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Abstract

The stochastic network model by Britton and Lindholm [BL10] describes a class of reasonably realistic

dynamics for a complex system with an underlying network structure. In a closed social network, which

is modeled by a dynamic random graph, the number of individuals evolves according to a linear birth

and death process with per-capita birth rate λ and per-capita death rate µ < λ. A random social

index is assigned to each individual at birth, which controls the rate at which connections to other

individuals are created. Britton and Lindholm give a somewhat rough proof for the convergence of

the degree distribution in this model towards a mixed Poisson distribution. We derive a rate for this

convergence giving precise arguments. In order to do so, we deduce the degree distribution at finite

time and derive an approximation result for mixed Poisson distributions to compute an upper bound

for the total variation distance to the asymptotic degree distribution. We treat the pure birth case

and the general case separately and obtain that the degree distribution converges exponentially fast

in time in terms of the total variation distance. We reveal that the degree distribution converges at

least of order
√
te−

1
2
λt in the pure birth case and t2e−

1
6

(λ−µ)t in the general case.

We compare the model to several other network models and find further interesting results for the

model. In particular, we show that the asymptotic degree distribution can exhibit power law tails,

which makes it an interesting alternative to the famous preferential attachment models.

We finally add a spatial component to the model and find convergence rates for this extended model

as well.

We prove several general results about linear birth and death processes along the way. Most notably,

we derive the age distribution of an individual picked uniformly at random at some finite time by

exploiting a bijection between the birth and death tree and a contour process.
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1 Introduction

Network Science is a relatively young research area dealing with complex systems with an underly-

ing network structure. In our well-connected modern world, almost every aspect of life is related

to interactions that could be modeled by using tools from network science. In the recent decades,

researchers have consequently examined a vast amount of different network models applied in various

scientific fields. The diversity of network science makes it one of the most challenging, but also most

fruitful, interdisciplinary research areas. In particular, using graphs as abstract mathematical model

for real-world networks in diverse areas lead to the discovery of surprising similarities in structures

from very different contexts that were thought to be unrelated. Intuitively, a graph can be thought

of as a collection of points, called nodes, which may be connected to other points (and sometimes

even to themselves) by lines, called edges (see Chapter 5 for a precise definition of graphs and an

introduction to the subject). The nodes represent for example individuals in a population whereas the

edges represent some kind of relations between the nodes. Since we are interested in complex systems,

we cannot expect to be able to predict all relevant aspects with certainty. Thus we consider random

graph models.

Unfortunately, there is no well-categorized catalogue of such models. However, there are well-known

properties that can be observed in many real-world networks and thus in the corresponding models.

Consequently, it is reasonable to search for an existing model with the desired properties in order to

find a satisfying model for a given application. We state some of the most important network models

and their properties now (see Chapter 5 for a more extensive introduction to random graphs).

One of the first random network models is the well-known Erdős-Rényi model, which was introduced

in 1959 by Gilbert [Gil59] and named after Erdős and Rényi, who published a closely related model

in the same year [ER59]. In this model, each pair of nodes is connected with some fixed probability

p independently from other pairs of nodes (see also Chapter 5). The model is a static model, i.e. it

describes a random network at a fixed time.

Although it shows interesting behaviour, further random network models were needed for the de-

scription of real networks since many empirical networks have important properties that are not

represented by Erdős-Rényi graphs. In particular, they often have a very different degree distribution,

where the degree of a node is the number of its edges. Many of the degree distributions observed

in real-world networks have the so-called power law property, which means that the corresponding

probability mass function decreases (approximately) at a polynomial rate. This means that high val-

ues appear with relatively high probability. Note that power law distributions do not only appear as

degree distributions in random networks, but also in very different contexts (see e.g. [New13] for a

great variety of examples). Examples for real-world networks having power law degree distribution

are the internet, collaboration networks of scientists as well as movie actors and networks of telephone
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calls, emails and human sexual contacts (see Chapter 3 of [DM03]). It is remarkable that some of

those have no obvious relation to each other.

There are some generalizations of Erdős-Rényi graphs that produce power law degree distributions.

For example, in the generalized random graph with n nodes introduced in [vdH16] (see also Chapter 5),

each node is assigned a weight, and each pair of nodes is connected with a probability depending on

the weights of those two nodes in a particular way. This model allows us to obtain any mixed Poisson

distribution as asymptotic degree distribution as n → ∞, which is a large class of distributions and,

in particular, contains power law distributions (see Section 3.3 for an introduction to this class of

distributions).

A further popular static random network model is the configuration model. This model gives us a

random graph for any given feasible degree distribution, in particular for power law distributions. This

is done by equipping each node with an appropriate number of half-edges, which are joined together

in a random way (see Chapter 5 for details).

A lot of very popular classical, static network models are rather designed to obtain a snapshot of

a network that depicts the properties of a complex system in a reasonable way and are often not

sufficient to describe the behaviour that leads to the observation of these properties. An example is

the configuration model mentioned above. Time-discrete dynamic models allow interesting insights

in such underlying behaviour. The most popular class of such models are the preferential attachment

models that exhibit a power law behaviour asymptotically and were popularized by Barabási and

Albert [BA99]. In such models the popularity of a node is proportional to its degree.

However, “a line of research towards a naturally comprehensible explanation for the formation of

power-law networks has argued that degree is not the only key factor influencing the network growth”

([TP11], Chapter 2). Therefore, “the ’inner self’ factors such as the personality of a person in a

friendship network” ([TP11], Section 2.5) or “talent” ([TP11], Section 2.7) should be considered in

network models. Barabási and Albert argue that for example the extremely high degree of Google

and Facebook in the World Wide Web network cannot be explained by the preferential attachment

mechanism since in a preferential attachment model nodes with such a high degree are among the

oldest nodes with very high probability, which is not the case for those two examples (see Section 6.1

of [Bar13]).

Consequently, besides preferential models, the so-called fitness models have gained huge popularity

in the recent years. In those models, the attachment does not only depend on the degree but also

on a random intrinsic fitness that is determined at the birth of each node and stays the same for the

whole lifetime. The best-known fitness model was introduced in [BB01]. In this model, the attach-

ment mechanism is a combination with preferential attachment. Pure fitness models were for example

considered in [CCRM02] and [SHR13]. Depending on the application, either preferential attachment,

models that combine preferential attachment as well as fitness or pure fitness models may be more

suitable.

Discrete-time preferential attachment and fitness models cover a lot of aspects of real-world net-

works. However, the discreteness is far from being realistic. Therefore, we treat models that incor-
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porate exponential waiting times, which makes it more realistic. Note that this was also done for a

continuous-time preferential attachment model considered in [Rei09] (see Subsection 5.4.1 for details).

In this thesis, we focus on the time-continuous random graph model that was introduced by Britton

and Lindholm [BL10], which can be seen as time-continuous pure fitness model that is particularly

realistic for the possibility of nodes as well edges to die. We prove in this thesis among other things

that the asymptotic degree distribution in this model can exhibit power laws such that it displays an

interesting alternative mechanism for producing networks with this property (see Section 6.5).

We sketch a slightly adapted, namely a loop-free, version of the original dynamic network model by

Britton and Lindholm (see [BL10] and [BLT11]) here that we consider in large parts of this thesis.

We refer to Chapter 6 for a precise definition of the model.

The node process (Yt)t≥0 is a linear birth and death process with initial value one. Thus each node

gives birth at constant rate λ and dies at constant rate µ.

We assume λ > µ, so that Yt →∞ as t→∞ with positive probability (see Chapter 2 for details).

We equip every node i with a positive random social index Si representing its fitness, where the

(Si)i∈N are independent and identically distributed with finite expectation.

At birth every node is isolated. During its lifetime and as long as there is at least one other node,

node i generates edges at rate αSi, which are removed after Exp(β) distributed times. Here α and

β are positive constants. The “second” node of each newly born edge is chosen uniformly at random

from the set of all other living nodes.

In addition to the direct destruction of edges defined above, all edges connected to a certain node

are removed when the node dies.

Figure 1.1: Simulated realizations of the Britton-Lindholm model with α = 3, β = λ = 1, µ = 0

and Pareto(3, 2/3) distributed (left-hand side) and deterministic (right-hand side) social

indices, respectively, for T = 5, where the size of the nodes corresponds to the social

indices.

The model is illustrated in Figure 1.1.
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1.0.1 Remark

The only difference to the definition by Britton and Lindholm is that we do not allow loops because

these are not present in most applications.

Note further that we allow multiple edges, i.e. pairs of nodes that are connected by more than one

edge (see Chapter 5 for a precise definition). Depending on the real-world application, this may be less

or more realistic than the corresponding model without multiple edges. It can be shown that those

edges are negligible in the sense that the probability that a randomly picked node has at least one

multiple edge converges to zero at an exponential rate (see Section 6.4). This allows us to formulate

the main result also for the case where we ignore multiple edges (see Corollary 1.0.3 below).

We refer to the distribution of the number of edges incident to a node picked uniformly at random

from all living nodes at time t given the number of nodes is positive as degree distribution, and denote

it by νt. In [BL10], Britton and Lindholm give a rather heuristic argument for the weak convergence of

the degree distribution in the original model towards a mixed Poisson distribution ν. One of the results

of this thesis gives a rate in total variation distance rather than a mere convergence result, where the

total variation distance is a very common distance measure for probability distributions (see Section

3.1 for details). We provide a complete proof for this rate and thereby also for the weak convergence

since convergence in total variation distance implies weak convergence (see Proposition 3.1.9).

The asymptotic distribution ν is given by

ν = MixPo

(
α

β + µ

(
S + E(S)

)(
1− e−(β+µ)A

)
,

where A ∼ Exp(λ), S has the social index distribution, and A and S are independent. Here MixPo

denotes the mixed Poisson distribution. Note that ν is the same asymptotic degree distribution as in

[BL10].

The following result is an immediate consequence of Theorems 6.3.2 and 6.3.4, which are proved in

this thesis.

1.0.2 Theorem

Let E(S2) <∞. Then we obtain for the degree distribution νt in the Britton–Lindholm Model without

loops

(a) if µ = 0, then dTV (νt, ν) = O
(√
te−

1
2
λt
)

as t→∞;

(b) if µ > 0, then dTV (νt, ν) = O
(
t2e−

1
6

(λ−µ)t
)

as t→∞.

Theorem 1.0.2 has consequences for the case where we ignore multiple edges. Let ν̃t be the distri-

bution of the number of neighbours of a node picked uniformly at random from all living nodes at

time t given the number of nodes at time t is positive. We refer to ν̃t shortly as distribution of the

number of neighbours. The convergence of this distribution to the asymptotic degree distribution ν

is an immediate consequence of the following corollary, which is proved in Section 6.4.

1.0.3 Corollary

Let E(S2) < ∞. For the distribution of the number of neighbours in the Britton–Lindholm Model

without loops, we have that dTV (ν̃t, ν) = O(t2e−
1
6

(λ−µ)t) as t→∞.
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Note that rates for the convergence towards the degree distribution were considered for discrete-

time random network models as well. Reinert [Rei09] and Peköz, Röllin and Ross [PRR13] established

convergence rates for the degree distribution in preferential attachment models in terms of the total

variation distance (see Chapter 5 for details).

The derivation of the convergence rates for the (loop-free version of the) model by Britton and

Lindholm is a challenging task due to its complexity. We treat the pure birth and the general case

separately because the pure birth case allows us to obtain a much better rate and present some of the

main ideas of the proof much clearer.

The proof is based on a general approximation result that gives us a bound for the total variation

distance between two mixed Poisson distributions. We derive this result, which might also be inter-

esting in other contexts, in Chapter 3. We apply it to the total variation distance between the degree

distribution νt at time t, which we show to be a mixed Poisson distribution in Chapter 6, and the

asymptotic degree distribution ν. Let (Λ∗t )t≥0 and M∗ be random variables such that νt = MixPo(Λ∗t )

and ν = MixPo(M∗). Then this strategy leads to E(|Λ∗t −M∗|) as upper bound for dTV (νt, ν).

In order to bound this expectation, we first couple Λ∗t and M∗ in an appropriate way. Since the

distribution of Λ∗t depends on the distribution of the age of a node picked uniformly at random at

time t, we are interested in the distribution of the age A of an individual picked uniformly at random

at time t in a linear birth and death process (Yt)t≥0 with per-capita birth rate λ and per-capita

death rate µ. In the pure birth case, i.e. if µ = 0, it is well-known that this distribution is essentially a

truncated exponential with parameter λ, a result which follows immediately from Theorem 1 in [NR71]

(see Chapter 4 for details). It is furthermore well-known that L(A |Yt > 0)
w→ Exp(λ) as t → ∞ if

λ > µ ≥ 0, where
w→ denotes weak convergence. This follows e.g. from Example (6.10.14) in [Jag75].

However, somewhat surprisingly, if µ > 0, an exact formula for the distribution of A at finite t is

nowhere to be found in the literature. In this thesis, we provide such a formula for the cumulative

distribution function of A, both conditionally on the number Yt of individuals at time t and uncon-

ditionally (the conditioning on Yt > 0 being always tacitly implied). Our main proof idea relies on a

bijection between Galton–Watson trees in continuous time and exploration processes, recently shown

in [BPS12]. We also give upper bounds on the closeness of L(A |Yt > 0) and Exp(λ) if λ ≥ µ as well as

convergence rates in various metrics. Note that these substantial new results can be of great general

interest. We point out some related work in Chapter 4.

Finally, we also add a spatial component to the (loop-free version of the) Britton-Lindholm model.

More precisely, we let the probability of edges depend on the positions of the nodes, which gives us a

even more realistic model. For simplicity, we restrict ourselves to the pure birth case here. We derive

asymptotic degree distributions and corresponding convergence rates analogously to the non-spatial

case.

The rest of the thesis is organized as follows. In Chapter 2, we extensively discuss linear birth and

death processes and consider distributions related to such processes since the node population in the

Britton-Lindholm model is described by such a process. In particular, we deduce formulae for the

expectation and the variance of the number of births, which are also of some general interest.



6 Chapter 1. Introduction

In Chapter 3, we first introduce probability metrics, in particular the total variation distance. Sec-

ondly, we give a short introduction to Poisson approximation in Section 3.2. In Section 3.3, we define

mixed Poisson distributions and state interesting properties. Finally, we derive a universal bound

for the total variation distance between two general mixed Poisson distributions (see Theorem 3.4.1),

which we apply to the Britton-Lindholm model without loops in Section 6.3.

In Chapter 4, we first consider known results about concepts that are in some sense similar to “our”

age distribution. Then we briefly consider the age distribution in the pure birth case in Section 4.2.

In Section 4.3, we treat the general case, which is far more complicated. We introduce contour

processes and derive the age distribution for a linear birth and death process using results about those

processes from [BPS12]. Additionally, we deduce rates for the convergence towards the asymptotic

age distribution. In Section 4.4, we compute an upper bound for the time since the last event in a

linear birth and death process by applying results from the previous section and compare this bound

with a similar one obtained from known results about so-called reconstructed trees.

In Chapter 5, we turn to random networks. We first introduce briefly the concept of graphs and

heavy-tailed as well as power law distributions. Then we present well-known examples of static random

network models in Section 5.3. Finally, we consider well-known dynamic random network models,

including preferential and uniform attachment and fitness models. In particular, we summarize known

results about rates for the convergence towards the asymptotic degree distribution for preferential and

uniform attachment models.

In Chapter 6, we consider the (loop-free version of the) network model by Britton and Lindholm.

Firstly, we give a precise definition of the model sketched above. Then we deduce the degree distribu-

tion at finite time by using results about birth and death processes in Section 6.2. In Section 6.3, we

derive rates for the convergence to the asymptotic degree distribution in terms of the total variation

distance treating the pure birth case and the general case separately, which leads to Theorem 1.0.2

above. At the end of Section 6.3, we also discuss the quality of the convergence rates by using simula-

tions. In Section 6.4, we prove that multiple edges are negligible in the sense that the probability that

a node picked uniformly at random has a multiple edge converges to zero exponentially in time, which

allows us to formulate our main results for the case where we ignore multiple edges as mentioned

above. In Section 6.5, we show that we can indeed obtain a power law distribution as asymptotic

degree distribution, which motivates the consideration of the model. We briefly consider further prop-

erties of the asymptotic degree distribution in Section 6.6. Finally, we look at the case where edges

cannot die and obtain similar results as before. This case turns out to be very interesting since we

can rediscover asymptotic degree distributions from other well-known random network models.

Finally, we add a spatial component to the model in Chapter 7. More precisely, we let the probability

of an edge depend on the positions of the nodes, which are assumed to be uniformly distributed on

a hypercube of arbitrary dimension. We derive a rate of convergence towards the asymptotic degree

distribution and show that multiple edges are negligible in a rather general setting. Finally, we specify

how the probability of the creation of an edge depends on the distance between the corresponding

nodes in three different ways and obtain explicit expressions for the degree distributions and the

convergence rates.

In Chapter 8, we end this thesis with a discussion and an outlook.



2 Distributions related to linear birth and death

processes

2.1 Introduction to linear birth and death processes

A linear birth and death process is a Markov process that is applied in many different areas in order

to describe populations. Before we define this type of process, we recall the definition of a birth and

death process.

2.1.1 Definition (see e.g. Section 6.2 of [All10])

A birth and death process (Xt)t≥0 is a homogeneous Markov process with states in (a subset of)

N0 = {0, 1, 2, . . .} that satisfies

P(Xt+∆t −Xt = m|Xt = n) =



λn∆t+ o(∆t) if m = 1,

µn∆t+ o(∆t) if m = −1,

1− (λn + µn)∆t+ o(∆t) if m = 0,

o(∆t) otherwise

as ∆t ↓ 0 for n,m ∈ N0, t ≥ 0, where λn ≥ 0 and µn+1 ≥ 0 for all n ∈ N0.

We interpret Xt as population size at time t. Note that the sequences (λn)n∈N0 and (µn)n∈N are often

referred to as birth and death rates, respectively. In this thesis, all homogeneous Markov processes

are assumed to have right-continuous trajectories.

2.1.2 Remark

From Section XVII.5 of [Fel67], we know that a birth and death process (Xt)t≥0 exists for all fea-

sible sequences (λn)n∈N0 and (µn)n∈N. Furthermore, the birth and death process (Xt)t≥0 is uniquely

determined by the above definition in “all cases of practical significance” ([Fel67], Section XVII.5)

including the following examples.

A Poisson process, which is defined in the following definition, is a birth and death process.

2.1.3 Definition (cf. e.g. Example 1.3 in [CM77])

A birth and death process with constant birth rates λn = λ̃ > 0 and death rates µn+1 = 0 for all

n ∈ N0 started with zero individuals is called Poisson process of rate λ̃.

2.1.4 Remark (cf. e.g. Example 1.3 in [CM77])

For a Poisson process (Ξt)t≥0 of rate λ̃, it can be shown that the number of events, i.e. births, in a time

interval (t, t+ ∆t] is Po(λ̃∆t) distributed for all t ≥ 0 and ∆t > 0. In particular, we have Ξt ∼ Po(λ̃t)

for all t > 0.
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A linear birth and death process is a birth and death process whose birth and death rates are linear

in the population size, i.e. it is defined and interpreted as follows.

2.1.5 Definition and Remark (see e.g. Example 4.4 in [CM77] and Section 8.2 of [Bai64])

A linear birth and death process (Yt)t≥0 is a birth and death process with λn = λn and µn = µn,

n ∈ N0, for µ, λ ≥ 0. Throughout this thesis, (Yt)t≥0 always denotes such process.

A linear birth and death process can be interpreted as follows. For each t ≥ 0, the random variable

Yt is the number of individuals alive in a population where each living individual gives birth to offspring

according to a Poisson process of rate λ and lives an Exp(µ) distributed time indenpendently of all

other individuals. Thus we call λ and µ the per-capita birth and death rate, respectively.

A different interpretation is that each living individual splits into two after an Exp(λ) distributed

time. In particular, this is reasonable if we think of unicellular organisms. However, we stick to the

first interpretation throughout this thesis.

Note that a linear birth and death process is also often referred to as simple birth and death

process in the older literature (see e.g. Section 8.2 of [Bai64]). Note further that linear birth and

death processes belong to the class of continuous-time branching processes (see e.g. see Section III.5

of [AN72] or page 62 in [HJV05]) since they fulfill the following branching property.

2.1.6 Lemma (cf. e.g. page 105 and 106 in [AN72])

Let Y
(i)
u (t, ω) denote the number of offspring of the ith of the Yt(ω) individuals alive at time t that

are still living at time t+ u, where we number the parents in an arbitrary way. Then we have

Yt+u(ω) =

Yt(ω)∑
i=1

Y (i)
u (t, ω),

where, given Yt, the processes (Y
(i)
u (t))u≥0 are independent with L((Y

(i)
u (t))u≥0|Yt) = L((Yu)u≥0|Y0 = 1)

(and we use the usual convention that the empty sum is zero).

Finally, we consider a classical classification of linear birth and death processes.

2.1.7 Remark (see e.g. [AN72] or [HJV05])

For (Yt)t≥0, the expected number of offspring of each individual is

∞∫
0

λt PL−1(dt) =

∞∫
0

λe−µtdt =
λ

µ
,

where L is the lifetime of the individual. A branching processes is called critical if this expectation is

equal to one, subcritical if it is smaller and supercritical if it is larger than one. Thus we call (Yt)t≥0

critical if λ = µ, subcritical if λ < µ and supercritical if λ > µ.

From now on, we assume Y0 = 1, i.e. we begin with one individual at time 0, throughout this thesis

if not stated otherwise. For a general initial population size, many results can be deduced from this

case by using the branching property from Lemma 2.1.6.
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2.2 Total population size in a linear birth and death process

In this section, we consider the distribution of the population size Yt in the linear birth and death

process (Yt)t≥0 with per-capita birth rate λ, per-capita death rate µ and initial value one, i.e. Y0 = 1.

In the network models in Chapter 6 and Chapter 7, the node process is a supercritical linear birth and

death process. Since some results could also be of general interest, we also consider the case where

µ ≥ λ > 0. Firstly, we assume that the per-capita birth rate λ and the per-capita death rate µ of

(Yt)t≥0 are not equal. According to (8.15) and (8.46) in [Bai64], the one-dimensional distributions of

such a process are then given by the following probability mass functions:

p0(t) = µp̃(t),

pn(t) = (1− µp̃(t))(1− λp̃(t))(λp̃(t))n−1, n ∈ N = {1, 2, 3, . . .},

where

p̃(t) :=
e(λ−µ)t − 1

λe(λ−µ)t − µ
=

1

λ

1− e−(λ−µ)t

1− µ
λe
−(λ−µ)t

.

2.2.1 Remark

Note that these are just the probability mass functions of geometric distributions if µ = 0. Since

the convolution of several geometric distributions is a negative binomial distribution, this implies by

Lemma 2.1.6 that the one-dimensional distributions of (Yt)t≥0 are negative binomial distributions in

the pure birth case if we consider a general initial value m ∈ N.

For λ = µ > 0, the probability mass function of the one-dimensional distributions of (Yt)t≥0 is given

by

p0(t) =
λt

1 + λt
,

pn(t) =
(λt)n−1

(1 + λt)n+1
, n ∈ N,

by (8.53) in [Bai64].

2.2.2 Remark

Note that p0(t) is the probability that a linear birth and death process with initial value one goes extinct

up to time t. Due to the branching property of a linear birth and death process (see Lemma 2.1.6),

we have that p0(t)m is the probability that a linear birth and death process with a general initial

value m ∈ N goes extinct up to time t. By taking the limit t→∞, we obtain that the probability of

eventual extinction is (µ/λ)m for λ ≥ µ and 1 otherwise (see also (8.59) in [Bai64]).

By elementary computations using these probability mass functions, we obtain the following propo-

sition (cf. (8.16), (8.17), (8.48), (8.49), (8.54) and (8.55) in [Bai64]).

2.2.3 Proposition

(i) For λ 6= µ, we have

E(Yt) = e(λ−µ)t and Var(Yt) =
λ+ µ

λ− µ
(e2(λ−µ)t − e(λ−µ)t).
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(ii) For λ = µ > 0, we have

E(Yt) = 1 and Var(Yt) = 2λt.

Now we derive the expected reciprocal of the population size at time t given the population has

not gone extinct until time t and state an upper bound. This result is required for the derivation of

the age distribution in Chapter 4 as well as for the proofs of the convergence rates in Chapter 6 and

Chapter 7.

2.2.4 Proposition

(i) For λ 6= µ, we have

E
(

1

Yt

∣∣∣∣ Yt > 0

)
=

λ− µ
λe(λ−µ)t − λ

log

(
λe(λ−µ)t − µ

λ− µ

)
≤ λ− µ
λe(λ−µ)t − λ

(
log

(
λ

λ− µ

)
+ (λ− µ)t

)
.

(ii) For λ = µ > 0 we have,

E
(

1

Yt

∣∣∣∣ Yt > 0

)
=

log(1 + λt)

λt
.

Proof :

(i) We obtain for λ 6= µ

E
(

1

Yt

∣∣∣∣ Yt > 0

)
=

∞∑
n=1

pn(t)
n

1− p0(t)

=
∞∑
n=1

1

n

λ− µ
λe(λ−µ)t − µ

(
λe(λ−µ)t − λ
λe(λ−µ)t − µ

)n−1

=
λ− µ

λe(λ−µ)t − λ

∞∑
n=1

1

n

(
λe(λ−µ)t − λ
λe(λ−µ)t − µ

)n
=

λ− µ
λe(λ−µ)t − λ

(
− log

(
1− λe(λ−µ)t − λ

λe(λ−µ)t − µ

))
=

λ− µ
λe(λ−µ)t − λ

log

(
λe(λ−µ)t − µ

λ− µ

)
≤ λ− µ
λe(λ−µ)t − λ

(
log

(
λ

λ− µ

)
+ (λ− µ)t

)
.

(ii) Analogously, we obtain for λ = µ > 0

E
(

1

Yt

∣∣∣∣ Yt > 0

)
=

∞∑
n=1

pn(t)
n

1− p0(t)
= (1 + λt)

∞∑
n=1

1

n

(λt)n−1

(1 + λt)n+1
=

1

λt

∞∑
n=1

1

n

(
λt

1 + λt

)n
=

log(1 + λt)

λt
.

�

For the time being, we only consider the case where λ > µ. In this case, we also need an upper bound

for E(1/
√
Yt|Yt > 0) in Chapter 6 and Chapter 7, which is given by the following corollary.
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2.2.5 Corollary

For λ > µ and t ≥ 1
λ−µ log(2), we have

E
(

1√
Yt

∣∣∣∣ Yt > 0

)
≤ e−

1
2

(λ−µ)t

√
2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)t

)
.

P roof : For λ > µ and t ≥ 1
λ−µ log(2), it follows from Proposition 2.2.4:

E
(

1√
Yt

∣∣∣∣ Yt > 0

)
≤

√
E
(

1

Yt

∣∣∣∣ Yt > 0

)

≤

√
λ− µ

λe(λ−µ)t − λ

(
log

(
λ

λ− µ

)
+ (λ− µ)t

)

≤

√
2(λ− µ)

λe(λ−µ)t

(
log

(
λ

λ− µ

)
+ (λ− µ)t

)

= e−
1
2

(λ−µ)t

√
2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)t

)
.

�

2.2.6 Remark

Using Jensen’s inequality, we obtain an asymptotic lower bound for the conditional expectation con-

sidered in the previous corollary:

By the formula for p0(t) given at the beginning of this section, it follows that

lim
t→∞

E(Yt|Yt > 0)e−(λ−µ)t = lim
t→∞

E(Yt)e
−(λ−µ)t λ

λ− µ
=

λ

λ− µ
(2.1)

for λ > µ, and since the function x 7→ 1√
x

is strictly convex on the positive real axis, Jensen’s inequality

yields

E
(

1√
Y t

∣∣∣∣ Yt > 0

)
>

1√
E(Yt|Yt > 0)

. (2.2)

Equation (2.1) implies

lim
t→∞

1√
E(Yt|Yt > 0)

e
1
2

(λ−µ)t =

√
λ− µ
λ

.

Thus we obtain by (2.2) that E( 1√
Y t
|Yt > 0) does not converge to zero at a faster rate than e−

1
2

(λ−µ)t

as t→∞ for λ > µ.

Now we consider the martingale property of the normed population size, which leads to useful results

about the limiting behaviour.

2.2.7 Theorem (cf. Theorem 1 in Section III.7 of [AN72])

The process (Yte
−(λ−µ)t)t≥0 is a martingale with respect to the natural filtration.
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Proof : By Lemma 2.1.6 and Proposition 2.2.3, we have for u < t

E(Yte
−(λ−µ)t|Yu) = e−(λ−µ)tYuE(Yt−u|Y0 = 1) = Yue

−(λ−µ)te(λ−µ)(t−u) = Yue
−(λ−µ)u.

�

The following corollary is an immediate consequence of Theorem 2.2.7.

2.2.8 Corollary

The process (Yt)t≥0 is a submartingale if λ > µ, a supermartingale if λ < µ and a martingale if λ = µ

with respect to the natural filtration.

Since (Yte
−(λ−µ)t)t≥0 is a martingale by Theorem 2.2.7, the random variable W̃ := lim

t→∞
Yte
−(λ−µ)t

exists almost surely by standard martingale convergence theory. In the subcritical and critical case,

the probability of ultimate extinction is one (see Remark 2.2.2). Thus we have W̃ = 0 almost surely.

However, in the supercritical case, we obtain a non-deterministic random variable. Namely, its dis-

tribution is given by P(W̃ = 0) = µ/λ and L(W̃ |W̃ > 0) = Exp(λ−µλ ) (see e.g. page 319 in [Har50]).

Note that this shows that the statement at the beginning of Section 4 of [Kei75] is wrong.

2.3 The number of births and deaths

We consider a linear birth and death process (Yt)t≥0 with birth rate λ, death rate µ and initial value

one as before. For convenience, we assume λ 6= µ in this section.

Let Bt be the number of births up to time t. Then (Bt)t≥0 is in general no Markov process since the

number of births depends on the population size. However, the two-dimensional process (Bt, Yt)t≥0

is always a Markov process (see Example 6.4 in [CM77]). Let G (w, z; t) := E(wBtzYt) be the joint

probability generating function. Then a partial differential equation can be derived for G (see (39)

on page 265 in [CM77] or (43) in [Ken49]), which can be used to compute G (see (40) on page 266

in [CM77]). Moreover, the partial differential equation for G leads to the following partial differential

equation for the joint cumulant generating function K(θw, θz; t) = log(G (eθw , eθz ; t)) (cf. page 271 in

[CM77]):

∂K

∂t
= (λeθw+θz − (λ+ µ) + µe−θz)

∂K

∂θz
. (2.3)

Since G is an analytic function, K is also analytic (as a composition of analytic functions). Thus for

(θw, θz) from a ball around 0, we can write K in the form

K(θw, θz; t) =
∞∑

i,j=0

κij(t)
θiwθ

j
z

i!j!
, (2.4)

where κij denote the corresponding cumulants. By inserting (2.4) into (2.3), we obtain

∞∑
i,j=0

d

dt
κij(t)

θiwθ
j
z

i!j!
=

(
λ
∞∑
k=0

θkw
k!

∞∑
l=0

θlz
l!
− (λ+ µ) + µ

∞∑
k=0

(−θz)k

k!

) ∞∑
i,j=0

κi,j+1(t)
θiwθ

j
z

i!j!
.
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By equating coefficients, this yields the following differential equations for the cumulants:

d

dt
κ01(t) = (λ− µ)κ01(t) (2.5)

1

2

d

dt
κ02(t) = (λ− µ)κ02(t) +

λ+ µ

2
κ01(t) (2.6)

d

dt
κ10(t) = λκ01(t) (2.7)

d

dt
κ11(t) = (λ− µ)κ11(t) + λκ02(t) + λκ01(t) (2.8)

1

2

d

dt
κ20(t) = λκ11(t) +

1

2
λκ01(t). (2.9)

Note that κ10(t) = E(Bt),κ01(t) = E(Yt),κ20(t) = Var(Bt),κ02(t) = Var(Yt) and κ11(t) = Cov(Bt, Yt)

(cf. e.g. Subsection 5.1.2 of [CJ10]). Thus from (2.5) and (2.6) follows Proposition 2.2.3. The differ-

ential equation (2.7) yields

E(Bt) =
λ

λ− µ
e(λ−µ)t − µ

λ− µ

if we assume B0 = 1. The differential equation (2.8) implies

Cov(Bt, Yt) =
λ(λ+ µ)

(λ− µ)2
e2(λ−µ)t − 2λµ

λ− µ
te(λ−µ)t − λ2

(λ− µ)2
e(λ−µ)t.

From (2.9) follows

d

dt
κ20(t) =

2λ2(λ+ µ)

(λ− µ)2
e2(λ−µ)t − 4λ2µ

λ− µ
te(λ−µ)t − 2λ3

(λ− µ)2
e(λ−µ)t + λe(λ−µ)t,

which implies

Var(Bt) =
λ2(λ+ µ)

(λ− µ)3
e2(λ−µ)t − 4λ2µ

(λ− µ)2
te(λ−µ)t +

(
2λ2µ

(λ− µ)3
− λ(λ+ µ)

(λ− µ)2

)
e(λ−µ)t.

We summarize these results in the following proposition.

2.3.1 Proposition

If we assume B0 = 1, we have

E(Bt) =
λ

λ− µ
e(λ−µ)t − µ

λ− µ
, (2.10)

Cov(Bt, Yt) =
λ(λ+ µ)

(λ− µ)2
e2(λ−µ)t − 2λµ

λ− µ
te(λ−µ)t − λ2

(λ− µ)2
e(λ−µ)t,

Var(Bt) =
λ2(λ+ µ)

(λ− µ)3
e2(λ−µ)t − 4λ2µ

(λ− µ)2
te(λ−µ)t +

(
2λ2µ

(λ− µ)3
− λ(λ+ µ)

(λ− µ)2

)
e(λ−µ)t.

2.3.2 Remark

Formula (2.10) can also be computed by using the differential equation

d

dt
E(Bt) = λE(Yt),
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which can be derived by conditioning on Yt (see e.g. Section 2 of [CS12] or proof of Lemma 1 in

Section 4 of [BL09]). Let Dt be the number of deaths up to time t. Then we have the analogue

differential equation

d

dt
E(Dt) = µE(Yt),

which implies

E(Dt) =
µ

λ− µ
e(λ−µ)t − µ

λ− µ
if we assume D0 = 0.

2.3.3 Remark

Note that E(Yt) = E(Bt) − E(Dt) and E(Bt)−1
E(Dt)

= λ
µ = λ

λ+µ( µ
λ+µ)−1 is the ratio of the probabilities

of a birth and a death at each event time. Furthermore, E(Bt) + E(Dt) = λ+µ
λ−µe

(λ−µ)T − 2µ
λ−µ is the

expected number of events up to time t.



3 Bounds on the total variation distance for

Poisson and mixed Poisson approximation

3.1 Probability metrics and the total variation distance

Before we introduce the total variation distance in Subsection 3.1.2, which is crucial in this thesis, we

briefly present the general concept of probability metrics.

3.1.1 Probability metrics

In order to be able to describe the speed of convergence of a sequence of distributions towards an

asymptotic distribution, we need to quantify the distance between distributions. Therefore, we con-

sider metrics on a subset M of the set P(X ) of probability measures on a measurable space (X ,B),

i.e. a map d : M×M→ [0,∞) such that for all P1,P2,P3 ∈M

(i) d(P1,P2) = 0⇔ P1 = P2

(ii) d(P1,P2) = d(P2,P1)

(iii) d(P1,P2) ≤ d(P1,P3) + d(P3,P2).

3.1.1 Remark (see e.g. the introduction of [Zol84] and the first two chapters of [RKSF13])

Note that the term probability metric is often used for a more general concept. Firstly, it is often

allowed to be a semimetric on M only, i.e. a map d : M×M→ [0,∞) that fulfills the symmetry (ii),

the triangle inequality (iii) and P1 = P2 ⇒ d(P1,P2) = 0 instead of (i) for all P1,P2,P3 ∈M. Secondly,

it is common to define it on the space of random variables instead of (a subset of) P(X ) and allow

so-called compound probability metrics, i.e. semimetrics that do not only depend on the distributions

of the random variables. The probability metrics that are not compound probability metrics are

called simple and are identified with the corresponding semimetrics on M. We only consider simple

probability metrics here that fulfill (i), i.e. that are metrics on M.

Many well-known probability metrics d can be written in the form

d(P1,P2) = sup
f∈F

∣∣∣∣∫
X

fdP1 −
∫
X

fdP2

∣∣∣∣ (3.1)

for P1,P2 ∈M and a set F of measurable functions f : X → R on a separable measurable space such

that f is P̃-integrable for any P̃ ∈M (see e.g. Section 2 of [Zol84] and Section 4.1 of [RKSF13]). An

example is the total variation distance, which is introduced in the next subsection. Here we give two

other very well-known examples.
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3.1.2 Example (see e.g. Section 2.2 of [RKSF13])

Let X = R, M = P(X ) and F = {1(−∞,x] : x ∈ R}. Then the probability metric d defined by (3.1) is

the Kolmogorov distance, which we denote by dK . We have

dK(L(X),L(Y )) = sup
x∈R
|F (x)−G(x)|

for random variables X and Y on (X ,B) having cumulative distribution functions F and G, respec-

tively.

3.1.3 Example (see e.g. Appendix A1 in [BHJ92])

Consider a separable metric space (X , d̃) equipped with its Borel σ-algebra and the set M of probability

measures that fulfill
∫
X d(x, x0)dP̃(x) <∞ for some, and therefore for every, x0 ∈ X . If X = R and the

metric d̃ is the usual one that is induced by the absolute value, the latter means that
∫
X xdP̃(x) <∞,

i.e. P̃ has finite expectation. Let F = {f : X → R : |f(x)− f(y)| ≤ d̃(x, y)} be the set of Lipschitz

continuous functions with Lipschitz constant 1. Then the probability metric defined by (3.1) is called

Wasserstein distance (also known as Dudley, Fortet-Mourier and Kontorovich distance), which we

denote by dW . For P1,P2 ∈M, it can be shown that

dW (P1,P2) = inf
X∼P1,Y∼P2

E(d̃(X,Y )).

Furthermore, for X = R and the metric d̃ induced by the absolute value, it can be deduced that

dW (L(X),L(Y )) =

∞∫
−∞

|P(X ≤ x)− P(Y ≤ y)|dx

for real-valued random variables X and Y .

3.1.2 The total variation distance

3.1.4 Definition and Remark (see e.g. Appendix A1 in [BHJ92])

Let F = {1B : B ∈ B} and M = P(X ). Then the probability metric defined by (3.1) is called total

variation distance and is denoted by dTV . Thus we have

dTV (P1,P2) = sup
B∈B
|P1(B)− P2(B)|.

It can be shown by a simple approximation argument that we can also take the set of functions

F = {f : X → [0, 1] measurable} in (3.1) in order to obtain the total variation distance dTV (see e.g.

Appendix A1 in [BHJ92]). We now present further results that can be found in Appendix A1 in

[BHJ92].

3.1.5 Proposition

Let P1,P2 ∈ P(X ).

(i) There exists an event B+ ∈ B such that dTV (P1,P2) = P1(B+)− P2(B+).
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(ii) Let P1 and P2 both be absolutely continuous with respect to some measure ζ on (X ,B) and have

densities f1 and f2 with respect to ζ, respectively. Then we have

dTV (P1,P2) =
1

2

∫
X

|f1 − f2|dζ = 1−
∫
X

min(f1, f2)dζ.

Proof [cf. proof of Lemma 3.3.1. in [Rei12], proof of Proposition 4.2 and page 51 in [LPW09]]:

Let P1 and P2 both be absolutely continuous with respect to some measure ζ on (X ,B) and have

densities f1 and f2 with respect to ζ. Note that the choice ζ = P1+P2 is always possible. Furthermore,

let B> := {x : f1(x) > f2(x)} and let B ∈ B. Then

P1(B)− P2(B) =

∫
B

(f1(x)− f2(x))ζ(dx) =

∫
B∩B>

(f1(x)− f2(x))ζ(dx) +

∫
B∩Bc>

(f1(x)− f2(x))ζ(dx)

≤
∫

B∩B>

(f1(x)− f2(x))ζ(dx) ≤
∫
B>

(f1(x)− f2(x))ζ(dx)

= P1(B>)− P2(B>) (3.2)

since f1(x)− f2(x) is negative or zero for all x ∈ Bc
> and positive for all x ∈ B>.

Analogously to (3.2), we obtain

P2(B)− P1(B) =

∫
B

(f2(x)− f1(x))ζ(dx) =

∫
B∩B>

(f2(x)− f1(x))ζ(dx) +

∫
B∩Bc>

(f2(x)− f1(x))ζ(dx)

≤
∫

B∩Bc>

(f2(x)− f1(x))ζ(dx) ≤
∫
Bc>

(f2(x)− f1(x))ζ(dx)

= P2(Bc
>)− P1(Bc

>). (3.3)

Note that

P1(B>)− P2(B>)− (P2(Bc
>)− P1(Bc

>)) = P1(B>)− P2(B>)− (1− P2(B>)− (1− P1(B>))) = 0.

Thus the right-hand sides of (3.2) and (3.3) are equal and we obtain

dTV (P1,P2) = P1(B>)− P2(B>) = P2(Bc
>)− P1(Bc

>) (3.4)

by the definition of the total variation distance since B ∈ B is an arbitrary event. This yields

dTV (P1,P2) = P1(B+)− P2(B+) with B+ = B> ∈ B.

Furthermore, (3.4) implies∫
X

|f1 − f2|dζ =

∫
B>

|f1 − f2|dζ +

∫
Bc>

|f1 − f2|dζ

=

∫
B>

(f1 − f2)dζ +

∫
Bc>

(f2 − f1)dζ

= P1(B>)− P2(B>) + P2(Bc
>)− P1(Bc

>) = 2dTV (P1,P2).
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Dividing by 2 yields the first equality of (ii).

For the second equality of (ii), we note that

1 =

∫
X

f1dζ =

∫
B>

f2 + f1 − f2dζ +

∫
Bc>

f1dζ

=

∫
B>

min(f1, f2) + (f1 − f2)dζ +

∫
Bc>

min(f1, f2)dζ

=

∫
X

min(f1, f2)dζ +

∫
B>

f1 − f2dζ

=

∫
X

min(f1, f2)dζ + P1(B>)− P2(B>). (3.5)

Recall that dTV (P1,P2) = P1(B>)− P2(B>) by (3.4). Thus (3.5) implies

dTV (P1,P2) = 1−
∫
X

min(f1, f2)dζ,

which completes the proof. �

3.1.6 Corollary

Let P1 and P2 be two probability measures on X = N0 with probability mass functions f1 and f2,

respectively. Then the corresponding total variation distance is given by

dTV (P1,P2) =
1

2

∞∑
k=0

|f1(k)− f2(k)|.

P roof : The statement follows immediately from Theorem 3.1.5 (ii). �

3.1.7 Remark (cf. e.g. Appendix A1 in [BHJ92])

It can be shown that dTV is a complete metric on the space of all probability measures on (X ,B).

Moreover, it is easy to see that 0 ≤ dTV ≤ 1 and that dTV (P1,P2) = 1 if and only if P1 and P2 are

mutually singular, i.e. there exists a set B ∈ B such that P1(B) = 0 and P2(Bc) = 0.

We now show that the total variation distance can be expressed as a minimal coupling.

3.1.8 Theorem

For all probability measures P1,P2 on (X ,B), we have

dTV (P1,P2) = minP(X1 6= X2),

where we take the minimum over all random variables X1 and X2 that are defined on a common

probability space (Ω,A,P) and satisfy X1 ∼ P1 and X2 ∼ P2.
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Proof [cf. e.g. page 254 in [BHJ92] and the proof of Proposition 4.7 in [LPW09]]:

Let X1 ∼ P1, X2 ∼ P2 be random variables on a probability space (Ω,A,P). Then we have for all

probability measures P1,P2 on (X ,B), an arbitrary event B ∈ B and k, l ∈ {1, 2} with k 6= l

Pk(B)− Pl(B) = P(Xk ∈ B)− P(Xl ∈ B) ≤ P(Xk ∈ B,Xl 6∈ B) ≤ P(X1 6= X2).

Thus |P1(B)− P2(B)| ≤ P(X1 6= X2) for all B ∈ B and Definition and Remark 3.1.4 implies

dTV (P1,P2) = sup
B∈B
|P1(B)− P2(B)| ≤ P(X1 6= X2).

On the other hand, we can construct X1 ∼ P1, X2 ∼ P2 with dTV (P1,P2) ≥ P(X1 6= X2) as follows.

Let δ := dTV (P1,P2).

For δ = 0, we then have |P1(B) − P2(B)| = 0 for all B ∈ B, i.e. P1 = P2. Let X1 ∼ P1 and

X2 := X1 ∼ P2. Then we obtain P(X1 6= X2) = 0 = dTV (P1,P2).

For δ = 1, we obviously have dTV (P1,P2) = 1 ≥ minP(X1 6= X2) since P is a probability measure.

Finally, we assume that δ ∈ (0, 1) and give a construction for X1 ∼ P1, X2 ∼ P2 such that

dTV (P1,P2) = P(X1 6= X2). Let ζ be a measure on (X ,B) such that P1 and P2 are absolutely continu-

ous with respect to ζ, and let P1 and P2 have densities f1 and f2 with respect to ζ, respectively. From

Proposition 3.1.5 and its proof, we can conclude that 1
1−δ min(f1, f2), 1

δ (f1 − f2)+ and 1
δ (f1 − f2)−

are probability densities with respect to ζ, where we use the common notation f+ := max(0, f) for

the positive part and f− := −min(0, f) for the negative part of a real-valued function f . Let Z, X̃1

and X̃2 be X -valued random variables on the probability space (Ω,A,P) such that their distributions

have densities 1
1−δ min(f1, f2), 1

δ (f1− f2)+ and 1
δ (f1− f2)− with respect to ζ, respectively. Let I be a

random variable on (Ω,A,P) that satisfies I ∼ Be(1− δ) and is independent of (Z, X̃1, X̃2). Moreover,

let

(X1, X2) =

(Z,Z) if I = 1,

(X̃1, X̃2) if I = 0.

Then we obtain

P(X1 6= X2) = P(I = 0) = δ

because we either have (f1 − f2)+(x) = 0 or (f1 − f2)−(x) = 0 for every x ∈ X .

Furthermore, we have X1 ∼ P1 since

P(X1 ∈ B) = P(Z ∈ B)(1− δ) + P(X̃1 ∈ B)δ

=

∫
B

min(f1, f2)dζ +

∫
B

(f1 − f2)+dζ

=

∫
B∩B>

min(f1, f2)dζ +

∫
B∩Bc>

min(f1, f2)dζ +

∫
B∩B>

(f1 − f2)+dζ +

∫
B∩Bc>

(f1 − f2)+dζ

=

∫
B∩B>

f2dζ +

∫
B∩Bc>

f1dζ +

∫
B∩B>

f1 − f2dζ

=

∫
B

f1dζ,
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where B> := {x|f1(x) > f2(x)}. Analogously, we obtain X2 ∼ P2 since

P(X2 ∈ B) = P(Z ∈ B)(1− δ) + P(X̃2 ∈ B)δ

=

∫
B

min(f1, f2)dζ +

∫
B

(f1 − f2)−dζ

=

∫
B∩B>

min(f1, f2)dζ +

∫
B∩Bc>

min(f1, f2)dζ +

∫
B∩B>

(f1 − f2)−dζ +

∫
B∩Bc>

(f1 − f2)−dζ

=

∫
B∩B>

f2dζ +

∫
B∩Bc>

f1dζ −
∫

B∩Bc>

f1 − f2dζ

=

∫
B

f2dζ.

�

Finally, we treat the convergence with respect to the total variation distance.

3.1.9 Proposition

Let P1,P2, . . . ∈ P(X ) and P∞ ∈ P(X ). Then we have

dTV (Pn,P∞)
n→∞→ 0 =⇒ Pn

w→ P∞,

where
w→ denotes weak convergence.

Proof : dTV (Pn,P∞)
n→∞→ 0 implies Pn(B)

n→∞→ P∞(B) for all B ∈ B by the characterisation of
the total variation distance given in Definition and Remark 3.1.4. Thus the claim follows with the

Portmonteau Theorem. �

3.1.10 Remark

If X is countable, the converse of Proposition 3.1.9 holds also, i.e. Pn
w→ P∞ =⇒ dTV (Pn,P∞)

n→∞→ 0.

However, this is not true in general.

3.2 Poisson approximation

In this section, we briefly introduce the concept of Poisson approximation and refer to [BHJ92] for a

lot of further results. The first part of this section is based on the introduction in [BHJ92].

In the remaining of this chapter, we assume that all random variables are defined on an underlying

common probability space (Ω,A,P).

The Poisson limit theorem, also known as law of small number, is one of the famous limit theorems

in probability theory. Its simplest version says that the Bin(n, p(n)) distribution converges to the

Po(λ̃) distribution as n→∞ if p(n) = λ̃/n and was proved by Poisson in 1837. Thus for small p and

large n, it is reasonable to approximate the Bin(n, p) distribution by a Poisson distribution. In other

words, the Poisson distribution can be a useful approximation if rare events are considered. One of
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the first remarkable applications of this result was the analysis of the numbers of Prussian soldiers

killed each year as a result of being kicked by horses by von Bortkewitsch in 1898.

However, the Poisson limit theorem does not provide any information about the quality of the

approximation for particular values of n and p. That is where Poisson approximation comes into play.

One of the first results states that the total variation distance dTV (Bin(n, p(n)),Po(np(n))) is at most

of order max(np(n)2, p(n)). If I
(n)
1 , . . . , I

(n)
n are independent Be(p(n)) distributed random variables,

this is an approximation result for the distribution of the sum
∑n

k=1 I
(n)
k ∼ Bin(n, p(n)). If the random

variables I
(n)
1 , . . . , I

(n)
n are still assumed to be independent and Bernoulli but not necessarily identically

distributed, i.e. I
(n)
k ∼ Be(pk(n)) for k ∈ {1, . . . , n}, an upper bound for dTV (L(

∑n
k=1 I

(n)
k ),Po(λ̃)) can

be derived using Stein’s method, where λ̃ =
∑n

k=1 pk(n) (see the introduction in [BHJ92]). Namely,

it can be shown that

dTV

(
L
( n∑
k=1

I
(n)
k

)
,Po(λ̃)

)
≤ min

(
1,

1

λ̃

) n∑
k=1

pk(n)2. (3.6)

Note that the right-hand side of (3.6) is smaller than or equal to maxk∈{1,...,n} pk(n). Thus we obtain

a good approximation as long as all pk(n) are small, no matter how large n is. This justifies the

expression law of small number.

There are also other types of distributions that can be approximated by Poisson distributions in

a reasonable way. Of course, a Poisson distribution is a good approximation for another Poisson

distribution if the parameters are close to each other. The following theorem makes this statement

more precise.

3.2.1 Theorem (cf. page 3 in [Roo03])

Let λ̃ > 0 and µ̃ > 0. Then we have

dTV (Po(λ̃),Po(µ̃)) ≤ min

(√
2

e

∣∣√λ̃−√µ̃∣∣, ∣∣λ̃− µ̃∣∣).
We only prove dTV (Po(λ̃),Po(µ̃)) ≤ |λ̃ − µ̃| here since this is the statement that is needed for

Chapter 6 and Chapter 7. The inequality dTV (Po(λ̃),Po(µ̃)) ≤
√

2/e|
√
λ̃−
√
µ̃| follows from the more

general Theorem 3.3.9, which is proved in [Roo03]. A direct prove of dTV (Po(λ̃),Po(µ̃))) ≤ |
√
λ̃−
√
µ̃|

is presented in [Yan91].

A proof that is in some sense similar to ours can be found on page 260 in [Fre74]. Let (Ξt)t≥0 be

a Poisson process of rate 1 on a probability space (Ω,A,P) (cf. Definition 2.1.3), and let X1 := Ξλ̃
and X2 := Ξµ̃. Then we have X1 ∼ Po(λ̃) and X2 ∼ Po(µ̃) by Remark 2.1.4. Thus we obtain by

Theorem 3.1.8 that

dTV (Po(λ̃),Po(µ̃)) ≤ P(X1 6= X2). (3.7)

By the definition of X1 and X2, we have X1(ω) 6= X2(ω) if and only if (Ξt(ω))t≥0 jumps in the

interval (min(λ̃, µ̃),max(λ̃, µ̃)], i.e. Ξmax(λ̃,µ̃)(ω)− Ξmin(λ̃,µ̃)(ω) > 0. Thus the right-hand side of (3.7)

is equal to P(Ξmax(λ̃,µ̃) − Ξmin(λ̃,µ̃) > 0), and since (Ξt)t≥0 is a Poisson process of rate 1, the random

variable Ξmax(λ̃,µ̃) − Ξmin(λ̃,µ̃) is Poisson distributed with parameter max(λ̃, µ̃)−min(λ̃, µ̃) = |λ̃− µ̃|
by Remark 2.1.4. Thus the right-hand side of (3.7) is equal to 1 − e−|λ̃−µ̃|, which is bounded from

above by |λ̃− µ̃|. �
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3.3 Mixed Poisson distributions

The degree distributions of the network models in Chapter 6 and Chapter 7 are mixed Poisson dis-

tributions, which are introduced in this section and appear in many different contexts (see [KX05]).

We briefly state some interesting properties of these distributions and refer to [KX05] for an extensive

survey.

3.3.1 Definition (cf. Definition 6.7 in [vdH16] and Definition 5 in [KX05])

Let Λ be a non-negative random variable. A random variable X has a mixed Poisson distribution with

mixing distribution PΛ, denoted by MixPo(Λ), if and only if for all k ∈ N0

P(X = k) =

∞∫
0

λ̃k

k!
e−λ̃ PΛ(dλ̃),

where PΛ denotes the distribution of Λ.

Note that a mixed Poisson distribution can be interpreted as Poisson distribution with a random

parameter Λ. Note further that Definition 3.3.1 defines a rich family of probability distributions on

N0 (see [KX05]). However, not every probability distribution on N0 is a mixed Poisson distribution

(cf. Exercise 6.9 in [vdH16]).

A very well-known example of a mixed Poisson distribution is the negative binomial distribution,

which is obtained by using a gamma distribution as mixing distribution (see e.g. [KX05]). The Yule-

Simon distribution defined in Definition 5.4.3 below is a mixed Poisson distribution shifted by one (cf.

also Remark 6.7.2(i) below).

The following proposition states that the mixing distribution is identifiable. It was first stated in

[Fel43] and is discussed in Subsection 3.4 of [KX05].

3.3.2 Proposition (see Section 2 of [Fel43])

Let M1 and M2 be two non-negative random variables. Then we have MixPo(M1) = MixPo(M2) only

if L(M1) = L(M2).

Now we consider the tail behaviour of mixed Poisson distributions. We begin with a rather simple

result from [vdH16].

3.3.3 Proposition (cf. Exercise 6.12 in [vdH16])

Let Λ be a non-negative random variable, and let F be the cumulative distribution function of PΛ.

Suppose that there exist real constants c1 < c2 such that

c1x
1−θ ≤ 1− F (x) ≤ c2x

1−θ

for all x ∈ R and some θ > 1, and let G be the cumulative distribution function of the MixPo(Λ)

distribution. Then there exist real constants c̃1 < c̃2 such that

c̃1m
1−θ ≤ 1−G(m) ≤ c̃2m

1−θ

for all m ∈ N0.
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Before we consider further results about the tails of mixed Poisson distributions, we state two

definitions.

3.3.4 Definition (cf. Section 2 of [Per98])

For functions f : R → R and g : R → R, we write f ∼ g and say that f and g are tail-equivalent if

and only if lim
x→∞

f(x)
g(x) = 1. For functions f : N0 → R and g : N0 → R, the notation f ∼ g is defined

analogously and corresponds to the usual concept of asymptotic equivalence for sequences.

3.3.5 Definition (cf. Section 1.4 of [vdH16])

A function ϕ : R→ R is called slowly varying if and only if

lim
x→∞

ϕ(cx)

ϕ(x)
= 1

for all c > 0. For functions ϕ : N0 → R slowly varying is defined analogously.

3.3.6 Remark

An example of a slowly varying function is x 7→ log(x) since

lim
x→∞

log(cx)

log(x)
= lim

x→∞

log(c) + log(x)

log(x)
= 1.

On the other hand, for any ε > 0, the function x 7→ xε is not slowly varying because

lim
x→∞

(cx)ε

xε
= cε

and cε 6= 1 for c 6= 1.

3.3.7 Theorem (cf. Theorem 2 in [Per98])

Let Λ be a non-negative random variable and assume that PΛ has density f with respect to the

Lebesgue measure. Furthermore, let F and G denote the cumulative distribution functions of PΛ and

MixPo(Λ), respectively. Assume that the so-called first von Mises condition is fulfilled, i.e.

lim
x→∞

xf(x)

F (x)
= c

for some c > 0. Then we have F ∼ G.

If the first von Mises condition from Theorem 3.3.7 cannot be shown, the following theorem can

often still be applied in order to describe the tail behaviour of the mixed Poisson distribution.

3.3.8 Theorem (cf. Theorem 2.1 in [Wil90])

Let

g(x) = ϕ(x)x−θe−bx,

where θ > 1, b ≥ 0 and the function x 7→ ϕ(x) is slowly varying. Furthermore, let Λ be a non-negative

random variable and assume that PΛ has density f with respect to the Lebesgue or counting measure

such that f ∼ g. Then for X ∼ MixPo(Λ), we have

P(X = k) ∼ ϕ(k)

(1 + b)1−θ

(
1

1 + b

)k
k−θ.
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Finally, we return to Poisson approximation. The following theorem states an upper bound for the

total variation distance between a Poisson and a mixed Poisson distribution, which can be used in

order to approximate the mixed Poisson distribution by a Poisson distribution in special cases.

3.3.9 Theorem (see Theorem 1 in [Roo03])

Let Λ be a non-negative random variable, and let λ̃ > 0. Then we have

dTV (MixPo(Λ),Po(λ̃)) ≤ min

(√
2

e
E
(∣∣√Λ−

√
λ̃
∣∣),E(|Λ− λ̃|)).

3.4 Upper bound for the total variation distance between two mixed

Poisson distributions

Theorem 3.2.1 gives us an upper bound for the total variation distance between two Poisson distribu-

tions. By conditioning, we can generalize this result to two mixed Poisson distributions.

3.4.1 Theorem

Let Λ and M be non-negative random variables. Then we have for the total variation distance between

the mixed Poisson distributions MixPo(Λ) and MixPo(M):

dTV (MixPo(Λ),MixPo(M)) ≤ E
(

min

(√
2

e

∣∣√Λ−
√

M
∣∣, ∣∣Λ−M

∣∣)).
P roof : Let X1 and X2 be MixPo(Λ) and MixPo(M) distributed, respectively. Then it follows

dTV (MixPo(Λ),MixPo(M)) = sup
B⊂N0

|P(X1 ∈ B)− P(X2 ∈ B)|

= sup
B⊂N0

|E(P(X1 ∈ B|Λ))− E(P(X2 ∈ B|M))|

≤ sup
B⊂N0

E(|P(X1 ∈ B|Λ)− P(X2 ∈ B|M)|)

≤ E
(

sup
B⊂N0

|(P(X1 ∈ B|Λ)− P(X2 ∈ B|M)|
)

= E(dTV (L(X1|Λ),L(X2|M)))

≤ E
(

min

(√
2

e

∣∣√Λ−
√

M
∣∣, ∣∣Λ−M

∣∣)),
where the last line follows from Theorem 3.2.1. �

3.4.2 Remark

Note that the mixed Poisson distribution depends on the parameter random variable only via its

distribution; therefore Theorem 3.4.1 yields

dTV (MixPo(Λ),MixPo(M)) ≤ inf
Λ̃:Λ̃
D
=Λ

M̃:M̃
D
=M

E
(

min

(√
2

e

∣∣Λ̃ 1
2 − M̃

1
2

∣∣, ∣∣Λ̃− M̃
∣∣)) ≤ dW (L(Λ),L(M)).
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Note further that Theorem 3.4.1 immediately implies that

dTV (MixPo(Λ),Po(λ̃)) ≤ E
(

min

(√
2

e

∣∣√Λ−
√
λ̃
∣∣, ∣∣Λ− λ̃∣∣))

for a non-negative random variable Λ and λ̃ > 0, which gives an upper bound for the total variation

distance dTV (MixPo(Λ),Po(λ̃)) that is smaller than the one from Theorem 3.3.9 in some cases.





4 The age of a randomly picked individual in a

linear birth and death process

We are interested in the age of an individual picked uniformly at random at a fixed time T > 0 in

the linear birth and death process (Yt)t≥0 (given YT > 0). We briefly call the distribution of this age

the age distribution of (Yt)t≥0 at time T . However, before we consider this distribution, we turn to

related known results. Firstly, we present well-known results about another concept for more general

branching processes often referred to as “age distribution” in the literature, which can for example be

found in [Har02] and [Ken49]. Namely, we consider the number of individuals with age in a certain

interval and the ratio between this number and the total population size. Secondly, we consider the

times since the birth times. Note that the latter does not lead to the age distribution since the birth

times depend on the survival of the corresponding individuals up to time T .

4.1 Related results

4.1.1 The number of individuals with age in a certain interval

We consider the individuals that are not older than a fixed non-negative real number a.

4.1.1 Definition

Let Y a
T be the number of individuals whose age is smaller than or equal to a at time T .

The following theorem states that the expected value of Y a
T is equal to the product of the expected

population size and the cumulative distribution function of the Exp(λ) distribution at a for a < T .

4.1.2 Theorem (see e.g. page 259 in [Ken49])

For a < T , we have

E(Y a
T ) = e(λ−µ)T (1− e−λa) = E(YT )(1− e−λa).

Note that an expression for Var(Y a
T ) can also be found in [Ken49].

The following theorem reveals that, given ultimate survival of (Yt)t≥0, the percentage of individuals

that are not older than a fixed number a converges almost surely to a deterministic number.

4.1.3 Theorem (see e.g. the corollary after Theorem 25.1 in Chapter VI of [Har02] or Exam-

ple (6.10.14) in [Jag75])

Given lim
t→∞

Yt =∞, we have

Y a
T

YT
→ 1− e−λa

almost surely as T goes to infinity.
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4.1.4 Remark

By Theorem 4.1.3, we have for the age AJT of an individual picked uniformly at random among all

living individuals at time T and a ≥ 0,

P(AJT ≤ a|YT > 0) = E
(
Y a
T

YT

∣∣∣∣YT > 0

)
→ 1− e−λa

as T → ∞ since P(YT → ∞|YT > 0) → 1 as T → ∞ and Y a
T /YT ≤ 1 (cf. e.g. Example (6.10.14)

in [Jag75]). Thus, given YT > 0, the age distribution, as defined in the beginning of this chapter,

converges weakly to the Exp(λ) distribution. Note that this is a well-known result. However, to the

best of our knowledge, an explicit formula for the expectation E(Y a
T /YT |YT > 0) cannot be found in

the literature.

Note further that asymptotic age distributions have a long history. They were already considered

by Euler in the 18th century as pointed out for example in Section 6.2 of [HJV05].

4.1.2 Times since the birth times

The following theorem leads to the distribution of the birth times of the individuals that have been

born up to time T . It is a special case of Theorem 1 in [SKBD13].

4.1.5 Theorem (cf. Theorem 1 in [SKBD13])

Let X+
2 , . . . , X

+
BT

and X−1 , . . . , X
−
DT

be the unordered (i.e. randomly permuted) non-zero birth and

death times of the linear birth and death process (Yt)t≥0 up to time T , respectively. Then the joint

distribution of BT , DT , X+
2 , . . . , X

+
BT

and X−1 , . . . , X
−
DT

is given by the density

f(bT , dT , x̃
+
2 , . . . , x̃

+
bT
, x̃−1 , . . . , x̃

−
dT

) = e(λ+µ)T
bT∏
i=2

λe−(λ+µ)(T−x+i )
dT∏
k=1

µ

e−(λ+µ)(T−x−k )

for all admissible bT , dT , x̃+
2 , . . . , x̃

+
bT

and x̃−1 , . . . , x̃
−
dT

.

The following corollary is an immediate consequence of Theorem 4.1.5.

4.1.6 Corollary

The unordered times since the non-zero birth times are independent and identically distributed. Their

distribution is the Exp(λ+ µ) distribution truncated at T .

4.1.7 Remark

Consider the case where we pick a birth time uniformly at random among all birth times that are not

larger than T . Then the distribution of the time since this birth time converges to the Exp(λ + µ)

distribution as T →∞ by Corollary 4.1.6. Note that this distribution is stochastically dominated by

the asymptotic age distribution, which is the Exp(λ) distribution (see Remark 4.1.4).

4.2 The age distribution in the pure birth case

Recall that we call the distribution of the age of an individual picked uniformly at random at a fixed

time T > 0 (given YT > 0) the age distribution. In this section, we consider the pure birth case and
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show that the age distribution can be easily derived from known results in this case. The following

proposition can be easily deduced from Theorem 1 in [NR71].

4.2.1 Proposition

Let µ = 0. The ages of the individuals at time T that have been born later than the first individual

are independent and identically distributed and their distribution is the Exp(λ) distribution truncated

at T . Consequently, the distribution of the age Â of an individual picked uniformly at random from

all individuals at time T that were not alive at time 0 is the Exp(λ) distribution truncated at T .

Proof : Let YT = n be given. From Theorem 1 in [NR71] follows that the n−1 positive birth times in
the time interval (0, T ] are distributed as the order statistics of independent and identically distributed

random variables T̂2, . . . , T̂n that have the cumulative distribution function

P(T̂j ≤ u) =
1− eλu

1− eλT
.

This implies that the ages T − T̂2, . . . , T − T̂n are independent and identically distributed and have

the cumulative distribution function

P(T − T̂j ≤ u) = 1− P(T̂j ≤ T − u) =
1− eλT − 1 + eλ(T−u)

1− eλT
=

1− e−λu

1− e−λT
,

which is the cumulative distribution function of the Exp(λ) distribution truncated at T . Since this

distribution does not depend on n, the conditional distribution given YT = n is equal to the uncondi-

tional one. �

4.2.2 Remark

Note that Proposition 4.2.1 can be obtained as a special case of Corollary 4.1.6. However, we use the

result from [NR71] since this is a more natural way to prove Proposition 4.2.1.

Before we turn to the general case, we give the following corollary.

4.2.3 Corollary

Let µ = 0, and let Ã be the age of an (arbitrary) individual at time T and 0 < b < T . Then the

conditional distribution of Ã− b given Ã ≥ b is the Exp(λ) distribution truncated at T − b.

Proof : Let Z be Exp(λ) distributed. Then for the age Ã and z + b ≤ T , Proposition 4.2.1 implies

P(Ã− b ≤ z|Ã ≥ b) = P(Z ≤ z + b|b ≤ Z ≤ T ) =
P(b ≤ Z ≤ z + b)

P(b ≤ Z ≤ T )
=
e−λb − e−λ(z+b)

e−λb − e−λT

=
1− e−λz

1− e−λ(T−b) = P(Z ≤ z|Z ≤ T − b),

and z 7→ P(Z ≤ z|Z ≤ T − b) is the cumulative distribution function of the Exp(λ) distribution

truncated at T − b. �

4.2.4 Remark

From the proof of Proposition 4.2.1, we know that we obtain the same distribution in Proposition 4.2.1
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and Corollary 4.2.3 if we condition on the population size YT . Note that this implies that the age

distribution of an individual picked uniformly at random conditioned on YT is a mixture of the Exp(λ)

distribution truncated at T and the Dirac measure in T . The unconditional age distribution can be

easily deduced from the conditional one by applying Proposition 2.2.4. The result is omitted here

because the cumulative distribution function of the age distribution for arbitrary µ ≥ 0 is stated in

Corollary 4.3.2 below.

4.3 The age distribution in the general case

In the previous section, we only considered the case where individuals cannot die. In the general case

with per-capita birth rate λ > 0 and per-capita death rate µ ≥ 0, the situation is far more complicated.

However, we finally obtain the age distribution for any µ ≥ 0 in this section. For convenience, we

assume µ > 0 here although all results also hold for µ = 0, as can be verified from the previous

subsection.

This section is organized as follows. We state our main results in Subsection 4.3.1. In Subsec-

tion 4.3.2 and Subsection 4.3.3, we introduce a bijection between trees and piecewise-linear functions

and the contour process, respectively, which are used in the proof of the main result of this section in

Subsection 4.3.4. The proofs of the additional results stated in Subsection 4.3.1 are given in Subsec-

tion 4.3.5, Subsection 4.3.6 and Subsection 4.3.7. Finally, we confirm the main results of this section

using simulations in Subsection 4.3.8.

4.3.1 Results

The following theorem gives us the age distribution at some time T conditioned on the population

size.

4.3.1 Theorem

Let FyT denote the cumulative distribution function of the age of an individual picked uniformly at

random at time T given YT = yT for some yT > 0. Then FyT is given by

FyT (t) =
yT − 1

yT

(
1− e−λt − e−(λ−µ)T e−µt

1− e−(λ−µ)T

)
+

1

yT

(
λ(1− e−µt)− µ(1− e−λt)

λ− µ
1[0,T )(t) + 1{T}(t)

)
for t ∈ [0, T ] if λ 6= µ and by

FyT (t) =
yT − 1

yT

(
1− e−λt(T − t)

T

)
+

1

yT

(
1− e−λt(1 + λt))1[0,T )(t) + 1{T}(t)

)
for t ∈ [0, T ] if λ = µ > 0.

Before we prove this theorem, we state two corollaries. The first one reveals the unconditional age

distribution of an individual picked uniformly at random.
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4.3.2 Corollary

The cumulative distribution function F of the age distribution of (Yt)t≥0 at time T is given by

F (t) =

(
1− λ− µ

λe(λ−µ)T − λ
log

(
λe(λ−µ)T − µ

λ− µ

))(
1− e−λt − e−(λ−µ)T e−µt

1− e−(λ−µ)T

)
+

λ− µ
λe(λ−µ)T − λ

log

(
λe(λ−µ)T − µ

λ− µ

)(
λ(1− e−µt)− µ(1− e−λt)

λ− µ
1[0,T )(t) + 1{T}(t)

)
for t ∈ [0, T ] if λ 6= µ and by

F (t) =

(
1− log(1 + λT )

λT

)(
1− e−λt(T − t)

T

)
+

log(1 + λT )

λT

(
(1− e−λt(1 + λt))1{t<T} + 1{T}(t)

)
for t ∈ [0, T ] if λ = µ > 0.

Proof : The expression for the cumulative distribution function follows directly from Theorem 4.3.1
and Proposition 2.2.4. �
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Figure 4.1: Cumulative distribution functions of the age distribution (solid lines) and the asymptotic

age distribution (dotted line) for λ = 1.

The cumulative distribution function of the age distribution is illustrated in Figure 4.1. Note that

Corollary 4.3.2 immediately implies that the age distribution converges weakly to the Exp(λ) distri-

bution if λ ≥ µ and to a mixture of the Exp(λ) and the Exp(µ) distribution if λ < µ. The following

corollary states that the age distribution converges exponentially fast to the Exp(λ) distribution in a

certain sense for λ ≥ µ.

4.3.3 Corollary

Let c > 0, and let AJT denote the age of an individual picked uniformly at random at time T in the
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linear birth and death process (Yt)t≥0. Then there exist random variables A∗ and Z∗ on (Ω,A, P )

such that L(A∗ |YT > 0) = L(AJT |YT > 0) and L(Z∗ |YT > 0) = Exp(λ) and

E
(∣∣e−cA∗ − e−cZ∗∣∣ ∣∣∣∣ YT > 0

)
≤ λ

λ+ c

1

e(λ−µ)T − 1
+

λ− µ
λe(λ−µ)T − λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
= O

(
Te−(λ−µ)T

)
if λ > µ and

E
(∣∣e−cA∗ − e−cZ∗∣∣ ∣∣∣∣ YT > 0

)
≤ c

(λ+ c)2T
+

log(1 + λT )

λT
= O

(
log(T )/T

)
if λ = µ > 0.

4.3.4 Remark

Note that the upper bounds from Corollary 4.3.3 are obviously also upper bounds for the absolute

difference |E(e−cA∗ |YT > 0)− E(e−cZ∗ |YT > 0)| of the corresponding Laplace transforms.

By adapting the proof of Corollary 4.3.3, we can obtain a similar bound for the Wasserstein distance

from Example 3.1.3.

4.3.5 Corollary

Let AJT be defined as in Corollary 4.3.3. Then we have, as T →∞,

dW
(
L(AJT |YT > 0),Exp(λ)

)
= E

(
min

Ã∗∼L(AJT |YT>0)

Z̃∗∼Exp(λ)

∣∣Ã∗ − Z̃∗∣∣) =

O
(
Te−(λ−µ)T

)
if λ > µ

O
(
log(T )/T

)
if λ = µ > 0.

To round out the picture, we also provide a convergence rate in terms of the total variation metric

for λ ≥ µ.

4.3.6 Corollary

Let AJT be defined as in Corollary 4.3.3. Then we have, as T →∞,

dTV
(
L(AJT |YT > 0),Exp(λ)

)
=

O
(
Te−(λ−µ)T

)
if λ > µ

O
(
log(T )/T

)
if λ = µ > 0.

4.3.2 Bijection between piecewise-linear functions and trees

In order to prove Theorem 4.3.1 and Corollary 4.3.3, we use results from [BPS12] about contour

processes (also known as exploration processes), which we introduce now.

4.3.7 Definition

We consider piecewise-linear functions h : [0, b]→ [0,∞) for 0 < b <∞ with the following properties:

• The derivative is either 1 or -1 at all points where it exists.1

1 Note that the formulation in [BPS12] is slightly more general. However, we do not need this more general setting for our

purposes.
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• h(x) > 0 if and only if x ∈ (0, b).

• All non-zero local minima are at distinct heights.

We identify each such function h : [0, b]→ [0,∞) with the function h̃ : [0,∞)→ [0,∞) that fulfills

h̃(x) :=

h(x) if 0 ≤ x ≤ b,

0 if x > b.

Let H denote the set of all such functions.

Now we introduce a bijection φ between H and the set T of finite rooted binary trees. If not stated

otherwise, we draw trees in a left-aligned way in this section, i.e. each inner node has a vertical line

going in and out, and one horizontal line going to the right (see Figure 4.2). Horizontal line segments

are for constructive purposes only, whereas the vertical line segments represent actual edges and the

corresponding edge lengths in the tree. Further below we will identify such trees with realizations

of birth and death processes that also include information about the lifetimes of the individuals

represented by the lengths of the vertical lines.

t

x

hmax,1

hmin,1

hmax,2

xmax,1 xmax,2

Figure 4.2: A piecewise linear function and the corresponding (left-aligned) tree

Starting from a piecewise linear function h ∈ H, we define φ(h) by drawing a tree under the graph

of h as follows (see also Figure 4.2):

Let (xmax,1, hmax,1) be the leftmost local maximum of h. Then we draw a (vertical) line from (xmax,1, 0)

to (xmax,1, hmax,1). Let (xmax,2, hmax,2) be the second leftmost local maximum and (xmin,1, hmin,1)

be the leftmost non-zero local minimum if they exist. In this case, we add a (vertical) line from

(xmax,2, hmin,1) to (xmax,2, hmax,2) and a (horizontal) line from (xmax,2, hmin,1) connecting the vertical

line horizontally to the rest of the tree. We continue this procedure until we have explored all non-zero

local extrema (see Figure 4.2).

It is clear that φ is a bijection since we obtain the inverse of φ by assigning to any (left-aligned) tree,

where the horizontal position of the root and the horizontal line lengths have been suitably adapted,

the function that starts at (0, 0) and “turns” at every leaf and every time it hits a horizontal line until

it hits the x-axis again.
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4.3.3 Probability laws of the contour process and the corresponding random tree

Now we define probability measures on H and T . For the time being, let 0 < λ ≤ µ. We define

the contour process as a stochastic process (Hx)x≥0 whose trajectories belong to H. Let (Uk)k∈N and

(Vk)k∈N be two mutually independent sequences of independent, identically exponentially distributed

random variables with parameters µ and λ, respectively. Let Zk = Uk − Vk for all k, and let Pλ,µ be

the law of the random element of H with the following properties. Starting with a first local minimum

at (0, 0), the heights of the first local maximum and the second local minimum are U1 and (Z1)+,

respectively. The process is stopped whenever it returns to zero. If (Z1)+ > 0, the heights of the

second local maximum and the third local minimum are U2 + Z1 and (Z1 + Z2)+, respectively. If

(Z1 + Z2)+ > 0, we continue in the same way (see Figure 4.3).

t

x

U1

(Z1)+

U2 + Z1

(Z1 + Z2)+

Figure 4.3: The contour process

It can be shown that this process returns to zero almost surely if 0 < λ ≤ µ (see Section 2 of

[BPS12]).

In Theorem 4.3.8 below, we relate Pλ,µ to the law of a linear birth death process with the same

parameters. Since we are also interested in the supercritical case, we also define the law of a random

element of H that can be related to the law of a supercritical linear birth and death process with birth

rate λ and death rate µ < λ. Since the contour process defined above does not return to zero almost

surely if λ > µ, we need to modify the construction. Therefore, we take the process from above and

add a deflection at T : The kth time the process reaches T , it stops and goes down with slope −1 for

a time min(T, Ûk), where Ûk ∼ Exp(λ) independent (also from all other random variables). It can be

shown that this deflected process returns to zero almost surely (see Section 2 of [BPS12]). Let Pλ,µ,T

denote the law of the deflected process. Note that Pλ,µ,∞ = Pλ,µ.

Let Qλ,µ,T be the law of the random tree corresponding to a linear birth and death process with

parameters λ and µ killed at time T , i.e. all individuals alive at time T− are killed at time T .2

From a realization of such a birth and death process, including information about the lifetimes of the

individuals, draw the corresponding random tree as follows. Draw the lifetime of the individual that

is alive at time 0 as the leftmost vertical line. For each of its direct offspring attach a horizontal line,

where the height of this line corresponds to the birth time of the offspring. Draw their lifetimes as

further vertical lines. Starting with the latest offspring and keeping the lower horizontal lines long

2 Here we say an individual is alive at time T− if and only if it is born but does not die before time T .
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enough, will keep the tree planar. Continue in the same way for the direct offspring of each offspring

and so on. Note that the lifetimes of the individuals correspond to the lengths of the vertical lines.

Obviously, the ages of the individuals at time T in a linear birth and death process are just obtained by

the total lifetimes of the individuals alive at time T− in the corresponding killed tree (see Figure 4.4).

We allow T =∞, in which case the birth and death process is not killed.

The following theorem reveals the simple relationship between Qλ,µ,T and Pλ,µ,T .

4.3.8 Theorem

For any λ, µ > 0 and T ∈ (0,∞), and also for T =∞ if λ ≤ µ, we have

Qλ,µ,T = Pλ,µ,Tφ
−1.

P roof : [BPS12], Theorem 3.1. See the proof of that theorem to verify the precise construction of the
left-aligned tree based on the birth and death process. �

t

x

T

age

τ

Figure 4.4: The deflected contour process and the corresponding tree representing a linear birth and

death process up to time T

4.3.4 Proof of Theorem 4.3.1

We first prove that we obtain the same distribution if ages are read off from the tree under the

vertically mirrored contour process (Hτ−t)0≤t≤τ , where τ = inf{x > 0 : Hx = 0} (see Figure 4.5). To

see this, denote by Ψ: T → T the corresponding transformation on the set of trees. Let Z ∼ Qλ,µ,T

be the random tree obtained from the above birth and death process, and denote by Θ(z) the finite

set of trees that have the same vertex positions in the vertical direction as a tree z ∈ T , but not

necessarily the same phylogeny. Note that Θ(Ψ(z)) = Θ(z) for every z ∈ T . Given Θ(Z), the random

tree Z is uniformly distributed on Θ(Z), and so is Ψ(Z) because, restricted to the finite set Θ(Z), the

map Ψ is just a permutation. Hence the distributions of Ψ(Z) and Z are equal by integration of the

conditional distributions given Θ(Z).

Since it is more customary to draw stochastic processes from left to right, we mirror the situation

in Figure 4.5, which gives us the original contour process (Hx)x≥0 again, enveloping a right-aligned



36 Chapter 4. The age of a randomly picked individual in a linear birth and death process

t

x

T

age

τ

Figure 4.5: The mirrored deflected contour process (the realization corresponds to Figure 4.4) and its

(left-aligned) tree

tree (constructed in the analogous way as the left-aligned tree, but from right to left; see Figure 4.6).

Of course the ages still correspond to vertical line lengths.
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Figure 4.6: The deflected contour process and its right-aligned tree

Obviously, the local maxima of the contour process at height T correspond to the living individuals

in the linear birth and death process at time T , which we assume to be numbered from left to right

in the right-aligned tree here. In total, there are BT local maxima (at any height) corresponding to

the BT individuals that have been born up to time T . Let these maxima be numbered from left to

right, and let I1 < . . . < IYT be the indices of the maxima at height T and Ik =∞ for k > YT . Then

VI1 , . . . , VIYT−1
, VIYT ∧ T are the ages we are interested in, where (Vk)k∈N is the sequence of random

variables from the definition of the contour process, i.e. (Vk)k∈N are independent and identically Exp(λ)

distributed, and ∧ denotes the minimum operator. Let 0 = ς1 < . . . < ς2BT+1 = τ be the positions of

all local extrema of (Hx)0≤x≤τ (cf. Figure 4.6). Note that ς2I1 , . . . , ς2IYT are the positions of the maxima

at height T . For convenience, we define ςk = ς2BT+1 = τ for all k > 2BT and ς∞ = lim
k→∞

ςk = τ .

By the above construction of the contour process, the process (Hςk , (−1)k)k∈N is a Markov chain on
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[0, T ]× {−1, 1} with initial value (0,−1) at time 1 and transition probabilities

P((Hςk+1
, (−1)k+1) ∈ B1 ×B2|(Hςk , (−1)k) = (z1, z2))

=


(
δT (B1)e−µ(T−z1) + µ

∫
B1∩[z1,T )

e−µ(u−z1)du
)
δ1(B2) if z2 = −1,(

δ0(B1)e−λz1 + λ
∫

B1∩(0,z1]

e−λ(z1−u)du
)
δ−1(B2) if z2 = 1,

where B1 is a Borel subset of [0, T ], B2 ⊂ {0, 1} and (z1, z2) ∈ [0, T ]× {−1, 1}. Note that the second

component of (Hςk , (−1)k)k∈N tells us if (Hx)0≤x≤τ has a minimum (if it is −1) or a maximum (if it

is 1) at ςk. Note further that this Markov chain determines (Hx)x≥0 completely.

We define the sequence (ξk)k∈N of hitting times in (T, 1) recursively by

ξ1 = inf{k ∈ N : (Hςk , (−1)k) = (T, 1)} and ξl+1 = inf{k > ξl : (Hςk , (−1)k) = (T, 1)}

for all l ∈ N, where inf ∅ =∞. Note that each ξl is a stopping time and that max{l : ξl <∞} = YT .

Moreover, we define the “horizontally mirrored” excursions

E(l) = (E
(l)
k )0≤k≤ξl+1−ξl = (T −Hςk)ξl≤k≤ξl+1

for l ∈ N, where we set ∞−∞ = 0.

Since P((Hςξl
, (−1)ξl) = (T, 1) | ξl < ∞) = 1, the strong Markov property and the fact that the

second component of the process is deterministic imply that (Hςk)0≤k≤ξl and (Hςk)ξl≤k are inde-

pendent given ξl < ∞ and that (Hςk)ξl≤k has the same distribution given ξl < ∞ for any l ∈ N.

As a consequence, we have for any l ∈ N that (Hςk)0≤k≤ξ1 , E
(1), E(2), . . . , E(l−1) are independent

of (E(l), (ξm)m≥l+1) given ξl < ∞ and hence that (Hςk)0≤k≤ξ1 , E
(1), E(2), . . . , E(l−1) are indepen-

dent of E(l) given ξl < ∞ and given any sub-σ-algebra of σ(ξm : m ≥ l + 1). This implies that

(Hςk)0≤k≤ξ1 , E
(1), E(2), . . . , E(l−1), E(l) are independent given ξl < ∞ and given any sub-σ-algebra

of σ(ξm : m ≥ l + 1) for any l ∈ N. Note that for any l ∈ N, the first l − 1 “horizontally mir-

rored” excursions E(1), E(2), . . . , E(l−1) all have the same distribution under this conditioning because

E(1), E(2), . . . , E(l−1) all have the same distribution given ξl < ∞ and E(1), E(2), . . . , E(l−1) are inde-

pendent of (ξm)m≥l+1 given ξl <∞.

Since {YT = yT } = {ξyT < ∞, ξyT+1 = ∞}, we obtain that, given YT = yT , the processes

(Hςk)0≤k≤ξ1 , E(1), E(2), . . . , E(yT−1), E(yT ) are independent and E(1), E(2), . . . , E(yT−1) are identically

distributed. By having a closer look at the strong Markov property used above, it is seen that neither

the distribution of E(1) given YT = yT ≥ 2 nor the distribution of E(yT ) given YT = yT ≥ 1 depend

on the concrete value yT . Note that on {YT = yT }, we have E
(1)
1 = VI1 , . . . , E

(yT−1)
1 = VIyT−1 , and

E
(yT )
1 = VIyT ∧ T , so these are the ages we are interested in. The conditional distributions of E

(1)
1

and E
(yT )
1 given YT = yT can be easily rediscovered as conditional distributions in another contour

process, which is what we look at next.

Let (H̃x)x≥0 ∼ Pµ,λ,T . By Theorem 4.3.8, (H̃x)x≥0 is the contour process corresponding to a linear

birth and death process (Zt)t≥0 with per-capita birth rate µ and per-capita death rate λ that is killed

at T . Let the positions (ς̃k)k∈N of the extrema of (H̃x)x≥0 be defined analogously to (ςk)k∈N.



38 Chapter 4. The age of a randomly picked individual in a linear birth and death process

Both (H̃ς̃k+1
)k∈N0 and (E

(l)
k )k∈N0 for arbitrary l ∈ {1, . . . , YT } start in 0 and alternate between

independently adding Exp(λ) and subtracting Exp(µ) random variables at least until 0 or T is crossed.

Thus until this happens, they have the same distribution.

We have {YT ≥ 2} = {E(1)
ξ2−ξ1 = 0} = {maxk∈NE

(1)
k < T}, and therefore for any yT ≥ 2 that, since

the distribution of E
(1)
1 does not depend on the concrete value of yT ,

L(E
(1)
1 |YT = yT ) = L

(
E

(1)
1

∣∣ E(1) returns to 0 before reaching T
)

= L
(
H̃ς̃2

∣∣∣∣max
k∈N

H̃ς̃k < T

)
= L

(
H̃ς̃2

∣∣∣∣max
x≥0

H̃x < T

)
. (4.1)

On the other hand we have {YT ≥ 1} = {YT ≥ 1,maxk∈NE
(YT )
k = T} (in fact ξYT+1 =∞ and E(YT ) is

eventually absorbed in T ). Therefore, for any yT ≥ 1, since the distribution of E
(yT )
1 does not depend

on the concrete value of yT ,

L(E
(yT )
1 |YT = yT ) = L

(
E

(yT )
1

∣∣ E(yT ) reaches T before returning to 0
)

= L
(
H̃ς̃2

∣∣∣∣max
k∈N

H̃ς̃k = T

)
= L

(
H̃ς̃2

∣∣∣∣max
x≥0

H̃x = T

)
. (4.2)

In other words, we have identified the desired age distributions at time T given YT = yT as the

distribution of the lifetime of the first individual in a linear birth and death process (Zt)t≥0 with

per-capita birth rate µ and per-capita death rate λ conditioned on extinction of the process by time

T (Equation (4.1), first yT − 1 individuals), i.e. ZT = 0, or conditioned on survival of the process up

to time T (Equation (4.2), last individual, lifetime measured up to time T ), i.e. ZT > 0. Denote by L

the lifetime of the starting individual, and let F∗ and F ∗ be the cumulative distribution functions of

L given ZT = 0 and of min(L, T ) given ZT > 0, respectively. We then obtain from the above that the

age distribution given YT = yT > 0 has cumulative distribution function

FyT (t) =
yT − 1

yT
F∗(t) +

1

yT
F ∗(t) (4.3)

for all t ≥ 0.

By Bayes’ Theorem, F∗ has density

f∗(t) ∝ λe−λtP(ZT = 0 |L = t), (4.4)

for t ∈ [0, T ). Given L = t, the birth times of the offspring of the starting individual form a Poisson

process of rate µ (up to time t). By conditioning on the number of offspring and their birth times and
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plugging in their extinction probabilities from Section 2.2, we obtain

P(ZT = 0 |L = t) =
∞∑
k=0

(µt)k

k!
e−µt

1

tk

∫ t

0
. . .

∫ t

0

λ

µ

1− e(λ−µ)(T−t1)

1− λ
µe

(λ−µ)(T−t1)
. . .

λ

µ

1− e(λ−µ)(T−tk)

1− λ
µe

(λ−µ)(T−tk)
dt1 . . . dtk

=
∞∑
k=0

1

k!
e−µt

(∫ t

0
λ
e−(λ−µ)(T−u) − 1

e−(λ−µ)(T−u) − λ
µ

du

)k
=

∞∑
k=0

1

k!
e−µt

(
log(λe(λ−µ)(T−t) − µ) + λt− log(λe(λ−µ)T − µ)

)k
=
λe(λ−µ)(T−t) − µ
λe(λ−µ)T − µ

e(λ−µ)t (4.5)

for t < T if λ 6= µ. For λ = µ > 0, we see analogously that this probability is equal to

P(ZT = 0 |L = t) =
∞∑
k=0

(λt)k

k!
e−λt

1

tk

∫ t

0
. . .

∫ t

0

λ(T − t1)

1 + λ(T − t1)
. . .

λ(T − tk)
1 + λ(T − tk)

dt1 . . . dtk

=
∞∑
k=0

1

k!
e−λt

(∫ t

0
λ

λ(T − u)

1 + λ(T − u)
du

)k
=
∞∑
k=0

1

k!
e−λt(log(1 + λ(T − t))− log(1 + λT ) + λt)k

=
1 + λ(T − t)

1 + λT
. (4.6)

We may now compute the normalizing constant of the density f∗ in (4.4). For λ 6= µ, we obtain

T∫
0

λe−λt(λe(λ−µ)(T−t) − µ)e(λ−µ)tdt =

T∫
0

(λe(λ−µ)T e−λt − µe−µt)dt

= e(λ−µ)T (1− e−λT )− (1− e−µT )

= e(λ−µ)T − 1,

and for λ = µ > 0, we have

T∫
0

λe−λt(1 + λ(T − t))dt = (1− e−λT )(1 + λT )−
T∫

0

λ2e−λttdt

= (1− e−λT )(1 + λT )− (1− e−λT (λT + 1))

= λT.

Thus the density f∗ is given by

f∗(t) =
λe(λ−µ)T e−λt − µe−µt

e(λ−µ)T − 1
=
λe−λt − µe−(λ−µ)T e−µt

1− e−(λ−µ)T
(4.7)

for t ∈ [0, T ] if λ 6= µ and by

f∗(t) =
λe−λt(1 + λ(T − t))

λT
=
e−λt(1 + λ(T − t))

T
(4.8)
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for t ∈ [0, T ] if λ = µ > 0. By integration, we obtain that the cumulative distribution function F∗

takes the form

F∗(t) = 1− e−λt − e−(λ−µ)T e−µt

1− e−(λ−µ)T
(4.9)

and

F∗(t) = 1− e−λt(T − t)
T

for t ∈ [0, T ], respectively.

4.3.9 Remark

In particular, we see that

1− F∗(t) =
e−λt − e−(λ−µ)T e−µt

1− e−(λ−µ)T
≤ e−λt(1− e−(λ−µ)T )

1− e−(λ−µ)T
= e−λt

for t ∈ [0, T ] if λ 6= µ and

1− F∗(t) =
e−λt(T − t)

T
≤ e−λt

for t ∈ [0, T ] if λ = µ. Thus, given YT = yT , the age distribution of the first yT − 1 individuals is

stochastically dominated by the Exp(λ) distribution.

In order to prove Theorem 4.3.1, it remains to derive F ∗, which we do in a similar way. Recall that

we have to compute L(min(L, T ) |ZT > 0). A slight notational complication arises from the fact that

F ∗ has a discontinuity at T . We note that min(L, T ) has a density f̃ with respect to the measure

Leb[0,T ) + δT given by

f̃(t) =

λe−λt if 0 ≤ t < T,

e−λT if t = T.

Thus by Bayes’ Theorem, the age distribution of the last individual given YT = yT has a density f∗

with respect to Leb[0,T ) + δT satisfying

f∗(t) ∝ f̃(t)P(ZT > 0 | min(L, T ) = t) =

λe−λtP(ZT > 0 |L = t) if 0 ≤ t < T,

e−λT if t = T.

Firstly, we consider the case where λ 6= µ. By (4.5), we have that

P(ZT > 0 |L = t) = 1− P(ZT = 0 |L = t) = 1− λe(λ−µ)(T−t) − µ
λe(λ−µ)T − µ

e(λ−µ)t

for t ∈ [0, T ), which implies

f∗(t) ∝

λe−λt
µe(λ−µ)t−µ
λe(λ−µ)T−µ if 0 ≤ t < T,

e−λT if t = T.
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We can compute the normalizing constant of f∗ as

e−λT +
λµ

λe(λ−µ)T − µ

T∫
0

e−λt(e(λ−µ)t − 1)dt = e−λT +
λµ

λe(λ−µ)T − µ

T∫
0

(e−µt − e−λt)dt

= e−λT +
λ(1− e−µT )− µ(1− e−λT )

λe(λ−µ)T − µ

=
λ− µ

λe(λ−µ)T − µ
. (4.10)

4.3.10 Remark

By Bayes’ Theorem, the normalizing constant of the density f∗ is just the probability that a linear

birth and death process with birth rate µ and death rate λ survives up to time T . Thus we could also

have used the extinction probability from Section 2.2 in order to obtain the right-hand side of (4.10).

We may conclude that f∗ is given by

f∗(t) =

λµ e
−µt−e−λt
λ−µ if 0 ≤ t < T,

λe−µT−µe−λT
λ−µ if t = T.

(4.11)

By integration, we obtain that the cumulative distribution function F ∗ for the age of the last individual

given YT = yT takes the form

F ∗(t) =
λ(1− e−µt)− µ(1− e−λt)

λ− µ
1[0,T )(t) + 1{T}(t) (4.12)

for t ∈ [0, T ].

For λ = µ > 0, we proceed analogously: By (4.6), we have that

P(ZT > 0 |L = t) = 1− P(ZT > 0 |L = t) = 1− 1 + λ(T − t)
1 + λT

=
λt

1 + λT

for t ∈ [0, T ), which leads to

f∗(t) ∝

λe−λt λt
1+λT if 0 ≤ t < T,

e−λT if t = T.

We compute the normalizing constant of f∗ as

e−λT +

T∫
0

e−λt
λt

1 + λT
dt = e−λT +

1

1 + λT
− e−λT =

1

1 + λT
.

This yields that f∗ is given by

f∗(t) =

λ2te−λt if 0 ≤ t < T,

(1 + λT )e−λT if t = T.
(4.13)

By integration, we obtain that the cumulative distribution function F ∗ takes the form

F ∗(t) = (1− e−λt(1 + λt))1[0,T )(t) + 1{T}(t)

for t ∈ [0, T ].

Plugging the above expressions for F∗ and F ∗ into Equation (4.3) yields the statement of Theo-

rem 4.3.1. �
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4.3.5 Proof of Corollary 4.3.3

It is enough to construct A∗ and Z∗ on {YT > 0} that have the right distributions given YT > 0 and

are such that E
(
|e−cA∗ − e−cZ∗ |

∣∣ YT > 0
)

satisfies the required bound. We construct them explicitly

as a quantile coupling using notation from the proof of Theorem 4.3.1. Let JT be a random variable

that is uniformly distributed on {1, . . . , yT } given YT = yT > 0, independent from everything else,

and let U be uniformly distributed on [0, 1] and also independent from everything else. Defining the

generalized inverse of a cumulative distribution function F by F−1(u) = inf{t ∈ R : F (t) ≥ u}, set

A∗ := 1{JT<YT }F
−1
∗ (U) + 1{JT=YT }(F

∗)−1(U),

Z∗ := F−1
∞ (U), (4.14)

where F∞ denotes the cumulative distribution function of Exp(λ). By Equation (4.3) and the indepen-

dence of U from (YT , JT ), we obtain L(A∗ |YT > 0) = L(AJT |YT > 0) and L(Z∗ |YT > 0) = Exp(λ)

as required.

By Remark 4.3.9, we have

F∗(t) ≥ 1− e−λt = F∞(t) for all t > 0.

Since F∞ is continuous and strictly increasing on [0,∞), this implies

F∗(F
−1
∞ (U)) ≥ F∞(F−1

∞ (U)) = U (4.15)

almost surely. By well-known properties of the generalized inverse, we have that F−1
∗ is non-decreasing

and F−1
∗ (F∗(t)) ≤ t for all t > 0. Thus (4.15) implies

F−1
∞ (U) ≥ F−1

∗ (F∗(F
−1
∞ (U))) ≥ F−1

∗ (U) (4.16)

almost surely.

We may compute

E
(
|e−cA∗ − e−cZ∗ |

∣∣ YT > 0
)

= E
(
YT − 1

YT
E
(
|e−cA∗ − e−cZ∗ |

∣∣ YT , JT < YT
)

+
1

YT
E
(
|e−cA∗ − e−cZ∗ |

∣∣ YT , JT = YT
) ∣∣∣∣ YT > 0

)
≤ E

(
e−cF

−1
∗ (U) − e−cF

−1
∞ (U)

)
+ E

(
1

YT

∣∣∣∣ YT > 0

)
, (4.17)

where we use (4.16) in the last line.

4.3.11 Remark

Note that we could employ a more sophisticated argument, taking care of the sign of the expression

e−c(F
∗)−1(U) − e−cF

−1
∞ (U) for the second inner conditional expectation in the second line of (4.17). But

since F ∗(t) 6→ F∞(t) as T →∞ for any t > 0, we would not gain anything in terms of the convergence

rates; in particular, the factors T and log(T ) in the orders of the upper bound if µ < λ and µ = λ,

respectively, cannot be removed.
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It is now a matter of computing Laplace transforms. Since F−1
∞ (U) ∼ Exp(λ), we have

E
(
e−cF

−1
∞ (U)

)
=

λ

λ+ c
. (4.18)

For F−1
∗ (U) we use the density from (4.11) and (4.13), respectively, and obtain for λ > µ

E
(
e−cF

−1
∗ (U)

)
=

1

1− e−(λ−µ)T

∫ T

0
(λe−(λ+c)t − µe−(λ−µ)T e−(µ+c)t) dt

=
1

1− e−(λ−µ)T

(
λ

λ+ c
(1− e−(λ+c)T )− µ

µ+ c
e−(λ−µ)T (1− e−(µ+c)T )

)
≤ λ

λ+ c

e(λ−µ)T

e(λ−µ)T − 1
, (4.19)

and for λ = µ > 0

E
(
e−cF

−1
∗ (U)

)
=

1

T

∫ T

0
e−(λ+c)t(1 + λ(T − t)) dt =

λ

λ+ c
+
c(1− e−(λ+c)T )

(λ+ c)2T
≤ λ

λ+ c
+

c

(λ+ c)2T
.

(4.20)

Combining (4.18)–(4.20) to bound the first summand on the right hand side of (4.17) and employing

Lemma 2.2.4 for the second summand, we obtain the required bounds.

4.3.6 Proof of Corollary 4.3.5

Let Ã∗ and Z̃∗ be random variables on a common probability space such that

L((Ã∗, Z̃∗)) = L((A∗, Z∗)|YT > 0),

where the random variables A∗ and Z∗ are defined by (4.14). Then we know from the previous

subsection that L(Ã∗) = L(A∗|YT > 0) = L(AJT |YT > 0) and L(Z̃∗) = L(Z∗|YT > 0) = Exp(λ) as

desired. Thus we have

dW (L(AJT |YT > 0),Exp(λ)) ≤ E(|Ã∗ − Z̃∗|) = E(|A∗ − Z∗| |YT > 0).

Analogously to the procedure in (4.17), we compute

E(|A∗ − Z∗| |YT > 0) = E
(
YT − 1

YT
E(|A∗ − Z∗| |YT , JT < YT ) +

1

YT
E(|A∗ − Z∗| |YT , JT = YT )

∣∣∣∣ YT > 0

)
≤ E(F−1

∞ (U)− F−1
∗ (U)) + E

(
1

YT

∣∣∣∣ YT > 0

)
(E(F−1

∞ (U) + E((F ∗)−1(U))),

(4.21)

where U is uniformly distributed on [0, 1].

For λ > µ, we have

E(F−1
∗ (U)) =

T∫
0

tf∗(t)dt =

T∫
0

tλe−λt

1− e−(λ−µ)T
dt−

T∫
0

tµe−(λ−µ)T e−µT

1− e−(λ−µ)T
dt

=
1
λ − e

−λTT − e−λT

λ

1− e−(λ−µ)T
−

1
µ − e

−µT − e−µT

µ

1− e−(λ−µ)T
e−(λ−µ)T

=
1

λ
+O(Te−(λ−µ)T ).
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Thus

E(F−1
∞ (U)− F−1

∗ (U)) = E(F−1
∞ (U))− E(F−1

∗ (U)) = O(Te−(λ−µ)T ).

For λ = µ, we obtain

E(F−1
∗ (U)) =

T∫
0

tf∗(t)dt =

T∫
0

te−λt(1 + λ(T − t))
T

dt

=
(λT + 1)− e−λT (λT + 1)2

λ2T
− e−λT (−λT (λT + 2)− 2) + 2

λ2T

=
1

λ
+O

(
1

T

)
.

Thus

E(F−1
∞ (U)− F−1

∗ (U)) = E(F−1
∞ (U))− E(F−1

∗ (U)) = O

(
1

T

)
.

Furthermore, for λ > µ, we have

E((F ∗)−1(U)) =

T∫
0

tf∗(t)dt+ Tf∗(T ) = λ

T∫
0

t2λe−λtdt+ (1 + λT )e−λT

≤ λ
∞∫

0

t2λe−λtdt+O(1) =
2

λ
+O(1) = O(1).

For λ = µ, we obtain similarly

E((F ∗)−1(U))) =

T∫
0

tf∗(t)dt+ Tf∗(T ) =

T∫
0

tλµ
e−µt − e−λt

λ− µ
dt+ T

λe−µT − µe−λT

λ− µ
= O(1).

Thus the right hand side of (4.21) is of the desired order in both cases by Proposition 2.2.4. �

4.3.7 Proof of Corollary 4.3.6

Let f denote the density of L(AJT |YT > 0) with respect to ζT = Leb[0,∞)\{T} + δT . Equation (4.3)

implies that

f(t) = (1− cT )f∗(t)1[0,T )(t) + cT f
∗(t),

where f∗ and f∗ are given by (4.7), (4.8) and (4.13) and

cT = E
(

1

YT

∣∣∣∣ YT > 0

)
=

O
(
Te−(λ−µ)T

)
if λ > µ,

O
(
log(T )/T

)
if λ = µ.

(4.22)

by Lemma 2.2.4.
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Noting that f∗(t) = f∗(t) = 0 for t > T , we have

dTV
(
L(A |YT > 0),Exp(λ)

)
=

1

2

∫ ∞
0

∣∣f(t)− λe−λt1[0,∞)\{T}
∣∣ ζT (dt)

≤ 1

2

(
(1− cT )

∫ ∞
0
|f∗(t)− λe−λt| dt+ cT

∫ ∞
0
|f∗(t)− λe−λt| dt+ cT f

∗(T )

)
≤ 1

2

(∫ T

0
|f∗(t)− λe−λt| dt+ cT

∫ T

0
|f∗(t)− λe−λt| dt+O

(
Te−λT

))
. (4.23)

If λ > µ, we obtain for the first integral on the right-hand side∫ T

0
|f∗(t)− λe−λt| dt =

∫ T

0

∣∣∣∣λe−(λ−µ)T e−λt − µe−(λ−µ)T e−µt

1− e−(λ−µ)T

∣∣∣∣ dt
=

e−(λ−µ)T

1− e−(λ−µ)T

∫ T

0
|λe−λt − µe−µt| dt = O

(
e−(λ−µ)T

)
(4.24)

and for the second integral on the right-hand side∫ T

0
|f∗(t)− λe−λt| dt =

λ

λ− µ

∫ T

0
|λe−λt − µe−µt| dt = O(1). (4.25)

In conclusion, plugging (4.24), (4.25) and (4.22) into Inequality (4.23), we have that

dTV
(
L(A |YT > 0),Exp(λ)

)
= O

(
Te−(λ−µ)T

)
.

If λ = µ > 0, we obtain for the first integral on the right-hand side of Inequality (4.23)∫ T

0
|f∗(t)− λe−λt| dt =

1

T

∫ T

0
e−λt|λt− 1| dt = O(1/T ). (4.26)

and for the second integral∫ T

0
|f∗(t)− λe−λt| dt = λ

∫ T

0
e−λt|λt− 1| dt = O(1). (4.27)

Thus, plugging (4.26), (4.27) and (4.22) into Inequality (4.23) yields

dTV
(
L(A |YT > 0),Exp(λ)

)
= O

(
log(T )/T

)
.

4.3.8 Simulations

In the following, we present some simulations that confirm the main results of this section.

Firstly, we consider the expression that we derived for the age of the first yT − 1 individuals3 given

YT = yT for λ > µ, i.e. Equation (4.9). We know that, given YT = yT , these ages correspond to the first

yT −1 downsteps of the deflected contour process that start in T , which we denoted by VI1 , . . . , VIyT−1 .

We simulate the contour process and plot the empirical distribution function for λ = 2, µ = 1 and

3 Note that the individuals are still numbered from left to right in the right-aligned tree and that this ordering is rather

artificial.
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Figure 4.7: True F∗ (grey) and simulation-based empirical distribution function for the downsteps

from T in the contour process corresponding to F∗ (black)

T = 1.5 together with the corresponding theoretical cumulative distribution function F∗. The result

is displayed in Figure 4.7, where we used 500 iterations.

For the cumulative distribution function F ∗ of the age VIT ∧T of the last individual given YT = yT ,

we derived Equation (4.12). In Figure 4.8, this cumulative distribution function is compared with the

empirical distribution function of the last downstep of the deflected contour process given YT = yT .

The parameters and time are chosen as above. Here we used 5000 iterations.

Figures 4.7 and Figure 4.8 illustrate also that we have F∗(t) ≥ F ∗(t) for all t ≥ 0, i.e. that the ages

of the first YT − 1 individuals are stochastically dominated by the age of the last individual.

Finally, we consider the age distribution of (Yt)t≥0 at time T , which is given by Corollary 4.3.2. In

order to obtain Figure 4.9 and Figure 4.10, we simulated 5000 realizations of a linear birth and death

process up to time T and plotted the empirical distribution function of the age of an individual picked

uniformly at random at time T together with the theoretical cumulative distribution function from

Corollary 4.3.2 and the cumulative distribution function of the asymptotic age distribution, i.e. of the

Exp(λ) distribution. We chose the rates λ and µ as above and T = 1.5 and T = 2, respectively, such

that we also can see that the age distribution approaches the asymptotic one.
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Figure 4.8: True F ∗ (grey) and simulation-based empirical distribution function for the downsteps

from T in the contour process corresponding to F ∗ (black)

4.4 Upper bound for the time since the last event

4.4.1 The main result

Let 0 = T1 < T2 < . . . be the event times of our linear birth and death process. Since BT +DT is the

number of events up to time T , the random variable T − TBT+DT describes the time passed since the

last event as seen from time T . Note that, given the population size YT = yT , the distribution of the

difference TBT+DT+1 − TBT+DT between the previous and the next event time at time T is typically

larger than the Exp(yT (λ+µ)) distribution due to the inspection paradox. Therefore, we do not bound

T − TBT+DT from above by TBT+DT+1 − TBT+DT . Instead we use that, given YT = yT ≥ 2, the time

since the last event is bounded from above by the minimum of the ages of the first yT − 1 individuals,

where the individuals are ordered as in the previous section. We know that these yT − 1 ages are

are independent and identically distributed from the proof of Theorem 4.3.1, and their distribution is

stochastically dominated by the Exp(λ) distribution by Remark 4.3.9. Since the minimum of yT − 1

independent Exp(λ) distributed random variables is Exp((yT−1)λ) distributed, we obtain the following

theorem.

4.4.1 Theorem

Given YT = yT , the distribution of T − TBT+DT is stochastically dominated by the distribution with
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Figure 4.9: Simulation-based empirical distribution function of the distribution of the age of an in-

dividual picked uniformly at random for T = 1.5 (black line), the corresponding cumula-

tive distribution function (grey solid line) and the cumulative distribution function of the

asymptotic age distribution (grey dotted line)

cumulative distribution function

G(t) =

1− e−(yT−1)λt if yT > 1

1[T,∞)(t) if yT ≤ 1.

4.4.2 Comparison with results about reconstructed trees

We compare our result to recent results obtained in the reconstructed tree; see [Ger08].

Note that T − TBT+DT corresponds to the time from the maximum of all branching times in the

tree representing the linear birth and death process up to time T . In order to obtain an upper bound

for the difference between T and this maximal branching time, we modify the tree in an appropriate

way. In order to be consistent with [Ger08], we draw the trees in the common centered way in the

following.

4.4.2 Definition (see e.g. the introduction in [Ger08])

Consider a binary tree representing a linear birth and death process at time T and remove the extinct
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Figure 4.10: Simulation-based empirical distribution function of the distribution of the age of an indi-

vidual picked uniformly at random for T = 2 (black line), the corresponding cumulative

distribution function (grey solid line) and the cumulative distribution function of the

asymptotic age distribution (grey dotted line)

lineages, i.e. all edges that do not lead to an edge living at time T (see Figure 4.11). The resulting

tree is called reconstructed tree. The original tree is referred to as the complete tree.

The tree defined above is called reconstructed tree since it is the one that is often considered if only

the individuals alive at time T are observed.

4.4.3 Remark

Since the set of branching times in the reconstructed tree is a subset of all branching times in the

complete tree, the time T − TBT+DT since the last event is smaller than or equal to the minimum of

the differences between T and the branching times in the reconstructed tree. Consequently, we are

interested in the distribution of the branching times and these differences.

4.4.4 Definition

Given the population size YT = yT at time T , let X+
1 := 0 and let X+

2 , . . . , X
+
yT

denote the unordered

(i.e. randomly permuted) non-zero branching times in the reconstructed tree.

The following result from [Ger08] gives us the (conditional) distribution of these times.
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Figure 4.11: A complete tree, where the gray edges belong to the extinct lineages, and the correspond-

ing reconstructed tree

4.4.5 Theorem ([Ger08], Theorem 2.5)

Given YT = yT , the random times T −X+
2 , . . . , T −X+

yT
are independent and identically distributed

with cumulative distribution function

F (t) :=

 1−e−(λ−µ)t

λ−µe−(λ−µ)t
λ−µe−(λ−µ)T

1−e−(λ−µ)T if 0 ≤ t ≤ T,

1 if t > T.

4.4.6 Remark

Note that Theorem 4.4.5 allows us to obtain a result for a distribution that is in some sense similar

to the age distribution we considered in Section 4.2 and Section 4.3. However, it seems to be unlikely

that the results from Section 4.3 can be deduced from known results about reconstructed trees.

The distribution from Theorem 4.4.5 is dominated by a truncated exponential distribution:

4.4.7 Corollary

Given YT = yT , for each j ∈ {2, . . . , yT }, the conditional distribution of T − X+
j is stochastically

dominated by the Exp(λ− µ) distribution truncated at T .

Proof : Given YT = yT , for each j ∈ {2, . . . , yT }, the cumulative distribution function F of T −X+
j is

given by Theorem 4.4.5. For t > T , we have F (t) = 1 ≥ (1−e(λ−µ)t)/(1−e−(λ−µ)T ). For t ≤ T , the ex-

pression λ−µe−(λ−µ)T is larger than or equal to λ−µe−(λ−µ)t. Thus F (t) ≥ (1−e(λ−µ)t)/(1−e−(λ−µ)T )

also holds for t ≤ T . �

4.4.8 Remark

By Remark 4.4.3, we have that, given YT , the difference T − TBT+DT is stochastically dominated by
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min{T − X+
j |j ∈ {1, . . . , YT }}. Given YT = 1, we have that min{T − X+

j |j ∈ {1, . . . , YT }} is equal

to T − X+
1 = T . Given YT = yT > 1, we know that there is an individual that is younger than

the first individual and thus min{T − X+
j |j ∈ {1, . . . , yT }} = min{T − X+

j |j ∈ {2, . . . , yT }}. Since

the minimum of yT − 1 independent Exp(λ−µ) distributed random variables is Exp((yT − 1)(λ− µ))

distributed for yT > 1, Theorem 4.4.5 and Corollary 4.4.7 imply that, given YT = yT ∈ N, the distribu-

tion of min{T −X+
j |j ∈ {1, . . . , yT }} is stochastically dominated by the distribution with cumulative

distribution function

G̃(t) := 1{yT>1}(1− e−(yT−1)(λ−µ)t) + 1{yT≤1}1{t≥T}.

It follows that, given YT = yT , the distribution of T − TBT+DT is stochastically dominated by the

distribution with cumulative distribution function G̃. Note G̃(t) ≤ G(t) for all t ≥ 0. Thus the distri-

bution corresponding to G is stochastically dominated by the distribution with cumulative distribution

function G̃. We may conclude that we do not obtain a better result, i.e. a better upper bound, using

the reconstructed tree than from Theorem 4.4.1. This is plausible because by adding the “missing”

branches to the reconstructed tree, we see that the ages in the complete tree cannot be larger than

than the ages in the corresponding reconstructed one.





5 Random networks

In this chapter, we give a short introduction to the large field of random networks. We refer to [vdH16]

and [New10] for extensive surveys. A well-written introduction to the most important random network

models can also be found in [DM10].

5.1 Introduction to graphs

In the first part of this section, which is based on [New10], [vdH16] and [Die06], we give basic definitions

and interpretations. We begin with the definition of a (deterministic) graph, which is the main mathe-

matical concept for modeling networks.

5.1.1 Definition

The tuple G = (V, E) is called a graph, where V is a countable set and the definition of E depends on

the type of graph as follows.

For an undirected graph without multiple edges and loops, E is a subset of [V]2, where [V]2 denotes

the set of all two-element subsets of V.

For a directed graph without multiple edges, E is a subset of V × V.

The elements of V and E are called nodes and edges, respectively. An edge is called directed or

undirected depending on the type of graph it belongs to. For simplicity, we denote each edge {i, j} of

an undirected graph also by (i, j) (or (j, i)). An edge of the form (i, i), i ∈ V, is called loop.

For nodes i, j ∈ V, we say there exists an edge between i and j or an edge connects i and j if and

only if (i, j) ∈ E . Furthermore, we say an edge (i1, i2) ∈ E is incident to a node i3 ∈ V if and only

i3 = i1 or i3 = i2.

An undirected multigraph is a tuple G = (V, E) of disjoint sets together with a map ι : E → V ∪ [V]2

assigning to every edge either one or two nodes, which are the nodes it is incident to.

Analogously, a directed multigraph is a tuple G = (V, E) of disjoint sets together with a map

ι : E → V × V .

For both undirected and directed multigraphs, we identify each edge ε ∈ E with ι(ε) and interpret

E as a multiset, which is a generalization of a set that may contain each element multiple times (see

e.g. Chapter 1 of [Rig16]). Each element that appears multiple times in this multiset is called multiple

edge. Furthermore, for an undirected multigraph, each edge ε with ι(ε) = i for some node i ∈ V is

called loop and denoted by (i, i).

Note that we consider multigraphs as special graphs although that is not always the case in the

literature (see e.g. Chapter 1 of [Die06]).
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Nodes are also referred to as vertices, sites and actors in the literature. Alternative expressions for

edges are links, bonds and ties. Note that we consider undirected graphs in this thesis if not stated

otherwise.

The nodes are often interpreted as individuals, for example persons, and the edges represent relations

between the individuals then, for example friendships. Thus graphs are a very useful tool for analyzing

phenomena with an underlying network structure. A lot of interpretations and applications of graphs

can, for example, be found in the surveys mentioned above.

Note that multiple edges can be interpreted as weighted edges, where the weight is given by the

number of times the edge is contained in E . In many application, it is difficult to give useful interpre-

tations for such weights. However, several empirical networks where integer-valued weights for edges

are desired can for example be found in Subsection 2.4.2 of [BLM+06].

Now we define the degree of a node, which plays a crucial role in this thesis.

5.1.2 Definition

The number of edges incident to a node i ∈ V is called degree of node i. Furthermore, for a fixed node

i of a directed graph, the number of edges (j1, j2) such that j2 = i is called in-degree of node i. The

out-degree is defined analogously.

Now we give a definition concerning the connectivity of a graph.

5.1.3 Definition (cf. e.g. Section 1.2 and Definition 1.6 of [vdH16])

(i) A sequence of edges (i1, i2), (i2, i3), . . . , (im−1, im), m ∈ N, is called path between the nodes i1

and im. We say nodes are connected if and only if there exists a path between them.

(ii) The graph distance dG(i, j) between nodes i and j is the minimal number of edges of paths

between i and j, where we set dG(i, j) =∞ if i and j are not connected.

(iii) Let (G(n))n∈N be a sequence of graphs such that the node set V(n) of G(n) has exactly n nodes for all

n ∈ N. Let C(n)(i) := {j ∈ V(n)|dG(n)(i, j) <∞} for all n ∈ N be the connected component of node

i in G(n), and let C
(n)
max denote the maximal connected component, i.e. |C(n)

max| = maxi∈V(n) |C(n)(i)|
for all n ∈ N, where | · | denotes the cardinality. Then the sequence of graphs (G(n))n∈N is called

highly-connected if

lim inf
n→∞

|C(n)
max|
n

> 0,

and then C
(n)
max is called giant component.

5.1.4 Remark

The existence of a giant component has important consequences for applications. For example, assume

that the graph G(n) models a population with n individuals and the spread of an epidemic such

that each individual infects all other individuals it is connected to in the graph. Then connectivity

corresponds to the impact of the epidemic. See e.g. [DM10] for a precise modeling of epidemics using

(random) graphs.
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The small world property describes the phenomenon that individuals are surprisingly close to each

other in social networks. It is formalized in the definition below. It was discovered in the population

of the USA by the sociologist Stanley Milgram in a famous experiment in 1967, where people were

supposed to forward letters addressed to someone they did not know personally to persons in their

circle of acquaintances they thought were likely to know the addressee (see [Mil67]).

5.1.5 Definition (see (1.2.11) and Definition 1.7 in [vdH16])

(i) Consider a graph G(n) with nodes 1, . . . , n. Let J
(1)
n and J

(2)
n be independent and uniformly

distributed on {1, . . . , n}. Then dtyp(G(n)) := dG(n)(J
(1)
n , J

(2)
n ) is called typical distance of G(n).

(ii) A graph sequence (G(n))n∈N has the small world property if and only if there exists a constant

C > 0 such that

lim
n→∞

P(dtyp(G(n)) ≤ C log(n)) = 1.

Note that the choice of the term C log(n) in the definition of the small world property can be

motivated by the fact that the typical distance in the well-known classical preferential attachment

model (defined in Definition 5.4.1 below) is of logarithmic order; see Theorem 7.1 in [vdH15] for

details.

5.1.6 Remark (see e.g. (1.2.13) in [vdH16] and Section 6.1 of [DM10])

Sometimes the small world property is also defined using the diameter of a graph G, i.e. the quantity

max
i,j∈G

dG(i, j),

instead of the typical distance.

5.1.7 Remark

There are many more interesting properties of graphs. For example, one might be interested in the

homogeneity of a graph. In this context, the clustering coefficient, which is for example defined in

Section 1.5 of [vdH16], is an important measure for the clustering in a graph. Intuitively, the clustering

coefficient is high if and only if two nodes with a common neighbour are more likely to be connected

than those without common neighbours.

Furthermore, each node is often associated with quantities that measure its importance in some

sense. For example, a node can be considered important if its degree is high. Further impor-

tance/centrality measures can for example be found in Section 1.5 of [vdH16] and Chapter 7 of [New10].

We model random networks by using random graphs, i.e. graphs where the set of nodes V and/or

the vertices E can be random. We assume that all random variables are defined on an underlying

common probability space (Ω,A,P).

5.2 Heavy tailed and power law distributions

Before we present various random network models, we introduce the concept of power law distributions

since, as already mentioned in the introduction, many random network models have such distributions

as asymptotic degree distributions (see e.g. Chapter 3 of [DM03]).
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Firstly, we define heavy tail and power-law distributions. Note that there are several different

definitions of those in the literature.

5.2.1 Definition (cf. Section 2.1 of [FKZ11])

A distribution on R is heavy-tailed if and only if its cumulative distribution function F satisfies

lim
x→∞

eϑx(1− F (x)) =∞ ∀ϑ > 0.

Theorem 2.6 in [FKZ11] gives further characterizations of heavy-tailed distributions.

In particular, all distributions that obey power laws in the weak or strong sense that we define now

are heavy-tailed. As in [vdH16], we concentrate on distributions on N0 here.

5.2.2 Definition (cf. the introduction of [vdH16])

We say a distribution on N0 obeys a power law in the strong sense if and only if the probability mass

function (f(k))k∈N0 satisfies

f(k) ∝ k−θ

for all k ∈ N and some θ > 1, and in the weak sense with power law exponent θ if and only if its

cumulative distribution function F satisfies

1− F (m) = ϕ(m)m1−θ (5.1)

for all m ∈ N and some θ > 1, where the function m 7→ ϕ(m) is slowly varying (see Definition 3.3.5).

5.2.3 Remark

We know from Chapter 2 of [FKZ11] that distributions that obey a power law in the weak sense

are heavy-tailed. Note that these distributions are sometimes also referred to as regularly varying

distributions (see e.g. Section 2.8 of [FKZ11]).

5.2.4 Remark (see e.g. Section 2.1 of [FKZ11])

The Pareto distribution is often referred to as continuous power law distribution.

For a survey on power law distributions, including a lot of real-world examples, we refer to [New13].

5.3 Static random network models

5.3.1 The Erdős-Rényi model and related models

The best-known random network model is the following.

5.3.1 Definition (cf. [Gil59])

Let V = {1, . . . , n} for some n ∈ N. Assume that for each pair of nodes (i, j) with 1 ≤ i < j ≤ n

the corresponding edge exists with probability p (referred to as edge probability in the following)

independently from the existence of edges corresponding to other pairs of nodes. Then the resulting

random graph is called Erdős-Rényi graph.
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Note that Erdős-Rényi graphs are often simply referred to as random graphs.

Before we consider the degree distribution, we state a very classical result about the connected

components of Erdős-Rényi graphs.

5.3.2 Proposition (see e.g. Section 2.2 of [DM10])

A Erdős-Rényi graphs has almost surely a giant component if and only if p ≥ 1/n.

For more detailed results about giant components, we refer to [DM10].

Before we draw our attention to generalizations of Erdős-Rényi graphs, we briefly consider the

degree and a corresponding convergence rate.

5.3.3 Remark (cf. e.g. Section 12.3 of [New10])

Obviously, the distribution of the degree of a fixed node i ∈ V is the Bin(n − 1, p) distribution.

From Section 3.2, we know that this distribution can be approximated by a Poisson distribution in

a reasonable way if p is small. Namely, we have dTV (Bin(n − 1, p),Po(λ̃)) ≤ p, where λ̃ = (n − 1)p.

In particular, for a sequence of Erdős-Rényi graphs with n nodes and edge probability p(n) = 1
n−1 ,

n ∈ N\{1}, we have that the Bin(n−1, p(n)) distribution of the degree of a fixed node i ∈ V converges

to the Po(1) distribution, and we obtain an explicit convergence rate from Section 3.2:

dTV
(
Bin(n− 1, p(n)),Po(λ̃)

)
≤ 1

n
.

Due to the homogeneity of the Erdős-Rényi graph, we obtain the same asymptotic distribution and

convergence rate also for the distribution of the degree of a node picked uniformly at random (cf.

(5.4.7) and (5.4.8) in [vdH16]).

The following is a generalization of the Erdős-Rényi model.

5.3.4 Definition (see Chapter 6 of [vdH16])

Let V = {1, . . . , n} for some n ∈ N, and let w1, . . . , wn be positive real numbers, which we refer to as

weights. Furthermore, let `n :=
∑n

i=1wi. Assume that for each pair of nodes (i, j) with 1 ≤ i < j ≤ n
the corresponding edge exists with probability

pij(n) :=
wiwj

`n + wiwj
(5.2)

independently from the existence of edges corresponding to other pairs of nodes. Then the resulting

random graph is called generalized random graph with deterministic weights.

Note that we obtain an Erdős-Rényi graph if we choose wi = np
1−p for i ∈ {1, . . . , n} (see Exercise 6.1

in [vdH16]).

Throughout this section, we assume that the following regularity conditions from Chapter 6 of

[vdH16] for the weights hold. For the first condition, let Jn be uniformly distributed on {1, . . . , n}
for n ∈ N. We assume that the weight wJn of a node picked uniformly at random converges weakly

to some random variable W , i.e. the probability measure 1
n

∑n
i=1 δwi converges weakly to a prob-

ability measure L(W ), where δwi denotes the Dirac measure in wi. Furthermore, we assume that

lim
n→∞

E(wJn) = E(W ) > 0. These statements are discussed after Condition 6.4 in [vdH16].
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5.3.5 Theorem (cf. Theorem 6.7 in [vdH16])

Let (wi)i∈N be a sequence of positive real numbers. Let D
(n)
i be the degree of node i, i ∈ {1, . . . , n},

in the generalized random graph G(n) with deterministic weights w1, . . . , wn and n nodes. We have

dTV (L(D
(n)
i ),Po(wi)) ≤

w2
i

n∑
j=1

wj

(
1 + 2

∑n
k=1w

2
k∑n

l=1wl

)

for all i ∈ {1, . . . , n}.

This theorem has the following consequence for the degree of a node picked uniformly at random.

5.3.6 Corollary (cf. Corollary 6.9 in [vdH16])

The degree of a node picked uniformly at random converges weakly to the MixPo(W ) distribution,

where the asymptotic weight W is defined as above. For any m ∈ N, the degrees of m nodes picked

uniformly at random from {1, . . . , n} are asymptotically independent.

5.3.7 Remark

Note that a rate for the convergence stated in Corollary 5.3.6 can be deduced from Theorem 5.3.5 by

conditioning on the node picked uniformly at random.

The following example shows that every mixed Poisson distribution can be obtained as asymptotic

distribution of the degree of a node picked uniformly at random.

5.3.8 Example (see page 169 in [vdH16])

Let F be an arbitrary cumulative distribution function with F (0) = 0, and let (1 − F )−1 denote the

generalized inverse of 1− F defined by (1− F )−1(y) = inf{x ∈ R : (1− F )(x) ≤ y}. Furthermore, let

wi = (1− F )−1(i/n). Then it can be easily deduced from (6.1.17) in [vdH16] that the weight wJn of

a node picked uniformly at random converges weakly to the distribution with cumulative distribution

function F . By Corollary 5.3.6, the asymptotic distribution of the degree of a node picked uniformly

at random is thus the MixPo(W ) distribution, where W has cumulative distribution function F . In

particular, the MixPo(W ) distribution can obey a power law in the weak sense (cf. Section 5.2). An

example for such a mixed Poisson distribution will be considered in Section 6.5

Since the weights in this example lack a plausible heuristic explanation, we consider the case where

the weights are independent and identically distributed random variables now. In this case, we can

also obtain every mixed Poisson distribution as asymptotic distribution of the degree of a node picked

uniformly at random (see below).

5.3.9 Definition (cf. Chapter 6 of [vdH16])

Let V = {1, . . . , n} for some n ∈ N, and let W1, . . . ,Wn be positive independent and identically

distributed random variables, which we refer to as weights. Furthermore, let Ln :=
∑n

i=1Wi. Assume

that, given Wi = wi for i ∈ {1, . . . , n} and Ln = `n, for each pair of nodes (i, j) with 1 ≤ i < j ≤ n

the corresponding edge exists with probability

pij(n) :=
wiwj

`n + wiwj

independently from the existence of edges corresponding to other pairs of nodes. Then the resulting

random graph is called generalized random graph with independent and identically distributed weights.
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The asymptotic degree distribution of the generalized random graph with independent and identi-

cally distributed weights is given by the following theorem.

5.3.10 Theorem (cf. Corollary 6.11 in [vdH16])

Let a sequence (Wi)i∈N of positive independent and identically distributed random variables be given.

Let D
(n)
i be the degree of node i, i ∈ {1, . . . , n}, in the generalized random graph G(n) with independent

and identically distributed weights W1, . . . ,Wn and n nodes. Then the distribution of D
(n)
i converges

weakly to the MixPo(Wi) distribution as n→∞ for all i ∈ {1, . . . , n}.

5.3.11 Remark

Note that we can obtain a rate for the convergence of the distribution of the degree of a node picked

uniformly at random from Theorem 5.3.5 by conditioning on the weights and on the node picked

uniformly at random (cf. the proof of Theorem 5.3.13 and Corollary 5.3.14 below).

As stated in the introduction, the asymptotic degree distribution in the Britton-Lindholm model

without loops sketched in the introduction and treated in Chapter 6 is also a mixed Poisson distribu-

tion. In order to illustrate the connection between the Britton-Lindholm model and the generalized

random graph with independent and identically distributed weights, we modify the latter such that

we obtain a static random network model that is in some sense an analogue to the Britton-Lindholm

model without loops from the introduction.

5.3.12 Definition

Let V = {1, . . . , n} for some n ∈ N \ {1}, α > 0, and let W1, . . . ,Wn be positive independent and

identically distributed random variables such that Wi ≤ α/2 almost surely for all i ∈ {1, . . . , n}.
Assume that, given Wi = wi for i ∈ {1, . . . , n}, for each pair of nodes (i, j) with 1 ≤ i < j ≤ n the

corresponding edge exists with probability

pij(n) :=
α(wi + wj)

n− 1

independently from the existence of edges corresponding to other pairs of nodes. Then the resulting

random graph is called modified generalized random graph with independent and identically distributed

weights.

The following theorem gives us a convergence rate for the distribution of the degree of a fixed node

in the modified generalized random graph with independent and identically distributed weights and

is proved similarly to the proof of Theorem 6.7 in [vdH16].

5.3.13 Theorem

Let (Wi)i∈N be a sequence of positive independent and identically distributed random variables with

E(W 2
1 ) < ∞. Let D

(n)
i be the degree of node i, i ∈ {1, . . . , n}, in the modified generalized random

graph G(n) with independent and identically distributed weights W1, . . . ,Wn and n nodes. Then we

have

dTV
(
L
(
D

(n)
i

)
,MixPo(α(Wi + E(Wi))

)
≤ 2α2(E(W 2

1 ) + (E(W1))2)

n− 1
+
α
√

Var(W1)√
n− 1

for all i ∈ {1, . . . , n}, and the distribution of D
(n)
i converges weakly to the MixPo(Wi + E(Wi))

distribution as n→∞ for all i ∈ {1, . . . , n}.
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Proof : At first, we assume that the weights are given by Wi = wi, i ∈ N. For i 6= j and n ∈ N, let
I

(n)
ij be 1 if i and j are connected in G(n) and 0 otherwise. Then the degree of node i can be written as

D
(n)
i =

n∑
j=1

I
(n)
ij . Note that I

(n)
ij ∼ Be(pij) for i 6= j, where pij =

α(wi+wj)
n−1 , and I

(n)
ii = 0 almost surely

for all i. Note further that I
(n)
i1 , . . . , I

(n)
in are independent.

By Inequality (3.6), we thus obtain

dTV

(
L(D

(n)
i ),Po

(∑
j 6=i

pij

))
≤
∑
j 6=i

p2
ij =

∑
j 6=i

α2(wi + wj)
2

(n− 1)2
. (5.3)

Let us now relieve the assumption that the weights Wi, i ∈ N, are given, and let

X ∼ MixPo

(
αWi + α

∑
j 6=i

Wj

n− 1

)
.

Then we have

dTV

(
L
(
D

(n)
i

)
,MixPo

(
αWi+α

∑
j 6=i

Wj

n− 1

))
≤ sup

B⊂N0

∣∣P(D(n)
i ∈ B

)
− P

(
X ∈ B

)∣∣
= sup

B⊂N0

∣∣E(P(D
(n)
i ∈ B|W1, . . . ,Wn))− E(P(X ∈ B|W1, . . . ,Wn))

∣∣
≤ sup

B⊂N0

E
(∣∣P(D

(n)
i ∈ B|W1, . . . ,Wn)− P(X ∈ B|W1, . . . ,Wn)

∣∣)
≤ E

(
sup
B⊂N0

∣∣P(D
(n)
i ∈ B|W1, . . . ,Wn)− P(X ∈ B|W1, . . . ,Wn)

∣∣)
= E

(
dTV (L(D

(n)
i |W1, . . . ,Wn),L(X|W1, . . . ,Wn))

)
.

By Inequality (5.3), the right-hand side is smaller than or equal to

E
(
α2
∑
j 6=i

W 2
i + 2WiWj +W 2

j

(n− 1)2

)
(5.4)

because L(X|W1, . . . ,Wn) = L(X|Wi +
∑

j 6=i
Wj

n−1). Since the sum has n − 1 summands, we obtain

that (5.4) is equal to

2α2(E(W 2
1 ) + (E(W1))2)

n− 1
.

Note that this expression converges to zero for n→∞. Thus

dTV

(
L
(
D

(n)
i

)
,MixPo

(
αWi + α

∑
j 6=i

Wj

n− 1

))
converges to zero for n→∞.

By the triangle inequality, we have

dTV
(
L
(
D

(n)
i

)
,MixPo(α(Wi + E(Wi))

)
≤ dTV

(
L
(
D

(n)
i

)
,MixPo

(
αWi + α

∑
j 6=i

Wj

n− 1

))

+ dTV

(
MixPo

(
αWi + α

∑
j 6=i

Wj

n− 1

)
,MixPo(α(Wi + E(Wi))

)
(5.5)
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Thus it remains to show that the second summand of the right-hand side of (5.5) converges to zero

as n→∞. In order to do so, we use Theorem 3.4.1 and obtain

dTV

(
MixPo

(
αWi + α

∑
j 6=i

Wj

n− 1

)
,MixPo(α(Wi + E(Wi))

)
≤ E

(∣∣∣∣ α

n− 1

∑
j 6=i

Wj − αE(Wi)

∣∣∣∣).
Applying E|Z − E(Z)| ≤

√
Var(Z) to Z = α

n−1

∑
j 6=i

Wj reveals that the right-hand side is smaller than

or equal to √√√√Var

(
α

n− 1

∑
j 6=i

Wj

)
=

α

n− 1

√
(n− 1)Var(Wi) =

α√
n− 1

√
Var(Wi)

and this expression converges to zero as n→∞. Since convergence in total variation distance implies

weak convergence, the desired result follows. �

The following corollary is an immediate consequence of Theorem 5.3.13

5.3.14 Corollary

Let (Wi)i∈N be a sequence of positive independent and identically distributed random variables with

E(W 2
1 ) < ∞. Then in the modified generalized random graph G(n) with independent and identically

distributed weights W1, . . . ,Wn and n nodes, the distribution of the degree of a node picked uniformly

at random among all n nodes converges weakly to the MixPo(α(W1 +E(W1))) distribution as n→∞
for all i ∈ {1, . . . , n}, and we have the same convergence rate as in Theorem 5.3.13.

5.3.15 Remark

Note that we obtain an Erdős-Rényi graph if we set Wi = 1 for all i and α = 1/2 in the modified

generalized random graph with independent and identically distributed weights.

5.3.16 Remark

The weights in the modified generalized random graph model correspond to the social indices (Si)i∈N

in the Britton-Lindholm model. Recall that in the latter each node creates edges at rate αSi and the

second node is picked uniformly among all living nodes. Thus we would expect that the probability that

two nodes i and j with social indices Si and Sj are connected is in average approximately proportional

to Si + Sj , which corresponds to the probability pij(n) in the modified generalized random graph

model.

We obtain a in some sense similar asymptotic degree distribution in both models. The reason for the

additional factor (1− e−(β+µ)A)/(β + µ) in the random variable determining the mixing distribution

of the Britton-Lindholm model is that this model is a (time-continuous) dynamic model in contrast

to the modified generalized random graph model.

5.3.2 The configuration model

In this Section, which is based on Chapter 7 of [vdH16], we consider the case where an arbitrary

distribution on N0 is given and we introduce a model that produces random graphs with node set
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{1, . . . , n}, possibly containing multiple edges and loops, whose asymptotic degree distribution, i.e.

the distribution of the degree of a node picked uniformly at random, is this given distribution. If we

condition on the absence of multiple edges and loops, we obtain a uniform distribution on all graphs

with node set {1, . . . , n} that do not have any multiple edges and loops. Thus this model can be used

in order to find out if the network is rather “purely” random or if it contains additional structure.

The configuration model for a given deterministic degree sequence

5.3.17 Definition and Remark (cf. Section 7.2 of [vdH16])

Let n ∈ N0 and d = (di)i∈{1,...,n} be a deterministic sequence of positive integers such that the sum∑n
i=1 di is even. We would like to produce a graph with node set {1, . . . , n} such that node i has

degree di for all i ∈ {1, . . . , n}. If we only consider graphs without multiple edges and loops, this is

not always possible (see Section 7.2 of [vdH16]). Therefore, we allow our graphs to have such edges.

Imagine that node i is equipped with di half-edges for any i ∈ {1, . . . , n} such that we have
∑n

i=1 di

in total. Now we pick two of those half-edges uniformly at random among all half-edges and combine

them, i.e. if one of the randomly picked half-edge belongs to node i and the other one to node j, we add

the edge (i, j). Then we pick two half-edges uniformly at random among the
∑n

i=1 di − 2 remaining

half-edges, add the corresponding edge and continue this procedure until no half-edge is left. We call

the resulting graph configuration model with degree sequence d.

Note that the first half-edges are not directly picked uniformly at random but in an arbitrary order

in the definition of the configuration model in [vdH16]. However, as pointed out in [vdH16], this leads

to the same random graph.

Obviously, the configuration model has the desired degree sequence. Moreover, we obtain from the

following example that we can obtain any feasible distribution as asymptotic degree distribution.

5.3.18 Example (see Section 7.2 of [vdH16])

Let F be the cumulative distribution function of an arbitrary distribution on N0, and let n ∈ N.

Note that a degree sequence d is, apart from the node labels, determined by the sequence (nk)k∈N0

with nk =
∑n

i=1 1{di=k}, i.e. nk denotes the number of nodes with degree k, for all k ∈ N0. Thus

we can always find a corresponding configuration model if the sequence (nk)k∈N0 is given. Let this

sequence now be given by nk = dnF (k)e − dnF (k − 1)e for all k ∈ N0, where d · e denotes the ceiling

function, and let DJn denote the degree of a node picked uniformly at random among {1, . . . , n} in

the configuration model with degree sequence d, where d satisfies nk =
∑n

i=1 1{di=k} for all k ∈ N0.

Then

P(DJn ≤ x) =
1

n

n∑
j=1

1{dj≤x}

converges to F (x) for all x ≥ 0 as n → ∞, i.e. the degree DJn converges weakly to the distribution

with cumulative distribution function F .

The configuration model with independent and identically distributed degrees

Let (Di)i∈{1,...,n} be a sequence of N-valued independent and identically distributed random variables.

Since the sum of the degrees
∑n

i=1 di has to be even in Definition and Remark 5.3.17, the configuration
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model with random degrees (Di)i∈{1,...,n} cannot be defined in the most natural way such that, given

Di = di for all i ∈ {1, . . . , n}, the random graph is just given by the configuration model with degrees

d = (di)i∈{1,...,n} as defined above. Therefore, we add an additional half-edge to node n if the sum of

the degrees would not be even otherwise. Formally, we let

D̃n =


Dn if

n∑
i=1

Di is even,

Dn + 1 if
n∑
i=1

Di is odd

and define the model as described above but substitute (Di)i∈{1,...,n} by the sequence D1, . . . , Dn−1, D̃n.

For convenience, we denote the latter sequence by (D̃i)i∈{1,...,n}. By this procedure, we obtain a random

graph where the degree D̃Jn of a node picked uniformly at random among {1, . . . , n} converges weakly

to the distribution L(D1) as n→∞ (cf. Section 7.6 of [vdH16]).

The erased configuration model

As mentioned above, multiple edges and loops are not desired in many applications. Therefore, we

erase all such edges in the configuration model now if they exist in the sense that we merge all multiple

edges into single edges and ignore loops. This amounts in ignoring the additional edges of a multiple

edge, which is the same we did when we considered the Britton-Lindholm model without loops in

the introduction. We call the resulting model the erased configuration model. The following theorem

states that the distribution of the degree of a node picked uniformly at random still converges weakly

to L(D1) as n→∞ in this model if the degrees are deterministic and a couple of weak conditions are

fulfilled. See Theorem 7.10 in [vdH16] for a similar result. The analogous theorem for independent

and identically distributed degrees can be found in [BDML06] and is stated in Theorem 5.3.20 below.

5.3.19 Theorem

Let D
(er)
Jn

denote the degree of a node picked uniformly at random in the erased configuration model

with deterministic degrees. Assume that the degree sequence d = (di)i∈{1,...,n} satisfies the following

regularity conditions (cf. Condition 7.7 in [vdH16]).

(i) The distribution of the degree dJn of a node picked uniformly at random among {1, . . . , n}
converges weakly to some asymptotic distribution with cumulative distribution function F .

(ii) Let D have the cumulative distribution function F from (i). Then we have E(dJn)→ E(D) <∞
as n→∞.

Then we obtain

L(D
(er)
Jn

)
w→ L(D)

as n→∞.

Proof : By Remark 3.1.10, it is sufficient to show that the total variation distance dTV (L(D
(er)
Jn

),L(D))
converges to zero as n→∞, where D is defined as in (ii).

By the triangle inequality, we have

dTV (L(D
(er)
Jn

),L(D)) ≤ dTV (L(D
(er)
Jn

),L(dJn)) + dTV (L(dJn),L(D)).
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Since we know from above that L(dJn) converges weakly to L(D) as n → ∞, we obtain that

dTV (L(dJn),L(D)) converges to zero as n → ∞ by Remark 3.1.10. It remains to show that the

total variation distance dTV (L(D
(er)
Jn

),L(dJn)) converges to zero as n→∞ as well. In order to do so,

we note that dTV (L(D
(er)
Jn

),L(dJn)) is smaller than or equal to P(D
(er)
Jn
6= dJn) by Theorem 3.1.8. For

any node i ∈ {1, . . . , n}, let M
(n)
i denote the number of edges that are multiple edges or loops and are

incident to i. Then we obtain by conditioning on Jn

P(D
(er)
Jn
6= dJn) =

1

n

n∑
i=1

P(D
(er)
i 6= di) =

1

n

n∑
i=1

P(M
(n)
i > 0) =

1

n

n∑
i=1

E(1{M(n)
i >0}) (5.6)

In order to show that the right-hand side converges to zero, we use the idea of the last part of the

proof of Proposition 7.11 in [vdH16]. Note that we know from [vdH16] that maxi∈{1,...,n} di = o(n)

as n → ∞ under the conditions (i) and (ii) of the theorem. Thus we can choose a sequence (an)n∈N

such that an → ∞ and an maxi∈{1,...,n} di = o(n) as n → ∞. For this sequence, we obtain that the

right-hand side of (5.6) is smaller than or equal to

1

n

n∑
i=1

E(1{M(n)
i >0})1{di≤an} +

1

n

n∑
i=1

E(1{M(n)
i >0})1{di>an} ≤

1

n

n∑
i=1

E(M
(n)
i )1{di≤an} +

1

n

n∑
i=1

1{di>an}

The first summand of the right-hand side converges to zero as n → ∞ by (7.3.30) in [vdH16]. The

second summand is equal to the percentage of nodes with degree higher than an. Since an → ∞ as

n→∞ and (i) is equivalent to

1

n

n∑
i=1

1{di≤x} → F (x)

as n→∞ for all x ≥ 0 (cf. Exercise 7.5 in [vdH16]), this percentage vanishes also as n→∞; see also

the proof of Proposition 7.11 in [vdH16]. �

5.3.20 Theorem (cf. Theorem 2.1 in [BDML06])

Let D
(er)
Jn

denote the degree of a node picked uniformly at random in the erased configuration model

with independent and identically distributed degrees with finite expectation. Then we have

L(D
(er)
Jn

)
w→ L(D1)

as n→∞.

Further properties of the configuration model

A lot of further results for the configuration model and related models are given in [vdH16]. We only

state the ones most interesting to us here.

The asymptotic probability that the random graph from the ordinary configuration model does

not have any multiple edges or loops is considered in Theorem 7.11 and Theorem 7.19 in [vdH16].

This asymptotic probability is positive under some weak conditions. Thus instead of applying the

erased configuration model, a random graph without multiple edges or loops can also be obtained by

repeating the algorithm described in the definition of the configuration model until it produces such
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graph. Formally, we condition on the graph having no multiple edges or loops. The corresponding

model is called repeated configuration model (see also [BDML06]). For any deterministic degree se-

quence d, the repeated configuration model with degree sequence d produces a random graph that is

uniformly distributed on the set of all graphs without multiple edges or loops and degree sequence d

(see Proposition 7.13 in [vdH16]).

5.3.3 Inhomogeneous random graphs

The inhomogeneous random graph model is treated extensively in Chapter 2 of [vdH15] and generalizes

the generalized random graph model further. In this model, each of the n nodes is assigned a random

type, and the probability of two nodes being connected depends on the types of the nodes in a very

general way (see Section 2.2 of [vdH15] for details). There exist a lot of interesting results about this

model. In particular, it can be shown that the distribution of the degree of a node picked uniformly

at random converges to a mixed Poisson distribution as n→∞ (cf. Theorem 2.4 in [vdH15]).

Theorem 2.7 in in [vdH15] relates the asymptotic size of the largest components to the survival

probability of a multitype branching process. This result is used in [BLT11] in order to justify results

about the largest component in the Britton-Lindholm model sketched in the introduction and treated

in Chapter 6. In particular, the authors argue heuristically that the random graphs from the Britton-

Lindholm model behave as special inhomogeneous random graphs.

5.3.4 Further static random network models

A further very well-known model, which illustrates the small world property, is the random graph

model by Strogatz and Watts (see e.g. Section 6.2 of [DM10]).

Several spatial random graph models, i.e. models that consider the positions of the nodes, are for

example presented in Section IV of [Bar11]. The best-known spatial random graphs are the so-called

geometric random graphs (see also [Pen03]). Note that those and other static spatial random graphs

can be interpreted as special inhomogeneous random graphs (see also the introduction of [Pen15]).

5.4 Dynamic random network models

5.4.1 Preferential attachment

Probably the most popular random network models are the preferential attachment models, which

formalize the ”rich-get-richer” mechanism.

Time-discrete Preferential attachment

There are several variants of preferential attachment models. Here we first introduce one of them that

is inspired by the famous paper [BA99]. It is given by a sequence of directed graphs. However, an

undirected graph can obviously be obtained from a directed one by interpreting all directed edges as

undirected edges. We also present the convergence rate from [PRR13] for this model below.
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5.4.1 Definition (see e.g. Section 6 of [PRR13])

Let G(1) be a graph with one node labeled 1, which has a loop. For n ∈ N, the graph G(n+1) is obtained

from G(n) by adding one node labeled n+ 1 and one directed edge from the new node n+ 1 to one of

the nodes 1, . . . , n+ 1 of G(n+1). The probability that (n+ 1, i) is the new edge is proportional to the

degree of node i in G(n) for i ∈ {1, . . . , n}, and the probability that the new edge becomes a loop is
1

2n+1 . We call the resulting model preferential attachment model.

5.4.2 Remark

Note that the model in [BA99] also allows to add more than one edge per time step. However, since

this changes the main results about the model only marginally, we focus on the simpler case here.

Let us now define the distribution that turns out to be the asymptotic degree distribution in the

preferential attachment model.

5.4.3 Definition (cf. Definition 3.1 in [Rei09])

A random variable X is said to have the Yule-Simon distribution with parameter ρ > 0 if and only if

P(X = k) = ρB(k, ρ+ 1) =
ρΓ(k)Γ(ρ+ 1)

Γ(k + ρ+ 1)

for all k ∈ N, where B and Γ denote the beta and gamma function, respectively.

Now we state a main result from [PRR13], which gives us a convergence rate for the degree distri-

bution of a node picked uniformly at random.

5.4.4 Theorem (see Theorem 6.1 in [PRR13])

Let D
(n)
i denote the degree of node i in G(n) for i ∈ {1, . . . , n} in the preferential attachment model,

and let Jn be a random variable that is uniformly distributed on {1, . . . , n} independent of D
(n)
i for

all i ∈ {1, . . . , n}. If X has the Yule-Simon distribution with parameter 2, we have

dTV (D
(n)
Jn
, X) ≤ O

(
log(n)

n

)
as n→∞.

5.4.5 Remark

Theorem 5.4.4 implies that the asymptotic degree distribution in the preferential model defined above

is the Yule-Simon distribution with parameter 2. Since this distribution has probability mass function

4

k(k + 1)(k + 2)
,

it obeys a power law with power law exponent 3 in the weak sense.

As mentioned before, power law degree distributions can be observed in many real-world networks.

However, in many empirical networks, exponents have been observed that are significantly different

from 3 (see e.g. page 27 in [CSN09]). Therefore, the following generalization is of great interest (see

Chapter 8 of [vdH16]). We use the same mechanism as in Definition 5.4.1 except that the probability

that (n + 1, i) is the new edge is proportional to the sum of the degree of node i in G(n) and δ − 1
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for i ∈ {1, . . . , n}, and the probability that the new edge becomes a loop is δ
n(δ+1)+δ , where δ > 0.

This modified model is called affine preferential attachment model. Note that we again omit the case

where more than one edge is added per time step for the reason stated in Remark 5.4.2 above. For

the affine preferential attachment model, we have that the distribution of a node picked uniformly at

random converges to a distribution that obeys a power law with exponent θ = δ + 2 (see (8.4.11),

(8.4.12) and Exercise 8.14 in [vdH16]). We give a precise definition for a loop-free version of an affine

preferential model that is considered in [Rei09] now, again omitting the addition of more than one

edge per time step.

5.4.6 Definition (see Section 2.1 of [Rei09])

Let G(1) be a graph with m0 ∈ N nodes labeled 1, . . . ,m0 that has no edges. For n ∈ N, the graph

G(n+1) is obtained from G(n) by adding one node labeled n + 1 and one directed edge from the new

node n+ 1 to one of the nodes 1, . . . , n+ 1 of G(n+1). The probability that (n+ 1, i) is the new edge is

proportional to the sum of the in-degree (i.e. the total degree minus one) of node i in G(n) and δ for

a constant δ > 0 for i ∈ {1, . . . , n}, and the probability that the new edge becomes a loop is zero. We

call the resulting model affine loop-free preferential attachment model.

The asymptotic degree distribution is essentially a generalisation of the Yule-Simon distribution

that we define now.

5.4.7 Definition and Remark (cf. Definition 3.3 in [Rei09])

A random variable X is said to have the generalized Yule-Simon distribution with parameters γ > 0

and ρ > 0 if and only if

P(X = k) =
B(k − 1 + γ, ρ+ 1)

B(γ, ρ)
,

for all k ∈ N, where B denotes the beta function. Note that we obtain the Yule-Simon distribution

with parameter ρ > 0 for γ = 1.

The following result from [Rei09] gives us a convergence rate for the degree distribution of a node

picked uniformly at random.

5.4.8 Theorem (see Theorem 8.2 in [Rei09])

Let D
(n)
i denote the degree of node i in G(n) for i ∈ {1, . . . , n} in the affine loop-free preferential

attachment model with parameter δ > 0, and let Jn be a random variable that is uniformly distributed

on {1, . . . , n} and independent of D
(n)
i for all i ∈ {1, . . . , n}. If X has the generalized Yule-Simon

distribution with parameters γ = δ and ρ = δ + 1, we have

dTV (D
(n)
Jn

+ 1,L(X)) ≤ O
(

log(n)

n

)
as n→∞.

5.4.9 Remark

Note that the generalized Yule-Simon distribution with parameters γ > 0 and ρ > 0 obeys a power law

with power law exponent ρ+ 1 in the weak sense (see Subsection 3.2.3 of [Rei09]). Consequently, we

know from Theorem 5.4.8 that the asymptotic degree distribution in the affine loop-free preferential

model with parameter δ > 0 obeys a power law with power law exponent θ = δ+ 2 in the weak sense.
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5.4.10 Remark

Note that the preferential attachment model defined in Definition 5.4.1 and the affine loop-free prefer-

ential attachment model with parameter γ = 1 are very similar. In particular, the asymptotic degree

distribution is the Yule-Simon distribution with parameter 2 for both models. Furthermore, the rates

for the convergence towards this distribution that are given by Theorem 5.4.4 and Theorem 5.4.8,

respectively, are the same. Note that the former theorem was proven in [PRR13] in 2013 by applying

Stein’s method whereas the result stated in the latter was already proven in 2009 [Rei09] by using

recurrence equations. It seems to be very likely that the rate from Theorem 5.4.4 could also be ob-

tained by slightly adapting the proof from the analogous result in [Rei09]. It is worth mentioning

that the procedure in [PRR13] is more similar to ours in Chapter 6 and Chapter 7 in the following

sense: In [PRR13], the authors use that the asymptotic degree distribution is a mixture of geometric

distributions and apply general approximation results for geometric distributions. In Chapter 6 and

Chapter 7, the asymptotic degree distribution is a mixture of Poisson distributions and we thus apply

general approximation results for (mixed) Poisson distributions. An approach that is even more sim-

ilar to ours in those chapters can be found in Chapter 7 of [Rei09], where a rate that is slightly worse

than the one from Theorem 5.4.8 above is obtained for the affine loop-free preferential attachment

model in the following way. Reinert uses that the asymptotic degree distribution as well as the degree

distribution of a node picked uniformly at random is a mixture of negative binomial distributions and

consequently applies general approximation results for negative binomial distributions.

5.4.11 Remark

Further publications considering other variations of discrete-time preferential attachment are for exam-

ple summarized in Section 2.2 of [Rei09], Section VIII.A of [AB02] and Subsection 2.3.5 of [BLM+06].

Spatial variants of preferential attachment models are for example considered in Subsection IV.D. of

[Bar11].

5.4.12 Remark

In [DHH10], it is shown for three different preferential attachment models that they have the small

world property.

Continuous-time preferential attachment

Now we introduce the continuous-time preferential attachment model introduced in Subsection 3.3.5 of

[Rei09]. As pointed out in Section 3.3 of [Rei09], this model is very similar to the well-known population

model that was considered by Yule in 1925 (see [Yul25]). The connection between continuous-time

preferential attachment and Yule’s population model is also considered in [PPS15].

5.4.13 Definition (see Subsection 3.3.5 of [Rei09])

Let the node population develop according to a linear birth process with per-capita birth rate λ. Each

living node gives birth to half-edges independently from everything else at a rate that is proportional

to the sum of δ for δ > 0 and the current number of its half-edges. The half-edges are joined together

in the order of their births. The resulting model is called continuous-time preferential attachment

model with parameters δ and λ.
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5.4.14 Remark

There are alternative ways of joining together half-edges that are also considered in Subsection 3.3.5

of [Rei09].

The asymptotic degree distribution is essentially the generalized Yule-Simon distribution from Def-

inition 5.4.7. More precisely, the asymptotic distribution of the sum of one and the degree of a

randomly picked node in the continuous-time preferential attachment model with parameters δ and λ

is the generalized Yule-Simon distribution with parameters δ and λ (see Section 3.6 of [Rei09]). The

following theorem gives us rates for the convergence to this asymptotic degree distribution in terms

of the number of nodes.

5.4.15 Theorem (see Theorem 3.22 in [Rei09])

Let Tn and Tn+1 be the birth time of node n and n+ 1 for n ∈ N in the continuous-time preferential

attachment model with parameters δ ≥ 1 and λ > 1, respectively, and let ϑ ∈ (0, 1). Furthermore,

let Z be a random variable that is distributed according to the generalized Yule-Simon distribution

with parameters δ and λ, and let D
(Tn+ϑTn+1)
JTn+ϑTn+1

denote the degree of a randomly picked node at time

Tn + ϑTn+1. Then we have

dTV (L(D
(Tn+ϑTn+1)
JTn+ϑTn+1

+ 1),L(Z)) ≤ 1

n+ 1
+

δ

(n+ 1)(λ− 1)

for all n ∈ N.

5.4.2 Uniform attachment

Apart from preferential attachment, we also consider uniform attachment.

5.4.16 Definition (see e.g. Section 5 of [PRR13])

Let G(1) be a graph with one node labeled 1, which has a loop. For n ∈ N, the graph G(n+1) is

obtained from G(n) by adding one node labeled n+ 1 and one directed edge from the new node n+ 1

to one of the nodes 1, . . . , n + 1 of G(n+1). The probability that (n + 1, i) is the new edge is 1
n+1 for

i ∈ {1, . . . , n+ 1}. We call the resulting model uniform attachment model.

It is well-known that the asymptotic distribution of the degree, which is the in-degree plus one, of a

node picked uniformly at random obeys the Geo(1/2) distribution, which is given by the probability

mass function (1/2)k. A rather heuristic proof for this result can be found in Section 4 of [BRS+01].

A different and more rigorous proof (for a different initial condition) is presented in Section 2.5 of

[VR07].

The following theorem from [PRR13] gives us a rate for the convergence towards this degree distri-

bution. It can be proved by using Stein’s method (see Section 5 of [PRR13]).

5.4.17 Theorem (see Theorem 5.1 in [PRR13])

Let D
(n)
i denote the degree of node i in G(n) for i ∈ {1, . . . , n} in the uniform attachment model, and

let Jn be a random variable that is uniformly distributed on {1, . . . , n} independent of D
(n)
i for all

i ∈ {1, . . . , n}. If X has the Geo(1/2) distribution, we have

dTV (D
(n)
Jn
, X) ≤ 1

n
.
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5.4.18 Remark

Note that the case where m > 1 edges are added per time step is also considered in [BRS+01]. In this

case, the asymptotic degree distribution is the Geo( 1
m+1) distribution (see Section 4 of [BRS+01]). In a

further variant of uniform attachment, which is treated in [CHK+01], the new edge is only added with

some fixed positive probability δ and is not necessarily incident to the new node. Instead, both nodes

of a newly added edge are picked uniformly at random. The asymptotic distribution of the degree

of a node picked uniformly at random turns out to be a geometric as well, namely the Geo( 1
2δ+1)

distribution (see Section III of [CHK+01]).

5.4.19 Remark

A continuous-time uniform attachment model is briefly considered in Section 12.2 of [Rei09].

5.4.3 Fitness models

Now we consider another class of models that can lead to power law degree distributions with a

high flexibility in the power law exponent. The so-called fitness models depict the ”fit-get-richer” in

addition to or rather than the ”rich-get-richer” mechanism. That means that each node is assigned a

fitness at its birth that influences its probability to receive edges.

We first consider models that combine fitness and preferential attachment. Then we present models

that do not have any preferential attachment component, which we call pure fitness models. Note

that also the Britton-Lindholm model is a pure fitness model.

For some real-world networks, fitness is the crucial factor for their evolution. For example, it is

concluded in Section 4 of [HW13] that “efficient supply chain systems demonstrate a ’fit-gets-richer’

mechanism of growth”. Note that pure fitness models still cover a large range of power law exponents,

which make them even more attractive for applications.

An introduction to fitness models can also be found in Chapter 2 of [TP11].

Preferential attachment with fitness

The most popular fitness model was introduced in the well-known paper [BB01] and is often referred

to as Bianconi–Barabási model (see e.g. Section 6.2 of [Bar13]). In this model, we equip every node

with a positive fitness (or social index) Si, where the Si are independent and identically distributed.

The attachment probability is proportional to the product of Si and the degree of node i. If, for

example, the Si are uniformly distributed on [0, 1], the corresponding asymptotic distribution of the

degree of a node picked uniformly at random obeys a power law with exponent 2.255 in the weak sense

(see page 439 in [BB01]).

In [ER02], the authors consider a fitness model where the attachment probability is proportional to

the sum of the fitness and the degree. They show that the corresponding asymptotic distribution of

the degree of a node picked uniformly at random obeys a power law with exponent 2 + E(S) in the

weak sense for a fitness distribution with finite mean E(S) (see Section 2 of [ER02]).
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Pure fitness models

For some applications, we expect that preferential attachment does not have any significant impact

on the network evolution as mentioned above. Thus we consider a pure fitness model now. Note

that the generalized random graph model can be seen as a static fitness model. A more general

static fitness model was introduced in [CCRM02]. Here we focus on the dynamic fitness model from

[SHR13] by Smolyarenko, Hoppe and Rodgers. We do not consider the optional rewiring component.

Like this, the model is more similar to both the uniform and preferential attachment models and the

Britton-Lindholm model, and more results are known.

5.4.20 Definition (see Section II of [SHR13])

Let (Si)i∈N be independent identically distributed positive random variables with finite mean E(S)

and strictly monotonically increasing, continuously differentiable cumulative distribution function G

and density g, and let f : (0,∞)2 → (0,∞) be an arbitrary function. We begin with a graph G(1) with

one node labeled 1 with fitness S1. For n ∈ N, the graph G(n+1) is obtained from G(n) by adding one

node labeled n + 1 with fitness Sn+1 and one (undirected) edge from the new node n + 1 to one of

the nodes 1, . . . , n+ 1 of G(n+1). Given S1 = s1, . . . , Sn+1 = sn+1, the probability that (n+ 1, i) is the

new edge is
f(sn+1, si)

n+1∑
j=1

f(sn+1, sj)

for i ∈ {1, . . . , n+ 1}. We call the resulting model SHR model.

Let

%̃(u, n) =
1

n

∞∫
0

f(x1, G
−1(u))

∞∫
0

f(x1, x2)g(x2)dx2

g(x1)dx1 =
1

n

1∫
0

f(G−1(v), G−1(u))
1∫
0

f(G−1(v), G−1(w))dw

dv,

which is approximately the probability for a node with fitness G−1(u) to receive a new edge at time n

for large n (see Section II of [SHR13]). Furthermore, let %(u) = n%̃(u, n). The asymptotic probability

mass function of the degree of a node picked uniformly at random in the SHR model is then given by

pk =

1∫
0

1

1 + %(u)

(
%(u)

1 + %(u)

)k−1

du (5.7)

by Equation (7) in [SHR13], i.e. the asymptotic degree distribution is mixed geometric (namely the

Geo( 1
1+%(U)) distribution, where U is uniformly distributed on [0, 1]).

5.4.21 Example

For a constant linking function f , the SHR model is just the uniform attachment model. In this

case, the function % is also constant and equal to 1. Thus Equation (5.7) implies that the asymptotic

distribution of the degree of a node picked uniformly at random is the Geo(1
2) distribution for the

uniform attachment model. This corresponds to the result stated above.
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We assume now that % is continuously differentiable and strictly monotone, i.e. % has a continuously

differentiable inverse %−1. By substitution, we then can derive

pk =

%(1)∫
%(0)

(%−1)′(y)
1

1 + y

(
y

1 + y

)k−1

dy

from (5.7). Since (%−1)′(y) = 1
%′(%−1(y))

, we finally obtain

pk =

%(1)∫
%(0)

1

%′(%−1(y))

1

1 + y

(
y

1 + y

)k−1

dy (5.8)

for the asymptotic probability mass function of the degree of a node picked uniformly at random (cf.

Equation (10) in [SHR13]).

Now we consider a special case that leads to a model that is in some sense very similar to the

Britton-Lindholm model. Let the linking function be given by f(x1, x2) = x2, and let E(S) = 1. Then

we obtain

%(u) =

∞∫
0

G−1(u)g(x1)dx1

∞∫
0

x2g(x2)dx2

=
G−1(u)

E(S)
= G−1(u).

This implies %−1(y) = G(y) and %′(u) = (G−1)′(u) = 1
G′(G−1(u))

= 1
g(G−1(u))

. Consequently, Equa-

tion (5.8) implies

pk =

G−1(u)∫
0

1

1 + y

(
y

1 + y

)k−1

g(y)dy.

Note that we rediscover this mixture of geometric distributions in Remark 6.7.2, where we treat a

version of the model by Britton and Lindholm without loops in which neither nodes nor edges can die.

5.4.22 Remark

If we choose f(x1, x2) = x2 as above and, additionally, the lognormal distribution as fitness distribu-

tion, we are in the setting of the lognormal fitness attachment model that is analyzed numerically in

[GKST10]. The choice of the lognormal distribution as fitness distribution is motivated in Section 2

of [GKST10].

5.4.4 Node and edge deletion

Obviously, in many real-world networks nodes can die. This is taken into into account in some models.

For example, in [SR04], a preferential attachment model with node deletion is considered, and it is

shown that the asymptotic degree distribution is still a power law distribution in the weak sense, but

with an exponent depending on the rate at which nodes are deleted (see Section II of [SR04]). In

[CFV04], it is proved that the same holds also for edge deletion.
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In [KSR08], node deletion is added to the popular fitness model from [BB01] mentioned above.

It is shown that the power law exponent of the asymptotic degree distribution does not depend on

the rate at which nodes are deleted if the fitness distribution is chosen to be a truncated exponential

distribution. The truncated exponential distribution is concluded to be the suitable fitness distribution

for the World Wide Web in [KSR08].

Further results for models with node deletion can also be found in [MGN06].

5.4.5 A further dynamic network model

The actor-based network model introduced in [Sni01] and [SvdBS10] is a continuous-time directed

random graph model that is very popular in social science. In this model, each node chooses an

optimal new neighbour based on an individual objective function each time it creates a new edge.

This function may depend on the current network structure as well as on quantities associated to the

nodes. See [Sni01] and [SvdBS10] for details.





6 The network model by Britton and Lindholm

6.1 The model

In this chapter, we consider the loop-free version of the original dynamic network model by Britton

and Lindholm (see [BL10] and [BLT11]) sketched in the introduction. We first give a precise definition

of the model.

We examine a finite undirected graph without loops that develops over time. The node process

(Yt)t≥0 is a linear birth and death process with initial value one. The process (Yt)t≥0 and all other

random variables that are defined in what follows to describe the dynamic random graph are defined

on a common underlying probability space (Ω,A,P). We assume that (Yt)t≥0 has right-continuous

trajectories.

We assume λ > µ, so that the node process (Yt)t≥0 is a supercritical continuous-time Markov

branching process. Thus we can apply the results from Chapter 2 to the node process. In particular,

the random variable W̃ := lim
t→∞

Yte
−(λ−µ)t exists almost surely and satisfies P(W̃ = 0) = µ/λ and

L(W̃ |W̃ > 0) = Exp(λ−µλ ).

We equip every node i with a positive random social index Si, where the (Si)i∈N are independent

and identically distributed with finite expectation and independent of all other random variables.

This allows us to define the development of the edge process. At birth every node is isolated.

During its lifetime and as long as there is at least one other node, node i generates and destroys edges

according to a birth and death process with constant birth rate αSi and per-edge death rate β, where

α, β > 0.4 The “second” node of each newly born edge is chosen uniformly at random from the set

of all other living nodes, and all of the edge processes (including the choices of the second nodes) are

independent of each other and all other events.

In addition to the direct destruction of edges in the above process, all edges connected to a certain

node are removed when the node dies.

6.1.1 Remark

Note that the proofs become slightly simpler if we consider the original model by Britton and Lindholm,

which allows loops - essentially because times where Yt = 1 need not obtain special treatment. The

upper bounds remain largely the same; see also Remark 6.3.3 for the pure birth case.

6.1.2 Remark

Britton and Lindholm also introduced a modified model where the “second” node of each newly born

4 We also examine the case where β = 0 in Section 6.7.
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edge is not picked uniformly, but from a probability distribution that is proportional to the social

indices of the living nodes. We expect that one can prove similar results for this modified model

analogously to the results for the model that we treat here. Note that the modification can lead to a

significantly higher ratio of multiple edges. Therefore the modified version is less interesting for many

applications.

We briefly mention some results about the model by Britton and Lindholm now, which are stated in

[BL10], [BLT11] and [Küc12]. Note that the authors give rather heuristic arguments for their results

instead of rigorous proofs in [BL10], [BLT11].

In Section 4 of [BL10], it is argued that the clustering coefficient (cf. Remark 5.1.7) vanishes as

time T goes to infinity. Furthermore, results about a phase transition and the type distribution of

neighbouring nodes, where type refers to the age and the social index, are considered in [BLT11].

These results from [BL10] and [BLT11] are also presented in [Küc12] in a more detailed way. The

degree correlation, i.e. the correlation of the degrees of two connected nodes, is considered in [BLT11]

as well. However, the corresponding proof is wrong as it was pointed out in Subsection 1.10.2 of

[Küc12]. Moreover, in Section 1.11 of [Küc12], it is examined how the asymptotic degree distribution

depends on the distribution of the social indices.

In the appendix of [BL10], Britton and Lindholm give (rather heuristic) arguments for the negligi-

bility of multiple edges, which are not sufficient to find convergence rates for the case where we ignore

multiple edges though. Thus we treat the negligibility of multiple edges rigorously in Section 6.4.

Numerical evaluations of the asymptotic degree distribution can be found in Section 5 of [BL10]

and Section 1.12 of [Küc12].

One of the most important characteristics of a random network is its degree distribution (see e.g.

[vdH16]), which we focus on here. As mentioned in the introduction, we derive rates for the convergence

of the degree distribution towards an asymptotic degree distribution. As a by-product, we obtain a

rigorous proof of the convergence result itself.

At the end of this chapter, we furthermore reveal a couple of additional interesting properties of

our network model. In particular, in Section 6.5, we prove that the asymptotic degree distribution

can exhibit heavy tails and power laws, which often occur in real random networks as mentioned in

the introduction.

6.2 Degree distribution at finite time

In this section, we deduce the degree distribution at finite time T .

Firstly, we consider the case where the nodes do not die, i.e. µ = 0. Let the nodes be ordered by

their birth times. Let Si be the social index of node i and Ai(T ) its age at time T . For convenience,

we define A2(T ) = 0 if YT = 1. Furthermore, given YT = yT , let the random variable JT be uniformly

distributed on {1, . . . , yT } and independent of the ages, the social indices and the rest of the path

(Yt)0≤t<T . We interpret JT as the index of a node that is randomly chosen at time T among all living

nodes.
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6.2.1 The number of outgoing edges in the pure birth case

Firstly, we condition on the population size yT , the randomly picked node jT , its social index sjT and

its age ajT at time T . Furthermore, we condition on the age a2 of the second node if yT > 1 and set

a2 = 0 otherwise. If yT > 1, the number of living edges that jT creates during its lifetime can be

described by a birth and death process with constant birth and linear death rate started in zero at

time T −amax(jT ,2) since no edges are created as long as there is only one node. The birth rate is αsjT
and the death rate is the product of β and the number of (living) edges that jT has created. Such a

birth and death process is examined in Chapter XVII of [Fel67] and can be interpreted as a queueing

system with constant arrival rate and infinitely many servers. We denote the state probabilities at

time t of such a process started at a general state i with constant birth rate λ̃ and linear death rate

nµ̃ by Pn(t), where n is the current state of the process. This process is described by the following

Kolmogorov forward differential equations:

dPn(t)

dt
= λ̃Pn−1(t)− (λ̃+ nµ̃)Pn(t) + µ̃(n+ 1)Pn+1(t) for n ≥ 1, (6.1)

P0(t)

dt
= µ̃P1(t)− λ̃P0(t). (6.2)

Thus we have for the generating function P (s, t) =
∞∑
n=0

Pn(t)sn for all s with |s| < 1:

∂P (s, t)

∂t
=

∂
∞∑
n=0

Pn(t)sn

∂t
=

∞∑
n=0

dPn(t)

dt
sn

=
∞∑
n=1

sn
(
λ̃Pn−1(t)− (λ̃+ nµ̃)Pn(t) + µ̃(n+ 1)Pn+1(t)

)
+ µ̃P1(t)− λ̃P0(t)

= (1− s)
(
−λ̃P (s, t) + µ̃

∂P (s, t)

∂s

)
, (6.3)

where the second line follows from the Kolmogorov forward differential equations (6.1) and (6.2). The

solution of the partial differential equation (6.3) is given by (cf. page 481 in [Fel67])

P (s, t) = exp

(
−λ̃(1− s)(1− e−µ̃t)

µ̃

)
(1− (1− s)e−µ̃t)i. (6.4)

The function P ( · , t) is the product of the generating function of the Po( λ̃µ̃(1−e−µ̃t)) and the Bin(i, e−µ̃t)

distribution and hence the generating function of their convolution. In particular, we obtain for i = 0

the generating function of the Poisson distribution with parameter

λ̃(1− e−µ̃t)
µ̃

.

This result can be applied to the edge process we are interested in: Conditioned on the population

size yT , the chosen node jT , its social index sjT and age ajT , the distribution of the number of edges

created by jT is the following Poisson distribution:

Po

(
αsjT
β

(1− e−βamax(jT ,2))

)
,
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where the Po(0) distribution is the Dirac measure in zero. Note that we obtain the Dirac measure if

only one individual is alive at time T , i.e. yT = 1, since we set a2 = 0 in this case.

Consequently, the corresponding unconditional distribution is the following mixed Poisson distribu-

tion:

MixPo

(
αSJT
β

(1− e−βAmax(JT ,2)
(T ))

)
.

6.2.2 The number of incoming edges in the pure birth case

Recall that the nodes are ordered by their birth times. Firstly, we condition on (Yt)0≤t≤T = (yt)0≤t≤T ,

the social indices (Sk)k∈N = (sk)k∈N and JT = jT . Let T = a1 > . . . > ayT denote the corresponding

ages of the individuals.

Consider a fixed node i ∈ {1, . . . , yT } \ {jT } and some time interval of the form [T − al, T − al+1)

for l ≥ i∨ 2, where ∨ denotes the maximum operator. We only consider edges that are created by the

fixed node i. Then the number of edges that connect i to jT and that survive until the end of this

interval, i.e. until the birth time T − al+1 of node l+ 1, can be described by a birth and death process

again. The population size is constant and equal to l in the interval [T − al, T − al+1). Thus the

birth rate is also constant and equal to αsi
1
l−1 because node i creates edges at rate αsi and 1

l−1 is the

probability that an edge that is created in the interval [T −al, T −al+1) is connected to jT . The death

rate is linear again with factor β. As in the previous subsection, we obtain a Poisson distribution,

i.e. the number of edges that are created by i in [T − al, T − al+1), connect i to jT and survive until

T − al+1 follows the distribution

Po

(
αsi

(l − 1)β
(1− e−β(al−al+1))

)
.

Now the distribution of the number of edges that i creates in [T − al, T − al+2), connect i to jT and

survive until T − al+2 can be deduced from (6.4). In order to do this, let Z be the number of edges

that i creates in [T − al, T − al+1), connect i to jT and survive until T − al+1. We have already

shown that Z is Po( αsi
(l−1)β (1 − e−β(al−al+1))) distributed. First, we condition on Z = z. Then the

number of edges that i creates in [T − al, T − al+2), connect i to jT and survive until T − al+2 is

described by a birth and death process with constant birth rate αsi/l, linear death rate with factor

β and initial state z. For such a process, the probability generating function (6.4) was stated in the

previous subsection. Since (6.4) is the product of the probability generating function of a Poisson

distribution and of the probability generating function of a binomial distribution, we obtain the sum

of a Po(αsilβ (1−e−β(al+1−al+2))) distributed and a Bin(z, e−β(al+1−al+2)) distributed random variable for

time T−al+2, where these two random variables are independent. The second one is a Poisson mixture

of binomial distributions if we do not condition on Z = z. This mixture is the Poisson distribution

with parameter e−β(al+1−al+2) αsi
(l−1)β (1− e−β(al−al+1)). Consequently, it follows that

Po

(
e−β(al+1−al+2) αsi

(l − 1)β
(1− e−β(al−al+1)) +

αsi
lβ

(1− e−β(al+1−al+2))

)
.

is the desired distribution.
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We obtain inductively by mixing and independence that

Po

( yT−1∑
l=i∨jT

(yT−l−1∏
k=1

e−β(al+k−al+k+1)

)
αsi

(l − 1)β
(1− e−β(al−al+1))

)

is the distribution of the number of edges that connect i to jT surviving until T − ayT .

Repeating the same argument as above, it follows that

Po

(
αsi

(yT − 1)β
(1− e−βayT ) + e−βayT

yT−1∑
l=i∨jT

(yT−l−1∏
k=1

e−β(al+k−al+k+1)

)
αsi

(l − 1)β
(1− e−β(al−al+1))

)

is the distribution of the number of edges between i and jT being alive at time T .

By independence of the edge processes of edges generated by the various nodes i, we obtain the

following distribution for the total number of incoming edges in node jT :

Po

( yT∑
i=1
i 6=jT

αsi
(yT − 1)β

(1− e−βayT ) +

yT∑
i=1
i 6=jT

e−βayT
yT−1∑
l=i∨jT

(yt−l−1∏
k=1

e−β(al+k−al+k+1)

)
αsi

(l − 1)β
(1− e−β(al−al+1))

)

= Po

(
α

β

yT∑
i=1
i 6=jT

si
yT − 1

(1− e−βayT ) +
α

β

yT∑
i=1
i 6=jT

yT−1∑
l=i∨jT

si
l − 1

(e−βal+1 − e−βal)
)
.

Thus without conditioning, we obtain a mixed Poisson distribution:

MixPo

(
α

β

YT∑
i=1
i 6=JT

Si
YT − 1

(1− e−βAYT (T )) +
α

β

YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

Si
l − 1

(e−βAl+1(T ) − e−βAl(T ))

)
.

6.2.3 Degree distribution in the pure birth case

By conditional independence of the numbers of incoming and outgoing edges5, the previous consider-

ations imply that the degree distribution of a randomly chosen node is a mixed Poisson distribution.

The random parameter of this mixed Poisson distribution is the sum of the random parameters of the

two mixed Poisson distributions that were deduced in the previous two subsections. Thus we obtain

the MixPo(ΛT ) distribution, where

ΛT =
αSJT
β

(1− e−βAmax(JT ,2)
(T )) +

α

β

YT∑
i=1
i 6=JT

Si
YT − 1

(1− e−βAYT (T ))

+
α

β

YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

Si
l − 1

(e−βAl+1(T ) − e−βAl(T )). (6.5)

5 Note that those numbers are not independent unconditionally. For example, an old node is expected to have a high

number of incoming as well as outgoing edges, which leads to a positive correlation.
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6.2.4 Degree distribution in the general case

If the nodes can die, the degree distribution can be determined similarly to the pure birth case.

Let 0 = T+
1 < . . . < T+

BT
be the birth times. Recall that 0 = T1 < . . . < TBT+DT are the event

times up to T . Moreover, let T−i denote the death time of node i for each i, where the nodes are still

numbered according to their birth times. Finally, given the subset of {1, . . . ,BT } that contains the

indices of all living nodes at time T , let JT be uniformly distributed on this set and independent of

all other events as before. Note that SJT is (stochastically) independent of ((Yt)0≤t≤T , JT ).

The crucial differences compared to the procedure for the pure birth case are:

• We have to condition on YT > 0 since there has to exist a node at time T that can be picked

randomly.

• We have to consider [Tl, Tl+1) instead of [T −Al(T ), T −Al+1(T )) as time intervals in which the

parameters of the process of incoming edges are constant.

• We do not sum over all nodes i, but over all that are still alive at time T .

• In general, the population size does not increase almost surely by one per time interval. Thus

the population size is not necessarily equal to l in the time interval [Tl, Tl+1).

Since deaths of other nodes reduce the number of outgoing edges, we cannot derive the distribution

of the number of outgoing edges at time T in the same way as for the pure birth process. However,

we can proceed in a similar way as for the incoming nodes in the pure birth case. Therefore, we do

not derive the distribution of the numbers of outgoing and incoming edges separately here.

We condition on (Yt)0≤t≤T = (yt)0≤t≤T , the social indices (Si)i∈N = (si)i∈N and JT = jT . Let bT and

dT denote the corresponding number of births and deaths up to time T , respectively. Furthermore, let

0 = t1 < t2 < . . . < tbT+dT and 0 = t+1 < t+2 < . . . < t+bT be the corresponding event times and birth

times up to time T , respectively. We consider a fixed node i 6= jT that is alive at time T (provided

there are any) and some time interval of the form [tl, tl+1) for tl ≥ t+i ∨ t
+
jT

and tl+1 ≤ T . Note that

the nodes i and jT create edges at rate αsi and αsjT , respectively, and that the probability that an

edge that is created by i is connected to jT is 1
ytl−1 and equal to the probability that an edge that is

created by jT is connected to i. Thus the number of edges that connect i to jT and survive until time

tl+1 can be described by a birth and death process with constant birth rate α(si+sjT ) 1
ytl−1 and linear

death rate with factor β like before. Analogously to Subsection 6.2.2, we obtain that the number of

edges that are created in [tl, tl+1), connect i to jT and survive until tl+1 has the following Poisson

distribution:

Po

(
α(si + sjT )

(ytl − 1)β
(1− e−β(tl+1−tl))1{ytl>1}

)
.

Let the function r = r(yt)0≤t≤T : {1, . . . , bT } → {1, . . . , bT + dT } be defined such that t+j = tr(j) for all

j ∈ {1, . . . , bT }, i.e. r maps birth number to event number. Note that the sum bT + dT of the number

of births and the number of deaths up to time T is the number of events up to time T .
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Applying the same iterative procedure as in Subsection 6.2.2, we can see that

Po

(
α(si + sjT )

(yT − 1)β
(1− e−β(T−tbT+dT

))1{yT>1}

+ e−β(T−tbT+dT
)

bT+dT−1∑
l=r(i)∨r(jT )

(bT+dT−l−1∏
k=1

e−β(tl+k+1−tl+k)α(si + sjT )

(ytl − 1)β
(1− e−β(tl+1−tl))

)
1{ytl>1}

)
is the distribution of the number of edges between i and jT being alive at time T .

Let the death times be denoted by t−1 , t
−
2 , . . . , t

−
dT

. Then by independence of the processes of edges

generated by the various nodes i, we obtain the following conditional degree distribution:

Po

( bT∑
i=1
i 6=jT

α(si + sjT )

(yT − 1)β
1{t−i >T}

(1− e−β(T−tbT+dT
))1{yT>1} +

bT∑
i=1
i 6=jT

1{t−i >T}
e−β(T−tbT+dT

)

·
bT+dT−1∑

l=r(i)∨r(jT )

((bT+dT−l−1∏
k=1

e−β(tl+k+1−tl+k)

)
α(si + sjT )

(ytl − 1)β
(1− e−β(tl+1−tl))

)
1{ytl>1}

)

= Po

(
α

β

bT∑
i=1
i 6=jT

si + sjT
(yT − 1)

1{t−i >T}
(1− e−β(T−tbT+dT

))1{yT>1}

+
α

β

bT∑
i=1
i 6=jT

1{t−i >T}

bT+dT−1∑
l=r(i)∨r(jT )

si + sjT
(ytl − 1)

(e−β(T−tl+1) − e−β(T−tl))1{ytl>1}

)
.

Thus the degree distribution is MixPo(Λ∗T ), where L(Λ∗T ) = L(ΛT |YT > 0) and

ΛT :=
α

β

BT∑
i=1
i 6=JT

Si + SJT
(YT − 1)

1{T−i >T}
(1− e−β(T−TBT+DT

))1{YT>1}

+
α

β

BT∑
i=1
i 6=JT

1{T−i >T}

BT+DT−1∑
l=r(i)∨r(JT )

Si + SJT
(YTl − 1)

(e−β(T−Tl+1) − e−β(T−Tl))1{YTl>1}. (6.6)

6.3 Bounds on the total variation distance between the finite time and

asymptotic degree distribution

Since in the pure birth case we obtain a much better bound with considerably less work, we treat the

cases µ = 0 and the general case separately.

6.3.1 The pure birth case

Firstly, we consider the pure birth case, i.e. µ = 0, again. Fix T > 0, and let the random vari-

able ΛT be defined by (6.5). Furthermore, let SJ∞ and AJ∞ be independent random variables such

that SJ∞(ω) = SJT (ω) and AJ∞(ω) := F−1
∞ (FT (Amax(JT ,2)(T, ω))) for all ω ∈ Ω, where FT and

F∞ are the cumulative distribution functions of Amax(JT ,2)(T ), i.e. of the Exp(λ) distribution trun-

cated at T by Proposition 4.2.1, and the Exp(λ) distribution, respectively. Note that we know that
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L(AJT ) → Exp(λ) weakly as T → ∞ from Chapter 4. The random variable AJ∞ is Exp(λ) dis-

tributed since FT is continuous and hence FT (Amax(JT ,2)(T )) is uniformly distributed on [0, 1]. More-

over, since the exponential distribution dominates the truncated exponential distribution, we have

F∞(Amax(JT ,2)(T, ω)) ≤ FT (Amax(JT ,2)(T, ω)) for all ω ∈ Ω. Since F−1
∞ is increasing, it follows that

Amax(JT ,2)(T, ω) ≤ AJ∞(ω) for all ω ∈ Ω.

Let S be a generic random variable that is distributed according to the distribution of the social

indices, and let

M :=
αSJ∞
β

(1− e−βAJ∞ ) +
αE(S)

β
(1− e−βAJ∞ ). (6.7)

We know from Subsection 6.2.3 that MixPo(ΛT ) is the degree distribution at time T in the pure birth

case. Theorems 6.3.1 and 6.3.2 below imply that MixPo(ΛT ) converges at rate of just a bit slower

than e−
1
2
λT to MixPo(M) as T → ∞, which is the asymptotic degree distribution already stated in

Section 3.2 of [BL10]. Note that these theorems are much more powerful as they give an exact distance

bound for finite T .

6.3.1 Theorem

We have

dTV (MixPo(ΛT ),MixPo(M)) ≤ 4α

λ
σSE

(
1√
YT

)
+

2α

λ
E(S)E

(
1

YT

)
+

2α

β
E(S)

λ

β + λ

1

eλT − 1
,

where σS is the standard deviation of S.

The main idea of the proof is to make use of Theorem 3.4.1 to obtain E(|ΛT −M|) as an upper

bound for the total variation distance on the left-hand side. In order to bound E(|ΛT −M|) further,

we use that the expected value of the second summand of the right-hand side of (6.5) becomes small

as T → ∞ since the age AYT (T ) of the youngest individual at time T converges quickly to zero, and

compare the other summands of the right-hand sides of (6.5) and (6.7).

For the comparison of the last summands in (6.5) and (6.7), respectively, we note that the average

of the social indices becomes close to E(S) by the Law of Large Numbers. Then we use again that the

age AYT (T ) of the youngest individual at time T converges quickly to zero and that AJT (T ) converges

quickly to AJ∞ by Proposition 4.2.1.

Finally, the expected absolute value of the difference between the first summand of (6.5) and the

first summand of (6.7) again becomes small since AJT (T ) converges quickly to AJ∞ .

We prove Theorem 6.3.1 in detail after the next theorem, which gives us the exponential rate for

the convergence of the degree distribution. In order to reveal this rate, we further estimate E( 1
YT

) and

E( 1√
YT

) on the right-hand side in Theorem 6.3.1 by using Proposition 2.2.4 and Corollary 2.2.5.

6.3.2 Theorem

For T ≥ log(2)/λ, we have

dTV (MixPo(ΛT ),MixPo(M)) ≤
√

32α√
λ
σS
√
Te−

1
2
λT + 4αE(S)

(
T +

λ

β(β + λ)

)
e−λT ,

where σS is the standard deviation of S.
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Proof : The inequality follows directly from Theorem 6.3.1, Proposition 2.2.4 and Corollary 2.2.5. �

6.3.3 Remark

For the original model of Britton and Lindholm, which allows loops, we can adapt the proof of

Theorem 6.3.1 in such a way that the upper bounds in Theorem 6.3.1 and Theorem 6.3.2 remain

exactly the same.

Proof of Theorem 6.3.1

From Theorem 3.4.1 follows

dTV (MixPo(ΛT ),MixPo(M)) ≤ E(|M− ΛT |),

and E(|M− ΛT |) is smaller than or equal to

E
∣∣∣∣αβ
(
SJ∞(1− e−βAJ∞ ) + E(S)(1− e−βAJ∞ )− SJT (1− e−βAmax(JT ,2)

(T ))

−
YT∑
i=1
i 6=JT

Si
YT − 1

(1− e−βAYT (T ))−
YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

Si
l − 1

(e−βAl+1(T ) − e−βAl(T ))

)∣∣∣∣
≤ α

β
E
∣∣∣∣ YT∑
i=1
i 6=JT

Si
YT − 1

(1− e−βAYT (T ))

∣∣∣∣
+
α

β
E
∣∣∣∣ YT∑
i=1
i 6=JT

YT−1∑
l=i

(Si − E(S))

l − 1
1{JT≤l}(e

−βAl+1(T ) − e−βAl(T ))

∣∣∣∣
+
α

β
E
∣∣∣∣E(S)(1− e−βAJ∞ )−

YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

E(S)

l − 1
(e−βAl+1(T ) − e−βAl(T )))

∣∣∣∣
+
α

β
E
∣∣∣∣SJ∞(1− e−βAJ∞ )− SJT (1− e−βAmax(JT ,2)

(T ))

∣∣∣∣, (6.8)

where we use the convention 0
0 := 0.

For the first line of the right-hand side, we have

E
∣∣∣∣ YT∑
i=1
i 6=JT

Si
YT − 1

(1− e−βAYT (T ))

∣∣∣∣ = E
(
E
( YT∑

i=1
i 6=JT

Si
YT − 1

(1− e−βAYT (T ))

∣∣∣∣YT , JT))

= E
( YT∑

i=1
i 6=JT

E(Si)

YT − 1
(1− E(e−βAYT (T )|YT ))

)
, (6.9)

where the last equality holds since, given YT , the age AYT (T ) and JT are independent.

Given YT = yT > 1, the age AyT (T ) is the minimum of yT−1 independent and identically distributed

truncated exponentially distributed random variables by Proposition 4.2.1. Since the minimum of

yT−1 independent Exp(λ) distributed random variables is Exp((yT−1)λ) distributed, the distribution
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of AyT (T ) is stochastically dominated by the Exp((yT − 1)λ) distribution. In general, we have for

random variables X̂ and Ŷ with X̂ ≤st Ŷ that f(X̂) ≤st f(Ŷ ) and consequently E(f(X̂)) ≤ E(f(Ŷ ))

for every increasing function f . Thus E(e−βZ) = (yT−1)λ
(yT−1)λ−β for Z ∼ Exp((yT − 1)λ) implies that the

right-hand side of (6.9) is smaller than or equal to

E
(
E(S)

1

λ

β

YT − 1 + β
λ

1{YT>1}

)
≤ β

λ
E(S)E

(
1

YT − 1
1{YT>1}

)
.

Note that

E
(

1

YT − 1
1{YT>1}

)
=
∞∑
n=2

pn(T )

n− 1
=

λ

λeλT

∞∑
n=2

1

n− 1

(
λeλT − λ
λeλT

)n−1

=
λ

λeλT

∞∑
n=1

1

n

(
λeλT − λ
λeλT

)n
≤ λ

λeλT − λ

∞∑
n=1

1

n

(
λeλT − λ
λeλT

)n
=

∞∑
n=1

pn(T )

n
= E

(
1

YT

)
,

where pn(T ) is the probability mass function from Section 2.2. Thus the right-hand side of (6.9) is

smaller than or equal to

β

λ
E(S)E

(
1

YT

)
. (6.10)

For the second line of the right-hand side of (6.8), we obtain

E
∣∣∣∣ YT∑
i=1
i 6=JT

YT−1∑
l=i

(Si − E(S))

l − 1
1{JT≤l}(e

−βAl+1(T ) − e−βAl(T ))

∣∣∣∣
= E

∣∣∣∣YT−1∑
l=2

1

l − 1

l∑
i=1
i 6=JT

(Si − E(S))1{JT≤l}(e
−βAl+1(T ) − e−βAl(T ))

∣∣∣∣
= E

(
E
(∣∣∣∣ YT−1∑

l=JT∨2

1

l − 1

l∑
i=1
i 6=JT

(Si − E(S))(e−βAl+1(T ) − e−βAl(T ))

∣∣∣∣ ∣∣∣∣ YT , JT))

≤ E
( YT−1∑
l=JT∨2

E
∣∣∣∣ 1

l − 1

l∑
i=2

(Si − E(S))

∣∣∣∣E(e−βAl+1(T )(1− e−β(Al(T )−Al+1(T )))|YT
))

≤ E
( YT−1∑
l=JT∨2

1

l − 1

√√√√ l∑
i=2

E
(

(Si − E(S))2

)
E(1− e−β(Al(T )−Al+1(T ))|YT )

)

≤ E
( YT−1∑
l=JT∨2

1√
l − 1

σSE(1− e−β(Al(T )−Al+1(T ))|YT )

)
, (6.11)

where the fourth line holds since the second sum in the third line is (stochastically) independent

of JT , the social indices are independent of all other random variables and, given YT , the index

JT is independent of the social indices and ages, and the second last line is obtained by applying

E|Z − E(Z)| ≤
√

Var(Z) to Z = 1
l−1

∑l
i=2 Si.

Given YT and Al+1(T ), the difference Al(T ) − Al+1(T ) is the minimum of l − 1 independent and

identically distributed truncated exponentially distributed random variables by Proposition 4.2.1,
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Corollary 4.2.3 and Remark 4.2.4 (for l ≥ 2). Thus it is stochastically dominated by an Exp((l− 1)λ)

distributed random variable Zl, where Zl can be assumed to be independent of Al+1(T ). This implies

for a > 0:

P(Al(T )−Al+1(T ) ≤ a|YT )

=

T∫
0

P(Al(T )−Al+1(T ) ≤ a|YT , T −Al+1(T ) = x)P(T −Al+1(T ) ∈ dx|YT ) ≥ P(Zl ≤ a|YT ).

Thus, also given YT alone, the difference Al(T ) − Al+1(T ) is stochastically dominated by Zl. By the

same argument as for (6.9), it follows that (6.11) is smaller than or equal to

E
(YT−1∑

l=2

σS
1√
l − 1

β

(l − 1)λ+ β
1{JT≤l}

)
= E

(YT−1∑
l=2

σS
1√
l − 1

β

(l − 1)λ+ β
E(1{JT≤l}|YT )

)

≤ E
(YT−1∑

l=2

σS
1√
l − 1

β

(l − 1)λ

l

YT

)

≤ E
(YT−1∑

l=2

σS
1√
l − 1

β

(l − 1)λ

2(l − 1)

YT

)

≤ 2β

λ
σSE

(
1

YT

YT−1∑
l=2

1√
l − 1

)

≤ 2β

λ
σSE

(
1

YT

YT−1∑
l=2

2√
l − 2 +

√
l − 1

)

=
2β

λ
σSE

(
1

YT

YT−1∑
l=2

2(
√
l − 1−

√
l − 2)

)
=

4β

λ
σSE

(√
YT − 2

YT

)
≤ 4β

λ
σSE

(
1√
YT

)
.

Since we arranged Amax(JT ,2)(T ) ≤ AJ∞ , for the third line of the right-hand side of (6.8) we obtain

E
∣∣∣∣E(S)(1− e−βAJ∞ )−

YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

E(S)

l − 1
(e−βAl+1(T ) − e−βAl(T )))

∣∣∣∣
= E

∣∣∣∣E(S)(1− e−βAJ∞ )− E(S)

YT−1∑
l=JT∨2

1

l − 1

l∑
i=1
i 6=JT

(e−βAl+1(T ) − e−βAl(T )))

∣∣∣∣
= E

∣∣∣∣E(S)(1− e−βAJ∞ )− E(S)

YT−1∑
l=JT∨2

(e−βAl+1(T ) − e−βAl(T )))

∣∣∣∣
= E

∣∣∣∣E(S)(1− e−βAJ∞ )− E(S)(e−βAYT (T ) − e−βAmax(JT ,2)
(T )))

∣∣∣∣
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= E
(
E(S)(1− e−βAYT (T )) + E(S)(e−βAmax(JT ,2)

(T ) − e−βAJ∞ )

)
= E(S)E

(
1− E(e−βAYT (T )|YT )

)
+ E(S)(E(e−βAmax(JT ,2)

(T ))− E(e−βAJ∞ )). (6.12)

By Proposition 4.2.1

E(e−βAmax(JT ,2)
(T )) =

∫ T

0
e−βx

λe−λx

1− e−λT
dx =

λ

1− e−λT

∫ T

0
e−(β+λ)xdx =

λ

β + λ

1− e−(β+λ)T

1− e−λT
, (6.13)

whence follows that the right-hand side of (6.12) is smaller than or equal to

E(S)E
(
β

λ

1

Yt + β
λ

)
+ E(S)

λ

β + λ

(
1− e−(β+λ)T

1− e−λT
− 1

)
≤ β

λ
E(S)E

(
1

YT

)
+ E(S)

λ

β + λ

1

eλT − 1
.

Since we arranged SJT = SJ∞ and Amax(JT ,2)(T ) ≤ AJ∞ , for the fourth line of the right-hand side

of (6.8) we have

E
∣∣∣∣SJ∞(1− e−βAJ∞ )− SJT (1−e−βAmax(JT ,2)

(T ))

∣∣∣∣ = E(S)(E(e−βAmax(JT ,2)
(T ))− E(e−βAJ∞ )). (6.14)

Note that the right-hand side of (6.14) is the same as the second summand of the right-hand side of

(6.12), which is smaller than or equal to E(S) λ
β+µ

1
eλT−1

(see above).

Altogether, we obtain the following upper bound for the right-hand side of (6.8):

2α

λ
E(S)E

(
1

YT

)
+

4α

λ
σSE

(
1√
YT

)
+

2α

β
E(S)

λ

β + λ

1

eλT − 1
.

�

6.3.2 The general case

The main theorem

Let SJ∞(ω) = SJT (ω) as in the pure birth case. Furthermore, let, for the time being, the individuals

numbered as in the proof of Theorem 4.3.1, and let

U(ω) = 1{JT (ω)<YT (ω)}F∗(AJT (T, ω)) + 1{JT (ω)=YT (ω)}F
∗(AJT (T, ω)),

where F∗(t) = 1− e−λt−e−(λ−µ)T e−µt

1−e−(λ−µ)T and F ∗(t) = λ(1−e−µt)−µ(1−e−λt)
λ−µ 1[0,T )(t)+1{T}(t). Then AJT = A∗,

where A∗ is the random variable from Corollary 4.3.3, i.e. A∗ = 1{JT<YT }F
−1
∗ (U)+1{JT=YT }(F

∗)−1(U)

(cf. the proof of Corollary 4.3.3). Moreover, let AJ∞ = Z∗, where Z∗ is the random variable from

Corollary 4.3.3, i.e. AJ∞(ω) = F−∞(U(ω)). Note, given YT > 0, we have AJ∞ ∼ Exp(λ).

Recall the definition of the parameter random variable ΛT from (6.6), and let Λ∗T be a random

variable with L(Λ∗T ) = L(ΛT |YT > 0) as before. Moreover, set

M :=
α

β + µ
(SJ∞ + E(S))(1− e−(β+µ)AJ∞ ), (6.15)

and let M∗ be a random variable with L(M∗) = L(M|YT > 0).
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We already know that MixPo(Λ∗T ) is the degree distribution at time T in the general case. The-

orem 6.3.4 below implies that MixPo(Λ∗T ) converges at a rate of just a bit over e−
1
6

(λ−µ)T to the

MixPo(M∗) distribution, which is the asymptotic degree distribution stated in Section 3.2 of [BL10],

as T →∞. Note again that this theorem is much more powerful since it gives an exact bound for the

total variation distance for finite T .

6.3.4 Theorem

Let σS <∞ be the standard deviation of S. Then for T ≥ 2 log(4(λ(λ−µ)−1))
λ−µ , we have

dTV (MixPo(Λ∗T ),MixPo(M∗))

≤ α

((
5
√

6

2

λ

λ− µ
+

2

5
+

(
β +

µ

2

)(
229

5(λ− µ)
+

2

λ+ µ

))
E(S) +

27

10

√
2σS

)
(λ− µ)T 2e−

1
6

(λ−µ)T

+ αβ

((
1

2
+

µ

4β

)
µ

λ
+

(
8

µ
+

4

β

)
λ3(λ+ µ)

(λ− µ)3
+

(
6T +

√
6

2
+

3

β
(µT + 3) +

5λ

β2

)
λ

)
E(S)T 2e−(λ−µ)T

+ 3
√

2αλσST
2e−(λ−µ)T .

Note that the right-hand side is of order

O(T 2)e−
1
6

(λ−µ)T

as T →∞.

The main idea of the proof of this theorem is the same as in the pure birth case: We make use of

Theorem 3.4.1 to obtain E(|ΛT−M| |YT > 0) as an upper bound for dTV (MixPo(Λ∗T ),MixPo(M∗)) and

establish a further bound for this expected value. In order to do so, we use that the expected value of

the first summand of the right-hand side of (6.6) converges quickly to zero since the time T −TBT+DT

since the last event before T converges quickly to zero, and compare the remaining summand of the

right-hand side of (6.6) with the right-hand side of (6.15). For this comparison, we make vital use of

the fact that the average of the social indices of the nodes living at time T is close to E(S) by the Law

of Large Numbers again and that, given Tl for some large l ∈ N, the percentage of the nodes living

at time Tl that survive up to time T is approximately e−µ(T−Tl) by the Law of Large Numbers (see

Lemma 6.3.19).

A further important ingredient is that the reciprocal of the node process (Yt)t≥0 conditioned on

survival is a supermartingale (see Corollary 6.3.9), which makes it easy to deal with the expected

value of its maximum. Finally, we also use that the age AJT (T ) of the randomly picked individual

converges quickly to AJ∞ by Corollary 4.3.3.

The fact that nodes may die complicates the procedure considerably since the population size after

a fixed number of events is random in this case and additional dependencies have to be treated (e.g.

the inter-event times depend on the random population size at the previous event time).

In order to cope with additional dependencies, we introduce a deterministic number κ(T ) that

depends on T in such a way that the probability for more than κ(T ) events up to time T decreases
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exponentially in T (see Definition 6.3.11 and Lemma 6.3.12(ii) below). Essentially, we substitute the

number of events BT + DT up to time T by κ(T ) in the proof of Lemma 6.3.21 below since it is

difficult to treat the dependencies between the number of events up to time T and the event times.

In order to cope with additional dependencies on the random index JT , we note that the probability

that the node that is randomly picked at time T was born up to time T/2 decreases exponentially in

T (see Lemma 6.3.12(i) below). Thus we essentially only have to consider the time interval [T/2,∞)

instead of the interval [Tr(JT ),∞), where Tr(JT ) is the birth time of the randomly picked individual.

The choice of T/2 as the left endpoint of the interval makes sure that we always have a large number

of individuals in the time interval with high probability.

Some lemmas of general interest

Before we prove Theorem 6.3.4 in detail, we formulate several important results that are used in the

proof and could also be useful in other situations. Together with the core results from Chapter 2

and the more specialized results in the next paragraph, the reader obtains a comprehensive body of

knowledge on linear birth and death processes.

Our first result gives an expression for the extinction probability given that the process survives up

to time T . In order to simplify the notation, we define Y∞ := lim
t→∞

Yt. Note that Y∞ ∈ {0,∞} almost

surely.

6.3.5 Lemma

For the conditioned extinction probability given YT > 0, we have

P(Y∞ = 0|YT > 0) =
µ

λ
e−(λ−µ)T .

P roof : By conditioning on the population size, we obtain

P(Y∞ = 0|YT > 0) = E(P(Y∞ = 0|YT )|YT > 0) = E
((

µ

λ

)YT ∣∣∣∣ YT > 0

)
(6.16)

since (µ/λ)m is the extinction probability of a linear birth and death process with birth rate λ, death

rate µ and initial value m (see Remark 2.2.2).

On the one hand, we have

E
((

µ

λ

)YT)
= E

((
µ

λ

)YT ∣∣∣∣ YT > 0

)
P(YT > 0) + E

((
µ

λ

)YT ∣∣∣∣ YT = 0

)
P(YT = 0)

= E
((

µ

λ

)YT ∣∣∣∣ YT > 0

)
(1− p0(T )) + p0(T ).

On the other hand, we can make use of the known formula for the probability generating function of

YT (see Section III.5 of [AN72]) to obtain

E
((

µ

λ

)YT)
=
µ

λ
.

This yields

E
((

µ

λ

)YT ∣∣∣∣ YT > 0

)
=

(
µ

λ
− p0(T )

)
(1− p0(T ))−1 =

µ(λ− µ)

λ(λe(λ−µ)T − µ)

λe(λ−µ)T − µ
(λ− µ)e(λ−µ)T

≤ µ

λ
e−(λ−µ).

�
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For the probability of YT = 1 conditioned on YT > 0, we have the following lemma.

6.3.6 Lemma

We have for T ≥ 1
λ−µ log(2)

P(YT = 1|YT > 0) ≤ 2(λ− µ)

λ
e−(λ−µ)T .

P roof : Using the probability mass functions pn and the function p̃ from Section 2.2, for T ≥ 1
λ−µ log(2),

we obtain

P(YT = 1|YT > 0) =
p1(T )

1− p0(T )
= 1− λp̃(T ) =

λ− µ
λe(λ−µ)T − µ

≤ 2(λ− µ)

λe(λ−µ)T
.

�

We next consider sub- and supermartingale properties of conditioned processes.

6.3.7 Lemma

(i) (Yt)t≥0 conditioned on Y∞ = 0 is a supermartingale.

(ii) (Yt)t≥0 conditioned on Y∞ > 0 is a submartingale.

Proof :
(i) Consider a subcritical linear birth and death process (Ỹt)t≥0 with birth rate µ, death rate λ and

initial value one. Then (Ỹt)t≥0 has the same law as (Yt)t≥0 conditioned on Y∞ = 0 (see e.g.

page 78 in [Lam08]), which can be proved by using the embedded generation process (see e.g.

Section IV.3 of [AN72] or Subsection 6(a) of [Wau58]) and the corresponding result for discrete-

time branching processes (see e.g. Theorem 3 in Section I.12 of [AN72]) or the general result

from [Wau58] for conditional Markov processes (cf. Subsection 6(a) of [Wau58]). We know from

Corollary 2.2.8 that a subcritical linear birth and death process is a supermartingale, which

yields the result.

(ii) Consider a process (Ŷt)t≥0 that has the law of (Yt)t≥0 conditioned on Y∞ > 0. Note that (Ŷt)t≥0

inherits the Markov property from (Yt)t≥0. Furthermore, we know from Corollary 2.2.8 that

(Yt)t≥0 is a submartingale. Thus we obtain for t > s ≥ 0 and ys ∈ N

E(Ŷt|Ŷs = ys) = E(Yt|Ys = ys, Y∞ > 0)

=
E(1{Y∞>0}Yt|Ys = ys)

P(Y∞ > 0|Ys = ys)

=
E(Yt|Ys = ys)− E(1{Y∞=0}Yt|Ys = ys)

P(Y∞ > 0|Ys = ys)

≥ ys − P(Y∞ = 0|Ys = ys)E(Ỹt|Ỹs = ys)

P(Y∞ > 0|Ys = ys)

≥ ys − P(Y∞ = 0|Ys = ys)ys
P(Y∞ > 0|Ys = ys)

= ys,

where (Ỹt)t≥0 is the supermartingale from (i), which also inherits the Markov property from

(Yt)t≥0. Thus (Yt)t≥0 conditioned on ultimate survival is a submartingale. �
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Since a more explicit proof of the analogous results for the embedded jump chain is easier, we also

state and prove these here.

6.3.8 Lemma

(i) (YTk)k∈N conditioned on Y∞ = 0 is a supermartingale.

(ii) (YTk)k∈N conditioned on Y∞ > 0 is a submartingale.

Proof :

(i) Consider a linear birth and death process (Ỹt)t≥0 with birth rate µ, death rate λ and initial

value one. Then (Ỹt)t≥0 has the same law as (Yt)t≥0 conditioned on Y∞ = 0 (see the proof of

Lemma 6.3.7). Thus it remains to show that (ỸT̃k)k∈N is a supermartingale in order to show (i),

where (T̃k)k∈N are the event times of (Ỹt)t≥0.

Since (Ỹt)t≥0 is a birth and death process, we have

E(ỸT̃k+1
|ỸT̃1 , . . . , ỸT̃k) = ỸT̃k + P(ỸT̃k+1

= ỸT̃k + 1|ỸT̃1 , . . . , ỸT̃k)

− P(ỸT̃k+1
= ỸT̃k − 1|ỸT̃1 , . . . , ỸT̃k)

= ỸT̃k +
µ

λ+ µ
− λ

λ+ µ

≤ ỸT̃k .

Thus (YTk)k∈N conditioned on Y∞ = 0 is a supermartingale.

(ii) Consider a process (Ŷt)t≥0 that has the law of (Yt)t≥0 conditioned on Y∞ > 0 and let the event

times of (Ŷt)t≥0 be denoted by (T̂k)k∈N. Then we have

E(ŶT̂k+1
|ŶT̂1 , . . . , ŶT̂k) =YT̂k + P(ŶT̂k+1

= ŶT̂k + 1|ŶT̂1 , . . . , ŶT̂k)

− P(ŶT̂k+1
= ŶT̂k − 1|ŶT̂1 , . . . , ŶT̂k).

Consequently, it remains to show that

P(ŶT̂k+1
= ŶT̂k + 1|ŶT̂1 , . . . , ŶT̂k)− P(ŶT̂k+1

= ŶT̂k − 1|ŶT̂1 , . . . , ŶT̂k) ≥ 0.

In order to do so, we compute

P(ŶT̂k+1
= ŶT̂k + 1|ŶT̂1 , . . . , ŶT̂k) = P(YTk+1

= YTk + 1|YT1 , . . . , YTk , Y∞ > 0)

=
P(YTk+1

= YTk + 1, Y∞ > 0|YT1 , . . . , YTk)

P(Y∞ > 0|YT1 , . . . , YTk)

=
P(YTk+1

= YTk + 1|YT1 , . . . , YTk)− P(YTk+1
= YTk + 1, Y∞ = 0|YT1 , . . . , YTk)

P(Y∞ > 0|YT1 , . . . , YTk)

= P(Y∞ > 0|YT1 , . . . , YTk)−1

(
P(YTk+1

= YTk + 1|YT1 , . . . , YTk)

− P(YTk+1
= YTk + 1|YT1 , . . . , YTk , Y∞ = 0)P(Y∞ = 0|YTk)

)
. (6.17)
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Since

P(YTk+1
= YTk + 1|YT1 , . . . , YTk , Y∞ = 0) = P(ỸT̃k+1

= ỸT̃k + 1, |ỸT̃1 , . . . , ỸT̃k) =
µ

λ+ µ

and

P(YTk+1
= YTk + 1|YT1 , . . . , YTk) =

λ

λ+ µ
,

the right-hand side of (6.17) is equal to

λ
λ+µ −

µ
λ+µP(Y∞ = 0|YTk)

P(Y∞ > 0|YT1 , . . . , YTk)
≥

µ
λ+µ −

λ
λ+µP(Y∞ = 0|YTk)

P(Y∞ > 0|YT1 , . . . , YTk)
. (6.18)

Since

λ

λ+ µ
= P(ỸT̃k+1

= ỸT̃k − 1|ỸT̃1 , . . . , ỸT̃k) = P(YTk+1
= YTk − 1|YT1 , . . . , YTk , Y∞ = 0)

and
µ

λ+ µ
= P(YTk+1

= YTk − 1|YT1 , . . . , YTk),

the right-hand side of (6.18) is equal to

P(YTk+1
= YTk − 1|YT1 , . . . , YTk)− P(YTk+1

= YTk − 1|YT1 , . . . , YTk , Y∞ = 0)P(Y∞ = 0|YTk)

P(Y∞ > 0|YT1 , . . . , YTk)

=
P(YTk+1

= YTk − 1|YT1 , . . . , YTk)− P(YTk+1
= YTk − 1, Y∞ = 0|YT1 , . . . , YTk)

P(Y∞ > 0|YT1 , . . . , YTk)

=
P(YTk+1

= YTk − 1, Y∞ > 0|YT1 , . . . , YTk)

P(Y∞ > 0|YT1 , . . . , YTk)

= P(YTk+1
= YTk − 1|YT1 , . . . , YTk , Y∞ > 0)

= P(ŶT̂k+1
= ŶT̂k − 1|ŶT̂1 , . . . , ŶT̂k).

Thus (YTk)k∈N conditioned on ultimate survival is a submartingale. �

Lemma 6.3.7 yields a useful result about (Y −1
t )t≥0 conditioned on ultimate survival:

6.3.9 Corollary

(Y −1
t )t≥0 conditioned on Y∞ > 0 is a supermartingale.

Proof : In general, for a submartingale (Zt)t≥0 with respect to a filtration (Ft)t≥0 with Zt ≥ 1 for all
t ≥ 0, we have for t > s ≥ 0

E
(

1

Zt
− 1

Zs

∣∣∣∣ Fs) = E
(
Zs − Zt
ZsZt

∣∣∣∣ Fs) ≤ E(Zs − Zt|Fs) ≤ 0.

Thus (Z−1
t )t≥0 is a supermartingale. Consequently, Lemma 6.3.7 implies that (Y −1

t )t≥0 conditioned

on ultimate survival is a supermartingale. �

6.3.10 Remark

It can be proved analogously to Corollary 6.3.9 that (Y −1
Tk

)k∈N conditioned on Y∞ > 0 is a super-

martingale.
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Now we introduce the deterministic number κ(T ) as mentioned before, which helps us to cope with

dependencies. Furthermore, we define the random number K(T ) as index of the last event time before

T/2 such that r(JT ) > K(T ) is equivalent to Tr(JT ) ≥ T/2 andMT as the sum of the number of births

and the number of deaths to simplify notation.

6.3.11 Definition

Let κ(T ) := be
3
2

(λ+µ)T c and K(T ) := max{k : Tk < T/2}, such that YTK(T )
= YT/2 almost surely.

Moreover, let MT := BT + DT be the number of events up to time T .

The following lemma implies the properties of κ(T ) and K(T ) that were stated before and that we

need to prove the convergence rate for the degree distribution in the general case.

6.3.12 Lemma

(i) For the probability that fewer than K(T ) events have occurred up to the birth time of the

randomly picked node JT was born, we have

P(r(JT ) ≤ K(T )|YT > 0) = P
(
Tr(JT ) <

T

2

∣∣∣∣ YT > 0

)
≤ e−

1
2
λT +

λ− µ
λe(λ−µ)T − λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
.

(ii) For T ≥ 2(log(4λ)−log(λ−µ))
λ−µ , we have

P(κ(T ) ≤MT |YT > 0) ≤ 60λ3(λ+ µ)

(λ− µ)4
e−(λ+µ)T

Proof :

(i) By Remark 4.3.9, we have

P(r(JT ) ≤ K(T )|YT > 0) = P(Tr(JT ) ≤ TK(T )|YT > 0) = P
(
T − Tr(JT ) ≥

T

2

∣∣∣∣ YT > 0

)
≤ E

(
YT − 1

YT
e−

1
2
λT +

1

YT

∣∣∣∣YT > 0

)
≤ e−

1
2
λT + E

(
1

YT

∣∣∣∣YT > 0

)
.

(6.19)

By Proposition 2.2.4, the right-hand side of (6.19) is smaller than or equal to

e−
1
2
λT +

λ− µ
λe(λ−µ)T − λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
.

(ii) Using Proposition 2.3.1, we compute

κ(T )− 2E(BT ) ≥ e
3
2

(λ+µ)T − 1− 2λ

λ− µ
e(λ−µ)T +

2µ

λ− µ

= e(λ−µ)T

(
e2µT e

1
2

(λ+µ)T − 2λ

λ− µ

)
+

3µ− λ
λ− µ

. (6.20)
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Since T ≥ 2(log(4λ)−log(λ−µ))
λ−µ , we have

1

2
e2µT e

1
2

(λ+µ)T ≥ 2λ

λ− µ
. (6.21)

Thus for T ≥ 2(log(4λ)−log(λ−µ))
λ−µ , the right-hand side of (6.20) is larger than or equal to

e(λ−µ)T 1

2
e2µT e

1
2

(λ+µ)T +
3µ− λ
λ− µ

. (6.22)

Since for T ≥ 2(log(4λ)−log(λ−µ))
λ−µ , we have

e(λ−µ)T ≥ 1 + (λ− µ)T ≥ 1 + 2 log

(
4λ

λ− µ

)
≥ 1 + 2 log(4) ≥ 2, (6.23)

Inequality (6.21) implies that for T ≥ 2(log(4λ)−log(λ−µ))
λ−µ , the expression (6.22) is bounded from

below by

e(λ−µ)T 3

8
e2µT e

1
2

(λ+µ)T +
3µ

λ− µ
≥ 3

8
e

3
2

(λ+µ)T .

Thus for T ≥ 2(log(4λ)−log(λ−µ))
λ−µ , we have

κ(T )− 2E(BT ) ≥ 3

8
e

3
2

(λ+µ)T > 0. (6.24)

Consequently, we can apply Chebyshev’s inequality and obtain

P(κ(T ) ≤MT |YT > 0) ≤ P(κ(T ) ≤MT )

P(YT > 0)
≤ P(κ(T ) ≤ 2BT )

P(YT > 0)

=
1

P(YT > 0)
P(κ(T )− 2E(BT ) ≤ 2BT − 2E(BT ))

≤ 1

P(YT > 0)

4Var(BT )

(κ(T )− 2E(BT ))2
, (6.25)

where T ≥ 2(log(4λ)−log(λ−µ))
λ−µ . By P(YT > 0) ≥ P(Y∞ > 0) = λ−µ

λ and Inequality (6.24), for

T ≥ 2(log(4λ)−log(λ−µ))
λ−µ , the right-hand side of (6.25) is smaller than or equal to

256

9

λ

λ− µ
Var(BT )

e3(λ+µ)T
≤ 30λ

λ− µ

(
λ2(λ+ µ)

(λ− µ)3
e−(λ+µ)T +

2λ2µ

(λ− µ)3
e−2(λ+µ)T

)
, (6.26)

where we used Proposition 2.3.1 in order to obtain the upper bound on the right-hand side. Since

e−(λ+µ)T ≤ 1/2 by (6.23), the right-hand side of (6.26) is smaller than or equal to

60λ3(λ+ µ)

(λ− µ)4
e−(λ+µ)T .

�
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Further lemmas

In what follows, we give some more specialized results that are used in the proof of Theorem 6.3.4.

The following lemma states that the time T − TMT
since the last event becomes small quickly.

6.3.13 Lemma

For T ≥ 1
λ−µ log(2) and c > 0, we have

E(1− e−c(T−TMT
)|YT > 0) ≤ 2(λ− µ)

λe(λ−µ)T
+
c

λ
E
(

1

YT − 1
1{YT>1}

∣∣∣∣ YT > 0

)
. (6.27)

Proof : Let X have the cumulative distribution function

G(t) = 1{YT>1}(1− e−(YT−1)λt) + 1{YT≤1}1{t≥T}.

Conditionally on YT , we then have T − TMT
≤st X by Theorem 4.4.1, which implies

E(1−e−c(T−TMT
)|YT > 0) ≤ E(1− e−cX |YT > 0)

= E
(

(1− e−cT )P(X = T |YT ) + E(1− e−cX |X < T, YT )P(X < T |YT )

∣∣∣∣ YT > 0

)
. (6.28)

Since P(X = T |YT = 1) = 1 and L(X|YT ) = Exp((YT − 1)λ) on {YT ≥ 2}, we obtain that the

right-hand side of (6.28) is smaller than or equal to

E
(
1{YT=1} +

c

c+ (YT − 1)λ
1{YT>1}

∣∣∣∣ YT > 0

)
≤ P(YT = 1|YT > 0)

+
c

λ
E
(

1

YT − 1
1{YT>1}

∣∣∣∣ YT > 0

)
.

For the conditional probability of YT = 1, by Lemma 6.3.6, we have for T ≥ 1
λ−µ log(2)

P(YT = 1|YT > 0) ≤ 2(λ− µ)

λe(λ−µ)T
.

�

The following lemma gives us an upper bound for the conditional expectation on the right-hand side

of (6.27) and is proved similarly to Proposition 2.2.4.

6.3.14 Lemma

We have

E
(

1

YT − 1
1{YT>1}

∣∣∣∣ YT > 0

)
≤ λ− µ
λe(λ−µ)T − µ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
.

P roof : We have

E
(

1

YT − 1
1{YT>1}

∣∣∣∣ YT > 0

)
=

λ− µ
λe(λ−µ)T − µ

∞∑
n=1

1

n

(
λe(λ−µ)T − λ
λe(λ−µ)T − µ

)n
, (6.29)

and in the proof of Proposition 2.2.4, we computed an upper bound for the series in (6.29) that yields

that the right-hand side of (6.29) is smaller than or equal to

λ− µ
λe−(λ−µ)T − µ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
.

�

In order to prove our next lemma, we use the supermartingale from Corollary 6.3.9.
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6.3.15 Lemma

For all δ, γ > 0, we have

E
(

1

min
T/2≤t

Y δ
t

∣∣∣∣ Y∞ > 0

)
≤ e−γ(λ−µ)T + E

(
1

YT/2

∣∣∣∣ Y∞ > 0

)
e
γ
δ

(λ−µ)T .

P roof : Writing ZT/2 = maxT/2≤t Y
−1
t , we obtain

E
(
ZδT/2

∣∣ Y∞ > 0
)
≤ E

(
E
(
1{Zδ

T/2
≤e−γ(λ−µ)T }Z

δ
T/2

∣∣ YT/2) ∣∣∣ Y∞ > 0
)

+ E
(
E
(
1{Zδ

T/2
>e−γ(λ−µ)T }Z

δ
T/2

∣∣ YT/2) ∣∣∣ Y∞ > 0
)

≤ e−γ(λ−µ)T + E
(
P
(
ZT/2 > e−

γ
δ

(λ−µ)T
∣∣ YT/2) ∣∣∣ Y∞ > 0

)
≤ e−γ(λ−µ)T + E

(
Y −1
T/2

∣∣ Y∞ > 0
)
e
γ
δ

(λ−µ)T ,

where the last line follows from Corollary 6.3.9 and the submartingale inequality (2) in Theorem 6.14

on page 99 in [Yeh95] applied to (−Y −1
t )t≥0 (i.e. we use the continuous-time analogue to the super-

martingale inequality (1) in Corollary 6.8 on page 94 in [Yeh95]). �

We use the following lemma to bound the conditional expectation in the second summand of the

right-hand side of Lemma 6.3.15 from above.

6.3.16 Lemma

We have for T ≥ 2
λ−µ log(2)

E
(

1

YT/2

∣∣∣∣ Y∞ > 0

)
≤ 2

(
log

(
λ

λ− µ

)
+

1

2
(λ− µ)T

)
e−

1
2

(λ−µ)T .

P roof : For T ≥ 2
λ−µ log(2), we obtain

E
(

1

YT/2

∣∣∣∣ Y∞ > 0

)
=

E
(
Y −1
T/21{Y∞>0}

)
P(Y∞ > 0)

≤ λ

λ− µ
E
(
Y −1
T/21{YT/2>0}

)
≤ λ

λ− µ
E
(

1

YT/2

∣∣∣∣ YT/2 > 0

)
≤ λ

λe
1
2

(λ−µ)T − λ

(
log

(
λ

λ− µ

)
+

1

2
(λ− µ)T

)
≤ 1

1
2e

1
2

(λ−µ)T + 1
2e

1
2

(λ−µ)T − 1

(
log

(
λ

λ− µ

)
+

1

2
(λ− µ)T

)
≤ 2

(
log

(
λ

λ− µ

)
+

1

2
(λ− µ)T

)
e−

1
2

(λ−µ)T ,

where the second line follows from Proposition 2.2.4 and the last inequality holds for T ≥ 2
λ−µ log(2).

�

Before we continue to state and prove further useful results, we introduce another random variable.

6.3.17 Definition

Let RTl,T be the number of nodes that are alive at time Tl and survive up to time T .
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The following lemma gives us the first two conditional moments of RTl,T .

6.3.18 Lemma

We have

E(RTl,T |YTl , Tl, Tl+1) = (YTl − 1)e−µ(T−Tl+1)

E(R2
Tl,T
|YTl , Tl, Tl+1) = YTle

−µ(T−Tl+1) − YTle
−2µ(T−Tl+1) + Y 2

Tl
e−2µ(T−Tl+1)

− P(YTl+1
= YTl − 1|YTl , Tl, Tl+1)

(
2(YTl − 1)e−2µ(T−Tl+1) + e−µ(T−Tl+1)

)
.

P roof : Firstly, we determine the conditional expectation of RTl,T :

E(RTl,T |YTl , Tl, Tl+1) = p+E(RTl,T |YTl , Tl, Tl+1, YTl+1
= YTl + 1)

+ p−E(RTl,T |YTl , Tl, Tl+1, YTl+1
= YTl − 1), (6.30)

where p+ := P(YTl+1
= YTl + 1|YTl , Tl, Tl+1) and p− := P(YTl+1

= YTl − 1|YTl , Tl, Tl+1).6

With

E(RTl,T |YTl , Tl, Tl+1, YTl+1
= YTl + 1) = E(RTl+1,T − 1{T−

r−1(l+1)
>T}|YTl , Tl, Tl+1, YTl+1

= YTl + 1)

= (YTl + 1)e−µ(T−Tl+1) − e−µ(T−Tl+1) = YTle
−µ(T−Tl+1) (6.31)

and

E(RTl,T |YTl , Tl, Tl+1, YTl+1
= YTl − 1) = E(RTl+1,T |YTl , Tl, Tl+1, YTl+1

= YTl − 1).

= (YTl − 1)e−µ(T−Tl+1),

Equation (6.30) implies

E(RTl,T |YTl , Tl, Tl+1) = YTle
−µ(T−Tl+1) − e−µ(T−Tl+1)p−.

Secondly, we compute the conditional second moment of RTl,T :

E(R2
Tl,T
|YTl , Tl, Tl+1) = p+E(R2

Tl,T
|YTl , Tl, Tl+1, YTl+1

= YTl + 1)

+ p−E(R2
Tl,T
|YTl , Tl, Tl+1, YTl+1

= YTl − 1). (6.32)

We treat the summands separately again. For the case where a birth occurs at time Tl+1, we have

E(R2
Tl,T
|YTl , Tl, Tl+1, YTl+1

= YTl + 1)

= E((RTl+1,T − 1{T−
r−1(l+1)

>T})
2|YTl , Tl, Tl+1, YTl+1

= YTl + 1)

= E
(
R2
Tl+1,T

− 2RTl+1,T1{T−
r−1(l+1)

>T} + 1{T−
r−1(l+1)

>T}

∣∣∣∣ YTl , Tl, Tl+1, YTl+1
= YTl + 1, YTl > 0

)
(6.33)

and further

E(R2
Tl+1,T

|YTl , Tl, Tl+1, YTl+1
= YTl + 1) = Var(RTl+1,T |YTl , Tl, Tl+1, YTl+1

= YTl + 1)

+ (E(RTl+1,T |YTl , Tl, Tl+1, YTl+1
= YTl + 1))2. (6.34)

6 We have p+ = λ
λ+µ

and p− = µ
λ+µ

. However, we do not need these explicit expressions for our purposes.
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Given YTl+1
, let Ll+1 be the set of the YTl+1

nodes living at time Tl+1. Then by independence of

various death times, we obtain for the conditional variance

Var(RTl+1,T |YTl , Tl, Tl+1, YTl+1
= YTl + 1)

= Var

( ∑
j∈Ll+1

1{T−j >T}

∣∣∣∣ YTl , Tl, Tl+1, YTl+1
= YTl + 1, YTl > 0

)
= (YTl + 1)(e−µ(T−Tl+1) − e−2µ(T−Tl+1)).

For the second summand of (6.34), we obtain

E(RTl+1,T |YTl , Tl, Tl+1, YTl+1
= YTl + 1) = (YTl + 1)e−µ(T−Tl+1).

Thus (6.34) is equal to

(YTl + 1)
(
e−µ(T−Tl+1) + YTle

−2µ(T−Tl+1)
)
.

For the remaining parts of (6.33), we have

E(RTl+1,T1{T−
r−1(l+1)

>T}|YTl , Tl, Tl+1, YTl+1
= YTl + 1)

= P(T−
r−1(l+1)

> T |YTl , Tl, Tl+1, YTl+1
= YTl + 1)

· E(RTl+1,T |T
−
r−1(l+1)

> T, YTl , Tl, Tl+1, YTl+1
= YTl + 1)

= e−µ(T−Tl+1)(1 + YTle
−µ(T−Tl+1))

and

E(1{T−
r−1(l+1)

>T}|YTl , Tl, Tl+1, YTl+1
= YTl + 1) = e−µ(T−Tl+1).

Thus (6.33) implies

E(R2
Tl,T
|YTl , Tl, Tl+1, YTl+1

= YTl + 1)

= (YTl + 1)
(
e−µ(T−Tl+1 + YTle

−2µ(T−Tl+1)
)
− 2
(
e−µ(T−Tl+1 + YTle

−2µ(T−Tl+1)
)

+ e−µ(T−Tl+1)

= YTle
−µ(T−Tl+1) − YTle

−2µ(T−Tl+1) + Y 2
Tl
e−2µ(T−Tl+1).

For the case where a death occurs at time Tl+1, we have

E(R2
Tl,T
|YTl , Tl, Tl+1, YTl+1

= YTl − 1)

= Var(RTl+1,T |YTl , Tl, Tl+1, YTl+1
= YTl − 1) + (E(RTl+1,T |YTl , Tl, Tl+1, YTl+1

= YTl − 1))2

= (YTl − 1)(e−µ(T−Tl+1) − e−2µ(T−Tl+1)) + (YTl − 1)2e−2µ(T−Tl+1)

= (YTl − 1)e−µ(T−Tl+1) + (Y 2
Tl
− 3YTl + 2)e−2µ(T−Tl+1).

Thus from (6.32) follows

E(R2
Tl,T
|YTl , Tl, Tl+1, YTl > 0) = YTle

−µ(T−Tl+1) − YTle
−2µ(T−Tl+1) + Y 2

Tl
e−2µ(T−Tl+1)

+ p−
(
2(1− YTl)e

−2µ(T−Tl+1) − e−µ(T−Tl+1)
)
.

�

Knowing the conditional moments of RTl,T , we can find an upper bound for a more complex conditional

expectation involving RTl,T that appears in the proof of the main theorem below:
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6.3.19 Lemma

For l ∈ N, we have

E
(∣∣∣∣RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

∣∣∣∣ ∣∣∣∣ YTl , Tl, Tl+1

)
≤
(

6

YTl

) 1
2

.

P roof : By Jensen’s inequality, we obtain

E
(∣∣∣∣RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

∣∣∣∣ ∣∣∣∣ YTl , Tl, Tl+1

)
≤
(
E
((

RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

)2 ∣∣∣∣ YTl , Tl, Tl+1

)) 1
2

=

(
1{YTl>1}

E((RTl,T − 1)2|YTl , Tl, Tl+1)

(YTl − 1)2
− 2

YTl − 1
1{YTl>1}e

−µ(T−Tl+1)E(RTl,T − 1|YTl , Tl, Tl+1)

+ e−2µ(T−Tl+1)

) 1
2

. (6.35)

Lemma 6.3.18 implies

2

YTl − 1
1{YTl>1}e

−µ(T−Tl+1)E(RTl,T − 1|YTl , Tl, Tl+1) =2 · 1{YTl>1}e
−2µ(T−Tl+1)

− 2

YTl − 1
1{YTl>1}e

−µ(T−Tl+1) (6.36)

and

1

(YTl − 1)2
1{YTl>1}E((RTl,T − 1)2|YTl , Tl, Tl+1)

=
1

(YTl − 1)2
1{YTl>1}

(
E(R2

Tl,T
|YTl , Tl, Tl+1)− 2E(RTl,T |YTl , Tl, Tl+1) + 1

)
=

1

(YTl − 1)2
1{YTl>1}

(
YTle

−µ(T−Tl+1) − YTle
−2µ(T−Tl+1) + Y 2

Tl
e−2µ(T−Tl+1)

− P(YTl+1
= YTl − 1|YTl , Tl, Tl+1)

(
2(YTl − 1)e−2µ(T−Tl+1) + e−µ(T−Tl+1)

))
− 2

YTl − 1
1{YTl>1}e

−µ(T−Tl+1) +
1{YTl>1}

(YTl − 1)2

≤ 1

(YTl − 1)2
1{YTl>1}

(
YTle

−µ(T−Tl+1) + YTl(YTl − 1)e−2µ(T−Tl+1)

)
− 2

YTl − 1
1{YTl>1}e

−µ(T−Tl+1)

+
1{YTl>1}

(YTl − 1)2

=
1{YTl>1}

YTl − 1
e−µ(T−Tl+1) +

1{YTl>1}

(YTl − 1)2
e−µ(T−Tl+1) +

YTl
YTl − 1

1{YTl>1}e
−2µ(T−Tl+1)

− 2

YTl − 1
1{YTl>1}e

−µ(T−Tl+1) +
1{YTl>1}

(YTl − 1)2

≤ 1{YTl>1}e
−2µ(T−Tl+1) +

1

YTl − 1
1{YTl>1}e

−2µ(T−Tl+1) +
1

(YTl − 1)2
1{YTl>1}

≤
(

1

YTl − 1
+ e−2µ(T−Tl+1)

)
1{YTl>1}. (6.37)
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By (6.36) and (6.37), we can bound the right-hand side of (6.35) from above by(
3

YTl − 1
1{YTl>1} − 1{YTl>1}e

−2µ(T−Tl+1) + e−2µ(T−Tl+1)

) 1
2

≤
(

3

YTl − 1
1{YTl>1} + 1{YTl=1}

) 1
2

≤
(

6

YTl

) 1
2

.

�

The following purely analytical lemma is also used in the proof of Theorem 6.3.4.

6.3.20 Lemma

For all x ≥ 0, we have

∞∑
k=2

(−x)k

k!
≤ x2

2
. (6.38)

Proof : Let x ≥ 0. The left-hand side of (6.38) is equal to e−x − 1 + x. For x = 0, this expression is
equal to x2

2 . By 1− e−x ≤ x, the derivative of the left-hand side of (6.38) is everywhere smaller than

or equal to the derivative of the right-hand side of (6.38). Hence the statement follows. �

For the conditional expectation of the sum of the squared inter-event times since the birth of the

randomly picked node, we have the following lemma.

6.3.21 Lemma

For T ≥ ( 2
λ−µ log(2) ∨ 2(log(4λ)−log(λ−µ))

λ+µ ), we have

E
(MT−1∑
l=r(JT )

(Tl+1 − Tl)2

∣∣∣∣ YT > 0

)
≤ µ

λ

T 2

4
e−(λ−µ)T + 60T 2λ

3(λ+ µ)

(λ− µ)4
e−(λ+µ)T + T 2e−

1
2
λT

+
2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
T 2e−(λ−µ)T

+

(
3

4
T 2 +

T

2(λ+ µ)

)(
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−

1
4

(λ−µ)T .

(6.39)

Proof : For the left-hand side of (6.39), we deduce

E
(MT−1∑
l=r(JT )

(Tl+1 − Tl)2

∣∣∣∣ YT > 0

)

≤ E
(
1{Tκ(T )>T}1{TK(T )<Tr(JT )}

MT−1∑
l=1

1{Tl≥Tr(JT )}(Tl+1 − Tl) max
r(JT )≤m≤MT−1

(Tm+1 − Tm)

∣∣∣∣ YT > 0

)
+ E(1{Tκ(T )≤T}|YT > 0)T 2 + E(1TK(T )≥Tr(JT )}|YT > 0)T 2. (6.40)

Note that, given (YTk)k∈N and K(T ), the inter-event times Tm+1−Tm are Exp((λ+µ)YTm) distributed

and independent for m > K(T ). In order to derive an upper bound for the first conditional expectation

on the right-hand side of (6.40), we introduce a sequence of random variables (Um)m∈N such that, given
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(YTk)k∈N and K(T ), Um ∼ Exp((λ + µ) minK(T )<k YTk) are independent and identically distributed.

Then, given (YTk)k∈N and K(T ), we have Tm+1 − Tm ≤st Um for K(T ) < m ≤ κ(T ) and obtain

E
(
1{Tκ(T )>T}1{TK(T )<Tr(JT )}

MT−1∑
l=1

1{Tl≥Tr(JT )}(Tl+1 − Tl) max
r(JT )≤m≤MT−1

(Tm+1 − Tm)

∣∣∣∣ YT > 0

)
≤ T

2
E
(
1{Tκ(T )>T}1{TK(T )<Tr(JT )} max

r(JT )≤m≤MT−1
(Tm+1 − Tm)

∣∣∣∣ Y∞ > 0

)
+
T 2

4
P(Y∞ = 0|YT > 0).

(6.41)

By Lemma 6.3.5, the second summand of the right-hand side is equal to

T 2

4

µ

λ
e−(λ−µ)T .

The first summand of the right-hand side of (6.41) is bounded from above by

T

2
E
(
E
(
1{Tκ(T )>T}1{TK(T )<Tr(JT )} max

K(T )<m≤κ(T )
(Tm+1 − Tm)

∣∣∣∣ K(T ), (YTk)k≥1

) ∣∣∣∣ Y∞ > 0

)
≤ T

2
E
(
E
(

max
1≤m≤κ(T )

Um

∣∣∣∣ K(T ), (YTk)k≥1

) ∣∣∣∣ Y∞ > 0

)

=
T

2
E
(

1

(λ+ µ) min
K(T )<k

YTk

κ(T )∑
l=1

1

l

∣∣∣∣ Y∞ > 0

)
,

where the last equality follows from the formula for the expectation of the maximum of independent

and identically exponentially distributed random variables (see e.g. the introduction of [Eis08]).

Using the well-known upper bound for the harmonic sum yields

T

2
E
(

1

(λ+ µ) min
K(T )<k

YTk

κ(T )∑
l=1

1

l

∣∣∣∣ Y∞ > 0

)

≤ T

2(λ+ µ)
E
(

1

min
K(T )<k

YTk

∣∣∣∣ Y∞ > 0

)
(log(κ(T )) + 1)

≤ T

2(λ+ µ)
E
(

1

min
K(T )<k

YTk

∣∣∣∣ Y∞ > 0

)(
3

2
(λ+ µ)T + 1

)
. (6.42)

For the conditional expectation in (6.42), we obtain for T ≥ 2 log(2)
λ−µ

E
(

1

min
K(T )<k

YTk

∣∣∣∣ Y∞ > 0

)
= E

(
1

min
T/2≤t

Yt

∣∣∣∣ Y∞ > 0

)

≤
(

1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−

1
4

(λ−µ)T , (6.43)

where the last line follows from Lemma 6.3.15 with δ = 1 and γ = 1
4 and Lemma 6.3.16.

Thus we can conclude that the first summand of the right-hand side of (6.41) is smaller than or

equal to (
3

4
T 2 +

T

2(λ+ µ)

)(
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−

1
4

(λ−µ)T
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for sufficiently large T .

For the last line of (6.40), we can use the upper bounds from Lemma 6.3.12 and obtain that for

T ≥ ( 1
λ−µ log(2) ∨ 2(log(4λ)−log(λ−µ))

λ+µ ), it is smaller than or equal to

60λ3(λ+ µ)

(λ− µ)4
T 2e−(λ+µ)T + T 2e−

1
2
λT +

2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
T 2e−(λ−µ)T . (6.44)

Altogether, we obtain (6.39) for T ≥ ( 2
λ−µ log(2) ∨ 2(log(4λ)−log(λ−µ))

λ+µ ). �

Proof of the main theorem

In order to simplify notation, we introduce E∗( · ) = E( · |YT > 0) and P∗( · ) = P( · |YT > 0).

In the following we prove Theorem 6.3.4. As before, we use Theorem 3.4.1 to obtain

dTV (MixPo(Λ∗T ),MixPo(M∗)) ≤ E∗|ΛT −M|.

In order to find an upper bound for E∗|ΛT −M|, we use the triangle inequality for the absolute value

after plugging in the definitions of ΛT and M given by (6.6) and (6.15), which yields

E∗
∣∣∣∣α(1− e−β(T−TMT

))

(YT − 1)β
1{YT>1}

BT∑
i=1
i 6=JT

(Si + SJT )1{T−i >T}

+
α

β

BT∑
i=1
i 6=JT

(Si + SJT )1{T−i >T}

MT−1∑
l=r(i)∨r(JT )

(e−β(T−Tl+1) − e−β(T−Tl))
1

YTl − 1
1{YTl>1}

− α

β + µ
(E(S) + SJ∞)(1− e−(β+µ)AJ∞ )

∣∣∣∣.
This is bounded from above by

E∗
(
α(1− e−β(T−TMT

))

(YT − 1)β

BT∑
i=1
i 6=JT

Si1{T−i >T}
1{YT>1}

)
(6.45)

+ E∗
(
α(1− e−β(T−TMT

))

(YT − 1)β
SJT

BT∑
i=1
i 6=JT

1{T−i >T}
1{YT>1}

)
(6.46)

+ E∗
∣∣∣∣αβ

BT∑
i=1
i 6=JT

(Si − E(S))1{T−i >T}

MT−1∑
l=r(i)∨r(JT )

(e−β(T−Tl+1) − e−β(T−Tl))
1

YTl − 1
1{YTl>1}

∣∣∣∣ (6.47)

+ E∗
∣∣∣∣αβ
MT−1∑
l=r(JT )

1

YTl − 1
1{YTl>1}

r−1(l)∑
i=1
i 6=JT

(E(S) + SJT )1{T−i >T}
(e−β(T−Tl+1) − e−β(T−Tl))

− α

β + µ
(E(S) + SJT )

MT−1∑
l=r(JT )

(e−(β+µ)(T−Tl+1) − e−(β+µ)(T−Tl))

∣∣∣∣
(6.48)
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+ E∗
∣∣∣∣ α

β + µ
(E(S) + SJT )

MT−1∑
l=r(JT )

(e−(β+µ)(T−Tl+1) − e−(β+µ)(T−Tl))

− α

β + µ
(E(S) + SJ∞)(1− e−(β+µ)AJ∞ )

∣∣∣∣,
(6.49)

whereMT is the number of events up to time T and r−1(l) is the number of births that occur not later

than the lth event for all l ∈ {1, . . . ,MT }, i.e. r−1 : {1, . . . ,MT } → {1, . . . ,BT }, l 7→
∑BT

i=1 1{r(i)≤l}.

In the following, we deduce upper bounds for (6.45)-(6.49).

Upper bound for (6.45) and (6.46)

We treat (6.45) similarly to the corresponding expression in the pure birth case, but condition on BT ,

DT , JT and the information which nodes survive up to time T , and obtain

E∗
(
α(1− e−β(T−TMT

))

(YT − 1)β
1{YT>1}

BT∑
i=1
i 6=JT

Si1{T−i >T}

)
≤ α

β
E(S)E∗(1− e−β(T−TMT

)). (6.50)

Since we condition on JT , the same expression is also obtained for (6.46).

Lemma 6.3.13 reveals an upper bound for the conditional expectation on the right-hand sides of

(6.50): For T ≥ 1
λ−µ log(2), we have

E∗(1− e−β(T−TMT
)) ≤ 2(λ− µ)

λe(λ−µ)T
+
β

λ
E∗
(

1

YT − 1
1{YT>1}

)
.

Lemma 6.3.14 gives us an upper bound for the second summand of the upper bound from Lemma

6.3.13:

E∗
(

1

YT − 1
1{YT>1}

)
≤ λ− µ
λe(λ−µ)T − µ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
.

Altogether, for T ≥ 1
λ−µ log(2), we obtain that the expectation E∗(1− e−β(T−TMT

)) is smaller than

or equal to

2

λ

(
λ− µ+ β

(
log

(
λ

λ− µ

)
+ (λ− µ)T

))
e−(λ−µ)T . (6.51)

Plugging this expression in the right-hand side of (6.50) results in the following upper bound for the

sum of (6.45) and (6.46):

4αE(S)

βλ

(
λ− µ+ β

(
log

(
λ

λ− µ

)
+ (λ− µ)T

))
e−(λ−µ)T .

Upper bound for (6.47)

Recall that RTl,T is the number of nodes that are alive at time Tl and survive up to time T . We

compute

E∗
(∣∣∣∣αβ

BT∑
i=1
i 6=JT

(Si − E(S))1{T−i >T}

MT−1∑
l=r(i)∨r(JT )

(e−β(T−Tl+1) − e−β(T−Tl))
1

YTl − 1
1{YTl>1}

∣∣∣∣)
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≤ E∗
(∣∣∣∣αβ

MT−1∑
l=r(JT )
RTl,T≥2

(e−β(T−Tl+1) − e−β(T−Tl))
RTl,T − 1

YTl − 1

1{YTl>1}

RTl,T − 1

r−1(l)∑
i=1
i 6=JT

(Si − E(S))1{T−i >T}

∣∣∣∣)

≤ E∗
(
α

β

MT−1∑
l=r(JT )
RTl,T≥2

(e−β(T−Tl+1) − e−β(T−Tl))
RTl,T − 1

YTl − 1
1{YTl>1}

· E

(
1

RTl,T − 1

∣∣∣∣r
−1(l)∑
i=1
i 6=JT

(Si − E(S))1{T−i >T}

∣∣∣∣
∣∣∣∣∣ (Yt)0≤t≤T , JT

))
. (6.52)

Note in the second line that we can restrict the sum to RTl,T ≥ 2 because RTl,T ≥ 1 by l ≥ r(JT ) and

a summand with RTl,T = 1 in the first line would be 0 anyway.

Since the sum in the last line of (6.52) has exactly RTl,T − 1 summands of the form Si − E(S) and

all other summands are zero, the right-hand side of (6.52) is smaller than or equal to

E∗
(∣∣∣∣αβ

MT−1∑
l=r(JT )
RTl,T≥2

(e−β(T−Tl+1) − e−β(T−Tl))
RTl,T − 1

YTl − 1
1{YTl>1}

σS√
RTl,T − 1

∣∣∣∣). (6.53)

Since e−β(T−Tl+1)− e−β(T−Tl) ≤ β(Tl+1− Tl) and RTl,T ≤ YTl , the expression (6.53) is smaller than or

equal to

E∗
(
α

MT−1∑
l=r(JT )

σS√
YTl − 1

1{YTl>1}(Tl+1 − Tl)
)
≤ E∗

(
α

MT−1∑
l=r(JT )

σS√
YTl −

YTl
2

1{YTl>1}(Tl+1 − Tl)
)

≤
√

2ασSTE∗
(

max
r(JT )≤k≤MT−1

1√
YTk

)
≤
√

2ασSTE∗
(
1{K(T )<r(JT )} max

r(JT )≤k≤MT−1

1√
YTk

)
+
√

2ασSTE∗
(
1{K(T )≥r(JT )} max

r(JT )≤k≤MT−1

1√
YTk

)
,

(6.54)

where K(T ) = max{k : Tk ≤ T/2} (see Definition 6.3.11). We have

E∗
(
1{K(T )<r(JT )} max

r(JT )≤k≤MT−1

1√
YTk

)
≤ E

(
1{K(T )<r(JT )} max

r(JT )≤k≤MT−1

1√
YTk

∣∣∣∣ Y∞ > 0

)
P∗(Y∞ > 0) + 1 · P∗(Y∞ = 0), (6.55)

where Y∞ := lim
t→∞

Yt as before.

By Lemma 6.3.5, we have for the second summand of the right-hand side of (6.55)

P∗(Y∞ = 0) =
µ

λ
e−(λ−µ)T .
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The first summand of the right-hand side of (6.55) is smaller than or equal to

E
(

max
K(T )<k

1√
YTk

∣∣∣∣ Y∞ > 0

)
= E

(
max
T
2
≤t

1√
Yt

∣∣∣∣ Y∞ > 0

)
.

By combining Lemma 6.3.15, where δ = 1/2 and γ = 1/6, and Lemma 6.3.16, we obtain for

T ≥ 2
λ−µ log(2)

E
(

max
T
2
≤t

1√
Yt

∣∣∣∣ Y∞ > 0

)
≤ e−

1
6

(λ−µ)T + E
(

1

YT
2

∣∣∣∣ Y∞ > 0

)
e

1
3

(λ−µ)T

≤
(

1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−

1
6

(λ−µ)T . (6.56)

Thus for T ≥ 2
λ−µ log(2), the first summand of the right-hand side of (6.54) is smaller than or equal

to

√
2α
µ

λ
σSTe

−(λ−µ)T +
√

2ασS

(
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
Te−

1
6

(λ−µ)T . (6.57)

By Lemma 6.3.12(i), we obtain that for T ≥ 1
λ−µ log(2), the second summand of the right-hand side

of (6.54) is bounded from above by

√
2ασST

(
e−

1
2
λT +

2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−(λ−µ)T

)
. (6.58)

Thus for T ≥ 2
λ−µ log(2), the expression (6.47) is bounded from above by the sum of (6.57) and (6.58).

Upper bound for (6.48)

For (6.48), we have

E∗
∣∣∣∣αβ
MT−1∑
l=r(JT )

1

YTl − 1
1{YTl>1}

r−1(l)∑
i=1
i 6=JT

(E(S) + SJT )1{T−i >T}
(e−β(T−Tl+1) − e−β(T−Tl))

− α

β + µ
(E(S) + SJT )

MT−1∑
l=r(JT )

(e−(β+µ)(T−Tl+1) − e−(β+µ)(T−Tl))

∣∣∣∣
= E∗

∣∣∣∣α(β + µ)

β(β + µ)
(E(S) + SJT )

MT−1∑
l=r(JT )

RTl,T − 1

YTl − 1
1{YTl>1}(e

−β(T−Tl+1) − e−β(T−Tl))

− αβ

β(β + µ)
(E(S) + SJT )

MT−1∑
l=r(JT )

(e−(β+µ)(T−Tl+1) − e−(β+µ)(T−Tl))

∣∣∣∣ (6.59)

since the second sum on the left-hand side of (6.59) has exactly RTl,T − 1 non-zero summands. The

right-hand side of (6.59) is equal to

E∗
∣∣∣∣ α

β(β + µ)
(E(S) + SJT )

MT−1∑
l=r(JT )

(
(β + µ)

RTl,T − 1

YTl − 1
1{YTl>1}e

−β(T−Tl+1)(1− e−β(Tl+1−Tl))

− βe−(β+µ)(T−Tl+1)(1− e−(β+µ)(Tl+1−Tl))

)∣∣∣∣. (6.60)
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Now we use

1− e−β(Tl+1−Tl) = β(Tl+1 − Tl)−
∞∑
k=2

(−β(Tl+1 − Tl))k

k!

and

1− e−(β+µ)(Tl+1−Tl) = (β + µ)(Tl+1 − Tl)−
∞∑
k=2

(−(β + µ)(Tl+1 − Tl))k

k!

in order to obtain that (6.60) is smaller than or equal to

E∗
∣∣∣∣ α

β(β + µ)
(E(S) + SJT )

MT−1∑
l=r(JT )

(β + µ)β

(
RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

)
e−β(T−Tl+1)(Tl+1 − Tl)

∣∣∣∣
+ E∗

∣∣∣∣ α

β(β + µ)
(E(S) + SJT )

MT−1∑
l=r(JT )

(
βe−(β+µ)(T−Tl+1)

∞∑
k=2

(−(β + µ)(Tl+1 − Tl))k

k!

− (β + µ)
RTl,T − 1

YTl − 1
1{YTl>1}e

−β(T−Tl+1)
∞∑
k=2

(−β(Tl+1 − Tl))k

k!

)∣∣∣∣
≤ E∗

(
α(E(S) + SJT )

∞∑
l=r(JT )

1{Tl+1≤T}

∣∣∣∣RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

∣∣∣∣(Tl+1 − Tl)
)

+ E∗
(

α

β + µ
(E(S) + SJT )

MT−1∑
l=r(JT )

∞∑
k=2

(−(β + µ)(Tl+1 − Tl))k

k!

)

+ E∗
(
α

β
(E(S) + SJT )

MT−1∑
l=r(JT )

∞∑
k=2

(−β(Tl+1 − Tl))k

k!

))
. (6.61)

Firstly, we consider the first summand of the right-hand side of (6.61). Since the social index SJT is

independent of all other random variables appearing in (6.61), this summand is equal to

2αE(S)E∗
( ∞∑
l=r(JT )

1{Tl+1≤T}

∣∣∣∣RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

∣∣∣∣(Tl+1 − Tl)
)
.

We derive

E∗
( ∞∑
l=r(JT )

1{Tl+1<T}

∣∣∣∣RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

∣∣∣∣(Tl+1 − Tl)
)

≤ E∗
( ∞∑
l=K(T )+1

1{Tl+1<T}

∣∣∣∣RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

∣∣∣∣(Tl+1 − Tl)
)

+ TP∗(K(T ) ≥ r(JT )). (6.62)

For 1
λ−µ log(2), the second summand of the right-hand side of (6.62) is smaller than or equal to

Te−
1
2
λT +

2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
Te−(λ−µ)T

by Lemma 6.3.12(i). The first summand of the right-hand side of (6.62) is equal to

E∗
( ∞∑
l=K(T )+1

E
(
1{Tl+1<T}

∣∣∣∣RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

∣∣∣∣(Tl+1 − Tl)
∣∣∣∣ K(T ), YT > 0

))
.
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For the inner expectation, we have

E
(
1{Tl+1<T}

∣∣∣∣RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

∣∣∣∣(Tl+1 − Tl)
∣∣∣∣ K(T ), YT > 0

)
= E

(
1{Tl+1<T}

∣∣∣∣RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

∣∣∣∣(Tl+1 − Tl)
∣∣∣∣ K(T ), YTl > 0

)
P(YTl > 0|K(T ))

P(YT > 0|K(T ))
.

(6.63)

For the fraction, we obtain for l ≥ K(T ) + 1

P(YTl > 0|K(T ))

P(YT > 0|K(T ))
≤

P(YTK(T )
> 0|K(T ))

E(P(YT > 0|K(T ), YTK(T )
)|K(T ))

. (6.64)

Note that, given K(T ) and YTK(T )
, we know that almost surely YTK(T )

nodes are alive at time T/2

since a jump at this time has probability zero. Thus due to the Markov property for (Yt)t≥0 and the

formula for the extinction probability of a linear birth and death process with a general initial value

given in Remark 2.2.2, the conditional probability P(YT > 0|K(T ), YTK(T )
) is equal to p0(T/2)

YTK(T ) ,

which implies that (6.64) is equal to

P(YTK(T )
> 0|K(T ))

E(1− p0(T/2)
YTK(T ) |K(T ))

≤
P(YTK(T )

> 0|K(T ))

(1− p0(T/2))P(YTK(T )
> 0|K(T ))

=
λe

1
2

(λ−µ)T − µ
(λ− µ)e

1
2

(λ−µ)T
≤ λ

λ− µ
.

Thus the right-hand side of (6.63) is smaller than or equal to

E
(
E
(
1{Tl+1<T}

∣∣∣∣RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

∣∣∣∣(Tl+1 − Tl)
∣∣∣∣ YTl , Tl,K(T )

) ∣∣∣∣ K(T ), YTl > 0

)
λ

λ− µ
.

(6.65)

By the Markov property of (Yt)t≥0, we may omit the conditioning on K(T ) if we condition on YTl and

Tl for l ≥ K(T ) + 1. Conditioning in addition on Tl+1, we see that (6.65) is equal to

E
(
1{Tl+1<T}(Tl+1 − Tl)E

(∣∣∣∣RTl,T − 1

YTl − 1
1{YTl>1} − e−µ(T−Tl+1)

∣∣∣∣ ∣∣∣∣ YTl , Tl, Tl+1

) ∣∣∣∣ K(T ), YTl > 0

)
λ

λ− µ
.

(6.66)

By Lemma 6.3.19, summing over l and taking the expectation yields the following upper bound for

the first summand of the right-hand side of (6.62):

E∗
( ∞∑
l=K(T )+1

√
6

λ

λ− µ
E
(
1{Tl+1<T}(Tl+1 − Tl)Y

− 1
2

Tl

∣∣∣∣ K(T ), YTl > 0

))
. (6.67)

Obviously, (6.67) is equal to

√
6

λ

λ− µ
E∗
(
1{Y∞>0}

∞∑
l=K(T )+1

E
(
1{Tl+1<T}(Tl+1 − Tl)Y

− 1
2

Tl

∣∣∣∣ K(T ), YTl > 0

))

+
√

6
λ

λ− µ
E∗
(
1{Y∞=0}

∞∑
l=K(T )+1

E
(
1{Tl+1<T}(Tl+1 − Tl)Y

− 1
2

Tl

∣∣∣∣ K(T ), YTl > 0

))
.
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We may conclude that for for T ≥ 1
λ−µ log(2), the first summand of (6.61) is bounded from above by

2αE(S)

(
√

6
λ

λ− µ
E∗
(
1{Y∞>0}

∞∑
l=K(T )+1

E
(
1{Tl+1<T}(Tl+1 − Tl)Y

− 1
2

Tl

∣∣∣∣ K(T ), YTl > 0

))

+
√

6
λ

λ− µ
E∗
(
1{Y∞=0}

∞∑
l=K(T )+1

E
(
1{Tl+1<T}(Tl+1 − Tl)Y

− 1
2

Tl

∣∣∣∣ K(T ), YTl > 0

))

+ Te−
1
2
λT +

2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
Te−(λ−µ)T

)
. (6.68)

For the first outer expectation in (6.68), we have

E∗
(
1{Y∞>0}

∞∑
l=K(T )+1

E
(
1{Tl+1<T}(Tl+1 − Tl)Y

− 1
2

Tl

∣∣∣∣ K(T ), YTl > 0

))

≤ E
( ∞∑
l=K(T )+1

E
(
1{Tl+1<T}(Tl+1 − Tl)Y

− 1
2

Tl

∣∣∣∣ K(T )

) ∣∣∣∣ Y∞ > 0

)

≤ E
(

max
T
2
≤t
Y
− 1

2
t E

( ∞∑
l=K(T )+1

1{Tl+1<T}(Tl+1 − Tl)
∣∣∣∣ K(T )

) ∣∣∣∣ Y∞ > 0

)

≤ T

2
E
(

max
T
2
≤t
Y
− 1

2
t

∣∣∣∣ Y∞ > 0

)
.

By Inequality (6.56), we obtain that for T ≥ 2
λ−µ log(2), this expression is smaller than or equal to

T

2

(
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−

1
6

(λ−µ)T .

For the second outer expectation in (6.68), we obtain

E
(
1{Y∞=0}

∞∑
l=K(T )+1

E
(
1{Tl+1<T}(Tl+1 − Tl)Y

− 1
2

Tl

∣∣∣∣ K(T ), YTl > 0

) ∣∣∣∣ YT > 0

)

≤ T

2
P(Y∞ = 0|YT > 0) =

T

2

µ

λ
e−(λ−µ)T ,

where the last equality follows from Lemma 6.3.5.

In conclusion, for T ≥ 2
λ−µ log(2), the first summand of the right-hand side of (6.61) is bounded

from above by

√
6α

λ

λ− µ
E(S)T

((
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−

1
6

(λ−µ)T + e−(λ−µ)T

)

+ 2αE(S)

(
Te−

1
2
λT +

2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
Te−(λ−µ)T

)
.

Since the social index SJT is independent of all other random variables appearing in (6.61), the

second summand of the right-hand side of (6.61) is smaller than or equal to

2α

β + µ
E(S)E∗

(MT−1∑
l=r(JT )

∞∑
k=2

(−(β + µ)(Tl+1 − Tl))k

k!

)
.
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By Lemma 6.3.20, this expression is bounded from above by

α

β + µ
E(S)E∗

(MT−1∑
l=r(JT )

(β + µ)2(Tl+1 − Tl)2

)
. (6.69)

For T ≥ ( 2
λ−µ log(2) ∨ 2(log(4λ)−log(λ−µ))

λ+µ ), Lemma 6.3.21 implies that (6.69) and hence also the sec-

ond summand of the right-hand side of (6.61) is smaller than or equal to

α(β + µ)E(S)

(
µ

λ

T 2

4
e−(λ−µ)T +

60λ3(λ+ µ)

(λ− µ)4
T 2e−(λ+µ)T + T 2e−

1
2
λT

+
2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
T 2e−(λ−µ)T

+

(
3

4
T 2 +

T

2(λ+ µ)

)(
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−

1
4

(λ−µ)T

)
.

For the third summand of the right-hand side of (6.61), we obviously obtain the same upper bound

except that the factor β + µ is replaced by β.

We may conclude that for T ≥ ( 2
λ−µ log(2) ∨ 2(log(4λ)−log(λ−µ))

λ+µ ), the expression (6.48) is bounded

from above by

√
6α

λ

λ− µ
E(S)T

((
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−

1
6

(λ−µ)T + e−(λ−µ)T

)

+ 2αE(S)

(
Te−

1
2
λT +

2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
Te−(λ−µ)T

)

+ α(2β + µ)E(S)

(
µ

λ

T 2

4
e−(λ−µ)T +

60λ3(λ+ µ)

(λ− µ)4
T 2e−(λ+µ)T + T 2e−

1
2
λT

+
2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
T 2e−(λ−µ)T

+

(
3

4
T 2 +

T

2(λ+ µ)

)(
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−

1
4

(λ−µ)T

)
.

Upper bound for (6.49)

Recall that we arranged SJT = SJ∞ . Since the sum in (6.49) telescopes, this implies

E∗
(∣∣∣∣ α

β + µ
(E(S) + SJT )

MT−1∑
l=r(JT )

(e−(β+µ)(T−Tl+1) − e−(β+µ)(T−Tl))

− α

β + µ
(E(S) + SJ∞)(1− e−(β+µ)AJ∞ )

∣∣∣∣)
= E∗

(∣∣∣∣ α

β + µ
(E(S) + SJ∞)

(
e−(β+µ)(T−TMT

) − e−(β+µ)(T−Tr(JT )) − (1− e−(β+µ)AJ∞ )

)∣∣∣∣)
≤ 2α

β + µ
E(S)

(
E∗
(

1− e−(β+µ)(T−TMT
)

)
+ E∗

(∣∣∣∣e−(β+µ)AJT (T ) − e−(β+µ)AJ∞

∣∣∣∣)), (6.70)
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where the last inequality holds since SJ∞ is independent of all other random variables appearing in

(6.70).

By combining Lemma 6.3.13 and Lemma 6.3.14 as before, we obtain for the first conditional expec-

tation on the right-hand side of (6.70) the upper bound

2

λ

(
λ− µ+ (β + µ)

(
log

(
λ

λ− µ

)
+ (λ− µ)T

))
e−(λ−µ)T

if T ≥ 1
λ−µ log(2).

For the second conditional expectation on the right-hand side of (6.70), Corollary 4.3.3 implies

E∗
(∣∣∣∣e−(β+µ)AJT (T ) − e−(β+µ)AJ∞

∣∣∣∣) ≤
(

2λ

β + µ+ λ
+

2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

))
e−(λ−µ)T

if T ≥ 1
λ−µ log(2).

Altogether, we obtain that the right-hand side of (6.70) is smaller than or equal to

4α

β + µ
E(S)

(
λ− µ
λ

+
β + λ

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
+

λ

β + µ+ λ

)
e−(λ−µ)T

if T ≥ 1
λ−µ log(2).

Conclusion

Combining the upper bounds obtained for (6.45)-(6.49), we have for T ≥ ( 2
λ−µ log(2) ∨ 2(log(4λ)−log(λ−µ))

λ+µ )

dTV (MixPo(Λ∗T ),MixPo(M∗))

≤ 4αE(S)

βλ

(
λ− µ+ β

(
log

(
λ

λ− µ

)
+ (λ− µ)T

))
e−(λ−µ)T

+
√

2α
µ

λ
σSTe

−(λ−µ)T +
√

2ασS

(
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
Te−

1
6

(λ−µ)T

+
√

2ασST

(
e−

1
2
λT +

2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−(λ−µ)T

)
√

6α
λ

λ− µ
E(S)T

((
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−

1
6

(λ−µ)T + e−(λ−µ)T

)

+ 2αE(S)

(
Te−

1
2
λT +

2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
Te−(λ−µ)T

)

+ α(2β + µ)E(S)

((
3

4
T 2 +

T

2(λ+ µ)

)(
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−

1
4

(λ−µ)T +
T 2

4

µ

λ
e−(λ−µ)T

)

+ α(2β + µ)E(S)T 2

(
2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
e−(λ−µ)T +

60λ3(λ+ µ)

(λ− µ)4
e−(λ+µ)T + e−

1
2
λT

)

+
4α

β + µ
E(S)

(
λ− µ
λ

+
β + λ

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

)
+

λ

β + µ+ λ

)
e−(λ−µ)T
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=

(√
2ασS +

√
6α

λ

λ− µ
E(S)

)(
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
Te−

1
6

(λ−µ)T

+
α

2
(2β + µ)E(S)

(
3

2
T +

1

λ+ µ

)(
1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T

)
Te−

1
4

(λ−µ)T

+

(√
2ασS + 2αE(S) + α(2β + µ)E(S)T

)
Te−

1
2
λT

+

(
αE(S)

(
4

βλ

(
λ− µ+ β

(
1 +

β + λ

β + µ
+

(
1 +

2β + µ

2
T

)
(λ− µ)T

)(
log

(
λ

λ− µ

)
+ (λ− µ)T

))
+
√

6
λ

λ− µ
T +

(2β + µ)µ

4λ
T 2 +

4(λ− µ)

λ(β + µ)
+

4

β + µ

λ

β + λ+ µ

)
+
√

2ασS

(
µ

λ
+

2(λ− µ)

λ

(
log

(
λ

λ− µ

)
+ (λ− µ)T

))
T

)
e−(λ−µ)T

+ 60α
λ3(λ+ µ)

(λ− µ)4
(2β + µ)E(S)T 2e−(λ+µ)T . (6.71)

In the remainder of the proof, we find a simpler upper bound by elementary calculations. In order to

do so, we assume T ≥ 2 log(4(λ(λ−µ)−1))
λ−µ . Then we have

1 + 2 log

(
λ

λ− µ

)
+ (λ− µ)T ≤ 5

2
(λ− µ)T,

e−
1
4

(λ−µ)T = e−
1
6

(λ−µ)T e−
1
12

(λ−µ)T ≤
(

4−
1
6 ∧ 12

(λ− µ)T

)
e−

1
6

(λ−µ)T ≤
(

2

5
∧ 12

(λ− µ)T

)
e−

1
6

(λ−µ)T ,

e−
1
2

(λ−µ)T = e−
1
6

(λ−µ)T e−
1
3

(λ−µ)T ≤ 4−
2
3 e−

1
6

(λ−µ)T ≤ 2

5
e−

1
6

(λ−µ)T

and finally 2 ≤ (λ − µ)T . Thus the first three lines of the right-hand side of (6.71) are smaller than

or equal to

α

((
5
√

6

2

λ

λ− µ
+

2

5
+

(
β +

µ

2

)(
229

5(λ− µ)
+

2

λ+ µ

))
E(S) +

27

10

√
2σS

)
(λ− µ)T 2e−

1
6

(λ−µ)T .

(6.72)

Note that we have the following inequalities:

log

(
λ

λ− µ

)
+ (λ− µ)T ≤ 3

2
(λ− µ)T,

1 + log

(
λ

λ− µ

)
+ (λ− µ)T ≤ 2(λ− µ)T,

e−(λ+µ)T = e−2µT e−(λ−µ)T ≤ 1

2µ

1

T
e−(λ−µ)T .

Thus the last four lines of (6.71) are smaller than or equal to

α

(
4(λ− µ)

βλ

(
1 +

3

2
β

(
1 +

β + λ

β + µ
+

(
1 +

2β + µ

2
T

)
(λ− µ)T

)
T

)
E(S)

+
√

2

(
µ

λ
T +

3(λ− µ)2

λ
T 2

)
σS +

(
β

2
+
µ

4

)
µ

λ
E(S)T 2 +

√
6

λ

λ− µ
E(S)T
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+
4(λ− µ)

λ(β + µ)
E(S) +

30λ3(λ+ µ)

µ(λ− µ)4
(2β + µ)E(S)T +

4

β + µ

λ

β + λ+ µ
E(S)

)
e−(λ−µ)T . (6.73)

We first consider those terms in (6.73) that depend on E(S). Since 2 ≤ (λ− µ)T , grouping the terms

where β dominates in the denominator, we have

8αE(S)

β

λ− µ
λ

e−(λ−µ)T +
4αλE(S)

β(β + λ+ µ)
e−(λ−µ)T +

6(λ− µ)

β
Te−(λ−µ)T

≤ αE(S)

β

(
2(λ− µ)2

λ
+ 2(λ− µ) + 6(λ− µ)

)
Te−(λ−µ)T

≤ αE(S)

β
10(λ− µ)Te−(λ−µ)T

≤ 5αE(S)

β
(λ− µ)2T 2e−(λ−µ)T ; (6.74)

grouping the β-free terms in (6.73) yields

αE(S)

(
12
λ− µ
λ

T + 3
(λ− µ)2µ

λ
T 3 + 3

(λ− µ)2

λ
T 2 +

µ2

4λ
T 2 +

√
6

λ

λ− µ
T +

30λ3(λ+ µ)

(λ− µ)4
T

)
e−(λ−µ)T

≤ 12αE(S)
λ− µ
λ

Te−(λ−µ)T + αE(S)

(
3(λ− µ)2

λ
(µT + 1) +

µ2

4λ
+

√
6λ

2
+

15λ3(λ+ µ)

(λ− µ)3

)
T 2e−(λ−µ)T

≤ αE(S)

(
3(λ− µ)2

λ
(µT + 3) +

µ2

4λ
+

√
6λ

2
+

15λ3(λ+ µ)

(λ− µ)3

)
T 2e−(λ−µ)T ; (6.75)

and considering the terms in (6.73) where β dominates in the numerator, we obtain

αβE(S)
µ

2λ
T 2e−(λ−µ)T + 16αβE(S)

λ3(λ+ µ)

µ(λ− µ)4
Te−(λ−µ)T + 6αβE(S)

(λ− µ)2

λ
T 3e−(λ−µ)T

≤ αβE(S)

(
µ

2λ
+

8λ3(λ+ µ)

µ(λ− µ)3
+ 6αβ

(λ− µ)2

λ
T

)
T 2e−(λ−µ)T . (6.76)

For the one term in (6.73) that depends on σS , the inequality 2 ≤ (λ− µ)T implies

√
2

(
µ

λ
T +

3(λ− µ)2

λ
T 2

)
σSe

−(λ−µ)T ≤
√

2

(
µ(λ− µ)

2λ
+

3(λ− µ)2

λ

)
σST

2e−(λ−µ)T

=
√

2
6λ2 − 5µλ+ µ2

2λ
σST

2e−(λ−µ)T

≤ 3
√

2λσST
2e−(λ−µ)T . (6.77)

Combining (6.74)-(6.77), we obtain the following upper bound for the right-hand side of (6.73):

αβ

((
1

2
+

µ

4β

)
µ

λ
+

(
8

µ
+

4

β

)
λ3(λ+ µ)

(λ− µ)3
+

(
6T +

√
6

2
+

3

β
(µT + 3) +

5λ

β2

)
λ

)
E(S)T 2e−(λ−µ)T

+ 3
√

2αλσST
2e−(λ−µ)T . (6.78)

The total upper bound for the theorem is the sum of (6.72) and (6.78), and this sum is obviously of

the desired order. �
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Figure 6.1: Estimated − log(dTV (MixPo(ΛT ),MixPo(M)))/(λT ) for S = α = β = λ = 1 and µ = 0

based on 106 (crosses), 500,000 (circles), 5,000 (squares) and 500 (triangles) simulated

realizations of a linear birth and death process, respectively

6.3.3 Sharpness of the convergence rates

In this subsection, we examine how close our convergence rates are to the actual ones by simulating

several quantities. For simplicity, we restrict ourselves to the pure birth case.

We set α = β = λ = 1 and begin with the case where the social index S is constant and equal to 1.

In Figure 6.1, we consider the total variation distance between the degree distribution MixPo(ΛT ) and

the asymptotic degree distribution MixPo(M). In order to estimate the total variation distance, we

consider Corollary 3.1.6, which yields

dTV (MixPo(ΛT ),MixPo(M)) =
1

2

∞∑
k=0

|f(k)− g(k)|,

where f and g denote the probability mass functions of the MixPo(ΛT ) and the MixPo(M) distribu-

tion, respectively. We computed the corresponding relative frequencies in order to approximate the

probability mass functions. Note that the very natural estimator we used here is biased such that

we need a huge number of iterations in order to obtain reliable results (see Figure 6.1). Note further
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Figure 6.2: Estimated − log(dTV (MixPo(ΛT ),MixPo(M)))/(λT ) for S ∼ Exp(1), α = β = λ = 1 and

µ = 0 based on 250,000 simulated realizations of a linear birth and death process

that most of the differences f(k)− g(k) are very small for large T , which can easily lead to numerical

problems.

Since the standard deviation σS is 0 in this case, Theorem 6.3.2 gives us the rate Te−λT . In

Figure 6.1, we consider the left-hand side in Theorem 6.3.2. More precisely, we consider the expression

− log(dTV (MixPo(ΛT ),MixPo(M)))/T , which is of the order λ + O(log(T )/T ) if our rate is sharp.

Indeed Figure 6.1 confirms that − log(dTV (MixPo(ΛT ),MixPo(M)))/(λT ) approaches a value close

to 1, i.e. our rate is close to the actual one in this case. The gap between 1 and the value simulated

(using 106 iterations) is due to a small simulation error or terms of lower order.

In order to examine the case where σS > 0, we consider S ∼ Exp(1). Theorem 6.3.2 gives us

the rate
√
Te−

λ
2
T . In Figure 6.2, we consider the expression − log(dTV (MixPo(ΛT ),MixPo(M)))/T

again, which is of the order λ/2 +O(log(T )/T ) if our rate is sharp. However, Figure 6.1 suggests that

− log(dTV (MixPo(ΛT ),MixPo(M)))/(λT ) approaches a value close to 1 again, i.e. our rate does not

seem to be sharp in this case.

6.3.22 Remark

Note that, due to the problems mentioned above, the simulations are very time-consuming and require
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Figure 6.3: Simulated − log(E(|ΛT −M|))/(λT ) for S ∼ Exp(1), α = β = λ = 1 and µ = 0 based on

250,000 simulated realizations of a linear birth and death process

a high computing capacity, which makes our theoretical results even more valuable. Note further that

the simulations for exponentially distributed social indices are computationally considerably more

costly than in the case where the social indices are deterministic, in particular because the expression

for ΛT given by (6.5) can be simplified in the latter case such that we do not need to simulate all ages

(or birth times). As a consequence, we used a relatively small number of iterations for Figure 6.2,

namely 250,000.

In the following, we examine which step of our derivation of our convergence rate leads to the

different order. We bounded the total variation distance from above by E(|ΛT −M|). In Figure 6.3, we

consider the quantity − log(E(|ΛT −M|))/T , which is approximately of the order λ if the rate that is

given by E(|ΛT −M|) is sharp. However, Figure 6.3 suggests that − log(E(|ΛT −M|))/(λT ) approaches

a value close to 1/2, i.e. the corresponding rate is close to our rate but not to the actual one.

Theorem 3.4.1 implies that we also could have used E(|
√

ΛT −
√

M|) instead of E(|ΛT −M|) as upper

bound for the total variation distance dTV (MixPo(ΛT ),MixPo(M)). However, Figure 6.4 suggests that

we would have obtained the same rate. Note that it is also plausible from a theoretical point of view

that E(|
√

ΛT −
√

M|) does not give us a better rate since we have that E(|ΛT − M|) is equal to
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Figure 6.4: Estimated − log(E(|
√

ΛT −
√

M|))/(λT ) for S ∼ Exp(1), α = β = λ = 1 and µ = 0 based

on 250,000 simulated realizations of a linear birth and death process

E(|
√

ΛT −
√

M| · (
√

ΛT +
√
M)). Note further that our proof would have become more difficult if we

used E(|
√

ΛT −
√

M|) instead of E(|ΛT −M|) as upper bound.

In order to examine further how our rate could be improved theoretically, we also consider the

minimal coupling of ΛT and M, i.e. the expression

inf
Λ̃:Λ̃
D
=Λ

M̃:M̃
D
=M

E(|Λ̃T − M̃|). (6.79)

Obviously, it is smaller than or equal to E(|ΛT −M|), and, by Remark 3.4.2, it is an upper bound

for dTV (MixPo(ΛT ),MixPo(M)). In order to be able to simulate the quantity (6.79) more effectively,

we use the following theoretical background. By Example 3.1.3, (6.79) is the Wasserstein distance

between L(ΛT ) and L(M). We also know from Example 3.1.3 that this Wasserstein distance can be

expressed as
∞∫
−∞

|P(ΛT ≤ x)− P(M ≤ x)|dx.
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Figure 6.5: Simulated − log(inf E(|Λ̃T − M̃|))/(λT ) for S ∼ Exp(1), α = β = λ = 1 and µ = 0 based

on 500,000 simulated realizations of a linear birth and death process, where we take the

infimum over all random variables Λ̃ and M̃ with Λ̃
D
= Λ and M̃

D
= M

In order to simulate this expression, we use the corresponding empirical distribution functions. Note

that we need a large number of iterations in order to approximate the integral in a reasonable way.

Figure 6.5 suggests that the rate corresponding to (6.79) is smaller than one, i.e. that this expression

decreases slower than the total variation distance. This indicates that the application of our mixed

Poisson approximation result does not lead to a sharp upper bound here. However, since the class of

mixed Poisson distributions is very large, it is difficult to find a better universal result, and even in

our special case, we do not expect to find a more precise approximation since the mixing distribution

of the MixPo(ΛT ) is very complex.

Note that Figure 6.5, which is based on 500,000 simulations of a linear birth and death process, is

not very satisfying since it does not allow to draw a clear conclusion about the rate. Unfortunately,

we cannot obtain a very convincing results here due to computational limitations.

We have reasons to doubt that our coupling is the optimal one since the situation in Figure 6.3 and

Figure 6.5 looks different. However, our coupling is a very natural one, which allows us to derive an

explicit upper bound.
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6.3.23 Remark

In the pure birth case, we can simulate the linear birth and death process efficiently by using the

distribution of the ages from Section 4.2. If nodes can die, we also need to consider the death

times, which makes the simulations very time-consuming. Therefore, we do not examine this case

numerically here. However, we note that a positive death rate µ leads to a higher variability in the

degree distributions for finite T since in particular the death of a highly connected node (hub) can

have a large impact. Thus we would not expect the same rate as in the pure birth case. However, the

actual factor in the exponential rate may well be larger than the one stated in Theorem 6.3.4.

6.4 Negligibility of multiple edges

In this section, we show that multiple edges are negligible (Lemma 6.4.4 below) and use this result to

prove Corollary 1.0.3 from the introduction, which states our main result for the case where multiple

edges are ignored.

First we consider the social index of a node that is connected to the node JT by an incoming edge.

6.4.1 Lemma

Given YT = n for n ∈ N \ {1}, the cumulative distribution function FS̃ of the social index S̃ of a node

i1 that is connected to JT at time T by an edge that was created by i1 is given by

FS̃(s) =

s∫
0

E
(

s1

s1
n−1 + 1

n−1

∑n−1
i=2 Si

)
PS(ds1) = E

(
S11[0,s](S1)

S1
n−1 + 1

n−1

∑n−1
i=2 Si

)
for s ≥ 0.

Proof : We condition on YT = n for n ∈ N \ {1}. Note that the conditional probability that s1 is the
social index of a node connected to JT at time T by an incoming edge given S1 = s1, . . . , Sn = sn and

JT = jT ∈ {2, . . . , n} is s1(
∑

i 6=jT si)
−1. Since the social indices are identically distributed, we thus

obtain by Bayes’ Theorem

FS̃(s) =

( ∫
[0,s]×[0,∞)n−2

s1∑n−1
i=1 si

PS(ds1) . . .PS(dsn−1)

)( ∫
[0,∞)n−1

s1∑n−1
i=1 si

PS(ds1) . . .PS(dsn−1)

)−1

=

( s∫
0

E
(

S1∑n−1
i=1 Si

∣∣∣∣S1 = s1

)
PS(ds1)

)(
E
(

S1∑n−1
i=1 Si

))−1

. (6.80)

Since we have

1 = E
(n−1∑
j=1

Sj∑n−1
i=1 Si

)
=

n−1∑
j=1

E
(

Sj∑n−1
i=1 Si

)
= (n− 1)E

(
S1∑n−1
i=1 Si

)
,

the right-hand side of (6.80) is equal to

s∫
0

E
(

(n− 1)
S1∑n−1
i=1 Si

∣∣∣∣S1 = s1

)
PS(ds1) =

s∫
0

E
(

s1

s1
n−1 + 1

n−1

∑n−1
i=2 Si

)
PS(ds1).

�
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6.4.2 Remark

Since
S11[0,s](S1)

S1
n−1 + 1

n−1

∑n−1
i=2 Si

≤ 1

almost surely and S1
n−1 → 0 and 1

n−1

∑n−1
i=2 Si → E(S) almost surely by the strong law of large number

as n → ∞, Lemma 6.4.1 and Fubini’s Theorem imply that the cumulative distribution function FS̃
from Lemma 6.4.1 converges to

E(S1[0,s](S))

E(S)

as n → ∞. Note that this is just the cumulative distribution function of the so-called size-biased

distribution by its definition (see e.g. (1.2.3) in [vdH16]). Thus the distribution of the social index of

a node i1 that is connected to JT at time T by an edge that was created by i1 converges weakly to the

size-biased distribution of the social index distribution. Since the size-biased distribution dominates

the original one stochastically (see e.g. Section 2.3 of [vdH16]), we may conclude that the neighbours

that are connected by incoming edges have asymptotically in average a higher social index than E(S).7

Since the distribution of the social index of a neighbour that is connected by an outgoing edge is

obviously just the social index distribution, the distribution of the social index of a neighbour picked

uniformly at random is a mixture of the distribution given by the cumulative distribution function

FSi1 from Lemma 6.4.1 and the social index distribution. We may conclude that this distribution

converges weakly to a mixture of the size biased distribution of the social index distribution and the

social index distribution, which is a result that was already stated in Subsection 3.3 of [BLT11].

6.4.3 Corollary

The expected value of the social index S̃ of a node i1 that is connected to JT at time T by an edge

that was created by i1 is bounded from above by

2σ2
S

c2E(S)
+

E(S2)

E(S)(1− c)

for any c ∈ (0, 1).

Proof : We condition on YT = n ∈ N \ {1}. By Lemma 6.4.1, the conditional expected value of the
social index S̃ of a node i1 that is connected to JT at time T by an edge that was created by i1 is

then equal to

∞∫
0

s1E
(

s1

s1
n−1 + 1

n−1

∑n−1
i=2 Si

)
PS(ds1) = E

(
S2

1
S1
n−1 + 1

n−1

∑n−1
i=2 Si

)
,

and we have

E
(

S2
1

S1
n−1 + 1

n−1

∑n−1
i=2 Si

)
≤ E

(
1{ 1

n−2

∑n−1
i=2 Si≤E(S)(1−c)}(n− 1)S1

)
7 This is result is similar to the result that neighbours have in average a higher degree than a node picked uniformly at

random (see e.g. Theorem 1.2 in [vdH16]).
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+ E
(
1{ 1

n−2

∑n−1
i=2 Si>E(S)(1−c)}

(n− 1)S2
1

(n− 2)E(S)(1− c)

)
≤ P

(
1

n− 2

n−1∑
i=2

Si ≤ E(S)(1− c)
)

(n− 1)E(S1) +
2E(S2

1)

E(S)(1− c)
,

where we use the convention 0
0 := 0. By Chebyshev’s inequality, we have

P
(

1

n− 2

n−1∑
i=2

Si ≤ E(S)(1− c)
)
≤ P

(∣∣∣∣ 1

n− 2

n−1∑
i=2

Si − E(S)

∣∣∣∣ ≥ cE(S)

)
≤ 1

(cE(S))2
Var

(
1

n− 2

n−1∑
i=2

Si

)
≤ 1

n− 2

σ2
S

(cE(S))2
,

which yields the desired result.

�

The following lemma states that multiple edges are negligible.

6.4.4 Lemma

The probability that an individual picked uniformly at random at time T has at least one multiple

edge given the number of nodes is positive at time T is of the order O(T 2e−
1
6

(λ−µ)T ) as T →∞.

Proof. Let DT denote the degree of the randomly picked node JT at time T , i.e. the number of edges

that are incident to the node picked uniformly at random at time T . Let ρ1 < . . . < ρDT be the birth

times of these edges. Condition on JT , DT , ρ1 < . . . < ρDT and (Yt)0≤t≤T . Let Bk be the event that

JT creates an outgoing edge at time ρk that is a multiple edge up to time T . Then the (conditional)

probability of Bk is smaller than or equal to

DT − 1

Yρk − 1
.

Note that
⋃DT
k=1Bk is the event that JT has at least one outgoing edge that is a multiple edge at

time T . By subadditivity, we have

P
(DT⋃
k=1

Bk

∣∣∣∣ JT , DT , ρ1, . . . , ρDT , (Yt)0≤t≤T , YT > 0

)

≤ min

(DT∑
k=1

P(Bk|JT , DT , ρ1, . . . , ρDT , (Yt)0≤t≤T , YT > 0), 1

)

≤ min

(DT∑
k=1

DT − 1

Yρk − 1
, 1

)
≤ min

(
D2
T

min
T−AJT (T )≤t≤T

Yt − 1
, 1

)
.
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Taking the expectation, we obtain

P
(DT⋃
k=1

Bk

∣∣∣∣ YT > 0

)
≤ E

(
min

(
D2
T

min
T−AJT (T )≤t≤T

Yt − 1
, 1

) ∣∣∣∣ YT > 0

)

≤ P(DT ≥ e
1
12

(λ−µ)T |YT > 0) + P
(

min
T−AJT (T )≤t≤T

Yt − 1 ≤ e
1
3

(λ−µ)T

∣∣∣∣YT > 0

)
+ E

(
min

(
e

1
6

(λ−µ)T

e
1
3

(λ−µ)T
, 1

) ∣∣∣∣ YT > 0

)
. (6.81)

Writing D∞ for a random variable having the asymptotic degree distribution MixPo(M∗) with M∗

defined at the beginning of Subsection 6.3.2, we obtain by conditioning on M∗ that the second moment

E(D2
∞) is equal to

2αE(S)

λ+ β + µ
+

2αE((S + E(S))2)

(λ+ β + µ)(λ+ 2(β + µ))
(cf. Subsection 3.3 of [BL10]).

Thus Theorem 6.3.4 and the Markov inequality imply

P(DT ≥ e
1
12

(λ−µ)T |YT > 0) ≤ E(D2
∞)e−

1
6

(λ−µ)T +O(T 2e−
1
6

(λ−µ)T )

≤
(

2αE(S)

λ+ β + µ
+

2αE((S + E(S))2)

(λ+ β + µ)(λ+ 2(β + µ))

)
e−

1
6

(λ−µ)T +O(T 2e−
1
6

(λ−µ)T )

= O(T 2e−
1
6

(λ−µ)T ).

For the second summand of the right-hand side of (6.81), we obtain

P
(

min
T−AJT (T )≤t≤T

Yt − 1 ≤ e
1
3

(λ−µ)T

∣∣∣∣ YT > 0

)
≤ P

(
max
T
2
≤t≤T

1

Yt
>

1

e
1
3

(λ−µ)T + 1

∣∣∣∣ YT > 0

)
+ P

(
AJT (T ) >

T

2

∣∣∣∣ YT > 0

)
. (6.82)

By Lemma 6.3.12, the second summand of the right-hand side is of the order O(e−
1
2

(λ−µ)T ) as T →∞.

With Y∞ = lim
t→∞

Yt, we have

P
(

max
T/2≤t≤T

1

Yt
>

1

e
1
3

(λ−µ)T + 1
, Y∞ > 0

∣∣∣∣ YT > 0

)
=

P
(

max
T/2≤t≤T

1
Yt
> 1

e
1
3 (λ−µ)T+1

, Y∞ > 0

)
P(YT > 0)

≤
P
(

max
T/2≤t≤T

1
Yt
> 1

e
1
3 (λ−µ)T+1

, Y∞ > 0

)
P(Y∞ > 0)

≤ P
(

max
T/2≤t≤T

1

Yt
>

1

e
1
3

(λ−µ)T + 1

∣∣∣∣ Y∞ > 0

)
.

Thus the first summand of the right-hand side of (6.82) is smaller than or equal to

P
(

max
T/2≤t≤T

1

Yt
>

1

e
1
3

(λ−µ)T + 1

∣∣∣∣ Y∞ > 0

)
+ P(Y∞ = 0|YT > 0). (6.83)
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The second summand is smaller than or equal to µ
λe
−(λ−µ)T by Lemma 6.3.5. By Corollary 6.3.9 and

the inequality (2) in Theorem 6.14 on page 99 in [Yeh95], the first summand of (6.83) is bounded from

above by

E
(

1

YT
2

∣∣∣∣ Y∞ > 0

)
(e

1
3

(λ−µ)T + 1) = O(Te−
1
2

(λ−µ)T )(e
1
3

(λ−µ)T + 1) = O(Te−
1
6

(λ−µ)T ),

where the first equality follows from Lemma 6.3.16.

We may conclude that the probability that JT has at least one outgoing edge that is a multiple edge

at time T is of the order O(Te−
1
6

(λ−µ)T )

Now we consider incoming edges. By conditioning on JT , (Si)i∈N and (Yt)0≤t≤T , we obtain that the

probability for the event B̃
(1)
i that node i creates an edge that connects i to JT at time T is smaller

than or equal to

E
(

1− exp

(
−αSiAJT

1

min
T−AJT (T )≤t≤T

Yt − 1

)∣∣∣∣YT > 0

)
≤ E

(
αSiAJT

1

min
T−AJT (T )≤t≤T

Yt − 1

∣∣∣∣YT > 0

)

≤ P
(

min
T−AJT (T )≤t≤T

Yt − 1 ≤ e
1
3

(λ−µ)T

∣∣∣∣ YT > 0

)
+ P

(
AJT >

T

2

∣∣∣∣ YT > 0

)
+ αE(S)

T

2
e−

1
3

(λ−µ)T .

Since we showed above that the first two summands are of the order O(Te−
1
6

(λ−µ)T ), the right-hand

side is of the order O(Te−
1
3

(λ−µ)T ).

We condition on B̃
(1)
i now and denote the birth time of the edge (i, JT ) corresponding to B̃

(1)
i by

ηi. Then we have for the conditional probability of the event B̃
(2)
i that i creates another edge (i, JT )

in the time interval (ηi, T ] ⊂ (T −AJT (T ), T ] that survives up to time T

P(B̃
(2)
i |B̃

(1)
i , YT > 0) ≤ E

(
1− exp

(
−αSiAJT

1

min
T−AJT (T )≤t≤T

Yt − 1

)∣∣∣∣B̃(1)
i , YT > 0

)

≤ E
(
αS̃AJT

1

min
T−AJT (T )≤t≤T

Yt − 1

∣∣∣∣YT > 0

)

≤ P
(

min
T−AJT (T )≤t≤T

Yt − 1 ≤ e
1
3

(λ−µ)T

∣∣∣∣ YT > 0

)
+ P

(
AJT >

T

2

∣∣∣∣ YT > 0

)
+ αE(S̃)

T

2
e−

1
3

(λ−µ)T ,

where S̃ denotes the social index of a node connected to JT at time T by an incoming edge. By

Corollary 6.4.3, the right-hand side is of the order O(Te−
1
3

(λ−µ)T ).

For simplicity, we denote the YT nodes alive at time T by 1, . . . , YT now. For the probability that

JT has at least two incoming edges from the same node at time T , we then obtain by subadditivity

P
( YT⋃

i=1
i 6=JT

B̃
(1)
i ∩ B̃

(2)
i

∣∣∣∣ YT > 0

)
≤ E

(
min

(YT−1∑
i=1

P
(
B̃

(1)
i ∩ B̃

(2)
i

∣∣ (Yt)0≤t≤T
)
, 1

) ∣∣∣∣ YT > 0

)

= E
(
min

(
(YT − 1)P

(
B̃

(1)
1 ∩ B̃(2)

1

∣∣ (Yt)0≤t≤T
)
, 1
) ∣∣ YT > 0

)
≤ e

7
6

(λ−µ)TP
(
B̃

(1)
1 ∩ B̃(2)

1 |YT > 0
)

+ P(YT − 1 > e
7
6

(λ−µ)T |YT > 0)



122 Chapter 6. The network model by Britton and Lindholm

By the Markov inequality, the second summand of the right-hand side is of the order O(e−
1
6

(λ−µ)T ).

For the first summand, we have

e
7
6

(λ−µ)TP
(
B̃

(1)
1 ∩ B̃(2)

1 |YT > 0
)

= e
7
6

(λ−µ)TP
(
B̃

(1)
1 |YT > 0

)
P
(
B̃

(2)
1 |B̃

(1)
1 , YT > 0

)
= e

7
6

(λ−µ)TO(Te−
1
3

(λ−µ)T )O(Te−
1
3

(λ−µ)T ) = O(T 2e−
1
6

(λ−µ)T ).

Altogether, we obtain that the probability that JT has at least one multiple edge is of the order

O(T 2e−
1
6

(λ−µ)T ).

Proof of Corollary 1.0.3

Recall that ν̃t denotes the distribution of the number of neighbours, νt the degree distribution at time

t and ν the asymptotic degree distribution. Lemma 6.4.4 implies that dTV (ν̃t, νt) = O(t2e−
1
6

(λ−µ)t) as

t→∞. From Theorem 1.0.2, we know that dTV (νt, ν) = O
(
t2e−

1
6

(λ−µ)t
)

as t→∞. Thus the triangle

inequality yields the desired result.

6.5 Heavy tails and power laws of the asymptotic degree distribution

Recall that the asymptotic degree distribution is

MixPo

(
α

β + µ

(
S + E(S)

)(
1− e−(β+µ)A

)
,

where A ∼ Exp(λ), S has the social index distribution, and A and S are independent. In this section,

we show that this asymptotic degree distribution can be heavy-tailed (Subsection 6.5.1) and exhibit

power law behaviour (Subsection 6.5.2). In order to do so, we choose a Pareto distribution, i.e. a

power law distribution (cf. Remark 5.2.4), as distribution of the social indices. This choice does not

only lead to the desired results, but can also “be naturally justified by arguing that power laws appear

rather generically in many contexts when one ranks, for example, people according to their incomes

or cities according to their population, etc.” ([CCRM02]).

6.5.1 Heavy tails of the asymptotic degree distribution

Note that the random variable Z := 1− e−(β+µ)A is Beta(1, λ
β+µ) distributed (see e.g. Subsection 3.3

of [BLT11]). For the social index, we choose the Pareto(θ − 1, b) distribution, i.e. the distribution

with Lebesgue density (θ−1)bθ−1

xθ
1{x≥b}, where b > 0 and θ > 3, and show that the mixed Poisson

distribution has heavy tails. Note that we chose the parameter θ such that the first two moments of

S exist.

In order to do so, we firstly apply the general Theorem 3.3.7 in order to show that MixPo( α
β+µSZ)

and the distribution of α
β+µSZ are tail equivalent (cf. Definition 3.3.4). Secondly, we show that the

distribution of α
β+µSZ has power law tails. Finally, we conclude that the asymptotic degree distribu-

tion MixPo( α
β+µ

(
S + E(S)

)
Z) has heavy tails.
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Theorem 3.3.7 states that the mixing distribution and the corresponding mixed Poisson distribution

are tail equivalent under some assumptions. These assumptions involve the density and the survival

function of the mixing distribution, which we derive now for the mixing distribution of MixPo( α
β+µSZ).

Firstly, we condition on Z = z ∈ [0, 1]. Let η = α
β+µ . We obtain for the conditional survival function

1− FηSZ|Z=z of ηSZ

1− FηSZ|Z=z(x) =
bθ−1ηθ−1zθ−1

xθ−1

for x ≥ ηbz since S is Pareto(θ − 1, b) distributed. By differentiation of FηSZ|Z=z, we obtain that the

conditional density is given by

fηSZ|Z=z(x) =
(θ − 1)bθ−1ηθ−1zθ−1

xθ
(6.84)

for x ≥ ηbz.
Using the density of the beta distribution, Equation (6.84) yields

fηSZ(x) =

1∫
0

1

B(1, λ
β+µ)

(1− z)
λ

β+µ
−1 (θ − 1)bθ−1ηθ−1zθ−1

xθ
1{z≤ x

ηb
}dz,

where fηSZ is the unconditional density of ηSZ and B denotes the beta function. Thus for x > ηb,

we have

fηSZ(x) =
1

xθ

1∫
0

1

B(1, λ
β+µ)

(1− z)
λ

β+µ
−1

(θ − 1)bθ−1ηθ−1zθ−1dz. (6.85)

Analogously, we obtain for the unconditional survival function

1− FηSZ(x) =

1∫
0

1

B(1, λ
β+µ)

(1− z)
λ

β+µ
−1 b

θ−1ηθ−1zθ−1

xθ−1
1{z≤ x

ηb
}dz,

and for x > ηb, we have

1− FηSZ(x) =
1

xθ−1

1∫
0

1

B(1, λ
β+µ)

(1− z)
λ

β+µ
−1
bθ−1ηθ−1zθ−1dz. (6.86)

6.5.1 Remark

Since the integral (6.86) does not depend on x, it is clear that the prerequisite of Proposition 3.3.3 is

fulfilled. Thus we obtain that there exist constants c̃1 < c̃2 such that

c̃1m
1−θ ≤ 1−G(m) ≤ c̃2m

1−θ, (6.87)

where G is the cumulative distribution function of the MixPo(ηSZ) distribution and m ∈ N0. In

particular, (6.87) implies that the MixPo(ηSZ) distribution is heavy-tailed. However, it is not difficult

either to obtain this result by applying Theorem 3.3.7, which we do now.
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Equations (6.85) and (6.86) imply

lim
x→∞

xfηSZ(x)

FηSZ(x)
=
C1

C2
= c > 0, (6.88)

where

C1 =

1∫
0

1

B(1, λ
β+µ)

(1− z)
λ

β+µ
−1

(θ − 1)bθ−1ηθ−1zθ−1dz ∈ (0,∞)

and

C2 =

1∫
0

1

B(1, λ
β+µ)

(1− z)
λ

β+µ
−1
bθ−1ηθ−1zθ−1dz ∈ (0,∞).

Equation (6.88) is just the first von Mises condition, which yields that the distribution of ηSZ and

MixPo(ηSZ) are tail equivalent by Theorem 3.3.7, i.e. that

lim
x→∞

1− FηSZ(x)

1−G(x)
= 1, (6.89)

where G is the cumulative distribution function of MixPo(ηSZ).

Note that (6.86) yields that the distribution of ηSZ is heavy-tailed if we choose Pareto(θ−1, b) with

b > 0 and θ > 3 as distribution of the social indices. Thus the tail equivalence stated in (6.89) implies

that the MixPo(ηSZ) distribution has heavy tails. Since the MixPo(ηSZ) distribution is stochastically

dominated by the asymptotic degree distribution MixPo(η(S + E(S))Z), this yields that the latter

also has heavy tails.

We would also like to show that the asymptotic degree distribution even exhibits power law be-

haviour (in the weak sense). In order to do so, we use another approach in the following subsection.

6.5.2 Power law behaviour of the asymptotic degree distribution

We use the same assumptions as before. However, we do not consider the distribution of ηSZ first,

but directly the mixing distribution, i.e. the distribution of η(S+E(S))Z, which leads to the following

theorem.

6.5.2 Theorem

Let the social indices be distributed according to the Pareto(θ − 1, b) distribution with b > 0 and

θ > 3. Then the the asymptotic degree distribution in the Britton-Lindholm model obeys a power law

with exponent θ in the weak sense.

Proof : Analogously to the derivation of fηSZ , we obtain for the density fη(S+E(S))Z of η(S + E(S))Z

fη(S+E(S))Z(x) =

1∫
0

1

B(1, λ
β+µ)

(1− z)
λ

β+µ
−1 (θ − 1)bθ−1ηθ−1zθ−1

(x− ηE(S)z)θ
1{z≤ x

η(b+E(S))}dz.

Let x ≥ ηb+ ηE(S). Then we obtain

fη(S+E(S))Z(x) =

1∫
0

1

B(1, λ
β+µ)

(1− z)
λ

β+µ
−1 (θ − 1)bθ−1ηθ−1zθ−1

(x− ηE(S)z)θ
dz. (6.90)
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On the one hand, the right-hand side of (6.90) is larger than or equal to

1∫
0

1

B(1, λ
β+µ)

(1− z)
λ

β+µ
−1

(θ − 1)bθ−1ηθ−1zθ−1dz
1

xθ
= C1

1

xθ
. (6.91)

On the other hand, since ηE(S)z ≤ ηE(S) for all z ∈ [0, 1], we have that the right-hand side of (6.90)

is smaller than or equal to

1∫
0

1

B(1, λ
β+µ)

(1− z)
λ

β+µ
−1

(θ − 1)bθ−1ηθ−1zθ−1dz
1

(x− ηE(S))θ
= C1

1

(x− ηE(S))θ
. (6.92)

Let D∞ ∼ MixPo(η(S + E(S))Z) and the function g be defined by g(x) = C1x
−θ. Then (6.91)

and (6.92) imply that fη(S+E(S))Z ∼ g, where the operator ∼ is defined in Definition 3.3.4. Thus

Theorem 3.3.8 yields P(D∞ = k) ∼ C1k
−θ, i.e.

lim
k→∞

kθP(D∞ = k) = C1.

This implies that for all ε̃ > 0, we can find a k0 ∈ N such that for all k > k0

(1− ε̃)C1

kθ
≤ P(D∞ = k) ≤ (1 + ε̃)

C1

kθ
.

Thus we have for the cumulative distribution function F of D∞ and all m ≥ k0

1− F (m) =

∞∑
k=m+1

P(D∞ = k) ≤ (1 + ε̃)C1

∞∑
k=m+1

1

kθ
≤ (1 + ε̃)C1

∞∫
m+1

(x− 1)−θdx

= (1 + ε̃)C1

∞∫
m

x−θdx = (1 + ε̃)C1
1

θ − 1
m1−θ

and on the other hand

1− F (m) =
∞∑

k=m+1

P(D∞ = k) ≥ (1− ε̃)C1

∞∑
k=m+1

1

kθ
≥ (1− ε̃)C1

∞∫
m+1

x−θdx

= (1− ε̃)C1
1

θ − 1
(m+ 1)1−θ.

Letting ε̃→ 0 yields

lim
m→∞

1− F (m)

m1−θ =
C1

θ − 1
. (6.93)

Let

ϕ(m) :=
1− F (m)

m1−θ .

Then (6.93) implies

lim
m→∞

ϕ(cm)

ϕ(m)
= lim

m→∞

1− F (cm)

(cm)1−θ
m1−θ

1− F (m)
=

C1

θ − 1

θ − 1

C1
= 1
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for all c > 0. Thus ϕ is a slowly varying function, and we have

1− F (m) = ϕ(m)m1−θ.

Consequently, the asymptotic degree distribution obeys a power law with exponent θ in the weak

sense. �

6.6 Further discussion of the asymptotic degree distribution

Recall that the asymptotic degree distributions is MixPo(M∗). Note that we have obtained a rigorous

proof of this result as a by-product of the proofs of Theorem 6.3.1, Theorem 6.3.2 and Theorem 6.3.4.

Inspired by the derivation of the asymptotic degree distribution in the Erdős-Rényi model, we can

give the following heuristic, but intuitive argument for the degree distribution being a mixed Poisson

distribution.

6.6.1 Remark

Let the population size YT = yT and the age a as well as the social index s of the node JT picked

uniformly at random at time T be given. Assume that T and yT are large. Then the probability that

JT is connected to some other node i is approximately f(a, s)/(yT − 1) for some function f since the

probability that a certain node becomes the “second” node of a newly created edge is 1
yT−1 during

the lifetime of JT if we ignore that the population size may change between the birth time of JT

and T . Thus the degree of JT is approximately Bin(yT −1, f(a, s)/(yT −1)) distributed, which can be

approximated by the Po(f(a, s)) distribution by the Poisson limit theorem. Lifting the conditioning

leads to a mixed Poisson distribution.

Note that the class of asymptotic degree distributions we obtained here is a rich one due to the high

variability in the choice of the model parameters (including the distribution of the social indices).

Since we know the asymptotic degree distribution, the model allows us to find a random network

for a given (asymptotic) degree distribution. This is to some extend, though not quite as flexible, as

in the configuration model. On the other hand, the configuration cannot provide a realistic model for

the evolution of the network.

We could now try to model real-world networks where a mixed Poisson distributions of the form

MixPo(M∗) might be realistic as degree distributions by using the Britton-Lindholm model. If we were

satisfied with any network model that has (approximately) the correct asymptotic degree distribution,

it would be sufficient to consider the pure birth case only since the class of mixed Poisson distributions

that we can obtain in the limit in this case is obviously the same as in the general case. However, the

model where nodes can die gives us a more realistic description of the evolution of many real-world

networks.

We could estimate the parameters of our model (including the distribution of the social indices) using

real-world network data and derive the asymptotic degree distribution for the estimated parameters,

which gives a prediction for the degree distribution of the real-world network at large finite times.

The approximation error can be bounded using Theorem 6.3.2 and Theorem 6.3.4.
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Furthermore, if a lack of data does not allow us to estimate all parameters, we could try to estimate

the asymptotic degree distribution, which might give us further information about the parameters.

For example, in the pure birth case or if the per-capita death rate µ is known in the general case, we

can (at least theoretically) identify the random variable M from the asymptotic degree distribution

due to the identifiability of mixed Poisson distributions given by Proposition 3.3.2. Then M provides

us with more information about the parameters.

Finally, we consider a case where it is possible to derive the asymptotic degree distribution more

explicitly.

6.6.2 Example

Recall that the random variable Z := 1− e−(β+µ)A is Beta(1, λ
β+µ) distributed and MixPo(SZ) is the

asymptotic degree distribution we are interested in. Assume that λ = β + µ. Then Z is uniformly

distributed on [0, 1] since the Beta(1, 1) distribution is the uniform distribution on [0, 1]. Furthermore,

let S = s be deterministic for some s > 0. The random variable SZ is then uniformly distributed

on [0, s]. Thus the asymptotic degree distribution MixPo(SZ) is a Poisson-uniform distribution (also

called Poisson-rectangular distribution) considered e.g. in Section 2.8. of [Grz06]. By (2.39) in [Grz06],

the corresponding probability mass function is

1

s

(
1− e−s

k∑
l=0

sl

l!

)
.

Note that the Poisson-uniform distribution is applied in linguistics in order to describe the lengths of

words (see e.g. [Grz06]).

6.7 The pure birth case with immortal edges

Up to now, we only considered the case where the edges die. Now we assume that µ = β = 0, i.e.

both nodes and edges are immortal. In order to obtain the degree distribution, we treat the outgoing

and incoming edges separately again.

6.7.1 The number of outgoing edges in the pure birth case with immortal edges

We can derive the distribution of the number of outgoing edges analogously to the procedure in

Subsection 6.2.1. We condition on JT = jT , SJT = sjT , AJT = ajT and A2 = a2. Then the number of

outgoing edges evolves according to a Poisson process of rate αsjT started in zero at time T−amax(jT ,2).

Consequently, the number of outgoing edges at time T is Po(αsjT amax(jT ,2)) distributed by Remark

2.1.4. Thus lifting the conditioning leads to the MixPo(αSJTAmax(JT ,2)) distribution. Note that this

distribution converges to the

MixPo(αSA)

distribution as T →∞, where S and A are defined as before.
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6.7.2 The number of incoming edges in the pure birth case with immortal edges

We proceed analogously to Subsection 6.2.2. We condition on (Yt)0≤t≤T = (yt)0≤t≤T , the social indices

(Sk)k∈N = (sk)k∈N, JT = jT and the ages T = a1 > . . . > ayT . Let i ∈ {1, . . . , yT } \ {jT } be a node,

and consider a time interval [T − al, T − al+1), where l ≥ i∨ 2. The number of edges created by i that

connect i to jT evolves according to a Poisson process of rate αsi
1
l−1 . Thus the total number of edges

created by i in the interval [T − al, T − al+1) that connect i to jT has distribution

Po

(
αsi
l − 1

(al − al+1)

)
.

As in Subsection 6.2.2, we use an induction argument in order to obtain that the number of incoming

edges has distribution

Po

( yT∑
i=1
i 6=jT

αsiayT
yT − 1

+

yT∑
i=1
i 6=jT

yT−1∑
l=i∨jT

αsi(al − al+1)

l − 1

)
.

Thus lifting the conditioning leads to the distribution

MixPo

( YT∑
i=1
i 6=JT

αSiAYT
YT − 1

+

YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

αSi(Al −Al+1)

l − 1

)
.

Note that this distribution converges to

MixPo(αE(S)A))

as T →∞ (cf. Subsection 6.3.1), where S and A are defined as before.

6.7.3 The degree distribution in the pure birth case with immortal edges

By adding the random parameters of the distributions of outgoing and incoming edges, we obtain that

the mixed Poisson distribution describing the degree of a node picked uniformly at random in the pure

birth case with immortal edges has the random parameter

αSJTAmax(JT ,2) +

YT∑
i=1
i 6=JT

αSiAYT
YT − 1

+

YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

αSi(Al −Al+1)

l − 1
.

Note that this distribution converges to the

MixPo(α(S + E(S))A)

distribution as T →∞, where S and A are defined as before.

6.7.1 Remark

It is easy to see that we can obtain the same convergence rates as in the case where edges can die

analogously to the procedure in Subsection 6.3.1. Indeed the proof becomes even slightly easier if

edges cannot die.
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For the time being, we condition on S = s. We then have α(S + E(S))A ∼ Exp( λ
α(s+E(S))) since

A ∼ Exp(λ). For X ∼ MixPo(α(s+ E(S))A), we thus obtain

P(X = k) = λ̃

∞∫
0

e−λ̃x
xk

k!
e−xdx =

(
1
λ̃

1
λ̃

+ 1

)k
1

1
λ̃

+ 1

for k ∈ N0, where λ̃ = λ
α(s+E(S)) (cf. page 213 in [JKK05]). Thus for a deterministic social index, the

asymptotic degree distribution is a geometric distribution. Lifting the conditioning, we see that for any

social index distribution, the asymptotic degree distribution is a mixture of geometric distributions.

6.7.2 Remark

(i) Let X(out) be distributed according to the asymptotic distribution of outgoing edges. Then by

the same reasoning as above, we obviously obtain that, conditioned on S = s, the asymptotic

distribution of outgoing edges is given by

P(X(out) = k) = λ̃1

∞∫
0

e−λ̃1x
xk

k!
e−xdx =

( 1
λ̃1

1
λ̃1

+ 1

)k
1

1
λ̃1

+ 1
(6.94)

for k ∈ N0, where λ̃1 = λ
αs . Thus the unconditional asymptotic distribution of outgoing edges is

the same mixture of geometric distribution that we obtained as asymptotic degree distribution

for a special case of the SHR model in Section 5.4 if we choose λ = α.

Let λ = α, and let S be a random variable such that S+1 ∼ Pareto(θ−1, 1) where θ > 2. Then we

have U := log(S+1) ∼ Exp(θ−1) by a well-known property of the Pareto distribution. By (6.94),

the asymptotic distribution of the out-degree is then a mixture of geometric distributions with

mixing distribution L(1/(S + 1)) = L(e−U ). By Remark 3.2 in [Rei09], this mixture is the Yule-

Simon distribution with parameter θ−1 shifted by one, which obeys a power law with exponent θ

in the weak sense by Remark 5.4.9. Note that this is the asymptotic distribution of the in-degree

in the classical preferential attachment model defined in Definition 5.4.1 (cf. Theorem 5.4.4) if we

choose θ = 3. Note further that we obtain the asymptotic degree distribution of the continuous-

time preferential attachment model defined in Definition 5.4.13 for general θ. Thus we can obtain

a continuous-time fitness model that has essentially the same asymptotic degree distribution as

those preferential attachment models, i.e. a distribution that obeys a power law with exponent θ,

by slightly changing how the edges are created, for example as follows. We could create new

edges similar to the procedure in Definition 5.4.13, i.e. first create half-edges instead of complete

edges that are joined together in the order in which they are created, and thereby remove the

incoming edges in the original model.

(ii) Let X(in) be distributed according to the asymptotic distribution of incoming edges. Then we

obtain that the asymptotic distribution of the number of incoming edges is given by

P(X(in) = k) = λ̃2

∞∫
0

e−λ̃2x
xk

k!
e−xdx =

( 1
λ̃2

1
λ̃2

+ 1

)k
1

1
λ̃2

+ 1
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for k ∈ N0, where λ̃2 = λ
αE(S) . Note that we obtain the same geometric distribution that is the

asymptotic degree distribution in the uniform attachment model if we choose λ, α and S such

that λ̃2 = 1, e.g. α = λ and S such that E(S) = 1 (cf. Section 5.4). Obviously, for all admissible

parameters we have a distribution that can be obtained as asymptotic degree distribution in the

SHR model from Section 5.4.

Note further that we obtain the same asymptotic distribution as in the case where m > 1 edges

are added per time step in the model considered in [BRS+01] (cf. Remark 5.4.18) if we choose

λ = 1/m and α and S such that αE(S) = 1, where 1/m can be interpreted as discrete-time birth

rate of the node population.8

Furthermore, we obtain the same distribution as in the model considered in [CHK+01] with

parameter δ (cf. Remark 5.4.18) if we choose λ = 1 and α and S such that αE(S) = 2δ. This is

plausible since 2δ can be seen as discrete-time birth rate of the edges, which should be closely

related to the ”average” birth rate αE(S) of the edges in the model by Britton and Lindholm.

8 However, in the model from [BRS+01] the birth rate of the node population is constant whereas this rate is linear in the

model by Britton and Lindholm.



7 A spatial network model

7.1 Model and main result

In this chapter, we extend our model by the spatial aspect. We assume that nodes are located in some

Euclidean space, and the rates at which edges are created depend on the distances between the nodes.

Spatial models are important for certain real-world networks such as social networks. Note that the

spatial component can obviously lead to a higher clustering, represented by a higher clustering coeffi-

cient (cf. Remark 5.1.7).

For the sake of simplicity, we stick to the pure birth case, where nodes cannot die. Let each node

i be equipped with a position that is denoted by P(i) and uniformly distributed on a m-dimensional

unit hypercube C independent from all other random variables.9 Since we do not want to treat edge

effects, we define the metric

d : C × C → [0,∞), (x, y) 7→ min

(
||x− y||, min

K⊂{1,...,m}
(||x+ eK − y||), min

K⊂{1,...,m}
(||y + eK − x||)

)
,

where eK =
∑

k∈K ek and ek denotes the kth standard unit vector, i.e. the vector whose entries are all

zero except of the kth one that is one.

Note that one can think of the nodes being placed on a m-dimensional torus.

We assume that so-called potential edges are created in the same way (including the same rates)

as the edges in the non-spatial case. However, each potential edge between nodes i and j is deleted

instantaneously with probability 1− ψ(d(P(i),P(j))) (independently from all other events) for some

measurable function ψ : [0, 1/2]→ [0, 1]. All potential edges that are not deleted become actual edges

instantaneously.

Since the above procedure can be interpreted as thinning, each living node i creates edges that

connect i to some other living node j at rate

Siψ(d(P(i),P(j)))

l − 1

at time t if l nodes are alive at this time (cf. Section 6.2). Analogously to the procedure in the

9 Note that the positions of nodes are uniformly distributed in space in most spatial preferential attachment models as

well; see e.g. Subsection IV.D. of [Bar11].
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non-spatial case, we thus obtain the following distribution for the number of incoming edges:

MixPo

(
α

β

YT∑
i=1
i 6=JT

Siψ(d(P(i),P(JT )))
1

YT − 1
(1− e−βAYT (T ))

+
α

β

YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

Siψ(d(P(i),P(JT )))
1

l − 1
(e−βAl+1(T ) − e−βAl(T ))

)
. (7.1)

For the outgoing edges, the ψ-term necessitates the analogue node-by-node analysis as for the incoming

edges, yielding

MixPo

(
α

β

YT∑
i=1
i 6=JT

SJTψ(d(P(i),P(JT )))
1

YT − 1
(1− e−βAYT (T ))

+
α

β

YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

SJTψ(d(P(i),P(JT )))
1

l − 1
(e−βAl+1(T ) − e−βAl(T ))

)
. (7.2)

7.1.1 Definition and Remark

Let ψ̄ = E(ψ(d(U1, U2)) ≤ 1, where U1 and U2 are independent and uniformly distributed on C. Note

that L(d(U1, U2)) = L(d(U1, u2)) and thus ψ̄ = E(ψ(d(U1, u2)) for any fixed u2 ∈ C. Note further that

L(d(U1, U2)) = L(d(U1, u2)) = L(U) in the one-dimensional case for all fixed u2 ∈ C and a random

variable U that is uniformly distributed on [0, 1/2] so that ψ̄ = E(ψ(U)).

The asymptotic degree distribution is now given by the following corollary, which follows directly

from Theorem 7.1.5 below.

7.1.2 Corollary

Let SJ∞ and AJ∞ be defined as in the non-spatial case. Then

MixPo

(
αψ̄

β
(SJ∞ + E(S))(1− e−βAJ∞ )

)
(7.3)

is the asymptotic degree distribution.

In order to simplify notation, let ΛT be the random parameter of the degree distribution, i.e. the

sum of the random parameters of the distributions (7.1) and (7.2), and let M be the random parameter

of the asymptotic degree distribution (7.3). Then the following main theorem of this section yields

the corresponding convergence rate.

7.1.3 Theorem

We have

dTV (MixPo(ΛT ),MixPo(M))

≤ 4α

λ
C(S, ψd,P1,2 )E

(
1√
YT

)
+

4α

λ
ψ̄E(S)E

(
1

YT

)
+ E(S)

αλ

β(β + λ)

1

eλT − 1
,

where C(S, ψd,P1,2 ) =
√

Var(S1ψ
d,P
1,2 ) + E(S)

√
Var(ψd,P1,2 ) with ψd,P1,2 = ψ(d(P(1),P(2))).
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7.1.4 Definition and Remark

Let σ2
ψ = Var(ψd,P1,2 ), where ψd,P1,2 = ψ(d(P(1),P(2))). Then we have σ2

ψ = Var(ψ(d(U1, U2))) for U1

and U2 being independent and uniformly distributed on C. Note that we can use

Var(S1ψ
d,P
1,2 ) ≤ σ2

Sσ
2
ψ + (E(S))2σ2

ψ + σ2
Sψ̄

2 ≤ E(S2)σ2
ψ + σ2

Sψ̄
2

in order to bound C(S, ψd,P1,2 ) in the upper bound from Theorem 7.1.3.

Note further that we have σ2
ψ = Var(U) for U being uniformly distributed on [0, 1/2] in the one-

dimensional case (cf. Definition and Remark 7.1.1).

The following theorem gives the corresponding convergence rate.

7.1.5 Theorem

For T ≥ log(2)/λ, we have

dTV (MixPo(ΛT ),MixPo(M)) ≤
√

32α√
λ
C(S, ψd,P1,2 )

√
Te−

1
2
λT + 4αψ̄E(S)

(
2T +

λ

β(β + λ)

)
e−λT ,

where C(S, ψd,P1,2 ) is defined as in Theorem 7.1.3 above, and for T →∞, the right-hand side is of the

order O(
√
Te−

1
2
λT ) if σS is finite.

Proof : The inequality follows directly from Theorem 6.3.1, Proposition 2.2.4 and Corollary 2.2.5. �

7.1.6 Remark

Note that a node JT picked uniformly at random can only have a multiple edge if there have been at

least two potential edges up to time T that connected JT to the same node. Since the potential edges

are created in the same way as the (ordinary) edges in the non-spatial case, the negligibility of multiple

edges follows from the corresponding result in the case considered in Lemma 6.4.4. More precisely,

the probability that JT has at least one multiple edge at time T is of the order O(T 2e−
1
6

(λ−µ)T ) in the

spatial case as well.

7.2 Proof of the main theorem

In order to simplify the notation, we set ψd,Pi,j = ψ(d(P(i),P(j))) for i, j ∈ N. As in the non-spatial

case, we apply Theorem 3.4.1 and obtain

dTV (MixPo(ΛT ),MixPo(M)) ≤ E(|ΛT −M |)

≤ E
∣∣∣∣αβ

YT∑
i=1
i 6=JT

(Si + SJT )ψd,Pi,JT
1

YT − 1
(1− e−βAYT (T ))

∣∣∣∣ (7.4)

+ E
∣∣∣∣αβ

YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

(Si + SJT )ψd,Pi,JT
1

l − 1
(e−βAl+1(T ) − e−βAl(T ))− αψ̄

β
(SJ∞ + E(S))(1− e−βAJ∞ )

∣∣∣∣.
(7.5)
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Upper bound for (7.4)

By conditioning on YT , JT and the conditional independence of node positions, social indices and ages,

we obtain analogously to the non-spatial case (compare the derivations of the upper bounds for (6.9)

in the pure birth and for (6.45) and (6.46) in the general case) that the expectation (7.4) is equal to

2ψ̄
α

β
E
( YT∑

i=1
i 6=JT

E(S)

YT − 1
(1− E(e−βAYT (T )|YT ))

)
.

The outer expectation is just the right-hand side of (6.9), which we already know to be bounded from

above by (6.10), i.e. by

β

λ
E(S)E

(
1

YT

)
.

Upper bound for (7.5)

The expectation in (7.5) is bounded from above by

E
∣∣∣∣αβ

YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

(Si + SJT )ψd,Pi,JT − (E(S) + SJ∞)ψ̄

l − 1
(e−βAl+1(T ) − e−βAl(T ))

∣∣∣∣ (7.6)

+
α

β
E
∣∣∣∣(SJ∞ + E(S))ψ̄(1− e−βAJ∞ )−

YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

(E(S) + SJ∞)ψ̄

l − 1
(e−βAl+1(T ) − e−βAl(T ))

∣∣∣∣ (7.7)

Expression (7.6) corresponds to the second term on the right-hand side of (6.8) and the expression

(7.7) to the combined third and fourth term. Since we arranged SJT = SJ∞ , the term (7.6) is bounded

from above by

E
∣∣∣∣αβ

YT−1∑
l=JT∨2

1

l − 1

l∑
i=1,i 6=JT

(
(Si + SJ∞)ψd,Pi,JT − (E(S) + SJ∞)ψ̄

)
(e−βAl+1(T ) − e−βAl(T ))

∣∣∣∣
≤ E

∣∣∣∣αβ
YT−1∑
l=JT∨2

1

l − 1

l∑
i=1,i 6=JT

(
Siψ

d,P
i,JT
− E(S)ψ̄

)
(e−βAl+1(T ) − e−βAl(T ))

∣∣∣∣
+ E

∣∣∣∣αβSJ∞
YT−1∑
l=JT∨2

1

l − 1

l∑
i=1,i 6=JT

(
ψd,Pi,JT − ψ̄

)
(e−βAl+1(T ) − e−βAl(T ))

∣∣∣∣. (7.8)

The first summand of the right-hand side is smaller than or equal to

E
(
E
(
α

β

YT−1∑
l=JT∨2

1

l − 1

l∑
i=1,i 6=JT

|Siψd,Pi,JT − E(S)ψ̄|(e−βAl+1(T ) − e−βAl(T ))

∣∣∣∣ (Yt)0≤t≤T , JT

))

≤ E
(
α

β

YT−1∑
l=JT∨2

(e−βAl+1(T ) − e−βAl(T ))E
(∣∣∣∣ 1

l − 1

l∑
i=1,i 6=JT

(Siψ
d,P
i,JT
− E(S)ψ̄)

∣∣∣∣ ∣∣∣∣ (Yt)0≤t≤T , JT

))
. (7.9)
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Since the random variables (Si, ψ
d,P
i,JT

)i 6=JT , are stochastically independent from (Yt)0≤t≤T , JT and are

identically distributed with expectation E(S)ψ̄, we obtain analogously to the non-spatial case that

(7.9) is bounded from above by

E
(
α

β

YT−1∑
l=JT∨2

E(e−βAl+1(T ) − e−βAl(T )|YT )
1√
l − 1

√
Var(S1ψ

d,P
1,2 )

)
.

The second summand of the right-hand side of (7.8) is smaller than or equal to

E
(
E
(
α

β
SJ∞

YT−1∑
l=JT∨2

∣∣∣∣ 1

l − 1

l∑
i=1,i 6=JT

(ψd,Pi,JT − ψ̄)

∣∣∣∣(e−βAl+1(T ) − e−βAl(T ))

∣∣∣∣ YT , JT))

= E
(
E(SJ∞)E

(
α

β

YT−1∑
l=JT∨2

∣∣∣∣ 1

l − 1

l∑
i=1,i 6=JT

(ψd,Pi,JT − ψ̄)

∣∣∣∣(e−βAl+1(T ) − e−βAl(T ))

∣∣∣∣ YT , JT))

= E
(
E(SJ∞)

α

β

YT−1∑
l=JT∨2

E
(∣∣∣∣ 1

l − 1

l∑
i=2

(ψd,Pi,1 − ψ̄)

∣∣∣∣)E(e−βAl+1(T ) − e−βAl(T )|YT )

)
,

where the last equality holds since the sum
∑l

i=1,i 6=JT |ψ
d,P
i,JT
− ψ̄| is (stochastically) independent from

JT and the positions of the nodes are independent from (Yt)0≤t≤T and JT . With the same argument

as above, we obtain that the right-hand side is bounded from above by

E
(
α

β
E(S)

√
Var(ψd,P1,JT

)

YT−1∑
l=JT∨2

E(e−βAl+1(T ) − e−βAl(T )|YT )
1√
l − 1

)
.

Altogether, this yields that (7.6) is smaller than or equal to

α

β
C(S, ψd,P1,2 )E

( YT−1∑
l=JT∨2

E(e−βAl+1(T ) − e−βAl(T )|YT )
1√
l − 1

)

=
α

β
C(S, ψd,P1,2 )E

( YT−1∑
l=JT∨2

E(e−βAl+1(T )(1− e−β(Al(T )−Al+1(T )))|YT )
1√
l − 1

)

≤ α

β
C(S, ψd,P1,2 )E

( YT−1∑
l=JT∨2

E(1− e−β(Al(T )−Al+1(T ))|YT )
1√
l − 1

)
, (7.10)

where C(S, ψd,P1,2 ) =
√

Var(S1ψ
d,P
1,2 ) + E(S)

√
Var(ψd,P1,2 ). Now we observe that the right-hand side of

this expression is equal to the right-hand side of (6.11) if we substitute the constant factor σS by the

constant factor in the right-hand side of (7.10). Thus we only need to substitute this factor in the

upper bound that we derived for the right-hand side of (6.11) in order to obtain the following upper

bound for the right-hand side of (7.10):

4α

λ
C(S, ψd,P1,2 )E

(
1√
YT

)
.
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For the expectation in (7.7), we have

E
∣∣∣∣(SJ∞ + E(S))ψ̄((1− e−βAJ∞ )−

YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

(E(S) + S∞)ψ̄

l − 1
(e−βAl+1(T ) − e−βAl(T ))

∣∣∣∣
≤ 2ψ̄E

∣∣∣∣E(S)(1− e−βAJ∞ )−
YT∑
i=1
i 6=JT

YT−1∑
l=i∨JT

E(S)

l − 1
(e−βAl+1(T ) − e−βAl(T ))

∣∣∣∣.
Note that the (outer) expectation in this expression is the left-hand side of (6.12), which we already

showed to be bounded from above by

β

λ
E(S)E

(
1

YT

)
+ E(S)

λ

β + λ

1

eλT − 1
.

Conclusion

Altogether, we obtain that dTV (MixPo(ΛT ),MixPo(M)) is bounded from above by

4α

λ
C(S, ψd,P1,2 )E

(
1√
YT

)
+

4α

λ
ψ̄E(S)E

(
1

YT

)
+ 2E(S)ψ̄

αλ

β(β + λ)

1

eλT − 1
.

7.3 Examples

7.3.1 The ”hardcore” case

(a) T=3 (b) T=4

Figure 7.1: Simulated realizations of the one-dimensional “hardcore” case of the spatial model with

α = 4, β = λ = 1 and R = 0.2 for T = 3 and T = 4 and deterministic social indices.
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(a) T=3 (b) T=4

Figure 7.2: Simulated realizations of the one-dimensional “hardcore” case of the spatial model with

α = 4, β = λ = 1 and R = 0.2 for T = 3 and T = 4 and Pareto(3, 2/3) distributed social

indices.

First we consider the case where edges appear if and only if the distance between the corresponding

nodes is not larger than some fixed value 0 < R ≤ 1/2, i.e. the function ψ is given by

ψ(x) = 1{x̃:|x̃|≤R}(x).

In order to apply Theorem 7.1.5, we need ψ̄ and σψ, which are given by the following lemma.

7.3.1 Lemma

For the m-dimensional case with ψ(x) = 1{x̃:|x̃|≤R}(x), we have

ψ̄ =
π
m
2

Γ(m2 + 1)
Rm =


π
m
2

(m
2

)!R
m if m is even,

2(m−1
2

)!(4π)
m−1

2

m! Rm if m is odd

and

σ2
ψ =

π
m
2

Γ(m2 + 1)
Rm
(

1− π
m
2

Γ(m2 + 1)
Rm
)

=


π
m
2

(m
2

)!R
m

(
1− π

m
2

(m
2

)!R
m

)
if m is even,

2(m−1
2

)!(4π)
m−1

2

m! Rm
(

1− 2(m−1
2

)!(4π)
m−1

2

m! Rm
)

if m is odd.

Proof : Note that ψ̄ = E(ψ(d(U1, U2)) = E(ψ(d(U1, u2)) = E(1{ψ(d(U1,u2))≤R}), where U1 and U2

are independent and uniformly distributed on C and u2 ∈ C, is the probability that the distance of

a random node to a fixed one is less or equal to R. This probability is equal to the volume of a

m-dimensional ball with radius R. Thus we obtain the desired expressions for ψ̄.
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Alternatively, we can compute E(ψ(d(U1, U2)) directly. For the sake of simplicity, we only state the

computation for m = 1 here.10 In this case, we have

E(ψ(d(U1, U2)) = E(1{d(U1,U2)≤R})

=

1∫
0

1∫
0

1{|x−y|≤R}dxdy

=

R∫
0

( y+R∫
0

1dx+

1∫
y+1−R

1dx

)
dy +

1−R∫
R

y+R∫
y−R

1dxdy +

1∫
1−R

( 1∫
y−R

1dx+

y−1+R∫
0

1dx

)
dy

=

R∫
0

2Rdy +

1−R∫
R

2Rdy +

1∫
1−R

2Rdy

=

1∫
0

2Rdy = 2R.

Note that E(ψ(d(U1, U2)) = E((ψ(d(U1, U2))2) since ψ is an indicator function. This yields the

expressions for

σ2
ψ = Var(ψ(d(U1, U2)) = E((ψ(d(U1, U2))2)− (E(ψ(d(U1, U2)))2 = ψ̄ − ψ̄2.

�

Combining Corollary 7.1.2 and Lemma 7.3.1, we obtain the following corollary.

7.3.2 Corollary

For ψ(x) = 1{x̃:|x̃|≤R}(x), we have that

MixPo

(
απ

m
2

βΓ(m2 + 1)
Rm(SJ∞ + E(S))(1− e−βAJ∞ )

)
is the asymptotic degree distributions in the m-dimensional case.

Theorem 7.1.5, Definition and Remark 7.1.4 and Lemma 7.3.1 yield the following corollary, which

provides convergence rates.

7.3.3 Corollary

In the m-dimensional case with ψ(x) = 1{x̃:|x̃|≤R}(x), we have

dTV (MixPo(ΛT ),MixPo(M))

≤
√

32α√
λ

(√
σ2
S + E(S2) + E(S)

)(
π
m
2

Γ(m2 + 1)

) 1
2

R
m
2

√
Te−

1
2
λT

+ 4α
π
m
2

Γ(m2 + 1)
RmE(S)

(
2T +

λ

β(β + λ)

)
e−λT

for T ≥ log(2)/λ.

10 Note that we do not use the simpler form of ψ(d(U1, U2)) given in Definition and Remark 7.1.1 here for illustrative

reasons.
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7.3.4 Remark

Since decreasing R can be interpreted as enlarging the hypercube C by rescaling, it is also interesting

to consider the limit of the upper bound in Corollary 7.3.3 for R → 0. In order to obtain interesting

behaviour, we let α, i.e. the birth rates of the edges, increase as R decreases in an appropriate way in

the following corollary, which follows immediately from Corollary 7.3.3.

7.3.5 Corollary

In them-dimensional case with ψ(x) = 1{x̃:|x̃≤R}(x), we set α = Γ(m2 +1)π−m/2R−m. For T ≥ log(2)/λ,

we then have

dTV (MixPo(ΛT ),MixPo(β−1(SJ∞ + E(S))(1− e−βAJ∞ )))

≤
√

32√
λ

(√
σ2
S + E(S2) + E(S)

)(
Γ(m2 + 1)

π
m
2

) 1
2

R−
m
2

√
Te−

1
2
λT + 4E(S)

(
2T +

λ

β(β + λ)

)
e−λT .

7.3.6 Remark

We may now let R = R(T ) converge to zero as T → ∞ in such way that the upper bound from

Corollary 7.3.5 still converges to zero as T →∞. As a result, we can obtain a approximation for the

degree distribution at some finite time T and an upper bound for the corresponding approximation

error for small R. Since a small R corresponds to a large hypercube (see Remark 7.3.4 above), this

result might be interesting for applications.

7.3.2 Edge probability depending linearly on distance

For the sake of simplicity, we stick to the one-dimensional case here. We consider the case where the

probability for a potential edge to be deleted is proportional to two times the distance between the

corresponding nodes, i.e. the function ψ is given by

ψ(x) = 1− 2x.

In order to obtain an upper bound for dTV (MixPo(ΛT ),MixPo(M)) from Theorem 7.1.5, we need the

following lemma.

7.3.7 Lemma

For the one-dimensional case with ψ(x) = 1− x, we have

ψ̄ =
1

2
and σ2

ψ =
1

12
.

P roof : Let U1, U2 and U be defined as in Definition and Remark 7.1.1. We then have

ψ̄ = E(ψ(d(U1, U2)) = E(ψ(U)) = 1− 2E(U) =
1

2
.

Furthermore, we obtain

E((ψ(d(U1, U2)))2) = E(ψ(U)2) = E((1− 2U)2)
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(a) T=3 (b) T=4

Figure 7.3: Simulated realizations of the case where the edge probability depends linearly on the

distance of the spatial model with α = 4 and β = λ = 1 for T = 3 and T = 4 and

deterministic social indices.

(a) T=3 (b) T=4

Figure 7.4: Simulated realizations of the case where the edge probability depends linearly on the

distance of the spatial model with α = 4 and β = λ = 1 for T = 3 and T = 4 and

Pareto(3, 2/3) distributed social indices.
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and compute

E((1− 2U)2) = 2

1
2∫

0

(1− 2x)2dx = 2

[
x− 2x2 +

4x3

3

] 1
2

0

=
1

3
.

Finally, this implies

σ2
ψ = Var(ψ(d(U1, U2)) = E((ψ(d(U1, U2))2)− (E(ψ(d(U1, U2)))2 =

1

3
− 1

4
=

1

12
.

�

Lemma 7.3.7 allows us to state the following corollary, which reveals an explicit expression for the

asymptotic degree distribution and follows directly from Corollary 7.1.2 and Lemma 7.3.7.

7.3.8 Corollary

For the one-dimensional case with ψ(x) = 1− x, we have that

MixPo

(
α

2β
(SJ∞ + E(S))(1− e−βAJ∞ )

)
is the asymptotic degree distribution.

Theorem 7.1.5, Definition and Remark 7.1.4 and Lemma 7.3.1 yield the following corollary, which

provides convergence rates.

7.3.9 Corollary

For the one-dimensional case with ψ(x) = 1− x, we have

dTV (MixPo(ΛT ),MixPo(M)) ≤
√

8α√
3λ

(√
3σ2

S + E(S2) + E(S)

)√
Te−

1
2
λT

+ 2αE(S)

(
2T +

λ

β(β + λ)

)
e−λT

for T ≥ log(2)/λ.

7.3.3 Gaussian kernels

Finally, we would like to consider the case where ψ is a Gaussian kernel, i.e. the density of the standard

normal distribution renormalized so that ψ(0) = 1. More precisely, we define

ψ(x) = e−
x2

R (7.11)

for x ∈ [0, 1/2] and some R > 0.

7.3.10 Lemma

For the one-dimensional case with ψ(x) = e−x
2/R, we have

ψ̄ =
√
πR
(

2Φ

(
1√
2R

)
− 1

)
and σ2

ψ =
√

2πR
(

2Φ

(
1√
2R

)
− 1

)
− πR

(
2Φ

(
1√
2R

)
− 1

)2

,

where Φ denotes the cumulative distribution function of the standard normal distribution.
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0.0 0.1 0.2 0.3 0.4 0.5
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x

ψ
(x

)

Figure 7.5: The Gaussian kernel ψ defined by (7.11) for R = 0.01 (black line), R = 0.05 (red line),

R = 0.1 (green line) and R = 1 (blue line)

Proof : Let U be defined as in Definition and Remark 7.1.1. We then have

ψ̄ = E(ψ(U)) = 2

1
2∫

0

e−
x2

R dx = 2Φ

(
1√
2R

)√
πR− 2Φ(0)

√
πR =

√
πR
(

2Φ

(
1√
2R

)
− 1

)
.

Analogously, we obtain

E((ψ(U)2) = 2

1
2∫

0

e−
2x2

R dx = 2Φ

(
1√
R

)√
πR
2
− 2Φ(0)

√
πR
2

=
√

2πR
(

2Φ

(
1√
R

)
− 1

)
.

By Definition and Remark 7.1.4, we thus have

σ2
ψ = Var(ψ(U)) = E((ψ(U)2)− (E(ψ(U)))2 =

√
2πR

(
2Φ

(
1√
R

)
− 1

)
− πR

(
2Φ

(
1√
2R

)
− 1

)2

.

�

The following corollary gives us an explicit expression for the asymptotic degree distribution and is

an immediate consequence of Corollary 7.1.2 and Lemma 7.3.10.
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7.3.11 Corollary

For the one-dimensional case with ψ(x) = e−x
2/R, we have that

MixPo

(√
πR
(

2Φ

(
1√
2R

)
− 1

)
α

β
(SJ∞ + E(S))(1− e−βAJ∞ )

)
is the asymptotic degree distribution.

The following corollary reveals convergence rates.

7.3.12 Corollary

For the one-dimensional case with ψ(x) = e−x
2/R, we have

dTV (MixPo(ΛT ),MixPo(M))

≤
√

32α

λ

(
(σ2
SπR+ E(S2)

√
2πR)

1
2 + E(S)(2πR)

1
4

)√
Te−

1
2
λT + 4α

√
πRE(S)

(
2T +

λ

β(β + λ)

)
e−λT

for T ≥ log(2)/λ.

Proof : Using

Φ

(
1√
2R

)
≤ 1,

the statement can easily be deduced from Theorem 7.1.5 and Lemma 7.3.10. �

Finally, we consider the case where α depends on R in a reasonable way for the reasons stated in

Remark 7.3.4.

7.3.13 Corollary

In the one-dimensional case with ψ(x) = e−x
2/R, we set α = (πR)−

1
2 . For T ≥ log(2)/λ, we then have

dTV (MixPo(ΛT ),MixPo(M))

≤
√

32

λ

((
σ2
S +

√
2E(S2)√
πR

) 1
2

+
√

2E(S)(πR)−
1
4

)√
Te−

1
2
λT + 4E(S)

(
2T +

λ

β(β + λ)

)
e−λT .

7.3.14 Remark

Of course we could consider more than one dimension, analogously. In this case, we could for example

apply the density of the multivariate normal distribution.





8 Concluding remarks

We end this thesis by summarizing the most important contributions of this thesis in a few sentences,

discussing our findings briefly and giving a short outlook.

In this thesis, we mainly focused on a loop-free version of the original dynamic random network

model by Britton and Lindholm. We placed the model among other, well-known network models. We

found several interesting similarities to other models and pointed out differences. We motivated its

applicability, in particular by proving that its asymptotic degree distribution can exhibit power law

behaviour.

In large parts of this thesis, we were concerned with the derivation of convergence rates for the de-

gree distribution in this model. As a by-product, we have obtained a rigorous proof of the convergence

itself. We have proved several results along the way that might also be of interest in other contexts.

Most remarkably, we found the age distribution of a linear birth and death process. This result might

be very useful for applications since the linear birth and death process is a very popular population

model and the age is a very natural and interesting quantity. In order to prove an explicit formula for

the cumulative distribution function of the age, we applied contour processes. Some of the techniques

that we used might also be helpful for the derivation of related results.

For the pure birth case with deterministic social indices, this network model can be seen as a variant

of a continuous-time uniform attachment model. For the discrete-time uniform attachment model, we

have the convergence rate O(1/n) (cf. Theorem 5.4.17). Since n is the number of nodes, we would thus

expect the rate O(E(1/YT )) for the pure birth case with deterministic social indices. Indeed, since we

have σS = 0 for deterministic social indices, we obtain a rate of this order by Theorem 6.3.1.

Since we have the convergence rate O(log(n)/n) for the classical discrete-time preferential attach-

ment models (cf. Theorem 5.4.4) and the expected population size E(Yt) increases exponentially in t,

it is plausible that we still obtain an exponential rate if the social indices are random.

Note that rates for the convergence towards the asymptotic degree distribution in models that

include fitness do not appear to have been considered before. Those rates can be very interesting for

applications since they allow us to judge the approximation of the degree distribution at finite time t

by the asymptotic one, which is considerably easier to deal with, for arbitrary t.

Note further that we have the convergence rate O(1/n) also for a sequence of Erdős-Rényi graphs by

Remark 5.3.3 corresponding to the rate O(E(1/YT )) for the pure birth case with deterministic social

indices in the (loop-free version of the) Britton-Lindholm model. For the modified generalized random

graph model with independent and identically distributed non-deterministic weights, we obtained
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the rate O(
√

1/n), which corresponds to the rate O(E(
√

1/YT )) for the pure birth case with non-

deterministic social indices.

In Chapter 7, we also obtained exponential rates for an extension of the model, where positions of

the nodes were considered in the attachment procedure.

Some of the techniques used in this thesis in order to find the convergence rates might also be useful

for extended or completely different network models. In particular, it would be interesting to derive

rates for a model that allows a combination of fitness and preferential attachment.

Apart from that, the model could be extended in various ways. Since many real-world networks

are very complex, one might want to consider different types, e.g. sexes, of nodes or covariates that

influence the attachment procedure. It would also be interesting to consider dependent social indices

since in some real-world networks popularity is partly influenced by neighbours or inherited.

In the spatial version, uniformly distributed positions of nodes might not be particularly realistic in

many contexts. One could use a more complex point process instead. Furthermore, the spatial model

could of course be extended to the case where nodes can die.

Finally, it would of course be interesting to apply (the loop-free version of) the model by Britton

and Lindholm to data from real-world networks.



A Appendix

A.1 R code for the introduction

Simulation of the Britton Lindholm model without loops

library(igraph);

qpareto=function(u, a, b) b/(1-u)^(1/a)

rpareto=function(n, a, b) qpareto(runif(n),a,b) #Pareto distribution

lambda=1; alpha=3; beta=1;

M=1;

T=5;

degrees =rep(0,M);

for(m in seq(1, M,by=1))

{

E=vector();

S=list();

Y=1;

S=1;

tbirth=0;

while (tbirth[length(tbirth)]<T)

{

h=rexp(1,1)/(Y*lambda);

tbirth=c(tbirth,tbirth[Y]+h);

if (tbirth[Y+1]<T)

{

Y=Y+1;

S=c(S,1);

if(Y>2)

{

for(k in seq(1, Y-1,by=1))

{

number_edges=rpois(1, alpha*S[k]*(tbirth[Y]-tbirth[Y-1]));

for(j in seq(0, number_edges,by=1))

{

K=sample(setdiff(1:(Y-1),k))[1];

if (j>0 )
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{

edge_birth_time=runif(1,tbirth[Y-1], tbirth[Y]);

if(T-edge_birth_time < (rexp(1,1)/beta))

{E=c(E,c(K,k));}

}

}

}

}

}

else #last interval

{

if(Y>2)

{

for(k in seq(1, Y,by=1))

{

number_edges=rpois(1, alpha*S[k]*(T-tbirth[Y]));

for(j in seq(0, number_edges,by=1))

{

K=sample(setdiff(1:Y,k))[1];

if (j>0 )

{

edge_birth_time=runif(1,tbirth[Y], T);

if(T-edge_birth_time < (rexp(1,1)/beta))

{E=c(E,c(K,k));}

}

}

}

}

}

}

g=graph( E, n=Y );

}

plot.igraph(as.undirected(g, mode="each"), vertex.size=3*S, vertex.label=NA)

A.2 R code for Chapter 4

Simulation of the contour process

n=500

T=1.5

lambda=2

mu=1



A.2. R code for Chapter 4 149

# The ages of the first Y_T-1 individuals

rages=vector()

for(i in 1:n)

{

ages=vector()

x=0

end=0

slope=1

while(end==0)

{

if(slope==1)

{

xn=x+rexp(1,mu)

slope=-1

if(xn>T)

{x=T}

else

{x=xn}

}

else

{

xn=x-rexp(1,lambda)

slope=1

if(x==T)

{ages=c(ages,T-xn)}

if(xn<0)

{

x=0

end=1

}

else

{x=xn}

}

}

if(length(ages)>1)

{

ages=ages[-length(ages)]

rages=c(rages, ages)

}

}

cdfexp=function(x) 1-(exp(-lambda*x)-exp(-(lambda-mu)*T)*exp(-mu*x))
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/(1-exp(-(lambda-mu)*T))

plot(ecdf(rages),xlim=range(0:2),xlab=’t’,lwd=1.5,cex.lab=1.4,0cex.axis=1.2)

curve(cdfexp,add=TRUE , xlim=range(0:1.5), lwd=1.5, col=’gray’, from=0, to=T)

# The age of the last individual

n=5000

rages=vector()

for(i in 1:n)

{

age=0

x=0

end=0

slope=1

while(end==0)

{

if(slope==1)

{

xn=x+rexp(1,mu)

slope=-1

if(xn>T)

{x=T}

else

{x=xn}

}

else

{

xn=x-rexp(1,lambda)

slope=1

if(x==T)

{age=min(T-xn,T)}

if(xn<0)

{

x=0

end=1

}

else

{x=xn}

}

}

if(age>0)

{rages=c(rages, age)}
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}

cdfexp=function(x) (lambda*(1-exp(-mu*x))-mu*(1-exp(-lambda*x)))/(lambda-mu)

plot(ecdf(rages),xlim=range(0:2),xlab=’t’,ylab=’ ’,main=NULL)

curve(cdfexp,add=TRUE,xlim=range(0:1.5), lwd=2, col=’gray’, from=0, to=T)

Simulation of a linear birth and death process

lbd= function(a1,a2,x0,Tmax) #simulates a linear birth and death process

{

a=a1+a2

tdeath=rexp(1)/a

x=rep(0,1)

time=rep(0,1)

x[1]=x0

time[1]=0

i=1

while(time[length(time)]<Tmax )

{i=i+1; tdeath=cbind(tdeath,rexp(1)/a);

if (x[i-1]==0)

{x=x[1:i-1]

time=time[1:i-1]

return(list(x=as.vector(x),time=as.vector(time)))

}

else

{

if(runif(1)>a1/a)

{x=cbind(x,x[i-1]-1)}

else

{x=cbind(x,x[i-1]+1)}

time=cbind(time,time[i-1]+tdeath[i-1]/x[i-1])

}

}

x=x[1:length(x)-1]

time=time[1:length(time)-1]

return(list(x=as.vector(x),time=as.vector(time)))

}

Simulation of the age distribution

N=5000

T=1.5

lambda=2; mu=1
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ages=vector()

for(n in seq(1, N,by=1))

{

p=lbd(lambda,mu,1,T)

if(p$x[length(p$x)]>0)

{

s=1

zg=1

zt=0

gzp=rep(0,length(p$x))

tzp=rep(0,length(p$x))

if(length(p$x)>1)

{

for(k in seq(2, length(p$x),by=1))

{

if (p$x[k]-p$x[k-1]==1)

{

zg=zg+1

gzp[zg]=p$time[k]

s=union(s,zg)

}

else

{

zt=zt+1

tzp[zt]=p$time[k]

r=sample(1:length(s),1,replace=TRUE)

s=setdiff(s,s[r])}

}

}

{

age=rep(0,length(s))

for(i in seq(1, length(s),by=1))

{age[i]=T-gzp[s[i]]}

ages=c(ages,age[sample.int(length(age), 1)])

}

}

}

cdfage=function(x) as.numeric(x > T)+as.numeric(x <= T)*((1-(lambda-mu)

/(lambda*exp((lambda-mu)*T)-lambda)*log((lambda*exp((lambda-mu)*T)-mu)/(lambda-mu)))

*(1-(exp(-lambda*x)-exp(-(lambda-mu)*T)*exp(-mu*x))/(1-exp(-(lambda-mu)*T)))

+ (lambda-mu)/(lambda*exp((lambda-mu)*T)-lambda)*log((lambda*exp((lambda-mu)*T)-mu)
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/(lambda-mu))*(lambda*(1-exp(-mu*x))-mu*(1-exp(-lambda*x)))/(lambda-mu))

cdfexp=function(x) 1-exp(-lambda*x)

plot(ecdf(ages),xlim=range(0:2),xlab=’t’,ylab=’ ’,main=NULL)

curve(cdfage,add=TRUE,col=’gray’,xlim=range(0:1.5), from=0, to=T)

curve(cdfexp,add=TRUE,col=’gray’,xlim=range(0:2), from=0, to=2.5,lty=3)

A.3 R code for Chapter 6

Simulation of the convergence rate

#inverse of the cdf of the Exp(lambda) distribution truncated at t:

itexp=function(u, m, t) { -log(1-u*(1-exp(-t*m)))/m }

#Exp(lambda) distribution truncated at t:

rtexp=function(n, lambda, t) { itexp(runif(n), lambda, t) }

#inverse of the cdf of A_2 given Y_T=yt:

inv= function(u, yt, lambda, t) {log(1-u^(1/(yt-1))*(1-exp(lambda*t)))/lambda}

#distribution of A_2 given Y_T=yt, i.e. of the minimum of yt-1 iid truncated

#Exp(lambda) distributed random variables:

ra2=function(n, yt, lambda, t) { inv(runif(n), yt, lambda, t) }

alpha=1; beta=1; my.lambda=1

my.mu=0 #constant

my.start=1

maxT=7

step=0.125

E=rep(0,maxT/step)

n=500

logtv=seq(step, maxT,by=step)

#Asymptotic distribution

S=1

Z=rexp(n,my.lambda)

Z=1-exp(-beta*Z)

M=alpha/beta*2*Z

asymptotic_degree=rpois(n,M)

for(T in seq(step, maxT,by=step) )

{

logq=log(exp(my.lambda*T)-1)-my.lambda*T #Y_T~Geo(1-q)

degree=vector()

for (k in seq(1, n,by=1) )

{

state=as.numeric(ceiling(-rexp(1,1)/logq))#~Geo(1-q); here we use

#ceiling(X)~Geo(p) for X~Exp(-log(1-p))

while(is.na(state))
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{state=as.numeric(ceiling(-rexp(1,1)/logq))}

J_T=ceiling(runif(1,0,state))

if(J_T>1)

{

age=rtexp(1, my.lambda, T) #age ist am Ende A_max(J_T,2)

}

else if(state>1)

{

age=ra2(1, state, my.lambda, T)

}

if(state==1)

{Lambda_T=0}

else

{Lambda_T= 2*alpha/beta*(1-exp(-beta*age))}

if(Lambda_T==0)

{degree=c(degree,0)}

else

{degree=c(degree,rpois(1,Lambda_T))}

}

sum4=0

N=50

for(k in seq(0, N,by=1) )

{sum4=sum4+abs(sum(degree==k)/n-sum(asymptotic_degree==k)/n)}

logtv[T/step]= log(sum4/2)/(-my.lambda*T)

E[T/step]=sum4/2

}

onef=function(x) 1

plot(logtv,xaxt="n",xlab="T",)

axis(1,at=0:(maxT/step),labels=seq(0, maxT,by=step))

axis(2,at=1,labels=1)

onefv=Vectorize(onef)

curve(onefv,add=TRUE, lwd=1.5, col=’gray’,lty=2,from=0)

Simulation of E(|ΛT −M|)

itexp=function(u, m, t) { -log(1-u*(1-exp(-t*m)))/m }

rtexp=function(n, lambda, t) { itexp(runif(n), lambda, t) }

inv= function(u, yt, lambda, t) {log(1-u^(1/(yt-1))*(1-exp(lambda*t)))/lambda}

ra2=function(n, yt, lambda, t) { inv(runif(n), yt, lambda, t) }

alpha=1
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my.lambda=1

my.mu=0 #constant

my.start=1

beta=1

maxT=6.5

step=0.125

n=250000

E=vector()

for(T in seq(step, maxT,by=step) )

{

print(T)

M=vector()

Lambda_T=vector()

logq=log(exp(my.lambda*T)-1)-my.lambda*T #Y_T~Geo(1-q)

for (k in seq(1, n,by=1) )

{

prob=1-(exp(my.lambda*T)-1)/exp(my.lambda*T) #Y_T~Geo(prob)

state=rgeom(1, prob)+1

if(state==1)

{times=0}

else

{

times=T-rtexp(state-1, my.lambda, T)

times=c(0,sort(times))

}

S=rexp(state,rate=1)

J_T=sample(1:state,1,replace=TRUE)

sum1=sum(S[-J_T])/(state-1)*(1-exp(-beta*(T-times[length(times)])))

if(state<3)

{

sum2=0

}

else

{

factr=(exp(-beta*(T-times[-c(1,2)]))- exp(-beta*(T-times[-c(1,state)])))

/(1:(state-2))

summands=outer(S,factr)

which=outer(1:state,2:(state-1),function(i,l){pmax(i,J_T)<=l&i !=J_T})

sum2=sum(summands[which])

}

if(state==1)
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{

Lambda_T=c(Lambda_T,0)

M=c(M,0)

}

else

{

age=T-times[max(2,J_T)]

Lambda_T= c(Lambda_T,alpha/beta*S[J_T]*(1-exp(-beta*age))

+alpha/beta*sum1+alpha/beta*sum2)

Z= -log(1-(1-exp(-my.lambda*age))/(1-exp(-my.lambda*T)))/my.lambda

M=c(M,alpha/beta*(S[J_T]+1)*(1-exp(-beta*Z)))

}

}

E=c(E,sum(abs(M-Lambda_T))/n)

#E=c(E,sum(abs(sqrt(M)-sqrt(Lambda_T)))/n)

}

logE= log(E)/(-my.lambda*seq(step, maxT,by=step))

onef=function(x) 1/2

plot(logE,ylim= c(0,3),xaxt="n",xlab="T")

axis(1,at=0:(maxT/step),labels=seq(0, maxT,by=step))

axis(2,at=1/2,labels=1/2)

onefv=Vectorize(onef)

curve(onefv,add=TRUE, lwd=1.5, col=’gray’,lty=2,from=0)

Simulation of (6.79)

itexp=function(u, m, t) { -log(1-u*(1-exp(-t*m)))/m }

rtexp=function(n, lambda, t) { itexp(runif(n), lambda, t) }

inv= function(u, yt, lambda, t) {log(1-u^(1/(yt-1))*(1-exp(lambda*t)))/lambda}

ra2=function(n, yt, lambda, t) { inv(runif(n), yt, lambda, t) }

alpha=1; beta=1; my.lambda=1; my.mu = 0

my.start = 1

maxT=7

step=0.25

n=500000

E=vector()

S=rexp(n,rate=1)

asymptotic_degree=vector()

Z=rexp(n,my.lambda)

Z=1-exp(-beta*Z)

M=alpha/beta*(1+S)*Z

for(T in seq(step, maxT,by=step) )
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{

Lambda_T=vector()

for (k in seq(1, n,by=1) )

{

prob=1-(exp(my.lambda*T)-1)/exp(my.lambda*T) #Y_T~Geo(prob)

state=rgeom(1, prob)+1

print(k)

if(state==1)

{times=0}

else

{

times=T-rtexp(state-1, my.lambda, T)

times=c(0,sort(times))

}

S=rexp(state,rate=1)

J_T=sample(1:state,1,replace=TRUE)

sum1=sum(S[-J_T])/(state-1)*(1-exp(-beta*(T-times[length(times)])))

if(state<3)

{

sum2=0

}

else

{

factr=(exp(-beta*(T-times[-c(1,2)]))

- exp(-beta*(T-times[-c(1,state)])))/(1:(state-2))

summands=outer(S,factr)

which=outer(1:state,2:(state-1),function(i,l){pmax(i,J_T)<=l&i!= J_T})

sum2=sum(summands[which])

}

if(state==1)

{

Lambda_T=c(Lambda_T,0)

}

else

{

age=T-times[max(2,J_T)]

Lambda_T= c(Lambda_T,alpha/beta*S[J_T]*(1-exp(-beta*age))

+ alpha/beta*sum1+alpha/beta*sum2)

}

}

E=c(E,mean(abs(sort(Lambda_T)-sort(M))))
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}

logE= log(E)/(-my.lambda*seq(step, maxT,by=step))

onef=function(x) 1

plot(logE,xaxt="n",xlab="T")

axis(1,at=0:(maxT/step),labels=seq(0, maxT,by=step))

axis(2,at=1,labels=1)

onefv=Vectorize(onef)

curve(onefv,add=TRUE, lwd=1.5, col=’gray’,lty=2,from=0)

A.4 R code for Chapter 7

Simulation of a spatial model

library(igraph);

d=function(x,y) min(abs(x-y), abs(x+1-y), abs(y+1-x))

psi=function(x,y) 1-2*d(x,y)

alpha=3; beta=1; lambda=1;

M=1;

l=1;

T=4;

degrees =rep(0,M);

for(m in seq(1, M,by=1)) {

E=vector();

S=list();

Pos1= runif(1,0,l);

N=c(1,Pos1);

Y=length(N)/2;

S=rpareto(1,3,2/3);

tbirth=0;

while (tbirth[length(tbirth)]<T)

{

h=rexp(1,1)/(Y*lambda);

tbirth=c(tbirth,tbirth[Y]+h);

if(tbirth[length(tbirth)-1]<3*T/4 && tbirth[length(tbirth)]>3*T/4)

{N1=N

Y1=Y

E1=E}

if (tbirth[Y+1]<T)

{

Posi= runif(1,0,l);

Y=Y+1;

N=c(N,c(Y,Posi));



A.4. R code for Chapter 7 159

S=c(S,rpareto(1,3,2/3));

if(Y>2)

{

for(k in seq(1, Y-1,by=1))

{number_edges=rpois(1, alpha*S[k]*(tbirth[Y]-tbirth[Y-1]));

for(j in seq(0, number_edges,by=1))

{K=sample(setdiff(1:(Y-1),k))[1];

if (j>0 && (psi(N[2*K],N[2*k]) >= runif(1,0,1)))

{ print(psi(N[2*K],N[2*k]))

print(N[2*K])

print(N[2*k])

edge_birth_time=runif(1,tbirth[Y-1], tbirth[Y]);

if(T-edge_birth_time < (rexp(1,1)/beta))

{E=c(E,c(K,k));}

}

}

}

}

}

else #last interval

{if(Y>2)

{

for(k in seq(1, Y,by=1))

{number_edges=rpois(1, alpha*S[k]*(T-tbirth[Y]));

for(j in seq(0, number_edges,by=1))

{K=sample(setdiff(1:Y,k))[1];

if (j>0 && (psi(N[2*K],N[2*k]) >= runif(1,0,1)))

{

print(psi(N[2*K],N[2*k]))

edge_birth_time=runif(1,tbirth[Y], T);

if(T-edge_birth_time < (rexp(1,1)/beta))

{E=c(E,c(K,k));}

}

}

}

}

}

}

g1=graph( E1, n=Y1 );

g=graph( E, n=Y );

}
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M=matrix( , nrow=Y, ncol=2, byrow=TRUE)

for(i in seq(1, Y,by=1))

{M[i,1]=sin(N[2*i]*(2*pi)); M[i,2]=cos(N[2*i]*(2*pi)); }

M1=matrix( , nrow=Y1, ncol=2, byrow=TRUE)

for(i in seq(1, Y1,by=1))

{M1[i,1]=sin(N1[2*i]*(2*pi)); M1[i,2]=cos(N1[2*i]*(2*pi)); }

plot.igraph(as.undirected(g1,mode="each"),vertex.size=S[1:Y1]*4,layout=M1,

vertex.label=NA)

plot.igraph(as.undirected(g,mode="each"),vertex.size=S*4,layout=M, vertex.label=NA)
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List of Symbols

∧ minimum operator

∨ maximum operator

f ∼ g tail equivalence

1 indicator function

α a positive constant related to the rates at which edges are created

A Exp(λ) distributed random variable

Ai(T ) age of node i at time T in the linear birth and process (Yt)t≥0

β death rate of the edges

B beta function

BT number of births up to time T in the linear birth and process (Yt)t≥0

Be Bernoulli distribution

C a m-dimensional unit hypercube

DT number of deaths up to time T in the linear birth and process (Yt)t≥0

D
= equal in distribution

DT degree of a node picked uniformly at random at time T

dTV total variation distance

dW Wasserstein distance

E edge set/multiset

E∗ conditional expected value defined by E∗( · ) = E( · |YT > 0)

Γ gamma function
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Geo geometric distribution on N

H a set of piecewise linear functions

(Hx)x≥0 the (deflected) contour process

JT node/individual picked uniformly at random at time T

κ(T ) defined by κ(T ) = be
3
2

(λ+µ)T c.

K(T ) defined by K(T ) = max{k : Tk < T/2}

λ per-capita birth rate of the linear birth and process (Yt)t≥0

ΛT random variable such that L(ΛT |YT > 0) = L(Λ∗T )

Λ∗T defined such that MixPo(Λ∗T ) is the degree distribution in the Britton Lindholm model

L(X) probability law of a random variable X

L lifetime of an individual

MT number of events up to time T in the linear birth and process (Yt)t≥0

µ per-capita death rate of the linear birth and process (Yt)t≥0

M random variable such that L(M |YT > 0) = L(M∗)

M∗ defined such that MixPo(M∗) is the asymptotic degree distribution in Chapter 6 and 7

MixPo mixed Poisson distribution

N the set of positive integers

N0 the set of non-negative integers

(Ω,A,P) a probability space

O, o Landau symbols

φ bijection between H and T .

ϕ a slowly varying function

ψ function defining the spatial component of the edge process in the spatial model

pn(t) probability mass function of Yt
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P(X ) set of probability measures on a measurable space (X ,B)

P(i) position of node i in the spatial model

P∗ probability measure defined by P∗( · ) = P( · |YT > 0)

PX distribution of the random variable X

Pλ,µ,T probability law of the contour process with parameters λ and µ deflected at T

Qλ,µ,T probability law of the tree corresponding to (Yt)t≥0 up to time T

Pareto(θ̃, b) Pareto distribution with parameters θ̃ and b having density θ̃bθ̃

xθ̃+1
1{x≥b}

r function that maps the birth number to the event number

RTl,T number of nodes that are alive at time Tl and survive up to time T in (Yt)t≥0

σ( · ) generated σ-algebra

σS standard deviation of the social index distribution

S random variable distributed according to the social index distribution

Si social index of node i

≤st ordinary stochastic order

T set of binary trees

Tl time of the lth event in the linear birth and process (Yt)t≥0

T+
i , T

−
i birth and death time of node i, respectively, in the linear birth and process (Yt)t≥0

V node set

w→ weak convergence

(Yt)t≥0 a linear birth and death process

Y∞ defined by Y∞ = limt→∞ Yt
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