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1 Introduction	 	

Assistive	devices	are	used	 to	compensate	 for	 impaired	bodily	 functions.	These	devices	

can	help	with	communication,	mobility	or	the	use	of	electronic	devices,	such	as	mobile	

phones.	 Among	 the	most	 used	 devices	 are	 wheelchairs	 and	 arm	 prostheses.	 Users	 of	

these	devices	depend	heavily	on	them	to	lead	a	normal	life.	However,	when	it	comes	to	

controlling	 assistive	devices,	 the	 available	 options	do	not	 always	 satisfy.	 For	 example,	

individuals	with	high-level	 tetraplegia	can	 find	wheelchair	control	challenging	because	

the	 available	 control	 options	depend	on	 functions	 that	might	be	 impaired	or	 interfere	

heavily	with	other	activities.	Clinically	established	hand	prosthesis	controls	on	the	other	

hand	can	only	provide	control	over	limited	movements.	These	shortcomings	in	control	

options	 cause	 limited	 use	 or	 even	 rejection	 of	 both	 wheelchairs	 and	 arm	 prostheses,	

impairing	participation	and	life	quality.		

This	 thesis	presents	an	alternative	control	option	 for	assistive	devices,	which	uses	 the	

muscle	 signals	 from	 the	human	auricular	muscles.	The	auricular	 control	 system	(ACS)	

can	 provide	 independent,	 proportional	 and	 simultaneous	 control	 over	 two	 degrees	 of	

freedom	(DOF),	which	can	be	used	for	different	assistive	devices.	Little	is	known	about	

the	 nature	 of	 the	 auricular	 muscles;	 but	 due	 to	 their	 isolated	 position	 and	 vestigial	

nature,	interference	with	other	activities	is	minimal.	This	thesis	addresses	the	feasibility	

of	 the	ACS	 in	 two	relevant	 clinical	 indication	 fields,	namely	wheelchair	and	prosthesis	

control,	and	whether	the	ACS	can	solve	some	of	the	presented	problems	with	control	of	

assistive	devices.		

In	 the	 following	 introduction	 the	 basic	 concepts	 necessary	 for	 understanding	 the	

presented	studies	are	stated.	The	first	study	(chapter	2)	addresses	the	characteristics	of	

the	 auricular	 muscles:	 whether	 precise	 control	 over	 these	 vestigial	 muscles	 could	 be	

learned	 and	 trained	 and	 if	 these	 muscles	 can	 generate	 suitable	 control	 signals	 for	

wheelchair	control.	The	second	study	(chapter	3)	presents	results	from	an	application	of	

the	ACS	to	prosthesis	control.	In	the	third	study	(chapter	4)	the	ACS	is	tested	in	a	clinical	

cohort	 of	 individuals	 with	 tetraplegia.	 In	 these	 subjects	 who	 present	 unique	 brain	

reorganization	 due	 to	 the	 loss	 of	 limb	 functions,	 neuronal	 correlates	 of	 the	 motor	

training	 are	 investigated	 with	 functional	 magnetic	 resonance	 imaging	 (fMRI)	 and	

transcranial	magnetic	 stimulation	 (TMS).	 Finally,	 chapter	5	 summarizes	 and	discusses	

the	overall	findings	and	offers	a	future	direction	of	further	research.		
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1.1 Traumatic	spinal	cord	injuries	

Each	 year	 between	 10.4	 to	 83	 new	 cases	 of	 spinal	 cord	 injuries	 (SCI)	 per	 million	

inhabitants	 occur	 (Wyndaele	 &	 Wyndaele,	 2006).	 The	 percentage	 of	 causes	 differs	

between	studies,	but	most	often	the	trauma	is	due	to	vehicle	related	accidents	(38-55%),	

falls	 (23-30,5%),	 acts	of	violence	 (primarily	gunshot	wounds,	13-13,5%),	 sports	 (9%),	

surgical	 origins	 (5%)	 and	 other	 (4%)	 (Burke,	 Linden,	 Zhang,	Maiste,	 &	 Shields,	 2001;	

National	 SCI	 Statistical	 Center,	 2015).	 Young	men	 have	 a	 specially	 high	 risk	 of	 spinal	

cord	 injury,	with	 the	ratio	of	males	 to	 females	being	3:1	 to	4:1	and	 the	average	age	at	

injury	 between	 33	 (Wyndaele	 &	 Wyndaele,	 2006)	 to	 42	 years	 of	 age	 (National	 SCI	

Statistical	Center,	2015).	

When	 the	 spinal	 cord	 is	 severed,	 efferent	motor	 signals	 from	 the	 brain	 can	 no	 longer	

reach	the	output	muscles	(Figure	1).	Injuries	can	occur	at	any	level	of	the	spine	and	can	

be	 classified	 as	 a	 complete	 injury	with	 total	 loss	 of	motor	 and	 sensory	 function;	 and	

incomplete	with	some	signals	from	the	brain	still	able	to	bypass	the	injured	spinal	cord.	

As	 the	 height	 of	 lesion	 increases,	 there	 is	 a	 corresponding	 increase	 in	 the	 number	 of	

body	parts	that	are	affected.	From	each	vertebra	a	spinal	nerve	emerges	which	carries	

motor	 commands	 from	 the	brain	 to	 the	muscles	 (efferences)	 and	 sensory	 information	

from	the	body	parts	to	the	brain	(afferences).	The	level	of	injury	sustained	by	a	person	is	

defined	 as	 the	 last	 level	 of	 full	 sensory	 and	motor	 functions.	 Below	 that	 vertebra,	 the	

efferences	 and	 afferences	 of	 the	 following	 spinal	 cords	 are	 blocked.	 Injuries	 at	

lumbosacral	 level	 lead	 to	 weakness	 of	 the	 legs	 and	 dysfunction	 of	 several	 bodily	

functions.	 Lesions	of	 the	 thoracic	 vertebrae	 cause	paralysis	 of	 the	 legs.	Most	 severely,	

when	 the	 cervical	 vertebrae	 are	 affected,	 individuals	 lose	 control	 over	 their	 arms	 and	

possibly	over	autonomic	lung	function.	This	extensive	loss	of	motor	and	sensory	control	

over	 all	 four	 limbs	happens	 in	30–60	%	of	 all	 spinal	 cord	 injuries,	with	a	 tendency	 to	

increase	 in	 recent	 years	 (Burke	 et	 al.,	 2001;	 National	 SCI	 Statistical	 Center,	 2015;	

Wyndaele	&	Wyndaele,	2006).	Individuals	that	suffer	from	an	injury	at	the	C8	level	have	

difficulties	 controlling	 the	 hand	 functions	 and,	 in	 case	 of	 a	 complete	 injury,	 have	 no	

control	over	the	arm	extensor	and	below.	Injuries	on	C7	level	still	allow	the	thumbs	to	

function,	but	 the	rest	of	 the	hand	 is	paralyzed.	This	 important	 function	 is	 lost	with	C6	

injuries,	as	well	as	 the	ability	 to	 flex	 the	wrist.	Complete	paralysis	of	 the	arm	happens	

with	 lesion	 of	 C5.	 At	 the	 C4	 level,	 impairment	 of	 other	 autonomous	 functions	 such	 as	
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bladder	and	bowel	control	and	diaphragm	function	add	up	to	the	motoric	impairment	of	

the	shoulders.	At	the	C3	level,	individuals	depend	on	a	ventilator	for	breathing.	At	the	C2	

and	C1	 level,	patients	may	even	 lose	 the	ability	 to	speak	and	all	 control	over	 the	head	

and	neck	position.		

Besides	 the	 resulting	 immobility,	 spinal	 cord	 injuries	 have	 a	 major	 impact	 over	 the	

health	of	the	affected	individuals.	Complications	include	respiratory	and	cardiovascular	

problems,	muscle	 spasms	 and	muscle	 atrophy,	 bladder	 infections	 and	 pressure	 sores.	

Life	expectancy	is	significantly	reduced	due	to	these	complications,	with	pneumonia	and	

septicemia	 as	 the	 leading	 causes	 for	 premature	 death	 (National	 SCI	 Statistical	 Center	

2015).	 Involuntarily,	 individuals	 with	 SCI	 place	 an	 enormous	 burden	 on	 health	 care	

systems.	 They	 require	 continuous	 physiotherapy	 to	 prevent	 muscle	 atrophy	 and	

contractures,	 treatment	 of	 secondary	 complications,	 and	 in	 most	 cases	 personal	

assistance	around	 the	 clock.	The	 lifetime	cost	of	 a	person	with	SCI	 for	 the	health	 care	

system	 is	 estimated	between	1.5	and	4.8	million	dollars,	depending	on	 the	 severity	of	

the	handicap	and	age	at	injury	(National	SCI	Statistical	Center,	2015).	
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Figure 1)	Anatomy	of	the	human	spine.		

The	vertebrae	are	named	after	their	position	(S=	Sacral,	L=lumbar,	T=thoracic,	C=cervical)	and	numbered	
(left).	 The	 spinal	 nerves	 innervate	 dermatomes	 (sensory	 areas,	 left	 on	 human)	 and	myotomes	 (muscle	
groups,	right).	When	a	vertebra	is	injured	both	sensory	input	to	the	brain	and	motor	output	from	the	brain	
of	 the	 corresponding	 areas	 are	 impaired.	 (Pictures	 from	
https://commons.wikimedia.org/wiki/File:Gray_111_-_Vertebral_column-coloured_labels.png.	 and	
https://commons.wikimedia.org/wiki/File:Dermatomes_and_cutaneous_nerves_-_anterior.png	 Retrieved	
08.12.2017.)	
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1.2 Control	 options	 of	 assistive	 devices	 for	 individuals	 with	

tetraplegia	

Mobility	 is	 an	 important	 factor	 for	 individual	wellbeing.	 Not	 surprisingly,	 it	 has	 been	

found	that	individuals	with	tetraplegia	suffer	from	a	lower	quality	of	life	and	have	more	

depressive	episodes	(Craig,	Tran,	&	Middleton,	2009).	Concurrently,	the	self	efficacy	and	

sense	of	 control	 are	 significantly	 reduced	 (Middleton,	Tran,	&	Craig,	 2007),	which	 are	

important	 factors	 for	 mental	 wellbeing.	 The	 use	 of	 assistive	 devices	 has	 a	 positive	

influence	on	the	quality	of	life,	by	providing	greater	independence	(Scherer	&	Cushman,	

2001).	 For	 individuals	with	 tetraplegia,	 the	 electric	wheelchair	 is	 the	most	 important	

assistive	device,	as	it	provides	basic	mobility	and	allows	affected	individuals	to	return	to	

some	 kind	 of	 normality,	 for	 example	 living	 at	 home.	 Although	 wheelchairs	 are	 thus	

indispensable,	 in	 daily	 use	 they	 are	 often	 seen	 as	 an	 obstacle	 and	 can	 even	 limit	

participation	 (Chaves	 et	 al.,	 2004).	 Complaints	 from	 SCI	wheelchair	 users	 include	 the	

size	of	the	wheelchair,	which	impedes	access	to	shops	and	houses,	low	maximum	speed	

and	 electronic	 problems	 (Post,	 van	 Asbeck,	 van	 Dijk,	 &	 Schrijvers,	 1997).	 Even	

experienced	 wheelchair	 users	 have	 problems	 e.g.	 with	 static	 or	 dynamic	 obstacles	

(Torkia	et	al.,	2015).	In	a	survey	with	200	practicing	clinicians	it	was	reported	that	after	

completing	 wheelchair	 training,	 40%	 of	 the	 regular	 electric	 wheelchair	 users	 find	

steering	 tasks,	 such	 as	 navigation	 through	 doors	 or	 into	 an	 elevator,	 difficult	 (Fehr,	

Langbein,	&	Skaar,	2000).	10%	of	 the	patients	could	not	complete	 tasks	of	daily	 living	

with	 the	 wheelchair	 at	 all.	 The	 authors	 conclude	 that	 available	 control	 options	 are	

apparently	 insufficient.	 Additionally,	 they	 identified	 a	 group	 of	 patients	 for	 whom	 no	

control	 option	 whatsoever	 exists.	 These	 patients	 lack	 the	 motor	 skill,	 or	 strength,	 to	

make	use	of	the	available	control	systems.	The	most	used	control	interfaces	are	joysticks	

for	those	less	impaired,	and	sip-and-puff	or	chin-control	(Figure	2)	in	tetraplegia	(Fehr	

et	al.,	2000).	In	sip-and-puff,	steering	signals	are	produced	by	inhaling	or	exhaling	into	a	

small	 tube,	 but	 the	 autonomic	 control	 over	 the	 diaphragm	 can	 be	 impaired	 from	 C5	

lesions	 and	 higher	 (Arshak,	 Buckley,	 &	 Kaneswaran,	 2006).	 For	 chin	 or	 head	 control,	

sufficient	control	over	the	neck	and	shoulders	is	needed,	which	can	be	compromised	by	

C4	lesions	and	higher.		
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Figure 2) Individual with tetraplegia using a chin control.  

The person can control the wheelchair by pushing a softball joystick with the chin. Additional buttons in front 
and to the left and the right of the cheeks serve e.g. for pulling the control set up to the side when the individuals 
wants to eat. This control is one of the most used in high-level tetraplegia, because it enables in a continuous, 
proportional control over the wheelchair. However, in many cases, control over the neck muscles is insufficient 
for generating precise signals. 

	

With	 the	 advent	of	more	 complex	electronic	options,	 considerable	 effort	has	been	put	

into	 the	 development	 of	 new	 systems	 and	 alternative	 control	 strategies.	 The	 most	

appealing	 approach	 is	 perhaps	 the	 Brain-Computer-Interface	 (BCI),	 where	 evoked	 or	

spontaneous	 brain	 waves	 can	 be	 used	 to	 control	 word-processors	 (Birbaumer	 et	 al.,	

1999;	 Wolpaw,	 Birbaumer,	 McFarland,	 Pfurtscheller,	 &	 Vaughan,	 2002),	 prostheses	

(Velliste	et	al.,	2008)	or	even	wheelchairs	(Huang	et	al.,	2012;	J.	D.	R.	Millán	et	al.,	2009;	

Tanaka,	Matsunaga,	&	Wang,	2005).	However,	a	limitation	to	this	method	is	the	complex	

setting	required	to	record	evoked	EEG	signals	and	the	resulting	low	information	transfer	

rate	 (J.	D.	Millán	et	 al.,	 2010;	Wolpaw	et	al.,	 2002),	which	are	 considered	 too	 slow	 for	

complex	 tasks	 like	driving	 a	wheelchair	 in	 a	 real-life	 setting	 (J.	D.	Millán	 et	 al.,	 2010).	

Asynchronous	control	uses	a	different	approach	by	recording	self-paced	signals	that	do	

not	depend	on	external	cues.	Here,	specific	brain	activities	for	certain	mental	tasks	(e.g.	

hand	movement,	 relaxation)	 are	 used	 as	 specific	 steering	 commands	 (Ortiz-Rosario	&	

Adeli,	 2013).	 This	 approach	 ensures	 more	 flexibility,	 since	 it	 does	 not	 depend	 on	 a	
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specific	environment,	but	reliable	signal	generation	is	still	an	issue.	Another	drawback	of	

BCI	 that	 is	 still	 applicable	 to	 the	 asynchronous	 control,	 is	 the	 extremely	 long	 training	

time	 (Donoghue,	 2008).	 Even	 after	 several	 months	 of	 training,	 reliability	 remains	 a	

problem	that	also	affects	security	of	BCI-controlled	assistive	devices	(Diez	et	al.,	2013).		

Intelligent	wheelchairs	(“shared	control”)	are	used	to	moderate	these	problems.	Shared	

control	 can	 help	 in	 complex	 situations,	 such	 as	 when	 the	 wheelchair	 identifies	 an	

obstacle	and	then	automatically	avoids	it.	Although	this	approach	might	increase	safety,	

it	 inevitably	 reduces	 the	 users	 control	 over	 the	 wheelchair.	 However,	 the	 results	

certainly	 depend	 on	 the	 intelligence	 of	 the	 implanted	 system.	 With	 current	 research	

efforts,	 the	 performance	 could	 in	 future	 provide	 an	 intuitive,	 supporting	 system	 that	

does	not	intervene	too	dominantly.	In	the	context	of	BCI,	it	does	not	solve	the	problems	

of	difficult	signal	generation.	First	reports	of	combined	BCI-shared	control	demonstrate	

that	even	simple	tasks	are	challenging.	Even	after	20	calibration	sessions,	approaching	a	

target	with	a	two	meter	distance	was	only	possible	in	27-53%	of	trials,	and	an	approach	

of	 one	 meter	 only	 in	 7-37%	 of	 runs	 (J.	 D.	 R.	 Millán	 et	 al.,	 2009).	 Thus	 the	 clinical	

applicability	and	particularly	the	suitability	for	everyday	use	remain	uncertain	(Abbott,	

2006;	Ryu	&	Shenoy,	2009).	Movement	artifacts	and	an	unstable	recording	environment	

make	BCI	difficult	for	wheelchair	use.	This	technology	might	hence	be	more	adequate	for	

the	 control	 of	 other	 assistive	 devices	 like	 computers	 and	 robotic	 arms	 (Donoghue,	

2008).	

Alternative	 innovative	 systems	 have	 the	 advantage	 of	 easier	 implementation	 and	 less	

training	costs.	Two	research	groups	have	proposed	a	tongue	control,	where	the	tongue	

position	is	decoded	with	a	mouthpiece	and	several	pre-set	activities	can	be	activated	by	

relocating	the	tongue	(Lontis	et	al.,	2010;	Struijk	et	al.,	2009;	Yousefi,	Huo,	&	Ghovanloo,	

2011;	Yousefi,	Huo,	Kim,	Veledar,	&	Ghovanloo,	2012).	Although	this	system	would	even	

allow	 subjects	 with	 high	 tetraplegia	 control	 over	 assistive	 devices,	 it	 has	 two	

disadvantages.	 Firstly,	 signal	 generation	 is	 not	 flexible,	 only	 pre-set	 activities	 can	 be	

actuated.	In	the	case	of	wheelchair	driving,	this	means	e.g.	a	fixed	90°	turn	without	the	

possibility	for	readjustment.	Secondly,	it	interferes	heavily	with	daily	activities	and	most	

importantly,	 social	 interaction.	 The	 same	 applies	 to	 another	 proposed	 control	 option,	

that	 is	activated	by	sniffing	(Grafton,	2010;	Plotkin	et	al.,	2010).	 In	some	severe	cases,	

such	 as	 locked-in-syndrome,	 these	 options	might	 improve	 the	 patients’	 situation,	 but	
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they	are	not	a	viable	 solution	 to	 the	control	problem	experienced	by	most	 individuals	

with	high-level	tetraplegia.	

	

1.3 Neuronal	 plasticity	 and	 functional	 recovery	 after	 spinal	 cord	

injuries	

Traumatic	 spinal	 cord	 injuries	 lead	 to	 a	 loss	 of	 sensory	 and	motor	 information	 from	

those	body	parts	that	are	connected	to	the	brain	with	spinal	nerves	below	lesion	 level	

(Nardone	et	al.,	2013).	In	addition,	motor	commands	from	the	brain	to	these	body	parts	

are	 blocked	 on	 the	 spinal	 level	 (Figure	 3).	 These	 changes	 in	 afferent	 and	 efferent	

connections	lead	to	major	brain	reorganization,	especially	in	the	sensory-motor	system	

(Kokotilo,	 Eng,	 &	 Curt,	 2009).	 In	 healthy	 humans,	 it	 has	 been	 shown	 that	 the	

somatotopical	 organization	 of	 the	 primary	 motor	 cortex	 (i.e.	 each	 body	 part	 has	 a	

specified	area)	 is	 influenced	by	 frequency	and	proficiency	of	use:	when	a	body	part	 is	

used	 more	 and	 with	 more	 mastery,	 the	 responsible	 area	 expands	 (Elbert,	 Pantev,	

Wienbruch,	Rockstroh,	&	Taub,	1995),	 invading	 the	neighboring	body	representations.	

The	organization	of	 the	primary	motor	cortex	(M1)	 is	hence	not	static.	 In	 the	post-SCI	

brain,	 neuronal	 plasticity	 takes	 place	 as	 the	 brain	 adapts	 to	 the	 changed	 flow	 of	

information	from	the	central	nervous	system.	Shifts	of	activation	have	been	reported	by	

a	majority	of	studies	on	brain	reorganization	after	SCI	(Kokotilo	et	al.,	2009).	However,	

the	direction	of	the	reported	shift	was	either	in	the	direction	of	the	deafferent	limb	or	in	

a	posterior	direction	(Figure	3).	Those	studies	reporting	a	posterior	shift	argued	that	the	

primary	 sensory	 cortex	 (S1)	 might	 compensate	 the	 axon	 loss	 of	 the	 M1	 due	 to	 the	

trauma	and	hence	cause	a	posterior	shift	(Kokotilo	et	al.,	2009).	Green	et	al.	argue	that	

the	pyramidal	 axons	descending	 from	 the	 S1	might	 be	 spared	 from	 the	 spinal	 trauma	

due	 to	 a	 more	 posterior	 location.	 They	 report	 a	 case	 where	 the	 posterior	 shift	 in	 a	

paraplegic	was	reversed	after	recovery	(Green,	Sora,	Bialy,	Ricamato,	&	Thatcher,	1998).	

It	thus	seems	that	with	a	higher,	more	severe	injury,	the	brain	has	to	access	extra	help	

from	 the	 sensory	 motor	 cortex	 for	 motor	 command.	 This	 shift	 into	 the	 S1	 was	 later	

confirmed	with	fMRI	for	paraplegic	subjects	(Cramer,	Lastra,	Lacourse,	&	Cohen,	2005;	

Turner,	Lee,	Schandler,	&	Cohen,	2003).	Interestingly,	sensory	representations	on	the	S1	

did	not	shift,	indicating	that	these	areas	are	capable	of	multitasking.	
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Figure	 3)	 The	 motor	 cortex	 (green)	 on	 a	 human	 brain	 with	 areas	 typically	 deefferented	 in	
individuals	with	tetraplegia	(red).		

View	on	the	right	hemisphere	of	a	standard	MNI	brain.	In	individuals	with	tetraplegia,	typically	the	hand	
area	(lower	red	spot)	and	the	trunk	area	(higher	red	spot)	as	well	as	the	leg	and	foot	area	which	expands	
into	the	medial	part	of	the	brain	(not	in	view)	are	deefferented,	i.e.	the	signal	output	to	the	corresponding	
body	parts	 is	 blocked.	The	primary	 sensory	 cortex,	which	 in	 some	 cases	 compensates	 for	motor	 cortex	
function	loss,	is	located	behind	the	motor	cortex.	

	
The	contrasting	shift	into	the	deefferent	limb	region	could	possibly	be	a	use	of	additional	

neuronal	 resources.	 Apparently,	 when	 parts	 of	 the	 motor	 cortex	 are	 unoccupied	 for	

some	time,	neighboring	regions	tend	to	“invade”	the	unoccupied	area	(e.g.	the	hand	area	

shifts	 into	 the	 deefferent	 leg	 area	 (Bruehlmeier,	 1998;	 M	 Lotze,	 Laubis-Herrmann,	 &	

Topka,	2006;	Mikulis	et	al.,	2002)).	Kokotilo	et	al.	also	suggest	that	the	direction	of	the	

shift	may	depend	on	lesion	level,	e.g.	lower	lesions	cause	a	shift	into	the	deefferent	area	

and	higher	lesions	lead	to	additional	recruitment	of	the	S1.	However	it	is	still	not	clear,	

since	 there	 have	 been	 shifts	 into	 the	 deefferent	 leg	 area	 in	 subjects	 with	 tetraplegia	

(Freund,	Weiskopf,	et	al.,	2011)	and	posterior	shifts	in	lower	lesion	subjects	(Cramer	et	

al.,	2005;	Turner	et	al.,	2003).	

Besides	 the	 shift	 in	 activation,	 the	 amount	 of	 motor	 cortex	 activation	 regarding	

activation	size	and	strength	seems	to	be	influenced	by	the	post-SCI	brain	reorganization.	

Several	studies	demonstrate	a	greater	cluster	size	of	motor	task	related	activation	of	the	

M1	in	SCI	subjects	when	compared	to	able-bodied	subjects.	For	example,	Lundell	et	al.	

found	 increased	 M1	 cluster	 activation	 when	 subjects	 with	 incomplete	 SCI	 executed	

residual	 movement	 of	 their	 ankle	 (Lundell,	 Christensen,	 et	 al.,	 2011).	 Comparably,	



	

14	

greater	M1	activations	in	SCI	than	in	healthy	subjects	were	found	during	hand	activation	

(Freund,	Weiskopf,	 et	 al.,	 2011).	 However	 there	 are	 some	 studies	 that	 report	 similar	

motor	 activation	 as	with	 able-bodied	 subjects.	 For	 lip	movement,	Mattia	 et	 al.	 did	not	

find	 differences	 in	 activation	 sizes	 between	 able-bodied	 participants	 and	 those	 with	

tetraplegia	 (Mattia	 et	 al.,	 2006).	 Likewise,	 Sabbah	 et	 al.	 recorded	 no	 change	 in	

quadriplegic	subjects	when	they	attempted	to	move	their	feet	(Sabbah	et	al.,	2002).	In	a	

similar	 task,	 there	was	 even	 reduced	M1	 activity	 in	 subjects	with	 higher	 lesion	 levels	

(Hotz-Boendermaker	 et	 al.,	 2008).	 Turner	 et	 al.	 found	 stronger	M1	 activation,	 but	 no	

cluster	size	increase	during	hand	movement	(Turner	et	al.,	2003).	Jurkiewicz	et	al.	also	

found	an	irregular	activation	pattern	with	reduced	M1	activity	and	increased	secondary	

motor	areas	(Jurkiewicz,	Mikulis,	McIlroy,	Fehlings,	&	Verrier,	2007).	The	over	activation	

of	 secondary	 motor	 areas	 such	 as	 S1,	 cerebellum,	 pre-motor	 cortex	 (PMA),	

supplementary	motor	cortex	(SMA)	and	Thalamus	has	been	confirmed	by	others	(Hotz-

Boendermaker	et	al.,	2008;	Kokotilo	et	al.,	2009).	A	reason	for	the	heterogeneity	of	the	

results	lies	in	the	diversity	of	the	subjects.	The	clinical	characteristics	of	the	included	SCI	

subjects	vary	widely	with	regard	to	 lesion	 level,	 time	to	 injury,	 completeness	of	 injury	

and	 thus	 remaining	 motor	 functions,	 and	 type	 of	 spinal	 cord	 injury	 (Kokotilo	 et	 al.,	

2009).	It	has	been	suggested	that	motor	cortex	activity	increases	with	increasing	lesion	

level	 (Bruehlmeier,	 1998;	 Ghosh	 et	 al.,	 2009;	 Lundell,	 Christensen,	 et	 al.,	 2011).	

Conversely,	 the	 extent	 of	 the	 spinal	 cord	 injury	 correlates	 with	 greater	 motor	 cortex	

activation	(Freund,	Curt,	Friston,	&	Thompson,	2013;	Lundell,	Christensen,	et	al.,	2011).	

Another	source	of	variability	is	the	employed	motor	task,	which	ranges	from	attempted	

movement	 of	 muscles	 below	 lesion	 level,	 motor	 imagery	 or	 executed	 movement	 of	

muscles	 above	 lesion.	 Thus	 reduced	 M1	 activation	 might	 be	 found	 in	 attempted	 foot	

movement	 in	 tetraplegic	 (Hotz-Boendermaker	 et	 al.,	 2008),	 but	 not	 in	 quadriplegic	

individuals	 (Sabbah	 et	 al.,	 2002).	 Although	 a	 final	 conclusion	 is	 difficult	 given	 these	

variations,	 a	 systematical	 review	 of	 25	 neurological	 studies	 on	 SCI	 subjects	 identified	

that	there	is	evidence	for	an	increase	in	motor	cortex	activity	and	secondary	motor	areas	

in	SCI	subjects,	but	that	the	exact	dependency	on	factors	such	as	lesion	level	and	time	to	

injury	are	not	fully	understood	(Kokotilo	et	al.,	2009).	

The	 same	 applies	 to	 the	 functionality	 of	 these	 brain	 reorganizations.	 The	 normal	

functioning	 of	 neuronal	 plasticity	 suggests	 that	 when	 some	 areas	 do	 not	 receive	 any	

input	or	can	not	execute	their	motor	commands,	these	areas	typically	diminish	and	are	
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overtaken	by	 the	 still	 active	 functions	of	 the	motor	 cortex	 (Kokotilo	 et	 al.,	 2009).	The	

over-activation	 of	 the	 primary	 motor	 cortex	 has	 been	 interpreted	 as	 a	 functional	

compensation	for	the	lesion	of	neighboring	corticospinal	fibers	(Lundell,	Barthelemy,	et	

al.,	2011).	It	has	also	been	interpreted	as	more	of	an	effort	for	the	motoric	system	to	still	

produce	motor	output	(Moxon,	Oliviero,	Aguilar,	&	Foffani,	2014)	or	simply	the	result	of	

an	overuse	of	the	still	active	muscles	(Sabre	et	al.,	2013).		

On	 the	other	hand	 these	brain	 adaptions	 can	also	 lead	 to	negative	 effects.	 It	 has	been	

shown	that	a	 transient	deafferentiation	of	extremities	can	cause	enhanced	excitability,	

which	has	been	interpreted	as	reduced	inhibition	from	interneurons	(Ziemann,	Corwell,	

&	 Cohen,	 1998).	 In	 addition,	 it	 was	 found	 that	 the	 GABAergic	 intracortical	 inhibitory	

circuit	is	reduced	in	the	motor	cortex	in	subjects	with	SCI.	This	circuit	is	important	for	

normal	motor	output,	for	example	in	movement	preparation	or	movement	suppression	

(Roy,	Zewdie,	&	Gorassini,	2011).	It	has	been	suggested	that	these	“abnormal	features”	

of	brain	activation	might	represent	a	loss	of	motor	cortex	function	(Silva,	Sousa,	Reis,	&	

Salgado,	 2014),	which	 further	disables	 the	motor	 output	 in	 SCI	 subjects	 (e.g.	 speed	of	

movement,	strength	patterns	(Nardone	et	al.,	2015;	Wrigley	et	al.,	2009)).	

The	 resulting	 over-activation	 of	motor	 cortex	might	 also	 be	 a	 hindrance	 in	 functional	

recovery	 (Cramer	 et	 al.,	 2005;	Hotz-Boendermaker	 et	 al.,	 2008;	 Nardone	 et	 al.,	 2015)	

and	 influence	 other	 factors	 such	 as	 for	 neuropathic	 pain	 and	 spasticity	 (Sabre	 et	 al.,	

2013;	 Silva	 et	 al.,	 2014).	 In	 addition,	 deafferentiation	 can	 lead	 to	 neuron	 loss	 in	 the	

affected	 areas	 (Freund,	Weiskopf,	 et	 al.,	 2011).	 These	 permanent	 anatomical	 changes	

might	additionally	limit	functional	recovery	(Wrigley	et	al.,	2009).	

	

1.4 Neuronal	 changes	 with	 motor	 training	 in	 able-bodied	 and	 SCI	

subjects	

Although	findings	are	heterogeneous,	research	on	brain	plasticity	induced	by	spinal	cord	

injuries	is	abundant.	The	effects	of	motor	activity	on	the	reorganized	post-SCI	brain	are	

however	less	well	investigated.	This	is	particularly	surprising,	since	physiotherapy	plays	

a	 crucial	 part	 in	 rehabilitation	 and	 has	 been	 shown	 to	 improve	 motor	 outcome	 and	

residual	 functions	even	 in	severely	 impaired	 individuals.	Given	 that	 the	post-SCI	brain	

functions	so	differently	from	the	healthy	brain,	neuronal	correlations	of	motor	training	
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might	 have	 an	 impact	 on	 the	 physiotherapeutic	 intervention.	 Similarly,	 findings	 from	

neuroplasticity	 studies	 on	 the	 spinal	 cord	 have	 had	 a	 significant	 influence	 on	

rehabilitation	practice.	Since	medical	reversion	of	the	spinal	cord	injury	is	not	possible	

(Nardone	et	 al.,	 2015),	physiotherapy	has	 long	 focused	mostly	on	 compensatory	 skills	

(Behrman,	Bowden,	&	Nair,	 2006),	 i.e.	 to	bypass	 incapacitated	 actions	with	 those	 that	

are	still	possible.	The	finding	that	motor	activity	of	the	deafferent	limbs,	e.g.	by	passively	

moving	 them,	 could	 induce	 spinal	 cord	 plasticity	 (Edgerton,	 Tillakaratne,	 Bigbee,	 de	

Leon,	&	Roy,	2004)	has	 led	 to	a	paradigm	shift	 to	 rebuilding	 instead	of	 compensatory	

strategies	 (Behrman	 et	 al.,	 2006)	 and	 the	 emergence	 of	 new	 therapies,	 e.g.	 locomotor	

training.	 Here,	 paralyzed	 individuals	 are	 put	 to	 walk	 with	 adequate	 supportive	

equipment,	 and	 efferent	 sensory	 information	 from	 below	 the	 lesion	 level	 induces	 not	

only	spinal	cord	changes,	but	also	improve	other	non-related	motor	skills	and	spasticity,	

even	in	severely	paralyzed	subjects	(Lim	&	Tow,	2007;	Moxon	et	al.,	2014).		

A	better	understanding	of	training-related	brain	reorganization	in	SCI	subjects	is	hence	

mandatory	and	missing	(Dunlop,	2008;	Moxon	et	al.,	2014;	Silva	et	al.,	2014).	Thus,	 in	

order	 to	 develop	 cost-effective,	 improved	 rehabilitation	 therapies	 whilst	 possibly	

improving	 secondary	 complications	 (Dunlop,	 2008),	 more	 information	 has	 to	 be	

collected	and	evaluated.	It	has	been	shown	that	in	the	post-SCI	brain,	additional	brain-

derived	 neurotropic	 factor	 (BDNF)	 is	 available,	 which	 enhances	 neuronal	 plasticity	

(Dunlop,	 2008).	 This	 readiness	 of	 the	brain	 could	be	 advantageous	when	 captured	by	

training.		

Motor	 training	 studies	with	healthy	 subjects	 have	 shown	different	 involvement	 of	 the	

primary	motor	cortex	 in	 the	process	of	skill	acquisition.	Apparently	 in	 the	 first	 stages,	

called	“fast	 learning”,	 the	M1	activity	decreases	 in	what	 is	 interpreted	as	a	habituation	

effect	 (Dayan	&	Cohen,	 2011;	Karni	 et	 al.,	 1995;	Ungerleider,	 2002).	When	 the	 task	 is	

automated,	M1	 activity	 increases.	 Long-term	 effects	 have	 been	 reported	 conflictingly:	

some	studies	reveal	an	increase,	some	a	decrease	in	M1	activity	(Lohse,	Wadden,	Boyd,	

&	Hodges,	2014).	The	involvement	of	the	M1	seems	to	be	heavily	task-dependent:	serial	

reaction	time	tasks	lead	to	increased	M1	activation	even	after	training	is	finished,	while	

sensorimotor	 tasks	 result	 in	 a	 smaller	 increase	 (Hardwick,	Rottschy,	Miall,	&	Eickhoff,	

2013).	Other	groups	state	that	an	enhancement	of	M1	depends	on	learning	qualities,	and	

that	a	 long	 term	representation	of	a	skill	needs	enhanced	M1	representation	(Karni	et	
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al.,	 1998;	 Ungerleider,	 2002),	 e.g.	 skilled	 piano	 players	 have	 larger	 finger	

representations	than	unskilled	(Elbert	&	Flor,	1999).	The	involvement	of	the	SMA	on	the	

other	hand	seems	to	be	greatest	in	the	early	stages	of	skill	acquisition	(Dayan	&	Cohen,	

2011),	 whilst	 in	 the	 later	 phases,	 some	 report	 decreased	 SMA	 activity	 (Lohse	 et	 al.,	

2014)	and	some	increased	(Ungerleider,	2002).	

Those	 few	 studies	 that	 investigate	 supraspinal	 motor	 dependent	 plasticity	 in	 SCI-

subjects	 use	 locomotor	 training	 as	 intervention.	 For	 example,	 after	 twelve	 weeks	 of	

locomotor	 training	Winchester	 et	 al.	 report	 increased	 activations	 in	 the	 sensorimotor	

cortical	 regions	 (S1,	 S2)	 and	 cerebellum	 in	 four	motor	 incomplete	 tetraplegic	 subjects	

(Winchester	et	al.,	2005).	They	suggest	that	motor	improvement	is	related	to	an	increase	

in	cerebellum	activity,	but	the	small	sample	size	makes	a	definite	conclusion	impossible.		

In	a	case	study	with	a	C5	patient,	Chisholm	et	al.	found	neuroplasticity	even	after	a	single	

hour	of	locomotor	training	(Chisholm,	Peters,	Borich,	Boyd,	&	Lam,	2015).	Motor	evoked	

potentials	(MEPs),	measured	with	TMS,	were	increased	by	80	%	in	the	leg	tibialis	muscle	

and	functional	connectivity	was	increased	in	the	right	motor	cortex	after	training.		

In	an	interesting	case	study	Henderson	et	al.	reported	a	posterior	shift,	but	no	growth	of	

the	hand	area,	after	massed	training	with	complex	hand	movements	(Henderson,	Gustin,	

Macey,	Wrigley,	&	Siddall,	2011),	 supporting	 the	 impression	 that	 the	sensory	cortex	 is	

involved	 in	 compensatory	 functions.	 They	 demonstrate	 that	 stimulating	 the	 sensory	

cortex	with	 TMS	 improves	 grip	 force,	 highlighting	 the	 close	 relationship	 between	 the	

motor	areas	and	the	sensory	cortex	in	subjects	with	SCI.		

The	results	of	these	studies	make	clear	that	brain	organization	after	SCI	is	not	static,	but	

can	 be	 influenced	 by	 training,	 as	 is	 the	 case	 in	 healthy	 subjects.	 The	 nature	 of	 the	

influence	 is	 less	 clear,	 but	 motor	 training	 might	 induce	 an	 additional	 increase	 in	

activation	size	on	the	post-SCI	motor	cortex.	However,	more	research	is	needed	on	this	

topic	since	the	existing	studies	are	insufficient.	

	

1.5 Transradial	arm	amputation	and	prosthesis	control	options	

The	loss	of	a	limb	is	a	major	trauma	that	severely	affects	the	quality	of	 life	for	victims.	

Out	 of	 all	 amputations,	 approximately	 25%	 affect	 the	 upper	 limbs	 (Esquenazi,	 2004).	

Around	 41,000	 people	 live	with	 a	major	 loss	 of	 the	 upper	 limbs	 in	 the	 United	 States	
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alone	 (Ziegler-Graham,	 MacKenzie,	 Ephraim,	 Travison,	 &	 Brookmeyer,	 2008).	 The	

causes	 for	 limb	amputations	vary	world-wide	and	according	to	 the	political	and	socio-

economic	standards	of	the	country.	In	developing	countries,	insufficient	treatment	after	

trauma	is	the	primary	cause	for	amputation,	which	can	be	caused	by	accidents	or	armed	

conflicts.	Although	amputations	due	to	trauma	are	decreasing	(Meier,	2004)	in	the	first	

world,	diabetes	and	related	vascular	complications	have	become	the	leading	causes	for	

amputation	(Esquenazi,	2004).	The	prevalence	of	diabetes	is	projected	to	nearly	double	

in	the	USA	in	the	next	30	years,	hence	the	number	of	people	suffering	from	limb	loss	will	

increase	 considerably	 (Esquenazi,	 2004;	 Ziegler-Graham	 et	 al.,	 2008).	 Two	 thirds	 of	

amputees	are	male	(Clement,	Bugler,	&	Oliver,	2011).	Upper	limb	amputations	are	most	

likely	to	occur	in	the	years	of	highest	work	output	(60%	between	16	and	54	years)	and	

can	severely	interrupt	the	productivity	of	the	affected	individual	(Clement	et	al.,	2011).	

Amputation	 levels	 of	 the	 upper	 limb	 can	 be	 divided	 into	 shoulder	 disarticulation,	

transhumeral	(above	elbow,	Figure	4),	elbow	disarticulation,	transradial	(below	elbow)	

and	wrist	disarticulation.	

The	 human	hand	 is	 an	 extremely	 complex	 organ	 that	 includes	 22	 degrees	 of	 freedom	

(DOF),	 which	 are	 controlled	 by	 38	 hand	 muscles	 (Zecca,	 Micera,	 Carrozza,	 &	 Dario,	

2002).	The	loss	of	this	highly	specified	tool	is	a	significant	impairment	which	humanity	

has	 sought	 to	 remedy	 since	 the	 Roman	 Empire	 (Meier,	 2004).	 The	 first	 electrically	

controlled	 arm	 prosthesis	 was	 developed	 in	 1949,	 and	 later	 in	 the	 1960’s	 the	 first	

myoelectrically	 (with	 electrical	 potentials	 derived	 from	 muscles)	 controlled	 hand	

prostheses	became	commercially	available.	During	 the	 last	 three	decades	considerable	

developments	have	been	made	to	improve	all	aspects	of	upper	limb	prostheses,	such	as	

fitting	 techniques	 and	 socket	 fabrication,	 which	 is	 important	 for	 a	 natural,	 daily	 use	

(Esquenazi,	 2004).	 Progress	 in	 technology	 has	 led	 to	 new	 sources	 of	 power	 and	

electronic	controls.	
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Figure 4) Arm amputation levels (A) and a common prosthetic hand (B).  

Most common amputation levels of the upper limb include the transhumeral level (above the elbow) and the 
transradial level (below the elbow). In both cases, the loss of the hand can be compensated with a prosthetic 
hand (B, System Electric Hand DMC from Otto Bock, Duderstadt, Germany). This hand can be opened and 
closed and rotated. The prosthesis is fixed to the individual’s arm with a custom made shaft, where commonly 
activity of the residual stump muscles is measured with surface electrodes and used as control signals for one 
DOF of the prosthetic hand. 

	

Generally	 speaking,	 three	 types	of	hand	prostheses	are	available	 to	end-users	 that	are	

amputated	below	the	elbow.	Passive	prostheses	mainly	have	aesthetic	functions	and	can	

help	supporting	weight,	but	have	no	independent	function.	Body	controlled	prostheses	

use	 simple	 mechanical	 forces	 to	 e.g.	 open	 or	 close	 a	 mechanical	 hook.	 Users	 wear	 a	

harness	 around	 the	 shoulders	 that	 is	 connected	 with	 strings	 to	 the	 hook.	 Arm	 or	

shoulder	movements	stretch	the	strings,	which	in	turn	pull	the	hook	open.	Although	the	

control	 logic	 was	 developed	 in	 the	 nineteenth	 century	 (Meier,	 2004),	 it	 still	 enjoys	

popularity	 among	 amputees	 due	 to	 the	 simple	 and	 reliable	 control	 (Biddiss	 &	 Chau,	

2007).	Nowadays,	signals	are	amplified	with	linear	potentiometers	that	can	also	provide	

proportional	movement	 (Cipriani,	 Controzzi,	 &	 Carrozza,	 2011),	 e.g.	 wider	movement	

equals	 stronger	 signals.	 A	 major	 drawback	 however	 is	 the	 very	 limited	 repertoire	 of	

movements	 available	 (Clement	 et	 al.,	 2011),	which	does	not	 come	 close	 to	 a	normally	

functioning	hand.	

External	 power	 sources,	 e.g.	 batteries,	 are	 used	 for	 externally	 powered	 prostheses.	

Prosthetic	hands	 that	 are	 in	 clinical	 use	 typically	have	 two	DOF,	 i.e.	 opening	 /	 closing	

and	rotation	(Figure	4).	The	most	common	control	system	is	myoelectric	(Clement	et	al.,	
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2011),	i.e.	muscle	signals	are	recorded	with	surface	electrodes	from	the	residual	stump	

and	are	then	used	to	generate	the	control	signals.	The	complexity	of	such	control	signals	

differs	widely,	 from	digital	control	where	simple	open	/	close	signals	are	produced	by	

the	 presence	 or	 absence	 of	 a	 muscle	 signal,	 to	 proportional	 control,	 where	 the	

bandwidth	of	the	muscle	power	signal	is	utilized	e.g.	for	modulation	of	movement	speed	

or	 different	 movements.	 This	 amplitude-based	 control	 is	 used	 in	 all	 commercially	

available	myoelectric	hand	prostheses	 (N	 Jiang,	Dosen,	Muller,	&	Farina,	2012),	which	

are	currently	not	able	to	control	more	than	two	degrees	of	freedom	(DOF)(Zecca	et	al.,	

2002),	whilst	usually,	only	one	DOF	is	controlled	directly	(Muzumdar,	2004).	One	of	the	

most	commonly	used	control	options	utilizes	two	DOF	from	two	residual	stump	muscles.	

Contraction	of	the	wrist	extensor	opens	the	prosthetic	hand	and	contraction	of	the	wrist	

flexor	 closes	 it.	 In	 order	 to	 turn	 the	 hand,	 a	 quick	 co-contraction	 of	 both	 muscles	

switches	into	the	turning	mode	(this	control	is	henceforth	referred	to	as	co-contraction,	

CC).	Here,	flexor	contraction	turns	the	hand	left	and	extensor	contraction	turns	it	right,	

with	speed	of	movement	being	proportional	to	signal	strength	(Farina	et	al.,	2014).	This	

control	 is	 very	 robust	 and	 simple,	 but	 it	 is	 also	 slow	 and	 tiring.	 In	 another	 clinically	

established	 control	mode,	 slope	 of	 signal	 increase	 determines	 the	 output	 action:	 slow	

contraction	 of	 the	 extensor	 opens	 the	 prosthetic	 hand	 and	 quick	 contraction	 turns	 it	

right	 (this	 control	 is	 henceforth	 referred	 to	 as	 slope	 control,	 SL).	 Conversely,	 slow	

contraction	of	the	flexor	closes	the	hand	while	a	quick	contraction	turns	it	left	(Farina	et	

al.,	 2014).	Because	 there	 is	no	need	 to	 switch	between	actuation	modes,	 SL	 is	quicker	

than	 CC,	 but	 it	 still	 does	 not	 allow	 for	 simultaneous	 control	 of	 multiple	 DOFs	 and	

requires	a	short	relaxation	period	between	two	consecutive	activations.	

Apparently	these	two	most	widely	used	control	modes	(Muzumdar,	2004)	do	not	satisfy	

prosthetic	 end	 users,	 with	 only	 a	 quarter	 of	 amputees	 using	 myoelectric	 prostheses	

(Wright,	Hagen,	&	Wood,	 1995).	 A	 survey	 has	 reported	 particularly	 variable	 rejection	

rates	 for	 electric	devices	 that	 range	 from	0%	 to	75%	 (Biddiss	&	Chau,	 2007).	Despite	

considerable	 improvements	 in	 technology,	 material	 and	 fitting,	 there	 seem	 to	 be	 no	

indications	 of	 a	 decrease	 in	 rejection	 rate.	 The	 reasons	 for	 rejection	 range	 from	

reliability	of	signal	generation,	unstable	electrodes	and	limited	wrist	movement	(Atkins,	

Heard,	&	Donovan,	1996).	The	daily	use	of	arm	prostheses	is	“notoriously	challenging”	

(Biddiss	 &	 Chau,	 2007),	 hence	 in	 an	 estimated	 sub-group	 of	 16%	 -	 47%	 the	 active	

prostheses	are	used	as	passive	prostheses,	without	making	full	use	of	their	capabilities.	
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Necessary	 improvements	 in	 prosthetic	 devices	 include	 coordinated	 movement	 of	

multiple	joints,	i.e.	several	DOF,	and	greater	intuitiveness	of	the	control	(Engdahl	et	al.,	

2015).	

The	 clinically	 available	 control	methods	 are	 not	 able	 to	match	 the	 complexity	 of	 new	

hand	prostheses	with	several	degrees	of	freedom,	which	have	been	developed	over	the	

last	few	years	in	order	to	replicate	some	of	the	original	complex	hand	functions	(Atzori	

&	Muller,	2015;	Belter,	Segil,	Dollar,	&	Weir,	2013;	Cipriani	et	al.,	2011;	Clement	et	al.,	

2011;	 Zecca	 et	 al.,	 2002).	 For	 simultaneous	 control	 over	 several	 DOF,	 pattern	

recognition	 has	 received	 considerable	 attention	 from	 the	 scientific	 community.	 This	

approach	 is	 based	 on	 the	 assumption	 that	 patterns	 of	 muscle	 activation	 can	 be	

distinguished,	 repeated	 and	 subsequently	 used	 as	 a	 command	 for	 a	 pre-specified	

movement	 (N	 Jiang	 et	 al.,	 2012).	 Classification	 algorithms	 identify	 patterns	 from	 the	

information	of	 several	electrodes	 (Englehart,	Hudgins,	&	Parker,	2001;	 J.	M.	M.	Hahne,	

Graimann,	 &	 Muller,	 2012;	 Pistohl,	 Cipriani,	 Jackson,	 &	 Nazarpour,	 2013).	 In	 their	

original	form,	classification	based	approaches	do	not	allow	for	controlling	the	speed	or	

the	grip-force	of	the	prostheses	as	do	the	conventional	approaches.	Therefore,	they	are	

often	combined	with	a	force-estimation	based	on	EMG-amplitude	(Zecca	et	al.,	2002).	As	

all	 functions	 can	be	 accessed	directly,	 pattern	 recognition	 is	more	 intuitive	 and	 faster	

than	 switching	 the	 active	 DOF	 as	 in	 the	 clinically	 established	 control.	 All	 of	 these	

controls	however	suffer	from	the	lack	of	simultaneity:	only	one	DOF	can	be	addressed	at	

one	time.	 In	pattern	recognition,	complex	movements	still	have	to	be	split	and	carried	

out	sequentially	(Farina	et	al.,	2014).	To	solve	this	problem,	combined	classes	have	been	

introduced	 as	well	 as	 regression-based	 approaches	 that	 directly	 allow	 for	 controlling	

multiple	DOF	at	the	same	time	(J.	Hahne,	Dahne,	Hwang,	Muller,	&	Parra,	2015;	J.	M.	M.	

Hahne	et	 al.,	 2012;	N	 Jiang	et	 al.,	 2012;	Scheme	&	Englehart,	2011).	Pattern	 control	 is	

reported	consistently	to	have	high	classification	accuracy	(>	90%)	and	could	answer	to	

the	requirements	of	more	sophisticated	control	for	complex	hand	movements.	However,	

the	 clinical	 impact	 has	 been	 virtually	 zero	 until	 now.	 The	 major	 obstacle	 is	 the	

robustness,	which	until	now	can	only	be	guaranteed	in	laboratory	settings	(Farina	et	al.,	

2014).	 Another	 disadvantage	 is	 that	 signal	 transfer	 is	 not	 continuous,	 as	 natural	

movements	are,	but	can	only	activate	pre-defined	sets	of	activities.	Proportional	control	

is	 only	 possible	 post-hoc,	 since	 it	 reduces	 correct	 classification	 (N	 Jiang	 et	 al.,	 2012).	

Other	 issues	 include	 adaptation	 to	 electrode	 displacements	 (Hargrove,	 Englehart,	 &	
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Hudgins,	2008;	Young,	Hargrove,	Kuiken,	&	others,	2011),	variation	of	the	arm	position	

(Fougner,	 Scheme,	Chan,	Englehart,	&	Stavdahl,	 2011;	Ning	 Jiang,	Muceli,	Graimann,	&	

Farina,	2013),	changes	in	skin	conditions	(N	Jiang	et	al.,	2012),	transfer	between	training	

and	application	(Vidovic	et	al.,	2016)	or	difficulties	in	subject	training	(Powell	&	Thakor,	

2013).	 For	 these	 reasons,	 pattern	 recognition	 has	 not	 yet	 left	 the	 laboratory	 and	 the	

reliability	in	real-world	conditions	is	limited	(N	Jiang	et	al.,	2012).	

Given	these	problems,	there	have	been	calls	for	new	methods	that	enable	simultaneous	

and	proportional	control	of	several	DOF	(N	Jiang	et	al.,	2012).	Several	propositions	have	

used	completely	different	approaches	to	control	additional	DOFs.	For	example,	switches	

on	a	foot	inlay	can	be	used	to	control	different	pre-set	grasps	more	quickly	than	a	pure	

EMG-control	 (Carrozza	 et	 al.,	 2007).	 Likewise,	 vocal	 commands	 with	 a	 throat	

microphone	(Mainardi	&	Davalli,	2007)	and	prosthetic	control	with	shoulder	movement	

(Losier,	 Englehart,	 &	 Hudgins,	 2011)	 have	 been	 shown	 to	 outperform	 simple	 EMG	

control.	Although	 these	systems	have	shown	superior	performance,	 they	still	 interfere	

with	other	activities.	Limitations	in	e.g.	free	movement	(foot	inlay,	shoulder	movement)	

or	 communication	 (vocal	 commands)	 are	 likely	 to	 be	 seen	 as	 too	 restrictive	 for	

acceptance	by	users.	Moreover,	 simultaneous	and	proportional	 control	over	 free	hand	

movements	is	not	possible	with	these	approaches.		

More	 sophisticated	 computer-based	 approaches	 include	 the	 cognitive	 vision	 system,	

where	 a	 camera-based	 system	 identifies	 objects	 and	 chooses	 the	 adequate	 grasp	 type	

autonomously	 (Dosen	 et	 al.,	 2010).	 Brain	 computer	 interfaces	 (BCI)	 have	 also	 been	

proposed	 for	 prosthesis	 control	 (Lebedev	&	Nicolelis,	 2006).	 In	 an	 impressive	 animal	

study,	it	was	shown	that	monkeys	can	learn	to	control	a	prosthetic	arm	for	self-feeding	

with	 their	motor	cortex	activity,	 independently	of	executed	movements	 (Velliste	et	al.,	

2008).	 However,	 in	 order	 to	 become	 viable	 control	 alternatives,	 BCI	 need	 to	 improve	

information	transfer	rates	and	robustness	(Wolpaw	et	al.,	2002).		

Other	 approaches	 use	 surgical	 interventions	 to	 achieve	 alternative	 control	 strategies.	

Targeted	muscle	re-innervation	(TMR)	surgically	redirects	the	arm	nerves	to	the	chest,	

where	surface	EMG	can	detect	volitional	activation	 for	prosthesis	control	 (Johansen	et	

al.,	2016).	This	procedure	has	yielded	promising	results,	but	is	considered	too	invasive	

for	 below	 elbow	 amputees	 and	 needs	 further	 technical	 development	 to	 achieve	

proportional	 and	 robust	 prosthetic	 control	 (Atzori	 &	 Muller,	 2015).	 In	 a	 completely	
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different	 approach,	 using	 an	 osseo-magnetic	 link,	 a	 small	 magnet	 is	 implanted	 in	 the	

stump,	whilst	sensors	in	the	socket	of	the	prosthesis	can	detect	even	small	movements	

of	 the	bone	via	changes	 in	 the	magnetic	 field	and	can	control	 four	degrees	of	 freedom	

(Rouse,	Nahlik,	Peshkin,	&	Kuiken,	2011).	

Despite	being	promising	alternative	directions	 for	 the	rehabilitation	care	of	amputees,	

none	of	these	academic	approaches	to	prosthetic	control	have	left	the	laboratory,	and	in	

some	cases	no	data	from	human	trials	has	been	presented	yet.	In	order	to	overcome	the	

gap	 between	 research	 and	 clinical	 implementation	 and	 increase	 acceptance	 among	

users,	robust	proportional	and	simultaneous	control	systems	are	needed	(N	Jiang	et	al.,	

2012).	The	independent	control	of	two	degrees	of	freedom	is	a	challenge	that	needs	to	

be	solved	in	order	to	achieve	this	goal.	

1.6 The	 auricular	 muscles	 in	 the	 context	 of	 human-machine	

interfaces	

Humans	 possess	 nine	 muscles	 per	 ear	 with	 six	 intrinsic	 and	 three	 extrinsic	 muscles	

(Gray,	1918).	The	most	prominent	extrinsic	muscles	are	the	m.	auricularis	superior	and	

posterior	(PAM),	located	above	and	behind	the	pinna	(Figure	5).	Darwin	suggested	that	

they	might	once	have	served	 for	sound	 localization,	as	with	other	mammals,	and	have	

lost	 that	 function	 during	 evolution	 (Darwin,	 1859).	 Due	 to	 the	 lack	 of	 function	 in	

humans,	 the	 auricular	 muscles	 have	 received	 little	 attention	 from	 the	 scientific	

community.	 In	 the	1960s,	 the	post-auricular	 reflex	was	discovered,	 a	 bilateral,	 sound-

evoked	contraction	of	 the	posterior	auricular	muscle	(Kiang,	Crist,	French,	&	Edwards,	

1963).	 Together	 with	 the	 oculo-auricular	 phenomenon	 (Wilson,	 1908),	 an	 automatic	

auricular	 muscle	 contraction	 with	 maximum	 lateral	 eye	 movements,	 it	 rendered	

evidence	 for	 a	 sound-location	 origin	 of	 these	muscles	 that	 today	 are	 in	 a	 “hibernate”	

mode	and	lack	a	dedicated	function.		
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Figure	5)	Anatomy	of	the	human	auricular	muscles.		

There	are	6	intrinsic	muscles	on	the	pinna	and	three	extrinsic	muscles,	located	anteriorly,	superiorly	and	
posteriorly	 from	 the	 ear.	 For	 the	 ACS,	 we	make	 use	 of	 the	 isolated	 position	 of	 the	 posterior	 auricular	
muscle	 on	 the	 scalp,	 which	 ensures	 minimal	 crosstalk	 form	 other	 muscles.	 (Taken	 from	
https://commons.wikimedia.org/wiki/Category:Auricular_muscles#/media/File:Gray906.png,	 Retrieved	
08.12.2017.)	

	

In	 the	 context	 of	 the	 ACS	 this	 lack	 of	 function	 becomes	 an	 advantage,	 because	 unlike	

other	control	systems	the	ACS	does	not	interfere	with	daily	activities	or	communication	

(e.g.	 tongue	 control)	 or	 suffers	 from	 the	 Midas	 Touch	 problem,	 i.e.	 distinguishing	

between	intended	and	unintended	commands	(e.g.	visual	control	(Barea,	Boquete,	Mazo,	

&	Lopez,	2002)).	

Regarding	voluntary	activation	of	 the	auricular	muscles,	 conflicting	evidence	has	been	

reported.	While	 one	 study	 reports	 voluntary	 activation	 of	 the	 superior	 and	 posterior	

auricular	muscles	(Berzin	&	Fortinguerra,	1993),	another	study	denies	this	and	regards	

them	 as	 rudimentary	 without	 any	 function	 (Serra,	 Tugnoli,	 Cristofori,	 Eleopra,	 &	 De	

Grandis,	1986).	

Interestingly,	 the	 auricular	 muscles	 have	 however	 been	 chosen	 in	 two	 studies	 to	

investigate	 human-machine	 interfaces	 (HMI).	 In	 a	 study	 from	 Perez-Maldonado	 et	 al.,	

subjects	 could	 learn	 to	 control	 the	 different	 bandwidths	 of	 activity	 of	 the	 superior	

auricular	muscle,	 thereby	producing	2	DOF	 from	a	 single-site	EMG	 (Perez-Maldonado,	

Wexler,	&	Joshi,	2010).	Larson	et	al.	chose	the	posterior	auricular	muscles	to	investigate	

different	feedback	paradigms	for	learning	(Larson,	Terry,	&	Stepp,	2012).	Subjects	were	
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able	 to	produce	voluntary	bilateral	signals	with	 their	posterior	auricular	muscles,	 first	

controlling	 a	 cursor	 target	 with	 visual	 and	 auditory	 feedback,	 and	 then	 with	 only	

auditory	 feedback.	 However,	 they	 concluded	 that	 other	 muscles	 might	 be	 more	

functional	 for	 HMI,	 since	 the	 posterior	 auricular	 muscle	 (PAM)	 is	 vestigial	 and	 “it	 is	

precisely	its	vestigial	nature	that	makes	it	difficult	to	learn	to	control	compared	to	other	

muscles.”.	

There	 are	 several	 reasons	 why	 the	 active	 control	 over	 these	 muscles	 would	 mean	 a	

breakthrough.	Firstly,	 their	 lack	of	 function	means	 there	 is	no	 interference	with	other	

mimic	activities,	 including	communication.	Secondly,	these	muscles	exist	 in	all	humans	

and,	 if	 functional,	 they	 represent	 an	 enormous	 unused	 potential.	 Since	 they	 are	

controlled	 by	 the	 facial	 nerve,	 their	 functionality	 still	 exists	 even	 in	 high-level	

tetraplegia.	 Voluntary	 modulation	 of	 the	 auricular	 muscles	 would	 disclose	 new	

functional	possibilities	for	these	muscles,	e.g.	in	the	context	of	HMI.	

These	 factors	 make	 the	 auricular	 muscles	 an	 ideal	 option	 for	 myoelectric	 control.	 In	

addition,	the	isolated	position	of	the	posterior	auricular	muscle	(PAM)	ensures	minimal	

crosstalk.	 The	 bigger	 superior	 auricular	 muscle	 for	 example	 is	 located	 above	 the	

temporalis	muscle,	which	would	produce	considerable	artifacts	while	e.g.	chewing.	Good	

accessibility	 of	 the	 PAM	 renders	 it	 particularly	 suitable	 for	 a	 myoelectric	 control	

interface.	 However,	 due	 to	 the	 scarce	 literature	 available	 about	 voluntary	 auricular	

activation,	there	are	several	still	unknown	characteristics	of	these	muscles,	which	shall	

be	 addressed	 in	 this	 thesis.	 In	 order	 to	 use	 the	 auricular	 muscles	 for	 generation	 of	

control	signals,	it	is	necessary	discover	how	voluntary	activation	of	these	muscles	can	be	

learned	 and	 trained.	 It	 has	 been	 shown	 that	 bilateral	 activation	was	 possible	 in	 some	

subjects	 (Larson	 et	 al.,	 2012).	 However,	 it	 is	 unknown	 whether	 complex	 activation	

patterns	(e.g.	different	strengths,	unilateral	activation)	can	be	achieved.	 If	 this	was	the	

case,	 signals	 from	 the	bilateral	PAM	could	provide	 independent	 control	over	 two	DOF	

(left	side	activation,	right	side	activation)	in	the	context	of	human-machine	interface	and	

could	generate	signals	for	a	third	channel	(co-contraction	of	both	sides).	An	advantage	of	

an	EMG-based	control	system	is	that	signal	strength	can	be	proportional	to	the	muscle	

strength.	 Precise	 modulation	 of	 PAM-strength	 would	 allow	 for	 direct	 control	 of	 the	

speed	 of	 the	 output	 action	 besides	 simple	 on-off,	 e.g.	 speed	 of	 the	 wheelchair	 or	

prosthetic	 hand	 action.	 In	 addition,	 the	 continuous	 signal	 generation	 of	 EMG	 would	
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permit	 for	 online	 control	 of	 the	 output	 device	 (e.g.	 small	 corrections	 of	 the	 output	

actions),	thus	potentially	increasing	the	precision	of	the	device.	

	

1.7 Aims	of	this	thesis	

Assistive	 devices	 are	 essential	 to	 improve	 participation	 and	 life	 quality	 of	 affected	

individuals,	such	as	individuals	with	tetraplegia	or	arm	amputation.	We	have	established	

that	existing	control	options	present	different	shortcomings.	Difficult	and	cumbersome	

signal	 generation	 is	 a	 problem	 in	 both	 wheelchair	 and	 prosthesis	 control.	 Technical	

issues	as	well	as	interference	with	other	activities	have	reduced	the	impact	of	proposed	

scientific	control	options	on	clinical	implementation	so	far.		

To	address	some	of	the	drawbacks	of	available	control	option,	during	the	course	of	this	

thesis	we	developed	an	alternative	control	method,	which	uses	the	myoelectric	potential	

of	the	posterior	auricular	muscles.	The	auricular	control	system	(ACS)	could	positively	

impact	those	individuals	with	tetraplegia	who	are	afflicted	with	reduced	mobility	due	to	

inadequate	control	options.	It	also	has	the	potential	to	improve	hand-prosthesis	control	

and	thus	increase	acceptance	rate	amongst	prosthesis	users.	By	providing	control	over	

assistive	devices,	it	could	ultimately	improve	the	life	quality	of	end-users.	

The	 first	 study	 examined	 the	 prerequisites	 for	 the	 ACS,	 i.e.	 if	 subjects	 could	 learn	

voluntary	and	unilateral	activation	of	the	PAM.	Importantly,	it	represents	the	first	proof-

of-principle	of	the	functionality	of	the	ACS	for	wheelchair	control.	To	this	aim,	ten	able-

bodied	 subjects	 and	 two	 subjects	 with	 tetraplegia	 trained	 voluntary	 activation	 of	

bilateral	PAM	with	visual	 feedback	and	computer	games	for	four	consecutive	days	and	

steered	a	wheelchair	using	only	the	ACS	on	the	fifth	day.	

The	 aim	 of	 the	 second	 study	was	 a	 clinical	 application	 of	 the	 ACS	 to	 hand	 prosthesis	

control,	in	order	to	investigate	whether	the	ACS	could	improve	performance	of	available	

prosthesis	control	methods.	A	combination	with	an	established	forearm	control	allowed	

for	simultaneous,	 independent	control	over	 two	DOF	 in	a	prosthetic	hand.	This	hybrid	

control	 was	 tested	 in	 10	 able-bodied	 subjects	 and	 one	 subject	 with	 transradial	

amputation	and	 its	performance	was	compared	with	 two	clinically	established	control	

modes.		
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The	 aim	of	 the	 third	 study	was	 to	 test	 functionality	 of	 the	ACS	 in	 a	 clinical	 sample	 of	

individuals	with	tetraplegia,	and	hence	to	investigate	the	effects	of	motor	training	on	the	

post-SCI	brain.	The	specific	brain	reorganization	in	these	subjects	allows	investigation	of	

neuronal	plasticity	from	a	different,	yet	uninvestigated	perspective:	how	do	unoccupied	

areas	 of	 the	 brain	 respond	 to	 new	 tasks?	 Targeting	 the	 brain	 reorganization	 in	 SCI	

subjects	could	have	important	implications	for	therapeutic	care.	This	study	presents	the	

results	 of	 twelve	 days	 of	 ACS	 wheelchair	 training	 in	 nine	 subjects	 with	 high-level	

tetraplegia.	To	investigate	the	effects	of	motor	training,	we	mapped	the	motor	cortex	of	

these	 subjects	 before	 and	 after	 ACS	 training,	 using	 transcranial	 magnetic	 stimulation	

(TMS)	and	functional	magnetic	resonance	imaging	(fMRI).		

In	combination,	 the	aim	of	 this	 thesis	 is	 the	development	of	a	new	control	method	 for	

assistive	 devices,	while	 providing	 further	 information	 about	 the	 characteristics	 of	 the	

human	 auricular	 muscles.	 The	 functionality	 of	 the	 ACS	 will	 be	 examined	 in	 two	

prototypical	 clinical	 indication	 fields,	 namely	 hand	 prosthesis	 and	wheelchair	 control.	

The	 resulting	 motor	 training	 permits	 an	 investigation	 of	 the	 mechanisms	 of	 activity-

dependent	neuronal	plasticity	in	individuals	with	tetraplegia,	which	are	still	unclear.	
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2 Steer	by	ear:	proof	of	principle	of	the	ACS	for	wheelchair	
control	

As	presented	 in	 the	 introductory	 section,	mobility	 is	 essential	 for	 the	quality	of	 life	of	

individuals	with	tetraplegia	(Craig	et	al.,	2009;	Middleton	et	al.,	2007).	Nevertheless,	the	

options	 for	wheelchair	 control	 for	 these	 individuals	 present	major	 drawbacks.	 Simple	

activities	 of	 daily	 living	 become	 an	 obstacle	 for	 50%	 of	 individuals	 with	 tetraplegia,	

when	 using	 the	 available	 systems	 (Fehr	 et	 al.,	 2000).	 In	 addition,	 depending	 on	 the	

lesion	 level,	 individuals	with	 tetraplegia	might	not	have	 the	physical	 requirements	 for	

using	 the	 available	 controls,	 e.g.	 activating	 neck	muscles	 in	 order	 to	 use	 chin	 or	 head	

controls	 (Arshak	et	 al.,	 2006).	Alternative	 control	options	are	promising,	but	 interfere	

heavily	with	other	activities.		

Due	 to	 their	 isolated	 position	 on	 the	 scalp	 and	 lack	 of	 function,	 interference	 is	 not	 a	

problem	 with	 the	 posterior	 auricular	 muscles.	 Other	 characteristics	 presented	 in	 the	

introduction,	such	as	availability	 in	high	 level	SCI,	speak	in	favor	of	these	muscles	as	a	

source	for	steering	signals.	There	is	very	little	evidence	about	the	nature	of	the	auricular	

muscles;	namely	if	they	can	be	voluntarily	controlled,	whether	this	ability	can	be	learned	

and	whether	 they	 can	 be	 activated	 unilaterally.	 These	 pre-requisites	 for	 the	 auricular	

control	 system	were	 investigated	over	 four	days	 computer	 feedback	 training	with	 ten	

able-bodied	subjects	and	two	with	tetraplegia.	Ultimately,	the	application	of	the	ACS	for	

powered	wheelchair	driving	was	 tested	on	 the	 fifth	day	 in	order	 to	ascertain	whether	

the	PAM	can	generate	precise	control	signals.	

The	 following	 chapter	 2	 corresponds	 largely	 to	 the	 article	 “Steer	 by	 ear:	 myoelectric	

auricular	 control	 of	 powered	 wheelchairs	 for	 individuals	 with	 spinal	 cord	 injuries”	

published	 in	 Restorative	 Neuroscience	 and	 Neurorehabilitation	 (Schmalfuss	 et	 al.,	

2016).	Reprinted	with	permission	from	IOS	Press.	 	
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2.1 Materials	and	Methods	

2.1.1 EMG	recording	and	signal	transmission	in	the	ACS	

To	implement	an	intuitive	wheelchair	steering	system,	EMGs	were	recorded	from	both	

left	 and	 right	 PAMs.	 For	myoelectric	 control	 interfaces,	 usually	 surface	 electrodes	 are	

attached	to	the	skin	that	record	action	potentials	from	activated	motor	units	below	the	

electrode	 (Asghari	 Oskoei	 &	 Hu,	 2007).	 However,	 a	 major	 problem	 with	 the	 use	 of	

surface	electrodes	is	the	unstable	signal	quality	due	to	external	influences	such	as	sweat	

or	 varying	 skin	 impedance	 (Zecca	 et	 al.,	 2002).	 An	 alternative	 is	 subcutaneous	

electrodes.	 They	 can	 improve	 signal	 stability,	 but	 also	 have	 the	 advantage	 of	 higher	

specificity.	Due	to	the	location	inside	the	muscle,	they	are	able	to	selectively	record	the	

activity	of	single	motor	units	and	thus	reduce	the	risk	of	artifacts	from	adjacent	muscles.	

We	hence	recorded	PAM	EMG	with	subcutaneous	fine-wire	electrodes	that	were	custom	

made	 from	 stainless	 steel	 wires	 (12	 cm	 long,	 diameter:	 50	 µm,	 California	 Fine	 Wire	

Company,	Grover	Beach,	California,	U.S.,	 Figure	6).	The	 isolation	of	 the	electrodes	was	

removed	at	both	ends	and	along	one	cm	in	the	middle.		

For	 subcutaneous	 electrode	 placement,	 electrodes	were	 inserted	 into	 a	 hollow	needle	

that	passed	through	the	skin	twice.	The	end	of	the	electrode	was	held	while	the	needle	

was	 pulled	 out.	Next,	 the	 non-isolated	 fine-wire	middle	was	 placed	under	 the	 skin.	 In	

this	way,	 an	 active	 electrode	was	placed	over	 the	PAM	and	 a	 reference	 electrode	was	

placed	 in	the	middle	of	 the	pinna	on	each	side.	The	electrodes	were	fixed	and	covered	

with	 a	 plaster	 when	 they	 were	 not	 used.	 Myoelectric	 activity	 was	 recorded	 as	 a	

differential	 signal	 between	 the	 electrode	 over	 the	 PAM	 and	 that	 over	 the	 pinna.	 An	

Ag/AgCl2	sintered	earlobe	clip	electrode	(Gelimed,	Bad	Segeberg,	Germany)	was	used	on	

each	side	as	a	reference	(Figure	6).	For	signal	 transmission,	 the	ends	of	 the	electrodes	

were	connected	to	self-built	amplifiers	that	were	fixed	on	a	goggle	frame.	Here,	the	EMG	

signals	were	amplified	 (gain	=	1000),	band-pass	 filtered	 (4th	order	Butterworth	 filter,	

20-1,000	 Hz)	 and	 digitized	 (sampling	 frequency	 2	 kHz).	 The	 data	 was	 then	 rectified,	

low-pass	filtered	and	down-sampled	to	125	Hz.	A	ZigBee	interface	was	used	to	send	the	

raw	EMG-data	to	a	specially	developed	software	(Bartschat	et	al.,	2012).	
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Figure	6)	Setup	of	the	auricular	control	system	(ACS)	

Subject	T1	 (A)	driving	 through	 the	 real	 obstacle	 course	with	 a	 powered	wheelchair	 using	 the	ACS.	The	
computer	is	fixed	in	the	back	of	the	wheelchair.	The	EMG	setup	(B)	held	by	a	goggles	frame	with	fine	wire	
electrodes	that	are	attached	to	a	metal	spring	(a)	connected	to	the	amplifier	(b).	Ear	clips	(c)	are	used	for	
grounding.	A	wireless	transmitter	(d)	sends	the	signal	to	a	receiver,	which	forwards	it	to	the	software	(e).	
The	 fine-wire	 electrodes	 (C)	 are	 12	 cm	 long	 and	 have	 three	 de-insulated	 regions	 (marked	 yellow)	 to	
ensure	conductivity.	The	middle	part	is	placed	bellow	the	skin	and	both	ends	are	attached	to	the	amplifier.	
The	active	electrode	(E1)	is	inserted	over	the	PAM,	the	reference	electrode	(E2)	over	the	pinna.	

	
	

2.1.2 Generation	of	control	signals	in	the	ACS	

In	 the	 software,	 the	 raw,	 10-bit	 digitized	 EMG	 signals	 𝑥! 𝑘 ∈ [0, 2!" − 1]x! k ∈

[0, 2!"-1]	(Figure	7	A)	were	mean-adjusted	and	rectified	in	accordance	with	

x!,! k = 2*|x! k -x!,!"#$| ∈ [0, 2!"-1],	

where	x!,!"#$	is	the	mean	value	found	in	the	calibration	(see	below).	Subsequently,	the	

resulting	signals	are	low-pass-filtered	(Root-Mean-Square	Filter	with	m=19	and	Infinite-

Impulse-Response	Filter	with	a=0.9)	according	to	

x!,! k = a*x!,! k-1 + 1-a * !
!!!

* x!,!! k-j!
!!! ∈ [0, 2!"-1].	
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Eventually,	the	resulting	signals	are	normalized	to	a	range	between	0	(minimum	signal	

amplitude)	and	1	(maximum	signal	amplitude,	see	Figure	7	A)	according	to	

x!,! k =

!!,! ! -!!,!"#
!!,!"#-!!,!"#

, ifx!,! k ∈ x!,!"#, x!,!"#

0, ifx!,! k ∈ 0, x!,!"#
1, ifx!,! k ∈ (x!,!"#, 2!"-1]

∈ [0,1]		

where	𝑥!,!"#x!,!"#	and	x!,!"#	are	the	maximum	and	minimum	values	respectively	found	

in	the	calibration.	

The	process	of	calibration	was	done	by	a	fully	automatic	routine,	which	took	the	average	

mean,	maximum	 and	minimum	of	 three	 contractions	 of	 each	 PAM	 side.	 This	way,	 the	

signal	 strength	 was	 matched	 to	 the	 individuals’	 muscle	 strength.	 The	 minimum	

threshold	 was	 adjusted	 manually	 in	 order	 to	 minimize	 the	 risk	 of	 false-positive	

commands.	

	

	
Figure	7)	Diagram	of	signal	processing	in	the	ACS.		

The	raw	EMG-signals	from	the	right	and	left	PAM	(EMG	S1	and	EMG	S2)	are	sent	from	the	Microcontroller	
Unit	 (MCU)	 Tx	 (Sender)	 with	 a	 wireless	 ZigBee	 protocol	 to	 the	 receiver	 (MCU	 Rx)	 attached	 to	 the	
computer.	The	software	rectifies,	low-pass	filters	and	normalizes	the	signals	(A)	and	conditions	them	into	
control	signals	(B).	The	output	signals	are	transmitted	to	the	machine,	in	our	case	the	wheelchair.	If	both	
signals	are	equally	strong,	the	wheelchair	is	propelled	forward.	If	one	signal	is	stronger	than	the	other,	a	
turn	is	initiated	with	a	simultaneous	forward	movement	depending	on	the	strength	of	the	co-activation.	
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2.1.3 Generation	of	wheelchair	driving	commands	

For	electric	wheelchair	driving	(B	600,	Otto	Bock,	Duderstadt,	Germany),	the	computer	

with	 the	 ACS	 interface	 was	 connected	 to	 the	 external	 joystick	 interface.	 Stronger	 left	

PAM-contraction	produced	a	left	turn,	stronger	right	contraction	produced	a	right	turn	

and	a	co-contraction	propelled	the	wheelchair	straightforward.	The	output	signal	for	the	

wheelchair	consisted	of	a	rotational	and	a	translational	signal.	The	rotational	signal	was	

calculated	 by	 the	 different	 activation	 of	 both	 sides	 (e.g.	 left	 side	 stronger:	 turn	 left).	

Here,	the	bilateral	calibration	helped	to	identify	a	rotational	signal,	 if	 lateral	selectivity	

was	 not	 that	 pronounced.	 The	 translational	 signal	 was	 calculated	 by	 the	 mean	

contraction	 strength	 of	 both	 sides	 (both	 sides	 full	 contraction:	 translational	 signal	

(1.0+1.0)/2=1.0,	wheelchair	drives	straight	ahead).	This	way,	a	full	activation	of	only	the	

left	side	meant	a	rotational	signal	of	1.0	and	a	translational	signal	of	0.5	((1.0+0)/2=0.5),	

i.e.	the	wheelchair	made	a	left-turn	with	a	slight	acceleration.	In	order	to	rotate	on	the	

spot	without	translation,	a	half	activation	of	only	one	PAM	was	thus	necessary.	Steering	

signals	were	proportional	and	continuous;	 the	participants	could	therefore	e.g.	control	

the	speed	of	the	wheelchair	or	the	sharpness	of	turns	in	an	online	manner.		

The	wheelchair	stopped	when	the	signal	input	stopped,	when	the	off-button	was	pushed	

manually	or	when	the	principle	investigator	activated	a	wireless	switch.	The	update	rate	

of	the	wheelchair	control	signal	was	the	same	as	the	sampling	rate	of	the	EMG	(125	Hz).	

Speed	depended	on	the	duration	of	the	co-activation,	with	a	slight	delay	due	to	the	low-

pass-filtering.	The	maximum	velocity	of	 the	wheelchair	was	preset	 to	5.2	km/h	 in	 the	

wheelchair	configuration.		

	

2.1.4 Proof-of-principle	of	the	ACS	

The	 research	 protocol	 was	 approved	 by	 the	 ethics	 committee	 of	 the	 University	 of	

Göttingen	and	was	in	accordance	with	the	latest	version	of	the	Declaration	of	Helsinki.	

Ten	 able-bodied	 subjects	 and	 two	 subjects	 with	 tetraplegia	 participated	 in	 the	 study.	

Written	 informed	 consent	 was	 obtained	 from	 each	 subject	 or	 from	 an	 independent	

representative.	The	able-bodied	subjects	(mean	age:	24.0±1.8	y;	4	female,	6	male)	were	

right-handed	 according	 to	 the	 Edinburgh	 Inventory	 of	 Handedness	 (Oldfield,	 1971).	



	

33	

Subjects	categorized	themselves	as	“ear-wigglers”	(EW,	able	to	activate	PAM,	5	subjects)	

or	“non-ear-wigglers”	(NEW,	not	able	to	activate	PAM,	5	subjects).		

Four	patients	from	the	patient	database	of	the	Spinal	Cord	Injury	Center	of	Heidelberg	

University	 Hospital	 met	 the	 inclusion	 criteria	 (tetraplegia	 caused	 by	 trauma,	

neurological	 level	 of	 injury	 C8	 or	 higher,	 exclusion	 criteria:	 dependence	 on	 artificial	

ventilator,	 former	episodes	of	 epilepsy).	Two	of	 the	 four	dropped	out	 for	medical	 and	

technical	 reasons,	and	 two	completed	 the	study.	Subject	T1	 (male,	23	y)	has	complete	

motor	and	sensory	tetraplegia	(American	Spinal	 Injury	Association	(ASIA)	 Impairment	

Scale	A	(Kirshblum	et	al.,	2011))	with	a	neurological	level	of	injury	at	C5	due	to	a	trauma	

seven	 months	 before	 inclusion	 in	 the	 study.	 Subject	 T2	 (male,	 53	 y)	 suffers	 from	

incomplete	 sensory	 and	 motor	 tetraplegia	 (ASIA	 Impairment	 Scale	 C)	 with	 a	

neurological	 level	 of	 C3	 after	 a	 fall	 five	 months	 before	 study	 onset.	 Both	 were	

hospitalized	for	primary	rehabilitation	at	the	time	they	were	included	in	the	study	and	

were	 on	medication	with	 spasmolytic	 drugs.	 Subject	 T1	 classified	 himself	 as	 an	 “ear-

wiggler”;	subject	T2	as	a	“non-ear-wiggler”.	

The	study	design	consisted	of	daily	training	sessions	(1	hour	each)	on	four	consecutive	

days	and	30	min	of	wheelchair	driving	in	a	fifth	session	on	day	5.	For	each	session,	the	

subjects	were	equipped	with	the	wireless	EMG	recording	system	(Figure	6).	For	the	first	

20	minutes,	the	ability	to	activate	the	PAM	was	measured	(duration	20	minutes)	using	

eight	performance	criteria	at	each	session	(session	1	 -	session	4)	and	before	and	after	

driving	the	wheelchair	(session	5a,	session	5b).	For	the	remaining	40	minutes	of	each	1	

hr.	session,	subjects	played	four	computer	games	solely	with	PAM	activation	(see	Supp.	

Fig.	 1	 and	 Supp.	 Fig.	 2).	 Because	 of	 general	 physical	 and	mental	 exhaustion	 after	 the	

wheelchair	drive,	the	testing	was	skipped	in	session	5b	for	tetraplegic	subject	T2	as	well	

as	the	contraction	duration	measurement	for	subject	T1.	In	the	last	session	5b,	subjects	

steered	an	electric	wheelchair	by	means	of	signals	generated	by	activating	their	PAMs.	

Evaluation	questionnaires	were	completed	before	and	after	the	study.	

	

2.1.5 Training	of	voluntary	control	over	the	PAM	

The	primary	goal	of	the	training	procedure	was	to	 increase	the	ability	to	activate	both	

PAMs	 in	 order	 to	 be	 able	 to	 use	 the	 ACS.	 In	 the	 first	 session,	 basic	 control	 over	 PAM	
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activation	was	established	with	visual	feedback	on	a	computer	screen,	where	the	height	

of	two	bars	indicated	the	strength	of	the	normalized	EMG	activity	of	both	PAMs.	

In	 the	 successive	 training	 sessions,	 participants	 chose	 from	 four	 PAM-controlled	

computer	 games.	 These	 games	 were	 especially	 designed	 to	 keep	 subjects	 motivated,	

train	 lateralized	 PAM	 activation	 and	 to	 precisely	 modify	 the	 control	 signal.	 In	 a	 car	

racing	game	(Supp.	Fig.	1),	the	subjects	had	to	keep	a	virtual	car	on	a	moving	track	with	

either	 left	or	 right	PAM	contractions.	 In	 the	well-known	game	Tetris	 (Figure	8	B),	 the	

subjects	 had	 to	 complete	 lines	 of	 blocks	 by	 moving	 the	 pieces	 to	 the	 left	 (left	

contraction)	or	to	the	right	(right	contraction),	or	by	rotating	them	(co-contraction)	 in	

order	 to	 reach	 a	 higher	 level	 with	 increased	 speed.	 The	 remaining	 two	 games,	 coin	

collection	and	virtual	obstacle	course,	trained	more	complex	driving	skills	with	a	virtual	

wheelchair	seen	in	a	bird’s	eye	view.	Here,	the	subjects	had	to	either	collect	10	coins	that	

appeared	successively	(Supp.	Fig.	2)	or	navigate	through	a	simple	virtual	obstacle	course	

with	 up	 to	 four	 turns.	 The	 virtual	 wheelchair	 navigation	 mode	 was	 the	 same	 as	 in	

powered	wheelchair	driving.	

	

2.1.6 Testing	the	performance	of	the	ACS		

To	evaluate	the	effect	of	training	on	the	participants’	ability	to	voluntarily	activate	their	

PAMs,	eight	performance	criteria	were	defined	as	the	main	training	outcome	measures.	

They	represented	 important	signal	modalities	 that	directly	 influence	 the	quality	of	 the	

ACS.	Each	outcome	measure	was	 tested	 for	 the	 left	 and	 right	 ear	 separately.	The	 final	

result	 was	 calculated	 as	 the	 mean	 performance	 of	 three	 repetitions.	 First,	 signal	

generation	speed	was	tested	as	reaction	times	(RT)	for	contraction	and	relaxation	(RT,	

Supp.	Fig.	3,	milliseconds	=	ms).	RT	for	contraction	was	defined	as	the	time	between	the	

appearance	 of	 a	 visual	 cue	 (a	 red	 square)	 to	 contract	 and	 the	 point	 at	 which	 the	

normalized	 EMG	 signal	 reached	 60%	 of	 the	 subjects’	 normalized	 maximum	 strength,	

while	 RT	 for	 relaxation	was	 the	 time	 between	 disappearance	 of	 the	 cue	 and	 the	 time	

point	at	which	the	EMG	activity	went	below	20%	of	the	subjects’	normalized	maximum	

strength	 (empty	 fore-period	 of	 the	 visual	 cue	 3	 s	 ±	 1	 s,).	 The	 maximum	 contraction	

repetition	 rate	of	 the	PAMs	 (Figure	8	A,	below	called	maximum	contraction	 rate)	was	

then	tested	as	a	measure	of	the	ACS’	maximum	repetition	rate	of	binary	control	signals.	

The	rate	of	contractions	followed	by	relaxations	in	a	10	s	period	was	measured	in	Hertz	
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(Hz,	e.g.	1.5	Hz	=	15	contractions	in	10	s).	In	order	to	get	an	impression	of	the	endurance	

of	 the	muscle,	 which	 is	 important	 when	 producing	 longer	 steering	 signals,	 we	 tested	

maximum	 duration	 of	 contraction	 (Supp.	 Fig.	 4).	 The	 maximum	 time	 was	 100	 s;	 the	

counting	was	stopped	with	the	first	detected	relaxation	(<	20%	of	normalized	maximum	

signal).	In	graded	PAM	activity	(Supp.	Fig.	5),	we	tested	precision	of	muscle	control	and	

requested	the	participants	to	hold	the	muscle	activation	at	a	predefined	 level	between	

20%	 and	 70%	 of	 the	 normalized	 maximum	 level	 for	 10	 s.	 The	 outcome	 here	 is	 the	

percent	 of	 the	 trial	 duration	 that	 the	 subject	 was	 able	 to	 hold	 the	 correct	 activation	

between	 20	 and	 70%.	 In	 order	 to	 turn	 the	 wheelchair	 using	 the	 ACS,	 lateralized	

activation	 is	 required.	 The	 subjects	 were	 hence	 instructed	 to	 selectively	 activate	 one	

side	 for	 3	 s	 (Supp.	 Fig.	 6).	 Correct	 activation	 in	 this	 task	was	 defined	 as	 the	 average	

activation	strength	of	one	PAM	over	a	10	s	period.	However,	since	unilateral	activation	

was	 required,	 this	 score	was	diminished	 in	 case	of	 an	 involuntary	 co-activation	of	 the	

other	PAM.	The	unintended	contraction-strength	was	then	subtracted	from	the	correct	

one,	so	that	the	final	score	could	only	reach	100	%	if	a	perfect	unilateral	activation	with	

no	co-activation	of	the	other	PAM	was	achieved.		

Finally,	 the	 ability	 to	 drive	 a	wheelchair	was	 evaluated	with	 a	 single	 run	 of	 a	 virtual	

wheelchair	 through	 a	 virtual	 obstacle	 course	 in	 order	 to	 avoid	 a	 risk	 for	 unpracticed	

wheelchair	 users.	 Performance	was	measured	 as	 the	 length	 of	 the	 path	 driven	 (pixel)	

and	the	time	the	subject	required	to	complete	the	course	(seconds).		
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Figure	8)	Signal	processing	in	the	user	interface.	

The	software	converts	the	raw	EMG	signals	(a,	digitized	values,	mean	511)	into	normalized	signals	(b,	0-1)	
and	control	signals	(c,	translational	signal,	d,	rotational	signal	-1	is	left,	+1	is	right).	The	normalized	values	
(b)	 are	used	 for	 signals	during	 computer	 tasks.	 For	 example,	 in	 the	performance	 test	 for	 the	maximum	
contraction	rate	(A),	subjects	were	told	to	fully	contract	and	relax	their	PAM	as	often	as	possible	during	10	
s.	A	 complete	 contraction	was	 counted	when	 the	EMG	activation	passed	 the	upper	 threshold	 (60%,	 red	
line)	 and	 subsequently	 went	 below	 the	 lower	 threshold	 (20%,	 blue	 line).	 This	 subject	 managed	 13	
complete	contractions	(1.3	Hz).	During	training,	subjects	played	e.g.	Tetris	(B)	with	their	PAM	signals.	A	
right	contraction	moves	the	piece	to	the	right,	a	left	contraction	to	the	left	and	a	co-contraction	turns	it.	

	
	

2.1.7 Powered	wheelchair	driving	with	the	ACS		

In	the	fifth	session	(30	min)	after	four	days	of	training,	the	subjects	steered	an	electric	

wheelchair	 (B	 260,	 Otto	 Bock,	 Duderstadt,	 Germany)	 with	 the	 ACS	 connected	 to	 its	

external	 joystick	interface.	Control	signals	were	right	PAM	contraction	-	right	turn,	 left	

contraction	-	 left	turn,	co-contraction	-	straightforward,	no	signal	or	manual	use	of	the	
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off-button	-	stop.	The	subjects	first	had	five	minutes	to	get	accustomed	to	the	wheelchair	

control	and	were	then	requested	to	drive	straight	ahead	for	four	meters	and	turn	180°	

to	the	left	and	then	to	the	right.		

Subjects	with	 tetraplegia	were	 then	 instructed	 to	drive	 through	a	 real	obstacle	 course	

that	was	analogous	in	its	proportions	(side	length	of	10	m)	to	the	virtual	obstacle	course	

used	 in	 the	 performance	 criteria	 (Figure	 9).	 Three	 independent	 observers	 measured	

completion	time	and	number	of	collisions	with	the	sidewalls.	 In	case	of	a	collision,	 the	

stopwatches	 were	 paused	 until	 the	 subjects	 were	 manually	 set	 back	 on	 track.	 For	

emergency	stops,	the	principal	investigator	had	a	wireless	control.	The	performance	was	

recorded	 on	 video	 and	 the	 driving	 paths	 were	 later	 digitized	 offline	 into	 the	 virtual	

obstacle	course	template.	

	

Figure	 9)	 The	 real	 obstacle	 course	 for	 testing	 the	 performance	 of	 the	 ACS	 in	 subjects	 with	
tetraplegia.	

Aerial	 view	 of	 the	 obstacle	 course	while	 subject	 T1	 completes	 it	 (driving	 direction	marked	with	 black	
arrows).	The	longer	sides	were	approximately	10	m	long,	the	short	side	6	m.	An	ideal	path	was	ca.	23	m	
long	and	included	three	90°	right	turns	and	three	left	turns.	Time	was	measured	and	the	performance	was	
filmed	and	manually	digitalized	for	evaluation	of	the	driving	path.		
	
	

2.1.8 User	evaluation	of	the	ACS	

Before	 the	 first	and	after	 the	 last	session	all	subjects	completed	a	questionnaire	about	

their	ability	to	activate	PAMs.	They	were	asked	to	rate	several	questions	on	a	four-point	
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scale	ranging	from	1	(=	not	at	all),	2	(=	a	little),	3	(=	moderate),	to	4	(=	a	lot),	including	

overall	ability	to	“wiggle	the	ears”,	self-rated	concentration,	training	effort,	difficulty	of	

unilateral	 PAM	 activation	 (for	 each	 ear	 separately)	 and	 necessary	 co-contraction	 of	

other	 facial	muscles	 to	generally	 activate	PAMs.	A	 second	questionnaire	evaluated	 the	

training	characteristics	and	contained	rating	items	regarding	effectiveness	and	required	

effort	 for	 the	 computer	 training.	 Open	 questions	 concerned	 special	 progress	 on	 a	

particular	day	and	whether	subjects	experienced	a	definite	moment	of	success.		

Since	subjects	with	tetraplegia	were	familiar	with	wheelchair	control,	they	additionally	

evaluated	 the	 ACS	 on	 the	 same	 answering	 scale	 (e.g.	 fitness	 for	 daily	 use,	 personal	

preference,	 several	 driving	 maneuvers).	 Finally,	 they	 completed	 the	 NASA	 TLX	

(perceived	workload:	mental,	 physical	 and	 temporal	 demand,	 performance,	 effort	 and	

frustration	(Hart	&	Staveland,	1988;	Rubio,	Diaz,	Martin,	&	Puente,	2004))	with	a	visual	

rating	scale	ranging	from	0	(very	little)	to	100	(very	high).	

	

2.1.9 Statistical	Analysis	

Results	 from	healthy	subjects	 for	each	performance	criterion	was	analyzed	using	SPSS	

(IBM,	Version	19,	IBM,	Armonk,	U.S.).	Data	from	left	and	right	ear	was	pooled	after	non-

significant	Repeated	Measures	ANOVAs	(all	p>0.05).	

Training	effects	were	analyzed	with	repeated	measures	ANOVAs	with	the	factor	“time”.	

Performance	 differences	 between	 session	 1	 and	 session	 5a	 and	 5b	 were	 further	

analyzed	with	 t-tests	 for	 paired	 samples	 or	 the	Wilcoxon	Rank	 test,	 if	 the	 criterion	 of	

normal	distribution	was	not	met	 (Shapiro-Wilk	 test).	All	p-values	were	compared	 to	a	

Bonferroni-corrected	alpha-level	of	0.025	(αcorr	=0.05/2=αglobal/number	of	tests)	to	minimize	

the	 risk	 of	 false	 positive	 results	 (Bland	 &	 Altman,	 1995).	 T-tests	 were	 used	 for	

differences	 between	 EW	 and	 NEW	 (independent	 samples,	 sessions	 1,	 5a	 and	 5b,	

αcorr=0.05/3=0.016)	 and	 the	 questionnaire	 about	 PAM	 control	 (paired	 samples,	 Mean	

session	1:	M1,	mean	session	5:	M5).	
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2.2 Results	

2.2.1 Training	effects	on	ACS	performance		

For	 the	 able-bodied	 subjects	 (n=10),	 repeated	 measures	 ANOVAs	 revealed	 training	

effects	for	all	eight	performance	criteria	(all	p<0.05,	Supp.	Table	1).	The	effect	size	Eta-

squared	 ranged	 between	 0.249	 (reaction	 time	 for	 contraction)	 and	 0.545	 (repetition	

rate	of	contractions),	with	a	mean	of	0.405	(Supp.	Table	1).		

In	general,	the	performance	had	improved	significantly	by	session	5a	and	continued	to	

improve	 during	 the	 last	 session	 of	wheelchair	 driving	 (session	 5b,	 see	 Figure	 10	 and	

Supp.	Table	1)	for	results	of	dependent	t-tests,	αcorr=0.025).	More	concretely,	the	mean	

reaction	times	for	contractions	decreased	from	585	ms	in	the	first	session	to	408	ms	in	

session	5b	(Figure	10	A)	as	did	reaction	times	for	relaxation	(692	ms	to	462	ms,	Figure	

10	 B).	 Subjects	 thus	 learned	 to	 activate	 and	 relax	 their	 PAM	 faster.	 The	 maximum	

contraction	 rate	 reflected	 this,	 it	 increased	 significantly	 from	 an	 initial	 1.057	 Hz	 to	 a	

maximum	1.408	Hz	in	session	5a	(Figure	10	C).	In	lateralized	activation,	the	percentage	

of	correct	activations	doubled	from	26.7%	in	session	1	to	50.6%	in	session	5b	(Figure	10	

F).	This	means	control	over	the	ACS	improved	with	training,	as	confirmed	in	the	virtual	

obstacle	 course	 (Figure	 11).	 The	 length	 of	 the	 driven	 path	 (Figure	 10	 G)	 decreased	

significantly	from	4036	pixel	in	session	1	to	2997	pixel	in	session	5b,	as	did	completion	

time	(Figure	10	H),	which	decreased	by	more	than	half,	from	127.4	s	to	62.5	s.		

Performance	 in	 graded	 PAM	 activation	 and	 maximum	 contraction	 duration	 were	

exceptions.	They	benefitted	especially	from	wheelchair	driving	in	the	last	session	5b,	but	

did	 not	 attain	 statistical	 significance	 in	 session	 5a.	 Graded	 PAM	 activation	 improved	

from	63.4%	in	session	1	to	75.1%	in	session	5a,	with	an	additional	increase	to	80.6%	in	

session	 5b	 (Figure	 10	 D).	 Similarly,	 in	 maximum	 contraction	 duration	 subjects	 held	

contractions	 for	15	s	 longer	before	wheelchair	driving	 than	 initially	 (session	1:	50.3	s,	

session	5a:	64.8	s,	Figure	10	E)	with	an	extra	5	s	after	the	wheelchair	session	(session	

5b:	70.6	s).	

Finally,	we	 looked	 for	differences	between	 the	 five	 initial	 “ear-wigglers”	 (EW)	and	 the	

five	 initial	 “non-ear-wigglers”	 (NEW,	 see	Supp.	Fig.	7	 for	examples)	 in	 the	able-bodied	

volunteers.	 Prior	 ability	 to	 wiggle	 the	 ears	 seems	 to	 have	 an	 impact	 on	 lateralized	

activation	 ability.	Although	both	 groups	 improved	 their	 performance	by	 almost	 100%	
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from	the	first	session	to	the	last,	EWs	still	had	a	higher	final	score	than	NEWs	(session	1:	

MEW=32%,	 MNEW=21.3%,	 t(8)=0.914,	 p=0.388;	 session	 5a:	 MEW=62.7%,	 MNEW=38.4%,	

t(8)=2.732,	 p=0.026,	 Supp.	 Fig.	 7	 C).	 In	 most	 performance	 criteria	 however,	 no	

differences	were	 found	between	 the	 two	 groups.	 In	 summary,	 the	performance	 of	 the	

ACS	 improved	 throughout	 the	 course	 of	 training	 in	 all	 able-bodied	 participants.	 The	

training	effect	seemed	to	be	mostly	independent	of	the	initial	ability	to	wiggle	the	ears	

except	for	lateralized	activation.		
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Figure	10)	Positive	training	effects	on	PAM	activation.		

Mean	 results	 with	 standard	 error	 of	 ten	 able-bodied	 subjects	 in	 eight	 tests	 of	 the	 PAMs’	 activation	
performance	during	four	days	of	training	(session	1	–	session	4)	and	before	and	after	powered	wheelchair	
driving	 (session	 5a,	 session	 5b).	 Subjects	 were	 tested	 for	 reaction	 time	 of	 PAM	 contraction	 (A)	 and	
relaxation	 (B),	 contraction	 rate	 (C),	 graded	 activation	 (D),	 maximum	 contraction	 duration	 (E)	 and	
lateralized	activation	(F).	In	addition,	driving	skills	on	a	virtual	obstacle	course	were	tested	as	path	length	
(G)	and	speed	(H).	Significant	differences	between	session	1	and	session	5a	or	session	1	and	session	5b	as	
tested	with	paired	t-tests	or	Wilcoxon	Rank	test	are	marked	+=p<0.05	or	*=p<0.025	(Bonferroni	corrected	
alpha	level).	
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Figure	11)	Improved	performance	using	the	ACS	in	a	virtual	obstacle	course.		

Individual	 paths	 (back	 lines)	 of	 able-bodied	 subjects	 in	 session	 1	 using	 the	 ACS.	 Training	 resulted	 in	 a	
decreased	number	of	turns,	collisions,	and	the	path	length	in	session	5b.		

	
Training	effects	of	the	participants	with	tetraplegia	were	similar	to	able-bodied	subjects	

(Figure	12	for	examples).	In	general,	T2	performed	slightly	below	the	level	of	the	able-

bodied	 subjects,	 while	 T1	 performed	 slightly	 better.	 In	most	 tests,	 their	 performance	

was	 still	 within	 the	 range	 of	 one	 standard	 deviation	 of	 the	 able-bodied	 subjects’	

performances.	Due	to	general	physical	and	mental	exhaustion	after	wheelchair	driving,	

session	5b	was	skipped	for	subject	T2,	as	well	as	the	contraction	duration	measurement	

in	session	5b	for	subject	T1.		

Regarding	reaction	times,	T1	was	able	to	further	improve	his	already	high	performance	

in	the	beginning	in	both	contraction	(session	1:	346	ms,	session	5b:	272	ms,	see	Figure	

12	A)	and	relaxation	times	(session	1:	561	ms,	session	5b:	73	ms).	T2’s	reaction	times	

varied	strongly.	For	example,	although	T2	showed	notable	 improvements	 in	session	4,	
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his	PAM	contractions	were	more	delayed	in	session	5a	than	in	the	beginning	(session	1:	

1008	ms,	session	5b:	1508	ms,	see	Figure	12	A).	The	same	was	true	for	relaxation	time	

(session	1:	979	ms,	session	5b:	1359	ms).	Nevertheless,	both	subjects	with	 tetraplegia	

improved	 their	 rate	 of	 maximum	 contractions	 notably.	 T1	 managed	 to	 improve	 his	

initial	1.22	Hz	to	1.55	Hz	in	session	5b,	while	T2	also	improved,	although	to	a	lower	level	

(session	1:	0.65	Hz,	session	5a:	0.93	Hz).	Both	subjects	did	not	improve	their	fine	muscle	

control	 as	 measured	 by	 graded	 PAM	 activation	 (T2	 session	 1:	 79.12%,	 session	 5a:	

79.75%,	see	Figure	12	B).	T1’s	precision	 in	PAM	activation	even	decreased	(session	1:	

65.58%,	 session	 5b:	 61.72%).	 Here,	 a	 ceiling	 effect	 appeared,	 since	 both	 subjects	

performed	above	the	mean	of	the	able-bodied	subjects	(Figure	12	B).	

The	maximum	time	of	contraction	again	showed	variations.	Although	T1	in	the	end	was	

able	to	generate	a	slightly	longer	persistent	PAM	contraction	(session	1:	43.9	s,	session	

5a:	58.6	s),	this	individual	had	some	performance	drops	(e.g.	session	3:	22.1	s).	The	same	

applies	 for	 T2	 (session	 1:	 34.2	 s,	 session	 3:	 7.3	 s,	 session	 5a:	 45.8	 s).	 The	 ability	 to	

lateralize	PAM	activation,	on	the	other	hand,	improved	notably	in	both	subjects	(Figure	

12	C).		

The	 driving	 skills	 measured	 in	 the	 virtual	 obstacle	 course	 improved	 notably	 in	 both	

subjects	(Figure	12	D	and	E,	Figure	13	B).	T2	needed	30	s	less	at	the	end	compared	to	

onset	 of	 training	 to	 complete	 the	 course	 (session	 1:	 139.5	 s,	 session	 5a:	 104.9	 s).	 T1	

improved	by	20	s,	although	his	initial	performance	was	already	high	(session	1:	91.0	s,	

session	5b:	 71.6	 s),	with	 a	maximum	speed	of	 only	50.3	 s	 on	 session	4.	Both	 subjects	

shortened	the	driving	path	from	3993	pixels	to	3409	pixels	(T2)	and	from	4853	pixels	to	

2680	pixels,	respectively	(T1).	
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Figure	12)	Training	effects	of	subjects	with	tetraplegia.		

Individual	 results	 of	 T1	 (blue	 lines,	 circles)	 and	 T2	 (squares)	 compared	 to	 able-bodied	 subjects’	mean	
results	 (green	 line)	 with	 standard	 deviations	 in	 selected	 PAM	 performance	 criteria:	 reaction	 time	 of	
contraction	 (A),	 graded	activation	 (B),	 lateralized	 activation	 (C)	 and	path	 length	 (D)	 and	 speed	 (E)	 in	 a	
virtual	obstacle	course.	
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2.2.2 Wheelchair	driving	with	PAM	EMG-generated	control	signals	

In	 the	second	part	of	 the	study	(session	5	b),	all	subjects	controlled	a	wheelchair	with	

the	ACS.	All	subjects,	including	those	with	tetraplegia,	were	able	to	drive	the	wheelchair	

along	a	straight,	three-meter	wide	corridor	for	a	distance	of	at	least	four	meters	by	full	

co-activation	of	the	PAMs	on	both	sides.	All	managed	to	turn	on	command	up	to	360°	in	

both	 directions	 by	 selectively	 activating	 one	 side.	 In	 addition,	 both	 subjects	 with	

tetraplegia	 successfully	 completed	 a	 complex	 obstacle	 course	 (Figure	 13	A).	 Both	 had	

one	collision,	but	managed	to	complete	 the	course	within	a	reasonable	 time	(T1:	86	s;	

T2:	201.6	s).	

	

Figure	13)	Real	and	virtual	wheelchair	driving	using	the	ACS.	

Powered	wheelchair	driving	paths	(A)	of	two	subjects	with	tetraplegia	in	a	real	obstacle	course.	The	path	
was	 filmed	 and	manually	 digitalized	 into	 the	 corresponding	 virtual	 obstacle	 course.	 Subject	 T1	 needed	
1.45	min	and	subject	T2	3.36	min.;	both	had	one	collision.	Blue	lines	(B)	show	driving	paths	in	an	analogue	
virtual	obstacle	course	in	test	5	a	(before	wheelchair	driving).	

	
	

2.2.3 Subject-reported	outcomes	on	training	and	ACS	performance		

Participants	 evaluated	 their	 ability	 to	 control	 PAM	 activation	 (four-point	 answering	

scale,	1=	not	at	all,	4=	a	lot)	to	have	improved	during	the	study	from	a	“moderate”	level	

(M1=2.7)	in	the	first	training	session	to	an	almost	maximum	level	(M5=3.8,	t(9)=-6.128,	

p=0.000)	 at	 the	 end.	 When	 divided	 into	 subgroups,	 ear-wigglers	 initially	 rated	 their	

ability	 for	PAM	activation	higher	 than	NEW	(MEW,	1=3.2,	MNEW,	1	=2.2),	 but	NEW	almost	



	

46	

reached	the	top	level	in	the	end	(MEW,	5	=4.0,	MNEW,	5	=3.6).	Subjects	generally	considered	

that	 their	 ability	 to	 activate	 each	 PAM	 separately	 had	 improved	 substantially	 with	

training	 (right	 PAM:	M1	 1.7,	M2	3.25,	 t(9)=-6.012,	 p=0.000;	 left	 PAM:	M1	 1.6,	M2	3.35,	

t(9)=4.389,	 p=0.002).	 These	 results	 actually	 reflect	 the	 objective	 results	 from	 the	

performance	 criteria.	 The	 required	 mental	 effort	 and	 concentration	 during	 the	

procedure	 decreased,	 though	 not	 significantly,	 as	 did	 self-perceived	 co-activation	 of	

facial	muscles.	

Subjects	 with	 tetraplegia	 considered	 the	 ACS	 to	 be	 technically	 mature	 enough	 for	

everyday	 use	 (M=3.7)	 and	were	 eager	 to	 use	 it	 (M=4).	 Difficulty	 in	 precise	 command	

generation	 was	 judged	 to	 be	 “small”	 (M=2.25).	 Specific	 driving	 maneuvers	 such	 as	

narrow	 or	 wide	 turns,	 and	 precision	 and	 time	 to	 reaction	 received	 medium	 scores	

(M=2.5	 -	 2.75).	 Both	 used	 a	 joystick	 control	 in	 daily	 life	 and	 hence	 called	 hands-free	

control	 a	 major	 advantage	 of	 the	 ACS.	 Suggestions	 for	 improvements	 were	 a	 self-

controlled	emergency	stop	and	a	reverse	gear	as	well	as	control	over	electronic	devices	

as	an	additional	application	area	for	the	ACS.	For	safely	using	the	ACS,	T2	expected	seven	

and	T1	14	more	necessary	training	days.		

The	 NASA	 TLX	 (Task	 Load	 Index,	 answering	 scale:	 0=very	 low	 –	 100=very	 high)	

revealed	a	 low	general	workload	 for	 subject	T1	 (M=27)	and	medium	workload	 for	T2	

(M=57)	when	using	the	ACS.	T1	gave	medium	scores	to	the	subscales	of	mental	demand	

and	effort	(50	each),	while	he	judged	the	physical	demand	to	be	low	(30).	Surprisingly,	

he	also	judged	his	success	as	low	(30).	Temporal	demands	and	frustration	on	the	other	

hand	 did	 not	 matter	 to	 T1	 at	 all	 (0).	 Frustration	 was	 also	 not	 important	 for	 T2	 (0),	

however,	mental,	physical	and	temporal	demand	received	medium-high	scores	(70).	T2	

had	to	put	in	a	medium	effort	(50),	and	judged	his	own	performance	to	be	medium	(50).
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2.3 Discussion	

This	 study	 revealed	 two	 novel	 findings.	 First,	 voluntary	 activation	 of	 the	 auricular	

muscles,	 the	 prerequisite	 for	 an	 ACS,	 can	 be	 learned	 and	 trained	 in	 a	 short	 period	 of	

time.	 All	 subjects	 improved	 in	 various	 tests	 of	 the	 ACS’s	 performance,	 including	 the	

important	lateralization	of	PAM	activation.	The	second	major	finding	is	that	the	ACS	can	

serve	 as	 an	 alternative	 control	 system.	 Precise	 signal	 generation	 made	 it	 possible	 to	

control	 a	 powered	wheelchair	 at	 a	 high	 performance	 level.	 Subjective	 evaluation	was	

highly	positive,	rating	the	ACS	as	ready	for	daily	use.		

	

2.3.1 Voluntary	control	of	PAM	activation		

The	limited	research	on	the	auricular	muscles	reports	conflicting	evidence	on	whether	

humans	can	 intentionally	activate	 the	auricular	muscles	 (Berzin	&	Fortinguerra,	1993;	

Serra	et	al.,	1986).	Our	results,	however,	clearly	demonstrate	that	the	auricular	muscles	

can	 be	 voluntarily	 controlled	 and	 that	 this	 control	 can	 be	 learned	 and	 trained.	 The	

training	 effect	 was	 most	 impressive	 in	 those	 subjects	 who	 had	 declared	 themselves	

unable	 to	 control	 their	 PAMs	 in	 the	 beginning.	 These	 non-ear-wigglers	 were	 actually	

able	to	attain	the	performance	levels	of	the	ear-wigglers	in	most	of	the	studied	outcome	

measures.	These	 results	 indicate	 that	 control	over	 the	PAMs	 is	 largely	 independent	of	

previous	 ability,	 is	 easy	 to	 learn	 and	 that	 considerable	 performance	 can	 be	 achieved	

even	 with	 little	 training.	 One	 exception	 is	 lateralized	 activation.	 Longer	 training	 may	

help	 the	NEW	 to	 equal	 the	 EW’s	 proficiency	 in	 this	 task,	 but	 this	 has	 to	 be	 shown	 in	

future	 studies.	 Participants	with	 tetraplegia	 showed	more	 unstable	 results	 than	 able-

bodied	 subjects,	 however,	 since	 the	 group	 size	 was	 small	 we	 do	 not	 want	 to	 draw	

conclusions	from	this.	Possible	reasons	for	a	difference	might	be	their	use	of	spasmolytic	

medication	and	participation	in	the	regular	intensive	clinical	therapy	program	(around	

six	hours	of	daily	physical	and	mental	exercises).	

The	 voluntary	 control	 of	 the	 PAMs	 learned	 by	 our	 subjects	 is	 not	 limited	 to	 a	 basic	

activation.	 Participants	 learned	 to	 perform	 complex	 actions,	 such	 as	 control	 over	 a	

lateralized	 and	 graded	 PAM	 activation	 or	 the	 rate	 of	 sequential	 contractions.	

Interestingly,	 the	 learning	 curve	 for	 this	 new	 skill	 is	 not	 necessarily	 a	 uniformly	

continuous	increase.	Sporadic	or	selective	improvements	(see	e.g.	Figure	10	C,	F	and	B)	
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can	be	partly	 explained	by	 reported	moments	of	 insight,	 in	which	 subjects	 “suddenly”	

understood	 what	 they	 had	 to	 do	 in	 order	 to	 activate	 their	 PAMs.	 This	 moment	

reportedly	 occurred	 most	 often	 on	 day	 three.	 This	 is	 directly	 reflected	 in	 the	

performance	 improvements	 on	 day	 three	 in	 lateralized	 activation	 and	 in	 the	 reaction	

time	 for	contraction,	but	also	 in	maximum	contraction	duration	(Figure	10	F,	A	and	E,	

respectively).	 These	 results	 prove	 that	 control	 over	 the	 PAMs	 is	 easy	 to	 learn	 and	

considerable	performance	can	be	achieved	even	with	a	short	training	period.		

The	 visual	 feedback	 of	 EMG	 activity	 used	 in	 our	 study	was	 reported	 to	 be	 especially	

helpful	 for	skill	acquisition,	as	has	been	observed	in	training	of	voluntary	activation	of	

other	inaccessible	muscles	(e.g.	pelvic	floor	muscle	or	sphincter	muscles	(Theofrastous	

et	 al.,	 2002)).	 Results	 suggest	 that	 the	 immediate	 senso-motor	 feedback	 when	

controlling	a	wheelchair	with	the	PAM	might	be	even	more	effective:	a	contraction	of	the	

right	PAM,	 for	example,	moves	the	whole	body	 into	the	desired	direction.	Accordingly,	

subjects	with	tetraplegia	had	fewer	collisions	in	a	real	world	obstacle	course	than	in	the	

virtual	 obstacle	 course	 (Figure	 11).	 The	 intuitive	 control	 commands	 of	 the	ACS	might	

thus	increase	the	learning	effect	further	with	longer	wheelchair	sessions.	

The	ability	to	voluntarily	control	 the	auricular	muscles	suggests	an	 involvement	of	 the	

primary	motor	cortex	(M1).	Training	control	over	the	auricular	muscles	may	thus	have	a	

direct	 influence	 on	 the	 neuronal	 plasticity	 of	 the	 involved	 cortical	 area.	 A	 neuronal	

reorganization	caused	by	training	usually	interacts	with	an	enhanced	performance,	e.g.	

in	complex	motor	tasks	(Karni	et	al.,	1995).	It	is	therefore	likely	that	longer	training	of	

voluntary	 PAM	 activation	 would	 lead	 to	 a	 neuronal	 reorganization	 that	 would	 then	

further	increase	control	over	PAM	activation.	Since	the	motor	cortex	is	widely	inactive	in	

subjects	with	tetraplegia,	one	might	speculate	that	they	have	a	higher	training	potential	

than	able-bodied	impaired	individuals.	Future	studies	should	investigate	whether	longer	

training	 periods	 indeed	 lead	 to	 a	 neuronal	 reorganization	 and	 whether	 this	 would	

perhaps	 enable	 a	more	 differentiated	 control	 over	 the	muscles,	 for	 example	 separate	

activation	of	the	posterior	and	superior	auricular	muscles.		
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2.3.2 Application	of	the	ACS	for	wheelchair	control	

Regarding	the	second	finding,	the	results	demonstrate	that	auricular	muscle-generated	

EMG	signals	can	serve	as	precise	command	signals.	Improvements	in	driving	capabilities	

resulted	 in	 higher	 speed	 and	 shorter	 driven	 path	 length	 in	 virtual	wheelchair	 driving	

and	in	the	successful	generation	of	basic	steering	commands	in	a	powered	wheelchair.		

Similar	to	other	reports	on	wheelchair	control	systems	(Han,	Zenn	Bien,	Kim,	Lee,	&	Kim,	

2003;	 J.	D.	R.	Millán	et	 al.,	 2009),	more	advanced	wheelchair	driving	capabilities	were	

assessed	 in	 the	 two	subjects	with	 tetraplegia	 since	 they	are	 the	main	 target	group	 for	

this	 type	 of	 technology.	 Although	 these	 participants	 had	 no	 experience	 in	 ACS	

wheelchair	control,	they	managed	complex	driving	situations	that	approximate	those	of	

real	life	with	only	one	collision	each.	In	comparison	to	other	control	systems,	a	trapezius	

muscle	 controlled	 system	 produced	 poorer	 results	 with	 four	 to	 seven	 collisions	 on	 a	

straight	10	m	track	(Han	et	al.,	2003).	Brain	Computer	Interfaces	(BCI)	suffer	from	a	low	

information	transfer	rate,	low	robustness	and	a	high	likelihood	of	false	commands	(Ryu	

&	 Shenoy,	 2009;	 Wolpaw	 et	 al.,	 2002),	 which	 makes	 precise	 wheelchair	 driving	

challenging	 (e.g.	 subjects	 completely	 failed	 to	 reach	 a	 designated	 position	 even	 with	

intelligent	wheelchairs	(J.	D.	R.	Millán	et	al.,	2009)	or	had	difficulties	reaching	a	target	2	

m	away	(Tanaka	et	al.,	2005)).	The	performance	of	subject	T2	furthermore	indicates	that	

even	with	 below-average	 results	 on	 the	 performance	 criteria,	 complex	 control	 signals	

can	be	successfully	generated	with	the	PAMs.	Most	notably,	despite	the	short	adjustment	

period	(five	minutes)	subjects	with	tetraplegia	reported	only	low-to-medium	workload	

on	the	NASA	TLX	for	using	the	wheelchair	control	system.	

Precise	signal	generation	determines	safety	aspects	in	electric	wheelchair	driving.	With	

the	 ACS,	 users	 must	 avoid	 involuntary	 activations	 that	 can	 lead	 to	 false	 commands.	

Participants	with	tetraplegia	estimated	that	they	would	require	only	7	to	14	more	days	

of	training	to	achieve	complete	and	safe	control	of	the	wheelchair	using	the	ACS.		

Besides	 precision,	 user	 safety	 largely	 depends	 on	 the	 ability	 to	 quickly	 and	 flexibly	

modulate	 the	 control	 signal,	 e.g.	 in	 the	 event	 of	 a	 sudden	 dangerous	 situation.	 Slow	

control	 signal	modulation	 is	 a	major	 drawback	 of	 some	 control	 systems,	 such	 as	 BCI	

(Diez	et	al.,	2013;	J.	D.	Millán	et	al.,	2010),	but	also	of	voice	control	(Simpson	&	Levine,	

2002;	Youdin	et	al.,	1980).	In	order	to	avoid	collisions	when	driving	a	wheelchair,	shared	

control	based	on	external	sensors	or	intelligent	algorithms	(Iturrate,	Antelis,	&	Minguez,	
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2009;	J.	D.	R.	Millán	et	al.,	2009)	can	be	employed,	but	this	comes	at	the	cost	of	individual	

control	and	flexibility.	In	our	study,	this	signal	speed	was	tested	with	reaction	times	for	

PAM	 contractions,	 which	 decreased	 with	 training	 to	 an	 average	 of	 408	 ms.	 This	 is	

surprisingly	close	to	reaction	times	for	the	right	index	finger	that	ranges	from	280	ms	to	

320	ms	for	visual	cues	(Niemi	&	Naatanen,	1981).	A	more	detailed	analysis	of	our	data	

revealed	 that	 six	 individuals	managed	 to	 generate	 an	 above-threshold	 PAM	activation	

speed	 of	 even	 less	 than	 400	 ms,	 with	 a	 mean	 reaction	 time	 of	 323	 ms	 (SD	 39	 ms).	

Interestingly	 enough,	 half	 of	 these	 were	 initial	 non-ear-wigglers.	 These	 fast	 reaction	

times	after	 such	a	 short	 training	 time	demonstrates	 the	potential	 that	 the	PAM	has	 in	

signal	 generation.	 Fast	 signal	 generation	 results	 not	 only	 in	 better	 safety,	 but	 also	

permits	 higher	 driving	 speed,	 which	 considerably	 increases	 users’	 satisfaction	 with	

driving.	

Another	 safety	 issue	 is	 the	 so-called	Midas	Touch	problem.	For	 control	 systems	 it	 is	 a	

challenge	 to	 distinguish	 between	 intentional	 and	 an	 unintentional	 signal,	 e.g.	 a	 signal	

gaze	and	a	normal	gaze	in	eye-tracking	control	(Barea	et	al.,	2002).	The	advantage	of	the	

ACS	 becomes	 clear	 especially	 in	 this	 context:	 since	 the	 auricular	 muscles	 assume	 a	

function	only	in	the	context	of	the	ACS,	there	is	no	interference	with	an	original	function	

as	in	the	case	of	the	eyes	or	hands.	The	ACS	is	hence	minimizing	the	risk	of	involuntary	

commands.		

Compared	 to	 other	 control	 systems,	 signal	 generation	 with	 the	 ACS	 has	 two	 special	

characteristics.	 First,	 the	 control	 is	 proportional:	 signal	 strength	 depends	 on	 muscle	

contraction	strength.	Results	from	e.g.	graded	PAM	activation	and	online	modification	of	

the	real	wheelchair	driving	course	suggest	that	the	user	can	modulate	the	amplitude	of	

the	control	signal	by	using	different	degrees	of	PAM	activation	in	an	analogue	manner.	

Second,	EMG	signal	transmission	is	continuous.	The	control	signal	is	thus	generated	for	

as	 long	 as	 the	 muscle	 contracts,	 allowing	 constant	 control	 over	 the	 output	 action.	

Continuous	signals	are	a	major	advantage	over	simple	absolute	signals,	where	subjects	

can	only	decide	e.g.	between	90°	turns	or	driving	straight	ahead,	without	the	option	to	

modify	the	command	in	real	time,	as	it	is	the	case	e.g.	with	the	basic	sip-and-puff	control	

system	(Kim	et	al.,	2013).	Generating	continuous	command	signals	also	remains	a	major	

challenge	in	BCI	research	(Diez	et	al.,	2013;	Donoghue,	2008;	Wolpaw	et	al.,	2002).		
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The	combination	of	both	features	in	the	ACS	supports	a	joystick-like	performance.	They	

open	a	wide	 field	of	application	 for	 the	ACS,	particularly	whenever	a	precise,	 constant	

control	over	an	output	action	 is	 required.	When	used	 to	 steer	a	wheelchair,	users	 can	

simultaneously	 control	 the	 strength	 of	 the	 translational	 and	 rotational	 wheelchair	

movements,	 e.g.	 steering	 forward	 and	 left	 at	 the	 same	 time	 using	 bilateral	 PAM	

contractions	 with	 more	 PAM	 activation	 on	 the	 left	 side.	 In	 contrast,	 other	 control	

systems	 require	 the	 wheelchair	 to	 completely	 stop	 before	 rotational	 steering	

movements	 can	 be	 initiated	 (Simpson	 &	 Levine,	 2002;	 Tanaka	 et	 al.,	 2005).	 The	

possibility	to	drive	S-curves	on	a	slalom	course	with	our	system	was	hence	particularly	

valued	by	our	subjects	with	tetraplegia.		

Additional	 commands	can	be	assigned	conveniently	 in	 the	 frame	of	a	 serial	 command,	

e.g.	 two	 short	 co-contractions	 switch	 the	 system	 to	 backgear.	With	 the	 ACs,	 we	 have	

three	raw	signals	(left	ear,	right	ear	and	co-contraction)	that	can	be	combined	to	carry	

out	additional	commands.		

We	have	demonstrated	here	 that	 the	PAM,	 hitherto	 regarded	 as	 rudimentary	muscles	

with	 no	 dedicated	 function,	 can	 take	 on	 a	 complex	 control	 function.	 This	 differs	 from	

other	control	systems,	e.g.	 tongue	control	(Kim	et	al.,	2013;	Lontis	et	al.,	2010;	Struijk,	

2006)	 or	 even	 simple	 hand	 control,	 in	 which	 already	 present	 motor	 functions	 are	

assigned	an	additional	purpose	and	thus	interfere	with	the	original	motor	activity.	The	

sole	control-purpose	of	this	muscle	minimizes	the	risk	of	unintentional	commands,	also	

known	 as	 the	 Midas	 Touch	 Problem.	 With	 the	 integration	 of	 the	 PAM	 into	 a	 new	

functional	context,	the	ACS	makes	full	use	of	the	unexploited	potential	that	this	muscle	

has,	 particularly	 for	 individuals	with	 tetraplegia,	 in	whom	only	 a	 few	motor	 functions	

are	preserved.		

	

2.3.3 Evaluation	of	the	ACS:	social	implications	

Evaluation	of	the	subjects	with	tetraplegia	focused	on	an	often-overlooked	disadvantage	

of	 established	 wheelchair	 control	 systems,	 namely	 that	 they	 interfere	 with	 social	

interaction.	 Unlike	 the	 chin	 control	 or	 any	 mouth	 based	 control	 (Kim	 et	 al.,	 2013),	

activation	of	the	PAM	allows	subjects	to	simultaneously	move	their	head,	chew	and	even	

talk	while	controlling	the	wheelchair,	which	confirms	an	earlier	case	report	where	PAM	
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activation	 and	 speech	 did	 not	 interfere	 (Foldes	 &	 Taylor,	 2010).	 Only	 broad	 smiling	

provoked	 a	 PAM	 co-contraction	 in	 some	 cases.	 Thanks	 to	 the	 isolated	 position	 of	 the	

PAM,	the	social	advantage	over	already	existing	systems	therefore	remains	considerable.	

Independence	 is	 another	 crucial	 topic	 for	 individuals	 with	 tetraplegia.	 In	 tetraplegics	

who	 have	 a	 sense	 of	 enablement,	 depression	 scores	 do	 not	 differ	 from	 the	 general	

population	 (Middleton	 et	 al.,	 2007).	 Aside	 from	 greater	 independence	 in	 wheelchair	

control,	an	integrated	domestics	control	system	using	the	ACS	could	easily	improve	the	

self-sufficiency	 and	 thus	 life	 quality	 of	 persons	 with	 severe	 motor	 impairments	 by	

providing	e.g.	access	to	electronic	devices	or	social	media,	as	suggested	by	our	subjects	

with	 tetraplegia.	 The	 ACS	 thus	 has	 great	 potential	 not	 only	 to	 improve	 mobility	 for	

persons	depending	on	electric	wheelchairs,	but	could	also	have	a	positive	 influence	on	

social	and	psychological	aspects,	thereby	enhancing	their	quality	of	life.	

	

2.4 Conclusion	

We	showed	that	voluntary	control	of	the	auricular	muscles	can	be	 learned	by	training.	

Motor	learning	in	auricular	muscle	control	does	not	proceed	continuously	but	is	rather	

determined	 by	moments	 of	 insight.	 It	 is	 largely	 independent	 of	 prior	 proficiency	 and	

includes	control	over	complex	activation	patterns,	thus	fulfilling	the	prerequisites	for	an	

auricular-based	 control	 system.	This	proof-of-principle	 should	now	be	 replicated	with	

bigger	sample	sizes.	The	results	of	the	powered	wheelchair	driving	tests	demonstrated	

that	the	ACS	is	an	intriguing	alternative	to	existing	control	interfaces.	Its	characteristics,	

such	as	short	training	time,	proportional	and	continuous	control	as	well	as	high	signal	

quality	 and	 speed,	 and	 intuitive	 signal	 generation	 render	 it	 attractive	 not	 only	 for	

subjects	 with	 tetraplegia,	 but	 also	 for	 other	 wheelchair	 users	 and	 even	 application	

beyond	the	clinical	use,	whenever	hands-free	control	is	advantageous.		
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3 Independent	control	of	two	degrees	of	freedom	in	
prosthetic	hands	with	the	ACS	

After	 providing	 evidence	 of	 the	 suitability	 of	 the	 ACS	 for	 precise	 signal	 generation	 in	

wheelchair	 control,	 we	 aimed	 to	 test	 its	 application	 in	 another	 important	 field	 of	

assistive	devices,	namely	prosthesis	control.		

In	 this	study,	we	evaluated	whether	 integrating	the	ACS	 into	an	established	prosthesis	

control	 scheme	 (hybrid	 ACS,	 hACS)	 can	 solve	 the	 problem	 with	 prosthesis	 control	

outlined	 in	 the	 introduction.	Clinically	established	control	modes	can	only	control	one	

active	DOF	 at	 a	 time	 (Muzumdar,	 2004;	 Zecca	 et	 al.,	 2002)	which	makes	 the	 use	 of	 a	

prosthetic	 hands	 slow	 and	 results	 in	 low	 acceptance	 rates	 (Wright	 et	 al.,	 1995).	

Likewise,	these	control	interfaces	cannot	answer	to	the	complexity	of	newly	developed	

hand	prostheses	with	several	degrees	of	 freedom	(Atzori	&	Muller,	2015;	Belter	et	al.,	

2013;	Farina	et	al.,	2014).	

Other	alternatives	proposed	by	the	research	community	have	not	made	a	clinical	impact	

due	 to	 technical	 issues	 (pattern	 recognition	 (Ning	 Jiang	 et	 al.,	 2012))	 or	 interference	

with	daily	activities	(e.g.	foot	switch,	throat	microphone	(Carrozza	et	al.,	2007;	Mainardi	

&	 Davalli,	 2007).	 For	 the	 clinically	 established	 control	 options,	 typically	 the	 electrical	

activity	 of	 an	 agonist/antagonist	muscle	pair	 in	 the	 forearm	 is	measured	with	 surface	

electrodes	and	used	to	control	either	rotation	or	opening/closing	of	the	prosthetic	hand.	

In	the	following	study,	the	same	set	up	is	used	while	additional	muscle	signals	from	the	

bilateral	posterior	auricular	muscles	allow	the	control	over	a	second	DOF.	This	hybrid	

ACS	 can	 provide	 an	 independent,	 simultaneous,	 proportional	 control	 of	 two	 DOFs	 of	

prosthetic	hands.	Ten	able-bodied	subjects	and	one	subject	with	transradial	amputation	

tested	the	performance	of	the	hACS	and	the	clinically	established	slope	control	(SL)	and	

co-contraction	(CC).	Although	subjects	were	untrained	in	all	three	controls,	we	expected	

them	to	perform	better	in	two	established	tests	using	the	hACS	due	to	its	easier	control	

logic.		

This	 study	 is	 prepared	 for	 publication	 under	 the	 title:	 “A	 hybrid	 auricular	 control	

system:	 direct,	 simultaneous,	 and	 proportional	 myoelectric	 control	 of	 two	 degrees	 of	

freedom	in	prosthetic	hands.”	(Schmalfuss	et	al.,	n.d.).	
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3.1 Methods	

3.1.1 Study	protocol	

Ten	able-bodied	subjects	(mean	age:	28.5	±	7.8	yrs;	3	female,	7	male)	and	one	50-year-

old	 man	 with	 a	 transradial	 amputation	 participated	 in	 the	 study.	 In	 order	 to	 keep	

training	 time	 to	 a	minimum	we	 included	 subjects	who	were	 able	 to	 activate	 their	 ear	

muscles	voluntarily.	The	research	protocol	was	approved	by	the	ethics	committee	of	the	

University	of	Göttingen	and	was	in	accordance	with	the	latest	version	of	the	Declaration	

of	Helsinki.	Written	informed	consent	was	obtained	from	each	participant.		

We	 compared	 two	well-established	 prosthesis	 control	 interfaces,	 CC	 and	 SL,	 with	 the	

hACS.	The	subjects	were	allowed	ten	minutes	to	accustom	themselves	with	each	control	

interface	 before	 testing	 began.	 Each	 subject	 used	 the	 three	 interfaces	 to	 control	 the	

prosthetic	 hand	 (co-contraction,	 slope	 control,	 auricular	 control,	 each	 for	 approx.	 one	

hour).	A	session	lasted	approximately	four	hours.	

Performance	was	 compared	using	 two	validated	 tasks	with	practical	 relevance.	 In	 the	

clothespin	 relocation	 test	 (Amsuess,	 Goebel,	 Graimann,	 &	 Farina,	 2014;	 Hussaini	 &	

Kyberd,	 2016),	 subjects	 transferred	 three	 pins	 of	 the	 Rolyan	 Graded	 Pinch	 Exerciser	

(~10	N	grip	force)	from	a	horizontal	to	a	vertical	bar.	The	completion	time	(speed)	and	

number	of	dropped	pins	(errors)	were	recorded.	In	the	box	and	blocks	test	(Mathiowetz,	

Volland,	Kashman,	&	Weber,	1985)	the	number	of	square	blocks	that	subjects	were	able	

to	 move	 from	 one	 box	 to	 another	 in	 one	 minute	 was	 counted.	 In	 this	 simple	 grasp-

release	task,	rotation	causes	delays	and	results	in	fewer	transported	blocks.	This	test	is,	

therefore,	sensitive	to	false-positives	in	rotational	control.	

Since	the	position	of	the	arm	can	affect	accurate	prosthesis	control	(Fougner	et	al.,	2011;	

Ning	Jiang	et	al.,	2013),	the	clothespin	test	was	conducted	in	three	arm	positions	(low	=	

test	is	located	at	knee	height,	middle	=	test	is	located	at	hip	height,	high	=	test	is	located	

at	shoulder	height).	Five	repetitions	per	arm	position	were	performed	in	the	same	order	

for	 all	 subjects	 (middle,	 high,	 low),	 and	each	arm	position	was	 tested	 twice	with	 each	

control	interface	(block	1	and	block	2,	30	items	total	per	control	interface).	To	eliminate	

the	 potential	 bias	 of	 cross-method	 learning,	 the	 order	 of	 the	 three	 interfaces	 was	

randomized	across	subjects.	
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3.1.2 Prosthesis	and	control	interfaces	

The	 artificial	 hand	 (System	 Electric	 Hand	 DMC	 plus	 with	 rotation	 unit,	 Otto	 Bock,	

Duderstadt,	Germany)	was	affixed	to	a	custom-made	cast	arm	shaft,	with	a	tube	for	the	

electronics,	and	the	subject's	arm	was	fixated	in	the	shaft	(Figure	14	a).		

For	 all	 three	 control	 interfaces,	 bipolar	 surface	 EMG-amplifiers	 (13E200,	 Otto	 Bock,	

Duderstadt,	 Germany)	were	 placed	 over	 the	 flexor	 and	 extensor	muscles	 of	 the	wrist	

(Figure	14	a).	CC	and	SL	were	 investigated	with	a	 commercially	 available	 control	unit	

(Otto	Bock,	“Myorotonic”),	while	the	hybrid	ACS	was	implemented	with	a	custom-made	

interface	and	control	logic.	

	

Figure	 14)	 Set-up	 of	 the	 auricular	 control	 system	 (A)	 and	 signal	 generation	 for	 the	 control	
interfaces	(B).	

In	the	ACS	(A),	fine	wire	electrodes	were	inserted	subcutaneously	over	the	posterior	auricular	muscle	and	
behind	the	pinna	(1).	The	ends	of	the	electrodes	were	connected	to	amplifiers	mounted	on	a	headset	worn	
by	the	subject	(2).	The	EMG	signals	were	transmitted	by	a	wireless	Zig-Bee	connection	to	 the	computer	
(3),	where	a	specially	developed	software	converted	them	into	rotational	signals	that	were	transmitted	by	
cable	(4)	to	the	prosthetic	hand.	For	all	three	control	systems,	Otto	Bock™	surface	electrodes	were	fixed	
on	 the	 flexor	and	extensor	muscles	of	 the	 subjects’	 arm	 (5).	The	prosthetic	hand	was	affixed	 to	an	arm	
shaft	(6)	that	was	put	over	the	subjects’	healthy	hand.	With	the	combination	of	the	auricular	and	forearm	
signals,	 the	 prosthetic	 hand	 (7)	 could	 be	 rotated	 and	 opened	 /closed	 simultaneously.	 For	 signal	
generation	(B)	with	slope	(SL)	control	(i),	a	slow	contraction	of	the	flexor	muscles	closed	the	prosthesis,	
while	a	slow	contraction	of	 the	extensor	muscles	opened	 it.	A	 fast	contraction	of	 the	 flexors	rotated	the	
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hand	to	the	right	and	a	fast	contraction	of	the	extensors	rotated	it	to	the	left.	A	small	pause	was	obligatory	
between	the	different	action	modes.	With	co-contraction	(CC)	control	 (ii),	 contracting	 the	 flexors	closed	
the	hand	and	contracting	the	extensors	opened	it.	In	order	to	rotate	the	hand,	a	simultaneous	contraction	
of	 flexors	 and	 extensors	 (co-contraction)	was	 required.	 Then,	 the	 contraction	 of	 the	 flexor	 produced	 a	
clockwise	rotation	of	the	prosthetic	hand	and	a	contraction	of	the	extensor	a	counter	clockwise	rotation.	
With	 the	 auricular	 control	 (iii),	 activating	 the	 flexors	 and	 extensors	 closed	 and	 opened	 the	 hand,	
respectively.	Activating	 the	right	auricular	muscle	 rotated	 the	prosthesis	clockwise,	while	activating	 the	
left	auricular	muscle	rotated	it	counter	clockwise.	A	simultaneous	activation	of,	e.g.,	the	extensors	and	the	
left	auricular	muscle	opened	the	hand	and	rotated	it	counter	clockwise	at	the	same	time.	

	
In	CC,	activation	of	the	flexor	muscles	closed	the	hand	while	activation	of	the	extensor	

muscles	opened	it	(Figure	14	b,	i).	In	order	to	switch	the	actuation	DOF	of	the	prosthetic	

hand,	 the	 subjects	 had	 to	 generate	 a	 co-contraction	 of	 both	 muscle	 groups.	 After	

changing	 the	actuation	mode,	 activating	 the	 flexor	muscles	pronated	and	 the	extensor	

muscles	supinated	the	prosthetic	hand.	A	 further	co-contraction	re-established	control	

of	opening	and	closing,	giving	a	sequential	control	of	the	two	actuation	DOFs.		

A	similar	principle	applied	for	slope	control	(Figure	14	b,	ii).	Here,	the	speed	of	a	single	

contraction	was	used	to	determine	the	task.	A	slow	contraction	of	the	extensor	muscles	

opened	the	hand	whereas	a	quick	contraction	of	the	same	muscles	supinated	the	hand.	

The	flexor	muscles	determined	hand	closing	and	pronation	in	the	same	manner.		

For	 the	hACS	(Figure	14	b,	 iii),	 activating	 the	extensor	and	 flexor	muscles	opened	and	

closed	 the	 hand,	 respectively.	 Wrist	 rotation	 was	 proportionally	 controlled	 by	 the	

auricular	muscles	(left	rotation	by	left	auricular	muscle,	right	rotation	by	right	auricular	

muscle).	With	this	approach,	both	actuation	DOFs	could	be	controlled	simultaneously	in	

a	 proportional	 manner	 and	 the	 actuation	 speed	 could	 be	 varied	 independently.	

Calibration	and	set	up	of	the	hACS	was	done	as	described	in	chapters	2.1.1	and	2.1.2.	The	

difference	 between	 the	 normalized	 left	 and	 right	 PAM	 signals	 was	 converted	 via	 a	

custom-made	 interface	 into	 a	 pulse-width	 modulated	 signal	 to	 directly	 drive	 the	

prosthesis	motor	of	the	rotation	unit	proportionally	in	both	directions.	

	

3.1.3 Statistical	analysis	

For	 the	 clothespin	 relocation	 test,	 every	 subject	 performed	30	 runs	with	 each	 control	

interface,	 resulting	 in	 a	 total	 of	 300	 items	 per	 control	 interface	 for	 all	 subjects.	 We	

calculated	 two	different	repeated	measures	ANOVAs	 for	 the	clothespin	relocation	data	

set	(control	 interface	x	arm	position;	control	 interface	x	time)	and	analyzed	the	effects	
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with	 post–hoc	 two-tailed	 t-tests.	 For	 each	 analysis	 the	 alpha	 level	 was	 Bonferroni-

corrected	for	multiple	testing	(type	of	control	interface:	αcorr=0.5/3=.0167,	arm	position:	

αcorr=0.5/3=.0167,	 time:	 αcorr=0.5/3=.0167).	 For	 the	 first	 ANOVA,	 Mauchly´s	 test	

indicated	 that	 the	assumption	of	 sphericity	was	violated	 for	 the	main	effect	of	 control	

interface,	χ2	(2)=20.16,	p=.00,	of	arm	position	χ2	(2)=8.65,	p=.013	and	of	the	interaction	

χ2	(9)=29.57,	p=.001,	 therefore	 degrees	 of	 freedom	were	 corrected	 using	Huynh-Feldt	

estimates	 of	 sphericity	 (ε=.85	 for	main	 effect	 of	 Control,	 ε=.94	 for	main	 effect	 of	 arm	

position	and	ε=.90	for	interaction).		

The	data	set	of	 the	box	and	blocks	 test	was	analyzed	with	another	repeated	measures	

ANOVA.	Again,	sphericity	was	violated,	χ2	(2)=10.08,	p=.006,	and	Huynh-Feldt	estimates	

of	 sphericity	were	 used	 (ε=.85).	 Three	 post-hoc	 t-tests	were	 calculated	 and	 the	 alpha	

level	was	Bonferroni-corrected	(αcorr=0.5/3=.0167).		

The	data	of	 the	subject	with	 the	 transradial	amputation	was	not	used	 in	 the	statistical	

analysis;	only	descriptive	statistics	are	provided	for	these	data.	

	

3.2 Results	

3.2.1 Functionality	of	the	control	systems		

The	 subjects	 performed	 faster	 (F(1.7,	 159.86)=230.08,	 p<0.001,	 Eta2=.710)	 in	 the	

clothespin	relocation	task	with	the	hACS	than	with	the	other	two	interfaces	(Figure	15	

a).	Post-hoc	tests	revealed	the	strong	advantage	of	simultaneous	control	of	both	rotation	

and	grasp	for	the	hACS.	Reliability	of	control	measured	by	the	number	of	dropped	pins	

was	particularly	better	with	hACS	(Figure	15	b).	An	average	of	2.8	pins	were	dropped	

using	 the	hACS,	while	 an	 average	of	 17.0	pins	were	dropped	using	 SL	 and	of	 6.6	pins	

using	CC.	

In	the	box	and	blocks	test	with	its	simple	grasp-release	task	with	one	DOF,	there	was	a	

significant	 effect	 of	 the	 control	 interface	 (F(1.71,	 75.27)=63.493,	 p<0.001,	 Eta2=.591).	

Post-hoc	 analysis	 revealed	 the	 same	 performance,	 i.e.	 same	 number	 of	 transported	

blocks,	for	the	hACS	and	CC	interface,	while	the	performance	with	SL	control	was	poorer	

(Figure	16).	



	

58	

	

Figure	 15)	 Speed	 and	 errors	 in	 ten	 able-bodied	 subjects	 in	 two-DOF	 clothespin	 relocation	 test	
(mean,	SEM).		

The	hybrid	ACS	(hACS)	performed	significantly	better	than	the	two	conventional	control	interfaces.	They	
completed	the	task	more	rapidly	(A)	(pairwise	comparison:	hACS	vs.	CC	t(293)=24.38,	p<0.001;	hACS	vs.	
SL	t(299)=22.34,	p<0.001)	and	dropped	fewer	pins	(B).	The	statistical	significance	of	the	difference	was	
greater	for	the	comparison	hACS	versus	SL	(pairwise	comparisons:	ACS	vs.	SL	t(8)=4.18,	p<0.01,	CC	vs.	SL	
t(44)=10.76,	p<0.05).	
	
	

	

Figure	16)	Results	in	one-DOF	box	and	blocks	test	(mean,	SEM).		

hACS	and	CC	performed	equally	well,	while	fewer	blocks	were	dropped	with	SL.	This	indicates	that	when	
using	hACS	the	subjects	were	able	to	 inhibit	 involuntary	ear	movements	to	efficiently	complete	the	task	
for	 which	 only	 the	 forearm	 signals	 for	 opening	 and	 closing	 the	 prosthesis	 were	 needed	 (pairwise	
comparisons:	hACS	vs.	SL	t(49)=11.2,	p<0.001,	CC	vs.	SL	t(44)=10.76,	p<0.001).	
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3.2.2 Influence	of	arm	position:	robustness	with	hACS	

Arm	position	had	a	significant	effect	on	completion	time	in	the	clothespin	relocation	task	

(F(1.87,175.94)=30.1,	p=.000,	Eta2=.243,	Figure	17),	but	the	effect	was	not	the	same	for	

the	three	control	interfaces	(control	interface	×	arm	position:	F(3.6,337.84)=2.5,	p=.05,	

Eta2=.026).	We	then	normalized	the	completion	time	from	the	“high”	arm	position	(that	

was	 the	 position	 with	 poorest	 performance)	 to	 the	 neutral	 “middle”	 arm	 position	

(setting	it	to	100%).	This	delta	was	significantly	greater	for	CC	than	hACS	(t-tests),	thus	

the	impact	of	the	arm	position	was	less	strong	for	the	hACS	(Figure	17).	When	using	SL,	

precision	also	suffers	from	the	high	arm	position,	but	not	as	much	as	when	using	CC.	

	

	

Figure	17)	Influence	of	arm	position	on	performance	in	the	clothespin	test	(mean,	SEM).		

The	 arm	 position	 (low,	 middle,	 high)	 had	 a	 significant	 influence	 on	 performance	 in	 the	 clothespin	
relocation	 test.	 Test	 completion	 was	 most	 rapid	 with	 the	 arm	 in	 the	 lower	 position	 for	 all	 control	
interfaces,	followed	by	the	middle	and	high	arm	position.	A	comparison	of	the	delta	between	the	high	and	
middle	positions	revealed	that	the	negative	effect	of	the	arm	position	was	less	strong	for	the	hACS	than	for	
the	CC	(pairwise	comparison:	ΔhACS	vs.	ΔCC	t(98)=2.47,	p<0.05).	Compared	to	SL,	there	was	no	significant	
difference	either	to	CC	or	hACS.	
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3.2.3 Training	effect	
Since	none	of	the	participants	had	any	experience	with	prosthesis	control,	we	expected	

significant	training	effects.	Five	runs	of	the	clothespin	relocation	test	were	performed	in	

each	arm	position	using	each	of	the	three	interfaces	(block	1).	The	entire	procedure	was	

then	repeated,	giving	two	blocks	of	five	runs	per	arm	position.	As	expected,	there	was	a	

difference	between	the	two	blocks	(F(1,	44)=17.45,	p=.000,	Eta2=.284),	albeit	not	for	all	

prosthesis	 control	 conditions	 (time	 x	 control	 interface:	 F(2,	 88)=4.79,	 p=.011,	

Eta2=.098).	 Post-hoc	 t-tests	 revealed	 improved	 performance	 for	 hACS	 and	 SL	 in	 the	

second	blocks	but	not	for	CC	(Figure	18).	

	

	
Figure	18)	Training	effect	in	the	clothespin	relocation	test	(mean,	SEM).		

A	strong	training	effect	was	seen	for	hACS	and	SL.	There	was	no	significant	training	effect	for	CC	(pairwise	
comparisons:	hACS	block	1	vs.	hACS	block	2	t(149)=5.914,	p<0.001;	SL	block	1	vs.	SL	block	2:	t(149)=4.49,	
p<0.001).	The	data	suggest	that	this	might	be	due	to	the	more	challenging	high	and	low	arm	positions.		
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3.2.4 Results	in	a	transradial	amputee	

One	50-year-old	man	with	a	 transradial	 amputation	of	 the	 left	 forearm	completed	 the	

same	 experimental	 sequence.	 In	 everyday	 life,	 he	 uses	 a	 hand	 prosthesis	 with	 a	

proportional	open-close	control	using	antagonistic	forearm	muscles.	In	his	own	words,	

he	chose	not	to	have	a	rotation	because	it	was	simpler	for	him	to	rotate	the	wrist	with	

his	contralateral	hand	than	to	use	the	established	control	interfaces,	i.e.	CC	or	SL.	In	the	

clothespin	relocation	test,	he	performed	best	with	the	hACS	(Figure	19).	His	experience	

with	myoelectric	 control	 is	 reflected	 in	 shorter	 completion	 times,	particularly	with	CC	

and	SL,	compared	to	the	able-bodied	naïve	subjects.	Nonetheless,	with	the	hACS,	he	was	

60%	 faster	 than	with	 CC	 and	 30%	 faster	 than	with	 SL.	 In	 the	 box	 and	 blocks	 test,	 he	

transported	more	blocks	with	the	hACS	than	with	the	SL	(168%,	MhACS=27.2,	MSL=16.29)	

and	only	slightly	fewer	than	with	the	CC	(MCC=31.6,	86%	of	CC).	

	

	

Figure	19)	Results	of	the	transradial	amputee	in	the	clothespin	relocation	test	(mean,	SD).		

The	amputee	 showed	better	performance	with	hACS	 than	with	 the	 conventional	 control	 interfaces.	The	
mean	completion	 time	with	 the	other	 control	 interfaces	was	 shorter	 than	 the	means	of	 the	able-bodied	
sample	(grey	columns).	
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3.3 Discussion	and	conclusions	

In	 this	 proof-of-principle	 study,	 we	 presented	 a	 new	 concept	 of	 a	 hybrid	myoelectric	

control	 interface	 that	 attributes	 a	 function	 to	 the	 formerly	 unexploited	 auricular	

muscles.	The	advantage	of	this	approach	is	that	both	actuation	DOFs	can	be	controlled	

simultaneously	 and	 proportionally.	 In	 this	 study	 we	 compared	 this	 hybrid	 auricular	

control	interface	to	two	conventional	control	interfaces,	CC	and	SL.	The	data	from	able-

bodied	 subjects	 and	 from	 a	 forearm	 amputee	with	 a	 hand	 prosthesis	 showed	 system	

performance	 superior	 to	 that	 of	 the	 two	 established	 control	 interface	 alternatives	 in	

standardized	tests.		

Subjects	 were	 able	 to	 relocate	 the	 clothespins	 more	 rapidly	 with	 the	 simultaneous	

control	of	rotation	and	grasp	provided	by	the	hACS.	No	interruptions	for	mode	switching	

are	 required,	 which	 allows	 for	 very	 natural	 and	 fluent	 movements.	 As	 an	 example,	

rotating	the	hand	back	into	the	pronated	position	can	be	initiated	while	simultaneously	

opening	 the	 hand	 to	 release	 the	 pin	 on	 the	 vertical	 bar.	 Conversely,	 in	 CC,	 switching	

between	the	DOFs	is	slow	and	interrupts	the	fluid	movement,	while	in	SL,	short	pauses	

are	required	between	contractions	to	permit	detection	of	the	slope.	

The	major	drawback	of	both	conventional	control	interfaces	is	their	sequential	nature	of	

activation.	 SL	 attempts	 to	minimize	 this	 problem	 by	 avoiding	 the	 tiresome	 and	 time-

consuming	mode-switching	 of	 CC,	 and	 utilizes	 the	 slope	 of	 the	 EMG	 signal	 to	 classify	

different	commands.	However,	our	results	did	not	show	any	difference	between	SL	and	

CC	 in	performance	 speed.	The	precise	muscle	 activation	and	 correct	 signal	 generation	

were	 presumably	 more	 complex	 in	 SL	 than	 with	 CC,	 where	 the	 risk	 of	 incorrect	

activations	 was	 smaller.	 Learning	 to	 use	 SL	 was,	 therefore,	 more	 challenging	 but	

performance	improved	between	the	first	and	second	block.	

The	hACS	also	allowed	a	greater	precision,	as	measured	by	the	number	of	dropped	pins	

during	 the	 clothespin	 test.	 This	 quite	 remarkable	 accuracy	 of	 hACS	 suggests	 that	 the	

system	is	robust	and	has	no	trade-off	between	speed	and	accuracy.	

Task	 completion	 time	 was	 shortest	 with	 hACS	 already	 in	 the	 first	 block	 that	 could	

indicate	a	more	 intuitive	 control	 than	with	 the	other	 interfaces.	Training	 substantially	

improved	performance	with	hACS	and	SL	but	not	with	CC,	where	the	performance	even	

worsened	 in	 the	 second	block	 for	 the	 low	and	high	 arm	positions	 (Figure	17).	 This	 is	
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presumably	due	to	the	difficulty	to	reliably	generate	co-contractions	in	challenging	arm	

positions.	 In	 these	 positions,	 the	 baseline	 muscle	 activation	 increases,	 as	 has	 been	

observed	in	elbow	flexors	(Howard,	Hoit,	Enoka,	&	Hasan,	1986),	thus	possibly	causing	a	

tiring	of	the	muscles	that	counteracts	the	learning	effect.		

The	 results	 of	 the	 box	 and	 blocks	 test	 documented	 the	 reliability	 of	 the	 hACS	 in	

situations	in	which	the	second	DOF	for	rotation	is	not	required	and	its	activation	should	

even	 be	 avoided.	 The	 subjects	 were	 able	 to	 avoid	 false	 ear	 muscle	 activation,	 which	

resulted	 in	 a	 performance	 similar	 to	 that	with	 CC.	 On	 the	 other	 hand,	with	 SL,	 fewer	

blocks	 were	moved	 because	 in	 this	 control	 interface	 the	 grasp	 function	 is	 associated	

with	slow	contractions.	

The	acceptance	rate	of	a	control	interface	depends	mainly	on	its	controllability,	which	is	

determined	 by	 the	 accuracy	 of	 movement	 selection,	 the	 intuitiveness	 of	 actuating	

control,	and	the	system	response	time	(Englehart	&	Hudgins,	2003).	Our	data	revealed	

that	 the	hACS	 is	 superior	 for	 the	 accurate	 selection	of	movements	 than	 the	 two	other	

control	systems.	 In	addition,	 the	hACS	 is	programmed	so	 that	activation	of	 the	 left	ear	

muscles	causes	the	hand	to	rotate	counter	clockwise	("left")	while	the	right	side	induces	

the	opposite	motion.	This	leads	to	an	intuitive	grasp	of	the	interface	function,	making	it	

easy	 to	 use	 and	 learn.	 The	 fact	 that	 the	 ear	 muscles	 have	 no	 original	 function	 is	 an	

advantage	over	other	proposed	control	options	when	it	comes	to	interference	with	daily	

activities.	

Finally,	the	hACS	gives	a	fast	response	time	with	direct	control	of	the	two	DOF.	On	the	

other	hand,	the	logic	of	the	two	conventional	control	interfaces	results	in	a	delay	of	the	

desired	 output	 action	 (Amsuess	 et	 al.,	 2014).	 Other	 control	 alternatives	 invariably	

decrease	 the	 system	 response	 time	 (Englehart	 &	 Hudgins,	 2003;	 Mainardi	 &	 Davalli,	

2007).	Adding	an	 independent	degree	of	 freedom	of	control	has	previously	resulted	 in	

affecting	either	 the	 system	response	 time,	 the	 intuitiveness	of	 control	 (Amsuess	et	 al.,	

2014),	 or	 the	 reliability	of	 the	 interface	 (Hakonen,	Piitulainen,	&	Visala,	 2015).	 In	 this	

study,	the	hACS	has	complied	with	all	three	characteristics	that	influence	the	acceptance	

rate,	rendering	it	a	viable	alternative	to	established	controls.	

When	compared	to	machine-learning-based	control	techniques,	the	hACS	has	the	typical	

advantages	 of	 a	 direct	 control	 that	maps	 the	DOF	 to	 independent	muscle	 signals.	 The	

performance	of	machine-learning-based	control	techniques	is	often	greatly	degraded	by	
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a	change	in	arm	position	(Fougner	et	al.,	2011;	Ning	Jiang	et	al.,	2013).	The	small	impact	

of	arm	position	on	hACS	performance	indicates	a	good	robustness	in	daily	use.	This	also	

indicates	 that	effects	of	non-stationarities,	which	 typically	degrade	 the	performance	of	

machine-learning-based	 control	 interfaces	 over	 time	 (Vidovic	 et	 al.,	 2016),	 are	 also	

probably	negligible.	

Moreover,	 calibration	 of	 the	 hACS	 is	 simple;	 in	 contrast	 to	 time-consuming	 pattern	

learning,	 it	 only	 requires	 the	 adjustment	 of	 two	 gain	 factors	 and	 thresholds.	 To	 be	

suitable	 for	 daily	 use,	 the	 fine-wire	 electrodes	 could	 be	 replaced	 by	 implanted	

electrodes,	such	as	a	miniaturized	version	of	the	Implantable	Myoelectric	Sensor	(Weir,	

Troyk,	DeMichele,	&	Kerns,	2005).		

Although	 our	 results	 suggest	 that	 this	 interface	 is	 suitable	 for	 everyday	 use,	 a	 larger	

study	with	more	prosthesis	users	is	required	to	confirm	this.	The	learnability	of	precise	

ear	muscle	activation	that	we	have	shown	earlier	(Schmalfuss	et	al.,	2016)	should	also	

be	replicated	with	a	larger	sample	size.		

In	conclusion,	we	presented	a	novel	control	interface	that	allows	the	simultaneous	and	

proportional	 control	 of	 a	 second	 DOF	 for	 myoelectric	 hand	 prostheses.	 In	 tasks	 that	

reflect	daily	life	situations	it	responded	more	rapidly	and	more	accurately	than	the	two	

other	 most	 commonly	 used	 conventional	 myoelectric	 control	 techniques.	 We	 believe	

that	it	could	be	a	viable	add-on	for	lower-arm	amputees	with	a	prosthetic	hand.		
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4 Neuronal	effects	of	training	the	auricular	control	system	
for	wheelchair	control	in	subjects	with	tetraplegia.	

In	the	third	study,	the	functionality	of	the	ACS	was	tested	for	the	first	time	in	a	clinical	

cohort	of	individuals	with	tetraplegia.	The	motor	training	involved	in	learning	to	use	the	

ACS	allowed	us	to	investigate	the	nature	of	the	post-SCI	brain	reorganization	presented	

in	 the	 introduction.	 In	 chronic	 SCI,	 studies	 reported	 an	 expansion	 of	 the	 somatotopic	

representation	 of	 muscles	 in	 the	 primary	 motor	 cortex	 (Alkadhi	 et	 al.,	 2005;	 Curt,	

Bruehlmeier,	Leenders,	Roelcke,	&	Dietz,	2002;	Freund,	Rothwell,	Craggs,	Thompson,	&	

Bestmann,	 2011;	 Levy,	 Amassian,	 Traad,	&	 Cadwell,	 1990;	 Lundell,	 Christensen,	 et	 al.,	

2011),	as	well	as	a	shift	of	activation	peaks	either	in	direction	of	the	de-efferented	limb	

area	 (Bruehlmeier,	 1998;	 Freund	 et	 al.,	 2013;	 Henderson	 et	 al.,	 2011;	 Mikulis	 et	 al.,	

2002)	 or,	more	 posteriorly,	 in	 direction	 of	 the	 primary	 sensory	 cortex	 (Cramer	 et	 al.,	

2005;	 Green,	 Sora,	 Bialy,	 Ricamato,	 &	 Thatcher,	 1999;	 Turner	 et	 al.,	 2003).	 These	

changes	might	be	influenced	by	the	level	of	SCI	lesion	(Kokotilo	et	al.,	2009).	

The	 post-SCI	 brain	 reorganization	 can	 be	 maladaptive,	 e.g.	 lead	 to	 neuropathic	 pain,	

spasticity	and	phantom	sensations	(Moxon	et	al.,	2014;	Raineteau	&	Schwab,	2001),	and	

might	 further	 impair	 the	 motor	 performance	 (e.g.	 speed	 of	 movement,	 strength	

patterns)(Nardone	et	al.,	2015;	Wrigley	et	al.,	2009).	Progressive	loss	of	grey	matter	in	

the	 somatosensory	 and	 motor	 cortex	 (Freund	 et	 al.,	 2013;	 Henderson	 et	 al.,	 2011;	

Jurkiewicz	et	al.,	2007;	Wrigley	et	al.,	2009)	is	the	harmful	consequence	of	the	inactivity	

of	 the	 affected	 brain	 parts	 (Freund,	 Weiskopf,	 et	 al.,	 2011).	 Although the	 functional	

relevance	 of	 this	 motor	 cortex	 reorganization	 is	 not	 fully	 understood	 (Moxon	 et	 al.,	

2014),	 it	 has	 been	 suggested	 that	 the	 loss	 of	 motor	 cortex	 function	 might	 be	 partly	

responsible	 for	 behavioral	 disability,	 and	 that	 it	 is	 important	 to	 “harness	 plasticity”	

(Silva	et	al.,	2014)	in	order	to	exploit	the	full	recovery	potential	of	individuals	with	SCI.	

Whether	this	plasticity	can	be	actively	targeted	in	order	to	prevent	potentially	negative	

consequences	 is	still	unclear,	but	 there	are	 indications	that	such	an	 intervention	could	

be	beneficial.	For	example,	when	unoccupied	areas	in	the	sensory	cortex	are	invaded	by	

neighboring	areas	and	thus	assume	a	new	function,	the	observed	grey	matter	loss	is	of	a	

lesser	magnitude	(Henderson	et	al.,	2011).	Given	the	scarce	information	about	activity-

dependent	plasticity	 in	 individuals	with	SCI,	 it	 is	 important	 to	 increase	 the	knowledge	

within	this	field	(Kokotilo	et	al.,	2009).	This	might	not	only	help	preserve	affected	brain	
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areas,	 but	 could	 also	 help	 to	 optimize	 physiotherapeutic	 care	 and	 improve	 motoric	

output	(Dunlop,	2008).	

Therefore	 the	 aim	 of	 the	 present	 study	 was	 to	 provide	 further	 evidence	 of	 the	

functionality	of	the	ACS	in	a	clinical	sample	and	with	longer	training	times.	Using	fMRI	

and	robot-guided	TMS	mapping,	we	tested	the	 impact	of	motor	 training,	 i.e.	 the	use	of	

the	PAMs	 for	wheelchair	 control,	 on	 the	post-SCI	motor	 cortex	 reorganization,	 i.e.	 the	

expansion	and	localization	of	auricular	motor	maps.		

This	 study	 is	 being	 prepared	 for	 publication	 under	 the	 title	 “Targeting	 brain	

reorganization:	 motor	 cortex	 changes	 in	 tetraplegic	 subjects	 after	 training	 with	

auricular	wheelchair	control”.	

	

4.1 Methods	

4.1.1 Study	design	
Ten	participants	were	recruited	for	the	study	(see	Table	1).	One	dropped	out	after	three	

days	for	reasons	not	related	to	our	study.	Nine	participants	(39.7	±	16.5	yrs,	mean	±	SD)	

trained	auricular	control	of	an	electric	wheelchair	for	one	hour	daily	on	12	consecutive	

days.	 The	 level	 of	 the	 spinal	 cord	 injury	 (lesion	 level)	 ranged	 from	 C6	 to	 C4.	 Daily	

assessments	were	performed	to	measure	the	training	effect	on	e.g.	unilateral	auricular	

activation	and	actual	wheelchair	driving.	Before	and	after	training,	PAM	representations	

and	 the	 finger	area	 (FT)	as	a	 reference	of	 the	de-efferented	 limb	were	mapped	on	 the	

motor	cortex	using	fMRI	and	TMS	(day	0	=	pre-training;	day	13	=	post-training).	

All	participants	gave	their	written	consent	to	the	study.	If	unable	to	write,	a	designated	

representative	signed	for	them.	The	study	design	was	approved	by	the	ethics	committee	

of	 the	University	of	Göttingen	and	was	 in	accordance	with	 the	declaration	of	Helsinki.	

During	the	study,	all	participants	were	hospitalized	in	cooperating	rehabilitation	centers	

where	they	took	part	in	the	normal	rehabilitation	routine.		

	

4.1.2 Software-based	training	and	testing	of	control	capacity	of	the	auricular	

muscles	

The	set	up	of	 the	ACS	(Figure	20)	and	EMG	signal	 recording	are	described	 in	detail	 in	

chapters	 2.1.1	 and	 2.1.2.	 The	 participants	 trained	 voluntary	 and	 unilateral	 PAM	
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activation	 using	 visual	 feedback	 and	 video	 games	 on	 computer	 software	 (see	 chapter	

2.1.5).	 When	 they	 had	 successfully	 completed	 a	 game	 of	 their	 choice,	 the	 computer	

training	was	abandoned	in	favor	of	actual	wheelchair	driving.	

Prior	 to	 each	 training	 session,	 the	 signal	 strength	was	 calibrated	 for	 each	 participant	

with	an	automated	routine	using	the	mean	of	 three	maximum	contractions	per	side.	A	

minimum	activation	threshold	was	set	manually.	Unilateral	activation	was	then	tested:	

the	participants	were	instructed	to	activate	the	PAM	of	only	one	side	for	three	seconds,	

three	times	in	succession.	In	order	to	attain	a	100%	success	rate,	the	intended	side	had	

to	be	activated	to	its	 individual	maximum,	without	simultaneously	activating	the	other	

side.	 Less	 strong	 contractions	 or	 co-activations	 gave	 lower	 scores.	 Performance	

(completion	time	and	path	length)	in	a	virtual	obstacle	course	was	then	tested.	Steering	

signals	for	this	virtual	wheelchair	were	the	same	as	for	the	real	wheelchair	(see	below).		

	

	

Subject	 Age	 Lesion	level	 Time	since	
lesion		

Usual	
wheelchair	
control	

Able	to	
activate	
PAM?	

Remarks	

S	1	 19	 C4	 5	 joystick	 Yes	 	
S	2	 50	 C6	 2	 manual	 No	 	
S	3	 43	 C5		 22	 manual	 Yes	 	
S	4	 27	 C4	 4	 chin	control	 No	 	
S	5	 57	 C6	 5	 manual	 No	 drop	out	
S	6	 54	 C4	 2	 joystick	 No	 	
S	7	 67	 C5		 7	 chin	control	 No	 	
S	8	 28	 C4	 10	 chin	control	 No	 	
S	9	 27	 C4	 7	 chin	control	 No	 	
S	10	 25	 C5	 2	 joystick	 No	 	

Table	1)	Clinical	information	on	the	ten	study	participants.		

Ten	subjects	(39.7	±	16.5	yrs,	mean	±	SD)	participated	in	the	study.	One	subject	dropped	out	due	to	illness	
not	related	to	the	study.	Five	participants	had	a	C4	lesion	level,	three	C5	and	one	C6.	The	mean	time	since	
the	 SCI	 lesion	 happened	was	 6	 years	 and	 1	month	 (SD	 6	 y	 3	m).	 The	wheelchair	 controls	 used	 by	 our	
participants	 were	 manual	 (using	 the	 push	 rims),	 joystick	 with	 special	 T-handle	 or	 chin	 control.	 Two	
participants	 were	 able	 to	 activate	 their	 bilateral	 PAM	 prior	 to	 training.	 The	 others	 were	 naïve	 but	
managed	to	produce	PAM	contractions	with	visual	EMG-feedback	before	the	first	fMRI	scans.			
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Figure	20)	Wheelchair	set-up	with	the	auricular	control	system	(ACS).		

For	 recording	 the	EMG,	 fine-wire	 electrodes	were	 inserted	 subcutaneously	 over	 the	posterior	 auricular	
muscle	 (PAM)	 and	 the	 pinna	 (A).	 The	 electrodes	were	 connected	 to	 an	 amplifier	 that	was	mounted	 on	
headset.	 The	 EMG	 signals	 are	 transmitted	 wirelessly	 to	 a	 computer,	 where	 they	 are	 processed	 and	
converted	into	wheelchair	steering	commands,	which	are	then	transmitted	by	cable	to	the	wheelchair.	A	
subject	with	a	lesion	at	the	C4	level	controlled	the	electric	wheelchair	solely	with	signals	generated	by	his	
auricular	muscles	 (B).	 The	 computer	was	 positioned	 on	 his	 lap	 and	 connected	 to	 the	 external	 joystick	
interface.	In	order	to	ensure	stability,	the	person	was	fastened	to	the	wheelchair	with	an	elastic	band.	

	

4.1.3 Training	and	testing	of	the	ACS	applied	to	wheelchair	control	
Driving	 performance	 with	 the	 ACS	 was	 assessed	 by	 measuring	 the	 time	 required	 to	

complete	 a	 real	 obstacle	 course	 that	was	 arranged	 in	 the	 same	 pattern	 as	 the	 virtual	

obstacle	course.	The	ideal	path	was	ca.	23	m	long	and	included	three	right	and	three	left	

turns	 (see	chapter	2.1.7,	Figure	9).	 In	addition,	 the	participants	had	 to	complete	a	12-

meter-long	slalom	course	with	three	obstacles.	In	the	event	of	a	collision	in	either	task	

(i.e.	 crossing	 the	 borders),	 the	 timer	 was	 stopped,	 and	 the	 wheelchair	 was	 manually	

placed	 back	 on	 track.	 In	 some	 cases,	 the	 testing	 routine	 had	 to	 be	 reduced	 to	

accommodate	 the	 condition	 of	 the	 participant	 (e.g.	 not	 feeling	 well,	 tired	 etc.).	 After	

finishing	 the	 driving	 tests,	 the	 remaining	 time	 was	 used	 for	 training	 under	 the	
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supervision	 of	 the	 PI.	 The	 wheelchair	 commands	 are	 described	 in	 detail	 in	 chapters	

2.1.3.	

	

4.1.4 User	evaluation	of	the	ACS	for	wheelchair	control	

After	completion	of	 the	study,	 the	participants	rated	 the	perceived	workload	 for	using	

the	 ACS	 with	 the	 NASA	 TLX	 (Task	 Load	 Index,	 e.g.	 mental,	 physical	 and	 temporal	

demand,	performance,	effort	and	frustration,	ten-point	rating	scale	from	0	=	very	little,	

to	100	=	very	high	(Hart	&	Staveland,1988;	Rubio,	Diaz,	Martin,	&	Puente,	2004)).	The	

ACS	was	evaluated	with	the	QUEST	scale,	which	rated	safety,	comfort,	ease	of	use,	and	

learnability	on	a	five-point	scale	from	1	=	“not	satisfied	at	all”	to	5	=	“very	satisfied”,	and	

with	our	own	questionnaire	(see	supplementary	material,	p.	104)	with	a	four-point	scale	

from	1	=	“not	at	all”	to	4	=	“a	lot”.		

	

4.1.5 Acquisition	and	analysis	of	functional	imagining	data	

Visual	EMG	 feedback	was	performed	prior	 to	 the	 first	 fMRI	 session	 to	ensure	 isolated	

PAM	activation	during	scanning.	Surface	EMG	electrodes	were	 fixed	on	 the	corrugator	

supercilii,	the	zygomaticus	major	and	on	the	PAM	on	the	right	facial	half.	All	participants	

were	 able	 to	 produce	 PAM	 contractions	 with	 minimal	 co-contraction	 of	 other	 facial	

muscles	(mean	cheek	co-activation=9.5%	of	cheek	maximum,	SD=4.6%;	mean	eyebrow	

co-activation=23%,	 SD=13%).	 Two	 participants	 required	 a	 longer	 training	 period	 in	

order	to	avoid	confounds	from	facial	co-activations	in	the	MRI	scanner.		

Imaging	data	was	acquired	at	3T	in	a	Magnetom	TIM	Trio	scanner	(Siemens	Healthcare,	

Erlangen,	 Germany)	 using	 a	 standard	 32-channel	 phased-array	 head	 coil.	 Participants	

lay	 supine	 in	 the	 scanner	with	 earplugs	 for	 noise	 protection.	 The	 head	was	 stabilized	

with	foam	pads	and	the	arms	were	stabilized	with	bands	at	the	side	of	the	trunk.	In	each	

session	data	collection	lasted	approximately	45	minutes.		

First	a	T1-weighted	3D	turbo	fast,	low-angle	shot	(FLASH),	anatomical	image	at	1	mm³	

isotropic	resolution	(repetition	time	(TR):	2250	ms,	 inversion	time:	900	ms,	echo	time	

(TE):	3.26	ms,	 and	 flip	angle:	9°)	was	acquired.	Four	 runs	of	 functional	blood-oxygen-

level-dependent	 (BOLD)	 contrast	 were	 then	 recorded	 using	 a	 T2*-weighted	 gradient-

echo	 echo-planar	 imaging	 (EPI)	 technique	 with	 simultaneous	 multi-slice	 acquisition	

(multiband	 factor:	 3).	 Functional	 images	 had	 an	 in-plane	 resolution	 of	 2	 x	 2	mm².	 36	
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slices	 of	 2mm	 thickness	 with	 a	 0.2	 mm	 gap	 between	 slices	 were	 acquired	 (253	

repetitions	with	 TR:	 1050	ms,	 TE:	 36	ms,	 flip	 angle:	 50°,	 acquisition	matrix:	 128x96,	

partial	 fourier	 7/8).	 In	 these	 runs,	 the	 participant	 performed	 blocks	 of	 bilateral	 PAM	

activation,	 imaginary	 bilateral	 finger	 tapping	 of	 both	 index	 fingers	 against	 the	 thumb	

(FT)	 and	 another	 PAM	 activation	 each	 lasting	 4	 minutes	 and	 25	 seconds.	 Each	 run	

consisted	of	11	blocks	of	rest	(14	TR	=	14.7	s)	and	10	blocks	of	the	active	condition	(9	

TR	=	9.45	s).	The	beginning	and	 the	end	of	active	blocks	were	cued	by	a	green	or	red	

disk,	respectively,	on	a	screen	at	the	end	of	the	scanner	tunnel	which	subjects	could	see	

in	 a	 mirror	 mounted	 above	 their	 head.	 The	 participants	 were	 carefully	 instructed	 to	

avoid	any	head	movement	or	additional	facial	movements	during	PAM	activation.		

For	 data	 analysis,	 BrainVoyager	 QX	 (Brain	 Innovation,	 Maastricht,	 The	 Netherland),	

Matlab	 (MathWorks,	 Natick,	 MA)	 and	 the	 NeuroElf	 toolbox	 (neuroelf.net)	 were	 used.	

Data	was	preprocessed	with	standard	parameters,	using	slice-scan	time	correction,	3D	

motion	correction	and	temporal	high-pass	filtering	(with	a	cutoff	frequency	of	2	cycles	

per	 run,	 i.e.	 0.00765	 Hz).	 The	 functional	 data	 was	 co-aligned	 to	 the	 anatomical	 T1	

dataset	 of	 each	 individual,	 transformed	 into	 Talairach	 space	 and	 spatially	 smoothed	

with	 a	 5	 mm	 FWHM	 Gaussian	 filter.	 High	 motion	 data	 points	 were	 identified	 using	

framewise	displacement	(FD)	as	described	by	(Power	et	al.,	2014)	(FD	cutoff:	0.5mm).	

All	 data	 points	 with	 high	 motion	 plus	 the	 one	 preceding	 and	 the	 two	 following	 data	

points	were	excluded	from	the	analysis.	In	addition,	the	estimated	motion	parameters	(3	

translations	 and	 3	 rotations)	 and	 the	 FD	 were	 included	 in	 the	 general	 linear	 model	

(GLM)	models	as	predictors	of	no	interest.	The	first	four	images	of	every	functional	run	

were	discarded	to	allow	for	T1	equilibrium.	

For	 the	 individual	analysis	of	 the	 functional	data,	periods	of	active	 task	(movement	or	

imagined	movement)	were	contrasted	with	periods	of	 rest.	We	calculated	a	GLM	with	

boxcar	 predictors	 for	 task	 convolved	 with	 BV’s	 standard	 2-gamma	 hemodynamic	

response	 function	 (hrf)	 plus	 motion	 confounds.	 Data	 was	 corrected	 for	 temporal	

autocorrelation	(AR-1).		

Regions	 of	 interest	 (ROI)	were	marked	manually	 on	 an	 inflated	 representation	 of	 the	

cortical	 surface	of	each	participant’s	head.	The	area	of	 the	primary	motor	cortex	 (M1)	

was	identified	as	the	area	between	the	depth	of	the	central	sulcus	posteriorly,	the	crown	

of	the	precentral	gyrus	anteriorly,	the	lobus	paracentralis	medially	and	the	lateral	sulcus	

laterally.	 In	 addition,	 the	 supplementary	 motor	 area	 (SMA)	 was	 marked	 with	 the	
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posterior	border	at	the	lobus	paracentralis,	and	the	anterior	border	at	the	vertical	 line	

that	goes	through	the	anterior	commissure	(Chainay	et	al.,	2004).		

We	 calculated	 a	 first	 set	 of	 ROI	 activation	 with	 a	 threshold	 at	 p=0.05	 (Bonferroni-

corrected	for	amount	of	activated	voxels)	which	was	automatically	reduced	until	at	least	

100	active	voxels	were	detected.	Since	activation	sizes	diminished	 in	 the	post-training	

session,	 thresholds	 decreased	 between	 sessions.	 Variable	 thresholds	 make	 activation	

sizes	difficult	to	compare	between	sessions	(Jurkiewicz	et	al.,	2007;	Mikulis	et	al.,	2002).	

Therefore,	 we	 extracted	 the	 threshold	 from	 the	 post-training	 session	 for	 each	

participant.	In	another	ROI	analysis,	these	thresholds	(mean	t(8)=4.379	(0.517	SD)	were	

used	 for	both	 sessions.	Total	 sizes	 of	 activation	 clusters	 and	 center	 of	 gravities	 (COG)	

from	 the	 largest	 cluster	 were	 extracted	 for	 each	 participant,	 hemisphere	 and	 task.	

Additionally,	 we	 calculated	 a	 conjunction	 analysis	 of	 those	 areas	 that	 were	 activated	

during	both	PAM	and	FT	movement	with	a	random	effect	model	(threshold	at	t(8)>3.5)	

for	 pre-	 and	 post-training	 sessions.	 For	 illustration	 purposes,	 we	 calculated	 a	 whole-

brain	group	analysis	with	a	random	effect	model	(PAM	vs.	rest,	FT	vs.	rest).	We	adopted	

a	common	threshold	for	all	tasks	at	p<0.00395,	corresponding	to	t(8)>4.00.		

We	compared	 the	results	 from	the	pre-training	session	 to	 fMRI	data	 from	able-bodied	

subjects	 acquired	previously	by	our	group	 (n=13)	 (Meincke	et	 al.,	 n.d.).	The	PAM	 task	

was	 the	same	as	 in	our	 fMRI	acquisition,	but	 the	 finger	 task	was	different,	 involving	a	

bilateral	lateral	spread	of	the	index	finger.	Cluster	sizes	and	COGs	of	PAM	and	executed	

FT	 activation	 during	 fMRI	 (mean	 threshold	 t(12)=4.8)	were	 used	 for	 comparison.	 For	

more	details	on	image	acquisition,	see	Meincke	et	al.,	n.d..		

	

4.1.6 Robotic	arm-controlled	and	image-guided	TMS	mapping	procedure	
Two	TMS	mapping	sessions	were	performed	(pre-	and	post-training)	in	each	participant	

using	 a	 Magstim	 2002	 magnetic	 pulse	 stimulator	 with	 a	 figure-of-eight	 coil	 (70	 mm,	

Magstim	Company,	Whitland,	UK,	magnetic	field	strength	at	maximum	stimulator	output	

intensity	(MSO)	2.2	T).		

The	coil	was	positioned	tangentially	over	the	scalp	with	45°	rotation	to	the	sagittal	plane	

using	 an	 image-guided	 TMS	 mapping	 technology.	 An	 Adept	 Viper	 s850	 robotic	 arm	

(Adept	Technology,	Inc.	Livermore,	CA,	USA)	controlled	by	a	robot	navigation	software	

(ANT,	 Enschede,	 Netherlands)	 running	 on	 a	 standard	 PC	 positioned	 the	 coil.	 The	



	

72	

software	 calculated	 a	 3D	 head	 model	 for	 each	 participant	 based	 on	 MRI	 data	 (3	 T	

scanner,	 Magnetom	 Trio,	 Siemens,	 Erlangen,	 Germany).	 Feedback	 from	 a	 NDI	 Polaris	

Vicra	 infrared	tracking	camera	allowed	 for	compensation	of	head	movements,	 thereby	

ensuring	 an	 exact	 positioning	 of	 the	 TMS	 coil	 (position	 error:	 ±	 0.02	 mm).	 The	

navigation	 software	 was	 networked	 with	 the	 EMG	 recording	 system.	 Here,	 a	 script	

controlled	 the	 experiment,	 including	 online	 randomization	 of	 stimulation	 targets,	

triggering	of	the	stimulation,	and	retesting	of	rejected	grid	points.		

The	center	of	a	7	x	7	grid	with	1	cm	distance	was	placed	over	the	PAM	hotspot	identified	

on	the	left	hemisphere	(6	cm	medial	to	Cz	from	the	EEG	10-20	system,	2	cm	frontal)	in	

previous	 studies	by	our	group	 (Meincke	et	 al.,	 n.d.).	We	chose	a	 large	grid	 in	order	 to	

account	for	possible	cortical	reorganization	and	activation	shifts	following	SCI	(Freund,	

Weiskopf,	et	al.,	2011;	Green	et	al.,	1998;	Karl,	Birbaumer,	Lutzenberger,	Cohen,	&	Flor,	

2001).	TMS	pulses	at	65%	maximum	stimulator	output	were	applied	at	each	grid	point	

(a	total	of	eight	stimuli	in	a	randomized	order).	Depending	on	the	duration	of	the	robotic	

arm	movement,	the	interstimulus	interval	varied	between	4	and	8	seconds.		

For	EMG	of	the	PAM,	the	previously	placed	fine-wire	electrodes	were	connected	to	the	

EMG	 recording	 system.	 TMS	 of	 the	 PAM	was	 applied	 during	 pre-innervation	 (at	 least	

20%	of	 the	 individual	maximum	MEP	 size),	which	was	 cued	by	 an	 acoustic	 signal	 1	 s	

before	the	TMS	pulse.	This	technique	has	been	shown	to	produce	more	reliable	MEPs	in	

small	 muscles	 like	 the	 PAM.	 If	 the	 participant	 failed	 to	 pre-innervate,	 an	 acoustic	

feedback	was	given	and	the	target	grid	point	was	repeated	later	on.		

The	 entire	 procedure,	 including	 preparation,	 lasted	 around	 three	 to	 four	 hours	 per	

session.	 In	 order	 to	 avoid	 exhausting	 the	 participant,	 only	 the	 left	 hemisphere	 was	

mapped.	 The	 stimulation	 protocol	 described	 here	 was	 adapted	 following	 the	 second	

participant	because	we	 found	 that	our	 tetraplegia	patients	were	unable	 to	 endure	 the	

initial,	longer	stimulation	protocol	due	to	physical	fatigue	and	positioning	problems.	

Data	 analysis	 was	 done	 using	 Matlab	 (Math	 Works,	 Inc.,	 Natick,	 MA,	 U.S.A.)	 and	 FSL	

FNIRT	 and	 FLIRT).	 The	 center	 of	 gravity	 (COG)	 was	 calculated	 from	 the	 PAM	 MEPs	

according	to	(Meincke	et	al.,	n.d.).	
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4.1.7 Statistical	analysis	of	the	data	
Behavioral	 data	 was	 normally	 distributed	 and	 analyzed	 with	 paired-samples	 t-tests.	

Kolmogorov-Smirnov	 tests	 showed	 that	 the	 fMRI	 and	 TMS	 data	 were	 not	 normally	

distributed,	and	we	used	the	non-parametric	Wilcoxon	signed-rank	test	for	comparisons	

and	 the	non-parametric	 Spearman-Rho	 for	 correlations.	Comparisons	with	 the	data	of	

the	 able-bodied	 subjects	were	performed	with	 the	non-parametric	Kruskal-Wallis-test	

for	independent	samples.		

	

4.2 Results	

4.2.1 Training	effects	on	voluntary	control	over	the	PAM	

The	participants	improved	their	ability	to	activate	each	PAM	separately	(see	Figure	21	

a)	from	49%	in	the	pre-training	session	to	78%	post-training	(pairwise	comparison	pre-	

vs.	 post-training:	 t(8)=-4.465,	 p<0.01).	 Those	 with	 a	 higher	 lesion	 level	 had	 better	

unilateral	 activation	 in	 the	pre-training	 session	 (r=0.820,	p=0.007),	but	 this	difference	

was	 attenuated	 through	 training	 (r=0.484,	 p=0.186).	 In	 addition,	 individuals	 with	 a	

higher	 lesion	 level	 had	 a	 stronger	 learning	 effect	 in	 unilateral	 activation	 (r=0.748,	

p=0.02).	 The	 time	 needed	 to	 complete	 the	 virtual	 obstacle	 course	 decreased	 from	5.9	

minutes	in	the	pre-training	session	to	2.7	minutes	in	the	post-training	session	(pairwise	

comparison:	 t(7)=5.272,	 p=0.001;	 see	 Figure	 21	 b).	 The	 average	 path	 length	 was	

reduced	 from	 3144	 pixel	 pre-training	 to	 2137	 post-training	 (pairwise	 comparison:	

t(7)=6.095,	p<0.001).	We	 found	 a	 significant	 correlation	 between	 higher	 lesion	 levels	

and	 better	 results	 in	 the	 virtual	 obstacle	 course	 post-training	 (path	 length:	 r=0.783;	

p=0.013;	completion	 time:	r=0.671;	p=0.048).	This	correlation	was	not	significant	pre-

training	(path	length:	r=0.224;	p=0.563;	completion	time:	r=0.410;	p=0.273).	

4.2.2 Training	effects	on	wheelchair	driving	using	the	ACS	
As	 in	 the	 virtual	 course,	 the	 ability	 of	 all	 participants	 to	 control	 a	 real	 wheelchair	

improved	with	training.	The	average	time	to	complete	the	slalom	decreased	from	46	s	to	

23	s	(pairwise	comparisons	pre-	vs.	post-training:	t(6)=6.321,	p=0.001;	see	Figure	21	c).	

Completing	 the	 complex	 real	 obstacle	 course	 took	 an	 average	 of	 183	 sec	 on	 the	 first	

testing	but	decreased	to	84	sec	(pairwise	comparisons	pre-	vs.	post-training:	t(8)=4.318,	

p=0.003;	see	Figure	21	d).	Higher	lesion	levels	correlated	with	better	performance	in	the	
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pre-training	 real	 obstacle	 course	 (r=0.674,	 p=0.047)	 but	 this	 correlation	 was	 not	

detectable	 after	 training	 (r=0.373,	 p=0.323).	 The	 higher	 lesion	 levels	 were	 also	

significantly	 correlated	 with	 better	 slalom	 performance	 after	 training	 (r=0.671,	

p=0.048),	but	not	before	(r=0.262,	p=0.496).		

	

	

Figure	21)	Effects	of	training	on	the	control	capacity	of	the	PAM.		

Individual	 results	 (light	 grey	 lines)	 and	 group	 means	 (dark	 grey)	 from	 pre-training	 and	 post-training	
sessions.	 The	 participants	 improved	 their	 ability	 to	 activate	 their	 auricular	muscles	 unilaterally,	 i.e.	 to	
distinguish	between	left	and	right	side	(a).	They	completed	the	virtual	obstacle	course	faster	after	training	
(b).	 The	 participants	 improved	 their	 ability	 to	 navigate	 a	 real	 wheelchair	 through	 a	 12-meter	 slalom	
course	with	three	obstacles	only	using	their	auricular	muscles	for	steering	(c).	The	complex,	real	obstacle	
course	was	completed	faster	in	the	real	wheelchair	after	training	(d).	Significant	differences	are	marked	**	
for	p<0.01	and	***	for	p<0.001.	

	

4.2.3 User	evaluation	of	the	ACS	for	wheelchair	control	

The	NASA	TLX	(answering	scale:	0	=	very	low	–	100	=	very	high)	revealed	a	low	general	

workload	for	the	group	(M=29).	The	mental	demands	for	using	the	ACS	(mental	demand,	

effort	and	frustration)	were	judged	as	slightly	higher	(M=37)	than	the	physical	demands	

(M=21).	Subjects	in	general	rated	their	success	as	good	(M=06,	note	that	the	answering	

scale	is	switched	in	this	item:	0	=	good	–	100	=	poor).	
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The	participants	 gave	high	 scores	 for	ACS	 in	 the	QUEST	 (average	 score	 of	 4.14	 of	 the	

maximal	5),	as	well	as	in	our	own	questionnaire	(average	score	of	3.3	of	maximal	4).	In	

the	QUEST,	the	participants	rated	the	system	as	easy	to	learn	(M=4.6	out	of	5)	and	easy	

to	 use	 (M=4.3).	 They	 were	 quite	 satisfied	 with	 safety,	 comfort	 and	 reliability	 of	 the	

system	 (M=4.0).	 In	 our	 own	 questionnaire,	 the	 participants	 were	 content	 with	 the	

maneuvering	characteristics	of	the	ACS	(e.g.	wide	turns,	precision,	response	time;	M=3.5	

out	of	4).	They	judged	it	to	be	ready	for	use	in	daily	life	(M=3.6).	

	

4.2.4 Activation	cluster	size	and	centers	of	gravity	during	motor	tasks	in	fMRI	
Mean	 coordinates	 of	 centers	 of	 gravity	 (COGs)	 of	 brain	 activations	 during	 PAM	

movement	 and	 imaginary	 finger	 tapping	was	 not	 shifted	 significantly	 by	 training	 (see	

Table	2,	Figure	22).	However,	we	found	a	significant	difference	between	the	location	of	

the	PAM	COG	and	the	FT	COG	in	the	pre-training	session,	which	had	disappeared	in	the	

post-training	 session.	 This	 was	 true	 for	 the	 x	 (left	 hemisphere	 (LH)	 pre-training:	 Z=-

2.073,	 p=0.038;	 LH	 post-training:	 Z=-0.889,	 p=0.374;	 right	 hemisphere	 (RH)	 pre-

training:	Z=-2.666,	p=0.008;	RH	post-training:	Z=-1.244,	p=0.214)	and	y	coordinates	(LH	

pre-training:	Z=-2.666,	p=0.008;	 LH	post-training:	Z=-1.599,	p=0.110;	 RH	pre-training:	

Z=-2.666,	p=0.008;	RH	post-training:	Z=-1.599,	p=0.110).		

The	size	of	the	activations	did	not	differ	between	the	hemispheres	in	any	of	the	tasks	(all	

p>0,1;	see	Table	2,	Figure	23,	Figure	24),	but	it	diminished	with	training.	This	reduction	

was	significant	 for	the	PAM	area	 in	the	 left	hemisphere	(Z=-2.429,	p=0.015)	but	not	 in	

the	 right	 (p>0.5).	 On	 an	 individual	 level,	 area	 size	 decreased	 in	 eight	 of	 the	 nine	

participants	during	PAM	activation	in	the	left	hemisphere,	while	in	the	right	hemisphere	

this	was	observed	 in	only	 four	of	 the	nine	(Figure	25).	Here,	 five	 individuals	activated	

slightly	 increased	areas	(mean	growth:	892	vs.	mean	reduction	-3282).	The	FT	area	 in	

the	 right	 hemisphere	 also	 decreased	 significantly	 (Z=-2.073,	 p=0.038)	 and	 showed	 a	

trend	for	the	left	hemisphere	(p=0.08).		

Of	 interest	 is	 the	 observation	 that	 higher	 lesion	 levels	 correlated	 with	 greater	 M1	

activations	during	PAM	movement	in	the	pre-training	session	(LH	pre-training:	r=0.820,	

p=0.007,	 Figure	 26	 A),	 and	 that	 this	 effect	 was	 reversed	 by	 training,	 albeit	 not	

significantly	(LH	post-training:	r=-0.186	p=0.631).	The	same	proportion	was	present	in	

the	 right	 hemisphere	 but	 the	 initial	 correlation	 was	 less	 strong	 (RH	 pre-training:	
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r=0.459,	p=0.09;	RH	post-training:	r=-0.261,	p=0.498).	Higher	 lesions	appeared	 to	also	

be	 correlated	with	 greater	 FT	 activation	 in	 the	 pre-training	 session	 but	 the	 reduction	

after	training	was	less	pronounced	(LH	pre-training:	r=0.745,	p=0.021,	LH	post-training:	

r=0.298,	 p=0.436;	 RH	 pre-training:	 r=0.783,	 p=0.013,	 RH	 post-training:	 r=0.186,	

p=0.631).		

Conjunction	 analysis	 revealed	 the	 location	 and	 extent	 of	 overlapping	 areas	 that	were	

activated	in	both	PAM	and	FT.	Mean	coordinates	for	the	right	hemisphere	were	x=36.2	

(9.5	SD);	y=-20.9	(5.6	SD);	z=54.6	(10.6	SD)	for	pre-training	and	x=36	(3.7	SD);	y=-19.5	

(7	 SD);	 z=55.2	 (3.6	 SD)	 for	 post-training.	 For	 the	 left	 hemisphere,	 coordinates	 for	

conjunction	activation	were	x=-34.6	(6.3	SD);	y=-20.1	(7.5	SD);	z=57.7	(4.7	SD)	for	pre-

training	and	x=-34.1	(10.6	SD);	y=-19.9	(8	SD);	z=55.5	(11.4	SD)	for	post-training.	There	

was	 no	 significant	 shift	 in	 the	 mean	 COG	 coordinates	 after	 training.	 The	 size	 of	 the	

shared	 area	 decreased	 on	 average,	 but	 since	 the	 area	 increased	 in	 size	 in	 some	

individuals,	there	was	no	significant	difference	between	sessions.		

Seven	of	the	nine	participants	had	activations	on	the	medial	part	of	the	primary	motor	

cortex	 (i.e.	 leg	 area)	when	 activating	 the	 PAM	 before	 training	 (Figure	 23,	 Figure	 24).	

However,	after	training,	six	of	the	nine	no	longer	recruited	this	area.	Only	one	individual	

had	 consistent	 bilateral	 activations	 after	 training,	 while	 two	 had	 only	 right	 or	 left	

activation.	 The	 picture	 was	 more	 diffuse	 for	 FT:	 four	 participants	 exhibited	 FT	

activations	 in	 the	medial	part	of	M1	 in	 the	pre-training	session,	and	 five	post-training.	

However,	size	of	activation	decreased	considerably	(Figure	23).		

Activation	in	the	more	frontal	part	of	the	medial	wall,	the	SMA,	was	found	for	all	tasks	in	

all	participants.	COGs	did	not	shift	significantly	between	testing	sessions.	Activation	size	

decreased	 in	 the	 second	 testing	 for	 the	 FT	 (RH:	 Z=-2.310,	 p=0.021)	 and	 almost	

significantly	for	the	PAM	(RH:	Z=-1.955,	p=0.051).	In	both	tasks,	cluster	size	reductions	

in	the	left	hemisphere	were	not	significant	(p>0.3).		
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Figure	22)	Centers	of	 gravity	 (COG)	of	PAM	and	FT	 fMRI	 representations	of	 SCI	 and	able-bodied	
subjects.		

Superior	view	of	mean	COGs	of	SCI	subjects	(circles)	and	able-bodied	subjects	(squares)	projected	on	a	3-
D	 MNI	 standard	 brain.	 Coordinates	 were	 converted	 to	 MNI	 space	 using	
http://sprout022.sprout.yale.edu/mni2tal/mni2tal.html60.	 Pre-training	 PAM	 COGs	 are	 yellow,	 and	 the	
post-training	results	are	orange.	Finger	tapping	(FT)	COGs	are	dark	green	(pre-training)	and	light	green	
(post-training).	Pre-training	PAM	COGs	reveal	a	shift	of	the	PAM	COG	into	the	de-efferented	hand	area	in	
SCI-subjects	compared	to	healthy	subjects.	Training	moved	the	PAM	COG	further	towards	the	COG	of	the	
hand	area,	which	remained	largely	unchanged	by	training.	
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Figure	 23)	 Reduction	 of	 motor-related	 activation	 cluster	 size	 in	 fMRI	 through	 training	 in	 SCI-
subjects.		

Whole	brain	fMRI	activations	for	all	tasks	vs.	resting	state	(green=PAM;	yellow=FT,	group	averages	(n=9))	
were	calculated	using	a	general	linear	model	with	random	effects	and	then	projected	on	the	inflated	brain	
surface	of	a	representative	subject.	Data	from	the	pre-training	session	is	shown	on	the	left	and	from	post-
training	on	the	right.	At	the	top,	the	superior	view	of	both	hemispheres	is	shown.	Below	are	the	lateral	and	
medial	views	of	 the	right	 (RH)	and	 left	hemisphere	(LH,	 in	descending	order).	The	 threshold	was	set	 to	
t(8)=4.00,	corresponding	to	p<0.00395.	Darker	colors	indicate	stronger	t-values.	Activated	areas	include	
the	M1,	S1,	pre-motor	cortex,	SMA,	pre-SMA	and	hypothalamus.	Significant	reductions	of	activation	cluster	
sizes	on	the	M1	through	training	were	detected	for	the	PAM	(left	hemisphere)	and	FT	(right	hemisphere).	
Recruitment	of	the	medial	leg	area	for	PAM	activation	decreased	with	training.	
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Figure 24) Whole brain group analysis of during PAM activation pre-training (left) and post-training 
(right).  

Sagittal	view	of	the	right	hemisphere	(above),	coronal	view	(middle)	and	transverse	view	(below)	of	mean	
activations	 at	 x=42;	 y=15;	 z=46	 in	 Talairach	 coordinates.	 A	 random	effect	model	was	 applied	 (PAM	vs.	
rest)	at	a	threshold	of	p<0.00395,	corresponding	to	t(8)>4.00.	Motor	training	of	the	PAM	led	to	reduced	
activation	in	the	right	hemisphere.		
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Figure 25) Single subjects’ examples of pre- and post-training fMRI activation during PAM activity.  

Sagittal	 view	of	 the	 right	hemisphere	 (left),	 coronal	 view	 (middle)	 and	 transverse	view	 (right)	of	mean	
activations	during	PAM	activity	 at	 x=2,	 y=-19,	 z=20	 in	Talairach	 coordinates	 for	 three	SCI	 subjects.	The	
threshold	 is	 set	 at	p<0.000066,	 corresponding	 to	 t(1922)>4.	 Subjects	 1	 and	 7	 display	major	 activation	
reduction	post-training	on	 the	motor	cortex	as	well	as	 in	deeper	brain	structures,	e.g.	hypothalamus.	 In	
subject	5,	the	reduction	is	less	pronounced	but	still	present. 
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4.2.5 Comparison	of	SCI-fMRI	to	data	from	able-bodied	subjects	

Activation	cluster	sizes	during	PAM	activity	in	the	first	testing	were	three	times	larger	in	

our	 SCI	 group	 than	 in	 able-bodied	 subjects	 (see	 Table	 2;	 Kruskal-Wallis-test	 for	

independent	samples;	left	hemisphere:	chi-square=4.688;	p=0.03;	right	hemisphere:	chi-

square=7.293;	 p=0.007).	 This	 difference	 was	 abolished	 by	 training	 (LH:	 p=0.85;	 RH:	

p=0.32).	With	 finger	 tapping	 there	was	 no	 difference	 before	 training	 (all	p>0.05),	 but	

able-bodied	 subjects	 had	 larger	 activation	 sizes	 after	 training	 in	 the	 right	 hemisphere	

(RH:	chi-square=7.298;	p=0.006;	LH	p=0.089).	

Regarding	the	center	of	gravity	of	task-related	activation,	we	found	a	significant	shift	of	

the	PAM	COG	before	training	in	all	three	dimensions	compared	to	able-bodied	subjects	

(see	Table	2	 for	coordinates	and	Figure	22;	all	p<0.05).	This	difference	persisted	after	

training.	The	COGs	for	FT,	on	the	other	hand,	were	remarkably	similar	between	SCI	and	

able-bodied	subjects	before	and	after	training	(all	p>0.05).		

	

4.2.6 Correlation	of	neuronal	activation	and	behavioral	performance	
We	found	a	direct	correlation	between	motor	cortex	activation	sizes	and	performance	in	

computer	testing.	In	the	pre-training	session,	those	participants	with	more	extensive	left	

hemisphere	activation	during	PAM	performed	better	in	unilateral	activation	than	those	

with	less	extensive	M1	activations	(r=0.783,	p=0.013,	Figure	26	B).	This	changed	in	the	

post-training	session,	where	those	with	less	extensive	activations	had	a	somewhat	more	

successful	unilateral	activation	(r=-0.383,	p=0.308).	The	correlation	was	less	strong	for	

the	right	hemisphere,	but	showed	the	same	directional	shift	with	training	(pre-training:	

r=0.567,	 post-training:	 r=-0.417).	 Accordingly,	 the	 better	 the	 unilateral	 activation	was	

post-training,	 the	 larger	 were	 the	 cluster	 size	 reductions	 with	 training	 in	 the	 left	

hemisphere	 (r=-0.717,	 p=0.030).	 Surprisingly,	 the	 pre-training	 FT	 cluster	 size	 also	

correlated	with	better	unilateral	activation	(only	right	hemisphere,	r=0.700,	p=0.036).		

We	also	 found	a	direct	correlation	between	size	of	pre-training	 left	hemisphere	motor	

cortex	 activation	 during	 PAM	movement	 and	 post-training	 performance	 in	 the	 virtual	

obstacle	 course	 (path	 length:	 r=-0.667;	 p=0.05;	 completion	 time:	 r=-0.650;	 p=0.058).	

The	correlation	was	weaker	 for	 the	 right	hemisphere	 (path	 length:	r=-0.267;	p=0.488;	

completion	time:	r=-0.517;	p=0.154).	This	means	that	subjects	with	more	extensive	pre-
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training	M1	activations	in	the	left	hemisphere	were	faster	after	training.	Also,	the	cluster	

size	 reduction	 in	 the	 left	 hemisphere	 (post-training	 -	 pre-training)	 for	 PAM	activation	

correlated	 significantly	 with	 the	 virtual	 obstacle	 course	 completion	 time	 (r=-0.733;	

p=0.025).	The	same	correlations	were	found	for	right	hemisphere	M1	activations	during	

FT	 in	 the	 pre-training	 session	 (path	 length:	 r=-0.733;	 p=0.025;	 completion	 time:	 r=-

0.783;	p=0.013).	

Regarding	 real	 wheelchair	 tasks,	 participants	 with	 increased	 PAM	 activations	 in	 the	

right	hemisphere	in	the	pre-training	session	were	faster	in	the	slalom	in	the	final	testing	

session	(r=-0.67,	p=0.05,	Figure	26	C).	Again,	this	correlation	was	reversed	after	training	

(r=0.17,	p=0.6).	There	was	a	similar	trend	for	the	left	hemisphere	(pre-training:	r=-0.60,	

p=0.08)	 and	 a	 similar	 reversion	 post-training	 (r=0.23,	 p=0.5).	 Interestingly,	 the	 same	

was	 true	 for	 the	 left	hemisphere	activations	during	FT	 imagination	 in	 the	pre-training	

session	 (r=-0.700,	p=0.036).	 Cluster	 size	 reduction	 showed	 no	 significant	 correlations	

with	 wheelchair	 driving.	 Larger	 M1	 activation	 sizes	 for	 PAM	 activation	 pre-training	

showed	a	trend	to	correlate	with	a	faster	performance	of	the	real	obstacle	course	in	the	

first	session,	but	only	in	the	left	hemisphere	(r=-0.628,	p=0.07).	
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Figure 26) Spearman correlations of fMRI activation cluster sizes during PAM activity pre- and post-
training.  

The PAM cluster sizes of the left hemisphere (LH) from the SCI subjects correlated significantly to the level of 
SCI lesion pre-training (A), i.e. participants with higher lesions had more extended activations on the motor 
cortex. This correlation was reversed through training, showing a tendency for training to inverse this effect 
(right side). On a behavioral level, in the pre-training session, those participants with larger LH cluster sizes 
performed better in unilateral activation (B). Through training, this correlation was turned negative, i.e. smaller 
cluster sizes tended to go along with improved unilateral activation. Cluster sizes in the right hemisphere in the 
pre-training session correlated with better wheelchair driving performance (faster slalom completion) post-
training (C). Again, this correlation was reversed through training; post-training cluster sizes did not correlate 
with better slalom performance. Note that non-parametric spearman correlations were used, which are based on 
ranks; hence the axes are not continuous.  



	

84	

4.2.7 Mapping	of	muscle	representations	using	TMS	
Coordinates	of	mean	center	of	gravities	(COG)	of	PAM	MEPs	 in	MNI	space,	and	cluster	

sizes	from	pre-and	post-training	sessions	are	given	in	Table	2	(see	also	Figure	27).	The	

coordinates	 on	 the	 x	 and	 z	 axes	 did	 not	 change	with	 training	 (Z=-0.943,	p=0.345;	Z=-

0.631,	 p=0.528).	 However,	 we	 found	 a	 significant	 posterior	 shift	 on	 the	 y-axis	 with	

training	(Z=-2.023,	p=0.043).		

The	effect	of	 training	on	the	size	of	M1	activation	was	not	significant.	However,	 like	 in	

the	 fMRI	 data,	 individuals	 with	 higher	 lesions	 showed	 significantly	 more	 extended	

activations	 in	 the	 pre-training	 session	 (r=0.866,	 p=0.012),	 while	 this	 effect	 was	

completely	abolished	post-training	(r=0.0,	p=1.0).	Accordingly,	participants	with	higher	

lesions	 showed	 a	 trend	 to	 greater	 cluster	 size	 reductions	 with	 training	 (r=-0.722,	 p=	

0.67).		

A	 direct	 statistical	 comparison	 with	 the	 data	 of	 the	 able-bodied	 subjects	 was	 not	

possible	due	to	the	different	stimulation	settings.	Their	mean	PAM	COG	was	-50,	2	and	

51	 in	MNI	 space	 (only	 left	 hemisphere,	 Figure	 27),	 indicating	 a	 shift	 into	 the	 coronal	

direction	in	our	SCI	subjects.	

	 	

Figure	27)	Centers	of	Gravity	(COGs)	of	TMS	motor	evoked	potentials	of	the	right	PAM.	
COGs	 of	 participants	 with	 tetraplegia	 (circles)	 and	 able-bodied	 subjects	 previously	 acquired	 in	 our	
working	group	(square).	Already	pre-training	(dark	red),	individuals	with	tetraplegia	had	a	shift	of	COGs	
into	medial	 direction	when	 compared	 to	 able-bodied	 subjects.	 Training	 induced	 a	 posterior	 shift	 (light	
red).
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Following	page:		
	
Table	 2)	 Talairach	 coordinates	 of	 centers	 of	 gravity	 (COGs)	 and	 activation	 cluster	 sizes	 of	 task-
related	activations	in	fMRI	(in	mm3	with	standard	deviations)	in	the	primary	motor	cortex.		
Subjects	 moved	 their	 auricular	 muscles	 rhythmically	 (PAM)	 or	 imagined	 bilateral	 finger	 tapping	 (FT)	
during	 fMRI,	 before	 training	 (pre-training)	 and	 after	 12	 days	 of	 auricular	 wheelchair	 control	 training	
(post-training).	 Significant	 differences	 between	 sessions	 are	marked	 by	 *.	 Activation	 cluster	 sizes	were	
significantly	reduced	during	PAM	and	FT	in	the	left	and	right	hemisphere,	respectively.	For	the	same	time	
points,	 TMS	 mapping	 identified	 mean	 COGs	 (in	 MNI	 space,	 with	 standard	 deviations)	 of	 the	 left	
hemisphere	 cortical	 area	 that	 evoked	motor	potentials	 in	 the	 right	posterior	 auricular	muscle.	Training	
induced	 a	 posterior	 shift	 of	 the	 TMS	 COG.	 fMRI	 data	was	 compared	 to	 fMRI	 data	 from	 13	 able-bodied	
subjects	previously	acquired	in	our	working	group.	COGs	of	the	PAM	had	shifted	before	training	towards	
the	hand	area.	Clusters	size	was	 three	 times	greater	 in	SCI	 than	 in	able-bodied	subjects	before	 training,	
and	this	difference	was	reduced	in	the	post-training	session.	 	
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4.3 Discussion	

For	the	first	time,	the	functionality	of	the	ACS	was	shown	in	individuals	with	spinal	cord	

injuries.	All	participants	acquired	control	over	their	auricular	muscles,	which	they	then	

improved.	They	were	able	 to	 improve	 their	performance	 in	complex	wheelchair	 tasks,	

which	demonstrated	the	feasibility	of	the	ACS	as	a	reliable	control	system.	

Functional	 MRI	 data	 prior	 to	 training	 revealed	 over-activation	 of	 the	 primary	 motor	

cortex	 during	 motor	 tasks	 in	 our	 SCI	 subjects	 when	 compared	 to	 data	 previously	

acquired	 from	 able-bodied	 subjects.	 This	 over-activation	 correlated	 with	 better	

performance	in	the	ACS.	Motor	training	led	to	a	significant	reduction	of	primary	motor	

cortex	 activation.	 After	 training,	 less	 extended	 M1	 activations	 correlated	 with	 better	

performance.	 The	 centers	 of	 gravity	 (COG)	 of	 M1	 activity	 during	 PAM	 activation	 had	

shifted	into	the	direction	of	the	hand	area	before	training.	This	shift	was	reinforced	by	

training.	The	data	from	these	SCI	subjects	reveals	extensive	brain	reorganization	before	

training	and	indicate	a	normalization	of	brain	activity	in	the	course	of	motor	training.	

	

4.3.1 The	ACS	as	wheelchair	control:	performance	of	SCI	
This	was	the	first	time	that	a	group	of	individuals	with	tetraplegia	was	trained	to	use	the	

ACS.	 They	 all	 improved	 their	 ability	 to	 activate	 their	 ear	 muscles	 and	 to	 distinguish	

between	 both	 sides.	 Although	 the	 system	 theoretically	 needs	 only	 small	 differences	

between	the	two	ears	to	detect	an	intention	to	turn,	better	unilateral	activation	allows	

one	to	make	use	of	the	proportional	and	continuous	features.	For	example,	with	a	50%	

single-sided	activation,	the	wheelchair	turns	on	the	spot.	With	70%	activation	of	the	left	

side	and	an	additional	activation	20%	of	the	right	side,	the	wheelchair	turns	left	with	a	

slight	forward	motion.	Better	unilateral	activation	thus	permits	a	flexible,	precise	signal	

generation.	 The	 participants	 significantly	 improved	 their	 ability	 to	 activate	 only	 one	

auricular	muscle.	By	 the	 end	of	 the	 training,	 they	managed	an	average	of	75%	single-

sided	 activation,	 i.e.	without	 co-activation	 of	 the	 other	 ear.	 This	 final	 value	 allows	 for	

precise	modulation	of	signal	strength	while	driving	an	electric	wheelchair.	

Accordingly,	the	complex	task	of	steering	a	real	wheelchair	improved	significantly	with	

training.	 The	 continuous	 and	 proportional	 signal	 generation	 permits	 e.g.	 the	 online	

modulation	of	commands	and	the	direct	control	over	the	intended	direction.	This	is	an	

advantage	 over	 other	 control	 options,	 such	 as	 sip-and-puff	 or,	 potentially,	 brain	
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computer	interfaces	(BCI)(Diez	et	al.,	2013;	Kim	et	al.,	2013).	Despite	the	variability	in	

performance,	 the	 successful	 completion	 of	 wheelchair	 tasks	 shows	 that	 participants	

were	able	to	make	use	of	the	flexibility	provided	by	the	ACS	not	only	during	computer	

testing,	but	also	during	actual	wheelchair	driving.		

The	participants	not	only	learned	to	activate	the	new	muscles	but	also	to	attribute	a	new	

function	 to	 these	 formerly	 unused	 muscles,	 i.e.	 that	 of	 generating	 reliable	 steering	

signals	for	their	wheelchair.	The	results	are	particularly	impressive	because	all	but	two	

participants	 had	 initially	 declared	 themselves	 unable	 activate	 their	 ear-muscles.	

Considering	the	long	training	time	required	for	control	systems	such	as	BCI	(Donoghue,	

2008)	this	result	is	promising.	

In	a	reproduction	of	the	positive	evaluations	from	our	previous	study	(Schmalfuss	et	al.,	

2016),	the	SCI	subjects	were	satisfied	with	the	ACS.	According	to	our	own	test	and	the	

NASA	TLX	(Hart	&	Staveland,	1988),	the	mental	demands	for	steering	a	wheelchair	after	

two	 weeks	 of	 training	 were	 low,	 and	 in	 the	 overall	 evaluation	 of	 the	 system,	 the	

participants	considered	it	to	be	ready	for	use	in	daily	life.	 	

The	positive	evaluation	together	with	performance	of	our	participants	shows	the	ACS	to	

be	 a	 feasible	 alternative	 whenever	 hands-free	 control	 is	 required.	 The	 results	 of	 the	

study	 showed	 that	 the	 inherent	 characteristics	 of	 the	 ACS,	 such	 as	 proportional	 and	

continuous	 control,	 can	 meet	 the	 specific	 needs	 of	 wheelchair	 users	 and	 make	 it	 a	

promising	control	interface.		

	

4.3.2 Motor	cortex	reorganization	in	chronic	SCI:	superior	PAM	control	as	a	
result	of	over-activation?	

In	 our	 SCI	 patients,	 fMRI	 activation	 sizes	 for	 motor	 imagery	 of	 FT	 activation	 are	

remarkably	similar	to	those	of	movement	execution	by	able-bodied	subjects.	The	same	

relationship	has	been	found	earlier,	where	motor	imagery	activation	size	in	SCI	patients	

was	 similar	 to	 that	 of	 able-bodied	 subjects	 executing	 foot	movements	 (Alkadhi	 et	 al.,	

2005).		

In	 contrast,	 PAM-related	motor	 cortex	 activations	were	 three	 times	more	 extended	 in	

SCI	 subjects	 than	 in	 able-bodied	 subjects.	 These	 larger	 PAM-related	 motor	 cortex	

activations	 support	 studies	 that	 have	 found	 an	 enlargement	 of	 motor	 cortex	

representations	 in	 SCI	 patients	 (Levy	 et	 al.,	 1990;	 Lundell,	 Christensen,	 et	 al.,	 2011;	
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Moxon	et	al.,	2014;	Turner	et	al.,	2003).	Other	studies	have	reported	no	change(Mattia	et	

al.,	 2006;	 Sabbah	 et	 al.,	 2002)	 or	 decreased	 activation	 (Cramer	 et	 al.,	 2005;	 Hotz-

Boendermaker	et	al.,	2008).	These	differences	might	have	been	due	to	a	heterogeneity	of	

the	 studied	 patients,	 since	 those	with	 higher	 lesion	 levels	 seem	 to	 have	 larger	motor	

cortex	 activation	 (Bruehlmeier,	 1998;	 Ghosh	 et	 al.,	 2009;	 Lundell,	 Christensen,	 et	 al.,	

2011).	In	accordance	with	this,	we	found	in	the	pre-training	data	a	correlation	between	

higher	SCI	 lesion	 levels	and	 larger	 fMRI	cluster	size	activation	 in	 the	 left	motor	cortex	

during	 PAM	 activity.	 The	 TMS	 data	 confirmed	 this	 correlation.	 Moreover,	 the	 same	

correlation	was	found	for	higher	SCI	lesion	levels	and	larger	motor	cortex	cluster	sizes	

during	FT	imagination.		

The	 mechanisms	 of	 this	 increased	 motor-related	 activation	 are	 still	 incompletely	

understood	(Nardone	et	al.,	2015).	Previous	studies	have	suggested	that	the	expansion	

of	 motor-related	 cortex	 activation	 is	 associated	 to	 atrophy	 of	 the	 lateral	 spinal	 cord	

(Lundell,	Christensen,	et	al.,	2011),	reduced	afferent	inhibition	(Ziemann	et	al.,	1998),	or	

could	be	caused	by	an	overuse	of	 the	muscles	still	 available	 (Sabre	et	al.,	2013).	Since	

PAM	had	not	been	overused	prior	to	the	study,	the	latter	explanation	does	not	apply	to	

our	data.	An	alternative	explanation	might	be	that	the	disuse	of	large	parts	of	the	motor	

cortex	leads	to	a	reorganization,	which	enables	a	recruitment	of	broader	cortical	areas	

for	any	motor	task.	The	resulting	flexibility	of	the	primary	motor	cortex	can	also	be	seen	

in	 the	 recruitment	of	 the	de-efferented	 leg	 and	 foot	 areas	of	 the	M1	 (medial	wall)	 for	

PAM	activation	in	a	majority	of	our	subjects.		

On	a	functional	level,	the	over-activation	of	the	M1	for	motor	tasks	has	so	far	been	seen	

as	a	compensational	mechanism	(Lundell,	Christensen,	et	al.,	2011;	Turner	et	al.,	2003).	

The	exact	 function	 is	 less	clear	but	 it	has	been	proposed	 that	 it	helps	 to	secure	motor	

output	 (Di	Rienzo	 et	 al.,	 2014;	 Freund,	Rothwell,	 et	 al.,	 2011;	Moxon	et	 al.,	 2014)	 and	

might	lead	to	functional	gain(Nardone	et	al.,	2013).	On	the	other	hand,	it	might	also	be	

responsible	 for	maladaptive	changes	 that	can	 lead	 to	pain	and	spasticity	 (Raineteau	&	

Schwab,	2001)	and	 thus	actually	be	a	hindrance	 to	 functional	 recovery	 (Cramer	et	 al.,	

2005;	 Hotz-Boendermaker	 et	 al.,	 2008;	 Nardone	 et	 al.,	 2015)	 and	 impair	 motor	

performance	 (Freund,	Weiskopf,	 et	 al.,	 2011).	Our	data	provide	 the	 first	 evidence	 that	

the	 cortical	 expansion	 of	 motor	 maps	 in	 SCI	 is	 not	 necessarily	 maladaptive,	 but	 can	

actually	help	produce	a	superior	outcome.	In	our	study,	those	with	a	higher	lesion	level	

had	 significantly	 better	 scores	 in	 unilateral	 activation	 and	 real	 obstacle	 course	
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performance	in	the	pre-training	sessions.	Since	we	have	seen	that	patients	with	higher	

lesion	 levels	 have	 larger	 activations,	 we	 believe	 that	 the	 superior	 performance	might	

also	be	explained	by	 the	provision	of	 additional	neuronal	 resources	 that	accompany	a	

higher	lesion.	As	has	been	suggested	previously,	increased	activations	might	thus	ensure	

the	capability	to	respond	to	motoric	requirements	and	help	to	respond	to	new	tasks	in	a	

flexible	 manner	 (Raineteau	 &	 Schwab,	 2001).	 Correlations	 of	 more	 extended	 pre-

training	 activation	 sizes	 and	 better	 performance	 in	 the	 post-training	 session	 e.g.	

between	 PAM	 and	 virtual	 obstacle	 course	 or	 real	 wheelchair	 slalom,	 support	 the	

interpretation	 that	 additional	 resources	 promote	 the	 response	 to	 new	 tasks	 and	

subsequently	 also	 increase	 the	 learning	 effect.	 When	 harvested	 appropriately,	 e.g.	

through	physiotherapy,	the	brain	reorganization	could	thus	even	result	as	an	advantage.	

Future	research	should	investigate	whether	with	the	appropriate	exercises,	SCI	patients	

would	 be	 able	 to	 mobilize	 the	 additional	 neurological	 actuators	 and	 achieve	 better	

output	in	other	tasks	that	involve	muscles	above	the	lesion	level.		

	

4.3.3 Training	reduces	motor	cortex	activity	and	increases	performance	

The	 initial	 over-activation	 was	 reduced	 by	 training	 during	 both	 motor	 tasks	 in	 our	

subjects.	Likewise,	the	pre-training	recruitment	of	the	leg	area	was	virtually	abolished	in	

seven	of	 the	nine	participants	after	 training.	 It	 can	be	ruled	out	 that	 the	decrease	was	

caused	by	poorer	performance,	since	all	participants	improved	their	performance	with	

training.	 These	 results	 suggest	 that	 the	 abnormal	 over-activations	 of	 brain	 activity	

commonly	found	in	chronic	tetraplegic	individuals	(Cramer	et	al.,	2005)	can	actually	be	

normalized	 by	 motor	 training.	 Whereas	 before	 training,	 patients	 with	 higher	 lesion	

levels	 had	 had	 greater	 motor	 cortex	 activations	 during	 PAM	 activity,	 this	 correlation	

turned	 negative	 after	 training:	 higher	 lesion	 levels	 tended	 to	 be	 associated	 with	 less	

expanded	motor-related	M1	activation	than	lower	lesion	levels.	The	positive	correlation	

of	larger	TMS	cluster	sizes	with	higher	lesion	levels	was	likewise	abolished	by	training.	

The	same	was	true	for	SMA	activations	in	fMRI,	where	subjects	with	higher	lesion	levels	

had	a	 significantly	greater	 reduction	of	 activation	with	 training	 than	 those	with	 lower	

lesion	levels.	In	our	study,	motor	training	was	apparently	able	to	attenuate	the	influence	

of	SCI	lesion	levels	on	motor	network	activity.		
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On	 a	 behavioral	 level,	 the	 training-induced	 decrease	 in	 motor	 cortex	 activation	 was	

accompanied	 by	 better	 performance.	 Participants	 with	 a	 greater	 PAM	 cluster	 size	

reduction	 performed	better	 post-training	 (e.g.	 in	 unilateral	 activation,	 virtual	 obstacle	

course	performance).	Remarkably,	while	in	the	pre-training	session	larger	cluster	sizes	

had	correlated	with	better	performance,	this	correlation	was	reversed	post-training,	for	

example	 in	unilateral	 activation	and	wheelchair	 slalom.	Motor	 training,	 thus,	 seems	 to	

change	the	dynamics	of	neuronal	recruitment	during	motor	tasks	in	SCI	patients.	When	

the	motor	cortex	is	engaged	with	new	tasks,	training	replaces	the	initial	over-activation	

with	increased	effectiveness.	

In	 able-bodied	 subjects,	 skilled	 motor	 training	 usually	 leads	 to	 an	 extension	 of	 the	

cortical	representation	(Elbert	&	Flor,	1999;	Martin	Lotze,	Braun,	Birbaumer,	Anders,	&	

Cohen,	2003;	Perez,	Lungholt,	Nyborg,	&	Nielsen,	2004).	However,	little	is	known	about	

the	effects	of	motor	training	on	SCI-specific	brain	reorganization	(Kokotilo	et	al.,	2009).	

To	 our	 knowledge	 there	 are	 only	 two	 case	 studies	 using	 TMS	 (Chisholm	 et	 al.,	 2015;	

Hoffman	&	Field-Fote,	2007)	and	one	series	of	cases	using	fMRI	(Winchester	et	al.,	2005)	

indicating	that	motor	training	(from	1	h	to	3	weeks)	might	increase	M1	activation	in	SCI	

subjects.	The	results	of	the	TMS	studies	are	not	comparable	to	our	fMRI	data.	The	fMRI	

study,	on	the	other	hand,	used	fMRI	tasks	that	involved	impaired	muscles	below	lesion	

level,	leading	to	only	minimal	motor	cortex	activation	in	the	beginning.	The	same	applies	

to	 the	 study	 by	 Jurkiewicz	 et	 al.	 who	 found	 that	 functional	 improvement	 without	

training	 correlated	 with	 increased	 M1	 activation	 during	 the	 first	 year	 of	 recovery	

(Jurkiewicz	 et	 al.,	 2007).	 The	 extensive	 pre-training	 M1	 activation	 during	 the	 above	

lesion	 PAM	 activation	 in	 our	 participants	 might	 have	 led	 to	 different	 neuronal	

normalization	mechanisms,	i.e.	a	reduction	in	M1	activity.		

The	 specific	 dynamics	 of	 neuronal	 activity	 in	 our	 study	 suggests	 that	 motor-training	

effects	on	cortical	organization	might	be	different	 in	 individuals	with	SCI	 than	 in	able-

bodied	 subjects.	 In	 our	 subjects	 with	 tetraplegia,	 improvement	 in	 behavioral	

performance	 goes	 along	 with	 a	 partial	 decrease	 of	 M1	 activation	 and	 a	 parallel	 SMA	

decrease.	A	 similar	neuronal	 specification,	 i.e.	decrease	of	neuronal	 activity	associated	

with	improved	performance,	has	been	found	in	the	motor	cortex	of	SCI	subjects	during	

motor	 imagery	 (Di	 Rienzo	 et	 al.,	 2014;	 Guillot	 et	 al.,	 2008).	 The	 principle	 of	 neuronal	

specification	also	operates	 in	able-bodied	subjects	during	motor	tasks.	For	example,	 in	

professional	 sports	 experts	 recruit	 smaller	 motor	 areas	 than	 non-experts	 for	 motor	
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preparation	 (Milton,	 Solodkin,	Hluštík,	&	Small,	 2007).	 In	 line	with	our	 interpretation,	

this	 reduction	 is	 viewed	 as	 an	 increase	 in	 effectiveness,	 i.e.	 that	 the	 task	 can	 be	

completed	using	 fewer	resources	 (Poldrack,	2000).	An	 increased	understanding	of	 the	

SCI-specific	motor	training	effect	on	cortical	organization	might	also	be	relevant	in	the	

context	of	BCI	and	help	resolve	issues	with	unstable	signal	classification	and	exceedingly	

long	training	times	in	individuals	with	tetraplegia	(Kauhanen	et	al.,	2006;	Pfurtscheller,	

Müller,	Pfurtscheller,	Gerner,	&	Rupp,	2003).	

However,	since	SCI	subjects	did	not	specifically	train	motor	imagery	of	FT,	the	question	

remains	why	fMRI	activation	decreased	during	the	study.	Conjunction	analysis	(shared	

area	 between	 FT	 and	 PAM	 activation)	 suggests	 that	 the	 peak	 of	 shared	 activation	 is	

actually	located	well	inside	the	hand	area.	Since	both	representations	are	located	in	the	

same	 cortical	 area,	 the	 FT	 area	 might	 have	 been	 affected	 by	 the	 training-induced	

reorganization	 of	 the	 PAM	 area.	 Another	 possibility	 is	 that,	 since	 PAM	 activation	 and	

motor	 imagery	 of	 FT	 are	 both	 new	 tasks,	 the	 SCI-specific	motor	 learning	 dynamics	 of	

over-activation	 followed	 by	 specification	 through	 training	 apply	 to	 both	 tasks.	 This	

interpretation	 is	 supported	 by	 correlations	 of	 FT	 cortex	 reduction	 and	 better	 ACS	

performance,	 which	 were	 similar	 for	 PAM-related	 cortex	 activity.	 A	 single	 imaging	

session	 might	 possibly	 have	 already	 improved	 the	 motor	 imagery	 quality	 and	 thus	

reduced	the	activation	size,	a	correlation	that	has	been	shown	previously	(Alkadhi	et	al.,	

2005).		

	

4.3.4 Shifts	of	activation	before	and	after	training:	which	motor	cortex	areas	are	
used?		

The	similarities	between	the	COGs	of	SCI	and	able-bodied	subjects	during	imagined	and	

executed	finger	movements	are	in	line	with	other	findings	of	motor	imagery	sharing	the	

same	 neuronal	 substrates	 as	 physical	 execution	 (Di	 Rienzo	 et	 al.,	 2014;	 Porro	 et	 al.,	

1996;	Sabbah	et	al.,	2002).	The	post-SCI	brain	reorganization	apparently	did	not	affect	

the	 original	motor	 program	of	 the	 de-efferented	 cortex.	 In	 contrast,	 pre-training	 PAM	

COGs	had	already	shifted	considerably	towards	the	hand	area	(Figure	22).	This	finding	is	

in	line	with	studies	that	report	shifts	into	the	de-efferented	limb	area	in	individuals	with	

tetraplegia	(Bruehlmeier,	1998;	Mikulis	et	al.,	2002)	and	contradicts	the	interpretation	

that	these	shifts	occur	predominantly	in	lower	lesion	SCI	(Kokotilo	et	al.,	2009;	M	Lotze,	
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Laubis-Herrmann,	 Topka,	 Erb,	 &	 Grodd,	 1999).	 In	 addition	 to	 extensive	 brain	

reorganization,	we	still	found	a	significant	difference	between	the	COGs	of	FT	and	PAM	

in	the	pre-training	session.	Training	induced	another,	albeit	smaller,	PAM	COG	shift	into	

the	hand	area,	abolishing	the	pre-training	difference.		

This	means	 that	parts	 of	 the	unused	hand	areas	 are	 recruited	 for	 the	new	 task,	while	

their	 original	motor	 program	 remains	 intact.	 This	 “peaceful	 cohabitation”	 of	 different	

body	representations	in	the	same	cortical	area	has	been	shown	previously	for	phantom	

limb	 phenomena	 (Reilly	 &	 Sirigu,	 2008).	 Preservation	 of	 previous	 motor	

representations,	 therefore,	 does	 not	 exclude	 an	 involvement	 in	 new	 tasks	 for	 de-

efferented	regions	(Sabbah	et	al.,	2002).	

The	shift	of	PAM	COG	was	more	pronounced	 in	the	TMS	data.	As	 in	 the	 fMRI	data,	SCI	

subjects	showed	different	locations	of	PAM	COG	pre-training	than	able-bodied	subjects.	

After	 SCI	 subjects	 had	 trained	PAM	activation,	we	 found	 a	 clear	posterior	 shift.	 These	

findings	contradict	the	partial	shift	into	the	de-efferented	limb	area	shown	by	the	fMRI	

data.	In	general,	the	posterior	shift	in	the	post-SCI	brain	is	interpreted	as	involving	the	

primary	 sensory	 cortex	 (S1)	 for	 motor	 activities	 (Nardone	 et	 al.,	 2013).	 Green	 et	 al.	

argument	that	the	pyramidal	axons	descending	from	the	S1	might	be	spared	more	often	

from	 injury	 due	 to	 a	 more	 posterior	 location	 (Green	 et	 al.,	 1998),	 thereby	 achieving	

better	motor	outputs.	This	might	also	explain	the	difference	between	COGs	in	the	fMRI	

and	TMS	data,	 since	we	 did	 not	 include	 the	 S1	 in	 the	 fMRI	ROI-Analysis.	 Although	 all	

TMS	COGs	were	well	within	the	boundaries	of	the	motor	cortex,	we	cannot	rule	out	the	

possibility	that	due	to	individual	anatomical	variations	some	frontal	parts	of	the	S1	were	

also	stimulated	and	thus	contributed	to	the	posterior	shift.	Previous	studies	have	found	

a	 similar	 difference	 between	 TMS	 and	 fMRI	 data,	 arguing	 that	 this	might	 be	 due	 to	 a	

dispersed	maximum	of	current	flow,	which	might	not	be	located	directly	under	the	TMS	

coil	(Martin	Lotze	et	al.,	2003).	

	

4.3.5 Limitations	of	the	study	

A	 limitation	of	our	 study	 is	 the	 small	 sample	 size,	which	 is	 a	problem	 in	most	 studies	

with	SCI	subjects	(Nardone	et	al.,	2015).	We	also	did	not	evaluate	completeness	of	lesion	

or	 the	 motor	 score.	 We	 believe	 that	 these	 limitations	 may	 have	 contributed	 to	 the	

asymmetry	 of	 our	 results,	 i.e.	 that	 the	 PAM-related	 activation	 reduction	 following	
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training	was	only	significant	in	the	left	hemisphere.	The	pattern	of	correlations,	e.g.	that	

both	 right	 hemisphere	 PAM	 activation	 size	 and	 higher	 lesion	 levels	 correlated	 with	

better	slalom	performance,	or	that	right	hemisphere	cluster	sizes	correlated	with	better	

slalom	performance	pre-training,	but	not	post-training	(as	found	for	the	left	hemisphere	

in	 other	 tasks),	 suggests	 that	 the	 lateralization	 might	 not	 be	 functional,	 but	 due	 to	

experimental	 factors.	 It	 must	 be	 pointed	 out	 that	 asymmetry	 of	 fMRI	 results	 is	 a	

common	 problem	 in	 SCI	 studies	 (Freund	 et	 al.,	 2013)	 and	 that	most	 studies	with	 SCI	

subjects	have	 trouble	detecting	consistent	effects	 that	apply	 to	all	 tested	subjects	 (e.g.	

(Cramer,	Orr,	Cohen,	&	Lacourse,	2007;	Green	et	al.,	1999;	Sabbah	et	al.,	2002;	Shoham,	

Halgren,	Maynard,	 &	 Normann,	 2001;	 Turner	 et	 al.,	 2003)).	 This	might	 be	 due	 to	 the	

heterogeneity	 of	 SCI	 patients	 (Kokotilo	 et	 al.,	 2009)	 who	 often	 differ	 in	 multiple	

important	factors	at	the	same	time.		

The	scope	of	this	study	was	to	 investigate	the	effects	of	motor	training	in	SCI	patients,	

but	in	order	to	infer	a	specificity	of	our	results,	the	same	training	should	be	conducted	

with	 control	 subjects.	 However,	 motor	 training	 studies	 suggest	 different	 results	 in	

individuals	in	whom	the	somatotopic	organization	of	the	motor	cortex	is	still	intact,	e.g.	

no	 over-activation,	 less	 activation	 reduction,	 or	 even	 increased	 activation	 through	

training.		

	

4.4 Conclusion	

In	this	study,	we	have	provided	further	evidence	that	the	ACS	is	indeed	a	viable	control	

option	for	subjects	with	tetraplegia.	All	participants	learned	to	activate	their	PAM	and	to	

generate	 precise	 wheelchair	 steering	 signals	 during	 the	 twelve	 days	 of	 training.	 Our	

results	 suggest	 that	 the	 brain	 reorganization	 in	 SCI	 subjects	 is	 two-fold:	 compared	 to	

able-bodied	subjects,	we	found	extensive	brain	reorganization	with	activation	shifts	into	

the	 de-efferented	 hand	 area	 and	 increased	 activation	 cluster	 sizes.	 Correlations	 of	

greater	activations	clusters	with	superior	ACS	performance	suggest	 that	 the	 increased	

availability	of	neuronal	structures	can	optimize	motoric	output.	Motor	 training,	on	the	

other	 hand,	 caused	 a	 reduction	 in	 activation	 sizes	 during	 motor	 tasks,	 similar	 to	

neuronal	 specification	 (improved	 effectiveness)	 in	 other	 motor	 paradigms.	 This	

reduction	might	indicate	a	normalization	of	SCI	brain	activity	through	training.	Whether	

the	 focus	 of	 neuronal	 activation	 is	 task-specific	 because	 a	 new	 muscle	 is	 used,	 or	
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corresponds	to	general	skill-acquisition	should	be	addressed	in	future	experiments.	We	

provide	 the	 first	 evidence	 that	 the	 post-SCI	 brain	 reorganization	 can	 be	 specifically	

targeted	with	training	interventions.	These	results	could	have	important	consequences	

for	the	adequate	physiotherapeutic	care	of	SCI	subjects,	e.g.	choosing	appropriate	tasks	

in	order	to	make	use	of	additional	neuronal	potential,	and	possibly	ameliorate	negative	

consequences	of	the	brain	reorganization.	
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5 Conclusion	of	this	thesis	

5.1 Summary	of	the	results	

In	 the	 presented	 studies	 we	 have	 tested	 the	 newly	 developed	 ACS	 in	 different	

applications	 for	 control	 of	 assistive	 devices.	 We	 have	 also	 investigated	 the	 effects	 of	

motor	training	during	ACS	use	on	the	brain	reorganization	of	subjects	with	tetraplegia.		

In	 the	 first	 study,	 we	 trained	 ten	 able-bodied	 subjects	 and	 two	 individuals	 with	

tetraplegia	for	four	consecutive	days	with	visual	feedback	and	computer	games	in	their	

ability	 to	 voluntarily	 activate	 their	 bilateral	 PAM.	 All	 subjects	 showed	 significant	

improvements	in	different	parameters	of	muscle	control,	e.g.	contraction	rate,	length	of	

contraction	and	importantly,	unilateral	activation.	Significantly,	there	was	no	difference	

between	those	subjects	who	could	already	activate	their	PAM	before	the	study	and	those	

who	 could	 not.	 By	 the	 fifth	 training	 day	 all	 subjects	 were	 able	 to	 generate	 reliable	

control	 signals,	 steering	 an	 electric	 wheelchair	 using	 only	 the	 ACS.	 Furthermore,	

subjects	with	 tetraplegia	were	 able	 to	 complete	 a	 complex	 obstacle	 course.	With	 this	

study,	we	proved	the	feasibility	of	the	ACS	for	wheelchair	control,	thereby	making	use	of	

the	 inherent	 advantages	 of	 this	 control,	 e.g.	 not	 interfering	 with	 other	 activities	 and	

proportional	and	continuous	signal	generation.		

In	the	second	study,	the	ACS	was	combined	with	an	established	control	mode	in	order	to	

provide	 simultaneous	 control	 over	 two	 DOF	 for	 a	 prosthetic	 hand.	 10	 able-bodied	

subjects	 and	 one	 subject	 with	 transradial	 amputation	 used	 the	 hACS	 and	 two	 other	

clinically	 established	 control	modes	 in	 two	 performance	 tests	with	 a	 prosthetic	 hand.	

Even	without	 training,	 performance	 results	 were	 superior	 with	 the	 hACS	 in	 terms	 of	

precision	and	speed.	This	result	was	replicated	by	the	more	experienced	prosthesis	user.	

The	hACS	could	therefore	resolve	some	of	the	problems	with	the	established	prosthesis	

controls	and	might	be	a	viable	alternative	to	other	proposed	academic	control	options.	

In	 the	 third	study,	 the	clinical	application	of	 the	ACS	 to	wheelchair	 control	was	 tested	

with	 nine	 subjects	 with	 tetraplegia.	 Twelve	 days	 of	 training	 resulted	 in	 significantly	

improved	 performance	 in	 the	 control	 over	 the	 auricular	 muscles	 (e.g.	 unilateral	

activation)	 and	 in	 the	 control	 of	 an	 electric	 wheelchair	 (e.g.	 slalom,	 obstacle	 course).	

fMRI	 and	 TMS	 data	 revealed	 extensive	 brain	 reorganization	 when	 compared	 to	 data	

from	 the	 able-bodied	 subjects	 before	 training,	 with	 shifts	 of	 activation	 maxima	 and	
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increased	 activation	 cluster	 sizes	 on	 the	 primary	 motor	 cortex	 when	 moving	 their	

auricular	muscles.	 Importantly,	 increased	 activation	 sizes	were	 correlated	with	 better	

performance,	 suggesting	 an	 increased	 flexibility	 due	 to	 additional	 neuronal	 resources.	

ACS-related	 motor	 training	 on	 the	 other	 hand	 reduced	 this	 excessive	 activation	 and	

caused	 a	 neuronal	 specification	 for	 the	 task.	 These	 results	 provide	 a	 first	 insight	 into	

SCI-specific	 activity-dependent	 neuronal	 plasticity	 and	 could	 have	 important	

consequences	for	the	therapeutic	care	of	individuals	with	SCI.		

	

5.2 Final	conclusion	and	future	directions	

With	 this	 series	 of	 studies	 we	 have	 shown	 that	 the	 ACS	 is	 indeed	 a	 viable	 control	

alternative	for	assistive	devices.	The	ACS	was	able	to	respond	to	the	different	demands	

associated	with	both	wheelchair	 and	prosthesis	 control.	Different	 inherent	 features	of	

the	ACS	resulted	in	advantageous	control	properties.	For	example,	the	continuous	signal	

transmission	allowed	for	fluent,	s-formed	curves	in	wheelchair	control	and	for	flowing,	

natural	 hand	 movements	 in	 prosthesis	 control.	 The	 proportional	 control	 improved	

speed	in	prosthesis	control,	because	unlike	in	e.g.	SL,	the	signal	amplitude	could	be	used	

exclusively	for	speed	of	movement.	In	wheelchair	driving,	speed	of	the	wheelchair	was	

determined	by	strength	of	contraction.	Subjects	started	with	slower	wheelchair	driving	

and	 increased	speed	during	 the	course	of	 training	 in	e.g.	 the	obstacle	 course,	 showing	

that	they	were	able	to	modulate	speed	according	to	their	demands	whilst	making	use	of	

the	proportional	 feature	of	 this	control	 interface.	User	evaluations	of	 the	ACS	qualities	

were	very	positive	and	suggested	that	it	was	ready	for	daily	use.		

Significantly	we	attributed	a	new	function	to	a	previously	unused	muscle,	making	use	of	

an	unexploited	potential	especially	 relevant	 for	 individuals	with	high	 level	 tetraplegia.	

Conflicting	results	had	previously	been	reported	over	this	vestigial	muscle	and	whether	

it	could	be	voluntarily	activated.	With	the	presented	studies,	we	provide	evidence	that	

the	voluntary	activation	of	 the	PAM	can	be	 learned	and	 trained.	Besides	 simple	on-off	

activation,	our	subjects	achieved	complex	activation	patterns	(e.g.	unilateral	activation,	

modulation	of	activation	strength).	We	were	able	to	show	that	despite	being	small,	the	

auricular	 muscle	 can	 generate	 command	 signals	 precise	 enough	 for	 those	 in	 a	
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wheelchair	to	complete	a	complex	obstacle	course,	whilst	also	making	fewer	mistakes	in	

prosthesis	control.		

Subjects	learned	control	over	this	new	muscle	with	relatively	little	training	using	simple	

visual	 feedback.	 In	 the	 first	 study	we	have	 seen	 that	 those	 subjects	who	were	already	

able	to	activate	their	PAM	before	training,	had	an	advantage	on	unilateral	activation	that	

persisted	 after	 training.	 From	 our	 following	 studies,	 we	 cannot	 definitively	 state	

whether	 this	 difference	would	 be	 abolished	 through	 longer	 training	 or	 not.	 However,	

although	e.g.	better	unilateral	activation	produces	clearer	signals	and	potentially	widens	

the	 variety	 of	 possible	 signals,	 our	 system	 can	 also	 work	 with	 a	 minimal	 difference	

between	 both	 sides	 to	 detect	 and	 intended	 turn.	 If	 subjects	 can	 learn	 to	 produce	 a	

difference	between	both	sides,	 they	are	thus	able	to	use	the	ACS.	The	results	 from	our	

studies	suggest	that	also	those	subjects	who	are	naïve	to	the	task	readily	learn	unilateral	

activation	 with	 little	 feedback	 training	 and	 are	 able	 to	 use	 the	 ACS	 for	 complex	

wheelchair	 driving.	 However,	 for	 a	 wider	 application	 of	 the	 ACS	 an	 epidemiological	

study	is	needed,	in	order	to	understand	if	the	ability	to	learn	voluntary	PAM	activation	

can	be	generalized	to	a	larger	population.	

Co-contraction	 of	 the	 PAM	 during	 facial	movements	 is	 a	 potential	 influence	 on	 signal	

quality.	 We	 did	 not	 systematically	 investigate	 this	 in	 our	 studies,	 because	 in	 our	

experience	 this	 co-activation	was	minimal.	These	 co-activations	 can	occur	 to	 a	 certain	

extent	during	e.g.	broad	smiling.	However,	 from	our	experience	the	influence	on	signal	

quality	 was	 negligible,	 because	 in	 a	 normal	 environment	 these	 extreme	 facial	

movements	occur	rarely	and	can	be	avoided	by	 the	user	 if	necessary,	without	 limiting	

other	activities.	

We	used	semi-invasive	 fine-wire	electrodes	 for	EMG	deduction	of	 the	PAM	in	order	 to	

improve	 signal	 quality.	 For	 a	 wider	 application,	 an	 implanted	 version	 would	 greatly	

reduce	set	up	time	and	increase	independence	of	the	user.		

The	results	presented	here	indicate	that	the	ACS	has	a	wide	field	of	potential	application.	

In	theory	it	could	also	be	used	in	a	non-clinical	context,	whenever	hands-free	control	is	

needed.	 Our	 subjects	 with	 tetraplegia	 suggested	 an	 integrated	 application	 for	 e.g.	

environmental	 control,	 in	 order	 to	 achieve	 tasks	 of	 daily	 living	 like	 switching	 on	 the	

lights	 or	 a	 television.	 We	 have	 provided	 evidence	 that	 the	 ACS	 is	 suitable	 for	 signal	

generation,	thus	alternative	application	fields	are	only	a	question	of	programming.	Since	



	

99	

the	ACS	has	been	developed	for	those	individuals	who	do	not	have	other	viable	control	

options,	we	only	aimed	 to	show	that	 the	wheelchair	driving	performance	 is	 satisfying.	

Although	wheelchair-driving	 results	were	 very	 positive,	 future	work	 should	 include	 a	

direct	comparison	to	other	control	options,	such	as	the	sip-and-puff,	for	benchmarking.	

For	a	clinical	implementation	of	the	ACS	for	wheelchair	control,	a	potential	combination	

with	 a	 shared	 control	 approach	 could	 be	 advantageous.	We	 did	 not	 investigate	 safety	

aspects	 of	 the	ACS,	which	 could	 be	 considerably	 improved	 by	 e.g.	 external	 sensors	 or	

automatic	obstacle	avoidance.		

In	the	last	part	of	this	thesis,	first	insights	into	a	SCI-specific	motor	cortex	organization	

were	 provided.	 This	 is	 the	 first	 time	 that	 data	 from	 a	 larger	 SCI	 sample	 has	 been	

reported	 that	 suggests	 that	 post-SCI	 brain	 reorganization	 is	 not	 static,	 but	 can	 be	

targeted	with	training.	In	order	to	improve	rehabilitation	for	individuals	with	SCI,	future	

research	 should	 address	 whether	 these	 effects	 can	 be	 generalized	 to	 other	 motor	

training	paradigms.	We	have	seen	in	our	SCI	subjects	that	improvement	correlates	with	

decrease	 in	 neuronal	 activity.	 Future	 studies	 should	 address	 the	 specificity	 of	 this	

neuronal	specification	with	a	similar	motor	training	in	able-bodied	subjects.	Difficulties	

in	 finding	 SCI	 subjects	 who	 are	 willing	 to	 affront	 the	 logistic	 challenges	 of	 study	

participation	(e.g.	transport,	hospitalization)	make	small	sample	sizes	a	general	problem	

in	 SCI	 studies.	 In	 order	 to	 make	 clear	 inferences	 on	 the	 nature	 of	 post-SCI	 brain	

reorganization,	bigger	sample	sizes	are	necessary.		

In	 conclusion,	 in	 this	 thesis	 a	new	control	 system	 for	assistive	devices	was	presented,	

which	 due	 to	 its	 inherent	 features	 could	 solve	 some	 of	 the	 problems	 with	 clinically	

established	 and	 academic	 control	 systems.	 We	 were	 able	 to	 show	 that	 the	 human	

auricular	muscles	can	be	voluntarily	controlled	and	can	generate	precise	control	signals,	

hence	attributing	a	new	function	to	these	unused	muscles.	The	hybrid	auricular-forearm	

prosthesis	 control	 can	 improve	 speed	 and	 precision	 of	 a	 prosthetic	 hand.	 We	 have	

shown	that	the	ACS	is	a	suitable	alternative	for	individuals	with	tetraplegia,	answering	

the	 need	 for	 precise,	 direct	 and	 fast	 wheelchair	 control	 that	 does	 not	 interfere	 with	

other	activities.	Importantly,	this	thesis	has	provided	data	for	a	better	understanding	of	

the	 SCI-specific	 brain	 reorganization.	 Cortical	 over-activation	might	 lead	 to	 increased	

flexibility	 and	 apparently	 motor	 training	 is	 associated	 with	 neuronal	 specification,	

possibly	inducing	a	normalization	of	brain	activity.		
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Appendix	

	

I)	Questionnaire	about	ability	to	activate	the	PAM	

	
1)	Wie	gut	kannst	du	deine	Ohrmuskulatur	aktivieren?	

	
	
	

	
	
	

	
	
2)	Wie	anstrengend	ist	es	für	dich,	deine	Ohrmuskulatur	zu	aktivieren?	
	

	
	

	
	
	
	

	
3)	Wie	sehr	musst	du	dich	auf	deine	Ohrmuskulatur	konzentrieren,	um	einen	Effekt	zu	
erzielen?	
	

	
	

	
	
	
	

4)	Wie	leicht	fällt	es	dir,	die	Ohrmuskulatur	nur	auf	einer	Seite	zu	aktivieren?		
	 	
a)	Links:		
	
	
	
	
	
b)	Rechts:		
	
	
	
	
	

Sehr	schwach	 schwach	 neutral	 stark	 Sehr	stark	

Sehr	leicht	 leicht	 neutral	 schwer	 Sehr	schwer	

Sehr	schwach	 schwach	 neutral	 stark	 Sehr	stark	

Sehr	leicht	 leicht	 neutral	 schwer	 Sehr	schwer	

Sehr	leicht	 leicht	 neutral	 schwer	 Sehr	schwer	



	

101	

	
	
	
5)	Wie	sehr	musst	du	andere	Muskeln	mit	anspannen,	um	die	Ohrmuskulatur	zu	
aktivieren?	

	
	
	
	

	
	

	
	
	

Sehr	schwach	 schwach	 neutral	 stark	 Sehr	stark	
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II)	Evaluation	of	the	ACS	

1)	Glauben	Sie,	es	ist	möglich	mit	diesem	System	einen	Rollstuhl	im	Alltag	zu	nutzen?	
	
	
	
	
	
	
	
2)	Wie	schwierig	war	es	für	Sie,	den	Rollstuhl	präzise	zu	steuern?	
	
	
	
	
	
	
	
3)	Würden	Sie	mit	diesem	System	ihren	Rollstuhl	steuern	wollen?	
	
	
	
	
	
	
	
4)	Wie	gut	funktionieren...	
	
a)	...	enge	Kurven	 	 	 	 	 b)	...	weite	Bögen	
	
	
	
	
	
	
c)	...	geradeaus	fahren	 	 	 	 d)	...	Reaktionsschnelle	
	
	
	
	
	
	
e)	...	Genauigkeit	 	 	 	 	 f)	...	Schnelligkeit	
	
	
	
	
	
	

Gar	nicht	 Wenig	 Mäßig	 Sehr		

Gar	nicht	 Wenig	 Mäßig	 Sehr		

Gar	nicht	 Wenig	 Mäßig	 Sehr		

Gar	nicht	 Wenig	 Mäßig	 Sehr		 Gar	nicht	 Wenig	 Mäßig	 Sehr		

Gar	nicht	 Wenig	 Mäßig	 Sehr		 Gar	nicht	 Wenig	 Mäßig	 Sehr		

Gar	nicht	 Wenig	 Mäßig	 Sehr		 Gar	nicht	 Wenig	 Mäßig	 Sehr		
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5)	Wieviel	Training	glauben	Sie	wäre	nötig	um	den	Rollstuhl	sicher	zu	beherrschen?	
	
	
6)	Was	sind	besondere	Vorteile	der	Ohrsteuerung?	
	
	
7)	Was	sind	mögliche	Schwierigkeiten,	was	könnte	man	verbessern?		
	
	
8)	Was	wären	–	für	Sie	persönlich	-	andere	sinnvolle	Einsatzmöglichkeiten	der	
Steuerung?		
	
	
9)	Hatten	Sie	bisher	eine	andere	Rollstuhlsteuerung?	Welche?	
	
Wenn	Ja,		
	

a)	wie	sind	Sie	mit	dieser	zurecht	gekommen?	
	

	
b)	Was	sind	Vorteile	im	Vergleich	zur	Ohrsteuerung?	

	
	
c)	Was	sind	Nachteile	im	Vergleich	zur	Ohrsteuerung?	

	
	
10)	Haben	Sie	sonst	noch	Kommentare,	Verbesserungsvorschläge	oder	Anregungen	für	
uns?	
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III)	Supplementary	material	

	
Supp.	Fig.	1)	Training	PAM	activation	-	car	race.		

In	car	race,	the	virtual	car	had	to	be	kept	on	the	moving	track	with	left	and	right	movements	(left	and	right	
contractions).	 The	 percentage	 of	 the	 time	 that	 the	 virtual	 car	 was	 correctly	 driving	 on	 the	 path	 was	
reported	 as	 a	 feedback.	 Four	 levels	 with	 increasing	 difficulty	 (more	 narrow	 turns	 and	 paths)	 were	
included.		
	

	
Supp.	Fig.	2)	Training	PAM	activation	-	collecting	coins.		

In	coins	collecting,	subjects	steered	a	virtual	vehicle	with	the	same	steering	signals	as	in	real	wheelchair	
driving.	Whenever	a	coin	popped	up,	the	subject	had	to	drive	over	it	to	collect	it,	then	another	one	popped	
up	until	ten	were	collected.		
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Supp.	Fig.	3)	Test	for	reaction	times	(RT)	of	contraction	and	relaxation.		

Screenshot	of	 the	muscle	activity	(green	 line)	during	reaction	time	test.	Subjects	saw	a	green	square	on	
the	screen	and	were	told	to	contract	the	PAM	as	soon	as	the	square	turned	red	(indicated	with	(A)),	hold	
the	contraction	and	relax	the	muscle	as	soon	as	the	square	turned	green	again	(indicated	with	(B)).	The	
time	between	appearance	of	the	red	square	and	the	successful	contraction	(passing	the	threshold	of	0.6,	
(C))	 was	 recorded	 as	 RT	 for	 contraction	 and	 the	 time	 between	 appearance	 of	 the	 green	 square	 and	 a	
correct	relaxation	(activation	below	the	threshold	of	20%,	(D))	as	RT	for	relaxation.		
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Supp.	Fig.	4)	Test	for	maximum	contraction	duration.		

Screenshot	of	the	software	that	converts	the	raw	EMG	signals	(A)	into	normalized	signals	(B)	and	control	
signals	((C),	translational	signal,	(D),	rotational	signal).	Subjects	were	told	to	hold	a	full	contraction	as	long	
as	possible	 (E).	Counting	started	when	the	activation	passed	 the	upper	 threshold	of	60%	(red	 line)	and	
stopped	when	 the	 EMG	 activity	 went	 below	 the	 relaxation	 threshold	 of	 20%	 (blue	 line),	 i.e.	 when	 the	
contraction	failed.	This	subject	held	the	contraction	for	59957	ms,	i.e.	roughly	60	s.	
	

	
Supp.	Fig.	5)	Test	for	graded	PAM	activity.		

Screenshot	of	the	software	that	converts	the	raw	EMG	signals	(A)	into	normalized	signals	(B)	and	control	
signals	 ((C),	 translational	 signal,	 (D),	 rotational	 signal).	 Subjects	 were	 told	 to	 hold	 the	 EMG	 activity	
between	the	two	thresholds	(E),	i.e.	between	0.2	and	0.7	(20%	and	70%	of	the	normalized	activity).	This	
subject	spent	92%	of	the	time	correctly	activating	its	PAM	between	20%	and	70%	(score	92%),	meaning	
that	the	subject	can	successfully	grade	the	muscle	activity	to	a	medium	activation.		
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Supp.	Fig.	6)	Test	for	lateralized	activation.		

Screenshot	of	the	software	that	converts	the	raw	EMG	signals	(A)	into	normalized	signals	(B)	and	control	
signals	((C),	translational	signal,	(D),	rotational	signal).	Subjects	were	instructed	to	activate	only	one	side	
selectively	for	3	s.	The	correct	activation	in	this	task	was	defined	as	the	average	individual	strength	of	the	
correct	PAM	contraction	 in	percent	(e.g.	0.3	of	maximum	=30%).	For	 the	 final	score,	 the	strength	of	 the	
unintended	 contraction	 of	 the	 contralateral	 PAM	 is	 subtracted	 from	 the	 correct	 activation.	 This	 subject	
managed	 a	 final	 score	 of	 87%	 (E),	 since	 there	was	 no	 unintended	 activation	 (see	 (B),	 only	 one	 side	 is	
active)	and	almost	full	activation	over	three	seconds	was	achieved.	
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Supp.	Fig.	7)	Training	effects	for	subgroups	of	ear-wigglers	and	non	ear-wigglers.		

Mean	results	with	standard	error	for	groups	of	ear-wigglers	(green	line,	n=5)	and	non	ear-wigglers	(blue	
line,	 n=5)	 in	 PAM	 performance	 criteria:	 reaction	 time	 of	 contraction	 (A),	 frequency	 of	 contraction	 (B),	
lateralized	 activation	 (C)	 and	 speed	 in	 the	 virtual	 obstacle	 course	 (D).	 Significant	 differences	 between	
groups	 in	 session	 1	 and	 session	 5a	 and	 session	 5b	 as	 tested	 with	 the	 independent	 groups	 t-tests	 are	
marked	+=p<0.05	or	*=p<0.016	(Bonferroni	corrected	alpha	level).	
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	 RM	ANOVA		

(Tests	1-5	b)	 Test	1	 Test	5	a	 vs.	Test	1	 Test	5	b	 vs.	Test	1	

Criteria	 F	(5,45)	 p	 Eta2		 M	±	SD	 M	±	SD	 t(9)	 p	 M	±	SD	 t(9)	 p	

RT	of	contraction		 2.992	 0.020*	 .249	 584.65	ms		
±	273.67	

433.04		ms	
±	177.66	 ---	 0.017*	 407.88	ms	

±	127.79	 ---	 0.007*	

RT	of	relaxation		 4.606	 0.002*	 .339	 691.92		ms	
±	316.2	

524.02		ms	
±	236.25	 ---	 0.005*	 462.46	ms	

±	127.53	 ---	 0.005*	

Contraction	rate		 1.08	 0.000*	 .545	 1.06						Hz	
±	0.37	

1.41						Hz	
±	0.26	 -4.56	 0.001*	 1.39						Hz	

±	0.25	 -3.85	 0.004*	

Graded	activation		 3.882	 0.005*	 .301	 63.44				%	
±	12.9	

75.11				%	
±	8.37	 -2.23	 0.053		 80.63				%	

±	6.97	 -4.1	 0.003*	

Contraction	duration		 6.767	 0.000*	 .429	 50.25					s	
±	34.28	

64.84					s	
±	30.41	 -2.6	 0.029		 70.55					s	

±	33.58	 -3.24	 0.010*	

Lateralized	activation		 8.340	 0.000*	 .481	 26.65				%	
±	18.3	

48.66				%	
±	19.53	 -5.44	 0.000*	 50.54					%	

±	18.45	 -4.7	 0.001*	

Virtual	obstacle	
course	 	 	 	 	 	 	 	 	 	 	

Path	length	 5.612	 0.001*	 .412	 4035.9		px	
±	989.1	

3118.6			px	
±	369.4	 ---		 0.005*	 2996.9		px	

±	272.8	 ---	 0.012*	

Speed		 6.147	 0.000*	 .435	 127.39		s	
±	48.38	

67.62				s	
±	22.08	 ---	 0.007*	 62.49					s	

±	14.89	 ---	 0.021*	

Supp.	Table	1)	Summary	of	results	and	statistics	of	the	PAM	performance	criteria	in	the	first	study.		

Data	from	ten	able-bodied	subjects.	Results	of	the	repeated	measures	ANOVAs	with	the	factor	“time”	for	
each	criterion	(F-values,	p-values	and	effect	size	Eta2).	Mean	(M)	and	standard	deviation	(SD)	in	sessions	
1,	5a	and	5b.	Abbreviation	px	means	pixels.	T-values	(t)	 for	 the	differences	session	1	vs.	session	5a	and	
session	1	vs.	session	5b	are	displayed	when	data	was	normally	distributed	(Shapiro-Wilk	test),	if	not,	the	
non-parametric	Wilcoxon	 Rank	 test	was	 used.	 Significant	 p-values	 are	marked	 *	 =p<0.025	 (Bonferroni	
corrected	alpha	level).	
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