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Abstract 
Nuclear pore complexes embedded in the nuclear envelope regulate the bidirectional 

transport of macromolecules between the nucleus and the cytoplasm. Small molecules 

can rapidly move through the permeability barrier of the nuclear pore complex, whereas 

larger macromolecules typically require nuclear transport receptors to facilitate their 

diffusion. With more than 20 different transport receptors identified, only three have been 

reported to mediate both nuclear import and export, namely human exportin 4, yeast Msn5 

and human importin 13. The latter was characterized as a bidirectional transport receptor 

in 2001 and since then several importin 13 import cargoes have been identified. For a long 

time, however, the translation initiation factor eIF1A remained the only established export 

cargo. For a better understanding of the physiological significance of nuclear transport 

receptors and their diverse transport competencies, more cargoes need to be identified. 

The central aim of this study was to expand the range of known importin 13 substrates 

using an importin 13 overexpression screen and a quantitative proteomics approach based 

on stable isotope labeling with amino acids in cell culture (SILAC). This approach should 

allow for the identification of proteins that bind to importin 13 in pull-down experiments 

under conditions that promote the formation of either import or export complexes. 

In the overexpression screen, DBC-1, DMAP1, DDX43 and DDX59 were found to be 

redistributed to the cytoplasm upon importin 13 coexpression, identifying them as possible 

importin 13 substrates. Interestingly, transport of these proteins has previously been 

shown to be Nup358-dependent, suggesting a functional link between importin 13 and 

Nup358, possibly by Nup358 serving as an assembly or disassembly platform for 

importin 13 transport complexes. Detailed analysis of DBC-1 showed that its coiled-coil 

domain is required for interaction with importin 13. 

In the SILAC based screen, more than 200 proteins were identified as potential importin 13 

substrates, greatly expanding the repertoire of known cargoes for this transport receptor. 

Using importin 13 overexpression experiments, RTCA, FEN1, APEX1, SRP14, NSUN2, 

HNRNPD, XRCC5, BTF3, EIF2D, XRCC6 and SET were validated as potential importin 13 

export cargoes, while ERI1 and NELFCD were identified as potential importin 13 import 

cargoes. In addition, importin 13 seems to function as an exportin for M9 signal sequence 

containing proteins. 

Ultimately, the larger spectrum of importin 13 cargoes should give new insights into the 

physiological significance of importin 13, its bidirectional transport competence, its unique 

mechanisms of cargo recognition and cargo release and, eventually, the identification of 

one or possibly even several conserved nuclear localization signals in cargo proteins. 



Introduction 

12 

 Introduction 1.
 

1.1 Intracellular Compartments 
The eukaryotic cell is subdivided into membrane-enclosed compartments or organelles, 

each containing their own functionally distinct subset of proteins and other molecules. One 

of the most prominent organelles is the nucleus, which contains the genome and is the 

principal site of DNA and RNA synthesis. The nucleus is encapsulated by the double 

membrane of the nuclear envelope, which physically separates the nucleus from the 

cytosol, the site of protein synthesis. This spatial separation of transcription and translation 

allows for more complex levels of gene expression as compared to prokaryotes that lack a 

membrane bound nucleus (1). 

As the majority of proteins are synthesized in the cytosol, specific intracellular sorting 

signals and transport mechanisms are required that direct the proteins to their cellular 

compartments and allow for translocation of proteins across the organelle membranes. 

Proteins with functions in the nucleus such as histones, DNA and RNA polymerases, gene 

regulatory proteins and RNA processing proteins need to be selectively imported into the 

nuclear compartment, while at the same time tRNAs and mRNAs that are synthesized in 

the nucleus as well as ribosomal subunits need to be exported into the cytosol. Similarly, a 

resegregation of nuclear and cytoplasmic content is required upon nuclear envelope 

reassembly at the end of mitosis in mammalian cells (1). 

There are three distinct mechanisms of protein trafficking between organelles, namely 

transmembrane transport, vesicular transport and gated transport. One example of gated 

transport, which will be further detailed in the following chapters, is the transport of RNA 

and proteins between the nucleus and the cytosol across the nuclear envelope through 

large macromolecular complexes, termed nuclear pore complexes (NPCs). NPCs serve as 

selective gates that allow active transport of specific macromolecules and macromolecular 

assemblies and free diffusion of smaller molecules (1).  

 

 

1.2 The Nuclear Pore Complex 
NPCs were initially observed by electron microscopy as pores within the nuclear envelope 

that later were shown to contain cylindrical formations (2, 3). The term “pore complex” was 

first assigned in 1959 (2) and since then advances in electron microscopy and other 

structural methods such as X-ray crystallography, mass spectroscopy and NMR 

spectroscopy have contributed significantly to the elucidation of the atomic structure of the 
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NPC. Only recently, the first predictive structural model of the nuclear pore scaffold was 

presented by docking crystal structures of nucleoporins (proteins of the NPC) and 

nucleoporin complexes into a cryo-electron tomographic reconstruction of the intact human 

NPC (4–7). The core scaffold of the NPC is formed by three ring-like structures, the 

cytoplasmic ring, the central spoke ring and the nuclear ring, which surround the aqueous 

transport channel with a diameter of ~60 nm (4–8) (Figure 1A). The central spoke ring is 

anchored in the nuclear envelope and connects the nuclear ring with the cytoplasmic ring. 

The cytoplasmic ring is decorated with eight cytoplasmic filaments, while a basket-like 

structure is connected to the nuclear ring where eight rod-like structures unite into a distal 

ring. Surrounding the central transport channel are eight smaller peripheral channels with 

a diameter of ~9 nm at the narrowest point that have been suggested to allow diffusion of 

integral membrane proteins from the outer nuclear membrane to the inner nuclear 

membrane (9–11). 

 

 

 
Figure 1: Structure of the nuclear pore complex.  (A) Cryo-electron tomographic structure of the 
human NPC embedded in the nuclear envelope, decorated with schematic cytoplasmic filaments 
and the nuclear basket. CR: cytoplasmic ring; IRC: inner ring complex; NR: nucleoplasmic ring 
(modified from Schwartz 2016 (12)). (B) Structural organization and position of individual 
nucleoporins within the NPC (modified from Dickmanns et al., 2015 (13)). 

 

 

NPCs show an eightfold rotational symmetry (14) along the nucleocytoplasmic axis and 

have a molecular mass of ~112 MDa (15), a diameter of ~110 nm and a height of ~80 nm 

(excluding cytoplasmic filaments and nuclear basket) in vertebrates (16). Structural 
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features of the NPC are conserved between species even though its size ranges from 

~66 MDa in yeast (17, 18) to ~112 MDa in vertebrates (15). Furthermore, the density of 

NPCs in the nuclear envelope varies between different species with a typical mammalian 

cell containing 2,000-5,000 NPCs (19). Kinetic analysis of translocation through nuclear 

pore complexes suggests that up to 1,000 translocation events can occur per second per 

NPC, allowing a mass flow of nearly 100 MDa/s (20). Despite its gigantic dimensions, the 

NPC is composed of only ~30 different proteins, termed nucleoporins (21, 22). As 

nucleoporins occur in multiple copies, the fully assembled NPC consists of ~500-1,000 

protein molecules (3).  

 

 

1.3 Nucleoporins 
Of the approximately thirty different nucleoporins (Nups) (Figure 1B) that constitute the 

NPC ~20 nucleoporins are conserved among all eukaryotes, while the remaining 

~10 nucleoporins appear to be more specific to the different species (12). Historically, 

nucleoporins are named after their molecular weight but as this varies between different 

species no uniform nomenclature for nucleoporins exists (12). Instead, nucleoporins are 

classified into three different groups based on their amino acid sequence and predicted 

structural motifs, termed peripheral nucleoporins, scaffold nucleoporins and 

transmembrane nucleoporins (13). The transmembrane nucleoporins anchor the NPC to 

the nuclear envelope, the scaffold nucleoporins form a major part of the cytoplasmic and 

nuclear scaffold rings and the channel nucleoporins contain extensive natively unfolded 

phenylalanine-glycine repeats (FG-repeats) and form the permeability barrier of the NPC 

(13). Nucleoporins have been shown to organize into stable subcomplexes that include the 

Nup107 complex (also called Y complex), Nup93 complex, Nup62 complex and the 

Nup214 complex (3, 13). Further associated with the cytoplasmic ring is the 

Nup358-RanGAP1-SUMO1-Ubc9 complex that is implicated in the assembly and 

disassembly of transport complexes (6, 23–25). 

Approximately a third of the nucleoporins contain intrinsically disordered FG-repeat 

regions that are believed to form the permeability barrier of the NPC and facilitate the 

selective transport of cargo through the pore by interacting with nuclear transport receptors 

(16). FG-nucleoporins contain FG stretches in multiples of 4 to 48 that are separated by 

spacer sequences of around 20, mainly polar, amino acids (19, 13). FG-domains are 

hydrophobic and characterized by an extreme depletion of charged residues. They can 

form either cohesive or non-cohesive interactions (16, 26). FG-nucleoporins both interact 
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with constituents of the NPC scaffold and form homo- and heterotypical interactions with 

other FG-domains (26). The most common FG-repeat motifs are FG-, GLFG-, or FxFG-

repeats (13, 26). The repetitive FG motifs mediate facilitated diffusion through the NPC by 

providing multiple low-affinity, high-specificity interactions with nuclear transport receptors 

(27). Even though much progress has been made in understanding the transport 

selectivity of NPCs, the exact gating mechanism remains unclear. Several transport 

models have been proposed that attempt to explain the selective barrier of NPCs (see 

section 1.4). 

Apart from nucleocytoplasmic transport, nucleoporins are also involved in other cellular 

processes such as regulation of transcription, transcriptional memory, chromatin 

organization and DNA repair (19, 28, 29). Dysregulation of nucleoporins can lead to the 

development of human diseases, such as cancer and certain genetic disorders 

(13, 30, 31).  

 

 

1.4 NPC Selectivity and Directionality of Transport 
The NPC is freely permeable for small molecules, while larger molecules with a diameter 

of more than ~5 nm or ~30 kDa in mass either take longer to cross the NPC or require 

nuclear transport receptors to facilitate their passage (13, 16). However, the permeability 

barrier of the NPC is not assumed to be perfect, also allowing the passage of proteins 

whose functions are purely cytoplasmic or nucleoplasmic (32). To avoid any harmful 

effects on cellular processes in the wrong cellular compartment, these proteins would 

either need to be inhibited or transported back into their designated compartment. 

Several lines of evidence suggest that FG domains constitute the permeability barrier of 

the NPC (reviewed in (16)). In Saccharomyces cerevisiae, a reduced permeability barrier 

was observed upon genetic depletion of FG domains (26). Similarly, non-selective NPCs 

were observed upon nuclear assembly in Xenopus egg extracts depleted of specific 

FG-domains (33). Furthermore, purified FG domains have been shown to form 

FG-hydrogels with NPC-like properties that allow an influx of nuclear transport 

receptor-cargo complexes but prevent entry of large inert cargoes (34, 35). Despite the 

well-established requirement of FG-domains to confer transport selectivity, the precise 

composition of the FG-permeability barrier and translocation of nuclear transport receptors 

through the NPC is unknown. Various models have been proposed to explain the transport 

selectivity of NPCs, including the selective phase model (20), the virtual gate model (36), 

the reversible collapse model (37), the Kap-centric model (38), the forest-model (39) and 
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the ring cycle model (40, 41). The models vary in the arrangement of FG-nucleoporins to 

confer a selective barrier and have been extensively discussed in several review papers 

(16, 42, 43). 

The virtual gate model (36) assumes that the central transport channel is densely covered 

by bristling, non-interacting FG-filaments that form an entropic barrier. Nuclear transport 

receptors can compensate for a loss in entropy with a change in enthalpy upon binding to 

the FG-domains of nucleoporins. The release of binding energy can then facilitate the 

entry of molecules into the crowded volume of the NPC, while inert molecules are 

excluded. The selective phase model (20) assumes that the FG-domains form intra- and 

intermolecular interactions resulting in a three-dimensional meshwork with sieve-like 

properties. Small molecules can diffuse through the meshwork, whereas molecules larger 

than the mesh-size would be excluded. Nuclear transport receptors can antagonize the 

cohesive inter-FG interactions by directly interacting with the hydrophobic FG-repeats, 

thereby partitioning the FG hydrogel, allowing the nuclear transport receptors to pass 

through the NPC. The forest model (39) is based on FG domains forming collapsed-coil 

and extended-coil conformations that can form cohesive or non-cohesive interactions, 

respectively. This results in two separate transport zones, a central route for 

macromolecules and a lateral route for small molecules. 

The above transport models only consider the permeability barrier of the nuclear pore 

complex but do not address determinants of transport directionality. A well-established 

factor for directionality is the coupling of facilitated diffusion to the RanGTP gradient, with 

nuclear RanGTP concentrations being at least 200-fold higher than cytoplasmic 

concentrations (44, 45). The RanGTP gradient is established by the RanGTPase system 

and is discussed extensively in section 1.5. Further, peripheral nucleoporins often show 

high-affinity, RanGTP-sensitive binding of transport receptors that are believed to function 

as assembly or disassembly sites for transport complexes (for reviews see (13, 42)). This 

observation is also part of the affinity gradient model that suggests that transport receptors 

show an increase in affinity for nucleoporins along the translocation pathway (46). A 

requirement for nucleoporins in the assembly of transport complexes has been shown, 

among others, for Nup358. Depletion of Nup358 in human cells resulted in a clear 

reduction of importin α/β and transportin-dependent transport that could only partially be 

restored by the addition of other transport factors (47, 48). This suggests that Nup358 is 

not absolutely required for nuclear import but facilitates the formation of transport 

complexes at the NPC by increasing the local concentration of transport receptors. 

Moreover, Nup358 was shown to interact directly with some cargoes such as DBC-1 
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(deleted in breast cancer 1) and DMAP1 (DNA methyltransferase 1 associated protein 1), 

which might assist their interaction with nuclear import receptors and subsequent nuclear 

translocation (49).  

 

 

1.5 Nucleocytoplasmic Transport 
Transport between the nucleus and the cytoplasm across the nuclear envelope is 

mediated by transport machinery consisting of NPCs and the RanGTPase system as well 

as nuclear transport receptors that continuously shuttle between the nucleus and the 

cytoplasm (Figure 2). Nuclear transport receptors, which are divided into importins and 

exportins, bind their cargoes on one side of the nuclear envelope, cross the central 

channel of the NPC through interaction with FG-nucleoporins and release their cargo on 

the other side (16). To allow for an accumulation of the substrates against their chemical 

potential, an energy input is required that is usually derived from the RanGTPase system 

through GTP hydrolysis (50, 51). The RanGTPase system consists of the chromatin-bound 

guanine nucleotide exchange factor RCC1 (regulator of chromosome condensation 1) 

(52), the cytoplasmic filament-bound RanGTP activating protein (RanGAP) (53) and the 

small GTP-binding protein Ran (52). Due to the compartmentalization of RanGAP to the 

cytoplasm and of RCC1 to the nucleus, a steep RanGTP gradient is generated, with high 

nuclear RanGTP levels and low cytoplasmic levels (50, 51). RanGTP in turn actively 

regulates substrate binding and release by switching nuclear transport receptors between 

low- and high-affinity cargo-binding states (16, 54). RanGTP hydrolysis is not required for 

NPC translocation per se but for disassembly of transport complexes and consequently 

directionality of transport (43).  
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Figure 2: Nucleocytoplasmic transport. (A) Nuclear export. Exportins form a trimeric export 
complex with RanGTP and export cargo in the nucleus, shuttle through the nuclear pore complex 
and are disassembled in the cytoplasm by RanGAP mediated hydrolysis of GTP-bound Ran. Free 
exportins are recycled back to the nucleus for the next transport round. (B) Nuclear import. 
Importins bind their cargo in the cytoplasm, translocate across the nuclear pore complex and 
release the cargo in the nucleus upon RanGTP binding. Free importin bound to RanGTP is recycled 
back to the cytoplasm for the next transport round. The cryo-electron tomographic structure of the 
human NPC was taken from Appen et al., 2015 (6). 



Introduction 

19 

Importins either directly bind their cargoes in the cytoplasm at low RanGTP concentrations 

or indirectly with the help of adaptor proteins. The import complex shuttles across the NPC 

via interactions with FG-nucleoporins and the cargo is released into the nucleus upon 

RanGTP binding (54, 55). The importin-RanGTP complex is then recycled back to the 

cytoplasm for subsequent transport rounds. In contrast, facilitated export in most cases 

requires the binding of exportins to both export cargo and RanGTP in a cooperative 

manner to form stable trimeric export complexes in the nucleus (56, 57). Export complexes 

can then translocate through the NPC into the cytoplasm, where they are disassembled 

upon GTP-hydrolysis on Ran. The intrinsic GTPase activity of Ran is promoted by 

RanGAP, assisted by soluble RanBP1 and NPC-bound Nup358 (also known as RanBP2) 

(25, 53, 58, 59). Following hydrolysis, free exportin and RanGDP in complex with its 

dedicated transport receptor, the nuclear transport factor 2 (NTF2), return to the nucleus 

(60–63), where RanGDP is converted back to RanGTP by the action of RCC1 (52, 64). 

 

 

1.6 Nuclear Transport Receptors 
In 1990, a study by Adam et al. (65) provided the first evidence that soluble transport 

factors are required for nuclear protein import. Through selective permeabilization of 

mammalian cells with digitonin, a reagent that permeabilizes the plasma membrane but 

leaves the nuclear envelope intact, they could show that nuclear accumulation of the SV40 

large T antigen nuclear localization sequence fused to a fluorescent protein depends on 

the addition of exogenous cytosol. In subsequent studies, this assay allowed for the 

identification of several cytosolic proteins required for nuclear transport through 

fractionation of cytosol and testing the different fractions for nuclear import activity into the 

nuclei of digitonin permeabilized cells. The cytosolic transport proteins identified included 

importin α, importin β, Ran and NTF2 (61, 60, 66–69).  

Since these early studies, more than 20 different nuclear transport receptors have been 

identified that all share the ability to interact directly with FG-nucleoporins (43). Individual 

FG-nucleoporins bind to the convex outer surface of nuclear transport receptors through 

an interaction of FG-repeat domains with multiple hydrophobic patches on the nuclear 

transport receptor (13, 70). The interactions are transient and of low affinity, allowing for 

movement through the NPC (20, 54). Transport receptors are categorized into different 

classes based on conserved structural domains, including the importin β protein family, the 

Mex67/TAP family and the NTF2 family (13, 43). By far the largest class is the superfamily 

of importin β-related proteins also known as β-karyopherins, named after the first transport 
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receptor identified (43). This family of transport receptors recognizes nuclear localization 

signals and is responsible for most nucleocytoplasmic transport of proteins through the 

NPC (71). Even though β-karyopherins share a weak sequence homology of only 15-20%, 

they show a similar overall structural organization containing ~20 HEAT-repeats that 

arrange into a superhelical or ring-like structure (72). The HEAT repeat, which consists of 

two antiparallel α-helices connected by a short loop, is named after the proteins Huntingtin, 

elongation factor 3 (EF3), protein phosphatase 2A (PP2A) and the yeast PI3 kinase TOR1 

where the structural motif was first identified (73, 74). This modular architecture gives 

β-karyopherins an intrinsic flexibility and allows for recognition of a wide range of different 

cargoes. Apart from the overall structural conservation, further unifying features of 

β-karyopherins are the similar molecular weights (90-150 kDa), an acidic isoelectric point 

(pI=4.0-5.0) and the presence of an N-terminal RanGTP binding site at the inner concave 

surface (75).  

β-karyopherins can be further divided into importins that shuttle proteins into the nucleus, 

exportins that shuttle proteins out of the nucleus and bidirectional transport receptors that 

mediate both nuclear import and export. In humans, ten β-karyopherins have been 

classified as importins (Impβ, Trn1, Trn2, Trn-SR3, Imp4, Imp5, Imp7, Imp8, Imp9 and 

Imp11), seven as exportins (Crm1, CAS, Exp5, Exp6, Exp7, Expt and RanBP17) and two 

as bidirectional (Imp13 and Exp4) (76). In yeast, all nuclear transport receptors have been 

reported to sum up to a cellular concentration of >10 µM (77). 

Until recently, only a limited number of cargoes had been identified for many nuclear 

transport receptors. Major advancements in mass spectrometry coupled with the use of 

stable isotope labeling with amino acids in cell culture (SILAC) (78, 79) allowed for 

identification of numerous transportin (80), importin β (81), importin α/β (81) and Crm1 

cargoes (32, 82), as well as cargoes of twelve import receptors in a study published this 

year (76). Only for some of these cargoes a consensus structure of the nuclear transport 

receptor binding site has been established. 

As nucleoporins, nuclear transport receptors are not only involved in nucleocytoplasmic 

transport but also play a role in a range of other cellular processes such as mitosis and 

nuclear envelope assembly (71, 83–87), and are functionally regulated by protein 

modifications, inhibitory factors and specific anchorings (reviewed in (88)). 
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1.7 Cargo Recognition of Karyopherins 
Current crystal structures of transport complexes suggest that each β-karyopherin has 

multiple cargo binding sites. Nevertheless, the majority of importins seem to bind their 

cargoes at the concave inner surface of their C-terminus (89–100), whereas the major 

export receptor Crm1 appears to bind its cargoes at the convex outer surface of its 

C-terminus (101–104). For other exportins, only a limited number of crystal structures are 

available, making the identification of a potentially preferred binding site difficult (105–108). 

While most β-karyopherins associate directly with their cargoes, some also use adaptor 

proteins that bridge between the transport receptor and the targeting signal. One example 

is importin β, which uses one of the seven species of the importin α family (109, 110) as 

well as snurportin as an adapter for cargo binding (111), but also directly interacts with 

cargo (112). In addition to this, importin β can also form a heterodimer with importin 7 and 

drive the nuclear import of the linker histone H1 (113, 114). 

Some cargoes bind to several β-karyopherins, suggesting a certain redundancy in cargo 

transport (76, 115–118). However, this finding is mainly based on in vitro studies and a 

preference for one particular transport receptor in vivo has been hypothesized (43). 

Nevertheless, some cargoes, especially larger cargoes, have been reported to require the 

simultaneous binding of multiple transport receptors to facilitate their transport (119). 

Nuclear transport receptors are thought to bind their cargoes through nuclear localization 

signals, but consensus targeting signals have only been established for a few nuclear 

transport receptors (reviewed in (71, 120)). The first targeting signal characterized was the 

‘classical’ basic nuclear localization signal (cNLS) rich in lysines or arginines (121–123) 

that binds to importin α and is imported via the importin β/importin α heterodimer (66, 124, 

125). Prototypic nuclear localization signals (NLSs) are the monopartite NLS in the SV40 

T antigen and the bipartite NLS in nucleoplasmin, which contain one or two clusters of 

positively charged amino acids (121, 123, 122). The PY-NLS represent another class of 

NLSs that is recognized by transportin (91). The PY-NLS has an RX2-5PY motif at its 

C-terminus and either hydrophobic or basic motif at its N-terminus (91). Transportin-SR1 

and its splice variant transportin-SR2 bind to RS domains that are rich in arginine-serine 

dipeptide repeats (126). The main export receptor Crm1 recognizes a short leucine-rich or 

hydrophobic nuclear export signal (NES) that was initially identified in HIV-1 Rev and 

protein kinase inhibitor A (127–130). For the other nuclear transport receptors, no 

consensus NLS has been described and their binding sites are not believed to be defined 

by a specific consensus sequence. Instead, they are ascribed by a number of physical 

properties such as intrinsic structural disorder, length, charge, hydrophobicity and spacing 
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of key residues as well as three-dimensional conformations (71, 120). Ultimately, atomic 

structures of the transport complexes will be required to define more complicated and 

potentially three-dimensional binding sites. 

As already discussed in section 1.5, cargo binding and release can occur via direct binding 

or through an allosteric mechanism and is often regulated by RanGTP binding. Cargo 

recognition is further regulated by the masking of the binding site through other proteins or 

nucleic acids, conformational changes in the binding site region or posttranslational 

modifications such as phosphorylation (131, 132). 

 

 

1.8 Importin 13 
The coding sequence of importin 13 was identified by Nagase et al. (133) in 1998 in a 

screen for cDNA clones from human brain coding for proteins larger than 50 kDa. The 

open reading frame of the importin 13 gene (IPO13), which they called KIAA0724, was 

mapped to chromosome 1 by radiation hybrid analysis. Sequence homology and motif 

searches against existing databases disclosed that importin 13 showed a sequence 

identity of less than 20% to known gene products at that time. A study in 2000 by 

Zhang et al. (134), identified KIAA0724 (termed LGL2) as a member of the β-karyopherin 

family, with the greatest homology to the transportin-SR subgroup. Nagase et al. in 1998 

(133) had analyzed the expression pattern of importin 13 mRNA in ten different human 

tissues using reverse transcription-polymerase chain reaction coupled with an enzyme-

linked immunosorbent assay (RT-PCR ELISA). Importin 13 mRNA was present in all 

tissues tested with the highest expression levels present in the brain, followed by testis, 

heart, skeletal muscle, lung and kidney. Lower expression levels were detected in spleen, 

pancreas, liver and ovary.  

The human protein encoded by KIAA0724 was analyzed in detail by Mingot et al. (135) in 

2001. By searching Expressed Sequence Tags (EST) databases for sequences with 

significant homology to known members of the importin β superfamily, they identified 

KIAA0724, which they termed importin 13 (IPO13 gene) and which codes for a human 

protein with 963 amino acids and a molecular weight of 108 kDa. Sequence homology 

analysis showed that importin 13 has putative orthologues in Arabidopsis thaliana, 

Drosophila melanogaster, Caenorhabditis elegans and Schizosaccharomyces pombe. In 

Schizosaccharomyces cerevisiae, no protein with a significant sequence homology is 

present, the closest orthologue being Pdr6p (also known as Kap122p). 
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As a first confirmation that importin 13 might function as a nuclear transport receptor, 

Mingot et al., 2001 (135) showed that recombinant human importin 13 specifically interacts 

with RanGTP. By mass spectrometry they then identified several potential importin 13 

substrates that bound to immobilized importin 13 from a HeLa cell extract in a 

RanGTP-dependent manner. Interestingly, most of the proteins identified, including 60S 

ribosomal protein L5, RNA-binding protein Y14 (referred to as RBM8,) protein mago nashi 

homolog (Mago, referred to as MGN), nuclear transcription factor Y subunit beta (referred 

to as NF-YB) and SUMO-conjugating enzyme Ubc9, bound in the absence of RanGTP. 

Nup50 (referred to as NPAP), however, and eukaryotic translation initiation factor 1A 

(eIF1A) bound efficiently only in the presence of RanGTP. Using binding assays and 

transport assays in digitonin permeabilized cells, Ubc9 and the Mago-Y14 protein complex 

were confirmed to be importin 13 cargoes, whereas eIF1A was verified to be an export 

cargo, confirming the bidirectional transport capacity of importin 13.  

Since the characterization of importin 13 in 2001, several importin 13 import cargoes have 

been identified in various studies (see Table 1). Only recently, two larger screens 

expanded the list of potential importin 13 substrates, using a stable isotope labeling with 

amino acids in cell culture (SILAC) based in vitro transport (SILAC-Tp) system, a method 

that employs nuclear import assays in digitonin permeabilized cells coupled with SILAC 

(76), and a yeast two-hybrid screen to identify interactors of the testis-specific form of 

importin 13, which lacks the N-terminus of importin 13 (amino acids 526-963) (136). 

However, for a long time, eIF1A remained the only identified export cargo. Only at the end 

of 2016, eukaryotic translation initiation factor 4γ2 (eIF4G2) and high mobility group 

protein 20A (HMG20A) were also reported to be importin 13 export cargoes, underlining 

the bidirectional transport capacity of importin 13 (136).  

 

 

 



 

 

Table 1: Importin 13 import and export cargoes.  

Cargo Function Experiment Position targeting signal Karyopherins Reference 
Importin 13 import cargoes 

Ubc9 SUMO E2-conjugating enzyme binding assay, transport assay folded domain  (93, 135)  
Mago/ Y14 
(RBM8A) 

core components of the exon junction 
complex  

binding assay, transport assay folded domain  (92, 135) 

Pax6 paired homeodomain transcription factors yeast two hybrid, binding assay, 
transport assay 

paired-type homeodomain 
(aa 208-288) 

 (137) 

Pax3 paired homeodomain transcription factor binding assay, transport assay paired-type homeodomain Impα2 (137) 
Crx paired homeodomain transcription factor binding assay, transport assay paired-type homeodomain  (137) 
Arx paired homeodomain transcription factor yeast-two-hybrid, binding assay, 

transport assay 
paired homeodomain  Impβ, Imp9 (138, 139)  

Nkx2-2 transcriptional activator binding assay, transport assay homeodomain Impβ (140) 
NFYB/ component of transcriptional activator NFY binding assay, transport assay histone fold domain  (141) 
NFYC      
c-Jun part of the transcriptional complex AP-1 binding assay, siIPO13 basic region preceding 

leucine zipper 
Impβ, transportin, 
Imp7, Imp9 

(117, 142) 

GRL member of the nuclear receptor superfamily 
of transcriptional regulators 

overexpression experiment, 
binding assay, siIPO13 

 Impα/β, Imp7 (143) 

CAR member of the nuclear receptor superfamily 
of transcriptional regulators 

binding assay ligand-binding domain  (144) 

DBC-1 multiple cellular functions binding assay  Impα/β, Imp7, 
Imp9, transportin 

(49) 

CTCF transcriptional repressor binding assay; overexpression 
experiment, siIPO13 

middle region  (145) 

NC2α (Drap1)/ 
NC2β (Dr1) 

transcriptional regulator overexpression experiment, 
binding assay 

histone-fold domain Impα/β (146) 

CHRAC15 
(CHRAC1)/ 
CHRAC17 

component of the chromatin accessibility 
complex 

overexpression experiment, 
transport assay 

histone-fold domain  (135, 147) 

p12/CHRAC17 component of polymerase ε overexpression experiment, 
transport assay 

histone-fold domain  (135, 147) 

Myopodin actin-bundling protein yeast-two hybrid, binding assay, 
siIPO13 

C-terminal portion Impα (148) 

ARH1 tumor suppressor binding assay   Impα, Imp7, Imp9 (149) 
Importin 13 export cargoes 

eIF1A translation initiation factor binding assay, transport assay folded domain  (107, 135) 
EIF4G2 translation initiation factor binding assay, IPO13 knock-out,    (136) 
HMG20A transcriptional regulator binding assay, IPO13 knock-out, 

overexpression experiment, FRAP 
  (136) 
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Apart from importin 13, the only nuclear transport receptors that have been characterized 

as bidirectional transport receptors are exportin 4 and yeast Msn5 (150, 151). Yeast Msn5 

was shown to export the inhibitor of G1 cyclin-Cdk complex Far1p and transcription factors 

Swi5p, Swi6p, Msn2p and Pho4p while also importing the trimeric replication protein A 

(RPA), which is required for multiple aspects of DNA metabolism, including DNA 

replication, DNA repair and recombination (151–156). Human exportin 4 exports the 

translation initiation factor eIF5A, the intracellular signal transducer and transcriptional 

modulator Smad3 and the thyroid hormone receptor but was also shown to import the 

sex-determining region Y protein (SRY) (157, 158) and the transcription factor Sox2 

(150, 157–159). Both SRY and Sox2 are Sox family members and are imported through 

their high-mobility group (HMG), which is hypothesized to be recognized as a three-

dimensional structure and not as a linear signal sequence (150). Interestingly, exportin 4 

has also been reported to interact with the transcription factor Sox9 via its high-mobility 

group domain in the absence of RanGTP and to modulate its DNA binding activity but not 

to affect its intracellular localization (160).  

In contrast to other karyopherins, bidirectional nuclear transport receptors can shuttle not 

only one, but two cargoes per hydrolysis of one GTP molecule through the NPC (135). 

However, this lesser expenditure of energy is suggested to limit the extent of cargo 

accumulation and therefore bidirectionality is not believed to be a universal transport 

mechanism of karyopherins (135). Instead, several karyopherins transport some of their 

cargoes as homodimers, heterodimers or even larger complexes. One example is 

importin 13, which was shown to shuttle the heterodimers Mago-Y14 (core components of 

the exon junction complex), NC2α/NC2β (transcriptional regulation), CHRAC15/CHRAC17 

(part of a chromatin remodeling complex), p12/CHRAC17 (integral component of 

DNA-polymerase ε) and NFYB/NFYC (part of the transcriptional activator NFY) across the 

nuclear envelope (135, 141, 146, 147). Importin 13 is not only distinctive in its ability to 

mediate both nuclear import and export but also appears to be differentially regulated 

compared to other nuclear transport receptors in terms of cargo recognition and transport 

complex disassembly. 

 

 

1.8.1 Importin 13 Cargo Recognition and Release 
Similar to other β-karyopherins, importin 13 folds into 20 consecutive HEAT repeats, a 

motif that consists of two antiparallel α-helices (three parallel α-helices for the last repeat) 

with inter-repeat and intra-repeat loops protruding to opposite sides (92, 93, 107). The 
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superhelical structure of importin 13 is highly flexible, allowing for a whole range of 

importin 13 conformations, from a tight ring-like structure to a wide, open superhelix 

(92, 93, 107). Apo-importin 13 and importin 13 when bound to the import cargoes 

Mago/Y14 and Ubc9 have a more extended conformation, while importin 13 bound to Ran 

and the export cargo eIF1A, or Ran alone, has a more compact conformation 

(92, 93, 107). 

Crystal structures of importin 13 in complex with Ubc9, the heterodimer Mago/Y14 and 

eIF1A/Ran (Figure 3) as well as binding assays suggest that importin 13 recognizes and 

also releases its cargoes via different mechanisms (92, 93, 107, 135). Importin 13 does 

not bind its cargoes through a linear sequence or through a small portion of its cargoes, as 

reported for importin β, transportin and Crm1, but instead seems to recognize its cargoes 

via folded domains and several conserved charged and polar residues distributed over the 

entire protein (92, 93, 107). An example are the homeodomain containing cargo proteins, 

such as Pax6 and Crx, which require cooperativity between two basic clusters located at 

the N-terminus and the C-terminus of their homeodomain, in order to be imported by 

importin 13 (137, 161, 140).  

 

 

 
 
Figure 3: Structures of importin 13 import and export complexes. Importin 13 is shown as a 
ribbon trace, with a color gradient from grey (N-terminus) to green (C-terminus). Bound molecules 
are shown as cartoons, with Ubc9 in purple, Mago in blue, Y14 in magenta, Ran in yellow, GTP in 
black and eIF1A in brown (modified from Grünwald et al., 2011 (93) and 2013 (107)).  

 

 

Importin 13 binds its import cargoes Ubc9 and Mago/Y14 at its inner concave surface at 

non-overlapping sites, with Mago/Y14 binding to the C-terminal arch of importin 13 shifted 
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towards the inter-repeat loops rather than the intra-repeat loops of the HEAT motif, and 

Ubc9 binding to the N-terminal half of importin 13 shifted towards the intra-repeat loops 

(93, 107). This binding mode of Ubc9 is rather unusual as most importin structures solved 

to date suggest that importins bind their cargoes primarily through their C-terminal arch 

(89, 91, 94–100, 111). An exception is the parathyroid hormone-related protein (PTHrP), 

which binds in a highly extended conformation to the HEAT repeats 2-11 of importin β, 

largely overlapping its RanGTP binding site (90). 

Comparable to other karyopherins, Ran in its GTP-bound form binds to the inner concave 

surface of importin 13 shifted towards the intra-repeat loops of the HEAT motif and 

contacts two highly conserved sites at an N-terminal (HEAT 1-3) and a central region of 

importin 13 (HEAT 8-9) as well as a less conserved region at its C-terminus (HEAT 16-19) 

(92). While RanGTP contacts HEAT 14 and 15 in importin β and yeast Cse1 (human 

orthologue is CAS), it contacts HEAT 16-19 in importin 13 and Crm1, resulting in a more 

closed conformation of the later karyopherins (92). 

In contrast to other karyopherins, importin 13 likely does not bind its export cargo eIF1A 

through cooperative binding with RanGTP. Instead, RanGTP binding seems to facilitate 

the formation of the export complex by displacing bound import cargo (107, 135). 

However, it should be noted that eIF1A has been suggested to engage in a stabilizing 

contact with RanGTP when bound to importin 13 (107). Importin 13 recognizes eIF1A at its 

inner surface, shifted towards the inter-repeat loops of the HEAT motif, through two major 

binding sites that spatially overlap with the Mago/Y14 binding site (107). The larger 

interaction surface can be found in the middle region of importin 13, while the smaller 

interaction surface is located to its very C-terminus (107). Although the crystal structures 

suggest that a concomitant binding of eIF1A and Ubc9 as well as Mago/Y14 and Ubc9 

would theoretically be possible, binding experiments show that simultaneous binding does 

not occur (93, 107). 

As a consequence of the different cargo binding sites, importin 13 has different 

mechanisms for cargo release. In contrast to other karyopherins, importin 13 lacks the 

acidic loop that is utilized by importin β (HEAT 8), transportin (HEAT 8) and Crm1 

(HEAT 9) for cargo release (92). Instead, importin 13 cargo release into the nucleus is 

mediated by RanGTP binding through both a steric hindrance mechanism and a direct 

competition mechanism for the same binding surface (92, 93). The direct competition 

mechanism is employed by the import cargo Ubc9, as RanGTP binds to the same binding 

site as Ubc9 (93), while Mago/Y14, which docks to a binding site adjacent to RanGTP, is 

released due to steric clashes of the two proteins (92). High nuclear concentrations of 
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RanGTP as well as its higher affinity for importin 13 compared to the import cargoes, 

efficiently facilitates import cargo release into the nucleus (107). In vitro, however, efficient 

Mago/Y14 release depends not only on RanGTP binding but also requires the presence of 

the importin 13 export cargo eIF1A, suggesting that eIF1A locks importin 13 in an export 

complex and prevents reassociation of Mago/Y14. Interestingly, similar to Mago/Y14, 

hydrolysis of RanGTP is likely not sufficient to disassemble the eIF1A export complex in 

vitro. Additionally, the loading of a tightly binding import cargo is required to fully displace 

the export cargo eIF1A from importin 13 (107, 135). 

 

 

1.8.2 Biological Function of Importin 13 
Importin 13 has been reported to be expressed in various tissues in a cell type- and 

differentiation stage-specific manner, and to play a role in the embryonic development of 

lung, brain and heart, while its deregulation has been linked to human diseases. 

Importin 13 regulates its own expression via a positive feedback mechanism, mediating 

nuclear import of CCCTC-binding factor (CTCF), a multivalent zinc-finger protein that 

binds to the IPO13 promoter and induces expression of importin 13 (145). 

The expression of importin 13 is developmentally regulated in rat fetal lung, human limbal 

epithelial basal cells and mouse fetal brain. In rat fetal lung, importin 13 expression is 

hormonally regulated by glucocorticoids and importin 13 is enriched in epithelium relative 

to the mesenchyme (134). Importin 13 mRNA levels are most abundant during the 

pseudoglandular stage of lung development (Days 14-16) and decrease during the 

canalicular (Day 18) and saccular (Day 20) stages (134). Interestingly, not only the 

expression level of importin 13 is developmentally regulated in rat fetal lung but also its 

nucleocytoplasmic shuttling, with importin 13 entering the nucleus much more rapidly at 

fetal Day 18 than at Day 21 (162). This suggests a role of importin 13 in normal lung 

embryogenesis by possibly mediating nuclear import of transcription factors (162). Indeed, 

it could be shown that importin 13 regulates nuclear import of the glucocorticoid receptor in 

airway epithelial cells, which regulates the transcription of genes involved in development, 

metabolism and immune response (143). This could be of relevance for anti-inflammatory 

asthma therapy, as glucocorticoids are critical to the treatment of asthma and other airway 

inflammations (143). Genetic variations of importin 13 have been shown to be associated 

with improved airway responsiveness in childhood asthma (163). 

Importin 13 is solely expressed in human limbal epithelial cells, not in other cell layers of 

the limbus (border of the cornea and the white of the eye) and was shown to play an 
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important role in maintaining the undifferentiated phenotype and high proliferation potential 

of corneal epithelial progenitor cells (164). Increased importin 13 activity is associated with 

the pathogenesis of pterygium, a triangular wing-shaped overgrowth of abnormal 

conjunctiva onto the cornea (142). Overexpression or knock-down of importin 13 increased 

or decreased pterygium epithelial cell proliferation, respectively (142). 

Expression and subcellular distribution of importin 13 are also regulated during brain 

development in mice, with the highest expression levels in fetal brain tissues at mouse 

embryonic day 13.5 (E13.5) and then gradually decreasing, with the lowest expression in 

adult mouse brain tissues (165). In the telencephalon (embryonic structure from which the 

cerebrum develops prenatally) tissue at stage E11.5 endogenous importin 13 is mainly 

localized in the cytoplasm, while at later stages from E15.5 to P0, importin 13 is mainly 

located in the nucleus (165). Further support for a potential role of importin 13 in neural 

development comes from a study (166) showing that importin 13 regulates 

neurotransmitter release at the Drosophila neuromuscular junction and that some of the 

identified importin 13 substrates are important in embryonic neural development. Pax6, for 

example, is a master control for eye morphogenesis (137, 167, 168) and Arx is necessary 

for development of the forebrain (138, 169, 170).  

During mouse development, importin 13 expression increases significantly from fertilized 

egg to blastocysts (171). Furthermore, meiotic differentiation of mouse germ cells is 

influenced by the stage-specific activity of importin 13 (172). Importin 13 is expressed in 

the primordial germ cells in the mouse embryo and is later expressed predominantly at the 

pachytene phase of meiosis in both male and female germ cells (172). Knock-down of 

importin 13 in fetal oocytes impedes the progression of meiosis through the pachytene 

phase of prophase I (172). In the same study, the authors identified a shorter transcript of 

mouse importin 13, which is encoded by the IPO13 gene but utilizes a different 

transcription start site (172). This shorter transcript is identical to the C-terminal fragment 

of importin 13 but lacks the N-terminal RanGTP-binding site and was shown to be only 

expressed in the germ cells in the adult testis (172). Expression of this shorter importin 13 

testis-specific transcript prevented nuclear localization of Ubc9 in GC1 cells derived from 

spermatogenic cells, whereas expression of full-length importin 13 resulted in a primarily 

nuclear localization of Ubc9. The authors suggest that this short importin 13 transcript may 

act as a dominant negative regulator of importin 13 mediated nuclear import (172). This 

function was further confirmed in a study (136), where they identified the interactome of 

the testis-specific form of importin 13. In the same study, the authors also demonstrated 
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that the short importin 13 transcript may not only play a role in the germ cells of the testis, 

but also in mature spermatozoa (136). 

Differential expression of importin 13 has also been linked to cancer, with increased 

importin 13 expression in endometrial carcinoma compared to secretory endometrium 

(173).  

Even though many of the cargoes known to be regulated by importin 13 have been linked 

to cellular functions, much remains to be investigated to understand how importin 13 

affects specific cellular states. For this, not only will more cargoes need to be identified, 

but also importin 13 expression regulation, its effect on cargo subcellular localization and 

consequently specific cellular pathways will need to be analyzed in detail and ultimately 

linked. Another aim will be to understand how deregulation of any of these individual 

processes can lead to pathogenic alterations of cellular states. 
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1.9 Aim of Work 
Importin 13 is one of the few transport receptors known to function both in nuclear import 

and export. While comprehensive lists of potential transportin, importin α/β and Crm1 

cargoes were available (80–82), only a few importin 13 cargoes had been reported when 

this work was started. The aim of this thesis was therefore to expand the range of 

importin 13 substrates using three different approaches. 

The first approach focused on the specific identification of importin 13 export cargoes. For 

this, nuclear proteins derived from the ‘LIFE database’ (174, 175), were expressed in HeLa 

cells and their subcellular localization was analyzed upon coexpression of importin 13. In 

the second approach, potential substrates from a HeLa cell extract, which interact 

specifically with immobilized importin 13, were identified by mass spectrometry. The third 

approach was similar to the second approach but was designed to allow the distinction 

between import and export cargoes using quantitative proteomics. To this end, stable 

isotope labeling of amino acids in cell culture (SILAC) was applied, to identify proteins that 

specifically interact with immobilized importin 13 from a HeLa cell extract. Finally, identified 

cargo candidates should be validated in binding assays and importin 13 overexpression 

experiments. 

Together, these approaches should lead to a better understanding of 

importin 13-dependent nuclear transport.  
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 Materials and Methods 2.
 

2.1 Material 
2.1.1 Software 
Adobe Illustrator CS7 Adobe 

AxioVision LE64 4.9.1.0 Zeiss 

CellProfiler 2.1.1 Broad Institute  

Citavi 5 Swiss Academic Software 

DAVID Bioinformatics Resources 6.8 NIH 

GraphPad Prism 5.01 GraphPad Software Inc. 

Image Reader LAS-3000 Fujifilm 

ImageJ/Fiji NIH 

Lasergene 10.1.1 (3) DNASTAR 

LSM 510 Release Version 4.0 SP2 Zeiss 

LSM Image Browser Zeiss 

MaxQuant 1.5.1.0 Max Planck Institute of 

Biochemistry 

Microsoft Office 2010 Microsoft 

NanoDrop 2000 Software  Thermo Scientific 

Perseus 1.5.0.15 Max Planck Institute of 

Biochemistry 

PPT Drawing Toolkits Motifolio Inc. 

Proteome Discoverer 1.4 Thermo Scientific 

SnapGene Viewer 3.1.4 GSL Biotech LLC 

STRING 10.0 STRING Consortium 

Tm Calculator Thermo Scientific 

Venny 2.1.0 Centro Nacional de 

Biotecnología  

 

2.1.2 Equipment 
Agarose gel documentation GelSTICK touch INTAS Science Imaging 

Instruments 

Agarose gel running chamber Home-made, Workshop, UMG 

Acclaim™ PepMap™ 100 pre-column Thermo Scientific 
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ÄKTA column HiLoad 26/60 Superdex 200 prep grade GE Healthcare 

ÄKTA column HiLoad 26/60 Superdex 75 prep grade GE Healthcare 

ÄKTA column MonoS  5/50 GL GE Healthcare 

ÄKTA column Superdex 200 10/300 GL GE Healthcare 

ÄKTA column Superdex 75 10/300 GL GE Healthcare 

ÄKTApurifier Amersham Biosciences 

Autoclave DX-200 Systec 

BioPhotometer Eppendorf 

CASY 1  Schärfe System 

Cell culture hood Herasafe™ KS  Thermo Scientific 

Cell culture incubator Heracell™ 150i Thermo Scientific 

Cell culture incubator Cytoperm 2 Heraeus Instruments 

Centrifuge 5415R  Eppendorf 

Centrifuge 5424 Eppendorf 

Centrifuge Sigma 1-15 Sigma-Aldrich 

Centrifuge Allegra® X-15R with rotor SX4750 Beckman Coulter 

Centrifuge Allegra® X 22 with rotor SX4250 Beckman Coulter 

Centrifuge Avanti™ J-30I with rotor JA30.50Ti Beckman Coulter 

Centrifuge J6-MI with rotor JS 4.2 Beckman Coulter 

Centrifuge Optima MAX-XP with rotor TLA100.3 Beckman Coulter 

Confocal microscope LSM 510 META Zeiss 

Decon FS-100 ultrasonic bath Decon Laboratories 

Developer machine CURIX60 Agfa 

Dual Gel Caster for Mini Vertical Units Hoefer 

EmulsiFlex-C3  Avestin 

Fluorescence microscope Axioskop 2 Zeiss 

Incubator Heraeus function line Heraeus 

Incubator Shaker INNOVA 4430 New Brunswick Scientific 

Incubation/Inactivation Water Bath Model 1003 GFL 

Mini Trans-Blot® Cell Bio-Rad 

Olympus CK40 Culture Microscope Olympus 

Orbitrap Velos Pro™ Nano ESI Mass Spectrometer Thermo Scientific 

SE250 Mighty Small II Mini Vertical Electrophoresis 

Unit 

Hoefer 

SDS gel documentation LAS-3000 Fujifilm 
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Spectrophotometer NanoDrop 2000c  Thermo Scientific 

SpeedVac Concentrator Savant 

Thermocycler FlexCycler2 Analytik Jena AG 

Thermocycler PTC-200 DNA Engine  MJ Research 

Thermocycler Tprofessional Biometra 

Thermomixer comfort Eppendorf 

Thermomixer compact Eppendorf 

UltiMate™ 3000 RSLCnano System Thermo Scientific 

UV sterilizer Biometra 

UV transilluminator Uvitec 

Vacuum Christ Alpha 1-4 W. Krannich 

Vortexer MS2 Minishaker IKA 

XCell SureLock® Mini-Cell Life technologies 

 

2.1.3 Consumables 
5 mL Polystyrene Round-Bottom Tubes BD Biosciences 

Amersham Hybond ECL Nitrocellulose Blotting 

Membrane 

GE Healthcare 

Amersham Hyperfilm™ ECL GE Healthcare 

Amersham Protran 0.45 μm NC Nitrocellulose Blotting 

Membrane 

GE Healthcare 

Cell culture consumables Sarstedt, Greiner bio-one 

Cell culture plastic ware Sarstedt, Greiner bio-one, Nagle 

Nunc International 

Centrifuge Bottle Assembly, Polycarbonate 50 mL Beckman Coulter 

Centrifuge tube, thickwall, Polycarbonate 500 µL Beckman Coulter 

Casy cups with lids Roche Diagnostics (Fisher 

Scientific) 

Empore™ C18 47 mm Extraction Disc, Model 2215 3M Company 

LC-MS Screw Neck Vial, 1.5 mL Grace 

LC-MS vial insert, 250 µL Agilent Technologies 

Medix XBU medical x-ray film FOMA Bohemia 

Microscope cover slips (10 mm, 12 mm Ø) Marienfeld 

Microscope slides Thermo Scientific 

Mini-Protean® TGX Gels Bio-Rad 
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Minisart RC 15, single use syringe filters (0.45 μm, 

0.20 μm) 

Sartorius Stedim Biotech 

Minisart single use filter units (0.45 μm, 0.20 μm) Sartorius Stedim Biotech 

NuPAGE® Novex® 4-12% Bis-Tris Protein Gels Thermo Scientific 

Parafilm "M" Bemis Company, Inc. 

PD-10 columns GE Healthcare 

pH indicator strips Macherey-Nagel 

Protein LoBind Tubes  Eppendorf 

Reaction tubes (1.5, 2 mL) Sarstedt, greiner bio-one 

Spectra/Por® Dialysis Membrane Spectrum Laboratories 

Spin-X® UF Concentrator Corning 

Syringes and needles B. Braun, Servoprax 

Whatman gel blotting paper GE Healthcare 

 

2.1.4 Kits 
CloneJET PCR Cloning Kit  Thermo Scientific 

Duolink® In Situ Detection Reagents Red Sigma-Aldrich 

Duolink® In Situ Kit Sigma-Aldrich 

NucleoBond™ Xtra Midi  Macherey-Nagel 

NucleoSpin® Gel and PCR Clean-up  Macherey-Nagel 

NucleoSpin® Plasmid  Macherey-Nagel 

Pierce® BCA Protein Assay Kit  Thermo Scientific 

Pierce® Silver Stain Kit  Thermo Scientific 

RNeasy Mini Kit Qiagen 

 

2.1.5 Chemicals and Reagents 
All standard chemicals and solvents not listed here were obtained from AppliChem GmbH 

(Darmstadt), Carl Roth GmbH + Co. KG (Karlsruhe), Serva Electrophoresis GmbH 

(Heidelberg), Sigma-Aldrich (Taufkirchen) or Merck (Darmstadt). 

 

Arg-6:HCl Silantes 

Arg-10:HCl Silantes 

Lys-4D:2HCl Silantes 

Lys-8:HCl Silantes 

β-Mercaptoethanol Roth 
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Acetonitrile, Optima™ LC/MS Grade Fisher Scientific 

Acrylamide 4K Solution (30%) AppliChem 

Adenosine 5’-triphosphate disodium salt hydrate 

(order number A3377) 

Sigma-Aldrich 

Ammonium hydrogen carbonate Roth 

Bovine Serum Albumin (BSA) (20 mg/mL) Thermo Scientific 

BSA, fraction V AppliChem 

Coomassie Plus™ Protein Assay Reagent Thermo Scientific 

Coulter ISOTON® II Diluent Beckman Coulter 

Cyanogen bromide-activated Sepharose 4B Sigma-Aldrich 

Dako Fluorescence Mounting Medium  Dako 

DAPI (D9542) Sigma-Aldrich 

DEAE-Sepharose Sigma-Aldrich 

Digitonin Calbiochem 

dNTP Set, 100 mM solutions Thermo Scientific 

FBS Superior Biochrom 

Formaldehyde solution min. 37% Millipore 

Formic Acid, 99.5+%, Optima™ LC/MS Grade Fisher Scientific 

Gelatin from cold water fish Sigma-Aldrich 

GeneRuler 100bp DNA Ladder Thermo Scientific 

GeneRuler 1kb DNA Ladder Thermo Scientific 

Gibco® DMEM (1x) Thermo Scientific 

Gibco® DMEM (1x) no glutamine, lysine & arginine Thermo Scientific 

Gibco® L-Glutamine Thermo Scientific 

Gibco® Opti-MEM® (1x) Thermo Scientific 

Gibco® Penicillin Streptomycin (Pen Strep) Thermo Scientific 

Glutathione Sepharose 4 Fast Flow GE Healthcare 

Glutathione Sepharose High Performance GE Healthcare 

Guanosine 5’-diphosphate sodium salt (G7127) Sigma-Aldrich 

Guanosine 5’-triphosphate sodium salt hydrate (51120) Sigma-Aldrich 

IgG-Sepharose 6 Fast Flow GE Healthcare 

Immobilon™ Western Chemiluminescent HRP 

Substrate 

Millipore 

Iodoacetamide, BioUltra Sigma-Aldrich  

Isopropyl β-D-1-thiogalactopyranoside Thermo Scientific 
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Lectin from Triticum vulgaris Sigma-Aldrich 

Leptomycin B Enzo Life Sciences 

L-Glutathione reduced AppliChem 

Lipofectamine® 2000 Thermo Scientific 

Methanol, Optima™ LC/MS Grade Fisher Scientific 

MOWIOL® 4-88 Calbiochem 

Ni-NTA Agarose Qiagen 

NuPAGE® MES SDS Running Buffer (20x) Thermo Scientific 

NuPAGE® MOPS SDS Running Buffer (20x) Thermo Scientific 

Oligofectamine™ Reagent Thermo Scientific 

Oligonucleotides Sigma-Aldrich 

ortho-Phosphoric acid 85% p.A. AppliChem 

PageRuler Prestained Protein Ladder Thermo Scientific 

PageRuler Unstained Protein Ladder Thermo Scientific 

Poly-L-Lysine solution 0.1% (w/v) Sigma-Aldrich 

SafeView™ Classic (DNA stain) Applied Biological Materials Inc. 

SP-Sepharose Fast Flow Roth 

Water, Optima™ LC/MS Grade Fisher Scientific 

 

2.1.6 Enzymes 
Creatine phosphokinase, Rabbit Skeletal Muscle Calbiochem 

DNaseI Roth 

Fast alkaline phosphatase (FastAP) Thermo Scientific 

Phusion® High-Fidelity DNA Polymerase Thermo Scientific 

Restriction enzymes Thermo Scientific 

RiboLock RNase Inhibitor Thermo Scientific 

SuperScript® III Reverse Transcriptase Thermo Scientific 

T4 DNA ligase Thermo Scientific 

Gibco® Trypsin/ EDTA 0.25% (1x) Thermo Scientific 

Trypsin NB Sequencing Grade (peptide digestion) Serva 

 

 

2.1.7 Stock Solutions 
1,4-Dithiothreitol (DTT)  1 M in H2O 

Ammonium persulfate (APS)  10% APS (Sigma) in H2O 

https://www.carlroth.com/en/en/Chemicals/A-Z-Chemicals/G/L-Glutathione-reduced/L-Glutathione-reduced/p/0000000700005c9500010023_en
https://www.fishersci.com/shop/products/methanol-optima-lc-ms-fisher-chemical-5/p-3112109#?keyword=Methanol+%28Optima%26trade%3B+LC%2FMS%29%2C


Materials and Methods 

38 

Ampicillin  100 mg/mL in H2O 

Aprotinin  1 mg/mL in 20 mM HEPES pH 7.4 

Adenosine triphosphate (ATP)  100 mM ATP in 100 mM Mg(OAc)2, 20 mM 

HEPES (pH 7.4) 

Calcium chloride buffer 250 mM CaCl2 H2O 

Chloramphenicol  34 mg/mL in EtOH 

Creatine phosphokinase  2000 U/mL in 50% glycerol, 20 mM HEPES 

pH 7.4 

Creatine phosphate  80 mg/mL in H2O 

Cytosol (9 mg/mL) prepared as described in Kehlenbach et al., 

1998 

Digitonin  10% (w/v) in DMSO 

FITC-Phalloidin 0.2 mg/mL in methanol 

Hoechst 33258  10 mg/mL in H2O 

Isopropyl b-D-1-thiogalactopyranoside 

(IPTG) 

1 M in H2O 

Kanamycin  50 mg/mL in H2O 

Leupeptin/Pepstatin  1 mg/mL each, in DMSO 

Phenylmethylsulfonyl fluoride (PMSF)  100 mM in 2-propanol 

WGA (wheat germ agglutinine/lectin) 2 mg/mL in TPB 

 

2.1.8 Buffers and Solutions 
2YT-medium 1.6% (w/v) tryptone, 1% (w/v) yeast extract, 

0.5% (w/v) NaCl, pH 7.0 

Carbonate buffer 0.2 M NaHCO3/Na2CO3, pH 8.9 

Coomassie destaining solution  10% acetic acid 

Coomassie fixation solution  40% ethanol, 10% acetic acid 

Coomassie staining solution 5% aluminum sulfate-(14-18)-hydrate, 10% 

ethanol, 2% ortho-phosphoric acid, 0.02% 

CBB-G250 

DNA loading buffer (6x)  0.2% bromophenol blue, 0.2% xylene cyanole, 

60% glycerol, 60 mM EDTA 

GST buffer 50 mM Tris pH 6.8, 300 mM NaCl, 1 mM MgCl2, 

2 mM DTT, 0.1 mM PMSF, 1 μg/mL of each AP 

and LP 
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HBS (2x) buffer  50 mM HEPES, 250 mM NaCl, 1.5 mM 

Na2HPO4, pH 6.98 

His buffer 50 mM Tris pH 7.5, 500 mM NaCl, 10 mM 

MgAc, 5% glycerol, 10 mM β-mercaptoethanol, 

0.1 mM PMSF, 1 μg/mL of each AP and LP 

Laemmli running buffer (10x)  250 mM Tris, 1.92 M glycine, 0.5% SDS 

LB-medium 1% (w/v) bacto-tryptone, 0.5% (w/v) yeast 

extract, 1% (w/v) NaCl, pH 7.0 

LB agar plates  LB supplemented with 1.5% (w/v) bacto-agar 

Mowiol mounting medium 13.3% (w/v) Mowiol 4-88, 33.3% (w/v) glycerol, 

133 mM Tris-HCl, pH 8.5, 1 µg/mL DAPI 

PBS (10x) 1.37 M NaCl, 27 mM KCl, 100 mM Na2HPO4, 

18 mM KH2PO4, pH 7.5 

PBS-T 1x PBS + 0.1% Tween-20 

PLA Wash Buffer A 0.01 M Tris pH 8.0, 0.15 M NaCl, 0.05% 

Tween 20 

PLA Wash Buffer B 0.2 M Tris pH 7.5, 0.1 M NaCl 

PonceauS staining solution  0.5% PonceauS in 1% acetic acid 

Pulldown buffer  50 mM Tris pH 7.4, 200 mM NaCl, 5% glycerol, 

2 mM DTT 

Ran buffer 50 mM Tris pH 8.0, 75 mM NaCl, 1 mM MgCl2, 

100 μM PMSF, 1 μg/mL of each AP and LP 

SDS sample buffer (4x)  125 mM Tris pH 6.8, 4% SDS, 0.02% 

Bromophenol blue, 10% glycerol 

SOC-medium 2% (w/v) tryptone, 0.5% (w/v) yeast extract, 

10 mM NaCl, 2.5 mM KaCl, 10 mM MgCl2, 

10 mM MgSO4, 0.36% (w/v) glucose, pH 7.0 

STOP buffer 7% charcoal, 10% ethanol, 0.1 M HCl, 10 mM 

NaH2PO4 

TAE buffer (50x)  2 M Tris, 0.05 M EDTA, 5.71% acetic acid 

Transport buffer (10x)  200 mM HEPES, 1.1 M KOAc, 20 mM 

Mg(OAc)2, 10 mM EGTA, pH 7.3 

Ubc9 buffer 50 mM Na-phosphate pH 6.5, 50 mM NaCl, 

0.1 mM PMSF, 1 μg/mL of each AP and LP, 

1mM DTT 
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Western blot transfer buffer (10x)  250 mM Tris, 1.93 M glycine, 0.2% SDS 

Western blot transfer buffer (1x)  10% Western blot transfer buffer (10x), 20% 

MeOH 

 

 

2.1.9 Mammalian Cell Lines 

Cell line Specification  Origin 

HeLa P4 (P4 MAGI 

CCR5+ Cells) 

Human adenocarcinoma cell line that 

expresses CD4; derived from cervix of 

a 31-year-old woman 

NIH AIDS Reagent 

Program; (176) 

U2-OS (U2OS) Human osteosarcoma cell line; derived 

from a moderately differentiated 

sarcoma of the tibia of a 15-year-old girl 

ATCC® HTB96 

293T HEK Human embryonic kidney cell line 

transformed with adenovirus 5 DNA; 

derived from fetus  

ATCC, CRL-2828 

COS-7 Monkey African green kidney cell line 

transformed with SV40  

Sigma-Aldrich, 

87021302 

 

 

2.1.10 Bacterial Strains 

Bacterial strain Specification and Genotype 

BL21 (DE3) codon+ F- ompT hsdS(rB- mB-) dcm+ Tetr gal l (DE3) endA Hte [argU 

proL Camr] 

LEMO21 (DE3) fhuA2 [lon] ompT gal (lDE3) [dcm] hsdS/ 

pLemo(CamR) 

DH5α F- Φ80lacZΔM15 Δ (lacZYA-argF) U169 recA1 endA1 hsdR17 

(rK-,mK+) phoA supE44 λ- thi-1 gyrA96 relA1 

JM109 endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ Δ(lac-proAB) e14-  

[F’ traD36 proAB + lacIq lacZΔM15] hsdR17(rK- mK+) 

 

 

 

 

 

https://en.wikipedia.org/wiki/Adenovirus
https://en.wikipedia.org/wiki/DNA
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2.1.11 Antibodies 
 

Table 2: Primary antibodies 

Number Name Species Origin IF Dilution WB 
Dilution 

PLA 
Dilution 

Ab013 α-FLAG (M2) mouse Sigma 1:3,000 1:1,000  Ab029 α-IPO13 rabbit Proteintech 1:300 1:2,000  Ab051 α-Ran mouse BD 1:2,000 1:5,000  Ab121 α-FLAG (M2) rabbit SIGMA 1:1,000 1:1,000  
Ab132 α-HA mouse hybridoma 

supernatant 1:5,000 1:5,000  
Ab181 α-Transportin mouse BD unspecific 1:1,000  Ab186 α-HA mouse Convance 1:1,000 1:1,000  Ab208a α-Imp β rabbit A. Nath  1:1,000  Ab219 α-elF1A rabbit  Abcam 1:500 1:200,000 1:2,000 
Ab227 α-IPO13 rabbit this work* 1:300 1:1,000 1:500 
Ab228 α-IPO13 rabbit this work* 1:300 1:1,000  Ab234 α-STRAP rabbit Proteintech - 1:300  Ab235 α-NCAPG rabbit Proteintech 1:100 1:1,000  Ab236 α-NSUN2 rabbit Proteintech 1:500 1:5,000  Ab237 α-WDR77 rabbit Proteintech - 1:100  Ab238 α-OLA1 rabbit Proteintech 1:50 1:300  Ab239 α-SRP14 rabbit Proteintech 1:300 1:1,000  Ab240 α-ERI1 rabbit Proteintech 1:100 1:1,000  Ab241 α-EDC3 rabbit Proteintech 1:50 1:1,000  Ab242 α-WDR61 rabbit Proteintech 1:300 1:1,000  Ab243 α-EIF3G rabbit Proteintech 1:50 1:100  Ab244 α-APEX rabbit Proteintech 1:50 1:500  Ab245 α-FEN1 rabbit Proteintech 1:500 1:1,000  Ab250 α-RTCD1 rabbit Proteintech 1:50 1:500  Ab309 α-Ubc9 mouse Santa Cruz 1:100 1:5,000 1:500 

IF: immunofluorescence, WB: immunoblotting, PLA: in situ proximity ligation assay 

*: for details see section 2.3.9 

 

 

Table 3: Secondary antibodies 
Name Species  Origin Application  Dilution 
anti-mouse HRP goat Jackson ImmunoResearch WB 1:10,000 
anti-rabbit HRP goat Jackson ImmunoResearch WB 1:10,000 
anti-mouse AlexaFluor® 
488 conjugated donkey Molecular Probes IF 1:1,000 

anti-mouse AlexaFluor® 
594 conjugated donkey Molecular Probes IF 1:1,000 

anti-rabbit AlexaFluor® 
488 conjugated donkey Molecular Probes IF 1:1,000 

anti-rabbit AlexaFluor® 
594 conjugated donkey Molecular Probes IF 1:1,000 
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Name Species  Origin Application  Dilution 
Duolink® In Situ PLA® 
Probe Anti-Rabbit MINUS donkey Sigma-Aldrich PLA 1:5 

Duolink® In Situ PLA® 
Probe Anti-Mouse PLUS donkey Sigma-Aldrich PLA 1:5 

FITC-Phalloidin Amanita 
phalloides Sigma-Aldrich IF 1:600 

 

 

2.1.12 siRNAs 
siRNA Sequence (5’  3’) Target  Company 
siIPO13_1 AACAAUAUCAGGAUGAUCCct IPO13 Ambion 
siRNA non-
targeting (nt) 

Silencer Negative Control #1 siRNA 
(Cat. # AM4635) 

scrambled 
sequence Ambion 

 

 

2.1.13 Oligonucleotides 
Oligonucleotides were obtained from Sigma-Aldrich with a concentration of 100 µM, a 

synthesis scale of 0.025 µmol and the purification grade desalted. For cloning, restriction 

sites were added to the 5’-end of the oligonucleotides, as well as, a 5’-end overhang to 

ensure high cleavage efficiency of the restriction enzymes as specified by the 

manufacturer (Thermo Scientific). Oligonucleotides were designed to have a melting 

temperature close to 58°C for a three-step PCR protocol or between 69-72°C for a two-

step protocol using the Phusion DNA polymerase. The melting temperature of 

oligonucleotides was calculated using the Tm Calculator from Thermo Scientific. 

 

Table 4: Oligonucleotides for cloning 
Number Name Sequence (5’ → 3’) 
G1435 Ubc9_EcoRI_fwd TTTGAATTCATGTCGGGGATCGCCCTCA 

G1436 Ubc9_SalI_rev AATGTCGACTTATGAGGGCGCAAACTTCTTG 

G1437 eIF1A_EcoRI_fwd (HPLC) TTTGAATTCATGCCCAAGAATAAAGGTAAAGG 

G1438 eIF1A_SalI_rev (HPLC) TTTGTCGACTTAGATGTCATCAATATCTTCATCATC 

G1437 eIF1A_EcoRI_fwd (HPLC) TTTGAATTCATGCCCAAGAATAAAGGTAAAGG 

G1438 eIF1A_SalI_rev (HPLC) TTTGTCGACTTAGATGTCATCAATATCTTCATCATC 

G1448 eIF1A_EcoRI_fwd+spacer+ext TTTTTTTTTGAATTCTATGCCCAAGAATAAAGGTAAAGG 

G1449 eIF1A_SalI_rev+ext TTTTTTTTTGTCGACTTAGATGTCATCAATATCTTCATCATC 

G1478 Ubc9_EcoRI_fwd+spacer TTTTGAATTCTATGTCGGGGATCGCCCTC 

G1479 Ubc9_SalI_rev_mouse AAATGTCGACTTATGAGGGGGCAAACTTCTTCGC 

G1483 IPO13_AgeI_fwd TTTTACCGGTATGGAGCGGCGGGAGG 

G1484 IPO13_XhoI_rev TTTTCTCGAGTCAGTAGTCAGCTGTGTAATCTGTGCCA 

G1601 01_AIFM2_KpnI_fwd TTTTGGTACCATGGGGTCCCAGGTCTCGGT 

G1602 01_AIFM2_BamHI_rev TTTTGGATCCTTAGGTGGAGACTGCCTCATGGTTTTC 
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Number Name Sequence (5’ → 3’) 
G1603 02_PP1B_KpnI_fwd TTTTGGTACCATGGCGGACGGGGAGCT 

G1604 02_PP1B_BamHI_rev TTTTGGATCCTTCCTTTTCTTCGGCGGATTAGCTG 

G1605 03_ZRAB2_KpnI_fwd TTTTGGTACCATGTCGACCAAGAATTTCCGAGTCAG 

G1606 03_ZRAB2_BamHI_rev TTTGGATCCTTGGGTTGTTTAGTGTTTTCACCAATCACCT 

G1607 04_PRMT1_KpnI_fwd TTTTGGTACCATGGCGGCAGCCGAGG 

G1608 04_PRMT1_BamHI_rev TTTTGGATCCTTGCGCATCCGGTAGTCGGTG 

G1609 05_RAE1L_KpnI_fwd TTTGGTACCATGAGCCTGTTTGGAACAACCTCAG 

G1610 05_RAE1L_BamHI_rev TTTGGATCCTTCTTCTTATTCCTGGGCTTTAGCTCTTCG 

G1611 07_CELF1_HindIII_fwd TTTTAAGCTTTTATGAACGGCACCCTGGACC 

G1612 07_CELF1L_EcoRI_rev TTTTGAATTCTGTAGGGCTTGCTGTCATTCTTCGA 

G1613 08_HAT1_KpnI_fwd TTTTGGTACCATGGCGGGATTTGGTGCTATG 

G1614 08_HAT1_BamHI_rev TTTGGATCCTTCTCTTGAGCAAGTCGTTCAATAACACG 

G1615 09_IF4A1_HindIII_fwd TTTTAAGCTTTTATGTCTGCGAGCCAGGATTCC 

G1616 09_IF4A1_EcoRI_rev TTTTGAATTCTGATGAGGTCAGCAACATTGAGGG 

G1617 10_RUVB1_KpnI_fwd TTTGGTACCATGAAGATTGAGGAGGTGAAGAGCACT 

G1618 10_RUVB1_BamHI_rev TTTGGATCCTTCTTCATGTACTTATCCTGCTGGTCAGCC 

G1619 KPNB1_linker_SacI_fwd TTTTGAGCTCTTGGTGGAGGTGGATCTGGAGGTGGAGGTTCT
ATGGAGCTGATCACCATTCTC 

G1620 TPNO1_linker_XhoI_fwd TTTTCTCGAGTTGGTGGAGGTGGATCTGGAGGTGGAGGTTCT
ATGGAGTATGAGTGGAAACCTGACG 

G1621 IPO13_linker_XhoI_fwd TTTTCTCGAGTTGGTGGAGGTGGATCTGGAGGTGGAGGTTCT
ATGGAGCGGCGGGAGGA 

G1635 01_RTCA_KpnI_fwd TTTGGTACCATGGCGGGGCCGC 

G1636 01_RTCA_BamHI_rev TTTGGATCCTTTAGATTTGGATTTGTCATCCCAATTCC 

G1637 02_APEX1_KpnI_fwd TTTGGTACCATGCCGAAGCGTGGG 

G1638 02_APEX1_BamHI_rev TTTGGATCCTTCAGTGCTAGGTATAGGGTGATAGG 

G1639 03_SRP14_KpnI_fwd TTTGGTACCATGGTGTTGTTGGAGAGCGAGC 

G1640 03_SRP14_BamHI_rev TTTGGATCCTTCTGTGCTGCTGTTGCTGCTGT 

G1641 04_NSUN2_EcoRI_fwd TTTGAATTCAATGGGGCGGCGGTCG 

G1642 04_NSUN2_EcoRI_rev TTTGAATTCTCCGGGGTGGATGGACCC 

G1643 05_TYW3_KpnI_fwd TTTGGTACCATGGATCGCAGCGC 

G1644 05_TYW3_BamHI_rev TTTGGATCCTTGTAATCTTCAGGGAAGATGGTAAC 

G1645 06_FEN1_HindIII_fwd TTTTAAGCTTTTATGGGAATTCACGGCCTTGC 

G1646 06_FEN1_KpnI_rev TTTGGTACCTTTTTTCCCCTTCGGAACTTCCC 

G1647 07_ HNRNPD_KpnI_fwd TTTGGTACCATGTCGGAGGAGCAGTTC 

G1648 07_ HNRNPD_BamHI_rev TTTGGATCCTTGTATGGTTTGTAGCTATTTTGATG 

G1649 08_XRCC5_KpnI_fwd TTTGGTACCATGGTGCGGTCGGGGA 

G1650 08_XRCC5_BamHI_rev TTTGGATCCTTTATCATGTCCAATAAATCGTCCACATCA 

G1651 09_XRCC6_BamHI_fwd TTTGGATCCATGTCAGGGTGGGAGTCATATTAC 

G1652 09_XRCC6_BamHI_rev TTTGGATCCTTGTCCTGGAAGTGCTTGGTG 

G1653 10_MCM3_HindIII_fwd TTTTAAGCTTTTATGGCGGGTACCGTGGTG 

G1654 10_MCM3_EcoRI_rev TTTGAATTCTGATGAGGAAGATGATGCCCTCAGAC 

G1655 11_DBR1_KpnI_fwd TTTGGTACCATGCGGGTGGCTGTGGC 

G1656 11_DBR1_BamHI_rev TTTGGATCCTTAGCTGCATCGTCATCATCATCATC 

G1657 12_SET_KpnI_fwd TTTGGTACCATGTCGGCGCCGGC 

G1658 12_SET_BamHI_rev TTTGGATCCTTGTCATCTTCTCCTTCATCCTCCTCTCC 

G1659 13_EIF2AK2_KpnI_fwd TTTGGTACCATGGCTGGTGATCTTTCAG 

G1660 13_EIF2AK2_BamHI_rev TTTGGATCCTTACATGTGTGTCGTTCATTTTT 

G1661 14_DDX1_HindIII_fwd TTTAAGCTTTTATGGCGGCCTTCTCC 

G1662 14_DDX1_HindIII_rev TTTGGATCCTTGAAGGTTCTGAACAGCTGG 
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Number Name Sequence (5’ → 3’) 
G1663 15_PRMT5_EcoRI_fwd TTTGAATTCAATGGCGGCGATGGCG 

G1664 15_PRMT5_EcoRI_rev TTTGAATTCTGAGGCCAATGGTATATGAGCGGC 

G1665 16_BTF3_KpnI_fwd TTTGGTACCATGCGACGGACAGGCGC 

G1666 16_BTF3_BamHI_rev TTTGGATCCTTGTTTGCCTCATTCTTGGAAGCCTC 

G1667 17_EIF2D_EcoRI_fwd TTTGAATTCAATGTTTGCCAAGGCCTTTCGG 

G1668 17_EIF2D_EcoRI_rev TTTGAATTCTCTTCTTCTTGCCAGGTTTGAGGG 

G1669 18_STRAP_KpnI_fwd TTTGGTACCATGGCAATGAGACAGACGCCG 

G1670 18_STRAP_BamHI_rev TTTGGATCCTTGGCCTTAACATCAGGAGCTGAAGG 

G1673 19_TFCP2_KpnI_fwd TTTGGTACCATGGCCTGGGCTCTG 

G1674 19_TFCP2_BamHI_rev TTTGGATCCTTCTTCAGTATGATATGATAGCTATCATTG 

G1675 20_TRIM28_HindIII_fwd TTTTAAGCTTTTATGGCGGCCTCCGCG 

G1676 20_TRIM28_EcoRI_rev TTTGAATTCTGGGGCCATCACCAGGGC 

G1677 21_TNIP1_KpnI_fwd TTTGGTACCATGGAAGGGAGAGGACCGTACCG 

G1678 21_TNIP1_BamHI_rev TTTGGATCCTTCTGAGGCCCCTCACGGTCA 

G1679 22_ERI1_KpnI_fwd TTTGGTACCATGGAGGATCCACAGAGTAA 

G1680 22_ERI1_KpnI_rev TTTGGTACCAACTTTCTAAAATGTGGCATTTG 

G1681 23_BYSL_HindIII_fwd TTTTAAGCTTTTATGCCCAAATTCAAGGC 

G1682 23_BYSL_EcoRI_rev TTTGAATTCTCTCCACGGTGATGGG 

G1683 24_EIF3F_HindIII_fwd TTTTAAGCTTTTATGGCCACACCGG 

G1684 24_EIF3F_EcoRI_rev TTTGAATTCTCAGGTTTACAAGTTTTTCATTG 

G1685 25_EIF3G_HindIII_fwd TTTTAAGCTTTTATGCCTACTGGAGACTTTGA 

G1686 25_EIF3G_EcoRI_rev TTTGAATTCTGTTGGTGGACGGCTT 

G1687 26_PDCD4_KpnI_fwd TTTGGTACCATGGATGTAGAAAATGAGCAG 

G1688 26_PDCD4_BamHI_rev TTTGGATCCTTGTAGCTCTCTGGTTTAAGACG 

G1689 27_GTF2F2_HindIII_fwd TTTTAAGCTTTTATGGCCGAGCGC 

G1690 27_GTF2F2_EcoRI_rev TTTGAATTCTGTCACTCTTTTCTTCTCCTTG 

G1691 28_PPP1CA_KpnI_fwd TTTGGTACCATGTCCGACAGCGAGAAGCTCA 

G1692 28_PPP1CA_BamHI_rev TTTGGATCCTTTTTCTTGGCTTTGGCGGAATTG 

G1693 29_CDK1_HindIII_fwd TTTTAAGCTTTTATGGAAGATTATACCAAAATAGAG 

G1694 29_CDK1_EcoRI_rev TTTGAATTCTCATCTTCTTAATCTGATTGTCC 

G1695 30_DDX3_KpnI_fwd TTTGGTACCATGAGTCATGTGGCAGTG 

G1696 30_DDX3_BamHI_rev TTTGGATCCTTGTTACCCCACCAGTCAAC 

G1697 31_XPA_KpnI_fwd TTTGGTACCATGGCGGCGGCCG 

G1698 31_XPA_BamHI_rev TTTGGATCCTTCATTTTTTCATATGTCAGTTCATGGCCAC 

G1699 32_GPN1_HindIII_fwd TTTTAAGCTTTTATGCGGTGTCTCTATGGTC 

G1700 32_GPN1_EcoRI_rev TTTGAATTCTTTTATTGTTTCTCTTCCAGTATTG 

G1701 33_SQSTM1_HindIII_fwd TTTTAAGCTTTTATGGCGTCGCTCACCGTG 

G1702 33_SQSTM1_EcoRI_rev TTTGAATTCTCAACGGCGGGGGATGC 

G1703 34_RBM22_KpnI_fwd TTTGGTACCATGGCGACCTCTCTGGGTTCC 

G1704 34_RBM22_BamHI_rev TTTGGATCCTTGGGGCTGCTGTGTTTTCCAG 

G1705 35_NELFA_KpnI_fwd TTTGGTACCATGGCGTCCATGCGGG 

G1706 35_NELFA_BamHI_rev TTTGGATCCTTGGACACATTGGTCATGGGCTTG 

G1707 36_NELFB_KpnI_fwd TTTGGTACCATGTTCGCGGGGCTGCA 

G1708 36_NELFB_BamHI_rev TTTGGATCCTTGAGCGGGGCAGGGGC 

G1709 37_NELFCD_EcoRI_fwd TTTGAATTCAATGCGCCGCGCTCG 

G1710 37_NELFCD_EcoRI_rev TTTGAATTCTGTTCACCATGATGAAGTTAGATTTGCAGTG 

G1739 tIPO13_EcoRI_fwd TTTGAATTCAATGATCAACAGTGTTCTGCCC 

G1740 tIPO13_XhoI_rev TTTCTCGAGTCAGTAGTCAGCTGTGTAATCTGTG 

G1765 40_OLA1_HindIII_fwd TTTAAGCTTTTATGCCCCCTAAAAAGGGAGGTG 
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Number Name Sequence (5’ → 3’) 
G1766 40_OLA1_EcoRI_rev TTTGAATTCTTTTCTTCTTCGGTTGTTGAGGTGTG 

G1767 41_WDR77_HindIII_fwd TTTAAGCTTTTATGCGGAAGGAAACCCCACC 

G1768 41_WDR77_EcoRI_rev TTTGAATTCTCTCAGTAACACTTGCAGGTCCAGGG 

G1769 38_EDC3_HindIII_fwd TTTAAGCTTTTATGGCTACAGATTGGCTGGGAAG 

G1770 38_EDC3_EcoRI_rev TTTGAATTCTAGCAGAGTGCAGTGGGATAACAAACTTG 

G1771 39_WDR61_HindIII_fwd TTTAAGCTTTTATGACCAACCAGTACGGTATTCTCTTCAAAC 

G1772 39_WDR61_EcoRI_rev TTTGAATTCTAATTGGACAATCATAGATGTGAATTTCCTGG 

 

Table 5: Oligonucleotides for sequencing 
Number Name Sequence (5’ → 3’) 
G828 Importin13 Bp 1102 for CAGGATGATATTCTATCC 
GATC pcDNA3.1-FP CTCTGGCTAACTAGAGAAC 
GATC pcDNA3.1-RP/1 CAAACAACAGATGGCTGGC 
GATC pEGFP_C2-RP TTTAAAGCAAGTAAAACCTC 
GATC pGEX5-FP AACGTATTGAAGCTATCCC 
GATC SP6 ATTTAGGTGACACTATAGAA 
GATC T3 ATTAACCCTCACTAAAGGGA 
GATC T7 TAATACGACTCACTATAGGG 
 

Table 6: Oligonucleotide for cDNA synthesis 
Name Sequence (5’ → 3’) Origin 

Oligo(dT) 
TTTTTTTTTTTTTTTTTTTTTTTTVN 
(V is any nucleotide apart from T;  
N is any nucleotide) 

Prof. Markus Bohnsack, 
Department of Molecular 
Biology, Göttingen 

 

 

2.1.14 Vectors  
 

Table 7: Vectors 

Number  Name Tag  Resistance Application  Origin 
4 pET-28a His 

(N-terminal) 
kanamycin expression Novagen 

30 pEGFP-C1 EGFP  
(N-terminal) 

kanamycin transfection Clontech 

46 pGex-6P-1 GST  
(N-terminal) 

ampicillin expression Amersham 

51 pcDNA 3.1(+) none ampicillin transfection Invitrogen 
52 pcDNA3.1(+)-HA HA-Tag 

(C-terminal) 
ampicillin transfection S. Wälde 

82 pGEX-6P-1-MCS2 GST 
(N-terminal) 

ampicillin expression this work, MCS from 
#290 in vector #46 
(EcoNI, BamHI) 
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2.1.15 Plasmids 
 

Table 8: Available plasmids 

Number  Name Origin 
2 pET3d-RanQ69L  186 pCMV-HA-DDX3 K.T. Jeang 
249 pCMV-HA-DDX1 R.J. Pomerantz 
290 pEGFP-GST D. Doenecke 
294 pdEGFP-C1  297 pdEGFP-GST-NLS (Xenopus) D. Doenecke 
299 pEYFP-Fos M. Duterque 
300 pECFP-Jun M. Duterque 
320 pdGFP-GST-RevNLS M. Nassiri 
328 pEF-HA-Snurportin1 S. Hutten 
330 pEF-HA-DDX43 C. Spillner 
333 pEF-HA-DMAP1 C. Spillner 
335 pEF-HA-DBC1 C. Spillner 
396 pdEGFP-Jun I. Waldmann 
403 pdEGFP-M9 S. Hutten 
467 pdEGFP-Fos S. Roloff 
510 pcDNA3.1-HA-Ubc9 Melchior 
545 pcDNA3.1-TERT-HA S. Wälde 
553 pcDNA-HA-p53 EM 
651 pcDNA4-HA-ER alpha S. Johnson 
687 pCS2plus-FLAG-importin 13 D. Doenecke 
731 pEGFP-C1-DBC1 S. Wälde 
731 pEGFP-C1-DBC1 S. Wälde 
755 pECFP-C1-DDX 43 S. Wälde 
757 pECFP-C1-DDX 59 S. Wälde 
767 pmCherry-C1-Sirt1 S. Wälde 
789 pdEGFP-cNLS-DBC-1 (aa 793-923) S. Wälde 
813 pCS2plus-FLAG-importin13 (aa 1-410) D. Doenecke 
814 pCS2plus-FLAG-importin13 (aa 1-669) D. Doenecke 
815 pCS2plus-FLAG-importin13 (aa 1-784) D. Doenecke 
816 pCS2plus-FLAG-importin13 (aa 153-963) D. Doenecke 
817 pCS2plus-FLAG-importin13 (aa 153-784) D. Doenecke 
833 pEGFP-N1-TERT C. Frohnert 
834 pEGFP-C1-DMAP A. Nath 
1102 pEGFP-C1-SQSTM1  T. Johansen 
1112 GFP-Bystin-like K. Thakar 
1165 pEGFP-C1-HA-importin 13 (no GFP) A. Nath 
1166 pEGFP-C1-HA-importin 13-E436R/D481R (no GFP) A. Nath 
1167 pEGFP-N3-eIF1A A. Nath 
1168 pEGFP-N3-eIF1A-R46E A. Nath 
1239 pET328-His-zz-tev F. Vilardi 
1511 pQE80-His-importin 13 D. Doenecke 
1514 pET23-Ubc9 R. Geiss-Friedländer 
1576 pET-MCN-GST-importin 13 F. Bono 
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Number  Name Origin 
1577 pcDNA4-SET-myc-His C. Kaether 
1689 pCAGGS-HA-NELFA Y. Yamaguchi  
LIFEdb pEYFP-N-Hsp22 LIFEdb, DKFZ 
LIFEdb pEYFP-N-CPF LIFEdb, DKFZ 
LIFEdb pEYFP-N-Lim6 LIFEdb, DKFZ 
LIFEdb pEYFP-N-Tmp29 LIFEdb, DKFZ 
LIFEdb pEYFP-N-Nip30 LIFEdb, DKFZ 
LIFEdb pEYFP-N-Zinc313 LIFEdb, DKFZ 
LIFEdb pEYFP-N-KIAA1826 LIFEdb, DKFZ 
LIFEdb pEYFP-N-DNAPTP6 LIFEdb, DKFZ 
 LIFEdb pEYFP-N-H3.3B LIFEdb, DKFZ 
 

 

Table 9: Generated plasmids 
Number  Name Cloning Generated by* 
1513 pCS2plus-FLAG-importin 13-

E436R/D481R 
mutant part of IPO13 transferred 
from #1166 to #687 (SmaI/EcoRV) 

J. M. Reyes del 
Castillo 

1515 pGEX-6P-1-Ubc9 Ubc9 from #1514 (G1435, G1436) 
in vector #46 (EcoRI/SalI) 

 

1516 pGEX-6P-1-eIF1A eIF1A from  
 #1167 in vector #46 (EcoRI/SalI) 

 

1518 pET28a-His-eIF1A eIF1A from #1167 (G1437, G1438) 
in vector #4 (EcoRI/SalI) 

 

1522 pdEGFP-eIF1A eIF1A from #1167 (G1448, G1449) 
in # 294 (EcoRI/SalI) 

 

1547 pEGFP-GST-Ubc9 Ubc9 from #1514 (G1478, G1479) 
in #290 (EcoRI/SalI) 

 

1569 pET328-Hzz-importin 13 IPO13 from #1511 (G1483, G1484) 
in #1239 (AgeI/XhoI) 

 

1643 pEGFP-GST-eIF1A eIF1A from #1522 in #290 
(EcoRI/SalI) 

 

1660 pcDNA3.1-AIFM2-HA Insert from cDNA (G1601, G1602) 
in vector #52 (KpnI/BamHI) 

C. Spillner 

1661 pEGFP-GST-AIFM2 Insert from cDNA (G1601, G1602) 
in #290 (KpnI/BamHI) 

C. Spillner 

1662 pcDNA3.1-PPP1CB-HA Insert from cDNA (G1603, G1604) 
in vector #52 (KpnI/BamHI) 

C. Spillner 

1663 pEGFP-GST-PPP1CB Insert from cDNA (G1603, G1604) 
in #290 (KpnI/BamHI) 

C. Spillner 

1664 pcDNA3.1-ZRAB2-HA Insert from cDNA (G1605, G1606) 
in vector #52 (KpnI/BamHI) 

C. Spillner 

1665 pEGFP-GST-ZRAB2 Insert from cDNA (G1605, G1606) 
in #290 (KpnI/BamHI) 

C. Spillner 

1666 pcDNA3.1-PRMT1-HA Insert from cDNA (G1607, G1608) 
in vector #52 (KpnI/BamHI) 

C. Spillner 

1667 pEGFP-GST-PRMT1 Insert from cDNA (G1607, G1608) 
in #290 (KpnI/BamHI) 

C. Spillner 
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Number  Name Cloning Generated by* 
1671 pcDNA3.1-CELF1-HA Insert from cDNA (G1611, G1612) 

in vector #52 (HindIII/EcoRI) 
C. Spillner 

1672 pEGFP-GST-CELF1 Insert from cDNA (G1611, G1612) 
in #290 (HindIII/EcoRI) 

C. Spillner 

1674 pcDNA3.1-IF4A1-HA Insert from cDNA (G1615, G1616) 
in vector #52 (HindIII/EcoRI) 

C. Spillner 

1675 pEGFP-GST-IF4A1 Insert from cDNA (G1615, G1616) 
in #290 (HindIII/EcoRI) 

C. Spillner 

1676 pcDNA3.1-RUVB1-HA Insert from cDNA (G1617, G1618) 
in vector #52 (KpnI/BamHI) 

C. Spillner 

1677 pEGFP-GST-RUVB1 Insert from cDNA (G1617, G1618) 
in #290 (KpnI/BamHI) 

C. Spillner 

1690 pcDNA3.1-RTCA-HA Insert from cDNA (G1635, G1636) 
in vector #52 (KpnI/BamHI) 

 

1691 pcDNA3.1-APEX1-HA Insert from cDNA (G1637, G1638) 
in vector #52 (KpnI/BamHI) 

 

1692 pcDNA3.1-SRP14-HA Insert from cDNA (G1639, G1640) 
in vector #52 (KpnI/BamHI) 

 

1693 pcDNA3.1-NSUN2-HA Insert from cDNA (G1641, G1642) 
in vector #52 (EcoRI) 

 

1694 pcDNA3.1-TYW3-HA Insert from cDNA (G1643, G1644) 
in vector #52 (KpnI/BamHI) 

 

1695 pcDNA3.1-HNRNPD-HA Insert from cDNA (G1647, G1648) 
in vector #52 (KpnI/BamHI) 

 

1696 pcDNA3.1-XRCC6-HA Insert from cDNA (G1651, G1652) 
in vector #52 (BamHI) 

 

1697 pcDNA3.1-MCM3-HA Insert from cDNA (G1653, G1654) 
in vector #52 (HindIII/EcoRI) 

 

1698 pcDNA3.1-DBR1-HA Insert from cDNA (G1655, G1656) 
in vector #52 (KpnI/BamHI) 

 

1699 pcDNA3.1-SET-HA Insert from  #1577 (G1657, G1658) 
in vector #52 (KpnI/BamHI) 

 

1700 pcDNA3.1-PRMT5-HA Insert from cDNA (G1663, G1664) 
in vector #52 (EcoRI) 

 

1701 pcDNA3.1-BTF3-HA Insert from cDNA (G1665, G1666) 
in vector #52 (KpnI/BamHI) 

 

1702 pcDNA3.1-STRAP-HA Insert from cDNA (G1669, G1670) 
in vector #52 (KpnI/BamHI) 

 

1703 pcDNA3.1-TFCP2-HA Insert from cDNA (G1673, G1674) 
in vector #52 (KpnI/BamHI) 

 

1704 pcDNA3.1-ERI1-HA Insert from cDNA (G1679, G1680) 
in vector #52 (KpnI) 

 

1705 pcDNA3.1-BYSL-HA Insert from #1112 (G1681, G1682) 
in vector #52 (HindIII/EcoRI) 

 

1706 pcDNA3.1-EIF3F-HA Insert from cDNA (G1683, G1684) 
in vector #52 (HindIII/EcoRI) 

 

1707 pcDNA3.1-EIF3G-HA Insert from cDNA (G1685, G1686) 
in vector #52 (HindIII/EcoRI) 

 

1708 pcDNA3.1-PPP1CA-HA Insert from cDNA (G1691, G1692)  
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Number  Name Cloning Generated by* 
in vector #52 (KpnI/BamHI) 

1709 pcDNA3.1-GPN1-HA Insert from cDNA (G1699, G1700) 
in vector #52 (HindIII/EcoRI) 

 

1710 pcDNA3.1-RBM22-HA Insert from cDNA (G1703, G1704) 
in vector #52 (KpnI/BamHI) 

 

1711 pcDNA3.1-NELFA-HA Insert from #1689 (G1705, G1706) 
in vector #52 (KpnI/BamHI) 

 

1712 pcDNA3.1-NELFB-HA Insert from cDNA (G1707, G1708) 
in vector #52 (KpnI/BamHI) 

 

1713 pcDNA3.1-NELFCD-HA Insert from cDNA (G1709, G1710) 
in vector #52 (EcoRI) 

 

1725 pcDNA3.1-XRCC5-HA Insert from cDNA (G1649, G1650) 
in vector #52 (KpnI/BamHI) 

C. Spillner 

1726 pcDNA3.1-CDK1-HA Insert from cDNA (G1693, G1694) 
in vector #52 (HindIII/EcoRI) 

C. Spillner 

1727 pcDNA3.1-EIF2AK2-HA Insert from cDNA (G1659, G1660) 
in vector #52 (KpnI/BamHI) 

C. Spillner 

1728 pcDNA3.1-DDX1-HA Insert from #249 (G1661, G1662) in 
vector #52 (HindIII/EcoRI) 

C. Spillner 

1729 pcDNA3.1-DDX3-HA Insert from #186 (G1695, G1696) in 
vector #52 (KpnI/BamHI) 

C. Spillner 

1730 pcDNA3.1-SQSTM1-HA Insert from #1102 (G1701, G1702) 
in vector #52 (HindIII/EcoRI) 

C. Spillner 

1731 pcDNA3.1-XPA-HA Insert from cDNA (G1697, G1698) 
in vector #52 (KpnI/BamHI) 

C. Spillner 

1732 pEGFP-GST-BTF3 Insert from #1701 in #290 
(KpnI/BamHI) 

 

1733 pEGFP-GST-DBR1 Insert from #1698 in #290 
(KpnI/BamHI) 

 

1734 pEGFP-GST-TFCP2 Insert from #1703 in #290 
(KpnI/BamHI) 

 

1735 pEGFP-GST-XRCC5 Insert from #1725 in #290 
(KpnI/BamHI) 

C. Spillner 

1736 pEGFP-GST-NSUN2 Insert from #1693 in #290 (EcoRI) C. Spillner 
1737 pEGFP-GST-DDX1 Insert from #1728 in #290 

(HindIII/BamHI) 
C. Spillner 

1738 pEGFP-GST-XPA Insert from #1731 in #290 
(KpnI/BamHI) 

C. Spillner 

1739 pEGFP-GST-SQSTM1 Insert from #1730 in #290 
(HindIII/EcoRI) 

C. Spillner 

1740 pEGFP-GST-EIF2AK2 Insert from #1727 in #290 
(KpnI/BamHI) 

C. Spillner 

1741 pEGFP-GST-FEN1 Insert from cDNA (G1645, G1646) 
in #290 (HindIII/KpnI) 

C. Spillner 

1745 pcDNA3.1-EIF2D-HA Insert from cDNA (G1667, G1668) 
in vector #52 (EcoRI) 

 

1746 pcDNA3.1-GTF2F2-HA Insert from cDNA (G1689, G1690) 
in vector #52 (HindIII/EcoRI) 

 

1747 pEGFP-GST-RTCA Insert from #1690 in #290  
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Number  Name Cloning Generated by* 
(KpnI/BamHI) 

1748 pEGFP-GST-APEX1 Insert from #1691 in #290 
(KpnI/BamHI) 

 

1749 pEGFP-GST-SRP14 Insert from #1692 in #290 
(KpnI/BamHI) 

 

1750 pEGFP-GST-TYW3 Insert from #1694 in #290 
(KpnI/BamHI) 

 

1751 pEGFP-GST-HNRNPD Insert from #1695 in #290 
(KpnI/BamHI) 

 

1752 pEGFP-GST-MCM3 Insert from #1697 in #290 
(HindIII/EcoRI) 

 

1753 pEGFP-GST-SET Insert from #1699 in #290 
(KpnI/BamHI) 

 

1754 pEGFP-GST-EIF2D Insert from #1745 in #290 (EcoRI)  
1755 pEGFP-GST-STRAP Insert from #1702 in #290 

(KpnI/BamHI) 
 

1756 pEGFP-GST-BYSL Insert from #1705 in #290 
(HindIII/EcoRI) 

 

1757 pEGFP-GST-EIF3F Insert from #1706 in #290 
(HindIII/EcoRI) 

 

1758 pEGFP-GST-EIF3G Insert from #1707 in #290 
(HindIII/EcoRI) 

 

1759 pEGFP-GST-PPP1CA Insert from #1708 in #290 
(KpnI/BamHI) 

 

1760 pEGFP-GST-GPN1 Insert from #1709 in #290 
(HindIII/EcoRI) 

 

1761 pEGFP-GST-NELFA Insert from #1711 in #290 
(KpnI/BamHI) 

 

1762 pEGFP-GST-NELFB Insert from #1712 in #290 
(KpnI/BamHI) 

 

1807 pEGFP-GST-PRMT5 Insert from #1700 in #290 (EcoRI)  
1808 pcDNA3.1-PDCD4-HA Insert from cDNA (G1687, G1688) 

in vector #52 (KpnI/BamHI) 
C. Spillner 

1809 pcDNA3.1-importin 13 Insert from #687 in vector #52 
(EcoRI/XhoI) 

C. Spillner 

1810 pcDNA3.1-importin 13-
E436R/D481R 

Insert from #1513 in vector #51 
(EcoRI/XhoI) 

C. Spillner 

1812 pCS2+MT-FLAG-impotin13 
(aa 526-963) 

Insert from #687 (G1739, G1740) in 
#687 (EcoRI/XhoI) 

C. Spillner 

1814 pEGFP-GST-ERI1 Insert from #1704 in #290 (KpnI)  
1815 pEGFP-GST-GTF2F2 Insert from #1746 in #290 

(HindIII/EcoRI) 
C. Spillner 

1827 pEGFP-GST-NELFCD Insert from #1713 in #290 (EcoRI)  
1829 pEGFP-GST-XRCC6 Insert from #1696 in #290 (BamHI)  
1843 pEGFP-GST-PDCD4 Insert from #1808 in #290 

(KpnI/BamHI) 
C. Spillner 

1849 pEGFP-GST-WDR61 Insert from #1868 in #290 
(HindIII/EcoRI) 

C. Spillner 

1853 pEGFP-GST-OLA1 Insert from #1860 in #290 C. Spillner 
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(HindIII/EcoRI) 

1859 pCDNA3.1-WDR77-HA Insert from cDNA (G1767, G1768) 
in vector #52 (HindIII/EcoRI) 

C. Spillner 

1860 pCDNA3.1-OLA1-HA Insert from cDNA (G1765, G1766) 
in vector #52 (HindIII/EcoRI 

C. Spillner 

1861 pEGFP-GST-DDX3 Insert from #1729 in #290 
(KpnI/BamHI) 

C. Spillner 

1862 pEGFP-GST-WDR77 Insert from #1859 in #290 
(HindIII/EcoRI) 

C. Spillner 

1868 pcDNA3.1-WDR61-HA Insert from cDNA (G1771,G1772) 
in vector #52 (HindIII/EcoRI) 

C. Spillner 

1871 pcDNA3.1-EDC3-HA Insert from cDNA (G1769, G1770) 
in vector #52(HindIII/EcoRI) 

C. Spillner 

1872 pEGFP-GST-EDC3 Insert from #1871 in #290 
(HindIII/EcoRI) 

C. Spillner 

*if not indicated otherwise, plasmids were generated by Imke Baade 

 

 

2.2 Molecular Biology Methods 
 

2.2.1 RNA Isolation from Cellular Extracts 
Total RNA was purified from HeLa P4 cell pellet using the RNeasy Mini Kit (Qiagen), 

following the protocol ‘Purification of Total RNA from Animal Cells using Spin Technology’. 

RNA was eluted with two times 30 µL RNase-free water and stored at -20°C. Purity of the 

RNA was confirmed by measuring the A260/A280 ratio with the NanoDrop 2000c. Samples 

with a ratio of 1.7-1.9 were considered as pure RNA. 

 

2.2.2 cDNA Synthesis 
For the synthesis of complementary DNA (cDNA) from total RNA, the SuperScript® III 

reverse transcriptase (Thermo Scientific) was used according to the manufacturer’s 

instructions. Reactions of 13 µL were set up with 2 µg total RNA, 1 µL of 50 µM oligo(dT) 

and 1 µL of 10 mM dNTPs in RNase-free water. The reaction mix was incubated at 65°C 

for 5 minutes, followed by incubation on ice for 1 minute. Synthesis of cDNA was initiated 

by addition of 4 µL 5x First-Strand Buffer, 1 µL 0.1 M DTT, 1 µL RiboLockRNase Inhibitor 

(40 U/μL) as well as 1 μL SuperScript® III RT (200 U/μL) and incubation at 50°C for 1 hour. 

Reactions were inactivated at 70°C for 15 minutes and cDNA was stored at -20°C.  
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2.2.3 Polymerase Chain Reaction (PCR) 
For amplification of specific DNA segments from genomic or plasmid DNA, the polymerase 

chain reaction (PCR) was used. PCR reactions were performed with Phusion® 

High-Fidelity DNA Polymerase (Thermo Scientific) according to the manufacturer’s 

recommendations. In brief, 50 µL reactions were set up with 1x HF Phusion Buffer, 200 µM 

dNTPs, 5 µM forward and reverse primer (see section 2.1.13 for primers), 0.02 U/µL 

Phusion® High-Fidelity DNA Polymerase and 1 pg -10 ng template DNA. In the case of 

amplification of a gene from cDNA, 1-2 µL of cDNA was used in the PCR reaction. DNA 

segments were amplified for 30-35 cycles in a thermocycler using either the 3-step or 

2-step (combined annealing and extension step at 72°C) protocol according to the 

manufacturer’s instructions. Annealing temperatures of oligonucleotides were calculated 

using the ‘Tm calculator’ from Thermo Scientific (www.thermoscientific.com/pcrwebtools). 

The extension time was adjusted to the size of the PCR product. 

PCR reactions were analyzed by agarose gel electrophoresis (2.2.4). PCR products were 

excised from the gel and purified using the NucleoSpin® Gel and PCR Clean-up kit from 

Macherey-Nagel (2.2.5). 

 

2.2.4 Agarose Gel Electrophoresis 
DNA fragments were separated according to their size by agarose gel electrophoresis. 

Depending on the size of the DNA fragments 0.5-2.0% agarose gels were prepared. The 

agarose powder was dissolved in 1x TAE buffer by heating in a microwave and regular 

agitation. After the melted agarose had cooled sufficiently, the SafeView™ Classic DNA 

stain was added to a 1:20,000 dilution and the gel was poured. The solidified gel was 

placed in a running chamber with 1x TAE buffer. Samples prepared with 6x DNA loading 

buffer together with a molecular weight marker (GeneRuler 100bp DNA Ladder or 

GeneRuler 1kb DNA Ladder) were loaded onto the gel and separated at 120 V. 

Agarose gels were documented with the GelSTICK ‘touch’ system. DNA fragments used 

for further cloning were excised from the agarose gel on a UV transilluminator. 

 

2.2.5 Purification of DNA Fragments from Agarose Gel 
DNA fragments were isolated from agarose gels using the NucleoSpin® Gel and PCR 

Clean-up kit, following the manufacturer’s protocol ‘DNA extraction from agarose gels’. 

DNA fragments were eluted with 25-30 µL elution buffer and the plasmid DNA 

concentration was determined with the NanoDrop 2000c.  
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2.2.6 DNA Restriction Digestion 
DNA was digested at 37°C for 1-2 h using the restriction enzyme ratio and buffer 

recommended by the ‘DoubleDigest Calculator’ tool from Thermo Scientific 

(www.thermoscientific.com/doubledigest). For preparative digestion, 25 µL of the PCR 

product and 2-5 µg plasmid DNA was cut with not more than 1 µL of enzyme (10 U/µL) per 

one µg of DNA in a 20-50 µL reaction volume. For restriction analysis of plasmid DNA from 

small scale DNA preparations, 5 µL of the eluted plasmid DNA was digested with not more 

than 0.2 µL of enzyme (10 U/µL) in a 10 µL reaction volume. Alternatively, digestion was 

also performed with FastDigest enzymes from Thermo Scientific following the 

manufacturer’s instructions.  

Digested DNA was analyzed by agarose gel electrophoresis (2.2.4). 

 

2.2.7 Dephosphorylation of Linearized Vectors 
Cut vector DNA was dephosphorylated with FastAP Thermosensitive Alkaline 

Phosphatase (Thermo Scientific) to remove the 5’ phosphate from the DNA to prevent 

recircularization of the vector. The digested vector was incubated with 1 U Alkaline 

Phosphatase per 1µg DNA in 1x FastAP reaction buffer for 10 minutes at room 

temperature. The enzyme was inactivated for 5 minutes at 75°C. 

 

2.2.8 Ligation of DNA Fragments 
DNA fragments were ligated into linearized vectors using the T4 DNA ligase (Thermo 

Scientific). Ligation was performed with 100 ng linear vector DNA, a 3:1 molar ratio of 

insert DNA to vector DNA, 1x T4 DNA ligase buffer and 1 U of T4 DNA ligase in a total 

reaction volume of 10 µL. The reaction mix was incubated for 1 hour at room temperature 

and transformed into Escherichia coli (E. coli) DH5α (2.2.9). 

 

2.2.9 Transformation of E. coli with Plasmid DNA 
For transformation, 10 µL of ligation mixture or 0.1 µg of plasmid-DNA was added to 50 µL 

of chemically competent cells. E. coli DH5α cells were used for cloning. The transformation 

mix was incubated on ice for 15 minutes, before the cells were heat shocked for 

90 seconds at 42°C. The cells were recovered on ice for 2 minutes, resuspended in 

300 µL SOC-medium and incubated at 37°C for 1 hour at 850 rpm. Half of the 

transformation mix was spread on a selective LB agar plate and incubated overnight at 

37°C. 
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2.2.10 Small Scale Plasmid DNA Isolation 
Plasmid DNA was isolated from 2-4 mL E. coli overnight culture using the NuceloSpin® 

Plasmid kit following the ‘Isolation of high-copy plasmid DNA from E.coli’ protocol. For the 

overnight culture, 3-5 mL of LB medium containing the respective antibiotics were 

inoculated with a single colony picked from a selective LB agar plate. The culture was 

incubated overnight at 37°C, 180 rpm. The purified DNA was eluted with 50 µL elution 

buffer. The correctness of the plasmid DNA was confirmed by restriction analysis and 

sequencing. 

 

2.2.11 Large Scale Plasmid DNA Isolation 
For large scale preparation of plasmid DNA, the NucleoBondTM Xtra Midi kit was used 

following the supplied protocols ‘High-copy plasmid purification’ or ‘Low-copy plasmid 

purification’. For the overnight culture, 100-200 mL of LB medium supplemented with the 

appropriate antibiotics was inoculated with a single colony. The culture was incubated 

overnight at 37°C, 180 rpm. The plasmid DNA was eluted with desalted water and the 

concentration was adjusted to 1 mg/mL using the Nanodrop 2000c.  

 

2.2.12 Sequencing 
To verify the success of ligation and ascertain that no frame-shifts or mutations were 

introduced, the isolated ligation product was sent for sequencing to the company GATC 

Biotech. Sequencing primers were selected from the GATC PrimerScout tool 

(www.gatc-biotech.com) or custom-made primers were used (2.1.13). 

 

 

2.3 Biochemical Methods 
 

2.3.1 SDS-PAGE 
To separate proteins according to their electrophoretic mobility an SDS-PAGE was 

performed. Depending on the size of the target protein SDS gels with separation gels of 

6-15% acrylamide were prepared and overlaid with a 4% stacking gel. Protein samples or 

cell lysates were mixed with reducing SDS sample buffer and heated for 5-10 minutes at 

95°C. The prepared samples, as well as a protein ladder (PageRuler Prestained, 

PageRuler Unstained), were loaded onto the polyacrylamide gel. Gel electrophoresis was 

performed with 1x Laemmli buffer in Mighty Small II Mini Vertical Electrophoresis Units 
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(Hoefer) with 25-30 mA per gel until the bromophenol blue dye had completely passed 

through the gel. 

Proteins were either visualized by Coomassie staining (2.3.2), silver staining (2.3.3) or by 

targeting the protein of interest with a specific antibody in a Western blot (2.3.4). 

Additionally to the self-made gels, two types of precast gradient gels were used. The 

4-20% Mini-PROTEANR TGX™ Precast Protein Gels (BioRad) were run with 1x Laemmli 

buffer in SE250 Mighty Small II Mini Vertical Electrophoresis Units (Hoefer) at 100 V until 

the samples had passed through the separation gel and then at 300 V for ~30 minutes. 

The NuPAGER NovexR 4-12% Bis-Tris gradient gels (Invitrogen) were run with 

1x NuPAGER MES SDS running buffer in XCell SureLockR Mini-Cells at 200 V for 

~45 minutes.  

 

2.3.2 Coomassie Staining 
Polyacrylamide gels were rinsed with water, fixed for 10 minutes to one hour with 

Coomassie fixation solution and stained for one hour to overnight in Coomassie staining 

solution on a shaker. Gels were destained with deionized water, or if the background 

signal was too high, with Coomassie destaining solution. Coomassie-stained gels were 

documented with the LAS-3000 and imported into the Fiji software for editing and 

quantification. 

 

2.3.3 Silver Staining 
Compared to Coomassie staining of polyacrylamide gels, silver staining is more sensitive 

and allows detection of low amounts of proteins. Silver staining was performed with the 

Pierce® Silver Stain kit following the manufacturer’s instructions. Silver-stained gels were 

documented with the LAS-3000 and edited with Fiji software.  

 

2.3.4 Western Blotting 
For the immunological detection of specific proteins, Western Blots were performed. 

Proteins separated by SDS-PAGE were transferred to a Amersham Protran 0.45 μm NC 

Nitrocellulose Blotting Membrane (GE Healthcare) using a Mini Trans-Blot® Cell (Bio-Rad). 

The transfer was performed in Western blot transfer buffer (25 mM Tris, 193 mM glycine, 

0.02% SDS, 20% methanol) at 100 V and 350 mA. Transfer times were adjusted 

depending on the protein size and percentage of the resolving gel.  

The 4–20% Mini-PROTEANR TGX™ Precast Protein Gels from BioRad were 

pre-incubated for 30 minutes in 1x Western blot transfer buffer prior to transfer. The 
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NuPAGER NovexR 4-12% Bis-Tris gradient gels from Invitrogen were blotted at 60 V for 

90 minutes. 

The quality of protein transfer was tested by staining the membrane with PonceauS 

staining solution for 2 minutes and visualization of the protein bands by rinsing several 

times with 0.1% acetic acid. Stained membranes were documented with the LAS-3000 

(Fujifilm) and destained with PBS-T (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 

mM KH2PO4, 0.1% Tween-20) for further processing. 

The Nitrocellulose membrane was blocked with 4% milk powder in PBS-T for 45 minutes 

at room temperature to prevent unspecific binding of antibodies, followed by incubation 

with the primary antibody (2.1.11) diluted in 4% milk powder/PBS-T overnight at 4°C. The 

membrane was washed three times with PBS-T for 10 minutes and incubated with the 

secondary HRP-coupled antibody (2.1.11) diluted 1:10,000 in 4% milk powder/PBS-T for 

1 hour at room temperature. Unbound antibody was removed by washing three times for 

10 minutes with PBS-T and bound antibodies were detected by chemiluminescence using 

the Immobilon™ Western Chemiluminescent HRP Substrate (Millipore) kit and exposure to 

Amersham Hyperfilm™ ECL (GE Healthcare) or Medix XBU medical x-ray films 

(FOMA Bohemia). Film exposure times depended on the strength of the signal and 

exposed films were developed with the developer machine CURIX60 (Agfa). 

 

2.3.5 Protein Purification 
His-importin 13 

His-importin 13 was purified as described before (Mingot et al., 2001). For protein 

expression, the plasmid coding for His-importin 13 was transformed (2.2.9) into JM109 

E. coli bacteria and plated on an LB agar plate supplemented with ampicillin. The next day 

several colonies were picked and used for inoculation of 100 mL 2x YT-medium 

supplemented with 2% glycerol, 30 mM K2HPO4 and 100 μg/mL ampicillin. The 100 mL 

starter culture was grown overnight at 37°C, 150 rpm and was used to inoculate 700 mL of 

2x YT-medium supplemented with 2% glycerol, 30 mM K2HPO4 and 100 μg/mL ampicillin. 

The culture was grown at 37°C, 110 rpm to an OD600 of 0.6 before 1.2 L of cold 

2x YT-medium supplemented with 2% glycerol, 30 mM K2HPO4 and 100 μg/mL ampicillin 

were added. The temperature was shifted to 16°C and the culture was grown to an OD600 

of 0.75 prior to induction of protein expression with 0.1 mM IPTG overnight at 16°C. 

Bacterial cells were collected by centrifugation for 20 minutes at 4,200 rpm (Centrifuge 

J6-MI with rotor JS 4.2, Beckman Coulter), washed with PBS and stored at -80°C for 

protein purification.  
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Each bacterial pellet from 1.5 L of culture was resuspended in 35 mL His buffer (50 mM 

Tris pH 7.5, 500 mM NaCl, 10 mM MgAc, 5% glycerol, 10 mM β-mercaptoethanol, 0.1 mM 

PMSF, 1 μg/mL of each AP and LP) and disrupted with three to four cycles using an 

EmulsiFlex-C3 (Avestin). Lysates were cleared by centrifugation at 100,000 x g, 4°C for 

30 minutes. The supernatant was collected and incubated with 0.25 mL equilibrated 

Ni-NTA Sepharose and 10 mM imidazole rotating for 1 hour at 4°C. The Ni-beads were 

washed two times with His buffer containing 10 mM imidazole and once with 20 mM 

imidazole. Beads were transferred to an empty column and proteins were eluted with His 

buffer containing 300 mM imidazole. The eluate was filtered with a Minisart RC 15 single 

use syringe filter and further purified over a HiLoad 26/60 Superdex 200 prep grade 

column connected to a ÄKTApurifier system (Amersham Biosciences) using pulldown 

buffer (50 mM Tris pH 7.4, 200 mM NaCl, 5% glycerol, 2 mM DTT). Peak fractions 

containing the protein of interest were pooled and concentrated using a Spin-X UF 

concentrator (His-importin 13: MWCO=50 kDa; His-eIF1A: MWCO=10kDa). The protein 

was aliquoted, flash frozen and stored at -80°C. 

 

Other His-tagged proteins 

All His-tagged proteins were purified using the same protocol as for His-importin 13 but 

different expression strains and expression conditions were used. Plasmids coding for 

Hzz-importin 13 (contains His- and zz-tag) and the Hzz-tag were transformed into BL21 

CodonPlus (DE3) and plasmids coding for His-eIF1A were transformed into BL21 (DE3) 

E. coli bacteria. 

For protein expression, 200 mL LB medium was inoculated with several colonies from a 

selective LB agar plate and incubated overnight at 37°C, 150 rpm. For large scale protein 

expression, 1.5 L of LB medium was inoculated 1:100 with the overnight culture and grown 

at 37°C, 110 rpm to an OD600 of 0.5-0.8. Protein expression was induced with 0.1 mM 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) for His-importin 13 and 1 mM IPTG for 

His-eIF1A and cultures were grown overnight at 16°C, 110 rpm. Bacterial cells were 

harvested by centrifugation for 20 minutes at 4,200 rpm (Centrifuge J6-MI with rotor 

JS 4.2, Beckman Coulter) and washed once with PBS. Cell pellets were either flash frozen 

and stored at -80°C or were used directly for protein purification. The His-tagged proteins 

were purified as described for His-importin 13. 
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GST-tagged proteins 

Plasmids coding for GST-tagged proteins were transformed into BL21 CodonPlus (DE3), 

grown overnight at 37°C and several colonies were used for inoculation of 200 mL 

LB-medium supplemented with 100 μg/mL ampicillin. Overnight cultures grown at 37°C, 

150 rpm were used to inoculate 1.5 L cultures to a 1:100 dilution. Cultures were grown at 

37°C, 110 rpm to an OD600=0.5-0.8 before protein expression was induced with 1 mM 

IPTG. Protein expression was allowed to occur overnight at 16°C, 110 rpm. Cells were 

harvested at 4,200 rpm (Centrifuge J6-MI with rotor JS 4.2, Beckman Coulter) for 

20 minutes and either flash frozen and stored at -80°C or were directly used for protein 

purification. 

Cell pellets were resuspended in 35 mL GST buffer (50 mM Tris pH 6.8, 300 mM NaCl, 

1 mM MgCl2, 2 mM DTT, 0.1 mM PMSF, 1 μg/mL of each AP and LP) and disrupted with 

three to four cycles using an EmulsiFlex-C3 (Avestin). Lysates were cleared by 

centrifugation at 100,000 x g, 4°C for 30 minutes and supernatants were transferred to 

0.25 mL GST beads equilibrated in GST-buffer. After incubation for 1 hour with rotation at 

4°C, beads were washed three times with GST buffer and transferred to an empty column. 

Bound protein was eluted with GST-buffer containing 15 mM reduced glutathione, pH 8. 

GST-importin 13 was filtered with a Minisart RC 15 single use syringe filter and further 

purified over a HiLoad 26/60 Superdex 200 prep grade column attached to a ÄKTApurifier 

system (Amersham Biosciences) using pulldown buffer (50 mM Tris pH 7.4, 200 mM NaCl, 

5% glycerol, 2 mM DTT) and concentrated with a Spin-X UF concentrator 

(MWCO=50 kDa). GST-eIF1A and GST-Ubc9 were dialyzed against pulldown buffer using 

a dialysis membrane with a molecular weight cut-off of 12-14 kDa. To remove any residual 

glutathione, the buffer was changed after 1 hour, overnight and then again after 1 hour. 

Proteins were aliquoted, flash frozen and stored at -80°C.  

 

Ubc9 (no tag) 

Ubc9 without a tag was purified as described in Pichler et al., 2002 (177). Several colonies 

from a selective LB agar plate transformed with plasmid DNA coding for Ubc9 were used 

for inoculation of 200 mL LB medium supplemented with 100 μg/mL ampicillin. The culture 

was grown overnight at 37°C, 110 rpm and used for inoculation of a 1.5 L culture to a 

1:100 dilution. Cells were grown at 37°C, 110 rpm to an OD600=0.5-0.6 before protein 

expression was induced with 1 mM IPTG for 4 hours at 37°C, 110 rpm. Cells were 

harvested at 4,200 rpm (Centrifuge J6-MI with rotor JS 4.2, Beckman Coulter), 

resuspended in 60 mL Ubc9 buffer (50 mM Na-phosphate pH 6.5, 50 mM NaCl, 0.1 mM 
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PMSF, 1 μg/mL of each AP and LP, 1mM DTT), flash frozen and stored at -80°C at least 

until the next day. Freezing of bacterial cells at -80°C overnight and rapid thawing was 

sufficient for cell lysis and release of Ubc9. 

Cell lysates were thawed, supplemented with 0.1 mM PMSF, 1 μg/mL of each AP and LP 

and 1 mM DTT and cleared by centrifugation at 100,000 x g, 4°C for 30 minutes. Cleared 

supernatants were run over 7.5 mL of SP-Sepharose (Roth) equilibrated in Ubc9 buffer. 

The flow-through was discarded and the SP-Sepharose was washed with two column 

volumes of Ubc9 buffer. Bound Ubc9 was eluted with 2-3 column volumes of Ubc9 buffer 

containing 300 mM NaCl and protein containing fractions were pooled, concentrated with a 

Spin-X UF concentrator (MWCO=5 kDa), filtered with a Minisart RC 15 single use syringe 

filter and further purified over a HiLoad 26/60 Superdex 75 prep grade column connected 

to a ÄKTApurifier system (Amersham Biosciences) using transport buffer (20 mM HEPES, 

110 mM KOAc, 2 mM Mg(OAc)2, 1 mM EGTA, pH 7.3, 2 mM DTT). Peak fractions 

containing Ubc9 were pooled, concentrated with a Spin-X UF concentrator 

(MWCO=5 kDa), aliquoted, flash frozen and stored at -80°C. 

 

RanQ69L 

RanQ69L was expressed and purified as described in Melchior et al., 1995 (178). For the 

SILAC experiments, a RanQ69L protein stock prepared by Christiane Spillner that was 

purified over DEAE-Sepharose and a HiLoad 26/60 Superdex 75 prep grade column was 

used. For all other experiments, a self-made RanQ69L protein stock was used that was 

also purified over DEAE-Sepharose and a HiLoad 26/60 Superdex 75 prep grade column 

but additionally was further purified over a MonoS 5/50 GL column.  

 

2.3.6 Protein Concentration Determination by Densitometry 
To determine the protein concentration by densitometry, 0.5, 1.0 and 1.5 µg BSA as well 

as 1, 2 and 3 µL of the protein sample were applied on a polyacrylamide gel, separated by 

SDS-PAGE (2.3.1), Coomassie stained (2.3.2) and imaged using the LAS-3000. Protein 

concentrations were determined with Fiji using BSA as a standard protein to generate a 

standard curve. 

 

2.3.7 Loading of RanQ69L with GTP 
The RanQ69L mutant, which can bind but not hydrolyze GTP was loaded with GTP 

following a protocol adapted from Kehlenbach et al., 1999 (58). Purified RanQ69L was 

incubated with 2.5 mM GTP and 15 mM EDTA in transport buffer for 30 minutes at room 
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temperature. The loading reaction was stopped by the addition of 40 mM MgCl2 for 

15 minutes on ice. GTP-loaded RanQ69L was aliquoted, snap frozen and stored at -80°C. 

 

2.3.8 Binding Assays 
Binding Assay with Purified Proteins 

To analyze the interaction between importin 13 and potential substrates, binding assays 

were performed. For this, either GST-tagged proteins were immobilized to Glutathione 

Sepharose High-Performance beads (GE Healthcare) or Hzz-tagged proteins were 

immobilized to IgG-Sepharose 6 Fast Flow (GE Healthcare). Beads (20 µL) were 

incubated with 5 mg/mL BSA in PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 

1.8 mM KH2PO4, pH 7.5) as a blocking reagent with rotation for 30 minutes at 4°C, 

followed by immobilization of 5-20 µg GST- or Hzz-bound fusion proteins rotating for one 

hour at 4°C in the same buffer. The beads were washed three times with 1 mL PBS 

containing 2 mg/mL BSA and incubated with an equimolar or excess amount of the protein 

of interest in a total volume of 500 µL, rotating for one hour at 4°C. Unbound proteins were 

removed by washing three times with 1 mL PBS. Proteins bound to Glutathione Sepharose 

were eluted with 4x SDS sample buffer and proteins bound to IgG-Sepharose were eluted 

with either glycine or magnesium chloride. Glycine elution was done with 40 µL 0.1 M 

glycine, pH 3 for 1 minute with constant mixing, followed by neutralization with 5 µL 1 M 

Tris, pH 10.4. The beads were pellet by centrifugation and the supernatant was collected 

and mixed 1:1 with 4x SDS sample buffer. Magnesium chloride elution was done with 

150 µL 1.5 M MgCl2 in 50 mM Tris, pH 7.4, vortexing and incubation for 10 minutes on ice. 

The supernatant was collected and precipitated with 1,350 µL 100% isopropanol, vortexing 

and incubation for 10 minutes on ice, followed by centrifugation for 20 minutes at 

14,000 x g. The supernatant was carefully removed and the protein pellet air evaporated 

prior to reconstitution of the pellet in 60 µL 4x SDS-sample buffer. To analyze the 

efficiency of the first protein elution, a second elution step was performed by washing the 

beads two times with transport buffer and eluting with 60 µL 4x SDS-sample buffer. All 

eluates were boiled for 10 minutes at 95°C and analyzed by SDS-PAGE (2.3.1) and 

optionally Western blotting (2.3.4). 

 

Binding Assay with Cell Lysate 

The binding assay with cell lysate was performed similarly to the binding assay with 

recombinantly purified proteins. The only differences were that transport buffer (20 mM 

HEPES, 110 mM KOAc, 2 mM Mg(OAc)2, 1 mM EGTA, pH 7.3, 2 mM DTT, 1 μg/ml of 
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each AP and LP and 1x Roche complete protease inhibitor cocktail) instead of PBS was 

used as a buffer and that as a source of the protein of interest a cell lysate was used 

instead of a purified protein. The cells lysate was prepared by trypsinizing two HeLa P4 

15-cm plates and collecting the cells in transport buffer containing 10% fetal calf serum. 

The fetal calf serum was removed by washing three times with transport buffer and the 

cells were adjusted to a concentration of 1x108 cells/mL. Cells were permeabilized with 

three freeze/thaw cycles in liquid nitrogen or with 0.07% digitonin on ice for 3-5 minutes. 

Digitonin permeabilization efficiency was checked under the microscope by mixing 1 µL of 

cell suspension with Trypan blue. The lysate was cleared by centrifugation at 1,500 x g for 

15 minutes, 4°C to remove nuclei and cell debris, followed by ultracentrifugation at 

100,000 x g for 30 minutes, 4°C. The supernatant was collected and added to the 

prepared affinity matrix as described above.  

 

2.3.9 Antibody Purification 
For the production of rabbit polyclonal antibodies against importin 13, two rabbits were 

immunized with His-importin 13 (2.3.5) by the company Seramun Diagnostica GmbH. To 

allow for the purification of anti-importin 13 antibodies from the raised hyperimmune 

serum, an affinity matrix was generated. For this, 0.5 mg GST-importin 13 was dialyzed 

overnight against carbonate buffer (0.2 M NaHCO3/Na2CO3, pH 8.9) at 4°C with three 

buffer changes, after minimum one hour, overnight and one hour to remove any free 

amine groups. The dialyzed GST-importin 13 was immobilized to 0.8 g Cyanogen 

bromide-activated Sepharose 4B (swelled in 1 mM cold HCl for 30 minutes, followed by 

two washes with deionized water and one wash with 0.2 M NaHCO3/Na2CO3, pH 8.9) for 

one hour at room temperature, followed by overnight incubation at 4°C. The affinity matrix 

was washed two times with carbonate buffer and remaining coupling sites were blocked 

with 100 mM ethanolamine in carbonate buffer for one hour at room temperature. After 

three more washes with carbonate buffer, the affinity matrix was equilibrated with PBS 

containing 500 mM NaCl, split into two parts and incubated with half of the serum from 

each rabbit (rabbit 83/14 = 12.5 mL and rabbit 85/14 = 11.5 mL) at 4°C, overnight and slow 

rotation. Beads were harvested by pulse centrifugation at 1,000 rpm, washed two times 

with PBS containing 500 mM NaCl and transferred to a column. Beads were washed with 

PBS containing 500 mM NaCl until no more proteins came down in the flow-through. 

Antibodies were eluted with 0.2 M acetic acid, pH 2.7 containing 500 mM NaCl and 0.5 mL 

fractions were collected. Each fraction was immediately neutralized with 100 µL 1 M 

Tris/Base. To check for the presence of antibodies, 1 µL of each fraction was spotted onto 
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a nitrocellulose membrane, followed by staining with PonceauS. Protein containing 

fractions were combined and concentrated using a Spin-X UF concentrator 

(MWCO=30 kDa) to ~0.5 mL. The buffer was changed to PBS by repeated dilution with 

PBS and concentrating with the Spin-X UF concentrator. The concentrated antibody was 

mixed with one volume of 87% glycerol and stored at -20°C. The purified antibody was 

tested by Western blot (2.3.4) and indirect immunofluorescence (2.4.9). 

 

 

2.4 Cell Biology Techniques 
 

2.4.1 Requirements for Sterile Working 
To prevent fungal or bacterial contaminations all cell culture work was performed under a 

laminar flow cabinet. Necessary tools and materials were either autoclaved and/or 

sterilized with 70% ethanol. 

 

2.4.2 Maintaining Cell Culture 
All cell lines were cultivated in Dulbecco's Modified Eagle Medium (DMEM) supplemented 

with 10% fetal bovine serum (FCS), 2 mM L-glutamine, 100 U/mL penicillin and 100 µg/mL 

streptomycin at 37°C and 5% CO2 in a humidified cell incubator. To guarantee optimal cell 

growth the medium was changed twice a week, often accompanied by cell sub-culturing. 

 

2.4.3 Sub-culturing of Adherent Cells 
To maintain cell proliferation, cells were sub-cultured upon reaching a confluency of ~80%. 

The overlying medium was aspirated, cells were washed once with 1x PBS and incubated 

with 1 mL trypsin at 37°C for optimal trypsin activity. Trypsin was inactivated by the 

addition of 9 mL of serum containing medium (Dulbecco’s Modified Eagle Medium 

(DMEM) containing 10% fetal bovine serum (FBS), 2 mM L-glutamine and optionally 

100 U/mL penicillin and 100 μg/mL streptomycin – in the following sections referred to as 

DMEM-10). For cell resuspension and dispersion of cell clumps, the cell suspension was 

rinsed several times over the bottom of the culture dish. Depending on the passage 

number of the cells and desired splitting ratio, a defined volume of the obtained cell 

suspension was transferred to a new culture dish and supplemented with DMEM-10 to a 

total volume of 10 mL. The culture dish was pivoted gently to obtain an even distribution of 

cells and placed in a humidified cell incubator at 37°C and 5% CO2. HeLa P4 cells were 

typically sub-cultivated two times per week and diluted in a ratio of 1:10 - 1:20. 
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2.4.4 Determination of Cell Concentration 
Cell numbers were determined by diluting 100 µL of cell suspension in 10 mL of Coulter 

ISOTON II Diluent and counting with the CASY 1 system (Schärfe System). 

 

2.4.5 Coating of Cover Clips with Poly-L-Lysine 
Cover slips were treated with Poly-L-lysine to enhance the attachment of cells, due to the 

electrostatic interaction between negatively charged ions of the cell membrane and the 

positively charged Poly-L-Lysine. Cover slips were washed with 2-propanol, dried and 

coated with 0.01 % (v/v) Poly-L-Lysine followed by incubation for 30 minutes at room 

temperature. Unbound Poly-L-lysine was removed by washing two times with sterile water 

and dried cover slips were sterilized with UV light for 3 minutes at 0.12 J/ cm2. 

 

2.4.6 Calcium Phosphate Transfection of Mammalian Cells 
For transfection of mammalian cells with plasmid DNA using the calcium phosphate 

method, cells were seeded at 50,000 cells per well on cover slips in 500 µL DMEM-10 into 

a 24-well plate format so that the cells had a confluence of ~50% on the day of 

transfection. The next day 20 µL CaCl2 (250 mM) was added to 0.8 µg of total plasmid 

DNA, mixed by vortexing at medium speed for 10 seconds, followed by a dropwise 

addition of 20 µL 2x HBS buffer (50 mM HEPES, 250 mM NaCl, 1.5 mM Na2HPO4, 

pH 6.98) and vortexing at maximum speed for 10 seconds. The mix was incubated for 

20 minutes at room temperature to allow for the formation of calcium phosphate-DNA 

complexes prior addition to the cells. The cells were grown overnight in a humidified 

incubator at 37°C and 5% CO2. 

 

2.4.7 Lipofectamine Transfection 
For transfection of mammalian cells with plasmid DNA using the Lipofectamine method, 

cells were seeded at 100,000 cells per well on a CS in 500 µL DMEM-10 medium into a 

24-well plate formats so that the cells had a confluence of ~70-90% on the day of 

transfection. Prior to transfection, the medium was changed to DMEM-10 medium without 

antibiotics. For transfection, 0.8 µg of total plasmid DNA as well as 1 µL of Lipofectamine® 

2000 were diluted into 25 µL Opti-MEM medium each. Both mixes were gently mixed and 

incubated for 5 minutes at room temperature. The diluted DNA was combined with the 

diluted Lipofectamine® 2000, gently mixed and incubated for 20 minutes at room 

temperature to allow for the formation of nucleic acid-Lipofectamine complexes. The 

transfection mix was added dropwise to the cells and incubated for 4-5 hours in a 
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humidified incubator at 37°C and 5% CO2. The transfection medium was replaced with 

DMEM-10 containing antibiotics and incubated overnight in a humidified incubator at 37°C 

and 5% CO2. For longer transfection times, the cells were sub-cultivated after 24 hours.  

 

2.4.8 RNA Interference (RNAi) 
For Lipofectamine transfection of siRNA, HeLa P4 cells were seeded at a density of 

100,000 cells per 24-well so that the cells had a density of 70-90% on the day of 

transfection. Prior to transfection, the medium was changed to 250 µL DMEM-10 medium 

without antibiotics. For transfection, 2 µL of Lipofectamine® 2000 was added to 48 µL of 

Opti-MEM and 1.75 µL of siRNA (20 µM) was added to 48.25 µL of Opti-MEM medium and 

gently mixed. The Lipofectamine mix was incubated for 5 minutes at room temperature 

prior to addition to the siRNA mix. The transfection mix was gently mixed, incubated for 

20 minutes at room temperature and added dropwise to the cells to a final siRNA 

concentration of 100 nM. The cells were incubated for 4 hours in a humidified incubator at 

37°C and 5% CO2 before the medium was changed to 500 µL DMEM-10 containing 

antibiotics. After 24 hours cells were sub-cultivated on Poly-L-lysine coated cover slips and 

assayed for gene knock-down after 48-72 hours. 

 

2.4.9 Indirect Immunofluorescence 
For the detection of endogenous or tagged proteins transfected into mammalian cells, 

proteins were labeled by indirect immunofluorescence. Cells grown on cover slips were 

washed with PBS and fixed for 10 minutes with 3.7% formaldehyde. For optional Hoechst 

staining of nuclei, the Hoechst dye (10 mg/mL) was diluted 1:10,000 into the fixation 

solution. The fixation solution was removed by washing two times with PBS, followed by 

permeabilization with 0.5% Triton X-100 on ice for 5 minutes. To reduce unspecific 

antibody staining, cells were blocked with 1% BSA, 10% FCS or 0.2% fish gelatin for 

10 minutes. For the detection of the target protein, cover slips were transferred to a dark 

humidity chamber and incubated with the primary antibody (2.1.11) diluted in the 

respective blocking reagent for 1 hour, followed by three washes with PBS for 

5-10 minutes each and addition of the secondary antibody (2.1.11) diluted in the blocking 

reagent for 1 hour. Unbound antibodies were washed away by three washes with PBS for 

5-10 minutes each, followed by a final quick wash with water. Cover slips were dried and 

mounted with Dako Fluorescent Mounting Medium or with Mowiol mounting medium 

containing 1 µg/mL DAPI for staining of the cell nuclei.  

 



Materials and Methods 

65 

2.4.10 Proximity Ligation Assays (PLA) 
The Duolink® in situ Proximity Ligation Assay kit was used to detect proteins in close 

proximity in single cells with a maximum theoretical distance of 40 nm. HeLa P4 cells were 

seeded on poly-L-lysine coated cover slips (2.4.5) in a 24-well plate at a concentration of 

45,000 cells/well. Cells were allowed to attach to the cover slips for a minimum of 48 hours 

prior to fixation. Cells were washed three times with PBS, fixed with 3.7% formalin for 

30 minutes, washed three times with PBS and were permeabilized with 0.5% Triton X-100 

for 5 minutes at room temperature. After washing three more times with PBS, the cells 

were blocked with Duolink® blocking solution for 30 minutes in a humidity chamber 

preheated to 37°C. Primary antibodies (2.1.11) of two different species that bind to the 

proteins to be detected were diluted in 50 µL Duolink® antibody diluent and were added to 

each sample for one hour at room temperature. The slides were washed two times with 

120 µL PLA Wash Buffer A for 5 minutes with gentle agitation and the secondary 

antibodies conjugated with oligonucleotides (PLA probe MINUS and PLA probe PLUS) 

were diluted 1:5 in Duolink® antibody diluent. Cells were incubation with the secondary 

antibodies in a pre-heated humidity chamber for 1 hour at 37°C. Unbound secondary 

antibodies were removed by washing two times with 120 µL PLA Wash Buffer A for 

5 minutes with gentle agitation. The PLA probe oligonucleotides were linked in a ligation 

reaction by addition of a ligation solution consisting of ligase and two oligonucleotides that 

can hybridize to the two PLA probes and join them to form a closed circle if they are in 

close proximity. Ligation was done in a humidity chamber for 30 minutes at 37°C, followed 

by two wash steps with 120 µL PLA Wash Buffer A for 2 minutes with gentle agitation and 

incubation with the amplification solution for 100 minutes at 37°C. The amplification 

solution consists of a polymerase, nucleotides and fluorescently labeled oligonucleotides 

and allows for rolling circle amplification of the ligated circle template, generating a 

concatemeric product. By hybridization of fluorescently labeled oligonucleotides to the 

concatemer, proteins in close proximity are visualized as distinct fluorescent spots. Slides 

were washed two times with 120 µL PLA Wash Buffer B for 10 minutes to remove the 

amplification solution. If required, a counterstaining step (see below) was included after 

this step to detect the proteins of interest or an indirect immunofluorescence (2.4.9) was 

performed starting from the blocking step. If no counterstaining or indirect 

immunofluorescence staining was done, the slides were washed with 120 µL 0.01x PLA 

Wash Buffer B for 1 minute. Coverslips were mounted with Duolink® in situ mounting 

medium (contains DAPI), sealed with nail polish and stored at -20°C. Cover slips were 
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imaged with the Confocal microscope LSM 510 META and PLA dots were quantified with 

CellProfiler (2.4.13). 

 

Counterstaining Method 

After removal of the amplification-polymerase solution, the cover slips were washed two 

times with Wash Buffer B for 10 minutes, followed by one wash step with Wash Buffer A 

for 1 minute. The samples were incubated with the primary antibody (50 µL/well) diluted in 

Duolink® antibody diluent for 40 minutes. Optionally, a FITC-Phalloidin antibody 

(0.2 mg/mL) was added at a 1:600 dilution to delineate the entire cell by staining for 

filamentous actin. After washing for 1 minute with Wash Buffer A, the cells were incubated 

with the secondary antibody diluted in Duolink® antibody diluent for 30 minutes. The cover 

slips were washed two times with Wash Buffer A for 2 minutes and once with 0.01x Wash 

Buffer B for 1 minute prior to mounting as described above. All steps were performed at 

room temperature.  

 

2.4.11 Transport Assay 
The transport assay is based on a method developed by Adam et al., 1990 (65). HeLa P4 

cells were grown on Poly-L-lysine coated cover slips to 60-80% confluence. Cells were 

washed twice with ice-cold transport buffer (20 mM HEPES, 110 mM KOAc, 2 mM 

Mg(OAc)2, 1 mM EGTA, pH 7.3, 2 mM DTT, 1 μg/mL of each AP and LP) and 

permeabilized with 0.007% digitonin on ice for 3-5 minutes. At low concentrations, 

digitonin selectively permeabilizes the cholesterol-rich plasma membrane and leaves other 

membranes lower in cholesterol such as the nuclear envelope intact (179, 180). 

Permeabilization efficiency was checked by Trypan blue staining. Cytosolic proteins were 

washed out by washing three times for 3 minutes with TPB and the permeabilized cells 

were incubated with 20 µL import reaction for 30 minutes at 30°C in a humidity chamber or 

at 4°C on ice. The import mix consisted of 500 nM import substrate, 500 nM import 

receptor, 4 µM Ran, 0.5 µL ATP regenerating system (1 mM ATP, 5 mM creatine 

phosphate, 20 U/mL creatine phosphokinase), 2 mg/mL BSA in transport buffer and 

optionally 8 µL cytosol (9 mg/mL). The import reaction was stopped by washing three 

times for 3 minutes with TPB and fixation with 3.7% formaldehyde in PBS for 10 minutes. 

Proteins were detected by indirect immunofluorescence (2.4.9). 
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2.4.12 Confocal Microscopy 
Fluorescent samples were analyzed with an Axiovert 200 M inverted microscope with a 

63x Plan-Neofluar 1.3 NA water-corrected objective using the water-based Immersol W 

2010 immersion oil and the X-cite 120 mercury lamp as a light source. Confocal images 

were acquired with the Zeiss LSM 510 META confocal imaging system. The confocal 

imaging system is equipped with five different laser lines that allow for excitation of various 

fluorophores. The Diode laser 405 nm was used for excitation of Hoechst 33258 or DAPI, 

the tunable Argon 458/477/488/514 nm laser for GFP, CFP and the AlexaFluor488 dye, 

the HeNe 543 nm laser for YFP, the HeNe 594 nm laser for mCherry and AlexaFluor594 

dye and the HeNe 633 nm laser for AlexaFluor633 or AlexaFluor647 dye. To reduce cross-

talk between different channels, the Multi Track image acquisition mode was used in the 

LSM 5 software. Laser transmission was adjusted depending on the fluorescence signal 

intensity and to minimize bleaching effects. Typically the pinhole was set to a diameter of 

1 airy unit, but if required, was changed to 0.8-2.0 airy units to increase signal intensity or 

to have the same optical slice thickness for co-localization studies. Image intensity and 

background level gains were controlled with the Detector Gain and the Amplifier Offset, 

respectively, and adjusted with the help of the range indicator function in the palette tool. 

To increase the signal to noise ratio, four images were averaged at a data depth of 8 bit 

and a scan speed of 1.28-3.2 µs/pixel was used. Acquired images were edited with the Fiji 

software. If necessary, the brightness and contrast were linearly enhanced for printing. 

 

2.4.13 CellProfiler 
The CellProfiler software (version 2.1.1) was used for the quantification of in situ proximity 

ligation assay (PLA) interactions. A pipeline was generated to count the number of PLA 

interactions in the whole cell, the cytoplasm and the nucleus. Cell nuclei were identified 

with the “IdentifyPrimaryObject” module using DAPI images. The typical diameter of the 

objects was set to 80-150 pixels and two-class Otsu adaptive thresholding was applied. 

Clumped objects were distinguished based on intensity values and the smoothing filter for 

declumping and the minimum allowed distance between local maxima was set to be 

calculated automatically. The cellular area was demarcated with the 

“IdentifySecondaryObjects” module using the Distance - N method by expanding the 

identified nuclear area by 80 pixels. Using the “IdentifyTertiaryObjects” the nuclear area 

was then subtracted from the cell area to obtain the cytoplasm. Cells touching the border 

of an image were excluded from further analysis. PLA fluorescent dots were identified with 

the “IdentifyPrimaryObjects” module using PLA images. The typical diameter of the PLA 
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objects was set to 2-10 pixels for the PLA objects and two-class Otsu adaptive 

thresholding was used with a minimum threshold of 0.15. Clumped objects were separated 

as described for the identification of cell nuclei. PLA dots in the nucleus and the cytoplasm 

were distinguished with the help of the “MaskImage” module. With the “RelateObjects” 

module the identified PLA objects in the cell, the nucleus and the cytoplasm were related 

back to the previously identified cell, nuclear and cytoplasmic area, respectively. Data was 

exported with the “ExportToSpreadsheet” module and visualized with the GraphPad Prism 

software (version 5.01). 

 

 

2.5 SILAC and Mass Spectrometry 
 

2.5.1 Dialyzed FCS 
FCS was dialyzed against PBS using a dialysis membrane (Spectra/Por® Dialysis 

Membrane) with a molecular weight cut-off of 8 kDa. PBS was changed three times after 

1 hour, overnight and again after 1 hour incubation at 4°C under constant stirring. The 

dialyzed FCS was sterile aliquoted and frozen at -20°C. 

 

2.5.2 Metabolic Labeling of HeLa P4 Cells 
For SILAC experiments, HeLa P4 cells were grown in DMEM, high glucose, no glutamine, 

no lysine, no arginine supplemented with 10% dialyzed FCS, 6 mM L-glutamine, 100 U/mL 

penicillin, 100 µg/mL streptomycin and labeled or unlabeled L-lysine and L-arginine at final 

concentrations of 73 mg/L and 42 mg/L, respectively. For light SILAC media, DMEM, high 

glucose, no glutamine, no lysine, no arginine was mixed in a 1:1 ratio with DMEM, high 

glucose, which contains light L-lysine (Lys0) and L-arginine (Arg0) at final concentrations 

of 146 mg/L and 84 mg/L, respectively. The medium SILAC media was supplemented with 

4,4,5,5-D4-L-Lysine 2HCl (Lys4) and 13C6-L-arginine HCl (Arg6) and the heavy SILAC 

media with 13C6
15N2-L-lysine HCl (Lys8) and 13C6

15N4-L-arginine HCl (Arg10). To achieve 

labeling efficiency of more than 95% cells were allowed to undergo at least five doublings. 

Typically, cells were subcultivated every 2-3 days with the appropriate SILAC media for a 

total of five passages at 37°C and 5% CO2 in a humidified cell incubator prior to 

harvesting. 

 

 
 

https://www.thermofisher.com/us/en/home/about-us/product-stewardship/greener-alternatives.html
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2.5.3 Binding Assay with Labeled HeLa P4 Cells 
 

Preparation of Phenyl-Sepharose 

Phenyl-Sepharose (80 µL/reaction) was washed once each with deionized water and 

transport buffer (20 mM HEPES, 110 mM KOAc, 2 mM Mg(OAc)2, 1 mM EGTA, pH 7.3, 

2 mM DTT, 1 μg/mL of each AP and LP) containing 10 mg/mL BSA. After blocking in the 

same buffer with rotation for 30 minutes at 4°C, the beads were washed once with 

transport buffer containing 10 mg/mL BSA and used for pre-clearing of cell lysates. 

 

Preparation of Affinity Matrix 

IgG-Sepharose (20 µL/reaction) was washed once each with deionized water and 

transport buffer (20 mM HEPES, 110 mM KOAc, 2 mM Na2CO3, 1 mM EGTA, pH 7.3, 

2 mM DTT, 1 μg/mL of each AP and LP) containing 10 mg/mL BSA, followed by blocking 

in the same buffer with rotation for 30 minutes at 4°C. The beads were washed once in the 

same buffer and 0.5 nmol Hzz-importin 13 was immobilized to 20 µL blocked 

IgG-Sepharose rotating for one hour at 4°C in a total volume of 500 µL in transport buffer 

containing 10 mg/mL BSA. The beads were pelleted by centrifugation at 300 x g for 

2 minutes and washed three times with 1 mL transport buffer. The Hzz-importin 13 affinity 

was pre-incubated with either 10 µM RanGTPQ69L, 5 µM Ubc9 or transport buffer alone in a 

total volume of 500 µL rotating for one hour at 4°C. The beads were washed three times 

with 1 mL transport buffer prior to assembly of the binding reactions. 

 

Preparation of Cell Lysate 

For SILAC binding experiments, two 15-cm HeLa P4 cell plates per labeling condition were 

washed two times with PBS and coated with 2 mL trypsin. The trypsin was aspirated and 

the plates were incubated at 37°C until the cells started to detach. The labeled cells were 

collected separately in PBS containing 10% dialyzed FCS to neutralize the trypsin and 

washed three times with transport buffer to remove any residual FCS and trypsin. The 

cells were counted with the CASY 1 system (Schärfe System), adjusted to 1x108 cells/mL 

in transport buffer (20 mM HEPES, 110 mM KOAc, 2 mM Mg(OAc)2, 1 mM EGTA, pH 7.3, 

2 mM DTT, 1 μg/mL of each AP and LP and 1x Roche complete protease inhibitor 

cocktail) and transferred to a 1.5 mL Protein LoBind Tube. The cells were permeabilized 

with 0.07% digitonin on ice for 3-5 minutes by adding 7 µL of 10% digitonin per 1x108 cells. 

Permeabilization efficiency was checked under the microscope by mixing 1 µL of lysate 

with 10 µL Trypan blue. If necessary, the digitonin concentration was slightly increased 
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until more than 95% of the cells were permeabilized. Cell lysates were cleared by 

centrifugation at 1,500 x g for 15 minutes to remove nuclei and cell debris, followed by 

ultracentrifugation in the Centrifuge Optima MAX-XP with the rotor TLA100.3 at 

100,000 x g, 4°C for 30 minutes. Two reduce unspecific binding to the affinity matrix, each 

cell lysate from 2x 15-cm plates was pre-incubated with 60 µg Hzz immobilized to 20 µL 

blocked IgG-Sepharose, as well as, 80 µL blocked Phenyl-Sepharose to deplete the cell 

extract of nuclear transport receptors, with rotation for two hours at 4°C. The beads were 

pelleted by centrifugation for 2 minutes at 300 x g and the supernatant was collected for 

the binding reaction. A sample of both the uncleared and cleared lysate was taken for later 

analysis. 

 

Binding Reaction 

For binding reactions, 20 µL of Hzz-importin 13 affinity matrix was incubated with 350 μL 

HeLa P4 lysate from two 15-cm plates (precleared with IgG-Hzz and Phenyl-Sepharose) 

and either 10 µM RanGTPQ69L, 5 µM Ubc9 or transport buffer alone in a final volume of 

500 μL rotating for two hours at 4°C. Beads were pelleted at 800 x g for 2 minutes, an 

unbound sample was collected for later analysis and the beads were washed with one 

quick wash and one 5 minute wash with transport buffer. After this step, all beads were 

combined for the last washing step and bound proteins were eluted together with 150 µL 

1.5 M MgCl2 in 50 mM Tris, pH 7.4, vortexing and incubation for 10 minutes on ice. Beads 

were pelleted by centrifugation and the supernatant was collected and transferred to a new 

tube. Proteins were precipitated by addition of 1350 µL 100% isopropanol, vortexing and 

incubation for 10 minutes on ice, followed by centrifugation for 20 minutes at 14,000 x g. 

The supernatant was removed and the protein pellet was dried prior to reconstitution in 60 

µL 4x SDS-sample buffer. The magnesium chloride eluted beads were washed two times 

with transport buffer and a second elution was done with 60 µL 4x SDS-sample buffer to 

identify remaining proteins bound to the affinity matrix. All eluates were boiled at 95°C for 

10 minutes and analyzed by SDS-PAGE, followed by Coomassie staining (2.3.2), silver 

staining (2.3.3) or Western blotting (2.3.4).  

 

2.5.4 In-Gel Tryptic Digestion of Proteins 
One-third of the magnesium chloride eluate from the importin 13 binding reaction was 

loaded onto a 12% SDS gel. The SDS-PAGE (2.3.1) was stopped after the samples had 

entered one-quarter of the stacking gel. The gel was washed with deionized water, fixed 

for one hour with fixation solution (40% ethanol, 10% acetic acid) and washed two times 
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for 10 minutes with deionized water. Each sample lane was split into 6 parts, cut into 2 mm 

sized pieces and transferred to low-bind Eppendorf cups. In-gel digestion was performed 

based on a protocol provided by Dr. Oliver Valerius (Universität Göttingen), which in turn 

was adapted from Shevchenko et al., 1996 (181). All solutions were prepared with LC/MS 

Grade Optima™ Water. In brief, gel pieces were dehydrated with 50 µL acetonitrile and 

dried in a SpeedVac Concentrator (Vacuum Christ Alpha 1-4, W. Krannich) for 10 minutes 

after removal of the acetonitrile. Gel pieces were rehydrated in 150 µL 10 mM DTT, 

100 mM NH4CO3 to reduce disulfide bonds for 1 hour at 56°C. The DTT solution was 

removed and resulting free cysteine thiol groups were alkylated with 150 µL 55 mM 

iodoacetamide, 100 mM NH4CO3 for 45 minutes at room temperature in the dark. Gel 

pieces were washed with 150 µL 100 mM NH4CO3 and then dehydrated with 150 µL 

acetonitrile both times shaking at 1,000 rpm for 10 minutes at room temperature. The 

washing (rehydration of gel) and dehydration steps were repeated once and then the gel 

pieces were dried for 10 minutes in a SpeedVac after removal of the acetonitrile. Gel 

pieces were rehydrated in 50 µL trypsin digestion buffer (20 µg/mL trypsin (Serva), 

prepared according to the manufacturer’s instructions) for 45 minutes on ice. The digestion 

buffer was discarded and gel pieces were completely covered with 50 µL 25 mM NH4CO3. 

Tryptic peptide digestion was allowed to occur overnight at 37°C.  

 

2.5.5 Extraction of Peptides 
Following trypsin digestion, supernatants were collected by centrifugation for 1 minute at 

13,000 rpm (Centrifuge 5415R, Eppendorf) and transferred to new tubes. Residual acidic 

peptides were extracted from the gel pieces by incubation with 50 µL 20 mM NH4CO3 

shaking at 1,000 rpm for 10 minutes at room temperature. Residual basic peptides were 

extracted three times by incubation with 50 µL 50% acetonitrile, 5% formic acid shaking at 

1,000 rpm for 20 minutes at room temperature. All supernatants were collected by 

centrifugation for 1 minute at 13,000 rpm, pooled and completely dried by vacuum 

evaporation in a SpeedVac. Samples were either stored at -20°C or directly desalted over 

C18 stage tips (2.5.6). Peptide extraction was performed based on a protocol provided by 

Dr. Oliver Valerius (Universität Göttingen), which in turn was adapted from 

Shevchenko et al., 1996 (181). 

 

2.5.6 Desalting of Peptides 
Peptides were desalted by purification over C18 stage tips following a protocol provided by 

Dr. Oliver Valerius (Universität Göttingen), which in turn is based on a tutorial provided by 
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the group of Prof. Dr. Matthias Mann (http://www.biochem.mpg.de/226863/Tutorials). In 

brief, C18 stage tips were assembled by cutting out small circles of C18 material 

(Empore™ C18 47 mm Extraction Disc, 3M Company) and placing two on top of each 

other into the tip of a 200 µL pipette tip. C18 stage tips were activated with 100 µL 100% 

methanol, 0.1% formic acid and washed with 100 µL 70% acetonitrile, 0.1% formic acid, 

followed by two wash steps with 100 µL H2O, 0.1% formic acid by centrifugation for 

2 minutes at maximum speed. Simultaneously, dried peptide pellets were resuspended in 

20 µL fresh sample buffer (98% H2O, 2% acetonitrile, 0.1% formic acid) by shaking for 

10 minutes at 1,000 rpm and incubation in a Decon FS-100 ultrasonic bath at maximum 

power for 3 minutes. Samples were loaded onto the C18 stage tips and brought in contact 

with the C18 material by brief centrifugation for 5 seconds at 1,000 rpm (Centrifuge 5415R, 

Eppendorf). After incubation for 5 minutes, samples were centrifuged for 5 minutes at 

4,000 rpm. To increase the peptide yield samples were reloaded and centrifuged again for 

5 minutes at 4,000 rpm. At this step, all peptides should be bound to the C18 material, 

therefore the flow-through was discarded. The C18 column was washed twice with 100 µL 

H2O, 0.1% formic acid by centrifugation for 2 minutes at 10,000 rpm. For peptide elution, 

the C18 stage tip was transferred to a 1.5 mL low-bind Eppendorf cup and bound peptides 

were eluted with 60 µL 70% acetonitrile, 0.1% formic acid by centrifugation for 5 minutes at 

4,000 rpm. Peptide eluates were dried completely in the SpeedVac and peptide pellets 

were stored at -20°C until liquid chromatography-coupled-mass spectrometry (LC-MS) 

analysis of peptides. 

 

2.5.7 Liquid Chromatography-Coupled-Mass Spectrometry (LC-MS) Analysis of 
Peptides 

Prior to the analysis of peptides with nanoflow liquid chromatography (UltiMate™ 3000 

RSLCnano System, Thermo Scientific) coupled to nano electrospray ionization (nESI) 

mass spectrometry, dried peptide pellets were solved in 20 µL sample buffer (98% H2O, 

2% acetonitrile, 0.1% formic acid) by shaking for 10 minutes at 1,000 rpm. Samples were 

incubated for 3 minutes at maximum power in an ultrasonic bath and transferred to LC-MS 

vials (Grace). Sample solutions of 1 to 2 µL were loaded and washed on an Acclaim™ 

PepMap™ 100 pre-column (100 µm x 2 cm, C18, 5 µm, 100 Å, Thermo Scientific) in 100% 

solvent A (98% water, 2% acetonitrile, 0.07% trifluoroacetic acid) at a flow rate of 

25 µL/min for 6 minutes. Peptides were separated by reverse phase chromatography, on 

an Acclaim™ PepMap™ RSLC column (75 µm x 50 cm, C18, 2 µm, 100 Å, Thermo 

Scientific). A first gradient was run from 98% solvent A (water, 0.1% formic acid) and 2% 

http://www.biochem.mpg.de/226863/Tutorials
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solvent B (80% acetonitrile, 20% water, 0.1% formic acid) to 32% solvent B within 

110 minutes, followed by a second gradient from 32% to 65% solvent B within 16 minutes 

at a flow rate of 300 nL/min (solvents and acids from Fisher Chemicals). Peptides eluting 

from the chromatography were on-line ionized by nESI using the Nanospray Flex Ion 

Source (Thermo Scientific) at 2.4 kV and continuously transferred into the Orbitrap Velos 

Pro™ Nano ESI Mass Spectrometer, (Thermo Scientific). Full scans were acquired with 

the Orbitrap-FT analyzer in the mass range of 300-1,850 m/z and with a resolution of 

60,000. The LTQ Velos Pro linear ion trap (CID) was used for parallel data-dependent top 

10 fragmentation. Programming of LC-MS methods and data acquisition was done with the 

XCalibur 2.2 software (Thermo Scientific). All LC-MS analyses of peptides were performed 

by the Service Unit LCMS Protein Analytics (Dr. Oliver Valerius and Dr. Kerstin Schmitt), 

Georg-August-Universität Göttingen. 

 

2.5.8 Analysis of Mass Spectrometry Data 
Raw mass spectrometry files were analyzed with the MaxQuant 1.5.1.0 software in the 

case of quantitative SILAC data or the Proteome Discoverer Software version 1.4 in the 

case of all other mass spectrometry analyses. In the case of the Proteome Discoverer, 

mass spectrometry data was searched against the NCBI-derived 'homo sapiens' protein 

database including gb, ref, dbj, emb, and pdb entries (status 09/14/2016, 

124176 sequences). Search parameters were set as follows: trypsin digestion mode with 

the maximum of two missed cleavage sites, oxidation of methionine and N-terminal protein 

acetylation were set as variable modifications and carbamidomethylation of cysteine as 

fixed modification. The mass tolerance for the peptide precursors was 10 ppm and 0.6 Da 

for fragment ions. False discovery rates were calculated with Proteome Discoverer, using 

the reverse-decoy mode, and the filter for valid peptide sequence matches was set to high 

confidence (FDR ≤ 0.01). The Proteome Discoverer search was performed by the Service 

Unit LCMS Protein Analytics (Dr. Oliver Valerius and Dr. Kerstin Schmitt), Georg-August-

Universität Göttingen. 

In the case of quantitative data analysis with the MaxQuant software, mass spectrometry 

data was analyzed against the human protein database derived from Uniprot 

(Proteome ID: UP000005640, 71,913 entries, download 2016). Search parameters were 

set as follows: trypsin/P digestion mode (tryptic specificity with no proline restriction) with 

maximum of two missed cleavages, oxidation of methionine and N-terminal protein 

acetylation were set as variable modifications and carbamidomethylation of cysteine was 

set as a fixed modification. Arg6 and Lys4 were defined as medium peptide labels and 
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Arg10 and Lys8 as heavy peptide labels. The mass tolerance for peptide precursors was 

4.5 ppm and for fragment ions 0.5 Da. Fourier transform-based mass spectrometer 

(FTMS) requantification and FTMS recalibration were enabled. Protein quantification was 

performed with a minimum ratio count of two and unique plus razor peptides were 

considered. False discovery rates were calculated by MaxQuant, using the revert-decoy 

mode and the filter for valid peptide sequence matches was set to 0.01. MaxQuant output 

data was further processed using Perseus software 1.5.0.15. Gene Ontology (GO) 

analysis was done using DAVID Bioinformatics Resources 6.8 (182, 183). Only GO terms 

for biological processes were considered (GOTERM_BP_ALL). 
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 Results 3.
 

Until recently, only a limited number of importin 13 cargoes had been identified. To expand 

the range of known importin 13 import and specifically export cargoes, three different 

approaches were applied. These included an importin 13 overexpression screen using a 

library of nuclear proteins, an importin binding experiment followed by mass spectrometry 

and a SILAC based proteomics approach coupled to an importin 13 binding assay that 

allowed for the distinction of importin 13 import and export cargoes. Further, various 

cellular and biochemical assays were established with known importin 13 cargoes, to allow 

for analysis of newly identified importin 13 substrate candidates. 

 

 

3.1 Characterization of Importin 13 and Established Cargoes 
3.1.1 Importin 13 Expression Levels Are Low in Different Human Cancer Cell Lines 
To define the endogenous importin 13 expression levels in different cancer cell lines and 

determine whether importin 13 may be a limiting factor in nucleocytoplasmic transport, the 

cellular concentration of importin 13 in three different human cancer cell lines was 

determined. For this, the cell lysates of a defined number of HeLa P4, U2OS and 293T 

HEK cells were loaded onto an SDS gel together with known amounts of purified 

His-importin 13 and analyzed by Western blot (Figure 4).  

 

 

 
 

Figure 4: Endogenous importin 13 concentrations in cancer cell lines. Defined amounts of 
HeLa P4, 293T HEK and U2OS cells (50,000 and 100,000 cells) were lysed in SDS sample buffer 
and analyzed by SDS-PAGE together with 5, 10, 20 and 50 ng of purified His-tagged importin 13, 
followed by immunoblotting with an anti-importin 13 antibody. Assuming a cell volume of 
~2,500 µm3 an importin 13 concentration in the range of 110-310 nM was determined for all three 
cancer cell lines. 
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Based on the assumption that these cells have a volume of ~2,500 µm3 (184), a cellular 

importin 13 concentration of ~110 nM was determined for HeLa P4 cells, ~120 nM for 

293T HEK cells and ~310 nM for U2OS cells. In comparison, other transport receptors 

have been estimated to have cellular concentrations between 1-4 µM (77, 185). This 

shows that at least in the analyzed cell lines importin 13 is not an abundant protein and 

therefore could be rate limiting for transport. 

 

 

3.1.2 Importin 13 Is Rate Limiting in HeLa P4 Cells 
To test whether endogenous importin 13 is indeed rate limiting in HeLa P4 cells, the effect 

of importin 13 overexpression on the subcellular localization of the endogenous export 

cargo eIF1A was analyzed. Cells transfected with plasmids coding for FLAG-importin 13 or 

mock transfected cells were immunostained for endogenous eIF1A with an anti-eIF1A 

antibody (Figure 5). In mock transfected cells, eIF1A showed a predominantly nuclear 

localization and a weak cytoplasmic signal, while in cells overexpressing FLAG-importin 13 

most of the nuclear signal was lost. Thus, importin 13 is rate limiting for eIF1A export in 

HeLa P4 cells. 

 

 
 

Figure 5: Importin 13 is rate limiting for export of endogenous eIF1A. HeLa P4 cells were 
transiently transfected with plasmids coding for FLAG-importin 13 or mock transfected using the 
calcium phosphate method and immunostained with an anti-eIF1A antibody and anti-FLAG 
antibody. The scale bars correspond to 20 µm. 
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3.1.3 Importin 13 Affects the Subcellular Localization of eIF1A and Ubc9 
Grünwald et al., 2013 (107) demonstrated that only cells expressing importin 13 wild type, 

but not the importin 13 mutant Glu436Arg/Asp481Arg, can export eIF1A-GFP in vivo. To 

test whether these findings can be repeated and to establish eIF1A as a positive control 

for importin 13 mediated nuclear export, importin 13 overexpression experiments were 

performed. In addition, the effect of importin 13 on the known importin 13 import cargo 

Ubc9 was analyzed, to establish Ubc9 as a positive control for importin 13 mediated 

nuclear import. In order to do this, HeLa P4 cells were co-transfected with plasmids coding 

for Ubc9 or eIF1A and importin 13 or an empty control vector and analyzed for any 

changes in subcellular distribution (Figure 6). As previously reported (107), GFP-tagged 

eIF1A was mainly localized in the nucleus and showed strong nucleoli enrichment but was 

strongly depleted from these sites upon importin 13 coexpression. In contrast, mutant 

importin 13-E436R/D481R did not affect the subcellular localization of eIF1A-GFP. 

Further, to determine whether the size of eIF1A affects its subcellular localization, eIF1A 

was fused to an N-terminal GFP-GST-tag. This fusion construct (72 kDa) should be well 

above the diffusion limit of the NPC and as a consequence GFP-GST-eIF1A should only 

be able to enter the nucleus with the help of β-karyopherins, but not by diffusion. Indeed, 

GFP-GST-eIF1A showed a cytoplasmic localization in the absence of importin 13, 

supporting the hypothesis that eIF1A enters the nucleus by passive diffusion due to its 

small size (16.5 kDa) (135). However, it cannot be entirely excluded that nuclear import of 

GFP-GST-eIF1A is impeded due the fusion-tag. Note that the GFP-GST-tag was fused to 

the N-terminus, while the GFP-tag was fused to the C-terminus of eIF1A. In summary, the 

above observations are in agreement with the previous reports (107, 135) that eIF1A 

enters the nucleus by passive diffusion and is exported back out of the nucleus by importin 

13, while the importin 13 mutant Glu436Arg/Asp481Arg is impaired in eIF1A export.  

To establish a positive control for importin 13 mediated nuclear import, the subcellular 

localization of Ubc9 fused to both a GFP-GST- and a HA-tag was analyzed. While 

HA-Ubc9 by itself already showed a nuclear localization and consequently was not 

affected by importin 13 coexpression, GFP-GST-Ubc9 was too large to efficiently enter the 

nucleus on its own and required coexpression of FLAG-importin 13 to localize to the 

nucleus. This suggests that HA-Ubc9 (~19 kDa) as eIF1A can enter the nucleus by 

passive diffusion due to its small size. Further, importin 13 has been shown to bind its 

cargoes Ubc9 and eIF1A at non-overlapping binding sites (107) and indeed the 

importin 13 mutant impaired in eIF1A export was still fully functional in mediating import of 

GFP-GST-Ubc9 (107). 
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Figure 6: Importin 13 promotes nuclear import of Ubc9 and nuclear export of eIF1A. HeLa P4 
cells were transiently transfected using the calcium phosphate method with plasmids coding for 
Ubc9 or eIF1A and importin 13 wild-type (+FLAG-Imp13), importin 13-E436R/D481R 
(+FLAG-Imp13mt; mutant impaired in eIF1A export) or an empty control vector. HA-Ubc9 and 
FLAG-importin 13 were visualized by indirect immunofluorescence with an anti-HA and anti-FLAG 
antibody, respectively. The scale bars correspond to 20 µm. 
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In summary, importin 13 can promote the import and export of overexpressed 

GFP-GST-Ubc9 and eIF1A-GFP, respectively, while the importin 13 mutant 

Glu436Arg/Asp481Arg cannot export eIF1A but is still capable of importing Ubc9. 

Consequently, eIF1A-GFP and GFP-GST-Ubc9 are effective controls for importin 13 

mediated transport in importin 13 overexpression experiments.  

 

 

3.1.4 Importin 13 Mediates Nuclear Import of Ubc9 In Vitro 
Mingot et al., 2001 (135) showed that fluorescently labeled GST-Ubc9 is specifically 

imported by importin 13 into the nuclei of digitonin permeabilized HeLa cells and that the 

import efficiency is stimulated in the presence of Ran and an energy-regenerating system. 

To test whether these findings can be reproduced and to ascertain that the recombinant 

purified GST-Ubc9 and His-importin 13 are functional, transport assays were performed. 

HeLa P4 cells were permeabilized with digitonin, which selectively permeabilizes the 

plasma membrane but leaves the nuclear envelope intact, washed to remove soluble 

transport factors and incubated with defined transport mixes to analyze the import of 

GST-Ubc9 (Figure 7).  

 

 

 
 

Figure 7: Importin 13 mediates import of GST-Ubc9. Digitonin permeabilized HeLa P4 cells were 
incubated with GST-Ubc9, an energy-regenerating system and buffer or His-importin 13 in the 
absence or presence of Ran and cytosol, as indicated. GST-Ubc9 was visualized by indirect 
immunofluorescence with an anti-GST antibody. The detector gain was decreased for 
GST-Ubc9+Imp13+Ran from 666 to 621 as the signal intensity was too strong. The scale bars 
correspond to 20 µm. 
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In the absence of importin 13, only a minimal import of GST-Ubc9 was detected. Addition 

of importin 13 resulted in a clear accumulation of GST-Ubc9 in the cell nuclei and import 

was further enhanced in the presence of Ran, confirming the results from Mingot et al., 

2001 (135). Interestingly, addition of cytosol strongly reduced nuclear import of GST-Ubc9, 

suggesting that some factor present in the cytosol prevents nuclear localization of Ubc9, 

either by inhibiting import or by promoting export of Ubc9. These results confirm that Ubc9 

is imported into cell nuclei by importin 13 and that import is enhanced in the presence of 

Ran.  

 

 

3.1.5 Importin 13 Directly Interacts with Ubc9 
Mingot et al., 2001 (135) not only demonstrated that nuclear import of Ubc9 depends on 

importin 13 but also showed that Ubc9 as well as the export cargo eIF1A directly interact 

with importin 13 in a RanGTP-dependent manner. As ultimately binding assays are to be 

used for the identification of importin 13 substrates, it was tested if the reported results are 

reproducible and whether our recombinantly purified proteins are fully functional. 

GST-tagged Ubc9 and eIF1A were immobilized on beads and incubated with either His- or 

Hzz (His- and zz-tag)-tagged importin 13 in the absence or presence of RanQ69L loaded 

with GTP (Figure 8A). RanGTPQ69L is a mutant deficient in hydrolysis of Ran bound GTP 

and therefore is predominantly found in the GTP-bound form (186). This Ran mutant 

promotes binding of export cargoes to their nuclear transport receptor and strongly inhibits 

binding of import cargoes. As expected both His-importin 13 and Hzz-importin 13 bound 

efficiently to the import cargo GST-Ubc9 and binding was significantly reduced in the 

presence of RanGTPQ69L. Equimolar amounts of RanGTPQ69L were not sufficient to 

completely abolish importin 13 binding to GST-Ubc9, suggesting that an excess of 

RanGTP is required to fully prevent the formation of importin 13 import complexes. In 

comparison to GST-Ubc9, binding of the export cargo GST-eIF1A was much less efficient 

and was dependent on the presence of RanGTPQ69L. Only binding of Hzz-importin 13 but 

not His-importin 13 to GST-eIF1A could be observed.  
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Figure 8: Importin 13 directly interacts with Ubc9 and eIF1A. In (A) GST-tagged Ubc9 and 
eIF1A (20 µg) were immobilized on glutathione-Sepharose beads and incubated with 5 µg His- or 
Hzz-tagged importin 13. In (B) GST- and Hzz-tagged importin 13 (20 µg) was immobilized on 
glutathione-Sepharose and IgG-Sepharose, respectively, and incubated with 5 µg untagged Ubc9 
or 7 µg His-eIF1A. All reactions were performed in the absence or presence of 5 µg RanGTPQ69L in 
PBS supplemented with 2 mg/mL BSA. Proteins bound to GST-tagged proteins were eluted with 4x 
SDS-sample buffer and proteins bound to Hzz-importin 13 were eluted by glycine elution. 
Interacting proteins were analyzed by SDS-PAGE, followed by Coomassie staining. Asterisk in (B) 
marks contaminants visible between 25-35 kDa that likely correspond to GST-importin 13 
degradation products. GST-importin 13/1: expressed from plasmid #1576 with a linker of 13 amino 
acids; GST-importin 13/2: expressed from plasmid #887 with a linker of 17 amino acids; l.c.: light 
chain; h.c.: heavy chain; ladder: PageRuler Unstained Protein Ladder. 
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To test whether the cargoes can also bind to immobilized importin 13, reverse binding 

experiments were performed using three differently tagged importin 13 proteins. Binding 

experiments were done with two GST-importin 13 variants that differed in the size of their 

linker and one Hzz-tagged importin 13 variant. The Hzz-tag consists of a His-tag and two 

IgG-binding domains of protein A from Staphylococcus aureus (zz-tag). The three 

importin 13 variants were immobilized on beads and incubated with untagged Ubc9 or 

His-eIF1A in the absence or presence of RanGTPQ69L (Figure 8B). Both Ubc9 and His-

eIF1A bound efficiently to all three importin 13 fusion proteins in a RanGTP-dependent 

manner, with Ubc9 showing a slightly higher affinity for Hzz-importin 13 and His-eIF1A 

showing a slightly higher affinity for GST-importin 13. As in the previous binding 

experiment, binding of Ubc9 to importin 13 was stronger than for His-eIF1A. The identity of 

the bound proteins was confirmed by immunoblotting with an anti-Ubc9 and anti-eIF1A 

antibody (data not shown).  

In summary, the reported direct interaction between importin 13 and its cargoes Ubc9 and 

eIF1A could be confirmed using proteins with various tags. Binding of importin 13 cargoes 

to the two GST-importin 13 variants was comparable but in the case of Ubc9 less efficient 

than binding to Hzz-importin 13. Further, GST-importin 13 was more prone to degradation 

than Hzz-importin 13. Thus, Hzz-importin 13 was used in subsequent binding experiments 

and ultimately also in the pull-down experiment coupled to mass spectrometry for the 

identification of importin 13 substrates.  

 

 

3.1.6 Importin 13 Binds Endogenous Ubc9 from HeLa P4 Cell Extracts 
One central aim of this study was to identify importin 13 cargoes that bind to immobilized 

importin 13 from a HeLa P4 cell extract. Previously, binding of endogenous Ubc9 and 

eIF1A from a HeLa lysate to immobilized importin 13 has been demonstrated by mass 

spectrometry (135). Binding conditions were established with immobilized importin 13 

using the known importin 13 cargoes Ubc9 and eIF1A. Hzz-tagged importin 13 was 

immobilized on beads and incubated with a digitonin or freeze/thaw HeLa P4 lysate in the 

presence or absence of recombinant cargoes and RanGTPQ69L (Figure 9). Both 

endogenous and recombinant Ubc9 bound efficiently to Hzz-importin 13 from both HeLa 

P4 cell extracts with slightly more Ubc9 binding from the digitonin HeLa P4 cell lysate. 

Ubc9 binding was not affected by equimolar amounts of RanGTPQ69L showing that 

RanGTP becomes limiting in the presence of cell lysate, which contains high 

concentrations of other nuclear transport receptors that compete for RanGTP binding.  
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Figure 9: Importin 13 binds endogenous Ubc9 and recombinant eIF1A from HeLa P4 cell 
extract. Hzz-importin 13 (20 µg) was immobilized on IgG-Sepharose and incubated with a digitonin 
or freeze/thaw HeLa P4 cell extract in the absence or presence of (A) 5 µg Ubc9 or 5 µg 
RanGTPQ69L and (B) 7 µg His-eIF1A, 7 µg GST-eIF1A or 15 µg RanGTPQ69L in PBS supplemented 
with 2 mg/mL BSA. Bound proteins were eluted and analyzed as in (Figure 8). In (B) a freeze/thaw 
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HeLa P4 cell lysate was used and binding of endogenous Ubc9 was detected by immunoblotting 
with an anti-Ubc9 antibody. l.c.: light chain; h.c.: heavy chain; ladder: PageRuler Unstained Protein 
Ladder.  

 

 

For the export cargo eIF1A, only binding of recombinant His-eIF1A and GST-eIF1A but not 

endogenous eIF1A to Hzz-importin 13 could be detected (Figure 9), which was further 

confirmed by immunoblotting (data not shown). Binding of recombinant GST-eIF1A to Hzz-

importin 13 was more efficient than binding of His-eIF1A and both interactions were 

significantly reduced in the presence of HeLa P4 cell extract suggesting competition of 

other cargoes with eIF1A for importin 13 binding. Indeed, concomitant binding of Ubc9 

could be confirmed by immunoblot analysis in binding reactions performed with HeLa P4 

cell extract. The immunoblot also showed that binding of endogenous Ubc9 was reduced if 

exogenous RanGTPQ69L was present in the binding reaction. 

An interaction between importin 13 and Ubc9 or eIF1A could further be confirmed using in 

situ proximity ligation assays (Figure S1). Endogenous proteins were targeted with 

antibodies and in situ interactions were visualized as single fluorescent dots using the 

proximity ligation assay. Knock-down of importin 13 reduced the number of fluorescent 

dots (one fluorescent dot corresponds to one single protein-protein interaction), confirming 

the specificity of the observed interactions. Interestingly, in situ interactions of importin 13 

with Ubc9 were mainly observed in the nucleus, while interactions of importin 13 with 

eIF1A were mainly observed in the cytoplasm. This suggests that the importin 13 import 

complexes are more transient in the cytoplasm than in the nucleus and vice versa for 

export complexes.  

The results demonstrate that importin 13 binding experiments with HeLa P4 cell lysate 

could be an effective approach to identify new importin 13 cargoes. However, the results 

also show that the efficiency of cargo identification will depend strongly on the affinity of 

importin 13 for its cargoes. As demonstrated above, Ubc9, which has a reported eightfold 

lower dissociation constant than eIF1A (107), also showed stronger binding to importin 13 

than eIF1A. Furthermore, binding of endogenous Ubc9 to Hzz-importin 13 was found to be 

slightly more efficient from a HeLa P4 cell extract generated by digitonin treatment, 

suggesting that a digitonin cell lysate might be more effective for the identification of 

importin 13 substrates than a freeze/thaw cell lysate. 

 

 



Results 

85 

3.2 Identification of Potential Importin 13 Export Cargoes Using an Importin 13 
Overexpression Screen 

3.2.1 Importin 13 Overexpression Screen Using a Library of Nuclear Proteins 
When this thesis was started several importin 13 import cargoes had been identified but 

only one export cargo, the translation initiation factor eIF1A was known. To specifically 

screen for potential importin 13 export cargoes, labeled proteins from a library of proteins 

with known nuclear localization were transiently expressed in HeLa P4 cells and monitored 

for any changes in subcellular localization upon coexpression of importin 13. The plasmid 

clones coding for the tagged nuclear proteins were derived from the ‘LIFE database’ 

(174, 175).  

The initial overexpression screen to identify potential importin 13 export cargoes was 

performed by Annegret Nath, a former member of our group (data not shown). While the 

majority of ~200 tested proteins was not affected (>60%), several proteins changed their 

subcellular localization upon importin 13 coexpression. Clear effects were observed for 

about 10-15% of the proteins. 

Candidate proteins that were affected as well as proteins that were not affected by 

importin 13 overexpression in the initial screen were reanalyzed for effects of importin 13 

coexpression on their subcellular localization (Table S1). As in the initial overexpression 

screen, plasmids coding for tagged proteins were transiently transfected into HeLa P4 

cells and changes in subcellular distribution upon coexpression of importin 13 were 

analyzed (Figure 10 and Figure S2). The known importin 13 cargoes eIF1A-GFP and 

GFP-GST-Ubc9 were included in the screen as positive controls and both confirmed that 

the coexpressed FLAG-importin 13 was fully functional. Additionally, several negative 

controls were included such as different fusion tags, known artificial cargoes of other 

nuclear transport receptors as well as randomly selected proteins. 
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Figure 10: Importin 13 affects the subcellular localization of DBC-1, DMAP1, TERT, DDX43, 
DDX59, cJun, Fos and Sirt1. HeLa P4 cells were transiently cotransfected with plasmids coding 
for fluorescently tagged DBC-1, DMAP1, TERT, DDX43, DDX59, cJun, Fos or Sirt1 and FLAG-
importin 13 or an empty control vector using the calcium phosphate method. FLAG-importin 13 was 
visualized by indirect immunofluorescence with an anti-FLAG antibody. For controls and further 
proteins tested see supplemental Figure S2 and Table S1. The scale bars correspond to 20 µm.  

 

 

Similar to the findings of the initial screen, coexpression of importin 13 had strong effects 

on the nuclear proteins DBC-1, DMAP1, TERT, DDX43, DDX59 and c-Jun, promoting their 

cytoplasmic localization (see Table S1 for full protein names). The effect of importin 13 on 

DBC-1 and c-Jun is not entirely surprising, as both proteins have previously been reported 

to bind to importin 13 (49, 117). However, the binding was reduced in the presence of 

RanGTPQ69L, implicating them rather as importin 13 import than export cargoes (49, 117). 

Proteins that were slightly affected by importin 13 overexpression included Fos, Tmp29, 

Nip30 and Sirt1. Surprisingly, the M9 nuclear import signal (PY-NLS found in hnRNPA1 

and A2), which is recognized by transportin, was also slightly affected by importin 13 

overexpression, resulting in a more cytoplasmic localization (Figure S2).  

The other artificial cargoes, including dGFP-GST-cNLS (Xenopus), which is imported by 

importin α/β and dGFP-GST-RevNLS (from HIV-1 Rev), which is imported by transportin 

and potentially several other karyopherins (48, 116), as well as the Crm1 cargo protein 

snurportin 1 (187), were not affected by importin 13 coexpression. These GFP-fusion 

constructs also demonstrate that the importin 13 mediated redistribution of the identified 

proteins is not an unspecific effect of the GFP-tag. However, to fully exclude that the tag 

might affect the subcellular localization, other fusion tags for both importin 13 and the 

potential importin 13 cargoes were also tested (Figure S2 or data not shown). Irrespective 

of the tag used, importin 13 coexpression always resulted in a shift towards the cytoplasm 

of DBC-1, DMAP1, TERT, DDX43 and DDX59. However, with all HA-tagged constructs 

the observed effects were less strong. 

For yet unidentified reasons, the importin 13 effect varied not only between different 

experiments but also between individual cells, with some cells showing a strong 

redistribution of DBC-1 and DMAP1 and others only a weak or even no redistribution upon 

importin 13 coexpression. Although a trend could be observed that cells with high 

importin 13 expression levels had a more cytoplasmic localization of DBC-1 and DMAP1, 

the same could also be observed in cells with low importin 13 expression levels, albeit less 

frequently. Interestingly, importin 13 induced relocalization of DBC-1 and DMAP1 was 
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strongest in cells sub-cultivated for only one to three passages after thawing from liquid 

nitrogen (data not shown). This suggests that HeLa P4 cells thawed from liquid nitrogen 

take longer to recover or that a stress response is induced in these cells that affects 

importin 13 nucleocytoplasmic transport. However, heat shock did not influence the 

observed importin 13 effect (data not shown). The importin 13 mediated relocalization also 

is not cell specific, as similar effects were also observed in 293T HEK, U2OS and COS-7 

cells (data not shown). Interestingly, with some of the identified proteins not only the 

candidate protein but also importin 13 showed relocalization to the cytoplasm and a very 

similar distribution pattern, suggesting that they form stable complexes in the cytoplasm. 

In summary, DBC-1, DMAP1, TERT, DDX43, DDX59 and c-Jun were significantly affected 

by importin 13 overexpression, while the effect on Fos, Tmp29, Nip30 and Sirt1 was less 

strong. Even though these proteins showed a clear shift towards the cytoplasm upon 

importin 13 overexpression, one cannot conclude with certainty that these proteins are 

importin 13 export cargoes. Importin 13 could also indirectly enhance the cytoplasmic 

localization of these proteins or function as a negative regulator of nuclear import.  

 

 

3.2.2 DBC-1, DMAP1, DDX43 and DDX59 Bind Importin 13 Differently to eIF1A 
The importin 13 mutant Glu436Arg/Asp481Arg is deficient in eIF1A export (107). To test 

whether the putative importin 13 export cargoes DBC-1, DMAP1, DDX43 and DDX59 bind 

to the same key residues on importin 13 as eIF1A, plasmids coding for these cargoes 

were transfected in HeLa P4 cells and the effect of FLAG-importin 13-E436R/D481R 

cotransfection was analyzed (Figure 11). While eIF1A only changed its subcellular 

localization upon coexpression of wild type but not mutant importin 13, the putative 

importin 13 export cargoes showed relocalization to the cytoplasm with both wild type and 

mutant importin 13. Thus, these proteins either have a different binding site on importin 13 

or more residues need to be mutated to abolish the interaction. As in the previous 

experiment (3.2.1), importin 13 showed a more cytoplasmic localization in some cells if co-

expressed with DBC-1 or DMAP1. 

The results indicate that DBC-1, DMAP1, DDX43 and DDX59 bind importin 13 differently 

than the established export cargo eIF1A. 
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Figure 11: DBC-1, DMAP1, DDX43, 
DDX59 and TERT bind importin 13 
differently to eIF1A. HeLa P4 cells were 
transiently transfected using the calcium 
phosphate method with plasmids coding for 
GFP- or CFP-tagged DBC-1, DMAP1, 
DDX43, DDX59 or eIF1A and optionally co-
transfected with FLAG-importin 13 wild type 
(+Imp13wt) or FLAG-importin 13-
E436R/D481R (+Imp13mt; mutant impaired 
in eIF1A export). Transfected FLAG-
importin 13 was visualized by indirect 
immunofluorescence with an anti-FLAG 
antibody. The scale bars correspond to 
20 µm.  
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3.2.3 Characterization of DBC-1 Interaction with Importin 13 
3.2.3.1 Importin 13 Interacts with the Coiled-coil Domain of DBC-1 
Previous experiments in the lab suggested that the coiled-coil domain of DBC-1 (amino 

acids 793-923) is required for the importin 13 mediated cytoplasmic localization. To test 

whether this is indeed the case, HeLa P4 cells were transiently transfected with plasmids 

coding for the coiled coil domain of DBC-1 fused to a cNLS, to localize it to the nucleus, 

and analyzed for changes in nucleocytoplasmic distribution upon importin 13 coexpression 

(Figure 12). In the absence of importin 13, the coiled-coil domain of DBC-1 fused to a 

cNLS was mainly nuclear but in the presence of importin 13, a shift to the cytoplasm could 

be observed. As shown for full-length DBC-1, the importin 13 mutant impaired in eIF1A 

binding (importin 13-E436R/D481R), was still capable of relocalizing the coiled-coil domain 

of DBC-1 to the cytoplasm. This confirms that the coiled-coil domain of DBC-1 is required 

for interaction with importin 13. However, binding assays will need to be performed to 

show that the interaction is direct rather than indirect.  

 

 

 
 

Figure 12: Importin 13 interacts with the coiled-coil domain of DBC-1. HeLa P4 cells were 
transiently transfected with plasmids coding for full length DBC-1 or the coiled-coil domain of DBC-1 
(aa793-923, DBC-1-cc) using the calcium phosphate method. Optionally cells were cotransfected 
with plasmids coding for either wild type FLAG-importin 13 (+Imp13wt) or FLAG-importin 13-
E436R/D481R (+Imp13mt). FLAG-tagged importin 13 was visualized by indirect 
immunofluorescence using anti-FLAG antibody. The scale bars correspond to 20 µm. 
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3.2.3.2 The N-terminal Domain of Importin 13 Is Required for Recognition of 
DBC-1 

To get an idea as to where DBC-1 might bind to importin 13, the effect of different 

importin 13 fragments on the subcellular localization of DBC-1 was analyzed. A 

physiologically relevant N-terminally truncated importin 13 isoform has previously been 

reported to function as a negative regulator of nuclear import in testis (136, 172), a 

function that could also be relevant for DBC-1. HeLa P4 cells were cotransfected with 

plasmids coding for GFP-DBC-1 and different N-terminal and C-terminal fragments of 

FLAG-tagged importin 13 (Figure 13).  

 

 

 
Figure 13: The C-terminus of importin 13 is dispensable for recognition of DBC-1. HeLa P4 
cells were transiently transfected with plasmid DNA coding for GFP-DBC-1 and wild type or 
truncated FLAG-importin 13. The different FLAG-importin 13 constructs were visualized by indirect 
immunofluorescence with an anti-FLAG antibody. The scale bars correspond to 20 µm. 

 

 

The C-terminal fragments of importin 13 resulted only in a minor relocalization of DBC-1 to 

the cytoplasm, whereas the N-terminal fragments of importin 13 resulted in a clear shift 

towards the cytoplasm, similar to that seen with full-length importin 13. A weak shift 
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towards the cytoplasm was detected with amino acids 1-410 of FLAG-tagged importin 13, 

while the strongest shift was detected with amino acids 1-669. This indicates that several 

binding sites on importin 13 contribute to DBC-1 binding and that the major binding sites 

are present on the N-terminal arch of importin 13. However, binding to the C-terminal arch 

cannot be excluded, as the C-terminal fragments lack the N-terminal binding site for 

RanGTP, which is required for the formation of export complexes. Thus, even if binding 

would occur, the C-terminal importin 13 fragment would not be able to shuttle DBC-1 to the 

cytoplasm.  

The other putative importin 13 export cargoes DMAP1, DDX43, DDX59 and TERT were 

also characterized for their interaction with importin 13 by cotransfection of different 

importin 13 fragments (data not shown). Similar to DBC-1, subcellular localization of these 

cargoes was not affected by C-terminal fragments but only by N-terminal fragments of 

importin 13. The longer the N-terminal fragment, the stronger the observed redistribution to 

the cytoplasm. As for DBC-1 this indicates that at least a part of the importin 13 N-terminus 

is involved in the interaction with these cargoes, while the far C-terminus appears to be 

dispensable. 

 

 

3.3 Identification of Potential Importin 13 Cargoes by Mass Spectrometry 
A major goal of this work was to significantly expand the number of known importin 13 

cargoes. While the above importin 13 overexpression screen does allow for the 

identification of importin 13 interaction partners, it is limited in the number of available 

plasmids. Thus, two different mass spectrometry based approaches were established to 

allow for the large scale identification of importin 13 substrates. Both approaches focused 

on identifying proteins that bound to Hzz-importin 13 from a HeLa P4 cell lysate but 

differed in their strategy to reduce the number of false positive proteins. In the first 

approach, binding of proteins to both the Hzz-tag and Hzz-importin 13 from two different 

HeLa P4 cell extracts was compared, with the Hzz-tag reaction serving as a control for 

unspecific binding proteins. The second approach was based on quantitative mass 

spectrometry using stable isotope labeling with amino acids in cell culture (SILAC). To 

effectively distinguish between importin 13 import and export cargoes, binding reactions 

were performed in the absence or presence of Ubc9 and RanGTPQ69L. RanGTPQ69L is 

expected to promote the formation of importin 13 export complexes as it has been 

reported to displace importin 13 import cargoes and facilitate the binding of export cargoes 

to importin 13 (93, 135). In contrast, Ubc9 is expected to prevent the formation of both 
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importin 13 import and export complexes as excess Ubc9 has been shown to compete 

with both RanGTP and other import cargoes for importin 13 binding (93, 135). 

 

 

3.3.1 Mass Spectrometry Based Identification of Potential Importin 13 Substrates 
To get an idea of the range of proteins that interact with importin 13, mass spectrometry 

analysis was performed to identify proteins that bind to immobilized Hzz-importin 13 from a 

HeLa P4 cell extract. Two different HeLa P4 cell extracts were compared, a freeze/thaw 

and a digitonin lysate to see whether cell lysate preparation affects the type of proteins 

identified. Digitonin is a reagent known to selectively permeabilize the plasma membrane 

and leave the nuclear envelope intact. In contrast, disruption by freeze/thaw is less 

selective potentially resulting in the release of harmful proteins from other cellular 

compartments such as proteases. To identify proteins that bind unspecifically to the 

Hzz-tag and the IgG-Sepharose, binding experiments were performed in parallel to 

Hzz-importin 13 with the Hzz-tag alone.  

The Hzz-tag and Hzz-tagged importin 13 were immobilized on IgG-Sepharose and 

incubated with digitonin or freeze/thaw HeLa P4 cell extract. Bound proteins were eluted 

by magnesium chloride elution to prevent extensive co-elution of the IgG light and heavy 

chain. To assess the effectiveness of magnesium chloride elution, a second elution step 

was done with 4x SDS-sample buffer. Bound proteins eluted with magnesium chloride 

were separated by SDS-PAGE and protein peptides were extracted by in-gel tryptic 

digestion. Peptides were purified over C18 stage tips and given to our collaborators for 

mass spectrometry analysis. Raw data was analyzed with the Proteome Discoverer 

against a human protein database. Additionally, the magnesium chloride eluates were 

separated by SDS-PAGE and visualized by silver staining (Figure 14A). The silver stained 

gel showed that a lot of proteins bound unspecifically to the Hzz-tag and the 

IgG-Sepharose. However, more proteins were enriched with Hzz-importin 13 than with the 

Hzz-tag.  
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Figure 14: Proteins bound to Hzz-tag and Hzz-importin 13 from HeLa P4 cell extract. (A) 
Hzz-tag or Hzz-importin 13 was immobilized on IgG-Sepharose and incubated with digitonin or 
freeze/thaw HeLa P4 cell extract in transport buffer. Bound proteins were eluted with magnesium 
chloride and analyzed by SDS-PAGE, followed by silver staining. ladder: PageRuler Unstained 
Protein Ladder. (B) Venn diagram showing the overlap of proteins bound to Hzz-tag and 
Hzz-importin 13 from both digitonin and freeze/thaw HeLa P4 cell extract. See Table 10 for proteins 
that bound specifically to Hzz-importin 13 from both cell extracts (area shaded in light blue). 
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Using a threshold of minimum 10 peptide spectrum matches (PSMs, total number of 

identified peptide spectra matched to a protein), a total of 445 proteins were identified by 

mass spectrometry that bound to Hzz-importin 13 from the digitonin HeLa P4 cell extract 

and 424 proteins that were bound from the freeze/thaw cell extract. Of these, only 29 

proteins bound specifically to Hzz-importin 13 but not the Hzz-tag from both the digitonin 

and the freeze/thaw HeLa P4 cell lysate (Figure 14B, Table 10). Another 124 proteins 

were identified that specifically bound to importin 13 from the digitonin cell extract (Table 

S2) and 52 proteins that specifically bound to importin 13 from the freeze/thaw cell extract 

(Table S3).  

 

 
Table 10: List of proteins that bound to Hzz-importin 13 from both a digitonin and a 
freeze/thaw HeLa P4 cell extract (see Table S2 and Table S3 for cell extract specific 
proteins)# 

Uniprot ID Protein Gene Reference 
O94829 Importin-13 IPO13  
Q92538 Golgi-specific brefeldin A-resistance guanine nucleotide exchange 

factor 1 GBF1  
P63279 SUMO-conjugating enzyme UBC9  UBE2I (135) 
Q7Z3U7 Protein MON2 homolog  MON2  
Q9NRF9 DNA polymerase epsilon subunit 3 POLE3 (147) 
E9PS17 N-terminal kinase-like protein SCYL1  
P61326 Protein mago nashi homolog MAGOH (135) 
Q9Y5S9 RNA-binding protein 8A RBM8A (135) 
Q9H9A6 Leucine-rich repeat-containing protein 40 LRRC40  
O75420 PERQ amino acid-rich with GYF domain-containing protein 1 GIGYF1  
Q9NRG0 Chromatin accessibility complex protein 1  CHRAC1 (147) 
Q9Y4H2 Insulin receptor substrate 2 IRS2  
Q8WUF5 RelA-associated inhibitor PPP1R13L  
Q14160 Protein scribble homolog SCRIB  
P27540 Aryl hydrocarbon receptor nuclear translocator ARNT  
O43813 LanC-like protein 1 LANCL1  
E9PMS6 LIM domain only protein 7 LMO7  
J3KR24 Isoleucine--tRNA ligase IARS  
Q7Z460 CLIP-associating protein 1 CLASP1  
P52655 Transcription initiation factor IIA subunit 1 GTF2A1  
F8W9S7 GTPase-activating protein and VPS9 domain-containing protein 1 GAPVD1  
Q16204 Coiled-coil domain-containing protein 6  CCDC6  
Q6P2H3 Centrosomal protein of 85 kDa CEP85  
Q9BWH6 RNA polymerase II-associated protein 1 RPAP1  
B1ANR0 Polyadenylate-binding protein PABPC4  
Q9P1Y5 Calmodulin-regulated spectrin-associated protein 3 CAMSAP3  
F8W726 Ubiquitin-associated protein 2-like UBAP2L  
P35249 Replication factor C subunit 4  RFC4  
P26373 60S ribosomal protein L13 RPL13  
#: Proteins are sorted according to confidence from high to low. Proteins written in bold are known importin 13 cargoes.  
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Of the 29 proteins that bound to importin 13 from both cell lysates, five proteins (Ubc9, 

POLE3, MAGOH, RBM8A, CHRAC1) were known importin 13 cargoes demonstrating that 

the established importin 13 binding experiment as well as both cell extraction methods 

allow for the specific identification of importin 13 substrates. Another three known 

importin 13 cargoes (eIF1A, POLE4, NFYC) were specifically identified for the digitonin 

cell lysate (Table S2) and four (NFYC, NFYB, DRAP1, DR1) for the freeze/thaw cell lysate 

(Table S3), showing that both cell extraction methods can complement each other. The 

export cargo eIF1A was also identified in the mass spectrometry analysis to bind to Hzz-

importin 13 from both the digitonin (24 PSMs) and the freeze/thaw cell lysate (5 PSMs), 

however, some unspecific binding to the Hzz-tag could also be detected.  

Apart from the known importin 13 cargoes, several proteins were also found to interact 

with importin 13 that are involved in the regulation of the cytoskeleton (CLASP1, CCDC6, 

CAMSAP3) or the secretory pathway (GBF1, MON2). Nuclear transport receptors, such as 

Crm1, have previously been reported to actively sort cytoplasmic proteins from the nucleus 

(32, 157, 188–191). 

The above experiment demonstrates that immobilization of importin 13 on beads and 

incubation with cell extract is an effective method to fish for importin 13 cargoes. In 

addition, the above findings suggest that a digitonin cell extract might be more effective in 

identifying importin 13 interaction partners than a freeze/thaw cell lysate, as with the 

digitonin cell lysate more proteins could be fished and less unspecific binding was 

detected. For this reason, the digitonin cell lysate was used in the SILAC based 

proteomics approach for the identification of importin 13 import and export cargoes (3.3.3). 

The newly identified proteins were not analyzed in further detail, as the SILAC experiments 

following in section 3.3.3 were expected to be more conclusive, allowing for the specific 

discrimination of importin 13 import and export cargoes. However, several of the proteins 

identified were also detected in the SILAC screen (Table S9), some of which were further 

characterized by overexpression experiments (3.3.3.4.3). 

 

 

3.3.2 Identification of Single Importin 13 Bound Proteins Affected by Ubc9 or 
Enriched from HeLa P4 Cell Extract 

A major limitation of the above mass spectrometry approach to identify proteins that bind 

to importin 13 from a HeLa P4 cell lysate (3.3.1) is that it does not allow for the distinction 

of importin 13 import and export cargoes. For this reason, binding experiments similar to 

the previous mass spectrometry experiment were established with the difference of 



Results 

97 

including Ubc9 (known import cargo) or RanGTPQ69L in the binding reactions. Presence of 

exogenous RanGTPQ69L was expected to promote the binding of importin 13 export 

cargoes to importin 13 from a cell extract, while exogenous Ubc9 was expected to 

compete with both endogenous importin 13 import and export cargoes for binding to 

importin 13.  

Importin 13 binding experiments were optimized using the known export cargo eIF1A and 

the known import cargo Ubc9 as positive controls for binding of export and import cargoes, 

respectively. Various binding conditions were tested and optimized, including different 

binding buffers, protein concentrations, importin 13 fusion tags, cell extract preparation, 

cell extract amounts as well as different elution conditions. In these preliminary binding 

experiments, proteins could repeatedly be observed in Coomassie stained gels that were 

either significantly enriched from the cell lysate or whose binding to importin 13 was 

affected if Ubc9 or RanGTPQ69L were added to the binding reaction (an example is shown 

in Figure 15).  

 

 

 
 

Figure 15: Example of importin 13 bound protein that is reduced in the presence of Ubc9. 
Hzz-importin 13 (20 µg) was immobilized on IgG-Sepharose and incubated with a digitonin HeLa P4 
cell extract in the absence or presence of 5 µg Ubc9 in 20 mM HEPES, pH7.5, 50 mM NaCl, 10% 
glycerol, 0.01% NP-40 buffer supplemented with 2 mg/mL BSA. Bound proteins were eluted by 
glycine elution and analyzed by SDS-PAGE, followed by Coomassie staining. PRMT1 was detected 
in the protein band that was reduced in the presence of Ubc9. l.c.: light chain; h.c.: heavy chain. 
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Protein bands with altered protein amounts were excised, prepared for mass spectrometry 

and handed to our collaborators for mass spectrometry analysis. Raw data was analyzed 

with the Proteome Discoverer against a human protein database. However, in all of the 

analyzed protein bands, multiple proteins were identified by mass spectrometry, 

complicating the identification of a key protein. Nonetheless, seven proteins were selected 

(Table 11) that were in accordance with the expected molecular weight and analyzed in 

more detail.  

 

 
Table 11: Importin 13 bound proteins enriched from a HeLa P4 cell extract or affected by 
exogenous Ubc9 addition# 

Uniprot 
ID 

Protein Name Gene 
MW 

[kDa] 
Commenta 

Imp13 co-

expressionb SILACc 

Q9BRQ8 Apoptosis-inducing factor 2 AIFM2 40.5 
reduced by 

Ubc9 
- - 

P62140 
Serine/threonine-protein phosphatase 
PP1-beta catalytic subunit 

PPP1CB 37.2 
reduced by 

Ubc9 
++ (export) 

importd 

exportd 

O95218 
Zinc finger Ran-binding domain-containing 

protein 2  
ZRAB2 37.4 

reduced by 

Ubc9 
- - 

E9PKG1 Protein arginine N-methyltransferase 1  PRMT1 37.7 
reduced by 

Ubc9 
++ (export) exporte,* 

Q92879 CUGBP Elav-like family member 1  CELF1 52.0 
enriched 

from lysate 
++ (export) - 

P60842 Eukaryotic initiation factor 4A-I  EIF4A1 46.1 
enriched 

from lysate 
+ (import) importd 

Q9Y265 RuvB-like 1  RUVBL1 50.2 
enriched 

from lysate 
+ (import) importe 

 

#: single proteins detected in different binding experiments that were enriched upon HeLa P4 cell lysate addition or affected by Ubc9 addition 

were analyzed by mass spectrometry. Proteins of the expected size were selected for further analysis. Proteins highlighted in bold were also 

detected in the SILAC screen (3.3.3), where Ubc9 reduced binding of PPP1CB, PRMT1, RUVBL1 and RanGTPQ69L reduced binding of 

EIF4A1.  

*: PRMT1 was detected in only one of the SILAC biological replicates. 

a: single proteins whose binding to importin 13 was strongly enriched from cell lysate or whose binding was reduced in the presence of Ubc9; 

b: importin 13 effect in FLAG-importin 13 overexpression experiment; c: proteins that later also came up in the SILAC screen as import or 

export candidates; d: low confidence substrate; e: very low confidence substrate; -: no importin 13 effect; +: weak importin 13 effect; ++: 

importin 13 effect 

 

 

For further analysis, proteins were cloned into different vector backbones and expressed 

as HA- and GFP-GST-fusion constructs in HeLa P4 cells and analyzed for any changes in 

subcellular localization upon importin 13 coexpression (Figure 16). 

 



Results 

99 

 
 
Figure 16: PPP1CB, PRMT1, CELF1, EIF4A1 and RUVBL1 change their subcellular 
localization upon importin 13 coexpression. HeLa P4 cells were transiently transfected with 
plasmids coding for HA- or GFP-GST-tagged proteins and optionally cotransfected with plasmids 
coding for FLAG-importin 13. Proteins were visualized by indirect immunofluorescence with an anti-
HA and anti-FLAG antibody. See Table 11 for protein details. The scale bars correspond to 20 µm. 
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More than half of the proteins analyzed were affected by importin 13 coexpression. 

PRMT1 and CELF1 showed weak relocalization to the cytoplasm, while EIF4A1 and 

RUVBL1 showed weak relocalization to the nucleus, making them putative importin 13 

export and import cargoes, respectively. Curiously, PPP1CA showed a relocalization to the 

nucleus if fused to an HA-tag and relocalization to the cytoplasm if fused to a GFP-GST-

tag. However, with the exception of PPP1CB an importin 13 effect was only observed if the 

proteins were fused to a C-terminal HA-tag and not an N-terminal GFP-GST-tag (data not 

shown). The position and size of the GFP-GST-tag potentially prevent the proteins from 

interacting with importin 13. PPP1CB, EIF4A1 and RUVBL1 were later also identified as 

potential importin 13 import cargoes from a HeLa P4 cell lysate in the SILAC screen 

(3.3.3), albeit as low confidence cargoes.  

In summary, PPP1CB, EIF4A1, RUVBL1, PRMT1 and CELF1 were affected by 

importin 13 overexpression, making them potential importin 13 cargoes. This 

demonstrates that pull-downs in the presence or absence of RanGTPQ69L or Ubc9 can 

allow for the specific identification of importin 13 interaction partners. To allow for 

comparative analysis of proteins bound to importin 13 from a HeLa P4 cell extract in the 

absence or presence of RanGTPQ69L or Ubc9, the binding experiments were coupled to a 

quantitative mass spectrometry approach using SILAC (3.3.3).  

 

 

3.3.3 Quantitative Mass Spectrometry Based Identification of Importin 13 Import 
and Export Cargoes Using SILAC 

As illustrated in section 3.3.1 and 3.3.2 mass spectrometry based importin 13 binding 

assays are effective methods for the identification of importin 13 interaction partners. 

However, analysis of HeLa P4 proteome binding to immobilized importin 13 alone does not 

yield a clear answer to the question of whether a bound protein is a potential importin 13 

import or export cargo. As highlighted in section 3.3.2 addition of Ubc9 or RanGTPQ69L to 

the pull-down reaction can facilitate the specific identification of importin 13 import or 

export cargoes. To allow for the quantitative comparison of proteins bound to Hzz-

importin 13 from a HeLa P4 cell extract in the absence of presence of Ubc9 or 

RanGTPQ69L, triple stable isotope labeling with amino acids in cell culture (SILAC) 

experiments were performed. 
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3.3.3.1 Pull-down Based Identification of Potential Importin 13 Cargoes Using 
SILAC 

To get a comprehensive list of importin 13 interaction partners and to allow for the specific 

distinction of importin 13 import and export cargoes, pull-down assays were performed in 

the absence or presence of excess RanGTPQ69L or Ubc9 using SILAC (illustrated in Figure 

17).  

 

 

 
 
Figure 17: Experimental workflow of SILAC screen. Hzz-tagged importin 13 was immobilized on 
IgG-Sepharose and incubated with digitonin cell extracts of HeLa P4 cells grown in DMEM medium 
containing light (Lys0, Arg0), medium (Lys4, Arg6) or heavy (Lys8, Arg10) amino acids. One binding 
reaction was performed in the presence of cell extract alone, a second reaction was performed in 
the presence of RanGTPQ69L to favor the binding of importin 13 export cargoes and a third reaction 
was performed in the presence of Ubc9 to prevent the formation of importin 13 import and export 
complexes. After binding, all three reactions were pooled and bound proteins were eluted with 
magnesium chloride and separated by SDS-PAGE. Peptides were extracted by in-gel tryptic 
digestion, analyzed by liquid chromatography-mass spectrometry and raw data was processed 
using MaxQuant. The graph in the lower right corner depicts a schematic mass spectrometry output 
for the above exemplified labeling experiment with each peptide appearing as a triplet with distinct 
mass differences. 
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For all three binding reactions, Hzz-importin 13 was immobilized on IgG-Sepharose and 

incubated with differently labeled HeLa P4 cell extracts (Figure 18A). HeLa P4 cells were 

isotopically labeled by cultivating them in light, medium or heavy SILAC media that 

contained unlabeled L-lysine and L-arginine (Lys0, Arg0), 4,4,5,5-D4-L-Lysine and 
13C6-L-arginine (Lys4, Arg6) or 13C6

15N2-L-lysine and 13C6
15N4-L-arginine (Lys8, Arg10), 

respectively. Cells were lysed with digitonin and precleared with phenyl-Sepharose to 

selectively deplete endogenous nuclear transport receptors (27), as in previous mass 

spectrometry experiments (section 3.3.1 and data not shown) other nuclear transport 

receptors could be detected that likely were pulled out with importin 13 bound 

nucleoporins. As shown in Figure 18C (see Figure S3C, Figure S4C for label-swap 

experiments), importin 13, importin β and transportin were effectively removed from the 

cell extract by preincubation with phenyl-Sepharose. Depletion of these proteins had only 

minor effects on endogenous importin 13 cargo concentrations as tested for Ubc9 and 

eIF1A. In addition, the cell lysates were precleared with Hzz-IgG-Sepharose, to remove 

proteins binding unspecifically to the affinity matrix. 

One binding reaction was performed in the presence of the known importin 13 import 

cargo Ubc9, as Ubc9 binding to importin 13 is expected to prevent the formation of other 

importin 13 import and export complexes. The importin 13 binding site for Ubc9 overlaps 

with the binding site for RanGTP, thus Ubc9 added in excess should compete with 

RanGTP for binding to importin 13 and prevent the formation of importin 13 export 

complexes. In addition, excess Ubc9 is expected to prevent the formation of importin 13 

import complexes by either competing with other import cargoes for the same binding site 

or by preventing their binding to non-overlapping binding sites due to steric clashes. A 

second reaction was performed in the presence of RanGTPQ69L, a Ran mutant that is 

impaired in RanGTP hydrolysis and is expected to facilitate the binding of export cargoes 

and trap them as stable complexes. In the third reaction, no exogenous Ubc9 or 

RanGTPQ69L but only cell lysate was added, to enrich for importin 13 import complexes. 

Export complexes are not expected to be enriched, as only RanGDP and not RanGTP 

should be present in the cell lysate, due to the activity of cytoplasmic RanGAP. 
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Figure 18: SILAC binding reactions and phenyl-Sepharose depletion of HeLa P4 cell extracts. 
(A) Schematic showing exemplary SILAC binding reactions. (B, C) Hzz-tagged importin 13 
(0.5 nmol) was immobilized on IgG-Sepharose and incubated with cell extracts of HeLa P4 cells 
grown in DMEM medium containing light, medium or heavy amino acids in the absence or presence 
of 10 µM RanGTPQ69L or 5 µM Ubc9 in transport buffer. Cell extracts (uncleared) were precleared 
with Hzz/IgG-Sepharose and phenyl-Sepharose (cleared) to reduce unspecific interactions. Bound 
proteins were eluted in a first elution step with magnesium chloride, followed by a second elution 
step with 4x SDS sample buffer. Cell lysates and eluted proteins were separated by SDS-PAGE 
and analyzed by silver staining (B) or immunoblotting with an anti-importin 13, anti-transportin, anti-
importin β, anti-Ran, anti-Ubc9 and anti-eIF1A antibody (C). Note that in the unbound samples free 
Hzz-importin 13 can be detected as well as exogenous RanGTPQ69L and Ubc9 that were added in 
excess to the binding reactions with medium and light isotopically labeled cell lysates, respectively. 
See Figure S3 and Figure S4 for replicate experiments. ladder: PageRuler Unstained Protein 
Ladder; MgCl2: magnesium chloride eluate; SDS: 4x SDS sample buffer eluate; l: light; m: medium; 
h: heavy; endog.: endogenous. 

 

 

To allow for quantitative comparison of the three binding reactions, a triple SILAC 

experiment was performed using light, medium and heavy isotopically labeled digitonin cell 

extracts. As the differential labeling of the cells allows for later distinction of each binding 

reaction by mass spectrometry, the IgG-Sepharose beads from all three binding reactions 

were pooled for protein elution to ensure homogenous elution of bound proteins with 

magnesium chloride. Rather mild elution conditions were essential to avoid extensive 

co-elution of the IgG light and heavy chain of the IgG-Sepharose. Eluted proteins were 

analyzed by SDS-PAGE, followed by silver staining, which confirmed that multiple proteins 

had bound to Hzz-importin 13 and that they were sufficiently eluted by magnesium chloride 

elution (Figure 18B, see Figure S3B and Figure S4B for replicates). Further, Ubc9 and 

RanGTPQ69L were significantly enriched in the eluate, showing that the recombinant 

proteins Ubc9 and RanGTPQ69L were functional and had bound efficiently to importin 13. 

For quantitative mass spectrometry, eluted proteins were separated by SDS-PAGE, 

followed by peptide extraction using in-gel tryptic digestion and analysis by liquid 

chromatography-mass spectrometry (LC-MS). LC-MS was performed by the Service Unit 

LCMS Protein Analytics (Dr. Oliver Valerius and Dr. Kerstin Schmitt), Georg-August-

Universität Göttingen. Raw LC-MS data was searched against a human protein database 

using the MaxQuant software and the MaxQuant output data was analyzed with the 

Perseus software. For a detailed workflow of the Perseus analysis of importin 13 export 

and import cargoes see supplemental Table S4 and Table S5, respectively.  
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3.3.3.2 SILAC Based Importin 13 Pull-downs Selectively Identify Importin 13 
Cargoes 

Three biological replicates of the SILAC based binding assays were performed including 

label-swap experiments to increase the specificity of the identified proteins and to exclude 

experimental bias. In total, 1, 224 proteins were identified by mass spectrometry to bind to 

Hzz-importin 13 in the triple SILAC experiment. As SILAC is a quantitative approach, 

differences in protein amounts bound to Hzz-importin 13 in the absence or presence of 

RanGTPQ69L and Ubc9 can be detected by mass spectrometry. To assess how many 

proteins are enriched in their binding to importin 13 compared to binding reactions with 

importin 13 and excess RanGTPQ69L (Imp13/Imp13+Ran) or Ubc9 (Imp13/Imp13+Ubc9), 

normalized log2 SILAC ratios were calculated for each protein and visualized using scatter 

plots (Figure 19). The majority of the quantified proteins were distributed around 

logarithmic fold change values close to zero showing that the bulk part of the identified 

proteins were not affected by RanGTPQ69L or Ubc9 in their binding to importin 13. 

However, several proteins could be detected that were enriched several fold for the 

Imp13/Imp13+Ran ratio and even more for the Imp13/Imp13+Ubc9 ratio, identifying them 

as possible importin 13 substrates. Furthermore, enrichment was observed for binding 

reactions in the presence of RanGTPQ69L, which is expected to facilitate the formation of 

importin 13 export complexes. Enrichment could also be observed in the presence of 

Ubc9, however, these proteins are likely unspecific binding proteins or possibly correspond 

to Ubc9 interaction partners.  
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Figure 19: Putative and known importin 13 cargoes identified in SILAC screen 
(Imp13/Imp13+Ran vs. Imp13/Imp13+Ubc9). All proteins detected (grey squares) in the triple 
SILAC experiment by mass spectrometry (3.3.3.1) were plotted as log2(Imp13/Imp13+Ubc9) 
against log2(Imp13/Imp13+Ran) ratios. Ratios were averaged from three SILAC biological replicate 
experiments. Blue circles: known importin 13 substrates (underlined proteins are known export 
cargoes, the others are known import cargoes). Green diamonds: proteins detected by mass 
spectrometry with a log2(Imp13/Imp13+Ubc9) ≥ 0.5 for all three biological replicates. Proteins with 
an average log2(Imp13/Imp13+Ubc9) ≥ 0.5 that are not depicted in green were quantified with a 
lower SILAC ratio in at least one of the replicates. Note that the distribution of Ubc9 (UBE2I) is not 
representative as exogenous unlabeled Ubc9 was present in one of the binding reactions with 
unlabeled cell lysate and therefore was also quantified by mass spectrometry. 
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As a first validation of the SILAC based assay, proteins quantified by mass spectrometry 

were queried for known importin 13 cargoes (Table 1). More than half of the reported 

cargoes were detected in the SILAC screen (Table 12, Figure 19), proving the utility of the 

assay for the identification of novel importin 13 substrates. Known importin 13 import 

cargoes showed a significant enrichment for the Imp13/Imp13+Ubc9 ratio with average 

log2 SILAC ratios of 0.5 to 5.3 (Table 12, Figure 19). However, with the exception of 

DBC-1 (KIAA1967), which is only established as an importin 13 binding partner but not as 

a cargo, no or only minor enrichments for the Imp13/Imp13+Ran ratio could be detected, 

indicating that the Imp13/Imp13+Ubc9 ratio is more useful for the identification of novel 

import cargoes than the Imp13/Imp13+Ran ratio. Interestingly, the known heterodimeric 

importin 13 import cargoes MAGOH/RBM8A, CHRAC1/POLE3, POLE3/POLE4, 

DRAP1/DR1 and NFYB/NFYC (135, 141, 146, 147) showed a similar enrichment for both 

subunits of the heterodimer, confirming previous findings that these proteins are imported 

by importin 13 as heterodimers. While the NFYB/NFYC heterodimer was enriched 1.4-fold 

with a log2(Imp13/Imp13+Ubc9) ratio of ~0.5, the CHRAC1/POLE3 heterodimer had a 

log2(Imp13/Imp13+Ubc9) ratio of ~5.2, corresponding to a more than 35-fold enrichment. 

The subunits of the CHRAC1/POLE3 heterodimer were also the only proteins that showed 

enrichment for the Imp13/Imp13+Ran ratio with a log2 SILAC ratio of ~1.0. Note that the 

log2 SILAC ratios for Ubc9 are highly variable but this was to be expected as exogenous 

unlabeled Ubc9 was present in one of the reactions. In the first SILAC replicate (SILAC1), 

the unlabeled Ubc9 was added to the light HeLa P4 cell extract and therefore in this 

sample not only endogenous Ubc9 but also recombinant Ubc9 was measured, resulting in 

a negative log2(Imp13/Imp13+Ubc9) ratio. Apart from Ubc9 all other proteins showed 

similar log2 SILAC ratios for all three biological replicates, showing that there is only a low 

variability between the individual SILAC experiments. 

 

 



 

 

 

 

 

 

 
Table 12: Known importin 13 cargoes that were identified in the SILAC screen 

 

 

 

 

 

SILAC1 SILAC2 SILAC3 Average -log(p value)* SILAC1 SILAC2 SILAC3 Average -log(p value)*
P47813 eIF1A (EIF1A) 16.5 3.26687 3.30372 3.18652 3.25237 4.24736 5.01948 4.67779 4.82963 4.8423 -
P78344 EIF4G2 102.4 -0.422233 -0.416948 -0.0333701 -0.29085 0.03442 -0.242226 0.513976 0.941697 0.404482 -

SILAC1 SILAC2 SILAC3 Average -log(p value)* SILAC1 SILAC2 SILAC3 Average -log(p value)*
P63279 UBE2I (Ubc9) 18.0 0.0117819 -4.91737 -6.06226 -3.65595 0.0430585 -4.26446 3.72448 4.94542 1.46848 0.480393
P61326 MAGOH (Mago) 17.2 -1.08381 -0.378907 -0.711086 -0.724602 0.0156264 0.811224 0.665752 0.965643 0.814207 2.25492
F4I9J7 RBM8A (Y14) 19.9 -0.249994 -0.241612 -0.675765 -0.389124 0.0252879 0.773152 0.480539 0.831101 0.694931 1.92964
Q9NRG0 CHRAC1 (CHRAC15 ) 14.7 0.489029 0.683113 0.0801119 0.417418 1.14478 5.17273 5.3355 5.43066 5.31296 3.99816
Q9NRF9 POLE3 (CHRAC17) 16.9 0.207143 0.297602 0.00201835 0.168921 1.01523 4.47521 5.41648 5.16576 5.01915 2.80557
Q9NR33 POLE4 (p12) 12.2 -0.156965 -0.191327 -0.380935 -0.243075 0.0161895 3.4194 3.88773 4.45267 3.91994 2.54084
P25208 NFYB (NF-YB) 22.8 0.00733906 0.209391 -0.762314 -0.181861 0.155389 0.62938 0.385205 0.91937 0.644652 1.57798
Q13952 NFYC (NF-YC) 50.3 -0.185179 0.126841 0.385707 0.109123 0.540255 0.46069 0.285284 0.732332 0.492769 1.50084
Q14919 DRAP1 (NC2α) 22.4 -0.0442855 -0.266264 -0.993838 -0.434796 0.062666 1.27023 1.68302 1.99166 1.6483 2.10521
Q01658 DR1 (NC2β) 19.4 -0.118335 -0.285108 -1.03673 -0.480059 0.053382 1.21114 1.55211 1.87483 1.54603 2.12448
Q8N163 KIAA1967 (DBC-1) 102.9 2.05196 NaN NaN 2.05196 0 2.20655 NaN NaN 2.20655 0
*right sided, one sample t-test (p≤0.01), w hich tested the hypothesis that the log2 SILAC ratios w ere not equal to the value zero

Export cargoes

Import cargoes

Uniprot_ID Imp13 interactor MW [kDa]
log2(Imp13+Ran/Imp13) log2(Imp13+Ran/Imp13+Ubc9)

Uniprot_ID Imp13 interactor MW [kDa]
log2(Imp13/Imp13+Ran) log2(Imp13/Imp13+Ubc9)
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As export cargoes are expected to be enriched in binding reactions with RanGTPQ69L 

(Imp13+Ran) compared to binding reactions without RanGTPQ69L (Imp13) or with Ubc9 

(Imp13+Ubc9), the log2(Imp13+Ran/Imp13) ratio was plotted against the 

log2(Imp13+Ran/Imp13+Ubc9) ratio to also allow for an assessment of the 

Imp13+Ran/Imp13+Ubc9 ratio (Table 12, Figure 20). The first importin 13 export cargo to 

be reported was the translation initiation factor eIF1A, suggesting that it is one of the major 

importin 13 substrates and indeed eIF1A was identified as one of the top hits. It was 

enriched by more than 20-fold with an average log2 SILAC ratio for Imp13+Ran/Imp13 and 

Imp13+Ran/Imp13+Ubc9 of 4.2 and 4.8, respectively. Of the two other reported 

importin 13 export cargoes, EIF4G2 but not HMG20A was identified (Table 12). EIF4G2 

was detected with a log2 SILAC ratio between 0.5 to 1.0 for the Imp13+Ran/Imp13+Ubc9 

ratio for two of the replicates and a negative value for the third replicate, whereas for the 

Imp13+Ran/Imp13 ratio no enrichment could be detected. Similar to eIF1A, multiple of the 

newly identified proteins were enriched for both the Imp13+Ran/Imp13 and the 

Imp13+Ran/Imp13+Ubc9 ratio, making them promising importin 13 export candidates 

(Figure 20). Apart from the known export cargoes eIF1A and EIF4G2 also RanBP1 was 

identified as a high scoring export cargo. RanBP1 can directly bind to RanGTP and 

together with RanGAP initiates the disassembly of export complexes (58, 59). 

Consequently, RanBP1 was either indirectly identified through its binding to RanGTP or 

possibly it is an importin 13 export cargo. In this regard, it has been shown that RanBP1 

can be exported by Crm1 (82, 191). This finding suggests that possibly apart from 

importin 13 export cargoes also RanGTP binding proteins might be identified in the SILAC 

screen.  
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Figure 20: Putative and known importin 13 cargoes identified in SILAC screen 
(Imp13+Ran/Imp13 vs. Imp13+Ran/Imp13+Ubc9). All proteins detected (grey squares) in the 
triple SILAC experiment by mass spectrometry were plotted as log2(Imp13+Ran/Imp13+Ubc9) 
against log2(Imp13+Ran/Imp13) ratios. Ratios were averaged from three SILAC biological replicate 
experiments. Blue circles: known importin 13 substrates (underlined proteins are known export 
cargoes, the others are known import cargoes). Orange diamonds: proteins detected by mass 
spectrometry with a log2(Imp13+Ran/Imp13) ≥ 0.5 for all three biological replicates. Proteins with 
an average log2(Imp13+Ran/Imp13) ≥ 0.5 that are not depicted in orange were quantified with a 
lower SILAC ratio in at least one of the replicates. Note that the distribution of Ubc9 (UBE2I) is not 
representative as exogenous unlabeled Ubc9 was present in one of the binding reactions with 
unlabeled cell lysate and therefore was also quantified by mass spectrometry. 
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 The above findings demonstrate that the SILAC based assay is an effective method to 

screen for novel importin 13 substrates, as several known importin 13 cargoes were 

confirmed to bind to importin 13 in a RanGTPQ69L or Ubc9 sensitive manner, with some 

even showing a more than 20-fold enrichment. While export cargoes appear to be 

effectively enriched for both the Imp13+Ran/Imp13 and the Imp13+Ran/Imp13+Ubc9 ratio, 

known import cargoes were only enriched for the Imp13/Imp13+Ubc9 but not the 

Imp13/Imp13+Ran ratio. Based on the findings for the known importin 13 cargoes, filtering 

criteria were generated to group proteins quantified in the SILAC screen into potential 

importin 13 import and export cargoes (see section 3.3.3.3 for details).  

 

 

3.3.3.3 Filtering Criteria for the Identification of Importin 13 Import and Export 
Cargo Candidates 

Several filtering criteria were applied on the SILAC data, to allow for the specific 

identification of importin 13 cargoes. Proteins were only considered to be significantly 

enriched if they had a normalized log2 SILAC ratio ≥ 0.5 in all three SILAC replicate 

experiments, which corresponds to an enrichment of minimum 1.4-fold. These filtering 

criteria were selected based on the previous observations that all known importin 13 

cargoes showed a similar enrichment between all three biological replicates with log2 

SILAC ratios of minimum 0.5. Additionally, a right-sided, one sample t-test with a threshold 

p-value of ≤ 0.01 was applied, which tested the hypothesis that the log2 SILAC ratios were 

not equal to the value zero. 

All identified known importin 13 cargoes showed enrichment for binding reactions with 

importin 13 alone compared to binding reaction with importin 13 and excess Ubc9 

(Imp13/Imp13+Ubc9) but not compared to binding reactions with excess RanGTPQ69L 

(Imp13/Imp13+Ran). Thus, quantified proteins were considered to be import cargoes if 

they showed enrichment for the Imp13/Imp13+Ubc9 ratio. For further validation, proteins 

were also selected that showed enrichment for Imp13/Imp13+Ran to ensure that potential 

importin 13 cargoes were not omitted. Using these filtering criteria, a total of 17 proteins 

were identified as potential importin 13 import cargoes for both ratios, another 22 proteins 

for Imp13/Imp13+Ran and 102 proteins for Imp13/Imp13+Ubc9 (Table S6). Of the 102 

proteins identified for Imp13/Imp13+Ubc9, 16 proteins also showed enrichment for 

Imp13+Ran/Imp13 and consequently were considered to be ambiguous cargoes (Table 

S7). As importin 13 can bind its export cargo eIF1A also in the absence of RanGTP in a 

non-cooperative manner, some export cargoes are likely also enriched for the 
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Imp13/Imp13+Ubc9 ratio, qualifying the majority of the ambiguous proteins as potential 

export cargoes. 

As the established importin 13 export cargo eIF1A showed strong enrichment for both the 

Imp13+Ran/Imp13 and the Imp13+Ran/Imp13+Ubc9 ratio, quantified proteins were 

considered to be potential export cargoes if enriched for either of these ratios. As the 

majority of the quantified proteins showed a similar enrichment for both ratios, the mass 

spectrometry data was analyzed by filtering for Imp13+Ran/Imp13. Using these filtering 

criteria a total of 113 proteins were identified as potential importin 13 export cargoes, 21 of 

which had a log2(Imp13+Ran/Imp13) ≥ 3.0 and 36 of which had a 

log2(Imp13+Ran/Imp13) ≥ 1.5 (Table S8). 

Based on these filtering criteria, the identified cargo candidates were compared with 

proteins identified in the previous mass spectrometry experiment (3.3.1). In total 66 

proteins were detected for both approaches, 19 of which were identified as potential export 

cargoes and 47 as potential import cargoes (Table S9). The proteins identified in the 

SILAC screen were also compared with the proteins identified in the importin 13 

overexpression screen (see section 3.2). However, there was no overlap between the two 

screens, except for DBC-1 (KIAA1967), which was identified in one of the three SILAC 

experiments (Table 12). In this one replicate it was present with a high log2 SILAC ratio of 

more than two for both the Imp13/Imp13+Ran and the Imp13/Imp13+Ubc9 ratio, 

implicating it as an importin 13 import and not an export cargo as suggested by the 

overexpression screen. Finally, the identified proteins were also compared with previous 

screens for importin 13 cargoes. In a SILAC-based transport (SILAC-Tp) system (76), 309 

proteins were identified as potential importin 13 cargoes (using their 2nd-Z-ranking filtering 

criteria), some of which were validated in bead halo assays but not all. Of these, 28 were 

also identified in the SILAC screen presented here (Table S10). In a yeast two-hybrid 

screen for interactors of the testis-specific form of importin 13 (136), 26 proteins were 

identified, two of which, EIF4G2 and CLASP1, were also identified in this study. 

For additional validation of the SILAC screen, several of the quantified proteins were 

selected for further analysis based on the above filtering criteria and validated using 

pull-down experiments and importin 13 overexpression experiments (see section 3.3.3.4). 
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3.3.3.4 Validation of Importin 13 Cargo Candidates Identified in SILAC Screen 
3.3.3.4.1 Selection of Importin 13 Cargo Candidates for Further Analysis 
Having confirmed that the SILAC screen allowed for the effective identification of known 

importin 13 substrates, the next step was to verify other identified candidates as 

importin 13 cargoes. For this, proteins with varying levels of significance were selected, to 

get an idea with which filtering criteria high confidence importin 13 cargoes can be 

identified. Export cargoes were grouped into three categories based on their log2 

(Imp13+Ran/Imp13) ratio, namely log2 ratios ≥ 0.5, ≥ 1.5 and ≥ 3.0 (Table 13, Figure 21). 

For importin 13 import cargoes, proteins were selected based on their Imp13/Imp13+Ran 

and Imp13/Imp13+Ubc9 ratio, as a high variability between these two groups could be 

observed (Table 14, Figure 22). Proteins enriched for both or only one of the two ratios 

and showing different log2 SILAC ratios were chosen. In addition, proteins were selected 

that showed a good enrichment for both ratios but were only detected in two out of three 

SILAC experimental replicates.  

Additional selection criteria were the size of the proteins (<100 kDa) to facilitate cloning 

from cDNA as well as available information on function and subcellular location of these 

proteins. Further, proteins known to form heterodimers or larger complexes were selected, 

as importin 13 has been reported to mediate the transport of several heterodimers but not 

their individual subunits (135, 141, 146, 147).  
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Figure 21: Importin 13 export candidates selected for further validation. All proteins detected 
by mass spectrometry with a log2(Imp13+Ran/Imp13) ≥ 0.5 (grey squares) for all three biological 
replicates (3.3.3.1) were plotted as log2(Imp13+Ran/Imp13+Ubc9) against log2(Imp13+Ran/Imp13) 
ratios. Proteins highlighted in color were selected for further analysis and underlined proteins were 
affected by importin 13 overexpression. Blue circles: proteins with an average 
log2(Imp13+Ran/Imp13) ≥ 3.0. Orange diamonds: proteins with an average 
log2(Imp13+Ran/Imp13) ≥ 1.5. Green squares: proteins with an average log2(Imp13+Ran/Imp13) 
≥ 0.5. Grey squares: importin 13 export candidates that were not analyzed further, high scoring 
proteins were labeled with their gene name. Note that WDR77, which was selected for further 
testing is not shown as in two replicates it was present with a log2(Imp13+Ran/Imp13) < 0.5. See 
Table 13 for more details.  

 

 



 

 

 

 

 
Table 13: List of potential importin 13 export cargoes identified in SILAC screen that were selected for further validation 

 
 

Uniprot ID Protein Name Gene log2(Imp13+Ran/Imp13) log2(Imp13+Ran/Imp13+Ubc9) -log(p value) Imp13 pull-downa

O00442 RNA 3-terminal phosphate cyclase RTCA 4.57597 5.59694 2.50708 -
P39748 Flap endonuclease 1 FEN1 4.43566 3.9402 1.84603 -
Q6IPR3 tRNA w ybutosine-synthesizing protein 3 homolog TYW3 4.26835 4.34712 2.42506
P27695 DNA-(apurinic or apyrimidinic site) lyase APEX1 4.12269 3.50792 2.09237 -
P37108 Signal recognition particle 14 kDa protein SRP14 3.77885 4.36023 3.05751 bound w ith RanGTP
Q08J23 tRNA (cytosine(34)-C(5))-methyltransferase NSUN2 3.56745 2.93758 2.29027 -

H0YA96 Heterogeneous nuclear ribonucleoprotein D0 HNRNPD 2.96732 2.53505 2.24646
P13010 X-ray repair cross-complementing protein 5 XRCC5 2.82663 1.82907 2.72781
Q9NTK5 Obg-like ATPase 1 OLA1 2.76445 2.21738 3.92603 bound w ith RanGTP
Q9Y3F4 Serine-threonine kinase receptor-associated protein STRAP 2.40696 2.44099 1.68925 -
Q9BPX3 Condensin complex subunit 3 NCAPG 2.29883 2.17429 2.48105 -
Q9UK59 Lariat debranching enzyme DBR1 2.6774 2.10752 2.66408
P25205 DNA replication licensing factor MCM3 MCM3 2.2095 1.8214 2.44116
P20290 Transcription factor BTF3 BTF3 1.82755 1.8911 1.59095
P41214 Eukaryotic translation initiation factor 2D EIF2D 1.63737 1.46164 1.72077

P12956 X-ray repair cross-complementing protein 6 XRCC6 0.977419 1.37652 1.40745
P19525 Interferon-induced, double-stranded RNA-activated protein kinase EIF2AK2 0.97668 0.410077 2.54683
O14744 Protein arginine N-methyltransferase 5 PRMT5 0.967085 0.708434 1.96941
Q9BQA1 Methylosome protein 50 WDR77 0.946335 0.381559 1.04849 bound w ith RanGTP
Q01105 Protein SET SET 0.81555 0.0277848 2.56819

P47813 Eukaryotic translation initiation factor 1A EIF1A 3.25237 4.8423 4.24736 bound w ith RanGTP

a: Protein binding from digitonin HeLa P4 cell lysate to Hzz-importin 13 immobilized on IgG-Sepharose 

-: tested in importin13 pull-down but no binding detected

Potential importin 13 export cargoes

Proteins identified for Imp13+Ran/Imp13
log2(Imp13+Ran/Imp13) ≥ 3

log2(Imp13+Ran/Imp13) ≥ 1.5

log2(Imp13+Ran/Imp13) ≥ 0.5

Export control
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Figure 22: Importin 13 import candidates selected for further validation All proteins detected 
by mass spectrometry (grey cross) in the triple SILAC experiment (3.3.3.1) were plotted as 
log2(Imp13/Imp13+Ubc9) against log2(Imp13/Imp13+Ran) ratios. Ratios were averaged from three 
SILAC biological replicate experiments. Proteins highlighted in color were selected for further 
analysis and underlined proteins were affected by importin 13 overexpression. Red stars: proteins 
enriched for Imp13/Imp13+Ran and Imp13/Imp13+Ubc9. Blue circles: proteins enriched only for 
Imp13/Imp13+Ran. Orange diamonds: proteins enriched only for Imp13/Imp13+Ubc9. Green 
squares: proteins enriched for Imp13/Imp13+Ran and Imp13/Imp13+Ubc9 in two out of three SILAC 
replicates. Grey squares: proteins detected with a log2(Imp13/Imp13+Ubc9) ≥ 0.5 for all three 
SILAC biological replicates. See Table 14 for more details. 



 

 

 

 

 
Table 14: List of potential importin 13 import cargoes identified in SILAC screen that were selected for further validation 

 

 

Uniprot ID Protein Name Gene log2(Imp13/Imp13+Ran) log2(Imp13/Imp13+Ubc9) -log(p value) Imp13 pull-downa

Q12800 Alpha-globin transcription factor CP2 TFCP2 1.06516 2.75921 2.5538
Q8IV48 3-5 exoribonuclease 1 ERI1 0.93069 1.46739 3.46771 reduced by Ubc9 & RanGTP

O00303 Eukaryotic translation initiation factor 3 subunit F EIF3F 1.71919 -0.0768488 1.84627
O75821 Eukaryotic translation initiation factor 3 subunit G EIF3G 1.63573 0.0269878 1.74379
Q53EL6 Programmed cell death protein 4 PDCD4 1.38179 -0.239508 1.9684
Q13895 Bystin BYSL 0.812382 -0.246966 2.6437

Q9GZS3 WD repeat-containing protein 61 WDR61 0.269134 3.43407 2.461 reduced by Ubc9 & RanGTP
P13984 General transcription factor IIF subunit 2 GTF2F2 -0.29533 2.1155 2.8392
P62136 Serine/threonine-protein phosphatase PP1-alpha catalytic subunit PPP1CA -0.0792858 2.05476 2.28248
Q96F86 Enhancer of mRNA-decapping protein 3 EDC3 0.867101 1.72773 2.35559 reduced by Ubc9 & RanGTP
O00571 ATP-dependent RNA helicase DDX3X/DDX3Y DDX3 0.664858 0.780721 1.90872

F2Z2T2 DNA repair protein complementing XP-A cells XPA 0.783184 3.01102 1.51456
Q9HCN4 GPN-loop GTPase 1 GPN1 0.535254 0.668491 2.6656
Q13501 Sequestosome-1 SQSTM1 0.755231 1.26888 2.83389
Q9NW64 Pre-mRNA-splicing factor RBM22 RBM22 1.15759 1.93592 2.33561
Q9H3P2 Negative elongation factor A NELFA 1.54779 2.50404 2.54973
Q8WX92 Negative elongation factor B NELFB 1.47736 2.75735 2.2666
Q8IXH7 Negative elongation factor C/D NELFCD 1.54033 2.70383 2.29508

P63279 SUMO-conjugating enzyme UBC9 UBE2I -3.65595* 1.46848* 0.480393* reduced by RanGTP

a: Protein binding from digitonin HeLa P4 cell lysate to Hzz-importin 13 immobilized on IgG-Sepharose 

*: recombinant unlabeled Ubc9 was added to the "light" cell extract, resulting in a not meaningful ratio

Import control

Potential importin 13 import cargoes

Proteins identified for Imp13/Imp13+Ran & Imp13/Imp13+Ubc9

Proteins identified for Imp13/Imp13+Ran

Proteins identified for Imp13/Imp13+Ubc9

Proteins identified for Imp13/Imp13+Ran & Imp13/Imp13+Ubc9 for two out of three SILAC experiments
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3.3.3.4.2 Validation of Importin 13 Cargo Candidates Using Pull-down Experiments 
As the identified importin 13 cargo candidates were differently regulated by Ubc9 or 

RanGTPQ69L, the binding experiments were repeated without SILAC and analyzed by 

immunoblotting using commercially available antibodies. To this end, Hzz-importin 13 was 

immobilized on IgG-Sepharose and incubated with unlabeled digitonin HeLa P4 cell lysate 

in the absence or presence of Ubc9 or RanGTPQ69L. Beads were not pooled as in the 

SILAC experiment but instead bound proteins were eluted separately with magnesium 

chloride. Eluates were separated by SDS-PAGE and immunoblotted with antibodies 

targeted against the potential importin 13 substrates (Figure 23). The known importin 13 

export cargo eIF1A was used as a control and indeed eIF1A bound in the presence of 

RanGTPQ69L but not Ubc9 and showed reduced binding in the absence of both. 

Not for all proteins analyzed binding to immobilized importin 13 could be detected. This 

could be due to unspecific antibodies, low endogenous protein levels or proportionally less 

protein binding to importin 13 compared to the other proteins. Of seven export cargo 

candidates (APEX1, FEN1, STRAP, NSUN2, WDR77, OLA1, SRP14) tested, OLA1, 

WDR77 and SRP14 were bound to Hzz-importin 13 and as expected for bona fide export 

cargoes binding of OLA1 and WDR77 only occurred in the presence of RanGTPQ69L. 

SRP14, similarly to eIF1A, showed binding to importin 13 both in the presence and 

absence of RanGTPQ69L but not in the presence of Ubc9. All import cargoes tested, 

namely ERI1, WDR61 and EDC3 bound to importin 13 and binding was abolished in the 

presence of Ubc9 or RanGTPQ69L.  

In summary, OLA1, WDR77 and SRP14 bound to importin 13 in the presence of RanGTP, 

validating them as potential export cargoes, while ERI1, WDR61 and EDC3 bound to 

importin 13 only in the absence of Ubc9 or RanGTPQ69L, validating them as potential 

import cargoes.  
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Figure 23: Endogenous SILAC candidate proteins that bind to importin 13 from HeLa P4 cell 
extract in a RanGTPQ69L or Ubc9 dependent manner. Hzz-tagged importin 13 (0.5 nmol) was 
immobilized on IgG-Sepharose and incubated with a digitonin HeLa P4 cell extract precleared with 
Hzz/IgG-Sepharose and phenyl-Sepharose in the absence or presence of 10 µM RanGTPQ69L or 
5 µM Ubc9 in transport buffer. Bound proteins were eluted by magnesium chloride elution, 
separated by SDS-PAGE and analyzed by immunoblotting.  

 

 

3.3.3.4.3 Validation of Importin 13 Cargo Candidates in Overexpression Experiments 
For further validation of the SILAC screen, the identified importin 13 cargo candidates 

were tested in importin 13 overexpression experiments. For this, 36 cargo candidates were 

cloned as C-terminal HA-fusion constructs and 34 as N-terminal GFP-GST-fusion 

constructs. Cargoes were fused to a GFP-GST-tag to significantly increase their size and 

prevent their passive diffusion through the NPC. Generated plasmids were expressed in 

HeLa P4 cells and analyzed for any changes in subcellular localization upon coexpression 

of FLAG-importin 13. GFP-GST-Ubc9 and eIF1A-GFP were included as positive controls 

(see section 3.1.3), while dGFP-GST-cNLS was included as a negative control (see 

section 3.2.1) of importin 13 mediated transport. 
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Of 18 import cargo candidates tested (Figure 24 (HA-tagged), Figure 25 

(GFP-GST-tagged), Table 15), 6 proteins, namely BYSL, PDCD4, GTF2F2, XPA, RBM22 

and NELFA, fused to an HA-tag already exhibited a nuclear localization in the absence of 

importin 13, precluding the identification of an importin 13 mediated nuclear localization. 

Proteins from all four filtering groups (Imp13/Imp13+Ran, Imp13/Imp13+Ubc9, as well as 

both ratios with proteins identified in two or three of the SILAC experiments) were affected 

by importin 13 overexpression. ERI1 and NELFCD, which showed a strong enrichment for 

the Imp13/Imp13+Ran and the Imp13/Imp13+Ubc9 ratio, were both relocalized to the 

nucleus if importin 13 was coexpressed, validating them as import cargo candidates. 

Surprisingly, PDCD4, WDR61, GTF2F2, XPA, SQSTM1 (only in the presence of LMB, 

details follow below), RBM22 and NELFA were not relocalized to the nucleus upon 

importin 13 coexpression but instead to the cytoplasm. Of these, GTF2F2 showed a slight 

enrichment for the Imp13+Ran/Imp13 ratio designating it as a possible importin 13 export 

cargo. As mentioned earlier, the export cargo eIF1A has been demonstrated to bind 

effectively to importin 13 also in the absence of RanGTP, thus cargo candidates enriched 

for the Imp13/Imp13+Ubc9 ratio could also correspond to export cargo candidates. For the 

other proteins, importin 13 could function as a negative regulator of nuclear import, as 

reported for the testis-specific form of importin 13 (136), or an additional factor or 

modification is required to facilitate their importin 13-dependent nuclear import. Note that 

some of the proteins were only affected by importin 13 overexpression if fused to either the 

HA- or the GFP-GST-tag, suggesting that the fusion tag size and position can affect the 

interaction with importin 13. Observed importin 13 effects were independent of the 

FLAG-fusion tag, as untagged importin 13 had the same effect on the subcellular 

localization of both import and export cargo candidates as FLAG-tagged importin 13 

(Figure S5). 
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Figure 24: Effect of FLAG-importin 13 overexpression on subcellular localization of 
HA-tagged SILAC import cargo candidates. HeLa P4 cells were transiently cotransfected with 
plasmids coding for HA-tagged proteins form the SILAC screen and FLAG-importin 13 or an empty 
control vector (pcDNA3.1-HA) using the calcium phosphate method. FLAG-importin 13 and 
HA-substrates were visualized by indirect immunofluorescence with an anti-FLAG and anti-HA 
antibody, respectively. See Table 15 for summary of importin 13 effect. The scale bars correspond 
to 20 µm. DDX3, XPA and SQSTM1 were tested by Christiane Spillner. 
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Figure 25: Effect of FLAG-importin 13 overexpression on subcellular localization of 
GFP-GST-tagged SILAC import cargo candidates. HeLa P4 cells were transiently cotransfected 
with plasmids coding for GFP-GST-tagged proteins form the SILAC screen and FLAG-importin 13 
or an empty control vector (pEGFP-GST) using the calcium phosphate method. FLAG-importin 13 
was visualized by indirect immunofluorescence with an anti-FLAG antibody. See Table 15 for 
summary of importin 13 effect. The scale bars correspond to 20 µm. XPA and RBM22 were tested 
by Christiane Spillner. 

 

 



 

 

Table 15: Effect of importin 13 overexpression on importin 13 import cargo candidates identified in SILAC screen# 

 

Uniprot ID Protein Name Gene Cargo-HA Cargo-HA + LMB** GFP-GST-cargo Summary 

Q12800 Alpha-globin transcription factor CP2 TFCP2   
Q8IV48 3-5 exoribonuclease 1 ERI1   

O00303 Eukaryotic translation initiation factor 3 subunit F EIF3F   
O75821 Eukaryotic translation initiation factor 3 subunit G EIF3G   
Q53EL6 Programmed cell death protein 4 PDCD4 * *

Q13895 Bystin BYSL   

Q9GZS3 WD repeat-containing protein 61 WDR61 *  *

P13984 General transcription factor IIF subunit 2 GTF2F2  * *

P62136 Serine/threonine-protein phosphatase PP1-alpha catalytic subunit PPP1CA   
Q96F86 Enhancer of mRNA-decapping protein 3 EDC3   
O00571 ATP-dependent RNA helicase DDX3X/DDX3Y DDX3   

F2Z2T2 DNA repair protein complementing XP-A cells XPA *  *

Q9HCN4 GPN-loop GTPase 1 GPN1   
Q13501 Sequestosome-1 SQSTM1  *  *

Q9NW64 Pre-mRNA-splicing factor RBM22 RBM22  * *

Q9H3P2 Negative elongation factor A NELFA   *

Q8WX92 Negative elongation factor B NELFB   
Q8IXH7 Negative elongation factor C/D NELFCD   

P63279 SUMO-conjugating enzyme UBC9 UBE2I   

#: two green ticks: strong importin 13 effect; one green tick: weak importin 13 effect; black cross:  no importin13 effect

*:  protein redistributed to cytoplasm not nucleus

**: cells were treated with 10 nM LMB for 2 hours, to shift the cytoplasmic protein to the nucleus

Import control

Potential importin 13 import cargoes

Proteins identified for Imp13/Imp13+Ran & Imp13/Imp13+Ubc9

Proteins identified for Imp13/Imp13+Ran

Proteins identified for Imp13/Imp13+Ubc9

Proteins identified for Imp13/Imp13+Ran & Imp13/Imp13+Ubc9 for two out of three SILAC experiments
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For the export cargo candidates, proteins from all three filtering criteria 

(log2(Imp13+Ran/Imp13) ≥ 3.0, ≥ 1.5 and ≥ 0.5) could be validated as importin 13 cargoes 

(Figure 26, Figure 27, Table 16). Of 19 proteins tested, 9 localized to the cytoplasm and 

WDR77 to the nucleus if importin 13 was coexpressed. For the filtering criterion 

log2(Imp13+Ran/Imp13) ≥ 0.5 ≤ 1.5, XRCC6 and SET were identified to be affected by 

importin 13 coexpression, whereas for the log2(Imp13+Ran/Imp13) ≥ 1.5 ≤ 3.0, HNRNPD, 

STRAP, BTF3 and EIF2D were affected (see Figure 28 for BTF3 and EIF2D). In contrast, 

all proteins validated as log2(Imp13+Ran/Imp13) ≥ 3.0, namely RTCA, FEN1, APEX1 and 

NSUN2, could be validated as importin 13 cargo candidates, with the exception of SRP14 

and TYW3. However, as overexpressed TYW3 already has a cytoplasmic localization in 

the absence of importin 13 coexpression, an involvement of importin 13 in the subcellular 

localization of TYW3 cannot be confirmed with this assay. Similarly, EIF2AK2, BTF3, 

PRMT5 and EIF2D were also cytoplasmic and could not be analyzed for an importin 13 

effect. The observed increased nuclear localization of WDR77 in the presence of 

overexpressed importin 13 was surprising, especially as in the previous binding 

experiment it was shown to bind exclusively in the presence of RanGTPQ69L (3.3.3.4.2). 

Possibly, WDR77 requires another factor apart from RanGTP to be exported by 

importin 13. 
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Figure 26: Effect of FLAG-importin 13 overexpression on subcellular localization of 
HA-tagged SILAC export cargo candidates. HeLa P4 cells were transiently cotransfected with 
plasmids coding for HA-tagged proteins from the SILAC screen and FLAG-importin 13 or an empty 
control vector (pcDNA3.1-HA) using the calcium phosphate method. FLAG-importin 13 and 
HA-substrates were visualized by indirect immunofluorescence with an anti-FLAG and anti-HA 
antibody, respectively. See Table 16 for summary of importin 13 effect. The scale bars correspond 
to 20 µm. XRCC5 and EIF2AK2 were tested by Christiane Spillner.  
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Figure 27: Effect of FLAG-importin 13 overexpression on subcellular localization of 
GFP-GST-tagged SILAC export cargo candidates. HeLa P4 cells were transiently cotransfected 
with plasmids coding for GFP-GST-tagged proteins from the SILAC screen and FLAG-importin 13 
or an empty control vector (pEGFP-GST) using the calcium phosphate method. FLAG-importin 13 
was visualized by indirect immunofluorescence with an anti-FLAG antibody. See Table 16 for 
summary of importin 13 effect. The scale bars correspond to 20 µm. FEN1, NSUN2 and XRCC5 
were tested by Christiane Spillner.  

 

 



 

 

Table 16: Effect of importin 13 overexpression on importin 13 export cargo candidates identified in SILAC screen# 

 

Uniprot ID Protein Name Gene Cargo-HA Cargo-HA + LMB** GFP-GST-cargo Summary 

O00442 RNA 3-terminal phosphate cyclase RTCA   
P39748 Flap endonuclease 1 FEN1  
Q6IPR3 tRNA w ybutosine-synthesizing protein 3 homolog TYW3    
P27695 DNA-(apurinic or apyrimidinic site) lyase APEX1   
P37108 Signal recognition particle 14 kDa protein SRP14   
Q08J23 tRNA (cytosine(34)-C(5))-methyltransferase NSUN2   

H0YA96 Heterogeneous nuclear ribonucleoprotein D0 HNRNPD   
P13010 X-ray repair cross-complementing protein 5 XRCC5   
Q9NTK5 Obg-like ATPase 1 OLA1   
Q9Y3F4 Serine-threonine kinase receptor-associated protein STRAP   
Q9UK59 Lariat debranching enzyme DBR1   
P25205 DNA replication licensing factor MCM3 MCM3   
P20290 Transcription factor BTF3 BTF3    
P41214 Eukaryotic translation initiation factor 2D EIF2D    

P12956 X-ray repair cross-complementing protein 6 XRCC6   
P19525 Interferon-induced, double-stranded RNA-activated protein kinase EIF2AK2   
O14744 Protein arginine N-methyltransferase 5 PRMT5    
Q9BQA1 Methylosome protein 50 WDR77 *  *

Q01105 Protein SET SET   

P47813 Eukaryotic translation initiation factor 1A EIF1A   (GFP-tag) 

#: two green ticks: strong importin 13 effect; one green tick: weak importin 13 effect; black cross:  no importin13 effect

*:  protein redistributed to nucleus not cytoplasm

**: cells were treated with 10 nM LMB for 2 hours, to shift the cytoplasmic protein to the nucleus

Potential importin 13 export cargoes

Proteins identified for Imp13+Ran/Imp13
log2(Imp13+Ran/Imp13) ≥ 3

log2(Imp13+Ran/Imp13) ≥ 1.5

log2(Imp13+Ran/Imp13) ≥ 0.5

Export control
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Previously, BTF3, PRMT5, EIF2D and SQSTM1 have been reported to be Crm1 export 

cargo candidates (82, 32), therefore it was tested whether these proteins as well as TYW3 

and EIF2AK2 localize to the nucleus in cells treated with the Crm1 inhibitor leptomycin B 

(LMB) (Figure 28). Snurportin 1 was used as a control for the specificity of the LMB effect, 

as it is a well-established Crm1 cargo and was not identified as an importin 13 cargo 

candidate. Of the six proteins tested, BTF3, EIF2D and SQSTM1 were relocalized to the 

nucleus in LMB treated cells. Next it was analyzed whether importin 13 can reverse the 

LMB effect and indeed all three proteins were redistributed to the cytoplasm in cells 

expressing importin 13. Including the LMB sensitive cargoes, in total 12 out of 19 export 

cargo candidates were affected by importin 13 coexpression. 

As several importin 13 cargo candidates were identified to be LMB sensitive, the 

redundancy of cargo candidates for importin 13 and Crm1 was compared. A total of 1,072 

Crm1 cargo candidates were identified in a study to bind to immobilized Crm1 in a 

RanGTP-dependent manner (32), of these 56 proteins were identified as potential 

importin 13 cargoes in the SILAC screen (Table S11). The identified importin 13 cargo 

candidates were also compared with proteins identified in a study by Kimura et al., 2017 

(76) to interact with different importins. The largest overlap was found for importin 5, of 303 

potential importin 5 cargoes identified, 32 were also detected in the SILAC screen as 

putative importin 13 cargoes (Table S12).  

In summary, the SILAC based pull-down screen allows for the effective identification of 

potential importin 13 export cargoes. While proteins with a log2 SILAC ratio < 3 showed 

ambiguous results, proteins with a log2 SILAC ratio ≥ 3 can be classified as high 

confidence importin 13 export cargoes. Although the screen allowed for the effective 

identification of known importin 13 import cargoes (3.3.3.2), only few of the tested SILAC 

cargo candidates could be verified as potential importin 13 import cargoes by 

overexpression experiments. Based on this overexpression screen, RTCA, FEN1, APEX1, 

NSUN2, HNRNPD, XRCC5, STRAP, BTF3, EIF2D, XRCC6 and SET were validated as 

potential importin 13 export cargoes, while ERI1 and NELFCD were identified as potential 

import cargoes. Further, PDCD4, WDR61, GTF2F2, XPA, SQSTM1, RBM22 and NELFA 

were identified as potential importin 13 interaction partners. 
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Figure 28: Effect of FLAG-importin 13 overexpression on subcellular localization of 
HA-tagged SILAC cargo candidates in leptomycin B treated cells. HeLa P4 cells were 
transiently cotransfected with plasmids coding for HA-tagged proteins from the SILAC screen and 
FLAG-importin 13 or an empty control vector (pcDNA3.1-HA) using the calcium phosphate method. 
Prior to fixation cells were treated with 10 nM leptomycin B, a Crm1 export inhibitor, for 2 hours. 
FLAG-importin 13 and HA-substrates were visualized by indirect immunofluorescence with an anti-
FLAG and anti-HA antibody, respectively. The scale bars correspond to 20 µm. 
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3.3.3.4.4 Characterization of the Interaction of Importin 13 with Importin 13 Cargo 
Candidates 

Similar to the experiments performed in section 3.2.2 and 3.2.3.2, cargo candidates 

affected by importin 13 overexpression were characterized for their interaction with 

importin 13. To test whether the cargo candidates NSUN2, HNRNPD, XRCC6, FEN1, 

PDCD4 and ERI1 bind importin 13 through the same key residues as the known export 

cargo eIF1A, subcellular localization of these proteins in the absence or presence of 

importin 13 wild type or mutant Glu436Arg/Asp481Arg, which is deficient in eIF1A export, 

was analyzed (Figure 29). With the exception of eIF1A, all proteins tested changed their 

localization upon coexpression of FLAG-importin 13-E436R/D481R. This demonstrates 

that the novel cargo candidates have a different binding site on importin 13 than eIF1A or 

that more residues need to be mutated to abolish the interaction. 

To assess as to where these newly identified importin 13 cargo candidates might bind, the 

effect of an N-terminal (amino acids 1-669) and a C-terminal importin 13 fragment (amino 

acids 526-963) on the localization of these proteins was analyzed. The C-terminal 

fragment is a physiologically relevant, testis-specific form of importin 13 that lacks the 

N-terminal RanGTP binding site and has been suggested to function as a negative 

regulator of nuclear import. HeLa P4 cells were transfected with plasmids coding for cargo 

candidates and analyzed for any changes in subcellular localization in the presence or 

absence of the importin 13 fragments. The known export cargo eIF1A was relocalized to 

cytoplasm by full-length importin 13 but was not affected by the importin 13 fragments. 

This finding is in accordance with previous observations that eIF1A mainly binds to the 

middle region of importin 13. In contrast, the established import cargo Ubc9, that is known 

to bind to the N-terminus of importin 13, was indeed relocalized to the nucleus by the N-

terminal fragment but not the C-terminal fragment. Similar to Ubc9, all cargo candidates 

tested, namely NSUN2, HNRNPD, XRCC6, FEN1 and PDCD4, with the exception of ERI1, 

were relocalized by both full-length importin 13 and the N-terminal fragment but not by the 

C-terminal fragment. ERI1, as eIF1A, changed its subcellular localization only in the 

presence of full-length importin 13. Note that the expression levels of the C-terminal 

fragment were generally lower than that of the N-terminal importin 13 fragment.  

In summary, the novel cargo candidates tested bind importin 13 differently to eIF1A and 

the far C-terminus of importin 13 is dispensable for their interaction, with the exception of 

ERI1, whose subcellular localization was only affected by full-length importin 13. 
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Figure 29: SILAC cargo candidates bind importin 13 differently to eIF1A and the C-terminus 
of importin 13 is dispensable for their interaction. HeLa P4 cells were transiently cotransfected 
using the calcium phosphate method with plasmids coding for HA-or GFP-GST-tagged proteins 
from the SILAC screen and FLAG-importin 13 wild type (Imp13wt), FLAG-importin 13-
E436R/D481R (Imp13mt, importin 13 mutant impaired in eIF1A export); FLAG-importin 13 (aa 1-
669) (Imp13-N) and FLAG-importin 13 (aa 526-963) (Imp13-C) or an empty control vector. FLAG-
importin 13 and HA-substrates were visualized by indirect immunofluorescence with an anti-FLAG 
and anti-HA antibody, respectively. The scale bars correspond to 20 µm. 

 

 

3.3.3.4.5 Functional Roles of Novel Importin 13 Cargo Candidates 
To gain insight into what cellular pathways importin 13 might regulate through transport of 

specific cargoes, a gene ontology enrichment analysis was done. In total 38 gene ontology 

clusters were identified if an enrichment score cut-off of 1.5 was applied. Table 17 shows a 

summary of the 10 most enriched clusters, with three representative enriched GO terms. 

The analysis suggests that importin 13 influences the subcellular distribution of proteins 

involved in processes such as translation, microtubule and cytoskeleton organization, 

mRNA processing and chromosome organization. 

 
Table 17: Gene Ontology (GO) analysis of importin 13 cargo candidates # 

GO Term Count p-value 
Annotation Cluster 1, Enrichment Score: 13.26 

cellular component organization or biogenesis 143 4.60E-15 
cellular component organization 139 3.00E-14 
organelle organization 99 1.20E-12 

Annotation Cluster 2, Enrichment Score: 11.33 
organonitrogen compound metabolic process 54 1.80E-05 
cellular amide metabolic process 45 1.90E-12 
translation 42 4.70E-17 

Annotation Cluster 3, Enrichment Score: 11.19 
multi-organism process 60 8.50E-07 
interspecies interaction between organisms 49 6.60E-15 
viral process 47 3.90E-14 

Annotation Cluster 4, Enrichment Score: 9.31 
cell adhesion 54 3.70E-09 
biological adhesion 54 4.20E-09 
cell-cell adhesion 48 7.40E-12 

Annotation Cluster 5, Enrichment Score: 7.77 
cellular component biogenesis 81 4.40E-11 
macromolecular complex subunit organization 73 3.70E-11 
protein complex assembly 40 2.10E-05 

Annotation Cluster 6, Enrichment Score: 6.58 
multi-organism metabolic process 14 6.80E-06 
formation of translation preinitiation complex 11 2.70E-13 
viral gene expression 11 2.80E-04 
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Annotation Cluster 7, Enrichment Score: 6.36 
cytoskeleton organization 36 4.10E-06 
microtubule-based process 26 9.70E-07 
microtubule cytoskeleton organization 21 1.40E-06 

Annotation Cluster 8, Enrichment Score: 5.19 
cytoplasmic translational initiation 6 2.30E-06 
IRES-dependent translational initiation 5 1.50E-05 
cap-independent translational initiation 5 3.90E-05 

Annotation Cluster 9, Enrichment Score: 5.08 
RNA processing 34 1.90E-07 
mRNA metabolic process 31 7.90E-09 
mRNA splicing, via spliceosome 16 1.40E-05 

Annotation Cluster 10, Enrichment Score: 5 
chromosome organization 35 2.20E-05 
DNA metabolic process 33 4.00E-06 
telomere maintenance 15 3.50E-09 

 

#: importin 13 cargo candidates listed in Table S6, Table S7 and Table S8 were subjected to gene 

ontology analysis with the DAVID software, only three representative GO terms per cluster are shown. 

Count: number of genes per GO term; p-value: EASE score (modified Fisher Exact P-Value). 

 

 



Discussion 

144 

 Discussion 4.
The mechanisms of nucleocytoplasmic transport are well understood. Rather little is 

known, however, about the biological significance of individual nuclear transport receptors. 

A major restriction here is the limited number of reported cargo proteins. Only recently, a 

large proteomics screen (76) identified multiple cargo proteins specific for the twelve 

species of human import receptors, including importin 13. The authors, however, did not 

screen for potential importin 13 export cargoes, which was a major goal of the work 

presented here. To expand the number of importin 13 substrates and specifically 

importin 13 export cargoes, three different approaches were used in this work, including an 

importin 13 overexpression screen using a library of nuclear proteins, an importin 13 

binding experiment followed by mass spectrometry and an importin 13 binding experiment 

coupled to quantitative proteomics using SILAC. 

 

 

4.1 Characterization of Known Importin 13 Cargoes 
To allow for characterization of newly identified importin 13 substrates, various cellular and 

biochemical assays were established with the known importin 13 import cargo Ubc9 and 

the export cargo eIF1A. Overall, the performed assays confirmed previous findings. In 

addition, a few observations were made that have not been previously discussed. 

Endogenous eIF1A has been shown to be primarily localized in nucleoli (107), whereas in 

this study a homogenous distribution of endogenous eIF1A between nucleoli and the 

nucleoplasm was observed. As different antibodies were used, it is possible that both 

antibodies recognize different epitopes on eIF1A that are partially occluded if eIF1A is 

complexed to other proteins, such as the 40S ribosomal subunit. The primarily nuclear 

localization of eIF1A is rather unique, as the vast majority of translation factors are thought 

to be restricted to the cytoplasm to prevent nuclear translation or interference with 

ribosome biogenesis by untimely interactions with pre-ribosomes (189). In turn, eIF1A has 

been suggested to have a yet unidentified nuclear function and that importin 13 mediated 

export is required to ensure efficient translation by maintaining sufficient cytoplasmic levels 

of eIF1A (189).  

The primarily nuclear localization of endogenous eIF1A suggests that importin 13 

mediated export of eIF1A is rate limiting in HeLa P4 cells. Indeed, overexpression of 

importin 13 resulted in a more cytoplasmic localization of endogenous eIF1A, confirming 

that importin 13 is rate limiting for its export. In contrast, overexpressed HA-Ubc9 already 

localized to the nucleus without importin 13 coexpression. This suggests that either 
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importin 13 is not rate limiting for Ubc9 nuclear import or Ubc9, as eIF1A, is small enough 

(18 kDa) to diffuse into the nucleus, where it gets sequestrated through interaction with 

nuclear components. Likely, both diffusion and importin 13 mediated transport play a role 

in Ubc9 nuclear localization, as GFP-GST-Ubc9, which should be above the diffusion limit 

of the NPC, requires importin 13 coexpression not only to enter the nucleus but also to 

maintain an exclusively nuclear localization. This shows that in contrast to HA-Ubc9, 

endogenous importin 13 is rate limiting for the nuclear localization of GFP-GST-Ubc9. 

Thus, an additional mechanism such as diffusion into the nucleus is essential to confine 

Ubc9 to the nucleus. Another indicator that importin 13 helps to confine Ubc9 to the 

nucleus is the result of proximity ligation assays, where the majority of importin 13/Ubc9 in 

situ interactions were detected in the nucleus. Less transient interactions in the nucleus 

might prevent immediate redistribution to the cytoplasm by diffusion. In this regard, an 

effect of importin 13 knock-down on the subcellular localization of Ubc9 should be 

analyzed, to determine if importin 13 is essential for the nuclear localization of Ubc9.  

The notion that importin 13 is rate limiting for at least some of its cargoes in HeLa P4 cells 

is further supported by the observation that endogenous importin 13 levels in HeLa P4 

cells as well as other cancer cell lines is very low with levels around 100-350 nM. In 

comparison, other nuclear transport receptors have a several fold higher cellular 

concentration of 1-4 µM (77, 185). It has previously been demonstrated that the transport 

efficiency of nuclear import receptors depends on their cellular concentration (83, 192). 

Similarly, cellular Crm1 concentrations were reported to be rate limiting for export of 

overexpressed cargo proteins in HeLa P4 cells (193).  

In summary, importin 13 is rate limiting for nucleocytoplasmic transport of its cargoes Ubc9 

and eIF1A. Importin 13 mediated export of eIF1A might be essential for efficient translation 

by ensuring sufficient cytoplasmic levels of eIF1A. Import of Ubc9 mediated by importin 13 

could be required to confine Ubc9 to the nucleus and thus to prevent unspecific 

interactions in the cytoplasm. Indeed, many of the known Ubc9 SUMOylation targets are 

nuclear proteins (194) and importin 13 could function as a chaperone to prevent untimely 

SUMOylation. 

 

 

4.2 Overexpression Experiments for the Identification of Importin 13 Cargoes 
4.2.1 Are DBC-1, DMAP1, TERT, DDX43 and DDX59 Importin 13 Cargoes? 
In an overexpression screen for potential importin 13 export cargoes, several nuclear 

proteins that were affected by importin 13 overexpression and showed an increased 
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cytoplasmic localization were identified. The observed effects appear to be specific, as two 

of the identified proteins, DBC-1 and c-Jun, have previously been shown to interact with 

importin 13 in binding experiments (49, 117). While the importin 13 effect was largely 

independent of the cell line and fusion tag used, cell to cell variation could be observed 

within one experiment. Possible explanations could be cell cycle specific effects or higher 

importin 13 expression levels in cells with strong cytoplasmic accumulation.  

Several different mechanisms could account for the increased cytoplasmic localization of 

the identified proteins upon importin 13 coexpression, including direct or indirect 

stimulation of nuclear export as well as reduced or inhibited nuclear import. In this regard, 

a testis-specific form of importin 13 (amino acids 526-963) has been reported to function 

as a negative regulator of nuclear import (136), a mechanism that might also apply to full-

length importin 13. Further, several transport cargoes have been reported to interact with 

various nuclear transport receptors in vitro but it has been suggested that in vivo a 

preference for a specific nuclear transport receptor might exist (195). Thus importin 13 

might only bind to the identified proteins if overexpressed, thereby competing with the 

preferred nuclear transport receptor. Fos and c-Jun for example are proteins that have 

been reported to bind to several different karyopherins in vitro (117, 196).  

To further investigate these options, transport assays, heterokaryon assays or 

fluorescence recovery after photobleaching (FRAP) experiments, similar to the ones 

performed for the importin 13 export cargoes HMG20A and EIF4G2 (136), could be 

performed. Another approach could be siRNA mediated knock-down of importin 13. 

However, RNA interference experiments with importin 13 so far had no effect on 

established importin 13 cargoes (data not shown), possibly due to the observed low 

endogenous importin 13 levels in HeLa P4 cells. If some or all of the identified proteins are 

indeed importin 13 export cargoes, they bind importin 13 differently to eIF1A, as the 

importin 13 mutant impaired in eIF1A export was still fully functional in mediating 

relocalization of DBC-1, DMAP1, DDX43, DDX59 and TERT. This, is not surprising, as 

importin 13 has been demonstrated to bind its cargoes through different binding sites and 

key residues (92, 93, 107). 

At least DBC-1 and c-Jun appear not to be importin 13 export cargoes, as their interaction 

with importin 13 is reduced in the presence of RanGTPQ69L (49, 117). Further, DBC-1 

came up as a potential importin 13 import cargo in the SILAC screen, but only in one of the 

replicate experiments. Import assays should be done to test whether importin 13 can 

import DBC-1 or the other identified proteins. Import assays in permeabilized cells with 

c-Jun have previously been performed, but no efficient import by importin 13 could be 
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detected (117). Still, silencing of importin 13 in pterygium epithelial cells has been reported 

to block the nuclear translocation of c-Jun (142). None of the other proteins identified in 

the overexpression screen were detected in the SILAC screen. This could be due to the 

cell extraction method using digitonin, which is known to selectively permeabilize the cell 

membrane but to leave the nuclear envelope largely intact (179, 180). Consequently, 

larger proteins such as TERT (127 kDa) as well as proteins tethered to nuclear structures 

or larger protein complexes might not be efficiently released from the nucleus with this 

extraction method. Further, the endogenous concentrations of these proteins in HeLa P4 

cells might be too low, preventing their identification. 

In summary, the overexpression screen seems to allow for the identification of importin 13 

interaction partners but not for the specific identification of importin 13 export cargoes. 

Importin 13 could regulate the subcellular localization of the identified proteins either 

through facilitated transport or through negative regulation of nuclear transport. In the case 

of DBC-1, importin 13 seems to function rather as a negative regulator of nuclear import 

than as an exportin (see section 4.3.2.2 for alternative explanations). The advantage of the 

overexpression screen is that it requires little optimization and provides direct information 

on the subcellular localization of the proteins analyzed, but it is limited by the number of 

available plasmids. 

 

 

4.2.2 Interaction of Importin 13 and DBC-1 
One of the cargoes analyzed in more detail for its interaction with importin 13 was DBC-1. 

DBC-1 regulates several nuclear proteins, such as nuclear receptors (androgen receptor, 

estrogen receptor α and β, retinoic acid receptor, thyroid hormone receptor, heam receptor 

Rev-erbα), deacetylases (SIRT1, HDAC3) and the methyltransferase SUV39H1 (197). 

Previously, the coiled-coil domain of DBC-1 has been suggested to be involved in the 

translocation of DBC-1 through the NPC (198). Indeed, the coiled-coil domain of DBC-1 

fused to a cNLS was relocalized to the cytoplasm upon importin 13 coexpression. To gain 

insights into which region of importin 13 is required for its interaction with DBC-1, different 

importin 13 fragments were coexpressed with DBC-1. Only N-terminal but not C-terminal 

importin 13 fragments promoted a cytoplasmic localization of DBC-1 similar to full-length 

importin 13. Nevertheless, as discussed above, this could be due to different mechanisms, 

like active export or negative regulation of import. Although, one might expect that 

importin 13 deletion constructs are impaired in shuttling through the NPC, an importin 13 
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N-terminal fragment has been shown to still be capable of shuttling, albeit at a slower rate 

than full-length importin 13 (162).  

In conclusion, importin 13 interacts with the coiled-coil domain of DBC-1 and at least one 

binding site on the N-terminus of importin 13 is required for their interaction.  

 

 

4.2.3 Functional Link Between Importin 13 and Nup358 Mediated Transport? 
Interestingly, the proteins that were affected the strongest by importin 13 overexpression, 

DBC-1, DMAP1, DDX43 and DDX59, were also identified in a screen for 

Nup358-dependent proteins (49). In this study, Nup358 was shown to be required not only 

for the nuclear localization of these proteins but to also bind DBC-1 and DMAP1 directly. 

Consequently, Nup358 was proposed to function as an assembly platform for import 

complexes (49). The strong overlap of proteins affected by Nup358 depletion and 

importin 13 overexpression suggests a functional link between importin 13 and Nup358, 

with the latter possibly serving as an assembly or disassembly platform for importin 13 

transport complexes. However, the observed overlap could also be due to a general 

involvement of Nup358 in nucleocytoplasmic transport, as Nup358 has been implicated in 

various transport pathways, including importin α/β, transportin 1, transportin 3, CAS, 

importin 7 and Crm1 (25). Previous binding experiments between importin 13 and a 

C-terminal Nup358 fragment present in a complex with Ubc9 and SUMOylated RanGAP 

showed no interaction (25). However, other regions of Nup358 might be involved. Binding 

assays should be done with importin 13 and the identified cargo candidates in the absence 

or presence of Nup358 wild type or deletion constructs. Importin 13 transport assays in 

Nup358 depleted and control cells could yield further information on a possible link.  

The strong overlap of cargoes showing a dependency on both Nup358 and importin 13 

suggests a functional link between the two proteins. Further experiments will be required 

to assess the nature of this overlap. 
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4.3 Mass Spectrometry Based Identification of Importin 13 Cargoes 
4.3.1 Mass Spectrometry Based Methods for the Identification of β-karyopherin 

Cargoes 
Different approaches have been used to identify nuclear transport receptor interaction 

partners, including the yeast-two hybrid system (136, 199) and mass spectrometry 

approaches (32, 135, 189, 200). Further, stable isotope labeling with amino acids in cell 

culture (SILAC), followed by quantitative mass spectrometry has been applied to identify 

importin α/β, transportin and Crm1 cargoes (76, 80–82, 201). Compared to the previous 

SILAC methods, the SILAC approach applied here is limited in the identification of 

transient interactions, but has the major advantage of specifically identifying both nuclear 

import and export cargoes. Of the importin 13 cargo candidates detected in this study, 

11% were also identified in the SILAC-Tp study by Kimura et al., 2017 (76), showing that 

both approaches might effectively complement each other (Table S10). One of the major 

cargo candidates identified in the SILAC-Tp study, but not in this study, was the integral 

membrane protein LRRC59 (202). LCCR59 as well as other integral membrane proteins 

were not detected in the approach presented here, likely as integral membrane proteins 

are not extracted with digitonin. It remains unclear why an integral membrane protein 

should be a substrate for importin 13.  

 

 

4.3.2 SILAC Based Importin 13 Binding Assays for the Identification of Importin 13 
Import and Export Cargoes 

The majority of the known importin 13 import and export cargoes were identified with the 

SILAC based pull-down assay, proving the utility of this approach in identifying novel 

importin 13 cargoes. Not all of the reported importin 13 substrates (Table 1) were identified 

in the SILAC screen. However, some of them, for instance the glucocorticoid receptor, 

CCCTC-binding factor (CTCF), and myopodin, have not been validated as cargoes in 

transport assays. Thus, interaction partners such as myopodin might not be transported by 

importin 13 and instead be involved in other cellular functions of importin 13. None of the 

paired homeodomain transcription factors that have been demonstrated to be imported by 

importin 13 in transport assays were identified in our SILAC screen. Perhaps they are 

tethered to other nuclear components such as proteins or chromatin, preventing their 

extraction with digitonin from HeLa P4 cells, a possibility that could also apply to other 

proteins. Many of the reported importin 13 cargoes were identified in other cell lines than 

HeLa P4 or were found to be developmentally regulated. Thus, HeLa P4 cells might not be 
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the ideal source to show an interaction of these proteins with importin 13. Since the 

endogenous levels of these proteins could be rather low in HeLa P4 cells, they possibly 

would not be detected by mass spectrometry. Certain substrates might also yield few or no 

ionizable tryptic peptides.  

According to the SILAC screen, many importin 13 binding proteins were regulated neither 

by Ubc9 nor RanGTPQ69L in their binding to immobilized importin 13. These could be 

unspecific binding proteins that were not sufficiently removed by preincubation with 

Hzz-IgG-Sepharose or proteins that bind to other regions on importin 13 than Ubc9 and 

RanGTP. In total, 242 proteins were identified with the selected filtering criteria, whose 

binding to importin 13 was regulated by Ubc9 or RanGTPQ69L, 131 of which were identified 

as potential import, 95 as export and 16 as ambiguous cargo candidates. The ambiguous 

proteins are considered to be export cargoes, as they were not only enriched in 

importin 13 binding reactions compared to binding reactions with excess Ubc9 

(Imp13/Imp13+Ubc9), but also in importin 13 binding reactions with RanGTPQ69L 

compared to reactions without RanGTPQ69L (Imp13+Ran/Imp13 ratio). Indeed, eIF1A, a 

well-established importin 13 export cargo, was part of this group.  

Several obligatory cytoplasmic proteins were identified as importin 13 cargo candidates. 

Mixing of nuclear and cytoplasmic content has been hypothesized to occur due to an 

imperfect NPC permeability barrier, leakage during NPC assembly, mechanical ruptures of 

the nuclear envelope and during open mitosis (32). Thus, importin 13 might be required to 

actively sort these proteins back to the cytoplasm. 

 

 

4.3.2.1 Novel Importin 13 Export Cargoes 
One of the first importin 13 cargoes to be identified was eIF1A (135) and thus it is probably 

one of the major importin 13 cargoes. It was therefore expected to be detected as a high 

scoring protein in the SILAC screen. Indeed, it was enriched 9-fold in the importin 13 pull-

down reaction with RanGTP compared to the reaction without RanGTP 

(Imp13+Ran/Imp13) and even 28-fold compared to the reaction with Ubc9 

(Imp13+Ran/Imp13+Ubc9). The higher enrichment for the Imp13+Ran/Imp13+Ubc9 ratio 

compared to the Imp13+Ran/Imp13 ratio illustrates that Ubc9 is an effective tool to prevent 

the formation of export complexes. Further, this shows that eIF1A can bind to importin 13 

in the absence of RanGTP, as has previously been reported (135). Only export cargoes 

that bind to importin 13 in a non-cooperative manner, like eIF1A, are expected to be 

identified in the pull-down reaction with importin 13 alone. In contrast, export cargoes that 
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require cooperative binding with RanGTP are not expected to be identified in this reaction. 

This is based on the assumption that RanGTP is only present in its GDP-bound form in the 

cell extract due to the activity of cytoplasmic RanGAP. The other reported importin 13 

export cargo HMG20A was not detected in the SILAC screen and EIF4G2 was identified 

as a low confidence export cargo. As these proteins were originally identified as interactors 

of the testis-specific form of importin 13 in a yeast-two hybrid screen using a human testis 

cDNA library, these proteins might be testis-specific importin 13 cargoes.  

In total 12 out of 19 export cargo candidates tested in importin 13 overexpression 

experiments were relocalized to the cytoplasm in the presence of importin 13, validating 

them as novel export cargoes. While importin 13 overexpression did not affect all proteins 

tested, it does not necessarily mean that they are false positives. As demonstrated with 

the LMB treatment to inhibit Crm1 activity, other nuclear transport receptors can be 

involved in the subcellular localization of these proteins. While BTF3, EIF2D and SQSTM1 

could be confirmed to be regulated by both Crm1 and importin 13 in their subcellular 

localization, TYW3, EIF2AK2 and PRMT5 remained cytoplasmic also after LMB treatment. 

These proteins might be exported by yet another exportin. Importin 13 mediated export 

could also be required exclusively after mitosis to sort the proteins back to their designated 

compartment. Knock-down of importin 13 could be a way to assess this latter possibility. 

Further, export cargo candidates with a nuclear localization that are not affected by 

importin 13 coexpression could also be part of a larger complex or require additional 

cofactors or post-translational modifications that are limiting in the overexpression 

conditions. Indeed, nuclear transport receptors have been shown to be functionally 

regulated by protein modifications, inhibitory factors and specific anchorings (reviewed in 

(88)). Thus, the effect of importin 13 overexpression or knock-down on the endogenous 

proteins should be analyzed. Furthermore, the observed interactions might have a 

regulatory function on importin 13 or be required for other cellular functions of importin 13. 

In this regard, nuclear transport receptors have been shown to be involved in cellular 

processes independent of transport such as mitosis and nuclear envelope assembly 

(71, 83–87).  

 

4.3.2.2 Novel Importin 13 Import Cargoes 
Apart from the known export cargo eIF1A, several of the well-established importin 13 

import cargoes were identified in the SILAC screen, showing that this approach can 

effectively distinguish between import and export cargoes. All proteins reported to be 

imported as heterodimers by importin 13 showed similar enrichments for both subunits in 
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the SILAC experiment, further confirming that these proteins bind as heterodimers to 

importin 13. While the NFYB/NFYC heterodimer was enriched 1.4-fold for the binding 

reaction with importin 13 alone compared to binding reactions in the presence of excess 

Ubc9 (Imp13/Imp13+Ubc9), the CHRAC15/CHRAC17 heterodimer was enriched more 

than 30-fold. All of the known import cargoes were specifically enriched for the 

Imp13/Imp13+Ubc9 ratio, but not for the Imp13/Imp13+Ran ratio. This was surprising, as 

previous importin 13 pull-down experiments demonstrated that Ubc9 and Mago/Y14 can 

indeed be dissociated from importin 13 by RanGTPQ69L (135). Possibly, substantially 

different amounts of cell lysate were used for the binding experiments and/or the loading of 

RanQ69L with GTP was not 100% efficient. Consequently, limited amounts of Ran in its 

GTP-bound form might not be sufficient to prevent the binding of import cargoes to 

importin 13. However, as export cargoes were enriched in the binding reaction with 

RanGTPQ69L (Imp13+Ran/Imp13), loading of RanQ69L with GTP must have occurred to 

some extent.  

Independent of the findings described above, proteins were selected that were enriched 

for either the Imp13/Imp13+Ubc9 ratio or the Imp13/Imp13+Ran ratio or both, to analyze 

whether import cargoes can also be identified using the Imp13/Imp13+Ran criterion. For 

the import cargo candidates tested, 9 out of 18 proteins were affected by importin 13 

overexpression. As discussed for the export cargo candidates (4.3.2.1), proteins that could 

not be verified in overexpression experiments are not necessarily false positives. 

Additional factors or modifications that are limiting in the overexpression conditions could 

be required. In this regard, several known importin 13 cargoes have been shown to be 

imported only as heterodimers but not as individual subunits (135, 141, 146, 147). This 

could also apply to the subunits of the negative elongation factor (NELF) complex. While 

NELFA and NELFB were not affected by importin 13 overexpression, NELFCD did show a 

minor increase in nuclear localization. Thus, it is possible that not the individual subunits, 

but rather the whole NELF complex is imported by importin 13. Apart from NELFCD, other 

subunits of the NELF complex might also bind to importin 13, resulting in a stronger import 

than that of NELFCD alone. Coexpression experiments need be done for reported 

oligomeric proteins to test whether nuclear import is enhanced if more than one subunit is 

coexpressed with importin 13. In addition, binding experiments should be performed to test 

if binding of only the oligomer to importin 13 can be detected or also binding of the 

individual subunits. 

PDCD4, RBM22 and NELFA fused to both an HA- and a GFP-GST-tag already showed a 

nuclear localization in the absence of importin 13, preventing an assessment of 
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importin 13 involvement in the nuclear localization of these proteins using overexpression 

assays. Similar to the experiments performed with LMB to inhibit Crm1-dependent export, 

one could test if import of these proteins is mediated by importin α/β or transportin using 

the inhibitors Bimax (203) and M9M (99), respectively. Proteins relocalized to the 

cytoplasm could then be analyzed for importin 13 effects. The import cargo candidates 

ERI1 and NELFCD could be shown to relocalize to the nucleus in the presence of 

importin 13 overexpression. In contrast, the other seven import cargo candidates that were 

affected by importin 13 overexpression were not relocalized to the nucleus, but against 

expectations to the cytoplasm. Two of these proteins, namely GTF2F2 and PPP1CA, 

could indeed be export cargoes, as they showed a minor enrichment for 

Imp13+Ran/Imp13 of 1.3- and 1.1-fold, respectively. All other proteins were specifically 

enriched for importin 13 and reduced in the presence of excess RanGTPQ69L or Ubc9, 

emphasizing them as potential import cargoes. Several reasons could account for this 

observation. The interaction could be transport independent, with coexpressed importin 13 

trapping the protein in the cytoplasm and preventing its nuclear import through other 

transport receptors. Similarly, importin 13 could function as a negative regulator of import, 

as it has been reported for the testis-specific form of importin 13 (136, 172). Further, 

importin 13 might bind to the protein, but transport could depend on a heterodimer of 

transport receptors as has been shown for the H1 histone linker that is imported by the 

importin β/importin 7 heterodimer but not by the individual transport receptors (113, 114). 

The identification of importin 5 as a putative importin 13 import cargo in this work and the 

SILAC-Tp study (76) and the relatively high overlap of identified cargo candidates for 

importin 13 and importin 5 suggest that they might form a heterodimer. Finally, a protein 

could be both imported and exported by importin 13, depending on its interaction with 

other proteins or its post-translational modifications. If the export rate for one protein 

complex is faster than the import rate for the other complex, then the protein is expected to 

accumulate in the cytoplasm.  

In conclusion, the SILAC screen is a more suitable approach than the importin 13 

overexpression screen, allowing for the large-scale identification of both importin 13 import 

and export cargo candidates. Further analysis is required to show that the interaction is 

direct and that importin 13 mediates their nuclear transport. For this, binding assays with 

recombinant proteins or transport assays in permeabilized cells could be used.  
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4.3.3 Importin 13 a Bidirectional Nuclear Transport Receptor of Many Import and 
Export Cargoes 

When this study was started, it was unclear whether the primary function of importin 13 is 

nuclear import or whether it also plays a significant role in nuclear export, as eIF1A was 

the only established importin 13 export cargo. The identification of many novel importin 13 

cargo candidates in this study shows that importin 13 is indeed a bidirectional transport 

receptor. While bidirectional transport would be assumed to be more effective than 

unidirectional transport, as it can mediate transport of two cargoes with the hydrolysis of 

one RanGTP molecule, it does give rise to the question as to why this is not a general 

function of all nuclear transport receptors. As discussed by Mingot et al., 2001 (135), 

bidirectional transport could be limiting in the accumulation of cargoes against a chemical 

gradient due to the lesser expenditure of energy.  

 

 

4.3.4 Importin 13 a Negative Regulator of Nucleocytoplasmic Transport? 
Although the results obtained here demonstrate that importin 13 interacts with a large 

number of cellular proteins, they do not allow for differentiation of facilitated transport or 

inhibition of transport for all cargoes. This especially applies to the proteins identified as 

putative import cargoes that were relocalized to the cytoplasm and not to the nucleus upon 

coexpression of both full-length and an N-terminally truncated importin 13. The N-terminal 

fragment of importin 13 is expected to be functional, as FRAP experiments by Tao et al., 

2004 (162) demonstrated that an N-terminal importin 13 fragment (amino acids 1-488) is 

still capable of shuttling, albeit at a reduced rate. Similarly, the N-terminus of importin β 

has been suggested to be sufficient for mediating the nuclear import of the parathyroid 

hormone-related protein (PTHrP) in a Ran-dependent manner (90). FRAP and FLIP 

experiments as well as transport assays could be performed to test if the cargo candidates 

are shuttled in the presence of importin 13. As discussed earlier, additional factors or 

modifications might be required to facilitate importin 13 mediated import of these proteins. 

In this regard, it has been suggested that import cargo release depends not only on 

RanGTP binding, but also requires the presence of an importin 13 export cargo. Thus, 

overexpression experiments in the presence of an export cargo could be performed to 

assess if they are required for import complex disassembly.  
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4.3.5 Importin 13 an Exportin for M9 Containing Proteins? 
A curious finding of the overexpression screen was that importin 13 affected the 

subcellular distribution of the artificial import cargo dGFP-GST-M9. M9 is an import signal 

(PY-NLS) found in the heterogeneous nuclear ribonucleoproteins hnRNPA1 and hnRNPA2 

that is recognized by transportin (204). hnRNPA1 functions in regulation of transcription, 

alternative splicing and mRNA nuclear export (205–207). The M9 sequence has been 

suggested to not only function as an import signal, but also as a signal sequence for 

nuclear export (208). Thus, importin 13 might function as an exportin for M9 containing 

substrates. This hypothesis is further supported by findings from the SILAC screen, where 

hnRNPA1 was identified as a high confidence export cargo candidate with a more than 

9-fold enrichment for binding reactions in the presence of RanGTPQ69L compared to 

binding reactions without RanGTPQ69L (Imp13+Ran/Imp13) (Table 18). Apart from 

hnRNPA1, several other heterogeneous nuclear ribonucleoproteins were identified as 

potential importin 13 export cargoes, namely hnRNPH1, A2B1, AB and C in at least one of 

the SILAC replicates and HNRNPD, K, and U in all three biological replicates (Table 18). 

Of these, HNRNPD was analyzed in more detail and indeed it was relocalized to the 

cytoplasm in importin 13 overexpression experiments. For the validation of importin 13 as 

a potential exportin for M9 containing cargoes, overexpression experiments, binding 

assays, transport assays and mutational studies should be performed.  

 

 
Table 18: Heterogeneous nuclear ribonucleoproteins (hnRNPs) identified in SILAC screen 
(see section 3.3.3 for experimental details) 

Uniprot 
ID Protein Name Gene  log2(Imp13+Ran/ 

Imp13) 
log2(Imp13+Ran/ 
Imp13+Ubc9) 

detected in 3 SILAC replicates 
F8VZ49 Heterogeneous nuclear ribonucleoprotein A1 HNRNPA1 3.33691 3.12131 
H0YA96 Heterogeneous nuclear ribonucleoprotein D0 HNRNPD 2.96732 2.53505 
P61978 Heterogeneous nuclear ribonucleoprotein K HNRNPK 1.19892 2.05797 
Q00839 Heterogeneous nuclear ribonucleoprotein U HNRNPU 0.939557 0.290223 

detected in 2 SILAC replicates 
E9PCY7 Heterogeneous nuclear ribonucleoprotein H HNRNPH1 0.430966 1.55829 

detected in 1 SILAC replicates 
P22626 Heterogeneous nuclear ribonucleoproteins A2/B1 HNRNPA2B1 1.4814 1.94375 
Q99729 Heterogeneous nuclear ribonucleoprotein A/B HNRNPAB 1.32688 0.662844 
G3V5X6 Heterogeneous nuclear ribonucleoproteins C1/C2 HNRNPC 0.542857 -0.026021 
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 Outlook 5.
Further validation of the identified importin 13 cargo candidates is required to confirm them 

as importin 13 transport cargoes. In a first step, binding experiments with recombinant 

proteins should be performed to show that the interaction between the identified proteins 

and importin 13 is direct. In a second step, these proteins should then be tested in 

transport assays in permeabilized cells to prove that they are indeed imported or exported 

in an importin 13-dependent manner. Confirmed importin 13 cargoes should then be 

analyzed for a possible common targeting signal that is recognized by importin 13. 

Furthermore, the binding regions on importin 13 for these proteins should be identified. In 

addition, it could be interesting to test if importin 13 can bind the novel export cargoes in a 

cooperative or non-cooperative manner with RanGTP, as has been suggested for eIF1A 

(107, 135). 

As importin 13 is expressed only at low levels in HeLa P4 cells, the effect of importin 13 on 

the identified cargoes should also be analyzed in cells with higher endogenous importin 13 

concentrations, such as cells derived from brain or from testis. Knock-down of importin 13 

in such cells could help to verify additional importin 13 cargo candidates. Similarly, the 

cargo candidates could be analyzed in embryonic stem cells to determine if they are 

developmentally regulated.  

The possible functional link between importin 13 and Nup358-dependent transport should 

be tested for the identified SILAC cargo candidates by knocking-down Nup358 in HeLa P4 

cells or expressing inhibitory soluble Nup358 fragments (49). Complementary to this, a 

direct interaction between importin 13 and Nup358, Nup50 (135) or other nucleoporins 

should be analyzed, to gain insights into importin 13 translocation through the NPC. To 

this end binding assays, proximity ligation assays, RanGAP assays or siRNA mediated 

knock-down of specific nucleoporins could be performed.  

Furthermore, the possible role of importin 13 in the export of M9 signal sequence 

containing proteins as well as the formation of a possible importin 13/importin 5 

heterodimer should be tested using overexpression experiments, binding assays and 

transport assays. 

Finally, it will be of interest to see how importin 13 mediated nucleocytoplasmic transport 

of specific cargoes affects certain cellular pathways and its possible involvement in 

diseases such as asthma and cancer. 

Taken together, the larger spectrum of importin 13 cargoes will give new insights into 

importin 13 mediated nucleocytoplasmic transport.  
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Figure S1: In situ proximity ligation assay (PLA) detection of importin 13 with Ubc9 and 
eIF1A. Fixed HeLa P4 cells were incubated with primary antibodies against the proteins of interest, 
followed by incubation with secondary PLA probes. Close proximity of the PLA probes allows for 
rolling circle amplification, and visualization by hybridization of a fluorescent probe. Each white dot 
represents a single protein-protein interaction. Specificity of the observed interaction was confirmed 
by siRNA mediated knock-down of importin 13. A minimum of 50 cells was analyzed and PLA dots 
were quantified with the CellProfiler software. See section 3.1.6 for more information. 

 

 
Table S1: Proteins from overexpression screen (3.2.1) reanalyzed for changes in subcellular 
distribution upon importin 13 coexpression.  

Protein Protein Name Importin 13 Effect 

Proteins from overexpression screen 

GFP-DBC-1 Deleted in breast cancer gene 1 ++ 

mCherry-DBC-1 Deleted in breast cancer gene 1 + 

HA-DBC-1 Deleted in breast cancer gene 1 + 

GFP-DMAP1 DNA methyltransferase 1-associated protein 1 ++ 

HA-DMAP1 DNA methyltransferase 1-associated protein 1 + 

GFP-TERT Telomerase reverse transcriptase ++ 

TERT-HA Telomerase reverse transcriptase ++ 

CFP-DDX43 Probable ATP-dependent RNA helicase DDX43 ++ 

CFP-DDX59 Probable ATP-dependent RNA helicase DDX59 ++ 
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Protein Protein Name Importin 13 Effect 

dGFP-cJun Transcription factor AP-1 + 

dGFP-Fos Proto-oncogene c-Fos + 

Sirt1-GFP NAD-dependent protein deacetylase sirtuin-1 + 

Hsp22-YFP Heat shock protein beta-8 - 

CPF-YFP Chondroitin polymerizing factor - 

Lim6-YFP LIM homeobox 6 - 

Tmp29-YFP Transmembrane protein 29 - 

Nip30-YFP NEFA-interacting nuclear protein NIP30 - 

Zinc313-YFP Zinc finger protein 313 - 

KIAA1826-YFP KIAA1826 protein - 

DNAPTP6-YFP DNA polymerase-transactivated protein 6 - 

H3.3-YFP H3 histone, family 3B - 

Known importin 13 cargoes 

eIF1A-GFP Eukaryotic translation initiation factor 1A ++ 

eIF1A-R46E-GFP 
Eukaryotic translation initiation factor 1A mutant 

impaired in its interaction with importin 13 (107) 
- 

HA-Ubc9 SUMO-conjugating enzyme UBC9 - 

GFP-GST-Ubc9 SUMO-conjugating enzyme UBC9 ++ 

Natural and artificial cargoes of other nuclear transport receptors 

dGFP-GST-cNLS 
Classical nuclear localization sequence 

(imported by importin α/β) 
- 

GFP-M9 
PY-NLS initially described for hnRNPA1 

(imported by transportin) 
+ 

dGFP-GST-RevNLS 
Nuclear localization signal in HIV-1Rev 

(imported by different nuclear import receptors) 
- 

HA-SPN1 Snurportin 1 - 

Randomly selected proteins 

HA-p53 Cellular tumor antigen p53 - 

HA-ERα Estrogen receptor alpha - 

HA-Hsp70 Heat shock protein 70 - 

 
++: strong importin 13 effect, +: weak importin 13 effect; -: no importin 13 effect 
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Figure S2: Proteins from the overexpression screen and other proteins analyzed for importin 
13 effects. HeLa P4 cells were transiently transfected with plasmids coding for a tagged protein 
and an empty control vector or FLAG-importin 13 using the calcium phosphate method. The scale 
bars correspond to 20 µm. Proteins affected by importin 13 overexpression but tested with a 
different tag: DBC-1, DMAP1, TERT, DDX43 and DDX59. Other proteins tested from 
overexpression screen: Hsp22, CPF, Lim6, TMP29, Nip30, Zinc313, KIAA1826, DNAPTP6 and 
H3.3B. Randomly chosen proteins tested: p53, ERα and Hsp70. Artificial cargoes and proteins 
recognized by other nuclear transport receptors: cNLS, M9, RevNLS and SPN1. Known importin 13 
cargoes: Ubc9 and eIF1A. For full protein names see Table S1. See section 3.2.1 for details and 
Figure 10 for further proteins tested.  
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Table S2: List of proteins that bound to Hzz-importin 13 from a digitonin but not a 
freeze/thaw HeLa P4 cell extract (see Table 10 and section 3.3.1 for details)# 

Uniprot ID Protein Name  Gene 
Q60FE5 Filamin A  FLNA 
P68032 Actin, alpha cardiac muscle 1 ACTC1 
Q71U36 Tubulin alpha-1A chain TUBA1A 
P49327 Fatty acid synthase  FASN 
P12268 Inosine-5'-monophosphate dehydrogenase 2 IMPDH2 
P12814 Alpha-actinin-1 ACTN1 
O75369 Filamin-B FLNB 
Q13509 Tubulin beta-3 chain TUBB3 
O15084 Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit A  ANKRD28 
Q562R1 Beta-actin-like protein 2 ACTBL2 
P63244 Receptor of activated protein C kinase 1  RACK1 
Q8WX93 Palladin PALLD 
P37802 Transgelin-2 TAGLN2 
P13798 Acylamino-acid-releasing enzyme  APEH 
Q6PGP7 Tetratricopeptide repeat protein 37 TTC37 
P58107 Epiplakin EPPK1 
A0A0D9SF54 Spectrin alpha chain, non-erythrocytic 1 SPTAN1 
B7ZAR1 T-complex protein 1 subunit epsilon CCT5 
Q8IUD2 ELKS/Rab6-interacting/CAST family member 1  ERC1 
P32969 60S ribosomal protein L9 RPL9 
O00743 Serine/threonine-protein phosphatase 6 catalytic subunit PPP6C 
Q92974 Rho guanine nucleotide exchange factor 2  ARHGEF2 
P08237 ATP-dependent 6-phosphofructokinase, muscle type  PFKM 
P34932 Heat shock 70 kDa protein 4  HSPA4 
C9JZR2 Catenin delta-1 CTNND1 
P49588 Alanine--tRNA ligase, cytoplasmic  AARS 
P52907 F-actin-capping protein subunit alpha-1  CAPZA1 
P17812 CTP synthase 1  CTPS1 
Q15477 Helicase SKI2W SKIV2L 
Q8N8S7 Protein enabled homolog ENAH 
P27708 CAD protein CAD 
P17987 T-complex protein 1 subunit alpha  TCP1 
Q9UQ80 Proliferation-associated protein 2G4 PA2G4 
Q5T4S7 E3 ubiquitin-protein ligase UBR4  UBR4 
Q8NE71 ATP-binding cassette sub-family F member 1  ABCF1 
P28074 Proteasome subunit beta type-5 PSMB5 
Q96II8 Leucine-rich repeat and calponin homology domain-containing protein 3 LRCH3 
Q01813 ATP-dependent 6-phosphofructokinase, platelet type PFKP 
Q7L2H7 Eukaryotic translation initiation factor 3 subunit M EIF3M 
Q96T76 MMS19 nucleotide excision repair protein homolog MMS19 
Q96RT1 Erbin ERBIN 
Q9Y281 Cofilin-2  CFL2 
Q01082 Spectrin beta chain, non-erythrocytic 1  SPTBN1 
P39023 60S ribosomal protein L3  RPL3 
Q9GZS3 WD repeat-containing protein 61 WDR61 
P35579 Myosin-9  MYH9 
P55884 Eukaryotic translation initiation factor 3 subunit B EIF3B 
P14735 Insulin-degrading enzyme IDE 
Q15029 116 kDa U5 small nuclear ribonucleoprotein component  EFTUD2 
P05198 Eukaryotic translation initiation factor 2 subunit 1  EIF2S1 
Q16513 Serine/threonine-protein kinase N2  PKN2 
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Uniprot ID Protein Name  Gene 
Q01518 Adenylyl cyclase-associated protein 1  CAP1 
O00151 PDZ and LIM domain protein 1  PDLIM1 
Q9UIA9 Exportin-7  XPO7 
Q92888 Rho guanine nucleotide exchange factor 1 ARHGEF1 
Q96JG6 Syndetin VPS50 
P61160 Actin-related protein 2 ACTR2 
Q9Y2T2 AP-3 complex subunit mu-1  AP3M1 
P60981 Destrin  DSTN 
Q9Y4E8 Ubiquitin carboxyl-terminal hydrolase 15 USP15 
Q7Z2W4 Zinc finger CCCH-type antiviral protein 1  ZC3HAV1 
Q96C19 EF-hand domain-containing protein D2  EFHD2 
Q2NL82 Pre-rRNA-processing protein TSR1 homolog TSR1 
P46060 Ran GTPase-activating protein 1  RANGAP1 
O15144 Actin-related protein 2/3 complex subunit 2  ARPC2 
Q5VWV2 Partitioning defective 3 homolog PARD3 
Q12965 Unconventional myosin-Ie  MYO1E 
Q99460 26S proteasome non-ATPase regulatory subunit 1  PSMD1 
P60842 Eukaryotic initiation factor 4A-I  EIF4A1 
P62081 40S ribosomal protein S7  RPS7 
P47755 F-actin-capping protein subunit alpha-2 CAPZA2 
Q9NYL9 Tropomodulin-3  TMOD3 
Q9NZQ3 NCK-interacting protein with SH3 domain  NCKIPSD 
P35268 60S ribosomal protein L22 RPL22 
P47813 Eukaryotic translation initiation factor 1A EIF1AX 
P50570 Dynamin-2  DNM2 
C9J381 Inosine-5'-monophosphate dehydrogenase IMPDH1 
C9J4M6 DNA-directed RNA polymerase subunit beta POLR2B 
A0A087WUT6 Eukaryotic translation initiation factor 5B EIF5B 
P61981 14-3-3 protein gamma  YWHAG 
P11908 Ribose-phosphate pyrophosphokinase 2 PRPS2 
Q9BVS4 Serine/threonine-protein kinase RIO2 RIOK2 
P23258 Tubulin gamma-1 chain  TUBG1 
E9PKZ0 60S ribosomal protein L8  RPL8 
P84077 ADP-ribosylation factor 1 ARF1 
Q96LD4 Tripartite motif-containing protein 47 TRIM47 
Q9NR09 Baculoviral IAP repeat-containing protein 6  BIRC6 
O15371 Eukaryotic translation initiation factor 3 subunit D  EIF3D 
Q13200 26S proteasome non-ATPase regulatory subunit 2  PSMD2 
Q9UBQ5 Eukaryotic translation initiation factor 3 subunit K  EIF3K 
B1ALK7 Rho guanine nucleotide exchange factor 7 ARHGEF7 
Q93100 Phosphorylase b kinase regulatory subunit beta  PHKB 
A0A087WTT1 Polyadenylate-binding protein PABPC1 
Q9BTW9 Tubulin-specific chaperone D TBCD 
Q9BYX4 Interferon-induced helicase C domain-containing protein 1 IFIH1 
Q00653 Nuclear factor NF-kappa-B p100 subunit NFKB2 
Q9NR33 DNA polymerase epsilon subunit 4 POLE4 
Q13347 Eukaryotic translation initiation factor 3 subunit I EIF3I 
P53611 Geranylgeranyl transferase type-2 subunit beta RABGGTB 
Q9H6S3 Epidermal growth factor receptor kinase substrate 8-like protein 2 EPS8L2 
P60228 Eukaryotic translation initiation factor 3 subunit E EIF3E 
P62906 60S ribosomal protein L10a RPL10A 
Q96IZ0 PRKC apoptosis WT1 regulator protein  PAWR 
Q8N1F7 Nuclear pore complex protein Nup93 NUP93 
Q14558 Phosphoribosyl pyrophosphate synthase-associated protein 1  PRPSAP1 
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Uniprot ID Protein Name  Gene 
Q86UU1 Pleckstrin homology-like domain family B member 1 PHLDB1 
O76071 Probable cytosolic iron-sulfur protein assembly protein CIAO1  CIAO1 
Q92598 Heat shock protein 105 kDa  HSPH1 
Q5VIR6 Vacuolar protein sorting-associated protein 53 homolog VPS53 
Q9Y530 O-acetyl-ADP-ribose deacetylase 1  OARD1 
B1AK87 Capping protein (Actin filament) muscle Z-line, beta CAPZB 
P63208 S-phase kinase-associated protein 1  SKP1 
P07355 Annexin A2 ANXA2 
Q9BQA1 Methylosome protein 50 WDR77 
P22314 Ubiquitin-like modifier-activating enzyme 1  UBA1 
Q96QK1 Vacuolar protein sorting-associated protein 35 VPS35 
A0A087WZK9 Eukaryotic translation initiation factor 3 subunit H EIF3H 
Q01433 AMP deaminase 2 AMPD2 
P62913 60S ribosomal protein L11 RPL11 
P19474 E3 ubiquitin-protein ligase TRIM21  TRIM21 
Q7Z6Z7 E3 ubiquitin-protein ligase HUWE1  HUWE1 
Q9UDY8 Mucosa-associated lymphoid tissue lymphoma translocation protein 1 MALT1 
P21291 Cysteine and glycine-rich protein 1 CSRP1 
P62753 40S ribosomal protein S6 RPS6 
Q6Y7W6 GRB10-interacting GYF protein 2 GIGYF2 
Q9Y4B5 Microtubule cross-linking factor 1  MTCL1 
Q5T6K7 Nuclear transcription factor Y subunit gamma  NFYC 
P31946 14-3-3 protein beta/alpha YWHAB 
Q15942 Zyxin (Zyxin-2) ZYX 
P62241 40S ribosomal protein S8 RPS8 
E9PDE8 Heat shock 70 kDa protein 4L HSPA4L 
O00487 26S proteasome non-ATPase regulatory subunit 14  PSMD14 
Q9UPQ0 LIM and calponin homology domains-containing protein 1 LIMCH1 
E7ERI8 CLIP-associating protein 2 CLASP2 
P20618 Proteasome subunit beta type-1  PSMB1 
A0A087X2G1 ATP-dependent RNA helicase DDX1 DDX1 
Q96P70 Importin-9 IPO9 
Q9Y262 Eukaryotic translation initiation factor 3 subunit L  EIF3L 
Q9UNM6 26S proteasome non-ATPase regulatory subunit 13  PSMD13 
P33176 Kinesin-1 heavy chain KIF5B 
P10155 60 kDa SS-A/Ro ribonucleoprotein TROVE2 
Q6IBS0 Twinfilin-2  TWF2 
S4R3H3 Zinc finger SWIM domain-containing protein 8 ZSWIM8 
Q14258 E3 ubiquitin/ISG15 ligase TRIM25  TRIM25 
Q15366 Poly(rC)-binding protein 2 PCBP2 
Q14847 LIM and SH3 domain protein 1 LASP1 
Q14019 Coactosin-like protein COTL1 
Q15645 Pachytene checkpoint protein 2 homolog  TRIP13 
E9PGZ1 Caldesmon CALD1 
P04075 Fructose-bisphosphate aldolase A ALDOA 
P62979 Ubiquitin-40S ribosomal protein S27a  RPS27A 
Q86VP6 Cullin-associated NEDD8-dissociated protein 1 CAND1 
P46778 60S ribosomal protein L21  RPL21 
P25787 Proteasome subunit alpha type-2  PSMA2 
Q12792 Twinfilin-1 TWF1 
Q9HCN4 GPN-loop GTPase 1  GPN1 
A0A024QZP7 Cell division cycle 2 CDC2 
Q9NR31 GTP-binding protein SAR1a  SAR1A 
Q02790 Peptidyl-prolyl cis-trans isomerase FKBP4 FKBP4 
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Uniprot ID Protein Name  Gene 
K7EL20 Eukaryotic translation initiation factor 3 subunit G EIF3G 
P63167 Dynein light chain 1, cytoplasmic DYNLL1 
P61158 Actin-related protein 3 ACTR3 
Q99471 Prefoldin subunit 5  PFDN5 
P19338 Nucleolin NCL 
O00178 GTP-binding protein 1 GTPBP1 
Q6NZ67 Mitotic-spindle organizing protein 2B MZT2B 
F8VQE1 LIM domain and actin-binding protein 1 LIMA1 
Q7KZF4 Staphylococcal nuclease domain-containing protein 1  SND1 
O14818 Proteasome subunit alpha type-7 PSMA7 
Q12800 Alpha-globin transcription factor CP2 TFCP2 
H0YM23 Ankyrin repeat domain-containing protein 17  ANKRD17 
P54619 5'-AMP-activated protein kinase subunit gamma-1  PRKAG1 
P62487 DNA-directed RNA polymerase II subunit RPB7 POLR2G 
P17858 ATP-dependent 6-phosphofructokinase, liver type  PFKL 
Q86TC9 Myopalladin MYPN 
D6REY2 Colorectal mutant cancer protein MCC 
Q9Y3F4 Serine-threonine kinase receptor-associated protein  STRAP 
Q5VZK9 F-actin-uncapping protein LRRC16A CARMIL1 
Q5VYK3 Proteasome-associated protein ECM29 homolog  ECM29 
E5RHG8 Elongin-C ELOC 
O75340 Programmed cell death protein 6  PDCD6 
Q9Y597 BTB/POZ domain-containing protein KCTD3 KCTD3 
Q96CW5 Gamma-tubulin complex component 3  TUBGCP3 
F5H018 GTP-binding nuclear protein Ran  RAN 
Q9UDY4 DnaJ homolog subfamily B member 4  DNAJB4 
Q9BV44 THUMP domain-containing protein 3 THUMPD3 

 

#: Proteins are sorted according to the total number of identified peptide sequences for a protein. Proteins written in bold are 

known importin 13 cargoes. Identified proteins that corresponded to the same protein but had different Uniprot IDs were 

listed only once. Further keratin and immunoglobulin contaminants were removed. 

 

 
Table S3: List of proteins that bound to Hzz-importin 13 from a freeze/thaw but not a 
digitonin HeLa P4 cell extract (see Table 10 and section 3.3.1 for details)# 

Uniprot ID Protein Name  Gene 
A0A0U1RQF0 Fatty acid synthase FASN 
Q9BPW8 Protein NipSnap homolog 1  NIPSNAP1 
O75323 Protein NipSnap homolog 2 NIPSNAP2 
P39880 Homeobox protein cut-like 1  CUX1 
C9JE98 Nuclear receptor corepressor 2 NCOR2 
Q5HY54 Filamin-A FLNA 
O75376 Nuclear receptor corepressor 1  NCOR1 
Q13952 Nuclear transcription factor Y subunit gamma  NFYC 
P40424 Pre-B-cell leukemia transcription factor 1 PBX1 
A0A087WZ13 Ribonucleoprotein PTB-binding 1 RAVER1 
K7EKE6 Lon protease homolog, mitochondrial LONP1 
P25208 Nuclear transcription factor Y subunit beta  NFYB 
Q14919 Dr1-associated corepressor  DRAP1 
Q9Y6D9 Mitotic spindle assembly checkpoint protein MAD1 MAD1L1 
Q01658 Protein Dr1 DR1 
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Uniprot ID Protein Name  Gene 
P62841 40S ribosomal protein S15 RPS15 
P40425 Pre-B-cell leukemia transcription factor 2 PBX2 
O75116 Rho-associated protein kinase 2 ROCK2 
A0A0C4DFV9 Protein SET SET 
B1AKN7 Nuclear factor 1 NFIA 
P49321 Nuclear autoantigenic sperm protein NASP 
Q8TEW0 Partitioning defective 3 homolog PARD3 
F5GYS8 Homeobox protein Meis1 MEIS1 
O14770 Homeobox protein Meis2  MEIS2 
O95425 Supervillin SVIL 
P08651 Nuclear factor 1 C-type  NFIC 
Q92734 Protein TFG  TFG 
P62854 40S ribosomal protein S26 RPS26 
Q14444 Caprin-1 CAPRIN1 
O60506 Heterogeneous nuclear ribonucleoprotein Q SYNCRIP 
Q5VTR2 E3 ubiquitin-protein ligase BRE1A  RNF20 
Q15120 [Pyruvate dehydrogenase PDK3 
P35249 Replication factor C subunit 4 RFC4 
Q8NHP8 Putative phospholipase B-like 2  PLBD2 
H9KV28 Protein diaphanous homolog 1 DIAPH1 
J3QL15 Ribosomal protein L19 RPL19 
H0YNH8 Uveal autoantigen with coiled-coil domains and ankyrin repeats UACA 
P62750 60S ribosomal protein L23a RPL23A 
Q09666 Neuroblast differentiation-associated protein AHNAK  AHNAK 
Q8TF72 Protein Shroom3 SHROOM3 
Q13162 Peroxiredoxin-4 PRDX4 
I3L2J8 Centrosomal protein of 131 kDa CEP131 
C9JXB8 60S ribosomal protein L24 RPL24 
P26373 60S ribosomal protein L13  RPL13 
Q99536 Synaptic vesicle membrane protein VAT-1 homolog  VAT1 
P78337 Pituitary homeobox 1 PITX1 
P48634 Protein PRRC2A  PRRC2A 
P60953 Cell division control protein 42 homolog CDC42 
Q14678 KN motif and ankyrin repeat domain-containing protein 1  KANK1 
Q96A19 Coiled-coil domain-containing protein 102A CCDC102A 
Q9H2J4 Phosducin-like protein 3  PDCL3 
P62826 GTP-binding nuclear protein Ran  RAN 
P85037 Forkhead box protein K1 FOXK1 
R4GNB2 DENN domain-containing protein 4C DENND4C 
Q13136 Liprin-alpha-1  PPFIA1 
Q9Y2R9 28S ribosomal protein S7, mitochondrial MRPS7 
H7C2W9 60S ribosomal protein L31  RPL31 
A6NJA2 Ubiquitin carboxyl-terminal hydrolase 14 USP14 

 

#: Proteins are sorted according to the total number of identified peptide sequences for a protein. Proteins written in bold are 

known importin 13 cargoes. Identified proteins that corresponded to the same protein but had different Uniprot IDs were 

listed only once. Further keratin and immunoglobulin contaminants were removed. 
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Figure S3: SILAC binding reactions and phenyl-Sepharose depletion of HeLa P4 cell extracts 
(experiment 2). (A) Schematic showing exemplary SILAC binding reactions. (B, C) Hzz-tagged 
importin 13 (0.5 nmol) was immobilized on IgG-Sepharose and incubated with cell extracts of HeLa 
P4 cells grown in DMEM medium containing light, medium or heavy amino acids in the absence or 
presence of 10 µM RanGTPQ69L or 5 µM Ubc9 in transport buffer. Cell extracts (uncleared) were 
precleared with Hzz/IgG-Sepharose and phenyl-Sepharose (cleared) to reduce unspecific 
interactions. Bound proteins were eluted in a first elution step with magnesium chloride, followed by 
a second elution step with 4x SDS sample buffer. Cell lysates and eluted proteins were separated 
by SDS-PAGE and analyzed by silver staining (B) or immunoblotting with an anti-importin 13, anti-
transportin, anti-importin β, anti-Ran, anti-Ubc9 and anti-eIF1A antibody (C). Note that in the 
unbound cell lysate some free Hzz-importin 13 can be detected, as well as excess exogenous 
RanGTPQ69L and Ubc9 in the unbound light and heavy isotopically labeled cell lysate, respectively. 
See section 3.3.3 for details and Figure 18 and Figure S4 for replicates. ladder: PageRuler 
Unstained Protein Ladder; MgCl2: magnesium chloride eluate; SDS: 4x SDS sample buffer eluate; l: 
light; m: medium; h: heavy; endog.: endogenous. 
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Figure S4: SILAC binding reactions and phenyl-Sepharose depletion of HeLa P4 cell extracts 
(experiment 3). (A) Schematic showing exemplary SILAC binding reactions. (B, C) Hzz-tagged 
importin 13 (0.5 nmol) was immobilized on IgG-Sepharose and incubated with cell extracts of HeLa 
P4 cells grown in DMEM medium containing light, medium or heavy amino acids in the absence or 
presence of 10 µM RanGTPQ69L or 5 µM Ubc9 in transport buffer. Cell extracts (uncleared) were 
precleared with Hzz/IgG-Sepharose and phenyl-Sepharose (cleared) to reduce unspecific 
interactions. Bound proteins were eluted in a first elution step with magnesium chloride, followed by 
a second elution step with 4x SDS sample buffer. Cell lysates and eluted proteins were separated 
by SDS-PAGE and analyzed by silver staining (B) or immunoblotting with an anti-importin 13, anti-
transportin, anti-importin β, anti-Ran, anti-Ubc9 and anti-eIF1A antibody (C). Note that in the 
unbound cell lysate some free Hzz-importin 13 can be detected, as well as excess exogenous 
RanGTPQ69L and Ubc9 in the unbound light and heavy isotopically labeled cell lysate, respectively. 
See section 3.3.3 for details and Figure 18 and Figure S3 for replicates. ladder: PageRuler 
Unstained Protein Ladder; MgCl2: magnesium chloride eluate; SDS: 4x SDS sample buffer eluate; l: 
light; m: medium; h: heavy; endog.: endogenous. 

 

 
Table S4: Perseus workflow for the identification of importin 13 export cargoes (see section 
3.3.3 for SILAC experiment) 

Matrix Processing Settings Description 
Matrix 1 Generic matrix 

upload 
Expression: 
Ratio M/L normalized SILAC4 
Ratio H/L normalized SILAC4 
Ratio H/M normalized SILAC4 
Ratio M/L normalized SILAC5 
Ratio H/L normalized SILAC5 
Ratio H/M normalized SILAC5 
Ratio M/L normalized SILAC6 
Ratio H/L normalized SILAC6 
Ratio H/M normalized SILAC6 
Numerical: 
Ratio M/L variability [%] SILAC4 
Ratio H/L variability [%] SILAC4 
Ratio H/M variability [%] SILAC4 
Ratio M/L variability [%] SILAC5 
Ratio H/L variability [%] SILAC5 
Ratio H/M variability [%] SILAC5 
Ratio M/L variability [%] SILAC6 
Ratio H/L variability [%] SILAC6 
Ratio H/M variability [%] SILAC6 
Ratio M/L count SILAC4 
Ratio H/L count SILAC4 
Ratio H/M count SILAC4 
Ratio M/L count SILAC5 
Ratio H/L count SILAC5 
Ratio H/M count SILAC5 
Ratio M/L count SILAC6 
Ratio H/L count SILAC6 
Ratio H/M count SILAC6 
Categorical: 
Only identified by site 
Reverse 
Potential contaminants 
Text: 
Protein IDs 

Load MaxQuant derived proteomics 
data from the tab-separated file 
proteinGroups.txt 
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Matrix Processing Settings Description 
Majority protein IDs 
Protein names 
Gene names 

Matrix 2 Filter rows based on 
categorical column 

Column: Only identified by site 
Values: + 
Mode: Remove matching rows 
Filter mode: Reduce matrix 

Remove proteins only identified by 
peptides carrying a modified residue 

Matrix 3 Filter rows based on 
categorical column 

Column: Reverse 
Values: + 
Mode: Remove matching rows 
Filter mode: Reduce matrix 

Remove hits that match against a 
nonsense database 

Matrix 4 Filter rows based on 
categorical column 

Column: Potential contaminants 
Values: + 
Mode: Remove matching rows 
Filter mode: Reduce matrix 

Remove common contaminants 

Matrix 5 Remove empty 
columns 

 Remove empty columns 

Matrix 6 Select rows 
manually 

Select immunoglobulin contaminants 
manually and remove selected rows 

Remove immunoglobulin 
contaminants 

Matrix 7 Transform Transformation: 1/x 
Columns: 
Ratio M/L normalized SILAC4 
Ratio H/L normalized SILAC4 
Ratio H/M normalized SILAC4 
Ratio M/L normalized SILAC5 
Ratio H/L normalized SILAC5 
Ratio H/M normalized SILAC5 
Ratio M/L normalized SILAC6 
Ratio H/L normalized SILAC6 
Ratio H/M normalized SILAC6 
 

Invert ratios by using the formula 1/x 

Matrix 8 Matching rows by 
name 

Base matrix: Matrix 6 
Other matrix: Matrix 7 
Matching column 1: Protein IDs 
Matching column 2: Protein IDs 
Expression columns: 
Ratio M/L normalized SILAC4 
Ratio H/L normalized SILAC4 
Ratio H/M normalized SILAC4 
Ratio M/L normalized SILAC5 
Ratio H/L normalized SILAC5 
Ratio H/M normalized SILAC5 
Ratio M/L normalized SILAC6 
Ratio H/L normalized SILAC6 
Ratio H/M normalized SILAC6 
 

Combine columns of the existing 
protein ratios with the newly 
generated inverted ratios (rows of the 
other matrix are associated with rows 
of the base matrix via matching 
expressions in a textual column from 
each matrix) 
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Matrix Processing Settings Description 
Matrix 9 Transform Transformation: log2(x) 

Columns: 
Ratio M/L normalized SILAC4 
Ratio H/L normalized SILAC4 
Ratio H/M normalized SILAC4 
Ratio M/L normalized SILAC5 
Ratio H/L normalized SILAC5 
Ratio H/M normalized SILAC5 
Ratio M/L normalized SILAC6 
Ratio H/L normalized SILAC6 
Ratio H/M normalized SILAC6 
Ratio M/L normalized SILAC4_1 
Ratio H/L normalized SILAC4_1 
Ratio H/M normalized SILAC4_1 
Ratio M/L normalized SILAC5_1 
Ratio H/L normalized SILAC5_1 
Ratio H/M normalized SILAC5_1 
Ratio M/L normalized SILAC6_1 
Ratio H/L normalized SILAC6_1 
Ratio H/M normalized SILAC6_1 
 

Log transformation of expression 
columns using the formula log2(x) 

Matrix 10 Categorical 
annotation rows 

Action: Create 
Row name: Group 1 
Ratio H/M normalized SILAC4_1 
Ratio M/L normalized SILAC5_1 
Ratio M/L normalized SILAC6_1 
 Imp13+Ran/Imp13 
Ratio M/L normalized SILAC4 
Ratio H/L normalized SILAC5_1 
Ratio H/L normalized SILAC6_1 
 Imp13+Ran/Imp13+Ubc9 
Ratio H/M normalized SILAC4 
Ratio M/L normalized SILAC5 
Ratio M/L normalized SILAC6 
 Imp13/Imp13+Ran 
Ratio H/L normalized SILAC4 
Ratio H/M normalized SILAC5_1 
Ratio H/M normalized SILAC6_1 
 Imp13/Imp13+Ubc9 
Ratio H/L normalized SILAC4_1 
Ratio H/M normalized SILAC5 
Ratio H/M normalized SILAC6 
 Imp13+Ubc9/Imp13 
Ratio M/L normalized SILAC4_1 
Ratio H/L normalized SILAC5 
Ratio H/L normalized SILAC6 
 Imp13+Ubc9/Imp13+Ran 

Define the following ratio groups: 
Imp13+Ran/Imp13 
Imp13+Ran/Imp13+Ubc9 
Imp13/Imp13+Ran 
Imp13/Imp13+Ubc9 
Imp13+Ubc9/Imp13 
Imp13+Ubc9/Imp13+Ran 
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Matrix Processing Settings Description 
Matrix 11 Reorder/remove 

columns 
Expression column: 
Ratio H/M normalized SILAC4_1 
Ratio M/L normalized SILAC5_1 
Ratio M/L normalized SILAC6_1 
Ratio M/L normalized SILAC4 
Ratio H/L normalized SILAC5_1 
Ratio H/L normalized SILAC6_1 
Numerical columns: 
Ratio M/L variability [%] SILAC4 
Ratio H/M variability [%] SILAC4 
Ratio M/L variability [%] SILAC5 
Ratio H/L variability [%] SILAC5 
Ratio M/L variability [%] SILAC6 
Ratio H/L variability [%] SILAC6 
Ratio M/L count SILAC4 
Ratio H/M count SILAC4 
Ratio M/L count SILAC5 
Ratio H/L count SILAC5 
Ratio M/L count SILAC6 
Ratio H/L count SILAC6 

Selection of columns required for 
identification of Imp13 export 
candidates 

Matrix 12 Categorical 
annotation row 

Action: Create 
Row name: Imp13+Ran/Imp13 
Ratio H/M normalized SILAC4_1 
Ratio M/L normalized SILAC5_1 
Ratio M/L normalized SILAC6_1 

The following ratio group was 
defined: 
Imp13+Ran/Imp13 

Matrix 13 Categorical 
annotation row 

Action: Create 
Row name: Imp13+Ran/Imp13+Ubc9 
Ratio M/L normalized SILAC4 
Ratio H/L normalized SILAC5_1 
Ratio H/L normalized SILAC6_1 

The following ratio group was 
defined: 
Imp13+Ran/Imp13+Ubc9 

Matrix 14 Filter rows based on 
valid values 

Min. number of values: 3 
Mode: In each group 
Grouping: Imp13+Ran/Imp13 
Values should be: Greater or equal 
Minimum: 0.5 
Filter mode: Add categorical row 

Imp13+Ran/Imp13 ratios were filtered 
to be ≥0.5 for all three replicates. 

Matrix 15 Filter rows based on 
valid values 

Min. number of values: 3 
Mode: In each group 
Grouping: Imp13+Ran/Imp13 
Values should be: Greater or equal 
Minimum: 1.5 
Filter mode: Add categorical row 

Imp13+Ran/Imp13 ratios were filtered 
to be ≥1.5 for all three replicates. 

Matrix 16 Filter rows based on 
valid values 

Min. number of values: 3 
Mode: In each group 
Grouping: Imp13+Ran/Imp13 
Values should be: Greater or equal 
Minimum: 3.0 
Filter mode: Add categorical row 

Imp13+Ran/Imp13 ratios were filtered 
to be ≥3.0 for all three replicates. 

Matrix 17 One-sample test Columns: 
Ratio H/M normalized SILAC4_1 
Ratio M/L normalized SILAC5_1 
Ratio M/L normalized SILAC6_1 
Value: 0 
Test: t-test 
Side: Right 
Use for truncation: P value 
Threshold p-value: 0.05 
-Log10: tick 
Suffix: 

One sample-test for determining if the 
mean Imp13+Ran/Imp13 ratio is 
significantly different from 0 using a 
threshold p-value of 0.05 
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Matrix Processing Settings Description 
Matrix 18 One-sample test Columns: 

Ratio H/M normalized SILAC4_1 
Ratio M/L normalized SILAC5_1 
Ratio M/L normalized SILAC6_1 
Value: 0 
Test: t-test 
Side: Right 
Use for truncation: P value 
Threshold p-value: 0.01 
-Log10: tick 
Suffix: 

One sample-test for determining if the 
mean Imp13+Ran/Imp13 ratio is 
significantly different from 0 using a 
threshold p-value of 0.01 

Matrix 19 Rename columns Filter  T(log2)=0.5 
Filter_  T(log2)=1.5 
Filter__  T(log2)=3.0 
t-test Significant  t-test 0.05 
t-test Significant_  t-test 0.01 

Give expression columns (filtering + 
t-test) a more explicit name 

Matrix 20 Fill categorical 
columns 

Columns: 
Filter  T(log2)=0.5 
Filter_  T(log2)=1.5 
Filter__  T(log2)=3.0 
t-test Significant  t-test 0.05 
t-test Significant_  t-test 0.01 
Value: - 

Fill empty field in categorical columns 
with ‘-‘ to allow for later combining of 
categorical columns 

Matrix 21 Combine 
categorical columns 

First column: t-test 0.05 
Second column: t-test 0.01 

Combine categorical columns that 
were t-test significant for a threshold 
p-value of 0.05 and 0.01 

Matrix 22 Combine 
categorical columns 

First column: T(log2)=0.5 
Second column: T(log2)=1.5 

Combine categorical columns filtered 
for ratio thresholds of ≥0.5 and ≥1.5 

Matrix 23 Combine 
categorical columns 

First column: T(log2)=0.5_T(log2)=1.5 
Second column: T(log2)=3 

Combine categorical columns filtered 
for ratio thresholds of ≥0.5, ≥1.5 and 
≥ 3 

Matrix 24 Combine 
categorical columns 

First column: 
T(log2)=0.5_T(log2)=1.5_ T(log2)=3 
Second column: t-test 0.05_ t-test 
0.01 

Combine categorical columns filtered 
for ratio threshold of ≥0.5, ≥1.5 and ≥ 
3 with t-test significant categorical 
column with a threshold p-value of 
0.05 and 0.01. Required for data 
visualization 

Matrix 25 Average groups Grouping: Group1 
Average type: mean 
Min. valid values per group: 1 
Keep original data: tick 
Add standard deviation: tick 

Average Imp13+Ran/Imp13 and 
Imp13+Ran/Imp13+Ubc9 ratios from 
all three replicates 
(Note: averaging is done for all ratios) 

Matrix 26 Categorical 
annotation row 

Action: Create 
Row name: Imp13+Ran/Imp13_fwd 
Ratio H/M normalized SILAC4_1 

Distinguish between label-switch 
experiments for Imp13+Ran/Imp13 
Ratios (‘forward reaction’) 

Matrix 27 Categorical 
annotation row 

Action: Create 
Row name: Imp13+Ran/Imp13_rev 
Ratio M/L normalized SILAC5_1 
Ratio M/L normalized SILAC6_1 

Distinguish between label-switch 
experiments for Imp13+Ran/Imp13 
Ratios (‘reverse reaction’) 

Matrix 28 Categorical 
annotation row 

Action: Create 
Row name: 
Imp13+Ran/Imp13+Ubc9_fwd 
Ratio M/L normalized SILAC4 
 

Distinguish between label-switch 
experiments for 
Imp13+Ran/Imp13+Ubc9 ratios 
(‘forward reaction’) 

Matrix 29 Categorical 
annotation row 

Action: Create 
Row name: 
Imp13+Ran/Imp13+Ubc9_rev 
Ratio H/L normalized SILAC5_1 
Ratio H/L normalized SILAC6_1 

Distinguish between label-switch 
experiments for 
Imp13+Ran/Imp13+Ubc9 ratios 
(‘reverse reaction’) 
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Matrix Processing Settings Description 
Matrix 30 Average groups Grouping: Imp13+Ran/Imp13_fwd 

Average type: mean 
Min. valid values per group: 1 
Keep original data: tick 
Add standard deviation: tick 

Average Imp13+Ran/Imp13 ratios 
from forward label-switch experiment 

Matrix 31 Average groups Grouping: Imp13+Ran/Imp13_rev 
Average type: mean 
Min. valid values per group: 1 
Keep original data: tick 
Add standard deviation: tick 

Average Imp13+Ran/Imp13 ratios 
from reverse label-switch experiment 

Matrix 32 Average groups Grouping: 
Imp13+Ran/Imp13+Ubc9_fwd 
Average type: mean 
Min. valid values per group: 1 
Keep original data: tick 
Add standard deviation: tick 

Average Imp13+Ran/Imp13+Ubc9 
ratios  from forward label-switch 
experiment 

Matrix 33 Average groups Grouping: 
Imp13+Ran/Imp13+Ubc9_rev 
Average type: mean 
Min. valid values per group: 1 
Keep original data: tick 
Add standard deviation: tick 

Average Imp13+Ran/Imp13+Ubc9 
ratios from reverse label-switch 
experiment 

Matrix 34 Filter rows based on 
valid values 

Min. number of valid values: 3 
Mode: In each group 
Grouping: Group 1 
Values should be: Valid 
Filter mode: Reduce matrix 

To assign annotations all values need 
to be valid 

Matrix 35 Add annotation Source: MainPerseusAnnot.txt.gz 
UniProt column: Majority protein IDs 
Annotations to be added: 
GOBP name 
GOMF name 
GOCC name 
KEGG name 
Additional sources: 

Annotation of: 
GOBP: Gene Ontology Biological 
Process 
GOMF: Gene Ontology Molecular 
Function 
GOCC: Gene Ontology Cellular 
Component 
KEGG: Kyoto Encyclopedia of Genes 
and Genomes 

 

 
Table S5: Perseus workflow for the identification of importin 13 import cargoes (see section 
3.3.3 for SILAC experiment) 

Matrix Processing Settings Description 
Matrix 
1-10 Processing steps Matrix 1-10 are identical to Matrix 1-10 in Table S4 
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Matrix Processing Settings Description 
Matrix 11 Reorder/remove 

columns 
Expression column: 
Ratio H/M normalized SILAC4 
Ratio M/L normalized SILAC5 
Ratio M/L normalized SILAC6 
Ratio H/L normalized SILAC4 
Ratio H/M normalized SILAC5_1 
Ratio H/M normalized SILAC6_1 
Numerical columns: 
Ratio H/L variability [%] SILAC4 
Ratio H/M variability [%] SILAC4 
Ratio M/L variability [%] SILAC5 
Ratio H/M variability [%] SILAC5 
Ratio M/L variability [%] SILAC6 
Ratio H/M variability [%] SILAC6 
Ratio H/L count SILAC4 
Ratio H/M count SILAC4 
Ratio M/L count SILAC5 
Ratio H/M count SILAC5 
Ratio M/L count SILAC6 
Ratio H/M count SILAC6 

Selection of columns required for 
identification of Imp13 import 
candidates 

Matrix 12 Categorical 
annotation row 

Action: Create 
Row name: Imp13/Imp13+Ran 
Ratio H/M normalized SILAC4 
Ratio M/L normalized SILAC5 
Ratio M/L normalized SILAC6 

The following ratio group was 
defined: 
Imp13/Imp13+Ran 

Matrix 13 Categorical 
annotation row 

Action: Create 
Row name: Imp13/Imp13+Ubc9 
Ratio H/L normalized SILAC4 
Ratio H/M normalized SILAC5_1 
Ratio H/M normalized SILAC6_1 

The following ratio group was 
defined: 
Imp13/Imp13+Ubc9 

Matrix 14 Filter rows based on 
valid values 

Min. number of values: 3 
Mode: In each group 
Grouping: Group1 
Values should be: Greater or equal 
Minimum: 0.5 
Filter mode: Add categorical row 

Imp13/Imp13+Ran & 
Imp13/Imp13+Ubc9 ratios were 
filtered to be ≥0.5 for all three 
replicates. 

Matrix 15 Filter rows based on 
valid values 

Min. number of values: 3 
Mode: In each group 
Grouping: Group1 
Values should be: Greater or equal 
Minimum: 1.5 
Filter mode: Add categorical row 

Imp13/Imp13+Ran & 
Imp13/Imp13+Ubc9 ratios were 
filtered to be ≥1.5 for all three 
replicates. 

Matrix 16 Filter rows based on 
valid values 

Min. number of values:3 
Mode: In each group 
Grouping: Group1 
Values should be: Greater or equal 
Minimum: 3.0 
Filter mode: Add categorical row 

Imp13/Imp13+Ran & 
Imp13/Imp13+Ubc9 ratios were 
filtered to be ≥3.0 for all three 
replicates. 

Matrix 17 One-sample test Columns: 
Ratio H/M normalized SILAC4 
Ratio M/L normalized SILAC5 
Ratio M/L normalized SILAC6 
Ratio H/L normalized SILAC4 
Ratio H/M normalized SILAC5_1 
Ratio H/M normalized SILAC6_1 
Value: 0 
Test: t-test 
Side: Right 
Use for truncation: P value 
Threshold p-value: 0.05 
-Log10: tick 
Suffix: 

One sample-test for determining if the 
mean Imp13/Imp13+Ran & 
Imp13/Imp13+Ubc9 ratios are 
significantly different from 0 using a 
threshold p-value of 0.05 
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Matrix Processing Settings Description 
Matrix 18 One-sample test Columns: 

Ratio H/M normalized SILAC4 
Ratio M/L normalized SILAC5 
Ratio M/L normalized SILAC6 
Ratio H/L normalized SILAC4 
Ratio H/M normalized SILAC5_1 
Ratio H/M normalized SILAC6_1 
Value: 0 
Test: t-test 
Side: Right 
Use for truncation: P value 
Threshold p-value: 0.01 
-Log10: tick 
Suffix: 

One sample-test for determining if the 
mean Imp13/Imp13+Ran & 
Imp13/Imp13+Ubc9 ratios are 
significantly different from 0 using a 
threshold p-value of 0.01 

Matrix 19 Rename columns Filter  T(log2)=0.5 
Filter_  T(log2)=1.5 
Filter__  T(log2)=3.0 
t-test Significant  t-test 0.05 
t-test Significant_  t-test 0.01 

Give expression columns (filtering + 
t-test) a more explicit name 

Matrix 20 Fill categorical 
columns 

Columns: 
Filter  T(log2)=0.5 
Filter_  T(log2)=1.5 
Filter__  T(log2)=3.0 
t-test Significant  t-test 0.05 
t-test Significant_  t-test 0.01 
Value: - 

Fill empty field in categorical columns 
with ‘-‘ to allow for later combining of 
categorical columns 

Matrix 21 Combine 
categorical columns 

First column: t-test 0.05 
Second column: t-test 0.01 

Combine categorical columns that 
were t-test significant for a threshold 
p-value of 0.05 and 0.01 

Matrix 22 Combine 
categorical columns 

First column: T(log2)=0.5 
Second column: T(log2)=1.5 

Combine categorical columns filtered 
for ratio thresholds of ≥0.5 and ≥1.5 

Matrix 23 Combine 
categorical columns 

First column: T(log2)=0.5_T(log2)=1.5 
Second column: T(log2)=3 

Combine categorical columns filtered 
for ratio thresholds of ≥0.5, ≥1.5 and 
≥ 3 

Matrix 24 Combine 
categorical columns 

First column: 
T(log2)=0.5_T(log2)=1.5_ T(log2)=3 
Second column: t-test 0.05_ t-test 
0.01 

Combine categorical columns filtered 
for ratio threshold of ≥0.5, ≥1.5 and ≥ 
3 with t-test significant categorical 
column with a threshold p-value of 
0.05 and 0.01. Required for data 
visualization 

Matrix 25 Average groups Grouping: Group1 
Average type: mean 
Min. valid values per group: 1 
Keep original data: tick 
Add standard deviation: tick 

Average Imp13/Imp13+Ran and 
Imp13/Imp13+Ubc9 ratios from all 
three replicates 

Matrix 26 Categorical 
annotation row 

Action: Create 
Row name: Imp13/Imp13+Ran _fwd 
Ratio H/M normalized SILAC4 

Distinguish between label-switch 
experiments for Imp13/Imp13+Ran 
Ratios (‘forward reaction’) 

Matrix 27 Categorical 
annotation row 

Action: Create 
Row name: Imp13/Imp13+Ran _rev 
Ratio M/L normalized SILAC5 
Ratio M/L normalized SILAC6 

Distinguish between label-switch 
experiments for Imp13/Imp13+Ran 
Ratios (‘reverse reaction’) 

Matrix 28 Categorical 
annotation row 

Action: Create 
Row name: Imp13/Imp13+Ubc9_fwd 
Ratio H/L normalized SILAC4 
 

Distinguish between label-switch 
experiments for 
Imp13/Imp13+Ubc9 ratios (‘forward 
reaction’) 

Matrix 29 Categorical 
annotation row 

Action: Create 
Row name: Imp13/Imp13+Ubc9_rev 
Ratio H/M normalized SILAC5_1 
Ratio H/M normalized SILAC6_1 

Distinguish between label-switch 
experiments for 
Imp13/Imp13+Ubc9 ratios (‘reverse 
reaction’) 
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Matrix Processing Settings Description 
Matrix 30 Average groups Grouping: Imp13/Imp13+Ran _fwd 

Average type: mean 
Min. valid values per group: 1 
Keep original data: tick 
Add standard deviation: tick 

Average Imp13/Imp13+Ran ratios 
from forward label-switch experiment 

Matrix 31 Average groups Grouping: Imp13/Imp13+Ran _rev 
Average type: mean 
Min. valid values per group: 1 
Keep original data: tick 
Add standard deviation: tick 

Average Imp13/Imp13+Ran ratios 
from reverse label-switch experiment 

Matrix 32 Average groups Grouping: Imp13/Imp13+Ubc9_fwd 
Average type: mean 
Min. valid values per group: 1 
Keep original data: tick 
Add standard deviation: tick 

Average Imp13/Imp13+Ubc9 ratios  
from forward label-switch experiment 

Matrix 33 Average groups Grouping: Imp13/Imp13+Ubc9_rev 
Average type: mean 
Min. valid values per group: 1 
Keep original data: tick 
Add standard deviation: tick 

Average Imp13/Imp13+Ubc9 ratios 
from reverse label-switch experiment 

Matrix 34 Filter rows based on 
valid values 

Min. number of valid values: 3 
Mode: In each group 
Grouping: Group 1 
Values should be: Valid 
Filter mode: Reduce matrix 

To assign annotations all values need 
to be valid 

Matrix 35 Add annotation Source: MainPerseusAnnot.txt.gz 
UniProt column: Majority protein IDs 
Annotations to be added: 
GOBP name 
GOMF name 
GOCC name 
KEGG name 
Additional sources: 

Annotation of: 
GOBP: Gene Ontology Biological 
Process 
GOMF: Gene Ontology Molecular 
Function 
GOCC: Gene Ontology Cellular 
Component 
KEGG: Kyoto Encyclopedia of Genes 
and Genomes 

 

 

 
Table S6: List of potential importin 13 import cargoes identified in SILAC screen (log2 SILAC 
ratio > 0.5 for all three experimental replicates, see section 3.3.3 for experimental details)# 

Uniprot 
ID Protein Name Gene  

log2(Imp13/ 
Imp13+Ran) 

log2(Imp13/ 
Imp13+Ubc9) 

-log 
(p value)* 

Proteins identified for both Imp13/Imp13+Ran & Imp13/Imp13+Ubc9  
Q92538 Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 GBF1 0.813033 4.71873 1.86233 
Q92888 Rho guanine nucleotide exchange factor 1 ARHGEF1 1.42738 3.78382 2.63594 
Q6PGP7 Tetratricopeptide repeat protein 37 TTC37 0.939691 3.65913 2.11507 
Q14247 Src substrate cortactin CTTN 1.75313 3.62126 3.11061 
O75815 Breast cancer anti-estrogen resistance protein 3 BCAR3 1.26153 3.23052 2.69767 

Q12800 Alpha-globin transcription factor CP2 TFCP2 1.06516 2.75921 2.5538 
Q14C86 GTPase-activating protein and VPS9 domain-containing protein 1 GAPVD1 1.4609 2.68049 3.40625 
Q12774 Rho guanine nucleotide exchange factor 5 ARHGEF5 0.705027 2.41263 2.30914 
Q15025 TNFAIP3-interacting protein 1 TNIP1 0.95981 2.24084 2.85848 
O43896 Kinesin-like protein KIF1C KIF1C 1.11685 2.10933 3.33456 
Q13263 Transcription intermediary factor 1-beta TRIM28 0.867331 1.90373 2.95866 
Q3V6T2 Girdin CCDC88A 0.981046 1.86711 2.40064 
P23258 Tubulin gamma-1 chain TUBG1 0.693187 1.63586 2.83976 
Q8IV48 3-5 exoribonuclease 1 ERI1 0.93069 1.46739 3.46771 
O15084 Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit A ANKRD28 1.04204 0.864303 4.21767 
Q92974 Rho guanine nucleotide exchange factor 2 ARHGEF2 1.0197 0.829202 4.22529 

Proteins identified for Imp13/Imp13+Ran 
Q9BPX7 UPF0415 protein C7orf25 C7orf25 3.80688 0.642 3.00728 
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Uniprot 
ID Protein Name Gene  

log2(Imp13/ 
Imp13+Ran) 

log2(Imp13/ 
Imp13+Ubc9) 

-log 
(p value)* 

O00303 Eukaryotic translation initiation factor 3 subunit F EIF3F 1.71919 -0.0768488 1.84627 
O75821 Eukaryotic translation initiation factor 3 subunit G EIF3G 1.63573 0.0269878 1.74379 
Q14152 Eukaryotic translation initiation factor 3 subunit A EIF3A 1.62644 -0.137368 1.75614 
O15479 Melanoma-associated antigen B2 MAGEB2 1.53793 -0.195129 1.57917 
Q7L2H7 Eukaryotic translation initiation factor 3 subunit M EIF3M 1.50969 -0.00783382 1.74761 
P05783 Keratin, type I cytoskeletal 18 KRT18 1.4847 2.92434 1.59389 
P55884 Eukaryotic translation initiation factor 3 subunit B EIF3B 1.47532 -0.140885 1.88281 
P36578 60S ribosomal protein L4 RPL4 1.41764 -0.229922 1.52031 
Q9NSD9 Phenylalanine--tRNA ligase beta subunit FARSB 1.41105 -0.0168935 1.46055 

Q53EL6 Programmed cell death protein 4** PDCD4 1.38179 -0.239508 1.9684 
Q9P0J7 E3 ubiquitin-protein ligase KCMF1 KCMF1 1.38113 -0.366198 2.02826 
P60228 Eukaryotic translation initiation factor 3 subunit E EIF3E 1.37905 0.0827138 1.74038 
C9J9K3 40S ribosomal protein SA RPSA 1.35307 -0.143419 1.56352 
Q99613 Eukaryotic translation initiation factor 3 subunit C EIF3C 1.32125 -0.0816751 1.70334 
P39023 60S ribosomal protein L3 RPL3 1.30222 -0.244874 1.51126 
Q9Y262 Eukaryotic translation initiation factor 3 subunit L EIF3L 1.28118 -0.0190674 1.77652 
Q13347 Eukaryotic translation initiation factor 3 subunit I EIF3I 1.20545 0.0620854 1.38953 
Q5T4S7 E3 ubiquitin-protein ligase UBR4 UBR4 1.12458 -0.358052 1.77364 
Q9Y285 Phenylalanine--tRNA ligase alpha subunit FARSA 1.10485 0.273047 1.68737 
Q99615 DnaJ homolog subfamily C member 7 DNAJC7 1.05021 -0.141127 2.01229 
Q13895 Bystin BYSL 0.812382 -0.246966 2.6437 
H7BXH2 Serine/threonine-protein phosphatase 6 regulatory subunit 3 PPP6R3 0.63477 0.492251 2.99464 

Proteins identified for Imp13/Imp13+Ubc9 
Q9NRG0 Chromatin accessibility complex protein 1 CHRAC1 0.417418 5.31296 3.99816 
Q9NRF9 DNA polymerase epsilon subunit 3 POLE3 0.168921 5.01915 2.80557 
Q9Y530 O-acetyl-ADP-ribose deacetylase 1 OARD1 -0.00054066 4.49774 2.52061 
Q9Y314 Nitric oxide synthase-interacting protein NOSIP 0.364505 4.48227 3.23087 
Q9NR33 DNA polymerase epsilon subunit 4 POLE4 -0.243075 3.91994 2.54084 
P62380 TATA box-binding protein-like protein 1 TBPL1 -0.318334 3.90187 2.173 
Q16513 Serine/threonine-protein kinase N2 PKN2 -0.2442 3.57229 4.13079 
Q15477 Helicase SKI2W SKIV2L 0.624186 3.46386 2.80251 
Q9GZS3 WD repeat-containing protein 61 WDR61 0.269134 3.43407 2.461 
P27540 Aryl hydrocarbon receptor nuclear translocator ARNT 0.470754 3.28838 2.69279 
Q96JG6 Coiled-coil domain-containing protein 132 CCDC132 0.120687 3.27985 2.09074 
Q9NRF2 SH2B adapter protein 1 SH2B1 0.95146 3.15032 3.11739 
Q5VIR6 Vacuolar protein sorting-associated protein 53 homolog VPS53 0.229217 3.07472 2.87329 
P23588 Eukaryotic translation initiation factor 4B EIF4B 0.283411 3.01306 2.62681 
Q9Y606 tRNA pseudouridine synthase A, mitochondrial PUS1 -0.255249 2.97562 2.86354 
P05783 Keratin, type I cytoskeletal 18 KRT18 1.4847 2.92434 2.4275 
J3KNC0 Transcription initiation factor IIA subunit 1 GTF2A1 -0.232213 2.86042 2.21091 

P52657 Transcription initiation factor IIA subunit 2** GTF2A2 -0.805258 2.83151 2.22288 
P53999 Activated RNA polymerase II transcriptional coactivator p15 SUB1 -1.50329 2.80937 2.53168 
Q9NQT8 Kinesin-like protein KIF13B KIF13B 0.839283 2.64362 3.32859 
Q8WUF5 RelA-associated inhibitor PPP1R13L 0.646154 2.61013 2.93803 
Q9P1Y5 Calmodulin-regulated spectrin-associated protein 3 CAMSAP3 -0.040654 2.58535 2.84022 
Q9BYX4 Interferon-induced helicase C domain-containing protein 1 IFIH1 -0.0877257 2.54065 2.77674 
E3W994 CLIP-associating protein 2 CLASP2 0.175809 2.52605 3.97909 
O60343 TBC1 domain family member 4 TBC1D4 0.433131 2.4178 3.09736 
Q9Y4H2 Insulin receptor substrate 2 IRS2 0.310145 2.35194 2.34747 
Q14157 Ubiquitin-associated protein 2-like UBAP2L 0.4474 2.19262 1.91864 
C9JZR2 Catenin delta-1 CTNND1 -0.535033 2.16381 2.70911 
P13984 General transcription factor IIF subunit 2 GTF2F2 -0.29533 2.1155 2.8392 
Q9UGJ1 Gamma-tubulin complex component 4 TUBGCP4 0.444484 2.07017 2.982 
P62136 Serine/threonine-protein phosphatase PP1-alpha catalytic subunit PPP1CA -0.0792858 2.05476 2.28248 
Q16204 Coiled-coil domain-containing protein 6 CCDC6 0.484694 2.05259 2.49215 
P61956 Small ubiquitin-related modifier  SUMO2,3,4 0.131713 2.04704 1.39415 
C9JEL3 Eukaryotic translation initiation factor 4E type 2 EIF4E2 -0.31437 1.98722 4.11817 
Q14693 Phosphatidate phosphatase LPIN1 LPIN1 0.468605 1.96606 2.188 
P62140 Serine/threonine-protein phosphatase PP1-beta catalytic subunit PPP1CB 0.168797 1.95883 1.34722 
H7C170 Uncharacterized methyltransferase WBSCR22 WBSCR22 0.484091 1.89476 2.03673 
Q9Y6R0 Numb-like protein NUMBL -0.260254 1.87456 2.35055 
Q7Z460 CLIP-associating protein 1 CLASP1 0.538826 1.86087 2.3655 
Q8TEW0 Partitioning defective 3 homolog PARD3 -0.15918 1.85178 2.34429 
Q86UU1 Pleckstrin homology-like domain family B member 1 PHLDB1 0.222936 1.80549 1.97365 
Q8WX93 Palladin PALLD 0.367969 1.74021 2.26034 

Q96F86 Enhancer of mRNA-decapping protein 3** EDC3 0.867101 1.72773 2.35559 
Q92620 Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 DHX38 0.403327 1.71743 2.29087 
Q3MHD2 Protein LSM12 homolog LSM12 -0.180633 1.712 2.40183 
Q14244 Ensconsin MAP7 -0.300793 1.69568 1.81708 
Q00403 Transcription initiation factor IIB GTF2B -1.80555 1.67293 1.43181 
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Uniprot 
ID Protein Name Gene  

log2(Imp13/ 
Imp13+Ran) 

log2(Imp13/ 
Imp13+Ubc9) 

-log 
(p value)* 

Q14919 Dr1-associated corepressor DRAP1 -0.434796 1.6483 2.10521 
Q9UI30 tRNA methyltransferase 112 homolog TRMT112 -0.31314 1.63061 1.77601 
P41743 Protein kinase C iota type PRKCI -0.36483 1.62035 2.48096 
P15924 Desmoplakin DSP 0.408405 1.61421 1.28908 
Q8ND56 Protein LSM14 homolog A LSM14A -0.890691 1.6105 2.63839 
P50548 ETS domain-containing transcription factor ERF ERF -0.875577 1.60979 2.9159 
P49757 Protein numb homolog NUMB -0.429043 1.60483 2.4028 
Q8WWI1 LIM domain only protein 7 LMO7 0.229279 1.59937 1.91315 
Q8IUD2 ELKS/Rab6-interacting/CAST family member 1 ERC1 0.257515 1.59886 2.05536 
O75420 PERQ amino acid-rich with GYF domain-containing protein 1 GIGYF1 -0.216063 1.59731 2.48073 
Q8NEY1 Neuron navigator 1 NAV1 -0.465412 1.59462 1.97797 
Q15427 Splicing factor 3B subunit 4 SF3B4 0.552802 1.57273 2.55564 
Q01658 Protein Dr1 DR1 -0.480059 1.54603 2.12448 
B7Z5N5 Mothers against decapentaplegic homolog 2 SMAD2 -0.961146 1.53707 2.66277 
B1ALK7 Rho guanine nucleotide exchange factor 7 ARHGEF7 0.906418 1.52958 2.17687 
Q08AD1 Calmodulin-regulated spectrin-associated protein 2 CAMSAP2 -0.240718 1.47753 2.89932 
P47813 Eukaryotic translation initiation factor 1A EIF1A -3.25237 1.42849 2.37898 
Q92900 Regulator of nonsense transcripts 1 UPF1 -1.15652 1.3723 2.60415 
B1AKN7 Nuclear factor 1 A-type NFIA 0.627497 1.36784 2.14935 
Q13435 Splicing factor 3B subunit 2 SF3B2 0.318339 1.35689 2.11956 
P61978 Heterogeneous nuclear ribonucleoprotein K HNRNPK -1.19892 1.3447 1.8493 
P48729 Casein kinase I isoform alpha CSNK1A1 -1.06365 1.31741 2.39073 
Q04917 14-3-3 protein eta YWHAH -0.337327 1.3135 2.25234 
P61981 14-3-3 protein gamma YWHAG -0.28702 1.31075 2.27926 
E7EV99 Alpha-adducin ADD1 -0.922004 1.30584 1.81035 
Q684P5 Rap1 GTPase-activating protein 2 RAP1GAP2 0.541901 1.28222 1.71409 
Q7Z3U7 Protein MON2 homolog MON2 0.758447 1.27967 1.61195 

Q13501 Sequestosome-1** SQSTM1 0.755231 1.26888 2.0583 
F5GWN5 Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit 

beta PIK3C2B -0.2512 1.26783 1.97628 
P26196 Probable ATP-dependent RNA helicase DDX6 DDX6 -0.713644 1.21929 3.03261 
Q9BXB4 Oxysterol-binding protein-related protein 11 OSBPL11 0.366041 1.19809 2.94503 
P31946 14-3-3 protein beta/alpha YWHAB -0.686851 1.16229 2.04505 
Q9P270 SLAIN motif-containing protein 2 SLAIN2 -1.01011 1.12969 1.70625 
P62258 14-3-3 protein epsilon YWHAE -0.501352 1.11888 2.19164 
Q96SU4 Oxysterol-binding protein-related protein 9 OSBPL9 0.370393 1.07767 2.34754 
P78344 Eukaryotic translation initiation factor 4 gamma 2 EIF4G2 0.29085 1.01729 2.88712 
Q14161 ARF GTPase-activating protein GIT2 GIT2 0.717892 1.00944 1.67464 
O60825 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 PFKFB2 -3.29633 1.00394 1.84653 
P27348 14-3-3 protein theta YWHAQ -0.922545 0.961431 1.82235 
P63104 14-3-3 protein zeta/delta YWHAZ -0.85652 0.961046 1.96388 
Q96HC4 PDZ and LIM domain protein 5 PDLIM5 -2.97543 0.955176 2.8885 
Q9BXB5 Oxysterol-binding protein-related protein 10 OSBPL10 0.238173 0.926031 2.18881 
P05549 Transcription factor AP-2-alpha TFAP2A -0.638872 0.924126 2.26235 
Q6ZSZ5 Rho guanine nucleotide exchange factor 18 ARHGEF18 -0.150335 0.919987 1.44517 
Q86W92 Liprin-beta-1 PPFIBP1 0.340308 0.889209 2.54334 
B7Z7P8 Eukaryotic peptide chain release factor subunit 1 ETF1 -1.00667 0.872366 1.67055 
P12956 X-ray repair cross-complementing protein 6 XRCC6 -0.977419 0.841513 1.51525 
P61326 Protein mago nashi homolog MAGOH -0.724602 0.814207 2.25492 
Q7Z2W4 Zinc finger CCCH-type antiviral protein 1 ZC3HAV1 0.701945 0.791835 2.22414 
O00571 ATP-dependent RNA helicase DDX3 DDX3 0.664858 0.780721 1.90872 
H0YM23 Ankyrin repeat domain-containing protein 17 ANKRD17 -0.532403 0.780196 2.383 
Q9UHR6 Zinc finger HIT domain-containing protein 2 ZNHIT2 0.501032 0.753856 2.71696 
P49368 T-complex protein 1 subunit gamma CCT3 -0.731554 0.739372 2.11106 
P06493 Cyclin-dependent kinase 1 CDK1 -1.34662 0.738885 2.26621 
O00743 Serine/threonine-protein phosphatase 6 catalytic subunit PPP6C 0.261494 0.71037 2.52078 

Proteins analyzed that were identified for both Imp13/Imp13+Ran & Imp13/Imp13+Ubc9 for two out of three SILAC experiments 

F2Z2T2 DNA repair protein complementing XP-A cells** XPA 0.783184 3.01102 1.11602 
Q9HCN4 GPN-loop GTPase 1 GPN1 0.535254 0.668491 1.38373 

Q9NW64 Pre-mRNA-splicing factor RBM22** RBM22 1.15759 1.93592 1.47532 
Q9H3P2 Negative elongation factor A NELFA 1.54779 2.50404 2.02116 
Q8WX92 Negative elongation factor B NELFB 1.47736 2.75735 1.84038 
Q8IXH7 Negative elongation factor C/D NELFCD 1.54033 2.70383 1.18886 
 
# proteins highlighted with color were tested in importin 13 overexpression experiments with bold and underlined proteins changing their subcellular distribution 
upon importin 13 coexpression: red: proteins enriched for Imp13/Imp13+Ran and Imp13/Imp13+Ubc9.; blue: proteins enriched only for Imp13/Imp13+Ran; 
orange: proteins enriched only for Imp13/Imp13+Ubc9; green: proteins enriched for Imp13/Imp13+Ran and Imp13/Imp13+Ubc9 in two out of three SILAC 
replicates; proteins labeled bold and black are known importin 13 import cargoes and the known export cargo eIF1A 
*right sided, one sample t-test (p≤0.01), which tested the hypothesis that the log2 SILAC ratios were not equal to the value zero 
**proteins were localized to the cytoplasm and not the nucleus upon importin 13 coexpression 
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Table S7: List of proteins identified as ambiguous importin 13 cargoes in SILAC screen (see 
section 3.3.3 for experimental details)# 

Uniprot 
ID Protein Name Gene  

log2(Imp13+Ran/ 
Imp13) 

log2(Imp13+Ran/ 
Imp13+Ubc9) 

log2(Imp13/ 
Imp13+Ran) 

log2(Imp13/ 
Imp13+Ubc9) 

P47813 Eukaryotic translation initiation factor 1A EIF1AX 3.25237 4.8423 -3.25237 1.42849 
Q96HC4 PDZ and LIM domain protein 5  PDLIM5 2.97543 3.80419 -2.97543 0.955176 

O60825 
6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase 2  PFKFB2 3.29633 3.83705 -3.29633 1.00394 

E7EV99 Alpha-adducin ADD1 0.922004 1.80595 -0.922004 1.30584 
P26196 Probable ATP-dependent RNA helicase DDX6 DDX6 0.713644 1.66241 -0.713644 1.21929 
P61978 Heterogeneous nuclear ribonucleoprotein K  HNRNPK 1.19892 2.05797 -1.19892 1.3447 
Q8ND56 Protein LSM14 homolog A  LSM14A 0.890691 2.15422 -0.890691 1.6105 
Q9P270 SLAIN motif-containing protein 2 SLAIN2 1.01011 1.95006 -1.01011 1.12969 
P06493 Cyclin-dependent kinase 1 CDK1 1.34662 2.27739 -1.34662 0.738885 
B7Z5N5 Mothers against decapentaplegic homolog SMAD2 0.961146 2.27677 -0.961146 1.53707 
B7Z7P8 Eukaryotic peptide chain release factor subunit 1  ETF1 1.00667 1.57229 -1.00667 0.872366 
P12956 X-ray repair cross-complementing protein 6  XRCC6 0.977419 1.37652 -0.977419 0.841513 
P50548 ETS domain-containing transcription factor ERF  ERF 0.875577 2.19828 -0.875577 1.60979 

P53999 
Activated RNA polymerase II transcriptional 
coactivator p15 SUB1 1.50329 4.967 -1.50329 2.80937 

Q00403 Transcription initiation factor IIB GTF2B 1.80555 3.2855 -1.80555 1.67293 
Q92900 Regulator of nonsense transcripts 1  UPF1 1.15652 2.18872 -1.15652 1.3723 

 
# protein labeled bold and black is a known importin 13 export cargo; protein labeled in green and underlined was validated as an export cargo in importin 13 
overexpression experiments 

 

 
Table S8: List of potential importin 13 export cargoes identified in SILAC screen 
(log2(Imp13+Ran/Imp13) > 0.5 for all three experimental replicates, see section 3.3.3 for 
experimental details)# 

Uniprot 
ID Protein Name Gene  

log2(Imp13+Ran/ 
Imp13) 

log2(Imp13+Ran/ 
Imp13+Ubc9) 

-log 
(p value)* 

log2(Imp13+Ran/Imp13) ≥ 3.0 
P43487 Ran-specific GTPase-activating protein RANBP1 5.38648 5.32265 1.81783 
O00442 RNA 3-terminal phosphate cyclase RTCA 4.57597 5.59694 2.50708 
P39748 Flap endonuclease 1 FEN1 4.43566 3.9402 1.84603 
Q6IPR3 tRNA wybutosine-synthesizing protein 3 homolog TYW3 4.26835 4.34712 2.42506 
P27695 DNA-(apurinic or apyrimidinic site) lyase APEX1 4.12269 3.50792 2.09237 
Q9H3H3 UPF0696 protein C11orf68 C11orf68 4.07843 3.406 1.75539 
Q86W56 Poly(ADP-ribose) glycohydrolase PARG 3.89607 2.94416 2.03045 
P37108 Signal recognition particle 14 kDa protein SRP14 3.77885 4.36023 3.05751 
Q96PZ0 Pseudouridylate synthase 7 homolog PUS7 3.7069 2.6616 1.93934 
P35241 Radixin RDX 3.61814 3.22884 2.60103 
O94829 Importin-13 IPO13 3.56757 2.26277 1.28052 
Q08J23 tRNA (cytosine(34)-C(5))-methyltransferase NSUN2 3.56745 2.93758 2.29027 
P54577 Tyrosine--tRNA ligase, cytoplasmic YARS 3.56152 3.04854 2.04963 
P84077 ADP-ribosylation factor 1 ARF1;ARF3 3.54006 3.5376 2.09902 
Q32Q12 Nucleoside diphosphate kinase NME1-NME2 3.46541 3.61361 2.03003 
P08237 6-phosphofructokinase, muscle type PFKM 3.44466 3.14856 1.96288 
Q8WWH5 Probable tRNA pseudouridine synthase 1 TRUB1 3.41881 3.07742 2.07842 
B5MCF9 Pescadillo homolog PES1 3.37922 3.12792 1.77702 
F8VZ49 Heterogeneous nuclear ribonucleoprotein A1 HNRNPA1 3.33691 3.12131 1.60299 
O60825 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 PFKFB2 3.29633 3.83705 1.98737 
P47813 Eukaryotic translation initiation factor 1A EIF1A 3.25237 4.8423 4.24736 

log2(Imp13+Ran/Imp13) ≥ 1.5 
Q96HC4 PDZ and LIM domain protein 5 PDLIM5 2.97543 3.80419 2.37063 
H0YA96 Heterogeneous nuclear ribonucleoprotein D0 HNRNPD 2.96732 2.53505 2.24646 
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Uniprot 
ID Protein Name Gene  

log2(Imp13+Ran/ 
Imp13) 

log2(Imp13+Ran/ 
Imp13+Ubc9) 

-log 
(p value)* 

P26038 Moesin MSN 2.95718 3.0089 1.27479 
O95347 Structural maintenance of chromosomes protein 2 SMC2 2.93072 2.13327 2.17994 
P13010 X-ray repair cross-complementing protein 5 XRCC5 2.82663 1.82907 2.72781 
Q6VY07 Phosphofurin acidic cluster sorting protein 1 PACS1 2.82146 2.83474 2.62546 
Q7Z4S6 Kinesin-like protein KIF21A KIF21A 2.78632 2.54737 2.35845 
O75116 Rho-associated protein kinase 2 ROCK2 2.78412 2.10553 2.80105 
Q8TBB5 Kelch domain-containing protein 4 KLHDC4 2.77381 2.83467 1.84029 
Q9NTK5 Obg-like ATPase 1 OLA1 2.76445 2.21738 3.92603 
Q9UK59 Lariat debranching enzyme DBR1 2.6774 2.10752 2.66408 
Q9BQ52 Zinc phosphodiesterase ELAC protein 2 ELAC2 2.60043 1.21415 1.88731 
O75534 Cold shock domain-containing protein E1 CSDE1 2.52311 2.63836 1.87994 
P15311 Ezrin EZR 2.48226 1.67527 1.48324 
Q9Y3F4 Serine-threonine kinase receptor-associated protein STRAP 2.40696 2.44099 1.68925 
Q9BPX3 Condensin complex subunit 3 NCAPG 2.29883 2.17429 2.48105 
Q5VTE0 Putative elongation factor 1-alpha-like 3 EEF1A1P5 2.29715 1.93896 1.87181 
Q15631 Translin TSN 2.2224 2.3705 2.27251 
P09661 U2 small nuclear ribonucleoprotein A SNRPA1 2.21552 2.5631 1.62974 
P25205 DNA replication licensing factor MCM3 MCM3 2.2095 1.8214 2.44116 
P36915 Guanine nucleotide-binding protein-like 1 GNL1 2.14833 2.18778 1.93622 
P24534 Elongation factor 1-beta EEF1B2 1.97594 1.76944 1.40369 
Q96K76 Ubiquitin carboxyl-terminal hydrolase 47 USP47 1.95828 0.601034 2.78035 
Q7KZF4 Staphylococcal nuclease domain-containing protein 1 SND1 1.93858 0.886815 2.02139 
Q9NRF8 CTP synthase 2 CTPS2 1.91466 -0.496447 2.31617 
Q66K74 Microtubule-associated protein 1S MAP1S 1.89109 1.42357 2.27209 
O00203 AP-3 complex subunit beta-1 AP3B1 1.86118 0.904195 1.35445 
P20290 Transcription factor BTF3 BTF3 1.82755 1.8911 1.59095 
Q00403 Transcription initiation factor IIB GTF2B 1.80555 3.2855 1.75203 
Q9UHD8 Septin-9 SEPT9 1.75664 1.8294 1.67951 
H0YBP1 Focal adhesion kinase 1 PTK2 1.73248 1.95922 2.19702 
Q9BV44 THUMP domain-containing protein 3 THUMPD3 1.70402 1.51059 2.36607 
P41214 Eukaryotic translation initiation factor 2D EIF2D 1.63737 1.46164 1.72077 
P26639 Threonine--tRNA ligase, cytoplasmic TARS 1.60822 1.18292 0.947564 
E9PK01 Elongation factor 1-delta EEF1D 1.54923 0.900679 1.62074 
P53999 Activated RNA polymerase II transcriptional coactivator p15 SUB1 1.50329 4.967 1.49769 

log2(Imp13+Ran/Imp13) ≥ 0.5 
P26641 Elongation factor 1-gamma EEF1G 1.49928 0.940673 1.63639 
Q14008 Cytoskeleton-associated protein 5 CKAP5 1.48043 1.59961 1.7579 
Q01813 6-phosphofructokinase type C PFKP 1.47333 1.66786 1.54622 
P19338 Nucleolin NCL 1.4483 0.362352 2.02784 
P40227 T-complex protein 1 subunit zeta CCT6A 1.43843 1.00277 1.8217 
Q92499 ATP-dependent RNA helicase DDX1 DDX1 1.42124 0.879824 2.54251 
Q96CX2 BTB/POZ domain-containing protein KCTD12 KCTD12 1.39005 -1.47452 2.00427 
P27448 MAP/microtubule affinity-regulating kinase 3 MARK3 1.38863 1.12089 1.75108 
P17987 T-complex protein 1 subunit alpha TCP1 1.3804 0.963823 1.74164 
E9PC69 Serine/threonine-protein kinase MARK2 MARK2 1.37177 1.51294 1.69682 
P06493 Cyclin-dependent kinase 1 CDK1 1.34662 2.27739 1.64412 
P28482 Mitogen-activated protein kinase 1 MAPK1 1.345 1.27727 1.42906 
Q9HB71 Calcyclin-binding protein CACYBP 1.33717 1.79655 1.60171 
Q9UDY4 DnaJ homolog subfamily B member 4 DNAJB4 1.32143 0.922722 1.44451 
P34932 Heat shock 70 kDa protein 4 HSPA4 1.30134 0.723749 2.41801 
F8VZJ2 Nascent polypeptide-associated complex subunit alpha NACA 1.29685 0.884699 1.20009 
P62937 Peptidyl-prolyl cis-trans isomerase A PPIA 1.27194 2.3087 1.63458 
P27816 Microtubule-associated protein 4;Microtubule-associated protein MAP4 1.23621 0.871172 1.73817 
F8VPF3 Myosin light polypeptide 6 MYL6 1.22701 1.53608 1.13832 
Q3KQU3 MAP7 domain-containing protein 1 MAP7D1 1.22021 1.0111 1.40087 
Q06830 Peroxiredoxin-1 PRDX1 1.19912 1.609 1.87588 
P50990 T-complex protein 1 subunit theta CCT8 1.19894 0.809329 1.73926 
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Uniprot 
ID Protein Name Gene  

log2(Imp13+Ran/ 
Imp13) 

log2(Imp13+Ran/ 
Imp13+Ubc9) 

-log 
(p value)* 

P61978 Heterogeneous nuclear ribonucleoprotein K HNRNPK 1.19892 2.05797 3.26672 
B4E1C5 Histidine--tRNA ligase, cytoplasmic HARS 1.18682 0.84494 1.13876 
P46940 Ras GTPase-activating-like protein IQGAP1 IQGAP1 1.17839 0.84498 1.75069 
Q15366 Poly(rC)-binding protein 2 PCBP2 1.16694 0.795609 1.33161 
Q92900 Regulator of nonsense transcripts 1 UPF1 1.15652 2.18872 1.49077 
P17812 CTP synthase 1 CTPS1 1.1524 -0.202184 2.33023 
P50991 T-complex protein 1 subunit delta CCT4 1.12879 0.681773 1.73994 
P78371 T-complex protein 1 subunit beta CCT2 1.09746 0.654692 1.60643 
P48643 T-complex protein 1 subunit epsilon CCT5 1.08008 0.74469 1.64779 
P49327 Fatty acid synthase FASN 1.06924 0.653674 1.33252 
Q92598 Heat shock protein 105 kDa HSPH1 1.06503 0.487717 2.35444 
Q9P270 SLAIN motif-containing protein 2 SLAIN2 1.01011 1.95006 2.64552 
B7Z7P8 Eukaryotic peptide chain release factor subunit 1 ETF1 1.00667 1.57229 1.97514 
Q9Y4E8 Ubiquitin carboxyl-terminal hydrolase 15 USP15 0.979349 0.217313 2.22068 
P12956 X-ray repair cross-complementing protein 6 XRCC6 0.977419 1.37652 1.40745 
P19525 Interferon-induced, double-stranded RNA-activated protein kinase EIF2AK2 0.97668 0.410077 2.54683 
O14744 Protein arginine N-methyltransferase 5 PRMT5 0.967085 0.708434 1.96941 
Q15365 Poly(rC)-binding protein 1 PCBP1 0.964946 0.634472 2.96652 
B7Z5N5 Mothers against decapentaplegic homolog 2 SMAD2 0.961146 2.27677 1.96035 
E7EV99 Alpha-adducin ADD1 0.922004 1.80595 3.00514 
Q8ND56 Protein LSM14 homolog A LSM14A 0.890691 2.15422 3.56774 
O60506 Heterogeneous nuclear ribonucleoprotein Q SYNCRIP 0.883583 0.40863 1.48999 
P50548 ETS domain-containing transcription factor ERF ERF 0.875577 2.19828 1.38588 
P16989 Y-box-binding protein 3 YBX3 0.825159 0.469257 2.04904 
Q01105 Protein SET SET 0.81555 0.0277848 2.56819 
Q9BRS2 Serine/threonine-protein kinase RIO1 RIOK1 0.802329 1.13405 2.09427 
P78527 DNA-dependent protein kinase catalytic subunit PRKDC 0.724773 0.91282 1.92342 
O60524 Nuclear export mediator factor NEMF NEMF 0.721399 0.0807594 2.1625 
P26196 Probable ATP-dependent RNA helicase DDX6 DDX6 0.713644 1.66241 2.0097 
O00178 GTP-binding protein 1 GTPBP1 0.694846 1.07533 1.90228 
K7EN82 Glycylpeptide N-tetradecanoyltransferase 1 NMT1 0.651957 -0.137875 2.2303 

log2(Imp13+Ran/Imp13) ≥ 0.5 for only 2 out of 3 replicates 
Q9BQA1 Methylosome protein 50 WDR77 0.946335 0.381559 1.04849 

 
# proteins highlighted with color were tested in importin 13 overexpression experiments with bold and underlined proteins changing their subcellular distribution 
upon importin 13 coexpression: blue: proteins with an average log2(Imp13+Ran/Imp13) ≥ 3.0; orange: proteins with an average log2(Imp13+Ran/Imp13) ≥ 1.5; 
green: proteins with an average log2(Imp13+Ran/Imp13) ≥ 0.5.; proteins labeled bold and black are known importin 13 export cargoes 
*right sided, one sample t-test (p≤0.01), which tested the hypothesis that the log2 SILAC ratios were not equal to the value zero 

 

 
Table S9: Importin 13 cargo candidates identified in SILAC screen and by mass 
spectrometry in section 3.3.1 (see section 3.3.1 and 3.3.3 for experimental details)# 

Uniprot ID Protein Name Gene  
Identified as export cargoes 

P49327 Fatty acid synthase  FASN 
P08237 ATP-dependent 6-phosphofructokinase, muscle type PFKM 
P34932 Heat shock 70 kDa protein 4  HSPA4 
P17812 CTP synthase 1 CTPS1 
P17987 T-complex protein 1 subunit alpha  TCP1 
Q01813 ATP-dependent 6-phosphofructokinase, platelet type PFKP 
Q9Y4E8 Ubiquitin carboxyl-terminal hydrolase 15 USP15 
P47813 Eukaryotic translation initiation factor 1A EIF1AX 
P84077 ADP-ribosylation factor 1 ARF1 
Q92598 Heat shock protein 105 kDa HSPH1 
Q15366 Poly(rC)-binding protein 2 PCBP2 
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Uniprot ID Protein Name Gene  
P19338 Nucleolin NCL 
O00178 GTP-binding protein 1 GTPBP1 
Q7KZF4 Staphylococcal nuclease domain-containing protein 1  SND1 
Q9Y3F4 Serine-threonine kinase receptor-associated protein  STRAP 
Q9UDY4 DnaJ homolog subfamily B member 4  DNAJB4 
Q9BV44 THUMP domain-containing protein 3 THUMPD3 
O75116 Rho-associated protein kinase 2 ROCK2 
O60506 Heterogeneous nuclear ribonucleoprotein Q SYNCRIP 

Identified as import cargoes 
Q92538 Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1  GBF1 
Q7Z3U7 Protein MON2 homolog  MON2 
Q9NRF9 DNA polymerase epsilon subunit 3 POLE3 
P61326 Protein mago nashi homolog MAGOH 
O75420 GRB10-interacting GYF protein 1  GIGYF1 
Q9NRG0 Chromatin accessibility complex protein 1  CHRAC1 
Q9Y4H2 Insulin receptor substrate 2  IRS2 
Q8WUF5 RelA-associated inhibitor  PPP1R13L 
P27540 Aryl hydrocarbon receptor nuclear translocator  ARNT 
Q7Z460 CLIP-associating protein 1  CLASP1 
Q16204 Coiled-coil domain-containing protein 6 CCDC6 
Q9P1Y5 Calmodulin-regulated spectrin-associated protein 3 CAMSAP3 
O15084 Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit A  ANKRD28 
Q8WX93 Palladin  PALLD 
Q6PGP7 Tetratricopeptide repeat protein 37 TTC37 
Q8IUD2 ELKS/Rab6-interacting/CAST family member 1  ERC1 
O00743 Serine/threonine-protein phosphatase 6 catalytic subunit PPP6C 
Q92974 Rho guanine nucleotide exchange factor 2  ARHGEF2 
C9JZR2 Catenin delta-1 CTNND1 
Q15477 Helicase SKI2W  SKIV2L 
Q5T4S7 E3 ubiquitin-protein ligase UBR4 UBR4 
Q7L2H7 Eukaryotic translation initiation factor 3 subunit M EIF3M 
P39023 60S ribosomal protein L3 RPL3 
Q9GZS3 WD repeat-containing protein 61 WDR61 
P55884 Eukaryotic translation initiation factor 3 subunit B  EIF3B 
Q16513 Serine/threonine-protein kinase N2  PKN2 
Q92888 Rho guanine nucleotide exchange factor 1 ARHGEF1 
Q96JG6 Syndetin VPS50 
Q7Z2W4 Zinc finger CCCH-type antiviral protein 1 ZC3HAV1 
P61981 14-3-3 protein gamma  YWHAG 
P23258 Tubulin gamma-1 chain  TUBG1 
B1ALK7 Rho guanine nucleotide exchange factor 7 ARHGEF7 
Q9BYX4 Interferon-induced helicase C domain-containing protein 1  IFIH1 
Q9NR33 DNA polymerase epsilon subunit 4 POLE4 
Q13347 Eukaryotic translation initiation factor 3 subunit I  EIF3I 
P60228 Eukaryotic translation initiation factor 3 subunit E EIF3E 
Q86UU1 Pleckstrin homology-like domain family B member 1  PHLDB1 
Q5VIR6 Vacuolar protein sorting-associated protein 53 homolog VPS53 
Q9Y530 O-acetyl-ADP-ribose deacetylase 1 OARD1 
P31946 14-3-3 protein beta/alpha YWHAB 
Q9Y262 Eukaryotic translation initiation factor 3 subunit L  EIF3L 
Q12800 Alpha-globin transcription factor CP2 TFCP2 
H0YM23 Ankyrin repeat domain-containing protein 17 ANKRD17 
Q14919 Dr1-associated corepressor  DRAP1 
Q01658 Protein Dr1  DR1 
B1AKN7 Nuclear factor 1 NFIA 
Q8TEW0 Partitioning defective 3 homolog  PARD3 
 

#: Bold and black: known importin 13 cargoes; orange: proteins tested but not affected in importin 13 overexpression assays 
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Table S10: Importin 13 cargo candidates identified in SILAC screen and the Kimura et al., 
2017 study (76) (see section 3.3.3 for experimental details)# 

Uniprot ID Protein Name Gene  
Identified as ambiguous importin 13 cargoes 

Q96HC4 PDZ and LIM domain protein 5  PDLIM5 
P47813 Eukaryotic translation initiation factor 1A EIF1AX 
P26196 Probable ATP-dependent RNA helicase DDX6  DDX6 
P06493 Cyclin-dependent kinase 1 CDK1 

Identified as importin 13 export cargoes 
Q9Y3F4 Serine-threonine kinase receptor-associated protein  STRAP 
Q9NTK5 Obg-like ATPase 1 OLA1 
P16989 Y-box-binding protein 3 YBX3 
P62937 Peptidyl-prolyl cis-trans isomerase A PPIA 
P24534 Elongation factor 1-beta  EEF1B2 
Q15366 Poly(rC)-binding protein 2 PCBP2 
P26641 Elongation factor 1-gamma  EEF1G 
P20290 Transcription factor BTF3  BTF3 
Q9Y4E8 Ubiquitin carboxyl-terminal hydrolase 15  USP15 
P27816 Microtubule-associated protein 4 MAP4 
P49327 Fatty acid synthase FASN 

Identified as importin 13 import cargoes 
P52657 Transcription initiation factor IIA subunit 2  GTF2A2 
P61326 Protein mago nashi homolog MAGOH 
Q9NRG0 Chromatin accessibility complex protein 1  CHRAC1 
Q9NRF9 DNA polymerase epsilon subunit 3  POLE3 
Q14247 Src substrate cortactin  CTTN 
P61956 Small ubiquitin-related modifier 2  SUMO2 
Q14157 Ubiquitin-associated protein 2-like UBAP2L 
Q9Y262 Eukaryotic translation initiation factor 3 subunit L  EIF3L 
Q99613 Eukaryotic translation initiation factor 3 subunit C  EIF3C 
Q14244 Ensconsin  MAP7 
P23588 Eukaryotic translation initiation factor 4B  EIF4B 
P78344 Eukaryotic translation initiation factor 4 gamma 2 EIF4G2 
Q7Z2W4 Zinc finger CCCH-type antiviral protein 1  ZC3HAV1 
 

#: Bold and black: known importin 13 cargoes; bold and blue: proteins validated in this study as importin 13 cargo candidates using importin 13 

overexpression assays; orange: proteins tested but not affected in importin 13 overexpression assays 

 

 



Appendix 

208 

 



Appendix 

209 

Figure S5: Effect of untagged importin 13 overexpression on the subcellular distribution of 
HA-tagged SILAC cargo candidates. HeLa P4 cells were transiently cotransfected with plasmids 
coding for HA-tagged proteins form the SILAC screen, GFP-GST-Ubc9 or eIF1A-GFP and 
untagged importin 13 or an empty control vector (pcDNA3.1) using the calcium phosphate method. 
HA-tagged substrates and untagged importin 13 were visualized by indirect immunofluorescence 
with an anti-HA and anti-importin 13 antibody, respectively. Note that the endogenous importin 13 
levels are not high enough to be detected by the importin 13 antibody. See section 3.3.3.4.3 for 
details. The scale bars correspond to 20 µm.  

 

 

Table S11: Overlap of importin 13 and Crm1 cargo candidates# (see section 3.3.3.4.3 for 
details) 

Uniprot ID Protein Name Gene  
Identified as ambiguous importin 13 cargoes 

P50548 ETS domain-containing transcription factor ERF  ERF 
P26196 Probable ATP-dependent RNA helicase DDX6 DDX6 
Q8ND56 Protein LSM14 homolog A LSM14A 
Q96HC4 PDZ and LIM domain protein 5 PDLIM5 
Q9P270 SLAIN motif-containing protein 2 SLAIN2 
Q92900 Regulator of nonsense transcripts 1  UPF1 

Identified as importin 13 export cargoes 
Q9UHD8 Septin-9 SEPT9 
O00203 AP-3 complex subunit beta-1  AP3B1 
O75534 Cold shock domain-containing protein E1  CSDE1 
Q9UK59 Lariat debranching enzyme DBR1 
Q9NRF8 CTP synthase 2 CTPS2 
P09661 U2 small nuclear ribonucleoprotein A' SNRPA1 
Q8WWH5 Probable tRNA pseudouridine synthase 1  TRUB1 
Q9Y3F4 Serine-threonine kinase receptor-associated protein  STRAP 
Q96K76 Ubiquitin carboxyl-terminal hydrolase 47 USP47 
Q9BRS2 Serine/threonine-protein kinase RIO1 RIOK1 

Identified as importin 13 import cargoes 
Q12800 Alpha-globin transcription factor CP2 TFCP2 
Q7Z2W4 Zinc finger CCCH-type antiviral protein 1  ZC3HAV1 
Q13895 Bystin BYSL 
P49757 Protein numb homolog  NUMB 
Q9Y6R0 Numb-like protein  NUMBL 
Q9P0J7 E3 ubiquitin-protein ligase KCMF1 KCMF1 
Q9UHR6 Zinc finger HIT domain-containing protein 2 ZNHIT2 
Q14693 Phosphatidate phosphatase LPIN1  LPIN1 
Q96F86 Enhancer of mRNA-decapping protein 3  EDC3 
Q13501 Sequestosome-1** SQSTM1 
P60228 Eukaryotic translation initiation factor 3 subunit E EIF3E 
P78344 Eukaryotic translation initiation factor 4 gamma 2 EIF4G2 
Q9Y4H2 Insulin receptor substrate 2 IRS2 
P48729 Casein kinase I isoform alpha  CSNK1A1 
P23588 Eukaryotic translation initiation factor 4B EIF4B 
Q3V6T2 Girdin  CCDC88A 
Q15025 TNFAIP3-interacting protein 1 TNIP1 
Q16204 Coiled-coil domain-containing protein 6 CCDC6 
Q9Y262 Eukaryotic translation initiation factor 3 subunit L EIF3L 
Q53EL6 Programmed cell death protein 4** PDCD4 
P13984 General transcription factor IIF subunit 2** GTF2F2 
Q99613 Eukaryotic translation initiation factor 3 subunit C EIF3C 
O00743 Serine/threonine-protein phosphatase 6 catalytic subunit PPP6C 
Q14157 Ubiquitin-associated protein 2-like  UBAP2L 
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Uniprot ID Protein Name Gene  
Q684P5 Rap1 GTPase-activating protein 2  RAP1GAP2 
Q8WUF5 RelA-associated inhibitor PPP1R13L 
O75420 GRB10-interacting GYF protein 1 GIGYF1 
Q7Z460 CLIP-associating protein 1  CLASP1 
Q08AD1 Calmodulin-regulated spectrin-associated protein 2 CAMSAP2 
P23258 Tubulin gamma-1 chain  TUBG1 
Q9GZS3 WD repeat-containing protein 61 WDR61 
Q14C86 GTPase-activating protein and VPS9 domain-containing protein 1  GAPVD1 
P41743 Protein kinase C iota type  PRKCI 
Q92888 Rho guanine nucleotide exchange factor 1  ARHGEF1 
P61981 14-3-3 protein gamma YWHAG 
Q5T4S7 E3 ubiquitin-protein ligase UBR4  UBR4 
O00571 ATP-dependent RNA helicase DDX3X DDX3X 
P36578 60S ribosomal protein L4 RPL4 
Q8IV48 3'-5' exoribonuclease 1  ERI1 
Q86UU1 Pleckstrin homology-like domain family B member 1 PHLDB1 
 
# proteins labeled bold and black are known importin 13 cargoes; proteins highlighted with color were tested in importin 13 overexpression 
experiments with bold and underlined proteins changing their subcellular distribution upon importin 13 coexpression. Export candidates: 
orange: proteins with an average log2(Imp13+Ran/Imp13) ≥ 1.5. Import candidates: red: proteins enriched for Imp13/Imp13+Ran and 
Imp13/Imp13+Ubc9.; blue: proteins enriched only for Imp13/Imp13+Ran; orange: proteins enriched only for Imp13/Imp13+Ubc9; green: 
proteins enriched for Imp13/Imp13+Ran and Imp13/Imp13+Ubc9 in two out of three SILAC replicates. 
**proteins were localized to the cytoplasm and not the nucleus upon importin 13 coexpression 
 

 
Table S12: Overlap importin 13 and importin 5 cargo candidates# (see section 3.3.3.4.3 for 
details) 

Uniprot ID Protein Name Gene  
Identified as ambiguous importin 13 cargoes 

Q8ND56 Protein LSM14 homolog A  LSM14A 
P47813 Eukaryotic translation initiation factor 1A EIF1AX 
Q96HC4 PDZ and LIM domain protein 5 PDLIM5 
P06493 Cyclin-dependent kinase 1 CDK1 
P26196 Probable ATP-dependent RNA helicase DDX6 DDX6 
Q92900 Regulator of nonsense transcripts 1  UPF1 

Identified as importin 13 export cargoes 
Q14008 Cytoskeleton-associated protein 5 CKAP5 
Q9Y3F4 Serine-threonine kinase receptor-associated protein STRAP 
P24534 Elongation factor 1-beta EEF1B2 
P20290 Transcription factor BTF3 BTF3 
P26641 Elongation factor 1-gamma  EEF1G 
P43487 Ran-specific GTPase-activating protein RANBP1 
Q3KQU3 MAP7 domain-containing protein 1 MAP7D1 
P16989 Y-box-binding protein 3  YBX3 
O00442 RNA 3'-terminal phosphate cyclase RTCA 
Q9NTK5 Obg-like ATPase 1 OLA1 
Q15366 Poly(rC)-binding protein 2 PCBP2 
P27816 Microtubule-associated protein 4  MAP4 
Q8TBB5 Kelch domain-containing protein 4 KLHDC4 
Q7KZF4 Staphylococcal nuclease domain-containing protein 1 SND1 

Identified as importin 13 import cargoes 
P78344 Eukaryotic translation initiation factor 4 gamma 2  EIF4G2 
Q8WWI1 LIM domain only protein 7  LMO7 
Q96SU4 Oxysterol-binding protein-related protein 9 OSBPL9 
Q14157 Ubiquitin-associated protein 2-like  UBAP2L 
P23588 Eukaryotic translation initiation factor 4B  EIF4B 
Q14247 Src substrate cortactin CTTN 
O00571 ATP-dependent RNA helicase DDX3X  DDX3X 
Q9NSD9 Phenylalanine--tRNA ligase beta subunit  FARSB 
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Uniprot ID Protein Name Gene  
Q5T4S7 E3 ubiquitin-protein ligase UBR4 UBR4 
P60228 Eukaryotic translation initiation factor 3 subunit E EIF3E 
Q99613 Eukaryotic translation initiation factor 3 subunit C  EIF3C 
Q9Y262 Eukaryotic translation initiation factor 3 subunit L  EIF3L 
 
# proteins labeled bold and black are known importin 13 cargoes; proteins highlighted with color were tested in importin 13 overexpression 
experiments with bold and underlined proteins changing their subcellular distribution upon importin 13 coexpression. Export candidates: blue: 
proteins with an average log2(Imp13+Ran/Imp13) ≥ 3.0; orange: proteins with an average log2(Imp13+Ran/Imp13) ≥ 1.5. Import candidates: 
orange: proteins enriched only for Imp13/Imp13+Ubc9. 
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Abbreviations 
 

A549 transformed adenocarcinoma cell line 
aa amino acid 
AP aprotinin 
APS ammonium persulfate 
Arg arginine 
Arg-6:HCl 13C6-L-arginine HCl 
Arg-10:HCl 13C6

15N4-L-arginine HCl   
Asp aspartic acid 
ATP  adenosine-5-triphosphate 
bp  base pair 
BSA  bovine serum albumin 
cDNA complementary DNA 
Crm1 chromosome region maintenance 1 
C-terminus carboxy-terminus 
D aspartic acid 
DAPI 4’,6-diamidino-2-phenylindole 
DNA desoxyribonucleic acid 
DMEM  Dulbecco’s modified eagles medium 
DMSO dimethyl sulfoxide 
dNTPs  2’-desoxynucleoside-5’-triphosphate 
DTT  dithiothreitol 
E glutamic acid 
E. coli  Escherichia coli 
EDTA ethylenediaminetetraacetic acid 
ESI electrospray ionization 
EtOH ethanol 
FG phenylalanine glycine 
FLAG polypeptide protein tag with the sequence DYKDDDDK 
FRAP fluorescence recovery after photobleaching 
GAP GTPase-activating protein 
GDP guanosine-5’-diphosphate 
GFP green fluorescent protein 
Glu glutamic acid 
GO Gene Ontology 
GST glutathione S-transferase 
GTP guanosine-5’-triphosphate 
h heavy (SILAC) 
HA hemagglutinin 
HCl hydrochloric acid 
HEAT Huntingtin Elongation Factor A Subunit Tor 
HEPES 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 
His histidine tag 
HIV-1 human immunodeficiency virus type 1 
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hnRNP heterogeneous nuclear ribonucleoproteins 
HRP horseradish peroxidase 
IF immunofluorescence 
Imp13 importin 13 
IPO13 importin 13 gene 
IPTG isopropyl-beta-D-thiogalactopyranoside 
kDa kilo dalton 
l light (SILAC) 
LB Luria-Bertani 
LC liquid chromatography 
LMB Leptomycin B 
m medium (SILAC) 
M9 PY-NLS initially described for hnRNPA1 
MCS multiple cloning site 
mock control treated sample 
MS mass spectrometry 
MW molecular weight 
MWCO molecular weight cut-off 
m/z mass-to-charge ratio 
LC liquid chromatography  
LC-MS liquid chromatography – mass spectrometry 
LP leupeptin, pepstatin 
Lys-4D:2HCl 4,4,5,5-D4-L-Lysine 2HCl 
Lys-8:HCl 13C6

15N2-L-lysine HCl 
NA numerical aperture 
NE nuclear envelope 
NES nuclear export signal 
NFAT nuclear factor of activated T-cells 
NLS  nuclear localization signal 
NPC  nuclear pore complex 
NT non targeting 
N-terminus amino terminus 
NTF2 nuclear transport factor 2 
Nup nucleoporin 
PAGE  polyacrylamide gel electrophoresis 
PBS phosphate buffered saline 
PCR  polymerase chain reaction 
PMSF phenylmethylsulphonyl fluoride 
PLA proximity ligation assay 
PY-NLS NLS with RX2-5PY motif at its C-terminus and either a 

hydrophobic or basic motif at its N-terminus 
R arginine 
Ran Ras-related nuclear protein 
RCC1 regulator of chromatin condensation 1 
RFP red fluorescent protein 
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RNA ribonucleic acid 
RNAi RNA interference 
RP reversed phase 
rpm rotations per minute 
S. cerevisiae Saccharomyces cerevisiae 
SDS  sodium dodecyl sulphate 
SILAC stable isotope labeling with amino acids in cell culture 
siRNA  small interfering RNA 
SPN1 snurportin 1 
SUMO small ubiquitin-like modifier 
SV40 simian virus 40 
tev TEV-protease cleavage site 
TAE Tris/ Acetate/ EDTA 
TAP Tip-associated protein 
TPB transport buffer 
Triton X-100 4-octylphenol polyethoxylate 
Tween 20 polyoxyethylene (20) sorbitan monolaurate 
UV ultraviolet 
v/v  volume per volume 
w/o without 
w/v weight per volume 
WB western blot 
WGA wheat germ agglutinin 
WT wild type 
ZZ protein tag (S. aureus protein A IgG-binding domain) 
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