxt∈I
∥∥C l

t

∥∥ = Op(σl) we obtain that for any ε > 0 there exists a M > 0
such that

P
(
σ−1
l max

t∈I

∥∥C l
t

∥∥ > M

)
< ε
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for all l. Thus, since σl → 0, for any fixed δ > 0 there is a L > 0 such that for all
l > L, we have that σ−1

l δ > M , which implies

P
(

max
t∈I

∥∥C l
t

∥∥ > δ

)
= P

(
σ−1
l max

t∈I

∥∥C l
t

∥∥ > σ−1
l δ

)
≤ P

(
σ−1
l max

t∈I

∥∥C l
t

∥∥ > M

)
< ε

for all l > L.
Now, let us define the random process

hlt = Exp
(
ι ◦ C l

t

)
Exp

(
ι ◦Dl

t

)
,

and let us introduce the process{
h̃lt

}
t∈I

=
{

Exp|−1
V

(
hlt
)}

t∈I
, (1.12)

where V ⊂ Bπ
(
0, ‖ · ‖F

)
⊂ so(3) is a set making the Lie exponential bijective. A

specific choice of such a set is given in equation (2.21), and the discussion before.
If we define the process

Ãlt = ι−1 ◦ h̃lt − C l
t −Dl

t .

Then we obtain by definition

Exp
(
ι ◦ Alt + ι ◦ Ãlt

)
= Exp

(
ι ◦ C l

t

)
Exp

(
ι ◦Dl

t

)
for all t ∈ I and Alt = C l

t +Dl
t.

Thus, in order to prove (1.11) it suffices to show that for all ε > 0 there exist
a M such that

P
(
σ−2
l max

t∈I

∥∥Ãt∥∥ > M

)
< ε . (1.13)

Now, let ε > 0 be given. We introduce the function value

f(X, Y ) = Log
(
Exp(X) Exp(Y )

)
for deterministic vector fields X, Y ∈ so(3), which gives a well-defined analytic
function in a neighborhood U of (0, 0) ∈ so(3) × so(3). In particular, Taylor’s
formula is applicable yielding that

f(X, Y ) = X + Y +O
(
‖X‖2 + ‖Y ‖2

)
(1.14)

for (X, Y ) ∈ U . Moreover, we may choose a compact subset K ⊂ U containing
itself an open subset V on which equation (1.14) is valid.

We now may split the l.h.s. of (1.13) into the two summands

P
(
K; σ−2

l max
t∈I

∥∥ι−1 ◦ Log
(
hlt
)
− C l

t −Dl
t

∥∥ > M

)
and

P
(
KC ; σ−2

l max
t∈I

∥∥ι−1 ◦ h̃lt − C l
t −Dl

t

∥∥ > M

)
,
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where K = {ω ∈ Ω | ∀t ∈ I :
(
ι ◦ C l

t, ι ◦ Dl
t

)
∈ K}. Note that we used in

the first summand that Log
(
hlt
)

= h̃lt for all t ∈ I, if the complete sample path
t 7→ (ι ◦ C l

t, ι ◦Dl
t) is contained in K.

Our goal is now to show that there exist M1 and M2 for each of the two
summands such that the probabilities are smaller than ε/2 for all l ∈ N, since
setting M = max(M1,M2) then proves (1.13).

First consider the probability containing K. Indeed, we obtain by Taylor’s
formula (1.14) that

max
t∈I

∥∥Ãlt∥∥ ≤ Λ max
t∈I

(∥∥C l
t

∥∥2
+
∥∥Dl

t

∥∥2
)
≤ Λ max

t∈I

∥∥C l
t

∥∥2
+ Λ max

t∈I

∥∥Dl
t

∥∥2
= Op

(
σ2
l

)
,

where Λ > 0 can be chosen independent of t ∈ I, since the Hessian of f is bounded
on K.

Thus, we have that maxt∈I
∥∥Ãlt∥∥ = Op

(
σ2
l

)
on K and therefore we find aM1 > 0

such that for all l ∈ N

P
(
K; σ−2

l max
t∈I

∥∥ι−1 ◦ Log
(
hl
)
− C l −Dl

∥∥ ≥M1

)
<
ε

2
,

proving our claim for this case.
Now, consider the second summand, i.e. there exists t ∈ I such that

(
ι ◦C l

t, ι ◦
Dl
t

)
/∈ K. By C l, Dl P−→ 0 with respect to the maximums norm it follows that

P
(
KC
)
→ 0, if l→∞, and hence we find L ∈ N such that for all l > L

P
(
KC
)
<
ε

2

holds true. This yields that for any M > 0 and all l > L

P
(
KC ; σ−2

l max
t∈I

∥∥ι−1 ◦ h̃lt − C l
t −Dl

t

∥∥ > M

)
≤

P
((
ι ◦ C l, ι ◦Dl

)
∈ KC

)
<
ε

2
.

However, since any finite collection of random variables is bounded in probability,
we also find for ε/2 a M2 > 0 depending on L such that for all l ≤ L

P
(
KC ; σ−2

l max
t∈I

∥∥ι−1 ◦ h̃lt − C l
t −Dl

t

∥∥ > M2

)
<
ε

2
,

which shows the claim in this case and furthermore finishes the proof.

Remark 1.3.9. Note that any right Gaussian perturbation (1.8) or any left Gaus-
sian perturbation (1.9) is also a both sided Gaussian perturbation (1.10), since
the deterministic process Ct = 0 or Dt = 0 for all t ∈ I is a Gaussian process by
definition.



Chapter 2

Simultaneous Confidence Sets for
Center Curves

In this chapter we will deal with the issue of estimating the center curve in Gaus-
sian perturbation models and establish approximate simultaneous confidence re-
gions for it. This is based on a generalization of the article Rancourt et al. [2000]
who himself builds on Downs [1972] and showed in the non-functional case that
for concentrated data certain extrinsic residuals are approximately Gaussian. In
our approach we use more natural intrinsic residuals and prove similar concen-
tration properties for right Gaussian perturbation models. Applying this result
we then obtain approximative simultaneous confidence bands using the Gaussian
kinematic formula (see Taylor [2006]).

2.1 Estimation of Center Curve and Residuals

Usually, given any probability distribution a first interesting descriptor is its mean
or expectation. Unfortunately, the commonly used definition of the mean of an
RD-valued random variable X, D ∈ N, on a measure space (Ω,P)

E [X] =

∫
Ω

XdP

does rely on the linearity of RD and can therefore not be generalized directly to
random variables taking values in a non-linear manifold. However, on RD the
expectation, if it is finite, has also the property of being the unique minimizer of
the functional

FX(µ) = E‖X − µ‖2 = E
[
d(X,µ)2

]
and, if this is used as the definition of the mean, it can be generalized to arbitrary
manifolds, since FX does only rely on the existence of a distance d between two
points.

Indeed, for any Riemannian manifoldM isometrically embedded into RD for
some D ∈ N there are at least two canonical metrics: the intrinsic metric and the
extrinsic metric (see Bhattacharya and Patrangenaru [2003]). Recall, however,
that the resulting generalized means, called Fréchet mean and extrinsic mean are,
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if existent, possibly not unique in contrary to the mean of an RD-valued random
variable. A lot of research on properties (e.g., uniqueness results and central
limit theorems) and applications of these means was done in the last decades
among others by Ziezold [1977], Hendriks and Landsman [1998], Bhattacharya
and Patrangenaru [2003], Bhattacharya and Patrangenaru [2005], Afsari [2011],
Kendall et al. [2011], Huckemann et al. [2011] and Hotz and Huckemann [2015].

Interestingly, it turns out (see Theorem 2.1.7) that for right Gaussian pertur-
bation models, which we introduced in Section 1.3, an extrinsic approach is more
viable than the intrinsic approach, since it is easier to compute and will give a
consistent estimator of the center curve of a right Gaussian perturbation model.

Definition 2.1.1. For a random path γ in X and any session χ = (γ1, ..., γN) ∈
S(X ) we have the non-empty (due to compactness of SO(3)) sets of population
and sample minimizers at t ∈ I = [0, 1] i.e.,

µ(γ, t) = argmin
µ∈SO(3)

E
[
‖µ− γ(t)‖2

F

]
, µ̂N

(
χ, t
)

= argmin
µ∈SO(3)

1

N

N∑
n=1

‖µ− γn(t)‖2
F .

Here ‖ ·‖F denotes the Frobenius norm on R3×3 (see Definition A.1). The (possi-
bly) set valued map t 7→ µ(γ, t) is called the pointwise extrinsic population mean
(PEM) of γ and the set valued map t 7→ µ̂N(χ, t) is called pointwise extrinsic
sample mean (PESM) of χ.

Indeed, as one might suspect from the invariance of the Frobenius norm under
I0

(
SO(3)

)
, we have that the PEM and PESM are equivariant statistics (see

Definition 1.2.5).

Theorem 2.1.2 (Equivariance of PEM and PESM). The PEM and PESM are
equivariant statistics on X , on S(X ) respectively, with respect to the group actions
of S. More precisely,

µ
(
(ψ, φ).γ, t

)
= (ψ, φ).µ(γ, t) and µ̂

(
(ψ, φ).χ, t

)
= (ψ, φ).µ̂

(
χ, t
)
,

for any (ψ, φ) ∈ S, random γ ∈ X and χ ∈ S(X ).

Proof. The result for the PESM is the special case of the PEM for a sum of point
measures. Hence, the invariance of the Frobenius norm under I0

(
SO(3)

)
yields

µ
(
(ψ, φ).γ, t

)
= argmin

µ∈SO(3)

E
[∥∥µ− ψ.γ(φ(t)

)∥∥2

F

]
= argmin

µ∈SO(3)

E
[∥∥µ−Qψγ

(
φ(t)

)
P T
ψ

∥∥2

F

]
= argmin

µ∈SO(3)

E
[∥∥QT

ψµPψ − γ
(
φ(t)

)∥∥2

F

]
= argmin

µ∈SO(3): µ̃=QTψµPψ

E
[∥∥µ̃− γ(φ(t)

)∥∥2

F

]
= Qψ argmin

µ̃∈SO(3)

E
[∥∥µ̃− γ(φ(t)

)∥∥2

F

]
P T
ψ

= Qψµ
(
φ(t)

)
P T
ψ = (ψ, φ).µ(γ, t) .
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In data applications or theoretical considerations we need more explicit repre-
sentations of the PEM and the PESM. Luckily, for both there exists an elegant
way to compute them based on the singular value decomposition (SVD) of a cer-
tain matrix. This is accomplished by showing that the minimization problems
of the PEM and the PESM can be transformed into a well studied minimization
problem known from rigid body motions in crystallography (see Mackenzie [1957],
Stephens [1979]) spherical regression (see Chang [1986]) or Procrustes analysis of
shape (see Dryden and Mardia [1998]). In order to restate this result tailored to
the PEM and PESM, we introduce the matrix

γ̄N(t) = N−1

N∑
n=1

γn(t) ∈ R3×3 , (2.1)

which we call the pointwise Euclidean sample mean of a sample γ1, ..., γN , N ∈ N.

Theorem 2.1.3. Let γ be a random element of X and (γ1, ..., γN) ∈ S(X ). Fix
t ∈ I. Then any element of the PEM (PESM, respectively) at time t is given
by USV T , where U, V ∈ O(3) are obtained from a singular value decomposition
UDV T of E[γ(t)] (γ̄N(t), respectively) with D = diag(λ1, λ2, λ3), λ1 ≥ λ2 ≥ λ3 ≥
0 and

S =

{
I4×4 if det(U)det(V ) = 1

diag(1, 1,−1) if det(U)det(V ) = −1
. (2.2)

The PEM (PESM, respectively) at t ∈ I is unique, if and only if rank
(
E[γ(t)]

)
>

1 (rank
(
γ̄N(t)

)
> 1, respectively).

Proof. By expanding the square one obtains

µ(γ, t) = argmin
µ∈SO(3)

E
[
‖µ− γ(t)‖2

F

]
= argmax

µ∈SO(3)

tr
(
E[γ(t)]µT

)
= argmin

µ∈SO(3)

‖µ−E[γ(t)]‖2
F .

Now, the results follow from Umeyama [1991, Lemma, p. 377], if we set n = m
and B = I3×3 in their result. The proof for the PESM is the special case of a
sum of point measures.

Another characterization of the PEM and PESM can be deduced from Bhat-
tacharya and Bhattacharya [2012]. In order to obtain it, we introduce the or-
thogonal projections pr : R3×3 → SO(3) with respect to the Frobenius norm
i.e.,

pr(M) = argmin
Q∈SO(3)

‖Q−M‖2
F , (2.3)

for M ∈ R3×3, which possibly is multivalued. A pointwise application of Bhat-
tacharya and Bhattacharya [2012, Proposition 4.2.a), p. 37] yields the following.

Theorem 2.1.4. Let γ be a random element of X and χ = (γ1, ..., γN) ∈ S(X ).
Then for each t ∈ I we have that the PEM of γ and the PESM of χ are given by

µ(γ, t) = pr
(
E
[
γ(t)

])
and µ̂

(
χ, t
)

= pr

(
1

N

N∑
n=1

γn(t)

)
(2.4)
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This result combined with Theorem 2.1.3 can be used to establish that the
PESM of γ1, ..., γN is itself an element belonging to X , if the PESM is unique for
all t ∈ I. Note that this is often the case in applications, since the data tends to
be concentrated.

Corollary 2.1.5. Let χ = (γ1, ..., γN) ∈ S(X ). Assume that for all t ∈ I we have
that µ̂N

(
χ, t
)
is unique. Then the PESM t 7→ µ̂N

(
χ, t
)
belongs to X .

Proof. By Theorem 2.1.4 we have that the PESM evaluated at t ∈ I is given by

pr
(
γ̄N(t)

)
= pr

(
1

N

N∑
n=1

γn(t)

)
,

for all t ∈ I. Since the embedding SO(3) ↪→ R3×3 is smooth, we have that
γ̄N ∈ C1

(
I,R3×3

)
. It remains to show that pr is differentiable in a neighborhood

of the image Γ = {B ∈ R3×3 | ∃t ∈ I : B = γ̄N(t)}.
By Theorem 2.1.3 the PESM is unique for all t ∈ I if and only if Γ ∩ F = ∅,

where F = {B ∈ R3×3 | rank(B) ≤ 1}. Since Γ is compact and F is closed (see
Lemma B.0.3) there exists an open neighborhood U ⊃ Γ with U ∩ F = ∅. By
Dudek and Holly [1994, Theorem 4.1, p. 6] we obtain that pr is analytic on U
and hence t 7→ pr

(
γ̄N(t)

)
∈ C1

(
I,R3×3

)
as claimed.

Remark 2.1.6. The same proposition for the PEM is false in general. This is
due to the fact that t 7→ E[γ(t)] is not necessarily a C1-curve in R3×3. In order
to achieve this one additionally needs to assume that for each t ∈ I we have
that |γ′(t)| ≤ Z(t) with Z(t) an integrable random variable. Then the Lebesgue’s
dominated convergence theorem (see Loève [1955, Theorem C, p. 125]) ensures
that t 7→ E[γ(t)] ∈ C1

(
I,R3×3

)
.

We now want to study the PEM of Gausssian perturbation models. Interest-
ingly, we can show that the PEM is identical to the center curve. Hence the PEM
is a good descriptor of our model. Moreover, this will imply that the PESM is a
consistent estimator of the center curve. Hence we can use it for inference on the
center curve (see Section 2.2).

Theorem 2.1.7. If a random curve γ ∈ X follows a right Gaussian perturbation
of a center curve γ0 ∈ X (see Definition 1.3.3), then its PEM is unique at any
t ∈ I and is identical to the center curve γ0.

Proof. Let E[γ(t)] = UDV T be a singular value decomposition for t ∈ I, then
with Theorem 2.1.3 the assertion is the claim that γ0(t) = USV T . Since E[γ(t)] =
γ0(t)E

[
Exp

(
ι ◦ At

)]
, this claim holds if E

[
Exp

(
ι ◦ At

)]
is symmetric and positive

definite.
Indeed, let E

[
Exp

(
ι ◦ At

)]
= Ṽ ΛṼ T with Ṽ ∈ SO(3) and diagonal non-

degenerate Λ. Then Λ = D (we assume that the eigenvalues are sorted from the
highest to the lowest), since E[γ(t)]TE[γ(t)] = E

[
Exp

(
ι ◦ At

)]TE[Exp
(
ι ◦ At

)]
giving

UDV T = γ0(t)Ṽ DṼ T .
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Moreover, since the eigenspaces corresponding to same eigenvalues spanned by
the columns of Ṽ and V agree we can choose Ṽ = V , yielding γ0 = UV T with
U ∈ SO(3), since U = γ0(t)Ṽ ∈ SO(3), which would prove the claim.

By Lemma B.0.2 it remains to prove that At = X ∼ N (0,Σ) in R3 fulfills
E[cos ‖X‖] ≥ 0. Indeed, making use of Fourier transformations of Gaussian
densities, say

E[cos ‖X‖] =
1

(2π)k/2
√
ν1 · ... · νk

∫
Rk
e−x

T ν̃−1x/2 cos(‖x‖) dx

=
1

(2π)k/2
√
ν1 · ... · νk

∫
Rk
e−y

T ν̃−1y/2 cos(‖y‖) dy

=
1

(2π)k/2

∫
Sk−1

(∫ ∞
0

e−r
2/2 cos

(
r
√
φT ν̃φ

)
dr

)
dσ(φ)

=
1

(2π)k/2

∫
Sk−1

(
1

2

∫ ∞
−∞

e−r
2/2eir

√
φT ν̃φ dr

)
dσ(φ)

=
1

(2π)k/2−1

∫
Sk−1

1

2
e−φ

T ν̃φ dσ(φ) > 0

with the spherical volume element dσ(φ) on the k − 1 dimensional unit sphere
Sk−1. Here we have used a svd Σ = W diag(ν1, ν2, ν3)W T withW = (w1, w2, w3) ∈
SO(3), the smallest index k ∈ {1, 2, 3} such that νk > 0, ν̃ = diag(ν1, ..., νk) and
y = (w1, ..., wk)

Tx ∈ Rk.

Remark 2.1.8. Let γ(t) = γ0(t)Exp
(
ι(At)

)
be any stochastic process on SO(3)

induced by a process {At}t∈I in R3. Then note that the only properties of the
distribution of {At}t∈I used in the proofs are

E[At sinc‖At‖] = 0 and E[cos ‖At‖] > 0 . (2.5)

Thus, any such process satisfying these conditions admits a unique PEM given by
γ0(t).

Corollary 2.1.9. Suppose that for each N ∈ N sessions χN ∈ XN ⊂ S(X ) (see
Definition 1.2.10) of a rGP with center curve γ0 are given. Fix t ∈ I and choose
a measurable selection γ̂N(t) ∈ µ̂

(
χN , t

)
of the PESM for each N ∈ N. Then we

have that γ̂N(t)→ γ0(t) almost surely.

Proof. That the extrinsic sample mean set is a strongly consistent estimator of the
extrinsic population mean set follows from a more general result by Ziezold [1977].
In case of uniqueness, guaranteed by the model we have that the center curve
and PEM agree by virtue of Theorem 2.1.7. Hence, every measurable selection of
the sample mean converges almost surely to the unique population mean yielding
the assertion (see also Bhattacharya and Patrangenaru [2003]).

Finally, we will prove that for rGP models we also have almost surely uniform
convergence of the PESM to the center of perturbation, if an additional condi-
tion is fulfilled. Moreover, this will imply that the PESM of a session χN ∈ S(X )
consisting of i.i.d. realizations of an rGP model is with high probability a con-
tinuously differentiable curve, if N is large enough, and therefore techniques we
will develop later for curves in X can be applied also to the PESM.
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Theorem 2.1.10. Let χN ∈ XN ⊂ S(X ), N ∈ N, denote a session of an rGP γ
with center curve γ0. Moreover, assume that the Gaussian process {At}t∈I of the
rGP satisfies that

E
[
max
t∈I
‖∂tAt‖

]
<∞ . (2.6)

Then we obtain that

(i) The map t 7→ µ̂
(
χN , t

)
∈ X asymptotically almost surely i.e., there exists

Ω′ ⊂ Ω with P(Ω′) = 1 and for every ω ∈ Ω′ there exists Nω such that
µ̂
(
χN(ω), t

)
is unique and t 7→ µ̂

(
χN(ω), t

)
is continuously differentiable

curve in SO(3) for all N > Nω.

(ii) maxt∈I
∥∥µ̂(χN , t)− γ0

∥∥
F
→ 0 for N →∞ almost surely.

(iii) maxt∈I dSO(3)

(
µ̂
(
χN , t

)
, γ0

)
→ 0 for N →∞ almost surely.

Note, that in (ii) and (iii) as long as µ̂
(
χN , t

)
is not unique the distances denote

distances between sets.

Proof. (i): As in the proof of Corollary 2.1.5 we have that the PESM is given
by pr

(
γ̄N(t)

)
. Hence the PESM at t ∈ I is unique if and only if the orthogonal

projection of γ̄(t) does not belong to F = {B ∈ R3×3 | rank(B) ≤ 1} (see Theorem
2.1.3). Hence, in order to prove (i) it suffices to show that

max
t∈I
‖γ̄N(t)− E [γ(t)] ‖F → 0 a.s. (2.7)

This is deduced as follows: by Theorem 2.1.7 the PEM of γ is unique and thus
E [γ(t)] /∈ F . Moreover, due to the fact that F is closed (see Lemma B.0.3) and
the image of t 7→ E [γ(t)] for t ∈ I is compact there exists ε0 > 0 such that∥∥E [γ(t)]−F

∥∥
F
≥ ε0 ,

for all t ∈ I. Now, if (2.7) is true, there exists a set Ω̃ with P
(
Ω̃
)

= 1 such that
there exists for all ω ∈ Ω̃ and ε0/2 a natural number Nω(ε0) ∈ N such that for
all N ≥ Nω(ε0) we have that∥∥γ̄N(ω, t)− E [γ(t)]

∥∥
F
<
ε0

2

for all t ∈ I. This implies that γ̄N(t) /∈ F for all t ∈ I, since∥∥γ̄N(t)−F
∥∥
F
≥
∥∥E [γ(t)]−F

∥∥
F
−
∥∥γ̄N(t)− E [γ(t)]

∥∥
F
>
ε0

2

for all t ∈ I and all N > Nω(ε0). Therefore, µ̂
(
χN(ω), t

)
is unique for all

N > Nω(ε0) and the curve t 7→ µ̂
(
χN(ω), t

)
is C1, since γ̄N(ω, t) is C1 and

pr : R3×3\F → SO(3) is analytic (see Dudek and Holly [1994, Theorem 4.1,
p. 6]).

Thus, it remains to prove the uniform convergence (2.7). By Theorem B.0.9 it
suffices to show that the sequence of processes γ̄N(t) is stochastically equicontin-
uous, since we already have pointwise convergence by Corollary 2.1.9.
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In order to establish this, recall that γn(t) = γ0(t)Exp
(
ι ◦Ant (ω)

)
with a Gaus-

sian process An with the same distribution as A (see Definition 1.3.3). De-
fine Ω′ with P(Ω′) = 1 by Ω′ =

⋂
n∈{1,...,N}Ωn, where Ωn is the set for which

An(ω) ∈ C1(I,R3). The triangle inequality then yields

‖γ̄N(ω, t)− γ̄N(ω, t′)‖F ≤
1

N

N∑
n=1

∥∥γ0(s)Exp
(
ι ◦ Ans (ω)

)
− γ0(t)Exp

(
ι ◦ Ant (ω)

)∥∥
F

(2.8)
for all ω ∈ Ω′. Using that ‖R‖F ≤

√
3 for all R ∈ SO(3) and that γ0 and

An(ω) are Lipschitz continuous with Lipschitz constants Lγ = maxt∈I ‖γ′0(t)‖F
and LAn(ω) = maxt∈I ‖∂tAnt (ω)‖, we obtain for all ω ∈ Ω′∥∥γ0(s)Exp

(
ι◦Ans (ω)

)
− γ0(t)Exp

(
ι ◦ Ant (ω)

)∥∥
F

≤
∥∥γ0(s)− γ0(t)

∥∥
F

∥∥Exp
(
ι ◦ Ans (ω)

)∥∥
F

+
∥∥γ0(t)

∥∥
F

∥∥Exp
(
ι ◦ Ans (ω)

)
− Exp

(
ι ◦ Ant (ω)

)∥∥
F

≤
√

3Lγ|s− t|+
√

3
∥∥Exp

(
ι ◦ Ans (ω)

)
− Exp

(
ι ◦ Ant (ω)

)∥∥
F

≤M
(
1 + LAn(ω)

)
|s− t| , (2.9)

where M > 0 sufficiently large. Here the last inequality is due to Lipschitz
continuity of Exp :

(
so(3), ‖ · ‖F

)
→
(
SO(3), ‖ · ‖F

)
(see Lemma B.0.4) and

Lipschitz continuity of An(ω). Putting (2.8) and (2.9) together yields

‖γ̄N(ω, t)− γ̄N(ω, t′)‖F ≤M

(
1 +

1

N

N∑
n=1

LAn(ω)

)
|s− t| (2.10)

for all ω ∈ Ω′. We still have to remove the dependency on ω of the right hand
side. Therefore note that by Assumption (2.6) and the strong law of large numbers
there exists Ω′′ ⊂ Ω with P(Ω′′) = 1 such that

1

N

N∑
n=1

LAn(ω)→ E
[
max
t∈I
‖∂tAt‖F

]
= L <∞ n→∞

for all ω ∈ Ω′′. Finally, define the new set Ω̃ = Ω′ ∩ Ω′′ still satisfying P
(
Ω̃
)

= 1.
Now, the stochastical equicontinuity follows, since for any ε > 0 and any ω ∈ Ω̃
let δ = ε

M(1+L+ε′)
with an arbitrary ε′ > 0, we obtain by the SLLN a Nω,ε′ such

that ∣∣∣∣∣ 1

N

N∑
n=1

LAn(ω)− E
[
max
t∈I
‖∂tAnt ‖F

]∣∣∣∣∣ < ε′

for all N > Nω,ε′ . Indeed, combining this with equation (2.10) yields

sup
|s−t|≤δ

‖γ̄N(ω, t)− γ̄N(ω, t′)‖F ≤M (1 + L+ ε′) δ < ε .

for all N > Nω,ε′ , which proves the stochastical equicontinuity on Ω̃, and therefore
finishes the proof of this part.
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(ii) Since E[γ(t)] is unique for all t ∈ I as deduced in the proof of Theorem 2.1.7,
we define analogously to Corollary 2.1.5 the compact set Γ =

{
B ∈ R3×3 | ∃t ∈

I : B = E[γ(t)]
}
. Then Γ ∩ F = ∅, where F =

{
B ∈ R3×3 | rank(B) ≤ 1

}
and

there exists ε0 > 0 such that ∥∥E[γ(t)
]
−F

∥∥
F
≥ ε0

for all t ∈ I. Define the compact set

K =
⋃
t∈I

{
B ∈ R3×3

∣∣ ‖E[γ(t)]−B‖ < ε0
2

}
,

which satisfies K ∩ F = ∅. Again by Dudek and Holly [1994, Theorem 4.1, p.
6] we obtain that the restriction of pr :

(
R3×3, ‖ · ‖F

)
→ (SO(3), ‖ · ‖F ) to K is

analytic and hence Lipschitz continuous.
Since we proved in (i) that γ̄N converges almost surely uniformly to E[γ], there

exists NK such that γ̄N ∈ K almost surely for all N > NK . Thus, by the Lipschitz
continuity of pr on K we obtain∥∥µ̂(χN , t)− γ0(t)

∥∥
F

=
∥∥pr(γ̄N(t)

)
− pr

(
E[γ(t)]

)∥∥
F
≤ CK

∥∥γ̄N −E[γ(t)]
∥∥
F

(2.11)

for CK > 0 sufficiently large and all N > NK . Now, the almost sure uniform
convergence γ̄N → E[γ] for N → ∞ implies the claimed almost sure uniform
convergence of the left hand side of (2.11) to zero.

(iii) This follows from (ii) together with Proposition A.1.3.

Corollary 2.1.11. With the notations and assumptions of Theorem 2.1.10 we
obtain

lim
N→∞

P
(
t 7→ µ̂

(
χN , t

)
∈ X

)
= 1 .

Proof. By the arguments and notations of the proof of Theorem 2.1.10 we have
that t 7→ µ̂

(
χN , t

)
∈ X if for any ε > 0

max
t∈I
‖γ̄N(t)−F‖F > ε .

Choose ε0 as in the proof of Theorem 2.1.10. Then for any ε0 > ε > 0 the Markov
inequality yields

P
(

max
t∈I
‖γ̄N(t)−F‖F > ε

)
≥ P

(
max
t∈I
‖γ̄N(t)− E[γ(t)]‖F < ε0 − ε

)
≥ 1−

E
[

maxt∈I ‖γ̄N(t)− E[γ(t)]‖F
]

ε0 − ε
.

(2.12)

In the prove of Theorem 2.1.10 we showed that maxt∈I ‖γ̄N(t)− E[γ(t)]‖F
]
con-

verges to zero almost surely. Moreover, the triangle inequality yields ‖γ̄N(t) −
E[γ(t)]‖F ≤ 2

√
3 for all t ∈ I. Thus, by Lebesgue’s dominated convergence

theorem (see Loève [1955, Theorem C, p. 125]) we obtain

E
[

max
t∈I
‖γ̄N(t)− E[γ(t)]‖F

]
→ 0 , for n→∞ ,

which together with inequality (2.12) yields the claim.
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In order to show that there exists a mild sufficient condition on the derivative
of a Gaussian processes such that it satisfies assumption (2.7) of the previous the-
orem, we need to introduce some new notations. Here we closely follow Chapter
1.3 of the book Adler and Taylor [2009], since we want to apply their Theorem
1.3.3. (p. 14), which is a well known result on bounding the expectation of the
maximum of a Gaussian process.

Definition 2.1.12. Let {At}t∈I be an R-valued Gaussian process with E
[
At
]

= 0
for all t ∈ I. The canonical (pseudo-) metric of I with respect to {At}t∈I is given
by

dA(s, t) =
√
E
[
(As − At)2

]
for all s, t ∈ I.

Definition 2.1.13. Let {At}t∈I be an R-valued Gaussian process with E
[
At
]

= 0
for all t ∈ I and assume that I is compact with respect to the topology induced by
dA. We define

Bε
(
dA, t

)
=
{
s ∈ I

∣∣ dA(s, t) ≤ ε
}

the centered closed dA-ball with radius ε. Additionally, we denote with N(I, dA, ε)
the smallest number of closed dA-balls with radius ε necessary to cover I. The
functions ε 7→ N(I, dA, ε) and ε 7→ H

(
dA, ε

)
= log

(
N(I, dA, ε)

)
are called the

(metric) entropy function and log-entropy function, respectively.

Using the log-entropy function we can state the following bound on the expec-
tation of the maximum of a centered Gaussian process.

Theorem 2.1.14. Let {At}t∈I be an R-valued Gaussian process with E
[
At
]

= 0
for all t ∈ I and assume that I is compact with respect to the topology induced by
dA. Then there exists an universal constant L > 0 such that

E
[
max
t∈I
|At|

]
≤ L

∫ diam(I)/2

0

√
H
(
dA, ε

)
dε . (2.13)

Proof. The proof is given in Adler and Taylor [2009, p.16].

Remark 2.1.15. Note that we replaced the supremum in Adler and Taylor [2009,
Theorem 1.3.3.,p. 14] with a maximum. This is possible due the assumption that
{At}t∈I has continuous sample paths and I is compact. They use the more general
infimum, since they want to prove sufficient conditions that a Gaussian process
has continuous sample paths based on their result.

Finally, we can state and prove a simple sufficient condition on a Gaussian
process such that Assumption (2.6) holds.

Proposition 2.1.16. Let {At}t∈I be a Gaussian process with almost surely con-
tinuously differentiable sample paths. Let Σ′ : I × I → R3 be the covariance
function of the Gaussian process {∂tAt}t∈I . If Σ′ is α-Hölder continuous for any
α ∈ (0, 1] i.e.,

‖Σ′s1,t1 − Σ′s2,t2‖F ≤ L
(
|s1 − s2|2 + |t1 − t2|2

)α
2

for all s1, s2, t1, t2 ∈ I, then A satisfies condition (2.6).
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Proof. Let us denote the Gaussian process {∂tAt}t∈I with {Bt}t∈I . Applying the
triangle inequality we obtain

E
[
max
t∈I
‖Bt‖

]
≤

3∑
d=1

E
[
max
t∈I
|πd ◦Bt|

]
, (2.14)

where πd : R3 → R is defined by πd
(
(x1, x2, x3)

)
= xd for d ∈ {1, 2, 3}. By

the definition of Gaussian processes we have that πd ◦ Bt is a one dimensional
Gaussian process. Moreover, it holds true that

E
[
max
t∈I
|πd ◦Bt|

]
≤ 2E

[
max
t∈I

πd ◦Bt

]
+ E

[
|πd ◦B0|

]
, (2.15)

for d ∈ {1, 2, 3}. To prove this, note that for d ∈ {1, 2, 3} it holds true that

max
t∈I
|πd ◦Bt| ≤ max

t∈I
πd ◦Bt + |πd ◦B0| ,

if maxt∈I |πd ◦Bt| = maxt∈I πd ◦Bt, or else

max
t∈I
|πd ◦Bt| ≤ max

t∈I
−πd ◦Bt + |πd ◦B0| ,

if maxt∈I |πd ◦Bt| = maxt∈I −πd ◦Bt. Thus, we obtain

max
t∈I
|πd ◦Bt| ≤ max

t∈I
πd ◦Bt + max

t∈I
−πd ◦Bt + |πd ◦B0| , (2.16)

since, if maxt∈I |πd ◦Bt| = maxt∈I πd ◦Bt, we have

max
t∈I

πd ◦Bt ≤ max
t∈I

πd ◦Bt + max
t∈I
−πd ◦Bt + |πd ◦B0| ,

which is true by maxt∈I −πd ◦ Bt ≥ −πd ◦ B0, otherwise, if maxt∈I |πd ◦ Bt| =
maxt∈I −πd ◦Bt, we obtain

max
t∈I
−πd ◦Bt ≤ max

t∈I
πd ◦Bt + max

t∈I
−πd ◦Bt + |πd ◦B0| ,

which is true by maxt∈I πd ◦ Bt ≥ πd ◦ B0. Taking the expectation on both sides
of inequality (2.16) together with the property that πd ◦ Bt ∼ −πd ◦ Bt yields
(2.15).

Therefore, in order to prove that the right hand side of (2.14) is finite, it
remains to show by Theorem 2.1.14 that∫ diam(I)/2

0

√
H
(
dπdB, ε

)
dε <∞ , (2.17)

where H(dπdB, ε) is the log entropy function with respect to the induced metric
dπdB on I and diam(I) is the diameter of I with respect to this metric. A short
calculation yields

dπdB(s, t) = Var
[
πd ◦Bs

]
− 2Cov

[
πd ◦Bs, πd ◦Bt

]
+ Var

[
πd ◦Bt

]
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and the Lipschitz continuity of Σ′ implies∣∣Var[πd ◦Bs

]
− Cov

[
πd ◦Bs, πd ◦Bt

]∣∣ < L|s− t|α∣∣Var[πd ◦Bt

]
− Cov

[
πd ◦Bs, πd ◦Bt

]∣∣ < L|s− t|α

yielding
dπdB(s, t) ≤ 2L|s− t|α .

The latter estimate implies diam(I) ≤ 2L and H
(
dπdB, ε

)
≤ H

(
| · |, α

√
ε/L

)
, since

for any t ∈ I we have that

B α
√

ε
L

(
| · |, t

)
⊂ Bε

(
dπdB, t

)
.

Thus, we obtain∫ diam(I)/2

0

√
H
(
dπdB, ε

)
dε ≤

∫ L

0

√
H
(
| · |, α

√
ε/L

)
dε

≤
∫ L

0

√
log

(
1

α
√
ε/L+1

)
dε <∞ ,

where we used N
(
I, | · |, α

√
ε/L

)
≤
(
α
√
ε/L+ 1

)−1 in the last inequality.

2.2 Simultaneous Confidence Sets for Center Curves
In this section we introduce a construction using a session χ = (γ1, ..., γN) of a
certain rGP model γ yielding simultaneous confidence sets for its center curve γ0.

In few words our approach is as follows: given sample paths of certain Gaussian
processes {At}t∈I with values in R3 the maximum of the pointwise Hotelling T 2

statisticHA
t is well-defined and can be used to obtain simultaneous confidence sets

(SCS) of the mean of the process. Here the Gaussian kinematic formula (Taylor
and Worsley [2008]) can be utilized to estimate the quantiles of maxtH

A
t in order

to compute the confidence sets. Other methods based on the multiplier bootstrap
proposed in Chernozhukov et al. [2013] or on another bootstrap approach pro-
posed in Degras [2011] to estimate these quantiles are introduced in Section 5.1.1,
where we compare the small sample performance of these methods. Taking the
maximum of a pointwise defined statistic to construct SCS dates back as early
as Bickel and Rosenblatt [1973]. A more recent method and a short literature
overview can be found in Krivobokova et al. [2012]. Often, however, these meth-
ods rely on asymptotic distributions for large sample sizes, whereas the Gaussian
kinematic formula does not. We will shortly review the construction of SCS in the
Gaussian process case and then construct a process

{
H̃γ
t

}
t∈I for a right Gaussian

perturbation model γ, which can be used to construct simultaneous confidence
sets in SO(3) for the center curve γ0 ∈ X of γ.

In a last step we show that the computation of the quantiles of maxt H̃
γ
t reduces

to estimating the quantiles of maxtH
A
t for the generating Gaussian process A of

the considered rGP, if our data is sufficiently concentrated. Hence also in this
case the Gaussian kinematic formula can be used to compute the confidence set.



40 2. Simultaneous Confidence Sets for Center Curves

Confidence sets for Gaussian processes. Let {At}t∈I be an R3-valued Gaus-
sian process. Assume that A fulfills the following additional assumptions:

(GKF 1 ) A = Ft(ξ1, ξ2, ξ3)T . Here ξ1, ξ2, ξ3 ∼ ξ independent R-valued with
almost surely C2-sample paths. Ft ∈ C1

(
I,R3×3

)
is invertible for all

t ∈ I.
(GKF 2 ) {ξt}t∈I is Gaussian with E[ξt] = 0 and Var[ξt] = I3×3 for all t ∈ I.
(GKF 3 ) The joint distribution of

(
ξt, ξ

′
t

)
is nondegenerate for all t ∈ I. Here

{ξ′t}t∈I =
{(

dξ
dt

)
t

}
t∈I .

(GKF 4 ) Let L, α ∈ R>0 and Σ′ denote the covariance function of {ξ′t}t∈I .
We assume

Σ′t,t − 2Σ′s,t + Σ′s,s ≤ L
∣∣ log |s− t|

∣∣−(1+α)

for all s, t ∈ I.
These assumptions are necessary in order that the Gaussian kinematic formula

(2.28) is valid (see Taylor and Worsley [2008, Section 3.1.] and Adler and Taylor
[2009, Theorem 15.2.1., p.391]).

Given an i.i.d. sample A1, ..., AN ∼ A, N > 3, where A fulfills Assumptions
(GKF 1 )–(GKF 4 ), we define the one-dimensional stochastic process

HA
t = N

(
Āt − E[At]

)T(
Σ̂A
t

)−1(
Āt − E[At]

)
(2.18)

called its Hotelling T 2 process, with

Σ̂A
t =

1

N − 1

N∑
n=1

(
Ant − Āt

)(
Ant − Āt

)T
. (2.19)

This process is only well-defined, if Σ̂A
t is non-singular for all t ∈ I. For some

further restrictions on ξ in (GKF 1 )–(GKF 4 ) a proof of non-singularity is given
in Cao et al. [1999, Section 3.3]. For the general case, we could not find a proof in
the literature. However, in our simulations we never experienced any singularity
problems and from theoretical considerations, which are not yet a complete proof,
we suspect that the non-singularity holds true in general given (GKF 1 )–(GKF
4 ) for N > 3.

From now on, we assume that our processes have the property that {HA
t }t∈I

is well-defined as a process. Note that HA
t is Hotelling T 2

3,N−1 distributed for
each t ∈ I. Hence, since this distribution is pivotal, we obtain at once pointwise
confidence sets for the mean E[At] at each t ∈ I.

Now, let h ∈ R such that P
{

supt∈I H
A
t ≤ h

}
≥ β ∈ (0, 1). Then the collection

of sets

Cβ(t) =

{
a ∈ R3

∣∣ N(Āt − a)T(Σ̂A
t

)−1(
Āt − a

)
≤ h

}
form simultaneous β · 100%-confidence sets for E[A], since

P
(
E[At] ∈ Cβ(t) for all t ∈ I

)
≥ β .
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This simultaneous inference on the entire path, however, requires to include the
covariance structure (s, t) 7→ Σs,t = Cov[As, At] of A, since the distribution of
supt∈I H

A
t is in general not pivotal. For convenience, we define the quantiles of

this process. Its estimation as achieved in the literature is deferred to Section
2.3.

Definition 2.2.1 (Hotelling T 2 Process Quantiles). Let A1, ..., AN ∼ A, N > 3,
with a Gaussian process A on R3 satisfying Assumptions (GKF 1 )–(GKF 4 ).
For all levels 0 ≤ β ≤ 1 we call

hA,N,β = inf

{
h ∈ R>0

∣∣ P(sup
t∈I

HA
t ≤ h

)
≥ β

}
the Hotelling process β-quantile.

Intrinsic residuals. Since we do not observe the realizations of the Gaussian
error processes {At}t∈I of a right Gaussian perturbation model γ directly, natural
and computable residuals of a session (γ1, ..., γN) of γ could be defined using
Corollary 2.1.9 as

ι−1◦ Log
(
γ̂TN(t)γn(t)

)
, (2.20)

where γ̂N(t) ∈ µ̂
(
(γ1, ..., γN), t

)
is a measurable choice of an element from the

PESM for each t ∈ I, if not unique. These residuals are, however, only almost
surely well-defined for fixed t ∈ I as the next proposition shows, but they do not
need to be well-defined for all t simultaneously, since the map t 7→ γ̂TN(t)γn(t)
may still hit the cut locus CI3×3 of the identity matrix for some t ∈ I and the
Lie logarithm is only well-defined on SO(3)\CI3×3 (see equation A.7 in Appendix
A.1).

Proposition 2.2.2. At each t ∈ I the residuals defined in Equation (2.20) are
almost surely well-defined.

Proof. This follows directly from the fact that the cut locus γ̂TN(t)CI3×3 of γ̂N(t)
has measure zero with respect to the Riemannian volume (e.g.,Itoh and Tanaka
[1998]) for every t ∈ I together with the technical Lemma B.0.1.

Usually, for applications this is enough, since the data is assumed to be con-
centrated and therefore, the cut locus does not cause any problems for real sam-
ples. Theoretically, however this is unsatisfying. Luckily, there exists a sim-
ple trick to circumvent this ambiguity, since we can define a logarithm even if
γ̂TN(t)γn(t) ∈ CI3×3 . Therefore, note that Exp : U0\U0 → CI3×3 , where U0 = {A ∈
so(3) | ‖A‖F < π} is the open ball centered at 0, is a double cover (see Duister-
maat and Kolk [1999, p. 25]). Thus, since Exp : U0 → SO(3)\CI3×3 is bijective,
we only have to find a set C ⊂ U0\U0 such that Exp : C→ CI3×3 is bijective.

By the periodicity of the Lie exponential (see Equation (A.6)), we have that
Exp(A) = Exp(−A) for all A ∈ U0\U0 = {A ∈ so(3) | ‖A‖F = π}. Hence, the
upper hemisphere of the 2-sphere U0\U0 together with an appropriate choice on
the remaining S1 (again the upper hemisphere together with one point) i.e.,

C =
{
A ∈ U0\U0

∣∣ A21 > 0
}
∪
{
A ∈ U0\U0

∣∣ A21 = 0∧A32 > 0)
}
∪
{(

0 0 π
0 0 0
−π 0 0

)}
,
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makes Exp : C → CI3×3 bijective. This implies that Exp : V = U0 ∪ C → SO(3)
is a bijection and we denote its inverse with L : SO(3) → V. Finally, we can
modify the residuals (2.20) by defining our intrinsic residuals as

Xn
t = L

(
γ̂TN(t)γn(t)

)
, (2.21)

which are well-defined for all t ∈ I.

Confidence sets in SO(3). To construct simultaneous confidence sets we
can proceed analogously to the case of Gaussian processes by defining the one-
dimensional process

H̃X
t = NXT

t

(
ŜXt

)−1

Xt (2.22)

with

Xt = ι−1◦ L
(
γ̂TN(t)γ0(t)

)
ŜXt =

1

N − 1

N∑
n=1

Xn
t (Xn

t )T .

Here γ̂N(t) ∈ µ̂
(
χN , t

)
is a measurable choice for all t ∈ I and again we have to

assume that
{
ŜXt
}
t∈I is non-singular for all t. As before in the Gaussian case, we

define the quantiles

h̃γ,N,β = inf

{
h ∈ R≥0

∣∣ P(sup
t∈I

H̃X
t ≤ h

)
≥ β

}
.

From these definitions we obtain at once β · 100%-confidence sets for γ0.

Theorem 2.2.3. Let χN = (γ1, ..., γN) be a session of a rGP γ with center curve
γ0. Let γ̂N(t) ∈ µ̂

(
χN , t

)
a measurable choice for all t ∈ I. We define the sets

Cβ
(
χN ; t

)
=

{
a ∈ R3

∣∣ NaT(ŜXt )−1

a ≤ h̃γ,N,β

}
.

Then it follows that

P
(
γ0(t) ∈ γ̂N(t)Exp

(
ι ◦ Cβ

(
χN ; t

))
for all t ∈ I

)
≥ β

and hence we obtained simultaneous β · 100%-confidence sets for γ0.

An important property of these confidence sets is that they are also equivariant
with respect to the group S of gait similarities in the following sense:

Theorem 2.2.4. Let χN = (γ1, ..., γN) be a session of a rGP γ with center
curve γ0 and let (ψ, φ) ∈ S be arbitrary. Define the sample ηn = (ψ, φ).γn
for all n ∈ {1, ..., N}, which are samples of the rGP (ψ, φ).γ with center curve
η0 = (ψ, φ).γ0. Moreover, let ψ(R) = PψRQ

T
ψ with R,Pψ, Qψ ∈ SO(3) and
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γ̂N(t) ∈ µ̂
(
χN , t

)
and η̂N = (ψ, φ).γ̂N(t) ∈ µ̂

(
(ψ, φ).χN , t

)
, seeTheorem 2.1.2, for

all t ∈ I.
Then the simultaneous confidence sets for (ψ, φ).γ0 computed from η1, ..., ηN

satisfy

η̂N(t)Exp
(
ι ◦ Cβ

(
(η1, ..., ηN); t

))
=
(
(ψ, φ).γ̂N

)
(t)Exp

(
ι ◦QψCβ

(
χN ;φ(t)

))
,

i.e., they can be computed by the knowledge of the confidence sets for γ0 and
(ψ, φ) ∈ S only.

Proof. We start the proof restating the definitions of the intrinisic residuals for
each of the samples:

Xn
t = ι−1◦ L

(
γ̂TN(t)γn(t)

)
and Y n

t = ι−1◦ L
(
η̂TN(t)ηn(t)

)
,

Hence a simple computation using the equivariance of the PESM, Lemma B.0.5
and ι(Qv) = Qι(v)QT for all v ∈ R3, Q ∈ SO(3) (see Lemma A.1.2(iv)) yields

Y n
t = ι−1◦ L

((
(φ, ψ).γ̂N(t)

)T
(φ, ψ).γn(t)

)
= ι−1◦ L

(
Qψγ̂

T
N

(
φ(t)

)
γn
(
φ(t)

)
QT
ψ

)
= ±Qψ ι

−1◦ L
(
γ̂TN
(
φ(t)

)
γn
(
φ(t)

))
= ±QψX

n
φ(t) .

Moreover, note that for Xt = ι−1◦ L
(
γ̂TN(t)γ0(t)

)
and Yt = ι−1◦ L

(
η̂TN(t)η0(t)

)
we obtain by a similar calculation Yt = ±QψXφ(t) yielding

ŜYt = QŜXφ(t)Q
T and HY

t = HX
φ(t) ,

which immediately implies Cβ
(
(η1, ..., ηN); t

)
= QψCβ

(
χN ;φ(t)

)
and h̃γ,N,β =

h̃η,N,β.

Concentrated data approximations. The main difficulty in computing si-
multaneous confidence sets for the center curve of a rGP is the estimation of the
quantile h̃γ,N,β. Additionally, it is further complicated in our case by the fact
that we have to deal with small sample sizes of N ≈ 10, such that bootstrap
approaches do not seem viable, see Section 5.1.1.

Therefore, building on concentrated error approximations similar to the results
in Rancourt et al. [2000] for extrinsic residuals, the main result of this section will
show that in the case of concentrated errors, the residuals Xn

t are approximately
the residuals of the Gaussian process {At}t∈I generating the rGP. This suggests
that h̃γ,N,β ≈ hA,N,β and the latter is, indeed, computable using a Gaussian
kinematic formula.

Theorem 2.2.5. Suppose that χN = (γ1, ..., γN) for N ∈ N be a session of a
rGP model with center curve γ0 such that the Gaussian error process satisfies
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maxt∈I ‖At‖ = Op(σ) with 0 < σ → 0 for all t ∈ I. Let γ̂N(t) be a measurable
selection of the PESM µ̂N

(
χN , t

)
at time t ∈ I. Setting

Xt = ι−1◦ L
(
γ̂TN(t)γ0(t)

)
Xn
t = ι−1◦ L

(
γ̂TN(t)γn(t)

)
Āt =

1

N

N∑
n=1

Ant

we have for every t ∈ I that

Xt = Āt +Op
(
σ2
)

(2.23)
Xn
t = Ant − Āt +Op

(
σ2
)
, (2.24)

where the Op(σ2) holds uniform on I.

Proof. As usual assume σl → 0 and maxt∈I ‖Alt‖ = Op(σl). Let γ̂N,l(t) ∈ µ̂N
(
χ, t
)
.

Then for each t ∈ I there exist a Bl
t ∈ R3 such that γ̂N,l(t) = γ0 Exp

(
ι ◦ Bl

t

)
.

Then, making use of (B.1) and the property, tr
(
ι(C)ι(D)

)
= −2CTD for all

C,D ∈ so(3), we have that Bl
t must maximize for each t ∈ I

1

N

N∑
n=1

tr

(
γ̂TN,l(t)γ0(t)Exp

(
ι ◦ An,lt

))

= tr

((
I3×3 − ι

(
Bl

t

)
sinc

(∥∥Bl
t

∥∥)+
1− cos

(∥∥Bl
t

∥∥)∥∥Bl
t

∥∥2 ι
(
Bl

t

)2

)

·
(
I3×3 + ι

(
Ālt
)

+Op
(
σ2
l

) ))

= 3 + 2
(
Bl
t

)T
Ālt sinc

(∥∥Bl
t

∥∥)− 2
1− cos

(∥∥Bl
t

∥∥)∥∥Bl
t

∥∥2

∥∥Bl
t

∥∥2
+Op

(
σ2
l

)
= 1 + 2

((
Bl
t

)T
Ālt sinc

(∥∥Bl
t

∥∥)+ cos
(∥∥Bl

t

∥∥))+Op
(
σ2
l

)
.

Note that the Op (σ2
l ) is indeed uniform in t ∈ I.

Writing Bl
t = rE with a unit vector E and length 0 ≤ r ≤ π, the first two

summands above are maximized in Bl
t if

x sin(r) + cos(r)

is maximal under the side condition −‖Ālt‖ ≤ x = ET Ālt ≤ ‖Ālt‖. Hence, for
0 ≤ r < π choose the maximizing x = ‖Ālt‖ (as large as possible) and hence
r = arctan

(
‖Āl‖

)
∈ (0, π/2). In consequence we have that

Bl
t = Ālt

arctan ‖Ālt‖
‖Ālt‖

+Op
(
σ2
l

)
= Ālt +Op

(
σ2
l

)
= Op (σl) (2.25)
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with the Op (σl) and Op (σ2
l ) uniform in t ∈ I. Now, define the set

Ωl =
{
ω ∈ Ω

∣∣ Bl
t(ω, t) ∈ Bπ/2(0, ‖ · ‖) for all t ∈ I

}
.

By (2.25) we have that P
(
Ωl

)
→ 1 for l→∞. Moreover, we obtain by definition

ι−1 ◦X l
t = L

(
γT0 (t)γ̂N,l(t)

)
= Log

(
γT0 (t)γ̂N,l(t)

)
= ι ◦Bl

t = ι ◦ Ālt +Op
(
σ2
l

)
on Ωl. Thus, using the same arguments for Ωl instead of K in the proof of Theorem
1.3.7 shows (2.23).

To establish equation (2.24) define the set

Ω̃l =
{
ω ∈ Ω

∣∣ An,lt (ω, t) ∈ Bπ/2(0, ‖ · ‖) for all t ∈ I
}
.

Then P
(
Ωl ∩ Ω̃l

)
→ 1 for l→∞ and

ι−1 ◦Xn,l
t = L

(
γ̂TN,l(t)γn,l(t)

)
= Log

(
γ̂TN,l(t)γn,l(t)

)
for all t ∈ I on Ωl ∩ Ω̃l. In consequence, in conjunction with (1.14) we have

ι−1 ◦ L
(
γ̂TN,lγn,l

)
= ι−1 ◦ Log

(
Exp

(
− ι ◦ Āl +Op

(
σ2
l

))
Exp

(
ι ◦ An,l

))
= An,l − Āl +Op(σ2

l )

on Ωl ∩ Ω̃l ∩ K, where K is defined as in the proof of 1.3.7. Again using the same
arguments as presented there, where only K is replaced by Ωl ∩ Ω̃l ∩ K, proves
(2.24).

Corollary 2.2.6. With the assumptions and notations of Theorem 2.2.5, the one
sample Hotelling T 2 statistic satisfies

HA
t = H̃X

t +Op(σ) ,

if additionally Var
[
At
]

= σ2Σt with Σt non-singular for all t ∈ I.

Proof. Recall the definitions

HAl

t = N
(
Ālt
)T(

Σ̂Al
t

)−1

Ālt and H̃Xl

t = N
(
X l
t

)T(
ŜX

l

t

)−1

X l
t ,

see equation (2.18) and (2.22). By virtue of Theorem 2.2.5 we obtain

ŜX
l

t = Σ̂Al

t + Z l
t

with maxt
∥∥Z l

t

∥∥
F

= Op(σ3
l ). Using Henderson and Searle [1981, p. 58, eq. (24)]

yields

1

N
H̃Xl

t =
(
X l
t

)T(
Σ̂Al

t + Z l
t

)−1

X l
t

=
(
X l
t

)T(
Σ̂Al

t

)−1

X l
t −
(
X l
t

)T(
Σ̂Al

t

)−1

Z l
t

(
I3×3 +

(
Σ̂Al

t

)−1

Z l
t

)−1(
Σ̂Al

t

)−1

X l
t .
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Note that by the assumption Var
[
Alt
]

= σ2
l Σt we have that maxt∈I

∥∥∥(Σ̂Al
t

)−1
∥∥∥ =

Op(σ−2
l ), since σ−2

l Σ̂Al
t is independent of l. Thus, we obtain

(
X l
t

)T(
Σ̂Al
t

)−1

X l
t =

1

N
HAl

t +Op(σl)

by equation (2.23). Moreover, we obtain that maxt∈I

∥∥∥(Σ̂Al
t

)−1

Z l
t

∥∥∥ = Op(σl)

implying
(

Σ̂Al
t

)−1

Z l
t
P−→ 0 uniformly for l → ∞. Therefore, the same technique

as in the proof of Theorem 1.3.8 with U =

{∥∥∥(Σ̂Al
t

)−1

Z l
t

∥∥∥ < 1

}
(instead of K)

and the Taylor expansion on U given by the Von Neumann series(
I3×3 +

(
Σ̂Al

t

)−1

Z l
t

)−1

=
∞∑
j=0

(−1)j
((

Σ̂Al

t

)−1

Z l
t

)j
shows at once

(
X l
t

)T(
Σ̂Al

t

)−1

Z l
t

(
I3×3 +

(
Σ̂Al

t

)−1

Z l
t

)−1(
Σ̂Al

t

)−1

X l
t = Op(σl) ,

which finishes the proof.

Remark 2.2.7. The assumption that Var
[
Alt
]

= σ2
l Σt is natural in this case,

since otherwise the sample covariance matrix Σ̂Al
t will become singular for l→∞,

which does contradict our model assumption that the Gaussian process of a rGP
model has an everywhere invertible variance matrix Σt = Var

[
At
]
.

2.3 Gaussian Kinematic Formula
As we have seen in the previous sections it remains to estimate the quantile h̃γ,N,β
in order to construct simultaneous β ·100%-confidence sets for the center curve
γ0 of a rGP model.

Therefore, one has to estimate the probability that the real valued stochastic
process

{
H̃X
t

}
t∈I (see equation (2.22)) exceeds a certain value over the index set

I. Usually, these probabilities cannot be computed explicitly.
However, if {At}t∈I is a Gaussian process the so called expected Euler charac-

teristic heuristic (see Taylor et al. [2005a]) states that

P
(

max
t∈I

At > h
)
≈ E

[
x
(
{t ∈ I | At ≥ h}

)]
, (2.26)

where x(U) denotes the topological invariant called Euler characteristic (EC) of
a set U ⊂ I. In our case, where I = [0, 1] the Euler characteristic x(U) is equal
to the number of connected components of U . The above approximation of the
exceedance probability of a Gaussian process by the expected Euler characteristic
can be proven to be strikingly accurate for low probabilities. More precisely, the



2.3 Gaussian Kinematic Formula 47

approximation error is roughly of the order e−θh2/2 for some θ > 0 (see Taylor
et al. [2005a] and references therein).

Interestingly, the expected EC of the excursion set (i.e., the r.h.s. of equation
(2.26)) can be computed analytically for many processes {At}t∈I , which are de-
rived from Gaussian processes (see among others Taylor [2006] and Taylor and
Worsley [2008]). These formulas are known as Gaussian kinematic formulas and
are used to estimate exceedance probabilities in order to do inference for example
on linear models including a Gaussian process as noise (see Taylor and Worsley
[2007]). Moreover, it is conjectured that even in these cases the expected EC is
a good approximation of the exceedance probability of the process for low prob-
abilities. A detailed overview of this topic can be found in Adler [2000] and the
book Adler and Taylor [2009].

In order to estimate our quantiles h̃γ,N,β for the process
{
H̃γ
}
t∈I derived from

the rGP model γ. We will use the expected Euler characteristic heuristic and
assume that

P
(

max
t∈I

H̃X
t > h

)
≈ E

[
x
({
t ∈ I | H̃X

t ≥ h
})]
≈ E

[
x
({

t ∈ I | HA
t ≥ h

})]
.

(2.27)
Here the second approximation is due to Corollary 2.2.6, which is expected to be
valid in the case of concentrated errors. Although we cannot rigorously justify
this approximation, we will show later in Chapter 5 using simulations that it
works well in our application.

In the next sections we will restate the formulas for computation and estimation
of the expected EC of Hotelling T 2-processes

{
HA
t

}
t∈I as they are derived in

Taylor and Worsley [2007] and Taylor and Worsley [2008].

Gaussian kinematic formula (GKF) for Hotelling T 2-processes. Let us
consider a Hotelling T 2-process

{
HA
t

}
t∈I (see Equation (2.18)) derived from a

Gaussian process
{
At
}
t∈I fulfilling Assumptions (GKF 1 )-(GKF 4 ). Upon knowl-

edge of the covariance function Σ of the process A the expected EC of the ex-
cursion set

{
t ∈ I | HA

t ≥ h
}
can be computed explicitly as shown in Taylor and

Worsley [2007, 2008].
Their result known as the GKF for Hotelling T 2-processes is the following

E
[
x
{
t ∈ I | HA

t ≥ h
} ]

= L0(I)ρH0 (h) + L1(I)ρH1 (h) (2.28)

with the so called Lipschitz-Killing curvatures

L0(I) = 1, L1(I) =

∫ 1

0

√
Var
[
dA
dt

(t)
]
dt

which are warped versions of intrinsic volumes converting the anisotropic case
Σ(t) 6= I3×3 to isotropicity (see Taylor and Worsley [2007, Sec. 3 and Appendix
A.1]).

The Euler characteristic densities ρHj for j ∈ {1, 2} appearing in the GKF
(2.28) can be computed from the EC densities of a T -process with N − 1 degrees
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of freedom via Roy’s union intersection principle (cf. Taylor and Worsley [2008,
Sec. 3.1.]) using the formula

ρHj (h) =
3∑
d=1

µd(S
2)ρTj+d

(√
h
)
, j = 0, 1 .

Here µd(S2) denotes the d-dimensional intrinsic volume of the two-sphere S2 given
by

µ0

(
S2
)

= 2, µ1

(
S2
)

= 0 = µ3

(
S2
)
, µ2

(
S2
)

= 4π ,

in Taylor and Worsley [2008, p. 23]. In contrast in the Stochastic Geometry
literature, µ0 gives the number of connected components and µ2 would give the
surface area of S2 (e.g., Mecke and Stoyan [2000, p. 100])). Moreover, the
EC densities of a T -process with (N − 1) degrees of freedom have the explicit
representations

ρT0 (t) =

∫ ∞
t

Γ
(
N
2

)
√
N − 1πΓ

(
N−1

2

) (1 + u2

N−1

)−N/2
du

ρT1 (t) = (2π)−1
(

1 + t2

N−1

)1−N/2

ρT2 (t) = (2π)−3/2 Γ
(
N
2

)√
N−1

2
Γ
(
N−1

2

)t(1 + t2

N−1

)1−N/2

ρT3 (t) = (2π)−2 (N−2
N−1

t2 − 1
) (

1 + t2

N−1

)1−N/2
,

given in Taylor and Worsley [2007, p. 915].

Estimation of the quantile h̃γ,N,β. Using the GKF for Hotelling T 2-processes
together with the EC heuristic (2.27) yields

P
(

max
t∈I

H̃X
t > h

)
≈ 2ρT0

(√
h
)
− 4πρT2

(√
h
)
− L1(I)

(
2ρT1
(√

h
)

+ 4πρT3
(√

h
))

,

which can be used, if L1(I) is known, to estimate the value h̃γ,N,β for low proba-
bilities 1− β by solving

2ρT0 (
√
h)− 4πρT2 (

√
h)− L1(I)

(
2ρT1 (
√
h) + 4πρT3 (

√
h)
)

= β . (2.29)

Thus, it remains to estimate the Lipschitz-Killing curvature L1(I). This has been
achieved for Gaussian processes in RD, D ∈ N , in Taylor and Worsley [2007, Sect.
4] and Taylor and Worsley [2008], where they also proved that their estimator is
consistent.

Recall that by Theorem 2.2.5 the intrinsic residuals of a sample from an rGP
model γ are in the case of concentrated errors close to the residuals of the gen-
erating Gaussian process {At}t∈I . Since the estimator of Taylor and Worsley
[2008, Equation (18)] is based only on the Gaussian residuals, we adapt their
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estimator by simply replacing their residuals by our intrinsic residuals to obtain
an estimator of the Lipschitz-Killing curvature L1(I).

For convenience we restate their estimator tailored to our scenario. Assume
we observe a session (γ1, . . . , γN) of an rGP model and the observation times are
0 = t1 < t2 < ... < tK = 1. Recall the definition of the intrinsic residuals Xn

tk

from Theorem 2.2.5 and let us defne

Rtk =
(
X1
tk
, . . . , XN

tk

)T ∈ RN×3 .

Further, denote by Rd
tk

the d-th column of Rtk and let us define the normalized
residuals by

R̂d
tk

=
Rd
tk

‖Rd
tk
‖

for d ∈ {1, 2, 3} and k ∈ {1, . . . , K}. Then the estimator of the Lipschitz-Killing
curvature L1(I) is given by

L̂1(I) =
1

3

K−1∑
k=1

3∑
d=1

∥∥R̂d
tk+1
− R̂d

tk

∥∥ . (2.30)
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Chapter 3

Estimation of Gait Similarities

In this chapter we will provide estimators for the gait similarities perturbing gait
data as discussed in Section 1.1. This is a necessary step in order to compare dif-
ferent sessions. Since we build on estimation procedures introduced for somewhat
similar problems treated in the literature, we will discuss them shortly as well.
Our estimation procedures are closely related to Procrustes analysis (e.g., Carne
[1990] and Dryden and Mardia [1998, Chapter 5 and Section 12.4]) or the con-
cept of optimal positioning on manifolds with a Lie group action of Huckemann
et al. [2010]. In the context of time warping of functional data related ideas are
discussed in Srivastava et al. [2011b] and Vantini [2012].

Since some considerations and results can be stated in our general framework
of Section 1.2, we will do this before discussing our particular estimators.

General methodology. As discussed in Section 1.2 G-equivariant descriptors
T : X→ Y of a G-invariant statistical model on X (e.g., for the S-invariant rGP
models the PEM is an equivariant descriptor by Theorem 2.1.2) induce a shape
space Y/G (see Proposition 1.2.6). Our goal is to do inference on whether the
descriptors of the underlying probability distribution of two sessions belong to
the same equivalence class in Y/G.

The main issue is, that even if the distributions Pθ and Pθ′ underlying two
sessions χ1 and χ2 satisfy, that there exists a g ∈ G such that if X ∼ Pθ then
g.X ∼ Pθ′ , the group element g is usually unknown. Therefore g has to be
estimated in order to compare equivariant descriptors of these distributions.

This can be done by bringing the descriptors into optimal position to each
other with respect to a loss function L on Y, i.e. estimating g ∈ G by

ĝ ∈ argmin
g∈G

L
(
g.T (χ1), T (χ2)

)
. (3.1)

Recall that the action of g on the range of T is given by Lemma 1.2.6. In the
terminology of shape analysis this is a Procrustes estimator on the shape space
Y/G.

Definition 3.0.1. A function L : Y×Y→ R≥0 is called a loss, if L(y1, y2) = 0 for
all y1, y2 ∈ Y if and only if y1 = y2. It is called symmetric if L(y1, y2) = L(y2, y1)
for all y1, y2 ∈ Y and it is called G-invariant if L(g.y1, g.y2) = L(y1, y2) for all
y1, y2 ∈ Y and all g ∈ G.
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Theorem 3.0.2. Let L be a continuous loss and G compact. Then by setting

L̄
(
[y1], [y2]

)
= min

g1,g2∈G
L(g1.y1, g2.y2) (3.2)

for any [y1], [y2] ∈ Y/G, L induces a well-defined loss L̄ on the space Y/G, i.e.
for all [y1], [y2] ∈ Y/G we have that L̄

(
[y1], [y2]

)
= 0 if and only if [y1] = [y2].

Additionally, if L is G-invariant, we even have

L̄
(
[y1], [y2]

)
= min

g∈G
L(g.y1, y2) (3.3)

Proof. We first have to prove that the definition of L̄ does not depend on the
chosen representative. Therefore, let ȳ1 = g.y1 and ȳ2 = h.y2 for g, h ∈ G be
different representatives of the classes [y1], [y2]. We then obtain

L̄
(
[ȳ1], [ȳ2]

)
= min

g1,g2∈G
L(g1.(g.y1), g2.(h.y2))

= min
g1,g2∈G

L((g1g).y1), (g2h).y2)

= min
g1g,g2h∈G

L((g1g).y1), (g2h).y2)

= L̄
(
[y1], [y2]

)
Now, it remains to prove that it defines a loss. First, let L̄

(
[y1], [y2]

)
= 0. Thus,

since L is a loss there are g1, g2 ∈ G such that g1.y1 = g2.y2. This, however, is
equivalent to [y1] = [y2].

The other way around follows from the observation that [y1] = [y2] is only true,
if it exists h ∈ G such that y1 = h.y2 and hence

0 ≤ L̄
(
[y1], [y2]

)
= min

g1,g2∈G
L
(
(g1h).y2, g2.y2

)
≤ L

(
y2, y2

)
= 0

The symmetry and invariance are necessary to assure that the Procrustes es-
timator does not depend on the choice of the reference shape, which will be for-
malized in the next definition. This property is also discussed in Vantini [2012]
for time warping procedures.

Definition 3.0.3. Let L : Y × Y → R≥0 be a G-invariant loss. We call the
Procrustes estimator (3.1) inverse consistent, if

g∗ ∈ arginf
g∈G

L(g.y1, y2) =⇒ (g∗)−1 ∈ arginf
g∈G

L(g.y2, y1) .

Theorem 3.0.4. Let L be continuous, symmetric and G-invariant and G com-
pact. Then the Procrustes estimator (3.1) is inverse consistent.

Proof. The statement follows directly from

min
g∈G

L(g.y2, y1) = min
g∈G

L
(
g−1.y1, g

−1.(g.y2)
)

= min
g∈G

L
(
g−1.y1, y2

)
= min

h=g−1∈G
L(h.y1, y2) ,

where we used in the first equality the symmetry and invariance of L and in the
second equality the properties of a group action.
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3.1 Time Warping: Removing of Different Veloc-
ities

Short overview of literature for Euclidean spaces. Removing variability
in the time domain of functional data with values in R is a well studied problem.
A good introduction to the problem using among other techniques landmark
based registration is Ramsay and Li [1998]. Work on special semiparametric
models including linear time shifts using M-estimation techniques can be found
in Rønn [2001]. Nonparametric methods estimating warping function are Wang
et al. [1997] using dynamic time warping or Kneip and Ramsay [2008] using
registration to functional principal components. Unfortunately, these methods
often fail to satisfy desirable properties as mentioned in Vantini [2012]. More
criticism can be found in Srivastava et al. [2011a]. The latter introduced a method
building on square root velocity functions and the Fisher-Rao metric, which is
a sophisticated refinement of the dynamical time warping approach for speech
recognition in Sakoe and Chiba [1978]. Its generalization to manifolds will be
discussed in more detail in the next paragraph, since our time warping procedure
uses some of their ideas.

Further readings can be found in the section about time warping of the review
article Wang et al. [2015].

Curve registration using transported square-root vector fields. The
methods proposed in the articles cited in the previous paragraph rely on a linear
structure and hence cannot be used for temporal registration of curves in SO(3).
Until now only Su et al. [2014] provides a method applicable to curves with
values in a manifold. We will shortly review their proposed method and discuss
some unfavorable properties of this method. Note that there are a lot of recent
publications (e.g., Celledoni and Eslitzbichler [2015], Bauer et al. [2015], Bauer
et al. [2016], Amor et al. [2016]) applying and analyzing this method or slight
modifications thereof. All these methods have in common that they build on
the so called transported square-root vector field (TSRVF) representation of a
curve, which in the opinion of the author of this thesis has some methodological
shortcomings for curve registration in case of curved manifolds.

Let us start with introducing the TSRVF of a curve γ : [0, 1] → M, where
(M, g) is a Riemannian manifold. Choose a reference point c ∈ M. The corre-
sponding TSRVF is given by

qγ(t) =
Pγ(t),c (γ̇(t))√
‖γ̇(t)‖g

∈ TcM , (3.4)

where γ̇(t) denotes the tangent vector at time t, Pγ(t),c : Tγ(t)M→ TcM denotes
the parallel transport along the shortest geodesic between γ(t) and c and ‖ · ‖g is
the norm on Tγ(t)M induced by the Riemannian metric. Note that the TSRVF
representation of a curve is well-defined as long as the reference point c does not
belong to the cut locus of γ(t) for all t ∈ [0, 1] and that it is possible to reconstruct
the path γ from the tupel (γ(0), qγ(t)).
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The important property of the TSRVF is

qγ◦φ(t) = qγ(φ(t))

√
φ̇(t)

for all φ ∈ Diff+[0, 1]. This identity follows from an application of the chain rule
and implies that the metric on TSRVFs given by

dT
(
qγ(t), qη(t)

)
=

√∫ 1

0

|qγ(t)− qη(t)|2gdt (3.5)

is invariant under Diff+[0, 1] and symmetric, which is the major point they em-
phasis about this so called Fisher-Rao metric for temporal registration of curves,
since it implies

inf
φ∈Diff+[0,1]

dT
(
qγ◦φ(t), qη(t)

)
= inf

φ∈Diff+[0,1]
dT
(
qγ(t), qη◦φ(t)

)
.

The method they propose to find reparametrization between two curves γ and η
is finding an approximation of

arginf
φ∈Diff+[0,1]

dT
(
qγ◦φ(t), qη(t)

)
, (3.6)

which is usually based on dynamic programming. Especially, note that, if γ 6= η,
it is in general unknown, whether a minimizing φ ∈ Diff+[0, 1] of (3.6) exists.
However, if the curves γ, η have values inM = RD and at least one of the curves
is piecewise linear, then there exists a minimizing φ ∈ Diff+[0, 1] as was recently
proven in Lahiri et al. [2015, Section 5, p.18]. In the case that a minimizer exists
the same argument as in the proof of Theorem 3.0.4 yields the inverse alignment
property (see Definition 3.0.3) for (3.6).

For M = RD this approach is identical with the one presented in Srivastava
et al. [2011a]. However, in contrast to the RD case this method does in general
involve two types of non-trivial choices, which may lead to different estimated
reparametrizations φ depending on those choices. The first type is the choice of
a reference point c ∈ M and the second is the chosen identification of Tγ(t)M
with TcM using a parallel transport along a curve connecting γ(t) and c. In RD
the TSRVF of a curve does neither depend on the curve, along which the parallel
transport is carried out, nor on the reference point. In general, however, it is not
evident why the parallel transport is chosen to be along geodesics. It seems also
reasonable to first parallel transport the tangent vectors along the trajectory γ(t)
to the starting point γ(0), say, and then use a parallel transport along geodesics
to a reference point c.

Therefore we will propose in the next section an alternative time warping proce-
dure for curves in Lie groups with bi-invariant metric fulfilling also the invariance
under Diff+[0, 1] and the symmetry condition. The method still builds on the
work of Srivastava et al. [2011a] and Su et al. [2014]. Its main advantage, how-
ever, is that the amount of arbitrary non-canonical choices is reduced to exactly
two instead of having to choose from infinitely many as in the TSRVF frame-
work, where the choice of a point c ∈M and identifications of Tγ(t)M with TcM
are necessary. Moreover, we also propose a method without any choices (see
Definition 3.1.1).
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3.1.1 A New Time Warping Method for Lie-Group valued
Curves

Note that all definitions and results presented in this section are valid for any
Lie group admitting a bi-invariant metric without any changes in the proofs, but
for the sake of a consistent presentation we will stay in the setting of curves in
SO(3).

An intrinsic loss function. In order to get a symmetric, S-invariant and S-
compatible loss on X we will define a generalization of the total variation loss of
functions to SO(3).

Definition 3.1.1. The intrinsic length of difference curve losses (ILLs) on X are
given by

δI,1(γ, η) = length(γη−1) and δI,2(γ, η) = length(γ−1η) , (3.7)

for γ, η ∈ X . Here the length is taken with respect to the bi-invariant metric on
SO(3).

In order to obtain a loss without the choice, where to place the inverse, we
define the loss:

δI(γ, η) = 1
2

(
δI,1(γ, η) + δI,2(γ, η)

)
(3.8)

Remark 3.1.2. All these losses are indeed generalizations of the total variation
loss between curves of the Lie group

(
RD,+

)
with the standard Riemannian metric

to curves in SO(3), since for any curves γ, η ∈ C1
(
I,RD

)
it holds that γη−1 =

γ − η and γ−1η = η − γ and thus,

δI,1(γ, η) =

∫
I

‖γ′(t)− η′(t)‖ dt = δI,2(γ, η) = δI(γ, η) . (3.9)

In fact, the ILLs are symmetric and S-invariant due to the biinvariance of the
metric as will be derived now.

Theorem 3.1.3. Let us denote with δ either δI,1, δI,2 or δI . Then the following
hold

(i) δ is symmetric.

(ii) δ is invariant under the action of S, i.e.

δ
(
(ψ, φ).γ, (ψ, φ).η

)
= δ(γ, η)

for all (ψ, φ) ∈ S and all γ, η ∈ X .

Proof. We only consider δ = δI,1, since the proof for the other two losses is
analogous.

(i): Note that with the intrinsic distance dSO(3) on SO(3) induced by the bi-
invariant Riemannian metric the length δ(γ, η) of the differentiable curve t 7→
ζ(t) = γ(t)η(t)−1 can be equivalently written as

sup

{
K−1∑
k=0

dSO(3)

(
ζ(tk), ζ(tk+1)

) ∣∣ K ∈ N, 0 = t0 < t1 < ... < tk−1 < tK = 1

}
.
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The symmetry of δ is implied by dSO(3)

(
ζ(tk), ζ(tk+1)

)
= dSO(3)

(
ζ(tk)

−1, ζ(tk+1)−1
)
,

which is a verified by the biinvariance of the metric.
(ii) follows directly from biinvariance and from the fact that the length of a
curve does not depend on its parametrization (e.g., Lee [2013, Theorem 13.25,
p.338]).

Moreover, we can characterize the elements of X on which the ILLs attain the
value zero.

Theorem 3.1.4. Let P ∈ SO(3) be arbitrary. Then

δI,1(Pγ, η) = δI,1(γ, η) and δI,2(γP, η) = δI,2(γ, η) , (3.10)

for all γ, η ∈ X . Moreover, we have that δI,1(γ, η) = 0 if and only if η = γP
for some P ∈ SO(3). Similarly, δI,2(γ, η) = 0 if and only if η = Pγ for some
P ∈ SO(3).

Proof. We again without loss of generality consider the case δ = δI,1. Then
δ(Pγ, η) = δ(γ, η) is again a direct consequence of the biinvariance of the metric.

For the second claim assume η = Pγ. Then by Theorem 3.1.3(i) and the first
statement of this theorem we obtain

δ(γ, η) = δ(γ, Pγ) = δ(γ, γ) = length(γγ−1) = 0 .

For the other way around assume that for all P ∈ SO(3) we have that η 6= Pγ.
Then define the continuously differentiable curve ζ = γη−1 and ζ(0) = ζ0. The
curve ζζ−1

0 is continuously differentiable as well and by assumption ζ−1
0 ζ cannot

be constantly I3×3 for all t ∈ I. Therefore we find an t′ ∈ I such that ζ−1
0 ζ(t′) =

R 6= I3×3 for some R ∈ SO(3). Thus, we have that

0 < dSO(3)

(
I3×3, R

)
≤ length

(
ζ−1

0 ζ|[0,t′]
)

= length
(
ζ|[0,t′]

)
≤ length

(
ζ
)
,

where the equality stems from the biinvariance of the metric.

Remark 3.1.5. In view of the biomechanical application, the above theorem
shows that δI,1 and δI,2 are invariant under any changes due to marker placement
of one of the two orthogonal coordinate frames constructed from the measurement
device!

Registration of two curves. Following the general ideas presented in Kurtek
et al. [2011], Srivastava et al. [2011b] and Srivastava et al. [2011a], which we
already discussed earlier as we explained temporal registration using the TSRVF
framework, temporal registration of two curves γ1, γ2 ∈ X is done by finding
φ∗ ∈ Diff+[0, 1] approximating

arginf
φ∈Diff+[0,1]

δ(γ1, γ2 ◦ φ) . (3.11)

Here again δ denotes either δI,1, δI,2 or δI . The specific loss is the only choice
needed in our approach. In general one should pick δI , since it does treat left and
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right translation of curves equally. In our gait data application we, however, use
δI,1 for convenience, since additional to the S-invariance it is invariant against
rotations of one of the coordinate systems, which are computed from the markers
and which may vary due to replacement of the markers between sessions.

Note that using the same proof as Lemma 3.1.3 implies also the inverse align-
ment property for the ILLs, if the infimum is attained.

Theorem 3.1.6. Let γ, η ∈ X . Then we have that

φ∗ ∈ arginf
φ∈Diff+[0,1]

δ(γ1, γ2 ◦ φ)⇒ (φ∗)−1 ∈ arginf
φ∈Diff+[0,1]

δ(γ2, γ1 ◦ φ)

Registration of multiple curves. The case of registration of multiple curves
is done along the lines proposed in Srivastava et al. [2011b], where we again
replace their loss derived from the Fisher-Rao metric by δ (i.e., one of the ILLs
presented in Definition 3.1.1).

Given a set of curves γ1, ..., γN on [0, 1], an initial candidate mean curve µ0 = γ1,
say, and a threshold ε > 0, the full algorithm of registration of these curves is
given by

1. For n ∈ {1, 2, ..., N}, find φn by solving:

argmin
φ∈Diff+[0,1]

δ
(
µk−1, γn ◦ φ

)
.

This is done using the dynamic program, which will be described in Section
3.1.2.

2. Update t 7→ µk(t) ∈ µ̂N
(
γ1 ◦φ, ..., γN ◦φ, t

)
using the PESM (see Definition

2.1.1).

3. If minφ∈Diff+[0,1] δ
(
µk, µk−1 ◦φ

)
< ε, return µk and φn for n ∈ {1, ..., N} else

go to step 1.

Srivastava et al. [2011b] also included a step of finding a mean φ̂k, which they
call Karcher mean, of the warping functions φ1, ...φN in each iteration and would
then solve

argmin
φ∈Diff+[0,1]

δ
(
µk−1 ◦ φ̂, γn ◦ φ

)
.

We omit this step, since in our application any reparametrization of the mean µk
suffices. Moreover, note that Karcher himself rejects the notion Karcher mean.
Indeed, he dedicated an entire article (viz., Karcher [2014]) to this issue and
insists on calling these means Riemannian center of mass.

3.1.2 Implementation Using a Dynamical Program

It is not straightforward to implement a solver of the minimization problem (3.11)
and the article’s Kurtek et al. [2011] and Su et al. [2014] only mention that their
minimization problem, which differs from ours by the cost function, can be solved
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using a dynamical program without explicitly providing this. Therefore we will
now describe our implementation in detail, which is a variation of Dijkstra’s
algorithm (e.g., Cormen et al. [2001, Section 24.3]). For the sake of reducing
computational time we implemented it in C++ and use the R interface Rcpp
to integrate it into our R-package KneeStats, which provides all algorithms and
statistical test procedures reported in this thesis.

Our input data are two curves γ, η ∈ X . Actually, due to discrete measurements
we only have the values γ(t′1), ..., γ(t′K′) ∈ SO(3) and η(t′′1), ..., η(t′′K′′) ∈ SO(3)
for 0 = t′1 < t′2 < ... < t′K′ = 1 and 0 = t′′1 < t′′2 < ... < t′′K′′ = 1. Let γg
and ηg denote piecewise geodesic interpolations of the discrete measurements,
which are estimators of the curves γ and η. Here, of course we assume that the
geodesic between two consecutive measurements is uniquely determined, which
is always the case in our applications. The geodesic interpolation of the data
could be replaced by a smoothing procedure using extrinsic kernel regression
(see Lin et al. [2015]) or localized versions of the intrinsic polynomial regression
proposed in Hinkle et al. [2014]. Since in our data example the observed curves
are rather smooth, we did not implement such a procedure. However, note that
in the literature for real valued functions (e.g., Wang et al. [1997] and Bigot et al.
[2011]) it is recommended to smooth the data before applying the time warping
procedure to obtain consistent estimators in some semiparametric models, if the
observation error is not negligible.

In order to use a dynamical program to solve for an optimal diffeomorphism φ∗

in continuous time we approximate φ∗ using an optimal piecewise linear function

φ̂∗(t) =
K∑
k=1

1[tk−1,tk](t)

(
τjk − τjk−1

tk − tk−1

(t− tk−1) + τjk−1

)
. (3.12)

Here 0 = t1 < ... < tK−1 < tK = 1,K ∈ N, is an equidistant partition of I = [0, 1],
0 = τ1 < τ2 < ... < τJ−1 < τJ = 1 with J = K+(K−1)w, w ∈ N, is an equidistant
partition with τk+(k−1)w = tk for all k ∈ {1, ..., K}. We will refer later on to these
partitions as the t-partition and τ -partition and {j1, ..., jK} ⊂ {1, ..., J}, K ∈ N.
In order to have a good recovering of the diffeomorphism φ∗ the t-partition has
to be fine enough to capture the features of the curves γ and η. Moreover, we
have to assume that J � K such that φ∗ can be approximated well by a function
of the form (3.12).

Using the discretization of loss (3.7) (for convenience we use δI,2) given by

δ̂I,2
(
γ, η ◦ φ

)
=

K−1∑
k=1

dSO(3)

(
γg(tk)

Tηg
(
φ(tk)

)
, γg(tk+1)Tηg

(
φ(tk+1)

))
for the t-partition and minimizing over piecewise linear functions φ = φ̂∗ given
by (3.12) reduces problem (3.11) to the problem of finding a minimizing sequence
1 = j1 < j2 < ... < jK−1 < jK = J of

VK,J = min
1=j1<j2<...<jK−1<jK=J

K−1∑
k=1

dSO(3)

(
γg(tk)

Tηg(τjk), γ
g(tk+1)Tηg(τjk+1

)
)
.

(3.13)
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To shorten our notation let us define

f(tk, τjk , tk+1, τjk+1
) = dSO(3)

(
γg(tk)

Tηg(τjk), γ
g(tk+1)Tηg(τjk+1

)
)
.

Finding the minimizing sequence {jk}k∈{1,...,K} of (3.13) can be achieved by a
dynamical program, since rewriting (3.13) into

VK,J = min
1=j1<j2<...<jK−1<jK=J

K−1∑
k=1

f(tk, τjk , tk+1, τjk+1
)

= min
1=j1<j2<...<jK−1<jK=J

K−2∑
k=1

f(tk, τjk , tk+1, τjk+1
) + f(tK−1, τjK−1

, tK , τJ)

= min
L<J

min
1=j1<j2<...<jK−1=L

K−2∑
k=1

f(tk, τjk , tk+1, τjk+1
) + f(tK−1, τL, tK , τJ)

= min
L<J

VK−1,L + f(tK−1, τL, tK , τJ) (3.14)

yields a recursive formula for the minimal value VK,J . Note that such a recursive
formula is called the Bellmann equation of a minimization problem, which can
be solved by dynamical programming.

Using the recursive formula (3.14) we construct a matrix V = (Vk,j)
K,J
k,j=1 ∈

RK×J . As starting values for the recursion we use V1,j = 0 for all j ∈ {1, ..., J}.
Moreover, note that we require that j1 = 1 and necessarily j > k in order to
obtain an monotonically increasing function. Thus, we obtain the additional
requirements:

• V2,j = f(t1, τ1, t2, τj), for j = 1, ..., J

• Vk,j =∞ if j > k.

By construction the entry VK,J of V contains the minimal value of the dis-
cretization of loss (3.7) over all possible piecewise linear functions of the form
(3.12) for a given t- and τ -partition. In order to obtain also the optimal choice
1 = j1 < j2 < ... < jK−1 < jK = J corresponding to the minimal value VK,J , we
have to store the index L obtaining the minimum of (3.14) in each construction
step in a second matrix W ∈ NK×J . Then backwards iteration starting with
jK−1 = WK,J and computing the other values of {1, j2, ..., jK−2,WK,J , J} using

jk = W(k+1),jk+1

for 1 < k < K−1, reconstructs the optimal sequence {jk}k∈{1,...,K} leading to the
minimal VK,J .

Example 3.1.7. In order to clarify the presentation assume that K = 5 and
J = 9. Using the recursion (3.14) we obtain

V =


0 0 0 0 0 0 0 0 0 0
∞ V2,2 V2,3 V2,4 V2,5 V2,6 V2,7 V2,8 V2,9 V2,10

∞ ∞ V3,3 V3,4 V3,5 V3,6 V3,7 V3,8 V3,9 V3,10

∞ ∞ ∞ V4,4 V4,5 V4,6 V4,7 V4,8 V4,9 V4,10

∞ ∞ ∞ ∞ V5,5 V5,6 V5,7 V5,8 V5,9 V5,10

 .
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Here the orange entries are initial values. The blue entries are computed using
the orange entries. The purple entries are computed using the blue entries and the
red entry is computed using the purple entries. All gray entries are not necessary,
since they either do not produce a monotone increasing sequence {jk}k∈{1,...,K} of
length K = 5, or they do not fulfill the boundary condition j5 = 10. A possible
matrix W could be

W =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 2 2 4 4 6 3 0 0
0 0 0 3 2 6 4 6 5 0
0 0 0 0 0 0 0 0 0 7

 .

giving the optimal sequence 1 < 2 < 4 < 7 < 10 (red entries).

3.2 Spatial Alignment: Removing of MP Effect

In this section we introduce our method to remove the marker placement effect
between two curves γ, η ∈ X stemming from our gait analysis application. Thus,
our task is to estimate a spatially optimally aligning ψ ∈ I0

(
SO(3)

)
such that

ψ(γ) is close to η with respect to some loss L on C
(
I, SO(3)

)
(compare Section

1.1).
We will start this section with reviewing some approaches in the literature

dealing with similar problems. Afterwards in Section 3.2.1 we will introduce
our solution to spatial alignment problem (or marker placement problem) based
on a transformation into a spherical (linear) regression problem (e.g., Mackenzie
[1957]). In Section 3.2.2 we will prove that this procedure yields consistent esti-
mators correcting the MP effect between two curves stemming from rGP models.

Approaches in the literature. The marker placement problem (also known
as kinematic “cross-talk” effect) and its consequences for reliability and repro-
ducibility of gait analysis experiments is well known in the biomechanics commu-
nity (e.g., Woltring [1994], Besier et al. [2003], McGinley et al. [2009] and Osis
et al. [2015]). Moreover, there are several procedures in the biomechanical litera-
ture trying to reduce this effect in the pre-recording phase (e.g., by improving the
marker placement process using machines or different marker position protocols),
among others Ehrig et al. [2007], Schache et al. [2006] and Noehren et al. [2010].
However, it seems that there are only relatively few articles trying to remove
the MP effect in the post-recording phase (i.e., Woltring [1994], Rivest [2005],
Ball and Greiner [2012] and Baudet et al. [2014]). Woltring proposed to estimate
two rotations (P,Q) ∈ I0

(
SO(3)

)
such that at the gait event of maximum knee

flexion (see Figure 3) the x- and z-Euler angles are zeroed. Since these elements
are in general not unique he chooses the smallest rotation in a specific sense (see
Woltring [1994, p.1406]). Here the non uniqueness problem can in general be
solved, if one takes more than a single observation from a gait cycle into account.
This was done in Rivest [2005]. They estimate the two rotations minimizing the
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quadratic variations in the x-and z-Euler angles over a complete gait cycle. How-
ever, they assume that the misalignments have small Euler angles and that the
y-angle is already aligned. Ball and Greiner [2012] give a different purely algo-
rithmic approach, which again assumes that the y-Euler angle is already aligned.
The method of Baudet et al. [2014] performs a principal component analysis of
the Euler angles and uses the transformation matrix to the eigenbasis to get a
different representation of the Euler angles and thereby neglecting the geometry
of the problem.

Note that our approach to the MP problem will differ conceptually from above
approaches. All presented methods have in common that they estimate for each
gait cycle γ ∈ X rotations (Pγ, Qγ) ∈ I0

(
SO(3)

)
such that QγγPγ fulfills spe-

cial requirements like for example the variation in x- and z-Euler angles over a
complete gait cycle are minimal, and then they compare the curves QγγPγ and
QηηPη for γ, η ∈ X .1 This corresponds to the choice of a specific representative of
the equivalence class [γ] = {ζ ∈ X | ∃ψ ∈ I0

(
SO(3)

)
: ζ = ψ(γ)} and is similar

to the approach of using Bookstein coordinates in shape analysis (e.g., Bookstein
[1997]). Our approach, however, aims to find ψ = (P,Q) ∈ I0

(
SO(3)

)
such that

QγP is close to η in order to directly compare the gait cycles γ, η ∈ X , which
corresponds to a Procrustes approach to shape analysis.

In the statistical literature a scenario similar to the MP problem considered as
a Procrustes problem, appears in Prentice [1989]. His objective is to estimate ψ ∈
I0

(
SO(3)

)
given fixed and known R1, ..., RN ∈ SO(D), D ∈ N, and independent

random variables S1, ..., SN ∈ SO(D) satisfying E[Sn] = ψ(Rn) and some further
assumptions on their distributions (e.g., isotropicity). He proves that the M-
estimator

ψ̂ = (P̂ , Q̂) ∈ argmin
(P,Q)∈I0

(
SO(3)

) N∑
n=1

‖PRnQ− Sn‖2
F (3.15)

is a consistent estimator of ψ and derives its asymptotic distribution. Unfortu-
nately, some of his proofs and results turned out to be wrong. Corrections are
given in Chang and Rivest [2001]. Moreover, in Rivest and Chang [2006] these
results are generalized for the special case of D = 3 to cover also some classes of
non-isotropic distributions of the Sn’s.

In fact, if we assume that the curves γ, η ∈ X are observed on a grid 0 = t1 <
t2 < ... < tK , K ∈ N, we could use (3.15) to compute a spatially aligning ψ̂
between γ and η by

ψ̂ = (P̂ , Q̂) ∈ argmin
(P,Q)∈I0

(
SO(3)

) K∑
k=1

‖Pγ(tk)Q− η(tk)‖2
F . (3.16)

Solving this minimization problem, however, is challenging. Some gradient de-
scent methods are derived in Prentice [1989] and are improved in Rivest and
Chang [2006].

1Baudet et al. [2014] is a small exception, since he does not estimate ψ ∈ I0
(
SO(3)

)
.

However, also his approach follows the Boosteinian paradigm.
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3.2.1 Transformation to Spherical Regression

To the best of our knowledge the only method present in the literature, which
could be used to solve the MP problem treated as a Procrustean problem is the
method (3.16) inspired by the M-estimator (3.15) of Prentice [1989]. However,
since its minimization is numerically challenging, we propose a different method,
which is numerically easier to handle. This will be achieved by showing that
the problem of finding ψ ∈ I0

(
SO(3)

)
such that η = ψ(γ) for γ, η ∈ X can be

transformed using Theorem 3.2.4 into a spherical regression problem, which can
be solved using a singular value decomposition.

To this end we want to lift a curve γ ∈ X to a continuous curve in S3. Note
that S3 can be identified with the multiplicative group of unit quaternions via

S3 3 (x1, x2, x3, x4)T ↔ x1 + ix2 + jx3 + kx4 (3.17)

with i2 = j2 = k2 = −1 and ij = −ji = k, ki = −ik = j, jk = −kj = i (e.g.,
Chirikjian and Kyatkin [2000]). Moreover, the map

π : S3 → SO(3)
x1

x2

x3

x4

 7→
 1− 2x2

3 − 2x2
4 2(x2x3 + x1x4) 2(x2x4 − x1x3)

2(x2x3 − x1x4) 1− 2x2
2 − 2x2

4 2(x3x4 + x1x2)
2(x2x4 + x1x3) 2(x3x4 − x1x2) 1− 2x2

2 − 2x2
3)

 (3.18)

is a double (even universal) cover of SO(3) and a smooth surjective group homo-
morphism with the property π(x) = π(−x) for all x ∈ S3 (see Stuelpnagel [1964]).
Thus, by the lifting property of covering maps (e.g., Lee [2013, Proposition A.77,
p.616]) any curve γ ∈ X has exactly two continuous lifts γ̃ in S3, each uniquely
determined by the choice of the starting element from π−1

(
γ(0)

)
.

Given a right inverse r : SO(3)→ S3 of π (i.e., π ◦ r = idSO(3)) these lifts can
be constructed explicitly. Let Dr,γ ⊂ [0, 1] denote the discontinuity points of the
curve r(γ(t)). Then there is a function εγ : [0, 1] → {−1, 1} with εγ(0) = 1 and
changing sign at each t ∈ Dr,γ such that t 7→ εγ(t)r

(
γ(t)

)
is continuous in S3.

Obviously, the other continuous lift is given by t 7→ −εγ(t)r
(
γ(t)

)
.

In order to prove the Main Theorem 3.2.4 of this section, we restate some well
known results connecting unit quaternions and the rotation group SO(4) (see
e.g., Mebius [2005]).

Lemma 3.2.1. Let p = (p1, p2, p3, p4)T ∈ S3 and q = (q1, q2, q3, q4)T ∈ S3 be unit
quaternions. Then there are unique

Rl
p =


p1 −p2 −p3 −p4

p2 p1 −p4 p3

p3 p4 p1 −p2

p4 −p3 p2 p1

 ∈ SO(4) , Rr
q =


q1 −q2 −q3 −q4

q2 q1 q4 −q3

q3 −q4 q1 q2

q4 q3 −q2 q1

 ∈ SO(4)

such that p · v = Rl
pv and v · x = Rr

qv for all v ∈ R4. Here “·” denotes the
quaternion multiplication.
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Proof. Follows from Mebius [2005, Section 4.1].

Interestingly, it turns out that there is a converse to Lemma 3.2.1, i.e. any
R ∈ SO(4) can be represented as the multiplication of unit quaternions from
the left and from the right and this representation is unique up to simultaneous
change of sign of the quaternions. This result was discovered almost two centuries
ago by van Elfrinkhof [1897] and rediscovered in the beginning of the last century
by Bouman [1932]. We will restate it now.

Theorem 3.2.2. For every R ∈ SO(4) there exist unique up to simultaneous
change of sign unit quaternions pR, qR ∈ S3 such that Rv = pR · v · qR.

Moreover, there is a smooth surjective group homomorphism

πSO(4) : S3 × S3 → SO(4)

(p, q) 7→ Rl
pR

r
q = Rr

qR
l
p

(3.19)

with πSO(4)(p, q) = πSO(4)(−p,−q).

Proof. A recent proof of the first part by pure matrix computations can be found
in Mebius [2005]. The second claim follows from Lemma 3.2.1.

Remark 3.2.3. By the above theorem we have SO(4) ∼=
(
S3×S3

)
/ker

(
πSO(4)

)
=(

S3 × S3
)
/{I4×4,−I4×4} as groups.

We are now ready to state and prove the main result of this section, which
shows that the action of I0

(
SO(3)

)
on X lifts to the canonical left action of

SO(4) on continuously lifted curves γ̃ ∈ C
(
I, S3

)
.

Theorem 3.2.4. Let (P,Q) ∈ I0

(
SO(3)

)
and γ ∈ X be arbitrary and let P̃ γQT ,

γ̃ be fixed continuous lifts of the two paths. Then there exists a unique R ∈ SO(4)
with the property

P̃ γQT (t) = Rγ̃(t) (3.20)

for all t ∈ [0, 1].

Proof. Let γ ∈ X and (P,Q) ∈ SO(3)×SO(3) be arbitrary and choose continuous
lifts γ̃ and P̃ γQT of γ and PγQT .

Choose any right inverse r of the homomorphism π given in (3.18). Then
there are p, q ∈ S3 such that p = r(P ) and q−1 = r(QT ) and there is a function
εγ : [0, 1]→ {−1, 1} such that εγr(γ) is the continuous lift γ̃. Further, since π is
a group homomorphism and π(x) = π(−x) for all x ∈ S3, we obtain

r
(
PγQT

)
(t) = ε(t)p · r

(
γ(t)

)
· q−1 (3.21)

with ε(t) ∈ {−1, 1} for all t ∈ [0, 1]. Thus, multiplication of (3.21) on both
sides with ε(t)εγ(t) implies that the path εγεr

(
PγQT

)
is continuous in S3. Since

π
(
εγεr

(
PγQT

))
= PγQT using the property π(x) = π(−x) for all x ∈ S3,

there exists by the unique lifting property of covering maps a time independent
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κ ∈ {−1, 1} such that P̃ γQT = κεγεr
(
PγQT

)
. Finally, by Theorem 3.2.2 we

obtain
P̃ γQT = κpγ̃q−1 = Rγ̃ (3.22)

with a unique R = Rl
κpR

r
q−1 .

Inspired by the above theorem, our goal is to estimate for two curves γ, η ∈ X
an (P,Q) ∈ I0

(
SO(3)

)
optimally aligning these curves with respect to some

continuous loss L : C
(
I, S3

)
×C
(
I, S3

)
→ R≥0 by choosing continuous lifts γ̃ and

η̃ to S3 and computing
R̂ ∈ argmin

R∈SO(4)

L
(
Rγ̃, η̃

)
. (3.23)

This, however, in order to be reasonable requires that we can map the estimator
R̂ ∈ SO(4) to an estimator

(
P̂ , Q̂

)
∈ I0

(
SO(3)

)
of (P,Q) and that the resulting

estimator
(
P̂ , Q̂

)
does not depend on the choice of the lifts. To achieve this we

introduce the following map.

Definition 3.2.5. Let us define

Π : SO(4)
rSO(4)−−−→ S3 × S3 π×π−−→ SO(3)× SO(3) , (3.24)

where rSO(4) is any right inverse of the map πSO(4) given in (3.19). Note that by
π(x) = π(−x) for all x ∈ S3 any choice of a right inverse rSO(4) results in the
same map Π.

The following properties of Π will imply that our yet to be defined estimator(
P̂ , Q̂

)
does not depend on the choice of the lifts (see Theorem 3.2.8) and that

this estimator fulfills the inverse alignment property (see Definition 3.0.3 and
Theorem 3.2.9).

Lemma 3.2.6. For any R ∈ SO(4) we have that Π(R) = Π(−R) and Π(R−1) =
Π(R)−1.

Proof. Let R ∈ SO(4) be arbitrary. Fix a right inverse rSO(4) of πSO(4) and
let rSO(4)(R) = (p, q) ∈ S3 × S3. Since πSO(4) is a group homomorphism with
πSO(4)(p, q) = πSO(4)(−p,−q) for all (p, q) ∈ S3, we obtain for every R, S ∈ SO(4)
that there is κ ∈ {1,−1} such that

rSO(4)(RS) = κrSO(4)(R)rSO(4)(S) . (3.25)

The claim Π(R) = Π(−R) can now be deduced using equation (3.25), since

rSO(4)(−R) =
(
(±κ, 0, 0, 0)T , (∓κ, 0, 0, 0)T

)
rSO(4)(R) = (±κp,∓κq) ,

where we used the matrices Rl
p and Rr

q of Lemma 3.2.1 to obtain rSO(4)

(
−I4×4

)
=(

(±1, 0, 0, 0), (∓1, 0, 0, 0)
)
. The particular sign depends on the choice of the right

inverse. However, since
(
π(κp), π(−κq)

)
=
(
π(−κp), π(κq)

)
=
(
π(p), π(q)

)
the

claim follows.
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We now want to prove Π(R−1) = Π(R)−1. Therefore, note that equation (3.25)
implies rSO(4)

(
R−1

)
= κ

(
rSO(4)(R)

)−1 for κ ∈ {1,−1}. Thus,

Π
(
R−1

)
= (π×π)

(
r(R)−1

)
=
(
π
(
κp−1

)
, π
(
κq−1

))
=
(
π(p)−1, π(q)−1

)
= Π(R)−1 .

Here we used in the third equality π(x−1) = π(x)−1, which is a direct consequence
of π being a group homomorphism, and π(x) = π(κx) for all x ∈ S3.

Theorem 3.2.7. Let (P,Q) ∈ I0

(
SO(3)

)
and γ ∈ X be arbitrary and let P̃ γQT ,

γ̃ be fixed continuous lifts of the two paths and let R ∈ SO(4) be the unique
element satisfying equation (3.20) in Theorem 3.2.4. Then Π(R) = (P,QT ).

Proof. Using the notation of Theorem 3.2.4 we can by equation (3.22) choose a
right inverse rSO(4) of πSO(4) such that rSO(4)(R) = (κp, qT ). Further by definition
of p and q we obtain that π(p) = P and π(q−1) = QT , which yields the required
statement.

Now, Theorem 3.2.4 and 3.2.7 suggest that instead of minimizing a loss over
I0

(
SO(3)

)
= SO(3) × SO(3) we equivalently can choose continuous lifts of the

curves γ and η to S3, solve the minimization problem given in (3.23) with some
loss L : C

(
I, S3

)
× C

(
I, S3

)
→ R≥0 and mapping the solution with Π into

I0

(
SO(3)

)
, i.e. our Procrustes estimator for optimally spatially aligning γ, η ∈ X

with respect to I0

(
SO(3)

)
is given by

(
P̂ , Q̂

)
∈ Π

(
argmin
R∈SO(4)

L
(
Rγ̃, η̃

))
. (3.26)

Since the continuity of L implies the continuity of R 7→ L(Rγ, η) and SO(4) is
compact, the set on the right hand side of (3.26) is never empty. Moreover, this
estimators, indeed, fulfill the requirement that they do not depend on the choice
of the continuous lifts.

Theorem 3.2.8. The Procrustes estimators given in (3.26) do not depend on the
particular choices of the continuous lifts.

Proof. Without loss of generality we consider the case, where we have two con-
tinuous lifts γ̃1 and γ̃2 of γ ∈ X . Note that γ̃1 = −γ̃2. For any fixed continuous
lift η̃ of η ∈ X we obtain

argmin
R∈SO(4)

L
(
Rγ̃1(t), η̃(t)

)
= argmin

R∈SO(4)

L
(
−Rγ̃2(t), η̃(t)

)
= − argmin

R∈SO(4)

L
(
Rγ̃2(t), η̃(t)

)
,

since −I4×4 ∈ SO(4). Hence any minimizer R of the left hand side with respect
to the lift γ̃1 yields a minimizer −R of the Procrustes loss with the lift γ̃2. Thus,
by Lemma 3.2.6 we obtain that Π(R) = Π(−R), which proves the independence
of the estimator (3.26) from the particular chosen lift.

In the beginning of this chapter we stated that any I0

(
SO(3)

)
-invariant loss

satisfies the inverse alignment property, Definition 3.0.3 and Theorem 3.0.4. We
will now state an analogous result for the estimator (3.26).
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Theorem 3.2.9. Let L : C
(
I, S3

)
× C

(
I, S3

)
→ R≥0 be SO(4)-invariant and

symmetric. Then the estimator (3.26) fulfills the inverse alignment property, i.e.

(
P̂ , Q̂

)
∈ Π

(
argmin
R∈SO(4)

L
(
Rγ̃, η̃

))
⇒

(
P̂−1, Q̂−1

)
∈ Π

(
argmin
R∈SO(4)

L
(
Rη̃, γ̃

))
.

Proof. Theorem 3.0.4 implies

R∗ ∈ argmin
R∈SO(4)

L
(
Rγ̃, η̃

)
⇒

(
R∗
)−1 ∈ argmin

R∈SO(4)

L
(
Rη̃, γ̃

)
and by Lemma 3.2.6 we have Π

((
R∗
)−1
)

= Π(R∗)−1 giving the claim.

We now want to introduce the SO(4)-invariant, symmetric loss L, which we
use in our application. Note that the above discussion reveals that estimating
an optimally spatially aligning ψ ∈ I0

(
SO(3)

)
for two curves γ, η ∈ X is closely

related to spherical (linear) regression. To make this point more clear and since
our loss is inspired by a solution of the spherical (linear) regression problem, we
will shortly explain spherical regression.

The problem in spherical (linear) regression is the following (e.g., Mackenzie
[1957]): let x = (x1, ..., xK) ∈ S3 and y = (y1, ..., yK) ∈ S3 such that yk = R∗xk
for k ∈ {1, ..., K} and R∗ ∈ SO(4), can we compute R∗ knowing only x and y?
Up to the fact, that R∗ is not necessarily unique the answer is yes. In Mackenzie
[1957] and Stephens [1979] it is shown that

R∗ ∈ argmin
R∈SO(3)

K∑
k=1

‖Rxk − yk‖2 , (3.27)

and that R∗ is unique, if the matrix K−1
∑K

k=1 ykx
T
k has rank greater than two.

Later Chang [1986] considered the same problem, but assumed that the yk are
i.i.d. random variables having a distribution centered at R∗xk and proved that
(3.27) under some suitable conditions on the distributions of the yk’s yields a
consistent estimator for R∗. He also generalized this observations to the errors
in variables case (i.e., additionally assuming that also x1, ..., xK are i.i.d. random
variables) in Chang [1989].

After this discussion it is obvious that our approach of continuously lifting
paths γ, η ∈ X to paths in S3 and using the estimator (3.26) two bring them into
optimal position to each other, transforms estimating (P,Q) ∈ I0

(
SO(3)

)
into a

spherical (linear) regression problem for curves in S3. Therefore in order to get
a generalization of (3.27) to curves, we propose to use the loss

L2 : C
(
I, S3

)
× C

(
I, S3

)
→ R≥0

(γ̃, η̃) 7→
∫ 1

0

‖γ̃(t)− η̃(t)‖2 dt ,
(3.28)

which yields the Procrustes estimator

(
P̂ , Q̂

)
∈ Π

(
argmin
R∈SO(4)

∫ 1

0

‖Rγ̃(t)− η̃(t)‖2 dt

)
(3.29)
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estimating optimally spatially aligning (P,Q) ∈ I0

(
SO(3)

)
for two curves γ, η ∈

X . As before the set on the right hand side of (3.29) is never empty, since
R 7→ L2(Rγ, η) is continuous and SO(4) is compact. A uniqueness result will
be given in Theorem 3.2.11. Moreover, note that L2 is SO(4)-invariant and
symmetric. Therefore the assumptions of Theorem 3.2.8 and Theorem 3.0.4 are
fulfilled implying that (3.29) does not depend on the choice of the continuous lifts
and is inverse consistent with respect to the group action of I0

(
SO(3)

)
on X .

A remarkable property of the estimators (3.27) for the spherical (linear) regres-
sion problem is that they are easy to compute using a singular value decompo-
sition as was proven in Stephens [1979]. A better accessible version of the proof
can be found in Umeyama [1991]. A similar result for the Procrustes estimator
(3.29) can be obtained using their result as we will deduce now.

Lemma 3.2.10. Let γ̃, η̃ ∈ C
(
I, S3

)
and let X =

∫ 1

0
η̃(t)γ̃(t)T dt. Then the

minimizers of

argmin
R∈SO(4)

∫ 1

0

‖Rγ̃(t)− η̃(t)‖2 dt

are given by
R̂ = USV T ,

where U, V ∈ O(4) together with D = diag(λ1, ..., λ4), λ1 ≥ ... ≥ λ4 ≥ 0, form a
SVD of X, i.e. X = UDV T , and

S =

{
I4×4 if det(U)det(V ) = 1

diag(1, 1, 1,−1) if det(U)det(V ) = −1
. (3.30)

Moreover, if additionally rank(X) > 2, then R̂ is unique.

Proof. By expanding the square we obtain

argmin
R∈SO(4)

∫ 1

0

‖Rγ̃(t)− η̃(t)‖2 dt = argmax
R∈SO(4)

∫ 1

0

η̃(t)TRγ̃(t) dt

= argmax
R∈SO(4)

tr

(
R

∫ 1

0

γ̃(t)η̃(t)T dt

)

= argmin
R∈SO(4)

∥∥∥∥I4×4 −R
∫ 1

0

γ̃(t)η̃(t)T dt

∥∥∥∥2

F

.

Thus, setting m = n = 4, A = I4×4 and B =
∫ 1

0
γ̃(t)η̃(t)T dt the claim follows

from Umeyama [1991, Lemma 1].

Theorem 3.2.11. Let γ, η ∈ C
(
I, SO(3)

)
and γ̃, η̃ ∈ C

(
I, S3

)
be any choice of

continuous lifts to S3 and X =
∫ 1

0
η̃(t)γ̃(t)T dt. Then the Procrustes estimator

(3.29) consists of solutions of the form Π
(
USV T

)
, where U, V ∈ O(4) together

with D = diag(λ1, ..., λ4), λ1 ≥ ... ≥ λ4 ≥ 0, form a SVD of X, i.e. X = UDV T ,
and

S =

{
I4×4 if det(U)det(V ) = 1

diag(1, 1, 1,−1) if det(U)det(V ) = −1
. (3.31)

If additionally rank(X) > 2, then the Procrustes estimator (3.29) is unique.
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Proof. This follows from Lemma 3.2.10 and the fact that rank(X) > 2 does not
depend on the chosen continuous lifts, since X and −X have the same rank.

In our application we do not observe the complete paths γ, η ∈ X , but their
values γ(t1), ..., γ(tK), η(t1), ..., η(tK) on an equidistant partition 0 = t1 < t2 <
... < tK = 1. Note that, if the equidistant partition is fine enough, geodesical
interpolation between γ(tk−1) and γ(tk) (η(tk−1) and η(tk) respectively) yields
a continuous curve γg ∈ C

(
I, SO(3)

)
, which satisfies γ̃g(tk) = γ̃(tk) for all k ∈

{1, ..., K}, if the continuous lifts γ̃g and γ̃ to S3 are chosen such that γ̃g(0) = γ̃(0).
Therefore discretization of the loss L2 yields the estimators

(
P̂ , Q̂

)
= Π

(
argmin
R∈SO(4)

K−1

K∑
k=1

‖Rγ̃(tk)− η̃(tk)‖2

)
. (3.32)

Here, of course, the estimator
(
P̂ , Q̂

)
depends on K ∈ N. However, if we assume

that K tends to infinity, i.e. the equidistant partition of I = [0, 1] becomes finer,
we have that

lim
K→∞

K−1

K∑
k=1

‖Rγ̃(tk)− η̃(tk)‖2 =

∫ 1

0

‖Rγ̃(t)− η̃(t)‖2 dt , (3.33)

and hence in that limit the estimators
(
P̂ , Q̂

)
do not depend on the measurement

points.
Finally, note that without any major changes in the proofs analogue versions

of Theorems 3.2.8, 3.2.9 and 3.2.11 are true for the estimators (3.32) with the
only change that we use

X = K−1

K∑
k=1

η̃(tk)γ̃(tk)
T .

3.2.2 A Strongly Consistent Estimator in rGP Models

We will now show that having two sessions γ1, ..., γN and η1, ..., ηM , N,M ∈ N, the
estimator (3.32) applied to the PESMs γ̂N and η̂M leads to a strongly consistent
estimator for the rotation (P,Q) aligning those sessions.

The next Lemma is a useful tool showing strong consistency, if one has M -
estimators, and was stated in the prove of Chang [1986, Lemma 2] without a
proof. For convenience we will give a proof here.

Lemma 3.2.12. Let f : X × Y → R be continuous and X compact and assume
f(x, y0) has a unique maximum for a specific y0 ∈ Y. Suppose yn converges to y0

and each xn is a choice of a maximum of f(x, yn). Then xn → x0.

Proof. Let (xnk) be any convergent subsequence of xn. By the definition of xn
we have that f(xnk , ynk) ≥ f(x, ynk) for all k and all x ∈ X. Hence if k tends to
infinity by the continuity of f and the uniqueness of x0 we have that xnk converges
to x0.
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Now assume xn does not converge to x0. Then there is a subsequence (xnj)
such that |xnj − x0| > ε. But this is a contradiction, since by compactness this
sequence again has a convergent subsequence, which by the above argumentation,
converges to x0. Thus xn must converge to x0.

Theorem 3.2.13. Assume γ1, ..., γN , N ∈ N, is a sample of rGP model (see
Definition 1.3.3) with center curve γ0 and η1, ..., ηM , M ∈ N, a sample of a rGP
with center curve η0. Assume that the Gaussian processes of the rGP models
fulfill Assumption (2.6) of Theorem 2.1.10. Let us denote with γ̃0, η̃0 ∈ C

(
I, S3

)
fixed continuous lifts of the center curves and with 0 = t1 < t2 < ... < tK = 1,
K ∈ N, an equidistant partition of I.

If additionally the following Assumption is fulfilled

rank

(
K∑
k=1

η̃0(tk)γ̃0(tk)
T

)
> 2 ,

then for any choice of the estimators proposed in equation (3.32) aligning the
PEMs we obtain

Π

(
argmin
R∈SO(4)

K∑
k=1

∥∥∥R˜̂γN(tk)− ˜̂ηM(tk)
∥∥∥2
)
3
(
P̂N,M , Q̂N,M

)
N,M→∞−−−−−→

(
P ∗, Q∗

)
a.s. ,

where ˜̂γN , ˜̂ηM are continuous lifts to S3 of the PEMs and

(
P ∗, Q∗

)
= Π

(
argmin
R∈SO(4)

N∑
n=1

‖Rγ̃0(tn)− η̃0(tn)‖2

)
.

Note that
(
P̂N,M , Q̂N,M

)
and

(
P ∗, Q∗

)
do not depend on the particular choices of

the continuous lifts.

Proof. By the assumption we have that Theorem 2.1.10 yields that the PESMs γ̂N
and η̂M are strongly consistent estimators of γ and η for N,M →∞. Therefore
there is a Ω′ ⊂ Ω with P

(
Ω′
)

= 1, on which the consistency holds for both curves
simultaneously.

Let ω ∈ Ω′ be arbitrary. Then there exists by part (i) of Theorem 2.1.10 Nω and
Mω such that γ̂N(ω, ·), η̂M(ω, ·) ∈ X for all N > Nω and all M > Mω. Therefore
the continuous lifts ˜̂γN(ω, ·) and ˜̂ηM(ω, ·) are well-defined then.

Therefore in order to prove the almost sure convergence

Π

(
argmin
P∈SO(4)

K∑
k=1

∥∥∥P ˜̂γN(ω, tk)− ˜̂ηM(ω, tk)
∥∥∥2
)

N,M→∞−−−−−→
(
P ∗, Q∗

)
it remains to show that we can apply Lemma 3.2.12 for the chosen ω ∈ Ω′.

To this end with the notations of Lemma 3.2.12 let X = SO(4), which in fact
is compact, and Y = R4K × R4K . Define the continuous map

f
(
R, (x1, ..., xK), (y1, ..., yK)

)
= −

K∑
k=1

‖Rxk − yk‖2 .
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Since rank
(∑

γ̃0(tk)η̃0(tk)
T
)
> 2 there is a unique solution

R∗ = argmax
R∈SO(4)

f
(
R,
(
γ̃0(t1), ..., γ̃0(tK)

)
,
(
η̃0(t1), ..., η̃0(tK)

))
by Lemma 3.2.10. Moreover, by Theorem 2.1.10 we have γ̂N(ω, t) → γ0(t) and
η̂M(ω, t) → η0(t) for N,M → ∞ and all t ∈ I. The latter implies that we can
choose continuous lifts such that ˜̂γN(ω, tk) → γ̃0(tk) and ˜̂ηM(ω, tk) → η̃0(tk) for
N,M →∞ and all k ∈ {1, ..., K}. Let

RN,M(ω) ∈ argmax
R∈SO(4)

f
(
R,
(˜̂γN(ω, t1), ..., ˜̂γN(tK)

)
,
(˜̂ηM(ω, t1), ..., ˜̂ηM(tK)

))
,

(3.34)
be any choice. Then by Lemma 3.2.12 we obtain RN,M(ω) → R∗ and hence
Π
(
RN,M(ω)

)
→ Π

(
R∗
)
for N,M →∞.

Remark 3.2.14. 1. An analogous version of Theorem 3.2.13 holds true for
the estimator (3.29), if Y = C1

(
I, S3

)
× C1

(
I, S3

)
endowed with the maxi-

mum norm is used in the proof and f
(
R, (γ, η)

)
= −

∫ 1

0
‖Rγ(t)− η(t)‖2 dt.

2. The only ingredient of the rGP model we need in the proof of Theorem
3.2.13 is the uniform convergence of the PESM to the unique PEM. Thus,
any process fulfilling a Theorem similar to 2.1.10 will yield a consistent
estimator for the aligning element ψ ∈ I0

(
SO(3)

)
.

Corollary 3.2.15. Additionally to the assumptions and notations of Theorem
3.2.13 assume that η0 = Pγ0Q

T for P,Q ∈ SO(3), i.e. γ0 and η0 only differ by
marker placement. Then we have that

Π

(
argmin
R∈SO(4)

K∑
k=1

∥∥∥R˜̂γN(tk)− ˜̂ηM(tk)
∥∥∥2
)
3
(
P̂N,M , Q̂N,M

)
N,M→∞−−−−−→

(
P,QT

)
a.s.

Proof. Applying Theorem 3.2.13 we have to compute

(
P ∗, Q∗

)
= Π

(
argmin
R∈SO(4)

N∑
n=1

‖Rγ̃0(tn)− η̃0(tn)‖2

)

= Π

(
argmin
R∈SO(4)

N∑
n=1

‖Rγ̃0(tn)− P̃ γ0QT (tn)‖2

)

= Π

(
argmin
R∈SO(4)

N∑
n=1

‖Rγ̃0(tn)−RP,QT γ̃0(tn)‖2

)
.

In the last equality we used Theorem 3.2.4. This implies that R = RP,QT is the
unique minimizer and by Theorem 3.2.7 we obtain Π

(
RP,QT

)
=
(
P,QT

)
.



Chapter 4

Tests of Equality of Center Curves

This chapter introduces our two-sample tests for equality of the center curve of
rGP models under perturbation by gait similarities. Hence, given rGP models γ,
η our hypotheses of equal or unequal shape of the center curves γ0 and η0 are

H0 : ∃g ∈ S : η0 = g.γ0 vs. H1 : ∀g ∈ S : η0 6= g.γ0 (4.1)

However, our first three testing procedures are tests for the hypotheses

H0 : η0 = γ0 vs. H1 : η0 6= γ0

which consider the effect of (ψ, φ) as removable by preprocessing, whereas the
last test, indeed, tries to test the hypotheses (4.1) directly.

We assume in this chapter that the PESM of all considered samples is unique
and thus by Corollary 2.1.5 an element of X . This is usually not a restriction,
since in applications the data often is concentrated, which ensures unique PESMs.

The preprocessing step. We start with describing the preprocessing step of
optimally aligning two sessions χ1 = (γ1, ..., γN) and χ2 = (η1, ..., ηM), N,M ∈ N.
It consists of the following steps.

Preprocessing 4.0.16.

1. Compute the PESMs γ̂N and η̂M of χ1 and χ2 (see Theorem 2.1.3).

2. Estimate ψ̂ =
(
P̂ψ, Q̂ψ

)
using the estimator (3.29) for the curves γ̂N and

η̂M .

3. Estimate φ̂ using estimator (3.11) for the curves ψ̂ ◦ γ̂N and η̂M .

4. Compute the new session (ψ̂ ◦ γ1 ◦ φ̂, ..., ψ̂ ◦ γN ◦ φ̂)

5. Replace γ̂N in Step 1 by ψ̂ ◦ γ̂N ◦ φ̂ and iterate step 2-3 until convergence of
ψ̂ and φ̂.

In our data application we usually had to perform Step 1-4 only once.
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The overlapping SO(3) confidence sets test (OCST). In Section 2.2 we
constructed simultaneous confidence sets for the PEM in rGP models. We use
them to test equality of the PEMs of two sessions χ1 and χ2. Here the idea is
that we reject the null hypothesis of equal PEMs, if the simultaneous confidence
sets for the two sessions do not intersect for all times t ∈ I and otherwise we
accept the hypothesis.

Unfortunately, the significance level of such a testing procedures is not obvious
a priori and may depend on the particular distribution, for example, for 1D
Gaussian random variables Schenker and Gentleman [2001] and Payton et al.
[2003] study a test based on the overlap of confidence intervals and they show
using simulations and heuristic arguments that if 85%-confidence intervals of the
means are used, the size of the test will be approximately 0.05, if the quotient of
the variances of the Gaussians is close to one.

The testing procedure for equality of PEMs using simultaneous β · 100%-
confidence sets is as follows.

Test 4.0.17 (OCST). Let β ∈ (0, 1) and two sessions χ1 = (γ1, ..., γN), N ∈ N,
consisting of trials from a rGP with center curve γ0 and χ2 = (η1, ..., ηM), M ∈ N,
consisting of trials from a rGP with center curve η0 be given.

1. Compute the PESMs γ̂N and η̂M of χ1 and χ2 (see Theorem 2.1.3).

2. Compute Cβ
(
χ1; t

)
and Cβ

(
χ2; t

)
as explained in Section 2.2 and Section

2.3.

3. If for all t ∈ I

γ̂N(t)Exp
(
Cβ
(
χ1; t

))
∩ η̂N(t)Exp

(
Cβ
(
χ2; t

))
6= ∅

accept the hypothesis of equal shape of γ0 and η0, else reject it.

Remark 4.0.18. The preprocessing 4.0.16 has to be carried out before applying
this test, if one wants to remove marker placement or time warping effects. Note,
however, that by Theorem 2.2.4 it is equivalent to compute QT

ψ̂
Cβ(χ1; t) instead

of Cβ
((
ψ̂, φ̂

)
.χ1; φ̂(t)

)
. Therefore one could either first align the sessions (i.e.,

use
(
ψ̂, φ̂

)
.χ1 and χ2 to compute the two confidence bands) or compute first the

confidence bands for χ1 and χ2 and then align the confidence sets using Theorem
2.2.4 with the estimators ψ̂ and φ̂ from 4.0.16. Both procedures will produce the
same outcome.

Simultaneous approximated Hotelling T 2 test. Suppose that the session
χ1 = (γ1, ..., γN), N ∈ N, consists of trials from a rGP with center curve γ0

and the session χ2 = (η1, ..., ηM), M ∈ N, consists of trials from a rGP with
center curve η0. Building on the observation from Theorem 2.2.5 that in the
case of concentrated errors the residuals of such sessions are approximatively the
intrinsic residuals of the generating Gaussian processes (see equation (2.21)), we
will now propose a version of a Hotelling T 2 test. Note that for R3 an analogous
test is proposed in Pataky et al. [2013].
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Therefore, if one wants to remove marker placement or self-selected walking
speed effects, replace χ1 by its aligned version stemming from Preprocessing
4.0.16. Let us denote with µ̂ the pooled PESM (i.e., µ̂(t) = µ̂N+M

(
(χ1, χ2), t

)
for

all t ∈ I = [0, 1]). We define residuals analogous to the residuals defined in (2.21)
by

Xn,pool = ι−1 ◦ L
(
µ̂Tγn

)
and Y m,pool = ι−1 ◦ L

(
µ̂Tηm

)
,

for n ∈ {1, ..., N} and m ∈ {1, ...,M}. If the corresponding weighted sum of the
sample covariance matrices is invertible for all t ∈ I, this yields the two sample
Hotelling T 2-statistic

Ŵt =
NM

N +M

(
X̄t − Ȳt

)T ( 1

N +M − 2

(
(N − 1)Σ̂X

t + (M − 1)Σ̂Y
t

))−1 (
X̄t − Ȳt

)
for t ∈ I. Here we have

X̄ = N−1

N∑
n=1

Xn,pool , Ȳ = N−1

N∑
n=1

Y n,pool ,

Σ̂X =
1

N − 1

N∑
n=1

Xn,pool(Xn,pool)T , Σ̂Y =
1

N − 1

N∑
n=1

Y n,pool(Y n,pool)T .

Under the null hypothesis that γ0 = η0 and the underlying Gaussian processes
generating the samples are identical, we have that Ŵt is approximatively Hotelling
T 2-distributed with N + M − 2 degrees of freedom for each t ∈ I. In order to
circumvent multiple testing and to take the covariance structure of the processes
into account, we estimate hα such that

P
(

max
t∈I

Ŵt > hα

)
= α (4.2)

under the null hypothesis. This is achieved by using the GKF for Hotelling T 2

processes as described in Section 2.3. Since under the null hypothesis the trials
of χ1 and χ2 have the same distribution, we will use χ1 to estimate the Lipschitz
killing curvature.

The complete simultaneous approximated Hotelling T 2 test is then the follow-
ing.

Test 4.0.19 (Simultaneous Approximated Hotelling T 2 Test.). Given two ses-
sions χ1 = (γ1, ..., γN), N ∈ N, consisting of trials of a distribution with unique
PEM γ0 and χ2 = (η1, ..., ηM), M ∈ N, consisting of trials of a distribution with
unique PEM η0. Let α ∈ (0, 1) be a given significance level.

1. If one wants to remove marker placement or self-selected walking speed ef-
fects, replace χ1 by its temporally registered and aligned version obtained
from Preprocessing 4.0.16.

2. Using χ1 estimate with (2.30) the Lipschitz killing curvature and use this
and the GKF for Hotelling T 2 processes with N +M − 2 degrees of freedom
(see equation (2.28)) to obtain the quantile hα given by (4.2).
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3. Compute the process {Ŵt}t∈I from the sessions χ1 and χ2.

4. If Ŵt > hα for any t ∈ I reject the null hypothesis of equal shapes of γ0 and
η0, else accept.

Intrinsic length loss permutation tests (ILLPerm & MILLPerm). The
above two tests require that our sessions are consisting of trials drawn from rGP
models. The following two permutation tests in contrast are distribution-free
tests in the sense that they do not assume any distributional properties about
the populations. In what follows δ denotes either δI,1, δI,2 or δI (see Definition
3.1.1).

Test 4.0.20 (ILLPerm). Given two sessions χ1 = (γ1, ..., γN), N ∈ N, consisting
of trials of a distribution with unique PEM γ0 and χ2 = (η1, ..., ηM), M ∈ N,
consisting of trials of a distribution with unique PEM η0. Let α ∈ (0, 1) be a
given significance level.

1. If one wants to remove marker placement or self-selected walking speed ef-
fects, replace χ1 by its temporally registered and aligned version obtained
from Preprocessing 4.0.16.

2. Let χ = (χ1, χ2) be the pooled session. Denote with χ(l)
1 , l ∈

{
1, ...,

(
N+M
N

)}
,

all possible choices with N elements from χ and with χ(l)
2 its complement

in χ with M elements. Moreover, we assume χ(1)
1 = χ1 and χ(1)

2 = χ2. For
each l compute the PESMs t 7→ γ̂N,l(t) = µ̂N

(
χ

(l)
1 , t

)
and t 7→ η̂M,l(t) =

µ̂M

(
χ

(l)
2 , t

)
and compute

dl = δ
(
γ̂N,l, η̂M,l

)
3. Let r = #{l | dl > d1}. We reject the null hypothesis of equal shape of γ0

and η0, if p-value = r/
(
N+M
N

)
< α.

Remark 4.0.21. In practice if N and M are large it is not feasible to compute
all
(
N+M
N

)
permutations of the data, since it is computationally costly. Therefore

one approximates the p-value of the permutation test by drawing randomly K
permutations of the data and computing the rank from this K permutations only
(see [Edgington and Onghena, 2007, Chapter 3.6 , p. 40]).

The previous approaches all consider the temporal registration and spatial
alignment of the compared sessions as a preprocessing step. However, since it
includes estimates of an aligning gait similarity (ψ, φ), the variance of the esti-
mators may as well influence the error of the first and second kind. Therefore,
we propose a modified version of the above permutation test taking this variation
into account by including the preprocessing into each permutation.

Test 4.0.22 (MILLPerm). Given two sessions χ1 = (γ1, ..., γN), N ∈ N, consist-
ing of trials of a distribution with unique PEM γ0 and χ2 = (η1, ..., ηM), M ∈ N,
consisting of trials of of a distribution with unique PEM η0. Let α ∈ (0, 1) be a
given significance level.
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1. Let χ = (χ1, χ2) be the pooled session. Denote with χ(l)
1 , l ∈

{
1, ...,

(
N+M
N

)}
,

all possible choices with N elements from χ and with χ(l)
2 its complement

with M elements in χ. Moreover, we assume χ(1)
1 = χ1 and χ(1)

2 = χ2. For
i, j ∈ {1, 2} let χ(l)

ij denote the session consisting of all trials of χ(l)
i also

belonging to χj. For each l, i compute the PESMs t 7→ γ̂i,l(t) = µ̂N

(
χ

(l)
i1 , t

)
and t 7→ η̂i,l(t) = µ̂M

(
χ

(l)
i2 , t

)
.

2. For each i, l apply Preprocessing 4.0.16 to γ̂i,l and η̂i,l to obtain an aligned
version γ̂alignedi,l . Compute the PESM ω̂i,l of η̂i,l and γ̂alignedi,l .

3. Apply Preprocessing 4.0.16 to ω̂1,l and ω̂2,l to get an aligned version ω̂aligned1,l

of ω̂1,l and compute
dk = δ

(
ω̂aligned1,l , ω̂2,l

)
4. Let r = #{l | dl > d1}. We reject the null hypothesis of equal shape of γ0

and η0 at a significance level α ∈ (0, 1), if p-value = r/
(
N+M
N

)
< α.
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Chapter 5

Simulations

5.1 Assessing Covering Rates of Confidence Sets

5.1.1 Small Sample Behavior of Multiplier Bootstrap, Asymp-
totic Confidence Bands and GKF for Simultaneous
Confidence Bands

The aim of this section is to analyze the small sample behavior of different meth-
ods for estimating simultaneous confidence bands for the pointwise mean function
in functional data. These simulations are included in this thesis, since they justify
the use of the GKF as our tool for computing the α-quantile of the maximum of
the Hotelling T 2 statistic of rGP models. Let µ : [0, 1] → R be a deterministic
function. We consider in this section the following data model

X(t) = µ(t) + Zt , t ∈ I (5.1)

where {Zt}t∈I is a real valued Gaussian process on I = [0, 1] with almost surely
C2-sample paths, E[Zt] = 0, Var[Zt] = σ2

t > 0 and Zt/σt fulfills the Assumptions
(GKF 3 ) and (GKF 4 ). Moreover, we assume that we observe the process X
only at times 0 = t1 < t2 < ... < tK = 1.

Let X1, . . . , XN be a sample from model (5.1), then we want to find two func-
tions lN , uN : [0, 1]→ R depending on the sample such that

P
(
lN(t) ≤ µ(t) ≤ uN(t) for all t ∈ I

)
≥ 1− α .

using the observed values Xn(tk) for k ∈ {1, ..., K} and n ∈ {1, ..., N}. This can
be achieved using the stochastic process

Tt =
√
N
X̄(t)− µ(t)

σ̂t
, (5.2)
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where we define

X̄(t) = N−1

N∑
n=1

Xn(t)

σ̂2
t =

1

N − 1

N∑
n=1

Rn(t)2

Rn(t) = Xn(t)− X̄(t) .

Note that this process is as shown in Adler and Taylor [2009, Section 15.10.3,
p.430] well-defined for all N ≥ 2.

Now, given hα ∈ R>0 such that

P

(
max
t∈[0,1]

|Tt| > hα

)
≤ α.

we obtain that the collection of intervals[
X̄(t)− hα σ̂t√

N
, X̄(t) + hα

σ̂t√
N

]
, for t ∈ [0, 1]

form a simultaneous (1− α) · 100% confidence band for µ i.e.,

P

(
µ(t) ∈

[
X̄(t)− hα σ̂t√

N
, X̄(t) + hα

σ̂t√
N

]
for all t ∈ I

)
≥ 1− α .

We will now describe three different methods for estimating the threshold hα
and explore their small sample performance using simulations.

Naive bootstrap approach. The first method, which we will use in our com-
parison, is proposed in Degras [2011] called the naive bootstrap. The main result
of Degras [2011] is a functional asymptotic normality result for the local linear
estimator for dense functional data. Although this result allows for constructing
(asymptotically correct) (1 − α)% confidence bands of the mean curve, Degras
proposes to use the naive bootstrap for small sample sizes. The naive bootstrap
works as follows.

1. Resample with replacement from a sample X1, ..., XN of model (5.1) to
produce a bootstrap sample X1,∗, ..., XN,∗.

2. Compute the pointwise empirical mean X̄∗ and variance (σ̂∗)2 functions of
the bootstrap sample X1,∗, ..., XN,∗.

3. Compute Z∗ =
√
N maxt∈I ‖(X̄∗ − X̄)/σ̂∗‖.

4. Repeat steps 1 to 3 many times to approximate the conditional law L∗ =
L
(
Z∗ | X1, ..., XN

)
and take the (1 − α) · 100% quantile of L∗ to estimate

hα.

Note that in Degras [2011] instead of X̄ the local linear estimator is used, which
smooths the data. This simplification can be done, since we do not include an
additional observation error in model (5.1) as done in Degras [2011] and therefore
smoothing is not necessary.
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Multiplier bootstrap. The second method builds on a version of the multi-
plier (or Wild) bootstrap (e.g., Mammen [1993]) designed for the maximum of
sums of N independent random variables in high dimensions as discussed in detail
by Chernozhukov et al. [2013]. More precisely, let Y1, ..., YN be independent ran-
dom vectors in RK , N,K ∈ N with E

[
Yn
]

= 0 and finite covariance E
[
YnY

T
n

]
for

all n ∈ {1, ..., N}. We define Y T
n =

(
Yn1, ..., YnK

)
and assume there are c, C ∈ R>0

such that c < E
[
Y 2
nk

]
< C for all n ∈ {1, ..., N} and all k ∈ {1, ..., K}. Under

these assumptions it is shown in Chernozhukov et al. [2013, Theorem 3.1] that
the quantiles of the distribution of

max
k∈{1,...,K}

1√
N

N∑
n=1

Ynk

can be asymptotically consistently estimated by the quantiles of the multiplier
bootstrap i.e., by the distribution of

max
k∈{1,...,K}

1√
N

N∑
n=1

gkYnk

with i.i.d. multipliers g1, ..., gN ∼ N (0, 1) given the data Y1, ..., YN .
In order to apply Chernozhukov et al. [2013, Theorem 3.1], note that we can

rewrite

max
k∈{1,...,K}

T (tk) = max
k∈{1,...,K}

1√
Nσ̂tk

N∑
n=1

√
N
N−1

Rn(tk)

by
√
N
(
X̄ − µ

)
∼ 1√

N

N∑
n=1

√
N
N−1

Rn ,

which follows from E[Rn(t)Rn(s)] = N−1
N
E[Xn(t)Xn(s)] for all t, s ∈ I. Since

R1, ..., RN , σ̂t are independent as stochastic processes, the random vectors Yn =√
N
N−1

(
Rn(t1)/σ̂t1 , ..., Rn(tK)/σ̂tK

)
∈ RK , n ∈ {1, ..., N}, satisfies the assump-

tions of Chernozhukov et al. [2013, Theorem 3.1] and therefore the multiplier
bootstrap is applicable to estimate quantiles of the distribution of the maximum
of the random vector T =

(
Tt1 , ..., TtK

)
.

Since Chernozhukov and co-authors show that the multiplier bootstrap works
also for K � N , we apply this method without further theoretical justification to
the functional case and the process {Tt}t∈I . The same reasoning as above, then
yields that we can use the multiplier bootstrap to estimate hα given by

P

(
max
t∈[0,1]

|Tt| > hα

)
= P

(
max
t∈[0,1]

∣∣∣∣∣ 1√
N
σ̂−1
t

N∑
n=1

√
N

N − 1
Rn

∣∣∣∣∣ > hα

)
.

Hence we introduce i.i.d. multipliers g1, ..., gN ∼ N (0, 1) and estimate hα using
bootstrap replicates of

W = max
t∈[0,1]

1√
Nσ̂gt

∣∣∣∣∣
N∑
n=1

√
N

N − 1
gnRn(t)

∣∣∣∣∣
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with (
σ̂gt
)2

=
1

N − 1

N∑
n=1

(
gnRn(t)

)2
.

The estimator of hα is then given by

ĥα = inf
h∈R

{
Pg
(
W ≤ h

)
≥ 1− α

}
,

where Pg is the probability measure induced by the multipliers g holding Rn(t)
fixed i.e., Pg

(
W ≤ h

)
= P

(
W ≤ h|R1, ..., RN

)
.

Gaussian kinematic formula of T -statistic. Analogously to our approach
in Section 2.2 we can estimate the threshold hα using the GKF for the process
{Tt}t∈[0,1] given in equation (5.2), which has pointwise a t-distribution with (N −
1)-degrees of freedom. By the expected Euler characteristic heuristic and the
Gaussian kinematic formula (see Adler and Taylor [2009, Theorem 15.10.3.]), we
obtain

P
(

max
t∈[0,1]

|T (t)| > h

)
= 2P

(
max
t∈[0,1]

T (t) > h

)
≈ 2E

[
χ
(
{t ∈ [0, 1] | Tt ≥ h}

)]
= 2

L1

(
[0, 1]

)(1 + h2

N−1

)1−N
2

2π
+
(
1− FN−1(u)

) .

(5.3)
Here FN−1 denotes the cumulative distribution function of a Student’s t-distribution
with (N − 1)-degrees of freedom and the first equality is due to the fact that the
processes {Tt}t∈I and {−Tt}t∈I have the same distribution; hence

P
(

max
t∈[0,1]

|T (t)| > h

)
= P

(
max
t∈[0,1]

T (t) > h

)
+ P

(
max
t∈[0,1]

−T (t) > h

)
= 2P

(
max
t∈[0,1]

T (t) > h

)
.

By equation 5.3 we only have to estimate the Lipschitz killing curvature from the
observations to construct simultaneous confidence bands. The Lipschitz killing
curvature is given by

L1

(
[0, 1]

)
=

∫ 1

0

√
Var
[
d
dt

(
Zt
σt

)]
dt ,

which can be found in Taylor and Worsley [2007, Section 3.3]. Given an i.i.d.
sample X1, ..., XN of model (5.1) evaluated on a partition 0 = t1 < t2 < ... <
tK = 1 we use a discretized version of L1

(
[0, 1]

)
by replacing the integral by its

Riemann sum and the derivative by finite differences. Moreover, we use that

Var
[
d
dt

(
σ−1
t Zt

)]
= Var

[
d
dt

(
σ−1
t

(
Xt − µ(t)

))]
.
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This yields the estimator

L̂1

(
[0, 1]

)
=

K−1∑
k=1

d̂Ξk(tk+1 − tk) ,

where we defined

d̂Ξk

2
=

1

N − 1

N∑
n=1

(
dXn

k −N−1

N∑
n=1

dXn
k

)2

with

dXn
k =

(
Xn(tk+1)

σ̂tk+1

− Xn(tk)

σ̂tk

)
(tk+1 − tk)−1

for k ∈ {1, ..., K − 1}.

Error processes for 1D confidence bands simulation. In the simulations of
the covering rate of 1D confidence bands constructed using the methods proposed
above, we assume for simplicity that µ(t) = 0 for all t ∈ [0, 1]. The performance
of the presented methods is tested using for the error processes Z in model 5.1
the processes

ε1,l
t = fl(t)

(
a1 sin

(
π
2
t
)

+ a2 cos
(
π
2
t
) )

ε2,l
t = fl(t)

 ∑10
i=1 aie

−
(x− i−1

9 )
2

0.2√∑10
i=1 e

−2
(x− i−1

9 )
2

0.2

 (5.4)

ε3,l
t = fl(t)

(
a0e
−5t +

√
10

∫ t

0

e5(s−t)dWt

)
with i.i.d. ai ∼ N (0, 1) for i ∈ {0, ..., 10}, {Wt}t∈I a Wiener process, and for
l ∈ {1, 2, 3} we have

f1(t) = 1 , f2(t) = 4 , f3(t) = sin(4πt) + 1.5 .

Note that the processes satisfy Var
[
εν,lt

]
= fl(t)

2 for all t ∈ [0, 1] and ν ∈ {1, 2, 3}.
Moreover, the sample paths of the processes ε1,l and ε2,l have C∞-sample paths,
whereas the sample paths of ε3,l, which is a Ornstein-Uhlenbeck process (e.g.,
Iacus [2008, p.43]) are only continuous implying that the GKF is not applicable
for this process. However, since the estimator of the Lipschitz killing curvature is
computable also for the Ornstein-Uhlenbeck process, we studied also confidence
sets using the GKF approach for the Ornstein-Uhlenbeck process. We expect,
that this does not work well, since the estimation of the Lipschitz killing curvature
relies on the estimation of the variance of the derivative of the process, which does
not exists in this case.
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Design of 1D confidence bands simulation. We use the proposed meth-
ods to construct confidence bands for the mean function µ ≡ 0. To obtain
the covering rates for small sample sizes, we do the following: simulate N ∈
{5, 10, 15, 20, 30, 50} realizations of the process εν,lt for ν, l ∈ {1, 2, 3} on the
equidistant time grid T with ∆t = 0.01 and compute the simultaneous confi-
dence band with the selected method at these points. Then check whether µ(t)
is contained in the constructed confidence band for all t ∈ T . We repeat this
M = 5000 times and the relative frequency between the trials such that µ is
always within the constructed confidence band and the number of simulations
approximates the true covering rate.

For the bootstrap methods we used 2000 bootstrap replicates.

Results of 1D confidence bands simulation. The results of this simulation
are collected in the Tables C.1, C.2 and C.3 in Appendix C. The conclusions are
the following: in the case of small sample sizes (≈ 10-20) the only reliably work-
ing method is the Gaussian kinematic formula approach, which is surprisingly
accurate and only systematically overestimates the covering rate for the Ornstein
Uhlenbeck error process, which, anyway, does not satisfy the assumptions of the
GKF. While the naive bootstrap yields too conservative confidence bands for
small samples sizes, we discovered that the multiplier bootstrap underestimates
the covering rate. For larger sample sizes (≥ 50) both bootstrap methods start
to perform well.

Note that another advantage of the GKF is that it is computational very fast.
Due to these observations we will only use the GKF approach to construct simul-
taneous confidence bands of the PEM in rGP models.

5.1.2 Covering Rates of Simultaneous Confidence Sets for
rGP models

Since the estimation of the quantile h̃γ,N,α of the process (2.22), which we used in
Section 2.2 to construct simultaneous confidence sets, relies on an approximation
for concentrated data given in Theorem 2.2.5, we study the actual covering rate
of this method also with simulations.

Error processes for rGP confidence sets simulations. We asses the cover-
ing rates by generating data from a rGP model (1.8). This is done by simulating
a Gaussian process A = {At}t∈I in R3 and mapping it to SO(3) using the Lie
exponential (see A.3). For simplicity, we assume that the mean curve γ0 of the
rGP model is given by γ0(t) = I3×3 for all t ∈ [0, 1]. This can be done without
loss of generality, since the PESM γ̂N of a sample γ1, . . . , γN from a rGP model
with realizations A1, ..., AN of the process A is equivariant and hence we obtain

γ̂N(t) = γ0(t) argmin
µ∈SO(3)

N∑
n=1

∥∥Exp
(
ι(Ant )

)
− µ(t)

∥∥2

F
= γ0(t)ÂN(t) ,

where ÂN is the PESM of the error process Exp
(
ι(A1)

)
, ...,Exp

(
ι(AN)

)
.
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In our simulations studying the covering rates of the simultaneous confidence
sets given in Theorem 2.2.3, we use the error processes

{
εi,lt
}
t∈I , i ∈ {1, 2, 3},

l ∈ {1, 3}, defined in (5.4) to construct the Gaussian process A by the following
formula

Ai,l,j,σt = Wj

(
σεi,l1,t, σε

i,l
2,t, σε

i,l
3,t

)T
, (5.5)

for i ∈ {1, 2, 3}, j ∈ {1, 2}, l ∈ {1, 3} and σ ∈ R>0. Here we denote with εi,ls,t for
s = 1, 2, 3 independent realizations of

{
εi,lt
}
t∈I . The matrices

W1 =

1 0 0
0 1 0
0 0 1

 , W2 =

 1 0 0
1
2

1
2

0
1√
3

1√
3

1√
3

 .

are introduced to include the case of dependencies between the coordinates. More-
over, it introduces different variances in the coordinates, since for j = 2 the second
component will have half the variance than the other two components.

Design of rGP confidence sets simulations. We simulate N ∈ {10, 15, 30}
realizations of the process {Ai,l,j,σt } on the equidistant time grid T with ∆t = 0.01
for i ∈ {1, 2, 3}, j ∈ {1, 2}, l ∈ {1, 3} and σ ∈ {0.005, 0.05, 0.1, 0.6}. Note that
the variance of our real gait data is σ ≤ 0.05, such that we cover this case in our
simulations. Then simultaneous 95%-confidence sets are constructed as described
in Section 2.2, where we estimate the quantile h̃γ,N,α as proposed in Section 2.3
and check whether γ ≡ I3×3 is contained in the constructed confidence set for all
t ∈ T . We repeat this M = 5000 times and the relative frequency between the
trials such that γ is always contained in the constructed confidence set and the
number of simulations approximates the true covering rate.

Results of rGP confidence sets simulations. We report the results of the
simulations in Tables C.4 and C.5. The simulations have a simple message: For
variance σ ≤ 0.1 the simulated covering rate is close to 95%. Only in the case
of the Ornstein Uhlenbeck error process we have slightly too high covering rates.
For high variance σ = 0.6 we underestimate the covering rate. This is expected,
since the proposed estimator is designed for concentrated data and the map v 7→
Log

(
Exp(v)

)
is only the identity on ‖v‖ < π and we have the inequality∥∥∥Log

(
Exp

(
ι(v)

))∥∥∥
F
≤ ‖v‖ . (5.6)

The latter implies that our estimated covariance matrix has smaller eigenvalues
then the covariance matrix of the sample and hence our confidence sets will
become smaller. This effect is even more visible if the sample size is large.

Recall that the real gait data, which we will analyze in Section 6 is far away
from these problematic region, since it is concentrated with σ ≤ 0.05.
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5.2 Assessing Type I and Type II Error of Two-
Sample Tests

In Chapter 4 we introduced different two-sample tests for the equality of PEMs.
In this section we will simulate their performance for rGP models. In a first step
we will simulate their type I and type II error rate under the hypothesis that
no gait similarities are perturbing the data. In a second step we will introduce
perturbations by an element of I0

(
SO(3)

)
and remove it as explained in Section

4 by using the estimators introduced in Section 3. A third step will include
perturbation by an element from S. However, since the latter simulations are
extremely time consuming due to the estimation of the temporal alignment we
present a relatively small simulation study.

Error processes for two-sample test simulations. The rGP processes used
in this simulation are constructed from the processes (5.4) and the center curves
γλ0 (t), λ ∈ R, given by

αλx
(
t
)

= 80t2 − 80t+ 20 + λ
e−

1
2

(
t−0.5
0.08

)2
0.08
√

2π
− 35

αy
(
t
)

= 70t sin
(
4πt0.7

)
+ 5

αz
(
t
)

= 10 cos
(
13π
)
,

where αλx, αy, αz are the Euler angles representation in degrees (see Section A.2)
of γλ0 (t). For λ ∈ {0, 0.5, 1, 2, 2.5} these curves are shown in Figure D.1.

In all simulations of the type I and II error of our two-sample tests from Section
4 we will use the following five processes, which are selected from the processes
(5.5) used for the simulations of the covering rates of our simultaneous confidence
sets,

γ0
A = γ0

0(t)Exp

(
ι
(
A1,1,1,0.05
t

))

γλB = γλ0 (t)Exp

(
ι
(
A2,3,2,0.05
t

))
for λ ∈ {0.5, 1, 2, 2.5} .

(5.7)

Examples of simulations from these processes are shown in Figure D.2, D.3 and
D.4.

5.2.1 Performances Without Pertubation by Gait Similar-
ities

Design of the two-sample test in X simulations. Let γ and η each be
distributed according to one of the processes given in (5.7). We simulate γ1, ..., γN
and η1, ..., ηN , N ∈ {10, 15, 30}, realizations on the equidistant time grid T with
∆t = 0.01. We then apply the OCST, Hotelling T 2-test, ILLPerm and MILLPerm
(β = 0.9 for the OCST and α = 0.05 for the other tests) to the two samples
γ1, ..., γN and η1, ..., ηN .
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We performM = 2000 simulations of this type and report the acceptance rate.
If the distributions of γ and η are equal, then one minus the acceptance rate gives
an approximation of the type I error, else, if the distributions are different, the
acceptance rate is an approximation of the type II error. For the permutation
approaches we use Mperm = 5000 permutations.

Results of the two-sample test in X simulations. The results of this simu-
lation are given in Tables 5.1 and 5.2. ILLPerm, MILLPerm and the simultaneous
Hotelling T 2 test seem to achieve the correct significance level α = 0.05. For the
considered error processes the best power is offered by the Hotelling T 2-test. This
is in accordance with the observation that the permutation tests are distribution
free, while the Hotelling T 2 test is specifically designed for Gaussian processes.

As expected, the overlap of the simultaneous 90%-confidence sets (OCST) pro-
duces a very conservative test, which has also a higher type II error than the
other considered tests.

Note that for small sample sizes relatively small perturbations of the tested
distributions do lead to a high type II error, which explains the high values on
the second diagonal of Tables 5.1 and 5.2. This is mainly due to the small sample
sizes. Thus, as expected the type II error always decreases if the sample size
increases.

10
N=15 γ0A γ0.5B γ1B γ2B γ2.5B

30

γ0A

99.9
99.9
99.8

98.0
91.6
52.7

77.9
23.0
0.0

1.2
0.0
0.0

0.0
0.0
0.0

γ0.5B

100
99.9
100

86.8
22.3
0.0

0.0
0.0
0.0

0.0
0.0
0.0

γ1B

100
100
100

1.8
0.0
0.0

4.8
0.0
0.0

γ2B

100
100
100

86.9
21.4
0.0

γ2.5B

100
100
100

10
N=15 γ0A γ0.5B γ1B γ2B γ2.5B

30

γ0A

95.3
95.8
95.1

71.5
54.6
17.1

16.3
0.9
0.0

0.0
0.0
0.0

0.0
0.0
0.0

γ0.5B

94.3
94.4
94.8

36.0
6.5
0.0

0.0
0.0
0.0

0.0
0.0
0.0

γ1B

95.3
95.3
95.4

0.0
0.0
0.0

0.0
0.0
0.0

γ2B

95.9
95.3
94.7

35.5
6.8
0.0

γ2.5B

94.6
95.0
95.3

Table 5.1: Acceptance rate in percentage of H0 of OCST (left) and simultaneous
Hotelling T 2 (right).

10
N=15 γ0A γ0.5B γ1B γ2B γ2.5B

30

γ0A

95.8
94.5
94.5

80.7
72.8
45.1

29.8
8.6
0.0

0.0
0.0
0.0

0.0
0.0
0.0

γ0.5B

95.4
94.6
94.8

88.1
81.6
63.0

8.4
0.2
0.0

0.1
0.0
0.0

γ1B

94.2
95.3
93.65

49.7
26.4
0.3

7.1
0.3
0.0

γ2B

95.3
95.3
95.4

87.9
81.2
61.8

γ2.5B

95.3
95.2
95.4

10
N=15 γ0A γ0.5B γ1B γ2B γ2.5B

30

γ0A

94.8
95.1
95.1

82.9
73.6
40.4

23.2
3.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

γ0.5B

94.8
94.8
95.3

90.3
85.5
69.4

0.0
0.0
0.0

0.0
0.0
0.0

γ1B

95.5
95.7
95.2

59.6
30.5
0.4

9.0
0.0
0.0

γ2B

96.4
94.5
95.2

90.0
85.6
68.3

γ2.5B

95.8
95.3
94.2

Table 5.2: Acceptance rate in percentage of H0 of ILLPerm (left) and MILLPerm
(right) without application of P and Q to the η sample



86 5. Simulations

5.2.2 Performances Including Perturbation by I0
(
SO(3)

)
Design of the two-sample test in X/I0

(
SO(3)

)
simulations. Let γ and η

each be distributed according to one of the processes given in (5.7). We simulate
γ1, ..., γN and η1, ..., ηN , N ∈ {10, 15, 30}, realizations on the equidistant time grid
T with ∆t = 0.01. Contrary to the simulation discussed in the last paragraph,
we compute the realization Pη1Q

T , ..., PηNQ
T with a rotation P ∈ SO(3) with

Euler angles αx = −0.5◦, αy = 13◦, αz = −9◦ and a rotations Q ∈ SO(3) with
Euler angles αx = 12◦, αy = 0◦, αz = 5◦. Denote this rotated sample by η̃1, ..., η̃N .

The application of P and Q to the simulated samples is performed in order to
explore the robustness of the proposed testing procedures, if one has to correct for
the perturbation by an element from I0

(
SO(3)

)
. In terms of our biomechanical

application it mimics the robustness of the test procedure against different marker
placements. To this end we apply the OCST, Hotelling T 2 test and ILLPerm with
the preprocessing step of estimating P̂ and Q̂ as described in Preprocessing 4.0.16
(β = 0.9 for OCST and α = 0.05 for the other tests). Note that we replace φ̂
by id[0,1] in Step 3 of Preprocessing 4.0.16, since temporal registration is not
necessary for the data. MILLPerm (α = 0.05) is applied to the two samples
γ1, ..., γN and η̃1, ..., η̃N . Note MILLPerm does not require a preprocessing step,
since it is constructed to test equality even under a perturbations by I0

(
SO(3)

)
.

For the same reason mentioned before we replace within MILLPerm the estimator
φ̂ by id[0,1].

We used M = 2000 simulations and report the acceptance rate. If the dis-
tribution of γ and η is equal, then one minus the acceptance rate approximates
the type I error rate, else, if the distributions are different, the acceptance rate
is an approximation of the type II error. For the permutation approaches we use
Mperm = 5000 permutations.

Results of the two-sample test in X/I0

(
SO(3)

)
simulations. The results

of this simulation are given in Tables 5.3 and 5.5. Interestingly, under the pertur-
bation by (P,Q) only MILLPerm seems to achieve the correct significance level
α = 0.05 and its power is similar to the power without perturbation, compare
Table 5.2. The type I error of the Hotelling T 2 test and the OCST seem to depend
on the chosen error process and is sometimes higher and sometimes lower than
the 5%. Even worse it increases, if the sample size increases. We suspect that this
behavior is due to the observation that the estimator for Q̂ and P̂ are never ex-
act and hence the null hypothesis that P̂ γ1Q̂

T , ..., P̂ γNQ̂
T and η̃1, ..., η̃N have the

same PEM is never true for the two samples and finite N ∈ N. For the Hotelling
T 2 test this is in accordance with the observation that it has a good power and
hence is able to detect such a difference even better with increasing N . For the
OSCT this is unsuspected, since it is a very conservative procedure without a
perturbation from I0

(
SO(3)

)
and we have no simple explanation. ILLPerm does

perform relatively well in our simulations. However, for the tested error processes
it has a lower type I error than expected, which is preferable, but also a higher
type II error, which is not preferable.

Therefore we conclude that MILLPerm is the best choice within the compared
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methods, if the data is corrupted by a perturbation of an element of I0

(
SO(3)

)
.

10
N=15 γ0A γ0.5B γ1B γ2B γ2.5B

30

γ0A

100
100
100

100
100
99.9

99.8
99.0
69.4

85.2
18.9
0.0

51.8
5.6
0.0

γ0.5B

95.4
88.3
79.9

81.3
44.3
5.3

1.3
0.0
0.0

0.0
0.0
0.0

γ1B

95.5
89.7
79.7

27.7
7.4
0.0

1.3
0.0
0.0

γ2B

95.7
88.3
80.6

82.7
49.6
6.7

γ2.5B

96.2
87.8
80.6

10
N=15 γ0A γ0.5B γ1B γ2B γ2.5B

30

γ0A

99.8
99.7
99.9

97.8
97.6
94.8

88.9
77.1
8.9

13.7
0.3
0.0

1.9
0.0
0.0

γ0.5B

74.2
66.5
64.0

48.6
29.2
4.1

0.0
0.0
0.0

0.0
0.0
0.0

γ1B

72.6
68.1
63.1

6.3
0.3
0.0

0.0
0.0
0.0

γ2B

72.1
68.4
62.4

49.9
30.3
4.5

γ2.5B

74.8
70.1
61.1

Table 5.3: Acceptance rate in percentage of H0 of OCST (left) and simultaneous
Hotelling T 2 (right). The samples are perturbed by an element of I0

(
SO(3)

)
.

10
N=15 γ0A γ0.5B γ1B γ2B γ2.5B

30

γ0A

99.9
99.9
99.9

93.6
90.2
73.1

50.1
16.5
0.0

0.0
0.0
0.0

0.0
0.0
0.0

γ0.5B

96.1
95.9
96.5

93.1
88.4
75.9

11.5
0.8
0.0

0.2
0.0
0.0

γ1B

95.8
96.8
96.1

63.4
39.0
0.8

12.4
0.3
0.0

γ2B

96.4
96.6
96.3

91.7
89.1
75.1

γ2.5B

96.7
96.4
97.1

10
N=15 γ0A γ0.5B γ1B γ2B γ2.5B

30

γ0A

94.9
94.9
95.4

81.8
74.0
40.0

24.1
2.8
0.0

0.0
0.0
0.0

0.0
0.0
0.0

γ0.5B

95.3
95.2
94.3

89.3
86.1
70.5

9.4
0.2
0.0

0.0
0.0
0.0

γ1B

95.1
95.3
95.8

59.7
30.2
0.4

8.0
0.2
0.0

γ2B

95.2
94.9
95.0

89.1
85.4
67.8

γ2.5B

95.7
94.8
95.0

Table 5.4: Acceptance rate in percentage of H0 of ILLPerm (left) and MILLPerm
(right). The samples are perturbed by an element of I0

(
SO(3)

)
.

5.2.3 Performances Including Pertubation by S = I0
(
SO(3)

)
×

Diff+[0, 1]

Design of the two-sample test in X/S simulations. In this simulation we
want to asses the influence of the temporal registration on the performance of
ILLPerm and MILLPerm. The used error processes are identical to the error
processes, which we used in the simulations with perturbation by I0

(
SO(3)

)
.

However, we additionally introduce a time warping of the sample η̃1, ..., η̃N i.e.,
we simulate the sample η̃1 ◦ φ, ..., η̃N ◦ φ, where

φ(t) = t+ 1[0.11,0.41](t)
e−

1
2

(
t−0.4

0.1

)2
0.1
√

2π
.

Before application of the ILLPerm the perturbation by φ and (P,Q) must be
estimated and removed. This is done as described in 4.0.16. In principle, we could
apply MILLPerm as described in Test 4.0.22 to deal with both the pertubation
by I0

(
SO(3)

)
and Diff+[0, 1] simultaneously. Estimating the the inverse of φ is,
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however, computationally costly and therefore we apply MILLPerm only to the
samples γ1, ..., γN and η̃1 ◦ φ ◦ φ̂−1, ..., η̃N ◦ φ ◦ φ̂−1, where φ̂−1 is estimated using
Preprocessing 4.0.16.

We perform M = 600 simulations with Mperm = 2000 and report as before the
acceptance rates.

Results of the two-sample test in X/S simulations. We observe the same
behavior, but less drastically, as in the case of the Hotelling T 2 test and the
OCST and and a pertubation from I0

(
SO(3)

)
. The type I error increases with

increasing sample size. However, recall that due to computational complexity
we can not simulate the version of MILLPerm, which takes also the variance of
the temporal alignment into account. We believe that the complete MILLPerm
would perform well also in the setup of this simulation. This motivates further
research.

10
N=15 γ0A γ0.5B γ1B γ2B

30

γ0A

91.8
86.7
76.8

76.5
63.7
18.8

20.3
2.0
0.0

0.0
0.0
0.0

γ0.5B

95.5
93.7
93.3

89.0
87.2
61.2

12.2
0.2
0.0

γ1B

93.5
94.3
92.8

60.8
24.2
0.4

γ2B

93.8
94.3
92.0

10
N=15 γ0A γ0.5B γ1B γ2B

30

γ0A

90.0
85.5
78.8

80.3
67.3
16.2

16.7
2.3
0.0

0.0
0.0
0.0

γ0.5B

95.8
95.5
92.2

88.2
85.2
56.8

9.8
0.3
0.0

γ1B

96.5
93.5
92.2

59.8
26.8
0.0

γ2B

93.7
94.5
90.5

Table 5.5: Acceptance rate in percentage of H0 of ILLPerm (left) and MILLPerm
correcting for I0

(
SO(3)

)
(right). The samples are perturbed by an element of S.



Chapter 6

Applications to Biomechanical Gait
Data

“The theory of induction is the despair of philosophy – and yet all our
activities are based upon it.”

– Alfred N. Whitehead

In this chapter we apply previously developed statistical procedures to real
gait data. The data within this thesis was collected in an experiment, designed
and carried out by Michael Pierrynowski and Jodi Gallant, McMaster University,
Canada. We organize this chapter as follows: first we will introduce the reader to
the experimental protocol in Section 6.1 such that we can connect the results of
our statistical analysis to the experimental setup. In Section 6.2 we explain the
data processing, since we could not use all of the recorded data, and preprocessing
steps like extraction of gait cycles are necessary. In Section 6.3 we discuss the
results of our statistical analysis of the data and draw conclusions, among others,
on identifiability of individuals (especially, after marker replacement), the influ-
ence of self-selected walking speeds and the effect of kneeling prior to recording
walking trials.

6.1 Experimental Setup

Volunteers. Eight volunteers participated in this study. They were purposely
selected to balance gender (male, female) and age (younger: 20-30 years; older:
50-60 years). Details are provided in Table 6.1. Volunteer selection was limited
to healthy adults who reported that they had no prior history of knee ligament or
meniscal injury, connective tissue disorders, or neurological disorders; addition-
ally, no other injuries to the lower limbs must have occurred within the previous
six months. The volunteers were asked not to perform vigorous activity resulting
in excessive fatigue or strain of the lower limb muscles and joints for at least 24
hours prior to testing. The volunteers were provided with a verbal and written
explanation of the study’s protocol. After this briefing, the volunteers were given
the option to continue with the study or to withdraw. Those wishing to continue
signed a combined Hospital and University Research Ethics Board approved con-
sent form of McMaster University, Canada.
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Table 6.1: volunteer characteristics

Volunteer Gender Age Mass Height ASIS distance Knee width
(years) (kg) (cm) (cm) (cm)

1 M 27 83 183 21.8 10.6
2 M 57 88 186 24.1 10.5
3 F 27 47 167 21.3 8.7
4 F 59 58 158 26.0 10.1
5 M 25 75 176 21.7 10.8
6 M 53 76 171 24.5 10.3
7 F 23 66 171 24.9 10.6
8 F 56 47 151 21.9 8.6

Lower extremity model and marker placement. Lower extremity anthro-
pometric data and the mass and height of the volunteers were collected. Each
volunteer’s pelvis, thighs, lower legs and feet were instrumented with 16 reflec-
tive markers according to the modified Helen Hayes marker set Davis et al. [1991]
described in the VCM protocol (Vicon, Oxford Metrics, London, UK). The VCM
protocol combined the anthropometric data and a static view of the 14 markers
plus four temporary markers placed on the medial sides of the knees and an-
kle axes while the volunteer quietly stood to construct a link-segment model of
the lower extremity. The anthropometric measures and the marker placements
were collected by the same technician for all volunteers during a four week inter-
val. The marker locations were collected using an eight camera kinematic data
acquisition system (Vicon, Oxford Metrics, London, UK) at 100 Hz.

General setup of a session. In each session, each volunteer had to complete
14 barefoot walking trials at a self-selected comfortable walking speed over an
11 m straight-line distance starting at opposite ends of the walkway each trial.
Directly, after collecting these trials they had to perform additional 14 trials at
a self-selected fast walking speed.

In the middle of the walkway three in-line force plates (AMTI, Watertown, MA)
were installed flush to the floor. The force plates provided the ground reaction
force applied to the floor by the volunteer’s feet and therefore provided knowledge
of when the volunteer’s right and left feet were in contact with the floor (force
threshold: 25 N). It was intended to use these data to extract single gait cycles
from trials.

Once before the sessions were collected, a minimum of five practice walks were
performed to ensure participants’ comfort.

Collected sessions. The experiment consisted of six different sessions named
A, B, C, D, E and F . After the completion of the 14 comfortable walking speed
trials and 14 fast walking speed trials of Sessions A, B, C and D, the eight lateral
markers were removed and the skin cleaned to remove knowledge of the location
of where these markers were placed to examine the sensitivity of knee orientation
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estimates on marker placement. Moreover, between the sessions the technician
processed previously collected data while the volunteer performed unrelated ac-
tivities such as reading or game playing for approximately 10 minutes. At the
start of the next sessions (B to E) the eight lateral and four VCM medial markers
were reapplied, the static standing trial collected, the VCM model constructed,
the four medial markers removed, and the walking trials collected.
Sessions A and B were designed to understand the effect of bad marker

placement. Some of the markers were purposely placed wrongly. Note that
the same wrong positioning of the markers was used for all evenly numbered
volunteers and a different wrong, but fixed, marker placement was used for all
odd numbered volunteers.
Sessions C and D were replicate sessions used to examine the sensitivity of

the data to marker placement and volunteer inter-session variations. Ideally, a
statistical analysis should be able to identify and distinguish volunteers between
sessions C and D.
Sessions E (kneeling) and F (prolonged kneeling) were similar to Ses-

sions A to D with the following two exceptions. Firstly, the markers were not
removed/replaced between these sessions. This was done to maximize the kneel-
ing effect by minimizing the delay between the sessions. Secondly, a kneeling
challenge was introduced just prior to recording the walking trials. The volunteer
knelt on a stiff foam mat for 15 minutes. This kneeling posture required that the
dorsal aspect of the volunteer’s feet were in contact with the floor surface, their
buttocks rested on their heels, and their torso held perpendicular to the ground.
Immediately following the 15 minute kneeling interval the volunteer walked about
3 m to perform the 28 walking trials. The delay from the end of kneeling to the
start of the first walking trials was between 20 and 50 seconds.

At the completion of Session F all of the markers were removed and the vol-
unteer thanked for her/his participation. A summary of session activities which
includes the marker placement/replacement and kneeling timing is provided in
Table 6.2.

6.2 Data Processing.

The constructed lower extremity model (VCM model) and the motions of the
markers were used by the Plug-in-Gait Software (Vicon, Oxford Metrics, Lon-
don, UK) to calculate and output orientations of the left and right lower leg
relative to the thigh, during each trial. This SO(3)-valued time series was pa-
rameterized using the Euler angle sequence y-x-z (see Appendix A.2), which is
the typical used sequence by biomechanists, see Grood and Suntay [1983]. Here
y denotes the flexion/extension about the thigh’s medial-lateral axis, x is the
adduction/abduction about an anterior-posterior axis and z gives axial rotation
about the lower leg’s longitudinal axis (see Figure 2).

Gait cycle extraction. The recorded SO(3)-valued time series of a walking
trial usually contains 2-3 gait cycles. Since consecutive gait cycles are dependent,
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we have to extract for each trial exactly one gait cycle in order to obtain inde-
pendent data. Here, we define a gait cycle as the time between two consecutive

Activity A B C D E F

volunteer consent obtained X - - - - -
8 non-lateral markers applied X - - - - -
8 lateral markers applied X X X X X -
4 medial markers applied X X X X X -
standing trial collected X X X X X -
4 medial markers removed X X X X X -
15 minute kneeling intervention - - - - X X
walking trials collected X X X X X X
8 lateral markers removed X X X X - X
8 non-lateral markers removed - - - - - X
volunteer thanked - - - - - X

Table 6.2: ordered data collection activities during each session (read column-
wise)
maximal flexion events (see Figure 3). These events correspond to mid-swing,
when the knee was maximally flexed. If possible, we used the gait cycle closest
to the middle of the walkway.

This atypical gait presentation is introduced to automatically select gait cycles.
Moreover, this definition does not produce inconsistencies as other definitions
we tried: Figure D.5 shows an example of automatically detected consecutive
heel contacts using the force plate data, which is a usually used definition of
a gait cycle. Around heel contacts this definition seems to produce too many
inconsistent gait cycles. A second approach using analytical defined heel contacts
via a local minimum of knee flexion (i.e., y-Euler angle) does produce similar
inconsistencies. For our data set our new definition was reliable in extracting
consistent gait cycles. This improvement might be due to the absence of external
forces (ground contact in case of heel contact) in the swing phase.

Although in each session 14 comfortable walking speed trials and 14 fast walk-
ing speed trials were collected, it was not possible to extract always a complete
properly recorded gait cycle. There are mainly two different sources of errors
leading to removal of a trial from the data set. Firstly, since the recording time
in each trial was manually initiated and terminated by the experimenter, it hap-
pened that some trials did not contain a full maximal flexion to maximal flexion
gait cycle, because the original aim was to obtain at least one heel contact to heel
contact gait cycle. Secondly, markers are sometimes hidden from camera sight for
a short time period due to other extremities. These missing marker positions are
usually predicted by an interpolation method. However, this method produced
sometimes unrealistic discontinuities, in which case we chose another gait cycle
within this trial. If this was not possible, we removed the complete trial from our
data set.
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6.3 Results of Statistical Analysis

In Chapter 4 we discussed different statistical tests and evaluated in Chapter 5
their performances. Since only MILLPerm (see Test 4.0.22) performs well under
perturbation by gait similarities, we base our analysis mainly on this permutation
test. Some questions, however, do not require the estimation of an aligning
gait similarity between the compared sessions. In these cases we use ILLPerm
(see Test 4.0.20), because our simulations showed that overall it has a slightly
better power in this scenario than MILLPerm. However, MILLPerm produces
no qualitative differences. The OCST will be used exclusively as a visualization
tool to cross check the results of the permutation tests and provide insights at
which time points the PEMs may differ, since its type I error rate decreased in
our simulations, if marker placement effects are present.

For ILLPerm and MILLPerm we always used Mperm = 20000 permutations.
In order to get an impression of the dependence of the p-values on the fact that
we do not use all possible permutations, our modus operandi is to apply the
permutation test ten times and report the mean p-value of these tests and its
standard deviation.

Additionally, we try to improve the readibility of the tables by introducing a
color code. We will report a significant p-value (α ≤ 0.05) in cyan and a highly
significant p-value (α ≤ 0.01) in red.

6.3.1 Walk Data

6.3.1.1 Session C vs D: Identification of Volunteers

In this section we apply the permutation tests (ILLPerm, MILLPerm) as well
as the OCST (see Test 4.0.17) to Sessions C and D and draw conclusion about
modeling biomechanical gait data and the effect of marker placement and self-
selected walking speeds. Note that there is no difference in the experimental
setup of these sessions other than slightly different self-selected walking speeds
and marker placements.

Sessionwise spatial alignment (SSA) necessary. The first important ob-
servation is that, although the markers where placed by a trained technican on
pre-specified identifiable locations of the lower limb, we cannot identify all vol-
unteers after marker replacement without any preprocessing. In fact, applying
the overlapping simultaneous 90%-confidence regions test (OCST) or the permu-
tation test (ILLPerm) to Sessions C and D without Preprocessing 4.0.16 results
in extremely low identification rates. Actually, we cannot identify any volunteer
using OCST (see Table 6.3(a)-(b)). Moreover, the identification rate for ILLPerm
using a significance level of α = 0.01 is also below 50% (see Table 6.3(c)-(d)).
Better identification rates for ILLPerm stem from the observation that it is a
feature of the ILLs that they automatically correct for the MP used to compute
the coordinate system of one part of the leg (see Proposition 3.1.4). Hence, if
the other coordinate system is only slightly changed by the corresponding MP,
we observe a small value of the ILL resulting in a relatively high p-value.
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Using the tests including SSA (i.e., Preprocessing 4.0.16 without estimating
temporal registration) does improve the identification rate drastically. The OCST
only does reject the equality of means for the right side for volunteer 3 and 5
after we corrected the confidence sets by estimated isometries which spatially
align the compared sessions. However, visual inspection of the data reveals that
especially for volunteer 3 the rejection could also stem from a STW effect (see
Figures D.6 and D.7 in Appendix D). MILLPerm (we used Test 4.0.17, but always
with φ̂(t) = t for all t ∈ I) does also improve the identification rate. Here the
improvement is not as drastic as for the OCST and it is not at all satisfactory
for identification of volunteers.

Note that we do not have any false positives for the OCST, ILLPerm and
MILLPerm in our tested scenarios and therefore we do not report these results
in our tables.

(a) raw data

Vol L R
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0

(b) with SSA

Vol L R
1 X X
2 X X
3 X 0
4 X X
5 X 0
6 X X
7 X X
8 X X

(c) raw data

Vol L R
1 0.6± 0.1 2.3± 0.1
2 0.0± 0.0 0.3± 0.0
3 2.7± 0.1 0.0± 0.0
4 0.1± 0.0 0.1± 0.0
5 0.0± 0.0 0.1± 0.0
6 6.5± 0.2 29.2± 0.2
7 6.8± 0.2 1.0± 0.2
8 1.6± 0.1 1.8± 0.1

(d) with SSA

Vol L R
1 3.2± 0.1 5.8± 0.2
2 0.0± 0.0 0.8± 0.1
3 5.6± 0.1 0.0± 0.0
4 4.1± 0.2 0.2± 0.0
5 0.0± 0.0 0.8± 0.0
6 20.4± 0.2 38.6± 0.4
7 55.8± 0.4 10.3± 0.3
8 10.3± 0.2 57.4± 0.5

Table 6.3: walk, Sessions C vs D, L=left knee, R=right knee. (a)-(b): OCST with
β = 0.9. X = accepted, 0 = rejected. (c): p-values in [%] of ILLPerm applied to
the data without spatial alignment. (d): p-values in [%] of MILLPerm.

The influence of sessionwise time warping (STW). The results for the
OCST are satisfactory for identification. However, we have seen in our simulations
that this test does not perform as well as MILLPerm. The latter still detects after

C vs D: SSA/STW
Vol L R
1 23.6± 0.3 48.0± 0.4
2 39.2± 0.4 5.4± 0.2
3 66.3± 0.3 5.1± 0.1
4 53.8± 0.2 7.8± 0.2
5 6.2± 0.1 18.5± 0.3
6 53.7± 0.4 64.1± 0.5
7 97.2± 0.1 66.7± 0.3
8 60.7± 0.2 89.2± 0.3

Table 6.4: walk, p-values in
[%] of MILLPerm with stan-
dard deviation.

SSA differences between session C and D. Our
suspicion is that these differences are due to STW
effects. In order to remove them we estimate the
STW effect between these sessions using Prepro-
cessing 4.0.16. Afterwards we apply MILLPerm
to the temporally registered sessions without tak-
ing the variance of the STW estimator into ac-
count. We decided to do it this way, since esti-
mation of the STW is sensitive to the grid sizes
and discretization and thus extremely time con-
suming, if performed in each permutation step.
Moreover, our simulation suggests that for small
sample sizes the type I error does not decrease
dramatically, if we treat STW only as a preprocessing step.

Now, MILLPerm performs very well. We can identify all eight volunteers after
removing SSA and STW with MILLPerm at a significance level α = 0.01 and
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α = 0.05. Moreover, note that the p-values of volunteer 2 and 3 on the right side
are close to 5%. More precisely 5% is within the 2σ region, which is expected
since approximatively one out of 16 should have a p-value less than 5% under the
null hypothesis. Note that all p-values for tests between different volunteers are
zero.

We also mention that the OCST does slightly improve after STW. But we still
have a rejection of the null hypothesis on the right side for volunteer 4, whom
we would not have rejected without STW. However, the PESMs of these sessions
visually look temporally better aligned (see Figures D.9 and D.10). Moreover,
note that the null hypothesis for volunteer 3 is not rejected anymore, which by
visual inspection could very well have been an artifacts of STW (see Figures
D.7 and D.8). These are –additionally to the results of MILLPerm– reasonable
arguments supporting the use of STW.

Individual time warping. Another question is whether there is an influence
of slightly different speeds between the trials of a session. In order to incorporate
this possibility we include as a preprocessing step the estimation of an ITW effect

C vs D: SSA/STW/ITW
Vol L R
1 0.0± 0.0 0.0± 0.0
2 0.0± 0.0 0.0± 0.0
3 0.1± 0.0 0.0± 0.0
4 1.1± 0.1 0.0± 0.0
5 0.0± 0.0 0.0± 0.0
6 1.1± 0.1 0.5± 0.1
7 32.6± 0.2 2.5± 0.1
8 4.8± 0.2 6.5± 0.2

Table 6.5: walk, p-values in
[%] of MILLPerm with stan-
dard deviation.

as presented in Section 3.1.1. Afterwards we
again apply MILLPerm. Of course, in order to
appropriately take this preprocessing step into
account one would also have to include an esti-
mation step into the permutation test, but this is
computationally not feasible. The results given
in Table 6.5 are somewhat surprising, since we
would reject the null hypothesis of equal PEMs
for the same volunteer in 62.5% of the cases using
0.01 as our critical value. There are two possi-
ble explanations for this observation. First, if we
assume that ITW is an effect, which has to be
taken into account for comparison of PEMs, we
have to conclude that it is not possible to iden-

tify volunteers, since the human gait pattern varies significantly, even if there
was no intervention between the sessions. In this case there is not much hope to
detect differences in the gait pattern due to interventions, since these differences
could also be due to the variation of the gait pattern in normal gait. However,
our interpretation is that ITW should not be used to model human gait. The
low identification rates are then due to artificial removal of natural variance of
the data and thereby emphasizing differences existing only between the particular
samples, but not between the populations. Figures D.12 and D.13 visualize this
argument.
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Individual spatial alignment (ISA). The last question about modeling hu-
man gait data inspired by the data at hand is, whether slightly different walking

C vs D: SSA/ISA/STW
Vol L R
1 23.1± 0.2 47.8± 0.2
2 39.1± 0.4 5.2± 0.1
3 66.4± 0.3 5.1± 0.1
4 53.9± 0.3 7.9± 0.2
5 6.2± 0.2 18.4± 0.1
6 53.5± 0.4 64.5± 0.3
7 97.1± 0.1 66.7± 0.3
8 60.7± 0.4 89.1± 0.2

Table 6.6: walk, p-values in
[%] of MILLPerm with stan-
dard deviation.

directions with respect to the camera system
do influence the testing procedure (see Remark
1.1.3). Since testing after removing SSA and
STW does well and since the volunteers had to
walk between two prescribed lines we expect that
this effect is negligible. Indeed, this is the case
as shown in Table 6.6. Additionally, note that
the p-values of MILLPerm using only SSA and
STW are mostly within the 2σ regions of the p-
values of MILLPerm including also ISA and vice
versa. This certainly suggests that SSA does not
need to be modeled in experiments with a sim-
ilar design as the one we study here, where the
positioning of the camera is stable with respect to the walking direction.

Conclusions. Our statistical analysis suggests that, if one wants to compare
human gait data of two volunteers stemming from different sessions, it is necessary
to include STW and SSA in order to remove unwanted differences due to slightly
different marker placements and self-selected walking speeds. On this basis we
cannot reject the null hypothesis of equal PEMs of Sessions C and D for the same
volunteer using MILLPerm, whereas between volunteer comparison always rejects
this null hypothesis. However, it would be interesting to verify these findings on
a larger population than available in this particular study. Furthermore, it would
be desirable to have a higher sample size per volunteer, since our simulations (see
Table 5.5) suggests, that for small sample sizes of N ≈ 10 -15 the type II error
for small deviations in the PEM is relatively high, but decreases quickly, if the
sample size grows.

Last but not least, we recommend not to do individual time warping, if the self-
selected walking speeds are similar, since a slightly different timing between trials
of a sessions seems to be an expression of the natural variability of human gait.
Lastly, we observed that under laboratory conditions the effect of the walking
direction with respect to the camera system is negligible.
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6.3.1.2 Session E and F: The Influence of Kneeling

The observation in the previous section that it is possible to reliably identify
volunteers in different sessions is a necessary preliminary step in order to de-
tect changes in human gait after the kneeling task. Hence, we will now apply
MILLPerm with STW preprocessing and OCST with Preprocessing 4.0.16 to ses-
sions E and F . Recall that there was a kneeling task of approximatively 15
minutes before Session E and Session F and that the markers were not replaced
between these sessions.

The effect of kneeling. In order to detect changes in the gait pattern of
our volunteers due to the kneeling task we use MILLPerm and the OCST to
find differences between Session C/D and E for the short kneeling and be-
tween Session C/D and F for prolonged kneeling respectively. The results of
MILLPerm are summarized in Table 6.8, whereas the results of the OCST are
given in Table 6.7. Both tests agree that we have differences in the walking
pattern for volunteer 2, 4 and 6 after kneeling. In fact, using MILLPerm these
differences are often highly significant (α ≤ 0.01). Moreover, volunteer 7 has
various sessions: SSA/STW
Vol EC ED FC FD

L R L R L R L R
1 X 0 X X 0 0 0 X
2 0 0 0 0 0 0 0 0
3 X X X 0 0 X X 0
4 X 0 X 0 0 0 0 0
5 X X X X X X X X
6 0 0 0 X 0 0 0 0
7 X X 0 X X X X X
8 X X X 0 X X X 0

Table 6.7: walk, rejection/accep-
tance using OCST with β = 0.9.

a mostly consistent significant kneeling effect
(α ≤ 0.05) detected by MILLPerm. How-
ever, these differences are not detected by the
OCST. Inspection of the data reveals, that es-
pecially in Session F the variance of this vol-
unteer is extremely high (see Figure D.14 and
D.15). This is probably due to the reported
discomfort of volunteer 7, while recording the
data after the prolonged kneeling task. Since

for small sample sizes the simultaneous confidence regions usually include most
of the sample curves, it is not surprising that a difference in the PEM due to
kneeling using the OCST cannot be detected in the case of high variances.

various sessions: SSA/STW

Vol E vs C E vs D F vs C F vs D
L R L R L R L R

1 20.4± 0.3 22.5± 0.3 15.8± 0.3 86.4± 0.2 2.9± 0.1 3.3± 0.1 12.7± 0.2 24.9± 0.4
2 4.6± 0.1 1.2± 0.1 0.2± 0.0 0.7± 0.1 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
3 87.2± 0.3 3.8± 0.2 30.7± 0.3 0.2± 0.0 19.1± 0.2 6.7± 0.1 31.1± 0.2 4.9± 0.1
4 0.1± 0.0 0.0± 0.0 0.1± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
5 21.4± 0.4 22.7± 0.3 73.5± 0.4 39.5± 0.6 55.9± 0.3 10.8± 0.1 35.5± 0.3 48.7± 0.3
6 0.0± 0.0 2.7± 0.1 0.0± 0.0 0.6± 0.1 1.0± 0.1 1.0± 0.1 0.8± 0.1 0.3± 0.0
7 0.0± 0.0 2.3± 0.1 0.0± 0.0 0.8± 0.1 2.7± 0.1 6.4± 0.1 4.2± 0.1 3.7± 0.1
8 46.7± 0.5 4.0± 0.1 70.5± 0.3 0.3± 0.0 10.2± 0.3 3.1± 0.1 14.9± 0.2 1.3± 0.1

Table 6.8: walk, p-values in [%] of MILLPerm with standard deviation.

Volunteer 3 and 8 seem to have a kneeling effect only on the right limb, whereas
drawing any conclusions about a kneeling effect for volunteer 1 is difficult. For this
volunteer both tests agree that there is a kneeling effect between Session F and
C, but to be consistent this effect should also be visible between Session F and
D, which is not consistently the case. Interestingly, the only volunteer seemingly
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not at all affected by the kneeling task is volunteer 5, who was reported to be a
plumber whose occupation required that he work on his knees frequently..

The OCST allows to localize the time points, where the two confidence regions
do not overlap and thereby indicates time regions, where significant differences
may have appeared. It is noteworthy that often this differences seem to be located
around heel contact and toe off (i.e., in the transition phase between swing and
stance phase). Examples showing localizations of differences are given in Figures
D.16, D.17, D.18 and D.19. Moreover, Tables C.10 and C.10 summarize these
localizations for all volunteers.

Last but not least, we mention that the p-values of MILLPerm between vol-
unteers are always zero, which indicates that within-individual effects are much
smaller than between-individual effects.

Short kneeling versus prolonged kneeling. After we compared Sessions E
and F , which are recorded after a kneeling intervention, with Sessions C and D

E vs F: STW
Vol L R
1 43.2± 0.5 66.8± 0.3
2 16.6± 0.2 12.9± 0.3
3 85.5± 0.2 61.7± 0.4
4 82.6± 0.2 20.3± 0.4
5 84.4± 0.2 83.5± 0.2
6 65.3± 0.3 64.7± 0.2
7 50.3± 0.3 69.4± 0.2
8 94.8± 0.2 31.6± 0.2

Table 6.9: walk, p-values in [%]
of ILLPerm with standard de-
viation.

consisting of trajectories of normal gait, we still
have to answer the question, whether there is an
effect of prolonged kneeling. Note that between
Session E and F the markers were not replaced.
Hence we expect that we do not need to take SSA
into account. This is also suggested by ILLPerm,
where we only corrected for STW this time (see
Table 6.9). However, inspection of the data and
the OCST suggest that a MP effect is also visi-
ble between these sessions, especially for the left
limb of volunteer 2 (see Figure D.20). A possible
explanation is that the markers stayed attached
to the legs during the kneeling task. Thus, small
perturbations of their positions may have occurred due to stretching of the skin.
Hence, we propose to use MILLPerm with a STW preprocessing even, if the
markers between sessions where not replaced. Again note that it is not peculiar
that ILLPerm may not detect these effects due to the previously discussed partial
invariance of ILLs. The results of MILLPerm do not change the observation from
ILLPerm, that we are not able to detect a significant difference between kneeling
and prolonged kneeling (see Table C.6).

Conclusions. In a nutshell our analysis of the kneeling intervention often does
detect significant differences between gait patterns of volunteers before and after
kneeling. However, there is also a volunteer, who seems to be unaffected by this
task implying that the influence of kneeling on the gait pattern may depend on
the individual. Using the OCST we can localize the transition between swing and
stance phase as a possible candidate, where differences between the PEMs occur.

An effect due to prolonged kneeling (i.e., testing Session E against F ), is not
detectable and, in fact, visual inspection of the data also seems not to support
such a hypothesis.

Surprisingly, we also observed and discussed that due to the experimental setup
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SSA is even necessary, if the markers are not replaced between sessions. Therefore
we advice to use SSA before any comparison of human gait data with a similar
experimental designs.

Lastly, we mention that, although it is from a statistical point of view interest-
ing to have more trials within a session, it is in the case of studying interventions
like kneeling expected that effects due to the intervention slowly fade away during
sequential trials (see also the upcoming Section 6.3.2). This is a major challenge
for any analysis trying to detect these effects.

6.3.2 Fast Data

As described in Section 6.1 directly after each walking speed session there were
sessions collected with a self-selected fast walking speed. We will not repeat using
this data the detailed modeling discussion given previously, since the conclusions

various sessions: SSA/STW

Vol C vs D E vs F
L R L R

1 69.4± 0.4 10.4± 0.4 69.6± 0.2 10.9± 0.2
2 33.9± 0.3 10.8± 0.2 95.5± 0.1 88.4± 0.2
3 99.4± 0.1 50.8± 0.3 58.8± 0.2 85.3± 0.2
4 79.2± 0.3 21.1± 0.2 80.0± 0.3 85.2± 0.2
5 67.8± 0.4 41.3± 0.4 98.9± 0.0 90.6± 0.2
6 32.0± 0.3 95.9± 0.1 33.7± 0.3 98.4± 0.0
7 97.3± 0.1 77.9± 0.4 13.1± 0.3 1.7± 0.1
8 43.9± 0.3 98.1± 0.1 57.8± 0.3 87.9± 0.3

Table 6.10: fast, p-values in [%] of MILLPerm with
standard deviation.

using this data would be
the same. Therefore, we
shorten this section and
focus only on the results
using MILLPerm together
with the STW preprocess-
ing step.

First, we observe that
we are again able to de-
tect all eight volunteers
using MILLPerm (see Ta-
ble 6.10). Due to record-
ing of the fast walk data

directly after the walk session, we expect that the kneeling effect may have slowly
faded away resulting in less significant differences in the fast walk data between
the sessions recorded after the kneeling task (E and F ) and the control sessions
(C and D). A comparison of Table 6.11 and Table 6.8 reveals that we have 27
highly significant and 40 significant p-values between kneeling and control sessions
in the walk data, whereas we only have 14 highly significant and 25 significant
p-values for the fast walk data. This comparison, however, has to be taken with
care, since the observed differences could also be for example, due to different
speeds. It is at least imaginable, that a higher speed may alter the individual
gait pattern and/or the effect of kneeling on the gait pattern may depend on the
walking speed. The latter hypothesis is mildly supported by the observation that
volunteer 1 and volunteer 8 have some significant p-values, which are not consis-
tently observed in walk and fast walk data simultaneously. However, this could
also be a random effect and in order to answer this question another experiment
specifically targeting this question has to be designed.
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various sessions: SSA/STW

Vol E vs C E vs D F vs C F vs D
L R L R L R L R

1 23.3± 0.4 0.4± 0.0 3.7± 0.2 11.2± 0.2 14.6± 0.2 6.1± 0.1 7.8± 0.1 8.5± 0.2
2 26.1± 0.4 6.1± 0.2 2.1± 0.1 1.6± 0.1 20.3± 0.3 7.8± 0.2 0.9± 0.1 3.6± 0.1
3 96.2± 0.1 41.8± 0.5 99.7± 0.0 77.2± 0.3 19.9± 0.1 14.2± 0.3 35.6± 0.4 5.6± 0.1
4 0.0± 0.0 7.2± 0.2 0.0± 0.0 1.0± 0.1 0.0± 0.0 18.1± 0.2 0.0± 0.0 5.5± 0.1
5 47.3± 0.3 58.6± 0.5 80.7± 0.2 40.7± 0.3 35.9± 0.3 12.7± 0.2 74.7± 0.3 4.1± 0.1
6 0.1± 0.0 3.1± 0.1 0.3± 0.0 4.1± 0.2 0.1± 0.0 0.3± 0.0 0.1± 0.0 0.3± 0.0
7 2.9± 0.1 17.4± 0.4 8.8± 0.2 2.8± 0.1 2.4± 0.1 48.3± 0.4 0.7± 0.1 25.6± 0.3
8 7.9± 0.2 24.7± 0.4 39.1± 0.2 12.4± 0.2 2.4± 0.0 33.0± 0.3 17.7± 0.2 25.0± 0.4

Table 6.11: fast, p-values in [%] of MILLPerm with standard deviation.

6.3.3 Walk vs Fast Data

In this section we explore the influence of the walking speed on the gait pattern.
For this purpose we compare Sessions C andD of the walk and fast walk data. We

various sessions: SSA/STW

Vol Walk C vs Fast D Fast C vs Walk F
L R L R

1 0.0± 0.0 0.5± 0.1 0.0± 0.0 0.0± 0.0
2 1.4± 0.1 0.0± 0.0 0.0± 0.0 0.0± 0.0
3 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
4 12.5± 0.2 0.3± 0.1 0.0± 0.0 0.0± 0.0
5 0.0± 0.0 0.1± 0.4 0.0± 0.0 0.0± 0.0
6 0.0± 0.0 0.1± 0.1 0.0± 0.0 0.0± 0.0
7 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
8 1.4± 0.1 0.1± 0.0 0.0± 0.0 0.0± 0.0

Table 6.12: walk versus fast, p-values in [%] of
MILLPerm with standard deviation.

study this question again us-
ing MILLPerm with STW
preprocessing. The results of
this comparison are reported
in Table 6.12. With the ex-
ception of volunteer 4 the gait
patterns of walk and fast walk
of a volunteer are always sig-
nificantly different. Therefore
it is possible that also the
kneeling task has a different
effect, if the speed changes.
Moreover, the OCST and vi-
sual inspection of the data suggests that the differences between the sessions can
often be located in the stance phase (see Figures D.21 and D.22).

The mean and standard deviation of the recorded frames of a volunteer for all
sessions are reported in Table C.8 and C.9.

6.3.4 Session A and B: Improper Marker Placement

Application of MILLPerm to the sessions with on purpose badly placed markers
(Sessions A and B) reveals that we only rarely accept the null hypothesis of equal
PEMs (see Table C.7). This could have two explanations: firstly, it is not evident,
how bad marker placements, which are not according to the protocol of the mea-
surement device, influence the output of the proprietary software. Secondly, due
to the chosen positioning of the markers, the high rejection rate could be due to
soft tissue effects, since it is known that these effects reduce the reproducibility of
gait patterns (among others, see Leardini et al. [2005] and Taylor et al. [2005b]).



Future Perspectives

Questions concerning rGP models. From a purely mathematical point of
view there exists an interesting open question about rGP models. What is the
pointwise Fréchet mean of an rGP and is it always unique and identical to the
center curve of the PEM? Numerical computations of the Fréchet functional and
some analytic calculations suggests that the uniqueness may depend on the vari-
ance matrix of the generating Gaussian process in the sense that if the eigenvalues
are large uniqueness fails to hold. This could be related to the observation in Hotz
and Huckemann [2015] that uniqueness of the Fréchet mean of the circle depends
on the value of the density at the antipodal point of critical values of the Fréchet
functional.

Another important question also for applications is the following: is it possible
to improve Corollary 2.1.11? It would be desirable to prove that given an rGP
γ with generating Gaussian process A there exists N ′ such that the PESM of a
session (γ1, ..., γN) following γ is almost surely unique for all N > N ′. In order
to prove this one needs to show that

P

(
rank

(
N∑
n=1

Exp
(
ι
(
Ant
)))

> 1 for all t ∈ [0, 1]

)
= 1 .

Especially, this result would imply that the PESM is almost surely a differentiable
curve in SO(3).

Hotelling process on SO(3). There exists a open mathematical questions,
which would be nice to answer. Are the Assumptions (GKF 1 )–(GKF 4 ) (see
Section 2.2) sufficient in order that the process Hotelling process on SO(3) is
always well-defined for all t ∈ I = [0, 1]. To the best of our knowledge, the
corresponding result for the Gaussian case and Hotelling T 2 processes seems to
be open too. In applications, this is assumed to hold true in the literature (e.g.,
Taylor and Worsley [2008], Pataky et al. [2013]). However, it seems not to be
trivial, since a special case including among other assumptions isotropicity of the
Gaussian processes is proved in Cao et al. [1999].

ILLs and Diff+[0, 1]-invariant estimators of the MP effect. Methodologi-
cal there is a drawback to the numerical simple approach of estimating (Q,P ) ∈
I0

(
SO(3)

)
using the loss L2 (viz., the estimator (3.29)). To see this assume that

we want to match curves γ, η ∈ X with respect to the group S (i.e., finding
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(ψ, φ) ∈ S such that ψ ◦γ ◦φ is close to η) as is required for our gait data in order
to remove the different walking speeds and marker placements between sessions.

Now, assume the perturbing element φ ∈ Diff+[0, 1] is known. Then we obtain
that in general

Π

(
argmin
R∈SO(4)

L2(Rγ̃ ◦ φ, η̃)

)
6= Π

(
argmin
R∈SO(4)

L2(Rη̃ ◦ φ−1, γ̃)

)−1

, (6.1)

since an application of the chain rule yields that in general

L2(γ̃ ◦ φ, η̃ ◦ φ) 6= L2(γ̃, η̃)

for φ ∈ Diff+[0, 1]. Note that we call η̃ on the left hand side of (6.1) the reference
curve, since γ̃ is rotated and time scaled such that it matches η̃. Then, however,
equation (6.1) shows that the element ψ ∈ I0

(
SO(3)

)
matching γ, η ∈ X using

the loss L2 depends in general on the choice, which of the two curve we use as
the reference curve. This is of course an unfavorable property.

Circumventing this dependence requires a loss L, which is not only symmetric
and I0

(
SO(3)

)
-invariant, but also Diff+[0, 1]-invariant, since this implies L(Rγ ◦

φ, η) = L(R−1η ◦ φ−1, γ). Notably, it is possible to obtain a estimators for ψ =
(Q,P ) ∈ I0

(
SO(3)

)
using the ILLs (see Definition 3.1.1), which are S-invariant

by Theorem 3.1.3 and hence do not suffer from the explained methodological
shortcoming. To obtain these estimators note that by Theorem 3.1.4 we obtain

min
P,Q∈SO(3)

δI,1
(
PγQT , η

)
= min

P∈SO(3)
δI,1
(
Pγ, η

)
min

P,Q∈SO(3)
δI,2
(
PγQT , η

)
= min

P∈SO(3)
δI,2
(
γQT , η

)
and hence estimators for the spatially aligning rotations Q and P are

P̂ILL ∈ argmin
P∈SO(3)

δI,1
(
Pγ, η

)
Q̂ILL ∈ argmin

Q∈SO(3)

δI,2
(
γQT , η

)
,

(6.2)

Interestingly, since P and Q can be estimated independently this reduces the
problem of minimization over SO(3)×SO(3) to two minimization problems over
SO(3).

Since we could not prove consistency results for the estimators (6.2) and do not
have a simple algortihm to solve the minimization problems, we used the loss L2 in
our application despite this rather important observation. Future work, however,
should include a closer investigation of this estimators and further properties of
the Diff+[0, 1]-invariant ILLs, for example, whether always minimizing diffeomor-
phisms between two curves matched by an ILL exist (see e.g., Lahiri et al. [2015]
and Bruveris [2015] in the framework of Srivastava et al. [2011b]) Moreover, a
comparison of the ILL method with the TSRVF framework is desirable. Lastly,
one could ask whether it is possible to extend the ILL framework to general
manifolds?
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Localizing differences between PEMs. Can we replace the OCST by si-
multaneuos confidence sets for the difference of PEMs? Does such a procedure
perform better than the OCST, if time registration and spatial alignment is nec-
essary?

Given two sessions (γ1, ..., γN) and (η1, ..., ηN) of rGPs γ and η with center
curves γ0, η0 ∈ X and generating Gaussian processes A,B one possibility is to
try to construct sets Vβ(t) ⊂ SO(3) for t ∈ I = [0, 1] and β ∈ (0, 1) such that

P
(
γ0(t)Tη0(t) ∈ Vβ(t) for all t ∈ I

)
= β .

In principal this can be done following the same ideas as for the construction of
SCS for the PEM in rGP models, since

γηt = Exp
(
− ι ◦ A

)
γT0 η0Exp

(
ι ◦B

)
≈ γT0 η0Exp

(
ι ◦ Z

)
with an Gaussian process Z. Here we used Theorem 1.3.8 under the concentrated
error assumption. The main problem is to obtain independent samples of Z in
order to apply the Gaussian kinematic formula to estimate a critical value. A
possibility, if N = M , could be to use the residual processes

Zn = ι−1 ◦ L
(
η̂TN γ̂Nγnη

T
n

)
,

where γ̂n, η̂ are a choice of PESMs. However, its validity and performance must
be investigated further.

Statistics of temporal registration. In our simulations we did use only
MILLPerm correcting for the variance in the spatial alignment procedure. It
would be desirable to simulate the performance of MILLPerm including also the
variation of temporal registration, since the version without temporal registra-
tion worked very well in the simulations including only marker placement effects.
The problem here is mainly computational and faster implementations or im-
provements of the curve matching algorithm given in Section 3.1.2 could make
simulations feasible.

Independent of the MILLPerm framework it is desirable to further investigate,
how preprocessing influence statistical testing and find general remedies for the –
at least in our simulations observed– phenomenon of increasing type I error rates,
if preprocessing techniques are applied prior to testing.

Biomechanical questions. First of all, it would be desirable to apply the
statistical methodologies presented in this thesis to data sets containing more
volunteers. Moreover, there are plenty of questions about human gait, which
could be explored, for example, does the kneeling effect depend on the chosen
speed or is there a model for the effect of kneeling on the gait pattern? For speed
related questions, hypothesis on the influence of speed on the gait pattern can
be stated easily by describing the change of the flexion pattern of the knee in
the stance phase. Unfortunately, for kneeling effects in the analyzed data there
does not exist such a simple visible change of the gait pattern across volunteers.
Hence, further research is necessary to explore this question.
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A.1 Properties of the Rotation Group

In what follows we collect some useful facts about the compact, connected Lie
group of three-dimensional rotations SO(3), which are all well-known in the lit-
erature. Its Lie algebra so(3) = {A ∈ R3×3 : AT = −A} consists of 3 × 3 skew
symmetric matrices. It is a three-dimensional linear subspace of all 3×3 matrices
and thus carries the natural structure of R3. Let ‖ · ‖ denote the Euclidean norm
on R3 and let us endow the space of 3× 3 matrices with the Frobenius norm

‖A‖F =
1

2

√
tr(AAT) . (A.1)

We define the map ι : R3 → so(3) defined by

ι(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 , for a = (a1, a2, a3)T ∈ R3 . (A.2)

It follows at once by simple calculations that this map is an isometry.

Proposition A.1.1.

ι : (R3, ‖ · ‖)→ (so(3), ‖ · ‖F )

is an isometry

The isometry ι satisfies some useful properties.

Proposition A.1.2. Let a, b ∈ R3 and Q ∈ SO(3). Then

(i) ι(a)ι(b) = baT − aT bI3×3

(ii) ι(a)2 = aaT − ‖a‖2I3×3

(iii) ι(a)b = a× b

(iv) Qι(a)QT = ι(Qa)

Proof. (i)-(iii): These are simple matrix computation. (iv): Note that the cross
product satisfies R(a× b) = Ra× Rb for all a, b ∈ R3 and all R ∈ SO(3). Thus,
we have by (iii) for all b ∈ R3

ι(a)b = QTQ(a× b) = QT
(
Qa×Qb

)
= QT ι(Qa)Qb ,

which yields the claim.

The Lie exponential of SO(3) is given by the usual matrix exponential

Exp : so(3)→ SO(3) , A 7→
∞∑
i=1

Ai

i!
(A.3)



A.1 Properties of the Rotation Group 107

which, in fact, is a surjection (see Price [1977, Corollary 4.3.5, p.96]). Using that
QTQ = I3×3, where I3×3 denotes the identity matrix, we obtain the naturality of
the Lie exponential i.e.,

QExp(A)QT = Exp(QAQT ) (A.4)

for all A ∈ so(3) and Q ∈ SO(3). Due to skew symmetry of A ∈ so(3) the matrix
exponential simplifies to

Exp(A) = I3×3 +
sin(‖A‖F )

‖A‖F
A+

1− cos(‖A‖F )

‖A‖2
F

A2 , (A.5)

which is known as the Rodriguez formula (see Chirikjian and Kyatkin [2000]),
and it yields that

Exp(A) = Exp
(
A+ 2πkA/‖A‖F

)
for all A ∈ so(3), k ∈ Z . (A.6)

Hence, the inverse Log, called the Lie logarithm, is well-defined on

Q0 =
{
Q ∈ SO(3)

∣∣ tr
(
Q
)
> −1

}
(A.7)

and maps Q0 onto
U0 =

{
A ∈ so(3)

∣∣ ‖A‖F < π
}
.

For Q ∈ Q0 this inverse is explicitly given by

Log(Q) =
1

2sinc
(
Θ(Q)

)(Q−QT
)
, where Θ(Q) = acos

(
tr(Q)− 1

2

)
(A.8)

as shown in Chirikjian and Kyatkin [2000, p. 121]. The set

CI3×3 = SO(3)\Q0 =
{
Q ∈ SO(3)

∣∣ tr(Q) = −1
}

is called the cut locus of the identity matrix I3×3. Using the Lie logarithm we
can define a distance on SO(3) as follows

dSO(3)(P,Q) =

{∥∥Log
(
PQT

)∥∥
F
, if PQT /∈ CI3×3

π else
(A.9)

There is a useful relation between this intrinsic distance and the Frobenius dis-
tance.

Proposition A.1.3. Let P,Q ∈ SO(3) be arbitrary. Then

‖P −Q‖F = 2
√

2 sin
(
dSO(3)(P,Q)/2

)
(A.10)

Proof. See for example Stanfill et al. [2013, Section 2.2. & Supplementary].
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A.2 Euler and Cardan angles
In the biomechanics community rotations are usually represented using Euler
angles or Cardan angles. Euler angles represent a rotation by factorizing it into
a series of three sequential rotations Rx(α), Ry(β), Rz(υ) around the canonical
coordinate axes given by

Rx(α) =

1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)


Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)


Rz(υ) =

 cos(υ) sin(υ) 0
− sin(υ) cos(υ) 0

0 0 1

 .

Any sequence of these three rotations such that no two consecutive rotations are
around the same axis can be used as a possible Euler angle convention. There
are twelve such sets in total – the first six use all three coordinate axes and are
sometimes known as Cardan angles: x-y-z, x-z-y, z-x-y, z-y-x, y-z-x and y-x-z,
while the other six have its first and last rotations about the same axis: x-y-x,
y-z-y, z-x-z, x-z-x, y-x-y, z-y-z.

In our biomechanical application the y-x-z convention is used. Hence, a rota-
tions R is factorized into

R = Rz(υ)Rx(α)Ry(β)

=

c(υ)c(β)− s(υ)s(α)s(β) s(υ)c(α) c(υ)s(β)− s(υ)s(α)c(β)
s(υ)c(β)− c(υ)s(α)s(β) c(υ)c(α) −s(υ)s(β) + c(υ)s(α)c(β)

−c(α)s(β) s(α) c(α)c(β)

 .

Here, we used sin(x) = s(x) and cos(x) = c(x) for all x ∈ R. Note that this
factorization is not always unique. This phenomenon is known as gimbal lock
and appears for all Euler conventions. From a differential geometry point of view
it is a realization of the fact, that there exists no global chart of SO(3).
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In this appendix we will give some technical lemmas and theorems, which we
used in the thesis. If they are well-known, it will be clarified before the result is
stated and proved. Otherwise the results are lemmas, which we did not include
directly into the thesis for the sake of a clear presentation.

Lemma B.0.1. Let γ follow a rGP model. Then for each t the measure on SO(3)
induced by the random variable γ(t) is absolutely continuous with respect to the
volume measure induced by the biinvariant Riemannian metric of SO(3).

Proof. We have to show that any set of measure zero with respect to the volume
measure volg of SO(3) has measure zero with respect to Pγ(t). Let D ⊂ SO(3) be
a set with volg (D) = 0. By definition of the volume measure there is a set

D ⊂ ι−1 ◦ Logγ0(t)

(
SO(3)\Cγ0(t)

)
⊂ R3

with B Lebesgue measure zero such that γ0(t)Exp(ι ◦D) = D\Cγ0(t), where Cγ0(t)

denotes the cut locus of γ0(t). Now note that the pre-image Exp−1(Exp(ι ◦D))
is the union of countable many null sets with respect to the Lebesgue measure
and hence a null set with respect to Pγ(t), since this measure has a density with
respect to the Lebesgue measure. If D0 = Cγ(t) ∩ D 6= ∅, then again Exp−1(D0)
is a countable union of sets with Lebesgue measure zero. Thus Pγ(t)(D) = 0.

Lemma B.0.2. Suppose that the distribution of a random variable X ∈ R3 with
existing first moment E[X] is even i.e. that P{X ∈ M} = P{−X ∈ M} for
all Borel sets M ⊂ R3 and E [cos ‖X‖] > 0. Then E

[
Exp(ι ◦ X)

]
is symmetric

positive definite.

Proof. With the Rodriguez formula (A.5) we have

Exp(ι ◦X) = I3×3 + ι ◦X sinc‖X‖+ (ι ◦X)2 1− cos ‖X‖
‖X‖2

= cos(‖X‖)I3×3 + ι ◦X sinc‖x‖+ (1− cos(‖X‖))XX
T

‖X‖2
,

where the second equality is due to(
ι

(
x

‖x‖

))2

=
xxT

‖x‖2
− I3×3 . (B.1)

By hypothesis, X is even, hence E[ι ◦X sinc‖X‖] = ι ◦ E[X sinc‖X‖] = 0 which
yields that

E[Exp(ι ◦X)] = E[cos ‖X‖] + E
[
(1− cos ‖X‖)XX

T

‖X‖2

]
is symmetric. Let V ∈ R3 be arbitrary with ‖V ‖ = 1. Positive definiteness
follows from the inequality

V TE [Exp(ι ◦X)]V = E[cos ‖X‖] + E
[
(1− cos ‖X‖)(V TX)2

‖X‖2

]
≥ E[cos ‖X‖] ,

where the last inequality is due to the Cauchy-Schwartz inequality and 1 −
cos ‖X‖ > 0.
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The following two lemma (viz., Lemma B.0.3 and B.0.4) are well-known. We
could not find good references and therefore we include their proofs.

Lemma B.0.3. The set F = {A ∈ R3×3 | rank(A) ≤ 1} is closed in R3×3.

Proof. Let us denote by mij(A) the 2× 2 minor of a matrix A ∈ R3×3, where the
i-th row and the j-th column is removed. Moreover, we define the map

f : R3 × R3 → R3×3 , A 7→

m11(A) m12(A) m13(A)
m21(A) m22(A) m23(A)
m31(A) m32(A) m33(A)


this map is continuous, since it is a composition of projections and the determi-
nante map. Finally, note that rk(A) < k + 1 if and only if all k + 1-minors are
zero. Therefore we have F = f−1(0) and thus F is closed, since f is continuous
and {0} is closed in R3×3.

Lemma B.0.4. There exist an L > 0 such that ‖Exp(A)− Exp(B)‖F ≤ L‖A−
B‖F for all A,B ∈ so(3).

Proof. For each A,B ∈ so(3) there is by the periodicity of Exp, cf. (A.6), an
Ã, B̃ ∈ U0 such that

‖Exp(A)− Exp(B)‖F = ‖Exp(Ã)− Exp(B̃)‖F ≤ L‖Ã− B̃‖F ≤ L‖A−B‖F ,

where the first inequality is due to Exp : U0 → SO(3) is analytic and hence
Lipschitz and the second is obvious from the definition of Ã and B̃.

The following is a small Lemma about our intrinsic residuals.

Lemma B.0.5. Let P,Q ∈ SO(3) be arbitrary, then

L
(
QPQT

)
= τQL

(
P
)
QT (B.2)

for a τ ∈ {1,−1}.

Proof. We can calculate using the naturality of the Lie exponential (see equation
(A.4))

QPQT = QExp
(
L
(
P
))
QT = Exp

(
QL
(
P
)
QT
)

Application of L : SO(3)→ V to both sides implies that L
(
QPQT

)
= τQL

(
P
)
QT ,

since

L
(

Exp
(
QL
(
P
)
QT
))

=

{
QL
(
P
)
QT , if QL

(
P
)
QT ∈ V

−QL
(
P
)
QT , else .

More general versions of the well-known Theorem B.0.9 on generic uniform con-
vergence of stochastic process can be found in Newey [1991], Andrews [1992] and
the book Davidson [1994]. For completeness we provide a proof of the statement
tailored to our setting. In what follows ‖ · ‖ denotes a norm on RD, D ∈ N.
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Definition B.0.6 (Stochastic Equicontinuity). A sequence of stochastic processes
{Xn}n∈N is said to be stochastically equicontinuous, if there exists a set Ω′ ⊂ Ω
with P

(
Ω′
)

= 1 such that for every ω ∈ Ω′ and every ε > 0 there exist δ =
δ(ω, ε) > 0 and Nε(ω) ∈ N such that

sup
|s−t|≤δ

‖Xn
t (ω)−Xn

s (ω)‖ < ε

for all n > Nε(ω).

Remark B.0.7. A sufficient condition for stochastic equicontinuity of {Xn}n∈N
is that there exists a random variable L, which is almost surely bounded, such that
for all ω ∈ Λ we have

sup
s,t∈I
‖Xn

t (ω)−Xn
s (ω)‖ < L(ω)|s− t|

for all n ∈ N.

Lemma B.0.8. Let {Xn}n∈N be stochastically equicontinuous and f ∈ C1(I,RD).
Assume for every t ∈ I that Xn

t → f(t) almost surely for n → ∞. Then there
exists a set Ω′ ⊂ Ω with P

(
Ω′
)

= 1 such that Xn
t (ω)→ f(t) for n→∞ and every

ω ∈ Ω′ and every t ∈ I.

Proof. Let t′ ∈ Q∩ I. Then there exists a set Ωt′ with P(Ωt′) such that Xn
t′(ω)→

f(t′) for all ω ∈ Ωt′ . Define the set Ω̄ =
⋂
t∈Q Ωt′ . Since the intersection is

countable we have that P
(
Ω̄
)

= 1 and Xn
t′(ω)→ f(t′) for all ω ∈ Ωt′ . Let Ω̃ ⊂ Ω

be the set of equicontinuity and define Ω′ = Ω̄∩Ω̃, which again satisfies P
(
Ω′
)

= 1.
We will now prove that the almost sure convergence of Xn

t to f(t) holds true
on all of Ω′. By equicontinuity we obtain that for all ε/3 it exists a 0 < δ such
that

sup
|s−t|≤δ

‖Xn
t (ω)−Xn

s (ω)‖ < ε/3

for all ω ∈ Ω′ and all n > Nω. Additionally, the definition of Ω′ yields

‖Xn
t′(ω)− f(t)‖ < ε/3

for any t′ ∈ Q ∩ I, all ω ∈ Ω′ and all n > N ′ω.
Now, for any t ∈ I it exists t′ ∈ Q∩ I such that |t− t′| < min{δ, ε/3C}, where

C = maxt∈I ‖f ′(t)‖. Putting all this together results in

‖Xn
t (ω)− f(t)‖ ≤ ‖Xn

t (ω)−Xn
t′(ω)‖+ ‖Xn

t′(ω)− f(t′)‖+ ‖f(t′)− f(t)‖ < ε

for all n > max{Nω, N
′
ω} and ω ∈ Ω′.

We are now able to prove a sufficient condition on almost sure uniform conver-
gence (see also Davidson [1994, Theorem 21.8]).

Theorem B.0.9. Let {Xn}n∈N be stochastically equicontinuous and f ∈ C1(I,RD).
Assume for every t ∈ I that Xn

t → f(t) almost surely for n→∞. Then

sup
t∈I
‖Xn

t − f(t)‖ → 0 a.s. (B.3)

for n→∞.
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Proof. By Lemma B.0.8 we have that Xn is equicontinuos and pointwise conver-
gent for all t ∈ I on a set Ω′ with P

(
Ω′
)

= 1. We will now prove that for ω ∈ Ω′

the process is even uniformly convergent.
Let ω ∈ Ω′ be arbitrary. Choose an arbitrary ε/3 > 0. Then by equicontinuity

we have that it exists 0 < δ < ε/3C, where C = maxt∈I ‖f ′(t)‖, such that

sup
|s−t|≤δ

‖Xn
t (ω)−Xn

s (ω)‖ < ε/3 (B.4)

for all n > Nω.
Since I is compact we may divide I into a finite number of open sets {Up}p=1,...,P

such that I ⊂
⋃P
p=1 Up and sups,t∈Up |t − s| ≤ δ. Let {tp}p=1,...,P ⊂ I such that

tp ∈ Up. Pointwise convergence ensures the existence of an Np
ω such that

‖Xn
tp(ω)− f(tp)‖ < ε/3 (B.5)

for all n > Np
ω. Moreover, define Ñω = max{N1

ω, ..., N
P
ω }. Then

max
p=1,...,P

‖Xn
tp(ω)− f(tp)‖ < ε/3 (B.6)

for all n > Ñω

Now, for any t ∈ I we find an p ∈ {1, ..., P} such that t ∈ Up. By equation
(B.4) we have that

‖Xn
t (ω)−Xn

tp(ω)‖ < ε/3 (B.7)

for all n > Nω and altogether we obtain

‖Xn
t (ω)−f(t)‖ ≤ ‖Xn

t (ω)−Xn
tp(ω)‖+‖Xn

tp(ω)−f(tp)‖+‖f(tp)−f(t)‖ < ε (B.8)

for all n > max{Nω, Ñω}. Since max{Nω, Ñω} and ε does not depend on t we have
that supt∈I ‖Xn

t (ω) − f(t)‖ < ε for all n > max{Nω, Ñω} and thus we obtained
uniform convergence for all ω ∈ Ω′.



114 B. Other Technical Tools



Appendix C

Tables



116 C. Tables

β Cov.Rate N E.P.
85 95.30 5 ε1,1
85 87.80 10 ε1,1
85 86.86 15 ε1,1
85 86.08 20 ε1,1
85 85.78 30 ε1,1
85 85.44 50 ε1,1
85 95.82 5 ε1,2
85 87.04 10 ε1,2
85 85.88 15 ε1,2
85 85.52 20 ε1,2
85 85.26 30 ε1,2
85 86.06 50 ε1,2
85 95.10 5 ε1,3
85 87.88 10 ε1,3
85 85.90 15 ε1,3
85 85.92 20 ε1,3
85 85.32 30 ε1,3
85 85.50 50 ε1,3
85 99.06 5 ε2,1
85 91.38 10 ε2,1
85 88.34 15 ε2,1
85 87.78 20 ε2,1
85 84.82 30 ε2,1
85 85.36 50 ε2,1
85 99.38 5 ε2,2
85 91.34 10 ε2,2
85 88.46 15 ε2,2

β Cov.Rate N E.P.
85 85.98 20 ε2,2
85 85.32 30 ε2,2
85 85.26 50 ε2,2
85 99.00 5 ε2,3
85 91.56 10 ε2,3
85 87.88 15 ε2,3
85 86.80 20 ε2,3
85 86.78 30 ε2,3
85 84.72 50 ε2,3
85 99.64 5 ε3,1
85 94.82 10 ε3,1
85 90.68 15 ε3,1
85 88.36 20 ε3,1
85 87.20 30 ε3,1
85 85.06 50 ε3,1
85 99.64 5 ε3,2
85 94.24 10 ε3,2
85 90.30 15 ε3,2
85 88.74 20 ε3,2
85 86.92 30 ε3,2
85 84.24 50 ε3,2
85 99.62 5 ε3,3
85 94.64 10 ε3,3
85 90.34 15 ε3,3
85 88.70 20 ε3,3
85 86.36 30 ε3,3
85 85.86 50 ε3,3

β Cov.Rate N E.P.
90 98.58 5 ε1,1
90 92.78 10 ε1,1
90 90.50 15 ε1,1
90 90.78 20 ε1,1
90 90.54 30 ε1,1
90 90.26 50 ε1,1
90 98.12 5 ε1,2
90 93.14 10 ε1,2
90 92.20 15 ε1,2
90 90.60 20 ε1,2
90 90.18 30 ε1,2
90 90.08 50 ε1,2
90 98.34 5 ε1,3
90 92.98 10 ε1,3
90 91.14 15 ε1,3
90 90.96 20 ε1,3
90 90.42 30 ε1,3
90 89.44 50 ε1,3
90 99.78 5 ε2,1
90 95.76 10 ε2,1
90 93.16 15 ε2,1
90 92.14 20 ε2,1
90 90.62 30 ε2,1
90 89.84 50 ε2,1
90 99.74 5 ε2,2
90 96.14 10 ε2,2
90 93.38 15 ε2,2

β Cov.Rate N E.P.
90 92.02 20 ε2,2
90 90.22 30 ε2,2
90 90.30 50 ε2,2
90 99.84 5 ε2,3
90 95.50 10 ε2,3
90 93.52 15 ε2,3
90 92.62 20 ε2,3
90 91.08 30 ε2,3
90 90.74 50 ε2,3
90 99.94 5 ε3,1
90 98.06 10 ε3,1
90 95.28 15 ε3,1
90 93.36 20 ε3,1
90 91.56 30 ε3,1
90 91.12 50 ε3,1
90 99.94 5 ε3,2
90 97.58 10 ε3,2
90 95.24 15 ε3,2
90 93.16 20 ε3,2
90 91.44 30 ε3,2
90 91.32 50 ε3,2
90 99.88 5 ε3,3
90 97.80 10 ε3,3
90 95.16 15 ε3,3
90 93.40 20 ε3,3
90 91.74 30 ε3,3
90 90.30 50 ε3,3

β Cov.Rate N E.P.
95 99.80 5 ε1,1
95 97.40 10 ε1,1
95 96.00 15 ε1,1
95 95.58 20 ε1,1
95 95.62 30 ε1,1
95 95.64 50 ε1,1
95 99.82 5 ε1,2
95 97.70 10 ε1,2
95 96.32 15 ε1,2
95 95.16 20 ε1,2
95 95.38 30 ε1,2
95 94.76 50 ε1,2
95 99.70 5 ε1,3
95 97.26 10 ε1,3
95 96.46 15 ε1,3
95 95.96 20 ε1,3
95 95.44 30 ε1,3
95 95.42 50 ε1,3
95 100.0 5 ε2,1
95 98.86 10 ε2,1
95 97.42 15 ε2,1
95 96.40 20 ε2,1
95 96.50 30 ε2,1
95 95.06 50 ε2,1
95 100.0 5 ε2,2
95 98.84 10 ε2,2
95 97.38 15 ε2,2

β Cov.Rate N E.P.
95 96.76 20 ε2,2
95 95.26 30 ε2,2
95 95.08 50 ε2,2
95 100.0 5 ε2,3
95 98.98 10 ε2,3
95 97.12 15 ε2,3
95 96.80 20 ε2,3
95 95.54 30 ε2,3
95 95.60 50 ε2,3
95 100.0 5 ε3,1
95 99.56 10 ε3,1
95 98.14 15 ε3,1
95 97.34 20 ε3,1
95 96.50 30 ε3,1
95 95.14 50 ε3,1
95 100.0 5 ε3,2
95 99.58 10 ε3,2
95 98.62 15 ε3,2
95 97.52 20 ε3,2
95 95.88 30 ε3,2
95 95.76 50 ε3,2
95 100.0 5 ε3,3
95 99.40 10 ε3,3
95 98.40 15 ε3,3
95 97.50 20 ε3,3
95 96.12 30 ε3,3
95 95.30 50 ε3,3

Table C.1: Simulated covering rate of simultaneous β%-confidence bands con-
structed using the naive bootstrap for 1D Gaussian processes obtained from
M = 5000 simulations
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β Cov.Rate N E.P.
85 78.28 5 ε1,1
85 82.24 10 ε1,1
85 84.32 15 ε1,1
85 83.74 20 ε1,1
85 84.96 30 ε1,1
85 84.30 50 ε1,1
85 79.80 5 ε1,2
85 83.82 10 ε1,2
85 83.16 15 ε1,2
85 83.68 20 ε1,2
85 84.64 30 ε1,2
85 85.38 50 ε1,2
85 78.86 5 ε1,3
85 83.06 10 ε1,3
85 84.48 15 ε1,3
85 84.08 20 ε1,3
85 85.70 30 ε1,3
85 85.86 50 ε1,3
85 71.02 5 ε2,1
85 76.74 10 ε2,1
85 79.98 15 ε2,1
85 81.78 20 ε2,1
85 83.48 30 ε2,1
85 83.56 50 ε2,1
85 71.00 5 ε2,2
85 78.56 10 ε2,2
85 79.62 15 ε2,2

β Cov.Rate N E.P.
85 80.54 20 ε2,2
85 82.14 30 ε2,2
85 84.06 50 ε2,2
85 70.90 5 ε2,3
85 77.34 10 ε2,3
85 80.30 15 ε2,3
85 81.64 20 ε2,3
85 82.74 30 ε2,3
85 83.88 50 ε2,3
85 56.92 5 ε3,1
85 71.52 10 ε3,1
85 76.32 15 ε3,1
85 78.60 20 ε3,1
85 80.76 30 ε3,1
85 81.94 50 ε3,1
85 56.84 5 ε3,2
85 71.50 10 ε3,2
85 76.26 15 ε3,2
85 79.62 20 ε3,2
85 79.76 30 ε3,2
85 82.54 50 ε3,2
85 58.02 5 ε3,3
85 72.04 10 ε3,3
85 75.82 15 ε3,3
85 76.92 20 ε3,3
85 81.02 30 ε3,3
85 82.54 50 ε3,3

β Cov.Rate N E.P.
90 83.42 5 ε1,1
90 86.82 10 ε1,1
90 89.00 15 ε1,1
90 88.72 20 ε1,1
90 89.12 30 ε1,1
90 88.86 50 ε1,1
90 84.12 5 ε1,2
90 87.08 10 ε1,2
90 87.94 15 ε1,2
90 88.74 20 ε1,2
90 89.46 30 ε1,2
90 89.06 50 ε1,2
90 83.88 5 ε1,3
90 88.34 10 ε1,3
90 88.20 15 ε1,3
90 88.26 20 ε1,3
90 88.56 30 ε1,3
90 90.06 50 ε1,3
90 77.64 5 ε2,1
90 83.26 10 ε2,1
90 84.66 15 ε2,1
90 86.06 20 ε2,1
90 88.22 30 ε2,1
90 88.48 50 ε2,1
90 77.36 5 ε2,2
90 82.80 10 ε2,2
90 86.04 15 ε2,2

β Cov.Rate N E.P.
90 85.82 20 ε2,2
90 88.40 30 ε2,2
90 88.72 50 ε2,2
90 77.72 5 ε2,3
90 83.32 10 ε2,3
90 85.28 15 ε2,3
90 86.74 20 ε2,3
90 87.80 30 ε2,3
90 88.48 50 ε2,3
90 67.50 5 ε3,1
90 77.90 10 ε3,1
90 81.94 15 ε3,1
90 84.76 20 ε3,1
90 85.14 30 ε3,1
90 87.60 50 ε3,1
90 66.68 5 ε3,2
90 77.34 10 ε3,2
90 82.00 15 ε3,2
90 83.86 20 ε3,2
90 86.12 30 ε3,2
90 86.70 50 ε3,2
90 68.12 5 ε3,3
90 78.28 10 ε3,3
90 82.02 15 ε3,3
90 83.86 20 ε3,3
90 86.80 30 ε3,3
90 86.50 50 ε3,3

β Cov.Rate N E.P.
95 90.54 5 ε1,1
95 91.84 10 ε1,1
95 92.74 15 ε1,1
95 93.34 20 ε1,1
95 94.32 30 ε1,1
95 95.16 50 ε1,1
95 90.00 5 ε1,2
95 92.44 10 ε1,2
95 93.60 15 ε1,2
95 93.82 20 ε1,2
95 94.42 30 ε1,2
95 94.22 50 ε1,2
95 89.64 5 ε1,3
95 92.86 10 ε1,3
95 93.62 15 ε1,3
95 93.44 20 ε1,3
95 93.38 30 ε1,3
95 94.78 50 ε1,3
95 86.46 5 ε2,1
95 89.72 10 ε2,1
95 91.44 15 ε2,1
95 92.50 20 ε2,1
95 92.90 30 ε2,1
95 94.08 50 ε2,1
95 85.98 5 ε2,2
95 88.82 10 ε2,2
95 91.28 15 ε2,2

β Cov.Rate N E.P.
95 91.90 20 ε2,2
95 93.26 30 ε2,2
95 93.38 50 ε2,2
95 85.52 5 ε2,3
95 90.08 10 ε2,3
95 90.96 15 ε2,3
95 91.74 20 ε2,3
95 93.40 30 ε2,3
95 93.72 50 ε2,3
95 79.62 5 ε3,1
95 85.78 10 ε3,1
95 88.40 15 ε3,1
95 90.58 20 ε3,1
95 92.06 30 ε3,1
95 93.04 50 ε3,1
95 80.00 5 ε3,2
95 85.40 10 ε3,2
95 88.62 15 ε3,2
95 90.50 20 ε3,2
95 91.90 30 ε3,2
95 92.72 50 ε3,2
95 79.94 5 ε3,3
95 85.76 10 ε3,3
95 88.36 15 ε3,3
95 90.16 20 ε3,3
95 92.84 30 ε3,3
95 93.06 50 ε3,3

Table C.2: Simulated covering rate of simultaneous β%-confidence bands con-
structed using the variance modified multiplier bootstrap for 1D Gaussian pro-
cesses obtained from M = 5000 simulations
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β Cov.Rate N E.P.
85 84.54 5 ε1,1
85 85.28 10 ε1,1
85 84.82 15 ε1,1
85 85.62 20 ε1,1
85 85.00 30 ε1,1
85 85.62 50 ε1,1
85 84.80 5 ε1,2
85 84.92 10 ε1,2
85 85.06 15 ε1,2
85 84.74 20 ε1,2
85 85.78 30 ε1,2
85 85.14 50 ε1,2
85 85.82 5 ε1,3
85 84.46 10 ε1,3
85 85.46 15 ε1,3
85 85.74 20 ε1,3
85 84.72 30 ε1,3
85 84.64 50 ε1,3
85 86.50 5 ε2,1
85 85.38 10 ε2,1
85 85.84 15 ε2,1
85 86.06 20 ε2,1
85 86.40 30 ε2,1
85 85.22 50 ε2,1
85 86.78 5 ε2,2
85 84.44 10 ε2,2
85 85.54 15 ε2,2

β Cov.Rate N E.P.
85 84.98 20 ε2,2
85 86.02 30 ε2,2
85 85.98 50 ε2,2
85 86.60 5 ε2,3
85 85.14 10 ε2,3
85 85.80 15 ε2,3
85 86.32 20 ε2,3
85 85.96 30 ε2,3
85 86.02 50 ε2,3
85 91.24 5 ε3,1
85 90.44 10 ε3,1
85 90.44 15 ε3,1
85 90.50 20 ε3,1
85 90.04 30 ε3,1
85 90.52 50 ε3,1
85 91.76 5 ε3,2
85 90.98 10 ε3,2
85 90.92 15 ε3,2
85 90.28 20 ε3,2
85 90.76 30 ε3,2
85 90.42 50 ε3,2
85 92.02 5 ε3,3
85 90.38 10 ε3,3
85 90.02 15 ε3,3
85 90.46 20 ε3,3
85 89.84 30 ε3,3
85 90.44 50 ε3,3

β Cov.Rate N E.P.
90 90.28 5 ε1,1
90 90.56 10 ε1,1
90 89.18 15 ε1,1
90 90.36 20 ε1,1
90 90.86 30 ε1,1
90 90.54 50 ε1,1
90 89.76 5 ε1,2
90 90.02 10 ε1,2
90 90.24 15 ε1,2
90 90.30 20 ε1,2
90 90.24 30 ε1,2
90 89.98 50 ε1,2
90 89.68 5 ε1,3
90 89.98 10 ε1,3
90 89.92 15 ε1,3
90 89.70 20 ε1,3
90 90.16 30 ε1,3
90 89.60 50 ε1,3
90 91.50 5 ε2,1
90 90.38 10 ε2,1
90 90.76 15 ε2,1
90 90.26 20 ε2,1
90 90.34 30 ε2,1
90 89.84 50 ε2,1
90 90.34 5 ε2,2
90 90.52 10 ε2,2
90 90.70 15 ε2,2

β Cov.Rate N E.P.
90 90.50 20 ε2,2
90 90.92 30 ε2,2
90 90.58 50 ε2,2
90 90.86 5 ε2,3
90 90.90 10 ε2,3
90 91.12 15 ε2,3
90 90.68 20 ε2,3
90 90.36 30 ε2,3
90 90.24 50 ε2,3
90 95.32 5 ε3,1
90 93.86 10 ε3,1
90 93.60 15 ε3,1
90 93.30 20 ε3,1
90 93.60 30 ε3,1
90 93.32 50 ε3,1
90 94.74 5 ε3,2
90 93.50 10 ε3,2
90 93.10 15 ε3,2
90 93.24 20 ε3,2
90 93.06 30 ε3,2
90 93.36 50 ε3,2
90 95.08 5 ε3,3
90 93.38 10 ε3,3
90 93.30 15 ε3,3
90 93.44 20 ε3,3
90 93.32 30 ε3,3
90 93.38 50 ε3,3

β Cov.Rate N E.P.
95 95.56 5 ε1,1
95 95.18 10 ε1,1
95 94.84 15 ε1,1
95 94.72 20 ε1,1
95 95.06 30 ε1,1
95 95.46 50 ε1,1
95 95.32 5 ε1,2
95 94.94 10 ε1,2
95 95.38 15 ε1,2
95 95.34 20 ε1,2
95 95.00 30 ε1,2
95 95.38 50 ε1,2
95 94.82 5 ε1,3
95 94.80 10 ε1,3
95 94.78 15 ε1,3
95 94.62 20 ε1,3
95 95.14 30 ε1,3
95 95.24 50 ε1,3
95 95.64 5 ε2,1
95 95.28 10 ε2,1
95 95.54 15 ε2,1
95 94.60 20 ε2,1
95 95.32 30 ε2,1
95 95.24 50 ε2,1
95 95.96 5 ε2,2
95 94.90 10 ε2,2
95 95.28 15 ε2,2

β Cov.Rate N E.P.
95 95.18 20 ε2,2
95 94.84 30 ε2,2
95 94.64 50 ε2,2
95 95.52 5 ε2,3
95 95.24 10 ε2,3
95 95.16 15 ε2,3
95 95.42 20 ε2,3
95 95.12 30 ε2,3
95 94.90 50 ε2,3
95 97.96 5 ε3,1
95 96.58 10 ε3,1
95 96.88 15 ε3,1
95 96.68 20 ε3,1
95 96.08 30 ε3,1
95 96.54 50 ε3,1
95 97.98 5 ε3,2
95 96.48 10 ε3,2
95 96.24 15 ε3,2
95 96.68 20 ε3,2
95 96.84 30 ε3,2
95 96.96 50 ε3,2
95 97.88 5 ε3,3
95 96.62 10 ε3,3
95 96.68 15 ε3,3
95 96.76 20 ε3,3
95 96.46 30 ε3,3
95 96.90 50 ε3,3

Table C.3: Simulated covering rate of simultaneous β%-confidence bands con-
structed using the GKF for 1D Gaussian processes obtained from M = 5000
simulations
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β Cov.Rate N σ E.P.
85/90/95 84.7/90.3/94.6 10 0.005 A1,1,1,σ

85/90/95 84.5/90.0/95.1 15 0.005 A1,1,1,σ

85/90/95 84.9/90.1/94.9 30 0.005 A1,1,1,σ

85/90/95 84.5/90.6/95.0 10 0.005 A1,1,2,σ

85/90/95 85.8/90.3/95.0 15 0.005 A1,1,2,σ

85/90/95 85.4/89.7/95.2 30 0.005 A1,1,2,σ

85/90/95 85.7/90.9/95.0 10 0.005 A1,3,1,σ

85/90/95 84.8/89.4/95.0 15 0.005 A1,3,1,σ

85/90/95 84.5/90.2/94.7 30 0.005 A1,3,1,σ

85/90/95 84.2/90.4/95.3 10 0.005 A1,3,2,σ

85/90/95 84.7/89.9/95.0 15 0.005 A1,3,2,σ

85/90/95 85.4/90.3/94.8 30 0.005 A1,3,2,σ

85/90/95 86.1/91.0/95.0 10 0.05 A1,1,1,σ

85/90/95 85.0/90.1/95.4 15 0.05 A1,1,1,σ

85/90/95 85.1/91.0/94.9 30 0.05 A1,1,1,σ

85/90/95 85.3/89.9/94.6 10 0.05 A1,1,2,σ

85/90/95 85.4/89.8/95.4 15 0.05 A1,1,2,σ

85/90/95 85.0/90.2/95.6 30 0.05 A1,1,2,σ

85/90/95 84.8/90.0/95.3 10 0.05 A1,3,1,σ

85/90/95 84.3/89.9/95.2 15 0.05 A1,3,1,σ

85/90/95 84.7/90.1/95.2 30 0.05 A1,3,1,σ

85/90/95 86.0/90.6/95.0 10 0.05 A1,3,2,σ

85/90/95 84.9/90.0/94.7 15 0.05 A1,3,2,σ

85/90/95 85.1/89.7/95.3 30 0.05 A1,3,2,σ

85/90/95 84.7/90.8/94.9 10 0.1 A1,1,1,σ

85/90/95 84.9/89.8/95.1 15 0.1 A1,1,1,σ

85/90/95 85.0/90.5/95.1 30 0.1 A1,1,1,σ

85/90/95 85.5/90.4/94.5 10 0.1 A1,1,2,σ

85/90/95 85.4/89.9/94.7 15 0.1 A1,1,2,σ

85/90/95 85.1/89.6/95.0 30 0.1 A1,1,2,σ

85/90/95 85.4/90.1/96.0 10 0.1 A1,3,1,σ

85/90/95 84.1/89.6/94.7 15 0.1 A1,3,1,σ

85/90/95 85.4/90.3/94.9 30 0.1 A1,3,1,σ

85/90/95 84.6/90.5/95.1 10 0.1 A1,3,2,σ

85/90/95 85.2/90.2/95.1 15 0.1 A1,3,2,σ

85/90/95 85.7/89.6/95.0 30 0.1 A1,3,2,σ

85/90/95 82.4/87.7/93.9 10 0.6 A1,1,1,σ

85/90/95 79.9/85.7/92.7 15 0.6 A1,1,1,σ

85/90/95 79.4/85.5/92.4 30 0.6 A1,1,1,σ

85/90/95 81.5/87.7/93.8 10 0.6 A1,1,2,σ

85/90/95 81.9/86.8/93.1 15 0.6 A1,1,2,σ

85/90/95 80.0/85.7/91.9 30 0.6 A1,1,2,σ

85/90/95 83.0/88.7/94.7 10 0.6 A1,3,1,σ

85/90/95 81.9/88.5/93.5 15 0.6 A1,3,1,σ

85/90/95 80.2/86.7/93.1 30 0.6 A1,3,1,σ

85/90/95 84.3/89.7/94.4 10 0.6 A1,3,2,σ

85/90/95 81.5/86.8/93.5 15 0.6 A1,3,2,σ

85/90/95 81.3/86.6/92.4 30 0.6 A1,3,2,σ

β Cov.Rate N σ E.P.
85/90/95 87.1/90.1/95.0 10 0.005 A2,1,1,σ

85/90/95 86.2/90.4/95.4 15 0.005 A2,1,1,σ

85/90/95 86.3/90.5/94.7 30 0.005 A2,1,1,σ

85/90/95 85.9/90.3/95.0 10 0.005 A2,1,2,σ

85/90/95 86.5/90.6/95.1 15 0.005 A2,1,2,σ

85/90/95 87.0/89.7/95.1 30 0.005 A2,1,2,σ

85/90/95 86.1/89.5/94.9 10 0.005 A2,3,1,σ

85/90/95 87.0/90.2/94.9 15 0.005 A2,3,1,σ

85/90/95 85.4/90.5/95.6 30 0.005 A2,3,1,σ

85/90/95 85.3/91.3/95.0 10 0.005 A2,3,2,σ

85/90/95 85.9/90.7/95.2 15 0.005 A2,3,2,σ

85/90/95 85.7/90.6/95.2 30 0.005 A2,3,2,σ

85/90/95 85.3/90.1/95.6 10 0.05 A2,1,1,σ

85/90/95 85.7/90.7/94.9 15 0.05 A2,1,1,σ

85/90/95 86.4/90.6/94.7 30 0.05 A2,1,1,σ

85/90/95 86.1/90.9/95.4 10 0.05 A2,1,2,σ

85/90/95 85.9/90.5/94.9 15 0.05 A2,1,2,σ

85/90/95 85.9/89.8/94.9 30 0.05 A2,1,2,σ

85/90/95 86.2/90.9/95.5 10 0.05 A2,3,1,σ

85/90/95 86.2/90.6/95.0 15 0.05 A2,3,1,σ

85/90/95 86.6/90.8/94.9 30 0.05 A2,3,1,σ

85/90/95 85.4/90.3/95.5 10 0.05 A2,3,2,σ

85/90/95 85.4/90.5/95.3 15 0.05 A2,3,2,σ

85/90/95 85.9/90.7/94.9 30 0.05 A2,3,2,σ

85/90/95 85.2/91.4/95.4 10 0.1 A2,1,1,σ

85/90/95 86.1/90.4/95.1 15 0.1 A2,1,1,σ

85/90/95 85.8/91.1/95.5 30 0.1 A2,1,1,σ

85/90/95 86.3/90.8/95.1 10 0.1 A2,1,2,σ

85/90/95 86.1/89.9/95.3 15 0.1 A2,1,2,σ

85/90/95 85.4/90.7/95.7 30 0.1 A2,1,2,σ

85/90/95 85.4/90.2/94.6 10 0.1 A2,3,1,σ

85/90/95 86.0/90.5/95.0 15 0.1 A2,3,1,σ

85/90/95 85.3/90.1/95.3 30 0.1 A2,3,1,σ

85/90/95 86.5/91.0/95.3 10 0.1 A2,3,2,σ

85/90/95 86.2/89.8/95.3 15 0.1 A2,3,2,σ

85/90/95 85.1/90.6/95.5 30 0.1 A2,3,2,σ

85/90/95 81.6/87.3/93.6 10 0.6 A2,1,1,σ

85/90/95 80.7/86.4/92.9 15 0.6 A2,1,1,σ

85/90/95 78.7/84.8/92.3 30 0.6 A2,1,1,σ

85/90/95 82.0/88.6/93.8 10 0.6 A2,1,2,σ

85/90/95 81.0/87.1/93.2 15 0.6 A2,1,2,σ

85/90/95 80.9/85.6/92.1 30 0.6 A2,1,2,σ

85/90/95 84.2/88.8/94.2 10 0.6 A2,3,1,σ

85/90/95 80.9/87.2/93.8 15 0.6 A2,3,1,σ

85/90/95 80.0/86.3/92.8 30 0.6 A2,3,1,σ

85/90/95 84.2/89.0/94.9 10 0.6 A2,3,2,σ

85/90/95 81.6/87.2/94.0 15 0.6 A2,3,2,σ

85/90/95 81.8/86.7/92.4 30 0.6 A2,3,2,σ

Table C.4: Simulated covering rates of simultaneous β%-confidence sets for rGP
models obtained from M = 5000 simulations. All the error process fulfill the
assumptions necessary for application of the GKF.
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β Cov.Rate N σ E.P.
85/90/95 90.6/93.5/96.8 10 0.005 A3,1,1,σ

85/90/95 89.3/93.1/96.3 15 0.005 A3,1,1,σ

85/90/95 90.3/93.3/96.1 30 0.005 A3,1,1,σ

85/90/95 90.2/93.6/96.2 10 0.005 A3,1,2,σ

85/90/95 90.7/92.5/96.6 15 0.005 A3,1,2,σ

85/90/95 89.4/93.2/96.1 30 0.005 A3,1,2,σ

85/90/95 90.5/93.9/96.5 10 0.005 A3,3,1,σ

85/90/95 90.2/93.0/96.6 15 0.005 A3,3,1,σ

85/90/95 90.2/92.7/96.7 30 0.005 A3,3,1,σ

85/90/95 90.4/92.8/96.6 10 0.005 A3,3,2,σ

85/90/95 89.7/93.0/96.0 15 0.005 A3,3,2,σ

85/90/95 90.5/93.5/96.1 30 0.005 A3,3,2,σ

85/90/95 90.4/93.9/96.6 10 0.05 A3,1,1,σ

85/90/95 89.4/93.0/96.6 15 0.05 A3,1,1,σ

85/90/95 90.1/93.5/96.5 30 0.05 A3,1,1,σ

85/90/95 90.1/93.1/97.2 10 0.05 A3,1,2,σ

85/90/95 90.3/93.0/96.7 15 0.05 A3,1,2,σ

85/90/95 90.2/92.9/96.6 30 0.05 A3,1,2,σ

85/90/95 91.0/93.6/97.1 10 0.05 A3,3,1,σ

85/90/95 90.3/93.0/96.2 15 0.05 A3,3,1,σ

85/90/95 90.0/92.6/96.5 30 0.05 A3,3,1,σ

85/90/95 90.3/93.3/96.9 10 0.05 A3,3,2,σ

85/90/95 90.1/93.5/97.3 15 0.05 A3,3,2,σ

85/90/95 89.9/92.9/96.5 30 0.05 A3,3,2,σ

85/90/95 90.3/93.4/96.7 10 0.1 A3,1,1,σ

85/90/95 89.5/91.6/96.6 15 0.1 A3,1,1,σ

85/90/95 89.9/92.7/96.3 30 0.1 A3,1,1,σ

85/90/95 90.3/93.3/96.4 10 0.1 A3,1,2,σ

85/90/95 89.9/93.1/95.9 15 0.1 A3,1,2,σ

85/90/95 89.9/93.1/96.4 30 0.1 A3,1,2,σ

85/90/95 90.1/93.6/97.0 10 0.1 A3,3,1,σ

85/90/95 88.9/92.9/96.5 15 0.1 A3,3,1,σ

85/90/95 88.9/93.4/96.5 30 0.1 A3,3,1,σ

85/90/95 89.9/93.4/96.3 10 0.1 A3,3,2,σ

85/90/95 89.8/93.1/96.2 15 0.1 A3,3,2,σ

85/90/95 90.9/93.2/96.6 30 0.1 A3,3,2,σ

85/90/95 87.1/91.2/95.5 10 0.6 A3,1,1,σ

85/90/95 85.2/90.2/94.6 15 0.6 A3,1,1,σ

85/90/95 82.8/87.6/92.9 30 0.6 A3,1,1,σ

85/90/95 88.1/92.1/96.0 10 0.6 A3,1,2,σ

85/90/95 86.3/90.5/94.7 15 0.6 A3,1,2,σ

85/90/95 85.2/87.6/93.9 30 0.6 A3,1,2,σ

85/90/95 88.1/91.6/96.0 10 0.6 A3,3,1,σ

85/90/95 86.0/90.5/95.1 15 0.6 A3,3,1,σ

85/90/95 85.0/89.5/94.0 30 0.6 A3,3,1,σ

85/90/95 87.4/92.5/96.2 10 0.6 A3,3,2,σ

85/90/95 86.2/89.7/95.2 15 0.6 A3,3,2,σ

85/90/95 85.8/89.2/93.2 30 0.6 A3,3,2,σ

Table C.5: Simulated covering rates of simultaneous β%-confidence sets for rGP
models obtained from M = 5000 simulations. The error processes do not fulfill
the assumptions necessary for application of the GKF.

E vs F: SSA/STW
Vol L R

1 49.0± 0.4 80.4± 0.3
2 24.8± 0.3 16.0± 0.3
3 87.9± 0.2 71.0± 0.4
4 88.1± 0.2 22.0± 0.3
5 84.7± 0.2 87.8± 0.3
6 72.5± 0.4 71.5± 0.3
7 60.2± 0.2 74.0± 0.3
8 94.2± 0.1 28.6± 0.2

Table C.6: walk, p-values in [%] of MILLPerm with standard deviation.
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Improper Marker Placements: SSA/STW

Vol A vs B A vs C A vs D
L R L R L R

1 4.9± 0.1 0.1± 0.0 1.1± 0.1) 13.5± 0.3 0.1± 0.0 2.6± 0.1
2 0.1± 0.0 0.0± 0.0 0.2± 0.0 0.0± 0.0 0.4± 0.0 0.0± 0.0
3 0.9± 0.1 0.0± 0.0 0.9± 0.1 0.0± 0.0 0.4± 0.1 0.0± 0.0
4 0.0± 0.0 0.0± 0.0 0.1± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
5 14.8± 0.3 0.1± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
6 51.1± 0.3 49.7± 0.4 0.4± 0.1 0.0± 0.0 0.0± 0.0 0.0± 0.0
7 47.6± 0.4 23.6± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
8 1.6± 0.1 14.0± 0.2 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

Vol B vs C B vs D
L R L R

1 0.2± 0.1 2.7± 0.1 1.3± 0.1 5.1± 0.2
2 0.0± 0.0 0.0± 0.0 0.3± 0.0 0.1± 0.0
3 0.7± 0.0 9.5± 0.2 0.0± 0.0 0.2± 0.0
4 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
5 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
6 1.2± 0.1 0.3± 0.0 0.5± 0.0 0.1± 0.0
7 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
8 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

Table C.7: walk, p-values in [%] of MILLPerm with standard deviation.

Vol A B C
L R L R L R

1 99.2± 1.4 99.3± 1.7 98.8± 1.2 99.0± 1.3 98.6± 1.2 98.2± 0.8
2 116.8± 2.2 115.3± 1.9 119.1± 3.0 118.1± 2.5 118.8± 2.5 118.2± 2.2
3 108.1± 2.2 109.9± 2.8 104.8± 1.3 105.3± 2.1 103.0± 1.9 103.5± 1.9
4 90.9± 2.7 90.1± 2.4 88.5± 1.2 88.6± 1.4 90.4± 1.7 90.1± 1.4
5 103.1± 1.7 102.9± 2.3 100.0± 2.2 99.1± 2.3 101.1± 1.7 100.6± 1.8
6 104.0± 1.6 105.3± 1.7 102.9± 1.4 102.7± 0.5 101.3± 1.7 102.2± 1.5
7 103.8± 2.0 104.3± 3.1 104.5± 1.8 104.7± 1.7 103.4± 2.1 103.0± 1.9
8 101.4± 1.9 101.3± 2.3 99.7± 1.1 100.4± 1.3 97.4± 1.6 97.5± 1.4

Vol D E F
L R L R L R

1 96.3± 1.9 96.9± 2.0 101.3± 1.3 101.6± 2.2 100.8± 3.2 100.8± 2.4
2 115.3± 2.7 115.0± 2.2 118.6± 1.5 117.9± 1.7 119.3± 2.1 118.0± 2.0
3 97.6± 2.4 97.5± 3.7 101.8± 2.9 103.2± 3.1 99.4± 3.0 100.4± 2.6
4 88.8± 2.4 89.8± 2.0 88.5± 3.7 89.2± 3.1 91.6± 3.2 92.5± 1.9
5 98.4± 1.5 97.2± 2.3 100.3± 1.9 99.5± 1.5 100.9± 2.7 100.3± 3.3
6 100.6± 1.1 100.9± 1.3 101.1± 1.6 101.8± 2.2 101.5± 2.1 102.1± 2.1
7 103.2± 1.7 102.8± 1.8 100.3± 3.0 100.6± 2.1 105.2± 9.3 106.1± 7.7
8 98.3± 1.1 97.8± 1.9 98.6± 1.4 98.2± 2.1 96.3± 1.7 95.6± 2.1

Table C.8: walk, mean number of frames per gait cycle with standard deviation.
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Vol A B C
L R L R L R

1 92.4± 1.4 91.5± 1.4 90.3± 1.5 90.5± 1.8 89.1± 1.8 88.5± 1.7
2 104.8± 2.0 103.3± 2.0 106.8± 2.8 106.2± 2.2 108.5± 1.0 108.4± 1.1
3 87.3± 2.1 85.8± 2.7 84.2± 1.7 84.6± 1.4 81.3± 2.5 81.5± 2.2
4 79.1± 1.5 78.4± 2.5 79.3± 1.3 78.9± 1.6 81.1± 2.7 80.8± 3.0
5 90.8± 1.3 90.8± 1.5 89.7± 1.1 90.0± 1.8 91.5± 1.4 90.6± 2.4
6 97.6± 1.4 97.4± 1.4 96.8± 1.4 97.5± 1.0 94.8± 1.8 95.8± 1.5
7 91.9± 1.9 92.2± 2.1 93.8± 2.1 94.4± 1.8 92.5± 1.3 92.8± 1.5
8 90.6± 2.8 90.7± 2.8 89.3± 1.8 89.8± 1.8 88.2± 2.4 88.3± 1.9

Vol D E F
L R L R L R

1 89.1± 1.7 88.9± 1.8 90.1± 1.2 90.0± 1.6 88.5± 1.9 86.9± 2.0
2 107.2± 2.2 107.1± 2.0 109.3± 2.4 108.2± 1.8 108.3± 1.4 107.9± 1.0
3 81.6± 1.8 82.5± 2.4 81.9± 3.6 82.1± 3.1 80.4± 3.1 80.0± 3.0
4 79.5± 3.1 79.5± 2.6 83.5± 3.0 83.5± 3.3 79.8± 3.0 79.0± 2.7
5 90.8± 1.5 90.9± 1.4 90.9± 1.4 90.6± 1.9 90.8± 1.6 90.6± 1.9
6 95.0± 1.7 95.6± 1.2 96.8± 1.9 96.7± 1.9 94.6± 1.1 95.0± 1.5
6 92.8± 1.6 93.6± 1.9 92.6± 2.1 93.2± 2.1 90.9± 1.3 91.9± 1.8
8 87.6± 1.4 87.0± 1.8 87.1± 2.1 86.8± 2.2 85.7± 2.0 85.3± 1.7

Table C.9: fast walk, mean number of frames per gait cycle with standard devia-
tion.

Left Knee
Vol C vs D E vs C E vs D F vs C F vs C E vs F
1 X X X HC HC,MS X
2 X HC HC,MS,TO HC,TO HC,MS,TO,MF X
3 X X X HC X X
4 X X X MF MF X
5 X X X X X X
6 X TO MS MS,TO MS X
7 X X HC X X X
8 X X X X X X

Right Knee
Vol C vs D E vs C E vs D F vs C F vs C E vs F
1 X MS,TO X HC,MS,TO X X
2 X HC MF HC,TO TO,MF X
3 X X HC,MS X HC,MS X
4 HC HC,TO TO MF MF X
5 X X X X X X
6 X MS X TO,MF MS X
7 X X X X X X
8 X X MF X MF X

Table C.10: walk, OCST with β = 0.9, locations where confidence bands do not
overlap, everywhere overlapping (X).
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Left Knee
Vol C vs D E vs C E vs D F vs C F vs C E vs F
1 X X X X X X
2 MS,TO MF,HC MS,TO X MS,TO,MF X
3 X X MS MS MS X
4 X X MS MF X X
5 MS X X X X X
6 X HC,TO HC HC,TO HC X
7 X MS X X X X
8 X X X X X X

Right Knee
Vol C vs D E vs C E vs D F vs C F vs C E vs F
1 MS HC,TO X TO MF X
2 X X X X MS X
3 X MS X MS X X
4 X X X X X X
5 MS X X X X X
6 X TO HC HC X X
7 X X MS HC X X
8 X X MS X X X

Table C.11: fast walk, OCST with β = 0.9, locations where confidence bands do
not overlap, everywhere overlapping (X).
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Figure D.1: center curves γλ0 , λ ∈ {0, 0.5, 1, 2, 2.5}, of the rGP models γλA and
γλB.
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Figure D.2: ten samples of rGP model γ0
A (salmon) and γ1

B (cyan).
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Figure D.3: ten samples of rGP model γ2
B (salmon) and γ2

B (cyan).
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Figure D.4: ten samples of rGP model γ2.5
B (salmon) and Pγ2.5

B Q (cyan).
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Figure D.5: walk, example of inconsistencies in gait cycle extraction using force
plate data. At the boundaries the shapes of the angles are not always the same.
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Figure D.6: raw data of two sessions. Vertical black lines indicate that the 90%-
confidence sets for the PEMs do not overlap at this time points.
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Figure D.7: data of two sessions corrected by SSA. Vertical black lines indicate
that the 90%-confidence sets for the PEMs do not overlap at these time points.
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Figure D.8: data of two sessions corrected by SSA and STW. No rejections any-
more around 20% and 80% (compare D.7). Also MILLPerm does not reject the
null hypothesis of equal center curves.
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Figure D.9: data of two sessions corrected by SSA. Also MILLPerm does not
reject the null hypothesis of equal PEMs.
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Figure D.10: data of two sessions corrected by SSA and STW. Rejections near
20%, but also better temporally registered around 20%− 40% than in D.9.
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Figure D.11: data corrected of two sessions by SSA and STW. No rejections and
similar variance in both sessions.
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Figure D.12: data of two sessions corrected by SSA and STW. MILLPerm does
not reject the null hypothesis of equal PEMs.
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Figure D.13: data of two sessions corrected by SSA, STW and ITW. Although
within a session the curves are better temporally registered than in Figure D.12,
we have that the MILLPerm rejects the null hypothesis of equal PEMs.
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Figure D.14: data of two sessions corrected by SSA and STW. Rejections near
20%, variance is still similar.
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Figure D.15: data of two sessions corrected by SSA and STW. Rejections near
20%, compare D.14, dissappeared due to high variance (e.g., y-angle).
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Figure D.16: data of two sessions corrected by SSA and STW. OCST and
MILLPerm agree that this volunteer has a kneeling effect.
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Figure D.17: data corrected of two sessions by SSA and STW. OCST and
MILLPerm agree that this volunteer has a kneeling effect.
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Figure D.18: data of two sessions corrected by SSA and STW. OCST rejects the
equality of means, whereas MILLPerm accepts it.
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Figure D.19: data of two sessions corrected by SSA and STW. OCST does accepts
the equality of means, whereas MILLPerm rejects it.
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Figure D.20: left knee walk (above) and right knee walk (below), data corrected by
STW. It is likely that a MP effect is visible here, although no marker replacement
was performed. ILLPerm accepts the null hypothesis of equal means, suggesting
that the difference is due to the action of an element of I0

(
SO(3)

)
, since the ILL

is invariant with respect to a subgroup of I0

(
SO(3)

)
.
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Figure D.21: data of two sessions corrected by SSA and STW. Rejections mainly
in stance phase.
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Figure D.22: data of two sessions corrected by SSA and STW. Rejections mainly
in stance phase.
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Nomenclature

(s, t) 7→ Σs,t . . . . . . covariance function of a process, page 24{
HA
t

}
t∈I . . . . . . . . . Hotelling T 2 process of a Gaussian process A, page 40

χ . . . . . . . . . . . . . . . . a session, page 23
δI , δI,1, δI,2 . . . . . . intrinsic length losses, page 55
Diff+[0, 1] . . . . . . . . diffeomorphisms of [0, 1], page 18
Exp . . . . . . . . . . . . . . Lie exponential of SO(3), page 106
γ, η . . . . . . . . . . . . . . (random) curves in SO(3)
γg, ηg . . . . . . . . . . . . piecewise geodesic curves in SO(3)
γ0, η0 . . . . . . . . . . . . center curves of right Gaussian models, page 24
Σ̂A
t . . . . . . . . . . . . . . . sample covariance at time t of a sample of a Gaussian process

A, page 40
ŜXt . . . . . . . . . . . . . . . sample covariance matrix of intrinsic residuals, page 42
γ̂N(t) . . . . . . . . . . . . element from the PESM at t of a sample γ1, ..., γN
I0

(
SO(3)

)
. . . . . . . identity component of isometry group of SO(3), page 17

ι . . . . . . . . . . . . . . . . . an isomorphism between so(3) and R3, page 106
Log . . . . . . . . . . . . . . Lie logarithm of SO(3), page 107
C, Cν . . . . . . . . . . . . . continuous, ν-times continuously differentiable
C1
(
[0, 1], SO(3)

)
. differentiable SO(3)-valued curves, page 14

Cβ . . . . . . . . . . . . . . . confidence set, page 40
CI3×3 . . . . . . . . . . . . . cut locus of I3×3, page 107
L0,L1 . . . . . . . . . . . . Lipschitz killing curvature, page 47
L . . . . . . . . . . . . . . . . a right inverse of the Lie exponential, page 42
x(X) . . . . . . . . . . . . . Euler characteristic of X, page 46
µ(γ, t), µ̂N

(
χ, t
)
. . pointwise extrinsic population and sample mean at t, page 30

φ . . . . . . . . . . . . . . . . an element of Diff+[0, 1]
Π . . . . . . . . . . . . . . . . a map SO(4)→ SO(3)× SO(3), page 64
π . . . . . . . . . . . . . . . . a covering map S3 → SO(3), page 62
πSO(4) . . . . . . . . . . . . covering map S3 × S3 → SO(4), page 63
ψ . . . . . . . . . . . . . . . . an element of I0

(
SO(3)

)
S(X) . . . . . . . . . . . . . space of samples in X , page 22
S . . . . . . . . . . . . . . . . group of gait similarities, page 19
so(3) . . . . . . . . . . . . . Lie algebra of SO(3), page 106
h̃γ,N,β . . . . . . . . . . . . quantile of Hotelling T 2 process of γ, page 42
γ̃, η̃ . . . . . . . . . . . . . . continuous lifts of curves in SO(3) to S3

‖A‖F . . . . . . . . . . . . the Frobenius norm of a matrix A, page 106
X . . . . . . . . . . . . . . . . data space (i.e., C1

(
[0, 1], SO(3)

)
), page 14

A, {At}t∈I . . . . . . . a Gaussian process, page 24
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dSO(3)(·, ·) . . . . . . . . metric induced by bi-invariant Riemannian metric on SO(3),
page 107

hA,N,β . . . . . . . . . . . . quantile of Hotelling T 2 process of A, page 41
I . . . . . . . . . . . . . . . . the unit interval [0, 1]
I3×3 . . . . . . . . . . . . . . 3× 3 unit matrix
rSO(4) . . . . . . . . . . . . a right inverse of Π, page 64
SD . . . . . . . . . . . . . . . D-dimensional sphere
SO(3) . . . . . . . . . . . group of 3× 3 rotation matrices, page 3
Xn
t . . . . . . . . . . . . . . intrinsic residuals, page 42

ILLPerm . . . . . . . . . intrinsic length loss permutation test, page 74
ILLPerm . . . . . . . . . modified intrinsic length loss permutation test, page 74
ITW . . . . . . . . . . . . . individual time warping, page 18
OCST . . . . . . . . . . . overlapping confidence sets test, page 72
PEM, PESM . . . . . pointwise extrinsic population and sample mean, page 30
rGP . . . . . . . . . . . . . right Gaussian pertubation model, page 24
STW . . . . . . . . . . . . sessionwise time warping, page 18
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