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1.  Preface 
This dissertation is not a cumulative, publication-based dissertation, but follows it in 

form. It includes three manuscripts, two of which have been accepted for publication, 

and one of which is under review. 

Arslan, R. C., & Penke, L. (2015). Evolutionary Genetics. In The Handbook of 

Evolutionary Psychology (Vol. 2, pp. 1047–1066). New York: Wiley. 

Arslan, R. C., Willführ, K. P., Frans, E., Verweij, K. J. H., Myrskylä, M., Voland, E., … 

Penke, L. (in press). Older fathers’ children have lower evolutionary fitness 

across four centuries and in four populations. Proceedings of the Royal Society 

B: Biological Sciences. 

Arslan, R. C., Schilling, K. M., Gerlach, T. M., & Penke, L. (in prep.). Using 26 

thousand diary entries to show ovulatory changes in sexual desire and 

behaviour. 
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2.  Introduction 
All genetic variation once arose by mutation. Genetic variation is the substance on 

which natural selection can act, but mutations are random. Therefore, new variations 

usually have negative or no effects on an organism’s evolutionary fitness (Keightley, 

2012). The exceptions to this rule, for instance the heavily selected mutations 

causing lactase persistence, the ability to digest milk in adulthood (Tishkoff et al., 

2007), are what drives the evolution of adaptations by natural selection. 

This dissertation is not about these exciting exceptions, but about harmful mutations. 

We know that the average human child is born with 70-100 genetic variants that its 

parents did not carry (Kong et al., 2012; Rahbari et al., 2015; Ségurel, Wyman, & 

Przeworski, 2014). On average, around 2.2 of these are estimated to be harmful 

(Eyre-Walker & Keightley, 2007; Keightley, 2012). Why don’t deleterious mutations 

build up irreversibly, each new generation carrying their new ones and the ones they 

inherited from their parents (Lesecque, Keightley, & Eyre-Walker, 2012)? One 

possible answer to this question seems to be sex, or more specifically 

recombination. Clonally reproducing organisms must suffer one genetic death 

(failure to reproduce) per mutation to remove it from the species' genetic pool, but 

with recombination some shuffled genomes carry many deleterious mutations and 

some few. This way, natural selection can purge deleterious mutations more 

efficiently. This benefit has long been thought to partially explain why organisms pay 

the twofold cost of sex, i.e. why they go through the trouble of having to find a mate 

and then only passing on half of their genes (Hartfield & Keightley, 2012; 

Kondrashov, 1988). But if recombination is sufficient, why shuffle your genome with 

someone else? One idea is that while natural selection is blind, favouring no 

particular direction, sexual mates can be very discerning. Through the preferences of 
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sexual mates, selection against deleterious mutations could accelerate (Andersson & 

Iwasa, 1996; Whitlock & Agrawal, 2009). Choosy mates might even be helped in 

their choice by handicaps, such as the peacock’s tail, that only individuals in good 

condition can afford to impose on themselves (Zahavi, 1975). 

Mutations might seem like a topic of little importance to psychology. They become 

interesting once we ask why studies of twins, families, and similarity at molecular 

genetic loci consistently show that individual differences in personality and 

intelligence are heritable (Lo et al., 2016; Penke, Denissen, & Miller, 2007; Plomin & 

Deary, 2014). Given that we also know that differences in personality and 

intelligence influence important life outcomes, including survival and reproduction 

(Jokela, 2012; Penke & Jokela, 2016), should not selection tend to remove these 

differences and fix them at whatever level is optimal for producing the most children? 

Again, mutations are one piece in this puzzle. Whereas selection moves a trait closer 

to the optimal level, most mutations will move the trait further away from the 

optimum. This continuous struggle is called mutation-selection balance and it is 

thought to play a major part in explaining why individual differences that are linked to 

evolutionary fitness, i.e. survival and reproduction, persist (Olson, 2012). Under this 

perspective, individuals with less adaptive trait values are expected to have higher 

mutation load, i.e. carry more harmful mutations (Penke et al., 2007). 

In this work, I ask whether the balance between mutation and selection is fragile and 

easily upset. To me, the potential fragility of this balance appears to be a theme 

common to several worries that have been voiced in the literature (Alvergne & 

Lummaa, 2010; Crow, 1997; Lynch, 2016; Sartorius & Nieschlag, 2010). 

Three worries 
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Delayed reproduction 
One worry concerns the increasing age at which individuals tend to reproduce. The 

mother’s, but even more so the father’s age at birth are linked to the number of 

mutations that a child carries (Wong et al., 2016), leading to visible increases in 

genetic disease with advancing paternal age (D’Onofrio et al., 2014; Glaser & Jabs, 

2004). The last forty years have seen an increase in the age at first birth for mothers, 

while data on ages at all births for both parents is hard to come by (Sartorius & 

Nieschlag, 2010). The worry that Crow (1997), and Sartorius and Nieschlag (2010) 

voiced is that unprecedented, increasingly delayed reproduction will lead to an 

onslaught of new mutations that deteriorates the average human condition. In the 

words of (Crow, 1997) “the greatest mutational health hazard in the human 

population at present is fertile old males”. I will call this “the delay worry”. 

Relaxed selection 
A second worry concerns the perception that natural selection is relaxed in modern 

times in large parts of the world (Crabtree, 2012; Crow, 1997, 2000; Keightley, 2012; 

Kondrashov, 1988; Lynch, 2016). Infant mortality is at an all-time low, most people 

have a similar number of children, and societal institutions like insurance, modern 

medicine and welfare mitigate problems that individuals and families would have 

previously faced on their own (Lynch, 2016). However, these factors do not 

necessarily imply that selection against deleterious mutations is relaxed. Some 

variation in survival and fitness may have been largely random so that decreases in 

mortality or less variation in reproductive success need not necessarily affect 

selection against genetic mutations. In other cases, selection may have relaxed at 

one stage of life, but tightened in another. For example, if children with a genetic 

disease survive thanks to modern medicine, they might still have trouble finding a 
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mate. In another example, although children will Down’s syndrome can live long lives 

and rarely even reproduce, pregnancies are nowadays routinely screened for trisomy 

21 and usually aborted in the case of detection (Mansfield, Hopfer, & Marteau, 

1999). Last, relaxed selection is only a meaningful concept in reference to past 

times. For instance phenylketonuria (PKU) is a disease that causes brain damage, 

but can be prevented by removing phenylalanine from the diet. As long as the 

medical knowledge to diagnose and treat PKU remains, no large problems result 

from relaxed selection against it (National Institutes of Health Consensus 

Development Panel, 2001), as long as we are simply concerned with evolutionary 

fitness in the contemporary world. Still the worry could be justified from different 

perspectives, i.e. from a perspective of medical costs (Lynch, 2016), from a 

perspective on human qualities that values, for instance, intelligence for its societal 

benefits rather than its relationship to evolutionary fitness (Crabtree, 2012), or from a 

perspective concerned with the loss of civilizational knowledge and institutions 

through global catastrophes. In the words of (Kondrashov & Crow, 1993) “In human 

populations with a high living standard there is very little selection against minor 

deleterious mutations. However effective selection against them may have been in 

the past, it is not likely to operate efficiently now.” I will call this the “the relaxation 

worry.” 

Altered mate choice 
A third worry concerns not the strength, but the direction of selection. Some 

researchers are concerned that female mate preferences might have changed 

through the use of hormonal contraception (Alvergne & Lummaa, 2010). This worry 

arises from a broader literature in evolutionary psychology which posits that mate 

preferences may vary over the menstrual cycle in women (Gangestad & Thornhill, 
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2008). The idea is that natural selection would favour women who choose the best 

sexual partners and that this choice may differ adaptively depending on whether the 

sex is likely conceptive or non-conceptive. Most prominently, advocates of this 

perspective suggest women might have stronger preferences for males with good 

genes when conceptive. Mutation load is an important component of the concept of 

good genes, among other aspects such as interindividual genetic fit (e.g. 

compatibility on immune system genes), and adaptedness to the current 

environment (e.g. having high fat reserves in a society that frequently faces 

starvation). The latter two aspects are even more difficult to study than mutation 

load, because preferences for them might vary across women. Thus, many studies 

on ovulatory shifts have focused on male traits they believe to be indicative of low 

mutation load. These traits have included fluctuating asymmetry, masculinity, 

intelligence, and dominance (Gangestad, Thornhill, & Garver-Apgar, 2015; 

Gildersleeve, Haselton, & Fales, 2014), but perhaps most straightforwardly, research 

has also examined attractiveness. From an evolutionary point of view, the 

attractiveness of a male for a short-term sexual relationship (e.g. a one-night stand) 

should depend only on the genetic material potentially transferred during such an 

encounter. So, sexual selection against mutations (Whitlock & Agrawal, 2009) might 

work in part by shifting mate choice in the conceptive phase of the cycle to more 

strongly prefer sexually attractive men, especially for extra-pair copulations 

(Andersson & Iwasa, 1996). Because hormonal contraceptives inhibit the hormonal 

changes happening around ovulation midcycle, (Alvergne & Lummaa, 2010) have 

proposed that they might also affect mate preferences and choices to make them 

more similar to mate preferences in the luteal, non-conceptive part of the cycle, 

presumably decreasing the preference for sexually attractive men. Apart from the 
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pragmatic worry that women might end up unhappy with their partner if they go on or 

off hormonal contraception during a relationship, there is also an evolutionary worry. 

Ovulatory changes in mate choice might serve an important adaptive function, 

namely selection for good genes, that is lost. In the words of Alverge and Lummaa 

(2010) “pill might also have a non-negligible impact on mating decisions and 

subsequent reproduction. If this is the case, pill use will have implications for both 

current and future generations.” I will call this the “the mate choice worry”. 

These three worries all relate in some way to upsets in the balance of mutation and 

selection. But are they justified? Are we hurtling towards a future, in which humans 

carry more deleterious mutations? 

I cannot conclusively answer these questions, but I can draw on two different 

empirical studies that form the backbone of this dissertation (Arslan et al., in press; 

Arslan, Schilling, Gerlach, & Penke, in prep.), another study, to which I contributed 

but which is not part of this dissertation (Hill et al., 2017), and the existing scientific 

literature on the topic, some of which I reviewed in a book chapter on evolutionary 

genetics (Arslan & Penke, 2015). 

Two empirical approaches 
My first approach makes use of stochastically known genetic associations between 

relatives, similarly to twin and sibling studies. Namely, I made use of the strong 

relationship between the father’s age at offspring conception and offspring mutation 

load (Kong et al., 2012; Ségurel et al., 2014). Starting in puberty, spermatogonial 

stem cells keep dividing every 16 days. Whereas the entire pool of female germ 

cells, oocytes, has formed before the birth of a future mother, future fathers keep 

producing sperm. Continuous copying begets copying errors. Thus, fathers are 
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thought to be a main source of replication-driven mutations, although a less 

pronounced effect of the mother’s age on mutations is also detectable (Wong et al., 

2016). 

Because maternal and paternal age are strongly correlated, paternal age on its own 

can explain a substantial proportion of the non-random variation in the number of de 

novo (as opposed to inherited) single nucleotide mutations – in one study almost all 

of it (Kong et al., 2012). This strong relationship makes it feasible to use paternal age 

as a proxy or placeholder variable for de novo mutations. Modern molecular genetics 

makes it possible to directly count the number of de novo mutations by sequencing 

the genomes of parents and their children and aligning them against each other 

(Deciphering Developmental Disorders Study, 2017). But sequencing is still 

expensive for larger samples and cannot easily be applied to historical datasets so 

that the indirect approach via paternal age is worthwhile. 

My second approach stems from a different subdiscipline, evolutionary psychology. 

Here, I ask whether I can detect changes in preferences for mating partners in the 

middle of the menstrual cycle, when the probability of conception is highest. 

Theoretically my two approaches are connected through the concept of mutation 

load, but my second approach makes different assumptions and implements a very 

different methodology, complementing the first approach. Namely, the good genes 

ovulatory shift hypothesis predicts that women will change their mate choices around 

ovulation to obtain the best possible genes for their children, while they may have 

different preferences when non-conceptive, for instance obtaining a committed 

partner, who protects and provides resources (Gangestad & Thornhill, 2008; 

Gangestad et al., 2015). 
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Potentially affected psychological traits 
In this work, I will discuss how traits of interest to psychologists might be affected by 

mutations, focusing on mental health, intelligence, and personality. Worries about 

secular changes in the balance between mutation and selection have been voiced 

(Alvergne & Lummaa, 2010; Crabtree, 2012; Lynch, 2016; Sartorius & Nieschlag, 

2010) mainly because of the expected consequences for potentially affected traits 

such as intelligence, personality, and psychiatric disease. Hence, I will briefly review 

debates around secular trends in these traits. Ever since we have started keeping 

records, researchers have documented overall increases in intelligence (Flynn, 

1987), economically valuable personality traits (Jokela, Pekkarinen, Sarvimäki, 

Terviö, & Uusitalo, 2017), but also for instance autism (Lundström, Reichenberg, 

Anckarsäter, Lichtenstein, & Gillberg, 2015; Wing & Potter, 2002). For some part, 

these increases are thought to merely reflect changes in how we measure and 

diagnose these traits and in how people respond to our tests (Lundström et al., 2015; 

Pietschnig & Voracek, 2015). Most of the remaining change is usually attributed to 

environmental causes, because the rate of change is too high for known evolutionary 

processes (Jokela et al., 2017; Pietschnig & Voracek, 2015). However, changes on 

the genetic level could still be taking place, albeit more slowly, and not necessarily in 

the same direction. In one example, an Icelandic study found that the average 

genetic propensity to complete higher education (predicted using results from 

genome-wide association studies) decreased by a small amount, probably through 

smaller families, at the same time as the average phenotypic level of education 

increased by much more, through political reforms (Kong et al., 2017). 

My work’s primary focus has been on psychological variation in the normal range, 

especially in intelligence and personality. Yet, answering my questions about the role 
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of mutations required that I broaden my perspective to individual differences outside 

the usual focus of psychologists. I examined data on survival, marriage, and 

reproductive success in my work on paternal age effects and data on attractiveness 

in my work on ovulatory changes. These traits have the advantage that evolutionary 

genetic understanding of their function is more advanced. They are all understood to 

directly contribute to evolutionary fitness or to constitute it. By contrast, my work on 

this dissertation was motivated in part by our failure to find paternal age effects on 

intelligence and personality (Arslan, Penke, Johnson, Iacono, & McGue, 2014). In 

this work, we used a sample of 1898 twin pairs to test whether we would observe 

negative associations between paternal age and offspring intelligence and 

personality after adjusting for the parents’ intelligence and personality. We did not 

find any significant associations after adjustments, but we could not straightforwardly 

interpret this result. Did we fail because our sample size was too small (but other 

studies with more than 500 thousand siblings also found no effect; (Myrskylä, 

Silventoinen, Tynelius, & Rasmussen, 2013)? Or did we fail because the paternal 

age approach is too indirect? Or did we fail to find an association because there is 

none, because intelligence and personality are not sensitive to mutations? 

Our original aim was to test the prediction made by Penke, Denissen, and Miller 

(2007) that intelligence, but not personality, would be found to be under mutation-

selection-balance and hence be negatively affected by increased paternal age. But 

to do so, we first needed to test whether the paternal age effect approach is a viable 

way to assess the effects of mutations at all. 

To this end, we needed outcomes that were clearly related to evolutionary fitness. 

And what could be closer to fitness than survival and reproductive success? 
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Because survival and pedigrees have been recorded for longer than intelligence and 

personality, these data were also suitable to examine the relaxation worry. If certain 

mutationally caused diseases and traits are less strongly selected against in modern 

times, the association between paternal age, an indicator of mutations, and fitness, a 

measure of selection, should relax in modern populations compared to older ones. At 

the same time, data on entire populations in different times and locations allowed me 

to assess the delay worry, namely whether reproduction is increasingly delayed, 

potentially leading to an unprecedented influx of new mutations. 

3.  Summary of Manuscript 1 
In this book chapter, we wanted to popularise evolutionary genetics methods with 

evolutionary psychologists. Evolutionary psychology (EP) shares a meta-theory with 

behaviour genetics (BG), but for historical reasons many EP studies regard 

individual differences as little more than noise (Tooby & Cosmides, 1990). 

Evolutionary psychology has tended to focus on universal human monomorphic and 

sexually dimorphic adaptations. Meanwhile, BG has shown that individual 

differences are heritable using twin and family studies, but more recently also using 

molecular genetic work (Plomin & Deary, 2014; Turkheimer, 2000). However, BG 

has tended to be more data-driven and did not have a strong focus on how evolution 

maintains heritable variation. Consequently, although we have fairly precise numbers 

for the percentage of a trait that can be explained by genetic differences, we often 

have little idea why these genetic differences persist (Barton & Keightley, 2002). 

In the chapter, we introduced the forces of mutation, selection, drift, and 

migration and how they can balance each other out. We addressed the common 

position that traits like intelligence and personality are selectively neutral, i.e. that the 
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balancing forces of mutation and drift maintain the genetic variation therein. Because 

intelligence and personality have been linked to evolutionarily important outcomes 

like mortality and fertility (Alvergne, Jokela, & Lummaa, 2010; Batty et al., 2009; 

Jokela, 2012; Kong et al., 2017; Penke & Jokela, 2016; Roberts, Kuncel, Shiner, 

Caspi, & Goldberg, 2007), it seems unlikely that selection plays no role in their 

maintenance at all. According to (Penke et al., 2007) the most likely explanation for 

genetic variation in personality is some form of balancing selection, whereas 

mutation-selection-balance is more likely to explain intelligence differences. 

However, one central prediction from this theory, namely that genetic variants for 

personality would be easier to find, has since been falsified. Progress in genome-

wide association studies for personality has been similarly slow as for intelligence 

(Davies et al., 2015; Lo et al., 2016). Hence, the role of mutation and selection is still 

to be determined for many psychological traits. 

We then reviewed the evolutionary genetics toolkit. Often a classical behaviour 

genetic design, such as twin and family studies, is complemented by a molecular 

genetic design, such as genome-wide complex trait analysis, that serves a similar 

aim on the molecular level. Similarly, paternal age effect studies are complemented 

by sequencing parents and children and counting mutations and effects of 

inbreeding can be studied in the children of cousins or by measuring associations 

with runs of homozygosity. 

Especially relevant for this dissertation is the question how selection can be 

studied directly. Although associations between mortality, fertility and psychological 

traits can be measured, there are shortcomings to this approach. First, measuring 

personality and intelligence prospectively, before mortality and lifetime reproductive 
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success are measured requires long follow-ups. Measuring personality and 

intelligence later in life always bears the risk of reverse causation, for instance 

maybe having children makes one more emotional (Jokela, Kivimäki, Elovainio, & 

Keltikangas-Järvinen, 2009). Second, associations observed in a contemporary 

population may not be invariant over time and place. Potentially, a trait that has been 

positively selected throughout most of human prehistory and history is negatively 

selected in the modern world, or vice versa. 

One way around this might be to instead examine mate preferences. Although 

sexual and natural selection do not necessarily act in the same direction, sexual 

selection is important in its own right (Long, Agrawal, & Rowe, 2012). (Buss, 1989) 

has shown that mate preferences are relatively invariant across cultures, certainly 

more so than the average number of children. Perhaps mate preferences preserve 

ancient selection pressures even in the modern world. 

4. Summary of Manuscript 2 
In this manuscript, we examined paternal age effects on offspring fitness. As an 

index of fitness, we mainly focused on the offspring’s number of children. Our goal 

was to isolate the mutational aspect of paternal age effects. To do so, we needed to 

rule out many alternative pathways in which paternal age might be associated with 

offspring fitness. Most importantly, we compared full siblings in a multilevel 

regression model and adjusted for the average paternal age within the family. 

Because all children of a couple have the same random chance to inherit some of 

their genes, this approach allowed us to rule out that less fit fathers simply found 

partners later in life and their children inherited low fitness. However, we also had to 
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adjust for confounders that still differed between siblings and correlated with paternal 

age, such as birth order and parental loss. 

We examined four different populations. One was 20th-century Sweden, our data 

were based on governmental records. The other three populations were from pre-

industrial times (1720-1850). Church records were digitalised and used to 

reconstitute genealogies for the Saint-Lawrence valley, Québec (Canada), the 

Krummhörn (Germany) and four historical Swedish regions. 

From our analyses of these genealogies, three main conclusions are relevant to this 

dissertation.  

First, we found negative paternal age effects in all four populations that we 

examined. They were small, as predicted, but remained after adjusting for a lot of 

potential confounds in our robustness checks.  

Second, average paternal and maternal ages at birth rose in 20th-century Sweden 

from 1970 onwards. However, from 1930 until 1970 they dropped. In 2010, they 

were at similar levels as in 1930 (around 33). More interestingly though, average 

parental ages were still below historical averages of the three pre-industrial 

populations that we also examined. This seems counter-intuitive only because most 

previous studies focused on maternal age at first birth. Compared to a historical 

baseline, the age at first birth is indeed delayed, but because people are also having 

far fewer children on average, the age at last birth and the average age at birth are 

earlier. 

Third, differences between paternal age effects in the pre-industrial populations and 

20th-century Sweden were substantial for infant mortality but not for the aggregate 
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effect on reproductive success. Across populations, we found no replicable and 

robust effects on survival of the first 15 years or the odds of getting married, nor 

clear differences between populations. Although paternal age predicted increased 

infant mortality in all four populations, infant mortality on average is so much lower in 

20th-century Sweden that the effect was insubstantial in comparison to the other 

populations. However, when examining the paternal age effect on aggregate 

offspring reproductive success (including low reproductive success caused by early 

mortality), two things became clear: 20th-century Sweden did not stand out as 

exhibiting the smallest effect size, the effect size in Québec was smaller. Moreover, 

across 26 different model specifications all of which had some degree of plausibility, 

the effect sizes varied more than across populations. Because we probably cannot 

identify one true, best model, we cannot clearly conclude that selection against 

mutations is relaxed. 

We were interested in the question whether relaxed postnatal survival selection is 

compensated by sexual selection later in life. However, we only had data on 

marriage and divorces, which are poor indices of mating success in 20th-century 

Sweden, because marriage is no longer a social or legal prerequisite for being in a 

relationship, cohabiting, or having children. Further, because we had no data on 

abortions, we could not clearly conclude whether infant survival selection was truly 

relaxed or displaced to before birth. Approximately 20% of all pregnancies are 

aborted in the modern Western world, but only few of these abortions are 

“therapeutic”, i.e. aim to end a pregnancy where a potential birth defect was 

detected. Still, because the paternal age effects we found were quite small, these 

abortions might explain (part of) the difference.  



 26 

Summary of Manuscript 3 
In this study, we collected daily online self-reports from a large sample of women. A 

final sample of 1043 women filled out a short survey every day until they had 

contributed up to 40 days.  

Our goal was to replicate and extend previous studies’ reports that women’s sexual 

interests change around ovulation. To this end, we asked our participants about their 

menstruation dates and contraceptive methods in the study. From the menstruation 

dates, we could then estimate the probability of being in the fertile window for each 

diary day. In multilevel models, we then tested whether being in the fertile window 

was associated with psychological changes. We also tested whether that such 

changes were absent among hormonal contraception users, who do not experience 

ovulation and the concurrent hormonal changes. 

A key theoretical prediction was that women’s assessment of their partners’ 

attractiveness for a short-term sexual relationship should moderate the shifts in 

sexual desire in such a fashion, that women with more attractive partners experience 

increases in in-pair desire, but not extra-pair desire and vice versa for women with 

less attractive partners. The purported evolutionary function of this moderation 

pattern is to obtain good genes for the offspring.  

Previous studies had supported this prediction in small studies, but many 

methodological criticisms of the previous literature were raised. Namely, previous 

studies had often used small sample sizes, often gathered data from women only on 

one or two days and did not preregister their methodology. This combination of 

problems is now thought to lead to overestimation of effect sizes and false positives. 
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In our study, we wanted to prevent these problems by preregistering our approach 

and recording responses from a large sample of women over 40 days. 

We found ovulatory changes, that is peaks in the fertile window restricted to non-

hormonal contraceptive users, for several outcomes. Namely, we replicated changes 

in extra- and in-pair sexual desire and behaviour, and in self-perceived sexual 

desirability. 

However, we did not confirm the predicted moderation patterns. Even though our 

sample size of naturally cycling women was larger than the combined sample sizes 

of previous studies and about ten times larger than the average previous study on 

the subject, we found no significant moderation patterns. 

Previous studies had mostly excluded women using hormonal contraception from 

participating to save costs. Our online approach allowed us to include them in our 

study and directly test whether the ovulatory changes observed among naturally 

cycling women were absent. They were. Hence, it seems possible that hormonal 

contraception would flatten cyclical changes in mate preferences. However, we 

found no evidence for such changes when we examined the moderation of sexual 

desire changes by the partner’s short-term attractiveness. We would have predicted 

hormonal contraception users to permanently have the sexual desire of naturally 

cycling women in the luteal phase. 

Future studies should examine whether mate preferences change across the cycle 

at all, in studies that also include single women. If they do not, then hormonal 

contraception is unlikely to have any effect on mate preferences either, although 

randomised controlled trials are necessary to rule this out with finality. 
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On the basis of our results, it seems possible that hormonal contraception does 

affect female sexuality in a measurable way, by flattening variability across the 

menstrual cycle. Mean levels may also be affected, but experimental studies are 

necessary to test this because of confounding variables. In our study, women using 

hormonal contraception differed from non-users not only in contraceptive method but 

also in other ways, mainly in age. Unfortunately, existing randomised placebo-

controlled trials of hormonal contraceptives usually ignore the menstrual cycle. 

Package leaflets for hormonal contraception currently point out changes in libido as 

potential side effects, but are very unspecific. The reason for this might be that there 

is large heterogeneity in how sexuality varies across the cycle when not taking 

hormonal contraception, and thus, response to it may also vary across individuals. 

5.  General Discussion 
The balance between mutations and selection is probably one of the main 

reasons why genetic differences persist (Olson, 2012). However, linking this concept 

to psychological research is difficult, because many fundamental aspects are still 

debated. In this dissertation, I tested one rather straightforward prediction, namely 

that mutational paternal age effects on fitness would be robust and replicable across 

populations. I also tested a less straightforward prediction, which nevertheless 

played a large role in the evolutionary psychological literature, namely that women’s 

in-pair and extra-pair sexual desire would change across the menstrual cycle and 

that their perceptions of their partners’ sexual attractiveness would moderate these 

shifts. 

Both of my approaches’ results were consistent with sexual selection not playing 

a major role in the selection against deleterious mutations. In the paternal age effect 
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studies, I would have expected to find a decrease in the odds of marriage with 

advancing paternal age. In the cycle studies, I would have expected to see the 

predicted ovulatory shift moderation pattern. Does this rule out that sexual selection 

plays any role in the selection against mutations in humans? No. In the paternal age 

studies, marriage is a coarse measure of mating success, but the only one that I 

could obtain from genealogies. I did observe an effect on number of children, after 

adjusting for differences in survival, but cannot tell from the data whether this was 

driven by differences in fertility, prenatal mortality of offspring, or the quality of the 

obtained partners. Quantitatively, it seems likely that survival selection plays a bigger 

role in selection against mutations than sexual selection. In the cycle studies, the 

partner’s sexual attractiveness may not be as good an indicator of mutation load as 

previous studies had assumed, although it certainly was a strong candidate. Perhaps 

more importantly, variation of mate preferences over the menstrual cycle to 

engender extra-pair copulations, is not a necessary feature of sexual selection. 

Although extra-pair offspring would increase the strength of sexual selection 

compared to a monogamous baseline (Andersson & Iwasa, 1996), many Western 

human populations are serially monogamous, allowing the continued operation of 

sexual selection (Courtiol, Pettay, Jokela, Rotkirch, & Lummaa, 2012). 

Identifying a causal, mutational effect of paternal age on fitness in humans is a 

difficult task. Through robustness analyses and replication across populations, I tried 

to test how robustly the effect could be shown. Many published studies did not adjust 

for confounds to the same extent that we did. Still, sibling comparison designs seem 

like a worthwhile approach to the problem that avoids many important confounds. A 

newer paternal age effect study by (Carslake, Tynelius, van den Berg, Davey Smith, 

& Rasmussen, 2017), using very large (>1.6m) sibling comparison samples from 
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Sweden, show tiny negative paternal age effects on offspring intelligence of 

approximately 0.07 standard deviations per decade of paternal age. Their estimates 

are consistent with our estimates (Arslan et al., 2014), although we lacked the 

statistical power to rule out sampling error. Other studies (D’Onofrio et al., 2014; 

Frans, MacCabe, & Reichenberg, 2015) report strong associations with various 

psychiatric diseases, but (Carslake et al., 2017) caution that there are further 

methodological pitfalls that such research often overlooks and (Gratten et al., 2016) 

caution that many estimated effect sizes are too large to be plausibly explained by 

mutations. We tried to make sure to avoid these pitfalls by replicating across 

populations, comparing our estimates to population genetic parameters and using 

many robustness checks. Still, in conclusion, it seems as if molecular genetic 

techniques will ultimately prove to be the superior way to test whether mutation-

selection balance maintains variation in psychological traits. In one such study, 

which is not part of this dissertation, we used genomic relatedness estimates based 

on genetic variants imputed to the Haplotype Reference Consortium (Haplotype 

Reference Consortium, 2016). By stratifying low-level genetic relatedness by the 

frequency of the minor allele, we could show that rare variants were 

disproportionately involved in intelligence genetics, hinting at mutation-selection 

balance. Analyses based on higher levels of relatedness, for instance between 

cousins and siblings, supported the same conclusion. For neuroticism and 

extraversion, the two methods were less consistent (Hill et al., 2017). 

Given that some new research shows a relationship between traits like 

intelligence and mutation load, I have to ask if the worries about increases in 

mutation load are justified. 
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Three worries 
A main conclusion of my book chapter on evolutionary genetics (manuscript 1) 

was that understanding the balancing mechanisms that maintain genetic variation in 

psychological traits is not only interesting as a basic research question, but also 

directly relates to societal trends. Changes in policy and mores influence 

demography, reproductive timing, and the direction and strength of selection. Are 

some of these changes worrisome from a perspective of mutation-selection balance? 

Delayed reproduction 
Parental ages have been increasing since 1970 in 20th-century Sweden. There is 

no debating this, but a) increases in maternal ages at first birth were not a good 

guide to the smaller increases in average parental age at birth b) with context from 

three pre-industrial populations and from Sweden in 1930, the average parental age 

in Sweden in 2009 does not appear unprecedentedly high, but well within the bounds 

of previously observed variation. Hence, the average replication-driven mutation load 

of our population is probably also not unprecedentedly high. Excepting some births 

to older mothers - impossible before in-vitro-fertilisation - children do not have much 

older parents than observed in some of our pre-industrial populations. 

Relaxed selection 
The second worry I introduced is that the strength of selection against mutations 

has relaxed in the modern world. (Lynch, 2016), who most fully formulated the 

argument, was especially concerned with medical advances, which reduce the harm 

caused by deleterious germ line and somatic mutations, but was also worried about 

the low variability in number of offspring (family size). Restriction of the variance in 

number of offspring is a common strategy to reduce the efficiency of selection obtain 
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mutation accumulation lines in Drosophila. Lynch (2016) mentions some but neglects 

other factors that can work in the opposite direction, for example the increased 

population size of humans, decreased inbreeding, increased mobility, and increased 

ability to exercise mate choice. All may boost the efficacy of selection (Gazave, 

Chang, Clark, & Keinan, 2013; Keightley, 2012; Reed & Aquadro, 2006). Most 

importantly, his arguments and my counter-arguments must be tested empirically, 

because we cannot be sure that no other factors were neglected. 

Comparing paternal age effect sizes across populations is one such empirical 

test, but it cannot resolve this worry with any finality. Still, even though the effects on 

infant survival were diminished in 20th-century Sweden, effects on the number of 

children persisted. In addition, the effect on overall offspring fitness was descriptively 

smaller in Québec than in 20th-century Sweden. This does not mean selection is not 

relaxed at all. After all, the population of the Saint Lawrence valley in Québec, as a 

small founding population, may also have experienced diminished selection against 

mutations (Casals et al., 2013). Yet, the effect sizes in the 20th-century are not 

significantly different from those in the pre-industrial populations. This makes it less 

likely that an unprecedented mutation load is currently accumulating (Keightley, 

2012).  

There are also molecular genetic ways to study relaxed selection and average 

mutation load. Such studies (reviewed in Simons & Sella, 2016) have focused on 

differences in mutation load between populations with different demographic 

histories. Severe population bottlenecks can lead to an increase in the deleterious 

mutation load. Evidence from these studies converged with our results, because 

summary indices of deleterious load (e.g. number of nonsynonymous derived alleles) 
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were not significantly different between ten contemporary populations (from West 

African Yoruba to the French and Chinese Han; (Simons & Sella, 2016). This was 

the case, even though they differed in recent population history and presumably also 

the spread of modern medicine and social transfers. As far as I am aware, similar 

molecular genetic indices have not yet been used to test for changes in mutation 

load over recent periods in the same populations, but molecular genetic methods are 

probably not sufficiently powerful at present genome sequence sample sizes to 

detect the small expected changes over short periods. 

Altered mate choice 
We interpret our findings as showing that the psychological changes around 

ovulation that occur for naturally cycling women are suppressed completely by 

hormonal contraceptives. To a lesser extent the same holds true for the 

psychological changes around menstruation. If mate preferences and choices varied 

because of the hormonal changes surrounding ovulation, they would probably also 

be suppressed. However, our findings shed doubt on claimed mate preference 

variation around ovulation. In our study, several measures of the partner’s 

attractiveness did not moderate the changes in sexual desire. Another recently 

published large study also challenges previous reports of ovulatory changes in 

preferences for masculinity (Jones et al., 2017). We think this is an important area 

for future research. Although preferences for masculinity and short-term 

attractiveness may not change across the cycle, other mate preferences might. 

Furthermore, if certain theoretical predictions in the literature are correct, ovulatory 

changes might be strongest in extra-pair desire (Gangestad et al., 2015). If the pill 

made women more monogamous by inhibiting an ovulatory increase in extra-pair 

desire, this would be an important side effect to know about, both for the user and for 



 34 

understanding secular change in sexual selection. Most likely, ovulatory changes are 

not the same for every woman and neither are the effects of hormonal 

contraceptives. Our data show some initial evidence of these interindividual 

differences, but more research is needed to show that these differences are stable 

and can be measured reliably. 

6. Conclusion 
In this dissertation, I showed that research on mutation-selection-balance can 

answer exciting basic research questions while at the same time speaking to worries 

about societal and demographic trends. We found evidence that selection prevents a 

build-up of mutations, but sexual selection did not seem to play an especially 

important role in this. Moreover, we found that selection continues to act against 

mutations in 20th-century Sweden, but we could not rule out with certainty that it has 

relaxed slightly. We also found evidence running counter to the notion that hormonal 

contraception alters mate choice, and thus sways sexual selection, but we only 

examined one aspect of mate preferences. 

Our research cannot fully allay worries about relaxed selection, delayed 

reproduction, and altered mate choices, but we reported evidence that, given proper 

context and comparisons, these changes do not seem drastic. The balance between 

mutation and selection may not be as fragile as some have predicted, but it is clearly 

a topic worth examining. We call for further careful and empirical examination of this 

topic and the many other factors that may affect strength and efficacy of selection. 
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Chapter 45 Evolutionary 
Genetics  
Ruben C. Arslan and Lars Penke 

 Introduction 
When Charles Darwin developed the theory of evolution, he knew 

nothing about genetics. Hence, one of its biggest weaknesses was that Darwin 
had to base it on crude ideas of inheritance. Around the same time, Gregor 
Mendel discovered the laws of inheritance, but the scientific community 
initially failed to appreciate his work’s importance. It was only in the 1930s 
that Dobzhansky, Fisher, Haldane, Wright, Mayr and others unified genetics 
and the theory of evolution in the “modern synthesis.” Still, the modern 
synthesis was built on a basic understanding of genetics, with genes merely 
being particulate inherited information. The basics of molecular genetics, like 
the structure of DNA, were not discovered until the 1950s. When modern 
evolutionary psychology emerged from ethology and sociobiology in the late 
1980s, it had a strong emphasis on human universals, borne from both the 
assumption that complex adaptations are monomorphic (or sexually dimorphic) 
and have to go back to at least the last common ancestor of all humans, and the 
methodological proximity to experimental cognitive psychology, which tends 
to treat individual differences as statistical noise. As a consequence, genetic 
differences between people were marginalized in evolutionary psychology 
(Tooby & Cosmides, 1990). Evolutionary psychology and behavior genetics 
developed nearly orthogonally for over a decade. Behavior geneticists 
discovered that virtually every psychological or behavioral difference shows 
genetic variation (Turkheimer, 2000) and that the molecular genetic 
underpinnings of most heritable traits are far more complex than assumed in 
the modern synthesis. Meanwhile, evolutionary psychologists increasingly 
realized the importance of genetic variation, for example, in models of sexual 
selection for attractiveness, intelligence, and other assumed honest signals of 
genetic quality (Gangestad & Simpson, 2000) or heritable variation in life 
history traits (see Miller & Penke, 2007). During the past decade, evolutionary 
genetics gradually gained acceptance among evolutionary psychologists (Buss 
& Hawley, 2011; Gangestad & Yeo, 1997; Buss & Penke, 2014; Penke, 
Denissen, & Miller, 2007), though most still defer fully incorporating the 
genetic perspective (Miller, 2011). 

Evolutionary genetics is concerned with the mechanisms that explain the 
existence and maintenance of genetic variation in traits. All else equal, one 
would expect selection to deplete genetic variation in heritable traits related to 
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fitness eventually (Penke et al., 2007). However, such genetic variation is 
ubiquitous and underlies stable individual differences that play prominent roles 
in psychological theories, be it as traits under intersexual (e.g., attractiveness, 
agreeableness, intelligence; Buss, 1989) and intrasexual selection (masculinity, 
aggressiveness; Puts, this volume), life history traits, formidability in 
recalibration theory (Sell, Tooby, & Cosmides, 2009), sociometer sensitivity 
(Denissen & Penke, 2008), perceived vulnerability to infection in the 
behavioral immune system (Schaller & Park, 2011), attachment security 
(Rholes & Simpson, 2006), or the tendency to show strong reciprocity in 
cooperation (Fehr, Fischbacher, & Gächter, 2002). Though these theories 
ascribe adaptive roles to individual differences, more or less explicitly linking 
them to fitness, their genetic variation is often taken for granted. 

Evolutionary genetics can help evolutionary psychologists unearth clues 
to the ultimate reasons behind, for example, humans’ cognitive faculties that go 
beyond what can gleaned through paleontology and archaeology (Enard, 
Messer, & Petrov, 2014). This information can have very practical 
implications, such as helping to understand how natural and sexual selection, 
when altered through changing mores or policy, will affect certain traits. 

One aim of this chapter is thus to introduce some of the tools available 
to researchers in evolutionary genetics. Prior to that, we provide an overview of 
the forces of evolution and how their interactions can maintain genetic 
variation. To illustrate the various ways in which evolution can maintain 
individual differences, we will often invoke specific traits that seem to serve as 
good, didactically useful examples. The general approach, however, would be 
applicable to all sorts of traits, including those with relevance to evolutionary 
psychological theories. Rarely have all possible explanations been weighed 
explicitly in the literature; we thus tried to refrain from definite statements. 
With this caveat in mind, we believe that our examples will help evolutionary 
psychologists make use of the rich theoretical framework that evolutionary 
genetics provides. 

Genetic Architecture 
Some research in molecular genetics has been carried out with the aim 

of characterizing the genetic architecture of traits, sometimes also called the 
genotype-phenotype map (Mackay, 2001). The genetic architecture of a trait 
can provide important clues to the evolutionary history and the mechanisms 
that govern the maintenance of genetic variation in the trait (Penke et al., 
2007). Characterizing the genetic architecture of a quantitative trait would 
ideally involve its robustness to mutations (canalization) as well as its 
evolvability. It would also imply gauging its degree of pleiotropy (whether the 
genes involved also have simultaneous other effects) and the importance of 
nonadditive genetic variation (i.e., epistasis and dominance, variation that does 
not breed true to the next generation). Unfortunately, many examinations of the 
genetic architecture are limited to estimates of the number and effect size of 
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involved genetic variants. Often the goal in such examinations is predicting 
which molecular genetic studies will succeed in the gene hunt and lead to 
biological pathways and drug targets, not to discover the ultimate, evolutionary 
explanations for heritable variation in a trait. In this chapter, we hope to 
suggest conceptual approaches to the latter goal.  

It may feel like a step back from identifying causative genetic variants, 
but we feel it is prudent to set aside the exciting prospects of what a successful 
gene hunt might entail (Chabris et al., 2013) and the different ideas about how 
we might succeed at that (Graur et al., 2013; Mitchell, 2012), focusing instead 
on finding common theoretical ground. 

Researchers disagree how, if ever, we might explain a substantial 
portion of the “missing heritability” (Mitchell, 2012), the observable genetic 
variation left unexplained by molecularly identified genetic variants. The limits 
of currently available tools can sometimes act as blinders, so that some 
theoretically plausible genetic architectures are hidden in our blind spots. 
Fortunately, as rapid technological and statistical development in molecular 
genetics adds to our tool kit, fewer blind spots should impede us. Humility is 
still very appropriate, though, considering fairly principal problems such as the 
sheer parameter explosion that is encountered when relating genomic 
sequences to traits (but see Ma, Clark, & Keinan, 2013). 

Neither should we be too eager to jump to the conclusion that our 
purported core traits will be reflected at the genetic level. For example, 
Mitchell (2012) argued against the continuous liability-threshold model of 
psychiatric disease, saying that there truly are discrete disorders, we just tend to 
group them broadly and arbitrarily. Similar arguments can be construed for the 
structure of psychological traits like personality and intelligence. 

In addition, there are often unresolved questions about the genetic 
architecture implied by the available evidence. For example, researchers used 
to believe that selection would reduce genetic variation in fitness traits, driving 
associated variants to fixation. This seemed to be borne out by low heritability 
coefficients. However, when researchers realized that fitness traits present a 
large target for mutation (Merilä & Sheldon, 1999), they reexamined the same 
heritability data expressed as the mean-standardized coefficient of variation (an 
absolute measure) and obtained large estimates of genetic variation. 
Heritability expressed as a proportion of total variation (a relative measure) had 
only appeared small in comparison, dwarfed by the large environmental 
variation (Miller & Penke, 2007). The conceptualization of fitness traits 
effectively reversed through a more appropriate statistic for variation. 

Our understanding of how the forces of evolution shape traits’ genetic 
architectures will continue to evolve. Thus, we begin with mechanisms 
potentially maintaining genetic variation before we discuss methods to identify 
causative genetic variants. 
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Forces of Evolution 
We begin by introducing four basic forces that affect genetic variation in 

populations. 

Mutation 
All existing genetic variants once arose by mutation. Relative to the 6.4 

billion base pairs of the human genomic sequence, mutations are rare events. 
Beneficial mutations are the rarest of all, the majority likely being neutral to 
fitness, with deleterious mutations making up the rest. Because the idea of a 
neutral mutation can be reduced to chance (or drift) being more important for 
its fate than selection, calling a mutation neutral also depends on its 
commonness, not just its effect size. A mutation with a small beneficial effect 
will have its fate determined mostly by chance while it is rare, because chance 
events can eliminate all copies. Once its frequency rises and in larger 
populations drift becomes relatively less important, so the mutation will be 
governed more by selection (Lanfear, Kokko, & Eyre-Walker, 2014). 

The most common mutational event in humans is the change of a single 
base pair (the letters of the DNA), but there are also deletions, duplications, 
and insertions of base pairs or even longer parts of DNA (copy number 
variants). Aneuploidies (chromosomal aberrations), such as the duplication of 
chromosome 21, which causes Down syndrome, are rare but massive, 
accounting for most altered base pairs per birth. Except for aneuploidies, which 
are well known to exponentially increase in frequency with advancing maternal 
age, all types of mutations occur more often on the paternal side, and 
increasingly so with advancing paternal age at conception (Campbell & 
Eichler, 2013). Proximately, this is often attributed to the continuous division 
of cells in the paternal but not maternal germline (Kong et al., 2012), but 
ultimate explanations such as Bateman’s principle (male investment in each 
offspring is lower) should be kept in mind (Stearns, 2005). 

Selection 
Selection occurs when there is heritable variation in fitness. Natural 

selection is frequently broken down into different subcategories. One grouping 
distinguishes positive, directional selection (favoring increases), disruptive 
selection, (favoring extremes), and stabilizing selection, (favoring decreased 
variation in a trait). Another grouping considers survival and sexual selection 
separately. Sometimes this is differentiated further into “episodes of selection.” 
Survival selection could, for example, be divided into the chances of an ovum 
to be released in ovulation, sperm fertilizing an ovum, a zygote implanting, the 
pregnancy being carried to term (Stearns, 2005), surviving birth, living to 
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reproductive age, and further. Sexual selection might be divided into the odds 
of finding and attracting a mate, outcompeting same-sex rivals, the number of 
mates, the number of offspring per mate, and the fitness and number of 
offspring in the next few generations. Often the mistaken impression that 
selection has diminished in humans is, on closer inspection, limited to factors 
affecting perinatal and postnatal survival selection, with little heed paid to 
components of sexual selection. 

Correlated Selection, Genetic Hitchhiking, and Pleiotropy 
Genetic variants are not independently selected for. As the term “genetic 

hitchhiking” vividly implies, alleles can hitch a ride on the coattails, or 
haplotype, of a neighboring allele that is being selected for or against. The 
chances of inheriting a specific gene from a parent are not independent from 
those of its neighbors because we inherit genes in chunks. Over generations, 
recombination breaks haplotypes apart. Long, unbroken haplotypes signal 
strong recent selection for a new mutation, because the neighboring alleles of a 
beneficial mutation are “swept” along on the coattails before recombination 
can break them apart (known as a “hard sweep”). Shorter unbroken haplotypes 
can signal selection on standing (preexisting) genetic variation (“soft sweeps”; 
Pritchard, Pickrell, & Coop, 2010). Two or more alleles that usually co-occur 
(are in “linkage disequilibrium”) and thus form a haplotype can have different, 
even opposing effects on fitness. Until recombination breaks them apart, they 
cannot be selected for independently. 

Alleles experience correlated selection not only through proximity. Even 
a variant at a single locus can have multiple, pleiotropic effects on fitness via 
different phenotypic consequences. It can also make sense to distinguish fitness 
effects of an allele in different episodes of selection. For example, a mutation 
may be selected for pre-meiotically in the testes, but lead to Apert syndrome 
later on (Choi, Yoon, Calabrese, & Arnheim, 2008). 

Genetic Drift 
Luck plays a lead role when numbers are small. If there are few carriers 

of even a highly beneficial genetic variant, random events can eliminate all of 
them. Similarly, a deleterious variant can be fixated by chance, or a beneficial 
rare variant can randomly get lost in recombination. Either way, a gene variant 
may drift to fixation or extinction just by chance. If all variants at a locus are 
common (because no single variant is infrequent and the population is large), 
the law of large numbers implies that it will take long before either drifts to 
fixation. In humans, a comparatively extremely low genetic diversity points to 
genetic bottlenecks having been an important instance of drift (Gazave, Chang, 
Clark, & Keinan, 2013). Bottlenecks may occur through migration, such as 
when founder populations emigrated to North America, or when population 
sizes decreased dramatically through harsh conditions such as droughts, 
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epidemics, or ice ages. If the resulting population is small and not diverse (e.g., 
a clan), even beneficial alleles from the parent population may be lost through 
drift. 

Gene Flow (or Migration) 
When individuals carrying certain alleles move from one group to 

another, the frequency of alleles in each group also changes. This process is 
distinguished from unsystematic genetic drift, because relevant genetic variants 
may differentially influence the propensity to migrate and the success in each 
group and environment.  

Maintenance Mechanisms 
Prolonged directional or stabilizing selection on a trait will deplete its 

genetic variance. The mechanisms that maintain heritable variation in a trait 
can be understood as equilibria or trade-offs between the forces of evolution 
that change allele frequencies: selection, mutation, genetic drift, and gene flow. 
In some cases, it may seem as if evolution should lead to alternative genetic 
architectures with fewer trade-offs. Note that evolution is not over and that 
optimal solutions may not always be sufficiently better to be selected over 
merely adequate ones, which is, for example, why we still have blind spots in 
our eyes. 

Mutation-Selection Balance (MSB) 
Mutations continuously emerge. If they are entirely neutral, they are 

invisible to selection and may drift or hitchhike to extinction or fixation. But if 
they are deleterious, purifying selection will act against them. We rarely hear 
of dominant lethal mutations because they tend to be eliminated within one 
generation. Huntington’s disease, which develops after the age of reproduction, 
is one example to the contrary. 

If a trait is genetically complex, as most traits of interests to 
evolutionary psychologists likely are, many genes will be involved, not all of 
which play a crucial role. Hence, some deleterious mutations will be selected 
against less intensely and might linger for a few generations. If the mutational 
target size of a trait (the number of associated genetic loci) is large, mutations 
affecting the trait will accumulate, so that individuals carry a certain mutational 
load. Thus, variation in a trait such as physical attractiveness can be maintained 
even though it is likely under directional selection. In research on the genetics 
of autism spectrum disorders, new mutations appear to explain about 15% of 
cases (Devlin & Scherer, 2012), though this should not be equated with the part 
that MSB plays for autism, which may well be larger owing to older, inherited 
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mutation load. Debate revolves around the number of genes likely to be 
involved in a trait and on the question whether rare, recent or common, older 
mutations mostly disrupt such genes (Gazave et al., 2013). 

Mutations in Balance With Stabilizing Versus Directional 
Selection 

Traits under mutation-selection balance can be meaningfully 
differentiated further. If increases in a trait are linked to increased fitness 
(directional selection), new mutations should usually cause a decline in the 
trait. This assumption is implicit in most studies of MSB. 

If fitness is instead linked to a certain optimum in a trait, it is said to be 
under stabilizing selection. Stabilizing selection acts to increase robustness to 
deleterious mutations, for example, by increasing genetic redundancy. For 
sexually recombining species, such as ours, it has also been suggested that 
increased mutational robustness need not imply a decrease in the evolvability 
of a trait (its potential to react to selection): Redundancy reduces the selective 
pressure on individual variants and thus allows variation to build up in the 
backup copy, creating a playground for genetic innovation. In this case, new 
mutations should cause comparatively smaller deviations from the optimum 
and might lead us to miss genetic associations if we focus on directional 
declines. The optimum would be expected to be the mean of a trait, at least in 
traits that were not subject to recent environmental changes. The shape of the 
eye might be an example of this exception: Myopia (shortsightedness; 
elongated eyes) is more common than hyperopia (early-onset farsightedness; 
shortened eyes), but the preponderance of myopia sufferers might be attributed 
to changes in our environment, in which near work became common and time 
outdoors decreased (Mingroni, 2004). To determine the not immediately visible 
optima of psychological traits, researchers could draw on associations of trait 
levels with survival and mate preferences as proxies of fitness consequences. 

Balancing Selection 
We now introduce a class of balancing mechanisms. In all of them, one 

selective pressure is counteracted by another in a different location, time, 
developmental stage, social environment, or intraindividual genetic context. 

By Spatial Environmental Heterogeneity (Migration-
Selection Balance) 

Humans can experience different selective pressures in different 
environments. Selection by location need not be limited to selective pressures 
such as varying solar intensity (Norton et al., 2007) or altitude (Simonson et al., 
2010), though these examples are best characterized. 
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Because personality may affect one’s penchant for travel, migration can 
support spatial balancing selection: If those who want to see the world keep 
leaving their home island for the mainland, the remaining islanders may end up 
less open to experience on average (Ciani & Capiluppi, 2011). Selection would 
also reduce variance in openness if sedentary islanders did not occasionally 
interbreed with visitors from the mainland. This sort of recurring gene flow can 
maintain variation in openness. Similarly, sociability supports migration 
tendencies from rural to urban areas (Jokela, Elovainio, Kivimäki, & 
Keltikangas-Järvinen, 2008). In scenarios such as these, genetic variation is 
maintained because people within a population select themselves into the 
environments for which they are best adapted. Such niche picking (also known 
as active gene-environment correlation) is potentially a strong force in the 
maintenance of genetic variation in humans (Penke, 2010). In the population as 
a whole, no trait or underlying genetic variant would effectively be favored; 
thus, the selective pressures would balance. 

Because cultural and other environmental explanations are hard to 
disentangle from genetically based psychological differences between 
populations, we advocate a cautious approach to this controversial topic. Some 
jump to premature conclusions about major genetic differences and even 
superiority based on flimsy evidence such as fairly high within-group 
heritability coefficients, but a balanced view of the evidence shows how 
difficult explaining group differences genetically is (Berg & Coop, 2014). 

Because of humans’ ecological dominance and concomitant capacity to 
shape the environment to their needs (niche construction), Penke et al. (2007; 
Penke, 2010) argued that the most important fluctuating aspect that humans 
need to adapt to is their social environment. 

By Social Environment (Negative Frequency-Dependent 
Selection) 

There are three morphs (types) of male common side-blotched lizards 
(Uta stansburiana), and three alleles at one Mendelian locus govern their throat 
color and concomitant behavior. Blue-throated males guard one mate and 
territory. Their mates can be stolen by larger, aggressive, orange-throated 
males, who keep large territories and multiple mates. Because they do not 
guard their mates well, they are vulnerable to having their mates stolen by 
yellow-throated males, who pretend to be female to sneakily gain access. This 
nontransitive mating game has been compared to rock-paper-scissors (Sinervo 
& Lively, 1996) and leads to oscillations in which the least common morph 
becomes more common in the next generation. 

Biological sex is probably the most familiar morph under such negative 
frequency-dependent selection (NFDS) in humans, as the rarer sex becomes 
more desirable and thus has reproductive advantages due to mating market 
forces (Del Giudice, 2012). NFDS has also been invoked to explain primary 
psychopathy (Mealey, 1995), personality traits (Penke et al., 2007), and, 
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perhaps most fruitfully, immunity to parasites (Sutton, Nakagawa, Robertson, 
& Jamieson, 2011). 

If psychopathy were under frequency-dependent selection, we might, 
through altered policy, lower the equilibrium frequency of psychopaths within 
few generations (Mealey, 1995). 

Over Time (Generations) 
If selection fluctuates over time more quickly than is needed for trait 

alleles to be driven to either fixation or extinction, variation can be maintained 
in oscillations. For example, if sex ratios in populations naturally fluctuate over 
time, genetic variation in personality traits that lead to better mating outcomes 
in one sex can be maintained by balancing selection (Del Giudice, 2012). If the 
fluctuations are predictable, selection should act to create genetically fixed 
conditional (facultative) strategies instead, a rich topic for life history theory 
(Nettle, Frankenhuis, & Rickard, 2013; Penke, 2009, 2010). 

Over Time (Ontogenetic Development) 
Earlier, we mentioned an allele that proliferates in the testes but leads to 

disease (Choi et al., 2008). Negatively correlated selection across 
developmental stages is also plausible for quantitative traits. For instance, large 
heads may support cognitive ability in later life, but they complicate birth 
(Miller & Penke, 2007). Selection should favor traits that are not subject to 
such trade-offs, but especially in conjunction with fluctuations of the fitness 
effects at different developmental stages, variation could be maintained. 

By Genetic Variant at Other Loci (Epistasis) 
An allele may have a beneficial or deleterious effect only in the presence 

or absence of other genetic variants. The sheer complexity of considering all 
the interactions in conjunction with the already large number of variants in the 
human genome has led some to propose that evolution would lead to mainly 
additive and even modularized variation in certain traits (W. G. Hill, Goddard, 
& Visscher, 2008), but epistasis might also be missed owing to insufficient 
statistical power. 

By Genetic Variant at the Same Locus (Overdominance, 
Heterozygote Advantage, Selection-Drift Balance) 

Consider a polymorphism, such as the one involved in sickle-cell 
anemia. Two copies of the polymorphism make blood cells sickle-shaped under 
low-oxygen conditions and typically lead to premature death. But having only 
one copy (heterozygosity) confers greater resistance to malaria. Individuals 
from areas in which malaria was a strong selective pressure are more often 
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carriers of the sickle-cell polymorphism. Heterozygotes have a selective 
advantage over homozygotes with either allele and so the sickle-cell allele can 
persist in the population at equilibrium frequency.  
These equilibria are not stable: An allele that has the benefits but not the 
disadvantages will easily displace its competitor. We expect to see 
overdominance especially under strong, recent selection, such as that incurred 
by epidemics. 

Mutation-Drift Balance (Selective/Ancestral 
Neutrality) 

If mutations affecting a neutral trait arise so frequently that some linger 
before they drift out of existence, we expect genetic variation in this trait to 
linger as well. Because of the nature of genetic drift, existing, entirely neutral 
polymorphisms would linger longer in large populations. Because most human 
DNA is nonfunctional junk, which is not conserved through purifying 
selection, most mutations are neutral (Graur et al., 2013). One’s first intuition 
might then be that most human individual differences are selectively neutral or 
“evolutionary noise” (Tooby & Cosmides, 1990). However, a commonly 
variable trait that is phenotypically visible to selection is less likely to be 
entirely neutral. This is especially the case since we tend to be interested in 
traits because they have predictive value for consequential life outcomes such 
as reproductive success, and thus evolutionary fitness. Additionally, because 
populations are larger nowadays, selection is more efficient, and will more 
often be stronger than drift (Penke et al., 2007). 

In humans, with their rapidly changing culture and environment and 
with their rapidly increasing population size (Gazave et al., 2013), we might 
want to pay special heed to traits that used to be selectively neutral or nearly 
so, but no longer are. These are traits where we might expect natural selection 
to rapidly deplete genetic variation. Because traits under mutation-drift balance 
have a repository of standing variation and because selection is stronger than 
drift, it can decrease previously maintained variation. 

A potential candidate for an ancestrally neutral psychological trait may 
be our preference for rising early or late: Our circadian rhythm is entrained to a 
universal source of light, the sun, in areas with little artificial light, where little 
time is spent indoors. With more artificial light, individuals’ circadian rhythms 
become more variable (Wright et al., 2013), and such differences are 
moderately heritable (Barclay, Eley, Buysse, Archer, & Gregory, 2010). 
Possibly what we see here is cryptic genetic variation, revealed only under 
artificial light. Without it, the lack of variation in light exposure within 
populations might have meant that heritable differences were not visible, even 
though psychological differences that would have influenced self-exposure to 
artificial light already existed. 
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Mechanisms Implicating More Than One Trait a 
Time 

In this section, we consider mechanisms that lead to the impression that 
there is heritable variability in a trait, but which are best understood in 
conjunction with other mechanisms and traits. 

Mechanisms Related to Pleiotropy and Hitchhiking 
When genes are pleiotropic (affect multiple traits) or in linkage (in close 

proximity to each other on a chromosome), genetic correlations among traits 
can appear. There are ways to discover genetic correlations and to analyze 
contemporary selection on multiple correlated traits (Stearns, Byars, 
Govindaraju, & Ewbank, 2010), but few studies have tried to do so for human 
evolutionary history. 

The best-characterized examples of antagonistic pleiotropy arise in 
conjunction with biological sex. Traits like facial masculinity may be more 
adaptive in one sex than the other, but the respective alleles spend half their 
careers in each sex (A. J. Lee et al., 2014). Another important class of 
pleiotropic interactions may arise through the body’s limited energy budget, 
especially that available for immune, brain, and gut functions. As a 
consequence, selection cannot optimize either trait, eventually resulting in a 
continuum of equally fit trait combinations maintained in the population. 

Reactive Heritability 
Not every trait with heritable individual differences needs to be subject 

to some sort of balancing mechanism itself. Instead, it could be calibrated to 
another heritable trait (Tooby & Cosmides, 1990). For example, Lukaszewski 
and Roney (2011) posited that extraversion might be calibrated to one’s 
physical attractiveness and strength. Hence, we would find the signature of 
mutation-selection balance when studying extraversion in isolation, but would 
come to different conclusions when examining developmental and situational 
calibration of extraverted behavior to one’s relative strength and attractiveness. 

If they are not fixed at birth, we should not presume the primacy of 
physical traits. For example, we know that myopia appears to be linked to the 
amount of time children spend outdoors (Sherwin et al., 2012), but the 
substantial heritability estimates for myopia have led some researchers to 
downplay environmental explanations for the recent increase in myopia 
incidence (Mingroni, 2004). But if myopia heritability is partly reactive to 
children’s heritable proclivity for outdoor play and if some children spend less 
time outdoors in recent times, which is plausible, these findings could be 
reconciled. 
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The Evolutionary Genetics Toolkit 
In this section, we introduce the growing toolkit that is available to 

evolutionary geneticists. These tools were assembled from both quantitative 
and molecular genetics, as well as evolutionary psychology. We note what 
these tools can be used for, and how they are sometimes misused, but 
acknowledge how all of these methods make their contributions. 

Twin and Family Studies 
Twin studies are one of the oldest tools available and have withstood the 

test of time (Conley, Rauscher, Dawes, Magnusson, & Siegal, 2013). They rely 
on the key difference between monozygotic (identical) twins and dizygotic 
(fraternal) twins: Identical twins share all of their genes, while fraternal twins 
share on average half of the genes that were variable between their parents. A 
central result from twin studies is usually a heritability estimate, though the 
rich data from twin and family studies can answer many other questions too. 
The concept hails from plant and animal breeding, where it is used to predict 
response to artificial selection. 

Estimates of heritability derived from twin studies have held up 
remarkably well when reexamined using different family relationships (e.g., 
parents, siblings, half- and adopted siblings) and can be easily extended to 
novel data such as the sometimes numerous offspring of sperm donors. In cases 
where selection is fairly clear-cut, estimates of heritability have borne out their 
usefulness as predictors of the response to selection. For example, children of 
sperm donors are taller in a manner consistent with their mothers’ selection on 
donor height (J. C. Lee, 2013). 

Usually things are not so tidy: Heritability estimates from twin studies 
often include some nonadditive variation, that is, variation that will not “breed 
true” to the next generation. Moreover, environmental confounds can make it 
hard to isolate an effect of selection, as the initiators of the Scottish Mental 
Survey discovered in 1947 when they attempted to show a decline of 
intelligence through differential fertility and found an increase instead 
(Ramsden, 2007). Humans simply do not behave like crops on a field or cattle 
in a breeding facility; they actively choose mates and both choose and modify 
their environments. This decreases the value of heritability estimates as more 
than a proof that genetic differences play a role in observable phenotypic 
variation (Johnson, Penke, & Spinath, 2011). 

High heritability in twin studies has often been misunderstood to imply 
that a trait cannot be changed. To the contrary, species-typical universals such 
as two-leggedness have virtually zero heritability, because the underlying 
genes rarely vary. On the other hand, some gene-environment interactions were 
not apparent before the relevant environment changed: For example, 
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developing phenylketonuria, a disease causing intellectual disability, depends 
on consuming phenylalanine, which was a universal part of our diet before its 
damaging effects in some individuals became known. 

Linkage Studies 
Linkage studies, which identify larger genetic segments that segregate 

according to disease status in a pedigree, have been useful tools in the 
identification of “simple” Mendelian disorders, where single genes have major 
effects. They might also help once we learn to tell apart phenotypically similar 
diseases that we now group as complex psychiatric disorders (Mitchell, 2012). 
Linkage studies for most psychological variation have been characterized as a 
let-down. Still, they ruled out a suggested genetic architecture: If there were, 
for example, a single genetic locus causing human psychopathy (i.e., an 
exploitative social strategy) in analogy with the aforementioned sneaky side-
blotched lizard, linkage patterns would have led to its identification. 

Candidate Gene Studies 
Candidate gene studies look for the association of a specific genetic 

locus with the trait of interest. By hypothesizing which locus may be involved 
a priori, they avoid correcting for multiple comparisons and can thus use 
smaller samples than the similar, but exploratory genome-wide association 
paradigm. They have come under intense criticism because of nonreplications 
and general doubts whether there is sufficient theory to predict candidate genes 
(Ioannidis, Trikalinos, Ntzani, & Contopoulos-Ioannidis, 2003). 

Some recent studies, however, successfully employ candidate gene 
approaches, implicating candidate gene sets and apparently building on 
stronger theory than before. For example, W. D. Hill et al. (2014) reported and 
replicated an association of intelligence with variation in genes involved in one 
of the postsynaptic density complexes that have been implicated in cognitive 
functioning. Through preregistration of candidate genes, researchers could 
easily end disagreements and distrust whether their studies deserve the label of 
confirmatory research and concomitant relaxation of false discovery rates. 
Unfortunately, this is seldom done. 

Genome-Wide Association Studies (GWAS) 
GWAS assess the status of individuals on around a million genetic loci 

across the genome that are commonly variable in the population. While GWAS 
directly assess only around 0.033% of the human genome this way, linkage 
disequilibrium makes the assessed variants fairly exhaustive markers of 
common genetic variation, which is then related to the variation in the trait of 
interest. GWAS require large samples and have been early adopters of harsh 



 1463 

significance thresholds to account for the number of multiple comparisons 
(Ioannidis et al., 2003). 

GWAS have been successful in the identification of some of the genes 
that matter for pigmentation, some medical disorders, height, and recently, 
schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics 
Consortium, 2014). Yet, for most psychological traits, especially normal 
variation, they rarely identified replicable associations (Chabris et al., 2012, 
2013). This is often framed negatively, but GWAS effectively ruled out genetic 
architectures involving few common variants of medium-to-large effects for all 
psychological traits studied this way so far. Some researchers have advocated 
ever larger samples in order to potentially identify huge sets of genetic variants 
with individually miniscule effect sizes, while others argue that theory predicts 
only effects of questionable practical relevance and that family-based designs 
are better suited (Mitchell, 2012). 

Using Sequenced Exomes and Genomes in Association 
Studies 

Sequencing refers to identifying every single base pair in someone’s 
genome, not just a few commonly polymorphic loci, as in GWAS. When 
sequencing is limited to protein-coding genes (ca. 1%–2% of the whole 
genome), this subset is called the exome. The exome constitutes a more 
manageable amount of data and has been considered promising for clinical 
variation. However, much of it is conserved between species and a lot of recent 
selection has operated on promoters outside the exome (Enard et al., 2014; The 
1000 Genomes Project Consortium, 2012), making exome variation a less 
likely candidate for contributing to the genetic architecture of psychological 
traits in the normal range (Marioni et al., 2014). 

With the amounts of data generated by genome sequencing, entirely 
exploratory research would not be useful due to the sample sizes required to 
filter chance findings. Integrating prior knowledge, such as annotations on 
regions with a signature of recent selection or expression in the brain (Ma et 
al., 2013), or alternatively relying on summary indices of rare genetic variants, 
a direct operationalization of mutation load (Marioni et al., 2014), may make 
such data manageable. 

Genomic Prediction and Genome-Wide Complex Trait 
Analysis (GCTA) 

A method formerly used primarily to predict breeding value in domestic 
animals has recently become popular in human genetics under the name GCTA 
(Yang et al., 2011). The general method estimates distant relatedness (less than 
fourth cousins) between individuals in the general population on the basis of 
common genetic variants, as provided by GWAS. Unlike GWAS, this method 
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does not identify individual important loci. Instead, the distant relatedness is 
used to infer a heritability score akin to that known from twin studies, but 
based solely on molecular data. After many GWAS failed to identify loci 
associated with psychological traits, GCTA provided a means of showing that 
the genotype data was actually informative: It can validate heritability 
estimates and be used to enable marker-assisted breeding (though this 
application is unlikely in humans), even if it does not identify causative genes 
and hence provides no foothold to find biological pathways. A frequently 
raised objection is that GCTA heritability estimates might be spurious, driven 
by the resemblance of distantly genetically related individuals for nongenetic 
reasons, such as similar environments because of shared ancestry and migration 
history. Researchers working with GCTA acknowledge such confounds, and 
the discussion revolves mostly about whether the corrections are sufficient 
(Conley et al., 2014; Yang et al., 2011). 

Some researchers also doubt whether finding high GCTA heritability 
implies that the infinitesimal model of many common variants of tiny effect 
applies, especially when debilitating disorders are under study (Mitchell, 
2012). Maybe more agreement can be fostered by a shift to delineating a fully 
featured genetic architecture, acknowledging the balanced forces enumerated in 
this chapter. 

Paternal Age Effects 
By sequencing and comparing the genomes of both parents and an 

offspring, Kong et al. (2012) convincingly demonstrated that the number of 
newly occurred single nucleotide variants in offspring can almost entirely be 
accounted for by the father’s age at conception. Thus, paternal age can be used 
as a proxy variable to infer the effect of new mutations. To isolate this effect, 
the fact that human reproductive timing is not governed by chance has to be 
statistically controlled. Initially reported negative associations between paternal 
age and intelligence in the normal range (Malaspina et al., 2005) have not been 
replicated in later studies. Controlling parental intelligence, an important 
predictor of reproductive timing, may account for some of the observed 
heterogeneity of effects (Arslan, Penke, Johnson, Iacono, & McGue, 2014). 
Employing sibling comparison designs also led to the disappearance of paternal 
age effects on intelligence, while a strong association with attention deficit 
hyperactivity disorder became visible only with sibling controls (D’Onofrio et 
al., 2014).  

Properly isolated, paternal age effects can provide evidence for a trait 
being under mutation-selection balance. In addition, they can be useful to 
predict the effect of increasingly delayed reproduction in the industrialized 
world on average mutation load (Sartorius & Nieschlag, 2010). 
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Genome and Exome Triplets and Quads 
When the entire exomes or even genomes of parent-offspring trios are 

sequenced, it becomes possible to count new mutations, that is, alleles that 
neither parent carried. By assessing which haplotype a mutation lies on, it is 
also possible to identify the parent of origin. Then, mutation counts can predict, 
for example, intellectual disability (Rauch et al., 2012) and recurring mutations 
can be used to zero in on causative genes. 

Exome quads (both parents and two offspring) have been used in autism 
genetics. Using genome annotations, Iossifov et al. (2012) estimated which 
mutations interrupted genes. By also sequencing unaffected siblings whose 
genomes were recombined from a common parental pool, they could isolate the 
effect of having more disrupted genes. Studies on autism genetics tried to 
isolate the effect of new mutations from assortative mating by considering only 
families without a familial history of autism and through sibling comparisons. 
These molecular genetic studies corroborate earlier results of autism increasing 
with paternal age. 

Inbreeding Depression and Outbreeding 
Elevation 

Inbreeding depression refers to a fitness decrease in offspring of 
consanguinous unions. Consanguinous parents (second cousins and closer) and 
their offspring make up about 10% of the world’s population, though their 
prevalence has been predicted to decline (Bittles & Black, 2009). Franssen 
(2009) reported a linear negative relationship between offspring mental ability 
and consanguinity ranging from second-cousin marriages to incest. Such 
associations are confounded by many unobserved common causes. For 
example, lower parental education can, via lower mobility, increase the 
likelihood of marrying relatives and thus inflate estimates of inbreeding 
depression. The family history and cultural prevalence of consanguinity (e.g., 
in clans and castes) affect inbreeding coefficients too, so that estimates based 
on just two generations can be off (Bittles, 2010). 

Outbreeding elevation, also known as hybrid vigor or heterosis, refers to 
the increased phenotypic quality of the offspring of genetically more distant 
parents. This phenomenon is very familiar to plant and animal breeders. Mules 
may be the most iconic hybrids and hybrid maize the most frequently 
consumed. The vigor does not necessarily translate to evolutionary fitness: 
Mules are valued beasts of burden but are frequently infertile. This is because 
too-distant genetic relationships between parents can break up co-adapted gene 
complexes during recombination, hence breaking vital functions such as the 
ability to reproduce. A bit of both may have happened when modern humans 
and Neanderthals interbred (Sankararaman et al., 2014). Hybrid vigor can also 
occur when inbreeding ends: Mixed-breed dogs have higher life expectancy 
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than most purebreds (O’Neill, Church, McGreevy, Thomson, & Brodbelt, 
2013). Mingroni (2004) proposed that urbanization and generally less 
sedentism led to decreased inbreeding and might be partial causes for the 
recent increases in height and intelligence in industrialized countries. 

Runs of Homozygosity 
Analogously to GCTA, which employs DNA-based subtle relatedness to 

validate twin studies’ estimate of heritability, runs of homozygosity (ROH) are 
an attempt to characterize subtle inbreeding on a molecular level. If long 
stretches of a diploid genome are homozygous, that is, both strands of DNA 
have the same variants, we can infer that closely related individuals have bred. 
If many shorter stretches are homozygous, we can infer ancient relatedness 
(Kirin et al., 2010). The genomic approach has the benefit that inbreeding over 
several generations can be characterized, though it is important to supplement 
this with knowledge of the history of endogamous marriage, founder effects, 
and population bottlenecks (Bittles, 2010). Homozygosity appears to play a 
role not only in well-characterized recessive disorders such as cystic fibrosis, 
but also for traits like personality (Verweij et al., 2012, 2014). Power et al. 
(2013) found a zero-to-slightly-positive association between ROH burden and 
intelligence, which conflicts with (possibly more biased) pedigree-based 
estimates of inbreeding effects (Franssen, 2009). 

Relations With Fitness (Lifetime Reproductive 
Success) and Mate Preferences 

It may seem as if we have so far neglected the obviously relevant effects 
of traits on fitness measures in this chapter. This is because, with some 
exceptions (e.g., pervasive developmental disorders), it is difficult to establish 
that the same association has persisted over evolutionary time and is thus 
indicative of the balancing mechanism that primarily upheld variation in a trait. 
We lack historical data for psychological traits, and many associations between 
normal variation and fitness estimated nowadays could be fickle. 
Contemporary selection on human individual differences is interesting in itself 
(Stearns et al., 2010), but we expect evolutionary genetics, among other 
disciplines, to answer the question “Why did humans evolve to be this way?” 

In the age of widespread, effective contraception, it can be argued that 
mate preferences and choices are better-preserved indicators of sexual selection 
than correlations with reproductive success. In addition to being more 
immediately assessable than lifetime reproductive success, mate preferences 
have been shown to be relatively culturally invariant (Buss, 1989), unlike total 
fertility. Perinatal and postnatal survival selection plausibly have decreased in 
intensity since the advent of hygiene, modern health care, less frequent 
infanticide, and lower infant and maternal mortality. Still, a large number of 
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pregnancies are not carried to term and many debilitating, previously lethal 
genetic conditions, such as severe disability, may now be sexually selected 
against owing to lower attractiveness in the mating market.  

Correlations With Indicators of Developmental 
Stability 

Bilateral fluctuating asymmetry (FA) of the body is presumed to be an 
indicator of developmental stability, operating under the assumption that 
mutation-free organisms in good condition will be more symmetrical (Polak, 
2003). Correlations with FA are thus assumed to provide an indirect way to tap 
a trait’s association with mutation load. This paradigm is prevalent in 
evolutionary psychology and somewhat plagued by publication bias (Van 
Dongen & Gangestad, 2011). Hardly any studies take a molecular or 
population genetic approach to fluctuating asymmetry in humans. Future 
studies should more directly examine an association of developmental stability 
indicators with rare genetic variant burden, paternal age, or consanguinity 
before correlations with FA can be deemed valid proxies for tapping “good 
genes.” Preregistration of studies could foster greater trust, especially that of 
scientists in adjacent domains such as genetics. 

Conclusion and Outlook 
Evolution by natural selection occurs as long as there is heritable 

variation related to differential fitness in the population. The evidence for both 
is ubiquitous even today, posing the question why so much genetic variation 
persisted. Genetic variance is influenced by mutation, selection, drift, and 
migration, and combinations of these four forces can yield balanced states in 
which it is maintained. This has been known since the modern synthesis in the 
1930s, but our understanding of the molecular genetics underlying these 
processes has radically progressed. We are increasingly able to learn about the 
genetic architecture underlying psychological traits. Although the resulting 
picture will not be as simple as most researchers assumed even a few years ago, 
it can eventually provide insights about the evolutionary history and the 
selective pressures currently acting on these traits (Penke et al., 2007). 

The evolutionary genetic tool kit includes complementary tools from 
molecular, behavior genetics and classical evolutionary psychology. Every 
available method has so many caveats that only converging evidence can 
enable us to single out theories as tenable. Unfortunately, even closely 
neighboring disciplines do not often lend each other tools and insights. For 
example, pure life history models of psychopathology (Del Giudice, Klimczuk, 
Traficonte, & Maestripieri, 2014) are inconsistent with the accumulating 
evidence that mutation load plays a major role in the autism and schizophrenia 
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spectra (Andreassen et al., 2014). Research on runs of homozygosity and 
mutation load could verify assumptions inherent in studies on fluctuating 
asymmetry. We need to subject our favored evolutionary explanations to tools 
from outside our own respective fields. Different disciplines can find it hard to 
properly evaluate and trust results outside their own field, especially if there is 
publication bias. Data and discussion brought to bear on the matter may have 
ideological baggage and bias (Ramsden, 2007), as researchers on, for example, 
intelligence or inbreeding, where science is easily conflated with moral 
judgments, know well. However, we can restore trust in areas plagued by bias 
(e.g., candidate gene and fluctuating asymmetry studies) through 
preregistration, replication, collaboration in consortia, and greater transparency. 
Such quality badges can be recognized even if the exact details are beyond us 
(Miller, 2011). By embracing such superior scientific standards we can protect 
our theories from the charge of being “just-so stories.” 

AU: Please add the Andreassen et al. source to the references. 

RCA: Done. 

It is encouraging, however, that all these approaches share a common 
evolutionary meta-theory, which could help to integrate knowledge acquired 
using diverse tools and build a common understanding. We have referenced 
numerous positive examples throughout this chapter. Mutual assistance and 
understanding should lead not only to agreement on the existence of heritable 
individual differences, but on the mechanisms maintaining them. Even where 
we identify genetic architectures that make it hard for us to detect important 
causative genes (e.g., an infinitesimal number of causative genes of small 
effect, genetic heterogeneity, or epistasis), there is a lot to be gleaned from 
understanding maintaining mechanisms. These mechanisms are not idle theory; 
they have practical applications. Policy and mores already exert influence on 
demography, reproductive timing, and selective pressures. We do not need to 
know specific genetic variants to predict what will happen to autism incidence 
if people reproduce later, nor to characterize the role of assortative mating and 
consanguinity in the age of online dating, nor to understand the impact of 
anciently constant selective forces suddenly swayed by new technology. 

Where we identify traits with a genetic architecture conducive to 
identifying causative genes, many doors open for vertical integration (Y. W. 
Lee, Gould, & Stinchcombe, 2014) with biology and neuroscience: We can 
study pathways, develop drugs and genetic screenings, examine molecular 
signatures of selection and demographic history (Enard et al., 2013), use 
Mendelian randomization techniques (Smith & Ebrahim, 2004) to identify 
modifiable causes of disease, and make inferences about earlier hominids’ 
psychological characteristics on the basis of shared polymorphisms. 

Darwin knew nothing about the genetics underlying evolution, but our 
ever more detailed understanding allows us to fully embrace the potential of 
merging evolutionary theory with genetics. Evolutionary genetics enriches 
evolutionary psychology by providing a theoretical framework and tools to 
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integrate individual differences and recent evolution (Penke, 2010), and thus 
ultimately an understanding of why we are the way we are and how we became 
that way. 
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Abstract 
Higher paternal age at offspring conception increases de novo genetic 

mutations. Based on evolutionary genetic theory we predicted older fathers’ 

children, all else equal, would be less likely to survive and reproduce, i.e. 

have lower fitness. In sibling control studies, we find support for negative 

paternal age effects on offspring survival and reproductive success across 

four large populations with an aggregate N > 1.4 million. Three populations 

were pre-industrial (1670-1850) Western populations and showed negative 

paternal age effects on infant survival and offspring reproductive success. In 

20th-century Sweden, we found minuscule paternal age effects on survival, 

but found negative effects on reproductive success. Effects survived tests for 

key competing explanations, including maternal age and parental loss, but 

effects varied widely over different plausible model specifications and some 

competing explanations such as diminishing paternal investment and 

epigenetic mutations could not be tested. We can use our findings to aid in 

predicting the effect increasingly older parents in today’s society will have on 

their children’s survival and reproductive success. To the extent that we 

succeeded in isolating a mutation-driven effect of paternal age, our results 

can be understood to show that de novo mutations reduce offspring fitness 

across populations and time periods. 

Media summary 
Fathers’ and mothers’ average ages at birth are increasing throughout the 

developed world, though they are presently still on par with pre-industrial 
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reproductive timing. We find that children of older fathers have fewer children 

themselves in four populations across four centuries: three pre-industrial 

populations from the 17-19th century, and 20th-century Sweden (total sample 

size > 1.4m). A child gets most new genetic mutations from its father, which 

increase continuously with his age. We can use the father’s age to indirectly 

learn about the effect of new mutations on the child, but some complicating 

factors could not be controlled. 

Background 
A child carries on average about 60 genetic de novo single nucleotide 

mutations (SNMs), which were not present in either of the biological parents’ 

genomes [1,2]. Of those that are not functionally neutral, most reduce 

evolutionary fitness, as random changes to well-calibrated systems usually do 

[3,4]. Importantly, de novo mutations can be dominantly lethal or sterility-

inducing early in life, unlike inherited deleterious variants. The older a father 

is, the more de novo mutations his child will tend to carry. This is dictated by 

the fundamental fact that cell replication engenders errors [5], and male 

spermatogonial, but not female oogonial stem cells, replicate frequently, 

beginning a regular schedule of one division per 16 days in puberty [6]. 

Kong et al. sequenced the genomes of parent-child triplets and quartets, 

so that they could pinpoint mutations and their parental origin [1]. They found 

that a child’s number of de novo SNMs could be predicted very well (94% 

non-stochastic variance explained) by the father’s age at the child’s birth, 

henceforth paternal age. Mothers appears to transmit only a third to half as 
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many SNMs per year as fathers [4,7]. Thus, paternal age appears to be the 

main predictor of varying offspring de novo mutation load, in part because of 

its causal role and to a lesser extent because of its correlation with maternal 

age. SNMs are the most common mutational event, but copy number variants 

also increase with paternal age; other structural variants tend to come from 

the father too [8]. Aneuploidies (aberrant chromosome counts) are a well-

known exception: they occur more often when older mothers conceive [2]. 

Subsequent studies have confirmed the central role of paternal age for 

mutations [4,6]. 

In clinical research, paternal age has shown usefulness as a placeholder 

variable for de novo mutations: after initial epidemiological studies reported 

paternal age effects on autism [9], sibling comparison studies confirmed they 

were not due to inherited dispositions [10]. Then, exome-sequencing studies 

corroborated the paternal age effects by directly counting mutations that were 

not present in either parent’s exome and found a higher mutational burden in 

autistic children than in unaffected siblings [11]. These findings elucidated 

disease aetiology both from an evolutionary and a clinical standpoint, by 

explaining how an early-onset disease linked to very low reproductive success 

could linger in the face of natural selection. 

Given the links enumerated above, paternal age should, via increased 

mutations, decrease offspring fitness. By fitness, we mean each offspring’s 

average contribution to the gene pool of successive generations. We can 
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approximate this contribution through the offspring’s number of descendants 

[12]. 

So far, most paternal age effect studies have focussed on medical, 

psychological and behavioural traits, such as physical and psychiatric 

disease, or intelligence [10,13–16]. Though many of these traits plausibly 

affect evolutionary fitness now, it is not always clear how they affected fitness 

before the 20th century. Moreover, there are scant records on such traits from 

this time, and they are not necessarily comparable to modern records. Births 

and deaths, or baptisms and burials, on the other hand, have been 

meticulously recorded in churches. Survival and reproductive success were 

and still are good measures of evolutionary fitness. Fitness is the most 

‘downstream’ phenotype of all, in the sense that all non-neutral mutations 

affect it by definition [17]. 

Paternal age effects on mutations should in principle be universal across 

species, but nonhuman animal studies have thus far been restricted to birds 

[18,19] and have, with one exception [19], been studied under the broader 

topic of senescence, without attempts to separate mutational or epigenetic 

effects from behavioural effects of parental senescence on breeding 

capability. Studies on humans have examined isolated fitness components 

such as infant survival, longevity, marriage or reproduction in single 

populations in one place and at one time [20–23]. Some such studies have 

focussed on longevity, which has an ambiguous relationship to evolutionary 

fitness owing to life history trade-offs, such as trading off higher early-life 
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reproduction for earlier mortality [24]. Some have examined maternal age or 

birth order, but ignored paternal age [25]. Some focussed on environmental 

explanations, such as decreased parental investment [26], but these are not 

necessarily sufficient to explain paternal age effects. In wild house sparrows, 

the age of the biological parents had negative consequences even in a cross-

fostering experiment [19]. Such experiments are not possible in humans, but 

we can statistically adjust for proxy measures of parental investment. In all, 

owing to variable methodology and sample sizes across studies, we cannot 

reliably compare findings to discover theoretically meaningful moderators. 

The Present Study 
Here we investigated paternal age effects on offspring fitness, focussing 

on the offspring’s reproductive success, i.e. their number of children. To be 

able to compare all children of a father, we also included children who had no 

children themselves, even if they died young. Reproductive success is a good 

predictor of an individual’s contribution to the next generation’s gene pool [12]. 

In addition, we separately examined early survival, marriage success and 

reproductive success as successive episodes across the lifespan during 

which natural and sexual selection occur. Based on evolutionary genetic 

theory, we predicted that in aggregate we would find small, negative effects of 

paternal age on offspring fitness throughout the lifespan [27]. Some de novo 

mutations will have large negative effects early on, but many more will be 

(nearly) neutral. In aggregate, on the population level, this implies a small 

stochastically variable increase in deleterious effects with paternal age. 
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Because humans do not time their reproduction randomly, paternal age 

effects may be confounded by social and genetic factors [28–30] that are 

associated with both age of reproduction and offspring reproductive success. 

Because we aimed to isolate mutation-driven effects of paternal age as 

thoroughly as possible, we analysed the paternal age effect within full 

biological sibships and adjusted for a between-family effect. This effectively 

controls for many potential confounds. Full siblings share a parental gene 

pool, so that genetic load, which accumulated over generations, is distributed 

across them randomly. Siblings also usually share much of their early 

environment, and access to resources such as wealth and land. Because 

social convention may additionally link inheritance to birth order, we also 

adjusted for other social factors, such as birth order and parental loss. 

Additionally, we examined grandpaternal age effects where possible. 

In doing so, we try to accomplish two goals: first, to isolate a potential 

biological, mutation-driven effect of paternal age on offspring fitness, and 

second, to compare different populations in different times and places, with 

high statistical power and comparable methodology.  

Methods 

Populations 
To test our hypotheses before the turn of the 20th century, we used 

genealogies drawn from church records in the Saint-Lawrence valley, Québec 

(Canada), the Krummhörn (Germany) and four historical Swedish regions. To 
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compare these populations to 20th century Sweden, we used a population-

based linkage study from Swedish national health registers. To ensure 

minimal censoring we drew subsets with adequately complete records. 

We used computerized and linked registers of births (and baptisms), 

deaths (and burials) and marriages to reconstruct family pedigrees and life 

histories for individuals. We call the individuals whose father’s age we 

compared with their siblings’ "anchors" wherever it aids comprehension. 

Further descriptive statistics can be found in Table 1 and on the online 

supplementary website at https://rubenarslan.github.io/paternal_age_fitness/ 

[31]. 

 1720-1850 
Krummhörn 

1670-1750 
Québec 

1760-1850 
Sweden 

20th-century 
Sweden 

Population N 80,808 459,591 271,130 8,201,968 

Anchor N 14,034 79,895 56,947 1,419,282/ 
3,428,225 

Anchors/ 
Families (RS 
models) 

9,447/ 
2,186 

68,724/ 
12,205 

56,663/ 
14,746 

1,408,177 / 
884,975 

Anchors/ 
Families (IS 
models) 

9,447/ 
2,186 

61,493/ 
11,940 

56,010/ 
14,708 

363,744/ 
200,000 

Paternal age 35.23 (7.56) 36.28 
(8.48) 

34.37 
(7.69) 

31.84 (7.05) 

Maternal age 31.53 (5.88) 29.58 
(6.66) 

31.54 
(6.32) 

28.34 (6.11) 

Female/male 
infant 
mortality 

11.1/12.9% 19.0/23.2
% 

12.0/14.1
% 

0.5/0.7% 

Fertility 3.66 (2.89) 7.71 (4.57) 3.6 (3.17) 2.15 (1.11) 
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(married 
women) 

Male age at 
first child 

29.29 (5.36) 27.92 
(5.29) 

28.13 
(5.18) 

28.07 (5.6) 

Male age at 
last child 

39.6 (7.5) 44.19 
(8.59) 

37.52 
(8.29) 

33.57 (6.14) 

Table 1. Descriptive statistics. RS: reproductive success. IS: infant survival. 

Numbers in parentheses are standard deviations. Years refer to the birth years of the 

anchors. For 20th-century Sweden, fertility-related numbers are from 1947-1959 (first 

N given) and mortality numbers are from 1969-2000 (second N given).  

The first population are inhabitants of the Krummhörn in contemporary 

Germany [32]. They were quite isolated and had a stable population size. We 

focussed on the 14,034 anchors born between 1720 and 1835. Married 

female anchors from this period had on average 3.7 children. 

The second population are the French settlers of the Saint-Lawrence 

valley in contemporary Québec, Canada [33,34]. They were an isolated 

frontier population in a harsh climate but they also had access to abundant 

resources and unsettled land. We focussed on the 79,895 anchors born 

between 1670 and 1740. Married female anchors from this period had on 

average 7.7 children. In this dataset, we had access to deep pedigrees, 

allowing us to compare not only siblings for paternal age, but also cousins for 

grandpaternal age in a within-extended-family design. 

The third population are Swedes in the Sundsvall, Northern inland 

(Karesuando to Undersåker, includes Sami people), Linköping and Skellefteå 

regions [35,36]. All individuals in Skellefteå and most individuals in Sundsvall 



 12/35 

were linked between church parishes. In the other regions, some individuals 

appeared in more than one parish. We focussed on the 56,947 anchors born 

between 1737 and 1850. Married female anchors from this period had on 

average 3.6 children. 

Our modern data is the whole population of Sweden. The Swedish Multi-

Generation Register includes records of individuals born after 1932 and alive 

by 1962, as well as their parents. The dataset was linked to the Cause of 

Death register that includes death dates. Information about marriages was 

derived from the population register and the Longitudinal Integration Database 

for Health Insurance and Labour Market Studies [37]. Individuals who ever 

had the civil status of married, widowed or divorced were counted as ever 

married. Because of censoring in this dataset, we focussed on the 1,419,282 

anchors born between 1947 and 1959 for reproductive outcomes and the 

3,428,225 anchors born between 1969 and 2000 for survival outcomes. Ever 

married female anchors from the earlier period had on average 2.2 children 

(never married: 1.1). Hormonal contraception was widely available to and 

used by anchors born between 1947 and 1959. 

Statistical approach 
We employed generalized mixed effect regressions with a group-level 

effect per family to compare full biological siblings within families. We used 

the R package brms [38] to fit Bayesian regression models using the 

probabilistic programming language Stan [39], and adjusted for average 

paternal age within families to isolate the effect of paternal age differences 
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between siblings. We adjusted for birth cohort in five-year groupings (small 

groupings at the edge of the range were lumped) to account for secular 

changes in mortality and fertility, as well as residual censoring. We adjusted 

for parental deaths in the first 45 years of life to remove effects related to 

orphanhood and parental senescence (0-1, 2-5, 6-10, …, 45+, unknown). We 

adjusted for maternal age (up to 20, 21-34, 35+), which we binned to reduce 

multicollinearity with paternal age and to capture nonlinear effects. We also 

adjusted for number of siblings, number of older siblings (0-5, 5+), and being 

born last. We used weakly informative priors that are documented in detail in 

the online supplement. The modelling assumptions reflected herein were 

tested for robustness, as documented below. 

We analysed reproductive success for all offspring, including those who 

died in childhood or never married. We used a two-process hurdle-Poisson 

family with a log link. In such a model, zeroes in the outcome variable are 

modelled as arising from a different process, e.g. not clearing the hurdle of 

survival and marriage before attempting reproduction. In the 20th-century 

Swedish data, we fitted a simpler Poisson model because child mortality was 

very low. 

We separated effects into four successive episodes of natural and sexual 

selection. To separate the episodes, we adjusted for success in the preceding 

episode. e1 survival of the first year, e2 survival until age 15 conditional on e1 

survival of the first year, e3 marriage conditional on e2, and e4 number of 

children, conditional on e3. For e4, we included only ever-married anchors 
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and adjusted for their number of spouses. In 20th-century Sweden, we also 

examined e5 divorce, conditional on e3, even though this is arguably not 

clearly an episode of selection. All models were fit using a Bernoulli 

regression with a cauchit link to decrease the influence of extreme values 

[40], except e4 which was fit using a Poisson regression with a log link. In 

20th-century Sweden, we could not fit our survival models to the whole 

available dataset for computational reasons and hence used a randomly 

drawn subset (~10% of the 3.4m available).  

We used approximate leave-one-out cross-validation [41] as implemented 

in brms to compare four models: m1 with a linear effect of paternal age, 

without the group-level effect for family, m2 without a paternal age effect, but 

with the group-level effect, m3 like m2 but with a linear paternal age effect, 

and m4, like m3, but additionally with a thin-plate spline smooth [42] on the 

paternal age effect to capture nonlinearity. Comparing m1 and m3 allows us 

to assess the usefulness of group-level effects, comparing m2 and m3 we test 

whether the inclusion of paternal age improves the model fit, comparing m3 

and m4, we test the paternal age effect for nonlinearity. 

After this, we ran several robustness checks to test the modelling 

assumptions in our main models, using m3 as the baseline model. We carried 

out the following analyses: r1 relaxed exclusion criteria (not in 20th-century 

Sweden), r2 had only birth cohort as a covariate, r3 adjusted for birth order 

continuously, r4 adjusted for number of dependent siblings (younger than 5, 

alive at anchor birth) instead of birth order, r5 interacted birth order with 
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number of siblings, r6 did not adjust for birth order, r7 adjusted only for 

parental loss in the first 5 years, r8 adjusted for being the first- or last-born 

adult son, r9 adjusted for a continuous nonlinear thin-plate spline smooth [42] 

for birth year instead of 5-year bins, r10 added a group-level slope for paternal 

age, r11 included separate group-level effects for each parent instead of one 

per marriage, r12 added a moderation by anchor sex, r13 adjusted for 

paternal age at first birth, r14 compared a model with linear group fixed 

effects, r15 added a moderator by region and group-level effects by church 

parish (not in 20th-century Sweden), r16 was restricted to the region Skellefteå 

(only in historical Sweden), r17 tested whether hypothetical cases of Down’s 

syndrome could explain the effects, r18 reversed hurdle Poisson and Poisson 

distribution for the respective populations, r19 assumed a normal distribution 

for the outcome, r20 did not adjust for maternal age, r21 adjusted for maternal 

age continuously, r22 relaxed exclusion criteria and included 30 more years 

of birth cohorts, allowing for more potential censoring, r23 used different 

weakly informative priors, r24 used noninformative priors (comparable with 

maximum likelihood), r25 controlled for migration status (not in 20th-century 

Sweden), r26 separated parental age contributions (only in 20th-century 

Sweden). More detailed descriptions of all robustness analyses can be 

found in the supplement section 6.2, code and detailed results are on the 

online supplementary website [31]. 

 For the 20th-century Sweden data, we used a random subset of 80,000 

families in the robustness analyses for computational reasons. We reran 
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analyses with all data if the paternal age effect deviated strongly from the m3 

estimate. 

We also ran two sensitivity analyses to test whether results could be 

explained by late-life mortality or reproductive timing of the anchors. To 

contextualize contemporary reproductive timing trends, we also compared 

reproductive timing across populations.  

Effect sizes were calculated as the median effect estimate of a 10-year 

increase in paternal age with a 95% credibility interval. 

Results 
In our main model m3, we found negative effects of paternal age on 

anchor’s number of children in all four populations: a decrease per decade of 

paternal age of -3.0% (95% credibility interval: [-6.1,0.2] in Québec, -3.4% [-

5.9,-0.9] in 20th-century Sweden, -7.3% [-13.4,-1.1] in historical Sweden, and -

8.4% [-24.8,12.0] in the Krummhörn. These effects appeared to be fairly linear 

in m4 (Figure 1), although visual inspection and approximate leave-one-out 

cross-validation [41] showed the effect tapering off after age 45 in 20th-century 

Sweden (~4% of children were born to fathers older than 45, see S.5.4.5.1) 

and after age 50 in Québec in (~8% of children, see S.3.4.5.1). In historical 

Sweden, paternal age had a slight positive effect in m1 before using sibling 

comparisons, in the other populations the effect was negative in all models. In 

the Krummhörn population, the effects of birth order, maternal and paternal 

age could not be disentangled well, as credible intervals were very wide when 
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these covariates were considered together. Credible intervals (95%) for 

paternal age excluded zero for m3 in both Swedish populations and for m4 in 

Québec and 20th-century Sweden. These main models are detailed in the 

supplement sections 2-5. 

 

Fig. 1: Paternal age effects on number of surviving children.  

Marginal effect plots for paternal age effect splines estimated in m4. Covariates were 

set to their mean or reference level, respectively. The solid lines show the posterior 

median; the dashed line is a linear line fit over the spline and inversely weighted by 

standard error to examine whether the spline fit deviates from linearity. The shaded 

areas show the 95% credibility intervals for the reference individuals and include 

uncertainty related to covariate effect sizes.  
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year of life in the pre-industrial populations (e1). Comparing children of 25- 

and 35-year-old fathers, yielded percentage decreases of -2.1 (95% credible 

interval [-0.2,-5.4]), -1.0 [-0.7,-1.5], and -1.8 [-1.1,-3.1] in the Krummhörn, 

Québec and historical Sweden respectively. In the 20th-century Swedish 

population, infant mortality was very low, and the effect size of paternal age 

on infant survival, though negative, was correspondingly small (-0.05 [-0.03,-

0.06]). Survival to age 15 years (e2) was not associated with paternal age 

(effects ranging from -0.2 to 0.1). Probability of ever marrying (e3) was 

inconsistently associated with paternal age, negatively in the Krummhörn 

population (-5.2), positively in historical Sweden (7.9), with negligible 

associations in Québec and modern Sweden (0.0 and 0.8), and the 

association in historical and 20th-century Sweden turned negative when not 

accounting for parental loss (not shown). Number of children (e4), after 

accounting for marriage success, was negatively associated with paternal age 

in 20th-century Sweden (-3.8 [-4.6;-3.0]) and historical Sweden (-5.4 [-8.9;-

1.6]), but non-robustly positively associated in the Krummhörn population 

(15.62, negatively when not adjusting for birth order, not shown) and 

negligibly associated in Québec (0.9 [-1.3; 3.2]). Paternal age did not predict 

probability of divorce in 20th-century Sweden (-0.3 [-0.78;0.17]). 
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Fig. 2: Paternal age effects on subsequent selective episodes.  

Estimated percentage changes in the respective selective episode (comparing 

children of 25- to 35-year-old fathers) with 80% and 95% credibility intervals.  
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In our sensitivity analyses, we found mortality could mostly account for any 

paternal age effects on reproductive success in the two non-Swedish 

populations, but not in the Swedish populations. Among those who ever 

reproduced, paternal age did not predict reproductive success after 

accounting for anchor’s age at first and last birth (confer supplement [31]). 

 

Fig. 3 Robustness checks across 26 models 

Estimates of the effect of a ten-year difference in paternal age on number of children 

from model m3 and up to 26 variations on this basic model (described in the method 

section and in further detail on the supplementary website). The horizontal dashed 

and solid lines show 95% credibility intervals. The point and vertical dashed line 

show the estimate from m3. The distance of the numbers to the vertical dashed line 

shows how much estimates can vary depending on the model specification. 

Estimates for the analyses in 20th-century Sweden are based on a subset of the data 

for computational reasons (except models m3, r3, r21, and r26). 
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Further details, including effect sizes and marginal effect plots for all 

covariates, model summaries, and R code for each of the models can be 

found on the online supplementary website at 

https://rubenarslan.github.io/paternal_age_fitness/ [31]. 

Discussion 
We found robust evidence for negative paternal age effects on reproductive 

success in all four populations. Results held up after adjusting for numerous 

covariates, that capture alternative non-genetic explanations, including 

offspring sex, birth cohort, number of siblings, number of older siblings, 

maternal age, and loss of either parent up to age 45, and after checking 

robustness across 26 alternative models. In historical Sweden, a slight 

positive effect turned negative after we used sibling comparisons, showing 

that systematic confounding between reproductive timing and unobserved 

familial characteristics could obscure an effect. In all populations, effects were 

consistent with a roughly linear dose-response relationship between paternal 

age and number of children. Effects were largest in the Krummhörn (although 

estimates were uncertain in this smallest population), followed by historical 

Sweden, and similarly sized effects in Québec and 20th-century Sweden. 

These differences seemed to be mainly driven by differences in the first 

selective episode, survival of the first year. The 95% credibility intervals for all 

effect sizes overlapped across populations. 

Even across three generations, we found negative grandpaternal age 

effects on offspring reproductive success for both grandfathers in Québec. 
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When we separately examined the selective episodes along the lifespan, 

paternal age effects on survival to the first year were negative across all 

historical populations (-1% in Québec to -2% in the Krummhörn and historical 

Sweden), but negligibly small in 20th-century Sweden (-0.05%). We found no 

robust pattern of effects on survival to age 15 and the odds of getting married. 

Some selective episode effects changed substantially depending on certain 

covariates, which may result from adjusting for a collider, mediator, or highly 

collinear variable. Therefore, we advocate only cautious interpretation of the 

analyses where the estimate changed substantially upon removal of a 

covariate, especially in the Krummhörn. In the Swedish populations, the 

number of children was negatively associated with paternal age after 

adjusting for marriage success and survival to age 15. Consistent with this, 

our sensitivity analyses showed that mortality could not explain the paternal 

age effect in the Swedish populations. This may, however, reflect a mere 

difference in statistical power to detect remaining effects, as opposed to a 

substantive difference between populations. 

In 20th-century Sweden, the effect in the last selective episode, on number 

of children, was much stronger than the effect on infant mortality. Infant 

mortality in Sweden is among the lowest in the world. Because more than 

99% of children brought to term in the years 1969 to 1999 survived, there is 

little room for selection during this selective episode. Future research should 

examine whether conditions that used to cause infant mortality, such as 

preterm birth, are simply no longer harmful thanks to advances in peri- and 

postnatal care, or whether selection has been partially displaced to before 
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birth or to later in life. We might expect displaced selection to take place 

before birth in some cases, as abortions end one fifth of all known 

pregnancies in Western Europe [43]. Most are elective, not therapeutic [44], 

but even women electing to have an abortion may do so selectively after 

considering their own age and paternal characteristics, including age [45]. 

Some paternal-age-linked conditions such as developmental disorders [4] 

might be detected in prenatal screening. Some diseases that would have led 

to early death in our historical populations might also put the afflicted at a 

disadvantage in later episodes of selection in 20th-century Sweden, e.g. 

people with paternal-age-associated [4] developmental disorders might be 

less likely to marry and have children. 

We tried to adjust for all non-biological explanations that could be 

modelled using our data. Still, it is possible that e.g. parental investment 

declines with paternal age in such a manner that our adjustments for parental 

loss, mother’s age, birth order and various other covariates in our robustness 

analyses could only insufficiently correct for this. Such residual confounding 

might lead to inflated estimates of any biological paternal age effect. 

Moreover, several non-genetic biological explanations for paternal age 

effects have been suggested in the literature. Eisenberg et al. [46] linked 

advanced paternal age to longer offspring telomeres, but it remains unclear 

whether this association is causal, whether it would differ between siblings 

and whether it could mediate phenotypic effects. Some authors [47,48] have 

also speculated that advanced paternal age might lead to errors in epigenetic 
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regulation or might be linked to imprinting. Because preimplantation embryos 

undergo extensive demethylation and reprogramming [49,50], such 

transgenerational effects are controversial. Still, researchers [51–53] have 

searched for associations between paternal age and the methylation of 

certain genes in sperm and foetal cord blood. The use of small, clinical 

samples renders early work hard to generalise, but some associations have 

been reported.  

Maternal age is another matter: its effects on aneuploidies are well 

established in the literature [54]. Although we adjusted for maternal age 

effects, parents’ ages within families increase in lockstep. Their effects are 

thus difficult to separate in the largely pre-industrial monogamous populations. 

Even though maternal age is linked to aneuploidies, most aneuploid 

conceptions are not carried to term and even live-born children rarely get old. 

Only children with Down’s syndrome live longer, but they are rarely fertile. Our 

robustness checks suggest Down’s syndrome cannot fully explain the 

reported effects. In modern epidemiological data, specific syndromes could be 

easily excluded to test their contribution. Recent studies also estimated small 

effects of maternal age on single nucleotide de novo mutations [4,7]. Better 

understanding the mechanisms by which parental age is linked to offspring 

outcomes therefore seems to be a more worthwhile and achievable goal than 

perfectly separating each parent’s contribution. Still, in modern Sweden we 

could separate parents’ ages better, and in our robustness analyses paternal 

age still negatively predicted number of children after accounting for maternal 
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age continuously, the average parental age for each parent, and a dummy 

variable for teenage mothers. 

Apart from these substantive alternative explanations, we also considered 

several methodological concerns. First and foremost, the highly collinear 

covariates maternal age, birth order and parental loss made it difficult to 

separate their contributions from that of paternal age. Standard errors were 

wide and different defensible operationalisations resulted in non-negligible 

effect size changes in our robustness analyses. Previous work rarely adjusted 

for parental loss to the extent that we did. This adjustment is debatable, 

because parental death can be both a cause and a consequence of offspring 

death. Still, from our robustness checks, we concluded that adjusting for 

parental loss is usually sensible and results of such adjustments should be 

reported in future work. Birth order, on the other hand, had little effect in most 

of our models, but adjusting for it often led to an increase of the paternal age 

effect size. Second, our church record data in particular have some 

shortcomings. Some children who died before baptism may have gone 

unrecorded, death records may be missing, and migration might lead to 

unobserved censoring [55]. Fortunately, judging from the consistency of our 

robustness analyses, it is at least plausible that these problems are unrelated 

to paternal age after adjusting for covariates in our models, and we assume 

that by using four different populations we limited bias.  

After all these adjustments, we still found negative paternal age effects on 

several measures of evolutionary fitness across populations. But what can 
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explain these effects? The work of Kong et al. and others [1,6] has 

demonstrated a strong and likely causal effect of paternal age on de novo 

genetic mutations, but it is not clear that the paternal age effects reported 

here and in the literature are driven predominantly by de novo mutations [56]. 

One approach is to adjust for confounders, as we discuss above. Another is to 

derive expected effect size estimates from evolutionary genetic calculations. 

Gratten et al. [56] made the point that many reported paternal age effects in 

the psychiatric literature are implausibly large and calculated plausible effect 

sizes for mutational components of paternal age effects. Hayward et al. [22] 

estimated a paternal age effect on fitness components and attempted to 

compare their effect size to published estimates of the genome-wide 

deleterious mutation rate per generation (U) [3] times the mean selection 

effect against a deleterious mutation (ℎ"), yielding the estimated mutation-

caused decrease in fitness as a percentage [27]. As paternal age does not 

perfectly predict the number of de novo mutations per generation, any 

estimate of paternal age effects on fitness would be expected to be slightly 

lower than #ℎ". Unfortunately, no mean selection effect has been estimated 

for non-coding mutations yet and many unknowns and approximately-knowns 

enter the equation for estimates of the genome-wide deleterious mutation 

rate. Thus, only a range of plausible values can be drawn from the literature. 

Hayward et al. estimated values for #ℎ" based on only nonsynonymous 

mutations ranging from 0.016-0.031 [22,27,57]. Estimates including mutations 

at all functional sites are even less certain; 0.11-0.22 are high estimates 

based on assuming the same mean selection as against deleterious 
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nonsynonymous mutations. If we now assume an increase of 2 mutations per 

year of paternal age [1] and estimate the per-generation decline in fitness 

from de novo mutations by comparing the child of an average father aged 30 

years, transmitting 60 mutations, with the child of a hypothetical father 

transmitting no mutations, for our models m3 in all four populations, we obtain 

0.16, 0.07, 0.20, and 0.14 in the Krummhörn, Québec, historical and 20th-

century Sweden respectively. Using the arguably better estimate from our 

robustness analysis r26 in which we could better adjust for maternal age in 

20th-century Sweden, we obtain an estimate of 0.065. Given the imperfect 

correlation between paternal age and de novo count, the variability of 

estimates in our robustness checks, sampling error and the plausibility of 

residual confounding, we think our estimates are on the high side of the real 

value, but not completely at odds with Hayward et al.’s calculations of #ℎ" 

and consistent with their own estimated value of 0.12. We have also explored 

the relevant parameter space from Gratten et al. [56] and found the resulting 

effect sizes broadly consistent with the results from our infant survival models. 

These plausibility checks are documented in greater detail in the online 

supplement [31]. 

Implications and conclusions 
Across four large population-based datasets, we found robust support for 

the prediction that higher paternal age linearly decreases offspring fitness. 

Although we cannot be sure that we succeeded in isolating an effect of de 

novo mutations given the multiple alternative explanations and methodological 

caveats, the effects are detectable in all four populations and hence plausibly 
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caused to some extent by paternal age. Depending on their cause, but not 

only if that cause is mutational, paternal age effects could have implications 

for policy: Descriptive data show a fall from 1930 to 1970 and a steady rise in 

maternal and paternal ages since 1970 in Sweden. However, average 

parental ages in 2010 were still lower than in 1737-1880 (supplement section 

7). Although people start reproducing later, they also stop earlier. Contrary to 

common news and lay scientific accounts, contemporary parents do not 

reproduce unprecedentedly late on average [1,45,58]. While advanced 

parental ages at first birth may entail smaller families, pre-industrial 

populations had similar average ages at birth and were not overwhelmed by 

mutational stress. So, we do not predict that contemporary reproductive timing 

will lead to unprecedented or unbearable de novo mutational loads and 

concomitant changes in the prevalence of genetic disorders. The decline in 

fitness with paternal age suggests that purifying selection is still effective in a 

modern population with hormonal contraception, social transfers, and modern 

medicine. This runs counter to oft-repeated predictions of mutational doom by 

relaxed selection [3,59–61]. 

Although our design is not ideal for separating the influence of maternal 

and paternal age, many secular trends and policies will affect both. Future 

research could use genome-sequenced families with functionally annotated 

and phased mutations to better characterize the contribution of paternal age 

[4]. Future research could also isolate a biological paternal age effect on early 

mortality in nonhuman animals with large recorded pedigrees, such as 

artificially inseminated breeding cattle. This would rule out most social 
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confounds by design, but the much shorter breeding lifespan might limit 

generalizability to humans. 
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1 Model description

All of the models described below have the following in common. Only the robustness check models deviate
from this in the way described in section 6.

1.1 Estimation

We fit all models using brms v. 1.2.0, a Bayesian regression analysis statistical package. brms uses Stan, a
probabilistic programming langugage to fit models using Hamiltonian Monte Carlo.

1.2 Covariates

We adjusted for average paternal age within families to isolate the e�ect of paternal age di�erences between
siblings. We further adjusted for birth cohort in five-year groupings (small groupings at the edge of the range
were lumped) to account for secular changes in mortality and fertility, as well as residual censoring. We
adjusted for parental deaths in the first 45 years of life to remove e�ects related to orphanhood and parental
senescence (in categories of 0-1, 2-5, 6-10, . . . , 45+, unknown) for both parents separately. Parental loss at
45+ served as the reference category. We adjusted for maternal age (up to 20, 21-34, 35+), which we binned
to reduce multicollinearity with paternal age and to capture nonlinear e�ects. A maternal age of 21-34 served
as the reference category. We also adjusted for number of siblings continuously, number of older siblings (0-5,
5+), and being born last. Being first-born served as the reference category.

1.3 Model stratification

Except in model m1, we added group-level e�ects for each family (father-mother dyad) and then controlled
for the average paternal age in the family. Hence, the e�ect of paternal age within families can be isolated
from the e�ect between families. We are interested in the e�ect of paternal age within families, as this e�ect
cannot be explained by e.g. genetic propensities of the father to reproduce later.

1.4 Priors

We used weakly informative normal priors with a standard deviation of 5 on the regression coe�cients,
Student’s t priors with 3 degrees of freedom and a scale of 5 for the group-level standard deviations, and
Student’s t priors with 3 degrees of freedom and a scale of 10 for the splines.

1.5 Robustness tests

The modelling assumptions, including covariate choices and prior choices, reflected in the modelling approach
above were tested for robustness, as documented in section 6 below.
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2 Krummhörn

2.1 m1 : No sibling comparison

Here, we ignore the pedigree structure of the data to see whether it matters for the estimation of the paternal
age e�ect.

2.1.1 Model summary

Data: 9447 individuals.

Formula (Wilkinson notation): children ~ paternalage + birth_cohort + male + maternalage.factor +
paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born.

• family: hurdle_poisson
• link: log

2.1.2 Priors

prior class
normal(0,5) b

2.1.3 Population-level e�ects

E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1760-1765 1.00 [0.90;1.12] 0.97 [0.72;1.33]
birth cohort 1765-1770 0.88 [0.80;0.97] 0.76 [0.58;0.99]
birth cohort 1770-1775 0.90 [0.82;0.99] 0.94 [0.73;1.23]
birth cohort 1775-1780 0.98 [0.89;1.07] 0.83 [0.64;1.07]
birth cohort 1780-1785 0.88 [0.80;0.97] 0.78 [0.60;1.00]
birth cohort 1785-1790 0.91 [0.83;1.00] 0.68 [0.53;0.88]
birth cohort 1790-1795 0.94 [0.86;1.02] 0.75 [0.60;0.96]
birth cohort 1795-1800 0.90 [0.83;0.97] 0.66 [0.52;0.83]
birth cohort 1800-1805 0.89 [0.82;0.96] 0.60 [0.49;0.75]
birth cohort 1805-1810 0.87 [0.80;0.95] 0.77 [0.62;0.97]
birth cohort 1810-1815 0.91 [0.84;0.98] 0.66 [0.54;0.82]
birth cohort 1815-1820 0.86 [0.80;0.93] 0.52 [0.42;0.64]
birth cohort 1820-1825 0.83 [0.77;0.90] 0.61 [0.50;0.76]
birth cohort 1825-1830 0.82 [0.76;0.89] 0.61 [0.50;0.75]
birth cohort 1830-1835 0.84 [0.78;0.91] 0.60 [0.49;0.74]

Intercept 5.34 [4.76;6.03] 0.69 [0.50;0.96]
last born 0.95 [0.91;0.99] 1.08 [0.96;1.22]

male 1.08 [1.05;1.12] 1.30 [1.19;1.41]
maternal loss 0-1 1.11 [0.97;1.26] 4.51 [3.18;6.55]
maternal loss 1-5 1.00 [0.92;1.08] 1.77 [1.44;2.19]

maternal loss 10-15 1.04 [0.97;1.11] 1.59 [1.32;1.94]
maternal loss 15-20 1.00 [0.94;1.08] 1.34 [1.10;1.63]
maternal loss 20-25 1.01 [0.95;1.08] 1.30 [1.09;1.56]
maternal loss 25-30 0.99 [0.94;1.05] 1.20 [1.02;1.41]
maternal loss 30-35 0.96 [0.91;1.02] 1.22 [1.06;1.43]
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E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
maternal loss 35-40 0.98 [0.92;1.03] 1.07 [0.93;1.23]
maternal loss 40-45 0.97 [0.92;1.03] 1.29 [1.10;1.52]
maternal loss 5-10 1.07 [1.00;1.14] 1.59 [1.31;1.93]

maternalage factor 14-20 0.93 [0.78;1.09] 1.30 [0.83;2.04]
maternalage factor 35-50 1.01 [0.96;1.06] 1.16 [1.02;1.31]

nr siblings 1.00 [0.99;1.01] 1.09 [1.06;1.11]
older siblings 1 1.03 [0.99;1.08] 1.03 [0.91;1.16]
older siblings 2 0.98 [0.93;1.03] 0.93 [0.80;1.07]
older siblings 3 0.97 [0.92;1.03] 0.93 [0.79;1.10]
older siblings 4 0.96 [0.90;1.03] 0.94 [0.78;1.13]

older siblings 5+ 0.99 [0.92;1.06] 0.72 [0.59;0.89]
paternal loss 0-1 0.86 [0.76;0.98] 1.76 [1.28;2.43]
paternal loss 1-5 0.97 [0.89;1.06] 1.67 [1.33;2.11]

paternal loss 10-15 1.00 [0.94;1.07] 1.16 [0.96;1.38]
paternal loss 15-20 0.90 [0.85;0.96] 1.09 [0.92;1.31]
paternal loss 20-25 0.88 [0.82;0.94] 1.15 [0.96;1.36]
paternal loss 25-30 0.99 [0.93;1.05] 1.05 [0.89;1.25]
paternal loss 30-35 0.96 [0.90;1.01] 0.98 [0.84;1.16]
paternal loss 35-40 0.97 [0.92;1.03] 0.98 [0.84;1.15]
paternal loss 40-45 0.99 [0.92;1.05] 1.15 [0.95;1.38]
paternal loss 5-10 0.93 [0.87;1.00] 1.21 [1.00;1.49]

paternalage 1.00 [0.97;1.03] 1.09 [1.01;1.17]
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2.1.4 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -4.87 [-9.82; 0.17] [-8.12;-1.57]

2.1.4.1 Marginal e�ect plot

Paternal age e�ect on number of children The shaded areas show the 95% and 80% credibility intervals for
the reference individuals and include uncertainty related to covariate e�ect sizes.
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2.2 m2 : Sibling comparison, no paternal age e�ect

Here, we compared siblings by including a random intercept for the family, but we modelled no e�ect for
paternal age di�erences among siblings.

2.2.1 Model summary

Data: 9447 individuals nested in 2186 mother-father dyads.

Formula (Wilkinson notation): children ~ birth_cohort + male + maternalage.factor + paternalage.mean +
paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 | idParents).

• family: hurdle_poisson
• link: log

2.2.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd

2.2.3 Group-level e�ects

Component E�ect Hurdle Estimate Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.48 [0.39;0.56] 0.23 [0.20;0.25]

2.2.4 Population-level e�ects

E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1760-1765 1.00 [0.89;1.13] 0.95 [0.68;1.32]
birth cohort 1765-1770 0.89 [0.80;1.00] 0.73 [0.55;0.97]
birth cohort 1770-1775 0.90 [0.80;1.00] 0.94 [0.71;1.25]
birth cohort 1775-1780 0.98 [0.89;1.09] 0.82 [0.61;1.08]
birth cohort 1780-1785 0.90 [0.81;1.01] 0.76 [0.57;1.02]
birth cohort 1785-1790 0.91 [0.82;1.01] 0.65 [0.49;0.86]
birth cohort 1790-1795 0.93 [0.84;1.03] 0.73 [0.56;0.96]
birth cohort 1795-1800 0.90 [0.82;1.00] 0.63 [0.49;0.80]
birth cohort 1800-1805 0.90 [0.82;0.99] 0.58 [0.45;0.74]
birth cohort 1805-1810 0.88 [0.80;0.97] 0.76 [0.60;0.97]
birth cohort 1810-1815 0.91 [0.83;1.00] 0.65 [0.51;0.82]
birth cohort 1815-1820 0.87 [0.80;0.95] 0.50 [0.39;0.62]
birth cohort 1820-1825 0.84 [0.77;0.91] 0.59 [0.47;0.74]
birth cohort 1825-1830 0.82 [0.75;0.89] 0.58 [0.46;0.72]
birth cohort 1830-1835 0.84 [0.76;0.92] 0.58 [0.46;0.73]

Intercept 5.15 [4.41;6.00] 0.69 [0.47;1.03]
last born 0.96 [0.91;1.00] 1.08 [0.96;1.23]

male 1.08 [1.04;1.12] 1.31 [1.20;1.43]
maternal loss 0-1 1.12 [0.96;1.30] 4.98 [3.49;7.17]
maternal loss 1-5 0.99 [0.90;1.08] 1.84 [1.46;2.33]
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E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
maternal loss 10-15 1.03 [0.95;1.12] 1.62 [1.30;2.01]
maternal loss 15-20 1.01 [0.93;1.09] 1.38 [1.12;1.70]
maternal loss 20-25 1.01 [0.94;1.09] 1.31 [1.08;1.60]
maternal loss 25-30 0.98 [0.92;1.05] 1.22 [1.03;1.47]
maternal loss 30-35 0.95 [0.89;1.01] 1.25 [1.05;1.48]
maternal loss 35-40 0.97 [0.92;1.02] 1.08 [0.92;1.26]
maternal loss 40-45 0.97 [0.91;1.04] 1.32 [1.11;1.57]
maternal loss 5-10 1.08 [1.00;1.17] 1.64 [1.34;2.01]

maternalage factor 14-20 0.94 [0.79;1.13] 1.25 [0.81;1.98]
maternalage factor 35-50 1.01 [0.96;1.06] 1.20 [1.05;1.36]

nr siblings 1.00 [0.99;1.01] 1.08 [1.05;1.11]
older siblings 1 1.04 [0.99;1.09] 1.05 [0.92;1.20]
older siblings 2 0.98 [0.93;1.04] 0.96 [0.84;1.11]
older siblings 3 0.97 [0.91;1.03] 0.98 [0.83;1.15]
older siblings 4 0.97 [0.90;1.04] 1.00 [0.83;1.21]

older siblings 5+ 0.99 [0.91;1.07] 0.78 [0.63;0.96]
paternal loss 0-1 0.86 [0.75;1.00] 1.84 [1.32;2.60]
paternal loss 1-5 0.97 [0.88;1.07] 1.75 [1.36;2.25]

paternal loss 10-15 1.01 [0.94;1.09] 1.19 [0.96;1.47]
paternal loss 15-20 0.91 [0.85;0.98] 1.12 [0.92;1.38]
paternal loss 20-25 0.89 [0.83;0.96] 1.18 [0.97;1.43]
paternal loss 25-30 0.99 [0.93;1.06] 1.07 [0.89;1.28]
paternal loss 30-35 0.97 [0.91;1.04] 0.99 [0.82;1.19]
paternal loss 35-40 0.99 [0.93;1.06] 0.99 [0.83;1.18]
paternal loss 40-45 0.99 [0.93;1.06] 1.16 [0.96;1.41]
paternal loss 5-10 0.94 [0.86;1.02] 1.24 [1.00;1.55]
paternalage mean 1.00 [0.96;1.03] 1.08 [0.99;1.18]

2.2.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

This model did not contain a within family paternal age predictor.

2.3 m3 : Sibling comparison, linear paternal age e�ect

Here, we compared siblings by including a random intercept for the family, and we modelled a linear e�ect
for paternal age di�erences among siblings.

2.3.1 Model summary

Data: 9447 individuals nested in 2186 mother-father dyads.

Formula (Wilkinson notation): children ~ paternalage + birth_cohort + male + maternalage.factor +
paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 |
idParents).

• family: hurdle_poisson
• link: log
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2.3.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd

2.3.3 Group-level e�ects

Component E�ect Hurdle Estimate Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.47 [0.39;0.56] 0.22 [0.20;0.25]

2.3.4 Population-level e�ects

E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1760-1765 1.00 [0.88;1.13] 0.95 [0.68;1.34]
birth cohort 1765-1770 0.89 [0.79;0.99] 0.73 [0.55;0.99]
birth cohort 1770-1775 0.89 [0.80;1.00] 0.94 [0.69;1.26]
birth cohort 1775-1780 0.98 [0.87;1.09] 0.82 [0.61;1.09]
birth cohort 1780-1785 0.90 [0.80;1.01] 0.76 [0.57;1.01]
birth cohort 1785-1790 0.91 [0.82;1.02] 0.66 [0.49;0.86]
birth cohort 1790-1795 0.93 [0.84;1.03] 0.73 [0.57;0.95]
birth cohort 1795-1800 0.90 [0.81;1.00] 0.63 [0.50;0.81]
birth cohort 1800-1805 0.89 [0.81;0.99] 0.58 [0.46;0.75]
birth cohort 1805-1810 0.88 [0.79;0.97] 0.76 [0.59;0.97]
birth cohort 1810-1815 0.91 [0.83;1.00] 0.65 [0.51;0.82]
birth cohort 1815-1820 0.87 [0.80;0.96] 0.49 [0.39;0.63]
birth cohort 1820-1825 0.83 [0.76;0.91] 0.59 [0.47;0.74]
birth cohort 1825-1830 0.81 [0.74;0.89] 0.58 [0.46;0.73]
birth cohort 1830-1835 0.83 [0.76;0.92] 0.57 [0.45;0.73]

Intercept 5.23 [4.49;6.07] 0.72 [0.49;1.05]
last born 0.96 [0.91;1.00] 1.08 [0.96;1.23]

male 1.08 [1.05;1.12] 1.32 [1.20;1.44]
maternal loss 0-1 1.10 [0.94;1.28] 4.85 [3.46;6.97]
maternal loss 1-5 0.98 [0.89;1.07] 1.80 [1.44;2.27]

maternal loss 10-15 1.03 [0.95;1.11] 1.60 [1.30;1.99]
maternal loss 15-20 1.00 [0.93;1.09] 1.37 [1.11;1.68]
maternal loss 20-25 1.00 [0.93;1.08] 1.30 [1.05;1.59]
maternal loss 25-30 0.98 [0.92;1.05] 1.21 [1.01;1.45]
maternal loss 30-35 0.95 [0.89;1.01] 1.24 [1.05;1.47]
maternal loss 35-40 0.97 [0.91;1.02] 1.07 [0.92;1.26]
maternal loss 40-45 0.97 [0.91;1.03] 1.32 [1.12;1.56]
maternal loss 5-10 1.07 [0.99;1.16] 1.62 [1.32;1.99]

maternalage factor 14-20 0.95 [0.79;1.13] 1.27 [0.80;2.00]
maternalage factor 35-50 1.00 [0.95;1.05] 1.14 [0.99;1.31]

nr siblings 1.01 [1.00;1.02] 1.11 [1.07;1.15]
older siblings 1 1.03 [0.97;1.08] 0.99 [0.85;1.15]
older siblings 2 0.95 [0.89;1.02] 0.86 [0.71;1.04]
older siblings 3 0.93 [0.84;1.02] 0.83 [0.65;1.06]
older siblings 4 0.91 [0.81;1.02] 0.80 [0.58;1.08]
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E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
older siblings 5+ 0.91 [0.78;1.05] 0.57 [0.38;0.85]
paternal loss 0-1 0.86 [0.74;0.99] 1.78 [1.26;2.55]
paternal loss 1-5 0.96 [0.87;1.06] 1.70 [1.32;2.21]

paternal loss 10-15 1.01 [0.93;1.09] 1.17 [0.95;1.45]
paternal loss 15-20 0.91 [0.84;0.98] 1.11 [0.92;1.35]
paternal loss 20-25 0.89 [0.82;0.96] 1.17 [0.96;1.41]
paternal loss 25-30 0.99 [0.92;1.06] 1.06 [0.88;1.27]
paternal loss 30-35 0.97 [0.91;1.04] 0.98 [0.82;1.17]
paternal loss 35-40 0.99 [0.93;1.05] 0.98 [0.83;1.18]
paternal loss 40-45 0.99 [0.92;1.06] 1.15 [0.95;1.39]
paternal loss 5-10 0.93 [0.86;1.02] 1.21 [0.97;1.51]

paternalage 1.07 [0.97;1.19] 1.30 [0.99;1.69]
paternalage mean 0.93 [0.83;1.04] 0.84 [0.64;1.11]
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2.3.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -8.41 [-24.83; 12.03] [-19.50; 3.89]

2.3.5.1 Marginal e�ect plot

Paternal age e�ect on number of children The shaded areas show the 95% and 80% credibility intervals for
the reference individuals and include uncertainty related to covariate e�ect sizes.
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2.4 m4 : Sibling comparison, nonlinear paternal age e�ect

Here, we compared siblings by including a random intercept for the family, and we modelled a possibly
nonlinear e�ect for paternal age di�erences among siblings.

2.4.1 Model summary

Data: 9447 individuals nested in 2186 mother-father dyads.

Formula (Wilkinson notation): children ~ s(paternalage) + birth_cohort + male + maternalage.factor +
paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 |
idParents).

• family: hurdle_poisson
• link: log

2.4.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd
student_t(3, 0, 10) sds

2.4.3 Group-level e�ects

Component E�ect Hurdle Estimate Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.47 [0.38;0.56] 0.22 [0.20;0.25]

2.4.3.1 Splines

E�ect Hurdle Estimate Zero-truncated Poisson Estimate
sds(spaternalage_1) 0.65 [0.02;2.32] 0.26 [0.01;0.93]

2.4.4 Population-level e�ects

E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1760-1765 1.00 [0.88;1.12] 0.95 [0.67;1.33]
birth cohort 1765-1770 0.89 [0.79;0.99] 0.73 [0.55;0.98]
birth cohort 1770-1775 0.89 [0.80;1.00] 0.94 [0.70;1.25]
birth cohort 1775-1780 0.97 [0.88;1.09] 0.82 [0.61;1.08]
birth cohort 1780-1785 0.89 [0.80;1.00] 0.76 [0.57;1.02]
birth cohort 1785-1790 0.91 [0.82;1.01] 0.66 [0.49;0.87]
birth cohort 1790-1795 0.93 [0.84;1.03] 0.73 [0.55;0.96]
birth cohort 1795-1800 0.90 [0.82;0.99] 0.63 [0.49;0.81]
birth cohort 1800-1805 0.89 [0.81;0.98] 0.58 [0.45;0.74]
birth cohort 1805-1810 0.87 [0.79;0.96] 0.76 [0.60;0.98]
birth cohort 1810-1815 0.91 [0.83;0.99] 0.64 [0.50;0.82]
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E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1815-1820 0.87 [0.79;0.94] 0.49 [0.39;0.62]
birth cohort 1820-1825 0.83 [0.76;0.91] 0.59 [0.46;0.74]
birth cohort 1825-1830 0.81 [0.74;0.88] 0.58 [0.46;0.72]
birth cohort 1830-1835 0.83 [0.76;0.91] 0.58 [0.45;0.73]

Intercept 6.45 [4.37;9.53] 1.74 [0.58;4.99]
last born 0.96 [0.92;1.00] 1.08 [0.97;1.22]

male 1.08 [1.05;1.12] 1.32 [1.20;1.44]
maternal loss 0-1 1.10 [0.95;1.29] 4.83 [3.38;7.03]
maternal loss 1-5 0.98 [0.89;1.07] 1.79 [1.42;2.27]

maternal loss 10-15 1.03 [0.95;1.11] 1.59 [1.29;1.96]
maternal loss 15-20 1.00 [0.92;1.08] 1.35 [1.10;1.66]
maternal loss 20-25 1.00 [0.93;1.08] 1.29 [1.05;1.58]
maternal loss 25-30 0.98 [0.91;1.05] 1.20 [1.00;1.43]
maternal loss 30-35 0.95 [0.89;1.01] 1.24 [1.05;1.48]
maternal loss 35-40 0.97 [0.91;1.02] 1.06 [0.91;1.25]
maternal loss 40-45 0.97 [0.91;1.03] 1.31 [1.12;1.54]
maternal loss 5-10 1.07 [0.99;1.16] 1.61 [1.31;1.98]

maternalage factor 14-20 0.95 [0.79;1.13] 1.26 [0.80;1.97]
maternalage factor 35-50 1.00 [0.94;1.05] 1.14 [0.99;1.31]

nr siblings 1.01 [0.99;1.02] 1.11 [1.07;1.15]
older siblings 1 1.03 [0.98;1.08] 1.00 [0.86;1.16]
older siblings 2 0.96 [0.89;1.03] 0.88 [0.72;1.06]
older siblings 3 0.94 [0.86;1.03] 0.85 [0.67;1.09]
older siblings 4 0.92 [0.82;1.03] 0.82 [0.60;1.11]

older siblings 5+ 0.92 [0.79;1.07] 0.58 [0.39;0.86]
paternal loss 0-1 0.86 [0.74;1.00] 1.76 [1.24;2.54]
paternal loss 1-5 0.96 [0.87;1.06] 1.69 [1.31;2.19]

paternal loss 10-15 1.01 [0.93;1.08] 1.17 [0.95;1.44]
paternal loss 15-20 0.91 [0.84;0.98] 1.10 [0.90;1.35]
paternal loss 20-25 0.89 [0.82;0.95] 1.16 [0.96;1.41]
paternal loss 25-30 0.99 [0.93;1.06] 1.06 [0.88;1.27]
paternal loss 30-35 0.97 [0.91;1.04] 0.98 [0.82;1.17]
paternal loss 35-40 0.99 [0.93;1.06] 0.99 [0.83;1.18]
paternal loss 40-45 0.99 [0.92;1.06] 1.16 [0.95;1.40]
paternal loss 5-10 0.93 [0.86;1.01] 1.21 [0.97;1.50]
paternalage mean 0.94 [0.85;1.04] 0.84 [0.64;1.12]

spaternalage 1.02 [0.88;1.14] 1.20 [0.87;1.66]
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2.4.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -6.74 [-25.17; 14.85] [-19.34; 6.80]

2.4.5.1 Marginal e�ect plot

Paternal age e�ect on number of children The shaded areas show the 95% and 80% credibility intervals for
the reference individuals and include uncertainty related to covariate e�ect sizes.
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2.5 Main model comparison

We compare the four models using an approximate leave-one-out cross-validation information criterion as
implemented in brms and loo and the Watanabe-Akaike information criterion.

2.5.1 Approximate leave-one-out (LOO) cross-validation

LOOIC SE
m1 30344 288.3
m2 30240 285
m3 30237 285.1
m4 30243 285.1

m1 - m2 104.1 40.85
m1 - m3 107.1 40.81
m1 - m4 101.2 40.9
m2 - m3 3.03 5.65
m2 - m4 -2.88 6.18
m3 - m4 -5.91 3.86

2.5.2 Watanabe-Akaike information criterion

WAIC SE
m1 30344 288.3
m2 30201 284.2
m3 30198 284.2
m4 30204 284.2

m1 - m2 143.2 41.13
m1 - m3 145.9 41.11
m1 - m4 140.3 41.21
m2 - m3 2.72 5.32
m2 - m4 -2.85 5.86
m3 - m4 -5.57 3.47
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2.6 e1 : Selective episode: o�spring survival of the first year

In the first selective episode model, we tested how much of the paternal age e�ect happens in the first selective
episode, i.e. in the o�spring’s survival of the first year.

2.6.1 Model summary

Data: 9447 individuals nested in 2186 mother-father dyads.

Formula (Wilkinson notation): survive1y ~ paternalage + birth_cohort + male + maternalage.factor +
paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 |
idParents).

• family: bernoulli
• link: cauchit

2.6.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd

2.6.3 Group-level e�ects

Component E�ect Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.84 [0.53;1.10]

2.6.4 Population-level e�ects

E�ect Hurdle Odds ratio
birth cohort 1760-1765 0.96 [ 0.44; 2.29]
birth cohort 1765-1770 0.84 [ 0.39; 1.82]
birth cohort 1770-1775 1.02 [ 0.46; 2.29]
birth cohort 1775-1780 0.63 [ 0.33; 1.18]
birth cohort 1780-1785 0.67 [ 0.33; 1.30]
birth cohort 1785-1790 0.86 [ 0.41; 1.98]
birth cohort 1790-1795 1.72 [ 0.75; 4.36]
birth cohort 1795-1800 0.68 [ 0.36; 1.26]
birth cohort 1800-1805 1.46 [ 0.69; 3.26]
birth cohort 1805-1810 0.60 [ 0.32; 1.08]
birth cohort 1810-1815 0.90 [ 0.48; 1.68]
birth cohort 1815-1820 2.01 [ 0.93; 4.60]
birth cohort 1820-1825 2.42 [ 1.06; 6.23]
birth cohort 1825-1830 2.32 [ 1.05; 5.39]
birth cohort 1830-1835 1.38 [ 0.70; 2.83]

Intercept 56.94 [16.78;189.11]
last born 0.94 [ 0.65; 1.40]

male 0.71 [ 0.54; 0.92]
maternal loss 0-1 0.08 [ 0.04; 0.14]
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E�ect Hurdle Odds ratio
maternal loss 1-5 0.49 [ 0.25; 1.00]

maternal loss 10-15 0.76 [ 0.39; 1.55]
maternal loss 15-20 0.86 [ 0.45; 1.84]
maternal loss 20-25 0.82 [ 0.45; 1.54]
maternal loss 25-30 1.12 [ 0.62; 2.19]
maternal loss 30-35 0.67 [ 0.41; 1.13]
maternal loss 35-40 0.72 [ 0.44; 1.21]
maternal loss 40-45 0.78 [ 0.46; 1.35]
maternal loss 5-10 0.62 [ 0.32; 1.23]

maternalage factor 14-20 1.02 [ 0.39; 3.59]
maternalage factor 35-50 0.75 [ 0.48; 1.17]

nr siblings 0.72 [ 0.66; 0.78]
older siblings 1 1.66 [ 1.10; 2.53]
older siblings 2 2.26 [ 1.36; 3.82]
older siblings 3 3.37 [ 1.81; 6.43]
older siblings 4 3.79 [ 1.87; 8.22]

older siblings 5+ 10.79 [ 3.96; 31.27]
paternal loss 0-1 0.34 [ 0.14; 0.94]
paternal loss 1-5 0.41 [ 0.21; 0.81]

paternal loss 10-15 0.63 [ 0.34; 1.19]
paternal loss 15-20 0.51 [ 0.29; 0.89]
paternal loss 20-25 0.74 [ 0.40; 1.31]
paternal loss 25-30 0.73 [ 0.40; 1.29]
paternal loss 30-35 0.91 [ 0.52; 1.65]
paternal loss 35-40 0.93 [ 0.52; 1.71]
paternal loss 40-45 0.46 [ 0.27; 0.79]
paternal loss 5-10 0.77 [ 0.37; 1.65]

paternalage 0.46 [ 0.23; 0.92]
paternalage mean 2.50 [ 1.19; 5.14]
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2.6.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on probability of survival of the first year, combined
over the hurdle and Zero-truncated Poisson component, expressed as a change in percentage ((predicted

value at t + 10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -2.15 [-5.35;-0.21] [-4.03;-0.82]

2.6.5.1 Marginal e�ect plot

Paternal age e�ect on probability of survival of the first year The shaded areas show the 95% and 80%
credibility intervals for the reference individuals and include uncertainty related to covariate e�ect sizes.
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3 Québec

3.1 m1 : No sibling comparison

Here, we ignore the pedigree structure of the data to see whether it matters for the estimation of the paternal
age e�ect.

3.1.1 Model summary

Data: 68724 individuals.

Formula (Wilkinson notation): children ~ paternalage + birth_cohort + male + maternalage.factor +
paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born.

• family: hurdle_poisson
• link: log

3.1.2 Priors

prior class
normal(0,5) b

3.1.3 Population-level e�ects

E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1675-1680 1.01 [0.98;1.04] 1.07 [0.94;1.21]
birth cohort 1680-1685 1.03 [1.01;1.06] 1.22 [1.08;1.38]
birth cohort 1685-1690 1.04 [1.01;1.07] 1.35 [1.19;1.53]
birth cohort 1690-1695 1.03 [1.01;1.06] 1.08 [0.96;1.21]
birth cohort 1695-1700 1.03 [1.00;1.05] 1.10 [0.98;1.23]
birth cohort 1700-1705 1.01 [0.99;1.04] 1.26 [1.13;1.40]
birth cohort 1705-1710 0.99 [0.97;1.02] 1.15 [1.03;1.28]
birth cohort 1710-1715 0.99 [0.96;1.01] 1.48 [1.33;1.64]
birth cohort 1715-1720 0.96 [0.93;0.98] 1.32 [1.19;1.47]
birth cohort 1720-1725 0.96 [0.94;0.98] 1.35 [1.22;1.50]
birth cohort 1725-1730 0.94 [0.91;0.96] 1.89 [1.70;2.09]
birth cohort 1730-1735 0.96 [0.93;0.98] 1.98 [1.80;2.18]
birth cohort 1735-1740 0.95 [0.92;0.97] 1.70 [1.54;1.87]

Intercept 8.47 [8.20;8.75] 0.42 [0.37;0.48]
last born 1.01 [0.99;1.02] 1.02 [0.97;1.08]

male 1.12 [1.11;1.13] 1.49 [1.45;1.54]
maternal loss 0-1 0.97 [0.93;1.01] 2.84 [2.50;3.24]
maternal loss 1-5 0.98 [0.96;1.01] 1.52 [1.41;1.65]

maternal loss 10-15 0.99 [0.97;1.01] 1.30 [1.21;1.40]
maternal loss 15-20 1.00 [0.98;1.02] 1.22 [1.13;1.30]
maternal loss 20-25 0.97 [0.96;0.99] 1.18 [1.10;1.26]
maternal loss 25-30 0.98 [0.96;0.99] 1.07 [1.00;1.14]
maternal loss 30-35 0.98 [0.97;1.00] 1.09 [1.03;1.15]
maternal loss 35-40 0.99 [0.98;1.00] 1.08 [1.02;1.15]
maternal loss 40-45 1.00 [0.98;1.01] 1.00 [0.95;1.06]
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E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
maternal loss 5-10 1.01 [0.99;1.02] 1.34 [1.25;1.44]

maternal loss unclear 0.98 [0.96;0.99] 1.21 [1.15;1.28]
maternalage factor 14-20 0.99 [0.98;1.01] 1.00 [0.93;1.06]
maternalage factor 35-50 1.01 [1.00;1.02] 1.07 [1.02;1.12]

nr siblings 1.01 [1.01;1.01] 1.02 [1.01;1.02]
older siblings 1 0.98 [0.97;1.00] 0.95 [0.90;1.01]
older siblings 2 0.99 [0.97;1.00] 0.93 [0.87;0.99]
older siblings 3 0.98 [0.96;0.99] 0.89 [0.84;0.95]
older siblings 4 1.00 [0.98;1.01] 0.89 [0.83;0.95]

older siblings 5+ 0.99 [0.97;1.00] 0.86 [0.81;0.92]
paternal loss 0-1 0.99 [0.96;1.03] 1.81 [1.59;2.06]
paternal loss 1-5 1.00 [0.98;1.02] 1.40 [1.27;1.53]

paternal loss 10-15 0.99 [0.97;1.00] 1.21 [1.12;1.31]
paternal loss 15-20 0.98 [0.96;0.99] 1.32 [1.23;1.42]
paternal loss 20-25 0.98 [0.96;0.99] 1.20 [1.12;1.28]
paternal loss 25-30 0.99 [0.97;1.00] 1.20 [1.13;1.28]
paternal loss 30-35 0.98 [0.96;0.99] 1.15 [1.08;1.22]
paternal loss 35-40 0.98 [0.96;0.99] 1.11 [1.04;1.18]
paternal loss 40-45 1.00 [0.98;1.01] 1.06 [0.99;1.14]
paternal loss 5-10 1.00 [0.98;1.02] 1.37 [1.27;1.49]

paternal loss unclear 0.96 [0.95;0.98] 1.42 [1.34;1.51]
paternalage 0.98 [0.98;0.99] 1.00 [0.97;1.02]
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3.1.4 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -1.57 [-2.51;-0.59] [-2.17;-0.90]

3.1.4.1 Marginal e�ect plot

Paternal age e�ect on number of children The shaded areas show the 95% and 80% credibility intervals for
the reference individuals and include uncertainty related to covariate e�ect sizes.
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3.2 m2 : Sibling comparison, no paternal age e�ect

Here, we compared siblings by including a random intercept for the family, but we modelled no e�ect for
paternal age di�erences among siblings.

3.2.1 Model summary

Data: 68724 individuals nested in 12205 mother-father dyads.

Formula (Wilkinson notation): children ~ birth_cohort + male + maternalage.factor + paternalage.mean +
paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 | idParents).

• family: hurdle_poisson
• link: log

3.2.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd

3.2.3 Group-level e�ects

Component E�ect Hurdle Estimate Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.63 [0.60;0.66] 0.27 [0.27;0.28]

3.2.4 Population-level e�ects

E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1675-1680 1.02 [0.99;1.05] 1.08 [0.94;1.26]
birth cohort 1680-1685 1.05 [1.02;1.08] 1.26 [1.10;1.45]
birth cohort 1685-1690 1.05 [1.02;1.09] 1.41 [1.23;1.62]
birth cohort 1690-1695 1.05 [1.02;1.08] 1.09 [0.96;1.26]
birth cohort 1695-1700 1.04 [1.00;1.07] 1.11 [0.98;1.27]
birth cohort 1700-1705 1.02 [0.99;1.06] 1.30 [1.14;1.48]
birth cohort 1705-1710 1.00 [0.97;1.03] 1.17 [1.03;1.33]
birth cohort 1710-1715 0.99 [0.96;1.02] 1.55 [1.37;1.77]
birth cohort 1715-1720 0.96 [0.93;1.00] 1.34 [1.19;1.53]
birth cohort 1720-1725 0.96 [0.93;0.99] 1.37 [1.21;1.55]
birth cohort 1725-1730 0.94 [0.91;0.97] 1.97 [1.75;2.24]
birth cohort 1730-1735 0.95 [0.93;0.98] 2.08 [1.85;2.35]
birth cohort 1735-1740 0.94 [0.92;0.97] 1.77 [1.58;2.00]

Intercept 8.26 [7.82;8.71] 0.43 [0.36;0.51]
last born 1.00 [0.99;1.02] 1.01 [0.95;1.07]

male 1.12 [1.11;1.13] 1.55 [1.50;1.60]
maternal loss 0-1 0.95 [0.91;1.00] 2.99 [2.59;3.45]
maternal loss 1-5 0.97 [0.95;1.00] 1.52 [1.38;1.67]

maternal loss 10-15 0.99 [0.97;1.02] 1.31 [1.21;1.43]
maternal loss 15-20 1.01 [0.98;1.03] 1.23 [1.14;1.34]
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E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
maternal loss 20-25 0.98 [0.96;1.00] 1.20 [1.11;1.30]
maternal loss 25-30 0.99 [0.97;1.01] 1.07 [0.99;1.15]
maternal loss 30-35 0.99 [0.97;1.01] 1.10 [1.03;1.18]
maternal loss 35-40 1.00 [0.98;1.02] 1.09 [1.02;1.16]
maternal loss 40-45 1.00 [0.99;1.02] 0.99 [0.93;1.07]
maternal loss 5-10 1.01 [0.99;1.04] 1.32 [1.21;1.44]

maternal loss unclear 0.98 [0.96;1.01] 1.26 [1.17;1.36]
maternalage factor 14-20 0.99 [0.97;1.01] 1.04 [0.97;1.11]
maternalage factor 35-50 1.01 [0.99;1.02] 1.09 [1.04;1.14]

nr siblings 1.01 [1.00;1.01] 1.01 [1.01;1.02]
older siblings 1 0.98 [0.97;0.99] 0.96 [0.90;1.02]
older siblings 2 0.98 [0.96;0.99] 0.93 [0.87;1.00]
older siblings 3 0.97 [0.96;0.99] 0.90 [0.84;0.96]
older siblings 4 0.98 [0.97;1.00] 0.90 [0.84;0.97]

older siblings 5+ 0.97 [0.96;0.99] 0.87 [0.82;0.93]
paternal loss 0-1 0.97 [0.93;1.01] 1.85 [1.61;2.13]
paternal loss 1-5 0.99 [0.96;1.02] 1.41 [1.27;1.57]

paternal loss 10-15 0.99 [0.96;1.01] 1.22 [1.12;1.33]
paternal loss 15-20 0.98 [0.96;1.00] 1.35 [1.24;1.47]
paternal loss 20-25 0.98 [0.96;1.00] 1.21 [1.12;1.30]
paternal loss 25-30 0.99 [0.97;1.01] 1.21 [1.12;1.31]
paternal loss 30-35 0.98 [0.96;1.00] 1.16 [1.08;1.25]
paternal loss 35-40 0.98 [0.96;1.00] 1.11 [1.03;1.19]
paternal loss 40-45 1.00 [0.98;1.02] 1.07 [0.99;1.16]
paternal loss 5-10 0.99 [0.97;1.02] 1.38 [1.26;1.52]

paternal loss unclear 0.95 [0.93;0.97] 1.47 [1.37;1.59]
paternalage mean 0.98 [0.97;0.99] 0.98 [0.95;1.01]

3.2.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

This model did not contain a within family paternal age predictor.

3.3 m3 : Sibling comparison, linear paternal age e�ect

Here, we compared siblings by including a random intercept for the family, and we modelled a linear e�ect
for paternal age di�erences among siblings.

3.3.1 Model summary

Data: 68724 individuals nested in 12205 mother-father dyads.

Formula (Wilkinson notation): children ~ paternalage + birth_cohort + male + maternalage.factor +
paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 |
idParents).

• family: hurdle_poisson
• link: log
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3.3.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd

3.3.3 Group-level e�ects

Component E�ect Hurdle Estimate Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.63 [0.60;0.66] 0.27 [0.27;0.28]

3.3.4 Population-level e�ects

E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1675-1680 1.02 [0.99;1.05] 1.08 [0.95;1.24]
birth cohort 1680-1685 1.05 [1.02;1.08] 1.26 [1.10;1.44]
birth cohort 1685-1690 1.05 [1.02;1.09] 1.40 [1.22;1.60]
birth cohort 1690-1695 1.05 [1.02;1.08] 1.08 [0.95;1.24]
birth cohort 1695-1700 1.04 [1.00;1.07] 1.10 [0.98;1.26]
birth cohort 1700-1705 1.02 [0.99;1.05] 1.29 [1.14;1.46]
birth cohort 1705-1710 1.00 [0.97;1.03] 1.17 [1.03;1.32]
birth cohort 1710-1715 0.99 [0.96;1.02] 1.54 [1.37;1.75]
birth cohort 1715-1720 0.96 [0.93;0.99] 1.33 [1.18;1.50]
birth cohort 1720-1725 0.96 [0.93;0.99] 1.36 [1.21;1.54]
birth cohort 1725-1730 0.94 [0.91;0.96] 1.95 [1.73;2.21]
birth cohort 1730-1735 0.95 [0.92;0.98] 2.06 [1.84;2.33]
birth cohort 1735-1740 0.94 [0.91;0.97] 1.76 [1.57;1.98]

Intercept 8.30 [7.86;8.77] 0.45 [0.38;0.53]
last born 1.00 [0.99;1.02] 1.00 [0.94;1.05]

male 1.12 [1.11;1.13] 1.55 [1.50;1.60]
maternal loss 0-1 0.95 [0.91;0.99] 2.88 [2.51;3.35]
maternal loss 1-5 0.97 [0.94;1.00] 1.48 [1.35;1.64]

maternal loss 10-15 0.99 [0.97;1.02] 1.29 [1.19;1.40]
maternal loss 15-20 1.01 [0.98;1.03] 1.22 [1.13;1.33]
maternal loss 20-25 0.98 [0.96;1.00] 1.19 [1.09;1.29]
maternal loss 25-30 0.99 [0.97;1.01] 1.05 [0.98;1.14]
maternal loss 30-35 0.99 [0.97;1.01] 1.09 [1.01;1.17]
maternal loss 35-40 1.00 [0.98;1.02] 1.08 [1.02;1.16]
maternal loss 40-45 1.00 [0.99;1.02] 0.99 [0.92;1.06]
maternal loss 5-10 1.01 [0.99;1.04] 1.29 [1.19;1.41]

maternal loss unclear 0.98 [0.96;1.01] 1.25 [1.16;1.34]
maternalage factor 14-20 0.99 [0.97;1.01] 1.05 [0.97;1.13]
maternalage factor 35-50 1.00 [0.99;1.02] 1.03 [0.97;1.09]

nr siblings 1.01 [1.00;1.01] 1.02 [1.01;1.03]
older siblings 1 0.98 [0.96;0.99] 0.94 [0.89;1.00]
older siblings 2 0.97 [0.96;0.99] 0.90 [0.84;0.96]
older siblings 3 0.97 [0.95;0.99] 0.85 [0.79;0.91]
older siblings 4 0.98 [0.96;1.00] 0.83 [0.76;0.90]

older siblings 5+ 0.96 [0.94;0.99] 0.76 [0.69;0.85]

23



E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
paternal loss 0-1 0.96 [0.92;1.01] 1.78 [1.54;2.05]
paternal loss 1-5 0.98 [0.95;1.02] 1.37 [1.24;1.52]

paternal loss 10-15 0.98 [0.96;1.01] 1.19 [1.09;1.29]
paternal loss 15-20 0.98 [0.95;1.00] 1.33 [1.22;1.45]
paternal loss 20-25 0.98 [0.96;1.00] 1.19 [1.10;1.29]
paternal loss 25-30 0.99 [0.97;1.01] 1.20 [1.11;1.29]
paternal loss 30-35 0.98 [0.96;1.00] 1.15 [1.07;1.24]
paternal loss 35-40 0.98 [0.96;1.00] 1.11 [1.03;1.19]
paternal loss 40-45 1.00 [0.98;1.02] 1.07 [0.99;1.16]
paternal loss 5-10 0.99 [0.96;1.02] 1.34 [1.22;1.47]

paternal loss unclear 0.95 [0.92;0.97] 1.45 [1.34;1.57]
paternalage 1.01 [0.99;1.03] 1.14 [1.05;1.23]

paternalage mean 0.97 [0.95;0.99] 0.87 [0.80;0.94]
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3.3.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -3.00 [-6.08; 0.24] [-4.97;-0.90]

3.3.5.1 Marginal e�ect plot

Paternal age e�ect on number of children The shaded areas show the 95% and 80% credibility intervals for
the reference individuals and include uncertainty related to covariate e�ect sizes.
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3.4 m4 : Sibling comparison, nonlinear paternal age e�ect

Here, we compared siblings by including a random intercept for the family, and we modelled a possibly
nonlinear e�ect for paternal age di�erences among siblings.

3.4.1 Model summary

Data: 68724 individuals nested in 12205 mother-father dyads.

Formula (Wilkinson notation): children ~ s(paternalage) + birth_cohort + male + maternalage.factor +
paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 |
idParents).

• family: hurdle_poisson
• link: log

3.4.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd
student_t(3, 0, 10) sds

3.4.3 Group-level e�ects

Component E�ect Hurdle Estimate Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.63 [0.60;0.65] 0.27 [0.27;0.28]

3.4.3.1 Splines

E�ect Hurdle Estimate Zero-truncated Poisson Estimate
sds(spaternalage_1) 0.80 [0.24;1.97] 0.10 [0.00;0.32]

3.4.4 Population-level e�ects

E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1675-1680 1.02 [0.99;1.05] 1.08 [0.95;1.23]
birth cohort 1680-1685 1.05 [1.02;1.08] 1.26 [1.10;1.44]
birth cohort 1685-1690 1.05 [1.02;1.09] 1.41 [1.23;1.62]
birth cohort 1690-1695 1.05 [1.02;1.08] 1.10 [0.97;1.26]
birth cohort 1695-1700 1.04 [1.00;1.07] 1.12 [0.99;1.28]
birth cohort 1700-1705 1.02 [0.99;1.05] 1.31 [1.16;1.48]
birth cohort 1705-1710 1.00 [0.97;1.03] 1.18 [1.04;1.34]
birth cohort 1710-1715 0.99 [0.96;1.02] 1.56 [1.38;1.76]
birth cohort 1715-1720 0.96 [0.93;0.99] 1.35 [1.20;1.52]
birth cohort 1720-1725 0.96 [0.93;0.99] 1.38 [1.23;1.55]
birth cohort 1725-1730 0.94 [0.91;0.96] 1.98 [1.77;2.23]
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E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1730-1735 0.95 [0.92;0.98] 2.09 [1.87;2.35]
birth cohort 1735-1740 0.94 [0.91;0.97] 1.78 [1.58;2.00]

Intercept 8.63 [7.82;9.56] 0.82 [0.58;1.18]
last born 1.00 [0.99;1.02] 1.00 [0.94;1.06]

male 1.12 [1.11;1.13] 1.55 [1.50;1.60]
maternal loss 0-1 0.95 [0.91;0.99] 2.89 [2.54;3.32]
maternal loss 1-5 0.97 [0.94;1.00] 1.48 [1.35;1.64]

maternal loss 10-15 0.99 [0.97;1.02] 1.30 [1.19;1.41]
maternal loss 15-20 1.01 [0.98;1.03] 1.22 [1.13;1.34]
maternal loss 20-25 0.98 [0.96;1.00] 1.19 [1.10;1.28]
maternal loss 25-30 0.99 [0.97;1.01] 1.05 [0.98;1.14]
maternal loss 30-35 0.99 [0.97;1.01] 1.09 [1.01;1.17]
maternal loss 35-40 1.00 [0.98;1.02] 1.08 [1.02;1.15]
maternal loss 40-45 1.00 [0.99;1.02] 0.99 [0.93;1.05]
maternal loss 5-10 1.01 [0.99;1.04] 1.30 [1.19;1.41]

maternal loss unclear 0.98 [0.96;1.01] 1.25 [1.16;1.35]
maternalage factor 14-20 0.99 [0.97;1.01] 1.06 [0.98;1.14]
maternalage factor 35-50 1.00 [0.99;1.02] 1.04 [0.98;1.10]

nr siblings 1.01 [1.00;1.01] 1.02 [1.01;1.03]
older siblings 1 0.98 [0.96;0.99] 0.92 [0.87;0.98]
older siblings 2 0.98 [0.96;0.99] 0.86 [0.81;0.93]
older siblings 3 0.97 [0.95;0.99] 0.80 [0.74;0.87]
older siblings 4 0.98 [0.96;1.00] 0.77 [0.71;0.84]

older siblings 5+ 0.96 [0.94;0.99] 0.70 [0.63;0.78]
paternal loss 0-1 0.96 [0.92;1.00] 1.78 [1.56;2.05]
paternal loss 1-5 0.98 [0.95;1.01] 1.37 [1.23;1.52]

paternal loss 10-15 0.98 [0.96;1.01] 1.18 [1.08;1.29]
paternal loss 15-20 0.98 [0.95;1.00] 1.32 [1.21;1.43]
paternal loss 20-25 0.98 [0.96;1.00] 1.18 [1.09;1.27]
paternal loss 25-30 0.99 [0.97;1.01] 1.18 [1.09;1.27]
paternal loss 30-35 0.98 [0.96;1.00] 1.13 [1.06;1.22]
paternal loss 35-40 0.98 [0.96;1.00] 1.09 [1.02;1.17]
paternal loss 40-45 1.00 [0.98;1.02] 1.06 [0.98;1.14]
paternal loss 5-10 0.99 [0.96;1.02] 1.34 [1.22;1.47]

paternal loss unclear 0.95 [0.92;0.97] 1.44 [1.34;1.56]
paternalage mean 0.97 [0.95;0.99] 0.84 [0.77;0.91]

spaternalage 1.02 [0.99;1.10] 1.12 [0.89;1.41]
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3.4.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -7.98 [-11.85; -4.12] [-10.49; -5.23]

3.4.5.1 Marginal e�ect plot

Paternal age e�ect on number of children The shaded areas show the 95% and 80% credibility intervals for
the reference individuals and include uncertainty related to covariate e�ect sizes.
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3.5 Main model comparison

We compare the four models using an approximate leave-one-out cross-validation information criterion as
implemented in brms and loo and the Watanabe-Akaike information criterion.

3.5.1 Approximate leave-one-out (LOO) cross-validation

LOOIC SE
m1 299887 992.2
m2 293615 957.5
m3 293619 957.7
m4 293606 957.7

m1 - m2 6272 299.1
m1 - m3 6268 299.3
m1 - m4 6281 299.3
m2 - m3 -3.66 17.39
m2 - m4 9.83 19.87
m3 - m4 13.49 18.8

3.5.2 Watanabe-Akaike information criterion

WAIC SE
m1 299887 992.2
m2 292565 950.5
m3 292572 950.7
m4 292556 950.7

m1 - m2 7322 299.6
m1 - m3 7315 299.9
m1 - m4 7331 299.9
m2 - m3 -7.05 13.1
m2 - m4 8.81 16.28
m3 - m4 15.86 14.79
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3.6 e1 : Selective episode: o�spring survival of the first year

In the first selective episode model, we tested how much of the paternal age e�ect happens in the first selective
episode, i.e. in the o�spring’s survival of the first year.

3.6.1 Model summary

Data: 61493 individuals nested in 11940 mother-father dyads.

Formula (Wilkinson notation): survive1y ~ paternalage + birth_cohort + male + maternalage.factor +
paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 |
idParents).

• family: bernoulli
• link: cauchit

3.6.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd

3.6.3 Group-level e�ects

Component E�ect Zero-truncated Poisson Estimate
idParents sd(Intercept) 1.06 [1.00;1.12]

3.6.4 Population-level e�ects

E�ect Hurdle Odds ratio
birth cohort 1675-1680 1.22 [ 0.69; 2.17]
birth cohort 1680-1685 0.57 [ 0.34; 0.92]
birth cohort 1685-1690 0.23 [ 0.15; 0.35]
birth cohort 1690-1695 0.43 [ 0.28; 0.67]
birth cohort 1695-1700 0.44 [ 0.28; 0.66]
birth cohort 1700-1705 0.27 [ 0.17; 0.41]
birth cohort 1705-1710 0.46 [ 0.30; 0.70]
birth cohort 1710-1715 0.24 [ 0.15; 0.36]
birth cohort 1715-1720 0.28 [ 0.18; 0.41]
birth cohort 1720-1725 0.28 [ 0.18; 0.41]
birth cohort 1725-1730 0.19 [ 0.13; 0.28]
birth cohort 1730-1735 0.15 [ 0.10; 0.23]
birth cohort 1735-1740 0.19 [ 0.12; 0.28]

Intercept 42.30 [25.95;69.83]
last born 1.00 [ 0.90; 1.10]

male 0.66 [ 0.62; 0.70]
maternal loss 0-1 0.11 [ 0.09; 0.13]
maternal loss 1-5 0.50 [ 0.42; 0.59]

maternal loss 10-15 0.67 [ 0.57; 0.78]
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E�ect Hurdle Odds ratio
maternal loss 15-20 0.68 [ 0.59; 0.79]
maternal loss 20-25 0.76 [ 0.66; 0.89]
maternal loss 25-30 0.85 [ 0.73; 0.97]
maternal loss 30-35 0.81 [ 0.71; 0.92]
maternal loss 35-40 0.79 [ 0.70; 0.89]
maternal loss 40-45 0.97 [ 0.85; 1.11]
maternal loss 5-10 0.64 [ 0.55; 0.76]

maternal loss unclear 0.76 [ 0.66; 0.88]
maternalage factor 14-20 0.84 [ 0.73; 0.96]
maternalage factor 35-50 0.92 [ 0.82; 1.02]

nr siblings 0.91 [ 0.90; 0.92]
older siblings 1 1.56 [ 1.39; 1.75]
older siblings 2 1.72 [ 1.52; 1.94]
older siblings 3 2.21 [ 1.92; 2.56]
older siblings 4 2.29 [ 1.96; 2.67]

older siblings 5+ 2.78 [ 2.33; 3.32]
paternal loss 0-1 0.36 [ 0.29; 0.45]
paternal loss 1-5 0.62 [ 0.51; 0.75]

paternal loss 10-15 0.80 [ 0.68; 0.94]
paternal loss 15-20 0.72 [ 0.62; 0.84]
paternal loss 20-25 0.86 [ 0.74; 0.99]
paternal loss 25-30 0.78 [ 0.68; 0.90]
paternal loss 30-35 0.83 [ 0.72; 0.95]
paternal loss 35-40 0.85 [ 0.75; 0.97]
paternal loss 40-45 0.97 [ 0.83; 1.12]
paternal loss 5-10 0.70 [ 0.59; 0.84]

paternal loss unclear 0.70 [ 0.60; 0.81]
paternalage 0.64 [ 0.56; 0.74]

paternalage mean 1.72 [ 1.49; 1.99]
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3.6.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on probability of survival of the first year, combined
over the hurdle and Zero-truncated Poisson component, expressed as a change in percentage ((predicted

value at t + 10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -1.03 [-1.51;-0.67] [-1.32;-0.78]

3.6.5.1 Marginal e�ect plot

Paternal age e�ect on probability of survival of the first year The shaded areas show the 95% and 80%
credibility intervals for the reference individuals and include uncertainty related to covariate e�ect sizes.
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4 Historical Sweden

4.1 m1 : No sibling comparison

Here, we ignore the pedigree structure of the data to see whether it matters for the estimation of the paternal
age e�ect.

4.1.1 Model summary

Data: 56663 individuals.

Formula (Wilkinson notation): children ~ paternalage + birth_cohort + male + maternalage.factor +
paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born.

• family: hurdle_poisson
• link: log

4.1.2 Priors

prior class
normal(0,5) b

4.1.3 Population-level e�ects

E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1750-1755 0.91 [0.75;1.10] 1.40 [0.87;2.28]
birth cohort 1755-1760 1.11 [0.96;1.29] 1.12 [0.77;1.65]
birth cohort 1760-1765 1.21 [1.07;1.37] 1.02 [0.72;1.44]
birth cohort 1765-1770 1.15 [1.01;1.30] 0.78 [0.56;1.11]
birth cohort 1770-1775 1.13 [0.99;1.28] 0.96 [0.68;1.36]
birth cohort 1775-1780 1.09 [0.97;1.24] 1.12 [0.82;1.55]
birth cohort 1780-1785 1.20 [1.06;1.36] 1.05 [0.76;1.45]
birth cohort 1785-1790 1.19 [1.06;1.34] 1.17 [0.87;1.61]
birth cohort 1790-1795 1.08 [0.97;1.22] 1.41 [1.06;1.87]
birth cohort 1795-1800 1.11 [1.00;1.24] 1.17 [0.89;1.55]
birth cohort 1800-1805 1.05 [0.94;1.18] 1.12 [0.85;1.48]
birth cohort 1805-1810 1.07 [0.96;1.20] 1.06 [0.80;1.41]
birth cohort 1810-1815 1.09 [0.97;1.21] 1.16 [0.89;1.53]
birth cohort 1815-1820 1.16 [1.04;1.29] 0.98 [0.75;1.28]
birth cohort 1820-1825 1.16 [1.05;1.29] 0.89 [0.68;1.16]
birth cohort 1825-1830 1.12 [1.01;1.24] 0.88 [0.68;1.15]
birth cohort 1830-1835 1.14 [1.03;1.27] 0.90 [0.69;1.18]
birth cohort 1835-1840 1.13 [1.02;1.26] 0.90 [0.69;1.17]
birth cohort 1840-1845 1.11 [1.00;1.23] 0.91 [0.70;1.19]
birth cohort 1845-1850 1.12 [1.01;1.24] 0.93 [0.71;1.21]

Intercept 3.83 [3.42;4.28] 0.93 [0.71;1.24]
last born 0.99 [0.97;1.00] 1.00 [0.95;1.05]

male 1.04 [1.02;1.05] 1.05 [1.01;1.08]
maternal loss 0-1 1.08 [0.99;1.18] 5.18 [4.22;6.43]
maternal loss 1-5 1.03 [0.98;1.07] 2.42 [2.17;2.72]
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E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
maternal loss 10-15 0.95 [0.92;0.98] 2.04 [1.86;2.23]
maternal loss 15-20 0.96 [0.93;0.99] 1.79 [1.65;1.95]
maternal loss 20-25 0.93 [0.90;0.95] 1.50 [1.39;1.62]
maternal loss 25-30 0.96 [0.94;0.98] 1.33 [1.25;1.43]
maternal loss 30-35 0.97 [0.95;0.99] 1.27 [1.19;1.34]
maternal loss 35-40 0.99 [0.97;1.01] 1.16 [1.10;1.23]
maternal loss 40-45 0.98 [0.96;1.00] 1.09 [1.03;1.16]
maternal loss 5-10 0.98 [0.95;1.02] 2.12 [1.93;2.32]

maternalage factor 10-20 1.04 [0.99;1.09] 1.04 [0.90;1.21]
maternalage factor 35-59 1.07 [1.05;1.08] 1.07 [1.02;1.12]

nr siblings 1.03 [1.03;1.03] 1.03 [1.02;1.04]
older siblings 1 1.00 [0.98;1.02] 0.99 [0.94;1.05]
older siblings 2 1.00 [0.98;1.02] 1.03 [0.97;1.09]
older siblings 3 0.99 [0.97;1.01] 1.04 [0.98;1.11]
older siblings 4 0.96 [0.94;0.99] 1.03 [0.95;1.11]

older siblings 5+ 0.95 [0.92;0.98] 0.98 [0.90;1.06]
paternal loss 0-1 1.09 [1.03;1.15] 2.12 [1.81;2.49]
paternal loss 1-5 1.02 [0.98;1.06] 1.81 [1.64;2.00]

paternal loss 10-15 0.97 [0.95;1.00] 1.62 [1.50;1.75]
paternal loss 15-20 0.93 [0.91;0.95] 1.47 [1.38;1.58]
paternal loss 20-25 0.97 [0.95;0.99] 1.35 [1.27;1.44]
paternal loss 25-30 0.98 [0.96;1.00] 1.24 [1.17;1.33]
paternal loss 30-35 0.98 [0.96;1.00] 1.18 [1.10;1.25]
paternal loss 35-40 1.02 [1.00;1.04] 1.13 [1.06;1.20]
paternal loss 40-45 1.02 [0.99;1.04] 1.05 [0.98;1.12]
paternal loss 5-10 0.98 [0.95;1.01] 1.87 [1.72;2.03]

paternalage 1.01 [1.00;1.01] 0.96 [0.94;0.99]
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4.1.4 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change 2.37 [0.69;4.08] [1.27;3.49]

4.1.4.1 Marginal e�ect plot

Paternal age e�ect on number of children The shaded areas show the 95% and 80% credibility intervals for
the reference individuals and include uncertainty related to covariate e�ect sizes.
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4.2 m2 : Sibling comparison, no paternal age e�ect

Here, we compared siblings by including a random intercept for the family, but we modelled no e�ect for
paternal age di�erences among siblings.

4.2.1 Model summary

Data: 56663 individuals nested in 14746 mother-father dyads.

Formula (Wilkinson notation): children ~ birth_cohort + male + maternalage.factor + paternalage.mean +
paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 | idParents).

• family: hurdle_poisson
• link: log

4.2.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd

4.2.3 Group-level e�ects

Component E�ect Hurdle Estimate Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.82 [0.79;0.85] 0.36 [0.34;0.37]

4.2.4 Population-level e�ects

E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1750-1755 0.85 [0.67;1.07] 1.43 [0.80;2.57]
birth cohort 1755-1760 1.10 [0.91;1.32] 1.08 [0.64;1.80]
birth cohort 1760-1765 1.16 [0.98;1.38] 0.95 [0.60;1.51]
birth cohort 1765-1770 1.11 [0.93;1.31] 0.71 [0.44;1.13]
birth cohort 1770-1775 1.06 [0.89;1.26] 0.90 [0.56;1.46]
birth cohort 1775-1780 1.05 [0.88;1.23] 1.06 [0.67;1.68]
birth cohort 1780-1785 1.16 [0.97;1.37] 0.99 [0.62;1.58]
birth cohort 1785-1790 1.13 [0.96;1.33] 1.14 [0.74;1.73]
birth cohort 1790-1795 1.03 [0.88;1.21] 1.36 [0.89;2.06]
birth cohort 1795-1800 1.03 [0.87;1.19] 1.12 [0.74;1.67]
birth cohort 1800-1805 0.98 [0.83;1.13] 1.03 [0.68;1.54]
birth cohort 1805-1810 0.99 [0.84;1.15] 0.99 [0.66;1.47]
birth cohort 1810-1815 1.02 [0.87;1.18] 1.07 [0.71;1.57]
birth cohort 1815-1820 1.07 [0.92;1.24] 0.90 [0.60;1.34]
birth cohort 1820-1825 1.09 [0.93;1.27] 0.81 [0.55;1.19]
birth cohort 1825-1830 1.05 [0.90;1.21] 0.81 [0.55;1.21]
birth cohort 1830-1835 1.07 [0.92;1.24] 0.83 [0.56;1.23]
birth cohort 1835-1840 1.07 [0.91;1.24] 0.81 [0.54;1.20]
birth cohort 1840-1845 1.04 [0.90;1.21] 0.82 [0.55;1.22]
birth cohort 1845-1850 1.05 [0.90;1.22] 0.85 [0.57;1.27]
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E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
Intercept 3.76 [3.21;4.44] 0.94 [0.62;1.44]
last born 0.98 [0.96;1.00] 1.01 [0.96;1.06]

male 1.04 [1.03;1.05] 1.05 [1.01;1.09]
maternal loss 0-1 1.06 [0.96;1.18] 6.41 [5.06;8.11]
maternal loss 1-5 1.00 [0.94;1.05] 2.80 [2.46;3.19]

maternal loss 10-15 0.96 [0.92;1.00] 2.24 [2.02;2.49]
maternal loss 15-20 0.96 [0.92;1.00] 1.96 [1.78;2.15]
maternal loss 20-25 0.93 [0.90;0.96] 1.58 [1.44;1.72]
maternal loss 25-30 0.97 [0.94;1.00] 1.37 [1.27;1.48]
maternal loss 30-35 0.98 [0.95;1.00] 1.28 [1.19;1.37]
maternal loss 35-40 1.00 [0.97;1.02] 1.16 [1.08;1.24]
maternal loss 40-45 0.98 [0.96;1.00] 1.08 [1.01;1.15]
maternal loss 5-10 0.97 [0.93;1.02] 2.38 [2.14;2.66]

maternalage factor 10-20 1.04 [0.99;1.11] 1.05 [0.89;1.26]
maternalage factor 35-59 1.05 [1.03;1.07] 1.08 [1.03;1.14]

nr siblings 1.03 [1.02;1.03] 1.04 [1.03;1.06]
older siblings 1 1.01 [0.99;1.02] 0.97 [0.92;1.02]
older siblings 2 1.01 [0.99;1.03] 0.99 [0.92;1.05]
older siblings 3 1.00 [0.98;1.03] 0.98 [0.91;1.06]
older siblings 4 0.97 [0.94;1.00] 0.96 [0.88;1.05]

older siblings 5+ 0.97 [0.94;1.00] 0.91 [0.83;1.00]
paternal loss 0-1 1.05 [0.98;1.13] 2.39 [1.99;2.87]
paternal loss 1-5 1.02 [0.97;1.07] 1.97 [1.74;2.22]

paternal loss 10-15 0.97 [0.94;1.01] 1.69 [1.55;1.86]
paternal loss 15-20 0.92 [0.89;0.96] 1.53 [1.40;1.67]
paternal loss 20-25 0.97 [0.94;1.00] 1.38 [1.27;1.50]
paternal loss 25-30 0.97 [0.95;1.00] 1.26 [1.16;1.36]
paternal loss 30-35 0.98 [0.95;1.01] 1.17 [1.09;1.27]
paternal loss 35-40 1.02 [0.99;1.05] 1.13 [1.05;1.21]
paternal loss 40-45 1.03 [1.00;1.05] 1.04 [0.96;1.12]
paternal loss 5-10 0.97 [0.93;1.01] 2.00 [1.80;2.22]
paternalage mean 1.01 [0.99;1.02] 0.97 [0.94;1.01]

4.2.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

This model did not contain a within family paternal age predictor.

4.3 m3 : Sibling comparison, linear paternal age e�ect

Here, we compared siblings by including a random intercept for the family, and we modelled a linear e�ect
for paternal age di�erences among siblings.

4.3.1 Model summary

Data: 56663 individuals nested in 14746 mother-father dyads.
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Formula (Wilkinson notation): children ~ paternalage + birth_cohort + male + maternalage.factor +
paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 |
idParents).

• family: hurdle_poisson
• link: log

4.3.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd

4.3.3 Group-level e�ects

Component E�ect Hurdle Estimate Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.82 [0.78;0.85] 0.36 [0.34;0.37]

4.3.4 Population-level e�ects

E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1750-1755 0.84 [0.67;1.06] 1.45 [0.83;2.54]
birth cohort 1755-1760 1.10 [0.91;1.32] 1.09 [0.68;1.80]
birth cohort 1760-1765 1.16 [0.98;1.37] 0.96 [0.63;1.49]
birth cohort 1765-1770 1.10 [0.93;1.31] 0.72 [0.47;1.10]
birth cohort 1770-1775 1.06 [0.89;1.26] 0.91 [0.58;1.40]
birth cohort 1775-1780 1.05 [0.88;1.24] 1.07 [0.69;1.61]
birth cohort 1780-1785 1.16 [0.99;1.37] 1.00 [0.66;1.53]
birth cohort 1785-1790 1.13 [0.96;1.34] 1.15 [0.77;1.68]
birth cohort 1790-1795 1.03 [0.88;1.20] 1.39 [0.94;1.96]
birth cohort 1795-1800 1.02 [0.88;1.20] 1.14 [0.78;1.65]
birth cohort 1800-1805 0.97 [0.84;1.14] 1.05 [0.71;1.51]
birth cohort 1805-1810 0.99 [0.85;1.15] 1.00 [0.69;1.44]
birth cohort 1810-1815 1.01 [0.87;1.18] 1.08 [0.74;1.54]
birth cohort 1815-1820 1.07 [0.92;1.24] 0.91 [0.63;1.30]
birth cohort 1820-1825 1.09 [0.94;1.27] 0.82 [0.56;1.17]
birth cohort 1825-1830 1.04 [0.90;1.21] 0.82 [0.58;1.18]
birth cohort 1830-1835 1.07 [0.92;1.25] 0.84 [0.58;1.19]
birth cohort 1835-1840 1.07 [0.92;1.24] 0.82 [0.57;1.16]
birth cohort 1840-1845 1.05 [0.90;1.21] 0.83 [0.58;1.18]
birth cohort 1845-1850 1.05 [0.91;1.23] 0.86 [0.60;1.22]

Intercept 3.74 [3.19;4.39] 0.93 [0.65;1.38]
last born 0.98 [0.96;1.00] 1.01 [0.96;1.06]

male 1.04 [1.03;1.05] 1.05 [1.01;1.09]
maternal loss 0-1 1.07 [0.96;1.18] 6.40 [5.08;8.15]
maternal loss 1-5 1.00 [0.95;1.06] 2.78 [2.42;3.20]

maternal loss 10-15 0.96 [0.93;1.01] 2.23 [1.99;2.50]
maternal loss 15-20 0.96 [0.93;1.00] 1.96 [1.78;2.16]
maternal loss 20-25 0.93 [0.90;0.97] 1.58 [1.45;1.73]
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E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
maternal loss 25-30 0.97 [0.94;1.00] 1.37 [1.26;1.49]
maternal loss 30-35 0.98 [0.95;1.01] 1.28 [1.19;1.38]
maternal loss 35-40 1.00 [0.98;1.03] 1.15 [1.08;1.23]
maternal loss 40-45 0.98 [0.96;1.00] 1.08 [1.01;1.16]
maternal loss 5-10 0.98 [0.94;1.03] 2.37 [2.11;2.67]

maternalage factor 10-20 1.04 [0.98;1.10] 1.06 [0.89;1.27]
maternalage factor 35-59 1.07 [1.04;1.09] 1.07 [1.01;1.14]

nr siblings 1.02 [1.02;1.03] 1.05 [1.03;1.06]
older siblings 1 1.02 [0.99;1.04] 0.96 [0.90;1.02]
older siblings 2 1.03 [1.00;1.06] 0.96 [0.89;1.05]
older siblings 3 1.04 [1.00;1.07] 0.95 [0.86;1.05]
older siblings 4 1.01 [0.97;1.06] 0.92 [0.81;1.04]

older siblings 5+ 1.03 [0.97;1.09] 0.86 [0.73;1.01]
paternal loss 0-1 1.06 [0.99;1.14] 2.38 [1.98;2.85]
paternal loss 1-5 1.03 [0.98;1.08] 1.95 [1.73;2.21]

paternal loss 10-15 0.98 [0.94;1.02] 1.69 [1.53;1.86]
paternal loss 15-20 0.93 [0.90;0.96] 1.53 [1.39;1.67]
paternal loss 20-25 0.97 [0.94;1.00] 1.38 [1.27;1.50]
paternal loss 25-30 0.98 [0.95;1.01] 1.25 [1.15;1.35]
paternal loss 30-35 0.99 [0.96;1.01] 1.17 [1.09;1.26]
paternal loss 35-40 1.02 [1.00;1.05] 1.13 [1.05;1.21]
paternal loss 40-45 1.03 [1.00;1.05] 1.04 [0.97;1.12]
paternal loss 5-10 0.98 [0.94;1.03] 1.99 [1.79;2.21]

paternalage 0.95 [0.91;0.98] 1.05 [0.95;1.17]
paternalage mean 1.06 [1.02;1.10] 0.93 [0.83;1.03]
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4.3.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -7.29 [-13.40; -1.07] [-11.15; -3.33]

4.3.5.1 Marginal e�ect plot

Paternal age e�ect on number of children The shaded areas show the 95% and 80% credibility intervals for
the reference individuals and include uncertainty related to covariate e�ect sizes.
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4.4 m4 : Sibling comparison, nonlinear paternal age e�ect

Here, we compared siblings by including a random intercept for the family, and we modelled a possibly
nonlinear e�ect for paternal age di�erences among siblings.

4.4.1 Model summary

Data: 56663 individuals nested in 14746 mother-father dyads.

Formula (Wilkinson notation): children ~ s(paternalage) + birth_cohort + male + maternalage.factor +
paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 |
idParents).

• family: hurdle_poisson
• link: log

4.4.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd
student_t(3, 0, 10) sds

4.4.3 Group-level e�ects

Component E�ect Hurdle Estimate Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.82 [0.79;0.85] 0.36 [0.35;0.37]

4.4.3.1 Splines

E�ect Hurdle Estimate Zero-truncated Poisson Estimate
sds(spaternalage_1) 0.36 [0.01;1.30] 0.28 [0.03;0.75]

4.4.4 Population-level e�ects

E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1750-1755 0.84 [0.68;1.06] 1.44 [0.86;2.50]
birth cohort 1755-1760 1.10 [0.91;1.33] 1.08 [0.68;1.73]
birth cohort 1760-1765 1.16 [0.98;1.39] 0.96 [0.63;1.46]
birth cohort 1765-1770 1.10 [0.93;1.33] 0.71 [0.46;1.09]
birth cohort 1770-1775 1.06 [0.90;1.28] 0.90 [0.58;1.39]
birth cohort 1775-1780 1.05 [0.89;1.25] 1.06 [0.70;1.56]
birth cohort 1780-1785 1.17 [0.99;1.38] 0.99 [0.66;1.50]
birth cohort 1785-1790 1.14 [0.97;1.34] 1.15 [0.78;1.68]
birth cohort 1790-1795 1.03 [0.88;1.21] 1.38 [0.95;1.99]
birth cohort 1795-1800 1.02 [0.87;1.20] 1.13 [0.79;1.59]
birth cohort 1800-1805 0.98 [0.84;1.15] 1.04 [0.73;1.49]
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E�ect Hurdle Odds ratio Zero-truncated Poisson Hazard ratio
birth cohort 1805-1810 0.99 [0.85;1.16] 1.00 [0.70;1.40]
birth cohort 1810-1815 1.02 [0.88;1.19] 1.07 [0.74;1.50]
birth cohort 1815-1820 1.07 [0.92;1.25] 0.91 [0.64;1.26]
birth cohort 1820-1825 1.09 [0.94;1.27] 0.82 [0.57;1.14]
birth cohort 1825-1830 1.05 [0.90;1.22] 0.82 [0.58;1.14]
birth cohort 1830-1835 1.07 [0.92;1.25] 0.83 [0.58;1.16]
birth cohort 1835-1840 1.07 [0.92;1.25] 0.81 [0.58;1.13]
birth cohort 1840-1845 1.05 [0.90;1.23] 0.83 [0.58;1.15]
birth cohort 1845-1850 1.06 [0.91;1.24] 0.86 [0.60;1.20]

Intercept 3.15 [2.54;3.85] 1.09 [0.64;1.90]
last born 0.98 [0.96;1.00] 1.01 [0.96;1.06]

male 1.04 [1.03;1.06] 1.05 [1.01;1.09]
maternal loss 0-1 1.07 [0.96;1.19] 6.37 [5.03;8.00]
maternal loss 1-5 1.00 [0.95;1.06] 2.78 [2.43;3.17]

maternal loss 10-15 0.97 [0.93;1.01] 2.24 [2.00;2.49]
maternal loss 15-20 0.97 [0.93;1.00] 1.96 [1.78;2.16]
maternal loss 20-25 0.93 [0.90;0.97] 1.58 [1.44;1.73]
maternal loss 25-30 0.97 [0.95;1.00] 1.37 [1.27;1.49]
maternal loss 30-35 0.98 [0.95;1.01] 1.28 [1.18;1.38]
maternal loss 35-40 1.00 [0.98;1.03] 1.15 [1.08;1.24]
maternal loss 40-45 0.98 [0.96;1.00] 1.08 [1.01;1.15]
maternal loss 5-10 0.98 [0.94;1.03] 2.38 [2.12;2.66]

maternalage factor 10-20 1.04 [0.98;1.10] 1.06 [0.89;1.27]
maternalage factor 35-59 1.06 [1.04;1.09] 1.07 [1.01;1.14]

nr siblings 1.02 [1.02;1.03] 1.05 [1.03;1.06]
older siblings 1 1.01 [0.99;1.04] 0.96 [0.91;1.03]
older siblings 2 1.02 [1.00;1.05] 0.97 [0.89;1.06]
older siblings 3 1.03 [0.99;1.07] 0.96 [0.86;1.07]
older siblings 4 1.00 [0.96;1.05] 0.93 [0.82;1.07]

older siblings 5+ 1.02 [0.96;1.08] 0.88 [0.73;1.03]
paternal loss 0-1 1.06 [0.99;1.14] 2.38 [1.98;2.85]
paternal loss 1-5 1.03 [0.98;1.08] 1.95 [1.73;2.20]

paternal loss 10-15 0.98 [0.94;1.02] 1.68 [1.53;1.85]
paternal loss 15-20 0.93 [0.90;0.96] 1.53 [1.39;1.66]
paternal loss 20-25 0.97 [0.94;1.00] 1.38 [1.27;1.50]
paternal loss 25-30 0.98 [0.95;1.01] 1.26 [1.16;1.36]
paternal loss 30-35 0.98 [0.95;1.01] 1.17 [1.09;1.27]
paternal loss 35-40 1.02 [0.99;1.04] 1.13 [1.05;1.21]
paternal loss 40-45 1.03 [1.00;1.05] 1.04 [0.97;1.13]
paternal loss 5-10 0.98 [0.94;1.02] 1.99 [1.81;2.21]
paternalage mean 1.06 [1.01;1.10] 0.93 [0.83;1.04]

spaternalage 0.95 [0.87;1.03] 1.03 [0.88;1.23]
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4.4.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -4.43 [-11.65; 2.93] [ -9.10; 0.47]

4.4.5.1 Marginal e�ect plot

Paternal age e�ect on number of children The shaded areas show the 95% and 80% credibility intervals for
the reference individuals and include uncertainty related to covariate e�ect sizes.
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4.5 Main model comparison

We compare the four models using an approximate leave-one-out cross-validation information criterion as
implemented in brms and loo and the Watanabe-Akaike information criterion.

4.5.1 Approximate leave-one-out (LOO) cross-validation

LOOIC SE
m1 191798 758.7
m2 185251 723
m3 185226 722.9
m4 185248 723

m1 - m2 6547 217.8
m1 - m3 6572 218.1
m1 - m4 6550 218.3
m2 - m3 25.39 15.36
m2 - m4 3.12 16.38
m3 - m4 -22.27 14.58

4.5.2 Watanabe-Akaike information criterion

WAIC SE
m1 191798 758.7
m2 184258 715.3
m3 184250 715.4
m4 184259 715.4

m1 - m2 7540 219.5
m1 - m3 7548 219.8
m1 - m4 7539 219.9
m2 - m3 7.65 11.75
m2 - m4 -1.11 12.89
m3 - m4 -8.76 10.85
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4.6 e1 : Selective episode: o�spring survival of the first year

In the first selective episode model, we tested how much of the paternal age e�ect happens in the first selective
episode, i.e. in the o�spring’s survival of the first year.

4.6.1 Model summary

Data: 56010 individuals nested in 14708 mother-father dyads.

Formula (Wilkinson notation): survive1y ~ paternalage + birth_cohort + male + maternalage.factor +
paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 |
idParents).

• family: bernoulli
• link: cauchit

4.6.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd

4.6.3 Group-level e�ects

Component E�ect Zero-truncated Poisson Estimate
idParents sd(Intercept) 1.41 [1.33;1.49]

4.6.4 Population-level e�ects

E�ect Hurdle Odds ratio
birth cohort 1750-1755 0.83 [ 0.11; 12.83]
birth cohort 1755-1760 0.35 [ 0.08; 1.60]
birth cohort 1760-1765 0.25 [ 0.06; 0.87]
birth cohort 1765-1770 0.77 [ 0.17; 3.51]
birth cohort 1770-1775 0.67 [ 0.15; 3.03]
birth cohort 1775-1780 0.14 [ 0.04; 0.44]
birth cohort 1780-1785 0.14 [ 0.04; 0.42]
birth cohort 1785-1790 0.19 [ 0.05; 0.59]
birth cohort 1790-1795 0.16 [ 0.04; 0.48]
birth cohort 1795-1800 0.24 [ 0.06; 0.71]
birth cohort 1800-1805 0.23 [ 0.06; 0.69]
birth cohort 1805-1810 0.19 [ 0.05; 0.57]
birth cohort 1810-1815 0.17 [ 0.05; 0.52]
birth cohort 1815-1820 0.17 [ 0.05; 0.52]
birth cohort 1820-1825 0.27 [ 0.08; 0.79]
birth cohort 1825-1830 0.31 [ 0.08; 0.91]
birth cohort 1830-1835 0.26 [ 0.07; 0.80]
birth cohort 1835-1840 0.29 [ 0.08; 0.84]
birth cohort 1840-1845 0.40 [ 0.11; 1.21]
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E�ect Hurdle Odds ratio
birth cohort 1845-1850 0.45 [ 0.13; 1.33]

Intercept 165.45 [54.03;604.23]
last born 0.93 [ 0.83; 1.04]

male 0.69 [ 0.63; 0.75]
maternal loss 0-1 0.03 [ 0.02; 0.04]
maternal loss 1-5 0.30 [ 0.24; 0.38]

maternal loss 10-15 0.58 [ 0.47; 0.71]
maternal loss 15-20 0.64 [ 0.52; 0.79]
maternal loss 20-25 0.65 [ 0.53; 0.78]
maternal loss 25-30 0.64 [ 0.53; 0.77]
maternal loss 30-35 0.73 [ 0.62; 0.87]
maternal loss 35-40 0.84 [ 0.72; 1.00]
maternal loss 40-45 0.93 [ 0.77; 1.10]
maternal loss 5-10 0.39 [ 0.32; 0.48]

maternalage factor 10-20 0.91 [ 0.63; 1.35]
maternalage factor 35-59 0.81 [ 0.71; 0.92]

nr siblings 0.78 [ 0.75; 0.80]
older siblings 1 1.83 [ 1.59; 2.10]
older siblings 2 2.50 [ 2.09; 2.96]
older siblings 3 2.86 [ 2.35; 3.52]
older siblings 4 4.02 [ 3.15; 5.19]

older siblings 5+ 7.31 [ 5.28; 10.31]
paternal loss 0-1 0.37 [ 0.27; 0.51]
paternal loss 1-5 0.63 [ 0.50; 0.81]

paternal loss 10-15 0.74 [ 0.60; 0.91]
paternal loss 15-20 0.82 [ 0.67; 1.00]
paternal loss 20-25 0.92 [ 0.76; 1.12]
paternal loss 25-30 0.93 [ 0.77; 1.13]
paternal loss 30-35 0.87 [ 0.73; 1.05]
paternal loss 35-40 1.00 [ 0.84; 1.20]
paternal loss 40-45 1.10 [ 0.90; 1.34]
paternal loss 5-10 0.67 [ 0.54; 0.84]

paternalage 0.29 [ 0.24; 0.36]
paternalage mean 3.53 [ 2.82; 4.45]
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4.6.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on probability of survival of the first year, combined
over the hurdle and Zero-truncated Poisson component, expressed as a change in percentage ((predicted

value at t + 10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -1.82 [-3.14;-1.08] [-2.63;-1.28]

4.6.5.1 Marginal e�ect plot

Paternal age e�ect on probability of survival of the first year The shaded areas show the 95% and 80%
credibility intervals for the reference individuals and include uncertainty related to covariate e�ect sizes.
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5 20th-century Sweden

5.1 m1 : No sibling comparison

Here, we ignore the pedigree structure of the data to see whether it matters for the estimation of the paternal
age e�ect.

5.1.1 Model summary

Data: 1408177 individuals.

Formula (Wilkinson notation): children ~ paternalage + birth_cohort + male + maternalage.factor +
paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born.

• family: poisson
• link: log

5.1.2 Priors

prior class
normal(0,5) b

5.1.3 Population-level e�ects

E�ect Hurdle Odds ratio
birth cohort 1950-1955 1.00 [1.00;1.00]
birth cohort 1955-1960 1.00 [1.00;1.01]

Intercept 2.08 [2.06;2.10]
last born 1.01 [1.01;1.01]

male 0.94 [0.94;0.94]
maternal loss 0-1 0.82 [0.71;0.94]
maternal loss 1-5 0.95 [0.89;1.00]

maternal loss 10-15 0.99 [0.98;1.01]
maternal loss 15-20 1.00 [0.98;1.01]
maternal loss 20-25 1.01 [1.00;1.02]
maternal loss 25-30 1.01 [1.00;1.01]
maternal loss 30-35 1.01 [1.00;1.01]
maternal loss 35-40 1.00 [0.99;1.00]
maternal loss 40-45 1.00 [0.99;1.01]
maternal loss 5-10 0.99 [0.96;1.02]

maternal loss unclear 0.98 [0.98;0.98]
maternalage factor 14-20 1.06 [1.05;1.06]
maternalage factor 3-56 1.00 [0.99;1.00]

nr siblings 1.04 [1.04;1.04]
older siblings 1 1.02 [1.01;1.02]
older siblings 2 1.02 [1.01;1.02]
older siblings 3 1.01 [1.00;1.02]
older siblings 4 0.99 [0.98;1.00]

older siblings 5+ 0.94 [0.93;0.95]
paternal loss 0-1 1.12 [1.00;1.24]
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E�ect Hurdle Odds ratio
paternal loss 1-5 1.03 [1.00;1.07]

paternal loss 10-15 1.00 [0.99;1.01]
paternal loss 15-20 1.00 [1.00;1.01]
paternal loss 20-25 1.00 [0.99;1.00]
paternal loss 25-30 1.00 [1.00;1.01]
paternal loss 30-35 1.00 [1.00;1.00]
paternal loss 35-40 1.00 [0.99;1.00]
paternal loss 40-45 0.99 [0.99;1.00]
paternal loss 5-10 0.98 [0.97;1.00]

paternal loss unclear 0.95 [0.94;0.95]
paternalage 0.95 [0.95;0.96]
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5.1.4 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -4.60 [-4.83;-4.36] [-4.75;-4.44]

5.1.4.1 Marginal e�ect plot

Paternal age e�ect on number of children The shaded areas show the 95% and 80% credibility intervals for
the reference individuals and include uncertainty related to covariate e�ect sizes.
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5.2 m2 : Sibling comparison, no paternal age e�ect

Here, we compared siblings by including a random intercept for the family, but we modelled no e�ect for
paternal age di�erences among siblings.

5.2.1 Model summary

Data: 1408177 individuals nested in 884975 mother-father dyads.

Formula (Wilkinson notation): children ~ birth_cohort + male + maternalage.factor + paternalage.mean +
paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 | idParents).

• family: poisson
• link: log

5.2.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd

5.2.3 Group-level e�ects

Component E�ect Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.00 [0.00;0.01]

5.2.4 Population-level e�ects

E�ect Hurdle Odds ratio
birth cohort 1950-1955 1.00 [1.00;1.00]
birth cohort 1955-1960 1.00 [1.00;1.00]

Intercept 2.07 [2.05;2.09]
last born 1.01 [1.01;1.02]

male 0.94 [0.94;0.94]
maternal loss 0-1 0.82 [0.71;0.94]
maternal loss 1-5 0.94 [0.89;1.00]

maternal loss 10-15 0.99 [0.98;1.01]
maternal loss 15-20 1.00 [0.98;1.01]
maternal loss 20-25 1.01 [1.00;1.02]
maternal loss 25-30 1.01 [1.00;1.01]
maternal loss 30-35 1.01 [1.00;1.01]
maternal loss 35-40 1.00 [0.99;1.00]
maternal loss 40-45 1.00 [0.99;1.00]
maternal loss 5-10 0.99 [0.96;1.01]

maternal loss unclear 0.98 [0.98;0.98]
maternalage factor 14-20 1.06 [1.06;1.07]
maternalage factor 3-56 0.99 [0.99;0.99]

nr siblings 1.05 [1.04;1.05]
older siblings 1 1.00 [1.00;1.00]
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E�ect Hurdle Odds ratio
older siblings 2 0.99 [0.98;0.99]
older siblings 3 0.97 [0.96;0.97]
older siblings 4 0.94 [0.93;0.95]

older siblings 5+ 0.87 [0.86;0.88]
paternal loss 0-1 1.12 [1.02;1.24]
paternal loss 1-5 1.03 [0.99;1.07]

paternal loss 10-15 0.99 [0.98;1.00]
paternal loss 15-20 1.00 [0.99;1.01]
paternal loss 20-25 1.00 [0.99;1.00]
paternal loss 25-30 1.00 [1.00;1.01]
paternal loss 30-35 1.00 [0.99;1.00]
paternal loss 35-40 0.99 [0.99;1.00]
paternal loss 40-45 0.99 [0.99;1.00]
paternal loss 5-10 0.98 [0.96;1.00]

paternal loss unclear 0.95 [0.94;0.95]
paternalage mean 0.96 [0.95;0.96]

5.2.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

This model did not contain a within family paternal age predictor.

5.3 m3 : Sibling comparison, linear paternal age e�ect

Here, we compared siblings by including a random intercept for the family, and we modelled a linear e�ect
for paternal age di�erences among siblings.

5.3.1 Model summary

Data: 1408177 individuals nested in 884975 mother-father dyads.

Formula (Wilkinson notation): children ~ paternalage + birth_cohort + male + maternalage.factor +
paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 |
idParents).

• family: poisson
• link: log

5.3.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd

5.3.3 Group-level e�ects
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Component E�ect Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.00 [0.00;0.01]

5.3.4 Population-level e�ects

E�ect Hurdle Odds ratio
birth cohort 1950-1955 1.00 [1.00;1.00]
birth cohort 1955-1960 1.00 [1.00;1.01]

Intercept 2.08 [2.06;2.10]
last born 1.01 [1.01;1.01]

male 0.94 [0.94;0.94]
maternal loss 0-1 0.82 [0.71;0.95]
maternal loss 1-5 0.95 [0.89;1.00]

maternal loss 10-15 0.99 [0.98;1.01]
maternal loss 15-20 1.00 [0.98;1.01]
maternal loss 20-25 1.01 [1.00;1.02]
maternal loss 25-30 1.01 [1.00;1.01]
maternal loss 30-35 1.01 [1.00;1.01]
maternal loss 35-40 1.00 [0.99;1.00]
maternal loss 40-45 1.00 [0.99;1.00]
maternal loss 5-10 0.99 [0.96;1.02]

maternal loss unclear 0.98 [0.98;0.98]
maternalage factor 14-20 1.06 [1.05;1.06]
maternalage factor 3-56 1.00 [1.00;1.00]

nr siblings 1.04 [1.04;1.04]
older siblings 1 1.02 [1.01;1.02]
older siblings 2 1.02 [1.02;1.03]
older siblings 3 1.02 [1.01;1.03]
older siblings 4 1.00 [0.99;1.02]

older siblings 5+ 0.95 [0.93;0.97]
paternal loss 0-1 1.12 [1.00;1.25]
paternal loss 1-5 1.03 [1.00;1.07]

paternal loss 10-15 1.00 [0.99;1.01]
paternal loss 15-20 1.00 [1.00;1.01]
paternal loss 20-25 1.00 [0.99;1.00]
paternal loss 25-30 1.00 [1.00;1.01]
paternal loss 30-35 1.00 [1.00;1.01]
paternal loss 35-40 1.00 [0.99;1.00]
paternal loss 40-45 0.99 [0.99;1.00]
paternal loss 5-10 0.98 [0.97;1.00]

paternal loss unclear 0.95 [0.94;0.95]
paternalage 0.95 [0.94;0.96]

paternalage mean 1.01 [1.00;1.01]
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5.3.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -5.15 [-5.94;-4.36] [-5.67;-4.63]

5.3.5.1 Marginal e�ect plot

Paternal age e�ect on number of children The shaded areas show the 95% and 80% credibility intervals for
the reference individuals and include uncertainty related to covariate e�ect sizes.
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5.4 m4 : Sibling comparison, nonlinear paternal age e�ect

Here, we compared siblings by including a random intercept for the family, and we modelled a possibly
nonlinear e�ect for paternal age di�erences among siblings.

5.4.1 Model summary

Data: 1408177 individuals nested in 884975 mother-father dyads.

Formula (Wilkinson notation): children ~ s(paternalage) + birth_cohort + male + maternalage.factor +
paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 |
idParents).

• family: poisson
• link: log

5.4.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd
student_t(3, 0, 10) sds

5.4.3 Group-level e�ects

Component E�ect Zero-truncated Poisson Estimate
idParents sd(Intercept) 0.00 [0.00;0.01]

5.4.3.1 Splines

E�ect Zero-truncated Poisson Estimate
sds(spaternalage_1) 0.13 [0.06;0.37]

5.4.4 Population-level e�ects

E�ect Hurdle Odds ratio
birth cohort 1950-1955 1.00 [1.00;1.00]
birth cohort 1955-1960 1.00 [1.00;1.01]

Intercept 1.75 [1.71;1.80]
last born 1.01 [1.01;1.01]

male 0.94 [0.94;0.94]
maternal loss 0-1 0.82 [0.71;0.94]
maternal loss 1-5 0.94 [0.89;1.00]

maternal loss 10-15 0.99 [0.98;1.01]
maternal loss 15-20 0.99 [0.98;1.01]
maternal loss 20-25 1.01 [1.00;1.02]
maternal loss 25-30 1.00 [1.00;1.01]
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E�ect Hurdle Odds ratio
maternal loss 30-35 1.00 [1.00;1.01]
maternal loss 35-40 1.00 [0.99;1.00]
maternal loss 40-45 1.00 [0.99;1.00]
maternal loss 5-10 0.99 [0.96;1.02]

maternal loss unclear 0.98 [0.98;0.98]
maternalage factor 14-20 1.05 [1.04;1.05]
maternalage factor 3-56 0.99 [0.99;1.00]

nr siblings 1.04 [1.04;1.04]
older siblings 1 1.02 [1.02;1.03]
older siblings 2 1.03 [1.02;1.04]
older siblings 3 1.02 [1.01;1.03]
older siblings 4 1.01 [0.99;1.02]

older siblings 5+ 0.95 [0.94;0.97]
paternal loss 0-1 1.11 [1.00;1.22]
paternal loss 1-5 1.03 [0.99;1.06]

paternal loss 10-15 0.99 [0.98;1.00]
paternal loss 15-20 1.00 [0.99;1.01]
paternal loss 20-25 0.99 [0.99;1.00]
paternal loss 25-30 1.00 [0.99;1.01]
paternal loss 30-35 1.00 [0.99;1.00]
paternal loss 35-40 1.00 [0.99;1.00]
paternal loss 40-45 0.99 [0.99;1.00]
paternal loss 5-10 0.98 [0.96;0.99]

paternal loss unclear 0.94 [0.94;0.95]
paternalage mean 1.01 [1.00;1.02]

spaternalage 0.96 [0.92;1.00]
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5.4.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on number of children, combined over the hurdle
and Zero-truncated Poisson component, expressed as a change in percentage ((predicted value at t +

10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -6.88 [-7.62;-6.03] [-7.40;-6.32]

5.4.5.1 Marginal e�ect plot

Paternal age e�ect on number of children The shaded areas show the 95% and 80% credibility intervals for
the reference individuals and include uncertainty related to covariate e�ect sizes.
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5.5 Main model comparison

Because of computational limitations, we could not compute LOO and WAIC for the complete dataset models
in this population. Instead, we computed the main models and their LOOs and WAICs using a randomly
drawn subset of 100,000 families (the same that was used for the robustness analyses).

We compare the four models using an approximate leave-one-out cross-validation information criterion as
implemented in brms and loo and the Watanabe-Akaike information criterion.

5.5.1 Approximate leave-one-out (LOO) cross-validation

LOOIC SE
m1 415187 388.2
m2 415196 388
m3 415186 388.1
m4 415165 387.9

m1 - m2 -9.13 6.31
m1 - m3 0.93 0.42
m1 - m4 22.09 9.37
m2 - m3 10.07 6.47
m2 - m4 31.22 11.3
m3 - m4 21.15 9.36

5.5.2 Watanabe-Akaike information criterion

WAIC SE
m1 415187 388.2
m2 415196 388
m3 415186 388.1
m4 415165 387.9

m1 - m2 -9.1 6.31
m1 - m3 0.89 0.42
m1 - m4 22.04 9.37
m2 - m3 9.98 6.47
m2 - m4 31.14 11.3
m3 - m4 21.16 9.36
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5.6 e1 : Selective episode: o�spring survival of the first year

In the first selective episode model, we tested how much of the paternal age e�ect happens in the first selective
episode, i.e. in the o�spring’s survival of the first year.

5.6.1 Model summary

Data: 363744 individuals nested in 200000 mother-father dyads.

Formula (Wilkinson notation): survive1y ~ paternalage + birth_cohort + male + maternalage.factor +
paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 |
idParents).

• family: bernoulli
• link: cauchit

5.6.2 Priors

prior class
normal(0,5) b

student_t(3, 0, 5) sd

5.6.3 Group-level e�ects

Component E�ect Zero-truncated Poisson Estimate
idParents sd(Intercept) 21.41 [19.76;22.96]

5.6.4 Population-level e�ects

E�ect Hurdle Odds ratio
birth cohort 1970-1975 0.0e+00 [0.0e+00;1.7e-01]
birth cohort 1975-1980 4.0e-02 [0.0e+00;2.1e+00]
birth cohort 1980-1985 1.1e+02 [1.4e+00;7.2e+03]
birth cohort 1985-1990 5.0e+01 [6.6e-01;3.7e+03]
birth cohort 1990-1995 3.9e+02 [5.6e+00;3.3e+04]
birth cohort 1995-2000 2.6e+06 [7.5e+03;1.0e+09]

Intercept 5.2e+41 [7.2e+37;7.2e+45]
last born 0.0e+00 [0.0e+00;0.0e+00]

male 1.0e-02 [0.0e+00;6.0e-02]
maternal loss 0-1 1.0e-02 [0.0e+00;2.6e+02]
maternal loss 1-5 6.7e+00 [0.0e+00;7.3e+04]

maternal loss 10-15 7.0e-01 [0.0e+00;3.6e+03]
maternal loss 15-20 0.0e+00 [0.0e+00;1.7e+00]
maternal loss 20-25 0.0e+00 [0.0e+00;1.4e+00]
maternal loss 25-30 1.0e-02 [0.0e+00;6.9e+00]
maternal loss 30-35 5.0e-02 [0.0e+00;5.4e+01]
maternal loss 35-40 2.0e-01 [0.0e+00;7.1e+02]
maternal loss 40-45 2.6e+00 [0.0e+00;2.5e+04]
maternal loss 5-10 4.7e+00 [0.0e+00;3.8e+04]
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E�ect Hurdle Odds ratio
maternalage factor 14-20 1.5e+00 [3.0e-02;1.4e+02]
maternalage factor 3-56 1.0e-02 [0.0e+00;2.3e-01]

nr siblings 0.0e+00 [0.0e+00;0.0e+00]
older siblings 1 0.0e+00 [0.0e+00;2.0e-02]
older siblings 2 1.0e+00 [2.0e-02;5.3e+01]
older siblings 3 2.0e+06 [1.7e+04;2.8e+08]
older siblings 4 1.5e+07 [6.0e+04;3.0e+09]

older siblings 5+ 1.3e+11 [1.2e+08;1.5e+14]
paternal loss 0-1 1.4e+00 [0.0e+00;2.2e+04]
paternal loss 1-5 0.0e+00 [0.0e+00;5.7e+01]

paternal loss 10-15 3.5e+01 [3.0e-02;7.1e+04]
paternal loss 15-20 3.0e-02 [0.0e+00;1.1e+01]
paternal loss 20-25 7.0e-02 [0.0e+00;3.9e+01]
paternal loss 25-30 2.4e+00 [2.0e-02;5.9e+02]
paternal loss 30-35 7.5e+00 [4.0e-02;2.9e+03]
paternal loss 35-40 1.0e-02 [0.0e+00;2.7e+00]
paternal loss 40-45 2.7e-01 [0.0e+00;7.8e+03]
paternal loss 5-10 5.2e+01 [2.0e-02;3.5e+05]

paternalage 0.0e+00 [0.0e+00;0.0e+00]
paternalage mean 2.8e+04 [4.9e+02;1.4e+06]
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5.6.5 Paternal age e�ect

This is the e�ect of 10 years of paternal age within families on probability of survival of the first year, combined
over the hurdle and Zero-truncated Poisson component, expressed as a change in percentage ((predicted

value at t + 10y)/(predicted value at t)) - 1.

e�ect median_estimate ci_95 ci_80
percentage change -0.05 [-0.06;-0.03] [-0.06;-0.03]

5.6.5.1 Marginal e�ect plot

Paternal age e�ect on probability of survival of the first year The shaded areas show the 95% and 80%
credibility intervals for the reference individuals and include uncertainty related to covariate e�ect sizes.
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6 Robustness analyses documentation

All of the following models are the same as our main model m3, except for the noted changes to test robustness.

6.1 Table

Estimates of the e�ect of 10 years paternal age on number of children within families (comparing siblings)
are given in percentage change. 95% credibility interval are given in brackets. Click the model name to be
taken to further details on the supplementary website.

Population Model Estimate
20th-century Sweden m3 model with 95% CI -5.15 [-5.94;-4.36]
Historical Sweden m3 model with 95% CI -7.29 [-13.40;-1.07]
Krummhörn m3 model with 95% CI -8.41 [-24.83;12.03]
Québec m3 model with 95% CI -3.00 [-6.08;0.24]
20th-century Sweden r1 relaxed exclusion criteria -4.96 [-7.67;-2.18]
Historical Sweden r1 relaxed exclusion criteria -17.32 [-22.85;-11.80]
Krummhörn r1 relaxed exclusion criteria -7.11 [-23.86; 6.73]
Québec r1 relaxed exclusion criteria -1.67 [-4.39;0.62]
20th-century Sweden r2 few controls -3.20 [-4.37;-2.00]
Historical Sweden r2 few controls -20.42 [-23.68;-17.37]
Krummhörn r2 few controls -16.37 [-22.17;-10.38]
Québec r2 few controls -6.62 [-7.96;-5.24]
20th-century Sweden r3 birth order continuous -2.08 [-2.87;-1.29]
Historical Sweden r3 birth order continuous -6.02 [-12.94; 1.64]
Krummhörn r3 birth order continuous -23.54 [-37.92;-5.40]
Québec r3 birth order continuous -1.68 [-6.18;3.55]
20th-century Sweden r4 control dependent sibs -3.97 [-5.37;-2.56]
Historical Sweden r4 control dependent sibs -2.58 [-6.01;1.07]
Krummhörn r4 control dependent sibs 0.68 [-8.48;10.93]
Québec r4 control dependent sibs 0.53 [-1.33;2.46]
20th-century Sweden r5 birth order interact siblings -4.52 [-7.05;-1.85]
Historical Sweden r5 birth order interact siblings -6.80 [-12.77;-0.16]
Krummhörn r5 birth order interact siblings -10.72 [-28.05; 9.92]
Québec r5 birth order interact siblings -0.93 [-4.21;2.60]
20th-century Sweden r6 no birth order control -3.70 [-5.13;-2.29]
Historical Sweden r6 no birth order control -2.34 [-5.7802;1.3217]
Krummhörn r6 no birth order control 1.05 [-8.48;11.09]
Québec r6 no birth order control 0.28 [-1.73;2.28]
20th-century Sweden r7 less parental loss control -4.84 [-7.21;-2.19]
Historical Sweden r7 less parental loss control -24.13 [-30.14;-18.17]
Krummhörn r7 less parental loss control -18.19 [-34.37;-0.24]
Québec r7 less parental loss control -7.42 [-10.47;-4.22]
20th-century Sweden r8 adjust for first born adult -4.80 [-7.20;-2.42]
Historical Sweden r8 adjust for first born adult -11.03 [-16.11;-5.49]
Krummhörn r8 adjust for first born adult -7.93 [-21.26; 8.17]
Québec r8 adjust for first born adult -8.63 [-12.34;-4.75]
20th-century Sweden r9 continuous byear adjustment -4.60 [-7.24;-1.98]
Historical Sweden r9 continuous byear adjustment -7.04 [-12.40;-1.31]
Krummhörn r9 continuous byear adjustment -6.35 [-21.47;11.08]
Québec r9 continuous byear adjustment -3.86 [-7.35;-0.26]
20th-century Sweden r10 add random slope -4.57 [-7.15;-2.11]
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Population Model Estimate
Historical Sweden r10 add random slope -23.70 [-29.41;-17.92]
Krummhörn r10 add random slope -8.56 [-25.31;11.57]
Québec r10 add random slope -5.17 [-7.98;-1.30]
20th-century Sweden r11 separate random e�ects for parents -4.61 [-7.14;-1.90]
Historical Sweden r11 separate random e�ects for parents -7.30 [-13.43;-0.80]
Krummhörn r11 separate random e�ects for parents -8.41 [-25.14;11.23]
Québec r11 separate random e�ects for parents -2.68 [-5.95;0.52]
20th-century Sweden r12 sex moderation -3.94 [-6.61;-1.18]
Historical Sweden r12 sex moderation -7.88 [-13.91;-1.34]
Krummhörn r12 sex moderation -9.05 [-25.49;11.82]
Québec r12 sex moderation -3.24 [-6.43;0.31]
20th-century Sweden r13 control paternal afb -4.15 [-6.65;-1.65]
Historical Sweden r13 control paternal afb -8.34 [-14.90;-2.41]
Krummhörn r13 control paternal afb -8.15 [-24.89;12.04]
Québec r13 control paternal afb -2.19 [-5.22986;1.19428]
20th-century Sweden r14 compare lfe
Historical Sweden r14 compare lfe
Krummhörn r14 compare lfe
Québec r14 compare lfe
Historical Sweden r15 region moderator parish ranef -6.89 [-12.58;-1.25]
Krummhörn r15 region moderator parish ranef -8.31 [-24.61;10.99]
Québec r15 region moderator parish ranef -2.17 [-5.16;0.79]
Historical Sweden r16 restrict to skelleftea -10.22 [-22.12; 4.20]
20th-century Sweden r17 simulate downs -4.09 [-6.66;-1.24]
Historical Sweden r17 simulate downs 0.41 [-6.23;7.48]
Krummhörn r17 simulate downs 2.67 [-15.43;25.56]
Québec r17 simulate downs 0.96 [-2.48;4.45]
20th-century Sweden r18 hurdle poisson -3.14 [-5.48;-0.71]
Historical Sweden r18 hurdle poisson -8.54 [-12.54;-4.62]
Krummhörn r18 control paternal afb -7.10 [-24.21;13.41]
Krummhörn r18 hurdle poisson -2.09 [-13.04;10.40]
Québec r18 hurdle poisson -2.61 [-5.0581;0.0065]
20th-century Sweden r19 normal distribution -3.73 [-6.14;-1.40]
Historical Sweden r19 normal distribution -6.48 [-12.63;-0.85]
Krummhörn r19 normal distribution -7.69 [-21.51; 8.34]
Québec r19 normal distribution -4.32 [-7.39;-1.11]
20th-century Sweden r20 no maternalage control -5.28 [-7.65;-2.98]
Historical Sweden r20 no maternalage control -5.55 [-11.28; 0.50]
Krummhörn r20 no maternalage control -13.61 [-29.41; 3.73]
Québec r20 no maternalage control -3.49 [-6.27;-0.66]
20th-century Sweden r21 continuous maternalage -0.94 [-1.74;-0.13]
Historical Sweden r21 continuous maternalage -8.94 [-15.31;-2.32]
Krummhörn r21 continuous maternalage -10.86 [-28.22; 8.72]
Québec r21 continuous maternalage -1.75 [-5.37;1.84]
Historical Sweden r22 relaxed exclusion censoring -25.50 [-29.91;-21.11]
Krummhörn r22 relaxed exclusion censoring -6.76 [-23.07; 6.41]
Québec r22 relaxed exclusion censoring -1.74 [-4.43;0.41]
20th-century Sweden r23 student cauchy priors -4.60 [-7.26;-2.03]
Historical Sweden r23 student cauchy priors -7.27 [-13.28;-1.01]
Krummhörn r23 student cauchy priors -8.39 [-25.46;10.78]
Québec r23 student cauchy priors -3.04 [-6.17;0.21]
20th-century Sweden r24 uniform priors -4.71 [-7.13;-2.07]
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Population Model Estimate
Historical Sweden r24 uniform priors -7.25 [-13.17;-1.03]
Krummhörn r24 uniform priors -8.90 [-26.92;11.29]
Québec r24 uniform priors -3.00 [-6.25;0.18]
Historical Sweden r25 migration status -10.44 [-16.68;-3.48]
Krummhörn r25 migration status -1.98 [-28.80;31.32]
Québec r25 migration status -2.98 [-6.22;0.38]
20th-century Sweden r26 separate parental age contributions -2.22 [-3.88;-0.44]

6.2 Model descriptions

6.2.1 r1 : Relaxed exclusion criteria

For the three historical populations, we imposed quite stringent exclusion criteria to ensure su�cient data
quality for our intended analysis. This was not necessary for the modern Swedish data, because there were
no exclusion criteria to relax.

6.2.2 r2 : Fewer covariates

Adding covariates increases the complexity of the model and makes it harder to interpret. We chose to adjust
for many potential confounds because we are interested in causal isolation of the paternal age e�ect. Here we
show what happens when only birth cohort and average paternal age in the family are adjusted for.

6.2.3 r3 : Continuous birth order control

We chose to control for birth order/number of older siblings as a categorical variable, lumping all those
who had more than 5 in the category 5+. Because a continuous covariate is also plausible, we tested this
alternative model as well.

6.2.4 r4 : Control number of dependent siblings

Birth order is usually used as a proxy variable for parental investment, the assumption being that older
siblings require parental attention. However, there are are reasons to doubt this, as fully-grown siblings
probably do not compete for the same resources. To compute a clearer proxy variable of competing siblings,
we computed and adjusted for the number of siblings who were alive and younger than five at the time of
birth of the anchor child.

6.2.5 r5 : Birth order interacted with number of siblings

Plausibly, being first-born has a di�erent e�ect, when one is an only child as opposed to having two siblings,
etc. Here, we allow for such an interaction e�ect.

6.2.6 r6 : No birth order control

Paternal age and birth order are highly collinear with each other and with maternal age. Therefore, the
choice to include this predictor widens standard errors for each predictor and may be disputed. Here we show
what happens when we simply omit the birth order control.
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6.2.7 r7 : Less control for parental loss

We adjusted for parental loss very stringently, including covariates for parental loss up to age 45. Here we
show what happens, when we only control for parental loss in the first, and the first five years of life.

6.2.8 r8 : Adjust for being first-/last-born adult son

Inheritance is linked to birth order and being male in several of the historical populations. Here, we adjust
for the anchor being the first or last born adult son in a family. This implies that we control for our outcome
to a certain extent, as “adult sons” cannot have died before adulthood, but a paternal age e�ect on mortality
could still be detected for siblings other than the first- and last-born adults.

6.2.9 r9 : Continuous birth year adjustment

In our main model, we control for birth cohort in 5-year-bins (lumping small bins). We chose to do so,
because nonlinear and even sharply spiking e�ects of birth cohort are plausible (due to e.g. epidemics). This
decision may be disputed, as it summarises 5-year-bins. Here, we instead allow for a thin-splate spline on the
continuous birth year variable. This allows for smooth nonlinear (but not spiking) birth cohort e�ects.

6.2.10 r10 : Group-level slope added

Paternal age e�ects may vary between di�erent families. Although we did not explore between-family
moderators of paternal age e�ects in our study, we tested whether modelling an additional group-level slope
for paternal age di�erences within the family, would change the results by allowing for shrinkage and to
examine the amount of inter-family di�erences to be explained for potential future moderator analysis.

6.2.11 r11 : Separate group-level e�ects for each parent

Most anchors in our sample are full biological siblings and especially in the historical populations, divorce
and remarriage was rare. Therefore, we chose to include only one group-level e�ect, for the parent couple
(i.e. one group-level e�ect per father-mother-dyad). Including one intercept per parent is potentially a better
way to adjust for genetic propensities inherited from either parent and allows estimating this propensity also
from half-siblings, while half-sibling relationships were ignored in our main models. This comes at the cost of
modelling complexity.

6.2.12 r12 : Sex moderation

It need not be the case that paternal age has the same e�ect on male and female children. For example,
male children inherit only the small Y chromosome from the father, but female children inherit the larger X
chromosome, so that paternal age predicts X-chromosomal de novo mutations in females but not in males
(Francioli et al., 2016). At the same time, the autism literature suggests that males are less robust to heritable
and de novo autism risk variants and that these e�ects are not simply due to having only one X chromosome
(Werling & Geschwind, 2015). Here we let a dummy variable for being male moderate the paternal age e�ect.

6.2.13 r13 : Control paternal age at first birth

We already control for the average paternal age at which the children in a family were born. The mean is a
more complete summary of the reproductive timing of the father than the age at first birth. However, far
more literature has examined age at first birth and it has the advantage of never being censored (although we
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of course try to rule out censoring by choosing appropriate subsets). Therefore, we added age at first birth as
a covariate in this model.

6.2.14 r14 : Compare lfe

Most of the previous literature has not used multilevel modelling, but linear group fixed e�ects (essentially
dummy variables on the many thousands of families in the model). We believe our multilevel modelling
approach has the advantage of allowing us to examine the e�ect of including predictors at the level of the
family in the same model.

This allows us to
a) appropriately model a zero-inflated outcome such as number of children including those who died young
(we’re not aware of a linear group fixed e�ect approach that handles hurdle or zero-inflated models)
b) examine group-level slopes for paternal age and potentially to examine moderators at the level of the
family (though we did not do this)
c) explicitly model confounders at the level of the family (e.g. number of siblings).

Nevertheless, the prevalence of this approach in the literature mandates that we show how our approach
compares. We fit this model using the R package “lfe” and the function felm. All covariates that were not
estimable in principle were removed (i.e. number of siblings, paternalage.mean).

Because we cannot extract an e�ect size comparable to the other models from these models, these results are
viewable only online.

6.2.15 r15 : Using a moderator by region, group-level e�ects by parish

In this model we attempted allow for regional variation in paternal age e�ects and attempted to better control
residual variation. Our approach was two-fold: to moderate paternal age by region and to add a random
e�ect for the church parish in which the individual was born. However, for the modern Swedish data, we had
no geographic data and no regional information, so this model was not fit.

6.2.16 r16 : Restrict to Skellefteå

Only in the DDB (historical Swedish data), parishes in some of the regions were still unlinked. This means
that individuals could occur in more than one parish and not be linked. However, the region of Skellefteå was
fully linked. Here, we test what happens when we restrict our dataset to Skellefteå.

6.2.17 r17 : Simulating Down syndrome cases

1. We assume that 4 in 1000 births are children with Down syndrome (four times the actual rate).
2. We randomly excluded 33% of all children who had a mother older than 40 and had no children (many

times the actual rate at that age).

6.2.18 r18 : Reversing hurdle_poisson and poisson

To make models computationally feasible and because early mortality was negligible, we fit the very large
modern Swedish dataset with a poisson() family distribution. All historical datasets had high early mortality,
so we thought a hurdle_poisson() was more appropriate. Here, we show what happens when we reverse this.
The hurdle_poisson() model can be fit to the modern Swedish data here, because we only use a subset.
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6.2.19 r19 : Normal distribution

Previous analysts sometimes decided to use the normal distribution to predict (potentially zero-inflated)
count data. Here, we refit our models using a normal distribution for the outcome. We show that estimates
for the paternal age e�ect can be estimated to have a substantially di�erent magnitude, because of this, but
did not change direction.

6.2.20 r20 : No adjustment for maternal age

In this model, we test what happens when we do not adjust for maternal age, because it is highly collinear
with paternal age.

6.2.21 r21 : Continuous adjustment for maternal age

In this model, we adjust for maternal age using a continuous variable instead of three bins. This does not
allow for nonlinear e�ects, but also does not aggregate the predictor. We cannot compare full siblings, test
the e�ects of maternal and paternal age and adjust for average maternal and paternal age in the family
(because the predictors are redundant), so that it is not perfectly possible to disentangle the contribution of
maternal and paternal age and compare full siblings.

6.2.22 r22 : Relaxed exclusion and censoring criteria

Like r1, but we use a 30-years-later cuto� year for our birth cohorts, relaxing our censoring requirements.

6.2.23 r23 : Student’s t and half-Cauchy priors

To demonstrate the robustness of our prior choice we use Student’s t priors (fatter tails than normal priors)
for our population-level e�ects and a half-Cauchy prior for our group-level e�ect for the family.

6.2.24 r24 : Improper flat priors

To demonstrate the robustness of our prior choice we use improper flat priors. These priors should make the
model’s results comparable to a frequentist maximum likelihood approach.

6.2.25 r25 : Adjust for migration status

In the three historical populations, records were kept in the parish. Although records were linked between
parishes in all populations, except three out of four provinces in historical Sweden, migration might sometimes
lead to censoring of records. Adjusting for migration may however constitute a partial adjustment for the
outcome, as lower o�spring fitness might make them more likely to migrate. Hence, we show the results of
doing so as a robustness analysis. In all analyses, we adjusted for a “migrated”-dummy variable. Migration
was di�erently defined depending on the population. In Québec, we had flags denoting immigrants and
emigrants. Few immigrants were included in our analyses anyway, as we needed parental information for our
analyses. Emigrants were people who left Québec. In historical Sweden, migration was logged as migration
from the parish of birth. In the Krummhörn, we set migrated to true, when the parish of death/burial
di�ered from the parish of birth/baptism.
No migration information was available in 20th-century Sweden, but records there weren’t kept in parishes,
so this should not pose a problem.
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6.2.26 r26 : Separate parental age contributions

In this model, we adjust for maternal age using a continuous variable. We also adjust for a dummy variable
for teenage motherhood, to account for the nonlinearity of the maternal age e�ect. Moreover, we use separate
random intercepts for mothers and fathers and adjust for the mother’s mean age at birth and the father’s
mean age at birth. This model only converges in the 20th-century Sweden data, because there are su�cient
numbers of divorces and remarriages and enough data to separate the parents’ contributions.
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7 Reproductive timing in Sweden

Reproductive timing data showed that average parental ages at birth decreased in 20th-century Sweden until
ca. 1970 and increased thereafter. Average contemporary parental ages are still lower than in any of the
three historical populations. Ages at first birth in the early periods and ages at last birth in the late periods
are censored and hence biased towards the age at all births, which is itself unbiased.
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Abstract 

Previous research reported ovulatory changes in women’s appearance, mate 

preferences, extra- and in-pair sexual desire and behaviour, but has been criticised for 

small sample sizes, inappropriate designs, and undisclosed flexibility in analyses. In the 

present study, we sought to address these criticisms by preregistering our hypotheses 

and analysis plan and by collecting a large diary sample. We gathered over 26 

thousand usable online self-reports in a diary format from 1043 women, of which 421 

were naturally cycling. We inferred the fertile period from menstrual onset reports. We 

used hormonal contraceptive users as a quasi-control group, as they experience 

menstruation, but not ovulation. We probed our results for robustness to different 

approaches (including different fertility estimates, different exclusion criteria, adjusting 

for potential confounds, moderation by methodological factors). We found robust 

evidence supporting previously reported ovulatory increases in extra-pair desire and 

behaviour, in-pair desire, and self-perceived desirability, as well as no unexpected 

associations. Yet, we did not find predicted effects on partner mate retention behaviour, 

clothing choices, or narcissism. Contrary to some of the earlier literature, partners’ 

sexual attractiveness did not moderate the cycle shifts. Taken together, the replicability 

of the existing literature on ovulatory changes was mixed. We conclude with simulation-

based recommendations for reading the past literature and for designing future large-

scale preregistered within-subject studies to understand ovulatory cycle changes and 

the effects of hormonal contraception. Interindividual differences in the size of ovulatory 

changes emerge as an important area for further study. 
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1 Introduction 

1.1 Theoretical Background 

Personality, behaviour, sexual desire, attractiveness, mate preferences and mate 

choices vary between and within persons (Fleeson, 2001, 2004; Gerlach, Arslan, 

Schultze, Reinhard, & Penke, in press). While copious research has identified 

antecedents of interindividual variation (Zietsch, Lee, Sherlock, & Jern, 2015), it is still 

often viewed as mere chance fluctuation or response to situational demands. 

Systematic endogenous causes of intraindividual variation are worthy of further study.  

In the evolutionary psychology literature, the menstrual cycle has been suggested as 

one such influence on psychological state fluctuations in women (Gangestad & 

Thornhill, 2008). Menstrual cycle changes in attractiveness, mate preferences, and 

sexual desire, as well as men’s reactions to those changes have been interpreted as 

evidence for adaptations formed by sexual selection and sexually antagonistic 

coevolution, i.e. arms races between the sexes. However, to this day debate continues 

over the existence and extent of such changes (W. Wood, Kressel, Joshi, & Louie, 

2014).  

In this paper, we have the twin goals of reviewing methodological problems with 

commonly used approaches and addressing them in a high-powered, preregistered 

replication study. Because our study was preregistered in March 2014, the introduction 

of this manuscript reflects our reading of the literature at that point in time. We review 

recent theoretical and empirical developments in the discussion. 
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1.1.1 Do human females show oestrus? 

Human women do not develop garish sexual swellings or other prominent changes 

around ovulation, unlike their closest cousins, the chimpanzees (Deschner, 

Heistermann, Hodges, & Boesch, 2003). Moreover, human women and several other 

primates exhibit extended sexuality, that is they have sex outside the fertile window, not 

just during a period of oestrus or heat (Dixson, 2012). 

However, other, less conspicuous endocrine, behavioural, physiological and 

psychological changes happen over the course of the menstrual cycle and some peak 

when women are fertile (Gangestad & Simpson, 2000; Haselton & Gildersleeve, 2016). 

This led (Gangestad & Thornhill, 2008) to argue that the differentiation of functional and 

physiological aspects of fertile phase sexuality merits being called oestrus.  

1.1.2 The good genes ovulatory shift hypothesis 

The ovulatory shift hypothesis posits that women’s mate preferences and choices 

vary with their fertility status. It is a central functional differentiation predicted under the 

human oestrus perspective (Gangestad & Thornhill, 2008). According to this theory, 

women would optimise their reproductive potential by choosing to be with partners who 

will invest in offspring during non-fertile times and choosing, if necessary, other, extra-

pair, males with good genes to provide their offspring’s genes, i.e. to have sex with 

during the fertile phase. To differentiate this theoretically predicted ovulatory shift in 

mate preferences to obtain good genes, potentially from extra-pair copulations 

(Pillsworth & Haselton, 2006a) from simpler, generalized increases in sexual drive or 
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libido in the fertile phase, we will call this theory good genes ovulatory shift hypothesis 

(GGOSH). 

The concept of good genes is meant to index genetic qualities that women should 

want their offspring to inherit. The concept includes dyadic genetic fit (e.g. good 

immunocompetence genes), genetic fit to the current environment, and few harmful 

mutations. It has no direct correspondence in the evolutionary genetic literature and 

some purported indicators of good genes are controversial (Arslan & Penke, 2015).  

Several male characteristics have been argued to indicate good genes. Cycle 

studies have then reported fertile phase increases in preferences for these traits, which 

include masculinity, low fluctuating asymmetry (Scheib, Gangestad, & Thornhill, 1999), 

and various measures of attractiveness (Gildersleeve, Haselton, & Fales, 2014a; 

Haselton & Gangestad, 2006; Larson, Haselton, Gildersleeve, & Pillsworth, 2013; 

Pillsworth & Haselton, 2006b). In laboratory studies, fertile phase shifts towards 

preferences for male stimuli with such characteristics (photos, videos, voice samples), 

have been cited as support for GGOSH (Gildersleeve et al., 2014a).  

1.1.3 Rationale for the present study 

In our study, we sought to replicate and extend previous results from field studies of 

naturally cycling women commonly cited as evidence of a differentiation of fertile phase 

sexuality. These field studies reported evidence for changes in female sexual interests 

and appearance across the cycle. Central results in these studies served as the 

rationale for the preregistration of our study. 
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1.1.3.1 Extra-pair	desire	and	behaviour	

(Gangestad, Thornhill, & Garver, 2002) asked 51 naturally cycling women (i.e. not 

using hormonal contraceptives) to report their sexual interests and fantasies once in the 

fertile and once in the non-fertile phase. Women reported substantially greater attraction 

to and fantasies about men other than primary partners when fertile.  

In a sample of 54 couples and using the same study design, (Gangestad, Thornhill, 

& Garver-Apgar, 2005) additionally reported support for a predicted moderator effect. 

Women showed stronger fertile phase increases in attraction to other men if paired with 

relatively asymmetrical primary partners. In a diary study, (Haselton & Gangestad, 

2006) asked 38 naturally cycling women to provide daily reports of sexual interest and 

feelings for 35 days. Women reported that they were more attracted to and flirted more 

often with men other than primary partners on higher fertility days, if their partner’s 

sexual attractiveness was low.  

1.1.3.2 In-pair	desire	and	behaviour	

According to the ovulatory shift hypothesis, women whose long-term partners 

display indicators of “good genes” do not benefit from engaging in what (Pillsworth & 

Haselton, 2006a) call a dual-mating strategy. The authors predicted such women should 

instead experience ovulatory increases in in-pair desire. Findings were mixed, with 

some showed the predicted moderated shifts (Gangestad et al., 2005; Pillsworth, 

Haselton, & Buss, 2004) others did not (Gangestad et al., 2002; Pillsworth & Haselton, 

2006b). (Gangestad et al., 2002) found that women did not experience significantly 
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higher levels of overall sexual desire when fertile, but tended to initiate and have more 

sex with their partners as ovulation neared. 

1.1.3.3 Male	mate	retention	

Because female extra-pair sex might lead her primary partner to involuntarily invest 

parental care and resources into offspring sired by an extra-pair mate, counter-

adaptations to the aforementioned shifts were predicted (Pillsworth & Haselton, 2006a). 

(Gangestad et al., 2002) correspondingly found that prohibitive (i.e. jealousy) and 

persuasive (i.e. affection) male partners’ mate retention tactics increased during the 

fertile phase. (Haselton & Gangestad, 2006) replicated these results. These tactics were 

exhibited primarily by partners of women who perceived their partners to be low in 

sexual attractiveness relative to investment attractiveness. 

1.1.3.4 Self-perceived	desirability	and	clothing	choices	

Although obvious outward signals of fertility are absent in humans, some studies 

report evidence of subtle ovulatory cues in human females and conclude that ovulation 

may not be perfectly concealed. (Haselton & Gangestad, 2006) reported that women 

perceived themselves to be more attractive when fertile. Haselton et al. (2007) further 

predicted and found fertile phase increases in grooming and attractive clothing choices 

in a sample of 30 partnered women who were photographed at high and low fertility. 

(Schwarz & Hassebrauck, 2008) replicated and extended this study. In a sample of 40 

women who completed a daily questionnaire over 31 days, participants rated their 

perceived attractiveness, and their clothing style on the dimensions “figure-hugging”, 

“sexy”, and “permissive”. They were also instructed to take one photo of themselves 
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each day. Men then rated these photos for clothing style and physical attractiveness. 

Women perceived themselves and were perceived by men to be dressed more 

provocatively on their fertile days. In another replication, using 88 women tested twice, 

(Durante, Li, & Haselton, 2008) reported evidence that women prefer clothing that is 

more revealing and sexy during the fertile phase, as shown in full-body photographs 

and drawn illustrations of what they would wear to a hypothetical social event that 

evening.  

1.1.3.5 Intrasexual	competitiveness	

Durante et al. (2008) interpreted their results discussed above as evidence of 

increased intrasexual competitiveness, i.e. women altering their physical appearance to 

enhance their ability to compete with other women. We speculated that, if intrasexual 

competitiveness during the fertile phase were increased, we might detect this in 

narcissistic personality states, as conceptualized in the two-dimensional narcissistic 

admiration and rivalry concept (NARC(Back et al., 2013). Narcissistic admiration is 

thought to be linked to the desire to attain social status, and evoke social interest. 

Narcissistic rivalry is thought to be linked to motivations to defend one’s social status 

against others. In the context of our study, to test the prediction of increased intrasexual 

competitiveness in the fertile phase (Durante et al., 2008) in a novel way, we 

reformulated narcissistic state items for both NARC dimensions to refer to other women 

only. 

1.2 Methodological issues 
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The psychological literature on ovulatory changes has been criticised and hotly 

debated. Two meta-analyses based on overlapping data both concluded that publication 

bias afflicts research on ovulatory shifts in mate preferences, as may be the case for 

most of the scientific literature (Fanelli, 2011; Ferguson & Brannick, 2012). However, 

one team of investigators (Gildersleeve et al., 2014a) concluded that all evidence taken 

together suggested replicable shifts in mate preferences, even after including studies 

freed from the file drawer and adjusting for bias. Another team (W. Wood et al., 2014) 

concluded further bias and methodological artefacts implied that any non-negligible 

effects were, in fact, overestimated. Our study focuses on different outcomes than these 

meta-analyses, but many of the criticisms and problems pertain to the designs 

commonly used to study ovulatory change, irrespective of outcomes and research 

questions. Thus they also influenced our approach. In the following, we summarise 

several methodological issues brought to the fore by this debate.  

1.2.1 Researcher degrees of freedom can lead to false positives 

Many psychological studies do not replicate in exact replications (Open Science 

Collaboration, 2015). Potential sources of bias are researcher degrees of freedom in 

specifying hypothesis, methodology, and statistical approach after seeing the data. 

Journals and researchers tend to preferentially publish and cite significant counter-

intuitive results, leading to warped incentives (Simmons, Nelson, & Simonsohn, 2011). 

Recent debate in the menstrual cycle literature has specifically highlighted flexibility 

in the definition of the fertile window, but more general problems such as reporting only 
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significantly associated measures and stopping data collection conditional on 

significance could also affect the literature. As surveys of psychological researchers 

show that some research practices now deemed questionable were widespread (John, 

Loewenstein, & Prelec, 2012) and meta-analyses show publication bias. Both sides in 

the ovulatory cycle debate acknowledge bias (Gangestad, 2016; Harris, Pashler, & 

Mickes, 2014; W. Wood et al., 2014) but do not agree on whether and how it can be 

adjusted for (Gildersleeve, Haselton, & Fales, 2014b; Harris et al., 2014) in order to 

obtain trustworthy bias-corrected estimates (Inzlicht, Gervais, & Berkman, 2015; van Elk 

et al., 2015). The debate surrounding this has at times turned vitriolic, because the often 

used term p-hacking has connotations of intentional mischief, but it is clear from 

simulations (Smaldino & McElreath, 2016) and intuition (Gelman & Loken, 2014) that 

flexibility will lead to bias even without ill intentions, as long as odds of publication and 

tenure can hinge on whether results turn statistically significant. Ultimately, although 

methods such as the p-curve (Gildersleeve et al., 2014b) can offer suggestive evidence 

of replicability, the true tests of replicability are preregistered replication studies in which 

hypotheses, methods and statistical approach are fixed before the data are collected, 

preventing researcher degrees of freedom from skewing results. 

1.2.2 Estimating the fertile window 

There is wide variability in the approaches used to estimate women’s fertile 

windows. (Gildersleeve et al., 2014a) reviewed these approaches and problems 

associated with them. (Gangestad et al., 2016) recommend that researchers abandon 

windows altogether and instead estimate continuous probabilities of being fertile. 
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Flawed recall of the last menstrual onset, accuracy being as low as 57% (Wegienka & 

Baird, 2005), remains a problem. Moreover, menstrual cycle lengths vary within 

person, so that recalled average cycle length correlates only ~.5 with the length of 

individual cycles (Blake, Dixson, O’Dean, & Denson, 2016; Gangestad et al., 2016). 

Because the follicular phase leading up to ovulation is more variable than the luteal 

phase (Fehring, Schneider, & Raviele, 2006), the more convenient method (forward 

counting from the last menstrual onset) is also more imprecise (Gangestad et al., 2016). 

Backward counting to ovulation from the next menstrual onset should hence be more 

accurate, with a validity for estimated fertility as high as ~.7 (Gangestad et al., 2016). 

(Blake et al., 2016) report much lower validities, using luteinising hormone (LH) surges 

as the criterion in a small sample of 140 women, but re-analyses of their data using a 

hedged fertile window estimate, as in Gangestad et al. (2016), show comparable 

validities.  

For researchers, backward counting has the added benefit that women who count 

days as part of their contraception regiment cannot do it prospectively, perhaps 

reducing awareness and thus demand characteristics. Still, counting-based estimates of 

conception probability derive from forward-counted actuarial values which are then 

reversed (Gangestad et al., 2016), ideally actuarial estimates would be backward-

counted too. 

1.2.3 Between-subject designs to study a within-subject process 
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Many past studies have used between-subject designs to study a within-subject 

process, ovulation (Gangestad et al., 2016). Even when sample sizes are large, 

selection bias could confound any identified effects. One possible scenario could be that 

a common cause, for instance genetic makeup or a disease, makes women anovulatory 

and lowers their sexual desire. This could lead researchers to mistake a between-

subject difference for an ovulatory change. Another potential problem might be that 

increased social activity during the fertile phase (Haselton & Gangestad, 2006) could 

make fertile women less likely to participate in a survey study, biasing the sample 

towards women who experience smaller changes. Further, cross-sectional designs can 

never reliably measure individual differences in the size of ovulatory changes. They may 

also lead to the use of outcome measures that measure a trait component, but not a 

state component, reliably. This can be avoided by using established measures tested 

on within-subject data. Indeed, many of the above problems are minor and could 

potentially be avoided or adjusted for, but given that within-subject studies do not have 

these problems and are no longer hard to implement, they seem the superior option. 

Most crucially however, typical between-subject studies have far too low statistical 

power at typical samples sizes, as shown by (Gangestad et al., 2016). 

1.2.4 Lack of power or implausible effect size expectations 

The average menstrual cycle study is underpowered to detect anything but very 

large changes (Gangestad et al., 2016). At the same time, most researchers seem to 

agree that ovulatory changes are, if anything, subtle. In this situation, many plausible 

and interesting effect sizes will be missed, and reported effects will tend to be 
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overestimates. If we desire theoretical progress, we need to narrow down effect sizes to 

disambiguate between theories that predict no, minimal, small, medium, or large 

ovulatory changes in certain outcomes. Thus, the literature would benefit from narrower 

confidence intervals to resolve theoretical debates over evolutionary function. Even for 

larger effects, typical cycle studies are underpowered, because of the combination of 

suboptimal design aspects and small sample size (median N = 48 in Gildersleeve, 

Haselton, and Fales, 2014, mean N = 49 in the studies we sought to replicate). For 

between-subject studies planning to achieve 80% power to detect a Cohen’s d of 0.4 

with a backward-counted conception probability estimate, Gangestad et al. (2016) 

recommend a sample size of 1,143. 

1.2.5 No differentiation of women by reproductive intentions and 

contraception method 

(W. Wood et al., 2014) pointed out that the most uniquely human aspect of 

menstrual cycles may be women’s exertion of control over their cycle and fertility to 

adapt to cultural, societal and their own needs. Although they provide no specific 

recommendations how this should change research practices, we note that most 

studies do not report differentiating between naturally cycling women who use barrier 

methods, awareness-based methods, or simply no contraception. Among women who 

do not use contraception, there may be women who are actively trying to conceive and 

would usually be excluded, but also those who do not mind risking a conception. Most 

studies also do not report asking women whether they track their fertility or menstrual 

cycle by counting with an app or calendar in addition to a primary contraceptive. If 
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women are aware of their fertility status, their answers in the fertile phase might differ 

spuriously due to changed behaviour (e.g. avoiding sex or using condoms, or seeking 

sex to conceive), heightened self-awareness for sexual thoughts and fantasies, demand 

characteristics, or personal theories on how their menstrual cycle affects them. 

1.2.6 Directly assessing hormones may create demand characteristics 

Test strips to assess ovulation via luteinising hormone surges in urine are more 

precise than counting methods. However, these strips are familiar to many adult 

women, making it easy for them to infer that a study employing these strips aims to 

assess effects related to ovulation and conception risk. If the participants are 

undergraduates at the same institution as the research team, they may accurately 

guess the researchers’ hypotheses and consciously or unconsciously change their 

responses (Harris, Chabot, & Mickes, 2013). Similar worries are justified when 

oestrogen and progesterone are measured in saliva, blood, or urine and if women are 

invited back to the lab based on their menstrual cycle. In an online diary study, the study 

intention can be kept opaque to participants, or at least less dominant in participants’ 

minds, especially when many other items are included. In our study, one benefit 

presumably was that our laboratory had not yet published research on ovulatory 

changes. 

1.2.7 Lack of control group 

Changes in oestrogen and progesterone levels around ovulation are 

usually hypothesised and sometimes tested as the mediating mechanism for observed 
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changes mid-cycle (Roney & Simmons, 2013, 2017). Unfortunately, many studies 

exclude women using hormonal contraceptives (HC) from taking part or from analysis, 

even though they can serve as a quasi-control group that experiences menstruation but 

not ovulation and the concurrent hormonal changes. A quasi-control group is also useful 

as an empirical baseline for the false discovery rate: if researchers found as many 

‘ovulatory’ changes among HC users as among naturally cycling women, this would 

serve as feedback that the analysis procedure might entail false positives or invalid 

conclusions about the hormonal processes driving the changes. Apart from being a 

helpful methodological feature, including HC users allows researchers to more directly 

test whether, say, shifts in mate preferences or extra-pair desire do not happen among 

HC users. This may, simply put, be highly relevant for the many women who use HC 

and who might consider the absence of ovulatory cycle shifts desirable or undesirable 

side effects (Alvergne & Lummaa, 2010). 

1.2.8 Ecological validity may be lacking 

In Western societies, although female infidelity is not uncommon, with a 12-month 

prevalence of 2-4% and an occurrence of 20-25% per marriage (Fincham & May, 2017), 

few women have children with an extra-pair mate (1-2%, (Larmuseau, Matthijs, & 

Wenseleers, 2016)). This makes it difficult to collect the data necessary to ascertain that 

ovulatory shifts in extra-pair sex lead to offspring with increased fitness. Still, few 

instances may suffice to exert the necessary selective pressure, the low rate may be a 

evolutionarily recent cultural innovation (Larmuseau et al., 2016), and there has been 

some evidence against nonadaptive explanations of extra-pair mating in women 
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(Zietsch, Westberg, Santtila, & Jern, 2015). Still, most studies, lab and field, were 

conducted chiefly in western, educated, industrialised, rich, democratic populations 

(Henrich, Heine, & Norenzayan, 2010) and ours is no exception. Many studies on 

GGOSH have further issues with ecological validity, because women rate artificial 

stimuli, like morphed pictures of men, in the laboratory without consequences to their 

love lives. These male stimuli may highlight certain characteristics and display them in a 

way that exaggerates the variation from which the sampled women usually choose. 

Thus, effects may be overestimated and responses may not map to mate choice in the 

real world.  

2 The present study 

In the present study, we sought to replicate central findings on cycle shifts in extra- 

and in-pair desire, attractiveness, clothing choices and competitiveness while also 

improving on methodological shortcomings in the cycle research literature. By 

preregistering our study and main analysis plan before data collection, we reduced our 

own researcher degrees of freedom and thereby the risk of false positives. By using an 

online diary with up to 35 days reported per woman, we increased our power to detect 

any effects and our ability to isolate them from confounders. This design also allowed us 

to obtain daily reports of menstrual onset, avoiding recall error, and to do backward-

counting from actual next onsets, decreasing error in the estimation of conception 

probability. Because diaries were filled out on participants’ personal electronic devices 

we could assess women’s reported behaviour and experiences close in both place and 
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time to actual behaviour. We automated the study process, decreasing our own ability 

to influence women’s participation and responses. Because there was no cost per 

participant we recruited a large sample and included women regardless of contraception 

status, providing both a quasi-control group and making it less clear to participants what 

we were studying. We also assume that the automated, encrypted, minimal-contact 

online study made women feel more anonymous and hence comfortable to report, for 

instance, extra-pair desire and sex. However, using this approach implied we could not 

directly measure hormones, obtain photos of women, or collect ratings by their partners.  

Because there is little agreement on best practices and standard operating 

procedures for doing this research (Blake et al., 2016; Gangestad et al., 2016; 

Gildersleeve et al., 2014b), we also used a variety of robustness checks to test the 

consequences of different decisions during data processing and statistical modelling, 

especially conception probability estimation, exclusion criteria and control variables. 

2.1 Preregistered hypotheses 

We registered the following hypotheses on the Open Science Framework on the day 

that data collection began. We reworded and reorganised them slightly here for space 

and clarity. 

1. Ovulatory changes (increases during fertile window among naturally cycling women 

in a heterosexual relationship, but not for hormonal contraceptive users) occur in 

1. female extra-pair desire and behaviour 
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2. female in-pair sexual desire 

3. having and initiating in-pair sexual intercourse (if circumstances allowed, e.g. 

partner was close by) 

4. subjective feelings of attractiveness 

5. choice of clothing (self-rated on the dimensions “sexy”, “figure-hugging”, 

“seductive”) 

6. reported male partner mate retention tactics 

7. narcissism on both dimensions of the NARC (admiration and rivalry) 

2. Moderation or shift hypotheses: The ovulatory increase in women’s extra-pair 

desires and reported male mate retention behaviour is strongest (and the in-pair 

desire increase is weakest) for women who perceive their partners 

1. as low in sexual and physical attractiveness 

2. as low in sexual attractiveness relative to long-term partner attractiveness 

3. as less attractive compared to themselves 

3. Predicted ovulatory changes are larger than, and independent of, potential 

ovulatory shifts in self-esteem. 

In addition, we preregistered to test extraversion (4.1.), shyness (4.2.) and 

neuroticism (4.3.) as potential ovulatory change moderators. We called these 
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moderators exploratory in the preregistration to differentiate them from those already 

tested in the existing literature. We expected that the ovulatory increase in extra-pair 

desire (e.g. desire to attend social gatherings where they might meet men) may possibly 

be stronger for extraverted/outgoing than for introverted/shy women. Further, we 

expected that neuroticism may influence strength of the ovulatory increase in extra-pair 

desires and subjective feeling of attractiveness, though we did not specify a direction 

(4.4.). 

3 Methods 

3.1 Study description 

3.1.1 Power analysis 

Because we used multilevel analyses for our within-subject data, we conducted 

simulations to assess our study’s statistical power. We simulated data under a number 

of different scenarios, varying among others the effect size associated with conception 

probability, the sample size, the number of days sampled per participant, the standard 

deviation of the day of the ovulation (i.e. by how much our estimated conception 

probability missed the correct day on average), the trait component of the outcome, and 

whether participants were scheduled for sampling on predicted fertile vs. non-fertile 

days or on random days. We did not simulate between-subjects analyses, because 

these should be avoided not only because of their low power (Gangestad et al., 2016) 

but also for reasons of validity. 
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3.1.2 Researcher degrees of freedom simulation 

Because researcher degrees of freedom have been discussed as a source of 

problems in the literature, we repeated our power analysis with an effect size of zero 

and the following procedure simulating a hypothetical researcher engaging in the 

following questionable research practices: a) optional stopping (stop 20 or 10 

participants earlier if p < .05), b) control for an irrelevant covariate if p > .05, c) try up to 

five correlated items as outcomes, d) start with a continuous predictor, then try broad 

and narrow window if p > .05 and combinations of these practices and determined the 

number of false positives. 

3.1.3 Preregistration 

We preregistered our study’s hypotheses and methods on March 19, 2014 and 

added a planned amendment to our exclusion criteria and fertility estimation method to 

the preregistration on May 10, 2014, when data collection was already 

underway (Schilling, Straus, Arslan, Gerlach, & Penke, 2014). Participants enrolled from 

March 19, 2014 to July 2, 2015. The last diary entry was made on December 3, 2015. 

The preregistration had a second part, which pertained to hypotheses related to 

oestrogen dosage effects in hormonal contraceptives and which we plan to discuss in a 

separate manuscript. 

In our initial preregistration, we specified that we would use backward counting from 

the observed next menstrual onset to estimate a narrow fertile window (reverse cycle 

days 15-19 vs. 2-11). After the publication of Wood et al. (2014), we decided to also test 
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a broad window (reverse cycle days 14-22) in order to compare results using the two 

approaches. Moreover, we preregistered that we would descriptively show results 

based on continuous curves centred on the estimated day of ovulation. We 

preregistered the personality and daily diary items we would use. For sample size 

calculations, we did not preregister a fixed sample size, as this is hard to control in 

online studies and power analyses based on a biased literature are of limited use. 

Instead, we preregistered a complex procedure under which we tried to ensure that we 

would obtain an adequate sample size even if recruiting proceeded slowly and that 

students could finish projects based on this study in a reasonable timeframe. We 

stopped recruiting when we were unable to find further participants and we honoured 

our promise not to stop data collection depending on results. 

3.1.4 Participants 

We recruited women via university mailing lists in Germany, newspaper articles 

about our group’s work (without references to ovulation-related work), our online study 

site psytests.de, word-of-mouth, and among local students in exchange for course credit 

at our university. Only participants who self-reported their sex as female and reported 

currently being in a heterosexual relationship were allowed to participate. Out of the 

1,720 participants who signed up for the study, 259 were ineligible to participate 

according to these criteria, 253 did not complete the demographics and personality 

survey preceding the diary, 54 completed no diary entries, 41 were sterilised, infertile or 

pregnant, and fertility was never estimable for 70 due to few or patchy diary entries. Out 

of the remaining participants, 60% (n = 631) were using some form of hormonal 
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contraceptive and 40% (n = 428) were naturally cycling. Specifically, 5% (n = 53) used a 

fertility-awareness-based-method, 28% (n = 291) used only barrier methods, mostly 

condoms, and 6% (n = 67) reported no contraception. We preregistered several 

exclusion criteria that we deemed useful to exclude women with potentially anovulatory 

cycles. Applying the strictest criteria proved to be over-exclusive, as only 13% of the 

naturally cycling sample would have been retained. Hence, we differentiated our 

exclusion criteria into four strictness levels and examined the effect of applying these 

levels in robustness checks. The participant flow and exclusion criteria are shown in 

Figure 1. 

 

Figure 1. Participant flow. The figure depicts the various exclusion criteria and the number 

of participants affected by each (if not already excluded for a preceding reason). 

The 1,043 eligible participants were on average 25.5 years old (SD = 6.3, 18-53) and 

had been in a relationship for 3.8 years (SD = 4.3). Most (71%) were students, 24% 
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were working, 3% were not working or described themselves as homemakers, and 3% 

were in secondary or vocational school. A majority reported their religious denomination 

as Christian (56%) and 42% described themselves as nonreligious. Twelve percent 

were married and a further 4% engaged to be married. Four percent of the sample 

reported not yet having had sex with their partner. Most (88%) had no children. The 

largest group co-habited with their partner (41%), but a sizeable fraction had a long-

distance relationship (31%), with the remainder living in the same city. Of those who did 

not live with their partner, 34% lived in a flatshare and 25% lived alone. We present 

more detailed data on the distance between partners, how often they saw each other 

and spent the night in the online supplement. Geographically, only our university town 

seemed visibly overrepresented. Hormonal contraceptive users differed from naturally 

cycling women in a number of ways (see Table 1 for continuous variables and online 

supplement for all others). Most importantly, they were almost 5 years younger on 

average, and consequently tended to be unmarried and not to co-habit, to be in 

relationships for a shorter time (approximately 2 years), to have had 3.5 fewer lifetime 

sexual partners, to be students and have lower income. However, when simultaneously 

predicting hormonal contraception status from 28 demographic and personality 

predictors in a probit regression, only lower age, low openness, high conscientiousness, 

and being unmarried were significantly predictive at p < .05/28. For the sample used in 

our preregistered analyses, the only differences remaining significant in the regression 

were that women on the pill were approximately 3 years younger and lower in 
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openness. Hormonal contraceptive users also had shorter and more regular cycles, 

which might be consequences rather than causes. 

 

Table 1. Descriptive statistics by hormonal contraceptive use. 

 
Mean (Standard 

deviation)   
Variable HC user Cycling Hedges’ g p 
Age 23.6 (4.4) 28.4 (7.6) 1.10 < .001 
Religiosity 2.0 (1.1) 2.0 (1.2) 0.01 .891 
Age at first time (years) 16.9 (2.3) 16.9 (2.4) -0.01 .886 
Age at menarche (years) 13.0 (1.3) 13.0 (1.5) -0.06 .557 
Relationship duration (years) 2.9 (3.0) 5.0 (5.5) 0.70 < .001 
Cycle length (days) 27.9 (2.9) 29.1 (3.6) 0.41 < .001 
Life no. sexual partners 5.7 (7.2) 9.3 (14.9) 0.50 < .001 
BFI Extraversion 3.5 (0.8) 3.5 (0.8) 0.03 .638 
BFI Agreeableness 3.6 (0.6) 3.6 (0.6) 0.00 .964 
BFI Neuroticism 3.1 (0.7) 3.0 (0.8) -0.14 .037 
BFI Conscientiousness 3.6 (0.7) 3.5 (0.7) -0.15 .024 
BFI Openness 3.6 (0.6) 3.8 (0.6) 0.31 < .001 

Relationship satisfaction 4.2 (0.7) 4.0 (0.8) -0.20 .003 
Notes. Constructs in bold remained significant after multivariate adjustment in a 

probit regression. BFI = Big Five Inventory. HC = hormonal contraceptive. 

3.1.5 Procedure and implementation 

3.1.5.1 Procedure 

3.1.5.1.1 Intake form and consent 

Participants filled out web-based questionnaires on their personal electronic devices 

(27% used a mobile device). They were informed that the study’s purpose was to 
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examine the relationships between everyday life, relationship events, psychological 

well-being, and sexual behaviour. They were told that each diary day they filled out 

would add one more lot in a lottery for four Amazon.com coupons worth 20€ each and 

that they would receive extensive feedback on their personality and the longitudinal co-

development of their mood, self-perceptions, and clothing choices over week days. 

Students of our university could earn course credit instead. They were informed that, 

although the study required their email address to send diary invitations, data would be 

stored separately and anonymously and that the feedback would also be generated 

anonymously and automatically. Research that only entails self-reports does usually not 

require IRB approval under German regulations. 

3.1.5.2 Demographic and personality survey 
After obtaining consent, we asked participants for their sex, age, and relationship 

status. Only self-identified females in a heterosexual relationship could proceed. Next, 

the women reported various demographics, details about their relationship, their 

menstrual cycle and contraception status and completed several measures of 

personality, relationship satisfaction and jealousy (see Table 2). 

3.1.5.2.1 Diary 

On the next day and until at least 30 entries were obtained over a period of at least 

40 days, women were invited to fill out the diary via email and, if possible, text message 

at 5 pm German time. They could fill out the diary until 7 hours after the invitation was 

sent. Participants completed the diary in a median time of 6.5 minutes. In each diary 

entry, they responded to 58 items about their relationship, interactions with their partner, 
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clothing style, self-esteem, narcissism, sexual desire and behaviour, and menstrual 

cycle (see below). They were asked to refer to the period since their last entry or 30 

hours ago, whichever happened sooner. They could also give free-text responses to 

provide context for their entry. 

3.1.5.2.2 Follow-up survey 

After completing the diary (usually immediately after the last day), women were 

invited to a follow-up survey. In this survey, we asked several questions which we 

expected to relate to the validity of the results, namely what they thought the purpose of 

the study was, whether they were ill, took medication, lost weight, smoked, broke up 

with their partner, started a new relationship, switched contraception methods, or felt 

extraordinarily stressed. They then received their feedback. If they had not menstruated 

during the last 14 days of the diary, we sent them reminders every other day inviting 

them to tell us about their next menstrual onset, continuing until they did. 

3.1.5.3 Implementation 

The study was implemented using the online open-source survey framework 

formr.org (Arslan & Tata, 2016). The software permitted us to automate all repetitive 

aspects of the study, such as administering surveys, sending email and text message 

invitations and to generate graphical feedback for participants. The study administrators 

communicated with participants through an email account and could send manual 

reminders and administer service requests in case of problems without seeing the 

participants’ data. 



  Ovulatory changes in sexuality 
 

 28 

3.1.6 Measures 
We documented all items for all surveys in the online supplement. To assess 

reliability for cross-sectional measures we computed Cronbach’s alpha. For within-

subject measures, we computed the generalizability of within-subject change 

aggregated across items (Shrout & Lane, 2012) using the psych package (Revelle, 

2017). We documented the main outcome measures for the diary and their reliabilities 

in Table 2. We used measures from previous studies where possible, but previous 

studies often could not or did not test the relevant generalizability metric for a within-

subject process, namely whether the scale measured within-subject change reliably. 

Unfortunately, this did not appear to be the case for the mate-retention-related 

measures, and generalizabilities for the other outcomes were lower than optimal. The 

cross-sectional measures of personality, i.e. the Big Five Inventory (Lang, Lüdtke, & 

Asendorpf, 2001) and shyness (Asendorpf & Wilpers, 1998), had Cronbach’s αs ranging 

from .81 to .88. Agreeableness, which we did not use in this study, was an exception 

with α = .73. Confidence intervals (95%) for these αs had a width of 0.02-0.04. The 

reported physical attractiveness of the partner was based on two items (taken from 

(Haselton & Gangestad, 2006)) asking about his physical attractiveness and his 

sexiness (α = .80). The reported short-term attractiveness of the partner included the 

physical attractiveness scale, plus an item about his attractiveness for an affair or one-

night stand and an item asking about sexual satisfaction with this partner (α = .62). To 

compute the partner’s attractiveness relative to oneself (Haselton & Gangestad, 2006) 

we first computed a five-item mate value scale (Landolt, Lalumière, & Quinsey, 1995) 

for the partner and the participant. We omitted two items in both scales because they 
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used tortuous sentences and counterfactuals and exhibited low to negative scale 

loadings. Own mate value (α = .84) correlated .25 with partner mate value (α = .78). We 

then tested whether the four-point Likert item “Who does better with the opposite sex? 

You or your partner?” favoured the partner most when his mate value exceeded hers. 

This was the case. Thus, we standardised and summed the mate value difference and 

the latter item (α = .74). The relative measure was uncorrelated with the various 

absolute measures (|r| < .05). Further details on scale construction and reliabilities are 

available online. Confidence intervals (95%) for αs of the attractiveness-related scales 

had widths from .04-.07. 

Table 2. Outcome measures in the diary. 

Construct Scale Origin Items Rcn  Example item 

Female 
Jealousy  3 .00 

“I have asked my 
partner with whom he 
spent his day.” 

Relationship 
satisfaction  1 .85 

“How satisfied were 
you with your 
relationship?” 

“Sexy” 
clothing 

Schwarz & Hassebrauck, 
2008 3/8 .60 

“Would you describe 
your chosen clothes 
today as sexy?” 

Extra-pair 
desire Haselton & Gangestad, 2006 12 .60 

“I had sexual fantasies 
about men other than 
my partner.” 

Partner mate 
retention Haselton & Gangestad, 2006 4 .00 

„My partner asked my 
with whom I spent my 
day.“ 

Female 
mate 
retention 

Haselton & Gangestad, 2006 6 .17 “I told my partner I love 
him.” 
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Narcissistic 
admiration 
and rivalry 

NARQ-K (Back et al., 2013) 3+3 .57/.55 
“I felt worthy of being 
seen as a great 
personality.” 

Self-esteem RSES Rosenberg, 1965 1 .86 “I was satisfied with 
myself overall.” 

Self-
perceived 
desirability 

 
 1 .85 “I felt sexually 

desirable.” 

In-pair desire 
 

3 .75 
“I found my partner 
particularly sexually 
attractive.” 

Notes.  Rcn = Reliability of change or generalizability of within-person variations. For clothing 

choices, three of eight items asked about “sexy” clothing choices. 

3.2 Analysis 

3.2.1 Menstrual onset computation and fertile window inference 

On each diary day, women reported whether they had had their period on that day or 

in the preceding 6 days. As this meant that women could report the same menstrual 

onset multiple times and hence incorrectly recall a menstrual onset a few days later, we 

always used the report closest to the reported onset. Women also reported a last 

menstrual onset in the survey preceding the diary and a next menstrual onset in a 

follow-up survey after the diary. We used these dates to generate time series for each 

participant. We then counted forward and backward from each menstrual onset to the 

next or respectively last menstrual onset. If the next menstrual onset was not available, 

because women did not complete the follow-up survey, we could infer it from the 

reported average cycle length, but only did so for our robustness checks. We then 

inferred a narrow and a broad fertile window. For our robustness analyses, we 
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additionally computed a continuous estimate of the probability of being in the fertile 

window according to the method advocated by Gangestad et al. (2016), who based their 

estimates on (Stirnemann, Samson, Bernard, & Thalabard, 2013), among other data. 

This method accounts for the fact that the luteal phase length is less variable than the 

follicular phase. Further details can be found in the online supplement. This procedure 

resulted in seven different predictors which allowed us to include a varying number of 

diary days, see Table 3. 

 

Table 3: The different conception probability estimates that were used as predictors. 

Description 
fertile 
window 

n 
(days) % of days 

n 
(women) 

all days  28,493 100 1043 
narrow window, backward counted 15-19 9501 33.35 794 
broad window, backward counted 14-22 11,497 40.35 796 
narrow window, forward counted 11-15 12,171 42.72 973 
broad window, forward counted 8-16 15,880 55.73 997 
continuous, backward counted n/a 17,614 61.82 817 
continuous, backward counted 
from reported cycle length 

n/a 
26,580 93.29 1043 

Notes. To make effect sizes across predictors comparable, we dummy-coded windowed 

predictors as being 0.053 on non-fertile days and 0.44 (broad)/0.51 (narrow) on fertile days. 

These were the averaged probabilities for those days from the continuous estimate, which 

varied from 0.01 to 0.58. Days were counted from the menstrual onset, starting at 1. The non-

fertile window was defined as days 4-12 (backward-counted) or respectively days 18-26 

(forward-counted). 

3.2.2 Statistical approach 
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To test our hypotheses we fitted multilevel models in lme4 (Bates, Mächler, Bolker, 

& Walker, 2014) with a random intercept per person, interacting our fertility estimate 

with a dummy for hormonal contraceptive use. Defining the model in this way allowed 

us to both test whether any ovulatory change among naturally cycling women was 

different from zero, as well as whether it was different from any changes occurring 

among hormonal contraception users. For Likert-scaled outcomes we fitted linear 

multilevel models and for categorical outcomes we fitted generalized linear multilevel 

models with a binomial family using a probit link. In Wilkinson notation (Bates et al., 

2014, p. 4; Wilkinson & Rogers, 1973), the model equation can be formalised as 

outcome ~ fertile_window * hormonal_contraceptive_user + (1 | person) 

Here, fertile_window refers either to the backward-counted narrow or broad fertile 

window in the preregistered analyses. To test H3.1 we also refitted models with self-

esteem as a covariate. Because we did not preregister it, we did not fit random slopes 

for the fertile window effect. We instead examine the effect of doing so in our 

robustness checks (Bates, Kliegl, Vasishth, & Baayen, 2015). 

3.2.3 Robustness checks 

To test our results for robustness, we used a variety of approaches. First, we built a 

baseline model that deviated from our preregistered procedure but implemented the 

best practices published after we preregistered (Blake et al., 2016; Gangestad et al., 

2016). 
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In Wilkinson notation, the model can be formalised as 

outcome ~ (fertile_window_probability + premenstrual_phase + menstruation) * 

hormonal_contraceptive_user + average_fertile_window_probability+ (1 | person) 

Here, the probability of being in the fertile window was continuously estimated from 

backward counting from the next menstrual onset, according to Gangestad et al. (2016). 

In cases where the next menstrual onset was not observed, we fell back to the next 

menstrual onset inferred from the average cycle length that women reported in the 

screening survey (see Table 3). Because using a continuous predictor means that days 

on which women were menstruating or in the premenstrual phase were also included, 

we included dummy variables for the reported menstruation and the inferred 

premenstrual phase (the six days before the menstrual onset). We also adjusted for 

average probability of being in the fertile window per woman as an additional predictor, 

to ensure within-person estimates (Bafumi & Gelman, 2006). We let our fertility and 

menstruation predictors interact with hormonal contraception status. 

In this baseline model, we included all usable data (from 1,043 women, 421 naturally 

cycling) instead of excluding many women based on our preregistered criteria. 

We tested robustness by fitting numerous variations on the baseline model 

described above. We then examined the effect size and standard error of the fertile 

window predictor across many models, which we outline in the following.  

In model M_r1, we allowed a varying slope per participant for the fertile window and 

the two menstruation dummy variables, a “maximal” specification that is somewhat 
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controversial because of the potential for overparameterisation (Barr, Levy, Scheepers, 

& Tily, 2013; Bates et al., 2015). We tested four levels of stringency for exclusion (“all”, 

“lax”, “conservative”, “strict”, see Fig. 1) in models M_e1-4 and M_m5. We also tried to 

implement a post-hoc criterion (M_e5) for data reliability, under which we excluded 1251 

diary days (4% of all) where participants a) gave the same answer to all Likert items 

(n=23) or b) accessed the diary later or earlier than intended due to technical problems 

(n=896) or c) took more than 24 hours (n=376) or less than a minute (n=30) to finish 

filling out the diary. We took these steps to reduce the number of careless responses 

and to remove days on which the assigned cycle day might be off. We also tested 

(M_e6) whether the effect of excluding women who were trying to get pregnant, an 

exclusion criterion we had not preregistered. 

In models M_p1 to M_p11, we tested different estimates of the fertile window as our 

predictor to address the concerns described in section 2.2.2. We compared all 

combinations of a narrow window, broad window, continuous estimates, and backward- 

and forward-counting. To address section 2.2.3 and 2.2.4 empirically, we then tested 

whether effects could be shown using only a single day per participant, two days (at low 

and high fertility) or four days (two each).  

To transparently show how much modelling decisions that might be considered 

researcher degrees of freedom (section 2.2.1) matter, we fitted models M_c1 to M_c5. 

In these, we added adjustments in one model each for M_c1 self-esteem, M_c4 week 

day and week number, and M_c5 the time when the diary was started and how long it 

took to fill out, or we omitted adjustments for M_c2 average fertile window probability, or 
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M_c3 both average fertile window probability and menstruation. This allowed us to see 

the effect these adjustments had on the estimated fertility effect. In M_c6 to M_c7, we 

tested two different temporal autocorrelation models as opposed to the unstructured 

random effect correlations in our main model. In M_c9, we tested whether measurement 

reactivity might confound our results, by adjusting for splines for the number of days 

since the diary beginning (a variable for days filled out and one including missing days), 

by hormonal contraceptive use.  

We then tested various moderators to prod different methodological issues. To 

partially address the issues pointed out in section 2.2.5, in M_m1 we compared four 

groups of contraceptive methods (hormonal, awareness-based, barrier-based, none). 

For women who combined multiple methods, the order of the list above determined 

precedence. To test generalizability, we tested moderation by participant age (in groups 

18-20, 20-25, 25-30, 30-35, 35-45, 45 and older, M_m2), and whether the weekday 

(M_m3) or the weekend (M_m4) moderated effects (Roney & Simmons, 2013). 

Because the validity of fertility estimates from counting methods depends on accurate 

reporting and regular cycles, we tested for moderation by cycle length (M_m6), by self-

reported certainty about menstruation parameters (M_m7), and by self-reported cycle 

regularity (M_m8). To further test generalizability, we also tested for moderation by 

cohabitation (M_m9) and by marital status (M_m10).  

We also ran Bayesian regression models using Stan (Bürkner, in press; Carpenter et 

al., 2015) to be able to appropriately model the positively skewed distribution of the 

Likert items for extra-pair desire (i.e. many respondents indicated minimal extra-pair 
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desire) in an ordinal regression using a cumulative outcome distribution and random 

effects for items and participants. In the Stan models, we also tested for heterogeneity 

of effect sizes across participants and items. In additional Stan models, we fitted a thin-

plate regression spline (S. N. Wood, 2003) over backward-counted cycle days to 

examine whether the continuous probability of being in the fertile window would be a 

good fit to the shape of the estimated effect. In exploratory analyses, we also fitted one 

Stan model per item and graphically summarised the posterior densities for the 

conception probability estimates. Because of computational limitations, we fitted models 

separately instead of pooling information across items and scales. 

In our robustness checks, a null hypothesis testing approach would have been 

inappropriate, given the wide-ranging exploration and varying questions asked across 

outcomes and models. Instead, we focused on visualisations and the fertility effect’s 

point estimate and confidence interval. We inspected effects to look for evidence that an 

effect was not robust (i.e. shifts in estimates that might not be explainable by sampling 

error). We summarise what we consider the main patterns, but made the detailed 

results available online (see below). 

3.3 Data, code, results, and materials availability 

We released all code, both for implementation and analysis, materials, and full 

statistical results pertaining to this study openly in the online supplement 

(https://rubenarslan.github.io/ovulatory_shifts/). We partially anonymised the data and uploaded 

them to the Open Science Framework for safekeeping. However, because sexual diary 
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data are hard to completely de-identify and extremely sensitive, we did not request 

consent from participants to share their data openly and cannot share these data 

publicly. Therefore, we can only share the partially anonymised data with anyone who 

has a valid reason and agrees not to attempt to re-identify the data. We have also 

generated a synthetic dataset using synthpop (Nowok, Raab, & Dibben, 2016). This 

dataset attempts to replicate many of the central features of our data, such as means 

and bivariate associations, but is anonymous. Others can use this to test and build 

models using realistic fake data, which we can then easily test on the real data. 

4 Results 

4.1 Power analysis and researcher degree of freedom 

simulation 
We documented our power analyses and researcher degrees of freedom simulations 

and results in more detail online. They showed that under reasonable assumptions, 

power was a function of the number of usable days multiplied by the sample size.  

To detect a regression coefficient of the fertile window of .2 with an alpha level of .01 

in a sample of 150 naturally cycling women measured over 30 days, we had a power of 

.84 using a windowed predictor, because using windows meant not being able to use 

many of the measured days. Using a continuous predictor increased power to .99. In a 

sample of 500 women measured over 30 days, power approached 1. Power to detect 

an effect half/a quarter this size was still .97/.36 using a continuous predictor.  
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4.2 Preregistered analyses 

To adjust for multiple comparisons, we set the significance level to .01 (see below). 

After applying our “lax” exclusion criteria (see robustness checks for further tests of 

stringency), we could use data from 143 naturally cycling women and 374 hormonal 

contraceptive users. Using the narrow (broad) fertile window predictor, we could use 

6,378 (7,740) diary days, or 12 (15) days per woman (see Table 3).  

All outcomes are summarised in Table 4. For three outcomes, effects of the fertile 

window were significantly positive for naturally cycling women but absent for hormonal 

contraceptive (HC) users, a pattern we will refer to as fertile window increases in the 

following. When the interaction between HC use and the fertile window is of the same 

size as the fertile window effect, but negative, it indicates an absence of the change 

among HC users. 

We found small fertile-window increases in extra-pair desire and behaviour. Effects 

were significantly positive for all extra-pair subscales except the compliments subscale. 

We examined this pattern in more detail in the robustness analyses. Actual instances of 

intimate contact or sex with another person were very rarely reported (48 women 

reported extra-pair sex on 127 days, 112 women reported extra-pair intimate contact on 

383 days), so that the log-odds-ratios seem large, but estimates were not significant (ps 

> 0.17).  

We also found small fertile window increases in in-pair desire, similar in size to the 

increase in extra-pair desire. On average, women did not have significantly more sex 
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during the fertile window, but there were two consistent but only marginally significant 

moderators of the ovulatory increase in having sexual intercourse, namely cohabitation 

and average number of nights spent with the partner. Cohabitation moderated the 

changes, so that we observed no ovulatory increases among women in long-distance 

relationships (p = .020). Women who spent more nights per week with their partner also 

showed stronger ovulatory increases (p = .048). The increases were not stronger on the 

specific nights that the couple spent together (p = .58). Women did not initiate sex 

significantly more often. 

We also found small fertile window increases in self-perceived desirability, but not on 

wearing “sexy clothes”. The predicted effects were not significant for initiating sex, male 

mate retention, narcissistic admiration, and narcissistic rivalry (all ps > 0.21).  

The changes in self-perceived desirability, in- and extra-pair desire were also clearly 

apparent when plotting a smoothed spline over reverse-counted cycle days (Figure 2). 

The pattern of results held independently of whether we used a narrow or broad fertile 

window as the predictor. As predicted, there were no significant effects on self-esteem 

and adjusting for self-esteem did not weaken any other tested associations. 
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Figure 2. Smooth thin-plate splines (S. N. Wood, 2003) fitted over days until next 

menstruation with three central outcomes. The dashed line shows the estimated probability of 

being in the fertile window for each day. The shaded areas reflect 95% confidence bounds 

pooling days over participants for simplicity. To account for the cyclical nature of the data, we 

spliced in duplicates of the time series at both ends before estimating the splines and then 

dropped them afterwards. 
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None of the three main predicted moderators, i.e. the partner’s short-term, sexual, 

and relative attractiveness, significantly exhibited the predicted pattern for any outcome 

(ps > 0.07), and some patterns went descriptively in the opposite direction of the 

prediction. Also, none of the personality variables moderated changes in extra-pair 

desire and behaviour (ps > .32). A test of whether neuroticism moderated shifts in self-

perceived desirability was significant (p = .002), but inspection of marginal effect plots 

showed this to be driven by significant increases in desirability among highly neurotic 

hormonal contraceptive users, an unpredicted and likely spurious result.  

Because we had not preregistered a procedure to correct for multiple comparisons 

due to multiple outcomes and believed Bonferroni to be too conservative, as many 

outcomes were highly correlated, we tested whether we would have ever rejected the 

null hypothesis of no effect in our HC control group with the significance threshold of 

.01. Although this would have been the case for one outcome, follow-up analyses 

showed that this result would not have survived our robustness analyses, so we 

concluded that our chosen threshold was appropriate. The pattern of significant results 

here would not have been different using the uncorrected threshold of .05 or when using 

a Benjamini-Hochberg (Benjamini & Hochberg, 1995) correction (see online). 

 

Table 4. Preregistered associations, using the narrow fertile window  

Outcome Intercept fertile HC user HC user x fertile 
Extra-pair desire and behaviour   
extra-pair (EP) 1.75±0.05 0.27±0.06 -0.05±0.06 -0.30±0.07 
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desire & behavior   p < .001 p = .373 p < .001 
 - EP compliments 2.37±0.08 0.25±0.11 -0.11±0.10 -0.37±0.13 

 p = .023 p = .267 p = .005  
- EP flirting 1.36±0.04 0.15±0.06 -0.09±0.05 -0.22±0.07 

 p = .006 p = .078 p < .001 
 - EP going out 1.99±0.09 0.24±0.15 0.24±0.10 -0.31±0.18 

 p = .113 p = .019 p = .088 
 - EP sexual 

fantasies 
1.50±0.06 0.49±0.09 -0.19±0.08 -0.43±0.11 
 p < .001 p = .012 p < .001 

 - EP desire 1.65±0.05 0.34±0.06 -0.13±0.06 -0.31±0.07  
 p < .001 p = .047 p < .001  

extra-pair 
intimacypb 

-4.47±0.30 0.89±0.42 -0.22±0.37 -0.57±0.72 
 p = .033 p = .554 p = .431 

 extra-pair sexpb -4.60±0.39 0.60±0.56 -0.44±0.57 0.17±1.08 
  p = .282 p = .444 p = .873 
 In-pair desire and behaviour   

in-pair desire 3.48±0.08 0.31±0.12 0.24±0.09 -0.39±0.14 
 p = .010 p = .010 p = .008 

 sexual 
intercoursepb 

-0.98±0.07 0.12±0.17 0.17±0.08 -0.26±0.20 
 p = .483 p = .026 p = .203 

 sex initiated by 
partner vs. 
womanpb 

0.26±0.09 -0.14±0.31 0.12±0.11 0.11±0.37 
 p = .642 p = .276 p = .775 

 partner mate 
retention 

2.86±0.07 0.05±0.09 0.00±0.08 -0.12±0.11 
  p = .569 p = .954 p = .255 
 Self-perceived desirability and clothing choices  

self-perceived 
desirability 

3.72±0.08 0.37±0.13 -0.07±0.09 -0.38±0.15 
 p = .004 p = .477 p = .012 

 sexy clothing 3.16±0.07 -0.14±0.10 0.02±0.08 0.09±0.12 
 p = .169 p = .831 p = .492 

 Narcissism      
narcissistic 
admiration 

2.69±0.10 -0.05±0.08 -0.14±0.11 -0.09±0.09  
 p = .551 p = .214 p = .335  

narcissistic rivalry 1.29±0.04 -0.03±0.05 0.05±0.05 -0.02±0.06  
  p = .535 p = .322 p = .747  

Notes. Coefficients significant at p < .01 (before rounding) are bold. Associations with 

outcomes marked pb were estimated in a probit regression. The number after the ± is a standard 
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error. Scales starting with EP are subscales. The sex initiation item asked whether it was rather 

the partner or rather the participant who initiated sex, in a forced-choice question. Positive 

effects reflect that it was rather the partner. 

4.3 Robustness checks 

Our robustness check results are documented fully in the online supplement, here 

we verbally and visually summarise the most important patterns. We were able to 

include 421 NC women and 622 HC users. We used a continuous measure of the 

probability of being in the fertile window, estimated from backward-counting from the 

actual next menstrual onset, falling back to the next menstrual onset inferred from the 

average cycle length when necessary. This way, we were able to include 25,948 diary 

days, i.e. on average 25 days per woman and more than 3 times as many days as in 

the preregistered analyses. 

We repeated all preregistered tests using this bigger dataset and the adjusted 

model. Unless otherwise mentioned, results were robust to including more data and to 

the various checks listed in the method section. Specifically, estimates of fertile window 

increases in extra-pair desire and behaviour, in-pair desire, and self-perceived 

desirability were robust, but standard errors shrunk by about half. Further, none of the 

predicted moderation patterns turned significant when adding more women, and using 

slightly different items for the partner attractiveness moderator variables did not change 

the pattern. However, when modelled, random slopes for the fertile window predictor 

were substantial, larger than for the menstruation predictors and as large as the residual 

variation and the variation explained by the random intercept. No fertile window 
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increases emerged for any other outcomes, including further outcomes for which had 

not predicted increases. 

We found that the stringency of our exclusion criteria, designed to exclude women 

with potentially anovulatory cycles, did not moderate the effect sizes in the expected 

way, i.e. that effects became stronger with more stringent criteria. When testing for 

moderation by exclusion criteria in M_m5, the pattern validated our post-hoc decision to 

keep only the truly necessary constraints. When applying stricter exclusion criteria, 

some effects weakened or confidence intervals overlapped zero, but this seemed to 

reflect the heavily decreased sample size (see Figure 1). Applying our post-hoc criterion 

(M_e5) to exclude potentially unreliable data also had no noteworthy effect. Excluding 

women who were trying to get pregnant diminished the effect on in-pair desire, but did 

not eliminate it. 

When we used a continuous fertile window predictor, we also adjusted for 

premenstrual and menstrual days. We found that including adjustments for 

menstruation and pre-menstruation (M_c3) reduced effect sizes for the fertile window 

predictor. We could not always adjust for menstruation when using a narrow window 

predictor because of model convergence problems. After taking this into account, we 

found no systematic pattern in which certain predictors (narrow or broad window, 

forward or backward counted) had larger effect sizes than others across outcomes (see 

Figure 3). However, continuous curves over backward-counted days (Figure 2) matched 
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the predicted pattern more closely than curves over forward-counted days (online). 

 

Figure 3. Coefficient plot showing a consistent effect of the fertility predictor among naturally 

cycling women (red) but not HC users (black) across several predictor and model specifications 

(explained in further detail in the text). 

In models M_p7 to M_p9, we found that none of the associations found to be 

significant in the pre-registered analyses would have been discovered had we used 

between-subject analyses or a high-low fertility within-subject design with only two days. 

There was a complex pattern of results when separately examining contraception 

methods. The ovulatory increase in extra-pair desire tended to be larger for fertility-

aware women (5% of the sample) and this was not merely because they had more 

regular cycles. Still, women using barrier methods or no contraception also showed 
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ovulatory shifts. The shifts in in-pair desire and self-perceived desirability, on the other 

hand, appeared weaker or absent in fertility-aware women but stronger in women using 

no contraception (6% of the sample). Because women using methods other than 

hormonal contraceptives and barrier methods made up only a small minority of the 

sample, we could not rule out sampling variation as an explanation. 

Inspecting time series of within-subject change by item (Figure 4) for the three 

outcomes that were significant in the preregistered analysis, namely extra- and in-pair 

sexual desire and self-perceived desirability, showed that naturally cycling women 

tended to exhibit peaks around the estimated day of ovulation, while hormonal 

contraceptive users exhibited no clear peaks or minor peaks around menstruation. 
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Figure 4. Item-by-item plot of within-subject change. The trails in this plot represent within-

subject change as a percentage of the maximal peak. Plots are smoothed with a moving 

average over three days. Items are ordered top to bottom by how late in the cycle the highest 

peak occurs for naturally cycling women.  
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Across outcomes, effects tended to be largest for women with cycle lengths between 

25 and 30 days, and for women who were more certain about their menstruation 

parameters, but not for women whose cycles were more regular. 

We tested whether the effects of in- and extra-pair desire were different in size and 

independent of each other, to test whether they were potentially both driven by a third 

variable, such as increased target-unspecific sex drive. The two categories of desire 

negatively correlated within each woman, so that adjusting either desire outcome for the 

other did not diminish the estimated fertile window increase. However, we also 

conducted simple forward simulations of the realistic scenario that unobserved 

properties of the object of desire decide whether desire is expressed as in- or extra-pair. 

These simulations showed that we cannot resolve the question of whether the effects 

were entirely explained by target-unspecific desire without directly measuring it. 

Comparing unstandardized effect sizes showed that the fertile window increases in 

extra-pair (b= 0.26 95% CI [0.17;0.35]) and in-pair desire (0.26 [0.10;0.42]) were 

comparable in size. Examining item-level effect sizes showed larger heterogeneity 

across items than across objects of desire (see online supplement). 

5 Discussion 

In the present large diary study, we aimed to replicate reports of ovulatory changes 

in extra- and in-pair sexual desire and behaviour, as well as related outcomes, and test 

several methodological concerns. We could replicate only some of the previously 

reported ovulatory changes, namely those in the three main outcome categories of 
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extra-pair sexual desire and behaviour, in-pair sexual desire and behaviour, and self-

perceived sexual desirability. In Figure 2 we show the probability of being in the fertile 

window closely matches the observed changes across the cycle for these three 

outcomes. 

5.1 Main effects of the fertile window 

5.1.1 Extra-pair desire and behaviour 

We found robust support for a fertile window increase in extra-pair desire and 

behaviour. This scale was a fairly heterogeneous average of items measuring increased 

attraction to, fantasizing about, flirting with, receiving compliments from, and going out 

to meet with men other than the primary partner. In separate analyses, we also 

examined whether women were more likely to be intimate or have sex with other men 

during the fertile window. While descriptively supporting the predicted ovulatory shifts, 

these events were rare and effects were not significant. We also examined effects on 

the subscale level. Fertile window increases in sexual fantasies were descriptively 

strongest, but the aggregation of subscales seemed justifiable. 

5.1.2 In-pair desire and behaviour 

We found robust support for fertile window increases in in-pair desire. Although in-

pair desire predicted intercourse with the partner, ovulatory increases in sexual 

intercourse were not significant in our preregistered analyses. Potentially, we simply 

had too little power to detect mean shifts in this dichotomous behaviour: Women 



  Ovulatory changes in sexuality 
 

 50 

reported sex on 21% of days and 67 women who filled out the diary on more than 25 

days never reported sex with their partner at all. With added data, we observed 

increases in some of our robustness tests, but only in comparison to the HC group 

(which decreased non-significantly). Further, as predicted, two indicators of partner 

availability moderated the sexual intercourse shifts in the preregistered analyses 

marginally significantly: ovulatory increases were absent among women in long-

distance relationships and among those who reported rarely spending the night with 

their partner. The daily report of whether the couple spent the night together did not 

moderate the shift, but the same-day behaviour may act as a mediator, not moderator, 

of ovulatory shifts in sexual behaviour. We see this pattern as partial support for our 

hypothesis 1.7., stating that ovulatory increases would be observed if circumstances 

allowed it, if the partner was close by. This pattern is also consistent with the findings for 

coupled women in a larger within-subject study on 1,180 women and 37,170 diary days 

(Caruso et al., 2014), but runs counter to previous results from 20,000 women in a 

between-subject study (Brewis & Meyer, 2005). Unexpectedly, shifts in in-pair desire 

also appeared to be stronger for women cohabiting with their partner. 

5.1.3 Mate retention, jealousy 

We observed no fertile window changes in partner mate retention, but the 

generalizability of change for these items was very low, making the detection of an 

effect unlikely. Our questions for these outcomes were based on the previous literature, 

in which generalizabilities of change were not reported. We had ourselves preregistered 

a suboptimal procedure for improving outcome reliabilities, based on assessing 



  Ovulatory changes in sexuality 
 

 51 

Cronbach’s alphas, which ignore the multilevel structure of the data. We instead 

calculated all analyses by item in a purely exploratory format. Based on these analyses 

and research published after our preregistration (Gangestad, Garver-Apgar, Cousins, & 

Thornhill, 2014), future research on partner mate retention should more clearly and 

comprehensively examine prohibitive behaviours, as opposed to persuasive behaviours, 

because items measuring the former seemed to show stronger changes. 

5.1.4 Self-perceived desirability and clothing choices 

We found fertile window increases in self-perceived desirability in our preregistered 

analyses that were robust to our checks, although standard errors were relatively broad 

because we used only a single item to assess this outcome. Contrary to our predictions, 

we found no fertile window changes in self-reported “sexy clothing”, even though this 

was associated with desirability. As predicted, we also found no change in 

“flashy/showy” clothes and self-esteem in our robustness checks. These results are 

consistent with recent large-sample replications of fertile phase increases in facial 

attractiveness (Jones, Hahn, Fisher, Wang, Kandrik, Han, Lee, et al., 2017), suggesting 

that day-to-day changes in self-perceived attractiveness might track actual changes in 

physical attractiveness. 

5.1.5 Other outcomes 

For all the other outcomes we found no ovulatory changes that were also absent 

among HC users. Reassuringly, in no case did we observe any significant associations 

for outcomes for which we predicted none (relationship satisfaction, self-esteem, 
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spending the night/communication with the partner, female jealousy, and female mate 

retention). Nor did we find associations for the narcissism outcomes, for which we had 

indirectly extrapolated our predictions from prior reports in the literature of ovulatory 

changes in clothing, interpreted as signs of intrasexual competition (Durante et al., 

2008). We should reiterate in this context that we did not replicate cycle shifts on 

clothing choices either. Perhaps this can be interpreted as evidence that the literature 

suffers more from potential false positives than from false negatives, though it is 

noteworthy that some previous studies had not found ovulatory increases in in-pair 

sexual desire and behaviour (Brewis & Meyer, 2005; Haselton & Gangestad, 2006). We 

would like to emphasize that both negative and positive results were largely robust to 

the many different analytic approaches that we tested.  

5.2 Predicted moderator effects and individual differences 

There was insufficient evidence for moderation of male mate retention behaviour, 

extra-pair or in-pair desire by the partner’s attractiveness (no matter if assessed as 

relative to self, sexual, or physical), as predicted by the good genes ovulatory shift 

hypothesis. Although some patterns descriptively pointed in the predicted direction, 

none of the predicted patterns were significant, and some were opposite to our 

predictions. Because only 144 naturally cycling women remained for our preregistered 

analyses, statistical power may have been insufficient to detect plausible moderation 

effect sizes. However, we found no evidence for moderation effects in the more 

inclusive sample of our robustness tests. Although our sample sizes are bigger than 

many published studies that reported a moderation effect (Haselton & Gangestad, 2006; 
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Pillsworth & Haselton, 2006b), we would ideally prefer to exceed their power by a wider 

margin due to winner’s curse, i.e. effect sizes being overestimated through selection 

and publication bias. We should also mention that some of the earlier studies we aimed 

to replicate (Haselton & Gangestad, 2006; Larson et al., 2013) did not actually report 

significant main effects of the fertile phase. Increases were reported to be qualified by a 

moderator. In this sense, we replicated neither findings on main nor on moderator 

effects from these studies. Still, we believe GGOSH can be taken to predict main effects 

as well, because amplified shifts in some women whose partners lack certain 

characteristics should, averaged across women, still yield detectable main effects. But 

taken literally, our findings shed doubt on GGOSH in finding no substantial moderator 

effects by partner attractiveness.  

There are some conceptual similarities between ovulatory shift moderators of extra- 

and in-pair desire and direct tests of ovulatory changes in mate preferences, because 

both regard a shift in who is preferred as a mate. Newer, more adequately-powered 

laboratory research also sheds doubt on ovulatory shifts in preferences for facial 

masculinity (Jones, Hahn, Fisher, Wang, Kandrik, Han, Fasolt, et al., 2017) and twin 

studies show that heritable individual differences in this preference dwarf any cyclical 

changes (Zietsch, Lee, et al., 2015).  

We found no evidence for the tentatively predicted moderation of increases in extra-

pair desire or self-perceived desirability by neuroticism, extraversion, or shyness. 

However, because we had on average 25 days for each woman, we could estimate 

inter-individual differences in ovulatory increases (i.e. random effects for the fertile 
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window). Random effect variances for the fertile window predictor were substantial. 

Hence, there might be real heterogeneity in ovulatory increases to be explained. Future 

research should test and improve the reliability of these inter-individual differences 

across cycles. Determining if there is inter-individual variation in cycle shifts to be 

explained should be a precursor step before further attempts to identify both 

methodological and theoretically substantial moderators of ovulatory increases, such as 

partner or relationship attributes. Further, until any such moderation patterns are better 

understood, researchers should probably refrain from testing for moderation in the 

absence of main effects of fertility if they have not preregistered their approach, 

because this may lead to (accusations of) overfitting.  

5.3 Theoretical implications 

Although further tests should be conducted, the good genes ovulatory shift 

hypothesis could be wrong, given that we could not replicate previously reported 

moderators. More recent theoretical work emphasises that predictions of adaptive extra-

pair sex, which (Pillsworth & Haselton, 2006a) call dual mating, should be divorced from 

predictions of ovulatory changes in mate preferences that do not necessarily precipitate 

extra-pair sex, but still function to bias sire choice (Gangestad, Thornhill, & Garver-

Apgar, 2015). We cannot test all aspects of these recent theoretical developments in 

our study. An alternative, simpler explanation (Roney & Simmons, 2013) is based on life 

history theory. It suggests the observed increase in sexual desire during the fertile 

phase reflects a motivational priority change towards reproduction. The purported 

function would be to accept higher costs of sex, such as energetic and opportunity costs 
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or sexually transmitted infections, the more likely it is that sex leads to conception. This 

theory also predicts fertile phase drops in somatic investment, such as food intake 

(Fleischman & Fessler, 2007; Roney & Simmons, 2017). In this study, we did not 

assess any non-reproductive motivations, and we collected no data on single women. 

Hence, we cannot test whether general, target-unspecific sexual motivation drives the 

effects on in- and extra-pair desire we find ((Roney, 2009). Future studies should be 

designed and powered to discriminate between these and other theories. Relatedly, 

theoreticians should make exact predictions down to what certain statistical models will 

find, because verbal ambiguity might otherwise preclude the identification of the best 

supported theory. 

5.4 Effect size comparison 

Some perspectives (Roney & Simmons, 2013) predict a generalized increase in sex 

drive with fertility across the menstrual cycle, while others more specifically predict an 

increase in sexual interest for certain partners (Gangestad et al., 2015). These 

perspectives differ in predictions of whether the effect on extra-pair desire should be 

larger than that on in-pair desire. Although testing these competing predictions was not 

the goal of the present study, we can compare the relevant effect sizes. The continuous 

backward-counted predictor recommended in (Gangestad et al., 2016) hedges for 

uncertainty in the estimation of the fertile window. Our effect sizes thus account for 

uncertainty and reflect the estimated change when certainly in the fertile window, 

although the predictor never gives a more confident prediction than 58%. In Likert points 

from 1 to 6, the fertile window effect was 0.26 [0.17;0.35] for extra-pair desire in the 
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robustness check data. The in-pair desire effect had the same size: 0.26 [0.10;0.42]. 

We could now standardise the effects by the residual standard deviation in the 

multilevel model to obtain an effect size estimate of Cohen’s d. Since the residual 

standard deviation of extra-pair desire is much smaller (0.61) than that of in-pair desire 

(1.1), their standardised estimates would differ by a factor of two. However, our items 

for in- and extra-pair desire were not comparable and upon inspecting item-level 

associations in Bayesian models that appropriately account for the ordinal nature of the 

Likert data, we believe comparisons between the two outcomes are futile. If we can 

conclude anything, effects were larger on average for items that required no object of 

desire to be present and no action to be taken. Future studies should attempt to settle 

the question of whether changes in extra- or in-pair desire are independent and different 

in size. Most importantly, they should test whether both can be simplified to an increase 

in sex drive that amplifies interest in all men without affecting their rank order, i.e. mate 

preferences. To do so, studies should construct parallel items to measure extra-pair, in-

pair and objectless sexual desire and behaviour, and test for fertile phase changes in 

the rank order of ratings of male stimuli.  

We suggest not to prematurely ignore the reported effects because of their small 

size. The effects on in-pair desire are, for instance, comparable with reported effects of 

a hormonal contraceptive use on sexual desire in a randomised controlled trial 

(Zethraeus et al., 2016). Moreover, we found evidence for substantial inter-individual 

variation (see below), so that effects that are small on average might be substantial for 

some women. 
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5.5 Hormonal contraception 

Whenever we found an ovulatory increase, we also found that it was absent among 

hormonal contraceptive users. In this sense, we identified one reliable moderator. The 

absence of these cycle changes probably reflects the suppression of ovulation and 

concurrent hormonal changes. Moreover, estimated effects of menstruation and the 

premenstrual phase on psychological outcomes as measured in the diary were also 

diminished among HC users. In the preregistered analyses, we found only small and 

statistically non-significant mean level differences between HC users and cycling 

women in the diary outcomes, as well as in the demographic and personality variables 

that we tested. These differences are presumably confounded by selection and attrition 

effects. For example, women who expect their relationship to last may be more likely to 

start using HC and to show less extra-pair desire, and women who experience libido 

decreases on HC may go off it again. Thus, the (absence of) mean level differences 

may not (entirely or at all) speak to causal effects of HC.  

There are few randomised controlled trials (RCTs) that can answer questions about 

psychological changes caused by HC use. Existing ones so far mostly ignore cycle 

phase (Zethraeus et al., 2016, 2017) thus not yielding the full picture of differences 

across the cycle. Potentially, this can lead to spurious or misleading conclusions of 

differences, if women in the naturally cycling control group are measured in different 

cycle phases across time points. As the effects of cycle phase on sexual desire in our 

study were similar in size to effects reported for hormonal contraceptives in (Zethraeus 

et al., 2016), further RCTs should tease cycle phase and HC influences apart. 
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The suppression of cyclical psychological changes is not currently being pointed out 

as a side effect of the pill in package leaflets, although they do mention potential effects 

on libido and appetite. Potentially, decreased fluctuations in extra- and in-pair desire 

might be seen as less worrisome than e.g. decreased average levels of libido, or altered 

mate preferences (Alvergne & Lummaa, 2010), but this decision is best left to HC users 

themselves. Decision making about HC use may vary, e.g. some women may prefer to 

have cyclical ups and downs, while some may prefer to have a lower but constant mean 

level. Moreover, individual differences in the actual physiological and psychological 

response to HC may be more important than differences in side effect preferences and 

should be a future research priority. 

5.6 Limitations 

In this study, we relied on self-report, which may mean that social desirability, 

measurement reactivity and recall error could affect our results. We hope we succeeded 

in minimising these issues by ensuring privacy and anonymity for participants, 

preventing access to past responses, asking specific closed-form questions daily, and 

statistically testing and adjusting for temporal trends (Barta, Tennen, & Litt, 2012). 

Some women in this sample may have used fertility tracking apps as a supplemental 

contraceptive method or simply out of interest. Such women may not have reported 

using these apps, because we only asked about contraception. Potentially, their 

increased awareness could change our results. An obvious improvement would be to 

also collect partner- and potentially peer-reports, although this might have negative 

consequences for the perceived anonymity of responses. To decrease measurement 



  Ovulatory changes in sexuality 
 

 59 

reactivity and to test its effect, future studies could space out diary invitations over a 

longer period, for instance by sending them only on odd days or tailoring them to 

predicted (non-)fertile phases. Ideally, the schedule would be varied randomly by group 

(Barta et al., 2012).  

We overestimated how conscientiously participants would fill out the diary. Hence, 

some women strung out the participation period over such a long time that menstruation 

could have occurred in an unobserved period, because women only reported menstrual 

onsets that occurred fewer than 7 days ago. Therefore, fertility was not estimable for 

~6% of days (Table 3). Further, sending daily invitations via email presented a technical 

challenge. Due to delays in the sending process and spam filters some emails 

occasionally arrived a few hours late or not at all. We introduced text message 

reminders approximately halfway through the study and remedied this somewhat. 

These problems are presumably unrelated to outcomes and cycle position as M_e5 

shows, but still worth avoiding in the future. Because we required 35 complete daily 

reports before the study could end, some women never concluded our study, leading to 

31% dropout in the follow-up survey. Future studies should use a fixed timespan for the 

diary, so that the follow-up takes place at the same time regardless of participation rate. 

We only asked participants whether they had been intimate with someone other than 

their partner, but failed to systematically ask about the context and sex of the person. 

Free-text responses showed that several instances of reported extra-pair activity were 

not cheating with another man, but polyamorous or open relationships, affairs with 

women, or sex with the partner and another couple or a third person. All of these have 
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dubious relevance to the research question about adaptive benefits of extra-pair 

infidelity. We also did not collect data on single women, preventing us from 

discriminating between an increased propensity for flings in general versus extra-pair 

infidelity. 

The generalizability of change for our outcome scales was sometimes zero and in 

other cases suboptimal. Previous research, from which we derived our scales, may 

have suffered the same problem, but did not conduct the appropriate psychometric 

analyses to find out. We think menstrual cycle research should learn from work on 

psychometrics and measurement in personality development research (Shrout & Lane, 

2012). Mirroring the old person-situation debate (Kenrick & Funder, 1988), the 

evolutionary literature now debates the relative importance of between and within 

person variation (Havlíček, Cobey, Barrett, Klapilová, & Roberts, 2015; Jones, Hahn, 

Fisher, Wang, Kandrik, Han, Lee, et al., 2017; Zietsch, Lee, et al., 2015). However, 

without improving the methodology and psychometrics used to study within-person 

variations the debate will not be resolved (Roberts & Caspi, 2001; Shrout & Lane, 

2012). Future work should also differentiate sexual activity more than we did here, 

including not just sexual intercourse and other sexual activity with the partner, but also 

masturbation and nonsexual intimacy.  

Our sample was a convenience sample. Although it included a broad range of 

women, many (73%) were students, most (87%) had no children, few (12%) were 

married and all spoke German. Generalizability to older and higher-fertility populations, 

especially from settings that are not western, educated, industrialised, rich and 
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democratic (Henrich et al., 2010) may thus be limited. Although we assume universal 

hormonal changes drive our effects, hormonal levels might differ substantially for 

women who do not cycle regularly, for instance because they have recently been 

pregnant or breastfeeding, or because they have worse nutritional status. 

Lastly, although we conducted a large number of robustness checks, we fell short of 

doing a full multiverse analysis or specification curve in which all possible ways to 

analyse the data are reported (Simonsohn, Simmons, & Nelson, 2015; Steegen, 

Tuerlinckx, Gelman, & Vanpaemel, 2016). We decided not do this, because we believe 

many of our data-analytic decisions are justified properly, and multiverse analyses are 

most useful if no procedure was preregistered. Hence, our goal here was rather to show 

the effect of various approaches on the associations, as a guide to interpreting previous 

work as well as ours. 

5.7 Suggestions for planning future and reading past cycle 

studies 

The two most interesting takeaways from our researcher degrees of freedom 

simulations (see 4.1.2) might be that a) optional stopping and outcome switching had 

worse impacts than random covariates or switching between narrow, broad, and 

continuous fertile window estimates, and that b) false positives were acceptably rare 

(less than 5% in most conditions) if one simply applies a significance threshold of .01. 

The latter result only holds if researchers behaved as simulated and really stopped at p 
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< .05 (Nelson, Simmons, & Simonsohn, 2016), but might provide a useful guide to 

reading the older, non-preregistered literature. 

Although it is difficult to compute an equivalent of Cohen’s d for multilevel models, 

our comparable effect size estimates ranged from 0.12 to 0.43. Some were hence only 

a quarter of the smallest effect size (0.4) considered in (Gangestad et al., 2016). Future 

research would improve their odds of detecting an effect by improving the reliability of 

outcomes, predictors, collecting data on more women, more days, or ideally by doing all 

of this together. Empirically, not a single effect reported here would have been detected 

if we had collected only the first diary day for each woman in a between-subject 

analysis. Neither would effects have been detected using only two days per woman in a 

high vs. low fertility repeated measures design, a common design of previous studies, 

even though we collected ten times as many women as the average previous study. 

Whether the fertility predictor was formed based on forward- or backward-counting, 

narrow, broad, or continuous fertile phases seemed to make less of a difference (Figure 

3), except that predictors using more data are preferable and that (pre-)menstruation 

should be adjusted for.  

To fully understand the accompanying cyclical changes going along with ovulation, 

researchers should collect data over many days per woman (Haselton & Gangestad, 

2006; Roney & Simmons, 2013). We have released our survey software and study code 

to make it easier to conduct online diary studies like this one (Arslan & Tata, 2016). 

Although online diary studies using counting methods will probably always be most 

cost-efficient, hormonal assays, especially repeated ones (Jones, Hahn, Fisher, Wang, 



  Ovulatory changes in sexuality 
 

 63 

Kandrik, Han, Lee, et al., 2017; Roney & Simmons, 2013), are needed as converging 

evidence and to directly test hormonal mediators. They can compensate smaller 

affordable sample sizes through the greater validity of their predictors. Potentially the 

two designs can be fruitfully merged (Roney & Simmons, 2013), so that patchy 

hormonal assays are used to impute more valid predictors in a larger diary dataset.  

Our study was preregistered. We consider this a good way in which researchers can 

protect themselves from unintentionally generating false positives through selection and 

publication bias. To combat publication bias even more effectively researchers might 

also try the Registered Report format (Nosek & Lakens, 2014) that is offered by an 

increasing number of journals. However, preregistration requires that the analysis 

procedure and ideally the data collection and cleaning procedure are set before data 

collection. Standard operating procedures are one way to simplify this process and to 

make it easier for researchers to sufficiently specify their plans, especially in areas in 

which they have not worked before. We have released our study materials, our data 

cleaning code and our code for computing menstrual onsets as potential groundwork for 

a standard operating procedure. We welcome improvements to this procedure that can 

be publicly shared. We also call for further work to improve inferences of conception 

probability, tailored to individual cycle lengths, regularities, and potential demographic 

factors. Although hormonal and sonographic measures of ovulation and fertility will 

retain their superiority, the use of day counting methods is justified by a much larger 

amount of data that can be and have already been collected efficiently (e.g. in the 

numerous cycle tracking apps). 
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Although we fail to conceive any reasonable non-hormonal or non-causal alternative 

explanations for the changes we observe mid-cycle, these inferences could be 

strengthened through a true randomised control group. We suggest that future 

hormonal contraceptive RCTs collect diary data across several full cycles in both 

experimental groups. By doing so we would be able to assess differences caused by 

contraceptive pills across the whole cycle, not just in e.g. the luteal phase (Zethraeus et 

al., 2016), and we would have sufficiently reliable within-subject data to examine 

heterogeneity in the response to contraceptive pills. Future studies should also attempt 

to better test whether awareness of being in the fertile window drives any effects. 

5.8 Conclusions 
In a high-powered, within-subject diary study, we were able to replicate main effects 

of ovulatory increases in self-perceived desirability, as well as extra-pair and in-pair 

sexual desire and behaviour. We failed to replicate reported ovulatory increases in 

partner mate retention behaviour and clothing style, and found only ambiguous support 

for increases in sexual behaviour. In contrast to previous reports, we found no evidence 

that sexual desire shifted more strongly among women who deemed their partner less 

sexually attractive. Previous studies had inadequate power, sometimes used suboptimal 

between-subject designs, and none were preregistered. Hence, several previous 

reports of ovulatory shifts and moderators thereof may have been false positives. We do 

not rule out changes along other dimensions or moderators that we and others have not 

tested, but large, well-designed, preregistered studies will be necessary to show these 

credibly. Alternatively, our data are consistent with the theory that ovulatory increases 
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reflect generalized changes in sexual motivation, serving the adaptive function to avoid 

costs associated with sex when it will not lead to conception (Roney & Simmons, 2013). 

Further work should directly test competing theories against each other. 
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