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Abstract

Networks, the basis of the modern connected world, have evolved beyond the con-
nectivity services. Network Functions (NFs) or traditionally the middleboxes are
the basis of realizing different types of services such as security, optimization func-
tions, and value added services. Typically, multiple NFs are chained together (also
known as Service Function Chaining) to realize distinct network services, which are
pivotal in providing the policy enforcement and performance in networks. Network
Function Virtualization (NFV) is becoming more prevalent and enabling the soft-
warized NFs to fast replace the traditional dedicated hardware based middleboxes
in Communication Service Provider (CSP) networks. However, Virtualized Network
Function (VNF) chains posit several systems and network level resource manage-
ment and failure resiliency challenges: to ensure optimal resource utilization and
performance at the system-level; and at the network-level to address optimal NF
placement and routing for service chains, traffic engineering, and load balancing the
traffic across Virtualized Network Function Instances (VNFIs); and to provide High
Availability (HA), Fault Tolerance (FT) and Disaster Recovery (DR) guarantees.

We begin by presenting NFVnice, a userspace NF scheduling framework for Service
Function Chaining (SFC) to address the system-level resource utilization, per-
formance, and scale challenges. NFVnice presents a novel rate-cost proportional
scheduling and chain-aware backpressure mechanisms to optimize the resource uti-
lization through judicious Central Processing Unit (CPU) allocation to NFs, and
improve on the chain-wide performance. It also improves the scalability of NF de-
ployment by allowing to efficiently multiplex multiple NFs on a single core. NFVnice
achieves judicious resource utilization, consistently fair CPU allocation and provides
2x-400x gain in throughput across NF chains.

Next, in order to address network-level challenges, specifically the orchestration
and management of NFs and SFCs we develop DRENCH - a novel semi-distributed
resource management framework to efficiently instantiate, place and relocate the net-
work functions and to distribute traffic across the active NF instances to optimize
both the utilization of network links and NFs. We model DRENCH as shadow-price
based utilitarian market with Software Defined Networking (SDN) controller as a
Market orchestrator to solve the Extended Network Utility Maximization (ENUM)
problem. DRENCH results in better load balancing across Network Function In-
stances (NFIs) and significantly lowers the Flow Completion Time (FCT) providing
up to 1Ox lower FCT than the state-of-the-art solutions. We also present Neo-NSH,



iv

which extends on Network Service Header (NSH) to provide a simplified chain-wide
steering framework. Neo-NSH leverages the SDN controller and discriminates the
path-aware chain-wide transport at the control plane and service-aware but instance
agnostic routing at the data plane. This separation presents two-fold benefits i) min-
imize the path management complexity at the SDN controller ii) orders of magnitude
reduction in the switch Ternary Content Addressable Memory (TCAM) rules; thus
it enables for scalable, agile and flexible service function chaining.

Finally, in order to achieve efficient NF migration and to address HA for NF chains,
we present REINFORCE - an integrated framework to address failure resiliency for
individual NF failures and global service chain-wide failures. REINFORCE presents
a novel NF state replication strategy and distinct mechanisms to provide timely
detection of NFs, hardware node (Virtualized Network Function Manager), and net-
work link failures; and provides distinct failover mechanisms with strict correctness
guarantees. NF state replication exploits the concept of external synchrony and
rollback recovery to significantly reduce the amount of state transfer required to
maintain consistent chain-wide state updates. Through the optimization techniques
like opportunistic batching and multi-phase buffering, REINFORCE achieves very
low latency (2 orders of magnitude lower latency) and less than 20% performance
overheads. REINFORCE achieves NF failover within the same node in less than
100µseconds, incurring less than 1% performance overhead; and chain level failover
across servers in a Local Area Network (LAN) within tens of milliseconds. In ad-
dition, we present REARM, that adopts the concept of transient VNFs to migrate
VNF within and across Data Centers (DCs) to facilitate HA in the event of disaster
or power outages that frequent the Green Data Centers (GDCs).

This dissertation combines abstract mathematical models to describe and derive
NFV system behaviors, in order to design and develop system-level implementations
for a set of working, ready-to-deploy NFV solutions. Our implementations have
demonstrated their superior performance in addressing system-level performance,
scale, and failure resiliency challenges. The proposed key solutions have been im-
plemented on OpenNetVM, an open-source NFV framework, and are applicable to
other NFV systems due to our generic design.
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Chapter1
Introduction

Whenever we proceed from the known into the unknown we may hope to
understand, but we may have to learn at the same time a new meaning of the
word “understanding”.

— Physics and Philosophy: The Revolution in Modern Science, 1958.
Werner Heisenberg

Network functionality has significantly evolved beyond the traditional packet for-
warding and routing services. Different types of network services have been widely
deployed in Communication Service Provider (CSP)1 networks. For example, ser-
vices to a) enhance network security through Uniform Resource Locator (URL)
filtering to filter and block malicious web requests, b) improve performance through
in-network caching to reduce the load on core network and to reduce access latency
from user perspective and c) provide additional value-added services like parental
control to block inappropriate web content, and many other services like encryption,
compression, Network Address Translation (NAT), bandwidth monitors, etc.

Traditionally, these network functionalities have been implemented as hardware
middleboxes, while the CSPs realize different Network Services (NSs)2 through the
deployment of one or more such middleboxes in their networks. The evolution of
the Internet, rapid explosion in the volume and types of services delivered over the
Internet/network, the volume of users have contributed and necessitated towards
diverse and large-scale deployment of middleboxes. Recent surveys indicate the
presence of a diverse set of middleboxes and the volume of middleboxes deployed
in CSP networks is on par with the number of switches and routers, constituting
about a third of networking devices [1–3]. This diversity and volume of proprietary
middleboxes posed several deployment and resource management complexities to the

1Communication Service Provider includes Telecommunication, Enterprise, Data Center (DC),
Internet Service Provider (ISP) and Cloud that provide & facilitate communication services.

2Network service is realized by a well-defined chain of Middleboxes.
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network operators [2, 4], e.g., i) high Capital Expenditure (CapEx) and Operational
Expenditure (OpEx) ii) deployment, configuration and management complexities iii)
diagnosing performance issues, failures, and recovery from middlebox failures, etc.

In order to address and overcome these limitations, in 2012, European Telecom-
munication Standardization Institute (ETSI) proposed the Network Function Virtu-
alization (NFV) paradigm to develop and deploy the middleboxes as software based
Network Functions (NFs) also known as Virtualized Network Functions (VNFs) [4].

1.1 Motivation

NFV supplements the benefits of virtualization like reduced hardware costs, faster
provisioning, improved availability, disaster recovery, etc., with new opportunities to
innovate, deploy and market new network services. Owing to these compelling ben-
efits, ever since the initial inception of NFV, many CSPs, Industry, and Academia
have actively pursued and fostered towards the development of NFV. The Industry
Specification Group (ISG) NFV community has evolved rapidly. At present, the
community consists of more than 300 members3. This community has contributed
from the NFV pre-standardization studies to the detailed specifications and is ac-
tively working to develop the required standards for NFV [6].

Alongside, SDN (discussed in §2.1) enables for network programmability through
logically centralized intelligence and control allowing the network operators to man-
age the entire network consistently and holistically, regardless of the underlying net-
work technology [7]. Together NFV and SDN are highly complementary and greatly
augment to provide flexible and dynamic softwarized network environment. Most
CSPs have already embraced and/or planning to embrace SDN and NFV [8–11].

Although the NFV has gained significant momentum, the recent study and surveys
on NFV deployment have pointed out the key problems and challenges hindering
the full NFV adoption in CSP networks [12–14]. ETSI ISG NFV and Internet En-
gineering Task Force (IETF) Service Function Chaining (SFC) working group have
distinctly identified the relevant outstanding problems pertaining to the architec-
ture, management and/or protocol that need to be addressed to enable effective
deployment and usage of NFV and realization of SFC in CSP networks [15, 16]. In
this work, we seek to study and address some of these critical problems affecting the
efficient deployment and realization of network function chains.

3Dated: 2018/04/27, Total NFV Members: 127 and NFV Participants 188, includes 38 of the
world’s major service providers [5].
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1.1.1 High Level Research Problems

Figure 1.1: High-level Research Problems associated with the Deployment of Net-
work Function Chains.

The deployment and realization of Network Service Chaining (NSC) are plagued
with several resource management, orchestration, and performance issues. Fig-
ure 1.1.1 presents some of the critical high-level research problems associated with
NSC, which are briefly discussed below:

P1 Performance Optimization: NFV embraces the use of Commercial-off-the-shelf
(COTS) hardware i.e., using general purpose computing, storage, and network de-
vices instead of using the dedicated hardware to provide the network services [15].
This greatly benefits to lower the CapEx and also provides flexible deployment
options. However, VNFIs based on COTS hardware can encumber severe per-
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formance degradation4 and may not be able to match the throughput, latency,
scale, and performance metrics of the dedicated hardware devices that are known
to meet the carrier grade performance requirements. Additionally, with SFC
where the packets/flows are steered through different network functions in the
chain, additional characteristics like memory access and Non-uniform Memory
Access (NUMA) overheads for processing at distinct NFs within a single physi-
cal node, and when the chains span multiple nodes, overhead due to cross node
communication, traffic steering, load on VNFIs, network links, also significantly
impact the latency and overall chain-wide performance of NSC. Hence, there is a
need to account for the aforementioned characteristics for NSC and provide mech-
anisms to ensure scalability, performance, and efficiency such that the effects on
latency, throughput, and processing overhead are minimized.

P2 Management and Orchestration (MANO): With NFV, the decoupling of VNFs
from the underlying hardware resources engender new management challenges such
as end-to-end service to end-to-end NFV network mapping, instantiating VNFs at
appropriate locations to realize the intended service, allocating and scaling hard-
ware resources to the VNFs, keeping track of VNF instances location, etc. [17].
Management specifically corresponds to Operations, Administration, and Mainte-
nance (OAM) of VNFIs and SFC. It includes the mechanism to manage the VNFI,
VNFs, network policies, and construction of service paths including the mechanism
to perform resource and service monitoring, performance measurement, diagnos-
tic alarm reporting, etc. Orchestration corresponds to control automation of the
offered NFV services and the underlying resources i.e., to deploy and provision
VNFIs instances, to realize SFC, and to control the forwarding behaviors of phys-
ical switches using SDN. Control automation is paramount to lower the OpEx
and to realize agile NFV. Ensuring correct operation and management of the in-
frastructure, network functions, and SFCs is vital for the success of NFV. Hence,
it is critical to provide consistent management and orchestration framework that
can facilitate flexible and dynamic instantiation of VNFIs, placement of VNFs by
accounting the infrastructure constraints, traffic and load characteristics of VNFs,
service requirements, tenant specific policies and Service Level Agreement (SLA)
requirements.

P3 Availability and Reliability: NFV platforms are expected to meet the carrier grade
availability standards (i.e., greater than or equal to ’five-nines’ or 99.999% up
time). However, both hardware components in Network Functions Virtualization
Infrastructure (NFVI) and software VNFs can fail. Additionally, with VNFs the
hypervisors can turn out be single-point-of-failurese [18]. Further, with SFC, even

4Custom/Proprietary hardware based Network functions typically encompass performance cus-
tomization and employ acceleration methods, which may not be available in standard hardware.
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the failure of any one VNFI in the chain can engender service reliability issues and
also result in total service failure. Hence, it is necessary to ensure an appropriate
level of resilience to both hardware and software failures. It is also necessary
to provide effective mechanisms to provide desired High Availability (HA), Fault
Tolerance (FT) and to tackle service resiliency either via necessary redundancy
(hardware and software), replication and consensus mechanisms.

P4 Security, Policy and Trust Management: In NFV, multiple vendors for different
NFV elements (e.g., hardware resources, virtualization layer, VNF, virtualized
infrastructure manager, etc. ) may be involved in the delivery and setup of net-
work services [19]. The usage of shared storage, networking, compute devices and
interconnectivity among these components add to additional vulnerabilities [20].
Hence, new security and trust issues need to be addressed. In SFC architecture,
the static topologically-dependent VNF deployment is replaced with the dynamic
chaining of VNF. Hence, the composition of service chain graphs and steering of
traffic through these NFs needs to ensure policy compliance and isolation assur-
ances. Additionally, dynamic chaining changes the flow of data through the net-
work, and correspondingly the security and privacy considerations5 of the protocol
and deployment will need to be reevaluated [21]. Hence, to tackle the increasing
security threats NFV platform needs to provide a comprehensive and effective ap-
proach to secure the NFVI, Virtualized Infrastructure Managers (VIMs) to build
secure execution platform for the NFs.

P5 Interoperability and Portability: Interoperability of the new VNFs with the ex-
isting dedicated and proprietary hardware based network functions or Physical
Network Functions (PNFs) is necessary to ensure legacy device support. Also, the
ability run the virtual appliances from different vendors in different but standard-
ized DC environments of different operators is necessary. Hence, the key challenge
is to define a unified interface to decouple the VNFIs from the underlying hard-
ware and to promote distinct yet interoperable ecosystem for both VNF vendors
and DC vendors [4].

Hence, it is necessary to re-consider and address these problems to realize suc-
cessful deployment of Network Service Chaining and reap the benefits of network
softwarization with SDN and NFV.

5As user traffic (network flows) is subject to processing at multiple VNFIs from different vendors,
it is necessary to ensure right access control privileges to avoid the breach of trust between the users,
service providers, and VNF vendors.
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1.2 Research Goals

In this dissertation, we intend to discern and address few of the NSC problems
outlined in section §1.1.1. We particularly seek to develop the NFV resource man-
agement framework and distinct mechanisms towards resolving the following Service
Function Chaining problems in SDN and NFV based networks:

G1 Performance Optimization: We specifically seek to account the aspects of VNF
resource allocation, especially the Central Processing Unit (CPU) resource for ef-
ficient multiplexing and scheduling of NFs to address scalability and to improve
performance through efficient NF scheduling, judicious and fair chain-wide re-
source allocation by accounting the Network Service Chaining characteristics.

G2 Management and Orchestration: We seek to build a low complexity resource man-
agement and orchestration framework to address dynamic provisioning, placement
and lifecycle management of NFs. We also seek efficient and scalable solutions to
address Network Service Chaining and traffic management i.e., steering the traffic
through a chain of network functions by accounting the congestion in the network
and load on the Network Function Instances (NFIs) involved in the service chain.

G3 Availability and Reliability: We seek to address the two distinct aspects of service
continuity i) to provide fault-tolerance and service resiliency in the case of VNFI
resource failures and ii) to address Disaster Recovery (DR) and to provide high
availability in the case of power outage within or across DCs. In this, we dis-
tinctively seek efficient mechanisms for achieving NF Resiliency via redundancy,
fault-tolerance, and NF migration.

Overall, to address the above specified distinct goals, we seek to build a resource
management framework in line with the ETSI NFV-MANO reference architecture
(illustrated in Section §2.2.1).

Dissertation Statement: Our primary objective is to devise solutions towards
realizing an efficient, scalable and reliable framework for NF chains.
Towards this objective, we seek to develop NFV-MANO framework, especially
the Virtualized Network Function Manager (VNFM), Network Functions Virtu-
alization Orchestrator (NFVO) components and the Element Management Sys-
tem (EMS) for the Virtualized Network Function Instances (VNFIs) to improve
scalability, performance, resource-utilization efficiency, and resiliency of deploying
the NF chains in SDN/NFV ecosystem.



7 1.3 Research Challenges

1.3 Research Challenges

This section outlines the key challenges in addressing the NSC problems (§1.1.1),
and realizing our research goals described in Section §1.2.

1.3.1 Performance Optimization

High-performance NFV platforms employ kernel bypass techniques like Data Plane
Development Kit (DPDK), Single Root Input/Output Virtualization (SR-IOV),
Netmap to achieve and meet line rate packet processing. In order to achieve high
throughput and low latency, they avoid the interrupt overheads and perform poll
mode operation on Network Interface Cards (NICs), which requires a dedicated core
for each NF. This approach not only limits the scalability, i.e., the number of NFs
that can be run on a server, but also result in wastage and inefficient utilization of
resources, especially when the workload is low.

To improve on resource utilization, approaches such as NF consolidation and mul-
tiplexing of NFs on a single server node have been proposed [3,22]. However, the NFs
exhibit diverse processing (both computation and I/O) characteristics. Hence, the
key challenge, especially with the multiplexed approach is to ensure fair allocation
of CPU resources by accounting both CPU and I/O requirements of the NFs.

Also, with SFC, where the NFs running on different dedicated cores process pack-
ets in a specific order can encumber expensive cross-core communication and cache
access overheads resulting in severe degradation of chain-wide performance. Hence,
to ensure chain-wide performance, the NUMA characteristics of the node need to be
accounted. In addition, processing a packet at one or more NFs in the chain, only
to have it dropped from a subsequent bottleneck’s queue is wasteful. Hence, beyond
simply allocating CPU time fairly to NFs, an additional challenge is to account for
the impact of bottlenecks across SFC in allocating the CPU resources.

1.3.2 Management and Orchestration

As networks grow in scale and complexity, traffic dynamics change and trigger for
reallocation and reconfiguration of network resources. In case of high demands, some
resources end up being over-utilized, resulting in higher latency and SLA degrada-
tion, while on other occasions, end up being underutilized. Further, in such circum-
stances, in order to meet the performance and energy objectives, the NF instances
need to be dynamically instantiated, decommissioned or even relocated/migrated.
This necessitates the need to manage and orchestrate a large number of diverse NFs
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by accounting for both network resource (topology) and traffic characteristics.

In addition, the Service Function Chaining characteristics for desired service poli-
cies on arbitrary network topologies also need to be accounted to correctly manage
and orchestrate the VNFIs. This must also ensure to avoid unnecessary routing of
traffic within the network which can result in over utilization of network links at the
cost of service degradation.

Additionally, the VNFI management and orchestration in the presence of Service
Function Chainings for arbitrary network topologies need to be addressed. However,
such traffic aware NF placement, balancing the load in network and across NFs are
known to be NP-hard problems [23, 24]. Also, traffic dynamics, especially in the
DCs can change at very fine-grain timescales (order of seconds) [25]. Hence, the
core challenge is to ensure an adaptive and incrementally deployable solution that
is both sufficiently optimal and swift.

1.3.3 High Availability and Failure Resilience

Hardware resources (including the network links and servers hosting the network
functions), and software network functions are prone to failures. Any such failure,
can partially or completely disrupt the network services. To avoid service outages
it is necessary to incorporate High Availability (HA) and service failure resiliency
mechanisms. However, providing HA support for softwarized NFs and chain of
NFs can result in significant resource overheads and performance penalty on normal
operation. Hence, the main challenge in providing HA and Failure resiliency is to
ensure the performance during normal operations is not adversely impacted and also
to mitigate the network resource overheads.

Additionally, most of the NFs are stateful entities that actively maintain, update
and rely on the current state to process the packets. Hence, to maintain service
correctness and to enforce correct packet processing, consistent NF state needs to be
preserved across the instances. This requires careful mechanisms to effect consistent
NF state migration.

Also, different kinds of failures posit different resiliency characteristics. For exam-
ple, it is easier to detect and react to fatal software failures (system crashes) than
to detect and address functionality based errors, likewise fault containment and iso-
lation for different hardware failures differ. Further, it is necessary to account both
individual NF failures (software failure) and NF chain level failures due to hard-
ware (link and node) failures, so that the solution can optimally detect and react to
distinct failures.
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Alongside, with the increasing electricity demands in the Information and Com-
munications Technology (ICT) sector, the inclination towards employing renewable
(green) resources to power up the data centers is also increasing [26, 27]. However,
the Green energy supply is rather intermittent and unstable, which can result in
power outages resulting in service disruptions [28, 29]. Hence, ensuring HA and
providing FT of VNFs in the event of such disasters is also necessary.

1.4 Summary of Contributions
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Figure 1.2: Research Contribution in the realm of ESTI NFV-MANO Reference Ar-
chitecture for Network Service Chains.

This dissertation presents a resource management framework to realize efficient,
scalable and reliable Network Service Chaining. Our framework is based on the
ETSI MANO reference architecture [17] and is aimed towards realizing the goals
outlined in §1.2. Figure 1.2 outlines and maps the contributions of this dissertation
in the context of the ETSI NFV-MANO reference architecture.
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1.4.1 Performance Optimization

We developed NFVnice [30] to account for the system level performance and scale
challenges outlined in Section §1.3.1. NFVnice is a user space NF scheduling and ser-
vice chain management framework that provides fair, efficient and dynamic resource
scheduling capabilities on NFV platforms. NFVnice enables to multiplex running
multiple NFs on a single core, thus it improves the resource utilization and scalabil-
ity of NF deployment on a server node. Further, it allows to deploy chain of NFs on
a single core and schedule them appropriately by accounting the NUMA overhead,
which results in judicious resource utilization, avoidance of wasted work across NF
chain and significantly improves the NF chain performance. NFVnice is capable of
controlling when network functions should be scheduled and improves NF perfor-
mance by complementing the capabilities of the OS scheduler but without requiring
changes to the OS’s scheduling mechanisms. NFVnice leverages cgroups - a user
space process scheduling abstraction exposed by the Linux operating system and
provides the appropriate rate-cost proportional fair share of CPU to NFs. NFVnice
monitors the load on a service chain at high frequency (1000Hz) and employs back-
pressure to shed load early in the service chain, thereby preventing wasted work.
Through rate-cost proportional scheduling, CPU shares of the NFs are computed by
accounting the heterogeneous packet processing costs of NFs, I/O, and traffic arrival
characteristics.

Our controlled experiments demonstrate that when compared to default Operating
System schedulers, NFVnice is able to achieve judicious resource utilization, consis-
tent fairness and 2x-400x gain in throughput across NF chains. NFVnice achieves
this even for heterogeneous NFs of varying chain lengths, with vastly different com-
putational costs and for heterogeneous workloads.

1.4.2 Management and Orchestration

We developed DRENCH [31] to address the network-wide orchestration and man-
agement challenges outlined in Section §1.3.2. In DRENCH, we consider an NFV
market with a centralized SDN controller that acts as the market orchestrator of
NFV nodes, and through competition, the NFV nodes effect flow steering, service
instantiation, and consolidation decisions. DRENCH orchestrator parameterization
strikes the right balance between optimizing the path stretch and balancing the
number of active VNFs and load across these active instances. DRENCH results
in better load balancing across NFIs and significantly lowers the Flow Completion
Time (FCT), providing up to 1Ox lower FCT than the state-of-the art solutions.

To address efficient and scalable routing construct with Network Service Header
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(NSH), we present Neo-NSH [32] to provide a simplified chain-wide steering frame-
work by extending on the NSH [33] - a recent IETF Request for Comments (RFC)6

for realizing the network service plane. Neo-NSH leverages the SDN controller and
discriminates the path-aware chain-wide transport at the control plane and service-
aware but instance agnostic routing at the data-plane. This separation presents two
fold benefits i) minimize the path management complexity at the SDN controller
ii) orders of magnitude reduction in the switch Ternary Content Addressable Mem-
ory (TCAM) rules; thus it enables for agile and flexible service function chaining.

1.4.3 High Availability and Failure Resilience

To address NF resiliency challenges outlined in Section §1.3.3 and to account both
individual NF failures (software failure) and NF chain level failures due to hardware
(link and node) failures, we present an integrated high-availability framework for
DPDK based containerized NFs. In REARM [34], we specifically study the impact
of deploying VNFs in Green Data Centers (GDCs) and make a case for addressing
the VNF reliability and high availability to effectively tackle the stability concerns
of GDC. REARM outlines a simple NF Migration framework that accounts the
NF service chain characteristics and adapts the NF state migration to reduce both
computation and communication overheads for maintaining the remote NF replicas.
REARM adopts the concept of Transient VNFs that rely on a very short advance
warning time to seamlessly migrate the VNFs from GDC to a more reliable and
stable Data Center7.

In REINFORCE [35], we implement a full-fledged framework incorporating the
NF manger, NFs, and common NF services library libnf to quickly detect and react
to different failures and develop distinct failover mechanisms that identify and prior-
itize the migration of specific NF states such that the overall operational framework
incurs minimal performance overhead and ensures state correctness guaranty across
NF chains. Compared to the state-of-the-art solutions, REINFORCE achieves sig-
nificant reduction (2-3 orders of magnitude) in recovery time, latency impact during
normal operation and maintains 85-90% of the normal operation throughput.

Summary These distinct components enable to resolve both system and network-
wide performance, scale and reliability concerns in the deployment and management
of NF chains.

6NSH became RFC ‘RFC8300’ on 12-Jan-2018; at the time of our proposal, it was an IETF draft
version 04.

7DCs powered by non-renewable (brown) energy; also known as Stable Data Centers (SDCs).
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1.5 Dissertation Outline

This section outlines the three parts of this dissertation and the organization of
chapters within these parts. In Chapter §2, we first present the background on
state-of-the-art SDN/NFV frameworks, and briefly introduce the ETSI NFV-MANO
framework, high performance NFV platforms and NF deployment options in realiz-
ing the NF chains and outline the key system level and network-wide challenges n
deployment of NSC.

In Part I, we present the Virtualized Network Function Manager (VNFM) and Net-
work Function (NF) level management framework to address and overcome the sys-
tem level challenges like scalability, performance, resource-utilization, isolation, and
fairness. Chapter §3 outlines the problem statement, Chapter §4 presents the state-
of-the-art solutions and related work and Chapter §5 details our solution NFVnice,
which serves as a tunable user-space scheduling framework for NFs.

In Part II we present the resource management framework to account for the
network-level challenges associated with SDN and NFVI and facilitate towards dy-
namic network function placement and VNFI instantiation. Chapter §7 outlines the
problem statement, Chapter §8 presents the state-of-the-art solutions and related
work and Chapter §9 details our resource management framework to account NF
placement, life-cycle management, and load balancing, and the Chapter §10 presents
the routing scheme to facilitate SFC.

In Part III we present the resiliency and NF state migration framework. Chap-
ter §12 outlines the problem statement, Chapter §13 presents the state-of-the-art
solutions and related work. In Chapter §14 we present the details of NF and NSC
failure resiliency and NF state migration mechanism and in Chapter §15, we present
our solution to tackle the reliability issues arising due to intermittent renewable
energy powered DCs.

And finally, in Chapter §17, we revisit the overall contributions and impact of
this dissertation and outline the key future research prospects of this dissertation.
In addition, the supplementary materials in support of this dissertation including
the relevant pseudo code, proof of theorems, data-flow and sequence diagrams are
listed in the appendix Chapters §A-D of part IV.



Chapter2
Background

In this chapter, we provide the fundamental concepts that serve as necessary pre-
requisites for comprehending the subsequent parts and chapters of this dissertation.
First, we briefly present the SDN, NFV and SFC concepts, and introduce NSH.

We then present the ETSI NFV-MANO architecture which serves as the basic
template for all our research components and also briefly discuss the reference NFV
platforms. We present the background on high performance packet processing en-
gines, NFV platforms and scheduling framework that serve as prerequisites to sub-
sequent Chapters.
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2.1 Network Softwarization: SDN and NFV

The advent of “Network Softwarization” primarily in the form of Software-
Defined Networking (SDN) and Network Function Virtualization (NFV) has
shaped and accelerated the transformation of networking landscape and fostered
incessant innovation in design, deployment, and management of networking in-
frastructure. Network Softwarization is expected to revolutionize the way network
and computing infrastructures are designed and operated to deliver services and
applications in an agile and cost effective way [36].
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Figure 2.1: Illustration of Software-Defined Networking and Network Function Vir-
tualiztion Architecture.

2.1.1 SDN

SDN architecture (shown in Figure 2.1a) decouples the network control plane from
the forwarding data plane and provides a logically centralized controller which en-
ables to remotely control and configure the forwarding behavior (flow tables) on
different networking devices (switches and routers). This separation and control
over the packet forwarding behavior from a logically centralized controller vests
network administrators with the flexibility to enforce network-wide policies and to
perform dynamic orchestration of network traffic (flows) and networking resources.
Thus SDN caters towards agile, programmable and flexible networking architecture.

2.1.2 NFV

In 2012, ETSI proposed the NFV paradigm which extends the standard virtualiza-
tion to the networking infrastructure (shown in Figure 2.1b). NFV decouples the
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software implementation of NFs from dedicated proprietary hardware (compute,
storage and network) resources and enables to run the NFs on commodity off-the-
shelf server machines. Thus, beyond the compelling benefits of virtualization like
reduced hardware costs, faster provisioning, improved availability, disaster recovery,
etc., NFV also provides the opportunity to innovate, deploy and market new network
services utilizing one or more network functions.

SDN and NFV are highly complementary and greatly augment to provide flexible
and dynamic softwarized network environment to realize service function chains [37].
In the subsequent section, we will present the fundamental NFV-SDN reference
architecture.

2.2 NFV Reference Architecture and Platforms

In this section, we present the ETSI’s NFV-MANO Reference Architecture and also
the corresponding reference open-source implementations and NFV platforms.

2.2.1 ETSI NFV-MANO Architecture

OSS/BSS

SDN Controller

Virtualization Layer

Storage Network Compute 
Infrastructure

Vi-Ha

Nf-Vi

Ve-Vnfm

Se-Ma

Os-Ma

VNF Managers 
(VNFMs)

Or-Vnfm

Vi-Vnfm

NFV 
Orchestrator

Virtualized 
Infrastructure
Manager (VIM)

Infrastructure, VNFs,  
Service Description

NFV Infrastructure (NFVI) 
Or-ViVn-Nf

Other Ref. PointsExecution Reference(Ref.) Points Main NFV Ref. Points

VNF1

EMS1

VNF2

EMS2

VNFn

EMSn

VNF3

EMS3

NFV-MANO

Virtual  
Network

Virtual  
Compute

Virtual  
Storage

Figure 2.2: ETSI’s NFV-MANO Reference Architecture



Background 16

ETSI proposed the reference architecture for NFV Management and Orchestra-
tion [17] as shown in Figure 2.2. We briefly describe the key components and their
associated roles.

• Network Functions Virtualization Orchestrator (NFVO) is responsible for the cre-
ation and management of end-to-end services. NFVO functionality can be divided
into two broad categories:

i) Resource orchestration: to provide services that support accessing NFVI re-
sources in an abstracted manner independent of any VIMs, as well as governance
of VNFIs that share the NFVI resources.

ii) Service orchestration: to create end-to-end services by composing different
VNFs, including the topology management of the network service instances.

• Virtualized Network Function Manager (VNFM) is responsible for the life-cycle
management of one or more VNFIs. There can be more than one VNFMs in a
single domain and single VNFM can be associated with one or more VNFIs of
same or different types.

• Virtualized Infrastructure Manager (VIM) is responsible to manage and control
the NFVI, i.e., all the physical and virtual resources in a single domain. Multi-
site NFV architecture may encompass more than one VIMss, with each of them
managing or controlling part of the NFVI resources.

• SDN controller: is responsible for the orchestration and configuration of network
forwarding rules on the networking elements of NFVI. The exact placement and
interaction of the SDN controller with other components of MANO can vary [38]
based on the deployment factors.

In addition, it proposes three distinct kinds of reference points8 to facilitate inter-
action amongst these components depending on the type of functional connectivity
and interaction perceived in the MANO.

2.2.2 Reference Implementations and NFV Platforms

There have been several closed-group and open-source initiatives taken up towards
realizing the ETSI NFV-MANO. We’ll briefly discuss on a few of the most related
reference implementations and platforms.

1. OPNFV9: Open Platform for NFV (OPNFV) is an open source collaborative

8Refers to a conceptual point at the conjunction of two communicating functional entities.
9https://www.opnfv.org/
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project founded and hosted by the Linux Foundation. OPNFV integrates com-
ponents from several open source upstream projects, such as OpenStack, Open-
Daylight, FD.io, and many others [39]. It has evolved from supporting traditional
Virtual Machine (VM) based NFV deployment to facilitating containerized NFs.
The highlight of OPNFV is the Doctor project10 that aims to build fault man-
agement framework for high availability of Network Services on top of the virtu-
alized infrastructure. The current fault management release relies on OpenStack
Ceilometer components to detect different faults and initiate failover. It can be
noted that the current order of recovery is in tens of seconds, and are actively
working towards improving the overall failover time.

2. CloudNFV11 is an open platform for implementing NFV based on cloud com-
puting and SDN technologies in Cloud (multi-vendor environment). OpenStack
framework and components are leveraged for NFV orchestration. CloudNFV in
start contrast to ETSI NFV-MANO considers a unified data model for both man-
agement and orchestration [40].

3. OpenMANO12: OpenMANO is an open source project led by Telefónica. It con-
sists of openmano, openvim components and additionally consists of a graphical
user interface component openmano-gui to interact with openvim and openmano

components. It targets traditional VM based NFIs on standard Linux servers,
OpenFlow switches, and SDN controller. In addition, openvim Application Pro-
gramming Interfaces (APIs) also support for OpenStack based VIM and facilitate
services including the creation and deletion of VNF templates, VNFIs, network
service templates and network service instances to realize SFC.

2.3 Service Function Chaining

In order to fulfill different network/operator policies and to enrich user experience
through different in-network service capabilities, various NFs are often chained to-
gether. SFC defines an ordered set of abstract service functions and ordering con-
straints that must be applied to specific packets and/or flows [21]. Figure 2.3 depicts
typical network policies where different network services (e.g., Firewall, Load bal-
ancer, Video optimization, etc. ) are applied in a specific sequence.

In the subsequent section, we’ll present the recent IETF RFC8300 that enables
to realize a dedicated service plane for SFC. This section serves as the prerequisite

10https://wiki.opnfv.org/display/doctor/Doctor+Home
11http://www.cloudnfv.com/
12https://github.com/nfvlabs/openmano
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Figure 2.3: Example use case of Service Function chaining in Telecommunication.

for our work in Chapter §10.

2.3.1 NSH - Dedicated Service Plane for SFC

Network Service Header (NSH) [33] is an IETF RFC6 to address Service Function
Chaining (SFC). As outlined in the RFC7665 [41], NSH facilitates routing across
Service Functions (SFs) based on the SFC specific packet encapsulation. NSH de-
fines the data plane header format to create a dedicated service plane for realizing
SFC. The NSH as shown in Figure 2.4a consists of the following fields:

• A 4-byte Base header consisting of Version, Flags, MD Type and Next Protocol
fields. The next protocol field indicates the protocol type of the encapsulated data.

• A 4-byte Service Path Header consisting of a 24 bit Service Path Identifier (SPI)
and 8 bit Service Index (SI), is used to define the service path that interconnects
needed service functions.

• Metadata context headers. The value of MD Type determines the context headers.
If the value is 0x1, it consists of four mandatory 32-bit context headers as shown
in Figure 2.4a or if the value is 0x2, this field is optional, consisting of variable
length context headers.

SPI defines one of the possible instantiations i.e., a logical path to the sequence
of specific service function instances of an SFC, while the SI indicates the location
within the service path. In addition, NSH defines optional header fields that can
carry metadata information. The format of metadata is determined by the MD
type field in the base header. However, it must be noted that NSH needs to be
inserted onto encapsulated packets, i.e., the actual transport/steering of packets in
the network is based on the outer encapsulation.
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(a) Packet Structure of Network Service Header.

(b) NSH usage with VXLAN Encapsulation

Figure 2.4: Packet Structure of Network Service Header and Usage with VXLAN
Encapsulation.
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2.3.2 Benefits of NSH

The NSH approach of specifying a dedicated service plane for service function chain-
ing offers several benefits:

• NSH provides a transport and topology independent service forwarding framework.
This decoupling enables the service plane to be realized as overlay service over the
existing data plane without requiring any additional complexity and protocols at
the data plane.

• NSH enables the ability to classify and re-classify the flows at each service func-
tions. This enables to dynamically steer same flows across different service paths
and enables to have richer and finer policy control.

• NSH enables to exchange metadata across service functions in a chain through
the context header fields. This aspect is beneficial for Gi-Lan/mobile use cases
that can carry the subscriber ID and Tenant IDs across the chain to realize per-
user/per-subscriber based policies.

• NSH also provides end-to-end service path visibility. This enables to monitor
and troubleshoot service functions, which is critical for OAM to support high
availability and resiliency.

2.3.3 How does NSH work?

NSH relies on outer transport encapsulation such as Multi-Protocol Label Switching
(MPLS), VLAN/VXLAN, GRE to transport the packets. Figure 2.4b shows the
usage of VXLAN as a transport encapsulation for NSH. The VXLAN and outer
headers must be set accordingly to indicate the presence of NSH.

Upon classification of packets (typically the role of SDN controllers or the ded-
icated service classifiers), NSH must be inserted to the original packet along with
the outer transport encapsulation. The Service path header of NSH determines the
list and order of execution of the service functions.

Service Function Forwarders (SFFs) i.e., NSH aware network switches, then ex-
amine the NSH header, specifically the service path header and forward the packets
towards the next intended function using the combination of SPI and Service In-
dex (SI). After executing the intended service, SI is decremented either by the NSH
aware SFs or the NSH aware proxies. Once the last service function is executed,
the NSH can be removed from the packet and forwarded towards the intended des-
tination. Thus NSH creates a dedicated service plane which is independent of the
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underlying transport and facilitates forwarding across service function instances of
the chain.

2.4 High Performance Packet Processing

In this section, we briefly present the key developments in the field of high perfor-
mance packet processing with the COTS-hardware. This section is essential and
serves as a basic introduction to the NFV platform implemented in Chapter §5, §14
and §15.

Softwarized NFs, SDN, and hypervisor based switching technologies have been
stymied by the performance achievable with commodity servers [3]. These limita-
tions on throughput and latency have prevented the VNFs from supplanting custom
designed hardware. The major bottlenecks being:

• Interrupt driven processing: Interrupts are generally used to notify an Operating
System (OS) about the packet is ready for processing. However, interrupt handling
is expensive in modern superscalar processors [42]. When the packet reception
rate increases, this results in increased interrupt activity, which further expend
the CPU cycles resulting in very low throughput in such systems.

• Buffer Copy Overhead: The OSs read incoming packets into kernel space and
then copy the data to user space (to the socket buffer of the associated applica-
tion). These extra copies of packet buffers incur greater overhead especially in the
virtualized environments (where the copy from hypervisor/host OS to guest OS
followed by copy to application buffer) [43].

• Complex networking stack: The networking stack in Linux has evolved signifi-
cantly over the years. Any packet processing in Linux network stack incurs sev-
eral functions incurring expensive CPU cycles. It has been shown that networking
stack accounts to large share (roughly 75%) of CPU cycles necessary to put the
packet on the wire [44].

2.4.1 Kernel Bypass Approaches

Several alternatives have been proposed to achieve high performance networking
with COTS hardware that tend to overcome the aforementioned concerns. We briefly
outline a few of the associated packet I/O technologies and frameworks.

• Data Plane Development Kit (DPDK) is a networking framework written in C.
It provides a set of libraries and drivers that provide a kernel-bypass technique
for fast packet processing in user-space on native Linux systems [45]. It provides
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poll-mode NIC drivers that enable the user space application to efficiently process
the packets by bypassing all the overheads: kernel interrupts, copy overheads and
networking stack processing13.

• Netmap is also a rich hardware independent, networking framework implemented
as a Linux kernel module. It allows the userspace applications a very fast channel
to exchange raw packets directly with the network adapter bypassing the kernel
overheads due to buffer copy, interrupt processing and networking stack process-
ing [44].

• PF_RING14 is a high speed packet processing technique that makes use of shared
(memory mapped) circular ring buffers between the user space application and
the kernel drivers. It enables to bypass the kernel networking stack, and avoid the
buffer copy to provide packets directly to the user space applications. This feature
is made available from Linux kernels 2.6.32 onwards.

Table 2.1: State-of-the-art High Performance NFV Platforms
NFV Platforms Packet I/O

Framework NF Runtime Remarks

OpenNetVM [46] DPDK
pipelined execution

Docker Container or
Linux process based NFs

Poll Mode NFs
implemented in C

supports NF Chaining

ClickOS [47] Netmap
pipelined execution

Unikernel: MiniOS and
Click elements

Single threaded NFs
implemented in C/C++
supports NF Chaining

NetBricks [48] DPDK
run-to-completion

Rust based NFs
with LLVM runtime

Poll Mode NFs
implemented in Rust

single process NF Chain

HyperNF [49] ptnetmap and virtual i/o
pipelined execution

VM based NFs with
XEN hypervisor

Multi threaded VMs
implemented in C

supports NF Chaining

2.4.2 Reference Implementations and Platforms

Over the past few years, several high performance NFV platforms have been realized
by making use of these kernel bypass I/O frameworks. Table 2.1 lists some of the
state-of-the-art high performance NFV platforms.

We consider building our NFV resource management framework by leveraging

13DPDK is one of the best open source projects with rich and elaborate documentation that I
have come across. For any additional information readers are encouraged to visit the site: https:
//dpdk.org/doc

14https://github.com/ntop/PF_RING

https://dpdk.org/doc
https://dpdk.org/doc
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these high performance NFV platforms. We chose OpenNetVM [46] as the frame-
work of choice for realizing the resource management framework.

2.5 Scheduling in Linux

In this section, we present a brief overview on process scheduling in Linux Operating
System (OS). The Linux scheduler is modular and provides different scheduling
classes and different process scheduling policies. Table 2.2 lists different scheduling
policies and the priority configurations that determine the scheduling characteristics
for different scheduling policies.

Table 2.2: Linux Scheduling Class and Policies in kernel v4.4.0
Priority RangeScheduling

Class
Scheduling

Policy Static Dynamic Remark

Default 0 [-19, 19] fine grain fair sharingCFS Batch 0 [-19, 19] coarse grain fair sharing
RR [1, 99] - time sliced 1-100 milli secondsReal

Time FIFO [1, 99] - no time slicing
Idle Idle 0 least Least priority and Idle tasks

Scheduling class is an extensible hierarchy of scheduler modules that encapsulate
the scheduling policy details. They offer an interface to the main scheduler skeleton
implemented through the sched_class structure that defines the behavior of the
scheduler. This provides the flexibility to easily extend and implement multiple
scheduling policies within the same scheduling class.
Scheduling policy determines the actual scheduling behavior. Within the same
scheduling class, there can be different policies that eventually determine the
scheduling characteristics of the processes.
Priority: In Linux, every process is assigned a priority value, and the scheduling
decisions are based on the process priorities. Priorities are classified into dynamic
(can be assigned by the user during the runtime or updated by the kernel during
the runtime of the process) and static (assigned by the user at the time of creation
of the process, but can be changed during runtime).

Completely Fair Scheduler (CFS): The CFS class of schedulers use a nanosec-
ond resolution timer to provide fine granularity scheduling decisions. Each task in
CFS maintains a monotonically increasing virtual run-time which determines the
order and quantum of CPU assignment to these tasks. The time-slice is not fixed
but is determined relative to the run-time of the contending tasks in a time-ordered
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red-black tree [50,51]. CFS tuning parameters are presented in Appendix §B.2. The
task with the smallest run-time (the left most node in the ordered red-black tree)
is scheduled to run until either the task voluntarily yields or consumes the allotted
time-slice. If it consumes the allocated time-slice, it is re-inserted into the red-black
tree based on its cumulative run-time consumed so far. The CFS scheduler is anal-
ogous to weighted fair queuing (WFQ) scheduling [52,53]. Thus, CFS ensures a fair
proportion of CPU allocation to all the tasks. CFS Default is also known as CFS
normal scheduler. The CFS Batch variant has fewer timer interrupts than normal
CFS, leading to a longer time quantum (1ms) and fewer context switches. Since the
release of kernel 2.6.23., the CFS [54] is the default scheduler.

Real Time Scheduling Linux supports soft real-time scheduling and provides two
scheduling policies namely i) Round Robin (RR) and ii)First-In-First-Out (FIFO).
The processes are assigned static priorities in the range 1 (low) to 99 (maximum).
As real-time tasks aim at deterministic runs, they are always given preference over
the CFS and Idle class of schedulers. While FIFO scheduler has no fixed time slice,
RR simply cycles through processes with a specified time quantum15, but does not
attempt to offer any concept of fairness.

2.5.1 Control Groups

Cgroups Also known as control groups is a Linux kernel feature that allows to ac-
count, limit and isolate the resource usage i.e., CPU, memory disk I/O, network, etc.
of a collection of processes [55]. This mechanism enables a collection of processes to
be bound by a set of limits or parameters defined via the cgroup filesystem. Cgroups
along with namespaces are the fundamental building blocks of linux containers [56].

Cgroups provide the minimum essential kernel mechanisms required to efficiently
implement process aggregations to provide group specific resource sharing and iso-
lation. The grouping is implemented in the core cgroup kernel code, while resource
tracking and limits are implemented in a set of per-resource-type subsystems (mem-
ory, CPU, network, disk I/O) [55].

Linux provides two variants namely Cgroup-v1 [56] and Cgroup-v2 [56]. In our
work, we make use of Cgroup-v1’s CPU subsystem to facilitate weighted fair share
of CPU for the contending NFs. Details of Cgroup setup are presented in Ap-
pendix §B.1.

15The default time slice of 100 msec on 14.04 low-latency profile. It can be configured via sched_

rr_timeslice_ms parameter
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Problem Statement

In this Chapter, we present the performance, scale, and resource utilization
efficiency problems that exist with Network Service Chaining (NSC) and outline
the key system level challenges that need to be addressed to overcome these
problems.

Contents
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3.1 Introduction

Network Function Virtualization (NFV) seeks to implement network functions and
middlebox services such as firewalls, NAT, proxies, deep packet inspection, WAN
optimization, etc., in software instead of purpose-built hardware appliances. These
software based network functions can be run on top of commercial-off-the-shelf
(COTS) hardware, with virtualized network functions (NFs). Network functions,
however, often are chained together [21], where a packet is processed by a sequence
of NFs before being forwarded to the destination.

The advent of container technologies like Docker [57] enables network operators
to densely pack a single NFV appliance (VM/bare metal) with large numbers of
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network functions at runtime. Even though NFV platforms are typically capable of
processing packets at line rate, without efficient management of system resources in
such densely packed environments, service chains can result in serious performance
degradation because bottleneck NFs may drop packets that have already been pro-
cessed by upstream NFs, resulting in wasted work in the service chain.

NF processing has to address a combination of requirements. Just as hardware
switches and routers provide rate-proportional scheduling for packet flows, an NFV
platform has to provide a fair processing of packet flows. Secondly, the tasks running
on the NFV platform may have heterogeneous processing requirements that OS
schedulers (unlike hardware switches) address using their typical fair scheduling
mechanisms. OS schedulers, however, do not treat packet flows fairly in proportion
to their arrival rate. Thus, NF processing requires a re-thinking of the system
resource management framework to address both these requirements. Moreover,
standard OS schedulers: a) do not have the right metrics and primitives to ensure
fairness between NFs that deal with the same or different packet flows; and b) do not
make scheduling decisions that account for chain level information. If the scheduler
allocates more processing to an upstream NF and the downstream NF becomes
overloaded, packets are dropped by the downstream NF. This results in inefficient
processing and wasting of the work done by the upstream NF. OS schedulers also
need to be adapted to work with user space data plane frameworks such as Intel’s
DPDK [45]. They have to be cognizant of NUMA (Non-uniform Memory Access)
concerns of NF processing, core affinity of an NF, and the dependencies among NFs
in a service chain. Determining how to dynamically schedule NFs is key to achieving
high performance and scalability for diverse service chains, especially in a scenario
where multiple NFs are contending for a CPU core16.

Hardware routers and switches that employ sophisticated scheduling algorithms
such as rate proportional scheduling [59,60] have predictable performance per-packet
because processing resources are allocated fairly to meet Quality of Service (QoS)
requirements and bottlenecks are avoided by design. However, NFV platforms are
necessarily different because:

a) the OS scheduler does not know a priori, the capacity or processing requirements
of an NF or chain of NFs;

b) an NF may have variable per-packet costs (e.g., some packets may trigger DNS
lookup, which is expensive to process, and others may just be an inexpensive
header match).

16While CPU core counts are increasing in modern hardware, they are likely to remain a bottle-
neck resource, especially when service chains are densely packed into a single machine (as is often
the case with several proposed approaches [43,58]).
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With NFV service chains, there is a need to be aware of the computational de-
mands for packet processing. There can also be sporadic blocking of NFs due to I/O
(read/write) stalls.

A further consideration is that routers and switches ‘simply’ drop packets when
congested. However, an NF in a service chain that drops packets can result in
considerable wasted processing at NFs earlier in the chain. These wasted resources
could be gainfully utilized by other NFs being scheduled on the same CPU core to
process other packet flows.

3.2 System-level challenges with the deployment of
Network Functions and Network Service Chaining

The middleboxes that are being deployed in the industry are diverse in their applica-
tions as well as in their complexity and processing requirements. ETSI standards [15]
show that NFs have dramatically different processing and performance requirements.
Measurements of existing NFs show the variation in CPU demand and per packet
latency: some NFs have per-core throughput in the order of million packets per sec-
ond (Mpps), e.g., switches; others have throughputs as low as a few kilo pps, e.g.,
encryption engines. Table 3.1 indicates the approximate per packet computation
cost (CPU cycles) for some of the NFs17 [61].

3.2.1 Diversity, Fairness, and Chain Efficiency

#1 Fair Scheduling: Despite this NF diversity in terms of processing require-
ments, determining how to allocate CPU time to all the contending NFs in order
to provide fair and efficient chain performance is the focus of our work. Defining
“Fairness” when NFs may have completely different requirements or behavior can
be difficult. A measure of fairness that we leverage is the work on Rate Propor-
tional Servers [59, 60], that apportion resources (CPU cycles) to NFs based on the
combination of an NF’s arrival rate and its processing cost.

Intuitively, if either one of these factors is fixed, then we expect its CPU allocation
to be proportional to the other metric. For example, if two NFs have the same
computation cost but one has twice the arrival rate, then we want it to have twice the
output rate relative to the second NF. Alternatively, if the NFs have the same arrival

17Note: The reported numbers provide ballpark estimation on processing complexity of the
corresponding middlebox; actual numbers are implementation specific and can vary with the type
of platform, Operating System, libraries and language of implementation.
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Table 3.1: Per Packet Processing cost in CPU computation cycles for different NFs.

Network Function Compute Cycles/Packet
L2 Forwarding ∼ 70
IP Routing ∼ 175

L2-4 Classification ∼ 750
TCP Termination ∼ 1500
Stateful Firewall ∼ 2250
OpenFlow Process ∼ 5000

IDS/IPS ∼ 5000
NextGen Firewall ∼ 8500

IPsec / SSL ∼ 9500
Firewall + SSL ∼ 18000

rate, but one requires twice the processing cost, then we expect the heavy NF to get
about twice as much CPU time, resulting in both NFs having the same output rate.
This definition of fairness can of course be supplemented with a prioritization factor,
allowing an understandable and consistent way to provide differentiated service for
NFs.

Unfortunately, standard CPU schedulers do not have sufficient information to allo-
cate resources in a way that provides rate-cost proportional fairness. CPU schedulers
typically try to provide a fair allocation of processing time, but if computation costs
vary between NFs this cannot provide rate-cost fairness. Therefore,

The solution must seek to enhance the scheduler with additional information so
that it can appropriately allocate CPU time to the contending NFs and provide a
correctly weighted allocation of run-time.

#2 Efficient Chaining: Beyond simply allocating CPU time fairly to NFs on
a single core, the combination of NFs into service chains demands careful resource
management across the chain to minimize the impact of bottlenecks. Processing a
packet only to have it dropped from a subsequent bottleneck’s queue is wasteful,
and a recipe for receive livelock [42, 62].
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When an NF (whether a single NF or one in a service chain) is overloaded, packet
drops become inevitable, and processing resources already consumed by those pack-
ets are wasted. For responsive flows, such as a TCP flow, congestion control and
avoidance using packet drop methods such as Random Early Drop (RED), Random
Early Marking (REM), Stateless Fair Queuing (SFQ), Core Stateless Fair Queu-
ing (CSFQ) [63–66] and feedback with Explicit Congestion Notification (ECN) [67]
can cause the flows to adapt their rates to the available capacity on an end-to-
end basis. However, for non-responsive flows (e.g., UDP), a local, rapidly adapting
method is backpressure, which can propagate information regarding a congested
resource upstream (i.e., to previous NFs in the chain). Therefore,

The solution must allow the upstream NFs and upstream nodes to account for
the congestion at the downstream NFs and determine either to propagate the
backpressure information further upstream or drop packets to avoid downstream
congestion and to minimize the wasted work.

However, It is important to ensure that effects such as head-of-the-line blocking
or unfairness do not creep in as a result of such backpressure notification.

3.2.2 Are existing OS schedulers well-suited for NFV deployment?

As discussed in section §2.5, Linux provides several different process schedulers, with
the Completely Fair Scheduler (CFS) [54] being the default since kernel 2.6.23. In
this work we focus on three different schedulers: i) CFS Normal, ii) CFS Batch, and
Round Robin (RR)18.

To explore the impact of these schedulers on NFV applications we consider a
simple deployment with three NF processes sharing a CPU core. The NFs run atop
a DPDK-based NFV platform that efficiently delivers packets to the NFs. We look
at two workloads: 1) equal offered load to all NFs of 5 Mpps; 2) unequal offered load,
with NF1 and NF2 getting 6 Mpps, and NF3 getting 3 Mpps. We also consider the
case where NFs have different computation costs. As described above, the desirable
behavior is for NFs to be allocated resources in proportion to both their arrival rate
and processing requirements.

18Note: We do not consider the FIFO scheduler, which is another variant of real time scheduling
class. Our evaluation for yield based NFs show FIFO to have similar characteristics and fare worse
than RoundRobin due to unbounded starvation.
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(a) Throughput for Homogeneous NFs (i.e., NFs with same per packet computation cost).

(b) Throughput for Heterogeneous NFs (with different per packet computation cost)

Figure 3.1: The scheduler alone is unable to provide fair resource allocations that
account for processing cost and load.
Left (Even Load): corresponds to equal offered load (packet arrival rate)
on all NFs
Right (Uneven Load): corresponds to unequal variation in the offered
load on all NFs.
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Figure 3.2: Throughput, wasted work and CPU utilization for 3NF chain se-
quence(NF1, NF2, NF3) subject to uniform load.

Table 3.2: Context Switches for Homogeneous NFs
Even Load Uneven Load

SCHED_
NORMAL

SCHED_
BATCH

SCHED_
RR

SCHED_
NORMAL
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BATCH

SCHED_
RR
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nvc
swch
/s

NF1 0 339 0 333 266 3 0 3544 0 527 247 5
NF2 0 334 0 333 265 4 0 6205 0 479 246 5
NF3 0 333 0 334 266 3 9753 9 1007 0 248 3

Table 3.3: Context Switches for Heterogeneous NFs
Even Load Uneven Load

SCHED_
NORMAL

SCHED_
BATCH

SCHED_
RR

SCHED_
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SCHED_
BATCH

SCHED_
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NF csw-
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/s
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/s
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ch/s
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csw-
ch/s
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NF1 0 33785 0 504 198 7 0 38585 0 503 85 10
NF2 0 32214 1 505 204 2 0 41089 4 496 92 1
NF3 65796 107 1010 8 206 0 79479 85 1004 4 93 0
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3.2.2.1 NFs with Homogeneous Processing cost

In our first test, illustrated in Figure 3.1a, all 3 NFs have equal computation cost
(roughly 250 CPU cycles per packet). With an even load sent to all NFs, we find
that the three schedulers perform about the same, with an equal division of CPU
time leading to equal throughputs for each NF. However, reducing the traffic to
NF3 by half shows the different behavior of the schedulers: while the CFS-based
schedulers continue to evenly divide the CPU (CFS’s definition of fairness), the RR
scheduler allocates CPU time in proportion to the arrival rate, which better matches
our notion of rate proportional fairness.

This happens because RR uses a time quantum that is substantially longer than
an NF ever needs, so NFs which yield the CPU earlier (i.e., because they have
fewer packets to process) receive less CPU time and thus have lower throughput.
Note the context switches (shown in Table 3.2) in RR case are predominantly volun-
tary context switches, while the CFS based schedulers incur non-voluntary context
switches.

3.2.2.2 NFs with Heterogeneous Processing cost

We next consider heterogeneous NFs (computation costs: NF1= 500, NF2=250 and
NF3=50 CPU cycles) with even or uneven load. Figure 3.1b shows that when arrival
rates are the same, none of the schedulers are able to provide our fairness goal—an
equal output rate for all three NFs. CFS Normal always apportions CPU equally,
regardless of offered load and NF processing cost, so the lighter weight NF3 gets
the highest throughput. The RR scheduler is the opposite since it gives each NF an
equal chance to run, but does not limit the time the NF runs for. The CFS Batch
scheduler is in between these extremes since it seeks to provide fairness, but over
longer time periods.

Notably, the Batch scheduler provides NF3 almost the same throughput as Normal
CFS, despite allocating it substantially less CPU. The reason for this is that Normal
CFS can incur a very large number of context switches due to its goal of providing
very fine-grained fairness. Since Batch mode reduces scheduler preemption, it has
substantially fewer non-voluntary context switches—reducing from 65K to 1K per
second—as illustrated in Table 3.3. While RR also has low context switch overhead,
it allows heavy weight NFs to greedily consume the CPU, nearly starving NF3.
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3.2.2.3 NF Chain

We consider, a simple 3NF chain (NF1, NF2, and NF3, with computation costs:
NF1=120, NF2=270 and NF3= 550 cycles), and subject the chain to a uniform load
of 10Mpps. We profile the overall chain and per NF throughput, and also profile the
default scheduler behavior for CFS, BATCH, and RR schedulers. Figure 3.2 shows
the variation of CPU allocation time to different NFs and correspondingly impacting
the throughput of the overall chain as well as the processing of distinct NFs. We
account the wasted work for each of the upstream NFs in the chain as the number of
packets processed by the upstream NF but dropped by the immediate downstream
NF due to overflow on receive queue.

We can observe that CFS Normal always apportions CPU equally, regardless the
NF processing cost, so the light weight NF1 gets the highest throughput, while
NF2 and NF3 with the same time-share are not able to cope with the load of their
immediate upstream NFs. On the other hand, RR and Batch schedulers apportion
each NF an equal chance to run but do not limit the time the NF runs for. If the
NFs voluntarily yield before their time-slice the other NFs get a chance and share
the CPU. We can observe the NF1 to get the least share of CPU, while NF3 gets
the highest CPU share. However, we can still observe significant wasted work across
different schedulers. This is due to the lack of awareness of the processing cost of
NFs and processing load on each of the intermediate NFs in the chain.

These results show that just having the Linux scheduler handle scheduling NFs
has undesirable results as by itself it is unable to adapt to both varying per-packet
processing requirements of NFs and packet arrival rates. Moreover, it is important
to avoid the overheads of excessive context switches. All of these scheduling require-
ments must be met on a per-core basis while accounting for the behavior of chains
spanning multiple cores or servers.

We posit that a scheduling framework for NF service chains has to simultaneously
account for both task level scheduling on processing cores and packet level scheduling
within an NF. This combined problem is what poses a challenge: When you get a
packet, you have to decide which task has to run, and also which packets to process,
and for how long. In addition, the chain-wide processing and load requirements need
to be accounted to avoid any wasted-work.

3.2.3 Facilitating I/O for NFs

Next, we consider NFs that frequently perform I/O operations. With Linux, there
are two traditional approaches for performing I/O i.e., i) Synchronous mode and ii)
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Asynchronous mode. We compare the performance impact of performing frequent
I/O operation both on NF packet processing and overall throughput. Table 3.4
demonstrates the overall performance metrics of employing the synchronous and
asynchronous mode of I/O.

Table 3.4: Synchronous vs Asynchronous I/O for 10MB HTTP Download and
packet-logger NF

Synchrnous I/O Asynchronous I/O
Flow Completion Time (ms) 70-86 39-43

Throughput (Gbps) 0.93-1.14 1.87-2.06

The results clearly indicate the benefit of employing Asynchronous I/O for NFIs,
however performing Asynchronous I/O in Linux is complex for the following reasons:

i) NFIs must explicitly reserve and manage the ‘asynchronous I/O control blocks’ to
perform asynchronous read and write operations.

ii) NFIs need to select and register for desired asynchronous notification method that
enables the NFIs to be notified of completion of the I/O operation in a variety of
ways: a) by delivery of a signal, b) by instantiation of a thread, or c) no notification
at all, but poll in user space.

iii) Most importantly, to ensure the correctness of operation (preserving the packet
ordering) and to avoid head-of-line blocking, the NFIs need to synchronize their
packet processing with asynchronous I/O completion notification, along with co-
ordination of voluntarily yield decisions on CPU.

These set of operations though common across different NFIs, demand calculated
tuning and configuration of the asynchronous I/O parameters. Hence,

A general abstraction framework in EMS would be more desirable that can effec-
tively manage and co-ordinate with NF scheduling to determine when to wake-up
and when to relinquish the NF from packet processing.
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In this Chapter, we present the literature survey on the state-of-the-art work in
the prospect of a) High Performance NFV platforms and scheduling control for
NFs and b) Queue management, specifically the congestion control, ECN and
backpressure schemes in SFCs.
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4.1 High Performance NFV Platforms and Scheduling
of Network Functions

In recent years, several NFV platforms have been developed to accelerate packet
processing on commodity servers [43, 44, 47, 68, 69]. There is a growing interest in
managing and scheduling network functions. Many works address the placement of
middleboxes and NFs for performance target or efficient resource usage [3,22,70–73].
For example, E2 [22] builds a scalable scheduling framework on top of BESS [69].
They abstract NF placement as a DAG, dynamically scale and migrate NFs while
keeping flow affinity. NFV-RT [73] defines deadlines for requests, and places or
migrates NFs to provide timing guarantees. These projects focus on NF management
and scheduling across the cluster scale.
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Also, several works have addressed high performance for NFV platforms by de-
veloping network applications on specialized networking hardware such as Network
Processor Units (NPUs) [74], Field-Programmable Gate Arrays (FPGAs) based pro-
grammable switches [75,76], and most recently have even considered Graphics Pro-
cessing Units (GPUs) to accelerate packet processing for NFV [77]. The works
P4 [76] and Packet Transactions [78] have looked at providing high level program-
ming tools for such hardware.

The focus of our work is on a different scale: i.e., how to efficiently schedule
the NFs on shared cores in order to achieve fairness and maximize the chain-wide
throughput by avoiding the wasted-work across NF chains. The diversity of software-
based NFs or the middleboxes, coupled with varied nature of I/O and packet process-
ing costs make the scheduling of NFs more complex and different from traditional
packet scheduling for fairness on hardware platforms [60, 79–81]. Furthermore, dif-
ferent kinds of flow arrival rates exacerbate the difficulty of fair scheduling.

PSPAT [82] is a recent host-only software packet scheduler. PSPAT aims to
provide a scalable scheduler framework by decoupling the packet scheduler algorithm
from dispatching packets to the NIC for high performance.

NFVnice considers the orthogonal problem of packet processing cost and flow
arrival rate to fairly allocate CPU resources across the NFs.

PIFO [83] presents the packet-in-first-out philosophy distinct from the typical
first-in-first-out packet processing models. In this model, right at the time of packet
arrival, the decision on whether to accept a packet and queue it for processing at
the intended NF or discard the packet is taken. Then enqueued packets are always
processed in order. This approach of selective early discard yields two benefits:

i) it avoids dropping partially processed (through the chain) packets, thus not wast-
ing CPU cycles;

ii) it avoids CPU stealing and allows CPU cycles to be judiciously allocated to the
other contending NFs.

We use the insight from this work to decide whether to accept a packet and queue
it for processing at the intended NF or discard at the time of packet arrival.



39 4.2 User space scheduling and related frameworks

4.2 User space scheduling and related frameworks

Works, such as [84, 85], consider cooperative user-space scheduling, providing very
low cost context switching, that is orders of magnitude faster than regular Pthreads.
However, the drawbacks with such a framework are two-fold:

a) They invariably require the threads to cooperate, i.e., each thread must voluntarily
yield to ensure that the other threads get a chance to share the CPU, without which
progress of the threads cannot be guaranteed. This means that the programs
that implement L-threads must include frequent rescheduling points for each L-
thread [85] incurring additional complexity in developing the NFs.

b) As there is no specific scheduling policy (it is just FIFO based), all the L-threads
share the same priority, and are backed by the same kernel thread (typically pinned
to a single core), and thus lack the ability to perform selective prioritization and
the ability to provide QoS differentiation across cooperating threads.

Another approach used by systems such as E2 [22] and VPP [68] is to host multiple
NFs within a shared address space, allowing them to be executed as function calls in
a run to completion manner by one thread. This incurs very low NUMA and cross-
core packet chaining overheads, but being monolithic, it is inflexible and impedes
the deployment of NFs from third party vendors.

4.3 Queue Management: Congestion Control and
Backpressure

Congestion control and backpressure have been extensively studied in the past [86–
91]. DCTCP [86] leverages ECN to provide multi-bit feedback to the end hosts.
MQ-ECN [88] enables ECN for tradeoff of both high throughput and low latency
in multi-service multi-queue production DCNs(Data Center Network). All of these
focus on congestion control in DCNs.

However, in an NFV environment, flows are typically steered through a chain
of network functions. This implies that more the later the congestion is found,
the more resources are wasted in the upstream of the chain. If the end hosts do
not enable ECN support or there are User Datagram Protocol (UDP) flows, it is
especially important for the NFV platform to gracefully handle high load scenarios
in an efficient and fair way.
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4.4 Fair sharing of resources

Fair sharing has been extensively studied under network packet schedules, Operating
System (OS) process schedulers and job schedulers in Cloud.

In the context of packet schedulers, the concept of fair queuing corresponds to
the logic of selecting the next packet from the pool of multiple queued packets for
transmission over the wire (link). The general concept is to keep track of packets
scheduled for transmission across all the backlogged flows and update the scheduling
decision to pick the packet from least serviced flow. For example, Weighted Fair
Queueing (WFQ) [52], Start-time Fair Queueing (SFQ) [80], Generalized Processor
Sharing (GPS) [59], and Deficit Round Robin (DRR) [79]. Notably, the single-link
schedulers such as WFQ [52] and WF2Q [92] track virtual runtime to account for
flows share and require the knowledge of packet size to schedule the packets as they
order the flows based on their finish tag. However, SFQ [80] does not need the packet
size information a priori but computes the start tag based on the transmission time
of the previous packets obtained at the end of transmission.

In the context of OS schedulers, the concept is quite analogous to packet sched-
ulers, but applies to the selection of next task or a process from the pool of run
queue (all the waiting tasks) for execution on a CPU core. In addition, the sched-
uler also needs to determine the quantum (time-slice) that a task needs to spend on
a CPU core to guarantee the fair share. Distributed Weighted Round Robin sched-
uler (DWRR) [93] achieves a scalable proportionally fair scheduling by adapting the
time slice of the round in proportion to the weight of the scheduled task. The CFS
scheduler is analogous to weighted fair queuing (WFQ) scheduling [52, 53]. Thus,
CFS ensures a fair proportion of CPU allocation to all the tasks.

Work such as [94, 95], propose to ensure fair sharing of network resources among
multiple tenants by spreading requests to multiple processing entities. That is, they
distribute flows with different costs to different processing threads. [94] accounts for
the virtual time to measure the processing time accounted by each flow on their
dominant resource. Based on this metric, the packets of the flow are scheduled to
ensure max-min fairness. Thus it accounts to seek dominant resource fairness for all
the contending flows. [95] separates the requests with different costs/size and assigns
them to different worker threads. Thus, even with bursty workloads it ensures fair
workload distribution and achieves multi-tenant isolation.

In contrast, we seek to achieve fairness by scheduling the NFs that process the
packets of different flows appropriately, Thus, a fair share of the CPU is allocated
to each competing NF.
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High Performance Network Function
Chains

In this section, we present our NF management and scheduling framework and
outline our design choices, implementation details, system parameter tuning,
testbed setup and evaluation to quantify the associated benefits and overheads of
our proposal.
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5.1 Introduction

To resolve the challenges outlined in §3.2 we propose NFVnice, an NFV management
framework that provides fair and efficient resource allocations to NF service chains.
NFVnice focuses on the scheduling and control problems of NFs running on shared
CPU cores, and considers a variety of realistic issues such as bottlenecked NFs in
a chain, and the impact of NFs that perform disk I/O accesses, which naturally
complicate scheduling decisions. NFVnice makes the following contributions:

• Rate-Cost proportional Scheduling: We introduce the basic notion of fairness that
integrates both the notion of fairness from Hardware schedulers and the OS CPU
schedulers.

• Automatically tuning CPU scheduling parameters in order to provide a fair allo-
cation that weighs NFs based on both their packet arrival rate and the required
computation cost.

• Determining when NFs are eligible to get a CPU share and when they need to yield
the CPU, entirely from user space, improving throughput and fairness regardless
of the kernel scheduler being used.

• Leveraging the scheduling flexibility to achieve backpressure for service chain-level
congestion control, that avoids unnecessary packet processing early in a chain if
the packet might be dropped later on.

• Extending backpressure to apply not only to adjacent NFs in a service chain but
for full service chains and managing congestion across hosts using ECN.

• Presenting a userspace OS scheduler-agnostic framework that does not require any
operating system or kernel modifications.

• Presenting efficient I/O management abstraction to NFs by leveraging the Linux
‘Asynchronous I/O’ APIs.

We have implemented NFVnice on top of OpenNetVM [46], a DPDK based NFV
platform that runs NFs in separate processes or docker containers.

5.2 Design Choices, Architecture and Design

In an NFV platform, at the top of the stack are one or more network functions
that must be scheduled in such a way that idle work (i.e., while waiting for packets)
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is minimized and load on the service chain is shed as early as possible so as to
avoid wasted work. However, the operating system’s process scheduler that lies
at the bottom of the software stack remains completely application agnostic, with
its goal of providing a fair share of system resources to all processes. As shown
in earlier §3.2, the kernel scheduler’s metrics for scheduling are along orthogonal
dimensions to those desired by the network functions. NFVnice bridges the gap by
translating the scheduling requirements at the NFV application layer to a format
consumable by the operating system.

The design of NFVnice centers around the concept of assisted preemptive schedul-
ing, where network functions provide hints to the underlying OS with regard to their
utilization. In addition to monitoring the average computation time of a network
function per packet, NFVnice needs to know when NFs in a chain are overloaded
or blocked on packet/disk I/O. The queues between NFs in a service chain serve as
a good indicator of pending work at each NF. To facilitate the process of provid-
ing these metrics from the NF implementation to the underlying operating system,
NFVnice provides network function implementations with an abstraction library
called libnf. In addition to the usual tasks such as efficient reading/writing packets
from/to the network at line rate and overlapping processing with non-blocking asyn-
chronous I/O, libnf co-ordinates with the NFVnice platform to schedule/de-schedule
a network function as necessary.

Modifying the OS scheduler to be aware of various queues in the NFV platform is
an onerous task that might lead to unnecessary maintenance overhead and potential
system instability. One approach is to change the priority of the NF based on the
queue length of packet at that NF. This will have the effect of increasing the number
of CPU cycles provided to that NF. This will require the change to occur frequently
as the queue length varies. The change requires a system call, which consumes CPU
cycles and adds latency. In addition, with service chains, as the queue at an upstream
NF builds, its priority has to be raised to process packets and deliver to a queue at
the downstream NF. Then, the downstream NF’s priority will have to be raised. We
believe that this can lead to instability because of frequent changes and the delay
involved in effecting the change. This only gets worse with complex service chains,
where an NF is both an upstream NF for one service chain and a downstream NF for
another service chain. Instead, NFVnice leverages cgroups [55,56], a standard user
space primitive provided by the operating system to manipulate process scheduling.
NFVnice monitors queue sizes, computation times and I/O activities in user space
with the help of libnf and manipulates scheduling weights accordingly.
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5.2.1 Rate-Cost Proportional Fair Scheduling

We present novel rate-cost proportional fairness for NF chains. By rate-cost pro-
portional we account both the network characteristic of packet-arrival rate and the
system characteristic of computation cost the packets at the NF. The details on
estimating the associated scheduling parameters and the methodology is illustrated
in section §5.2.3. We adopt the notion of rate-cost proportional fairness for two
fundamental reasons:

i) it not only seeks to maximize the throughput for a given load across NFs, but even
in the worst case scenarios (highly uneven and high overload across competing
NFs), it ensures that all competing NFs get a minimal CPU share necessary to
progress the NFs; and

ii) the rate-cost proportional fairness is general and flexible, so that it can be tuned
to meet the QoS policies desired by the operator.

Further, the approach ensures that when contending NFs include malicious NFs
(those that fail to yield), or misbehaving NFs (get stuck in a loop making no
progress), such NFs do not consume the CPU excessively, impeding the progress
of other NFs. While the Linux default scheduler addresses this through the notion
of a virtual run-time for each running task, we fine-tune that capability to provide
the correct share of the CPU for an NF, rather than just allocating an equal share
of the CPU for each contending NF.

5.2.2 System Components

Figure 5.1 illustrates the key components of the NFVnice platform. We leverage
DPDK for fast user space networking [45]. Our NFV platform is implemented as a
system of queues that hold packet descriptors pointing to shared memory regions.
The NF Manager runs on a dedicated set of cores and is responsible for ferrying
packet references between the NIC queues and NF queues in an efficient manner.
When packets arrive to the NIC, Rx threads in the NF Manager take advantage
of DPDK’s poll mode driver to deliver the packets into a shared memory region
accessible to all the NFs. The Rx thread does a lookup in the Flow Table to direct the
packet to the appropriate NF. Once a flow is matched to an NF, packet descriptors
are copied into the NF’s receive ring buffer and the Wakeup subsystem brings the NF
process into the runnable state. After being processed by an NF, the NF Manager’s
Tx Threads move packets through the remainder of the chain. This provides zero-
copy packet movement.
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Figure 5.1: NFVnice Building Blocks

Service chains can be configured during system startup using simple configuration
files or from an external orchestrator such as an SDN controller. When an NF finishes
with a packet, it enqueues it in its Tx queue, where it is read by the manager and
redirected to the Rx queue of the next NF in the chain. The NF Manager also picks
up packets from the Tx queue of the last NF in the chain, and sends it out over the
network.

We have designed NFVnice to provide high performance processing of NF service
chains. The NF Manager’s scheduling subsystem determines when an NF should be
active and how much CPU time it should be allocated relative to other NFs. The
backpressure subsystem provides chain-aware management, preventing NFs from
spending time processing packets that are likely to be dropped downstream. Finally,
the I/O interface facilitates efficient asynchronous storage access for NFs.

5.2.3 Scheduling NFs

Each network function in NFVnice is implemented inside its own process (potentially
running in a container). Thus the OS scheduler is responsible for picking which NF
to run at any point in time. We believe that rather than design an entirely new
scheduler for NFV, it is important to leverage Linux’s existing scheduling frame-
work, and use our management framework in user space to tune any of the stock
OS schedulers to provide the properties desired for NFV support. In particular, we
exploit the CFS Batch scheduler, but NFVnice provides substantially similar ben-
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Figure 5.2: NF Scheduling and Backpressure

efits to each of the other Linux kernel schedulers. Figure 5.2 shows the NFVnice
scheduling that makes the OS scheduler be governed by NF Manager via cgroups,
and ultimately assigns running NFs to shared CPU cores. The detailed description
of the figure is in the Sections 5.2.3 and 5.2.4.

Activating NFs: NFs that busy wait for packets perform very poorly in a shared
CPU environment. Thus it is critical to design the NF framework so that NFs are
only activated when there are packets available for them to process, as is done in NFV
platforms such as netmap [44] and ClickOS [47]. However, these systems provide
only a relatively simple policy for activating an NF: once one or more packets are
available, a signal is sent to the NF so that it will be scheduled to run by the OS
scheduler in netmap, or the hypervisor scheduler in ClickOS. While this provides
an efficient mechanism for waking NFs, neither system allows for more complex
resource management policies, which can lead to unfair CPU allocations across NFs,
or inefficient scheduling across chains.

In NFVnice, NFs sleep by blocking on a semaphore shared with the NF Manager,
granting the management plane great flexibility in deciding which NFs to activate
at a given time. The policy we provide for activating an NF considers the number of
packets pending in its queue, its priority relative to other NFs, and knowledge of the
queue lengths of downstream NFs in the same chain. This allows the management
framework to indirectly affect the CPU scheduling of NFs to be fairness and service-
chain aware, without requiring that information be synchronized with the kernel’s
scheduler.
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Relinquishing the CPU: NFs process batches of packets, deciding whether to
keep processing or relinquish the CPU between each batch. This decision and all
interactions with the management layer, e.g., to receive a batch of packets, are
mediated by libnf, which in turn exposes a simple interface to developers to write
their network function. After a batch of at most 32 packets is processed, libnf will
check a shared memory flag set by the NF Manager that indicates if it should
relinquish the CPU early (e.g., as a result of backpressure, as described below). If
the flag is not set, the NF will attempt to process another batch; if the flag has
been set or there are no packets available, the NF will block on the semaphore until
notified by the Manager. This provides a flexible way for the manager to indicate
that an NF should give up the CPU without requiring the kernel’s CPU scheduler
to be NF-aware.

CPU Scheduler: Since multiple NF processes are likely to be in the runnable
state at the same time, it is the operating system’s CPU scheduler that must de-
termine which to run and for how long. In the early stages of our work we sought
to design a custom CPU scheduler that would incorporate NF information such as
queue lengths into its scheduling decisions. However, we found that synchroniz-
ing queue length information with the kernel, at the frequency necessary for NF
scheduling, incurred overheads that outweighed any benefits.

Linux’s CFS Batch scheduler is typically used for long running computationally
intensive tasks because it incurs fewer context switches than standard CFS. Since
NFVnice carefully controls when individual NF processes are runnable and when
they yield the CPU (as described above), the batch scheduler’s longer time quantum
and less frequent preemption are desirable. In most cases, NFVnice NFs relinquish
the CPU due to policies controlled by the manager, rather than through an involun-
tary context switch. This reduces overhead and helps NFVnice prioritize the most
important NF for processing without requiring information sharing between user
and kernel space.

Assigning CPU Weights: NFVnice provides mechanisms to monitor a network
function to estimate its CPU requirements, and to adjust its scheduling weight. Poli-
cies in the NF Manager can then dynamically tune the scheduling weights assigned
to each process in order to meet operator specified priority requirements.

The packet arrival rate for a given NF can be easily estimated by either the
NF or the NF Manager. We measure the service time to process a packet inside
each NF using libnf. To avoid outliers from skewing these measurements (e.g., if a
context switch occurs in the middle of processing a packet), we maintain a histogram
of timings, allowing NFVnice to efficiently estimate the service time at different
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percentiles.

load(NFi) = (λi ∗ si)+(nqi ∗ si) (5.2.1)

TotalLoad(m) =
n

∑
i=1

load(NFi) (5.2.2)

For each NF NFi on a shared core m, we calculate the load on the NF as shown
in Eq. 5.2.1 i.e., the sum of the product of arrival rate, λ , and per packet service
time, si and the product of backlog packets of NF nqi

19 and per packet service time,
si. We then find the total load on each core e.g., for core m as shown in Eq 5.2.2,
and assign cpu shares for NFi on corem following the formula:

Sharesi = Priority(NFi)∗
load(NFi)

TotalLoad(m)
(5.2.3)

This provides an allocation of CPU weights that provides rate proportional fair-
ness to each NF. The Priority(NFi) parameter can be tuned if desired to provide
differential service to NFs. Tuning priority in this way provides a more intuitive
level of control than directly working with the CPU priorities exposed by the sched-
uler since it is normalized by the NF’s load.

5.2.4 Backpressure

A key goal of NFVnice is to avoid wasting work, i.e., preventing an upstream NF
from processing packets if they are just going to be dropped at a downstream NF
later in the chain that has become overloaded. We achieve this through backpressure,
which ensures bottlenecks are quickly detected while minimizing the effects of head
of line blocking.

Cross-Chain Pressure: The NF Manager is in an ideal position to observe
behavior across NFs since it assists in moving packets between them. When one of
the NF Manager’s TX threads detects that the receive queue for an NF is above
a high watermark (HIGH_WATER_MARK) and queuing time is above threshold,
then it examines all packets in the NF’s queue to determine what service chain they
are a part of. NFVnice then enables service chain-specific packet dropping at the
upstream NFs. NF Manager maintains states of each NF, and in this case, it moves

19is the number of packets waiting to be processed by NF in its Rx Queue
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Figure 5.3: Backpressure State Diagram

the NF’s state from watch list to packet throttle as shown in Figure 5.3. When the
queue length becomes less than a low watermark (LOW_WATER_MARK), the
state moves to clear throttle, then again moves to the watch list if the queue length
goes beyond the high mark.

The backpressure operation is illustrated in Figure 5.4, where four service chains
(A-D) pass through several different NFs. The bold NFs (3 and 5) are currently
overloaded. The NF Manager detects this and applies back pressure to flows A,
C, and D. This is performed upstream where those flows first enter the system,
minimizing wasted work. Note that backpressure is selective based on service chain,
so packets for service chain B are not affected at all. Service chains can be defined
at fine granularity (e.g., at the flow-level) in order to minimize head of line blocking.

This form of system-wide backpressure offers a simple mechanism that can provide
substantial performance benefits. The backpressure subsystem employs hysteresis
control to prevent NFs rapidly switching between modes. Backpressure is enabled
when the queue length exceeds a high watermark and is only disabled once it falls
below the low watermark.

Local Optimization and ECN: NFVnice also supports simple, local backpres-
sure, i.e., an NF will block if its output TX queue becomes full. This can happen
either because downstream NFs are slow, or because the NF Manager TX Thread
responsible for the queue is overloaded. Local backpressure is entirely NF-driven,
and requires no coordination with the manager, so we use it to handle short bursts
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Figure 5.4: Overloaded NFs (in bold) cause back pressure at the entry points for
service chains A, C, and D.

and cases where the manager is overloaded.

We also consider the fact that an NFVnice middlebox server might only be one
in a chain spread across several hosts. To facilitate congestion control across ma-
chines, the NF Manager will also mark the ECN bits in TCP flows in order to
facilitate end-to-end management. Since ECN works at longer timescales, we mon-
itor queue lengths with an exponentially weighted moving average and use that to
trigger marking of flows following [67].

5.2.5 Facilitating I/O

A network function could block when its receive ring buffer is empty or when it
is waiting to complete I/O requests to the underlying storage. In both cases, NF
implementations running on the NFVnice platform are expected to yield the CPU,
returning any unused CPU cycles back to the scheduling pool. In case of I/O, NF
implementations should use asynchronous I/O to overlap packet processing with
background I/O to maintain throughput. NFVnice provides a simple library called
libnf that abstracts such complexities from the NF implementation.

The libnf library exposes a simple set of APIs that allow the application code to
read/write packets from the network, and read/write data from storage. The APIs
are shown in Listing 15.3. If the receive ring buffer is empty while calling the libnf_
read_pkt API, libnf notifies the NF manager and blocks the NF until further packets
are available in the buffer.
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// Read the next packet from the receive ring buffer

packet_descriptor* libnf_read_pkt();

// Output the processed packet to specified destination

int libnf_write_pkt(packet_descriptor*);

// Enqueue request to read from storage. Flow specific data can be stored

in context

int libnf_read_data(int fd, void *buf,

size_t size, size_t offset,

void (*callback_fn)(void *), void *context);

// Enqueue request to write to storage. Flow specific data can be stored in

context

int libnf_write_data(int fd, void *buf,

size_t size, size_t offset,

void (*callback_fn)(void *), void *context);

Figure 5.5: libnf API exposed to network function implementations.

In case of I/O, an NF implementation uses the libnf_read_data and libnf_
write_data APIs. I/O requests can be queued along with a callback function that
runs in a separate thread context. Using batched asynchronous I/O with double
buffering, libnf enables the NF implementation to put the processing of one or more
packets on hold, while continuing processing of other packets unhindered.

Batching reads and writes allows an NF to continue execution without waiting for
I/O completion. The size of the batches and the flush interval is tunable by the NF
implementation. Double buffering enables libnf to service one set of I/O requests
asynchronously while the other buffer is filled up by the NF. When both buffers are
full, libnf suspends the execution of the NF and yields the CPU.

5.2.6 System Management and NF deployment

The NF Manager ’s (Rx, Tx and Monitor) threads are pinned to separate dedicated
cores. The number of Rx, Tx and monitor threads are configurable (C-Macros), to
meet system needs, and available CPU resources. Similarly, the maximum number
of NFs and maximum chain length can be configured. NFVnice allows NFs and NF
service chains to be deployed as independent processes or Docker containers which
are linked with libnf library. libnf exports a simple, minimal interface (9 functions,
2 callbacks and 4 structures), and both the NF Manager and libnf leverage the
DPDK libraries (ring buffers, timers, memory management). We believe developing
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or porting NFs or existing docker containers can be reasonably straightforward. For
example, a simple bridge NF or a basic monitor NF is less than 100 lines of C code.

5.3 System Implementation and Optimizations

We implemented NFVnice on top of OpenNetVM [46], which is a DPDK [45] based
open-source NFV platform. OpenNetVM enables to deploy and run the NFs as
either separate processes or as docker containers.

5.3.1 VNFM and EMS components

We implemented the following modules and extensions to the core NF Manager20

and libnf21 components of OpenNetVM [46]:

• NF Wakeup Manager: This module is implemented in NF Manager and runs
on a dedicated CPU core. This module is responsible for identifying the NFs that
are eligible to be scheduled and make them runnable and also to notify NFs to
relinquish CPU when necessary.

• NF Load Monitor: This functionality is implemented in NF Manager and makes
use of the existing monitor thread, which runs on a dedicated CPU core. It
periodically monitors for the load on each NF and determines the cgroup weight
of each NF on distinct CPU cores to account for right proportion of CPU share
for the NFs.

• Backpressure Monitor and Marking: This functionality is implemented
within the NF Manager. It is implemented as part of Rx and Tx threads, which
move the packets from NIC ring descriptors to NF ring buffers identify the instan-
taneous queue length to enable or disable backpressure for any NF.

• libnf : We extend the libnf to seamlessly switch the NF processing from poll mode
to interrupt driven NFs, that can be woken up and de-scheduled as necessary.
Additionally, we implemented light weight NF packet processing cost profiler that
periodically monitors the per-packet processing cost and maintains the histogram
of processing cost.

For evaluation purposes, we also implemented compute and I/O specific NFs like
20corresponds to the Virtualized Network Function Manager (VNFM) component in the ETSI

NFV-MANO architecture.
21provides generic system abstractions for VNFI developers and corresponds to the Element

Management System (EMS) component in the ETSI NFV-MANO architecture.
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‘basic forwarding’, ‘vlan tagger’, ‘packet and stream logger’ NFs that exhibit diverse
computer and I/O costs.

5.3.2 Optimizations

Separating overload detection and control. Since the NFV platform [43] must
process millions of packets per second to meet line rates, we separate out overload
detection from the control mechanisms required to respond to it. The NF Manager’s
Tx threads are well situated to detect when an NF is becoming backlogged as it is
their responsibility to enqueue new packets to each NF’s Tx queue. Using a single
DPDK’s enqueue interface, the Tx thread enqueues a packet to a NF’s Rx queue if
the queue is below the high watermark, while getting feedback about the queue’s
state in the return value. When overload is detected, an overload flag is set in the
meta data structure related to the NF.

The control decision to apply backpressure is delegated to th NF Manager’s
Wakeup thread. The Wakeup thread scans through the list of NFs classifying them
into two categories: ones where backpressure should be applied and ones that need
to be woken up. This separation simplifies the critical path in the Tx threads and
also provides some hysteresis control, since a short burst of packets causing an NF
to exceeds its threshold may have already been processed by the time the Wakeup
thread considers it for backpressure.

Separating load estimation and CPU allocation. The load on an NF is a
product of its packet arrival rate and the per-packet processing time. The scheduler
weight is calculated based on the load and the cgroup’s weights for the NF are
updated. Since changing a weight requires writing to the Linux sysfs, it is critical
that this be done outside of the packet processing data path. libnf merely collects
samples of packet processing times, while the NF Manager computes the load and
assigns the CPU shares using cgroup virtual file system.

The data plane (libnf) samples the packet processing time in a lightweight fashion
every millisecond by observing the CPU cycle counter before and after the NF’s
packet handler function is called. We chose sampling because measuring overhead
for each packet using the CPU cycle counters results in a CPU pipeline flush [96],
resulting in additional overhead. The samples are stored in a histogram, in memory
shared between libnf and the NF Manager.

The processing time samples produced by each NF are stored in shared memory
and aggregated by the NF Manager. Not all packets incur the same processing time,
as some might be higher due to I/O activity. Hence, NFVnice uses the median over
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a 100ms moving window as the estimated packet processing time of the NF. Every
millisecond, the NF Manager calculates the load on each NF using its packet arrival
rate and the estimated processing time. Every 10ms, it updates the weights used by
the kernel scheduler.

5.4 Evaluation

5.4.1 Testbed and Approach

Our experimental testbed has a small number of Intel(R) Xeon(R) CPU E5-2697 v3
@ 2.60GHz servers, 157GB memory, running Ubuntu SMP Linux kernel 3.19.0-39-
lowlatency. Each CPU has dual-sockets with a total of 56 cores. For these experi-
ments, nodes were connected back-to-back with dual-port 10Gbps DPDK compatible
NICs to avoid any switch overheads.

We make use of DPDK based high speed traffic generators, Moongen [97] and
Pktgen [98] as well as Iperf3 [99], to generate line rate traffic consisting of UDP and
TCP packets with varying numbers of flows. Moongen and Pktgen are configured
to generate 64 byte packets at line rate (10Gbps), and vary the number of flows as
needed for each experiment.

We demonstrate NFVnice’s effectiveness as a user-space solution that influences
the NF scheduling decisions of the native Linux kernel scheduling policies, i.e.,
Round Robin (RR) for the Real-time scheduling class, SCHED_NORMAL (termed
NORMAL henceforth) and SCHED_BATCH (termed BATCH) policies in the CFS
class. Different NF configurations (compute, I/O) and service chains with varying
workloads (traffic characteristics) are used. For all the bar plots, we provide the
average, the minimum and maximum values observed across the samples collected
every second during the experiment. In all cases, the NFs are interrupt driven,
woken up by NF manager when the packets arrive while NFs voluntarily yield based
on NFVnice’s policies. Also, when the transmit ring out of an NF is full, that NF
suspends processing packets until room is created on the transmit ring.

5.4.2 System parameter tuning and study of tradeoffs

5.4.2.1 Tuning NFVnice

The key parameters that need to be tuned for NFVnice are the marking thresholds
and the interval for periodic state profiling.
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Table 5.1: Packet drop rate per second
NORMAL BATCH RR(1ms) RR(100ms)

Default NFVnice Default NFVnice Default NFVnice Default NFVnice
NF1 3.58M 11.2K 2M 0 0.86M 0 0.53M 0
NF2 2.02M 12.3K 0.9M 11.5K 2.92M 12K 0.03M 12K

Marking Thresholds: To tune the key parameters of NFVnice, viz., the HIGH_
WATER_MARK and LOW_WATER_MARK, the thresholds for the queue occu-
pancy in the Rx ring, we measure the throughput, wasted work, context-switch
overheads and achieved Instructions per Cycle (IPC) count for different configura-
tions. We use a 3 NF, “Low-Med-High” service chain, and use Pktgen to generate
line rate minimum packet size traffic.

We begin with a fixed ’margin’ (difference between the High and Low thresholds).
With the margin at 30, we vary the high threshold. Below 70%, the throughput
starts to drop (under-utilization), while above 80% the number of packet drops at the
upstream NFs increases (insufficient buffering). We then varied the NF service chain
length (from 2 to 6), and computation costs (per packet processing cost from 100
cycles to 10000 cycles) to see the impact of setting the water marks. Across all these
cases, we observed that a choice of 80% for the HIGH_WATER_MARK worked
’well’. With the high water mark fixed at 80%, we varied the LOW_WATER_
MARK, by varying the margin. With a very small margin (1 to 5), packet drops
increased, while a margin above 30 degraded throughput. We chose a margin of 20
because it provided the best performance across these experiments.

We acknowledge that these watermark levels and thresholds are sensitive to overall
path-delay, chain length and processing costs of the NFs in the chain, and that these
parameters are necessarily an engineering compromise.

Periodic profiling and CPU weight assignment granularity: We based our
frequency of CPU profiling based on the overheads of rdtsc (observed to be roughly
50 clock cycles) and average time to write to the cgroup virtual file system (5 µ

seconds). We discard the first 10 samples to effectively account for warming the
cache and to eliminate outliers.

5.4.3 Overall NFVnice Performance

We first demonstrate NFVnice’s overall performance, both in throughput and in re-
source (CPU) utilization for each scheduler type. We compare the default schedulers
to our complete NFVnice system, or when only including the CPU weight alloca-
tion tool (which we term cgroups) or the backpressure to avoid wasted work at
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Table 5.2: Scheduling Latency and Runtime of NFs
NORMAL BATCH RR(1ms) RR(100ms)

measured in ms Default NFVnice Default NFVnice Default NFVnice Default NFVnice
NF1-Avg. Delay
NF1-Runtime

0.002
657.825

0.112
128.723

0.003
312.703

1.613
143.754

1.022
-

0.730
-

0.924
-

0.809
-

NF2-Avg. Delay
NF2-Runtime

0.065
602.285

0.008
848.922

1.144
836.940

0.255
803.185

0.570
-

0.612
-

0.537
-

0.473
-

NF3-Avg. Delay
NF3-Runtime

0.045
623.797

0.025
1014.218

0.149
826.203

0.009
1047.968

0.885
-

0.479
-

0.703
-

0.646
-

Figure 5.6: Performance of NFVnice in a service chain of 3 NFs with different com-
putation costs

upstream NFs in the service chain.

5.4.3.1 NF Service Chain on a Single Core:

Here, we first consider a service chain of three NFs; with computation cost Low
(NF1, 120 cycles), Medium (NF2, 270 cycles), and High (NF3, 550 cycles). All NFs
run on a single shared core.

Figure 5.6 shows that NFVnice achieves an improvement of as much as a factor
of two times in throughput (especially over the RR scheduler). We separately show
the contribution of the cgroups and backpressure features. By combining these,
NFVnice improves the overall throughput across all three kernel scheduling disci-
plines. Table 5.1 shows the number of packets dropped at either of the upstream
NFs, NF1 or NF2, after processing (an indication of truly wasted work). With-
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Table 5.3: Throughput, CPU utilization and wasted work in chain of 3 NFs on dif-
ferent cores

Default NFVnice
Svc. rate Drop rate CPU Util Svc. rate Drop rate CPU Util

NF1
(∼550cycles) 5.95Mpps - 100% 0.82Mpps - 11% ±3%

NF2
(∼2200cycles) 1.18Mpps 4.76Mpps 100% 0.72Mpps 150Kpps 64% ±1%

NF3
(∼4500cycles) 0.6Mpps 0.58Mpps 100% 0.6Mpps 70Kpps 100%

Aggregate 0.6Mpps - 300% 0.6Mpps - 175% ±3%

out NFVnice, the default schedulers drop millions of packets per second. But with
NFVnice, the packet drop rate is dramatically lower (near zero), an indication of
effective avoidance of wasted work and proper CPU allocation.

We also gather perf-scheduler statistics for the average scheduling delay and run-
time of each of the NFs. From Table 5.2, we can see that i) with NFVnice the
run-time for each NF is apportioned in a cost-proportional manner (NF1 being least
and NF3 being most), unlike the NORMAL scheduler that seeks to provide equal
allocations independent of the packet processing costs. ii) the average scheduling
delay with NFVnice for the NFs (that is the time taken to begin execution once
the NF is ready) is lower for the NFs with higher processing time (which is exactly
what is desired, to avoid making a complex NF wait to process packets, and thus
avoiding unnecessary packet loss). Again this is better than the behaviour of the
default NORMAL or RR schedulers 22 .

Figure 5.7: Different NF chains (Chain-1 and Chain-2, of length three), using shared
instances for NF1 and NF4.

22Even though, for this experiment, RR(100ms) performs as well as NFVnice, it performs very
poorly with variable per-packet processing costs, as seen in 5.4.4.1 and for chains with heterogeneous
computation costs, as in 5.4.4.2 scenarios.
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Figure 5.8: Multi-core chains: Performance of NFVnice for two different service
chains of 3 NFs (each NF pinned to a different core), as shown in Fig. 5.7.

Table 5.4: Throughput, CPU utilization and wasted work in a chain of 3 NFs (each
NF pinned to a different core) with different NF computation costs

Default NFVNice

Svc.Rate
(pps)

Drop
Rate
(pps)

CPU
Util.%

Svc.Rate
(pps)

Drop
Rate
(pps)

CPU
Util.%

NF1
(∼270cycles)

Chain1 3.26M
2.86M 78.6% ±0.4

6.498M
0 82.1% ±0.5Chain2 3.26M 0.583M

Aggregate 6.522M 7.08M

NF2
(∼120cycles)

Chain1 3.26M
∼0 52.8% ±1.2

6.498M
∼0 58% ±0.7Chain2 - -

Aggregate 3.26M 6.498M

NF3
(∼4500cycles)

Chain1 -
2.68M 100% ±0

-
<100 100% ±0Chain2 0.582M 0.582M

Aggregate 0.582M 0.582M

NF4
(∼300cycles)

Chain1 3.26M
0 60% ±0.7

6.498M
0 84% ±0.7Chain2 0.582M 0.582M

Aggregate 3.842M 7.08M

5.4.3.2 Multi-core Scalability

We next demonstrate the benefit of NFVnice with the NFs in a chain across cores,
with an NF being pinned to a separate, dedicated core for that NF. We use these ex-
periments to demonstrate the benefits of NFVnice, namely: a) avoiding wasted work
through backpressure; and b) judicious resource (CPU cycles) utilization through
scheduling. When NFs are pinned to separate cores, there is no specific role/contri-
bution for the vanilla OS schedulers, and for such an experiment we use the default
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scheduler (NORMAL).

First, we consider the chain of 3 NFs, NF1 (Low, 550 cycles), NF2 (Medium,
2200 cycles) and NF3 (High, 4500 CPU cycles). Compared to the default scheduler
(NORMAL), NFVnice plays a key role in avoiding the wasted work and efficiently
utilizing CPU cycles. Table 5.3 shows that NFVnice’s CPU utilization by NF1 and
NF2 on their cores is dramatically reduced, going down from 100% to 1̃1% and
64% respectively, while maintaining the aggregate throughput (0.6 Mpps). This is
primarily because of backpressure ensuring that the upstream NFs only process the
correct amount of packets that the downstream NFs can consume. Excess packets
coming into the chain are dropped at the beginning of the chain. When we use only
the default NORMAL scheduler by itself, NF1 and NF2 use 100% of the CPU to
process a huge number of packets (the ‘service rate’ in the Table 5.3), only to be
discarded at the downstream NF3.

We now consider two different service chains using 4 cores in the system. Chain-1
has three NFs: NF1 (270 cycles), NF2 (120 cycles) and NF4 (300 cycles) running
on 3 different cores. Chain-2 comprises NF1, NF3(4500 cycles) and NF4. The
same instances of NF1 and NF4 are part of both chain-1 and chain-2 as shown in
Figure 5.7. Moongen generates 64-byte packets at line rate, equally splitting them
between two flows that are assigned to chain-1 and chain-2. Table 5.4 shows that in
the Default case (NORMAL scheduler), NF1 processes almost an equal number of
packets for chain-1 and chain-2. However, for chain-2, the downstream NF3 discards
a majority of the packets processed by NF1. This results not only in wasted work,
but it also adversely impacts the throughput of chain-1. On the other hand, with
NFVnice, backpressure has the upstream NF1 process only the appropriate number
of packets of chain-2 (which has its bottleneck at the downstream NF, NF3). This
frees up the upstream NF1 to use the remaining processing cycles to process packets
from chain-1. NFVnice improves the throughput of chain-1 by factor of 2. At the
same time, it maintains the throughput of chain-2 at its bottleneck (NF3) rate of
0.6Mpps. Overall, NFVnice not only avoids wasted work, but judiciously allocates
CPU resources (at upstream NFs) proportionate to the chain’s bottleneck resource
capacity as shown in the Figure 5.8.

5.4.4 Salient Features of NFVnice

5.4.4.1 Variable NF packet processing cost

We now evaluate the resilience of NFVnice to not only heterogeneity across NFs,
but also variable packet processing costs within an NF. We use the same three-NF
service chain used in 5.4.3.1, but modify their processing costs. Packets of the same
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Figure 5.9: Performance of NFVnice in a service chain of 3 NFs with different com-
putation costs and varying per packet processing costs.

flow have varying processing costs of 120, 270 or 550 cycles at each of the NFs.
Packets are classified as having one of these 3 processing costs at each of the NFs,
thus yielding 9 different variants for the total processing cost of a packet across the
3 -NF service chain. Figure 5.9 shows the throughput for different schedulers. With
the Default scheduler, the throughput achieved differs considerably compared to the
case with fixed per-packet processing costs as seen in Figure 5.6. For the Default
scheduler, the throughput degrades considerably for the vanilla coarse time-slice
schedulers (BATCH and RR(100ms)), while the NORMAL and RR(1ms) sched-
ulers achieve relatively higher throughputs. When examining the throughput with
only the CPU weight assignment, CGroup, we see improvement with the BATCH
scheduler, but not as much with the NORMAL scheduler. This is because the vari-
ation in per-packet processing cost of NFs result in an inaccurate estimate of the
NF’s packet-processing cost and thus an inappropriate weight assignment and CPU
share allocation. This inaccuracy also causes NFVnice (which combines CGroup and
backpressure) to experience a marginal degradation in throughput for the differ-
ent schedulers. Backpressure alone (the Only BKPR case), which does not adjust
the CPU shares based on this inaccurate estimate is more resilient to the packet-
processing cost variation and achieves the best (and almost the same) throughput
across all the schedulers. NFVnice gains this benefit of backpressure, and therefore,
in all cases NFVnice’s throughput is superior to the vanilla schedulers. We could
mitigate the impact of variable packet processing costs by profiling NFs more pre-
cisely and frequently, and averaging the processing over a larger window of packets.
However, we realize that this can be expensive, consuming considerable CPU cycles
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Figure 5.10: Throughput for varying combinations of 3 NF service chain with Het-
erogeneous computation costs

itself. This is where NFVnice’s use of backpressure helps overcome the penalty from
the variability, getting better throughput and reduced packet loss compared to the
default schedulers.

5.4.4.2 Service Chain Heterogeneity

We next consider a three NF chain, but vary the chain configuration—(Low,
Medium, High);(High, Medium, Low); and so on for a total 6 cases—so that the
location of the bottleneck NF in the chain changes in each case. Results in Fig-
ure 5.10 show significant variance in the behaviour of the vanilla kernel schedulers.
NORMAL and BATCH perform similar to each other in most cases, except for the
small differences for the reasons described earlier in Section 3.2. We also looked at
RR with time slices of 1ms and 100ms, and their performance is vastly different.
For the small time-slice, performance is better when the bottleneck NF is upstream,
while RR with a larger time-slice performs better when the bottleneck NF is down-
stream. This is primarily due to wasted work and inefficient CPU allotment to the
contending NFs. However, with NFVnice, in almost every case, we can see consid-
erable improvements in throughput, for all the schedulers. NFVnice minimizes the
wasted cycles independent of the OS scheduler’s operational time-slice.

Impact of RR’s Time Slices with NFV: Consider the chain configurations
“High-Med-Low” and “Med-High-Low” in Figure 5.10. RR(100 ms time slice) per-
forms very poorly, with very low throughput < 40K pps. This is due to the ‘Fast-
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Figure 5.11: Throughput (Mpps) with varying workload mix, random initial NF for
each flow in a 3 NF service chain (homogeneous computation costs)

producer, slow-consumer’ situation [100], making the NF with “High” computes
hog the CPU resource. Now, in the default RR scheduler, the packets processed by
this NF would be dequeued by the Tx threads but will be subsequently dropped,
as the next NF in the chain does not get an adequate share of the CPU to process
these packets. The upstream NF that is hogging the CPU has to finish its time
slice and the OS scheduler then causes a involuntary context switch for this “High”
NF. However, with NFVnice, the queue buildup results in generating a backpres-
sure signal across the chain, forcing the upstream NF to be evicted ( i.e., triggering
a voluntary context switch) from the CPU as soon as the downstream NFs buffer
levels exceed the high watermark threshold. The upstream NF will not execute till
the downstream NF gets to consume and process its receive buffers. Thus, NFVnice
is able to enforce judicious access to the CPU among the competing NFs of a ser-
vice chain. We see in every case in Figure 5.10, NFVnice’s throughput is superior
to the vanilla scheduler, emphasizing the point we make in this paper: NFVnice’s
design can support a number of different kernel schedulers, effectively support het-
erogeneous service chains and still provide superior performance (throughput, packet
loss).

5.4.4.3 Workload Heterogeneity

We next use 3 homogeneous NF’s with the same compute cost, but vary the nature
of the incoming packet flows so that the three NFs are traversed in a different order
for each flow. We increase the number of flows (each with equal rate) arriving
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Figure 5.12: Benefit of Backpressure with mix of responsive and non-responsive
flows, 3 NF chain, heterogeneous computation costs

from 1 to 6, as we go from Type 1 to Type 6, with each flow going through all
3 NFs in a random order. Thus, the bottleneck for each flow is different. Figure
5.11, shows that the native schedulers (first four bars) perform poorly, with degraded
throughput as soon as we go to two or more flows, because of the different bottleneck
NFs. However, NFVnice performs uniformly better in every case, and is almost
independent of where the bottlenecks are for the multiple flows. Moreover, NFVnice
provides a substantial improvement and robustness to varying loads and bottlenecks
even across all the schedulers (NORMAL, BATCH, RR with 1ms or 100 ms slice.)

5.4.4.4 Performance isolation

It is common to observe that when there are responsive (TCP) flows that share
resources with non-responsive (UDP) flows, there can be a substantial degradation
of TCP performance, as the congestion avoidance algorithms are triggered causing
it to back-off. This impact is exacerbated in a software-based environment because
resources are wasted by the non-responsive UDP flows that see a downstream bot-
tleneck, resulting in packets being dropped at that downstream NF. These wasted
resources result in less capacity being available for TCP. Because of the per-flow
backpressure in NFVnice, we are able to substantially correct this undesirable situ-
ation and protect TCP’s throughput even in the presence of non-responsive UDP.

In this experiment, we generate TCP and UDP flows with Iperf3. One TCP flow
goes through only NF1 (Low cost) and NF2 (Medium cost) on a shared core. 10 UDP
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Figure 5.13: Improvement in Throughput with NFs performing Asynchronous I/O
writes withNFVnice

flows share NF1 and NF2 with the TCP flow, but also go through an additional NF3
(High cost, on a separate core) which is the bottleneck for the UDP flows - limiting
their total rate to 280 Mbps.

We first start the 1 TCP flow. After 15 seconds, 10 UDP flows start, but stop
at 40 seconds. As soon as the UDP flows interfere with the TCP flow, there is
substantial packet loss without NFVnice, because NF1 and NF2 see contention from
a large amount of UDP packets arriving into the system, getting processed and being
thrown away at the queue for NF3. The throughput for the TCP flow craters from
nearly 4 Gbps to just around 10-30 Mbps (note log scale), while the total UDP
rate essentially keeps at the bottleneck NF3’s capacity of 280 Mbps. With NFVnice,
benefiting from per-flow backpressure, the TCP flow sees much less impact (dropping
from 4 Gbps to about 3.3 Gbps), adjusting to utilize the remaining capacity at NF1
and NF2. This is primarily due to NFVnice’s ability to perform selective early
discard of the UDP packets because of the backpressure. Otherwise we would have
wasted CPU cycles at NF1 and NF2, depriving the TCP flow of the CPU. Note
that the UDP flows’ rate is maintained at the bottleneck rate of 280 Mbps as shown
in Figure 5.12 (UDP lines are one on top of the other). Thus, NFVnice ensures
that non-responsive flows (UDP) do not unnecessarily steal the CPU resources from
other responsive (TCP) flows in an NFV environment.
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5.4.4.5 Efficient I/O handling by NFVnice

It is important for NFs to be able to perform I/O required by the packet of a flow,
while efficiently continuing to process other flows (e.g., packet monitors, proxies,
etc.). Using Moongen we send 2 flows at line rate. Both the flows share the same
upstream NFs, but only one of the flows performs I/O i.e., logs the packets to the
disk using NFVnice’s I/O library. Figure 5.13 compares the aggregate throughput
achieved with and without NFVnice, using the BATCH scheduler in the kernel. We
vary the packet size. NFVnice maintains a higher throughput consistently, even for
small packet sizes. Moreover, NFVnice maintains progress on the second flow while
I/O is being performed for packets of the first flow, thus providing better isolation.

5.4.4.6 Dynamic CPU Tuning and fairness

Dynamic CPU tuning: NFVnice dynamically adjusts the CPU allocations based
on the packet processing cost and arrival rate for each NF. Two NFs initially with
different computation costs (ratio 1:3) run on the same core, with MoonGen trans-
mitting a flow each to the two NFs at the same rate. To demonstrate adaptation,
we have the computation cost of NF1 temporarily increase 3 times(to the same level
as NF2) during the 31 sec. to 60 sec. interval.

Figure 5.14a has the default NORMAL scheduler evenly allocating the CPU be-
tween NF1 and NF2 regardless of their computation cost throughout. On the other
hand, NFVnice allocates NF2 three times the CPU as NF1 initially. At t=30s,
NFVnice allocates each NF half of the CPU. And at t=60s, we go back to the orig-
inal allocation. We observed that the throughput for the two flows (not shown) is
equal throughout, indicating the capability of NFVnice to dynamically provide a fair
allocation of resources factoring in the heterogeneity of the NF CPU compute cost.

Fairness measure: We evaluate the fairness in throughput as we increase the
diversity of computation for each of the NFs for default CFS scheduler and NFVnice.
We vary the number of NFs sharing the core. Each NF has the same packet arrival
rate, but different computation cost. At diversity level 1, we start with a single flow
(uses NF1, compute cost 1). With a diversity level of two, we have 2 flows, flow 1
uses NF1 (compute cost 1), flow 2 uses NF2 (compute cost 2). At a diversity level of
6, there are 6 NFs, with the ratio of computation costs of 1:2:5:20:40:60, and one flow
each going to the corresponding NF. At diversity level 6, the NORMAL scheduler
allocates 16.6% of the CPU to each of the NFs, being unaware of the computation
cost of each NF. Thus, the throughput for flow 1 is 1.02 Mpps, while flow 6 is only
0.07 Mpps. With NFVnice, the CPU allocated to the lightweight NF is 1%, while the
heavyweight NF gets 46%, and all the flows achieve nearly equal throughput 5.14c).
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(a) Effect of Dynamic CPU Weight Updates

(b) Measure of Fairness

(c) Effect of rate-cost proportional fairness on CPU Utilization and Throughput

Figure 5.14: Adaptation to Dynamic Load and Fairness measure of NFVnice com-
pared with the NORMAL scheduler
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Figure 5.15: Performance of NFVnice for different NF service chain lengths.

Using Jain’s fairness index [101], we show that the vanilla scheduler is dramatically
unfair (going down to 0.62) while NFVnice consistently achieves fair throughout
(Jain’s fairness index of 1.0) as shown in figure 5.14b).

5.4.4.7 Supporting longer NF chains

We now see how well NFVnice can support longer NF service chains. We choose
three different NFs, as in 5.4.3, and increase the chain length from 1 NF up to a
chain of 10 NFs, including one of the 3 NFs each time. We examine two cases: (i) all
the NFs of the chain are on a single core (denoted by SC); and (ii) three cores are
used, and as the chain length is increased, the additional NF is placed on the next
core in round-robin fashion (represented by MC). Results are shown in Figure 5.15.
For the single core, NFVnice achieves higher throughput than the Default scheduler
for longer chains, with the greater improvements achieved for chain lengths of 3-6.
As the chains get longer (>7 NFs sharing the same core), the improvement with
NFVnice is not as high. For the multiple core case, NFVnice improves throughput
substantially, especially as more NFs are multiplexed on a care (e.g., chain lengths >
4), compared to the Default scheduler. Of course, the improvement with NFVnice
will depend on the type of NFs and their computation costs, for individual use-
cases.
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5.5 Conclusion

As the use of highly efficient user-space network I/O frameworks such as DPDK
becomes more prevalent, there is going to be a growing need to mediate application-
level performance requirements across the user-kernel boundary. OS-based sched-
ulers lack the information needed to provide higher level goals for packet processing,
such as rate proportional fairness that needs to account for both NF processing cost
and arrival rate. By carefully tuning scheduler weights and applying backpressure
to efficiently shed load early in the the NFV service chain, NFVnice provides sub-
stantial improvements in throughput and drop rate and dramatically reduces wasted
work. This allows the NFV platform to gracefully handle overload scenarios while
maintaining efficiency and fairness.

Our implementation of NFVnice demonstrates how an NFV framework can ef-
ficiently tune the OS scheduler and harmoniously integrate backpressure to meet
its performance goals. Our results show that selective backpressure leads to more
efficient allocation of resources for NF service chains within or across cores, and
scheduler weights can be used to provide rate proportional fairness, regardless of the
scheduler being used.



Chapter6
Future Prospects

In this chapter we consider and present the future prospects of userspace NF
scheduling mechanisms proposed in NFVnice, in the view of alternative NFV
platforms and technology advancements.
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6.1 Applicability of NFVnice in other NFV Platforms

6.1.1 ClickOS

Scheduling of click elements in ClickOS relies on MiniOS, which has a single address
space, and runs a co-operative scheduler [47]. Thus network elements need to volun-
tarily relinquish CPU to allow the other runnable network elements to be scheduled.
Also, the packet processing is performed in burst mode, where a batch of packet are
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processed at a time by distinct network functions. Backpressure mechanism read-
ily fits in this model and can significantly benefit in reducing the wasted-work and
optimizing the packet processing across NF chains.

6.1.2 NetBricks

NetBricks employs DPDK run-to-completion model where a packet upon arrival is
processed by chain of NFs, (i.e., all NFs process the packet atomically within a single
processing context) before transmitting out the packet. As there is no distinction
between processing by an NF or distinct NFs within a chain, cgroups or backpressure
mechanisms cannot be directly applied. However, when multiple such NF chains are
deployed, cgroups can be leveraged to provide efficient CPU allocation to all the
contending NF chains, to ensure fair and proportional allocation of CPU.

6.2 Current Limitations and Prospects of Extensions

Here, we list the current limitations of NFVnice and briefly describe the means to
improve and overcome these shortcomings.

6.2.1 Cross-Node Backpressure

The backpressure signaling is restricted to chains withing a single NFV node man-
aged by single VNFM. When the NF chain spans multiple nodes, each VNFM has
visibility only for the subset of NFs that run on that particular node, hence can
apply and enforce backpressure only for the part of the chain that is deployed on
each node. However, enabling cross-node backpressure is non-trivial for the following
reasons:

• To ensure backpressure across nodes, the prerequisite is to extend the cross-node
chain-wide visibility to each of the involved VNFMs.

• Next, we need some explicit notification mechanism (out-of-band) to distinctly
distinguish and identify the NF chains across all the VNFMs.

• In addition, the transmission delay (that is usually higher order than local packet
processing) also needs to be accounted and profiled for distinct chains, without
which the system can result in significant performance degradation.

Nonetheless, the system can be enhanced to dynamically track per-chain, per-node
communication latency and by utilizing simple/customized notification mechanisms
like Internet Control Message Protocol (ICMP) source quench across VNFM cross-
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node backpressure can be realized.

6.2.2 Accounting Delay Constraints

NFVnice provides a scalable, high performance NFV platform by allowing to effi-
ciently multiplex and schedule the NFs. However, the consequence of multiplexing
multiple NFs on a same core is the increased per-packet processing delay. While the
overall processing delay from NF perspective is bound by the scheduling sequence
and quantum of scheduled time for each of the contending NF; these parameters
alone are not sufficient to determine the end-to-end delay experienced by per-packet.
This measurement requires chain-aware delay tracking either at the per-packet level
or at the aggregate per-flow level. Currently, there is no mechanism to track the
delay.

NFVnice can be easily enhanced to measure the packet processing delay at each
sequence of NFs in the chain and accordingly adapt scheduling decisions and apply
the polices to better suit the delay constraints of distinct flows. For example, in the
simple case, the flows that have exceed the delay constraints can be notified to VNFM
so that the a) flows can be signaled to backpressure in order to inhibit any further
processing of the packets of those flows to ensure early drop without wasting of any
extra CPU resources; or b) to re-route flows through alternative less-congested NFIs.
Also, as discussed earlier, enhancement to account delay for chains spanning multiple
nodes can also be achieved, provided the cross-node communication protocol is setup.

6.3 Prospects of NFVnice with other advancements

6.3.1 Micro services

Microservices is a software development/architectural pattern that structures an
application as a collection of loosely coupled services [102]. Microservices enable
modular, distributed software components that can be independently scaled and
deployed to provide a service. This architecture has garnered lot of attention in
cloud based services, especially in the Telecommunications; the likes of AT&T, BT,
CenturyLink, and Telefonica have publicly embraced the move to a microservices
architecture in the Telecommunications cloud23 [103,104].

However, Microservices account to added latency and performance degradation
due to increased modular communication and state transfers [105]. In addition,

23AT&T highlighted on the role of microservices in their goal to virtualize 75% of their network
by 2020; BT announced that containers, a form of microservices, will be used to build their NFVI.



Future Prospects 72

Microservices readily yield to large chain of modular services to realize different
network services. Hence, addressing chain-wide performance is pivotal. We can
employ NFVnice (selective backpressure and cgroup weight settings) to account for
chain-wide characteristics and also to efficiently multiplex and schedule these Mi-
croservices within a node, and avoid any wasted work. The effect will be more
pronounced in containing the wasted work across the components of micro services.
Also, the scheduler weights (cgroup) can be used to provide rate proportional fair-
ness, without worrying about the choice of the underlying kernel scheduler used in
scheduling the microservices. Further, to better suit the Microservices architecture,
the cross-node selective backpressure signaling and ECN for end-to-end rate control
are necessary.

6.3.2 UniKernels

In stark contrast to Microservices, Unikernels are specialised, single-address-space
machine images that bundle just the necessary library operating systems. Unikernels
offer more lean images, that are quick to boot, more secure and optimized for spe-
cific services. This approach along the lines of containers is gaining more Industry
attention, especially in the NFV [106].

Owing to lean image and quick boot, Unikernels readily benefit on-demand dy-
namic provisioning and large scale deployment scenarios. However, the downside is
the burden it places on the cloud orchestration layers because of the need to schedule
many more instances with greater churn [107]. Though, NFVnice does not readily
fit for this architecture, the rate-cost proportional scheduling principle of NFVnice
can be leveraged in hypervisors (on which the unikernel instances run) to account
for fair and judicious CPU allocation to all the active instances.

6.3.3 Enhanced Disk I/O Management

Storage Performance Development Kit (SPDK)24 provides extremely high perfor-
mance I/O processing (millions of I/Os per second) at user level by using the poll-
mode drivers. Several NFs require frequent disk access to read/write/update packet
information for flows e.g., packet-loggers that typically log all the packet headers
and sometimes the entire packets of specific flows to disk, caching proxy and file
servers retrieve and update cached (in-memory) content and files from disks. Hence,
providing an integrated NFV framework that utilizes SPDK alongside DPDK to
provide more efficient framework for NFs is more desirable.

24For more details refer: https://software.intel.com/en-us/articles/introduction-to-the-storage-
performance-development-kit-spdk.
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7.1 Introduction

Network Functions (NFs) are becoming ubiquitous in today’s networks. NFs or
traditionally the Middleboxes (MBs) or the Physical Network Functions (PNFs)
have typically been constructed from purpose-built hardware, customized to perform
specific tasks. In traditional networks, once the network of MBs is setup, it cannot
alter its structure (e.g., topology is hardwired) or functionality (e.g., fixed set of
services, cannot morph from one service to another).Network Function Virtualization
(NFV) has evolved the MB architectures to virtual or software-based services on top
of commercial off-the-shelf (COTS) hardware, it provides the agility and increased
flexibility in the network [108].

7.2 Problem Description

On one hand, NFV promises to increase flexibility and achieve efficiency in using
network resources, since both the structure and the functionality of NFV nodes can
be adjusted dynamically in response to service demand. But, on the other, it poses
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several orchestration, management problems and deployment concerns (outlined in
earlier section §1.1.1), especially in determining when and where to place the NFs,
how to steer the traffic through these NFs, how to distribute the load across multiple
instances of NFs to improve network resource utilization efficiency, QoS, etc. Also,
Service Function Chaining (SFC), which determines the exact sequence of NFV-
based middlebox services a flow has to pass through, is gaining momentum as a
necessary network process in Communication Service Provider (CSP) networks must
be accounted.

In order to exploit the full potential of NFV and to facilitate SFC, we posit the
need for the following:

i) VNFIs have to be dynamically placed, replicated, instantiated and terminated
or consolidated,

ii) new incoming flows have to be dynamically steered to the least-expensive NFI
(i.e., in terms of current network and computation load), and

iii) active, existing flows have to be redirected (if and when needed) to
other instances of the same service in order to balance the load between the NFIs
of this service.

iv) flexible and efficient traffic steering mechanism that does not overbur-
den the switch TCAMs and enable to provide a topology independent Service
Function Chaining.

7.2.1 Need for NFV Resource Management and Orchestration
Framework

In order to address the aforementioned requirements, we introduce and make the case
for a resource management and orchestration framework that dynamically handles
NFIs and flow traffic, in order efficiently instantiate and place the VNFIs, steer the
traffic through the active VNFIs and to load-balance i) the network load in links, and
computation load in NFIs. In designing such a resource management framework, we
consider all potential options, that is, from centralized, software-based control plane
approaches to decentralized, hardware-oriented data plane approaches.

Centralized or Distributed Framework? We find that a centralized controller
can become the bottleneck when assigned with the task of making real-time decisions
on service placement, instantiation, termination and flow steering/redirection. On
the other hand, a purely distributed approach suffers from increased latency and
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overhead in order to exchange information between decision-making nodes, a process
that also raises stability issues.

We argue for the need of a hybrid solution, where the (logically) centralised SDN
controller performs lightweight tasks, related to the NFV environment coordination
and flow setting-up of state; while the distributed network of NFIs makes more fre-
quent decisions, that impact flow latency. Despite the multiple SDN-NFV architec-
tures proposed in recent years (e.g., E2 [22], Stratos [109], Slick [110], SDNFV [111]),
the problem of resource allocation and management in such environments has not
received as much attention.

7.2.2 SFC Management and Flow Steering

Figure 7.1: SFC Use case for two different traffic classes

Consider the Figure 7.1 that illustrates two high level policies i.e., i) for the class
of video traffic: the service function chain demands the traffic to traverse through
Firewall and Video-optimizer service functions and ii) for the regular web traffic:
Firewall and the value added services functions like anti-virus and parental control
services are desired. In such cases, once the flows are classified, the flows need to
be steered along two different paths to go through the respective policy desired
specific service functions. SDN provides the flexibility in setting different flow rules
(coarse or fine grained) across the switches and enables to steer flows accordingly.
With NFV, the service functions can be provisioned to meet the traffic demands
and thus many instances of network functions can be instantiated at will to ensure
performance even at varying network loads.

Though, SDN and NFV provide richer support for more fine grained traffic steering
and demand instantiation of network functions; there are still several challenges in
realizing the dynamic SFC with traditional routing constructs.
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Problem statement for SFC [16] lists out the key issues in realizing dynamic SFC
with the traditional networks and illustrates the desired characteristics of dynamic
SFC with elastic network functions. Herein, we present the key issues and charac-
teristics most pertinent to realization of SFC.

a) Foremost is the topological and service function chain definition independence,
that aim towards defining the SFC in such a way that mapping of policies to the
desired service functions is independent of the topology and underlying network
routing mechanism. This decoupling ensures the service policies to be more generic
and easily deployable across different networks.
b) Second is the capability to re-classify and update the SFC, which enables to
change the course of traffic to traverse through different service types. This feature
is highly beneficial for providing additional security and value added services like
intrusion detection, deep packet inspection, and URL filtering.

In the section 2.3, we presented Network Service Header (NSH) [33], which is
targeted towards addressing the above concerns. We now outline and discuss on the
NSH problem space and why there is a need to redress the proposed NSH.

7.2.3 Where NSH falls short?

Foremost, NSH is a SFC encapsulation, which is transport agnostic and requires
an outer transport specific encapsulation to forward the NSH packet across the
network. Control plane is responsible to manage this encapsulation. This however
is customary function of a control plane even in the absence of NSH.

In addition, there are additional requirements on control plane to realize a NSH
based SFC architecture. Some of the control plane requirements are partially de-
scribed in SFC Architecture [41]. SFC control plane is responsible for constructing
Service Function Paths (SFPs), translating SFCs to forwarding paths, and propagat-
ing path information to participating nodes to achieve requisite forwarding behavior
to construct the service overlay. i.e., It is up to the control plane to map the high
level policies based on the network topology and service function instances in the
network to specific Service Path Identifiers (management of SFPs) and in updating
the SFFs about the SFP mapping, that can change over time with addition of new
service function or deletion of existing services and instances.
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In this Chapter, we present the literature survey on the state-of-the-art work in
the prospect of a) load balancing the traffic across network links and NFs and b)
flow steering approaches to realize SFC.
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8.1 Network Load Balancing

Several works [8, 37, 112–118] have distinctly addressed the service function chain-
ing, flow steering, NF placement, orchestration, and load balancing related aspects.
Here we focus on and discuss some of the most-related state-of-the-arts works that
specifically account for VNFI load balancing and SFC.

Figure 8.1 outlines the space of congestion control and load-balancing schemes
proposed over past decade. We briefly discuss the most pertinent related works25.

25The highlighted (blue) works in the Figure 8.1 are the only specific works in the NFV context,
while the rest correspond to general traffic based congestion control and load-balancing.
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8.1.1 Centralized Solutions

In the case of purely centralized solutions, the complexity involved in the decision
making for service instantiation and flow redirection (NP-hard in many cases) results
in a much coarser granularity of decision making. Hence, the solutions can only be
based on heuristic-based approaches [117,119], or act on a per-flow basis [120].

SIMPLE [23] primarily addresses the SDN based traffic steering approach that
tries to optimize on the total forwarding rules at the switches. It relies on an offline
Integer Linear Programming (ILP) solver to optimize the number of flow rules on the
switches and an online Linear Programming (LP) solver for load balancing. However,
SIMPLE [23] assumes that the NFIs and middleboxes are statically placed and any
dynamic instantiation of NFIs requires the re-run of the expensive offline ILP solver.

Slick [110] provides a programming model abstraction for service chaining that
supports heuristic based function placement and flow steering schemes. Slick [110]
also supports dynamic scaling of NFIs. However, it does not redirect the existing
flows from the overloaded instances, but only steers the new flows to the scaled-out
instances.

By and large, related works in this area have targeted only newly-arriving flows,
while works such as Split/Merge [72], and opennf [121] that address flow-redirection,
are inefficient since they need to pause the existing flows for transferring VNFIs and
forwarding states.

8.1.2 Distributed Solutions

On the other hand, purely distributed approaches for load balancing (e.g.,
TeXCP [122], CONGA [123]) face a different set of issues, such as:

1) high overhead and latency: a large amount of information has to be exchanged
among decision making nodes to synchronise their view of network state, with the
consequent latency as the network scales;

2) complexity: achieving a stable synchronised view at every decision making node
is complex; and

3) inefficiency and stability: since each node makes decisions based on its lo-
cal view of the network state, packet loss, frequent rerouting, non-optimal load-
balancing and transient loops are likely.

In [124], authors employ the concept of shadow-prices to trade-off performance, QoS,
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and complexity, but they limit their scope only to the flow steering problem in SFC.

8.1.3 Network Function Load Balancing through Flow Redirection

OpenNF [121] presents a control plane for managing both network forwarding state
and internal NFI state for migrating flows, where migration events are generated by
NFIs and buffered at the controller for the interval of state migration.

Stratos [109] proposes an orchestration framework that employs a rack-aware NFIs
placement strategy with horizontal scaling and migration of NFIs. The load/flow
distributions are computed by an ILP formulation where only new flows are steered
to the new instances while the existing ones continue to get processed at the same
NFI, without alleviating the load on the already congested instances.

Lastly, E2 [22] is a NFV scheduling framework that supports affinity based place-
ment and dynamic scaling of NFIs. The framework tries to minimize the traffic
across switches while balancing the traffic across NFIs, but it avoids flow redirec-
tions across hardware switches. The VNFI instantiation decisions are taken locally
and independently at each of the E2 data plane element and hence the scope of
load-balancing is also local and restricted to load characteristics of individual VNFI
and load-balancing decisions do not account for overall network load.

8.2 Flow Steering in Service Function Chains

Over the past few years, several works [22, 23, 25, 111, 118, 125–128] have proposed
solutions for realizing SFC. We briefly discuss a few that employ network over-
lay (MPLS, VLAN, VxLAN), underlay (overloading the existing L2/L3/L4 header
fields), and alternate header based approaches.

8.2.1 SFC with Network Overlay and Underlay

Shadow-MACs [125] and OpenSCaaS [126] emphasize on utilizing the L2 address
fields —media access control (MAC) address to represent the path identifiers. [125]
utilizes the destination MAC addresses as opaque forwarding labels while [126] em-
ploys the source MAC addresses as a forwarding label to setup the service chain
ID (SC-ID). In both cases, the SDN controller has the responsibility of managing
(defining and mapping) the SC-ID and setting up the appropriate L2 address to steer
traffic to the desired service instance. StEERING [25] also overloads the L2 address
fields, to steer packets to inline service functions. It relies on multiple forwarding
tables that require additional extension to the Openflow API. In addition, it requires
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all the service function instances in the network to be aware of the Ethernet address
of all the service functions in the network topology, which limit the flexibility and
scalability of elastic network functions.

These approaches provide efficient mechanism to steer the packets through the
service function chain by re-purposing the existing packet headers fields, however
they cannot support the exchange of meta-data and lack the ability to re-classify or
alter the course of service functions after initial classification and assignment of the
service function chain, thus inhibit the support for elastic network functions.

8.2.2 SFC with explicit tag and other alternatives

FlowTags [127] enable SFC by defining tag enhanced network functions, where the
network functions generate and consume the service tags, while switches forward the
packets based on the tags. SIMPLE [23] addresses efficient routing by constraining
the number of switch forwarding rules and load balancing the traffic across middle-
box instances and relies on the tag-based approach to tunnel packets across service
functions. The computation and optimization of service paths is done through the
mix of offline and online mixed integer linear programming, which results in con-
siderable amount of computation time complexity. These approaches can facilitate
re-classification and enable to alter the route through every service function, but
as with earlier approaches, information exchange and sharing of meta-data is not
possible. In addition these approaches need to account for additional complexity in
tag management and distribution.

[129] and [37] propose Information Centric Networking (ICN) based approach
of named services and named service instances for service chaining i.e., the rout-
ing based on service function names and service instance names respectively. The
network elements (routers and switches) take the responsibility of steering traffic to
the desired service function instance. Both rely on network overlay/underlay mech-
anisms to tunnel flows to service instances. Though, the approach in [129] results
in enormous reduction of switch rules, due to lack of fine grained control, it fails
to provide visibility and control over appropriate service instance selection for a
class of traffic, which is generally required for multi-tenancy, multi-subscriber policy
matching and cannot cater to optimal instance utilization.





Chapter9
Orchestration and Resource
Management Framework: DRENCH

Contents

9.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . 87
9.1.1 Desired Properties . . . . . . . . . . . . . . . . . . . . . 87
9.1.2 DRENCH Solution Overview . . . . . . . . . . . . . . . 88

9.2 DRENCH Components . . . . . . . . . . . . . . . . . . . . 88
9.2.1 Market Orchestrator . . . . . . . . . . . . . . . . . . . . 89
9.2.2 Flow Steering and Redirection . . . . . . . . . . . . . . . 92
9.2.3 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . 94

9.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 96
9.3.1 Control Plane: DRENCH Controller . . . . . . . . . . . 96
9.3.2 Data Plane: Openflow Switches and Network Functions . 97

9.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.4.1 DRENCH Parameter design and study of tradeoffs . . . . 98
9.4.2 Testbed: Simple controlled experiments . . . . . . . . . . 100
9.4.3 Large scale Evaluation: Data-Center Topology . . . . . . 102
9.4.4 Large scale Evaluation: ISP Topology . . . . . . . . . . . 104

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

In this Chapter, we propose a semi-DistRibutEd orchestration and resource man-
agement framework for NFV based service function CHaining (DRENCH). To the
best of our knowledge, DRENCH is the first work that tackles both NFI placement
and flow steering problems in arbitrary topologies. DRENCH provides a computa-
tionally feasible algorithmic resource management framework inspired by the prin-
ciples of market competition.



Orchestration and Resource Management Framework: DRENCH 86

DRENCH incorporates a traffic load-balancing algorithm that utilises dynamic
estimation of NFI loads with each NFV node independently directing flows to an
appropriate least-loaded service instance; DRENCH utilises a real-time service in-
stantiation capability and redirects existing flows as necessary; DRENCH is applica-
ble for an NFI based Service Function Chaining environment by using a centralised
SDN controller to disseminate information among the NFV nodes in the network.
DRENCH as a resource management framework can fit into most of the existing
architectures, albeit with some modifications.

We realize DRENCH in the context of SDN-NFV architectures by defining an
NFV-node market environment. In particular, an SDN controller acts as the market
orchestrator/regulator, assigning prices to NFIs which are indicative of their work-
load. At the same time, NFV nodes target the increase of their ‘income’. This means
that NFV nodes aim to host popular NFIs that result in higher prices. In more de-
tail, when the demand for a service increases (declines) the price of the service NFIs
rises (decreases) accordingly, which in turn may drive NFV nodes to instantiate
(consolidate the) NFIs of the corresponding service. In addition to NFIs instantia-
tion/consolidation, each NFV node is also responsible for taking flow steering and
redirection decisions.

In DRENCH the market orchestrator is setting the control parameters of i) min-
imum NFI price and ii) off path penalty factor. The minimum NFI price defines a
threshold for consolidating NFIs whose prices are below the minimum one. Since
NFIs’ prices are representative of their workload, the minimum NFI price indicates
the threshold below which an NFI is considered being under-utilised, thereby con-
trolling the number of active NFIs. On the other hand, the off path penalty factor
controls the path-stretch of a flow in the context of SFC, thereby penalising the
choice of NFIs that force the flow to deviate from its shortest path towards the
destination. Considering Flow Completion Time (FCT) as an index of flow perfor-
mance, DRENCH minimum NFI price (off path penalty factor) defines the tradeoff
between under-utilised instances (flow path stretch) and FCT.

The main technical contributions of this work involve:

• A feasible NFV management approach: in DRENCH resource management de-
cisions are taken locally by NFV nodes while the market orchestrator solves
lightweight problems, addressing a complex problem in a computationally fea-
sible way with respect to i) path-stretch, ii) number of active NFIs per service, iii)
load on each NFI and iv) flow completion time.

• A decoupled NFV resource management framework: in DRENCH, NFV nodes
do not have to be owned by the same entity, which thereby contributes to the
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incremental adaptation of NFV in arbitrary network topologies.

• Implementation and large scale evaluations: We prototyped DRENCH in Cloudlab
testbed and Mininet to demonstrate that DRENCH is immediately deployable in
an SDN environment. With Mininet, we compare DRENCH to a centralized ap-
proach Slick [110] on a 4K-Fat tree topology. Additionally, we compared DRENCH
in a simulation environment consisting of a Rocketfuel topology (87 switches) to
a custom centralized approach: SIMPLE [23] on top of a E2 SDN framework [22].
Our results show that DRENCH is robust to: i) asymmetries caused by dynam-
ics of arrival/departure of elastic flows with different service needs, and, ii) the
instantiation/removal/failure of service instances (see Section 9.4).

9.1 Design Overview

9.1.1 Desired Properties

DRENCH is an in-network, congestion-aware, load balancing algorithmic framework
that handles SFCs and dynamic NFIs in arbitrary network topologies. In designing
DRENCH, we focus on providing the following key properties:

Pt1 Efficiency: As an NFI placement mechanism, DRENCH should neither under-
utilise nor over-utilise the resources available in NFV nodes.

Pt2 Cost awareness: DRENCH should instantiate the minimum NFIs to meet
the requirements of the SFCs for the flows through the network at any point in
time, and balance the utilisation across the active NFIs.

Pt3 Fine-grained flow handling: DRENCH must meet each flows’ SFC func-
tional requirements, in terms of end-to-end latency and minimum throughput.

Pt4 Responsiveness: DRENCH should react to SFC traffic demand fluctuations,
especially when traffic is volatile and bursty [130], [131], for arbitrary network
topologies.

Pt5 Incremental deployability: DRENCH should require the minimum possible
modifications in terms of protocols and network infrastructure. It should also be
applicable to any of the existing SDN architectures [22, 111, 121] with minimal
changes. Furthermore, it should be possible to directly apply DRENCH to a
subset of available switches and of incoming traffic when necessary.
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Figure 9.1: DRENCH High-Level Operation

9.1.2 DRENCH Solution Overview

Our framework is designed to leverage the benefits of the centralised as well as the
distributed networking paradigms. We use the centralized approach, i.e., an
SDN controller, to perform tasks with less computation load, but those that need to
be carried out in a coordinated fashion across multiple nodes. These tasks include:
i) gather, compute and disseminate NFI load information periodically to all the
decision making entities; and ii) set up paths towards instances and egress nodes in
case they do not already exist. Additionally, the SDN controller is used to decide
which services are applicable to a flow (based on policies and/or flow characteristics).
This design choice reduces the complexity of the controller and also overcomes the
issues faced by a purely distributed approach, where the decision making entities
might not have up to date information, thereby impacting performance. On the
other hand, a distributed approach is used for decision making at individual NFV
nodes. Based on the information provided by the controller, each node indepen-
dently decides to i) steer flows towards the next required service; ii) redirect flows
to the least loaded instance; and iii) instantiate/terminate NFIs in order to adapt to
demand. The high-level operation of the proposed mechanism is shown in Fig. 9.1.

9.2 DRENCH Components

DRENCH consists of the following components:

• Market Orchestrator: It associates every NFI and link resource to a shadow
price (i.e., cost) produced by utilising global information available at the con-
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troller. The orchestrator regulates the market by allowing the existence of in-
stances above a certain minimum price.

• Flow Steering and Redirection: This component steers each flow through a
valid sequence of NFIs (according to its SFC) determined by the SDN controller.
Steering and redirection takes into account latency, NFI and link costs.

• NFI Instantiation/Consolidation: This component instantiates and consoli-
dates NFIs in a distributed way through the market competition between NFV
nodes.

Below, we describe each of these components in detail.

9.2.1 Market Orchestrator

DRENCH, as any market-based approach, requires the association of each network
resource (commodity), in terms of NFIs and link bandwidth, to an offered price,
which is imposed on a given set of incoming flows (demand) that utilise this re-
source. In particular, when the quantity of demanded resources equals the quantity
supplied for a set of prices, we refer to them as market-clearing prices. DRENCH
market-clearing prices should:
A1 ) be representative of each NFI’s workload,
A2 ) be derived in the minimum possible time,
A3 ) not require additional in-network signalling given the existence of an SDN
controller [123,132].
Every price derivation violating requirement (A2 ) and (A3 ) would be in stark con-
trast with DRENCH desired properties wrt responsiveness (Pt4 ) and incremental
deployability (Pt5 ), respectively.

DRENCH deploys a Market Orchestrator/Regulator component, which by simply
exploiting flow path information, already available at the SDN controller, efficiently
derives the market-clearing prices; complying to requirements (A1 )-(A3 ). Inspired
by [133], where the authors formulate a Network Utility Maximisation problem
(NUM) based on market principles to allocate bandwidth resources to a set of flows,
we extend their model to include NFI computational resources. We achieve this
by solving the Extended Network Utility Maximisation problem (ENUM) at the
Market Orchestrator as we describe next.

We denote the network topology by G = (V ,E ), of V switches and E links, where
a set of NFV nodes, H , is placed at a subset of switches H ⊆ V . Then, given a set
of NFIs executing a set of S services and a set of F flows, we associate each link,
∀e ∈ E , with a bandwidth capacity, be, and each NFI s at NFV node h with bh

s com-
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G Network topology
V Set of switches
E Set of links
H Set of NFV Nodes
S Set of services
Hs Set of NFV nodes executing service s
F Set of flows
x f ,x∗f Rate and optimal rate of flow f
U f (x f ) Utility function of flow f
be Bandwidth capacity of link e
ae, f Coefficient = 1, if flow f traverses link e
bh

s Computational resources of NFI s at h
ds Computational power Required by a NFI of s

for processing a single bit of traffic
dh

s, f Coefficient = ds if f is processed by NFI s at h
w f Weight of flow f
λ h

s Service cost of NFI s at NFV node h

λ , λ̄ Minimum and Maximum shadow prices,
defining the efficiency of an instance

pvi,v j Shortest path from switch vi to switch v j

µvi,v j Communication cost from switch vi to switch v j

Cvi,h(s) Communication and service cost from switch vi

to a NFI executing service s at NFV node h
|pvi,v j | Number of Hops from switch vi to switch v j

∆p f
vi,h Shortest path deviation overhead

ρ Off Path penalty factor
C f

vi,h(s) Estimated Cvi,h(s) cost of flow f including ρ

θrid Redirection threshold
Ph Profit of NFV h in terms of shadow prices
λ̃on, λ̃o f f , λ̃ On-/Off- path and expected competitive price

Table 9.1: DRENCH Notation Description
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putational resources, in order to form the ENUM problem that maximises the total
utility of the system. Similar to NUM, we associate each flow rate, x f ≥ 0, with a
utility that is a weighted logarithmic function, U f (x f ) =w f log(x f ), of weight w f , cap-
turing a decreasing marginal gain as the flow rate increases (i.e., rate changes at low
rate flows have a greater impact on their utility). In turn, we maximise the total sys-
tem utility, ∑

f∈F
U f (x f ), subject to link capacity constraints, ∑

f∈F
ae, f x f ≤ be, ∀e ∈ E ,

and computational resource constraints, ∑
f∈F

dh
s, f x f ≤ bh

s , ∀s ∈S ,∀h ∈H ; where ae, f

is a coefficient equal to 1 if flow f traverses link e and 0 otherwise, while dh
s, f equals

the computational power required by service s for processing a single bit of traffic,
ds, if f is executed at NFI s of NFV node h, and 0 otherwise. Parameters ae, f

and dh
s, f describe the path of each flow and therefore they are known to the SDN

controller which provides them to the Market Orchestrator.

Since the objective function is differentiable and strictly concave, while the fea-
sible region of the constraints is compact, the optimal rates x∗f ∀ f ∈F exist, are
unique, and can be found efficiently by Lagrangian methods. Based on [133], it can
be shown that the dual problem of the ENUM is:

maximise ∑
f∈F

w f log(∑
e∈E

µeae, f + ∑
h∈H

∑
s∈S

λ
h
s dh

s, f )

−∑
e∈E

µebe− ∑
h∈H

∑
s∈S

λ
h
s bh

s

subject to
µe ≥ 0, ∀e ∈ E ,

λ
h
s ≥ 0, ∀s ∈S ,∀h ∈H ,

(9.2.1)

where µe and λ h
s are the Lagrange multipliers of link e and service instance s at NFV

node h respectively. The Lagrange multipliers are also known as shadow prices, due
to their association to the optimal rates of each flow:

x∗f =
w f

∑
e∈E

µeae, f + ∑
h∈H

∑
s∈S

λ h
s dh

s, f
(9.2.2)

where weight w f is perceived as the budget that flow f is willing to pay for its rate,
while the denominator is the cost imposed to the flow in order to use the resources
along its path. In that sense, each Lagrange multiplier can be considered as the price
of a particular resource, leading us to the following definition about communication
and service cost.
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Definition 9.1 (Communication Cost) The communication cost between two
switches, vi,v j ∈ V , is the sum of on-path link shadow prices µvi,v j = ∑e∈pvi ,v j

µe,
where pvi,v j is the shortest path between switches vi and v j; while the service cost of
an instance s at NFV node h is the shadow price λ h

s .

Note that the service and communication costs are kept in the forwarding tables
of the NFIs, i.e., the decision making nodes, and are updated periodically by the
SDN controller after being estimated by the Market Orchestrator (see Fig. 9.1).

Shadow prices are indicative of the workload at a particular resource, complying
with (A1 ). In fact, from (9.2.2), we derive that the value of a shadow price, λ , defines
the maximum possible rate that flows using that resource can achieve, w f /λ .26 Based
on the maximum achievable flow rate we can define the efficiency of a NFI as a range
of shadow prices.

Definition 9.2 (NF Utilization) The Market Orchestrator determines the load
of a NFI by a shadow price range [λ , λ̄ ], where if a service cost, λ h

s , is less/more
than λ/λ̄ the NFI is considered under-/over-utilised, respectively.

Given the shadow price range [λ , λ̄ ] the Market Orchestrator tries to maintain the
minimum required number of instances per service type (Pt2 ) by: i) terminating
instances that are underutilised and ii) allowing for more instances for services whose
existing instances are over-utilised (see Section 9.2.3).

9.2.2 Flow Steering and Redirection

9.2.2.1 Flow Steering

Given a placement of NFIs and their respective shadow-prices, as determined by the
Market Orchestrator, DRENCH’s flow steering component is responsible for steering
each new incoming flow towards the chain of required services. The flow steering
component tries to route the flow through the chain that imposes the lowest possible
cost to the flow. Determining the optimal end-to-end path of a flow through the SFC
is a NP-complete problem [134]. DRENCH works on a hop-by-hop heuristic basis,
picking each time the best next-hop NFI choice, in an effort to achieve instantaneous
and adaptive steering decisions (Pt4 ).

26It follows that the shadow prices are positive when a resource is totally utilised and 0 otherwise.
To introduce a minimum workload to the resources that are not saturated, we add a set of dummy
flows into F when solving (9.2.1).
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We illustrate DRENCH’s flow steering component through the following example.
Assume that flow f arrives at the network requiring the execution of service s (or
service chain s1/s2/.../sm) before being delivered to destination v f . Let vi be the
switch that has to make a steering decision about f and Hs ⊆H be the set of
NFIs of service s. Then the combined communication and service s execution cost
at h ∈Hs is Cvi,h(s) = µvi,h +λ h

s . The flow steering component initially estimates the
shortest path deviation overhead applied by steering flow f to instance h in terms
of hops, i.e., ∆p f

vi,h = |pvi,h|+ |ph,v f |− |pvi,v f |, weighted by an off-path penalty factor
ρ. Therefore, the estimated cost applied to the flow for executing service s at NFI
of h is C f

vi,h(s) = Cvi,h(s)+ρ∆p f
vi,h. Then, vi selects the next service instance s of f

that minimises C f
vi,h(s):

h∗ = argmin
h∈Hs

C f
vi,h(s) (9.2.3)

In Eq. (9.2.3) the off-path penalty factor, ρ, dis-incentivises node vi from sending
flow f away from its shortest path towards v f . Eq. (9.2.3) applies on a hop-by-hop
basis, that is, it is calculated at each NFV node responsible for forwarding flow f
towards the next instance in its chain.

Lastly, upon making a steering decision, switch vi informs the SDN controller
that flow f is forwarded towards h∗ to execute service s. At the same time, the SDN
controller is setting up paths towards NFIs and/or egress nodes as necessary.

9.2.2.2 Flow Redirection of Stateless and Stateful flows

The cost of a service instance might change dramatically throughout the duration
of a flow, rendering previous flow steering decisions outdated. Therefore, redirection
of existing flows is necessary in order to keep the expenditure of existing flows at
low levels (Pt3 -Pt4 ) and avoid routing through overutilised instances (Pt1 ). We
realise flow redirection as follows: if the cost difference between two instances of
s at h and h′, as seen by switch vi, is bigger than a redirection threshold, θrid ,
Cvi,h(s)−Cvi,h′(s) > θrid , switch vi repeats the flow steering process for a portion of
flows that vi currently forwards to h. The redirection threshold is set to θrid = λ̄−λ .

Rerouting of stateful flows to dynamically instantiated services for improving load
balancing is usually complex and costly. For instance, solutions such as Split/Merge
[72], pause ongoing flows in order to transfer internal NF and forwarding states.
In DRENCH, we leverage the approach in Split/Merge [72], to pause ongoing flows
and transfer the internal state of the involved network functions. To identify service
instances, we make use of the Information Centric Networking (ICN) construct which
is proven to be beneficial in terms of providing flexible routing, and reducing the
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routing states at the switches [129].

9.2.3 Instantiation

In DRENCH, NFV nodes autonomously provide services in an effort to maximise
their profit, in terms of shadow prices (i.e., the cost to execute some service). In
particular, let Sh be the set of NFIs at some NFV node h, then the profit of h in
terms of shadow prices, λ h

s , can be estimated, as:

Ph = ∑
s∈Sh

λ
h
s (9.2.4)

DRENCH NFI instantiation/consolidation scheme defines how service demand and
NFI shadow prices affect the individual NFV node decisions to manage the number
of service instances. Through competitiveness, NFV nodes achieve responsiveness
to NF demand changes, while the market orchestrator ensures market efficiency, as
we explain next.

9.2.3.1 NFV Node Competitiveness

Let the shadow price of an NFI s′ at NFV node h′ be λ ′. We are interested in
estimating the competitive price of a potential NFI s at an NFV node h, h 6= h′, with
respect to λ ′.

Definition 9.3 (Shadow Price) The shadow price of NFI s is competitive in the
price of NFI s′ when the flow steering component has a preference, or is indifferent,
of steering new flows at s.

Then, let µ be the communication cost, between NFV node h′ and h that are
∆p hops away, and f be a new flow that is about to get steered at NFI s′. Then
according to DRENCH’s flow steering component, the minimum competitive price
at s for flow f , would be equal to λ̃o f f = [λ ′− µ −ρ∆p]+, where ρ is the off-path
penalty factor.27 The off-path penalty factor is taken into account as in the worst
case that flow f will have to traverse ∆p additional hops to reach s from s′. This
acts as a disincentive for a node to forward traffic to nodes that are far off from the
flow’s shortest path. On the other hand, in the best case, that flow f is forwarded
to NFV node h′ by NFV node h, meaning that s is already on the path of flow f and

27[·]+ denotes the projection onto nonnegative orthant.



95 9.2 DRENCH Components

additional hops are not required;28 the minimum competitive price at s for flow f is
λ̃on = λ ′+µ.

The expected competitive price of NFI s with respect to NFI s′ price λ ′ will be a
value between (λ̃o f f , λ̃on). Let y be the total amount of traffic with competitive price
λ̃on. Then y can be considered as the local information of NFI s′ demand at NFV h
that accounts for the utilization percentage ds′y/bh′

s′ . Here, ds′ is the computational
power required by the service of NFI s′ for processing a single bit of traffic and bh′

s′ is
the fixed computational resources that are allocated to NFI s′. Then the expected
competitive price is estimated as:

λ̃ = (ds′y/bh′
s′ )λ̃on +(1−ds′y/bh′

s′ )λ̃o f f (9.2.5)

9.2.3.2 NFI Instantiation

As long as a NFI shadow price, λ , executing a service at NFV node h, is lower than
the maximum target price, λ < λ̄ , this service is not considered over-utilised and an
instantiation of an additional NFI of the same service at h is prohibited (see also
Definition 9.2). On the other hand, if λ > λ̄ , the Market Orchestrator limits the
number of NFI that can be created by competing the NFI with service cost λ to
bλ/λ̄c. Therefore, given the set of allowed services for instantiation at each NFV
node h, h estimates the expected competitive prices of every NFI. Then moving
from the highest to the lowest competitive price, the NFV node instantiates the
service associated with the price λ̃ as long as i) it is expected that the instance will
not be under-utilised, λ̃ > λ , and ii) the Market Orchestrator maximum number of
instances allows it, respecting properties (Pt1 ), (Pt2 ), and (Pt4 ).

9.2.3.3 NFI Consolidation

If the price of an instance is below the minimum target shadow price, λ , the NFV
node consolidates this instance (Pt2). When there is a service availability require-
ment, the market orchestrator can hinder the consolidation of the last instance of
that service.

28In practice, it is not the NFV node that is aware of the forwarded traffic but the switch that
the NFV node is attached to.



Orchestration and Resource Management Framework: DRENCH 96

9.3 Implementation

DRENCH’s prototype involves the implementation of an SDN controller/orches-
trator, Open vSwitches, and a set of custom NFIs. The overall implementation,
including the controller extensions for supporting NFIs, is ∼ 1800 LOC.

9.3.1 Control Plane: DRENCH Controller

We extended Pox29 to serve as DRENCH’s controller, where policy specifications
are provided as input.

Flow Classifier and Policy Enforcement: DRENCH controller performs fine-
grained flow classification, based on the standard IP 5-tuple. As a flow is mapped
into a policy specification, the Controller applies the sequence of the involved service
functions. We dedicate the combination of IP-ToS field and L4: destination port
to represent the service chain ID and the sequence of functions in the service chain
respectively.

Flow Steering: In order to be more flexible, and readily deployable with NFIs,
we rely on the switch-based service chain/network function ID mapping that can
be supported by openflow switches, without the need for any modifications to the
NFI. The controller sets the path from the ingress/NFV node to the next NFV
node/destination in the chain. For finer granularity at each ingress or intermediate
NFV node, the flow rules are installed based on the match obtained from the flow-
classification - this readily enables the capability to match and correlate the packets
that enter/exit the NFIs, even when NFIs modify the packet headers, while the
rest of the intermediate switches rules are installed for forwarding the traffic via
“tunnels" to the next NFV node or egress switch. For tunnelling, we enhance the
named instance source routing scheme [129], wherein the tag comprising of the VNFs
service type (SVC-ID), the switch (SW-ID), and the pinned compute core (CoreID)
uniquely represent the NFI. It is defined as: NFI-ID= CoreID|SW-ID|SVC-ID.

This enables the paths to be installed proactively on all the intermediate switches
as soon as an NFI is discovered in the network. Our proposal of ID-based tunnelling
can be realised by using either the Multi-Protocol Label Switching (MPLS) or VLAN
tags, underlay (unused IP/TCP header fields like DS/option fields) or with Network
Service Header (NSH) [33]. The choice of Layer-2.5 (MPLS) or Layer-2 (VLAN)
tag makes it convenient to define the match in Openflow switches, i.e., by being
agnostic to L3/L4 fields allow any TCP/UDP flow to be matched with a same rule.

29https://openflow.stanford.edu/display/ONL/POX+Wiki
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This helps to significantly reduce the number of switch rules. As most MBs readily
support VLAN as opposed to MPLS [126], we make use of Layer-2 tags to realise
the NFI-based tunnels.

9.3.2 Data Plane: Openflow Switches and Network Functions

One of the key challenges we faced in the implementation of DRENCH prototype
was the unavailability of a MB/NFV-capable switch in the Mininet environment.
Our solution was to realise NFIs as hosts connected to the switches. However, this
resulted in additional challenges since OpenFlow is designed with a Southbound API
control channel between the controller and the network switches, but not the hosts.
Therefore, any information (e.g., estimated cost of other instances/shadow-prices)
that had to be exchanged between the controller and the NFV-hosts had to be
performed either via the switch (e.g., we used LLDP packets to make the controller
aware of the presence of NFV-hosts) or via a separate channel.

In a real-world deployment, we believe that this would not be the case since NFV
nodes will have a Southbound-API based channel from the controller through an in-
built switch. Once the communication channels were established, the controller was
able to both obtain and disseminate cost related information periodically. Moreover,
to demonstrate that the NFI capability can be realised on Openflow switches, we
implemented on each host a host-local Open vSwitch and controller. The host
interface is setup as a port of the local vSwitch. This way, we leveraged the local
Open vSwitch and Pox controller to implement the VNF specific functionality, i.e.,
to monitor and disseminate NFI-specific load information and communicate it to
the global controller.

9.4 Evaluation

Goal of our evaluation is three-fold:
i) study the effect of different DRENCH parameters, the resulting trade-offs, and
the impact on performance in order to fine-tune DRENCH;
ii) highlight the benefits of DRENCH on a controlled topology (we perform these
evaluations on a CloudLab30 test-bed); and
iii) compare the performance of DRENCH with other approaches in large scale
scenarios (both data-center and Rocketfuel topologies).

We make use of the DRENCH prototype on a data-center topology in a Mininet

30https://cloudlab.us
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Figure 9.2: Off-path penalty (x-axis)

Cluster31 to study the benefits of DRENCH in terms of Flow Completion Time
(FCT), delay, number of active NFIs, NFI utilisation, and the impact of redirection.
We compare DRENCH against a centralised approach (Slick [110]) and DRENCH
without redirection (DwoR).

Moreover, we build a custom flow-level simulator to study the benefits of
DRENCH in terms of path deviation, average throughput and FCT in comparison
to a custom centralised approach, i.e., SIMPLE [23] on top of E2 SDN frame-
work [22]. Unlike similar works that focus only on the latency requirements of
service chains, we also emphasize on FCT - arguably the most important metric for
the user [135].

9.4.1 DRENCH Parameter design and study of tradeoffs

We implemented DRENCH on a python-based discrete event simulator using
SimPy32, in order to be able to flexibly fine-tune DRENCH’s parameters and to
perform large scale evaluation. For these experiments, we perform simulations on
a Rocketfuel topology with 27 hosts, that send/receive flows, and 57 nodes that
are capable of hosting NFIs. Unless stated otherwise, the off-path penalty, ρ, is
0.3 while we consider SFCs of length equal to 2. We then apply the results of the
simulation study to setup DRENCH’s prototype.

31http://mininet.org
32http://simpy.readthedocs.io/en/latest/
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Figure 9.3: Shadow Price threshold (x-axis)

9.4.1.1 Off-path penalty, ρ

Traditionally, flows follow the shortest path towards their destination, deviating
only for traffic engineering reasons and/or in response to link/node failures (e.g.,
fast-reroute in MPLS). When it comes to service chaining, flows deviate from their
shortest path in order to be served by NFIs. In DRENCH the off-path penalty
factor, ρ, controls the tradeoff between the shortest path deviation and FCT by
trading path deviation overhead for less congested NFIs, as Fig. 9.2 indicates. In
more detail, the FCT increases function to off-path penalty, ρ, since flows prefer to
get served by a more congested NFI (e.g., with a higher service cost) than deviating
from their shortest path, Fig. 9.2a. Hence, for our experimental purposes we choose
a value of ρ in the range of 0.3-0.5. The exact setting of the ρ factor is up to the
network operator. During low-demand periods (e.g., during nighttime), where links
are generally less utilised, operators might choose a lower value to improve FCT
(i.e., given low link utilisation, extra path deviation should not cause problems).
On the other hand, in high demand periods, path deviation should be kept to lower
levels, even if this increases the individual flows’ FCT, in order to avoid extensive
path stretch.

9.4.1.2 Shadow price Threshold

Fig. 9.3 shows the results of varying the minimum shadow-price threshold, λ , at
which new instances are spawned. Fig. 9.3a shows that FCT increases function to
threshold values. A low λ of 0.1 results in lower FCT compared to values in the
range of 0.3 to 1.5, but at the same time leads to a poor average utilisation of
NFIs, i.e., 4 Mbps as seen in Fig. 9.3b. In particular, utilisation is considered as
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Figure 9.4: Simple Topology with initial placement of NFIs.

Table 9.2: Average Bitrate and Delay
DRENCH Baseline

Avg Bitrate (Mbps) 4.033 3.814
Std. Dev of Pkt Delay (ms) 129.151 143.216

the amount of traffic (in terms of throughput - see Fig. 9.3b) that an NFI serves
on average. The exact setting of λ is up to the network operator. If the demand is
low, then more instances could be allowed to reduce the average FCTs. In contrast,
during high demand periods, the operator might have to compromise on individual
flow FCT, in order to make full utilisation of the existing NFIs and eventually serve
more flows overall.

9.4.2 Testbed: Simple controlled experiments

We perform controlled experiments on a small topology, as shown in Fig. 9.4, in
our CloudLab setup to illustrate the benefits of DRENCH components. Consider
flows Src1-Dst1, requiring the service chain of C/B/A, which also comprises the ideal
placement.

We study the performance and behavior of the system in the worst case scenario,
where the services are initially placed in the reverse order as depicted in Fig. 9.4.33

To prevent an increase in the flow’s path length (by going back and forth in this
topology), it is desirable to relocate the NFIs (from A−B−C to C−B−A in nodes
S1-S2-S3, respectively) to minimize path stretch and FCT.

In Fig. 9.5a, we observe that, initially, due to the service instances being located
in the wrong order (i.e., A−B−C, instead of C−B−A) the flow suffers higher
path-stretch, resulting in additional delay and higher network load. Later, as the
switches gradually adapt towards the ideal placement, path stretch declines and
network throughput increases (see Table 10.2) compared to a non-reactive (Baseline)
approach.

33We set the NF capacity and the off-path penalty factors to just exceed the threshold required
in order to allow for service instantiation.
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When all the instances individually seek to be competitive and maximise their
utilisation, the switches with NFV capacity near the ingress switches end up hosting
most of the services. From Fig. 9.5b, we see that DRENCH converges to this ideal
case by instantiating and placing the services in the chain along the path towards
the destination.

9.4.3 Large scale Evaluation: Data-Center Topology

We setup a Mininet Cluster on Cloudlab to study the performance of DRENCH in
a large network topology.

Topology: We use a 4K Fat-Tree topology to evaluate DRENCH in a data-center
environment and compare it to Slick (used as an example of a centralized approach.)
We consider that only aggregation-layer switches in the fat-tree topology have NFV
capability and dedicate 2 cores per aggregate switch for instantiating the NFIs.

Workload: We model the traffic based on the available data center workload
characteristics similar to the ones used in [123,130]. The workload constitutes a mix
of elephant flows (20% with flow size > 10MB) and mice flows (80% with flow size
< 2MB). Thus, elephant flows account for more than 80% of the traffic bytes. We
use iperf34 and D-ITG [136] to generate traffic with varying network loads. Flows
originate from one of the servers connected to a leaf switch and terminate at another
server connected to another leaf switch (in either the same or different pod). We
use TCP flows in a client/server model with random flow arrival times. Based on
the information on the service chaining policies in [137] and the details presented
in earlier work (e.g., [23]), we setup a service function chain of 3 distinct Network
Functions (NFs). We assume that in total there are 6 NFs available in the network
and that each flow requires exactly three of them. The service functions are chosen
based on a zipf-distribution with exponent set to 0.3.

Parameters: Based on our findings from Section 9.4.1.2, we set the off-path

penalty factor eqaul to 0.5, and the instance shadow-price that influences service
consolidation and service instantiation decisions as follows. An instance is consol-
idated when the shadow-price reflects a NFI utilisation of < 30% and the flows
served by that instance are less than 5. This is done in-order to mitigate the number
of flow re-directions and the packet re-ordering impact of flow re-directions. A new
NFI is instantiated when the shadow-price reflects NFI utilisation of > 85%.

Comparison: In order to perform a fair comparison, we implemented a greedy
heuristic-based flow steering approach as in Slick [110] - as a representative of a

34https://iperf.fr/
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fully centralised state-of-the-art load balancing scheme.35 We also compare against
DwoR to study the effects of redirections and its impact on DRENCH. Our main
goal is to evaluate the behaviour and performance of DRENCH wrt NFI placement,
flow steering, and load balancing in terms of its efficiency in NF resource utilisation
and FCT.

Figure 9.6a shows the average FCT and packet delays for different schemes. We ob-
serve that at lower loads (20-40%) all the schemes have similar FCT, but DRENCH
and DwoR incur relatively lower packet delays. However, as network load increases,
DRENCH performs better than Slick and DwoR in terms of FCT roughly by 10∼20%
. Furthermore, we also observe that DwoR provides better FCT than the centralised
approach, while DRENCH outperforms both DwoR and Slick. Finally, we also see
that the average delay in the case of DRENCH remains low in most cases and close
to the other solutions when the network load is extremely high (80%).

In Fig. 9.6b we see that the average number of NFIs for all the schemes is almost
the same. However, DRENCH balances the load more efficiently since the variation
in the load among the NFIs and the NFI utilisation is maintained at low levels.

In Figure 9.6c, we present the specific case for network load of 80%, where we
observe that DRENCH is able to get close to Slick, which is optimal in terms of
path-stretch deviation. We can also see the benefits of DRENCH redirections in
order to correct path-deviation during traffic bursts (see 70-80secs) and also when
a large number of flows terminate. In both cases we can see that DRENCH is more
effective than DwoR, in terms of keeping path-stretch at a minimum, providing
better load-balancing across NFIs and achieving better FCT.
Note: In DRENCH re-directions enable to reroute flows through lightly loaded links
and NFIs, thus aid to lower packet delays. However, the FCT might still get affected
due to interim packet-reordering, which result in false congestion signals. We believe
that a modified TCP stack as in [138] could help mitigate the packet-reordering
issue.

9.4.4 Large scale Evaluation: ISP Topology

To further examine the capability of DRENCH to efficiently use NFIs in a typical
WAN ISP environment, we performed simulations with SimPy.

Experimental Setup: We performed simulations on the Rocketfuel AS-1755

35We implemented the shortest weighted path-based flow routing scheme and not the entire Slick
runtime [110]
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Figure 9.7: Comparison of Drench vs. E2+SIMPLE

(Ebone in Europe) topology.36 In order to perform a fair comparison, we imple-
mented a greedy heuristic for flow steering which we call E2+SIMPLE that uses a
combination of E2 [22] for both service instantiation and service-chain path def-
inition, and SIMPLE [23] for flow steering. Note that in terms of performance,
the combination of E2 and SIMPLE performs much better than any of the E2 or
SIMPLE alone and therefore is the best choice for comparison.

DRENCH vs. E2+SIMPLE: Fig. 9.7 compares DRENCH and E2+SIMPLE
(E2+S) approach. We observe that DRENCH presents higher path deviation (see
Fig. 9.7a) since it deviates from the shortest path in search of non-congested NFIs.
In doing so, DRENCH is able to make better use of the available NFIs (see Fig. 9.7b)
and performs instantiation or consolidation when necessary. This way, DRENCH
ensures that all the available NFIs are running close to peak utilisation (in terms
of throughput served by the NFV nodes) as seen in Fig. 9.7b. With these design
choices, DRENCH achieves significantly lower FCT (see Fig. 9.7c). In summary,
DRENCH provides a staggering 10× improvement in FCT and is able to support
roughly 4× higher workloads, while incurring an average path deviation penalty of
up to 2× in comparison to the E2+SIMPLE approach. This extra path stretch
though is compensated in terms of higher NFI utilisation and in turn, lower FCT.

Summary of Evaluation: To summarize, our evaluation demonstrates that
with its hybrid centralised-decentralised decision-making structure, DRENCH
can dynamically load-balance traffic and allocate resources according to demand.
DRENCH makes informed decisions on the load of NFIs and accordingly instanti-
ates new or consolidates existing NFIs. In turn, traffic is load-balanced (through
flow steering and redirections) to the appropriate instance achieving significantly
lower FCT.

36http://www.cs.washington.edu/research/projects/networking/www/rocketfuel/
interactive/1755eur.html

http://www.cs.washington.edu/research/projects/networking/www/rocketfuel/interactive/1755eur.html
http://www.cs.washington.edu/research/projects/networking/www/rocketfuel/interactive/1755eur.html
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9.5 Conclusion

We have developed a hybrid algorithmic framework for resource management and
traffic load-balancing among virtual NFIs that elegantly combines distributed
decision-making with centralised control for orchestration and coordination, while
performing complex, dynamic service function chaining. DRENCH is designed to
dynamically adapt and balance resources utilisation to traffic demand. DRENCH
builds on a market-inspired, competition-based shadow-price that is used for
taking decisions on flow-steering, flow-redirection and service instantiation/consol-
idation in a distributed manner. A centralised SDN controller performs market
orchestration, dissemination of price information and coordination.

Our novel semi-distributed approach for dynamic service instantiation and direc-
tion of new and existing flows to the least loaded NFV node increases the throughput
from each NFV node and in turn reduces FCT significantly. With the help of a pro-
totype implementation on CloudLab and extensive simulations, we illustrate the
benefits of using DRENCH, namely that traffic is dynamically load-balanced among
instances and the path deviation of flows across the NFIs is kept to a minimum. Re-
sources are efficiently utilised by timely consolidation of NFIs when they are lightly
loaded. Overall DRENCH results in almost a 10× reduction in FCT in some of our
experiments.
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10.1 Introduction

The key to realizing agile and elastic network functions is the ability to dynamically
instantiate, remove and relocate the network functions. Any such activity would
result in having either a new set of service paths or the invalidation of existing
service paths. The current NSH draft defines a 24-bit Service Path Identifier (SPI)
and 8-bit Service Index (SI). SPI defines one of the possible instantiations (a logical
path to sequence of service functions that includes one of the several instances of
each service function) for a given SFC, while the SI indicates the location within
the service path. Typically the order of relation between service chains and service
paths is 1 : n and it grows exponentially [139]. Although 24 bits is large enough to
accommodate any sets of possible service paths the complexity is in managing the
SPI labels and updating labels to the Classifiers and different SFFs.
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10.1.1 Control plane Functionality

In conjunction to the role of control plane listed in the SFC architecture [41], in
order for NSH to realize a service plane, the control plane needs to perform at least
the following tasks:

• For all the SFCs, construct the map of SPI (labels) needed for each valid logical
path to the SF instance in the chain.

• Disseminate (communicate and update) the SPI information to the SFFs and
Service Functions (SFs).

Note that the SPI labels would change every time there is either an addition or
deletion of as service function instance or changes to the physical topology.

Though, it can be argued that topological changes are rather rare, and addition
or removal of service functions too are rather infrequent, it must be noted that
key benefit of NFV is in that it enables to realize elastic service function instances
that can be dynamically instantiated or de-commissioned to better adapt to the
traffic requirements and meet the SLA requirements from customer perspective and
also improve on the overall network utilization. Hence the second aspect cannot be
ignored for providing a truly elastic and dynamic service function chaining.

10.1.2 Control plane Overhead Analysis

From section §8.2, we observe that the identification of service paths and the classi-
fication of different service paths and service chains can be broadly categorized into
four different categories.

• Category #1:that assign label for each service type and let the SDN controller
to steer traffic in a service by service fashion to different service function instances
in the network [129].

• Category #2:that assign label for each service instance and let the SDN con-
troller and SFFs to determine and steer traffic to different service function in-
stances in the network [37].

• Category #3:that assign the label for each service chain - a high level policy of
desired service functions and let the network to employ some overlay/underlay to
steer traffic across service functions [127].

• Category #4:that assign the identifier to each of the logical service paths to the
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service function instances in the network [33].
The scale of required identifiers to define an end-to-end service function
chain and the involvement of SDN controller vary for each of these
approaches.

Figure 10.1: Number of Unique Labels for different SFC approaches with varying
SFC length

Figure 10.2: Service path IDs for varying SFC length and service instances

We first present the scale of the number of unique identifiers (labels) required for
the different approaches discussed earlier. From Figure 10.1, we see that approaches
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that utilize the service or service-instance37 based labels like FCSC [129], NSN [37],
and source-routing [139] require a minimum number of labels, while the service-
chain ID38 and service path ID based approaches require a far larger number of
labels. Table 10.1 shows the way in which the number of unique labels for each of
the different approaches are determined.

Table 10.1: Identifier requirements for different SFC approaches
SFC Approach Number of Unique Identifiers
Service ID α Num. o f Function Types (SFT )

Service Instance ID α Num. o f Function Instances (SFI)

Service Chain ID α Factorial(Chain Length)

Service Path ID α Factorial(Chain Length)SFI

We observe that the number of active service function instances (SFIs) affect on
the number of identifiers required for the approaches relying on the service instance
id and service path ids. In the latter case, we can see that number of identifiers
scale almost exponentially, as each instance addition results in multiplier of factorial
of new possible paths. Analytically, we can show that for addition of every service
function instance to each of the service functions types the label requirements for a
given chain length grows as shown in Table 10.1.

Given N Instances per ServiceFunctionType

TotalNum. o f IDs = Factorial(Chain Length)N

Also, note that from Figure 10.2, with the increasing length of service chains and
scale of service instances, the number of SPIs scales exponentially.

This implies that burden on the control plane for performing the aforementioned
tasks for any addition or deletion of service instances is significant. i.e., with the
increase in number of services in a chain and number of instances, the control
plane overheads in managing and adapting to the increased number of paths, and
dissemination of path information to each of the instances grows exponentially.

In the subsequent sections, we present our proposal Neo-NSH and elaborate on
37Service IDs correspond to number of unique services in the network, and service instance IDs

to the number of instances for each service type. Figure 10.1 considers two instances per service
function type.

38We acknowledge that SFC-IDs are mapped based on the required policy intents and are often
much limited than actual possible combinations of service chains.
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Figure 10.3: Total Service Paths for varying service chain length and instances per
service

how it aims to simplify the management and orchestration of Service Path IDs and
augments to the base NSH proposal.

10.2 Neo-NSH Proposal

We make the following fundamental observations:

• The service-chain IDs directly reflect the high-level specification of the policy in-
tent, and are relatively easier to program and manged by the network administra-
tors than chaining approach using either the service IDs or the network function
instance IDs.

• The number of labels required to support service IDs, and service-chain IDs is
minimal compared to the path identifiers.

• service ID base approaches are not affected by the service instance dynamics (i.e.,
addition, deletion and relocation).

Therefore, augmenting such a feature in NSH, naturally makes it a more robust
candidate for implementing a dynamically scalable SFC. Also, we note that the real
benefit of SPI (as purposed in NSH) is in providing the traceability and end-to-end
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visibility of the service function chains logical path.

We propose to relax the usage of SPI in its true sense, i.e., to refer to the service
paths and instead we propose to re-purpose the usage of 24-bit SPI field to denote
the service-chain ID. This way SPI more closely reflects the intent of the service
chain policy and represents the list of service functions and not the logical path to
the service instances in SFC.

In Neo-NSH approach, the Service Forwarders use the SPI and SI fields to repre-
sent the service function type rather than the service function instance, and let the
network to dynamically choose the best instance based on the service function type
(or service name) and the context data information. Service Function Forwarders
that select the service path have to rely on either the control plane or the intelli-
gent data-plane to choose the appropriate service instance. And, the role of service
classification functions that update the service header is changed to inserting the
service-chain ID, while the role of service functions and SFF is unchanged compared
to the NSH.

The only down-side of our proposal Neo-NSH is the loss of end-to-end path visi-
bility. The actual path i.e., the list of physical SFs chosen for given SPI cannot be
determined statically, as the same SPI could map to different logical paths (path
to different service function instance) and physical paths. As the SPI is not static
but determined at the run-time (meaning it can change dynamically), it provides
an additional benefit of providing the ability to adapt to the network requirements
dynamically.

Table 10.2 shows the feature comparison between NSH and Neo-NSH. We can
observe that Neo-NSH retains all the key features of NSH. In addition, it augments
NSH to be more economic, efficient and scalable solution for SFC,even with the
compromise of the loss of end-to-end path visibility. We can observe that overall
role of all the involved NSH components remains unchanged.

10.2.1 Dynamic Service Function Instance selection

Typical to the SDN, whenever the flows are classified and service chain ID that
determines the policy intent is derived, the controller must determine the appropri-
ate service function instances and then ensure to set the forwarding rules at each
of the forwarding elements so that the flow or class of flows traverse through the
identified set of service instances. In-order to avoid the path setup latency, forward-
ing rules can be proactively setup at the forwarders and controller can modify the
rules based on the network load in order to re-route and distribute the flows evenly
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across different service function instances. The key benefits of this approach over
static path identification include: i) the capability to load-balance the traffic across
service function instances. ii) resiliency to the addition/removal of service function
instances, as it does not affect the SPI. Hence the network becomes more agile and
as well it eliminates the need to compute and communicate the SPI labels to the
SFFs for any changes affecting the overlay service topology that NSH relies on to
forward the packets.

Table 10.2: Salient features of NSH and Neo-NSH
Features NSH Neo-NSH

Topological independence
X X

Transport agnostic
X X

Meta-data sharing and re-classification
X X

End-to-End path visibility
X 5

Flexible service instance selection
5 X

SPI management overhead
High Low

Communication overhead
High Low

In Neo-NSH, by separating the logical service chain from actual service path, we
can achieve significant improvements to NSH in terms of:

• Adaptability and efficiency: by reducing the control overheads in managing
the path IDs and disseminating them to all the service instances.

• Flexibility: classifiers, service functions and proxies only need to care about
logical service chain and not the service paths.

• Scalability: can easily accommodate more instances of service functions without
impacting the SFFs, and the reduced forwarding rules ensure to utilize the TCAM
space more judiciously and enable to accommodate more flows.
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10.3 Preliminary Analysis and Evaluation

We performed preliminary evaluation of the proposal using the mathematical model
to demonstrate the benefits of Neo-NSH. We compare Neo-NSH with base NSH
approach. In this evaluation, we primarily focus on the demonstrating the benefit
achievable in terms of the reduction in the number of service path identifiers in the
case of increasing service chain length and increasing number of instances.

10.3.1 Key Benefits

From Figure 10.3, we can see that in case of base NSH, the number of Service Path
Identifiers scale exponentially with the increasing service chain lengths. Also for
a given service chain length, NSH exhibits exponential growth with the increasing
number of service function instances of the chain. With our proposal Neo-NSH, the
number of SPIs are not affected by the number of service instances, but increase
only with the increasing service chain lengths. Thus Neo-NSH in-comparison to
NSH, not only results in significantly lowering the number of path identifier labels,
but can support the elastic network functions wherein the network functions can be
dynamically instantiated without any additional overhead of updating the SPIs to
all the participating NSH aware components of the network. This reduction helps
further to substantially reduce the complexity and overhead at the control plane
with respect to the computation and communication costs required for managing
and disseminating the SPIs to the NSH aware components in the network for any
given topology.

10.3.2 Impact on component roles

Table 10.3: Role based comparison for different components in NSH and Neo-NSH
Component NSH Neo-NSH

Servicetype

Insert
or

Remove
NSH

Select
Service
Function
Path

Update
NSH

Service
Policy

Selection

Insert
or

Remove
NSH

Select
Service
Function
Path

Update
NSH

Service
Policy

Selection

Action Insert Remove
Dec.

Service
Index

Update
Context
Header

Insert Remove
Dec.

Service
Index

Update
Context
Header

Classifier + + + + + +
Service
Function
Forwarder

+ + + +

Service
Function + + + + + +

SFC Proxy + + + + + +

As Neo-NSH keeps the NSH intact, and only amends on the way SPI is used for



115 10.4 Conclusion

routing the packets, We emphasize that the there is no impact on the roles of each
of the NSH components and the overall role of all the involved NSH components
remain unchanged between Neo-NSH and NSH.

10.4 Conclusion

We have characterized and analyzed the benefits and challenges with the current
NSH. We have proposed Neo-NSH , an enhancement to NSH and demonstrated
the benefits of our proposal which enables for a more agile and flexible network for
service function chaining with elastic network functions. Hence, with SDN enabled
networks and NFV based middleboxes, Neo-NSH makes a case for more efficient and
scalable realization of dynamic service function chaining.
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Future Prospects

In this chapter we present the possible areas of extension of our work. We consider
and present the future prospects of the proposed network resource management
and orchestration frameworks.
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11.1 Recap of NF chaining orchestration framework

Table 11.1 compares the supported the characteristics of DRENCH with the state-
of-the-art works. We can note that DRENCH is the first work that presents a semi-
distributed architecture and tackles both NFI placement and flow steering problems
in arbitrary topologies.

11.2 Applicability of DRENCH in other NFV Platforms

DRENCH is an algorithmic NFV orchestration framework for Service Function
Chaining (SFC). It can be easily incorporated into other NFV platforms. We
briefly discuss the key APIs that need to be accounted to port over DRENCH to
other NFV platforms.

Southbound interface: We utilize the standard OpenFlow 1.0 APIs for commu-
nication with the SDN controller as the southbound interfaces for traffic engineering
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Table 11.1: Comparison of related state-of-the-art solutions with DRENCH for de-
sired NFV orchestrator and Management features.

Features SIMPLE [23] Slick [110] E2 [22] DRENCH+NeoNSH
Elastic Scaling Supported Supported Supported Supported
Placement Supported† Supported Supported† Supported
Steering Supported Supported Supported Supported

Redirection Not Supported Not Supported Not Supported Supported
Load balancing Supported‡ Not Supported Supported‡ Supported

State
Synchronization NA NA NA Not Supported

Architecture Centralized Centralized Centralized∗ Distributed
Load

Balance solver ILP solver Heuristics Heuristics Heuristics

†: Only offline(static) placement is supported.
‡: Non-adaptive load balancing, depends on the initial estimated traffic.
∗: Initial placement and traffic steering decisions are made centralized controller.

purposes. Also, we extend on the OpenFlow 1.0 to query and update the shadow-
price information for each NFI, which can be easily accommodated as Openflow
extension APIs. The NFIs do not need any additional APIs.

Northbound interface: The north bound interface abstracted in the form of set
of configuration files that are loaded in the controller at the time of module initial-
ization. The configuration files provide the node capabilities in terms of number of
cores available on each node to host the NFs. This is a standard procedure across
most orchestration frameworks.

As shown in the Figure 2.2, we can see that in ETSI NFV-MANO architecture,
this information is stored as distinct database/catalog. In DRENCH, the NFVOs
and SDN controller components do not need any additional APIs for communication.

Routing for SFC: Our work NoeNSH strictly adheres to the model of NSH and
relies on encapsulation header dictated by the NSH RFC [33] to facilitate the service
plane for routing.

Also, the management of routing plane, i.e., enumerating and indexing of service
paths are strictly the functions of SDN control plane, and accounts to the logical
extension of control plane functionality only. Hence, there is no impact or any
changes needed for effecting NeoNSH in any of the data-plane elements.
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11.3 Current Limitations and Prospects of Extensions

Considering our current design and implementation of DRENCH and NeoNSH, we
plan to extend our work in the following aspects:

• Our flow redirection currently accounts to redirect only the flows from one NFI to
the other. This works fine for the stateless NFs. But for the stateful NFs, the state
maintained at the NFI also needs to be migrated. We plan to incorporate Stateful
NF migration alongside flow-redirection to ensure correctness of flow specific state
being preserved across the NFI.

• In our Orchestration framework, the NF Placement decision accounts dedicated
CPU core, i.e., NFIs are assumed to be pinned to one or more cores and we
do not consider or allow the same core to be shared by multiple NFIs, which is
true for most of the VM based NFIs. This prospect limits scalability and resource
utilization. As, we have shown in earlier chapeter §5, with the container or process
based NFIs we can efficiently multiplex multiplex NFI on singe core. Hence, we
plan to extend and adapt our optimization model and Orchestration framework
to facilitate resource sharing.

• We plane to integrate the flow steering mechanism of NeoNSH in DRENCH. This
will enable DRENCH to scale beyond the current limitation of supporting 4094
Network Function Instances (NFIs)39. We depend on a suitable prototype of NSH
in control-plane to accomplish this task.

39This limitation of 4094 NFIs comes from the 12 bit VLAN’s index used in DRENCH to facilitate
name-based service forwarding.
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Chapter12
Problem Statement

In this Chapter, we present the need to facilitate NFV failure resiliency in order to
provide Service Continuity (SC) and High Availability (HA) of VNFs in the event
of different failures and infrastructure disasters. We outline the related challenges
that exist and need to be addressed to achieve Failure resiliency for SFC.
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12.1 Introduction

Network Function Virtualization (NFV) implements network services and middlebox
functions such as load balancers, firewalls, NATs, caching proxies, etc. in software
which can then be run on off-the-shelf commodity servers, avoiding the use of dedi-
cated purpose-built hardware. However, an NFV-based data plane must compensate
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for the potential lower reliability of commodity hardware [15]. In addition, the pres-
ence of multiple layers of software including hypervisors or container libraries, guest
OSes, system and application software, increase the chance of software failures.

12.1.1 Need for NFV Failure Resiliency: High Availability and
Fault Tolerance

Fault Tolerance (FT) and High Availability (HA) are also important concerns for
network services on NFV platforms. There are a number of studies showing that
middleboxes fail [140,141] and software failures [142–144] occur often enough to be of
concern. Recent work [140] estimates roughly 40% of network failures are caused by
middleboxes, and the measurements on network failures by Gill et al. [141] indicate
that load balancers have the highest failure probability. Nearly a third (31%) of
device failures are attributed to software related issues.

The time to recover from a failure and the overheads for providing resiliency
depend on the type of failure. For example, a crash in a software component can
be quickly detected and recovered locally by the host operating system on the order
of micro seconds, while the recovery from operating system failures may take at
least a few milli-seconds (e.g., 10ms for lightweight unikernels like ClickOS [47] and
Mirage [145]) to reboot and restore the device. Hardware failures such as link and
node failures may take seconds or more.

Multiple NFs may be composed into a service chain run on a single node, either as
consolidated functions in a single process [22,146], or in a pipelined fashion [46,47].
Of course, scale-limitations may require the service chain to span multiple nodes.
Our failure resiliency framework addresses both cases, and we seek to coherently
deal with all different kinds of failures, viz., software failures including the failure
of an individual NF instance, and hardware failures such as node and link failures,
power outage, etc.

Hence we need a NFV resiliency framework that can be account to address differ-
ent kinds of failures.To address variety of failures, we posit that “one approach does
not fit all", as the operational latency and resiliency overheads desired to account
different failures drastically varies.

12.1.2 Green Energy on the rise

It has been studied that the DC industry accounts to over 30 Gigawatts of energy
per year [147], accounting to roughly 21% of energy accounted by Information and
Communications Technology (ICT) [26], and the demand keeps increasing every
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year. The carbon footprint of a medium 10 Megawatt data center can range from
3,000,000 to over 130,000,000 kilograms of CO2 [148]. Depending on the electric
grid region, Power Usage Effectiveness (PUE) improvements can eliminate millions
of pounds of CO2 emissions [149]. These factors have led to tremendous increase in
the widespread adoption of renewable resources for powering the data centers.

The recent study [27] indicates a phenomenal increase in the investments ($285.9
billion) for harnessing renewable energy, which is more than double ($130.6 billion)
the investments on non-renewable energy resources in 2016. It is also noteworthy
that the amount of renewable energy generation capacity has increased by nearly
56 percent over last two years. Greenpeace report [26] indicates that already the
companies like Apple, Facebook and Google have started adopting renewable energy
to power the data centers.

12.1.3 Need for Disaster Recovery plan: Service continuity in the
event of Power outages

It has been shown that the Green energy could be used to adequately power a small
DC with reasonable degree of reliability [29]. However, despite the growth in green
energy investment and generation, the nature of renewable resource based power
poses a challenge towards employing them to large DCs for the following reasons:

i) not sufficient to fully power the large data centers,

ii) highly intermittent and unstable [28]; hence pose a greater challenge in adopting
them for the large data centers which require stable and sustained power resources
in-order to avoid any service disruptions.

Hence, there is a need to study and address the impact of such power outage disasters
on NFs and to facilitate mechanism to ensure SC in the event of such disasters.

12.2 Challenges in achieving NFV Failure Resiliency

12.2.1 VNF Diversity: Challenges and Opportunities

VMs are generally the application processing engines, characterized by the appli-
cation states, whereas the middleboxes or the VNFs cater towards diverse set of
use cases and applications. For example, typical network services like NAT, web
proxies, etc. Security services e.g., firewalls, intrusion detection and prevention, en-
cryption etc. and Value added services like parental control, WAN optimizer and
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Figure 12.1: Different NFV Deployment Approaches

HTTP enrichment etc. . These differences with VNFs result in diverse complexity
and processing requirements. Based on the resource (computation, communication,
memory and storage) requirements and performance (throughput, latency, jitter,
and packet loss) requirements, the ETSI standards [15] broadly classifies the VNF
types into four classes namely:

a) data plane functions that exhibit intensive network I/O and demand high packet
processing rates,

b) control plane functions that exhibit intermittent network I/O and moderate CPU
processing,

c) signal processing functions which are typically CPU intensive, and
d) storage related functions that are heavy on memory and disk I/O.

Nonetheless, VNFs are essentially the high speed packet processing engines that
maintain flow/packet specific states and tend to serve millions of packets per second
at 10G/40G/100Gbps line rates, and depending on the type of processing, VNFs can
be either stateful or stateless. This implies that the frequency at which the VNFs
state change can occur is too high and the downtime in the order of milliseconds
can lead to severe service disruptions. Hence, to achieve high-availability, consistent
updates need to be done more frequently than compared to the traditional VMs.
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We also note that, in addition to the VNF state, the network routing state also
needs to be updated for reliable processing of subsequent packets. Hence, stateless
VNFs only need the routing state update, but the stateful class of VNFs additionally
need to snapshot their internal states. Also, the amount of internal state that need
to be transferred to back-up the stateful VNF is minimal (order of few bytes to kilo
bytes) compared to VMs that range in several giga bytes [72].

12.2.1.1 NFV Deployment Model and Usage Scenario

As shown in Figure 12.1, typical VNF deployment models include

a) Dedicated VMs, e.g., NetVM, OpenNF that allow to instantiate and run the
NFVIs as VMs.

b) Containers or Docker based applications, e.g., OpenNetVM and NetBricks that
enable to instantiate and run the NFIs as lightweight containers.

c) Packaged network appliances e.g., Proxy servers, Load balancers etc. that
are shipped as isolated portable binaries for specific platform.

d) Processes i.e., binaries that can be run as dedicated processes on specific OS
e.g., . iptables in Linux.

This diversity not only hinders portability - since the Docker based and process
based VNFs need to be backed-up on nodes matching the hardware and Operating
system requirements, but also pose a challenge towards achieving generalized frame-
work for replication as the needs and means to snapshot and back-up the VNFs
significantly differ. However, the promising part of the VNF diversity, especially
with the Unikernel based VM’s and containers is that the amount of data that need
to be backed-up is significantly lowered (order of few mega bytes) compared to the
traditional VMs that range in giga bytes.

12.2.2 Service Function Chaining

The flows served by the VNFs are typically subject to more than one network func-
tions, processed in a specific order, e.g., NAT, Firewall, IDS, and Load-balancer.
This implies that in-order for the flow/packets to be processed consistently across
the replicas, the VNFs cannot be treated in isolation, but the chain (ordered list)
of VNFs that a flow/packets go through need to be treated as a group. Hence to
maintain the VNF state consistency across the chain, the back-up and snapshot
mechanism should consider the periodicity for group of VNFs.
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12.2.3 VNF State Anatomy

We leverage the study and analysis of earlier works [72, 121, 150] in discerning the
anatomy of internal states. Based on the study of existing VNFs, they can be
broadly classified into i) stateless VNFs (those that do not maintain any state for
VNF packet processing) e.g., stateless firewalls. ii) stateful NFs - that maintain
and store the state for the packets/flows being processed by the NFs. e.g., IDS.
Further, the stateful NFs can be sub categorized into i) VNFs with per flow status -
that maintain and update states for each of the new flows e.g., Application Delivery
controllers and stateful Firewalls ii) VNFs with per packet status - that maintain
and update state for every individual packet processed by the VNF e.g., IDS.

In general, the state maintained by the VNFs can be broadly categorized into

i) Internal state - or the ephemeral state, which do not affect the consistency and
may deviate across the replicas,

ii) External state - typically constitute the flow specific information and counters,
which needs to be kept updated across replica, and

iii) Coherent state - state constituted by the global counters and configuration
parameters, which also needs to be kept consistent across multiple replicas [72].

Hence, to maintain the replica, different types of VNFs demand different kinds of
state with different levels of state synchronization. We take advantage of this aspect
in our work to account for periodicity of state updates.

12.2.4 VNFIs exhibit Non-Determinism

NFs that operate on the same input (flow of packets) can still diverge in their internal
states due to i) dependence on hardware whose outcome cannot be predicted, such
as hardware clocks, random number generators, etc. , and ii) race conditions in
accessing shared variables among NF threads. For example, a load balancer (even
with the “Active:Active" redundancy configuration) that assigns one server from
a pool of backend servers for each TCP connection can end up choosing different
backend servers for the same flow when the selection logic is based on system specific
calls like random(). Similarly, a rate limiter that restricts the number of maximum
sessions for a given client can end up rejecting/terminating different connections due
to races in the NF threads accessing a shared connection variable during replay.

FTMB [150] overcomes non-determinism by rigorously tracking and ensuring that
all the events that can potentially lead to non-determinism (any shared state access
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and outcomes of unpredictable system calls) are captured and committed to the
stable log before releasing the packets. In doing so, even the benign access to shared
variables or non-deterministic calls whose impact is ephemeral to packets processing
(i.e., which do not impact the external view) are logged and enforced at the replay
node, which not only accounts to excessive log overheads but also limits the NF’s
operational throughput. Further, with multi-threaded NFs, during replay it enforces
a strict ordering for accesses to any shared resources across multiple processing
threads. Enforcing this kind of ordering requires more intricate instrumentation of
the NF’s code and affects both graceful and recovery mode performance.

12.2.5 Data Center Power Infrastructures

State-of-the-art data center power delivery infrastructure can support multiple power
sources, allowing some of the racks in data center to be completely powered by the
renewable resources and part of the racks to be powered by the non-renewable based
sources [151, 152]. We note that, with such configurations, only part of the rack or
nodes in a specific isle can exhibit power outages, while the rest of DC does not.

To accommodate such configurations, the standby (backup) nodes can be main-
tained within the same data center on the racks powered by non-renewables. In
the case of GDC that is fully powered by the renewables, the backups will have to
be maintained in another SDC which is powered by brown/non-renewable power
resources.

As we intend to support both the kinds of power infrastructure. Therefore, we refer
to the VNFs in GDC or the VNFs placed on a node that is powered by renewables
as the Transient VNFs and the standby VNFs that are placed on a node powered
by non-renewables either in SDC or in the same data center as Stable VNFs or the
replica VNFs.

Our main goal is to provide generalized framework for VNF state replication that
exploits the opportunities and overcome the challenges (Refer 12.2.1) to deploy the
VNFs in GDC and to provide high availability of NFV services through efficient
state replication mechanism.
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Related Work

In this Chapter, we present the literature survey on the state-of-the-art work in the
following related aspects:

• NF Migration Frameworks,
• HA and FT for NFs and SFCs, and
• NFV related work towards employing Green energy and addressing the energy

efficiency prospects for NFV.
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13.1 Resiliency and Fault-Tolerance

13.1.1 Network Function Migration

Split/Merge [72] presents the application level state migration for the middleboxes.
It defines state access APIs to read and update the internal state of virtualized
NFs being moved across hosts. It relies on the ability to identify per-flow state to
provide consistent migration. OpenNF [121], presents a control plane architecture
to facilitate loss free state transfer of NF state. SDN controller co-ordinates the
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state migration of NFs from one node to the other and relies on explicit events
between the source node, controller and destination node to perform the loss-free
state transition and to buffer the interim packets at the controller node. However,
due to controller based orchestration and event buffering mechanism, it imposes high
per packet latency for the migration operation.

In contrast, We seek to build application level NF state migration framework that
does not depend on specific state update APIs, instead rely on minimal annotations
by NFs that can assist the VNFM to sufficiently track, distinguish and update just
the dirtied application state. Further, to optimize on latency, we seek to avoid any
controller intervention, but handle the state migration within the context of VNFMs
and NFs only.

13.1.2 Fault Tolerance and High Availability

Pico Replication [153] is an application level NF state checkpointing based high
availability framework built on top of Split/Merge. It provides fine-grained flow
level state replication and employs flow group based NF state transfers. In order
to enforce correctness, it buffers all the output packets for the duration of NF state
checkpointing, thus delaying outputs even under failure-free operation.

FTMB [150] is a replay based framework that logs all the input packets and per
packet access log of all the determinants (i.e., the shared variables in NF that account
to non-determinism) that are necessary to restore the states on the replica during
replay. In addition, to amortize the cost of input logging, it also employs periodic
check-pointing of the NFs. Thus, FTMB guarantees correctness of operation at the
replay mode by ensuring strict ordering of packet processing (guided by the packet
access logs) at the replay node. In essence, the FTMB notion of correctness emulates
strict idempotent per packet behavior across the active and replica nodes. This
comes at the cost of accounting multiple per packet access logs, which potentially
become the bottleneck for NFs with more than 5 shared variables, for packet rates
of 1.25Mpps (refer: section 5 of [150]), resulting in more than nearly 30% overhead
traffic. In addition, due to periodic VM snapshotting, the tail latencies drastically
increase from less than 100 µseconds,at the 50th%-ile to nearly 810 µseconds, at
95th%-ile and 18ms at 99th%-ile. Also, neither of the work account for chain of
network functions. We seek to fill this gap.

13.1.3 Alternative Architectures

StreamNF [154] and StatelessNF [155] present alternative approaches of externaliz-
ing the state of the network functions to in-memory databases like RAMCloud [156].
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While this may be feasible for some network functions, the database can become a
bottleneck, plus substantial refactoring is required. Key advantage with externalized
state is that when any NF instance fails, the state in still available for the replica NF
to seamlessly failover provided the flows are redirected to the replica NF. It can be
noted that the externalized state approaches better suit the Microservice architec-
ture [157], however, there are two fold limitations and performance challenges with
externalizing the NF state.

• First, the NF packet processing rate which at line-rate (10-40Gbps) is expected to
support 10-15Mpps (million packets per second), gets limited by the read/write
transactions supported by the external database which ranges in the order of 4-
6Mtps (million transactions per second).

• Second, the need to instrument and refactoring of the NF code to externalize the
NF state require all the internal NF state entities to be expressed in well-defined
key-value store mode, which can be easily dealt for the per-flow states, but rather
intricate to express the shared per-session state and internal state variables.

• Third, typically NFs allocate and release memories dynamically (via alloc and free
callback functions as in nDPI), and are usually ephemeral - which would result in
excessive overhead.

• Finally, the major challenge arises in ensuring the correctness and consistency of
the externalized state w.r.t. the failed NFs that might have partially processed
the packets and updated the states, before crashing. In such scenarios, both the
NFs and the database need to maintain additional version control for each state
updates so that state updates can be validated before commit, which would further
reduce the NF processing capacity.

Architecturally and conceptually having externalized state for NFs might as well
seem a step in the right direction, but the challenges highlighted above in terms of
performance and complexity of operation leave us little reserved on employing them
to high speed packet processing network functions.

13.2 Implication on NFV with Green Energy
DataCenters

We observe the prospects of employing Green energy for the VNFs is a less studied
topic. Nonetheless, we discuss some relevant work in the overlapping categories.
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Table 13.1: Comparison of the related state-of-the-art solutions for NF and NF
Chain Resiliency.

Work/Feature Pico Replication FTMB Stream NF Stateless NF
High Level Architecture & Approach

FT scheme Application level
Check-Pointing

Replay + VM
Check-Pointing

Externalize state +
Replay

Externalize state
<No replay>

Redundancy scheme Active-Standby (1:N) Active-Standby (1:1) Active-standby M:1 Active-standby M:1

Recovery scheme

Only reroute flows
by SDN controller;
No Replay. state is

check pointed.

Replay mode: Replay
packets from Input logger +
PAL from Output Logger

Replay mode: Replay
packets from Root node +
play NF in replay mode

Re-route flows
to replica instance

Instrument MB code Minimal High* High Minimal

Failure Detection SDN Port_down
& connection down Not Addressed Not Addressed Not Addressed

Failure Types
Soft (NF) Failure: X
Link Failures: X
Node Failures: X

Soft (NF) Failure: X
Link Failures: 5

Node Failures: 5

Soft (NF) Failure: X
Link Failures: X
Node Failures: X

Soft (NF) Failure: 5

Link Failures: 5

Node Failures: 5

Checkpoint Freq/s 1000 5-50 – –
Service chain NO NO* YES NO

Failure Free Overheads

Latency Overhead (ppktmedian,99%ile) 15-20% (2-3ms)
5sec?

30us
35ms

2-3us
13ms

65-300us
1ms?

Throughput impact (% drop) 3-5%
50% due to pkt copy 5-30% Not Reported ∼15-20%*

Measured Packet/Data rate 10-200Mbps
10-200KPPS

1-10Gbps*
1.4-4 Mpps Not Reported 1-8Gbps

∼4.7Mpps
Service Unavailability RTT to SDN controller Not specified Not specified Not specified
Restoration Time Order of milli sec. 40-300 ms Not specified Not Applicable

13.2.1 Green Energy and Energy Efficiency

In [158], authors analyze the prospects of energy efficiency that can be achieved by
employing the VNFs for the Evolved Packet Core, Customer Premise Equipment,
and Radio Access Network in telecommunication networks. This study is seminal
in terms of establishing the energy efficiency prospects of employing the VNFs, but
does not study or account the consequences such deployment.

In [28], authors present the cloud service provisioning scheme to enhance the
stability of smart grid and maximize renewable energy and cloud resource utilization
by accounting the variability and uncertainty of both the cloud services and the
generation of power by the renewable energy sources.

In [159], the authors present a green abstraction layer (GAL) that provides more
sophisticated power management mechanisms for the routers, switches and NFVs,
specially in the Software Defined Networks (SDN) based networks. In [160], authors
analyze and present the energy efficiency implications of NFV for different packet
processing mechanisms. In contrast, we consider a more broader perspective and
target towards achieving energy efficient network infrastructure that can be powered
by renewable resources and still be able to meet the high availability and resiliency
requirements.
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14.1 Introduction

Work in the past [150, 153] has tried to address fault tolerance and high avail-
ability for individual network functions. Such approaches have excessive overhead
when adopted for service chains as we show below. Alternatively, some chain-level
approaches [121, 154] seek to provide reliability guarantees across several NFs, but
incur very high latency due to packet buffering delays. Designing comprehensive
failover mechanisms that can efficiently provide fast failure recovery for single NFs
as well as service chains, in either a single node or spanning multiple nodes is the
goal of our work. Additionally, we aim to guarantee consistency properties for NF
state and packet content under all failure situations. REINFORCE ensures that the
external view of the coherent state of an NF or a service chain with its backup is
consistent, while achieving external synchrony [161,162].

We recognize two distinct pieces of information to be maintained for effective
failure resiliency in an NFV environment. The application state (state for an NF
or chain of NFs) and the packet processing progress (per-flow logical timestamp).
When a chain of NFs is backed up on a different node, we use lazy checkpointing
of application state to reduce overhead during normal operation and buffer input
packets at a predecessor node in between the checkpointing instants. These input
packets are replayed to the backup node in case of a failure. Keeping track of packet
processing progress of all the flows (with a per-flow timestamp) then becomes the
minimum, critical information necessary to enforce correctness when the packets
are replayed. The application state (state of NF or chain of NFs) can then be
correctly recovered through replay. This allows us to commit a minimum amount of
lightweight per-flow timestamp information at a finer timescale, while committing
the more heavyweight application state at a coarser timescale.

REINFORCE guarantees correctness and achieves external synchrony by specu-
latively processing packets and compactly committing per-flow timestamps linked
to the checkpoints sent to the standby. We precisely replay to the backup only
those input packets that had been processed by the primary between the checkpoint
instant and a failure. Thus, unlike FTMB [150], we eliminate the need for per-
packet access logs at the NFs and also the need to enforce strict ordering of packets
while replaying packets at the backup even in a multi-threaded environment. Un-
like Pico Replication [153], REINFORCE hides the replication latency and improves
throughput by batching and overlapping multiple commit transactions, while allow-
ing the NFs to continue speculative execution with the judicious use of multiple
buffer stages. These improvements result in a dramatic performance improvement
over existing approaches. To summarize, our key contributions include:
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• Integrated Resiliency Framework: We present an efficient NFV resiliency
framework for DPDK based network functions and service chains with distinct
local and remote redundancy schemes (Section 14.3.1).

• Light Weight Application checkpointing: We design mechanisms to minimize
the state that needs to be replicated to the backup by taking advantage of logical
clocks, external synchrony, 2-phase commit, and dirty state tracking to enforce
correctness before releasing packets from a NF service chain (Section 14.3.2).

• Chain wide recovery: We present low overhead and low latency approaches to
achieve consistent recovery of all the network functions in a chain within or across
hosts (Sections 14.3.2.2-14.3.2.3).

• Fast Failure detection: We employ mechanisms to quickly detect NF (in order
of µseconds), link and node failures (in milliseconds) (Section 14.3.3).

• Optimization techniques: We exploit non-blocking, pipelined NF processing
with judicious batching and buffering to maximize the throughput, minimize la-
tency and avoid overhead during normal processing of the network functions (Sec-
tion 14.3.4).

14.2 Design Considerations

We first present the key requirements for an NF resiliency framework, different NF
deployment approaches, means to characterize NF state, and state-of-the-art failure
detection and failover solutions. From these, we highlight the key design aspects
considered in building the REINFORCE framework.

There are a number of key requirements for building an NF Resiliency framework
for service chains:

Correctness and Recovery transparency: NF state must be preserved and
consistently recovered across the replica nodes in the event of a failure. In addition,
for a chain of NFs it is necessary to ensure that all the NFs in the chain are able to
process flows without interruption, by preserving the necessary processing state at
each of the NFs in the chain.

Low Overhead: NFs are typically expected to process millions of packets per
second and serve large numbers of flows. CPU cycles and memory bandwidth are
at a premium. It is necessary to ensure that the performance impact of resiliency
support on NFs during normal operation (processing rate and latency) is minimal.

Generality: Given the diversity of types of network services and different deploy-
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ment patterns, it is necessary to ensure that resiliency solution can be easily adopted
for different types of network functions; it is important resiliency support be incor-
porated with minimal modifications to the NF’s code.

14.2.1 Deployment and State Management

Deployment: Our implementation focuses on NFs run inside containers, although
many of our techniques can be generalized to other approaches. Containers enable
cheap snapshots using tools like CRIU (Checkpoint Restore In Userspace) [163].
Unfortunately these cannot be trivially applied to NFs because they do not interact
cleanly with user-space I/O frameworks like DPDK [45]. Further, they cannot pro-
vide consistent checkpoints across groups of NFs run in different containers. For this
reason, we develop a resiliency abstraction in the NF framework that can identify
just the key NF state that needs to be backed-up in each container.

Service Chaining: NFs are typically chained to efficiently process flows through
multiple functional components. For example, we may have a Service Function
Chain (SFC) for HTTP traffic to traverse through a NAT, Firewall, IDS, and Load-
balancer NFs [16]. The ordering of the NFs needs to be preserved, even when failures
cause the flow to be routed to a replica. The NF chain (ordered list) needs to be
treated as a unit of processing rather than treating the individual NFs in isolation.

State Characterization: Network Functions keep a variety of state information,
including configuration parameters, counters, flow connection status, and application
specific variables. We focus on stateful NFs, e.g., NAT, DPI, IDS etc, which may
maintain global configuration state, as well as per-flow state. We further classify
state updates as either deterministic or non-deterministic, as discussed in the next
section. Finally, we also must consider the packets traversing a service chain as state
themselves because NFs may modify their data, and we must track their progress
through the service chain using logical timestamps. For correctness, all of this state
must be properly synchronized to the backup for each NF in a chain.

14.2.2 Failure Model and Detection schemes

Fast failure detection is key to providing fast failover. Here, we only consider Fail-
stop software and hardware failures, such as software crashes, link status changes,
power outages, etc.

Software Failures: For software failures, we rely on low level kernel events like
signals, traps and syslogs that can be effectively checked (queried or polled) to
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determine the status of individual software NFs. REINFORCE assumes that such
failures can be recovered by reloading the NF with a checkpoint of its recent state
and reprocessing any intermediate packets.

Link and Server Failures: For hardware failure detection we considered differ-
ent state-of-the art Layer-2/Layer-3 schemes such as LACP and OSPF, including
the SDN and Openflow based Echo and Fast Failover schemes. Ultimately, we se-
lected Bidirectional Forwarding Detection (BFD) [164–166], which is a lightweight,
protocol-independent liveness detection protocol that can detect link failures in mil-
lisecond timescales. By examining the status of multiple links we can also use BFD
to detect server failures. BFD does not take any remedial action, but simply trig-
gers event driven notification, which enables the NF Managers to quickly react to
failures, and as a layer 3 failure detection protocol, BFD is well supported by the
hardware on routers with ASIC-based forwarding planes.

14.2.3 Recovery: Replay vs. No-replay

Pico Replication [153] first proposed NF resiliency with a pure checkpointing (i.e.,
No-replay) scheme that buffers all the output and halts NF processing until the com-
pletion of the checkpointing (to assure state consistency). However, this buffering
results in high latency and degraded throughput during normal operation.

An alternative proposed in FTMB [150] is to maintain input packet logs (at a
predecessor node) and replay the log to reconstruct lost state after a failure. With
this approach output packets can be preemptively released before creating a full
checkpoint, since state can be recreated via replay. This overcomes the latency
impact for a majority of the packets, but adds complexity to NF development and
can incur high overhead to enforce a sequential ordering.

REINFORCE uses a combination of infrequent (lazy) checkpointing and replay
of packets. The key is to maintain external synchrony [161]: rather than provide
strict synchronization where NFs block until replication completes, REINFORCE
allows NFs to continue speculative execution of packets while a backup is performed.
Packets will only be released from an NF service chain once the backup has all the
information necessary for recovering from a failure. Relaxing from synchronous
replication to external synchrony means that processing can continue through the
service chain and for subsequent packets in the flow while still providing consistency
guarantees to clients receiving the packets. When a failure occurs, the backup node
can replay packets that have to be processed since the last checkpoint snapshot
and update the NF application state on the backup. A logical timestamp is used
to determine the packets that have been released since the checkpoint, so that the
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Figure 14.1: Architecture of REINFORCE

replay process does not transmit unnecessary duplicate packets downstream while
updating the backup state.

14.2.4 Non-Determinism

We acknowledge the existence of non-determinism, and present an alternative, sim-
pler approach to tackle it without the need for per packet access logs or enforcing
the strict ordering of packet access to shared variables.

We exploit the fact that non-deterministic updates are typically tied to specific
packets, e.g., the first packet in a flow may cause updates at several NFs, while
subsequent packets do not. Deterministic packets can be replayed with no prob-
lem. When an NF performs a non-deterministic state update (which we require the
programmer to annotate) we link it to the packet which triggered it. Then, due to
our use of external synchrony, we only need to ensure that by the time the packet
reaches the end of the service chain and is ready to be sent out, all of its dependent
non-deterministic state has been checkpointed to the standby, avoiding the need
to replay it after a failure. For example, in the same load balancer example, it is
sufficient to track the initial connection state update at the start of the flow, rather
than tracking and enforcing the access to shared global counters for every packet
processed by load balancer NF threads.

14.3 Architecture and Design

We present the key components of REINFORCE and briefly describe their roles.
We then present the design of REINFORCE in 3 subsections: failure detection;
redundancy schemes (for both a single NF and service chain) and failover mecha-
nism, whether on the same (local) host or on a remote host; and briefly describe
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optimizations that achieve high performance and correct failover.
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Figure 14.2: Local NF Instance Failover: On an NF instance failure, REINFORCE
migrates processing to a local standby (replica) NF.

14.3.1 REINFORCE Components

The key components in the REINFORCE framework are shown in Figure 15.1.

NF Orchestrator is responsible for provisioning the NF Manager nodes and des-
ignating the active and standby nodes for different service chains. It also configures
the BFD settings on each of the NF Managers in the cluster.

SDN Controller is responsible for populating the flow entries and forwarding rules
at each of the NF Manager nodes. In addition, it pro-actively configures the back-
up path options: a) in the case of multiple links, it configures the alternate output
ports on the predecessor nodes of the designated active NF manager node; and b)
configures the flow rules on designated replica standby nodes.

NF Manager is the core component of REINFORCE. It acts as the overall in-host
controller of the NF functionality, depending on DPDK’s framework for zero-copy
delivery of packet data to and between NFs of a service chain within the host. As
shown in Fig. 15.1, in addition to providing packet-switching within the host, the
manager is responsible to track the liveness of associated network ports (links) and
the NFs provisioned on it. It also provisions and provides the shared memory pools to
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the NFs to exchange packets, shared memory state, and message notifications. Each
NF that is a candidate to be protected against failures is integrated with a “libnf "
library that provides the necessary hooks, thus minimizing the changes required on
the NF. In addition, it implements the “packet logger" module to log and timestamp
all the incoming packets, and “RSync" module to provide consistent state replication
service to the NFs. We leverage both proactive and reactive configuration schemes
along the lines of [15, 18]. For software failures of NF instances, the NF manager
ensures fast and transparent failover to a local hot-standby NF. To address link or
node failures, the NFV Orchestrator, SDN controller and NF Managers coordinate
together to provide chain wide failover.

14.3.2 Resiliency framework

In this section, We describe our resiliency framework in terms of the applied redun-
dancy scheme, local and remote replication mechanisms to account efficient failover
for different failures. Our failover mechanism is built to accommodate the desired
hierarchical levels of resiliency for distinct service chains to suit the ETSI defined
resiliency levels.

14.3.2.1 Redundancy Scheme

We make use of the “Active–Hot Standby" configuration to facilitate NF resiliency,
where the state updates from the active NFs are consistently updated on the cor-
responding standby NFs. As memory is shared between the NF manager and NFs,
the manager takes care of replicating NF state while standby NFs themselves are
set to sleep state and do not consume any CPU cycles.

REINFORCE supports a variety of failure scenarios at both NF instance level
as well as service chain level resiliency. Software failures that can be recovered
by NF instances within the same host can be provisioned for 1:1 redundancy of
active:standby NFs. When a service chain is protected by a corresponding chain of
NFs on the same host, we protect each individual NF instance of the chain, thus
allowing REINFORCE to be resilient to multiple NF failures on the same node.

Second, we support failures at the chain level, where all the network function in-
stances of a chain are provisioned on a remote node (which can as well host other ac-
tive NFs) in standby mode. This supports link and node failures, whether hardware
or software failures. Multiple NF chains on different active nodes can be configured
to share the same standby node. Thus, we support M:N redundancy, enabling the
sharing of a single standby node by several active chains from other nodes. This
allows us to limit the number of required standby nodes.
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For a local standby, we spend additional CPU cycles for the active NF to synchro-
nize the NF state on the standby NF. This, however is transparent to the NF and
is completely handled by a set of library functions, “libnf". For a remote standby,
the NF Managers on the two nodes have an “RSync" thread dedicated to handle the
atomic state updates between them. Our evaluation shows that remote replication
consumes relatively little CPU and network bandwidth.

14.3.2.2 NF Resiliency with Local replicas

In scenarios where only software crashes must be tolerated, the replica NF (also
termed standby or backup) is provisioned locally in the NF Manager to provide
resiliency from NF instance failures as shown in Figure 14.2.

Standby NF: The NF Manager arbitrates the wake up of the standby NF. After
initialization, the backup remains in Pause state until the NF Manager releases
signals to wake up the NF. Once the NF Manager detects the failure of an active
NF, it wakes up the standby NF and lets it process subsequent packets. Thereafter,
once the active NF is restored, the standby NF is moved back to the pause state,
allowing the active NF to continue processing packets. The NF Manager (along with
libnf library) brings the NF state up to date before letting the NF start processing
the packets.

NF state checkpointing: We use a “no-replay" scheme to synchronize the active
and standby NFs when they are on the same host node (local replica). We strictly
enforce an “output commit" property: i.e., no output (packet/s) are released by
an NF until all of the corresponding NF state is updated on the backup/replica
instance. It is achieved by copying the NF application state modifications (state
affected by packet processing) to the replica NF’s shared memory. CPU overhead
and latency for local memory copies varies based on the size of data copied and the
number of copy operations required to synchronize the state. To ensure the memory
state is consistent when the copy is performed, we trigger checkpoints after an NF
finishes processing a packet or batch of packets.

14.3.2.3 Chain wide Resiliency with Remote Replica

We employ both checkpointing and packet “replay" to provide resiliency from host
node failures and link failures (that result in loss of connectivity) when the backup
is on another node, as shown in Figure 14.3.

Standby Server: The NF Orchestrator designates the standby NF server node
and notifies the NF Manager at the node with the Active NFs of the chain as well as
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the predecessor node serving the NF chain, as shown in Figure 14.3. The node with
the Active NFs and the predecessor node monitor the liveness status using BFD,
which we discuss in detail in Section 14.3.3 If an alternate route to the primary
server exists after a link failure (i.e., an alternate output port has been configured
by SDN controller), the predecessor node simply redirects the traffic. If a link or
node failure makes the primary unreachable, the predecessor node initiates the
replay mode on the designated standby.

Chain wide state checkpointing: REINFORCE relies on five key concepts
namely i) Input logging with timestamps, ii) Latch buffers for external synchrony,
iii) Pipelined replication, iv) Atomic state updates, and v) Replay-based recovery to
assure consistent and efficient failure resiliency of chains replicated to a secondary
host.

1. Input packet logging with Logical Time stamping: In REINFORCE, all the
packets are logged (buffered) at the input (predecessor node in a multi-host chain)
and appended with a logical timestamp (e.g., simple 64 bit packet counter)40. The
input packet log at the predecessor node is used to replay packets to the standby
node when an active node fails. At the active NFV node, the timestamped value
of each packet is used to track the packet processing progress for each flow. This
information is maintained in a Transmit Timestamp (TxTs) table replicated across
the primary and backup nodes. The input logger clears buffered packets upon
notification by the active node’s NF Manager.

2. Transmit Latch Buffers In order to provide external synchrony, packets must
be buffered until any state related to packets with non-deterministic processing
has been replicated to the backup. If packets did not cause any non-deterministic
state updates (which is often the case), then they can be released more quickly
since the standby must only record their timestamp in order to know which
packets must be replayed in the event of a failure. Packets are stored in a latch
buffer at the end of the service chain on the primary server. Once a TxTS table
commit acknowledgment arrives from the standby indicating the timestamps
and any non-deterministic state has been recorded, the packets are released to
downstream external nodes. We implement several optimizations described in
Section 14.3.4 to reduce the cost of remote communication and the latency for
packets that may have to wait for the state update to the replica.

3. Pipelined Replication: Our remote replication scheme simplifies consistency
and improves performance by leveraging the local replicas that we already provide

40A single nondecreasing counter is sufficient on the Logger; this in turn gives monotonic per-flow
counters when packets are demultiplexed on the primary node
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for software failures on the primary host. The local replicas have their state
updated at the end of each batch of packets, as described above, which gives a
consistent version of the state which can be copied to the remote server without
any need to pause the primary replica. As discussed previously, REINFORCE
differentiates between deterministic and non-deterministic updates to either NF
state or packet data. Deterministic updates can be recovered via replay on the
remote host, so state checkpoints do not necessarily need to be replicated to the
backup for every batch. Instead, each NF in the chain replicates in a lazy fashion
to reduce overhead. On the other hand non-deterministic state updates cannot
be replayed, so packet batches with non-determinism need to have a checkpoint
replicated to the backup before they are released from the primary. Fortunately,
this replication can be parallelized with further packet processing in the remainder
of the chain until the packet is ready to release in the latch buffer.

4. Atomic State Updates: REINFORCE follows a 2-phase commit protocol to
provide atomicity between state updates at the backup and packet releases at
the primary. Our commit protocol begins when the primary sends its updated
Transmit Timestamp counters and any non-deterministic state updates that are
necessary. The secondary associates the logical clocks (flow-specific Transmit
Timestamps) with the arriving checkpoint state, and ensures that both of these
are fully received by all NFs in the chain before acknowledging back to the primary.
At this point, the primary can release its Latch Buffer so packets can continue
on to their destination. It then notifies the secondary so that it can commit
the checkpoint state. State updates resulting from deterministic operations are
transmitted periodically; once this state has been received, the predecessor node
can be notified to clear its input log.

5. Replay: The use of latch buffers and atomic state updates guarantees “external
synchrony,” i.e., the state maintained at the backup can be made consistent
with the output packets that have been released from the primary server. Note
that since deterministic application-level state is only replicated periodically, it
is possible for the standby to recover to a state where the TxTs table says that
some packets have been released, but the backup state does not yet reflect the de-
terministic updates they should have produced. Thus, in the event of failure, the
standby NF chain must rollback to the last checkpoint and replay any subsequent
packets so that the external view of the system (outside of the chain) is the same
whether the failure occurred or not. However, since a chain has multiple NFs and
their state updates may arrive at different times, it is possible for a packet to need
to be replayed through some NFs which have already processed it. We believe that
NFs are already designed to be robust to receiving duplicate packets—duplicate
transmissions are a regular occurrence in wide-area networks, and thus this does
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not require special handling. The exception to this is processing packets involving
non-determinism, which is why we ensure tight state consistency for them—such
packets are only released once their state has been confirmed by the backup.

14.3.3 Failure Detection

14.3.3.1 NF instance Failure Detection

NF Managers are responsible to track the liveness of all provisioned NF instances.
The NF manager detects NF Instance failures in two ways. First, it captures ’volun-
tary’ NF instance failures, by registering for event notification and messages that are
triggered via OS (Linux) signals and NF Instance-specific messages, when any catch-
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able exception occurs at an NF Instance. Second, for involuntary NF terminations,
the NF manager performs periodic (every 100 µseconds) checks via the kill(0) sig-
nal to check and deduce the status of all the registered active NFs. This operation
is carried out by the NF Manager’s “Monitor thread” which is also responsible for
other tasks such as NF registration, de-registration and logging of statistics. The
100 µseconds probe interval is system configurable. Even at a 100 µseconds probe
interval, the CPU overhead is less than 1%, to track the liveness of 64 NFs.

14.3.3.2 Link and Node Failure Detection

We make use of BFD and adapt the configuration settings to mirror those suggested
for S-BFD [167] to provide both link and host failure detection.

BFD configuration and Tunable parameters: At the time of node initializa-
tion, the NF Manager is configured to initiate BFD in active mode for each of the
host’s ports. We configure the BFD minimum Rx and Tx transmit timer intervals
to 1 millisecond and the detection timeout multiplier to 3. When the session is initi-
ated in active mode, it probes at a low frequency, once every 100 milliseconds (10Hz)
for the remote end to establish the connection. Once the session is established, the
connectivity probe frequency increases to 1000Hz, so that link or remote node fail-
ures are detected within 5 milli seconds41. We tuned these values (parameters set at
compile time) for our nodes and are more aggressive than recommended for normal
network BFD operation [164].

Even in the worst case, with the link operating in active mode and with a frequency
of 1000Hz, BFD packets (60 bytes) account to less than .005% of the 10Gbps link
bandwidth. Setting the probe frequency > 1000Hz for directly connected links
resulted in considerable false positives even at lower traffic rates.

Distinguishing link vs. node failures: When BFD is configured per link, and
when nodes share multiple links, it is possible to differentiate link failures (even
when another link status becomes active in the next iteration cycle), from node
failures (where all BFD links show they are down). This differentiation is necessary
to ensure quick failover at the link layer (re-route to a different port) that can be
handled locally with no overhead, rather than initiating a full NF chain failover to
a designated remote-node.

413 milli seconds for asserting three consecutive probe failures, plus an additional cycle to confirm
if single or multiple links have failed
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Figure 14.5: Effect of Tx Hold ring buffer size on Throughput and latency

14.3.4 Tuning, Assumptions, Limitations

There are a number of optimizations we used to lower the processing overhead in
normal operation. To amortize per packet processing cost, we perform the state
replication and packet release tasks across a batch (32) of packets. We also tune
the size of the Latch ring buffers to hold outgoing packets. Fig. 14.5 examines the
impact on round-trip latency as the size of the output ring buffer varies, for simple
forwarding. With a 200µseconds RTT and the input at 10 Gbps, increasing the
buffer size from 1K to 4K and 8K can double or triple throughput, while incurring
less than a 20% increase on tail latency. By having multiple latch buffers, we achieve
concurrency between the replication of state and packet processing.

During replay mode, upstream NFs of an NF chain may process duplicate packets
for various reasons. We assume (safely) NFs are able to handle duplicate packets
without impacting correctness. Similarly, because REINFORCE depends on logical
packet timestamps, we can tolerate packet re-ordering. However, we need to check
the timestamping for replay mode to avoid re-release duplicate packets. To accom-
modate timers, NFs must explicitly annotate them so that the remote standby can
instantiate timer events after a failure. We describe these issues in greater detail in
[35].

14.4 Implementation

REINFORCE is a capability built onto OpenNetVM [46], which is a DPDK [45]
based NFV platform. We implemented the following modules i) Packet logging: to
add a logical timestamp and log all the input packets to stable store, which are
then recycled after the configured refresh interval; ii) RSync: to enforce external
synchrony and perform the two-phase commit transaction using multiple latch
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buffers; and iii) Liveness Monitoring: to monitor the liveness of locally provisioned
NFs and BFD sessions across the configured links. We dedicate 1 CPU core each
for the RSync and Liveness monitoring functions.
Our extensions to the core NF Manager [46] framework are minimal. We extended
the control framework to coordinate failover via the pause and resume event no-
tifications to the Active and Standby NFs and also to perform failover actions in
case of remote link failures. We modify the default packet-out functionality to
conditionally transmit packets to the RSync output ports instead of DPDK NIC
ports, to account for the transmit state timestamp for each flow and to enforce 2
phase transaction commit.

14.4.1 Local Failover

Shadow Rings: In a typical NF platform implementation, subsequent to the NF
processing, packets are handed to a transmit ring to be sent out on the network
link or forwarded to another NF in a service chain. REINFORCE introduces the
concept of a “Shadow Ring" on both receive (Rx) and transmit (Tx) ends of the
NF processing pipeline. Shadow rings are shared ring buffers between active and
standby (replica) NFs. Rx shadow rings buffer the batch of packets that the NF
needs to process and Tx shadow rings buffer the batch of post-processed packets
for which the state updates have not yet been reflected on the replica NF. They
enable enforcement of “output commit" for state update on local standby NF and
also minimize packet loss in the face of NF failover. Benefits of a shadow ring are
two-fold. First, in normal processing, on the transmit end, they enforce output
commit and ensure correctness of the state update on the replica, by allowing the
transmission of a batch of processed packets only after the NFs state is updated on
the replica. Second, when a local failover is required due to NF failure, the receive
end shadow buffer enables the replica NF to immediately pick up from the first
unprocessed packet, while allowing to discard the previously processed packets for
whom the state-update has already been completed.

Shared Memory pool: Network functions have two kinds of application state,
i) External or the shared state across all the NF instances; and ii) Internal state
including the per-flow state and instance specific configurations for each NF. To
account for shared state, NF Manger allocates and maintains a per service type
memory pool. The size of this memory pool is a configurable parameter. In our
experiments, we set this to 4 MB (our most complex NF, based on the nDPI library
uses 2.8MB). To account for internal NF specific state, the NF manager allocates and
reserves a dedicated memory pool for maintaining this state for each instantiated
NF instance. The size of this memory pool is again a configurable parameter. In
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our experiments, we set this to 64 KBytes.

Tracking Dirty State : To ease development, we do not require explicit APIs for
NFs to interact with their state, as is done in prior work. Instead, we define mem-
ory pools for each NF state type, but allow NFs to perform arbitrary operations to
these regions. REINFORCE automatically detects dirty state regions by scanning
small chunks of the NF and service state memory pools to detect changes, similar
to FaRM [168]. In our evaluation we configure the number of state chunks to 64,
allowing the minimum transferable chunk size for NF specific state to 1KB and for
the shared service state to 64KB. The only API that NFs must use when manipu-
lating state is setting a per-packet flag that indicates if it caused non-deterministic
updates.

14.4.2 Remote Failover

Atomic Two phase commit transaction: We use a simple UDP like best-effort
connectionless transport (while it is desirable to have a reliable transport, we wish to
avoid the connection setup and initial handshake overheads of TCP) to deliver up-
dates to the backup and use sequence numbers to identify any missing packets. We
use a custom Ethernet type to differentiate state update packets from the regular NF
destined packets associated with the DPDK port. If packets are lost, we abort the
transaction and resend new updates. State transfer packet headers include the fields
to indicate the type of packet transfered (either state transfer or acknowledgement
packet), type of state (NF state, service configuration information, or Tx Times-
tamp), size of the packet, base offset address, packet sequence number and ‘last
packet’ flags. In our testbed implementation, for expediency in our experiments,
we have dispensed with the final acknowledgment from the primary to the standby
as the last phase of the 2-phase commit protocol, but we expect the performance
results to be accurate.

Accounting for failed transactions: When the Tx state update commit acknowl-
edgement is not delivered to the primary, the NF manager may be blocked, resulting
in port buffers getting full and subsequent processing by NFs being discarded or
stalled. To avoid this, we have a transaction timeout after which the NF manager
aborts the transaction and continues to process the subsequent packets and resend
new updates.

Tx timestamp state update overhead: We opportunistically perform the trans-
mit timestampe table state updates as often as possible. The frequency of operation
is limited by the RTT and number of configured latch buffers on the system. As-
suming a best case RTT (across two directly connected nodes) of 100µ seconds,
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performing each Tx timestamp checkpoint in the worst case needs to transfer the
entire TxTs table of 64KB (64 1KB packets), an overhead of less than 4.25%. Our
use of large latch buffers (8K) enables to checkpointing at slow rate (roughly once
every 5 RTTs) i.e., performing checkpoints once every 500µ seconds, reducing the
link overhead to less than 0.85%.

Sample NFs: We implemented or ported existing NFs to use REINFORCE’s state
memory pools. NFs such as the Monitor, VLAN Tagger (e.g., for differentiated QoS
treatment), Load Balancer, and DPI (using nDPI [169] library) NFs also use the
service memory pool to share common state across instances.

14.5 Evaluation

Our experimental testbed has three Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz
servers, each with 157GB RAM, running Ubuntu SMP Linux kernel 3.19.0-39-
lowlatency. For these experiments, nodes were connected back-to-back with dual-
port 10Gbps DPDK compatible NICs to avoid any switch overheads. We make use
of DPDK based high speed traffic generators, Moongen [97] to generate line rate
traffic consisting of UDP and TCP packets, and wrk [170] to flood HTTP download
requests. We vary the number of flows and the NF chain setup as needed for each
experiment.

14.5.1 Operational Correctness/ Performance

First, we demonstrate operational correctness of REINFORCE with Graybox and
Blackbox tests.

14.5.1.1 Graybox tests

We first validate correctness of failover operation through instrumented template
NFs that check for consistency of NF state updates and packet processing. If any
packets are obtained with incorrect content (inconsistency between state embedded
in the NF and packet content) then the NF flags the error to the NF Manager and
the NF terminates. We run a script to perform 10K forced terminations and re-
activation of the Active NF. Each time the Active NF is forced to fail, the failover
to the backup NF happens automatically. and when the active NF is re-instantiated
the NF state is updated and flows are re-routed back to the active NF.
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14.5.1.2 Blackbox tests

We assess the application level of failover through end-to-end test scenarios.

DPI based protocol detection: We demonstrate REINFORCE with a DPI NF
and feed it PCAP traces available at NTOP [169,171]. We observe that the DPI NF
identifies the protocols correctly both without failures and when the primary fails
and REINFORCE fails over to the backup.

Table 14.1: Using Pcap traces to verify correctness

Pcap_trace Detected Protocols
mpeg MPEG
Hangout GoogleHangout
Youtubeupload YouTubeUpload
Snapchat SSL_No_Cert, Snapchat
QUIC GMail, YouTube, Google, QUIC

Table 14.2: Effect of Failure on HTTP downloads
Baseline w/o Res w/ Res

Total requests 652 294 626
Total read bytes 65.84GB 31.14GB 63.83GB
Requests/sec 10.85 4.9 10.43
Transfer/sec 1.10GB 531.07MB 1.06GB

HTTP downloads: We route the HTTP downloads through a service chain of 2
NFs (VLAN Tagger and Monitor). We initiate repeated HTTP download requests
for a period of 60 seconds, and trigger the VLAN Tagger NF instance failure at the 30
second mark. We observe the impact on the HTTP downloads without REINFORCE
(w/o Res) and with REINFORCE’s failover mechanisms (w/Res) and compare to
baseline failure-free case. There is very little impact on the application (Table 14.2
and Fig. 14.6). There is a dramatic improvement with REINFORCE after the NF’s
failure at 30 secs. In all these experiments, we configured the number of latch buffers
(i.e., multiple transaction buffers) to 3.
Failover Times: We measured the times for local and remote failovers from the
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Figure 14.8: CDF of packet latencies for DPI and Load Balancer NF Instances with
different replication schemes.

instant we induce a failure. For local failover: mean= 56µs and maximum= 114µs.
For remote failover: mean= 5917µs and maximum= 6441µs. This includes failure
detection time with BFD and for the predecessor node to initiate the failover at the
backup by starting replay of buffered packets.

14.5.2 REINFORCE vs Pico Replication

We compare REINFORCE with Pico Replication [153]42 for a number of different
NFs in terms of i) overhead during normal operation reflected in throughput, and ii)
latency of packet processing (additional state update operation), for individual NF
instances. Fig. 14.7 shows the normal operation’s throughput, in Mpps (note log
scale, along with error bars). Local replication performs almost as well as baseline
(no resiliency). REINFORCE’s remote replication sees slightly lower throughput,
but still achieves near line rate ∼12.5Mpps throughput for NFs like Simple For-
warder, Monitor and VLAN Tagger (QoS). More importantly remote replication
still outperforms Pico replication by 2 orders of magnitude. Fig. 14.8 shows the im-
pact on packet latency for different NFs. Local replication adds less than 5 µseconds
to the baseline case. Remote replication adds roughly 400 µseconds (we show results
for two selected NFs).

42We implemented the application checkpointing and output commit policy as presented in [153].
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Figure 14.9: Measure of latency for flows configured with different resiliency levels

14.5.3 Differentiating Resiliency Levels

We demonstrate the benefit of REINFORCE’s ability to have different flows con-
figured with different resiliency levels. REINFORCE provides the desired resiliency
while isolating them from each other. We have a single Monitor NF, configured to:
(a) one NF instance with only local resiliency (backup on the same node for flow-1);
and (b) another NF instance with resiliency at the node-level (remote standby) for
flow-2 and chain2 with only local replication for the Monitor NF and input two
flows, one for each chain. Observe the difference in the latency for the two flows
in Fig. 14.9, because REINFORCE provides different levels of resiliency for the two
flows.

14.5.4 Impact of Chain Length

In this experiment, we consider two experiments with different chains lengths. First,
Chain1 has 2 NFs: QoS and Monitor. In the second experiment, Chain2 has 3 NFs:
QoS, Monitor and Load balancer. We feed line rate (10 Gbps, 64 byte packets) input
and measure the overhead of state replication to the backup during normal operation,
in terms of impact on throughput and latency. We use 3 buffers. We compare
four cases: baseline (OpenNetVM with no resiliency); Only local replication; ’full’
REINFORCE with a remote replica; and finally a comparison with Pico Replication.
We show the throughput (in Mpps, note the log scale on the Y-axis) in Fig. 14.10.
Going from chain length 2 to 3, the baseline and local replication see close to 10 Mpps
with very little impact. Remote replication sees a small reduction in throughput.
However, REINFORCE has a throughput that is 100x better than Pico Replication.
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14.6 Conclusion

To our knowledge, REINFORCE is the first work to address chain wide network
function resiliency, supporting detection and recovery of software, server, and link
failures. REINFORCE automatically tracks and replicates state to standby NFs
while enforcing correctness.

Local replication of NFs on the same host is extremely lightweight—incurring less
than 1% overhead—by exploiting the shared memory framework of OpenNetVM.
The amount of state replicated is minimized by using ‘lazy’ replication of NF appli-
cation state across hosts, and packet replay is used to speed up recovery of deter-
ministic NF processing.

Non-determinism in NF processing is also handled by requiring programmers to
annotate such updates, and avoiding packet replay at the standby after a failure.
We introduce a logical timestamping scheme that tracks packet processing progress
and exploit external synchrony to allow pipelined processing and replication across
a chain. Performance results show that the overhead of REINFORCE yields a 100x
throughput improvement over Pico replication, a current state of the art technique.
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15.1 Introduction

As outlined in Section §12.1.3, the renewable energy backed DCs or the GDCs are
vulnerable to disaster due to power outage or power shortages. To account for
Disaster Recovery (DR) in such circumstances, we present our work REARM43.

REARM aims to enable running the VNFs in renewable energy backed data cen-
ters while providing sufficient degree of reliability and high availability. REARM
makes use of the most preferred active-standby redundancy mechanism with many-

43REARM: Renewable Energy bAsed Resilient deployMent of Virtual Network Functions.
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Figure 15.1: REARM Architecture.

to-many44backup model [150,172] to address the sustained VNF availability even in
the unstable and intermittent power outage issues faced by GDCs.

The key contributions of our work include:

• Distinction of NFV heterogeneity, different deployment models and the associated
challenges in providing resiliency and high availability.

• Introduce REARM, that presents a generalized NFV framework to migrate VNFs
efficiently and seamlessly in order to achieve high availability and resiliency to
power instabilities of GDCs.

• Design and implementation of novel push-pull and adaptive threshold based state
migration techniques, that enables to lower the warning times on the order of
milliseconds.

• Preliminary evaluations on a prototype testbed using the controlled experiments
to demonstrate the benefits of employing REARM.

44Multiple NF instances of same type in GDC can be backed-up by one or more NF instance in
SDC.
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15.2 REARM Architecture and Design

15.2.1 REARM: Architecture

We envision SDN based network with NFV management and Orchestrator to provi-
sion the VNFs on physical nodes. REARM’s architecture is based on the ETSI-NFV
framework [15]. Figure 15.1 shows the high level architecture and key components
of REARM. We briefly describe the role of the key components and concepts of
REARM’s architecture.

15.2.1.1 NFV Orchestrator

NFV Orchestrator (NFVO) is responsible to manage, coordinate and communicate
with the VNF managers to handle snapshot and restoration of stateful VNFs in a
data center.

15.2.1.2 VNF Managers

NF Manager is responsible to instantiate the VNFs and to perform snapshot and
restoration of VNFs on a physical node.

15.2.1.3 SDN Controller

SDN Controller is responsible to implement the flow policies, i.e., to configure the
service chain for the flows and to setup the forwarding rules/route for the flows to
traverse through the desired chain of VNFs within the data center. Also, the SDN
controller is responsible to migrate and re-route the flows to the appropriate VNFs
in the data center.

15.2.1.4 Advance Warning Time

We leverage the YANK [29] concept of advance warning time (AWT) to backup the
transient VNFs on the stable nodes. AWT refers to the estimated period until when
the renewable energy backed universal power supply (UPS) is expected to last and
sustain running the nodes reliably. The computation of AWT depends on the UPS
capacity and the estimated power consumption of the rack45. NFV orchestrator is
responsible to estimate the warning time and communicate to the VNF managers
and SDN controller.

45AWT need not be accurate, a rough estimate of around 40-50% of the total expected UPS
discharge time is sufficient.
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15.2.1.5 Snapshot and Restore Mechanism

Both the stateless and stateful VNFs are backed-up on stable nodes and only the
stateful NFs need to be periodically updated with the state changes. VNF manager
is responsible to periodically transfer and synchronize the the VNF states of the
Transient VNFs with the standby VNF replicas. With multiplexed backup scheme,
REARM optimizes the VNF state transfer by combining the state of all the VNFs
that are replicated on the same remote node.

Multiplexed Backups: We make use of the N:1 backup model, such that more
than one transient VNFs in GDC can be backed up on a single node in the brown
energy powered data center. In general, our backup scheme across DC is N:M, where
N>M. This configuration helps to trade performance with power for the duration
the VNFs are expected to run on brown energy. With multiple VNFs backed on
single node in SDC, ensures to save on brown energy, but at the cost of increased
latency and lower throughput for short period of time. Once the power levels are
back to normal operating conditions, NFVO triggers for the restoration of transient
VNFs from the stable data center.

Addressing SFC: In order to account the service chains, we optimize by batching
the updates for an entire chain of VNFs, so that the state of VNFs in a service chain
is coherently synchronized and backed-up on stable services, instead of updating
the state of each NF individually, which significantly reduces the communication
overheads involved in state transfer.

15.2.1.6 Routing update

When both the transient VNF and standby nodes are in the same data center, the
routing update is simple and incurs less overhead, as it only involves setting new
set of forwarding rules to redirect flows towards the new instance. However, routing
across data-centers is more complex and incurs delay in the order of seconds [173].

15.2.2 Design

Figure 15.2 illustrates the VNF state migration mechanism of REARM platform.
We summarize below the key steps illustrating the working of REARM.

VNF Setup (1A, 1B): When the VNFs are provisioned, the NFVO sets up the
active (Transient VNFs) on nodes powered by renewables and the associated back-up
nodes. Depending on the DC power Infrastructure, these can be mapped either on
different nodes in same data center or on GDC and SDC respectively. VNF Manager
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Figure 15.2: REARM’s Operational steps for VNF migration.

on each of the host node is responsible to periodically extract the state updates of
the transient VNFs and communicate to the VNF manager that hosts the standby
VNF node. SDN controller is responsible to setup the forwarding rules for the flows
that need to be processed by the VNF instances accordingly.

VNF State Tracking (2A, 2B): libnf periodically extracts (pull mode) the
VNFs state change and sends the information to the NFManager. Also, the VNF can
explicitly trigger to communicate the state changes at the end of packet processing.
This is useful to save critical state changes instantaneously, especially in the case
of NFs that track per-flow state and update critical states during processing of
intermittent packets like stateful firewalls and IDS.

VNF State Migration and updating (2C, 2D): NF Manager, upon receiving
updates from the vnflib, transfers the state to the back-up nodes. Upon receiving
the packets, the restore manager on the standby node identifies the corresponding
VNF and notifies the vnflib to trigger for the state update.

Handling Downtime and restoration (3A-3D): Once the warning time is
delivered by the UPS, the NFV Orchestrator (NFVO), communicates the warning
time to all the VNF mangers and waits for the notification of state transfer comple-
tion. VNF managers perform best-effort approach to complete the state transfers
within the specified warning time. Upon completion notification, or timeout, NFVO
directs the SDN controller to setup and update the forwarding rules to redirect the
traffic towards the VNFs in SDC. In case of LAN (within same data center), the SDN
controller updates the forwarding rules in the switches to route the packets to the
destination node. But, in the case of wide area networks (WAN), the Multi-Protocol
Label Switching (MPLS) based VPNs are created as an abstraction for private net-
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work address space shared across multiple data centers. NFVO in SDC also initiates
the SDN controller and VNF managers on stable node to switch from standby to
active mode. Once the power levels resume back to normal, the restoration from
SDC to GDC is triggered and VNFs switch back their roles.

15.3 Implementation

We have implemented REARM using a DPDK-based NFV platform [46] for fast data
plane processing, and leverage POX SDN controller to serve as REARM controller.

Table 15.1: VNFs used in our experiments
VNF State update mode State info type

Monitor (MON-0) Stateless VNF -

Monitor (MON-1) per-flow Global:128 B,
Flow Table: 8 KB

Monitor (MON-2) per-flow and
per-packet

Global:128 B,
Flow Table: 32 KB

Packet Logger
(PLOG)

per-flow and
per-packet

Global:128 B,
Flow Table: 32 KB

We also implemented custom stateful VNF variants (Monitor and packet logger)
that maintain per flow and per packet states, with aggregate state information size
of 8KB and 32KB, supporting upto 1024 flows as shown in Table 15.1. Overall
implementation46 of REARM components NF Manager, libnf, excluding the custom
VNFs is ∼ 1200 lines of code. All the VNFs link with the libnf that facilitates for
VNF state import and export functionality.

Communication Mechanism: REARM provides a simple library called libnf,
which abstracts the communication with the NF Manager from the VNF implemen-
tation. libnf is responsible to transfer and notify the VNF state updates with the
NF Manager using the shared memory buffers. The libnf APIs allow the application
code (VNFs) to export and import the VNF specific internal states are shown in
Listing 15.3. At the time of initialization, VNF must register the callback function
callback_fn() with libnf library. As the state characteristics are intrinsic and dis-

46We only account the implementation added to support VNF state migration and communica-
tion framework.
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//Callback registration with vnflib

int vnflib_init(int nf_type, void (*callback_fn)(ip5tuple *flow_spec,

state_type type, void *buf, size_t size));

//Pull mode API to Get NF’s current state.

int pull_nf_state(ip5tuple *flow_spec, state_type type, void *buf, size_t

size);

//Push mode API for NF’s to update state.

int push_nf_state(ip5tuple *flow_spec, state_type type, void *buf, size_t

size);

//Set the obtained VNF state to the VNF

int set_nf_state(ip5tuple *flow_spec, state_type type, void *buf, size_t

size);

Figure 15.3: libnf APIs exported for facilitating VNF state transfers.

tinct for each VNF, the payload to export the state is treated as opaque pointer by
libnf.

NF Manager implements the socket based communication protocol with the NF
Manager on the remote nodes to transfer the VNF states. In order to accommodate
variable sized state information of multiple VNFs to be transferred in a single packet,
we package each VNF’s state with tag-length-value format encapsulated in the UDP
payload.

Adaptive Threshold and Push-Pull based State Transfer: libnf periodi-
cally (every 100us) pulls the VNF state and export to NF Manager. NF Manager
buffers it until state of all NFs in the chain is obtained. But, when any VNF up-
dates state with push based API, the state is immediately transferred to ensure
that critical VNF states are synchronized. Threshold is dynamically computed by
VNF Manager, which determines the total bytes of data that can be buffered and
transferred for each service chain. Threshold computation is based on the number
of service function chains served by VNF manager, measured round trip time to
update VNF state on the replica, and previously issued AWT.

15.4 Evaluation

We performed preliminary evaluation on our university testbed. Our testbed has
three Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz servers, with dual-port 10Gbps
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(a) Overhead impact on Flow Completion Time of Web requests.

(b) CPU overhead for different VNF types.

Figure 15.4: Communication and Computation overhead analysis of REARM



167 15.4 Evaluation

Figure 15.5: VNF migration time for different flows and chain lengths.

Table 15.2: Performance analysis using Apache bench, 10K web requests 32KB files
with 500 concurrent requests

Total Time Mean Latency Transfer rate
Baseline (Moniter) 47.119s 4.712ms 6842.08 KBps
Monitor (MON-2) 49.52s 4.952ms 6510.12 KBps

DPDK compatible NICs, running Ubuntu SMP Linux kernel 3.19.0-39-lowlatency.
We designate one each for traffic generation, GDC node and SDC node respectively.
We make use of Moongen [97] and Apache bench to generate line rate traffic and
HTTP web traffic with varying numbers of flows.

Our primary focus of evaluation is i) to analyze the overhead of REARM in terms
of processing cost and throughput, necessary to perform VNF state transfer and
update the replica ii) to quantify the effectiveness of REARM for different service
chain lengths and iii) demonstrate how quickly the VNFs can be replicated and
restored on the remote nodes.

15.4.1 Overhead analysis

Latency and Throughput: First, we evaluate the latency and throughput over-
head for running HTTP web requests using Apache bench. In this setup, we launch
a total of 10K web requests, running 500 concurrent sessions, where each flow routed
through a VNF, downloads 32KB file from the nginx web server. We compare VNF
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that updates state for every processed packet with the baseline (without libnf state
transfer). Table 15.2 shows the impact on mean latency (measured across all the
concurrent sessions, has an increase of 240 µs), and the aggregate transfer rate
(measured across all the web requests dropped by 4.8%) are very minimal.

Next, we run the same experiment on a chain of 3NFs i.e., 1 VNFs with per-flow
(MON-1) and 2 per-packet (MON-2 and PLOG) state update VNFs and capture
the CDF of flow completion time as shown in Figure 15.4a. We can observe that
the latency impact measured in terms of flow completion time is minimal and re-
mains consistent without adding any additional tail latency i.e., the relative flow
completion time of 90th, 95th, 99th percentile of flows is not impacted.

Computation overhead: Figure 15.4b shows the CPU overhead incurred by
VNF using the libnf for exporting the VNF state to the NF Manager. For this
experiment, we use the variants of Monitor VNF (baseline) and compare with the
stateless, per-flow and per-packet state update to estimate the computation cost
overhead added in each of these cases for performing the VNF state transfers. We
set packet size of 500 bytes and vary the load using the DPDK Pktgen tool, and
record the average CPU utilization of the core pinned for executing the VNF using
the mpstat tool.

We report the average CPU utilization reported over a period of 10 seconds for
five different runs. We observe that CPU utilization for the stateless VNF is same
as that of the Baseline VNF. And, compared to Baseline VNF, MON-2 (per-packet
state update VNF) incurs highest CPU overhead, but even at 100% load (10Gbps),
the average increase in CPU utilization is less than 5%, indicating the computation
overhead of REARM is negligible.

15.4.2 NFV Resiliency and Warning Time Analysis

In Figure 15.5, we evaluate the VNF state transfer completion time for different
service chain lenghts, after issuing the AWT, which is set to 10 seconds based on the
solar and wind energy powered data center traces in [29]. Setup for chain length 1,3
are same as before, and we add two more VNFs (MON-1 and MON-2) for the chain
length of 5. We launch long running flows and vary the number of flows served by
VNF chain, and measure the time taken to completely transfer the VNF state.

We can observe that the state transfer time increases with the increasing number
of flows, and is in the order of few (1-30) milliseconds. The increase is primarily
due to state transfers performed for each flow. Second, with the increasing chain
length for a given number of flows, we observe that the state transfer time remains
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almost the same (only marginally increases) due to service chain based optimization.
Also, we notice that 26 milliseconds is sufficient for 5NF chain serving 1000 flows to
complete the VNF state transfer.

15.5 Conclusion

To summarize, we have characterized and analyzed the benefits and challenges in
employing the Green Data Centers (GDCs) for VNFs. We have designed and imple-
mented REARM , especially to cater towards the special needs of VNFs migration,
and introduced the concept of Transient VNFs, which can be sufficiently restored to
stable powered nodes within the specified advance warning time.

With prototype based evaluation on our SDN/NFV testbed, we have demon-
strated the potential benefits of incorporating REARM towards achieving high avail-
ability and resiliency with VNFs, with the known warning times for the Green Data
Centers. REARM exhibits extremely low computation and communication over-
heads (less than 5%) and able to efficiently migrate VNF states for service chains
serving thousands of flows in less than 30 milliseconds.
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Future Prospects

In this chapter we present the possible areas of extension of our work. We consider
and present the future prospects of the proposed NF and NSC failure resiliency
mechanisms of REINFORCE and DR schemes of REARM, in the view of other
NFV platforms and technology advancements.
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16.1 Recap on resiliency framework

Table 16.1 compares the supported resiliency features, performance and overhead
characteristics for different state-of-the-art works.

16.2 Current Limitations and Prospects of Extensions

We acknowledge that the network routing and communication latency for migrating
the VNFIs across Wide Area Network (WAN) would be more demanding and chal-
lenging to address. Hence, we plan to extend our evaluation to extensively study
the associated trade-offs and conduct cross-site and large scale data center topology
based evaluation with real traffic traces.
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16.3 Applicability of REINFORCE in other NFV
Platforms

The REINFORCE approach of distinguishing the minimal essential information that
need to be migrated i.e., packet-processing-progress and lazy sync of actual NF state
of all NFs in the chain is a generic mechanism. It should be easy to impart these
mechanisms in any platform.

16.3.1 ClickOS

In ClickOS framework, NF chain is realized by distinct click elements. It is possible
to implement and insert click-elements at the start and end of distinct phase to
ensure correct time stamping and to capture the packet-progressing progress for
each NF. To achieve this, the hypervisor needs to be extended to monitor and track
the chain-wide processing progress and perform NF state synchronization.

16.3.2 NetBricks

In NetBricks, the NF chain is realized by composing multiple NFs in to a single
executable where the action of each NF is merely a statically defined function call.
In this run-to-completion model, it is hard to separate the execution boundary of
each NF and to trap the exact progress of each NF. Hence, ensuring the correctness
at each NF boundary is not possible. However, when entire NF chain is treated is a
single composite NF, then it makes it easier to apply the REINFORCE mechanism
for both local and remote replications.
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Conclusion

The more we learn, the more we understand the vastness of our ignorance.
We can only, but humble and cherish our drop of knowledge in the fathomless
ocean of ignorance.

— Author

This thesis presents the NFV resource management framework in the realm of
ETSI NFV-MANO reference architecture. The key components of this work have
addressed the system and network wide performance, scale and reliability challenges
associated with the deployment of the NF chains.

Contents
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17.1 Dissertation Summary

First, we studied the performance and scale challenges associated with deploying
the softwarized NFs on COTS hardware and presented the novel rate-cost propor-
tional scheduling for user-space NF platforms like DPDK. We also designed the
chain-aware backpressure mechanism that ensures to avoid the wasted work across
the NF chain and facilitates judicious resource allocation to the NFs for both the
chains contained within a same-core or spanning multiple cores. The functionalities
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facilitate towards realizing the VNFM and EMS components of the NFV-MANO
architecture.

Second, we studied the network-wide NFV platform characteristics and presented
the novel semi-distributed resource management framework to address the traffic
characteristics and perform NF placement, network congestion, and load balanc-
ing the flows among the active NFs. We model the semi-distributed framework,
where SDN controller and VNFMs take co-ordinated decisions to achieve optimal
NF placement and balance the load in the network. The functionalities facilitate
towards realizing the NFVO, and SDN Controller components of the NFV-MANO
architecture.

Finally, we developed the resiliency framework for NFV platform. We presented
the novel NF state replication strategy and distinct mechanisms to provide timely
detection of NFs, hardware node (VNFM), and network link failures. Further, we im-
plemented distinct failover mechanisms with strict correctness guarantees. We also
presented the mechanism to provide service continuity by overcoming the stability
concerns with GDCs. The resiliency functionalities facilitate towards realizing the
NFVI, VNFM, NFVO, EMS and SDN Controller components of the NFV-MANO
architecture.

All the corresponding source code and platform implementations are open-sourced
and made available online.
Part I (NFVnice):
https://github.com/sameergk/openNetVM-dev/tree/clean_nfvnice47

Part II (DRENCH):
https://bitbucket.org/sameergk_ugoe/drench

Part III (Resiliency Framework):
https://github.com/sameergk/openNetVM-dev/tree/nfv_res47

17.2 Dissertation Impact

The contents of this dissertation have been published in the following peer-reviewed
international conference proceedings:

Preliminary versions of Chapters in part I (i.e., Addressing system level challenges
with the deployment of Network Service Chains) appear in the paper:

47Access to OpenNetVM-dev branch needs to be requested; The code shall be forked to a public
branch of OpenNetVM soon.

https://github.com/sameergk/openNetVM-dev/tree/clean_nfvnice
https://bitbucket.org/sameergk_ugoe/drench
https://github.com/sameergk/openNetVM-dev/tree/nfv_res
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(i) NFVnice [30] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shriram Ra-
jagopalan, K. K. Ramakrishnan, Timothy Wood, Mayutan Arumaithurai, and Xi-
aoming Fu. Nfvnice: Dynamic backpressure and scheduling for nfv service chains.
In Proceedings of the Conference of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’17, pages 71–84, New York, NY, USA, 2017. ACM

Preliminary versions of Chapters in part II (i.e., Addressing Network wide challenges
the deployment of Network Service Chains) appear in the papers:

(ii) DRENCH [31] Argyrios G. Tasiopoulos, Sameer G. Kulkarni, Mayutan Aru-
maithurai, Ioannis Psaras, K. K. Ramakrishnan, Xiaorning Fu, and George Pavlou.
DRENCH: A semi-distributed resource management framework for NFV based
service function chaining. In 2017 IFIP Networking Conference (IFIP Network-
ing). IEEE, June 2017

(iii) NeoNSH [32] Sameer Kulkarni, Mayutan Arumaithurai, K. K. Ramakrishnan,
and Xiaoming Fu. Neo-NSH: Towards scalable and efficient dynamic service func-
tion chaining of elastic network functions. In 2017 20th Conference on Innovations
in Clouds, Internet and Networks (ICIN). IEEE, March 2017

(iv) NSN [37] S. G. Kulkarni, M. Arumaithurai, A. Tasiopoulos, Y. Psaras, K. K.
Ramakrishnan, Xiaoming Fu, and G. Pavlou. Name enhanced sdn framework for
service function chaining of elastic network functions. In 2016 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), pages 45–46,
San Francisco, USA, April 2016

Preliminary versions of Chapters in part III (i.e., Addressing Failure Resiliency for
Network Service Chains) appear in the paper and technical report:

(v) REARM [34] Sameer G Kulkarni, Mayutan Arumaithurai, K.K. Ramakrishnan,
and Xiaoming Fu. REARM: Renewable energy based resilient deployment of vir-
tual network functions. In 2017 European Conference on Networks and Commu-
nications (EuCNC). IEEE, June 2017

(vi) REINFORCE [35] S. G. Kulkarni, G. Liu, K. K. Ramakrishnan, M. Arumaithu-
rai, T. Wood, and X. Fu, (2018). REINFORCE: Achieving Efficient Failure
resiliency for Network Function Virtualization based Services. Addressing nfv
resiliency. https://github.com/sameergk/Addressng-NFV-Resiliency, 2018.
[online]48.

48This work is submitted to CoNext’18 and is currently under review.

https://github.com/sameergk/Addressng-NFV-Resiliency
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Building on the work listed above, the author has further identified and supervised
the following topics for Master theses:

(a) “Evaluation of state of the art works on SDN/NFV Placement and Load Bal-
ancing”, Hari Raghavendrarao Bhandari, University of Göttingen, Masters Thesis
15-May-2017.

(b) “NSH Routing: Implementation of Network Service Headers to realize the ser-
vice chain by steering traffic across the VNFs” , Guido Martinez, University of
Göttingen, Masters Thesis 15-Jan-2018.

17.3 Future Prospects

This dissertation has tried to address a few of the key Network Service Chaining
(NSC) related problems, namely P1:Performance Optimization, P2:Management
and Orchestration and P3:Availability and Reliability, towards our goal of making
the NFV deployment a reality by addressing specifically the performance, scale and
reliability concerns outlined in section §1.1.1.

17.3.1 Extensions to the current work

The other outliend high level research problems, especially the problems relating to
P4:Security, Policy and Trust Management and P5: Interoperability and Portability
need specific attention.

The recent surveys [14, 174, 175] on why the NFV adoption has not been able
to meet the hype predicted in early 2014/15, have identified the key technical and
non-technical hindrances/potential barriers as follows49:

• Technical Problems:
– Existing platform and VNF Interoperability
– Security concerns with VNFIs

• Non-Technical Problems:
– Maturity/stability of NFV platform
– Lack of expertise and training on NFV

As the open source NFV projects are quite new, the non-technical concerns are

49These concerns strongly overlap with our initial outlined problems and the challenges that we
deemed important for successful deployment of NFV.
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justified and would definitely be resolved with the time and maturity of new NFV
platforms. However, the key technical problems, which overlap with our earlier
outlined Problems P4 and P5 need to be addressed.

ETSI’s NFV-ISG and IETF NFV and SFC working groups have significantly
contributed towards outlining the key specifications and API requirements necessary
to address the P5: Interoperability and Portability.

Our next prospective is to address the open problem P4: Security, Policy and
Trust Management, and also to retrofit and enhance on the achieved goals in the
current state-of-the-art market strategies.

17.3.2 Broader Future Directions

The key networking technologies where SDN and NFV can play an active role to-
wards the development and to potentially shape the future networking landscape
include:

• 5th generation wireless systems (5G),
• Internet of Things (IoT),
• Edge Cloud and Fog computing,
• Microservices

Further research in identifying and addressing the compelling problems and asso-
ciated challenges that can leverage SDN and NFV, and aid towards enabling these
future technologies to be deployable, efficient, reliable and robust is necessary.

17.3.2.1 Role of SDN and NFV in 5G, IoT, and Edge Computing

Fifth-generation technology (5G), has already gained lots of research attention. The
first commercial solution is expected to be demonstrated by 2020, while the stan-
dards framework for 5G communication networks is already in place and expected
to be finalized by early 2019. Also, by 2020, it is predicted that there will be over
50 billion connected (IoT) devices worldwide. The main objectives of 5G networks
is to enable ultra low latency services (less than 1 millisecond), and achieve 1000x
improvement in network capacity (10-100Gbps bandwidth).

For the success of 5G, it is necessary to dynamically and optimally provision and
manage network resources accounting both maximal cost-efficiency and diverse 5G
service demands. Hence, 5G defines network slicing as an End2End logically self-
contained pool of network resources, spanning across the core and access networks.
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Ensuring such a network slice exhibits both network and system level challenges. It
demands a lot of consideration on several aspects including resource provisioning,
protocols and standardized interfaces to facilitate cross network communication,
service aware slice management framework, slice isolation, partitioning and grouping
mechanisms etc..

There is already active research going on in this context and lot can be leveraged
from Cloud-RAN, Deutsch Telekom, and Telefónica. However there are several per-
formance, management and orchestration issues that still demand greater attention.
Hence, a logic extension to my current research would be to address and present
a holistic framework for network slicing by accounting the Edge, access and core
networks through SDN and NFV solutions.

17.3.2.2 Towards reliable and scalable services through Microservices

On the other hand, the rise of microservices architecture in networking and cloud
based applications, along with increased enthusiasm on service automation through
the employment of machine learning and deep learning technologies that profess
reliance on big data analytics continue to change the data center traffic patterns
within and across data centers.

Though microservice architecture is best-fit for application scaling and building
reliable and robust services, they come at a cost of increased communication over-
head and latencies. Also, considering the strict 5G latency requirements, massive
scale of IoT, and diverse communication use cases, it is necessary to perspicuously
look into how far and to what extent micro-services can be employed and what
strategies can be applied to leverage and sustain the benefits of micro-services with-
out compromising on the service guarantees. Hence a holistic software framework or
a decision tool, that can account both the architectural constructs and run-time sys-
tem characteristics including CPU, memory, I/O and communication requirements
of the software in building micro-services is necessary.

Such a work would enable to rightly decompose a monolithic service into micro-
services and enable to leverage the key benefits of miro-service architecture to build
and deploy highly scalable, flexible and resilient network services without jeopardiz-
ing the overall performance and service level constraints.
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The appendix complements the dissertation with more detailed descriptions of
algorithms and examples that we felt were too detailed, complicated, or formal for
the main text. Nevertheless, the contents are important results of the dissertation
and form a considerable part of the overall contribution.





ChapterA
Concepts and Definition of Related
Terms

A.1 Concepts and Definitions

Address Space Layour Randomization (ASLR) is a mechanism to randomize
the location of memory where the system executables are loaded. It is a means of
memory-protection for OSes to guard against the buffer-overflow attacks.
Note:With DPDK, it is recommended to disable ASLR (but not necessary), as the
position of the hugepage (and other) memory in the DPDK primary process or sec-
ondary process virtual address space can change across different runs resulting in
conflicting views if the ASLR is enabled.

Gi-LAN The segment of network in telecommunication networks where the ser-
vice providers deploy Transmission Control Protocol (TCP)/Internet Protocol (IP)
functions between the packet gateway and the Internet. This section of network
is where CSPs typically innovate, differentiate, and monetize services using unique
capabilities through a combination of homegrown solutions and those provided by a
wide variety of suppliers.

LLMV Low-Level Virtual Machine (LLVM) is a library for programmatically cre-
ating machine-native code. A developer uses the API to generate instructions in a
format called an intermediate representation (IR). LLVM can then compile the IR
into a standalone binary, or perform a Just-in-time (JIT) compilation on the code
to run in the context of another program, such as an interpreter for the language.

Middlebox refers to a network appliance specifically to any intermediary device
(placed in the path between a source host and destination host) performing functions
other than the normal packet forwarding. It can either transform, inspect, filter,
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or otherwise manipulate the traffic. Generally these are purpose build hardwares
e.g., Load Balancer , Network Address Translation, Firewall, Wide Area Network
Optimizers etc.

Network Function NF refers to a functional block within a network infrastructure
that has well-defined external interfaces and well-defined functional behaviour. NF
can be either a physical compute node i.e., PNF or a virtual node i.e., VNF.

Network Function Orchestrator NFVO refers to the functional block that man-
ages the network service lifecycle and coordinates the management of VNF lifecycle
with the Virtualized Network Function Manager and Network Functions Virtual-
ization Infrastructure. resources (supported by the VIM) to ensure an optimized
allocation of the necessary resources and connectivity [176].

Network Processors A network processor NPU is a programmable software de-
vice (integrated circuit) used as a network architecture component inside a network
application domain. It is analogous to CPU in a computing devices.

Network Service refers to a composition of network functions i.e., one of more
VNFs and/or PNFs. The specifics of the network functions is governed by the func-
tional and behavioral specification of the service. The network service is an end-to-
end orchestration that map to the operator or network policies, and is characterized
by at least performance, dependability, and security specifications.

Network Utility Maximization: is a mathematical linear programming opti-
mization formulation for resource allocation problem especially for the purpose of
flow control (i.e., the network bandwidth allocation to flows). It can be formulated
as an optimization problem whose objective is to maximize an aggregate utility
function of all nodes/sources/users of the network while subject to some constraints
regarding the limited capacity of each network’s link [177].

Service Function Chaining refers to the definition and instantiation of an ordered
set of service functions (i.e., PNFs and/or VNFs) and subsequent steering of traffic
through them to realize one or more NSs [21]. Note: It is also known as Network
Service Chaining and VNF Forwarding Graph.

Shadow Price refers to the value of the Lagrange multiplier at the optimal solution.
In general, it corresponds to the estimated value that determines the marginal utility
or cost of a specific constraint variable.
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NFVnice Algorithms and Workflow

B.1 CGroup Setup

Enabling Cgroup in Linux: In file: /boot/config-‘kernel.version’

1 CONFIG_CGROUPS=y
2 CONFIG_CGROUP_SCHED=y
3 CONFIG_CGROUP_DEVICE=y
4 CONFIG_CPUSETS=y
5 CONFIG_BLK_CGROUP=y
6 CONFIG_PROC_PID_CPUSET=y
7 CONFIG_CGROUP_FREEZER=y

Listing B.1: Enabling CGroup in Linux Kernel
Check and Mount the cgroup filesystem

1 #if [! −d "/sys/fs/cgroup/" ]; then
2 mount −t cgroup none /sys/fs/cgroup
3 fi

Listing B.2: Enabling CGroup in Linux Kernel

B.2 Tuning CFS
The following CFS parameters need to be tuned to ensure low latency
context switches50

1 #echo 100000 > /proc/sys/kernel/sched_min_granularity_ns
2 #echo 1000000 > /proc/sys/kernel/sched_latency_ns
3 #echo 25000 > /proc/sys/kernel/sched_wakeup_granularity_ns

Listing B.3: Configuration of CFS Parameters
50sched_latency_ns is the period of 1 round; sched_min_granularity_ns determines the mini-

mum preemption granularity; sched_wakeup_granularity_ns to tune preemption lag.
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B.3 Algorithms and Pseudocode

1)Data structure extensions for service-chain specific back-pressure variables:

1 struct onvm_service_chain {
2 struct onvm_service_chain_entry sc[ONVM_MAX_CHAIN_LENGTH];
3 uint8_t chain_length;
4 int ref_cnt;
5 #ifdef ENABLE_NF_BACKPRESSURE
6 // Flag indicating the Chain has one or more Downstream NF overflowing.
7 uint8_t downstream_nf_overflow;
8 // Bit index of each NF in the chain that is overflowing
9 uint8_t highest_downstream_nf_index_id;

10 //Flag is set when all nf_instances are populated in the below array
11 uint8_t nf_instances_mapped;
12 // NF instances serving this chain
13 uint8_t nf_instance_id[ONVM_MAX_CHAIN_LENGTH];
14 #endif //ENABLE_NF_BACKPRESSURE
15 };

Listing B.4: Extensions to account Backpressure per Service chain.

1 struct client {
2 struct rte_ring ∗rx_q;
3 struct rte_ring ∗tx_q;
4 struct onvm_nf_info ∗info;
5 uint16_t instance_id;
6 #ifdef ENABLE_NF_BACKPRESSURE
7 uint8_t throttle_this_upstream_nf; // Flag indicating if this NF needs to be Throttled
8 uint64_t throttle_count; // Counter tracking the num of throttles.
9 #endif //ENABLE_NF_BACKPRESSURE

10 };

Listing B.5: Backpressure state extension to NF specific structure

1 // HIGH WATERMARK LEVELS FOR NFs Rx Ring Buffers
2 #define CLIENT_QUEUE_RING_THRESHOLD (80)
3 #define CLIENT_QUEUE_RING_WATER_MARK_SIZE ((uint32_t)
4 ((CLIENT_QUEUE_RINGSIZE∗CLIENT_QUEUE_RING_THRESHOLD)/100))
5 // LOW WATERMARK THRESHOLD FOR NFs Rx Ring Buffers
6 #define CLIENT_QUEUE_RING_THRESHOLD_GAP (20)
7 #define CLIENT_QUEUE_RING_LOW_THRESHOLD ((

CLIENT_QUEUE_RING_THRESHOLD >
8 CLIENT_QUEUE_RING_THRESHOLD_GAP) ? (

CLIENT_QUEUE_RING_THRESHOLDCLIENT_
9 QUEUE_RING_THRESHOLD_GAP):(CLIENT_QUEUE_RING_THRESHOLD))

10 #define CLIENT_QUEUE_RING_LOW_WATER_MARK_SIZE ((uint32_t)
11 ((CLIENT_QUEUE_RINGSIZE∗CLIENT_QUEUE_RING_LOW_THRESHOLD)/100))

Listing B.6: Queue size and Backpressure threshold definitions
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2) Logic to Detect and apply backpressure for any NF in the chain.

1 IF (−EDQUOT OR −ENOBUFS == rte_ring_enqueue_bulk()) THEN %AND (
NF_SVC_ID is not the first in chain) THEN

2 FOR EACH packet in the Enque_Packets
3 GET associated service_chain
4 SET service_chain−>downstream_nf_overflow = TRUE
5 SET BIT service_chain−>highest_downstream_nf_index_id, meta−>index
6 FOR Index=1; index < meta−>index; in service_chain
7 client [schain−>nf_instance_id[index]]−> throttle_this_upstream_nf = TRUE
8 END FOR
9 END FOR

10 END IF

Listing B.7: Rx/Tx Threads detect and mark NF in a chain for backpressure

3) For NF Schedule Throttling: i) In the NF_LIB always check for the block_flag
set state and voluntarily block on the semaphore, after processing every batch of
packets.

1 IF (rte_atomic16_read(BLOCK_NF_FLAG) ==1) THEN
2 CALL onvm_nf_yeild()
3 END IF

Listing B.8: libnf logic to de-schedule the upstream NFs on NF chain backpressure

ii) NF_Manager wakeup-thread determines whether the NF needs to be blocked.

1 IF (nf_instance−>throttle_this_upstream_nf is TRUE) THEN
2 SET BLOCK_NF_FLAG=TRUE
3 ELSE
4 CALL WAKEUP_NF_INSTANCE()
5 END IF

Listing B.9: wake-up thread Logic to block the NFs

4) For Packet Throttling: i) In the onvm_pkt_enqueue_nf() Rx/Tx threads check
for the downstream_nf_overflow flag status and selectively drop the packets for each
service chain.

1 IF (s_chain−>downstream_nf_overflow is TRUE) AND (is_upstream_NF(nf_instance))
THEN

2 CALL onvm_drop_pkt()
3 nf_instance−>stats.rx_drop++
4 nf_instance−>throttle_count++;
5 ENDIF

Listing B.10: Selective packet drops for back-pressured chains by Rx/Tx threads.
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5) Stop back-pressure mode: Detect and Unblock NFs
On dequeues buffer, Tx thread checks for the low_watermark level.

1 IF (RING_LOW_WATERMARK_SIZE >= rte_ring_count()) THEN
2 FOR EACH packet in the Dequeued_Packets
3 GET associated s_chain
4 IF s_chain−>downstream_nf_overflow = TRUE THEN
5 TEST & CLEAR BIT s_chain−>highest_downstream_nf_index_id,meta−>

index
6 FOR Index=1; index < meta−>index; in service_chain
7 nf_instance[schain−>nf_instance_id[index]]−> throttle_this_upstream_nf

= TRUE
8 END FOR
9 END IF

10 IF s_chain−>highest_downstream_nf_index_id = 0 THEN
11 s_chain−>downstream_nf_overflow = FALSE
12 END IF
13 END FOR
14 END IF

Listing B.11: Tx thread Clearing the Backpressure

B.4 Work Flow Diagrams

B.4.1 Workflow for Asynchronous I/O (read) operation
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ChapterC
REINFORCE Proof of Correctness,
Algorithms, and Workflow

C.1 Proof of Correctness

C.1.1 NF Packet Processing Model and Notions

We consider Network Functions (NFs) to be represented as finite state machines, that
process stream of incoming packets pi j (i.e. ith packet of jth flow) and as a result
of processing packets they update or transition their internal state and output one
or more packets p′i j as shown in Figure C.1. For the NF Chain, the packets are
sequentially processed by distinct NFs in the chain resulting in distinct state update
at each of NFs and output packets.

Figure C.1: NF Packet Processing and State Machine Abstraction

In REINFROCE, we optimize the performance of NF processing chain by ac-
counting External Synchrony that allows to conditionally operate NF chains in
asynchronous mode (without the need to commit the NF state across replica), with
minimal amount of state transfer which tracks the packet processing progress of
different flows.

We begin by providing some of the basic Definitions of packet processing, external
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B Set of Buffered packets at the predecessor node
= (p0, p1, p2, . . . , px)

Pi Set of processed packets at the Primary NF (i)
= (p′0, p′1, p′2, . . . , p′n) 3 Pi ⊆ B

Si Set of abstract states of NF (i)
= (S0,S1,S2, . . . ,Sx)

T j Set of Timestamp of the last packet of flows (j) committed to secondary
= (ti j) 3 p′i f or f low( j)

R Set of packets released by Primary node presenting the external view.
= (p′0, p′1, p′2, . . . , p′m) 3 Ri ⊆ Pi ⊆ B

P.V i State of Primary NF (i) representing the primary view
= Pi ∗Si 7→ S′i

P.V Set of States of all Primary NFs representing the primary view of node
= (P.V 0,P.V 1,P.V 2, . . . ,P.V i)

E .V i External View of the state at Primary NF(i).
= R∗Si 7→ S′i

E .V Set of States of all Primary NFs representing the External view of node
= (E .V 0,E .V 1,E .V 2, . . . ,E .V i)

S .V i State at Secondary NF(i) committed by Primary.
= S .V i⊆P.V i

S .V Set of States of all Secondary NFs representing the secondary view of replica node
= (S .V 0,S .V 1,S .V 2, . . . ,S .V i)

Table C.1: Notations used for Correction Analysis.
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Figure C.2: Relationship of NF States across Primary, Secondary (Replica) and Ex-
ternal observer (Client view)
With Synchronous update (e.g., Pico Replication), the External view is
a subset of Replica
With Asynchronous update (e.g., Deterministic updates in REIN-
FROCE), the Replica is subset of External view.

synchrony and the assumptions that hold good for NF and NF chain wide packet
processing in REINFORCE.

C.1.2 Definitions and Assumptions

We consider the following definitions and assumptions from previous literature.

Definition C.1 (Deterministic Processing) For given NF State, processing a
packet pi always results in same deterministic state transition P∗Si 7→ S j and deter-
ministic output p′i.

Definition C.2 (Non-Deterministic Processing) For given NF State, process-
ing a packet pi may result in different state transitions P∗Si 7→ {Si} and yield different
output {p′i} ⊆ (p′0, p′1, p′2, . . . , p′i).

Definition C.3 (External Synchrony) State Synchrony is defined by externally
observable behavior and not the actual internal system (NF or Chain of NFs) state,
and on failover, the externally observable state remains consistent without regards
to the actual consistency of internal NF states across replicas.

Theorem C.1 (Correctness of Operation) For remote replication, REIN-
FORCE preserves external synchrony and ensures correctness of operation for
Network Function chains.
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Additionally, we consider the following two assumptions based on the packet pro-
cessing behavior of NFs:

Assumption (Duplicate Packet Processing) Duplicate packet processing by
any Network Function (NF) results in same output as that of original packet
without impacting the internal NF state.

Assumption (Correctness Criteria) External Synchrony is necessary and suffi-
cient to preserve the correctness of the operation of Network Functions.

Note that the Assumption C.2 is already proven by Nightangale et.al. [162, 178],
and the basis of our Assumption C.1 is illustrated in §14.2.

C.1.3 Proof

We prove Theorem C.1 by the methods of “Proof by case” and “proof by contra-
diction”. We know that the packet processing by an NF can result in either i)
non-deterministic or ii) deterministic state updates in an NF, and accordingly in
REINFORCE replication is based on the following two propositions.

Proposition (Packet Processing Progress) To preserve external synchrony,
in the case of only deterministic state updates, it is sufficient to track and update
the packet processing progress information across NF chain.

This implies that REINFORCE only updates the packet processing progress infor-
mation T j before releasing the packets that update the external view and then lazily
(periodically) updates the NF state to the replica node much later than release of
the packets. Hence as shown in the right side of the Figure C.2,

S .V i⊆ E .V i 3 E .V i⊆P.V iandPi ⊆ B (C.1.1)

Proposition (External Synchrony with Non-Deterministic processing)
In order to preserve, external synchrony in the event of non-deterministic packet
processing, it is necessary to synchronize and commit the NF state at replica P.V i

before releasing the packet p′i.

This implies that REINFORCE updates the NF state to the replica node and only
then releases the packets. Hence as shown in the left side of the Figure C.2,

E .V i = S .V i 3S .V i⊆P.V i (C.1.2)
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Case 1: Let us consider the case when the primary node fails given that packet
processing (initial or after last packet processing progress commit) update T j re-
sulted in only deterministic state update in any of the NF in the chain. In such
case, By the Definition C.1, reprocessing of any ti j ∈T packets in B , only updates
the NF state at the secondary NF, but these packets are subsequently dropped by
the Replica node and hence do not modify the E .V . However, the secondary NF(i)
processes the packets, which implies: S .V i = Pi ∗Si 7→ S′i resulting in S .V i = P.V i

If we consider the contradiction that S .V i 6= P.V i, then it violates the Defini-
tion C.1, which cannot be true.
And, for the remaining [B−{Ti j}] packets, the P.V =∅ and as per Proposition C.1
E .V ⊆P.V =∅. Hence, in either case the external synchrony E .V is preserved.

Case 2: Lets consider the case when the primary node fails given that packet
processing (initial or after last packet processing progress commit) update T j re-
sulted in any Non-deterministic update in any of the NF in the chain. In such case,
Initial condition (at time of failure): S .V ⊆ E .V ⊆P.V
On Replay condition: Now, by Proposition C.2, we have E .V ⊂ P.V 3
E .V

⋂
P.V i = ∅ cannot contain any non-deterministic update in any of the

NFs. Now, again, by the Definition C.1, reprocessing of any ti j ∈ T packets in B ,
only updates the NF state at the secondary NF, but these packets are subsequently
dropped by the Replica node and hence do not modify the E .V . However, the
secondary NF(i) processes the packets, which implies: S .V i = Pi ∗Si 7→ S′i resulting
in S .V i = E .V i

Final Status: S .V = E .V 3S .V 6= P.V
Thus, again the external synchrony is preserved, but the Primary and Secondary
NFs may differ in their internal states and outcome of non-deterministic packet
processing.

Case 3: Lets consider the case when the packet processing results in both deter-
ministic and Non-deterministic updates in any of the NF in the chain.

Note: B can contain packets that can result in non-determinism.

if Pi <= T =⇒ Duplicate packet
Secondary View update but no External View.
else Pi > T =⇒ New packet
No or new Secondary View update i.e. New External view.

Note: We commit state for entire NF chain i.e., all the NFs in the chain get
to commit the NF state during the periodic state transfer or in the event of any
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non-determinism that necessitate explicit state update for any NF in the chain.

Figure C.3: Update and view of NF States across Primary, Secondary (Replica) and
External observer

Figure C.3 illustrates the NF packet processing and state transfer update time-
lines for an NF chain with two NFs P1 and P2.
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REINFORCE Algorithms and
Workflow

D.1 Work Flow Diagrams
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Figure D.1: Work flow for Local NF Replica and Failover scheme.



203 D.1 Work Flow Diagrams

Predecessor Node Active Node Remote Standby Node 

NF Manager Active Node 
NF Manager

Local  
Active NF

Local  
Standby NF

Remote  
NF Manager 

Remote 
Standby NFs

Timestamp
Incoming Packets

Log Packets

Forward to
Active Node

Precondition:Configure
Active and standby

Nodes
Precondition:Configure standby

Node and NF Chain

Classify
incoming Packets

Forward to Next
NF in Chain

Move packets to
NFs Rx Ring

Pull Batch of
incoming Packets

Store Batch in Rx
Shadow ring

LOOP

For Each Packet in Batch 
1. Pull from Rx Shadow Ring 
2. Process packet 
3. Track NF State update 
4. Push to Tx Shadow Ring 

Update NF State Δ
to standby NF

Δ

Clear Tx and Rx
Shadow Rings  

Release Packets/
Fwd to Next NF  

RSYNC

Process outgoing
packets 

  STATE
Process each out
port packet 

Update TxTs
table  

Process Batch 

Move packet to
Latch Buffer  

Fast   Commit

2P Commit TxTs

Release Packets/
Fwd to next node

Update TxTs
table   Δ

Δ

Release Logged
Packets 

Lazy   Commit

2P Commit NF
State  

Notify release of
Logged Packets

Δ

BFD

Monitor Link
Liveness 

Notify Link/Node
Failure to MGR 

Multi Buffers

Update chain of
NFs state  Δ

  STATE

Replay
Mode 

on Link/Node
Failure 

Notify start of
Replay Mode 

Notify End of
Replay Mode 

Read from
Logged Packets 

Fwd packets to
Remote Node 

Buffer
incoming
Packets 

Start of Replay  

REPLAY

Process incoming
packets  

Switch NF Chain
state to Active 

 Pkt Ts < Ts  
in TxTs Table

Drop processed
packet  

Release
processed packet  

YES
NO

End of Replay  

Fwd Buffered
and Incoming

Packets 

Resume Normal
Processing  

Wait for active
notification 

Precondition:Configure Level of replication and
standby Node for NF chain

Every 1ms

Every 500ms
  TS TBL

Every 10ms

Every 100us

Switch to  
Active  

Switch Remote Standby  
node to Active  

Figure D.2: Work flow for Remote NF chain Replica and Failover.
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D.2 Sequence Diagram: Addressing Non-Determinism

 : NFLIB  : RSYNC MGR  : REMOTE NODE : Local Replica

1: Fetch Batch of Pkts

2: Process Batch (one by one)

4: Memcopy to Local Replica
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3: WaitTill_SYNC
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6: Lazy NF State SYNC
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6.0: Commit NF State
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 Can contain multiple
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 Can contain multiple
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 CLEAR bNDSYNC=TRUE 
 START FROM STEP1
 

 IF bNDSYNC=TRUE AND IF new ND_PKT
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 WAIT TILL PREVIOUS NDSYNC COMMIT
 ENDIF

Diagram: NonDeterminism Page 1

Figure D.3: Illustration of how REINFORCE addresses Non-Determinism to ensure
operational correctness.
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