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Abstract

We consider a class of Fell bundles over quasi-lattice ordered groups. We show that these are completely
determined by the positive fibres and that their cross sectional C*-algebras are relative Cuntz—Pimsner
algebras associated to simplifiable product systems of Hilbert bimodules. Conversely, we show that
such product systems can be naturally extended to Fell bundles and this correspondence is part of an
equivalence between bicategories. We also relate amenability for this class of Fell bundles to amenability
of quasi-lattice orders by showing that Fell bundles extended from free semigroups are amenable. A
similar result is proved for Baumslag—Solitar groups. Moreover, we construct a relative Cuntz—Pimsner
algebra of a compactly aligned product system as a quotient of the associated Nica—Toeplitz algebra.
We show that this construction yields a reflector from a bicategory of compactly aligned product
systems into its sub-bicategory of simplifiable product systems of Hilbert bimodules. We use this to
study Morita equivalence between relative Cuntz—Pimsner algebras.

In a second part, we let P be a unital subsemigroup of a group G. We propose an approach to
C*-algebras associated to product systems over P. We call the C*-algebra of a given product system &
its covariance algebra and denote it by A x¢ P, where A is the coefficient C*-algebra. We prove that
our construction does not depend on the embedding P — G and that a representation of A x¢ P is
faithful on the fixed-point algebra for the canonical coaction of G if and only if it is faithful on A.
We compare this with other constructions in the setting of irreversible dynamical systems, such as
Cuntz—Nica—Pimsner algebras, Fowler’s Cuntz—Pimsner algebra, semigroup C*-algebras of Xin Li and
Exel’s crossed products by interaction groups.
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Chapter 1

Introduction

This introduction explains the context of this thesis. Our main results are stated in Sections [I.4] [[.5]
and We have included here the statements of a few theorems, propositions as well as corollaries
that are our own results. Further results from this thesis mentioned in this introduction are highlighted
with italics.

1.1 Motivation: irreversible dynamical systems

The C*-algebra generated by the image of a homomorphism U: Z — U(H) from the integers into the
group of unitaries of a Hilbert space is just the closed *-subalgebra of B(H) generated by the single
unitary U;. Hence the universal C*-algebra for unitary representations of Z is the universal C*-algebra
generated by a single unitary. This is the C*-algebra C(T) of continuous functions on the unit circle T
with the inclusion function z: T — C as the unitary generator.

The group C*-algebra C*(G) of a discrete group G is defined to be the universal C*-algebra for
unitary representations of G. Every discrete group G has a canonical unitary representation A on the
Hilbert space ¢2(G), called left regular representation. This induces a *-homomorphism A: C*(G) —
B(¢2(@)) by universal property. The reduced group C*-algebra C’(G) is the image of C*(G) in B(¢2(G))
under A. The regular representation produces an isomorphism C*(G) = Ci(G) if and only if G is
amenable with respect to the usual definition of amenability in terms of existence of a left invariant
mean on £ (G).

If X is a locally compact space, a *-automorphism of Co(X) is equivalent to a homeomorphism
of X. Given a *-automorphism of a C*-algebra A, a covariant representation (w,U) of (A,Z, ) is a
*-homomorphism A — B(#) together with a unitary U in U(H) such that w(a(a)) = Un(a)U* for
all ¢ in A, where H is a Hilbert space. The crossed product A X, Z is the universal C*-algebra for
covariant representations of (A, Z, ). Any faithful representation of A on a Hilbert space H induces a
canonical regular representation (w,U) of (A, Z,«) in B(¢2(Z,H)) with 7 injective. The corresponding
representation of A x, Z is also injective. Since every C*-algebra can be faithfully represented on a
Hilbert space, it follows that A embeds into the crossed product A %, Z.

A C*-dynamical system (A, G, «), or simply a dynamical system, consists of a C*-algebra A, a
discrete group G and a group homomorphism « from G to the group of *-automorphisms of A. Given
a dynamical system, one can form the full and reduced crossed product C*-algebras. The first one,
denoted by A %, G, is a universal object. It is the universal C*-algebra for covariant representations
of (A, G, «). Here a covariant representation of (A, G, «) is a pair (7, U), where 7 is a representation
of A on a Hilbert space H and U: G — U(H) is a unitary representation, such that

m(ag(a)) = Ugﬂ(a)U;
forall a € A and g € G. The reduced crossed product A X, G, in turn, has a co-universal property. It
is the smallest C*-algebra for a certain class of covariant representations. It is concretely defined through
a reqular representation of (A, G, «) in B(¢2(G,H)), obtained as above from a faithful representation
of A on H. The corresponding *-homomorphism A — B(¢3(G, H)) is injective, so that A embeds into
both the full and reduced crossed product C*-algebras. If G is amenable, the regular representation
induces an isomorphism A X, G = A X, G.



1.2. C*-ALGEBRAS ASSOCIATED TO CORRESPONDENCES

Many technical issues arise when one tries to associate a C*-algebra to a single endomorphism of a
C*-algebra, so that it encodes the dynamics as in the above C*-constructions for reversible dynamical
systems. The usual notion of a covariant representation of (A, N, ) consists of a representation of A
on a Hilbert space H and an isometry v in B(#H) satisfying the covariance condition

m(a(a)) = vr(a)v* (1.1.1)

for all a € A. However, forces the image of ker o in the resulting crossed product to be trivial.
In addition, if A is unital and « is a unital endomorphism, the underlying isometry of a nondegenerate
covariant representation of (A4, N, «) will be a unitary, and one cannot expect it to have many covariant
representations unless « is a *-automorphism. At this point, a different approach is needed to treat
irreversible dynamical systems.

1.2 (C*-algebras associated to correspondences

A Hilbert C*-module is a generalisation of Hilbert spaces. In this more general setting, the (right)
inner product takes values in a C*-algebra A and is A-linear in the second variable. Thus a Hilbert
space is a Hilbert C-module. A correspondence £: A ~+ B between C*-algebras A and B consists of
a right Hilbert B-module with a nondegenerate left action of A implemented by a *-homomorphism
p: A — B(E), where B(E) is the C*-algebra of adjointable operators on £. Tt is called faithful if ¢ is
injective. If £ comes equipped with a left A-valued inner product so that ¢({(&|n))¢ = &£(n| () for
all £,m and (¢ in &, then we say that £ is a Hilbert A, B-bimodule. A Hilbert A, B-bimodule £ induces
an adjoint Hilbert B, A-bimodule £*.

A celebrated construction by Pimsner associates a C*-algebra Og¢ to a not necessarily invertible
faithful correspondence £: A ~ A |48]. This is now known as a Cuntz—Pimsner algebra. It is the
universal C*-algebra for representations of £ that satisfy a certain condition, now called Cuntz—Pimsner
covariance, on the ideal J = ¢~ 1(K(£)) < A. Here K(€) is the ideal of B(E) generated by all generalised
rank-1 operators on &, that is, the C*-algebra of compact operators on £. Pimsner’s C*-algebra includes
many interesting C*-algebras, such as crossed products by automorphisms and graph C*-algebras for
graphs with no sinks [30]. It also covers crossed products by extendible and injective endomorphisms
with hereditary range. The Cuntz—Pimsner algebra O¢ is a quotient of a universal object, namely the
Toeplitz algebra Te. This latter C*-algebra associated to £ was defined by Pimsner as the universal
C*-algebra for representations of £.

For a unital C*-algebra A and an endomorphism a: A — A, the work of Exel in [21] suggests that
one should be given a transfer operator L for (A, «) in order to construct a reasonable crossed product.
In fact, he was also inspired by Pimsner’s C*-construction because there is a correspondence A, over A
naturally associated to (A, a, L). Indeed, a continuous linear map L: A — A is a transfer operator if
it is positive and L(aa(b)) = L(a)b for all a,b in A. This gives rise to a correspondence Ay : A~ A
obtained after dividing out a null-space and taking the completion from the subspace Aa(1), under the
following structure: the left action is given by the multiplication on A, the right action is implemented
by a and the pre-inner product is defined by (ac(1) |ba(1)) = L(a*b). Exel’s C*-algebra T (4, «, L) is
precisely the Toepliz algebra of A, 1. In addition, his notion of redundancy corresponds to Cuntz-
Pimsner covariance for A, 1. So in case A, 1, is a faithful correspondence, the crossed product A x4 1 N
introduced in [21] coincides with the Cuntz—Pimsner algebra O as defined in [48]. Since Pimsner’s
work was devoted to faithful correspondences, it was unclear in general when A embeds into the crossed
product A x4 1 N.

For a non-faithful correspondence £, Pimsner’s C*-algebra may be zero. Muhly and Solel proposed
a construction of C*-algebras associated to (not necessarily faithful) correspondences by taking
universal C*-algebras for representations satisfying the covariance condition only on an ideal J < A
with J C o H(K(€)) [41]. In [29], Katsura provided necessary and sufficient conditions on the ideal J
for the universal representation of £ in O ¢ to be injective. Inspired by graph C*-algebras, among other
constructions, he analysed the relative Cuntz—Pimsner algebra O, ¢ with Jg = (ker ¢)* N~ (K(E)).
This C*-algebra has nice properties. First, the universal representation of £ in Oy, ¢ is injective.
Hence it encodes the correspondence structure of £. In addition, O, ¢ satisfies the gauge-invariant
uniqueness theorem, which asserts that a representation of O, ¢ in a C*-algebra B that is faithful on
the coefficient algebra A is also faithful on Oy, ¢, at least when the representation in question satisfies
a certain compatibility condition.
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In [11], Brownlowe and Raeburn then described the crossed product by an endomorphism a: A — A
of a unital C*-algebra relative to a transfer operator L as a relative Cuntz—Pimsner algebra. With this
interpretation at hand, they provided necessary and sufficient conditions for the universal representation
in A x4 1, N to be injective. They also applied gauge-invariant uniqueness theorems of relative Cuntz—
Pimsner algebras for Katsura’s ideal to prove uniqueness theorems for the crossed product. So relative
Cuntz-Pimsner algebras associated to correspondences turn out to be a very important tool to construct
and study C*-algebras out of irreversible dynamical systems.

1.3 Compactly aligned product systems

Roughly speaking, a product system may be regarded as an action of a semigroup by correspondences
over a C*-algebra. A product system over a semigroup P with unit element denoted by e is a
family of correspondences £ = (£,)pep with £ = A together with correspondence isomorphisms
Ep ®a Eq =2 Epg subject to certain axioms. Product systems were introduced in this context by Fowler
in [26], following the work of Arveson on continuous product systems of Hilbert spaces developed
in |7]. As for single correspondences, examples of product systems arise naturally from semigroups of
endomorphisms [26},38].

Fowler defined the Toeplitz algebra T¢ of a given product system £ as the universal C*-algebra
for representations of &£, thus generalising Toeplitz algebras of single correspondences. Following
Pimsner, he constructed the Cuntz-Pimsner algebra of a product system & = (£,),ep as the universal
C*-algebra for representations that are Cuntz-Pimsner covariant on J, = ¢, ' (K(&,)) for all p € P. As
in Pimsner’s original construction, Fowler’s Cuntz—Pimsner algebra might be trivial if £ is non-faithful.

Unlike the case of single correspondences, the Toeplitz algebra of a product system is in general too
big. For example, the universal C*-algebra for representations of the trivial bundle over N x N is not
nuclealﬂ(see [45]). This is precisely the universal C*-algebra generated by two commuting isometries.
So in order to define a reasonable universal object, one must impose additional conditions on the
representations of the underlying product system.

Nica considered a class of isometric representations of a semigroup arising from a quasi-lattice
order |47]. This is a semigroup P contained in a group, say P C G, so that the structure of the
pair (G, P) resembles that of (Z* N¥). More precisely, we have PN P~ = {e} and, with respect to
the partial order g1 < g2 & g7 1gs € P, two elements g1 and g in G with a common upper bound in P
also have a least upper bound g¢; V g2 in P. We say that (G, P) is a quasi-lattice ordered group. The
relations imposed by Nica on the representations of P arise naturally from its canonical representation
by isometries in B(¢3(P)). The universal C*-algebra for such representations, denoted by C*(G, P),
is now known as the Toeplitz algebra of (G, P). Nica also introduced a notion of amenability for
quasi-lattice ordered groups by saying that (G, P) is amenable if the regular representation of C*(G, P)
on fo(P) is faithful. Surprisingly, (F,F¥) is amenable, where F is a free group on a set of generators S
and F is the unital semigroup generated by S. This happens because C*(IF, FT) is considerably smaller
than the Toeplitz algebra associated to the trivial product system (Cuy)pep+. For example, C*(F,F™)
is spanned by elements of the form v,v; with p,q in F+.

The work of Nica described above together with the work of Laca and Raeburn [35] led Fowler
to consider a class of product systems over positive cones of quasi-lattice ordered groups, called
compactly aligned. He defined a notion of Nica covariance for representations of such product systems.
The universal C*-algebra for this class of representations is then called Nica—Toeplitz algebra and
denoted by N'Tg¢. For amenable systems, Fowler was able to characterise faithful representations of
this algebra [26, Theorem 7.2]. Also under an amenability assumption, a result deriving nuclearity
for a Nica—Toeplitz algebra from nuclearity of the underlying coefficient algebra was established
in [53, Theorem 6.3].

However, the problem of finding a C*-algebra that approximates the structure of a given compactly
aligned product system in an optimal way has not been completely solved. The question is: for a
compactly aligned product system & = (&,)pep, which quotient of the Nica—Toeplitz algebra N'T¢ gives
in an appropriate sense the smallest C*-algebra so that the representation of £ in the corresponding
quotient remains injective? Such a C*-algebra would be a co-universal object for Nica covariant
representations satisfying a certain compatibility condition, at least under an amenability assumption.

LA C*-algebra A is nuclear if for every C*-algebra B there exists a unique C*-norm on the tensor product A ® B.
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Answering the above question was the main objective of the work of Sims and Yeend in [55]. They
were able to associate a C*-algebra N'O¢ to a given compactly aligned product system &, called
Cuntz—Nica—Pimsner algebra, so that the universal representation of £ in NOg¢ is injective for a
large class of product systems [55, Theorem 4.1]. This is a quotient of the Nica—Toeplitz algebra
of £. Their notion of covariant representations is more technical than the usual Cuntz—Pimsner
covariance since it involves additional relations. Sims and Yeend proved that Cuntz—Nica—Pimsner
algebras include Cuntz—Krieger algebras of finitely aligned higher-rank graphs [55, Proposition 5.4]
and Katsura’s relative Cuntz—Pimsner algebras of single correspondences |55, Proposition 5.3]. The
analysis of co-universal properties for these algebras was provided in [15]. If either £ is faithful or the
representation of £ in N'Og¢ is injective and P is directed, then under an amenability assumption N'Og
satisfies a gauge-invariant uniqueness property. That is, in the appropriate setting a representation
of NOg is faithful if and only if it is faithful on A [15, Corollary 4.11].

Even though the universal representation of a compactly aligned product system &£ in NOg¢ is
injective for many examples, it might fail to be faithful even for proper product systems over totally
ordered semigroups such as the positive cone of Z x Z with the lexicographic order [55, Example
3.16]. In addition, |15, Example 3.9] shows that if P is not directedﬂ a representation of N'Og that
is faithful on A need not be faithful even for an amenable system. We address these problems in
Chapter [} we attach a C*-algebra A x¢ P to € so that A embeds into A x¢ P and given a surjective
*-homomorphism : N'T¢ — B that is injective on A, under the standard assumptions of compatibility
and amenability there exists a unique *-homomorphism ¢: B — A x¢ P making the diagram

NTe —Y . B
RN
AXgP

commute, where gx is the quotient map. The compatibility assumption will be explained in more
details in the subsequent section.

1.4 Fell bundles over quasi-lattice ordered groups

If a C*-algebra B carries a continuous action of the unit circle T, then many properties of B can be
derived from those of a certain C*-subalgebra, known as the fized-point algebra for the T-action. The
latter might be much smaller than B but, for instance, injectivity of representations of B in many
cases may be deduced from injectivity on this fixed-point algebra.

Let us illustrate this by an example. Let 7 denote the Toeplitz algebra. This is the Banach
subalgebra of B(/3(N)) generated by the unilateral shift S on ¢*(N) and its adjoint S*. Then T acts
continuously on 7 by

T > z+— Ady, € Aut(7),

where U, is the unitary in B(f2(N)) which sends a unit vector e; to z'e; for all i € N and Ady_(a) =
U.aU}. The closed subspace of T generated by the set {Si(S*)j| 1—j = n} coincides with

Tn={a € T|Ady, (a) = 2"a, Vz € T}.

These subspaces satisfy T, - T, € Ttn and 7.7 = T7_,, for all m,n in Z. There is a contractive
projection of 7 onto 7, that vanishes on 7, for m # n, given by a > fT z7"Ady, (a) dz. In addition,
T is the closure of the direct sum P, ., Tn. Any representation of 7 that is injective on 7o sends S to
a proper isometry, and hence is injective on 7 by Coburn’s Theorem.

The above facts also hold when one replaces T by any other compact abelian group and Z by
the corresponding dual group. A C*-algebra B acted upon by a compact abelian group I' may be
described as the closure of a direct sum of closed subspaces indexed by the dual group I'. There are
mutually orthogonal contractive projections {Eg}ge?, where Ej is the contractive projection of B onto

the corresponding subspace at g for each g in f, and the subspace at the unit element e of Tisa
C*-subalgebra of B. This provides B with an extra structure, so that many important properties of

2We say that P is directed if p V ¢ exists for all p,q € P.
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the associated fixed-point algebra are related to those of B.

What happens for non-abelian groups? A discrete group G always carries a comultiplication. This
is the *-homomorphism g : C*(G) = C*(G) ® C*(G) obtained from the unitary representation of G
in C*(G) ® C*(G) which sends g to ug ® ug, where uy denotes the image of g under the canonical
representation of G in C*(G). A full coaction of G on a C*-algebra B is an injective and nondegenerate
*-homomorphism §: B — B ® C*(G) satisfying the identity (§ ® idc+(g)) 0 ¢ = (idp ® dg) o 0.
Nondegeneracy means that B @ C*(G) is the closure of §(B)(B @ C*(G)). Here the term “full” is
related to the appearance of the full group C*-algebra of G instead of its reduced C*-algebra C:(G). If
a C*-algebra B comes equipped with a coaction of a discrete group G, then B is the closure of the
direct sum P . By, where By = {a € B|é(a) = a @ uy}. As above, By - By C By, and By = By_4
for all g,h € G, and there are contractive projections E,: B — By, so that F; =0 on By, if h # g. In
this case, we say that B is a topologically G-graded C*-algebra and the collection of subspaces { By} ¢ec
is a topological grading for B.

Unfortunately there might be many non-isomorphic C*-algebras with indistinguishable topological
G-grading. An important question to answer concerning a G-grading {B,}4c¢ is whether or not all of
the C*-algebras possessing { B, }4cc as a topological G-grading are isomorphic to each other in the
natural way. If the answer for this question is affirmative, in several cases many properties of the
larger C*-algebra may be derived from those of the C*-algebra B.. This is related to an amenability
condition, which we will explain below.

Loosely speaking, a family of Banach spaces (By)g4ee endowed with a multiplication

: (Bg)gEG X (Bg)geG - (BQ)QEG

and an involution operation *: (By)geq — (Bg)gec is a Fell bundle, also known as a C*-algebraic
bundle, if the triple ((Bg)g4eq, -, *) behaves as a G-grading for a C*-algebra. So, for example, it must
satisfy By - By C Bgn, Bj = By-1 and ||[b*b|| = [|b]|* for all g,h € G and b € B,.

One can naturally attach two C*-algebras to a given Fell bundle (By)geq. Its cross sectional
C*-algebra C* ((By)geq) is defined to be the universal C*-algebra for representations of (By)geq-
The reduced cross sectional C*-algebra C% ((By)geq) is constructed concretely through the regular
representation of (By)geq. Both C* ((Byg)geq) and C: ((By)geq) are topologically G-graded C*-algebras
with grading given by a copy of (By)gecq. The latter has a co-universal property because it is the smallest
C*-algebra whose topological G-grading is determined by a copy of the Fell bundle (Bg)g4cc. We then
say that (By)gec is amenable if its regular representation induces a *-isomorphism C* ((By)geq) =
C: ((Bg)gec)- So, up to canonical isomorphism, there is a unique topologically G-graded C*-algebra
whose grading is a copy of (Bg)geq. This is always so if G is an amenable group.

If g — o is an action of G' by *-automorphisms on a C*-algebra A, one can build a Fell bundle out
of the dynamical system (A4, G, «) by letting By = (A, g) for each g € G, that is, B, is a copy of A as
a Banach space. The multiplication on (Bg)gec is defined by convolution: (a, g) * (b, h) = (acy(b), gh),
for a,bin A and g, h in G. The involution operation (A, g) — (A, g *) sends (a,g) to (ay-1(a*),g™ ).
The crossed product A X, G coincides with the cross sectional C*-algebra of (By)4eq, while the reduced
crossed product A X, G is the reduced cross sectional C*-algebra C((By)g4ec). With some extra
effort, one can also associate a Fell bundle to a twisted partial action. Hence cross sectional C*-algebras
of Fell bundles include many C*-constructions built out of reversible dynamical systems. In particular,
Fell bundles may also be viewed as generalised group actions.

Given a Fell bundle (By)geq, each By is a Hilbert B.-module with right B.-module structure
determined by the multiplication on (By)gsec and inner product (£ |n) = {*n € B,, where “*” is the
involution operation on (By)geq. In fact, the Hilbert B.-module B, has more structure. It is also a
Hilbert Be-bimodule with left B.-module action implemented by multiplication on the left by elements
of B, and left inner product (£|n)) := £n*. So it corresponds to a partial action of G by Hilbert
bimodules over B..

Relative Cuntz—Pimsner algebras of single correspondences come with a continuous T-action, for
which the image of A under the universal representation lies in the fixed-point algebra. In [29], Oy, ¢
is shown to satisfy a gauge-invariant uniqueness theorem. That is, any representation of £ covariant
on Jg that is faithful on A and respects the topological Z-grading associated to the T-action is also
faithful on Oy, ¢ [29, Theorem 6.4]. In general, the canonical Z-grading of a relative Cuntz—Pimsner
algebra is always a semi-saturated Fell bundle, in the sense that B,, B, = By,4n if m,n >0 [1]. The
cross sectional C*-algebra of a semi-saturated Fell bundle over Z coincides with the crossed product
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of By by the Hilbert bimodule By, which in turn is a relative Cuntz—Pimsner algebra as considered
by Katsura. In particular, a semi-saturated Fell bundle over Z is generated by By and the Hilbert
bimodule B;. So, up to isomorphism, semi-saturated partial actions of Z by Hilbert bimodules over By
are in bijection with actions of N by Hilbert By-bimodules.

Thus relative Cuntz—Pimsner algebras are completely determined by the spectral subspaces 037 <
and O}’ ¢- In fact, the idea behind Pimsner’s original C*-construction was to approximate a correspon-
dence £: A~ A by a Hilbert bimodule O}: 02 ~» O2 in the optimal way. From (O2,0}) one can
explicitly build a Fell bundle (O%),ez by letting

; {(O}g)m it n >0,
O¢ = ®—-n .
(08)") if n <0,
where (Og)* is the Hilbert O2-bimodule adjoint to Of. The Cuntz—Pimsner algebra Og¢ is the cross
sectional C*-algebra of (OF)necz. Katsura’s relative Cuntz-Pimsner algebra has a similar description.
For a quasi-lattice ordered group (G, P), the Nica—Toeplitz algebra of a compactly aligned product
system &€ = (&,)pep carries a full coaction of G, obtained from a canonical Nica covariant representation
of & in N'Tg ® C*(G). This provides N'Tg with a topological G-grading {NT7}4ec, for which the
restriction to the positive fibres gives a product system (NTZ),cp. Such a product system has a
special feature, which we prove in Chapter [f] First, it is a compactly aligned product system of Hilbert
bimodules over N'T£. Secondly, it can be explicitly extended to a Fell bundle over G or, in other words,
to a partial action of G by Hilbert bimodules over N'7¢. The resulting Fell bundle is canonically
isomorphic to (N'T#)geq. These assertions follow from a stronger result, which we will describe now.
We follow the terminology of [19] and define notions of orthogonality and semi-saturatedness for
a Fell bundle over G. In one of our main results in Chapter [5} namely Theorem [5.1.8] we provide
sufficient conditions for a compactly aligned product system of Hilbert bimodules over P to extend to a
semi-saturated and orthogonal Fell bundle over G. We say that a product system of Hilbert bimodules
satisfying such conditions is simplifiable. The theorem in question has the following statement:

Theorem. Let (G, P) be a quasi-lattice ordered group and let £ = (E,)pep be a simplifiable product
system of Hilbert bimodules. There is a semi-saturated and orthogonal Fell bundle & = (fg)geg
extending the structure of product system of £, in the sense that

(i) there are isomorphisms jp: £, = ép of complex wvector spaces such that j.: A — & is a
*~isomorphism and jp(£)jq(n) = Jpq(tp,q(E @ 1)) for all p,q € P;

(ii) Jp(&)*dp(n) :Aje(<§|n>) for all & € &, and p € P, where *: £, — ép—l is the involution
operation on E.

Moreover, € is unique up to canonical isomorphism of Fell bundles.

As a consequence, the universal representation of a simplifiable product system of Hilbert bimodules
in the relative Cuntz—Pimsner algebra for the family of Katsura’s ideals is always injective. This
implies the following corollary:

Corollary. Let £ = (&,)pep be a simplifiable product system of Hilbert bimodules over A. For
each p € P, set I, .= (&,|&p)) and T = {I,},ep. Then the canonical *-homomorphism from A to
the relative Cuntz—Pimsner algebra Oz ¢ is an isomorphism onto the gauge-fized point algebra OF ¢.
Moreover, Of o = &, for all p € P.

In addition, we show that a Fell bundle that is semi-saturated and orthogonal comes from a
simplifiable product system of Hilbert bimodules. This gives an equivalence between a class of partial
actions of G by Hilbert bimodules and simplifiable actions of P. So we say that a semi-saturated and
orthogonal Fell bundle over G is extended from P. The cross sectional C*-algebra of a Fell bundle
extended from P can be described as a relative Cuntz—Pimsner algebra of a simplifiable product
system of Hilbert bimodules. For a Fell bundle over Z, orthogonality is vacuous and hence Fell bundles
extended from N are precisely semi-saturated Fell bundles as described above.

Proposition. Let (By)gecq be a Fell bundle that is semi-saturated and orthogonal with respect to (G, P).
Then B = (Bp)pep is a simplifiable product system of Hilbert bimodules. Its relative Cuntz—Pimsner
algebra Oz p is naturally isomorphic to the cross sectional C*-algebra of (By)gea-
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In Section we describe the cross sectional C*-algebra of a Fell bundle extended from F* as
a relative Cuntz—Pimsner of a single correspondence. This is used to establish amenability for such
Fell bundles. This fact is established in [19] under a separability assumption. Our approach does not
require such a hypothesis. We prove a similar result for Fell bundles extended from Baumslag—Solitar
semigroups BS(c,d)™ with ¢, d positive integers.

1.5 Bicategories of correspondences

In a bicategory, we have a category C(x,y) of arrows between two objects z and y instead of a set
of arrows. Associativity only holds up to isomorphisms of arrows and an object x has a unit arrow
only up to isomorphism. An arrow f: x — y is an equivalence, or is invertible, if there exists an
arrow g: y — x with isomorphisms go f =21, and fog=1,.

C*-algebras are the objects of the correspondence bicategory € introduced by Buss, Meyer and
Zhu in [14]. Arrows are correspondences between C*-algebras and 2-arrows are isomorphisms of
correspondences. The composition of arrows is the internal tensor product of correspondences.
Equivalences in € correspond to Morita equivalences between C*-algebras. So a Hilbert bimodule &£
over a C*-algebra A is an equivalence in € from (€ |&)) to (£|&). Since these are ideals in A, &
may be interpreted as a partial Morita equivalence of A. A saturated Fell bundle over a discrete
group G is then equivalent to a homomorphism from G to € |14 Theorem 3.3]. Saturatedness means
that By - B, = By, for all g, h in G. This supports the idea that Fell bundles are generalised group
actions.

Assuming that £ is a proper correspondence, that is, p(A4) C K(&), Albandik and Meyer provided
in [6] a description of Og = O4 ¢ as a colimit of a diagram in the correspondence bicategory. This is
generalised in Chapter [3| (see also [40]) to relative Cuntz—Pimsner algebras of (not necessarily proper)
correspondences by looking at another bicategory of correspondences, obtained from the bicategory
of homomorphisms, or “functors”, from N to € after some modifications. More explicitly, we define
a bicategory Q:Er whose objects are triples (A, &, J), where A is a C*-algebra, £ is a correspondence
over A, and J is an ideal in A that acts by compact operators on £. This is precisely the data needed to
define a relative Cuntz—Pimsner algebra. An arrow (F,V): (4,&,J) — (A1, &1, J1) consists of a proper
correspondence F: A ~» Ay with J-F C F-J; and a correspondence isomorphism V: EQaF & F® 4, E1.
The pair (F,V) is called a proper covariant correspondence.

The triples (A4, &, I¢) where & is a Hilbert A bimodule and I¢ is Katsura’s ideal for £ form a full
sub-bicategory of Clgr. which we denote by ngr’*. We establish the existence of a universal arrow

viaey: (A€ T) = (OFe, 0‘11,571—0},75)

from (A,&,J) to the inclusion Q:IR)IM — Qﬁlsr in Proposition Combining this with some general
results from bicategory theory, we show in Corollary that the pair ((99-75, (’)‘1]75) describes part of

a reflector from Q:Er onto Qigr,*. Roughly speaking, a reflector approximates a given object by an object
in the sub-bicategory in the optimal way. It is a left (bi)adjoint to the inclusion of the sub-bicategory.
So (93 £t (99, £~ (’)87 ¢ is indeed the best approximation of £: A ~» A by a Hilbert bimodule, satisfying
a certain covariance condition relying on the ideal J.

Given a quasi-lattice ordered group (G,P), we define a bicategory € in which objects are
triples (A4, &, J), where A is a C*-algebra, & is a compactly aligned product system and J = {J,,}pep is
a family of ideals in A with .J, C ¢, 1(K(,)) for all p € P. We consider a sub-bicategory of €” whose
objects are simplifiable product systems of Hilbert bimodules, which we denote by ¢£. We enrich
the correspondence between simplifiable product systems of Hilbert bimodules over P and Fell bundles
extended from P to an equivalence between €% and a certain bicategory of Fell bundles extended from P.
This equivalence is defined on objects by using the correspondence described in the previous section.
We apply this equivalence to show that, when one restricts to proper covariant correspondences, the
construction of relative Cuntz—Pimsner algebras as quotients of Nica—Toeplitz algebras gives a reflector
from QFI; onto €§r,*. In particular, this construction is functorial. Hence equivalences in Cg’r yield
Morita equivalences between the corresponding relative Cuntz—Pimsner algebras.

A semigroup of extendible and injective endomorphisms with hereditary range produces a product
system of Hilbert bimodules over P. We generalise the ideas of [42, Proposition 2.4] and characterise
the invertible covariant correspondences between the associated product systems. This is achieved in
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Proposition [5.4.9]

1.6 Covariance algebras of product systems

The theory of relative Cuntz—Pimsner algebras of product systems does not cover constructions such
as Cuntz—Krieger algebras of finitely aligned higher-rank graphs. The work of Exel in [19] suggests
that his notion of crossed products by semigroups of unital endomorphisms cannot be covered by
relative Cuntz—Pimsner algebras. As mentioned previously, if P is a subsemigroup of a group G
so that (G, P) is a quasi-lattice ordered group, Sims and Yeend introduced in [55] the so called
Cuntz-Nica-Pimsner algebra NOg¢ associated to a compactly aligned product system £ = (&,)pcp.
Their main goal was to associate a C*-algebra to a given compactly aligned product system satisfying
two properties: the representation of £ in NOg is injective on A, and a *-homomorphism from NOg
to a C*-algebra B is faithful on the fixed-point algebra for the canonical coaction of G on N'Og¢ if and
only if it is faithful on A. These are the conditions (A) and (B) of [55], respectively. Although Sims
and Yeend’s C*-construction suffices for a large class of product systems, the universal representation
of £ in NOg¢ may fail to be injective. In addition, N'Og might not fulfil the condition (B) above even
when it satisfies (A). It cannot handle product systems over semigroups that are not positive cones of
quasi-lattice orders.

In Chapter [6] we let P be a subsemigroup of a group G and construct a C*-algebra from a product
system & over P satisfying the above conditions (A) and (B). To do so, we look at the topological
G-grading {7 },eq of the Toeplitz algebra of £ coming from the canonical coaction of G. We analyse a
class of representations of 7¢ coming from quotients of the usual Fock representation of £ on @pe pEp-
Constructions of [5,[19,[34L|48] led us to look for a C*-algebra whose spectral subspace at g € G is an
inductive limit of quotients of 7¢ in such a way that the connecting maps are all injective. So we
consider the directed set consisting of finite subsets of G. After modifying the Cuntz—Nica—Pimsner
covariance condition and adapting it to this more general setting, we arrive at what we call strong
covariance. Although it explicitly involves elements of G, this notion of covariance does not depend
on the embedding P < G. In other words, different groups containing P as a subsemigroup produce
the same quotient of T¢. We refer to the universal C*-algebra for strongly covariant representations
of £ as its covariance algebra and denote it by A x¢ P. We show that the universal representation
of £ in A x¢ P is injective. In addition, A x¢ P satisfies condition (B): a representation of A x¢ P is
faithful on the fixed-point algebra for the canonical coaction of G if and only if it is faithful on the
coefficient algebra A. More precisely, the next is our main theorem in Chapter [6]

Theorem. Let P be a unital semigroup and let € = (Ep)pecp be a product system over P of
A-correspondences. Suppose that P is embeddable into a group. There is a C*-algebra A xg¢ P
associated to £ with a representation je: € — A xXg P such that the pair (A xg P,jg) has the following
properties:

(C1) A xg P is generated by je(E) as a C*-algebra and jg is strongly covariant in the sense of
Definition [6.1.2}, where the group G in question may be taken to be any group containing P as a
subsemigroup.

(C2) if = {Wp}pep is a strongly covariant representation of € in a C*-algebra B with respect to a

group containing P, then there is a unique *-homomorphism ’(Z)\Z AxgP — B such that 1Zij =Yy
for allp € P;

(C3) je is faithful and if G is a group with P C G as a subsemigroup, there is a canonical full
coaction of G on A xXg P so that a *-homomorphism A xg P — B is faithful on the fized-point
algebra (A xg P)° if and only if it is faithful on j.(A).

Up to canonical isomorphism, (A Xg P, je) is the unique pair with the properties (C1)—(C3).

The notion of Cuntz—Pimsner covariance introduced here is technical and in general difficult to
verify. However, this construction includes Fowler’s (relative) Cuntz—Pimsner algebra if £ is a proper
and faithful product system over a cancellative Ore monoid. It also includes relative Cuntz—Pimsner
algebras of simplifiable product systems of Hilbert bimodules for the family of Katsura’s ideals if (G, P)
is a quasi-lattice ordered group. For a compactly aligned product system &, we find an equivalent
notion of covariant representations that is considerably simpler to verify. We show that A xg¢ P
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coincides with N'Og if this latter C*-algebra also satisfies conditions (A) and (B). This happens when &
is faithful or the representation of £ in N'Og is injective and P is directed [15, Proposition 3.7].

Again only assuming that P is embeddable into a group, we construct a product system & as
in [5 Section 5] so that A xg P recovers the semigroup C*-algebra of Xin Li whenever the family of
constructible right ideals of P is independent (see |39, Definition 2.26]). In general, the covariance
algebra of such a product system corresponds to the semigroup C*-algebra C*gu)(P) in the notation
of [39]. In the last subsection, we assume that P is a reversible cancellative semigroup and describe a
class of Exel’s crossed products by interaction groups as covariance algebras. Thus our approach may
inspire further C*-constructions for irreversible dynamical systems.



Chapter 2

Fell bundles and coactions

This chapter introduces our main tools to study C*-algebras associated to product systems. We begin
with the definition of Fell bundles over discrete groups and the constructions of their full and reduced
cross sectional C*-algebras. In Section we focus on C*-algebras equipped with a topological grading.
This class of C*-algebras contains those algebras associated to Fell bundles. They arise naturally from
coactions of discrete groups. We will see that the reduced C*-algebra of a Fell bundle has a certain
co-universal property among topologically graded C*-algebras (see Theorem .

Our main references for this chapter are [18], [23] and [50]. We refer to |[43] for the basic theory of
C*-algebras, while some basic constructions concerning Hilbert modules can be found in Appendix [A]

2.1 Fell bundles

2.1.1 Cross sectional C*-algebra

Definition 2.1.1. A Fell bundle over a discrete group G consists of a collection of Banach spaces (By)gec
endowed with multiplication maps -: By X B, — By, and, for each g € G, an involution *: B, — By
satisfying for all b, € By, by, € By, b, € B, and g, h,7 in G

(i) the multiplication maps are bilinear and associative, that is, (byby )b, = by(bpby);

(i

*: By — By-1 is conjugate-linear and isometric;

i)

(iil) by =
(iv) (bg bh) = bj,by;
(v) llbgbnll < llbg]lllbnll;
(vi) [lbgbgll = 1Ibg1%;
(vii) for each by € By, there exists a € B, with bjb, = a*a.

We say that B, is the fibre of (By)g4ec at g. Observe that axioms (i)—(vi) imply that B, is a
C*-algebra. We will often refer to B, as the unit fibre of (Bgy)g4ec. In order to fix notation, by B,Bj,
we mean the closed linear span of

{bgbh|bg € Bg,bh S Bh}

In particular, BgB,-1 is a closed two-sided ideal in B, for all g € G.

Example 2.1.2. Let G be a discrete group. We may associate a Fell bundle (By)geq to G in a canonical
way: we set By := C x {g} with the structure of Banach space inherited from C. We write Au, for
(A, g) so that By = Cugy. The multiplication and involution operations on C provide (Cug)gec with a
structure of Fell bundle.

Ezample 2.1.3. Let A = M3(C). Let B_1, By and B; be the subspaces

0 0 0 0 0 0
* 0 0 |, * ok and 0
* 0 0 * % 0

S O ¥
O O *
O O ¥
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of A, respectively. For n € Z\ {-1,0,1} put B,, = {0}. Then (B,)nez equipped with the usual
multiplication and involution operations defined on matrices is a Fell bundle over Z.

Lemma 2.1.4. Let (By)gec be a Fell bundle. If (ux)rea is an approzimate identity for B, then for
allg € G and by € By,
liinbgu,\ = li/I\HU)\bg = by.

In order to construct a C*-algebra out of a Fell bundle (By)4eq, consider the complex vector space

Ce((Bg)gea) = &: G — | J By|&(g) € By Vg € G and supp(§) is finite
geG

In other words, C.((By)gec) is the direct sum D,cc By
We make Cc((Bg)geg) into a *-algebra as follows. We let the multiplication

*1 Cc((Bg)geG)) X CC((Bg)geG) - Cc((Bg)geG)

be given by (£,n) — & %1, where
Exm)(h) = &(gmlg™"h)
geG

for all h € G. The involution is defined by
RRYc CC((BQ)QEG) =& e Cc((Bg)geG)7

where £*(g) = &(g~1)* for all ¢ € G. These operations provide CC((Bg)geg) with a structure
of *-algebra.
For each g € G, we may view B, as a subspace of Cc((Bg)geg) through the identification

jg: Bg — Cc((Bg)geG)’
b, ifh=yg
bR = 409 ’
Jg(bg)(h) {0 otherwise.

We will use this identification in the sequel.

Proposition 2.1.5. Let 7: Co((By)gec) — B be a representation of Ce((Bg)gec) in a C*-algebra B
and let € € Ce((By)gec). Then [|m(€)|| < [I€]l1, where || = 3 e 1€(9)]-

Proof. The composite 7 o j. yields a *-homomorphism B, — B. Hence it is contractive, that is,
I7(je(a))]| < ||la|| for all @ € A. Given ¢ € By, we have

17 (g (D1 = 1w (g () m (g (Nl = 7 (g (€)"da (D]l < lIm(elc* )] = lle*ell = llel|*.

In general,

Il = | Y- mGs €@ < D 1@ = 1€l O

geG geG

Definition 2.1.6. Let (By)4ecq be a Fell bundle and B a C*-algebra. A representation of (By)gec
in B is a collection of linear maps m = {m,}4eq, where m,: By, — B, such that for all b; € By, b, € By,
and g, h € G:

(1) 74(bg)mn(br) = Tgn(bgbn),
(i) mg(bg)* = mg—1(bg).

Proposition implies p(£) < [[£]l1 whenever p is a C*-seminorm on C.((Bg)gec). So we let p
range in the collection of all C*-seminorms on C’c((Bg) ge(;) and obtain a well defined C*-seminorm by
setting

Poo(§) = St;pp(ﬁ)-

11
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Definition 2.1.7. The cross sectional C*-algebra of (By)geq, denoted by C*((Bg)geq), is the com-
pletion of (Ce((By)gec): Poo)-

Let j = {jg}gec, where j,: By — Cc((Bg)ge(;) is the canonical inclusion. This gives rise to a
representation of (By)geq in C*((Bg)gec) obtained from the composition of j with the canonical
representation of C,((By)gec) in C*((By)gec). We still denote this representation by j = {jy}gec-
We will later see that j, is injective for all g € G. For now we prove its universal property:

Proposition 2.1.8. Let m = {ny}4cc be a representation of (By)gec in a C*-algebra B. There is a
unique *-homomorphism 7: C*((By)gec) — B such that 7o j,(by) = m4(by) for all g € G and by € By.

Proof. A representation of (By)gee produces a representation of Ce((By)gec) by

£ Y melE9))-

geG

Such a representation extends uniquely to a *-homomorphism 7: C*((By)gec) — B by universal
property. This satisfies T o j, = 7, as asserted. O

Ezample 2.1.9. If G is a discrete group, the cross sectional C*-algebra of the trivial bundle (Cugy)qec
is the group C*-algebra C*(G). More generally, given an action G — Aut(A) on a C*-algebra A, one
may build a Fell bundle out of a by setting B, := Au,. That is, B, is a copy of A as a Banach space.
The multiplication is defined by

(attg) - (bun) = acy (b)ugn,

and the involution Aug, — Aug—1 by

(aug)™ = ag-1(a”)u

—1.

g9

These operations turn (Aug)ge into a Fell bundle over G. Its cross sectional C*-algebra is canonically
isomorphic to the crossed product A x, G.

2.1.2 The regular representation

In this subsection, our main objective is to construct an injective representation of a given Fell bundle.
We will use this representation to define its reduced cross sectional C*-algebra.

For each g € G, view the Banach space By as a right Hilbert B.-module with right action and
inner product inherited from (By)secq. Explicitly, for a € B. and b, c € By, the right action is defined
by b-a = ba € By and the inner product is given by (b|c) := b*c. Consider the right Hilbert
Bc-module ¢5((By)gec) built out of the direct sum of the B,’s. That is,

62((Bg)geG) = @ By'

geG

This is a correspondence over B, with left action implemented by the diagonal operator associated
to a € B.. In fact, we will construct a representation of (By)geq in the C*-algebra of adjointable
operators on {s((Bg)geq). For each g € G and by € By, let Ag(by) be defined on a finite sum & = )" &,
by
Ag(bg)(E)n = bg&g-1n-
This satisfies
(Ag(bg)€ [ Ag(bg)€) < [1bglI*(€ 1€)
because
(€nla*a&p) < llall*(&n | €n)
foralla € B, &, € B, and h € G. Hence A4(by) gives a well defined continuous operator on £2((By)gec)-
In addition, A, (by) is adjointable with Ay (bg)* = Ag-1(by), and Agp(bybn) = Ay (bg) An(by) for all by € By,
by, € By, and for all g, h € G.

Definition 2.1.10. The representation A = {\,} of (By)sec in B(¢2((By)geq)) constructed above is
called the regular representation of (Bg)geq-

12
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Corollary 2.1.11. The representation of (Bg)geq in its cross sectional C*-algebra C*((By)gec) is
injective.

Proof. 1t suffices to show that the regular representation of (By)secq is injective. Given b, € By,
bga # 0 for some a € B.. Thus Ay(by)(je(a))g = bga # 0, where j.(a) is the function in C.((Bg)geq)
associated to a. O

Definition 2.1.12. The reduced cross sectional C*-algebra of (By)geq, denoted by Ck((Bg)geq), is
the C*-subalgebra of B({2((By)gec)) generated by the image of the regular representation of (By)gec-

By the universal property of C*((By)g4ec), there is a unique *-homomorphism

A: C*((Byg)gea) — Cr((By)gea)

such that Ao j, = A, for all g € G. We say that (B,),eq is amenable if A is an isomorphism.

If G is a discrete group, amenability of the trivial bundle (Cu,)4eq says that the full and reduced
group C*-algebras of G are canonically isomorphic. Such an isomorphism is equivalent to the standard
definition of amenability for groups in terms of invariant means (see [10]). By [23, Theorem 20.7], a
Fell bundle over an amenable group is always amenable. This includes, in particular, Fell bundles over
discrete abelian groups. This fact will be implicitly used in the subsequent chapters.

2.2 Topologically graded C*-algebras

In this section, we define topologically graded C*-algebras. A topological grading arises naturally from
group coactions. There is a canonical Fell bundle associated to a grading of a C*-algebra, and the
full and reduced cross sectional C*-algebras associated to a Fell bundle are examples of topologically
graded C*-algebras.

2.2.1 Conditional expectation

Definition 2.2.1. Let B be a C*-algebra and A a C*-subalgebra of B. A positive linear map £: B — A
is a conditional expectation if E is contractive and idempotent, F(a) = a for all @ € A and F is
an A-bimodule map, that is, E(aibas) = a1 E(b)as for all b € B, aj,as € A. It is called faithful
if E(b*b) = 0 implies b = 0.

Lemma 2.2.2. Let (By)gec be a Fell bundle. For each g € G, there is a contractive linear map
E,: Ci((Bg)gea) = Ag(Bg) such that

bh Zf h= 9,
0  otherwise.

Eg(An(br)) = {

Moreover, E. is a faithful conditional expectation onto \e(Be).

We let E: C*((By)gec) — Be be the conditional expectation given by the composition

C*((By)gea) = Ci((By)gea) 2 Ae(Be),

followed by the identification A.: Be = Ao(B.). Notice that we have also identified B, with its image
in C*((By)gec) under j.

Corollary 2.2.3. A Fell bundle is amenable if and only if the conditional expectation
E: C*((Bg)gec) = Be
is faithful.

Definition 2.2.4. Let B be a C*-algebra and G a discrete group. Let {Bg}scc be a collection of
closed subspaces of B. We say that {B,}4cq is a grading for B if, for all g,h € G, one has

(i) By = By-1,
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(ii) By¢Bp C By,
(ili) {Bg}gec is linearly independent and €P . By is a dense subspace of B.
A graded C*-algebra is a C*-algebra with a fixed grading.

Remark 2.2.5. Given a G-graded C*-algebra B, then (By)4ec is a Fell bundle with the operations
inherited from B.

Definition 2.2.6. A grading {By},cc for a C*-algebra B is a topological grading if there exists a
conditional expectation E: B — B, vanishing on B, for all g # e.

Ezxample 2.2.7. Let (By)gec be a Fell bundle. By Lemma its full and reduced cross sectional
C*-algebras are topologically graded by the images of (By)sec under j = {js}gec and A = {A;}4eq,
respectively.

Ezample 2.2.8. Let B be a C*-algebra equipped with a continuous action a: T — Aut(B), where
continuity here means that the map z — «,(b) is continuous for all b € B. For each n € Z, set

B, ={be Bla,(b)=2"b,Vz € T}.

Then {B), }nez is a topological grading for B. More generally, if T' is a compact abelian group and
a: T'— Aut(B) is a continuous action, then B is a topologically I'-graded C*-algebra, where T is the
dual group of I‘ The spectral subspace at g € I is

By ={b € Blay(b) =g(y)b, Vy € I'}

and the continuous projection onto By is given by

E,(b) = / gl (b) du

for b€ B and g € T'. See [20] for further details.

Theorem 2.2.9 ([23, Theorem 19.1]). Let {By}sec be a topological grading for a C*-algebra B.
Let (Bg)gec be the associated Fell bundle. There is a unique surjective *-homomorphism ¢: B —
Ci((Bg)gea) such that (bg) = Ag(by) for all g € G.

The previous theorem tells us that the reduced cross sectional C*-algebra C}((By)geq) has a
co-universal property: it is the smallest topologically graded C*-algebra whose associated Fell bundle
coincides with (Bg)geq-

2.2.2 Discrete coactions

Let G be a discrete group. Let dg be the *~homomorphism C*(G) — C*(G) ® C*(G) defined by
da(ug) = ug ®@ugy, where u, denotes the image of g € G under the canonical group homomorphism G —
U(C*(G)). A (full) coaction of G on a C*-algebra A is a nondegenerate and injective *-homomorphism
0: A— A®C*(G) such that

(0 ®idew())d = (ida ® 0¢)0.

The triple (A, G, ) is referred to as a coaction. See, for instance, |18, Definition A.21] and also [50].
Replacing C*(G) by C#(G) and adapting the coaction identity accordingly, we obtain what is called
a reduced coaction |49]. Here we will only use full coactions. So we will omit the term “full”. The
following is a key tool for the development of our main results.

Proposition 2.2.10. Let (A,G,0) be a coaction. Then A carries a topological G-grading. The
corresponding spectral subspace at g € G is

Ag={acA|i(a) =a®@uy}.

1Recall that the dual group of a locally compact abelian group I', denoted by f, is the group of continuous
homomorphisms from I" into the unit circle T. The dual group of I is discrete if and only if I' is compact (see [25]).
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Proof. Clearly AjA, C Agp, and A; = qu because ¢ is a *-homomorphism. If a = Z?:l ag, = 0,
then

0(a) = Zagi ® ug, =0
i=1

implies Eg, (0(a)) = ag, ® ug, = 0, where Ey, =ida ® x4, and x4, denotes the contractive projection
of C*(G) onto Cuy,. So ag, =0 for alli € {1,...,n}.
Given a € A, it follows from the coaction identity that

(6 @ide)E,(8(a)) = E,(8(a)) ® ug.

This shows that Ey(d(a)) = ag ®u, for some ag in Ag. We claim that P, Ay is dense in A. Since G
is discrete, ¢ automatically satisfies 6(A)(1 @ C*(G)) = A® C*(G) (see [8]). So we may approximate

a®1l~) " 6(a;)(1®uyg,). Inaddition, idy = (ida ® 1) 04 by [18, Lemma A.24], where 1g: G — C

is the homomorphism g — 1. Then

a=(ida®1g)(a®1) = (ida ® 1g)Ee(a® 1)

~ (ida ® 1g) (ZEP (5(‘11‘)(1 ® ugi)))

i=1

= (ida ® 1¢) (zn:Egil((S(ai))) c P4,

i=1 geG

Now we see that (ida ® 1¢) o Eg 06 gives a continuous projection onto A, that vanishes on Ay, for h # g.
Hence {Ag}4cc is a topological grading for A. O

If (A,G,0) is a coaction, we refer to the corresponding spectral subspace at e as the fized-point
algebra for 9.

Definition 2.2.11 ([18] Definition A.45]). Let (A, G,0) and (B, G, ) be coactions. We say that a
*-homomorphism ¢: A — B is d-y equivariant if (¢p ® idg) 0§ =y o 1.

Proposition 2.2.12. Let (A, G,0) be a coaction. Let I < A be an ideal satisfying I = @gEGIﬂ Ag.
Then there is a coaction 64,1: A/l — A/ @ C*(G) such that

(q®idg)od =641 04¢.
In particular, q is a 6-0 4,1 equivariant *-homomorphism.

Proof. Given q(a) € A/I, set 04/1(q(a)) = (¢ ®idg)(6(a)). This vanishes on I because it vanishes
on I NA, for all g € G and I is generated by its intersection with the spectral subspaces. It is
also injective because (ids ® 1g) 0 d = ida gives q(a) € kerd,,; if and only if a belongs to I. This
satisfies the coaction identity because § does so. That d4,; is a nondegenerate *-homomorphism is
then clear. O
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Chapter 3

A bicategorical interpretation for
relative Cuntz—Pimsner algebras

In this chapter, we generalise a bicategorical interpretation for Cuntz—Pimsner algebras associated
to proper correspondences provided by Albandik and Meyer in [6]. Our approach does not require
properness and, in addition, applies to all relative Cuntz—Pimsner algebras of single correspondences.
This also extends ideas of Schweizer in [54]. We prove that the construction of relative Cuntz—Pimsner
algebras yields a reflector from a certain bicategory of correspondences into a sub-bicategory of Hilbert
bimodules. Roughly speaking, this shows that the passage from a correspondence £: A ~» A to the
Hilbert bimodule associated to a relative Cuntz—Pimsner algebra of £ gives the best approximation
of £ by a Hilbert bimodule, satisfying a certain property concerning the underlying ideal.

This chapter is essentially [40]. Here we have included Examples |3.1.20} [3.1.21f and [3.3.9 and also a
few basic results on correspondences in Subsection We will often invoke results from this chapter
concerning correspondences and relative Cuntz—Pimsner algebras.

3.1 Preliminaries

In this section, we recall basic results on correspondences, Cuntz—Pimsner algebras, and their gauge
action and Fell bundle structure. We correct and generalise an idea by Schweizer on the functoriality
of Cuntz—Pimsner algebras for covariant correspondences.

3.1.1 Correspondences

Let B be a C*-algebra and let F7, F» be Hilbert B-modules. Let B(F7, F2) be the space of adjointable
operators from F; to Fu. Let [€)(n]| € B(Fy, Fz) for £ € Fy and n € F; be the generalised rank-1
operator defined by |£)(n[(¢) :=&(n| () 5. Let K(Fi, F2) be the closed linear span of |£)(n| for £ € Fy
and n € Fo. Elements of K(F7, F2) are called compact operators. We abbreviate B(F) := B(F, F) and
K(F) :=K(F,F) if F = F1 = Fa. In this case, K(F) is a closed two-sided ideal of B(F).

Lemma 3.1.1. Let & C Fy and 2 C Fy be Hilbert B-submodules. There is a unique map K(&1, &) —
K(Fi1, F2) that maps |€)(n] € K(&1,&) to |§)(n] € K(Fi,Fz) for all & € E, n € E. This map is
injective.

Definition 3.1.2. Let A and B be C*-algebras. A correspondence from A to B is a Hilbert B-module F
with a nondegenerate left action of A through a *-homomorphism ¢: A — B(F). A correspondence
is proper if (A) C K(F). It is faithful if ¢ is injective. We write F: A ~» B to say that F is a
correspondence from A to B.

Definition 3.1.3. A Hilbert A, B-bimodule is a (right) Hilbert B-module F with a left Hilbert
A-module structure ((- |-)) , such that (& |n) ¢ =&(n|() gz for all §,n,( € F.

If F is a Hilbert A, B-bimodule, then A acts by adjointable operators on F and B acts by adjointable
operators for the left Hilbert A-module structure, that is, (&b|n) 4 = (& |nb*) 4, for all {,n € F and
all b € B. In particular, £ is an A, B-bimodule. The next lemma characterises which correspondences
may be enriched to Hilbert bimodules:

16



3. A BICATEGORICAL INTERPRETATION FOR RELATIVE CUNTZ-PIMSNER ALGEBRAS

Lemma 3.1.4 (see [18, Example 1.6]). A correspondence F: A ~» B carries a Hilbert A, B-bimodule
structure if and only if there is an ideal I < A such that the left action on F restricts to a *-isomorphism
I = K(F). In this case, the ideal I and the left inner product are unique, and I = (F|F)) 4.

Definition 3.1.5. Let Fi,F2: A ~ B be C*-correspondences. We say that an A, B-bimodule
map w: F1 = Fp is an isometry if (w(§)|w(n)) = (£|n) for all {,n € F;. We say that w is
a correspondence isomorphism if it is unitary. We write “=" because these isomorphisms are the
2-arrows in bicategories that we are going to construct.

Proposition 3.1.6. Let F be a Hilbert A, B-bimodule. There are canonical correspondence iso-
morphisms F @p F* = (F|F)) and F* @4 F = (F|F). These are defined on elementary tensors
by

§@n" = (&lnh,  &en— ().

Let F be a Hilbert B-module and let ¢: A — B(F) be a *-homomorphism. For £ € £, we define
an operator
Te: F = EQy, F, n—= Q.

It is adjointable with T (¢ ® n) = ¢({£|())n on elementary tensors, see [48]. Hence

TiTe = ((C16),  TT =16)(¢@1,

where |£)(¢| ®1 is the image of |£)(¢| under the canonical map B(£) — B(£ ®, F), T — T ® 1. Hence
the operator T¢ for £ € £ is compact if and only if ¢((§[€)) = T¢T¢ is compact.

Lemma 3.1.7 (|48, Corollary 3.7]). Let J := ¢~ Y(K(F)) < A and let T € K(£). The operator T @ 1
on E®4 F is compact if and only if T € K(E - J) (see Lemma for the inclusion K(€ - J) CK(E)).

In particular, if p(A) C K(F), then T ® 1 € K(€ ®, F) for all T € K(€). So an internal tensor
product of proper correspondences is again proper.
We will often use the following result.

Lemma 3.1.8 (|48, Lemma 3.5]). Let £ be a Hilbert A-module and I < A a closed two-sided ideal.
Then

(i) The set { € E|(€|&) € I} is precisely the set € - I of elements of the form ¢ - ¢ for some c € I.
(if) &I is a submodule of € isomorphic to € ®4 1.
(iii) the map K(&) - M(K(EI)) =2 B(EI) coming from the inclusion K(EI) — K(E) coincides with
the map T — T ® 1 from K(&) to K(E ®4 I). Here K(EI) is viewed as the closure in K(E) of
span {[€)(n| € K(£)[&,n € ET}.
The next lemma states that the invertible arrows in the correspondence bicategory of Example
are precisely the Morita equivalences.

Lemma 3.1.9 ([18, Lemma 2.4]). Let £: A~ B be a correspondence. Suppose that there exists a
correspondence F: B ~» A with correspondence isomorphisms

ERp F A, FRas€=B.

Then & is an imprimitivity A, B-bimodule and F = E*.

3.1.2 (C*-algebras of correspondences

Let £: A~ A be a correspondence over A. Let p: A — B(E) be the left action. Let £2™ be the n-fold
tensor product of & over A. By convention, 20 := A. Let €1 := @, E®™ be the Fock space of £,
see [48]. Define

t2:€®"—>€®"+1, nN— £,

for n > 0 and £ € &; this is the operator T¢ above for F = £%". The operators t¢ combine to an
operator t¢ € B(ET), that is, te|cen = 7. Let p*: A — B(ET) be the obvious representation by block
diagonal operators and let t7: & — B(E™) be the linear map & — t.
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Definition 3.1.10. The Toeplitz C*-algebra T¢ of € is the C*-subalgebra of B(£T) generated by
et (A) +t7(E).

Let J be an ideal of A with ¢(J) C K(£). Let Py be the projection in B(ET) that is the identity
on A C €T and that vanishes on £%" for n > 1. Then Jy := ¥ (J) P, is contained in T¢. The ideal
in 7¢ generated by Jy is equal to K(ETJ) CK(ET).

Definition 3.1.11 (|41, Definition 2.18]). The relative Cuntz—Pimsner algebra O ;¢ of € with respect
to J is Te /K(ETT).

The following three cases are particularly important. First, if J = {0}, then O, ¢ is the Toeplitz
C*-algebra Tz. Secondly, if J = ¢~ 1(K(£)) and ¢ is injective, then O ¢ is the algebra Og defined by
Pimsner [48|. Third, if J is Katsura’s ideal

Ie i= 0z (K(E)) N (ker pg)t, (3.1.12)
then Oy, ¢ is Katsura’s Cuntz-Pimsner algebra as defined in [29].

Proposition 3.1.13. Katsura’s ideal Iz in (3.1.12)) is the largest ideal J in A with o(J) C K(E) for
which the canonical map A — Oy ¢ is injective.

Proof. That 7y, is injective is |29, Proposition 4.9]. The ideal I¢ is maximal with this property because
any ideal J < A with o(J) C K(&) and J € (ker ) must contain a € J with ¢(a) = 0. Then
ot (a) € T (J) - Py becomes 0 in Oy ¢. O

Definition 3.1.14. Let £: A ~» A be a correspondence and B a C*-algebra. A representation of £
in B is a pair (m,t), where 7: A — B is a *~homomorphism, t: £ — B is a linear map, and

(1) m(a)t(&) =t(e(a)f) for all a € A and & € &;
(2) t(&)t(n) = p((&|n) ) forall ,n e &.
These conditions imply t(&)7(a) = t(£a) for all £ € £ and a € A.

In particular, (¢*,¢1) is a representation of £ in the Toeplitz C*-algebra T¢. This representation
is universal in the following sense:

Proposition 3.1.15. Any representation (m,t) of € in a C*-algebra B is of the form (o @™, T ot™)
for a unique *-homomorphism 7: T¢ — B. Conversely, (7 o pt, T ot™) is a representation of £ for
any *-homomorphism 7: Te — B.

Lemma 3.1.16. For any representation (m,t) of £, there is a unique *-homomorphism ©': K(€) — B
with © (|€)(n]) = tety, for all §,m € E.

Proposition 3.1.17 ([41, Theorem 2.19]). The representation & of T¢ associated to a representation
(m,t) of € factors through the quotient O ;¢ of Te if and only if

n(a) =7 (p(a))  foralla€eJ. (3.1.18)
In this case, we call the representation covariant on J.

Let (ms,ts) be the canonical representation of £ in O;¢. Proposition says that (ws,ts) is
the universal representation of £ that is covariant on J.

Proposition 3.1.19. A representation (m,t) in B is covariant on J if and only if =(J) C t(€) - B.

Proof. Let a € J. Then 7! (p(a)) is contained in the closed linear span of ¢(£)t(€)* and hence in
t(€) - B. So m(a) € t(£) - B is necessary for 7(a) = 7!(p(a)). Conversely, assume 7(a) € t(€) - B for
all a € J. We have 7(a) - t(§) = t(p(a)f) = 7 (p(a))t(¢) for all £ € € (see |29, Lemma 2.4]). Hence
(m(a) — 7' (¢(a))) - t(€) - B = 0. Since m(a*), 7 (p(a”)) € H(E) - B, we get (w(a) — 7' (¢(a))) - (w(a) -
7l(p(a)))* = 0. This is equivalent to m(a) = 7t(¢(a)). O
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Example 3.1.20. View C™ as a correspondence over C in the obvious way. This is a faithful and proper
correspondence. So let J = C and for each i € {1,...,n}, let s; be the image in O¢ ¢ of the canonical
unit vector e; of C™ under the universal representation. Then s; is an isometry. In addition, the
covariance condition is equivalent to
n
Z sis; = 1.
i=1

Thus O¢ ¢~ is isomorphic to the Cuntz algebra O,,.

Ezample 3.1.21 (Crossed products by transfer operators). Let A be a unital C*-algebra and let o be
an endomorphism of A. A continuous linear map L: A — A is a transfer operator for (A, «) if it is
positive and L(a(a)b) = aL(b) for all a,b € A. Since A is spanned by its positive elements and L is
positive, it follows that L(a)* = L(a*) for all a € A. In particular, the identity L(ac(b)) = L(a)b also
holds.

We may associate a correspondence Ay 1: A~ A to (A4, a, L) as follows. We set A&L = Aa(1)
as a complex vector space. We define a structure of A-module on A, 1, by aa(l) - b = aa(b) and an
A-valued inner product by (aa(1)|ba(1)) := L(a*b), for a,b € A. This satisfies {ac(1) |ba(1) - ¢) =
(ac(1) | ba(1))c because L is a transfer operator for (A, «). Since L is positive, the Cauchy—Schwarz
inequality also holds in this context, and it follows that

N = {aa(l) € A|L(a*a) = 0}

is a subspace of A | (see Lemma [A.1.3). Hence the quotient space Ag 1/N is a pre-Hilbert A-module.
We denote by A, 1, its completion with respect to the norm coming from the A-valued inner product.
Thus A, 1, is a Hilbert A-module.

Now using again that L is positive, we deduce that

L(b*a*ab) < ||a||*L(b*D)

for all a,b € A. Hence left multiplication by elements of A produces a nondegenerate *~-homomorphism
p: A— B(A, ). This turns A, 1 into a correspondence over A.

Let (m,t) be a nondegenerate representation of A, 1, in a unital C*-algebra B. Set V := t(«(1)).
Then, for all a € A, Vr(a) = w(a(a))V. In addition,

Vir(a)V = t(a(l)) " n(a)t(a(l)) = t(a(l)) t(aa(l)) = L(a).

Conversely, suppose that 7: A — B is a unital *~homomorphism and V is an element of B, so that the
relations
Vr(a) = w(a(a))V, V*r(a)V = L(a) (3.1.22)

hold for all a € A. Set t/(ba(1)) = mw(b)V for all b € A. It follows that ¢’ vanishes on N and is
continuous with respect to the norm on A37L/N because, for all b € B,

V[ = V=6 bV]| = [ L(6"b)]I.

Hence it descends to a linear map t: A, — B. The relations in then say that (7,t) is a
representation of A, y. The C*-algebra T (A, o, L) introduced in [21] is the universal unital C*-algebra
generated by a copy of A and an element S subject to the above relations. We see that T (A, a, L)
is naturally isomorphic to the Toeplitz algebra of A, ;. The crossed product A x4 1 N of A by the
endomorphism « relative to the transfer operator L was defined by Exel in [21] to be the quotient
of T(A, a, L) by the ideal generated by

{a— k‘a € Ak € ASS*A and abS = kbS,Vb € A} .

Observe that ASS*A corresponds to t7(Aq, )t" (Aq,r)* through the above isomorphism 7 (A, o, L) =
TA,., - From this we deduce that A %, 1 N is isomorphic to the quotient of T4, , by the ideal generated
by

{¢"(a) = (¢¥") (¢(a))] p(a) € K(Aqa,L)} -

This is precisely the relative Cuntz—Pimsner algebra Oy 4, ,, where J = o™ (K(Aq,1)).
Brownlowe and Raeburn realised the crossed product A X, 1, N as a relative Cuntz-Pimsner algebra

a,L
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of A, 1 in [11]. With this approach, they were able to establish necessary and sufficient conditions
for the universal *~-homomorphism A — A X, N to be an embedding. They also applied more
general results concerning relative Cuntz—Pimsner algebras of correspondences to prove gauge-invariant
uniqueness theorems for the crossed product A x4, N [11} Section 5].

3.1.3 Gauge action and Fell bundle structure

Let £: A ~ A be a correspondence and let J < A be an ideal with ¢(J) C K(&). If (n,t) is
a representation of £ that is covariant on J, then so is (m,z - ¢) for z € T. This operation on
representations comes from an automorphism of the relative Cuntz—Pimsner algebra O;¢ by its
universal property. These automorphisms define a continuous action v of T on O ¢, called the gauge
action. Let

O e ={b€ Og:7.(b) = 2"b for all z € T}

for n € Z be the nth spectral subspace. These spectral subspaces form a Fell bundle over Z, that is,
O% ¢ - OF COYE™ and (O ¢)* = O for all n,m € Z. In particular, for J = {0} we get a gauge
action on 7¢ and corresponding spectral subspaces 7' C Te. Explicitly, the gauge action on 7¢ comes
from the obvious N-grading on £*: if x € T¢, then z € T2 if and only if 2(E¥F) C £8nFF for all k € N;
this means z|gor =0 if K+ n < 0. And (935 is the image of Tg" in Oj¢.

Lemma 3.1.23. Letn € Z. The subspace O ¢ in O ;¢ is the closed linear span of t ;(§1)t5(§2) -+ 15 (k)
t(m) - th(m)th(m) for&,m; € €, k—1l=mn. Ifn €N, then

Te = = EOM @y OJE

as a correspondence A ~» OY J.e- The Fell bundle (OJg)kGZ is semi-saturated, that is, OJE OJS = O’};l
ifk,1>0.

Proof. Let b € Of o and let € > 0. Then b is e-close to a finite linear combination b. of monomials
tr(&0)ts (&) -ty (&) - 5(m) - t5(n2)t5 (1) with k,1 € N. Define

pn(x) 1= / 27"y, (x) dz, r€0je.
T

This is a contractive projection from Oj¢ onto O%.. Since p,(b) = b and [|p,|| < 1, we have
b — pn(be)|| < € as well. Inspection shows that p, maps a monomial (&)t (&) - tr(&) -
t5(m) -5 (m2)ty(m) to itself if k — 1 = n and kills it otherwise. Hence O, is the closed linear
span of such monomials with k — [ = n.

The monomials generating (9’““ for k,1 > 0 are obviously in (935 . Of]’ ¢- Hence the first statement
immediately implies the last one. There is an isometric A, (’)9’ ¢-bimodule map

EM 04 05 = O, 6@ @Gy ti(&) tién) Yy
The first statement implies that its image is dense, so it is unitary. O

The Fell bundle (O ¢)nez need not be saturated, that is, Of ¢ - O; ¢ may differ from OY ¢

Theorem 3.1.24. The relative Cuntz—Pimsner algebra is T-equivariantly isomorphic to the crossed
product of OY o by the Hilbert 0Y J.£-bimodule o Jg.e and to the full or reduced section C*-algebra of the
Fell bundle (O]g)nez

Proof. The Fell bundle (O7 ¢)nez is semi-saturated by Lemma [3.1.23) Now the results of Abadie-
Eilers—Exel [1] imply our claims. O

Theorem [3.1.24] splits the construction of relative Cuntz—Pimsner algebras into two steps. The first
builds the Hilbert (9 g-bimodule O} J.&+ the second takes the crossed product for this Hilbert bimodule.
A Hilbert bimodule Q on a C*- algebra B is the same as a Morita—Rieffel equivalence between two
ideals in B or, briefly, a partial Morita—Rieffel equivalence on B (this point of view is explained in [12]).
The crossed product (’)9’ e X (9‘1,’ ¢ generalises the partial crossed product for a partial automorphism.
Many results about crossed products for automorphisms extend to Hilbert bimodule crossed products.
In particular, the standard criteria for simplicity and detection and separation of ideals are extended
in [33].
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Proposition 3.1.25. The following conditions are equivalent:
(1) the map mj: A — (9(},5 is an isomorphism;
(2) the map ¢: J — K(E) is an isomorphism;
(3) the correspondence € comes from a Hilbert bimodule and J = I¢.

Proof. If J = I¢ is Katsura’s ideal, then everything follows from [29, Proposition 5.18]. So it remains
to observe that and fail if J # I¢. Lemma shows that £ comes from a Hilbert bimodule if
and only if there is an ideal I in A so that ¢|;: I — K(€) is an isomorphism. In this case, I is the
largest ideal on which ¢ restricts to an injective map into K(€). So I = I¢. Thus[(2)] <

If J Z I¢, then A — O ¢ is not injective by Proposition So implies J C I¢. If J C I¢
and |(1)[ holds, then the map A — (’)?&g is still surjective because Oy, ¢ is a quotient of Oy ¢, and it is
also injective by Proposition Hence Oy, ¢ = O ¢. This implies K(E1Ig) = K(E'J) and hence
I¢ = J because of the direct summand A in 7. O

Proposition 3.1.26. Let G be a Hilbert B-bimodule and let Ig be Katsura’s ideal for G. Then
O1,,6 = B x G T-equivariantly.

Proof. Theorem |3.1.24 identifies Op, g = O?g,g X O}g g- Proposition |3.1.25| gives B = O?g,gv and
the isomorphism Olg,g = G Q®p O?g,g from Lemma |3.1.23| implies that G = O}g,g as a Hilbert
B-bimodule. O

3.1.4 Functoriality of relative Cuntz—Pimsner algebras

Schweizer |54] has defined “covariant homomorphisms” and “covariant correspondences” between self-
correspondences and has asserted that they induce *-homomorphisms and correspondences between the
associated Toeplitz and absolute Cuntz—Pimsner algebras. For the proof of functoriality for covariant
correspondences he refers to a preprint that never got published. In fact, there are some technical
pitfalls. We correct his statement here, and also add a condition to treat relative Cuntz—Pimsner
algebras.

Throughout this subsection, let £: A ~ A and G: B ~ B be correspondences and let J4 C
e H(K(E)) and Jp C o~ 1(K(G)) be ideals.

Definition 3.1.27. A covariant correspondence from (A, E,J4) to (B, G, Jg) is a pair (F, V), where F
is a correspondence A ~» B with Js - F C F - Jp and V is a correspondence isomorphism & ® 4 F =
F ®p G. A covariant correspondence is proper if F is proper.

Proposition 3.1.28. A proper covariant correspondence (F,V) from (A,E,Ja) to (B,G, Jp) induces
a proper T-equivariant correspondence Oryv: Oy, ¢~ Oy, g.

Schweizer [54] claims this also for non-proper correspondences, and he allows V' to be a non-
adjointable isometry. In fact, a pair (F,V) where V is only a non-adjointable isometry induces a
correspondence between the Toeplitz C*-algebras. It is unclear, however, when this correspondence
descends to one between the absolute or relative Cuntz—Pimsner algebras. And we need F to be proper.
Alternatively, we may require £ instead of F to be proper. This situation is treated in [6].

Proof. We use the canonical *-homomorphism 7y,: B — O, ¢ to view O, ¢ as a proper corres-
pondence B ~ O, ¢. Thus Fp := F ®p O, ¢ becomes a proper correspondence A ~ O, g, that
is, a Hilbert O, g-module with a representation 7: A — K(Fp). The T-action on O, g induces a
T-action on Fo because 7, (B) C OF, 5. We are going to define a map t: £ — K(Fp) such that
(m,t) is a representation of (A, &) on Fp that is covariant on J4. Then Proposition yields a
representation 7: O, ¢ = K(Fp). This is the desired correspondence Oj, ¢ ~ Oy, .

There is an isometry pg: G ®p Oyy¢ = Oyy.g, CQy > t1(() -y, of correspondences B ~ Oy, g.
Usually, it is not unitary. We define an isometry

V' E®AFo=ER4F Q5 Oipo V£®l>.7:®3g®3 Oip.g %}—@)B OJpg =Fo.

It yields a map ¢ from € to the space of bounded operators on Fo by t(£)(n) := V' (€ ®n). To show that
t(¢) is adjointable, we need that F¢ is a proper correspondence A ~» Oy, g: then Ty € K(Fo,E®a4F0),
and composition with V' maps this into K(Fp) by Lemma So even t(¢) € K(Fp) for all £ € £.
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We claim that the pair (7, ) is a representation. We have m(a)t(£) = t(p(a)€) because V' is a left
A-module map. And ¢(&1)*t(€2) = w({&1 ] &2)) holds because

EE)m [t(E)n2) = (VG @m) |V G @) = (& @m | & @n) = (m | ({61 ]&))m).

If J4 =0, then we are done at this point, and we have not yet used that V is unitary. So the Toeplitz
C*-algebra of a correspondence remains functorial for proper covariant correspondences where V is not
unitary.

It remains to prove that m is covariant on J4. By Proposition [B.1.19] this is equivalent to
7(Ja)(Fo) CtE)(Fo). And Jp - Oy, Ctsy(G) - Oy ¢ holds because the canonical representation
of (B,G) on Oy, ¢ is covariant on Jp. Since J4 - F C F - Jp by assumption,

Ja - Fo CF®Jp 06 CF@ty5(G) Opg =10 pug)(F@pG@p Oyps.g)

Since V is unitary, we may rewrite this further as V(€ ® 4 F @5 Oy, g) = t(£) - Fo. This finishes the
proof that (m,t) is covariant on J4. The operators t(£) for £ € £ are homogeneous of degree 1 for the
T-action. Thus 7 is T-equivariant. O

Ezample 3.1.29. Let A= Band J = J4 = Jg # {0} and let £ C G be an A-invariant Hilbert submodule.
Then the identity correspondence F = A with the inclusion map E Q4 F 2 € - G2 F®4G is a
covariant correspondence in the notation of Schweizer. There is indeed a canonical *-homomorphism
Te — Tg. But it need not descend to the relative Cuntz—Pimsner algebras because ¢g(a) € K(G)
for a € J need not be the extension of ¢ (a) € K(€) given by Lemma So the Cuntz—Pimsner
covariance conditions for O;¢ and O ;g may be incompatible. We ask V' to be unitary to avoid this
problem.

Lemma 3.1.30. Turn (’)975, into a proper C*-correspondence A ~» (’)875 with the obvious left action
of A. The proper correspondence (9975: A~ (9975 with the isomorphism from Lemma is a
proper covariant correspondence from £: A ~» A with the ideal J to (9(1]75: Og,g ~ 0878 with Katsura’s
ideal I, o,

Proof. It remains to show that J - (’)875 C (’)9’5 . IO§€ = IO§S~ Since 0}75 is a Hilbert bimodule,

Katsura’s ideal is equal to the range ideal of the left inner produét, that is, the closed linear span of xy*

for all z,y € (9}’5. This contains K(&) for z,y € £, which in turn contains J by the Cuntz—Pimsner
. oy oy . O

covariance condition on J, see Proposition |3.1.17, So J - Oje C IO},s' O

The relative Cuntz—Pimsner algebra of ((9975, (9},75, Io‘ljyg) is again O ;¢ by Proposition [3.1.25] The
correspondence O ;¢ ~+ O ¢ associated to the covariant correspondence above is just the identity
correspondence on Oj¢.

Remark 3.1.31. If J4 = 0 or Jg = ¢ 1(K(G)), then the condition J4 - F C F - Jg for covariant
correspondences (A, &, Ja) — (B,G, Jg) always holds and so may be left out. This is clear if J4 = 0.
Let Jg = ¢ Y(K(G)). Since F is proper, J4 acts on £ @4 F = F ®p G by compact operators by
Lemma Again by Lemma this implies J4 C K(F - Jg). Thus J4 - F C F - Jp.

Ezample 3.1.32. Covariant correspondences are related to the T-pairs used by Katsura [31] to describe
the ideal structure of relative Cuntz—Pimsner algebras. For this, we specialise to covariant correspon-
dences out of (4, €&, J) where the underlying correspondence comes from a quotient map A — A/I.
That is, F = A/I: A~ A/I for an ideal I < A. When is this part of a covariant correspondence from
(A, E,J) to (A/I,E',J") for some &', .J'?

There are natural isomorphisms £ @4 F = £/EI and F ® 4,7 E' = £ as correspondences A ~» A/I.
So the only possible choice for & is &' := £/EI with a left A/I-action which gives the canonical
A-action when composed with the quotient map A — A/I. Such a correspondence £/EI: A/T ~ A/I
exists if and only if £ is positively invariant, that is, I€ C £I. Assume this to be the case.

An ideal J' < A/I is equivalent to an ideal I’ < A that contains I. For a covariant correspondence,
we require JF C FJ’, which means that J C I’. And in order for (A/I,€’,.J') to be an object of €7,
the ideal J’ or, equivalently, I’, should act by compact operators on & := £/E1.

Then there is an isomorphism € @4 F = F®4 E’. Tt is unique up to an automorphism of £/E1, that
is, a unitary operator on £/EI that also commutes with the left action of A or A/I, but this shall not
concern us. So we get a covariant correspondence in this case. This induces a correspondence from O ¢
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to Oy ¢ by Proposition @ Actually, our covariant correspondence is a covariant homomorphism,
and so the correspondence from Proposition [3.1.28] comes from a T-equivariant *-homomorphism,
which turns out to be surjective. So a pair of ideals (I, I’) as above induces a T-equivariant quotient
or, equivalently, a T-invariant ideal in Oy ¢.

Sometimes different pairs (I,I’) produce the same quotient of O ¢. If I’/ contains elements that
act by 0 on K(£/£I), then the map A/I — Oy ¢ is not injective by Proposition Then we may
enlarge I without changing the relative Cuntz—Pimsner algebra. When we add the condition that no
non-zero element of I'/I acts by a compact operator on /& - I, then we get exactly the T-pairs with
J C I’ of [31]. The T-pairs (I,I") with J C I’ correspond bijectively to gauge-invariant ideals of O ¢
by [31, Proposition 11.9].

3.2 Bicategories of correspondences and Hilbert bimodules

We are going to enrich the relative Cuntz—Pimsner algebra construction to a homomorphism, or “functor”
from a suitable bicategory of covariant correspondences to the T-equivariant correspondence bicategory.
Most of the work is already done in Proposition [3.1.28] which describes how this homomorphism acts
on arrows. It remains to define the appropriate bicategories and write down the remaining data of a
homomorphism.

The correspondence bicategory of C*-algebras and related bicategories have been discussed in [6),
12H14]. We recall basic bicategorical definitions in Appendix Here we go through these notions much
more quickly. Let @ be the correspondence bicategory. It has C*-algebras as objects, C*-correspondences
as arrows, and correspondence isomorphisms as 2-arrows. The composition is the tensor product ® g
of C*-correspondences.

Given any bicategory D, there is a bicategory € with homomorphisms ® — € as objects, trans-
formations between these homomorphisms as arrows, and modifications between these transformations
as 2-arrows (see the appendix for these notions). There is also a continuous version of this for a
locally compact, topological bicategory ®. In particular, we shall use the T-equivariant correspondence
bicategory €T. Its objects are C*-algebras with a continuous T-action. Its arrows are T-equivariant
C*-correspondences, and 2-arrows are T-equivariant isomorphisms of C*-correspondences.

When D is the monoid (N, +), we may simplify the bicategory €, see 6, Section 5]. An object in
it is equivalent to a C*-algebra A with a self-correspondence £: A ~» A. An arrow is equivalent to
a covariant correspondence (without the condition JaF C FJg), and a 2-arrow is equivalent to an
isomorphism between two covariant correspondences. The bicategory Clsr that we need is a variant
of ¢N where we add the ideal J and allow only proper covariant correspondences as arrows.

Definition 3.2.1. The bicategory Q:I;Ir has the following data (see Definition :

e Objects are triples (A, &, J), where A is a C*-algebra, £: A ~» A is a C*-correspondence, and
J C o HK(€)) is an ideal.

o Arrows (A,&,J) — (A1,&1,J1) are proper covariant correspondences (F,u) from (A4, €&, J)
to (A1,&1,J1), that is, F is a proper correspondence A ~ A; with JF C FJ; and u is a
correspondence isomorphism £ ® 4 F = F ®4, 1.

e 2-Arrows (Fo,ug) = (Fi,u1) are isomorphisms of covariant correspondences, that is, correspon-
dence isomorphisms w: Fo = F; for which the following diagram commutes:

5®A}—0$>}—0 ®a, &1

1e ®’LU\H/ \le@ﬂsl

EQAFI —=FL 04, &

e The vertical product of 2-arrows
wo: (Fo,uo) = (F1,u1), wy: (Fr,ur) = (Fa,uz)

is the usual product wy - wg: Fo — Fo. This is indeed a 2-arrow from (Fo, ug) to (Fz,u2). And
the vertical product is associative and unital. Thus the arrows (A, €&, J) — (41,&1,J1) and the
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2-arrows between them form a groupoid €3 ((4,&,J), (A1, &1, J1)).

o Let (]:, u): (A,g, J) — (Al,gl,Jl) and (]—'hul): (Al,gl, Jl) — (142,(‘:,’27 JQ) be arrows. Their
product is (Fy,u1) o (F,u) := (F ®4, F1,u e uj), where u e u; is the composite correspondence
isomorphism

u®1 u
E®aF®a, F1 e F R4, E1®a, F1 2Z8u, F R4, F1 ®a, Eo.

e The horizontal product for a diagram of arrows and 2-arrows

(Fu) (F1,u1)
(A,ng) w (A1761aJ1)iE(A2582;J2)
(F ) (Fiu1)

is the 2-arrow
(F®a, F1,ueuy)

(Aa 87 J) @; (A2ag2a JQ)

(F®a, F1 ueur)
This horizontal product and the product of arrows combine to composition bifunctors

Q:I;)Ir((Aaga J)7 (Alagla Jl)) X Q:Sr((Alugla J1)7 (A27827 JQ)) — Qtgr((‘A?g? J)7 (A27€27 JQ))

e The unit arrow on the object (A, €&, J) is the proper covariant correspondence (A4, tg), where A
is the identity correspondence, that is, A with the obvious A-bimodule structure and the inner
product (z|y) := z*y, and t¢ is the canonical isomorphism

EQUAZE=ZARAE

built from the right and left actions of A on £.

e The associators and unitors are the same as in the correspondence bicategory. Thus they inherit
the coherence conditions needed for a bicategory.

Theorem 3.2.2. There is a homomorphism €§r — €T that maps each object (A,E,J) to its relative
Cuntz—Pimsner algebra and is the construction of Proposition [3.1.28| on arrows.

Proof. The construction in Proposition is “natural” and thus functorial for isomorphisms
of covariant correspondences, and it maps the identity covariant correspondence to the identity
T-equivariant correspondence on the relative Cuntz—Pimsner algebras. Let (F,u): (4,€,J) —
(A1,&1, 1) and (Fi,u1): (A1, &1, J1) — (Ag, &, Ja) be covariant correspondences and let O, and
Or, u, be the associated T-equivariant correspondences of relative Cuntz-Pimsner algebras. By defi-
nition, Or » ®0,, ¢, OF u and OFg , 7 ueu, are equal to (F @4, Oy, 7)) ®o,, - (F1 ®@a, Oy, 7,)
and (F ®4, F1) ®a4, O, 7, as T-equivariant correspondences A ~ Oy, 7,. Associators and unit
transformations give a canonical T-equivariant isomorphism between these correspondences. This
isomorphism also intertwines the representations of £. Hence it is a T-equivariant isomorphism of
correspondences O r ~ O, 7,. These canonical isomorphisms satisfy the coherence conditions for a
homomorphism of bicategories in Definition [B:1.5 O

The relative Cuntz-Pimsner algebra O ¢ is the crossed product O o x O} ¢ by Theorem
So 06 with the gauge T-action and the Hilbert Of c-bimodule O ; contain the same amount of
information. We now study the construction that sends (4,&,.J) to the Hilbert OF -bimodule O} ;.
The appropriate bicategory of Hilbert bimodules is a sub-bicategory of Qgr:

Definition 3.2.3. Let Qfgr’* - Cﬁr be the full sub-bicategory whose objects are triples (B, G, Ig),
where G is a Hilbert B-bimodule and Ig is Katsura’s ideal for G, which is also equal to the range
ideal (G |G)) of the left inner product on G. The arrows and 2-arrows among objects of €Y. _ are the

pr,*
same as in Cgﬁ including the condition I¢F C Flg for covariant correspondences.
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When we restrict the relative Cuntz—Pimsner algebra construction @E’r — €T to CEIY ., we get the

(partial) crossed product construction for Hilbert bimodules by Proposition 3.1.26| Thus Theorem

also completes the crossed product for Hilbert bimodules to a functor Cpr L, — el

The map that sends (4, &, J) to (OJE’ OJS’IO}z,s) is part of a functor €}, — €, which, when
composed with the crossed product functor Cpr . — €T gives the relative Cuntz-Pimsner algebra
functor of Theorem We do not prove this now because it follows from our main result below.

The key step is the follovvlng universal property of (OY JE O},’ P Ioll 8):

Proposition 3.2.4. Let (A,&,J) and (B,G,Ig) be objects of le and €Y. respectively. Let

pr, * 7
Vgt (A,E,0) = (05¢,0)¢. 1o )

be the covariant correspondence from Lemma [3.1.30L Composition with v 4. ¢, y) induces a groupoid
equivalence
€§r((A7 57 ‘]) (B g Ig)) pr * ((O.]£7 O}],Ea IO}]’S )7 (37 g7 Ig)) .

Recall that € ((A,€,J),(A1,&1,J1)) for objects (A,&,J) and (A1,&1,J1) of €, denotes the
groupoid with arrows (4, &, J) — (A1, &1, J1) as objects and 2-arrows among them as arrows.

Proof. We begin with an auxiliary construction. Proposition@iden‘ciﬁes O1y,¢ = BXG as Z-graded
C*-algebras. In particular, OI g = =~ B, and OI g = =~ G and (9_ =~ G* as Hilbert B-bimodules. Let
(F,u) be a proper covariant correspondence (A, 5 J) = (B,g, Ig) It induces a proper, T-equivariant
correspondence Ory = @, o4 O% y from O,¢ to Or; g by Proposition By construction,
O%y =F @p OF, g. Thus 0%, = Fop 0} ¢ = F@p B=F and O, = F®p O}, ¢ = F ©p G.
The left action on O v is a nondegenerate, T-equivariant *-homomorphism O ;¢ — K(OFv). So O ¢
acts on Oy by grading-preserving operators. Restricting to the degree-0 part, we get a nondegenerate
*-homomorphism 0975 — K(OO}-,V) = K(F). Let F# be F viewed as a correspondence Oz ~ B in
this way.
We now construct an isomorphism of correspondences

u?: Of e @y F* = F* @5 G.

We need two descriptions of u#. The first shows that it is unitary, the second that it intertwines the
left actions of OF ¢. The first formula for u* uses Lemma [3.1.23] which gives unitary Hilbert B-module
maps
1 [ad 0 Y
OJe @00, FE2ER, 09, Qo9 . FHE2E@,F.

Composing with u: £ ®4 F = F ®@p G gives the desired unitary u#. The second formula for u#
restricts the left action of O ¢ on Oy to a multiplication map

Ole ®on, F*=0je @0y, Ofy = OFy 2 FF @p6. (3.2.5)

This is manifestly OF ¢-linear because the isomorphism F# ©p O}, 5 = O’ y, is by right multiplication
and so intertwines the left actions of OY ;. The map in (3.2.5) maps ¢;(£) @ — u(§ ®n) for all £ € €,

n € F. This determines it by Lemma [3.1.23, So both constructions give the same map u?.
We claim that Tov - F# C F# . Ig holds, so that the pair (F#,u?) is a proper covariant

correspondence from ((9975, O e, Ioﬁ,g) to (B, G,Ig). The ideal Iois is equal to the range of the left

inner product on (9},,5. Using the Fell bundle structure, we may rewrite this as O}L PR O;é Thus
0 1 -1 .0 1 -1 0 —1 —1
IO},Y‘g O0rv=0jc05:-0ryC0;5e-05y=E-05¢-0zy =E-0Fxy.

The product & - (’)]7_-’1‘, uses the representation of £ on O y built in the proof of Proposition |3.1.28l So
E- (’)}}V is the image of the map

ERQAFRpG 2FRpGRpG =F-Ig.

So 105 e (99_—7‘/ C F - Ig as claimed. We have turned a proper covariant correspondence (F,u) from
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(A,€,J) to (B,G,Ig) into a proper covariant correspondence (F#, u#) from (0975,0575,1035) to
(B, ga Ig)

Conversely, take a proper covariant correspondence (F,u) from (0875,O§75,I@§5) to (B, G, Ig).
Composing it with v(4 ¢ sy gives a proper covariant correspondence from (4, &, J) to (B, G, Ig). We now
simplify this product of covariant correspondences. The underlying correspondence A — (99’ einvae g
i« (0 : ; 0 ~ MO 1 _@ml
is O] ¢, and the isomorphism & ®4 O = O ¢ ®o9 , Oj¢ = O;¢ is the one from Lemma |3.1.23
We identify the tensor product OOJ, e @0y, F with F by the canonical map. Thus the product of

(F,u) with v ¢ s) is canonically isomorphic to a covariant correspondence (F ’, ub) with underlying
correspondence F’ = F: A ~» B with the left A-action through 7;: A — (’)9’ ¢- The isomorphism
u: ER4F = F’ ®p G is the composite of the given isomorphism u: (’)}L‘8 Qo , F = F®p G with
the isomorphism £ ®4 O ¢ = O} ¢ from Lemma

Now let (F,u) be a proper covariant correspondence from (A4, €&, J) to (B,G,Ig). We claim that

(F# u#) = (F,u). (3.2.6)

By construction, the underlying Hilbert B-module of F#” is F. We even have F#” = F as correspon-
dences A ~» B, that is, the left (’)(}1 g-action on F # composed with 7;: A — (’)97 ¢ 1s the original action
of A. The isomorphism & ® 4 (99,5 = Qlw is used both to get u# from u and to get u#’ from u#.
Unravelling this shows that u#® = u.

Now we claim that the map that sends a proper covariant correspondence

(Fou): (00,0} 6,101 ) — (B.G.Ig)

to (F?,u”) is injective. This claim and imply (F°#,u*#) = (F,u), that is, our two operations
are inverse to each other. To prove injectivity, we use Proposition [3.1.28| to build a correspondence
Oru: Ojg~ O, g from (F,u). This correspondence determines (F,u): we can get back F as its
degree-0 part because Or;,g = B % G, and because u and the left Of c-module structure on F are
both contained in the left O;¢-module structure on Or,. An O;g¢-module structure on Of,, is
already determined by a representation of (4,€). Since OF, ; = O(I)g,g - OF, - this representation is
determined by its restriction to O% , = F. And (F?,u”) determines the representation of (4,&) on F.
Thus (F°,u") determines (F,u).

The constructions of (F#,u#) and (F°,u”) are clearly natural for isomorphisms of covariant
correspondences. So they form an isomorphism of groupoids

¢§r((A757 J), (Bv ga IQ)) = Q:I;]r,*((og,gv O.l],ga Iob,s)’ (Bv g))

One piece in this isomorphism is naturally equivalent to the functor that composes with v(4 ¢ 7). Hence
this functor is an equivalence of groupoids, as asserted. O

3.3 The reflector from correspondences to Hilbert bimodules

We now strengthen Proposition [3.2.4] using some general results on adjunctions of homomorphisms
between bicategories. We first recall the related and better known results about ordinary categories
and functors.

Let C and B be categories. Let R: C — B be a functor and b € ob B. An object ¢ € obC with an
arrow v: b — R(c) is called a universal arrow from b to R if, for each = € obC and each f € B(b, R(z)),
there is a unique g € C(c, z) with R(g) o v = f. Equivalently, the maps

C(c,x) — B(b, R(x)), f= R(f)ow, (3.3.1)

are bijective for all x € obC. The functor R has a left adjoint L: B — C if and only if such universal
arrows exist for all x € obC. The left adjoint functor L: B — C is uniquely determined up to natural
isomorphism. It maps b+ ¢ on objects, and the isomorphisms become natural in both b and z
when we replace ¢ by L(b). An adjunction between L and R may also be expressed through its unit
and counit, that is, natural transformations L o R = id¢ and idg = R o L such that the induced
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transformations L == Lo Ro L = L and R = Ro L o R = R are unit transformations.

A subcategory C C B is called reflective if the inclusion functor R: C — B has a left adjoint
L: B — C. The functor L is called reflector. The case we care about is a bicategorical version of a full
subcategory. If C C B is a full reflective subcategory, then we may choose L o R to be the identity
functor on C and the counit L o R = id¢ to be the unit natural transformation.

Fiore [24] carries the story of adjoint functors over to homomorphisms between 2-categories (which
he calls “pseudo functors”), that is, bicategories where the associators and unitors are identity 2-arrows.
The bicategories we need are not 2-categories. But any bicategory is equivalent to a 2-category by
MacLane’s Coherence Theorem. Hence Fiore’s definitions and results apply in bicategories as well. We
shorten notation by speaking of “universal” arrows and “adjunctions” instead of “biuniversal” arrows
and “biadjunctions.” A 2-category is also a category with some extra structure. So leaving out the
prefix “bi” may cause confusion in that setting. But it will always be clear whether we mean the
categorical or bicategorical notions.

Definition 3.3.2 (|24, Definition 9.4]). Let B and C be bicategories, R: C — B a homomorphism,
and b € obB. Let ¢ € obC and let g: b — R(c) be an arrow in B. The pair (¢, g) is a universal arrow
from b to R if, for every x € ob(C, the following functor is an equivalence of categories:

g*: C(c,x) — B(b, R(x)), f—=R(f)-g, wr— R(w)el,.

Universal arrows are called left biliftings by Street [57].
We can now reformulate Proposition [3.2.4]

Proposition 3.3.3. Let (A,E,J) € ob Qﬁr. The covariant correspondence v(a ¢ jy from (A,E,J) to

((9975, O e, IO}.S) is a universal arrow from (A,€,J) to the inclusion homomorphism €, — €. O

There are two alternative definitions of adjunctions, based on equivalences between morphism
categories or on units and counits. These are spelled out, respectively, by Fiore in [24, Definition 9.8]
and by Gurski in |28, Definition 2.1]. We shall use Fiore’s definition.

Definition 3.3.4 ([24, Definition 9.8]). Let B and C be bicategories. An adjunction between them
consists of

e two homomorphisms L: B —C, R: C — B;

e equivalences of categories
Pb,c: C(L(b)a C) = B(b7 R(C))

for all b € ob B, ¢ € obC;
e natural equivalences of functors

C(L(b), 1) =L C(L(ba), 1) —2 C(L(b2), c2)

Wbl,cll / \L‘sz,cz

Blb, Rler) —= Blba, Rler)) = Blba, Rlea)

g)«
for all arrows f: by — b1, g: ¢1 — ¢o in B and C.

These are subject to a coherence condition. In brief, the functors ¢, . and the natural equivalences
form a transformation between the homomorphisms

B°P x C = Cat, (b,c) — C(L(b),c), B(b,R(c)).
Here Cat is the bicategory of categories, see Example

Theorem 3.3.5 ([24, Theorem 9.17]). Let B and C be bicategories and let R: C — B be a homomor-
phism. It is part of an adjunction if and only if there are universal arrows from ¢ to R for each object
c€obC.
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More precisely, let ¢, € obC and v,: b — R(cp) for b € obC be universal arrows from b to R.
Then there is an adjoint homomorphism L: B — C that maps b +— ¢, on objects. In particular, this
assignment is part of a homomorphism of bicategories.

Theorem 3.3.6 (|24, Theorem 9.20]). Two left adjoints L,L': B = C of R: C — B are equivalent,
that is, there are transformations L = L' and L' = L that are inverse to each other up to invertible
modifications.

Using these general theorems, we may strengthen Proposition (in the form of Proposition [3.3.3))
to an adjunction theorem:

Corollary 3.3.7. The sub-bicategory @Ery* C €§r is reflective, that is, the inclusion homomorphism

R: QE&* — @Er has a left adjoint (reflector) L: Qﬁr — €§r7*. On objects, this adjoint homomorphism
maps

(A,€,J) (09,67 0‘1],£>IO£75)'

The homomorphism L is determined uniquely up to equivalence by Theorem So we have
characterised the construction of relative Cuntz—Pimsner algebras in bicategorical terms, as the
reflector for the full sub-bicategory ¢§r,* - €§r. By Corollary , the relative Cuntz—Pimsner algebra

construction is part of a homomorphism L: €§ — el

. pr,«+ For instance, this implies the following:

Corollary 3.3.8. The relative Cuntz—Pimsner algebras O ;¢ and Oy, g, are Morita equivalent if there
is a Morita equivalence F between £ and & as in [42, Definition 2.1] with J - F = F - J;.

Example 3.3.9. Let £: A~ B be a correspondence. Let F: B ~» A be an imprimitivity A, B-bimodule.
We let G4 = E®p F and Gg = F ®4 £ be the associated correspondences over A and B, respectively.
Let F*: A ~» B be the imprimitivity B, A-bimodule adjoint to F. The canonical isomorphisms

Fr*ep F = A, FRaF" =B
from Proposition yield a correspondence isomorphism
GARAF =EQRRF QU F " XEXF " RpFR4E=F ®p3§p.

It follows from Lemma that b € B is compact on Gp if and only if bF C Fe~1(K(£)). So for
each ideal J4 < A with J4 C ¢ Y(K(£)), the ideal Jp := (FJ4 | F)) in B acts by compact operators
on Gp. Similarly, for each ideal Jp in B acting by compact operators on Gg, Ja = (JgF | F) is an
ideal of A that acts by compact operators on £, and hence on G 4. Therefore, the bijection between the
lattices of ideals of A and B, respectively, coming from the Rieffel correspondence (see Theorem 7
provides a bijection between ideals in A acting by compact operators on G4 and ideals of B mapped to
compact operators on Gg. In particular, up to Morita equivalence, there is a bijection between relative
Cuntz—Pimsner algebras associated to G4 and Gp.

The proof of Theorem also describes the adjoint functor. We now describe the reflector
L: @;Ir — @;Ir)* explicitly, thereby explaining part of the proof of Theorem Much of the work
in this proof is needed to check that various diagrams of 2-arrows commute. We do not repeat these
computations here.

The homomorphism L maps (A,&,J) — ((9875, (9575, I@}S) on objects. Let (A, &, J) and (Aq, &1, J1)

be objects of € and let (F,u): (4,€,J) = (A1,&1,J1) be proper covariant correspondences. We
use the notation of the proof of Proposition and write tg, for the canonical isomorphism

0 ~ 1 0 . . .
&1 ®a, 0] ¢ 07 ¢ ®oy . 03, ¢, from Lemma 3, which is the covariance part of v(a, ¢, 1,)-

Let
L(]:> u) : (09,5’ O}L& IO},,E> — (091,517 031,51’ 10}71781 ),
L(F,u) == ((F®a, 05, )%, (ueig)¥).

In other words, we first compose (F,u) with v(4, ¢, s,) to get a covariant correspondence (F ®4,
081751,u e ig ) from (A,&,J) to (091781, (9‘1]1751,[0‘1]1{1) and then apply the equivalence in Proposi-

tion [3.2.41
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The construction on covariant correspondences above is clearly “natural”, that is, functorial for
isomorphisms. Explicitly, L maps an isomorphism of covariant correspondences w: (F,u) = (F',u’) to

L(w) = (w®log Vo L(F,u) = L(F ).

€1

To make L a homomorphism, we also need compatibility data for units and composition of
arrows. The construction of L above maps the identity covariant correspondence on (A, &, J) to
Uz:’& 51 (056,05¢,1e) = (05 ¢,0] ¢, I¢). This is canonically isomorphic to the identity covariant
correspondence on ((’)!OL & (’)}]’5, I¢) because the equivalence in Proposition is by composition
with v(4 ¢ 7). This is the unit part in our homomorphism L.

Let (F,u): (A, &,J) = (A1,&1,J1) and (Fr,u1): (A1, &1, J1) = (Asg, &2, J2) be proper covariant
correspondences. Then the homomorphism L contains isomorphisms of covariant correspondences

/\((]:, u), (.7:1,1,61)) : L(]:, u) o L(.Fl,U1) = L((]:, U) o (.7:1,’&1», (3310)

which are natural for isomorphisms of covariant correspondences and satisfy some coherence conditions
when we compose three covariant correspondences or compose with identity covariant correspondences.
We take A to be the isomorphism

(Fo®a, OF, ) @0y, (F1®a, O, ¢,) = (Fo ®a, F1) ®a, O, ,

&
given by the left action of (991 g, on F1®a, (9927 &, that is constructed in the proof of Proposition

The proof of Theorem m builds A using only the universality of the arrows v(4 ¢ 7). By the
equivalence of categories in Proposition 3.2.4|, whiskering (horizontal composition) with v(4 ¢ ;) maps
isomorphisms as in bijectively to isomorphisms

vae,g) © L(F,u) o L(Fi,u1) = viae, gy o L((F,u) o (Fi,u1)). (3.3.11)

The construction of L implies v(4.¢ 5y 0 L(F,u) o L(F1,u1) = (F,u) ov(a, g, 4,) © L(F1,u1) = (F,u) o
(F1,u1) 0 V(A,,65,05) and V(4e g) © L((]-', u) o (fl,ul)) % ((]—', u) o (.Fl,ul)) O U(Ay,E5,7), Where we
disregard associators. Hence there is a canonical isomorphism of covariant correspondences as in (|3.3.11]).
This Ansatz produces the same isomorphisms A as above. We have now described the data of the
homomorphism L. Fiore proves in [24] that it is indeed a homomorphism.

N

Proposition 3.3.12. The composite of L and the crossed product homomorphism €. . — el s

naturally isomorphic to the homomorphism €§r — €T of Theorem m

Proof. Our homomorphisms agree on objects by Proposition [3.1.25] The proof of Proposition [3.2.4]
constructed the covariant correspondence (F#,u#) by taking the degree-0 part in the correspondence
constructed in the proof of Proposition [3.1.28] Thus we may build a natural isomorphism between the
functors in question out of the nondegenerate left action of (’)91’51 on Oy, ¢,. O

So the reflector L lifts the Cuntz—Pimsner algebra homomorphism ¢§r — €T to a homomorphism
with values in @Y

pr.«- Such a lifting should exist because a Hilbert bimodule and its crossed product
with the T-action determine each other.

An adjunction also contains “natural” equivalences of categories ¢ .: C(L(b), ¢) ~ B(b, R(c)), where
naturality is further data, see Definition [3:3:4] In the case at hand, these equivalences are exactly the
equivalences of categories

UE‘A,E,J) : Q:Er((Avga ‘])7 (B7 ga Ig)) = Q:I;Ir,*((og',gﬁ O}],f)’ IO},,S)v (B, g,]g))

in Proposition [3:2:4] Their naturality boils down to the canonical isomorphisms of correspondences
v(a,e,g) 0 L(F,u) = (F,u)ova,e, ), which we have already used above to describe the multiplicativity
data A in the homomorphism L.

Finally, we relate our adjunction to the colimit description of Cuntz—Pimsner algebras in [6]. Let C
and D be categories. Let CP be the category of functors D — C, which are also called diagrams of
shape D in C. Identify C with the subcategory of “constant” diagrams in CP. This subcategory is
reflective if and only if all D-shaped diagrams in C have a colimit, and the reflector maps a diagram to
its colimit.
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This remains true for the bicategorical colimits in [6]: by definition, the colimit of a diagram is
a universal arrow to a constant diagram. In our context, a constant diagram in €§r is an object of
the form (B, B, B) that is, the Hilbert B-bimodule is the identity bimodule and J = B as always for
objects of €§r)*. Since the condition J - F C F - B always holds, the ideal J plays no role, compare
Remark

A proper covariant correspondence (A, &, J) — (B, B, B) is equivalent to a proper correspondence
F: A~ B with an isomorphism £ ® 4 F = F because F @p B = F. As shown in [6], such a pair is
equivalent to a representation (¢, t) of the correspondence £ on F that is nondegenerate in the sense
that t(£) - F = F. The properness of F means that ¢(A) C K(F), which implies ¢(€) C K(F).

It is shown in [6] that all diagrams of proper correspondences of any shape have a colimit. This is
probably false for diagrams of non-proper correspondences, such as the correspondence ¢?(N): C ~» C
that defines the Cuntz algebra Q.. The way around this problem that we found here is to enlarge the
sub-bicategory of constant diagrams, allowing diagrams of Hilbert bimodules. In addition, we added
an ideal J to have enough data to build relative Cuntz—Pimsner algebras.

Since the sub-bicategory € C Qllsr of constant diagrams is contained in @Y

prxs We may relate

universal arrows to objects in € and €}, as follows. Let (4,&,J) be an object of €5.. Then
Ve (A€, ) = (0%, (’)'1]75,1(9'1].5) is a universal arrow to an object of €I, |
The universality of v ¢ sy implies that a universal arrow from (A, &, J) to a constant diagram factors
through v ¢, 7y, and that an arrow from ((’)9,5, (9},’5, 10‘1]78) to a constant diagram is universal if and

by Proposition

only if its composite with v(4 ¢ s) is universal. In other words, the diagram (4, &, J) has a colimit if
and only if ((997 & (9}7 & IO} S) has one, and then the two colimits are the same. We are dealing with the
same colimits as in [6] because the ideal J in (A, &, J) plays no role for arrows to constant diagrams.
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Chapter 4

Product systems and some
C*-constructions

In this chapter, we recall certain constructions of C*-algebras associated to product systems, such as
Toeplitz algebras. We describe the spectral subspaces for the canonical coaction of a group containing
the underlying semigroup. In Section [4.2] we restrict our attention to compactly aligned product
systems over quasi-lattice ordered groups. We provide examples of C*-algebras associated to product
systems coming from semigroups of endomorphisms. With the subsequent chapters in mind, we prove
some facts concerning the canonical grading of relative Cuntz—Pimsner algebras. We finish this chapter
by defining bicategories of compactly aligned product systems.

4.1 Basic notions

Our main reference for this section is the original paper by Fowler [26], in which he introduced the
concept of product systems in this generality.

4.1.1 Toeplitz algebras

Let P be a semigroup with identity e and A a C*-algebra. A product system over P of A-correspondences
consists of:

(i) a correspondence &,: A~ A for each p € P;

(ii) correspondence isomorphisms pipq: & @4 & 3 Epq, also called multiplication maps, for all
p,q € P\{e};

We require that & = A be the canonical correspondence over A. Let ¢,: A — B(E,) be the
multiplication map fe p and let p, . implement the right action of A on &,, respectively, so that p. ,(a®
&) = wp(a)ép and pp (6 @ a) = Epa for all a € A and &, € &,.

This data must make the following diagram commute:

1 a,r
(6 @A EY) N~ Ey D4 (Eg DA Ey) — o & Dp Ear

\L/’l’p,q®1 l/‘p,qr

Hpq,r
Epqg ®a &y

Epgr-

A product system £ = (€,)pep will be called faithful if ¢, is injective for all p € P. It is proper
if A acts by compact operators on &, for all p in P. If each &, is a Hilbert A-bimodule, we will speak
of a product system of Hilbert bimodules.

FEzample 4.1.1. Let P be a semigroup. For each p € P, set &, := C. This gives a product system
over P with multiplication and inner product inherited from the structure of C*-algebra of C.
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Example 4.1.2. An endomorphism of a C*-algebra A is said to be extendible if it extends to a strictly
continuous endomorphism of the multiplier algebra M(A) (see [4]). This happens if and only if there is
a projection @@ € M(A) so that a(uy) converges to @Q in the strict topology of M(A), where (ux)xea i8
an approximate unit for A. In particular, we have Qa = limy a(uy)a = «(1)a for alla € A. Let a: P —
End(A) be an action by extendible endomorphisms with a. = ida | For each p € P, let , A = a(1)A
be equipped with the struture of right Hilbert A-module coming from the multiplication and involution
operations on A. That is, ap(1)a - b == ap(1)ab and (ap(1)a|a,(1)b) = a*ay(1)b for all a,b € A.
Here we still denote by «,, the corresponding endomorphism of M(A). We let ¢,: A — B(, A)
be the *-homomorphism implemented by a,. So ¢,(b)(ap(1)a) = ap(b)a. This turns , A into a
correspondence over A.
We let iy q: o A ®a 4, A— ,, A be defined on elementary tensors by

ap(l)a®a ag(l)b— agp(l)ay(a)d.

This intertwines the left and right actions of A and preserves the A-valued inner product. It is surjective
because

agp(l)a = hin agp(ur)a = hin ag(ap(ur))a = li/{n ag(ap(1)ap(un))a.

Since p — «y, is an action by endomorphisms, the multiplication maps are associative. Thus, a: P —
End(A) gives rise to a product system ,A4 = (,, A)pep over P°P, where P°P is the opposite semigroup
of P. Moreover, ,A is proper, since K(, A) = a;,(1)Aa,(1) and ap(a) = ap(1)ag(a)ay(1) for alla € A
and p € P.

Ezample 4.1.3. Let a: P — End(A) be an action by extendible endomorphisms as above with the
additional property that, for all p € P, ay, is an injective endomorphism with hereditary range. In this
case, ,A is faithful and may be enriched to a product system of Hilbert bimodules over P°P. The left
A-valued inner product is given by

{(ap(M)alap(1)b) = oy (ap(1)ab (1))

for all a,b € A and p € P. In particular, this yields a product system A, = (Aa,)pecp over P,
where A, = Aa,(1) with the Hilbert A-bimodule structure obtained from , A* through the identifi-

[e3%

cation oy (1)a — a*a,(1).

A representation of a product system £ = (&, ),ep in a C*-algebra B consists of linear maps ¢, : £, —
B, for all p € P\ {e}, and a *-homomorphism 1. : A — B, satisfying the following two axioms:

(T1) ¥p(E)1hg(n) = pe(€n) for all p,q € P, £ € €, and n € &;

(T2) ¢p(&)"¥p(n) = ve((&|n)) for all p € P and &, 7 € &p.

If 1. is faithful, we say that v is injective. In this case, the relation (T2) implies that |1, (€)]| = |||
forall{ € £, and p € P.

Proposition 4.1.4 (|26, Proposition 2.8]). Let £ be a product system over P. There is a C*-algebra Te

with a representation t: £ — Tg, so that t(£) generates Tg as a C*-algebra and, given a representa-
tion ¥ = {¢ptpep of € in a C*-algebra B, there is a unique *-homomorphism: Tg¢ — B with wot:, =y

for all p € P. Moreover, the pair (Te,t) is unique up to canonical isomorphism.

We call T¢ the Toeplitz algebra of £.

Proof. Let C be the universal *-algebra generated by the set {({,p)|€ € €,,p € P}, subject to the
relations

&p)-(m,q) = (mpg(E@n),pq), (&p)"((,p) = ({(E]n),e)

for all £,( € &, n € & and for all p,g € P. Let B be a C*-algebra and let ¢: C' — B be a
*~homomorphism. Then

1o (&)1 = 19 (&) v (Pl = IpUETENT < I = lIg]>

f ae is injective, the equality ae = ae 0 ae entails ae = id 4.
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For n € C, we set
poo () := sup p(n),

where p ranges in the collection of all C*-seminorms on C. This provides C' with a well defined
C*-seminorm since £ generates C as a *-algebra. We then let 7¢ be the completion of (C, p,). For
each p € P, we obtain a linear map t~p: &p — Te by composing the canonical *-homomorphism C' — T¢
with the map & — (&, p). Set t = {?p}pep. By construction, this is a representation of £ in T¢ and the
pair (Tg,ﬂ satisfies all the required properties. O

We will see that £ has a canonical injective representation if P is left-cancellative. In particular,
Poc(&) = ||&|| for all £ € &, and for all p € P.

4.1.2 Fock representation

Let € = (€,)pep be a product system over a left-cancellative semigroup P. Let €1 be the right Hilbert
A-module given by the direct sum of all £,’s. That is,

e =he,.

peP

Define a representation of £ in B(E) as follows. Given £ € &€, and nt = Dcp s, set

¢+(£)(n+) _ {M%Pls(g@’ﬂs) if s € pP,
P S

0 otherwise.

We view &ps as the correspondence &, ® 4 & through the correspondence isomorphism f,, L. In this way,
Y4 (£)*(n)s is the image of 7, in & under the operator defined on elements of the form i, (¢, ® ()
by the formula

¢;(§)*(Mp,s(<p ® <5)) = ‘Ps(<§ | CP>)<3-

Since P is left-cancellative, this is well defined. So ¢} (£)* is the adjoint of ¢} (£) (see Subsection [3.1.1)).
This gives rise to a representation 1 = {1 },cp of € in B(ET) called the Fock representation of &.

Corollary 4.1.5. Let P be a left-cancellative semigroup and € a product system over P. Then the
universal representation of € in Tg is injective.

Proof. 1t suffices to show that the Fock representation is injective on A. This follows from the fact
that ¢t is the diagonal *-homomorphism from A to B(ET). This is injective because £1 contains a
copy of A as a direct summand. O

4.1.3 The coaction on the Toeplitz algebra

The idea of considering coactions on Toeplitz algebras associated to product systems goes back
to |26} Proposition 4.7] and also [15] for Nica—Toeplitz algebras. Given a product system &€ = (&,)pep
and a discrete group G with G O P, we will need the topological G-grading coming from the canonical
coaction of G on the Toeplitz algebra T¢ in Chapter [} Hence we begin with a description of such a
grading.

Let £ = (&p)pep be a product system. Suppose that P is a subsemigroup of a group G. There
is a representation of £ in 7z ® C*(G) which sends &, € &, to #(£,) ® u,. By the universal property
of T¢, this yields a *-homomorphism 5 Te = Te ® C*(G). Such a *-homomorphism provides T¢ with
a topological G-grading. This will be a crucial tool for the remainder of this thesis.

Lemma 4.1.6. The *-homomorphism 5 Te = Te @ C*(G) provides a full coaction of G on Tg.

Moreover, the spectral subspace T¢ at g € G associated to § is the closure of sums of elements of the
form

H(Ep )t (Epa)" - - - H(Epn ()",
where n € N, pipy b .. .pp_1p;t =g and &p, €Ep, forallie{1,2,...,n}.
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Proof. We begin by proving that Sis nondegenerate. Let (u))aca be an approximate identity for A. For
each p € P, both the left and right actions of A on &, are nondegenerate. Consequently, (te(uA)) xeA

is an approximate unit for 7¢. Hence its image under 5 satisfies, for all b € T¢ and g € G,

li/I\Il §(t(ur)(b® Ug) = liin (te(ur) @ ue)(b® uy) = liintNE(uA)b Qug =b® uy,.

This guarantees that 5 is nondegenerate. In addition, for all p € P, we have
6y @ idew ()0 = (id7z ® 66)0,

on (&,). Thus § satisfies the coaction identity on Te as well, because it is generated by tH(E) as a
C*-algebra. N

It remains to prove that § is injective. Indeed, let 1g: G — C, g — 1, be the trivial group
homomorphism. Then (id7, ® 1g) 0§ = idy, if we identify T¢ with 7¢ ® C in the canonical way. So §
is injective. Hence § is a full coaction of G on the Toeplitz algebra of £.

Now let 7¢ be the spectral subspace at g € G for 5 and let 5~g denote the projection of T¢ onto 77
as in Proposition Take b in 7. Since gg is contractive and T¢ is generated by #(€) as a
C*-algebra, we may suppose that

b= HEHE,) - HEy G )
j=1 J ]

where m,k; € N for all j in {1,2,...,m} and £p_z' € Ep_/j. The assertion then follows from the fact

that gg vanishes on any element of the form

H(Ep )E(Epy)" - - H(Ep 1 )E(Ep,)"
with pipa ... pp_1pyt # 9 O

We call the coaction obtained in the previous lemma as the generalised gauge coaction of G on Te.

4.2 Compactly aligned product systems

Nica—Toeplitz algebras are defined for a class of product systems over positive cones of quasi-lattice
ordered groups. They are quotients of Toeplitz algebras and carry a grading as in Lemma In this
section, we look at the canonical topological grading of a Nica—Toeplitz algebra and, more generally, of
a relative Cuntz—Pimsner algebra. This grading has special features, which led us to study the class of
Fell bundles introduced in Chapter [5]

4.2.1 Nica—Toeplitz algebras

Let us restrict our attention to semigroups arising from quasi-lattice orders in the sense of [47]: let G
be a group and let P be a subsemigroup of G with PN P~! = {e}. We say that (G, P) is a quasi-lattice
ordered group if any two elements g1, g2 of G with a common upper bound in P with respect to the
partial order g1 < g2 & gflgg € P also have a least upper bound g1 V g2 in P. We write g1 V go = 00
if g1 and g2 have no common upper bound in P. Following [17], we call P the positive cone of (G, P),
observing that P = {g € G|g > e}.

If (G, P) is a quasi-lattice ordered group, any element g in G satisfying g V e < oo has a certain
reduced form pg~! with p, ¢ € P, which will allow us in the subsequent chapter to extend a class of
product systems of Hilbert bimodules over P to Fell bundles over G in a natural way.

Lemma 4.2.1. Let (G, P) be a quasi-lattice ordered group and let g € G with gV e < oco. Then
g lve<ooandg=(gVe)g tve)

Proof. Let ¢ € P be such that g7'(gVe) = q. Then gV e = gqg = (97')"'q. This shows that
g t'Ve<ooand g7' Ve <q. But g(g! Ve) belongs to P and g < g(g ' Ve). SogVe<g(g~!Ve).
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Since the partial order g; < g2 & g1 14, € P is invariant under left-translation by elements of G, it
follows that ¢ = g~ (g Ve) < g~! Ve. Therefore, g= (gVe)(g~tVe) L O

Ezample 4.2.2. Let k € N*. Then (Zk, Nk) is quasi-lattice ordered. For this example, m < n if and
only if m; < n; for all i € {1,2,...,k}, where m,n € ZF.

Exzample 4.2.3. Let F be the free group on the set of generators S. Let F™ be the unital subsemigroup
of F generated by S. Any element of F has a reduced form aias---a, with a; € S U S™! for all
i€{1,2,...,n} and a; # a;_ll for all + € {1,2,...,n — 1}. Hence one can prove that (F,FT) is a
quasi-lattice ordered group (see [47]). For g € F, gV e < oo if and only if its reduced form is pg~*
with p and ¢ in FT. In this case, p=gVeand ¢ =g ! Ve.

Ezample 4.2.4. Let ¢ and d be nonzero integers. The Baumslag-Solitar group BS(c, d) is the universal
group on two generators a and b subject to the relation ab® = b%a. If ¢, d > 0, the unital subsemigroup
of BS(¢,d) generated by a and b provides it with a partial order so that (BS(c,d),BS(c,d)") is a
quasi-lattice ordered group (see |56, Theorem 2.11]).

Let (G, P) be a quasi-lattice ordered groups and let £ = (&,),ep be a product system over P.
Let 9 = {1, },ep be a representation of £ in a C*-algebra B. For each p € P, we will denote by (P
the *-homomorphism from K(&,) to B obtained as in [48]. This is defined on a generator |£)(n| by

PP (1€)(n]) = Pp(©)tbp(n)*.

We may use the multiplication maps on & to define *-homomorphisms :29: B(E,) — B(E,,). Explicitly,
27 sends T € B(Ep) to pupq 0 (T @idg,) o iyt We say that £ = (€,)pep is compactly aligned if, for
all p,q € P with pV ¢ < 0o, we have

BYUT)EY(S) € K(Epvyg), for all T' € K(&,) and S € K(&,).

If £ is compactly aligned, a representation ¢ = {¢,},ecp of € in a C*-algebra B is Nica covariant
if, for all p,qg € P, T € K(&p) and S € K(&;), we have

@V (BYa(T)2Ya(S)) if pV g < oo,
0 otherwise.

w(p) (T)w(q)(g) — {

Proposition 4.2.5 (|26, Theorem 6.3]). Let (G, P) be a quasi-lattice ordered group and let £ be a
compactly aligned product system over P. Then there is a C*-algebra N'T¢ and a Nica covariant represen-
tation @ = {7y }pep of € in N'Tg so that w(E) generates N'Te as a C*-algebra and, given a Nica covariant
representation ¢ = {p}pep of € in a C*-algebra B, there is a unique *-homomorphism V: Te — B
such that ¢ o Tp = p for all p € P. Moreover, T is injective and the pair (N'Te,T) is unique up to
canonical isomorphism.

Proof. Let In be the ideal in T¢ generated by the union of

{189 (S) — @YD (LVI(T)2YY(S))|p,g € P,pV g < 00, T € K(£,) and S € K(&,) }

with
{f(p)(T)E(q)(Sﬂp,q € PpVg=o00,T €K() and S € K(&)}.

Put NTg = Tg/In and let 7 = {7, },ep be the representation of € in N'Tg obtained from the
composition of ¢ with the quotient map. So 7 is Nica covariant. It is also injective because the Fock
representation is Nica covariant. Hence the pair (NTg, T) satisfies all the required properties. O

We call N'Tg the Nica—Toeplitz algebra of £.

4.2.2 Relative Cuntz—Pimsner algebras

Let &€ = (&,)pep be a product system. For each p € P, let J, < A be an ideal that acts by compact
operators on &, and set J = {J,}pep. We say that a representation ¢ = {¢,,},ep is Cuntz—Pimsner
covariant on J if, for all p € P and all a in Jp,

VP (pp(a) = ve(a).
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Repeating the argument employed in the proof of Proposition [1.2.5] we obtain the following:

Proposition 4.2.6. Let (G, P) be a quasi-lattice ordered group and let £ be a compactly aligned
product system over P. Let J = {Jp}pep be a family of ideals in A with ¢,(J,) C K(E,) for all p € P.
Then there is a C*-algebra Oz ¢ and a Nica covariant representation j = {jptpep of € in Oy ¢ that is
also Cuntz—Pimsner covariant on J and such that

(i) Oy is generated by j(E) as a C*-algebra;

(ii) given a Nica covariant representation ¢ = {1, },cp of £ in a C*-algebra B that is Cuntz—Pimsner
covariant on J, there is a unique *-homomorphism ¥ z: Oy ¢ — B such that ¥z o j, = 1, for
allp e P.

Moreover, the pair (O7 ¢,j) is unique up to canonical isomorphism.

Definition 4.2.7. Given £ and J as above, we call Oy ¢ the relative Cuntz—Pimsner algebra deter-
mined by J.

We emphasize two particular cases. If J, = {0} for allp € P, then Oz ¢ = NT¢. If (G, P) = (Z,N),
€ is a product system of Hilbert bimodules and J, = (&, | £,)) for all pin P, then Oy ¢ is the C*-algebra
studied by Katsura in [29]. He proved that the canonical *-homomorphism from A to Oy ¢ is an
isomorphism onto the fixed-point algebra of Oy ¢. In this case, £ extends to a semi-saturated Fell
bundle over Z (see [1]). We will generalise this to a certain class of compactly aligned product systems
of Hilbert bimodules over semigroups arising from quasi-lattice orders.

Remark 4.2.8. Fowler defined the Cuntz—Pimsner algebra of a product system £ to be the universal
C*-algebra for representations of £ that are Cuntz-Pimsner covariant on J = {Jp}pep, where
Jp = ¢, {(K(Ep)) for all p € P (see [26]). Here we consider the class of compactly aligned product
systems and define the relative Cuntz—Pimsner algebra with respect to a family of ideals as a quotient
of the Nica—Toeplitz algebra of £. This provides the construction of relative Cuntz—Pimsner algebras
with a special feature and will allow us to generalise most of the results obtained in Chapter [3| to
quasi-lattice ordered groups. Our approach applies to Fowler’s Cuntz—Pimsner algebras of proper
product systems € = (&,)pep if (G, P) is a quasi-lattice ordered group and P is directed. This is so
because, in this case, a Cuntz—Pimsner covariant representation of £ in the sense of Fowler is also Nica
covariant [26], Proposition 5.4].

A product system of Hilbert bimodules £ = (€,),ecp gives rise to a product system £* over PP
by setting £* := (&, )pep, where £} is the Hilbert bimodule adjoint to &,. We will identify A with its
adjoint Hilbert bimodule A* through the isomorphism a +— a* implemented by the involution operation
on A, where a* is the image of a* in A* under the canonical conjugate-linear map. The multiplication
map &, ®a Ey = &, s given by the isomorphism &5 @4 &) = (€, ®a &p)*, £ @ 0" = (n®E)*, followed
by the multiplication map . In addition, £** = £. Before providing more concrete examples of
relative Cuntz—Pimsner algebras, we need the following lemma.

Lemma 4.2.9. Let £ = (&,)pep be a product system of Hilbert bimodules. For each p € P, let I, =
(Ep| Ep)) and set Te = {Ig,}pep. A representation ¢ = {Yp}pep of € in a C*-algebra B that is
Cuntz—Pimsner covariant on Zg naturally induces a representation of £* = (£;)pep that is Cuntz—
Pimsner covariant on Lg«, where Le- = {Ig: bpep and Iex = (& | E5) = (Ep | Ep). As a consequence,
representations of € that are Cuntz—Pimsner covariant on Lg are in one-to-one correspondence with
representations of £° that are Cuntz—Pimsner covariant on Lgx.

Proof. For p = e, put ¢} = 1. Given p € P\ {e}, define ¢5: & — B by ¥ (£*) = 9,(§)" and
set ¢* = {5 }pep. Then, for all £ € £, and n € &,

w;(f*)¢;(n*) = p(§) Vg (M)* = Vgp (g p(n ® 5))* = w*p (g p(n®&E)7).

Since ¢ is Cuntz—Pimsner covariant on Zg, it follows that

() Vs (") = Up(O)Yp(n)* = PP (1) (n]) = ve((€n) = ¥5((&]0))

for all £,n € &£,. That * is Cuntz—Pimsner covariant on Zg¢- follows from the fact that ¢ is a
representation of £. So the last statement is obtained from the identity &€ = £**. O
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Ezample 4.2.10. Let a: P — End(A) be an action by injective extendible endomorphisms with
hereditary range. Let Ay = (Aa,)pep be the product system of Hilbert bimodules built out of a as in
Example Although it is not clear when A, is compactly aligned, ,A always is so. The ideal I, < A
given by the left inner product of A, is precisely Aa,(1)A. Given a nondegenerate representation 1 =

{¥p}pep of Ay in a C*-algebra B, we obtain a strictly continuous unital *-homomorphism Ve: M(A) —
M (B) by nondegeneracy of ¢.. In addition, we define a semigroup homomorphism from P to the
semigroup of isometries in M (B) by setting

vp = liin Yp(uray(1)).

Here the limit is taken in the strict topology of M (B). It indeed exists because ||, (ura,(1))]| < 1 for
each X and, fora € Aand b € B,

Hin Vp(uray(1))(Ye(a)b) = li>r\n Vp(urap(a))b = Pp(ap(a))b
and
i (b () (131 (1) = T b sty (1) = b acg (1)

To see that vyv, =1, observe that

v Up (Ve(@)b) = lim ¢y (wrary (1)) " (p(@))b = lim the (o, (ap (1urap (a)))b = te(a)b.

The semigroup of isometries {v,|p € P} and the *~homomorphism ), : M(A) — M(B) satisfy the
relation

Up - &e(c) = &e(ap(c))vp
for all c € M(A) and p € P. Hence
@e(ap(c))vpv; = vpﬁe(c)v;. (4.2.11)

In addition, ¥p,(ac,(1)) = ¢e(a)v, for all a € A and p € P. If ¢ is Cuntz—Pimsner covariant on
Za,, = {Ip}pep, it follows that for all c € M(A) and p € P,

Ye(ap(c)) = e (ap(c))vpvy.

Indeed, for ¢ in A and aay(1) in A,,, we compute

ap(cc)aap(l) = ap(c”)ap(ap-1(ap(c)any(1)))
= ap(c)ap ((ap(c™) (1) [acy(1)))
= ap(

¢*) - ap(e)ap(1) | acy (1))
Jap (")) (e () (ary (1)):

Hence Cuntz—Pimsner covariance gives us

Ye(ap(c™e)) = Pplap(c™))hp(ap(c?))” = we(O‘p(C*))UpU*we (ap(c))
= wE(ap(C*))vpd’e(C) ; = we(ap(c C))U;DU

Since A is spanned by positive elements, the same relation holds for all ¢ € A and thus for all ¢ € M(A)
if we replace 1, by its extension .. So combining this with (4.2.11]), we deduce the relation

Ye(ap(c)) = Up¢e(C)U;
for all ¢ € A. The same holds for ¢, and ¢ in M(A).

Conversely, we claim that a nondegenerate *-homomorphism 7: A — B together with a semigroup
of isometries {v,|p € P} satisfying the relation

m(ap(a)) = vpm(a)v, (4.2.12)
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yields a representation of A, that is Cuntz—Pimsner covariant on Z4 . First, notice that the projec-
tion vyv, coincides with 7(ay(1)), where 7 is the strictly continuous *-homomorphism M (A) — M (B)
extending w. For each p € P and a € A, we set ¥,(ac,(1)) == m(a)v,. Put ¥ = {¢,}pep. Then

T(ap(1)) = vpvy implies that ¢ is Cuntz—Pimsner covariant on I, = Aay,(1)A for all p € P, since

Ve (acp(1)b) = m (aay,(1)b) = 7(a)7(1)7(b) = m(a)vpv,m(b) = m(a)vy(m(b*)vy)"
= pacy(1))Pp(b"ay(1))" = w(p) (Jacp (1)) (6" (1))

for all @ and b in A. Moreover, (4.2.12) tells us that . (a,(a))vp, = vpbe(a) for all a € A and p € P.
This also gives

¢p(a0‘p(1))¢q(baq(1)) = ¢pq(aap<b)apq(1)) = Ypq (Mp7q(aap(1) ® baq(l)))-
Again by ,

Ve (ap-1(ap(1)a*bay(1))) = vivpthe (-1 (ap(1)a*bay(1))) vy,
= U;d’e (ap(l)a*bap(l)) Up

= vythe(a”b)vy.

This shows that 1 is a representation of A, that is Cuntz—Pimsner covariant on Zy4_ .

As a result, the crossed product A x, P of A by the semigroup of endomorphisms provided by « has
a description as the universal C*-algebra of representations of A, that are Cuntz—Pimsner covariant
onZy,. By Lemma@ A X, P may also be described as the universal C*-algebra for representations
of ,A that are Cuntz—Pimsner covariant on Z 4. If P°P is the positive cone of a quasi-lattice order and
is also directed, a representation of ,A that is Cuntz—Pimsner covariant on Z 4 is also Nica covariant
by |26l Proposition 5.4]. In this case OIQAWA = A x4 P. In general, A x,, P is the Cuntz—Pimsner
algebra of A as defined by Fowler [26]. See, for instance, [35] and [37] for constructions of crossed
products by semigroups of endomorphisms. We also refer the reader to [38] for this and further
constructions of crossed products out of product systems.

Ezample 4.2.13. We may attach a C*-algebra to a quasi-lattice ordered group (G, P) by considering
the trivial product system over P. The Toeplitz algebra of (G, P) as introduced by Nica [47], denoted
by C*(G, P), is the Nica—Toeplitz algebra of the trivial product system over P. This is the relative
Cuntz-Pimsner algebra with respect to the trivial family of ideals J, = {0} for all p € P. In fact, there
is also a description of C*(G, P) as a semigroup crossed product as in the previous example (see [35]
and also Subsection . This is the universal C*-algebra generated by a family of isometries {v, }pep
subject to the relation

N .
o« JUpveUpy, ifpVg<oo,
VpUpUgUy = )
0 otherwise.

The Fock representation in this case is the canonical representation of P by isometries on ¢o(P). The
image of C*(G, P) in B(¢3(P)) under the Fock representation is called Wiener—Hopf algebra [47].

4.2.3 Coaction on relative Cuntz—Pimsner algebras

Let (G, P) be a quasi-lattice order and let £ be a compactly aligned product system over P. The
representation of £ in Oz ¢ ® C*(G) which sends £ € &, to £ ® u,, is Nica covariant and also Cuntz—
Pimsner covariant on J. So this yields a *-homomorphism 6: Oy ¢ — Oz ¢ ® C*(G).

Proposition 4.2.14. The *-homomorphism §: Oz ¢ — Oz @ C*(G) gives a full coaction of G
on Oz ¢. Moreover, the spectral subspace (9\9775 ford at g € G with g Ve < oo is the closure of sums
of elements of the form

Jp(&)dq(n)*
with € € €, and 1 € &,, where pg~' = g and p,q € P. If gV e = 0o, then (’)"qy}g is the trivial subspace.

Proof. The first part of the proof is essentially identical to that of Lemma [£.1.6] For the last part,
notice that the Nica covariance condition entails j,(€,)*jq(E4) = {0} whenever p V ¢ = co because
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Ip(Ep) = 3p(Ep)ip(Ep)*jp(Ey) for all p € P. In case pV g < 0o, we have

Jp(Ep)*dq(Eq) C SPan {jpfl(pvq) (f)jqfl(p\/q)(n)*‘ £ € &-1(pvq) T € gqfl(pvq)} :

So take g € G with gV e = co. In particular, g has no presentation of the form pg~—! with p, ¢ in P.

Thus, by successive applications of the above simplification for elements of the form j,(£,)*j4(&,), it
follows that

jpl (€P1 )jp2 (€p2)* .- 'jp2n—1 (§p2n—1)jp2n (fp%,)* =0
whenever pipy ' ... pan_1D5, = g and &,, € &,, foralli € {1,2,...,2n}. As a consequence, 0% ¢ ={0}.

Now a similar reasoning shows that if g € G satisfies g V e < co and p1p2_1 .. .pgn_1p2_n1 = g, then
jpl (fpl )jpz (5}72)* c 'jp2n71 (é‘anfl)ijn (£p2n)* lies in the closed linear Spal of

{5p(©)dam)|pg ™t =g, £ € & and n € &}

This completes the proof. O

Corollary 4.2.15. Let £ = (&p)pep be a compactly aligned product system and J as above. Then,
for all p € P, we have an isomorphism

OF ¢ 2&2407¢

of correspondences A~» O% .. Moreover, (Opj ¢)pep 15 a product system of Hilbert 0% ¢-bimodules.

Proof. By Proposition{4.2.14} O . is generated by elements of the form j,.(§)js(n)*, with & € £, € &
and rs~! = p. In particular, r = ps and we can use the isomorphism p, | to show that j.(€)js(n)* lies
in j,(£,)7s(Es)s(Es)*, which in turn is contained in j,(£,)O% ¢. The inclusion j,(E,)0% ¢ € O  is
trivial. So O% o = j,(€,)O0% ¢. Hence &, @4 OF ¢ = O% o, £ @0+ jp(§)n gives an isomorphism of

correspondences A ~ O .
;

For each p € P, (’)1‘177 ¢ isa Hilbert O% ¢-bimodule with the structure obtained from the multiplication
and involution operations on Oy ¢. In particular, (9\6775(9’37_’5 = Opj_’g. Hence, if p,q € P, we have a
correspondence isomorphism

09,5 Qoy . 0?7,5 = 0?7,50?7,5 = (jp(gp)oz,s)oqj,s = jp(gp)(og,sog,s)
= jp(gp)ofly,s = jp(gp)jq(gq)o;,s = qu(gpq)oé,s = O?ff

These multiplication maps are associative because they coincide with the multiplication on Oy ¢. O

4.3 Bicategories of compactly aligned product systems

We define covariant correspondences between compactly aligned product systems as in Chapter
following the ideas of Schweizer [54]. Let (G, P) be a quasi-lattice ordered group. Let & = (&,),ep
and G = (G,)pep be compactly aligned product systems of correspondences over C*-algebras A
and B, respectively. Let J4 = {J;;‘}pep and Jp = {JP}pep be families of ideals in A and B,
with 2 (J21) CK(E,) and ©F(JB) CK(G,) for all p € P.

Definition 4.3.1. A covariant correspondence from (A, &, Ja) to (B,G,Jp) is a pair (F, V), where
F: A~ B is a correspondence such that J;;‘}" C ./"-'J;3 forallp € P and V = {V,},ep is a family of
correspondence isomorphisms V,,: £,@4 F = FQpG,, where Ve: A®4F = F®p B is the isomorphism
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which sends a ® (£b) to ¥(a)€ ® b. These must make the following diagrams commute for all p,q € P:

“;1,(1@1 7
(Sp XA gq) (2} F gpq XA F F XB gpq
1 T@#i,q
Ep @A (Eqg®@aF) F®5 (G @5 Gy (4.3.2)

1®vql

gp Xa (]: XB gq)

|

ol (f XB gp) ®B gq-

(51) ®a f) XB gq

A covariant correspondence (F, V) is called proper if F is a proper correspondence.
Definition 4.3.3. The bicategory ¢ has the following data:

o Objects are triples (4,&,J), where A is a C*-algebra, £ = (&,),cp is a compactly aligned
product system over P of A-correspondences, and J = {J,}pep is a family of ideals in A with
Jp C o5 H(K(Ep)) for all p € P.

o Arrows (A, E,T) — (41, &1, J1) are covariant correspondences (F, V') from (A4, &, T) to (A1, &1, Th)-
o 2-Arrows (Fo, Vo) = (F1, V1) are isomorphisms of covariant correspondences, that is, correspon-

dence isomorphisms w: Fo — F; for which the following diagram commutes for all p € P:

V()yp
Ep®@aFo—>Fo®a, E1p

1gp®wl iw®181'p
Vi

Ep®aF1 —LF ®a, E1p-

e The vertical product of 2-arrows
wo: (Fo, Vo) = (F1, V1), wi: (F1,Vi) = (F2, V2)

is the usual product wy - wo: Fo — Fa. The arrows (A,€,T) — (A1,E1, J1) and the 2-arrows
between them form a groupoid ¢¥((4,&,7), (A1, &1, T1)).

o Let (F,V): (A,E,T) = (A1,&1, ) and (F1,V1): (A1,&1, 1) — (Az2,E,J2) be arrows. For
each p € P, let V,, @ V] ,, be the composite correspondence isomorphism

Vp®1lr, 1r®@Vip
Lr,

Ep@aF Ra, Fi FRa, E1pRa, Fi F®a, F1®4, E2p-
We define the product (Fyi, V1) o (F,V) by

(Fi,V1) o (F,V) = (F ®@a, F1,V e V1),
where Ve Vi ={V, eV} ,},cp.

e The horizontal product for a diagram of arrows and 2-arrows

(F,V) (F1,V1)
Ag j iEA17817‘]1 iDA27527J2
(FV) (F1, V1)

is the 2-arrow
(F®a, F1,VeV1)

(A, E,T) ﬂm; (A2, &2, J2).

(F@a, F1,V o)
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This horizontal product and the product of arrows produce composition bifunctors
Q:P((Av ga j)7 (Ala gla Jl)) X Q:P((Ah 517 \71)’ (A27 627 jQ)) — QP((Av 57 \-7)7 (A27 527 jZ))

o The unit arrow on the object (A, &, J) is the proper covariant correspondence (A, tg), where A
is the identity correspondence and tg = {tg, }pcp is the family of canonical isomorphisms

Ep@AAZE, ZARAE,
obtained from the right and left actions of A on £.
e The associators and unitors are the same as in the correspondence bicategory.
We will denote by Qigr the sub-bicategory of € whose arrows are proper covariant correspondences.

Ezample 4.3.4. View OF ¢ as a correspondence A ~ O% . For each p € P, let ig, be the isomorphism
& 405, =07¢=07,¢ 00, OF ¢

where the first isomorphism is that of Corollary [4.2.15] Cuntz—Pimsner covariance on J = {J,}pep
implies that
je(Jp) < jp(‘sp)jp(gp)* < 09,5097*5

for all p € P. So ((’)}75, fg) is a proper covariant correspondence
(A7 87 \7) — (O?,Sa (09,5);061371.0\7,5)3

R . o ;)
where ig = {ig,}pep and Zo, . = {Iy 7 }pep with I, 75 = OF 05" = (O% .| O% ).
We will see in the sequel that (O ¢, ¢) is a universal arrow as in Definition So the triple
(0% £, (0% ¢)pep: Lo, ) is the best approximation of (A, £, J) by an object of a certain sub-bicategory
of Qf:r of product systems of Hilbert bimodules.
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Chapter 5

Fell bundles over quasi-lattice
ordered groups

In this chapter we introduce a class of Fell bundles over quasi-lattice ordered groups, inspired by
properties of the topological grading of relative Cuntz—Pimsner algebras. We show that such Fell bundles
arise naturally from a certain class of product systems of Hilbert bimodules. This correspondence
turns out to be an equivalence between a sub-bicategory of € and a bicategory of Fell bundles. In
Section we relate amenability for this class of Fell bundles to amenability of quasi-lattice ordered
groups by means of examples.

With the above equivalence at hand, we generalise the results from Chapter [3] for relative Cuntz—
Pimsner algebras of single correspondences to those of compactly aligned product systems. This will
be done in Section We apply this to study Morita equivalence of relative Cuntz—Pimsner algebras.

5.1 From product systems of Hilbert bimodules to Fell bun-
dles

Definition 5.1.1. Let (G, P) be a quasi-lattice ordered group and let (By)geq be a Fell bundle over G.
We will say that (By)geq is semi-saturated with respect to the quasi-lattice ordered group structure
of (G, P) if it satisfies the following conditions:

(S1) B,B, = By, for all p,q € P;

(52) By = B(QVe)Bz‘g_l\/e) for all g € G with g V e < o0;

Definition 5.1.2. A Fell bundle over G will be called orthogonal with respect to (G, P) if B, = {0}
whenever g V e = o0.

Let F be the free group on a set of generators S. A Fell bundle over F is semi-saturated in the
sense of Exel if BB}, = By, for all g, h € F such that the multiplication g - h involves no cancellation.
It is called orthogonal if B¥B; = {0} whenever s and ¢ are distinct generators of F (see [19] for
further details). Let F* be the unital subsemigroup of F generated by S. Recall from Example
that (F,FT) is a quasi-lattice ordered group and that an element g € F satisfies g V e < oo if and only
if its reduced form is pg—!, with p, ¢ in P. In this case, gV e =p and g~! Ve = q. The following result
compares our definitions of semi-saturatedness and orthogonality for Fell bundles over F with those
introduced by Exel.

Proposition 5.1.3. A Fell bundle (By,),er is semi-saturated and orthogonal with respect to (F,F*) if
and only if it is both semi-saturated and orthogonal as defined in [19].

Proof. Suppose that (By)ger is semi-saturated and orthogonal with respect to (F,F*). Then orthogo-
nality implies that (By),er is orthogonal as defined by Exel, since (p~'¢) Ve = oo if p and g are distinct
generators of F. In order to prove that (By)4er is also semi-saturated according to [19], let g,h € F
be such that the product g - h involves no cancellation. If gh V e = oo, then By, = {0} = ByBj.
Assume that (gh) Ve < oo. First, this implies that either g belongs to F™ and hVe < oo or gVe < 0o

42



5. FELL BUNDLES OVER QUASI-LATTICE ORDERED GROUPS

and h € (Ft)~! because gh has reduced form pg~—! with p,q € P and the product g - h involves no

cancellation. In case g € FT, we then have g(h Ve) = gh Ve and (gh) "' Ve= (h~lg ) Ve=h"1Ve.
So axioms (S1) and (S2) give us

ByB = ByBrveBjy -1y, = Byhve)Br-1ye = B(gh)\/eBEkgh)—l\/e = Bgp.
Now if h € (FT)~1, it follows from the previous case that
BgBh == (Bhlegfl)* = B;—lg—l = th.

This shows that (Bg)ger is semi-saturated as defined in [19).

Now suppose that (By)ger is a Fell bundle that is semi-saturated and orthogonal according to [19].
Clearly, (By)gcr satisfies (S1). Any element of F has a reduced form, so that orthogonality as in
Definition follows by combining semi-saturatedness and orthogonality of (By)ser. Given g € F
with g V e < 0o, the product (gV e)(g~!Ve)~! involves no cancellation. Therefore, semi-saturatedness
gives us

Bg = BQVEB(Q_l\/e)_l = BQVEBE(g_l\/e)'
This completes the proof of the statement. O

Our main examples of Fell bundles that are semi-saturated and orthogonal come from the grading
of relative Cuntz—Pimsner algebras associated to compactly aligned product systems obtained in
Proposition In fact, we will prove that any Fell bundle that is semi-saturated and orthogonal is
isomorphic to one of this form.

Ezample 5.1.4. Let £ = (&,)pecp be a compactly aligned product system and let J = {J,},ep
be a family of ideals in A with .J, C ¢, '(K(&,)) for all p € P. Then (0% ¢)gec is orthogonal
because 05’7,5 = {0} whenever gV e = co. To see that it is also semi-saturated, observe that if p,q € P
satisfy pg~! = g, then there is r € P with p = (g Ve)r and ¢ = (g7 V e)r. Indeed, since g V e
and g~! V e are the least upper bounds for ¢ and g~! in P, respectively, there are r,s € P such
that p= (gVe)r and ¢ = (g7 Ve)s. The equality g = (gVe)(g7tVe) = (gVe)rs (gt ve) ™t
entails r = s.

Thus, given g in G with g Ve < oo, write g = (g V e)(g~! Ve)~l. By Proposition 0% ¢
is spanned by the elements of the form j,(€)j,(n)*, with £ € &,, n € & and pg~' = g. Given such
an element j,(£)j,(n)*, let r € P be such that p = (g V e)r and ¢ = (7! V e)r. We then employ the

isomorphisms ;u';\}e,r and Ihy- to conclude that

—lve,r

Gp(€)da(1)" € Jgve(Egve)ir(En)ir(Er) Gg-1ve(Eg-tve)t S OFE(0F 7).

Therefore, (O )geq satisfies (S2). Now axiom (S1) follows from Corollary [4.2.15} Thus (0% ¢)sec is
also semi-saturated.

Definition 5.1.5. A product system of Hilbert bimodules £ = (&p)pecp will be called simplifiable if for
all p,q € P one has

(1) (& [EN(E|Eq)) S (Epva [Epval) 1PV g < o00;
(i) (& [EpN{(Eq [ Eq) = {0} if pV g = o0;
here ((-|-)) denotes the left A-valued inner product.

Remark 5.1.6. A simplifiable product system of Hilbert bimodules is compactly aligned. The converse
is not true in general. For instance, take a nontrivial Hilbert bimodule £ over a C*-algebra A
satisfying £ ® 4 £ = {0}. This produces a product system over N x N such that £ 0y = g1y = &. It
is compactly aligned because £ ,1y = {0}, but (E1,0)[E1,0)) = (Ew0,1) | E0,1)) # 10}

Proposition 5.1.7. Let £ = (&y)pecp be a simplifiable product system of Hilbert bimodules. For

each p € P, let I, = (&, | &) and set T = {Iptpep. If ¥ = {¢¥ptpep s a representation of € in a
C*-algebra B that is Cuntz—Pimsner covariant on I, then it is also Nica covariant.
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Proof. Let p,q € P, T € K(&,) and S € K(&;). Let a € I, and b € I, be such that ¢,(a) =T
and ¢q(b) = 5. Cuntz-Pimsner covariance on Z gives us

PP(T)PD(S) = e (a)e(b) = e(ab).

So by condition (ii) of Definition PP (T)p(D(S) = 0if pV g = 0o. In case pV ¢q < oo, it follows
that V9(T)bV(S) = @pvq(ab). Applying the Cuntz-Pimsner covariance condition to ab € Iy, we
obtain

PN (S) = he(ab) = D (ppyq(ab) = 7D (FY4(T)5(S)).

Therefore, 1 is Nica covariant. O

Theorem 5.1.8. Let (G, P) be a quasi-lattice ordered group and let € = (€,)pcp be a simplifiable
product system of Hilbert bimodules. There is a semi-saturated and orthogonal Fell bundle &= (ég)gec
extending the structure of product system of £, in the sense that

A

(i) there are isomorphisms j,: &, = f:'p of complex vector spaces such that j.: A — & is a
“isomorphism and j,(€)jq(1) = Jra(itpq(€ © 1)) for all p.q € P;

(ii) Jp(&)*dp(n) :Aje(<§|77>) for all € € & and p € P, where *: £, — épfl is the involution

operation on E.
Moreover, € is unique up to canonical isomorphism of Fell bundles.
Proof. We begin by building the fibres of such a Fell bundle. For each g € G, we set

s Egve ®a Sg,lw if gVe< oo,
771 {0} otherwise.

Here 5;, is the adjoint Hilbert bimodule of £;,-1y. (see Proposition . We may identify ép
with &, and &,-1 with & by using the canonical isomorphisms A ®4 &5 = & and &, @4 A* = &),

1ve

where A is identified with A* through a — a*. So we will omit the map Jp: Ep — ép mentioned in the
statement.

If p,q € P satisfy pg~! = g, then there is r € P with p = (gVe)r and ¢ = (g7 V e)r (see this
computation in Example . Hence we may view &, ®4 £; as a sub-bimodule of E;ve ®a 5;,1\/6
through the embedding

Ep D4 5; = 59\/6 RAERAErRa 65*1\/e
= Eqvel(Er | Er)) @a Efrye
— 55]\/6 ®A 5‘;71\/6.

We will use this inclusion and the fact that & is simplifiable to define the multiplication maps fig s : £, X
En — Egn. Let pg~!
isomorphisms

and 7s~! be the reduced forms for g and h, respectively. The canonical

Eq a8 =(841&y), & @al = (6 1&),
Eq@a &y = (& &), Er@all = (& &),
from Proposition [3.1.6] imply
Ep®aE; ®AE RAE; 2ERAE; ®a(EgRAE; ®aERAE)®aE ®AE]
& RaE; ®a (Equr ®aEqyy) ®aEr ®a &S
=& ®a (& SQ>‘€q*1(qW) ®a g:fl(qw) (€ |&) ®als

- 5pq*1(q\/r)5:r‘1(qw) = E(ghyve ®a E(Zh)‘l\/E'

This yields an isometry fig p: ég ®4én — (‘fgh. We then define the product {,&, for §, € ég and &, € &n
to be the image of {; ® 4 &, in f:'gh under fig 5. This satisfies i, ¢ = pp,q for all p,q € P. The involution
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* f:'g — gg—l sends an elementary tensor &, ® 4 1, to 1y ®a &;, where §, € &, ng € &, and 7y is the
image of 7, under the canonical conjugate-linear map &, — &;. Since this latter map is isometric by
Corollary the involution is isometric too. Given & € &, ® £, the product £*¢ coincides with the

inner product (£|¢). Hence it is a positive element in & = A and [|¢*¢ = ||€]|.
Let us verify the equality (§n)* = n*¢*. To do so, let p,q,r, s € P. First, notice that

((&q 1€N K I )™ = (e [ )™ (€q 1607 = il [ )85 1 €aD)-

For all p', q" € P, iy o (§®n) is mapped to g, o (§®n)* through the conjugate-linear map €,y — £ -
Hence the diagram

H q_l,rs_l

EpRaly®a&r ®aE; — Epg=1(qvr) @A 5;*1((1\/7“)

P

Hsr—1 qp
gs XA g: @A gq XA 5; gsrfl(q\/r @A g —1(qVvr)

commutes. This shows that (§n)* = n*¢* for all § € By, and 1 € B,;-1. Now let £ € £, @4 &;
and n € & ®4 EF. Then

lg - nl* =€ @nle@mnl = 1€ nImE < gl

and hence [|€ - nl| < [[€][][7]]-

It remains to check that the multiplication maps are associative. These are associative when
restricted to the positive fibres. Hence it suffices to prove that

figh,k © (fig,n ® 1) = fig nk o (1 ® fink)
for g € P! and k € P. In addition, for all p,q,r,s € P with pV ¢,r V s < 0o, we have that
g~ (rg v a) V) =ar H((ra ' (pV Q) V (rV s))

=q(¢ ' (pVa)VrTi(rvs))
=pV(qgr ' (rVs)).

Thus all we need to show is that the diagram

1®p, s
Ep®AEE®AE ®a&s —)>5 @4 Egr=1(rvs) @A E1(pys)
[ R ®1l lﬂpl,qus (519)
frp=1gr=1 s
gpfl(P\/(I) ®a g:qfl(p\/q) ®a 53 gu ®a 5:

commutes, where

u=p gr ' (rg H(pV @) Vs)=p ' (pV(gr(rVs))
and

v=s5"'(rq "(pVq)Vs)=s"rqg ' (pV (gr ' (rVs))).
In what follows, we will identify the ideal (Epq | Eprgr) With (Eg/ [ (Ep [ Epr)Eyr) Via q, We also identify
(Eprar | Eprgr ) With (Ep (Eq | E¢)) | Ep)) in the same way. Slnce £ is 51mphﬁable it follows that (&, | Ep)
maps €, mto &, (€t (pvay | €t (pvay) because (€ | Ex) (s €0 € (Epva | Epval) and &, = (€, |E)Eq

-3 )

(see also Lemma [3.1.7). Similarly,

(‘:: <<gS |gS>> = (<<85 |55>>g7“)* < (87“<<5r_1(7‘\/s) |gr_1(r\/s)>>)* = <<67‘_1(7‘V5) |€7‘_1(7‘\/S)>>5:'

Applying again the fact that £ is simplifiable to the ideals (£;-1(pvq) | Eg-1(pvg) ) a0d (Er—1(rvs) | Er—1(rve) )

we deduce that
Ey®AERAE ®AEs = ERAE - TR®AT-E ®aEs,
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where I = (£ -1 (rvs)) V(g1 (ova)) | E@—1(rvs)) V(g1 (pva)) ) - By Theorem|A.2.11| (see also |52, Proposition
3.24]), EgI = (EqI | EqI)EGT and IE) = 1€} (E,1|E,1)). From this we obtain the inclusion

Ey@aE AL RaEs = E @a (Epulpu) ®a &y ®a &y R4 (Esv|Esv)) ®a s, (5.1.10)
because
ar Tt rvs) Vg i pVve) =g (rVs)V(pVa) =qr(rVs)Vp=pu
and
r(r N rvs)Va i pVe)=(rvs)Vrg t(pVg) =sVrqg(pVq) = sv.

Now the associativity of the multiplication on &£ implies that

1 —1 _ -1
(N’s,s*l(rv‘s) ® 1)/”LTVS,(T\/S)*1S1) - (1 ® 'u’sfl(r\/s),(rv:s)*lsu)us v

)

and
('u’;,ifl(er) ® 1>M;\/15,(r\/s)*1sv = (1 ®p’;}l(r\/s),(er)*lsv)M;iflsv'

These are two commutative diagrams:

(Esv | Esv)) ®a Es (Ervsl€rvs)y—1sv | Ervs)—1s0)) | Erve)Es
l
Eovo WA E; RAE; @a s Envs(Ervs)=1sv | Erve)=150)) ®A E1 (v (5.1.11)
l |
Eso @4 E} Ervs @A Ervs)-150 ®a &y,
EX@a (Esv | Es)) EX(Ervs | Ervs(Erve)y—1sv [ Ervey—1s0) )
l |
EXRAEr DA Ep14 @4 EL, Er—1(rvs) DA (Erve)—1sv | Erve)y 150 ) Efvs (5.1.12)
l |
Er1gy @4 EX, Er-1(rvs) @A Ervs)-150 ®A EGy-

The same arguments show that the following diagrams commute:

<<5pu | gpu» XA Eq <<5pvq <<g(qu)—1pu | g(qu)_lpu» | gpvq»gq
gpu ®a 5;*1171; ®a g:]k ®a 5‘1 gp\/q <<E(PVQ)7IP“ ‘ 5(10\/(1)711?“» ®A 5;*1(17\/q) (5'1'13)
Epu ®A g:;*lpu Epvg ®a ‘c"(pvq)*lpu ®a g;flpm

5; ®a <<5pu | gpu» - 5; <<ngq ‘ 51>Vq <<5(p\/q)*1pu | g(qu)*lpu>>>>

|

&y ©a&p@alu@ayy Ep=1(pvg) D4 (Epva)—1pu | Epva)—1pulEpvq (5.1.14)

|

Eu®a &gy Ep=1(pva) DA Epvg)—1pu DA Epy-
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Using again that the multiplication is associative on £, we deduce the identity
Hirg=1(pvg),(pva)~1 pu(Hrg=1 (pvg) ® 1) = trg=1pu(1 @ Lig=1(pvq),(pve)~1pu)-
This produces the commutative diagram

1®Mq_1(1)\/q),(p\/q)_1pu

Er ®a gqfl(p\/q) ®a 5(qu)*1pu Er ®a gqflpu

#'V‘yql(P\/Q)@ll iu’"vq_lpu
Hrq=1(pva),(pva)~lpu

grqfl(p\/q) ®a 5(13\/q)*1pu 57"q*1pw

We have a similar commutative diagram for ¢,7~*(r V s) and (r V s) “!sv. In addition, notice that
(pV @) tpu=(rg t(pVq))tsv, (rvs)~lsv=(gr=1(rVvs))"lpu and ¢ lpu = r~lsv. It follows from
the above commutative diagrams that the following two inclusions coincide:

Epu RaEGRAE B Eey RE,, RAEGRAE ®aErvs @A Ervs)-15v
= g;u ®A gq A (6: ®A 57”) XA 87'_1(7'Vs) XA g(TVs)_lsv
= g;u ®A gq XA <5T | ST‘>5’I"’1(T‘\/S) XA 5(1“\/5)*1311
- g;u XA 8(17”*1(7”\/3) ®a g(r\/s)*lsv

(5.1.15)
= Elgr—1(rve))~1pu @4 Egr1(rvs) @A Eqr—1(rvs) ©aE(rvs) -1 sv
= (Egr-1(rvs))-tpu | (Eqr—1(rvs) | Eqr—1(rve)) Ervs)—1sv)
= <g(qr_1(TVs))_1pu | <gr_1(7'\/s) | <gq ‘5q>87‘_1(7‘vs)>g(7‘\/8)_151}>
S (Eq1pu | Er150);3
Epu ®aEqRAET ®a Esv = Eyg)—1pu PA Epyg ®aEq®AEX ®a Esy
= ggpvq)*lpu ®a 5;*1(qu) ®a (65 ®aE) QaE Ba sy
= Elpva)-1pu @A Eg-1pvg) (Eq | £q) @ & ®a Eso
= Elpva)-1pu @4 Erg=1(pvg) ®4 Esv (5.1.16)
= Elpva)-1pu PAE =1 (pvg) @AErg=1(pva) BAE(rg=1 (pve)) ~1sv
= (Ewvay-tpu | (Erg-1(ova) | Erg=1(ova) )€ (a1 (pva)) =150
= Epva)-1pu | (€-1pva) [ (€r [ Er)Eq—1 (pvq) ) Erg=1 (pva))~150)
C (Eg—1pu | E—150)-
Now let us go back to the diagram
fp—1 gp—1®1
5; ®RAEGRAE Q4 E —————— 5; X4 gqr_l(r\/s) ®a 5:_1(rv8)
i® i (5.1.17)

#Pilqrilas

Ep-1(pvg) ©4a S:q_l(p\/q) ®a &s Eu®a &

It follows from ([5.1.10) that its top-right composite combines the top-right composites of ((5.1.11]

and (b.1.12)) with (5.1.15)) and the left arrow of (5.1.14]). The left-bottom composite of (5.1.17)) involves
the top-right composites of (5.1.13]) and (5.1.14)), the inclusion (5.1.16|) as well as the left arrows of

(5.1.11). So applying the relations

5Z<qr*1(rvS))*1pu <gr*1(r\/5) | <8q ‘gq>gr*1(r\/s)><<5(TVS)*131) |g(rv$)*1v>> =
<g(q7‘_1(7‘\/s))_1pu | <€r—1(r\/s) | <gq | gq>gr—1(r\/s)>5(r\/s)—1sv>g(*rv3)*lsv
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and

<<5(pvq)*1pu | g(qu)*lpu» <£q*1(pvq) | (€ | 57’>5q*1(p\/q)>g(rq*1(17\/q))*1sv =
Epva)-1pul€pva)—1pu | €1 va) [ {Er [ E1)Eq=1 (v a)) E(ra=1 (pva)) ~150)

and using the equality of (5.1.15) and (5.1.16)), we deduce from the commutativity of the diagrams
described above that the diagram (5.1.17)) also commutes, as desired.

In order to prove the uniqueness property, let & = (5 5)gec be another Fell bundle that is semi-
saturated and orthogonal and extends the structure of product system of £. Let j' = {j, },ep be the

family of isomorphisms &, = c‘fz’) We obtain an isomorphism of Hilbert bimodules j]’g L&y = é; .
through the composite

_ Jo a1t
& =& — &, =&,
where the arrow involved in the left-hand side is the canonical conjugate-linear map and “*” in the
right-hand side is the involution in (),ec. This is indeed an isomorphism of complex vector spaces

since the involution operation on & is also a conjugate-linear map. Furthermore, the ideal in A
determined by j;,(,)7,(Ep)" is contained in j((&, | £p))) because &, = (&, | Ep)E, and j' preserves
the multiplication on £. And for all £,n and ¢ € £,, we have that

e (€ 1mNIp(C) = 5p (€1 €)) = 3, ()i 1)) = 5, (€)dp (M) "3 (€)-

This implies that j;(( 7)) = j,(€)7p (M) = j,-1(£)7, -1 (n*) because (&, | £,)) acts faithfully on &,
and j; is also injective. So we let j; be the zero map if g Ve = oo and for g € G with g Ve < oo,
we let ji: Egve ®a Eriye = é; be defined on elementary tensors by £ ® n* — j;w(f)jgg,l\/e),l (n").

This is isometric because nge and ng 1 preserve inner products. These maps are surjective

because £’ is semi-saturated and orthogonal. Since it extends £ and j; _, preserves the structure of
Hilbert bimodule of £, it follows that { j;}geg is an isomorphism between Fell bundles. This completes

the proof of the theorem. O

Corollary 5.1.18. Let £ = (&,)pep be a simplifiable product system of Hilbert bimodules. For
each p € P, set I, .= (& | &) and T = {I}pep. Then the canonical *-homomorphism from A to
the relative Cuntz—Pimsner algebra Oz ¢ is an isomorphism onto the gauge-fized point algebra OF .
Moreover, OF ¢ = &, for allp € P.

Proof. Let (€,)gec be the Fell bundle associated to € as in the previous theorem and let C*((€)gec)
be its full cross sectional C*-algebra. Let 7 = {j,}sec denote the canonical representation of (£,)gec

A

in C*((&,)gec). Since (£,) e extends the structure of €, there is a canonical representation of &

N

in C*((&y)g4ec) obtained by
& 3§ 5p(8).

Given p € P and &, 7 € &, the multiplication £ -n* in (fg)geg is precisely the left inner product {(£|n)),
so that the representation of £ in C*((£;),ec) is Cuntz-Pimsner covariant on Z. As a result, the
canonical map from A to Oz ¢ is injective. Since £ is simplifiable, its representation in Oz ¢ is Nica

covariant by Proposition Thus, OF ¢ is the closed linear span of the set

{3p(&)dp(m)*1€,m € Ep,p € P}

So the Cuntz—Pimsner covariance condition implies that j.: A — O7 ¢ 1s an isomorphism.

It follows that j,: & — (’)%g is injective for all p € P. Again because the representation of £
in Oz ¢ is Nica covariant, (9%5 is generated by elements of the form j,(€)j,(n)* with gr—* = p. Using
that p, , is a correspondence isomorphism, we deduce from Cuntz-Pimsner covariance that j, is also
surjective, as asserted. O

Remark 5.1.19. In order to build a Fell bundle out of a simplifiable product system in the proof
of Theorem [5.1.8] we defined the fibres as well as the operations of a Fell bundle explicitly and
established the required axioms for Fell bundles, such as associativity of the multiplication maps.
From this we derived Corollary One could also prove Corollary by using Theorem [6.2.5

48



5. FELL BUNDLES OVER QUASI-LATTICE ORDERED GROUPS

and Proposition [6.3:8] Thus Theorem [5.1.8 would follow as a consequence. In order to obtain a
self-contained theory, we have chosen to construct the Fell bundle out of a simplifiable product system
of Hilbert bimodules explicitly. We will build an equivalence between the corresponding bicategories in
a similar fashion.

5.2 The equivalence of bicategories

Let (By)gec be a semi-saturated Fell bundle with respect to (G, P). There is a canonical product
system associated to (Bg)geq. Indeed, for each p € P, view B, as a Hilbert B.-bimodule with
left and right actions inherited from the multiplication in (Bg)gseq. The left inner product is given
by (& |n) = &n*, while the right inner product is (£|n) := £*n. The property (S1) of Definition
says that B = (B,)pep is a product system with isomorphisms B, ®p, By = Bj, coming from the
multiplication in (Bg)geq. If (By)geq is also orthogonal, the next result states that the cross sectional
C*-algebra of (Bg)gecc can be recovered from B.

Proposition 5.2.1. Let (By)gec be a Fell bundle that is semi-saturated and orthogonal with respect
to (G,P). Then B = (Bp)pep is a simplifiable product system of Hilbert bimodules. Its relative
Cuntz-Pimsner algebra Oz p is naturally isomorphic to the cross sectional C*-algebra of (Bg)gec-

Proof. Let p,q € P and set ¢ = p~'q. Notice that p V ¢ = oo if and only if g Ve = oo and
hence (B, | Bp) (B, | By) = B,B;B,B; = {0} provided pV ¢ = oco. Suppose that p V ¢ < oo.
Then gVe=p t(pVgqg)and g-' Ve =q (pVq) so that

(Bp | Bp) (Bq| Bq)) € BpBy-14By
= Bszfl(p\/q)Bc}kfl(qu)B:Jk
- prq ;\/q = <<Bp\/q |prq>>~

The representation of (By)geq in C*((Bg)geq) restricted to the fibres over P is Cuntz—Pimsner
covariant on Z. This gives us a *-homomorphism ¢: Oz, — C*((By)gec). In order to build the
inverse of 9, let us define a representation ¢ = {¢4}4ec of (By)gec in Oz 5.

Let g € G. If g Ve = oo, then Of ; = {0} = By and ¢, is the zero map. For g = p € P, we
set ¢p = jp. Now let g € G with g Ve < oo and let £ € By be of the form n(* with € Bgye
and ¢ € By-1y.. Set ¢4(§) = jgve(n)ig-1ve(C)*. Given n,n" € Byye and (,{" € By-1y., the Cuntz—
Pimsner covariance condition entails

Jg-1ve(C)dgve () dgve (1) ig-1ve(¢)" = Je({C [ {n 1)) = de((n¢™)" (n'¢™)).

Hence the axiom [|b]|? = ||b*b|| applied to b € B, ensures that ¢, extends to a continuous linear map
from By = BgyeBy-1ve to Oz, which we still denote by ¢4. By definition, ¢4(£§)* = ¢4-1(£*) for
all £ € By and g € G. So it remains to prove that ¢4n(En) = ¢4(§)dn(n) for all £ € By, n € By,
and g,h € G. This clearly holds if g,h € P because the representation of B in Oz preserves
multiplication. In addition, since the representation of B in Oz 3 is Nica covariant, given p,q € P,
& € By and n € By, it follows that j,(£)*j,(n) = 0 whenever pV ¢ = co. In case p V g < oo, it follows
that

BB, C B,ByyB,

pVq

B,.
We deduce from the Cuntz—Pimsner covariance condition that, for all ¢,{" € E,vq,
Jp(€)" Ge((C | §/>>)jq(77) = jp(f)*jpvq(ojpvq(CI)*jq(Tl)~

Combining this with the fact that j = {j,},cp is a representation of B, we conclude that ¢4, ({n) =
0q(&)@n(n) for all £ € By, n € Bp, and g,h € G. Therefore, this induces a *-homomorphism
b: C*((Bg)gea) = Oz, 5, which is the inverse of 1. O

Combining Example [5.1.4 with the previous proposition, we obtain the following:

Corollary 5.2.2. Let £ = (&y)pep be a compactly aligned product system and Oy ¢ a relative Cuntz—
Pimsner algebra associated to €. Then (O‘Z’S)pep is simplifiable.
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Definition 5.2.3. Let (G, P) be a quasi-lattice order. A Fell bundle over G is said to be extended
from P if it is semi-saturated and orthogonal with respect to the quasi-lattice ordered group structure
of (G, P).

Definition 5.2.4. Let (By)secq and (Cg)gec be Fell bundles extended from P. A correspon-
dence (F,U): (By)gec — (Cy)gec consists of a C*-correspondence F: B, ~» C. and a family of
isometries U = {Uy}gei, where Uy: By ®@p, F — F ®¢, Cy, such that U.: B, ®p, F = F ®¢, Ce
is the isomorphism which sends b ® (£c) to ¥(b)¢ ® ¢ and, for all p € P, U, is unitary. Here we are
regarding the B,’s as correspondences over B.. We also require the following diagram to commute for
all g, h € G:

fig,n®1 Ugn

(Bg®BeBh)®Be‘7: th®Be‘7: ‘7:®Cecgh
1 Tl(@ﬁ;h
By®p, (Bh®p, F) F®c, (Cy@c, Ch) (5.2.5)
1®U},,l i
U,®1
B9®Be (]:®Cech> (Bg®Be]:)®CeCh (.F@Cecg)®ceCh.

A correspondence (F,U) is proper if F is a proper correspondence.

It is unclear to us whether or not all of the U,’s in the above definition are unitary whenever
the U)’s are so.

Definition 5.2.6. We will denote by ¢(&F) the bicategory whose objects are Fell bundles over G
extended from P and arrows (Bg)gec — (Cy)geq are correspondences as above. A 2-morphism
w: (Fo,Up) = (F1,U1) is a correspondence isomorphism w: Fy — F; making the following diagram
commute for all g € G:

U g9
B, ®p, Fo —2 Fo @¢, C,

1Bg®wi iw@)lcg
Ul,g

Bg ®B, Fi1—=F Rc, Cg.

The unit arrow on an object (By)gec is the identity correspondence B, : B — B with the family of
isomorphisms ig = {LBg }geq, where LB, is the isomorphism B. ®p, By = By ®p, B, obtained as in
Definition The further data needed for a bicategory is also defined as in Definition We let
QZI()?’P) be the sub-bicategory of €(&F) whose arrows are proper correspondences.

Lemma 5.2.7. Let (F,U): (By)sec — (Cy)gec be a morphism in € GF). Then its restriction to the
positive fibres is a covariant correspondence

(Be, B, Zp) — (Ce,C, Ic),
where Ip and Ze denote the families of Katsura’s ideals for B and C, respectively.

Proof. Let (F,U) be a correspondence from (By)geq to (Cy)gec. By definition, U,: B, ®p, F —
F ®c, Cp is unitary whenever p belongs to the positive cone P. Thus, all we need to prove is that the
ideal (B, | Bp)) maps F into F((C, | Cp). This follows from (5.2.5). We let p~! play the role of ¢ and
obtain the commutative diagram

frpp=1®1 Ue
B,®pB, B;@BE]‘— BPB;(X)BC}- F ®c, Ce
10U, -1 l Tl@ﬂ;,pl
U,®1
By®p, F®c.Cp F®c, Cp®c, Cy.

The image of the top map is (Bp|Bp))F and the image of the right map is F{(C,|Cp)). Hence
(Bp | Bp)F € F(Cp|Cp)- H

50



5. FELL BUNDLES OVER QUASI-LATTICE ORDERED GROUPS

Lemma 5.2.8. Let £ = (&,)pep and G = (G,)pep be simplifiable product systems of Hilbert bimodules
and let (§;)gec and (Gy)geq be the associated Fell bundles extended from P. Let (F,V): (A, €, Tg) —
(B,G,Tg) be a covariant correspondence. There is a correspondence (F!,U): (€,)gec — (Gg)gec such
that F* = F as a C*-correspondence and U, =V, for all p € P. Moreover, if U’ = {Ug}gec is another

family of isometries turning F into a correspondence from (ég)geg to (Qg)gec and such that U, =V,
for allp € P, then Uy = U, for all g € G.

Proof. We begin by defining the family of isometries U = {Uy }4eq. For g € G satisfying g V e = oo,
we let U, be the zero map. If p € P, we put U, = V,. Using the inclusion (&, |ENF C F(Gp|Gp)),
we obtain an isometry U,-1: &5 @4 F < F ®p G, for each p € P through the embedding

Er@AF2E ®a(E,|E,) @aF (lg; @ Ve)
~ & @4 F @56, 95 0 (le; @ U, ' @ 1gy)

=&, ®a& ®@aF @B OBG,
= (& 1E) ®aF@BG,
— F®p0,.
Finally, given g € G \ (P U P~!) with g V e < 0o, we let U, be the composite

. 1®U (y—1yey—1 . Vave®1 .
gg\/e XA gg—l\/e XA F ” SgVe XA F QB gg_1Ve = F B gg\/e QB gg_l\/e'

We set U = {Uy,}geq and F! := F. In order to prove that (F* U) is a correspondence (£,),eq —
(Qg)geg, let us first establish the commutativity of the diagram

* * frg=1,p,-1®1 « Ulpgy—1 *
Eq XA 5p RQpF ————— 5pq®AF% -7'—®Bg(pq)
1®Up1l T1®ﬂ}11,p1
U _1®1
Eq®AF®B G, - FRpG, @80,

Observe that

E, @Ay ®WAF ZE; @48, ®a(EpglEpg) ®aF
= & @aE @4 F @B (Gpq | Gpa)
=& @a &, @aF @B (Gp(Gql9a)) |Gp)-
So using that V,, and V, intertwine the actions of A and B and the coherence axiom (4.3.2), we see
that the above diagram commutes. Now since we have proven that the pair (F*, U) makes (5.2.5)

commute if g, h € P~ and the same is true for g, h in P, it suffices to show that (5.2.5) is commutative
for g € P~ and h € P with g~ V h < co. This corresponds to the diagram

. ﬂp711q®1 ~ Up—lq A
E @A aF Ep-140aF F®pGy-14
1®Uql Tl@ﬂj}l’q (5.2.9)
Up 1®1
5;®A.7:®B Gy f@Bg;®ng.

As a first step, we claim that (5.2.9)) commutes when one replaces either p or ¢ by p V ¢. Indeed,
notice that
5;Vq QA& QaF = g;\/q ®a & ®a ]:«gq*l(p\/q) | gqfl(p\/q)» <gq | gq>

because (Epvq | Epvq)) maps & into (E;-1pvq) | Eg-1(pvg))) and E,@a F = FRpG,. Then an elementary
tensor of £, ®4 & ®a F may be written as 7* @ { ®4 (b, where n € Epvy, § € &, ¢ € F and b lies in

the ideal (Gy—1(pvq) | 941 (pva)) (Gq | Gy)- In addition, for all &, &2, ¢ in G and 71,72 in Gg-1(pve), We
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have that

Eu{im [ m2)) (€2 1€) = (& lm [ m2)) | €2)C
= <<M;,q*1(p\/q) (51 ® 771) ‘ :u’;,qfl(p\/q) (62 ® 772)>>C

Now combining this fact with the commutativity of the diagram

Ve®1 1®till (pva)
FRGe® gqfl(p\/q) < EgRF® gq”(p\/q) & ® Sqfl(qu) ®F

1
il&uq,ql(pvq) “qvql(pvq)®li
V-1

F® gp\/q — gp\/q QF,

we deduce from the definition of the U,’s for g € P! that (5.2.9) commutes if we let p V ¢ play the
role of p.

Let us prove that ([5.2.9) is also commutative when one replaces ¢ by p V ¢. In this case, we have
that

g; XA gp\/q ®RaF = g; ®a gp\/q XA ]:<gp\/q | gPVQ>
and notice that, for {1,&2 € G, and 11,72 € Gp-1(pvq), One has

(tp.p1 o) (61 © M) g 1 pugy (S2 @ m2)) = (€1l [m2)) | 2)).
We then establish the proof of our claim by applying the commutativity of the diagram

—1

[ 1®V, -1
PP~ (PVQ) p~(pVa)
Epvg OF ——————

®1
& ® 6‘p*l(pvq) F > & QF® gpfl(pvtz)

J{vaq Tvp—lcm
1®(uh) !

P,P71 prVaq
F® Gpvq Akl FRGp ® Gp=1(pvq)-

In order to prove the general case, we use the equality

(&lmh¢=¢&mlQ),

where £, 1, ( € Epvq. This implies the commutativity of the diagram

« 18Uy gy—1 % Upvq®1 %
gp\/q ®Agp\/q®A]: gp\/q@A]: ®B gp\/q .7“®ng\/(1®ng\/(]

| i

(Epval Epva) ®aF e F&5(Gova | Gpva))-

Then the commutativity of this diagram and of (5.2.9) for the above particular cases establish the
commutativity of (5.2.9)) for all p,q € P.

We are left with the task of proving uniqueness of U = {Uy}4eq. This will follow from successive
applications of the coherence axiom (5.2.5). Let U" = {U; },ec be a family of isometries making F
into a correspondence

(ég)geG - (gg)géG

and such that U, =V, for all p € P. By (5.2.5)),
U; - (Ug;Ve ® 1)(1 ® U(/g—lve)—l) - (Vg\/e ® ].)(]. X U(/g—lve)—l)-

Hence it suffices to show that U/, = U, for all p € P. To do so, we use again (5.2.5) to obtain the
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commutative diagram

" 18V, U;,1®1
&y QuEy@AF —————=E,QaF @ G ————>FQpY, @0

i 1 (5.2.10)

(Ep | E)@UF ~ F@5(Gp| Gy)-

With the canonical identification can: & ®4 F = &5 @4 (&, | Ep)) ®a F, a commutative diagram as
above for £; and (€, | £p)) shows that

Up-1 = (U)-1 ® 15)(1lg; ® Ve) o can.
Since V,, is unitary, we may replace the right-hand side above by
U1 @ 1p)(1e; @ (Vy @ 1g,) (V) @ 1g,))(1e; © V) o can.
Now we apply (5.2.10) to the composite (Uf’),1 ®1g,)(ley ® Vp) and arrive at a description of Uzlfl

which is precisely the definition of U,-1. O

We let € be the full sub-bicategory of ¢ whose objects are triples (A4,&,Z), where £ is a
simplifiable product system of Hilbert bimodules and Z is the family of Katsura’s ideals for £ as in
the previous lemma. We will denote by Q:gr,* the sub-bicategory of €% in which the arrows are proper
covariant correspondences.

Theorem 5.2.11. There is an equivalence of bicategories € — (G F) which sends an object (A,€,7)

to the associated Fell bundle (€g)qecc extended from P. This restricts to an equivalence €§r’* — Cl([f’P).

Proof. In order to describe a homomorphism of bicategories € — ¢(&:F) et us first prove that a
2-morphism w: (Fy, Vo) = (F1, V1) produces a 2-arrow w: (.7-"3, Uy) = (}‘f, Uy) such that w® = w as
a correspondence isomorphism Fy = F;. To do so, we need to show that w makes the diagram

A Uo,g A
&, @4 Fo—2% Fo®5 G,

1gg ®wl lw@lgg

R UL .
Eg®@aF1 —>F1®@pG,

commute. By construction, this commutes for all p € P. Hence it suffices to establish its commutativity
for g,h € P71, since (€;)gec and (Gy),ec are extended from P. This follows from the commutativity
of the diagram

U-1
Fo®pGp —2>E, @4 Fo
w®1gpl llgp(@w
U,

JT'.l ®ngﬂgp®A~Fla

once w intertwines the actions of A and B. So we define a homomorphism of bicategories L*: ¢ —
¢(@P) by sending a simplifiable product system & = (Ep)pep to its associated Fell bundle (f:'g)geg
and a morphism (F,V): (A,&,Z¢) — (B, G, Ig) to the arrow (F%,U): (£,)ec — (G4)gec built out of
(F,V) as in Lemma A 2-arrow w is mapped to w! as above. Clearly, this data yields a functor

¢P((A,€,T¢), (B, G, Ig)) — € CP)((€y) 4 (Gy)gec)

between the groupoids of arrows associated to the objects (A, E,Z¢) and (B,G,Zg). Furthermore, it
follows from Lemmas and that such a functor is an equivalence. Given arrows

(J__.7 V) (AugaIS) — (Alagla:zc‘:l)v (Flavl): (Alvglvzgl) — (A27527I¢‘:2)7
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we have that
(F @a, F1)f = Fr@a, Fi = Foa, Fu

as correspondences A ~» A,. Moreover, the product of arrows in €(%F) is defined as in ¢£ and
Lemmatells us that (F® 4, Fi, Ve Vi) extends uniquely to a correspondence (£;)gec — (€2.4)geq-
This guarantees that L* preserves the product of arrows. Thus, this is indeed a homomorphism of
bicategories.

As mentioned above, L* is locally an equivalence. So to see that L* is an equivalence, it remains to
show that it is biessentially surjective by |28, Lemma 3.1]. That is, for each (By)geq € ob e(@P) we
must find b € ob €% and arrows

(F,U): L*(b) = (Bg)gea,  (F,U"): (Bg)gec — L*(b)
for which there are coherent isomorphisms
(F, U)o (F',U") = (B, ig), (F,U ) o (FU) = 1.

Our natural choice of b is the triple (B, B,Z3), where B is the product system of Hilbert bimodules
associated to (By)geq. This is simplifiable by Proposition and hence it indeed gives rise to
an object of €7. So we let (Bg)geg be its image under L*. Since the structure of product system
of B is inherited from (By)g4ec, Theorem implies that (B,)seq is isomorphic to (By),eq in an
obvious way. Such an isomorphism and the unit arrow (B,, i), once put together, produce an adjoint
equivalence between (By)geq and (B,)gec (see [28, Definition 1.1] for the required coherence axioms).
The last assertion in the statement follows from the fact that F# = F as correspondences over A. [J

5.3 Amenability for Fell bundles extended from free semi-
groups

A quasi-lattice ordered group (G, P) is called amenable if the Fock representation v : C*(G, P) —
B(¢2(P)) is injective (see [47, Section 4.2] and also Example 4.2.13)). Examples of amenable quasi-lattice
orders are free groups [19,/47], Baumslag—Solitar groups BS(c, d) with ¢, d positive integers |16] and, of
course, (G, P) for an amenable group G. Counterexamples are, for instance, nonabelian Artin groups
of finite type [17]. In [19], Exel proved that Fell bundles extended from a free semigroup F* are
amenable, under a separability hypothesis. In this section, we follow the ideas of [16] to show that any
Fell bundle extended from F* is amenable, with no extra assumptions. But here we deduce faithfulness
of the regular representation from gauge-invariant uniqueness theorems for relative Cuntz—Pimsner
algebras. The same techniques are employed to show that a Fell bundle extended from BS(c, d)* is
always amenable. This suggests that amenability for Fell bundles extended from a positive cone is
connected with amenability of the underlying quasi-lattice ordered group.

Proposition 5.3.1. A Fell bundle (By)4er extended from FT is amenable, where F denotes the free
group on a set of generators S.

Proof. Let 6: F — Z be the group homomorphism defined on the generators by a — 1, for all a € S.
So for b € F*, 6(b) = |b] is the length of b in its reduced form. This induces a coaction of Z on (By)gea
by [18, Example A.28]. Hence it provides C*((By)q4er) with a topological Z-grading, for which the
corresponding spectral subspace at m € Z is the closure of

span{&, - ;| p,q € F* and 0(p) — 0(q) = m}.

Now let G be the direct sum @, gBa viewed as a correspondence over B, in the usual way. Let Ig
be Katsura’s ideal for G. That is,

Ig = 95" (K(G)) N (ker pg)* = €P B.B;.
a€sS

54



5. FELL BUNDLES OVER QUASI-LATTICE ORDERED GROUPS

This sum is indeed orthogonal because B, B ByB; = {0} for a # b. It follows that

(@ ga)* (@ na> P

a€sS a€S a€s

in C*((Bg)ger), where £,,1, € B, for all a € S. Thus we get a representation of G in C*((By)4er)
obtained by restricting the representation of (Bg)gseq to the B,’s. This is a gauge-compatible injective
representation of G that is covariant on Ig. Hence it induces an isomorphism Or, ¢ — C*((By)ger)
by [29, Theorem 6.4].

We claim that C((By)ger) also carries a topological Z-grading, for which the regular representa-
tion A: C*((Bg)ger) — Ci((Bg)ger) is a grading-preserving *-homomorphism. Indeed, for each z € T,
define a unitary U, € B({2((By)ger)) by setting

n" =P n,— U.(n") = P ",

geF g€eF

Then A(b) — U,A(b)U? is a continuous action of T on the reduced cross sectional C*-algebra of (By)ger.
Hence C;((By)ger) is a topologically Z-graded C*-algebra (see Example [2.2.8).

Thus the composition of the regular representation A with the isomorphism Oy, g = C*((By)ger)
gives a gauge-compatible injective representation of G that is covariant on Ig. So we invoke again
the gauge-invariant uniqueness theorem for Katsura’s relative Cuntz—Pimsner algebra of a single
correspondence, namely [29, Theorem 6.4], to derive faithfulness of A. This shows that (By)ger is
amenable.

Let ¢ and d be positive integers. Recall from Example that the Baumslag—Solitar group BS(c, d)
is the universal group on two generators a and b subject to the relation ab® = b%a and (BS(c, d), BS(c, d) ™)
is a quasi-lattice ordered group, where BS(c,d)™ is the unital subsemigroup generated by a and b. As
for free groups, there is a group homomorphism 6: BS(¢, d) — Z which is given on generators by a — 1
and b — 0. We follow [16] and [56] and call 8(g) for g € BS(c,d) the height of g.

Each p € BS(¢,d)™ has a reduced form

p=bab’ ... b 1ab®,
with 0 < s; <dforallie {1,...,k—1} and 6(p) = k. As in [16], we set
stem(p) = b*°ab®* ... b%1a.

Given a Fell bundle extended from BS(c,d)™, we will again construct a correspondence G over a
C*-algebra B so that Oz, ¢ is Z-equivariantly isomorphic to C*((Cy)geBS(c,d))-
We need the following lemma:

Lemma 5.3.2 (|16, Lemma 3.4]). Let p,q € BS(c,d)™ be such that pV q < co. Then,

(i) if O(p) > 6(q), there is m € N with pV q = pb™;

(ii) 4f O(p) = 6(q), there is m € N with either

pVq=pb"=q, or pVg=qb" =p.
In particular, by the previous lemma, p V ¢ = oo and hence C;C; = {0} whenever p and ¢ have

reduced forms b*°a and b*a with so # tg.
Proposition 5.3.3. A Fell bundle (Cy)gec: extended from BS(c,d)™ is amenable.
Proof. Consider the C*-subalgebra B of C*((Cy)geBs(c,a)) generated by the fibre Cp and the unit
fibre C,. This is a topologically Z-graded C*-algebra for which the conditional expectation onto C,

coincides with that of C*((Cy)geBs(c,q))- The corresponding spectral subspace at m € Z is Cym. We
define a correspondence over B as follows. For each 0 < ¢ < d, we let G; = Cyiy, ®c, B. We set
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as a correspondence C, ~ B. We extend the left action of C, to B by using the multiplication
in B. To do so, it suffices to find a representation of the Hilbert C.-bimodule Cp in B(G) that is
Cuntz—Pimsner covariant on C,C; by Proposition Thus for £ € Cy and 7+ 1 < d, take an
elementary tensor n ® ¢ € G;. We define

g,() (@)= (§-n)@(E€Gin

If i +1 = d, we use the relation b%a = ab® and that (Cy)geps(c,q) is extended from BS(c,d)™ to
identify the multiplication ¢ - 7 ® ¢ with an element of Gy. Notice that a V b = b%a = ab® and hence
CiCy C Cha-1,Cf.. This guarantees that ¢g () is adjointable for all £ € Cp and ¢g(€)* is given in
a similar way by multiplication with £*. This produces a *-homomorphism pg: B — B(G), which
turns G into a correspondence over B. Using the relation b% = ab® and also ab—¢ = b~ %a, we deduce
that CymCoC)Cyn is contained in Cyi, - B - Cy;  in C*((Cg)gep), where 0 < 7,j < d are uniquely
determined by m and n, respectively, and m,n € Z. From this we see that Katsura’s ideal for G is

Ig =span{Cym C,C:Cypn|m,n € Z} < B,

since the left action of B on G involves the multiplication on (Cy)geBs(c,d)-

Because C;C,; = {0} whenever p and ¢ have reduced forms b*°a and bloa with sg # tg, we have a
canonical representation of G in C*((Cy)geBs(c,a)) coming from the identification G; = Ci, B. Such a
representation is injective, gauge-compatible and Cuntz—Pimsner covariant on Ig. This gives a surjective
*-homomorphism ¢: Or; g — C*((Cy)gens(c,q)) because (Cy)geps(c,a) is extended from the positive
cone BS(c,d) ™. Now [29, Theorem 6.4] shows that ¢ is an isomorphism. Employing the same argument
used in Proposition we conclude that C;((Cy)geBs(c,d)) also carries a topological Z-grading,
for which the regular representation is compatible. Thus A: C*((Cy)geBs(e,a) — Cr((Cy)geBs(c,d))
produces a gauge-compatible representation of Or, g that is faithful on B, so that the gauge-invariant
uniqueness theorem for Oy, ¢ implies the desired isomorphism. O

5.4 Functoriality for relative Cuntz—Pimsner algebras

Although a covariant correspondence between two objects of €% always produces a correspondence
between the associated Fell bundles and vice-versa, we need properness to ensure that it will also induce
a C*-correspondence between their C*-algebras. In this section, we will restrict our attention to proper
covariant correspondences. The fact that a proper covariant correspondence between objects of QII;
yields a correspondence between their relative Cuntz—Pimsner algebras together with results from the
previous section will imply that @5“* is a reflective sub-bicategory of QZII;. We will then use functoriality
for relative Cuntz—Pimsner algebras to study Morita equivalence between these C*-algebras, arising
from equivalences in Qfgr.

5.4.1 Relative Cuntz—Pimsner algebras as universal arrows

We begin by constructing correspondences out of morphisms in Qigr.

Proposition 5.4.1. Let (F,V): (A, €,T) — (B,G,JB) be a proper covariant correspondence. It
induces a proper correspondence Or v : Oz, ¢ ~ Oz, g. In particular, a morphism in C{fr’* between
two simplifiable product systems of Hilbert bimodules produces a proper correspondence between the

cross sectional C*-algebras of the associated Fell bundles.
Proof. Let Fo = F®p 0O, g. We define a family of isometries V' = {V;}pep by setting, for all p € P,

Vp®id id®pug,

V;,!: EpR@aFo=ER4F @507, —= FQp Gy, ®p Oy, ¢ —— Fo,

where g, is the isometry G, ®p Oz, ¢ = Oz, ¢ obtained from the representation of G, in Oz, g.
For each & € &,, we set

Up(&)(n) = Vo€ @am), 1€ Fo.

Because F and Oy, g are proper correspondences, the map 1 +— £ ® 4 n is compact. This is mapped
to K(Fo) when composed with Vp! and, in particular, ¢,(£) is adjointable. The coherence axiom (4.3.2))
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for (F,V) implies that ¢ = {9, }pcp preserves the multiplication on £. In addition, for all £, € &,
and (,(’ € Fo, we have that

(Wp(©) Yp(MCIC) = (Wp(MC 1 ¢p(€)S") = (Cle((n]£))C") = (e ((€[m)CIC)

provided V; is an isometry. Therefore, 1 = {1}, }pep is a representation of £ by compact operators
on ]:(9.

We are left with the task of proving that v factors through Oz, ¢. To do so, we will first prove
that it is Cuntz—Pimsner covariant on J4 = {Jz‘f‘}pe p. The Nica covariance condition will then follow
from the fact that the G-grading of Oy, ¢ is extended from P. The representation of G in Oy, ¢ is
covariant on Jp. Hence the *-homomorphism j;,: B — Oy, g satisfies

375 (I )0g5.6 € 116, (Gp @ O 6)

for all p € P. It follows that ¢.(J;') maps Fo into F ®p g, (Gp @5 Og,.g), provided JF C FJE.
Using that V), is unitary, we see that this coincides with ,(£,)Fo. Proposition ensures that
is covariant on J;‘.

To see that 1 is also Nica covariant, let p,¢g € P, T € K(&p) and S € K(&;). Then

WPU(T)(Fo) € F @5 g, (G @5 Og,.0)

and
¢(4)(5)(]-“O) C F®gB ugq(gq OB @JB,Q)-

We deduce that 1) (T)y(@(S) =0 if p V ¢ = oo because

16, (Gp @ Og5.6) 1g,(G4 ®B O75.6) = {0}

in O, .g, so that (&|®(T)@(S)y) = 0 for all £, € Fo. In case pV g < oo, we have that
@) (T)p(D(S) maps Fo into the intersection

(F®B 1g,(Gp @8 Og5.6)) N (F @8 pig,(Gq @8 Ogs.6))-

Now the representation of G in Oy, g is Nica covariant and hence

3P (K(Gp)) g, (Gg @5 O5.6) C 1G,y(Gova @5 O.0).

In addition, any element 7 of F ®p g, (G, ®5 Og,,¢) is the limit limy Sx(n) with (Sx)rea an
approximate identity for K(F ®@p jf})) (K(Gp))). This gives us

B

PP(T)VWD(S)Fo € F @5 tig,y, (Gpvg @8 O74.0)-

The right-hand side above is contained in ¥pvqe(Epvq)Fo, provided Vpy, is unitary. So we may invoke
Proposition [3.1.19|again to deduce that v is Nica covariant and therefore descends to a *-homomorphism

Oz, = K(Fo), as desired. The last assertion in the statement follows from the fact that C*((€y)gec)
is canonically isomorphic to Oz, ¢ whenever £ is a simplifiable product system of Hilbert bimodules

(see Proposition [5.2.1]). O

By Corollary [5.2.2} (0% ¢, (0% ¢)pep,Zo, ) is an object of ¢l for each (A,&€,7) € obel . In
what follows, we let

vaeg) (A,E,T) — (09,57 (Og,g)pep,zoj,g)

be the canonical proper covariance correspondence from Example That is, v(a,e,7) = ((’)3 esbe).

Proposition 5.4.2. Let (A,&€,7) and (B,G,Zg) be objects of Qf:r and Qgr’*, respectively. There is a
groupoid equivalence
€§r,* ((O;,Sﬂ (OZ,S)P€P7IOJ,£)ﬂ (B7 ngg)) = QQ((A g, »7)7 (B7 g7Ig)),

which is defined by composing objects with v(a ¢, 7)-
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Proof. Let (F,V): (A,€,J) — (B,G,Zg) be a morphism in €. Let Ory be the correspon-
dence Oz ¢ ~ Oz, ¢ induced by (F, V) built in the previous proposition. By Proposition O%g,g
is isomorphic to B and hence 0% ,, = F @p OF, g =F Since OF ¢ acts by G-grading-preserving oper-
ators on Oy, this induces a nondegenerate *-homomorphism from 0% ¢ to K(F @5 07, ) = K(F).
This makes F into a proper correspondence O% o ~ B, which we denote by F . We also have a
correspondence isomorphism

Vi O @0 FP 2 Fropg,

obtained from Oy because O% |, = F @5 O ¢ 2 F @G, forallp € P and 0% 0%, = O% . It
is indeed unitary, since

FopGy =6 QAF =286 0407¢ Qo Fh 0% ¢ ®oc, . F*.

Thus we let V# = {V#},cp.
In order to see that the pair (F# V#) is a proper covariant correspondence

(03,87 (Opj,g)pepal—o‘yﬁg) — (Ba g,Ig),

it remains to prove that I,(,QJ"S}" - ]_—ng for all p € P. The ideal 1-1()95,5 is determined by the left inner

O * * -1 * AU *
product, so that I, "¢ = 0% ;0% Now 0%’ sends 0%y, to O% ;, = F @5 O " = F ®@p Gy,
while O ¢ maps F @5 Of " into F @5 07, ;O7 " ;. The isomorphism 07 ;07" ; = (G, | G,)) implies
that (F*, V*) is a proper covariant correspondence.

Now let (F,V): (0% ¢, ((’)1‘1775)1,6;:,1@%5) — (B,G,Zg) be a proper covariant correspondence. Let
Or,v be the proper correspondence O, ¢ 1., , ~ Oz5,g induced by (F,V) as in Proposition
As before, we have that (’)_’;—7‘/ = F®p0pforall p € Pand O% ,, = F. By the same argument, we have
isomorphisms Og’)g,g,loj)g = 0% ¢ and Ofgj,glo” = 0% ¢. The restriction of the left action of 0% .

to O%V is precisely its left action on F ®p G,. So we obtain a proper correspondence F . A~ B.
We define isomorphisms Vpb: & @a F 2 F" ®p G, using that O ¢ = jp(€p)O% ¢ in Og ¢ and OF
is invariant under the left action of O% ¢, so that
Epy @A T 2 E 0405 ¢ @0r T =0 o F F’ @5 Gy

This gives a proper covariant correspondence (F”,V?): (A,&,J) — (B, G,Ig), since Jp is sent to 11(795,5
for all p € P through the canonical *-homomorphism 4 — O% ..

A representation of O ¢ is uniquely determined by (4, £). So, by construction, (F¥, V#) = (F,V)
for a given morphism (F,V): (A,€,7) — (B,G,Zg). Similarly, we have (F°¥, V**) = (F, V) for a
proper covariant correspondence (F,V): (0% ¢, (0% ¢)per, Lo, ) — (B,G,Zg). Therefore, (F,V)
(F?,V”) is a one-to-one correspondence.

§ o

We claim that a 2-arrow w: (Fo, Vo) — (F1, V1) is also OF ¢-linear regarded as an isomorphism
Fi. Indeed, let Adyg:: B(Fo.0) — B(F1.0) be given by

T — (w X 1(9919 )T(w* X 1(99,19 )

Composing it with the representation of £ in K(Fj o), we get a Nica covariant representation of £
in K(F1,0) that is covariant on J and coincides with its representation in K(F; ) obtained as in
Proposition @ Since a representation of O ¢ is uniquely determined by its restriction to A and €,
we conclude that w is also O% ¢-linear. From this we deduce that w satisfies the coherence axiom
needed for a 2-morphism

We denote the corresponding 2-arrow by w#. We also let w” be the 2-arrow in Qﬁf:r((A, £, ), (B, Q,Ig))
obtained from a 2-arrow in cg’m((og,g, (Opjyg)pep,I(')‘jyg), (B,Q,Ig)). Then (F,V) — (]-'b,Vb),

w — w” is an equivalence of categories. This functor is naturally equivalent to the one defined by

composition with v(4 ¢, 7). Such an equivalence has component at (F, V) determined by the canonical
correspondence isomorphism O% ¢ ®o¢ F = F?. Therefore, composition with U(a,e,7) establishes a
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groupoid equivalence. O

Corollary 5.4.3. The sub-bicategory €0  C GII; is reflective. That is, the inclusion homomorphism

pryx —
R: er,* — Qg; has a left adjoint L: 65 — €L . This is defined on objects by

T pr,*-

(A,,T) — (O?,Sa (Og,g)perl(?J,s)-

Proof. By Proposition vaeg): (AE,T) = (0% ¢, (0% ¢)per: Lo, ) is a universal arrow. We
conclude that R is left adjointable by Theorem [3.3.5] From the proof of the theorem, we deduce that
its left adjoint L sends (A, &,J) to (0% ¢, (0% ¢)per, Lo, ¢ )- O

The homomorphism L maps an arrow (F,V): (4,€,7T) = (41,&1, 1) to
L(F,V) = (v(a,.e1.00) © (F, V) = ((F @4, 0, ¢)F, (V o ig,)F).

It is defined on a 2-arrow w: (Fo, Vo) = (F1, V1) by L(w) = (w ® 1@J1=gl)ﬁ.
Let (F,V): (A, €,T) = (A1,&, 71) and (Fi, Vi) : (A1, &1, 1) — (A2, €2, J2) be proper covariant
correspondences. The isomorphism

A(F, V), (F1,V1)): L(F1, V1) o L(F, V) = L((F1, V1) o (F,V))

is built out of the left action of 0% ¢ on (F1 ®a, OF, 52)ﬁ constructed in Proposition That is,
it is given by the canonical isomorphism

(F®a, 05,.6,) @0, (Fi1®a;, 0F, ¢,)F = (F @4, F1 @4, 07, ,)".

&1

The compatibility isomorphism for units is obtained from the nondegenerate *-homomorphism j7: A —

e
J.E"

5.4.2 Morita equivalence for relative Cuntz—Pimsner algebras

Let ¢% denote the bicategory whose objects are C*-algebras carrying a coaction of G. Arrows are
correspondences with a coaction of G compatible with those on the underlying C*-algebras. We refer
to [18, Definition 2.10] for a precise definition. See also [18, Theorem 2.15] for €. Let €5 be the

sub-bicategory of € whose arrows are proper correspondences.

Corollary 5.4.4. The construction of relative Cuntz—Pimsner algebras is functorial. There is a

homomorphism of bicategories Qigr — Q:g'; which is defined on objects by

(A,,T)— Og¢.

Proof. Tt follows from Proposition [5.4.1] that a proper covariant correspondence between two simplifiable
product systems of Hilbert bimodules gives rise to a nondegenerate proper correspondence between their
relative Cuntz—Pimsner algebras with a gauge-compatible coaction of G. This yields a homomorphism
of bicategories (’:g’* — Qg’; which sends (B, G,Zg) to Oz, ¢ and a proper covariant correspondence
(F,V): (B,G,Zg) — (B1,61,Zg,) to Ory. Composing such a homomorphism with the reflector
obtained in Corollary we obtain a homomorphism ¢f — ¢¢.

By Proposition[5.2.1} Oz, ¢ is naturally isomorphic to the cross sectional C*-algebra of the associated
Fell bundle extended from P. This establishes a canonical isomorphism

O0;e10,, =0g¢

because O ¢ is isomorphic to the cross sectional C*-algebra of the Fell bundle associated to the gauge
coaction of G. Here Qo ; 1, , I8 the relative Cuntz-Pimsner algebra for Katsura’s ideals of (O% ¢)pep-

From this we obtain a homomorphism of bicategories QZII,DT — €% which maps (4,&,J) to O 7. and a
proper covariant correspondence (F,V): (4,€,J) — (A1,&1,J1) to Or y. By construction, such a
homomorphism is naturally equivalent to the one described in the previous paragraph. O

Corollary 5.4.5. Let (A,£,7J) and (B,G,Jp) be objects of €5 Then Oz ¢ and Og, g are Morita
equivalent if there is a covariant correspondence (F,V): (A, €,TJ) — (B,G,JB) so that J;f‘]—" = ]—'Jf
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P
pr,*?

for allp € P and F: A~ B establishes a Morita equivalence. For objects in €
preserves amenability of Fell bundles.

this equivalence

Proof. First, notice that F is automatically a proper correspondence. By Corollary and
Lemma it suffices to show that F is an invertible arrow in fo;. That is, there is a proper covariant
correspondence (F*,V): (B,G,Jg) — (A,&,J) with (invertible) 2-arrows w: (F @5 F*,V e V) =
(A, e) and @: (F* @4 F,V e V) = (B, 1g).

Let F* be the Hilbert B, A-bimodule adjoint to /. For each p € P, we use the identifications
F@p F*=Aand F* @4 F = B to define a correspondence isomorphism V,,: G, @p F* = F* ®4 &,
as the composite

Gp@pF"  2F @4 FRpG,p F" (1r @V, ' @ 1p+)
=F R4 @4FQ@p F*
=F QR4&p.
We set V = {f/p}pep. Observe that J[‘f}" = ]-'Jf implies Jf]—"* = F*JI;“. So in order to conclude

that (F*,V) is a covariant correspondence from (B, G, Jg) to (A,&,J), all we need to prove is that it
satisfies the coherence axiom (4.3.2)). To do so, let p,q € P. Since Vq_1 intertwines the left actions
of A, the following diagram commutes:

FRpF*@4F G —F Qp Gy

1A®Vq1l ivql

FRpFrRaEEQpF —=E;04 F.

This yields the commutative diagram
-1

vlel
FoBGy@pF* @aF @Gy —>E @4 FF @4 FQpGy—=E, @4 F @G,

1oV, " 10V, " le,®V, "

F@ng®Bf* ®A5q®,4]:vﬁ-®15p®14}"®3]?* ®AEQ®AJ’_'HSP®AS(I®A‘T_' (546)

1
Hp,q®1

Epg ®aF.

Applying the coherence axiom (4.3.2)) to (F, V), we deduce that the top-right composite of (5.4.6]
is precisely the isomorphism

181y 18V,
‘F®ng®B~F*®A-F®nggf@ng(g)ng%I®ngq:>gpq®.4f-

This corresponds to the top composite of the diagram

Vpa
Gpg @ F* F* @4 Epq

2
Hp.q

gp@BQq@B]:*

1®\7qi

V,®1 1814,
Gp ®@p F* ®a & F*®4E @&, F*®aEpq

after tensoring with 1z~ on the left and on the right. The left-bottom composite of this diagram
is obtained from that of (5.4.6)) in the same way. Hence the commutativity of (5.4.6|) implies that

(F*, 17) is a proper covariant correspondence from (B, G, Jg) to (A, &, J), as desired. The canonical
isomorphisms w: F ®p F* = A and w: F* ®4 F = B are the required 2-arrows.
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If (F,V): (A,€,Zg) = (B,G,Ig) is an equivalence in €] _ and (Gy)gec is amenable, then (&) yec
is also amenable. Indeed, by functoriality, Or v : Oz, ¢ ~ Oz, g is an imprimitivity bimodule. In
particular, Oz, ¢ = C*((ég)ge(;) acts faithfully on Oz y. Since C*((Qg)geg) = C:((Qg)geg) through
the regular representation, F* ® 4 C: ((ég)geg) is a faithful proper correspondence C* ((Qg)geg) —
C;",((ég)geg) because the conditional expectation from C* ((Qg)geg) onto B is faithful and the con-
tinuous projection from F* ® 4 C;ﬁ((ég)geg) onto F* ® 4 A = F* provides the image of C* ((Qg)geg)
in B(F* ®4 C:((ég)geg)) with a topological G-grading. From this we obtain a faithful and proper
correspondence

Orv ®C*((Gg)gec) F*®a C:((‘ég)geG)z C*((gg)geG) ~ C:((gg)geG)-
Hence the isomorphism

Orv ®C*((Gg)geg) F ®a C:<(€g>g€G) =F®@pF ®a C:((‘Cfg)geG) =Cr (ég)geG)

yields an injective *-homomorphism C* ((fg)geg) — Cr ((ég)geg) when composed with the *~-homomor-
phism

C*((€)geq) = B(OFv QO ((Gy)gec) T O Ci((€g)gec))-

)gEG

But such a *-homomorphism coincides with the regular representation, since (F*, ‘7) o(F,V)=(A,.Le).

~

Therefore, (£)gecc is amenable. O

P

Remark 5.4.7. The fact that an equivalence between objects in &,

be derived from [2] and Theorem [5.2.11

Example 5.4.8. Let A and B be C*-algebras and let F: A — B be an imprimitivity A, B-bimodule. A
compactly aligned product system £ = (&,),ep over A induces a compactly aligned product system
G = (Gp)pep over B as follows. We set G, :== F*®4 &, @4 F. The multiplication map fi, q: Gp ®a G =
Gpq is defined using the isomorphism F ®4 F* = A. More explicitly, it is given by

preserves amenability could also

Gp @B Gy =F @4E @AF @B F " @aEq@aF
XF QA& ®AE ®AF (1r ® pp,g ® 15)
EF R4 Epg ®aF = Gpg.

The multiplication maps {fip q}pqcp satisfy the coherence axiom required for product systems be-

cause {{tp q}p.qep do so.
We claim that G is compactly aligned. Indeed, let p,q € P with p V ¢ < co. Notice that K(G,) is
canonically isomorphic to F* ®4 K(&,) ®4 F through the identification

F*®aE 04 FRp (]:*®Agp®Af)*g]:*®Agp®A]:®B]:*®AE;®AI
2F @A @aE, ®aF
> F @4 K(Ey) ®a F.

So take T' € K(&,) and S € K(&,). Let (1,C2,m1, 12 € F and let n* ® £ ® ¢ be an elementary tensor of
F* @4 Epvg ®a F. We have that

V(05 @ 8@ ¢) (" @ERC) =05 @ EVI(S) (epve((C2 |M))(E)) ®C.

Applying Lqu(’lﬁ ® T ® (1) to both sides of the above equality, we deduce that

BV @T @ G )Y (n; © S © G)(n" @)
=07 @ BYUT) (epva((Ca 1 m2) Y (S) (epva((C2 [m))(E))) ®C.

Define T" € K(Epvq) by T = BYUT)opvq({(C1 [12)))EV9(S). Then

m @ T (ppva((C2 [n))(E) @ ¢ = (i ®T' @ G2)(n* ®E® C).

So G is also compactly aligned, as claimed.
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Given p € P, an element b € B is compact on G, if and only if bF* C f*ga;l(K(Ep)), provided F*
is an equivalence. The bijection between the lattices of ideals of A and B, respectively, obtained
from the Rieffel correspondence, yields a one-to-one correspondence between ideals in A acting by
compact operators on &, and ideals in B mapped to compact operators on G,. Precisely, this sends
Jao H(K(E)) to JP = (JAF| F). Its inverse maps an ideal JZ < ¢, 1 (K(G,)) to J2 = (FJP | F).

The equivalence F may be turned into a proper covariant correspondence (F,V): (A4,&,Ta) —
(B,G,JB), where V. ={V,}pecp and V,,: £, ®4 F = F ®p G, arises from the canonical isomorphism

Ep RAF=2FQRQpF RaE@aF =F B Gp.

Here J4 and Jp are related by the bijection described above.

It follows from Corollary that (F,V) is invertible in (Cgr and produces a Morita equivalence
between Oz, ¢ and Oy, g. Therefore, up to equivariant Morita equivalence, the relative Cuntz-
Pimsner algebras associated to £ correspond bijectively to those associated to G. In particular, if £ is
a simplifiable product system of Hilbert bimodules, the cross sectional C*-algebra of the Fell bundle
associated to £ is Morita equivalent to that of G. This is so because the family of Katsura’s ideals Z¢
corresponds to Zg under the Rieffel correspondence.

The next proposition characterises equivalences between product systems built out of semigroups of
injective endomorphisms with hereditary range as in Example [4.2.10] This generalises |42, Proposition
2.4]. The idea of the proof is also taken from there.

Proposition 5.4.9. Let a: P — End(A) and 8: P — End(B) be actions by extendible injective
endomorphisms with hereditary range. Let ,A and ;B be the associated product systems of Hilbert
bimodules over P°P. There is an equivalence (F,V): (A, ,A,Z o) — (B,ﬁB,IBB) if and only if
there are an imprimitivity A, B-bimodule F and a semigroup homomorphism p — U, from P to the
semigroup of C-linear isometries on F such that, for allp € P and {,n € F,

(Up(©) 1 Upm)) = ap((€ 1)), (Up(&) [Un(n)) = Bp({Em)- (5.4.10)

Proof. Let (F,V): (A, JA,Z _a) — (Bv,BB’IﬁB) be an equivalence. Then F is an imprimitivity
A, B-bimodule. Observing that

{(5,B15,B) =8, (8,(B)) =B
for all p € P, we define a correspondence isomorphism U} : F — apA ®aF @p ﬁpB * by

-1

Vp ®1 "
]:%]:(X)BBPB ®B 5pB* — apA®A‘7:®B,BpB .

We identify , B* with Bg. = Bf,(1) by ﬂ 1)b+— b*p to obtain a linear map
ﬂp Bp p p D
apA QA F Qp ﬁpB* - F

defined on an elementary tensor a,(l)a ®4 £ @p bB,(1) by (ap(1)a)f(bB,(1)). This is isometric
because 3, lis an injective *-homomorphism between C*-algebras. Its composition with U,, yields a
linear map F — F, which we denote by U,. Given £, € F, we have that (£ |n) = (U,(&) [U,(n)),
that is, U;) preserves inner products. From this we deduce

(Up(&) 1 Up(m) = B (U (&) | Up(m))) = Bp((€ )
Similarly, (Uy(€)[U}(n)) = (€|n) and we see that (U,(&) | Up(n))) = ap((& [7)-

It remains to verify that p — U, is a semigroup homomorphism from P to the semigroup of C-linear
isometries on F. First, let aq(1)a € , A and notice that, given an elementary tensor { ® a,(1)b
of F ®p ﬁpB, one has

Vi (g (1)ag @ B,(1)8) = ag(1)aV, (€ @ B,(1)b).

Since the left action of A on , A is implemented by a, it follows that the image of V,~ Yag(1)aé®B,(1)b)
in F under the map A ®A F — F determined by the left action of A on F c01nc1des with the image
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of
(1, @ 1) (ag(1)a®@a V(€@ By(1)D))
under the corresponding map , A ®4 F — F. Here ug , is the correspondence isomorphism , A ®4
A= A

* Now let p,q € P and let (uy)xea be an approximate identity for B. Fix A € A and let £ € F and
b € B. Then

Uy (uauxb) = V1 (€ @ By(un)) @ By(uxb).

From the above observation and from the fact that Vp_1 and V;]_l intertwine the right actions of B, we
conclude that

UpUq(€ururb) = (ug, @ 1)(1 @ V' @ 1p, ) (Vg (€@ By(ur)) @ Bpq(ur) @ Bpq (b))

Combining this with the coherence condition (4.3.2)) we may replace the right-hand side of the above
equality by
(V:l;zl ® 1Bﬂp>(1 ® Mg,p ® 1))(5 ® (ﬁq(“/\) ® qu(u)\)) ® ﬁpq(b)) =
= (Vg ® 1, )(€ © Bpa(urun)) @ Bpa (0)

This implies UpU, (§ururb) = Upq(Eururd). Using that all the U,’s are continuous and

&b = li)r\n(quuAb),

we obtain UpU,(£b) = Upq(€b). This shows that p — U, is a semigroup homomorphism, as asserted.

Conversely, suppose that we are given an imprimitivity A, B-bimodule F and a semigroup homo-
morphism p — U, from P to the semigroup of C-linear isometries on F satisfying . For each
p € P, &€ Fandbe B, we have that U,(€b) = U,(§)5,(b) because

(Up(£0) =Up(£)Bp(b) | Up(£0) =Up(£) Bp (b)) = (Up(€D) | Up (D)) — (U (D) | Up(€) (b))
—(Up(€)Bp(b) [ Up(£0))+(Up(€) Bp(b) | Up () Bp (b))
= Bp({Eb1£b)) — Bp((£D]£))Bp(b)
—Bp(0)* Bp((€1£0)) + Bp(b7)Bp((£ 1€))Bp(b) = 0.

The same reasoning shows that U, (a) = ap(a)Uy(§) for all a € A.
We then define a map VI;: %A* Q4 F B BpB — F on elementary tensors by

acp(1) ® £ @B Bp(1)b = alp(§)b.

In order to verify that this preserves the B-valued inner product, let a,c € A, b,d € B and £,n € F.
Let (ux)xea be an approximate identity for A and fix A € A. Then

(aU, (ur€)b | Uy (urn)d) = b* (acty (un)Up () | caxp (1) Uy (1))

= b (Up(&) | ap(un)acoy (uxn)Up(n))d

=b"( p( )lU ( (ap(uk)a C%(UA))U)W

=0"B, ({6 |, (ap(un)a”cap(un))n) ) d

(aap(ux) @ € ® By (1)b | cap(ur) @ n & Bp(1)d).

Using that U, is continuous and § = lim, u,§, n = lim, u,n, we conclude that V;f preserves the inner

product. In addition, it intertwines the left and right actions of A and B.
Now we let V,,: F ®@p g B = , A ®a F be the composite

10V
FepgB=,A® A" Q4 F@psB=—>,A04F,
where the isomorphism on the left-hand side comes from the identification

oA B4 0 AT = (LAl A) = A
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Then ‘7p is an isometry between correspondences A ~» B. To see that it is indeed unitary, we need to
prove that it is also surjective.
First, observe that

ap((€ 1) = (Up(&) [Up(n))¢ = Up(E){Up(n) | €)-

This implies a,(A)F = U,(F)(U,(F)|F), provided (F|F) = A. Again we let (ur)rea be an
approximate identity for A and fix A € A. Let ¢ € A be such that uy = c*c. Take a € A and £ € F.
Then

ap(un)a ®a § = ap(c’) @a ap(c)(al) € ap(c”) @a Up(F)(Up(F) | F).

Using that U, (F) = ap(A)Up(F), we deduce that a,(ur)a @4 & belongs to the image of ‘7,). This has

closed range and hence a,(1)a ® £ also lies in YN/p(]—' B ﬁpB ). Applying again the fact that 1713 has
closed range, we conclude that it is indeed unitary.

We let V, = V;y and V' = {V,}pep. We shall now prove that (F,V) is a proper covariant
correspondence. In this case, it suffices to show that it satisfies the coherence axiom and that V,
is the canonical isomorphism obtained from the left and right actions of A and B, respectively. This
latter fact follows from the identities

(Ue(&) [m) = (&1 Ue(m) = (&m) = (Ue(&) [ Ue(n)),

so that U, = idx. The above equalities may be derived from the computation

(Ue(&) M) = ae((Ue(&) [n) = (Ue(Ue(&)) [Ue(m)) = (Ue(&) [Ue(m))) = (& [ n)-

Finally, given a,c € A, b,d € B and £ € F, we have
cUy(aUp(€)b)d = cay(a)Uq(Up(§))Bq(b)d = cag(a)Uygp(§) By (b)d.

This leads to a commmutative diagram for ‘71,, ‘7q and ‘7qp as in (4.3.2). By reversing arrows, we
conclude that (F, V) also makes such a diagram commute. This completes the proof. O
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Chapter 6

C*-algebras for product systems
over subsemigroups of groups

In this chapter, we treat product systems over semigroups that can be embedded in groups. We
combine ideas of Exel and Sims and Yeend (see [22,55]) to construct a C*-algebra A xg¢ P out of
a product system £ so that a representation of A x¢ P is faithful on its fixed-point algebra for the
canonical coaction of a group containing P if and only if it is faithful on the coefficient algebra. We
begin by considering a family of representations of the Toeplitz algebra of £. We use its topological
grading from Lemma to define an ideal in 7g, so that the coaction descends to the corresponding
quotient. We then prove that A embeds into this quotient. This is done in Section [6.1

In Section [6.2] we show that a representation of such a quotient of T¢ is faithful on its fixed-point
algebra if and only if it is faithful on A. We apply this to prove that this construction does not
depend on the choice of the group containing P. Then in Theorem we introduce what we
call the covariance algebra of £. We finish this chapter with examples of C*-algebras that can be
described as covariance algebras of product systems. We also discuss the relationship of these algebras
to Cuntz—Nica—Pimsner algebras.

6.1 Strongly covariant representations

We first introduce the notion of strongly covariant representations. Let P be a semigroup with unit e.
Assume that P is embeddable into a group. That is, there is a group G and an injective semigroup
homomorphism v: P — G. Fix a C*-algebra A and a product system & = (&,),ep over A.

Let F' C GG be a finite subset. We set

Kr = m gP.
geF

So Kyc,gy # 0 if and only if g may be written as pq~* for some p,q € P. In addition, K,p = gKp for
all g € G, where
gF ={gh|h € F}.

If p€ P and p € Ky, 4y, then p = gq for some g € P, which implies g = pq~ L.

For each p € P and each F' C G finite, we define an ideal I,,-1¢,,r) < A as follows. Given g € F,
we let

N kerp,-1, if Kg g #0and p & Ky gy,
€K (p,g)

A otherwise.

Ip1ky, =

We then let

Ip—l (pVF) = ﬂ IpflK{p,g}-
geEF
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This gives a new correspondence Ep: A ~» A by setting

&r =P Elp1pvr)- (6.1.1)

peP

Finally, let S}L denote the right Hilbert A-module @ 9eG Egr. For each £ € &, we define an operator
th.(€) € B(EF) so that it maps the direct summand E,r into E,4r for all g € G. Explicitly,

t%(ﬁ)(m") = MPJ’(& XA 777’)7 Nr S gTIrfl(r\/gF)'

This is well defined because I,.—1(,vry = I(pr)-1(prvpr) for each F' C G finite and each p € P. Its adjoint
th(€)* sends fup (G @ 1) t0 @ ((€] Cp))nyp- This is well defined because I -1 gy py = Is-1p(p-15vp-1F) for
all s € pP. This gives a representation tp = {t.},cp of £ and hence a *-homomorphism Tz — B(E}),
which we still denote by tp.

Let us denote by Qg the projection of 5;5 onto the direct summand £yr. Then

R (6)Qy = Qut(), 1h(6)"Qy = Q1 h(6)*
for all p € P. Set
,TE&F = thrfe 57
where T¢ is the fixed-point algebra of T¢ for the gauge coaction of G. If Fy C F; are finite subsets
of GG, then
Iy pvry) 2 -1 (pv)

for all p € P. Hence £, may be regarded as a closed submodule of Ef,. The restriction of Q1 TEQM
to Er, gives a *-homomorphism tr, g,: T3"" — T5" satisfying tg, g, o tp, = tg, on T, For

Fy CF, C F3, we have tp, g, otp, m, = try Fy. SO we let F' range in the directed set determined by all
finite subsets of G' and define an ideal J. <« 7¢ by

Je:—{beTge

lim ||b]|F = 0} ,
F
where ||b||r := ||tF(b)]|. We are now ready to introduce our notion of covariant representations.

Definition 6.1.2. We will say that a representation of £ is strongly covariant if it vanishes on Je.

Let Jo < Tg¢ be the ideal generated by J.. Then Tg / Jso 18 universal for strongly covariant
representations of &£.

The idea behind started from the realisation that the correspondences gp’s built in [55] out
of £ could be replaced by the £r’s in order to give the same notion of covariant representations if £ is
compactly aligned and ¢-injective and P is directed. This is shown in Proposition In this case,
it suffices to consider finite subsets of P because (G, P) is quasi-lattice ordered. Exel constructed a
C*-algebra out of a nondegenerate interaction group (A4, G, V') with the property that a representation
of this crossed product is faithful on the fixed-point algebra for the canonical coaction of G if and only
if it is faithful on A. To show that A embeds into the crossed product, he built a faithful covariant
representation by using inductive limits over finite subsets of G (see [22 Section 9]). This is related to
product systems because, in fact, the main purpose in [22] was to introduce a new notion of crossed
products by semigroups of unital and injective endomorphisms which can be enriched to interaction
groups. Here we want to associate a C*-algebra to a product system & = (&,)pep with the property
that a representation of this resulting C*-algebra is faithful on the fixed-point algebra for the canonical
coaction of a group conaining P if and only if it is faithful on A. To achieve this goal, we believe its
unit fibre should be a direct limit of C*-algebras with injective connecting maps (see [5.[22,34/48]),
although in general this fact is not established. So, combining all these ideas and modifying the
Cuntz—Nica—Pimsner covariance condition accordingly, we arrived at the £r’s and Definition [6.1.2

Our next immediate goal is to prove that A embeds into the quotient 7g / Joo-
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Lemma 6.1.3. The ideal J», coincides with @ngJe. As a consequence,
geG

Joo = P (T N TE).

geG
Proof. In order to prove the first assertion, it suffices to show that J. 77 C T¢J. for all g € G. To
do so, let b € J. and 0 # ¢, € TZ. Let € > 0. There is F' C G finite with [|b]ls < ﬁ for all finite
g
subsets S of G with S O I because b € J.. Set

F' =g 'F={g"'h|heF}.
Since ¢, maps Epr into Egpr = Ep, it follows that ||cib*bey||p < €. This guarantees that
(JeTE) (JTE) € e

By Lemma [3.1.8) J.7¢ C T¢J.. Applying the first assertion and the continuity of the projection of Tg
onto 77, we deduce that Joo N T¢ = TZ J.. This gives the last statement. O

Lemma 6.1.4. Let q: T — Te/Js be the quotient map. There is a full coaction &6: Te/Js —
Te/Jso @ C*(G) satisfying 6 o ¢ = (¢ ® idc=(q)) 0 0. Moreover, the spectral subspace for § at g € G is
canonically isomorphic to TZ /TE Je.

Proof. Given ¢ € Tg/Js, choose b € Tg with q(b) = ¢ and set

§(q(b)) = (¢ ®idcx ()8 (b).

Lemma and Proposition say that this is indeed a well-defined full coaction of G on Tg/Jso.
The equality 0 0 ¢ = (¢ ® idc+()) © § follows from the definition of 4.

In order to prove the last assertion, let (Tg/J)? denote the spectral subspace at g € G for the
coaction 4. Clearly, the map which sends b, € T to ¢(b,) vanishes on T J.. Moreover, Lemma
implies that this produces an injective map from 77 /TZ J. into (T¢/J)9. That it is also surjective
follows by the same argument used in Lemma [£.1.6] O

We will often use the above description of the G-grading for Tg/Jo.
Proposition 6.1.5. The quotient map q: Te — Te/Joo is injective on t(A).

Proof. We will show that #(4) N .J. = 0 in Tg. This implies the conclusion by the previous lemma.
Let F' C G be finite and 0 # a € A. We claim that t%(a) # 0 on €. Indeed, if al.yr # 0 we are
done. Otherwise, a ¢ Ik, oy for some g1 € F, because I.vp = ﬂgeG I, ,,- Since

Ik (e gy = ﬂ ker or,
regi PNP

there exists r; € PN g1 P with ¢, (a) # 0. Put

Fy = {g S F| K{ﬁ,g} # 0 and ry ¢ K{”’g}}'

Thus g1 € F1. So Fi € F and ETIIT;l(TlvF) = 5T1[r;1(r1vF1)' Our claim is proved if ¢, (a) # 0
on gﬁIr;l(rlvFl)' This is so, in particular, if F; = () because ¢,, (a) # 0 on &,,. Assume that a acts
trivially on &, I 1 V) Then

T1 Tl

(@r ()&, | or (a)Ery) N Irfl(rl\/Fl) = {0}.

Thus there exist g2 € Fy and & € &, so that (¢, (a)(&)|pr (a)(§)) & Ir;
one can find ry € Ky, 4,3 such that

(ri (@) () | @ri (a)(€)) E kerep, 1.

(r1vga)* As a consequence,
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We see that a ¢ ker ¢,, because i, -1
1
Let

g &, ®a ET—1T2 — &y, is an isomorphism of correspondences.
1

Fy={g€F|K{,q4 #0and ro & K{,, 41 } -
Notice that F» C F} and
57”2‘[7';1(7‘2\/F) = STQIrgl(rz\/Fg)‘

If ¢.,(a) vanishes on &, -1
with ¢r;(a) # 0 on &.,. Set

F3 = {g € F| Kiry gy #0and r3 ¢ K{T'Bag}}‘

oV ) then the same reasoning as above yields g3 € F» and r3 € K, g,}

We then have F5 C Fo C Fy C F and &,,1 LrgVF) = STSIT;I(Tnga). This process cannot continue

T3 r§
infinitely because F' is finite. So we must stop at some r; with ¢, (a) # 0 on &, Irﬂ(rij).
J

Thus t%(a) is nonzero on Ep. Therefore, for all a € A, we have that
li =i = |lal|.
im ol = lim la]| = [l

This completes the proof. O

6.2 Covariance algebras associated to product systems

Our goal in this section is to associate a C*-algebra A x¢ P to a given product system (€,),e p satisfying
two properties: the representation of £ in A xg P is injective and any representation of A X¢g P in a
C*-algebra B that is faithful on A is also faithful on the fixed-point algebra (A x¢ P)° for the canonical
gauge coaction of G on A xg P, where G is a group with P C G. A candidate for A x¢ P is of course
the universal C*-algebra for strongly covariant representations introduced previously. We shall prove
that this is independent of the choice of the group containing P.

Lemma 6.2.1. Let P be a subsemigroup of a group G and £ a product system over P. Let ¢ =
{¥p}pep be a strongly covariant representation of € in a C*-algebra B. The resulting *-homomorphism

Y Tg/Joo — B is faithful on TE/J. if and only if 1. is injective.

Proof. If ’(Z is faithful on 7£/J., then Proposition implies that v, is injective. Suppose that v is
strongly covariant and . is faithful. Let us prove that ¢ is injective on 7¢/J.. First, pick b € T¢ of
the form

#(Ep )t (Epa)" - - - T(Epar 1 )E(Epar)” (6.2.2)

with k € N, p1py ' ... pag—1py; = e and &, € &, for all i € {1,2,...,2k}. Assume that g(b) # 0. This
entails
K{P2i7p2i+1} = poiP N paj1 P # 1}

for each i € {1,2,...,k— 1} because, otherwise, tp (£(&p,,)*¢(€psi,)) acts trivially on £, which would
imply ¢(b) = 0. A similar argument employed to

F = {P2k,p2kp2_kl_1p2k—2,‘p2k102_k1_1P2k—2p2_k1_3p2k—47 e ,PQkpg_kl_1p2k—2 = -pg_lm} (6.2.3)

shows that K # (). This is precisely the right ideal

PokDop 1 P2k—2 - D3 D2 P.

These ideals are used in [39] to study semigroup C*-algebras.
We claim that, if r ¢ Kg, then

w(b)(djr(&”l—r—l(er))) =0.
Since ¢ is strongly covariant, it suffices to prove that t(ey(b)t],, (&r1,-1(pvry) vanishes on S{Jre}.

First, notice that t{.;(b) = 0 on &I -1(svq) whenever s ¢ Kp. Hence if Ky, py = 0, it follows
that t{e}(b)tge}(é}) = {0} because the image of &, under tiey sends Els-1(5vg) 10 Ersls—1r-1(rsvrg)
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and t¢.)(b) vanishes on the latter. We are then left with the case in which Ky, gy # 0. Thus r ¢ Kp
implies that r ¢ Ky, for some g € F. Let & € &.I,-1(.yr). Then t(, (b)t?e} (&) vanishes on the
direct summand Esl-1(4vg) if s € KF. So assume that rs € Kp. In particular, rs € Ky, 4. Hence
I (pvr) C ker s and tf{“e}(@) = 0 on the direct summand Es-1(5,4). This concludes the proof
that t;ey (b)t?e} (&) =0on 8{"’6}. Therefore, {/)v(b)zbr (ErL -1 (pvry) = 0 as claimed.

Now let b € 7¢ be such that J(b) = 0. Given € > 0, we must find a finite set ' C G such that
6]l <e. By Lemma there exists b’ = > 7_) b; € T¢ with |[[b — V|| < §, where each b; is of the
form (6.2.2). For each j € {1,...,n}, let F; C G be the finite set associated to b; as in (6.2.3)). Thus
J(bj)(wr(érqu(rvpj))) =0ifr ¢ Kr,. We also set

and let £ = P, cp & € Ep with [[€[|F < 1, where &, = 0 except for finitely many r’s. Then

<52
.

| S e dtune)

_ H S (€ Db — BB — ) ()

Since 1), is injective and J(bj)qﬁ,. (&) =0if r & Kp,, it follows that the left-hand-side above is precisely
ltF(6")(€)||?. This implies that ||b||r < . Hence b belongs to J, as desired. O

Lemma 6.2.4. Let G and H be groups containing P as a subsemigroup and let £ be a product system
over P. A representation of & is strongly covariant as in Definition [6.1.2] with respect to G if and only
if it is strongly covariant with respect to H. Thus different groups provide the same notion of strong
covariance.

Proof. We may assume that G = G(P) is the universal group of P. By its universal property, there is
a group homomorphism v: G — H extending the embedding of P into H. Let e¢ and ey denote the
unit elements of G and H, respectively. Let 77 be the fixed-point algebra for the generalised gauge
coaction of G on Tg. It follows from Lemma that 75 is a C*-subalgebra of 75#, where 75,
in turn, is the fixed-point algebra for the gauge coaction of H on 7¢. Let us prove that J., C J.,,
where J, < 7'5€G and J., < 7';“ are the ideals described in the construction before Definition
with respect to the groups G and H, respectively.
Indeed, it suffices to show that, given a finite set F' with F' C G, one has

Ip-1ovr) 2 Iyp)=1 (v(p)V(F))

where y(F) is the range of F' under . To do so, let g € F. If either Ky, ;4 =0 or p € Ky, g3, then
Ip=1pvg) = A 2 L) =1 (1) v(9))-

Suppose that Ky, # 0 and p ¢ Ky, g Given r € Ky, oy, 7(r) € Kpyp) (g} s0 that
ker -1, 2 Ly (p)~1(y(p)v4(g)) Decause v is a group homomorphism. So we conclude that 1,1,y 2
Ly (p)-1(v(p)v~(F)) and hence Je, C Je, as asserted.

Thus we obtain a *-homomorphism ¢: T¢/JS$ — Te¢/JH2. Combining Proposition with
Lemma we deduce that ¢ is injective on 75¢/J.,. To see that ¢ is an isomorphism, we will
show that J.,, C JS.

First, let b € T be of the form (6.2.2), that is,

b= E(£P1)£(§P2)* s E(€P2k71)t~(§p2k)*’

with k € N, v(p1)v(p2) ™' ... ¥(par—1)v(p2x) ' = em and &, € &, for all i € {1,2,...,2k}. We claim
that plpgl .. .pgk,lp;kl # eq in G entails b € JeHﬂJg. To see this, we will prove that K = K () = 0,
where
F = {pok, DokDoy \P2k—25 -+ - » P2kDop_ 1 D2k—2 " - D3 D2}

is the finite subset of G associated to b.

Let r € K(ry. Then there is a unique s; € P with r = pays;. Here we have omitted v because
it is injective on P. Now r also lies in ’Y(pgkp;kl_lpgk_Q)P. So there is a unique s; € P so that
r= ’y(pgkp;kl_lpgk,g)SQ. This implies that A/(p;kl_lpgk,g)sQ = s1. This is so if and only pox_252 =
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por_151. Hence r = pgkp;kl_1p2k_282 in G as well. Repeating this procedure, we deduce that r € Kp.
Thus K. (ry = KF, since the inclusion Kr C K, (F) is clear.

It remains to show that Kr = K, (p) = (. Let us argue by contradiction and suppose that Kr is a
non-empty subset of G. Hence one can find r,s € P with

PokPay_1Pak—2 D3 P2py - =r(p1s) .

Since v is injective on P and -y (pgkp;kl_lpgk,g . 'pglpgpfl) = ey, it follows that pys = r. This
gives gr = r and thus g = eg, contradicting our assumption that plpgl .. .pgk,lp;kl # eg in G.
Therefore, Kp = K.,(5) = 0 and hence b € J.,, N JS.

As a consequence, the image of 75" under the quotient map ¢: Te — T¢/ JS lies in the fixed-point
algebra Tg¢/Je.. Since ¢ is faithful on this latter C*-algebra and the quotient map 7¢ — Te/J2 is
precisely the composite ¢ o ¢, we conclude that J.,, € JC. Therefore J = JX. This shows that the
notion of covariance described in Definition [6.1.2]is independent of the choice of the group containing P
as a subsemigroup. O

The following is the main result of this chapter:

Theorem 6.2.5. Let P be a unital semigroup and let € = (Ey)pep be a product system over P of
A-correspondences. Suppose that P is embeddable into a group. There is a C*-algebra A x¢ P associated
to £ with a representation je: & — A Xg P such that the pair (A Xg P, jg) has the following properties:

(C1) A x¢ P is generated by je(E) as a C*-algebra and jg¢ is strongly covariant in the sense of
Definition [6.1.2, where the group G in question may be taken to be any group containing P as a
subsemigroup.

(C2) if v = {p}pep is a strongly covariant representation of € in a C*-algebra B with respect to a

group containing P, then there is a unique *-homomorphism TZI AxgP — B such that 1203',, =y
for allp € P;

(C3) je is faithful and if G is a group with P C G as a semigroup, there is a canonical full coaction of G
on Axg P so that a *-homomorphism A xg P — B is faithful on the fized-point algebra (A xg P)?
if and only if it is faithful on j.(A).

Moreover, up to canonical isomorphism, (A Xg P, jg) is the unique pair with the properties (C1)—

(C3).

Proof. Let G be a group containing P as a subsemigroup. Let Jo, be the ideal in T¢ as in Lemma [6.1.3
That is, Jo is the ideal generated by J., which in turn is the ideal in 7§ constructed before Def-
inition Set A xg P = Tg/Js and let je be the representation of £ in A xg P given by the
composition of £: & — T¢ with the quotient map q: T¢ — T¢/Js. By Lemma this does not
depend on the chosen group and hence it satisfies (C1). By the universal property of Tz and again by
Lemma A x g P also fulfils (C2). Now (C3) follows from Lemma Uniqueness of (A x¢ P, je)
is then clear. O

We call A x¢ P the covariance algebra of £, following the terminology of [32] for C*-algebras
associated to partial dynamical systems.

Remark 6.2.6. The proof of Lemma [6.2.4] also tells us that the fixed-point algebras of the canonical
coactions on A x¢ P of all groups containing P coincide.

Ezample 6.2.7. Let G be a group and (By)secc a saturated Fell bundle over G. View (By)gecq as a
product system over G'. For each g € G and F' C G finite, we have that I,-1 (4, r) = Be since g € K,y
for all h € F. Hence J. = {0} and the associated covariance algebra is isomorphic to the cross sectional
C*-algebra of (By)gec-

6.3 Relationship to other constructions
In this section, we relate the covariance algebras of product systems defined here to other constructions

in the setting of irreversible dynamical systems. We also give an equivalent notion of strongly covariant
representations for compactly aligned product systems over quasi-lattice ordered groups.
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6.3.1 Relationship to a construction by Sims and Yeend

Let us restrict our attention to compactly aligned product systems over positive cones of quasi-lattice
orders. In [55], Sims and Yeend constructed a C*-algebra N'O¢ from a compactly aligned product
system € = (€,)pep so that it generalises constructions such as C*-algebras associated to finitely
aligned higher rank graphs and Katsura’s Cuntz—Pimsner algebra of a single correspondence. The
universal representation of £ in N'Og¢ is quite often faithful, but Example 3.16 of [55] shows that it
may fail to be injective even if (G, P) is totally ordered and A acts by compact operators on &, for
all p in P. In this subsection, we will see that N'O¢ coincides with A x¢ P when either the universal
representation of £ in N'Og¢ is faithful and P is directed or £ is a faithful product system. In both
cases N Og¢ satisfies an analogue of (C3) [15, Proposition 3.7]. This subsection is based on [15] and [55].

We first recall the definitions from [55] of Cuntz—Nica—Pimsner covariance and Cuntz-Nica—Pimsner
algebra. Fix a quasi-lattice ordered group (G, P) and let £ = (€,)pecp be a compactly aligned product
system over P. Let I, :== A and, for each p € P\ {e}, set

fp = ﬂ ker p, < A.

e<s<p

Given p € P, we define a correspondence gp: A~ A by

gp = @ Erfr—lp.

r<p

For all s € P, there is a *-homomorphism 2 : B(Es) — B(&,) defined by

zg(T):( ) L;(T)|5T,T_lp> @( P 057‘17‘_111) for all T € B(E,).

s<r<p s&r<p

Let F C P be a finite set and let T € K(&;) for each s € F. We say that ZseFZ?;(TS) =0 for
large p if given an arbitrary element r in P, there exists 7’ > r such that ) c FB(Ts) =0forallp >/
A representation ¢ of £ in a C*-algebra B is Cuntz—Pimsner covariant according to [55, Definition

3.9] if
> (1) =0

sEF

whenever ) . 2(Ts) = 0 for large p. It is called Cuntz—Nica—Pimsner covariant if it is both Nica
covariant and Cuntz—Pimsner covariant.

Suppose that £ is a product system with the extra property that ¢ is injective on A for all p € P.
The Cuntz—Nica—Pimsner algebra associated to £, denoted by N'Og, is then the universal C*-algebra
for Cuntz—Nica—Pimsner covariant representations (see |55, Proposition 3.2] for further details). The
requirement that 72 be faithful for all p € P implies that the representation of £ in NO¢ is faithful.
Sims and Yeend proved in [55, Lemma 3.15] that this is satisfied whenever P has the following property:
given a non-empty set F' C P that is bounded above, in the sense that there is p € P with s < p for
all s € F, then F has a maximal element r. That is, r € s for all s € F'\ {r}.

The next example of a product system is given by Sims and Yeend in [55, Example 3.16]. It consists
of a compactly aligned product system for which not all 72’s are injective. We recall their example
here and describe its associated covariance algebra.

Ezample 6.3.1. Let Z x Z be equipped with the lexicographic order and let P be its positive cone.
So P = ((N\ {0}) x Z) U ({0} x N) and e = {0} x {0}. Define a product system over P as follows:
let A :== C? and, for each p € P, let £, := C? be regarded as a Hilbert A-module with right action
given by coordinatewise multiplication and usual C2-valued inner-product. Following the notation
of [55], we set S :== {0} x N and for all p € S, we let C? act on &, on the left by coordinatewise
multiplication, so that ¢, ((A1,A2)) == (A1, A2) € B(&,) for all p € P and (A, A2) € A. For p € P\ S,
put ¢, ((A1,A2)) = (A1, A1). Thus ker o, = {0} x C for all p € P\ S. If ¢ € S, define a correspondence
isomorphism fi, 41 £, ®c2 & = Epq by

(21, 22) ® (w1, w2) = (z1w1, 22w2).
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For all g € P\ S, define pip 4: &, @c2 g = Epg by
(21, 22) @ (w1, w2) = (w1, 21Ww2).

This is a proper product system £ = (€,),ep over C2. Thus it is also compactly aligned. Since P
is totally ordered, all representations of £ are Nica covariant. Sims and Yeend proved that such a
product system has no injective Cuntz—Nica—Pimsner covariant representation. Their argument is the

following: for all p # e, I, = ker ¢(o,1) = {0}. Hence, if ¢ € P\ S, 77 = ¢, is not injective and any
Cuntz—Nica—Pimsner covariant representation of £ vanishes on ker ¢, = {0} x C.

Let us now describe the associated covariance algebra A x¢ P. We will show that (A xg P)° is
isomorphic to the C*-algebra of all convergent sequences. To do so, given p € P, write p = (p1,p2).
We define an isometry v, € B(¢*(N x Z)) by

w(f)(q) = {f(q—p) if g1 > p1,

0 otherwise,

where f € (N x Z) and q = (¢1,¢2) € N x Z. Thus vy(f)(q) = f(g + p) and vyvy is the projection of
?%(N x Z) onto the subspace ¢?>(Nx,, x Z). In particular, v, is unitary for all p € S.

Let ¢.: C? — B(¢?(N x Z)) be the *-homomorphism given by

A?f(q) if Q1 = 07
M f(g) otherwise.

be((M,A2))(f)(q) = {

For all (21, 22)p € &, put ¢p((21,22)p) = vpoe((21,22)). This yields a representation ¢ = {¢,}pcp
of £ in B(?(N x Z)). We claim that ¢ is strongly covariant and preserves the topological Z x Z-grading
of A x¢ P. First, for each finite set F' C P,

B = span{T,|p € F,T, € K(&)}
Mbalgebra of T¢ since P is totally ordered (see also |15, Lemma 3.6]). In addition, 7§ =
Urcp Br. By [3, Lemma 1.3],
Je - U Je N BF

FCP
So in order to prove that ¢ is strongly covariant, it suffices to verify that, given a finite set F' C P, one
has

> 6PN(T,) =0

peF

whenever 3 jép)(Tp) = 0in A xg P. Here T, € K(&,) for each p € F. So suppose that F' is

a finite subset of P and 3 p j‘(gp)(Tp) = 01in A x¢ P, with T, € K(&,). Let (A1, A2,p) be such
that T), = (A1,p, A2p). Write
F= UFI%

with p; < pi41 for all ¢ € {1,...,n}, where F),, is given by all of the elements in F' having first
component p;. Given a finite set F/ C P with F’ O F, there is r; = (p1,q1) € P such that p’ < ry for
all p" € F) . Then

57”1]1'1_1(7‘1\/[*") = {0} x C.

So by taking finite sets F' C P with F” D F, we conclude from the definition of strong covariance that

> Aoy =0.

PEFp

If po > p1 + 1, we deduce by a similar argument that the sum Zperl A1,p must be zero as well because

tp(Tp)(A1s A2) = 1y (A ps Az,p)) (A1s A2) = (A1 pAas Adrpha)
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for all r = (r1,72) > p with 1 > p;. In case py = p1 + 1, then

S Mpt Y Ay =0

pEFy, pEF,,

Repeating this argument for all of the p;’s and observing that

Apfla) if ¢ = p1,
OP(T)(F)(@) = Mpfla) if g > pr,
0 otherwise,

we conclude that ¢ is indeed strongly covariant. The associated representation of A xg¢ P on £2(N x Z)
is faithful on (A xg P)° because it is injective on C2. Tts image in B(¢*(N x Z)) is the C*-algebra
generated by ¢.(C?) and the family of isometries {v,|p € P}.

To see that $ is faithful on A x¢ P, consider the canonical unitary representation of the torus T?
on /?(N x Z). Explicitly, the unitary U, is given by

Uz(f)(Q):Zihzng(q)a q= (Q17Q2) ENXZ,

where z = (21, z5) € T2. This produces a continuous action of T2 on (A x¢ P) by T — UTU*. Hence
it carries a topological Z x Z-grading (see Section [2.2]). The corresponding spectral subspace at (m, n)
is determined by

{T € ¢7(A xg P)| U,TU; = 27"25T for all z = (21, 22) € TQ} .

Since Z x Z = PU P~1, it is easy to verify that $ preserves the grading of A x¢ P. Because Z X Z is
amenable, ¢ is then an isomorphism onto its image. Its restriction to (4 x¢ P)° yields an isomorphism
onto the C*-algebra of all convergent sequences

This isomorphism sends (A1, A2), € K(&,) to the sequence ({,)nen with

)‘2 if n= b1,
Cn =<\ ifn > D1,
0  otherwise.

The task of verifying whether a given representation is strongly covariant or not is considerably
simplified when & is compactly aligned. The proof of the next proposition is taken from |15, Proposition
3.7] and adapted to our context.

Proposition 6.3.2. Let £ = (&,)pep be a compactly aligned product system. A representation ¢ of €
in a C*-algebra B is strongly covariant if and only if it is Nica covariant and satisfies

(C) Xper Y®)(T,) = 0 whenever D opeF tgf)(Tp) =0 on Ep, where F C P is finite and T, € K(&p)
forallp e F.

Proof. Suppose that 1 is strongly covariant. Let p,q € P, T € K(&,) and S € K(&;). If pV ¢ = o0,
then Ky, .4 = 0 so that tgf)(T)tg?)(S) = 0 on the direct summand Ep for all finite subsets F
of G. Hence strong covariance implies j®)(T)j(9(S) = 0 in A xg P. Assume that pV ¢ < oo.
Let T" € K(&Epvq) be such that (£Y4(T)hV(S) = T'. Because tg’) (T)t;?) (8) = 0on &L—1pvp)
whenever r & (p V q)P, it follows that tgf) (T)tD(S) — tgqu) (T") = 0 for each finite subset F of G.
Hence j)(T);j(@(S) = j®V9(T’) and jg¢ is Nica covariant.

Now if > p tgf)(Tp) =0on & and F' 2 F, then 3 . t%f’,)(Tp) = 0 on &p since £, may
be viewed as a closed submodule of £ (see Section ﬂ for further details). So ZpGFj(p)(Tp) =0
in A xg P and, in particular, > p Y®)(T,) = 0.
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Conversely, assume that ¢ is Nica covariant and satisfies (C)’. In order to prove that v is strongly
covariant, we use the ideas employed in [15]. Let Py, denote the set of all finite subsets of P that are
V-closed. Precisely, F' € Py, if it is finite and for all p,q € F with pV ¢ < oo, one has pV ¢ € F. For
each F in Py, let Br denote the subspace of N'T§ given by

{Snim exe}).

pEF

Here we introduce no special notation to identify an element of K(&,) with its image in N'7¢. We
observe that Bp is a C*-subalgebra of N'7¢ and, in addition,

NT¢= |J Br.

FePy,

Hence, since A x¢ P is a quotient of N'7¢, Lemma 1.3 of 3| says that all we must do is prove that
S per tE(Ty) = 0 on Ep if Y, jP)(T,) = 0 in A xg P.
Given 7 € P, it follows from Nica covariance that j®)(T},)5,.(E.) = 0 when p V r = 0o and

FPUT) e (Er) C e (&) VP (K(E-1(rvp)))

otherwise. So j®)(T},)j, (&, ker ©r—1(rvpy) = 0 if p £ r. Therefore,

Z] ]r 5 I r\/F Z] ]r 5 I r\/F))

pEF pEF
p<r

—h(Zt Tp)E 1, - l(er))

peF
p<rT

Since jg is injective, > jP)(T},) = 0 yields 3 per tgf) (Tp)Er I -1 (pypy = 0 for all 7 € P, and we deduce
peEF p<r

that Zpethf) (Tp) = 0 on Ep as desired. O

Recall that a C*-algebra A is nuclear if, for every C*-algebra B, there is a unique C*-norm on A® B
(see, for example, [10]). The previous proposition combined with [53] Theorem 6.3] gives us the
following:

Corollary 6.3.3. Let (G, P) be a quasi-lattice orderd group and let £ = (€,)pep be a compactly aligned
product system. Suppose that G is amenable. If A is nuclear, then A x¢ P is nuclear.

We denote by qn the *~homomorphism from N'7¢ to A x¢ P induced by je = {jp}pep. The proof
of the next result is essentially identical to that of Proposition |6. This is inspired by |15, Proposition
3.7].

Proposition 6.3.4. Let v be an injective Nica covariant representation of £ in a C*-algebra B and
let ¥ denote the induced *-homomorphism. Then (ker¢n) NNTg C ker g

The following is [15, Example 3.9].

Example 6.3.5. Let Fy denote the free group on two generators a¢ and b. Then Fy is quasi-lattice
ordered and its positive cone ]F;r is the unital semigroup generated by a and b. Define a product system
over F} by setting A := C, &, := C and &, := {0}, where C is regarded as a Hilbert bimodule over C in
the usual way. So E,» = C for all n € N. A subset of Fj that is bounded above has a maximal element,
so that the representation of £ in N Og¢ is injective. However, in [15] this example illustrates the fact
that the conclusion of Proposition [6.3.4 may fail for NOg¢ if P is not directed and € is non-faithful.

Define a representation of £ in C by ¥,(\,) = A, for all p € P and A\, € &,. So v, is faithful.
Let 1, € K(&,). Then t.(1) — () (1,) = 0 but 2(1) —(1,) # 0 for all p > b. Hence the image
of 1 — 1, in NO¢ is nonzero and it becomes clear that AOg and A x¢ P are not isomorphic, since
je(1) — j9(1,) = 0 in the latter. For this example, A x¢ P is the universal C*-algebra generated by a
unitary. That is, A xg P = C(T) with j,(As) = Mgz and je(A) = A, where z: T — C is the inclusion
function.
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Proposition 6.3.6. Let (G, P) be a quasi-lattice ordered group and let £ = (£,)pep be a compactly
aligned product system over P. Suppose either that £ is faithful or that P is directed and the rep-
resentation of & in NOg is injective. Then NOg and A Xg P are canonically isomorphic to each
other.

Proof. Let je denote the representation of £ in N’Og. By Proposition ker jx NNTE C ker gy
In particular, je is an injective Cuntz—Nica—Pimsner covariant representation of £ in A x¢ P. Hence,

[15, Proposition 3.7] implies that the induced *-homomorphism j: NOg — A X¢ P is faithful on the

fixed-point algebra NOg. Therefore, jn vanishes on ker gnr and it factors through A xg P. Thus j %
is the inverse of j O

6.3.2 Cuntz—Pimsner algebras

Recall that Fowler’s Cuntz-Pimsner algebra of a product system £ = (&,),ep, denoted by O, is the
universal C*-algebra for representations that are Cuntz-Pimsner covariant on J, == p~}(K(&,)) [26,
Proposition 2.9]. See also Remark Our next result provides sufficient conditions for A xg¢ P
to coincide with Fowler’s Cuntz—Pimsner algebra if P is a cancellative right Ore monoid, that is, P
is cancellative and pP N qP # 0 for all p,q € P. In this case, P can be embedded in a group G so
that G = PP~L.

Proposition 6.3.7. Let P be a cancellative right Ore monoid and let £ = (Ep)pep be a product system
that is faithful and proper. Then A xg¢ P is canonically isomorphic to Fowler’s Cuntz—Pimsner algebra.

Proof. Observe that J, = A for all p € P. We begin by verifying that the representation of £ in A x¢ P
is Cuntz—Pimsner covariant on A for each p in P. Indeed, set F' := {p}. Since & is faithful, it follows

that Ip.—1(pyp) = {0} if 7 ¢ pP. Hence
Ewy = EP &

repP
Hence jg¢ is Cuntz—Pimsner covariant on J, for each p € P. We then obtain a *-homomorphism
j: Oj’g —)AXgP.
By [5, Theorem 3.16], we may view O% . as the inductive limit of (K(Ep))pep' Thus j is faithful
on OF ¢ since it is so on all of the K(&p)’s. The quotient map q: T¢ — A X¢ P is the composition of j
with the quotient map from 7¢ to Oy ¢. Hence the representation of £ in this latter C*-algebra must
vanish on J. The induced *-homomorphism A xg P — O ¢ is then the inverse of j. O

Proposition 6.3.8. Let (G, P) be a quasi-lattice ordered group and let € = (&,)pep be a simplifiable
product system of Hilbert bimodules as in Definition [5.1.5] Then A x¢ P is canonically isomorphic
to Oz, ¢, where Lg is the family of Katsura’s ideals for £.

Proof. We begin by proving that the canonical representation of £ in A x¢ P factors through Oz, ¢.
Let p € P and let s € P be such that r 2 p. Axiom (ii) of Definition entails ¢, ((&y | Ep))Er = {0}
if pVr = oo. Suppose that pVr < co. Then

«517 | gp» <<gr ‘ 5r>> c <<ngr | gp\/r»'

In particular,

<<5p | gp>> <<5r | Er ker 90r—1(p\/r)>> = {0}
because (Epvr | Epvr)) acts faithfully on &py,. Hence ¢, ((&, | Ep))Er ker @1y = {0}. So given a
in (&,|&,), take F = {p}. Then t%(a) — t'¥(¢,(a)) = 0 on Er. By Proposition

i (pp(a)) = je(a).

This shows that j = {j,},ep is an injective representation of £ in A x¢ P that is Cuntz—Pimsner
covariant on Ig, = (£, |&p)) for all p € P. So it induces a *-homomorphism ¢: Oz, ¢ — A x¢ P.
Since ¢ is a surjective grading-preserving *-homomorphism and OF, o = A, the universal property
of A xg P tells us that ¢ is an isomorphism. O
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6.3.3 Semigroup C*-algebras

The semigroup C*-algebra as introduced by Murphy in [44] is the universal C*-algebra for representations
of P by isometries, also called isometric representations. Unlike the group case, the resulting C*-algebra
is usually badly behaved. For instance, it is not nuclear even when the semigroup in question is N x N
(see [45]). For semigroups that are positive cones of quasi-lattice ordered groups, Nica considered
in [47] a sub-class of isometric representations, namely, those satisfying the Nica covariance condition
(see Example . In this setting, he also introduced a notion of amenability for a quasi-lattice
ordered group (G, P) and proved, for instance, that (F,,F;}) is amenable. Xin Li realised that one
should also take into account the family of right ideals of P and proposed a construction generalising
that of Nica to left cancellative semigroups |39]. In analogy with the group case, he was able to relate
amenability of a semigroup to its associated C*-algebra (see [39, Section 4]). In this subsection, we
study the relationship between covariance algebras and the semigroup C*-algebras of Xin Li. Under a
certain assumption involving the family of constructible right ideals of P, we will show that we can
recover the semigroup C*-algebra of Xin Li from the covariance algebra of a certain product system.
This is obtained in [5, Section 5] for Ore monoids.

Let us first recall Li’s construction. Assume that G is generated by P. Given oo = (p1,pa, ..., par) C
P, define

Fo = {Pai D2k—1, D3 P2k—1Dgp—aP2k—3: - - - » Do P2k—1Dogp—o * ** P3 D1}- (6.3.9)
Then K(f, ) is a right ideal in P. This corresponds to the right ideal

Pan D2k—1Dap—o - D3 'P1 P
in the notation of [39]. Given words ay, @, ..., a, in P, the intersection

n

R

i=1

is again a right ideal in P. Let J be the smallest family of right ideals of P containing the “constructible”
right ideals as above and the empty set (). This is closed under finite intersection. In addition, if S € J,
then pS € J and p~'S € J, where pS and p~'S denote the image and pre-image of S, respectively,
under left multiplication by p. The following is |39, Definition 3.2].

Definition 6.3.10. Let P be a subsemigroup of a group G. The semigroup C*-algebra of P, de-
noted by C%(P), is the universal C*-algebra generated by a family of isometries {v,|p € P} and
projections {eg| S € J} satisfying the following:

(1) vpvg = Vpq,
(i) ep =0,

ek * o - . . . -1 —1 -
(iii) Vp Ups " Upay 2Upoy Upoy = €K (. ., Whenever a = (p1,p2; - -, p2k) isaword in P with p; "pa - - - Dog—2pgp 1 P2k =
ein G.

The family J of right ideals of P is called independent (see |39 Definition 2.26]) if given a right
ideal of P of the form

with S; € J for all ¢ € {1,...,m}, then S = S; for some ¢ € {1,...,m}. By |39, Lemma 3.3],
€s,€s, = €s,ns, in CH(P) for all S1,5 in J and hence the closed linear span of the projections
{es| S € J} is a commutative C*-subalgebra of C%(P). If J is independent, this C*-subalgebra is
canonically isomorphic to the C*-subalgebra of £>°(P) generated by the characteristic functions on
elements of 7 [39, Corollary 3.4]. Let us denote this latter C*-algebra by A. That is,

A =span{xs|S € J},

where xs € ¢*°(P) is the characteristic function on S. This will be the coefficient algebra of our
product system £. The idea is taken from [5], Section 5]. Our assumption, however, is different: we
require P to be embeddable in a group, as usual. So we follow 39} Definition 3.2].
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There is a semigroup action 8: P — End(A) by injective endomorphisms with hereditary range
as follows. Let 8, be defined by xg — Xxps. Its range 8,(A) is the corner x,pAx,p and hence it
is hereditary. This gives us a product system over P as in Example The correspondence
Epr A~ Ais Axpp with the following structure: we use the inverse 3, ! to define the A-valued inner
product, so that

(axpp | bXpp) = 5;1(pra* -bXpp).

In particular, (xsXpp | XpP) = X(p-15)np for all S € J. The right action of A on £ is implemented
by B,. That is, (bxpr) - Xs = bxps. The left action is then defined by left multiplication a - (bx,p) =
abxpp. Finally, the isomorphism i, 4: & ®a E; = &y sends axpp @4 bxgp to axpprBy(b)Xpep. As in
Example [£.2.10} &, is a Hilbert bimodule with left A-valued inner product given by

{axpp [bxpP)) = axppb®.
In particular, this is simplifiable if (G, P) is a quasi-lattice ordered group.

Proposition 6.3.11. Suppose that J is independent. The semigroup C*-algebra C*(P) is naturally
isomorphic to A x¢ P.

Proof. Let us define a *-homomorphism C%(P) — A x¢ P by using the universal property of C%(P).
For each p € P, put u, = j,(xpp). Thus u is an isometric representation of P in A x¢ P. Given S € J,

set és = xs. In order to prove that this data also satisfies the condition (iii) of Definition [6.3.10} let
6.3.9)

a = (p1,p2,---,p2k) be a word in P with pl_lpg . -pgk_gpgklflpgk =e. Let F, be as in (| . Let us
show that
tFa (Z;Dl (XP1P)*%VP2 (XPzP) o 'Ftvp2k71 (Xp2k71p)*gp2k (Xp2k71 P) - Ei(XK{F(\,,a} )) =0 (6'3'12)

on &p,. This is clearly true if K¢y .y = 0 or Kp, . = P. So let us assume otherwise. The
ideal I.yr, < A is generated by the characteristic functions on the right ideals that have empty
intersection with

Kip, ey = Doy P2k—1Pgho Dy D1 P

so that XK{pa,e}IevFa = 0. Similarly, let r ¢ K(p, .. Observe that XK (5, e} vanishes on &, when-
ever rPN Kyp, oy = 0. f rPNKp, 4 #0, then I,-1(,yp,) consists of those functions in A that
vanish on PN r_lK{Fme}. In particular,

SDT(XK{FO“e})(XT‘P) ’ Ir_l(r\/Fa) = XK{FQje)ﬁrPﬂr(Ir_l(r\/Fa))

= XK (p, yntP v, = {0}

For r € K, ¢}, one may easily verify that the left-hand side of also vanishes on &,. This
proves our claim that the condition (iii) of Deﬁnitionis satisfied. So we obtain a *-homomorphism
¢: Ci(P) = A xg P. This sends v, to the isometry u, and es to je(xs).

In order to define a representation of £ in C*(P), we invoke the assumption that J is independent.
As mentioned before the statement, in this case the commutative C*-subalgebra of C%(P) generated by
the projections {eg|S € J} is canonically isomorphic to A. So there is a *-homomorphism A — C%(P)
which maps xgs to eg. Lemmas 2.8 and 3.3 of [39] imply the relations

* * _
’Up(is’Up = €ps, ’Up(is’Up = €p-15npP

in Ci(P) for all p € P and S € J. Hence the map which sends x,p € &, to the isometry v,
together with the *-homomorphism xs — eg gives us a representation of £ in C*(P). The induced
*-homomorphism 7¢ — C%(P) preserves the G-grading for the coaction of G. Moreover, it follows
from the condition (iii) and the equality v, = 1 that the fixed-point algebra C%(P)¢ for such a coaction
is the C*-algebra generated by the projections {eg|S € J}, which in turn is isomorphic to A. Hence ¢
is injective on C*(P)°. By the same argument employed in the proof of Proposition we conclude
that ¢ is an isomorphism. O

The proof of the previous proposition shows that, in general, A x¢ P is a quotient of C¥(P). It is
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isomorphic to the C*-algebra C*(“)(P) in the notation of [39]. Indeed, let

jU::{GSZ‘ SZEJ}

i=1
Let C*(Y(P) be the universal C*-algebra generated by isometries {v,|p € P} and projections {eg| S €
J"} satisfying the conditions (i)—(iii) of Definition [6.3.10| with the additional relation

(iV) €5,US, = €5, + €5, — €5,nS, for all 51,55 € J".

The C*-algebra C*(¥)(P) coincides with C*,(P) whenever J is independent (see [39, Proposition
2.24]). The next result generalises Proposition [6.3.11

Corollary 6.3.13. The semigroup C*-algebra C*gu)(P) is naturally isomorphic to A xg P.

Proof. Tt follows from [39, Lemma 3.3] and [39, Corollary 2.22] that the C*-subalgebra of C*(“)(P)
generated by the eg’s is naturally isomorphic to A. Again condition (iii) of Definition implies
that such a C*-subalgebra coincides with the fixed-point algebra for the canonical coaction of G
on C*gu)(P). Now we may employ the same argument used in the proof of Proposition to obtain
an isomorphism C*(Y)(P) = A x¢ P. O

6.3.4 Crossed products by interaction groups

In this subsection, we will show how Exel’s crossed products by interaction groups fit into our approach.
This notion of crossed products was introduced in [22] in order to study semigroups of unital and
injective endomorphisms. We first recall some concepts from his work, although many details will be
omitted. An interaction group is a triple (A, G, V'), where A is a unital C*-algebra, G is a group and V
is a partial representation of G in the Banach algebra of bounded operators on A. This consists of a
family {V,}4eq of continuous operators on A with V; =id4 and

VyVaVis = ViV, Vi Vi = Vs Vi

for all g,h € G. It follows that E, = V;V,-1 is an idempotent for each g € G and E L), = E,Eg,
g,h € G. The partial representation is also assumed to satisfy the following conditions:

(i) Vg is a positive map,
(ii) Vq(l) =1,
(iii) Vg(ab) = Vy4(a)Vy(b) if a or b belong to the range of V1.

For all g € G, the idempotent E, is a conditional expectation onto the range of V. An interaction
group is said to be nondegenerate if E, is faithful for all g in G. That is, E¢(a*a) = 0 implies a = 0
(see |22, Definition 3.3]).

Frow now on let us fix a nondegenerate interaction group (A, G,V). Given a unital C*-algebra B,
recall that v: G — B is a "-partial representation if it is a partial representation satisfying vy = v -1
for all g € G. A covariant representation of (A, G,V) in B is a pair (7,v), where 7: A — B is a unital
*~homomorphism and v is a *-partial representation of G in B such that

vg(a)vg—1 = (Vy(a))vgvg-1.

The Toeplitz algebra of (A,G,V), denoted by T(A,G,V), is the universal C*-algebra for covariant
representations of (A, G, V). It is generated by a copy of A and elements {5,}4ecc so that 5: g — 5, is
a *-partial representation and the pair (jy,3) is a covariant representation of (4,G,V) in T(A,G,V),
where jy: A — T(A,G,V) denotes the canonical embedding.

In order to recall the notion of redundancy introduced by Exel in [22], let us first define certain
subspaces of T(A,G, V). Given a word a = (¢1,92,-..,9n) in G, set

Sa = 8g,5g, """ 5y

n
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Let ./\//\la = jv(A)5.jv(A) and ey == 54841, where o=t = (g5 1, -+ , 95 5,97 ). Then 8,5y (a)8a-1 =
Jjv(Va(a))eq and, by [22, Proposition 2.7], e, is also an idempotent. The subspace Z, associated to
the word « will be the closed linear span of elements of the form

jV(ao)§gle(a1)§g2 e 'ggnjV(an)

with ag,a1,as,...,a, € A. We set Z, = Jv(A) in case « is the empty word. Observe that we always
have M, C Z,. We also associate a finite subset of G to the word « by letting

wla) ={e,g1,9192, - -,9192" - gn},

so that u(a) = {e} if « is the empty word. We further let & = g1g2 - gn. If & = e, it follows that
p(a) = p(a~t). We denote by W, the set of all words 8 in G with u(8) C p(a) and 8 = e and let

Zm@) ;:W{CB‘ cs€2Zp, B Woe}'

This is a C*-subalgebra of T (A, G, V) since 3 € W, if and only if 37! € W, and W, is also closed under
concatenation of words (see [22, Proposition 4.7] for further details). In addition, Z*(®) M, C M,,.

Definition 6.3.14. Let a be a word in G. We say that ¢ € Z/(®) is an a-redundancy if Mgy = {0}.

The crossed product of A by G under V, denoted by A xg V, is the universal C*-algebra for
covariant representations that vanish on all redundancies. Thus A x¢ V is isomorphic to the quotient
of T(A,G,V) by the ideal generated by all redundancies. A covariant representation of (A,G,V)
that vanishes on such an ideal was called strongly covariant by Exel. He was able to prove that A is
embedded into A x¢ V. The crossed product carries a canonical G-grading, and a representation of
A x¢g V is faithful on its fixed-point algebra if and only if it is faithful on A.

If P is a subsemigroup of GG, sometimes an action of P on a C*-algebra A may be enriched to an
interaction group (A, G, V) so that V,, = a,, for all p € P. Under certain assumptions, V' is unique if it
exists and A xg V is generated by A and isometries {v, }pep [22, Theorem 12.3]. We will see that if P
is reversible, in the sense that pP NqP # () and PpN Pq # () for all p,q € P, and G = P~'P = PP~
then A x¢ V' can be obtained from a covariance algebra of a certain product system if {V,},cp
generates the image of G under V. So we will assume that V' is an interaction group which extends
an action of P by endomorphisms of A and V,,-1 o o, = id4. This holds if and only if the *-partial
representation of G in A xg V restricts to an isometric representation of P.

Lemma 6.3.15. Let (i,s) denote the representation of (A,G,V) in Axg V. Then s, is an isometry
if and only if V,-1 o ap = id 4.

Proof. Suppose that V,,-10a,, =1ida. Let us prove that 575, —1 vanishes on M\(p—l) = jv(A)s,-1jv (A).
Since 5 is a *-partial representation of G, one has that 5,-1 =5;. Put 8 = (p~1,p) and B2 = (e). So
both 81 and S belong to W,-1) and hence 535, — 1 € Z{ep "}, Thus all we must do is prove that

(58p — 1)jv(A)s,v (A) = {0}.
To do so, let a € A. Then
Spspiv(a)sy, = 5,5v (Vo(a))spsy, = jv (V-1 (ap(a)))555p5, = jv(a)s,,.

This proves that 535, — 1 is a redundancy. Hence s, is an isometry in A xg V.
Now assume that s, is an isometry. For each a in A,

i(a) = s,spi(a)s,sp = i(Vp-1(ap(a))).
This shows that V,-1 o o, = id4 because A is embedded into A ¢ V. O

Thus in order to build a product system over P so that it encodes the interaction group, we suppose
that V,,-1 o a,, =1id4 for all p € P. It follows from [22, Lemma 2.3] that, for all p,q € P, we have

‘/:1—1‘/;)—1 - ‘/q—lp—l7 Vp—lq - Vp—l‘/q.
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Let us now describe the product system associated to V. This is defined as in Example £:2.10] Unlike
in [38], here we do not require P to be abelian since we assume Vj,-10a;, = id4. We set &, := A, endowed
with the right action of A through a - b = aa,(b) and the A-valued inner product (a|b) = V,-1(a*b).
This provides &£, with a structure of right Hilbert A-module because V,-1(a*a) = 0 < a = 0 and

~1(ab) = V,-1(a)V,-1(b) whenever b lies in the range of a,. The *-homomorphism ¢,: A — B(&,)
is given by the multiplication on A, so that yp,(a)-b=ab for all a € A, b € £,. The correspondence
isomorphism p, ¢ £ ®a & = &£, sends an elementary tensor a ® b to aay,(b). Using that a is
an endomorphism of A, we deduce that p, , preserves the bimodule structure. It is also surjective
because «, is unital for all p € P.

Lemma 6.3.16. £ = (&,),ep s a product system.

Proof. We will prove that ji,, , preserves the inner product and that the multiplication in £ is associative.
Let ap, ay, bo, b1 € A. Then

(a0 ®bo | a1 ® by) = Vo1 (bgV}-1 (agan)br)

V-1 (Vp=1(ap(bo) ") Vp-1(aga1) V-1 (ap(b1)))
V=1 (V-1 (ap(bo)"agaray(br)))
= Vipg)-1(ap(bo)"agar oy (b1))

= <:up,q(a0 ® bO) | Mp,q(al & b1)>~

This completes the proof that f, 4 is an isomorphism of correspondences for all p,q € P. Now let s € P,
a€é& be & and ce&. Then

(,qu,s(ﬂp,q by 1))(“ ®Rb® C) = aap(b)apq(c) = aozp(baq(c))
= (Hp,qs(1 ®Nq75))(a®b®c)' -

Lemma 6.3.17. There is a covariant representation of (A,G,V) in A xg P. It sends g = p~1q to
vg = Jp(1p)*jq(14) and a to je(a). Moreover, given a word 8 = (g1,92,...,9n) in G, the map a —
Je(a)vg is injective, where vg = vg4, Vg, - - - Vg

"

Proof. We begin by proving that j,(1,)*j4(14) = jp (1p1)*jg (14) for all p,q,p’, ¢’ € P such that p~1q =
p'~1q'. To do so, we use that P is also left reversible. We can ﬁnd s € Pwith s € (pPNgP)N(p' PNq'P).
Since (A7 G, V) is nondegenerate, & is faithful and hence 1,1, = {0} for all 7 € P such that r € sP.

So
£ = P &

resP

Now given r € sP, we write b, for an element in &£.. We compute

trsy (H(1p)"H(1,)) (br) = trgy (21 )*)(aq( ) ®1)
— V ( (br)) P 1 ( ) V/ 1q’(bT)
=ty (1) 1(1g)) (br)-
Therefore, j,(1,)*j4(14) = jp (1) (14) and the map g = p~tq — jp(1,)*54(1,) is well defined. This
gives a partial representation of G in A x ¢ P because V is a partial representation. Given g = p~'q € G,
V-1 = Jq(1¢)*jp(1p) = vy. So g+ vy indeed defines a *-partial representation of G.

Let us prove that (j.,v) is covariant. Take g = p~'q € G and a € A. Again we use the assumption
that P is left reversible and choose s € pP N ¢P. Thus it suffices to show that

sy (E(lp)*z(lq);(a>?(1q)*;(1p)) =t} (?(Vg(a))Ftv(lpyf(lq);(lq)*t(lp))

on &, for r € sP. Indeed, given b, € &, one has

tray (H(1p) 8(1)E(@)E(19) (1)) (br) = Vy(aVy-1 (b)) = Vy(a)Vy (Vg1 (b))
= (s} (;(Vg(a))?(lp)* (1q)

so that (je,v) is a covariant representation of (4,G, V).

~+
—~
—
Q
~—
*
—~
—_
=z
N\
~—
—~
S
S
Ny

80
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Let 8 = (g1,..-,9n) be a word in G. In order to prove that the map a — j.(a)vg is injective, take
s € K, (g)-1. That is,

s €PN PN(9y gnt )P N (g5 9n iy 91 )P
It exists because G = PP~!. Using that Vj is unital for all g € G, we deduce that
Je(@)vsvs = e(@)osds(1) = Ge(@)j, (Vs(1) = (@), (1) =, (a).

Since the representation of £ in A Xg P is injective, the right-hand side above is nonzero. This
guarantees that a — je(a)vg is an injective map. O

The following is the main result of this subsection.

Proposition 6.3.18. Let P be a subsemigroup of a group G with G = P~'P = PP~L. Let (A,G,V)
be a nondegenerate interaction group extending an action a: P — End(A) by unital and injective
endomorphisms. Suppose, in addition, that V-1 o o, = idg for allp € P. Then A xg 'V is isomorphic
to A xg P, where & is the product system constructed out of V.

Proof. We begin by proving that (j.,v) factors through A x& V. The pair (j., v) induces a *-homomor-
phism ¢: T(A,G,V) - A xg P. Lemma [6.3.17|says that the map a — j.(a)vg is injective for each
word /3 in G. Hence [22, Proposition 10.5] implies that ¢ is injective on M,,. In particular, if ¢ € ZH()

=

is an a-redundancy, ¢(c)j,(E,) = {0} for all r € K (o) because

jr(a) = je(a)jir(1) = je(a)vaj,-1,(1) € ¢(Ma)j -1, (1)
for all @ in A. So g(c) must be zero in A xX¢ P. This induces a *-homomorphism ¢: A xgV — A x¢g P
that is faithful on A and preserves the G-grading of A X V. Proposition 4.6 of [22] says that ¢ is also
faithful on the fixed-point algebra of A x¢ V. Now by Lemma sp is an isometry in A xg V for
all p € P. Moreover, |22, Lemma 2.3] says that s,s, = s, for all p, ¢ € P. Hence one can show that
the maps £, 3 1, — s, and a — i(a) give rise to a representation of £. By applying the injectivity
of ¢ on the fibres and the usual argument that the induced *-homomorphism T¢ — A X V preserves
the G-grading, we conclude that such a representation must factor through A x¢ P. The resulting
*-homomorphism is the inverse of ¢. O

Remark 6.3.19. Let P be a reversible cancellative semigroup and let G be its enveloping group. Let A
be a unital C*-algebra and let a: P — End(A) be an action by injective endomorphisms. Given
a not-necessarily nondegenerate interaction group (A, G, V) extending a with V},-1 o0 a;, = id4, the
equality V,-1V,,-1 = V,-1,-1 still holds by [22, Lemma 2.3]. Hence one may build a product system
as above by letting &, = Aa,(1) and pp 4(ac, (1) @4 bayg(1)) = acy(b)aye(1) (see [38]). Thus the
covariance algebra of such a product system may be viewed as the crossed product of A under V,
generalising Exel’s construction to interaction groups satisfying V,-1V,-1 = V,-1,-1 that are not
necessarily nondegenerate. For instance, the product system built in the previous subsection fits into
this setting, where Vy(xs) == xgsnp for all S € J and g € G.
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Appendix A

General theory of Hilbert modules

In this appendix, we recall some basic aspects of the theory of Hilbert modules. We state some results
that were needed in the main text of this work. This appendix is based on [36] and [52].

A.1 Adjointable operators on Hilbert modules
Definition A.1.1. Let £ be a complex vector space and A a C*-algebra. We say that £ is a (right)

pre-Hilbert A-module if € is a right A-module equipped with a map (-|-): £ x & — A, that is linear in
the second variable and conjugate-linear in the first, satisfying for all £,7,{ € £ and a € A,

(i) (€lna) = (&n)a;
(i) (€ln)" = nl&);
(iif) (€]&) >0in 4;
(iv) (€€ =0=¢=0.

The map (- | ) is referred to as inner product.

Remark A.1.2. The axioms (i) and (iii) imply that (¢a|n) = a*(¢|n). In particular, the closure of

(€1&) =span{({[n)|&,n € €}
is a closed ideal in A.

A left pre-Hilbert A-module is defined in a similar way. We require the inner product to be A-linear
in the first variable and thus conjugate-linear in the second. We use the notation (- |-)) for the inner
product of a left pre-Hilbert A-module.

A pre-Hilbert A-module is called full if the ideal (€| &) is dense in A.

Lemma A.1.3 (Cauchy—Schwarz inequality). Let £ be a pre-Hilbert A-module and £,m € €. Then
Elm=&lm < IO n )
Corollary A.1.4. If £ is a pre-Hilbert A-module, then
1

0= &= liglh =112

is a norm on & for which ||all < ||€]|||al|. Moreover,
E(E|€) = span{&(n| ()| & m. C € &}

is dense in .
Definition A.1.5. A Hilbert A-module is a pre-Hilbert A-module £ that is complete in the norm

coming from the A-valued inner product.
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A. GENERAL THEORY OF HILBERT MODULES

Example A.1.6. A Hilbert space ‘H may be viewed as a Hilbert C-module. It is also a left Hilbert
K(H)-module with left inner product given by

(& 1m) = 1&)l,

where |£)(n| denotes the compact operator on H determined by the vectors £ and 1. That is,
1) (nl(Q) = &(n[¢) for all ¢ € H.

Ezample A.1.7. A C*-algebra A has a canonical structure of right Hilbert A-module with right module
action implemented by the multiplication in A and inner product

(a,b) — a™d.

Taking (a,b) — ab* as inner product, A becomes a left Hilbert A-module with left action given by left
multiplication. A closed ideal I < A may be turned into right and left Hilbert A-modules in a similar
way.

Ezample A.1.8 (Direct sum). Let £ and G be Hilbert A-modules. Then £ @ G is a Hilbert A-module
with right action of A and A-valued inner product defined coordinatewise. More generally, given a
family of Hilbert A-modules (€x)xea, then the algebraic direct sum P, €x is a pre-Hilbert A-module
with the structure defined coordinatewise. Its completion is a Hilbert A-module.

Definition A.1.9. Let £ and G be Hilbert A-modules. A map T': £ — G is adjointablel if there exists
amap T*: G — & such that for all £ € £ and n € G,

(T |m = (€[T"(n)-

This is unique if it exists. We say that 7™ is the adjoint of T.
Lemma A.1.10. An adjointable map T: & — G is A-linear and continuous.

Remark A.1.11. There are continuous A-module maps that are not adjointable.

Given Hilbert A-modules £ and G, we denote by B(E, G) the set of all adjointable operators from £
to G. We write B(E) in case £ = G.

Proposition A.1.12. If& is a Hilbert A-module, then B(E) is a C*-algebra with respect to the operator
norm.

Corollary A.1.13. Let £ be a Hilbert A-module and T € B(E). Then, for all £ € £,

(T(E)1T(©)) < TP 1)

We may attach to elements £ € G and 1 € £ an adjointable operator £ — G defined by

) (nl: ¢ =& [¢).

This is the compact operator determined by £ and 7. Its adjoint is |)(¢| € B(G, ). The closed linear
span of operators of this form is denoted by K(€,G). An element of K(&,G) is said to be compact. If
E=G,K(€)=K(,E) is an ideal of B(E).

A.2 DMorita equivalence

Definition A.2.1. Let A and B be C*-algebras. An imprimitivity A, B-bimodule is an A, B-bimodule
such that

(i) & is a full left Hilbert A-module and a full right Hilbert B-module;

(i) (€Im)¢ =&Mm|¢) forall §,n,¢ € €.

Example A.2.2. A C*-algebra A has a canonical structure of imprimitivity A, A-bimodule with left
A-valued inner product {(a|b)) = ab*. The right A-valued inner product is {(a|b) = a*b.

Ezample A.2.3. A full Hilbert A-module & is an imprimitivity K(€), A-bimodule.
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Proposition A.2.4. Let £ be an imprimitivity A, B-bimodule. Then for alla € A, b€ B and £,n € £,
(1) (&bm) = (&Inb*) and (a&|n) = ({]a™n);
(i) (o] &b < [blIP(e1€) and (ag|al)) < |lall*(€]E).

Corollary A.2.5. Let £ be an imprimitivity A, B-bimodule. Then ||E||a = ||€||B for all £ € €.

Definition A.2.6. Given C*-algebras A and B, we say that A is Morita equivalent to B if there
exists an imprimitivity A, B-bimodule.

If A is Morita equivalent to B, we build an imprimitivity B, A-bimodule as follows. Let £ be an
imprimitivity A, B-bimodule and let £* be a copy of £ as a set. So an element of £* is of the form £*
for a unique £ in £. We define a structure of B, A-bimodule on £* by

£+ A" = (E+ )
b- & = (Eb7)7,
& a = (a€)".
The next proposition implies that Morita equivalence is a symmetric relation.

Proposition A.2.7. Let £ be an imprimitivity A, B-bimodule. Then £* is an imprimitivity B, A-bimodule
with inner products given by

(& [n™) = &lm,  and (0" = (&In),  forall &n" €&
We call £ the adjoint of £.

Let £ be a Hilbert A-module and G a Hilbert B-module. Let ¢: A — B(G) is a *~homomorphism.
We will see that there is a Hilbert B-module £ ® 4 G built out of the algebraic tensor product £ ®4 G.
The right action of B on £ ®y G is defined on an elementary tensor by

(E®n)-b:=E&@nb.

Proposition A.2.8. Let & be a Hilbert A-module and G be a Hilbert B-module. Let 1p: A — B(G) be
a *-homomorphism. Then € ®4 G is a pre-Hilbert B-module. On elementary tensors the inner product
is given by

(Er@m & @n2) = (m | (&1 1€2))m2),
where £1,& € € and m,m2 € G.

Let £ be an imprimitivity A, B-bimodule. If C' is a C*-algebra and G is an imprimitivity
B, C-bimodule, B acts by adjointable operators on G by Proposition We will denote the
corresponding tensor product of Hilbert modules simply by £ ®p G.

Proposition A.2.9. Let £ be an imprimitivity A, B-bimodule and G an imprimitivity B, C-bimodule.
Then £ ®p G is an imprimitivity A, C-bimodule with the left action of A given by a- (£ ®@n) = af ®n
and left A-valued inner product defined on elementary tensors by

(&1 @m & @n2) = (&alm [m) g [€2) 45
where &1,& € € and n1,m2 € G. In particular, Morita equivalence is a transitive relation.
We call £ ®p G the internal tensor product.
Proposition A.2.10. Morita equivalence is an equivalence relation amongst C*-algebras.

Given a C*-algebra A, we let Z(A) be the set of all closed two-sided ideals of A. This has a lattice
structure with the partial order given by inclusion. The next theorem is |52, Theorem 3.22].

Theorem A.2.11 (Rieffel correspondence). Let £ be an imprimitivity A, B-bimodule. There are lattice
isomorphisms among Z(A), Z(B) and the lattice of closed A, B-submodules of £. The isomorphisms
are given as follows:
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(i) An ideal J € I(B) produces an A, B-bimodule G; given by

Gy={¢e€& (n|&) edJ forallne&}.

(ii) If G is a closed A, B-submodule of £, it gives rise to closed two-sided ideals in A and B, respectively,
by setting

Iy =span{{¢|n)|E € G,ne &}t and Jp=span{(n|{)|{€G,ne}.
(iii) An ideal T € Z(A) gives a closed A, B-submodule of £ by

19 ={&e&l(&|m) el forallne &}
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Appendix B

Bicategories

We recall some basic definitions from bicategory theory, following [9,27]. We also give a few examples
with the main chapters in mind.

B.1 Bicategories, homomorphisms and transformations
Definition B.1.1. A bicategory B consists of the following data:

o a set of objects ob B;

« a category B(z,y) for each pair of objects (x, y); objects of B(x, y) are called arrows (or morphisms)
from x to y, and arrows in B(z,y) are called 2-arrows (or 2-morphisms); the category structure
on B(xz,y) gives us a unit 2-arrow 1y on each arrow f: x — y, and a wvertical composition of
2-arrows: wq: fo = f1 and wy: f1 = fo compose to a 2-arrow wi - wy: fo = fo;

e composition functors

o: B(y,z) x B(z,y) = Bz, z)

for each triple of objects (z,y, z); this contains a horizontal composition of 2-arrows as displayed

below:
fo go go- fo
f1 91 g1-f1

o a unit arrow 1, € B(z, z) for each z;
 natural invertible 2-arrows (unitors) ry: f -1, = fand l;: 1, - f = f for all f € B(z,y);

¢ natural isomorphisms

B(x,y) x Bly, 2) x B(z,w) —= B(z,2) x B(z, w)

Mi / l

B(x,y) x B(y, w) B(z, w);

that is, natural invertible 2-arrows, called associators,
alfv, for f3): (f3- f2) - Jo 2 o (f2- 1),

where f1:x — vy, fo: y — zand f3: 2 — w.
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This data must make the following diagrams commute:

((fa-f3) - fa) - fr==>(fa- f3) - (f2- f1) == fa - (f3-(f2: f1))

M ﬂ

(fa-(fz-f2)) -~ fa-((f3- f2) - f1),

(fo-1y) - fi =——=fo- (1 f1)

|

f2'fla

where f1, fa, f3, and f4 are composable arrows, and the 2-arrows are associators and unitors and
horizontal products of them with unit 2-arrows.

(1)

We write or nothing for vertical products and “e” for horizontal products.

Ezample B.1.2. Categories form a bicategory Cat with functors as arrows and natural transformations
as 2-arrows. Here the composition of morphisms is strictly associative and unital, that is, Cat is even
a 2-category.

Ezample B.1.3. A category C may be regarded as a bicategory in which the categories C(x,y) have
only identity arrows.

Ezample B.1.4. The correspondence bicategory € is defined in [14] as the bicategory with C*-algebras as
objects, correspondences as arrows, and correspondence isomorphisms as 2-arrows. The unit arrow 14
on a C*-algebra A is A viewed as a Hilbert A-bimodule in the canonical way. The A, B-bimodule
structure on F provides the unitors A ® 4 F = F and F ® g B = F for a correspondence F: A~ B.
The associators (€ ®4 F) @ G = £ @4 (F ®@p G) are the obvious isomorphisms.

Definition B.1.5. Let B,C be bicategories. A homomorphism F: B — C consists of
e amap F': obB — obC between the object sets;
o functors F, ,: B(z,y) — C(F°(x), FO(y)) for all z,y € ob B;

« natural transformations

B(y,z) x B(x,y) ° B(x, z)

Pryz
(Fy,27Fav,y)\L / iFm’z
o

C(F(y), F(w)) x C(F(x), F(y)) —————C(F(x), F(2))

for all triples x, y, z of objects of B; explicitly, these are natural 2-arrows
o(f1, f2): By (fo) - Foy(f1) = Fu(f2 f1);

o 2-arrows g lp(y) = Fi (1) for all objects x of B.

This data must make the following diagrams commute:

(Fow(fs)  Fya(f2)) - Foy(f1) =2 Fus(f3) - (Fya(f2) - Foy(f1))

W(f27f3)'1pzvy(fl)ﬂ 1r, w(r3)®P(f1,f2)

<:

yw(.fS f2) ,y(fl) zw fS Fa:,z f2 fl) (B16)
<P(f17f3'f2)ﬂ o(fa2- fl,fs)ﬂ
Fouwl(fs- f2) - 1) === By (fs - (2 )
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B.1. BICATEGORIES, HOMOMORPHISMS AND TRANSFORMATIONS

(1z,f1)
Foy(f1) - Fuu(ly) === F, (1 - 1,)

1Fz,y(f1)°‘p1ﬂ H/Fw,y(Tfl) (B17)
T Fa (1)

Foy(fr) - lp(z) =———— Foy(f1);

P(f1,1y)
Fy7y(1y)'Fw,y(f1) - Fw,y(ly'fl)

‘Py.lFx,y(fl)ﬂ \H/Fm'y(lfl) (B18)
l;?m,y(f1)

Lrgy) - Flvy(fl) — Fw,y(f1)~

Ezample B.1.9. A semigroup P may be viewed as a category with one object and P as its set of
arrows. It may be viewed as a bicategory as well as in Example A homomorphism from P to
¢ is equivalent to an essential product system (A, (€,)pepor, i) over PP as defined by Fowler [26].

The condition (B.1.6)) says that the multiplication maps pip q: &€ ®a & 5 Eqp are associative. The
conditions (B.1.7) and (B.1.8) mean that p1,,(a ® §) = pp(a)f and pp1(E®@a) =Eafora € A, § € &,.

A morphism f: x — y in a bicategory B induces functors
fer Ble,x) = Ble,y), [ B(y,c) = B(z,¢)

for ¢ € ob B by composing arrows with f and composing 2-arrows horizontally with 1y on one side
(this is also called whiskering with f).

Definition B.1.10. Let F,G: B = C be homomorphisms. A transformation «: F = G consists of
o morphisms o, : F(z) — G(x) for all x € ob B;

e natural transformations

that is, 2-arrows oy (f): oy Fpy(f) = Goy(f)oy for all z,y € ob B.

This data must make the following diagrams commute:

0 (Fy(9)Fey () 220 o Ry (o) =229 G, (g )
ﬂ ﬂwc(ﬁg)-l
(:Fy-(9) Fay () (Gya(9)Gay ()t
ay,z(g)olﬂ
(G, (9)0y) Fag () = Gy (0) 0y Fry (1)) 2226, (9) (G (Feva):
2 (12) Loz 20t plp) ———
zz(ls) ﬂzl
Guz(1z)oy cole LG (2)Oa;

Example B.1.11. Let G be a group. A transformation between homomorphisms G — € consists of a
correspondence F: A ~» B and isomorphisms «a: £ @4 F ~ F ®p G, so that the following diagrams
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commute for all s,t € G:

wi ®1

(Es @a &) @4 F————os £, @04 F = F @B Gst
IJ\/ Wl@wgﬂt
Es®a (£t ®aF) F @B (Gs @B Gr)
1®at\H/ ﬁ

E®u(FOpG) e (£, 04 F) 05 G ——2L s (F 25 Gs) @5 Gi.

This is called a correspondence of Fell bundles (see |14, Proposition 3.23)).
Definition B.1.12. Let «, 3: F = G be transformations between homomorphisms. A modification
A: a = [ is a family of 2-arrows A, : a; = B, such that for every 2-arrow w: f; = fo5 for arrows

f1, f2: * — y, the following diagram commutes:

AyoF, ,(w)

Olsz,y(fl) — Bsz,y(fQ)

az,y(fl)ﬂ H]ﬂm,y(f2)

G y(w)eA,

Gm,y(fl)ax — Gm,y(fZ)ﬂz
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