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Summary 

Southeastern South America harbour highly diverse and species-rich ecosystems, such as the 

Atlantic rainforest, Araucaria forest and grasslands, which occur in a transitional zone from 

tropical to subtropical. This climatic sensitive region is influenced by different climatic factors, 

such as the Intertropical Convergence Zone (ITCZ), the South American Monsoon System 

(SAMS), cold polar fronts and the El Niño–Southern Oscillation (ENSO). The dynamics of 

Brazil Current (BC) from the north, as well as the Malvinas Current (MC, refers to the term 

Falkland/Malvinas Current (FMC) in Chapter 4) and Brazil Coastal Current (BCC) from the 

south, can not only trigger the hydrology changes of western South Atlantic, but also influence 

the climate in southeastern South America. 

To reconstruct vegetation, climate and ocean dynamics over long time periods, three marine 

sediment cores located at a 1400 km long latitudinal transect, from ca. 27 to 38°S, off 

southeastern South America have been studied by pollen, spore, organic walled-dinoflagellate 

cysts (dinocyst) and freshwater algae analyses.  

The northernmost located marine sediment core GeoB2107-3 (27.18°S) provides the first long 

pollen and dinocyst records off southern Brazil since the early last glacial period (73.5 cal kyr 

BP). This study indicates that larger areas of Araucaria forests existed in the highlands from 73.5 

to 65 cal kyr BP, similar to the late Holocene period, reflecting cool but wetter climatic 

conditions during early last glacial period. Strong shifts of the Atlantic lowland rainforest to the 

north occurred between 38.5 and 13.0 cal kyr BP, reflecting colder and drier climatic conditions. 

The dinocyst records indicate a stronger influence of the BC between ca. 53.9 and 35 cal kyr BP 

and then from 14 cal kyr BP to present. Evidence of Nothofagus pollen in the marine core 

indicates enhanced transport of cold water masses from the south between 38.5 and 13.0 cal kyr 

BP. Comparison of different proxies indicates that orbital obliquity is one of the most important 

driving factors controlling marine and continental environmental changes during the last 73,500 

years.  

The marine pollen, spore, dinocyst and freshwater algae records from GeoB6211-2 (32.50°S) 

provide environmental changes since the last glacial maximum (LGM, 19.3 cal kyr BP). During 
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the LGM, grasslands dominated southeastern South America, reflecting cold and dry climate. 

Gallery forests expanded slightly during Heinrich Stadial 1 (HS1, ca. 18-15 cal yr BP). The 

Atlantic rainforest expansion to the south was only recorded after 5.5 cal kyr BP, while in the 

GeoB2107-3 core, located 500 km further north, recorded the expansion was since 14 cal kyr BP. 

With the Atlantic sea level rise, the Rio de la Plata mouth shifted southward, and the freshwater 

discharge decreased markedly to the coring site. The MC and BCC from the south had a stronger 

influence to the coring site during the LGM and HS1, as indicated by the occurrence of 

Nothofagus pollen in the record. The influence of colder water from the south became lower 

during the mid- and late Holocene. 

The dinocyst and freshwater algae records of the southernmost located marine sediment core 

GeoB13862-1 (38.01°S) provide ocean dynamics of the upper water column in the region of 

Brazil Malvinas Confluence (BMC, refers to the term Brazil-Falklands/Malvinas Confluence 

(BFMC) in Chapter 4) since the Lateglacial period (12.6 cal kyr BP). The dynamics of the BMC 

were reconstructed using the relative frequency of warm water indicators for the BC versus cold 

water taxa thriving in the MC. The BMC index suggests that the BMC was relatively stable with 

only minor amplitude migrations between 12.6 and 8.7 cal kyr BP, followed by stronger shifts of 

the BMC to the south and north until 0.66 cal kyr BP. Since 0.66 cal kyr BP to present, occurred 

a continuous southward shift of the BMC. The increase of freshwater algae in the marine core 

record after 5.7 cal kyr BP indicate an increase in precipitation, which was probably related to a 

higher and stronger El Niño events since the mid-Holocene. The dinocyst record indicates a 

phase of the enhanced presence of nutrient rich waters over the core site between ca. 6.3 and 5.7 

cal kyr BP, as well as from 0.66 cal kyr BP to recent. The highest eutrophication in the ocean 

surface of coring site occurred during the last ca. 100 years, which was most probably due to 

stronger human impact in the area of the Rio de la Plata drainage basin. 

The study of the three marine sediment cores contributes to a better understanding of past 

vegetation dynamics, climate change in southeastern South America, surface water conditions 

and ocean current changes of western South Atlantic over long time periods. It also provides an 

insight into how the long term global sea level changes can affect the coastal ecosystems in 

southeastern South America.  
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Chapter 1 

Introduction 

1.1 Marine palynology 

Palynology, as an interdisciplinary science, is frequently used in the palaeoenvironmental 

reconstruction. Quantitative pollen analysis has been successfully applied to reconstruct past 

vegetation, climate and human impacts by using terrestrial archives (e.g., Behling, 2004; Bennett 

and Willis, 2002). Compared to terrestrial palynology, marine palynology is still a young 

research field and the number of studies is low, despite its importance for the research of global 

climate change (e.g. Groot and Groot, 1996).  

Marine sediment archives can provide long continuous records on continental and ocean 

environmental changes and allow a direct comparison of terrestrial proxies with pollen, spores, 

freshwater algae and marine proxies with dinocysts together for past environment reconstruction. 

Therefore, the land-ocean interactions can be investigated on the same timescale. With marine 

sediment cores, vegetation and ecosystem dynamics, as well as climate change, can be archived 

in a more regional scale than in terrestrial sediment cores (e.g. Hooghiemstra et al., 1992, 2006; 

González et al., 2008). Dinocyst assemblages in marine deposits reflect sea surface conditions, 

such as sea surface salinity (SSS), sea surface temperature (SST), eutrophic conditions, and 

provide information on changes in currents. Therefore, marine records can contribute to an in-

depth and more comprehensive understanding of past and modern environment changes and 

allow making precise predictions about future environment changes. 

However, there are also difficulties and challenge by using marine records to reconstruct 

environment changes. First, due to the in general low concentration and difficulty to concentrate 

microfossils (marine sediments, in general, contain more silica and carbonates) for quantitative 

analysis, more time is needed to analyze marine samples. Second, due to the relatively large 

possible source area, transportation of pollen and spores can be by rivers, winds and marine 

currents to the ocean floor, so interpretation of data needs to be done carefully (Hooghiemstra et 

al., 2006). Third, due to the selective degradation of dinocysts, the preservation index needs to be 
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taken into consideration for the reconstruction (Zonneveld et al., 2010). Therefore, to avoid the 

biases, pollen, spores and dinocyst based environmental reconstruction benefits from the multi-

proxy analysis.  

1.2 Motivation and research questions 

Several marine records have been studied in the eastern South Atlantic. A relatively large set of 

studied marine cores is available off western Africa (e.g. Dupont and Leroy, 1995; Marret et al., 

2006, 2008; Hooghiemstra et al., 2006; Dupont et al., 2007; Bouimetarhan et al., 2009). 

However, only little has been carried out in southeastern South America and western South 

Atlantic. Several available studies have been done in northeast Brazil (Behling et al., 2000; 

Jennerjahn et al., 2004; Dupont et al., 2010) and southeast Brazil (Behling et al., 2002). 

The aim and motivation of this study are to (i) reconstruct the history and dynamics of 

ecosystems in southeastern South America from southern Brazil to northern Argentina, (ii) to 

understand land and ocean environment changes, in particular, vegetation dynamics and marine 

current changes over long time periods, (iii) to discover the driving factors controlling the 

environment in southeastern South America. Major research questions are: 1) What are the long-

term environmental changes in southeastern South America and the adjacent ocean? 2) Are there 

any correlations between continent and oceanic environmental changes? 3) Are there any human 

activities, which can be detected by the marine pollen and dinocyst records? 4) What were the 

main factors controlling past environmental changes over long time periods? 

1.3 Environmental background  

1.3.1 Topography and river systems 

The studied three marine sediment cores are located on a transect off southeastern South America, 

about 1400 km, including southern Brazil, Uruguay and northern Argentina (Fig. 1) between the 

latitudes of 27 and 38
o
S. The main topography of southeastern South America includes the small 

coastal lowland in southern South Brazil, Uruguay and northern Argentina, coastal mountains 

such as Serra do Mar and Serra Geral in southern Brazil, the highlands and the Rio de la Plata 

Basin.  
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Figure 1 The topography of South America (Schlitzer, 2017). 

 

Along the continental shelf of southeastern South America, several rivers discharge into the 

western South Atlantic. In southern Brazil in the area of core GeoB2107-3, only small rivers are 

found draining the coastal mountain slopes and the narrow lowland area. The only larger river 

near the site is Rio Itajaí with a mean annual discharge (since 1934) of Rio Itajaí is 230 ± 280 

m
3
s

-1
 (Schettini, 2002). Other major rivers discharging into the western South Atlantic are Rio 

Paraíba do Sul and Rio Doce (to the north), Rio Uruguay and Rio Paraná that together form Rio 

de La Plata (to the south).  

In the region of southern South Brazil and Uruguay adjacent to the coring site of GeoB6211-2, is 

characterized by the presence of several coastal lagoons, caused by the transgression-regression 

phases during the Holocene. The Patos Lagoon (largest lagoon in the Rio Grande do Sul state) is 

connected with the South Atlantic by the outlet of Rio Grande, while Mirim Lagoon (Uruguay) 

has no outlet (Tomazelli and Villwock, 2000; Villwock and Tomazelli, 1995). Only small rivers 
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drain directly to the lagoons from the hinterland. The largest river draining to the Patos Lagoon is 

the Jacuí River that eventually delivers its freshwater to the South Atlantic through the single 

outlet (Weschenfelder et al., 2010). A much larger river system discharging in the western South 

Atlantic further south is the Rio de la Plata, formed by the confluence of the Uruguay and Paraná 

Rivers. The marine core GeoB13862-1 is located in front of the Rio de la Plata discharge regions 

(36°S). The mean annual discharge of Rio de la Plata is around 23,000 m
3
s

-1
. The discharge 

plume is characterized with a seasonal meridional migration, during austral summer it can reach 

up to ca. 28°S, while during austral winter it restricted around 32°S (Möller et al., 2008). The Rio 

de la Plata fresh nutrient rich waters can be transported to the north by the northward flow 

Brazilian Coastal Currents (BCC).  

1.3.2 Climate 

The three studied marine sediment cores are located along a tropical to subtropical transect, 

which are very sensitive to climatic change. The climate of South America is influenced by the 

unique geographical characteristics of varied topography (e.g. Insel et al., 2010; Saurral et al., 

2015). The Andes mountain chains are acting as natural barriers, which block the pathway of 

warm and humid moisture transported by the trade wind from tropic Atlantic (Fig. 2). The 

relatively flat coastal plain of Amazon region accelerates the warm and humid moisture 

transported from the tropical Atlantic Ocean. In eastern slopes of Andes, this accumulated 

moisture, which has been blocked by Andes, can be continous transported by the South American 

low-level jet (LLJ) to southeastern South America, and contributes to ca. 45% of the summer 

precipitation (Salio et al., 2002). 

In South America, the seasonal climate change is mianly controlled by the shifts of the 

Intertropical Convergence Zone (ITCZ) (Fig. 2). The migration of ITCZ is triggered by the solar 

insolation. During austral winter, the ITCZ belt shifts to the north of the equator, while during 

austral summer, the ITCZ belt shifts to the south (Schneider et al., 2014).  
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Figure 2 Climate system in South America (adapted from Wang et al., 2006). 

 

The poleward displacement of the ITCZ in South America is known as South American Monsoon 

System (SAMS), which is characterized with intense rainfall during austral summer (García and 

Kayano, 2010; Zhou and Lau, 1998). In southeastern South America, the climate is influenced by 

the South Atlantic Convergence Zone (SACZ) (Nogués-Paegle et al., 2002), which can be 

triggered by the enhanced South American low-level jet (LLJ) transporting moisture derived 

from Amazon Basin (Carvalho et al., 2004; Rao et al., 1996). Carvalho et al. (2004) indicate that 

the intense SACZ is linked to the Southern Westerly wind regimes (Rickenbach et al., 2002) and 

intraseasonal variations in the SAMS (Jones and Carvalho, 2002). 
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Like the other monsoon systems, the different physical features between the land and the ocean 

play an important role for the monsoonal climate variables in southeastern South America. 

The precipitation during austral winter is related to the cold polar fronts from the Antactic. When 

the cold fronts meet the tropical air masses, strong rainfall occurs in southern Brazil (Hastenrath, 

1991). Southeastern South America can be also influenced by the El Niño–Southern Oscillation 

(ENSO), producing higher, intensive heavy rainfall in the study region (Ratisbona, 1976; 

McGlone and Kershaw, 1992; Martin et al., 1993). 

In southern South America, the Southern Westerlies play an important role. During austral 

summer, the Southern Westerlies shift to the north at ca. 30°S, due to the northward shift of ITCZ, 

which is contributing to an increase of precipitation along the eastern Rio de la Plata drainage 

basin (Garreaud et al., 2009; Razik et al., 2013).   

1.3.3 Vegetation  

Highly diverse ecosystems, including the Atlantic lowland rainforest, Araucaria forest, Campos 

and Pampa grasslands, are important vegetation types in southeastern South America (Fig. 3).  

The tropical Atlantic rainforest occurs mainly along the coastal lowlands of southern Brazil, the 

coastal mountains slopes of the Serra do Mar and the Serra Geral, forming a small elongated 

forest belt. The tropical lowland forest finds its southern limit at the latitude of 30°S (Hueck, 

1966). The average rainfall is ca. 2000 mm without marked dry season and the average 

temperatures range from 14 to 21°C. The Atlantic rainforest is highly diverse in trees, shrubs, 

climbers, tree ferns and epiphytes. The dominant trees are in the Euphorbiaceae (Alchornea), 

Myrtaceae (e.g. Myrcia spp., Myrceugenia spp.), Arecaceae (Euterpe), Mimosaceae (Piptadenia, 

Parapiptadenia, Anadenanthera), Moraceae, Bignoniaceae, Lauraceae, and Sapotaceae families 

(Hueck, 1966). The Araucaria forest is native coniferous forest in southeastern South America, 

distributed between 24 °S and 30 °S, developed under frequent winter frosts and wet climate 

conditions. Annual precipitation ranges from 1,300 to 3,000 mm. It covers the highlands of 

southeastern Brazil (at elevations between 1400 and 1800 m), southern Brazil (at elevations 

between 500 and 1400 m) and northeastern Argentina (Hueck, 1953) (Fig. 3). Araucaria 

https://en.wikipedia.org/wiki/Temperate_coniferous_forest
https://en.wikipedia.org/wiki/Frost
https://en.wikipedia.org/wiki/Brazil
https://en.wikipedia.org/wiki/Argentina
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angustifolia, Ilex paraguariensis, Mimosa scabrella, and Podocarpus lambertii and the families 

Myrtaceae (Myrceugenia spp., Eugenia spp., Myrciaria spp.) and Lauraceae (Ocotea spp., 

Nectandra spp.) are major taxa in the Araucaria forest. 

The Campos grassland is mixed together with occasionally scattered small proportion of shrubs 

and trees along the riverbanks. The Campos is distributed between latitudes 24°S and 35°S in the 

southern Brazilian highlands, southernmost Brazilian lowlands and Uruguay (Sutie et al., 2005). 

Annual precipitation ranges from 1200 to 1600 mm with cool and dry austral winters. The 

Campos is mainly composed by species with the families of Poaceae, Cyperaceae, Asteraceae, 

Apiaceae, Rubiaceae, and Fabaceae. The tall grasses (Andropogon spp., Aristida spp., 

Schizachyrium spp.) are the dominant biomass, mixed with shrubs such as Baccharis spp., 

Vernonia spp. (Asteraceae) and Eryngium horridum (Apiaceae). Other important species in the 

Campos are species of the genera Polygala and Plantago. The Pampa grassland is the major 

vegetation type in eastern Argentina between latitudes 31°S and 39°S (Cabrera, 1968). This 

grassland is developed under moderate climatic conditions, with annual precipitation from 500 to 

1,200 mm. Shrubs and trees are rare. Poaceae and Cyperaceae family, Alternanthera, Eryngium, 

Chenopodiaceae (Salicornia, Cressa, and Atriplex) are common vegetation in Pampa grasslands.  

 

Figure 3 Modern vegetation distribution in South America (adapted from Schmithüsen, 1976 and Hueck, 1960). 

https://en.wikipedia.org/wiki/Precipitation_(meteorology)
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1.3.4 Western South Atlantic and ocean circulation  

The Brazil Current (BC) dominates the upper water column of the north section of the study area 

(Fig. 4) (Peterson and Stramma, 1991). The BC flows southward along the continental margin, 

transporting warm and saline waters from the tropical South Atlantic. 

 

Figure 4 Ocean circulations in the western South Atlantic. This Figure is produced with Ocean Data View (Schlitzer, 

2017) together with data collections from Locarnini et al. (2010). 

 

The Malvinas Current (MC) flows northward along the continental margin off Argentina and 

transports cold and low salinity waters (Peterson and Stramma, 1991). Both currents merge and 
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form the Brazil Malvinas Confluence (BMC). Furthermore, on the continental shelf off Uruguay 

and southern Brazil, the Brazilian Coastal Current (BCC) (Fig. 4) flows northwards and 

transports low salinity waters as well as terrigenous material from the La Plata River drainage 

basin futher north (Souza and Robinson, 2004; Piola et al., 2005). 

The oceans are important factors which influence the distribution of different vegetation types 

(Rahmstorf, 2002). Especially, in the region of the highly hydrodynamic western South Atlantic, 

as a major component of Atlantic meridional overturning circulation (AMOC) system with the 

perspective of global ocean conveyor belt, contribute to the heat can be transported from low 

latitude to the high latitude by the warm water and air masses along its pathway. This conveyor 

belt is mainly combined with the temperature and salinity-driven deep ocean currents and wind-

driven surface currents. Therefore, the changes of wind field over the ocean surface, temperature 

and salinity of the ocean water masses are the most important factors that controlling the local, 

regional and global ocean water circulation system, and the major factors influence the heat and 

moisture transported from the tropical regions to the high latitude regions along its pathways. 

For the western subtropical South Atlantic, several ocean parameters are shown in Fig. 5. The 

annual sea surface temperature (SST) ranges between 21 and 26°C, and the annual sea surface 

salinity (SSS) varies between ca. 34 and 36 psu (practical salinity units). The annual sea surface 

oxygen (SSO) varies between ca. 5.1 and 6.1ml/l, and the annual sea surface phosphate varies 

between ca. 0.21 and 0.64 umo/l. Fig. 5 indicates that the Rio de la Plata discharge has a great 

effect on the adjacent ocean surface conditions. The annual seasonality plays an important role in 

the study region (Matano et al., 1993; Boyer et al., 2013), due to the influence of warm and saline 

tropical water masses during austral summer. During austral winter, the decrease in water mass 

transport of the BC and the strengthening of the BCC (Matano, 1993), colder (ca. 11.5 to 21.1°C) 

(Molina-Schiller et al., 2005) and less saline (ca. 29 and 33.5 psu) waters are to the north (Piola et 

al., 2005).  

Due to the industrial and agricultural anthropogenic activities as well as the great impact on the 

ecosystems by deforestation and soil erosion, especially during the last decades, considerable 

pollution of the sea waters adjacent to the coastal regions occurred by highly eutrophication 

waters discharged from rivers (Ostroumov, 2003; Zhang et al., 1999). 

https://www.nature.com/articles/nature01090#auth-1
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Figure 5 Ocean parameter of South America and the location of the three studied marine sediment cores. These 

figures are produced with Ocean Data View (Schlitzer, 2017), together with data collections (Locarnini et al., 2010; 

Antonov et al., 2010; Garcia et al., 2010a; 2010b). 

1.4 Material and methods  

Three marine sediment cores, located in a transitional section of western South Atlantic along the 

continental shelf of southeastern South America, have been studied (Fig. 1). The marine sediment 

core GeoB2107-3 (27.18°S, 46.45°W, 1048 m water depth, 783 cm long) was retrieved during 

RV Meteor cruise M23/2 (Bleil et al., 1993) from the continental slope off southern Brazil. The 

marine sediment core GeoB6211-2 (32.50°S, 50.24°W, at 657 m water depth, 774 cm long,) was 

collected during RV Meteor cruise M46/2 (Schulz et al., 2001; Wefer et al., 2001) in the 

northwest Argentine Basin. The marine sediment core GeoB13862-1 (38.01°S, 53.74°W, at 3588 

m water depth, 1016 cm long) was collected during Meteor cruise M78/3 (Krastel et al., 2012), 

off Rio de la Plata discharge region. 
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Pollen analytical methods using pollen, spores, dinocysts and freshwater algae have been applied 

to reconstructed vegetation history and ocean environment changes. Standard pollen analytical 

techniques were applied (Faegri and Iversen, 1989). Calcareous and siliceous content in the 

samples have been removed by diluted in hydrochloric acid (HCl, ~10%) and cold hydrofluoric 

acid (HF, ~40%), respectively. To avoid damage to the cysts, acetolysis was only applied on the 

pollen and spores samples, not on dinocyst samples. To concentrate the dinocysts and pollen, all 

the samples were sieved softly by hand through a 1-1.5 μm nylon mesh after processing.  

Pollen and spores were identified based on literature (Behling, 1993), together with the large 

reference collections at the Department of Palynology and Climate Dynamics of the University of 

Götingen. Dinocysts identification were based on several published morphological descriptions 

(e.g. Zonneveld and Pospelova, 2015; Fensome and Williams, 2004).  

Freshwater algae identification were mainly based on the online manual, which can be found by 

the follow link (https://www.landcareresearch.co.nz/resources/identification/algae/identification-

guide). 

1.5 Layout of the thesis 

Chapter 1 provides a general introduction to marine palynology, motivation and research 

questions, the environmental background of southeastern South America including the 

topography, river systems, climate, modern vegetation, the ocean parameters of western South 

Atlantic, and ocean circulation, as well as the research material and methods. 

Chapter 2 presents the manuscript of a long pollen and dinocyst record of the marine sediment 

core GeoB2107-3 (27.18°S) off southern Brazil. Past vegetation, climate, ocean parameters (e.g. 

sea surface temperature and salinity) and current dynamics (Brazil Current and Malvinas Current) 

have been reconstructed since the early last glacial (73.5 cal kyr BP).  

Chapter 3 provides the manuscript of the pollen and dinocyst records from marine core 

GeoB6211-2 (32.50°S), to investigate the palaeoenvironmental changes since the last glacial 

maximum (LGM, 19.3 cal kyr BP). The vegetation histories, past climate and ocean 

environmental changes between southern South Brazil and Uruguay have been reconstructed. 

https://www.landcareresearch.co.nz/resources/identification/algae/identification-guide
https://www.landcareresearch.co.nz/resources/identification/algae/identification-guide
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Chapter 4 present the manuscript of the dinocyst records of the core GeoB13862-1 (38.01°S), to 

reconstruct the ocean dynamics of the upper water column in the Brazil Malvinas Confluence 

(BMC) region since the Lateglacial period (12.6 cal kyr BP). The dynamics of the BC, MC and 

BMC shifts, eutrophic surface water conditions, climate and human impact have been studied. 

Chapter 5 synthesizes the most important outcomes of the three studied marine sediment cores 

GeoB2107-3, GeoB6211-2 and GeoB13862-1, provide a short outlook and perspective.  

Appendixes include the complete list of identified pollen, spores, dinocysts and freshwater algae, 

the photographs of selected pollen, spores, dinocyst types, freshwater algae and unknowns of the 

three studied cores, and the complete pollen diagrams of marine core GeoB2107-3 and 

GeoB6211-2. 
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Abstract 

Long-term changes in vegetation and climate of southern Brazil, as well as ocean dynamics of the 

adjacent South Atlantic, were studied by analyses of pollen, spores and organic-walled 

dinoflagellate cysts (dinocysts) in marine sediment core GeoB2107-3 collected offshore southern 

Brazil covering the last 73.5 cal kyr BP. The pollen record indicates that grasslands were much 

more frequent in the landscapes of southern Brazil during the last glacial period if compared to 

the late Holocene, reflecting relatively colder and/or less humid climatic conditions. Patches of 

forest occurred in the lowlands and probably also on the exposed continental shelf that was 

mainly covered by salt marshes. Interestingly, drought-susceptible Araucaria trees were frequent 

in the highlands (with a similar abundance as during the late Holocene) until 65 cal kyr BP, but 

were rare during the following glacial period. Atlantic rainforest was present in the northern 

lowlands of southern Brazil during the recorded last glacial period, but was strongly reduced 

from 38.5 to 13.0 cal kyr BP. The reduction was probably controlled by colder and/or less humid 

climatic conditions. Atlantic rainforest expanded to the south since the Lateglacial period, while 

Araucaria forests advanced in the highlands only during the late Holocene. Dinocysts data 

indicate that the Brazil Current (BC) with its warm, salty and nutrient-poor waters influenced the 

study area throughout the investigated period. However, variations in the proportion of dinocyst 

taxa indicating an eutrophic environment reflect the input of nutrients transported mainly by the 

Brazilian Coastal Current (BCC) and partly discharged by the Rio Itajaí (the major river closest 

to the core site). This was strongly related to changes in sea level. A stronger influence of the 

BCC with nutrient-rich waters occurred during Marine Isotope Stage (MIS) 4 and in particular 

during the late MIS 3 and MIS 2 under low sea level. Evidence of Nothofagus pollen grains from 

the southern Andes during late MIS 3 and MIS 2 suggests an efficient transport by the southern 

westerlies and Argentinean rivers, then by the Malvinas Current and finally by the BCC to the 

study site. Major changes in the pollen/spore and dinocyst assemblages occur with similar 

pacing, indicating strongly interlinked continental and marine environmental changes. Proxy 

comparisons suggest that the changes were driven by similar overarching factors, of which the 

most important was orbital obliquity. 

Keywords: Southern Brazil; South Atlantic; Pollen; Spores; Dinoflagellate cysts; Environmental 

changes; Late Quaternary 
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2.1 Introduction 

The comprehensive knowledge of past environmental changes is valuable for an in-depth 

understanding of modern and future environmental dynamics under global climate change. In 

particular, land-ocean interactions may play a crucial role in determining past environmental 

changes (Ramesh et al., 2015). Studying terrestrial and marine records in the same environmental 

archive (e.g., marine sediment core) allows a direct comparison of terrestrial and marine 

environmental changes without the uncertainties commonly associated to the synchronization of 

different archives. Past environmental changes in southeastern South America, such as long-term 

vegetation, climate and ocean dynamics can provide important information about the Atlantic 

rainforest, a biodiversity hotspot (Carnaval et al., 2009; Butchart et al., 2010). Furthermore, 

models of past Atlantic rainforest distribution in southeastern South America (Carnaval and 

Moritz, 2008), as well as its spreading over the exposed continental shelf during glacial times 

(Leite et al., 2016), can be evaluated by long marine pollen records. 

Several terrestrial pollen archives from southeastern South America have been previously 

studied. Records from southern Brazil, e.g., Cambará do Sul and Serra do Tabuleiro (Fig. 1b) 

which date back to 42 cal kyr BP (calibrated kiloyears before the present; the present is set to 

1950 by definition), indicate that the southern Brazilian highlands were almost treeless and 

covered by grassland during glacial times (Behling et al., 2004; Jeske-Pieruschka et al., 2013). 

The present-day Araucaria forest was probably restricted to small populations in protected deep 

valleys with sufficient moisture (Behling et al., 2004). A pollen record from the Atlantic coastal 

lowland in southern Brazil at Volta Velha (Fig. 1) indicates that a mosaic of grassland and 

subtropical forest occurred in the area of the modern Atlantic rainforest in particular during the 

Last Glacial Maximum (LGM) (Behling and Negrelle, 2001). This indicates a marked northward 

retreat of the Atlantic rainforest of at least 750 km compared to today (Behling, 2002).  

In southeastern Brazil, a strong reduction of forests is also found in different records from the 

highlands and mountains (e.g. Behling and Lichte, 1997). However, a long terrestrial record 

covering the last ca. 130 cal kyr BP from the highlands at Colônia (Fig. 1), southeastern Brazil 

(Ledru et al., 2005, 2009), indicates oscillations in the amount of arboreal pollen that were related 

to changes in insolation, more specifically precession. It is noteworthy, however, that the age 

http://www.sciencedirect.com/science/article/pii/S2213305416300054
http://link.springer.com/article/10.1007/s10841-015-9780-7#CR7
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model of the core beyond ca. 37 cal kyr BP was tuned to other records (i.e., the arboreal pollen 

record from Colônia was tuned to the  18
O record from Botuverá Cave (Cruz et al., 2006) and 

further adjusted to changes in summer insolation at 20 
o
S) and not independently dated. The 

Atlantic rainforest in the lowlands expanded to southern Brazil during the Lateglacial (Behling 

and Negrelle, 2001), while on the southern Brazilian highlands Araucaria forest expanded 

significantly only after 4 cal kyr BP and, in particular, during the last 1 cal kyr BP reducing the 

area covered by grasslands (Behling et al., 2004). 

A high-resolution and accurately dated speleothem stable oxygen isotope record from Botuverá 

Cave in southern Brazil (Fig. 1a) spanning the last 116 cal kyr BP, indicates that regional changes 

in atmospheric circulation and convective intensity was primarily driven by oscillations in austral 

summer insolation strongly controlled by orbital precession (Cruz et al., 2005). Periods of high 

(low) austral summer insolation were characterized by lower (higher) stable oxygen isotope ratios 

(for details see Fig. 7) and were interpreted as periods of enhanced moisture inflow from the 

Amazon basin (subtropical western South Atlantic). In turn, periods of strengthened moisture 

inflow from the Amazon basin (subtropical western South Atlantic) would be related to a strong 

austral summer monsoon (austral winter cyclonic activity) (Cruz et al., 2005, 2006).  

Marine pollen records have the advantage of integrating environmental signals from larger 

continental areas if compared to continental records (e.g. Dupont and Leroy, 1995). Marine 

pollen records from the eastern Atlantic, for instance, have been successfully used to reconstruct 

changes in western African vegetation (e.g. Bouimetarhan et al., 2009; Hooghiemstra et al., 2006; 

Urrego et al., 2015), but little is known from the western South Atlantic. So far only a few marine 

pollen records are available off northeastern (Behling et al., 2000; Jennerjahn et al., 2004; Dupont 

et al., 2010) and southeastern Brazil (Fig. 1; Behling et al., 2002). The latter study gives evidence 

of a relatively high proportion of Atlantic rainforest in the southeastern Brazilian lowlands during 

the recorded last glacial, but during the LGM the geographical extension of rainforest was 

reduced. 

Here we provide the first record off southern Brazil which addresses long-term vegetation and 

climate dynamics in that region, and the possible interactions between southeastern South 

America and the subtropical western South Atlantic. Additionally, this is the first long dinocyst 
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record for the entire western South Atlantic and provides important insights into oceanic 

environmental changes during the last 73.5 cal kyr BP. With these records, we addressed four 

main research questions: What were the long-term environmental changes in southern Brazil and 

the adjacent ocean? Were there correlations between continental and oceanic environmental 

changes? How does the new pollen and dinocyst records relate to previously published records 

from southeastern South America and the adjacent ocean? What were the main factors controlling 

past environmental changes over long time periods? 

2.2 Study area 

2.2.1 Oceanic environmental setting 

Marine sediment core GeoB2107-3 (27.18°S, 46.45°W) was retrieved during RV Meteor cruise 

M23/2 (Bleil et al., 1993) from the continental slope off southern Brazil in the western South 

Atlantic (Fig. 1) at 1048 m water depth. The coring site is bathed by Antarctic Intermediate 

Water (AAIW) at a position not far from the boundary between AAIW and North Atlantic Deep 

Water (NADW), where oxygen-rich waters (AAIW) change to oxygen-poor waters (NADW) 

(Stramma and England, 1999; Garcia et al., 2014). The distance of the coring site to the coast 

north of the city of Florianópolis (ca. 27.5
o
S, Fig. 1b) is nowadays of about 200 km. According to 

the bathymetry of the study region (Mahiques et al., 2010; Mohriak et al., 2010), large areas of 

the continental shelf were exposed during glacial times when sea level was about 60 to 130 m 

lower than today (Waelbroeck et al., 2002). During these times the coastline was located about 

130 km closer to the coring site and accordingly, the Atlantic coastal lowland area was much 

larger, ranging from about 50 to 120 km (http://www.earth.google.com). 

The Brazil Current (BC) dominates the upper water column of the study area (Fig. 1a) (Peterson 

and Stramma, 1991). The BC flows southwards along the continental margin, transporting warm 

and saline waters from the tropical South Atlantic (Fig. 1a). Due to the main influence of the BC 

and low-level atmospheric circulation, sediments delivered by the Rio Doce (20°S) and Rio 

Paraíba do Sul (21°S), both about 900 - 1000 km to the north, as well as productivity signals of 

the upwelling area of Cabo Frio (23°S, about 700 km to the north), might be transported to the 

core locality (Razik et al., 2015; Marta-Almeida et al., 2016). The Malvinas Current (MC) flows 

http://www.earth.google.com/
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northwards along the continental margin off Argentina and transports cold and low salinity 

waters to the study site (Peterson and Stramma, 1991). Both currents meet and form the Brazil-

Malvinas Confluence (BMC) which is about 1200 km to the south of the coring site. 

Furthermore, on the continental shelf off Uruguay and southern Brazil, the Brazilian Coastal 

Current (BCC) (Fig. 1a) flows northwards and transports to the study site with low salinity waters 

as well as terrigenous material from the La Plata River drainage basin (Souza and Robinson, 

2004; Piola et al., 2005; Razik et al., 2015)  

In the studied western subtropical South Atlantic, seasonality also plays an important role 

(Matano et al., 1993; Boyer et al., 2013). Due to the influence of warm and saline tropical water 

masses during austral summer, sea surface temperature (SST) range between 21 and 26°C, and 

sea surface salinity (SSS) varies between ca. 34 and 36 psu (Practical Salinity Units). During due 

to the decrease in water mass transport of the BC and and the strength of the BCC (Matano, 

1993), colder (ca. 11.5 to 21.1 °C) (Molina-Schiller et al., 2005) and less saline (ca. 29 and 33.5 

psu) waters could be transported to the north (Piola et al., 2005). 

2.2.2 Continental environmental setting including climate and vegetation 

The continent in the study region is characterized by a narrow (50 to 200 km) strip of coastal 

lowland, followed by relatively steep slopes of the coastal mountain ranges of up to about 1800 

m elevation, which is followed by the southern Brazilian highland between about 800 and 1400 

m elevation decreasing further inland (Fig. 1a). Only small rivers are found draining the 

mountain slopes and the narrow lowland area. The only larger river in the study area is Rio Itajaí 

north of Florianópolis (Fig. 1b). The mean discharge of Rio Itajaí is 230 +/- 280 m
3
s

-
1 since 1934 

(Schettini, 2002). Further north and south of the study area, other larger rivers discharging in the 

western South Atlantic are Rio Paraíba do Sul and Rio Doce (to the north), Rio Uruguay and Rio 

Paraná that together form Rio de La Plata (to the south). 

Precipitation over southeastern South America is related to two main atmospheric systems 

(Garreaud et al., 2009). During austral summer, the South American Monsoon System circulation 

transports equatorial Atlantic moisture westward towards the Andes (Zhou and Lau, 1998). The 

warm and humid air masses are deflected southeastwards by the Andes, through the South 
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American low-level jet that transports moisture towards southern and southeastern South 

America, and contributes to the South Atlantic Convergence Zone (Carvalho et al., 2004; 

Marengo et al., 2004). The South Atlantic Convergence Zone, one of the main components of the 

South American Monsoon System, is a NW-SE oriented convective belt originating in the 

Amazon Basin and extending towards southeastern Brazil and the adjacent subtropical western 

South Atlantic. 

During austral winter, incursions of mid-latitude air masses influence precipitation over 

southeastern South America (Vera et al., 2002). Advections of sub-Antarctic cold fronts cause 

strong rainfall when they meet tropical air masses. This occurs mainly over southern and 

southern southeastern Brazil. Therefore these regions have no pronounced annual dry season 

compared to northern part of southeastern Brazil (Nimer, 1989; Hastenrath, 1991). El Nino 

Southern Oscillation also plays a role for extreme climate events, particularly in southern Brazil; 

where is excess rainfall during El Niño years and drought during La Niña years (Grimm and 

Tedeschi, 2009). 

Southern Brazil is a transition region, which is influenced both by tropical and subtropical 

climate. The climate in the study region is warm and humid without any or with a short dry 

period. The annual precipitation ranges from 1250 to 2000 mm, and is even higher than 2000 mm 

in the mountains of the Serra do Mar. The average annual temperature ranges between 17 and 

24
o
C in the lowlands and 12-18

o
C in the highlands. Frosts are rare or absent in the lowlands, but 

common in the highlands during the austral winter (Nimer, 1989). 

In southern and southeastern Brazil tropical evergreen Atlantic rainforest occurs as a 50 to 200 

km narrow zone along the Atlantic Ocean between the coast and the slopes of the Serra Geral and 

Serra do Mar coastal mountain ranges (Fig. 1b). The frost-sensitive tropical rainforests reach their 

limit in southern Brazil at ca. 28 to 29
o
S (Klein, 1978; Por, 1992). Coastal vegetation types occur 

in a small strip along the coast. Mangroves have been found with their distribution limits at 

Florianópolis (ca. 27.5
o
S). Subtropical vegetation occurs in the southern Brazilian highlands 

(Serra Geral plateau) and is formed by a mosaic of Araucaria forest and grassland (Campos). In 

the lowlands of southernmost Brazil, the vegetation change to the dominance of grassland 

(Campos) with gallery forests. Further south in Uruguay and northern Argentina, grassland 
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(Pampa) is the main vegetation type (Seibert, 1996). Detailed information on vegetation and 

species composition can be found in Oliveira-Filho et al. (2015) and Santos et al. (2011). 

In the continental area adjacent to our coring site, including Rio Itajaí catchment area (the 

distance of our coring site to the estuary of Rio Itajaí is about 200 km), vegetation is 

characterized by highly diverse Atlantic rainforest at elevations up to 800 m (Fig. 1b). The 

Atlantic rainforest is highly diverse in trees, shrubs, climbers, tree ferns such as Cyathea and 

epiphytes. The dominant trees are in the Euphorbiaceae (Alchornea), Arecaceae (Euterpe), 

Myrtaceae, and Moraceae families. Araucaria forest with Araucaria angustifolia, Podocarpus, 

Ilex, Myrsine and the tree fern Dicksonia sellowiana is mainly found in highlands, but some of 

the trees grow also in the Atlantic rainforest. Araucaria forests often form a mosaic with the 

Campos. Campos is rich in species of the Poaceae family as well as Cyperaceae, Asteraceae, 

Apiaceae and Fabaceae (Klein, 1978). 

 

                             (a)                                                                               (b) 

Figure 1 (a) Map showing the location of the study site (A) GeoB2107-3 (27.18°S, 46.45°W) at 1048 m water depth 

off southern Brazil (in this study), and other three marine records: (B) Core GL-1090, (C) GeoB3202-1 and, (D) 

GeoB3229-2. Additionally, four continent pollen records (E) Colônia, (F) Volta Velha, (G) Serra do Tabuleiro, (H) 
Cambará do Sul, and two speleothem records (I) Santana Cave, (J) Botuverá Cave are also displayed on the map. 

The Brazil Current (BC), Malvinas Current (MC), Brazil-Malvinas Confluence (BMC) and Brazilian Coastal Current 

(BCC), which influence the study area are also indicated on the map. Color shading over the ocean represents annual 

mean sea surface salinity (Zweng et al., 2013), while over the continent it depicts topography. (b) Map showing the 

vegetation types according to RBMA (1999) for southern and southeastern Brazil. Blue and red circles indicate the 

location of the sites described above. The red ellipse indicates the catchment area of Rio Itajaí near the city of 
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Florianópolis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

  

2.3 Material and methods 

2.3.1 Sampling and analysis methods 

Sediment core GeoB2107-3 is 783 cm long and was collected during RV Meteor cruise M23/2. 

Additional information about the core is available in the cruise report (Bleil et al., 1993). In order 

to have an appropriate temporal resolution, the core was sampled in 10 and 20 cm intervals 

between 770 and 0 cm core depth, with about 2-4 g (wet weight) per sample for pollen and 

dinocyst analyses on the same samples. Sampling resolution in the deeper section of the core is 

lower than in the upper section, resulting in 51 dinocysts and 36 pollen samples (due to the low 

pollen concentration). 

Pollen and dinocysts samples were prepared using standard preparation techniques (Faegri and 

Iversen, 1989), diluted in HCl (~10%) and cold HF (~40%) to remove the calcareous and 

siliceous content, respectively. Acetolysis was not applied on dinocyst samples to avoid damage 

to the cysts, but on samples of pollen and spores. To concentrate the dinocysts and pollen, all the 

samples were sieved by hand through a 1-1.5 μm nylon mesh after processing.  efore processing 

the samples, exotic Lycopodium spores (one tablet containing 20,848 +/- 1546 spores) were 

added to calculate the concentration (grains or cysts/g) and influx values (grains or cysts/cm
2
/yr) 

of the samples (Stockmarr, 1971). 

The identification of the pollen and spores is based on the reference collections at the Department 

of Palynology and Climate Dynamics of the University of Göttingen and literature (Behling, 

1993). We use the term “other” for pollen types which belong to a family but could not be 

identified to genus level. Pollen samples were counted to a minimum of 200, or 100 pollen grains 

in the case of samples with relatively low pollen concentration (mostly Holocene samples). The 

pollen sum, on which the percentage calculation is based, includes all pollen types but no fern 

and moss spores. The identified pollen and spore taxa were grouped into herbs, trees (including 

shrubs), tree ferns, ferns and mosses. Wetland and a few aquatic taxa are included in the pollen 

sum, as wetland taxa (e.g. Cyperaceae) occur also in the grassland (campos). 
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The identification of dinocysts is based on several published morphological descriptions 

(Zonneveld and Pospelova, 2015 and references therein). Each sample was counted up to 300 

cysts. The total sum includes all the dinocysts counted per sample. Dinoflagellates are grouped 

into phototrophic and heterotrophic taxa regarding the different energy resources from 

photosynthetic process or zooplankton (Gaines and Elbrächter, 1987). Furthermore, dinocysts are 

also grouped regarding the ecological preference distribution of the living dinoflagellate in the 

ocean surface into cosmopolitan, eutrophic environmental and open sea taxa (Zonneveld et al., 

2013). 

The selective preservation of the organic-walled dinocysts in the marine environment needs to be 

considered while interpreting fossil dinocyst records (Kodrans-Nsiah, 2008). To test the 

preservation condition of dinocysts in the marine environment, the degradation constant of 

sensitive cysts (k) and the reaction time (t), in short kt, is calculated to reconstruct the primary 

production of dinocysts and to track the past content. The degradation of S-cysts expressed by 

“kt” has been calculated assuming a first-order decay process kt= ln (Xi /Xf) with Xf = final cyst 

concentration (cysts/g) and Xi = initial cyst concentration (cysts/g) (Zonneveld et al., 2007, 2010). 

The programs TILIA and TILIAGRAPH were used to plot the pollen diagrams. CONISS was 

used for cluster analysis of pollen and dinocyst data, and for the zonation of the diagrams 

(Grimm, 1987, 1993). 

2.3.2 Age model 

Chronological tie points for the upper 338 cm of core GeoB2107-3 are based on 14 accelerate 

mass spectrometry (AMS) radiocarbon ages (Heil, 2006) performed on the shallow dwelling 

planktonic foraminiferal species Globigerinoides sacculifer (Chiessi et al., 2007) at the Leibniz 

Laboratory for Radiometric Dating and Isotope Research at the University of Kiel, Germany 

(Table 1, Fig. 2).  
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Figure 2 (a) Age-depth model and sedimentation rates for marine sediment core GeoB2107-3. (b) Tuning of the 

benthic oxygen isotope (U. peregrina) record of core GeoB2107-3 to the SPECMAP record beyond the radiocarbon 

dating range. The points are indicated by vertical arrows. 
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Table 1 List of tie points used to produce the age model of core GeoB2107-3.  

Core depth        

(cm) 

  Age  

(14C yr BP) 

+error 

(yr) 

-error 

(yr) 

Age  

(cal yr BP) 

±error 

(yr) Type of dating Lab ID 

3 1590 30 30 1120 100 AMS 14C dating KIA 14534 

33 5340 40 40 5660 100 AMS 14C dating KIA 14533 

63 8995 55 55 9620 150 AMS 14C dating KIA 14532 

73 11890 80 80 13320 150 AMS 14C dating KIA 14530 

103 13030 80 80 14910 400 AMS 14C dating KIA 14528 

148 19100 130 120 22530 280 AMS 14C dating KIA 22409 

163 19810 150 150 23320 400 AMS 14C dating KIA 14525 

178 24250 200 200 27890 390 AMS 14C dating KIA 22408 

193 25750 240 240 29380 650 AMS 14C dating KIA 22407 

203 31180 460 430 34690 790 AMS 14C dating KIA 16166 

223 33380 580 540 37120 1350 AMS 14C dating KIA 16164 

253 35990 870 780 40110 1600 AMS 14C dating KIA 16165 

298 37600 1250 1080 41460 2050 AMS 14C dating KIA 14524 

338 42760 1940 1560 45770 3100 AMS 14C dating KIA 22404 

472       56000 4600 
Correlation to 

Specmap   

660       64120 4600 

Correlation to 

Specmap   

783       74000 4600 

Correlation to 

Specmap   

 

The calibrated radiocarbon ages span back to ca. 46 cal kyr BP. For the lower part of the core 

(i.e., 338-770 cm), tie points were obtained by tuning the benthic foraminiferal δ
18

O record of 

GeoB2107-3 (Heil, 2006) to the δ
18

O foraminiferal SPECMAP stack (Table 1, Fig. 2b). The 

uncertainties related to the tuned tie-points were estimated as described in Santos et al. (2017). 

The calculated age of the core at 770 cm (lowermost sample) is about 73.5 cal kyr BP. The age-

depth model has been already partly published in Hendry et al. (2012) and has been extended 

here with additional data from Heil (2006). The radiocarbon ages have been calibrated with the 

online version of Calib 7.1 (Stuiver and Reimer, 1993; Stuiver et al., 2017) using the Marine13 

calibration curve (Reimer et al., 2013) and a R of 35 years 

(http://calib.org/marine/getref.php?RefNo=135, Stuiver et al., 2017) and calibrated ages are 

reported with 2  uncertainties (Table 1). The age-depth model was obtained by linear 

interpolation of all chronological tie points. Ages of the different pollen zones (PZ) and dinocyst 

zones (DZ) have been calculated based on the age-depth model. The limits of the Marine Isotope 

Stages (MIS) and substages are based on Lisiecki and Raymo (2005). 

http://calib.org/marine/getref.php?RefNo=135
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2.4 Results 

2.4.1 Pollen and spore assemblages 

In total, 108 pollen and 26 spore taxa have been identified in 36 samples, excluding a few 

unknown pollen and spore types. The most frequent and important taxa are shown in the pollen 

diagrams (Figs. 3 and 4). According to the cluster analysis performed with CONISS, 4 PZs have 

been established. The pollen concentration (182-2237 grains/g) and influx values (1-48 

grains/cm
2
/yr) are in general relatively low in core GeoB2107-3. Both are higher in PZ I and III, 

lower in PZ II and very low in PZ IV. 

PZ I (73.5-55.8 cal kyr BP, 770-470 cm, 8 samples): Herb pollen grains are dominant in this zone 

(64-69%), in particular Cyperaceae, Poaceae, Asteraceae (other) and 

Amaranthaceae/Chenopodiaceae. Tree and shrub pollen values are less frequent (26-32%) than 

herb pollen. Most frequent taxa in this group are Araucaria angustifolia, Podocarpus, Alchornea, 

Moraceae/Urticaceae, Melastomataceae, Myrsine, Sebastiana commersoniana (0.5-3.5%), and 

Myrtaceae. Interestingly Araucaria angustifolia pollen is relatively frequent (6.5-7.5%) in the 

lower part of PZ I (until 690 cm core depth) and markedly less frequent in the upper part (1.5-

3%, average 2.8%). Single pollen grains of the shrubs Ephedra tweediana and Ephedra (other) 

occur in this and the following PZ. Tree fern spores (1.5-5%) such as Cyathea and Dicksonia 

sellowiana are rare. Among the fern group, monolete psilate spores are frequent and others are 

rare. Moss spores are rare. 
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PZ II (55.8-38.5 cal kyr BP, 470-235 cm, 6 samples): In this PZ the amount of herb (60-76%) and 

slightly higher tree pollen (21-35%), remain at similar levels as in the previous zone. Cyperaceae 

and Amaranthaceae/Chenopodiaceae values are slightly higher at the beginning of this zone 

around 55 cal kyr BP, Amaranthaceae/Chenopodiaceae decrease in the upper part of the PZ. 

Asteraceae (other) increase slightly. The representation of different tree pollen is similar to the 

previous PZ with small fluctuations. Tree ferns (3-9%) and ferns, in particular monolete psilate 

spores are slightly higher in the lower part of the zone. Moss spores are rare, but increase slightly.  

PZ III (38.5-13.0 cal kyr BP, 235-75 cm, 14 samples): The PZ is characterized by an increase of 

herb pollen (59-80%), particular in the middle part of the PZ, where the representation of tree 

pollen (17-34%) shows the opposite trend. Poaceae and Cyperaceae show a marked higher 

representation whereas other herb pollen values are stable compared to the previous zone. The 

representation of almost all tree pollen taxa decrease in this zone. Interestingly, several single 

Nothofagus pollen grains (up to 1.5%) occur in this zone only. Ephedra tweediana pollen grains 

are slightly more frequent. Tree ferns (1.5–8%) and ferns are lower than in the previous zone. 

Moss spores are rare, but with a slightly higher representation of Phaeocerus leavis. 

PZ IV (13.0 - 0 cal kyr BP, 75 - 0 cm, 8 samples): This zone is marked by a strong decrease of all 

herb pollen taxa (54-43%) while almost all tree pollen taxa increase (34-48%). Borreria and 

Eryngium pollen grains are now absent. Tree pollen grains are mainly represented by Araucaria 

angustifolia (1.9-11%), Alchornea (4-7%), Moraceae-Urticaceae (4-12%), Melastomataceae (2-

6%), Podocarpus (1-4%). Araucaria angustifolia pollen grains reach its highest value in the 

uppermost sample with 11%. Tree ferns spores (18-37%) such as Cyathea, Cyathea schanschin 

type and Dicksonia sellowiana are frequent. Fern spores increase by the high representation of 

the trilete psilate spore types. Moss spores are still rare. 

2.4.2 Dinoflagelate cyst assemblages 

In total 31 dinocyst taxa were distinguished in 51 samples. The most frequent taxa are displayed 

in the dinocyst percentage and group diagrams (Figs. 5 and 6). According to the cluster analysis 

performed with CONISS, 4 dinocyst zones (DZ) can be recognized. The dinocyst concentration 
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(512-15139 cysts/g) and influx values (4.8-160 cysts/cm
2
/yr) are in generally low in core 

GeoB2107-3. Values are higher in DZ I and III and lower in DZ II and IV. The calculated kt 

values for the whole record are between 3 and 7 with little fluctuations. Slightly lower values are 

found in the lower and middle part of DZ I and slightly higher values are found in the uppermost 

part of zone DZ IV. 

Throughout the whole record, dinoflagellate cysts produced by phototrophic taxa dominate the 

association, whereas cysts produced by heterotrophic taxa are rare. Regarding their modern 

geographical distribution in sea surface waters, cyst species with a cosmopolitan distribution and 

those that have their highest relative abundances in eutrophic environments such as coastal 

embayments and river plumes, are dominant and fluctuate strongly. Species that have nowadays 

their highest relative abundances in sediment deposits of the central ocean are relatively rare. 
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DZ I (73.5-53.9 cal kyr BP, 770-440 cm, 17 samples): This zone is characterized by the 

dominance of eutrophic environmental taxa such as Spinifertites mirabilis, Lingulodinium 

machaerophorum, Tuberculodinium vancampoae and Spinifertites ramosus. However, we have 

to consider that Spinifertites mirabilis is not a typical eutrophic taxon, but can react on high 

nutrient environments (Zonneveld et al., 2013). As this taxon responds similar as other eutrophic 

taxa, we consider Spinifertites mirabilis for this site as an indicator for eutrophic conditions. 

These eutrophic environmental taxa show in this zone the highest percentages of the whole 

record. Contrastingly, the cosmopolitan taxon Operculodinium centrocarpum shows the lowest 

values in this zone. Open sea taxa are rare in the record, but relatively frequent in this zone. The 

heterotrophic dinocysts are low, but somewhat higher in this zone compared to the other zones. 

The group of cyst formed by heterotrophic species is dominated by Brigantedinium spp. 

DZ II (53.9-35.0 cal kyr BP, 440-205 cm, 13 samples): The cosmopolitan taxon Operculodinium 

centrocarpum is frequent compared to the previous zone. The eutrophic environmental taxa 

Spinifertites mirabilis, Lingulodinium machaerophorum, Tuberculodinium vancampoae and 

Spinifertites ramosus show low values relatively to the other DZ. This zone is also marked by the 

lowest values of the heterotrophic dinocyst Brigantedinium spp. in the whole record. 

DZ III (35.0-14.0 cal kyr BP, 205-85 cm, 12 samples): The dinocyst assemblages are 

characterized by high values of eutrophic environmental taxa Spinifertites mirabilis, 

Lingulodinium machaerophorum and Tuberculodinium vancampoae, particular in the lower part 

of the zone. Oppositely, the cosmopolitan taxon Operculodinium centrocarpum decrease in the 

lower part of the zone and ends up with similar values as in the beginning of the zone. This zone 

is characterized by the rare but more frequent occurrence of several taxa of Impagidium that 

nowadays have their maximal distribution in open ocean sediments. Heterotrophic taxa are now 

more frequent starting already at the end of the previous DZ. 

DZ IV (14.0-0 cal kyr BP, 85-0 cm, 9 samples): This zone is marked by a strong and continuous 

increase of the cosmopolitan taxon Operculodinium centrocarpum to the end of this zone. The 

eutrophic environmental taxa such as Spinifertites mirabilis, Lingulodinium machaerophorum 
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and Tuberculodinium vancampoae either decrease or become rare. And the heterotrophic taxa, in 

particular Brigantedinium spp. are decrease as well. 

2.5 Environmental reconstruction and discussion 

2.5.1 Preconditions for the interpretation of the pollen and spore data 

Winds, rivers and marine currents can transport pollen and spores. In the study area, the eolian 

transport can be considered of minor relevance, as there are no strong winds blowing from 

southeastern South America to the subtropical western South Atlantic throughout the year 

(Garreaud et al., 2009). Rivers in southeastern South America, draining from the coastal 

mountains to the Atlantic coastal lowland, are rather small except for Rio Itajaí, which discharges 

its sediment load in the region of the coring site. Therefore, this river may have been important 

for the input of pollen and spores originating from the coastal, lowland, highland, and mountain 

vegetation although it has a relatively small catchment area if compared to other rivers in 

southeastern South America that drain into the Rio de La Plata. 

The BC may transport pollen and spores from the north (discharged by the Rio Paraíba do Sul 

and Rio Doce) to the study area, as well as the BCC may transport pollen and spores from the 

south (discharged by the Rio Uruguay and Rio Paraná, that together form Rio de La Plata, Fig. 

1a) to the study area (Razik et al., 2015). Importantly, based on surface samples, Razik et al. 

(2015) showed that terrigenous material is transported by the BCC from the mouth of the Rio de 

la Plata along the southeastern South American margin to the north up to ca. 24
o
S. However, it 

can be assumed that the amount of pollen and spores transported from distant sources (e.g., Rio 

de La Plata, Rio Paraíba do Sul and Rio Doce) is low, because the pollen spectra in the 

uppermost samples (see section PZ IV: 13.0-0 cal kyr BP ~ MIS 1 (14-0 cal kyr BP), below) 

reflect more closely the modern vegetation of the adjacent continent in southern Brazil, as 

recorded in terrestrial pollen records for the late Holocene (e.g. Behling, 1993; Behling et al., 

2004), than the one from Rio de La Plata catchment area, or the one from southeastern Brazil. 

This indicates that most of the pollen and spores come from the nearby continent. 
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2.5.2 Continental palaeoenvironmental reconstruction 

PZ I: 73.5-55.8 cal kyr BP ~ MIS 4 (71-57 cal kyr BP) 

High amount of herb pollen values indicate that the nearby continental area was dominated by 

grassland on the highlands and probably also on the lowlands including coastal areas, mainly 

represented by Cyperaceae, Poaceae, Asteraceae, Amaranthaceae-Chenopodiaceae and others 

(Figs. 3 and 4). The high abundance of Cyperaceae, which is in general higher than the 

proportion of Poaceae and Cyperaceae in the grasslands of the highlands (Behling et al., 2004), 

suggests that wetlands such as salt marches occurred also on the exposed continental shelf. 

Mangrove pollen are absent, suggesting that mangrove, which have today its southernmost limits 

at Florianópolis (ca. 27.5
o
S), did not played any important role during glacial times in southern 

Brazil on the exposed shelf, as mangrove occurrence may have been limited to lower latitudes. 

Evidence of Ephedra tweediana, which is typical for coastal areas in southern Brazil (up to 30
o
S) 

and Uruguay (Pinto da Luz, 2016), suggests an expansion of this shrub to the north. 

A typical highland tree such as Araucaria and lowland trees such as Moraceae/Urticaceae, 

Alchornea, Arecaceae and others formed a mosaic of grassland and forest in the highlands and in 

the lowlands, respectively. Our data suggest that the exposed continental shelf was covered by a 

mosaic of forest and grassland. Indeed, a mosaic of forest and grassland has been documented in 

the Volta Velha record for the pre-LGM and the LGM (Behling and Negrelle, 2001). 

Interestingly, the relatively high frequency of Araucaria (6.5-7.5%, average 7%) in the lower part 

of the record (73-65 cal kyr BP), which is similar to its late Holocene abundance (2-11%, average 

4.5%), except for the topmost sample (11%) which reflect the strong expansion during the last 

about 1000 years, is indicative of a frequent occurrence of Araucaria trees in the highlands (Fig. 

3). As Araucaria is sensitive to rainfall and temperature, this early glacial period may reflect 

slightly wetter conditions with no marked dry periods and less cold climatic conditions than 

during the full glacial. In this and the following periods Sebastiana commersoniana was 

relatively frequent and might have been common in the gallery forests along rivers as it is 

nowadays (Smith et al., 1988). The tree fern Cyathea and other ferns occur in this period 

suggesting a relatively wet and cold climate, but the tree fern Dicksonia sellowiana, nowadays 
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common in Araucaria forests was rare. The only continental vegetation record which spans back 

to this period, Colônia in southeastern Brazil, indicate a relatively low amount of arboreal and 

higher amount of non-arboreal pollen (Ledru et al., 2005, 2009). However, during this period a 

relatively high amount (about 1%) were also recorded at the Colônia site (PZ 7). High pollen 

concentration and influx values suggest that during this period the coastline was placed closer to 

the coring site so that more continental material could be deposited at the core site. The pollen 

concentration and influx records correlate well with the sea level curve (Fig. 7) (Waelbroeck et 

al., 2002). 

PZ II: 55.8-38.5 cal kyr BP ~ early to mid MIS 3 (57–29 cal kyr BP) 

Similar pollen assemblages, proportions and composition of herbs and tree taxa occurred in this 

period compared to the previous period (Figs. 3 and 4). Grassland became more frequent, while 

lowland forest became slightly decrease towards the end of the period. Also, tree ferns and ferns 

are slightly more frequent in this period. This may indicate that a similar climate occurred in the 

lowland with slightly wetter conditions. Indeed, higher proportions of arboreal than non-arboreal 

vegetation are also documented in the Colônia record in the highlands of southeastern Brazil 

(Ledru et al., 2005, 2009). Taken together, both records suggest wetter conditions. Lower pollen 

concentration and influx values suggest that during this period the coastline was at more distant 

to the coring site due to a slightly higher sea level (Fig. 7) (Waelbroeck et al., 2002). Still, a 

significant portion of the continental shelf was exposed and rivers delivered their sediments close 

to the shelf break (Lantzsch et al., 2014). 

PZ III: 38.5-13.0 cal kyr BP ~ late MIS 3 and MIS 2 (29–13 cal kyr BP) 

This period experienced the largest expansion of grassland, probably not only in the lowlands, 

but also in the highlands (Figs. 3 and 4). However, all tree taxa including Araucaria angustifolia, 

Moraceae/Urticaceae, Alchornea and Arecaece are still present but in decreased proportions. The 

occurrence of ferns did not change that much, but tree ferns are slightly less frequent. Taken 

together, this indicates a colder and/or drier climate. These results are in accordance with 

continental records from southern Brazil, indicating treeless grassland on the highlands (e.g. 

Behling, 2002; Behling et al., 2004) and a mosaic of subtropical forest and grassland in the 
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lowlands (Behling and Negrelle, 2001). A previously published review of terrestrial pollen 

records indicate that grassland extended at least over 750 km from the southern to southeastern 

Brazilian highlands from latitudes of about 28
o
/27

o
 S to at least 20

o
 S (Behling, 2002). Two 

marine sediment cores collected off southeastern Brazil at 19-21
o
S indicate that the tropical 

lowland rainforest was also reduced in that region during full glacial times, in particular during 

the LGM (Behling et al., 2002). However, the decrease in tropical lowland rainforest was not that 

strong during the pre-LGM in the marine cores off southeastern Brazil as it is recorded in core 

GeoB2107-3, indicating that the lowland rainforest area was more stable in southeastern than in 

southern Brazil during full glacial times. This confirms genetic diversity studies which suggested 

that larger areas in the Atlantic lowlands of southeastern Brazil acted as climatic refugia for the 

rainforest (Carnaval et al., 2009; Butchart et al., 2010). The high proportions of arboreal 

vegetation during the pre-LGM (28.5 to 23.5 cal kyr BP) documented in the Colônia record from 

southeastern Brazil (Ledru et al., 2005) are not reflected in the records from GeoB2107-3 and 

GeoB3229-2 (Fig.1a). Thus the Colônia site may have recorded a more local pollen signal 

compared to the more regional signal archived in the marine cores. Several single Nothofagus 

pollen grains have been found only during this period (up to 1.5%). Nothofagus occurs only in 

the Andes of southern South America, where forests were reduced during full glacial times 

(Fontana et al., 2012). Therefore, the deposition of Nothofagus pollen suggests an efficient 

transport by Argentinean rivers and/or winds (i.e., the southern westerlies) into the continental 

margin off Argentina, a northward transport along the Argentinean continental margin via the 

MC, and, finally, a continued northward transport along the Uruguayan and Brazilian continental 

margins via the BCC. The strong increase of the pollen concentration and influx values with a 

maximum during the LGM and the general decrease, suggest an increase of the exposed 

continental shelf area due to minimum sea level during the LGM and subsequent sea level rise 

during the Lateglacial (Waelbroeck et al., 2002; Lantzsch et al., 2014). Due to the topography of 

the continental shelf, changes in sea level during glacial times (between around -60 m and -90 m, 

and about -120 m during the LGM) in comparison to the Lateglacial and early Holocene (from 

about -120 m to modern sea level) may have not a so strong influence on the pollen influx. Also, 

Ephedra tweediana was slightly more frequent in this period, suggesting the largest expansion in 

the coastal area to the north. 

http://link.springer.com/article/10.1007/s10841-015-9780-7#CR7
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PZ IV: 13.0- 0cal kyr BP ~ MIS 1 (14- 0 ca l kyr BP) 

A marked expansion of forests and a decrease of grasslands started in the Lateglacial. This 

Lateglacial expansion of tropical forest in the lowland of southern Brazil is also well documented 

in the coastal record from Volta Velha (Behling and Negrelle, 2001), while on the highlands in 

southeastern Brazil the expansion started later at 9 cal kyr BP (e.g. Ledru et al., 2009). A 

continuous expansion of forest with frequent ferns and in particular tree ferns occurred in the 

lowlands reflecting a change to warmer and/or wetter climatic conditions. Interestingly, lowland 

forest expansion to the south started already about 15 cal kyr BP. Thus, lowland forests had the 

chance to expand on the exposed shelf during part of the last deglaciation and early Holocene, as 

the sea level was still low. Araucaria angustifolia increased, but a widespread occurrence is 

found only during the late Holocene due to wetter climatic conditions, in particular in the 

uppermost sample of GeoB2107-3. This reflects the general first stronger expansion of Araucaria 

angustifolia was at 4-3 cal kyr BP and the strongest expansion during the last ca. 1 kyr, due to a 

change from drier to wetter conditions on the highlands, which has been also documented in 

several pollen records from the highlands (e.g. Behling et al., 2004). The lowest pollen 

concentration and influx values characteristic for this period is compatible with the change from a 

nearshore to an offshore position of the coring site due to postglacial sea level rise (Waelbroeck 

et al., 2002; see Fig. 7), and the consequent strong inland displacement of the coastline (Lantzsch 

et al., 2014). 

2.5.3 Preconditions for the interpretation of dinocyst data 

The dinocyst assemblages are controlled by their initial production in the upper water column 

which, in turn, is strongly influenced by environmental conditions like SST, SSS and nutrient 

availability that are influenced by climatic conditions (Gonçalves-Araujo et al., 2016). 

Additionally, dinocyst assemblages can also be influenced by secondary processes such as lateral 

transport and preservation (see references in Zonneveld et al., 2013). 

In the study area, the major source of nutrient input is by small rivers, mainly by Rio Itajaí as it is 

the largest one close to the study area. Furthermore, nutrients can be brought towards the coring 

site by the BC transporting river discharge waters from Rio Paraíba do Sul and Rio Doce, which 
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are about 1000 km to the north, as well as productivity signals of the upwelling area of Cabo 

Frio. The input of fresh water from the south, more specifically from the Rio de la Plata can 

occur via the BCC (Fig. 1a) (Souza and Robinson, 2004; Piola et al., 2005). The influence is 

expected to be small because of the long distance of more than 1000 km. However, we have to 

consider, that at least under high sea levels with the BCC confined to the continental shelf and the 

austral summer, a decreased strength of the BCC (Piola et al., 2005). 

In core GeoB2107-3, the kt values (an indicator of dinocysts preservation) range from 3 to 7 (Fig. 

6). According to Zonneveld et al. (2007), lower kt values indicate better preservation then higher 

values due to the individual degradation degrees of different dinocyst types. Although no 

information is so far available from our study region, relatively high kt values suggest that post-

depositional species selective degradation might have altered the sedimentary signal. 

Consequently, we base our environmental reconstruction on signals provided by the species 

resistant to aerobic degradation.  

2.5.4 Marine palaeoenvironmental reconstruction 

DZ I: 73.5–53.9 cal kyr BP ~ MIS 4 (71–57 cal kyr BP) 

The cyst association of DZ I is characterized by high relative abundances of Lingulodinium 

machaerophorum, Tuberculodinium vancampoae, Spinifertites mirabilis and Spinifertites 

ramosus. These species nowadays have high relative abundances in regions with moderate to 

high nutrient availability in surface waters. Lingulodinium machaerophorum is a temperate to 

tropical euryhaline species and occurs frequently in the vicinity of active upwelling cells and in 

river plumes (Dale et al., 1999; Mertens et al., 2009). In regions influenced by riverine input it 

appears to be a very sensitive indicator for changes in fluvial discharge (Zaragosi et al., 2001; 

González et al., 2008; Mertens et al., 2009; Holzwarth et al., 2010; Penaud et al., 2011; 

Zonneveld et al., 2012; Zonneveld and Siccha, 2016). Tuberculodinium vancampoae is a typical 

species for subtropical and tropical coastal areas, and can be very abundant in eutrophic coastal 

embayments as well as in upwelling regions (Zonneveld et al., 2013). Although not restricted to 

eutrophic regions Spinifertites ramosus is very abundant in areas influenced by upwelling or river 

discharge waters. Enhanced presence of fluvial waters (smaller distance to the coastline) and/or 
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western boundary upwelling off southeastern Brazil (southward transport via the BC) may have 

delivered the slightly higher nutrients required to produce DZ I. A recent record of the activity of 

the western boundary upwelling off southeastern Brazil covering the last 110 kyr in high 

temporal resolution does not support enhanced upwelling activity during DZ I (Portilho-Ramos et 

al., 2015). Thus, the most probable origin of the nutrients for the period is the enhanced presence 

of fluvial waters associated to a shorter distance of the coring site to the coastline due to low sea 

level (Fig. 7). Here, primarily the input of the Rio de la Plata, and secondarily of the Rio Itajaí 

were probably responsible for the enhanced abundance of Lingulodinium machaerophorum, 

Tuberculodinium vancampoae and Spinifertites ramosus. 

During DZ I, we observed low relative abundances of Operculodinium centrocarpum. In general, 

Operculodinium centrocarpum is recorded in a wide range of temperature and salinity conditions, 

being often regarded as a cosmopolitan taxon (Zonneveld et al., 2013). The distribution of 

Operculodinium centrocarpum in the study area shows that high abundances of this taxon are 

restricted to the tropical and subtropical western South Atlantic and this species is less abundant 

to the south of the Brazil-Malvinas Confluence. Nowadays, it is characteristically present in high 

abundances in the warm waters of the BC (Zonneveld et al., 2013). The relatively low 

abundances of this species during DZ I might indicate a reduced influence of the BC at the coring 

site. Indeed, DZ I may be related to a stronger presence of Rio de La Plata waters transported by 

the BCC to the coring site. In modern days, Brigantedinium spp. can be a good indicator for 

increased upper water nutrient availability in tropics. Enhanced cyst production can be observed 

when nutrient concentrations increase, for instance in upwelling regions, river plumes and 

polluted coasts (e.g. Zonneveld et al., 2012). However, Brigantedinium spp. is very sensitive to 

aerobic degradation. The somewhat higher relative abundances of Brigantedinium spp. observed 

in this zone might, therefore, be the result of the higher nutrient availability, as indicated by 

Lingulodinium machaerophorum, Tuberculodinium vancampoae and Spinifertites ramosus, but 

could also indicate a somewhat better preservation. 
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DZ II: 53.9-35.0 cal kyr BP ~ early to mid MIS 3 (57–29 cal kyr BP) 

The high occurrence of Operculodinium centrocarpum suggests that the presence of waters 

transported by the BCC decreased and the BC largely dominated the upper water column at the 

coring site during this period. The decrease of dinocyst taxa with eutrophic environmental 

preferences indicate less nutrient availability and suggests that nutrient loaded fluvial waters did 

not reach the coring site. This was probably related to the slightly higher sea level (Waelbroeck et 

al., 2002) relative to the previous DZ that increased the distance of the coring site to the coast. 

The lower relative abundance of Brigantedinium spp. suggests that bottom waters might have 

been more oxygenated. 

DZ III: 35.0-14.0 cal kyr BP ~ late MIS 3 and MIS 2 (29–13 cal kyr BP) 

The decrease of Operculodinium centrocarpum at the beginning of DZ III and its increase at the 

end of the period indicate changes in the fraction of waters transported by the BC versus waters 

transported by the BCC (i.e., higher percentages of Operculodinium centrocarpum is associated 

to the massive dominance of waters transported by the BC ) (Zonneveld et al., 2013).  

Indeed, a larger fraction of waters transported by the BCC during this DZ is corroborated by the 

increase in abundance of eutrophic environmental dinocyst taxa, which reached a maximum 

during the LGM (lowest sea level during the last glacial; Waelbroeck et al., 2002). We favour an 

increased transport of nutrient-rich fluvial waters by the BCC from the south to the core site 

rather than the discharge of the Rio Itajaí, as the reconstruction of the vegetation suggest dry 

environmental conditions. The relatively high frequency of Brigantedinium spp. from the LGM 

onward suggests somewhat lower bottom water oxygen concentrations. 

DZ IV: 14.0 - 0 cal kyr BP ~ MIS 1 (14 – 0 cal kyr BP) 

The relatively high abundance of Operculodinium centrocarpum suggests a massive influence of 

the BC at the upper water column at our coring site. The relatively low abundance of eutrophic 

environmental dinocyst taxa indicates a smaller fraction of waters transported by the BCC to the 

coring site. The increasing distance to the coastline due to the post-glacial sea level rise probably 

played an important role (Waelbroeck et al., 2002; Lantsch et al., 2014). The results suggest as 
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well that even under a stronger influence of the BC, lower salinity waters from the Rio Paraíba do 

Sul, Rio Doce, and nutrient-rich waters from the upwelling off southeastern Brazil are still could 

not reach to the study area, as also suggested by Razik et al. (2015). The lower frequency of 

Brigantedinium spp. suggests that the bottom waters had higher oxygen content during this 

period. 

2.5.5 Comparison of pollen, spore and dinocyst records 

The dendrogram performed with CONISS for each record (Fig. 4 and 6) shows that the major 

changes coincided. Thus, the PZ and the DZ are almost synchronous with 1-3.5 kyr offsets (see 

also the PZ and DZ in Fig. 7), hinting for a similar timing of major environmental changes over 

southern Brazil and the adjacent western South Atlantic. Major vegetational changes occurred 

earlier than the changes in the adjacent marine environment during MIS 3, but the phase between 

both records is the opposite during the transition from MIS 2 to MIS 1 (Fig. 7). The reason we do 

not know yet. The rather small difference in timing between the PZ and the DZ could be the 

subject of a further high-resolution study on core GeoB2107-3 to understand in detail leads and 

lags in land-ocean interactions. 

For MIS 4 (early last glacial period), our vegetation reconstruction suggests cold and relatively 

wet climate over southern Brazil, in particular for the early MIS 4 that showed a higher 

occurrence of Araucaria angustifolia. Higher rainfall with a short or without a marked annual dry 

season, as this is the requirement of Araucaria, might be related to an enhanced activity of the 

South American Monsoon System and the South Atlantic Convergence Zone, as suggested by 

Cruz et al. (2005, 2006). During MIS 4 the dinocyst records suggest a stronger influence of the 

BCC in the study area. Besides the influence of the BCC (the Rio de la Plata), Rio Itajaí may also 

have contributed with more freshwater to the coring site. The low sea level facilitated the 

participation of a larger fraction of fluvial waters in the upper water column of our core site. 

During the early to mid-MIS 3 (mid last glacial period), southern Brazil was cold and a slightly 

wetter than MIS 4, probably only in the lowlands (as Araucaria shows low occurrence), while 

our core site experienced a dominant influence of the tropical BC. A recent study based on 
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marine sediment core GL-1090 collected off southeastern Brazil (24.92ºS, 42.51ºW, ca. 470 km 

further northeast to the study site) indicates a trend of increasing SST during the late MIS 3 

(Santos et al., 2017). During the late MIS 3 and MIS 2 (pre-LGM, LGM and early Lateglacial 

periods), the climate over southern Brazil was colder and/or drier compared to the previous last 

glacial period, and the study area had a stronger influence of the BCC due to lower sea level. The 

presence of a few Nothofagus pollen (up to 1.5%) in our marine record, which were most likely 

transported first by the MC, and then by the BCC, suggests either enhanced discharge of southern 

South American rivers draining the Andes or strengthened southern westerlies. We favour the 

second hypothesis, since a strengthening of the southern westerlies may have happened during 

the LGM (e.g. Kohfeld et al., 2013). 

During MIS 1 (late Lateglacial and Holocene period) southern Brazil was dominated by warm 

and humid climate as supported by different reconstructions (e.g. Cruz et al., 2005, 2006; Chiessi 

et al., 2010, 2015), but on the highlands the climate changed to more permanent wet conditions 

only during the late Holocene. The BC dominated the upper water column at the core site most 

probably due to the longer distance of the coring site to the coast and together with higher sea 

level (Lantzsch et al., 2014).  

The comparison between the between pollen/spore and dinocyst records shows that changes on 

the continent and in the ocean during the last 73.5 kyr are in general well related to each other 

and occur at similar pacing.  

2.5.6 Land-ocean comparison including other proxies and records 

Data sets of previous studies from the same marine sediment core GeoB2107-3 obtained by X-

ray fluorescence scanning (Heil, 2006), and records from other archives (e.g. Cruz et al., 2005, 

2006; Chiessi et al., 2010, 2015), as well as the global sea level curve (Waelbroeck et al., 2002) 

and 30
o
S February insolation and obliquity (Berger, 1978a; 1978b; Berger and Loutre, 1991) are 

used in order to understand past continental and marine environmental changes (Fig. 7). 

The relative amount of tree pollen in GeoB2107-3 reflects the extension of forest cover and can 

be used as an indicator for temperature and precipitation changes over southern Brazil during the 
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past 73.5 cal kyr BP. The comparison of the records available in Fig. 7 suggests that the tree 

pollen record is related to orbital obliquity rather than to the local summer insolation. 

The ln(Fe/Ca) record from the same marine sediment core (Heil, 2006) reflects changes in 

continental terrigenous input to the core site (Govin et al., 2012). The curve follows changes in 

sea level and obliquity during the last glacial, but decouples from those parameters during the last 

deglaciation and the Holocene. According to Cruz et al. (2005) the stalagmite δ
18

O record from 

the Botuverá Cave mainly indicates changes in the source of moisture reaching the cave and 

follows February insolation at 30
o
S. During periods of high summer insolation an intensification 

of the South American Monsoon System with high summer rainfall over subtropical Brazil was 

described (Cruz et al., 2005). 

The tree pollen record is not correlated to the stalagmite δ
18

O record from Botuverá Cave (Cruz 

et al., 2005). In particular, during the LGM the Botuverá record shows values as negative as those 

of the late Holocene, implying high southern hemisphere summer precipitation. However, the 

GeoB2107-3 tree pollen record shows low values, suggesting relatively cold and/or dry 

conditions. In this context, it is important to point out that the stalagmite δ
18

O and the trace 

elements (i.e., Mg/Ca and Sr/Ca) records from Botuverá Cave are markedly different (Cruz et al., 

2007), particularly for the LGM. While Botuverá Cave δ
18

O reflects the source of moisture (Cruz 

et al., 2005), its trace elements records reflect precipitation amount (Cruz et al., 2007). Taken 

together, these records (i.e., GeoB2107-3 tree pollen and Botuverá Cave δ
18

O) suggest that 

summer precipitation may not be representing mean annual precipitation. Here, climate 

seasonality may play an important role. Indeed, the Cambará do Sul record from southern Brazil 

suggests that markedly seasonal climatic conditions with a long annual dry period occurred 

during the LGM and prevailed until the mid-Holocene (Behling et al., 2004). 

The differences between the tree pollen, the ln(Fe/Ca) and the speleothem records is probably 

related to the combined effect of the seasonality in precipitation as well as changes in air 

temperature and sea level. During the glacial period (i.e., MIS 4 to MIS 2), the ln(Fe/Ca) record 

correlates well with sea level curve (i.e. periods of particularly low sea level are associated to 

high ln(Fe/Ca) and high terrigenous input) (Fig. 7), but this correlation get lost after about 10 cal 
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kyr BP. The reason might be due to the marked increase in precipitation, in particular during the 

late Holocene (e.g. Behling, 1993; Chiessi et al., 2010), dominate the ln(Fe/Ca) record, despite of 

the high sea level stand and the longer distance of the coring site to the coast. The speleothem 

record probably reflects changes in the source of moisture and is not much influenced by 

temperature and sea level. The marked increase in tree pollen around 15 cal kyr BP and the high 

values throughout the Holocene, may be also related to a strong increase in southeastern South 

American mean annual temperatures (Chiessi et al., 2015), on top of changes in precipitation, as 

both parameters are known to influence tropical arboreal vegetation (Beerling and Mayle, 2006). 

Thus, our results may suggest that (besides precipitation) the interplay of obliquity, and 

continental temperatures were potentially driving factors controlling changes in southern Brazil 

arboreal vegetation. 

In the comparison diagram (Fig. 7), the proportion of eutrophic environmental dinocysts is 

correlated with the sea level curve throughout the whole record, indicating that the distribution of 

eutrophic environmental dinocysts is highly influenced by the discharge of nutrient-rich waters 

delivered by rivers and transported by oceanic currents. Here, the Rio de la Plata and the BCC 

were most probably very important. Sea level changes during the last 73.5 kyr, partly controlled 

the delivery of freshwater and terrestrial sediments to the coring site, as indicated by the higher 

pollen influx and ln(Fe/Ca) values during relatively low sea level stands. The relationship 

between the delivery of terrestrial material and sea level does not hold for the late Holocene (i.e., 

high ln(Fe/Ca) and high sea level), most probably due to the marked increase in precipitation 

over southeastern South America (Chiessi et al., 2010; Prado et al., 2013a, 2013b), which is also 

reflected by the tree pollen record. Operculodinium centrocarpum suggests changes in the 

proportion of BC waters at the core site, which is well correlated with obliquity (Fig. 7). 
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2.6 Summary and conclusions 

Pollen, spores and dinocyst data of marine sediment core GeoB2107-3 offered the first 73.5 cal 

kyr BP long record for the reconstruction of vegetation, climate and ocean dynamics in southern 

Brazil and the adjacent ocean. Available continental vegetation records from southern Brazil, 

which dates back to 42 cal kyr BP, support that the new marine pollen and spore records 

appropriately reflect the vegetation changes on the adjacent continent. 

In southern Brazil, grasslands were much more frequent in the highlands and lowlands, including 

the exposed continental shelf, during glacial times compared to the late Holocene. The area of the 

Atlantic rainforest was reduced during the recorded last glacial period, in particular during the 

pre-LGM and the LGM (38.5-13.0 cal kyr BP). While the area of rainforest in southern Brazil 

was unstable, rainforest in southeastern Brazil was more stable according to marine pollen 

records off southeastern Brazil confirming results on genetic diversity dynamics. Patches of 

subtropical forests covered the lowland and exposed continental shelf in southern Brazil during 

glacial times and were markedly reduced during the pre-LGM and LGM period. From 73.5 cal 

kyr BP to 65 cal kyr BP, the population of Araucaria angustifolia trees in southern Brazilian 

highlands were similar to the late Holocene, but were rare during the remaining last glacial to 

mid-Holocene periods. Araucaria angustifolia became frequent again only during the late 

Holocene. The Atlantic rainforest expanded since the Lateglacial in the lowlands of southern 

Brazil, including the still exposed continental shelf during the Lateglacial, before postglacial sea 

level rise flooded the continental shelf. 

The proportion of eutrophic dinocysts reflects well nutrient input, mainly delivered by the BCC 

(Rio de la Plata) and partly by Rio Itajaí. The presence of the BCC over the coring site, as well as 

pollen influx and terrestrial-derived material (ln(Fe/Ca)), is linked to glacial and postglacial 

changes in sea level. During MIS 4 and late MIS 3 to MIS 2, the coring site was influenced by 

the BCC. Enhanced discharge of southern South American rivers draining the Andes or 

strengthened southern westerlies during MIS 2 were responsible for the arrival of exotic 

Nothofagus pollen grains, which were transported by the MC and then by BCC to the study site. 

The cluster analysis indicates that major changes in the pollen/spore and dinocyst assemblages 



    

 

51 

 

occurred at similar pacing, pointing to a strong relationship between continental and marine 

environmental changes. The comparison of the pollen and dinocyst records with other proxies 

suggest that orbital obliquity is one of the most important driving factors controlling marine and 

continental environmental changes during the last 73.5 cal kyr BP. 
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Abstract  

Vegetation and climate changes in southern Brazil, as well as the dynamics of the adjacent South 

Atlantic were investigated through the analyses of pollen, spores and dinocysts from marine 

sediment core GeoB6211-2 that covers the last 19.3 cal kyr. The pollen record indicates the 

dominance of grassland (campos) in southeastern South America (SESA), reflecting cold and/or 

dry conditions during the Last Glacial Maximum. Forests, mainly gallery forests, expanded 

slightly during Heinrich Stadial 1, suggesting slightly wetter conditions. A stronger expansion of 

the Atlantic lowland rainforest is noticed in the record after ca. 5.5 cal kyr BP, likely due to 

wetter conditions. The relatively high amount of exotic Nothofagus pollen, transported by wind, 

rivers and then by oceanic currents northwards to the study site, as well as the dinocyst 

Brigantedinium spp., indicate a noticeable influence of the Brazilian Coastal Current from the 

south between 19.3 and 14.8 cal kyr BP. After that, the decrease in Nothofagus and 

Brigantedinium spp. together with the increase in dinocyst Operculodinium centrocarpum 

indicate that the Brazil Current from the north dominated the coring site. The abundance of 

freshwater algae between ca. 19.3 and 17.0 cal kyr BP suggests that the Rio de la Plata mouth 

was located close to the coring site during this period, and its discharge of nutrient-rich 

freshwaters strongly affected the upper water column. Sea level rise decreased this impact during 

the late glacial phase by moving the coastline further away from the core site. The presence of the 

Brazil Current at the core site became stronger after ca. 15 cal kyr BP and strongest after 9 cal kyr 

BP. In summary, the pollen, spores and dinocyst records from core GeoB6211-2 provide 

important climatic records to reconstruct the environmental changes in SESA. 

 

Keywords: South Atlantic; Pollen; Dinoflagellate cysts; Environmental change; Vegetation 

history; Ocean currents 
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3.1 Introduction 

Records of past terrestrial and marine environmental changes as well as underlying interactions 

and driving mechanisms are important to understand and to project future environmental changes 

(Bigg et al., 2003). Multi-proxy and multi-site approaches are of great relevance and contribute to 

a comprehensive understanding of environmental changes. While pollen and spore records from 

marine sediment cores provide valuable information on past vegetation and climate changes over 

adjacent continental areas, dinocysts records from the same cores offer important information on 

past conditions of the upper-ocean.  

In the eastern North and South Atlantic, several marine sediment cores mainly collected on the 

African continental margin have been studied (e.g. Dupont and Leroy, 1995; Marret et al., 2006, 

2008; Hooghiemstra et al., 2006; Dupont et al., 2007; Bouimetarhan, et al., 2009). Only a few 

palynological studies have been carried out in the western South Atlantic. Records are available 

off northeastern Brazil (Behling et al., 2000; Jennerjahn et al., 2004; Dupont et al., 2010), 

southeastern Brazil (Behling et al., 2002) and the northern part off southern Brazil (Gu et al., 

2017), namely from the marine core GeoB2107-3 (Fig. 1A). This 73.5 kyr pollen record indicates 

a dominance of grasslands (campos) and markedly reduced forests in South Brazil from 38.5 to 

15 cal kyr BP, reflecting cold and/or dry conditions. The lowland Atlantic rainforest started to 

expand after about 15 cal kyr BP, and the highland Araucaria forest in the late Holocene, 

indicating an early change to wetter and warmer conditions in the lowlands, and a much later 

change to markedly wetter conditions in the highlands. The transport of Nothofagus pollen grains 

from southern South America indicate the transport of cold water masses by marine currents from 

the south during the during the Last Glacial Maximum (LGM). So far, no palynological record is 

available from the southern part off South Brazil/Uruguay to understand terrestrial and marine 

environmental changes.  

From the continent several late Quaternary pollen records are available from the southern 

Brazilian highlands such as Cambará do Sul (Behling et al., 2004) and Rincão das Cabritas 

(Jeske-Pieruschka and Behling, 2012), the southern Brazilian lowlands such as São Francisco de 

Assis (Behling et al., 2005), as well as the lowlands in Uruguay such as Laguna Formosa 
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(Mourelle et al., 2017) and Arroyo Solís Grande (Mourelle et al., 2015) (Fig. 1). These records 

indicate the dominance of grasslands during glacial and Holocene times, with a marked 

expansion of forests during the late Holocene. Thus, an integrated analyses of this region for 

instance through the investigation of a marine sediment core has the potential to provide valuable 

information about the expansion of forests in southeastern South America (SESA) after the LGM. 

Marine palynological records from northeastern Brazil (Behling et al., 2000; Jennerjahn et al., 

2004; Dupont et al., 2010; and a review from Zhang et al., 2016) indicate a strong influence of 

last glacial millennial-scale climatic events in northeastern South America (periods with 

development of forests), but little is known about the possible influence of these events to the 

vegetation of SESA. 

In order to assess past environmental changes along the SESA continental margin, the marine 

sediment core GeoB6211-2 (Fig. 1), was studied by analyses pollen, spores and dinocyst 

contents. This core was collected from a key position which is sensitive to climate change (e.g. 

Chiessi et al., 2009) and changes in marine currents (e.g. Peterson and Stramma, 1991; Piola et 

al., 2005). Additionally, it has a very good chronology (e.g. Chiessi et al., 2008; Razik et al., 

2013) and has been studied by several proxies such as foraminifera (e.g. Morard et al., 2016), and 

organic geochemistry (e.g. Chiessi et al., 2015), allowing a comprehensive study since the LGM. 

The following research questions will be addressed: (1) How has vegetation changed on a 

regional scale in southern Brazil and Uruguay? (2) When was the expansion of the Atlantic 

rainforest to the south? (3) Did Heinrich Stadial 1 (HS1) influence SESA vegetation? (4) How 

did the influence of the different marine currents changed compared to changes recorded in core 

GeoB2107-3, located 500 km further north (Fig. 1A)? (5) How do pollen and dinocyst records, 

together with other available proxies, contribute to a better and comprehensive understanding of 

past environmental changes? 
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3.2 Study area 

3.2.1 Oceanic environmental setting 

Marine sediment core GeoB6211-2 (32.50°S, 50.24°W, 774 cm long) was collected in the 

northwestern Argentine Basin off southern South Brazil in the western South Atlantic at 657 m 

water depth (Fig. 1). Nowadays the upper ca. 100 m water column of the coring site is bathed by 

the warm and salty Tropical Water (TW) (>20°C and >36 practical salinity units (psu)) (Fig. 1A) 

(Peterson and Stramma, 1991; Stramma and England, 1999). From ca. 100 until 600 m water 

depth, the water column is dominated by South Atlantic Central Water (SACW) (6-20°C and 

34.6-36 psu), which overlies the cold and less saline Antarctic Intermediate Water (AAIW) (2-6 

°C and 33.8-34.8 psu). While SACW shows relatively low oxygen content, AAIW is an oxygen-

rich water mass (Garcia et al., 2014). 

 

 

a)                                                                                                                   b) 

Figure 1 Location of the coring site (A) GeoB6211-2 (32.50 °S, 50.24 °W) together with previously available marine 

sediment core (B) GeoB2107-3 (Gu et al., 2017), and terrestrial pollen records from (C) Cambará do Sul (Behling et 

al., 2004), (D) Rincão das Cabritas (Jeske-Pieruschka and Behling, 2012), (E) São Francisco de Assis (Behling et al., 

2005), (F) Laguna Formosa (Mourelle et al., 2017) and (G) Arroyo Solís Grande (Mourelle et al., 2015). (Fig.1a) 

Mean annual sea surface salinity (Zweng et al., 2013) and topography of the adjacent continent. The Brazil Current 

(BC), Malvinas Current (MC), Brazil-Malvinas Confluence (BMC) and Brazilian Coastal Current (BCC) are also 

indicated on the map (Peterson and Stramma, 1991; Piola et al., 2005). (Fig.1b) Main vegetation types of 

southern/central Brazil and Uruguay (modified after RBMA, 1999).  
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The distance of the coring site to the modern coastline is about 170 km, which is located near the 

city of Rio Grande (32.02°S) (Fig. 1) in the Brazilian Rio Grande Sul state. During the LGM, sea 

level was about 120 m lower than pre-industrial, and during the Lateglacial rose to about 60 m 

below pre-industrial (Lambeck and Chappell, 2001). During the period of lowest sea level, the 

coastline was located about 20 km from the coring site, exposing about 150 km of the shelf. 

At the coring site, TW is transported to the south by the Brazil Current (BC) (Peterson and 

Stramma, 1991; Boebel et al., 1997; Stramma and England, 1999). At around 37°S the BC 

encounters the northward-flowing Malvinas Current that transports cold and low salinity waters 

northwards along the continental margin off Argentina. At the junction, both currents form the 

Brazil Malvinas Confluence (BMC), turning southeastward and flowing offshore as the South 

Atlantic Current and the northern branch of the Antarctic Circumpolar Current, respectively 

(Fig.1A). The distance of the BMC to our coring site is 500 to 600 km. Furthermore, on the 

continental shelf off Uruguay and southern Brazil, the Brazil Coastal Current (BCC) (Fig. 1A) 

flows northwards and transports to the study site low salinity waters as well as terrigenous 

material from the Rio de la Plata drainage basin (Piola et al., 2005). 

3.2.2 Continental environmental setting 

The continent adjacent to the coring site is characterized by the presence of coastal lagoons 

(Patos and Mirim), as well as low elevation mountains in the northern sector of Rio Grande do 

Sul state and lowlands in the southern sector of the state and Uruguay (Fig. 1A). Coastal lagoons 

are formed due to the transgressive-regressive events during the Holocene and the Patos Lagoon 

(largest lagoon in the Rio Grande do Sul state) is connected with the South Atlantic by the outlet 

of Rio Grande, while Mirim Lagoon (Uruguay) has no outlet (Tomazelli and Villwock, 2000; 

Villwock and Tomazelli, 1995). Only small rivers drain directly to the lagoons from the 

hinterland. The largest river draining to the Patos Lagoon is the Jacuí River that eventually 

delivers its freshwaters to the South Atlantic through the single outlet near the city of Rio Grande 

(Weschenfelder et al., 2010). Most of the Jacuí River sediments, however, are trapped within the 

Patos Lagoon (Marques et al., 2010). A much larger river system discharging in the western 
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South Atlantic is the Rio de la Plata, formed by the confluence of the Uruguay and Paraná Rivers 

(Fig. 1A). The estuary of Rio de la Plata is located about 670 km to the south the coring site. 

3.2.2.1 Climate 

The climate of the nearby continent in southern South Brazil and Uruguay (Fig. 1B) is 

characterized by a humid temperate subtropical climate with rainfall evenly distributed 

throughout the year. According to 33 meteorological station reports from 1917 to 1980, mean 

annual rainfall pattern shows a decreasing north-south gradient from northern Rio Grande do Sul 

state (1700 mm) to southern Uruguay (1000 mm) (Diaz et al., 1998). The mean annual 

temperatures (MAT) is 20°C in Porto Alegre (capital of Rio Grande do Sul state) and 17°C in 

Montevideo (capital of Uruguay) (https://www.timeanddate.com/weather).  

The climate in the Rio de la Plata Basin (Fig. 1B) is marked by relatively humid conditions with 

annual precipitation of about 1100 mm and MAT ranging from 15 to 25°C from the southeast to 

the northwest (Diaz et al., 1998; FAO, 2016). The seasonal character in precipitation is weak in 

the southeast but increase to the northwest sector of the Rio de la Plata Basin (Garreaud et al., 

2009). Interannual anomalies in precipitation are also influenced by the El Niño Southern 

Oscillation, with positive precipitation anomalies during El Niño years and negative precipitation 

anomalies during La Niña years (Grimm and Tedeschi, 2009). 

3.2.2.2 Vegetation 

The vegetation types in southern Brazil and Uruguay (Fig. 1B) are well described in previous 

publications (e.g. Hueck, 1966; Klein, 1978, 1979; Por, 1992; Boldrini, 2009). In the study area, 

the vegetation distribution is mainly influenced by topography and climate. The northern part of 

southern Brazil along the Atlantic coastal plains is dominated by Atlantic rainforest, including 

species from the families such as Moraceae, Myrtaceae, Alchornea triplinervia and Euterpe 

edulis. In the highlands of southern Brazil, the landscape is covered by a mosaic of grassland 

(campos) and Araucaria forests, related to cooler climate condition. The Araucaria forests are 

mainly represented by Araucaria angustifolia, Podocarpus lambertii, Mimosa scabrella and Ilex. 

The grasslands (campos) vegetation occurs mainly in the lowlands of Rio Grande do Sul and 
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Uruguay and is composed of Poaceae, Cyperaceae, Asteraceae, Apiaceae and Fabaceae families, 

related to the drier and cooler climate. Along streams, gallery forests occur. The main taxa are 

Salix chilensis, Sebastiania commersoniana, Myrsine laetevirens, and Myrtaceae (Mourelle and 

Prieto, 2012). The coastal lagoons in southern Brazil and Uruguay are dominated by salty 

marshes with Cyperaceae, Chenopodiaceae and Amaranthaceae (Marangoni and Costa, 2009). 

The vegetation in the Rio de la Plata drainage Basin (Fig. 1B) is formed by a mixture of 

grasslands with gallery forests, dry forests and semi-deciduous forests (Hueck, 1966). 

The distribution of the modern vegetation in the study region is controlled by the different 

climatic conditions. However, the role of atmospheric CO2 such as C3 and C4 plants needs to be 

considered (Scheff et al. 2017). 

3.3 Material and methods 

3.3.1 Sampling and pollen, spores and dinocysts analyses 

Marine sediment core GeoB6211-2 was collected during RV Meteor cruise M46/2 in the 

Argentine Basin in 1999 (Schulz et al., 2001; Wefer et al., 2001). The core was subsampled from 

574 to 2 cm core depth. Due to changes in sedimentation rate (Fig. 2) (Chiessi et al., 2008; Razik 

et al., 2013; Chiessi et al., 2015), to attain a relatively constant and sufficient temporal resolution 

in the records, the sampling interval was ca. 40 cm in the lower section of the core (from 574 to 

254 cm core depth) and ca. 20 cm in the upper section of the core (from 214 to 4 cm core depth). 

The available uppermost sample was at 2 cm. About 2-4 g (wet weight) per sample was taken for 

pollen and dinocyst analyses. Due to the general low pollen content in the upper section and low 

dinocyst content in the lower section of the core, in order to have a sufficient resolution, seven 

additional dinocyst samples have been studied, resulting in 32 dinocysts and 25 pollen samples. 

Before processing, one tablet of exotic Lycopodium spores (containing 20,848 ±1546 spores) was 

added in each sample for the concentration (grains/g or cysts/g) and influx calculation 

(grains/cm
2
/yr or cysts/cm

2
/yr) (Stockmarr, 1971). Pollen and dinocyst samples were prepared by 

applying standard analytical techniques (Faegri and Iversen, 1989), using HCl (~10%) to remove 

the calcareous and cold HF (~40%) to remove the siliceous content. Acetolysis process was 
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applied only on pollen and spores samples, but not on dinocyst samples, to avoid the damage of 

dinocysts. In order to concentrate the dinocysts and pollen, after processing, all samples were 

sieved by hand softly through nylon mesh (1-1.5 μm). 

Pollen and spores were identified based on literature relating to the study area (eg. Behling, 1993) 

and reference collections at the Department of Palynology and Climate Dynamics, University of 

Goettingen. Subsamples for pollen and spores analyses were counted to up to 200 grains or up to 

100 pollen grains in the case of samples with very low pollen concentration (mostly Holocene 

samples). The percentage calculated is based all counted pollen grains including unidentified 

ones (spores are not included). The identified pollen and spore taxa were grouped according to 

the vegetation types as herbs, trees and shrubs, tree ferns, ferns and mosses (Figs. 3 and 4). 

The identification of dinocysts is based on several published morphological descriptions 

(Fensome et al., 1993; Fensome and Williams, 2004; Zonneveld and Pospelova, 2015). 

Subsamples were counted to a minimum of about 200 cysts per sample from 574 to 294 cm core 

depth and 300 cysts from 254 to 2 cm core depth. The percentage calculation is based on all 

dinocysts counted on the slide. Dinocysts are grouped into phototrophic and heterotrophic taxa 

regarding the different energy resources or zooplankton of modern dinoflagellate (Gaines and 

Elbrächter, 1987).   

Apart from the dinoflagellate cyst association the freshwater algae Pediastrum, Halodinium spp. 

and Staurastrum spp. have been identified on the dinocyst slides. The percentage calculation of 

the freshwater algae is based on the dinocyst sum. 

The selective preservation of dinocysts in the marine environment needs to be considered while 

interpreting fossil dinocyst records (Kodrans-Nsiah, 2008). To assess the preservation condition 

of dinocysts, the degradation constant (k) of sensitive cysts (s) and the reaction time (t), in short 

kt, is calculated to reconstruct the primary production of dinocysts and to track past cysts 

preservation. The degradation of oxygen sensitive cysts expressed by “kt” has been calculated 

assuming a first-order decay process kt=ln (Xi/Xf) where Xf=final cyst flux (cysts/cm
2
/kyr) and 

Xi=initial cyst flux (cysts/cm
2
/kyr), Xi has been calculated by Xi=68*Xr, while Xr=Cr* 

sedimentation rate, Xf= Cs* sedimentation rate, Cr and Cs represent the concentration of resistant 
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cysts (R-cysts) and sensitive cysts (S-cysts) to aerobic degradation, respectively (see detail in 

Zonneveld et al., 2007, 2010a, 2010b). 

Dinocysts taxa included in the different ecological groups are also indicated in the diagram of 

Fig. 5 by color.  

Based on their modern distribution in the ocean surface sediments (Wall et al., 1977; Dale, 1983; 

Harland, 1983; Zonneveld et al., 2013), dinoflagellate taxa have been classified as the following 

groups:  

1. Cosmopolitan taxa (in light blue color): Operculodinium centrocarpum, Spiniferites ramosus, 

Brigantedinium spp. and Nematosphaeropsis labyrinthus.  

 2. Eutrophic environmental taxa (in dark blue color in Figs. 4 and 5): Operculodinium 

israelianum, Echinidinium granulatum, Lingulodinium machaerophorum, Polysphaeridium 

zoharyi, Selenopemphix taxa, Spiniferites mirabilis, Trinovantedinium applanatum and 

Pentapharsodinium dalei.  

3. Open sea taxa: All Impagidinium species. 

Although Spinifertites mirabilis is not a typical eutrophic taxon, it shows relatively high 

abundances in high nutrient environments (Zonneveld et al., 2013). Since in our record, 

Spiniferites responds similar as other eutrophic taxa, we consider Spinifertites mirabilis at our 

studied site as an indicator for eutrophic environmental conditions. 

The program TILIA and TILIAGRAPH were used to plot the diagrams; CONISS was used for 

cluster analysis of pollen and dinocyst data, and for the zonation of the diagrams (Grimm, 1987, 

1993). 

3.3.2 Age model 

The age model of core GeoB6211-2 is based on 13 accelerator mass spectrometry (AMS) 

radiocarbon measurements (Leibniz-Laboratory for Radiometric Dating and Stable Isotope 

Research, Kiel, Germany and National Ocean Sciences Accelerator Mass Spectrometry Facility, 
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Woods Hole, USA) (Table 1, Fig. 2) (Chiessi et al., 2008; Razik et al., 2013; Chiessi et al., 2015). 

Raw radiocarbon ages were calibrated with the CALIB 7.1 software (Stuiver and Reimer, 1993) 

and the Marine13 calibration curve (Reimer et al. 2013). The age model was obtained by linear 

interpolation of the mean value from the 1 range of each calibrated age, and was partially 

published by Chiessi et al. (2015). The calibrated age of lowermost dated sample at 583 cm is 

19.3 cal kyr BP. The ages of the different pollen and dinocyst zones have been calculated by 

linear interpolation. 

 

Figure 2 Age-depth model and sedimentation rates from marine sediment core GeoB6211-2. The age model was 

produced based on radiocarbon ages published in Chiessi et al. (2008), Razik et al. (2013) and Chiessi et al. (2015). 

The position of radiocarbon dates are indicated by the blue dots. 
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Table 1 Radiocarbon dates of GeoB6211-2 (Chiessi et al., 2008, 2015; Razik et al., 2013).

 

Lab 

 ID 

Core 

depth 

(cm) 

Species 

 

Radio-

carbon 

age 

(yr BP) 

± 1 s 

error 

(yr) 

1 s 

calibrated 

age range 

(cal yr BP) 

Calibrated 

age 

(cal kyr BP) 

Additional 

ages used 

in the 

model 

(cal kyr 

BP) 

References 

 1 
  

     Modern  

KIA30
528 

18 Globigerinoides 
ruber and 

Globigerinoides 
sacculifer 

1685 30 1219 1281 1.25  Chiessi et al. 
(2008) 

KIA35
166 

35 Globigerinoides 
ruber and 
Globigerinoides 
sacculifer 

3170 40 2891 3024 2.96  Razik et al. 
(2013) 

KIA35
165 

55 Globigerinoides 
ruber and 
Globigerinoides 

sacculifer 

4625 45 4799 4900 4.85  Razik et al. 
(2013) 

KIA30
527 

73 Globigerinoides 
ruber and 
Globigerinoides 
sacculifer 

7145 55 7564 7662 7.61  Chiessi et al. 
(2008) 

NOSA
MS751

86 

86 Globigerinoides 
ruber and 
Globigerinoides 

sacculifer 

9370 40 10168 10234 10.2  Razik et al. 
(2013) 

KIA35
163 

95 Globigerinoides 
ruber and 
Globigerinoides 
sacculifer 

9920 70 10762 10997 10.9  Razik et al. 
(2013) 

 98 

  

     10.85  

KIA35
162 

101 Globigerinoides 
ruber and 
Globigerinoides 
sacculifer 

9810 110 10582 10891 10.7
5 

 Razik et al. 
(2013) 

KIA30
526 

123 Globigerinoides 
ruber and 
Globigerinoides 
sacculifer 

12600 70 13985 14180 14.1  Chiessi et al. 
(2008) 

KIA30
525 

218 Globigerinoides 
ruber and 
Globigerinoides 
sacculifer 

13340 80 15306 15599 15.4
5 

 Chiessi et al. 
(2008) 

KIA35

159 

315 Mixed planktonic 
foraminifera 

14520 30 17074 17259 17.1

5 

 Chiessi et al. 

(2015) 

KIA30
524 

358 Mixed planktonic 
foraminifera 

14860 90 17484 17750 17.6  Chiessi et al. 
(2008) 

KIA30
531 

448 Yoldia 
riograndensis 

15590 100 18333 18576 18.4
5 

 Chiessi et al. 
(2008) 

KIA30
530 

583 Yoldia 
riograndensis 

16400 120 19143 19479 19.3  Chiessi et al. 
(2008) 
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3.4 Results 

3.4.1 Pollen and spore assemblages 

In total, 82 pollen and 20 spore taxa have been identified in 25 samples, including a few unknown 

pollen and spore types. The most frequent and important taxa are shown in the pollen diagrams 

(Figs. 3 and 4). According to the cluster analysis, 4 pollen zones (PZ) have been recognized. In 

general the pollen concentration (1150-13,090 grains/g) and influx values (10-1530 

grains/cm
2
/yr) are relatively low in core GeoB6211-2. Both values are high in PZ I and very low 

in PZ IV. The pollen concentration decreases in PZ IV, while the pollen influx decreases already 

in PZ II. 

PZ I (19.3-18.0 cal kyr BP, 574-394 cm, 3 samples) is characterized by abundant herb pollen (85-

88%, average 86%), in particular by Poaceae, Cyperaceae, Asteraceae (sum, which means sum of 

several different Asteraceae taxa), and Amaranthaceae/Chenopodiaceae, followed by lower 

values of Fabaceae (sum), Eryngium, Plantago australis type and Ambrosia type. Tree and shrub 

pollen grains (7.5-10%, average 9%) are much lower, primarily represented by Mimosa (sum), 

Celtis and lower values of Melastomataceae, Moraceae/Urticaceae and Sebastiania 

commersoniana. Single pollen grains of Araucaria angustifolia, Podocarpus, Alchornea, 

Arecaceae, Alnus and a few other types are found in this zone and the next one. The long-distance 

transported Nothofagus pollen grains (1-2%, average 1.5%) have relatively high values in this 

zone. Tree fern spores (0-0.5%) such as Cyathea and Dicksonia sellowiana, and ferns (7-8%) are 

relatively rare. Moss spores, almost exclusively represented by Phaeocerus leavis, are rare in this 

and in the following zone. 

PZ II (18.0-14.8 cal kyr BP, 394-174 cm, 5 samples) is still characterized by the dominance of 

herb pollen grains (74-83%, average 80%) which, however, are less important than in PZ I. The 

increase of tree and shrub pollen (9.5-13%, average 11%), is with higher values of Mimosa 

(sum), Mimosa invisa, Podocarpus and Sebastiania commersoniana. Nothofagus pollen (1.5-6%, 

average 3%) shows the highest values in this zone (highest value at 254 cm core depth with age 

of ca. 16 cal kyr BP). Tree fern spores (0-0.5%) and ferns (5-9%) are still relatively rare.  
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PZ III (14.8-8.7 cal kyr BP, 174-78.5 cm, 8 samples) is also marked by high frequencies of herb 

pollen (74-84%, average 80%). Representation of Poaceae and Eryngium pollen decrease, while 

Cyperaceae, Ambrosia type, and Plantago australis type pollen values increase. Tree and shrub 

pollen (11-16%, average 13%) still show relatively low values, but are higher compared with PZ 

II. The increase is mainly related to by a change in abundance of Celtis and Salix pollen. Pollen 

of Mimosa (sum) decreases in the second part of the zone. Melastomataceae, 

Moraceae/Urticaceae and Myrsine pollen increase slightly. Nothofagus pollen is less frequent (0-

2%, average 1%.) in this zone. Tree ferns (0-1%, average 0.3%) and ferns (5-10%, average 7.3%) 

are higher than PZ II, but still rare. Moss spores almost exclusively represented by Phaeocerus 

leavis increase slightly in the upper part of the zone. 

PZ IV (8.7-0.1 cal kyr BP, 78.5-2 cm, 9 samples) is characterized by a decrease of herb pollen 

(from 76 to 68%, average 72%), mainly due to the decrease of Poaceae (from 23 to 18%) and a 

slight decrease of Asteraceae (sum). Values of Cyperaceae pollen remain stable and 

Amaranthaceae-Chenopodiaceae, Fabaceae (sum) increase slightly. Almost all tree pollen taxa 

(15-28.7%, average 21.3%) increase and have in the second part of the zone the highest values of 

the whole record. The highest frequency of Alchornea, Schinus-Litharea and Arecaceae pollen is 

found in the uppermost part of PZ IV. Pollen of Mimosa (sum), Celtis and Salix are markedly less 

frequent. Araucaria angustifolia pollen (0.9-5%, average 2.3%) is also well represented. The 

highest value (5%) is found in the uppermost sample. Nothofagus pollen (0-2%) is less frequent 

and do not occur in the upper part of the zone. Tree fern spores (1-3%, average 1.9%) and fern 

spores (5-21%, average 11.7%) show the highest values in the upper part of the zone. Moss 

spores are slightly more abundant in the lower and upper part of the zone, while absent in the 

middle part. 

3.4.2 Dinoflagellate cyst and freshwater algae assemblages 

In total 47 dinocyst taxa and 5 freshwater algae were distinguished in 32 samples from sediment 

core GeoB6211-2. The most frequent taxa and the grouping are displayed in the dinocyst 

diagrams (Figs. 5 and 6).  
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The dinocyst record is dominated by cosmopolitan taxa Brigantedinium spp. (lower part) and 

Operculodinium centrocarpum (upper part). Based on changes in the assemblages and the cluster 

analysis performed with CONISS, 4 dinocyst zones (DZ) can be recognized. Major changes 

occurred within DZ III. As this DZ marks the transition from the dominance of Brigantedinium 

spp. (DZ I and DZ II) to the dominance of Operculodinium centrocarpum (DZ IV), this transition 

(clustered into two parts), has been put into one DZ.  

The kt values are much lower in the lower part of the core (average of 1.2 in DZ I, 0.4 in DZ II, 2 

in DZ III) and increase in the upper part (average of 5.5 in DZ IV). 

The dinocyst concentration (530-67,340 cysts/g, average 16,100 cysts/g) and accumulation rates 

(10-570 cysts/cm
2
/yr, average 210 cysts/cm

2
) are in general low in DZ I to DZ III and high in the 

DZ IV (Fig. 5). The accumulation rates of phototrophic taxa follow this general total dinocyst 

accumulation, while heterotrophic taxa have relatively high accumulation rates in the lower part 

(DZ I and II) and low in the upper portion of the core. The accumulation rates of eutrophic 

environmental taxa are relatively low in DZ I to DZ III, and high in DZ IV. Accumulation rates 

of freshwater algae (not shown in the diagram) are similar to the percentage curve (Fig. 6), being 

high in DZ I, lower in DZ II and DZ III, and very low to absent in DZ IV. 

DZ I (19.3-17.0 cal kyr BP, 574-314 cm, 6 samples) is marked by a high percentages of 

heterotrophic taxa, which are dominated by Brigantedinium spp. and to a lesser extend by 

Echinidinium granulatum, Selenopemphix quanta and Selenopemphix nephroides. Single cysts of 

rare taxa such as Quinquecuspis concreta, Protoperidinium spp., Xandarodinium xanthum, 

Stelladinium stellatum and Leipokatium invisitatum occur in this zone as well as in DZ II. 

Phototrophic taxa are less frequent, with Operculodinium centrocarpum, Operculodinium 

israelianum, Spinifertites mirabilis, Spinifertites ramusus and Spinifertites spp. being the most 

prominent species. Eutrophic environmental taxa, such as Lingulodinium machaerophorum, 

Tuberculodinium vancampoae and Spinifertites spp., reach the highest values of the whole record 

in this zone. Open sea taxa are very rare and almost only represented in this and next zone. 

Freshwater algae, dominated by Pediastrum reach maximum values. 
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DZ II (17.0-14.6 cal kyr BP, 314-159 cm, 8 samples) is characterized by the highest amount of 

heterotrophic taxa that are dominated by Brigantedinium spp. and to a lesser extent by 

Selenopemphix quanta and Selenopemphix nephroides. The zone is characterized by strong 

fluctuations in Brigantedinium spp. values in the uppermost part. Phototrophic taxa are relatively 

rare, but increase slightly towards to the upper part of the DZ. Phototrophic taxa are mainly 

represented by Operculodinium centrocarpum and to a lesser extent by Spinifertites mirabilis and 

Spinifertites spp.. The eutrophic environmental taxa decrease due notably Spinifertites mirabilis, 

Lingulodinium machaerophorum and Tuberculodinium vancampoae. The freshwater algae 

Pediastrum shows lower values in this DZ. Other freshwater taxa are still presented but occur less 

frequent. 

DZ III (14.6-8.7 cal kyr BP, 159-78.5 cm, 8 samples) is a transitional interval, marked by the 

shift of dominant heterotrophic taxa, in particular, Brigantedinium spp., to phototrophic taxa, 

mainly Operculodinium centrocarpum, and to a lesser extent Operculodinium israelianum, 

Spinifertites mirabilis and Polysphaeridium zoharyi. Other phototrophic taxa such as 

Lingulodinium machaerophorum are less frequent. Heterotrophic cysts of Polykrikos schwartzii 

occur regularly. Cosmopolitan taxa still dominate, but decrease slightly in the middle part of the 

zone, contrasting to an increase of eutrophic environmental taxa. The abundance of freshwater 

algae decreased and become absent within this zone. 

DZ IV (8.7- 0.1 cal kyr BP, 78.5-2 cm, 10 samples) is characterized by the highest percentages of 

phototrophic taxa and lowest abundance of heterotrophic taxa. Cysts of Polykrikos schwartzii are 

relatively frequent in this zone, but other heterotrophic taxa are almost absent. Phototrophic taxa 

are dominant and mainly represented by Operculodinium centrocarpum, followed by several 

others similarly to the previous DZ. Cosmopolitan taxa and eutrophic environmental taxa show 

values similar to DZ III, with small fluctuations in this zone. Freshwater algae are almost absent. 
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3.5 Interpretation and discussion 

3.5.1 Environmental background for the interpretation of the pollen and spore data 

Winds, rivers and marine currents transport pollen and spores from adjacent coastal and 

hinterland areas. Today main wind direction in the studied region is from the continent to the 

ocean throughout most of the year, with the exception of the austral summer (Nimer, 1989). Near 

the coring site, the only important river for the input of pollen and spores is from the Patos 

Lagoon in which the Jacuí River discharges. This river drains the southern lowlands and northern 

highlands of the Rio Grande do Sul state (Fig. 1), where Araucaria forest and grasslands with 

gallery forests and other forests as well as coastal vegetation are found (e.g. Hueck, 1966). 

However, as the catchment area of the Jacuí River is not very large, its sediment discharge into 

the western South Atlantic is moderate, especially after flowing through the Patos Lagoon 

(Möller and Castaing, 1999). The Uruguay and Paraná Rivers, on the other hand, have a very 

large catchment area and discharge large amounts of sediments into the western South Atlantic 

via the Rio de la Plata (Acha et al., 2008).  

Furthermore, the Rio de la Plata mouth was located close to the coring site during the last glacial 

period (Lantzsch et al., 2014). Indeed, Lantzsch et al. (2014) indicated that the Rio Grande Cone 

(RGC), the bathymetric feature where core GeoB6211-2 was collected from, received a high 

amount of sediment derived from the Rio de la Plata palaeo-channel during the LGM at the low 

sea level stand. From the LGM until the Holocene, sedimentation rates decreased at the RGC due 

to the sea level rise (Chiessi et al., 2008; Lantzsch et al., 2014; Campos et al., 2017). During the 

Holocene, a large fraction of the sediments discharged by the Rio de la Plata were trapped within 

the river’s estuary (Lantzsch et al., 2014; Razik et al., 2015). 

Regarding the marine currents (Fig. 1A), the southward-flowing BC may transport pollen and 

spores originated from the north to the coring site. On the other hand, the northward-flowing 

BCC may transport pollen and spores from the south (Fig. 1). Based on core tops, Razik et al. 

(2015) showed that terrigenous material from the Rio de la Plata is transported by the BCC along 

the continental margin up to ca. 24
o
S. However, the amount of transported pollen might be low 

due to the long distance of 500 to 600 km. 
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3.5.2 Continental palaeoenvironmental reconstruction 

During the period covered by PZ I and PZ II (19.3-18.0 cal kyr BP and 18.0-14.8 cal kyr BP, 

respectively), the high sedimentation rates that are accompanied with a high pollen influx (Figs. 

2, 4) suggest that the Rio de la Plata drainage basin was an important source of sediments to the 

core site, as also indicated by Lantzsch et al. (2014). Pollen may also have originated from the 

Jacuí River drainage basin and other small rivers nearby, as well as from the nearby exposed 

shelf areas by wind transport. Furthermore, the BC from the north and the BCC currents from the 

south might have transported pollen and spores. 

The pollen composition (Figs. 3 and 4) indicates a dominance of grassland vegetation (PZ I 

average 86% and PZ II average 80%), rich in Poaceae, Cyperaceae, Asteraceae, Fabaceae, 

Plantago, and Eryngium. The high occurrence of Cyperaceae and 

Amaranthaceae/Chenopodiaceae reflect the exposed shelf was probably occupied by salt 

marshes. The proportion of forest and shrubby vegetation (PZ I average 9%, PZ II average 11%) 

is low and mainly represented by Mimosa, Celtis and, subordinately, Melastomataceae, Salix, 

Myrsine, Schinus-Litharea, Podocarpus and Sebastiania commersoniana. Small scattered forests 

and woody vegetation, which expanded slightly during PZ II, probably occurred in the catchment 

areas. The São Francisco de Assis record in the southern Brazilian lowlands also documents very 

little forest coverage during the period covered by PZ I and PZ II (Behling et al., 2005). Single 

pollen of Araucaria angustifolia and spores of the tree fern Dicksonia sellowiana may have 

originated from potential Araucaria forest refugia in southern Brazil (Behling et al., 2004). A few 

pollen of Moraceae/Urticaceae, Alchornea, Arecaceae and spores of the tree fern Cyathea may 

have originated from the Atlantic lowland rainforest, which was at that time markedly shifted to 

the north (Gu et al., 2017), and transported by the BC to the study site.  

Single pollen grains of Alnus and Ephedra (other) which originate from the northern and the 

southern Andes, respectively, were likely transported to our coring site by winds or rivers.  

Interestingly, Nothofagus pollen grains are found with relatively high values (PZ I 1-2%, average 

1.5%, PZ II 1.5-6%, average 3%) in PZ I and PZ II, which indicates a long-distance transport by 
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rivers, winds and marine currents from the south. Nothofagus trees produce a lot of pollen and 

occur only in southern South America, where forests were reduced during full glacial times 

(Fontana et al., 2012). Pollen of Nothofagus must have been transported by rivers draining south 

and central Argentina, and by winds into the western South Atlantic. After reaching the ocean, 

the MC and BCC were probably responsible for transporting Nothofagus pollen to the study area. 

A transport by the Rio de la Plata drainage basin seems unlikely, as the basin is not connected 

with the area of occurrence of the species. Evidence of Nothofagus, but with a lower amount of 

about 0 - 1.5 % (average 0.5%), is also reported form marine core GeoB2107-3 during the period 

covered by PZ I and PZ II, which is located about 500 km further north (Gu et al., 2017). 

The dominance of grassland and small areas of different forest on the adjacent continent indicate 

relatively dry and/or cold conditions, as it has been documented in terrestrial records such as 

Cambará do Sul (Behling et al., 2004) or São Francisco de Assis (Behling et al. 2005). 

Importantly, during HS1 there is a slight increase of tree pollen (Fig. 7), which may suggest 

slightly higher precipitation in the area. However, this is not clearly documented in the mentioned 

continental pollen records. 

During the Lastglacial and early Holocene (14.8-8.7 cal kyr BP; PZ III), the pollen assemblages 

continue to indicate the dominance of grassland vegetation on the continent. The proportion of 

grassland (particularly Poaceae) decreased slightly while the proportion of trees and shrubs 

increased. The decreased sedimentation rates and pollen influx in core GeoB6211-2 during PZ III 

(Fig. 4), probably resulted from the marked sea level rise (Lambeck and Chappell, 2001) that 

flooded vast portions of the continental shelf, shifting the mouth of the Rio de la Plata about 500-

600 km to the south and creating depositional space on the shelf (Lantzsch et al., 2014). 

Consequently, the source areas for the pollen deposited at our core site may have changed. The 

Rio de la Plata drainage basin area became less important, but was still represented by material 

transported by the BCC along the continental margin (Razik et al., 2015). Thus, the Jacuí River 

and other small rivers in Uruguay may have delivered a higher proportion of the pollen deposited 

at the study site than before. 
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The stronger occurrence of Salix indicates the formation of riparian forests as documented by the 

continental pollen record from Laguna Formosa in Uruguay at about 14.6 cal kyr BP (Mourelle et 

al., 2017). The relatively high occurrence of Celtis and slightly higher occurrence of 

Melastomataceae also suggest some forest formation in the catchment areas of the rivers. A slight 

increase of woody taxa is documented in the Laguna Formosa record in Uruguay for the 

Lateglacial period (Mourelle et al., 2017), but not in the Sao Francisco de Assis record in the 

southern Brazilian lowlands (Behling et al., 2005) that was apparently insensitive to these 

changes. The occurrence of Araucaria angustifolia and Dicksonia sellowiana remained low 

during this period. The slightly higher abundance of Moraceae/Urticaceae, Alchornea, Arecaceae 

and Cyathea may reflect the southward expansion of the Atlantic lowland rainforest, as it has 

been recorded in core GeoB2107-3 since 14 cal kyr BP (Gu et al., 2017). Nothofagus pollen still 

occurs in PZ III of core GeoB6211-2, but with lower amounts, while it became absent in core 

GeoB2107-3 since the beginning of the Holocene (Gu et al., 2017). This suggests that the BCC 

influence in the study area became weaker compared to the previous period. The wind transport 

of Nothofagus pollen to the Argentine margin may have decreased as well. The vegetation 

development suggests a change to slightly wetter and/or warmer climatic conditions during the 

period covered by PZ III. 

The high amount of Poaceae pollen indicate that during the period of 8.7-0.1 cal kyr BP (PZ IV) 

grassland was still the dominant vegetation on the adjacent continent, just as nowadays (Fig. 1B), 

despite the increase in the forest cover. The increase of salt marsh, which is indicated by an 

increase of Amaranthaceae-Chenopodiaceae and other aquatic vegetation such as Cyperaceae 

indicate that on the coastal lowland or around coastal lagoons salt marshes started to expand. This 

was also documented in the pollen record from Arroyo Solís Grande in coastal Uruguay, that 

indicated the development of salt marsh vegetation around the estuary of Rio de la Plata since 8 

cal kyr BP (Mourelle et al., 2015). Low sedimentation rates together with low pollen influx 

during PZ IV (Fig. 4) is probably associated with a regional sea level highstand around 6.5 cal 

kyr BP, which was about 5 m higher than today (Prieto et al., 2017) trapping continental 

sediments in the flooded areas. From ca. 5 cal kyr BP until the pre-industrial times, sea level 

decreased, forming a set of coastal lagoons (Angulo and Lessa, 1997; Angulo et al., 2006). 
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A higher proportion of tree and shrub pollen indicate that forests expanded slightly at the 

beginning of this period, and more intensively after 5.5 cal kyr BP (Figs. 3, 4). The lower 

representation of Salix and Celtis reflects a change of the pollen source area (i.e., fewer sediments 

from the hinterland) and/or a change in the forest composition. However, the record of São 

Francisco de Assis indicates the expansion of gallery forest after 5.2 cal kyr BP, which was 

stronger after 1.6 cal kyr BP, reflecting a change to wetter climatic conditions (Behling et al., 

2005). The pollen record of Laguna Formosa in Uruguay indicates that gallery forest developed 

along streams and within basins between ca. 3.2 and 2.2 cal kyr BP (Mourelle et al., 2017). The 

authors suggest that from ca. 2.2 until 0.94 cal kyr BP, the gallery forest included more flooding 

tolerant species, and that after ca. 0.94 cal kyr BP, gallery forests became more diverse. 

Nothofagus pollen still occurs during PZ IV, but with only low percentage until 3 cal kyr BP. 

This indicates that the long-distance transport mechanism responsible for the delivery of 

Nothofagus pollen to our core site was less effective, despite the strong presence of southern-

sourced sediments in core GeoB6211-2 during the mid-Holocene (Razik et al., 2013).  

The slightly higher and continuous occurrence of Moraceae/Urticaceae, Alchornea and Arecaceae 

together with tree ferns and ferns suggest expansion of the Atlantic rainforest to the south, in 

particular after 5.5 cal kyr BP, indicating the wettest and/or warmest period on the continent since 

the LGM. Alchornea and Arecaceae had the highest occurrence in the last 1 kyr. The slight 

increase of Araucaria angustifolia during mid-Holocene and in particular during the late 

Holocene after 3 cal kyr BP reflects the expansion of the Araucaria forest in southern Brazil as 

recorded e.g. in Cambará do Sul (Behling et al., 2004). The strongest expansion after about 1 cal 

kyr BP is, besides the highest occurrence of Araucaria in the uppermost sample of GeoB6211-2, 

not well documented in the marine record. 

3.5.3 Environmental background for the interpretation of dinocyst data 

Several factors can influence dinocyst composition of marine sediment deposits, such as primary 

production, transport, and selective degradation of dinocysts (Zonneveld, 1995; Zonneveld et al., 

2010a, 2010b). Primary production is mainly related to the past (sub)surface water column 
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conditions, e.g., sea surface salinity (SSS), sea surface temperature (SST), upwelling or riverine 

plume (De Vernal et al., 1997). Transport is related to the southward-flowing BC and the 

northward-flowing MC and BCC (Fig. 1A). The dinocyst degradation is related to the oxygen 

content of bottom water masses (Zonneveld et al., 2013), that especially affects heterotrophic 

dinocysts. The low kt values observed in DZ II and DZ I indicate a better preservation in these 

zones compared to DZ IV where highest values are being observed. 

3.5.4 Marine palaeoenvironmental reconstruction 

The high abundance of freshwater algae, which show the highest abundance between 19.3 and 

17.0 cal kyr BP (DZ I) and relatively high abundance between 17.0 and 14.6 cal kyr BP (DZ II), 

suggests that surface waters at the core site received a considerable amount of river discharge 

waters during DZ I and DZ II. The main source for fresh and nutrient-rich waters in the research 

area is discharged by the waters of the Rio de la Plata and, to a lesser extent, the Jacuí River and 

other small rivers nearby. This is expected since due to the low sea level (Lambeck and Chappell, 

2001), the position of the Rio de la Plata river mouth was reconstructed to have been positioned 

very close to our core site during DZ II and DZ I making it likely that discharge waters reached 

the core position (Lantzsch et al., 2014). This is supported by the observation of high abundances 

of Lingulodinium machaerophorum, Tuberculodinium vancampoae and Spiniferites ramosus in 

this zone. Lingulodinium machaerophoru is temperate to tropical euryhaline species that occurs 

frequently in the vicinity of active upwelling cells and in river plumes (Dale et al., 1999; 

González et al., 2008; Mertens et al., 2009; Zonneveld et al., 2013). Tuberculodinium 

vancampoae is a typical species for subtropical and tropical coastal areas and can be very 

abundant in eutrophic coastal embayments as well as in upwelling regions (Zonneveld et al., 

2013). Although not restricted to eutrophic regions, Spinifertites ramosus is very abundant in 

areas influenced by upwelling or river discharge. High abundances of these species, therefore 

suggest as well the presence of nutrient-rich discharge waters reaching the core site. 

The dinocyst assemblages show high abundances of Brigantedinium spp., and relatively low 

concentrations of Operculodinium centrocarpum between 19.3 and 14.6 cal kyr BP. In the 

western South Atlantic the modern distribution pattern of Brigantedinium spp. shows high 
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abundances between 40 and 60
o
S along the sub-Antarctic Polar Front region, where MC-waters 

prevail (Zonneveld et al., 2013 and references therein). Relative abundances decrease towards the 

north with this species being almost absent around 30
o
S. Brigantedinium spp. shows high 

abundances in polar to subpolar environments associated with high nutrient contents supplied by 

melting sea ice (Dale and Fjellsà, 1994). Therefore, we consider Brigantedinium spp. as an 

indicator of southern water masses reaching the core site. Today these water masses that for the 

MC and BCC are characterized by low salinity, cold temperatures and high nutrient rich 

concentration. Our observations, therefore suggest that the study site was strongly influenced by 

cold, nutrient-rich water masses transported by the MC and BCC from the south during DZ I and 

DZ II. 

This assumption is supported by additional changes in the dinoflagellate cyst association. Apart 

from Brigantedinium spp., other heterotrophic taxa such as Selenopemphix quanta, 

Selenopemphix nephroides and Echinidinium granulatum are relatively abundant in DZ I and DZ 

II subscribing the presence of a nutrient-rich sea surface environment at the core site. The 

presence of the cold water indicator Quinquecuspis concreta and presence of cysts of 

Protoperidinium spp. (Zonneveld et al., 2013 and references therein), support also southern 

origin of the surface water mass at the core site during these zones. 

Today, Operculodinium centrocarpum shows high abundances in surface sediments of the 

modern tropical and subtropical western South Atlantic between about 20 and 40 
o
S south of the 

track of the BC (Zonneveld et al., 2013 and references therein). The species is almost absent in 

surface sediments located more to the south. Recently Gu et al. (2017) documented a much 

stronger presence of BC in the same time interval at core GeoB2107-3 located further north from 

our site. The low abundances of Operculodinium centrocarpum in DZ I and DZ II, therefore 

suggest that the BC had a smaller influence at the coring site during the LGM and early 

deglaciation compared to the late deglaciation and the Holocene. 

Previous studies discussing the ecology of Operculodinium centrocarpum (e.g. Harland, 1983; 

Mudie, 1992; Matthiessen, 1995) suggested that this species might prefer relatively warm waters. 

However, the high temporal resolution SST record available for core GeoB6211-2 (Chiessi et al., 
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2014, 2015) showed that changes in the abundance of Operculodinium centrocarpum cannot only 

be explained by changes in SST. Consequently, at our core position, Operculodinium 

centrocarpum rather reflects changes in upper water current systems than upper water 

temperatures.  

The higher abundance of heterotrophic dinocysts in DZI and DZ II of GeoB6211-2 if compared 

to the same period of core GeoB2107-3 located 500 km further north (Gu et al., 2017), might be 

due to the better preservation of degradation-susceptible heterotrophic taxa in GeoB6211-2. 

However, the phototrophic taxa of both records, in particular, the low occurrence of 

Operculodinium centrocarpum, indicate a lower influence of the BC with warm salty waters and 

a stronger influence of cold less salty waters transported by the BCC/MC by the high abundance 

of eutrophic environmental dinocysts taxa. 

The following period (14.6-8.7 cal kyr BP, DZ III) is marked by a shift in the dominance of 

Brigantedinium spp. to Operculodinium centrocarpum. This transition is marked by the decrease 

in abundance of Brigantidinium spp. and other taxa sensitive to aerobic degradation (other 

heterotrophs) towards an association with a higher relative abundance of resistant species, 

notably by Pentapharsodinium dalei and Polysphaeridium zoharyi. Polysphaeridium zoharyi is 

observed at present with high abundances in lagoonal environments (e.g., Wall et al., 1977; 

Bradford and Wall, 1984), and its tolerance to extreme salinities and shallow waters contribute to 

the germination of cysts in high abundance (Reichart et al., 2004). The occurrence and gradually 

increase of Polysphaeridium zoharyi in this and in the next DZ suggest the development of 

coastal lagoons. These changes and also the continuous increase of the kt value during DZ III, 

indicate that the preservation conditions of the sensitive dinocysts decrease and selective 

degradation may be partially responsible for that. 

Three processes may have contributed to the lower abundance of heterotrophic taxa: (i) a shift 

from oxygen-poor SACW to oxygen-rich AAIW; (ii) a decrease in sedimentation rates around 14 

cal kyr BP, as a consequence of sea level rise, and a longer exposure of the dinocysts to the 

sediment-water interface; (iii) a change from eutrophic waters towards oligotrophic waters.  



    

 

87 

 

However, a shift from bottom water regimes at the core site is unlikely to have happened as there 

are strong indications that the strength of the AMOC was strong during this time interval (e.g. 

Chiessi et al. 2008). This is supposed to have resulted in a deepening of the permanent 

thermocline around 15 cal kyr BP. Consequently, we assume that the second or the third 

processes (or a combination of both) might have caused the observed association. 

The increase in abundance of Operculodinium centrocarpum suggests that surface waters at the 

core site became more influenced by northern source waters. The presence of taxa such as 

Selenopemphix quanta, Selenopemphix nephroides and Echinidinium granulatum in this period, 

indicating that nutrient-rich waters still reached the core position which might indicate the 

presence of southern source waters.  

The decrease of eutrophic environmental taxa such as Lingulodinium machaerophorum, 

Tuberculodinium vancampoae and Spinifertites taxa, together with the lower occurrence of 

freshwater algae can be explained by the shift of the coastline further inland, decreasing the input 

of land-derived nutrients to the study site. The dinocyst record from GeoB2107-3 also captures 

the signal of decreased nutrient-rich water supply during this time period (Gu et al., 2017). 

In the GeoB2107-3 dinocysts record (Gu et al., 2017), the BC became more dominant around 20 

cal yr BP and strongest since 15 cal kyr BP, while in the GeoB6211-2 record the BC became 

more dominant since 15 cal kyr BP and strongest since 9 cal kyr BP, as indicated by the 

increasing abundance of Operculodinium centrocarpum.  

For the interval 8.7-0.11 cal kyr BP (DZ IV), higher kt values and a strong decline of 

heterotrophic taxa might indicate that selective degradation of sensitive species might have 

increased. It is unlikely that this is due to a change in bottom water circulation as for these times 

a strong AMOC is reconstructed. Therefore, we assume that the low concentrations of species 

sensitive to aerobic degradation are either by, or due to a combination of the occurrence of low 

sedimentation rates at the core site during this period or the presence of northern source surface 

waters at the core location. The latter is supported by the presence of a high abundance of 

Operculodinium centrocarpum that indicates that the sea surface was dominated by BC. This is 

also evidenced by the relatively high abundance of warm water taxa Operculodinium 
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israelianum, Spiniferites mirabilis and Polysphaeridium zoharyi in this DZ. The slightly lower 

occurrence of eutrophic environment taxa, except for a few phases with higher frequencies of 

Polysphaeridium zoharyi and Pentapharsodinium dalei, together with the almost absence of 

freshwater algae after 9 cal kyr BP, indicate that riverine derived nutrient input to the core site 

had declined. The nearby small rivers, mainly Jacuí River, may have transported little freshwater 

and nutrients to the coring site. This is mainly due to greater distance of the coastline to the core 

site caused by a high sea level and the formation of coastal lagoons, which trapped most of the 

sediments and nutrients (Marques et al., 2010). 

The cluster analyses performed with CONISS for the pollen and dinocyst records (Figs. 4, 6 and 

7) indicate that major changes in the vegetation composition and conditions in the upper oceanic 

water column were roughly synchronous. This suggests similar driving factors for past 

environmental changes on- and offshore in the region studied. Relatively synchronous changes in 

terrestrial and marine realms have been already identified in marine core GeoB2107-3 collected 

off northern South Brazil for the last 73.5 kyr, indicating a link between continental and marine 

environmental changes (Gu et al., 2017). The results from Gu et al. (2017) suggest that in 

southeastern South America obliquity is one of the most important driving factors controlling 

continental and marine environmental changes on orbital time-scales. Because of the short period 

covered by core GeoB6211-2, obliquity cycles are too long to be well recorded. 

The proportion of tree and shrub pollen in core GeoB6211-2 (Fig. 7), which reflects the extent of 

forest including Atlantic rainforest, Araucaria forest and gallery forests, can be used as an 

indicator for temperature and/or precipitation changes on the adjacent continent while also being 

influenced by atmospheric CO2 concentration. Thus, some of the major changes in regional 

temperature (Chiessi et al., 2015) and precipitation (Cruz et al., 2005) together with global 

atmospheric CO2 concentration (Monnin et al., 2001) of the last deglaciation and the Holocene 

were recorded in the changing abundance of our tree and shrub pollen records, as discussed 

below. 
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Little forest cover during the LGM suggests the combination of cold and dry conditions together 

with low atmospheric CO2 (Monnin et al., 2001; Prentice et al., 2011; Scheff et al., 2017). The 

slight increase in trees and shrubs at the beginning of HS1 is most probably controlled by 

increased precipitation (Cruz et al., 2005; Wang et al., 2007), since continental temperatures and 

atmospheric CO2 concentration only increased during the second half of HS1 (Fig. 7) (Monnin et 

al., 2001; Chiessi et al., 2015). Indeed, the negative anomalies shown by stalagmite  


18

O records from SESA suggest an intensification of summer precipitation over the studied 

region during HS1 (Fig. 7I) (Cruz et al., 2005; Wang et al., 2007). Additionally, Campos et al. 

(2017) showed increased sedimentation rates during HS1 in a neighboring core also raised on the 

Rio Grande Cone. These evidences suggest that HS1 was most probably characterized by 

increased precipitation over SESA that enhanced continental erosion and sedimentation rates at 

the adjacent ocean. Despite the decrease in summer precipitation that characterized the Bølling-

Allerød as suggested by the positive anomalies in stalagmite 
18

O records from SESA (Fig. 7I) 

(Cruz et al., 2005; Wang et al., 2007), the sustained proportion of trees and shrubs in our record 

(Fig. 7D) during that period was probably maintained by increased continental temperatures and 

atmospheric CO2 concentrations (Fig. 7F) (Monnin et al., 2001; Chiessi et al., 2015). Close to the 

end of the last deglaciation, the Younger Dryas was again marked by increased precipitation over 

SESA (Fig. 7D) (Cruz et al., 2005; Wang et al., 2007; Campos et al., 2017). Yet, the temporal 

resolution of our pollen records is not adequate to allow any inference about the Younger Dryas. 

Very little expansion of forest during the early and mid-Holocene (Fig. 7) suggests dry conditions 

over SESA. The expansion of Atlantic rainforest after 5.5 cal kyr BP on the other hand likely 

indicates an increase in rainfall. Indeed, different studies have shown that the early and mid-

Holocene were dry and the late Holocene was wet in SESA (e.g. Behling et al. 2004; Cruz et al., 

2005; Chiessi et al., 2010; Prado et al., 2013; Razik et al., 2013; Bernal et al., 2016). 

The abundance of Nothofagus pollen, which is used as an indicator for water masses from the 

south transported first by the MC and then delivered to the coring site by the BCC, indicate that 

the study area SST was strongly influenced by the BCC in particular during the LGM and HS1 

(Fig. 7). The occurrence of the highest Nothofagus abundance within HS1 indicates that the long-

distance transport mechanism responsible for delivering pollen of this species to our coring site 
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was particularly effective during that period. Single pollen grains of Nothofagus were also 

recorded during the mid-Holocene, indicating a renewed influence of the BCC on our coring site, 

in accordance with the conclusions from Razik et al. (2013). 

There was a major decrease in the abundance of Brigantedinium spp. (and increase in 

Operculodinium centrocarpum) between 15 and 14 cal kyr BP that relates quite well to the 

transition between HS1 and the Bølling-Allerød. This transition is marked by a decrease in sea 

surface temperatures (Chiessi et al., 2015) suggesting that upper water column temperatures did 

not significantly control the abundance of the major dinocysts species in our study area. Instead, 

the decrease (increase) in abundance of Brigantedinium spp. (Operculodinium centrocarpum) 

between 15 and 14 cal kyr BP could be related to changes in the trophic structure of the upper 

water column caused by a landward displacement of the coastline associated with the abrupt sea 

level rise of meltwater pulse 1A (MWP1A) (Deschamps et al., 2012). Thus, not only 

sedimentation rates of core GeoB6211-2 were severely impacted by MWP1A (Chiessi et al., 

2008; Lantzsch et al., 2014), but also the trophic structure of the upper water column. Indeed, 

Fig. 7 shows that the abundance of freshwater algae and eutrophic environmental dinocyst taxa 

are correlated with global sea level changes, suggesting that sea level is important in controlling 

the freshwater discharge reaching the coring site. 

3.7 Summary and conclusions 

The environmental dynamics off southern South Brazil, as well as the adjacent South Atlantic, 

has been reconstructed from marine core GeoB6211-2 for the last 19.3 cal kyr BP. 

1) During the LGM, grasslands (campos) dominated the landscape in SESA, reflecting cold 

and/or dry conditions, as previously suggested.  

2) Salt marshes rich in Amaranthaceae/Chenopodiaceae and Cyperaceae dominated the 

exposed shelf during glacial times and is suggested here for the first time. 

3) Forests, mainly gallery forests, slightly expanded during HS1, indicating relatively wet 

conditions. Vegetation changes in SESA during HS1 were suggested here for the first 
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time. There is no marked expansion of forests during the early and mid-Holocene 

suggesting relatively dry conditions.  

4) The strong expansion of Araucaria forest on the highlands of southern Brazil at around 1 

cal kyr BP as described in the literature is not clearly reflected in the record from 

GeoB6211-2, probably due to the large distance between the highlands and our coring 

site. 

5) The Atlantic rainforest expansion, which is recorded in GeoB2107-3 about 500 km to the 

north of our coring site since 14 cal kyr BP, is recorded in GeoB6211-2 only after 5.5 cal 

kyr BP, indicating a late southwards migration. 

6) The Rio de la Plata discharged its freshwaters near the coring area during the LGM and 

HS1, impacting the upper water column as well as the sedimentary processes at the coring 

site. Due to sea level rise, the mouth of the Rio de la Plata was displaced inland, and 

fluvial discharge had less impact over upper water column and sedimentary process at the 

coring site during the Holocene, as previously suggested.  

7) BCC waters had a greater influence at GeoB6211-2 than further north at GeoB2107-3. 

This is indicated by the higher amount of exotic Nothofagus pollen in GeoB6211-2 

transported by winds/rivers, MC and then the BCC from southern South America between 

19.3 and 14.8 cal kyr BP. The BCC influence over GeoB6211-2 decreased along the last 

deglaciation and became less important, but still perceptible, during the early and mid-

Holocene until 3 cal kyr BP. 

In summary, the environmental records from GeoB6211-2 indicate that the core position was 

strongly influenced by river plume waters during the LGM and HS1 when the mouth of Rio de la 

Plata was located close to the coring site due to low sea level. With sea level rise and a landward 

shift of the Rio de la Plata mouth the freshwater input decreased markedly. The currents from the 

south had a marked influence at the coring position also during the LGM and HS1, some 

influence (however, much smaller) during the mid-Holocene and less influence during the late 

Holocene. 
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Abstract 

The Brazil-Falklands/Malvinas Confluence (BFMC), a highly energetic convergence of surface 

currents in the western South Atlantic, has shifted southward in recent years and this shift is 

projected to progress in the future. Palaeoecological insights documenting past changes of these 

currents may help in anticipating future impacts on the environment. We used dinoflagellate cyst 

analyses from a marine sediment core to reconstruct environmental changes in the Argentine 

continental margin, western South Atlantic, during the last ca. 12,600 years.  The dynamics of the 

BFMC were reconstructed using the relative frequency of warm-water indicators for the Brazil 

Current (BC) versus cold-water taxa thriving in the Falklands/Malvinas Current (FMC). We 

found that the latitudinal position of the BFMC was relatively stable with only minor amplitude 

migrations between 12.6 and 8.7 cal kyr BP, followed by periods with stronger shifts to the south 

and the north until 0.66 cal kyr BP. After that, the BFMC shifted continuously to the south. The 

increase in freshwater algae abundance after ca. 5.7 cal kyr BP suggests an increase in 

precipitation over the adjacent Rio de la Plata drainage basin in south-eastern South America. As 

previously documented, such an increase in precipitation was probably related to a higher El 

Niño-Southern Oscillation frequency and longer, stronger El Niño events since the mid-Holocene. 

The dinoflagellate cyst record indicates a phase of the enhanced presence of nutrient-rich waters 

over the core site between ca. 6.3 and 5.7 cal kyr BP, as well as from 0.66 cal kyr BP to the recent. 

The highest eutrophication in the ocean surface occurred during the last ca. 100 years, most 

probably due to stronger human impact in the area of the Rio de la Plata drainage basin. 

 

Keywords: South Atlantic; Dinoflagellate cysts; Ocean currents Climate change; Latest 

Pleistocene and Lateglacial; Holocene  
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4.1 Introduction 

The western South Atlantic hosts one of the most energetic features of the world oceans, namely 

the Brazil-Falklands/Malvinas Confluence (BFMC) (Olson et al. 1988; Peterson & Stramma 

1991). The BFMC is formed where the southward-flowing Brazil Current (BC) and the 

northward flowing Falkland/Malvinas Current (FMC) meet at ca. 38
o
S. This confluence strongly 

influences the primary productivity in the western South Atlantic (Garcia et al. 2004), distribution 

of planktonic species (Morard et al. 2011) and climate over south-eastern South America (Gan & 

Rao 1991). In addition, the nearby (ca. 36
o
S) mouth of the Rio de la Plata, the second largest 

drainage basin in South America, discharges into the western South Atlantic a large volume of 

land-derived sediments and fresh water that impact on the distribution of nutrients (Brandini et al. 

2000) and sea surface salinity (Piola et al. 2005). Previous studies indicate that the sediment input 

along the deep Argentine continental margin can also be influenced by the vertical water mass 

structure (Preu et al. 2013; Warratz et al. 2017). This highly dynamic region has been reported to 

show high-amplitude changes in the instrumental record (Lumpkin & Garzoli 2011; Wu et al. 

2012). Yet the impacts of these ongoing and potential future changes (Sen Gupta et al. 2009) 

remain unassessed. 

Here we use marine sediment core GeoB13862-1, collected from the Argentine continental 

margin (Figure 1), to reconstruct past position shifts of the BFMC and its environmental impacts 

using organic-walled dinoflagellate cysts and freshwater algae. Dinoflagellates are sensitive to 

environmental changes in the upper water column and their cysts are appropriate proxy to 

reconstruct past sea surface parameters (de Vernal & Marret 2007). The dynamics, dispersal and 

accumulation of sediments in the Mar del Plata canyon have been already studied in core 

GeoB13862-1 (Voigt et al. 2013). Dinoflagellate cyst studies performed on marine sediment 

cores GeoB2107-3 (Gu et al. 2017) and GeoB6211-2 (Gu et al. 2018), located to the north of 

GeoB13862-1, provide additional information on past environmental changes for the western 

South Atlantic. With this study, we reconstructed ocean surface environmental changes, such as 

the strength of the BC and FMC that influence the dynamics of the BFMC in the western South 

Atlantic, as well as trophic conditions, since the latest Pleistocene. The main research questions 
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of this study are: (1) How stable were the BC, FMC and the BFMC?; (2) What were the western 

South Atlantic surface water conditions – in particular, the trophic conditions?; (3) How did 

climate change in the Rio de la Plata drainage basin?; and (4) Do dinoflagellate cysts record 

human activities in the Rio de la Plata drainage basin? 

4.2 Study area 

Marine sediment core GeoB13862-1 (38.018°S, 53.745°W) was collected during Meteor cruise 

M78/3 off northern Argentina in the Mar del Plata Canyon at 3588 m water depth (Krastel et al. 

2012; Figure 1). The distance from the coring site to the estuary of the Rio de la Plata is about 

370 km. Mar del Plata city is located at a similar latitude and about 390 km away from the coring 

site. The studied marine sediment core is located in a key position, where the BFMC is formed by 

the BC from the north and the FMC from the south (Peterson & Stramma 1991; Piola & Matano 

2001). The BC transports warm (>20°C), salty (>36 psu) and low primary productivity (<0.5 gl
-

1
) tropical waters from the north, while the FMC transports cold (ca. 10°C), less salty (<34.3 psu) 

and high primary productivity (>0.7 gl
-1

) subantarctic waters from the south (Carreto et al. 1995; 

Ciotti et al. 1995; Antonov et al. 2010; Locarnini et al. 2010). 
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Figure 1 Map showing the location of the coring site (A) GeoB13862-1 (this study), together with the previous 

studied marine cores (B) GeoB6211-2 (Gu et al. 2018) (C) GeoB2107-3 (Gu et al. 2017). The annual mean sea 

surface temperature in the western South Atlantic (Locarnini et al. 2010) and the topography of the adjacent 

continent have been indicated by the color shading. The schematic surface currents, Brazil Current (BC), 

Falklands/Malvinas Current (FMC), Brazil-Falklands/Malvinas Confluence (BFMC), Brazilian Coastal Current 

(BCC) and South Atlantic Current, are also indicated on the map (Peterson & Stramma 1991; Piola et al. 2005). 

 

The climate of the Mar del Plata region is classified by Köppen and Geiger as temperate oceanic 

(Geiger 1954). At the city of Mar del Plata, the average annual temperature is 13.4°C with an 

https://en.wikipedia.org/wiki/Oceanic_climate
https://en.wikipedia.org/wiki/Oceanic_climate
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average of 19.6°C in January (summer) and 7.8°C in July (winter). The mean annual rainfall is 

ca. 900 mm, with the lowest monthly average of 55 mm in June and the highest of 98 mm in 

March (https://en.climate-data.org/location/1892). The El Niño-Southern Oscillation (ENSO) and 

oceanic currents of the western South Atlantic can have a strong impact on the climate of south-

eastern South America (Gan & Rao 1991; Rusticucci & Vargas 2002; Rusticucci et al. 2003; 

Barros et al. 2008). The summer rainfall in south-eastern South America is mainly caused by 

humid air masses, which mostly come from the Amazon basin, whereas the winter precipitation 

is mainly influenced by cold air intrusions from the south (Zhou & Lau 1998; Vera et al. 2006). 

Precipitation can also be influenced by shifting of the southern westerly winds (Castañeda & 

Barros 1997). 

4.3 Material and Methods 

Core GeoB13862-1 was subsampled from 1000 to 5 cm (uppermost available subsample) core 

depth. To obtain a good temporal resolution, a sampling interval was chosen of ca. 40 cm in the 

lower (1000 to 640 cm) and ca. 20 cm (680 to 20 cm) in the upper core sections. About 2–4 g 

(wet weight) per subsample were prepared for pollen and dinoflagellate cysts analyses. Due to the 

very low pollen content, only dinoflagellate cyst and freshwater algae were analysed, resulting in 

38 subsamples. 

Before processing, one tablet of exotic Lycopodium clavatum spores (containing 20,848 +/- 1546 

spores) was added to each sample in order to estimate the concentration (cysts/g) and influx 

(cysts/cm
2
/yr) values (Stockmarr 1971). Dinoflagellate cyst samples were prepared using 

standard analytical techniques (Faegri & Iversen 1989), using hydrochloric acid (HCl, ca. 10%) to 

remove the calcareous content and cold hydrofluoric acid (HF, ca. 40%) to remove the siliceous 

content. To avoid damaging the dinoflagellate cysts, acetolysis was not applied on the 

subsamples. To concentrate the dinoflagellate cysts and the small fraction less than 10 µm, all the 

samples were sieved by hand through a 1-1.5 μm nylon mesh after processing. 

Subsamples were counted to a minimum of about 100 cysts per sample from 1000-360 cm due to 

the very low content and up to 300 cysts from 335-5 cm where the content was higher. The 

https://en.climate-data.org/location/1892


    

 

106 

 

percentage, concentration and influx calculation are based on all dinoflagellate cysts counted, 

excluding reworked dinoflagellate cysts. Freshwater algae were also counted, but not included in 

the dinoflagellate cysts sum.  

Selective preservation of the organic-walled dinoflagellate cysts in the marine environment needs 

to be considered when interpreting fossil dinoflagellate cyst records (Zonneveld et al. 2007). To 

test the preservation condition of dinoflagellate cysts in the marine environment, the degradation 

constant of sensitive cysts (k) and the reaction time (t), in short, kt, are calculated to reconstruct 

the primary production of dinoflagellate cysts and to track the past content. The degradation of 

oxygen sensitive cysts expressed by ‘kt’ has been calculated assuming a first-order decay process 

kt = ln (Xi / Xf) with Xf = final cyst concentration (cysts/cm
2
/kyr) and Xi = initial cyst 

concentration (cysts/ cm
2
/kyr) (Zonneveld et al. 2007, 2010). The identification of dinoflagellate 

cysts is based on several published morphological descriptions (Rochon et al. 1999; Zonneveld & 

Pospelova 2015 and references therein). During the identification, we found a new dinoflagellate 

cyst species, which is not yet named, and is here referred to as ‘new species’. The cyst body of 

the new species is elongate, with cylindrical symmetry from the equatorial view. It is about 30 

µm in width, and about 60 µm in length. The processes are more or less evenly distributed around 

the cyst body. The wall of the cyst is scabrate. 

Dinoflagellate cysts were grouped into phototrophic and heterotrophic taxa with respect to the 

different energy resources (Gaines & Elbrächter 1987). Furthermore, they were also grouped 

based on the distribution of the dinoflagellate cysts in modern marine sediment, into 

cosmopolitan, eutrophic environmental taxa and open ocean taxa (Zonneveld et al. 2013, and 

references wherein). Cosmopolitan taxa (in light blue colour in Figures 3 and 4) include 

Operculodinium centrocarpum (referring to Operculodinium centrocarpum sensu Wall & Dale 

1966 throughout the whole text), Spiniferites ramosus, Brigantedinium spp. and 

Nematosphaeropsis labyrinthus. Eutrophic environmental taxa (indicated by a dark blue colour in 

Figures 3 and 4) include Operculodinium israelianum, Echinidinium granulatum, Lingulodinium 

machaerophorum, Polysphaeridium zoharyi, Selenopemphix antarctica, Selenopemphix 

nephroides, Selenopemphix quanta, Spiniferites mirabilis, Trinovantedinium applanatum, 

Pentapharsodinium dalei and others. It needs to be considered that Spiniferites mirabilis is not a 
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typical eutrophic dinoflagellate cysts, but it shows relatively high abundances in high-nutrient 

environments in the study area (Zonneveld et al. 2013). Nevertheless, may other factors, such as 

salinity and temperature, may also control the species´ abundance and it can be present in both 

oligotrophic and eutrophic environments (Zonneveld et al. 2013). In this and the previous records 

all shows that Spiniferites mirabilis covaries with other eutrophic environmental taxa (Gu et al. 

2017, 2018). Therefore, we consider that nutrient supply is the major factor influencing the cysts 

production of this species in the study region. 

Operculodinium israelianum presents in oligotrophic environments, however, its high abundance 

has been documented in the coastal nutrient-rich areas with freshwater input in western equatorial 

Atlantic (Vink et al. 2000) and nearshore sites off northern Argentina/souhern Brazil (Zonneveld 

et al. 2013 and references therein). Additionally, from ca. 27°S to ca. 32°S western south 

Atlantic, the Operculodinium israelianum records of GeoB2107-3 and GeoB6211-2, showed an 

increasing trend in frequency from the north to the south (Gu et al. 2017, 2018). Therefore, in the 

study area, we consider that the Rio de la Plata discharge eutrophic environment promotes the 

cyst production of Operculodinium israelianum. 

In the study area, Pentapharsodinium dalei is also considered a eutrophic environmental taxon, as 

this species also shows a transitional trend of increase frequencies from the oligotrophic tropical 

Atlantic to the eutrophic Rio de la Plata discharge region (Gu et al. 2017; 2018). This 

interpretation is supported by a study investigating eutrophication trends in the Mediterranean 

Sea (Zonneveld et al., 2012). Open ocean taxa include all Impagidinium species. Freshwater 

algae include Cosmarium spp., Pseudoschizaea spp. and Pediastrum spp. 

Although cosmopolitan, Operculodinium centrocarpum is a typical species of sediments below 

warm water masses of the BC, and Brigantedinium spp. shows high abundances in polar to 

subpolar environments associated with high nutrient contents (Dale & Fjellsa 1994; Gu et al. 

2018) in the study area (Zonneveld et al. 2013). A decreasing occurrence of Operculodinium 

centrocarpum and an increasing frequency of Brigantedinium spp. from the north to the south off 

southern Brazil have been documented from the marine core GeoB2107-3 (Gu et al. 2017) and 

GeoB6211-2 (Gu et al. 2018). Dalella chathamensis, Operculodinium israelianum, and 
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Spiniferites mirabilis are regarded as BC indicators. Selenopemphix antarctica, Impagidinium 

pallidum, and the new species (also observed in the sediments of the Ross Sea, pers. comm. by 

Versteegh) are considered FMC indicators. 

The ratio between these current indicators (BC/(BC + FMC)) has been used to identify the 

presence of the warm water masses from the north (i.e. high values of the ratio) and the cold 

water masses from the south (i.e. low values of the ratio). This index is also used as a proxy to 

reconstruct latitudinal shifts of the BFMC. 

The program TILIA and TILIAGRAPH were used to plot the dinoflagellate cyst diagrams. 

CONISS was used for stratigraphically constraining the dinoflagellate cyst data, in order to 

derive zones for the diagrams (Grimm 1987; 1993). For comparison of the dinoflagellate cysts 

record, we used the BFMC index, the cold-water indicator Selenopemphix antarctica (%), the 

sum of freshwater algae (%), the sum of eutrophic taxa (%), and other proxies from the same core 

including stable isotope δ
18

O and the Si/Al ratio (Voigt et al. 2013). The ENSO record from 

Laguna Pallcacocha (Moy et al. 2002) and the grain size record from El Junco Lake (Conroy et 

al. 2008) are also used for the multiproxy analyses. 

4.4 Results 

4.4.1 Age-depth model  

The chronology of the GeoB13862-1 core (Figure 2) is based on nine previously published 

(Voigt et al. 2013) accelerator mass spectrometry (AMS) radiocarbon ages obtained from shells 

of the planktonic foraminifera Globorotalia inflata (>150 μm fraction). The age-depth model was 

produced by linear interpolation and is described in detail by Voigt et al. (2013). The radiocarbon 

ages were calibrated with the CALIB 6.0 radiocarbon calibration program (Stuiver & Reimer 

1993) with the Marine 09 calibration curve (Reimer et al. 2009) and no specific ΔR. The 

lowermost calibrated radiocarbon age dates back to ca. 12.7 cal kyr BP at 1007 cm core depth, 

which gives an age of 12.6 cal kyr BP for the lowermost sample at 1000 cm.  
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Figure 2 Age depth model and sedimentation rate of core GeoB13862-1 (Voigt et al. 2013). 

 

4.4.2 Dinoflagellate cyst assemblages  

In total, 40 dinoflagellate cyst taxa were distinguished in 39 samples. The most frequent taxa are 

displayed in the dinoflagellate cyst percentage and group diagrams (Figures 3 and 4). According 

to the cluster analysis, three dinoflagellate cyst zones with subzones (DZ Ia, Ib, Ic; DZ IIa, IIb; 

DZ III) can be recognized. The dinoflagellate cyst concentration (320-19,380 cysts/g, average of 

5840 cysts/g) and influx values (16-3750 cysts/cm
2
, average of 530 cysts/cm

2
) are in general low 

in DZ Ia, higher in DZ Ib and DZ III, and highest in DZ Ic and DZ II.  The kt values are low and 

relatively constant throughout the record, but with higher fluctuations in DZ II and a slight 

increase in DZ III. 

DZ I (12.6-5.7 cal yr BP, 1000-390 cm, 19 samples). In DZ I, phototrophic and heterotrophic 

dinoflagellate cyst taxa are mainly represented by Operculodinium centrocarpum and 

Brigantedinium spp., respectively, with some fluctuations. The percentages of Operculodinium 

centrocarpum increase in the middle part of DZ Ib, and reach their maximum in DZ Ic (6.3-5.7 
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cal yr BP), while Brigantedinium spp. decrease. Among the heterotrophic taxa Protoperidinium 

americanum, Echinidinium granulatum, and Selenopemphix quanta occur in all subzones. 

Polykrikos kofoidii are rare in DZ Ia, while Selenopemphix antarctica is more frequent. 

Votadinium spinosum is frequent only in DZ Ic. Cosmopolitan taxa, mainly represented by 

Operculodinium centrocarpum and Brigantedinium spp., are dominant and relatively stable with 

small fluctuations in DZ I. Nematosphaeropsis labyrinthus occurs frequently in DZ Ic. Eutrophic 

environmental taxa are relatively frequent with some fluctuations. Protoperidinium americanum 

are common in the whole DZ I, while Operculodinium israelianum, Pentapharsodinium dalei, 

Polysphaeridium zoharyi, Polykrikos schwartzii, Selenopemphix antarctica and Selenopemphix 

quanta are relatively high in DZ Ia, and low in DZ Ib and Ic. The rare eutrophic species 

Votadinium spinosum and Xandarodinium xanthum are frequent in DZ Ic. Open-ocean taxa, 

mostly represented by different Impagidinium species, in general have low values and are almost 

absent in the middle part of DZ Ia and in DZ Ic. Freshwater algae, mainly represented by 

Cosmarium spp., are very rare and almost missing in the lower part of DZ Ia and in DZ Ic. 

DZ II (5.7-0.66 cal kyr BP, 390-70 cm, 16 samples). This DZ is characterized by a change from 

dominant phototrophic taxa, in particular in the upper part of DZ IIa, to dominant heterotrophic 

taxa in DZ IIb. Operculodinium centrocarpum, Operculodinium israelianum, Pentapharsodinium 

dalei occur with high values in DZ IIa, while values of Brigantedinium spp. are low. 

Protoperidinium americanum and Polykrikos schwartzii have higher values in DZ IIb.  The sums 

of cosmopolitan taxa are slightly higher in DZ IIa than in DZ IIb and with little fluctuations. 

Values of eutrophic environmental taxa decline compared with those for the previous DZ I. This 

is due to the lower representation of Operculodinium israelianum, Spiniferites mirabilis, 

Spiniferites pachydermus and Polykrikos kofoidii in DZ IIb. Selenopemphix antarctica is more 

frequent in DZ II. Protoperidinium americanum, Echinidinium granulatum, Polykrikos 

schwartzii, Selenopemphix antarctica and Selenopemphix quanta occur more frequent in DZ IIb 

than in DZ IIa. Open-ocean taxa decrease in the lower part of DZ IIb. Freshwater algae, in 

particular, Cosmarium spp., occur with higher values in DZ II.  

DZ III (0.66-0 cal kyr BP, 70-5 cm, four samples). This zone is marked by the highest amount 

(ca. 85%) of phototrophic taxa, in particular Operculodinium centrocarpum, and due to the 
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increase of Operculodinium israelianum, Spiniferites ramosus and Pentapharsodinium dalei. 

Low values of heterotrophic taxa are mainly due to the strong decrease of Brigantedinium spp.. 

The sums of the cosmopolitan taxa decrease to the lowest values. Eutrophic taxa reach the 

highest amount (ca. 45%) towards the uppermost sample, especially with the increase of 

Protoperidinium americanum, Echinidinium granulatum, Polykrikos kofoidii, Dubridinium 

caperatum and Archaeperidinium minutum. Selenopemphix antarctica is very rare in this zone. 

Open-ocean taxa increase slightly. Freshwater algae occur in similar amounts compared to the 

previous zone. Reworked dinoflagellate cysts are in general rare in the whole record, but reach 

the highest value in this DZ. 
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4.5 Interpretation and Discussion 

The relatively low kt values and high abundance of heterotrophic taxa indicate a good 

preservation of dinoflagellate cysts in marine sediment core GeoB13862-1. Therefore, a selective 

degradation of sensitive cysts does not need to be considered for the reconstruction of sea-surface 

condition. 

During 12.6-6.3 cal kyr BP (DZ Ia and Ib), the proportion of phototropic and heterotrophic 

dinoflagellate cyst taxa was relatively stable with little fluctuations, except for the decrease in 

phototrophic taxa around 7.5 ka, mainly due to the decrease of Operculodinium centrocarpum, 

suggesting a decreased supply of tropical waters by the BC. Since 6.3 cal kyr BP (DZ Ic to DZ 

III), the fluctuations became stronger indicating an enhanced dynamics of surface water 

conditions at the study area. Cosmopolitan dinoflagellate cysts dominated the entire record while 

eutrophic taxa were less abundant. Open-ocean taxa were relatively rare and played only a minor 

role. 

4.5.1 Lateglacial and Holocene dynamics of the BFMC 

The BFMC index (BC/(BC + FMC)) indicates a relatively stable position of the BFMC between 

12.6 and 8.7 cal kyr BP (DZ Ia) with a mean position slightly to the south of the modern one 

(Figure 5(G)). The occurrence of low amount of Selenopemphix antarctica, which were 

transported over long distance to the coring site, indicates a stronger influence of cold water 

masses from the south in DZ Ia, whereas in DZ Ib and Ic this species is almost absent. During 8.7 

and 5.7 cal kyr BP first a slight shift of the BFMC to the north (DZ Ib) occurred and then a 

stronger shift to the south (DZ Ic). Indeed, the reconstructed BFMC shifts published by Voigt et 

al. (2015), based on the ice volume-corrected Globorotalia inflata δ
18
O (δ

18
Oivc) record (Figure 

5(H)), shows similar changes. Starting at 10 cal kyr BP, the record from Voigt et al. (2015) shows 

a relatively stable period until ca. 8 cal kyr BP and a southward shift of the BFMC between ca. 8 

and 5.5 cal kyr BP. 

In the marine record of core GeoB6211-2, located ca. 670 km to the north of core GeoB13862-1 

(Figure 1), a stronger influence of cold water masses from the south is indicated by the long-
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distance transport of a few Nothofagus pollen grains between about 10 and 3 cal kyr BP (Gu et al. 

2018). 

Between ca. 5.7 and 0.66 cal kyr BP (DZ II), the BFMC index (Figure 5(G)) indicates stronger 

shifts. After a relatively stable phase (i.e. ca. 5.7-4.5 cal kyr BP), the BFMC, shifted southward 

between ca. 4.5 and 3 cal kyr BP followed by a northward shift, before reaching a position at 1.8 

cal kyr BP similar to the one that occurred at the beginning of this period. The occurrence of 

Selenopemphix antarctica indicates that cold water masses influenced the study area during this 

period. Again, the reconstructed BFMC shifts by Voigt et al. (2015) indicates that the BFMC 

showed stronger dynamics, with several shifts to the south and a strong shift to the north between 

ca. 2.5 and 1 cal kyr BP.  

Thus, the latitudinal shifts of the BFMC reconstruction based on our dinoflagellate cysts index 

corroborate the independent assessments of the BFMC position of Voigt et al. (2015), which is 

based on stable oxygen isotopes of planktonic foraminifera, as well as that of Morard et al. (2016) 

based on the relative abundance of cryptic species of planktonic foraminifera until ca. 0.6 cal kyr 

BP.  

After 0.66 cal kyr BP (DZ III), the index indicates a continuous shift of the BFMC to the south. 

Selenopemphix antarctica was very rare during this period and supports this interpretation.  

Indeed, a southward shift of the BFMC during the instrumental record is compatible to the 

accelerated warming of the BC compared to the global mean as well as its poleward shift as 

suggested by Wu et al. (2012). A poleward shift of the BFMC of 0.6° to 0.9° per decade was also 

documented during the period from 1992 to 2007 (Lumpkin & Garzoli 2011). However, the lack 

of an accompanying shift in the BFMC reconstruction by Voigt et al. (2015) still need to be 

addressed. 
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4.5.2 Latest Pleistocene and Holocene freshwater record 

The relatively low abundances of freshwater algae, as well as the very low pollen content in 

sediments from GeoB13862-1, indicates relatively little input from the Rio de la Plata drainage 

basin to the coring site. Indeed, the connection of GeoB13862-1 to the Rio de la Plata mouth has 

been previously considered to be small (Krastel et al. 2011; Voigt et al. 2013; Razik et al. 2015). 

However, the absence or relatively rare occurrence of freshwater algae between 12.6 and 5.7 cal 

kyr BP (DZ I), compared to the following periods (DZ II and III), may suggest that precipitation 

on the continent was relatively low, as interpreted from continental pollen records (e.g. Prieto 

1996; Behling et al. 2005).  

The still low but markedly higher occurrence of freshwater algae since 5.7 cal kyr BP (DZ II) 

indicates an increase in precipitation. This is well correlated with increased ENSO activity as 

reconstructed from Laguna Pallcacocha (Moy et al. 2002) (Figure 5(C)). After ca. 3 cal kyr BP, 

the still high freshwater algae abundance correlates with increased Si/Al values of core 

GeoB13862-1 (Figure 5(B)). Both may be explained by the higher ENSO frequency and longer, 

stronger El Niño events (Figure 5(A)) (Conroy et al., 2008) producing increased rainfall on the 

continent and blocking the northward transport of the Rio de la Plata freshwater discharge (Voigt 

et al. 2013). ENSO reconstructions from El Junco Lake (Conroy et al. 2008) and Laguna 

Pallcacocha (Moy et al. 2002) also show increased ENSO activity (Figure 5 (C)), triggering 

enhanced precipitation over south-eastern South America during El Niño years. Moreover, 

marine core GeoB6211-2 also indicates a southward expansion of the Atlantic rainforest under 

wetter climatic conditions after 5.5 cal kyr BP (Gu et al. 2018). 

The concentration and influx of dinoflagellate cysts are relatively low from 12.6 to 6.3 cal kyr BP 

(DZ Ia and Ib), but higher in the following periods (Figure 4), indicating a higher productivity in 

the study area. The higher productivity may have benefited from the nutrients discharged by the 

Rio de la Plata which were not transported northwards (Voigt et al. 2013). 
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4.5.3 Latest Pleistocene and Holocene eutrophic dynamics of the sea surface water 

Between 12.6 and 5.7 cal kyr BP (DZ I), the dinoflagellate cyst assemblages indicate a more 

eutrophic sea surface condition than in the following period from 5.7 to 0.66 cal kyr BP (DZ II) 

(Figure 5(E)). The generally rare eutrophic taxa Votadinium spinosum and Xandarodinium 

xanthum, as well as the maximum influx and concentration of dinoflagellate cysts, suggest a high 

eutrophic environment between 6.3 and 5.7 cal kyr BP (DZ Ic) (Figure 3). Operculodinium 

israelianum, which is a typical species recorded in high abundance in Brazilian Coastal Current 

(BCC) waters, suggests that the nutrient source derived from the Rio de La Plata plume was 

transported by BCC to the coring site. From 5.7 to 0.66 cal kyr BP (DZ II), the decline of 

eutrophic dinoflagellate cysts, indicates a decrease of nutrient-rich waters, especially after 3 cal 

kyr BP. Since 0.66 cal kyr BP, a high eutrophic environment is recorded (Figures 3 and 5), 

together with an increase of dinoflagellate cyst taxa restricted to the region under BC influence 

(Zonneveld & Pospelova. 2015 and references therein), indicating that this eutrophic environment 

was formed under the predominant influence of the warm waters of the BC.  

4.5.4 Anthropogenic eutrophication during the last ca. 100 years 

The high occurrence of eutrophic dinoflagellate cysts in the uppermost sample of the core, which 

spans the last ca. 100 years (40 cal yr BP, 5 cm core depth in DZ III), indicates a strong nutrient 

input. Polykrikos kofoidii, Polykrikos schwartzii and Dubridinium caperatum are typical 

indicators of modern coastal waters that are highly polluted by human-induced eutrophication 

(Dale 2009; Pospelova & Kim 2010; Zonneveld et al. 2012). As there is no upwelling area close 

by, we interpret the eutrophic coastal environment as a product of human impact. Increased 

erosion by overgrazing, agricultural activities and deforestation in the Rio de la Plata drainage 

basin (Nagy et al. 2002; Smith et al. 2003) may have caused an increase of nutrients to the 

western South Atlantic.  

4.6 Summary and conclusions 

(1) The palaeoenvironmental dynamics of the Brazil-Falklands/Malvinas Confluence (BFMC) 

region were reconstructed based on the analyses of organic-walled dinoflagellate cysts and 
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freshwater algae from marine sediment core GeoB13862-1 since ca. 12.6 cal kyr BP, to 

contribute to a better understanding of past environmental changes in south-eastern South 

America. 

(2) The BFMC index, based on the indicators of the Brazil Current (BC) and Falklands/Malvinas 

Current (FMC), suggests that the BFMC position was relatively stable from ca. 12.6 to 8.7 cal 

kyr BP. From ca. 8.7 until 5.7 cal kyr BP, the BFMC shifted slightly to the north and then 

stronger to the south. Between ca. 5.7 and 4.5 cal kyr BP, the BFMC was again relatively stable, 

shifted stronger southwards and then back northwards between ca. 4.5 and 3 cal kyr BP. After 3 

kyr BP, the BFMC shifted to the north followed by a position like in the early Holocene between 

1.8 and 0.66 cal kyr BP. After 0.66 cal kyr BP a continuously southward shift occurred.  

(3) Selenopemphix antarctica, an indicator for the presence of cold water masses with Antarctic 

affinity over the core site, documents a stronger influence of these cold water masses transported 

by the FMC from the south between ca. 12.6 and 10.3 cal kyr BP and ca. 5.7 to 0.66 cal kyr BP, 

broadly agreeing with the BFMC index.  

(4) The slightly elevated presence of freshwater algae after ca. 5.7 cal kyr BP indicates an 

increase in precipitation over the Rio de la Plata drainage basin, apparently linked to a higher El 

Niño-Southern Oscillation frequency and longer, stronger El Niño events.  

(5) The dinoflagellate cysts record indicates eutrophic sea surface conditions between 12.6 and 

5.7 cal kyr BP. Between 5.7 and 0.66 cal kyr BP, sea surface waters were comparably poor in 

nutrients.  

(6) Widespread and intensive human activity in the Rio de la Plata drainage basin is recorded by 

the high abundance of eutrophic dinoflagellate cyst taxa during the last ca. 100 years, implying 

that surface samples should be used with caution as a reference for natural dinoflagellate cysts 

distribution. 
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Chapter 5  

Synthesis 

This dissertation contributes to a better understanding of palaeoenvironmental changes in 

southeastern South America based on pollen, spores, dinoflagellate cysts and freshwater algae 

analyses. The three studied marine sediment cores GeoB2107-3, GeoB6211-2 and GeoB13862-1, 

located in a climatic sensitive region, along a tropical to subtropical transect from latitude 27°S to 

38°S off southeastern South America (see Fig. 1 in Chapter 1). The three marine sediment cores 

span back to 73.5 cal kyr BP, 19.3 cal kyr BP and 12.6 cal kyr BP, respectively. 

5.1 Past vegetation and climate in southeastern South America  

The northernmost located marine core GeoB2107-3 provides for the first time insights of 

vegetation and climate dynamics in southern Brazil since the early and mid-last glacial period. 

The oldest continental pollen record (Cambara do Sul) covers only the last 42 cal kyr BP 

(Behling et al., 2004).   

The pollen and spore records of GeoB2107-3 (Chapter 2) and GeoB6211-2 (Chapter 3) indicate 

that grasslands (Campos) were the dominant vegetation in the highlands and lowlands of 

southeastern South America during glacial times and had its greatest extension during LGM, 

reflecting cold and dry climate conditions. Due to the lower sea level stands during glacial times, 

in particular during the Last Glacial Maximum (LGM), large parts of continental shelf were 

exposed, and the dominant vegetation was grassland and salt marshes, rich in Cyperacae and 

Amaranthaceae/Chenopodiaceae. Mangrove vegetation must have been shifted to the north. The 

area of the Atlantic rainforest was reduced during the recorded last glacial period, in particular 

during the pre-LGM and the LGM period. The northern part of the southern Brazilian coastal 

lowland was covered by patches of subtropical forest and grassland, while the southern part was 

covered with only little areas of subtropical forest. The Atlantic rainforest expanded to the south 

in the lowlands of southern Brazil since the Lateglacial, including the still exposed continental 

shelf, before the postglacial sea level rise flooded the continental shelf.  

The vegetation reconstruction indicates that the area of Atlantic lowland rainforest in southern 

Brazil was unstable, compared to the marine pollen records off southeastern Brazil (Behling et al., 
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2002). It can be assumed that larger parts of the exposed continental shelf were covered with 

rainforest (Leite et al., 2016).  

The GeoB2107-3 record indicates that the Atlantic rainforest expanded to the south since 14 cal 

kyr BP, while the GeoB6211-2 core, which is located ca. 500 km further south, suggests the 

expansion recorded only since 5.5 kyr BP. This late southwards migration is probably due to the 

drier and cooler climate conditions in the south. The earlier expansion of the Atlantic rainforest 

recorded further north (GeoB2107-3), was probably due to the warmer climatic conditions, which 

may be related to the increase of sea surface temperature, due to the increase of warm water mass 

transported from the tropical regions by the Brazil Current (BC).  

The freshwater algae record of the southernmost core GeoB13862-1 indicates an increase in 

precipitation on the continent since ca. 5.7 cal kyr BP, which is apparently linked to the to 

increased El Niño–Southern Oscillation (ENSO) activity (Chapter 4). The onset and much higher 

ENSO frequency since mid-Holocene (Conroy et al., 2008; Moy et al., 2002), which caused 

wetter conditions in southern Brazil, may have contributed to the expansion of Atlantic rainforest 

to the south.  

The marine pollen record (GeoB6211-2) off the southernmost part off southern Brazil indicate a 

slight expansion of gallery forests during Heinrich Stadial (HS) 1 (18–15 cal kyr BP), suggesting 

a slightly wetter climatic conditions. However, in the terrestrial record of São Francisco de Assis 

(Behling et al., 2005), this expansion is not recorded. This might be due to the location São of 

Francisco de Assis is further inland. 

From 73.5 cal kyr BP to 65 cal kyr BP, the population of Araucaria angustifolia trees in the 

southern Brazilian highlands were similar to the late Holocene, but were rare during the 

remaining last glacial to mid-Holocene periods. This indicates that the recorded early last glacial 

period was wetter than the following last glacial periods. Araucaria angustifolia became frequent 

again only during the late Holocene, which is recorded in several continental records as well (e.g. 

Cambara do Sul, Behling et al., 2004). 

The GeoB2107-3 record indicates that during early last glacial times, the Araucaria and Atlantic 

rainforests had an unexpected larger area due to somewhat wetter conditions. Also, the diversity 

of different pollen taxa suggest a higher plant diversity compared to the following last glacial 

periods. The vegetation reconstructions based on the GeoB2107-3 core confirm the results, e.g. 
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based on frog genetic diversity dynamics in the Brazilian Atlantic rainforest hotspot, suggesting 

that the southern Atlantic rainforest region was climatically unstable (Carnaval et al., 2009).  

The GeoB2107-3 and GeoB6211-2 pollen records, which can be in general well related with 

continental records, provide a very good regional aspect of vegetation and climate changes in 

southeastern South America and allowed the reconstruction of the vegetation history back to 73.5 

cal kyr BP. 

5.2 Marine environmental dynamics in the western South Atlantic  

The marine core GeoB2107-3 is providing also for the first time insight of dinocyst distribution 

sea surface salinity, temperature and eutrophic conditions as well as ocean dynamics in the 

western South Atlantic since early glacial times. In particular, Operculodinium centrocarpum and 

Brigantedinium spp. are correlated to the warm water mass of the BC and cold water mass of the 

Malvinas Current (MC, refers to FMC in Chapter 4), respectively. Along the studied north to 

south transect of the 3 cores, the frequency cysts of Operculodinium centrocarpum shows a 

decreasing, while Brigantedinium spp. shows an increasing trend. During the period between 

73.5 and 53.9 cal kyr BP, the GeoB2107-3 record shows a low occurrence of Operculodinium 

centrocarpum, indicating a little influence of the BC from the north. Between 53.9 and 35.0 cal 

kyr BP, the BC largely dominated the upper water column and surface waters transported by the 

MC and BCC from the south decreased. From 35.0 to 21.0 cal kyr BP, Operculodinium 

centrocarpum decreased, indicating a low influence of BC.  

The dinocyst records indicate also stronger presence of the BC over the GeoB2107-3 coring site 

already since 15 cal kyr BP, while at the site GeoB6211-2 ca. 500 km further south the BC was 

stronger since ca. 9 cal kyr BP. A stronger influence of the BC at the southernmost site 

GeoB13682-1 was much later, only between 7.5 and 5.7 cal kyr BP and since 0.66 cal kyr BP, 

respectively. 

A stronger MC and Brazil Coastal Current (BCC) is indicated by the occurrence of Nothofagus 

pollen grains transported by the water mass from the southern South Atlantic between 38.5 and 

13 cal kyr BP in the record of GeoB2107-3, and between 19.3 and 14.8 cal kyr BP in the record 

of GeoB6211-2. Nothofagus occurs only in the Andes of southern South America (Fontana et al., 

2012). Therefore, the deposition of Nothofagus pollen suggests an efficient transport by 
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Argentinean rivers and/or winds (i.e., the southern Westerlies) into the continental margin off 

Argentina, a northward transport along the Argentinean continental margin via the MC, and, 

finally, a continued northward transport along the Uruguayan and Brazilian continental margins 

via the BCC. Furthermore, in the southernmost GeoB13862-1 core, Antarctic cold water mass 

transported by MC has been indicated by dinocysts of Selenopemphix antarctica, which has been 

found between 12.6 and 10.3 and from ca. 5.7 to 0.66 cal kyr BP. 

The BCC had a greater influence at GeoB6211-2 than further north at the GeoB2107-3 core 

position. This is indicated by the higher amount of exotic Nothofagus pollen in GeoB6211-2 

transported by winds/rivers. The BCC influence over GeoB6211-2 decreased along the last 

deglaciation and became less important, but still perceptible, during the early and mid-Holocene 

until 3 cal kyr BP. 

5.3 Dynamics of the Brazil Malvinas Confluence (BMC) during Lateglacial 

and Holocene times 

The GeoB13862-1 core is located at a key position, where the highly energetic convergence of 

surface currents BMC formed (refers to BMFC in Chapter 4). The latitudinal shift of the BMC 

has been reconstructed based on an established BMC index (BC / (BC + FMC)).  

The index indicates that the BMC position was relatively stable from 12.6 to 8.7 cal kyr BP. 

From ca. 8.7 until 5.7 cal kyr BP, the BMC shifted slightly to the north and then stronger to the 

south. Between ca. 5.7 and 4.5 cal kyr BP, the BMC was again relatively stable, shifted stronger 

southwards and then back northwards between ca. 4.5 and 3 cal kyr BP. After 3 kyr BP, occurred 

a strong shift of the BMC to the north, followed by a position like that in the early Holocene 

between 1.8 and 0.66 cal kyr BP. After 0.66 cal kyr BP, a continuously southward shift occurred. 

A previous reconstruction of the BMC using oxygen isotope proxy from planktonic foraminiferal 

indicates a similar trend (Voigt et al., 2015). However there is slightly time gap between these 

two records, this might be related to the difference sensitivity between planktonic foraminiferal 

and dinoflagellates response to the ocean environment changes. 

A study of the BMC position at modern times, indicate that a poleward shift of BMC is due to the 

weakening of the northern branch of the Antarctic Circumpolar Current, which caused the 
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decrease of the intensity of MC (Combes et al., 2014). A southward shift of BMC during 

historical time periods has been indicated by studies of Wu et al. (2012), suggesting a stronger 

BC due to global warming. 

5.4 Freshwater discharge and eutrophic water surface conditions 

The dinocysts and freshwater algae records of GeoB2107-3 (Chapter 2) and GeoB6211-2 

(Chapter 3) and GeoB13862-1 (Chapter 4), indicate that freshwater with nutrient input to the 

ocean surface at the different coring site is largely controlled by the global or regional sea level 

change. During periods of lower sea levels, the discharge was closer to the coring site. Therefore, 

the eutrophic environment condition in the studied coastal area is partly influenced by the rivers 

discharge from the continent (e.g. Rio Itajaí, Rio de La Plata) reflecting changes in precipitation 

on land. 

In the GeoB2107-3 record, a stronger eutrophication sea surface condition, which influenced 

directly by the BCC with nutrient rich waters, occurred between 73.5 and 53.9 cal kyr BP, and in 

particular from 35.0 to 14.0 cal kyr BP under low Atlanic sea level conditions. 

In GeoB6211-2, the eutrophication sea surface condition was largely effected by the Rio de la 

Plata discharged its freshwater during the LGM and HS1, the upper water column and the 

sedimentary processes over the coring site were influenced as well. While due to sea level rise 

and landward shift of the Rio de la Plata mouth at about 14 cal kyr BP, the freshwater input effect 

decreased markedly and caused significant impact on the sedimentary process, the nutrient 

content and dinoflagellate cysts composition and production in the upper water column.  

In the GeoB13862-1 record, stronger human activity on land was recorded since the last ca. 100 

years. Increased erosion by overgrazing, agriculture activities or deforestation may have caused 

an increase of nutrient in the ocean. An increase of eutrophic dinocysts of the two top samples 

has been also recorded in marine core GeoB6211-2 for the last decades. Dinocyst records from 

other regions, such as Indonesia (Java Sea, Poliakova et al., 2017) or Italy (Po River delta, 

Zonneveld et al., 2012) also indicate that the increased eutrophication in the coastal marine 

environment was probably caused by increasing human activities. 
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5.5 Links between southeastern South America continental and adjacent ocean 

environmental changes 

In both records of GeoB2107-3 (Chapter 2) and GeoB6211-2 (Chapter 3), the cluster analysis 

indicates that major changes in the pollen/spore and dinocyst assemblages occurred at similar 

pacing, pointing to a strong relationship between continental and marine environmental changes. 

The mentioned time gap of the recorded early Atlantic rainforest expansion in GeoB2107-3 and 

late expansion in GeoB6211-2, which is ca. 500 km further south, might be also due to a low sea 

surface temperature further south, which cooled down the atmospheric temperature. The much 

stronger dominance of the grasslands in the south of the studied transect, can also be linked to the 

MC which transport the cold water masses from the south.  

The results indicate that orbital obliquity is one of the most important driving factors controlling 

the long-term (73.5 cal kyr BP) marine and continental environmental changes in southeastern 

South America. This is different to the results of Cruz et al. (2005) based on the speleothem 
18

O 

record, suggesting that the summer insolation is the major effect of the long-term climate of 

subtropical Brazil by controlling the atmospheric circulation in subtropical Brazil.  

5.6 Outlook and future perspective 

The three new marine sediment records, together with previous studied continental and marine 

environmental proxies, provide an integrated understanding of the past environmental changes in 

southeast South America. The reconstruction of past vegetation, climate dynamics in southeastern 

South America and ocean surface environmental conditions of western South Atlantic document 

the important archives, contributing for an in-depth understanding of the long-term 

environmental changes in southeastern South America since the late Quaternary. While further 

high-resolution studies on specific time periods, such as the deglaciation period and Heinrich 

Events, are still needed for understanding detailed land-ocean interactions during special climatic 

events. Furthermore, the increase of investigation on additional marine cores to extend this 

studied transect further to the north and to the south, will allow refining the reconstruction of past 

environmental changes in southeastern South America. Furthermore, the interpretation of past 

environmental changes of the marine cores will benefit largely from a detailed study of a large set 

of surfaces samples off southeastern South America or even western South Atlantic. Such an 
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additional study will contribute to more detailed distribution maps of dinocysts in the western 

South Atlantic. 
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Appendix 

Appendix I: List of identified pollen and spore types 

Pollen/Spore type  Taxonomic family Vegetation  

Baccharis type  Asteraceae Herb (H) 

Vernonia  Asteraceae H 

Asteraceae other taxa  Asteraceae H 

Ambrosia type  Asteraceae H 

Senecio type  Asteraceae H 

Asteraceae subf. Cichorioideae  Asteraceae H 

Trixis  Asteraceae H 

Acanthaceae  Acanthaceae H 

Acaena type  Rosaceae H 

Pamphalea  Asteraceae H 

Liliaceae  Liliaceae H 

Poaceae  Poaceae H 

Cyperaceae  Cyperaceae H 

Eryngium  Apiaceae H 

Fabaceae (psilate small)  Fabaceae H 

Fabaceae (psilate large)  Fabaceae H 

Fabaceae (psilate medium)  Fabaceae H 

Fabaceae (reticulate small)  Fabaceae H 

Fabaceae (reticulate large)  Fabaceae H 

Alternanthera (small)  Amaranthaceae H 

Gomphrena-Pfaffia  Amaranthaceae H 

Plantago australis type  Plantaginaceae H 

Xyris  Xyridaceae H 

Amaranthaceae-

Chenopodiaceae  Amaranthaceae H 

Iridaceae  Iridaceae H 

Apiaceae  Apiaceae H 

Jungia  Asteraceae H 

Malvaceae (small)  Malvaceae H 

Malvaceae (large)  Malvaceae H 

Euphorbia  Euphorbiaceae H 

Polygonum  Polygonaceae H 

Borreria (small)  Rubiaceae H 

Lamiaceae (reticulate)  Lamiaceae H 
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Rubiaceae indet.  Rubiaceae H 

Valeriana  Valerianaceae H 

Spermacoce  Rubiaceae H 

Ludwigia  Onagraceae H 

Potamogeton  Potamogetonaceae H 

Hippeastrum   H 

Typha  Tyhaceae H 

Tribulus  Zygophyllaceae H 

Eriocaulon  Eriocaulaceae H 

Myriophyllum  Myriophyllaceae H 

Polygala  Polygalaceae H 

Sagittaria  Alismataceae H 

Utricularia  Uticuluariaceae H 

Echinodorus  Alismataceae H 

Caryophyllaceae  Charyophyllaceae H 

Brassicaceae  Brassicaceae H 

Ericaceae  Ericaceae H 

Zornia type  Fabaceae H 

Vicea-Lathyrus type  Fabaceae H 

Cuphea  Lythraceae H 

Ranunculus  Ranunculaceae H 

Eichhornia  Pontederiaceae H 

Solanum  Solanaceae Tree and shrub  (T) 

Clusia  Clusiaceae T 

Celtis  Ulmaceae T 

Salix  Salicaceae T 

Styrax  Styracaceae T 

Ephedra tweediana  Ephedraceae T 

Ephedra other (small)  Ephedraceae T 

Podocarpus  Podocarpaceae T 

Alchornea  Euphorbiaceae T 

Myrtaceae  Myrtaceae T 

Moraceae-Urticaceae  Moraceae-Urticaceae T 

Melastomataceae  Melastomataceae T 

Bignoniaceae  Bignoniaceae T 

Psychotira   Rubiaceae T 

Rhamnus  Rhamnaceae T 

Myrsine  Myristicaceae T 

Allophylus  Sapindaceae T 

Araucaria angustifolia  Araucariaceae T 

Arecaceae   Arecaceae T 
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Weinmannia  Cunoniaceae T 

Hedyosmum  Chloranthaceae T 

Luehea  Malvaceae T 

Mimosa type II  Mimosaecae T 

Mimosa type III  Mimosaecae T 

Mimosa invisa  Mimosaecae T 

Mimosa taimbensis  Mimosaceae T 

Mimosa scabrella  Mimosaceae T 

Mimosa (P4 type)  Mimosaceae T 

Mimosa (P16 psilate)  Mimosaceae T 

Mimosa indet.  Mimosaceae T 

Alseis floribunda  Rubiaceae T 

Clethra  Cletraceae T 

Drymis  Winteraceae T 

Hyeronima  Euphorbiaceae T 

Pera  Euphorbiaceae T 

Ilex  Aquifoliaceae T 

Trema  Ulmaceae T 

Meliaceae  Meliaceae T 

Sloanea  Cunoniaceae T 

Rhipsalis  Cactaceae T 

Flacourtiaceae  Flacourtiaceae T 

Acalypha  Euphorbiaceae T 

Symplocos tenuifolia type  Symplocaceae T 

Meliosma  Sabiaceae T 

Nothofagus   Fagaceae T 

Gallesia  Phytolacaceae T 

Zanthoxylum  Rutaceae T 

Tetrochidium  Euphorbiaceae T 

Croton  Euphorbiaceae T 

Struthanthus  Loranthaceae T 

Actinostemon  Euphorbiaceae T 

Schinus-Litharea  Anacardiaceae T 

Malpighiaceae  Malphighiaceae T 

Sebastiana brasiliensis  Euphorbiaceae T 

Sebastiana commersoniana  Euphorbiaceae T 

Virola  Myristicaceae T 

Rosaceae  Rosaceae T 

Dodonoea  Sapindacae T 

Piper  Piperaceae T 

Sapotaceae  Sapotaceae T 

https://en.wikipedia.org/wiki/Mimosa_scabrella
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Roupala  Proteaceae T 

Symplcocos lanceolata type  Symplocaceae T 

Rhizophora  Rhizophoraceae T 

Sapindaceae  Sapindaceae T 

Oreopanax  Araliaceae T 

Alnus  Betulaceae T 

Cecropia  Cecropiaceae T 

Indeterminate   I 

Unkown (C3 echinate)   I 

Dicksonia sellowiana  Dicksoniaceae Tree fern (R) 

Cyathea (psilate)  Cyatheaceae R 

Cyathea (verrucate)  Cyatheaceae R 

Nephalea  Cyatheaceae R 

Alsophila elegans  Alsophilaceae R 

Monolete (psilate small)   Ferns (F) 

Monolete (psilate large)   F 

Monolete (verrucate small)   F 

Monolete (verrucate large)   F 

Monolete (echinate)   F 

Monolete (with perispor)   F 

Trilete (psilate)   F 

Trilete (verrucate)   F 

Pteris  Pteridaceae F 

Lycopodium clavatum type  Lycopodiaceae F 

Lycopodium cernuum type  Lycopodiaceae F 

Lycopodium (foveolate)  Lycopodiaceae F 

Anemia phyllitis  Schizaeaceae F 

Selaginella (echinate)  Selaginellaceae F 

Selaginella excurrens  Selaginellaceae F 

Lophosoria quadripinata  Dicksoniaceae F 

Lycopodium alopecuroides  Lycopodiaceae F 

Salvina type  Salvinaceae F 

Isoetes  Isoetaceae F 

Hymenophyllum  Hymenophyllaceae F 

Pityrogramma  Pteridaceae F 

Osmunda  Osmundaceae F 

Anthroceros  Anthocerotaceae Moss (M) 

Sphagnum  Sphagnaceae M 

Phaeoceros leavis  Anthocerotaceae M 
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Appendix II: List of identified dinocyst and freshwater algae types 

Dinocyst type  Ecological distribution preference  Group 

Operculodinium centrocarpum cosmopolitan phototrophic 

Operculodinium israelianum coastal phototrophic 

Lingulodinium machaerophorum coastal phototrophic 

Cyst of Pentapharsodinium dalei coastal phototrophic 

Polysphaeridium  zoharyi coastal phototrophic 

Nematosphaeropsis labyrinthus cosmopolitan phototrophic 

Tuberculodinium vancampoae coastal phototrophic 

Spiniferites membranaceus coastal phototrophic 

Spiniferites mirabilis coastal phototrophic 

Spiniferites ramosus cosmopolitan phototrophic 

Spiniferites pachydermus coastal phototrophic 

Spiniferites bentorii  coastal phototrophic 

Spniferites elongatus coastal phototrophic 

Spiniferites delicatum coastal phototrophic 

Spiniferites spp coastal phototrophic 

Impagidinium aculeatum open sea phototrophic 

Impagidinium paradoxum open sea phototrophic 

Impagidinium patulum open sea phototrophic 

Impagidinium palicatum open sea phototrophic 

Impagidinium sphaericum open sea phototrophic 

Impagidinium strialatum open sea phototrophic 

Impagidinium spp open sea phototrophic 

Dalella chathamensis coastal phototrophic 

Bitectatodinium tepikienese coastal phototrophic 

Tectatodinium pelltum coastal phototrophic 

Bitectatodinium spongium coastal phototrophic 

Brigantedinium spp.(RBC) cosmopolitan heterotrophic 

Echinidinium granulatum coastal heterotrophic 

Votadinium calvum coastal heterotrophic 

Selenopenphix quanta coastal heterotrophic 

Selenopenphix nephroides coastal heterotrophic 

Selenopemphix antarctica coastal heterotrophic 

Leipokatium invisitatum coastal heterotrophic 

Cyst of Lejeuncyst quanta coastal heterotrophic 

Xandarodinium xanthum coastal heterotrophic 

Cyst of Polykrikos kofoidii coastal heterotrophic 

Cyst of Polykrikos schwartzii coastal heterotrophic 

https://www.marum.de/Karin-Zonneveld/dinocystkey/Spiniferites-mirabilis.html
https://www.marum.de/Karin-Zonneveld/dinocystkey/Spiniferites-bentorii.html
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Stelladinium stellatum coastal heterotrophic 

Cyst of Protoperidinium americanum coastal heterotrophic 

Cysts of Gymnodinium microreticulatum coastal heterotrophic 

Quinquecuspis concreta coastal heterotrophic 

Cyst of Protoperidinium spp. coastal heterotrophic 

Trinovantedinium applanatum coastal heterotrophic 

Cyst of Gymnodinium catenatum coastal heterotrophic 

Cyst of Gymnodinium noleri coastal heterotrophic 

Cyst of Alexandrium spp coastal heterotrophic 

Cryodinium meidianum coastal heterotrophic 

Votadinium spnosum coastal heterorophic 

Cyst of Dubridinium caperatum coastal heterotrophic 

Cysts of Archaeperidinium minutum coastal heterotrophic 

New species  coastal heterotrophic 

Halodinium spp. lake freshwater algae 

Staurastrum type 2 lake freshwater algae 

Staurastrum type 3  lake freshwater algae 

Staurastrum type 4 lake freshwater algae 

Staurastrum sexangulare  lake freshwater algae 

Pseudoschizaea spp. lake freshwater algae 

Pediastrum lake freshwater algae 

Cosmarium spp. lake freshwater algae 
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Appendix III: List of the photographs of selected pollen, spore, 

dinocyst, freshwater algae and unknown types of the three studied 

cores 
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