
	

Deckblatt der Dissertation

Vorderseite

Multi-Layered Policy Generation and

Management in Clouds

Dissertation
zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

"Doctor rerum naturalium"
der Georg-August-Universität Göttingen

im Promotionsprogramm PCS
der Georg-August University School of Science (GAUSS)

vorgelegt von
Faraz Fatemi Moghaddam

aus Tehran

Göttingen, 2017

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
II	

Georg August University, Göttingen,
Institute of Computer Science
Goldschmidtstrasse 7,
37077 Götingen,
Germany.

Tel: +49 (551) 39 – 172000
Fax: +49 (551) 39 – 14403
Email: office@informatik.uni-goettingen.de
Web: www.informatik.uni-goettingen.de

Comitte Members:
Prof. Dr, Ramin Yahyapour
Prof. Dr. Dieter Hogrefe

Faraz Fatemi Moghaddam
	
	

	 	

III	

Dedication

To my beloved wife, Dr. Pardis Najafi,
for her hidden strength, endless support and constant love…

To my sweet baby boy, Ryan

To my selfless mother, Fatima

 and to the soul and bright memory of my late father,

Dr. Enayat Fatemi Moghaddam

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
IV	

Acknowledgment.

I would like to thank my supervisor, Prof. Dr. Ramin Yahyapour, for the patient guidance,
encouragement and advice he has provided throughout my time as his student. I have been
extremely lucky to have a supervisor who cared so much about my work, and who responded
to my questions and queries so promptly

My sincere gratitude is reserved for Dr. Philipp Wieder for his invaluable insights and

suggestions during the project. I appreciated his guidance, support and willingness to take time
to discuss my research.

Very special thanks to GWDG and CleanSky EU Project for giving me the opportunity to

carry out my doctoral research and for their financial support.

I would also like to take this opportunity to thank Prof. Dr. Dieter Hogrefe and Ms.

Martina Brücher for their very helpful supports and suggestions.

Special thanks got to: Prof. Dr. Jens Grabowski, Prof. Dr. Xiaoming Fu, Prof. Dr.

Delphine Reinhardt, Prof. Dr. Carsten Damm, Prof. Dr. Bernd Stock, Dr. David Koll, Dr. Sven
Bingert, Dr. Song Yang, Dr. Oliver Wannenwetsch, Dr. Vanessa End, Fei Zhang, Alessio
Silvestro, Dr. Sachin Sharma, Dr. Fabian Schneider, Nitinder Mohan, Amir Reza Fazely, Dr.
Edwin Yaqub, and Hossein Salahi.

This research has been supported by CleanSky ITN Project (Grant No. 607584) funded by the
Marie-Curie-Actions within the 7th Framework Program of the European Union (EU FP7).

Faraz Fatemi Moghaddam
	
	

	 	

V	

Abstract

The long awaited Cloud computing concept is a reality now due to the transformation

of computer generations. However, security challenges are most important obstacles for the

advancement of this emerging technology. A well-established policy framework is defined in

this thesis to generate security policies which are compliant to requirements and capabilities.

Moreover, a federated policy management schema is introduced based on the policy definition

framework and multi-level policy application to create and manage virtual clusters with

identical or common security levels. The proposed model consists in the design of a well-

established ontology according to security mechanisms, a procedure which classifies nodes

with common policies into virtual clusters, a policy engine to enhance the process of mapping

requests to specific node as well as associated cluster and matchmaker engine to eliminate

inessential mapping processes. The suggested model has been evaluated according to

performance and security parameters to prove the efficiency and reliability of this multi-layered

engine in cloud computing environments during policy definition, application and mapping

procedures.

Keywords: Cloud Computing; Security; Security Management; Policy Management;

Access Control; Policy Mapping; Privacy; Ontology.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
VI	

Table of Contents

 Dedication III
 Acknowledgement IV
 Abstract V
 Contents VI
 List of Figure X
 List of Tables XII
 List of Algorithms XIII
 Acronyms XIV
 About the Author

XVI

1. INTRODUCTION 1
1.1. INTRODUCTION 1
1.2. RESEARCH QUESTIONS 2
1.3. RESEARCH AIM 4
1.4. OBJECTIVES AND CHALLENGES 4
1.5. CONCLUSION 5

2. MOTIVATION AND RELATED WORKS 6
2.1. SECURITY IN CLOUDS 6
2.2. POLICY MANAGEMENT IN CLOUDS 7
2.3. POLICY-BASED IDENTITY MANAGEMENT 10
2.4. POLICY-BASED DATA PROTECTION AND RE-ENCRYPTION 12
2.5. POLICY-BASED USER REVOCATION 14
2.6. USE-CASE 15
2.7. SUMMARY 16

3. CLOUD SECURITY ONTOLOGY 17
3.1. INTRODUCTION 17
3.2. RELATED WORKS 17
3.3. CLOUD SECURITY ONTOLOGY 19
3.4. SECURITY LEVEL CLARIFICATION 24
3.5. EVALUATION AND CASE STUDIES 29
3.5.1. CASE STUDY 1. (STANDARD RING ESTABLISHMENT) 30
3.5.2. CASE STUDY 2. (PE DEDICATED RING ESTABLISHMENT) 31

Faraz Fatemi Moghaddam
	
	

	 	

VII	

3.5.3. CASE STUDY 3 (DEDICATED RING ESTABLISHMENT WITH RING ANALYSIS
ROUNDS) 32
3.5.4. COMPARISON BETWEEN SIMILAR MODELS AND ONTOLOGIES 33
3.6. CONCLUSION 33

4. MULTI-LAYERED POLICY APPLICATION 34
4.1. INTRODUCTION 34
4.2. RELATED WORKS 35
4.3. MULTI-LAYERED POLICY GENERATION 37
4.3.1. POLICY FOUNDATION (MULTI-LEVEL ONTOLOGY) 37
4.3.2. POLICY STRUCTURE 39
4.4. POLICY APPLICATION 43
4.5. POLICY MAPPING 47
4.6. EVALUATION AND DISCUSSION 49
4.6.1. PERFORMANCE ANALYSIS 49
4.6.2. SECURITY ANALYSIS 52
4.6.3. COMPETITIVE ANALYSIS 53
4.7. CONCLUSION 53

5. POLICY-BASED IDENTITY MANAGEMENT 55
5.1. INTRODUCTION 55
5.2. RELATED WORKS 56
5.3. PROBLEM DESCRIPTION 59
5.4. PROPOSED MODEL 60
5.4.1. POLICY ENGINE 61
5.4.2. POLICY DATABASE 63
5.4.3. POLICY CHECK POINT 64
5.4.4. POLICY MATCH GATE 65
5.4.5. MATCH GATE TASK MANAGEMENT 67
5.5. DISCUSSION 69
5.5.1. CASE STUDY 1 69
5.5.2. CASE STUDY 2 71
5.5.3. CASE STUDY 3 72
5.5.4. SECURITY ANALYSIS 72
5.5.5. COMPETITIVE ANALYSIS 73
5.6. CONCLUSION 74

6. POLICY-BASED RE-ENCRYPTION SCHEMA 75
6.1. INTRODUCTION 75

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
VIII	

6.2. RELATED WORKS 75
6.3. PROPOSED MODEL 77
6.3.1. POLICY GENERATION COMPONENT (PGC) 77
6.3.2. POLICY DATABASE 80
6.3.3. POLICY CHECK POINT (PCP) 80
6.3.4. POLICY ENGINE 82
6.4. DISCUSSION 83
6.4.1. CASE STUDY 1 (PERFORMANCE OF POLICY CHECK POINT) 83
6.4.2. CASE STUDY 2 84
6.4.3. SECURITY ANALYSIS 86
6.4.4. COMPETITIVE ANALYSIS 86
6.5. CONCLUSION 87

7. POLICY-BASED USER REVOCATION SCHEMA 88
7.1. INTRODUCTION 88
7.2. RELATED WORKS 89
7.3. PROBLEM DESCRIPTION 89
7.4. POLICY-BASED USER REVOCATION MODEL 90
7.4.1. POLICY ENGINE 91
7.4.2. REVOCATION ENGINE 92
7.4.3. ACCESS ENGINE 93
7.4.4. CHECK POINT 94
7.5. EVALUATION 94
7.5.1. PERFORMANCE ANALYSIS 94
7.5.2. SECURITY ANALYSIS 95
7.5.3. COMPETITIVE ANALYSIS 96
7.6. CONCLUSION 97

8. CONCLUSION AND FUTURE WORKS 98
8.1. INTRODUCTION 98
8.2. OVERALL DISCUSSION 98
8.3. CONSTRAINTS 100
8.4. FUTURE PERSPECTIVE 100

9. BIBLIOGRAPHY 102

10. APPENDICES 111
10.1. LIST OF ASSOCIATED PUBLICATIONS 112
10.2. EXAMPLE OF GENERATED SECURITY LEVEL CERTIFICATE (SLC) 113

Faraz Fatemi Moghaddam
	
	

	 	

IX	

10.3. POLICY MANAGEMENT SYSTEM 115
10.4. PERFORMANCE EVALUATION OF PRIORITY-BASED POLICY
APPLICATION SYSTEM 118
10.5. POLICY MATRIX SUPER CLASS 119
10.6. SYNTACTIC AND SEMANTIC ANALYSIS OF POLICY MATRIX OBJECT 120
10.7. POLICY-BASED ACCESS CONTROL FRAMEWORK (PAF) 122
	

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
X	

List of Figures

 Chapter 1
1.1 Main Challenges in Cloud Computing Environments 2
1.2 Multi-Level Policy Management in Clouds 3
1.3 The Necessity of Policy Management in Clouds 3

 Chapter 3
3.1 General Architecture of CSON 18
3.2 CS Rooted Tree Super Class Architecture   19
3.3 Cloud Security Distributary Set: High Level Class 21
3.4 Standard & Dedicated Rings associated with Policy Engine 24
3.5 Proposed Policy Management Engine Framework 24
3.6 Performance of RAE on Dedicated Ring Establishment 28
3.7 Match Results between Requirements, Value of Security Purposes

and Algorithms Offered
30

3.8 Performance of RAE in the Ring Analysis Rounds 31
3.8A Analysis Round Required for the Ring Establishment Confirmation

from RAE
31

3.8B Conflicts Found in Each Round of the Ring Analysis Process 31

 Chapter 4
4.1 Multi-Level Ontology: Top Level Class 37
4.2 Protocol Super Class 38
4.3 Multi-Layered Policy Structure 40
4.4 Process of Policy Layering   42
4.5 Multi-Level Clustering based on Security Capabilities 43
4.6 Performance Analysis of Multi-Layered Policy Management Model

with Multi-Level of Scheduling
49

 Chapter 5
5.1 Architecture of Policy-Based Identity Management 59
5.2 Policy-Based Identity Management Ontology: Multi Level Class 60
5.3 Match Gate Task Management Schema 67
5.4 Respond Time for Proposed Identity Management Model 68
5.4A Respond Time By Increasing Number of VMs 68
5.4B Respond Time By Increasing Number of Users 68
5.4C Respond Time By Simultaneous Increase in both Numbers of

Virtual Servers and Cloud Users
68

5.5 Effects of Different Workload on the Performance of Match Gate
Task Management

69

5.6 Performance Analysis of Match Gate 70

 Chapter 6
6.1 Policy-Based Re-Encryption Schema (POBRES) 75

Faraz Fatemi Moghaddam
	
	

	 	

XI	

6.2 POBRES Ontology: High Level Class  76
6.3 Performance of Policy Check Point by Increasing Number of

Policies in Policy Database
82

6.3A Total Process Time in PCP for Each Capability by Increasing
Number of Policies in Policy Database

82

6.3B Total Process Time in PCP by Increasing Number of Policies in
Policy Database

82

6.3C Classification of Re-Encryption Requests According to Capability
Type of Defined Policies

82

6.4 Performance of Policy Engine in Different Workloads by Increasing
Number of Re-Encryption Tasks

83

 Chapter 7
7.1 Overview of Policy-Based Revocation Model 89
7.2 Performance and Scalability Analysis of Policy-Based Revocation

Model by Processing Time
93

7.2A Increase the Number of Revoked Users 93
7.2B Increase the Number of Associated Nodes 93
7.2C Increase Both Users and Associated Nodes 93

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
XII	

List of Tables

 Chapter 3
3.1 Standard Security Levels offered by a Cloud Provider in Case Study 29
3.2 Comparison between CSON and other Policy Management Models 32

 Chapter 4
4.1 The Notations of Proposed Model 39
4.2 Security Analysis of Multi-Layered Policy Generation 50
4.3 Security Analysis of Policy Management 51
4.4 Competitive Analysis of Proposed Model 52

 Chapter 5
5.1 The Notations of Proposed Model 58
5.2 Defined Authentication and Access Protocols in SLCs 68
5.3 Security Analysis of Proposed Model 71
5.4 Competitive Analysis of Proposed Model 72

 Chapter 6
6.1 The Notations of Proposed Model 78
6.2 Security Analysis of Proposed Model 83
6.3 Competitive Analysis of Proposed Model 84

 Chapter 7
7.1 The Notations of Proposed Model 88
7.2 Security Analysis of Proposed Model 93
7.3 Competitive Analysis of Proposed Model 94

Faraz Fatemi Moghaddam
	
	

	 	

XIII	

List of Algorithms

 Chapter 3
3.1 Selection of Standard Rings 25
3.2 Determining Values of Purpose Indexes 26

 Chapter 4
4.1 Layering Policy Application Requests 41
4.2 Cloud Nodes Classification Phase 44
4.3 Policy Mapping Process in Selected Cloud Node 46

 Chapter 5
5.1 Access Task Management 66

 Chapter 6
6.1 Re-Encryption Task Management 80

 Chapter 7
7.1 User Revocation Process 90

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
XIV	

Acronyms

ABGS Attribute-Based Group Signature

ABS Attribute-Based Signature

CAP Cloud Access Policy

CC Cloud Customer

CP Cloud Provider

CSDS Cloud Security Distributary Set

CSON Cloud Security Ontology

CSRT Cloud Security Rooted Tree

CU Cloud User

EAP Extensible Authentication Protocol

ECC Elliptic Curve Cryptosystem

FSP Federated Security Policies

HABE Hierarchical Attribute-Based Encryption

KP-ABE Key Policy Attribute-Based Encryption

LaaS Law-as-a-Service

MLO Multi-Level Ontology

OWL Web Ontology Language

PANA Protocol for Carrying Authentication for Network Access

PD Policy Database

PE Policy Engine

PEaaS Policy Engine-as-a-Service

PLC Policy Layer Constructor

QoS Quality of Service

RAE Ring Analysis Engine

Faraz Fatemi Moghaddam
	
	

	 	

XV	

SLA Service Level Agreement

SLC Security Level Certificate

SSO Single Sign-On

TAP Temporary Access Policy

UAP User Access Policy

VC Virtual Cluster

VM Virtual Machine

W3C World Wide Web Consortium

WS-Policy Web Service Policy Framework

XACML Extensible Access Control Markup Language

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
XVI	

About the Author

Faraz Fatemi Moghaddam is working as a
scientist at Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen (GWDG),
Georg- August-Universität, and also research
fellow in EU FP7 CleanSky ITN Project. He was
graduated in 2009 from Azad University of
Tehran with a diploma in Software Engineering
and also post graduated in 2013 from

Staffordshire University.

His research interest lies in the areas of security and privacy challenges in
cloud-based environments. He has also worked in NeroCloud research
group and HAWK university of applied science as a researcher and
lecturer and published several papers regarding to security issues in
clouds. At GWDG, he currently holds ESR researcher position of
CleanSky project. More details about his experiences and publications can
be found at: https://www.linkedin.com/in/farazfatemimoghaddam/.

Faraz Fatemi Moghaddam
	
	

	 	

1	

Chapter 1

1. INTRODUCTION

1.1. Introduction
Cloud Computing is an emerging open standard model, which can enable ubiquitous

computing built around core concepts such as virtualization, processing power, distribution and
elastic scaling to provide a shared pool of configurable computing resources [1]. The most
often claimed advantages of cloud include offering on-demand IT resources, improved
availability, dynamic resource provisioning and cost reduction. Whilst at first glance the value
proposition of cloud-based services to carry out deployment and managing large scale data
services is strong [2], there are many challenges that need to be overcome to make clouds an
ideal platform for scalable analytics [3].

In fact, there are critical obstacles such as security and confidentiality, availability,
transfer bottlenecks, performance unpredictability, reputation fate sharing and quick scaling
[4] for the advancement of cloud computing as a widely accepted technology (Fig 1.1).

One of the most challenging issues in virtualized data centers is to provide appropriate
levels of security and protection for resources according to the sensitivity and requirements of
cloud customers [5][6][7]. Indeed, each individual customer needs to be granted reliable
security level(s) based on defined details of Service Level Agreement (SLA).

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
2	

Fig. 1.1. Main Challenges in Cloud Computing Environments

By an efficient and reliable policy management model, the protection of virtualized nodes

is ensured as well as decrease of processing time for manipulating sensitive and also non-
sensitive nodes. These policies need to follow a structural framework in all levels of definition,
generation, application and management.

Typically, cloud providers confront two main challenges in policy-based multi-level
models: The separation of services from high-level security constrains about the access and
usage of resources, and the scalability of policy management and policy mapping processes
according to the isolation and availability concepts in clouds-based environments [8]. The
latter, which is the focus of this work, refers to the capability that is provided in cloud-based
data centers to provision security policies for each virtualized node according to the
requirements of customers and to classify these nodes based on defined policies where the
scalability of this policy-based framework is ensured in all levels.

1.2. Research Questions
To have a better understating about the objectives of a policy-based cloud computing

three main entities are defined:

§ Cloud Provider (CP): A service provider that offers cloud-based resources and services.
§ Cloud Customer (CC): An organization or a company that uses cloud services for

employments or subscribers (e.g. universities, hospitals, etc.).
§ Cloud User (CU): Defined end-users (i.e. subscribers) that use cloud-based services offered

by Cloud Customer according to the internal contracts.

Faraz Fatemi Moghaddam
	
	

	 	

3	

Fig. 1.2a Fig. 1.2.b

Fig. 1.2. Multi-Level Policy Management in Clouds

Each CC needs several security levels based on sensitivity of resources and specific

requirements to distribute the resources to CUs. The security levels are defined according to
security capabilities of CP (Fig 1.2a). In fact, CPs provide security resources as on-demand
services to be applied to data stored in cloud storages (i.e. Security-as-a-Service). With
increasing the number of these specific security levels by different cloud customers (Fig 1.2b),
a challenging issue is risen. How to manage access requests by CUs according to defined
policies by CCs? Accordingly, there main challenges should be considered (Fig 1.3):
▪ How to create different security rings (i.e. levels) for CCs (e.g. University) based on the

requirements, sensitivity of data and the capabilities of CPs?
▪ How to manage data and resources to apply policies according to defined security rings?
▪ How to manage user access requests based on defined policies by CCs?

Fig. 1.3. The Necessity of Policy Management in Clouds

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
4	

1.3. Research Aim
The main aim of this thesis is to introduce an object-oriented standard to create and

manage multiple security levels based on the capabilities of the service provider and
requirements of cloud customers. In fact, each individual customer is granted the appropriate
security level based on the declared requirements in order to enhance reliability in cloud
computing environments.

The approach we propose is based on semantic policy clustering to classify nodes with
same or common security policies in an aggregate virtualized cluster for federating defined
policies according to their characteristics. By this federation, the processing time for each
policy mapping is reduced due to the elimination of gratuitous and avoidable matching jobs.
We define a well-established policy framework to define security policies which are compliant
to requirements and capabilities. Moreover, a federated policy management schema is
introduced based on the policy definition framework and policy clustering to create and manage
virtual clusters with identical or common security levels. The proposed model consists in the
design of a well-established ontology according to security mechanisms, a procedure which
classifies nodes with common policies into virtual clusters, a policy engine to enhance the
process of mapping requests to specific node as well as associated cluster and matchmaker
engine to eliminate inessential mapping processes.

1.4. Objectives and Challenges
The main concerns regarding the described models are the discovery, interoperability,

and compatibility of security requirements based on the characteristics of current distributed
networks and cloud-based environments [9]. Furthermore, the scalability and flexibility of
mapping and the semantic analysis of policies regarding different capabilities of service
providers and requirements of customers are the other challenging issues in the process of
policy generation, application and management [10]. These challenges are classified in policy
definition, policy application and policy mapping processes as follows:

- The process of offering security capabilities of CPs to CCs as on-demand services. Also,
the offers need to be updated based on added or revoked capabilities of CPs.

- The process of policy definition and generation based on efficient mapping between
requirements and capabilities.

- The simultaneous syntactic and semantic analysis of security level.
- The process of security ring (level) establishment according to requirements of customers.
- The process of applying security policies to resources based on capabilities.
- The scalability and flexibility of security levels by different CCs.
- The process of managing access requests by CUs according to defined policies.

The research was done in three phases to provide an efficient and reliable policy
generation and management schema for Multi Security Level Cloud Computing (MSLCC).
The aim of each phase is to define, apply and map policies based on the requirements of cloud
customer and sensitivity of data.
- Phase 1 (Policy Generation): Providing a structural multi-level ontology to define and

manage security levels according to the capabilities of service provider, constraints and
requirements of cloud customers.

Faraz Fatemi Moghaddam
	
	

	 	

5	

- Phase 2 (Policy Application): Introducing a reliable resource management and scheduling
algorithm to apply defined policies to data based on established security level in the first
phase.

- Phase 3 (Policy Mapping): Designing an efficient access management schema to map
access request of cloud users according to defined policies by cloud customers in associated
security ring.

1.5. Conclusion
To enhance the quality on managing security policies in cloud-based environments and

to provide efficient, secure and reliable matching between security requirements of customers
and capabilities of service providers, a multi-layered policy engine is introduced in this thesis.
A well-established policy framework has been defined to generate security policies which are
compliant to requirements and capabilities. Moreover, a federated policy management schema
has been introduced based on the policy definition framework and multi-level policy
application to create and manage virtual clusters with identical or common security levels. The
model has been evaluated according to performance and security parameters and proved that
this multi-layered policy engine enhances the reliability and efficiency of managing security
polices in cloud computing environments during policy definition, policy application and
policy mapping procedures.

The remaining parts of this paper are organized as follows: a tutorial of policy-based
cloud computing is presented in Section 2 as well as multi-layered policy in chapter 3. Chapter
4 introduces a structural resource management and scheduling algorithm to apply multi-layered
security policies based on the defined ontology. Chapter 5-7 set out three different scenarios
for multi-level policy engine in authentication, access control and re-encryption protocols. The
comprehensive performance and security analysis of policy-based model in different scenarios
are presented in each chapters and this is followed by the conclusion in Chapter 8.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
6	

Chapter 2

2. MOTIVATION AND RELATED WORKS

2.1. Security in Clouds
Cloud computing is an emerging technology which is known to be the advanced

generation of on-demand IT services over broad networks. This unprecedented evolution
utilizes the concepts of virtualization, processing power, isolation, connectivity and
distribution [10] to store and share computer resources via Internet. Despite the considerable
advantages of cloud-based services such as elasticity, resource pooling, layer-based
responsibilities and lower service delivery, maintenance and upgrade costs [11], there are some
remarkable security and privacy concerns that have affected the reliability of cloud computing
environments [12]. These issues led to the appearance of several researches and solutions and
have become the leading cause of impeding the development of cloud-based services in
industries with sensitive data.

Typically, security and privacy issues in clouds have been classified to three main parts:
Identity management and authentication procedures, data protection in cloud-based data
centers, and managing accesses according to defined policies [13]. The latter, which is the
focus of this work, refers to the capabilities of service provider to protect resources in data
centers according to sensitivity of data and requirements of cloud customers. In fact, an
efficient using of security mechanisms according to the capabilities of service provider and

Faraz Fatemi Moghaddam
	
	

	 	

7	

requirements of cloud customers for a secure and reliable data protection and access control in
cloud environments is normally expressed by defined data policies [14].

Accordingly, a tutorial of policy-based cloud computing is presented is this chapter by
issues and key challenges that should be addressed using existing technologies and innovative
mechanisms such as policy management engine that provides different levels of security in
cloud data centers based on capabilities, requirements and constraints which are also included
various security protocols, mechanisms and algorithms in clouds.

2.2. Policy Management in Clouds
The rapid growth of using cloud-based services in various industries is impossible to

deny, as it has enhanced the reliability and efficiency for accessing shared pools of configurable
computing resources. This growth is the result of providing the considerable advantages of
storing and maintaining computing resources in unlimited storages with the most cost efficient
method, business continuity and scalability [4]. Despite these substantial benefits, there are
some remarkable information policy concerns such as security, privacy and access
management that have affected the reliability of cloud computing environment. Applying an
appropriate level(s) of security to data stored in cloud-based storages is one of the most
challenging issues in this area, based on the details defined in SLA [15][16] and sensitivity of
data [17].

The establishment of a multi-level security architecture based on the data sensitivity and
requirements of cloud customers is the most appropriate solution to avoid considerable and
unnecessary processing power consumption for manipulating both sensitive and non-sensitive
data in the same level of security [9]. On the other hand, managing multiple security levels
based on the capabilities of the cloud provider and the requirements of cloud customers is a
potential issue due to the elasticity, isolation and scalability concepts in cloud-based
environments.

The most common approach to express high-level security constraints is based on the the
usage of languages and metadata for the specification of security policies [14]. By these
language-based approaches, cloud providers are able to announce and provide security
capabilities as well as matching these capabilities to customers’ requirements [18]. In fact,
policies are defined according to syntactic and also semantic matchmaking of requirements and
capabilities to ensure the security of nodes and to map access requests to defined policies
efficiently. The challenging issue in this case is to manage applied policies in different
virtualized nodes considering scalability, isolation and elasticity concepts in cloud computing
environments.

The adoption of policy-based multi-level security management in clouds needs an
appropriate and structural ontology to represent, generate, apply and manage policies according
to core concepts of virtualized data centers [19]. Several policy management engines and
frameworks have been proposed following different approaches in various application
domains. These models have typically focused only in access policies [20] include privacy and
user-based concepts or Federated Security Policies (FSP) contain multiple security concepts
such as encryption, access control, authentication and transport.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
8	

One of the most popular web-based semantic languages has been used in several policy-
based schemas is Web Ontology Language (OWL) [21]. A complex knowledge and relations
between requirements, capabilities and constraints were represented in OWL [22] with an
efficient reasoning support, sufficient expressive power and convenience of expression [23].
Also, several OWL-Based subsidiaries were presented to improve the restricted expressivity of
OWL. OWL-L [24], OWL-S [25] and F-OWL [26] are some of OWL-based models there have
been introduced to provide an independent domain policy specifications based on deontic
constructs and to allow several types of policies such as right, prohibition, dispensations and
obligations. Furthermore, to improve the problem of allowing customers of classic multi-agents
and distributed networks to define different security policies as well as predictability and
controllability assurance of each components, KAoS [27] was proposed as an OWL-based
policy language model. In KAoS, policies are classified to four main categories: Positive-
Authorization, Negative-Authorization, Positive-Obligation and Negative-Obligation that are
associated with service properties (i.e. policy services such as policy enforcement and domain
services such as hierarchical grouping of users) [28]. However, the main issue of OWL and its
subsidiaries is the compatibility of these models to modern distributed networks specially in
elasticity and isolation concepts.

Ponder [29] is another policy management framework based on object oriented concepts
that was developed by imperial college. This framework includes general architecture and
policy deployment model associated with several extensions for both access control and
protection managements. It also allows customers to generate events, constraints, constants and
other reusable elements as associated parts of security policies as well as allowing instantiation
of typed policy specification for parameterization support of policies. The most important
disadvantages of Ponder is the lack of generality by using several basic policy types and
compositing each of them with different syntax. Accordingly, several Ponder-based
deployment models were introduced [21,22] to address the instantiation, distribution and
enabling of policies and also disabling, unloading and deletion of policies.

Web Service Policy Framework (WS-Policy) [32] is an extendable general purpose
framework that has been recommended by World Wide Web Consortium (W3C). An
associated syntax was defined in this framework to describe the policies of entities with a broad
range of service capabilities and requirements in web-based models. WS-Policy involves
several subsets according to the different structures of service domains. For instance, WS-Trust
[33] was defined to change security tokens into different formats by an interoperable manner
in order to establish and assess the presence of participants in secure message exchange. Also,
WS-SecurityPolicy [34] and WS-SecureConversation [35] were defined to describe the
security specifications of WS-Trust by improving the performance of frequent communications
and using a shared symmetric and a pair of asymmetric keys from the security context
respectively. The other popular WS and XML-based schema to describe the policy, request the
authorization decision and respond with the authorization decision is XACML (Extensible
Access Control Markup Language) [36]. This standard defines a policy enforcement point for
interacting with a policy decision point. The comparison between WS-based and XACML
standards have been extended in [17].

WS-Policy and associated subsets have been extended by several researchers to be used
in policy engines of multi-domain services. In overall, WS standards have been used in policy
engines to provide QoS assertion models which are generic, domain-independent and

Faraz Fatemi Moghaddam
	
	

	 	

9	

expressible across different layers and service roles [37]. One of the WS-based semantic
models was proposed in [38] for generating security policies specifically for cloud computing
environments to a enable a flexible and powerful matchmaking process between customers and
providers security requirements. This model uses several terms and concepts to model security
features within a policy as well as providing compatibility of semantic framework with
syntactic polices. Furthermore, using an automated negotiation framework [39] based on WS-
Policy is another solution to support participant security policies for communication,
negotiation and SLA creation.

To enable more satisfactory discovery results that better fit the requirements of cloud
customers, WS-Policy was extended through an efficient ontology and rule reasoning [40].
Hence, a set of rules was defined security policies associated a developed rule-based engine
improve policy evaluation and policy mapping. The drawback of this rule-based policy
management was the considerable processing time for taking the overheads of policy
representation with an ontology language and for transferring them to a rule-based structure.

According to the most prominent characteristic of cloud-based models for providing on-
demand services, semantic rules have been used during the establishment of policy framework
for an efficient and reliable policy generation and mapping [41]. Several works such as LaaS
(Law-as-a-Service) [42] were proposed for cloud service providers on law-aware semantic
cloud policy infrastructure to deploy their cloud resources and services based on OWL
ontologies and stratified Datalog rules with negation for policy exceptions. Also, PEaaS (Policy
Engine-as-a-Service) [43] was suggested based on WS-Policy to provide multi-level policies
in clouds according to Protection ontology. These policies create create standard or dedicated
security rings (i.e. levels) regarding to the capabilities of service providers, constraints and
requirements of cloud customers. However, the heterogeneous characteristics of these services
together with the dynamicity inherent in clouds, hinders the formulation of an effective and
interoperable set of policies that is adoptable for the underlying domain of applications [44].

 Hence, establishment of ontological templates for the semantic representation of security
policies is needed to facilitate the definition of appropriate security policies using a generic and
extensible RDF [45]. Therefore, policies should analyzed syntactically and also semantically
in different service layers and service roles to express capabilities and requirements based on
SLA and to complement the existing service selection and negotiation framework [37]. The
most challenging concern in simultaneous syntactic and semantic mapping is the flexibility of
the generated policies according to the predictable and un-predictable variations of capabilities,
constraints and requirements [46].

The other challenging issue in configuration of security policies is the possibility of
confliction in the course of unexpected occurs for policy management and enforcement.
Indeed, the structure of policy generation framework needs to be reliable and efficient enough
to provide accurate detection of conflict between policies and the security of cloud digestion
[47]. This concept has been more extended in federated cloud networks to rely on a service
manifest that specifies global polices [48]. These extended frameworks enable automated
deployment and configuration of network security functions across different clouds. However,
the complexity of these federated frameworks is still challenging according to multi-structure
policies in virtualized data centers [41,42].

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
10	

Overall, the main concerns regarding to semantic policy-based security management
models are: (1) to provide efficient, secure and reliable matching between security
requirements of customers and capabilities of service providers according to interoperability
and isolation concepts in cloud-based environments [51], and (2) to ensure the scalability and
flexibility of mapping due to the large number of defined polices and access requests [52].
These two concerns reduce the reliability of using cloud services according to different policy-
based aspects such as identity management, data protection and user revocation.

2.3. Policy-Based Identity Management
The fundamental goal of any identity management model is to ensure a reliable

authentication of subscribed users according to the defined policies of different cloud servers
and to protect information from un-authorized accesses. There is a wide variety of methods,
techniques, models, and administrative capabilities used to propose and design identity
management models [53] and each system has its own attributes, methods, and functions. The
importance of these identity management models is more evident for cloud providers and
customers according to the characteristics of cloud-based services that work with shared open
environments. Therefore, several studies and researches were performed to improve the
reliability and efficiency of managing identities in clouds.

In recent years most of Single Sign On (SSO)-enabled access management models are
based on web applications such as SAML [54] and OAuth [55] for allowing users and
application services access to web resources. OpenID [56] is one of the most popular relevant
federated authentication technologies that allows cloud users to use a single identity for
accessing various services from different cloud servers and for elimination of managing
different identities by cloud users. However, OpenID relies on an ID provider to generate a
unique identity for each user [57]. Therefore, the server has to connect to the ID provider on
the Internet during authentication of cloud users and it leads to a high level of time and
computation load [58].

Shibboleth [59] is another federated identity management model which is similar to
OpenID, for allowing users to authenticate to different services using just one piece of
information. Shibboleth is an open source implementation of federated identity based
management model where the identity providers provide information and the service providers
consume this information giving access to content or services [60]. However, the most
challenging concern of Shibboleth is to provide different levels of authentication based on the
sensitivity of data in various cloud servers. In fact, mapping between federated identity
information with different levels of security in cloud servers based on defined policies is still
the main issue in these types of federated identity management models [57][58].

The other solution was proposed as Kerberos [61] by using distribution of authentication
tickets to provide a generic access control protocol and reliable SSO. The most drawback of
Kerberos is the lack of privacy solutions in the model that was tried to solve as an extension in
several models such as KAMU [62] or PrivaKerb [46]. Kerberos-based models use an
operation mode (cross-realm) to be compatible for federated environments, Nevertheless, these
models consist a completely independent infrastructure aside those already established for the
access to web application services and the network access service [63]. Hence, Kerberos cross-
realm federations have not been widely deployed [64]. Using an interaction between Kerberos

Faraz Fatemi Moghaddam
	
	

	 	

11	

and Extensible Authentication Protocol (EAP) [65] protocols was the other solution the
enhance weaknesses of cross-realm federations. Using EAP-based pre-authentication
mechanism [63] and also using Protocol for Carrying Authentication for Network Access
(PANA) [66] to bootstrap dynamic Kerberos credentials on the service providers [67] are the
most popular efforts to enhance Kerberos cross-realm federations. However, the necessity for
deployment of Kerberos entity on every organization and providing SSO within each
organization’s boundaries are the most considerable inconvenient of proposed models.

To solve the problem of compatibility and deployment in Kerberos-based models,
Leandro et al. [68] uses a multi tenancy authorization system to deliver access control based
on concerns about the privacy of data. The proposed model was built around Shibboleth core
concepts with authorization and authentication mechanisms to emphasize on self-governing
and control of trusted third parties, according to the digital identity federation [69]. This method
was followed by [70] by adding stand-alone identity management features to the federated
model. However, it has been proven [71] that misuse of user identity information in self-
governed and stand alone identity federation could happen via SSO services in IDP and SP,
which could lead to identity theft (i.e. the main concern in federated identity management
systems). Thus, Bhargav-Spantzel et al. [72] recommended two mechanisms to protect the
misused of identity information: distributing user identity information amongst several self-
governed entities and using zero-knowledge proofs techniques to prevent identity theft within
an IDP or SP. Although, the recommended mechanisms reduced the chance of identity theft,
there are still serious concerns about the process mapping requests from revoked identities in
stand alone identity federations [73]

Kalra and Sood [74] proposed an Elliptic Curve Cryptosystem-based (ECC) algorithm to
provide a mutual authentication protocol for secure communication of embedded devices and
cloud servers in association with HTTP cookies. The evaluation of this model proved that it
was robust against multiple security attacks. However, managing ECC keys for different cloud
servers in this model takes considerable processing power for manipulating sensitive and non-
sensitive access policies in different cloud servers [75].

Apart from ECC, several cloud-based authentication models were designed with various
techniques such as Biometrics-Based Authentication [76], Certificate-less Anonymous
Authentication [74][75], User Behavior Analysis-based [77] and ID-Based identity
management [78] with the same issue that is the lack of congruency in different cloud servers
with distinguished access policies. Indeed, the necessity of a policy-based identity management
in different cloud servers with various security levels is undeniable according to rapid growth
of cloud providers.

Using policies to establish different security levels in traditional and also modern
distributed networks allows to manage the processing power for manipulating sensitive and
also non sensitive resources. Hence, several policy-based languages and models are suggested
to classify resources based on sensitivity. WS-Policy [32] is an extendable general purpose
framework associated with a defined syntax to describe the policies of entities and a broad
range of service requirements and capabilities in a web services-based system. This XML-
based framework has been extended by various researchers according to service requirements
such as security services. Di Modica and Tomarchio proposed a semantic secure policy
matching based on WS-Policy framework in [38] and [41] for service oriented and cloud-based

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
12	

architectures. In the cloud-based model, the capabilities of the cloud service provider and the
requirements of the cloud customer were defined within policies adopted to the WS-Policy
framework.

There are several security standards that are extended from WS-Policy architecture such
as “WS-Trust” [33] or “WS-PolicyAttachment” [79]. “WS-Trust” is an OASIS standard for
changing security tokens from one format to another in an interoperable manner in order to
establish and assess the presence of participants in a secure message exchange. Also, “WS-
PolicyAttachment” was expressed to define two mechanisms for associating policies with the
subjects they apply and to represent the way of attaching WS-Policy descriptions end points.
Furthermore “WS-SecurityPolicy” [34] and “WS-SecureConversation” [35] were extended
from WS-Policy architecture to describe the security specifications of WS-Trust and to
improve the performance of frequent communications by using a shared symmetric and pair of
asymmetric keys from the security context respectively. The comparison between WS-based
standards is available in [17].

The challenging issue in policy-based resource classification is to map access requests
from cloud users based on defined security policies of resources. In fact, a policy-based identity
management needs to analyze policies syntactically and also semantically and map access
requests based on the established security mechanisms of each node [12]. Hence, policy
management is one of the most challenging key points of identity management in multi-level
virtualized resources. On the other hand, the processes of scheduling, analyzing and mapping
access request tasks according to the policies need to be considered in policy-based identity
management. Providing a federated authentication schema for different cloud servers needs an
efficient authentication task manager to administrate access requests based on defined policies.
CSA is a multi-level adaptive authentication schema in clouds that was proposed [80] to dictate
the efforts of protocol participants by identifying a legitimate user’s requests and placing them
at the top of the authentication process queue. In fact, a multi-objective scheduling model for
authentication tasks was suggested to prevent DoS attacks in multi-level cloud servers.
Although, the process of authentication task management in CSA was based on risk
identification, not on defined policies in multi-level authentication.

According to the previous research results, a scalable policy-based identity management
is presented in this chapter to address two main problems: (1) Lack of coincidence in identity
management models based on defined policies and various security levels in different cloud
servers, (2) Lack of multi-objective authentication task management according to the defined
policies in multi-level authentication procedures.

2.4. Policy-Based Data Protection and Re-Encryption
Using cryptographic models are the most common solutions to ensure data and resource

protection in virtualized environments. To guarantee the reliability of these encryption models
and to make sure the data confidentiality and fine-grained access control in cloud computing
environments, stored data and resources needs to be re-encrypted periodically or based on
special mechanisms such as revoked user-based or manual re-encryption [81].

Managing the process of re-encryption is a challenging issue that involves many
limitations such as time management, resource confidentiality, and level of access. Therefore,

Faraz Fatemi Moghaddam
	
	

	 	

13	

an efficient re-encryption management may increase the reliability and the rate of security in
cloud computing environments.

The most popular re-encryption models are based on attributes for managing and
monitoring security of resources. These attributes are defined as properties of re-encryption
class to classify resources based on sensitivity and priority. Hierarchical Attribute-Based
Encryption (HABE) is one of the suggested models [82] that use data consistency and data
confidentially attributes for high performance and full delegation re-encryption process. The
main drawback of this model is the dependency of the HABE performance on reliability of
cloud infrastructure. This means, the correctness of the re-encryption process is completely
dependent on the rate of security in cloud infrastructure.

This problem was solved in R3 model by using a time-based re-encryption approach [83],
in this model the underlying cloud infrastructure was not necessarily reliable in order to ensure
correctness. Furthermore, the time difference between cloud server and data owner is an
important issue in time-based re-encryption models that was solved in R3 with appropriate
clock synchronization.

The performance of time-based re-encryption was improved by Liu et al. [83] to
determine a period of time according to defined parameters for re-encrypting stored data,
generating new key and automatic expiring of revoked user’s access. In this model, concepts
of attribute-based re-encryption and proxy re-encryption were combined with sets of time
attributes. Therefore, only users whose attributes satisfy the access structure and whose access
rights are effective in the access time can recover corresponding data.

One of the other attribute-based re-encryption models was Key Policy-Attribute Based
Encryption (KP-ABE) that was proposed by Park et al. (2006). In this approach, internal nodes
are threshold gates and leaf nodes are associated with attributes that are used to encrypt data.
This model was improved [85] by adding some techniques such as Typed-Based Proxy Re-
Encryption [86] and bilinear mapping for providing selectively delegate decryption right using
Typed-Based Proxy Re-Encryption. The main problem of this model was the dependency of
KP-ABE on specific attributes that decreased the compatibility of this model in virtualized
infrastructure and cloud-based environments. In fact, this model uses single level re-encryption
policies and this mechanism declined semantic mapping between policies and capabilities.

To solve the problem of single level policies for reliable re-encryption, several multi-
level policy management schemas were proposed. Di Modica and Tomarchio (2011) suggested
one of the first policy-based classification approach’s in clouds that leverages on the semantic
technology to enrich standardized security policies with an ad-hoc content and to enable
machine reasoning which is then used for both the discovery and the composition of security-
enabled services. In this model, requirements and capabilities for cloud customers and
providers are defined within policies which are adopted to policy intersection mechanism
provided by WS-Policy [32].

WS-Policy is a recommended framework from W3C for policy specification of Web
Services that includes policies that are defined as a collection of alternatives contain assertions
to specify well-established characteristics for using selection of various services (e.g.
requirements, capabilities or behaviors).

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
14	

Overall, the main concerns in current re-encryption models in clouds are dependency of
suggested models on specific attributes in property-based models that has been not adopted to
virtualized infrastructure and lack of scalability and flexibility in semantic mapping of policies
in policy-based re-encryption models.

2.5. Policy-Based User Revocation
The problem of managing user revocation requests in policy-based cloud computing is

the other focus of this work. In fact, each of revocation requests should be mapped to defined
policies of associated resources in the request for evaluation of the user revocation process and
updating defined security policies.

Most of current user revocation models is based on Attribute-Based Signature (ABS). In
fact, the most challenging issue in encryption-based user revocation models is to re-encrypt
data and manage associated keys after a user is revoked from cloud services [87]. One of these
revocable ABS models was proposed by Escala et al. [88] proved to be adaptive secure in the
standard model. This schema assigns a randomly selected identity to each user in addition to
the attributes associated with an external entity to keep a secret verification key and a list of
revoked user identities. Also, the verification key is used to trace a signature to the signer.
However, this model conflicts with the unlink-ability and anonymity properties of ABS
schemes.

Using an external party as a mediator to manage instantaneous user revocation [89] or
structural timestamps associated with the attribute private key [90] are two extra features that
was proposed for ABS-based user revocation models. The main drawback of these features is
the potential overhead and performance impact due to the lack of immediate user revocation
process.

To decrease these overheads, Attributed-Based Group Signature (ABGS) schemas are
proposed to provide anonymity for users in a group and generate a signature on behalf of the
group [91]. The validation process can only verify the correctness of the signature, and whether
it is produced by a valid user in the group. However, this scheme relies on the group manager
to link a signature to a signer before the signature is revoked.

Panda [92] is a public auditing mechanism for shared data that was proposed with an
efficient user revocation mechanism. The idea of proxy re-signatures was used in this model to
allow the cloud to resign blocks on behalf of existing users during user revocation, so that
existing users do not need to download and re-sign blocks by themselves. Also, Panda uses a
public verifier to audit the integrity of shared data without retrieving the entire data from the
cloud, even if the cloud re-signs a part of shared data. This main drawback of this model is the
considerable processing power for manipulating sensitive and also non-sensitive data after the
process of user revocation. In fact, the whole associated resources need to be updated to ensure
the security of cloud after a user is removed from accessing.

To decrease the processing power and provide an efficient user revocation model, each
revocation request needs to be processed according to the defined security policies. In fact,
security and privacy policies (i.e. encryption, signature, access control and authentication) for
each associated cloud node specifies whether the additional manipulations and processes are
needed or not [93].

Faraz Fatemi Moghaddam
	
	

	 	

15	

2.6. Use-Case
In this section a general use-case is described to express the research question more

significant. Assume that there is a Medical Center (e.g. MCenter) that aims to use cloud-based
services from a service provider (e.g. CloudX company) for the subscribers. Accordingly, the
main entities of contract are defined as follows:
- Cloud Provider: CloudX

- Cloud Customer: MCenter

- Cloud Users: Patients, Doctors, Nurses, Administration Staff, Financial Department Staff,
Management, Statistical Department Staff, IT Department Staff, Insurance Companies, etc.

According to the sensitivity of data, the customer needs three levels of security. The
security requirement list is provided from customer as follows:

Table 2.1. MCenter Security Requirements

 Level 1 Level 2 Level 3
Name Low Medium High
Encryption No Yes Yes (Strong)
Shared Yes Yes (Limited) No
Discretionary Access Yes Yes No
Authentication No Yes Yes (Double)
Integrity Yes Yes Yes
Digital Signature Yes Yes Yes
Geo-Control No Yes Yes
Content-Depend No No Yes
Context-Based Yes Yes Yes
Temporal Isolation No No Yes
View-Based No No Yes
Attributes No Yes Yes
Role-Based No Yes Yes

The main aim of a policy-management engine is to provide these security levels for

MCenter. In fact, the first question of this research is to map the requirements of cloud
customers to the capabilities of service provider efficiently according to the constraints and
current mechanisms.

Furthermore, imagine several cloud customers (e.g. companies, universities, medical
centers, etc.) with different requirements according to the sensitivity of data and resources. The
second aim of a policy management engine is to consider scalability and isolation concepts for
providing various dedicated security levels according to the different requirements of cloud
customers. In fact, the Policy Engine needs to create security level based on requirements and
capabilities, to manage these levels based on constraints, isolation and scalability concepts, and
to apply real time actions according to defined policies.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
16	

The most common approach to express high-level security constraints is based on the the
usage of languages and metadata for the specification of security policies [20]. By these
language-based approaches, cloud providers are able to announce and provide security
capabilities as well as matching these capabilities to customers’ requirements. In fact, policies
are defined according to syntactic and also semantic matchmaking of requirements and
capabilities to ensure the security of nodes and to map access requests to defined policies
efficiently. The challenging issue in this case is to manage applied policies in different
virtualized nodes considering scalability, isolation and elasticity concepts in cloud computing
environments.

The approach we propose is based on semantic policy clustering to classify nodes with
same or common security policies in an aggregate virtualized cluster for federating defined
policies according to their characteristics. By this federation, the processing time for each
policy mapping is reduced due to the elimination of gratuitous and avoidable matching jobs.
We define a well-established policy framework to define security policies which are compliant
to requirements and capabilities. Moreover, a federated policy management schema is
introduced based on the policy definition framework and policy clustering to create and manage
virtual clusters with identical or common security levels. The proposed model consists in the
design of a well-established ontology according to security mechanisms, a procedure which
classifies nodes with common policies into virtual clusters, a policy engine to enhance the
process of mapping requests to specific node as well as associated cluster and matchmaker
engine to eliminate inessential mapping processes.

2.7. Summary
A tutorial of policy-based cloud computing was presented is this chapter by issues and

key challenges that should be addressed using existing technologies and innovative
mechanisms such as policy management engine that provides different levels of security in
cloud data centers based on capabilities, requirements and constraints which are also included
various security protocols, mechanisms and algorithms in clouds.

Overall, the main concerns regarding to semantic policy-based security management
models is: (1) to provide efficient, secure and reliable matching between security requirements
of customers and capabilities of service providers according to interoperability and isolation
concepts in cloud-based environments [51], and (2) to ensure the scalability and flexibility of
mapping due to the large number of defined polices and access requests [52].

In next chapters, a well-established policy management framework has been defined to
generate security policies which are compliant to requirements and capabilities. Furthermore,
the effects of this policy-based framework in various scenarios such as identity management,
user revocation and data protection have been examined to enhance the reliability and
efficiency of cloud computing as an emerging technology.

Faraz Fatemi Moghaddam
	
	

	 	

17	

Chapter 3

3. CLOUD SECURITY ONTOLOGY

3.1. Introduction
In this chapter, a structural policy management engine is introduced to enhance the

reliability of managing different policies in clouds and to provide standard as well as dedicated
security levels (rings) based on the capabilities of the cloud provider and the requirements of
cloud customers. Cloud security ontology (CSON) is an object oriented framework defined to
manage and enable appropriate communication between the potential security terms of cloud
service providers. CSON uses two super classes to establish appropriate mapping between the
requirements of cloud customers and the capabilities of the service provider. It also provides
standard and dedicated security rings through simultaneous syntactic and semantic analysis. In
comparison with current models, the proposed ontology enhances reliability and efficiency in
order to establish appropriate and structural policy management in cloud computing
environments.

3.2. Related Works
Web Ontology Language (OWL) is one of the most popular semantic web languages that

was used in policy-based models to represent complex knowledge and relations between

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
18	

capabilities and requirements. OWL and its subsidiaries were used in several policy
frameworks regarding to the computational logic analysis features. HP labs proposed a policy
framework (Rei) [94] to provide an independent domain policy specification based on deontic
constructs and F-OWL reasoned [26] and to allow several specification policies (i.e. right,
prohibition, dispensations and obligations). Rei supports two main meta policies: Default Meta
Policy (to describe the default behaviour of the policy) and Meta-Meta Policy (to allow the
setting of precedencies based on default meta policies).

KAoS [27] was another OWL-based ontology language that was introduced to allow
customers of distributed and multi-agent systems to define arbitrary policies and to assure
predictability and controllability of each components [28]. These policies are divided into four
main categories: Positive-Authorization, Negative-Authorization, Positive-Obligation and
Negative-Obligation. Each of them is associated with service properties that are classified to
policy services (based on specification, conflict resolution, management and policy
enforcement) and domain services (enabling the hierarchical grouping of users and
computational entities to easier administrate policies) [28].

WS-Policy [79] is an extendable general purpose framework associated with a defined
syntax to describe the policies of entities and a broad range of service requirements and
capabilities in a web services-based system. This XML-based framework has been extended
by various researchers according to service requirements such as security services. Di Modica
and Tomarchio proposed a semantic secure policy matching based on WS-Policy framework
in [41] and [38] for service oriented and cloud-based architectures. In the cloud-based model,
the capabilities of the cloud service provider and the requirements of the cloud customer were
defined within policies adopted to the WS-Policy framework.

There are several security standards that are extended from WS-Policy architecture such
as “WS-Trust” [33] or “WS-PolicyAttachment” [40]. “WS-Trust” is an OASIS standard for
changing security tokens from one format to another in an interoperable manner in order to
establish and assess the presence of participants in a secure message exchange. Also, “WS-
PolicyAttachment” was expressed to define two mechanisms for associating policies with the
subjects they apply and to represent the way of attaching WS-Policy descriptions end points.
Furthermore “WS-SecurityPolicy” [34] and “WS-SecureConversation” [35] were extended
from WS-Policy architecture to describe the security specifications of WS-Trust and to
improve the performance of frequent communications by using a shared symmetric and pair of
asymmetric keys from the security context respectively. The comparison between WS-based
standards is available in [17].

Sriharee et al., (2004) extended WS-Policy architecture through an efficient ontology and
rule reasoning to enable more satisfactory discovery results that better fit the requirements of
cloud customers. In this model, a set of rules was established as a policy and a rule-based
engine was developed to more conveniently process the policy evaluation. However, taking the
overheads of policy representation with an ontology language and transferring them to a rule-
based structure is a challenging issue, taking considerable processing power for both policy
generation and application processes.

Using semantic rules in the establishment of policy framework is the most appropriate
solution to map between requirements and capabilities semantically to generate efficient and
reliable policies. Hashmi et al., (2014) suggested a negotiation frameworks based on these

Faraz Fatemi Moghaddam
	
	

	 	

19	

semantic rules which conducts an automated negotiation between service provider and
customer to generate protocol independent and support participant polices for communication,
negotiation and SLA creation. Moreover, Chhetri et al., (2010) presented a policy-cantered
QoS meta-model and a QoS assertion-model by syntactic and semantic generic analysis of
policies in different service layers and service roles. This allows to express requirements,
capabilities and constraints based on defined details of SLA and to complement the existing
service selection and negotiation frameworks. The most challenging concern in semantic
mapping is the flexibility of the generated policies according to the predictable and un-
predictable variations of capabilities, constraints and requirements [46].

In overall, the main concerns regarding the described models are the discovery,
interoperability, and compatibility of security requirements based on the characteristics of
current distributed networks and cloud-based environments [9]. Furthermore, the scalability
and flexibility of mapping and the semantic analysis of policies regarding different capabilities
of service providers and requirements of customers are the other challenging issues in the
process of policy generation, application and management [10]. Thus, in this chapter, an
efficient ontology is presented to establish dedicated security levels for cloud customers based
on the policies defined in accordance with the requirements, capabilities and constraints of each
entity.

3.3. Cloud Security Ontology
Cloud security ontology (CSON) is an object oriented framework that is defined to

manage and enable appropriate communication between potential security terms of cloud
service provider. In fact, the main aim of CSON is to manage (i.e. launch, revoke, etc.) security
terms based on capabilities of cloud provider, to provide an on-demand security service for
cloud customers associated with a policy engine and an API according to the requirements, and
to establish a validity engine for syntactic and semantic mapping between requirements,
capabilities and constraints. Figure 3.1 shows a detailed overview of the CSON architecture:

Fig 3.1. General Architecture of CSON

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
20	

CSON includes 3 levels of security terms, two super classes and one output class to create
and manage security levels in clouds. The CS Rooted Tree super class (CSRT) is designed to
manage security capabilities of cloud service provider by classifying algorithms in 3 levels
according to inheritance concepts:

• Protocol Level (Level 1) is the highest level of CSRT, and contains the main security
protocols for the establishment of security rings. A high level root for various security
algorithms is defined in this level to specify which protocols are offered by cloud
service provider. Access Control, Cryptography, Key Management, Transport,
Authentication and Signature are the main protocols in this level.

• Mechanism Level (Level 2) is an interface level between the highest level of CSRT
and different security algorithms offered by service provider. The main role of this
level is to divide each protocol into several mechanisms and to categorize security
algorithms into these mechanisms to provide the appropriate relations between the
highest and the lowest level of architecture.

• Algorithm Level (Level 3) is the lowest level of the CSRT and includes various
security algorithms offered by cloud service provider. The capabilities of the service
provider are updated according to the availability or unavailability of security
algorithms in this level. Figure 3.2 shows an example of CSRT in each level.

Fig 3.2. CS Rooted Tree Super Class Architecture

Faraz Fatemi Moghaddam
	
	

	 	

21	

According to this classification and based on the inheritance concepts, the processes of
rendering and revocation of security capabilities are limited to the lowest level of CSON in
cloud-based data centres. In fact, CSRT represents all available security capabilities of the
service provider by scanning the rooted tree. Hence, there is no necessity for rescanning the
availability of security algorithms in created object.

Cloud Security Distributary Set (CSDS) is the second super class in CSON that has been
designed to provide a semantic mapping between capabilities of service providers and customer
requirements (Figure 3.3). CSDS includes four main concepts - Scope, Essential, Structure and
Objective - within several sub-concepts.

Security Scope is a general notion that defines the owner (Cloud Customer) and the target
(Cloud User) for the security ring. The Cloud Customer (CC) is typically an organization or a
company that uses cloud services for employees or subscribers (e.g. Universities, Hospitals,
etc.) while Cloud Users (CU) are defined end-users that use cloud-based services offered by
CC according to the internal contracts (e.g. Students or Lecturers in a University). Hence, the
scope of SCDS defines the creator or owner of security rings and potential targets according to
SLA.

Objective of CSDS includes the security requirements that are mentioned by cloud
customers and a defined set of security purposes (i.e. Confidentiality, Integrity, Authorization,
Authentication, and Non-Repudiation) that represent a justification for the security ring.

Security Structure is the most important and highest level abstraction, constituting
security policies and high level sub-policies according to the availability in CSRT. The
structure of CSDS shows which security characteristics are used as main policies in the security
ring based on the capabilities of the service provider. These policies are settled on the main
protocols (e.g. user authentication, access control, cryptography, etc.) and subsets in lower
levels. Furthermore, high level sub policies are also defined according to the selected policies.
Sub policies in CSON are divided into two main categories: High Level Sub Policies and Low
Level Sub Policies. High Level Sub Policies are clarified during the ring definition and affect
all data subscribed in one security level with the same attribute (e.g. IP addresses from
Germany for Geo control, reputation mechanism and access control protocol in a German
university). Low Level Sub Polices are specifically assigned by admins or cloud users for each
data in the same security ring after the process of ring definition (e.g. student, lecturer,
supervisor and staff roles in permanent algorithm, role mechanism and access control protocol
in a university).

The last property of CSDS is Security Essential, which provides information about
intransitive physical and virtual resources in order to apply defined policies to data (e.g.
encryption) and to retrieve data based on access requests (e.g. decryption). Furthermore, the
billing information of the established ring (per a certain amount of data) is specified in this
section.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
22	

Fig 3.3. Cloud Security Distributary Set: High Level Class

Security Level Certificate (SLC) is the output of CSON including all the details about a
security ring established in the cloud servers. In fact, SLC is a security-based SLA that
describes subscribed security-as-a-services mechanisms to a cloud customer based on
requirements and sensitivity of data. The structure of SLC is extended from WS-Policy and
includes two main parts: header and body.

The Header of SLC introduces the scope, objectives and essentials of an established
security level according to a validated CSDS object. These properties provide a general
overview of the security level, owner and users, purposes, value and resources that are related
to the ring, in terms of the following relationships:

• A cloud security level is owned by only one cloud customer (hasOwner property) while
supporting several cloud users (hasTarget property).

• A cloud security level includes one to five security purposes (hasPurpose property)
according to several requirements declared by cloud customer (reqRequirement
property).

• A cloud security level estimates several cloud-based physical and virtual resources for
the policy application process per a certain amount of data (reqResource property).

Faraz Fatemi Moghaddam
	
	

	 	

23	

• A cloud security level has a determined value according to the requested resources and
billing calculations per a certain amount of data (hasValue property).

The header of SLC is written according to CSON and is based on the WS-Policy
structure. An example of a security level certificate header can be found below:
<wsp:Policy>
…namespace definition…
 <wsp:SLC rdf:ID=”A543D3527B3”>
 <wsp:Header>
 <security:Scope>
 <security:hasOwner rdf:ownerID=”A3453”/>
 <security:hasTarget rdf:target=”cu-ns#owner|cu-ns3#regEmail#@gwdg.de”/>
 </security:Scope>
 <security:Objective>
 <security:haspurpose rdf:purpose=”confidentiality#integrity#authentication”/>
 <security:reqRequirement rdf:requestID=”T353S387”/>
 </security:Objective>
 <security:Essential>
 <security:hasValue rdf:SLAresourceID=”sla-ns#owner#slcID”/>
 <security:reqResource rdf:resource=”VC-ns#VM-ns#Pr-ns#DS-ns”/>
 </security:Essential>
 </wsp:Header.
 <wsp:Body>
 …
 </wsp:Body>
 </wsp:SLC>
</wsp:Policy>

The SLC file starts with a specific SLC_ID that belongs to a cloud customer and has

several targets: cloud users associated with the customer or users with an organizational
registered email address. Furthermore, the key purposes of the security level and the set of
customer requirements according to the request ID are shown as objectives of the SLC. Finally,
the value of the developed SLC and the resources required to apply these policies per data are
settled down in the essential part of the header.

The Body of SLC provides details about selected security mechanisms, policies and high-
level sub policies of a security ring. In fact, all security terms with constant properties in a
security ring are defined according to the capabilities of the service provider as well as the
requirements of cloud customers based on the WS-Policy structure. The relations between
algorithms are defined as follows:

• A cloud security level includes at least one security algorithm for each protocol
according to the classification defined in CSRT (hasPolicy Property).

• High level sub-policies should be defined in the process of ring definition
(hasSubPolicy Property) for associated algorithms in each cloud security level
(hasSubPolicy-reqPolicy Property).

• Low level sub-policies will be defined during the process of policy application.

The body of SLC is established according to CDDS and CSRT and is based on the WS-
Policy structure. An example of a security level certificate body for access management and
cryptography protocols is shown below:

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
24	

<wsp:Policy>
…namespace definition…
 <wsp:SLC rdf:ID=”A543D3527B3”>
 <wsp:Header>
 …
 </wsp:Header.
 <wsp:Body>

 <security:AccessManagementProtocol rdf:ID=”AccessManagementRequirement”>
 <security:RoleMechanism rdf:ID=”RoleClassRequirement”>
 <security:PermanentAlgorithm rdf:resource=”PermanentRoleClass”>

 <rdf:HLSP_Role rdf:HLSP_Role_1=”Lecturer” rdf:HLSP_Role_2=”Student”
rdf:HLSP_Role_3=”Professor” rdf:HLSP_Role_4=”Staff” rdf:HLSP_Role_5=”Admin”/>
</security:PermanentAlgorithm>

 </security:RoleMechanism>
 <security:ReputationMechanism rdf:ID=ReputationClassRequirement”>
 <security:GeoAlgorithm rdf:resource=”GeoClass”>

 <rdf:HLSP_Geo rdf:HLSP_Geo_1=”Germany” rdf:HLSP_Geo_2=”World”/>
 </security:GeoAlgorithm>
 </security:ReoutationMechanism>
 </security:AccessManagementProtocol>

 <security:CryptographyProtocol rdf:ID=”CryptographyRequirement”>
 <security:SymmetricMechanism rdf:ID=”SymmetricRequirement”>
 <security:AESClass rdf:resource=”AESClass”>
 <rdf:HLSP_AES rdf:HLSP_AES_KeySize=”256” rdf:HLSP_AES_Mode=”CBC”/>
 </security:AESClass>
 </security:SymmetricMechanism>
 <security:ReEncryptionMechanism rdf:ID=REEncryptionRequirement”>
 <security:ManualReEncryption rdf:resource=”ManualReClass”>
 <rdf:HLSP_MRE rdf:HLSP_MER_1=”Admin” rdf:HLSP_MER_2=”Owner”/>
 </security:ManualReEncryption>
 </security:ReEncryptionMechanism>
 </security:CryptographyProtocol>
 <security:SignatureProtocol rdf:ID=”SignatureRequirement”>
 …
 </security: SignatureProtocol>
 <security:KeyManagementProtocol rdf:ID=”KeyManagementRequirement”>
 …
 </security:KeyManagementProtocol>
 <security:AuthenticationProtocol rdf:ID=”AuthenticationRequirement”>
 …
 </security: AuthenticationProtocol>
 <security:TransportProtocol rdf:ID=”TransportRequirement”>
 …
 </security: TransportProtocol>
 </wsp:Body>
 </wsp:SLC>
</wsp:Policy>

Regarding the defined security level, the permanent role and geo reputation classes were

defined as access management protocols. Accordingly, five main roles and two main geo
reputations are clarified as potential high level sub policies. The data owner or admin can
choose between these properties for each data in the security level. Furthermore, AES
symmetric algorithm has been chosen as the cryptography protocol with CBC mode and
256bits key size as high level sub-policies associated with the manual re-encryption algorithm
defining two roles (i.e. admin and data owner) as sub-policies. Other protocols are also selected
with the same procedure in each algorithm and high level sub-policies.

3.4. Security Level Clarification
The process of clarifying security levels has the requirements of the cloud customer and

the capabilities of the service provider as inputs and SLC as the output. An efficient mapping

Faraz Fatemi Moghaddam
	
	

	 	

25	

between requirements, capabilities and constraints is done in this process to provide a security
level certificate for cloud customers in the policy management engine.

The architecture of our proposed framework is based on four components: Policy Engine
(PE), Policy Database (PD), SLA Engine and Ring Analysis Engine (RAE). A cloud service
provider uses the policy management engine to offer two types of security levels to PD based
on the defined or potential policies (fig. 3.4):

 Fig 3.4. Standard and Dedicated Rings associated with Policy Management Engine

• Standard Rings: include sets of standard policies in package form that are offered by
the service provider for a selection based on desired security level and data sensitivity.

• Dedicated Rings: include sets of potential security policies according to the capabilities
offered by the service provider to let customers to create dedicated custom security
rings based on their requirements.

Fig 3.5. Proposed Policy Management Engine Framework

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
26	

The policy database would be periodically updated according to the new or revoked
security capabilities of the service provider, mutually interacting with the SLA engine about
these updates. The policy engine is the main component of the framework and is responsible
for policy matching and other policy-based procedures.

This is done by receiving service requests and requirements from cloud customer,
processing the request, establishing appropriate connections with the ring analysis engine to
semantically and syntactically validate the security level, receiving SLA-based details from
SLA engine and generating the final SLC (Figure 3.5).

Algorithm 3.1.Selection of Standard Rings
Input: Set 𝑃: Let 𝑃	 = {𝑝&, 𝑝(, … , 𝑝*} represents all standard policy packages.

Output: 𝑆𝐿𝐶/

1

∃	𝑝1	 ∈ 𝑃 ∶ 	 𝑝1 = 𝑠𝑝&, 𝑠𝑝(, … , 𝑠𝑝5 //where 𝑠𝑝/ (𝑗 ∈ {1,2, … ,𝑚}) donates a defined
Security Protocol based on CSRT in standard policy
package 𝑖.

2 𝐶𝑆𝐷𝑆	𝑟𝑖𝑛𝑔/
= 𝑛𝑒𝑤	𝐶𝑆𝐷𝑆	 𝐶𝐶A, 𝑟𝑒𝑞1C, 𝑝𝑢𝑟𝑝&,(,..,F ;

// an object is created from cloud security distributary
set super class with User ID, Request ID and several
purposes as properties of default constructor.

3 𝑆𝑒𝑙𝑒𝑐𝑡	 𝑟𝑖𝑛𝑔/, 𝑝1 ;

// a policy package is chosen by cloud customer for
package lists according to the requirement. This
selection can be manually done by cloud customer or
automatically suggested by RAE according to the
defined purposes in object creation.

3 𝐹𝑜𝑟	 𝑖𝑛𝑡	𝑥 = 1; 	𝑥 ≤ 	𝑚;	+ + 𝑥 	{
𝑏𝑜𝑜𝑙	𝑆𝑃𝐶𝐴 = 𝐶ℎ𝑒𝑐𝑘_𝐴𝑣𝑎𝑖(𝑟𝑖𝑛𝑔/. 𝑠𝑝X);

 𝑖𝑓	 𝑆𝑃𝐶𝐴	 == 	𝐹𝑎𝑙𝑠𝑒 𝑡ℎ𝑒𝑛	{
 𝑟𝑖𝑛𝑔/. 𝑟𝑒𝑞	 = 	𝐹𝑎𝑙𝑠𝑒;
 𝐵𝑟𝑒𝑎𝑘; }
 𝑏𝑜𝑜𝑙	𝑆𝑃𝐶𝑈 = 𝐶ℎ𝑒𝑐𝑘_𝑈𝑝𝑑𝑎𝑡𝑒𝑠(𝑟𝑖𝑛𝑔/. 𝑠𝑝X);

𝑖𝑓	 𝑆𝑃𝐶𝑈	 =
= 	𝑇𝑟𝑢𝑒 𝑡ℎ𝑒𝑛	𝑈𝑝𝑑𝑎𝑡𝑒 𝑟𝑖𝑛𝑔/. 𝑠𝑝X 	; }

// The availability of each algorithm in selected policy
package is checked from PD and required updates are
applied.

4 𝑖𝑓	 𝑟𝑖𝑛𝑔/. 𝑟𝑒𝑞	 == 	𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛	𝑠𝑒𝑡(𝑡𝑔&,(…_);
	𝑓𝑜𝑟	 𝑖𝑛𝑡	𝑥 = 1; 	𝑥 ≤ 	𝑚;	+ + 𝑥 	{
 𝑖𝑓 𝑟𝑖𝑛𝑔1. 𝑠𝑝5. 𝑠𝑢𝑏𝑝𝑜𝑙𝑖𝑐𝑦abbc == 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛
 𝑠𝑒𝑡(𝑟𝑖𝑛𝑔1. 𝑠𝑝5. 𝑠𝑢𝑏𝑝𝑜𝑙𝑖𝑐𝑦&,(,..d);}

// Targets of the ring are set by cloud customer.
Moreover, if selected policies need high level sub
policies, cloud customer should define based on the
necessity.

5 𝑠𝑒𝑛𝑑	 𝑟𝑖𝑛𝑔/, 𝑅𝐴𝐸 ;
𝑠𝑒𝑡 𝑟𝑒𝑠&,(,…g ;

// Ring analysis engine reviews the selected policies and
sub polices and determines the required resources per
data for policy application approximately.

6 𝑠𝑒𝑛𝑑	 𝑟𝑖𝑛𝑔/, 𝑆𝐿𝐴 ;
𝑠𝑒𝑡 𝑟𝑖𝑛𝑔/, 𝑣𝑎𝑙𝑢𝑒 ;

// Based on the policies, high level sub policies and
approximate resource requirements, SLA engine
determines the value of ring per data.

7 𝑆𝑒𝑛𝑑	 𝑟𝑖𝑛𝑔/, 𝐶𝐶A ;
𝑖𝑓	𝑟𝑖𝑛𝑔/. 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡	 ==
	𝑡𝑟𝑢𝑒)	𝑡ℎ𝑒𝑛	𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑆𝐿𝐶/, 𝑟𝑖𝑛𝑔/ ;

// If all the ring details (including policies, sub policies,
billing details, etc.) are agreed by cloud customer ring
is created and associated SLC is generated by PE.

Faraz Fatemi Moghaddam
	
	

	 	

27	

There are two types of service requests from cloud customers according to their
requirements: Standard Ring Requests and Dedicated Ring Requests. In the first case, the
request is processed in PE by checking updates in PD and SLA Engine. RAE analyses the ring
syntactically and semantically to validate the ring, check required high level sub-policies and
estimate required resources for policy application. Algorithm 3.1. details the process of
generating standard rings.

The second type of service requests includes dedicated rings to establish custom security
levels based on potential security policies according to the capabilities of the service provider.
Typically, the service provider updates the list of potential security algorithms in the PD
according to new or revoked capabilities and allows cloud customers to choose these
algorithms themselves.

The establishment of dedicated security rings may be done by RAE or cloud customers
depending on different scenarios. In the first scenario, the PE receives information regarding
the cloud customer, sensitivity of data and desired privacy details through an online survey-
based form. According to the received data, RAE tries to match the requirements and
capabilities to create a dedicated security ring. For this purpose, RAE generates 5 indexes
according to the defined purposes (i.e. Confidentiality, Integrity, Non-Repudiation,
Authorization, Authentication). The value of each index is determined by the data collected in
the survey-based form (Algorithm 3.2).

Therefore, RAE matches the best algorithm of each protocol to the value of purpose
indexes and sends this to the cloud customer for confirmation. Each algorithm in CSRT has a
security purpose set 𝑆𝑃𝑆i(𝐶𝑜𝑛𝑓i, 𝐼𝑛𝑡i, 𝑁𝑅𝑒𝑝i, 𝐴𝑢𝑡ℎ𝑜i, 𝐴𝑢𝑡ℎ𝑒𝑛i) that is compared with 𝑃𝐼1
for match-making purposes.

Algorithm 3.2. Determining Values of Purpose Indexes
Input: Set 𝑄: Let 𝑄	 = {𝑞&, 𝑞(, … , 𝑞*} represents all questions in survey-based form.

Output: 𝑃𝐼1(𝐶𝑜𝑛𝑓1, 𝐼𝑛𝑡1, 𝑁𝑅𝑒𝑝1, 𝐴𝑢𝑡ℎ𝑜1, 𝐴𝑢𝑡ℎ𝑒𝑛1)

// The value of each purpose index is between [0,5] where 5 in the highest security value.

1 𝑃𝑢𝑟𝑝𝑠𝑒𝐼𝑛𝑑𝑒𝑥	𝑃𝐼1 = 𝑃𝑢𝑟𝑝𝑜𝑠𝑒𝐼𝑛𝑑𝑒𝑥 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 ; //An object is created from Purpose
Index set class by default value for
each index.

2

𝑓𝑜𝑟	 𝑗 = 0; 𝑗 ≤ 𝑛;	+ + 𝑗 {
𝐶ℎ𝑒𝑐𝑘 𝑞/ ;
𝑖𝑓 𝑞/ == 𝑎& 𝑡ℎ𝑒𝑛	𝐶𝑜𝑛𝑓1 = 𝐶𝑜𝑛𝑓1 + 𝐶𝑜𝑛𝑓 𝑎& ;
𝑖𝑓 𝑞/ == 𝑎(𝑡ℎ𝑒𝑛	𝐼𝑛𝑡1 = 𝐼𝑛𝑡1 + 𝐼𝑛𝑡 𝑎& ;
…
𝑖𝑓 𝑞/ == 𝑎q 𝑡ℎ𝑒𝑛	𝐴𝑢𝑡ℎ𝑒𝑛1 = 𝐴𝑢𝑡ℎ𝑒𝑛1 + 𝐴𝑢𝑡ℎ𝑒𝑛 𝑎& ; }

//Each question of survey-based form
is analyzed by RAE according to the
default index policies and the value of
each index is determined.

3 𝐹𝑖𝑛𝑎𝑙𝑖𝑧𝑒	 𝑃𝐼1 ;

//The value of PI set is finalized and
sent for match making processes.

In the second scenario, cloud customers define security levels by selecting algorithms

from CSRT based on their requirements. In fact, cloud customers play the main role in this
scenario and apply for dedicated rings through custom selections. For this purpose, an object

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
28	

is created from CSRT class within the algorithms selected by the cloud customer. The main
duty of RAE in this scenario is to analyse the object, to check whether the selected algorithms
are semantically matched and to find any conflicting algorithms. The following example shows
unmatched and conflicting algorithms in different protocols:
 <security:CryptographyProtocol rdf:ID=”CryptographyRequirement”>
 <security:SymmetricMechanism rdf:ID=”SymmetricRequirement”>
 <security:AESClass rdf:resource=”AESClass”/>
 </security:SymmetricMechanism>
 </security:CryptographyProtocol>
 <security:KeyManagementProtocol rdf:ID=”KeyManagementRequirement”>
 <security:AsymmetricDrivation rdf:ID=”AsymmetricDerivationRequirement”/>
 <security:AsymmetricWrap rdf:ID=”AsymmetricWarpRequirement”/>
 </security:KeyManagementProtocol>

According to WS-Policy code, the received CSRT object includes a symmetric

cryptography resource within two asymmetric key management resources that are unmatched.
RAE tries to find these unmatched algorithms in three ring analysis rounds:

1st Ring Analysis Round
In the first round, the algorithm level is checked to find conflicting algorithms (e.g. use

AES and DES simultaneously). If RAE finds these types of conflicts, it prioritizes them by
assigning 𝑃𝑅𝐼 ∈ 	 {1, 2, … , 𝑛} as a prioritize index where 1 is assigned to the highest secure
algorithm (Fig 3.6A). If there are no other un-matched algorithms, all of the matched
algorithms are awarded 1 as their PRI (Fig 3.6B).

2nd Ring Analysis Round

All of the algorithms with 𝑃𝑅𝐼 = 1 are analyzed at this round in mechanism level. If
RAE finds any conflicting algorithms, it tries to test other priorities to solve the conflict. For
example, an unmatched selection is found by RAE in Authentication Level as follows:

𝑁𝑜𝑟𝑚𝑎𝑙	𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛	{𝑆𝑒𝑐𝑢𝑟𝑒	𝑊𝑜𝑟𝑑	(𝑃𝑅𝐼 = 1), 𝑈𝑠𝑒𝑟 − 𝑃𝑎𝑠𝑠	(𝑃𝑅𝐼 = 2)}	
𝐷𝑜𝑢𝑏𝑙𝑒	𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛	{𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑜𝑟	(𝑃𝑅𝐼 = 1)}		

The conflict between Normal Authentication and Double Authentication classes is solved
by changing priorities in Normal Authentication Class as follows (Fig 3.6C):

𝑁𝑜𝑟𝑚𝑎𝑙	𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛	{𝑈𝑠𝑒𝑟 − 𝑃𝑎𝑠𝑠	(𝑃𝑅𝐼 = 1), 𝑆𝑒𝑐𝑢𝑟𝑒	𝑊𝑜𝑟𝑑	(𝑃𝑅𝐼 = 2)}	
𝐷𝑜𝑢𝑏𝑙𝑒	𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛	{𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑜𝑟	(𝑃𝑅𝐼 = 1)}	

If the conflict is not solved through reprioritization, the PRI value of unmatched
algorithms is changed based on higher security (Fig 3.6D). For example:

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐	𝐶𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑦	{𝐴𝐸𝑆	(𝑃𝑅𝐼 = 1), 𝐷𝐸𝑆	(𝑃𝑅𝐼 = 2)}	
𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐	𝐶𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑦	{𝑅𝑆𝐴	(𝑃𝑅𝐼 = 1)}	

In this example the conflict between symmetric and asymmetric mechanism are not
solved by changing the priority index on AES and DES. Therefore, the PRI should be changed
in mechanism level as follows:

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐	𝐶𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑦	{𝐴𝐸𝑆	(𝑃𝑅𝐼 = 1), 𝐷𝐸𝑆	(𝑃𝑅𝐼 = 3)}	
𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐	𝐶𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑦	{𝑅𝑆𝐴	(𝑃𝑅𝐼 = 2)}

Faraz Fatemi Moghaddam
	
	

	 	

29	

3rd Ring Analysis Round

The third round of ring analysis includes conflicting algorithms with 𝑃𝑅𝐼 = 1 in Protocol
level. In fact, RAE checks whether there are not any unmatched algorithms in protocol level
same as in the previous example about cryptography and key management conflict above. In
that case, RAE tries to use another prioritization to solve the problem (Fig 3.6E) as follows:

𝐶𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑦	{𝐴𝐸𝑆	(𝑃𝑅𝐼 = 1), 𝑅𝑆𝐴	(𝑃𝑅𝐼 = 2), 𝐷𝐸𝑆	(𝑃𝑅𝐼 = 3)}	
𝐾𝑒𝑦	𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡	{𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐	𝑊𝑟𝑎𝑝	(𝑃𝑅𝐼 = 1), 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐	𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛	(𝑃𝑅𝐼 = 1)}	

By reprioritization the cryptography protocol is changed to:

𝐶𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑦	{𝑅𝑆𝐴	(𝑃𝑅𝐼 = 1), 𝐴𝐸𝑆	(𝑃𝑅𝐼 = 2), 𝐷𝐸𝑆	(𝑃𝑅𝐼 = 3)}	
𝐾𝑒𝑦	𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡	{𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐	𝑊𝑟𝑎𝑝	(𝑃𝑅𝐼 = 1), 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐	𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛	(𝑃𝑅𝐼 = 1)}	

If the conflict at protocol level is not solved by reprioritizing algorithms, RAE sends the
conflict report to cloud customer to re-establish the CSRT object. Otherwise, all algorithms
with 𝑃𝑅𝐼 > 1 are eliminated from the object (Fig 3.6F) and remaining algorithms are sent to
cloud customer for final confirmation and application of high-level sub-policies.

	 	 	
Fig. 3.6A	 Fig. 3.6B	 Fig. 3.6C	

	 	 	
Fig. 3.6D	 Fig. 3.6E	 Fig. 3.6F	

Fig 3.6. Performance of RAE on Dedicated Ring Establishment

3.5. Evaluation and Case Studies
A prototype of the ring establishment framework was developed to evaluate the

performance of the aforementioned approach for creating standard and dedicated security
levels in cloud-based environments. WS-Policy standard was used to generate a Security Level
Certificate and to analyze the defined policies syntactically and semantically. Accordingly,

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
30	

three simple case studies are presented for selecting standard security packages and creating
dedicated security levels through prioritization and matchmaking algorithms.

3.5.1. Case Study 1. (Standard Ring Establishment)
In the first case study, the provider offers 4 security packages to the cloud customer as

standard rings. These standard security packages enable cloud customers to establish regular
security levels based on requirements and data sensitivity. After the selection, high-level sub-
policies and target cloud users are defined by cloud customers. The created CSDS object is
then sent to the SLA engine and RAE to determine its value and the estimated required
resources. Finally, SLC is generated following the CSDC analysis and confirmation of cloud
customers. Table 3.1 details the offered security packages.

Table 3.1. Standard Security Levels offered by a Cloud Provider in Case Study 1
 Ring 1

(Public Ring)
Ring 2

(Unlisted)
Ring 3

(Sen. Unlisted)
Ring 4

(Private)
Cryptography - RSAClass

ManualREClass
RSAClass
DESClass
TimeREClass

AESClass
TimeREClass
ManualREClass

Authentication UserPassClass UserPassClass UserPassClass
AuthenticatorClass

UserPassClass
AuthenticatorClass

Signature - - MD5 SHA

Transport - - TLS TLS

Key Manage - ASYWrapClass ASYWrapClass
SyWrapClass

SyWrapClass
SyDerivationClass

Access Control PublicClass PermanentRoleClass
TemporaryRoleClass

PermanentRoleClass
GeoClass

OwnerClass
SoftwareClass

Based on the defined packages and data sensitivity, a university in Germany (UNIGER)

is defined as a cloud customer who tries to use cloud-based services with standard policy
packages for data. UNIGER needs 3 levels of security: A Public Ring for all public data,
without any special privacy concerns, an Unlisted Ring for certain semi-public data that can be
accessible to everyone inside or outside of the university having session links or keys, and a
Sensitive Unlisted Ring for high sensitive data that is only accessible by defined cloud users
with special conditions and high-level sub-policies. For instance: A high level sub-policy for
the permanent role class in Ring 3:

<rdf:HLSP_Role rdf:HLSP_Role_1=”Lecturer” rdf:HLSP_Role_2=”Student”
rdf:HLSP_Role_3=”Professor” rdf:HLSP_Role_4=”Staff” rdf:HLSP_Role_5=”Admin”/>

a high level sub-policy for the geographical class in Ring 3:

<rdf:HLSP_Geo rdf:HLSP_Geo_1=”Germany” rdf:HLSP_Geo_2=”World”/>

and high level sub-policies for cryptography (encryption and re-encryption algorithms)

class in Ring 3:

<rdf:HLSP_DES rdf:HLSP_DES_KeySize=”256” rdf:HLSP_DES_Mode=”CBC”/>
<rdf:HLSP_RSA rdf:HLSP_RSA_KeySize=”1024”/>
<rdf:HLSP_MRE rdf:HLSP_TIME_1=”1” rdf:HLSP_Time_2=”7” rdf:HLSP_Time_3=”30”/>

Faraz Fatemi Moghaddam
	
	

	 	

31	

The process of defining low-level sub-policies (LLSP) is performed by cloud users in the
run-time after the ring establishment. In this case study, UNIGER establishes a security level
with 5 permanent roles and 2 geographical roles as HLSP, cloud users being able to assign one
or more of these policies as LLSP during the run-time for each data. After defining HLSPs, the
SLA engine calculates the value of these services based on HLSPs (for example cryptography
key size) and RAE estimates the required resources security ring. The SLC is generated in the
final step, after the confirmation of the cloud customer based on the SLA details.

3.5.2. Case Study 2. (PE Dedicated Ring Establishment)

The second case study evaluated the performance of the RAE when matching capabilities
and requirements from a survey-based form. Accordingly, a survey-based questionnaire was
designed to collect requirements from cloud customers and to determine the value of the
security purposes for the matching process. In this case study, the match levels are defined as:
Perfect Match, Close Match, Possible Match and No Match, going from the highest to the
lowest match between the requirements, the value of security purposes and the algorithms
offered. Figure 3.7 shows the process of matching in each of the security protocols according
to CSRT, as well as the overall CSRT process of matching based on the value of the security
purposes.

Fig. 3.7. Match Results between Requirements, Value of Security Purposes and Algorithms Offered

According to the results, 78% of the requirements were matched to the most suitable
security algorithm offered in CSRT. The minimum value of the Perfect match is related to the
access management protocol due to the variety of algorithms and the concepts of reputation
and role-based access control models.

71%
64%

94%
82% 81% 77% 78%

19%
22%

3%

10% 9% 14% 13%

8% 12%
2%

6% 7% 6% 7%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cryptography Access Transport Signature Key
Management

Authentication Total

Perfect Match Close Match Possible Match No Match

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
32	

However, there are 34% close or possible matches in the access protocol that can be used
based on the requirements. As expected, the transport protocol receives the highest value of
perfect matches due to the popularity of the SSL and TLS mechanisms, while the overall “No
Match” results contain only 2% of the total matches.

3.5.3. Case Study 3 (Dedicated Ring Establishment with Ring Analysis

Rounds)
In the third case study, the performance of RAE during the ring analysis rounds was

evaluated. For this purpose, 200 objects were created from CSRT based on random and
knowledge-based selections from security algorithms and transferred to RAE for analysis
processes. The reason for the random selection was to evaluate the syntactic and semantic
performance of RAE during the ring analysis rounds. The aim was to find out how efficient
this analysis was, on a scale from basic errors of a random selection (i.e. without any
knowledge) to a reliable security level establishment. Figure 3.8 shows the performance of
RAE in the ring analysis rounds.

Fig 3.8A. Analysis Round Required for the Ring

Establishment Confirmation from RAE
Fig 3.8B. Conflicts Found in Each Round of the

Ring Analysis Process

Fig 3.8. Performance of RAE in the Ring Analysis Rounds

According to Figure 3.8A, 81% of the random objects needed all three analysis rounds
to find conflicts. In fact, conflicts were found in 97%, 92% and 79% of the random objects in
the analysis rounds 1 to 3 respectively (Figure 3.8B).

A total of 93% of the random objects were settled by RAE and only 7% of the random
objects were send to PE for further changes. As expected, 51% of the knowledge-based objects
needed only the first round of evaluation for improvement, with only 11% of these objects
having errors in the final round and 2% being sent to PE for further communication with the
cloud customer. Overall, the results show that RAE could find and fix conflicts in 95% of the
random or knowledge-based objects without any extra negotiation between cloud customers
and the policy engine.

7 12

81

51

27 22

0

20

40

60

80

100

1st Round 2nd Round 3rd Round

Randoms Knowledge-Based

97 92
79

61

41

11

0

20

40

60

80

100

1st Round 2nd Round 3rd Round

Randoms Knowledge-Based

Faraz Fatemi Moghaddam
	
	

	 	

33	

3.5.4. Comparison between Similar Models and Ontologies

Table 3.2 shows the advantages of the suggested model in comparison with similar policy
management models. The most important characteristic of the proposed model is providing
simultaneous syntactic and semantic analysis in order to establish standard or dedicated
security levels through reliable mapping between the requirements of cloud customers and the
capabilities of the cloud provider.

Table 3.2. Comparison between CSON and other Policy Management Models
 IETF Ponder KaoS Rei Modica CSON
Language-Based Yes Yes Yes Yes Yes Yes
Object-Oriented No Yes No No No Yes
Syntactic & Semantic Analysis No No No No Yes Yes
Security Level Certificate (SLC) No No No No No Yes
Ring Establishment No No No No No Yes
Standard and Dedicated Rings No No No No No Yes
Ring Analysis Yes Yes No Yes Yes Yes
WS-Policy & XML No Yes Yes No Yes Yes
Multi-Level Sub-Policies No No No No No Yes
Cloud Security Rooted Tree (CSRT) No No No No No Yes
Cloud Security Distributary Set No No No No No Yes

3.6. Conclusion
In this chapter, a structural policy management engine was introduced to enhance the

reliability of managing different policies in clouds and to provide standard as well as dedicated
security levels (rings) based on the capabilities of the cloud provider and the requirements of
cloud customers.

Cloud security ontology provides a special cloud-based security structure to establish
standard and dedicated security levels in a cloud computing environment through syntactic and
semantic analysis of the security requirements and capabilities. Accordingly, CSRT and CSDS
were designed as two super classes to map requests and offers, as well as to establish
appropriate communications between the Policy Engine, the Policy Database and the SLA
Engine. Furthermore, RAE as a ring analysis component justifies the security levels and
evaluates the process of mapping syntactically and semantically. SLC as the output of this
model defines standard or dedicated security levels for various cloud customers.

Despite the considerable benefits of the proposed model, the complexity of various
policies is a challenging issue that should be solved by layering mechanisms of defined
policies. In the next chapter, a layering procedure has been added to the defined ontology to
enhance the process of matching between capabilities and requirements, to improve the process
of applying policies to data and resources, and to establish an efficient mapping process
between access requests and defined policies in cloud-based environments.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
34	

Chapter 4

4. MULTI-LAYERED POLICY APPLICATION

4.1. Introduction
As discussed before, the most common approach to express high-level security

constraints is based on the the usage of languages and metadata for the specification of security
policies. By these language-based approaches, cloud providers are able to announce and
provide security capabilities as well as matching these capabilities to customers’ requirements
[18]. In fact, policies are defined according to syntactic and also semantic matchmaking of
requirements and capabilities to ensure the security of nodes and to map access requests to
defined policies efficiently. The challenging issue in this case is to manage applied policies in
different virtualized nodes considering scalability, isolation and elasticity concepts in cloud
computing environments [95].

The approach we propose is based on semantic policy clustering to classify nodes with
same or common security policies in an aggregate virtualized cluster for federating defined
policies according to their characteristics. By this federation, the processing time for each
policy mapping is reduced due to the elimination of gratuitous and avoidable matching jobs.
We define a well-established policy framework to define security policies which are compliant
to requirements and capabilities. Moreover, a federated policy management schema is
introduced based on the policy definition framework and policy clustering to create and manage

Faraz Fatemi Moghaddam
	
	

	 	

35	

virtual clusters with identical or common security levels. The proposed model consists in the
design of a well-established ontology according to security mechanisms, a procedure which
classifies nodes with common policies into virtual clusters, a policy engine to enhance the
process of mapping requests to specific node as well as associated cluster and matchmaker
engine to eliminate inessential mapping processes.

4.2. Related Works
The adoption of policy-based multi-level security management in clouds needs an

appropriate and structural ontology to represent, generate, apply and manage policies according
to core concepts of virtualized data centers [19]. Several policy management engines and
frameworks have been proposed following different approaches in various application
domains. These models have typically focused only in access policies [20] include privacy and
user-based concepts or Federated Security Policies (FSP) contain multiple security concepts
such as encryption, access control, authentication and transport. One of the most popular web-
based semantic languages has been used in several policy-based schemas is Web Ontology
Language (OWL) [21]. A complex knowledge and relations between requirements, capabilities
and constraints were represented in OWL [22] with an efficient reasoning support, sufficient
expressive power and convenience of expression [23]. Also, several OWL-Based subsidiaries
were presented to improve the restricted expressivity of OWL. OWL-L [24], OWL-S [25] and
F-OWL [26] are some of OWL-based models there have been introduced to provide an
independent domain policy specifications based on deontic constructs and to allow several
types of policies such as right, prohibition, dispensations and obligations. Furthermore, to
improve the problem of allowing customers of classic multi-agents and distributed networks to
define different security policies as well as predictability and controllability assurance of each
components, KAoS [27] was proposed as an OWL-based policy language model. In KAoS,
policies are classified to four main categories: Positive-Authorization, Negative-Authorization,
Positive-Obligation and Negative-Obligation that are associated with service properties (i.e.
policy services such as policy enforcement and domain services such as hierarchical grouping
of users) [28]. However, the main issue of OWL and its subsidiaries is the compatibility of
these models to modern distributed networks specially in elasticity and isolation concepts.

Ponder [29] is another policy management framework based on object oriented concepts
that was developed by imperial college. This framework includes general architecture and
policy deployment model associated with several extensions for both access control and
protection managements. It also allows customers to generate events, constraints, constants and
other reusable elements as associated parts of security policies as well as allowing instantiation
of typed policy specification for parameterization support of policies. The most important
disadvantages of Ponder is the lack of generality by using several basic policy types and
compositing each of them with different syntax. Accordingly, several Ponder-based
deployment models were introduced [21,22] to address the instantiation, distribution and
enabling of policies and also disabling, unloading and deletion of policies.

Web Service Policy Framework (WS-Policy) [32] is an extendable general purpose
framework that has been recommended by World Wide Web Consortium (W3C). An
associated syntax was defined in this framework to describe the policies of entities with a broad
range of service capabilities and requirements in web-based models. WS-Policy involves

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
36	

several subsets according to the different structures of service domains. For instance, WS-Trust
[33] was defined to change security tokens into different formats by an interoperable manner
in order to establish and assess the presence of participants in secure message exchange. Also,
WS-SecurityPolicy [34] and WS-SecureConversation [35] were defined to describe the
security specifications of WS-Trust by improving the performance of frequent communications
and using a shared symmetric and a pair of asymmetric keys from the security context
respectively. The other popular WS and XML-based schema to describe the policy, request the
authorization decision and respond with the authorization decision is XACML (Extensible
Access Control Markup Language) [36]. This standard defines a policy enforcement point for
interacting with a policy decision point. The comparison between WS-based and XACML
standards have been extended in [17].

WS-Policy and associated subsets have been extended by several researchers to be used
in policy engines of multi-domain services. In overall, WS standards have been used in policy
engines to provide QoS assertion models which are generic, domain-independent and
expressible across different layers and service roles [37]. One of the WS-based semantic
models was proposed in [38] for generating security policies specifically for cloud computing
environments to a enable a flexible and powerful matchmaking process between customers and
providers security requirements. This model uses several terms and concepts to model security
features within a policy as well as providing compatibility of semantic framework with
syntactic polices. Furthermore, using an automated negotiation framework [39] based on WS-
Policy is another solution to support participant security policies for communication,
negotiation and SLA creation.

To enable more satisfactory discovery results that better fit the requirements of cloud
customers, WS-Policy was extended through an efficient ontology and rule reasoning [40].
Hence, a set of rules was defined security policies associated a developed rule-based engine
improve policy evaluation and policy mapping. The drawback of this rule-based policy
management was the considerable processing time for taking the overheads of policy
representation with an ontology language and for transferring them to a rule-based structure.

According to the most prominent characteristic of cloud-based models for providing on-
demand services, semantic rules have been used during the establishment of policy framework
for an efficient and reliable policy generation and mapping [41]. Several works such as LaaS
(Law-as-a-Service) [42] were proposed for cloud service providers on law-aware semantic
cloud policy infrastructure to deploy their cloud resources and services based on OWL
ontologies and stratified Datalog rules with negation for policy exceptions. Also, PEaaS (Policy
Engine-as-a-Service) [43] was suggested based on WS-Policy to provide multi-level policies
in clouds according to Protection ontology. These policies create create standard or dedicated
security rings (i.e. levels) regarding to the capabilities of service providers, constraints and
requirements of cloud customers.

However, the heterogeneous characteristics of these services together with the
dynamicity inherent in clouds, hinders the formulation of an effective and interoperable set of
policies that is adoptable for the underlying domain of applications [44]. Hence, establishment
of ontological templates for the semantic representation of security policies is needed to
facilitate the definition of appropriate security policies using a generic and extensible RDF
[45]. Therefore, policies should analyzed syntactically and also semantically in different

Faraz Fatemi Moghaddam
	
	

	 	

37	

service layers and service roles to express capabilities and requirements based on SLA and to
complement the existing service selection and negotiation framework [37] The most
challenging concern in simultaneous syntactic and semantic mapping is the flexibility of the
generated policies according to the predictable and un-predictable variations of capabilities,
constraints and requirements [46].

The other challenging issue in configuration of security policies is the possibility of
confliction in the course of unexpected occurs for policy management and enforcement.
Indeed, the structure of policy generation framework needs to be reliable and efficient enough
to provide accurate detection of conflict between policies and the security of cloud digestion
[47]. This concept has been more extended in federated cloud networks to rely on a service
manifest that specifies global polices [48]. These extended frameworks enable automated
deployment and configuration of network security functions across different clouds. However,
the complexity of these federated frameworks is still challenging according to multi-structure
policies in virtualized data centers [41,42].

Overall, the main concerns regarding to semantic policy-based security management
models is: (1) to provide efficient, secure and reliable matching between security requirements
of customers and capabilities of service providers according to interoperability and isolation
concepts in cloud-based environments [51], and (2) to ensure the scalability and flexibility of
mapping due to the large number of defined polices and access requests [52]. Accordingly, a
multi-layered federated policy-based resource classification framework has been presented in
this paper to classify and manage security levels in clouds and to provide efficient mapping
between requests and policies.

4.3. Multi-Layered Policy Generation
A multi-layered security policy is built around two main concepts: Foundation and

Structure. The Foundation of each policy includes potential security protocols, mechanisms
and algorithms that are used to establish dedicated security levels according to the capabilities
of service provider and requirements of cloud customers, as well as, the Structure of policies
is the way to define and manage policies and sub-policies according to the Foundation.

4.3.1. Policy Foundation (Multi-Level Ontology)
The foundation of security policies is based on a structural ontology to provide efficient

mapping between capabilities of the service provider, sensitivity of resources and requirements
of cloud customers. In fact, this ontology is established to describe security-related concepts
(e.g. protocols, mechanism, algorithm, credential, etc.) and to define the characterization of
policies in terms of requirements and capabilities according to object oriented and inheritance
concepts. Multi-Level Ontology (MLO) is the proposed ontology based on WS-Policy [32] that
covers core concepts of security domain to address security aspects at high levels [41]. MLO
defines the concepts of security policy in the context of suggested model by two main super
classes: Protocol and Basis.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
38	

The Protocol super class is based on main protocols of security levels (i.e. authentication,
access control, transport, encryption and key-management) to define policies for classification
of virtualized resources in cloud-based environments. All protocols are offered by cloud
services providers regarding to the three levels of policy matrix super class in Protection
Ontology [43]: Protocols, Mechanisms and Algorithms. Furthermore, each protocol is
associated with several defined properties as sub-polices (e.g. key-size for encryption protocol,
authenticator emails for two-factor authentication protocol and authorized locations for geo-
based access control protocol).

According to the capabilities of service provider, protocols are defined and also updated
by adding or revocation of algorithms in policy matrix super class. MLO uses hasProtocol,
hasPolicy and hasSubPolicy to define security policies structurally (Figure 4.1) and the created
objects from the Protocol super class use WS-Policy formalization for description.

Fig. 4.1. Multi-Level Ontology: Top Level Class

In the following an access control protocol according to role and geo-based mechanisms

and associated sub-policies has been defined:
	
<security:AccessControlPolicy rdf:ID=”AccessControlRequirement”>
 <security:RolePolicy rdf:ID=”PrRoleClass”>
 <security:PermanentRole rdf:resource=”Permanent”>
 <rdf:PR_Role rdf:PR_Role_1=”Lecturer”
 rdf:PR_Role_2=”Student”
 rdf:PR_Role_3=”Admin”
 rdf:PR_Role_4=”HRStaff”
 rdf:PR_Role_5=”Manager”/>
 </security:PermanentRole>
 </security:RolePolicy>

 <security:ReputationPolicy rdf:ID=RepRequirement”>
 <security:GeoRep rdf:resource=”GeoRepClass”>
 <rdf:REP_Geo rdf:REP_Geo_1=”US”
 rdf:REP_Geo_2=”Canada”/>
 </security:GeoRep>
 </security:ReoutationPolicy>
</security:AccessControlPolicy>

Faraz Fatemi Moghaddam
	
	

	 	

39	

This access policy is defined by a permanent role-based policy with 5 accepted properties
(i.e. sub-policies) associated with a geographical reputation policy with two target locations.
Each of policies is mapped to a semantic resource to enable reliable matchmaking (Figure 4.2).

Fig 4.2: Protocol Super Class

The basis of multi-level ontology is established around essential information of security

level according to defined policies. Basis Scope involves general notion for the owner of
dedicated level (i.e. cloud customer: An organization or a company that uses cloud services for
employments or subscribers) and potential targets (i.e. cloud users: Defined end-users that use
cloud-based services offered by cloud customers according to the internal contracts).

Basis Resources properties, define required information about intransitive physical and
virtual resources in order to apply defined policies to data (e.g. encryption) and to retrieve data
based on access requests (e.g. decryption). Finally, MLO Certificate is the validation property
of the policy for checking the reputation of policy during policy application and policy mapping
processes.

4.3.2. Policy Structure

Policy Structure aims to minimize the processing time of applying policies and mapping
them to access requests and to enhance the reliability of managing security levels according to
the defined details of Policy Foundation. In fact, a structural framework is introduced for
layering policies based on defined Protocols and associated Basis to increase the reliability and

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
40	

efficiency of policy application, management and mapping. The detailed mathematical
description of the problem is given as follows:

Assumes that there are 𝑁 cloud nodes in the data center, denoted as 𝑆&, 𝑆(, … , 𝑆y , and
the defined policy capability set of node 𝑆z with 𝛼 ∈ {1,2, … , 𝑁} is 𝑃𝐶𝑆 𝑆z = {𝐶&, 𝐶(, … , 𝐶|}
and all capabilities are associated with a capability set as follows: ∀𝐶X	 𝑥 ∈ [1, 𝑋] :	𝐶X =
𝐶_���, 𝐶g�i, 𝐶��g_, 𝑠𝑝&	, 𝑠𝑝(, … where 𝐶_���, 𝐶g�i, 𝐶��g_ and 𝑠𝑝 are protocols (i.e.

authentication, access control, cryptography, etc.), algorithm semantic resource, protocol
certificate and sub-policies respectively. Given 𝑀 policy application tasks waiting to be
processed, denoted as 𝑃𝐴&, 𝑃𝐴(, …𝑃𝐴� and each 𝑃𝐴5 is mapped to the defined multi-level
ontology set, 𝑀𝐿𝑂 𝑃𝐴5 = {𝑐𝑒𝑟𝑡, 𝑠𝑐𝑜𝑝𝑒, 𝑟𝑒𝑠, 𝑝&, 𝑝(, … , 𝑝�} with several security policies
where 𝑐𝑒𝑟𝑡, 𝑠𝑐𝑜𝑝𝑒 and 𝑟𝑒𝑠 are associated certificate, policy scope and estimated resources
respectively. Other notations used in the proposed model are shown in Table 4.1.

Table 4.1. The Notations of Proposed Model
Notations Description Notations Description
𝑆 Cloud Node (Server) 𝑃𝐶𝑆 Policy Capability Set
𝐶 Capability of Node 𝐶_��� Capability Protocol Types
𝐶g�i Semantic Resource 𝐶��g_ Protocol Certificate
𝑠𝑝 Sub-Policy 𝑃𝐴 Policy Application Task
𝑀𝐿𝑂 Multi-Level Ontology Set 𝑐𝑒𝑟𝑡 Policy Certificate
𝑠𝑐𝑜𝑝𝑒 Policy Scope 𝑟𝑒𝑠 Estimated Resources for Application
𝑉𝐶 Virtual Cluster 𝑀𝑎𝑝𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 Mapping Application Tasks
𝑉𝐶𝐶𝑙𝑎𝑠𝑠 Virtual Cluster Class 𝐴𝑃𝑃 Approval Flag
𝑇𝑜𝑘𝑒𝑛𝐶𝑙𝑎𝑠𝑠 Token Class 𝐴𝑇 Access Token

To process each policy application request, all of the defined policies of data need to be
checked and mapped to the most compatible cloud node efficiently:

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑃𝐴5 = 𝑀𝑎𝑝𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑀𝐿𝑂 𝑃𝐴5 , 𝑃𝐶𝑆 𝑆z

																														= 𝑀𝑎𝑝𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝐴5. 𝑝1 , 𝑆z. 𝐶/

�

1�&

|

/�&

The main objective of layering policies is to minimize the processing time of policy

application requests regarding to the details of Policy Foundation.

Faraz Fatemi Moghaddam
	
	

	 	

41	

min𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑃𝐴&, 𝑃𝐴(, …𝑃𝐴�} 	

= min 𝑀𝑎𝑝𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑀𝐿𝑂 𝑃𝐴� , 𝑃𝐶𝑆 𝑆z

�

��&

= 	min 𝑀𝑎𝑝𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝐴�. 𝑝1 , 𝑆z. 𝐶/

�

1�&

|

/�&

�

��&

			

The most appropriate solution for minimizing the processing time is to define multi-
layered structure as well as distributing policy application tasks according to the capabilities of
cloud nodes. Accordingly, a Policy Layer Constructor (PLC) is defined to create multi-layered
policies from created objects of MLO. The main duty of PLC is to classify and create layers
from each policy object according to associated protocols and sub-policies.

Fig 4.3. Multi-Layered Policy Structure

Figure 4.3 shows the structure of layering policies based on associated protocols and
algorithms. The certificate and scope of the policy are settled in the highest level policy-
layering, as well as, time-validation. Furthermore, protocols and algorithms in each policy are
classified based of the estimated required resources and processing time in MLO object.
Typically, encryption protocols are in the highest level and normal authentication algorithms
are settled in the lowest level of policy application.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
42	

The combination of Policy Foundation and Policy Structure helps to define policies
efficiently based on data sensitivity and requirements of cloud customers, as well as, enhancing
the process of applying policies to data according to the security capabilities of cloud nodes
and settled protocols in created MLO objects.

Algorithm 4.1 shows the performance of PLC to create layers for each policy according
to the policy certificate and defined protocols.

Algorithm 4.1. Layering Policy Application Requests
Input: {𝑃𝐴1, 𝑃𝐴2, … 𝑃𝐴𝑀}: Set of Policy Application Request Tasks.
Output: {𝑃𝐴′1, 𝑃𝐴′2, … 𝑃𝐴′𝑀}: Set of Layered Policy Application Request Tasks.
1: 𝑓𝑜𝑟	𝑚 = 1,2, … ,𝑀	{

 𝑃𝑟𝑜𝑐𝑒𝑠𝑠	 𝑃𝐴5 ;
2:

𝑖𝑓
𝑀𝐿𝑂 𝑃𝐴5 . 𝑐𝑒𝑟𝑡. 𝑡𝑖𝑚𝑒 ∧ 𝑠𝑐𝑜𝑝𝑒 = 𝑣𝑎𝑙𝑖𝑑 ∧

(𝑀𝐿𝑂 𝑃𝐴5 . 𝑝_. 𝑐𝑒𝑟𝑡 = 𝑣𝑎𝑙𝑖𝑑)�
1�&

	𝑡ℎ𝑒𝑛	 𝑃𝐴′5 = 𝑃𝐴5 ;

𝑎𝑑𝑑 𝑃𝐴′5 ;
𝑃𝐴′5. 𝐿𝑎𝑦𝑒𝑟 𝐶𝑒𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 	𝑛𝑒𝑤𝐿𝑎𝑦𝑒𝑟(𝑃𝐴′5. 𝑐𝑒𝑟𝑡, 𝑃𝐴′5. 𝑠𝑐𝑜𝑝𝑒)

3: 𝑃𝐴′5. 𝐿𝑎𝑦𝑒𝑟 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 = 𝑛𝑒𝑤𝐿𝑎𝑦𝑒𝑟(𝑃𝐴′5. 𝐸𝑛𝑐𝐿𝑎𝑦𝑒𝑟);
𝑓𝑜𝑟𝑎𝑙𝑙	 𝑃A 	∈ 𝑃𝐴′5. 𝑝&, 𝑝(, … , 𝑝�
	𝑖𝑓	 𝑝A. 𝑡𝑦𝑝𝑒 = 𝐸𝑛𝑐𝑟𝑝𝑦𝑡𝑖𝑜𝑛	

∨ 𝑅𝑒𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 , 𝑡ℎ𝑒𝑛	𝑎𝑑𝑑 𝑝A, 𝑃𝐴′5. 𝐸𝑛𝑐𝐿𝑎𝑦𝑒𝑟 ;
4: 𝑃𝐴′5. 𝐿𝑎𝑦𝑒𝑟 𝐾𝑒𝑦/𝑇𝑟𝑎𝑛𝑠 = 𝑛𝑒𝑤𝐿𝑎𝑦𝑒𝑟(𝑃𝐴′5. 𝐾𝑒𝑦/𝑇𝑟𝑎𝑛𝑠𝐿𝑎𝑦𝑒𝑟);

𝑓𝑜𝑟𝑎𝑙𝑙	 𝑃A 	∈ 𝑃𝐴′5. 𝑝&, 𝑝(, … , 𝑝�
𝑖𝑓	 𝑝A. 𝑡𝑦𝑝𝑒 = 𝐾𝑒𝑦𝑀𝑎𝑛𝑎𝑔𝑒	

∨ 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 , 𝑡ℎ𝑒𝑛	𝑎𝑑𝑑 𝑝A, 𝑃𝐴′5. 𝐾𝑒𝑦/𝑇𝑟𝑎𝑛𝑠𝐿𝑎𝑦𝑒𝑟 ;
5: 𝑃𝐴′5. 𝐿𝑎𝑦𝑒𝑟 𝐷𝑜𝑢𝑏𝑙𝑒𝐴𝑢𝑡ℎ = 𝑛𝑒𝑤𝐿𝑎𝑦𝑒𝑟(𝑃𝐴′5. 𝐷𝐴𝑢𝑡ℎ𝐿𝑎𝑦𝑒𝑟);

𝑓𝑜𝑟𝑎𝑙𝑙	 𝑃A 	∈ 𝑃𝐴′5. 𝑝&, 𝑝(, … , 𝑝�
𝑖𝑓	 𝑝A. 𝑡𝑦𝑝𝑒
= 𝐷𝑜𝑢𝑏𝑙𝑒𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 , 𝑡ℎ𝑒𝑛	𝑎𝑑𝑑 𝑝A, 𝑃𝐴′5. 𝐷𝐴𝑢𝑡ℎ𝐿𝑎𝑦𝑒𝑟 ;

6: 𝑃𝐴′5. 𝐿𝑎𝑦𝑒𝑟 𝐴𝑐𝑐𝑒𝑠𝑠𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = 𝑛𝑒𝑤𝐿𝑎𝑦𝑒𝑟(𝑃𝐴′5. 𝐴𝑐𝑐𝑒𝑠𝑠𝐿𝑎𝑦𝑒𝑟);
𝑓𝑜𝑟𝑎𝑙𝑙	 𝑃A 	∈ 𝑃𝐴′5. 𝑝&, 𝑝(, … , 𝑝�
𝑖𝑓	 𝑝A. 𝑡𝑦𝑝𝑒 = 𝐴𝑐𝑐𝑒𝑠𝑠𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 , 𝑡ℎ𝑒𝑛	𝑎𝑑𝑑 𝑝A, 𝑃𝐴′5. 𝐴𝑐𝑐𝑒𝑠𝑠𝐿𝑎𝑦𝑒𝑟 ;

7: 𝑃𝐴′5. 𝐿𝑎𝑦𝑒𝑟 𝑁𝑜𝑟𝑚𝑎𝑙𝐴𝑢𝑡ℎ = 𝑛𝑒𝑤𝐿𝑎𝑦𝑒𝑟(𝑃𝐴′5. 𝐴𝑢𝑡ℎ𝐿𝑎𝑦𝑒𝑟);
𝑓𝑜𝑟𝑎𝑙𝑙	 𝑃A 	∈ 𝑃𝐴′5. 𝑝&, 𝑝(, … , 𝑝�
𝑖𝑓	 𝑝A. 𝑡𝑦𝑝𝑒 = 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑖𝑜𝑛 , 𝑡ℎ𝑒𝑛	𝑎𝑑𝑑 𝑝A, 𝑃𝐴′5. 𝐴𝑢𝑡ℎ𝐿𝑎𝑦𝑒𝑟 ; }

8: 𝑆𝑒𝑛𝑑	 𝑃𝐴′&, 𝑃𝐴′(, … , 𝑃𝐴′� , 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 ;	

In the first step all of the policy certification flags (i.e. validation, scope and timestamps)

for each policy application request task are checked. The invalid or expired policy certificates
are removed from the queue for re-considering and updating processes. Following this
elimination, a certification layer object is created from certification class for all remaining
tasks. The rest of policy layering process is based on policy types. Encryption and re-encryption
policies take the deepest layers of policies, as well as normal authentication policies are settled

Faraz Fatemi Moghaddam
	
	

	 	

43	

in the highest layer according to the policy structure and foundation concepts. The process of
policy definition and layering (Figure 4.4) is done based on four main components as follows:

- Policy Engine: To define security polices according to capabilities of service provider and
requirements of cloud customers.

- Policy Database: To store defined polices and security level certificates.
- Policy Layer Constructor: To create multi-layered polices based on policy types and

certificates.

- Validity Engine: To check and update invalid or expired policies application request tasks
according to the certification details.

Fig 4.4. Process of Policy Layering

Security policies are defined by administrators or cloud customers in Policy Engine.
After policy definition, an object is created from PFO based on Basis and Protocol super
classes. The defined policy is sent to Policy Layer Constructor for classification and layer
creation. Following the layering process, the multi-layered policy objects and associated sub-
policies are stored in Policy Database. In addition, the eliminated polices are sent to Validity
Engine for updating and sent back to Policy Engine for policy layering after successful update
process.

4.4. Policy Application
The process of policy application is based the security capabilities of cloud nodes and

efficient distribution of multi-layered policy application tasks on the most appropriate cloud

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
44	

nodes. To achieve this purpose, multi-level virtual clusters are defined to classify cloud nodes
according to the security capabilities.

Let 𝑉𝐶 = {𝑉𝐶&, 𝑉𝐶(, …𝑉𝐶���} represents all virtual clusters with common security
capabilities, the former 𝜋 items of which are the first level clusters and the rest 𝛿 items are low
level clusters. Clusters in the lowest level contains nodes with same capabilities and in upper
levels are mixed from cloud nodes and lower level clusters. Figure 4.5 shows a four-level
virtual cluster rooted tree in detail.

Fig 4.5. Multi-Level Clustering based on Security Capabilities

To categorize cloud nodes according to the common capabilities a classification process
is introduced to create the first level of clustering by several virtual clusters with common
security capabilities (Process 1 to 3 in Algorithm 4.2).

In fact, each 𝑉𝐶 in the highest level contains cloud nodes with common security
protocols according to Multi-Layer Ontology. Thus, the output of the first step is
{𝑉𝐶&, 𝑉𝐶(, …𝑉𝐶�}.

The second step of classification phase is based on security algorithms. Each created
clusters in the first level is evaluated to classify cloud nodes according to the defined algorithms
in MLO (Process 4 to 6 in Algorithm 4.2). From the third step, cloud nodes are classified based
on sub-policies (Process 7 to 9). This process is continued until it reaches to the lowest level
of classification architecture (Process 𝑁).

Faraz Fatemi Moghaddam
	
	

	 	

45	

The proposed model uses a Distributer component on the top level and several Sub-
Schedulers in each virtual clusters. The process of applying multi-layered security policies to
data is done as follows:

Step 1: Policy Engine receives the updated layered policy application request tasks from
Layer Constructor and Policy Database: {𝑃𝐴′&, 𝑃𝐴′(, …𝑃𝐴′�} and sends to the Distributer
component.

Step 2: The main duty of Distributer is to classify policy application tasks to the most
appropriate high level cluster according to the capabilities of the cluster. Each virtual cluster is
associated with a capability set 𝐶 𝑉𝐶� = {𝐶&, 𝐶(, … , 𝐶�}	where 𝑧 ∈ 1,2, … , 𝜋 + 𝛿 and 𝛾 =
(𝑃𝐶𝑆 𝑆1 +	1

& 𝐶(𝑉𝐶/))	
/
& includes all of the capabilities of sub-clusters and sub-nodes. The

Distributer compares the multi-level ontology set of policies with the capability set of high-
level clusters:

𝐶𝑜𝑚𝑝𝑎𝑟𝑒 𝑀𝐿𝑂 𝑃𝐴5� , 𝐶 𝑉𝐶� = 𝐶𝑜𝑚𝑝𝑎𝑟𝑒 ∀𝑝A ∈ 𝑀𝐿𝑂 𝑃𝐴5� , ∀𝐶A ∈ 𝐶 𝑉𝐶�

Algorithm 4.2. Cloud Nodes Classification Phase
Input: {𝑆&, 𝑆(, … 𝑆y}: Total Cloud Nodes.
Output: {𝑉𝐶&, 𝑉𝐶(, …𝑉𝐶���}: Virtual Cluster Set.
1: 𝑓𝑜𝑟	𝑚 = 1,2, … , 𝑁;

 𝑓𝑜𝑟	∀	𝐶* 	∈ 𝑃𝐶𝑆(𝑆5) where 𝑛 = 1,2, … , 𝑋;
2: 𝑖𝑓	∃𝑉𝐶/:	∀	𝐶* ∶ 𝐶*. 𝐶_���	is matched,

 𝑡ℎ𝑒𝑛, 𝑠𝑒𝑛𝑑 𝑆5 𝑡𝑜	𝑉𝐶/;
3: 𝑒𝑙𝑠𝑒, 𝑖𝑓	∃𝐶*:	𝐶*. 𝐶_��� 	∉ 𝑉𝐶&, 𝑉𝐶(, … , 𝑉𝐶��� ,

 𝑡ℎ𝑒𝑛, 𝑉𝐶𝐶𝑙𝑎𝑠𝑠	𝑉𝐶� = 𝑁𝑒𝑤	𝑉𝐶𝐶𝑙𝑎𝑠𝑠 𝐶*. 𝐶_��� ;
4: 𝑓𝑜𝑟	𝑥 = 1,2, … , 𝜋;

 𝑓𝑜𝑟	∀	𝑆�: 𝑆� ∈ 𝑉𝐶X;
 𝑓𝑜𝑟	∀	𝐶* 	∈ 𝑃𝐶𝑆(𝑆�) where 𝑛 = 1,2, … , 𝑁;

5: 𝑖𝑓	∃𝑉𝐶/:	∀	𝐶* ∶ 𝐶*. 𝐶�c�	is matched,
 𝑡ℎ𝑒𝑛, 𝑠𝑒𝑛𝑑 𝑆� 𝑡𝑜	𝑉𝐶�;

6: 𝑒𝑙𝑠𝑒, 𝑖𝑓	∃𝐶*:	𝐶*. 𝐶�c� 	∉ 𝑉𝐶&, 𝑉𝐶(, … , 𝑉𝐶���� ,
 𝑡ℎ𝑒𝑛, 𝑉𝐶𝐶𝑙𝑎𝑠𝑠	𝑉𝐶� = 𝑁𝑒𝑤	𝑉𝐶𝐶𝑙𝑎𝑠𝑠 𝐶*. 𝐶�c� ;

7: 𝑓𝑜𝑟	𝑥 = 1,2, … , 𝜋;
 𝑓𝑜𝑟	∀	𝑉𝐶 : 𝑉𝐶 ∈ 𝑉𝐶X;
 𝑓𝑜𝑟	∀	𝑆�: 𝑆� ∈ 𝑉𝐶 ;
 𝑓𝑜𝑟	∀	𝐶* 	∈ 𝑃𝐶𝑆(𝑆�) where 𝑛 = 1,2, … , 𝑁;

8: 𝑖𝑓	∃𝑉𝐶 :	∀	𝐶* ∶ 𝐶*. 𝑠𝑝z	is matched,
 𝑡ℎ𝑒𝑛, 𝑠𝑒𝑛𝑑 𝑆� 𝑡𝑜	𝑉𝐶¡;

9: 𝑒𝑙𝑠𝑒, 𝑖𝑓	∃𝐶*:	𝐶*. 𝑠𝑝z 	∉ 𝑉𝐶&, 𝑉𝐶(, … , 𝑉𝐶����� ,
 𝑡ℎ𝑒𝑛, 𝑉𝐶𝐶𝑙𝑎𝑠𝑠	𝑉𝐶� = 𝑁𝑒𝑤	𝑉𝐶𝐶𝑙𝑎𝑠𝑠 𝐶*. 𝑠𝑝z ;

⋮ Creation of new levels until reaching to the lowest level
𝑁: 			𝑉𝐶 = {𝑉𝐶&, 𝑉𝐶(, …𝑉𝐶���};

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
46	

The policy application task is assigned to the high-level virtual cluster with all of the
required capabilities. If there are several options, the task is sent to the cluster with lower
workload. Furthermore, if there is not any cluster with all of the capabilities, the task is assigned
to a cluster with most common capabilities and policies.

Step 3: Each virtual cluster has a Sub-Scheduler component to manage policy application
tasks and classify them according to the capabilities of associated clusters and sub-nodes. The
algorithm of scheduling application tasks is as follows:

Step 3.1: A classified policy application task set {𝑃𝐴′&, 𝑃𝐴′(, …𝑃𝐴′£} is received form
the Distributer or higher Sub-Scheduler where 1 < 𝐷 < 𝑀.

Step 3.2: The Sub-Scheduler compares the multi-level ontology set of policies with the
capability set of subset clusters or sub-nodes according to security algorithms:

∀	𝑃𝐴′C ∈ 𝑃𝐴�&, 𝑃𝐴�(, …𝑃𝐴�£ :	
𝐶𝑜𝑚𝑝𝑎𝑟𝑒 𝑀𝐿𝑂 𝑃𝐴C� , 𝐶 𝑉𝐶&,(,… , 𝑃𝐶𝑆 𝑆&,(,… =	

𝐶𝑜𝑚𝑝𝑎𝑟𝑒 ∀𝑝A ∈ 𝑀𝐿𝑂 𝑃𝐴C� , ∀𝐶A ∈ 𝐶 𝑉𝐶&,(,… , 𝑃𝐶𝑆 𝑆&,(,…

The policy application task is assigned to the most appropriate sub-cluster or sub-node

with all of the required capabilities. If the task is assigned to the most appropriate cloud node,
the process of mapping defined policy is performed (Algorithm 4.3).

According to this algorithm, each policy is applied to the data according to several layers.
In the first step the policy application is processed in the cloud node as well as calling all
associated components in the next step. Step 3 re-checks the policy certification for validating
the request. From step 4 to 8, Normal Authentication, Access Commands, Double
Authentication, Key Management and Encryption policies are applied respectively according
to layers of policy.

If the process of mapping fails in each step, the loop is broken and the task is sent back
to the Policy Engine for updating as well as eliminating the task from Distributer set. Also, if
all of the defined policies are applied successfully, the confirmation flag is sent to the
Distributer.

Step 3.3: If there is not appropriate cloud node for the application task, the task is sent to
the most appropriate virtual cluster in the lower level.

Step 3.4: In the lower level, Step 3.2 and 3.3 are repeated until the most appropriate cloud
node is found for the policy application task.

Step 4: According to the first step, if there is not any cluster with all of the required
capabilities, the task is assigned to a cluster with most common capabilities and policies.
Therefore, the cluster applies all of the common policies to the task and sends a Conditional
flag to the Distributer for re-assigning the task to another cluster to apply remaining policies.
Accordingly, Step 3.2 and 3.3 are repeated to achieve the Approved flag.

Faraz Fatemi Moghaddam
	
	

	 	

47	

Algorithm 4.3. Policy Mapping Process in Selected Cloud Node
Input: 𝑀𝐿𝑂 𝑃𝐴5 = {𝑐𝑒𝑟𝑡, 𝑠𝑐𝑜𝑝𝑒, 𝑟𝑒𝑠, 𝑝&, 𝑝(, … , 𝑝�}: Policy Application Task
Output: 𝐴𝑃𝑃(𝑃𝐴5): Approval Flag of Applied Policy
3.2.1: 𝑃𝑟𝑜𝑐𝑒𝑠𝑠	 𝑃𝐴5 ;
3.2.2: ∀𝑝1 ∈ 𝑃𝐴5 &	 ∀𝐶/ ∈ 𝑃𝐶𝑆 𝑆z :	𝑀𝑎𝑝𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑃𝐴5. 𝑝1 , 𝑆z. 𝐶/
3.2.3:

𝑖𝑓 𝑃𝐴5. 𝑝A. 𝑐𝑒𝑟𝑡 = 𝑒𝑥𝑝𝑖𝑟𝑒𝑑
�

A�&

𝑡ℎ𝑒𝑛, 𝐴𝑃𝑃 𝑃𝐴5 = 𝑓𝑎𝑙𝑠𝑒!

𝑒𝑠𝑙𝑒	 𝑃𝑜𝑙𝑖𝑐𝑦𝐶𝑒𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑎𝑠𝑠 ;
3.2.4: 𝑓𝑜𝑟(𝑢 = 1, 𝑈)

𝑓𝑜𝑟𝑎𝑙𝑙 	𝑃𝐴5. 𝑝A. 𝑡𝑦𝑝𝑒 = 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝑃𝐴5. 𝑝A. 𝑟𝑒𝑠 = 𝑁𝑜𝑟𝑚𝑎𝑙

𝑖𝑓	 𝑀𝑎𝑝𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆z. 𝐶/. 𝐶g�i, 𝑃𝐴5. 𝑝A = 𝑓𝑎𝑙𝑠𝑒 ,
𝐴𝑃𝑃 𝑃𝐴5 = 	𝑓𝑎𝑙𝑠𝑒!
𝑒𝑙𝑠𝑒	 𝑃𝑜𝑙𝑖𝑐𝑦𝑁𝑜𝑟𝑚𝑎𝑙𝐴𝑢𝑡ℎ = 𝑃𝑎𝑠𝑠 ;

3.2.5: 𝑓𝑜𝑟(𝑢 = 1, 𝑈)
𝑓𝑜𝑟𝑎𝑙𝑙 	𝑃𝐴5. 𝑝A. 𝑡𝑦𝑝𝑒 = 𝐴𝑐𝑐𝑒𝑠𝑠
𝑖𝑓	 𝑀𝑎𝑝𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆z. 𝐶/. 𝐶g�i, 𝑃𝐴5. 𝑝A = 𝑓𝑎𝑙𝑠𝑒 ,
𝐴𝑃𝑃 𝑃𝐴5 = 	𝑓𝑎𝑙𝑠𝑒!
𝑒𝑙𝑠𝑒	 𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑐𝑐𝑒𝑠𝑠 = 𝑃𝑎𝑠𝑠 ;

3.2.6: 𝑓𝑜𝑟(𝑢 = 1, 𝑈)

𝑓𝑜𝑟𝑎𝑙𝑙 	𝑃𝐴5. 𝑝A. 𝑡𝑦𝑝𝑒 = 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝑃𝐴5. 𝑝A. 𝑟𝑒𝑠 = 𝐷𝑜𝑢𝑏𝑙𝑒

𝑖𝑓	 𝑀𝑎𝑝𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆z. 𝐶/. 𝐶g�i, 𝑃𝐴5. 𝑝A = 𝑓𝑎𝑙𝑠𝑒 ,
𝐴𝑃𝑃 𝑃𝐴5 = 	𝑓𝑎𝑙𝑠𝑒!
𝑒𝑙𝑠𝑒	 𝑃𝑜𝑙𝑖𝑐𝑦𝐷𝑜𝑢𝑏𝑙𝑒𝐴𝑢𝑡ℎ = 𝑃𝑎𝑠𝑠 ;

3.2.7: 𝑓𝑜𝑟(𝑢 = 1, 𝑈)
𝑓𝑜𝑟𝑎𝑙𝑙 	𝑃𝐴5. 𝑝A. 𝑡𝑦𝑝𝑒 = 𝐾𝑒𝑦/𝑇𝑟𝑎𝑛𝑠
𝑖𝑓	 𝑀𝑎𝑝𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆z. 𝐶/. 𝐶g�i, 𝑃𝐴5. 𝑝A = 𝑓𝑎𝑙𝑠𝑒 ,
𝐴𝑃𝑃 𝑃𝐴5 = 	𝑓𝑎𝑙𝑠𝑒!
𝑒𝑙𝑠𝑒	 𝑃𝑜𝑙𝑖𝑐𝑦𝐾𝑒𝑦𝑇𝑟𝑎𝑛𝑠 = 𝑝𝑎𝑠𝑠 ;

3.2.8:

𝑓𝑜𝑟(𝑢 = 1, 𝑈)
𝑓𝑜𝑟𝑎𝑙𝑙 	𝑃𝐴5. 𝑝A. 𝑡𝑦𝑝𝑒 = 𝐸𝑛𝑐𝑟𝑝𝑦𝑡𝑖𝑜𝑛
𝑖𝑓	 𝑀𝑎𝑝𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆z. 𝐶/. 𝐶g�i, 𝑃𝐴5. 𝑝A = 𝑓𝑎𝑙𝑠𝑒 ,
𝐴𝑃𝑃 𝑃𝐴5 = 	𝑓𝑎𝑙𝑠𝑒!
𝑒𝑙𝑠𝑒	 𝑃𝑜𝑙𝑖𝑐𝑦𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 = 𝑝𝑎𝑠𝑠 ;

3.2.9: 𝑖𝑓	 𝐴𝑃𝑃 𝑃𝐴5 ≠ 𝑓𝑎𝑙𝑠𝑒 = 𝑠𝑒𝑛𝑑 𝐴𝑃𝑃 𝑃𝐴5

4.5. Policy Mapping
One of the most challenging issues in policy-based security models is to provide efficient

and reliable mapping between access requests and defined polices. The special characteristic

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
48	

of proposed multi-layered ontology helps to improve the process of access management by
eliminating unnecessary mapping processes.

The process of mapping between policies and access requests is done in several phases.

Phase 1 (Basic Authentication): An access token is generated for the cloud user with
basic authentication policies of the system:

𝑇𝑜𝑘𝑒𝑛𝐶𝑙𝑎𝑠𝑠	𝐴𝑇A = 𝑁𝑒𝑤	𝑇𝑜𝑘𝑒𝑛𝐶𝑙𝑎𝑠𝑠 𝑈X, 𝑁𝑜𝑟𝑚𝑎𝑙𝐴𝑢𝑡ℎ ;

where 𝑈X is the user information. After the successful authentication, access to the basic

level without additional policies is granted. For each new access request, the access engine
checks the associated polices and map to the requested node if all of the policies are satisfied.

Phase 2 (Multi-Layered Policy Mapping): In this phase each layer of requested policy is
checked step by step to map the access request to data efficiently.

Step 1: In the first step all of the policy certification flags are checked as follows:

𝑖𝑓 𝑃𝑜𝑙𝑖𝑐𝑦5. 𝑝A. 𝑐𝑒𝑟𝑡 = 𝑒𝑥𝑝𝑖𝑟𝑒𝑑
�

A�&

𝑡ℎ𝑒𝑛,= 𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑒𝑛𝑖𝑒𝑑!	

In fact, if even one of the certificates from defined polices is invalid or expired, the
process of access is discontinued and other polices are not checked anymore.

Step 2: After checking the certificate, main policies and sub-policies are checked based
on defined layers. Hence, if the request is against one policy, the access is denied and lower
level polices are not checked anymore. Accordingly, the unnecessary mapping processes are
eliminated from access task management queue. An access policy checking is mapped as
follows:

𝑓𝑜𝑟(𝑢 = 1, 𝑈)
𝑓𝑜𝑟𝑎𝑙𝑙 	𝑃𝑜𝑙𝑖𝑐𝑦5. 𝑝A. 𝑝_��� = 𝐴𝑐𝑐𝑒𝑠𝑠
𝑖𝑓	 𝐴𝑐𝑐𝑒𝑠𝑠𝑀𝑎𝑝 ∀𝑠𝑝 ∈ 𝑃𝑜𝑙𝑖𝑐𝑦5. 𝑝A , 𝑈X. 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑓𝑎𝑙𝑠𝑒 	𝑡ℎ𝑒𝑛, 𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑒𝑛𝑖𝑒𝑑!
𝑒𝑙𝑠𝑒 𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑐𝑐𝑒𝑠𝑠 = 𝑃𝑎𝑠𝑠 ∧ 𝐴𝑇A = 𝐴𝑇A. 𝑎𝑑𝑑𝐶𝑎𝑝 𝑃𝑜𝑙𝑖𝑐𝑦5. 𝑝A ;

The session access token is updated according to the capabilities of requester to enhance

the process of policy mapping.

Step 3: The process of policy mapping is continued for the next access requests regarding
to the stored capabilities of access token. In fact, only un-checked capabilities are evaluated in
next requests until the token is valid.

𝑓𝑜𝑟(𝑢 = 1, 𝑈)
𝑓𝑜𝑟𝑎𝑙𝑙 	𝑃𝑜𝑙𝑖𝑐𝑦5. 𝑝A. 𝑝_��� = 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ∧ 𝑃𝑜𝑙𝑖𝑐𝑦5. 𝑝A. 𝑝g�i = 𝐷𝑜𝑢𝑏𝑙𝑒

 𝑖𝑓	 𝐴𝑇A. 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦. 𝑖𝑠𝐶ℎ𝑒𝑐𝑘𝑒𝑑 𝑃𝑜𝑙𝑖𝑐𝑦5. 𝑝A. 𝑝g�i = 𝑉𝑎𝑙𝑖𝑑 	
 𝑡ℎ𝑒𝑛, 𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑎𝑠𝑠

Faraz Fatemi Moghaddam
	
	

	 	

49	

		𝑒𝑙𝑠𝑒	𝑖𝑓	 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝 ∀𝑠𝑝 ∈ 𝑃𝑜𝑙𝑖𝑐𝑦5. 𝑝A , 𝑈X. 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑓𝑎𝑙𝑠𝑒 	
							𝑡ℎ𝑒𝑛, 𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑒𝑛𝑖𝑒𝑑!
			𝑒𝑙𝑠𝑒 𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑎𝑠𝑠 ∧ 𝐴𝑇A = 𝐴𝑇A. 𝑎𝑑𝑑𝐶𝑎𝑝 𝑃𝑜𝑙𝑖𝑐𝑦5. 𝑝A ;

Step 4: If the access request fulfills all associated policy requirements based on the stored
access token or consequence policy mapping, the access is granted by the Access Management
Engine.

4.6. Evaluation and Discussion
In order to incarnate the superiorities of multi-layered policy generation, application and

management in cloud-based environments, we give a security and performance analysis of the
suggested model in this section. Accordingly, several scenarios are described to evaluate the
reliability and efficiency of this model during policy definition, policy application and policy
mapping as follows:

4.6.1. Performance Analysis

To evaluate the performance of proposed schema several experiments were performed.
In the first case study, the efficiency of multi-layered policy definition and multi-level
scheduling were examined. Hence, three types of policy definition and policy application
environments were defined: (1) Single Layered Policies with Single Level of Scheduling, (2)
Multi Layered Policies with Single Level of Scheduling and (3) Multi Layered Policies with
Multi Level of Scheduling. The simulation environment was designed based 200 nodes with
different security capabilities as well as, same size data associated with random policy
application tasks from a list of 50 defined security levels.

The total processing time by increasing the number of policy application tasks were
evaluated in the first experiment (Figure 4.6A). The policy application tasks are increased from
100 to 3000 requests according to defined security levels and three types of policy layering and
scheduling levels. According to the results the multi-layered policies with multi-level of
scheduling (i.e. proposed model) performed considerably efficient by increasing the number of
tasks. In the first 500 requests, the total processing time was approximately in a same range for
all scenarios. However, the difference was significantly appeared by increasing the number of
task requests as far as 61% difference between the proposed model and single layered policies
with single level of scheduling scenario and has proved the efficiency of suggested model in
applying security policies to data.

In the second case study (Figure 4.6B), the performance of managing access requests
according to defined policies in proposed model was evaluated according to the defined policy
definition and application environments: Single Layered Policies, Multi-Layered Policies
without Token and Multi-Layered Policies with Token. Hence, response times for 200 access
requests in each environment by one user were examined. According to the results the response
time for multi-layered policies with token is significantly less than two other models due to the
elimination of unnecessary processes for policy mapping. The range of response time for multi
layered policies with token is between [200,1100]	𝑚𝑠, as far as, 800, 1700 	𝑚𝑠 for single
layered policies.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
50	

	 	
Fig. 4.6A. Fig. 4.6B.

Fig. 4.6C. Fig. 4.6D.

Fig 4.6. Performance Analysis of Multi-Layered Policy Management Model

with Multi-Level of Scheduling
In the third experiment the performance of multi-layered policy management during

semantic policy mapping by invalid access requests was evaluated. In the scenario, numbers of
users requested 100% invalid access requests. In fact, all of requests were against certificates
or defined access, authentication and encryption policies.

Figure 4.6C shows the results of total processing time for invalid access requests. Based
on the results, the multi-layered policy with token schema processed invalid requests
considerably less that other models by elimination of un-necessary policy mapping processes.

0
10

00
00

20
00

00
30

00
00

40
00

00
50

00
00

60
00

00

10
0

Re
qu

es
ts

20
0

Re
qu

es
ts

30
0

Re
qu

es
ts

40
0

Re
qu

es
ts

50
0

Re
qu

es
ts

60
0

Re
qu

es
ts

70
0

Re
qu

es
ts

80
0

Re
qu

es
ts

90
0

Re
qu

es
ts

10
00

 R
eq

ue
sts

11
00

 R
eq

ue
sts

12
00

 R
eq

ue
sts

13
00

 R
eq

ue
sts

14
00

 R
eq

ue
sts

15
00

 R
eq

ue
sts

16
00

 R
eq

ue
sts

17
00

 R
eq

ue
sts

18
00

 R
eq

ue
sts

19
00

 R
eq

ue
sts

20
00

 R
eq

ue
sts

21
00

 R
eq

ue
sts

22
00

 R
eq

ue
sts

23
00

 R
eq

ue
sts

24
00

 R
eq

ue
sts

25
00

 R
eq

ue
sts

26
00

 R
eq

ue
sts

27
00

 R
eq

ue
sts

28
00

 R
eq

ue
sts

29
00

 R
eq

ue
sts

30
00

 R
eq

ue
sts

Ti
m

e
(m

s)

Single Layered Policies with Single Level of Scheduling
Multi Layered Policies with Single Level of Scheduling
Multi Layered Policies with Multi Level of Scheduling

0
50

0
10

00
15

00
20

00

Ti
m

e
(m

s)

Numbers of Access Requests

Single Layered Policies
Multi Layered Policies without Token
Multi Layered Policies with Token

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

Ti
m

e
(m

s)

Single Layered Policies
Multi Layered Policies without Token
Multi Layered Policies with Token

97.5%

2.0% 0.5% 0.0%

92.5%

3.5% 2.5% 1.5%

92.0%

3.5% 3.0% 1.5%

0
0.

2
0.

4
0.

6
0.

8
1

Perfect Match Close Match Possible Match No-Match

Pe
rc

en
ta

ge

Distributer

Sub-Schedulers

Both

Faraz Fatemi Moghaddam
	
	

	 	

51	

Indeed, several access requests were terminated in the higher levels and there was not any
necessity to process lower policies in multi-layered policy schema.

The final experiment was regarding to the performance of Distributer and Sub-Scheduler
components for efficient scheduling of policy application tasks. Accordingly, four types of
parameters were defined: Perfect Match (the most appropriate cloud node based on capabilities
and current workload), Close Match (the most appropriate cloud node based on capabilities but
not current workload), Possible Match (the possible cloud node but not the most appropriate
one) and No-Match (there is not a match between the cloud node and application task
requirements). The experiment environment involves 4 levels of scheduling with 50 nodes
associated with defined capabilities and current workload parameter. The aim of this
experiment was to assign 200 policy application tasks to these nodes and to check whether it
was the best choice or not. The experiments checked the performance of Distributer, associated
Sub-Scheduler and both of them. According to the results in figure 3.6D, the Distributer
assigned 97,5% of tasks to the perfect cluster and none of the tasks was assigned to the
completely no-match cluster. Also. 92,5% of tasks were distributed into the most appropriate
nodes by Sub-Schedulers. There were 1,5% no-match results that were because of the variety
of capabilities in different nodes. Furthermore, 92% of tasks were assigned to the most
appropriate cluster and node, as well as, 3,5% and 3% close and possible matches according
the capabilities of nodes and current workload.
Table 4.2. Security Analysis of Multi-Layered Policy Generation
Security Concern Category Solution Method
Validity of Policy Foundation Policy Certificate was defined for confirming the validity of

policies based on time flags and owners.

Revoked Capabilities Foundation Multi-level policy ontology was used to manage added or
revoked capabilities of cloud provider by inheritance concepts.

Flexible Policies Foundation Properties (Sub-Policies) were introduced to change defined
value without any limitation and security concerns.

Reliable Classification Structure Using Policy Foundation Set with defined Policy Type to
classify policies efficiently.

Invalid Authentication Structure Establishing two levels of authentication after checking policy
certificate and access policies to ensure about the identity of
requester.

Invalid Access Structure The access request is terminated whenever one of the policies is
not satisfied and there is not any necessity to check lower level
policies and sub-policies.

Resource Protection Structure Using cryptography mechanism in the lowest layer of policies to
decrease the processing power for encryption and decryption as
well as providing associated keys in the last step.

Reliable Layering Structure Using a stand-alone component to create layers for policies
before storing in policy database according to defined structure.

Semantic Mapping Structure Establishing a validity engine for mapping defined policies to
access requests with a semantic and reliable method.

Validity of Certificates Structure Updating the polices engine about the validity of certificates
after each policy mapping.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
52	

4.6.2. Security Analysis

The security of multi-layered policy definition has been ensured in two main categorizes:
reliability of Policy Foundation and security of Policy Structure. Defined polices were flexible
in both security mechanisms and associated properties to provide reliable layering according
to the capabilities of service provider and requirements of cloud customers.

Table 4.2 shows the security analysis of our proposed model regarding to defined
objectives and possible treats. The analysis proves this multi-layered schema may resist against
possible treats by various methods in both Foundation and Structure parts.

The security of multi-level policy application and policy mapping were based on reliable
classification of nodes and efficient distribution of policy application tasks. In fact, defined
polices were classified efficiently to provide secure mapping between request and capabilities.
Furthermore, all access requests were evaluated with taking minimum processing power and
maximum security.

Finally, the process of token management was considered to control access confirmations
from associated level securely for prevention of un-authorized accesses. Table 4.3 shows the
security analysis of suggested model regarding to defined objectives and possible treats. The
analysis shows this multi-layered schema may resist against possible treats by various methods
and solutions in classification and policy management phases.

Table 4.3. Security Analysis of Policy Management
Security Concern Category Solution Method
Reliable Assigning Policy Application All policy application tasks are assigned to the most

appropriate cloud node for policy application according to
the multi-level clustering.

Failure in Policy
Application

Policy Application Without a valid approval, the Policy Engine does not remove
the policy application task from the queue. Therefore, if there
is a failure in policy application procedures, the Distributer
re-assigns the task to the most appropriate node.

Failure in Security
Algorithm

Policy Application Only affects the associated clusters and other clusters are
isolated. Furthermore, the failure may solved in only higher
levels and all lower levels are affected due to the advantages
of multi-level policies.

Reliable Access
Management

Policy Mapping Mapping all the associated polices layer by layer according
to the capabilities of requester

Validity of Policies Policy Mapping Re-checking the certificate of associated policy to confirms
the validity of policy before access request processing.

Security of Tokens Policy Mapping Checking and updating the content of token during each
access request.

Un-Secure Mapping Policy Mapping The process of mapping requests to policies is done in several
levels from lower to higher security algorithms. Thus, it’s
impossible to map the access requests without satisfaction of
all associated policies.

Faraz Fatemi Moghaddam
	
	

	 	

53	

4.6.3. Competitive Analysis
Table 4.4 shows the competitive analysis of suggested model according to the objectives

of a multi-layered policy management in cloud computing environments. Based on the
comparison, the suggested model provides a multi-level and also multi-layered policy engine
to establish a syntactic and also semantic mapping between polices and access requests.
Furthermore, the flexibility of policies is increased by using inheritance concepts and multi
level sub-policies. Finally, additional and un-necessary policy mapping processes are
eliminated from the model by using a multi-layered policy checking.

Table 4.4. Competitive Analysis of Proposed Model
Competitive Analysis Rei

[94][94][94][94]
Di Modica Veloudis PEaaS Proposed

Structure Policy Policy Policy Policy Policy
Environment Web Cloud Cloud Cloud Cloud
Multi-Level Yes Yes Yes Yes Yes
Multi-Layer No No Yes No Yes
Syntactic & Semantic Analysis No Yes Yes Yes Yes
Layering Engine No No No No Yes
Flexible Polices No No No No Yes
WS-Policy Language No Yes Yes Yes Yes
Sub-Policies and Properties No No No Yes Yes
Policy Certificate No Yes No No Yes
Mapping Elimination No No No No Yes
Dual Authentication Layering No No No No Yes

4.7. Conclusion
To enhance the quality on managing security policies in cloud-based environments and

to provide efficient, secure and reliable matching between security requirements of customers
and capabilities of service providers [96], a multi-layered policy engine was introduced in this
chapter. A well-established policy framework was defined to generate security policies which
are compliant to requirements and capabilities.

A multi-layered security policy was built around two main concepts: Foundation and
Structure. The Foundation of each policy includes potential security protocols, mechanisms
and algorithms that are used to establish dedicated security levels according to the capabilities
of service provider and requirements of cloud customers, as well as, the Structure of policies
is the way to define and manage policies and sub-policies according to the Foundation.

The process of policy application is based the security capabilities of cloud nodes and
efficient distribution of multi-layered policy application tasks on the most appropriate cloud
nodes. Hence, a federated policy management schema is introduced based on the policy
definition framework and multi-level policy application to create and manage virtual clusters
with identical or common security levels. The model was evaluated according to performance
and security parameters and proved that this multi-layered policy engine enhances the

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
54	

reliability and efficiency of managing security polices in cloud computing environments during
policy definition, policy application and policy mapping procedures.

One of the most important effects of our policy management system is to provide secure
authentication and access control procedures based on sensitivity of resources, capabilities of
service provider and constraints. The next chapter specifies our policy management model in
a cloud-based authentication and authorization schema to enhance the efficiency and reliability
of mapping access requests to associated resources with defined policies.

Faraz Fatemi Moghaddam
	
	

	 	

55	

Chapter 5

5. POLICY-BASED IDENTITY MANAGEMENT

5.1. Introduction
One of the most challenging security issues in clouds that has led to the appearance of

several researches and solutions is to ensure reliable accesses to different cloud servers based
on various policies in each server. In fact, service providers needs to manage access requests
and map them to resources according to defined policies from cloud customers or service
providers [49].

Using a federated identity management schema is the most popular solution for managing
accesses to different cloud servers with single identity. In recent years most cloud services have
adopted OpenID [56] or Shibboleth [59] as the most independent and flexible authentication
and identity management models in cloud-based platforms. The proliferation of these identity
federations has allowed cloud users belonging to one network (known as home organization)
to access the services provided by other networks (known as remote organizations), all
members of the same federation [97].

Therefore, there isn’t any necessity for cloud users to re-introduce their credentials for
each access in different cloud servers. The most important characteristic of identity
management models is to provide a framework with fast-authentication mechanisms [12], low
access time and reduced authentication data exchanges between different service access
requests [98]. Although the establishment of multiple security mechanisms in each node

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
56	

enhance the security of resources and reduces considerable processing power for manipulating
sensitive and also non-sensitive data [43], the authentication data exchange and access time for
cloud users in identity management models are also affected. In particular, two important
concerns in cloud-based identity management models are still challenging:

- Managing defined policies in different virtualized nodes according to capabilities of
service providers, requirements of resource owner and constraints [99].

- Mapping access requests to cloud-servers based on established security mechanisms
and defined policies of each node [100].

In this chapter, a policy-based user authentication model is presented to provide a reliable
identity management mechanism for establishing multiple access policies in different
virtualized nodes and mapping access requests to defined policies accordingly capabilities of
cloud servers and requirements of resources. Accordingly, a structural policy language and
policy engine are introduced for policy generation, application and management. Moreover, a
policy match framework is described for managing identities and mapping access requests to
virtualized resources based on defined policies.

5.2. Related Works
The fundamental goal of any identity management model is to ensure a reliable

authentication of subscribed users according to the defined policies of different cloud servers
and to protect information from un-authorized accesses. There is a wide variety of methods,
techniques, models, and administrative capabilities used to propose and design identity
management models [53] and each system has its own attributes, methods, and functions. The
importance of these identity management models is more evident for cloud providers and
customers according to the characteristics of cloud-based services that work with shared open
environments. Therefore, several studies and researches were performed to improve the
reliability and efficiency of managing identities in clouds.

In recent years most of Single Sign On (SSO)-enabled access management models are
based on web applications such as SAML [54] and OAuth [55] for allowing users and
application services access to web resources. OpenID [56] is one of the most popular relevant
federated authentication technologies that allows cloud users to use a single identity for
accessing various services from different cloud servers and for elimination of managing
different identities by cloud users. However, OpenID relies on an ID provider to generate a
unique identity for each user [57]. Therefore, the server has to connect to the ID provider on
the Internet during authentication of cloud users and it leads to a high level of time and
computation load [58].

Shibboleth [59] is another federated identity management model which is similar to
OpenID, for allowing users to authenticate to different services using just one piece of
information. Shibboleth is an open source implementation of federated identity based
management model where the identity providers provide information and the service providers
consume this information giving access to content or services [60]. However, the most
challenging concern of Shibboleth is to provide different levels of authentication based on the

Faraz Fatemi Moghaddam
	
	

	 	

57	

sensitivity of data in various cloud servers. In fact, mapping between federated identity
information with different levels of security in cloud servers based on defined policies is still
the main issue in these types of federated identity management models [57][58].

The other solution was proposed as Kerberos [61] by using distribution of authentication
tickets to provide a generic access control protocol and reliable SSO. The most drawback of
Kerberos is the lack of privacy solutions in the model that was tried to solve as an extension in
several models such as KAMU [62] or PrivaKerb [46]. Kerberos-based models use an
operation mode (cross-realm) to be compatible for federated environments. Nevertheless, these
models consist a completely independent infrastructure aside those already established for the
access to web application services and the network access service [63]. Hence, Kerberos cross-
realm federations have not been widely deployed [64]. Using an interaction between Kerberos
and Extensible Authentication Protocol (EAP) [65] protocols was the other solution the
enhance weaknesses of cross-realm federations. Using EAP-based pre-authentication
mechanism [63] and also using Protocol for Carrying Authentication for Network Access
(PANA) [66] to bootstrap dynamic Kerberos credentials on the service providers [67] are the
most popular efforts to enhance Kerberos cross-realm federations. However, the necessity for
deployment of Kerberos entity on every organization and providing SSO within each
organization’s boundaries are the most considerable inconvenient of proposed models.

To solve the problem of compatibility and deployment in Kerberos-based models,
Leandro et al. [68] uses a multi tenancy authorization system to deliver access control based
on concerns about the privacy of data. The proposed model was built around Shibboleth core
concepts with authorization and authentication mechanisms to emphasize on self-governing
and control of trusted third parties, according to the digital identity federation [69]. This method
was followed by [70] by adding stand-alone identity management features to the federated
model. However, it has been proven [71] that misuse of user identity information in self-
governed and stand alone identity federation could happen via SSO services in IDP and SP,
which could lead to identity theft (i.e. the main concern in federated identity management
systems). Thus, Bhargav-Spantzel et al. [72] recommended two mechanisms to protect the
misused of identity information: distributing user identity information amongst several self-
governed entities and using zero-knowledge proofs techniques to prevent identity theft within
an IDP or SP. Although, the recommended mechanisms reduced the chance of identity theft,
there are still serious concerns about the process mapping requests from revoked identities in
stand alone identity federations [73]

Kalra and Sood [74] proposed an Elliptic Curve Cryptosystem-based (ECC) algorithm to
provide a mutual authentication protocol for secure communication of embedded devices and
cloud servers in association with HTTP cookies. The evaluation of this model proved that it
was robust against multiple security attacks. However, managing ECC keys for different cloud
servers in this model takes considerable processing power for manipulating sensitive and non-
sensitive access policies in different cloud servers [75].

Apart from ECC, several cloud-based authentication models were designed with various
techniques such as Biometrics-Based Authentication [76], Certificate-less Anonymous
Authentication [74][75], User Behavior Analysis-based [77] and ID-Based identity
management [78] with the same issue that is the lack of congruency in different cloud servers
with distinguished access policies. Indeed, the necessity of a policy-based identity management

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
58	

in different cloud servers with various security levels is undeniable according to rapid growth
of cloud providers.

Using policies to establish different security levels in traditional and also modern
distributed networks allows to manage the processing power for manipulating sensitive and
also non sensitive resources. Hence, several policy-based languages and models are suggested
to classify resources based on sensitivity. WS-Policy [32] is an extendable general purpose
framework associated with a defined syntax to describe the policies of entities and a broad
range of service requirements and capabilities in a web services-based system.

This XML-based framework has been extended by various researchers according to
service requirements such as security services. Di Modica and Tomarchio proposed a semantic
secure policy matching based on WS-Policy framework in [38] and [41] for service oriented
and cloud-based architectures. In the cloud-based model, the capabilities of the cloud service
provider and the requirements of the cloud customer were defined within policies adopted to
the WS-Policy framework.

There are several security standards that are extended from WS-Policy architecture such
as “WS-Trust” [33] or “WS-PolicyAttachment” [79]. “WS-Trust” is an OASIS standard for
changing security tokens from one format to another in an interoperable manner in order to
establish and assess the presence of participants in a secure message exchange. Also, “WS-
PolicyAttachment” was expressed to define two mechanisms for associating policies with the
subjects they apply and to represent the way of attaching WS-Policy descriptions end points.
Furthermore “WS-SecurityPolicy” [34] and “WS-SecureConversation” [35] were extended
from WS-Policy architecture to describe the security specifications of WS-Trust and to
improve the performance of frequent communications by using a shared symmetric and pair of
asymmetric keys from the security context respectively. The comparison between WS-based
standards is available in [17].

The challenging issue in policy-based resource classification is to map access requests
from cloud users based on defined security policies of resources. In fact, a policy-based identity
management needs to analyze policies syntactically and also semantically and map access
requests based on the established security mechanisms of each node [12]. Hence, policy
management is one of the most challenging key points of identity management in multi-level
virtualized resources. On the other hand, the processes of scheduling, analyzing and mapping
access request tasks according to the policies need to be considered in policy-based identity
management.

Providing a federated authentication schema for different cloud servers needs an efficient
authentication task manager to administrate access requests based on defined policies. CSA is
a multi-level adaptive authentication schema in clouds that was proposed [80] to dictate the
efforts of protocol participants by identifying a legitimate user’s requests and placing them at
the top of the authentication process queue. In fact, a multi-objective scheduling model for
authentication tasks was suggested to prevent DoS attacks in multi-level cloud servers.
Although, the process of authentication task management in CSA was based on risk
identification, not on defined policies in multi-level authentication.

According to the previous research results, a scalable policy-based identity management
is presented in this chapter to address two main problems: (1) Lack of coincidence in identity

Faraz Fatemi Moghaddam
	
	

	 	

59	

management models based on defined policies and various security levels in different cloud
servers, (2) Lack of multi-objective authentication task management according to the defined
policies in multi-level authentication procedures.

5.3. Problem Description
As described in previous section, the main aim of proposed model is to manage identities

based on defined policies in cloud servers. Each virtualized node in cloud-based data center is
associated with set of policies. These polices are classified in several protocols according to
Protection Ontology [43].

The classification of security policies are based on three main parts: Resource Protection
(including cryptography and key management policies), Confidential Transport (including
signature and transport policies) and Identity Management (including authentication and access
control policies). The latter, which is the focus of this work, refers to the capabilities that are
provided to ensure the reliable access mapping between requests and policies by managing
identities based on capabilities of service provider and requirements of cloud users.

Assume that there are 𝑁 virtualized node (server) in the cloud-based data center, denoted
as 𝑆&, 𝑆(, … , 𝑆y , and the current authentication policy set of node 𝑆* with 𝑠 ∈ {1,2, … , 𝑁} is
𝑃 𝑆* = {𝑝&, 𝑝(, … , 𝑝�}. Given 𝐼 registered users’ access requests waiting to be processed,
denoted as {𝑈&, 𝑈(, … , 𝑈ª}, and each 𝑈1 is associated with specific identity set (authentication
and authorization set)

𝐴𝐴 𝑈1 =
𝐼𝐷1, ℎ 𝑃𝑊1 , ℎ 𝐼𝐷1 ⨁ℎ 𝑃𝑊1 , 𝐴𝑃&, ℎ 𝐴𝑅& , ℎ 𝐴𝑃& ⨁ℎ 𝐴𝑅&

1
, … ,

	 𝐴𝑃/, ℎ 𝐴𝑅/ , ℎ 𝐴𝑃/ ⨁ℎ 𝐴𝑅/
1

 where 𝐼𝐷, 𝑃𝑊, 𝐴𝑃 and 𝐴𝑅 are user ID, user basic password, access policy and access

response respectively. Other notations used in this model are shown in Table 5.1.

There are several authentication and authorization (access) policies that are defined for
each node to enhance the security level of the node in comparison between other nodes. The
authentication policies are focus on confidentiality and integrity of resources, while the
authorization policies are based on privacy and access management features of cloud resources.
To provide a semantic mapping between requests and policies, each of authentication and
authorization policies of a specific node need to be evaluated according to the characteristic of
cloud user.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
60	

Table 5.1. The Notations of Proposed Model
Notations Description Notations Description

𝑆1 Node (Server) ID ∥ String Concatenation Operation
𝑃 𝑆* Set of Policies for Node 𝑛 ℎ() One-Way Hash Function
𝑈1 Current User ⨁ Exclusive-Or Function
𝑝1 Policy Type 𝑇𝑆 Timestamp Generated by the Cloud

User
𝑆𝑃 Sub-Policy 𝑇𝑆′ Timestamp Generated by the Node
𝐴𝐴 𝑈1 Identity Set (Authentication &

Authorization)
∆𝑇𝑆 Time Difference of the Timestamps

𝐼𝐷1 User ID 𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑠𝑠𝑖𝑜𝑛 Access Session Class
𝑃𝑊1 Basic Password for User 𝑖 𝑇𝐾1 Access Token for User 𝑖
𝐴𝑃/® Access Policy for Policy 𝑗 and User 𝑖 𝑒 Access Token Status Property
𝐴𝑅/® Access Response for Policy 𝑗 and

User 𝑖
𝑁𝐴𝑅(1,*) Node Access Request for User 𝑖 and

Node 𝑛
𝑥* Secret Key for Node 𝑛 𝑅𝑄 Response Queue
𝐻𝑃(𝑆*) Hashed Value Set of Policies for

Node 𝑛
𝐶𝑄 Checking Queue

𝑋(𝑆*) Secret Policy Value for Node 𝑛 𝑋′(𝑆*) Secret Value based on Access
Request

𝐴𝑆𝑇 Algorithm Session Time 𝑇𝑀 Task Management Class

The objective of suggested model is to map elements of the policy set for each node to
appointed access responses for cloud users to provide decisive access permit. For instance,
consider a cloud provider with different services (e.g. storage, platform, software, etc.) and
each service has dedicated security policies (e.g. two factor authentication for storage and one-
time single pass for software). The main problem is to address the process of mapping security
requirements of these cloud services to defined authentication and authorization capabilities of
the cloud user in identity set. Overall, the access request of specific node is granted if and only
if the following equation is applied to the request:

∀𝑝1 ∈ 𝑃 𝑆* ∶ ∃ 𝐴𝑃/, 𝐴𝑅/ 1
∶ 𝑝1 = 𝐴𝑃/ 1

∧ 	 𝐴𝑅/ 1
= 𝑡𝑟𝑢𝑒

In fact, cloud user needs to provide additional authorization and authentication
capabilities for nodes with higher security policies. The proposed model tries to manage access
requests and map between access policies and authentication capabilities of cloud users
according to the equation.

5.4. Proposed Model
Using an agent-based authentication model [101][102][103] to send access requests, to

search on policy queues and to match access requests to a specific defined policy may seem
like a plausible solution for achieving the goal. However, this agent-based authentication
process in not scalable and takes lots of processing power to map between requirements and
capabilities. Thus, the design of our proposed model is based on a different manner. Our

Faraz Fatemi Moghaddam
	
	

	 	

61	

schema uses a framework with four components to define, store, check and match policies with
identity details. Figure 5.1 shows the overall architecture of our model in details.

	

Fig. 5.1. Architecture of Policy-Based Identity Management

5.4.1. Policy Engine

The main duty of Policy Engine is to define and generate authentication and authorization
policies based on the structural Protection Ontology [43] for cloud customers according to
security requirements. Protection Ontology is a policy language based on WS-Policy [32] as a
recommended W3C language for defining various security levels in cloud-based environments.

Protection ontology classifies security algorithms to three main levels: Protocol,
Mechanism and Algorithm. In the proposed model authentication and authorization capabilities
of service provider are offered according to this classification. Figure 5.2 shows an example of
this classification according to the authentication and authorization capabilities of service
provider. This structural classification helps to apply different security mechanisms to
virtualized nodes and creates security levels based on requirements of cloud users and
sensitivity of resources.

Each of the offered algorithms is associated to a structural semantic resource for security
level establishment according to the concepts of WS-Policy and Protection Ontology. A
security-based SLA is the output of security ring (level) establishment and is defined as
Security Level Certificate (SLC).

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
62	

	

Fig. 5.2. Policy-Based Identity Management Ontology: Multi Level Class

In the following an example of ring definition for virtualized nodes according to WS-
Policy and described classification is given:

<wsp:Policy>
…namespace definition…
 <wsp:SLC rdf:ID=”SLC3GRSE23GHD5”>
 <wsp:Header>
 …
 </wsp:Header.
 <wsp:Body>

<security:AuthenticationProtocol rdf:ID=”AuthenticationRequirement”>
<security:DoubleMechanism rdf:ID=”DoubleClassRequirement”>

<security:AuthenticatorAlgorithm rdf:resource=”AuthenticatorClass”>
<rdf:HLSP_Authenticator rdf:HLSP_Authenticator_1=”App” rdf:HLSP_Authenticator_2=”Email”
rdf:HLSP_Authenticator_3=”Phone”>
</security:AuthenticatorAlgorithm>

 </security:DoubleMechanism>
 </security: AuthenticationProtocol>

<security:AuthorizationProtocol rdf:ID=”AccessManagementRequirement”>
<security:RoleMechanism rdf:ID=”RoleClassRequirement”>

<security:PermanentAlgorithm rdf:resource=”PermanentRoleClass”>
<rdf:HLSP_Role rdf:HLSP_Role_1=”Lecturer” rdf:HLSP_Role_2=”Student”
rdf:HLSP_Role_3=”Professor” rdf:HLSP_Role_4=”Staff” rdf:HLSP_Role_5=”Admin”/>
</security:PermanentAlgorithm>

 </security:RoleMechanism>
 <security:ReputationMechanism

 rdf:ID=ReputationClassRequirement”>
 <security:GeoAlgorithm

 rdf:resource=”GeoClass”>
 <rdf:HLSP_Geo rdf:HLSP_Geo_1=”Germany” rdf:HLSP_Geo_2=”World”/>

 </security:GeoAlgorithm>
 </security:ReoutationMechanism>
 </security:AuthorizationProtocol>

 </wsp:Body>
 </wsp:SLC>
</wsp:Policy>

Faraz Fatemi Moghaddam
	
	

	 	

63	

In this example, the authentication policy of the virtualized node uses double
authentication with authenticator algorithm as second password generator. The second factor
methods of this authenticator is based on various delivery such as application, email and text
message. Furthermore, an authorization mechanism is defined based on classical role-based
access model with several sub-policies (i.e. defined roles) associated with modern reputation
access management to check the geographical characteristics of access requests. The process
of mapping between security requirements of virtualized nodes to access requests of cloud
users is based on defined policies of SLC.

As described the main duty of policy engine is to define and generate authentication and
authorization policies for different virtualized nodes according to the sensitivity of nodes and
capabilities of service provider. The process of policy application is done by policy engine
based on generated SLC as follows:

Step 1. Policy engine sends SLC ID to node 𝑛 to apply defined policies of SLC to the node.

Step 2. According to the associated SLC, node 𝑛 calls semantic resources of SLC to create
𝑃(𝑆*).

𝑓𝑜𝑟	 𝑖 = 0	𝑡𝑜 (𝑟𝑑𝑓: 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)z

°

z�±

	𝑝1 = 𝑝1 	 ∥ 𝑎𝑑𝑑 𝑆𝑃²
𝑋 𝑝1 = ℎ 𝑝1

𝐻𝑃 𝑆* = 𝑎𝑑𝑑 𝑋 𝑝1

where 𝑅 is the total of semantic algorithm resources and 𝜇 =

	 𝑟𝑑𝑓:𝐻𝐿𝑆𝑃
´bA*_(µ¶·¸)
 �± are the defined sub-policies for each algorithm based on the SLC.

Also, the hashed value of each policy 𝑝1 is stored in the set 𝐻𝑃(𝑆*).

Step 3. 𝑋 𝑆* = ℎ 𝑥* ⨁ℎ 𝑝& ⨁ℎ 𝑝(…⨁ℎ(𝑝*)
where 𝑥* and 𝑋 𝑆* are the secret key and the secret value for node 𝑛 respectively.

Step 4. Send 𝑃 𝑆* , 𝐻𝑃 𝑆* , 𝑋 𝑆* to Policy Database.
The SLC, policy set, hashed policy set and secret value of node 𝑛 are sent to policy

database.

5.4.2. Policy Database
All of the generated SLCs, defined policies and sub policies for clouds servers are stored

in the Policy Database component. Each SLC can be assigned to several nodes with similar or
different sub-policies according to the security requirements, resource sensitivity and
capabilities of service provider. Moreover, the final policy set with low level sub policies,

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
64	

hashed policy set and secret value for each node are stored in the policy database for
matchmaking process during access control.

5.4.3. Policy Check Point

The check point component creates, updates and manages identities for accessing to
different nodes. Identities are defined in registration phase, updated in checking phase and
managed in access control phase. In recent years, two types of registration progresses are
performed in web-based models:

• Normal Registration: The creation of personal identity within cloud provider with User ID,
Password and other personal details.

• Third-Party Registration: Using registered identities in social media or other cloud
providers (e.g. Google ID or Facebook ID, etc.).

During the registration phase by each of these models, an Identity set (Authentication
and Authorization) object 𝐴𝐴(𝑈1) is created from identity set class for user 𝑈1 . The basic
identity set with the lowest identity details is associated with the user ID and password:

𝐼 𝑈1 = 𝐼𝐷1, ℎ 𝑃𝑊1 , ℎ 𝐼𝐷1 ⨁ℎ 𝑃𝑊1

By the basic identity set, cloud users can access to the nodes with the lowest security

level in cloud environment. However, three types of authentication and authorization access
policies need to be defined and added to the identity set based on polices and capabilities of
service provider:

• User Access Policies (UAP): These types of policies are defined by cloud users according

to capabilities of cloud provider. For instance, cloud user can establish second password
with an authenticator application or email.

• Cloud Access Policies (CAP): These types of policies are awarded to cloud users by the
provider or admin after an identity validation (e.g. a role-based identity in a university).

• Temporary Access Policies (TAP): These types of policies are based on dynamic
parameters such as location, hardware and time.

An access policy is defined in identity set according to the characteristics of policy by a
triplex set as follows:

𝐴𝑃/, ℎ 𝐴𝑅/ , ℎ 𝐴𝑃/ ⨁ℎ 𝐴𝑅/

1

Faraz Fatemi Moghaddam
	
	

	 	

65	

where 𝐴𝑃/ and 𝐴𝑅/ refer to semantic resource access policy (e.g. two factor
authentication by Email) and access responses (e.g. confirmed email address) respectively.
Therefore, the authentication set for 𝑈1 are updated based on defined UAP, CAP and TAPs as:

𝐴𝐴 𝑈1 =
𝐼𝐷1, ℎ 𝑃𝑊1 , ℎ 𝐼𝐷1 ⨁ℎ 𝑃𝑊1 , 𝐴𝑃&, ℎ 𝐴𝑅& , ℎ 𝐴𝑃& ⨁ℎ 𝐴𝑅&

1
, … ,

	 𝐴𝑃/, ℎ 𝐴𝑅/ , ℎ 𝐴𝑃/ ⨁ℎ 𝐴𝑅/
1

5.4.4. Policy Match Gate
The proposed identity management model for mapping accesses requests to defined

policies is based on the performance of policy match gate. Given 𝐼 registered users’ access
requests waiting to be processed, denoted as {𝑈&, 𝑈(, … , 𝑈ª}, and each 𝑈1 is associated with a
specific authentication set 𝐴𝐴 𝑈1 . The main aim of Match Gate is to process access requests
and to map between these requests and defined polices for each node according to the identity
set.

To provide an efficient policy mapping algorithm, a session class is defined by policy
match gate for creation of access session objects according to the capabilities of cloud users.
The objects from this class (𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑠𝑠𝑖𝑜𝑛 class) use several security functions and
parameters to ensure about the reliable mapping between capabilities and security policies.
After the registration phase in the check point component, cloud users are able to sign in to
cloud computing environment by their basic internal or external login information. A
successful basic login lets the policy match gate to create a session object from the access
session class for basic or additional security checking. The process of using this object for
identity management is in number of steps as follows:

Step 1. An object is created by the basic login from 𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑠𝑠𝑖𝑜𝑛 class with basic
parameters.

𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑠𝑠𝑖𝑜𝑛	𝐴𝑆𝑈1 = 𝑛𝑒𝑤	𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐼𝐷1, ℎ(𝑃𝑊1), 𝑇𝑆, ℎ 𝐼𝐷1 ⨁ℎ 𝑃𝑊1 , 𝑇𝐾1, 𝑒 	

where 𝑇𝐾1 is a basic token access for 𝑈1 and is valid if login details are matched with

𝐴(𝑈1) and 𝑒 is a Boolean property that shows the status of 𝑇𝐾1 whether is enabled or disabled.

Step 2. The basic value of 𝑇𝐾1 after the first login lets the cloud user to access basic nodes
with lowest security level. In this level policy match gate checks if ∆𝑇𝑆 and 𝑒 are still valid,
the access of cloud user to the root nodes are granted. The basic value of 𝑇𝐾1 is calculated
as follows:

𝑇𝐾1 = 	ℎ ℎ 𝐼𝐷1 ∥ 𝑇𝑆 ⨁ℎ 𝑃𝑊1

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
66	

Step 3. When the cloud user requests for accessing to basic nodes, the match gate calculates
Node Access Request (𝑁𝐴𝑅) as follows:

𝑖𝑓 𝑒 = 𝑡𝑟𝑢𝑒 ⋀ ∆𝑇𝑆 = 𝑉𝑎𝑙𝑖𝑑 	𝑡ℎ𝑒𝑛	 𝑁𝐴𝑅 1,* = 𝑇𝐾1, 𝐸𝑛𝑐 𝑇𝐾1, 𝑥*

where 𝐸𝑛𝑐 is AES-256 encryption function with the secret key for node 𝑛. The checking

phase confirms the identity of user and the value of 𝑁𝐴𝑅 is sent from match gate to requested
node.

Step 4. Server 𝑛 receives the request from Match Gate and access is granted if the
difference between timestamps and the following equation is valid:

𝑖𝑓 ∆𝑇𝑆 = 𝑉𝑎𝑙𝑖𝑑 ⋀ 𝑇𝐾1 = 𝐷𝑒𝑐 𝑇𝐾1, 𝑥* 	𝑡ℎ𝑒𝑛	𝐴𝑐𝑐𝑒𝑠𝑠	𝑖𝑠	𝐺𝑟𝑎𝑛𝑡𝑒𝑑

This calculation helps to check if the secret key of node 𝑛 is still valid or not. In fact, the

validated identity from match gate can access to request node if the secret value of node is
valid. If the validity of the equation is not confirmed, Match Gate should update the secret key
of server 𝑛 in database.

Step 5. If the cloud user requests for accessing to nodes with the defined security policies
and higher privacy levels, further identity details are requested from Match Gate based on
the defined policies. Thus, Match Gate checks 𝑃(𝑆*) from policy database and asks 𝑈1 if
UAP or TAP policies are needed for authentication and authorization checking. Also, the
user database is checked by Match Gate for CAP policies for only authorization checking
if needed. Each of the requested access details should be provided by the cloud user (i.e.
UAP and TAP) or the user database (i.e. CAP) and 𝐴𝑆𝑈1 is updated according to the
provided details:

𝐴𝑆𝑈1. 𝐴𝑑𝑑𝐴𝑐𝑐𝑒𝑠𝑠𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐴𝑃&, ℎ 𝐴𝑅& , ℎ 𝐴𝑃& ⨁ℎ 𝐴𝑅& , 𝐴𝑆𝑇& ;

𝐴𝑆𝑈1. 𝐴𝑑𝑑𝐴𝑐𝑐𝑒𝑠𝑠𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐴𝑃(, ℎ 𝐴𝑅(, ℎ 𝐴𝑃(⨁ℎ 𝐴𝑅(, 𝐴𝑆𝑇(;

⋮

𝐴𝑆𝑈1. 𝐴𝑑𝑑𝐴𝑐𝑐𝑒𝑠𝑠𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐴𝑃/, ℎ 𝐴𝑅/ , ℎ 𝐴𝑃/ ⨁ℎ 𝐴𝑅/ , 𝐴𝑆𝑇/ ;

where 𝐴𝑆𝑇 is the Algorithm Session Time that shows the maximum validity of

confirmed access response. For instance, the valid time for confirmed second password is
longer that 1-time password. By each of the additional identity details the value of 𝑇𝐾1 is
updated as follows:

𝑇𝐾1 = 𝑇𝐾1⨁ ℎ 𝐴𝑃/ ∥ 𝑇𝑆 ⨁ℎ 𝐴𝑅/

Step 6. After updating the value of 𝑇𝑘1 and confirming the identity of cloud user by
additional identity request and according to the capabilities of user, the match gate sends
server access requests to the requested node as follows:

Faraz Fatemi Moghaddam
	
	

	 	

67	

𝑋� 𝑆* = 	 (ℎ 𝑥* ⨁ℎ 𝐴𝑃& ⨁ℎ 𝐴𝑃(…⨁ℎ(𝐴𝑃/))

𝑖𝑓 𝑒 = 𝑡𝑟𝑢𝑒 ⋀ ∆𝑇𝑆 = 𝑉𝑎𝑙𝑖𝑑 	𝑡ℎ𝑒𝑛	 𝑁𝐴𝑅 1,* = 𝑇𝐾1, 𝐸𝑛𝑐 𝑇𝐾1, 𝑥* , ℎ 𝑋� 𝑆* , 𝑇𝑆�

Step 7. Server 𝑛 receives the request from Match Gate and access is granted if the ∆𝑇𝑆 and
the following equations are valid:

𝑖𝑓	 ∆𝑇𝑆 = 𝑉𝑎𝑙𝑖𝑑 ⋀ 𝑇𝐾1 = 𝐷𝑒𝑐 𝑇𝐾1, 𝑥* ⋀ ℎ 𝑋 𝑆* = ℎ 𝑋� 𝑆* 	
𝑡ℎ𝑒𝑛	𝐴𝑐𝑐𝑒𝑠𝑠	𝑖𝑠	𝐺𝑟𝑎𝑛𝑡𝑒𝑑

This calculation checks the validity of timestamp, the validity of secret key and finally

the confirmed application and mapping process of defined policies by checking the validity of
secret value.

Step 8. If the user requests to access to a node with common policies that were confirmed
by match gate before and the Algorithm Session Time for the access response is still valid
for the policy, just un-checked policies are evaluated and the is no necessity to re-check
previous policies. In fact, every functions and properties of 𝐴𝑆𝑈1 are confirmed and stay
reusable until the algorithm session time for that authentication or authorization algorithm
is still valid. For instance, the session time for double authentication is less than single
authentication and 𝑈1 needs to be double-authenticated again after the session time for
double authentication is over while the session time for basic authentication is still valid.
Also, re-authentication for some authorization access policies (e.g. Geographical or
Software authenticators) or One-Time passwords need to be checked periodically or
continuously. These valid session times are defined as sub-policies in the ring establishment
stage based on Protection Ontology.

5.4.5. Match Gate Task Management

One of the most challenging issues in policy-based mapping models is to manage access
request tasks according to defined polices in different types of workloads. In fact, the scalability
of suggested models needs to guaranteed in the case predictable of dramatic changing
workloads. To achieve this purpose, all of the access request tasks need to be evaluated
semantically to classify requests based on the current status of the access session object.

 The process of match gate task management is performed in three phase: classification,
initialization and scheduling. In the first phase of analysis, access requests with created session
objects are separated from new requests.

Let 𝑇 = {𝑡&, 𝑡(, … 𝑡y�´} represents all access request tasks, the former 𝑁 items of which
are new requests and the rest 𝐶 items are requests with created 𝐴𝑆𝑈 objects.
𝑇𝑎𝑠𝑘𝑀𝑎𝑛𝑎𝑔𝑚𝑒𝑛𝑡	(𝑇𝑀) class is defined to create objects including a 𝐶×5 matrix as follows:

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
68	

	 𝑇𝐾1				𝑒 𝑈𝐴𝑃 𝐶𝐴𝑃 𝑇𝐴𝑃
𝑡y�&
𝑡y�(
⋮

𝑡y�´

													
	 	
	 	
	 	

						
			 			
	 																	

	 	
	 	

	 	
	 	

where 𝑒 is the status of 𝑇𝐾1 showing whether is enabled or disabled and 𝑈𝐴𝑃, 𝐶𝐴𝑃 and

𝑇𝐴𝑃 are the numbers of remaining cloud, user and temporary access policies for each cloud
user respectively.

The first created object from 𝑇𝑀 class has the highest priority for processing. Also, the
second object is created from new objects of basic authentications, 𝑡1 ∈ {𝑡&, 𝑡(, … , 𝑡y} and if
𝑁 > 𝐶, next objects are created from 𝑇𝑀 with lower priorities.

The process of managing requests is done according to the priority of objects from 𝑇𝑀,
the validity of 𝑇𝐾1 obtained by checking the value of 𝑒 and the number of remaining tasks in
each cell of matrix. Algorithm 4.1 shows the process of access task management in details. The
scheduling process is done in 𝑧 rounds according to the number of created matrix objects and
the tasks are scheduled in response and checking queues for authentication requests from users
and the user database in clouds respectively.

Algorithm 5.1. Access Task Management
Input: 𝑇𝑀 = {𝑇𝑀&, 𝑇𝑀(, … , 𝑇𝑀�} : the set of created objects from 𝑇𝑀 class.
Output: Scheduled task queue.

1. Initialize Matrix 𝑻𝑴𝟏 to 𝑻𝑴𝒛.
∃𝑡¿ ∈ 𝑇where 𝑇 = {𝑡y�&, 𝑡y�(, … 𝑡y�´}
𝑓𝑜𝑟	𝛿 = 1,2, … , 𝑧, {𝑖𝑓	𝑇𝑀� = 𝐸𝑛𝑎𝑏𝑙𝑒𝑑, 𝐴𝑠𝑠𝑖𝑔𝑛	 𝑡¿	𝑡𝑜	𝑇𝑀� 𝑎𝑛𝑑	𝐵𝑟𝑒𝑎𝑘}

2. Analysis of First Matrix Object.
𝑓𝑜𝑟	(𝜗 = 0	𝑡𝑜	𝐶), check all of the items in 𝑇𝑀& with enabled 𝑒 and send remained 𝑈𝐴𝑃 and
𝑇𝐴𝑃 tasks to Response Queue (𝑅𝑄) and 𝐶𝐴𝑃 task to Checking Queue (𝐶𝑄).

3. Update First Matrix Object.
 𝑓𝑜𝑟	(𝜗 = 0	𝑡𝑜	𝐶), check all of the items in 𝑇𝑀& with disabled 𝑒, delete row details and update
𝑇𝑀& status.

4. Analysis of Second Matrix Object.
𝑓𝑜𝑟	(𝜗 = 0	𝑡𝑜	𝐶), check all of the items in 𝑇𝑀(with enabled 𝑒 and send remained 𝑈𝐴𝑃 and
𝑇𝐴𝑃 tasks to Response Queue (𝑅𝑄) and 𝐶𝐴𝑃 task to Checking Queue (𝐶𝑄).

5. Update Second Matrix Object.
 𝑓𝑜𝑟	(𝜗 = 0	𝑡𝑜	𝐶), check all of the items in 𝑇𝑀(with disabled 𝑒, delete row details and update
𝑇𝑀(status.

⋮ ⋮
𝑥. Analysis of 𝒛th Matrix Object.

𝑓𝑜𝑟	(𝜗 = 0	𝑡𝑜	𝐶), check all of the items in 𝑇𝑀� with enabled 𝑒 and send remained 𝑈𝐴𝑃 and
𝑇𝐴𝑃 tasks to Response Queue (𝑅𝑄) and 𝐶𝐴𝑃 task to Checking Queue (𝐶𝑄).

𝑥 + 1. Update Second Matrix Object.
 𝑓𝑜𝑟	(𝜗 = 0	𝑡𝑜	𝐶), check all of the items in 𝑇𝑀� with disabled 𝑒, delete row details and update
𝑇𝑀� status.

Faraz Fatemi Moghaddam
	
	

	 	

69	

After the classification process in the first phase and initializing Matrix 𝑇𝑀& to 𝑇𝑀� in
the second phase, tasks need to be classified according to authentication and authorization
characteristics. In the task analysis phase, authentication tasks including 𝑈𝐴𝑃, 𝑇𝐴𝑃 policies
are scheduled in response queue that needs appropriate access response from cloud user.

On the other hand, most of authorization tasks are 𝐶𝐴𝑃-based and checked in checking
queue to receive data from user database and the rest are based on 𝑈𝐴𝑃 that are scheduled in
response queue. After the scheduling process, the match gate updates the status of the task
according to the number of remaining 𝑈𝐴𝑃, 𝑇𝐴𝑃 and 𝐶𝐴𝑃 tasks and the value of 𝑒 for the task
is changed. If there is any remaining authentication and authorization tasks, the row will be
deleted from associated task management matrix. Figure 4.3 shows classification, initialization
and analysis phases in details.

	

Fig. 5.3. Match Gate Task Management Schema

5.5. Discussion
In order to incarnate the superiorities of this schema in cloud-based environments, we

give a security and performance analysis of the proposed model in this section. Accordingly,
several scenarios are described as follows:

5.5.1. Case Study 1

In the first case study the performance of check point and match gate components are
evaluated. Accordingly, 3 Security Level Certificates are defined (Table 4.2) and several virtual
machines are established with different security sub-policies based on SLCs. Also, cloud users
try to access these machines regarding to identification capabilities and security requirements.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
70	

Table 5.2. Defined Authentication and Access Protocols in SLCs
Protocol SLC 1 (Low) SLC 2 (Medium) SLC 3 (High)
Authentication User/Pass User/Pass User/Pass
Authentication - Second Pass Second Pass
Authentication - - One-Time Pass
Authorization Permanent Permanent Permanent
Authorization Temporary Temporary -
Authorization - Geo Geo
Authorization - - Software

The first aim of this experiment is to analyze the scalability of proposed model. This
scalability experiment is classified to three part: (1) Number of virtual servers with different
sub-policies, (2) Number of cloud users with access request, and (3) Simultaneous increase in
both numbers of virtual servers and cloud users.

	 	

Fig. 5.4A. Respond Time By Increasing Number of VMs

Fig. 5.4B. Respond Time By Increasing Number of Users

	

Fig. 5.4C. Respond Time By Simultaneous Increase in both Numbers of Virtual Servers and Cloud Users

Fig. 5.4. Respond Time for Proposed Identity Management Model

In the first experiment (Fig. 5.4A), the respond time for access requests by increasing the
number of VMs with various sub-policies were examined. According to the results, the respond
time was risen dramatically before the number of VMs were reached to 200 VMs. Nevertheless,

0.00

1.00

2.00

3.00

4.00

0 200 400 600 800 1000 1200
Respond Time for Random VMs Respond Time for VMs with SLC 1
Respond Time for VMs with SLC 2 Respond Time for VMs with SLC 3

0.00

2.00

4.00

6.00

0 200 400 600 800 1000 1200
Respond Time for Random VMs Respond Time for VMs with SLC 1
Respond Time for VMs with SLC 2 Respond Time for VMs with SLC 3

0.00

2.00

4.00

6.00

8.00

0 200 400 600 800 1000 1200
Respond Time for Random VMs Respond Time for VMs with SLC 1
Respond Time for VMs with SLC 2 Respond Time for VMs with SLC 3

Faraz Fatemi Moghaddam
	
	

	 	

71	

this increased were continued with less intensity after 200 VMs and proves that the model is
scalable in confronting with large number of servers in cloud-based environments.
Furthermore, the respond time by increasing the number of access requests (Fig. 5.4B) had a
same behavior specially in large number of users.

Finally, the last experiment (Fig. 5.4C) shows the respond time in simultaneous increase
of access request and VMs with different defined sub-policies. According to the experiment
results, the respond time for access requests was increased sharply in first stage and after a
certain amount of requests and VMs, the increase slope remained approximately constant. As
was expected, the sharp increase in requests for SLC3 is higher than other requests because of
the complexity of defined polices in high secure levels. Moreover, the random requests for
accessing to cloud servers as a real world experience shows better results than SLC2 and SLC3
and proves that the proposed model is scalable in large number of access requests or cloud
servers with different access policies.

5.5.2. Case Study 2

In the second experiment the performance of match gate in different types of workloads
was evaluated. Accordingly, the total process time for processing 500 access requests to VMs
with SLC3 (high secure VMs with more authentication and authorization policies) was
examined in the first step. The aim of this case study is to examine the effects of static,
continuously changing, dramatic increase and predictable increase workloads on the
performance of match gate task management. The experiment was in 6 rounds based on
different types of workloads. Figure 5.5 shows the results in details.

	

	
Fig. 5.5. Effects of Different Workload on the Performance of Match Gate Task Management

In the static workload, the number of user accesses was same in all rounds. However, the

total processing time was decreased slightly due to the common policies in different VMs.
Thus, there was not any necessity to re-check common policies. As expected, in the dramatic
increase of users requests, the total processing time was risen dramatically and in the respective
rounds the total processing time was reduced considerably to the normal range. This change
was less in predictable change due to the predictable scheduling in associated task processing.

0

1000

2000

3000

4000

5000

6000

Ruond 1 Ronud 2 Ronud 3 Round 4 Round 5 Round 6
Static Continuously Change

Dramatic Change Predictable Change

ms

0

1000

2000

3000

4000

5000

6000

Ruond 1 Ronud 2 Ronud 3 Round 4 Round 5 Round 6

Static Continuously Change
Dramatic Change Predictable Change

ms

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
72	

Finally, the rate of change in continuously increase of requests is significantly slight. That was
because two different effects: increase due to the number of requests and decrease due to the
common policies in different VMs. Overall, the results show the performance of match gate
task management for semantic mapping of access polices to request was scalable enough in
different types of workloads.

5.5.3. Case Study 3

The most important characteristics of the proposed model is the ability to map between
defined polices and access requests. This mapping process is in both authentication and policy
definition sides. To analyze the performance of the schema, a scenario was designed with a
service provider with 3 SLCs (Table 5.2) and 20 VMs with different sub-policies (10 SLC1-
based, 6 SLC2-based and 4 SLC3-based VMs). 100 users with different identification
capabilities and authorization properties (e.g. role, geo, etc.) requested to access established
VMs by match gate component. Each user tried to login basically in the first step and requested
to access several VMs with different SLCs and sub-policies randomly.

In total, there were 2000 access requests from users (includes 1087 requests for accessing
to VMs for the first time, 654 requests for accessing to VMs without new identification
response, 168 request with expired session time and 91 un-authorized requests). Fig. 5.6 shows
the performance analysis of Match Gate. According to the results, 100% of the granted accesses
or prevented requests were syntactically and semantically analyzed with successful results. In
fact, the proposed model guarantees the correctness of access management process by semantic
mapping between user identities and defined policies.

	

Fig. 5.6. Performance Analysis of Match Gate

5.5.4. Security Analysis
The security of policy-based user authentication model is granted in 3 main parts:

1. Security of Defined Policies: All of the policies are re-checked periodically to specify new
or revoked polices of cloud servers according to timestamps.

0

5

10

15

20

Access with New Identification Request Access without New Identification Request

Denied Access Finieshed Session Time

Users

Number of Requests

Faraz Fatemi Moghaddam
	
	

	 	

73	

2. Security of User Data: All of user authentication capabilities are secured and capable to
resist against possible attacks and unpredicted events.

3. Security of Mapping Process: The process of mapping between access requests and defined
policies are secured by using appropriate solutions to control timestamps, resist against
possible attacks and map in a secure and semantic manner.

Table 5.3 shows the security analysis of the proposed model according to defined
objectives. The analysis shows that this schema can resist against possible attacks by various
methods and solutions during policy definition, policy application, user registration, identity
management and mapping between access requests and defined polices. Each of these solutions
were tested and several scenarios were designed to evaluate the security of suggested schema.

Table 5.3. Security Analysis of Proposed Model
Security Concern Classification Solution Method
Policy Definition Policies Using WS-Policy

Definition of Secret Policy Value for Server 𝑛
𝑋 𝑆* = ℎ 𝑥* ⨁ℎ 𝑝& ⨁ℎ 𝑝(…⨁ℎ(𝑝*)

Policy Update Policies Checking Servers Secret Key in Lowest Level of Security
𝑇𝐾1 = 𝐷𝑒𝑐 𝑇𝐾1, 𝑥*
Checking Secret Policy Value for Policy Checking
ℎ(𝑋 𝑆*) = ℎ(𝑋� 𝑆*)

User Registration User Using Token-Based Solution
𝑇𝐾1 = 	ℎ ℎ 𝐼𝐷1 ∥ 𝑇𝑆 ⨁ℎ 𝑃𝑊1

Access Request Identity Management Boolean Value of 𝑒 for Checking Current Status of User
Updating Access Token by New Capabilities
𝑇𝐾1 = 𝑇𝐾1⨁ ℎ 𝐴𝑃/ ∥ 𝑇𝑆 ⨁ℎ 𝐴𝑅/

Mapping Requests Identity Management Generation of Confirmation Tag from Match Gate and Send to Cloud
Server
 𝑁𝐴𝑅 1,* = 𝑇𝐾1, 𝐸𝑛𝑐 𝑇𝐾1, 𝑥* , ℎ(𝑋� 𝑆*), 𝑇𝑆�

Insider Attack Identity Management Dual Checking in Policy Match Gate and Cloud Server
𝑇𝐾1 = 𝑇𝐾1⨁ ℎ 𝐴𝑃/ ∥ 𝑇𝑆 ⨁ℎ 𝐴𝑅/
ℎ(𝑋 𝑆*) = ℎ(𝑋� 𝑆*)

Impersonation
Attack

Identity Management Update Timestamp by Dual XOR to hashed Access Capabilities and
Access Respond.
𝑇𝐾1 = 𝑇𝐾1⨁ ℎ 𝐴𝑃/ ∥ 𝑇𝑆 ⨁ℎ 𝐴𝑅/

Reply Attack Identity Management Encrypt and Decrypt the Access Tag from Match Gate to Cloud Server
by Unique Secret Value of Cloud Sever based on Defined Access
Policies.

5.5.5. Competitive Analysis
Table 5.4 shows the competitive analysis of the proposed model according to the

objectives of an identity management schema in cloud-based environments. According to the
results, the proposed model is able to provide a multi-level authentication process by policy
definition in different cloud servers and dual authenticator in both match gate and cloud server
to ensure about the security and efficiency of this process.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
74	

Table 5.4. Competitive Analysis of Proposed Model
Objectives OpenID Sood Kumari Lu Proposed Model
Policy-Based Yes Yes No No Yes
Multi-Level Authentication Yes No Yes Yes Yes
Light Time & Computation Load No No No Yes Yes
Multi-Level Token-Based No No No No Yes
Cloud Server Dual Authenticator No No No No Yes
Multi-Level Policies by Protection Ontology No No No No Yes
Authentication Task Manager Yes No Yes No Yes
Scalability Yes No No No Yes
Semantic Analysis of Access Request No Yes No No Yes

Furthermore, the proposed model is significantly scalable in comparison with most of

authentication models to have a better performance in face with large number of access request
and defined policies. Finally, this schema uses semantic analysis of access request with an
efficient authentication task management and token-based identity management to ensure
about the security and reliability of this challenging issue in cloud computing environments.

5.6. Conclusion
According to the previous research results, a scalable policy-based identity management

was presented in this chapter to address two main problems: (1): Lack of coincidence in identity
management models based on defined policies and various security levels in different cloud
servers, (2): Lack of multi-objective authentication task management according to the defined
policies in multi-level authentication procedures [99].

Therefore, a policy-based user authentication model was presented to provide a reliable
identity management mechanism for establishing multiple access policies in different
virtualized nodes and mapping access requests to defined policies based on capabilities of cloud
servers and requirements of resources. Moreover, a structural policy language and policy
engine were introduced for policy generation, application and management.

The proposed model provides an authentication schema with 4 main components (i.e.
Policy Engine, Policy Database, Check Point and Match Gate) to define access policies by
cloud servers, to apply policies according with Protection Ontology, to manage user identities
and to map access request by cloud users with defined polices semantically.

This model was evaluated with performance, security and competitive analysis, and the
reliability and efficiency of the suggested schema was assured for managing user identities in
different cloud servers with various levels of security.

In addition to the effects of our policy-management model in authorization and
authentication procedures, there is a challenging issue in resources protection specially during
user revocation, failure or other unpredictable scenarios. In fact, the security of associated data
and resources should be granted by service provider according to defined policies. In the next
two chapters a reliable re-encryption and effective user revocation models are introduced based
on our policy management system to ensure the security of data in case of unpredictable
scenarios.

Faraz Fatemi Moghaddam
	
	

	 	

75	

Chapter 6

6. POLICY-BASED RE-ENCRYPTION SCHEMA

6.1. Introduction
Using cryptographic models are the most common solutions to ensure data and resource

protection in virtualized environments. To guarantee the reliability of these encryption models
and to make sure the data confidentiality and fine-grained access control in cloud computing
environments, stored data and resources needs to be re-encrypted periodically or based on
special mechanisms such as revoked user-based or manual re-encryption [81].

Managing the process of re-encryption is a challenging issue that involves many
limitations such as time management, resource confidentiality, and level of access. Therefore,
an efficient re-encryption management may increase the reliability and the rate of security in
cloud computing environments. Hence, a multi-level re-encryption model based on policy
management has been presented in this chapter to ensure data security in cloud computing
environments. The proposed model uses a policy-based ontology to generate, manage and
apply re-encryption policies based on the characteristics of resources, sensitivity of data and
capabilities of service provider.

6.2. Related Works
The most popular re-encryption models are based on attributes for managing and

monitoring security of resources. These attributes are defined as properties of re-encryption

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
76	

class to classify resources based on sensitivity and priority. Hierarchical Attribute-Based
Encryption (HABE) is one of the suggested models [82] that use data consistency and data
confidentially attributes for high performance and full delegation re-encryption process. The
main drawback of this model is the dependency of the HABE performance on reliability of
cloud infrastructure. This means, the correctness of the re-encryption process is completely
dependent on the rate of security in cloud infrastructure.

This problem was solved in R3 model by using a time-based re-encryption approach [83],
in this model the underlying cloud infrastructure was not necessarily reliable in order to ensure
correctness. Furthermore, the time difference between cloud server and data owner is an
important issue in time-based re-encryption models that was solved in R3 with appropriate
clock synchronization.

The performance of time-based re-encryption was improved by Liu et al. [83] to
determine a period of time according to defined parameters for re-encrypting stored data,
generating new key and automatic expiring of revoked user’s access. In this model, concepts
of attribute-based re-encryption and proxy re-encryption were combined with sets of time
attributes. Therefore, only users whose attributes satisfy the access structure and whose access
rights are effective in the access time can recover corresponding data.

One of the other attribute-based re-encryption models was Key Policy-Attribute Based
Encryption (KP-ABE) that was proposed by Park et al. (2006). In this approach, internal nodes
are threshold gates and leaf nodes are associated with attributes that are used to encrypt data.
This model was improved [85] by adding some techniques such as Typed-Based Proxy Re-
Encryption [86] and bilinear mapping for providing selectively delegate decryption right using
Typed-Based Proxy Re-Encryption.

The main problem of this model was the dependency of KP-ABE on specific attributes
that decreased the compatibility of this model in virtualized infrastructure and cloud-based
environments. In fact, this model uses single level re-encryption policies and this mechanism
declined semantic mapping between policies and capabilities.

To solve the problem of single level policies for reliable re-encryption, several multi-
level policy management schemas were proposed. Di Modica and Tomarchio (2011) suggested
one of the first policy-based classification approach’s in clouds that leverages on the semantic
technology to enrich standardized security policies with an ad-hoc content and to enable
machine reasoning which is then used for both the discovery and the composition of security-
enabled services. In this model, requirements and capabilities for cloud customers and
providers are defined within policies which are adopted to policy intersection mechanism
provided by WS-Policy [32]. WS-Policy is a recommended framework from W3C for policy
specification of Web Services that includes policies that are defined as a collection of
alternatives contain assertions to specify well-established characteristics for using selection of
various services (e.g. requirements, capabilities or behaviors).

Overall, the main concerns in current re-encryption models in clouds are dependency of
suggested models on specific attributes in property-based models that has been not adopted to
virtualized infrastructure and lack of scalability and flexibility in semantic mapping of policies
in policy-based re-encryption models.

Faraz Fatemi Moghaddam
	
	

	 	

77	

6.3. Proposed Model
To establish a policy-based re-encryption schema, several components need to be defined

for generating, storing, managing and applying policies to cloud-based resources according to
capabilities of service provider, time limitation and other constraints. Hence, Policy-Based Re-
Encryption Schema (POBRES) is proposed, including 4 main components to define and
manage policies in cloud computing environments (Fig. 6.1).

Fig 6.1. Policy-Based Re-Encryption Schema (POBRES)

6.3.1. Policy Generation Component (PGC)
The main duty of this component is to define re-encryption policies based on

requirements of cloud customers, capabilities of service provider and settled details in SLA. In
fact, PGC uses a structural ontology to expound and clarify policies and sub-policies.

This ontology is based on three levels of capabilities, scope and credential to define main
re-encryption policy structure with associated sub-policies, potential resources for application
process and reputation details for managing process respectively. Figure 6.2 shows the
structure of POBRES ontology: high level class in details.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
78	

	
Fig 6.2. POBRES Ontology: High Level Class

POBRES ontology is classified to three main sub-classes to define re-encryption policies:

- Structure: Including re-encryption capabilities of service provider, properties and other
sub-policies and encryption characteristics of security level. The structure of POBRES
is based on WS-Policy [32] as a recommended policy language standard by W3C.

In the following, an example of POBRES certificate is given:

<wsp:Policy>
…namespace definition…
 <wsp:POBRES rdf:ID=”#hf4h#hd5f”>
 <wsp:Scope>
 …
 </wsp:Scope>
 <wsp:Credential>
 …
 </wsp:Credential>
 <wsp:Structure>

<security:ReEncryption rdf:ID=”ReEncryptionRequirement”>
<security:Capability rdf:ID=”CapabilityRequirement”>

<rdf:HLSP_Capability
rdf:HLSP_Time=”240”
rdf:HLSP_Error=”#443#352#404#252” rdf:HLSP_Manual=”#T363#y5y3”

 </security:Capability>
 </security: ReEncryption>

<security:Cryptography rdf:ID=”CryptographyRequirement”>
<security:Encryption rdf:ID=”EncryptionRequirement”>

<rdf:HLSP_Encryption

Faraz Fatemi Moghaddam
	
	

	 	

79	

rdf:HLSP_Algorithm=”AES”
rdf:HLSP_KeySize=”#256” rdf:HLSP_KeyLocation=”#TE43hs3g”

 </security:Encryption>
 </security: Cryptography>

 </wsp:Structure>
 </wsp:POBRES>
</wsp:Policy>

In this example an AES encryption algorithm with 256bits key size associated with time,

error and manual re-encryption methods are defined for security level of stored resources in
cloud storages.

- Scope: Defines actual and potential resources for re-encryption level.

- Credential: Describes certificate details of re-encryption policy.

According to POBRES ontology, the process of policy generation for a specific security
level is described as follows:

Step. 1. A cloud customer applies for a re-encryption policy in policy generation engine.
An object is created from POBRES class (𝑅𝑃1):

𝑅𝑃1		𝑃𝑂𝐵𝑅𝐸𝑆 = 𝑃𝑂𝐵𝑅𝐸𝑆 𝐶𝐶*, 𝑉

where 𝐶𝐶* and 𝑉 are cloud customer ID and version of re-encryption policy

respectively.

Step. 2. Re-encryption main policies are selected by cloud customer according to the
defined capabilities of service provider: {𝐶𝑃&, 𝐶𝑃(, … , 𝐶𝑃/} where 𝐶𝑃 is a re-encryption
capability that is offered by cloud provider.

Step. 3. Sub-policies for each policy are defined by cloud customer based on requirements
(e.g. time units for time-based re-encryption, error numbers for error-based re-encryption
and authorized user IDs for manual-based re-encryption):

𝑓𝑜𝑟	 𝑖 = 0	𝑡𝑜 (𝑟𝑑𝑓:𝐻𝐿𝑆𝑃_𝑃𝑜𝑙𝑖𝑐𝑦)z

°

z�±

𝐻𝐿𝑆𝑃1 = 𝐻𝐿𝑆𝑃1 	 ∥ 𝑎𝑑𝑑 𝑆𝑃²

where 𝐻𝐿𝑆𝑃, 𝑆𝑃 and 𝑅 are high level sub-policy, defined values of sub-policies and total

number of main policies respectively.

Step. 4. The re-encryption policy is linked to encryption mechanisms based on resources
of cloud customers:

𝑅𝑃1. 𝐿𝑖𝑛𝑘𝐶𝑟𝑦𝑝𝑡𝑜 𝐸𝑛𝑐, 𝐾i, 𝐾c ;

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
80	

where 𝐸𝑛𝑐, 𝐾i and 𝐾c are encryption algorithm, key size and key location respectively.

Step. 5. The expiration time of re-encryption policy (𝐸𝑇) is settled and finally the
certificate (𝐶𝑒𝑟𝑡) is generated by service provider according to WS-Policy and POBRES
ontology. The following elements are allocated to re-encryption policy set:

𝑅𝑃1 =
𝐶𝐶*, 𝑉, ℎ 𝐶1 , ℎ 𝐸⨁𝐶1 , 𝐶𝑃&, ℎ(𝑆𝑃ª), ℎ(𝑆𝑃ªª), … ,… ,
, … , 𝐶𝑃°, ℎ 𝑆𝑃ª , ℎ 𝑆𝑃ªª , … , (𝐸𝑛𝑐, 𝐾i, ℎ(𝐾cb�))	

Step. 6. The re-encryption policy set and certificate are sent to re-encryption policy
database.

𝑆𝑒𝑛𝑑	 𝑅𝑃1	, 𝐶𝑒𝑟𝑡1 ;

Table 6.1. The Notations of Proposed Model
Notations Description Notations Description

𝑅𝑃1 Re-Encryption Policy Object 𝐶𝐶* Cloud Customer ID
𝑉 Version of Re-Encryption

Policy
𝐻𝐿𝑆𝑃 High Level Sub Policies

𝑆𝑃 Sub Policy Value 𝑅 Total Number of Main Policies
𝐸𝑛𝑐	 Encryption Algorithm 𝐾i Key Size for Encryption Algorithm
𝐾c Key Location 𝐸𝑇 Expiration Time of Re-Encryption Policy
𝐶𝑒𝑟𝑡 Certificate 𝐶1 Certificate ID
ℎ() One-Way Hash Function ⨁ Exclusive-Or Function
∥ String Concatenation Operation 𝑥 Total Number of Resources Assigned to a Re-

Encryption Policy
𝑅𝐸𝑆 Set of Resources 𝑅𝑇𝐴𝑆𝐾 Re-Encryption Task Class
𝑇𝐼𝐷 Re-Encryption Task ID 𝑇𝑆𝑇 Re-Encryption Task Status
𝐶𝐼 Classification Index for Task

Object

6.3.2. Policy Database

All of the generated POBRES re-encryption policies, sub-policies and certificates are
stored in Policy Database. Each policy is assigned to set of resources based on cloud customers’
requirements.

𝑅𝐸𝑆� 𝐶𝐶*, 𝑅𝑃1 = 𝑅𝑠&, 𝑅𝑠(, … , 𝑅𝑠X ;

6.3.3. Policy Check Point (PCP)
To manage policies and establish an efficient communication between defined policies

and re-encryption tasks, Policy Check Point (PCP) is introduced. PCP uses a policy task class
to create re-encryption tasks management according to the characteristics of requests.

𝑅𝑇𝐴𝑆𝐾		𝑅𝑇A = 𝑅𝑇𝐴𝑆𝐾(𝑇𝐼𝐷, 𝑇𝑆𝑇, 𝑅𝑃1, 𝑅𝐸𝑆�)

Faraz Fatemi Moghaddam
	
	

	 	

81	

Where 𝑅𝑇𝐴𝑆𝐾, 𝑇𝐼𝐷 and 𝑇𝑆𝑇 are re-encryption task class, task ID and task status
respectively. The main job of PCP is to call re-encryption tasks based on characteristics of
defined policies as follows:

1. To schedule and call time-based policies according to the re-encryption timeline in policy

database.

𝑖𝑓
𝑅𝑃1. ℎ 𝐸⨁𝐶1 = 𝐶𝑒𝑟𝑡1. ℎ 𝐻𝐿𝑆𝑃𝐸𝑥𝑝𝑖𝑟𝑒⨁𝐶1 	𝑎𝑛𝑑	

ℎ 𝐶1 = ℎ 𝐶𝑒𝑟𝑡1. 𝐼𝐷 	𝑎𝑛𝑑
(∃	𝑆𝑃 ∈ 𝐶𝑃�|ℎ 𝑆𝑃 = ℎ 𝐻𝐿𝑆𝑃𝑇𝑖𝑚𝑒)

	

𝑡ℎ𝑒𝑛	𝑅𝑇𝐴𝑆𝐾		𝑅𝑇A = 𝑅𝑇𝐴𝑆𝐾(𝑇𝐼𝐷�, 𝑇𝑆𝑇�, 𝑅𝑃1, 𝑅𝐸𝑆�)

2. To check associated polices with revoked users.

𝑖𝑓

𝑈𝑠𝑒𝑟¿. 𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑅𝑒𝑣𝑜𝑘𝑒𝑑 	𝑎𝑛𝑑
ℎ 𝐶1 = ℎ 𝐶𝑒𝑟𝑡1. 𝐼𝐷 	𝑎𝑛𝑑

∃	𝑆𝑃 ∈ 𝐶𝑃� ℎ 𝑆𝑃 = ℎ 𝐻𝐿𝑆𝑃𝑅𝑒𝑣𝑜𝑘𝑒 	𝑎𝑛𝑑

𝑅𝑃1. ℎ 𝐸⨁𝐶1 = 𝐶𝑒𝑟𝑡1. ℎ 𝐻𝐿𝑆𝑃𝐸𝑥𝑝𝑖𝑟𝑒⨁𝐶1 	

𝑡ℎ𝑒𝑛	𝑅𝑇𝐴𝑆𝐾		𝑅𝑇A = 𝑅𝑇𝐴𝑆𝐾(𝑇𝐼𝐷�, 𝑇𝑆𝑇�, 𝑅𝑃1, 𝑅𝐸𝑆�)

3. To organize occurred errors and associated policies according to error details.

𝑖𝑓	

ℎ 𝐸𝑟𝑟𝑜𝑟𝐼𝐷 = ℎ 𝐻𝐿𝑆𝑃𝐸𝑟𝑟𝑜𝑟 	𝑎𝑛𝑑
ℎ 𝐶1 = ℎ 𝐶𝑒𝑟𝑡1. 𝐼𝐷 	𝑎𝑛𝑑

∃	𝑆𝑃 ∈ 𝐶𝑃� ℎ 𝑆𝑃 = ℎ 𝐻𝐿𝑆𝑃𝐸𝑟𝑟𝑜𝑟 	𝑎𝑛𝑑	

𝑅𝑃1. ℎ 𝐸⨁𝐶1 = 𝐶𝑒𝑟𝑡1. ℎ 𝐻𝐿𝑆𝑃𝐸𝑥𝑝𝑖𝑟𝑒⨁𝐶1

𝑡ℎ𝑒𝑛	𝑅𝑇𝐴𝑆𝐾		𝑅𝑇A = 𝑅𝑇𝐴𝑆𝐾(𝑇𝐼𝐷�, 𝑇𝑆𝑇�, 𝑅𝑃1, 𝑅𝐸𝑆�)

4. To authorize manual re-encryption requests based on authentication process and approved
access.

𝑖𝑓	

𝑈𝑠𝑒𝑟¿. 𝑆𝑆𝑂 = 𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑 	𝑎𝑛𝑑
ℎ 𝐶1 = ℎ 𝐶𝑒𝑟𝑡1. 𝐼𝐷 	𝑎𝑛𝑑

∃	𝑆𝑃 ∈ 𝐶𝑃� ℎ 𝑆𝑃 = ℎ 𝐻𝐿𝑆𝑃𝑀𝑎𝑛𝑢𝑎𝑙 	𝑎𝑛𝑑	

𝑅𝑃1. ℎ 𝐸⨁𝐶1 = 𝐶𝑒𝑟𝑡1. ℎ 𝐻𝐿𝑆𝑃𝐸𝑥𝑝𝑖𝑟𝑒⨁𝐶1

𝑡ℎ𝑒𝑛	𝑅𝑇𝐴𝑆𝐾		𝑅𝑇A = 𝑅𝑇𝐴𝑆𝐾(𝑇𝐼𝐷�, 𝑇𝑆𝑇�, 𝑅𝑃1, 𝑅𝐸𝑆�)

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
82	

5. To schedule re-encryption tasks according to the loss of keys.

𝑖𝑓	

∃	𝑅𝑠	 ∈ 𝑅𝐸𝑆�	|	𝑅𝑠. 𝐾𝑒𝑦. 𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑙𝑜𝑠𝑡 	𝑎𝑛𝑑
ℎ 𝐶1 = ℎ 𝐶𝑒𝑟𝑡1. 𝐼𝐷 	𝑎𝑛𝑑

(𝑅𝑃1. 𝐸𝑛𝑐. 𝐾i. 𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑙𝑜𝑠𝑡)	𝑎𝑛𝑑	
𝑅𝑃1. ℎ 𝐸⨁𝐶1 = 𝐶𝑒𝑟𝑡1. ℎ 𝐻𝐿𝑆𝑃𝐸𝑥𝑝𝑖𝑟𝑒⨁𝐶1

𝑡ℎ𝑒𝑛	𝑅𝑇𝐴𝑆𝐾		𝑅𝑇A = 𝑅𝑇𝐴𝑆𝐾(𝑇𝐼𝐷�, 𝑇𝑆𝑇�, 𝑅𝑃1, 𝑅𝐸𝑆�)

According to each scenario, policy check point creates and object from re-encryption

policy task class and sends to Policy Engine to process the re-encryption request.

6.3.4. Policy Engine
Policy Engine uses a scheduler to manage re-encryption tasks based on their

characteristics. In fact, re-encryption policies are scheduled, applied and updated according to
created policy task objects from PCP.

Let 𝑇 = {𝑅𝑇&, 𝑅𝑇(, … , 𝑅𝑇�} represents all re-encryption task objects that are received
from PCP and each object, 𝑅𝑇A 𝑢 ∈ 1,2, … , 𝑈 is associated with 𝑇𝐼𝐷�, 𝐶𝐼� where 𝐶𝐼 is
classification index of re-encryption object. Algorithm 6.1 shows the scheduling process in
details:
Algorithm 6.1. Re-Encryption Task Management
Input: 𝑇 = {𝑅𝑇&, 𝑅𝑇(, … , 𝑅𝑇�} : the set of re-encryption task objects received form PCP
Output: Scheduled task queue.
1. Task Classification

Re-encryption tasks are classified based on the characteristics.

𝑓𝑜𝑟	 𝑖 = 0	𝑡𝑜 𝑅𝑇A

�

z�±

{𝑖𝑓	 𝑅𝑇A. 𝐶𝐼 = 𝑇𝑖𝑚𝑒 	𝑡ℎ𝑒𝑛	𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑅𝑇A, 𝑇𝑖𝑚𝑒𝑆𝑒𝑡)
𝑖𝑓	 𝑅𝑇A. 𝐶𝐼 = 𝐸𝑟𝑟𝑜𝑟 	𝑡ℎ𝑒𝑛	𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑅𝑇A, 𝐸𝑟𝑟𝑜𝑟𝑆𝑒𝑡)
𝑖𝑓	 𝑅𝑇A. 𝐶𝐼 = 𝑅𝑒𝑣𝑜𝑘𝑒 	𝑡ℎ𝑒𝑛	𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑅𝑇A, 𝑅𝑒𝑣𝑜𝑘𝑒𝑆𝑒𝑡)
𝑖𝑓	 𝑅𝑇A. 𝐶𝐼 = 𝑀𝑎𝑛𝑢𝑎𝑙 	𝑡ℎ𝑒𝑛	𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑅𝑇A,𝑀𝑎𝑛𝑢𝑎𝑙𝑆𝑒𝑡)
𝑖𝑓	 𝑅𝑇A. 𝐶𝐼 = 𝐾𝑒𝑦 	𝑡ℎ𝑒𝑛	𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑅𝑇A, 𝐾𝑒𝑦𝑆𝑒𝑡)}

2. Sort Phase
Each set is sorted based on the characteristics of re-encryption policy. Time-based policies are
sorted regarding to the settled time, Error-based policies are sorted according to the prioritize index
of error numbers, rest of policies are sorted based on the priority index of security level according
to encryption policy.
𝑆𝑜𝑟𝑡 𝑇𝑖𝑚𝑒𝑆𝑒𝑡, 𝑅𝑇A. 𝑅𝑃1. 𝐶𝑃_15�. 𝑆𝑃, 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 ;
𝑆𝑜𝑟𝑡 𝐸𝑟𝑟𝑜𝑟𝑆𝑒𝑡, 𝑅𝑇A. 𝑅𝑃1. 𝐶𝑃 g1bg1_�. 𝑆𝑃, 𝐸𝑟𝑟𝑜𝑟𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ;
𝑆𝑜𝑟𝑡 𝑅𝑒𝑣𝑜𝑘𝑒𝑆𝑒𝑡, 𝑅𝑇A. 𝑅𝑃1. 𝐶𝑃°�Âbd�. 𝑆𝑃, 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐼𝑛𝑑𝑒𝑥 ;

Faraz Fatemi Moghaddam
	
	

	 	

83	

𝑆𝑜𝑟𝑡 𝑀𝑎𝑛𝑢𝑎𝑙𝑆𝑒𝑡, 𝑅𝑇A. 𝑅𝑃1. 𝐶𝑃��*A�c. 𝑆𝑃, 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐼𝑛𝑑𝑒𝑥 ;
𝑆𝑜𝑟𝑡 𝐾𝑒𝑦𝑆𝑒𝑡, 𝑅𝑇A. 𝑅𝑃1. 𝐶𝑃d��. 𝑆𝑃, 𝑃𝑟𝑖𝑜𝑖𝑟𝑡𝑦𝐼𝑛𝑑𝑒𝑥 ;

3. Scheduling and Application
Each set is assigned to associated 𝑉𝑀 in cloud server to schedule according to the priority of the
re-encryption task. Furthermore, if one of associated 𝑉𝑀s is capable to process re-encryption tasks
from other sets due to less number of requests, scheduler assigns other re-encryption tasks to the
𝑉𝑀 with lower workload.

4. Task Status Update
Whenever a re-encryption policy applies to the related resource, the status of the task is changes as
follows: 𝑅𝑇A. 𝑇𝑆𝑇� = 𝑑𝑜𝑛𝑒

5. Update Phase
All of the task objects with 𝑑𝑜𝑛𝑒 value are send to policy check point for confirmation and updating
the version, certificate and cryptography details as follows:
𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑃1. 𝑉
𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑃1. ℎ 𝐶1

𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑃1, ℎ 𝐸⨁𝐶1

𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑃1. 𝐸𝑛𝑐. ℎ 𝐾cb�

6.4. Discussion
In order to incarnate the superiorities of this schema in cloud-based environments, we

give a security and performance analysis of the proposed model in this section. Accordingly,
several scenarios are described as follows:

6.4.1. Case Study 1 (Performance of Policy Check Point)

In the first case study, the performance of policy check point was evaluated. The aim of
the first case study was to ensure about the creation of re-encryption tasks according to the
number of defined policies. Accordingly, 1000 re-encryption policies (200 for each capability)
were defined in the first step and the performance of PCP in analyzing and processing policies
were examined. This experiment was replicated by increasing number of defined policies to
10000 in policy database. Figure 5.3 shows the results in details. According to Fig 6.3A, total
processing time in PCP for each capability was examined and the results showed the increase
rate of processing time was considerably declined after 3000 numbers of policies and it proved
the model is scalable by dramatic increase of re-encryption policies.

Fig 6.3B shows the total process time of all policy types in PCP. According to the results,
the total processing time was increased significantly between 1000 to 3000 defined policies
and after that the total processing time was increased slightly. Finally, Fig 6.3C classified object
creations from re-encryption policy task class according to the type of capability. The results
showed more than 25% of re-encryption requests were related to time-based re-encryption
policies and less than 10% of re-encryption requests were manual-based. It helped to classify
re-encryption resources (𝑉𝑀s) to task sets more efficient and based on approximate estimation
of re-encryption task object numbers.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
84	

	

	

	

	
Fig. 6.3A. Total Process Time in PCP for Each Capability

by Increasing Number of Policies in Policy Database

Fig. 6.3B. Total Process Time in PCP

by Increasing Number of Policies in Policy Database

	
Fig. 6.3C. Classification of Re-Encryption Requests According to Capability Type of Defined Policies

Fig. 6.3. Performance of Policy Check Point by Increasing Number of Policies in Policy Database

6.4.2. Case Study 2
In this scenario, the performance of policy engine and policy application process were

evaluated. Thus, four types of workloads were defined: Static Workload, Dramatic Changing
Workload, Predictable Workload and Random Workload. Also, the number of re-encryption
tasks were increased from 50 to 3000.

Figure 6.4 shows the performance of policy engine in different types of workloads and
capability types. According to the results, the highest increase rate was for dramatic re-
encryption task workload due to error-based or key-based tasks. Moreover, predictable
workloads for time-based tasks increased slightly with approximate static slope. Finally,
manual-based tasks with random workload had an unpredictable and unarranged behavior by
increasing the number of re-encryption tasks from 50 to 3000.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1000 Policies 2000 Policies 3000 Policies 5000 Policies 10000 Policies

Time Revoke Key Error Manual

Time

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1000 Policies 2000 Policies 3000 Policies 5000 Policies 10000 Policies

Time Revoke Key Error Manual

Time

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1000 Policies 2000 Policies 3000 Policies 5000 Policies 10000 Policies

Time Revoke Key Error Manual

Faraz Fatemi Moghaddam
	
	

	 	

85	

	
Fig. 6.4. Performance of Policy Engine in Different Workloads by Increasing Number of Re-Encryption Tasks

Table 6.2. Security Analysis of Proposed Model

Security Concern Classification Solution Method

Security of Policy
Levels

Policy
Definition

Using Version, Certificate and Expiration Time in POBRES
Ontology

𝑉, ℎ 𝐶1 , ℎ 𝐸⨁𝐶1 ,

Security of Policy
Certificate

Policy
Definition

Using Exclusive or and Hash Function for Ensuring the
Security of Certificate

ℎ 𝐶1 , ℎ 𝐸⨁𝐶1 ,

Security of Applied
Polices

Policy
Checking

Checking the Certificate in Each Step of Policy Management

𝑅𝑃1. ℎ 𝐸⨁𝐶1 = 𝐶𝑒𝑟𝑡1. ℎ 𝐻𝐿𝑆𝑃⨁𝐶1

Security of
Capabilities

Policy
Checking

Checking Capabilities in Policy Object and POBRES
Certificate

(∃	𝑆𝑃 ∈ 𝐶𝑃�|ℎ 𝑆𝑃 = ℎ 𝐻𝐿𝑆𝑃)

Security of Task
Management

Policy
Application

Task Classification Based on Characteristics.

Prioritize Re-
Encryption Tasks

Policy
Application

Sorting Re-Encryption Tasks based on Priority

𝑆𝑜𝑟𝑡 𝑇𝑖𝑚𝑒𝑆𝑒𝑡, 𝑅𝑇A. 𝑅𝑃1. 𝐶𝑃_15�. 𝑆𝑃, 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 ;

𝑆𝑜𝑟𝑡 𝐸𝑟𝑟𝑜𝑟𝑆𝑒𝑡, 𝑅𝑇A. 𝑅𝑃1. 𝐶𝑃 g1bg1_�. 𝑆𝑃, 𝐸𝑟𝑟𝑜𝑟𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ;

𝑆𝑜𝑟𝑡 𝑅𝑒𝑣𝑜𝑘𝑒𝑆𝑒𝑡, 𝑅𝑇A. 𝑅𝑃1. 𝐶𝑃°�Âbd�. 𝑆𝑃, 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐼𝑛𝑑𝑒𝑥 ;

𝑆𝑜𝑟𝑡 𝑀𝑎𝑛𝑢𝑎𝑙𝑆𝑒𝑡, 𝑅𝑇A. 𝑅𝑃1. 𝐶𝑃��*A�c. 𝑆𝑃, 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐼𝑛𝑑𝑒𝑥 ;

𝑆𝑜𝑟𝑡 𝐾𝑒𝑦𝑆𝑒𝑡, 𝑅𝑇A. 𝑅𝑃1. 𝐶𝑃d��. 𝑆𝑃, 𝑃𝑟𝑖𝑜𝑖𝑟𝑡𝑦𝐼𝑛𝑑𝑒𝑥 ;

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Static Workload Dramatic Changing Workload Predictable Workload Random Workload

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
86	

Security of
Scheduled Tasks

Policy
Application

All of the task objects with 𝑑𝑜𝑛𝑒 value are send to policy
check point for confirmation and updating the version,
certificate and cryptography details as follows:

𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑃1. 𝑉

𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑃1. ℎ 𝐶1

𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑃1, ℎ 𝐸⨁𝐶1

𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑃1. 𝐸𝑛𝑐. ℎ 𝐾cb�

6.4.3. Security Analysis

The security of a policy-based re-encryption schema is granted in 3 main parts:

- Security of Defined Policies: All of the defined policies needs to be securely stored in
database.

- Security of Re-Encryption Tasks: All of the re-encryption policies needs to be applied and
managed reliably.

- Security of Re-Encryption Task Management: The re-encryption policies needs to be

applied based on the priority and importance of policies and sensitivity of resources.

Table 6.2 shows the security concerns and proposed solutions of the proposed model in
details.

6.4.4. Competitive Analysis
Table 5.3. shows the competitive analysis of the proposed model according to the

objectives of a policy-based re-encryption schema in cloud-based environments. According to
the results, the proposed model is able to provide a multi-level re-encryption process by policy
definition in different re-encryption scenarios, policy management and policy application by
different components.

Table 5.3. Competitive Analysis of Proposed Model

Objectives HABE TPRS KP-ABE 3REM POBRES
Policy-Based Re-Encryption No No Yes No Yes
Multi-Level Ontology No No No Yes Yes
Policy Mapping No No No No Yes
Re-Encryption Task Management Yes Yes Yes No Yes
Security Level Certificate No No No No Yes
Policy Check Point No No No No Yes
Language-Based Yes Yes Yes No Yes
Cloud-Based Yes Yes Yes Yes Yes
Re-Encryption Task Classification No Yes No No Yes

Faraz Fatemi Moghaddam
	
	

	 	

87	

6.5. Conclusion
As described in previous chapters, managing the process of re-encryption is a challenging

issue that involves many limitations such as time management, resource confidentiality, and
level of access. Therefore, a policy-based re-encryption model was presented in this chapter to
define, establish and manage re-encryption policies in cloud computing environments. To
achieve this purpose, a multi-level ontology was defined based on WS-Policy.

This ontology helps re-encryption components to provide reliable re-encryption policy
definitions, generation and management in clouds. The results of comprehensive performance
and security evaluation of proposed model shows POBRES increases the reliability of re-
encryption processes in cloud storages considerably and provides an efficient policy
management for re-encryption tasks.

As described before, protecting data according to defined policies is one the most
important aims of our policy management system. In addition to the described reliable re-
encryption model, an effective user revocation schema is presented in the next chapter
according to our policy management system to ensure the process of data protection based on
defined policies by cloud customers and sensitivity of data.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
88	

Chapter 7

7. POLICY-BASED USER REVOCATION SCHEMA

7.1. Introduction
One of the major risks in modern distributed networks is to guarantee the privacy and

security of resources after the process of user revocation by admins or owners. Typically, all
of the associated authentication, access management and data protection (e.g. Encryption)
processes are affected after a user is removed from accessing to specific cloud resource by the
owner or admin [104]. Hence, an efficient process should be provided to receive and manage
user revocation requests and to review and update the security and privacy of associated
resources.

In modern cloud computing, all of the security and privacy requirements of cloud
customers are defined as structural policies [37]. These policies are classified to several
security protocols such as authentication, access control, cryptography, transport and key
management [41]. The problem of managing user revocation requests in policy-based cloud
computing is the main focus of this work. In fact, each of revocation requests should be mapped
to defined policies of associated resources in the request for evaluation of the user revocation
process and updating defined security policies.

Accordingly, an effective user revocation model is presented in this chapter for mapping
revocation requests to defined policies of associated resources to guarantee the authenticity of
security and privacy policies in cloud-based resources.

Faraz Fatemi Moghaddam
	
	

	 	

89	

7.2. Related Works
Most of current user revocation models is based on Attribute-Based Signature (ABS). In

fact, the most challenging issue in encryption-based user revocation models is to re-encrypt
data and manage associated keys after a user is revoked from cloud services [87]. One of these
revocable ABS models was proposed by Escala et al. [88] proved to be adaptive secure in the
standard model. This schema assigns a randomly selected identity to each user in addition to
the attributes associated with an external entity to keep a secret verification key and a list of
revoked user identities. Also, the verification key is used to trace a signature to the signer.
However, this model conflicts with the unlink-ability and anonymity properties of ABS
schemes.

Using an external party as a mediator to manage instantaneous user revocation [89] or
structural timestamps associated with the attribute private key [90] are two extra features that
was proposed for ABS-based user revocation models. The main drawback of these features is
the potential overhead and performance impact due to the lack of immediate user revocation
process. To decrease these overheads, Attributed-Based Group Signature (ABGS) schemas are
proposed to provide anonymity for users in a group and generate a signature on behalf of the
group [91]. The validation process can only verify the correctness of the signature, and whether
it is produced by a valid user in the group. However, this scheme relies on the group manager
to link a signature to a signer before the signature is revoked.

Panda [92] is a public auditing mechanism for shared data that was proposed with an
efficient user revocation mechanism. The idea of proxy re-signatures was used in this model to
allow the cloud to resign blocks on behalf of existing users during user revocation, so that
existing users do not need to download and re-sign blocks by themselves. Also, Panda uses a
public verifier to audit the integrity of shared data without retrieving the entire data from the
cloud, even if the cloud re-signs a part of shared data. This main drawback of this model is the
considerable processing power for manipulating sensitive and also non-sensitive data after the
process of user revocation. In fact, the whole associated resources need to be updated to ensure
the security of cloud after a user is removed from accessing.

To decrease the processing power and provide an efficient user revocation model, each
revocation request needs to be processed according to the defined security policies. In fact,
security and privacy policies (i.e. encryption, signature, access control and authentication) for
each associated cloud node specifies whether the additional manipulations and processes are
needed or not [93]. Accordingly, this chapter introduces a policy-based user revocation schema
to process revocation requests based on defined policies and capabilities of services provider.

7.3. Problem Description
As described in previous section, the main aim of this model is to provide an efficient

and reliable user revocation process to ensure the security and privacy of associated cloud-
based resources [100]. Assume that there are 𝑁 physical or virtualized cloud servers in data
center, denoted as {𝑆&, 𝑆(, … , 𝑆y}, and each of servers (𝑆*) is associated with a policy set
𝑃𝑆 𝑆* = {𝑃𝑆&, 𝑃𝑆(, … , 𝑃𝑆�} where 𝑃𝑆5 is a defined access policy. Given 𝑋 registered users
𝑈&, 𝑈(, … , 𝑈| that have been revoked from accessing to one or several cloud servers and each

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
90	

𝑈X: 𝑥 ∈ (1,2, … , 𝑋) is associated with revocation set 𝑈X, 𝑆&, … , 𝑆g where {𝑆&, … , 𝑆g} ⊂
{𝑆&, 𝑆(, … , 𝑆y}.

Table 7.1. The Notations of Proposed Model
Notations Description

𝑆* Cloud Node
𝑃 𝑆* Set of Policies for for 𝑛
𝑃𝑆5 Defined Policy
𝑈X User to be Revoked
𝑃𝑜𝑙𝑖𝑐𝑦Ä��� Policy Type (Cryptography, Access, Authentication)
𝑇g Time-Stamp of Received Request
𝑇g� Time-Stamp of Cloud Node
ℎ() Hash Function
𝑇𝑆 Temporary Suspension
𝑅𝐹(𝑆*) Revocation Flag for Cloud Node
𝑅𝐹𝑆 Revocation Flag Status

Each cloud server has some access policies including cryptography mechanisms, role or

reputation access controls and additional authentication policies. The proposed user revocation
model tries to map the capabilities of the revoked user to defined policies of associated resource
for eliminating the access pass of revoked user and for managing and updating access policies
in associated resource according to revocation request.

7.4. Policy-Based User Revocation Model
There are several policy-based security models such as [100], [38] and [43] that have

been proposed to multi-level security schema for classification of cloud-based resources to
several security rings. A policy-based classification uses security protocols such as
cryptography, access control and authentication to provide security levels based on capabilities
of service provider and requirements of cloud users.

Faraz Fatemi Moghaddam
	
	

	 	

91	

	

Fig. 7.1. Overview of Policy-Based Revocation Model

As described, each cloud node 𝑆* is associated with a policy set 𝑃𝑆(𝑆*) includes

cryptography (encryption, re-encryption and key management policies) , authentication
(normal, double and one-time policies) and access control (role-based or reputation-based)
policies. An effective user revocation model is based on associated policies of a cloud node
and capabilities of cloud user. The proposed model is based on four main components and
Figure 7.1 shows the overview of the model.

7.4.1. Policy Engine

The main duty of Policy Engine is to define security policies for each cloud node
according to the requirements and capabilities of cloud provider. Each cloud node has a policy
set 𝑃𝑆 𝑆* = {𝑃𝑆&, 𝑃𝑆(, … , 𝑃𝑆�} where 𝑃𝑆5 is a defined access policy that is classified to 3
categories: Cryptography, Access Control and Authentication. Each policy is defined as
follows:

𝑃𝑆5 = 𝑃𝑜𝑙𝑖𝑐𝑦Ä���, 𝑃𝑜𝑙𝑖𝑐𝑦, 𝑆𝑢𝑏𝑃𝑜𝑙𝑖𝑐𝑦&, 𝑆𝑢𝑏𝑃𝑜𝑙𝑖𝑐𝑦(, … .

where 𝑃𝑜𝑙𝑖𝑐𝑦Ä��� ∈ 𝐶𝑟𝑦𝑝𝑡𝑜, 𝐴𝑐𝑐𝑒𝑠𝑠, 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 and each 𝑆𝑢𝑏𝑃𝑜𝑙𝑖𝑐𝑦 is a

defined property for main policy (e.g. key size for encryption policy, defined roles for role-
based access policy or authenticator models for two-factor authentication policies).

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
92	

7.4.2. Revocation Engine
This engine receives the revocation requests from the administrator or resource owner

and processes them based on defined policies of each cloud node. Each revocation request is
defined as 𝑈X, 𝑆&, … , 𝑆g , ℎ(𝑇g) where 𝑈X is the target user to be revoked,{𝑆&, … , 𝑆g} ⊂
{𝑆&, 𝑆(, … , 𝑆y} are the target cloud nodes that need to be protected from the revoked user and
𝑇g is the timestamp of received request.

Processing access requests of users is done by Access Engine. Whenever a user
revocation request is received by revocation engine, a Boolean property “Temporary
Suspension” is activated for the user. By this activation, all of access requests from 𝑈X (whether
is related to revoked nodes or not) are transferred to revocation engine to be processed. In fact,
revocation engine evaluates access requests from the suspended user until the process of
revocation and policy update is completed. Furthermore, a revocation flag is generated from
each associated node based on node time stamp. Algorithm 7.1 shows the process of user
revocation in details.
Algorithm 7.1. User Revocation Process
Input: 𝑈X, 𝑆&, … , 𝑆g , ℎ(𝑇g) : User Revocation Request.
Output: 𝑈X is revoked and 𝑈𝑝𝑑𝑎𝑡𝑒¸bc1�1�i 𝑆&, 𝑆(… , 𝑆g .

1. Revocation Flag of 𝑼𝒙

∀	𝑆* ∈ 𝑆&, 𝑆(, … , 𝑆g : 𝑅𝐹 𝑆* = 𝑈X, 𝑅𝐹𝑆·Ç, ℎ 𝑇g , ℎ 𝑇g�

A revocation Flag in generated for all of the associated nodes from revocation request where the
default status value of the flag is “Under Process”.

2. Temporary Suspension of 𝑼𝒙

𝑇𝑆 𝑈X = 𝑡𝑟𝑢𝑒;

∀	𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑒𝑞𝑢𝑒𝑠𝑡 𝑈X, 𝑆* :	

𝑆𝑒𝑛𝑑 𝐴𝑐𝑐𝑒𝑠𝑠𝐸𝑛𝑔𝑖𝑛𝑒, 𝑅𝑒𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐸𝑛𝑔𝑖𝑛𝑒

The user is temporary suspended until the process user revocation and policy update is finished.
Before that, all of the access requests from 𝑈X is process in revocation engine instead of access
engine.

3. Policy Application

∀	𝑆* ∈ 𝑆&, 𝑆(, … , 𝑆g : 𝑃𝑜𝑙𝑖𝑐𝑦°�ÈA�i_ 𝑆*, 𝑃𝑜𝑙𝑖𝑐𝑦𝐸𝑛𝑔𝑖𝑛𝑒

All of the associated policies from related cloud nodes are requested from Policy Engine.

4. Policy Classification

∀	𝑃𝑆5 ∈ 𝑆*: 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦	(𝑃𝑆5, 𝑃𝑜𝑙𝑖𝑐𝑦Ä���)

𝑆𝑤𝑖𝑡𝑐ℎ	 𝑃𝑆5 𝑃𝑜𝑙𝑖𝑐𝑦Ä���

𝐶𝑎𝑠𝑒	𝐶𝑟𝑦𝑝𝑡𝑜:	𝑆𝑒𝑛𝑑 𝑃𝑆5, 𝐶ℎ𝑒𝑐𝑘𝑃𝑜𝑖𝑛𝑡 ;

𝐶𝑎𝑠𝑒	𝐴𝑐𝑐𝑒𝑠𝑠: 𝑆𝑒𝑛𝑑 𝑃𝑆5, 𝑃𝑜𝑙𝑖𝑐𝑦𝐸𝑛𝑔𝑖𝑛𝑒 ;

𝐶𝑎𝑠𝑒	𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛: 𝑆𝑒𝑛𝑑 𝑃𝑆5, 𝐴𝑐𝑐𝑒𝑒𝑠𝐸𝑛𝑔𝑖𝑛𝑒 ;

Faraz Fatemi Moghaddam
	
	

	 	

93	

All of the policies are classified by policy type for policy update process. If there is an encryption
policy, Check Point receives it for applying to cloud nodes. For Access and Authentication policies,
Policy Engine and Access Engine are responsible respectively for policy update policies.

5. Cryptography Policy Update in Check Point

Encryption policies are evaluated in this stage for each cloud node related to the revoked user.
These policies are classified to re-encryption, key management and key-generation policies that are
processed to be applied in cloud nodes. After this step, the confirmation is sent to cloud nodes,
policies are updated in policy engine and the revocation flag status is updated.

6. Access Policy Update in Policy Engine

All policies related to role-based, reputation-based or temporary-based access controls are updated
in policy engine. If the user is revoked from the whole system, it affects the whole policy but if the
user is revoked from several nodes, the policy engine updates access sub-policies of each cloud
node, sends the confirmation to the associated cloud nodes and updated the revocation flag status.

7. Authentication Policy Update in Access Engine

Authentication policies are mostly related to additional identity details such as second or one-time
passwords for specific cloud node. The duty of access engine is to check authentication policies
and to eliminate these additional password generation processes for associated cloud nodes. After
this update, the confirmation is sent to cloud nodes, authentication policies and revocation flag
status is updated in policy engine and access engine respectively.

8. Revocation Flag Update

∀	𝑅𝐹 𝑆* ∈ 𝑅𝐹:	𝑖𝑓 ℎ 𝑇g = ℎ 𝑇g� ∧ 𝑅𝐹𝑆·* = 𝑡𝑟𝑢𝑒

	𝑡ℎ𝑒𝑛	𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝐹 𝑆*

If the timestamp is still valid and the status of revocation flag is true then the process of revocation
is done successfully and all of the associated policies are updated.

9. Elimination of Temporary Suspension

∀𝑈X ∈ 𝑈&, 𝑈(, … , 𝑈| : 𝑖𝑓	 𝑅𝐹 𝑆& = 	𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ∧ 𝑅𝐹 𝑆(= 	𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ∧ …	∧ 𝑅𝐹 𝑆* =
	𝑆𝑢𝑐𝑐𝑒𝑠𝑠

𝑡ℎ𝑒𝑛	𝑇𝑆 𝑈X = 𝑓𝑎𝑙𝑠𝑒;

The temporary suspension of revoked user is eliminated if all of the revocation flags of all
associated cloud nodes are successfully done. After the elimination of 𝑇𝑆, all access requests are
transferred to access engine again.

7.4.3. Access Engine
All of the normal access requests are sent to access engine for processing and mapping

the requests to the associated cloud nodes according to the defined polices. In the proposed
model, the process of revocation management is separated from access control. In fact, the
access engine can use every developed access management models (e.g. role-based, attribute-
based, etc.) without any limitation. This helps to decrease the processing power for access
requests during revocation management.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
94	

Whenever the Temporary Suspension flag is activated for a user due to the revocation
request, all requests from that user are sent to revocation engine. By this transfer, the access
management scheduler is not affected for other users by processing suspended requests and
checking timestamps and other access flags. A stand-alone access management scheduler in
revocation engine processes suspended requests and checks extra properties according to status
of 𝑇𝑆 flag.

7.4.4. Check Point
The main duty of Check Point is to process encryption, re-encryption and key-

management policies. As described in section 7.2, one of the most challenging issues in
encryption-based revocation models is the potential overhead and performance impact. In the
proposed model, all security policies in affected cloud nodes are classified to three parts:
Encryption, Authentication and Access Management.

This classification helps to decrease the overhead in Check Point. In fact, all key
management (e.g. symmetric or asymmetric) and re-encryption policies (e.g. by request, by
revocation or periodical) are processed in Check Point based on the revocation flag status and
revocation confirmations are sent to cloud nodes.

7.5. Evaluation
In order to incarnate the superiorities of this schema in cloud-based environments, we

give a security and performance analysis of the proposed model in this section. Accordingly,
several scenarios are described as follows:

7.5.1. Performance Analysis

In the first discussion round the performance and scalability of the proposed user
revocation model are evaluated. Hence, the number of revocation requests, number of
associated cloud nodes with revocation requests and the number of both users and associated
nodes are increased. Figure 7.2 shows the performance analysis results of policy-based
revocation model in comparison with ABS-based and ABGS-based revocation models.

The number of revocation requests is increased in figure 7.2A and each request is
associated with one node. In the first few requests the processing time for ABS and ABGS
models are less than policy-based. However, the performance of proposed model is better after
the first 100 requests. This difference is even more considerable after 1000 requests and proves
the better performance of policy-based revocation in large number of requests.

Figure 7.2B shows the results of increasing the total number of associated nodes in
revocation requests. Same as previous experiment, ABS and ABGS models have better results
in less that 50 nodes but the total processing time in policy-based model is considerable less
than other models by increasing the number of associated nodes.

Finally, in the third experiment the total processing time is evaluated in both increase of
revoked users and associated nodes. As expected, the processing time in policy-based

Faraz Fatemi Moghaddam
	
	

	 	

95	

revocation model is significantly less than other models after few requests and it proves the
efficiency and scalability of policy-based user revocation.

	 	 	

Fig 7.2A Increase The
Number of Revoked Users

Fig 7.2B Increase The

Number of Associated Nodes

Fig 7.2C Increase

Both Users and Associated Nodes

Fig. 7.2. Performance and Scalability Analysis of Policy-Based Revocation Model by Processing Time

7.5.2. Security Analysis
The security of our policy-based revocation model is granted in three main parts: users,

associated nodes and managing policies. In fact, after submission a user revocation request, the
proposed model should guarantee the privacy of associated nodes and updates and applies the
defined policies for them. Table 7.2 shows the security analysis of proposed model according
to defined objectives and possible treats. The analysis shows the suggested user revocation
model can resist against possible treats by various methods and solutions during access request,
policy mapping, policy application and policy update.

Table 7.2. Security Analysis of Proposed Model
Security Concern Classification Solution Method
Access Requests after
Revocation

Access Using Temporary Suspension Flag to transfer
access requests of affected users from Access Engine
to Revocation Engine.

Requests on the Run-Time Access Using Time-Stamps in both sides for checking the
access requests.

Security of Time-Stamps Access Using Hash-Function in both Time Stamps.

Security of Associated
Nodes

Policy Calling Policies for each associated node of a user
revocation request from Policy Engine.

Security and Reliability of
Policies

Policy Classification of Policies to three main parts based
on Priority and Type by Revocation Engine.

0

50

100

150

200

250

300

10
Req

20
Req

50
Req

100
Req

200
Req

500
Req

1000
Req

Ti
m

e

Policy-Based
ABS-Based
ABGS-Based

0

50

100

150

200

250

300

10
Node

20
Node

50
Node

100
Node

200
Node

500
Node

1000
Node

Ti
m

e

Policy-Based
ABS-Based
ABGS-Based

0

50

100

150

200

250

300

350

400

10
Node
& Req

20
Node
& Req

50
Node
& Req

100
Node
& Req

200
Node
& Req

500
Node
& Req

1000
Node
& Req

Policy-Based
ABS-Based
ABGS-Based

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
96	

Integrity of All Defined
Policies

Application Using Revocation Flag to check all policies are
applied or not.

Encryption and Re-
Encryption

Application Using Check Point to schedule re-encryption methods
based on defined policies and to check whether all
encryption policies are applied or not.

Reliable Policy Update Application Checking Policy Engine Database to ensure are
necessary policies are updated according to the user
revocation request.

Security of Nodes Application Using Revocation Flag to check all policies are
applied or not. Also, sending Revocation
Confirmation Flag to associated cloud nodes after
successful Policy Application.

7.5.3. Competitive Analysis
Table 7.3 shows the competitive analysis of the suggested schema according to the

objectives of a policy-based user revocation model in cloud-based environments. According to
the results this policy-based schema is able to provide a multi-level user revocation algorithm
for mapping associated nodes in requests to defined security policies of each node. Same as
ABS-based models, the proposed model uses encryption and also re-encryption but in separate
stand-alone component.

Moreover, access and revocation managements are separated in policy-based model and
access requests from normal users are also separated according to Temporary Suspension
flag. In addition, associated policies are classified in the model according the type and priority
to ensure each policy is applied efficiently. Finally, User Revocation and Revocation
Confirmation flags are used to ensure the reliability and success of user revocation process for
each associated node.

Table 7.3. Competitive Analysis of Proposed Model
Objectives ABS E-ABS AGBS Panda Proposed Model
Policy-Based No No No No Yes
Encryption & Re-Encryption Yes Yes Yes Yes Yes
Separate Access Management No No No Yes Yes
Group Access Management No No Yes No Yes
Temporary Suspension No No No No Yes
Revocation Flag No Yes No Yes Yes
Policy Classification No No No No Yes
3 Level Revocation No No No No Yes
Cloud-Based Yes Yes Yes Yes Yes

Faraz Fatemi Moghaddam
	
	

	 	

97	

7.6. Conclusion
According to the importance of privacy in cloud-based environments and due to the lack

of efficient user revocation process in clouds, a policy-based user revocation model was
presented in this chapter to ensure the security of associated cloud nodes after a user is revoked
from a part of whole system.

To decrease the processing power and provide an efficient user revocation model, each
revocation request was processed according to the defined security policies. In fact, security
and privacy policies (i.e. encryption, signature, access control and authentication) for each
associated cloud node specifies whether the additional manipulations and processes are needed
or not.

Accordingly, four main components are defined to define and manage security policies,
to separate access and revocation management processes, and to apply encryption and re-
encryption policies after user revocation. This model was evaluated with performance, security
and competitive analysis. According to the results, the reliability and efficiency of the
suggested schema was assured for managing user revocation requests in cloud-based
environments. Also, the analysis showed the suggested user revocation model can resist against
possible treats by various methods and solutions during access request, policy mapping, policy
application and policy update.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
98	

Chapter 8

8. CONCLUSION AND FUTURE WORKS

8.1. Introduction
To enhance the quality on managing security policies in cloud-based environments and

to provide efficient, secure and reliable matching between security requirements of customers
and capabilities of service providers, a multi-layered policy engine was introduced in this
thesis. A well-established policy framework was defined to generate security policies which
are compliant to requirements and capabilities. Moreover, a federated policy management
schema is introduced based on the policy definition framework and multi-level policy
application to create and manage virtual clusters with identical or common security levels. The
model was evaluated according to performance and security parameters and proved that this
multi-layered policy engine enhances the reliability and efficiency of managing security polices
in cloud computing environments during policy definition, policy application and policy
mapping procedures. In this chapter, an overall discussion is presented regarding to the policy
managing in clouds and the proposed model.

8.2. Overall Discussion
In this thesis an efficient and reliable policy generation and management schema was

presented for Multi Security Level Cloud Computing. Accordingly, a structural multi-level

Faraz Fatemi Moghaddam
	
	

	 	

99	

ontology was introduced in the third chapter to define and manage security levels according to
the capabilities of service provider, constraints and requirements of cloud customers.

CSON and MLO were the proposed ontologies based on multi-level and multi-layered
classification. These ontologies provide a special cloud-based security structure to establish
standard and dedicated security levels in a cloud computing environment through syntactic and
semantic analysis of the security requirements and capabilities. The structure and foundation
of policies use inherited super classes to map requests and offers, as well as to establish
appropriate communications between the Policy Engine, the Policy Database and the SLA
Engine. Furthermore, RAE as a ring analysis component justifies the security levels and
evaluates the process of mapping syntactically and semantically. SLC as the output of this
model defines standard or dedicated security levels for various cloud customers.

In the forth chapter a policy application and mapping schema was proposed based
semantic policy clustering to classify nodes with same or common security policies in an
aggregate virtualized cluster for federating defined policies according to their characteristics.
By this federation, the processing time for each policy mapping was reduced due to the
elimination of gratuitous and avoidable matching jobs.

We defined a well-established policy framework to define security policies which are
compliant to requirements and capabilities. Moreover, a federated policy management schema
was introduced based on the policy definition framework and policy clustering to create and
manage virtual clusters with identical or common security levels.

The next three chapters presented different policy-based scenarios based on
authentication, data protection (i.e. re-encryption) and user revocation to examine policy-
engine in various use cases.

In the fifth chapter, a policy-based user authentication model was presented to provide a
reliable identity management mechanism for establishing multiple access policies in different
virtualized nodes and mapping access requests to defined policies regarding to capabilities of
cloud servers and requirements of resources. Accordingly, a structural policy language and
policy engine were introduced for policy generation, application and management. Moreover,
a policy match framework was described for managing identities and mapping access requests
to virtualized resources based on defined policies.

The proposed model has been able to provide a multi-level authentication process by
policy definition in different cloud servers and dual authenticator in both match gate and cloud
server to ensure about the security and efficiency of this process. Furthermore, the proposed
model was significantly scalable in comparison with most of authentication models to have a
better performance in face with large number of access requests and defined policies. Finally,
this schema uses semantic analysis of access requests with an efficient authentication task
management and token-based identity management to ensure about the security and reliability
of this challenging issue in cloud computing environments.

A policy-based re-encryption model was presented in the sixth chapter to define,
establish and manage re-encryption policies in cloud computing environments. To achieve this
purpose, a multi-level ontology was defined based on WS-Policy. This ontology helps re-
encryption components to provide reliable re-encryption policy definitions, generation and
management in clouds.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
100	

The results of comprehensive performance and security evaluation of proposed model
shows our proposed re-encryption schema increases the reliability of re-encryption processes
in cloud storages considerably and provides an efficient policy management for re-encryption
tasks.

In the seventh chapter a policy-based user revocation schema was presented to decrease
the processing power and provide an efficient user revocation model by processing each
revocation request according to the defined security policies. In fact, security and privacy
policies (i.e. encryption, signature, access control and authentication) for each associated cloud
node specifies whether the additional manipulations and processes are needed or not.

The presented model used four main components to define and manage security policies,
to separate access and revocation management processes, and to apply encryption and re-
encryption policies after user revocation. This model was evaluated with performance, security
and competitive analysis. According to the results, the reliability and efficiency of the
suggested schema was assured for managing user revocation requests in cloud-based
environments.

8.3. Constraints
The results of the proposed policy management schema proved that this model is scalable

enough to use in real data centers for defining, applying and managing security mechanisms in
cloud-based environments based on the capabilities of service provider and requirements of
cloud customers. However, the most challenging issue is to enhance the process of mapping
requirements to capabilities according to the possible conflicts (i.e. Ring Analysis Engine in
Chapter 3). According to the results, 78% of the requirements were matched to the most
suitable security algorithms offered in CSRT. The minimum value of the Perfect match is
related to the access management protocol due to the variety of algorithms and the concepts of
reputation and role-based access control models. To enhance the process of matching, an
optimized algorithm is needed specially in access management protocol for efficient
elimination of conflicted algorithms in CSDS super class. We expect the rate of perfect matches
is increased by applying a semi-supervised algorithm in Ring Analysis Engine.

8.4. Future Perspective
To enhance the process of managing policy and security levels, two main paths were

specified as the future works:

- Optimization of Dedicated Security Levels: In the first path, an optimized algorithm needs
to be developed to enhance the process of mapping requirements and capabilities for non-
professional customers to avoid conflicts between security algorithms during the SLC
generation. In fact, the process of resolving conflicts by RAE should be optimized to
increase the rate of perfect matches between requirements and capabilities.

- Nomination Process of Virtual Clusters: In the second path, each virtual cluster with
common security policies introduce the most appropriate node to work as the nominated
note, manage access requests, and approve the identity of the requester. In fact, all nodes

Faraz Fatemi Moghaddam
	
	

	 	

101	

in the associated cluster approve the access request without re-checking by each node or
the policy engine, if and only if the nominated node approved the request before.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
102	

Chapter 9

9. BIBLIOGRAPHY

[1] S. Azodolmolky, P. Wieder, and R. Yahyapour, “Cloud Computing Networking:

Challenges and Opportunities for Innovations,” IEEE Commun. Mag., vol. 51, no. 7,
pp. 54–62, 2013.

[2] F. Shahzad, “State-of-the-art Survey on Cloud Computing Security Challenges,
Approaches and Solutions,” Procedia Comput. Sci., vol. 37, pp. 357–362, 2014.

[3] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. S. Netto, and R. Buyya, “Big Data
Computing and Clouds: Trends and Future Directions,” J. Parallel Distrib. Comput.,
vol. 79–80, pp. 3–15, May 2015.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud Computing,”
Commun. ACM Mag., vol. 53, no. 4, pp. 50–58, Apr. 2010.

[5] M. A. Khan, “A Survey of Security Issues for Cloud Computing,” J. Netw. Comput.
Appl., vol. 71, pp. 11–29, Aug. 2016.

[6] M. Metheny, “Security and Privacy in Public Cloud Computing,” in Federal Cloud
Computing, Elsevier, 2017, pp. 79–115.

[7] F. Fatemi Moghaddam, M. Ahmadi, S. Sarvari, M. Eslami, and A. Golkar, “Cloud

Faraz Fatemi Moghaddam
	
	

	 	

103	

Computing Challenges and Opportunities: A Survey,” in 1st International Conference
on Telematics and Future Generation Networks (TAFGEN), 2015, pp. 34–38.

[8] S. A. Hussain, M. Fatima, A. Saeed, I. Raza, and R. K. Shahzad, “Multilevel
Classification of Security Concerns in Cloud Computing,” Appl. Comput. Informatics,
vol. 13, no. 1, pp. 57–65, Jan. 2017.

[9] D. Zissis and D. Lekkas, “Addressing Cloud Computing Security Issues,” Futur.
Gener. Comput. Syst., vol. 28, no. 3, pp. 583–592, 2012.

[10] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud Computing and
Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the
5th Utility,” Futur. Gener. Comput. Syst., vol. 25, no. 6, pp. 599–616, 2009.

[11] F. Fatemi Moghaddam, M. Baradaran Rohani, M. Ahmadi, T. Khodadadi, and K.
Madadipouya, “Cloud Computing : Vision, Architecture and Characteristics,” in IEEE
6th Control and System Graduate Research Colloquium (ICSGRC), 2015, pp. 1–6.

[12] C. A. B. de Carvalho, R. M. de C. Andrade, M. F. de Castro, E. F. Coutinho, and N.
Agoulmine, “State of the Art and Challenges of Security SLA for Cloud Computing,”
Comput. Electr. Eng., vol. 59, pp. 141–152, 2017.

[13] L. Coppolino, S. D’Antonio, G. Mazzeo, and L. Romano, “Cloud security: Emerging
Threats and Current Solutions,” Comput. Electr. Eng., vol. 59, pp. 126–140, Apr.
2017.

[14] T. Phan, J. Han, J.-G. Schneider, T. Ebringer, and T. Rogers, “A Survey of Policy-
Based Management Approaches for Service Oriented Systems,” in 19th Australian
Conference on Software Engineering (aswec 2008), 2008, pp. 392–401.

[15] S. A. de Chaves, C. B. Westphall, and F. R. Lamin, “SLA Perspective in Security
Management for Cloud Computing,” in 2010 Sixth International Conference on
Networking and Services, 2010, pp. 212–217.

[16] U. Khalid, A. Ghafoor, M. Irum, and M. A. Shibli, “Cloud Based Secure and Privacy
Enhanced Authentication & Authorization Protocol,” Procedia Comput. Sci., vol.
22, pp. 680–688, 2013.

[17] S. Lakshminarayanan, “Interoperable Security Standards for Web Services,” IT Prof.,
vol. 12, no. 5, pp. 42–47, Sep. 2010.

[18] M. Tao, K. Ota, and M. Dong, “Ontology-Based Data Semantic Management and
Application in IoT and Cloud-Enabled Smart Homes,” Futur. Gener. Comput. Syst.,
Nov. 2016.

[19] H. B. Rahmouni, K. Munir, M. C. Mont, and T. Solomonides, “Semantic Generation
of Clouds Privacy Policies,” Springer, Cham, 2015, pp. 15–30.

[20] C. Choi, J. Choi, and P. Kim, “Ontology-Based Access Control Model for Security
Policy Reasoning in Cloud Computing,” J. Supercomput., vol. 67, no. 3, pp. 711–722,
Mar. 2014.

[21] “OWL - Semantic Web Standards.” [Online]. Available: https://www.w3.org/OWL/.
[Accessed: 16-Jan-2017].

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
104	

[22] R. García-Castro and A. Gómez-Pérez, “Interoperability Results for Semantic Web
Technologies using OWL as the Interchange Language,” Web Semant. Sci. Serv.
Agents World Wide Web, vol. 8, no. 4, pp. 278–291, Nov. 2010.

[23] A. Khurat, B. Suntisrivaraporn, and D. Gollmann, “Privacy Policies Verification in
Composite Services Using OWL,” Comput. Secur., Mar. 2017.

[24] I.-C. Hsu, Y. K. Tzeng, and D.-C. Huang, “OWL-L: An OWL-Based Language for
Web Resources Links,” Comput. Stand. Interfaces, vol. 31, no. 4, pp. 846–855, Jun.
2009.

[25] B. Amel and M. Ramedane, “From OWL-S to Timed Automata Network: Operational
Semantic,” Procedia Comput. Sci., vol. 83, pp. 409–416, 2016.

[26] Y. Zou, T. Finin, and H. Chen, “F-OWL: An Inference Engine for Semantic Web,”
Springer, Berlin, Heidelberg, 2004, pp. 238–248.

[27] A. Uszok, J. M. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and S. Aitken,
“KAoS Policy Management for Semantic Web Services,” IEEE Intell. Syst., vol. 19,
no. 4, pp. 32–41, Jul. 2004.

[28] A. Uszok, J. M. Bradshaw, J. Lott, M. Breedy, L. Bunch, P. Feltovich, M. Johnson,
and H. Jung, “New Developments in Ontology-Based Policy Management: Increasing
the Practicality and Comprehensiveness of KAoS,” in 2008 IEEE Workshop on
Policies for Distributed Systems and Networks, 2008, pp. 145–152.

[29] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder Policy Specification
Language,” Springer, Berlin, Heidelberg, 2001, pp. 18–38.

[30] N. Dulay, E. Lupu, M. Sloman, and N. Damianou, “A Policy Deployment Model for
the Ponder Language,” in 2001 IEEE/IFIP International Symposium on Integrated
Network Management Proceedings. Integrated Network Management VII. Integrated
Management Strategies for the New Millennium (Cat. No.01EX470), pp. 529–543.

[31] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “Managing Security in Object-
Based Distributed Systems Using Ponder.”

[32] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker, M. Hondo, C.
Kaler, D. Langworthy, and A. Malhotra, “Web Services Policy Framework (WS-
Policy),” Specif. IBM, BEA, Microsoft, SAP AG, Sonic Software, VeriSign, 2004.

[33] S. Anderson, J. Bohren, T. Boubez, M. Chanliau, G. Della-Libera, B. Dixon, P. Garg,
M. Gudgin, P. Hallam-Baker, and M. Hondo, “Web Services Trust Language (WS-
Trust).” May, 2004.

[34] G. Della-Libera, M. Gudgin, P. Hallam-Baker, M. Hondo, H. Granqvist, C. Kaler, H.
Maruyama, M. McIntosh, A. Nadalin, and N. Nagaratnam, “Web Services Security
Policy Language (WS-SecurityPolicy),” Public Draft Specif. (Juli 2005), 2002.

[35] S. Anderson, J. Bohren, T. Boubez, M. Chanliau, G. Della-Libera, B. Dixon, P. Garg,
E. Gravengaard, M. Gudgin, and S. Hada, “Web Services Secure Conversation
Language (WS-SecureConversation),” Actional Corp. Syst. Inc./Computer Assoc. Int.
Inc./IBM Corp., vol. 7, p. 35, 2005.

Faraz Fatemi Moghaddam
	
	

	 	

105	

[36] Bill Parducci and Hal Lockhart, “eXtensible Access Control Markup Language
(XACML) Version 3.0,” 2013.

[37] M. B. Chhetri, B. Q. Vo, and R. Kowalczyk, “Policy-Based Management of QoS in
Service Aggregations,” in 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, 2010, pp. 593–595.

[38] G. Di Modica and O. Tomarchio, “Matchmaking Semantic Security Policies in
Heterogeneous Clouds,” Futur. Gener. Comput. Syst., vol. 55, pp. 176–185, Mar.
2015.

[39] K. Hashmi, E. Najmi, Z. Malik, B. Medjahed, A. Alhosban, and A. Rezgui,
“Automated Negotiation Using Semantic Rules,” in 2014 IEEE International
Conference on Services Computing, 2014, pp. 536–543.

[40] N. Sriharee, T. Senivongse, K. Verma, and A. Sheth, “On Using WS-Policy, Ontology,
and Rule Reasoning to Discover Web Services,” Springer Berlin Heidelberg, 2004, pp.
246–255.

[41] G. Di Modica and O. Tomarchio, “Semantic Security Policy Matching in Service
Oriented Architectures,” in 2011 IEEE World Congress on Services, 2011, pp. 399–
405.

[42] Y.-J. Hu, W.-N. Wu, and D.-R. Cheng, “Towards Law-Aware Semantic Cloud Policies
with Exceptions for Data Integration and Protection,” in Proceedings of the 2nd
International Conference on Web Intelligence, Mining and Semantics - WIMS ’12,
2012, p. 1.

[43] F. Fatemi Moghaddam, P. Wieder, and R. Yahyapour, “Policy Engine as a Service
(PEaaS): An Approach to a Reliable Policy Management Framework in Cloud
Computing Environments,” in IEEE 4th International Conference on Future Internet
of Things and Cloud (FiCloud), 2016, pp. 137–144.

[44] S. Veloudis and I. Paraskakis, “Ontological Templates for Modelling Security Policies
in Cloud Environments,” in Proceedings of the 20th Pan-Hellenic Conference on
Informatics - PCI ’16, 2016, pp. 1–6.

[45] Janet Daly, Marie-Claire Forgue, and Yasuyuki Hirakawa, “World Wide Web
Consortium Issues RDF and OWL Recommendations,” 2004.

[46] F. Pereniguez, R. Marin-Lopez, G. Kambourakis, S. Gritzalis, and A. F. Gomez,
“PrivaKERB: A User Privacy Framework for Kerberos,” Comput. Secur., vol. 30, no.
6, pp. 446–463, 2011.

[47] A. Xiaoguang and L. Xiaofan, “Research on Detection Mechanism of Cloud Security
Policy Collision,” in 2016 International Conference on Robots & Intelligent System
(ICRIS), 2016, pp. 341–344.

[48] R. Moreno-Vozmediano, E. Huedo, I. M. Llorente, R. S. Montero, P. Massonet, M.
Villari, G. Merlino, A. Celesti, A. Levin, L. Schour, C. Vázquez, J. Melis, S. Spahr,
and D. Whigham, “BEACON: A Cloud Network Federation Framework,” Springer,
Cham, 2016, pp. 325–337.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
106	

[49] L. Coppolino, S. D’Antonio, G. Mazzeo, and L. Romano, “Cloud Security: Emerging
Threats and Current Solutions,” Comput. Electr. Eng., Mar. 2016.

[50] P. Massonet, S. Dupont, A. Michot, A. Levin, and M. Villari, “Enforcement of Global
Security Policies in Federated Cloud Networks with Virtual Network Functions,” in
2016 IEEE 15th International Symposium on Network Computing and Applications
(NCA), 2016, pp. 81–84.

[51] J. Modic, R. Trapero, A. Taha, J. Luna, M. Stopar, and N. Suri, “Novel Efficient
Techniques for Real-Time Cloud Security Assessment,” Comput. Secur., vol. 62, pp.
1–18, Sep. 2016.

[52] M. Ramachandran and V. Chang, “Towards Performance Evaluation of Cloud Service
Providers for Cloud Data Security,” Int. J. Inf. Manage., vol. 36, no. 4, pp. 618–625,
Aug. 2016.

[53] Y. A. Younis, K. Kifayat, and M. Merabti, “An Access Control Model for Cloud
Computing,” J. Inf. Secur. Appl., vol. 19, no. 1, pp. 45–60, Feb. 2014.

[54] C. P. Cahill, A. Hal Lockhart, B. Systems Michael Beach, B. Rick Randall, H. Tim
Alsop, C. Limited Nick Ragouzis, E. John Hughes, A. Origin Paul Madsen, E. Irving
Reid, H.-P. Paula Austel, I. Maryann Hondo, I. Michael McIntosh, I. Tony Nadalin, I.
Scott Cantor, R. Metz, N. Prateek Mishra, N. C. Peter Davis, N. Frederick Hirsch, N.
John Kemp, N. Charles Knouse, O. Steve Anderson, O. John Linn, R. Security Rob
Philpott, R. Security Jahan Moreh, and G. Whitehead, “Assertions and Protocols for
the OASIS Security Assertion Markup Language (SAML) V2.0,” 2010.

[55] D. Hardt, “The OAuth 2.0 Authorization Framework,” 2012.
[56] D. Recordon and D. Reed, “OpenID 2.0: : A Platform for User-Centric Identity

Management,” in Proceedings of the second ACM workshop on Digital identity
management - DIM ’06, 2006, p. 11.

[57] Jen-Ho Yang, Ya-Fen Chang, and Chih-Cheng Huang, “A User Authentication
Scheme on Multi-Server Environments for Cloud Computing,” in 2013 9th
International Conference on Information, Communications & Signal Processing,
2013, pp. 1–4.

[58] G. Dólera Tormo, F. Gómez Mármol, and G. Martínez Pérez, “Towards the Integration
of Reputation Management in OpenID,” Comput. Stand. Interfaces, vol. 36, no. 3, pp.
438–453, 2014.

[59] R. L. |Cantor. S. S. W. K. Morgan, “Federated Security: The Shibboleth Approach.,”
Educ. Q., vol. 27, no. 4, pp. 12–17, 2004.

[60] S. Suoranta, K. Manzoor, A. Tontti, J. Ruuskanen, and T. Aura, “Logout in Single
Sign-On Systems: Problems and Solutions,” J. Inf. Secur. Appl., vol. 19, no. 1, pp. 61–
77, 2014.

[61] C. Neuman, S. Hartman, T. Yu, and K. Raeburn, “The Kerberos Network
Authentication Service (V5),” 2005.

[62] F. Pereñíguez-García, R. Marín-López, G. Kambourakis, A. Ruiz-Martínez, S.

Faraz Fatemi Moghaddam
	
	

	 	

107	

Gritzalis, and A. F. Skarmeta-Gómez, “KAMU: Providing Advanced User Privacy in
Kerberos Multi-Domain Scenarios,” Int. J. Inf. Secur., vol. 12, no. 6, pp. 505–525,
Nov. 2013.

[63] R. Marín-López, F. Pereñíguez, G. López, and A. Pérez-Méndez, “Providing EAP-
based Kerberos Pre-Authentication and Advanced Authorization for Network
Federations,” Comput. Stand. Interfaces, vol. 33, no. 5, pp. 494–504, 2011.

[64] A. Moralis, V. Pouli, S. Papavassiliou, and V. Maglaris, “A Kerberos Security
Architecture for Web Services based Instrumentation Grids,” Futur. Gener. Comput.
Syst., vol. 25, no. 7, pp. 804–818, 2009.

[65] J. R. Vollbrecht, B. Aboba, L. J. Blunk, H. Levkowetz, and J. Carlson, “Extensible
Authentication Protocol (EAP),” 2004.

[66] Y. Ohba, B. Patil, D. Forsberg, H. Tschofenig, and A. E. Yegin, “Protocol for Carrying
Authentication for Network Access (PANA),” 2008.

[67] A. Pérez-Méndez, F. Pereñíguez-García, R. Marín-López, and G. López-Millán, “Out-
of-Band Federated Authentication for Kerberos based on PANA,” Comput. Commun.,
vol. 36, no. 14, pp. 1527–1538, 2013.

[68] M. A. P. Leandro, T. J. Nascimento, D. R. Dos Santos, C. M. Westphall, and C. B.
Westphall, “Multi-Tenancy Authorization System with Federated Identity for Cloud-
Based Environments Using Shibboleth,” in The Eleventh International Conference on
Networks (ICN), 2012, pp. 88–93.

[69] E. Ghazizadeh, M. Zamani, J. Ab Manan, and A. Pashang, “A Survey on Security
Issues of Federated Identity in the Cloud Computing,” in 4th IEEE International
Conference on Cloud Computing Technology and Science Proceedings, 2012, pp.
532–565.

[70] P. Madsen, Y. Koga, and K. Takahashi, “Federated Identity Management for
Protecting Users from ID Theft,” in Proceedings of the 2005 workshop on Digital
identity management - DIM ’05, 2005, p. 77.

[71] Z. A. Khattak, S. Sulaiman, and J.-L. A. Manan, “A Study on Threat Model for
Federated Identities in Federated Identity Management System,” in 2010 International
Symposium on Information Technology, 2010, pp. 618–623.

[72] A. Bhargav-Spantzel, A. C. Squicciarini, and E. Bertino, “Establishing and Protecting
Digital Identity in Federation Systems,” J. Comput. Secur., vol. 14, no. 3, pp. 269–300,
2006.

[73] Zubair Ahmad, J.-L. Ab Manan, and S. Sulaiman, “User Requirement Model for
Federated Identities Threats,” in International Conference on Advanced Computer
Theory and Engineering(ICACTE), 2010, pp. V6-317-V6-321.

[74] S. Kalra and S. K. Sood, “Secure Authentication Scheme for IoT and Cloud Servers,”
Pervasive Mob. Comput., vol. 24, pp. 210–223, 2015.

[75] S. Ma, “Identity-Based Encryption with Outsourced Equality Test in Cloud
Computing,” Inf. Sci. (Ny)., vol. 328, pp. 389–402, 2016.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
108	

[76] S. Kumari, X. Li, F. Wu, A. K. Das, K.-K. R. Choo, and J. Shen, “Design of a
Provably Secure Biometrics-based Multi-Cloud-Server Authentication Scheme,”
Futur. Gener. Comput. Syst., vol. 68, pp. 320–330, 2017.

[77] X. Lu and Y. Xu, “An User Behavior Credibility Authentication Model in Cloud
Computing Environment,” in Proceedings of 2nd International Conference on
Information Technology and Electronic Commerce, 2014, pp. 271–275.

[78] J. H. Yang and P. Y. Lin, “An ID-Based User Authentication Scheme for Cloud
Computing,” in 2014 Tenth International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, 2014, pp. 98–101.

[79] S. Speiser, “Semantic Annotations for WS-Policy,” in 2010 IEEE International
Conference on Web Services, 2010, pp. 449–456.

[80] M. Darwish, A. Ouda, and L. F. Capretz, “A Cloud-based Secure Authentication
(CSA) Protocol Suite for Defense Against Denial of Service (DoS) Attacks,” J. Inf.
Secur. Appl., vol. 20, pp. 90–98, 2015.

[81] M. Ahmadi, F. Fatemi Moghaddam, A. J. Jam, S. Gholizadeh, and M. Eslami, “A 3-
Level Re-Encryption Model to Ensure Data Protection in Cloud Computing
Environments,” in IEEE Conference on Systems, Process and Control (ICSPC), 2014,
pp. 36–40.

[82] G. Wang, Q. Liu, and J. Wu, “Hierarchical Attribute-based Encryption for Fine-
Grained Access Control in Cloud Storage Services,” in Proceedings of the 17th ACM
conference on Computer and communications security - CCS ’10, 2010, p. 735.

[83] Qin Liu, C. C. Tan, Jie Wu, and Guojun Wang, “Reliable Re-Encryption in Unreliable
Clouds,” in 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011,
2011, pp. 1–5.

[84] N. Park, J. Kwak, S. Kim, D. Won, and H. Kim, “WIPI Mobile Platform with Secure
Service for Mobile RFID Network Environment,” Springer, Berlin, Heidelberg, 2006,
pp. 741–748.

[85] J.-M. Do, Y.-J. Song, and N. Park, “Attribute Based Proxy Re-Encryption for Data
Confidentiality in Cloud Computing Environments,” in 2011 First ACIS/JNU
International Conference on Computers, Networks, Systems and Industrial
Engineering, 2011, pp. 248–251.

[86] M. Blaze, G. Bleumer, and M. Strauss, “Divertible Protocols and Atomic Proxy
Cryptography,” Springer, Berlin, Heidelberg, 1998, pp. 127–144.

[87] N. Balani and S. Ruj, “Temporal Access Control with User Revocation for Cloud
Data,” in 2014 IEEE 13th International Conference on Trust, Security and Privacy in
Computing and Communications, 2014, pp. 336–343.

[88] A. Escala, J. Herranz, and P. Morillo, “Revocable Attribute-Based Signatures with
Adaptive Security in the Standard Model,” Springer Berlin Heidelberg, 2011, pp. 224–
241.

[89] Dan Cao, Xiaofeng Wang, Baokang Zhao, Jinshu Su, and Qiaolin Hu, “Mediated

Faraz Fatemi Moghaddam
	
	

	 	

109	

Attribute-Based Signature Scheme Supporting Key Revocation,” 2012.
[90] Y. Lian, L. Xu, and X. Huang, “Attribute-Based Signatures with Efficient

Revocation,” in 2013 5th International Conference on Intelligent Networking and
Collaborative Systems, 2013, pp. 573–577.

[91] J. Camenisch, “Efficient and Generalized Group Signatures,” Springer, Berlin,
Heidelberg, 1997, pp. 465–479.

[92] B. Wang, B. Li, and H. Li, “Panda: Public Auditing for Shared Data with Efficient
User Revocation in the Cloud,” IEEE Trans. Serv. Comput., vol. 8, no. 1, pp. 92–106,
Jan. 2015.

[93] F. Fatemi Moghaddam, P. Wieder, and R. Yahyapour, “Federated Policy Management
Engine for Reliable Cloud Computing,” in IEEE International Conference on
Ubiquitous and Future Networks (ICUFN 2017), 2017.

[94] L. Kagal, “Rei: A Policy Language for the Me-Centric Project,” 2002.
[95] F. Fatemi Moghaddam, P. Wieder, and R. Yahyapour, “Federated Policy Management

Engine for Reliable Cloud Computing,” in 2017 Ninth International Conference on
Ubiquitous and Future Networks (ICUFN), 2017, pp. 910–915.

[96] Z. Wu, “Multi-Cloud Policy Enforcement Through Semantic Modeling and Mapping,”
in Proceedings of the 2015 IEEE 9th International Conference on Semantic
Computing (IEEE ICSC 2015), 2015, pp. 448–451.

[97] A. Pérez Méndez, R. Marín López, and G. López Millán, “Providing Efficient SSO to
Cloud Service Access in AAA-Based Identity Federations,” Futur. Gener. Comput.
Syst., vol. 58, pp. 13–28, 2016.

[98] Z. Liu, H. Yan, and Z. Li, “Server-Aided Anonymous Attribute-Based Authentication
in Cloud Computing,” Futur. Gener. Comput. Syst., vol. 52, pp. 61–66, 2015.

[99] Q. Liu, G. Wang, X. Liu, T. Peng, and J. Wu, “Achieving Reliable and Secure
Services in Cloud Computing Environments,” Comput. Electr. Eng., vol. 59, pp. 153–
164, Apr. 2017.

[100] F. Fatemi Moghaddam, P. Wieder, and R. Yahyapour, “Policy Management Engine
(PME) - A Policy-Based Schema to Classify and Manage Sensitive Data in Cloud
Storages,” J. Inf. Secur. Appl., vol. 36, pp. 11–19, 2017.

[101] M. Hajivali, F. Fatemi Moghaddam, M. T. Alrashdan, and A. Z. M. Alothmani,
“Applying an Agent-Based User Authentication and Access Control Model for Cloud
Servers,” in International Conference on ICT Convergence (ICTC), 2013, pp. 807–
812.

[102] K. M. Sim, “Agent-Based Cloud Computing,” IEEE Trans. Serv. Comput., vol. 5, no.
4, pp. 564–577, 2012.

[103] H. Kandil and A. Atwan, “Mobile Agents’ Authentication Using a Proposed Light
Kerberos System,” in 2014 9th International Conference on Informatics and Systems,
2014, p. CNs-39-CNs-45.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
110	

[104] D. S. Kasunde and A. A. Manjrekar, “Verification of Multi-Owner Shared Data with
Collusion Resistant User Revocation in Cloud,” in 2016 International Conference on
Computational Techniques in Information and Communication Technologies
(ICCTICT), 2016, pp. 182–185.

[105] X. Wu, M. Deng, R. Zhang, B. Zeng, and S. Zhou, “A Task Scheduling Algorithm
based on QoS-Driven in Cloud Computing,” Procedia Comput. Sci., vol. 17, pp. 1162–
1169, 2013.

Faraz Fatemi Moghaddam
	
	

	 	

111	

10. APPENDICES

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
112	

10.1. List of Associated Publications

Name Publication Name Status
1 Faraz Fatemi Moghaddam, Ramin Yahyapour,

Philipp Wieder: Policy Engine as a Service
(PEaaS): An Approach to a Reliable Policy
Management Framework in Cloud Computing
Environments

IEEE FiCloud’16, Vienna,
Austria

Published

2 Faraz Fatemi Moghaddam, Philipp Wieder, and
Ramin Yahyapour: POBRES: Policy-Based Re-
Encryption Schema for Secure Resource
Managment in Clouds

17th IEEE EuroCon. Ohrid,
Macedonia

Published

3 Faraz Fatemi Moghaddam, Philipp Wieder, and
Ramin Yahyapour: Federated Policy Management
Engine for Reliable Cloud Computing

IEEE ICUFN’17, Milan,
Italy

Published

4 Faraz Fatemi Moghaddam, Philipp Wieder, and
Ramin Yahyapour: Token-Based Policy
Management (TBPM): A Reliable Data
Classification and Access Management Schema in
Clouds

51st IEEE ICCST’17,
Madrid, Spain

Accepted

5 Faraz Fatemi Moghaddam, Philipp Wieder, and
Ramin Yahyapour: Policy Management Engine
(PME): A Policy-Based Schema to Classify and
Manage Sensitive Data in Cloud Storages

Elsevier Journal of
Information Security and
Applications

Published

6 Faraz Fatemi Moghaddam, Philipp Wieder, and
Ramin Yahyapour: A Multi-Level Policy Engine to
Manage Identities and Control Accesses in Cloud
Computing Environment

Elsevier Future Generation
Computer Systems

Submitted

7 Faraz Fatemi Moghaddam, Philipp Wieder, and
Ramin Yahyapour: A Multi-Layered Policy
Generation and Management Engine for Semantic
Policy Mapping in Clouds

Elsevier Digital
Communications and
Network

Submitted

8 Faraz Fatemi Moghaddam, Philipp Wieder, and
Ramin Yahyapour: A Structural Policy
Management Engine based on Policy Mapping
and Ring Analysis for Clouds

Elsevier Journal of
Information Security and
Applications

Submitted

9 Faraz Fatemi Moghaddam, Philipp Wieder, and
Ramin Yahyapour: A Multi-Layered Access
Policy Engine for Reliable Cloud Computing

IEEE NOF’17, London, GB Accepted

10 Faraz Fatemi Moghaddam, Philipp Wieder, and
Ramin Yahyapour: A Policy-Based Identity
Management Schema for Managing Accesses in
Clouds

IEEE NOF’17, London, GB Accepted

11 Faraz Fatemi Moghaddam, Philipp Wieder, and
Ramin Yahyapour: An Effective User Revocation
for Policy-Based Access Control Schema in
Clouds

IEEE CloudNet’17, Prague,
Czech Republic

Accepted

Faraz Fatemi Moghaddam
	
	

	 	

113	

10.2. Example of Generated Security Level Certificate (SLC)

<wsp:Policy>
…namespace definition…
 <wsp:SLC rdf:ID=”A543D3527B3”>

 <wsp:Header>
 <security:Scope>
 <security:hasOwner rdf:ownerID=”A3453”/>
 <security:hasTarget rdf:target=”cu-ns#owner|cu-ns3#regEmail#@gwdg.de”/>
 </security:Scope>
 <security:Objective>
 <security:haspurpose rdf:purpose=”confidentiality#integrity#authentication”/>
 <security:reqRequirement rdf:requestID=”T353S387”/>
 </security:Objective>
 <security:Essential>
 <security:hasValue rdf:SLAresourceID=”sla-ns#owner#slcID”/>
 <security:reqResource rdf:resource=”VC-ns#VM-ns#Pr-ns#DS-ns”/>
 </security:Essential>
 </wsp:Header>

 <wsp:Body>
 <security:AccessManagementProtocol rdf:ID=”AccessManagementRequirement”>
 <security:RoleMechanism rdf:ID=”RoleClassRequirement”>
 <security:PermanentAlgorithm rdf:resource=”PermanentRoleClass”>

 <rdf:HLSP_Role rdf:HLSP_Role_1=”Lecturer” rdf:HLSP_Role_2=”Student”
rdf:HLSP_Role_3=”Professor” rdf:HLSP_Role_4=”Staff” rdf:HLSP_Role_5=”Admin”/>
</security:PermanentAlgorithm>

 </security:RoleMechanism>
 <security:ReputationMechanism rdf:ID=ReputationClassRequirement”>
 <security:GeoAlgorithm rdf:resource=”GeoClass”>

 <rdf:HLSP_Geo rdf:HLSP_Geo_1=”Germany” rdf:HLSP_Geo_2=”World”/>
 </security:GeoAlgorithm>
 </security:ReoutationMechanism>
 </security:AccessManagementProtocol>

 <security:CryptographyProtocol rdf:ID=”CryptographyRequirement”>
 <security:SymmetricMechanism rdf:ID=”SymmetricRequirement”>
 <security:AESClass rdf:resource=”AESClass”>
 <rdf:HLSP_AES rdf:HLSP_AES_KeySize=”256” rdf:HLSP_AES_Mode=”CBC”/>
 </security:AESClass>
 </security:SymmetricMechanism>
 <security:ReEncryptionMechanism rdf:ID=REEncryptionRequirement”>
 <security:ManualReEncryption rdf:resource=”ManualReClass”>
 <rdf:HLSP_MRE rdf:HLSP_MER_1=”Admin” rdf:HLSP_MER_2=”Owner”/>
 </security:ManualReEncryption>
 </security:ReEncryptionMechanism>
 </security:CryptographyProtocol>
 <security:SignatureProtocol rdf:ID=”SignatureRequirement”>
 …
 </security: SignatureProtocol>
 <security:HashMechanism rdf:ID=”HashRequirement”>
 <security:SHA3Class rdf:resource=”SHA3Class”>
 <rdf:HLSP_SHA3 rdf:HLSP_SHA3_Size=”384” rdf:HLSP_SHA3_BLK=”832”/>
 </security:SHA3Class>
 </security:HashMechanism>

 </security:SignatureProtocol>

 <security:KeyManagementProtocol rdf:ID=”KeyManagementRequirement”>

 <security:SymmetricMechanism rdf:ID=”SymmetricRequirement”>
 <security:KMCClass rdf:resource=”KMCClass”>
 <rdf:HLSP_KMC rdf:HLSP_KMC_Version=”137”/>
 </security:KMCClass>
 </security:SymmetricMechanism>
 </security:KeyManagementProtocol>

 <security:AuthenticationProtocol rdf:ID=”AuthenticationRequirement”>

 <security:DoubleMechanism rdf:ID=”DoubleAuthRequirement”>
 <security:AuthenticatorClass rdf:resource=”AuthenticatorClass”>

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
114	

 <rdf:HLSP_Authenticator rdf:HLSP_Authenticator_Version=”APP”/>
 </security:AuthenticatorClass>
 </security:DoubleMechanism>
 </security: AuthenticationProtocol>

 <security:TransportProtocol rdf:ID=”TransportRequirement”>

 <security:EncryptedMechanism rdf:ID=”EncryptedRequirement”>
 <security:TLSClass rdf:resource=”TLSClass”>
 <rdf:HLSP_TLS rdf:HLSP_TLS_Version=”1.2”/>
 </security:TLSClass>
 </security:EncryptedMechanism>
 </security: TransportProtocol>

 </wsp:Body>

 </wsp:SLC>
</wsp:Policy>

Faraz Fatemi Moghaddam
	
	

	 	

115	

10.3. Policy Management System
(Priority-Based Policy Application based on SLC)

Priority-based policy application schema was the former suggested model for applying

defined policies according to a valid priority index based on SLC. The main aim of this model
was to manage established security rings and to assure applied security mechanisms based on
defined security rings.

Policy Match Gate is a structural component to schedule policy application tasks and to
manage resources for this policy mapping by managing PMS virtual cluster. This cluster
includes special VMs to apply defined policies to data and a Pre-Processing Unit (PPU) to
distribute requests on VMs. Hence, several components and variables are defined as follows:

Ø Virtual Machines (VM): Given I virtual machines that are hosted by PMS virtual cluster
and denoted as 𝑉𝑀&, 𝑉𝑀(,… , 𝑉𝑀ª where the current and optimal CPU utilization of
𝑉𝑀1 (𝑖 = 	1,2, … 𝐼) is 𝐶𝑉𝑀1 and 𝑂𝑉𝑀1.

Ø Applied Policy Data (F): Given J files waiting to be processed for applying security
polices based on defied levels of SLC where the 𝑗 − 𝑡ℎ file corresponds to 𝑊/ that
represents the size of 𝐹/.

Table C.1. An Example of SI Value in Cryptography Protocol

 Mechanism Algorithm Key-
Size

SI Selection

1 Symmetric AES 256 1.0
2 Re-Encryption Manual - 1.0 √
3 Symmetric AES 192 1.3
4 Symmetric AES 128 1.7
5 Symmetric 3DES 256 1.7 √
6 Asymmetric RSA 2048 1.7
7 Symmetric 3DES 128 2.0
8 Asymmetric RSA 1024 2.0
9 Symmetric DES 256 2.2
10 Symmetric DES 192 2.5
11 Re-Encryption Time-Based - 2.5
12 Asymmetric RSA 512 3.2
13 Symmetric DES 128 3.2
14 Asymmetric Diffie-Hellman 2048 3.5
15 Asymmetric Diffie-Hellman 1024 3.8

 Total Value of SI : 1.35

Ø SLC Index (SI): SLC index is a defined index (1 ≤ 𝑆𝐼 ≤ 4)	 for prioritizing the
scheduling process according to the chosen security mechanisms in SLC (the value of
1 is the highest priority and the value of 4 is the lowest priority). In fact, this index is
calculated based on the confidentiality of the security level regarding to the all security

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
116	

mechanism in SLC. Table C.1 shows an example of how to define SI for cryptography
protocol. The final value of SI is calculated according to the average value of SI in each
protocol (Table C.2).

The main objective of PMS is how to schedule item of set 𝐹	 = {𝑓&, 𝑓(, … 𝑓Ê} where the

𝑗 − 𝑡ℎ file is associated with 𝑆𝐿𝐶� (𝛿	 ∈ {1,2, …𝑁} and 𝑁 represents the total number of
dedicated security levels) to I virtual machines by classifying them to several load groups based
on SI as a priority index. In fact, PMS uses a priority-based scheduling schema based on a
defined prioritization algorithm. Accordingly, PPU tries to classify the queue to 3 main priority
categories:

 𝑓𝑜𝑟	(𝑖𝑛𝑡	𝑥	 = 	1	; 	𝑥	 <= 	𝐽	; 	+ + 𝑥)	{
 𝛼 = 𝑆𝐿𝐶	 𝑓X ;
 𝑠𝑤𝑖𝑡𝑐ℎ	 𝛼 {
 𝑐𝑎𝑠𝑒	 1 ≤ 𝛼 < 2 : 𝑃𝑓X = 1;
 𝑐𝑎𝑠𝑒	 2 ≤ 𝛼 < 3 : 𝑃𝑓X = 2;
 𝑐𝑎𝑠𝑒	 3 ≤ 𝛼 ≤ 4 : 𝑃𝑓X = 3; }

Table C.2. An Example for the final value of SI Based on Calculated Value in Each Protocol
 Protocol SI
1 Cryptography 1.35
2 Authentication 2.10
3 Key Management 2.25
4 Transport 1.70
5 Signature 2.25
6 Access Control 1.50
Final Value of SI for 𝑆𝐿𝐶� : 1.85
(𝛿	 ∈ {1,2, …𝑁} and 𝑁 represents the total number of dedicated security levels)

The scheduling process in each category is based on QoS-Driven in cloud-based

environments [105] to use SI associated with other task attributes such as user privilege,
expectation, task length and the pending time in queue to compute the priority and sort tasks
by the priority. In fact, the scheduler sorts the high priority level based on the value of SI
associated with QoS-Driven parameters and distributes them to VMs based on the value of
𝐶𝑉𝑀1 and 𝑂𝑉𝑀1 in each VM (Algorithm C.1).

If the first step, The high priority queue (𝑃𝑓X = 1) is sorted based on the value of 𝑆𝐼 and
QoS-Driven parameters. If fact, SI is the first priority for comparison and 𝑄𝐷 (QoS-Driven
Parameter) is the second in the case of same 𝑆𝐼 values (Step 2). The process of scheduling is
started based on the optimal and current utilization of each virtual machine. In the first round,
all sorted tasks in the first category are distributed in VMs according to the value of 𝐶𝑉𝑀1 and
𝑂𝑉𝑀1. If a first priority task is not assigned on any VMs due to the utilization value, it will be
re-added to the high priority queue. (Step 3).

The second priority queue (𝑃𝑓X = 2) is sorted in the next step same as the previous queue
according to the value of 𝑆𝐼 following by the value of 𝑄𝐷 (Step 4 and 5). Furthermore, the
same procedure is applied for the lowest priority queue (𝑃𝑓X = 3) according the current and
optimal value of associated 𝑉𝑀s (Step 6 and 7).

Faraz Fatemi Moghaddam
	
	

	 	

117	

The second component in PMS is Policy Check Point to ensure about applied policies
based on defined SLC. After applying policies to each file, the checkpoint component reviews
the applied polices to confirm the validity security terms such as access management and
authentication headers, encryption algorithms and keys, re-encryption procedures and
associated algorithms. After this validation process, a confirmation is sent to cloud customer
about the successful policy application to data.

Algorithm C.1.
Policy Management Scheduling System Based on SLC Index

Input: set 𝐹	 = {𝑓&, 𝑓(, … 𝑓Ê} where the 𝑗 − 𝑡ℎ file is associated with 𝑆𝐿𝐶� (𝛿	 ∈
{1,2, …𝑁} and 𝑁 represents the total number of dedicated security levels)

Output: 𝐷(𝐹); Applying Defined Policies to all items in set F.
1: ∀𝑓X ∈ 𝐹: 𝑃𝑓X = 1

𝐴𝑑𝑑𝑇𝑎𝑠𝑘	 𝑓X, 𝑄𝑢𝑒𝑢𝑒&
2: 𝑆𝑜𝑟𝑡	 𝑄𝑢𝑒𝑢𝑒&, 𝑆𝐼 𝑓X ;

𝑖𝑓	 ∃ 𝑓5, 𝑓* ∈ 𝑄𝑢𝑒𝑢𝑒&: 𝑆𝐼 𝑓5 = 𝑆𝐼 𝑓* 	𝑡ℎ𝑒𝑛, 𝑆𝑜𝑟𝑡 𝑓5, 𝑓* , 𝑄𝐷 𝑓5 , 𝑄𝐷 𝑓* ;
3: ∀𝑓X ∈ 𝑄𝑢𝑒𝑢𝑒&

𝑖𝑓	 ∃𝑉𝑀d ∈ 𝑃𝑀𝑆: 𝐶𝑉𝑀d ≠ 𝑂𝑉𝑀d ∧ 𝑂𝑉𝑀d − 𝐶𝑉𝑀d ≥ 𝑊 𝑓X 	𝑡ℎ𝑒𝑛,

𝐴𝑠𝑠𝑖𝑔𝑛 𝑓X, 𝑉𝑀d ;	
𝑒𝑙𝑠𝑒, 𝑅𝑒𝐴𝑑𝑑	 𝑓X, 𝑄𝑢𝑒𝑢𝑒& ;

4: 𝑆𝑜𝑟𝑡	 𝑄𝑢𝑒𝑢𝑒(, 𝑆𝐼 𝑓X ;
𝑖𝑓	 ∃ 𝑓5, 𝑓* ∈ 𝑄𝑢𝑒𝑢𝑒(: 𝑆𝐼 𝑓5 = 𝑆𝐼 𝑓* 	𝑡ℎ𝑒𝑛, 𝑆𝑜𝑟𝑡 𝑓5, 𝑓* , 𝑄𝐷 𝑓5 , 𝑄𝐷 𝑓* ;

5: ∀𝑓X ∈ 𝑄𝑢𝑒𝑢𝑒(

𝑖𝑓	 ∃𝑉𝑀d ∈ 𝑃𝑀𝑆: 𝐶𝑉𝑀d ≠ 𝑂𝑉𝑀d ∧ 𝑂𝑉𝑀d − 𝐶𝑉𝑀d ≥ 𝑊 𝑓X 	𝑡ℎ𝑒𝑛,

𝐴𝑠𝑠𝑖𝑔𝑛 𝑓X, 𝑉𝑀d ;	
𝑒𝑙𝑠𝑒, 𝑅𝑒𝐴𝑑𝑑	 𝑓X, 𝑄𝑢𝑒𝑢𝑒(;

6: 𝑆𝑜𝑟𝑡	 𝑄𝑢𝑒𝑢𝑒Í, 𝑆𝐼 𝑓X ;
𝑖𝑓	 ∃ 𝑓5, 𝑓* ∈ 𝑄𝑢𝑒𝑢𝑒Í: 𝑆𝐼 𝑓5 = 𝑆𝐼 𝑓* 	𝑡ℎ𝑒𝑛, 𝑆𝑜𝑟𝑡 𝑓5, 𝑓* , 𝑄𝐷 𝑓5 , 𝑄𝐷 𝑓* ;

7: ∀𝑓X ∈ 𝑄𝑢𝑒𝑢𝑒Í

𝑖𝑓	 ∃𝑉𝑀d ∈ 𝑃𝑀𝑆: 𝐶𝑉𝑀d ≠ 𝑂𝑉𝑀d ∧ 𝑂𝑉𝑀d − 𝐶𝑉𝑀d ≥ 𝑊 𝑓X 	𝑡ℎ𝑒𝑛,

𝐴𝑠𝑠𝑖𝑔𝑛 𝑓X, 𝑉𝑀d ;	
𝑒𝑙𝑠𝑒, 𝑅𝑒𝐴𝑑𝑑	 𝑓X, 𝑄𝑢𝑒𝑢𝑒Í ;

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
118	

10.4. Performance Evaluation of Priority-Based Policy Application
System

A simulated environment was designed based on PMS virtual cluster, as well as, 3

defined SLC with calculated SI (i.e. high secure, medium secure and low secure ring). In this
experiment, the scalability of the scheduler was examined by increasing the number of policy
application tasks associated with defined SLCs.

Figure D.1 shows the result of this experiment in details. As expected, the total
processing time in tasks associated with high secure SLC is considerable higher than other
tasks due to the complexity of high secure algorithms such as encryption key sizes and access
control policy headers. On the other hand, the total processing time difference by increasing
100 tasks is significantly reduced after 1600 tasks and proves that the algorithm is scalable
enough in by different types of workloads.

Figure. D.1. Performance Evaluation of Policy Management System by Increasing Number of

Policy Application Tasks

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

100
Tasks

200
Tasks

300
Tasks

400
Tasks

500
Tasks

600
Tasks

700
Tasks

800
Tasks

900
Tasks

1000
Tasks

1100
Tasks

1200
Tasks

1300
Tasks

1400
Tasks

1500
Tasks

1600
Tasks

1700
Tasks

1800
Tasks

1900
Tasks

2000
Tasks

SLC High SLC Medium SLC Low Random

Total Processing Time (ms)

Faraz Fatemi Moghaddam
	
	

	 	

119	

10.5. Policy Matrix Super Class
Policy Matrix Super Class (PMSC) is the former version of CSRT that was defined based

on Protection Ontology [43]. Regarding to this ontology, PMSC is capable of directing various
security algorithms and classifying them based on the security mechanisms in the first level
and security protocols in the second level of classification. If fact, the cloud service provider
only needs to update the algorithm level based on new or revoked features and capabilities, and
to categorize them according to the first and second level of protection ontology.

The process of mapping policies is done based on defined resources in each protocol,
mechanism or algorithm. Hence, PMSC is created by establishment of appropriate mapping
between security terms and semantic concepts. Table E.1 shows an example of this
establishment in details. Each security term is mapped to a semantic resource based on a
protocol (row), a mechanism (column) and an algorithm (leaf).

Table E.1
Mapping Between Security Terms and Semantic Concepts Based on PMSC

Security Term Semantic Resource Protocol Mechanism Algorithm R
ow

C
olum

n

Leaf

Permanent Role Access Control PermanentRoleClass Access Role Permanent 1 1 1
Temporary Role Access Control TemporaryRoleClass Access Role Temporary 1 1 2
Geographical Access Control (IP-Based) GeoClass Access Repudiation Geo 1 2 1
Hardware Access Control (MAC) HardwareAccessClass Access Repudiation Hardware 1 2 2
Software Access Control (OS, Browser) SoftwareAccessClass Access Repudiation Software 1 2 3
AES Encryption AESClass Cryptography Symmetric AES 2 1 1
DES Encryption DESClass Cryptography Symmetric DES 2 1 2
RSA Encryption RSAClass Cryptography Asymmetric RSA 2 2 1
Manual Re-Encryption ManualREClass Cryptography Re-Encrypt Manual 2 3 1
Time-Based Re-Encryption TimeREClass Cryptography Re-Encrypt Periodically 2 3 2
Symmetric Key Wrapping SymmetricWrClass Key Manage Wrapping Symmetric 3 1 1
Symmetric Key Wrapping AsymmetricWrClass Key Manage Wrapping Asymmetric 3 1 2
Symmetric Key Derivation SymmetricDerClass Key Manage Derivation Symmetric 3 2 1
Asymmetric Key Derivation AsymmetricDerClass Key Manage Derivation Asymmetric 3 2 2
MD5 Signature Algorithm MD5Class Signature MAC MD5 4 1 1
SHA Signature Algorithm SHAClass Signature MAC SHA 4 1 2
CBC Signature Algorithm CBCClass Signature Hash CBC 4 2 1
H-MAC Signature Algorithm HMACClass Signature Hash H-MAC 4 2 2
Asymmetric Digital Signature Algorithm DSSClass Signature Digital DSS 4 3 1
User-Pass Authentication UserPassClass Authentication Normal User-Pass 5 1 1
User-Pass and Secure Word SecureWordClass Authentication Normal S-Word 5 1 2
Using Authenticator Component AuthenticatorClass Authentication Double Auth-App 5 2 1
Using Recovery Email/Number RecoveryClass Authentication Double Recovery 5 2 2
Online One-Time Password OnlineOneTimeClass Authentication Double Online 5 3 1
Offline One-Time Password OfflineOneTimeClass Authentication Double Offline 5 3 2
SSL Connection SSLClass Transport SSL - 6 1 -
TLS Connection TLSClass Transport TLS - 6 2 -
Normal Connection NormalConClass Transport Normal - 6 3 -

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
120	

10.6. Syntactic and Semantic Analysis of Policy Matrix Object
In the first syntactic analysis, all capable security algorithms in each security protocol

are analyzed. If the user does not apply for any of algorithms in a security mechanism, the first
analysis is stopped (Step 2). Also, if the user selects only one security algorithm, the selected
algorithm achieves the highest priority (Step 3). However, if the user selects more than one
algorithm in one security mechanism column, the selected items should be prioritized based on
the capabilities and requirements with the highest priority of 1 (perfect match), low priorities
of 2 and 3 (close and possible match) and no-match priority with value of 0.

The process of semantic analysis is performed in 3 steps. In the first steps all of the
security algorithms with value of 1 are considered and analyzed. The simplest scenario is
happened when there are one or more than one un-conflicted algorithms with value of 1 in each
security protocols (Step 5).

The second step of semantic analysis uses three main functions to match all desired
policies with un-conflicted security terms: Elimination, Substitution and Finalization. The first
method eliminates one of the conflicted terms without any significant effect to users’ security
requirements and the second on tries to substitute one of the conflicted terms with other
priorities. If all of conflicted terms are modified and the current policy matrix object does not
meet any confliction in all algorithms with value of 1, the object is finalized and other priority
values (i.e. 2 and 3) are changed to 0 (Step 6). Else, the next semantic analysis round is called.
The process of semantic analysis needs 3 rounds to check conflicted security terms with same
functions.

If the confliction is solved by each of these modification functions, the finalization
function of each round transfers the object to the previous round (Step 7). After the solving
conflicts in each priority the policy package object is created from policy package super class
(Step 8).

Algorithm F.1
Syntactic and Semantic Analysis of Policy Matrix Object

Input: 𝑝𝑚ba/��_: a policy matrix object form policy matrix super class that is created by policy
engine and modified with desired inputs by cloud customer.

Output:
	𝑝𝑝ba/��_																											 𝑝𝑚ba/��_. 𝑣𝑎𝑙 = 𝑡𝑟𝑢𝑒
𝑆𝑒𝑛𝑑	(𝑝𝑚ba/��_, 𝑉𝐸, 𝑃𝐸) 𝑝𝑚ba/��_. 𝑣𝑎𝑙 = 𝑓𝑎𝑙𝑠𝑎

A Policy Package Object is created if the syntactic and semantic analysis is confirmed in
validity engine, else, Policy Object is sent to PE.

1: ∀	𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ∶ 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙	 ∈ 𝑝𝑚ba/��_
𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙. 𝐶ℎ𝑒𝑐𝑘	(𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙)

2: 𝑖𝑓	 ∄	𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 ∈ 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 	𝑡ℎ𝑒𝑛	𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙. 𝑁𝑒𝑥𝑡(𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙)
3: 𝑖𝑓	 ∃! 	𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚	 ∈ 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 	𝑡ℎ𝑒𝑛,

𝑆𝑒𝑡𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, 1
𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙. 𝑁𝑒𝑥𝑡	 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙

4: 𝑖𝑓	 ∃	𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚	 ∈ 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ∶ 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 𝑐𝑜𝑢𝑛𝑡 > 1 	𝑡ℎ𝑒𝑛,

Faraz Fatemi Moghaddam
	
	

	 	

121	

𝑆𝑒𝑡𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, 1,2,3,0
𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙. 𝑁𝑒𝑥𝑡	 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙

5: 𝐶ℎ𝑒𝑐𝑘𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑝𝑚ba�/�_, 1 {

𝑃𝑜𝑙𝑖𝑐𝑦¸��d���	𝑝𝑝ba/��_ = 	𝑛𝑒𝑤	𝑃𝑜𝑙𝑖𝑐𝑦¸��d���(𝐶𝐶A, 𝑟𝑒𝑞)
𝑓𝑜𝑟	 ∀	𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚	 ∈ 𝑝𝑚ba/��_ ∶ 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 𝑉𝑎𝑙𝑢𝑒 = 1
					𝑆𝑒𝑡𝑃𝑜𝑙𝑖𝑐𝑦(𝑝𝑝ba/��_, 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)}

6: 𝐶ℎ𝑒𝑐𝑘𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑝𝑚ba�/�_, 2 {

𝑃𝑜𝑙𝑖𝑐𝑦¸��d���	𝑝𝑝ba/��_ = 	𝑛𝑒𝑤	𝑃𝑜𝑙𝑖𝑐𝑦¸��d���(𝐶𝐶A, 𝑟𝑒𝑞)
𝑓𝑜𝑟	 ∀	𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚	 ∈ 𝑝𝑚ba/��_ ∶ 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 𝑉𝑎𝑙𝑢𝑒 = 2 ∨ 3 (
					𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒	 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, 𝑝𝑚ba/��_ ∨ 𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒	 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, 𝑝𝑚ba/��_ ;
					𝐹𝑖𝑛𝑎𝑙𝑖𝑧𝑒	 ∀	𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚	 ∈ 𝑝𝑚ba/��_ ∶ 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 𝐹𝑖𝑛𝑎𝑙𝑖𝑧𝑒 ;
					𝑆𝑒𝑡𝑃𝑜𝑙𝑖𝑐𝑦(𝑝𝑝ba/��_, 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚))}

7: 𝑖𝑓	 𝑝𝑚ba/��_. 𝐶ℎ𝑒𝑐𝑘𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 = 𝑓𝑎𝑙𝑠𝑒 	𝑡ℎ𝑒𝑛, {
					𝐶ℎ𝑒𝑐𝑘𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑝𝑚ba�/�_, 3 {

					𝑃𝑜𝑙𝑖𝑐𝑦¸��d���	𝑝𝑝ba/��_ = 	𝑛𝑒𝑤	𝑃𝑜𝑙𝑖𝑐𝑦¸��d���(𝐶𝐶A, 𝑟𝑒𝑞)
						𝑓𝑜𝑟	 ∀	𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚	 ∈ 𝑝𝑚ba/��_ ∶ 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 𝑉𝑎𝑙𝑢𝑒 = 2 ∨ 3 (
										𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒	 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, 𝑝𝑚ba/��_ ∨ 𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒	 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, 𝑝𝑚ba/��_ ;
										𝐹𝑖𝑛𝑎𝑙𝑖𝑧𝑒	 ∀	𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚	 ∈ 𝑝𝑚ba/��_ ∶ 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 𝐹𝑖𝑛𝑎𝑙𝑖𝑧𝑒 ;
										𝑆𝑒𝑡𝑃𝑜𝑙𝑖𝑐𝑦(𝑝𝑝ba/��_, 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚))}
			𝑅𝑒𝑝𝑒𝑎𝑡	𝑆𝑡𝑒𝑝 7 ; }
𝑒𝑙𝑠𝑒	 𝑝𝑚ba/��_. 𝑣𝑎𝑙 = 𝑡𝑟𝑢𝑒 ;

8: 𝑖𝑓	 𝑝𝑚ba/��_. 𝑣𝑎𝑙 = 𝑡𝑟𝑢𝑒 	𝑡ℎ𝑒𝑛, 𝑠𝑒𝑛𝑑	 𝑝𝑝ba/��_
𝑒𝑙𝑠𝑒	 𝑠𝑒𝑛𝑑	 𝑝𝑚ba/��_, 𝑉𝐸, 𝑃𝐸 ;

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
122	

10.7. Policy-Based Access Control Framework (PAF)
based on Protection Ontology

Policy-Based Access Control Framework (PAF) is the proposed model that uses
Protection Ontology [43] to create dedicated security levels (rings) for various cloud customers
based on different requirements. Based on this ontology, security terms are classified into 3
levels: protocols, mechanisms and algorithms.

 Access management and user authentication are the basic protocols of our model to map
between cloud users, cloud customers and cloud providers and other protocols such as
cryptography and transport have not been considered in PAF. Protection Ontology uses WS-
Policy and policy matrix super class to establish security policies for each protocol according
to the capabilities of service provider and requirements of cloud customers. As an example,
consider a cloud customer (e.g. A Hospital) subscribes cloud-based services for users (e.g.
doctors, nurses, patient, office staff, etc.) and create 3 dedicated security rings (levels) in the
cloud based on the sensitivity of stored data.
<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:all>
 <security:AccessManagementProtocol rdf:ID=”AccessManagementRequirement”>
 <security:RoleMechanism rdf:ID=”RoleClassRequirement”>
 <security:PermanentAlgorithm rdf:resource=”PermanentRoleClass”
SP=”#PATIENT#DOCTOR”/>
 </security:RoleMechanism>
 <security:ReputationMechanism rdf:ID=ReputationClassRequirement”>
 <security:GeoAlgorithm rdf:resource=”GeoClass” SP=”#Germany”/>
 </security:ReoutationMechanism>
 </security:AccessManagementProtocol>	
 <security:AuthenticationProtocol rdf:ID=”AuthenticationRequirement”>
 <security:DoubleMechanism rdf:ID=”DoubleClassRequirement”>
 <security:AuthenticatorAlgorithm rdf:resource=”AuthenticatorClass”/>
 </security: DoubleMechanism>
 </security: AuthenticationProtocol>
 </wsp:all>
 </wsp:ExactlyOne>
</wsp:Policy>

 The above-mentioned example is the access control and user authentication protocols
in one of the dedicated rings regarding to the requirements of cloud customer. Accordingly,
this security ring uses a permanent role based access control algorithm and geo-based
reputation algorithm (e.g. IP addresses inside Germany) for access management protocol and
an authenticator (i.e. second password generator) for double user authentication protocol. The
aim of our research is how to map access requests from cloud users to defined access
management and user authentication protocols.

 The architecture of PAF is based on 3 main components: Policy Database, Policy
Mapping and Checkpoint (Fig. G.1). After generation of various security rings by cloud
customer based on protection ontology, each data of the cloud customer is assigned to one of
the dedicated rings in associated with sub-policies (e.g. a patient’s lab result is assigned to the
dedicated ring in example 1 with “Doctor” and “Patient” as the sub-policies of permanent role
access mechanism and “Germany” as the sub-policy of reputation mechanism). In fact, values
of the established mechanisms in each policy are defined as sub-policies and stored in policy

Faraz Fatemi Moghaddam
	
	

	 	

123	

database. The structure of storing policies in the database is based on policy/sub-policy
architecture. This means, each data has one record that shows a security level ID as the main
policy and several properties as sub-policies.

Fig. G.1 Architecture of PAF

PAF uses the policy mapping component to map between defined policies and access
request. Typically, cloud users log into their accounts with the simple user-password
authentication method. By this login process, the lowest security ring of the cloud customer
will be available.

Indeed, the simplest authentication process makes assigned data in the lowest security
level of cloud customer available if there is not any defined sub-policy for specific data in the
lowest security ring.

Checkpoint component is responsible to generate and manage session tokens for a
flexible and scalable access control process. After a basic login, a session token is generated
by the checkpoint component to provide accesses for the cloud user. For the sub-policies in the
lowest level or policy/sub-policies in the the higher levels, checkpoint will update the session
token for current and further accesses before session is expired. Figure G.2 and algorithm G.1
show the process of policy-based accessing in details.

According to the algorithm, a session token object is created by the access token class in
the first step and is updated based on every mapping processes between requested data and the
main policy and associated sub-policies that is assigned to the requested data.

For instance, if a cloud user tries to access a particular document in the high security ring,
the main policy and associated sub-policies that were checked before and were stored in the
session token, are not mapped again and only the un-mapped policy and sub-policies are
checked by the policy mapping and check point component.

Multi-Layered Policy Generation and Management Engine in Clouds
	

	
124	

Fig. G.2. Algorithm of Accessing to Stored Data in Clouds based on Policies and Sub-Policies

Algorithm G.1.
The Process of Access Token Generation
1:
1.1.

𝐿𝑜𝑔𝑖𝑛	 𝑈1, 𝑃1 ;
𝑖𝑓	 𝑈1 == 𝑈𝑠𝑒𝑟𝑛𝑎𝑚𝑒1 && 𝑃1 == 	𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑1 	𝑡ℎ𝑒𝑛	{
			𝑇𝑜𝑘𝑒𝑛	𝑇1 = 𝐶𝑟𝑒𝑎𝑡𝑒𝑇𝑜𝑘𝑒𝑛 𝑈𝐼𝐷1, 𝐶𝐶/ ;
 𝑓𝑜𝑟	 𝑖𝑛𝑡	𝑥 = 0; 𝑥	 ≤ 𝐶𝐶/. 𝐿&. 𝑐𝑜𝑢𝑛𝑡 𝑠𝑝 ; + + 𝑥 {

 𝑖𝑓	 𝐶𝐶/. 𝐿&. 𝑠𝑝X	! = 𝑡𝑟𝑢𝑒 	𝑡ℎ𝑒𝑛	{
 𝐴𝑐𝑐𝑒𝑠𝑠𝐺𝑟𝑎𝑛𝑡(𝑈𝐼𝐷1, 𝐶𝐶/. 𝐿&. 𝑠𝑝X);
 𝑇1. 𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝐶/. 𝐿&. 𝑠𝑝X ; }

 𝑒𝑙𝑠𝑒	 𝑖𝑛𝑓𝑜𝑟𝑒𝑞 𝑈𝐼𝐷1, 𝐶𝐶/. 𝐿&. 𝑠𝑝X ; }}

𝑒𝑙𝑠𝑒	 𝑖𝑛𝑓𝑜𝑟𝑒𝑞 𝑈𝐼𝐷1, 𝐶𝐶/. 𝐿& ; }	
// 𝑈, 𝐶𝐶, 𝐿 and 𝑠𝑝 are cloud user, cloud customer, security level and sub-policy respectively.
// In the first step, the cloud user uses the username and password to login and if both of them are
matched, an access token object is created from the access token class based on the cloud user ID and
cloud customer ID. After that, all of the sub-policies in the lowest level of cloud customer rings are
checked and all records without specific sub-policies are available to the cloud user and the token object
is updated. Moreover, if the user needs a particular data with defined sub-policies in the lowest level,
additional info needs to be provided (e.g. second pass, IP address, etc.) based on the established sub-
policies.

2.
2.1.
2.2.

2.3.

𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑒𝑞 𝑈𝐼𝐷1, 𝐷* ;
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑆𝑢𝑏𝑃𝑜𝑙𝑖𝑐𝑦	𝑅𝑆𝑃𝑡𝑒𝑚𝑝 = 	𝐶ℎ𝑒𝑐𝑘𝑆𝑃 𝐷* ;
𝑓𝑜𝑟	 𝑖𝑛𝑡	𝑥 = 0; 𝑥 ≤ 𝑅𝑆𝑃𝑡𝑒𝑚𝑝. 𝐶𝑜𝑢𝑛𝑡 𝑆𝑃 ;	+ + 𝑥 {
 𝑓𝑜𝑟	 𝑖𝑛𝑡	𝑦 = 0; 𝑦 ≤ 𝑇1. 𝐺𝑆𝑃. 𝐶𝑜𝑢𝑛𝑡 𝑆𝑃 ;	+ + 𝑦 {
 𝑖𝑓	 𝑅𝑆𝑃𝑡𝑒𝑚𝑝X == 𝑇1. 𝑇𝐺𝑆𝑃� 	𝑡ℎ𝑒𝑛	𝑅𝑆𝑃𝑡𝑒𝑚𝑝X = 𝑡𝑟𝑢𝑒; }}
𝑓𝑜𝑟	 𝑖𝑛𝑡	𝑥 = 0; 𝑥 ≤ 𝑅𝑆𝑃𝑡𝑒𝑚𝑝. 𝐶𝑜𝑢𝑛𝑡 𝑆𝑃 ;	+ + 𝑥 {
 𝑖𝑓	(𝑅𝑆𝑃𝑡𝑒𝑚𝑝X == 𝑓𝑎𝑙𝑠𝑒)	𝑡ℎ𝑒𝑛	{

Faraz Fatemi Moghaddam
	
	

	 	

125	

2.4.

2.5

 𝑖𝑛𝑓𝑜𝑟𝑒𝑞𝑡𝑒𝑚𝑝 = 	𝑖𝑛𝑓𝑜𝑟𝑒𝑞 𝑈𝐼𝐷1, 𝐶𝐶/. 𝐿°·¸_�5�. 𝑅𝑆𝑃𝑡𝑒𝑚𝑝X ;
 𝑖𝑓	 𝑖𝑛𝑓𝑜𝑟𝑒𝑞𝑡𝑒𝑚𝑝 == 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛	{
 𝑇1. 𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝐶/. 𝐿°·¸_�5�. 𝑅𝑆𝑃𝑡𝑒𝑚𝑝X ;
 𝑅𝑆𝑃𝑡𝑒𝑚𝑝X = 𝑡𝑟𝑢𝑒; }}}
𝑓𝑜𝑟	 𝑖𝑛𝑡	𝑥 = 0; 𝑥 ≤ 𝑅𝑆𝑃𝑡𝑒𝑚𝑝. 𝐶𝑜𝑢𝑛𝑡 𝑆𝑃 ;	+ + 𝑥 {
 𝑖𝑓	(𝑅𝑆𝑃𝑡𝑒𝑚𝑝X == 𝑡𝑟𝑢𝑒)	𝑡ℎ𝑒𝑛	𝑡𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙 + 1;
𝑖𝑓	 𝑡𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙 == 	𝑅𝑆𝑃𝑡𝑒𝑚𝑝. 𝐶𝑜𝑢𝑛𝑡 𝑆𝑃 𝑡ℎ𝑒𝑛	𝐴𝑐𝑐𝑒𝑠𝑠𝐺𝑟𝑎𝑛𝑡(𝑈𝐼𝐷1, 𝐷*);

// 𝐷 and 𝐺𝑆𝑃 are the requested data by cloud user and the previous granted accesses in session token
respectively.
// When a cloud user tries to access a particular data in higher security levels, the main policy and
associated sub-policies are retrieved for mapping process. If the main policy and some of the associated
sub-policies are mapped before and cached in the session token, there is no need to retrieve them again
and to request for additional info from cloud user. Otherwise, the requested policy and sub-policies
should be mapped with additional info that are provided by cloud user and the session token are updated
by each new mapping process. Finally, the access to that particular data is granted if the main policy and
all of the associated policies are checked and mapped by policy mapping component.

3. 𝑖𝑓	((𝐿𝑜𝑔𝑖𝑛	 𝑈1, 𝑃1)) ∥ 𝑇1. 𝑡𝑖𝑚𝑒𝑒𝑥𝑝𝑖𝑟𝑒𝑑 == 𝑡𝑟𝑢𝑒)	𝑡ℎ𝑒𝑛	𝑑𝑒𝑙𝑒𝑡𝑒(𝑇1);
// The session is deleted if the cloud user logouts from the system of the session expired time is reached.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	About the Author
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Bibliography
	Appndices

