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Abstract

In this thesis, a pseudodifferential calculus for a degenerate hyperbolic Cauchy
problem is developed. The model for this problem originates from a certain observa-
tion in fluid mechanics, and is then extended to a more general class of hyperbolic
Cauchy problems where the coefficients degenerate like a power of t + |x|2 as
(t, x) −→ (0, 0).

Symbol classes and pseudodifferential operators are introduced. In this process,
it becomes apparent that exactly in the origin, these operators are of type (1, 1).
Although these operators are not L2-continuous in general, a proof of continuity in
C ([0, T ], L2(Rd)) is given for a suitable subclass.

An adapted scale of function spaces is defined, where at t = 0 these spaces coincide
with 2-microlocal Sobolev spaces with respect to the Lagrangian T ∗0 Rd. In these
spaces, energy estimates are derived, so that a symbolic approach can be applied to
prove wellposedness of the Cauchy problem.
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Zusammenfassung

Ziel dieser Arbeit ist es einen pseudodifferentiellen Kalkül zur Untersuchung eines
degenerierten hyperbolischen Cauchy-Problems zu entwickeln. Das Modell für die-
ses Cauchy-Problem entstammt einer Beobachtung aus der Strömungsmechanik
und wird anschließend zu allgemeineren hyperbolischen Cauchy-Problemen weite-
rentwickelt, deren Koeffizienten wie eine Potenz von t + |x|2 degenerieren, wenn
(t, x) −→ (0, 0).

Es werden Symbolklassen eingeführt und die entsprechenden Pseudodifferentialo-
peratoren definiert. Dabei stellt sich heraus, dass diese Operatoren im Ursprung
vom Typ (1, 1) sind. Obgleich diese im Allgemeinen nicht L2-stetig sind, gelingt
unter zusätzlichen Annahmen der Beweis der Stetigkeit in C ([0, T ], L2(Rd)) für eine
spezielle Unterklasse von Symbolen.

Eine Skale von angepassten Funktionenräumen wird definiert, wobei an t = 0
diese Räume mit 2-mikrolokalen Sobolev-Räumen bezüglich des Lagrangian T ∗0 Rd

zusammenfallen. Mit Hilfe des symbolischen Zuganges werden für eine Lösung
des Cauchy-Problems bezüglich dieser Räume Energie-Abschätzungen hergeleitet.
Diese a priori-Abschätzungen werden genutzt um die Wohlgestelltheit des Cauchy-
Problems zu beweisen.
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1Introduction

„Calvin: "You know, I don’t think math is a
science. I think it’s a religion."
Hobbes: "A religion?"
Calvin: "Yeah. All these equations are like
miracles. You take two numbers and when you
add them, they magically become one new
number! No one can say how it happens. You
either believe it or you don’t."

— Comic by cartoonist Bill Watterson

This thesis presents a study of the Cauchy problem for weakly hyperbolic systems of
the form DtU = A(t, x,Dx)U + F (t, x), in (0, T )× Rd,

U(0, x) = U0(x), on Rd,
(1.1)

where A(t, x,Dx) is an N ×N first-order pseudodifferential operator. We will state
the precise assumptions on the symbol A(t, x, ξ) below.

Hyperbolic partial differential equations appear in various branches of physics in
which conservation laws and finite-speed propagation are involved. The most basic
hyperbolic PDE – modeling the vibration of a string in one space dimension – is
the wave equation. It goes back to the work of d’Alembert in the 18th century and
is closely related to the transport equation. Another important linear hyperbolic
system is the Maxwell system of electromagnetism. In theoretical physics, several
semilinear equations arise, for example the Yang-Mills equations, the Maxwell system
for polarized media or the Klein-Gordon equations. The nonlinear models – in most
cases quasilinear – are even more numerous, for instance the Euler equations of
gas dynamics, which are closely related to the theory of shock waves. Hyperbolicity
is associated with a space-time reference frame. This means that one coordinate,
namely physical time, plays a special role compared to the spatial coordinates.
The analysis of hyperbolic PDEs uses a diversity of mathematical tools, ranging
from microlocal analysis over pseudo- and paradifferential calculus to algebraic
geometry. In this thesis, we will use techniques from pseudodifferential operators
and microlocal analysis.
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The theory of strictly hyperbolic equation is wellstudied. In our setting we assume
that the pseudodifferential operator A is also strictly hyperbolic away from the
crucial point (t, x) = (0, 0), but degenerates like powers of t+ |x|2 as (t, x) −→ (0, 0).
Operators which exhibit such degeneracies are an example of weakly hyperbolic
operators. A typical form of weakly hyperbolic equation reads as

utt − a(t)uxx = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

as mentioned in [DR1]. If this equation is strictly hyperbolic in the sense that
a(t) ≥ c > 0, we have correctness in the classes of Sobolev spaces, and an energy
estimate for a log-Lipschitz coefficient a(t), see [CL]. However, in the weakly
hyperbolic theory, which means a(t) ≥ 0, it turns out that C∞-regularity of a(t)
is not sufficient for wellposedness of the Cauchy problem even in the classes of
distributions. In [CS], Colombini and Spagnolo showed that for any T > 0 a
coefficient a(t) ∈ C∞([0,∞)) and C∞ data u0, u1 exist, such that the solution
belongs to C∞([0, T ),C∞(R)), but not to C ([0, T ],D ′(R)). This function a(t) is
positive for t < T , oscillating for t→ T − 0, and identically zero for t ≥ T .

For weakly hyperbolic equations another phenomenon arises, namely the loss of
Sobolev regularity, even if the coefficients are smooth and have no oscillations.
Consider for example the Cauchy problem

utt − t2uxx = aux, u(0, x) = ϕ(x), ut(0, x) = 0.

Then in [Qi] it is shown that the solution can be represented in the form

u(t, x) =
n∑
k=0

ckt
2k∂kxϕ

(
x+ t2

2

)

if a = 4n+ 1, n ∈ N0. In particular, this means that

ϕ ∈ Hs =⇒ u(t, ·) ∈ Hs−a−1
4 .

In [DW1], Dreher and Witt studied this phenomenon for a more general higher-order
operator of the form

P =
∑

j+|α|≤m
ajα(t, x)t(j+(l∗+1)|α|−m)+

Dj
tD

α
x ,

with coefficient ajα(t, x) being smooth up to t = 0. After reducing the scalar equation
into a system like (1.1), they used a symbolic approach to describe and analyze the
corresponding pseudodifferential operator A(t, x,Dx) and its properties, for example
mapping properties on Sobolev spaces. After deriving energy estimates, they were
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able to prove existence and uniqueness to the Cauchy problem (1.1). In this thesis
we will adopt this strategy.

For further results on loss of regularity, the propagation of singularities or, in general,
degenerate hyperbolic Cauchy problems we refer to [AN; DR2; Han; NU; Yag; AC1;
AC2].

Our prototypical operator originates from an observation on steady isentropic com-
pressible flows, which are described by the Euler equations. If the flow is supersonic,
which is that its velocity is greater than the speed of sound, the system of Euler
equations is hyperbolic. If a supersonic line touches a sonic curve, this contact is
generically of order two. After a hodograph transformation, this contact can be seen
as multiplication with the factor t+ |x|2. Hence, our model equation reads as

(∂2
t − (t+ |x|2)∆x)u = f(t, x) (1.2)

on (0, T )× Rd, and is weakly hyperbolic with degeneracy just in (t, x) = (0, 0).

Developing a pseudodifferential calculus to study a certain kind of partial differential
equations means to introduce a special class of symbols, which are closely related
to the differential operator under consideration. In our case we study matrix-
valued functions a ∈ C∞([0, T ] × R2d,MN×N (C)) with the property, that for each
(j, α, β) ∈ N1+2d

0 , the estimate

|∂jt ∂αx ∂
β
ξ a(t, x, ξ)| . 〈ξ〉p+2j−|β|+|α|〈σξ〉m−p−|α|−2j

holds for all (t, x, ξ) ∈ [0, T ] × R2d. We then say that a belongs to the symbol
class Σm,p. Here, σ behaves like

√
t+ |x|2 near the origin. By Fourier transform

we can define the corresponding class of pseudodifferential operators Op(Σm,p).
When passing to the origin it turns out that a(0, ·, ·) ∈ Sp1,1, or, more generally,
(∂jt a)(0, ·, ·) ∈ Sp+2j

1,1 over (x, ξ) = (0, 0). The analysis of operators of type (1, 1) is
technically difficult, because in general they are not L2-continuous. This problem
stem from the behavior of the twisted diagonal of the Fourier transform. However, it
was a great achievement of Hörmander, see his book [Hor5], that if a is an operator
of type (1,1) and the adjoint operator Op(a)† also belongs to Op(Σm,p), then Op(a)
is L2-continuous. Other investigations on these operators were done by Johnsen,
see [Joh1; Joh2]. Let Op(Σm,p,†) denote the class of all symbols for which the
corresponding adjoint operators also belong to Op(Σm,p). Then we are able to prove
C ([0, T ], L2(Rd))-continuity for operators belonging to Op(Σ0,0,†). Actually this is
not obvious, because we first have to show that, uniformly for every t ∈ [0, T ], the
operator

Op(a(t)) : S (Rd) −→ S (Rd)
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extends to a bounded one from L2(Rd) to L2(Rd). The proof uses a pointwise
application of the T (1)-theorem, as it is presented in [Gra2].

However, the class Σm,p is not appropriate to define principal symbols. Therefore,
we will refine that class, that is we have a ∈ Σ̃m,p if a can be written in the form

a = χ+(a0 + a1) + ar (1.3)

where aj ∈ Σ(m−j),p for j = 0, 1 and ar ∈ Σm−2,p,† + Σm−1,p−1,†. Symbols in the
class Σ(m),p admit a certain asymptotic expansion, and are homogeneous of order
m in the covariable ξ. Moreover, the multiplication with the function χ+ can be
understood as a quantization Σ(m),p −→ Σm,p. The main task is then to prove that
the class of corresponding operators is closed under composition and taking adjoints.
To prove this result, we have to estimate a certain type of oscillatory integral, again
uniformly for all t ∈ [0, T ]. Thanks to the special structure of the homogeneous
component a0 and its asymptotic expansion, we can apply similar techniques as
in [Kum; NR]. With operators A ∈ Op(Σ̃m,p) we then associate principal symbols
σmΨ (A) and σm−1,p

Ψ,d (A), such that the short sequence

0 −−→ Op(Σm−2,p,†) + Op(Σm−1,p−1,†) −−→ Op(Σ̃m,p)
(σmΨ ,σ

m−1,p
Ψ,d )

−−−−−−−−→ Σ(m),p × Σ(m−1,p) −−→ 0

turns out to be exact. With this symbolic calculus for operators A at hand, coming
from (1.3), we are able to argue on a purely algebraic level.

We also introduce function spaces Xs,δ, to which a solution U to the system (1.1)
belongs. Here, s ∈ R is the Sobolev regularity, while δ is related to the loss of
regularity. At t = 0, these spaces coincide with a 2-microlocal Sobolev space with
respect to the Lagrangian T ∗0 Rd. The concept of 2-microlocalization is basically
microlocalization along a Lagrangian submanifold, see for example the famous paper
of Bony, [Bon]. A characterization of the corresponding class of Sobolev spaces by
use of Wavelets can be found in the book of Meyer, [Mey].

Finally, in order to make all of this useful for analysis, one needs mapping properties.
We can prove that the class Op(Σ̃m,p) maps Xs+m,δ+p continuously into Xs,δ. This
is done by a reduction argument to the class Op(Σ̃0,0) ⊆ Op(Σ0,0,†), which already
contains continuous operators as proven before.

Our main result states as follows:
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Theorem 1.1. Let A ∈ Op(Σ̃1,2). Assume there exists aM0 ∈ Σ(0),0 with |detM0| & 1,
M0A0M

−1
0 is Hermitian, such that

I − 2x
(
M00A00M

−1
00

)
ξ
> 0,

where M00 ∈ Σ(0,0) is the (0, 0)-bihomogeneous component of M0.

Then for every M01 there exists a δ0 = δ0(A00, A01) ∈ R such that

Im (Φ(A00, A01,M00,M01)) ≤ δ0
2r2

(
I − 2x

(
M00A00M

−1
00

)
ξ

)
, (1.4)

and a γ0 = γ(A00), with the property that for all s ∈ N0, δ ≥ δ0 + sγ0, U0 ∈ Hs,δ,
F ∈ Y s,δ, the Cauchy problem (1.1) possesses a unique solution U ∈ Xs,δ. Moreover,
the a priori estimate

‖U‖Xs,δ . ‖U0‖Hs,δ + ‖F‖Y s,δ

is valid.

The precise formulation of Φ can be found in Chapter 4. The main idea is to derive
an a priori estimate for a solution U ∈ Xs,δ. Such estimates, often called energy
estimates, give an upper bound of such a solution in terms of the source function F
and the initial data U0. We will show the validity of such energy estimates to our
problem and derive existence and uniqueness by methods of functional analysis.
Using this result, we apply this to the case of higher-order scalar equations. In
particular, for our model problem we obtain the following result:

Theorem 1.2. Let (s, δ) ∈ N0 × R+. Let u0 ∈ Hs+1,δ(Rd), u1 ∈ Hs,δ(Rd) and
f ∈ L1Hs,δ. Then the Cauchy problem∂

2
t u− σ2∆xu = f(t, x), in (0, T )× Rd,

u(0, x) = u0(x), ut(0, x) = u1(x) on Rd,

possesses an unique solution u ∈ CHs+1,δ ∩ C 1Hs,δ.

This thesis is organized as follows: In Chapter 2 we briefly recall the system of Euler
equations, describing compressible flows, and explain the connection to our model
equation. We analyze its characteristics and derive a first energy estimate that shows
the relation to the 2-microlocal Sobolev spaces.

In Chapter 3 we develop a pseudodifferential calculus that enables us to argue
on a purely symbolic level. We study some examples and show continuity in
C ([0, T ], L2(Rd)) for a special subclass. After introducing the appropriate sym-
bol class, we prove that the corresponding class of pseudodifferential operators is
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closed under compositions and taking adjoints. The rest of that Chapter is devoted
to the principal symbols and function spaces.

In Chapter 4 we give the exact formulation of the main theorem and derive the
basic energy estimate for operators A ∈ Op(Σ1,2,†). Note, that at is point, no special
structure on A is required. We reduce our system to an equivalent one, which has
Hermitian principal and where the spectral parameter δ is shifted to zero. Use of
an induction argument shows the validity of the energy estimate for all s ∈ N0 and
corresponding δ. This Chapter is closed by an application to higher-order scalar and
the model equation.

We end this thesis with an Appendix, where we recall basic concepts on oscilla-
tory integrals, pseudodifferential operators of type (1, 1) and 2-microlocal Sobolev
spaces.
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2Modeling the Problem

2.1 The model equation

We consider a two-dimensional steady isentropic compressible flow, which is descri-
bed by the Euler equations of the form

(ρu)x + (ρv)y = 0

(ρu2 + p)x + (ρuv)y = 0

(ρuv)x + (ρv2 + p)y = 0.

(2.1)

Here V = (u, v), p and ρ denote the velocity, pressure and density of the flow,
respectively. For more information, see [CF; And]. Since the flow is isentropic, the
pressure p is a smooth function depending on ρ, say p = p(ρ), and we further assume
p′(ρ) > 0.

Example 2.1. For a polytropic gas with adiabatic exponent γ > 1 we have

p(ρ) = 1
γ
ργ .

Moreover, q = |V | =
√
u2 + v2 denotes the speed of the flow and the speed of sound

c is defined as
c =

√
p′(ρ).

The flow is said to be

• subsonic when q < c,

• sonic when q = c and

• supersonic when q > c.

7



If the flow is supersonic, it turns out that the system (2.1) of equations is hyperbolic.
Let now the hypersurface Σ ⊂ R2 describe the boundary of that problem. Then we
impose boundary conditions on Σ of the form

(ρ, V )|Σ = (ρ0, V0),

where we assume
ρ0 > 0 and |V0| >

√
p′(ρ0).

The latter means, that the flow is also supersonic up to the boundary.

To this problem the existence of short time solutions is well-known. However, in our
setting we consider that these boundary conditions are violated, i.e. q0 =

√
p′(ρ0), at

one single point in Σ. Thus, we want to have an equation, that is strictly hyperbolic
everywhere, except in one point. Also, we want to approach this degeneracy in a
certain fashion.

Let (ρ̄, ū, v̄) be a solution to (2.1). Linearization around this solution has the principal
symbol 

ū ρ̄ 0
ū2 + p′(ρ̄) 2ρ̄ū 0

ūv̄ ρ̄v̄ ρ̄ū

 ξ +


v̄ 0 ρ̄

ūv̄ ρ̄v̄ ρ̄ū

v̄2 + p′(ρ̄) 0 2ρ̄v̄

 η.

The determinant D with c̄ =
√
p′(ρ̄) > 0 is then given by

D = −(ūξ + v̄η)
(
c̄2(ξ2 + η2)− (ūξ + v̄η)2

)
ρ̄2.

The factor ūξ + v̄η correspond to planar waves of the form F (v̄x− ūy), i.e. (ū∂x +
v̄∂y)[F (v̄ξ − ūη)] = 0, and will be ignored in the further investigations. However,
the quadratic polynomial

(ξ, η) 7−→ c̄2(ξ2 + η2)− (ūξ + v̄η)2 (2.2)

has discriminant 4c̄2(ū2 + v̄2 − c̄2). Thus, if a supersonic curve touches a sonic line,
this contact is generically of order two in the (u, v)-plane.

To see this contact in (x, y)-plane, we have to apply a hodograph transformation,
which is a technique used to transform nonlinear partial differential equations
into linear versions. The original form of a hodograph transformation is for a
homogeneous quasi-linear system of two first-order equation for two known variables
(u, v) in two independent variables (x, y). By regarding (x, y) as functions of (u, v)
and assuming that the Jacobian does not vanisch nor is infinity, one can rewrite
the system for the unknowns (x, y) in the variables (u, v). Basically we apply an

8 Chapter 2 Modeling the Problem



interchanging of the dependent and independent variables in the equation to achieve
linearity. Specifically, consider the system of two equations of the form,(

u

v

)
x

+A(u, v, x, y)
(
u

v

)
y

= 0, (2.3)

where the coefficient A is

A(u, v, x, y) =
(
a11 a12

a21 a22

)
.

The two eigenvalues, denoted by E±, satisfy

E2
± − (a11 + a22)E± + det(A) = 0.

We introduce the hodograph transformation T : (x, y) 7−→ (u, v). Then the system
(2.3) reduces to (

yv

−yu

)
+A(u, v, x, y)

(
−xv
xu

)
= 0. (2.4)

Its eigenvalues, denoted by e±, satisfy

a12e
2
± − (a22 − a11)e± − a21 = 0.

Then it turns out that a characteristic of (2.3) in the (x, y) plane is mapped into a cha-
racteristic of (2.4) in the (u, v) plan via T . For more details on these transformation,
see [Ber; CF].

However, the relation on the contact of supersonic and sonic curves does not change.
So in the original coordinates this degeneracy corresponds to multiplication with
the factor t+ |x|2. Since the system is hyperbolic, we have a certain variable, which
determines the hyperbolic direction. We will denote this variable by t. For more
investigations on sonic curves in transonic and subsonic-sonic flows, see [WX].

Remark 2.2. If we further assume the flow to be irrotational, we can also introduce
a velocity potential function φ = φ(x, y), such that ∇φ = V . Then system (2.1) can
be written as a nonlinear second-order equation of the form

(c2 − φ2
x)φxx − 2φxφyφxy + (c2 − φ2

y)φyy = 0, (2.5)

see again [CF; And]. The potential flow equation can be understood as a com-
bination of continuity, momentum and energy equation, and its advantage is the

2.1 The model equation 9



following: if one knows the potential φ, all other components (V, c, p, ρ) can be
calculated. With ∂1 = ∂x, ∂2 = ∂y equation (2.5) has the form

2∑
i,j=1

aij∂i∂jφ = 0

with coefficient-matrix

A = (aij) =
(
c2 − φ2

x −φxφy
−φxφy c2 − φ2

y

)
.

The eigenvalues λ1,2 = λ1,2(|∇|) of A are given by the equation

det(A− λI) = (c2 − φ2
x − λ)(c2 − φ2

y − λ)− φ2
xφ

2
y = 0,

which has the solutions

λ1 = c2 and λ2 = c2 − |∇φ|2.

Since the flow is assumed to be supersonic, we have λ2 = c2 − |∇φ|2 < 0 and the
discriminant of (2.2) can be represented as −4λ1λ2.

Thus, our model equation reads as

(∂2
t − (t+ x2)∆x)u = 0

for (t, x) ∈ (0, T )× Rd. For d = 1 the principal symbol of this equation is given by

p(t, x, τ, ξ) = τ2 − (t+ x2)ξ2 = (τ −
√
t+ x2ξ)(τ +

√
t+ x2ξ).

The each of the two real roots τ(t, x, ξ) = ±
√
t+ x2ξ we obtain the characteristic

initial value problem

dx

dt
= x′(t) = ±

√
t+ x2(t), x(0) = 0. (2.6)

Note that in our setting x(0) = 0 is the only possible initial value.

We now want to analyze the problem (2.6), say just for the positive sign. The function
F : [0, T ]× R −→ R, F (t, x) =

√
t+ x2 is continuous and Lipschitz continuous with

respect to the second variable. Thus, by Picard–Lindelöf’s theorem there exists a
unique characteristic x(t). Using Picard’s iteration scheme, we additionally obtain

x(t) = 3
2 t

3/2 +O(t5/2) as t→ 0+.
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This means, that for small t we asymptotically have the same characteristic as for
the Tricomi-operator ∂2

t − t∂2
x in the hyperbolic region. We remark, that we have an

similar characteristic for the negative root of the principal symbol.

By extending this to multi-dimensional space variable x ∈ Rd, we are interested in
the wellposedness of the Cauchy problem∂

2
t u− (t+ |x|2)∆xu = f(t, x), in (0, T )× Rd,

u(0, x) = u0(x), ut(0, x) = u1(x) on Rd,

for a suitable source function f and initial data u0 and u1. Now, this second-order
scalar equation can be generalized to the higher-dimensional case, that isPu = f(t, x), in (0, T )× Rd,

(∂jt u)(0, x) = u0(x) on Rd, j = 0, . . .m− 1,

for

P = Dm
t +

m∑
j=1

aj(t, x,Dx)Dm−j
t .

Here, the aj are pseudodifferential operators of order j that degenerate like a power
of t+ |x|2 as (t, x) −→ (0, 0). Such higher-dimensional equation then can be reduced
to a first order system of size m×m asDtU = A(t, x,Dx)U + F (t, x), in (0, T )× Rd,

U(0, x) = U0(x), on Rd,

where A(t, x,Dx) is again a pseudodifferential operator of order 1 with same dege-
neracy.

In Chapter 3 we will develop a pseudodifferential calculus, where we analyze these
kinds of operators.

2.2 A first observation

When dealing with the equation itself, the following result arises:

Lemma 2.3. Let u0, u1 ∈ C∞c (Rd), u1
|x| ∈ L

2(Rd) and f ∈ L2((0, T )× Rd). A solution
u to the Cauchy problem∂

2
t u− (t+ |x|2)∆xu = f(t, x), in (0, T )× Rd,

u(0, x) = u0(x), ut(0, x) = u1(x) on Rd,

2.2 A first observation 11



satisfies on (0, T ) the energy inequality

‖∇u(t)‖2L2(Rd)+
∥∥∥∥∥ ut(t)√

t+ |x|2

∥∥∥∥∥
2

L2(Rd)
+ 1

2

∫ t

0

∥∥∥∥ ut(s)
t+ |x|2

∥∥∥∥2

L2(Rd)
ds

≤ ‖∇u0‖2L2(Rd) +
∥∥∥∥u1
|x|

∥∥∥∥2

L2(Rd)
+ 2

∫ t

0
‖f(s)‖2L2(Rd)ds.

Proof. Write r =
√
t+ |x|2. We can show this inequality by direct formal computati-

ons. Since
d

dt

(
u2
t

r2

)
= 2ututt

r2 −
(
ut
r2

)2
, (2.7)

we have

d

dt

∥∥∥∥utr
∥∥∥∥2

L2(Rd)
=
∫
Rd

d

dt

(
ut
r

)2
dx =

∫
Rd

[
2ututt
r2 −

(
ut
r2

)2
]
dx

= 2
〈
utt
r2 , ut

〉
L2(Rd)

−
∥∥∥∥utr2

∥∥∥∥2

L2(Rd)
.

Furthermore, we see

d

dt
‖∇u‖2L2(Rd) =

∫
Rd

d

dt
|∇u|2dx = 2

∫
Rd
∇u · ∇utdx

= −2
∫
Rd

∆u · utdx = −2〈∆u, ut〉L2(Rd).
(2.8)

Combining (2.7) and (2.8) yields

d

dt

(∥∥∥∥utr
∥∥∥∥2

L2(Rd)
+ ‖∇u‖2L2(Rd)

)
+
∥∥∥∥utr2

∥∥∥∥2

L2(Rd)

= 2
〈
utt
r2 , ut

〉
L2(Rd)

−
∥∥∥∥utr2

∥∥∥∥2

L2(Rd)
− 2〈∆u, ut〉L2(Rd) +

∥∥∥∥utr2

∥∥∥∥2

L2(Rd)

= 2
〈
utt
r2 −∆u, ut

〉
L2(Rd)

.

(2.9)

Since utt− r2∆u = f is equivalent to utt
r2 −∆u = f

r2 on (0, T ) and in view of Young’s
weighted inequality, we get

d

dt

(∥∥∥∥utr
∥∥∥∥2

L2(Rd)
+ ‖∇u‖2L2(Rd)

)
+
∥∥∥∥utr2

∥∥∥∥2

L2(Rd)

= 2
〈
f,
ut
r2

〉
L2(Rd)

≤ 2‖f(t)‖2L2(Rd) + 1
2

∥∥∥∥utr2

∥∥∥∥2

L2(Rd)
.

(2.10)
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Integrating (2.10) with respect to t yields

‖∇u(t)‖2L2(Rd)+
∥∥∥∥ut(t)r

∥∥∥∥2

L2(Rd)
+ 1

2

∫ t

0

∥∥∥∥ut(s)r2

∥∥∥∥2

L2(Rd)
ds

≤ ‖∇u0‖2L2(Rd) +
∥∥∥∥u1
|x|

∥∥∥∥2

L2(Rd)
+ 2

∫ t

0
‖f(s)‖2L2(Rd)ds.

This is the desired estimate.

Remark 2.4. Using the sequel notation of function spaces, this lemma would imply
u ∈ CH1,1 ∩ C 1H0,1. By setting s = δ = 0 in Theorem 1.2, our theory will give

u ∈ CH1,0 ∩ C 1H0,0

and thus provide a better result.

This inequality is just a first heuristical observation and will not play any role in the
latter analysis. However, since we have to assume that the function u1

|x| is square-
integrable, this shows a connection to the 2-microlocal spaces, see the Appendix for
an introduction.

2.2 A first observation 13





3Pseudodifferential Calculus

Developing a pseudodifferential calculus to study a certain kind of partial differential
equations means to introduce a special class of symbols, which are closely related to
the differential operator of the given problem. In our setting we are not interested
in long-time behavior, but in existence and uniqueness of solutions near the origin.
Therefore, we define the function σ : [0, T ]× Rd −→ R via

σ(t, x) =


√
t+ |x|2, t+ |x|2 ≤ 1

2 ,

1, t+ |x|2 ≥ 1.

The function σ is positive for (t, x) 6= (0, 0) and belongs to the function space
C

1
2 ([0, T ]× Rd) ∩ C∞(([0, T ]× Rd) \ {(0, 0)}) and describes the kind of singularity

near the origin.

3.1 The symbol class Σm,p

We use σ as a weight function in the following symbol estimate.

Definition 3.1. For (m, p) ∈ R2, the symbol class Σm,p consists of all functions
a ∈ C∞([0, T ]× R2d,MN×N (C)) such that for each multiindex (j, α, β) ∈ N1+2d

0 the
estimate

|∂jt ∂αx ∂
β
ξ a(t, x, ξ)| . 〈ξ〉p+2j−|β|+|α|〈σξ〉m−p−|α|−2j

holds for all (t, x, ξ) ∈ [0, T ]× R2d.

For ` ∈ N0 let us also define a system of semi-norms via

|a|m,p;` = sup
(t,x,ξ)∈[0,T ]×R2d

j+|α|+|β|≤`

〈ξ〉−p−2j+|β|−|α|〈σξ〉−m+p+|α|+2j |∂jt ∂αx ∂
β
ξ a|.

It is not difficult to check, that Σm,p together with these semi-norms forms a Fréchet
space.

Away form (t, x) = (0, 0) the symbol class Σm,p coincides with Sm1,0. Moreover, by
restricting to t = 0, we obtain the 2-microlocal estimates in variables (x, ξ) with

15



respect to the Lagrangian T ∗0 Rd. More precisely, we get symbols a(0, x, ξ) ∈ Σm,p
0 ,

that is
|∂αx ∂

β
ξ a(0, x, ξ)| . 〈|x|ξ〉m−p−|α|〈ξ〉p−|β|+|α|.

For more details on this clas, see the Appendix. Another difficulty arises directly in
the origin (t, x) = (0, 0), since we then get the estimate

|∂αx ∂
β
ξ a(0, 0, ξ)| . 〈ξ〉p−|β|+|α|.

Thus, we have a(0, ·, ·) ∈ Sp1,1, or, more generally, (∂jt a)(0, ·, ·) ∈ Sp+2j
1,1 over (x, ξ) =

(0, 0). The analysis of operators of type (1, 1) is technically difficult, because in
general they are not L2-continuous. The problems stem from the behavior of the
twisted diagonal of the Fourier transform. We will recall some results on operators of
type (1, 1) in the Appendix. Furthermore, by definition, the weight functions 〈ξ〉 and
〈σξ〉 are symbols in Σ1,1 and Σ1,0, respectively. Moreover, we have the embedding

Sm1,0([0, T ]× R2d) ⊆ Σm,m,

which follows directly from the estimate

|∂jt ∂αx ∂
β
ξ a| . 〈ξ〉

m−β . 〈σξ〉−2j−|α|〈ξ〉m+2j+|α|−|β

for an a ∈ Sm1,0([0, T ]× R2d), since 〈σξ〉 . 〈ξ〉.

Example 3.2. We also want to discuss the example of a(t, x, ξ) = σ2 near the origin.
It is σ2 ∈ Σ0,−2. Indeed, we have

σ2 = 1 + |ξ|2

1 + |ξ|2σ
2 = σ2 + σ2|ξ|2

1 + |ξ|2 ≤ 1 + σ2|ξ|2

1 + |ξ|2 = 〈σξ〉2〈ξ〉−2.

Moreover, we easily compute

∂tσ
2 = 1 and ∂xiσ

2 = 2xi . σ .
〈σξ〉
〈ξ〉

.

All higher derivatives vanish.

For later use, we also set

Σ−∞,p :=
⋂
m∈R

Σm,p and Σ−∞,−∞ :=
⋂

(m,p)∈R2

Σm,p = C∞b ([0, T ]× Rdx,S (Rdξ)).

Let us prove our first result, an approximation lemma:
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Lemma 3.3. Let a ∈ Σ0,0, 0 ≤ ε ≤ 1 and set aε = a(t, x, εξ). Then aε is bounded in
Σ0,0 and

aε
Σm,p−→ a0

for all p ≥ m > 0 as ε −→ 0.

Proof. We prove this with the additional assumption that m, p ∈ (0, 1], the general
case follows immediately. Since a0 = a(t, x, 0) ∈ Σ0,0, we are finished, if we can
prove that for all (t, x, ξ) ∈ [0, T ] × R2d and all (j, α, β) ∈ N1+2d

0 there exists a
constant C satisfying

〈ξ〉−p−2j−|α|+|β|〈σξ〉−m+p+|α|+2j |∂jt ∂αx ∂
β
ξ (a(t, x, εξ)− a(t, x, 0))| ≤ Cεm.

Consider first |β| ≥ 1. Then the left-hand side can be estimated by

〈ξ〉−p−2j−|α|+|β|〈σξ〉−m+p+|α|+2j |∂jt ∂αx ∂
β
ξ (a(t, x, εξ)− a(t, x, 0))|

≤ C〈ξ〉−p−2j−|α|+|β|〈σξ〉−m+p+|α|+2jε|β|〈εξ〉2j−|β|+|α|〈εσξ〉−|α|−2j

= C

(〈εξ〉
〈ξ〉

)2j+|α|
〈ξ〉−p+|β|〈εξ〉−|β|〈σξ〉−m+p

( 〈σξ〉
〈εσξ〉

)2j+|α|
ε|β|.

Note that
〈εξ〉〈σξ〉
〈ξ〉〈εσξ〉

≤ 1.

This leads to

〈ξ〉−p−2j−|α|+|β|〈σξ〉−m+p+|α|+2j |∂jt ∂αx ∂
β
ξ (a(t, x, εξ)− a(t, x, 0))|

≤ Cε|β|〈ξ〉−p+|β|〈εξ〉−|β|〈σξ〉−m+p.

and further, by algebraic manipulations,

〈ξ〉−p−2j−|α|+|β|〈σξ〉−m+p+|α|+2j |∂jt ∂αx ∂
β
ξ (a(t, x, εξ)− a(t, x, 0))|

≤ Cε|β|
(〈σξ〉
〈ξ〉

)p−m
〈ξ〉|β|−mεmε−m〈εξ〉−|β|

≤ Cεm
(
ε〈ξ〉
〈εξ〉

)|β|−m
〈εξ〉−m

≤ Cεm.

Consider now β = 0. By using Taylor’s formula, we obtain

(∂jt ∂αx a)(t, x, εξ)− (∂jt ∂αx a)(t, x, 0) =
∑
|β|=1

(εξ)β∂jt ∂αx ∂
β
ξ a(t, x, ϑεξ)
β!
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for a certain ϑ ∈ [0, 1]. Estimating the right side brings us to

|(∂jt ∂αx a)(t, x, εξ)− (∂jt ∂αx a)(t, x, 0)| ≤
d∑
i=1
|εξ| · |∂jt ∂αx ∂ξia(t, x, ϑεξ)|

≤ ε〈ξ〉〈ϑεξ〉2j−1+|α|〈ϑεσξ〉−|α|−2j .

By similar arguments as in the previous case, we get

〈ξ〉−p−2j−|α|+|β|〈σξ〉−m+p+|α|+2j |∂jt ∂αx ∂
β
ξ (a(t, x, εξ)− a(t, x, 0))|

≤ Cε〈ξ〉〈ξ〉−p〈ϑεξ〉−1〈σξ〉−m+p

≤ Cεm
(
ε〈ξ〉
〈ϑεξ〉

)1−m
≤ Cεm.

This completes the proof.

We are now going to introduce the corresponding pseudodifferential operators,
namely the class Op(Σm,p).

Theorem 3.4. If a ∈ Σm,p and u ∈ C∞([0, T ],S (Rd)), then

Op(a)u := a(t, x,Dx)u(t, x) = 1
(2π)d

∫
Rd
eixξa(t, x, ξ)û(t, ξ)dξ

defines a function a(t, x,Dx)u ∈ C∞([0, T ],S (Rd)) and the bilinear map

Σm,p × C∞([0, T ],S (Rd)) −→ C∞([0, T ],S (Rd)), (a, u) 7−→ a(t, x,Dx)u

is continuous. Moreover [Dt,Op(a)]u = Op(Dta).

Proof. For every fixed t ∈ [0, T ] we have û(t, ξ) ∈ S (Rd) and the function

(Op(a)u)(t, x) = 1
(2π)d

∫
Rd
eixξa(t, x, ξ)û(t, ξ)dξ

is continuous. Moreover,

|(Op(a)u)(t, x)| .
∫
Rd
〈ξ〉p〈σξ〉m−p|û(t, ξ)|dξ · sup

(t,x,ξ)∈[0,T ]×R2d
|a(t, x, ξ)|〈ξ〉−p〈σξ〉p−m,
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which shows, that (Op(a)u)(t, ·) belongs to S (Rd). Since a and û depend smoothly
on the variable t, one also gets that Op(a)u ∈ C∞([0, T ],S (Rd)). Moreover,

Dt Op(a)u = Dt
1

(2π)d
∫
Rd
eixξa(t, x, ξ)û(t, ξ)dξ

= 1
(2π)d

∫
Rd
eixξ(Dta)(t, x, ξ)û(t, ξ) + a(t, x, ξ)(Dtû)(t, ξ))dξ

= 1
(2π)d

∫
Rd
eixξ(Dta)(t, x, ξ)û(t, ξ)dξ

+ 1
(2π)d

∫
Rd
eixξa(t, x, ξ)(Dtû)(t, ξ))dξ

= Op(Dta) + Op(a)Dtu,

which is exactly [Dt,Op(a)]u = Op(Dta).

Definition 3.5. We call a(t, x,Dx) a pseudodifferential operator of order m and
bi-order (m, p) and set

Op(Σm,p) := {Op(a) | a ∈ Σm,p}.

For later use, we also define Σm,p,† := {a ∈ Σm,p | Op(a)† ∈ Op(Σm,p)}, where †
denotes the operation of taking adjoint with respect to L2.

We now want to prove the following lemma:

Lemma 3.6. Let χ ∈ C∞(R) with χ(z) = 0 if |z| ≤ 1/2 and χ(z) = 1 for |z| ≥ 1 be
an excision function. Then χ+(t, x, ξ) := χ(σ〈ξ〉) belongs to Σ0,0 while

χ−(t, x, ξ) := 1− χ(σ〈ξ〉) ∈ Σ−∞,0.

Proof. By definition, we have |χ+(t, x, ξ)| . 1. For all n ∈ N, the functions

χ(n)(z) = dn

dzn
χ

are bounded and compactly supported with same support. So now fix an multiindex
(j, α, β) ∈ N1+2d

0 with j + |α|+ |β| ≥ 1. By higher multi-dimensional chain rule for
composed function the function (∂jt ∂αx ∂

β
ξ χ

+)(t, x, ξ) can be written as a sum, where
each summand is basically a product of derivatives of χ(z) and derivatives of σ〈ξ〉
up to combinatorial constants. Since all derivatives χ(n)(z) are zero outside the set
{1/2 ≤ |z| ≤ 1}, also (∂jt ∂αx ∂

β
ξ χ)(σ〈ξ〉) vanishes outside {1/2 ≤ σ〈ξ〉 ≤ 1}. Hence,

we can find a constant Cjαβ such that

|∂jt ∂αx ∂
β
ξ χ

+| ≤ Cjαβ〈ξ〉2j−|β|+|α|〈σξ〉−|α|−2j .

This means that χ+ ∈ Σ0,0.
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Since χ− is compactly supported, we immediately get

|χ−(t, x, ξ)| . 〈σξ〉m for all m ∈ R.

Similar arguments as above give us χ− ∈ Σ−∞,0.

In the next proposition we list properties of the symbol classes Σm,p.

Proposition 3.7.

(i) Let a ∈ Σm,p and (j, α, β) ∈ N1+2d
0 , then ∂jt ∂

α
x ∂

β
ξ a ∈ Σm−|β|,p+2j+|α|−|β|.

(ii) For (m, p), (m′, p′) ∈ R2 the composition Σm,p · Σm′,p′ ⊆ Σm+m′,p+p′ holds.

(iii) We have the embedding Σm,p ⊆ Σm′,p′ ⇐⇒ m ≤ m′ and p ≤ p′.

Proof. Statement (i) is proven by definition of the symbol class, (ii) by a calculation
using to product rule for derivatives.

Let us now prove (iii)and first Σm,p ⊆ Σm′,p′ . Then we get that

〈σξ〉m−p〈ξ〉p . 〈σξ〉m′−p′〈ξ〉p′

holds for all (t, x, ξ) ∈ [0, T ]× R2d. For the particular point (0, 0, ξ) we have 〈ξ〉p .
〈ξ〉p′ and since 〈ξ〉 ≥ 1 for all ξ ∈ Rd, we finally get p ≤ p′. By setting |ξ| = 1 we
arrive at 〈σ〉m−p . 〈σ〉m′−p′ . Since this is true for all (t, x) ∈ [0, T ]×Rd, we conclude
m− p ≤ m′ − p′. Putting these two conditions together, we get m ≤ m′ and p ≤ p′.

Conversely let m ≤ m′ and p ≤ p′. Observe that

〈ξ〉
〈σξ〉

≥ 1 =⇒
( 〈ξ〉
〈σξ〉

)p
≥
( 〈ξ〉
〈σξ〉

)p′
=⇒ 〈ξ〉p〈σξ〉−p ≤ 〈ξ〉p′〈σξ〉−p′ .

Moreover, 〈σξ〉m ≤ 〈σξ〉m′ and so

〈ξ〉p〈σξ〉m−p ≤ 〈ξ〉p′〈σξ〉m′−p′ .

This proves Σm,p ⊆ Σm′,p′ .

Next, for the sake of completeness, we want to prove asymptotic completeness.
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Proposition 3.8. Let ak ∈ Σmk,p, k ∈ N, be an arbitrary sequence, where mk is
monotone decreasing with mk −→ −∞ as k −→∞. Then there is a symbol a ∈ Σm,p

with m := m1 such that for every M , there is an N(M) so that for all N ≥ N(M):

a(t, x, ξ)−
N∑
k=0

ak(t, x, ξ) ∈ Σm−M,p.

The element a ∈ Σm,p is uniquely determined by this property modulo Σ−∞,p.

Definition 3.9. We call any such a asymptotic sum of the ak, k ∈ N, and write

a(t, x, ξ) ∼
∑
k∈N

ak(t, x, ξ).

Proof. In order to apply Theorem A.20, let us set Ek := Σmk,p for k ∈ N, with the
natural system of semi-norms

|a|mk,p;` := sup
(t,x,ξ)∈[0,T ]×R2d

j+|α|+|β|≤l

〈ξ〉−p−2j+|β|−|α|〈σξ〉−mk+p+|α|+2j |∂jt ∂αx ∂
β
ξ a|.

Let again

χ(z) =

0, |z| ≤ 1/2

1, |z| ≥ 1

be an excision function and define χk(c) : Σmk,p −→ Σmk,p, c ∈ R+, as the operator
of multiplication by χ(c−1σ〈ξ〉). Then it is clear, that the diagram

Σmk+1,p �
� //

χ(c−1σ〈ξ〉)
��

Σmk,p

χ(c−1σ〈ξ〉)
��

Σmk+1,p �
� // Σmk,p

commutes. By previous results, we have χ− ∈ Σ−∞,0 and so we get

(1− χ(c−1σ〈ξ〉))a ∈ Σ−∞,p

for all a ∈ Σmk,p, k ∈ N. It suffices now to check, that for every k ∈ N and all
(j, α, β) ∈ N1+2d

0 there is an index i, such that b(t, x, ξ) ∈ Σµ,p for µ ≤ mi implies

sup
(t,x,ξ)∈[0,T ]×R2d

〈ξ〉−p−2j+|β|−|α|〈σξ〉−mk+p+|α|+2j |∂jt ∂αx ∂
β
ξ {χ(c−1σ〈ξ〉)b(t, x, ξ)}| −→ 0

3.1 The symbol class Σm,p 21



as c −→∞. Let us show this for arbitray µ < mk. We have

sup 〈ξ〉−p−2j+|β|−|α|〈σξ〉−mk+p+|α|+2j |∂jt ∂αx ∂
β
ξ {χ(c−1σ〈ξ〉)b(t, x, ξ)}|

= sup 〈ξ〉−p−2j+|β|−|α|〈σξ〉µ−mk〈σξ〉−µ+p+|α|+2j |∂jt ∂αx ∂
β
ξ {χ(c−1σ〈ξ〉)b(t, x, ξ)}|

with supremum taken over (t, x, ξ) ∈ [0, T ]×R2d. Since χ(z) is an excision function,
we have χ(z) = 0 for |z| < R with some R > 0. Then χ(c−1σ〈ξ〉) vanishes for
|c−1σ〈ξ〉| < R. Thus, it is permitted to take the supremum of |σ〈ξ〉| ≥ cR, and so

sup 〈ξ〉−p−2j+|β|−|α|〈σξ〉−mk+p+|α|+2j |∂jt ∂αx ∂
β
ξ {χ(c−1σ〈ξ〉)b(t, x, ξ)}| ≤ K(c)〈cR〉µ−mk

with

K(c) = sup 〈ξ〉−p−2j+|β|−|α|〈σξ〉−µ+p+|α|+2j |∂jt ∂αx ∂
β
ξ {χ(c−1σ〈ξ〉)b(t, x, ξ)}|.

Now, K(c) is uniformly bounded for c ≥ ε for all ε > 0. So there exists an L with
K(c) ≤ L for c sufficently large, for which

|χ(c−1σ〈ξ〉)b|mk,p,` ≤
L

〈cR〉mk−µ
.

Since mk − µ > 0, we get

|(χ(c−1σ〈ξ〉)b|mk,p,` −→ 0 as c −→∞.

In view of Theorem A.20, there now exists a sequence of constants ck ∈ R+, such
that

a(t, x, ξ) =
∞∑
k=1

χ(c−1
k σ〈ξ〉)ak(t, x, ξ)

converges in Σm,p, and has the property

a(t, x, ξ)−
N∑
k=1

ak(t, x, ξ) ∈ ΣmN+1,p

for all N ∈ N. Furthermore, a is unique modulo Σ−∞,p and so

a(t, x, ξ) ∼
∑
k∈N

ak(t, x, ξ).

This completes the proof.
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3.2 C ([0, T ], L2(Rd))-continuity for Op(Σ0,0,†)

In this section we want to show, that the operator A := Op(a) is C ([0, T ], L2(Rd))-
bounded, provided a ∈ Σ0,0,†.

The strategy is to consider A as a linear operator on C ([0, T ],S (Rd)), which can be
represented in the its usual form

(Au)(t, x) =
∫
Rd
K(t, x, y)u(t, y) dy, (3.1)

where K is the t-dependent Schwartz kernel of A and satisfies a certain kernel
estimate. This inequality guarantees K to be a standard kernel. An application of
the T (1)-theorem shows, that it extends pointwise to L2(Rd), uniformly in t ∈ [0, T ].
See the Appendix for an introduction to standard kernels and the T (1)-theorem.
This result will be the basis for us to prove mapping properties between function
spaces.

Lemma 3.10. Suppose a ∈ Σ0,0,†. Then for every t ∈ [0, T ] the pseudodifferential
operator

A(t) = a(t, x,Dx) : S (Rd) −→ S (Rd)

can be written in the form as in (3.1) with time-dependent kernel

Kt(x, y) = k(t, x, x− y)

where k(t, x, z) is smooth away from z = 0 and satisfies

|∂jt ∂αx ∂βz k(t, x, z)| . |z|−d−|α|−|β|−2j

for all (j, α, β) ∈ N1+2d
0 .

Proof. In this proof we use the common technique of Littlewood-Paley decomposition,
see for instance [Abe; Bon; Hor3]. A standard calculation first shows, that

(Au)(t, x) =
∫
Rd
a(t, x, ξ)eixξû(t, ξ) dξ

=
∫
R2d

a(t, x, ξ)ei(x−y)ξu(t, y) dξ dy

=
∫
Rd

(∫
Rd
a(t, x, ξ)ei(x−y)ξ dξ

)
u(t, y) dy.
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We therefore have a representation of desired form with

Kt(x, y) = k(t, x, x− y) :=
∫
Rd
a(t, x, ξ)ei(x−y)ξ dξ,

namely as an oscillatory integral. It is clear, that k is smooth away from z = 0. Now
let φ ∈ C∞(Rd), such that φ ≡ 1 in |ξ| ≤ 1 and suppφ ⊆ {|ξ| ≤ 2}. The Littlewood-
Paley decomposition is then given by functions φ`(ξ) := φ(2−`ξ) − φ(21−`ξ) with
suppφ` contained in the set {2`−1 ≤ |ξ| ≤ 2`+1}. It follows, that

φ(ξ) +
∞∑
`=1

φ`(ξ) = lim
`→∞

φ(2−`ξ) ≡ 1.

For all those functions φ` we obtain the estimate |∂βξ φ`(ξ)| . 〈ξ〉−|β|, β ∈ Nd0, which
mean, that φ` ∈ Σ0,0,† for all ` ∈ N0. Since the symbol a is in Σ0,0,†, we get, that

a`(t, x, ξ) = a(t, x, ξ)φ`(ξ) and a0(t, x, ξ) = a(t, x, ξ)φ(ξ)

form a family out of functions again in Σ̃0,0,†. Hence, by quantization, the operator
A can be represented as

A(t) = a(t, x,Dx) =
∞∑
`=0

At,` =
∞∑
`=0

a`(t, x,Dx),

where At,` possesses the Schwartz kernel

k`(t, x, z) =
∫
Rd
a`(t, x, ξ)eiξz dξ.

Since the integrand functions a` are compactly supported in ξ, we easily compute
the derivatives

∂jt ∂
α
x ∂

β
z k`(t, x, z) =

∫
Rd
∂jt ∂

α
x a`(t, x, ξ)(iξ)βeiξx dξ.

Multiplication on the left side with (iz)γ , γ ∈ Nd0, leads to derivatives ∂γξ in the
integral. An integration by part yields

(iz)γ∂jt ∂αx ∂βz k`(t, x, z) =
∫
Rd
∂γξ ((iξ)β∂jt ∂αx a`(t, x, ξ))eiξx dξ.

The task is now to find an upper bound for the integrand. Indeed, by using the
symbol estimates, we get

|∂γξ ((iξ)β∂jt ∂αx a`(t, x, ξ))| . 〈ξ〉|α|+|β|−|γ|+2j〈σξ〉−|α|−2j

≤ 〈ξ〉|α|+|β|−|γ|+2j

. 2`(|α|+|β|−|γ|+2j).
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Since the support is of size 2`d, we get

|∂jt ∂αx ∂βz k`(t, x, z)| . 2`(d+|α|+|β|−M+2j)|z|−M

for every M ∈ N0 where M := |γ|.

Consider now |z| ≥ 1. Then, by an application of the geometric series, we see

|∂jt ∂αx ∂βz k(t, x, z)| ≤
∞∑
`=0
|∂jt ∂αx ∂βz k`(t, x, z)|

. |z|−M
∞∑
`=0

2`(d+|α|+|β|−M+2j)

. |z|−M . |z|−d−|α|−|β|−2j ,

provided d+ |α|+ |β| −M + 2j > 0, that is M > d+ |α|+ |β|+ 2j.

For the case |z| < 1 we split the kernel into two different sums, say

|∂jt ∂αx ∂βz k(t, x, z)| ≤
∞∑
`=0
|∂jt ∂αx ∂βz k`(t, x, z)|

.
∑

2`<|z|−1

|∂jt ∂αx ∂βz k`(t, x, z)|+
∑

2`≥|z|−1

|∂jt ∂αx ∂βz k`(t, x, z)|.

For given |z| < 1, there are just finitely many `, such that 2` < |z|−1. So the first sum
is finite. By setting M = 0, and noting that d+ |α|+ |β|+ 2j > 0, we obtain

∑
2`<|z|−1

|∂jt ∂αx ∂βz k`(t, x, z)| ≤
∑

2`<|z|−1

2`(d+|α|+|β|+2j) . |z|−d−|α|−|β|−2j .

In a similar fashion to the first case we get for the remainder sum

∑
2`≥|z|−1

|∂jt ∂αx ∂βz k`(t, x, z)| . |z|−M
∞∑
`=0

2`(d+|α|+|β|−M+2j)

. |z|−M . |z|−d−|α|−|β|−2j ,

if M > d+ |α|+ |β|+ 2j. This finishes the proof of the lemma.

Remark 3.11. Considering A(t) = a(t, x,Dx) as a time-dependent family of operators
{a(t, x,Dx)}t∈[0,T ], we have A(t) ∈ Op(S0

1,0) for every t ∈ (0, T ], but not uniformly
in t. For t > 0 we would get the better estimate

|∂jt ∂αx ∂βz k(t, x, z)| ≤ Cjαβ(t)|z|−d−|β|−2j

with Cjαβ(t) −→∞ as t −→ 0. However, the estimate in the previous lemma holds
for every t ∈ [0, T ].
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Using that lemma, we obviously get in particular |Kt(x, y)| . |x − y|−d for all
x, y ∈ Rd with x 6= y and uniformly in t ∈ [0, T ]. Moreover, by the kernel estimates
it holds

|∂xiKt(x, y)| . |x− y|−d−1 and |∂yiKt(x, y)| . |x− y|−d−1

respectively, for all x 6= y. Putting these statements together yields

|∇xKt(x, y)|+ |∇yKt(x, y)| . |x− y|−d−1

for all x, y ∈ Rd, x 6= y, and uniformly in t. So Kt(x, y) defines a family of
standard kernels, depending on t ∈ [0, T ]. We are now ready to prove the following
proposition.

Proposition 3.12. Let a ∈ Σ0,0,†. Then, for every t ∈ [0, T ], the corresponding linear
operator

A(t) = a(t, x,Dx) : S (Rd) −→ S (Rd)

extends to a bounded operator A(t) : L2(Rd) −→ L2(Rd).

Proof. First, we recover the symbol of the pseudodifferential operator A. By defining
f(t, x) := eixθ with parameter θ ∈ Rd, we get f̂(t, ξ) = δ(ξ − θ). Using the integral
representation of A, we obtain

A(eiθ·)(t, x) =
∫
Rd
a(t, x, ξ)eixξδ(ξ − θ) dξ = a(t, x, θ)eixθ.

For every θ ∈ Rd and pointwise for all t ∈ [0, T ] we have, that the function
a(t, x, θ)eixθ is bounded, since

|a(t, x, θ)eixθ| = |a(t, x, θ)| . 1,

because a ∈ Σ0,0,†. In particular, we get A(eiθ·)(t, ·) ∈ L∞(Rd) ⊂ BMO(Rd), see
Lemma A.22. With a similar argument we also obtain A†(eiθ·)(t, ·) ∈ L∞(Rd) ⊂
BMO(Rd). Since the upper bounds do not depend on θ, we conclude, that

sup
θ∈Rd
‖A(eiθ·)(t, ·)‖BMO + sup

θ∈Rd
‖A∗(eiθ·)(t, ·)‖BMO <∞,

uniformly for all t ∈ [0, T ]. By Proposition A.30 (iii), the operator A(t) extends to a
bounded linear map L2(Rd) −→ L2(Rd), uniformly in t ∈ [0, T ].

Let us finally prove two important Corollaries:

Corollary 3.13. Let a ∈ Σ0,0,†. Then Op(a) is continuous from L2((0, T ) × Rd) to
L2((0, T )× Rd).
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Proof. Let v ∈ L2(Rd). From the previous proposition we have

‖A(t)v‖L2(Rd) . ‖v‖L2(Rd) uniformly in t ∈ [0, T ].

Identifying a function u ∈ L2((0, T )× Rd) as a family {u(t)}t∈[0,T ] ⊆ L2(Rd) we see,
that

‖A(t)u(t, ·)‖L2(Rd) . ‖u(t, ·)‖L2(Rd) uniformly in t ∈ [0, T ].

Squaring and integrating over t brings us to

‖Au‖2L2((0,T )×Rd) =
∫ T

0
‖A(t)u(t)‖2L2(Rd) dt

.
∫ T

0
‖u(t)‖2L2(Rd) dt = ‖u‖2L2((0,T )×Rd)

and so ‖Au‖L2((0,T )×Rd) . ‖u‖L2((0,T )×Rd). This proves the L2-continuity of Op(a).

Corollary 3.14. Let a ∈ Σ0,0,†. Then Op(a) is continuous from C ([0, T ], L2(Rd)) to
C ([0, T ], L2(Rd)).

Proof. We have

‖A(t)u(t)−A(0)u(0)‖L2(Rd) = ‖A(t)u(t)−A(t)u(0) +A(t)u(0)−A(0)u(0)‖L2(Rd)

≤ ‖A(t)‖L (L2(Rd))‖u(t)− u(0)‖L2(Rd)

+ ‖A(t)−A(0)‖L (L2(Rd))‖u(0)‖L2(Rd).

This shows Au ∈ C ([0, T ], L2(Rd)). The continuity of the map A follows immediately.

3.3 The symbol class Σ̃m,p

The class Σm,p is not appropriate for defining principal symbols. Therefore, we have
to refine the space Σm,p. This is done by the construction, presented in the sequel.

Let Υ = ([0, T ]× Rd) \ {(0, 0)} and

Θ = {(t̃, x̃) ∈ [0, 1]× Rd | t̃+ |x̃|2 = 1}.

We introduce generalized polar coordinates (r, ϑ) ∈ R+ × Θ, where ϑ = (t̃, x̃), in
such a manner that t = r2t̃ and x = rx̃. In particular, we get

t+ |x|2 = r2(t̃+ |x̃|2) = r2,
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this is r =
√
t+ |x|2, since r ∈ R+.

Definition 3.15. The class Σ(m),p, (m, p) ∈ R2, consists of all amplitude functions
a ∈ C∞(Υ, S(m)(Ṙd)), which admit an asymptotic expansion of the form

a(t, x, ξ) ∼
∑
k≥0

σm−p+kbk(ϑ, ξ) as r → +0

with bk ∈ C∞(Θ, S(m)(Ṙd)). This means, that for any K ∈ N0 and all multiindices
(j, α, β) ∈ N1+2d

0 the estimate∣∣∣∣∣∣∂jt ∂αx ∂βξ
a(t, x, ξ)−

∑
0≤k<K

σm−p+kbk(ϑ, ξ)

∣∣∣∣∣∣ . σm−p−2j−|α|+K |ξ|m−|β|

holds.

Note that for a ∈ Σ(m),p we have the symbol estimate (set K = 0)

|∂jt ∂αx ∂
β
ξ a(t, x, ξ)| . σm−p−2j−|α||ξ|m−|β|.

Lemma 3.16. We have the following scaling in Σ(m),p :

1
λp
a(λ−2t, λ−1x, λξ) λ→∞−−−→ rm−pb0(ϑ, ξ),

where the right-hand side is regarded as a function of (t, x, ξ) ∈ Υ × Ṙd with b0 ∈
C∞(Θ, S(m−1)(Ṙd)).

Proof. Use the asymptotic expansion with K = 1 to obtain

|a(t, x, ξ)− rm−pb0(ϑ, ξ)| . σm−p+1|ξ|m.

We are now using the scaling κλ : Υ× Ṙd −→ Υ× Ṙd via

kλ(t, x, ξ) = (λ−2t, λ−1x, λξ)

for λ > 0. Note that on Θ × Ṙd the above defined scaling reads as κλ(t̃, x̃, ξ) =
(t̃, x̃, λξ). We then have, that∣∣∣∣a(λ−2t, λ−1x, λξ)− 1

λm−p
rm−pb0(ϑ, λξ)

∣∣∣∣ . λp−m−1|ξ|m · |λ|mσm−p+1,

which is nothing but∣∣∣a(λ−2t, λ−1x, λξ)− λp−mrm−pb0(ϑ, λξ)
∣∣∣ . λp−1|ξ|mσm−p+1.
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Since b0 ∈ C∞(Θ, S(m)(Ṙd)), we have the identity b0(ϑ, λξ) = λmb0(ϑ, ξ) and so∣∣∣a(λ−2t, λ−1x, λξ)− λprm−pb0(ϑ, ξ)
∣∣∣ . λp−1|ξ|mσm−p+1.

Multiplying by λ−p brings us to

∣∣∣λ−pa(λ−2t, λ−1x, λξ)− rm−pb0(ϑ, ξ)
∣∣∣ . |ξ|mσm−p+1

λ
−→ 0

as λ −→∞ for all (t, x, ξ) ∈ Υ× Ṙd. Hence,

lim
λ→∞

1
λp
a(λ−2t, λ−1x, λξ) = rm−pb0(ϑ, ξ).

Lemma 3.17. If a ∈ Σ(m),p, then χ+a ∈ Σm,p. In particular, multiplying by χ+ gives
a quantization Σ(m),p −→ Σm,p.

Proof. If a ∈ Σ(m),p, we also have the symbol estimate

|∂jt ∂αx ∂
β
ξ a(t, x, ξ)| . |ξ|p+2j+|α|−|β|(σ|ξ|)m−p−2j−|α|.

Because of |ξ| & σ|ξ| & 1, we obtain σ|ξ| ' 〈σξ〉 and |ξ| ' 〈ξ〉, and so χ+a ∈
Σm,p.

In view of this, we now introduce those symbols of which we can derive principal
symbols.

Definition 3.18. For (m, p) ∈ R2, the class Σ̃m,p consists of all a ∈ Σm,p, that can be
written in the form

a(t, x, ξ) = χ+(t, x, ξ)(a0(t, x, ξ) + a1(t, x, ξ)) + ar(t, x, ξ),

where a0 ∈ Σ(m),p, a1 ∈ Σ(m−1),p and ar ∈ Σm−1,p−1,† + Σm−2,p,†.

Remark 3.19. We have Scl([0, T ]× R2d) ⊆ Σ̃m,m.

The next goal is to show that the corresponding class of operators Op(Σ̃m,p) is
closed under taking adjont. The main observation is that the remainder terms are
already okay, since they lie in an appropriate class. Let now a ∈ Σ(m),p, and so
(χ+a)(t, x,Dx) ∈ Op(Σm,p). We are interested in the question, if the symbol b(t, x, ξ)
of the adjoint operator (χ+a)(t, x,Dx)† is again of the form as in Σ̃m,p. Basically,
since for t > 0 this theory fits into the standard theory, the most difficulties arise
when t = 0. Fortunately, then symbols in Σ(m),p can be understood as a conormal
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distribution. Using the asymptotic expansion, we are able to control the arising
remainder terms.

Remark 3.20. If E and F are locally convex topological spaces then E ⊗ F denotes
the algebraic tensor product. The topologies of locally convex topological vector
spaces E and F are given by families of seminorms. For each choice of seminorm on
E and on F we can define the corresponding family of cross norms on the algebraic
tensor product E⊗F , and by choosing one cross norm from each family we get some
cross norms on E⊗F , defining a topology. There are in general an enormous number
of ways to do this. The two most important ways are to take all the projective cross
norms ⊗π, or all the injective cross norms ⊗ε. The completions of the resulting
topologies on E ⊗ F are called the projective and injective tensor products, and
denoted by E⊗̂πF and E⊗̂εF . There is a natural map from E⊗̂πF to E⊗̂εF . If one
if the factors E and F is nuclear it turns out that E⊗̂πF ∼= E⊗̂εF . For further details
on tensor topologies and nuclearity we refer to [Gro].

In the theory of pseudodifferential operators it turns out that the class Sm(Rd) of
symbols of order m is not nuclear, whereas both Scl(Rd) and S(m)(Ṙd) are nuclear
Fréchet spaces. Since there is a 1-to-1-correspondence between symbols a ∈ Σ̃m,p

and functions in the space C ([0, T ], S−d−m+p
cl (Rdη))⊗̂S(m)(Ṙdξ), we also work in a

nuclea Fréchet space.

We will first prove the following lemma:

Lemma 3.21. Let m ∈ R and a(t, x, ξ) ∈ C ([0, T ], S−d−m+p
cl (Rdη))⊗̂S(m)(Ṙdξ). Then

|F−1
η→xa(t, η, η + ξ)| . 〈σξ〉m−p〈ξ〉p.

Proof. Fix t ∈ [0, T ]. For simplicity we write a(t, η, η + ξ) = c(t, η)|ξ + η|m with
c(t, ·) ∈ S−d−m+p

cl for all t ∈ [0, T ]. The general case follows with similar arguments.

Let first m ≤ 0. Then

F−1
η→x{c(t, η)|ξ + η|m} =

∫
Rd
eixηc(t, η)|ξ + η|mdη.

We now have the identity

(1 + t|ξ|2 − |ξ|2∆η)
p−m

2 eixη = (1 + t|ξ|+ |ξ|2|x|2)
p−m

2 eixη,

which is
〈σξ〉m−p(1 + t|ξ|2 − |ξ|2∆η)

p−m
2 eixη = eixη.
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Note that the operator (1 + t|ξ|2 − |ξ|2∆η)
p−m

2 is self-adjoint. Using this identity and
integrate the oscillatory integral by part, we arrive at∫
Rd
eixηc(t, η)|ξ + η|mdη

= 〈σξ〉m−p
∫
Rd
eixη(1 + t|ξ|2 − |ξ|2∆η)

p−m
2 (c(t, η)|ξ + η|m) dη

= 〈σξ〉m−p〈ξ〉p−m〈ξ〉m
∫
Rd
eixη

(
1
〈ξ〉2

+ |ξ|
2(t−∆η)
〈ξ〉2

) p−m
2 (

c(t, η)
∣∣∣∣ ξ〈ξ〉 + η

〈ξ〉

∣∣∣∣m) dη.

The operator, including the variable ξ, has at most order zero, so it will not worsen
the estimate. Moreover,

(
1
〈ξ〉2

+ |ξ|
2(t−∆η)
〈ξ〉2

) p−m
2 (

c(t, η)
∣∣∣∣ ξ〈ξ〉 + η

〈ξ〉

∣∣∣∣m) ∈ S−d+m
cl ⊂ S−dcl ,

uniformly for every t ∈ [0, T ] and so∣∣∣∣∣∣
∫
Rd
eixη

(
1
〈ξ〉2

+ |ξ|
2(t−∆η)
〈ξ〉2

) p−m
2 (

c(t, η)
∣∣∣∣ ξ〈ξ〉 + η

〈ξ〉

∣∣∣∣m) dη

∣∣∣∣∣∣ . 1.

This means, that
|F−1

η→xa(t, η, η + ξ)| . 〈σξ〉m−p〈ξ〉p.

Let now m ≥ 0. Then

|ξ + η|m .
m∑
k=0
|ξ|m−k|η|k,

so we have to consider

m∑
k=0

∫
Rd
eixηc(t, η)|ξ|m−k|η|kdη.

Now fix a k ∈ {0, 1, . . . ,m}. Then, with the same computations as above, we first
have |η|kc(t, η) ∈ S−d−(m−k)+p

cl , and also∣∣∣∣∫
Rd
eixηc(t, η)|ξ|m−k|η|kdη

∣∣∣∣ . 〈σξ〉m−k−p〈ξ〉p
. 〈σξ〉m−p〈ξ〉p.

So, for every summand we first derive a stronger estimate, which can be bounded
from above by 〈σξ〉m−p〈ξ〉p for all k. This completes the proof.

This enables us to state the following theorem:

Theorem 3.22. Let a ∈ Σ(m),p and let b(t, x, ξ) the full symbol of the adjoint operator
(χ+a)(t, x,Dx)†. Then b ∈ Σ̃m,p.
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Proof. If we consider t as a parameter, then by the usual techniques (see for instance
[Hor3]) the Fourier transform of b fulfills the identity

b̂(t, ξ − η, η) = (χ̂+a)∗(t, η − ξ, ξ),

where the hat denotes the Fourier transform with respect to x and covariable η.
Noting, that χ+ is a scalar and real function, we get

b̂(t, ξ − η, η) = (χ+a∗)∧(t, η − ξ, ξ).

Then, by change of variables, we obtain

b̂(t, η, ξ) = (χ+a∗)∧(t,−η, η + ξ),

and an application of Taylor’s expansion brings us to

b̂(t, η, ξ) = (χ+a∗)∧(t,−η, ξ) + ∂ξ(χ+a∗)∧(t,−η, ξ)η

+ 2
∑
|α|=2

ηα
∫ 1

0
(1− θ)∂αξ (χ+a∗)∧(t,−η, ξ + θη) dθ

= (I1 + I2 + I3)(t, η, ξ).

We now transform back the expression I1 und I2. Then we get

F−1
η→x(I1) =

∫
Rd

(χ+a∗)∧(t,−η, ξ)eixη dη = (χ+a∗)(t, x, ξ)

and in a similar fashion also

F−1
η→x(I2) = i∂x∂ξ(χ+a∗)(t, x, ξ) = iχ+∂x∂ξa

∗(t, x, ξ) mod Σ−∞,p.

For the remainder term

r(t, η, ξ) = 2
∑
|α|=2

ηα
∫ 1

0
(1− θ)∂αξ (χ+a∗)∧(t,−η, ξ + θη) dθ

we will show F−1
η→x(r(t, η, ξ)) ∈ Σm−2,p,†. By Fubini’s theorem, it suffices to prove

the desired estimate, uniformly in θ ∈ [0, 1], for any term

ηα∂αξ (χ+a∗)∧(t,−η, ξ + θη), |α| = 2.

Since a∗ ∈ Σ(m),p, it has an expansion of the form

a∗ ∼
∑

rm−p+kb0 (ϑ, ξ)
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with b0 ∈ C∞(Θ× S(m)(Ṙd)). Hence,

F−1
η→x(a∗(t, η, ξ)) ∈ C∞((0, T ],S (R2d

η,ξ)) ⊂ C ([0, T ], S−d−m+p
cl (Rdη))⊗̂S(m)(Ṙdξ).

Since convolution does not have an effect, we have

ηα∂αξ (χ+a∗)∧ ∈ C∞((0, T ],S (R2d
η,ξ)) ⊂ C ([0, T ], S−d−(m−2)+p

cl (Rdη))⊗̂S(m−2)(Ṙdξ),

as |α| = 2. An application of Lemma 3.21 leads to the desired result. Note that
the estimates in that lemma are still true with that parameter θ. Integration over θ
completes the proof.

We are now able to state the following important result.

Theorem 3.23. The class Op(Σ̃m,p) is closed under taking adjoints.

Proof. It is

a(t, x,Dx)† = (χ+a0)(t, x,Dx)† + (χ+a1)(t, x,Dx)† + ar(t, x,Dx)†.

The first two terms belong to Op(Σ̃m,p) by Theorem 3.22, the third by definition of
the class Σ̃m,p.

We immediately obtain

Corollary 3.24. It holds Op(Σ̃m,p) ⊆ Op(Σm,p,†).

When a class of pseudodifferential operators is closed under taking adjoint, one
similarly gets, that also compositions are welldefined. We next show the following
theorem, by using the same techniques as in Lemma 3.21.

Theorem 3.25. Let a ∈ Σ(m),p and b ∈ Σ(m′),p′ and let c(t, x, ξ) the full symbol of the
composition operator ((χ+a)#(χ+b))(t, x,Dx). Then c ∈ Σ̃m+m′,p+p′ .

Proof. Let a ∈ Σ(m),p, b ∈ Σ(m′),p′ . Then χ+a and χ+b belong to Σm,p and Σm′,p′ ,
respectively. By standard computation, i.e. applying the Fourier transform (see for
example [Hor3]), the full symbol c(t, x, ξ) of

c(t, x,Dx) = (χ+a)(t, x,Dx)#(χ+b)(t, x,Dx)

is given by

c(t, x, ξ) = 1
(2π)d

∫
R2d

e−iyµ(χ+a)(t, x, ξ + µ)(χ+b)(t, x+ y, ξ) dy dµ.
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An Taylor expansion of (χ+a)(t, x, ξ + µ)(χ+b)(t, x+ y, ξ) at µ = 0 yields

(χ+a)(t, x, ξ + µ)(χ+b)(t, x+ y, ξ) = (χ+a)(t, x, ξ)(χ+b)(t, x+ y, ξ)

+ ∂ξ(χ+a)(t, x, ξ + µ)(χ+b)(t, x+ y, ξ)µ

+ r(t, x, ξ, y, µ),

where

r(t, x, ξ, y, µ) = 2
∑
|α|=2

1
α!

∫ 1

0
(1− θ)(∂αξ (χ+a))(t, x, ξ + µ)(χ+b)(t, x+ y, ξ)µα dθ.

Since, as iterated integral,

1
(2π)d

∫
R2d

e−iyµ∂αξ (χ+a)(t, x, ξ + µ)(χ+b)(t, x+ y, ξ)µdy dµ

= ∂αξ (χ+a)(t, x, ξ)Dα
x (χ+b)(t, x, ξ),

for |α| ≤ 1, it suffices to show, uniformly with respect to θ ∈ [0, 1], that for every
term

r̂(t, x, ξ) = 1
(2π)d

(
∂αξ (χ+a)

)
(t, x, ξ + θµ)(χ+b)(t, x+ y, ξ)µα dydµ

with |α| = 2 we have

|r(t, x, ξ)| ≤ 〈σξ〉m+m′−2−p−p′〈ξ〉m+m′−2.

But this follows immediately with a similar analysis as in Lemma 3.21. Integration
over θ gives the result. Thus, c can be written as

c(t, x, ξ) = χ+(ab− i∂ξa∂xb) + cr,

with ab ∈ Σ(m+m′),p+p′ and ∂ξa∂xb ∈ Σ(m+m′−1),p+p′

The next important consequence is:

Theorem 3.26. The class Op(Σ̃m,p) is closed under taking compositions.

Proof. For A ∈ Op(Σ̃m,p) and B ∈ Op(Σ̃m′,p′) we write

A(t, x,Dx) = (χ+a0)(t, x,Dx) + (χ+a1)(t, x,Dx) + ar(t, x,Dx)

and
B(t, x,Dx) = (χ+b0)(t, x,Dx) + (χ+b1)(t, x,Dx) + br(t, x,Dx),
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respectively. Then

(A#B)(t, x,Dx) =
1∑

j,k=0
((χ+aj)#(χ+bk))(t, x,Dx)

+
1∑
j=0

(
(χ+aj)#br + ar#(χ+bj)

)
(t, x,Dx)

+ (ar#br)(t, x,Dx).

By Theorem 3.25, the first sum belongs to Op(Σ̃m+m′,p+p′). Since ar, br ∈ Σm−2,p,†+
Σm−1,p−1,†, adjoints are well-defined, and so compositions. Hence, the full symbol
of remainder term belongs to Σm+m′−2,p+p′,† + Σm+m′−1,p+p′−1,†.

With operators A ∈ Op(Σ̃m,p) we now associate the following principal symbols:

σmΨ (A) := a0

σm,pΨ,d (A) := lim
λ→∞

λ−pa0(λ−2t, λ−1x, λξ)

σm−1,p
Ψ,d (A) := lim

λ→∞
λ−pa1(λ−2t, λ−1x, λξ).

Let us discuss some examples:

Example 3.27.

(i) For Λm,p = λm,p(t, x,Dx), where λm,p(t, x,Dx) = 〈σξ〉m−pK 〈ξ〉pK , K sufficiently
large, we have

〈σξ〉m−p〈ξ〉p = σm−p|ξ|m +O
(
|ξ|m−2

)
as |ξ| −→ ∞.

Thus

σmΨ (Λm,p) = σm−p|ξ|m, σm,pΨ,d (Λm,p) = rm−p|ξ|m, σm−1,p
Ψ,d (Λm,p) = 0.

(ii) If a0 ∈ S(m) is the principal symbol of A ∈ Op(Smcl ), then

σmΨ (A) = a0(t, x, ξ), σm,mΨ,d (A) = a0(0, 0, ξ), σm−1,m
Ψ,d (A) = 0.

The introduction of the principal symbols σmΨ (a) and σm−1,p
Ψ,d (a) is justified by the

next lemma:

Lemma 3.28.
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(i) The symbols σmΨ (A) and σm−1,p
Ψ,d (A) are well-defined.

(ii) The short sequence

0 −−→ Op(Σm−2,p,†) + Op(Σm−1,p−1,†) −−→ Op(Σ̃m,p)
(σmΨ ,σ

m−1,p
Ψ,d )

−−−−−−−−→ Σ(m),p × Σ(m−1,p) −−→ 0

is exact, where
Σ(m,p) := rm−pC∞(Θ, S(m)(Ṙd))

is the space of (m, p)-bihomogeneous symbols.

Proof. We work in the corresponding symbol classes.

Statement (i) is obvious by definition of the class Σ̃m,p. Given a ∈ Σm,p, the
principal symbol is uniquely determined by the structure of a. The other symbols
are welldefined by the uniqueness of the limit.

Let us now prove (ii). The surjectivity of the map (σmΨ , σ
m−1,p
Ψ,d ) is quite easy. Given

any a0 ∈ Σ(m),p and a1 ∈ Σ(m,p) ⊆ Σ(m),p, set a = χ+(a0 + a1) with ar ≡ 0. Then
a ∈ Σ̃m,p. It is left to prove the exactness in the middle of the sequence. Therefore,
we are going to show

a ∈ Σm−2,p,† + Σm−1,p−1,† ⇐⇒ σmΨ (a) = 0, σm−1,p
Ψ,d (a) = 0.

Let first σmΨ (a) = 0, σm−1,p
Ψ,d (a) = 0. Then a1 ∈ Σ(m−1),p−1 and so χ+a1 ∈ Σ(m−1),p−1,†.

Thus, a = χ+a+ ar ∈ Σm−1,p−1,†.

Let now a0 6= 0. Then |a| ≥ C−1〈σξ〉m−p〈ξ〉p for σ〈ξ〉 ≥ C in some conic set and C >

0 sufficiently large. But then a /∈ Σm−2,p,†+ Σm−1,p−1,†. If a0 = 0 and σm,p−1
Ψ,d (a) 6= 0,

then a1 ∈ Σ(m−1),p. Hence, a ∈ Σm−1,p,† and so a /∈ Σm−2,p,† + Σm−1,p−1,†.

Remark 3.29. We briefly summarize what vanishing of the single symbolic compo-
nents for a ∈ Σ̃m,p means:

σmΨ (a) = 0, σm−1,p
Ψ,d (a) = 0 ⇐⇒ a ∈ Σm−2,p,† + Σm−1,p−1,†

σmΨ (a) = 0 ⇐⇒ a ∈ Σm−1,p,†

σm,pΨ,d (a) = 0 ⇐⇒ a ∈ Σm−1,p,† + Σm,p−1,†.

For the principal symbols we have the following rules:
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Proposition 3.30.

(i) If A ∈ Op(Σ̃m,p) then

σmΨ (A†) = σmΨ (A)∗, σm,pΨ,d (A†) = σm,pΨ,d (A)∗

and
σm−1,p

Ψ,d (A†) = σm−1,p
Ψ,d (A)∗ − i∂ξ∂xσm,pΨ,d (A)∗.

(ii) If A ∈ Op(Σ̃m,p) and B ∈ Op(Σ̃m′,p′), then

σm+m′
Ψ (A#B) = σmΨ (A)σm′Ψ (B)

σm+m′,p+p′
Ψ,d (A#B) = σm,pΨ,d (A)σm

′,p′

Ψ,d (B)

σm+m′−1,p+p′
Ψ,d (A#B) = σm,pΨ,d (A)σm

′−1,p′
Ψ,d (B) + σm−1,p

Ψ,d (A)σm
′,p′

Ψ,d (B)

− i∂ξσm,pΨ,d (A)∂xσm
′,p′

Ψ,d (B).

(iii) If A ∈ Op(Σ̃m,p) is elliptic in the sense that

|detσmΨ (A)| ≥ c(σm−p|ξ|m)N

for some c > 0, then A−1 ∈ Op(Σ̃−m,−p) and

σ−mΨ (A−1) = σmΨ (A)−1, σ−m,−pΨ,d (A−1) = σm,pΨ,d (A)−1

and

σ−m−1,−p
Ψ,d (A−1) = −iσm,pΨ,d (A)−1∂ξσ

m,p
Ψ,d (A)σm,pΨ,d (A)−1σm,pΨ,d (A)∂xσm,pΨ,d (A)−1

− σm,pΨ,d (A)−1σm−1,p
Ψ,d (A)σm,pΨ,d (A)−1

(iv) If A ∈ Op(Σ̃m,p), then [Dt, A] = (DtA) ∈ Op(Σ̃m,p+2) and

σmΨ (DtA) = Dtσ
m
Ψ (A), σm,p+2

Ψ,d (DtA) = Dtσ
m,p
Ψ,d (A)

as well as
σm−1,p+2

Ψ,d (DtA) = Dtσ
m−1,p
Ψ,d (A).

Proof. The formulas for (i) and (ii) follow immediately from Theorem 3.23 and
Theorem 3.26.
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If A−1 is the right-inverse to A, then A#A−1 = I and so by (ii)

E = σ0
Ψ(I) = σ0

Ψ(A#A−1) = σmΨ (A)σ−mΨ (A−1).

Hence, σ−mΨ (A−1) = σmΨ (A)−1. Using this we also obtain the formula σ−m,−pΨ,d (A−1) =
σm,pΨ,d (A)−1. Since σ−1,0

Ψ,d (I) = 0, we get

0 = σm,pΨ,d (A)σ−m−1,−p
Ψ,d (A−1) + σm−1,p

Ψ,d (A)σ−m,−pΨ,d (A−1)− ∂ξσm,pΨ,d (A)∂xσ−m,−pΨ,d (A−1).

Note that by chain rule, we have

∂xσ
−m,−p
Ψ,d (A−1) = −σm,pΨ,d (A)−1∂xσ

m,p
Ψ,d (A)σm,pΨ,d (A)−1.

Using this, isolating to σ−m−1,−p
Ψ,d (A−1) and applying the previous formulas, gets us

the desired result.

If A = Op(a) for an a ∈ Σ̃m,p, then [Dt, A] = Op(Dta). By using the structure of a
this yields σmΨ (Dta) = Dtσ

m
Ψ (a). Moreover,

σm,p+2
Ψ,d ([Dt, A]) = lim

λ→∞

1
λp+2 (Dta0)(λ−2t, λ−1x, λξ)

= lim
λ→∞

1
λp
· 1
λ2 (Dta0)(λ−2t, λ−1x, λξ)

= lim
λ→∞

1
λp
Dta0(λ−2t, λ−1x, λξ)

= Dtσ
m,p
Ψ,d (A).

The same argument holds for the other symbol.

Remark 3.31. We shorten the notation in the following way: For an operator A ∈
Op(Σ̃m,p) we write

σmΨ (A) = A0, σm,pΨ,d (A) = A00 and σm−1,p
Ψ,d (A) = A01

and Dx = −i∂x. Then, for compositions and inverses, we obtain

(AB)01 = A00B01 +A01B00 − i(A00)ξ(B00)x

and

(A−1
01 ) = −(A00)−1A01(A00)−1 − i(A00)−1(A00)ξ(A00)−1(A00)x(A00)−1.

Consequently, for three operators A,B and C, we get

(ABC)01 = A00B00C01 +A00B01C00 +A01B00C00

− i(A00)ξ(B00)xC00 − i(A00)ξB00(C00)x − iA00(B00)ξ(C00)x.
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3.4 Function spaces

In this section we provide the associated function spaces, which come from the
original symbol estimate. Moreover, we are going to prove the corresponding
mapping properties.

For K ≥ 1 define 〈ξ〉K :=
√
K2 + |ξ|2, and set λm,pK (t, x, ξ) := 〈ξ〉pK〈σξ〉

m−p
K . Then it

is clear, that λm,pK ∈ Σ̃m,p for every K ≥ 1. Similar to the estimates in Σm,p one can
derive, that

|∂jt ∂αx ∂
β
ξ λ

m,p
K | . 〈ξ〉

p+2j−|β|+|α|
K 〈σξ〉m−p−|α|−2j

K . (3.2)

Denote Λm,pK = Op(λm,pK ). We are going to prove the following proposition:

Proposition 3.32. Given (m, p) ∈ Z × R there is a K0 ≥ 1, such that the opera-
tor Λm,pK ∈ Op(Σ̃m,p) is invertible for all K ≥ K0 with (Λm,pK ) ∼ Λ−m,−pK modulo
smoothing terms.

This is an application of the parameter-dependent pseudodifferential calculus, see
for instance [Shu]. The idea is to consider operators, depending on a parameter
K. Usually, when constructing parametrices, one gets remainder terms of lower
order. In this case, the parameter K can be taken sufficiently large such that the
norm of that remainder term is strictly less than one. Hence, the operator becomes
invertible.

Proof. The symbol λm,pK belongs to Σ̃m,p. Similarly λ−m,−pK is in Σ̃−m,−p. Define

RK := λm,pK #λ−m,−pK − λm,pK λ−m,−pK = λm,pK #λ−m,−pK − 1.

For any ` ∈ N0 let (j, α, β) ∈ N1+2d
0 with j + |α|+ |β| ≤ `. We want to show

|RK |0,0;` ≤
C`
K
,

where
|RK |0,0;` = sup

(t,x,ξ)∈[0,T ]×R2d

j+|α|+|β|≤`

〈ξ〉2j+|β|−|α|〈σξ〉|α|+2j |∂jt ∂αx ∂
β
ξ RK |.

We will prove RK −→ 0 in Σ0,0 for K −→∞. By Leibniz rule, it is

|∂jt ∂αx ∂
β
ξ RK | ≤

∑
|γ|≥1

1
γ!

∑
j′+|α′|+|β′|≤`

cj′α′β′ |∂j
′

t ∂
α′
x ∂

β′+γ
ξ λm,pK ||∂

j−j′
t ∂α−α

′+γ
x ∂β−β

′

ξ λ−m,−pK |.
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The estimates (3.2), gives that the product in the inner sum can be estimated by the
function

〈ξ〉2j−|β|+|α|K 〈σξ〉−|α|−2j−|γ|
K

and so

|∂jt ∂αx ∂
β
ξ RK | ≤ C〈ξ〉

2j−|β|+|α|
K 〈σξ〉−|α|−2j

K

∑
|γ|≥1

1
γ!〈σξ〉

−|γ|

≤ C`〈ξ〉
2j−|β|+|α|
K 〈σξ〉−|α|−2j−1

K .

Thus, we obtain

|RK |0,0;` ≤ C` sup
(t,x,ξ)∈[0,T ]×R2d

j+|α|+|β|≤`

〈ξ〉2j+|β|−|α|〈σξ〉|α|+2j〈ξ〉2j−|β|+|α|K 〈σξ〉−|α|−2j−1
K .

Note that 〈ξ〉|β|/〈ξ〉|β|K ≤ 1 for all β ∈ Nd0 and K ≥ 1, so the previous estimate can be
rewritten, by sorting the powers, as

|RK |0,0;` ≤ C` sup
(t,x,ξ)∈[0,T ]×R2d

j+|α|+|β|≤`

(
〈σξ〉2〈ξ〉2K
〈σξ〉2K〈ξ〉2

) 2j+|α|
2

〈σξ〉−1
K .

Since
〈σξ〉2〈ξ〉2K
〈σξ〉2K〈ξ〉2

≤ 1

for all (t, x, ξ) ∈ [0, T ]× R2d, the estimate reduces to

|RK |0,0;` ≤ C` sup
(t,x,ξ)∈[0,T ]×R2d

〈σξ〉−1
K = C`

K
.

Hence, RK −→ 0 in Σ0,0 for K −→ ∞. This implies RK(t, x,Dx) −→ 0 in
L (L2((0, T ) × Rd) for K −→ ∞. Thus Λ−m,−pK ◦ (1 + RK)−1 is a right inverse
to Λm,pK for large K ≥ 1. In a similar way, a left inverse to Λm,pK is contructed.
Moreover, (Λm,pK )−1 = Λ−m,−pK modulo smoothing terms, as it is seen from the
construction.

We extend the Example 3.27 since we now know that the operators Λm,p are inverti-
ble.

Example 3.33. For Λm,p = λm,p(t, x,Dx), where λm,p(t, x,Dx) = 〈σξ〉m−pK 〈ξ〉pK , K
sufficiently large, we have

σmΨ (Λm,p) = σm−p|ξ|m, σm,pΨ,d (Λm,p) = rm−p|ξ|m, σm−1,p
Ψ,d (Λm,p) = 0.
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Moreover it holds (Λm,p)−1 ∈ Op(Σ̃−m,−p) and, by using the composition rules,

σ−mΨ ((Λm,p)−1) = σp−m|ξ|−m, σ−m,−pΨ,d ((Λm,p)−1) = rp−m|ξ|−m,

and
σ−m−1,−p

Ψ,d ((Λm,p)−1) = im(p−m)〈ξ, x〉rp−m−2|ξ|−m−2.

We now consider those invertible operators and always neglect the parameter K.
Let us define the following function spaces:

Definition 3.34. For s ∈ N0, δ ∈ R and we define

CHs,δ = {u : (0, T )× Rd −→ C |Λs,δu ∈ C ([0, T ], L2(Rd))}

and
L1Hs,δ = {u : (0, T )× Rd −→ C |Λs,δu ∈ L1((0, T ), L2(Rd))},

respectively.

We are able to formulate the following mapping property result:

Proposition 3.35. For m ∈ N0 we have

Λm,p ∈ L (CHs+m,δ+p,CHs,δ).

for all (s, δ) ∈ N0 × R.

Proof. Let s ∈ N0. Then we have to show that Λm,pu ∈ CHs,δ, which is Λs,δ(Λm,pu) ∈
C ([0, T ], L2(Rd)), provided u ∈ CHs+m,δ+p. By the composition of two operators
we get

Λs,δΛm,p = Λs+m,δ+p +R,

where R ∈ Op(Σ̃s+m−1,δ+p). By assumption, it holds Λs+m,δ+pu ∈ C ([0, T ], L2(Rd)).
We now write the remainder term as

R = R(Λs+m,δ+p)−1Λs+m,δ+p,

since the operators Λs+m,δ+p are invertible. It turns out that

R(Λs+m,δ+p)−1 ∈ Op(Σ̃−1,0) ⊆ Op(Σ̃0,0).

In view of Corollary 3.14, we also have

Ru = R(Λs+m,δ+p)−1Λs+m,δ+pu ∈ C ([0, T ], L2(Rd)).
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This completes the proof.

Remark 3.36. We get a similar result for L1Hs,δ.

Let us now come to the main function spaces involving time derivatives.

Definition 3.37. For s ∈ N0, δ ∈ R and we define

Xs,δ = {u : (0, T )× Rd −→ C |Λs−j,δ−2jDj
tu ∈ C ([0, T ], L2(Rd)), 0 ≤ j ≤ s}

and

Y s,δ = {u : (0, T )× Rd −→ C |Λs−j,δ−2jDj
tu ∈ L1((0, T ), L2(Rd)), 0 ≤ j ≤ s},

respectively. The corresponding norms are given by

‖u‖Xs,δ = sup
0≤j≤s

sup
t∈[0,T ]

‖(〈σDx〉s−δ+j〈Dx〉δ−2jDj
tu)(t, ·)‖L2(Rd)

and

‖u‖Y s,δ =
s∑
j=0

∫ T

0
‖(〈σDx〉s−δ+j〈Dx〉δ−2jDj

tu)(t, ·)‖L2(Rd),

respectively.

In view of these definitions, we automatically have the embedding Xs,δ ⊆ Y s,δ. We
also define the trace space as

Hs,δ(Rd) = Xs,δ|t=0.

This coincides with the 2-microlocal Sobolev with respect to the Langrangian T ∗0 (Rd),
see the Appendix.

Remark 3.38. Surely, another convenient definition would be the following: For
parameters s ∈ N0, δ ∈ R, the space H s,δ((0, T ) × Rd) consists of all functions
u : (0, T )× Rd −→ C satisfying

Λs−j,δ−2jDj
tu ∈ L2((0, T )× Rd), 0 ≤ j ≤ s.

For general s ∈ R, δ ∈ R, the space H s,δ is then defined by interpolation and duality.
This would be a huge advantage in contrast to the spaces Xs,δ. However, with Xs,δ

we do not have to worry about the traces at t = 0, because they continuously run
into the above mentioned 2-microlocal spaces.

We are now going to prove the important mapping properties.
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Proposition 3.39. For m ∈ N0 we have

Λm,p ∈ L (Xs+m,δ+p, Xs,δ) ∀ (s, δ) ∈ N0 × R.

Proof. We use a similar reduction argument as in the previous proposition. Let
s ∈ N0. Then we have to show, that

Λs−j,δ−2jDj
t (Λm,pu) ∈ C ([0, T ], L2(Rd))

for 0 ≤ j ≤ s, provided u ∈ Xs+m,δ+p. By using commutators we have

Dj
tΛm,p = Λm,pDj

t + [Dj
t ,Λm,p],

and also

Λs−j,δ−2jDj
t (Λm,pu) = Λs−j,δ−2jΛm,pDj

tu+ Λs−j,δ−2j [Dj
t ,Λm,p].

In the first term we get Λs−j,δ−2jΛm,p = Λs+m−j,δ+p−2j + R, where the remainder
belongs to Op(Σ̃s+m−j−1,δ+p−2j). Hence,

Λs−j,δ−2jΛm,pDj
tu = Λs+m−j,δ+p−2jDj

tu+RDj
tu.

The first summand belongs to C ([0, T ], L2(Rd)) by assumption, whereas the second
summand can be rewritten as

RDj
tu = R(Λs+m−j,p+δ−2j)−1Λs+m−j,p+δ−2jDj

tu

for all 0 ≤ j ≤ s. Again, the function Λs+m−j,p+δ−2jDj
tu belongs to C ([0, T ], L2(Rd))

by assumption, whereas

R(Λs+m−j,p+δ−2j)−1 ∈ Op(Σ̃−1,0) ⊆ Op(Σ̃0,0),

which are C ([0, T ], L2(Rd))-continuous, since Op(Σ̃0,0) ⊆ Op(Σ0,0,†) in view of
Corollary 3.14.

Note that Λm,p = Op(λm,p). By using iterated commutators, we further have

[Dj
t ,Λm,p] =

j∑
k=1

(
j

k

)
Op(Dk

t λ)Dj−k
t ,

and so

Λs−j,δ−2j [Dj
t ,Λm,p]u ∼

j∑
k=1

Λs+m−j,p+δ+2k−2jDj−k
t u.

Inductively also these terms belong to C ([0, T ], L2(Rd)).
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This leads to the following corollary:

Corollary 3.40. For m ∈ N0 we have

Op(Σm,p,†) ⊂ L (Xs+m,δ+p, Xs,δ) ∀ (s, δ) ∈ N0 × R.

Let us now prove the following helpful lemma:

Lemma 3.41. For (s, δ) ∈ N0 × R we have Dt : Xs+1,δ −→ Xs,δ−2 and

u ∈ Xs+1,δ ⇐⇒ Λ1,0u ∈ Xs,δ and Λ0,−2Dtu ∈ Xs,δ.

Proof. The first part is easily done by a simple index-shift. In fact, let u ∈ Xs+1,δ,
then

Λs+1−j,δ−2jDj
tu ∈ C ([0, T ], L2(Rd))

for 0 ≤ j ≤ s+ 1. Define k := j − 1, then for j 6= 0 we have 0 ≤ k ≤ s and

Λs−k,δ−2k−2Dk+1
t u ∈ C ([0, T ], L2(Rd)),

which is Λs−k,δ−2−2kDk
t (Dtu) ∈ C ([0, T ], L2(Rd)) and so Dtu ∈ Xs,δ.

The second statement follows directly by the mapping properties of Dt and Λm,p.

With the same arguments we finally get the following similar results:

Corollary 3.42. Let (s, δ) ∈ N0 × R. For m ∈ N0 we have

Op(Σ̃m,p) ∈ L (Y s+m,δ+p, Y s,δ).

Moreover, if A(t, x,Dx) ∈ Op(Σ̃m,p), then

A(0, x,Dx) ∈ L (Hs+m,δ+p, Hs,δ).

Remark 3.43. Compared to the results in [Bon], the space CHs,δ|t = 0 corresponds
to the weighted Sobolev SP (δ, s− δ), while Λm,p(0, x,Dx) belongs to Op(Σp,m−p

0 ),
see the equivalence in (A.1).

Next, we now want to prove partial hypoellipticity. For r ∈ N0, we also set

Xs,r,δ := {u | ∂jt u ∈ CHs−j,δ−2j , 0 ≤ j ≤ r}

Y s,r,δ := {f | ∂jt f ∈ L1Hs−j,δ−2j , 0 ≤ j ≤ r}.
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Note that Xs,s,δ = Xs,δ for s ∈ N0 and Xs,0,δ = CHs,δ. Then the following result is
valid:

Theorem 3.44. Let r ∈ N0, u ∈ CHs,δ, f ∈ Y s,r,δ and Dtu = a(t, x,Dx)u+ f , where
a(t, x,Dx) ∈ Op(Σ̃1,2). Then u ∈ Xs,r,δ.

Proof. We prove this statement by an induction over r ∈ N0. If r = 0, then nothing is
to do. Assume that this statement is valid for a certain r ∈ N0 and f ∈ Y s,r+1,δ. Then
we have to show, that Dr+1

t u ∈ CHs−r−1,δ−2r−2. Using the differential equation
leads us to

Dr+1
t u = Dr

t (Dtu) = Dr
t (a(t, x,Dx)u+ f) = Dr

t a(t, x,Dx)u+Dr
t f,

so we have to compute the operator Dr
t a(t, x,Dx). Using iterated commutators, we

get again

Dr
t a(t, x,Dx) =

r∑
j=0

(
r

j

)
(Dj

ta)(t, x,Dx)Dr−j
t .

Thus,

Dr+1
t u = a(t, x,Dx)Dr

tu+
r∑
j=1

(
r

j

)
(Dj

ta)(t, x,Dx)Dr−j
t u+Dr

t f.

First, we have Dr
tu ∈ CHs−r,δ−2r, and by mapping properties also

a(t, x,Dx)Dr
tu ∈ CHs−r−1,δ−2r−2.

Since (Dj
ta)(t, x,Dx) ∈ Op(Σ̃1,2+2j) and Dr−j

t u ∈ CHs−r+j,δ−2r+2j , we also obtain

(Dj
ta)(t, x,Dx)Dr−j

t u ∈ CHs−r−1+j,δ−2r−2, 1 ≤ j ≤ r,

which is even better than CHs−r−1,δ−2r−2. If f ∈ Y s,r+1,δ, so

Dr+1
t f ∈ L1Hs−r−1,δ−2r−2.

With the identity

f(x) = f(0) +
∫ x

0
(∂rt f)(s) ds

we have Dr
t f ∈ CHs−r−1,δ−2r−2. This finally yields Dr+1

t u ∈ CHs−r−1,δ−2r−2, and
so u ∈ Xs,r+1,δ.

As a consequence we obtain:

Corollary 3.45. In the proof of the main theorem it suffices to consider r = 0.
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4Proof of the Main Theorem

In this Chapter we are going to prove the main theorem. We first define the following
expression:

Definition 4.1. We define

Φ(A00, A01,M00,M01) :=
(
MAM−1 + (DtM)M−1

)
01
.

Let us now state the main theorem with the notation we got so far.

Theorem 4.2. Let A ∈ Op(Σ̃1,2). Assume there exists aM0 ∈ Σ(0),0 with |detM0| & 1,
M0A0M

−1
0 is Hermitian, such that

I − 2x
(
M00A00M

−1
00

)
ξ
> 0,

where M00 ∈ Σ(0,0) is the (0, 0)-bihomogeneous component of M0.

Then for every M01 there exists a δ0 = δ0(A00, A01) ∈ R such that

Im (Φ(A00, A01,M00,M01)) ≤ δ0
2r2

(
I − 2x

(
M00A00M

−1
00

)
ξ

)
, (4.1)

and a γ0 = γ(A00), with the property that for all s ∈ N0, δ ≥ δ0 + sγ0, U0 ∈ Hs,δ,
F ∈ Y s,δ, the Cauchy problem (1.1) possesses a unique solution U ∈ Xs,δ. Moreover,
the a priori estimate

‖U‖Xs,δ . ‖U0‖Hs,δ + ‖F‖Y s,δ

is valid.

For the meaning of Φ, see Definition 4.4. The relation between δ0, γ0 and A00, A01 is
quite complicated. We will provide upper bounds on both δ0 and γ0 in Section 4.3.

In fact, the operator A is not assumed to have Hermitian principal part, but we
assume the existence of a symmetrizer, see Definition 4.6. With this operator we can
formulate an equivalent system, whose principal symbol is Hermitian. The second
reduction is, that we can "shift" the parameter δ to 0.
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Note that δ depends on s and increases as s→∞. To prove an energy estimate for
every s ∈ N0, we will us an inductive argument. By using the spectral shift δ → 0,
we will assume, that the energy estimate holds for an s ∈ N0 with δ = 0. We then
show, that with the step s→ s+ 1, also the spectral parameter δ increases by γ0. For
the next step in the induction, we again shift the new δ to 0.

In the sequel, we will consider operators of the form KAK−1 + (DtK)K−1, where
A ∈ Op(Σ̃1,2), K ∈ Op(Σ̃m,p) and K is invertible. Using the composition rules, see
Proposition 3.30, we can formulate the following technical lemma:

Lemma 4.3. We have(
MAM−1 + (DtM)M−1

)
01

= M00
[
(M−1

00 M01, A00
]

(M00)−1 +M00A01(M00)−1 − i(M00)ξ(A00)x(M00)−1

− i(M00)t(M00)−1

− i
(
M00A00(M00)−1(M00)ξ − (M00)ξA00 −M00(A00)ξ

)
(M00)−1(M00)x(M00)−1.

When M is scalar with M01 = 0, then this simplifies to (see last summand):(
MAM−1 + (DtM)M−1

)
01

= A01 − i(M00)ξ(A00)x(M00)−1 + i(M00)−1(A00)ξ(M00)x

− i(M00)t(M00)−1.

Consider now M = Λm,p. This gives us

(
ΛAΛ−1 + (DtΛ)Λ−1

)
01

= A01 −
imξ

|ξ|2
(A00)x + i(m− p)x

r2 (A00)ξ −
i(m− p)

2r2 I.

If additionally m = 0 then

(
ΛAΛ−1 + (DtΛ)Λ−1

)
01

= A01 + i(m− p)x
r2 (A00)ξ −

i(m− p)
2r2 I.

In this case we also have(
ΛAΛ−1

)
01

= A01 + i(m− p)x
r2 (A00)ξ.

We end this short overview with giving the precise formulation for Φ.
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Corollary 4.4. We have

Φ(A00, A01,M00,M01)

= M00
[
(M−1

00 M01, A00
]

(M00)−1 +M00A01(M00)−1 − i(M00)ξ(A00)x(M00)−1

− i(M00)t(M00)−1

− i
(
M00A00(M00)−1(M00)ξ − (M00)ξA00 −M00(A00)ξ

)
(M00)−1(M00)x(M00)−1.

Note that Φ(A00, A01, I, 0) = A01.

4.1 Basic C L2-energy estimate

Let us derive the basic energy estimate, which later will give us the a priori estimate
in CL2. For this, we do not need any special structure on A in terms of principal
symbols. However, in the following theorem we see the influence of the remainder
class Σm−2,p,† + Σm−1,p−1,† for (m, p) = (1, 2).

Theorem 4.5. Let A ∈ Op(Σ1,2,†) be an operator, such that Im(A) ∈ Op(Σ0,2,†) and

Im(A(t, x, ξ)) .
(
〈ξ〉
〈σξ〉

+ 〈ξ〉2

〈σξ〉3

)
I

Then each solution U = U(t, x) ∈ CL2 to the problem (1.1) with U0 ∈ L2(Rd) and
F ∈ L1L2 satisfies the a priori estimate

‖U‖CL2 . ‖U0‖L2 + ‖F‖L1L2 .

Proof. Let us write q(t, x, ξ) = 〈ξ〉〈σξ〉−1 + 〈ξ〉2〈σξ〉−3. We assume, that the operator
Dt −A possesses a forward fundamental solution X(t, t′) : S (Rd) −→ S (Rd), i.e.(Dt −A(t, x,Dx))X(t, t′) = 0, 0 ≤ t′ ≤ t ≤ T,

X(t′, t′) = I, .

Then we can represent the solution U via

U(t, x) = X(t, 0)U0(x) + i

∫ T

0
X(t, t′)F (t′, x)dt′

and so have to prove an uniform estimate of the form

‖X(t, t′)V ‖L2(Rd) . ‖V ‖L2(Rd), (4.2)
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for all 0 ≤ t′ ≤ t ≤ T and V ∈ S (Rd). Together with the representation for U we
would get

‖U(t, ·)‖L2(Rd) . ‖U0‖L2(Rd) +
∫ t

0
‖F (t′, ·)‖L2(Rd) dt

′

for all 0 ≤ t ≤ T and further

‖U‖CL2 = sup
t∈[0,T ]

‖U(t, ·)‖L2(Rd)

. ‖U0‖L2(Rd) +
∫ T

0
‖F (t′, ·)‖L2(Rd) dt

′

. ‖U0‖L2 + ‖F‖L1L2 .

We are now going to show (4.2). Consider first the primitive

p(t, x, ξ) =
∫ t

0
q(t, x, ξ) ds =

∫ t

0

〈ξ〉
〈σξ〉

ds+
∫ t

0

〈ξ〉2

〈σξ〉3
ds = I1 + I2,

where σ(s, x) =
√
s+ |x|2. Note that there are constants c, C > 0 such that

c〈σξ〉 ≤ 〈σ〈ξ〉〉 ≤ C〈σξ〉.

Then we calculate, by change of variables, i.e. t(s) = 〈σ〈ξ〉〉2,

I1 = 〈ξ〉
∫ t

0

ds

〈σξ〉
. 〈ξ〉

∫ t

0

ds

〈σ〈ξ〉〉
= 〈ξ〉−1

∫ 〈σ〈ξ〉〉2
〈|x|〈ξ〉〉2

dτ√
τ

. 〈ξ〉−1 [√τ]〈σ〈ξ〉〉2〈|x|〈ξ〉〉2 . 〈σ〈ξ〉〉〈ξ〉−1 . 〈ξ〉−1〈σξ〉 ∈ Σ0,−1,†

and similarly

I2 = 〈ξ〉2
∫ t

0

ds

〈σξ〉3
. 〈ξ〉2

∫ t

0

ds

〈σ〈ξ〉〉3
=
∫ 〈σ〈ξ〉〉2
〈|x|〈ξ〉〉2

dτ
√
τ

3

.
[ 1√

τ

]〈σ〈ξ〉〉2
〈|x|〈ξ〉〉2

. 〈σ〈ξ〉〉−1 . 〈σξ〉−1 ∈ Σ−1,0,†

Thus,
p(t, x, ξ) ∈ Σ0,−1,† + Σ−1,0,† ⊆ Σ0,0,†.

For 0 ≤ t′ ≤ t ≤ T , we define Y (t, t′) : S (Rd) −→ S (Rd) via

Y (t, t′) = e−p(t,x,Dx)ep(t
′,x,Dx)X(t, t′).

Here the operators e±p(t,x,Dx) are of order zero and invertible. Furthermore, we have
by construction Y (t′, t′) = I. Then

∂tY (t, t′) = −q(t, x,Dx)Y (t, t′) + ie−p(t,x,Dx)ep(t
′,x,Dx)A(t, x,Dx)X(t, t′)

= B(t, x,Dx)Y (t, t′)

50 Chapter 4 Proof of the Main Theorem



where

B(t, x,Dx) = iA− qI +
[
e−p(t,x,Dx)ep(t

′,x,Dx), iA
]
e−p(t

′,x,Dx)ep(t,x,Dx).

For B we have B(t, x, ξ) ∈ Σ1,2,† and Re(B) ≤ K for a constant K > 0. Thus,
Garding’s inequality gives us

∂t‖Y (t, t′)V ‖2L2(Rd) = 2 Re(∂tY (t, t′)V, Y (t, t′)V ) = 2 Re(BY (t, t′)V, Y (t, t′)V )

. ‖Y (t, t′)V ‖2L2(Rd).

Finally using Gronwall’s lemma, we obtain

‖Y (t, t′)V ‖2L2(Rd) . ‖Y (t′, t′)V ‖2L2(Rd) . ‖V ‖
2
L2(Rd).

This gives us (4.2), since the operators e±p(t,x,Dx) are isomorphisms on L2(Rd).

Later, this estimate basically will give us the CL2-wellposedness.

4.2 Reductions

Let us now come to the reductions. First we symmetrize the principal part of the
system.

Definition 4.6. The system (1.1) is called symmetrizable hyperbolic if there is an
M0 ∈ Σ(0),0 such that (M0A0M

−1
0 )(t, x, ξ) is Hermitian for all (t, x, ξ) ∈ Υ× Ṙd.

We will now prove the existence of such a symmetrizer M .

Theorem 4.7. Let (M0,M01) ∈ Σ(0),0 × Σ(−1,0) with | detM0| & 1. Then there exists
a M ∈ Op(Σ̃0,0) with

σ0
Ψ(M) = M0 and σ−1,0

Ψ,d (M) = M01.

Moreover, M possesses a parametrix.

Proof. Given (M0,M01) ∈ Σ(0),0 × Σ(−1,0) the existence of this operator follows
directly from the exactness of the sequence in Lemma 3.28. The ellipticity condition
| detM0| & 1 implies, that M0 is invertible with inverse in Σ(0),0. Again with Lemma
3.28 there exists Q ∈ Op(Σ̃0,0) with σ0

Ψ(Q) = M−1
0 . Moreover,

σ0
Ψ(MQ− I) = σ0

Ψ(M)σ0
Ψ(Q)− σ0

Ψ(I) = 0,
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so R := I −MQ ∈ Op(Σ̃−1,0). Thus Q is a right parametrix of order 1. Let now
Qk = Q(I +R+ · · ·Rk−1), then

MQk = (I −R)(I +R+ · · ·Rk−1) = I −Rk

with Rk ∈ Op(Σ̃−k,0), so Qk is a right parametrix of order k. By the same procedure
we get a left parametrix Q′k of order k. Evaluating Q′kPQk in two ways one obtains
that Qk −Q′k ∈ Op(Σ̃−k,0), and from this that Qk is also a left parametrix of order k.
Iterating this process and using the asymptotic completeness from Proposition 3.8,
we imply that M has a parametrix of order −∞.

We can refine this result by the following statement.

Theorem 4.8. Let (M0,M01) ∈ Σ(0),0 × Σ(−1,0) with |detM0| & 1. Then there exists
a M ∈ Op(Σ̃0,0) invertible with

σ0
Ψ(M) = M0 and σ−1,0

Ψ,d (M) = M01.

Proof. We still have to prove the invertibility and shall adopt the strategy of Theorem
3.32. Therefore, for K ≥ 1, we construct a parameter-dependent family of symbols
MK ∈ Σ̃0,0 satisfying

|∂jt ∂αx ∂
β
ξMK | . 〈ξ〉2j−|β|+|α|K 〈σξ〉|α|−2j

K .

To do so, we extend the definition of the class Σ(m),p to d+ 1 covariables. Thus we
consider amplitude functions a ∈ C∞(Υ, S(m)(Ṙd+1)), which admit an asymptotic
expansion of the form

a(t, x, ξ′) ∼
∑
k≥0

σm−p+kbk(ϑ, ξ′) as r → +0

with bk ∈ C∞(Θ, S(m)(Ṙd+1)). Given such a function a and setting ξ′ 7−→ (ξ,K)
provides a K-dependent family of symbols in Σ(m),p, also homogeneous of order
m in K. Vice versa, given a function f , living on Sd−1, it is possible to extend it
homogeneously to a function Sd+. Thus, starting with a symbol a ∈ C∞(Υ, S(m)(Ṙd))
it is possible to extend it to a symbol in C∞(Υ, S(m)(Ṙd+1)). The construction of
M01,K is similar.

For given (M0,M01) ∈ Σ(0),0 × Σ(−1,0) we use this construction to obtain the K-
dependent symbols M0,K and M01,K , respectively. For K ≥ 1 define

MK := χ+(M0,K +M01,K).
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Then each symbol MK belongs to Σ̃0,0. Similarly by ellipticity M−1
K is in Σ̃0,0. Define

RK := MK#(MK)−1 −MK(MK)−1 = MK#(MK)−1 − 1.

For any ` ∈ N0 let (j, α, β) ∈ N1+2d
0 with j + |α|+ |β| ≤ `. We want to show

|RK |0,0;` ≤
C`
K
,

where
|RK |0,0;` = sup

(t,x,ξ)∈[0,T ]×R2d

j+|α|+|β|≤`

〈ξ〉2j+|β|−|α|〈σξ〉|α|+2j |∂jt ∂αx ∂
β
ξ RK |.

We will prove RK −→ 0 in Σ0,0 for K −→∞. By Leibniz rule, it is

|∂jt ∂αx ∂
β
ξ RK | ≤

∑
|γ|≥1

1
γ!

∑
j′+|α′|+|β′|≤`

cj′α′β′ |∂j
′

t ∂
α′
x ∂

β′+γ
ξ MK ||∂j−j

′

t ∂α−α
′+γ

x ∂β−β
′

ξ (MK)−1|.

With the same estimates as in Theorem 3.32 we get

|RK |0,0;` ≤ C` sup
(t,x,ξ)∈[0,T ]×R2d

〈σξ〉−1
K = C`

K
.

Hence, RK −→ 0 in Σ0,0 for K −→ ∞. This implies RK(t, x,Dx) −→ 0 in
L (L2((0, T ) × Rd) for K −→ ∞. Thus Op(M−1

K ) ◦ (1 + RK)−1 is a right inverse
to Op(MK) for large K ≥ 1. In a similar way, a left inverse to Op(MK) is cont-
ructed.

This enables us to state the following Theorem.

Theorem 4.9. In the proof of the main theorem we can assume A0 = A∗0.

Proof. By the mapping properties we have, that the symmetrizer M ∈ Op(Σ̃0,0) is
an isomorphism from CHs,δ to CHs,δ, while M(0, x,Dx) is an isomorphism from
Hs,δ into itself. We now set V := MU and consider the equivalent systemDtV = B(t, x,Dx)V +G(t, x), in (0, T )× Rd,

V (0, x) = V0(x), on Rd.

where B = MAM−1 + (DtM)M−1, V0 = M(0, x,Dx)U0 and G = MF . We remark,
that MAM−1 ∈ Op(Σ̃1,2), whereas (DtM)M−1 ∈ Op(Σ̃0,2). According to the
composition rules, we get B ∈ Op(Σ̃1,2) and

B0 = σ1
Ψ(B) = σ1

Ψ(MAM−1) = M0A0M
−1
0 ,
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which is Hermititan for all (t, x, ξ) ∈ Υ× Ṙd. Consequently,

B01 = Φ(A00, A01,M00,M01),

and so condition (4.1) turns into

Im(B01) ≤ δ

2r2 (I − 2x(B00)ξ) .

This completes the proof. Here, δ has not changed.

Therefore, we can assume M0 = I and M01 = 0. The main ingredient of the proof of
the basic CL2-energy estimate was the upper bound for Im(A(t, x, ξ)). In general
this bound does not hold. Fortunately, we still can prove the following theorem:

Theorem 4.10. Let A ∈ Op(Σ̃1,2), A0 = A∗0 and

Im(A01) ≤ δ

2r2 (I − 2x(A00)ξ) .

Then, if F ∈ L1H0,δ and U0 ∈ H0,δ(Rd), we have an energy estimate for a solution
U ∈ CH0,δ of the form

‖U‖CH0,δ . ‖U0‖H0,δ + ‖F‖L1H0,δ .

Proof. Since s = 0, it is δ ≥ δ0. Consider the operator Λ = Λ0,−δ ∈ Op(Σ̃0,−δ) abd
set V = ΛU . Then the Cauchy problem is equivalent toDtV = (ΛAΛ−1 + (DtΛ)Λ−1)V + ΛF,

V (0, x) = Λ(0, x,Dx)U0(x) = V0,

with Γ := ΛAΛ−1 + (DtΛ)Λ−1 ∈ Op(Σ̃1,2), and on the level of principal part we
obtain σ1

Ψ(ΛAΛ−1) = σ1
Ψ(A), since Λ is scalar.

Again we have to compute Φ(A00, A01,Λ00,Λ01). By having Λ0 = σδ, Λ00 = rδ and
Λ01 = 0, this expression simplifies to

Φ(A00, A01,Λ00,Λ01) = A01 −
iδ

2 r
−2 + iδr−2x(A00)ξ.

Hence,

Im (Φ(A00, A01,Λ00,Λ01)) = Im(A01)− δ

2r2 (I − 2x(A00)ξ) ≤ 0,
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by assumption. Thus, the operator Γ satisfies the conditions of Theorem 4.5, and so
we obtain

‖V ‖CL2 . ‖V0‖L2 + ‖ΛF‖L1L2 .

By using Λ as an isomorphism from Z0,0 −→ Z0,δ for Z ∈ {X,Y,H}, we finally have

‖U‖CH0,δ . ‖U‖H0,δ + ‖F‖L1H0,δ .

This completes the proof.

4.3 Proof of Theorem 1.1

We now come to the proof of the main result. We split this proof into three steps.
Therefore, we always assume the reductions made in the previous section, which
are

A∗0 = A0 and Im(A01) ≤ 0.

Step 1: Basic a a priori estimate. Each solution to U to the system (1.1) satisfies
the a priori estimate

‖U‖CL2 . ‖U0‖L2 + ‖F‖L1L2

Proof. Write

A(t, x, ξ) = χ+(t, x, ξ) (A0(t, x, ξ) +A1(t, x, ξ)) +Ar(t, x, ξ).

Then
Im(A) = χ+ (Im(A0) + Im(A1)) + Im(Ar),

and since Im(A0) = 0 and Im(A1) ≤ 0, we have

Im(A) . Im(Ar) ∈ Σm−2,p,† + Σm−1,p−1,†.

Hence, the statement follows immediately from Theorem 4.5.

Step 2: Higher-order a priori estimate. Each solution U ∈ CHs,δ to the system
(1.1) satisfies the a priori estimate

‖U‖CHs,δ ≤ C (‖U0‖Hs,δ + ‖F‖L1Hs,δ)

for s ∈ N0 and δ ≥ δ0 + sγ0.

4.3 Proof of Theorem 1.1 55



Proof. By the second reduction, we can consider the equivalent system with δ = 0.
We now use an induction on s ∈ N0. Note that after passing from s to s + 1, the
spectral parameter has to change.

In view of Lemma 3.41 we have u ∈ CHs+1,0 if and only if Λ1,0u ∈ CHs,0 and
Λ0,−2Dtu ∈ CHs,0. If we define the vector

V := (Λ1,0u,Λ0,−2Dtu) ∈ CHs,0,

then V is a solution of the Cauchy problem

Dt

 Λ1,0u

Λ0,−2Dtu

 =

P 0

Q R

 Λ1,0u

Λ0,−2Dtu

+

 Λ1,0F

DtΛ0,−2F

 ,
 Λ1,0U

Λ0,−2DtU

 (0, x) =

 〈xDx〉U0

〈Dx〉−2〈xDx〉2(A(0, x,Dx)U0 + F (0, x))

 .
where

A :=
(
P 0
Q R

)
=
(

Λ1,0A(Λ1,0)−1 + (DtΛ1,0)(Λ1,0)−1 0
[(DtΛ0,−2)A+ Λ0,−2(DtA)](Λ1,0)−1 Λ0,−2A(Λ0,−2)−1

)
.

In particular, A fulfills the differential equation, but for an (2N)× (2N) matrix. Let
us now compute the corresponding principal symbols. We have Λ1,0A(Λ1,0)−1 ∈
Op(Σ̃1,2) and (DtΛ1,0)(Λ1,0)−1 ∈ Op(Σ̃0,2). Using the principal symbol formulas we
obtain

σ1
Ψ(P ) = σ1

Ψ(A)

and
σ0,2

Ψ,d(P ) = σ0,2
Ψ,d(A)− iξ(A00)x

|ξ|2
− i

2r2 + i
x(A00)ξ
r2 .

Furthermore, (DtΛ0,−2)A(Λ1,0)−1,Λ0,−2(DtA)(Λ1,0)−1 ∈ Op(Σ̃0,2), so we obtain

σ0,2
Ψ,d((DtΛ0,−2)A(Λ1,0)−1) = −i(A00)|ξ|−1r−1

and
σ0,2

Ψ,d(Λ
0,−2(DtA)(Λ1,0)−1) = −i(A00)t|ξ|−1r.

Thus,
σ0,2

Ψ,d(Q) = −i(A00)|ξ|−1r−1 − i(A00)t|ξ|−1r.

Last, we have R ∈ Op(Σ̃1,2) with

σ1
Ψ(R) = σ1

Ψ(A) and σ0,2
Ψ,d(R) = σ0,2

Ψ,d(A) + 2ix
r2 (A00)ξ.
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Thus, we finally obtain

σ1
Ψ(A ) =

(
σ1

Ψ(A) 0
0 σ1

Ψ(A)

)

and

Φ(A00,A01, I, 0) =
(

Φ(A00, A01, I, 0) 0
0 Φ(A00, A01, I, 0)

)
+ i

2r2

(
â 0
ĉ d̂

)

where

â = 2x(A00)ξ −
2r2

|ξ|2
ξ(A00)x − I, ĉ = −2r

|ξ|
A00 −

2r3

|ξ|
(A00)t, d̂ = 4x(A00)ξ.

Note that A00 ∈ Σ(1,2), so by applying derivatives and multiplication with the
corresponding functions we obtain(

â 0
ĉ d̂

)
∈ Σ(0,0),

which means that this matrix is bounded. Hence, by setting

γ0 := sup
(t,x,ξ)∈Υ×Ṙd

sup
|(u,v)|=1

(
〈âu, u〉+ Re〈ĉu, v〉+ 〈d̂v, v〉

)
,

we obtain
Im Φ(A00,A01, I, 0) ≤ γ0

2r2 I,

as desired, because of Im Φ(A00, A01, I, 0) ≤ 0.

Step 3: Existence and Uniqueness. For all U0 ∈ L2, F ∈ L1L2, the system (1.1)
possesses a unique solution U ∈ CL2.

Proof. We will just treat the L2 case, the other cases follow from the previous
reductions. The uniqueness comes with the linearity of the problem and the energy
estimate. If U and Ũ are two different solution to (1.1), then the difference function
V = U − Ũ solves the problemDtV = A(t, x,Dx)V, in (0, T )× Rd,

V (0, x) ≡ 0, on Rd.

This solution has to satisfy the energy estimate with initial data V0 ≡ 0 and F ≡ 0.
Thus, ‖V ‖CL2 . 0, which means V ≡ 0 and U = Ũ .
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We now will use an duality argument to show the existence of a solution. For the
operator L = Dt −A we get from Theorem 4.5 the energy estimate

‖U(t, ·)‖L2(Rd) . ‖U0‖L2(Rd) +
∫ t

0
‖(LU)(t′, ·)‖L2(Rd) dt

′

. ‖U0‖L2(Rd) +
√
t

(∫ t

0
‖(LU)(t′, ·)‖2L2(Rd) dt

′
)1/2

.

Squaring leads to

‖U(t, ·)‖2L2(Rd) . ‖U0‖2L2(Rd) + t

∫ t

0
‖(LU)(t′, ·)‖2L2(Rd) dt

′

for all 0 ≤ t ≤ T , especially

‖U(t, ·)‖2L2(Rd) .T ‖U0‖2L2(Rd) +
∫ T

0
‖(LU)(t′, ·)‖2L2(Rd) dt

′.

By reversing time, that is changing t to T − t, we also obtain

‖U(t, ·)‖2L2(Rd) . ‖U(T, ·)‖2L2(Rd) +
∫ T

0
‖(LU)(t′, ·)‖2L2(Rd) dt

′. (4.3)

The energy estimate (4.3) can then be applied to the adjoint operator as L∗ =
−Dt −A∗. We now introduce the space

T := {ϕ ∈ C∞([0, T ],S (Rd)) |ϕ(T ) = 0}.

Applying the a priori estimate to functions in T , we have

‖ϕ(t, ·)‖2L2(Rd) .
∫ T

0
‖(L∗ϕ)(t′, ·)‖2L2(Rd) dt

′

for all ϕ ∈ T and t ∈ [0, T ] and thus ‖ϕ(t, ·)‖L2(Rd) . ‖(L∗ϕ)‖L2((0,T ),L2(Rd)). Hence,
the operator L∗ restricted to T is one-to-one. So, we can define a unique linear map
B on L∗T via

B(L∗ϕ) =
∫ T

0
〈F (t), (L∗ϕ)(t)〉L2(Rd) + 〈U0, ϕ(0)〉L2(Rd).

By using the Cauchy-Schwarz-inequality, we derive

|B(L∗ϕ)| ≤
∫ T

0
‖F (t)‖L2(Rd)‖ϕ(t)‖L2(Rd) dt+ ‖U0‖L2(Rd)‖ϕ(0)‖L2(Rd)

≤ ‖L∗ϕ‖L2((0,T ),L2(Rd))

∫ T

0
‖F (t)‖L2(Rd) dt

+ ‖U0‖L2(Rd)‖L∗ϕ‖L2((0,T ),L2(Rd))

=
(
‖F‖L1L2 + ‖U0‖L2(Rd)

)
‖L∗ϕ‖L2((0,T ),L2(Rd)).

58 Chapter 4 Proof of the Main Theorem



By the Hahn-Banach theorem, B extends to a continuous form on L2((0, T ), L2(Rd)).
Moreover, by Riesz’ representation theorem, there exists a unique function U ∈ L2L2

such that
B(L∗ϕ) =

∫ T

0
〈U(t), (L∗ϕ)(t)〉L2(Rd) dt

for all ϕ ∈ T . Additionally for ϕ ∈ D((0, T )× Rd), we have

∫ T

0
〈F (t), ϕ(t)〉L2(Rd) =

∫ T

0
〈(LU)(t), ϕ(t)〉L2(Rd)

This means, that we have LU = F in sense of distributions. By the differential
equation, it is ∂tU ∈ L2((0, T ), H−1(Rd)) and so U ∈ C ([0, T ], H−1(Rd)). A further
integration also gives

〈U0, ϕ0〉L2(Rd) = 〈U(0), ϕ(0)〉H−1(Rd),H1(Rd).

By standard arguments it is U(0) = U0. We now have to control the regularity. We
note that, if F and U0 are smooth, say F ∈ C∞([0, T ],S (Rd)) and U0 ∈ S (Rd), the
previous construction leads to U ∈ C∞([0, T ],S (Rd)). If they have less regularity,
we have to apply mollifiers. Therefore, let {Fk}k∈N and {Gk}k∈N sequences in
C∞([0, T ],S (Rd)) and S (Rd), respectively, with

Fk
k→∞−→ F in L1L2

Gk
k→∞−→ U0 in L2.

For all k ∈ N, there are solutions Uk ∈ C∞([0, T ],S (Rd)) to the source terms Fk
and Gk. Applying the energy estimate, we get for arbitrary Uk and Um

‖Uk − Um‖CL2 . ‖Gk −Gm‖L2 + ‖Fk − Fm‖L1L2 .

Thus, {Uk}k∈N is a Cauchy sequence in CL2, say with limit Ũ ∈ CL2. When passing
to the limit in the energy estimate, we also see LŨ = F and Ũ(0) = U0. Uniqueness
gives us Ũ = U .

4.4 Higher-order scalar equation

We end this Chapter with an application to higher-order scalar equations.

Let us consider the following m-th order scalar equation Pu = f(t, x), (t, x) ∈ (0, T )× Rd,

(Dj
tu)(0, x) = uj(x), 0 ≤ j ≤ m− 1,
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where the operator P is given by

P = Dm
t +

m∑
j=1

aj(t, x,Dx)Dm−j
t (4.4)

with coefficients aj(t, x,Dx) ∈ Op(Σ̃j,γj), γ ∈ Z and γ ≤ 2. In case m = 2, γ = 0,
we have our model problem, when a1 ≡ 0 and

a2 = a2(t, x,Dx) = σ2∆x ∈ Op(Σ̃2,0).

We assume P to be strictly hyperbolic in the sense that

σmΨ (P ) =
m∏
k=1

(τ − λk(t, x, ξ)) ,

where λk ∈ Σ(1),γ and

|λk(t, x, ξ)− λl(t, x, ξ)| & σ1−γ |ξ|

for k 6= l. We now convert (4.4) into a m×m system of the first order. The scalar
Cauchy problem is then equivalent to the Cauchy problem DtU = A(t, x,Dx)U + F (t, x), (t, x) ∈ (0, T )× Rd,

U(0, x) = U0(x),

where

U = (Λm−1,γ(m−1)u,Λm−2,γ(m−2)Dtu,Λm−3,γ(m−3)D2
t u, . . . ,D

m−1
t u)T .

In case γ = 2, the matrix A is given by the operator-valued matrix

A =



A00 A01 0 0 · · · 0 0
0 A11 A12 0 · · · 0 0
...

...
...

. . . . . . 0

0 0 . . . . . . . . . Am−2,m−2 Am−2,m−1

Am−1,0 Am−1,1 Am−1,2 · · · · · · Am−1,m−2 Am−1,m−1


.

with

Ajj = (DtΛm−1−j,2(m−1−j))(Λm−1−j,2(m−1−j))−1 ∈ Op(Σ̃0,2),

Am−1,m−1 = −a1 ∈ Op(Σ̃1,2),

Aj,j+1 = Λm−1−j,2(m−1−j)(Λm−2−j,2(m−2−j))−1 ∈ Op(Σ̃1,2),

Am−1,j = −am−j(Λm−1−j,2(m−1−j))−1 ∈ Op(Σ̃1,2),
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for 0 ≤ j ≤ m − 2. In fact, all components belong to Op(Σ̃1,2), as desired for a
first-order system. The right hand side F and the initial data read as

F = (0, 0, . . . , 0,Λ0,−2m+2f)T and

U0 = (〈Dx〉−2j〈|x|Dx〉m−1+juj)T0≤j≤m−1.

An computation of the principal symbol yields

σ1
Ψ(A) = |ξ|

σ
S0(t, x, ξ) = |ξ|

σ



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

. . . . . . 0

0 0 . . . . . . . . . 0 1
−pm −pm−1 −pm−2 · · · · · · −p2 −p1


,

where

pm−j(t, x, ξ) =
( |ξ|
σ

)−m+j
σm−jΨ (am−j).

For the second symbol we get

σ0,2
Ψ,d(A) =


0 0 · · · 0 0
...

...
. . . 0 0

0 0 . . . 0 0
−qm −qm−1 · · · −q2 −q1

+ i

2r2


1−m 0 · · · 0

0 2−m . . . 0
...

...
. . .

...
zm zm−1 · · · z1

 ,

where

qm−j(t, x, ξ) =
( |ξ|
r

)−m+1+j
σ
m−j−1,2(m−j−1)
Ψ,d (am−j)

and

zm−j =
( |ξ|
r

)−m+1+j (
2(m− 1− j)(am−j)00,xx− 2(m− 1− j)2(am−j)00

〈x, ξ〉
|ξ|2

)

for 0 ≤ j ≤ m− 1. Now, one can provide a symmetrizer M0 for S0, namely

M0(t, x, ξ) =


1 1 · · · 1
µ1 µ2 · · · µm
...

...
. . .

...
µm−1

1 µm−1
2 · · · µm−1

m

 ,

with µk = σλk, similarly as in [DW1]. For this matrix we have

M0(t, x, ξ)−1 =
∏
k>l

(µk − µl).
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One now has to compute both, δ0 and γ0. However, the term Φ(A00, A01,M00,M01)
becomes quite complicated, so we postpone the study of Φ to future studies.

Let us now return to the model problem where P = D2
t + σ2∆x = D2

t + Λ2,0. Then
we have to apply the reduction scheme (m = 2, γ = 0) via U = (Λ1,0u,Dtu)T , which
gives a system of the form (1.1) with

A(t, x,Dx) =
(

(DtΛ1,0)(Λ1,0)−1 Λ1,0

−Λ2,0(Λ1,0)−1 0

)
∈ Op(Σ̃1,2).

For this operator we get in our shortened notation

A0 =
(

0 σ|ξ|
−σ|ξ| 0

)
and A01 = i

2r2

(
−I 0
0 0

)
,

while A00 = 0. Note that A0 is already Hermitian. Thus, condition (4.1) turns into

Im Φ(A00, A01, I, 0) = A01 ≤
δ0
2r2 I,

and is valid for δ0 = 0. The formula for γ0 has contributions just from the component
â = −I. Hence, we have to compute the greatest eigenvalue of the matrix(

−I 0
0 0

)
,

which is certainly 0. Thus, γ0 = 0. Now, if F = (0, f)T ∈ L1L2 and U0 =
((Λ1,0u)|t=0, (Dtu)|t=0)T ∈ H0,0, then the Cauchy problem (1.1) admits an uni-
que solution in U ∈ CL2, in view of Theorem 4.2. Transforming back to u gives
u ∈ CH1,0 ∩C 1L2. Thus, we have proven Theorem 1.2 for s = 0. The case of higher
regularity comes with the next remark.

Remark 4.11. If γ = 1, our theory contains strictly hyperbolic equations. For m = 2,
a1 ≡ 0 and a2 = Λ2,2 we get the wave operator P = D2

t + ∆. Then we have to apply
the reduction scheme via U = (Λ1,1u,Dtu)T , which gives a system of the form (1.1)
with

A(t, x,Dx) =
(

(DtΛ1,1)(Λ1,1)−1 Λ1,1

−Λ2,2(Λ1,1)−1 0

)
∈ Op(Σ̃1,2).

For this operator we get in our shortened notation

A0 =
(

0 |ξ|
−|ξ| 0

)
and A01 = i

2r2

(
−I 0
0 0

)
,

while A00 = 0. Again, A0 is already Hermitian. Thus, condition (4.1) turns into

Im Φ(A00, A01, I, 0)) = A01 ≤
δ0
2r2 I,
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and is valid for δ0 = 0. Similarly as before, γ0 = 0. Now, if F = (0, f)T ∈ L1L2

and U0 = ((Λ1,0u)|t=0, (Dtu)|t=0)T ∈ H0,0, then the Cauchy problem (1.1) admits
an unique solution in U ∈ CL2, in view of Theorem 4.2. Transforming back to u
gives u ∈ CH1,1 ∩ C 1L2. Note that H1,1 is exactly the classical Sobolev space H1,
so this reproduced the results from the classical strictly hyperbolic theory.

Remark 4.12. Let γ ≤ 1. Transforming the operator P gives A ∈ Op(Σ̃1,γ)+Op(Σ̃0,2)
with A00 = 0, in general. It turns out that, if uj ∈ Hs+m−j−1,δ+γ(m−j−1) for
0 ≤ j ≤ m− 1 and f ∈ L1Hs,δ, then the Cauchy problemPu = f(t, x), in (0, T )× Rd,

(Dj
tu)(0, x) = uj(x) on Rd, 0 ≤ j ≤ m− 1,

possesses an unique solution

u ∈
m−1⋂
j=0

C jHs+m−j−1,δ+γ(m−j−1).
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5Summary and Open Problems

In this thesis we developed a pseudodifferential calculus for a class of degenerate
hyperbolic equations. We motivated that question by an problem in fluid dynamics.
We introduced amplitude functions and provided a class of pseudodifferential opera-
tors that degenerate like t+ |x|2 as (t, x) −→ (0, 0). In (t, x) = (0, 0) these operators
are of type (1, 1), but we were able to prove C ([0, T ], L2(Rd))-continuity.

We defined an adapted scale of Sobolev spaces, where at t = 0 these spaces are
2-microlocal Sobolev spaces with respect to the Lagrangian T ∗0 Rd. With an symbolic
approach we derived energy estimates in the spaces and finally proved wellposedness
of the corresponding Cauchy problem.

However, there are still open problems, which are devoted to future studies.

In our setting we imposed boundary conditions that are violated in one single point.
It would be interesting to concern the case, where these degeneracy happened in a
more general compact set.

Our Sobolev spaces are inappropriate to analyze wellposedness in L2((0, T ), L2(Rd)).
Therefore one needs to define that a function u belongs to H s,δ((0, T )× Rd) if

Λs−j,δ−2jDj
tu ∈ L2((0, T )× Rd), 0 ≤ j ≤ s.

For general s ∈ R, δ ∈ R, the space H s,δ is then defined by interpolation and
duality. In these spaces, further investigations using functional analysis are desired,
in particular a trace theorem.

Another question would be the analysis of the semilinear or even nonlinear problem,
which certainly will need paralinearization.

In applications to explicit Cauchy problems, the expression Φ(A00, A01,M00,M01)
becomes quite intricate. However, this term is needed to compute both, δ0 and γ0.
To give better upper or lower bounds, or even an optimal choice for one of these
parameters, one has to study Φ(A00, A01,M00,M01) more carefully.
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Moreover, one should study the propagation of 2-microlocal singularities and their
relation to both, δ0 and γ0. We also expect lower bounds on these parameters and
it would be interesting to analyze and interpret them in view of a 2-microlocal
geometry.
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AAppendix

A.1 Oscillatory Integrals

In this section we will give a short introduction to oscillatory integrals, which is a
main ingredient to prove formulas for compositions and adjoints of pseudodifferen-
tial operators. The term has been introduced by Lax to deal with integrals of the
form

Af(x) =
∫
eiS(x,ξ)a(x, ξ)f̂(ξ) d̄ξ.

We follow the explanations as they are presented in [Kum].

Definition A.1 ([Kum], Def. 6.1). We say that a C∞-function a(η, y) in Rdη × Rdy
belongs to A m

δ,τ (m ∈ R, 0 ≤ δ < 1, 0 ≤ τ) if for any (α, β) ∈ N2d
0 there exists a Cα,β

such that
|∂αη ∂βy a(η, y)| ≤ Cα,β〈η〉m+δ|β|〈y〉τ .

It turns out, that A m
δ,τ is a Fréchet space and one sets

A =
⋃

0≤δ<1

⋃
m∈R

⋃
0≤τ

Amδ,τ .

Definition A.2 ([Kum], Def. 6.2). For an element a(η, y) of A we can define the
oscillatory integral Os(e−iyηa) by

Os(e−iyηa) = Os−
∫∫

e−iyηa(η, y)dyd̄η

= lim
ε→0

∫∫
e−iyηχ(εη, εy)a(η, y)dyd̄η,

where χ(η, y) ∈ S (R2d) with χ(0, 0) = 1.

The next theorem shows, that Os(e−iyηa) is welldefined. This means that, the limit
is independent of the choice of χ ∈ S . With Lebesgue’s dominated convergence
theorem one can prove the following:
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Theorem A.3 ([Kum], Thm. 6.4). For a ∈ A , the value of the oscillatory integral
Os(e−iyηa) is independent of the choice of χ ∈ S satisfying χ(0, 0) = 1. When a ∈ A m

δ,τ ,
taking positive integers l und l′, such that

−2l(1− δ) +m < −d, −2l′ + τ < −d,

we get ∣∣∣〈y〉−2l′〈Dη〉2l
′ {〈η〉−2l〈Dy〉2la(η, y)

}∣∣∣ ∈ L1(R2d)

and can be written as

Os(e−iyηa) =
∫∫

e−iyη〈y〉−2l′〈Dη〉2l
′ {〈η〉−2l〈Dy〉2la(η, y)

}
dyd̄η.

The following properties are helpful for computations:

Theorem A.4 ([Kum], Thm. 6.6 and 6.7). Let {aj}j∈N be a bounded set in A .
Assume that there exists an a ∈ A , such that aj(η, y) −→ a(η, y) in R2d uniformly on
any compact set as j −→∞. Then we have

lim
j→∞

Os(e−iyηaj) = Os(e−iyηa).

If a ∈ A , then for any α, β ∈ Nd0 we get

Os(e−iyηyαa) = Os((−Dα
η )e−iyηa) = Os(e−iyηDα

η a)

Os(e−iyηηβa) = Os((−Dβ
y )e−iyηa) = Os(e−iyηDβ

y a).

A.2 Pseudodifferential operators of type (1,1)

Definition A.5 ([Hor5], Chapter 9). A smooth function a(x, η) is said to be in the
class Sm1,1, if

|∂αη ∂βxa(x, η)| .αβ 〈η〉m−|α|+|β|, ∀x, η ∈ Rd

The set Op(Sm1,1) is the corresponding class of pseudodifferential operators. In 1972,
Ching gave an example of type (1, 1)-operators, which are not L2-continuous. In
[Hor5], Example 9.3.3, we find

Example A.6. Let ϑ be a fixed vector in Rd and let A ∈ C∞c ({η | 1 < |η| < 2}) and
set

a(x, η) =
∞∑
ν=0

e−2ν ixϑA

(
η

2ν
)
.

Then a ∈ S0
1,1 and Op(a) is not L2-continuous.
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The difficulties stem from the behavior at the twisted diagonal of â(ξ, η) = Fx→ξa(x, η),
which is content of the next theorem.

Theorem A.7 ([Hor5], Prop. 9.3.1). Let a(x, η) ∈ Sm1,1 and

â(ξ, η) = 0 when |ξ + η|+ 1 < |η|
B

for some constant B, then a(x,D) ∈ L (Hs+m(Rd), Hs(Rd)) for every s ∈ R, with
norm depending on s,B and seminorms of a.

We now want to apply this theorem for arbitrary a ∈ Sm1,1. The idea in [Hor5],
Chapter 9, is to remove a certain part of the twisted diagonal. Therefore, one
introduces a cutoff χ ∈ C∞(R2d), such that

(i) χ(tξ, tη) = χ(ξ, η) if t ≥ 1 and |η| ≥ 2,

(ii) supp(χ) ⊂ {(ξ, η) | |ξ| ≤ |η|, |η| ≥ 1} and

(iii) χ ≡ 1 in {(ξ, η) | 2|ξ| ≤ |η|, |η| ≥ 2}.

Then one is able to define aχ,ε via âχ,ε(ξ, η) = χ(ξ + η, εη)â(ξ, η). The function aχ,ε
has the following properties:

Lemma A.8 ([Hor5], Lem. 9.3.2). Let a ∈ Sm1,1 and 0 < ε ≤ 1. Then the function
aχ,ε belongs to C∞(Rd × Rd) and

(i) |∂βx∂αη aχ,ε(x, η)| ≤ Cαβε−|α|〈η〉m+|β|−|α|,

(ii)

(∫
R≤|η|≤2R

|∂αη aχ,ε(x, η)|2 dη
) 1

2

≤ CαRm(εR)
d
2−|α|.

If now a ∈ Sm1,1, then by the previous theorem we obtain

a(x,D)− aχ,1(x,D) ∈ L (Hs+m(Rd), Hs(Rd))

for every s ∈ R. The next step is then to prove Hs-continuity of aχ,1(x,D) unter
suitable assumptions on the behavior at the twisted diagonal of â(ξ, η).

Theorem A.9 ([Hor5], Thm. 9.3.5). Let a ∈ Sm1,1 and assume that for some σ ∈ R+

the estimate

(∫
R≤|η|≤2R

|∂αη aχ,ε(x, η)|2 dη
) 1

2

≤ CαεσRm(εR)
d
2−|α|, R > 0
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is valid for all ε ∈ (0, 1) and all α ∈ Nd0. Then a(x,D) ∈ L (Hs+m(Rd), Hs(Rd))for
s+ σ > 0.

As an immediate consequence we get the well-known result from Stein of the form:

Corollary A.10 ([Hor5], Cor. 9.3.6). If a ∈ Sm1,1 then a(x,D) ∈ L (Hs+m(Rd), Hs(Rd))
for every s > 0.

The next result gives characterizations under which conditions an operator of type
(1,1) is L2-continuous.

Theorem A.11 ([Hor5], Thm. 9.4.2). If a ∈ Sm1,1 then the following three conditions
are equivalent:

(i) a(x,Dx)† ∈ Op(Sm1,1).

(ii) With aχ,ε defined as above there is an estimate

|∂αη ∂βxaχ,ε(x, η)| .αβN εN 〈η〉m−|α|+|β|, 0 < ε < 1,

for arbitrary N,α, β.

(iii) a(x,Dx) ∈ L (Hs+m(Rd), Hs(Rd)) for every s ∈ R.

Finally one has

Ψm,†
1,1 := OpSm1,1 ∩ (OpSm1,1)† ⊂ L (Hs+m(Rd), Hs(Rd))

for every s ∈ R.

A.3 2-microlocal Sobolev spaces

In this section we will present some results on second microlocalization, which
is microlocalization along a Lagrangian submanifold Z of T ∗Rd. We follow the
statements in [Bon]. Note that the scaling of the symbol spaces is slightly different
to those in Chapter 3.

Bony constructed a symbolic calculus, when Z is the conormal of 0 in Rd. A
Lagrangian submanifold of T ∗Rd can be defined by d equations

m1(x, ξ) = . . . = md(x, ξ) = 0,
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where mj are homogeneous of degree 1, such that the Poisson brackets {mi,mj}
vanish on Z. With Mj we denote the corresponding pseudodifferential operator with
principal symbol mj .

Definition A.12 ([Bon], Def. 1.2). For (s, k) ∈ R × N0 we say that u ∈ Hs,k
Z,loc if

M Iu ∈ Hs
loc for |I| ≤ k. For (s, s′) ∈ R2 the spaces Hs,s′

Z,loc are defined by duality and
interpolation.

Definition A.13 ([Bon], Def. 1.3). The space Σm,p
Z consists of all a(x, ξ) ∈ C∞(R2d)

such that

|HIKJa(x, ξ)| . 〈ξ〉m+|I|
(
1 +

∑
|mj(x, ξ)|

) p−|I|
2

for finite families of vector fields Hi ∈H0 (homogeneous of degree 0) and Kj ∈H1

(vector fields in H0 and tangent to Z).

In the case of Z = T ∗0 Rd, we are able to provide an exact characterization of the
2-microlocal Sobolev spaces. This uses Littlewood-Paley decomposition.

Theorem A.14 ([Bon], Thm. 2.4). A distribution u belongs to Hs,s′

0 if and only if one
has

|2js(1 + 2j |x|)s′uj(x)|0 ≤ cj ,
∑

c2
j <∞.

In the case s′ = k ∈ N0, it is then u ∈ Hs,k
0 ⇐⇒ xαu ∈ Hs+|α| for |α| ≤ k.

Additionally weighted Sobolev spaces are introduced. These spaces are related to
the trace spaces Hs,δ in Chapter 3.

Definition A.15 ([Bon], Def. 2.5). Let v ∈ D ′(Rd \ 0), vanishing outside B(0, 1). A
distribution v belongs to SP (s, s′) if and only if one has

|ϕ(x)v(2−jx)|s+s′ ≤ cj2−j(s−d/2),
∑

c2
j <∞.

In the case s+ s′ ∈ N0 it is to |x|−s+|α|Dαv ∈ L2(Rd) for 0 ≤ |α| ≤ s+ s′.

For u ∈ D ′(Rd) define
Πu =

∑
p≥q

ϕ(2px)ϕ(2−qDx)u,

and for v ∈
⋃
SP (s, s′) set

Pv =
∑
p≥q

ϕ(2−qDx)ϕ(2px)u,

respectively. Then we get the following mapping properties:

Theorem A.16 ([Bon], Def. 2.7). For s ≥ 0, s + s′ ≥ 0, Hs,s′

0 and SP (s, s′) are
subspaces of L2(Rd) = L2(Rd \ 0) and one has
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(i) SP (s, s′) ⊂ Hs,s′

0 ,

(ii) Π: Hs,s′

0 −→ SP (s, s′),

(iii) P : SP (s, s′) −→ Hs,s′

0 .

The results (ii) and (iii) are also valid for (s, s′) ∈ R2.

In the case Z = T ∗0 Rd we get from Definition A.13

a(x, ξ) ∈ Σm,p
0 ⇐⇒ |Dα

ξD
β
xa(x, ξ)| . 〈ξ〉m−|α|+|β|(1 + |x||ξ|)p−|β|. (A.1)

To those symbols one can associate operators defined on the spaces Hs,s′

0 . Therefore,
one uses operators defined on SP (s, s′) and isomorphisms.

Definition A.17 ([Bon], Def. 3.2). A smooth function a(x, ξ) defined for x 6= 0
belongs to SΣm,p

0 , if

|Dα
ξD

β
xa(x, ξ)| . |x|−m+|α|−|β|(1 + |x||ξ|)m+p−|α|

and
supp(â2(x, x− y)) ⊂

{
(x, y) | 1

k
≤ |y|
|x|

< k

}
for some k > 1. Here â2 means the Fourier transform with respect to ξ.

This two different worlds are now connected by the following theorem:

Theorem A.18 ([Bon], Thm. 3.3). Let χ be a smooth function on R, equal to 1 for
|t| ≤ 1/4 and 0 for |t| ≥ 1/2. Then, the map

a(x, ξ) 7−→ (1− χ(|x||ξ|))a(x, ξ)

induces isomorphisms (independent of χ):

SΣm,p
0 /SΣm,−∞

0
∼=−→ Σm,p

0 /Σm,−∞
0 .

Finally, the following mapping theorem turns out:

Theorem A.19 ([Bon], Thm. 3.6). For (s, s′), (m, p) ∈ R2 it is

Op(SΣm,p) : SP (s, s′) −→ SP (s−m, s′ − p).
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A.4 Asymptotic sums

We briefly present a result, which is a general scheme to carry out asymptotic sums.
This scheme was used to prove asymptotic completeness, see Proposition 3.8. A
proof can be found in [Sch1].

Proposition A.20 ([Sch1], Prop. 1.1.17). Let Ej , j ∈ N, be a sequence of Fréchet
spaces with continuous embeddings Ej+1 ↪→ Ej for all j. Set E∞ = lim←−j∈NE

j . Assume
that there exists a c-dependent family of linear operators

χj(c) : Ej −→ Ej

for all j ∈ N, c ∈ R+, with the following properties:

(i) We have for every j ∈ N:
e− χj(c)e ∈ E∞

for all c ∈ R+, e ∈ Ej .

(ii) The diagram

Ej+1 � � //

χj+1(c)
��

Ej

χj(c)
��

Ej+1 � � // Ej

commutes for all j ∈ N, c ∈ R+.

(iii) If {rjk}k∈N is a semi-norm system, that defines the Fréchet topology in Ej , then
for arbitrary fixed j, k ∈ N there exists an l(j, k) ≥ j, such that f ∈ Em for every
m ≥ l(j, k) implies

rjk(χ
m(c)f) −→ 0

as c −→∞.

Then, for every sequence ej ∈ Ej , j ∈ N, there exists a sequence of constants cj ∈ R+,
such that

∞∑
j=k

χj(cj)ej

converges in Ek for every k ∈ N. In other words

e :=
∞∑
j=0

χj(cj)ej

A.4 Asymptotic sums 73



converges in E0 and has the property

e−
N∑
j=0

ej ∈ EN+1

for all N ∈ N. Moreover, e is unique modulo E∞.

A.5 The T (1)-Theorem

We first recall some results of the theory of BMO-functions and singular integrals of
nonconvolution type. We will follow [Gra2].

Let f ∈ L1
loc(Rd) and Q ⊂ Rd be a measurable set. Then we denote by

MQ(f) := 1
|Q|

∫
Q
f(x) dx

the mean or average of f over Q. Furthermore, we call the function |f −MQ(f)| the
oscillation of f over Q. Then the expression

MQ(|f −MQ(f)|)

can be interpreted as the mean oscillation of f over Q. This leads us now to the
following definition

Definition A.21 ([Gra2], Def. 7.1.1). For f a complex-valued locally integrable
function on Rd, set

‖f‖BMO := sup
Q
MQ(|f −MQ(f)|),

where the supremum is taken over all cubes Q ⊆ Rd. The function f is called of
bounded mean oscillation if ‖f‖BMO <∞. Further we set

BMO(Rd) = {f ∈ L1
loc(Rd) | ‖f‖BMO <∞}.

It is not hard to see, that BMO(Rd) is a linear space. This means, if f, g ∈ BMO(Rd)
and λ ∈ C, then f + g ∈ BMO(Rd) and λf ∈ BMO(Rd). Moreover, we get

‖f + g‖BMO ≤ ‖f‖BMO + ‖g‖BMO

‖λf‖BMO ≤ |λ|‖f‖BMO.

However, we cannot hope, that (BMO(Rd), ‖ · ‖BMO) forms a normed vector space,
since ‖c‖BMO = 0 for every constant function c. The converse is also true. In fact,
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one can show, that if ‖f‖BMO = 0, then f is almost everywhere equal to a constant.
For later use, we will prove the following result:

Lemma A.22 ([Gra2], Prop. 7.1.2,(2)). The space L∞(Rd) is contained in BMO(Rd)
and

‖f‖BMO ≤ 2‖f‖L∞ .

Proof. Let Q be an arbitrary cube in Rd. Then we have

MQ(|f −MQ(f)|) = 1
|Q|

∫
Q
|f −MQ(f)| dx

≤ 1
|Q|

∫
Q
|f(x)| dx+ 1

|Q|

∫
Q
|MQ(f)| dx

= MQ(|f |) + |MQ(f)|
|Q|

∫
Q

1 dx ≤ 2MQ(|f |).

Moreover, we easily estimate

MQ(|f |) ≤ 1
|Q|

∫
Q
|f(x)| dx ≤ ‖f‖L

∞

|Q|

∫
Q

1 dx = ‖f‖L∞ .

Thus, we get
MQ(|f −MQ(f)|) ≤ 2‖f‖L∞ .

Taking the supremum over all cubes Q, we get exactly ‖f‖BMO ≤ 2‖f‖L∞ .

Remark A.23. In fact, there are reasonably more properties and results of BMO-
functions which will not play any role here. We will later see how this class of
functions appear in the concept of proving the CL2-continuity with help of the
T (1)-theorem.

We now turn to standard kernels and operators associated to them. Let ∆ :=
{(x, x) |x ∈ Rd}.

Definition A.24 ([Gra2], Def. 8.1.2). A function K on (Rd×Rd)\∆, which satisfies
for some B > 0 the size condition

|K(x, y)| ≤ B

|x− y|d
(A.2)

and for some κ > 0 the regularity conditions

|K(x, y)−K(x′, y)| ≤ B|x− x′|κ

(|x− y|+ |x′ − y|)d+κ (A.3)

whenever |x− x′| ≤ 1
2 max(|x− y|, |x′ − y|) and

|K(x, y′)−K(x, y′)| ≤ B|y − y′|κ

(|x− y|+ |x− y′|)d+κ (A.4)
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whenever |y− y′| ≤ 1
2 max(|x− y|, |x− y′|) is called a standard kernel with constants

B, κ. The class of all standard kernels with constants B, κ is denoted by SK(κ,B).

Let us present some important observations and examples.

Example A.25.

(i) If K ∈ SK(κ,B), then the adjoint kernel K∗ ∈ SK(κ,B).

(ii) The kernel K(x, y) = |x− y|−d defined away from ∆ belongs to SK(1, d4d+1).

(iii) Assume that (A.2) holds and let further

|∇xK(x, y)|+ |∇yK(x, y)| ≤ B

|x− y|d+1

for all x 6= y, then K ∈ SK(1, 4d+1B).

After introducing the class of standard kernels, we are now able to define linear
operators associated to them.

Definition A.26 ([Gra2], Def. 8.1.8). Let 0 < κ,B < ∞ and K ∈ SK(κ,B). A
continuous linear operator T : S (Rd) −→ S ′(Rd) is said to be associated with K if
it satisfies

T (f)(x) =
∫
Rd
K(x, y)f(y) dy

for all f ∈ C∞0 (Rd) and x /∈ supp(f). If T is associated with K, then the Schwartz
kernel W of T coincides with K on (Rd × Rd) \∆.

We are now interested in defining the action of such operators on bounded and
smooth functions. Therefore, we first define

D0(Rd) =
{
ϕ ∈ C∞0 (Rd) |

∫
Rd
ϕ(x) dx = 0

}
.

The space D0(Rd) is equipped with the same topology as the space D(Rd). Note that
D ′0(Rd) ⊇ D ′(Rd) and BMO(Rd) ⊆ D ′0(Rd).

Definition A.27 ([Gra2], Def. 8.1.16). Let T be a continuous linear operator from
S (Rd) to S ′(Rd), that satisfies

〈T (f), ϕ〉 = 〈W, f ⊗ ϕ〉

for all f, ϕ ∈ S (Rd) and some distribution W ∈ S (R2d), that coincides with a
standard kernel. Let further be g bounded and smooth and η ∈ C∞0 (Rd) with
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0 ≤ η ≤ 1 and equal to 1 in a neighborhood of the support of a given ϕ ∈ D0(Rd).
Then we define T (f) ∈ D ′0(Rd) as

〈T (f), ϕ〉 = 〈T (fη), ϕ〉+
∫
Rd

(∫
Rd
K(x, y)ϕ(x) dx

)
f(y)(1− η(y)) dy.

[Gra2], Chapter 8.1.3, shows that this definition makes sense as the double integral
is an absolutely convergent integral. It is also shown, that this definition of T (f) is
independent of the choice of the cut-off function η. To state the T (1)-theorem, we
need two more definitions.

Definition A.28 ([Gra2], Def. 8.3.1). A normalized bump is a smooth function ϕ
supported in the ball B(0, 10) that satisfies

|(∂αxϕ)(x)| ≤ 1

for all multi-indices |α| ≤ 2
[
d
2

]
+ 2, where [z] denotes the integer part of z.

Given a function f on Rd, R > 0 and x0 ∈ Rd set

τx0(fR)(y) := R−df(R−1(y − x0)).

Definition A.29 ([Gra2], Def. 8.3.2). We say that a continuous linear operator
T : S (Rd) −→ S ′(Rd) satisfies the weak boundedness property (WBP), if there is a
constant C, such that for all f and g normalized bumps, all x0 ∈ Rd and a R > 0 we
have

|〈T (τx0(fR)), τx0(gR)〉| ≤ CR−d.

The smallest constant C is denoted by ‖T‖WB.

We are now ready to state the T (1)-theorem, which is one the most important
ingredients of the sequel analysis. This theorem gives necessary and sufficient
conditions for linear operators T with standard kernels to be bounded on L2(Rd).
The name of theorem T (1) is due to the fact that one of the many equivalent
conditions is expressed in terms of properties of the distribution T (1), which can be
handled in view of Definition A.27.

Proposition A.30 ([Gra2], Theorem 8.3.3). Let T : S (Rd) −→ S ′(Rd) linear and
continuous and let its Schwartz kernel coincides with a standard kernel K ∈ SK(κ,B).
Then the following are equivalent:

(i) It is

B1 = sup
ϕ

sup
x0∈Rd

sup
R>0

Rd/2
(
‖T (τx0(fR))‖L2 + ‖T †(τx0(fR))‖L2

)
<∞,
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where the first supremum is taken over all normalized bumps ϕ.

(ii) The operator T satisfies the weak boundedness property and the distributions
T (1) and T †(1) coincide with BMO functions, that is,

B2 = ‖T (1)‖BMO + ‖T †(1)‖BMO + ‖T‖WB <∞.

(iii) For every ξ ∈ Rd the distributions T (eiξ·) and T †(eiξ·) coincide with BMO
functions such that

B3 = sup
ξ∈Rd
‖T (eiξ·)‖BMO + sup

ξ∈Rd
‖T †(eiξ·)‖BMO <∞.

(iv) It is

B4 = sup
ϕ

sup
x0∈Rd

sup
R>0

Rd
(
‖T (τx0(fR))‖BMO + ‖T †(τx0(fR))‖BMO

)
<∞,

where the first supremum is taken over all normalized bumps ϕ.

(v) T extends to an bounded operator from L2(Rd) to L2(Rd).

Moreover we have

cd,κ(B +Bj) ≤ ‖T‖L2→L2 ≤ Cd,κ(B +Bj)

for all j ∈ {1, 2, 3, 4} and for some constants cd,κ, Cd,κ that depend only on the
dimension d and parameter κ > 0.

[Gra2], Chapter 8.3.2, is devoted to the very long proof of this proposition. In
fact, there are two more equivalent conditions for the extensions to L2(Rd) using
truncated operators

T (ε)(f)(x) =
∫
Rd
K(x, y)χ|x−y|>εf(y) dy

for ε > 0, see [Gra2], Def. 8.1.10.

78 Chapter A Appendix



Bibliography

[Abe] H. Abels: Pseudodifferential and singular integral operators, An introduction
with applications, De Gruyter Graduate Lectures, De Gruyter, Berlin, 2012

[AC1] A. Ascanelli, M. Cicognani: Energy estimate and fundamental solution for
degenerate hyperbolic Cauchy problems, J. Differential Equations, 217 (2005),
305-340

[AC2] A. Ascanelli, M. Cappiello: The Cauchy problem for finitely degenerate hy-
perbolic equations with polynomial coefficients, Osaka J. Math., 47 (2010),
423-438

[AN] K. Amano, G. Nakamura: Branching of singularities for degenerate hyperbolic
operators, Publ. Res. Inst. Math. Sci. 20 (1984), 225–275.

[And] J. Anderson: Fundamentals in Areodynamics, McGraw-Hill, New York, 2001

[AG] S. Alinhac, P. Gerard: Pseudo-differential Operators and the Nash-Moser
Theorem, Graduate Studies in Mathematics, AMS City, 2007

[Ber] L. Bers: Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John
Wiley & Sons, New York, Chapman & Hall, London, 1958.

[BGS] S. Benzoni-Gavage, D. Serre: Multidimensional hyperbolic partial differen-
tial equations. First-order systems and applications, Oxford Mathematical
Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007

[Bon] J.-M. Bony: Second microlocalization and propagation of singularities for
semilinear hyperbolic equations, Hyperbolic equations and related topics
(Katata/Kyoto, 1 984), Academic Press, Boston, MA, 1986, pp. 11–49. MR
MR925240 (89e:35099)

79



[Bon1] J.M. Bony: Equivalence des diverses notions de spectre singulier analytique,
Séminaire Goulaouic-Schwartz, exp. n. 3 (1976-77)

[CH] R. Courant, D. Hilbert: Methoden der mathematischen Physik. Zweiter Band,
Interscience Publishers, Inc., New York, 1943 (Springer, Berlin, 1937)

[CF] R. Courant, K.O. Friedrichs: Supersonic flow and shock waves, Applied Mat-
hematical Sciences, Vol. 21, Springer, New York-Heidelberg, 1976

[CL] F. Colombini, N. Lerner: Hyperbolic operators with non-Lipschitz coefficients.
Duke Math. J., 77:657-698, 1995

[CS] F. Colombini, S. Spagnolo: An example of weakly hyperbolic Cauchy problems
not wellposed in C∞, Acta Math., 148:243-253, 1982

[Dre] M. Drela: Lecture Notes on Fluid Mechanics and Aerodynamics, MIT, Massa-
chusetts, 2009

[DR1] M. Dreher, M. Reissig: Weakly Hyperbolic Equations — A Modern Field in the
Theory of Hyperbolic Equations, Partial Differential and Integral Equations.
International Society for Analysis, Applications and Computation, vol 2.
Springer, Boston, MA, 1999

[DR2] M. Dreher, M. Reissig: Propagation of mild singularities for semilinear weakly
hyperbolic equations, J. Analyse Math. 82 (2000), 233–266.

[DW1] M. Dreher, I. Witt: Energy estimates for weakly hyperbolic systems of the first
order, Commun. Contemp. Math. 7 (2005), no. 6, 809–837

[DW2] M. Dreher, I. Witt: Sharp energy estimates for a class of weakly hyperbolic
operators, New trends in the theory of hyperbolic equations, 449–511, Oper.
Theory Adv. Appl., 159, Adv. Partial Differ. Equ. (Basel), Birkhäuser, Basel,
2005

[Dui] J.J. Duistermaat: Fourier integral operators, Modern Birkhäuser Classics,
Birkhäuser/Springer, New York, 2011

[Gri] D. Grieser: Basics of the b-calculus, in J.B.Gil et al. (eds.), Approaches to
Singular Analysis, 30-84, Operator Theory: Advances and Applications, 125.
Advances in Partial Differential Equations, Birkhäuser, Basel, 2001.

80 Bibliography



[Gra1] L. Grafakos: Classical Fourier analysis, Third edition, Graduate Texts in
Mathematics, 249. Springer, New York, 2014.

[Gra2] L. Grafakos: Modern Fourier analysis, Third edition, Graduate Texts in
Mathematics, 250. Springer, New York, 2014.

[Gro] A. Grothendieck: Produits tensoriels topologiques et espaces nucleaires, Mem.
Amer. Math. Soc. 1955 (1955), no. 16.

[Han] N. Hanges: Parametrices and propagation for operators with non-involutive
characteristics, Indiana Univ. Math. J. 28 (1979), 87–97.

[Hor1] L. Hörmander: The analysis of linear partial differential operators I. Distribu-
tion theory and Fourier analysis, Classics in Mathematics, Springer-Verlag,
Berlin, 2003

[Hor2] L. Hörmander: The analysis of linear partial differential operators II. Differen-
tial operators with constant coefficients, Classics in Mathematics, Springer-
Verlag, Berlin, 2005

[Hor3] L. Hörmander: The analysis of linear partial differential operators III. Pseudo-
differential operators, Classics in Mathematics, Springer-Verlag, Berlin, 2007

[Hor4] L. Hörmander: The analysis of linear partial differential operators IV. Fourier
integral operators, Classics in Mathematics, Springer-Verlag, Berlin, 2009

[Hor5] L. Hörmander: Lectures on nonlinear hyperbolic differential equations, Mathe-
matics & Applications 26, Springer-Verlag, Berlin, 1997

[Joh1] J. Johnsen: Type 1,1-operators defined by vanishing frequency modulation,
New developments in pseudo-differential operators, 201–246, Oper. Theory
Adv. Appl., 189, Birkhäuser, Basel, 2009

[Joh2] J. Johnsen: Lp-theory of type 1,1-operators, Math. Nachr. 286 (2013), no. 7,
712–729

[Kum] H. Kumano-go: Pseudo-differential operators, MIT Press, Cambridge, Massa-
chusetts, 1974

[Lax] P. D. Lax: Hyperbolic partial differential equations, Courant Lecture Notes in
Mathematics, 14. New York University, Courant Institute of Mathematical
Sciences, New York, American Mathematical Society, Providence, RI, 2006

Bibliography 81



[LWY] J. Li, I. Witt, H. Yin: On the global existence and stability of a multi-
dimensional supersonic conic shock wave, Comm. Math. Phys. 329 (2014),
no. 2, 609–640

[Met] G. Métivier: Para-differential calculus and applications to the Cauchy problem
for nonlinear systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM)
Series, 5, Edizioni della Normale, Pisa, 2008

[Mey] Y. Meyer: Wavelets, vibrations and scalings, CRM Monograph Series, 9.
American Mathematical Society, Providence, RI, 1998

[NU] G. Nakamura, H. Uryu: Parametrix of certain weakly hyperbolic operators,
Comm. Partial Differential Equations 5 (1980), 837–896.

[NR] F. Nicola, L. Rodino: Global Pseudo-Differential Calculus on Euclidean space,
Pseudo-Differential Operators, Theory and Applications Vol.4, Birkhäuser,
2010

[Qi] M.-Y. Qi: On the Cauchy problem for a class of hyperbolic equations with
initial data on the parabolic degenerating line, Acta Math. Sinica 8 (1958),
521–529.

[Rau] J. Rauch: Hyperbolic partial differential equations and geometric optics, Gra-
duate Studies in Mathematics, 133, American Mathematical Society, Provi-
dence, RI, 2012

[Sch1] B.-W. Schulze: Boundary value problems and singular pseudo-differential
operators, Pure and Applied Mathematics (New York), John Wiley & Sons,
Ltd., Chichester, 1998

[Sch2] B.-W. Schulze: Pseudo-differential operators on manifolds with singularities,
Studies in Mathematics and its Applications, 24, North-Holland Publishing
Co., Amsterdam, 1991

[Shu] M.A. Shubin: Pseudodifferential operators and Spectral Theory, Springer
Series in Soviet Mathematics, Berlin, 1987

[Tre1] F. Trèves: Introduction to pseudodifferential and Fourier integral operators,
Vol. 1, Pseudodifferential operators, The University Series in Mathematics,
Plenum Press, New York-London, 1980

82 Bibliography



[Tre2] F. Trèves: Introduction to pseudodifferential and Fourier integral operators, Vol.
1, Fourier integral operators, The University Series in Mathematics, Plenum
Press, New York-London, 1980

[Witt] I.Witt: A calculus for a class of finitely degenerate pseudodifferential operators,
Evolution Equations: Propagation Phenomena – Global Existence – Influence
of Non-linearities, Banach Center Publ., vol. 60, Polish Acad. Sci.,Warszawa,
2003, pp. 161–189.

[WX] C. Wang, Z. Xin: On sonic curves of smooth subsonic-sonic and transonic flows,
Siam J. Math. Anal., Vol. 48, No.4, pp. 2414-2453

[Yag] K. Yagdjian: The Cauchy problem for hyperbolic operators., Math. Topics, vol.
12, Akademie Verlag, Berlin, 1997.

Bibliography 83





Curriculum Vitæ
Persönliche Daten

Name Matthias Krüger
Anschrift Burgstraße 4, 37073 Göttingen
Telefon +49 162 49 34 406
E-Mail matthias.h.krueger@gmail.com

Geburtsdaten 6. November 1988 in Ribnitz-Damgarten
Staatsbürgerschaft Deutsch

Familienstand verheiratet

Berufliche Laufbahn
10/2012 – heute Wissenschaftlicher Mitarbeiter (TV-L E13, 100%), Mathematisches Institut,

Georg-August-Universität Göttingen.

- Planung und Durchführung von Lehrveranstaltungen
- Beisitzen von Prüfungen (Bachelor, Master, Diplom)
- Forschung im Rahmen der Dissertation (Abgabe Frühjahr 2018)
- Mitglied im Institutsvorstand als Mittelbauvertreter
- Einteilung der Lehraufgaben als Assistentensprecher

Ausbildung

10/2012 – derzeit Promotionsstudium im Fach Mathematik, Georg-August-Universität Göttingen,
Betreuer: Prof. Dr. Ingo Frank Witt.

10/2010 – 09/2012 Masterstudium im Fach Mathematik, Universität Rostock, Rostock, M.Sc.
Note 1.4, sehr gut

10/2007 – 09/2010 Bachelorstudium im Fach Mathematik, Universität Rostock, Rostock, B.Sc.
Note 1.5, sehr gut

09/1999 – 07/2007 Gymnasium, Richard-Wossidlo-Gymnasium, Ribnitz-Damgarten, Abitur.
Note 1.7, gut

Auszeichnungen

10/2011-09/2012 Deutschlandstipendium der Universität Rostock



Weiterbildung
02/2017 – 02/2018 WeWiMento, ausgewählter Teilnehmer im universitätsinternen Mentoringpro-

gramm für Wege ins Wissenschaftsmanagement.

- Teilnahme an Workshops unter anderem zu den Themen Konfliktkompetenz, Souveränes
Auftreten, Netzwerken

- Hospitation in der Hochschuldidaktik, in der Führung einer Graduiertenschule sowie in der
Abteilung Forschung

- persönliche Begleitung durch einen Mentor

01/2011 – 06/2011 Ausbildung zum ILIAS-Teletutor.

- 70 Stunden, Einführung in die Anwendung von ILIAS, einer E-Learning-Plattform für Lehre

04/2013 – 04/2015 Ausbildung zum nebenamtlichen Chorleiter.

- Unterricht unter anderem in den Fächern Chorleitung, Tonsatz und Gehörbildung, Parti-
turspiel, Liturgik, Hymnologie und Geschichte der Kirchenmusik

- Abschluss: C-Chorleiter (Note: 1.0, sehr gut)

Akademische Selbstverwaltung/Service
03/2017 – derzeit Gewähltes Mitglied in der Promovierendenvertretung (PromV) der Universität Göt-

tingen für die Fakultät für Mathematik und Informatik, stellvertretender Sprecher
der PromV, beratendes Mitglied des Fakultätsrates

01/2017 – derzeit Vertreter der wissenschaftlichen Mitarbeiter am Mathematischen Institut
10/2012 – derzeit Organisation und Durchführung des jährlich stattfindenden Mathecamps für begabte

Schülerinnen und Schüler aus ganz Deutschland am Mathematischen Institut

Ehrenamt
11/2012 – derzeit Mitglied des Kantoreirates der Göttinger Stadtkantorei und Sprecher der Stimm-

gruppe Tenor
11/2013 – derzeit Mitglied im Beirat des Göttinger Kammerchores

10/2011 Gründungsmitglied und 1. Vorsitzender (bis März 2013) des Freundeskreises der
Kirchenmusik in Warnemünde e.V.

Weitere Kenntnisse
Sprachen Deutsch (Muttersprache), Englisch (B2), Russisch (A1)

IT LATEX, MATLAB, Mathematica, MS Office Anwendungen

Persönliche Interessen
Singen in der Kantorei, Klavier, Orgel und Waldhorn spielen, Kochen, Reisen, Ge-
sellschaftstanz



Publikationen und Vorträge
Publikationen

Frühjahr 2018 M. Krüger: On the Cauchy problem for a class of degenerate hyperbolic equa-
tions, Dissertation, in Vorbereitung

11/2012 J. Merker, M. Krüger:On a variational principle in thermodynamics in Continuum
Mech. Thermodyn., online als First View on journal page (doi: 10.1007/s00161-012-
0277-2) 15 pp.

08/2012 M. Krüger: Interaktion eines Fluids und eines Körpers: Modellierung und Exi-
stenz von schwachen Lösungen, Masterthesis (Universität Rostock)

09/2010 M. Krüger: Kontakt-Hamiltonsche Differentialgleichungen mit Ports, Bachelor-
thesis (Universität Rostock)

Vorträge (Auswahl)

03/2018 Degenerate hyperbolic equations and their application in fluid dynamics, im
Rahmen eines dreiwöchigen Forschungsaufenthaltes an der Nanjing Normal Univer-
sity bei dr Arbeitsgruppe von Prof. Yin Huicheng, China.

11/2017 Spezielle Zahlenbereiche, im Rahmen des „How-to-prove-it“-Wochenendes für
Erstsemester, organisiert von der Fachschaft Mathematik, Göttingen.

03/2016 On degenerate hyperbolic Cauchy problems, International Workshop on Geome-
tric and Singular Analysis, Potsdam.

09/2015 Semigroups and their applications to PDEs, Summer School on Fourier Integral
Operators, Ouagadougou (Burkina Faso).
Vorlesungsreihe



Konferenzen und Drittmittel
Konferenzen

02/2017 International Workshop on Geometric and Singular Analysis, Potsdam.
10/2016 Conference on Analysis and Colloquium in Honor of the 60th Birthday of

Elmar Schrohe, Hannover.
03/2016 International Workshop on Geometric and Singular Analysis, Potsdam.
10/2015 Workshop on Analysis and PDE, Hannover.
09/2015 Summer School on Fourier Integral Operators, Ouagadougou.
07/2015 Summer School on Quantum Ergodicity and Harmonic Analysis, Part IV,

Marburg.
02/2015 International Workshop on Geometric and Singular Analysis, Potsdam.
09/2014 Summer School on Spectral Geometry, Göttingen.
06/2014 Conference on Microlocal Analysis and Applications at Université de Nice

Sophia Antipolis, Nizza.
03/2014 International Workshop on Geometric and Singular Analysis, Potsdam.
11/2013 Winter School on Quantum Ergodicity and Harmonic Analysis, Part III, Mar-

burg.
11/2013 Joint CRM-ISAAC Conference on Fourier Analysis and Approximation Theo-

ry, Barcelona.
10/2013 AMS Sectional Meeting Special Session on Geometric and Spectral Analysis,

Philadelphia.
09/2013 Workshop on Elliptic and Parabolic Equations, Hannover.
03/2013 International Workshop on Geometric and Singular Analysis, Potsdam.
03/2013 German-Sino Workshop on the Analysis of Partial Differential Equations and

Their Applications, Göttingen.
01/2013 Winter School on Quantum Ergodicity and Harmonic Analysis, Part II, Göt-

tingen.
09/2012 Summer School on Singular Analysis, Oldenburg.

Drittmittel
12/2017 DAAD-Reisemittel (Vortragsreisenprogramm), Reisekostenzuschuss für einen

Foschungsaufenthalt (März 2018) an der Nanjing Normal University, China, 850e.

Organisierte Veranstaltungen

seit 10/2013 jährliche Organisation des Mathecamps für Schülerinnen und Schüler, Mathe-
matisches Institut, Georg-August-Universität Göttingen.



Declaration

I hereby declare that this thesis has been composed solely by myself and that it has
not been submitted, in whole or in part, in any previous application for a degree.
Except where states otherwise by reference or acknowledgment, the work presented
is entirely my own.

Göttingen, March 27, 2018

Matthias Krüger



Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by
Ricardo Langner. The design of the Clean Thesis style is inspired by user guide
documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

	Abstract
	Abstract
	Acknowledgement
	1 Introduction
	2 Modeling the Problem
	2.1 The model equation
	2.2 A first observation

	3 Pseudodifferential Calculus
	3.1 The symbol class m,p
	3.2 C([0,T],L2(Rd))-continuity for Op(0,0,†)
	3.3 The symbol class "0365m,p
	3.4 Function spaces

	4 Proof of the Main Theorem
	4.1 Basic CL2-energy estimate
	4.2 Reductions
	4.3 Proof of Theorem 1.1
	4.4 Higher-order scalar equation

	5 Summary and Open Problems
	A Appendix
	A.1 Oscillatory Integrals
	A.2 Pseudodifferential operators of type (1,1)
	A.3 2-microlocal Sobolev spaces
	A.4 Asymptotic sums
	A.5 The T(1)-Theorem

	Bibliography
	Declaration
	Colophon

